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   Preface 

   This monograph is multivariate, multiperspective, and multipurpose. We intend to 
be innovatively integrative through statistical synthesis. Innovation requires capacity 
to operate in ways that are not ordinary, which means that conventional computa-
tions and generic graphics will not meet the needs of an adaptive approach. Flexible 
formulation and special schematics are essential elements that must be manageable 
and economical. 

 We fi nd that the computational context of the  R  statistical software system is 
quite convenient for meeting these needs.  R  is easily available without charge and 
extensively augmented by CRAN contributions. Compared to other language-like 
software systems,  R  gives the user high-level commands while allowing many mod-
ifi cations on an optional basis along with capability for custom composition.  R  is 
keyboard and keyword controlled, however, as opposed to being mostly mouse-a-matic. 
Consequently, some learning and experimentation are required to proceed profi -
ciently. A purpose of practicality is thus to be enable Rs of those who are interested 
enough to delve deeply into data and pursue practice. To encourage this degree of 
dedication, we have a didactic dataset that threads through all but a couple of the 
chapters. This demonstrative dataset is suffi ciently small to be entered entirely by a 
patient person in a single session, but extensive enough to provide practice by select-
ing several subsets. An auxiliary of appendices is provided for preliminary practice 
with  R . 

 A philosophical purpose is to accomplish some attitude adjustment with regard 
to analytical alternatives that tend to be conceived as competing. We encourage 
shifting the concept of  competition  to  complementary  insofar as appropriateness of 
assumptions may allow. We promote what we call “comparadigms” of comparative 
analysis whereby insight is gained from differences that emerge by varying views, 
such as scalings and statistical strategies. The underlying question here is  when does 
a (statistical) difference make a difference (that is evident or suggestive) ? The extra 
effort of traveling alternate routes to an intended end can either offer insights or be 
comfortingly confi rmatory. 
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 We further transmute  competing  into  coupling  through what we will call  data 
distillation  to distinguish it from other monikers, such as data mining. Packaged 
protocols of statistical systems typically all have the same starting point of the basic 
data table (matrix). We will often do differently by feeding forward the results of 
one analysis into another analysis as a chain of informational condensation. Many 
analytical activities act as fi lters that mute minor messages and amplify aspects of 
major messages. We thus have a progressive process of obtaining overtones and 
portraying prominent patterns. Retaining results from intermediate operations 
allows for stepping back to add interpretive undertones that may also carry impor-
tant implications. 

 Another point of perspective lies in remembering that data are dualistic as inter-
play between observational instances and values of variates. There are variations in 
the view with addition or deletion of cases, and likewise for variates. This is clari-
fi ed by considering each case to be a sort of signaling device, and the variates to be 
transmissive channels for conveying content. A crucial question in probing for pat-
terns is whether certain subsets of the case devices are projecting peculiar/particular 
patterns on some of the channel variates. Such dual decomposition of data is the 
essence of data distillation. 

 Interwoven throughout this thematic tapestry is a primary purpose of promoting 
partial prioritization. This problem is pervasive in modern society from environ-
ment to economics. Complete prioritization is often quite contentious, but picking 
the best of the better and the worst of the worse will often suffi ce to allocate avail-
able resources and alleviate partisan paralysis. Since combinatorial computations 
are often involved in prioritization, preliminary partitioning into similar sets can 
rapidly reduce the computational concerns. Therefore, clusters of cases and charac-
terizing collectives can be crucial. While objectivity is essential for circumventing 
confl icts, it is also essential not to exclude expertise. Transparency is likewise a 
critical concern, for which easily deciphered displays are especially effective. We 
have endeavored to present the particulars in a manner that is accessible and accept-
able to a spectrum of professional practitioners as well statistical specialists.    

University Park, PA, USA Wayne L. Myers
 Ganapati P. Patil
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 Our primary perspective lies with practical procedures for strategic screening and 
partial/progressive prioritization when there are multiple measures containing 
comparative criteria for substantial sets of informational instances. Computational 
considerations impose constraints on combinatorial comparisons, and perception of 
patterns for visual verifi cation helps to cope with complexity. The open source data 
analysis system called  R  ©  (R Development Core Team  2008  )  is well suited for this 
coupling of computation and cognition. We seek secondarily to provide a portal into 
the realms of  R  through exposition by example. For continuity of comparison, we 
concentrate on a dataset of cellular conservation characteristics for the State of 
Pennsylvania (Myers et al.  2000  ) . This has been a favorite dataset for us in illustrating 
innovative analytical approaches since it allows us to incorporate spatial proximity 
into the comparative context. This dataset is shown in Appendix 1, and provides the 
present point of departure. The  R  software can be downloaded via the  R -project Web 
site   http://www.r-project.org     making it readily available to all. Appendices 2–5 offer 
a springboard for those who are unacquainted with  R  consisting of introductory learn-
ing exercises that have served as the basis for workshops to introduce  R  protocols. 

 We confi gure what might be called  comparadigms . We collect data on instances 
of interest in terms of multiple observable properties through some protocol(s) of 
quantifi cation to obtain a matrix (table) of data. By means of analytical methods we 
then compare several properties on the individual instances and compare the proper-
ties across instances to obtain prominent patterns. The information available for 
comparison is inherently dualistic—it arises jointly from the choice of instances on 
which to observe properties and from choice of properties to observe on instances. 
An instance can be considered informally as a sort of signaling device for monitor-
ing a complex contextual environment and the properties (or indicators) as channels 
through which signaling is being conducted. Interest lies in analyzing the outputs of 
the several such devices to determine clarity of signals and characterize complexity 
regarding comparative status of the environments being monitored. 

 Many or even most analytical approaches provide ways of fi ltering the outputs to 
enhance clarity and determine collective modes of operation with regard to signaling. 

    Chapter 1   
 Motivation and Computation                  

http://www.r-project.org


2 1 Motivation and Computation

We are most interested in  prominent patterns  or  major messages  that emerge from 
the data domains; and, in this sense,  data distillation  might be an appropriate adjunct 
to the jargon of  data mining . Underlying our approach is intent to promulgate pre-
cedence of preference among instances for partial and/or progressive prioritization 
while lending logic and logistics to public portrayal of a prioritization process. The 
imperatives are often to target the best of the best as prime prospects or the worst of 
the worst as critical cases, leaving the mixed messages for later etiological investi-
gation of interactions. Note that our use of the term  precedence  in relation to prefer-
ence among instances is not to be confused with the so-called precedence-type 
statistical tests for comparison of treatments with a control which focus on the order 
of occurrence for outcomes (Balakrishnan and Ng  2009  ) . 

 Our approach is unconventional in asserting that multiple views have greater 
prospect of revealing prominent patterns than single views, so we couple what are 
often seen as competing methodologies while looking for commonalities and 
contrasts. We suggest analytical sequences whereby the results of one analysis are 
fed into another analysis instead of starting over directly from the data. Each analy-
sis in such a sequence becomes a sort of fi lter that feeds forward amplifi ed aspects 
of major messages while muting more minor messages. We do not insist on show-
ing statistical signifi cance as a prerequisite for probing possibilities. We do, 
however, use distributional models as frames of reference. In the course of these 
pursuits, we endeavor to demonstrate how each analytical activity serves as a lens 
for learning. 

 Since terminology can be a source of confusion, it should be addressed carefully 
as the need arises, and some such is appropriate at the outset. The term  case  is 
shorter than the term  instance  and, although it has several other meanings, is not 
likely to cause confusion when used as a substitute for  an   individual   instance  herein. 
A specifi c set of cases having some commonality is called a  collective . Analysis can 
be conducted at the level of either case or collective, with collective constructs being 
useful for controlling complexities of computation. In addition to using the terms 
 case  or  collective  instead of instance, we use the term  variate  for a property as quan-
tifi ed by a specifi ed protocol with these quantities  varying  from case to case. It is 
this case-to-case variation that is of primary interest, since complete uniformity of 
quantity across cases becomes only a composite characterization rather than a 
comparative characteristic. When variates satisfy special strictures, they will be 
considered as investigative  indicators . We thus consider a  multivariate data matrix  
that comprises  n  cases or collectives of cases as rows and  p  variates or investigative 
indicators as columns along with a leading column of IDs. 

   Plan of Presentation 

 We begin by delving directly into our data domain and its conservation context 
followed by a briefi ng on basic building blocks of architecture in  R  (Venables et al. 
 2005 ; Hogan  2010  ) . After cursory consideration of command context for  R , 
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we pursue parsimony in a simplifying sequence of scalings for variates. Starting 
with original observations, statistical standardization serves to suppress differences 
due to units of measure. Relative ranking further removes distributional differences, 
leaving only ordinal aspects of analysis. This threefold suite of scalings makes an 
ideal introductory platform for applying special scaling schematics in  R , such as 
parallel boxplots and “pairs” plots of lattice graphics (Verzani  2005 ; Crawley  2007 ; 
Horton and Kleinman  2011  ) . We then move to complexities of covariances and 
correlations among multiple measures as refl ections of their relationships and 
redundancies. This leads to rotational rescaling regimes and abstract autonomous 
axes as virtual variates “packaged” in terms of principal component analysis (PCA) 
and disposable dimensions. 

 Creating collectives by clustering can circumvent computational constraints, 
cope with complexity, and simplify schematics. Dealing with disparities as 
distances is common in clustering, and there are many methodological modalities 
and depictions as dendrograms. Combinatorial keys to clusters can be inferred 
from classifi cation and regression trees (CART). Confl icting clusters from alterna-
tive approaches can be reconciled by comparative contingency. Contingent clusters 
can be cast comparatively in low dimensional distance domains called principal 
coordinates (PCO) by methods of multidimensional scaling that concentrate on 
capturing neighborness    with minimal structural stress that would induce distortion. 
Skeletal structures of networked neighbors can serve to show sensitivities to scal-
ing scenarios. 

 Prioritization perspectives progress from collectives to cases. Rating regimes for 
ascribing advantage and perceptual precedence plots furnish a framework connected 
to concepts of partial ordering (Brüggemann and Patil  2011  ) . Subordination sche-
matics and representative ranks become combinatorial constructs for condensing 
criteria and ORDIT ordering for sequencing of sets. Coupling of comparatives and 
salient scaling promote partial prioritization. Cases of clarity lie in convergent 
corners of coupled comparatives, whereas complexity and confounding are charac-
teristic of a mixed middle. Median mismatches are functional features for investi-
gating interplay of indicators. Rank rods, end extents, and distal data diagnostics 
reveal candidate cases for remediation and retention whereby a particular criterion 
is substantially degrading overall status or elevating otherwise inferior status. 
Complementary cases can be chosen in progressive prioritization by revising ranks 
so that advantage accrues only if a candidate has one or more ranks that are better 
than those found among previous picks. Landscape linkages can contribute to 
confi guring criteria where selections are spatially specifi c. Constellations of criteria 
can be considered in confronting complex contexts. 

 Although matrix mechanisms underlie much of the methodology, they receive 
minimal mention in the main parts of the presentation. So that the matrix function 
facilities of  R  are not neglected, however, some of the earlier exposition is revisited 
and extended in a mechanistic matrix mode. The focus here is on virtual variates 
obtained by rotational transformation and inverted accordingly as may be appropri-
ate. The purview that we present provides a pathway for pursuing particulars of 
partial order and systematic selection from sequences of sets.  
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   Data Domain 

 The setting for our data domain is the State (Commonwealth) of Pennsylvania in the 
USA partitioned by a tessellation/zonation into 211 hexagonal cells with each cell 
encompassing 635 km 2 . The hexagonal cells have been numbered as part of a North 
American grid whereby the numbers increase along northeast to southwest sequences 
of cells. Thus, there are breaks in the numbering for Pennsylvania as the sequences 
of cells enter and leave the state. The geographic arrangement of cells and number-
ing is shown in Fig.  1.1 .  

 As a further frame of reference, Pennsylvania is situated in northeastern USA 
with New York State on its northern (upper) border and the northwestern corner 
jutting up to Lake Erie. The topographic character of the state is shown by virtual 
hill-shading in Fig.  1.2 . This reveals the overall geologic and physiographic charac-
ter of the state, with predominance of the sandstone-based Appalachian Plateaus in 
the west and north where weathering of rock produces rather coarse-textured and 
infertile soils that do not support extensive agriculture involving row crops. Eons of 
erosion in the Appalachian Plateaus have created deeply cut river valleys and rug-
ged terrain in the uplands with extensive forest that may be quite fragmented in 
some subregions.  

 To the east and south of the Appalachian Plateaus region is the strongly folded 
area known as Ridge and Valley which curves from south-central to northeast in the 
state. Here, the hard rock and thin soils of the ridges are mostly covered by forest, 

  Fig. 1.1    Hexagonal cells and cell numbering for Pennsylvania in northeastern USA       
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whereas the valleys are primarily agricultural and/or urban/suburban. The Ridge 
and Valley is fl anked to the southeast by the broad agricultural corridor of the Great 
Valley. The southeastern (lower right) sector is a more subdued plateau called the 
Piedmont which has quite fertile soils with extensive agriculture and urbanization 
leaving only remnant patches of forests. Figure  1.3  shows the general physiographic/
ecoregional partitioning.  

  Fig. 1.2    Hill-shading depiction of topographic character of Pennsylvania       

  Fig. 1.3    Major physiographic/ecoregional areas of Pennsylvania       
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 Given this general biogeography, rather pronounced differences in the character 
of the landscape are to be anticipated along with differing capacities to provide habi-
tat for fauna and fl ora. In this context, the hexagon data has six variates as follows. 

  BirdSp  is the number of bird species for which there is potential habitat in the 
hexagon. 

  MamlSp  is the number of mammal species with potential habitat in the 
hexagon. 

  ElevSD  is standard deviation of an elevation grid in hexagon (topographic 
complexity). 

  PctFor  is percent of hexagon with forest. 
  Pct1FPch  is percent of hexagon in one contiguous forest sector. 
  Pct1OPch  is percent of hexagon in one nonforest sector. 

 A listing of this dataset from a space-delimited text (.txt) fi le as would be appro-
priate for input to  R  appears in Appendix 1.  

   Architecture of R 

 As mentioned in our opening paragraph, Appendices 2–5 contain tutorials on  R . We 
also note at the outset that a working folder for fi les should be set up on the computer 
and data fi les transferred to it before starting  R . The  R  menu bar allows for changing 
to that working directory at the beginning of an  R  session so that all data fi les will 
be directly accessible. Any previous work in  R  can likewise be reloaded if it was 
saved in concluding a prior session. Versions of  R  from 2.7.2 and later have been 
used here. The fi le name used here for the data described above is BAMBI.txt which 
refl ects its content of Bird And Mammal Biodiversity Information. Direct prepara-
tion of such data fi les should be done in a simple text editor like Microsoft Notepad 
instead of a more sophisticated word processor that would corrupt the fi le by inclu-
sion of formatting information. A special component of  R  documentation provides 
guidance for Import/Export from and to other software environments, such as 
spreadsheets (R Data Import/Export, 2005, R Development Core Team, ISBN 
3-900051-10-0). 

 The fi rst task is to get data into R so that analysis can be initiated. When working 
with a tabular matrix of data as variate values for cases, the  R  construct of a  data 
frame  is most useful. A  data frame  is one among several kinds of analytical  objects  
upon which  R  can operate. The user gives names to objects in  R , and the objects are 
effectively addressed by name as far as the user is concerned (Dalgaard  2002 ; 
Allerhand  2011 ; Curran  2011  ) . Appendix 6 is a glossary of the more important 
names used for present purposes.  R  (mostly) does not use capital (upper case) let-
ters in its preset syntax, so the user can help to avoid confl ict with existing things in 
the language by having one or more capital letters in each name. However, there are 
some very notable exceptions, particularly T as TRUE and F as FALSE. TRUE and 
FALSE should never be reassigned. If T and F are used otherwise for notational 
consistency, they must be reset before use in command function calls. 
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  R  works with expressions entered in response to prompts. The default prompt is 
a > “greater than” sign, which is also used frequently otherwise in the  R  syntax. If a 
command is incomplete at the end of a line,  R  issues a continuation prompt for 
which the default is a + “plus” sign that is likewise used frequently otherwise. The 
option is also provided to change these prompts, and the convention here will be to 
use a single @ as the main prompt and a double @@ as the continuation prompt. 
This is accomplished with the  R  command— 

     options(prompt=”@ ”,continue=”@@ ”)  

 Following is an initial  R  session to transfer data from the BAMBI.txt fi le as a 
data frame named BAMBI, then to list fi rst the names of variates in the fi le, then the 
last six cases   .

       

 Note fi rst that commentary can be incorporated in an  R  session by starting it with 
a “hash mark” # symbol. Everything on the line following # will be ignored by  R . 
Also note that the specifi cations for an  R  command are placed in parentheses fol-
lowing the command “word” and separated by commas. The two-character sym-
bol  < -  is conveniently thought of as “put into”. In this situation, it puts the result of 
the  read.table  command into a data frame object named BAMBI. 

 Command words will not contain spaces, but can have periods as connectors to 
convey a multiword sense of meaning as in the  read.table  command. Command 
specifi cations in parentheses are interpreted by default order or by keyword. For this 
 read.table  command, the default is to put the fi le name as the fi rst specifi cation. 
The  header =   T  is used to declare that it is true that column names are present in the 
fi rst line of the fi le as header information prior to the actual data lines. There is a 
default condition for some specifi cations that can be omitted when the default per-
tains. Note particularly that the hexagon identifi cation numbers are being allowed to 
have a place in the data frame in the manner of a variate. This will require that the 
column be explicitly excluded from computations in which it does not belong. It 
would also have been possible to add a specifi cation that the fi rst item for each case 
be used as a row name instead of a variate, with the added specifi cation being – 

  BAMBI <   - read.table(“BAMBI.txt”,header =   T,row.names =   1)  

 The hexagon identifi ers would then be treated as names rather than numbers, and 
there would not be sequential numbers for cases appearing in output from the 
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t ail()  command. Listing the last half-dozen cases in the fi le allows one to verify 
that there are the expected number of cases and that they have been read properly. 
If desired, the fi rst half-dozen cases could have been similarly listed with the 
 head()  command. 

 In order to avoid the necessity of excluding the column of hexagon IDs for each 
calculation, the fi rst thing will be to make a subsidiary data frame named BAMBIV 
that contains only the variates. This is accomplished by specifying that the fi rst 
column containing IDs be eliminated in transferring information from the BAMBI 
data frame to the BAMBIV data frame. Excluding a component of a data frame 
requires knowing how  R  designates different components of a data frame. This is 
done in terms of rows and columns placed in square brackets with rows fi rst and 
columns second using a comma to separate rows from columns. Anything not speci-
fi ed is taken as being included. A single row or column can be excluded by specifying 
its number as negative. The command 

  BAMBIV <   - BAMBI[,-1]  

 thus serves to create the reduced data frame. It is also prudent to use the  length()  
command to verify that numbers of rows and columns in the data frame are as 
expected. 

  @ BAMBI <   - read.table(“BAMBI.txt”,header =   T)  
  @ BAMBIV <   - BAMBI[,-1]  
  @ length(BAMBIV)  
  [1] 6  
  @ length(BAMBIV[,1])  
  [1] 211  

 It can be seen that the default for the  length()  command is to give the number 
of columns in a data frame, but asking for the length of a particular column will give 
the number of rows (cases) in the data frame. 

 Throughout the ensuing presentation, heavy reliance will be placed on the help 
facilities of  R  for making the mathematical specifi cs of computational commands 
available to the reader. An  R  command with its defaults is effectively a complete 
mathematical specifi cation, and including optional arguments will alter the analyti-
cal scenario in specifi c ways. It is always advisable for users to avail themselves of 
the help facilities to ensure that their understanding of what a command will do is 
correct. Giving extensive mathematical formulas here would be redundant, since we 
exercise and interpret the results of each command we use. It should become obvi-
ous in what follows that many  R  commands are composite codes for sophisticated 
analytical scenarios. 

 The help facilities of  R  are simple to invoke, but the help itself is sometimes 
terse. If a command is known, help on that command can be obtained by prefi xing 
a question mark. Thus,  ?help  gives help on the help command, with help(help) 
being an equivalent form. The help itself will appear in a pop-up hypertext window 
on the  R  desktop. The standard help facilities include brief examples of the 
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command, but there is some circularity in that one must know the command in order 
to obtain help on it. This can sometimes be circumvented by having  R  search its 
help texts for words that pertain to a desired command. The form for this is: 

  help.search(“target text”)  

 and in response,  R  will indicate which commands use those words in their explana-
tory help text. 

  R  sometimes extends the meaning of mathematical terms. For example, a  vector  
object in  R  is any singly ordered set of the same kind of quantities. One might, there-
fore, expect that multiplying two vector objects would give their inner product   .

       

 However, the snippet of  R  code does not conform to that expectation. Twos is a 
vector object created by repeating the number 2 fi ve times, and Threes is a vector 
object created by repeating the number 3 fi ve times. Use of the conventional asterisk 
symbol  *  as a multiplication operator causes the computation of element-by-element 
products. A special multiplication operator % * % gives the inner (vector) product. 
Notice also that  R  did not distinguish whether or not one vector was a row vector 
and the other a column vector.  R  presents the result as a matrix object having one 
row and one column.      
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   The scales of measure for quantifying features of cases used in original recording of 
the data must obviously have some interpretive appeal; otherwise, they would not be 
used for recording the data in the beginning. In any case, the data as recorded on the 
original scales provide the starting point for rescaling to gain some comparative 
interpretive advantage. We pursue a structural scaling sequence of successive statis-
tical simplifi cation. In so doing, we focus on variability because variability consists 
of information and noise with (white) noise being variability that is lacking in pattern 
(independently random). A fairly crude gauge of variability is  range  as difference 
between maximum and minimum. Maximum and minimum are given in the default 
summary of a data frame provided by     R .     

    Chapter 2   
 Suites of Scalings       

    

 The quarter-point values (quartiles) of ordered cases also appear in the summary, 
with the  median  being the second quarter-point thus marking the middle as half of 
ordered values. The one remaining item that appears is the  mean  as the arithmetic 
average computed as total over all cases divided by the number of cases.  R  does not 



14 2 Suites of Scalings

subtract the minimum from the maximum for us.  R  commands are usually brief, but 
doing this series of simple subtractions does get a bit involved. We fi rst get the 
means as a template for ranges, and then step through the variates incrementally in 
a “loop” procedure to get differences   .  

    

 The fi rst of these preceding lines puts the number of variates into an object 
named P. The second computes means for the variates. The third uses means as a 
template for ranges. The fourth uses an object named I as an incremental index to 
step through the variates putting the difference between the max and min values into 
the respective element of Ranges. Giving just the name of the Ranges object then 
displays its contents. 

 If we were to consider some sort of collective among these six variates, four of 
them would speak with similar voices since their differences between max and min 
are about 90. One would speak with a weak voice since it has only about ¼ of this 
range. The other would speak with an extra strong voice since its range is more than 
twice 90. 

 The disparities of variability are at least in part due to the different units of mea-
sure, which suggests that an alternative scaling might improve comparability. Before 
proceeding with alternative scalings, however, we are reminded that range is a some-
what simplistic expression of variability since it looks only at the most extreme 
values at the low and high ends. Further insight can be gained by looking also at 
sub-ranges, such as the range that encompasses the middle half of the values for the 
cases, called the  inter-quartile range  or  IQR  for short. It also helps to have a graphic 
comparison (Keen  2010  ) , which can be obtained in the form of a  boxplot . A boxplot 
is built around a box showing the ends of the inter-quartile range, and with a heavy 
line in the box at the median value that splits the cases into lower and upper halves. 
“Whiskers” extend above and below the box for a distance that is some multiple of 
the  IQR , with the default being 1.5 times the  IQR . Any cases having values beyond 
these whiskers are marked individually as what might be called “outliers”. Boxplots 
for the BAMBIV variates are obtained as follows and shown in Fig.  2.1 .     

  @ boxplot(BAMBIV)  

 The boxplots of Fig.  2.1  are quite revealing of differences in patterns of variabil-
ity among the variates (Baclawski  2008 ; Oja  2010  ) . The pattern of variability for 
mammal species is unique among these variates. Not only is the overall range small, 
but the range for the middle half of cases ( IQR ) is also small and there are no outli-
ers. The basic message here is that many mammal species in the region are quite 
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adaptable and accommodate heterogeneity of habitat. The other fi ve variates have in 
common a skew character whereby there is a substantially heavier tail on one end or 
the other. The percent forest and percent in largest forest patch have quite similar 
patterns of variability with a heavier tail on the low side and no outliers. The eleva-
tion complexity has large overall variation, heavy tail on the high side, and a couple 
outliers on the high end. The other two variates have strong imbalance (skew) about 
the median line in the box along with several outliers, but the propensities are oppo-
site for the two with the bird species being heavy on the low side and the percent of 
area in largest open patch being heavy on the high side. 

 Whereas the range responds only to changes in extremes, informational effi -
ciency would entail change in response to alteration in any of the case values. This 
level of sensitivity is available in the  standard deviation  as an expression of vari-
ability, although not without sacrifi cing simplicity. The standard deviation is based 
on the average squared difference from the mean per degree of freedom, which is 
termed  variance . In the straightforward situation of characterizing a random sample, 
the degrees of freedom are one less than the number of cases. The standard deviation 
is the square root of the variance and has the interpretive advantage of being 
expressed in the same units of measure as the case values, whereas variance is 
expressed in squared units of measure. Standard deviations are determined as follows 
and compared as a barplot in Fig.  2.2 .      

  Fig. 2.1    Boxplots for variates in BAMBIV data frame       
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 The standard deviation view in Fig.  2.2  is generally consistent with the features 
of the boxplot view from Fig.  2.1 , but this single-value view of variability does not 
convey information about skewness or outliers. Thus, the boxplots are valuable 
despite the insensitivity of range as an expression of variability. 

 There is also another perspective on variability that can be considered, which is 
variability relative to average size. This is called  coeffi cient of variation  ( CV ) and 
expresses standard deviation as a percentage of the mean. A process for determining 
 CV  is much like that for determining range done earlier. This is accomplished as 
follows and displayed as a barplot in Fig.  2.3 .      

  Fig. 2.2    Barplot of standard deviations for BAMBIV variates       
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 It is apparent from comparing Figs.  2.2  and  2.3  that the pattern of variability 
relative to size of mean is quite different. The variability of bird species and mam-
mal species is now quite similar, and the variability of elevation complexity is no 
longer notably large. The relative variability in percent of largest nonforest patch is 
about double that of any other variate. 

   Standardized Scaling as Universal Units 

 Thus, far we have examined different ways of gauging variability, but have not actu-
ally done any rescaling. We now consider  additive  and  multiplicative  rescaling, 
with particular attention to a commonly used version called  standardization . By 
 additive rescaling , we mean the addition (or subtraction) of the same constant value 
for all cases of a variate. By  multiplicative rescaling  we mean the multiplication 
(or division) of all cases for a variate by the same (nonzero) constant. We note, and 
it is easily proved, that additive rescaling will alter the mean for a variate by addition 
(or subtraction) of the additive value; but it does not alter the standard deviation. We 
also note that multiplicative rescaling will multiply both mean and standard devia-
tion by the constant (Everitt and Hothorn  2006  ) . 

  Fig. 2.3    Barplot of coeffi cient of variation for BAMBIV variates       
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 Standardized scaling expresses each variate in standard deviation units from the 
(original) mean. It consists of fi rst subtracting the respective means, which changes 
all means to zero; then dividing by the respective standard deviations, which results 
in a standard deviation of 1.0 for all variates. Since the standard deviation used as a 
divisor has the same units (meters or whatever) as the original variates, there is unit 
cancellation so that the standardized data are dimensionless. From a slightly differ-
ent perspective, standardization simplifi es the scales for cross-comparison by uni-
versalizing the units of measure. Standardization can be accomplished with a single 
command as follows.     

    

    

 We will, however, also perform the standardization more mechanistically in the 
following manner and show boxplots of the standardized data in Fig.  2.4 .      

 The BAMBIS data frame for standardized data uses the BAMBIV data frame as 
a template.  R  effectively treats each column of a data frame as a vector, and the  R  
protocol for subtracting a constant from a vector is to subtract the constant from 
each element, and likewise for dividing by a constant. Thus, the fi rst “loop” sub-
tracts the means and the second divides by the standard deviations. Since there is 
likely to be some small rounding error in  R  computations, the  round()  command 
is used to round the results to six places after the decimal for purposes of display. 
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Note, however, that rounding for display does not round the actual values in the 
vector being displayed. Boxplots in Fig.  2.4  show that the standardization does not 
remove the heavy-tailed characteristics or the outliers. 

 If the standardized data were to be multiplied through by some constant, this 
would change the standard deviation to the constant but nevertheless maintain the 
equality of variation. Likewise, adding some constant throughout would shift the 
means but leave the variation unchanged. Note also that coeffi cient of variation is 
undefi ned for standardized data because division by zero is not permitted. It also 
bears reemphasizing that standardization does not remove other distributional pecu-
liarities, such as heavy-tailed skewness and outliers. In the ensuing presentation, 
such other distributional characteristics are considered as being structural features 
that may be of interest for understanding and interpreting the data.  

   Relative Rank Rescaling 

 A further structural simplifi cation is to retain only the ordering information for cases 
by ranking. Apart from the effect of ties, this method of rescaling will equalize all 
other structural aspects of the distribution. Rank numbers assigned by  R  have the 

  Fig. 2.4    Boxplot of standardized BAMBIS variates       
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same sense as the original variates, with worst fi rst. The following commands 
provide rank conversions of the BAMBI variates and boxplots in Fig.  2.5 . The only 
evident difference among the ranked variates is that variability of mammal species 
has been slightly reduced by ties   .   

    

  Fig. 2.5    Boxplot of ranks for BAMBIR variates       
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 Note that ranks are the same whether they are determined from original observa-
tions or standardized data. A contrary sense of order comes from place ranks as 
opposed to regular ranks. First place is number 1 and best in place ranks, second 
place is number 2 and next best, and so on until the worst is reached at the highest 
rank number. Place ranks will be used later for prioritization purposes. 

 It is of interest at this juncture to use the  cbind()  capability of  R  for coupling 
columns along with the  pairs()  plotting procedure of lattice graphics to obtain a 
“checkerboard” of scatter plots for these three scalings. This is accomplished for 
BirdSp as follows and shown in Fig.  2.6 .  

  @ pairs(cbind(BAMBIV[,1],BAMBIS[,1],BAMBIR[,1]))  

 The information retention by standardized scaling is evident in the straightline 
plot from corner to corner. Plots involving rank numbers on the vertical axis are seen 
to be essentially cumulative frequency distributions having the same shape for both 
original observations and standardized scaling.  

  Fig. 2.6    Pairs plot for BirdSp of original observations (var 1), standardized scaling (var 2), and 
relative (regular) ranks (var3)       
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   Representing Relations Among Multiple Measures 

 From the foregoing, it should be evident that different ways of scaling serve different 
purposes rather one necessarily being analytically superior to another. In this sense, 
they are complementary, starting with all of the available structure of variability in 
the original observations and focusing on certain aspects with particular kinds of 
rescaling. Thus far, however, attention has been directed toward variates individu-
ally, albeit in a comparative sense. Here, we broaden the view to variability in a 
larger sense that considers the joint variation among the several variates. A very 
empirical entry into the realm of joint variation is simply to make scatter plots of the 
variates by pairs as shown for original observations in Fig.  2.7 .      

     

  Fig. 2.7    Pairs plot of BAMBI variates       
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 The idea of total variability among several variates becomes pertinent at this 
juncture. For several reasons that are not of immediate interest here, total variability 
is best approached in terms of squared standard deviations which are  variances  as 
noted earlier. In this sense, the sum of the squared standard deviations for a set of 
variates can be considered as  total variance  for the dataset. As shown below, this is 
3332.243 for the BAMBIV variates. For standardized variates, total variance is 
always just the number of variates since the standard deviation and variance are both 
1.0 for standardized data. If the units of measure are not the same for different vari-
ates, then one must always ask the question of how summation of variability in 
different units is to be interpreted. This question does not arise with standardized 
variates   .  

    

 Another question arises as to what part of the total variance is due to joint varia-
tion among the variates, being in some sense redundant or multiple counting of the 
same underlying source of variation. As shown in Fig.  2.7 , some of the variates are 
strongly related, such as percent forest and percent in one contiguous zone of forest, 
whereas relations are not obvious for some other pairs of variates. With this in mind, 
we proceed to work our way from variance to concepts of  covariance  and 
 correlation . 

 We fi rst calculate the numerator of a variance by two different but equivalent for-
mulations using the percent forest variate as an example. The fi rst formulation is the 
defi nitional one of sum of squared deviations from mean. The second uses sum of 
squared values and square of sum with only one subtraction. Both ways are then 
divided by degrees of freedom for variance (one less than number of cases) and the 
square root is taken to obtain the standard deviation that has already been calculated.     
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 The foregoing results can also be compared directly with the result of using the 
built-in  var()  command. 

  @ var(BAMBIV[,4])  
  [1] 510.225  

 Since squaring a difference in the numerator of the variance provides an expres-
sion of variability for that variate, a parallel expression for joint variability of two 
variates is obtained by replacing the square with a product. The result of such replace-
ment is called  covariance . BAMBIV variates 4 and 5 (percent forest and forest patch) 
are illustrative, with results being compared to the built-in  cov()  command   . 

    

 Applying the  cov()  command directly to a data frame gives a  covariance matrix  
in which the value at the intersection of a particular row and column is the covari-
ance for the respective variates, and the value at the intersection of like numbered 
rows and columns is the variance for that variate. A positive covariance indicates 
that the variates increase together (upward sloping trend line for a scatterplot); 
whereas a negative covariance indicates that one variate decreases as the other 
increases (downward sloping trend line for a scatterplot)   .  

 The slope of the trend line for plotting a  y -variate on the vertical against an 
 x -variate on the horizontal is obtained by dividing the covariance of the two vari-
ates by the variance of the  x -variate. The intercept of the trend line is obtained by 
multiplying the slope times mean( x ) and then subtracting from mean( y ). A scatter 
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plot is obtained with the  plot()  command and a trend line with the  abline()  
command as in Fig.  2.8 .      

 The slope and intercept can also be obtained directly with the linear modeling 
 lm()  command (Fox  2002 ; Wright and London  2009  )    .  

    

    

  Fig. 2.8    Scatter plot with trend line       
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 There is interpretive advantage in appealing to standardized variates for purposes 
of gauging relationship. This is because the covariance of standardized variates has 
a clearly delimited range of possibilities, which is between −1 and +1. A perfect 
positive relationship is indicated by +1, and −1 indicates a perfect inverse relation-
ship. Zero indicates that no part of the variation is joint, so the variates have inde-
pendent variation (no redundancy). These limits are intuitively clear by the fact that 
all standardized variates have both standard deviation and variance of 1.0 and a vari-
ate has perfect relationship (joint variation) with itself. Therefore, substituting 
another variate into the variance formulation to obtain covariance cannot yield a 
value having magnitude larger than the 1.0 value of the variance. Accordingly, the 
covariance of standardized variates has been given a special name as  correlation 
coeffi cient  and a built-in  cor()  command provided for calculation directly from the 
original data without having to do intermediate standardization. This is illustrated 
for the BAMBIS and BAMBIV variates as follows   .  

    

 To calculate correlation from original data, one fi rst calculates covariance and 
then divides by the product of the standard deviations, as illustrated for percent 
forest and forest patch (variates 4 and 5)   .  

    

 Slope of trend line is calculated by multiplying correlation by the standard devia-
tion of the  y -variate and dividing by the standard deviation of the  x -variate, as fol-
lows for comparison with the result obtained earlier   .  
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 Correlation as presented above is formally called the  Pearson correlation coeffi -
cient . It is also possible to make use of rank scaling in a relational way by calculat-
ing correlation from ranked data instead of original data or standardized data. This 
latter is called the  Spearman rank correlation coeffi cient . The Spearman correlation 
is unaffected by certain types of curvilinearity in the scatter plot relation, but it still 
must lie within the −1 to +1 range. The  cor()  command can also be modifi ed with 
an optional argument to calculate Spearman rank correlations directly from the orig-
inal data   .  

    

 An interesting but unconventional way of visualization when exploring the cor-
relations of a particular variate with the others is to make a barplot of the corre-
sponding column in the correlation matrix. For example, the correlations of BirdSp 
with the other variates are shown in Fig.  2.9  as obtained from the command:  

  @ barplot(cor(BAMBIS)[,1])  

 It is seen from Fig.  2.9  that the two most substantial relations for BirdSp are fi rst 
with MamlSp and to a lesser degree with ElevSD. The inclusion of a bar for BirdSp 
is not without purpose since it gives a bar of perfect correlation for visual compari-
son. The corresponding view for MamlSp is shown in Fig.  2.10  where relations are 
seen with most of the variates. The inverse infl uence of large open areas becomes 
evident for both birds and mammals.  

 A similar strategy can be used to show the difference in strength between 
Spearman correlation and Pearson correlation, shown for MamlSp in Fig.  2.11  as 
obtained from the command:  

  @ barplot((cor(BAMBIR)-cor(BAMBIS))[,2],ylim =   c(-1,1))  



  Fig. 2.9    Barplot of correlations for BirdSp with other variates       

  Fig. 2.10    Barplot of correlations for MamlSp with other variates       
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 where there is little evidence of nonlinear relational effects. Note that it is necessary 
to control the vertical scale in this situation, with  c(-1,1)  serving to concatenate 
the desired lower and upper limits. 

 Additional references that may be helpful for utilizing  R  in such statistical set-
tings are Crawley  (  2005  ) ; Maindonald and Braun  (  2007  ) ; Murrell  (  2006  ) ; Rizzo 
 (  2008  ) ; Ugarte et al.  (  2008  ) ; and Marques de Sa  (  2007  ) .      
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  Fig. 2.11    Barplot of nonlinear relational effects on correlation for MamlSp       
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 The scalings done thus far have treated the variates individually and have been of a 
relatively simple nature, i.e., either additive, multiplicative, or ranking. We now 
proceed to considering the data jointly among variates as a constellation of points in 
multidimensional space having as many perpendicular axes as there are variates 
(Manly  1998 ; Krzanowski  2000 ; Anderson  2003  ) . A point along an axis one unit 
from the origin provides a  basis case  or  basis vector  for that axis. This is effectively 
an “artifi cial” point having a coordinate of 1.0 on that axis and 0.0 on all other axes. 
An additive rescaling shifts the constellation of points upward or downward relative 
to the respective axis. A multiplicative rescaling changes the  magnitudes  of values 
on an axis, thus effectively stretching or compressing the axis and expanding or 
shrinking the constellation of points relative to that axis. It is also possible (and use-
ful) to consider rigidly  rotating  the axial framework itself, which does not change 
the overall multidimensional shape of the constellation and does not change the 
(Euclidian) distances between points but does give a different perspective view as 
seen along an axis. The rotational rescaling consists of determining the value along 
a repositioned axis at which a perpendicular projection of each data point will 
impinge on the new axis. 

 Coordinates of data points (cases) on a rotated axis are determined as a compos-
ite of weighted components from the variates. The composite has the form:

     
+ + +�1 1 2 2i i p ipc x c x c x

   

where in  x  
 ij 
  is the  j th variate value for the  i th case, and  c  

 j 
  is the weight coeffi cient. 

The  c  
 j 
  weight is the cosine of the angle that the new axis makes with the  j th variate 

(unrotated) axis, and is thus called a  direction cosine . A geometric requirement is 
that the squares of the direction cosines sum to one, and any set of weight coeffi -
cients that satisfy this requirement can be interpreted geometrically as defi ning a 
rotated axis. If a set of weight coeffi cients does not satisfy this requirement, it can 
be broken down into a rotation followed by a multiplicative change of magnitude. 

 To separate the rotation from the change of magnitude, fi rst calculate the magni-
tude change factor as the square root of the sum of the squared coeffi cients and then 
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fi nd the direction cosines as weights by dividing each coeffi cient by the magnitude 
factor. As an example, using one-sixth as a coeffi cient for the BAMBI variates 
would provide an “averaging” axis. However, the sum of squares for these coeffi -
cients is also one-sixth, so they do not provide a simple rotation. The square root of 
one-sixth is 0.4082482 so this is the factor by which magnitude is reduced after 
rotation. Dividing one-sixth by this factor also gives 0.4082482 as the rotational 
weighting coeffi cients. Six times the square of 0.4082482 is 1.0 as required for 
simple rotation. Although easy enough to do mathematically, adding together 
components having different units does not give a result that is straightforward to 
interpret. Such interpretive issues do not arise if the variates have been standardized 
to render them in universal units (or without units). 

   Principal Component Composites 

 Composites of components as introduced in the previous section can be interpre-
tively advantageous in several regards. It would simplify interpretive tasks if the 
variability inherent in a dataset could be recast into axial dimensions with each 
axis autonomous in the sense of not having any relation (correlation) to the other 
axial dimensions. By a multivariate optimization approach, it can be proven that 
there is a unique rigid rotation which accomplishes this. Since it is a rigid rotation 
of axes, it does not alter the multidimensional shape of the constellation of data 
points and thus preserves the total variability of the data and the (Euclidean) 
distances between data points. Although it may not be immediately obvious, this 
preservation implies that the sum of the variances for the rotated (composite) axes 
is equal to the sum of variances for the variates prior to rotation. Due to the opti-
mality properties of this rotation, it is known as  principal component analysis  
(PCA) and the resulting axial composite variates are called  principal components  
or  principal axes  (McGarigal et al.  2000 ; Podani  2000  ) . Despite the impression 
that is conveyed by some treatments of principal components, these optimality and 
independence properties do not depend upon the input variates conforming to any 
particular statistical distribution. However, it is true that probability statements 
arising from many tests of signifi cance for the components depend rather heavily 
on the type of distribution. 

 It is perhaps an understatement to say that the principal component analytical 
process is not simple, and in Part III of this book we will be much more specifi c 
about that computational process. However,  R  makes it possible to obtain principal 
components in a one-line command (Everitt  2005  ) . The most fundamental output of 
principal components analysis would be the set of weighting coeffi cients for com-
bining input variates into composite components, with each set serving to produce 
one of the composite (principal) components. Most frequently, however, composite 
components are calculated internally and a dataset of principal component (score) 
values is provided as the rescaled result. A standardization of input data is often 
conducted as a preliminary phase of the principal component process. If standardized 
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data are used directly as inputs, then this internal standardization phase will have no 
effect since standardized data will not be altered by standardization. Doing PCA on 
the standardized variates of the BAMBI data gives:   

       

 Specifying     cor =   T  requests a preliminary standardization, and  scores =   T  
requests that the values for the data cases on the rotated axes be computed. The 
result is an  R  object of the class “princomp,” which is a compound object. 

 A little information about the compound object is provided in response to the 
name of the object, giving the standard deviations of the principal component (score) 
rotated variates. By convention, the principal component variates are given in order 
of decreasing standard deviation throughout the compound object. A summary of 
the compound object provides additional information about the variability of 
the principal components, with the fi rst line again being the standard deviations. 
The standard deviations are then squared and summed to obtain a total variance as 
a base for calculating proportions. The second line of the summary gives the frac-
tion of the total variance that is attributable to each principal component, and the 
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third line cumulates these from fi rst to last principal component. Thus, it can be seen 
that the fi rst fi ve components account for 99.6% of the variability in the (standard-
ized) data, and consequently most of the major messages that the data have to convey 
will reside in the fi rst fi ve principal components. 

 While the summary tells us something about the comparative nature of the prin-
cipal components, it does not tell about the objects that comprise the compound 
object. This information can be obtained by the  attributes()  command, which 
tells us the names of the objects and the class of the compound object. The “sdev” 
object consists of the standard deviations that are given by the summary. The  R  
approach to principal components uses the term “loadings” for the weight coeffi -
cients (direction cosines) of rotation, as explained earlier. The case values as coor-
dinates on the rotated (principal component) axes are the “scores.” 

 An object within a compound object is accessed by appending the object name to 
the compound name with a dollar sign. This protocol is illustrated above in squaring 
the standard deviations to obtain the variances, which are not given in the summary. 

 These variances are quite informative when PCA is done on standardized data, 
whereupon the variances sum to the number of variates. If all variates carried an 
equal “share” of the information on variability, they would all have a variance of 
one. Since principal components are unraveling the redundancies in the data, prin-
cipal component variates having variance greater than one refl ect aspects of the data 
that had some element of redundancy among the recorded variates. Variances equal 
to or somewhat less than one refl ect separate aspects of information remaining after 
the removal of redundancies. Variances near zero refl ect minor aspects of the data in 
which little remains after the removal of redundancies. Accordingly, it is clear that 
the fi rst two principal components refl ect aspects having some redundancy. The 
second two components refl ect aspects having a modest amount of information after 
removing redundancies. It is questionable whether the fi fth component embodies a 
substantial message, but it is worth examining further before possibly deciding that 
it is a disposable dimension. It often helps to have a graphic called a  scree plot  in 
making such assessments (Fig.  3.1 ).  

  @ screeplot(BAMBISpca,type =   “lines”)  

 “Scree” is the name given to stony rubble that falls down and piles up at the base 
of a steep rocky slope. The shape of the scree plot is reminiscent of how the scree 
piles up deeper near the slope face and then thins going farther away. 

 It is always a good precautionary measure to examine the fi rst few lines of a 
rescaled dataset with the  head()  command, and also to verify the anticipated aggre-
gate proprieties. This applies to the principal component scores, and an aggregate 
anticipation is that the scores will be uncorrelated. The leading scores are as follows   :
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 Verifi cation of the uncorrelated condition to four places after the decimal is:   

       

 It is likewise informative to examine the loadings as weighting coeffi cients 
from which the principal component scores are computed. However, the default 
method for printing loadings is not ideal, so an explicit print command with speci-
fi cations is used   .

  Fig. 3.1    Scree plot of decline in principal component variances for BAMBISpca       
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 The fi rst part gives the weight coeffi cients for each component in a column. The 
fi rst line of the second part shows that the sum of squared weight coeffi cients for 
each principal component is 1.0 which satisfi es the requirement for direction 
cosines. The remaining two lines are essentially not informative. 

 There is another feature that is noteworthy and would not otherwise be obvious. 
The weight coeffi cients are predominantly negative on all but the second and sixth 
principal component axes. This shows that the principal component process is 
defi nite with regard to orientation of a rotated axis, but is indifferent as to which end 
of the axis is positive or negative. Principal component axes become more interpre-
tively intuitive if all the signs are reversed for any axis which has predominantly 
negative loadings. 

 Orientation of principal components relative to parent variates can be seen from 
biplots, along with perspectives on relations among parent variates. One of two 
aspects of a biplot consists of a scatter plot of cases on two of the principal compo-
nent axes. The second aspect of a biplot arises from rotating a basis case for each of 
the parent variates and plotting an arrow in that direction. The directional compo-
nents for variates on principal component axes are simply the weight coeffi cients 
(loadings) in the column for the respective principal component axis. The magni-
tudes (lengths) of the arrows can be chosen for a good fi t on the graph or used to 
convey some other aspect of variability. Arrows closer together (smaller angles) are 
more strongly correlated (Fig.  3.2 ).  

  @ biplot(BAMBISpca,choices =   c(1,2),cex =   c(0.6,0.8),col =   c(1,1))  

 It can be seen from Fig.  3.2  that the arrows for all standardized variates except 
nonforest patch point toward the negative end of the scale for the fi rst principal 
component. All of the (de)forestation variates are closely related with respect to the 
fi rst two components since they lie almost along a straight line. The  choices()  
specifi cation of the biplot command determines which two components are to be 
plotted. The  cex()  specifi cation controls the size of labels for points and arrows. 
The  col()  specifi cation determines colors for plotting, with default being to plot 
the arrows in red. It is usually advisable to make biplots for pairings of at least the 
fi rst three components (see Figs.  3.3  and  3.4 ).      



  Fig. 3.2    Biplot of fi rst and second principal components for BAMBIS variates       

  Fig. 3.3    Biplot of fi rst and third principal components for BAMBIS variates       
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 Perspective on relationship from a biplot can shift with choice of components to 
plot. The (de)forestation variates still appear closely related in Fig.  3.3 , but the other 
three have shifted with mammal species also being close to the forest variates, 
whereas this was not the case in Fig.  3.2 . 

 Case numbers in the biplots are quite convenient for identifying outliers, but get 
garbled in the more densely populated parts of the scatter plot. To obtain hexagon 
ID corresponding to a case number, we need only display the respective line of the 
BAMBI data frame. For the example of case number 51 this is   :

       

 With this introduction to principal component scaling, we are ready to make a 
data frame of the data scaled as principal component scores, change signs as appro-
priate, and investigate the structural characteristics of the data (Joe  1997  )  that are 
exhibited in the principal component (PC) axes. First, we make the data frame   :

       

  Fig. 3.4    Biplot of second and third principal components for BAMBIS variates       
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 Next, we reverse the positive and negative ends of the axes (reverse the signs) for 
principal components 1, 3, and 5 for better correspondence to the parent (standard-
ized) variates   .

       

 We then begin to investigate the structural characteristics of the data as seen in 
principal components by making boxplots (Fig.  3.5 ) along with paired scatter plots 
for major principal components (Fig.  3.6 ) and for the minor components (Fig.  3.7 )   .

       

 We are looking for evidence of substructure in examining these graphics, for 
which we can use a multivariate normal distribution as a reference. An unstructured 
(here taken as multivariate normal) dataset would have symmetrical boxplots largely 
lacking outliers, and scatter plots would appear as horizontally or vertically oriented 

  Fig. 3.5    Boxplots of BAMBISpc-modifi ed principal component scaling       
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ellipses with density of points grading off progressively from center symmetrically 
in both directions. This does not happen, so substructure is indicated. 

 One type of substructure is the presence of outliers, and the boxplots of Fig.  3.5  
indicate the presence of outliers for several of the principal component variates. 
There is only one outlier for the (modifi ed) fi rst principal component, which is the 
minimum value as case number 202   .

       

 For the second principal component, we need to fi nd the lower whisker of the 
boxplot. Note that the  IQR()  command is one of the few exceptions that contain 
capital letters   .

  Fig. 3.6    Paired scatter plots for BAMBISpc principal components 1–4       
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  Fig. 3.7    Paired scatter plots for BAMBISpc principal components 5 and 6       
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 For the third principal component, we need the upper whisker of the boxplot.   

       

 Outliers for the fourth principal component are   :

       

 Interestingly, none of these sets of outliers on major axes have any cases in com-
mon. A second type of substructure consists of pronounced asymmetry, and again 
the boxplots give evidence of this. A third type of substructure involves noncentral 
regions of high density and/or notable locations of sparseness in the scatter plots, 
which are also evident from Figs.  3.6  and  3.7 . Thus, the PCA suggests that there is 
one and possibly two disposable dimensions in this dataset and provides strong 
indications that major messages lie in the substructure. Clustering provides an ana-
lytical avenue for extracting these kinds of messages in the next chapter, with a 
primary goal being to discover what sets of data cases have distinctive characteris-
tics (Podani  2000  ) .      
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 Clustering creates collectives of cases that have similar properties with a degree of 
distinctiveness. Clustering requires some composite measure of similarity or disparity, 
a criterion for conformity among collectives (linkage), and a strategy for confi guring 
collectives. The collectives produced by a clustering method are conventionally 
called  clusters . There are many methods of clustering, however, which typically dif-
fer to some degree in the groupings that result (Abonyi and Balaz  2007 ; Everitt et al. 
 2001 ; Kaufman and Rousseeuw  1990 ; Xu and Wunsch  2009  ) . It is by comparing the 
collectives produced by different methods of clustering that one can gain insight 
from inconsistencies and have some confi dence relative to consistencies (Myers et al. 
 2006 ). We call this comparative or complementary clustering and we use the term 
 contingents  (groups from groupings) for collectives of cases that emerge from this 
compound approach using cross-tabulations. Preliminary prioritization can be done 
among contingents and then progress to comparisons within contingents so that the 
computational complexities of comprehensive comparisons can be controlled. 

 There are multiple metrics of disparity, such as the Manhattan distance metric 
that simply sums the magnitudes of differences between cases across all axes and 
the Euclidian distance metric that is based on the sum of squares of differences 
across axes (Hardle and Simar  2007  ) . The Euclidian distance metric is adopted here 
because it corresponds to the multidimensional extension of usual straight-line dis-
tance, and it is also invariant under rigid rotation of axes so that computation in a 
full principal component space is identical to computation in the (standardized) 
measurement space. This enables straightforward assessment of effect on substruc-
ture (Long et al.  2010  )  caused by disposing of dimensions corresponding to low-
order principal component axes. 

 There are likewise multiple methods of linkage, such as single linkage (disparity 
of cases having least disparity), complete linkage (disparity of cases having greatest 
disparity), and average linkage (average of disparities for all possible pairings of 
cases). The Ward approach to linkage is used here because of its emphasis on 
compactness of collectives in a sum of squared distances sense (Podani  2000  ) . 
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With regard to strategies for confi guring collectives, we exploit those that  R  makes 
most readily available. This includes hierarchical agglomeration and k-means 
   condensation (Lumley  2010  ) . 

   Disparities and Dendrograms 

 The fi rst concern is to tabulate disparities among the cases using the     dist()  function 
in  R . We do this for all six principal components, for fi ve principal components, and 
for four principal components   .

       

 We then proceed to do the corresponding hierarchical clustering operations using 
the  hclust()  facility of  R  which starts with individual cases and merges mergers 
into progressively larger collectives.   

       

 We plot the respective clustering dendrograms which give a visualization of how 
the clustering has transpired (Figs.  4.1 – 4.3 ).    

  @ plot(ClusPC6,labels = F)  

 Since some structural differences appear between clustering fi ve components in 
Fig.  4.2  and clustering four in Fig.  4.3 , preference is to retain all but the last 
PC-axis. 

  @ plot(ClusPC5,labels = F)  
  @ plot(ClusPC4,labels = F)   

   Cutting Clusters 

 The next task is to decide how many collectives should be differentiated. In prepara-
tion for this, it is helpful to know the attributes of an output from  hclust().    

       



  Fig. 4.1    Dendrogram from clustering all six BAMBISpc principal components       

  Fig. 4.2    Dendrogram from clustering fi ve BAMBISpc principal components       
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 The heights give the disparities (linkages) between the collectives being merged 
and the later mergers are at the top of the dendrogram. Therefore, it is informative to 
have a reversed listing of the heights and to plot the fi rst part of the reversed listing 
(Fig.  4.4 ). This is intuitively analogous to a screeplot for principal components.    

       

 The top bar (partition/point) entails two clusters, and each lower bar entails an 
additional cluster. Thus, Fig.  4.4  shows that there are defi nitely fi ve clusters followed 
by another somewhat elevated level of three additional clusters, then a second 
relatively level set of three more clusters with a subsequent gradual trailing off of 
slight changes in level. To encompass a span in this progression, we determine and 
cross-tabulate memberships at the 7-cluster and 12-cluster levels using  cutree() .   

  Fig. 4.3    Dendrogram from clustering four BAMBISpc principal components       
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 Since clusters 4, 5, 6, and 7 become large as a result of the additional aggregations, 
the fi ner breakdown into 12 collectives will be at least provisionally retained. 
In order to proceed with the comparatives, the averages (centroids) for the provisional 
clusters are determined. It is also time to begin reconnecting with the original scales 

  Fig. 4.4    Heights of last 25 mergers in dendrogram for clustering fi ve principal components       
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of measurement, so we determine centroids fi rst for original scales, then for 
standardized scales, and also for principal component scales using all components   .

       

 With the Centr12 object containing centroids on original scales, we use Centr12S 
as the object designation for standardized scales and Centr12PC as the designation 
for principal components.   
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 It will also be helpful to have a vector object of hexagon ID numbers for 
identifying which hexagons have membership in each collective. 

  @ HexNmbrs < - BAMBI[,1]   

   Comparing Cluster Collectives 

 Having at least provisionally reduced the scope of study from 211 hexagons to 12 
collectives, we proceed to make scatter plots for centroids in terms of pairs of origi-
nal BAMBIV variates (Fig.  4.5 ). The intent is to see if the centroids capture impor-
tant aspects of relationships contained in the original data.  

  @ pairs(Centr12)  

  Fig. 4.5    Paired scatter plots for centroids in terms of original BAMBIV variates       
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 The paired scatter plots of Fig.  4.5  make the dispersions and proximities among 
the centroids evident, and the strong correlations among the forest variables have not 
been lost in the process of data distillation. For comparative purposes, paired scatter 
plots are also given in terms of BAMBIS standardized variates in Fig.  4.6 . It can be 
seen that the depiction of relations is much the same as for original variates.  

  @ pairs(Centr12S)  

 A centroid-based scatter plot of bird species versus mammal species on original 
BAMBIV scales (Fig.  4.7 ) can serve for further investigation of relationships among 
collectives by using the  identify()  command for tagging things of particular 
interest whereby we use the mouse to click on interesting items.  

  @ plot(Centr12[,1],Centr12[,2])  
  @ identify(Centr12[,1],Centr12[,2])  

  Fig. 4.6    Paired scatter plots for centroids in terms of standardized BAMBIS variates       
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 The hexagons having membership in collective 1 that occupies the lowest 
position on both axes can be determined as follows   :

       

 Thus, the collective numbered one is impoverished with regard to habitat richness 
for both birds and also for mammals. The fi rst fi ve of these are hexagons situated in the 
heavily urbanized and agricultural areas of southeastern Pennsylvania. The remaining 
two hexagons are likewise in areas that are heavily impacted by human habitation. 

 The hexagon memberships of collectives having high species richness can be 
similarly determined.   

       

  Fig. 4.7    Centroid-based scatter plot of bird species ( horizontal ) versus mammal species ( vertical ) 
on original BAMBIV scales       
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 Also interesting are collectives 2 and 3 which have low mammal species richness 
but moderate bird species richness   .

        

   Exploring Exchange 

 The early mergers in the hierarchical strategy somewhat constrain the combinations 
of cases (hexagons) that can appear in the later collectives of clusters (Basu et al. 
 2009  ) . Thus, additional insight can be obtained by revisiting the clusters through a 
different strategy called  kmeans  that permits cluster adjustment by exchanges 
(Gan et al.  2007  ) . This strategy operates directly on a data matrix of case measures 
instead of (dis)similarities, and needs a set of tentative positions around which to 
organize clusters for subsequent adjustment. We will use the data on the fi rst fi ve 
principal components, and start from hierarchical clusters.   

       

 As with the previous comparison of 12 hierarchical clusters with 7 hierarchical 
clusters, our primary way of cluster comparison is by cross-tabulation of clusterings 
in terms of member cases   .
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 This shows high consistency, with 189 of the 211 hexagons retaining their 
membership. It is notable, however, that 5 of the 11 members in cluster four have 
shifted to cluster six. This leaves cluster 4 with only 6 members, and hierarchical 
cluster 4 and cluster 6 show considerable disparity of position in Fig.  4.7 . Thus, it is 
appropriate to examine the positioning of members within hierarchical clusters 
4 and 6 in terms of the fi rst two PC axes using different symbols (plotting charac-
ters) as shown in Fig.  4.8 , with circles for cluster 6 and diamonds for cluster 4   . 

       

 Figure  4.8  shows that hierarchical clusters 4 and 6 are reasonably well sepa-
rated on principal component axis 2, except for case number 27. However, it also 
shows that cluster 4 spreads widely and lacks compactness of shape. Since  kmeans  
favors compactness more so than  hclust , it would have a propensity to pull this 
kind of hierarchical cluster apart. Therefore, it is reasonable to see what happens 

  Fig. 4.8    Hierarchical cluster 6 ( circles ) and cluster 4 ( diamonds ) on PC axes 1 and 2       
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if the centroid from hierarchical cluster 4 is deleted when running  kmeans . The 
11 clusters that result can then be cross-tabulated against the hierarchical clusters 
as before   .

       

 The 11 clusters produced by  kmeans  have a better balance of sizes, and it appears 
that the questionable fourth cluster has been split rather cleanly between the prior 
cluster 6 (which has become cluster 5) and prior cluster 10 (which has become 
cluster 9). Accordingly, centroids are recalculated for the 11 collectives from 
 kmeans , this time including centroids from rank rescaling. Each of these collectives 
will now be called a  contingent  since they arise from comparative and complemen-
tary clustering methodologies, including cross-tabulations in the manner of contin-
gency tables   .
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 Since interpretation is often most easily done in terms of the original scales of 
measurement, we fi rst make a plot of the centroids for the 11 contingents relative to 
birds ( X  ) and mammals ( Y  ) as was done previously for 12 hierarchical clusters in 
Fig.  4.7 . This scatter plot with ID numbers for the contingents is in Fig.  4.9 .    

       

 Contingents 1 and 2 are low whereas 4, 5, 7, and 10 are high. Since contingents 
5 and 10 are almost the same with respect to the biodiversity variates, we also need 
paired scatter plots to see the situation with respect to other habitat variates 
(Fig.  4.10 ).    

       

 At least in terms of the relationship of topographic variability (variate 3) to vari-
ates for forest cover (variates 4, 5, and 6), the contingents are quite well spread. 
To fi nalize the construction of contingents, we fi rst cast the centroids as data 
frames, and provide variate names and then replot Fig.  4.10  with variate names as 
Fig.  4.11 .    

  Fig. 4.9    Centroid-based scatter plot of bird species ( horizontal  ) versus mammal species ( vertical  ) 
on original BAMBIV scales for 11 contingents       
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  Fig. 4.10    Paired scatter plots for contingents in terms of original BAMBIV variates       
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 The column of memberships for contingents is bound together with the column 
of hexagon IDs and cast as data frame then written to a fi le. Files are also written for 
selected other data frames. Hexagon memberships of contingents are then listed   .

      

  Fig. 4.11    Paired scatter plots for contingents in terms of original BAMBIV variates       
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   Tagging Trees 

 Of direct interest for many practical purposes are the distinguishing characteristics 
of collectives in terms of original measurements. We have not yet addressed that 
question for the foregoing contingents. The classifi cation tree approach (Breiman 
et al.  1998 ; Fielding  2007 ; Halgamuge and Wang  2005  )  allows us to consider 
that question while making minimal assumptions about distributions of the data. 
This is accomplished here through the  tree  package for  R  that is available for 
downloading from the cooperative  CRAN  Web site associated with the  R -project. 
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After downloading, such a package requires an initial installation through the  R  menus 
and then activation for each new session via the  library()  command in  R . 

 The classifi cation tree is a kind of modeling operation, and it requires that cate-
gorization be declared as what  R  calls a  factor  with a specifi c number of levels. 
Since the tree is depicted graphically, it is also important to use short labels for the 
variates involved. A command sequence to obtain a tree is as follows, with the tree 
being shown in Fig.  4.12 .    

       

  Fig. 4.12    Classifi cation tree for contingents in terms of original BAMBIV variates       
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 According to the classifi cation tree model, percent forest is the single most 
infl uential variable in segregating contingents. Within one branch of the fi rst split, 
the forest integrity assumes second importance, and within the other branch it is 
topographic variability. It is important to note that the hierarchical clustering and 
the kmeans clustering are both  polythetic  in that several variates are considered 
simultaneously. In contrast, a tree model is  monothetic  in that each successive split 
is based on one particular variate. The latter is important from an interpretive stand-
point. The foregoing scenario allows combining the best features of polythetic and 
monothetic approaches.  

   Contingent Cartography 

 The fi le with the two-column data frame of hexagon IDs and contingent numbers can 
be imported into Excel for structuring and saving as a dbf fi le, which is then joined 
in a geographic information system to the table of hexagon attributes for mapping as 
hexagon labels to produce the map of contingents shown in Fig.  4.13 . The hexagons 
without a contingent number in Fig.  4.13  are ones that lie outside Pennsylvania.   

   Computational Considerations and Characterizing Collectives 

 Computational constraints also arise for clustering with large numbers of cases 
(Mirkin  2005  ) . The effective size of a (symmetric) distance matrix is roughly half 
the square for the number of cases. However, some clustering methods like     k-means  

  Fig. 4.13    Map of membership in contingents for hexagons in Pennsylvania       
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do not use case-to-case distances, and thus do not require prior computation of a 
distance matrix as input. Adaptations of such approaches can be used with very large 
data sets, such as image data in remote sensing (Myers and Patil  2006  ) . Thus, creat-
ing collectives by clustering for preliminary prioritization is still viable but the 
scenario may not be as simple and straightforward as the pattern we have presented. 

 Performing preliminary prioritization on collectives from clustering will require 
characterizing the clusters by assigning attributes that serve as collective criteria. 
Centroids are commonly used in clustering contexts, so that is how we have cast 
collective characteristics up to this point. This is by no means even the primary pos-
sibility, but it provides a point of departure for paths to this end in the next chapter. 
Collateral considerations include reducing the dimensionality for displays and 
exploring alternatives to averaging over the aggregates that is at the essence of con-
structing centroids.      
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   Prioritization can proceed through partnership between procedures and perception. 
Perception is promoted by pictorial portrayal on a page, which is most manageable 
in two dimensions. Therefore, we consider capturing contrasts among contingents 
compactly in couplets of coordinates on synthetic scales (Zuur et al.  2007  ) . What 
we call “distance domains” derived through multidimensional scaling are appropri-
ate for this (Borg and Groenen  2005 ; Cox and Cox  2001 ; Green et al.  1989  ) . 

 The classical version of multidimensional scaling called  principal coordinates  
(PCOs) suits this scenario and is easily available in  R  as the cmdscale() function of 
the MASS package. It starts with distance data rather than conventional coordinates, 
and attempts to obtain a few axes (in this case two) that portray the distance rela-
tions to the best advantage. A preliminary is computation of distances among the 
instances of interest, for which we use centroids of the contingents. We do distances 
on both original observations and standardized scales for    comparison.       

    Chapter 5   
 Distance Domains, Skeletal Structures, 
and Representative Ranks       
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   Contingent Coordinates in Distance Domains 

 The MASS package comes with  R , but it must still be loaded with the library() com-
mand. It is also the second thing we have encountered that uses capital letters in an 
 R  name. The name  cmdscale  stands for  classical multidimensional scaling .  

    

 The principal coordinates are obviously quite different between distances based 
on scales for original observations versus distances based on standardized scales. 
However, plotting is required to see whether the  patterns  in PCO space are similar 
or different. Deriving PCO from distance based on original data is shown in Fig.  5.1 . 
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 A fi rst thing to observe in the PCO plot of Fig.  5.1  is reversal of sign sense. As 
with principal components, the sense of positive and negative ends of an axis is 
essentially indefi nite. Contingent 1 has low biodiversity and contingent 7 has rela-
tively high biodiversity. Therefore, the horizontal axis should be reversed in Fig.  5.1 . 
To resolve the inconsistency, the principal coordinates are cast as data frames and 
signs changed accordingly. 

 Deriving PCO from distance with standardized scaling is shown in Fig.  5.2 , with 
both axes needing to be reversed.

        

 The required reversal based on original observations is accomplished as 
follows.

       

 The required reversals based on standardized data are done similarly.  

  Fig. 5.1    Principal coordinates for centroids of contingents derived from disparities based on origi-
nal variates       

 



  Fig. 5.2    Principal coordinates for centroids of contingents derived from disparities based on stan-
dardized scales       
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 The modifi ed version of principal coordinates for centroids of contingents 
derived from distances based on the original scales is plotted in Fig.  5.3 , and the 
modifi ed version of principal coordinates for centroids of contingents derived 
from distances based on standardized scales is plotted in Fig.  5.4 . 

         

 Contingents numbered 1, 2, 3, 4, 6, 8, 9, and 11 appear to be consistently placed 
relative to each other on either set of principal coordinates, therefore not being sen-
sitive to scaling by standardization. The other three contingents (5, 7, 10), however, 
have shifted somewhat. We now seek a systematic structural screening for such 
scale-sensitive shifts, for which purpose we look to background concepts concern-
ing  spanning trees  (Wu and Chao  2004  ) .  

   Networks of Neighbors, Simple String Structure, 
and Satellite Structure 

 Our strategy for comparing contingents relative to scaling sensitivity entails novel 
notions about networks of neighbors. It satisfi es our comparative criteria of being 
systematic, objective, and relatively straightforward. It is not necessarily the most 

  Fig. 5.3    Modifi ed version of principal coordinates for centroids of contingents based on distances 
from original scales after reversing signs on fi rst axis       
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sophisticated scenario of structures that might be conceived, but it serves to identify 
the contingent components that are relatively sensitive to scalings. What we do is to 
begin by identifying the contingent with centroid situated farthest from the origin 
(zero) in PCO space. This contingent becomes the anchor of a network. The linkage 
of the network develops progressively, whereby the (unlinked) contingent that is 
closest (by Euclidean distance) to any current member of the network is connected 
into the network by linkage to that network neighbor. The cycle is then repeated 
until all contingents are connected. The choice of anchor alters the nature of the 
network, but the anchor depends directly on disparity (distance) and defi nes radius 
of the constellation of centroids for contingents. 

 We formulate a  function  in  R  to perform the networking of neighbors, whereas we 
have thus far only used functional facilities that are already available. We call the 
function by the name NaborNet and list it in full detail as Function  5.1  in parallel to 
the way we have numbered the graphical fi gures. The information sent to the function 
is a data frame that we refer to in the function as NodeFrame. In this construct, a 
NodeFrame is simply a two-column listing of PCO centroids for contingents as exem-
plifi ed by PCOcntr11 or PCOcntr11S. Whatever name we use to receive the function 
result becomes a data frame of information on the network of neighbors. 

  Fig. 5.4    Modifi ed version of principal coordinates for centroids of contingents based on distances 
from standardized scales after reversing signs on both axes       
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   Function 5.1: NaborNet Function for Making Networks 
of Neighboring Centroids    
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 For purposes of presentation, the  R  program code for NaborNet is contained in a 
text fi le called NetWorks.txt which must be incorporated into the  R  session by the 
source() command prior to its use. For contingents expressed in terms of original 
scales, this is:  

    

 In a network of neighbors, the centroids of contingents are the nodes of the 
network. The fi rst column of the NetFrame is contingent number as node number in 
the order that they occur in the NodeFrame from which the NetFrame was devel-
oped by the NaborNet function. The second column is the node (contingent) num-
ber to which it is linked in the network. The third column is the order that nodes 
(contingents) were linked into the network, with number 1 indicating the anchor for 
the network. The fourth column is the length of the link in PCO units. The fi fth and 
fi nal column is the order of nearness for the link node relative to the new node, with 
1 indicating that a contingent is being linked to its nearest neighbor among all con-
tingents and 2 indicating that it is linked to its second nearest neighbor among all 
contingents. 

 Representing a network graphically is a bit more complicated than most of the 
previous plotting scenarios.  
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 This plotting scenario begins with a scatterplot of the nodes as a single com-
mand, followed by a loop that plots a link in each pass after setting up the needed 
inputs to the lines() command which actually plots the link. One line of the NetFrame 
is processed in each pass. The J and K indices are fi rst set to the respective node 
(contingent) number. The pair of X coordinates to be linked are then taken from the 
centroid frame and combined as X, and likewise for the Y coordinates. The X- and 
Y-pair are then fed to the lines() command, with the result as shown in Fig.  5.5 .  

 A corresponding network of neighboring contingents is developed from princi-
pal coordinates obtained from standardized scales as follows:  

    

  Fig. 5.5    Network of neighboring contingents for principal coordinates obtained from original 
scales       
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 The plotting scenario for network obtained from standardized scales is the fol-
lowing, with the network being shown in Fig.  5.6 .   

    

  Fig. 5.6    Network of neighboring contingents for principal coordinates obtained from standard-
ized scales       

 Figure  5.6  also brings up a point regarding how the horizontal and vertical axes 
of the plot are graduated by default. In contrast to the situation with PCOs obtained 
for original scales (Fig.  5.5 ), the upper and lower limits for the axes are more differ-
ent which gives a somewhat distorted sense of the lengths of links in the network. 

 The axes can be equalized by specifying the limits when the points are plotted, 
giving Fig.  5.7 .   

 



73Networks of Neighbors, Simple String Structure, and Satellite Structure 

    

 The nature of the networks can now be studied comparatively between contin-
gents expressed in terms of original scales versus standardized scales. If contingents 
2, 3, and 11 were absent in Fig.  5.7 , the network would have a string structure with 
a hook at the end opposite the anchor. Contingent 11 adds a simple stub above the 
string that is linked to contingent 8. Contingents 2 and 3, however, add a substantial 
branch in the opposite direction that is also linked to contingent 8. Contingent 8, 
thus, has a pivotal position in this network. 

 The network structure in Fig.  5.5  obtained from expressing distances on original 
scales has differences from those just noted for Fig.  5.7 . The one derived from 

  Fig. 5.7    Network of neighboring contingents for principal coordinates obtained from standard-
ized scales as plotted on equalized axes       
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original scales has a major fork at one end, a minor fork at the other, and a spur in 
between. 

 The major bifurcation is from contingent 9 and the minor one from contingent 8, 
with these nodes being on opposite sides of the network. 

 Therefore, the sense of similarities depends quite strongly upon the manner in 
which the contingents are expressed. The extent of the dependence can be seen 
more clearly by fl agging the nodes that are linked differently between the two views. 
This requires making a node tabulation from which the contingents having the same 
linkage are removed, and then plotting these nodal points with a different symbol to 
obtain the graph in Fig.  5.8 .

        

 Another way to examine the differences in the networks is through barplots of 
the linkage lengths. Of course, the large differences in PCO scales give correspond-
ingly different vertical scales for the barplots; but it is the relative differences that 
are of interest. Therefore, it is appropriate to make barplots of linkages expressed as 
a percent of the respective maximum linkage length. A barplot of the linkage lengths 
based on original scales is given in Fig.  5.9 , and the corresponding barplot of linkage 
lengths based on standardized scales is given in Fig.  5.10 . It is easily seen that there 

  Fig. 5.8    Network of neighboring contingents for principal coordinates obtained from standard-
ized scales, with diamonds marking nodes that link differently from original scales       

 



  Fig. 5.9    Barplot of relative linkage lengths for network of neighboring contingents based on origi-
nal scales       

  Fig. 5.10    Barplot of relative linkage lengths for network of neighboring contingents based on 
standardized scales       
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is much greater differentiation of relative linkage lengths for the version of the 
network based on standardized scales than for the version based on original scales. 
Since this enhanced differentiation is useful, it is appropriate to prefer the network 
having a standardized basis for further investigations.    

    

 At the current juncture, it is well to be clear that ideas behind networks of neigh-
bors are based on the contingent context. By defi nition, the contingents are few in 
number relative to the number of data cases. Doing networks directly for numerous 
data cases would most likely just give the appearance of a jumble of links, and the 
tabular network information would likewise pose heavy interpretive challenges. 

 This is also a place for summarizing some terms for types of structure in net-
works of neighboring contingents. A  simple string structure  has the links arranged 
as a string of beads so as to step sequentially through every node in order to pass 
from end to end. Likewise,  string structure  applies to a substantial segment of a 
network that is arranged in this manner, with Fig.  5.7  being illustrative in this regard. 
 Simple spurs  connect individual nodes into a string structure as observed in Fig.  5.5  
such that the spur node has only one link.  Binary branching  is also observed in 
Fig.  5.5 , whereby two strings emanate from a node. Although not observed in an 
obvious way here, a  satellite structure  would have several spurs or short strings 
attached to the same node. Contingent (node) number 8 in Fig.  5.7  approximates 
this arrangement.   

    k  Nearest Neighbors 

 For a variety of purposes, it can be useful to compare an instance of something to its 
nearby neighbors in some scaling space or to investigate how different scalings 
change which instances are near neighbors. It is also possible to remain cognizant 
of two scalings by expressing instances in one scaling while tracking its near neigh-
bors in another scaling. Such comparisons can be done for the nearest neighbor, for 
the fi rst and second nearest neighbor, or for the  k  nearest neighbors. To facilitate 
such investigations, we formulate an  R  function that we call  Naboring  which is 
listed as Function  5.2  and stored in a NearNabr.txt fi le. This function takes a data 
frame of coordinate values as an input, and produces a data frame having each 
instance (locus) on a line with the number of the instance followed by the numbers 
of its four closest neighbors. The function is easily modifi ed to account for more 
neighbors by changing the value of  K  in the function. 
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   Function 5.2: Naboring Function for Determining
 k  Nearest Neighbors  

       

 As applied to the contingents expressed in principal coordinates obtained from 
standardized scales, the neighbor status is as follows:
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 An immediate use for near neighbor analysis is to investigate whether, and if so 
how, the recasting of contingent centroids from six standardized dimensions into 
two principal coordinate dimensions has affected the nearest neighbor relations 
among the contingents. This can be determined by getting neighbors of the six-
dimensional structure, and then plotting nearest neighbor contingent numbers 
against each other as in Fig.  5.11 .

        

 The only perturbation of (fi rst) nearest neighbor relations by principal coordinate 
dimensional reduction is for contingent number 10, which originally had 
contingent 6 as nearest neighbor that switched to contingent 7. The original nearest 
neighbor has become the second nearest neighbor, but contingent 7 was originally 
not even among the four near neighbors to contingent 10. The PCO process has 
done more extensive perturbation to higher order neighbor relations as shown for 
second nearest neighbors in Fig.  5.12 . Thus, it is better to compile the  k -neighbor 
data from the full set of variates.

  Fig. 5.11    Contingent numbers of nearest neighbors in six standardized dimensions ( horizontal  ) 
versus two principal coordinate dimensions ( vertical  ). Some points are multiples       
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   Skeletal Subset as Comparative Core 

 It would be somewhat unusual to fi nd a dataset in which all contingents were 
insensitive in this network sense to standardization of the variates. It would also 
be somewhat unusual to fi nd a dataset without a substantial subset that does not 

  Fig. 5.12    Contingent numbers of second nearest neighbors in six standardized dimensions ( hori-
zontal  ) versus two principal coordinate dimensions ( vertical  ). Some points are multiples       
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 The second phase is to superimpose the network linkages for a subset on a plot 
showing centroids for all of the contingents in that particular scaling. This process 
is as follows for the original variates, producing Fig.  5.13 . Note particularly the 
need to reference actual contingent numbers rather than sequential numbers in the 
NetFrame for the subset.

exhibit such sensitivity. An insensitive subset can provide a skeletal network that 
facilitates visual assessment of sensitivity in the other contingents. For current 
contingents, a subset consisting of contingents 1, 2, 3, 4, 8, 9, and 11 has the same 
neighbor linkages for both original variates and standardized variates. This pro-
vides a skeletal network structure for comparing sensitivity of contingents 5, 6, 7, 
and 10. 

 The fi rst phase of confi guring the skeletal network is to extract the subset of 
centroids from both original and standardized scalings, and then to obtain the 
NaborNet for each subset.
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  Fig. 5.13    PCO centroids of contingents based on original variates showing skeletal network of 
consistent contingents       

    

    The corresponding plotting scenario for contingents based on standardized vari-
ates is as follows to produce Fig.  5.14 :
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  Fig. 5.14    PCO centroids of contingents based on standardized variates showing skeletal network 
of consistent contingents       

    

    Comparing Figs.  5.13  and  5.14  makes clear the nearly linear sequence of links 
from contingent 2 to contingent 11 through contingents 3 and 8 with a single-step 
left branch from contingent 8 to contingent 1 and a two-step right branch from con-
tingent 3 to contingent 4 through contingent 9. Contingents 6, 7, and 10 are above 
the right branch for both scalings, and contingent 5 is below the right branch for 
both scalings. However, contingent 5 is almost on the right branch for standardized 
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   Function 5.3: PlacRank Function for Converting a Data 
Frame to Place Ranks    

scaling, whereas it is appreciably below for original scaling. Likewise, contingent 7 
is almost directly to the right of contingents 6 and 10 for standardized scaling, 
whereas it is shifted substantially above and to the right for original scaling. Thus, 
original scaling gives more distinctiveness to contingents 5 and 7 than does stan-
dardized scaling.  

   Sequence Scaling and Representative Ranks 

 A process of prioritization entails comparing either cases or collectives of cases in 
terms of the information imbedded in the multiple measures. Collectives of cases 
form constellations in the space of multiple measures, and centroids constitute 
cores of those constellations. Centroids are, thus, conceptually compatible for such 
comparisons. Distance domains abstracted from centroid-to-centroid distances 
deal directly with the comparative concerns without being tightly tied to the 
multiple measures, and so are also appropriate for prioritization purposes. 

 We have empirical evidence that standardized scaling has effects expressed in the 
distance domains. We have also seen that standardized scalings are completely cor-
related with original observations. Thus, complete correlation does not carry com-
plete consistency for comparison. A common component of information in original 
and standardized scales is specifi cation of “greater than,” “less than,” and “equal to” 
relationships among the instances, although there are disparate degrees of differ-
ence. Rankings retain only object ordering information, and can therefore be con-
sidered as a “bare bones” sequence scaling or skeletal scaling. 

 Rankings can rise with magnitude of measurement which is the regular ranking 
for  R  or can carry context of precedence in placement with fi rst as foremost and 
largest as least precedence. Preferential positioning properties make place ranks a 
better basis for prioritization purposes. Function  5.3  is a PlacRank facility that takes 
a data frame of variate values as input and produces a data frame of place ranks as 
outputs. 
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 If place ranks for all variates have the same sense of superiority, they become a 
kind of common currency for comparative purposes in prioritization. This requires 
each variate to be considered in a criterion context as an informational indicator. 
For example, the percent in one forest patch and the percent in one open patch are 
inherently inverse indicators as evidenced by their strong negative correlation. 
Comparative coupling of inverse indicators must either be done through a distance 
domain or the inversions must be inverted. In terms of sequence scaling, regular 
rankings of inverse indicators are compatible with place rankings of those that have 
positive polarity. 

 Since standardization does not do any reordering, mixed-mode rankings (not 
necessarily same sense) are identical whether obtained from original observations 
or standardized scales.

    

   Furthermore, it is seen that same-sense rankings of Pct1FPch and Pct1OPch are 
identical and, therefore, redundant for rank-based prioritization purposes.  
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 For comparative continuity, a distance domain is also obtained for centroids 
expressed in terms of ranks as shown in Fig.  5.15 .   

  Fig. 5.15    Principal coordinates for centroids of contingents derived from (mixed mode) place 
ranks       

    

 The plot in Fig.  5.15  shows that the fi rst (horizontal) PCO axis requires reversal, 
which is done as follows and plotted in Fig.  5.16 .   

    

 The skeletal subset used earlier is superimposed in Fig.  5.17 . Figure  5.17  is 
more like the version for standardized data than for original observations, except 
that contingent 5 is located slightly above the link line instead of slightly below. 

 



  Fig. 5.17    Principal coordinates for centroids of contingents derived from (mixed mode) place 
ranks with fi rst axis adjustment and showing prior skeletal network       

  Fig. 5.16    Principal coordinates for centroids of contingents derived from (mixed mode) place 
ranks with fi rst axis inverted and ranges equalized       
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 Function  5.4  is a GroupRnk function that compiles fi ve representative ranks for 
collectives. The fi ve key ranks are (1) minimum rank, (2) fi rst quartile rank, (3) 
median rank, (4) third quartile rank, and (5) maximum rank. The inputs to the func-
tion are a vector of group membership and a data frame of case-level same-sense 
ranks of criteria. 

Both standardization and ranking have equilibrating effects on variability, but these 
effects are different. Since it has already been shown that Pct1FPch and Pct1OPch 
are rank equivalent at the level of contingents, Pct1OPch should simply be omitted 
for rank-based comparative purposes. This omission gives same-sense structure to 
the remaining ranks.  

 In general, mixed modes for rankings should be resolved by substituting regular 
rankings for place-based rankings of those individual variates that are counter-
indicative. It should also be noted that retaining redundant variates has the effect of 
more heavily weighting the infl uences that give rise to the redundancies.   

   Representative Ranks 

 Ranks solely signify sequences, thus constituting conceptual common currency for 
prioritization purposes. Consider  k  contingents of cases, with each case having 
same-sense ranks on  p  variates. If the  j th contingent consists of  h  

 j   cases, there are 
 h  

 j   ×  p  =  q  
 j   rank numbers associated with the contingent. If these  q  

 j   rank numbers are 
placed in a single array and sorted in ascending order, they form a distribution of 
rank values for the contingent. A selected set of  m   £   q  

 j   percentage points for this 
distribution can be considered as representative ranks for the contingent. Then, con-
tingents can be prioritized comparatively in terms of their representative ranks 
(Myers and Patil  2010 ; Myers et al.  2006 ; Sorensen et al.  2005  ) . 

 To pursue representative ranks, we obtain a data frame of place ranks for cases 
on the fi rst fi ve variates as follows:  
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   Function 5.4: GroupRnk Function for Compiling Key Ranks 
of Collectives (Minimum, First Quartile, Median, Third Quartile, 
and Maximum) from Case-Level Rankings    

 Function 5.4 is applied to the 11 contingents as follows, with pairs plotted in 
Fig.  5.18 .   

 Figure  5.18  shows that plotting Q3 on the vertical against the median on the hori-
zontal yields a near-linear ordering of the contingents. The plot is extracted and 
labeled in Fig.  5.19 .   
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  Fig. 5.18    Pair plots of key place ranks for 11 contingents       
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 Since lower place ranks are more favorable, this ordering highlights 
contingent 4 as most favorable and contingent 1 as least favorable. Some other 
pairings of key ranks make the contingents appear less distinctive.       
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 The foregoing treatments have set the stage for a more formal approach to precedence 
and partial/progressive prioritization that has its foundation in partial order analysis 
(Brüggemann and Voigt  2008 ; Brüggemann and Patil  2011 ; De Loof et al.  2008 ; 
Patil and Taillie  2004  ) . We wish to formalize favorability without specifying exactly 
how it is to be determined, leaving latitude for investigative innovation and interpre-
tation. Our approach here is comparative among contingents or cases, and is framed 
in terms of  ascribed advantage  that is an outcome of a  rating regime  (Myers and 
Patil  2010  ) . 

   Ascribed Advantage, Subordinate Status, 
and Indefi nite Instances 

 We assume the availability of a suite of rating rules that assigns three types of rela-
tions between a particular pair of cases or contingents (instances), with the two 
members of the pair being symbolized as  Э  and  Є . If the rules designate  Э  as more 
favorable than  Є , then we say that  Э  is/has  ascribed advantage  over  Є  which we 
symbolize as: 

  Э aa Є , wherein  Э  is  ascribed advantage  over  Є  

 which also implies that  Є  has  subordinate status  relative to  Э  symbolized as: 

  Є ss Э , wherein  Є  has  subordinate status  to  Э  which reciprocally implies  Э aa Є . 

 In simple terms, ascribed advantage means more favorable and subordinate 
status means less favorable according to the regime of rating rules. However, the 
rating rules may fail to ascribe advantage and subordinate status for a particular pair 
of instances. These latter are  indefi nite instances  symbolized as: 

  Э ii Є , whereby these are  indefi nite instances  without ascribed advantage and 
without subordinate status, which reciprocally implies  Є ii Э . 

    Chapter 6   
 Ascribed Advantage, Subordination 
Schematic, and ORDIT Ordering                  
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 Indefi nite instances are pairs for which the rating rules fail to assign advantage. 
 Each of the  n  cases or contingents can be compared on this basis to all others in 

the deleted domain  DD  =  n  − 1 of competing cases (instances) with the percent 
occurrence of these relations being tabulated as follows, where  ff  ( ) denotes focal 
frequency as number of occurrences for the focal case:

     = ×100 (aa) / .ffAA DD    

     = ×100 (ss) / .ffSS DD    

     = ×100 (ii) / .ffII DD     

 Clearly,  AA  +  SS  +  II  = 100%; and for later use, let us defi ne  CCC  = 100 −  AA  as 
the  complement of case condition relative to ascribed advantage  ( AA ). 

 In the parlance of partial order, AA has sense of relative size of deleted “down 
set,” SS has sense of relative size of deleted “up set,” and II has parallels to cases 
with confl icting criteria. Since AA, SS, and II can be computed individually for any 
instance, this approach is in the nature of a local partial order model (LPOM).  

   Subordination Schematic 

 The foregoing approach can be symbolized schematically in what we call a “subor-
dination schematic” as depicted in Fig.  6.1 , whereby the point representing an 
instance partitions the fi gure into a “trapezoidal triplet” (of AA, SS, and II) below, 
and a “topping triangle” (of CCC, SS, and II) above. The combination of lower and 

  Fig. 6.1    Subordination 
schematic with plotted 
instance partitioning a right 
triangle into a “trapezoidal 
triplet” (of AA, SS, and II) 
below, and a “topping 
triangle” (of CCC, SS, and II) 
above. AA = 100% is at the 
“tip” of the combined triangle 
and SS = 100% is at the “toe” 
of the combined triangle. The 
hypotenuse is a right-hand 
“limiting line” for plotting 
position because 
AA + SS + II = 100%       
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upper portions forms a right triangle with the “tip” at AA = 100% in the upper left 
and the “toe” at SS = 100% in the lower right. The hypotenuse is a right-hand 
“limiting line” for plotting position because AA + SS + II = 100%. CCC adds SS + II 
to AA making 100%. The “basal bar” (bottom leg) of the topping triangle is parti-
tioned into SS and II by the plotted point for the instance.  

 The trapezoidal triplet is used subsequently as the basis for a precedence plot. 
The topping triangle provides the basis for an “Ordering Dually in Triangles, 
ORDIT, ordering” of the instances as explained immediately below.  

   Ordering Dually in Triangles 

 For the current context, an ideal instance is taken to be one that has ascribed advan-
tage over all others. In terms of rating relations as set forth above, this is an instance 
for which AA is 100% of the deleted domain (DD) of other instances, that is, the 
frequency of ascribed advantage being equal to the number of competing cases 
(instances). When this ideal actually occurs, then the trapezoidal triplet becomes a 
triangle. Whether or not the ideal actually occurs, this can be cast in terms of a “top-
ping triangle” for each instance that puts a triangular vertex in place when overlaid 
on the trapezoid as shown in Fig.  6.1 . 

 The legs of the topping triangle can be coupled as a decimal value  ccc.bbb  for 
each part of which lower values are more favorable in company with place-based 
rankings. The  ccc  component is obtained by rounding CCC to two decimal places 
and then multiplying by 100. The  bbb  component is obtained by dividing SS by 
CCC, and imposing 0.999 as an upper limit. The two components are then coupled 
by adding  bbb  to  ccc . Each instance induces a topping triangle, so this ordering is 
assigned the acronym  ORDIT  for ORdering Dually In Triangles. It preserves all 
aspects of AA, SS, and II, except for the actual number of instances. If a simple 
sequencing of instances is needed, then the ORDITs can be converted to regular 
ranks. Regular ranking of the ORDITs is done because the polarity of ORDITs is to 
be preserved.  

   Product-Order Rating Regime 

 A general relational rule for ascribing advantage is  product order , whereby advan-
tage is gained by having all criteria at least as good and at least one better. Conversely, 
subordinate status lies with having all criteria at least as poor and at least one poorer. 
This relational rule is applicable to all kinds of criteria as long as they have the same 
polarity (same sense of better and worse). We have chosen to refer to regular ranks 
of ORDITs based on product order as  salient scaling . Function  6.1  is a ProdOrdr 
facility that determines ORDITs and salient scaling according to product order. 
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This function takes as its inputs a vector of IDs for instances, a data frame of same-
sense criteria, and an indicator of whether the criteria are positive sense (placing = 0) 
or negative sense (placing = 1). The output is a data frame of ORDITs and salient 
scaling values. 

 We concluded the previous chapter by examining a plot of (place based) third-
quartile ranks versus median ranks for contingents which showed a near-linear rela-
tionship suggesting that these two criteria serve to produce a precedence ordering 
that distinguishes among the contingents. We use this as an initial exploration of 
prioritization at the contingent level shown    in Fig.  6.2 .

        

  Fig. 6.2    Salient scaling (prioritization) for contingents based on representative (place based) 
ranks Q2 (median) and Q3       
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   Function 6.1: ProdOrdr Function for ORDIT Ordering 
and Salient Scaling According to Product-Order Protocols  
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 One proceeds interpretively from bottom to top in Fig.  6.2 . Contingents 4, 5, and 
7 are fi rst, second, and third, respectively, according to Q2 and Q3 with the only 
lack of resolution being between contingents 2 and 8. If Q1 is included in the priori-
tization, the result becomes as shown in Fig.  6.3 .

        

 Including Q1 resolves contingents 2 and 8 by placing 2 before 8, but induces 
confounding of contingent 5 with contingents 7 and 9 with contingent 10. Contingent 
4 still stands alone as fi rst. 

 The three varieties of principal coordinate distance domains can be investigated 
comparatively in this regard if it is remembered that the polarity of the PCOs is 
opposite that of place ranks. A pairs plot is given in Fig.  6.4 .

  Fig. 6.3    Salient scaling (prioritization) for contingents based on representative (place based) 
ranks Q1, Q2 (median), and Q3       
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  Fig. 6.4    Pairs plot of prioritizations of contingents from PCO distance domains       
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 The precedence from original, standardized, and rank distance domains agrees 
with regard to (contingent 1 as being the worst). Original and ranks agree on contin-
gent 7 as being the best, but standardized has contingent 7 tied with contingent 4 for 
the best. Original and ranks are in substantial agreement, except for contingent 5 
which is third by ranks but seventh by original.       
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 Visualization is an important part of conveying the logic of a prioritization to 
constituent stakeholders (Brüggemann and Patil  2010 ; Brüggemann et al.  2003  ) . 
Therefore, we exploit the concept of trapezoidal triplet (see Fig.   6.1    ) to prepare an 
innovative precedence plot before going forward with comparison of contingents in 
terms of ORDITs under alternative rating regimes (Myers and Patil  2010  ) . 

   Precedence Plots 

 Function  7.1  named TrpzTrpl (for trapezoidal triplet) accepts the output of the 
ProdOrdr function (6.1) and produces a precedence plot. This is applied to second- 
and third-quartile representative ranks and shown in Fig.  7.1 .  

   Function 7.1: TrpzTrpl Function for Precedence Plots 
Based on Trapezoidal Triplet     

    Chapter 7   
 Precedence Plots, Coordinated Criteria, 
and Rank Relations                  
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  Fig. 7.1    Precedence plot of trapezoidal triplet for contingents based on Q2 and Q3 of representa-
tive ranks.  Y -axis as vertical side is ascribed advantage (AA) as percent of deleted domain (DD) of 
competing cases.  X -axis along lower side is subordinate status (SS) as percent of DD. Slanting side 
is limiting line (LL) for positional plotting. Horizontal distance to limiting line from plotted point 
(as for contingent 2) may be considered as a “grey gap” due to indefi nite instances (II)       
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  Preferential positioning declines downward diagonally from tip to toe. Primary 
preference varies vertically  showing that there is a larger percentage of ascribed 
advantage with increasing height.  Horizontal variation   on a given level   shows 
clarity of comparison. Closer to the limiting line is   more defi nite disadvantage  
with a larger percentage of subordinate status versus indefi nite instances among the 
couplets, where ascribed advantage is  lacking .  Horizontal distance from limiting 
line is a “grey gap”  (not black and white) refl ecting lack of clarity due to indefi nite 
instances (II) of couplets having confl icts among the criteria. 

 Only contingent 2 of those identifi ed in the precedence plot of Fig.  7.1  shows a 
“grey gap” of uncertainty due to indefi nite instances (II). However, contingent 8 is 
not identifi ed in Fig.  7.1 , so it must be tied with another contingent. In the previous 
chapter, it was determined that the tie is with contingent 2. 

 It is expedient to have a companion “progression plot” (progressing from best to 
worst) for the precedence plot that reveals the presence of ties. A progression plot is 
obtained by four lines of  R  code as follows and shown in Fig.  7.2    .

        

 Including Q1 with Q2 and Q3 gives the precedence plot shown in Fig.  7.3  and 
the companion progression plot in Fig.  7.4 . This inclusion leaves only contingents 

  Fig. 7.2    Progression plot for contingents based on Q2 and Q3 of representative ranks with tied 
contingents identifi ed. Ties occur, where there are two or more successive ORDIT ranks on the 
same level       
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  Fig. 7.4    Progression plot for contingents based on Q1, Q2, and Q3 of representative ranks with 
tied contingents identifi ed       

  Fig. 7.3    Precedence plot of trapezoidal triplet for contingents based on Q1, Q2, and Q3 of repre-
sentative ranks       
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4 and 1 as being without indefi nite instances, and contingents 7 and 10 being masked 
by coincidence (7 with 5 and 10 with 9).   

 The quartiles of representative ranks, thus, give clear preference to contingent 4 
followed dually by contingents 5 and 7. This perspective has contingent 1 in the 
poorest position   .

         

   Indicator Integration and Condensation 

 We next undertake integration and condensation (Luther et al.  2000  )  of principal 
coordinates across the three distance domains. This begins with constructing a con-
junctive data frame as follows, after which the (Pearson) correlations and (Spearman) 
rank correlations are explored.   
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 Within each set, the fi rst PCO axis is uncorrelated with the second axis. Between 
sets, the fi rst PCO axes are very strongly correlated and the second axes are strongly 
correlated. 

 We next seek to induce an approximately block diagonal structure for the corre-
lation matrices by rearranging the indicator variates so that the very strongly 
correlated fi rst PCO axes come fi rst and then the strongly correlated second PCO 
axes (Mucha  2002  )    .

        

 A pairs plot for the blocked PCOs is given in Fig.  7.5 .     

  @ pairs(PCOblock)  

 The strong correlations within blocks and the lack of correlation between blocks 
make it sensible to condense this indicator information via two sets of ORDITs. The 
three PCO fi rst-axis indicators contribute one ORDIT ordering, and the three PCO 
second-axis indicators contribute a second ORDIT ordering. These two ORDIT 
orderings provide an indicator condensation from six to two. The two ORDIT order-
ings are obtained as follows and plotted in Fig.  7.6    .

         

 As shown in Fig.  7.7 , ORDIT ordering from fi rst PCO axes is consistent with that 
from quartiles of representative ranks with respect to the three best (4, 5, 7) and the 
three worst (1, 11, 8); however, Fig.  7.6  shows less consistency with regard to 
ORDIT ordering from second PCO axes. Contingent 7 is moderately well placed for 
second PCO axes, but contingent 4 is mediocre and contingent 5 is poorly placed. 
Thus, contingent 4 and contingent 7 appear to be the better candidates for compari-
sons at the case level.  

 ORDIT ordering can, thus, serve to coordinate a set of related indicators, thereby 
providing a single indicator that draws evidence from all members of the parent set   . 
Such integrated indicators can serve as second-order semi-surrogates for the larger 
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set of original indicators, whereby implicit weighting due to high redundancies 
among original indicators has been substantially removed. In the current context, 
Q1Q2Q3 ORDIT, PCOaxis1 ORDIT, and PCOaxis2 ORDIT can be three second-
order indicators for the original nine indicators. This is accomplished as follows, 
with a precedence plot shown in Fig.  7.8  and companion progression plot in Fig.  7.9 . 
Contingents 7 and 4 appear in positions of precedence   .

  Fig. 7.5    Pairs plot of block arrangement for PCOs of contingents       

 



  Fig. 7.6    ORDIT ordering from PCO axis 2 ( vertical ) versus ORDIT ordering from PCO axis 1 
( horizontal )       

  Fig. 7.7    ORDIT rankings from fi rst PCO axis ( Y ) versus ORDIT rankings from quartiles of 
representative ranks ( X )       

 

 



  Fig. 7.8    Precedence plot for contingents based on ORDITs as second-order indicators (Q1Q2Q3, 
PCOaxis1, PCOaxis2)       

  Fig. 7.9    Progression plot showing ties for contingents based on ORDITs as second-order indica-
tors (Q1Q2Q3, PCOaxis1, PCOaxis2)       
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   Rank Range Relations 

 The product-order rating regime has an alternate interpretation when the indicator 
criteria consist of a pair of representative ranks, and this alternate interpretation 
gives rise to a special visualization using what we call “rank rods.” One member of 
a pair of representative ranks is an upper rank, and the other a lower rank. We use 
the place rank view in what follows, whereby the lower (lesser) rank is the preferred 
placement and the upper rank is the poorer placement (Newlin et al.  2010 ; Newlin 
and Patil  2010  ) . 

 The rank range is the (closed) interval between the lower and upper ranks or the 
difference between the maximum and minimum ranks, depending on the context. 
One instance can be considered better than another in either of the two ways for the 
rank range sense, depending upon equalities or lack thereof in upper or lower ranks. 
One instance is better than another in this regard if the lower rank is lower while the 
upper rank is equal or lower. There is also betterment if upper rank is lower while 
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the lower rank is equal or lower. For a pair of representative ranks, application of the 
rank range rating regime gives equivalent results to product-order regime, and is 
therefore simply an alternative interpretation. 

 For the visualization, we proceed to plot a vertical line (rod) for each instance 
that extends from the level of the lower rank to the level of the upper rank. Q1 and 
Q3 of the representative ranks for contingents can serve to exemplify this approach 
according to the following  R  operations with the result shown in Fig.  7.10    .

        

 It is evident in Fig.  7.10  that contingent 4 has rank range superiority in terms of 
representative ranks Q1 and Q3. The nature of the confounding between contingent 
5 and contingent 7 for second place is also evident. Contingent 7 is better placed for 
Q1, but contingent 5 is better placed for Q3. Geometrically, the rank range for con-
tingent 5 is contained within the rank range for contingent 7. Contingent 1 is clearly 
the worst in both respects. The horizontal axis of Fig.  7.10  is that of an “index plot” 
in  R , whereby the numbers simply show the order of occurrence in row of the data. 

  Fig. 7.10    Plot of rank range rods for representative ranks Q1 and Q3       
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 It may be desired to have the rank rods ordered otherwise than simple row sequence, 
as for example by Q1. This can be accomplished as follows and shown in Fig.  7.11 .   

       

 With ordering as in Fig.  7.11 , a drop in top height for a successor represents 
confounding, whereby the lower rank and the upper rank present confl icting 
evidence. A  rank range run  is a sequence of instances, wherein each instance has 
rank range advantage over its successor in the sequence. Contingent 2 is clearly an 
anomaly relative to rank range runs, and so would be excluded. A primary rank 
range run would naturally begin with contingent 4 since it has rank range advantage 
over all others. Either contingent 7 or contingent 5 would occupy second place since 
they both have rank range advantage over all remaining, but one or the other would 
be excluded since they are in confl ict. Similarly, either contingent 9 or contingent 10 
could be in third place, but they could not both be in the run. Contingent 6 and con-
tingent 3 are then in fourth and fi fth place, respectively. Either contingent 11 or 
contingent 8 could be in sixth place, but they could not both be in the same run. 
Contingent 1 then occupies the seventh place to terminate the run. The run structure 
is, thus, 4, (7 or 5), (9 or 10), 6, 3, (11 or 8), 1. Contingent 2 remains an anomaly 
because of its large span. When ordered by lower rank as in Fig.  7.11 , the potential 

  Fig. 7.11    Rank range rods for representative ranks Q1 and Q3 ordered by Q1       
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successors for an instance in a run can be seen by projecting a horizontal line from 
the top level. Only those that are transected by the line or entirely above it can serve 
as successors in a run. 

 When the rank range rod extends from the actual minimum to the actual maxi-
mum, it can be augmented by markings for the quartile ranks, including Q2 (median). 
This is shown for KeyRnks11 of the contingents in Fig.  7.12 . Only the portions of 
the rods between Q1 and Q3 (the triangle pointers) were shown in Fig.  7.11 . The 
diagram of Fig.  7.12  was generated by a special function facility named RankRods 
(Function  7.2 ). The RankRods function takes three inputs. The fi rst input is an order-
ing vector like the OrderByQ1 vector used for Fig.  7.11 . The second input is a data 
frame of the key ranks to be plotted. The third input is a vector that signals how each 
column of the data frame is to be handled in plotting, with each element signaling 
the respective column of the data frame. A zero, 0, indicates that the column is 
ignored in plotting. A −1 indicates that the column marks the lower ends of the ribs, 
and a 1 indicates that the column marks the upper ends of the ribs. A −2 indicates the 
column marker as an upward-pointing triangle, and a 2 indicates the column marker 
as a downward pointing triangle. A 3 indicates the column marker as a small circle.  

 After declaring KeyRnks11 to be a data frame, the instructions for generating 
Fig.  7.11  with this function are as follows:   

       

  Fig. 7.12    Augmented rank range rods for contingents ordered by Q1.  Rod  extends from minimum 
rank to maximum rank.  Upward pointing triangle  shows Q1 for ranks.  Downward pointing trian-
gle  shows Q3 for ranks.  Circle  shows median of ranks       
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   Function 7.2: RankRods Function for Plotting Augmented 
Rank Range Rods     

       

 Figure  7.12  was generated by the following set of  R  commands:   

       

 Figure  7.12  shows that quartiles of representative ranks have substantial distinc-
tiveness among the contingents, but minimum and maximum are relatively 
uninformative.       
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 Having compared contingents on  constructed criteria  (centroids, representative 
ranks, and distance domains) to choose candidate contingents, our progressive 
prioritization process moves to comparison of cases within candidate contingents to 
choose candidate cases. Both comparison of contingents and comparison of cases 
within contingents can be seen as selective screening that eliminates cases from 
contention. This is followed by cross-contingent comparison of candidate cases that 
brings together the best cases of the better contingents. This combination of candi-
date cases that crosses contingents is then prioritized and particularized rather than 
reduced. 

 The quartiles of representative ranks (Figs.   7.3     and   7.4    ) have highlighted contin-
gents 4, 5, and 7. Pairings of ORDITs from distance domains (Fig.   6.4    ) have high-
lighted contingents 7, 4, 6, and 10 if we include any contingent that received a 3 
rating. Consolidation of PCO axis 1 across distance domains and consolidation of 
PCO axis 2 across distance domains (Fig.   7.6    ) have highlighted contingents 7, 4, 6, 
and 10. Integrating three views (Fig.   7.8    ) highlights contingents 7, 4, 6, and 10. 
Therefore, it seems practically prudent to conduct case comparisons for contingents 
4, 5, 6, 7, and 10. 

   Conventional Criteria 

 Whereas constructed criteria were necessary for comparing contingents, case com-
parisons can be conducted on conventional criteria available as attributes (variates) 
from which contingents were confi gured by clustering. The product-order rating 
regime is completely comparative on a greater/lesser/same basis for each individ-
ual criterion. Therefore, comparisons conducted directly on the variate values as 
criteria yield the same result as comparisons of ranks—so ranking is optional. 

    Chapter 8   
 Case Comparisons and Precedence Pools                  
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However, ranks are preferred in subsequent steps, so the cases in each of these four 
contingents are isolated in terms of place-based ranks as    follows:

       

 The ProdOrdr function is then applied to each of these fi ve contingents as follows:

       

 A precedence plot for contingent 4 is shown in Fig.  8.1  with a companion 
progression plot in Fig.  8.2  according to the following sets of commands:

         

 The precedence plot is truncated on the right due to the maximum ascribed advan-
tage being only a little over 30%. The limiting line is, thus, not shown in Fig.  8.1 . 

 The identifi cation numbers on the points are sequential line numbers in the data 
fi le. Therefore, they must be retrieved from the data fi le in order to determine the 



  Fig. 8.1    Precedence plot of cases in contingent 4 based on ascribed advantage by product order 
for fi rst fi ve variates as indicators       

  Fig. 8.2    Progression plot of cases in contingent 4 based on ascribed advantage by product order 
for fi rst fi ve variates as indicators       
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hexagon ID numbers involved. The lines of hexagon data are retrieved in the order 
that they are listed for retrieval. Thus, hexagon 3268 occupies the 22nd line of the 
fi le for contingent 4. The numbers at the far left are line numbers in the parent 
CasPlacRnk5 fi le.

       

 A precedence plot for contingent 5 is shown in Fig.  8.3  with its companion 
progression plot in Fig.  8.4 .

         

  Fig. 8.3    Precedence plot of cases in contingent 5 based on ascribed advantage by product order 
for fi rst fi ve variates as indicators       
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 The progression plot shows no coincidence among the more conspicuous candi-
dates in the precedence plot for contingent 5. This time, truncation leaves the upper 
part of the limiting line exposed. 

 Retrieval of the more conspicuous candidates proceeds as before.

       

 A precedence plot for contingent 6 is shown in Fig.  8.5  with its companion pro-
gression plot in Fig.  8.6 .

  Fig. 8.4    Progression plot of cases in contingent 5 based on ascribed advantage by product order 
for fi rst fi ve variates as indicators       
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  Fig. 8.6    Progression plot of cases in contingent 6 based on ascribed advantage by product order 
for fi rst fi ve variates as indicators       

  Fig. 8.5    Precedence plot of cases in contingent 6 based on ascribed advantage by product order 
for fi rst fi ve variates as indicators       
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 As with contingent 4, the precedence plot for contingent 6 is truncated prior to 
the limiting line with maximum ascribed advantage being only a little more than 
15%. There is strong coincidence in the precedence plot with four in the fi rst posi-
tion, three in the second position, and two in the third position. 

 The more conspicuous candidate cases for contingent 6 are retrieved as follows:

       

 The precedence plot for contingent 7 appears in Fig.  8.7  with its companion 
progression plot in Fig.  8.8 . There is extensive coincidence for this contingent, but 
it does not involve the only conspicuous candidate case.

         

 Finally, the precedence plot for contingent 10 appears in Fig.  8.9  with its com-
panion progression plot in Fig.  8.10 .
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  Fig. 8.8    Progression plot of cases in contingent 7 based on ascribed advantage by product order 
for fi rst fi ve variates as indicators       

  Fig. 8.7    Precedence plot of cases in contingent 7 based on ascribed advantage by product order 
for fi rst fi ve variates as indicators       
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  Fig. 8.9    Precedence plot of cases in contingent 10 based on ascribed advantage by product order 
for fi rst fi ve variates as indicators       

  Fig. 8.10    Progression plot of cases in contingent 10 based on ascribed advantage by product order 
for fi rst fi ve variates as indicators       
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 Next is to collect the candidate cases extracted from the candidate contingents, 
and then order them by HexID numbers.

       

 We conclude this phase of the examination by determining precedence among 
these 28 candidate cases as shown in Fig.  8.11  with progression plot in Fig.  8.12 .
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  Fig. 8.12    Progression plot for candidate cases, labeled by sequence number       

  Fig. 8.11    Precedence plot for candidate cases       
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 The progression plot of Fig.  8.12  is fully labeled by sequence number, and these 
are used to list the candidate cases in order of precedence.

       

 The top candidate comes from contingent 7, the next three from contingent 4, 
and the next two from contingent 5. Contingent 7 contributes only the one premier 
candidate. Contingents 4 and 5 account for seven of the top ten, with the top ten 
being about 5% of the hexagons.  

   Representative Ranks as Case Criteria 

 Ascribed advantage by product order within contingent tends to be relatively limited, 
typically ranging between 15 and 40%. Product order strictly matches criteria 
between cases, and a small reversal of any criterion is suffi cient to nullify advantage. 
Since the members of a contingent are chosen for similarity, small reversals of 
criteria are likely to occur. This is refl ected in truncation of the limiting line and 
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left-hand stacking as in Fig.  8.11  instead of diagonal decline as in Fig.   7.1    . The 
strategy of using representative ranks can be applied at the case level by using spe-
cifi c order points from the rank distribution for each case. This relaxes the strict 
matching of criteria so that small reversals have less effect on the comparisons. 
Function  8.1  is a CasRnkos function that produces a data frame of fi ve case rank 
order statistics comprising minimum (Min), fi rst quartile (Q1), median (Q2), third 
quartile (Q3), and maximum (Max). 

 The CasRnkos function is applied to place-ranked data as follows:

       

   Function 8.1: CasRnkos Function for Determining 
Rank Order Statistics of Cases  
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 The foregoing case screenings are next revisited using min–max and min–
median–max as representative ranks. In so doing, precedence plots are done for 
min–max, whereas progression plots are replaced by plotting ranked ORDITs 
for min–median–max against ranked ORDITs for min–max. Preliminaries are as 
follows:

       

 Operations for contingent 4 then proceed to obtain a min–max precedence plot 
shown in Fig.  8.13 .

        

  Fig. 8.13    Min–max (rank range) precedence plot for cases in contingent 4       
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 The labeled cases in Fig.  8.13  are retrieved as follows:

       

 A cross-plot for min–median–max against min–max is then obtained and shown 
in Fig.  8.14 .

        

 Figure  8.14  shows that hexagon 2648 (7) is tied with hexagon 2647 (6) relative 
to min–max, and hexagon 3143 (20) is likewise tied with 2171 (2). The TopRRof4 
is revised accordingly to refl ect the ties. Figure  8.14  also shows that hexagon 3274 
(23) has a median that is poorly placed relative to the ends of its range.

  Fig. 8.14    Ranked ORDIT of min–median–max versus ranked ORDIT of min–max for contingent 4       
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 Analysis for contingent 5 produces the precedence plot in Fig.  8.15 .

        

 A companion cross-plot for min–median–max against min–max is then obtained 
and shown in Fig.  8.16 .

        

 Figure  8.16  shows that item 21 is tied with item 20, and that hexagon 2526 (9) is 
anomalous with regard to inclusion of the median as a criterion.

  Fig. 8.15    Min–max (rank range) precedence plot for cases in contingent 5       
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 Hexagons highlighted from Figs.  8.15  and  8.16  are identifi ed as follows:

       

 Hexagons 2170 (3) and 3015 (15) are also of interest in Fig.  8.16 .

       

  Fig. 8.16    Ranked ORDIT of min–median–max versus ranked ORDIT of min–max for contingent 5       
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 Figure  8.17  shows the precedence plot for contingent 6 obtained as follows:

        

 The companion cross-plot for min–median–max against min–max is shown in 
Fig.  8.18 .

        

 No concerns for ties arise from Fig.  8.18 , but it does draw attention to two addi-
tional items. Including these two gives the following hexagons:

       

  Fig. 8.17    Min–max (rank range) precedence plot for cases in contingent 6       
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 The scenario for contingent 7 gives the precedence plot in Fig.  8.19 .

        

  Fig. 8.19    Min–max (rank range) precedence plot for cases in contingent 7       

  Fig. 8.18    Ranked ORDIT of min–median–max versus ranked ORDIT of min–max for contingent 6       
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 The companion cross-plot of min–median–max against min–max for contingent 
7 is shown in Fig.  8.20 .

        

 Although the items identifi ed in Fig.  8.19  do not have ties, Fig.  8.20  indicates 
that the tied items 3 and 11 might also be of interest. Accordingly, the items are 
identifi ed as follows:

       

 Exploration of contingents at the case level concludes with contingent 10, for 
which the precedence plot appears in Fig.  8.21 .

        

  Fig. 8.20    Ranked ORDIT of min–median–max versus ranked ORDIT of min–max for contingent 7       
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 The companion cross-plot of min–median–max against min–max for contingent 
10 appears in Fig.  8.22  showing that item 17 is not as well situated when the median 
is also considered.

        

 The labeled cases for contingent 10 are identifi ed as follows:

       

 Finally, we pool the items of interest from the respective contingents and prepare 
a pooled precedence plot which appears in Fig.  8.23 . Although we ordered the pool 
for conventional criteria by hexagon number, it is not really necessary to do so.

  Fig. 8.21    Min–max (rank range) precedence plot for cases in contingent 10       
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  Fig. 8.22    Ranked ORDIT of min–median–max versus ranked ORDIT of min–max for contingent 10       

  Fig. 8.23    Min–max (rank range) precedence plot for pooled items of interest       
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 The companion cross-plot of min–median–max against min–max for pooled 
items of interest appears in Fig.  8.24 .

        

  Fig. 8.24    Ranked ORDIT of min–median–max versus ranked ORDIT of min–max for contingent 
pooled items of interest       
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 The top four candidate cases are the same when the median is included, but some 
shifts show in the next four. Selective retrieval of these candidate cases is as follows:

       

 It is noteworthy that hexagon 3529 did not appear after screening for precedence 
by conventional criteria. Hexagon 3527 was fi rst by conventional criteria and sec-
ond by representative ranks. Hexagon 2648 was fourth by conventional criteria and 
third by representative ranks. Hexagon 3141 was 15th by conventional criteria 
and fourth by representative ranks. Hexagon 2647 was third by conventional crite-
ria and fi fth by representative ranks. Hexagon 2769 was 12th by conventional  criteria 
and sixth by representative ranks. Hexagon 3274 did not appear after screening 
for precedence by conventional criteria. Hexagon 3521 was 12th by conventional 
criteria and eighth by representative ranks. 

 There is, thus, considerable consensus with regard to precedence for hexagons 
3527, 2648, and 2647. Hexagons 2647 and 2648 are adjoining in the northeast 
corner of the state, whereas hexagon 3527 is located in the southwest corner of the 
state. Hexagon 2769 is adjacent to 2647 and 2648. Only one hexagon separates 
3527 from 3529 and 3274.   

   Partial Precedence Pools 

 After having formed a pool of items of interest (candidate cases) drawn from differ-
ent contingents, it may be appropriate to have a preliminary partitioning of the pool 
into partial precedence pools (Myers and Patil  2008  ) . This would generally not be 
as advisable for earlier stages of screening due to computational considerations 
since it is not a local modeling approach that can avoid cumbersome combinatorial 
computation at the outset (Jones et al.  2009  ) . 

 Partial precedence pools are based on ideas of domination and subordination 
according to product-order protocols, but focus on aggregate relations among sub-
sets rather than precedence in pairs. Ascribed advantage and subordinate status by 
product-order relations provide the point of departure. One instance dominates 
another if it has ascribed advantage by the product-order protocols introduced 
earlier. Reciprocally, an instance is subordinate to another if the other has ascribed 
advantage by the product-order protocol, that is, the sense in which one instance 
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dominates another if it is at least as good on all indicators and better on at least one 
indicator with an instance being subordinate to another if it is dominated by that 
other instance   . We proceed to use these ideas for progressively partitioning a pool 
of instances into subsets (partial precedence pools) that have a sense of aggregate 
ordering (sequenced sets) with regard to dominance and subordination. The parti-
tion is done in two modes, and then the intersections of the two sets of subsets are 
considered with regard to joint ordering. 

 We fi rst do progressive partitioning into what we call subordination steps and 
abbreviate as  SubSteps , whereby each successive step has a stronger sense of being 
subordinate. This progressive process proceeds through a series of levels of elimina-
tion. It begins with all of the instances in a single pool, and segregates all of the 
instances that are not dominated by any other instances. The nondominated instances 
are placed in a partial pool that is numbered zero (0) since there is no (zero) domina-
tion of these instances. The pool of remaining instances has a least some domination 
by (some of) those in the initial partial pool. The process then repeats in progressive 
(recursive) fashion by isolating those in the (remaining) pool that are not dominated 
by any others in the (remaining) pool. This second partial pool is assigned level one 
(1) since its members are subject to one level of domination (by those in the zero-
level partial pool). This recursion continues until the (residual) pool has no mem-
bers that are dominated by any others in the (residual) pool. That fi nal (residual) 
pool receives the highest level number since its degree of being dominated has per-
sisted through the most stages of elimination. In precedence plots, SubStep level 
number is used as the SS axis replacing subordinate status based on percentage 
frequency in the deleted domain of other instances. It should also be noted that one 
extremely good indicator is suffi cient to place an instance in the zero-level partial 
pool since it precludes domination of that instance even if other indicators are infe-
rior. Thus, the zero-level partial pool may contain many mixed messages along with 
those that are more uniformly favorable. 

 A complementary process of progressive partial pools refl ects capacity to domi-
nate other instances rather than focusing on not being dominated. Dominating is 
done by way of superiority with no assistance from mixed messages. This process 
of determining dominance as aggregate advantage (Agrg8Adv) begins by segregat-
ing all of the instances in the general pool that do not dominate anything else. These 
are assigned to level zero (0) since they have no dominating capacity. The instances 
which dominate something else in the pool remain in the pool for further consider-
ation in the next round of recursion. After segregating all of the level zero instances 
as a zero-numbered partial pool, the process repeats by fi nding those among the 
remainder that do not dominate anything in the current pool and assigning them to 
level one (1) since they have aggregate advantage only at the initial level. The pro-
cess continues recursively through additional levels of partial pooling until a resid-
ual pool is reached that contains no domination. The fi nal residual pool receives the 
highest level number since its members have retained dominating capability up to 
this ultimate level. The numbering is, thus, according to differences in “depth of 
dominating”. This level number is used in precedence plots as the AA axis replacing 
ascribed advantage based on percentage frequency of advantage in the deleted 
domain of competing cases. 
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 Partitioning into SS subordination steps is accomplished by Function  8.2  named 
SubSteps. It takes three inputs, with the fi rst being a data frame of indicators. The 
second is a vector of status numbers for the instances. A nonnegative status number 
indicates that the analysis is conducted one level at a time, with all of the nonnega-
tive status numbers being processed in previous passes and current level number to 
begin with the available nonnegative number. This provision is made because com-
putations are computationally cumbersome and become time consuming for large 
numbers of instances. If all negative numbers are −1, then the process will transpire 
to completion in the current run. If all negative status numbers are −2 or less, then 
only one level of elimination will take place in the current pass. The third input 
indicates whether (1) or not (0) the indicators are of a place-based nature. 

   Function 8.2: SubSteps Function for Determining Partial 
Pools of SS Levels  
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 Partitioning into AA levels of aggregate advantage is accomplished by the Agrg8Adv 
Function  8.3 , for which inputs are the same as for the SubSteps Function  8.2 .  

   Function 8.3: Agrg8Adv Function for Determining 
Partial Pools of AA Levels  

       

 For the Toppings pool based on conventional criteria with precedence plot in 
Fig.  8.9  and incidence plot in Fig.  8.10 , SS levels are obtained as follows:
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 Thus, the cases in the Toppings pool have segregated into three SS levels inclu-
sive of the zero level. AA levels are obtained in like manner.

       

 Having determined the SS and AA levels, the PrtlPool Function  8.4  is used to 
compute ORDITs. In this mode, the ranked ORDITs are called “placements.”

        

   Function 8.4: PrtlPool Function for Determining 
ORDITs of Partial Pools  
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 A progression plot can then be obtained as follows and shown in Fig.  8.25 :

        

 The progression plot in Fig.  8.25  shows six partial pools. The hexagons in the 
fi rst (best) partial pool are retrieved as follows:

       

 The hexagons in the second best partial pool are obtained likewise.

       

  Fig. 8.25    Progression plot of partial pools for Toppings pool based on conventional criteria       
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 The PoolPlot Function  8.5  generates a precedence plot for partial pools. This is 
applied as follows and shown in Fig.  8.26 :

        

 Each point label in the precedence plot identifi es a representative member of the 
partial pool as shown in the incidence plot of Fig.  8.25 . For example, the third par-
tial pool on the center of the diagonal limiting line is as follows:

       

 The partial pool with the most confl icts in the criteria is situated at the lower-left 
corner of the precedence plot.

  Fig. 8.26    Precedence plot for partial pools by conventional criteria. Each point label identifi es a 
representative member of the partial pool as shown in the progression plot of Fig.  8.25        
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   Function 8.5: PoolPlot Facility for Generating Precedence 
Plots for Partial Pools  
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 Pursuing partial pools in terms of representative ranks concludes this chapter on 
case comparatives. The pool from representative ranks is in TopRR. For rank range 
(MnMx), this is accomplished as follows:

       

 A progression plot is generated as follows and appears in Fig.  8.27 :

        

  Fig. 8.27    Progression plot of partial pools for TopRR pool based on rank range (Min–Max)       
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 It is seen from Fig.  8.27  that the partial pools are numerous and small, containing 
only one, two, or three cases. Cases in the fi rst seven pools are as follows:

       

 A partial pool precedence plot for rank range is obtained as follows and shown in 
Fig.  8.28 , with the labeling numbers again being a representative of the partial pool:

        

 The corresponding pooled precedence perspective for Min–Median–Max is 
obtained as follows, with progression plot in Fig.  8.29 :
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  Fig. 8.29    Progression plot of partial pools for TopRR pool based on (Min–Median–Max)       

  Fig. 8.28    Precedence plot for partial pools by rank range       
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 It can be seen that the additional criterion has resulted in fewer (and therefore 
larger) pools, which is typical. The partial pool precedence plot for Min–Median–
Max is given in Fig.  8.30 .

        

 Hexagons 3527, 2647, and 2648 are again prominent across the pooled 
comparisons.       

  Fig. 8.30    Precedence plot for partial pools by Min–Median–Max       
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 Although representative ranks are indirect indicators with intrinsic indefi niteness, 
they are particularly advantageous for determining whether there are cases having 
pronounced sensitivity to a change in one indicator. It may be that one indicator has 
especially good status, whereby deterioration in the indicator would degrade the 
overall status of the case substantially. Conversely, it may be that an indicator has 
especially poor status, whereby improvement in the indicator would upgrade the 
overall status of the case substantially. In the latter situation, some remediation 
effort focused on the weak indicator could pay large dividends (Newlin and Bhat 
 2007  ) . Statistically, a sensitive situation involves a rank outlier producing an 
extended tail on the distribution of ranks for the case, which can occur on one or 
both ends. 

 Even though indicators appear to be substantially correlated in an overall sense, 
the presence of additional indicators may reveal atypical cases that are expressed in 
what may be considered “indicator interaction.” Whereas two indicators may 
typically track each other closely, they may depart noticeably from that pattern for 
particular cases. This interplay of indicators is signaling that the cases cannot all be 
covered with a broad brush. Those cases that show as anomalies in the joint pattern 
must be examined individually to fi nd the features that are inducing the interplay. 
This chapter is concerned with irregularities in ranks that reveal the need for 
extended explorations of etiology. 

   Distal Data and End Extensions 

 Consider the row of (place based) ranks for a case being sorted in ascending order. 
Let the (numerically) largest rank be the  major maximum  and the second largest be 
the  minor maximum , these being the  upper extremities.  If there are ties for major, 
the major and minor are same. Let the least rank be the  major minimum  and the 

    Chapter 9   
 Distal Data and Indicator Interactions         
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second least be the  minor minimum , these being the  lower extremities . Let the 
upper extent ( m. ) be defi ned as the difference between the major maximum and 
the minor maximum:

     = −�upper extent ( ) major maximum minor maximumm     

 Also let the lower extent ( m.  ) be defi ned as the difference between the major mini-
mum and the minor minimum:

     lower extent ( ) major minimum minor minimumm
•

= −     

 For major ties, the respective extent is taken to be 0. Note that upper extent has 
a positive sense and lower extent has a negative sense. Figure  9.1  is a diagrammatic 
representation of the extremity extents.  

 A large value of  m.  indicates that a particular criterion is substantially degrading 
status for the case, making it a candidate for single-criterion remediation. A numeri-
cally large value of  m.  indicates that a particular criterion is substantially elevating 
status for the case, making it a candidate for a retention regime. Small or moderate 
extremity extents indicate that no single criterion is critical for the case. 

 Based on extremity extents, we proceed to create a distal (farthest from the mid-
dle) dataset. For each case, determine  m.  and  m.  and identify the criteria in the major 
positions. Assign a value of 0 for all criteria (indicators) not in a major position. 

  Fig. 9.1    Diagrammatic 
representation of extremity 
extents       
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Assign  m.  to the criterion in major minimum position. Assign  m.  to the criterion in 
major maximum position. Function  9.1  called Xtremity serves to determine a distal 

dataset from a data frame of place ranks having Case ID number in  the fi rst column.  

 Determination of distal data on the data frame of place-rank data for fi ve variates 
is done as follows, with parallel boxplots shown in Fig.  9.2 :        

   Function 9.1: Xtremity Function Facility for Determining 
Distal Data from Ranks       
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 The hexagons with pronounced extents due to forest variates are found by label-
ing a plot of Pct1FPch versus PctFor as shown in Fig.  9.3 .

        

 The more pronounced extremities in Fig.  9.3  are identifi ed as follows.

       

 Of these, hexagons 2771, 3144, and 3273 stand out as having ranks of forest 
variates that are much poorer than the ranks of the other three variates. These hexa-
gons are more favorable with respect to vertebrate biodiversity than would be 

  Fig. 9.2    Parallel boxplots of distal data for place ranks of fi ve variates       
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expected in view of their lesser forest cover. Therefore, these would be candidates 
for further investigation in order to understand what leads to these favorable fea-
tures of vertebrate diversity in the absence of strong forest cover. Selective refores-
tation might also be pursued to augment this aspect in these areas. 

 It is also of interest to obtain a cross-plot of distal data for the vertebrate variates 
as shown in Fig.  9.4 .

        

 The fi rst notable feature in the plot of Fig.  9.4  is that the distal departures for 
birds have a range that is larger than that for the mammals. Distal departures on the 
low (better) side for mammals are listed as follows. Interestingly, it is only in regard 
to mammals that these areas have some standing. All other variates have rather 
inferior ranks. Thus, these are areas in which attention would be on retaining the 
status for mammals.

       

  Fig. 9.3    Plot of distal data for Pct1FPch versus distal data for PctFor       
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 Note also that the like-signed quadrants (both negative or both positive) are 
empty. This is an intrinsic structural feature of the plot since two variates cannot be 
at the same extremity of the same case. The other two quadrants in Fig.  9.3  were 
also essentially empty due to the strong correlation between the two variates. 

 Notably strong status for birds relative to mammals is seen in hexagons 4045, 
4309, and 4175. Since all other variates have rather poor placement, retention of 
bird status would be a focus in these areas.

       

 Disparities in the upper-left quadrant favoring birds are noted for hexagons 2293 
and 2291.

       

 Hexagons 3529, 2406, 3396, and 2648 form an “arc” of disparities favoring 
mammals relative to birds in the lower-right quadrant.

  Fig. 9.4    Plot of distal data for mammals versus distal data for birds       
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   Indicator Interaction and Median (Mis)Matching 

 Much of Part I was devoted to relationships among indicators, all of which are rel-
evant here. If the variates are serving as joint indicators of status under a circum-
stance, then the indicators should have some commonality of context but not high 
redundancy. Redundancy entails implicit weighting, whereas there is greater trans-
parency in making any weighting explicit. However, it is counterproductive to 
include highly discordant indicators, since they speak to a different circumstance 
and confound analysis of a current focal context. 

 Since we are dealing here with indicators quantifi ed only as ranks, all other dis-
tributional differences have been removed. The simplest investigation of interac-
tions comes in pair plots of the ranked indicators as in Fig.  9.5 .

        

 A basic statistical approach is to examine correlations among the rankings of the 
indicators, which is the Spearman rank correlation coeffi cient that was computed 
earlier. When working directly with ranks, the usual (Pearson) correlation coeffi -
cient is equivalent to Spearman correlation for the raw data, except for possible 
slight perturbation from different methods of handling tied ranks.

       

 Correlations are moderate, except for a high correlation between the two for-
est variates and low correlation between BirdSp and the two forest variates. The 
very high correlation between the two forest variates implies redundancy and 
attendant implicit weighting. Therefore, it would be in order to drop the last vari-
ate and work with only the remaining four. Before doing so, however, it would 
be prudent to check on at least those cases that lie farthest from the general trend 
of these two variates. 

 It should be noted that redundancy does not impair these comparative rating 
regimes for ascribing advantage, except with regard to extremities of distal data. 
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In dropping indicators, it also must be kept in mind that interactions could be 
different if a different set of cases were to be studied. Since the BirdSp indicator 
does show moderate rank correlation with MamlSp and ElevSD, it is not idio-
syncratic in its overall behavior. Notably, Fig.  9.5  shows that the low association 
between BirdSp and forest variates is not just due to a specifi c suite of inconsis-
tent cases. 

 We can also borrow from the ideas of cross-validation and residuals to explore 
how well or poorly the rank of each indicator corresponds with the median rank of 
the other indicators. The MdnMsMch Function  9.2  serves to determine the mis-
matches in this regard. The median mismatches can then be presented in pair plots 
in the manner of Fig.  9.6 .        

  Fig. 9.5    Pairs plot of rank data for all hexagons on fi ve indicators       

 



  Fig. 9.6    Pair plots for median mismatches that arise in predicting the rank of each metric from the 
median rank of the other metrics       

   Function 9.2: MdnMsMch Function for Determining Difference 
between Indicator Rank and Median of Ranks for other Indicators 
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 Applying the MdnMsMch function gives the following:

       

The pair plots of median mismatches in Fig.  9.6  again show general relationships 
among the indicators, but also provide better perspective on which cases exhibit 
peculiarities of interactions among indicators, such as between forest and topogra-
phy. For example, plotting ranks of the percent in one forest patch on the  Y -axis 
against percent forest on the  X -axis (Fig.  9.7 ) draws attention to hexagons 2524 and 
3519 as being particularly fragmented since their ranks on PctFor are relatively 
favorable but considerably less soon Pct1FPch. This refl ects substantial forest cover 
occurring in a patchy pattern.  

  Fig. 9.7    Median mismatches for percent in one forest patch ( Y -axis) versus percent forest 
( X -axis)       

 



163Reference

         

   Conditional Complement 

 Situations may also arise in which prioritization is being conducted in a progres-
sive manner such that the highest priority cases have been determined and it is 
further desired to identify additional cases which would best complement the cur-
rent ones by compensating for any shortcomings. This can be addressed by con-
structing a composite case in which each indicator variate is given the minimum 
(place) rank that any of the current selections have for that variate. Alterations are 
then made in the (place) rank values for the remaining candidates by assigning that 
of the composite if it is under (less than) the actual rank. Advantage then accrues 
to a candidate only if it has one or more ranks that are under those of the compos-
ite, i.e., better than any among the current selections. This strategy underscores the 
fl exibility of the current comparative approach and its application is included in the 
next chapter.      

   Reference 

   Newlin J, Bhat K (2007) Identifi cation and prioritization of stream channel maintenance needs at 
bridge crossings. In: Proceedings of the international bridge conference, IBC 07-18, Pittsburgh, PA      
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 From among the protocols of the previous chapters, we fi rst carry forward “salient 
scaling” as ranked ORDITs from applying product-order protocols to place-ranked 
criteria. This chapter extends the foregoing by incorporating spatial linkage criteria 
(Bivand et al.  2008  )  with the salient scaling to construct a contiguous area on the 
landscape from component cells (hexagons) that might serve the interests of conser-
vation. For present purposes, we focus attention on hexagons in the Ridge and 
Valley Region of Pennsylvania (Fig.  10.1 ).  

 The fi rst four variates will again serve as favorable conservation criteria, but the 
fi fth variate (    Pct1FPch ) will be omitted since the previous chapter showed a high 
degree of redundancy with  PctFor  which is the fourth variate. These indicators are 
shown in Table  10.1 . The last variate for each hexagon is percentage in one single 
contiguous open (nonforested) patch ( Pct1OPch ), which was not previously used 
as an indicator. This time, however, we will view this variate as being counter-
indicative for conservation, and this will provide criteria for the quality of linkage 
between adjacent hexagons. A separate data fi le (RVpairs.txt) of neighbor relations 
between hexagons that also contains the open-patch percentage data for both mem-
bers of an adjacent pair is prepared as shown in Table  10.2 , where hexagons are 
called zones and  Pct1OPch  is referred to as “Open”. Zone (hexagon) ID numbers 
are critical to the current analysis, and must appear in fi rst column and fi rst two 
columns of these data fi les, respectively.   

 Functions again play a central role in this scenario. All computations for salient 
scaling are folded into one function called Salient which takes a frame of place-rank 
data and a vector of zone ID numbers as its inputs (Function  10.1 ). This function 
orders zones (hexagons) according to salient scaling from best to worst. 

    Chapter 10   
 Landscape Linkage for Prioritizing 
Proximate Patches         



  Fig. 10.1    Hexagonal zones in the Ridge and Valley Region       

   Table 10.1    Conservation characteristics for hexagonal cells in the Ridge and Valley Region of 
Pennsylvania   
 ZoneNum  BirdSp  MamlSp  TopoVarI  PctForst 

 2409  130  45  89  80.8 

 2410  128  43  105  85.4 

 2529  133  45  103  74.3 

 2530  123  45  83  82.5 

 2649  127  47  65  66.0 

 2650  120  46  56  69.8 

 2651  121  46  62  62.5 

 2652  129  45  70  80.1 

 2771  135  47  81  48.9 

 2772  130  46  54  47.5 

 2773  122  46  101  76.6 

 2774  126  46  80  77.1 

 2894  126  47  114  89.4 

 2895  135  47  130  84.7 

 2896  123  49  114  75.4 

 2897  129  48  114  83.2 

 3019  133  53  102  59.3 

 3020  136  51  117  68.7 

 3021  122  46  110  89.8 

 3022  128  47  123  87.0 

 3023  118  46  110  74.4 

 3145  131  50  94  67.4 

 3146  128  48  103  68.8 

 3147  129  48  94  69.7 

 3148  120  47  92  78.1 

 



   Table 10.2    Neighbor relations for ridge and valley hexagonal 
zones with open-patch percentages   
 ZoneA  ZoneB  OpenA  OpenB 

 2409  2410  11.2  4.0 

 2409  2529  11.2  7.6 

 2410  2530  4.0  9.4 

 2529  2649  7.6  8.5 

 2529  2650  7.6  5.5 

 2529  2530  7.6  9.4 

 2529  2410  7.6  4.0 

 2530  2651  9.4  11.1 

 2649  2771  8.5  30.4 

 2649  2650  8.5  5.5 

 2771  2894  30.4  4.5 

 2771  2772  30.4  22.3 

 2771  2650  30.4  5.5 

 2650  2772  5.5  22.3 

 2650  2651  5.5  11.1 

 2650  2530  5.5  9.4 

 2651  2773  11.1  6.7 

 2651  2652  11.1  5.1 

 2652  2774  5.1  10.3 

 2894  2895  4.5  6.3 

 2894  2772  4.5  22.3 

 2772  2895  22.3  6.3 

 2772  2773  22.3  6.7 

 2772  2651  22.3  11.1 

 2895  3019  6.3  23.4 

 2895  2896  6.3  6.6 

 2895  2773  6.3  6.7 

 2773  2896  6.7  6.6 

 2773  2774  6.7  10.3 

 2773  2652  6.7  5.1 

 2774  2897  10.3  8.8 

 3019  3020  23.4  16.7 

 3019  2896  23.4  6.6 

 2896  3020  6.6  16.7 

 2896  2897  6.6  8.8 

 2896  2774  6.6  10.3 

 2897  3021  8.8  2.0 

 3020  3145  16.7  11.1 

 3020  3021  16.7  2.0 

 3020  2897  16.7  8.8 

 3145  3146  11.1  23.1 

 3145  3021  11.1  2.0 

 3021  3146  2.0  23.1 

 3021  3022  2.0  4.4 

 3146  3147  23.1  13.9 

 3146  3022  23.1  4.4 

 3147  3148  13.9  7.8 

 3147  3022  13.9  4.4 

 3147  3023  13.9  5.1 

 3022  3023  4.4  5.1 

 3023  3148  5.1  7.8 
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   Function 10.1: Salient Function for Order of Salient Scaling 
Based on Place-Ranks            



169Landscape Linkage for Prioritizing Proximate Patches

 The fi rst task is to use the Salient function to determine which one or adjacent 
ones of the hexagons should serve to anchor the expanding sector as core 
component(s). The actual choice of which one(s) of the zones to use at each step of 
the progression is left to the discretion and expertise of the analyst so that the salient 
scale ratings serve in an advisory capacity. The initial determination for anchor 
zone(s) is based on the data in Table  10.1  without regard to the data on pairings in 
Table  10.2 . Thereafter, the quality of the linkages between pairs also enters into the 
considerations. If expert intervention is exercised at any given juncture, the onward 
trajectory of development still builds objectively upon that expert intervention. 

 When anchor elements (hexagonal zones) have been chosen, then Function  10.2  
named Primary is used to set up the frame onto which other zones will be annexed 
in subsequent stages. This frame has stage of development in its fi rst column, and 
zone numbers entering in that stage as its second column. The only input to the 
primary function is a vector of zone number(s) to serve as the core.  

   Function 10.2: Primary Function for Setting Up Frame 
of Zones at Initial Stage            

 Given the foregoing functions along with the PlacRank function from previous 
chapters, the initial computations are as follows by which hexagon 2895 is selected 
as anchor   .       
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 After the anchor is in place, all of the subsequent expansion stages follow a com-
mon pattern. First, the bordering zones for the current set must be determined and a 
corresponding frame of indicators assembled. This is the purpose of the Fringe 
Function  10.3 , which requires the hexagon (zone) data, pairing data, and set of 
zones as a staging frame. For the current context, hexagons 2894, 2772, 3019, 2896, 
and 2773 comprise the border. All interior hexagon indicators are labeled simply as 
“ZoneX”   .       

 The border frame is then split into zone IDs and place-ranked indicators as 
follows   .       

 However, the fi rst two “open” features are counter-indicative, and must undergo 
regular ranking instead of place ranking   .        
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   Function 10.3: Fringe Function for Bordering Zones            

 The border IDs and border ranks can now be submitted for salient scale rating, 
which poses hexagon 2894 as the candidate to be annexed for expansion.          
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 The annexation is accomplished with the Annex Function  10.4 , which takes the 
current set of zones (HexSet) and expansion zones as inputs.  

   Function 10.4: Annex Function for Incorporating Zones 
of the Current Expansion            
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 This completes one expansion cycle. The steps for subsequent expansion cycles 
are the same, and are given together with annotation but without other commentary 
in the following. Note that border zone 2772 shows up twice. This is because that 
zone borders two (both) of the current hexagons, and linkage criteria can be differ-
ent for the two couplings; however, it should only be annexed once. Since all of the 
border zones have the same salient score, the entire border is annexed at this stage   .       
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 Decisions regarding when to halt the expansion can be made according to several 
considerations, including the desired size of the sector and the collective salient 
scale ratings as obtained in the initial stage. The current context can be viewed in 
the larger sense of extracting a priority portion of a more general network. In this 
larger sense, the zones are nodes in the network and the (border) pairings are the 
links in the network, with prioritization being done jointly on properties of the nodes 
and links. Thus, this approach has considerable generality.  

   Contiguous Complement 

 We now revisit the foregoing scenario with different data for the same spatial units 
in order to add a second perspective. This time the main indicators are species rich-
ness of four vertebrate taxa: birds, mammals, herpetiles (snakes, lizards, amphibi-
ans), and fi sh as given in Table  10.3 . The spatial linkage criterion is percent forest 
(Table  10.4 ), taken as a positive indicator. The focus is on choosing a contiguous 

   Table 10.3    Species richness of four vertebrate taxa for hexagonal cells in the Ridge 
and Valley Region of Pennsylvania   
 ZoneNum  BirdSp  MamlSp  HerpSp  FishSp 

 2409  130  45  16  31 

 2410  128  43  18  29 

 2529  133  45  21  32 

 2530  123  45  19  30 

 2649  127  47  23  32 

 2650  120  46  26  35 

 2651  121  46  20  38 

 2652  129  45  33  44 

 2771  135  47  30  36 

 2772  130  46  33  42 

 2773  122  46  23  37 

 2774  126  46  33  43 

 2894  126  47  25  31 

 2895  135  47  37  32 

 2896  123  49  26  38 

 2897  129  48  30  39 

 3019  133  53  31  42 

 3020  136  51  33  33 

 3021  122  46  31  41 

 3022  128  47  29  39 

 3023  118  46  30  33 

 3145  131  50  34  37 

 3146  128  48  34  39 

 3147  129  48  37  36 

 3148  120  47  27  33 



   Table 10.4    Neighbor relations for ridge and valley hexagonal zones with 
forest cover percentages   
 ZoneA  ZoneB  PctForA  PctForB 

 2409  2410  80.8  85.4 

 2409  2529  80.8  74.3 

 2410  2530  85.4  82.5 

 2529  2649  74.3  66.0 

 2529  2650  74.3  69.8 

 2529  2530  74.3  82.5 

 2529  2410  74.3  85.4 

 2530  2651  82.5  62.5 

 2649  2771  66.0  48.9 

 2649  2650  66.0  69.8 

 2771  2894  48.9  89.4 

 2771  2772  48.9  47.5 

 2771  2650  48.9  69.8 

 2650  2772  69.8  47.5 

 2650  2651  69.8  62.5 

 2650  2530  69.8  82.5 

 2651  2773  62.5  76.6 

 2651  2652  62.5  80.1 

 2652  2774  80.1  77.1 

 2894  2895  89.4  84.7 

 2894  2772  89.4  47.5 

 2772  2895  47.5  84.7 

 2772  2773  47.5  76.6 

 2772  2651  47.5  62.5 

 2895  3019  84.7  59.3 

 2895  2896  84.7  75.4 

 2895  2773  84.7  76.6 

 2773  2896  76.6  75.4 

 2773  2774  76.6  77.1 

 2773  2652  76.6  80.1 

 2774  2897  77.1  83.2 

 3019  3020  59.3  68.7 

 3019  2896  59.3  75.4 

 2896  3020  75.4  68.7 

 2896  2897  75.4  83.2 

 2896  2774  75.4  77.1 

 2897  3021  83.2  89.8 

 3020  3145  68.7  67.4 

 3020  3021  68.7  89.8 

 3020  2897  68.7  83.2 

 3145  3146  67.4  68.8 

 3145  3021  67.4  89.8 

 3021  3146  89.8  68.8 

 3021  3022  89.8  87.0 

 3146  3147  68.8  69.7 

 3146  3022  68.8  87.0 

 3147  3148  69.7  78.1 

 3147  3022  69.7  87.0 

 3147  3023  69.7  74.4 

 3022  3023  87.0  74.4 

 3023  3148  74.4  78.1 



176 10 Landscape Linkage for Prioritizing Proximate Patches

area of high biodiversity. However, it is not necessarily expected to be such that all 
kinds of biodiversity are high in the same cell. For example, herps and fi sh tend to 
be more in lowland and river settings with many birds favoring extensive upland 
forest settings. Thus, each cycle of expansion will entail two perspectives on prece-
dence. One is the usual perspective of overall quality. The second perspective con-
siders the candidates that best complement current choices by compensating for 
defi ciencies whereby one or more of the taxa are not well represented among the 
previous choices   .   

 We begin by obtaining an anchor unit as before, but with appropriate changes in 
fi le names   .       

 The only commonality with the previous scenario among the top three candi-
dates is hexagon 2897, which was previously second and is now third. Hexagon 
3019 is superior in all four taxa to 2897, and superior to 2895 in all taxa except for 
herps. Hexagon 3019 is thus chosen as the anchor for the biodiversity set. 

 The fi rst perspective on an expansion again follows the previous pattern starting 
with the Fringe function and then place ranking. This time the linkage criteria (per-
cent forest) are positively indicative, so reranking does not occur and the place 
ranks can be submitted directly to the Salient function.          
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 All three border hexagons are recommended for expansion from this fi rst per-
spective. The second perspective is complementary to the prior selection of 3019 as 
anchor (regardless of forest linkage conditions) in terms of biodiversity ratings. As 
mentioned in the previous chapter, the complementary perspective can be approached 
by constructing a composite case in which each indicator variate is given the mini-
mum (place) rank that any of the current selections have for that variate. Alterations 
are then made in the (place) rank values for the remaining candidates by assigning 
that of the composite if it is under (less than) the actual rank. Advantage will then 
accrue to a candidate only if it has one or more ranks that are under those of the 
composite, i.e., better than any among the current selections. This approach is 
enabled for the present setting by the Complmnt Function  10.5 . This function takes 
four inputs which are respectively a vector containing the IDs of the elements 
(cases) previously chosen, a vector containing the IDs of the elements currently 
eligible to be chosen, a vector containing the IDs for all elements, and a data frame 
containing place ranks for all elements in the same order as the IDs. For the current 
situation, only the border elements (hexagonal cells) are eligible to be chosen. The 
Complmnt function returns a data frame of complementary ratings, which should be 
submitted directly to the Salient function.           
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   Function 10.5: Complmnt Function for Assigning 
Complementary Ratings in Progressive Expansion of Selections 

    Inputs are respectively a vector containing the IDs of the elements (cases) previ-
ously chosen, a vector containing the IDs of the elements currently eligible to be 
chosen, a vector containing the IDs for all elements, and a data frame containing 
place ranks for all elements in the same order as the IDs.          
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 From the complementary perspective, hexagon 2895 is tied with 2896 and 3020 
has less precedence. Therefore, 2895 and 2896 should both be annexed in this fi rst 
cycle of expansion   .       

 Subsequent cycles of expansion transpire in like manner with consideration of 
both perspectives. For the fi rst perspective this is again as follows, highlighting 
hexagons 2773 and 3020.          

Contiguous Complement
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 The complementary perspective is then obtained, with 2773, 2774, and 2897 all 
being tied.          

 Both perspectives have consensus on 2773 with both 2774 and 2897 being more 
complementary than 3020. Therefore, these three are annexed.          

 It thus becomes evident that the complementary perspective is not necessarily 
the same as choosing units that are next best in an overall sense.      

   Reference 
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   It is not uncommon for different kinds of considerations to enter into a prioritization 
context. Each consideration can have a constellation of indicators, and these con-
stellations may be complementary or confl icting. Data on such an Italian context 
come from Angelo Pecci (personal communication) working with Prof. Orazio 
Rossi at University of Parma in relation to Italian Map of Nature on data from 
ISPRA and Ministry of Environment of Italy (Rossi et al.  2008  ) . Basic ecological 
assessment is conducted at the level of a contiguous tract (ecotope) of a designated 
type. One constellation of indicators speaks to ecological value, and another con-
stellation of indicators speaks to ecological sensitivity (to disruptions). Compilations 
have been done for ecological value and sensitivity over civil divisions called com-
munes. Each commune thus has a suite (constellation) of indicators for ecological 
value and another for ecological sensitivity. Additionally, each commune has a con-
stellation of indicators that speaks to human pressure on the natural elements. One 
situation of interest is to determine communes where there is high ecological value 
that also has high sensitivity in company with high human pressure. Such com-
munes would be candidates for what might be called conservation crisis interven-
tion through special funding programs. The data covers 108 communes, for which 
we are not presently concerned with their specifi c identity or location. Only what 
emerges analytically from the data is given here so that the data and identities remain 
anonymous. 

 One of the interesting aspects of this particular context is that ecological value 
and ecological sensitivity can be seen as having some complementary sense. 
However, human pressure generally tends to be the bane of the ecological aspects, 
and thus primarily confl icting with regard to indications. However, there can be situ-
ations were ecological elements are imbedded in zones that otherwise have high 
human pressure. Such imbedding can be as parks, preserves, sanctuaries, or local 
landscapes that have a topographic character that is more conducive to tourism than 
to industrial, commercial, or residential development. 

    Chapter 11   
 Constellations of Criteria       
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   Data Format 

 These data reside in Microsoft Excel spreadsheets, which is a frequent format that 
has not been addressed in any of what has been presented.  R  does have a document 
that speaks to “ R  Data Import/Export”. With respect to Excel spreadsheets, this 
document recommends saving the spreadsheet as a tab-delimited text fi le. The 
delimited fi le can then be read into  R  with the  read.delim() command. For exam-
ple, the ecological value spreadsheet could be saved as  EVdelim.txt and then read 
into  R  as:        

 This approach has been used in the present circumstance to access the data in  R . 
Having accessed a particular spreadsheet in  R , the  write.table()  command was 
then used to write a fi le that can be read subsequently with the usual  read.table()  
command.  

   Ecological Value Indicators 

 Nine indicators of ecological value were provided, all of which were viewed as 
being positively indicative. For present purposes, a decision has been made here to 
drop two of these due to preponderance of zeros. One of these concerned percent in 
protected areas, and the other concerned involvement in conservation areas. The 
remaining seven were place-ranked, with the fi rst entry in the data frame of place 
ranks being the identifi cation number for the commune. The data frame of place ranks 
was then written (with  write.table ) to a fi le having EcoValuR.txt as its name. 
From this, a  pairs()  plot of the ranks was prepared as follows (Fig.  11.1 ).

        

 It can be seen that several of the indicators are strongly correlated, and the V_
RARITY indicator has special infl uence by virtue of its partial stratifying effect. 

 The correlation matrix for the ranked ecological value data (excluding IDs) is 
obtained as follows.
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 Ecological value indicator #1 is strongly correlated with indicators #5 and #6, 
and is also substantially correlated with indicator #4.  

   Ecological Sensitivity Indicators 

 There were again nine indicators provided for ecological sensitivity. Eight of these 
were considered to increase with sensitivity, and one as being contrary. For present 
purposes, a decision was made here to drop one of the indicators due to a preponder-
ance of zeros. The remaining indicators oriented with sensitivity were then place-
ranked, and the counter-indicator was given regular ranks―this latter being the 

  Fig. 11.1    Pairs plot for seven place-ranked ecological value indicators       
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second indicator. These were then written to a fi le having EcoSntvR.txt as its name. 
Pairs plots were then prepared as follows and depicted in Fig.  11.2 .

        

 From Fig.  11.2  it can be seen that the reorientation of indicator #2 did not 
make it consonant with the others, and that it is very strongly correlated with 
indicator #1 as shown in the correlation matrix for ranks that follows. Due to 
this inconsistency of indicator #2 along with its informational redundancy to 
indicator #1, it has been decided here to drop it. Dropping of indicator #2 leaves 
seven indicators for sensitivity. This is a like number to that for ecological value. 

  Fig. 11.2    Pairs plot for place-ranked ecological value indicators, the second of which is not car-
ried forward       
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The last indicator is strongly correlated with two of the other remaining 
indicators.

       

 For purposes of salient scaling to be conducted, the substantial redundancy in 
both the ecological value and ecological sensitivity constellations of indicators does 
not entail impairment to the prioritization process. It should, however, be noted for 
whatever further work may be done in this context.  

   Human Pressure Indicators 

 Six indicators were provided for human pressure, with three being directly indica-
tive and three being counter-indicative. Place-ranking was applied to the three direct 
indicators, and regular ranking was applied to the three counter-indicators. Thus, 
better-placed cases have lower rank numbers for all indicators. The resultant rank-
ings were written to a fi le having HumPresR.txt as its name. Indicators #2 and #3 
are very strongly correlated as seen in the following matrix.

       

 Pairs plots were produced as follows and appear in Fig.  11.3 .
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   Salient Scaling 

 Salient scaling as set forth previously is next conducted for each constellation sepa-
rately using the salient function given in Chap.   10    . The ten most salient cases (com-
munes) are listed for each as returned directly from the function. A data frame of 
salient scale values arranged in case order is also prepared for use in cross- 
comparisons among the constellations.

  Fig. 11.3    Pairs plot for human pressure indicators (low rank values refl ect high pressure)       
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 Perusal of the top-ten listings shows that human pressure has one case in common 
with ecological value and three cases in common with ecological sensitivity. 
However, there is no case that appears in all three listings. Proceeding with cross-
plots of case-ordered salient scores, Fig.  11.4  shows human pressure in relation to 
ecological value with commune 108 being strongly salient in both respects.
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 Plotting salient scores of human pressure and ecological sensitivity in Fig.  11.5  
highlights the three cases (43, 17 and 94) noted in the listings, along with case 33 
and possibly case 6.

        

 Salient scores for ecological value and ecological sensitivity are plotted together 
in Fig.  11.6 . This highlights 18, 19, and 33 which appeared in the top ten for both, 
along with seven which appeared in the top ten only for ecological value and 26 
which appeared in the top ten only for ecological sensitivity. Notably, case 33 is also 
highlighted in the relation of human pressure to ecological sensitivity. Thus, case 33 
has prominence in all three regards.

  Fig. 11.4    Salient scores of human pressure versus ecological value       
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  Fig. 11.5    Salient scores of human pressure versus ecological sensitivity       

  Fig. 11.6    Salient scores of ecological sensitivity versus ecological value       
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 Pairs plots are frequently helpful in visualizing multiple interrelations. This can 
be obtained by binding together the three salient scorings and plotting as in 
Fig.  11.7 .

        

  Fig. 11.7    Pairs plot of salient scores for human pressure, ecological value, and ecological 
sensitivity       
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 Figure  11.7  refl ects association between ecological value and ecological sensi-
tivity, but little for either of these with human pressure—as anticipated earlier. 

 One further avenue for continuing the investigation is to bind together the eco-
logical value indicators with the ecological sensitivity indicators for joint scoring on 
a salient scale. Human pressure can then be plotted against the joint salient scores 
for identifying the interesting elements as in Fig.  11.8 . This reinforces a focus on the 
commune identifi ed as number 33. Commune 17 also appears from the top ten lists 
for both human pressure and ecological sensitivity. Because of the overall opposi-
tional nature between ecology and human pressure with human pressure tending to 
pose threats to ecology, it makes less sense to extract joint salient scaling for all 
three. One should never lose sight of sensibility in pursuing prioritization.

             

  Fig. 11.8    Plot of salient human pressure versus joint salience for ecology       
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   Reference 

    Rossi F, Pecci A, Amadio V, Rossi O, Soliani L (2008) Coupling indicators of ecological value and 
ecological sensitivity with indicators of demographic pressure in the demarcation of new areas 
to be protected: the case of the Oltrepo Pavese and the Ligurian-Emilian Apennine area (Italy). 
Landsc Urban Plann 86:12–26     
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 In this chapter, we consider a context of indicators for infant health on the Indonesian 
island of Java as studied by Ms. Yekti Widyaningsih in cooperation with the authors 
of this volume. This complements the foregoing material by presenting a setting 
wherein the indicators are intended to refl ect severity of a context of concern instead 
of favorability. Instead of reversing ratings, we invert interpretations so that previ-
ously preferential positions become particularly problematic positions in salient 
scaling and preference plots. The data pertain to Java Island in 2007 at the district 
level, omitting Banten Province and Kepulauan District due to incompleteness of 
information (see Fig.  12.1 ).  

 We begin with four indicators as follows: number of infant deaths (infd); thou-
sands of people in poverty (pov); number of infants with low birth weight (lbw); 
and percentage of births without health personnel present (abhp). These indicators 
are all seen as increasing concern for infant health. The data fi le also contained an 
additional column that is deemed here not to be of present interest. 

    Chapter 12   
 Severity Setting for Human Health         
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   Data Files 

 The data were extracted from an Excel ©  spreadsheet into a textual fi le for access via 
the  read.table()  command in  R  as    follows:       

  Fig. 12.1    Java Island with excluded areas in  black        

 The  tail()  command shows that 108 districts are represented in the data. The 
fi rst column is an abbreviated district name and the second is a number assigned to 
the district. 

 We proceed to convert the data to place-based ranks in which rank 1 indicates the 
greatest severity and the data frame contains only the ranked indicators.        
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  Fig. 12.2    Lattice of scatterplots for place-ranked indicators       

   Indicator Screening 

 The work of Yekti suggests that the last indicator may be of questionable value, so 
we begin with a  pairs()  lattice of scatterplots for the indicator ranks (Fig.  12.2 ). 
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 Relations are visually evident in Fig.  12.2  among the fi rst three indicators, but 
not so for the fourth indicator. Therefore, the abhp column is removed before pro-
ceeding and rank correlations calculated for the remaining three as follows.

        

   Salient Scaling 

 We proceed directly to an integrated view of the indicators as refl ected in salient scal-
ing, noting that the fi le of salient scores is arranged in decreasing order of severity.

       

 It will be informative to append the salient scores to the fi le of place-based ranks, 
but this requires a fi le of salient scores that is arranged in case order like the fi le of 
ranks.

       

 Appending is then done in the following manner:
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 The last row and column of a  pairs()  lattice plot (Fig.  12.3 ) now shows the 
correspondence or lack thereof between the salient scores and the place-based ranks 
of the respective indicators.

        

 The plotted points in the lower-right corner of the scattergrams in the last column 
show districts in which the ranking for an indicator is more severe than the compos-
ite salient score might suggest. The scattergram for infant deaths is expanded and 
tagged with case numbers in Fig.  12.4 .

        

  Fig. 12.3    Lattice of scatterplots for salient scores versus individual indicators       
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 Line numbers 53 (Klaten District) and 104 (Jacsel District) are notable in 
Fig.  12.4  for the infant death indicator. These lines are extracted from the ranking 
fi le as follows:

       

 It can be seen that Klaten District is quite severe with respect to infant death and 
poverty, but is very well situated with regard to low birth weight which keeps the 
salient score from refl ecting the severity of the other two indicators. Jacsel District 
is relatively well situated with respect to poverty which keeps the salient score from 
refl ecting the severity of the other two indicators. A low (severe) salient score thus 
shows an overall context of severity for the district across the indicators. 

 The corresponding plot of poverty versus salient scores is shown in Fig.  12.5  
with tagging of line numbers.

        

 It can be seen that Klaten District also shows here as the most notable outlier, 
which is consist with the observations from Fig.  12.4 . Districts 26, 27, and 29 are 
Bangk, Sampang, and Sumen, respectively. In these three districts, poverty is more 
severe than the other two indicators. 

  Fig. 12.4    Scatterplot of infant deaths versus salient score, with  line numbers  for selected points       
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 Likewise, the plot of low birth weight versus salient scores is shown in Fig.  12.6  
with tagging of line numbers.

        

 There are more places of note for low birth weight than for the other two indica-
tors. Accordingly, these are retrieved as follows:

       

 In all of these cases (places), the low birth weight stands out with regard to sever-
ity in comparison to the other two indicators.  

  Fig. 12.5    Scatterplot of poverty versus salient score, with  line numbers  for selected points       
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   First Quartile of Severity 

 With 108 districts under consideration, there are 27 districts in each quartile. The 
fi rst quartile of severity can be taken from the beginning of the JavSalnt fi le with the 
corresponding district names and ranks added.

       

  Fig. 12.6    Scatterplot of low birth weight versus salient score, with  line numbers  for selected points       
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 A  pairs()  lattice plot for the fi rst quartile of severity is given in Fig.  12.7 .        

  Fig. 12.7    Lattice of scatterplots showing salient scores versus place-based ranks of individual 
indicators for fi rst quartile of severity       
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         A progression plot (Fig.  12.9 ) can detect any ties in the precedence plot.        

 Examining the precedence plot along with ties, districts with case ids 44, 83, 87, 
and 45 stand out with regard to severity. Retrieving these and coupling names with 
ranks, these districts are seen to be Cilacap, Garut, Cirebon, and Banyumas.       

 The correlation matrix corresponding to Fig.  12.7  is as follows:       

 From Fig.  12.7  and the correlation matrix, it can be seen that the salient score 
most closely tracks poverty in this subset of severe districts. Low birth weight is 
next, and infant death is least so.  

   Precedence 

 The salient scores provide a sequencing of severity, but offer no further comparative 
context. Precedence and progression plots offer additional interpretive insights. 
Toward this end ascribed advantage and subordinate status are obtained according 
to product-order rating via the  ProdOrdr()  function.       

 A precedence plot can then be constructed as shown in Fig.  12.8 .
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  Fig. 12.9    Progression plot showing ties in precedence plot       

  Fig. 12.8    Precedence plot for all districts with selected  line labels        
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 There are no place-based ranks with magnitude greater than 14 among this set, 
so these districts lie in the most severe 13% of rankings on all three indicators. 
These are followed by district 90, which is Indram, with place-based rankings of 10, 
17, and 12 for infant death, poverty, and low birth weight, respectively. 

 There is next a close grouping of 61, 58, 79, 84, and 47 which are Pati, Grob, 
Bogor, Tasik, and Banjar. In this group, we fi nd that each district has one place-
based ranking of 25 or larger. District 81 (Cianjur) is not far behind with rankings 
of 25, 11, and 21 rounding out the most severe 10% (decile).       

  Fig. 12.10    Most notably severe districts Cilacap, Garut, Cirebon, and Banyum       
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 At the other extreme of districts without concerns are Trengglk, Kblitar, Kmadiun, 
Kbatu, and Kmagel.       

 The most notably severe districts are mapped in Fig.  12.10 .        



     Part III 
  Transformation Techniques 

and Virtual Variates         



209W.L. Myers and G.P. Patil, Multivariate Methods of Representing Relations 
in R for Prioritization Purposes, Environmental and Ecological Statistics 6,
DOI 10.1007/978-1-4614-3122-0_13, © Springer Science+Business Media, LLC 2012

 We return now to the context of Chap.   3     where rotational rescaling was introduced 
and then exploited in the manner of principal components via the princomp() 
function facility of  R . We generalize that work to encompass  linear transformation  
of multiple measures to generate a secondary set of what we will call  virtual vari-
ates . We reserve the term virtual variates for situations in which the transformation 
is reversible so that the original multiple measures can be reproduced from the sec-
ondary set through a suitable transformation. In such circumstances, the transforma-
tion effectively provides a particular perspective from which to view the data without 
loss of information. With principal components, the perspective was one of inde-
pendent (uncorrelated) dimensions (   Raykov  2008 ; Timm  2002 ; Hair et al.  2010  ) . 
In the earlier venture, we did not undertake to reverse the principal component 
transformation, but will do so in the course of current consideration. Virtual variates 
from principal components are also not the only interesting perspectives of this 
nature to be explored (Johnson and Wichern  2007 ; Sengupta  2003 ; Mukhopadhyay 
 2009  ) , and linear transformations will entail several additional operators in  R . 

 Returning to the very beginning of Chap.   1    , we consider a  multivariate data 
matrix  comprising  p  variates determined on  n  cases in a row/column arrangement 
with cases as rows and variates as columns. Further, the term  matrix  will apply to 
any row/column array of values in which there is no missing data. Any single row 
or column of values constitutes a  vector , with at least a formal distinction between 
row vectors and column vectors. For general purposes of presentation, we will con-
sider  X  to be a matrix of data on original variates with  X   n × p   indicating that there are 
 n  rows and  p  columns being the  order  of the matrix so that the multiplication  n  ×  p  
gives the total number of values, entries, or  elements  in the matrix. The order will 
often be omitted if it is clear from context. Also x 

i,j
  is used to denote the element in 

row  i  and column  j  without actually specifying a numeric value. Similarly,  X  
 I 
  

denotes the  I th row of  X  and  X  
 J 
  denotes the  J th column. 

 With this notation, the (inner) product of two vectors  A  and  B  is:

     + +…+1 1 2 2 k k ,a b a b a b    

    Chapter 13   
 Matrix Methods for Multiple Measures                  
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where both vectors have  k  elements and  A  is formally a row vector with  B  being a 
column vector. Less formally, both vectors must have the same number of elements 
to be  conformable  and the result is the sum of products of corresponding elements. 
The operator is %*% for simple vector multiplication    in  R .

       

 It can be seen from this simple example that  R  does not make a distinction 
between row vectors and column vectors for doing simple vector multiplication, 
and that the result is treated as being a  matrix  having one row and one column. 

 Referring back to the beginning of Chap.   3    , it can be seen that a weighted linear 
composite of variates for a case has this form:

     + +…+1 i1 2 i2 p ip ,c x c x c x    

with one vector being a vector of weight coeffi cients and the other being a vector of 
variate values for the particular ( i th) case. Thus, one (tedious) way of obtaining the 
weighted composite for all cases would be to extract each case as a vector and do 
vector multiplications as many times as there are cases. 

 It should be possible, however, to have the case vectors stacked and do all of the 
vector products in one operation.

       

 It can be seen by example that  R  is OK with this if the case vectors are stacked 
in a matrix as rows and the matrix is the fi rst operand with the weight vector as the 
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second, but not if the operands are reversed with the weight vector fi rst and the 
matrix second. Thus,  R  is making a distinction between row and column layouts 
when a matrix is involved. This illustrates that such multiplication is not commuta-
tive (although it is associative and distributive). Next, consider extending the example 
by including a second weight vector in the scenario.

       

 It can now be seen that  R  extends the vector multiplication scenario to matrices 
by doing pairs of vector products whereby each row of the fi rst operand is treated as 
a vector and each column of the second operand is treated as a vector, with a multi-
plication being done for each pairing of a row vector with a column vector. To make 
the row vectors compatible (conformable) in number of elements with the column 
vectors, there must be as many  columns  in the fi rst operand as there are  rows  in the 
second operand. 

   Linear Transformation and Hybridization 

 With  X   n × p   as our data matrix, consider  T   p × m   as a  transformation matrix  that must 
necessarily have  p  rows in order to be conformable, with each of the  m  columns gen-
erating a transformed variate that is a weighted composite of the  X  variates whereby 
the  k th element is the weight contribution for the  k th variate of  X . Then,  Y  =  XT  is the 
matrix multiplication equation for the matrix of transformed ( Y ) variates. 

 Although  Y  =  XT  is a conventional formulation for such transformations (Giri  2004 ; 
Rencher  2002  ) , it is a prescription for problems in  R  because  T  has the default logi-
cal value of  TRUE  and  t  is a default matrix transpose operator that interchanges 
rows and columns of a matrix. Both of these can be redefi ned by using them differently, 



212 13 Matrix Methods for Multiple Measures

but unforeseen consequences are likely to ensue unless this is done very carefully. 
Therefore, we avoid using  T  and  t  outside their regular  R  context. Thus, it becomes 
necessary to choose an alternate formulation for transformations. Accordingly, we 
refer to linear transformations as  hybridizations  of the original variates and  H  is 
used in the notation instead of  T . 

 Thus,  Y  =  XH  is a hybridization of original variates where each hybrid variate 
has the form:

     
+ +…+1 i1 2 i2 p ip ,h x h x h x

   

with the  h  coeffi cients showing how  heavily  a hybrid draws on each original 
variate. 

 A simple example of three cases on two variates for  X  with  Y  
 ,1 
  being the sum and 

 Y  
 ,2 
  being the difference is as follows:

       

 In addition to using  H  for hybridization, this example also uses  T  in its logical 
role and should serve to warn against using  F  in anything other than its logical role 
as  FALSE .  

   Back Transformation by Inverse 

 Now, consider the possibility of a back ( B ) transformation that reverses  H  to return 
to the original X data matrix from  Y . From  YB  =  XHB  it can be seen that the product 
 HB  must be such as to leave  X  unchanged if used directly as hybridizing transformer 
for  X . There is only one type of matrix, called an  identity  matrix, which has this 
property. An identity matrix is square (same number of rows as columns) with 1.0 
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everywhere on the upper-left to lower-right diagonal and 0 elsewhere. An identity 
matrix with  k  rows and  k  columns is denoted by  I   k×k  , where  k  is the  order  of the 
identity matrix. A square matrix having nonzero elements only on the upper-left 
to lower-right diagonal, such as identity matrix is said to be a  diagonal  matrix. 
An identity matrix is the matrix analog of the number one for multiplication. 

      

 Therefore, it is necessary that  HB  =  I  if the hybridizing transformation is revers-
ible. If there is a matrix that multiplies  H  to produce  I , then it is called the “inverse 
matrix” of  H , and is designated by  H   −1  . There is an  R  function solve() that returns 
the inverse of its input argument if the inverse exists. In order for a matrix to have 
an inverse, it must be square and  non-singular . A check on validity of an inverse is 
to do the multiplication which should give the identity  HH   −1   =  I .

       

 Accordingly,  B  is a valid inverse and back-transform for  H  which makes the  Y  
variates virtual variates with respect to  X  according to our defi nition. A point to note 
is that a prerequisite for a transform to have a back-transform is that the transform 
must have as many variates as the original data matrix which was transformed.  

   Transpose, Symmetric, and Orthogonal 

 Transposition rearranges a matrix so rows become columns and vice versa. The trans-
pose of a matrix  V  is denoted as  V ¢   and is accomplished with the t() function 
provided in  R .
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 A (square) matrix that is not changed by transposing is said to be  symmetric .

       

 A matrix for which the inverse is the transpose is said to be  orthogonal . We note 
that the transpose of a product is the product of transposes. Similarly, the inverse of 
a product is the product of inverses.  

   Vector Magnitude, Length, or Norm and Euclidean Distance 

 It was noted at the beginning of Chap.   3     that a transform vector consists of direction 
cosines for axial rotation if the sum of its squared elements is 1. The sum of squared 
elements is obtained as the product of a vector with itself.

       

 If the vector is viewed as a set of coordinates on multiple axes, this is the squared 
distance from the origin to the point—or the squared length of the line connecting 
the origin with the point. The magnitude, length, or norm of a vector is the square 
root of this product. If a vector has length 1.0, then its squared length will be the 
same. If a vector has length 1.0, then it is said to be  normalized . This is not to be 
confused in any respect with the normal or Gaussian distribution. If the length of a 
vector is  L , then a normalized version of the vector is obtained by multiplying every 
element by the reciprocal of the length.
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 For a hybridization matrix  H , the squared lengths of the vectors appear on the 
diagonal of the product matrix  H ¢ H  as follows.

       

 The diagonal of the matrix can be extracted into a vector using the diag() com-
mand. We also note in passing that the sum of diagonal elements in a square matrix 
is called the  trace  of the matrix.

       

 The vector can then be used to create a diagonal matrix  G  as follows.

       

 The inverse of a diagonal matrix is a diagonal matrix of reciprocals (of the elements 
in the diagonal matrix). 

      



216 13 Matrix Methods for Multiple Measures

 Multiplying by a diagonal matrix as second operand will multiply every element 
of a column in the fi rst operand by the respective diagonal element. This can be used 
to obtain a normalized version of the transformation vector consisting of direction 
cosines.

       

 As stated above, the length of a vector is a special case of the  Euclidean distance  
between two points in multidimensional space. The special case is that one of the 
two points is the origin, for which the coordinates are a vector of zeros. The general 
procedure for calculating Euclidean distance is to subtract the two vectors of coor-
dinates and then calculate the length of the difference vector. The Euclidean distance 
computation is illustrated as follows.

        

   Statistics of Transformation 

 The vector of means for transformed variates is the transform of the mean vector of 
original variates. Note recasting matrices as data frames to use the  mean()  
function. 
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 If  C  is the matrix of covariances for original variates, the covariance matrix for 
transformed variates is  H ¢ CH .

       

 If a covariance is zero, then the correlation must also be zero; and the reverse is 
also true whereby zero correlation also implies zero covariance. Since Ycov is diag-
onal, these particular Y-variates are therefore uncorrelated (being independent in the 
sense of nonredundant).  

   Invariant Vectors, Eigenvalues, Modal Matrix, 
and Spectral Matrix 

 The relationship for transformed covariance as  H ¢ CH  as given above raises interest 
in  invariant vectors  and  eigenvalues . As a point of departure for this exploration, 
which will lead us back to principal components, we note that a covariance matrix 
is square and symmetric. 

 A square matrix  G  may have an associated column-wise matrix of  invariant 
vectors   V  such that  GV  =  VE  with  E  being a diagonal matrix of scaling factors that 
change the length but not the direction of the vectors. This lack of directional change 
is why the vectors are called  invariant . Invariant vectors are also called  characteristic 
vectors ,  eigenvectors , or  latent vectors  for the matrix  G . That is, multiplying the matrix 
 G  by an invariant vector as second operand gives the same vector with its length 
changed by the factor in the corresponding position of the diagonal of  E . We recall that 
changing the length of a vector consists of multiplying each of its elements by the same 
(constant) factor. These factors on the diagonal of  E  are called  eigenvalues . In other 
words, these are characteristic vector  directions  that do not undergo directional change 
as multipliers of the matrix. A matrix of the column-wise eigenvectors is called a  modal 
matrix  of  G , and a diagonal matrix of eigenvalues is called a  spectral matrix  of  G . It is 
a further property that the modal matrix of normalized eigenvectors for a (real) sym-
metric  G  matrix is orthogonal, so its transpose is its inverse. 
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 The current interest in modal and spectral matrices stems from the property that 
 V   −1   GV  =  E  where we recall that the  E  matrix of eigenvalues is diagonal. Further, if 
 G  is symmetric, then  V ¢ GV  =  E . We now notice that a covariance matrix  C  is 
symmetric and will yield eigenvalues and normalized eigenvectors. If we use the 
eigenvectors as a hybridizing transformation for the parent data matrix, we will have 
 H ¢ CH  =  E . Thus, variances of the transformed (virtual) variates will be the eigenval-
ues and these transformed variates will be uncorrelated since all of the transformed 
covariances are zero.  R  makes available the eigen() command with which to obtain 
the modal and spectral matrices needed.  

   Decorrelation of Standardized Variates 

 We now undertake by direct matrix methods to decorrelate the standardized BAMBI 
data which was accomplished by the princomp() command in Chap.   3    . We need the 
covariance matrix of the standardized data, which is also the correlation matrix due 
to the unit variances produced by standardization. We then apply the eigen() func-
tion to obtain eigenvalues and eigenvectors. Multiletter names are used so that the 
letter T can be incorporated without confl icts in  R
 .       

 The eigenvalues are returned in a $values  vector  and the eigenvectors are 
returned in a $vectors  matrix.  We transfer these into separate objects for conve-
nience of further work.
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 The eigenvalues are the same as those from princomp() in Chap.   3    , and the eigen-
vectors are the same as principal component loadings except for the reversal of signs 
on the vector for the third transformed variate. As noted earlier, any constant multiple 
of an eigenvector is also an eigenvector, so signs can be reversed as desired using −1 
as a constant multiplier. The eigenvectors are normalized since they have length = 1. 

 In the earlier work on principal components, it was decided to the reverse the 
signs on principal component axes 1, 3, and 5. Here, it will be more convenient to 
do sign reversals on the transformation vectors before generating the actual trans-
formed variates. This is easily done by multiplying the transformation matrix by a 
suitable diagonal matrix having −1 in positions to be reversed and 1 in positions to 
remain unchanged.
       

 The transformed variates corresponding to principal component scores can now be 
generated by multiplying the standardized data matrix by the transformation matrix. 
Note the need for recasting the data frame of standardized variates as a matrix. 
Since the computational operations are not being done in exactly the same way 
(Afi fi  et al.  2004  ) , some slight differences due to rounding may be expected. Both 
inverses and eigenvector operations are quite sensitive to numerical rounding/truncation 
errors. Note carefully that it is standardized data that is being transformed, rather than 
the original data. Parallel operations for original data will be conducted subsequently.
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 The desired uncorrelated condition can also be checked, again using appropriate 
recasting of operands.

       

 The variances of the transformed data are equal to the eigenvalues as expected. 
Since the normalized modal matrix used as a transform is orthogonal, the back 
transform is its transpose. This is exemplifi ed by doing a back transform on the fi fth 
case, which matches the fi fth line of the head() listing of BAMBIS shown earlier in 
this section.

       

 It may also be of interest at this juncture to demonstrate that the principal com-
ponent transformation preserves Euclidean distance between cases as stated in 
Chap.   3    . We do so by calculating the squared distance between cases 4 and 5 for 
both original and transformed variates.

       

 The lines on a biplot serve the purpose of showing the alignment and infl uence 
of the original  X  variates on the transformed  Y  variates. This information arises 
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from transforming a set of basis vectors for  X  as if they were data cases. However, 
the set of basis vectors takes the form of an identity matrix, and transforming an 
identity matrix simply gives the transformation matrix. Therefore, the  rows  of the 
transformation matrix constitute the desired pseudo-cases for  Y . An alternative to 
generating lines on plots for pairs of  Y -axes is to use the pairs() plotting facility for 
examining this aspect of the information across several of the  Y -axes as shown in 
Fig.  13.1  resulting from the command:

        

 Figure  13.1  refl ects the correlation structure among the  X -variates, and thus 
gives a kind of visual representation of the correlation matrix as a means for inter-
preting the transformation (loading) matrix. 

  Fig. 13.1    Pairs() plot of transformed  X -basis vectors in  Y -space for decorrelating standardized 
biodiversity data. Each plotted point represents a “pure”  X -variate as positioned in  Y -variate space       
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 Expansion and labeling of the box in the fi rst column and second row is shown 
in Fig.  13.2 .

        

 The numbers on the points in Fig.  13.2  show the “basis case” that is plotted, and 
thus the particular basis vector that has been transformed. It shows that BirdSp, 
MamlSp, and ElevSD are substantially related in this aspect of the fi rst two (major) 
transformed variates refl ecting 82% of the total variance. PctFor and Pct1FPch are 
very closely related, but rather distant from the fi rst three on transformed axis 2. 
Pct1OPch opposes all of the others, most particularly on transformed axis 1. 
Examining the numeric values of the loadings for the fi rst two transformed variates 
will confi rm these interpretations. 

 We note that multiplying the transformation matrix by a diagonal matrix as sec-
ond operand will change the variances of the transformed variables, but will not 
introduce correlations. This is exemplifi ed by using a diagonal matrix to rescale the 

  Fig. 13.2    Expansion and labeling of box in  column  one and  row  two of Fig.  13.1        
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transformation matrix so that the lengths of the transform vectors are equal to the 
inverse square roots of the respective eigenvalues.

       

 The effect of this rescaling is to produce standardized versions of the transformed 
variates, which do not refl ect the differences in contribution to total variance among 
the (principal component) variates.  

   Decorrelation of Original Variates 

 We now proceed in parallel manner to decorrelate the original BAMBI variates 
instead of the standardized variates. This is again a version of the principal compo-
nents idea, but it must take the  covariance  matrix of original variates rather than the 
correlation matrix as its point of beginning. Consequently, it will be compositing 
(hybridizing) variates that are not dimensionless and do not have the same units of 
measure. Therefore, interpretation must be very circumspect unless the original 
variates have some commonalities among the units in which they are measured—
which is not true for the current data.
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 The eigenvectors are again normalized. The percentages of total variance are:
       

 Whereas for the standardized scenario they were:
       

 Since the signs of the transformation coeffi cients are predominantly negative on 
all axes, it is appropriate to reverse the directions of all eigenvectors.
       

 The transformed variates can now be generated by multiplying the  original  data 
matrix by the transformation matrix with appropriate recasting of operands.
       

 Since the data were not standardized, the means of the transformed variates are 
not zero as was the situation with the standardized scenario.
       

 If negative means for transformed data are seen as undesirable, then we would 
return to the axis reversal step above and change the negatives to positives for 3, 5, 
and 6 in the diagonal matrix. Alternatively, we could subtract the original mean vec-
tor from the original data matrix in order to center the data and then proceed to 
transform the centered data. The desired uncorrelated condition can again be 
checked using appropriate recasting of operands.
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 The variances of the transformed data are again equal to the eigenvalues as 
expected. Since the normalized modal matrix used as a transform is orthogonal, the 
back transform is its transpose—which will not be performed for the present 
purpose. For comparison with the standardized scenario, we explore the biplot 
relations by a pairs() plot in Fig.  13.3  and then expand and label the box in fi rst 
column and second row as Fig.  13.4 .

  Fig. 13.3    Pairs() plot of transformed  X -basis vectors in  Y -space for decorrelating original biodi-
versity data. Each plotted point represents a “pure”  X -variate as positioned in  Y -variate space       
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  Fig. 13.4    Expansion and labeling of box in  column  one and  row  two of Fig.  13.3        

         

 Variates 4–6 are similarly situated in Figs.  13.2  and  13.4 . However, variate 3 is 
now strongly segregated from variates 1 and 2; which was not so with respect to 
standardized variates in Fig.  13.2 . Thus, the structural picture for original variates is 
more in tune with what might be intuitively anticipated; whereby species richness 
variates stand apart from forest variates, with both being apart from the topographic 
variate. Further, the deforestation variate is diametrically opposite from the forest 
cover variates relative to species richness. This type of structural plot is again more 
intuitively appealing than attempting to interpret the values of transformation coef-
fi cients directly, and is simpler that trying to unravel a biplot.  
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   Linear Filter 

 In doing clustering for contingents in Chap.   4    , principal component number 6 was 
omitted as being an inconsequential component of variation. It is possible to observe 
directly the extent of perturbation in the data matrix due to omitting one or more 
principal components, although this is generally not incorporated in presentations 
on principal components. This can be approached through the back-transform pro-
cedure  X  =  YH ¢   (expressed in the notation of hybridization) wherein the element in 
the  i th row and  j th column of  H ¢   specifi es the “contribution” of the  i th principal 
component to the  j th original variate. To regenerate the approximated original vari-
ates without the contribution of a particular principal component, we need only to 
set all of the elements in the  i th row of  H ¢   to zero—or omit both this row and the 
corresponding principal component from the back transform. This effectively “fi lters” 
the contribution of the particular principal component out of the original data. 
We illustrate this by regenerating the fi fth standardized data case without the sixth 
principal component. We then plot the fi ltered data case against the original data 
case to show the perturbations. 

 We fi rst remove the sixth row from the back-transform matrix.
       

 We then back-transform the fi fth case of principal components from the fi rst fi ve 
components.

       

 This approximation is then compared to the fully regenerated data case and plot-
ted in Fig.  13.5  to detect differences. Some effect is indicated in Fig.  13.5  for the 
forest cover variates (4 and 5).
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  Fig. 13.5    Comparison of original values for the fi fth case ( horizontal ) with values after fi ltering 
out effect of the sixth principal component       

 



231W.L. Myers and G.P. Patil, Multivariate Methods of Representing Relations 
in R for Prioritization Purposes, Environmental and Ecological Statistics 6,
DOI 10.1007/978-1-4614-3122-0_14, © Springer Science+Business Media, LLC 2012

 After general consideration of linear transformations, the previous chapter focused 
on decorrelation. In this chapter, attention is directed to transformations (hybridiza-
tion) that can help to emphasize separation of selected groupings in the data, which 
falls under the scope of discriminant analysis. 

 As before, this topic is pursued in terms of computational context. This entails the 
contingents of hexagons that emerged from the clustering work in Chap.   3    . Figure  14.1  
shows the centroids (means) of the 11 contingents in terms of standardized scaling 
for the BirdSp and MamlSp variates.   

        

 Figure  14.1  shows that contingents 4, 5, 7, and 10 are high for both birds and 
mammals, whereas contingents 1, 2, and 3 are low for mammals. The other four con-
tingents (6, 8, 9, and 11) are moderate for mammals. Accordingly, we consider three 
groups. Group I consists of hexagons in contingents 1, 2, and 3. Group II consists of 
hexagons in contingents 6, 8, 9, and 11. Group III comprises hexagons in contingents 
4, 5, 7, and 10. We seek a transformed view of the data that will emphasize the differ-
ences between these three groups. Our discriminant approach can only yield one 
fewer transformed variates than the number of groups, therefore giving us a bivariate 
view in this situation. We begin by segregating the groups in separate datasets that 
will allow plotting individual hexagons using group symbols in Fig.  14.2 .   

    Chapter 14   
 Segregating Sets Along Directions 
of Discrimination         
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  Fig. 14.1    Centroids of contingents for BirdSp and MamlSp using standardized data       

  Fig. 14.2    Hexagons plotted using Group I as  circles , Group II as  triangles , and Group III as 
 crosses  with standardized data       

 

 



233Within-Groups and Collective Variation

        

 A propensity for progression of positioning is evident in Fig.  14.2 , but is not suf-
fi cient to preclude intermingling of group constellations along the edges when seen 
from the perspective of standardization on the fi rst two variates. What we seek is the 
possibility of transformations into a different axial perspective (or “space”) whereby 
the segregation of groups is enhanced. Our analytical path is to fi nd transformations 
that emphasize between-group variation relative to within-group variation. The fi rst 
step down this path is to compute a within-group covariance matrix for each of the 
groups along with a collective covariance matrix for which the grouping is 
ignored. 

   Within-Groups and Collective Variation 

 A within-group covariance matrix is computed using only the hexagons that belong 
to the group. A collective covariance matrix is computed using all hexagons   .
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 The next thing is to pool the within-group covariance matrices using the degrees 
of freedom for the respective covariances as weights. Here, the degrees of freedom 
for a within-group matrix are one less than the number of cases (hexagons) in the 
group.           

   Between-Groups Variation 

 Between-groups variation is computed as the weighted difference between the col-
lective variation and the pooled within-groups variation, then treating this differ-
ence as having degrees of freedom that is one less than the number of groups.           
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   Formulation and Computation 

 The calculus approach to optimization leads to the following as a precursor for 
eigenvector analysis:

     K K kBH WH l=    

where  B  is the between-groups variation matrix,  W  is the (pooled) within-groups 
variation matrix,  H  

 K 
  is a transformation vector, and   l   

 k 
  a corresponding 

eigenvalue. 
 Developing this in the more obvious way gives:

     
1 1

K K kW BH W WH l- -=    

     
1

K K kW BH H l- =     

 This then entails computing eigenvalues and eigenvectors of the  W   −1   B  product 
matrix, which is not a symmetric matrix. However, computing eigenvectors of an 
asymmetric matrix is problematic. Therefore, it is appropriate to use a more compli-
cated alternate development that leads to fi nding eigenvalues and eigenvectors of a 
symmetric matrix. 

 The alternate development relies on Cholesky decomposition of the symmetric 
 W  matrix. To this end, let  L  be the upper-triangular result produced by the     chol()  
function in  R  when applied to the  W  matrix: 

  L <   - chol(W)  
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 An upper-triangular matrix has only zero elements below the diagonal, and a 
lower-triangular matrix has only zero elements above the diagonal. The decomposi-
tion has the property that  L ¢ L  =  W . Then, the alternate development proceeds as fol-
lows, where we note that the inverse of a transpose is the transpose of the inverse.

     K K kBH WH l=    

     ′K K kBH L LH l=    

     ( ) ( )′ ′′ 1 1

K K kL BH L L LH l- -=
   

     ( )′ 1

K K kL BH LH
- = l

   

     ( )′ 1 1
K K kL BL LH LH

- - = l
   

     
( ) ( ) ( )1 1

K K kL BL LH LH
¢- - = l

    

 Now, let  Q  =  L  −1  and  V  =  LH  
 K 
 . Then, we have

     ( )′ kQ BQ V V= l
   

which calls for fi nding   l   
 k 
  and  V  as eigenvalue and eigenvector, respectively of 

 Q ¢ BQ . Since  V  =  LH  
 K 
  we obtain  H  

 K 
  =  L  −1   V  =  QV . Any eigenvector corresponding 

to an eigenvalue that is effectively zero is meaningless and should not be used. 
 Accordingly,  L  and  Q  are computed, and then  Q ¢ BQ  is obtained as  A    .       

 An extraction of characteristic roots and vectors is performed on  A , with the 
eigenvectors designated as  V . Only the fi rst two eigenvalues are nonzero, so only 
the fi rst two eigenvectors will be retained at the end of the process   .       
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 The modal matrix of eigenvectors is shown to be orthogonal as expected from 
the symmetry of its parent matrix.          

 Finally, the transformation (hybridization) vectors  H  are computed by multiply-
ing eigenvectors by the  Q  matrix. The last four columns of the matrix are then dis-
carded due to their meaningless nature as refl ected in the degenerate eigenvalues   .       

 A point of particular interest is that the transformation is scaled so that  H ¢ WH  =  I  
which will be explored subsequently relative to Mahalanobis (generalized) distance   .        
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   Canonical Variates 

 The transformation is applied to the data (which were previously standardized) to 
obtain what can be called  canonical variates  or  discriminant axes.  Usage of stan-
dardized data as a starting point was simply a matter of choice in the present situa-
tion. Here, we designate the canonical variates as  G  by virtue of the relation to 
Mahalanobis generalized distance (Digby and Kempton  1987  ) , which has yet to be 
explored here. 

 The hexagon data for each of the groups will be transformed separately for con-
venience in plotting and subsequent comparison. Since the hexagon data are as a 
data frame whereas the transformations are matrix operations, the operands must 
recast appropriately.          
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 We are now prepared to plot the counterpart of Fig.  14.2  using canonical variates 
instead of standardized variates to obtain Fig.  14.3 .           

  Fig. 14.3    Hexagons plotted using Group I as  circles , Group II as  triangles , and Group III as 
 crosses  with canonical (G) variates       

 Comparing Fig.  14.3  to Fig.  14.2  we again observe a logical axis reversal, this 
time for the fi rst (G1) canonical axis which has Group I on the high end instead of 
the low end. Again, the signs on the axes arising from eigen analysis are essentially 
arbitrary, and there is nothing to inhibit changing the sense of sign. This could be 
done either directly in the  H  matrix or within the transformed data frames, but we 
arbitrarily choose the latter. 

 The axis adjustment is done as follows, and the groups are then replotted on the 
adjusted canonical axes in Fig.  14.4 .           
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  Fig. 14.4    Hexagons plotted using Group I as  circles , Group II as  triangles , and Group III as 
 crosses  with sign-adjusted canonical variates       
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 In Fig.  14.4 , axis 1 has the primary gradient of difference between the groups and 
axis 2 has emphasis on sorting out Group II. Another way of summarizing the plot 
is that the upper-left to lower-right diagonal separates Group I from the other two 
groups, and Group II separates from Group III across the lower-left to upper-right 
diagonal. 

 Canonical (discriminant) axes serve to maximum advantage when the within-
group covariance matrices are essentially the same. There are some differences in 
this regard for the hexagons, which tends to impede the separability of group con-
stellations somewhat.  

   Mahalanobis Generalized Distance 

 It was observed above that  H ¢ WH  =  I , from which we obtain:

     ′H WH I=    

     ( ) ( )′ ′ ′1 1
H H WH H I

- -=
   

     ( )′ 1
WH H

-=
   

     ( ) ( )′′ 1 11 1WHH H H HH
- -- -= =

   

     ( )′ 1
W HH

-=
   

     ′1W HH- =     

 Now, consider the distance between two points in data space ( X  
1
  and  X  

2
 ) after 

transformation into canonical space:

     1 1 2 2G X H and G X H= =    

     
( )( )2

1 2 1 2D G G G G ¢= - -
   

     
( )( )2

1 2 1 2D X H X H X H X H ¢= - -
   

     
( ) ( )⎡ ⎤⎣ ⎦

2
1 2 1 2D X X H X X H ¢= - -

   

     ( ) ( )′2
1 2 1 2D X X HH X X= - -

   

     ( ) ( )2 1
1 2 1 2D X X W X X-= - -
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 This latter is termed (squared)  Mahalanobis distance  or  generalized distance . 
Thus, Mahalanobis distance computed from data matrices corresponds to Euclidean 
distance computed in canonical variate (or discriminant) space. This shows that 
Mahalanobis distance gives direct computation of distance in canonical variate 
space without fi rst transforming the data.  

   Special Spaces 

 The principal axis and canonical axis work in Part III exemplify transformations of 
data into special coordinate spaces that confer particular analytical advantages. 
These two types of transformations fall within a general class of  linear transforma-
tions  (hybridizations) that involve axial rotation and rescaling. If we again use  X   n × p   
as the notation for a data matrix consisting of  n  cases with  p  variates, such transfor-
mations can be represented as:

     ( ) ( )n q n p p qY X H¥ ¥ ¥= ¥    

where  H   p × q   is a transformation (hybridization) matrix having  p  rows and  q  columns 
in which each column generates a transformed variate (axis) as a linear combination 
of the original  p  variates with the element in a particular row being the weight given 
to the corresponding original variate in forming the transformed variate as a weighted 
composite (summation) of the original variates. The transformation will be revers-
ible (invertible) only if  q  =  p  and  H  is nonsingular. 

 The transformation entails simple axial rotations if the columns of  H  are normal-
ized (length = 1.0); otherwise, there is some rescaling (expansion or contraction) along 
with rotation. In the latter case, the transformation can be expressed as a product:

     
( ) ( )p q p q q qH A M¥ ¥ ¥¥=

   

where the  A  matrix has the angular rotation information expressed as direction 
cosines, with  A  being obtained by normalizing the columns of  H .  M  is a diagonal 
matrix of multipliers that rescale the respective axes after rotation, wherein the mul-
tiplicative scaling factors are the reciprocals of the normalizing factors for obtaining 
 A  from  H . 

 There are other interesting (multivariate) transformations in this class which we 
have not considered, such as those from canonical correlation analysis which seeks 
paired linear transformations that emphasize the relationships among two sets of 
variables. Facilities for this and many other “special space” analyses are available 
without cost from the CRAN library of contributed  R  analyses which includes more 
than 2,000 contributed packages. Canonical correlation analysis is available in the 
 CCA  package among others. The foregoing treatment of matrix transformations in 
 R  should provide a foundation for exploring such facilities (Bloomfi eld  2009  ) . 
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 There are also major methods of recasting data in various interesting coordinate 
systems that do not fall within the general class of linear transformations. The prin-
cipal coordinate analysis in Part II, Chap.   5     is one such approach. Of related interest 
to the approaches we have presented is a large class of  ordination  methods that are 
extensively used by ecologists (McCune and Grace  2002 ; Leps  2003 ; Soetaert and 
Herman  2009 ; Wildi  2010  ) , and can be explored through the  vegan  package in the 
CRAN library. A tool of interest in conjunction with cross-tabulations is  correspon-
dence analysis  (Greenacre and Blasius  2006  )  which provides a graphic method of 
exploring relationships between variables in a contingency table. The  anacor  pack-
age in the CRAN library provides a point of departure in this regard.      
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         Appendix 1
Printout of BAMBI.txt File of  Pennsylvania 
Hexagon Data          
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  R  is open-source software made available under the auspices of the R Foundation 
without cost for unlimited usage. It is a statistical analysis system and a computa-
tional + graphics programming language. It has a commercial counterpart called 
S-Plus distributed by Insightful Corporation. Both are based on the  S  language, 
which was developed at Bell Laboratories. There are also a large number of exten-
sions to  R  for special purposes that have been contributed by users and are freely 
available.  R  simplifi es conventional statistical analyses, while also permitting cus-
tomized approaches to be set up and applied. Although  R  is available for several 
types of computers, this workshop assumes that you will be using a PC running a 
Windows© operating system. 

   Obtaining R 

 A good place to start in obtaining  R  is at the Web site   http://www.r-project.org     for 
the Foundation, which has links to download and other sites of interest—particularly, 
the CRAN Web site cran.r-project.org the “Comprehensive R Archive Network”. 
A binary setup module for installation on a Windows PC can be downloaded along 
with documentation. Proceed to download and unzip the fi les as necessary.  

   Installing R 

 Installation of  R  is accomplished by double-clicking the  .exe  for installation setup. 
The main part of the name for this fi le consists of the version designation. You will 
need administrative privileges on the computer to perform the installation, but you 
will not need such privileges to run the software after it is installed. The option to 
create an icon on the desktop should be accepted, since it will be desirable to specify 
the startup folder as a property of the icon when you launch it.  

   Appendix 2
R~Workshop I—Getting Started with R 

http://http:www.r-project.org
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   Starting and Stopping R 

 Before launching  R , create a working folder near the root of a disk so that it does 
not have a long path. Launch  R  either from an icon or the program menu. When the 
 R  desktop appears, go to the File menu, choose “Change dir…” and navigate to the 
working folder. All fi les in the working folder will be readable by  R  without speci-
fying a path. To quit R, enter q() at the > R prompt, or go to the File menu and 
choose “Exit”.  

   R as a Calculator 

 If you type in 2 + 2 and press ENTER, the response from  R  will be 4 
 The calculator operators in  R  are + − * / ^ (power)

   %/% (integer division)  
  %% (integer remainder)    

 Other algebraic operators are functions having a function name and the inputs 
enclosed in parentheses, with sqrt() and log10() being examples.  

   R Help 

 Type either ?help or help() to see how help works in  R . 
 To get help with an  R  command, you put the name of the command in the help() 

parentheses, or put a question mark before the name of the command without any 
parentheses. 

 Type in list.fi les() or dir() to get a listing of the fi les in the working folder. 
 To try fi nding an  R  facility for some purpose, use help.search (“keyword”) where 

the keyword is some keyword for the topic. The keyword must be enclosed in 
quotes. 

 If you are connected to the internet, you can start a Web help with help.start ().  

   R Objects 

 R works with objects having names that consist of letters and digits with periods as 
optional separators like July10.data.2007 as an example. Object names for  R  are case 
sensitive, so a name with a capital is different from one in lower case. Since  R  has 
most of its operators named with lower-case, it is a good idea to start the names of 
your objects with a capital letter so that you do not inadvertently mess things up. 
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 There are several different kinds of objects in  R , and an object has properties 
depending on its kind. Among the several kinds of objects are

   A container for a unitary value (actually a single-valued vector);  • 
  A vector containing a set of values with the same properties in a specifi ed • 
order;  
  A matrix containing a row and column layout of values with the same • 
properties;  
  A data frame as a “cases-by-variates” table with row cases and column variates;  • 
  A list as a container for aggregating different kinds of objects;  • 
  A statistical model;  • 
  A function to do operations.    • 

 Properties of an object indicate the type(s) of values that it contains, such as 
numeric, categorical (factors with levels), logical (True, False, NA), or names. The 
type can be changed by coercion, as for example as.factor() for changing numeric 
codes into categorical factors. A missing value should be coded as NA for not 
available. 

 The relational operators among objects are  

 ==  equal 
 !=  not equal 
 <  less than 
 >  greater than 
 <=  less than or equal 
 >=  greater than or equal 
 &  and 
  |   or 
 !  not 
 is.na()  missing value 
 !is.na()  not a missing value 

 Content is assigned to objects with the <− two-character symbol of less than fol-
lowed immediately by a minus sign. It can be considered as “put into” the object on 
the left what is specifi ed on the right. 

 Components are indexed in square brackets, as for ht[5] for the fi fth component 
of a vector having ht as its name. A sequence is indicated by a colon, as in [2:6] for 
2 through 6. An omitted index extracts the entire range of the index, as in MatrxA[,3] 
to get column 3. 

 The vector of values for a variable as a column component of a data frame is 
extracted by the $ selector, as in FrameName$VarName where each column is sepa-
rately named.  
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   Data Entry 

 The simplest way to enter a short set of values into a vector is with the c() concate-
nation command, as for example       

 

As can be seen, entering the name of the vector by itself gives the values com-
prising the vector. The commands and output preceding this paragraph were taken 
by “cut and paste” from the R window, which is a reasonable way to save R output 
without all of the dialog you may not want. 

 The typical mode of entering statistical data, however, will be as a data frame in 
the form of a table. The dataset to be used here for illustration is from Altman 1991. 
Practical statistics for medical research (Exercise 12.5, 10.1). Chapman & Hall. 

 It has been incorporated in the ISwR package for R by Dalgaard 2002. Introductory 
statistics with R. Springer. 

 There are 32 rows and 4 columns, with the columns being as follows

   Age of subject (years)  
  Sex, with F=1, M=2  
  Height of subject (cm)  
  Total lung capacity (l) of subject prior to organ transplant.    

 A listing of the data follows:
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 Proceed to enter these data in the above way, including labels as fi rst line using 
the Notepad facility of Windows with either spaces or tabs as delimiters between 
numbers in a fi le having lungcap.txt as its name. An alternate mode is to use Excel 
for data entry and then save the fi le with Save As and specifying the fi le form as tab 
delimited. This latter will also produce a fi le with a .txt extension on the fi lename. It 
will be assumed here that you save the fi le using lungcap as the main part of the 
fi lename. The fi le is to be saved in the working folder that you use for R. 

 Now startup R, and use the following commands to read the data table into a data 
frame using Lung.capacity as the name of the data frame and see the fi rst six lines.

   >Lung.capacity <− read.table(“lungcap.txt”,header=T)  
  >head(Lung.capacity)     

   References 

    Dalgaard P (2002) Introductory statistics with R. Springer  
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 This workshop assumes the following:

   That you have R installed on your computer;  • 
  That you are using a Windows • ®  PC computer;  
  That you have the lungcap.txt data fi le from Workshop I in the working folder;  • 
  That you know how to enter R commands and use R as a calculator;  • 
  That you can use the R help facilities;  • 
  That you are acquainted with naming of objects in R;  • 
  That you are acquainted with the nature of vectors and data frames in R.    • 

 We focus here on accessing the information in a data fi le as an  R  data frame, 
declaring categorical variables as  R  factors, annotating your  R  session, obtaining 
summary information for a data frame, and making some simple graphical plots to 
help understand the general characteristics of the information in a data frame. 

   R Startup Folder 

 You should always do your  R  work in a folder of your own, using a different folder 
for each analysis project. You can change the working folder (dir) from the File 
menu in R.  

   Annotating the R Session 

 We begin by noting that # character has a special purpose in  R . When a # appears 
on a line, anything following on the same line is treated as annotation and ignored 
by  R . Accordingly, you can annotate your  R  session for later reference by making a 
# the fi rst thing that you enter on the line. Of course, the  R  prompt will be the very 
fi rst thing that actually appears on the line. Examples in this workshop will be anno-
tated in this manner.  

   Appendix 3
R~Workshop II—Data Exploration with R 



258 Appendix 3

   Reading Data Table and Declaring Numeric Coded 
Categorical Factors

          

   Requesting a General Statistical Summary 

 A statistical summary for the variables in the data frame is requested as follows:

       

 For a regular numeric variable, you get the minimum, fi rst quartile, median, 
mean, third quartile, and maximum. For a factor, you get a count of each level. Note 
that using the summary() command this way will print the results, but then they are 
gone. To save the results, we could have put them into an object—in which case we 
would need to enter the name of the object as if it were a command in order to get a 
printout.

    > #   
   > LungCap.summary <- summary(LungCap)   
   > LungCap.summary     

 By using the attributes(LungCap.summary) command, we could determine that 
LungCap.summary belongs to a “table” class of  R  objects. Note that LungCap.
summary is all one name, with the period only serving to improve readability. If we 
are going to do much work with a data frame, we should attach() the data frame to 
make its component variables accessible by variable name instead of the more cum-
bersome DataFrame$VariableName protocol. However, we should only have one 
data frame attached at a time. We should detach() the current one before attaching 
another one.
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    > # Attach the data frame for direct access to names.   
   > attach(LungCap)     

 Now, we can request particular statistics for a variable individually, for 
example:

    > mean(age)   
   [1] 28.40625   
   > median(height)   
   [1] 170     

 The statistics reported by the summary() command are all measures of location 
(position) in the frequency distributions of the variables. To get standard deviations 
as a measure of variability, we could use the sd() command.

       

 Since the sex variable is a categorical factor, it must be omitted or there would be 
an error. There is a var() command for getting variances, but this is not convenient 
for present purposes since it produces a variance–covariance matrix instead of a 
variance vector. Since sd(LungCap[-2]) is a vector, we can get variances as the 
squares of the respective elements.

       

 Note that arithmetic and algebra are done element-by-element on vectors. So that 
the result would be more easily interpretable for later reference, it would have been 
better to put this computation into an object that we might call LungCap.variances 
and then display this object.

       

  R  has an internal spreadsheet editor if we want to examine the individual values 
of a data frame without cluttering up our output. We can put the output of the editor 
into an object called something like Temp and then remove the Temp object with the 
rm(Temp) command when we close the editor.

    > Temp <- edit(LungCap)   
   > rm(Temp)     

 If we had actually wanted to change a value in LungCap with the editor, then the 
object containing the output of editor would not be disposable. If you intend to 
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replace the original LungCap with the changed version, you can put the output back 
into LungCap again. To avoid lots of confusion, however, you should detach(LungCap) 
beforehand. You can then attach(LungCap) again after leaving the editor.  

   Reordering 

 We can create a version of LungCap that is ordered by age (column 1) and call it 
LungCapOrdr with the following command:

    > LungCapOrdr <- LungCap[order(LungCap[,1]),1:4]     

 Although this appears somewhat messy, the form must be followed and the parts 
understood. Since we can order all or part of LungCap, the ordering is given as an 
indexed component of LungCap using square brackets. This component consists of 
an ordering of LungCap indexed on column 1 with square brackets again denoting 
an index. The ordered component of LungCap is to include columns 1 through 4, all 
of which are ordered according to the age values in column 1. An inverted ordering 
can be given as:

    > LungCapInvOrdr <- LungCap[rev(order(LungCap[,1])),1:4]     

 Ordering is different from ranking, since ordering rearranges the values whereas 
ranking gives rank numbers. To illustrate this, let us create a small vector called 
Example and obtain its ranks.

    > # Make a small vector called Example.   
   > Example <- c(4,2,8,6,9,5)   
   > Example   
   [1] 4 2 8 6 9 5   
   > # Find the rank numbers.   
   > rank(Example)   
   [1] 2 1 5 4 6 3     

 We can also use conditional relations in extracting components of a data frame. 
With the LungCap data frame being attached, let us get the cases with age greater 
than 40.
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   Generic Graphics 

 We next experiment with generic graphics for exploratory examination of data. 
Alternatives are available for displaying distribution of data. We illustrate with the 
age variable of the lung capacity data, and you can practice on the height and total 
lung capacity (tlc) variables. Remember that accessing variables directly by name 
requires that the data frame be attached 

 A histogram is a conventional way displaying distribution of data, and it is 
obtained with the hist() command.

    > # Get a histogram of the age variable.   
   > hist(age)           
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A second way is to make a stem-and-leaf diagram using the stem() command that 
shows the distributions of the fi rst two digits (orders of magnitude) in the data.

    > # Get a stem-and-leaf diagram of the age distribution.   
   > stem(age)            
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So, for example, there are three cases having 16 as the age.

       

 A box plot provides a graphic display based on order statistics.

   > #Get a box plot of the age data.  
  > boxplot(age)          
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If no optional specifi cations are given to the boxplot function, the heavy horizon-
tal line in the central box is the median, the bottom of the central box is the fi rst 
quartile, the top of the central box is the third quartile, the “whiskers” extend to the 
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most extreme value that is within 1.5 times the IQR inter-quartile range (third 
quartile–fi rst quartile). More extreme values would be shown as outliers by plotting 
individual points. 

 Now, we obtain a qq-plot for judging the degree of normality.

    > #Get a qq-plot for indicating degree of normality.   
   > qqnorm(age)   
   > #Add a qqline.   
   > qqline(age)     

 In this kind of plot, the plotted points for a normally distributed variable will fall 
on a straight line. Departures from a straight line indicate non-normal distribution. 
The qqline on the graph passes through the fi rst and third quartiles.
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 We fi nish with a scatterplot of height on  Y -axis against age on the  X -axis.

   > #Scatterplot of height as Y against age as X.  
  > plot(age,height)
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 This workshop assumes that you are acquainted with starting  R , entering commands, 
reading data frames from fi les, and doing exploratory data summaries with  R . In this 
workshop, we consider investigation of relationships between variables. 

   Illustrative Data 

 As in workshop II, we will use data on total lung capacity presented by Altman 
(1991) Practical statistics for medical research (Exercise 12.5, 10.1) published by 
Chapman & Hall that is recorded in a lungcap.txt fi le as per workshop II. Therefore, 
we begin by reading this into a data frame, checking the variable names, declaring 
a factor, requesting a summary, and then attaching the data frame.

        

   Appendix 4
R~Workshop III—Data Relations 
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   Correlation 

 For purposes of illustration, we focus fi rst on the relationship between age and 
height. It always helps in this regard to have a visual perspective, so we fi rst make a 
scatterplot of age on the horizontal ( X ) axis and height on the vertical ( Y ) axis.

    > plot(age,height)     

 Note that the fi rst argument for the plot command goes on the horizontal axis and 
the second goes on the vertical axis. By using optional additional arguments to the 
plot command, we could control and customize most of the aspects of the plot. The 
command in its simple form will not put a main title on the plot. We add an argu-
ment to put on a main title:

    > plot(age,height,main=”Joint Distribution of Ht and Age”)           
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The usual quantitative measure of association is called correlation, and this can 
be computed with the cor() command in  R .

    > # Compute Pearson correlation coeffi cient.   
   > cor(age,height)   
   [1] 0.531639     

 Formally, the Pearson correlation coeffi cient is the covariance between standard-
ized variables. A variable is standardized by rescaling each case by fi rst subtracting 
the mean and then dividing by the standard deviation. Any standardized variable has 
mean of zero and variance of one. The (Pearson) correlation coeffi cient for a sample 
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is usually denoted by  r  and is constrained to lie between negative one and positive 
one, inclusive. A correlation of zero indicates no apparent (linear) relationship; 
whereas a positive 1.0 indicates a perfect direct linear relationship, and a negative 
1.0 indicates perfect inverse linear relationship. Moving away from zero, the scatter 
about a line becomes less. 

 A large-sample standard error of the bivariate correlation coeffi cient for testing 
the null hypothesis of  r  = 0 can be computed as follows with  n  − 2 degrees of 
freedom.

    > AgeHtCor <- cor(age,height)   
   > Ncases <- length(age)   
   > Ncases   
   [1] 32   
   > CorStdErr <- sqrt((1.0 - AgeHtCor^2)/(Ncases - 2))   
   > CorStdErr   
   [1] 0.1546351     

 Dividing the correlation coeffi cient by its standard error gives a t-statistic having 
 n  − 2 = 30 degrees of freedom. The two-tailed probability can be obtained by sub-
tracting the cumulative probability of the t-distribution from 1.0 and then doubling 
it. The cumulative probability is given by the pt() function.

    > tstat <- AgeHtCor/CorStdErr   
   > tstat   
   [1] 3.438024   
   > pt(tstat,30)   
   [1] 0.99913   
   > 2.0*(1.0 - pt(tstat,30))   
   [1] 0.001740163     

 This is highly signifi cant, so there is strong evidence for an association between 
age and height. We would, of course, expect that people do not keep growing lin-
early much beyond 20 years of age—so there is good reason to anticipate a nonlin-
ear relationship. For a nonlinear but nondecreasing relationship, we should use the 
Spearman rank correlation coeffi cient instead of the Pearson version. The Spearman 
version is obtained by converting the data to rank numbers, and then doing compu-
tation on the ranks instead of the raw data.

    > # Compute the Spearman rank correlation coeffi cient.   
   > cor(age,height,method=”spearman”)   
   [1] 0.5574132     

 The fact that Spearman version is larger than the Pearson version supports 
nonlinearity. 

 The cor() function will compute correlations between the several variables in a 
data frame all at once to produce a correlation matrix. However, factors must be 
considered as effectively being missing data. A matrix is a row–column array of 
values, all of which are basically of the same type. A correlation matrix has the 
same number of rows and columns, and it is symmetric about the upper-left to 
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lower-right diagonal—so it has redundant entries. The elements on the diagonal 
represent a relation of a variable with itself, which is always perfect so 1.0 appears 
on the entire diagonal. We delete the Not-Applicable factor entries to obtain the 
matrix for other variables.

        

   Probability Distributions 

 This is a convenient place to note that several other probability distributions are 
available in  R  to be used in a manner like we used the t-distribution through the pt() 
function. The version of a function beginning with the letter p is used to fi nd prob-
abilities. The version of the function beginning with the letter q is used for the 
inverse purpose to fi nd quantiles of the distribution corresponding to specifi ed 
cumulative probabilities. Among these are:
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      Regression and Modeling of Relations 

 In regression and related analysis, we use one or more so-called independent vari-
ables to account for (model) the variation in a dependent variable. The independent 
variables are effectively the hypothesized drivers of the relationship, and the depen-
dent variable is the response.  R  has elaborate facilities for specifying and producing 
such models, with the tilde ~ being used as a short-hand for “modeled by”. The lm() 
or linear model facility is a primary one for such purposes. 

 Let us begin by modeling height as a simple linear function of age.

       

 HtAgeModl is now a “model object” in R that contains the fi tted model as: 

 ht = 150.2821 + 0.6039age 

 along with ancillary information that can be extracted by summary(HtAgeModl) 
command. We now show this model line on a scatterplot.

    > abline(HtAgeModl)           
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To predict height from a given age with our simple model, we fi nd the age on the 
 X -axis, then move up vertically to the line, and across to the height on the  Y -axis. 
If we request a summary of our model, we get:
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 We note that the “Multiple R-squared” of 0.2826 is the square of the value 
0.5316 that we obtained earlier for the Pearson correlation coeffi cient with the cor() 
function. A residual is the difference between an actual value of height and its value 
as predicted from our age model, or the vertical distance from the point down to the 
trend line. A standard error is given for each coeffi cient, and dividing the coeffi -
cient by the standard error gives the t-value, both of which are highly signifi cant in 
our case. 

 We can get a vector object of predictions for all the data cases with the 
command:

    > HtAgePred <- predict(HtAgeModl)     

 And then, we obtain a vector object of case residuals as:

    > HtAgeRes <- height - HtAgePred     

 We can then plot actual values against predictions:

    > plot(HtAgePred,height)     

 The fi tted() command is an alternative to predict() with regard to observed 
cases.       
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We can also plot residuals against case numbers (index), where we note that 
omitting the second argument to the plot() command will give a plot on the  Y -axis 
versus case index number on the  X -axis.

    > plot(HtAgeRes)           
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We should note particularly the large residual for case number 20 which is up all 
by itself. The modern regression analyst would also want a display of special regres-
sion diagnostics for residuals that is best obtained by altering the layout for plots 
and then restoring the default afterwards.

    > par(mfrow=c(2,2),mex=0.6)   
   > plot(HtAgeModl)   
   > par(mfrow=c(1,1),mex=1)     

 Here, the par() command alters the plotting parameters.       
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We should not be satisfi ed with a model that is under suspicion for potential 
improvement, as we suspect from cessation of height growth with advancing age—
particularly, when the diagnostic plots indicate problems with outliers. 

 Let us return to the plot of actual against predicted heights, and sketch in an 
empirical trend with the lowess() command (missing data not allowed). We also 
take advantage of the identify() capability in the plotting facility to check on points 
which we fi nd of interest. When this is invoked, pressing the left mouse button on a 
point in the plot will label it. When all points of interest have been labeled, then 
press the right mouse button to stop.
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This plot shows both evidence of outliers and nonlinearity, with cases 1 and 20 
also being fl agged as outliers by the foregoing regression diagnostics panel. 
Therefore, further modeling work is needed. A next step would usually involve 
dropping some outliers and using a quadratic polynomial predictor. A model for 
quadratic polynomial could be:

    > QuadModl <- lm(height~ age + I(age^2))     

 The I() designation is used as a wrapper to keep what is inside from being inter-
preted as modeling symbols instead of squaring age. It is possible to experiment 
with many models very quickly in  R  by using the following modeling symbology:

    + means include a term in the model;   
   − means delete a term from the model;   
   * means include interaction terms;   
   / means nesting of terms in the model;   
   | means conditioning of terms in the model;   
   : means interaction.       
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 This workshop assumes that you are acquainted with starting  R , entering commands, 
reading data frames from fi les, doing exploratory data summaries with  R , and fi tting 
basic regression models with the lm() facility of  R . In this workshop, we look 
at analysis of variance (AOV or ANOVA) models using categorical factors and 
analysis of covariance (ANCOVA) models that combine categorical factors and 
regression variables. 

   Single-Factor Models 

 A single-factor model looks for differences in a response variable associated with 
levels of a categorical factor variable. We can have different numbers of cases for 
the different levels in this relatively simple case. However, lack of such balance 
among levels will considerably complicate multifactor situations. We start again 
with the data on total lung capacity presented by Altman (1991). Practical statistics 
for medical research (Exercise 12.5, 10.1) published by Chapman & Hall as 
recorded in lungcap.txt fi le from preceding workshops. Thus, we initially read into 
a data frame, check variable names, declare sex factor, request a summary, and 
attach the frame.

   Appendix 5
R~Workshop IV—Analysis of Variance 
and Covariance 
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 The editing of LungCap into the Check object was done to see what levels occur 
in the sex variable so that the factor declaration can be accomplished. The Check 
object is then removed with the rm() command. 

 We proceed to do the simplest kind of AOV with a single factor having two 
levels, which could also be approached with a two-sample t-test. The F-statistic 
from AOV will be the same as the square of the t-statistic in a two-sample test. Let 
us do the two-sample t-test as a preliminary, and also plot parallel box plots. The 
response variable is total lung capacity (tlc) and the factor is sex.

       

 The difference is very highly signifi cant with females having lower tlc than 
males.

    > boxplot(tlc~sex)           
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Notice that the male having lung capacity of 3.8 is considered an outlier, whereas 
this is not an outlier value for females.

       

 The immediate result of the aov() facility is information on sum of squares and 
degrees of freedom without even a test statistic. An F-statistic can be obtained by 
dividing each sum of squares by its degrees of freedom to get the respective mean 
squares, and then dividing the mean square for sex by the mean square for residuals 
to give F=13. 4635 which is the square of the earlier t-statistic apart from rounding. 
However, the usual summary() command will give us a more complete analysis of 
variance table.       
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This is a conventional analysis of variance table in which the fi rst column is 
source of variation, second column is degrees of freedom, third column is sum of 
squares, fourth column is mean square, fi fth column is F-statistic, and sixth column 
is probability of the F-statistic. Again, the probability is same as for the earlier 
t-statistic aside from vagaries of computational considerations. However, there is 
still no information on the respective response means by level. To get at this, we 
need to use a different mode of summary.

       

 Still it is not clear, however, what the means of the response variable are for the 
respective levels of sex. A clue will make this clear. Notice that the Intercept is the same 
as the mean for Female given by the earlier two-sample test. The sexMale coeffi cient 
is the difference between the mean for Males and the mean for Females. Thus,

    Male mean = 5.1981 + 1.7788 = 6.9769     

 The fact that the sexMale coeffi cient is positive indicates that it must be added to 
the Intercept mean. The level chosen to serve as the Intercept is the one for which the 
name is alphabetically fi rst—in this case Female. Note also that standard error given 
for sexMale is the standard error of a difference, not of the sexMale mean itself.  

   Two-Way Factorial AOV 

 For convenience of illustration, we now switch to a fi ctitious dataset created to show 
features of a two-way factorial arrangement. There are two factors, which we will 
call simply FactrA and FactrB. FactrA has three levels, which we will call A1, A2, 
and A3. FactrB has two levels, which we will call B1 and B2. The response variable 
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will be called OutCome. A listing of data to be entered in a fi le named whatif.txt is 
as follows.

       

 The  R  commands to bring this in as a data frame called WhatIf are as follows:       

 

Instead of going through the mechanics of extracting the means for treatments 
from model output, let us use the tapply() command to create a table of means 
before doing the analysis of variance.

       

 There are three replications for each of the treatment combinations, so this is a 
“balanced” design that is relatively straightforward to analyze. There are three types 
of “effects” to be investigated: an overall (or main) effect of FactrA, an overall 
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(or main) effect of FactrB, and “interaction” effects of FactrA and FactrB. The 
interaction is concerned with whether the effect of FactrA may be specifi c to the 
level of FactrB and vice versa. The degrees of freedom for the FactrA main effect is 
one less than the levels (3–1 = 2), and for the FactrB main effect (2–1 = 1). The 
degrees of freedom for interaction is (Alevels − 1) × (Blevels − 1) = (3 – 1) × (2 – 1) = 2
. The remainder of the  n  − 1 = 18 − 1 = 17 total degrees of freedom are called “error” 
degrees of freedom because they refl ect variation among the experimental units that 
are not within the capability of the investigator to control without better facilities 
and more uniform units. 

 We proceed to compute a “maximal model” including all of the potential effects.

       

 We see that each of our “effects” has a line in the AOV table and the “Residuals” 
comprise entirely of the “error” degrees of freedom. Both of the “main” effects are 
very highly signifi cant, but the probability of observing this kind of interaction by 
chance is more than double the usual 5% criterion. Since we should not recognize 
effects that are not signifi cant in our model, it is appropriate to formulate a “reduced” 
model without the interaction which will incorporate the degrees of freedom for 
interaction into residuals.

       

 We now have an appropriate model in which all of the recognized effects are 
signifi cant. Note the difference in the way the two models are specifi ed. The * in the 
fi rst model says to recognize both main effects and interaction. The + sign in the 
second model adds only the Bfactr main effect to the Afactr main effect. 

 As a matter of curiosity, let us change the OutCome values where Afactr = “A1” 
and Bfactr = “B1” from 35 30 27 to 10 15 12 and then do a new maximal model.

       

 Now all three types of effects are signifi cant, with the signifi cant interaction indi-
cating that Afactr and Bfactr behave differently in combination than separately.
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 The mean of B1 is now less than B2 when in company with A1, but otherwise the 
mean of B1 is greater than that of B2.  

   Split-Plot, Nesting, and Random Effects 

 What is all too often not appreciated is that the perspective on data and nature of 
modeling confers the meaning, rather than necessarily the numbers themselves. This 
is well illustrated by the difference between factorial structure and split-plot structure 
for data. In a factorial structure, the experimental units are randomized individually 
so that all have the same chance of receiving every treatment combination. 

 In a split-plot approach, the different treatment factors are randomized in stages 
and differ in the scope of units at each stage. For example, we might have larger 
plots for Afactr than for Bfactr, with Bfactr levels being allocated to plots that are 
half the size for Afactr levels. Thus, Afactr is randomly allocated to large plots, and 
then a random choice is made as to which half of the Afactr plot gets which level of 
Bfactr. Note carefully, however, that each large Afactr plot still gets the same two 
Bfactr levels. This calls for a column in the data fi le to identify a replicate and inclu-
sion of an Error() specifi cation in the model, since different effects have different 
residual mean square denominators for the F-tests. A nested design might differ 
from a split-plot in that measurements are taken on subplots of large plots without 
having exactly the same set of subplot conditions in each larger plot. This would 
entail random effects at the subplot level and a mixed-effects model. This under-
scores the importance of conceiving the model in advance and learning appropri-
ately sophisticated modeling features of R.  

   Analysis of Covariance 

 An analysis of covariance (ANCOVA) model is one which has both categorical fac-
tors and regular measured variables that are (suspected of being) related to the 
response variable. For a basic encounter with this type of model, we refer again to 
the total lung capacity data with which we began this workshop. The variables are 
age, sex, height, and total lung capacity (tlc). We might be interested again in know-
ing whether there is a difference for sex beyond any differences associated with 
heights. This is a dual problem in regression and analysis of variance, since we 
consider the possibility that each sex may have a different regression line for tlc on 
height; that is, differing in either slope or intercept. This illustrates in more detail the 
protocol of starting with a maximal model and removing effects that are not signifi cant 
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in reduced models. We will not make any use of the age variable for present purposes. 
We approach this more like a regression analysis, since we will use the lm() linear 
model facility instead of the aov() facility in  R . Accordingly, we begin with a maxi-
mal model that allows for difference in both slope and intercept by sex—that is, 
interaction of sex and height with regard to tlc.

       

 This leads us to believe that height is a signifi cant consideration in relation to 
total lung capacity, but that sex is not. This is interesting since we earlier saw that 
sex was signifi cant without considering height. The other way we could have speci-
fi ed the model is with sex before height

       

 This reverse order casts a different light on the matter, since sex and height both 
appear to be signifi cant. The moral of the story here is that order of consideration 
makes a difference in analysis of covariance, and this is also true for analysis of vari-
ance when balance is lacking. However, we still need to decide what to do about it. 
A preliminary step is to eliminate the interaction that is not signifi cant in either model, 
and which corresponds to differences in slopes of the regression of tlc on height.
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 With the reduced model in either order, it seems clear that height is signifi cant. 
Sex is not signifi cant when considered after height, but it is before. The logical con-
clusion is the effect of sex is expressed as difference in height, and height makes a 
difference with respect to lung capacity. In other words, the linkage of sex to lung 
capacity is through height. We can do one more thing, which is to fi t a further 
reduced model with height alone.

       

 We note that the aov version of summary does not give us the coeffi cients of the 
regression line, so we request a simple summary.

       

 In more complex circumstances, the way to assess the effect of a model reduction 
is to compare the difference in residuals of the reduced and unreduced models by 
anova().

 

 The F-test for reduction indicates that the deleted component can be eliminated.   
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     A  – (In Chap.   14    ): Matrix for eigen extraction in discriminant (canonical axis) 
analysis.  

   B  – (In Chap.   14    ): Between-groups (I, II, and III) covariance matrix.  
   B6C  – Covariance matrix of BAMBI6 data frame.  
   B6E  –  R  object containing eigen analysis for B6C matrix.  
   B6T  – Matrix of eigenvectors for B6C matrix.  
   B6V  – Vector of eigenvalues for B6C matrix.  
   B6Y  – Data matrix of decorrelated (principal component score) data from transfor-

mation of BAMBI6 data.  
   BAMBI  – Data frame containing bird and mammal biodiversity information for 

hexagonal cells in Pennsylvania, including hexagon identifi cation numbers.  
   BAMBI6  – Data frame containing bird and mammal biodiversity information for 

hexagonal cells in Pennsylvania, but excluding hexagon identifi cation numbers 
(same data as for BAMBIV data frame).  

   BAMBIR  – Rank conversion of variates in BAMBIV data frame, with ranking 
being worst fi rst.  

   BAMBIS  – Standardized version of BAMBIV, whereby all variates have mean = 0 
and standard deviation = 1.  

   BAMBISmean  – Vector of mean values for standardized variates in BAMBIS data 
frame, used to show that all means are zero.  

   BAMBISpc  – Data frame of principal component scores computed from BAMBIS 
data frame, with sign reversals for selected components.  

   BAMBISpca  – Results of principal component analysis for BAMBIS data frame.  
   BAMBISsd  – Vector of standard deviation values for standardized variates in 

BAMBIS data frame, used to show that all standard deviations are one.  
   BAMBIV  – Data frame containing bird and mammal biodiversity information for 

hexagonal cells in Pennsylvania, but excluding hexagon identifi cation numbers.  
   BAMBIVcv  – Vector of coeffi cient of variation values of variates in BAMBIV data 

frame.  
   BAMBIVmean  – Vector of mean values of variates in BAMBIV data frame.  
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   BAMBIVsd  – Vector of standard deviation values of variates in BAMBIV data 
frame.  

   Border  – Data frame of border zone(s) for select sector in the Ridge & Valley 
Physiographic Region.  

   BorderIDs  – Hexagon IDs for border zone(s) of select sector in the Ridge & Valley 
Physiographic Region.  

   BordrID  – Hexagon IDs for border zone(s) of select sector regarding vertebrate 
species diversity in the Ridge & Valley Physiographic Region.  

   BorderOrd  – Salient scaling for hexagons in border zone(s) of select sector in the 
Ridge & Valley Physiographic Region.  

   BordrOrd  – Salient scaling for hexagons in border zones(s) of select sector regard-
ing vertebrate species diversity in the Ridge & Valley Physiographic Region.  

   BorderRnks  – Place rankings for indicators in border zone(s) of select sector in the 
Ridge & Valley Physiographic Region.  

   BordrRnks  – Place rankings for indicators in border zone(s) of select sector regard-
ing vertebrate species diversity in the Ridge & Valley Physiographic Region.  

   Bordrsp  – Data frame of border zone(s) for select sector regarding vertebrate spe-
cies diversity in the Ridge & Valley Physiographic Region.  

   BSE  –  R  object containing eigen analysis for BSC matrix.  
   BSC  – Covariance matrix of BAMBIS data frame, with BAMBIS data frame con-

sisting of standardized data for BAMBI data frame. Therefore, BSC is also the 
correlation matrix for both BAMBI and BAMBIS data frames.  

   BST  – Matrix of eigenvectors for BSC matrix.  
   BSV  – Vector of eigenvalues for BSC matrix.  
   BSY  – Data matrix of decorrelated (principal component score) data from transfor-

mation of BAMBIS data.  
   C  – (In Chap.   14    ): Collective covariance matrix for BAMBIS data.  
   CasPlacRnk5  – Place rankings for cases on fi rst fi ve BAMBI variates with 

hexagon IDs.  
   CasRnkStat5  – Representative rank order statistics for cases on fi rst fi ve BAMBI 

variates with hexagon IDs.  
   Centr11  – Centroids (mean vectors) of 11 kmeans clusters of hexagons obtained 

from fi ve principal components and expressed in terms of original measurement 
scales for variates.  

   Centr11PC  – Centroids (mean vectors) of 11 kmeans clusters of hexagons obtained 
from fi ve principal components and expressed in terms of (reoriented) principal 
component scores.  

   Centr11R  – Centroids (mean vectors) of 11 kmeans clusters of hexagons obtained 
from principal components and expressed in terms of (worst fi rst) ranks of 
variates.  

   Centr11S  – Centroids (mean vectors) of 11 kmeans clusters of hexagons obtained 
from fi ve principal components and expressed in terms of standardized measure-
ment scales for variates.  

   Centr12  – Centroids (mean vectors) of 12 hierarchical clusters of hexagons obtained 
from fi ve principal components and expressed in terms of original measurement 
scales for variates.  
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   Centr12PC  – Centroids (mean vectors) of 12 hierarchical clusters of hexagons 
obtained from fi ve principal components and expressed in terms of (reoriented) 
principal component scores.  

   Centr12S  – Centroids (mean vectors) of 12 hierarchical clusters of hexagons 
obtained from fi ve principal components and expressed in terms of standardized 
measurement scales for variates.  

   ClusPC4  – Hierarchical clusters of hexagon cases based on four principal 
components.  

   ClusPC5  – Hierarchical clusters of hexagon cases based on fi ve principal 
components.  

   ClusPC5hts  – Top-down vector of disparities (dendrogram heights) between hierar-
chical clusters of hexagon cases based on fi ve principal components.  

   ClusPC6  – Hierarchical clusters of hexagon cases based on six principal 
components.  

   CmplmntOrd  – Salient scaling for hexagons regarding complementary vertebrate 
species diversity in the Ridge & Valley Physiographic Region.  

   Cntngn4  – Case place-rank data on fi rst fi ve variates of hexagons in contingent 4.  
   Cntngn4RR  – Representative rank order statistics on fi rst fi ve variates for hexagons 

in contingent 4.  
   Cntngn5RR  – Representative rank order statistics on fi rst fi ve variates for hexagons 

in contingent 5.  
   Cntngn6RR  – Representative rank order statistics on fi rst fi ve variates for hexagons 

in contingent 6.  
   Cntngn7RR  – Representative rank order statistics on fi rst fi ve variates for hexagons 

in contingent 7.  
   Cntngn10RR  – Representative rank order statistics on fi rst fi ve variates for hexa-

gons in contingent 10.  
   Cntngn5  – Case place-rank data on fi rst fi ve variates of hexagons in contingent 5.  
   Cntngn6  – Case place-rank data on fi rst fi ve variates of hexagons in contingent 6.  
   Cntngn7  – Case place-rank data on fi rst fi ve variates of hexagons in contingent 7.  
   Cntngn10  – Case place-rank data on fi rst fi ve variates of hexagons in contingent 10.  
   Cntngnt  – Hexagon membership in 11 kmeans clusters based on fi ve principal com-

ponents and designated as factor levels for construction of classifi cation tree.  
   CntngORD2  – ORDIT ordering of ORDIT orderings obtained from CntngOrdr2 

data frame.  
   CntngOrdr2  – Data frame combining ORDIT ordering of contingents from 

quartiles of representative ranks with ORDIT orderings from three fi rst PCO 
axes and three second PCO axes.  

   CntngnTree  – Classifi cation tree for 11 kmeans clusters (based on fi ve principal 
components) in terms of hexagon variates on original measurement scales.  

   CONTINGN  – Data frame of hexagon ID numbers and contingent numbers.  
   Contngt  – Data frame of hexagon ID numbers and contingent numbers.  
   Dispar4pc  – Euclidean distances between hexagon cases using four principal 

components.  
   Dispar5pc  – Euclidean distances between hexagon cases using fi ve principal 

components.  
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   Dispar6pc  – Euclidean distances between hexagon cases using six principal 
components.  

   Dist11  – Distances between centroids of 11 contingents of hexagons as scaled on 
original measurements.  

   Dist11R  – Distances between centroids of 11 contingents of hexagons as scaled on 
place ranks.  

   Dist11S  – Distances between centroids of 11 contingents of hexagons as scaled on 
standardized variates.  

   DistlData5  – Distal data for place ranks of fi rst fi ve variates of BAMBI data.  
   EcoLogic  – Data frame of place ranks for ecological value and ecological sensitiv-

ity in Italian case study.  
   EcoSntvR  – Place ranks of ecological sensitivity indicators for Italian case study.  
   EcoValuR  – Place ranks of ecological value indicators for Italian cases study.  
   Egns  – Eigen analysis for canonical (discriminant) axis analysis of Groups I, II, 

and III.  
   Hclus7  – Cluster membership of hexagons in seven hierarchical clusters obtained 

from fi ve principal components.  
   H  – (In Chap.   14    ): Transformation matrix for canonical (discriminant) variates of 

Groups I, II, and III.  
   Hclus12  – Cluster membership of hexagons in 12 hierarchical clusters obtained 

from fi ve principal components.  
   HexNmbrs  – Vector of hexagon ID numbers.  
   HexSet  – Set of hexagons in select sector of Ridge & Valley Physiographic 

Region.  
   HexSetsp  – Set of hexagons in select sector for vertebrate species richness and for-

est cover in Ridge & Valley Physiographic Region.  
   HumPresR  – Place ranks of human pressure indicators for Italian case study.  
   ID4  – Hexagon ID numbers of hexagons in contingent 4.  
   ID5  – Hexagon ID numbers of hexagons in contingent 5.  
   ID6  – Hexagon ID numbers of hexagons in contingent 6.  
   ID7  – Hexagon ID numbers of hexagons in contingent 7.  
   ID10  – Hexagon ID numbers of hexagons in contingent 10.  
   IDTopRR  – Hexagon ID numbers of hexagons in TopRR pool.  
   IDtops  – Hexagon ID numbers of hexagons in Toppings pool.  
   IhexG  – Canonical variates (discriminant axis) data for Group I.  
   IIhexG  – Canonical variates (discriminant axis) data for Group II.  
   IIIhexG  – Canonical variates (discriminant axis) data for Group III.  
   IhexS  – Standardized data for hexagons in contingents 1, 2, and 3 as Group I.  
   IIhexS  – Standardized data for hexagons in contingents 6, 8, 9, and 11 as Group II.  
   IIIhexS  – Standardized data for hexagons in contingents 4, 5, 7, and 10 as Group III.  
   KdataPC5  – Principal component scores for fi rst fi ve (reoriented) components 

from BAMBISpc data frame.  
   KeyRnks11  – Representative ranks for 11 contingents across cases in contingent.  
   Klus11  – Hexagon membership in 11 kmeans clusters based on fi ve principal 

components.  
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   Klus11siz  – Sizes of 11 kmeans clusters of hexagons based on fi ve principal 
components.  

   Klus12  – Hexagon membership in 12 kmeans clusters based on fi ve principal 
components.  

   Klus12siz  – Sizes of 12 kmeans clusters of hexagons based on fi ve principal 
components.  

   Kmeans11PC  – Eleven kmeans clusters of hexagon cases based on fi ve principal 
components, starting from centroids for 11 hierarchical clusters.  

   Kmeans12PC  – Twelve kmeans clusters of hexagon cases based on fi ve principal 
components, starting from centroids for 12 hierarchical clusters.  

   KstartPC5  – Centroids (mean vectors) of 12 hierarchical clusters of hexagons 
obtained from fi ve principal components and expressed in terms of fi rst fi ve 
(reoriented) principal component scores.  

   KstrtPC5  – Centroids (mean vectors) of 11 hierarchical clusters (excluding hierar-
chical cluster 4 of KstartPC5).  

   L  – (In Chap.   14    ): First for vector length, then for Cholesky decomposition of 
pooled within-groups (I, II, and III) covariance matrix.  

   M  – (In Chap.   14    ): Diagonal matrix of multipliers for rescaling.  
   MisMatch  – Median mismatches for place ranks of fi rst fi ve variates of BAMBI 

data.  
   MixModeRnks  – Place ranks for centroids of 11 contingents on all six original 

BAMBI variates.  
   MixModeRnkS  – Place ranks for centroids of 11 contingents on all six standard-

ized BAMBI variates.  
   Nabors  – K nearest neighbors for centroids of 11 contingents of hexagons using 

standardized measurement scales for the 6 variates.  
   NaborS  – K nearest neighbors in principal coordinate space for centroids of 11 

contingents of hexagons, with principal coordinates based on standardized 
variates.  

   NetFram  – Network of neighbors on principal coordinates based on original scales 
of variates for centroids of contingents comprising PCOss subset.  

   NetFramS  – Network of neighbors on principal coordinates based on standardized 
scales of variates for centroids of contingents comprising PCOss subset.  

   NetFrame  – Network of neighbors on principal coordinates for centroids of 11 
contingents of hexagons, with the principal coordinates based on original 
measurements.  

   NetFrameS  – Network of neighbors on principal coordinates for centroids of 11 
contingents of hexagons, with the principal coordinates based on standardized 
variates.  

   PCO11  – Principal coordinates for centroids of 11 contingents of hexagons by mul-
tidimensional scaling on original measurements.  

   PCO11R  – Principal coordinates for centroids of 11 contingents of hexagons by 
multidimensional scaling on place-ranked variates.  

   PCO11S  – Principal coordinates for centroids of 11 contingents of hexagons by 
multidimensional scaling on standardized measurements.  
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   PCOblock  – Rearrangement of PCOcombo to approximate block diagonal struc-
ture in for correlation matrix.  

   PCOcntr11  – Reoriented principal coordinates for centroids of 11 contingents of 
hexagons by multidimensional scaling on original measurements.  

   PCOcntr11R  – Reoriented principal coordinates for centroids of 11 contingents of 
hexagons by multidimensional scaling on place-ranked variates.  

   PCOcntr11S  – Reoriented principal coordinates for centroids of 11 contingents of 
hexagons by multidimensional scaling on standardized variates.  

   PCOcntr11ss  – Centroids for skeletal subset for principal coordinates based on 
original variates.  

   PCOcntr11Sss  – Centroids for skeletal subset for principal coordinates based on 
standardized variates.  

   PCOcombo  – Data frame combining three sets of PCO variates.  
   PCOord1  – ORDIT ordering of contingents on three PCO axis 1 scales.  
   PCOord2  – ORDIT ordering of contingents on three PCO axis 2 scales.  
   ProdOrd4  – Salient scaling on fi rst fi ve variates for hexagons in contingent 4.  
   ProdOrd5  – Salient scaling on fi rst fi ve variates for hexagons in contingent 5.  
   ProdOrd6  – Salient scaling on fi rst fi ve variates for hexagons in contingent6.  
   ProdOrd7  – Salient scaling on fi rst fi ve variates for hexagons in contingent 7.  
   ProdOrd10  – Salient scaling on fi rst fi ve variates for hexagons in contingent 10.  
   ProdOrdTops  – Salient scaling on fi rst fi ve variates for hexagons in Toppings 

pool.  
   PrOr4MnMdMx  – Salient scaling on minimum, median, and maximum represen-

tative ranks for hexagons in contingent 4.  
   PrOr5MnMdMx  – Salient scaling on minimum, median, and maximum represen-

tative ranks for hexagons in contingent 5.  
   PrOr6MnMdMx  – Salient scaling on minimum, median, and maximum represen-

tative ranks for hexagons in contingent 6.  
   PrOr7MnMdMx  – Salient scaling on minimum, median, and maximum represen-

tative ranks for hexagons in contingent 7.  
   PrOr10MnMdMx  – Salient scaling on minimum, median and maximum represen-

tative ranks for hexagons in contingent 10.  
   PrOr4MnMx  – Salient scaling on minimum rank and maximum rank for hexagons 

in contingent 4.  
   PrOr5MnMx  – Salient scaling on minimum rank and maximum rank for hexagons 

in contingent 5.  
   PrOr6MnMx  – Salient scaling on minimum rank and maximum rank for hexagons 

in contingent 6.  
   PrOr7MnMx  – Salient scaling on minimum rank and maximum rank for hexagons 

in contingent 7.  
   PrOr10MnMx  – Salient scaling on minimum rank and maximum rank for hexa-

gons in contingent 10.  
   PrOrTopRRMnMx  – Salient scaling on minimum and maximum representative 

ranks of fi rst fi ve variates for hexagons in TopRR pool.  
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   PrOrTopRRMnMdMx  – Salient scaling on minimum, median, and maximum 
 representative ranks of fi rst fi ve variates for hexagons in TopRR pool.  

   Q  – (In Chap.   14    ): Inverse of Cholesky decomposition of pooled within-groups 
(I, II, and III) covariance matrix.  

   Ranges  – Vector of ranges for variates in BAMBIV data frame.  
   RVcmplmnt  – Complementary ratings of hexagons in the Ridge & Valley 

Physiographic Region with regard vertebrate species richness.  
   RVhexID  – Data frame of hexagon ID numbers in the Ridge & Valley Physiographic 

Region.  
   RVhexIDs  – Data frame of hexagon ID numbers in the Ridge & Valley Physiographic 

Region.  
   RVhexOrd  – Salient scaling on four variates for hexagons in the Ridge & Valley 

Physiographic Region.  
   RVhexOrds  – Salient scaling on vertebrate species richness and percent forest 

cover for hexagons in the Ridge & Valley Physiographic Region.  
   RVhexRank  – Data frame of place ranks for four variates of hexagons in the Ridge 

& Valley Physiographic Region.  
   RVhexRnk  – Data frame of place ranks for vertebrate species richness of hexagons 

in the Ridge & Valley Physiographic Region.  
   RVhexs  – Data frame of four variates for hexagons in the Ridge & Valley 

Physiographic Region.  
   RVhexsp  – Data frame of vertebrate species richness for hexagons in the Ridge & 

Valley Physiographic Region.  
   RVpairs  – Data frame of hexagon neighbors and largest open patch for hexagons in 

the Ridge & Valley Physiographic Region.  
   RVpairsp  – Data frame of hexagon neighbors and percent forest for hexagons in 

the Ridge & Valley Physiographic Region.  
   Salnt11Q2Q3  – Salient scaling of 11 contingents based on product-order relation 

for second and third quartiles of representative ranks.  
   Salnt11Q1Q2Q3  – Salient scaling of 11 contingents based on product-order rela-

tion for quartiles of representative ranks.  
   SalntEcol  – Salient sequence of ecological value and ecological sensitivity for 

Italian case study.  
   SalntEcols  – Case-ordered joint salient scaling of ecological value and ecological 

sensitivity for Italian case study.  
   SalntHumn  – Salient sequence of human pressure for Italian case study.  
   SalntHumns  – Case-ordered salient scaling of human pressure for Italian case 

study.  
   SalntPCO  – Data frame combining salient scalings from SalntPCO11, SalntPCO11R, 

and SalntPCO11S.  
   SalntPCO11  – Salient scaling of 11 contingents based on product-order relation for 

principal coordinates of centroids according to original scaling of variates.  
   SalntPCO11R  – Salient scaling of 11 contingents based on product-order relation 

for principal coordinates of centroids according to place ranks of variates.  



292 Appendix 6

   SalntPCO11S  – Salient scaling of 11 contingents based on product-order relation 
for principal coordinates of centroids according to standardized scaling of 
variates.  

   Salnts  – Data frame of salient scalings for three suites of indicators in Italian case 
study.  

   SalntSntv  – Salient sequence of ecological sensitivity for Italian case study.  
   SalntSntvs  – Case-ordered salient scaling of ecological sensitivity for Italian case 

study.  
   SalntValu  – Salient sequence of ecological value for Italian case study.  
   SalntValus  – Case-ordered salient scaling of ecological value for Italian case 

study.  
   ToppingOrd  – Partial pool placements for hexagons in Toppings pool.  
   Toppings  – Pool of selected well-placed hexagons from contingents 4, 5, 6, 7, and 

10 according to salient scaling on fi rst fi ve variates.  
   ToppingAA  – Aggregate advantage levels for hexagons in Toppings pool.  
   ToppingSS  – Subordinate step levels for hexagons in Toppings pool.  
   TopRR  – Pool of selected well-placed hexagons from contingents 4, 5, 6, 7, and 10 

according to salient scaling of representative ranks for fi rst fi ve variates.  
   TopRRof4  – Selected well-placed hexagons in contingent 4 according to salient 

scaling of representative ranks.  
   TopRRof5  – Selected well-placed hexagons in contingent 5 according to salient 

scaling of representative ranks.  
   TopRRof6  – Selected well-placed hexagons in contingent 6 according to salient 

scaling of representative ranks.  
   TopRRof7  – Selected well-placed hexagons in contingent 7 according to salient 

scaling of representative ranks.  
   TopRRof10  – Selected well-placed hexagons in contingent 10 according to salient 

scaling of representative ranks.  
   TopRRord  – Partial pool placements based on minimum and maximum representa-

tive ranks for hexagons in TopRR pool.  
   TopRRSS  – Subordinate step levels based on minimum and maximum representa-

tive ranks for hexagons in TopRR pool.  
   TopRRSSmmm  – Subordinate step levels based on minimum, median and maxi-

mum representative ranks for hexagons in TopRR pool.  
   TopRRAA  – Aggregate advantage levels based on minimum and maximum repre-

sentative ranks for hexagons in TopRR pool.  
   TopRRAAmmm  – Aggregate advantage levels based on minimum, median and 

maximum representative ranks for hexagons in TopRR pool.  
   TopRRordmmm  – Partial pool placements based on minimum, median and maxi-

mum representative ranks for hexagons in TopRR pool.  
   TopsOf4  – Selected well-placed hexagons in contingent 4 according to salient scal-

ing on fi rst fi ve variates.  
   TopsOf5  – Selected well-placed hexagons in contingent 5 according to salient scal-

ing on fi rst fi ve variates.  
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   TopsOf6  – Selected well-placed hexagons in contingent 6 according to salient 
 scaling on fi rst fi ve variates.  

   TopsOf104  – Selected well-placed hexagons in contingent 10 according to salient 
scaling on fi rst fi ve variates.  

   V  – (In Chap.   14    ): Eigenvectors for canonical axis (discriminant) analysis of Groups 
I, II, and III.  

   W  – (In Chap.   14    ): Pooled within-groups (I, II, and III) covariance matrix.  
   W1  – Within-group covariance matrix for hexagons in Group I (IhexS).  
   W2  – Within-group covariance matrix for hexagons in Group II (IIhexS).  
   W3  – Within-group covariance matrix for hexagons in Group III (IIIhexS).  
   Xbase  – Basis vectors of BAMBI6 data under decorrelation (principal component) 

transformation as row-wise cases.  
   Xbasis  – Basis vectors of BAMBIS data under decorrelation (principal component) 

transformation as row-wise cases.  
   Xpand  – Hexagons to be annexed onto select sector of Ridge & Valley Physiographic 

Region.  
   Xpands  – Hexagons to be annexed onto select sector of Ridge & Valley Physiographic 

Region with regard vertebrate species richness.           
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