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Preface to the Second Edition 

Since the publication of the first edition a number of developments have had 
major effects on the current state of the art in multiresponse data analysis. 
These include not only significant augmentation of the technology, such as 
enhanced computing power including numerics and graphics, but also major 
statistical methodological developments stimulated in part by real-world 
problems and needs. Diagnostic aids which tend to be mostly graphical, 
robust/resistant methods whose results are not sensitive to deviant behavior of 
real-world data, and cluster analysis techniques for pattern recognition, are just 
a few examples of such methodological developments over the past two 
decades. The scope, structure and applied emphasis of the first edition provide 
a natural setting for many of the new methods. The main objective of the 
second edition is to expand the coverage of methods while retaining the 
framework of the first edition. 

The recent decade has also seen a fundamental change in the paradigm of 
data analysis. While there are differences in the details depending on the specific 
problem at hand, there are some general features of the new paradigm that can 
be contrasted with the more classical approach. For example, the newer 
developments tend to cast solutions in terms of "fitting" functions that are not 
globally parametrized (such as planes fitted to points in p-dimensional space) 
but instead are more "locally" focused and then "pieced together" in some 
fashion (e.g., low-order splines, or even planes), with some form of trade-off 
between "accuracy" and "smoothness" involved in the fitting algorithms. The 
flexibility gained in the richness of the relationships that can be handled, 
including the ability to accommodate nonlinear ones, is often at the expense of 
iterative fitting of several local relationships, and the lack of succinct or 
parsimonious descriptions that are features of the more classical approaches to 
the same problems. Also, distributional models that play a role in statistical 
assessment and inferences in the more classical approaches, tend to be 
deemphasized in the new paradigm. The reliance is on more data-dependent and 
computer-intensive tools, such as resampling (e.g., jackknife, bootstrap, cross 
validation), to provide the basis for inferences and assessments of performance. 

xi 



xii PREFACE TO THE SECOND EDITION 

The methods based on the new paradigm have a great deal of appeal but 
yet, like most things in the context of the complexities of the real world, they 
are not a panacea. With a considerably broadened base of experience, and 
inevitable modifications and adaptations of them, the newer methods will 
eventually perhaps replace the classical techniques. However, for both peda-
gogy and practice, the classical methods will probably be around for quite a 
while. Widely accessible software implementations of the classical techniques, 
as well as the comfort of the familiarity of their conceptual underpinnings, 
suggest that this will be so. 

For the immediate purposes of this second edition, it was tempting to 
incorporate all of the newer developments and integrate them with the more 
classical methods. However, although many of the methods developed since the 
first edition may adopt the classical paradigm rather than the new one, because 
of their number and the wide relevance of their conceptual underpinnings, a 
decision was made to include the details of just some of the newer methods 
that adopt the classical paradigm, and only briefly mention (with appropriate 
references) specific approaches which fall under the new paradigm. Among 
other things, this has enabled a more manageable increase in the volume of 
material to be included in the second edition. Currently, there are a few books 
available that are concerned with methods based on the new paradigm and 
addressed to specific topics of multivariate analysis. Hopefully, one or more of 
the people who have played a central role in the development of multivariate 
data analysis techniques with the new framework, will soon write a compre-
hensive book on these methods. 

New material appears in virtually every chapter of this edition. However, 
there are heavier concentrations in some more than in others. A major 
expansion, reflecting the vigorous development of methods as well as applica-
tions in the field of pattern recognition, is the material on cluster analysis. New 
sections, focused on issues of inputs to clustering algorithms and on the critical 
need for aids in interpreting the results of cluster analysis, have been added. 
Other new material in this edition pertains to useful summarization and 
exposure techniques in Chapter 6 that did not exist at the time of the first 
edition. For instance, descriptions have been added of new graphical methods 
for assessing the separations amongst the eigenvalues of a correlation matrix 
and for comparing sets of eigenvectors. Topics that have been enlarged on, 
largely due to the increased experience with some of the techniques that were 
relatively new at the time of publication of the first edition, include robust 
estimation and a class of distributional models that is slightly broader than the 
multivariate normal in Chapter 5. A new appendix on software, with particular 
reference to the functions available in two widely-used systems, S (or Splus) 
and SAS, is included for help with statistical computing aspects. 

In the light of the decision regarding the second edition, the intended 
audience for it is the same one identified in the preface to the first edition. In 
the years since the first edition was published, the author has been gratified to 
hear from many people in fields of application of multivariate statistical 
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methods that they have found the book useful in their work. These fields have 
ranged from industry, management science and engineering and physical 
sciences to anthropology, biology, behavioral and social sciences, and informa-
tion science. As for pedagogy, the author has used the book as the basis of a 
graduate course in applied multivariate analysis taught at Rutgers University 
with students drawn from various disciplines in addition to statistics. The 
material, combined with projects that involve using the techniques discussed in 
the book for analyzing data from the students' own discipline or job interests, 
has proven to be highly effective. 

I wish to thank the many students who have provided valuable feedback 
about the contents and clarity of the book. Bellcore as an organization and, in 
particular, my research collaborator and friend across the years, Dr. Jon 
Kettenring, deserve special thanks for their support of my work on this edition. 
I am grateful to Suzanne Merten for her patient and cheerful word processing 
help at Bellcore. 

R. GNANADESIKAN 

New Brunswick, New Jersey 
December 1996 



Preface to the First Edition 

This book had its origins in a General Methodology Lecture presented at the 
annual meetings of the American Statistical Association at Los Angeles in 
1966. A more concrete format for the book emerged from a paper (see 
Gnanadesikan & Wilk, 1969) presented at the Second International Sympo-
sium on Multivariate Analysis held at Dayton in June, 1968. That paper 
provided an outline of objectives for organizing the material in the present 
book, although the coverage here is more up to date, extensive, and detailed 
than the one in the paper. Specifically, the book is concerned with the 
description and discussion of multivariate statistical techniques and concepts, 
structured according to five general objectives in analyzing multiresponse data. 
The methods and underlying concepts are grouped according to these five 
objectives, and a chapter of the book is devoted to each objective. 

The book is intended to emphasize methodology and data-based interpre-
tations relevant to the needs of data analysis. As such, it is directed primarily 
toward applied statisticians and users of statistical ideas and procedures in 
various scientific and technological disciplines. However, some issues, arising 
especially out of the newer techniques described in the book, may be of interest 
to theoretical statisticians. Also, there are algorithmic aspects of the procedures 
which numerical analysts may find interesting. 

Portions of the material in this book have been used by the author as the 
basis for a graduate-level series of lectures presented at Imperial College of 
Science & Technology of the University of London in 1969 and at Princeton 
University in 1971. Although the book can thus serve as a text, it differs from 
standard textbooks in not containing exercises. In view of the orientation of 
the book, the natural exercises would be to analyze specific sets of data by 
using the methods described in the text. However, rather than setting such 
exercises, which often tend to be artificial, it would seem to be far more useful 
to expect the students to use the relevant techniques on any real problems 
which they encounter either in their own work or in the course of their being 
consulted for statistical advice on the problems of others. Also, for making the 
purpose and usefulness of a technique more apparent, illustrative examples are 

xv 
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used. Such examples appear throughout the book and constitute an important 
facet of the presentation. 

The coverage in this book is mainly of relatively recent (i.e., within the last 
decade) developments in multivariate methodology. When more classical 
techniques are described, the intention is either to provide a more natural 
motivation for a recent concept or method or to attempt a more complete 
discussion. A thorough review of all multivariate techniques is not a goal of 
the book. Specifically, for instance, no attention is given here to the analysis of 
multiple time series. 

Despite the intention to emphasize relatively recent developments, the book 
inevitably reflects the fact that it was written over a period of six or seven years 
that have seen a spate of publications on multivariate topics. For instance, 
whereas material on cluster analysis written from a statistical viewpoint was 
relatively sparse when Chapter 4 of this book was conceived, there have been 
several recent articles and even whole books (e.g., Everitt, 1974; Hartigan, 
1975) on this topic. 

I am grateful to Bell Telephone Laboratories for its support of my efforts in 
writing this book and for providing so many important facilities without which 
the task could not have been undertaken. I also thank Imperial College and 
Princeton University for providing me with the stimulus and opportunity to 
organize the material for this book. It is a particular pleasure to acknowledge 
the many valuable comments of Professor D. R. Cox at the time of these 
lectures at Imperial College. Thanks are due also to my colleague Dr. J. R. 
Kettenring for his willingness to use parts of this material in a course that he 
taught and for his several helpful comments, based partly on the experience. I 
am deeply indebted to many past and present colleagues for their collaborative 
research efforts with me, which are reflected in various parts of this book. I 
wish also to acknowledge the kind permissions of other authors, several 
journals and publishers (including Academic Press, the American Statistical 
Association, Biometrics, the Biometrika Trustees, the Institute of Mathematical 
Statistics, Methuen & Co., Pergamon Press, Psychometrika, Statistica Neerlan-
dica, and Technometrics) to incorporate material published elsewhere. 

I am grateful to Mrs. M. L. Culp, Miss D. A. Williams, and Mrs J. Charles 
for their careful typing of different parts of the manuscript, and the assistance 
of Messrs. I. L. Patterson and J. L. Warner in collating the exhibits is gratefully 
acknowledged. 

Finally, I express my deepest sense of gratitude to my wife not only for her 
valuable comments but also for her constant encouragement during the writing 
of the book. 

R. GNANADESIKAN 

Murray Hill, New Jersey 
January 1977 



C H A P T E R 1 

Introduction 

Most bodies of data involve observations associated with various facets of a 
particular background, environment, or experiment. Therefore, in a general 
sense, data are always multivariate in character. Even in a narrow sense, when 
observations on only a single response variable are to be analyzed, the analysis 
often leads to a multivariate situation. For example, in multiple linear regres-
sion, or in fitting nonlinear models, even with a single dependent variable, one 
often is faced with correlations among the estimated coefficients, and analyzing 
the correlation structure for possible reparametrizations of the problem is not 
an uncommon venture. 

For the purposes of the present book, a more limited definition of a 
multivariate situation is used: multiresponse (or multivariate) problems are 
those that are concerned with the analysis of η points in p-space, that is, when 
each of η persons, objects, or experimental units has associated with it a 
p-dimensional vector of responses. The experimental units need not necessarily 
constitute an unstructured sample but, in fact, may have a superimposed design 
structure, that is, they may be classified or identified by various extraneous 
variables. One essential aspect of a multivariate approach to the analysis of 
such multireponse problems is that, although one may choose to consider the 
p-dimensional observations from object to object as being statistically indepen-
dent, the observed components within each vector will usually be statistically 
related. Exploitation of the latter feature to advantage in developing more 
sensitive statistical analyses of the observations is the pragmatic concern and 
value of a multivariate approach. 

Most experimenters probably realize the importance of a multivariate 
approach, and most applied statisticians are equally well aware that multivari-
ate analysis of data can be a difficult and frustrating problem. Some users of 
multivariate statistical techniques have, with some justification, even asserted 
that the methods may be unnecessary, unproductive, or misguided. Reasons for 
the frustrations and difficulties characteristic of multivariate data analysis, 
which often far exceed those encountered in univariate circumstances, appear 
to include the following: 

1. It seems very difficult to know or to develop an understanding of what 
one really wants to do. Much iteration and interaction is required. This is also 
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2 INTRODUCTION 

true in the uniresponse case in real problems. Perhaps in the multiresponse case 
one is simply raising this difficulty to the pth power! 

2. Once a multiresponse view is adopted, there is no obvious "natural" 
value of p, the dimensionality of response. For any experimental unit it is 
always possible to record an almost indefinitely large list of attributes. Any 
selection of responses for actual observation and analysis is usually accom-
plished by using background information, preliminary analysis, informal cri-
teria, and experimental insight. On the other hand, the number of objects or 
replications, n, will always have some upper bound. Hence η may at times be 
less than p, and quite often it may not be much greater. These dimensionality 
considerations can become crucial in determining what analyses or insights can 
be attained. 

3. Multivariate data analysis involves prodigious arithmetic and consider-
able data manipulation. Even with modern high-speed computing, many 
multivariate techniques are severely limited in practice as to number of 
dimensions, p, number of observations, n, or both. 

4. Pictures and graphs play a key role in data analysis, but with multi-
response data elementary plots of the raw data cannot easily be made. 
This limitation keeps one from obtaining the realistic primitive stimuli, 
which often motivate uniresponse analyses as to what to do or what models to 
try. 

5. Last, but of great importance and consequence, points in p-space, unlike 
those on a line, do not have a unique linear ordering, which sometimes seems 
to be almost a basic human requirement. Most formal models and their 
motivations seem to grasp at optimization or things to order. There is no great 
harm in this unless, in desperation to achieve the comfort of linear ordering, 
one closes one's mind to the nature of the problem and the guidance which the 
data may contain. 

Much of the theoretical work in multivariate analysis has dealt with formal 
inferential procedures, and with the associated statistical distribution theory, 
developed as extensions of and by analogy with quite specific univariate 
methods, such as tests of hypotheses concerning location and/or dispersion 
parameters. The resulting methods have often turned out to be of very limited 
value for multivariate data analysis. 

The general orientation of the present book is that of statistical data 
analysis, concerned mainly with providing descriptions of the informational 
content of the data. The emphasis is on methodology—on underlying or 
motivating concepts and on data-based interpretations of the methods. Little 
or no coverage is given to distribution theory results, optimality properties, or 
formal or detailed mathematical proofs, or, in fact, to fitting the methods 
discussed into the framework of any currently known formal theory of 
statistical inference, such as decision theory or Bayesian analysis. 
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The framework for the discussion of multivariate methods in this book is 
provided by the following five general objectives of analyzing multiresponse 
data: 

1. Reduction of dimensionality (Chapter 2); 

2. Development and study of multivariate dependencies (Chapter 3); 

3. Multidimensional classification (Chapter 4); 

4. Assessment of statistical models (Chapter 5); and 

5. Summarization and exposure (Chapter 6). 

The classification of multivariate methods provided by these five objectives 
is not intended to be in terms of mutually exclusive categories, and some 
techniques described in this book may be used for achieving more than one of 
the objectives. Thus, for example, a technique for reducing dimensionality may 
also prove to be useful for studying the possible internal relationships among 
a group of response variables. 

With regard to the technology of data analysis, although it is perhaps true 
that this is still in a very primitive state, some important aids either are 
available or are under development. Raw computing power has grown astro-
nomically in recent years, and graphical display devices are now relatively 
cheap and widely available. Much more data-analytic software is to be 
expected in the near future. Hardware-software configurations are being 
designed and developed, for both passive and interactive graphics, as related 
to the needs of statistical data analysis. Graphical presentation and pictorial-
ization are important and integral tools of data analysis. (See Gnanadesikan, 
1973, for a discussion of graphical aids for multiresponse data analysis.) A 
feature common to most of the methods discussed in the subsequent chapters 
of this book is their graphical nature, either implicit in their motivating ideas 
or explicit in their actual output and use. 

In general, the mathematical notation used conforms to familiar conven-
tions. Thus, for instance, a, x , . . . denote column vectors; a', x ' , . . . , row vectors; 
and A, Y, . . . , matrices. Whenever it is feasible and not unnatural, a distinction 
is made between parameters and random variables by using the familiar 
convention that the former are denoted by Greek letters and the latter by 
letters of the English alphabet. Most of the concepts and methods discussed 
are, however, introduced in terms of observed or sample statistics, that is, 
quantities calculated from a body of data. Statistics that are estimates of 
parameters are often denoted by the usual convention of placing a hat ( ) over 
the parameter symbol. 

Equations, figures, and tables that occur as part of the main text are 
numbered sequentially throughout the book. However, no distinction is made 
between figures and tables when they occur in the context of an example, and 
both are referred to as "exhibits." Thus Exhibit 5a is a table of numbers that 
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appears in Example 5, whereas Exhibits 5ft and c both are figures that are part 
of the same example. 

A bibliography is included at the end of the book, and specific items of it 
that are directly relevant to a particular chapter are listed at the end of the 
chapter. An item in the bibliography is always cited by the name(s) of the 
author(s) and the year of publication. Thus Gnanadesikan (1973), 
Gnanadesikan & Wilk (1969), Kempthorne (1966), Tukey (1962), and Tukey 
& Wilk (1966) are specifically relevant references for the present chapter. 



C H A P T E R 2 

Reduction of Dimensionality 

2.1. GENERAL 

The issue in reduction of dimensionality in analyzing multiresponse data is 
between attainment of simplicity for understanding, visualization, and interpre-
tation, on the one hand, and retention of sufficient detail for adequate 
representation on the other hand. 

Reduction of dimensionality can lead to parsimony of description, of 
measurement, or of both. It may also encourage consideration of meaningful 
physical relationships between the variables, for example, summarizing bivari-
ate mass-volume data in terms of the ratio density = mass/volume. 

As mentioned in Chapter 1, in many problems the dimensionality of 
response, p , is conceptually unlimited, whereas the number, n, of experimental 
units available is generally limited in practice. By some criteria of relevance, 
the experimenter always drastically reduces the dimensionality of the observa-
tions to be made. Such reduction may be based on (i) exclusion before the 
experiment; (ii) exclusion of features by specific experimental judgment; (iii) 
general statistical techniques, such as variable selection procedures for choos-
ing a subset of the variables that is particularly appropriate for the analysis at 
hand, principal components analysis (see Section 2.2), use of distance functions 
of general utility, and methods for recognizing and handling nonlinear singu-
larities (see Section 2.3); and/or (iv) specific properties of the problem which 
indicate the choice of a particular (unidimensional) real-valued function for 
analysis, for example, relative weights for assigning an overall grade in 
matriculation examinations. 

The first two of these approaches lead to a reduction of measurement in that 
the number of variables to be observed is diminished. The last two will not, in 
general, result in reducing current measurements but may reduce future 
measurements by showing that a subset of the variables is "adequate" for 
certain specifiable purposes of analysis. The major concern of the present 
chapter is the discussion of some specific examples of the third approach in the 
list above. 

From the point of view of description, too severe a reduction may be 
undesirable. Meaningful statistical analysis is possible only when there has not 
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6 REDUCTION OF DIMENSIONALITY 

been excessive elimination. Clearly a dominant consideration in the use of 
statistical procedures for the reduction of dimensionality is the interpretability 
of the lower dimensional representations. For instance, the use of principal 
components per se does not necessarily yield directly interpretable measures, 
whereas a reasonable choice of a distance function will sometimes permit 
interpretation. 

Circumstances under which one may be interested in reducing the dimen-
sionality of multiple response data include the following: 

1. Exploratory situations in data analysis, for example, in psychological 
testing results or survey questionnaire data, especially when there is ignorance 
of what is important in the measurement planning. Here one may want to 
screen out redundant coordinates or to find more insightful ones as a 
preliminary step to further analysis or data collection. 

2. Cases in which one hopes to stabilize "scales" of measurement when a 
similar property is described by each of several coordinates, for example, 
several measures of size of a biological organism. Here the aim is to compound 
the various measurements into a fewer number which may exhibit more stable 
statistical properties. 

3. The compounding of multiple information as an aid in significance 
assessment. Specifically, one may hope that small departures from null condi-
tions may be evidenced on each of several jointly observed responses. Then one 
might try to integrate these noncentralities into a smaller-dimensional space 
wherein their existence might be more sensitively indicated. One particular 
technique that has received some usage is the univariate analysis of variance 
applied to principal components. 

4. The preliminary specification of a space that is to be used as a basis for 
eventual discrimination or classification procedures. For example, the raw 
information per object available as a basis for identifying people from their 
speech consists, in one version of the problem, of a 15,000-dimensional vector 
which characterizes each utterance! This array must be condensed as a 
preliminary to further classification analysis. 

5. Situations in which one is interested in the detection of possible func-
tional dependencies among observations in high-dimensional space. This 
purpose is perhaps the least well defined but nevertheless is prevalent, interest-
ing, and important. 

Many problems and issues exist in this general area of transformation of 
coordinates and reduction of dimensionality. These are problems of concept as 
to what one hopes to achieve, of techniques or methods to exhibit information 
that may be in the data, of interpretations of the results of applying available 
techniques, and of mathematical or algorithmic questions related to implemen-
tation. Specifically, if one develops a transformed or derived set of (reduced) 
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coordinates, there is the question of whether these can be given some meaning 
or interpretation that will facilitate understanding of the actual problem. 
Similarly, it may or may not be true that derived coordinates, or approxi-
mations to these, will be directly observable. Sometimes such observability may 
occur with gains in efficiency and simplicity of both experiment and analysis. 

Another problem in this area is that of the commensurability of the original 
coordinates and of the effect of this issue on a derived set of coordinates. This 
is not, apparently, a problem in principle, since there is no difficulty in dealing 
with functions of variables having different units. However, if the functions are 
themselves to be determined or influenced by the data, as in principal 
components analysis, some confusion may exist. An example of the issue 
involved here is presented in Section 2.2.1. 

In looking for a reduced set of coordinates, classical statistical methodology 
has been largely concerned with derived coordinates that are just linear 
transforms of the original coordinates. This limitation of concern to linearity 
is perhaps due at least in part to the orientation of many of the techniques 
toward multivariate normal distribution theory. More recently, however, 
techniques have been suggested (Shepard, 1962a, b; Shepard & Carroll, 1966; 
Gnanadesikan & Wilk, 1966, 1969) for nonlinear reduction of dimensionality. 

2.2. LINEAR REDUCTION TECHNIQUES 

This section reviews briefly the classical linear reduction methods. First, 
discussion is provided of principal components analysis, a technique initially 
described by Karl Pearson (1901) and further developed by Hotelling (1933), 
which is perhaps the most widely used multivariate method. Second, concepts 
and techniques associated with linear factor analysis are outlined. Both the 
principal factor method due to Thurstone (1931) and the maximum likelihood 
approach due to Lawley (1940) are considered. 

2.2.1. Principal Components Analysis 

The basic idea of principal components analysis is to describe the dispersion 
of an array of η points in p-dimensional space by introducing a new set of 
orthogonal linear coordinates so that the sample variances of the given points 
with respect to these derived coordinates are in decreasing order of magnitude. 
Thus the first principal component is such that the projections of the given 
points onto it have maximum variance among all possible linear coordinates; 
the second principal component has maximum variance subject to being 
orthogonal to the first; and so on. 

If the elements of y' = (y,, y 2 , . . . , yp) denote the ρ coordinates of observa-
tion, and the rows of the η χ ρ matrix, Υ', constitute the η p-dimensional 
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observations, the sample mean vector and covariance matrix may be obtained, 
respectively, from the definitions 

y' = ( J i ,y 2 , . - - ,>g = ^i'Y'. (i) 

S = ( ( s y ) ) = - i - r ( Y - Y X Y - Y ) ' , (2) 
η — ι 

where Γ is a row vector all of whose elements are equal to 1, and Ϋ' 
is an η χ ρ matrix each of whose rows is equal to y'. The ρ χ ρ sample 
correlation matrix, R, is related to S by 

R - D . / ^ ' S " D . / ^ <3> 

where D ) / v /^ is a ρ χ ρ diagonal matrix whose ith diagonal element is ΙΛ/ΐϊϊ 
for ι =1 ,2 , . . . , p . 

A geometric interpretation of principal components analysis is as follows: 
The inverse of the sample covariance matrix may be employed as the matrix 
of a quadratic form which defines a family of concentric ellipsoids centered on 
the sample center of gravity; that is, the equations 

( y - y ) ' S - 1 ( y - y ) = c, (4) 

for a range of nonnegative values of c, define a family of concentric ellipsoids 
in the p-dimensional space of y. The principal components transformation of 
the data is just the projections of the observations onto the principal axes of 
this family. The basic idea is illustrated, for the two-dimensional case, in Figure 
1. The original coordinates, {yi,y2X are transformed by a shift of origin to the 
sample mean, (ylty2), followed by a rigid rotation about this origin that yields 
the principal component coordinates, Zj and z 2 . 

Algebraically, the principal components analyis involves finding the eigen-
values and eigenvectors of the sample covariance matrix. Specifically, for 
obtaining the first principal component, z„ what is sought is the vector of 
coefficients, a' = (α 1 ,α 2 . · · ><*P)> such that the linear combination, a'y, has 
maximum sample variance in the class of all linear combinations, subject to the 
normalizing constraint, a'a = 1. For a given a, since the sample variance of a'y 
is a'Sa, the problem of finding a turns out to be equivalent to determining a 
nonnull a such that the ratio a'Sa/a'a is maximized. It is well known that the 
maximum value of this ratio is the largest eigenvalue, c,, of S, and the required 
solution for a is the eigenvector, a^ of S corresponding to cv 

After the first principal component has been determined, the next problem 
is to determine a second normalized linear combination orthogonal to the 
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first and such that, in the class of all normalized linear functions of y 
orthogonal to a',y, the second principal component has largest variance. 
At the next stage, one would determine a third normalized linear combination 
with maximum variance in the class of all normalized linear combinations 
orthogonal to the first two principal components. The process may be repeated 
until ρ principal components have been determined. The problem of determin-
ing the ρ principal components is equivalent to determining the stationary 
values of the ratio a'Sa/a'a for variation over all nonnull vectors, a. These 
stationary values are known to be the eigenvalues, c, ^ c2 > ··· > cp > 0, of S, 
and the required principal components are provided by a^.a^y, . . . ,and 
»'py, where aj- is the normalized eigenvector of S corresponding to the eigen-
value, Cj , for /' = 1,2,..., p. The ranked eigenvalues are in fact just the sample 
variances of the linear combinations of the original variables specified by the 
eigenvectors. 

The above results can also be related to the so-called spectral decomposition 
(see, for example, Rao, 1965, p. 36) of the matrix S: there exists an orthogonal 
matrix, A, such that S = ADCA', where D c is a diagonal matrix with diagonal 
elements c,, c 2 , . . . , cp. The columns of A are the eigenvectors a,, a 2 , . . . , ap. The 
principal component coordinates, which for convenience are defined to include 
a shift of origin to the sample mean, are then specified by the transformation 

* = A'(y - y), (5) 
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and the principal components transformation of the data is 

Ζ = A'(Y - Ϋ). (6) 

When transformed to the principal component coordinate system, the 
observations have certain desirable statistical properties. For instance, the 
sample variance of the observations with respect to the ith principal compo-
nent is ajSaj = c i f the ith largest eigenvalue of S, for i = 1,2,..., p, and the sum 
of the sample variances with respect to the derived coordinates = Zf=! c, = 
tr(S) = Zf= j s„ = sum of the variances with respect to the original coordinates. 
Furthermore, because of the mutual orthogonality of the representations of the 
original observations in terms of the principal component coordinates, the 
sample covariances (and hence the sample correlations) between pairs of the 
derived variables are all 0. This follows geometrically from the "orthogonal" 
nature of the two-dimensional configuration of the projections of the observa-
tions onto each member of every pair of principal component coordinates. 
Equivalently, it follows algebraically from the relationship that the sample 
covariance between the ith and jf th principal components coordinates = &'iS»J= 
Cj-ajaj = 0 since a, and ay (for i Φ j) are orthogonal. 

The above geometrical, algebraic, and algorithmic descriptions have been 
presented in terms of the covariance matrix. Clearly, if one standardizes each 
coordinate by dividing by its sample standard deviation, then the covariance 
matrix of the standardized variables is just the correlation matrix of the 
original variables. Thus the above discussion applies to principal components 
analysis of the correlation matrix. 

In light of the current state of the knowledge on numerically stable 
computational methods, the recommended algorithm for performing the 
eigenanalysis involved in obtaining the principal components is either the 
so-called QR method applied to S or R (Businger, 1965), o r the so-called 
singular value decomposition technique performed on (Υ — Ϋ) or on the 
standardized form, D l v ^ (Y - Ϋ) (Businger & Golub, 1969; Golub, 1968). For 
example, the singular value decomposition of the ρ χ η matrix, (Υ - Ϋ), is 
the matrix product, ADQ', where both A and Q' are orthogonal matrices. 
The columns of the ρ χ ρ matrix, A, a re the eigenvectors of S, while the 
columns of Q are the eigenvectors of (Υ - Ϋ)'(Υ - Ϋ). The ρ χ η matrix, D is 
defined by D = [DJO], where D,, is a ρ χ ρ diagonal matrix with diagonal 
elements dt = J(n — l)ct, i = 1 , . . . , p, where cvc2,...,cp are the eigenvalues of 
S. In terms of the singular value decomposition, the principal components 
transformation of the data defined in Eq. 6 may be calculated as Ζ = DQ'. The 
singular value decomposition of the standardized form of the data is related to 
the principal components of R in an analogous manner. 

If the sample size η is not greater than the dimensionality, p, the sample 
covariance matrix will be singular, corresponding to the fact that all π points 
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will lie on a hyperplane of dimension less than p. Within that linear subspace 
one can define a dispersion matrix and find its principal components. This will 
be reflected in the eigenvalue analysis of the singular covariance matrix, in that 
some of the eigenvalues will be 0. The eigenvectors corresponding to the 
nonzero eigenvalues will give the projections of the observations onto orthog-
onal coordinates within the linear subspace containing the observations. 

One hope in the case of principal components analysis is that the bulk of 
the observations will be near a linear subspace and hence that one can employ 
a new coordinate system of reduced dimension. Generally, interest will lie in 
the coordinates along which the data show their greatest variability. However, 
although the eigenvector corresponding to the largest eigenvalue, for example, 
provides the projection of each point onto the first principal component, the 
equation of the first principal component coordinate is given by the conjunc-
tion of the equations of planes defined by the remaining eigenvectors. More 
generally, if most of the variability of a p-dimensional sample is confined to a 
^-dimensional linear subspace, that subspace is described by the (p — q) 
eigenvectors which correspond to the (p - q) "small" eigenvalues. For pur-
poses of interpretation—detection or specification of constraints on, or redun-
dancy of, the observed variables — it may often be the relations which define 
near constancy (i.e., those specified by the smallest eigenvalues) that are of 
greatest interest. 

An important practical issue in eigenanalyses is that of judging the relative 
magnitudes of the eigenvalues, both for isolating "negligibly small" ones and 
for inferring groupings, if any, among the others. The issue involves not only 
computational questions, such as the specification of what constitutes a zero 
eigenvalue, but also questions of statistical inference and useful insight. The 
interpretation of magnitude and separation of eigenvalues from a sample 
covariance matrix is considerably complicated by the sampling variation and 
statistical interdependence, as exhibited even by the eigenvalues of a covariance 
matrix calculated from observations from a spherical normal distribution. 
Although there are some tests of significance, which have been proposed as 
formal inferential aids, a real need exists for data-analytic procedures for 
studying the configuration of a collection of sample eigenvalues as a whole (see 
Section 6.2 for further discussion). 

Clearly, principal components are not invariant under linear transformation, 
including separate scaling, of the original coordinates. Thus the principal 
components of the covariance matrix are not the same as those of the 
correlation matrix or of some other scaling according to measures of "impor-
tance." Note, however, that the principal components of the correlation matrix 
are invariant under separate scaling of the original variables. For this reason, 
as well as for numerical computational ones, some have urged that principal 
components analysis always be performed on the correlation matrix. However, 
for other reasons of a statistical nature, such as interpretation, formal statistical 
inference, and distribution theory, it often is preferable to work with the 



12 REDUCTION OF DIMENSIONALITY 

covariance matrix. There does not seem to be any general elementary rationale 
to motivate the choice of scaling of the variables as a preliminary to principal 
components analysis on the resulting covariance matrix. 

An important exception regarding invariance occurs when the observations 
are confined to a linear subspace. In this case, the specification of the 
singularities is unique under nonsingular linear transformation of the variables. 
One might expect that, loosely speaking, similar near uniqueness would hold 
when the data have a "nearly singular" structure. 

A different issue, which arises specifically in the context of interpreting 
the principal components, is the tendency to interpret the relative weights 
assigned to the different variables in a given principal component. By scanning 
the numerical values of the coefficients, one may wish to simplify the pattern 
by setting some of them to 0 or to ± 1 (keeping in mind the need to normalize 
the vector to unit length). This is a natural step in the analysis (as illus-
trated in Example 1 below) and, from a data analysis viewpoint, rather than 
decreeing that it should not be done, a more useful exercise would be to 
provide a measure of how good an approximation the modified (and more 
easily interpretable) principal component is to the unmodified one. For 
example, suppose the eigenvector, a,, defining the first principal component is 
modified in the above manner to obtain the vector, »*. Then, the variance of 
the linear combination that results from using the elements of ** as the 
coefficients of the variables would be a*'Sa*, which would necessarily be 
smaller than a',Sa, ( = c , , the largest eigenvalue of S). Hence, a simple indicator 
of the price paid, in terms of explained variance, for using the "sub-optimal" 
but more interpretable coefficients would be the percentage of excess variance, 
lOOrjc, - a i 'Sa* ) /C j ] . One can use this way of quantifying the price for 
simplicity of interpretation with any individual principal component. If one has 
modified a set of principal components for making them more interpretable 
and wishes to get a measure of how close the space spanned by the modified 
eigenvectors is to the space spanned by the original eigenvectors, then 
canonical correlation analysis (see Section 3.3) can be used. 

To conclude the present discussion of linear principal components analysis, 
an example of application is considered next. The use of the technique will be 
discussed further in Section 6.4. 

Example 1. This example is taken from Blackith & Roberts (1958) and has 
also been discussed as an application of linear principal components analysis 
by Blackith (1960) and by Seal (1964). It deals with measurements on 375 ( = n) 
grasshoppers of 10 ( = p) characters that were chosen to cover the major areas 
of the body. The 375 grasshoppers were, in fact, cross-classifiable into eight 
groups — two species, two sexes, and two color forms. One interest in the data 
was to study and to characterize basic patterns of growth of the grasshoppers. 
Suppose that, for g = 1,2,..., 8, ng denotes the number of grasshoppers mea-
sured in the <?th group, and X,,x g , and S f are, respectively, the matrix of 
observations, the mean vector, and the covariance matrix for the gth group. 
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The mean vector and the covariance matrix for each group are obtained by 
using Eqs. 1 and 2 of this chapter. Blackith (1960) reports on a principal 
components analysis of the pooled 10 χ 10 covariance matrix, 

S = - L g ΣΑ-»*.. 

where η = Σ*= t n f = 375. The pooled covariance matrix is based on 367 
degrees of freedom. Exhibit la, taken from Blackith (1960), shows the first three 
eigenvalues and the corresponding three eigenvectors, which, therefore, define 
the first three principal components. The sum of the three eigenvalues is 16.924, 
and the first three principal components accounts for about 99% of the 
observed variation in 10-dimensional space. 

Note that the normalization of these eigenvectors has been accomplished by 
making the largest element 1, instead of the more usual unit Euclidean norm 
scheme of making the squares of the elements add to 1. This, however, does 
not interfere with the interpretation of the results. Thus each of the three 
eigenvectors in Exhibit la is "close to" a corresponding unit eigenvector with 
a single nonzero element which is unity: the first to (1,0,0, . . . ,0) , the second 
to (0,1,0 0), and the third to (0,0,1,0, . . . , 0). Utilizing the idea discussed 
above for assessing the price paid for using more interpretable principal 
components, in this example substituting the vector (1,0,0, . . . ,0), for the one 
containing the coefficients specifying the first principal component, results in 
paying a price of 100[(16.09 - 15.78)/16.09] α 2% in decreased variance. The 
use of the second and third variables, respectively, instead of the second and 

Exhibit la. First three principal components for grasshoppers data (Blackith, 1960) 

Variate Variance 
16.087 

Eigenvalues 

0.516 
Eigenvectors 

0.321 

1. Reduced wt. (mg.) 15.7725 1.0000 - 0 . 0 6 7 8 - 0 . 1 0 5 6 
2. # Antennal segments 0.5531 0.0523 1.000 - 0 . 1 0 2 7 
3. Elytron length (mm.) 0.4155 0.0847 0.0694 1.000 
4. Head width (mm.) 0.0138 0.0215 0.0141 0.0155 
S. Pronotal width (mm.) 0.0150 0.0197 0.0146 0.0098 
6. Hind femoral length (mm.) 0.2545 0.0929 0.0928 0.2688 
7. Hind femoral width (mm.) 0.0198 0.0233 0.0024 0.0008 
8. Prozonal length (mm.) 0.0097 0.0110 0.0055 - 0 . 0 0 9 5 
9. Metazonal length (mm.) 0.0197 0.0150 0.0160 0.0555 

10. Front femoral width (mm.) 0.0015 0.0046 - 0 . 0 0 2 5 0.0068 
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third principal components, on the other hand, results in approximately 7% 
and 29% increased variances. 

This example also brings out another general feature of principal compo-
nents analysis. The feature is that the first principal component weights almost 
exclusively in this example, the original variable that has the largest variance 
and, similarly, the second and third principal components, in turn, end up 
weighting the original variables with the second and third largest variances, 
respectively. The sensitivity of the principal component coordinates to the 
variances of the original variables implies a critical dependence of the derived 
coordinates on the choice of scales for observing the original variables. 
Moreover, in the present example, the two characteristics with largest vari-
ances— namely, reduced weight and number of antennal segments—also 
happen to be measured on different scales from the one (millimeters) used for 
the remaining eight characteristics. Thus an additional issue here is the effect 
of the commensurability of the observed responses on the derived principal 
component coordinates. 

One way of handling this difficulty in this example is to omit the two 
responses measured on very different scales and then perform a principal 
components analysis on the remaining eight responses. Another approach, 
which was mentioned earlier, would be to perform the analysis on the 
correlation matrix instead of the covariance matrix. Exhibit lb shows the 
eigenvalues (see Seal, 1964) obtained in principal components analyses per-
formed on both covariance and correlation matrices for the full set of 10 
responses as well as for the reduced set of 8 responses. 

Lines indicating intuitively reasonable separations among the eigenvalues 
are also shown in Exhibit lb, a dashed line denoting a weak separation and a 

Exhibit lb. Eigenvalues for four principal components analyses (Seat, 1964) 

S(10 χ 10) R(10 χ 10) S(8 χ 8) R(8 χ 8) 

16.087 4.802 0.549 3.959 

0.516 0.970 0.145 0.923 

0.321 0.898 0.021 0.867 
0.103 0.852 0.015 0.634 

0.017 0.637 0.009 0.588 
0.012 0.587 0.006 0.501 
0.009 0.499 0.003 0.339 
0.006 0.351 0.001 0.189 
0.003 0.218 
0.001 0.186 

Total 17.075 10.0 0.749 8.0 
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solid line suggesting stronger separation. The indicated number and location 
of the separations are seen to be different between analyses performed on 
covariance matrices and those done on correlation matrices. Thus, both with 
all 10 responses and with the subset of 8, the principal components analyses of 
correlation matrices suggest that only the largest eigenvalue is clearly separated 
from the remaining ones. The analyses based on the corresponding covariance 
matrices, however, seem to suggest two separations among the eigenvalues. 

Seal (1964) provides a reasonable argument for the indicated single separ-
ation among the eigenvalues of the 8 χ 8 correlation matrix. Many of the 
off-diagonal elements of the matrix appear to be essentially the same, thereby 
indicating a nearly equicorrelational structure among the variables. In the case 
of the eight responses, all of the correlation coefficients appear to be about 0.4. 
With exact equicorrelational structure, a ρ χ ρ correlation matrix will have 
only two distinct eigenvalues, one being equal to 1 + (p — l)r and the remain-
ing (ρ — 1) being equal to (1 — r), where r is the common value of all the 
correlation coefficients. An interesting question in the present example is 
whether the equicorrelation is inherent and experimentally sensible or is 
induced by the pooling of the covariance matrices from the eight groups of 
grasshoppers. Pooling several widely different covariance structures may lead 
to an "average" equicorrelational structure, and the relatively low value of the 
"common" correlation coefficient (0.4) in the example raises the question of a 
possible artifactual nature of the observed equicorrelation. Had the covariance 
matrix within each group been available, a technique described in Section 6.3.2 
could have been used to study the appropriateness of the preliminary pooling 
of the eight covariance matrices in this example. 

A somewhat different issue here is the relevance of analyzing the data on the 
observed scales of measurement rather than transforming the observations 
before the analysis. An interesting and seemingly appropriate transformation 
in this case would be to use logarithms of the original observations as the 
starting point of the principal components analysis. Unfortunately, the raw 
observations in the example are unavailable and such an analysis is therefore 
not possible. 

2.2.2. Factor Analysis 

The so-called model in factor analysis is 

y = Af + z, (7) 

where y is a p-dimensional vector of observable responses, A is a ρ χ q matrix 
of unknown parameters called factor loadings, f is a (j-dimensional vector of 
hypothetical (unobserved) variables called common factors, and ζ is a p-
dimensional vector of hypothetical (unobserved) variables called unique factors. 
[Note: To distinguish between f and ζ one needs to impose the condition that 
each column of Λ has at least two nonzero elements.] Generally, it is further 
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assumed that the components of ζ are mutually uncorrelated as well as being 
uncorrelated with the elements of f. In other words, the covariance matrix of ζ 
is a ρ χ ρ diagonal matrix, A, with diagonal elements δ\,...,b\, and the 
cross-covariance matrix between f and ζ is null. 

With η observations available on ρ responses which are being studied 
simultaneously, the above model may be written as 

Y = AF + Z, (8) 

where Y is ρ χ η, F is q χ η, and Ζ is ρ χ η. The factor-analytic model in Eq. 
7 (or 8), taken together with the above assumptions, specifies the following 
relationship among the covariance matrices of the different sets of variables 
involved: 

Σ „ = ΛΣ,,Α' + A, (9) 

where Ση denotes the ρ χ ρ covariance matrix of y, and Σπ denotes the q χ q 
covariance matrix of f. If the q common factors are assumed to be standardized 
and mutually uncorrelated, then Σ^ = /, and 

Σ„ = ΛΛ' + A. (10) 

Formally, the two cases represented by Eqs. 9 and 10 are indistinguishable. 
This is due to the fact that one can write Σ^-ΎΙ', where Τ is a lower 
triangular matrix, and rewrite Eq. 9 as Ση = Α*Λ*' + A, where A* = AT. 
Despite this formal indistinguishability, however, the representations of the 
data in terms of correlated and of uncorrelated factors would be different. Thus, 
for purposes of interpretation, it may be important to distinguish between the 
two cases. 

An alternative way of motivating the factor-analytic model, which may be 
more appealing statistically, is as follows: given ρ observable variables, y, do 
there exist q( < p) variables, f, such that the partial correlations between every 
pair of the original variables upon elimination of the q f -variables are all zero? 
An affirmative answer to this question may be shown to be equivalent to the 
factor-analytic model as specified by Eq. 7 (or Eq. 9), for from Eq. 7 it follows 
that the conditional covariance matrix of y given f = covariance matrix of 
y — Af = covariance matrix of ζ = A. Hence, from the assumptions concerning 
A, the off-diagonal elements of the conditional covariance matrix, which are the 
partial covariances between pairs of the y-variables, given f, are all 0, so that 
the partial correlations between pairs of the elements of y, given f, are also all 
0. Conversely, suppose there exists f such that the partial correlation between 
every pair of y-variables, given f, is 0. Then, from the definition of partial 
correlation, it follows that the covariance matrix of the "residuals" from the 
linear regression of y on f is diagonal. The linear regression of y on f is 
S(y I f) = Σ ,ΣΤ,'ί, where £ stands for expectation, and Σνί denotes the ρ χ q 
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cross-covariance matrix between y and f. The conditional covariance matrix of 
y given f=covariance matrix of the "residuals," γ — Σ^Σ^(=Ση-ΣνίΣ]χ

ι Σ'^. 
If this is a diagonal matrix, Δ, then it follows that Σ / Ν = Λ Σ ^ Λ ' + Δ, where 

Λ = Σ , / Σ ; / . (li) 

Thus the equivalence claimed at the beginning of this paragraph follows. 
One hope in using factor analyis is that the number of common factors, q, 

will be much smaller than the number of original variables, p, thus leading to 
a parsimony of description which may aid in interpretation and understanding. 
Formally, the problems to be solved in a factor-analytic approach include (a) 
finding Λ of minimal rank to satisfy the model as summarized by Eq. 9 (or by 
Eq. 10); (b) estimating A; and (c) making inferences about F. For present 
purposes, most of the discussion in the rest of this section is devoted to (a). A 
more extensive and thorough discussion of factor analysis will be found in 
Harman (1967) and Lawley & Maxwell (1963). 

Equation 11 suggests that one way of obtaining A is to regress y on f. 
However, this is not a feasible direct approach since f is not observable. Two 
other methods for estimating the factor loadings — the principal factor and the 
maximum likelihood methods—are outlined below. 

Before discussing these methods, a few additional concepts and terms need 
to be introduced. First, as a consequence of Eq. 10, one has 

variance (>>,·) = aa = Σ Aj + bf i = 1,..., p, 

where Σ ^ = ((σ,,)) and A = ((A,7)). The quantity 

hf = Σ 4 (12) 

is called the communality of the ith variable, while bf is termed the uniqueness 
of the ith variable (/ = 1,2,..., p). It follows that 

ρ 

total variance = tr(Lyy) = Σ σα 
i= 1 

= Σ Μ + *?) 
Ρ 4 Ρ 

= Σ Σ 4 + Σ «5? 

i=l)=\ i=l 

= V + b2, (13) 

where V = Σ ρ

= , Σ*^ t A?j is the total communality, and δ2 = If = t bf. 
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Second, from Eq. 10, it is clear that any orthogonal transformation (rota-
tion) of the factors f will still satisfy the constraint on the covariance structure 
as specified by Eq. 10. In fact, any transformation from f and Λ to fj = Af and 
A, = ΛΒ, where A and Β are q χ q matrices such that their product BA is 
orthogonal, will satisfy the same constraint. In this general transformation, 
however, although f may be uncorrelated and standardized, the derived set ft 

need not have either property. If one wishes to remain with standardized 
uncorrelated factors, the choice of A to be orthogonal and Β = A' will suffice. 
The indeterminacy implied by such transformations in any "solution" obtained 
for the factor loadings is used to advantage in the so-called practice of rotating 
a preliminary solution to obtain a more interpretable final solution. Further 
discussion of the issues and procedures involved in rotation is available in 
Harman (1967). 

Without any loss of generality, the original variables may be assumed to be 
standardized (<xl( = 1 for i = 1,2,..., p) so that, with standardized uncorrelated 
factors, Eq. 10 specifies the following structural representation of the ρ χ ρ 
correlation matrix, Γ = ((ρ;/)): 

Γ = ΑΛ' + Δ, 

or 

and 

p . , = \ = h f + of for i = Ι , . , . ,ρ , 

Pu = Σ V u f o r ' φ l 

(14) 

The ρ χ ρ matrix Γ*, whose diagonal elements are the communalities hf and 
off-diagonal elements are the correlation coefficients p i t between pairs of the 
observed variables, is called the reduced correlation matrix. This matrix plays 
an important role in the principal factor method of determining A and has the 
following properties: (i) as a consequence of Eq. 14, if every of > 0, the 
diagonal elements of Γ* are all less than 1; (ii) the rank of Γ* = the minimum 
number of linearly independent factors required for reproducing the correla-
tions among the observed variables = the dimensionality of the factor space; 
(iii) if hf = 1 for all i, the rank of Γ* = p, and no reduction of dimensionality 
is accomplished by factor analysis. 

The previously stated problem (a) of factor analysis may now be restated as 
follows: given the intercorrelations among a set of ρ observed responses, choose 
the set {hf} so as to minimize the rank of Γ*. 

The two methods of determining A under the model of Eq. 10 (or, 
equivalently, Eq. 14) are described next. 
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The Principal Factor Method. This method was proposed by Thurstone 
(1931)' and more fully described by Thomson (1934). It should not be confused 
with the principal components method described in Section 2.2.1, and the 
similarities and differences of the two techniques are discussed later. 

From Eq. 12 it follows that for any factor, fJt its contribution to the 
communality of the variable yt is λ,*. Hence the contribution of fj to the 
communalities of all ρ observed responses is 

where X} denotes the;th column of A, and = 1,2,..., q. The total communal-
ity defined by Eq. 13 is, of course, V = Σ*_, Vj. 

The principal factor method involves, as the first stage, choosing the 
coefficients, λ η , . . . , λρί, of the first factor fl so as to maximize the contribution 
of / j to the total communality subject to the constraints on the correlation 
structure as summarized by Eq. 14. In other words, we wish to choose λ, so 
as to maximize Κ, = λ',λ, subject to the pip + l)/2 constraints implied by 
Γ* = ΛΛ'. 

The constrained maximization turns out to be equivalent to finding the 
eigenvalues and eigenvectors of Γ* (see Harman 1967, for details); in fact, the 
maximum value of Vx is the largest eigenvalue of Γ*, and the required 
maximizing value of λ, is just proportional to the corresponding eigenvector. 
Thus, if >'[ is the largest eigenvalue of Γ* and al is the corresponding 
eigenvector, which is normalized so that a'j«, = 1, then 

*·ι=>/ν β ι · 0 ° ) 

and the maximum value of Vt = = yx. This "solution" to the problem of 
determining λ] is, however, artificial or circular in that the diagonal elements 
of Γ* in turn involve λ\χ,..., k2

pl. The assumption is that the diagonal 
elements, namely, the communalities /if*s are independently known or speci-
fiable. A method of specifying these is mentioned later. 

At the second stage of the principal factor method, having determined Xj as 
above, one seeks to determine λ 2 so as to maximize V2 = λ'2λ2 subject to a 
constraint on the residual reduced correlations after removal of the first factor. 
If 

r? = r* - λ ^ ; (Π) 

'Thurstone credits Walter Bartky with the mathematical solution associated with the tech-
nique. It may be of interest that this is the same Bartky, an astronomer, who is also said to have 
been the originator of the ideas of sequential sampling. 
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denotes the ρ χ ρ matrix of residual reduced correlations after removing flt 

then the constraints are that 

Γ? = [ λ 2 - λ , ] (18) 

λ' 
L V 

The present constrained maximization problem, however, is of the same 
mathematical form as the one at the first stage of the method. Hence the 
required solution for λ 2 is proportional to the eigenvector of Γ* corresponding 
to its largest eigenvalue. An eigenanalysis of Γ* is, however, not essential since 
the required solution for λ 2 may be shown to be equivalent to choosing λ 2 

proportional to the eigenvector associated with the second largest eigenvalue 
of the original reduced correlation matrix, Γ*. Arguments for establishing this 
computationally convenient result follow. 

If ak is the eigenvector of Γ* corresponding to the eigenvalue yk 

(k = l ,2, . . . ,p) , where y1 2* y2>—, then 

Γ > * = (Γ* - λ ,λ ' ,Κ = (Γ* - y,«!«'i)«* 

(19) 

Using the orthonormal property of the set of eigenvectors {a*}, it follows from 
Eq. 19 that B , is an eigenvector of TJ corresponding to the eigenvalue zero and 
that, for k = 2 , 3 , . . . , p, yk is an eigenvalue of Γ* with associated eigenvector ak. 
In particular, the largest eigenvalue of Γ* is y2, the second largest eigenvalue 
of Γ*, and the corresponding eigenvector is a 2 . The required λ 2 is y/yl'd-2-

The remaining stages of the principal factor method now follow in exactly 
the same manner. Finding λ 3 , . . . , λ, so as to maximize the contributions of 
each corresponding factor to the total communality, subject to constraints on 
the residual reduced correlations at each stage, turns out to be equivalent to 
taking λ, = yfy, • « y , for j = 3 , . . . , q. 

The descriptions above have been presented in terms of population charac-
teristics. With data one would use a sample reduced correlation matrix, R*, in 
place of Γ* as the input to the eigenanalysis, where 

R* = 

12 

Γ2Ρ 

(20) 

and {hf} are communalities estimated from the data, while r„ is the correlation 
coefficient between the ith and ith responses as calculated from the data. Thus, 
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with data, the principal factor solution for Λ is 

A = L = ((/y)) = [ i 1 i 2 - g , (2i) 

where 1, = s/cjtj for ; = 1, . . . , q, and c, > c 2 > •·· > cq > 0 are the q largest 
eigenvalues of R* with corresponding eigenvectors a t , . . . , a,. Also, the estimate 
of 5f is 

^ = 1 - Σ ' 5 - ' ' = 1 , . · · , Ρ . (22) 

J h e procedure described above is complete except for specification of hf's. 
If hf = 1 for / = l,...,p, then R* = R, the ordinary correlation matrix of the 
responses, and the principal factor solution is exactly the same as the principal 
components solution for R. Estimates of hf whose values are less than 1 
include: (i) hf = the highest observed positive correlation of variable y t with 
the remaining {ρ - 1) variables = the largest positive element in the ith row 
(column) of R; (ii) hf = the average (presumed positive) of the observed 
correlations of y t with the other variables = Σ ' = , r„/(p — 1); (iii) hf = square 

(1*1) 

of the multiple correlation coefficient of y t with the other variables = 
1 - (1/r"), where ((rij)) = R " a n d (iv) iterative estimates obtained by starting 
with an arbitrary set of values for hf's to get a principal factor solution, thence 
using the sums of squares of the factor loadings for each variable in such a 
solution as the new values of hf's, and repeating the process until the sets of 
successive estimates do not differ greatly. An intuitive basis for the third of 
these choices is that the squared multiple correlation coefficient measures the 
proportion of the observed total variability in a specific response that is 
accounted for by its regression on the remaining (ρ — 1) responses, and hence 
provides a measure of common or shared variance. A second reason for this 
choice is that, while 1 is an upper bound on hf, it can be shown that the 
squared multiple correlation coefficient involved is a lower bound. Many of the 
computer programs for performing a principal factor analysis use this choice 
for hf as the standard one. In practice, except for small values of ρ (<. 10), the 
different choices of hf do not seem in general to lead to noticeably different 
outcomes. 

If some or all of the diagonal elements of R* are less than 1, then R* need 
not be positive semidefinite. Hence some of the eigenvalues, {c,}, may be 
negative with the consequence that the vectors of factor loadings, 1/s, asso-
ciated with these will be imaginary. In practice, one discards these negative 
eigenvalues and the associated imaginary vectors of loadings. In fact, since the 
sum of the eigenvalues of R* equals the total communality, the sum of just the 
positive eigenvalues will exceed the total communality if there are any negative 
eigenvalues at all. Hence, in extracting the factors, one would not proceed until 
their number q was as large as the number of positive eigenvalues but, rather, 
would stop when Σ* = , c} was close to tr(R*), the total communality. 
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Another useful procedure for guiding the choice of a value for q is to 
compute and study the residual correlation matrix after each factor has been 
fitted. Although all the numerical computations may be carried out on R*, 
from the standpoint of interpretation it is useful to compute the matrix of 
residual correlation coefficients, 

r* = r * - xu, 
o = ι 

at the ;'th stage for ; = 1,2 
Mention has been made that, when hf, for all i, are taken to be unity, the 

principal factor method is identical with a principal components analysis of the 
correlation matrix. In fact, if the communalities hf's (or, equivalently, the of's) 
are all essentially equal and q is close to p, the principal factor method as 
described above and a principal components analysis of R would both lead to 
very similar results. The reason is that, if df = d2 for all i, then R* = R — d2l 
and Cj = bj — d1 is an eigenvalue of R* if bj is an eigenvalue of R. Hence the 
relationship R*a^ = Cjtj is equivalent to (R — d2l)»j = (bj - d2)»j, or to 
Ray = bjSij, so that the eigenvectors {a,} of R* are also those of R. In practice, 
however, the of's (and hf's) are often unequal and q « p, so that the principal 
factor method may lead to results that are different from those obtained by 
a principal components analysis of the correlation matrix. The use of values of 
hf less than 1 has an interesting interpretation in terms of an idea utilized in 
ridge regression (Theil, 1963; Hoerl & Kennard, 1970). In multiple regression 
analysis (see Sections 3.3 and 5.2.1), the sum-of-products matrix of the 
independent variables may be nearly singular in some applications, perhaps 
because of round-off errors or high intercorrelations amongst the independent 
variables. The latter cause is referred to as "multicollinearity" in the economet-
ric literature. The near singularity leads not only to numerical difficulties but 
also to estimates of regression coefficients that have undesirable statistical 
properties. The idea of ridge regression for handling this problem is to add a 
constant multiple of the identity matrix to the sum-of-products matrix (i.e., add 
a positive constant to each of the diagonal elements of the latter) and to utilize 
the resultant matrix in place of the nearly singular matrix. Thus, in ridge 
regression, a nearly singular covariance or correlation matrix is adjusted to 
become "more" positive definite (see also Section 5.2 and Devlin et al., 1975) 
by increasing the diagonal elements, whereas decreasing the diagonal elements 
involved in the principal factor method will have a "deridging" effect. An 
implication of this, and also of the discussion in the preceding paragraph, is 
that there is a strong implicit commitment in the principal factor method to a 
linear model for reducing dimensionality. 

Indeed, some authors have tried to distinguish between the principal 
components and principal factor techniques on the grounds of their respective 
degrees of commitment to a linear model. This, however, does not seem to be 
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a crucial distinction since both techniques have implicit, as well as explicit, 
linearity considerations underlying them, and both tend to be inadequate in 
the face of nonlinearity (see Examples 2-4). Perhaps a better distinction to be 
made is that the factor analysis model (Eqs. 7, 9, 10) is more explicit than the 
one underlying principal components in assuming a space (linear) of reduced 
dimensionality (i.e., q « p) for explaining the correlation structure of the 
original responses. 

The Maximum Likelihood Method. This method, originally proposed by 
Lawley (1940), has received considerable attention from statisticians (see 
Anderson & Rubin, 1956; Howe, 1955), perhaps because of its usage of the 
criterion of maximizing a likelihood function, which is a familiar concept and 
method in statistics. 

The assumption in this method is that the observations (viz., the columns 
of the ρ χ η matrix Y of Eq. 8) constitute a random sample from a nonsingular 
p-variate normal distribution whose covariance matrix L w has a structure 
specified by Eq. 10. Furthermore, if ρ ^ (π — 1), the sample covariance matrix, 
S, will be nonsingular with probability 1 and will have a Wishart distribution. 
Using the Wishart density as a starting point, one obtains the log-likelihood 
function of A and A, 

i f (Λ, ΔIS) = - [In |ΛΛ' + A| + tr{(AA' + A ) - lS}]. (23) 

Hence maximizing S£ with respect to the elements of A and A is equivalent to 
minimizing In |AA' + A| + tr{(AA' + A) - 1 S} , and the resulting values, A and 
A, are the required maximum likelihood estimates. 

The indeterminacy of A up to rotation is handled in maximum likelihood 
estimation by imposing the constraint that the matrix 

J = A'A 'A (24) 

be diagonal. This constraint simplifies the solving of the likelihood equations. 
The actual equations that need to be solved by iterative methods are 

JA' = A'A _ 1 (S — A), A = diag(S - ΛΛ'), (25) 

where J is defined by Eq. 24, and diag(M) denotes a diagonal matrix whose 
diagonal elements are those of the square matrix Μ (for details see Lawley & 
Maxwell, 1963; Howe, 1955). 

Accumulated early experience with attempts at solving the likelihood 
equations (Eq. 25) indicated that convergence to a solution may be a 
serious problem. Subsequently, Joreskog (1967) and Lawley (1967) devel-
oped numerical approaches for obtaining the maximum likelihood estimates 
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that seem to circumvent this difficulty (see also the expository treatment 
by Joreskog & Lawley, 1968). The modifications have two basic features. 
First, instead of solving the likelihood equations, a direct numerical max-
imization of the function if (Λ, Δ | S) (or, equivalently, a minimization of 
— [2/(n — 1)] i?(A, ΔIS)) is attempted. Second, the maximization (or equivalent 
minimization) is carried out in two parts—for a given A find a ΛΔ that max-
imizes if (A, ΔIS), and then determine A as that value of A which maximizes 
the function ifm„ (A) = if(A4, A|S). The required maximum likelihood esti-
mates are A and A = A .̂ The iterative scheme (see Joreskog, 1967, for 
details) appears to work well, primarily because the determination of AA for a 
given A is quite straightforward in that it simply involves the determination of 
the q largest eigenvalues and the associated eigenvectors of the matrix 
A ~ 1 / 2 ' S - A ~ 1 / 2 . A general iterative numerical optimization technique (e.g., 
Fletcher & Powell, 1963) is then needed only at the second stage of maximi-
zation, namely, the maximization of ifm t I(A) with respect to the ρ diagonal 
elements of A. 

An implication of Eq. 25 is that scaling any observed variable would induce 
proportional changes in the estimates of the factor loadings for that variable. 
Independence, in this sense, of the solution of Eq. 25 from the scales of the 
original variables has the numerical consequence that one may employ the 
covariance matrix or the correlation matrix of the original variables in seeking 
the solution. It should be recognized, however, that if one were to use the 
sample correlation matrix as the starting point, the Wishart density would not 
provide the basis of the initial likelihood function. The numerical implication of 
"invariance" of the solution A of Eq. 25 is, therefore, unrelated to the statistical 
considerations that underlie the formulation in terms of maximum likelihood 
estimation. The latter appears to be feasible only in terms of the sample 
covariance matrix. 

A statistical advantage claimed for the maximum likelihood approach is 
that the asymptotic (viz., η large, ρ < η, and q « p) properties of such estimates 
are known and may be used for purposes of statistical inference (see Lawley, 
1940; Anderson & Rubin, 1956). In particular, for example, one can obtain a 
likelihood ratio test for the adequacy of the hypothesized number, q, of 
common factors. The essential result derived by Lawley (1940) is that the 
observed value of the statistic 

+ tr[(AA' + A ) - ' S ] - p | (26) 

may be referred to a chi-squared distribution with ν degrees of freedom, where 
A and A are the estimates that satisty Eq. 25, S is the sample covariance matrix, 
and 

(n - lWln 
|AA' + A] 

ISI 

ν = il(p -q)2 - P- <?]· (27) 
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Table 1. Comparison of Two Methods of Factor Analysis 

Principal Maximum 
Feature Factor Method Likelihood Method 

1. Estimates of communalities Required Not required 
2. Dimensionality of common Inferable from manner Assumed for obtaining 

factors space of computing a solution but then 
may be statistically 
tested for adequacy 

3. Distributional assumption None specific Multivariate normal 
4. Formal statistical Not much is known Large-sample theory 

inference status is available 

5. Iteration for obtaining Optional (i.e., not Necessary 

the solution required unless one 
chooses to estimate 
communalities 
iteratively) 

6. Convergence of iterative Good May be poor for solving 

procedure Eq. 25, but modified 
method seems good 

7. Scale "invariance" N o Yes 

[Note: For a given p, q has to be «p for ν to be positive.] Statistically large 
observed values of the statistic imply that the number of common factors 
needed to adequately reproduce the correlations among the original variables 
is larger than q. Bartlett (1951) has suggested using the multiplicative factor 
{n - p/3 - 2q/3 - 11/6} in place of (π - 1) in Eq. 26 for improving the 
chi-squared approximation. 

Table 1 provides a summary comparison of features of the principal factor 
and maximum likelihood methods. 

A useful graphical technique, associated with both methods of factor 
analysis, is to represent the original variables in terms of their factor loadings 
in a space that corresponds to the common factors. Thus, using pairs (and/or 
triplets) of axes, one obtains ρ points whose coordinates are factor loadings 
with respect to pairs (and/or triplets) of the common factors. Such plots can 
often aid in interpreting the nature of the factors, as well as in suggesting 
"rotations" to more meaningful sets of coordinates for the factors. 

A common practice in using factor analysis is to seek so-called "estimates" 
of the factor scores. In the notation of Eq. 8, an estimate, F, of F is desired. 
By analogy with multiresponse regression (see Sections 3.3 and 5.2.1) and 
considering the factors as the regression variables with the initial variables 
as the regressors, the desired estimate is defined by F = A'R~ 'Z, where Ζ = 
D ( / r-(Y — Ϋ) is the ρ χ η matrix of standardized data. 
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Although factor analysis has been used most extensively as a tool in 
psychology and the social sciences, applications have been made to other fields 
as well. Seal (1964) summarizes various biological applications of factor 
analysis, and Imbrie (1963), Imbrie & Van Andel (1964), and Imbrie & Kipp 
(1971) have used it in analyzing certain geological problems. 

Some applications of factor analysis, especially in the social sciences, raise 
questions concerning its usefulness for achieving parsimony of description or 
for incisively understanding a complex of observed variables in terms of a few 
underlying variables. Often in questionnaire survey data, for example, built-in 
or a priori groupings of the initial variables are the ones that are uncovered by 
using factor analysis. Even in such examples, however, the technique is perhaps 
useful in that it provides a more quantitative understanding of the qualitative 
prior groupings. 

A different issue related to the usefulness of the method is its inadequacy in 
the face of nonlinearity of the underlying relationships. The work of McDonald 
(1962, 1967) and of Carroll (1969) is directed toward nonlinear factor analysis 
methodology. Other nonlinear techniques are considered next in this chapter. 

2.3. NONMETRIC METHODS FOR NONLINEAR REDUCTION 
OF DIMENSIONALITY 

A class of procedures, collectively designated as multidimensional scaling 
techniques, has been developed in connection with the following problem: given 
a set of observed measures of similarity or dissimilarity between every pair of 
η objects, find a representation of the objects as points in Euclidean space such 
that the interpoint distances in some sense "match" the observed similarities or 
dissimilarities. Some examples of measures of similarity are (i) confusion 
probabilities or the proportion of times one stimulus is identified as another 
among π stimuli, (ii) the absolute value of a correlation coefficient, and (iii) any 
index of profile similarity. 

Several approaches have been proposed (see Coombs, 1964, for a general 
discussion) to the problem of multidimensional scaling, but for present pur-
poses, only the technique developed by Shepard (1962a, b) and further refined 
by Kruskal (1964a b) is considered. A central feature of the Shepard-Kruskal 
approach is the specification of monotonicity as the sense in which interpoint 
distances are to match the observed dissimilarities among the objects; that is, 
the larger the specified dissimilarity between two objects, the larger should the 
interpoint distance be in the Euclidean representation of these objects. Kruskal 
(1964a,b) not only developed efficient algorithms for using the method but also 
proposed an explicit measure for judging the degree of conformity to mono-
tonicity in any solution. Furthermore, as an integral part of their approach, 
Shepard and Kruskal obtain a graphical display of the data-determined 
monotone relationship between dissimilarity and distance (see details below). 
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Another important characteristic of the approach, demonstrated empirically 
by Shepard (1962a), is that one could start just from the nonmetric rank order 
information about the dissimilarities and still obtain quite "tightly determined" 
configurations. The technique exploits nonmetric information, when enough of 
it is available, to derive metric representations of the data (see also Abelson & 
Tukey, 1959). In this respect it is an interesting example of a data-analytic 
technique with a counterobjective to that underlying the practice of replacing 
metric observations by their ranks as a prelude to employing some non-
parametric statistical procedures. 

As motivation for the concepts and procedures involved in the Shepard-
Kruskal approach, consider the case wherein one has four ( = n) objects and 
six observed values of dissimilarity for the six possible pairs of the objects. If 
6^ denotes the dissimilarity value for the pair of objects i and j , for /', j = 
1,2,3,4, then suppose, for example, that the following rank ordering among 
the six observed dissimilarity values holds: 

<*23 < <*12 < <*34 < <*13 < <*24 < ^ 1 4 · (28) 

In other words, the second and third objects are judged to be least dissimilar 
(or most similar), the first and second objects next least dissimilar, and so on, 
with objects 1 and 4 ranked as most dissimilar (or least similar). Suppose that 
the objects are represented as points in a Euclidean space of a specified 
dimensionality, and let y( denote the column vector of coordinates of the point 
corresponding to the ith object, i = 1 , . . . , 4. Then the familiar unweighted 
Euclidean distance between the points representing objects i and ; is 

^ [ ( y . - y / i y , - ^ ) ] 1 ' 2 , (29) 

i <j = 2,3,4. The monotonicity constraint, which is central in the approach, 
is said to be met perfectly in this simple example if, corresponding to the 
ordering of the observed dissimilarities shown in Eq. 28, the dtjs calculated by 
using Eq. 29 turn out to satisfy the following: 

d23^dl2^d34^dl3<:d24^dl4. (30) 

In other words, the order relationship among the interpoint distances in the 
Euclidean representation of the objects is in exact concordance with the order 
relationship among the observed dissimilarities. Such a perfect match may, of 
course, not hold in a particular Euclidean representation, and one then needs 
both a measure to evaluate the closeness of match and a method of determin-
ing a configuration so as to achieve as close a match as possible. 

A graphical representation that facilitates understanding the explicit mea-
sure of monotonicity and the mode of analysis proposed by Kruskal (1964a, b) 
is a scatter plot of points whose coordinates are (d,,, δ,,). Thus, in the above 
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Fig. 2b. Illustrative scatter plot of dissimilarities versus distances, wherein monotonicity constraint 
is not satisfied. 
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simple example, one can obtain a plot of six points as shown, for instance, in 
Figure 2a by the crosses, which are labeled by the pair of object numbers to 
which each of them corresponds. Corresponding to the perfect monotonicity 
implied by Eqs. 28 and 30, the configuration of the crosses is such that the line 
segments joining the points form a chain in which, as one moves upward, one 
moves always to the right as well. 

Complete conformity to monotonicity is always achievable by using a 
representation in a space of sufficiently high ( ^ π — 1 with π objects) dimen-
sionality. The primary interest, therefore, is to find a low-dimensional repre-
sentation in which conformity to monotonicity is achieved to a reasonable 
degree if not perfectly. 

Thus, suppose that, in the same example, one has a Euclidean representation 
of the four objects in which the ordered interpoint distances turn out to be 

<*23 < < * 3 4 < < * 1 2 < < * 1 3 < ^ 1 4 < <*24- (31) 

The monotonicity constraint is now violated in that the order relationship 
between the interpoint distances between objects 3 and 4 and between objects 
1 and 2 is not the same as the order relationship between the corresponding 
observed dissimilarities as specified by Eq. 28. There is also a violation of 
monotonicity by the interpoint distances between objects 1 and 4 and between 
objects 2 and 4. The scatter plot of (d"y,5y) corresponding to this situation is 
shown by the χ ' s in Figure 2b, and the chain of lines joining the points is now 
observed to zigzag instead of always moving to the right as one moves upward. 
In this situation, one may wish to "fit" a set of values, dy's, such that the fitted 
values will indeed satisfy the monotonicity constraint so that 

2 2 3 < ί 1 2 < 5 3 4 < 5 , 3 < 5 2 4 « 5 1 4 , (32) 

corresponding to the order relationship in Eq. 28. A satisfactory set of fitted 
values in this example would be the abscissa values of the "fitted" points which 
are shown as o's and joined by dashed line segments in Figure 2b. Notice that 
only the d values for distances that did not conform to monotonicity are 
different from the corresponding d values. In fact, in the example the d value 
for both di2 and d3A, which, for instance, violate monotonicity, is just the 
average of dl2 and d34, that is, d12 = d3tt = (dl2 + i/3 4)/2; and, similarly, 
^ 2 4 = ^ 1 4 - ( ^ 1 4 + <^2*)β· Apart from conforming to monotonicity, however, 
these fitted values may not, in fact, be distances in the sense that there is a 
configuration of points in Euclidean space whose interpoint distances are these 
values. 

One measure for assessing the fit (viz., the conformity to monotonicity) of 
any proposed configuration is the sum of squares of deviations, Σ(<](ά^ — <fl7)

2. 
This measure of goodness of fit, although invariant under shifts (translations), 
reflections, and rotations (orthogonal transformations) of the coordinates in 
the Euclidean representation of the objects, is not invariant under uniform 
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shrinking or dilation. Hence Kruskal (1964a) proposed the following nor-
malized measure of goodness of fit: 

1/2 

(33) 

which he called the stress. 
The stress may now be used as the basis for a systematic method of 

obtaining the fitted values. Given a set of dtj\ in fact, one may choose the djs 
so as to minimize S subject to the constraint that they are to be monotone 
nondecreasing with the observed dissimilarity values, £y's. This minimization 
problem is equivalent to so-called monotone least squares or monotone re-
gression and has been considered conceptually and algorithmically in other 
contexts of statistical applications (see Bartholomew, 1959; Miles, 1959; Barton 
& Mallows, 1961; van Eeden, 1957a, b). To avoid further notation, it is 
assumed that the fitted values, d^s, are in fact always obtained by this process 
of minimization, and the stress of a given configuration representing the initial 
objects in a Euclidean space is the value of S given by Eq. 33, using such fitted 
values. This value of S, of course, depends on the given configuration, and one 
may wish to make this relationship clearer by denoting it as S(y,, y 2 , . . . ) , where 
y, is the vector of coordinates of the point corresponding to the ith object. 

The next step is to determine the "best" configuration in a Euclidean space 
of specified dimensions. Such a configuration is one in the space of specified 
dimensionality whose stress is a minimum among all configurations in that 
space, that is, one wishes to determine (y*, y 2 , . . . , y*) so that 

% ? . y*. • · •. y?) = min S(y „ y 2 , . . . , y„). 

Viewed as a trial and error process, what is involved is to start with a trial 
configuration, and then if di} < dis to move y( and y, closer, or if diS > di} to 
move y, and Vj apart, so that in either case one is attempting to make di} 

resemble di} more closely. A systematic approach to this problem is provided 
by considering S(y 1 y j as a function of the coordinates of all η points (i.e., 
a function of η χ t variables if one is using a space of ί dimensions for the 
representation), and then using a general numerical technique of function 
optimization, such as steepest descent, for determining the location of the 
minimum value of S ( y . . . , y j . 

Next, there is the issue of the choice of the dimensionality for the Euclidean 
representation. If S0(f) = S(y*, y*, . . . , y*) denotes the minimum value of the 
stress associated with the minimum stress configuration in a r-dimensional 
space, Kruskal (1964a) suggests basing the choice of q, the minimum adequate 
value of f, on a study of a plot of S0(i) versus f. As t increases, S0(t) will 

S = 
Σ 4, -1/ 

Σ 4 
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decrease and, in fact, will be 0 for t ^ (η — 1). As general though not rigid 
benchmarks, Kruskal (1964a) proposes that a value of S0(t) of 20% be 
interpreted as suggesting a poor fit, 10% a fair fit, 5% a good one, and 2^% 
an excellent one, with 0% being a perfect fit. In addition to these general 
guidelines, one may decide on a value for q by looking for an "elbow" in the 
plot of S0(i) versus t (see the discussion in Example 5). 

The entire procedure can now be summarized in terms of the following 
steps: 

1. For π objects, obtain the initial information, which is the rank ordering 
of the m = n(n — l)/2 dissimilarity values, <5f/s, among every pair of the η 
objects. 

2. Given the m dissimilarity values, with the ordering 

K j . < ^ , < - < ^ (34) 

and using some initial trial configuration of points y j 0 (i = 1,2,..., n), in ί(> 1) 
dimensions, determine the interpoint distances d^'s (see Eq. 29) and fit d^s so 
that 

Ij^kj^-^l^- (35) 

For a given configuration, the 5,/s are the chosen so as to minimize the stress 
S (see Eq. 33) subject to the monotonicity constraint, Eq. 35. The algorithm 
required here is that of so-called monotone regression. 

3. Next, using these <f,/s and considering S as a function of the η χ t 
coordinates of the π points in the representation, determine an improved 
configuration, {y u } , and thence the new di}\ d^s etc., until the best configur-
ation in t dimensions is found as the one whose stress is S0(t) = min{S}, where 
the minimum is over all configurations in t dimensions. Steepest descent or 
some other general function minimization algorithm may be used for this step. 

4. Finally, plot S0(t) versus ί and choose q, the number of dimensions, as 
the minimum "adequate" value of t from the indications in such a plot. 

For simplicity of exposition, the above discussion has assumed that the 
initially observed dissimilarity values are symmetric (<5(J = <5̂ ), that there are 
no ties among them, and that they are available for all possible pairs of the 
objects. Kruskal (1964a,b) suggests methods for handling asymmetries, ties, 
and missing observations, and also describes the details of the algorithms 
developed and implemented by him for using the technique. 

Neither the final "best fitting" configuration nor the configuration at any 
stage is unique in that any similarity transformation (i.e., translation, rotation, 
reflection, or dilation) of the configuration will also have the same value of 
stress. In particular, if one so desires, one can rotate to the principal compo-
nents axes of the configuration (see Section 2.2.1) and look at the projections 
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of the points in the two- and three-dimensional spaces of pairs and triplets of 
these principal components axes. 

The above ideas and methods of multidimensional scaling are directly 
relevant to reduction of dimensionality for a body of multiresponse data. 
Indeed, if η observed points in p-space are located close to a q-dimensional 
linear subspace, the use of the interpoint Euclidean distances of the points in 
the p-space as the initial measures of dissimilarity in multidimensional scaling 
could lead to a "solution" in q-space, in correspondence with the results of a 
principal components analysis of the original covariance matrix. 

However, if the η points in p-space are located close to certain kinds of 
curved ^-dimensional subspaces, multidimensional scaling may produce a 
solution in ς-space which would not necessarily be indicated by the linear 
principal components analysis or usual factor analysis. The point is that 
multidimensional scaling attempts to preserve the monotone relation of distan-
ces, and, if the distances along the curved ^-dimensional subspace are reason-
ably monotone with the Euclidean distances, the procedure will recognize the 
lower-dimensional curved space. For instance, in the oversimplified example of 
points lying on a semicircle, since the interpoint Euclidean distances (viz., 
chord lengths) are a strictly monotone function of distances measured along 
the curve (viz., arc lengths), multidimensional scaling will recover the spacing 
of the points along the unidimensional curve and a single dimension will be 
indicated as providing a perfect fit. 

Example 2. This example derives from Ekman (1954), and the data, used by 
Shepard (1962b), consisted of similarity ratings by 31 subjects of every pair 
among 14 color stimuli, which varied primarily in hue. Thus η = 14 and 
m = 91 here. The subjective similarity rating of each pair by every subject was 
on a five-point scale, and the mean ratings from all 31 subjects were scaled to 
go from 0 ("no similarity at all") to 1 ("identical"). A 14 χ 14 matrix of such 
mean similarity ratings was obtained and treated by Ekman (1954) as a 
correlation matrix for purposes of a factor analysis, which led to a five-factor 
description. The five factors were identified as violet, blue, green, yellow, and 
red. On the other hand, as mentioned by Shepard (1962b), intuition and the 
familiar concept of the "color circle" for representing colors differing in hue 
might suggest the reasonableness of a two-factor (or perhaps even a one-factor) 
solution. Even if experimentally unintended variations in "brightness" and 
"saturation" were involved in the subjective ratings, one would still expect 
three and not five factors. 

Exhibit 2a, taken from Shepard (1962b), shows the two-dimensional sol-
ution obtained by a multidimensional scaling algorithm. [Note: The axes 
shown in the figure were obtained by rotation of the ones in the solution to 
principal axes; however, with the essentially circular configuration involved 
here this makes hardly any difference.] The multidimensional scaling solution, 
of course, consists merely of the coordinate representation of the 14 points, and 
the smooth line was drawn through the points by Shepard to emphasize the 
similarity of the configuration to the color circle. 
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Exhibit 2b is a scatter plot of the original measures of similarity against the 
interpoint distances as computed from the two-dimensional solution shown in 
Exhibit 2a. The monotone relation between similarity and interpoint distance 
seen in this plot is, of course, a constraint of the multidimensional scaling 
procedure. The greater the observed similarity between two stimuli, the smaller 
is the distance between the two points representing the stimuli. The plot 
provides a graphical display of the data-determined monotone relationship 
involved, and in the present example it appears to be a relatively smooth, 
nonlinear (perhaps quadratic) relationship. 

Exhibit lb. Scatter plot of similarity versus distance for the example of Exhibit 2a (Shepard, 
1962b) 
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Exhibit la. Multidimensional scaling solution for 14 colors (Ekman, 1954; Shepard, 1962b) 
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In this example, multidimensional scaling has produced both an intuitively 
appealing and a scientifically adequate parsimonious representation. It is 
perhaps reasonable to inquire about the details of the factor analysis solution 
and to try to understand the nature of and the reasons for the differences 
between the two solutions. In particular, after fitting the first two factors by 
the principal factor method, only 64% of the total variance (see Eq. 13) had 
been accounted for. Moreover, the residual correlations at that stage, that is, 
the off-diagonal elements of R* = (R* — Ijl'j — 12Γ2), where R*, \ l t and 12 are 
defined by Eqs. 20 and 21, were still reasonably large. This implies that the 
original correlations (which in this example were, in fact, similarities) were not 
adequately reproducible from the two-factor solution. Shepard (1962b), how-
ever, fitted a quadratic to the plot shown in Exhibit 2b, obtained fitted values 
for similarities from such a quadratic, and demonstrated that such fitted values 
were adequate reproductions of (i.e., were sufficiently close in value to) the 
original measures of similarity. This is not surprising in view of the indication 
of "tightness" of the points about a quadratic which can be visualized in 
Exhibit 2b. 

The main reasons for the difference in the dimensionalities suggested by the 
two methods is perhaps the inadequacy of the inherent linearity in the factor 
analysis approach to handle nonlinear reductions of dimensionality. In the 
present example, there may also be an effect on the factor analysis solution due 
to the use of similarity measures (with a range of 0 to 1) as inputs instead of 
the usual correlation coefficients (with a range of — 1 to 1). 

A modification of the scaling approach, due to Shepard & Carroll (1966), is 
directed toward improving the recognition of near singularities of a nonlinear 
nature among multidimensional observations. This modification focuses atten-
tion mainly on retaining the monotone relationship between interpoint distan-
ces and similarities only for nearby points rather than for all the points. The 
idea is illustrated by the next example, taken from Shepard & Carroll (1966). 

Example 3. The data are from Boynton & Gordon (1965) and were used by 
Shepard & Carroll (1966) for illustrating the modified multidimensional scaling 
approach. The general concern and nature of the experiment that gave rise to 
the data are somewhat similar to those in the Ekman experiment described in 
Example 2, although the experimental detail and the nature of the data are 
different here. Specifically, 23 spectral colors differing only in their wavelengths 
were projected in random sequence several times to a group of observers. For 
each color the relative frequencies with which the observers denoted it as blue, 
green, yellow, or red were noted, thus giving a four-dimensional response 
associated with each color. In this example, η = 23 and ρ = 4. Exhibit 3a shows 
a pictorial representation of the data. The 23 colors (observations) are labeled 
A through W, and the four-dimensional vector of observations for each color 
is shown in a profile format. [Note: The four relative frequencies for any color 
are not required to add up to 100%, and they do not.] 



NONLINEAR REDUCTION OF DIMENSIONALITY 35 

Exhibit 3a. Profiles of relative frequencies of identifications of each of 23 spectral colors as blue, 
green, yellow, or red (Boynton & Gordon, 1965; Shepard & Carroll, 1966) 
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A 4 χ 4 correlation matrix may be calculated from the 23 observations; and, 
when a principal components analysis of the correlation matrix is performed, 
three of the four eigenvalues turn out to be relatively important, whereas the 
smallest eigenvalue is comparatively small and negligible. Thus, using a linear 
technique would lead one to conclude that a linear space of reduced dimen-
sionality, q = 3, would be feasible and might be adequate in the present 
problem. Shepard & Carroll (1966) show a representation of the 23 stimuli in 
the space of the first three principal components, and Exhibit 3b is a repro-
duction of their ingenious two-dimensional display of the three-dimensional 
representation. Two of the axes are on the plane of the picture, while the third 
axis is to be visualized as emanating out toward the viewer. The 23 points are 
labeled A through W to correspond with the stimuli, and the size of the circle 
around a point corresponds to its distance away from the picture plane. Thus 
F and Q are about the closest to the viewer, while S, K, and J are among the 
farthest away. 

From Exhibit 3b it is clear that, although q = 3, the 23 points are not 
scattered throughout three-dimensional space but, rather, appear to lie on a 
reasonably smooth one-dimensional curve that winds through the three-
dimensional space. To emphasize this feature, the points in Exhibit 3b are also 
labeled 1 through 23 (shown alongside their original identifications by the 
letters A through W) to correspond with their positions on the one-dimen-
sional curve. It is, of course, known that a single dimension (viz., wavelength) 
underlies the data; in fact, in the experimental setup the variation in wavelength 
of the 23 stimuli was accomplished by turning a single knob to different 
settings. (The numbering 1 through 23, in fact, corresponds with the known 
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Exhibit 34. Representation of three-dimensional principal factor solution for the data of Exhibit 
3α (Shepard & Carroll, 1966) 

ordering of the stimuli on the single dimension of wavelength!) Hence one 
might ask whether it is possible to obtain an adequate one-dimensional 
representation of the data. 

If yj = Cv,-i» • • -, yu) denotes the four-dimensional observation corresponding 
to the ith stimulus (i = 1,...,23), one could use the so-called city-block 
distance between the ith and jth observations, Σ* = , \yu - yJt\, for i <j = 
1,. . . , 23, as a measure of dissimilarity (oy) between stimuli i and j . Thus 253 
( = m) dissimilarities may be obtained and used as input to multidimensional 
scaling. Shepard & Carroll (1966) performed such an analysis and found that 
the minimum stress in one-dimension, S0(l), was not adequately small but that 
S0(2) was sufficiently and markedly smaller. The two-dimensional solution 
obtained by Shepard & Carroll (1966) is shown in Exhibit 3c, with the points 
joined by a smooth line. Except for being confined to a two-dimensional space, 
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BLUE 

GREEN 

YELLOW 

the curve in Exhibit 3c is qualitatively (including the location of bends) the 
same as the one which manifested itself in the principal components represen-
tation of Exhibit 3b. The tendency of both curves to close the loop is similar 
to the color circle concept and is explainable by the phenomenon that violet 
[stimulus Ν (or 1) with the lowest wavelength] is judged to contain some red 
[stimulus S (or 23) with the highest wavelength] along with a dominance by 
blue. 

Exhibit 3d shows the scatter plot of interpoint Euclidean distances in the 
solution against the original dissimilarities (viz., the city-block distances). The 
near linearity of this configuration suggests that the interpoint Euclidean 
distances in the two-dimensional representation, determined as the output of 
the multidimensional scaling algorithm, are essentially linearly related to the 
city-block distances (calculated in the initial four-dimensional space of obser-
vations) that constituted the input measures of dissimilarity to the algorithm. 

Next, since the use of the regular multidimensional scaling approach still 
does not lead to recovering the single dimension known to underlie the data 
in this example, Shepard & Carroll (1966) suggest that the monotonicity 
constraint not be imposed globally. The idea is not to try accommodating the 
dissimilarities between relatively remote profiles such as those for stimuli Ν (or 
1) and S (or 23), since this might induce the "bending over" of a basically 
unidimensional phenomenon, and provision for such bending would necessi-
tate the use of two dimensions. To focus on monotonicity only for pairs of 
stimuli that are likely to be "nearby" on the single dimension possibly 

Exhibit 3c. Multidimensional scaling solution for the data of Exhibit 3a (Shepard & Carroll, 1966) 
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Exhibit 3d. Scatter plot of dissimilarity versus distance associated with Exhibit 3c (Shepard & 
Carroll, 1966) 
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underlying the data, one can ignore all pairs of objects whose observed 
dissimilarities exceed a specified cut-off value, and then require monotonicity 
between the distances and dissimilarities only for the remaining pairs of objects 
whose dissimilarities are smaller than the cut-off value. Using such a procedure 
and requiring monotonicity only for the pairs of stimuli with the smallest 100 
dissimilarities (i.e., ignoring the 153 larger dissimilarity values) led Shepard & 
Carroll (1966) to the one-dimensional solution shown along the bottom of 
Exhibit 3e. 

The configuration, including the spacing, is essentially the one that would 
be obtained by "unbending" the curve of Exhibit 3c. The ordering of the stimuli 
from 1 through 23 in Exhibit 3e does correspond to increasing wavelength. 
Their spacing, however, is not the same as it is on wavelength, as is evident 
from the scale at the top of Exhibit 3e, which shows the wavelengths 
corresponding to the 23 stimuli. Also shown in the figure are plots of values of 
each of the four original responses (B, G, Y, and R) for the 23 stimuli, against 
the spacings as determined in the one-dimensional solution. The observed 
values of the original responses are thus seen to be nonlinear functions of the 
single underlying dimension. Shepard & Carroll (1966) noticed the interesting 
fact that these curves are more regular and symmetrical than those obtained 
by Boynton & Gordon (1965), showing the responses plotted directly against 
wavelength. The experiment clearly involves the psychological perception of 
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Exhibit ie. Multidimensional scaling solution with local monotonicity constraint for the data of 
Exhibit 3a (Shepard & Carroll, 1966) 
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colors, and for this reason the data may not be reflecting only the experimen-
tally controlled physical dimension of wavelength. 

Exhibit 3 / shows the scatter plot of interpoint Euclidean distances versus 
the initial dissimilarities for the one-dimensional solution shown in Exhibit 3e, 
and the departure from monotonicity at the top end may be seen clearly. The 
interpoint distances and dissimilarities, for stimuli such as Ν and S whose 
profiles (initial data) are very different, are indeed coordinates of the points at 
the top end of Exhibit 3 / 

An important difficulty with the above simple modification of confining 
monotonicity to the smallest dissimilarities and the corresponding recovered 
distances is that, when the underlying dimensionality of the curved manifold is 
larger than 1, the procedure may not lead to detecting this. Hence the modified 
multidimensional scaling procedure may be adequate when q = 1 but not when 
q > 1. As an example, Shepard & Carroll (1966) mention the case in which the 
points lie on the surface of a fish bowl or a sphere with a hole. Here ρ = 3 and 
q = 2, and an appropriate solution would be a representation of the points on 
a two-dimensional disk obtained by pulling out the sphere at the hole and 
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Exhibit 3 / Scatter plot of dissimilarity versus distance associated with the multidimensional 
scaling solution in Exhibit 3c (Shepard & Carroll, 1966) 
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flattening out into a disk. However, in such solution, points at the rim of the 
hole which were close together in three-dimensional space end up being far 
apart on the two-dimensional disk; that is, points with small initial dissimilar-
ities end up with large interpoint distances in the recovered configuration. An 
alternative modification of multidimensional scaling to handle this difficulty 
might be to impose regional monotonicity; in other words, monotonicity might 
be required separately within a region surrounding each point (see Bennett, 
1965). 

Rather than pursuing such a modification, however, Shepard & Carroll 
(1966) suggest a different procedure that involves maximizing an index of 
continuity, so as to find a representation of the original p-dimensional points 
in terms of q( < p) new coordinates that are "smoothly" related to the old ones. 
Specifically, if y l f y 2 y„ are points in an initial p-dimensional representation 
of η objects, they suggest finding a configuration x i s x 2 , . . . , x„ in q-space so as 
to minimize an index of the form 

Σ Σ ν » » 
K = . 

Normalizing factor 

Here di} is the Euclidean distance between y, and y,, while D ( S is the Euclidean 
distance between \ i and \ J y and w,/s are weights that decrease as the distance 
between the corresponding points in the x-space increases. The numerator of 



NONLINEAR REDUCTION OF DIMENSIONALITY 41 

κ is a multivariate generalization of the mean square successive difference 
whose ratio to the variance is a statistic which has been used as an inverse 
measure of trend in univariate time series. The smaller the value of κ, the 
"smoother" the relationship between y and χ is considered to be. 

Using the desiderata of invariance of the ratios of the weights under 
translations, and uniform shrinking or dilation of the x-space, Shepard & 
Carroll (1966) recommend the choice w y = l/Dfj. Similarly, arguing that it 
would be desirable for the unconstrained minimum of the index to be attained 
when £)?· is proportional to dfj for every i and j (i.e., the configurations in 
x-space and y-space match except for a similarity transformation), they suggest 
using the normalizing factor, [ Σ Σ , < ; l /D 2 ,] 2 , in the denominator of κ. 

Thus, given the initial configuration y1 , , y„ in p-space, the approach 
suggested by Shepard & Carroll (1966) is to choose the nq coordinates 
involved in χ x „ so as to minimize 

Starting from a trial configuration in q-space, one could iterate to the desired 
configuration, with the minimum value of κ, by using a numerical optimization 
technique, such as the method of steepest descent. Also, as was the case in 
multidimensional scaling, one could repeat the process for a series of values of 
q and choose the smallest "adequate" value of q by studying the achieved 
values of κ for the different values of q. 

In contradistinction to multidimensional scaling, the above procedure 
assumes the initial format of the data to be a Euclidean representation (i.e., η 
points in p-space) and not to consist only of rank order information about the 
pairwise dissimilarities. Also, little is known about the dependence of the final 
solution on the use of (i) other measures of distance besides the Euclidean 
measure in the x- or y-space, (ii) other weights, wtj, and (iii) other normalizing 
factors. The experience with this approach, using Monte Carlo or real data, is 
too limited for specification of a yardstick for assessing the smallness of an 
observed value of κ. The unconstrained minimum of κ (corresponding to which 
there need not, of course, be a Euclidean configuration in x-space) is easy to 
compute, and in their published examples Shepard & Carroll (1966) seem to 
use this value for judging how small the κ is for the optimum configuration 
determined by the procedure. Despite these limitations, some interesting 
examples of the application of the procedure are discussed by Shepard & 
Carroll (1966), and the following example is taken from their work. 

Example 4. The artificially generated data consisted of 62 points on the 
surface of a sphere—12 points on each of five equally spaced parallels, and the 
two poles. Hence η = 62, ρ = 3, and it is known here that q - 2. Exhibit 4a 

η 

(36) 
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Exhibit 4a. Artificial data consisting of 62 points on the surface of a sphere (Shepard & Carroll, 
1966) 

shows the data; Exhibit 4b, the solution obtained in two dimensions by 
minimizing κ. The solution consists of two hemispheres in three-dimensional 
space opened out on a hinge at the equator and then flattened out into a 
common plane. The equatorial circle has been distorted into an S-shaped 
curve. The reader is reminded, however, that the computer output in this 
solution (exactly as in the uses of multidimensional scaling) consists only of the 
coordinates of the points corresponding to the η objects, and the lines are 
drawn in from extraneous knowledge of some structure among the objects. 

All of the procedures described in the present subsection of the book depend 
on the use of an index of achievement (viz., minimum stress or minimum κ) as 
an informal basis for assessing the comparative adequacy of the successive 
dimensions employed. This index is to be used with appropriate judgment 
relative to meaningfulness of interpretation in the subject matter area. A firm 
commitment to benchmarks for comparing achieved values of the index, 
without regard for issues such as interpretability, is neither necessary nor 
recommended for using these tools of data analysis. 

Example 5. The data, from an experiment of Rothkopf (1957) (see also 
Shepard, 1963; Kruskal, 1964a), were obtained from 598 subjects who were 
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asked to judge whether or not pairs of successively presented Morse code 
signals were the same. Thirty-six signals were employed: 26 for the letters of 
the alphabet and 10 for the digits 0 through 9. Exhibit 5a is a matrix of the 
percentages of times that a signal corresponding to the row label was identified 
as being the same as the signal corresponding to the column label. These 
percentages may be considered as measures of similarity between the pairs of 
Morse code signals. [Note: Although large, the diagonal values in Exhibit 5a 
are not 100% (similarity of a signal to itself is not perfect), and also the matrix 
is not symmetric, so that δί} φ <$,,.] To use multidimensional scaling in a direct 
manner, the averages of each pair of symmetrically situated off-diagonal 
elements of this matrix may serve as input measures of similarity between the 
coresponding pair in the 36 signals. 

Exhibit 5b, taken from Kruskal (1964a), shows the minimum stress achieved 
by the multidimensional scaling solution plotted against the number of 
dimensions employed for that solution. Using the benchmarks recommended 
by Kruskal (1964a) and mentioned earlier, as well as the rule of choosing the 
dimensionality by looking for an "elbow" in a plot such as Exhibit 5b, one 
might feel that a choice of q = 2 in this example would, from the point of view 

Exhibit 46. Two-dimensional parametric mapping of data of Exhibit 4a (Shepard & Carroll, 
1966) 
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Exhibit Si. Plot of stress versus number of dimensions for the example in Exhibit 5a (Kruskal, 
1964a; Shepard, 1963) 
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Exhibit Sc. Multidimensional scaling solution for the Morse code signals (Shepard, 1963) 

of the index of achievement, be between fair and poor, and if not the value of 
5 for q one should at least consider the value 3. 

However, the two-dimensional solution obtained and interpreted by 
Shepard (1963) is shown in Exhibit Sc. The vertical axis in this solution is seen 
to correspond to the number of components in the Morse code symbol (i.e., 
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the total number of dots and dashes), while the horizontal axis characterizes 
the composition of the symbol (i.e., the ratio of number of dots to number of 
dashes). Corresponding to the large value of stress ( ^ 18%) for this solution, 
one observes that the distances between the representations of the signals do 
not closely match the observed similarities in Exhibit 5a [e.g., compare the 
distance between the pair (Β, X) with those between (B, F) and (B, L)]. 
However, as Kruskal (1964a) points out, the fact that Shepard could not 
extract additional interpretable structure by going to three dimensions suggests 
that q = 2 would be a better choice than q = 3 for this problem regardless of 
any contraindication from Exhibit 5b. Interpretability and simplicity are 
important in data analysis, and any rigid inference of optimal dimensionality, 
in the light of the observed values of a numerical index of goodness of fit, may 
not be productive. 

In this example, as well as the previous ones of the use of multidimensional 
scaling, the initial dissimilarity (or similarity) values were averages across 
several subjects, and no provision was made for differences among subjects. In 
later work, Carroll & Chang (1970) have proposed a scheme for multidimen-
sional scaling that allows for individual differences. In this approach the 
coordinates recovered by multidimensional scaling are assumed to be the same 
for all individuals, but the weights assigned to the different coordinates are not 
assumed to be identical for all individuals. 

The ideas and procedures involved in the above scaling types of approaches 
are imaginative and insightful. The procedures, however, have limitations in 
practical application in that they involve extensive iteration on φ - l)/2 
quantities—the interpoint similarities or distances. The currently available 
computer programs, for instance, can effectively and economically handle up 
to about 75 ( = n) objects only. Also, the solution space produced by these 
procedures does not have an analytic description that is simply interpretable 
in terms of the original response space. This becomes especially important 
when the solution space is of dimensionality greater than three and graphical 
representations are no longer available. Also, when one starts with a metric 
representation and uses some measure of distance in the initial space as the 
input measure of dissimilarity (see Example 3), questions arise concerning the 
nature of the dependence of the recovered configuration on the initial choice 
of distance function. 

2.4. NONLINEAR SINGULARITIES AND GENERALIZED 
PRINCIPAL COMPONENTS ANALYSIS 

2.4.1. Nonlinear Singularities 

The problem of reduction in dimensionality concerns the recognition of 
lower-dimensional, possibly nonlinear, subspaces near which the multiresponse 



NONLINEAR SINGULARITIES 47 

observations may, statistically speaking, lie. This is, of course, not a well-
defined concept, in a sense very similar to the indefiniteness involved in the 
notion of "fitting a curve" to a scatter plot of y against x. 

One major source of difficulty in the problem is the fact that in the analysis 
of high-dimensional data there are not available the informal, mainly graphical, 
internal comparisons procedures, such as scatter plots, that guide so much 
single-response, and some two-response, data analysis. 

So far as near-linear singularities in a body of data are concerned, these may 
be statistically indicated by principal components analysis (but see Section 6.6 
for a discussion of possible effects of outliers). However, nonlinear singularities 
will not necessarily be indicated by principal components, and one may not be 
able to infer their existence even from various obvious two-dimensional scatter 
plot representations of the data. 

Example 6. The C-shaped configuration shown in Exhibit 6a is an oversim-
plified example of data configurations that may not be revealed by classical 
linear principal components analysis. Clearly, the three-dimensional analogue 
of this, namely, a cup-shaped configuration of data, may not be revealed even 
by a combination of principal components analysis in 3-space and two-
dimensional marginal scatter plots. Example 7 discusses such an example. 

Exhibit 6b is a plot of 50 computer-generated random bivariate normal 
samples with an underlying positive correlation coefficient. This is, therefore, 
an example of typical normal distribution scatter when ρ = 2. 

The filled-in squares in Exhibits 6a and 6b are the centers of gravity (means) 
of the data. 

One elementary technique for detecting the existence of curved configur-
ations, such as the one considered in Example 6, involves the computation of 

Exhibit 6a. Example of a curved configuration of data 
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Exhibit 6b. Simulated sample of bivariate normal scatter 

the squared generalized distances (using the inverse of the sample covariance 
matrix) of each point from the center of gravity, namely, df=(y,-y)'S~ ' (y . -y) 
for i = 1, . . . , n. For a typical multivariate normal scatter (see Exhibit 6b), 
either throughout ρ dimensions or mainly on a linear subspace, these distances 
will have approximately a chi-squared or gamma distribution. Hence, on 
an appropriately selected gamma probability plot (Wilk, Gnanadesikan, & 
Huyett, 1962a; see also the discussion of probability plots in Section 6.2), using 
shape parameter values in the neighborhood of p/2, they will tend to show as 
a linear configuration oriented toward the origin. For curved singularity, such 
as the illustration, however, it is clear that there will be a deficiency of small 
distances. This will show on the gamma plot by orientation of the configur-
ation toward a nonzero intercept at the "small" end. A histogram of the 
observed distances would also indicate the sparseness of small ones, but the 
probability plot may provide additional insights. The following simulated 
three-dimensional example illustrates some of these ideas and procedures. 

Example 7. The 61 triads shown in Exhibit la were obtained by appending 
a standard normal deviate to each of the coordinates of points on the surface 
of a specified paraboloid. Exhibits lb, 7c, and Id, show the three possible 
two-dimensional scatter plots of these data with respect to pairs of the original 
three coordinates. None of these data displays is suggestive of the observations 
in three dimensions lying "near" a curved subspace. 

The inverse of the sample covariance matrix, S, of these observations was 
employed to compute the generalized squared distance of each of the 61 points 
from their centroid. (See Section 4.2.1 for a discussion of distance measures.) 
A gamma probability plot of the ordered squared distances is shown in Exhibit 
le. The value of the shape parameter used for this plot was η = 3/2, and hence 
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- 2 . 7 3 2 6.557 25.507 
- 5 . 2 6 4 5.253 24.200 
- 5 . 1 0 3 5.986 26.446 
- 3 . 3 3 5 5.888 23.947 
- 5 . 4 2 0 5.607 25.321 
- 3 . 2 6 1 7.697 27.479 
- 4 . 6 0 7 6.651 26.518 
- 4 . 2 3 6 4.220 24.416 
- 4 . 9 4 7 5.363 26.918 
- 2 . 1 8 9 5.881 26.282 
- 2 . 9 1 3 5.953 26.962 
- 4 . 8 3 8 5.909 25.196 
- 3 . 4 4 8 5.610 27.489 
- 0 . 9 9 0 5.391 25.667 
- 6 . 1 1 6 6.326 30.189 
- 2 . 7 1 5 4.645 25.613 
- 5 . 8 4 9 6.876 26.070 

0.162 5.521 25.027 
- 5 . 3 6 0 5.494 28.675 
- 1 . 7 4 0 4.070 27.311 
- 2 . 9 7 5 6.716 27.999 
- 4 . 2 2 0 3.853 26.396 
- 6 . 3 0 6 4.573 25.715 
- 1 . 9 7 2 5.615 24.900 
- 4 . 4 9 7 5.314 27.978 
- 2 . 0 0 5 3.352 24.599 
- 3 . 8 0 9 5.421 28.794 
- 2 . 0 8 1 3.795 25.542 
- 4 . 9 0 7 7.120 27.449 
- 0 . 7 4 2 2.800 26.394 
- 2 . 7 5 0 2.233 27.669 

- 3 . 4 5 2 2.948 25.591 
-7 .261 6.959 26.789 
- 2 . 3 7 0 3.617 25.510 
- 4 . 1 8 1 4.530 29.118 
- 2 . 3 6 0 3.916 24.879 
- 5 . 2 9 7 5.802 29.073 
- 1 . 5 8 5 2.524 26.954 
- 3 . 2 6 7 4.402 28.899 
- 1 . 1 8 7 3.257 26.100 
- 2 . 0 9 5 6.931 27.269 
- 4 . 8 0 0 3.339 27.011 
- 5 . 6 0 2 5.322 28.759 
- 1 . 4 7 8 1.644 26.057 
- 5 . 1 5 1 4.481 27.583 
- 0 . 6 9 4 3.408 24.997 
- 5 . 6 8 7 4.766 29.640 
- 1 . 7 3 3 3.932 26.198 
- 6 . 1 5 4 4.932 29.631 
- 3 . 8 2 3 3.784 25.123 
- 2 . 5 8 8 4.923 28.343 
- 3 . 2 3 7 3.648 26.249 
- 5 . 7 4 0 4.537 30.277 
- 0 . 7 0 9 1.542 27.240 
- 6 . 5 6 8 5.335 29.631 
- 1 . 6 6 9 1.501 25.413 
- 7 . 6 9 0 4.578 30.863 

0.837 1.271 25.303 
- 5 . 8 3 2 7.020 28.915 
- 0 . 4 0 5 3.669 27.587 
- 3 . 0 1 9 3.752 29.665 

it is essentially a probability plot for a chi-squared distribution with 3 degrees 
of freedom. The configuration, which has a nonzero intercept, shows clearly the 
"deficiency" of small values, indicating a "hole" in the data. Furthermore, the 
slight tendency of the configuration to "bend over" at the top right-hand 
corner suggests that the data may be near a dish or a shallow paraboloid rather 
than a deep paraboloid. The nature of the indicated peculiarity may be 
investigated further by using the methods discussed below. 

The simple-minded idea illustrated in Example 7 will, of course, not be 
indicative when the nonlinear surface near which the data lie has several bends, 
such as a sinusoidal shape. Furthermore, if a peculiarity is indicated, the 
probability plot does not tell very much about its nature. 

Exhibit 7a. Simulated data with observations scattered off the surface of a paraboloid 



REDUCTION OF DIMENSIONALITY 

Exhibits 7A-A Scatter plots of bivariate subsets of the data of Exhibit 7 a 
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Exhibits It. Gamma probability plot (with shape parameter = 3/2) of generalized squared 
distances for data of Exhibit 7a 

0 2 0 4.0 6.0 

GAMMA QUANTILES 

A method proposed by Gnanadesikan & Wilk (1966, 1969) and considered 
independently by Van der Geer (1968) is useful for analyzing multidimensional 
linear or nonlinear singularities. The technique is a generalization of classical 
linear principal components analysis. 

2.4.2. Generalized Principal Components Analysis 

If one has nearly linear singularity of the data, what one wishes to do is to 
determine the linear coordinate system that is most nearly in concordance with 
the data configuration. Then the expression of the data in the new coordinate 
system is simpler, in that the effective description can be given by the use of 
fewer coordinates. This is accomplished by linear principal components analy-
sis. 

If one has nearly nonlinear singularity of the data, what one wishes to do is 
to determine the nonlinear coordinate system that is most nearly in agreement 
with the data configuration, just as in the linear case. Given a class of possible 
nonlinear coordinates, one needs to select that one along which the data 
variance is maximum, and then obtain another, uncorrelated with the first, 
along which the variance is next largest, and so on. For any class of 
coordinates that consist of an unspecified linear combination of arbitrary 
functions of the original coordinates, the solution to this problem is simply an 
enlarged eigenvalue-eigenvector problem. The essential concepts and compu-
tations may be illustrated by considering the bivariate {p = 2) case. 

Suppose that y' = (j>i, j>2) denotes the original bivariate response, and for 
illustrative purposes suppose that one is seeking a quadratic coordinate system. 
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Thus, as a first step, one wishes to find 

ζ = αν, + by2 + cy^2 + dy\ + ey\ (37) 

such that the variance of ζ is maximum among all such quadratic functions of 
y, and y2. 

Denoting y^2 as y3, y\ as y4, and y\ as ys, one can consider 

y * ^ ^ ! ^ . ^ , ^ - ^ ) (38) 

as a five-dimensional vector of responses, two of which are just the original 
variables and the remaining three are functions (squares and cross product) 
derived from them. If 

a*' = (a,b,c,d,e) (39) 

denotes the vector of coefficients used in Eq. 37 in defining z, the first stage of 
a quadratic principal components analysis may be formulated as the problem of 
determining a* so that the variance of z( = a*'y*) is maximum subject to a 
normalizing constraint, such as a*'a* = 1, exactly as in linear principal 
components analysis. 

On the basis of a sample, of π observations on the initial response variables 
and y2, one can generate η observations on y* and thence obtain the 

"sample" mean vector and covariance matrix: 

y * ' ^ ! . * 2 . *3> U hi 

s* = —! - r Σ ( y f - y * X y ? - y * ) ' . 
η — ι i = 1 

For a given a* the observed variance of ζ will be a*'S*a*, and the first stage 
of the quadratic principal components analysis will then result in choosing 
a* = a*, where a* is the eigenvector corresponding to the largest eigenvalue, 
c*, of S*. Furthermore, if at the next stage one wishes a second quadratic 
function that is uncorrelated (in the sample) with the first and has maximum 
variance subject to being thus uncorrelated, then, exactly as in linear principal 
components, one will choose the set of coefficients for the second quadratic 
function as the eigenvector, a*, of S* corresponding to its second largest 
eigenvalue, c*. The process can be repeated to determine additional quadratic 
functions with decreasing variances at each stage and with zero correlations 
with each of the quadratic functions determined at earlier stages. Thus, if 
c* ^ c* > ··· >c£ ^ 0 are the eigenvalues of S* with corresponding eigenvec-
tors a*, a*, a*, a*, and a*, one can derive five quadratic functions of the two 
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original variables from the relationships 

< = 1,2 5. (40) 

As a method for the reduction of dimensionality, the interest will lie in the 
functions defined by "smallest" eigenvalues. For instance, if the bivariate 
observations lie on a quadratic curve, one will expect c* = 0 and z 5 will be a 
constant for all observations, yf. 

More generally, given η p-dimensional observations, if one wishes to per-
form a quadratic principal components analysis, one will augment the original 
ρ variables by ρ + [p(p — l)/2] derived variables (viz., all squared and cross-
product terms) and carry out a regular principal components analysis of the 

covariance matrix of the enlarged set of variables. 
The generalization is immediate to cubic and higher-order polynomial 

principal components, as well as to any situation in which the system of derived 
coordinates sought consists of (unknown) linear combinations of (specified, 
possibly nonlinear) functions of the original variables. Thus a typical member 
of the class of derived coordinates that can be handled by the above general-
ization of principal components is 

where the α,-'s are to be determined, and the fj's are completely specified, but 
otherwise arbitrary, functions of the original variables. 

The above generalization, formulated in terms of properties of variances of 
and correlations among the derived coordinates, is an obvious extension to the 
nonlinear case of Hotelling's approach to linear principal components analysis. 
In particular, linear principal components may be viewed as a special case of 
polynomial principal components. In a linear principal components analysis, 
one starts with ρ correlated coordinates and derives a set of ρ uncorrelated (in 
the sample) coordinates that are linear functions of the original variables. In a 
quadratic principal components analysis, however, one starts with ρ correlated 
coordinates and obtains a set of 2p + [p(p — l)/2] uncorrelated quadratic 
coordinates that are quadratic functions of the original variables. As a method 
for nonlinear reduction of dimensionality, in using quadratic (or otherwise 
generalized) principal components analysis, the interest will lie in the functions 
defined by the "smallest" eigenvalues. 

k 

^ = Σ yi- • • • < yP)< (41) 

Example 8. The data consisted of 41 points lying on the parabola Y2 = 
2 + 4ΪΊ +4Y,2, with Yi = —1.5(0.05)0.5. A quadratic principal components anal-
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Eigenvalues 

2163.634 219.915 2.258 

Eigenvectors 

2.223 0.000009 

-.002513 .246077 .508757 -.442445 .696310 
.169321 .011882 .758811 .604229 -.174076 

-.094253 .932909 -.212548 .274991 .0000004 
.044843 -.243106 .319056 .593499 .696311 
.980015 .099425 -.135640 -.106239 .0000003 

ysis was applied to this data, and the dimension of the enlarged eigenvalue 
problem was, therefore, 2p + [p(p — l)/2] = 5, since ρ = 2. The resulting 
eigenvalues and eigenvectors are shown in Exhibit 8a. The largest eigenvalue 
is seen to be over 2000, while the smallest, which is "known" to be 0, is 
computed as 9 χ 10" 6 . 

Each eigenvector provides a nonlinear (quadratic in this case) coordinate in 
the original space, and Exhibit 8fr shows the coordinates determined by the 
eigenvectors corresponding to the smallest and largest of the five eigenvalues. 

Exhibit 86. Data and coordinates from the largest and smallest eigenvalues 

- t . 0 0 ι ι ι ι ι I I 
- 2 . 0 0 -1 .00 0.00 1.00 

Exhibit 8a Eigenanalysis for example of quadratic principal components analysis 
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Eigenvalues 

1969.563 285.938 5.717 

Eigenvectors 

2.034 1.081 

- .010915 .260105 - .269383 .610264 .698023 
.172863 .012363 .189273 .761768 - . 5 9 4 8 5 3 

- .106665 .930317 .301394 - .146763 - .103707 
.062983 - .230187 .892766 .062053 .377047 
.977064 .117118 - . 061142 - .147978 .077413 

The parabolic coordinate is from the smallest eigenvalue, and the flat elliptic 
coordinate is from the largest. In the absence of statistical errors in the data, 
one of the parabolas (viz., the middle one) passes exactly through the points. 

Example 9. To illustrate the effect of "noise" on the technique, the data of 
Example 8 were modified by adding random normal components (with mean 
0 and variance γξ) to each of the two coordinates of every point. The results 
of an eigenanalysis, comparable to the one in Example 8, are shown in Exhibit 
9a. It is seen that, although the largest eigenvalue is still about 2000, the 
smallest one is now 1.081. The first two eigenvalues, and especially the 
corresponding eigenvectors, are, in fact, quite similar to the ones in Exhibit 8a. 
The indications from the remaining three eigenvalues and eigenvectors, how-
ever, are different because of the added noise in the data of this example. In 
particular, in the eigenvector that corresponds to the smallest eigenvalue it is 
seen that the elements which provide the coefficients for Y, Y2 and Y2

2 are no 
longer negligible and only the coefficient of y, appears to be essentially the 
same as it was for the noiseless data. 

Exhibit 9b shows the data and the quadratic coordinates defined by the 
eigenvectors corresponding to the smallest and largest eigenvalues. The small-
est eigenvalue now leads to an elliptical coordinate system because of the 
influence of the statistical errors. This distortion of the parabolic coordinate 
into an elliptical one, however, does not seem to be unreasonable relative to 
the configuration of the data. 

The illustration of the technique of generalized principal components in 
Examples 8 and 9 is trivial since ρ = 2 for both cases. With ρ = 3 more 
interesting possibilities begin to arise since the points may then lie on (q = ) 
one- or two-dimensional curved sub-spaces. Example 10 is a case with ρ = 3 
and q = 2. The purpose of Examples 8 and 9 is to illustrate the basic concept 
of nonlinear coordinate transformations and the analytical and algorithmic 
aspects of the method, which, of course, are valid for any value of p. The 

Exhibit 9a, Eigenanalysis for example of quadratic principal components analysis 



method is not crucial for two- or three-dimensional problems which lend 
themselves to graphical representation and study. 

The above development of generalized principal components analysis in 
terms of minimizing (or maximizing) variances, and of requiring the different 
coordinates to be uncorrelated in the sample, is a statistical extension of 
Hotelling's (1933) approach for the linear case. However, to see the problem of 
nonlinear singularities in a broader context of nonlinear coordinate systems, 
one can formulate the question in function-fitting terms. Thus, in the linear 
case, the eigenvector corresponding to the smallest eigenvalue essentially 
determines a plane of closest fit, where closeness is measured by the sum of 
squares of perpendicular distances. Specifically, in the notation of Section 2.2.1, 
if a 'i,..., a'p denote the eigenvectors of S corresponding, respectively, to the 
ordered eigenvalues ct ^ c 2 ^ ··· > cp > 0, the equation of the plane of closest 
fit to the data is a,y = a'py, where y is the sample mean vector (see Eq. 1). Also, 
among all planes orthogonal to the first, the equation of the plane of next 
closest fit to the data is = *'p-tf, and so on. This indeed was Karl 

Pearson's (1901) formulation leading to the linear principal components. 
In the linear case the statistical approach through variance minimization 

and mutual uncorrelatedness turns out to be identical with the approach of 
fitting mutually orthogonal planes by minimizing the sum of squares of 
perpendicular distances from the data to the planes. This equivalence of the 
two approaches does not, however, carry over to the general nonlinear case 
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with "noisy" data. Developing algorithms for fitting even specific types (e.g., 
quadratic polynomials) of nonlinear functions to data by minimizing the sum 
of squares of "perpendicular" distances would be quite useful. 

One value of such an algorithm would be the intuitive appeal of its criterion 
in function-fitting situations involving variables all of which may be subject to 
random errors, a circumstance which is not rare and in which the use of the 
usual least squares criterion may be questionable. Another feature of the 
function-fitting approach would make it particularly appealing as a statistical 
tool for the reduction of dimensionality. Unlike the eigenvector algorithm 
involved in the variance-minimization approach, the function-fitting algorithm 
is sensitive only to the scales of the original variables and not to the scales of 
additional nonlinear functions of them. For instance, in the bivariate quadratic 
case discussed earlier, the solution of the enlarged eigenvector problem is 
sensitive not only to the scales of Yx and Y2 but also to those of Y2, Y2, and 
y, Y2, which are necessarily noncommensurable with the original coordinates. 
However, the criterion of minimizing the sum of squares of perpendicular 
deviations, although dependent on the scales of Υγ and Y2, does not depend in 
any way on the scales of the quadratic terms Y2, Y2, and YiY2. This 
scale-resistant nature would be particularly desirable in many practical appli-
cations. One way of handling this issue, while still retaining the variance-
minimization approach, is to carry out the eigenanalysis on the enlarged 
correlation matrix rather than on the corresponding enlarged covariance 
matrix, an idea discussed earlier (see pp. 11-12) in the context of linear 
principal components analysis. 

A main advantage of the variance-minimization approach is the computa-
tional simplicity of the algorithm involved—merely an eigenanalysis. In the 
absence of a general algorithm for function fitting based on minimizing 
perpendicular deviations, one is limited to this approach anyway. In the 
absence of noise in the data, as in Examples 8 and 10, the issue of differences 
between the two approaches does not arise. When the variance-minimization 
approach is used for generalized principal components analysis, the equation 
of the nonlinear subspace to which the observations may possibly be confined 
will be defined by means of a procedure analogous to the one employed in the 
linear case. Specifically, for instance, in the bivariate case considered above, if 
the observations lie on a quadratic curve (as in Example 8), the variance-
minimization approach will be expected to lead to c* = 0 and the equation of 
the quadratic curve will be ( z 5 = ) a*'y* = a*'y*, where y*, y*, c*, and a* were 
defined earlier. In fact, the "middle" one of the five parabolas in Exhibit 8i> and 
the "middle" one of the five ellipses in Exhibit 9b have equations that are 
specified in this manner. The same idea is also used in obtaining the equation 
of the quadratic surface involved in the next example. 

Example 10. The data, shown in Exhibit 10a, consist of 19 points lying on 
the surface of the sphere, X2 + Υ2 + Z2 = 25. Thus, in this example, ρ = 3 and 
q = 2. 
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Exhibit 10a. Artificial data—19 points on the surface of a sphere 

X Y Ζ 

-5.0 
-4.0 
-3.0 
-2.0 
-1.0 

0.0 
1.0 
2.0 
3.0 
4.0 

0.0 
1.0 
0.5 
4.0 
0.0 
3.0 
2.0 
4.0 
3.3 
2.4 

0.0 
±2.828 
±3.969 
±2.236 
±4.899 
±4.000 
±4.472 
±2.236 
±2.261 
±1.800 

A quadratic principal components analysis, involving an eigenanalysis of 
dimension nine, yields the eigenvalues and eigenvectors shown in Exhibit 10b. 
The largest eigenvalue is seen to be about 96, while the smallest, which in the 
absence of "noise" in the data is 0, was computed to be less in value than 10" 7 

and hence is shown as being 0. Also shown at the bottom of Exhibit 106 is the 
equation of the sphere on which the data lie as determined by the eigenvector 
for the zero (smallest) eigenvalue. With the error-free data, the original sphere 
is recovered. Since ρ = 3, it is possible to represent the data of this example 
and the fitted sphere in a stereoscopic three-dimensional display, which can be 
obtained by using current capabilities in computer software and graphical aids. 

In utilizing polynomial principal components, such as the quadratic one 
illustrated in Examples 8-10, the expectation is that these will respond to 
local nonlinearities. The use of quadratic analysis may produce a significant 
improvement in sensitivity to local nonlinearities, and the hope is that one will 
not need polynomials of very high degree for accommodating most nonlineari-
ties met in practice. 

The choice of the degree of polynomials to be used also has certain 
implications for the number, n, of observations that will be required. When 
ρ = 1, of course, one needs at least two observations to obtain a nonzero 
estimate of variance; and similarly, when ρ = 2, one needs η > 3 observations 
for obtaining a nonsingular estimate of the covariance matrix. In the same vein, 
for a problem in p-space, a quadratic principal components analysis will 
involve the eigenvector solution for a 

matrix, so that a nontrivial solution can be obtained only if η > 2p + 
[p(p —1)/2]; thus, for ρ = 8, η must exceed 44. Using a cubic coordinate system 
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with ρ = 5 will require η > 55. In practice, one could handle the difficulty 
caused by such requirements on π by first performing a linear principal 
components analysis and then pursuing nonlinear analysis, using only the first 
few linear principal components (i.e., the ones with largest variances). 

The magnitude of the eigenvector computation grows rapidly, both with the 
degree of the polynomial coordinate system considered and with the dimension 
of the response. With ρ = 5 a completely general cubic principal components 
analysis would involve a 55-dimensional eigenanalysis. For the numerical 
computations in these eigenanalyses, it would therefore be desirable to use the 
singular value decomposition method (see Businger & Golub, 1969) mentioned 
earlier in connection with linear principal components. 

Certain advantages of developing a function-fitting approach to generalized 
principal components analysis have been mentioned already. A further, pos-
sibly intangible, advantage of viewing generalized principal components analy-
sis in the framework of function fitting is that the latter area has received 
considerable attention in statistics, both conceptually and methodologically, 
under categories such as linear and nonlinear regression. The available 
methodology of these familiar areas may, after appropriate modifications, be 
relevant for further extending the usefulness of the generalized principal 
components approach. For instance, with a projected class of coordinates that 
involves arbitrary functions of the response variables, with some unspecified 
coefficients that may occur nonlinearly, the mathematical problem is still just 
that of finding members of the class which give closest fit, and nonlinear-fitting 
ideas and procedures may prove useful. Concepts and methods for linearizing 
the nonlinear problem and for iterative solutions may carry over. The eigen-
vector algorithms used earlier cannot be applied simply to yield the solution, 
although one may be able to use them iteratively to develop an approximate 
solution. 

In the context of the new paradigm for multivariate data analysis techniques 
mentioned in the preface to this edition, Donnell et al. (1994) have suggested 
a nonlinear generalization of principal components called additive principal 
components. 
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C H A P T E R 3 

Development and Study of 
Multivariate Dependencies 

3.1. GENERAL 

The general concern here is with the study of dependencies, both association 
and relationship, among several responses. It is possible to delineate two broad 
categories of multivariate dependencies: (i) those that involve only one set of 
multivariate responses, and (ii) dependencies of one set of responses on other 
sets of responses, or on extraneous design or regressor variables. The first 
category of dependencies may be called internal; the second, external. 

3.2. INTERNAL DEPENDENCIES 

For a case with η observations on a p-dimensional response vector, the familiar 
techniques of computing and studying simple and various partial correlation 
coefficients are examples of methods for studying the relative degrees of 
association among the ρ responses. A pictorial technique for displaying 
association, which can be useful at times, has been discussed by Anderson 
(1954, 1957, 1960) under the name glyphs, including generalized glyphs and 
metroglyphs. An illustrative example follows. 

Example 11. Exhibit 11, taken from Anderson (1960), pertains to an 
example involving observed measures of five ( = p) qualities as possessed by 
each of four (= n) individuals. The table of data is shown at top left. For each 
individual, a graphical representation called a glyph may be obtained in which 
each quality is pictured as a ray emanating from a circle corresponding to an 
individual (see top right of Exhibit 11). The position of a ray in such a glyph 
corresponds to one of the qualities, while the length of the ray reflects the level 
of the quality—a long ray indicating high level, a short one representing 
medium level, and no ray at all corresponding to low level. Thus, in the 
metroglyphs for all four individuals shown in the middle on the right side of 
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Exhibit 11. Metroglyph (Anderson. 1960) 
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Exhibit 11, at a glance one can see that individual 2 is high on most qualities 
whereas individual 1 is low on many. 

An alternative representation, which contains fewer rays and may be 
particularly useful for depicting associations among the qualities, is the scatter 
diagram shown at bottom left of Exhibit 11. Here the rays corresponding to 
two of the qualities (Λ and E) have been dropped from the glyphs, and 
coordinate axes with a finer degree of quantization of levels (10 instead of just 
3) of A and Ε are introduced. The values of A and Ε actually observed on 
scales ranging from 1 to 10 are shown encircled for each of the four individuals 
in the data table at the top left of Exhibit 11. These values provide the 
coordinates for the placement of the glyphs in the bottom left picture. As stated 
by Anderson (1957, 1960), this representation of the four pentavariate obser-
vations in this example shows that qualities Β and C, as also Β and D, are 
associated. Moreover, one can see a fairly strong association between B, C, D 
(both individually and concurrently) and quality A, while only a weak 
association is manifest between the former set of qualities and quality E. 

As an overall numerical summary, Anderson (1957, 1960) obtains an index 
for each glyph by scoring 2 for each long ray (i.e., high level of a quality), 1 for 
each short ray (i.e., medium level), and 0 for absence of a ray. Values of this 
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index are given below the metroglyphs, and a histogram is shown at the 
bottom right of Exhibit 11. 

Although glyphs and metroglyphs are seldom used these days, the essential 
idea of representing multivariate observations graphically so as to help get an 
overall impression of the data underlies many current schemes for graphical 
displays (see Chapter 5 of Chambers et al., 1983). For instance, a display 
known as a snowflake plot or a star plot is one in which the values of the 
different variables are coded into lengths of rays emanating from a center. Two 
other multiresponse data displays that use symbolic representation and/or 
more familiar scatter plotting are illustrated next. The first of these, called a 
weathervane plot by Bruntz et al. (1974), was developed for analyzing air 
pollution data, and the next example illustrates the technique. 

Example 12. In analyzing air pollution data it is often appropriate to 
consider not only the chemical reactions involved in producing the pollutants 
but also the prevailing meteorological conditions. Specifically, solar radiation, 
wind speed and direction, and temperature are some of the variables of interest. 

Exhibit 12, taken from Bruntz et al. (1974), shows a weathervane plot in 
which the abscissa is the total solar radiation from 8 A.M. to noon, while the 
ordinate is the average ozone level observed from 1 P.M. to 3 P.M. The plot 
pertains to a specific site, and the points (centers of the circles) correspond to 
different days. As a two-dimensional scatter plot, the centers of the circles in 
Exhibit 12 provide information on the relationship between ozone levels and 
solar radiation. In addition, the diameter of the circle plotted has been coded 
to be proportional to the observed daily maximum temperature, while the line 
emanating from the circle is coded with information regarding the wind. The 
length of the line segment is inversely proportional to an average wind speed. 
If the lines are considered as arrows whose heads are at the centers of the 
circles, the orientations of the lines correspond to average wind directions. For 
instance, for the point at the top of Exhibit 12 (i.e., the day with highest ozone), 
the average wind direction is from the northwest. 

One indication of the plot is that ozone levels do not become high when 
there is low solar radiation. However, the presence of points in the lower 
right-hand part of Exhibit 12 suggests that high solar radiation alone does not 
guarantee high ozone levels, and for the days in this part of the picture the 
temperature is generally low and the wind speed is generally high. Also, at a 
given level of solar radiation, ozone seems to increase as temperature increases 
and wind speed decreases. Wind direction does not seem to be a dominant 
factor in influencing patterns. Thus the five-dimensional display in Exhibit 12 
enables one to get a "feeling" for some of the interrelationships among the five 
variables involved in this example. 

The second pictorial representation that is analogous to glyphs in spirit is 
a novel scheme proposed by Chernoff (1973). The idea is to code the values of 
the variables by associating them with different characteristics of a human face. 
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Exhibit 11 Weathervane plot of air pollution data (Bruntz et a!., 1974) 
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An important issue in connection with ChernofTs scheme that needs further 
study is how to go about associating the variables with different aspects of a 
face in any specific application. Developing guidelines for doing this would be 
valuable. The next example illustrates the procedure. 

Example 13. This example, taken from Chernoff (1973), pertains to 12-di-
mensional data on mineral contents assayed on 53 equally spaced specimens 
taken from a 4500-foot core drilled into a Colorado mountainside. Exhibit 13a 
shows the numerical data, while Exhibit 13b shows the 53 faces as obtained by 
Chernoff. Some major changes in the values of the variables are noticed even 
on inspection of the numbers in Exhibit 13a (e.g., values of Z5 for specimens 
220-233). The breakpoints are clearly visible in the sequence of faces too. For 
instance, there is an abrupt change in the overall shape of the head and the 
location and shape of the eyes after the face for specimen 219. Also striking are 
the smile and the small, high eyes of the faces for specimens 224-231. In the 
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Exhibit 13e. Data for faces (Chernoff, 1973) 

DATA ON 12 VARIABLES REPRESENTING MINERAL CONTENTS FROM 
A 4500-FOOT CORE DRILLED FROM A COLORADO MOUNTAINSIDE 

ID z, z2 z3 z 4 z, z. z, z, z, Z|0 z„ z„ 

200 320 105 057 050 001 001 001 060 020 250 210 370 

201 280 150 040 050 001 001 001 060 040 210 130 420 

202 260 165 033 050 001 001 001 060 010 250 090 440 

203 305 no 044 040 001 001 001 050 050 260 140 250 

204 290 160 035 035 001 001 001 050 020 210 060 510 

205 275 130 047 035 001 001 001 050 020 230 090 570 

206 280 155 035 035 001 001 001 080 020 270 170 400 

207 300 115 050 060 001 001 001 120 010 280 190 300 

208 250 130 041 030 005 001 001 070 030 250 110 330 

209 285 120 047 040 001 001 001 070 010 240 170 280 

210 280 105 047 070 001 001 001 060 020 370 070 300 

211 300 135 050 040 001 001 001 120 060 250 160 200 

212 280 110 056 050 001 001 001 150 010 280 270 280 

213 305 080 065 080 005 001 001 130 010 300 260 260 

214 230 175 029 035 001 001 001 270 030 250 140 240 

215 325 060 052 090 001 001 001 160 010 280 260 170 

216 270 170 025 040 001 001 001 160 010 290 070 330 

217 250 185 031 025 001 001 001 120 001 260 080 330 

218 260 185 030 015 001 001 001 270 080 480 010 330 

219 270 185 032 010 005 001 001 180 040 450 020 220 

220 325 045 053 005 020 001 001 600 080 660 020 250 

221 315 090 047 005 020 001 001 410 200 600 060 260 

222 335 100 047 010 040 001 001 360 080 590 110 170 

223 310 010 049 005 080 018 001 640 240 630 060 190 

224 410 001 049 001 075 032 001 760 440 800 001 001 

225 360 001 048 001 080 055 001 770 260 770 010 010 

226 310 015 051 001 105 036 001 660 380 640 001 010 

227 420 005 049 001 095 056 001 620 520 680 001 001 

228 415 020 049 005 025 036 001 370 220 340 001 001 

229 420 005 041 001 070 060 001 630 510 580 001 001 

230 450 005 040 001 090 070 001 690 570 630 001 001 

231 395 001 025 015 100 071 001 580 530 560 001 010 

232 380 010 027 025 035 039 001 350 320 400 001 270 

233 430 010 025 030 030 025 001 340 340 360 001 200 

234 410 075 022 010 005 015 001 170 170 170 001 060 

235 520 055 024 040 005 001 001 210 190 190 001 180 

236 385 135 018 010 005 008 001 140 200 260 001 020 

237 535 065 010 020 001 001 001 110 230 270 001 070 

238 550 095 001 010 001 001 001 050 230 270 001 030 

239 510 100 001 001 001 001 001 190 150 230 001 110 

240 510 095 001 040 001 001 001 140 100 ISO 001 040 

241 385 180 010 001 001 001 001 050 050 300 001 050 

242 505 125 001 001 001 001 001 001 200 130 001 030 

243 470 090 001 020 001 001 001 160 300 380 001 060 

244 465 110 001 035 001 001 001 260 440 500 001 060 

245 400 140 001 015 001 023 001 330 400 390 001 040 

246 415 105 015 025 040 032 001 220 190 270 001 010 

247 435 075 010 015 001 069 001 370 360 500 001 010 

248 370 145 010 010 005 012 040 130 080 330 001 030 

249 380 210 001 001 001 001 020 070 001 050 001 030 

250 430 065 001 005 020 001 075 130 070 300 001 020 

251 420 080 030 001 005 026 001 050 100 350 001 050 

252 425 060 035 005 001 001 030 100 010 340 001 010 

min 250 001 001 001 001 001 001 001 001 050 001 001 

max 520 210 065 090 105 071 075 770 570 800 270 570 
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Exhibit 13*. Faces obtained by Chernoff (1973) 
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absence of more specific information regarding the coding employed in 
obtaining the faces in this example, however, it is difficult to provide any 
further detailed interpretations of the data here. 

The detection and description of relationships (as against associations) 
among a set of response variables overlap, in obvious ways, the concerns and 
methods of reduction of dimensionality discussed in Chapter 2. The detection 
of linear and nonlinear singularities and the characterization of them are useful 
not only for uncovering redundancies among the response variables but also 
for studying the nature of the interrelationships among the variables. Thus 
most of the techniques discussed in Chapter 2 are also relevant to the objective 
of studying internal relationships. 
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3J . EXTERNAL DEPENDENCIES 

The multiple correlation coefficient, often discussed in the context of regressing 
a single variable on a set of extraneous variables, is one example of a measure 
of association between two sets of variables wherein one of the sets contains 
just a single variable. Canonical correlation analysis, developed by Hotelling 
(1936), is another classical technique for studying associations between two sets 
of variables. Given a set of variables, x, and another set, y, the basic idea is to 
find the two linear combinations, one of the x-variables and one of the 
y-variables, that have maximal correlation; then, from among the two sets of 
linear combinations orthogonal to those already determined, to select the two 
with maximal correlation, and so on. In general, if ρ and q are, respectively, the 
numbers of x- and y-variables, and if ρ ^ q, one can extract ρ pairs of linear 
combinations by this process. The derived linear functions will be called 
canonical variates (see also the remarks in Section 4.2). The correlations 
between pairs of the canonical variates were named canonical correlations by 
Hotelling. 

An interesting use of canonical correlations was mentioned in passing in 
Section 2.2.1, in connection with principal components analysis. Frequently in 
using the principal components as summaries of multidimensional data, for 
simplicity of interpretation one may wish to round off the coefficients of some 
of the variates to "nice" values such as 0, or ±1 (except for the usual 
normalization constraint on eigenvectors). The candidates for such rounding 
off are often based on a subjective assessment of the relative magnitudes of the 
coefficients in the principal components. The modified linear combinations of 
the variables obtained by such rounding will not necessarily be orthogonal. 
Yet, an interesting question would be how close the set of modified principal 
components is to the original set. One way of assessing the closeness is in terms 
of the angles between the two linear subspaces spanned by the original and the 
modified principal components. Since canonical correlations are measures of 
the cosines of angles between linear subspaces they can be used for this 
purpose—the higher the canonical correlation the closer the subspaces. 

The concepts and techniques of canonical correlation analysis introduced by 
Hotelling have been extended to the case of more than two sets of variables by 
various authors (see Steel, 1951; Horst, 1965; Kettenring, 1969, 1971). Ketten-
ring (1969,1971) provides a unifying discussion of the various approaches, and 
the following material relies heavily on his treatment. 

Given m sets of variables, yj(pj χ 1) for j = 1,2,..., m, suppose that pt ^ 

Pi ^ "· Pm and Ρ = 7̂=i Pj- I* iS assumed, without any loss of generality for 
present purposes, that <?(y;) = 0 for a l l a n d that the ρ } χ p i covariance matrix 
of y, is nonsingular and denoted as Σ}}. The Cholesky decomposition, Σ}} = 
tjtj , may then be utilized to obtain a linear transformation of y ; to x ; = xj lyj 
such that the covariance matrix of is the identity matrix of order p } . Now, if 

y' = (y ' i:y '2:-:y») and χ' = (x\-x2y-\x'ml 
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the covariance matrices of y and x, denoted as Σ and Γ, respectively, are 

Σ = 

and 

Γ = 

/ Σ η - = 1 „ \ 

ε » Σ 2 2 · ·· Σ2 Μ 

\=Ί- Σ'2„ · 

/ ι Γ 1 2 · • Γ , \ 

I • r 2 m 

η . · 

(42) 

(43) 

where Γ Μ = τ," ^ ( τ / 
Loosely speaking, one wishes to find linear functions of the variables (i.e., 

canonical variates) in each of the m sets so as to satisfy criteria that are 
specified in terms of the intercorrelations among the linear functions. Let ]z1 = 
/X'iXj = fi'tfj (where fi\ = jO.\xJl), for 1,2, . . . ,m, denote the m linear 
functions, one from each of the m sets, at the first stage. Let the coefficients of 
the linear combinations be required to satisfy the normalizing constraints 
^βΊ ' Σ^β, = J a ' 1 ' 7 a 1 = 1, so that the variance of jz1 is 1 for all j . Suppose 
that z'j = (,2j, 2 z , , . . . , mZj) denotes the set of m first-stage canonical variates 
whose correlation (and covariance) matrix is 

/ 1 0ia(D -
Φ(1) = = ΌβιΣΌ'βι = Da irD;„ (44) 

where the m χ ρ matrices, D a i and Dti, are block-diagonal and are defined by 

σ ... οΛ 
D . . = | V 2*\ - V I (45) W 2a', σ 

\ 0 ; " ' · ' · · ' m a \ l 
and 

/.β'. 
0' 

\* 

0' 

2P'. (46) 

.ΡΊ/ 

The criteria for choosing the first-stage canonical variates z't (i.e., for choosing 
,·«', or, equivalently, 7β',) are all specifiable in terms of the matrix Φ(1). 
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For instance, Horst (1965) proposed the criterion of maximizing the sum, 

Σ Σ W 
i<J=l 

of the intercorrelations among the elements of z,, which is equivalent to 
maximizing the quadratic form, 

ΐ'Φ(ΐ)ΐ f = « + 2 Σ Σ <PUQ)\ 
\ 1<J=1 J 

The method based on this criterion, which takes into account both the 
magnitudes and the signs of ^ ' s , will be called the SUM COR method. A 
second criterion, also due to Horst (1965), is to maximize the variance of the 
first principal component of z,. If m > χλχ ^2λχ > ··· ^ mk1 > 0 denote the 
ordered eigenvalues of Φ(1), the second criterion amounts to maximizing χλχ, 
and the method associated with this criterion will be called the MAXVAR 
procedure. Kettenring (1971) proposed two additional criteria leading to 
methods termed SSQCOR and Μ INVAR, respectively. The first of these 
attempts to maximize the sum of squares, 

Σ Σ ^ 0 ) , 
i<]=l 

of the off-diagonal elements of Φ(1), which is equivalent to maximizing the 
trace of 

o W = m + 2 Σ Σ 

\ (<j=i / 

or the sum of squares of the eigenvalues, Unlike SUMCOR, 
SSQCOR takes account only of the magnitudes of the intercorrelations among 
the canonical variates. The SSQCOR criterion is also interpretable as maxi-
mizing the "distance" between Φ(1) and the identity matrix of order m. 
MINVAR uses the criterion of minimizing the variance of the "smallest" 
principal component of z„ that is, minimizing „λ1. The first attempt at 
generalizing Hotelling's two-set canonical correlation analysis is due to Steel 
(1951), who used the criterion of minimizing the so-called generalized variance 
of z,, namely, |Φ(1)| or, equivalently, the product, Π™,, }λχ, of the eigenvalues 
of Φ(1). The method associated with this criterion will be called the GENVAR 
technique. 

Each of the five methods mentioned in the preceding paragraph employs a 
particular unidimensional summary of the matrix of intercorrelations among 
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the canonical variates and determines the set of canonical variates optimally 
with respect to that summary. In each approach the higher-stage canonical 
variates, z 2 , z 3 , . . . , z p i , are chosen by using the same criterion at each stage and 
imposing additional constraints (e.g., mutual orthogonality of the different 
linear combinations within any given set of the original m sets of variables) to 
ensure that new canonical variates are being found at each stage. When 
m = 2, all five of the methods reduce to Hotelling's (1936) treatment of the 
problem. 

Kettenring (1971) uses "factor-analytic" types of models (see Section 2.2.2) 
to motivate each of the five criteria and to discuss the similarities and 
differences that one might anticipate among the results of using the five 
methods for analyzing a given body of data. Thus, for instance, the SUMCOR 
and MAXVAR methods may be motivated by a single-common-factor model 
for the canonical variates: 

*1 = Yi/i + ei> 

where fx is the single standardized common factor, and el is an m-dimensional 
vector of unique factors, which can also be considered in more familiar terms 
as a vector of residual errors, with mean 0 and covariance matrix Ψ. Then, 
assuming that y1 is known and is proportional to the vector 1, it can be shown 
that choosing / , so as to minimize trCF) is equivalent to the SUMCOR 
procedure. In other words, the SUMCOR method generates a Zj having the 
best fitting (in the sense of minimizing the sum of the variances of the residual 
errors) single common factor, assuming that the factor contributes equally to 
each of the first-stage canonical variates. On the other hand, with the same 
single-factor model, choosing both yl and / , so as to minimize tr(V) turns out 
to be equivalent to the MAXVAR method. 

The SSQCOR and GENVAR methods may be motivated by using an 
m-factor model: 

m 

z i = Σ ytjfj + e i -
j= ι 

Since the number of common factors is equal to the dimensionality of z„ the 
approach of fitting factors so as to minimize a criterion such as Ιτ{Ψ) is no 
longer adequate for distinguishing between different sets of zv However, 
suppose that one were to choose the fjs to be the principal components 
transformations of zt (see Section 2.2.1) so that they account for decreasing 
amounts of variance. In fact, if ^ε, is the eigenvector corresponding to the 
(ordered) eigenvalue jXt of Φ(1), then suppose that 

r i j = v ^ i j £ i a n d •/} = — / = ' . ί ε ' Γ ζ ι for; = l , . . . ,m, 
ν } * \ 

so that the f/s are the standardized and mutually uncorrelated principal 
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components derived from Φ(1). The factors derived from the largest and the 
smallest eigenvalues will be of particular interest, and seeking a z, that 
corresponds to large separations among the eigenvalues will therefore be 
useful. One way of obtaining such a z, is to choose them so as to maximize 
the measure of spread, Σ™=, sk\, subject to the constraint that the sum of the 
; A , ' s has to equal m. This, of course, is what the SSQCOR method attempts to 
do. Hence the SSQCOR method will tend to produce a Zj such that its first 
few principal components account for most of the variability. On the other 
hand, since the GENVAR method attempts to minimize Π* = , jXx, it will be 
expected to focus on the smallest eigenvalues and to minimize the contribution 
of the last few fjs. 

The inequalities, m^L"=1 }λ\ < m2, can be established, and, furthermore, 
the lower bound can be shown to be attained when = 1 for all ; (i.e., 
Φ ( 1 ) = I), while the upper bound is attained when iX1 = m and 2Xi = ·•· = 

mkx = 0. This result suggests that MAXVAR and SSQCOR will yield similar 
Zj 's whenever most of the variability in z, can be accounted for by a single 
factor. 

The MINVAR method may be studied by using a (m — l)-factor model: 

m - l 

z i = Σ fijfj + e i -

For a given z,, choosing y u ' s and fjs so as to minimize the trace of the 
covariance matrix of the residual error variables, e,, leads in this case to 

Τι; = \ / Λ > ε ι a n d fj = -Ty'A"ty> for ; = 1 , . . . , (m - 1), 

v A 

so that the fjs are the first (m — 1) standardized principal components of Φ(1). 
The residual variance after fitting all (m — 1) factors is m — Σ™=Υ ^Λ, ( = I B A , ) . 

Now choosing z, to optimize the fit by such a set of (m — 1) factors amounts 
to choosing z, so as to minimize i.e., the MINVAR method. This suggests 
that MINVAR and GENVAR may be expected to yield similar z^s whenever 
the smallest eigenvalue, m A t , is very small, that is, whenever almost all of the 
variability in z, is confined to an (m — l)-dimensional linear subspace (see the 
discussion in Example 14). 

The above discussion has been presented in terms of "population" entities. 
With a sample of size η (>p = Σ^ = 1 pj) on the m sets of variables, one would 
have the following correspondences between the population entities and 
statistics computed from the observations: 

L ~ S = ((Sy)); r ~ R = ((R,,))> 
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where R„ = Tf ^ ( T ; 1 ) ' and Su = Tft; 

{ι«ι ." · .»βι}«-»{ι«ι . · · · .«»ι}; 

{ιΡι.···.»βι}*-»{ι"ι.···.».·>ι}; 
Φ(1)<-Φ(1); j A , 4 - . ^ i : j i ^ f a . 

Kettenring (1969) describes algorithms associated with each of the five 
methods that may be used with these sample statistics. SUMCOR, SSQCOR, 
and GENVAR involve iterative techniques, whereas MAXVAR and MINVAR 
depend only on a single eigenanalysis of the ρ χ ρ matrix R. Also, when m = 2, 
which is the case considered by Hotelling (1936), no iterative methods are 
involved, and all five methods reduce to utilization of the results from an 
eigenanalysis of R. (See discussion below.) 

In fact, for the MAXVAR method, the first-stage canonical variates, for 
instance, are obtained from the eigenvector corresponding to the largest 
eigenvalue of R. If cl > c 2 > ·· · ^ cp > 0 denote the ordered eigenvalues of R 
with corresponding p-dimensional eigenvectors v 1 ( v 2 , . . . , v p , where v* in par-
titioned form is {ι [ 2\ ' k \ • •• \ m\' k} for k = 1, . . . , p, then the required solution for 
the coefficients of the first-stage MAXVAR canonical variates is 

where ||x|| denotes the Euclidean norm (i.e., square root of the sum of squares 
of the elements) of x. Similarly, the first-stage MINVAR canonical variates are 
derived from 

Canonical variates may also be obtained at additional stages and will depend 
on the nature of the constraints imposed on them to ensure that they are 
different from ones determined at earlier stages. (See Kettenring, 1969, for a 
more detailed discussion.) 

As to algorithms for computing the canonical correlations and variates, for 
the classical case involving just two sets of variables (i.e., m = 2), the preferred 
current method is to perform a singular value decomposition of the ρ, χ p 2 

matrix, R 1 2 . Specifically, if this decomposition is denoted 

R.2 = Q.[DriO]Q2, 

the diagonal elements of the ρ, χ ρ, matrix, D r , are the required canonical 
correlations. The vectors of coefficients defining pairs of canonical variates are 
given by the columns of T|"1 Q, and T 2

 1 Q 2 , respectively. For the case of more 
than two sets of variables (i.e., m > 3), Chen & Kettenring (1972) describe 
implementations of the methods discussed above. 
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Exhibit 14a. Correlation matrices of the original and the internally sphericized variables (Horst, 
1965; Kettenring, 1971) 

1 0.249 0.271 
1 0.399 

1 

0.636 
0.138 
0.180 

0.183 
0.654 
0.407 

0.185 
0.262 
0.613 

0.626 
0.190 
0.225 

0.369 
0.527 
0.471 

0.279 
0.356 
0.610 

1 0.091 0.147 0.709 0.254 0.191 
S = R0 = 1 0.296 0.103 0.541 0.394 

1 0.179 0.437 0.496 

1 0.291 
1 

0.245 
0.429 
1 

I 
0.636 

- 0 . 0 2 1 
0.016 

0.126 
0.633 
0.157 

0.059 
0.049 
0.521 

0.626 
0.035 
0.048 

0.195 
0.459 
0.238 

0.059" 
0.129 
0.426 

R = 0.709 0.050 - 0 . 0 0 2 
I 0.039 0.532 0.190 

0.067 0.258 0.299 

I 

[Note: Values in the blocks below the diagonal blocks are obtained by symmetry.] 

Example 14. This example, taken from Thurstone & Thurstone (1941) and 
also used by Horst (1965) and Kettenring (1971), deals with three ( = m) sets 
of scores by several people on three batteries of three tests each, that is, 
Pi = p2 = Pi = 3. The three tests in each battery were intended to measure, 
respectively, the verbal, numerical, and spatial abilities of the persons tested. 
Exhibit 14a shows the 9 χ 9 covariance matrix of the standardized scores or, 
equivalently, the correlation matrix R 0 of the original scores. Also shown in 
Exhibit 14a is the 9 χ 9 correlation matrix, R, of the internally "sphericized" 
standardized variables (the Xj-variables in terms of the earlier descriptions) 
derived from the standardized scores. The diagonal elements of the matrices in 
the off-diagonal blocks of R 0 are all relatively large. Thus the scores on tests 
intended to measure the same ability tend to be highly correlated, whereas the 
correlations between scores on tests (even within the same battery) measuring 
different abilities, although positive, are not as high. After the internal trans-
formations of the three sets, the off-diagonal terms of the matrices in the 
off-diagonal blocks tend to be even smaller (compare R with R0). 

When the five methods of multiset canonical correlation analysis were 
applied in this case, with the exception of the MINVAR method the results 
were similar; that is, differences in the numerical answers occurred only in the 
third or higher decimal places. The results for the four methods other than 
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Exhibit 144. Results of five methods of multiset canonical correlation analysis 
(Kettenring, 1971) 

3 ^ , 

, z , =(0.73, 0.51,0.45)x, 
2 z , = (0.66, 0.62, 0.42)x2 

3 z , = (0.68, 0.64, 0.36)x3 

/ l 0.735 0.756\ 

Φ(1) = 1 0.743 

\ 1 

2.49, ,ε, = (0.578,0.574, 0.580) 

0.27, 2έ', = (-0.535,0.803, -0.262) 

0.24, 3ε', = (-0.616, -0.159, 0.771) 

, z , =(0.68, 0.57,0.45)x, 

2 z , = (0.96, -0.22, 0.16)x2 

3 z , =(-0.78, -0.53, -0.33)x3 

/ l 0.345 - 0.736^ 

Φ(1)= 1 -0.517 

, 1 , = 2.082, = (0.591, 0.493, -0.638) 

2I, = 0.683, 2ε', = (0.513, -0.839, -0.517) 

Χ = 0.235, 3έ', = (0.621, 0.228, 0.751) 

MINVAR which lead to similar answers are shown in the upper portion of 
Exhibit 14b, while those for MINVAR are given in the lower portion. Each set 
of results in the exhibit pertains only to the first stage of analysis and contains 
the three first-stage canonical variates, their correlation matrix Φ(1), and the 
eigenanalysis of Φ(1). 

The following features emerge from an inspection of the results in the upper 
portion of Exhibit 14b: 

1. The largest eigenvalue ,Aj is about 83% of tr{0(l)}, and the correspond-
ing eigenvector ,έ, is approximately proportional to the vector 1; the latter 
may be considered an indication that the three sets of variables (viz., the 
batteries of tests) are so much alike that the three canonical variates which are 
derived, one from each of them, are contributing equally to the first principal 
component transformation of z,. 

2. Eigenvalues 2Λ, and 3 I , are approximately equal, each accounting for 
8-9% of tr{0(l)}; that is, Φ(1) has one large eigenvalue and the other two 
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eigenvalues are essentially equal, a result that may also be surmised from the 
equicorrelational nature of Φ(1), as indicated by the near constancy of its 
off-diagonal elements (see the discussion of Example 1). 

Combining the indications from features (1) and (2), and recalling the earlier 
discussion pertaining to the similarities and differences among the methods, 
one can understand the reasons why the SUMCOR, MAXVAR, and SSQCOR 
methods yield similar results. The reason why GENVAR is not as similar to 
MINVAR but is more similar to SSQCOR in this example lies, perhaps, in the 
fact that the smallest eigenvalue is not "small enough." The product function, 
nj=ljXu is especially sensitive to the smallest eigenvalue only for extremely 
small values of it, and in the present example this is not the case. The results 
for the MINVAR method in Exhibit 14b show that 321 accounts for about 8% 
(not negligible) of tr{4>(l)}, while jA, and 2λχ contribute approximately 70% 
and 22%, respectively. 

One use of eigenvectors, such as i t l for the MAXVAR method and 3tx for 
the MINVAR method, is to study them for selecting "important" subsets of the 
sets of variables for further analysis. This is generally done by looking at the 
relative magnitudes of the elements of the eigenvector involved. Thus, in this 
example, an examination of 3 έ , associated with the MINVAR method (see 
Exhibit 14b, lower portion) reveals that the first and third elements are much 
larger than the second. If one decides, on the basis of this indication, to choose 
the first and third sets of variables for doing a pairwise canonical correlation 
analysis, then in this example it does indeed turn out that one would have 
selected the two sets with the highest two-set canonical correlation. [Note: One 
could also have utilized Φ(1) for this, since the element in its top right corner 
indicates that the first and third canonical variates at the first stage have a large 
(in magnitude) correlation.] 

An interesting alternative analysis in this example (left as an exercise to the 
reader) would be to regroup the nine variables into three sets corresponding 
to the three abilities measured rather than the three batteries of tests. A quite 
different approach with somewhat different objectives would be to use an 
analysis-of-variance approach (see Chapters 5 and 6) for studying the relative 
importance of various "effects" (e.g., differences of batteries, or a time or trend 
effect if the tests were administered across time). This, however, would require 
the original scores on the tests. 

From the viewpoint of data analysis, analyzing subsets of responses is very 
important and should not be replaced by a single overall multiresponse 
analysis. In the context of canonical correlation analysis for m sets of multiple 
responses, analyses of subsets of the m sets, as well as the study of subsets 
(pairs, triplets, etc.) of the canonical variates from the m-set analysis, are 
important. Specifically, plots of the original observations transformed accord-
ing to the canonical variate transformations taken two, and three, at a time 
may be valuable. In the case of two-set canonical correlation analysis, such 
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plots are actual "displays" of the computed canonical correlations and may 
lead to uncovering possibly aberrant observations or peculiar relationships. 

Example 15. The use of pairwise canonical variate plots is illustrated with 
data from a questionnaire study, which was concerned with assessing em-
ployees' readership of, and attitudes toward, a company magazine published 
by their employer for communicating general information. 

Exhibit 15a shows a plot for the two canonical variates corresponding to 
the largest canonical correlation, derived from the answsers of 645 employees 
to two subsets consisting of four questions each. The questions in one subset 
pertained to the expectations of the respondent regarding the publication, 
while the other subset was concerned with the respondent's evaluation of its 
actual performance. Each of the eight questions was answered on a six-point 
scale, and, as indicated in Exhibit 15a, the observed largest canonical correla-
tion was 0.4023. The striking features about the configuration are the "bunch-
ing" of points on the right-hand boundary of the plot and the vertical striations 
evident in it. A subsequent inspection of the data, stimulated by these 
indications of peculiarities, revealed that a large proportion of the respondents 
tended to use only the higher values of the six-point scale when dealing with 
their expectations and only the middle values of the scale in evaluating the 
performance of the publication. Such tendencies would lead to the peculiarities 
indicated in the plot of canonical variates, although one could detect their 
existence by other methods (e.g., histograms of original observations) of 
displaying the data as well. 

Exhibit 15e. Pairwise canonical variate plot (canonical correlation = 0.4023; η = 645, ρ = 4, 
9 = 4) 

5 . 7 7 ι 

7. 20 
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7.53 

0 

Exhibit 156 shows a plot derived from a canonical correlation analysis of 
two other subsets of questions in the same study. Each subset consisted of 14 
questions, and answers from 580 respondents were used in the analysis. The 
observed value of the largest canonical correlation was 0.4833. The scatter of 
the points appears to be bounded above by a straight line parallel to a 
"diagonal line" drawn through the configuration, thus suggesting possible 
asymmetry in, and departure from normality of, the joint distribution of the 
canonical variates. There is also a mild suggestion of two outliers in the lower 
left-hand corner of the plot. 

With multiple sets of multiresponse observations, one can also define and 
determine canonical correlational analogues of partial correlations between 
scalar variables. Thus, for instance, if y t denotes a set of p } responses, for 
j = 1,2,3, one can use, as measures of the first-order partial canonical correla-
tions between any pair of sets ŷ  and y k , given the third set y,, just the two-set 
canonical correlations between the "residuals," r, and rk, from the multivariate 
multiple regressions of yj and y k , respectively, on y, (j φ k φ \ = 1,2,3). 
Similarly, with more than three sets, one can define higher-order partial 
canonical correlations as well. At each stage only a two-set canonical correla-
tional analysis is involved between sets of "residuals" derived from multivariate 
multiple regressions of pairs of the original sets of responses on the remaining 
sets. 

The concepts and methods involved in multivariate multiple regression 
mentioned in the preceding paragraph are utilized widely for studying relation-

Exhibit ISb. Pair wise canonical variate plot (canonical correlation = 0.4833; η = 580, ρ = 14, 
9 = 14) 
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ships between a set of response variables, y, and a set of so-called independent 
variables or regressor variables, x. The multivariate multiple regression model, 
or the so-called multivariate general linear model (see Roy et al., 1971), is 
usually specified as follows: 

Υ' = Χ · Θ + ε, (49) 

where the η rows of Y' are the π observations on the p-dimensional response 
variable; the rows of the η χ λ matrix, X, are the corresponding observations 
on k regressor variables; the elements of the k χ ρ matrix, Θ, are the unknown 
regression coefficients; and the η rows of ε are p-dimensional error variables 
which are generally assumed to have a mean vector, 0, and a common ρ χ ρ 
unknown covariance matrix, Σ. The rows of ε are also generally assumed to be 
mutually uncorrelated and, for some purposes of formal statistical inference, 
p-variate normally distributed as well. Thus the η p-dimensional observations 
are considered to be mutually uncorrelated with means specified by the 
regression relationships, &{Υ' \ X) = ΧΘ, and a common unknown covariance 
matrix, Σ. 

The multivariate multiple regression model of Eq. 49 may be rewritten in its 
equivalent form, 

Y' = [Υ,Y 2 ·• · Y J = Χ[θ,θ 2 ·• • β,] + [ε ,ε 2 • • • ε,] , (50) 

where Υ,, the ;'th column of Y', consists of the η observations on the j'th 
response, consists of the regression coefficients in the univariate multiple 
linear regression of the ;'th response variable on the k regressor variables, and 
ε ; is an η-dimensional vector of mutually uncorrelated errors pertaining to the 
yth response variable (;' = 1,2,... ,p). In this form it is clear that the multivari-
ate model is merely a simultaneous statement of ρ univariate multiple regres-
sion models. In particular, in this treatment the matrix X is assumed to be the 
same for all ρ response variables. When the regressor variables are dummy 
variables corresponding to factors or treatments in a designed experiment, this 
means that all ρ responses are observed under the same design. 

In the usual treatment of multivariate multiple regression, the estimate of Θ 
is taken to be Θ = [§!§ 2 ··· θ ρ ] , where θ, = (X'X)- 'X' Yj, for j = 1 , . . . , p, are 
the least squares estimates of the regression coefficients for the jth response 
analyzed individually. A more detailed discussion of the formal issues, such as 
the statistical estimation, involved in this approach is presented later in 
Chapter 5 and may also be found in Roy et al. (1971). For present purposes, 
however, it is probably worth reiterating that adapting a multivariate view in 
multiresponse multiple regression situations may be important because the 
estimated regression coefficients may be statistically dependent because of the 
intercorrelations of the responses. In other words, although the θ/s are 
obtained from separate analyses of the responses, the corresponding elements 
of the Y/s (viz., all their first elements, all second elements, etc.) are assumed 
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to be simultaneously observed on an experimental unit and may therefore be 
expected to be statistically correlated in many situations. Recognition of this 
may play an important role in the subsequent analysis and interpretation of 
the results. (See Example 44 in Chapter 6.) 

A slightly more general form of the above multivariate general linear model 
is provided by <?(Υ' | X, G) = XEG, whee Ξ is a k χ q matrix of unknown 
parameters and G is a q χ ρ matrix, with known elements, of rank q < p. This 
generalization enables one to include polynomial growth-curve models in the 
class of general linear models (see, for example, Section 6 of Chapter IV in Roy 
et al., 1971). The application of nonlinear (in the parameters) models for 
studying multivariate relationships has been considered recently, but, perhaps 
because of the inherent difficulties of nonlinear modeling even in uniresponse 
problems, the use of these models in practice is not widespread. 

Remarks. There is a close relationship between two-group canonical corre-
lation analysis and a number of methods of analyzing data that are known by 
other names. For example, if one of the two sets of variables consists of 
indicator variables that designate if an observation belongs to a group (scored 
1) or does not (scored 0), the two-group canonical correlation analysis is the 
same as the multi-group discriminant analysis procedure described in Section 
4.2. Also, if both sets of variables are indicator variables, with one set 
associated with the row categories in a two-way contingency table and the 
other associated with the column categories, then the sum of squares of the 
canonical correlations from the analysis of such data is χ2/η, where χ2 is the 
well-known chi-squared statistic for testing the independence of the rows and 
columns and η is the total number of observations. 

Despite such an interesting generality of canonical correlation analysis, 
evidence for its use as a tool for analyzing multivariate observations is fairly 
limited. The reasons for these are many, including the lack of aids for inference 
and interpretation as well as the lack of efficiency/flexibility of computations 
involved in deleting variables or observations. 

REFERENCES 

Section 3.2 Anderson (1954, 1957, 1960), Bruntz et al. (1974), Chambers et al. (1983), 
Chernoff (1973). 

Section 3.3 Chen & Kettenring (1972), Horst (1965), Hotelling (1936), Kettenring 
(1969, 1971), Roy et al. (1971), Steel (1951), Thurstone & Thurstone (1941). 



C H A P T E R 4 

Multidimensional Classification 
and Clustering 

4.1. GENERAL 

A wide variety of objectives, concepts, and techniques is encompassed under 
the heading "multidimensional classification and clustering." Loosely speaking, 
the concern is with respect to categorization of objects or experimental units 
and problems of classification and clustering lie at the core of the concerns, not 
only of the well-known multivariate topic of discriminant analysis, but also of 
more modern areas such as pattern recognition, neural networks, and so-called 
supervised and unsupervised learning in artificial intelligence. A dichotomy 
into two broad types of approaches to problems is possible. First, there are 
situations in which the categorization is based on prespecified groups. The term 
used here for this case will be classification; other terms used in the literature 
for describing it include "discriminant analysis," "classificatory analysis," 
"supervised learning," and "allocation." Second, there are situations in which 
the categorization is done in terms of groups that are themselves determined 
from the data. The term used here for describing the concern in such situations, 
wherein one is seeking meaningful data-determined groupings of objects, is 
clustering; other terms for this situation include "unsupervised learning." There 
are, of course, many problems that tend to fall somewhere between classifica-
tion and clustering, rather than entirely into one of these two cases (see 
Example 17 in this chapter). Methods for systematic analysis of such in-
between problems need to be developed. 

Typically, problems both of classification and of clustering tend, in their 
primitive form, to be multidimensional in nature. Categorizations on the basis 
of measurements of a single feature or variable are often suspect and of limited 
use. The discussion in this chapter will first be concerned with classification 
problems and procedures, and will then consider cluster analysis. 

Both classification and clustering have been the foci of considerable devel-
opment of new methods. For example, in addition to the more classical 
nonparametric approaches to classification (see, for example, Chapter 5 of 
Hand, 1981), the recent computer-intensive and more data-driven develop-
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merits include the work of Breiman et al. (1984) on CART. Also, Hastie et al. 
(1994) have recently proposed a method called flexible discriminant analysis, 
which relies on an analogy between regression and classification, and utilizes a 
nonparametric, local smoothing algorithm as its core. The discussion in this 
chapter is confined to the more classical approaches and algorithms. 

4.2. CLASSIFICATION 

Even when the concern is with classifying an object in terms of prespecified 
groups, distinctions will usually exist in regard to the kind and amount of 
background information in individual problems. For example, given a set of 
fingerprints of some unknown person, it is one problem to check on whether 
they do or do not correspond to a specific individual. It is quite another 
problem to attempt to determine to which one, if any, of a large population of 
alternative possibilities the unknown might correspond. Clearly, the strategy of 
the procedures, including the characteristics used, may differ between the 
verification and the identification problems. 

From the viewpoint of data analysis, apart from correct formulation of the 
problem and initial choice of variables, there appear to be two other basic 
aspects of multidimensional classification: (i) the choice of an effective space, 
or representation, for discrimination, and (ii) the choice of a distance measure 
or metric for use in such a space. 

Perhaps the simplest guise of the classification problem, although not 
usually considered as such, is the one-group problem wherein one wishes to 
decide whether or not an item belongs to a particular group. A test of 
significance and methods for assessing whether an observation is an outlier are 
simple examples of this case. A multivariate quality control procedure sugges-
ted by Hotelling (1947) is essentially a test of significance viewed as a 
one-group classification problem. Jackson (1956) has suggested a bivariate 
graphical implementation of Hotelling's procedure involving the plotting of 
points in an elliptical frame defined by Hotelling's T2 statistic. 

The classical form of the classification problem is the two-group case 
considered by Fisher (1936, 1938), leading to the so-called discriminant 
function. Suppose that, given two groups, Gj and G2, one has a reference set 
of observations (also referred to as training samples), Yj and Y2, respectively, 
from them, that is, the nl columns of Y, are p-dimensional observations on rij 
units known to come from Gu and, similarly, the n2 columns of Y 2 are 
observations on n2 units from G2. Utilizing the observations in the reference 
set, one can obtain the sample mean vectors, y t and y2, as well as the sample 
covariance matrices, S! and S 2 . Fisher's discriminant function is that linear 
combination of the ρ original responses which exhibits the largest ratio of 
variance between the two groups relative to that within the groups. More 
explicitly, if the linear combination of the original variables is denoted as ζ = 

+ a2y2 + ··• + apyp = a'y, a two-sample t statistic for the variable ζ may 
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be written as 

• ' ( y i - y 2 ) 
{»'Sail/nl + l/n2)}

1'2' 

where (n, + n2 — 2)S = («j — l)Sj + (n2

 — 1)&ι· Fisher's discriminant func-
tion is obtained by choosing a so as to maximize or, equivalently, 

The required solution for a can be shown to be proportional (i.e., equal except 
for a multiplicative constant) to S~l(yi — ^2)· 1° t n e p-dimensional space of 
the responses yx,y2,..-,yp, such a vector a defines the direction of maximal 
group separation in the sense that the means of the projections of the 
observations from the two groups are maximally apart relative to the variance 
of the projections around their respective means. Choosing a oc S - 1 ^ — y 2 ) 
leads to the maximum value, (n1n2/nl+n2)x(y l-y2)'S~l(yl — y2)> f ° r *ί» a ° d 
this maximum is thus seen to be the value of the two-sample Hotelling's T 2 

statistic. Also, the quadratic form, (y, — y2)'S- 1(y"i — y2), is just the so-called 
Mahalanobis' D2 statistic. 

For the two-group problem, one can consider the unidimensional space of 
the derived variable ζ = a'y (with a chosen as above) as an effective space for 
discriminating between the two groups. Since the dimensionality of the space 
is 1, the issue of selecting a distance measure is relatively simple in this case. 
Specifically, given an "unknown" object which is known only to belong to 
either G, or G2 and for which the values of the ρ variables are observed to be 
u' = ( u u p \ one can project the points yi ,y 2 , and u onto the unidimen-
sional space corresponding to ζ (viz., the vector a) and assign the unknown to 
Gj or G2 according as the projection of u is closer to the projection of y, or 
of y 2 . Algebraically, this amounts to calculating the value of the discriminant 
function for the unknown, namely, a'u = (y"j — y 2 ) 'S _ 1 n , and classifying the 
unknown in G, or G2 according as a'u ^ a'(y, + y2)/2. 

A generalization of the two-group procedure to several groups is described, 
for example, by Rao (1952, Section 9c). Suppose that one has g groups, 
G „ . . . , Gg, with the reference set of observations consisting of nt p-dimensional 
observations (constituting the columns of a ρ χ η, matrix Y() from G, 
(1 = l,...,g). Using the observations from the ith group, one can compute the 
sample mean vector, yf, and the sample covariance matrix, S„ for i = I,...,g. 
For the total set of η = Zf_, nf observations, one can calculate an overall mean 
vector, y = Σ*= t n(y,/«, and a ρ χ ρ pooled within-groups covariance matrix, 

(51) 
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Furthermore, one can define a ρ χ ρ between-groups covariance matrix, 

Β = -ί-τ Σ nt(yt - mi ~ ?ϊ, (52) 

9~ 1 (=i 
which provides a summary of the dispersion among the group means, y,'s, in 
p-space. In some situations, when the n/s are extremely disparate, one may 
wish not to weight the deviations of the group centroids from the overall 
centroid by the n,'s as in Β but rather to use the ρ χ ρ matrix, 

β* = — - τ Σ ^ - ffit - y)'- (53) 

in place of Β for the subsequent analysis. 
Next, exactly as in the two-group problem, if ζ = a'y denotes a linear 

combination of the original variables, a one-way analysis of variance for the 
derived variable ζ will lead to the following F-ratio of the between-groups 
mean square to the within-groups mean square: 

a'Ba 

If now one were to choose a so as to maximize this F-ratio, the required a 
would be the eigenvector, a l t corresponding to the largest eigenvalue, c 1 ( of 
W _ 1 B . The maximum value of the F-ratio would be Fti = a^Ba^a'jWa! = c,. 
Having determined a„ one can seek a second linear combination of the 
original variables which has the next largest F-ratio. The required solution for 
the coefficients in the second linear combination turns out to be the eigen-
vector, a2, corresponding to the second largest eigenvalue, c2 , of W _ 1 B . The 
process may be repeated for determining additional linear combinations. To 
ensure that new linear combinations are being found at each stage, some 
constraints (e.g., linear independence) have to be imposed on the sets of 
coefficients. All that is involved computationally is an eigenanalysis of W _ 1 B , 
leading to the ordered eigenvalues c, > c2 > ··· > c, > 0 and the correspond-
ing eigenvectors, aj, a 2 , . . . , ar, which will satisfy the constraints »jW«t = SJk, 
the Kronecker delta, f o r k = 1, . . . , r. The eigenanalysis may be performed by 
using a singular-value decomposition algorithm which is appropriate for this 
case involving the two matrices Β and W (see Chambers, 1977, Section 5.k). 
The computations involved may also be viewed in terms of an initial trans-
formation to sphericize the within-groups dispersion, followed by an 
eigenanalysis of the between-groups dispersion in this transformed space. More 
explicitly, one can first linearly transform the initial variables, y, to ρ new 
variables, χ = T _ 1 y , where W = T T is the so-called Cholesky decomposition 
of W. Then the within-groups covariance matrix for the x-variables will be the 
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identity matrix, and the between-groups covariance matrix will be 
B x = Τ _ 1 Β ίΤ~ ' ) ' , where Β is defined in Eq. 52. Next an eigenanalysis on the 
ρ χ ρ symmetric mtrix, B x , may be performed. The eigenvalues of B x are, in 
fact, also the eigenvalues of W _ 1 B , and the eigenvectors, {a^}, of W~ 'B are 
related to the eigenvectors, of B x by the equations, *j = (T'y'lj, for 
j = l ,2 , . . . , r . 

In general, if there are g groups and the problem is p-dimensional, the 
number, r, of positive eigenvalues of W " ' B will be equal to the smaller of 
(g — 1) and p. This is a consequence of the fact that, if g is less than p, the g 
group means are contained in a (g — l)-dimensional hyperplane. In particular, 
when g = 2, the analysis is exactly equivalent to the two-group discriminant 
analysis, considered earlier, leading to a single discriminant function. More 
generally, with g > 2, one can determine up to r linear combinations, z( = a-y, 
for i = 1,2,..., r, and the z/s will be called discriminant coordinates or CRIM-
COORDS. [Note: Other authors have referred to these as "canonical variates" 
(e.g., Rao, 1952; Seal, 1964), but the present author's preference is to use the 
term "canonical variates" only in the context of canonical correlational 
analysis, discussed in Chapter 3.] The space defined by the CRIMCOORDS, 
or by a subset of the first f (<r) of them, will be called the discriminant space. 
Since the CRIMCOORDS are determined so that they account for group 
separation in decreasing order, there is an issue of how many of them (viz., 
choice of a value for t) one ought to use. The nature of the diminishing returns 
from using the later CRIMCOORDS has to be studied in any given problem, 
and often t has to be chosen by trying several alternative values. 

In the multigroup case, the discriminant space, which is a specifically chosen 
linear transformation of the original space, may be considered as an effective 
space for use in classifying "unknown" objects. The original reference set of 
observations, as well as the observations corresponding to the (unknown) 
objects which are to be classified into one of the g groups, may be represented 
in the discriminant space of dimension t ( ^ r ) . The representation of the 
original data consists in making the transformation 

Ζ = Α;Υ, (55) 

where A', is a f χ ρ matrix whose rows are the eigenvectors Λ\,...,»', (t < r), 
and Y = [ Y i ! Y 2 ! - | Y g ] is the ρ χ π set of all the reference observations. The 
columns of Ζ may, of course, be partitioned according to the partitioning of Y 
so as to provide the original group identities for the representations in the 
discriminant space. If u' = (u j , . . . , up) denotes the p-dimensional observation 
on an object which is to be classified as belonging to one of the g groups, a 
representation of u in the ί-dimensional discriminant space is given by Aj · u. 

For data-analytic purposes, two- and three-dimensional graphical represen-
tations of the columns, respectively, of Z(2 χ η) and Z(3 χ η) may be obtained. 
Such plots are often useful for studying the degree and nature of group 
separations, for suggesting possible metrics for use in the discriminant space, 
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Exhibit 16. Representation of utterances in the space of first two CRIMCOORDS 
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and for indicating stray or outlying observations. The approach is illustrated 
by the next two examples. 

Example 16. This example, which pertains to the talker-identification prob-
lem (for details see Becker et al., 1965; Bricker et al., 1971), involves data from 
10 talkers, each of whom repeated a given word six times. The initial 
representation of each utterance in this particular example was a 16-dimen-
sional summary derived from raw data whose dimensionality was much higher. 
Exhibit 16 shows a representation of the 60 resultant utterances in the 
two-dimensional discriminant space of the first two CRIMCOORDS, that is, 
coordinates that are obtained from the eigenvectors corresponding to the two 
largest eigenvalues of a W _ 1 B matrix calculated from the initial 16-dimen-
sional data. The utterances are labeled by the 10 digits 0 through 9 to 
correspond to the talkers with whom they are known to be associated. 

The clustering of the points in Exhibit 16 corresponds generally to the 
known categorization of the utterances and indicates the clear separations of 
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and among talkers 0, 2, 4, and 7, as well as the considerable overlapping of 
talkers, 1, 3, 5, and 6 and of talkers 8 and 9. There are no indications of 
outlying observations. Also, despite some indications of possible differences in 
the dispersions of the utterances when they are represented in the space of the 
first two CRIMCOORDS, one may feel that it is not unreasonable to use a 
simple Euclidean metric in the two-dimensional discriminant space (see the 
discussion in Section 4.2.1 on distance measures). 

Example 17. A second example of the value of graphical representations in 
discriminant space is taken from a study of Chen et al. (1970,1974) concerned 
with developing empirical bases for grouping industrial corporations into 
categories such as chemicals, drugs, oils, etc. One part of the study, using 
observations on 14 economic and financial variables, was concerned with the 
validity and appropriateness of such prespecified categories. [Note: Since one 
is interested both in utilizing useful prior groups where these are appropriate 
and in evolving data-determined groups when these are meaningful, this 
problem really does not fall totally under either classification or cluster 

Exhibit 17. Representation of core group companies in the space of first two CRIMCOORDS 
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analysis.] A four-group analysis of the chemical, drug, oil, and steel groups of 
companies in this investigation led to three CRIMCOORDS, and Exhibit 17 
shows a representation of the companies in the discriminant space defined by 
the first two CRIMCOORDS. [Note: In this problem an initial analysis of 
each of the groups internally led to the identification of a few outliers (see also 
Example 50 in Section 6.4.1), and the determination of the CRIMCOORDS 
was then based only on the companies retained in the core groups.] 

Apart from its usefulness in studying group separations, the configuration 
in Exhibit 17 indicates a relatively tight grouping of the oil companies and a 
very widely dispersed chemical group, thus hinting at possibly large disparities 
among the covariance matrices of the different groups in the space of the 
original 14-dimensional observations. The pooling involved in obtaining W 
might then be questionable, and other approaches (see Section 4.2.1) might 
prove more appropriate. 

As a further aid in using plots such as Exhibits 16 and 17, one can draw 
circular "confidence regions," defined by 

η,·(ζ,· - μ,)'(Ζί - μ,) ^ l\{<*) for ί = 1 , . . . , g, (56) 

where z, = A'2y; is the centroid (i.e., mean) of the representations of the n, 
observations in group G, in terms of the first two CRIMCOORDS, μ,· is the 
unknown expected value of ζ(, and χ\{μ) denotes the upper 1003% point of the 
chi-squared distribution with 2 degrees of freedom. For three-dimensional 
representations in the space of the first three CRIMCOORDS, one can define 
spheres centered again at centroids by analogy with the two-dimensional case. 
The required percentage point would be from a chi-squared distribution with 
3 degrees of freedom in this case. These circular and spherical regions may help 
in assessing the degree of group separation. 

The pooling of the individual group dispersions to obtain the within-groups 
covariance matrix W merits a few comments. First, there is the question of 
inappropriateness of averaging across dissimilar covariance structures and the 
statistical effects of such averaging on the details of the classification or 
discriminant procedures. Suppose, for instance, that W includes one covariance 
matrix from a very widely dispersed group (see Example 17). Then the 
determination of the CRIMCOORDS, and hence the associated discriminant 
space, may be distorted considerably by the inclusion in W of the "large" 
covariance matrix. A second question raised by the presence of widely varying 
covariance structures among the groups is the general issue of the meaningful-
ness of looking for location types of differences in the presence of such 
dispersion disparities—the so-called Behrens-Fisher problem of statistical 
inference. Third, particularly important from the point of view of data analysis 
is the following question: if, in fact, there are large discrepancies in the 
dispersion characteristics of the groups, and one is interested in discriminating 
among the groups, should not one attempt to use the dispersion information 
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for the discrimination? As a partial answer to this question, one way of 
incorporating dispersion differences in the analysis is described in Section 4.2.1. 

4.2.1. Distance Measures 

Given a space (either the one for the original variables or a derived dis-
criminant space) for representing the objects, the fundamental problem in 
classification is reduced to choosing a metric or a distance measure. For, if such 
a metric is available, an object which needs to be assigned to one of the groups 
may be identified with the group to which it is closest as judged by the metric. 

Theoretical formulations have, by and large, been confined to the derivation 
of specific distance measures to satisfy narrowly defined optimality criteria 
under a body of assumptions, which themselves are often beyond empirical 
check by the data on hand. For instance, the optimal Bayes discriminant 
function minimizes expected loss, using prior probabilities, as well as other 
distributional assumptions. 

From the point of view of data analysis, the prescription of a distance 
function will generally be a trial and error task in which the use of some general 
techniques needs to be aided by insight, intuition and, perhaps, good luck! 

One useful general class of squared distance functions is provided by a class 
of positive semidefinite quadratic forms. Specifically, if u ^ ^ , , ^ , . . . , ^ ) 
denotes the p-dimensional observation on an object that is to be assigned to 
one of the g prespecified groups, then, for measuring the squared distance 
between u and the centroid of the ith group, one may consider the function 

D2{i)=(u-y,)'M{v-yl), (57) 

where Μ is a positive semidefinite matrix to ensure that D2{i) ^ 0. The object 
will be assigned to the group for which D2(i) is smallest as i takes on the values 
from 1 through g. Different choices of the matrix Μ lead to different metrics, 

Fig. 3a. Euclidean measure of squared dis- Fig. 35. Measure of squared distance with 
tance. different weights for the variables. 
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and the class of squared distance functions represented by Eq. 57 is not unduly 
narrow. 

Thus, when Μ = I, one obtains the familiar Euclidean squared distance 
between the "unknown" and the centroid of the ith group in the p-dimensional 
space of the responses. Geometrically, as shown in Figure 3a for the case when 
ρ = 2, the use of such a measure of squared distance amounts to measuring 
distances by circles (or spheres when ρ > 2)—points Αλ and A2 lying on the 
same circle are considered to be the same distance away from the center C, 
while points Bl and B2 lying on the outer circle are considered to be farther 
away from C than are At and A2. For statistical uses, when the different 
responses are noncommensurable and likely to have very different variances, 
the use of this unweighted Euclidean metric may be inappropriate. For 
instance, if ρ = 2 and yl has a larger variance than y2, one may wish to weight 
a deviation in the yx -direction less than an equal deviation in the y2-direction. 
A way of accomplishing this would be to use "elliptical" (or ellipsoidal) 
distance measures as shown in Figure 3b—again Al and A2 are considered to 
be equidistant from C, while and B2 are considered to be farther from C 
than Α ι and A2. Algebraically, this measure of squared distance corresponds 
to specifying Μ in Eq. 57 to be a diagonal matrix with diagonal elements equal 
to the reciprocals of the variances of the different variables. Still another 
extension of the distance measure may be made to accommodate intercorrela-
tions among the responses as well as possible differences among their variances. 
When ρ = 2 and the statistical correlation between y, and y2 is positive, Figure 
3c shows how one may use "elliptical" distance measures by tilting the ellipses 
so that their major axis is oriented in a direction reflecting the positive 
correlation—once again, points on the same ellipse are considered equidistant 
from C, while points, such as A, and B,, on the different ellipses are considered 
to be at increasing distances away from C. A way of reflecting this choice 
formally in Eq. 57 is to use for Μ the inverse of the covariance matrix of the 
variables. 

Fig. 3c. Generalized squared distance measure. Fig. 4. Classification when within-group dis-
persions are different. 
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Three specific choices for Μ in Eq. 57 are worth considering in more detail. 
The first is Μ = Sf~ \ yielding 

where Sf is the covariance matrix derived from the reference set of observations, 
Υ,·, in the ith group, ι = 1 , . . . , g. An important practical constraint which needs 
to be met to ensure the nonsingularity of S, is that n, > p, so that to be able 
to use the metric Dj(i) for classifying the "unknown" object one would, in 
general, require the number of reference observations in every group to exceed 
the dimensionality p. Also, since Μ changes from group to group, the use of 
Dj(i) implies a considerable increase in the computational effort involved in 
classifying several "unknowns." Despite these limitations, however, one appeal-
ing feature of Z),(i) is that it uses a dispersion standard that is internal to the 
group being considered as a possibility for assignment of an "unknown," and 
hence it may be able to exploit differences in the dispersion characteristics of 
the different groups. If ρ = 2 and one has two groups, G, and G2, Figure 4 
illustrates the geometry involved in using the metric D, in the presence of 
dispersion differences. In this example, although the "unknown" (shown as 
an χ ) is closer, in Euclidean distance, to the centroid of Gt than to that of G2, 
in terms of Dj it is likely to be assigned to G 2 rather than Gv An important 
feature in using £), is that, if one looks for boundaries dividing the p-
dimensional space of the responses into regions, one for each of the g groups, 
such boundaries are nonlinear. The use of a likelihood-ratio approach (see 
Anderson, 1984; Rao, 1952) to classification in the presence of heterogeneity of 
covariance matrices of the groups would lead to a similar but not identically 
the same procedure. For instance, with two groups, the likelihood-ratio 
approach based on assuming multivariate normality for the distributions 
of the observations would lead to classifying u in G, or G 2 according as 
D]{\) -D\(2) ^ ln[|S2 |/ |Sj|]. On the other hand, the procedure described 
above would assign u to C, or G 2 according as D2(l) — D\{2) ^ 0. More 
generally, with g groups, the likelihood-ratio approach would assign u to the 
ath group if 

whereas the procedure based on the metric Di would do so merely if 

A second choice for Μ in Eq. 57 is associated with the derivation of the 
discriminant space. If Μ = A, \ '„ where AJ is defined following Eq. 55, then 

(58) 

D\(a) + In |SJ = min + In |S,|}, 

D\(a) = min D\(i). 

D\(i) = (u - y()'A,A;(u - y,) (59) 
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is the measure of the squared distance of the "unknown" from the ith group. 
Using the metric D2 in the p-dimensional space of original responses can be 
seen to be exactly equivalent to using the simple unweighted Euclidean metric 
in the (-dimensional discriminant space. The constraint on the eignvectors of 
W" 'B used in obtaining the CRIMCOORDS is that AjWA, = I. Hence, under 
the assumptions used in deriving the discriminant space (including homogene-
ity of the group covariance structures), the CRIMCOORDS would be mu-
tually uncorrelated and have unit variance each. This is a reason for using the 
simple Euclidean metric in the discriminant space, though not in the original 
space. The choice of Μ that leads to the metric D2 does not vary from group 
to group. However, it does depend on the number, r, of eigenvectors to be 
employed from the eigenanalysis of W~ 'B. 

A third choice of Μ leads to the so-called generalized distance of the 
"unknown" from the centroid of the ith group in the p-dimensional space of 
the original variables. Specifically, choosing Μ = W - 1 leads to 

Dl(i) = ( u - y i ) ' W - 1 ( u - y i ) . (60) 

This choice of Μ also does not change from group to group. To ensure 
nonsingularity of the within-groups covariance matrix, W, the constraint 
ρ*ζ(η — g) must be met, where η = Σ*= t nt is the total number of observations 
from all g groups in the reference set. This constraint on the relationship 
between the dimensionality of response and the number of observations is less 
restrictive than the one underlying the choice of Μ that led to Dv If pooling 
the dispersions of the different groups is reasonable and justified, one can thus 
have significant gains in the dimensionality to be used for the initial represen-
tation. A method of assessing the homogeneity of the dispersions of the groups 
is described in Section 6.3.2. 

In the sense that both D\ and D\ use inverses of covariance matrices of the 
responses, one can think of D\ as a generalization of D\ when all the groups 
have similar dispersion characteristics. However, in the sense that D\ is 
applicable when the groups have dissimilar dispersion characteristics, it is a 
generalization of D\. In a somewhat less obvious sense, D\ is interpretable in 
terms of a discriminant analysis approach which leads to D\. In fact, perform-
ing a two-group discriminant analysis (with W in place of S in the earlier 
description of Fisher's two-group procedure) for every possible pair of groups 
[i.e., g(g — l)/2 analyses in all] is equivalent to using D\. Also, using the 
maximum number, r, of eigenvectors corresponding to the nonzero eigenvalues 
of W" 'B in D2

2 would be entirely equivalent to using D\. 
These equivalences and relationships between D\ and D\ are easier to see in 

terms of the sphericized coordinates x = T _ 1 y , where W = T T (see the 
discussion on pp. 84-85). If xf and Xj denote the centroids of the ith and ;'th 
groups, respectively, in this space, Figure 5 provides a geometrical demonstra-
tion of the equivalence between D\ and the g(g — l)/2 pairs of two-group 
discriminant analyses. For the two-group analysis involving the ith and j'th 
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li a* *j» ii D,. 

Fig. 5. Relationship between the uses of D2 and D3. 

groups, the unknown u is projected onto the line joining χ,· and χ, to obtain 
u* and is assigned to the ith or j th group according as [D*(iYJ $ [£>*(/')]. From 
Figure 5, however, it is clear that for the metric D3 the relationship 
03(0 $ 0 3 ( j ) holds according as ^ £>*0')>so that g(g - l)/2 comparisons 
in terms of D* are equivalent to a comparison of g values of D3. 

Also, in the x-space, D3O) will be just the Euclidean squared distance of 
u 0 ( = T _ 1 u ) from x; ( = T _ 1 y ( ) . Hence, if r = p, D\ is not only equivalent to D\ 
but also identical with it, since D\(i\ = (u0 — x^'LL'iiio — X j ) , where L is now 
a ρ χ ρ orthogonal matrix (i.e., LL' = I) whose columns are the eigenvectors 
of B, , the between-groups covariance matrix in the x-space. If, however, 
r = (g — 1) < p, then, to establish the equivalence between D\ and D\, it has 
to be shown that Dl(i) < Dl(j) if and only if D\(i) ^ D2

2(j), where D\ is based 
on all r eigenvectors corresponding to the nonzero eigenvalues of W 'B. This 
follows from Pythagoras' theorem in p-space since 

{squared length of the perpendicular 
Z)j(I') = D\(i) + from u 0 to the (g - l)-dimensional 

hyperplane containing xg}, 

and the second term on the right-hand side of this equation is seen not to 
depend on i. 

Using D\ has the merit of conceptual simplicity, avoidance of the eigenvec-
tor computations involved in D\, and a performance in accurately classifying 
"unknowns" that may be as good as the result obtained by the use of any 
subset of the eigenvectors in D\. On the other hand, the computation of the 
eigenvectors for use in D\ may lead to reduction in dimensionality of the 
problem and perhaps some insight. Also, sometimes when the last few CRIM-
COORDS are merely reflecting "noise," using a subset consisting of the first 
few eigenvectors for calculating D\ may improve its performance over that 
o f D i 

One can also consider the use of squared distance measures that are 
approximations, in varying degrees of appropriateness, to D\, D\, and D\ 
respectively. For instance, when the number of observations in the reference set 
is not sufficiently large for obtaining nonsingular estimates of the covariance 
matrices involved, one may decide merely to incorporate in the distance 
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measures the differences in the variances of the coordinates and to neglect 
intercorrelations. Thus, in such a case, one may obtain an "approximation" to 
D\, for example, by using for Μ in Eq. 57 a diagonal matrix whose diagonal 
elements are the ratios of between-groups to within-groups sums of squares for 
each of the ρ variables. (See Becker et al., 1965, for further discussion of these 
"approximations" in the context of a specific application.) 

Example 18. The relative performances of the three metrics Dlt D2, and D3 

may be illustrated in the context of the corporation-grouping study (see Chen 
et al., 1970, 1974) used also in Example 17. Exhibit 18 shows, for a particular 
year, the proportion of companies from each of the four core groups that are 
classified into their "proper" (i.e., according to the prespecified identification of 
a company as chemical, drug, oil, or steel) groups when D\, D\, and D\ are 
used for the assignment. There is an element of bias in the classifiction 
procedure in this example since each of the companies being classified has 
influenced the estimates of the group centroids and covariance matrices, as well 
as the matrices Β and W used in the eigenanalysis for deriving the discriminant 
space. Thus there is no clear separation of "unknowns" from the reference set 
of observations in this example. Nevertheless, since the core groups were 
determined after an initial elimination of extreme outliers, the proportions in 
Exhibit 18 may be viewed as indicators of "percent correctly identified" by the 
three measures of distance. 

The metric Z), has a better overall performance and is seen to be particularly 
good in handling the chemical group, which happens also to be the most 
dispersed. Using the first two CRIMCOORDS for the metric D2 is, of course, 
equivalent to assigning companies to groups on the basis of Euclidean distance 
in Exhibit 17. The use of an additional CRIMCOORD, which would amount 
to employing D3, is seen not to make any difference for three of the four groups, 
although for the chemical group the use of D3 results in a noticeable 
improvement over the performance of D2. In fact, it turns out that the third 
CRIMCOORD mainly pulls the chemical and oil groups apart so that this 
improvement is explainable. 

Exhibit 18. Proportion of core-group companies classified into their initial groups for 1965 

Metric 

Initial Group 
Overall 

Proportion Metric Chemical Drug Oil Steel 
Overall 

Proportion 

o. 26/27 18/18 16/16 8/14 68/75 
D 2 with t = 2 16/27 17/18 15/16 12/14 60/75 

0 3 
21/27 17/18 15/16 12/14 65/75 
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4.2.2. Classification Strategies for Large Numbers of Groups 

When the number of groups, g, is large, classifying an "unknown" by compar-
ing its distances from all of the group centroids can become prohibitively 
expensive even with present-day high-speed computers. Some means of initially 
limiting the number of contenders to which an "unknown" may be assigned 
have to be developed. The rest of this subsection describes an ad hoc procedure 
based on using the first few CRIMCOORDS for this purpose. The essential 
ideas are developed in the context of the talker-identification problem, but their 
general applicability whenever g is large will also, it is hoped, emerge from their 
description. 

Since the first few CRIMCOORDS provide a linear transformation of the 
original variables so as to maximally separate the groups, one natural ap-
proach would be to use a representation of the observations, together with an 
"unknown," in the space of the first few CRIMCOORDS as the basis for 
delineating "most likely" contenders for the "unknown." As seen in Exhibit 16 
pertaining to the talker-identification example, with only 10 talkers one can see 
both separations and clusterings among the talkers even in the two-dimen-
sional representation with respect to the first two CRIMCOORDS. When the 
number of talkers increases however, such indications may not be as clear. 
Thus in Figure 6a, which shows a representation of only the centroids of the 
utterances of a given word by 172 talkers in the space of the first two 
CRIMCOORDS, there are no obvious clusters. 

One approach here is to divide the two-dimensional discriminant space 
arbitrarily into boxes as a first step. The boundaries of the boxes may be 
determined by using specified quantiles of the distributions of the group 
centroids along the two CRIMCOORDS, and it would be appropriate to 
employ a larger number of quantiles for the distribution along the first 
CRIMCOORD than for the one along the second. For the talker-identification 
example, Figure 6b shows a division of the space in Figure 6a into 40 boxes, 
using nine deciles (i.e., values that divide the distribution into 10 equal parts) 
of the distribution of the 172 centroids along the first CRIMCOORD and three 
quartiles (i.e., values that divide the distribution into four quarters) of the 
distribution with respect to the second CRIMCOORD. Using such an arbi-
trarily partitioned two-dimensional discriminant space, one can determine the 
box into which an unknown under consideration for assignment falls (see 
Figure 6c), and then can initially limit the comparison of the "unknown" to 
only the groups whose centroids fall in the same box or a few nearby ones. 
Figure 6d shows a case in which the initial comparison is limited to nine boxes, 
with the one containing the "unknown" in the center. In the particular example 
used for Figures 6a-d, while the 0 denotes the "unknown," the χ corresponds 
to the centroid of the talker from whom the "unknown" arose. Although the 
χ is not in the same box as the 0 in this example, it is seen to be in a 
neighboring box, which is included for comparison. This may not always 
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happen, however, and sometimes additional boxes may have to be included for 
picking up the "true" contender. A statistical strategy for expanding the base 
of comparisons by considering additional boxes is described below. 

The actual comparison of the "unknown" with the groups whose centroids 
are in nearby boxes is made by calculating distances not just in the space of 
the first two CRIMCOORDS but in terms of all the t CRIMCOORDS that 
one has decided to include. In other words, the metric D2 defined by Eq. 59 is 
used with the chosen value of i, but the centroids, y,, are initially limited to 
those of groups that are nearby in the space of the first two CRIMCOORDS. 

The decision to include additional boxes may be based on two consider-
ations: (i) the number of groups considered for the assignment of an "un-
known" is inadequately small, a situation that may, for instance, occur when 
the "unknown" falls in a box toward the outer edges in Figure 6b; and (ii) the 
evidence for assigning the "unknown" to a group included in the initial set of 
boxes is not sufficiently strong. 

To evaluate the strength of the evidence for associating an "unknown" with 
a group, two statistics that depend on the observed values of D\ may be used. 
For a given set of contending groups, the ratio of the second smallest value of 
D\ to the smallest value, as well as the latter value by itself, is a useful indicator. 
Thus, while the smallest value of D\ determines the group to which the 
"unknown" is assigned, its numerical magnitude is an indicator of actual 
closeness between the "unknown" and the group. The ratio of the second 
smallest value to the smallest value is a measure of the closeness of the 
"unknown" to the group it is assigned to, as compared to its closeness to the 
next nearest group. Thus a large value of the ratio and/or a small value of the 
minimum observed D\ lend strength to an assignment. Statistical benchmarks 
are needed for comparing the observed values of statistics such as the ratio and 
the smallest distance. If one is dealing with a situation in which there are 
sufficient data under "null" conditions (i.e., correct classification), one can 
obtain adequate estimates of the "null" statistical distributions of the statistics; 
that is, using only the reference set of observations, one can "simulate" the 
classifiction procedures, obtain the values of the statistics when the procedures 
lead to a correct assignment, and study the empirical distribution of these 
values. Such empirical distributions and their percentage points may then be 
used for comparing observed values of the statistics in assigning an "unknown" 
to decide whether they are large (or small) enough to confirm a "safe" 
assignment. 

The essential features in the above type of stategy are, first, initial limitation 
of contenders by including for the primary comparisons only groups that are 
near the "unknown" in the space of the first two CRIMCOORDS; and second, 
enlargement of the population of contenders only when the assignment based 
on the primary comparisons is suspected of not being statistically sufficiently 
unequivocal. The hope is that for most of the "unknowns" one will not need 
to include groups from very many boxes to arrive at a satisfactorily clear 
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assignment and that for only a few of the "unknowns" will one need to consider 
a large number of groups (possibly even all of them). Obviously, the properties 
of the strategy depend on various facets, including the number of CRIM-
COORDS used initially (two is simplest and is generally recommended), the 
number and size of the boxes, the cut-off values for comparing statistics, such 
as the smallest distance and the ratio of the second smallest to the smallest 
distance, etc. In any example where g is very large, the specific values for these 
quantities may have to be chosen on a trial and error basis. 

In the talker-identification example, which was used to motivate the strategy 
for large g, for the case of 172 talkers with one utterance from each serving as 
an "unknown," the use of the above type of strategy led to 81% (140/172) 
correct identification. An exhaustive comparison of each "unknown" against 
every talker, at a computing cost almost twice that for this strategy, led only 
to an improvement of 3%, namely, 84% (144/172) correct identification. A 
more detailed discussion of the talker-identification problem, including addi-
tional means that were employed to increase the percentage of correct 
identifications, is provided by Bricker et al. (1971). 

4.2.3. Classification in the Presence of Possible Systematic Changes 
among Replications 

The classification process described in the preceding subsections of this chapter 
may be summarily described as follows: given g group centroids and an 
"unknown," u, assign u to the group to whose centroid it is closest in terms of 
some metric. However, in some situations there may be an arbitrary or 
systematic change, for artifactual or other reasons, from observation to 
observation even within a specified group. For example, in repeated utterances 
of a word by a given talker, the general level of the jointly observed energies 
may shift because of varying proximity to the microphone. A second example 
would be a situation in which the groups are different species and the 
observations within a group are made on members at different stages of 
growth. In such circumstances a modified view of the classification problem is 
in order. 

Thus suppose that with repeated utterances of a specific word by the same 
person one observation leads to the vector χ and the next to χ -I- c, where all 
the components of the vector c are equal but unknown. Of course, this is 
perhaps an oversimplified model for the true effect of proximity to the 
microphone. However, the essential point is that, when such possibilities exist, 
it is no longer wise or proper to classify the unknown with the group to whose 
center it is closest. Now each group is represented, in concept, not by a point, 
but by the line joining the group center, y, and the point, y + c, for any c. The 
proper classification is then based on the shortest generalized distance to such 
lines. 

Similarly, one may need to allow for possible joint scale change, or even 
higher-order change, affecting all the coordinates of the multiresponse vector 
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identically. For instance, if both scale and origin are artifactual, so that one 
observation in a group is χ and another is bx + c, each group is defined as a 
plane and classification is based on shortest generalized distances to these 
group planes. 

A simple version of these problems and one approach to them have been 
considered by Burnaby (1966) and by Rao (1966). A different approach is 
suggested here by casting the problem in a more familiar and suggestive form. 

Instead of considering the ith group centroid, yf = (yn,..., yip)', and the 
unknown, u = (u v . . . , up)' as two points in p-space, consider them as ρ points 
in two-dimensional space with coordinates {yi}, uj) for = 1,2,..., p. One can 
then make a scatter plot of these ρ points. 

Clearly, in the absence of any systematic changes between replications 
within a group, perfect correspondence between the unknown and the ith 
group will lead to a linear configuration having unit slope and passing through 
the origin. If the unknown is a member of the group, one expects a good linear 
configuration, and, indeed, the generalized distance in p-dimensional space 
between the unknown, u, and the ith group centroid [i.e., Dj(i) of Eq. 60] is 
just an appropriately defined quadratic form in the residuals of the observa-
tions from the line of unit slope through the origin in this two-dimensional 
representation. A joint additive shift and common scale change, if present, will 
show as a nonzero intercept and a slope not equal to unity. 

The above type of scatter plot can be made for each unknown against the 
centroid of every group, and for classification purposes a linear regression line 
may be determined corresponding to each plot and the unknown may be 
assigned to a group by comparing the magnitudes of the g residual sums of 
squares in the g regressions. In general, since the ρ points are associated with 
ρ responses that may have widely differing variances in addition to being 
intercorrelated, the fitting may have to be performed by generalized (i.e., 
weighted) least squares rather than by simple least squares. The classification 
will then be based on a comparison of g values of a quadratic form in the 
residuals of the observations from the generalized linear least squares fits in 
each of the scatter plots. For an initial exploratory analysis in many problems, 
the simpler approach through ordinary least squares may be adequate. 

Example 19. The approach is illustrated by application to data from the 
talker-identification problem. One summary employed in this problem consis-
ted of a 57-dimensional vector of energies for characterizing each utterance of 
a given word by each talker. 

Exhibit 19 shows a scatter plot of the values of the 57 components for two 
"unknown" utterances of a word against the corresponding values in the 
average of four "known" utterances of the same word by a specific talker. One 
of the unknowns was chosen from the same talker, and the points for this are 
shown as D 'S; the other was from another talker, and the corresponding points 
are shown in Exhibit 19 as o's. Also shown in Exhibit 19 are the simple least 
squares linear fits to the two sets of points. 
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The existence in these data of artifacts of the type discussed above is evident 
in this plot. The configuration of the D's, although quite linear, has a nonzero 
(small positive) intercept. Also the slope of the fitted line is very slightly smaller 
than unity. Thus there is some evidence of a shift (and, perhaps, no scale) 
artifact. 

The configuration of the O's exhibits poor linearity, with considerably more 
scatter about the linear fit. A comparison of the two configurations suggests 
the possible utility of a classification procedure based on a quadratic form in 
the residuals from a least squares linear fit. In the present example the ordinary 
sums of squares of the residuals, for instance, turn out to be about 8260 for the 
configuration of the Q's and over 180,000 for that of the O's. Also, in this 
example the use of simple least squares fits and a comparison of the associated 
residual sums of squares led to almost 70% correct identifications, and the 
utilization of weighted least squares employing estimates of variances (and 
neglecting the correlational aspects) improved the percentage to about 75%. 
Of course, in other examples, wherein the variances may be more disparate and 
the intercorrelations perhaps high, the performance of the approach based on 
simple least squares may not be as good. 

The approach just illustrated has a number of attractions. First, it involves 
familiar regression ideas. Second, it permits a graphical representation. Third, 
largely as a consequence of the second point, the procedure enables the use of 
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a flexible internal comparisons process, in that the data themselves may help 
to suggest the nature of the possible corrections which may be desirable, such 
as the detection of coordinate outliers or the form of the regression (e.g., 
quadratic or other nonlinear regressions) which may be more appropriate to 
use. 

In this approach there can be additional methodological problems when 
both the covariance matrix (needed for the generalized least squares fitting) and 
the regression function have to be estimated from the data. In that case some 
iterative process is possible, if necessary. There are also problems of strategy 
and implementation of any iterative technique. 

43. CLUSTERING 

The area of cluster analysis, which had its origins outside the mainstream 
of statistics largely in fields such as numerical taxonomy and psychology, 
has in recent decades received considerable attention in the statistical liter-
ature. Entire books, such as those by Everitt (1974), Hartigan (1975) and 
Kaufman & Rousseeuw (1990), in addition to surveys [e.g., Cormack (1971); 
Gnanadesikan & Kettenring (1989)], bear testimony to the extensiveness of the 
field. The essential concern of cluster analysis is to find groupings of things 
(e.g., objects, experimental units, variables) such that the things within groups 
are more "similar" (in some sense to be indicated by the measurements on the 
things) than the things across groups. Despite the intuitive appeal of such a 
goal, however, performing a cluster analysis sensibly and obtaining meaningful 
results is far from simple. Questions of what to measure, how to quantify 
similarity, what methods to use for performing the clustering, and most 
importantly, how to assess the results of using clustering algorithms are all 
critical. For convenience of exposition, one can distinguish three stages of 
cluster analysis: (1) the input stage, (2) the algorithm stage, and (3) the output 
stage. 

Of these three stages, the second one concerned with different types of 
algorithms for clustering is the one that has received the lion's share of 
attention in the literature. Partly under the stimulus of modern computing 
technology, there has been an explosion in the variety and the number of 
algorithms and very little is known about the relative statistical behaviors of 
the myriad of the currently available methods. The input stage, where one 
needs for example to consider what an appropriate measure of similarity to use 
would be in the light of the data at hand, has received a reasonable amount of 
attention. Unfortunately, the output stage concerned with assessing and 
interpreting the results of cluster analyses, is the one that has received scant 
attention thus far. 

The three subsections that follow discuss issues and methods pertaining to 
the three stages, respectively. 
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43.1. Inputs 

Issues that need consideration prior to carrying out any cluster analysis include 
the following: appropriate scaling or weighting of the variables, or transform-
ations of them; measures of proximity or metrics to use as indicators of 
closeness among the items to be clustered. Choices made at this stage can have 
a determining influence on the outputs of the subsequent analysis. A simple 
example illustrates what can happen. Figure 7a shows four items, A, B, C, and 
D, in a scatter plot. In this picture, one would consider it natural to group A 
and Β into one cluster and C and D into a second cluster. However, if one were 
to scale the two variables differently (e.g., measure things in different units), for 
example by dividing the abscissa variable by 1000 and multiplying the ordinate 
variable by 100, the configuration changes to the one in Figure l b . It would 
now be more natural to group A and C together in one cluster and Β and D 
in a second one. The outcome is a result entirely of scaling the variables or 
choice of the units of measurement, and one may not find this desirable in 
many applications wherein the clusters sought should be scale invariant. 

The nature of the data, as well as the type of clustering algorithm one wishes 
to use in a specific situation, will influence the choice of the inputs. For 
instance, with metric data represented as η points in p-space, if the interest is 
in grouping the η p-dimensional observations using a non-hierarchical cluster-
ing method (see Section 4.3.2 for a description of such methods), one could use 
the ρ χ η matrix, Y, of raw data as the input. If one wants the results not to 
depend on the scales of the variables, on the other hand, one would use the 
ρ χ « matrix, Ζ = D · Y, where D is a diagonal matrix of reciprocals of 
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estimates of scale of the ρ variables. Widely used choices of the scale estimate 
are the range or the standard deviation of each variable, where neither of these 
choices takes any account of the possible cluster structure in the data. More 
generally, with metric data to be clustered by a non-hierarchical algorithm, if 
one wants the results to be "invariant" under affine transformations of the 
initial variables, then the input has to be the transformed data, Ζ = A • Y, 
where A is either the inverse of the triangular matrix from the Cholesky 
decomposition of an estimate of the covariance matrix, or the inverse of the 
symmetric square-root of such an estimate. Using the covariance matrix, 
S = (1/n - ΐχΥ — ΫχΥ - Ϋ)', as the estimate, while simple and obvious, also 
ends up ignoring possible clusters in the data. Ideally, one would like to use an 
estimate of the "within-cluster" covariance matrix analogous to the with-
in-group covariance matrix, W, in discriminant analysis defined by Eq. 51. The 
difficulty in the cluster analysis situation is that the clusters are not known a 
priori and have to be determined. Various schemes have been proposed for 
handling this difficulty (see Art et al., 1982; Gnanadesikan et al, 1993, 1995, 
and references therein). The basic idea of the method proposed by Art et al. 
(1982) is that, although one does not know the clusters ahead of time it is likely 
that nearest neighbors among the observations belong to the same cluster. This 
idea is then used to develop an estimate of the within-cluster covariance matrix 
(except for a multiplicative constant) based on nearest neighbors. 

More explicitly, the motivation of the scheme proposed by Art et al. (1982) 
is the following decomposition of the total sum-of-cross-products matrix in 
terms of pairwise differences among the observations: 

Σ Σ (y« - yXy« - y)' = Σ (y< - y.-Xy,- - y,-)' 
i = l j= 1 i < i " = 1 

= U/») Σ (y,-y,-Xy,-y,-) ' 
i < Γ 

within 

+ (V«) Σ (y,-- yf-Xy, - y,-)', 
i < i ' 

between 

or Τ = W* + B*. [Note: In the notation used above, y( J , denotes the ;"th 
observation in the ith cluster. However, in the expressions on the right-hand 
side, y, and y r , are the ith and i'th columns of the ρ χ π data matrix, Y, without 
any association with any particular clusters, and is thus more in concordance 
with the cluster analysis case where one has no prior knowledge of the clusters 
or their compositions.] In the above equation, W* is based solely on with-
in-cluster pairs while B* is based on between-cluster pairs of observations. In 
the cluster analysis situation, the difficulty is that one lacks advance informa-
tion on g, n, and the cluster labels. Using the intuitive reasoning that, despite 
this difficulty, if there are any clusters present in the data then the nearest 
neighbors are likely to belong to the same cluster, an estimator similar in spirit 
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to W* is proposed. The steps in developing the estimator are: 

(i) set \V$°' = I, the identity matrix, and set the index of iteration t = 1; 

(ii) find the m closest pairs of observations according to the squared 
generalized distance 

(iii) define 

" Λ 

where A is the set of pairs (i, i"), i < i', corresponding to the closest pairs 
found in step (ii); 

(iv) compute 

£<') = t r ( W i i r i r l W ( * „ i ; , - I ) 2 ; 

if £ ( , ) ζ £, a user-specified number, or if t = f m „ , the maximum number 
of iterations allowed, stop and let Wj^, = W,^,0; otherwise replace £ by 
t + 1 and return to step (ii). (E = 0.001 and t m „ = 20 were used by 
Gnanadesikan et al., 1993.) 

The above W*-algorithm is fully defined except for a value of m to be used in 
it. Care needs to be taken to choose an "appropriate" value of m so that only 
within-cluster pairs are used to form Wj*,). If m is too small the estimate may 
be highly variable because it is based on too few within-cluster pairs, but if m 
is too large then bias would creep in due to the inclusion of between-cluster 
pairs of observations. This is another example of the common phenomenon in 
statistical practice of having to trade off bias and efficiency. Gnanadesikan et 
al. (1993) describe a graphical aid for choosing m. Also, they suggest a con-
servative (i.e., more concerned with avoiding bias) "2/3 rule" of using a value 
of m about (n/3X«/g — 1) with a guessed value for the number of clusters, g. 

The method as described is clearly iterative. In practice, the number of 
iterations needed for convergence seems to be quite small, most often less than 
10. 

The fact that the estimator, W*m), needs a multiplicative constant to make it 
an estimator of the underlying common within-cluster covariance matrix does 
not limit its usefulness in the context of cluster analysis since the effect of 
omitting the constant is an inability to distinguish among scatters of the points 
when subjected to uniform dilation or shrinking. The missing constant, 
therefore, has no relative effect on the scatter of the points or their interpoint 
distances. The W*-algorithm, while distinctly different in its motivation and 
setting, is similar in spirit to the ellipsoidal trimmed robust estimator of 
dispersion defined in Eq. 75 in Section 5.2.3. 
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Gnanadesikan et al. (1995) provide comparisons, and demonstrate the 
advantages, of using the W*-algorithm as against others that ignore possible 
cluster structure in the data. The appendix on computer programs and 
software mentions currently available implementations of the W*-algorithm. 

For hierarchical clustering algorithms (see Section 4.3.2), the input needed 
is a set of proximity or similarity values. With metric data, for instance, if the 
interest is in clustering the η "observations" then the input should be a set of 
inter-observation distances. Choices for the distance function or metric would 
include the so-called city-block or Manhattan metric defined by 

ρ 

diV = Σ \y,j - yrj\, 

and squared distance functions such as those described in Section 4.2.1. For 
the squared distance functions, in the clustering context there are once again 
the issues of the desirability of basing estimates of variances and of covariance 
matrices on within-cluster information, and the W*-algorithm described earlier 
is useful. If one were interested in clustering the ρ variables (instead of the η 
observations) using a hierarchical algorithm, then one could use a measure of 
association such as the values of the correlation coefficient between every pair 
of variables. 

A major practical advantage of hierarchical clustering algorithms is that 
they can handle non-metric data. All that they need as input is a set of values 
of proximities. As such, if the data consist of subjective similarity (or dissimil-
arity) judgements, as they tend to be in market research or psychological data, 
they can be used directly as input. In fact, for two of the most widely used 
versions of hierarchical clustering methods called the maximum and minimum 
methods in Section 4.3.2b, the rank orders of similarities (dissimilarities) is all 
that is needed as input. Also, if the data pertains to binary variables (e.g., 
presence or absence of traits), one can use a variety of measures of association 
for such data as inputs to hierarchical clustering. More specifically, if there are 
ρ binary variables each assuming the values 0 or 1, suppose the following 2 x 2 
table summarizes the frequencies of O's and l's in the ith and j th observations, 
y, and y,-: 

1 0 Total 
y> \ 

1 a b a + b 
0 c d c + d 

Total a + c b + d Ρ 
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Then, one measure of similarity that one could use is the familiar chi-squared 
statistic computed from this table: 

pjad- be)2 

1 (a + b\c + d\a + φ + d)' 

One could also use the square root of this statistic. Other measures of 
dissimilarity for such data include 

d = 1 - [(a + d)/pl 

as well as alternatives such as the one based on the Jaccard coefficient, 

d = 1 - [β/(α + b + c)l 

Kaufman & Rousseeuw (1990) have an extensive discussion of these and other 
measures of association for binary data. 

There are, of course, situations in which one might have a mix of types of 
variables. For example, some of the variables might be metric while others are 
qualitative, perhaps even binary. For hierarchical clustering of such data, one 
suggestion for measuring interobservation dissimilarity is to use the sum of two 
pieces, each of which is a measure of dissimilarity: one piece based on a 
meaningful distance function for the metric variables and the second piece 
based on a measure of dissimilarity such as the above examples for the binary 
variables. This way of combining the information from variables of different 
types is simple, but clearly does not take into account any information on the 
"association" between the metric and the binary variables. 

4.3.2. Clustering Algorithms 

Graphical displays of the data can be useful in revealing clusters. With two-
and three-dimensional data, scatter plots can reveal clusters. With higher 
dimensional data, looking at all pairwise scatter plots can be useful but may 
not always be revealing and other displays may be needed. Friedman & Tukey 
(1974) initiated projection pursuit as a means of finding interesting projections 
of high-dimensional data, including those that reveal clusters. Glyphs and 
Chernoff Faces (see Section 3.2) have been used for visually grouping similar 
observations (see Example 13). Andrews's Curves, a method of mapping 
multivariate observations into curves plotted in two dimensions (see Section 
6.2), have the property that observations that are close in the p-dimensional 
space of the variables are mapped close together as curves (see Example 41) 
and hence have particular value for detecting clusters of observations when η 
is relatively small ( ^ 50, say). 
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Cohen et al. (1977) describe a method of displaying nearest-neighbor 
distances and illustrate its use in finding clusters. Given an η χ π matrix of 
inter-observation distances, dijt the method starts by ignoring the uninteresting 
zero distance of each observation from itself and sorting the remaining (η — 1) 
distances within each row from smallest to largest. The η χ (η - 1) matrix of 
sorted distances that results from this process will thus contain values of the 
nearest-neighbor distances in the first column, the second nearest-neighbor 
distances in the second column, and so on with the farthest-neighbor (i.e., the 
(n — l)th nearest-neighbor) distances appearing in the last column. The so-
called nearest-neighbors distances plot is a scatter plot of the values in 
each column of the sorted distances matrix along the ordinate axis against 
the median of the values in that column along the abscissa axis. Thus, if 
di(1) < dil2) ^ ··· < di{e.l) denote the sorted values (after omission of a",,) in the 
ith row of the η χ η matrix of distances, the nearest-neighbors distances plot 
is just a scatter plot of 

Information on clustering present is revealed by the configuration at the lower 
left end of the nearest-neighbors distances plot while the presence of "outliers" 
(which can be visualized as singleton clusters) is detected by the top portion of 
the plot. 

Example 20. The technique is illustrated by Cohen et al. (1977) using data 
on the quarterly rates of return on η = 52 investment portfolios over a period 
of 11 successive quarters. If r,v denotes the rate of return on the ith portfolio 
in the;'th quarter, then the value of the Manhattan metric, dir = Zj l j |r y—rv j \ , 
was used as a measure of distance between the ith and i'th portfolios. Before 
proceeding with a clustering of the 52 portfolios using these distances, a 
nearest-neighbors distances plot was made following the steps mentioned 
above. The resulting plot is shown in Exhibit 20. The largest two distances in 
all but the last four columns in this display involved either portfolio #47 or 
#52, that is, m a x ( = d 4 7 y , or di2^, j — 1,...,47. These two portfolios 
along with two others are nearly always associated with the four largest 
distances in each column. These may therefore be "outliers" which can then be 
isolated for further study (e.g., are they portfolios with consistently high rates 
of return?). Returning to Exhibit 20, there is a noticeable blob in the lower 
left-hand section of the plot, highlighted by a box around the points. In 
particular, the smallest eight distances in the first eight columns turned out to 
involve a set of nine portfolios which thus seem to belong to a cluster in that 
their profiles of rates of return are very close. Subsequent investigation revealed 
that these nine portfolios were in fact managed by the same person! For 
privacy reasons, no information was provided initially about the identities of 

i= 1 , . . . , « ; ; = l , . . . , (n - 1). 
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the managers of the different portfolios. The "back door" discovery of the fact 
that the performances of nine portfolios were so similar as to suggest the 
possibility that they were managed by the same person, or a group of people 
with very similar investment strategies, impressed the suppliers of the original 
data! 

Aside from static graphical displays mentioned above, in recent decades 
dynamic displays have been developed for looking at high-dimensional data. 
Many of these systems (see, for example, Fisherkeller et al., 1974; Azimov et 
al., 1988; Buja & Hurley, 1990; Cook et al., 1993; Swayne et al., 1991) have as 
a major motivation the finding and displaying of interesting projections of the 
data, including those that exhibit clustering. 

As to numerical algorithms for clustering, there is a bewildering choice of 
types and instances of methods available. Despite the considerable computing 
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power at one's disposal today, looking at all possible partitions of the data for 
determining the clustering that is optimal with respect to some criterion 
continues to be prohibitively expensive and practically impossible. The state of 
the art has not changed dramatically from the one pointed out by Gower 
(1967) that the computations involved in looking at the ( 2 * - 1 — 1) possible 
partitions of η units into two sets for choosing the partition with minimum 
within-sets sum of squares would take approximately (n - 1) 2 2"~ 1 1 seconds on 
a 5-microsecond-access-time machine, so that with η = 21 units the time 
involved would be approximately 114 hours and with η = 41 it would be 
approximately 54,000 years! (See also Scott & Symons, 1971.) One reason for 
the large number of algorithms available today is perhaps the fact that they 
are all attempts at "approximating," in some sense, the optimal partitions, and 
it is not surprising that one source of differences among currently available 
clustering schemes is their relative computational efficiency. Apart from com-
putational issues, different methods of clustering a given data set may lead to 
different results and insights. From a data analysis viewpoint, this is not 
necessarily bad, and what is needed is help in assessing and interpreting the 
results of a cluster analysis. The approaches and aids discussed in Section 4.3.3 
are addressed to this need. 

At any rate, at the highest level, one can distinguish between algorithms that 
lead to mutually exclusive clusters and those that yield overlapping clusters. 
ADCLUS and MAPCLUS are examples of the latter category (see Shepard & 
Arabie, 1979; Arabie & Carroll, 1980). The more commonly used algorithms 
lead to mutually exclusive clusters. Such algorithms may be categorized 
broadly as being hierarchical (e.g., Hartigan, 1967; Johnson, 1967; Sokal & 
Sneath, 1963) or nonhierarchical (e.g., Ball & Hall, 1965; Friedman & Rubin, 
1967). The former class is one in which every cluster obtained at any stage is 
a merger of clusters at previous stages. In this case, therefore, it is possible to 
visualize not only the two extremes of clustering, namely, η clusters with one 
unit per cluster (weak clustering) and a single cluster with all π units (strong 
clustering), but also a monotonically increasing strength of clustering as one 
goes from one level to another. In the nonhierarchical procedures, on the other 
hand, new clusters are obtained by both lumping and splitting of old clusters 
and, although the two extremes of clustering are still the same, the intermediary 
stages of clustering do not have this natural monotone character of strength of 
clustering. 

The format of the input data for clustering procedures may be metric or 
nonmetric, that is, as a representation of η points in p-space or only as rank 
order information regarding the similarities of pairs of the η units. The 
descriptions of most nonhierarchical schemes seem to assume a metric input 
with an implied choice of ρ as well. This, however, is not a necessary limitation, 
since the observed ordering of the similarities may be utilized as input to 
multidimensional scaling (see Section 2.3) for obtaining a representation of the 
π units in a Euclidean space whose dimensionality is data determined. Also, 
even with metric data inputs, if redundancy among the ρ coordinates is 
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suspected, the original data may first be transformed to a reduced dimensional 
space by using linear or generalized principal components analyses (see 
Sections 2.2.1 and 2.4.2), and then the clustering may be performed in the 
lower-dimensional linear or nonlinear subspace of the original p-dimensional 
space. Caution must, however, be exercised in any reduction of dimensionality 
which ignores the presence and nature of clusters in the data. The key issue 
here is the nature of the spread among the clusters relative to the within-cluster 
dispersions, and the possible misleading indications of any reduction of 
dimensionality that ignores this. 

In any specific application, whether one uses hierarchical or nonhierarchical 
methods is largely dependent on the meaningfulness, in the particular situation, 
of the tree structure imposed by hierarchical clustering procedures. For 
instance, in biological applications concerned with groupings of species, 
clusters of species, subclusters of subspecies, and so on may be of interest, and 
hierarchical clustering may then be a sensible approach to adopt. Even the area 
of numerical taxonomy, however, is not without controversy as to the biologi-
cal meaningfulness of clusters (hierarchical or otherwise) determined by the use 
of statistical data-analytic techniques. 

Section 4.3.2a will discuss hierarchical clustering methods, and Section 
4.3.2b will be concerned with nonhierarchical clustering. 

4.3.2a. Hierarchical Clustering Procedures 
Hierarchical clustering algorithms come in two flavors: agglomerative (where 
one starts with each of the η units in a separate cluster and ends up with a 
single cluster that contains all η units) and divisive (where the process is to start 
with a single cluster of all η units and then form new clusters by dividing those 
that had been determined at previous stages until one ends up with η clusters 
containing individual units). Only agglomerative techniques are considered 
here. 

The discussion of methods for hierarchical clustering in this subsection 
follows closely the development due to Johnson (1967). The essential idea of a 
hierarchical clustering scheme is that η units are grouped into clusters in a 
nested sequence of, say, (m + 1) clusterings, C 0 , C u . . . , C m , where C 0 is the 
weak clustering, Cm is the strong clustering, and every cluster in C, is the union 
or merger of some clusters in C,_, for i = 1 , . . . , m. Also, corresponding to C, 
we have its "strength," a(, where a 0 = 0 and α, < α ί + , for ι = 0 , 1 , . . . , (m — 1). 
The a's, therefore, are an increasing sequence of nonnegative numbers. 

Johnson (1967) demonstrates that, for any such hierarchical clustering 
scheme, a metric for measuring the distance between every pair of the η units 
is implied, and, conversely, that, given such a metric, one can recover the 
hierarchical clustering scheme from it. Given two units, χ and y, and the above 
hierarchical clustering scheme, let j be the smallest integer in the set 
[ 0 , 1 , . . . , m] such that in clustering C, the units χ and y belong to the same 
cluster; then define the distance between χ and y, d(x, y), to be the strength, a,, 
of the clustering C}. In other words, the distance between any pair of units is 



CLUSTERING ALGORITHMS 111 

defined as the strength of the clustering at which the units first appear together 
in the same cluster. This definition leads to a distance measure with properties 
generally associated with metrics. Thus d(x, y) = 0 if and only if χ and y 
first appear together in C 0 , which means that χ and y are not distinct units 
or that χ = y. Also, from the definition it follows that d(x, y) = d(y, x). Finally, 
if x, y, and ζ are three units, the triangle inequality d(x, ζ) ^ d(x, y) + d(y, z) 
may be shown to hold. In fact, a stronger inequality, namely, d(x, z) < 
max{d(x, y), d(y, z)}, which implies the triangle inequality, may be shown to be 
satisfied by d. This stronger inequality, which states that the distance between 
χ and ζ cannot exceed the larger of the two distances, d(x, y) and d(y, z), has 
been called the ultrametric inequality by Johnson (1967). That the above 
definition of distance between pairs of units in a hierarchical clustering scheme 
satisfies the ultrametric inequality may be established as follows. Let 
d(x, y) = «j and d(y, z) = txs, so that the units χ and y appear together in the 
same cluster for the first time in clustering C,, and the units y and ζ do so in 
clustering Cj. Then, because of the hierarchical nature, one of these clusters 
includes the other, namely, the one which appears in the clustering whose index 
corresponds to the larger of i and j includes the other. Hence, if k = max(i, j), 
in clustering Ck the units x, y, and ζ are all in the same cluster and, clearly, 
d(x, z) < a.k = max(a,, a,). Thus, given a hierarchical clustering scheme such as 
the one in the preceding paragraph, one may derive a metric satisfying the 
ultrametric inequality (and hence the triangle inequality). 

The converse—namely, given a set of n{n — l)/2 interunit values of a metric 
that satisfies the ultrametric inequality, one may recover a hierarchical cluster-
ing of the η units—is also demonstrated by Johnson (1967). The equivalence 
between hierarchical clustering and a metric that satisfies the ultrametric 
inequality is perhaps most easily shown by the following simple example, taken 
from Johnson (1967). 

Example 21. Exhibit 21a shows a hierarchical clustering of six ( = n) units 
involving five ( = m + 1) stages of clustering, C 0 , . . . , C 4 , with respective asso-
ciated strengths α 0 , . . . , α 4 ranging from 0 to 0.31. [Note: The value of the 
strength of each clustering is, for the moment, assumed to be specified, and the 
later discussion in this subsection will deal with how these strengths are 
actually obtained in various hierarchical clustering algorithms.] 

Using the earlier-mentioned definition of a distance between a pair of units, 
one may derive the matrix of interunit distances shown in Exhibit 21b. Thus, 
since every unit "appears with itself in the same cluster" for the first time in C 0 

and a 0 = 0, the diagonal elements are all 0. Also, for instance, since units 3 and 
5 are clustered for the first time in C, with a, = 0.04, the distance between 
these units is 0.04, while the distance between units 1 and 2 is 0.31, the strength 
of C 4 , the strong clustering, which is the first stage in which units 1 and 2 are 
clustered together. All of the metric properties claimed for the definition of 
distance used in obtaining Exhibit 21b from Exhibit 21a can be verified in this 
example in terms of the elements of the distance matrix shown in Exhibit 21b. 
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Next, the inverse process of going from Exhibit 21b to Exhibit 21a may be 
demonstrated in terms of this simple example. To start the process, at the first 
level we form the weak clustering C 0 with six clusters containing one unit each. 
Next, by scanning the elements of the distance matrix in Exhibit 21b, we 
identify the smallest interunit distance as being 0.04, the distance between units 
3 and 5. In a natural manner, suppose that we decide to create a cluster (3,5) 
and to leave the remaining four units by themselves, thus leading to five 
clusters at level C, with associated strength a, equal to the smallest distance, 
0.04, in the distance matrix of Exhibit 21b. To repeat the process for construct-
ing the higher-level clusterings, we now need a way of defining distances 
between cluster (3,5) and the four units 1, 2, 4, and 6. An interesting property 
(shown below to be a consequence of the distance function here satisfying the 
ultrametric inequality) of the values in Exhibit 21b is that a\i, x) = d(S, x) for 
χ = 1, 2,4, and 6. Hence a natural measure of the distance between cluster (3,5) 
and unit χ would be d([3, 5], x) = d(3, x) = d{5, x) for χ = 1, 2, 4, and 6. Exhibit 
21c shows a 5 χ 5 distance matrix obtained by using this definition. 

Scanning Exhibit 21c for the smallest element, we find that it is 0.07 = 
d([3,5], 6), and we can then form a cluster (3,5,6) while leaving units 1, 2, and 
4 by themselves, thus obtaining four clusters in stage C2 with associated 

Exhibit 214. Initial distance matrix for the example in Exhibit 21a 

6 x 6 DISTANCE MATRIX 

1 2 3 4 5 6 
1 0 0.31 0.23 0.31 0.23 0.23 

2 0.31 0 0.31 0.23 0.31 0.31 

3 0.23 0.31 0 0.31 0.04 0.07 
4 0.31 0.23 0.31 0 0.31 0.31 
5 0.23 0.31 0.04 0.31 0 0.07 

6 0.23 0.31 0.07 0.31 0.07 0 

Exhibit 21a. Example of hierarchical clustering tree 

UNITS 

η 1 3 5 6 4 2̂  

I ι 
ι 0.04 1

 1 1 

Ι-
Ο 
ζ 0.07 I 1 1 
ω 
κ 
*- 0.23 I ι 1 I 1 1 
in 

0.31 I 
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5 χ 5 DISTANCE MATRIX 

1 2 (3,5) 4 6 
1 0 0.31 0.23 0.31 0.23 
2 0.31 0 0.31 0.23 0.31 
(3,5) 0.23 0.31 0 0.31 0.07 
4 0.31 0.23 0.31 0 0.31 
6 0.23 0.31 0.07 0.31 0 

strength a 2 = 0.07. It is now clear that by repeating this process of constructing 
distance matrices and scanning them for a minimum value, for deciding on 
which clusters to merge and for determining the value for the strength of 
clustering, we can recover the entire hierarchical clustering shown in Exhibit 
21a. At any stage in this process, there may be a tie, that is, more than one 
interentity distance [e.g., the distance between cluster (3,5,6) and unit 1 and 
the distance between units 2 and 4 are both 0.23] may correspond to the 
smallest value in the distance matrix. This merely implies that parallel clusters 
are being formed at such a stage. 

The foregoing simple example provides a basis for the following summariz-
ation of the steps involved in going from a matrix of values of a metric 
satisfying the ultrametric inequality to a hierarchical clustering of η units in a 
nested sequence of (m + 1) clusterings, C0,CU...,Cm: 

1. Form C 0 of strength 0 by considering each unit as a cluster. 

2. Given a clustering C, with a corresponding matrix of interentity (where 
an entity may be a single unit or a cluster of units) distances that satisfy 
the ultrametric inequality, merge the pair of entities with the smallest 
nonzero distance, <xj+ u to create C ; + 1 with strength a J + i . 

3. Create a new distance matrix corresponding to CJ+1. 

4. Starting with j = 0, by repeated use of steps 2 and 3, generate C„ C 2 , . . . 
and Cm (the strong clustering). 

The assumption in step 3 is that the distance matrix corresponding to 
Cj+, can be constructed in an unambiguous manner. That this is a consequence 
of the distances satisfying the ultrametric inequality can be demonstrated. 
Suppose that χ and y are two entities in C} that become clustered together 
in Cj+l, so that d(x,y) = <x}+l, and suppose that ζ is any other entity in C,. 
Then the unambiguous construction of the distance matrix corresponding 
to Cj+l is possible because d(x, z) necessarily has to be equal to d{y,z) if 

Exhibit 21c. Distance matrix after forming first cluster in Exhibit 21a 
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d satisfies the ultrametric inequality. If d(x, ζ) Φ d(y, z), then suppose that 
d(x, z) > d(y, z). But, as a consequence of the ultrametric inequality, d{x, ζ) ^ 
ma\{d{x, y), d(y, z)}, so that the inequality in the preceding sentence would 
imply that d{y, z) < d(x, z) < d(x, y) = a , + , . But xJ+l is the smallest nonzero 
distance in clustering C}, and hence d(y, z) cannot be smaller than & J + l . Thus, 
assuming that d(x, ζ) φ d(y, z) leads to a contradiction, and therefore d(x, z) has 
to be equal to d(y, z). 

In practice, the observed measures of distance between pairs of units may 
be either subjective measures of dissimilarity (or similarity) or measures of 
distance computed from metric data representing the η units, perhaps as η 
points in a p-dimensional space. Such measures of distance may not, and 
need not, satisfy the ultrametric inequality, with the consequence that the 
distance between cluster (x, y) and entity ζ may not be definable unambigu-
ously since d(x, z) need not necessarily equal d{y, z) unless d satisfies the 
ultrametric inequality. Hence ways of denning d([x, y], z), given d(x, z) and 
d(y, z), need to be devised for most situations. Considering d([x, y], z) as a 
function, f{d{x, z), d(y, z)}, which is required to equal the common value of 
d(x, z) and d(y, z) whenever these are equal, leads to a fairly wide class of 
functions, /, including any weighted average, the geometric mean, etc. Moti-
vated partially by the considerations underlying multidimensional scaling (viz, 
a monotone relationship between distance and dissimilarity), Johnson (1967) 
proposes two specific choices of / which, while satisfying the above constraint, 
are also invariant under monotone transformations of the distances. The two 
choices are / = the min (or the smaller of) function and / = the max (or the 
larger of) function. The methods based on these two choices have been called, 
respectively, the minimum method and the maximum method by Johnson (1967). 
In the numerical taxonomy literature, Sneath (1957) has proposed a hierarchi-
cal method called the single linkage method, and Serensen (1948) a method 
called the complete linkage method. These two methods are, respectively, is the 
minimum and maximum methods suggested by Johnson (1967). At any rate 
the two methods of hierarchical clustering described by Johnson (1967) may 
now be summarized. 

The Minimum Method (See Johnson, 1967; also Sneath, 1957) 

1. Form C0, consisting of η clusters with one unit each, with corresponding 
strength ot0 = 0. 

2. Given C, with associated distance (or dissimilarity) matrix (where the 
observed values at stage C 0 , for example, may not satisfy the ultrametric 
inequality), merge the entities whose distance, a , + 1 (>0), is smallest to 
obtain Cj+1 of strength a.j+l. 

3. Create a matrix of distances for CJ+l, using the following rules: (a) if χ 
and y are entities clustered in Cj+i but not in C} [i.e, d(x,y) = a J + 1 ] , 
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then d([x, y], z) = min{d(x, z), d(y, z)}; (b) if χ and y are separate entities 
in Cj that remain unclustered in C , + 1 , then do not change d{x, y). 

4. Repeat the process until the strong clustering is obtained. 

The Maximum Method. (See Johnson, 1967; also Serensen, 1948). For this 
method, steps 1, 2, 3b, and 4 are the same as those in the minimum method. 
For step 3a, however, the following is substituted: if χ and y are entities 
clustered in Cj+, but not in Cj7 define d{[x, y], z) = ma.x{d(x, z), d(y, z)}. 

The two methods are directed toward different objectives and may not 
necessarily yield similar results when applied to the same body of data. The 
maximum method is concerned essentially with minimizing the maximum 
intracluster distance at each stage and hence tends to find compact clusters, 
sometimes forming several small clusters in parallel. The minimum method, on 
the other hand, tends to maximize the "connectedness" of a pair of units 
through the "intermediary" units in the same cluster (see Johnson, 1967, for a 
discussion of these interpretations), with a tendency to create fewer distinct 
clusters than the maximum method. When the initial data consist of p-
dimensional representations of the η units and the interpoint distances in the 
representation are used as the elements of a distance matrix, both methods may 
tend to be unduly sensitive to outliers. For this reason, defining d([x, y], z) in 
step 3a of the preceding descriptions as the average of d(x, z) and d(y, z) may 
be preferable. This method, which may be called the averaging method, does 
not, however, possess the property of invariance under monotone transform-
ations of the distances. A different but critical issue, in the case when the initial 
representation of the η units is metric, is the dependence of the clusters 
obtained on the type of distance function used for measuring interunit distance. 
The results of the clustering techniques described heretofore seem to be highly 
dependent on the specification of a metric for measuring interunit distance. 

Example 22. This example, taken from Johnson (1967), deals with data 
from Miller & Nicely (1955) pertaining to the confusability of 16 consonant 
sounds. The observed data were the values of the frequency, f(x, y), with which 
the consonant phoneme χ was heard as the consonant phoneme y by a group 
of human listeners. Different levels of both filtering and noise were involved in 
the experiment, and the frequency of confusions for each pair of consonant 
sounds was observed separately for each experimental condition. 

For purposes of hierarchical clustering of the 16 consonants under each 
experimental condition, Johnson (1967) defines the symmetric measure of 
similarity, s(x, y) = f(x, y)//(x, x) + f{y, x)lf{y, y), and considers it as an 
inverse measure of distance (i.e., the similarity increases as distance decreases, 
and, in particular, d =• 0 is taken to correspond to s = oo, which would be the 
strength of C 0 in terms of s). 
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Exhibit 22a. Hierarchical clustering obtained by minimum (or single linkage) method for data on 
confusability of 16 consonant sounds (Johnson, 1967) 
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Exhibits 22a and b show the solutions obtained by Johnson (1967) by using 
the minimum and maximum methods, respectively. The two clustering sol-
utions in this example are generally similar, although there are differences both 
in the numerical values of the strengths of the clusterings and in the stage of 
clustering when specific clusters are formed. For instance, two of the so-called 
unvoiced stop consonants, ρ and t, join the third one, k, earlier in the 
maximum than in the minimum method. Also, in respect to the unvoiced 
fricatives, f, Θ, s, J, f joins (Θ, s, J) earlier in the minimum than in the maximum 
method. 

The similarity between the two solutions also extends to the order in which 
the consonant phonemes or groups of them come together, with the exception 
of the manner in which the last three groups merge. In the maximum method, 
the voiced consonant phonemes (both the voiced stops, b, d, g, and the voiced 
fricatives, v, 8, z, g) merge with the nasals, m, n, and their combination then 
merges with the unvoiced consonant phonemes (the unvoiced stops, p, t, k, and 
the unvoiced fricatives, f, Θ, s, [). With the minimum method, the voiced and 
the unvoiced consonants merge before their combined group joins the nasals. 

In this example the manner of the hierarchical grouping of the consonants 
makes sense in terms of what is known about the discrimination of consonant 
phonemes. First, the stops and the fricatives in both the unvoiced and the 
voiced categories come together in four separate groups, whereas the nasals 
combine by themselves to form a fifth group. Then the unvoiced and voiced 
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Exhibit 224. Hierarchical clustering obtained by maximum (or complete linkage) method for data 
on confusability of 16 consonant sounds (Johnson, 1967) 
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consonants coalesce into two separate goups, while the nasals constitute the 
third group. 

The close similarity between the solutions obtained by the two methods in 
this example is, although comforting, not necessarily to be expected in all 
applications, as illustrated by the next example. 

Example 23. As a part of the corporation-grouping study (see Examples 17 
and 18), clustering procedures were employed to investigate the structure 
among specific groups of companies as indicated by the observations on the 
14 variables involved. Thus, for the year 1967, hierarchical cluster analyses 
were performed for 18 of the domestic oil companies, and Exhibits 23a-c show, 
respectively, the results obtained by the minimum, average, and maximum 
methods. [Note: The type of representation used in these figures is different 
from the one in Exhibits 22a and b. Instead of a listing of all the objects at the 
top, with lines emanating downward from them being joined together by 
horizontal lines at the different clustering levels, the representation in Exhibits 
23a-c shows the companies by their names as the clusters are formed. Thus, 
in Exhibit 23a, the first cluster to form at a clustering strength of about 3.4 
consists of two oil companies, Continental and Shell, which are next joined by 
Ashland, then merged with a cluster consisting of Marathon and Union Oil, 
and so on. The scale on the left depicting the values of the strength of clustering 
is the same for all three figures.] 

A striking feature of Exhibits 23a-c is that, in this example, the minimum 
method exhibits its characteristic tendency of stringing out the clusters, 
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Exhibit 23a. Hierarchical cluster of 18 domestic oil companies obtained by minimum method 

OILS 1967 MINIMUM METHOD 

3.4 

3 6 

3.8 

4 0 

4 2 

4 4 

4.6 

4 8 r-

50 h 

5 2 

/6ONTINENTAL\ 

V S H E L L J 

c ASHLAND 

p i t i e s S E R V / 

(M A R A T H O N ^ 
UNION OIL J 

A T L A N T I C 
R ICHFIELD , 

SKELLY 

MURPHY 

PHILLIPS 

Q U A K E R S T ^ 

SUN OIL 

S T A N D A R D 
OHIO ^ IMPERIAL^ 

( SIGNAL \ GETTY "\ KERR Λ 
V / J MC GEE J 

(STANDARD Λ 
( I N D ) ) 

bringing the companies in one at a time, whereas the maximum method 
appears to form several compact clusters (see the four branches in Exhibit 23c), 
which come together quite late in the hierarchical clustering, and the average 
method is intermediary between the minimum and maximum methods. Except 
for this feature, however, the general indications of the clustering from the three 
methods are not markedly different in terms of which companies appear to be 
together and of the strength of clustering at which a particular company is 
brought into an existent cluster. 
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Exhibit 23*. Hierarchical cluster of 18 domestic oil companies obtained by averaging method 
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Exhibit 23c. Hierarchical cluster of 18 domestic oil companies obtained by maximum method 
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4.3.2b. Nonhierarchical Clustering Procedures 
For this class of procedures, the starting point is the ρ χ η data matrix Y. The 
best known of the nonhierarchical methods is the so-called ft-means method. 
MacQueen (1965) contains an early description of the method but different 
versions have since appeared as implementations. The steps involved in a 
generic description of the λ-means algorithm are: 

(i) Determine an initial set of k clusters. 

(ii) Move each observation to the cluster whose centroid/mean is closest in 
distance. 

(iii) Recalculate the cluster centroids/means and repeat step (ii) until no 
observation is reassigned to a new cluster. 

Choices of more than one type of metric for use in step (ii), and of a range 
of values for k, constitute two sources of variation in implementing the 
technique. Standard implementations of fc-means are based on the Euclidean 
metric. In this case, it may be prudent to sphericize the data initially, using the 
Cholesky decomposition of a W ,̂, matrix computed by the method described 
in Section 4.3.1, before carrying out fc-means clustering. 

Different ways of choosing the initial clusters also result in different versions. 
Suggestions for the initial choice of clusters range from a random partitioning 
into k nonempty clusters to a variety of things based on statistics computed 
from the data. The hope is that the final results will not depend critically on 
the choice of initial clusters. 

A different nonhierarchical clustering method called ISODATA (Iterative 
Self Organizing Data Analysis Technique A) was proposed by Ball & Hall 
(1965). The input to the procedure consists of the η p-dimensional observations, 
y,, i = 1,2,..., n, on the η units to be clustered. The method also requires an 
initial specification of the number, k (<n), of clusters desired and a set of 
so-called cluster points in p-dimensions, x , , x 2 , . . . , \ k . 

The first stage of the process is referred to as sorting and consists of 
assigning each of the η units to one of the k clusters, C t , C2 Ck, by using 
the criterion of closeness (as measured by Euclidean distance) of the observa-
tion on the unit to the cluster point. Thus the ith unit is assigned to cluster C, if 

( y , - X i ) ' ( y , - X ( ) = mm (y, - x.)'(y, - x.). 
o = l k 

If cluster Cr consists of nr, units with corresponding observations denoted, y„ 
(r = 1, . . . , k; s = 1, . . . , nr; Σ nr = n), then in the sorting stage all clusters with 
no units assigned to them are discarded, and for the / (<fc) remaining clusters 
the initially specified cluster points are replaced by the mean vectors, yr 

(centroids), of the observations within each of the clusters. Thus the accom-
plishment of the sorting phase of ISODATA is to form preliminary clusters and 



122 MULTIDIMENSIONAL CLASSIFICATION AND CLUSTERING 

to utilize them to define more appropriate cluster points or typical values of 
the clusters. 

At the next stage additional cluster statistics are computed. Specifically, the 
following statistics are calculated: (i) for each cluster Cr, the average distance 
of points from the cluster centroid, that is, 

1 "r 

dt = - Σ y J . 
nr j = l 

where d(\, z) denotes a defined measure of distance between the points χ and 
z; (ii) for each cluster C,, the ρ χ ρ covariance matrix, 

1 
sr = - — τ Σ (y« - yr)(yrS - y,)'; 

"r ~ 1 Λ = 1 

and (iii) the average intracluster distance across all clusters, that is, 

- 1 ' 
d = ~ Σ Μ,· 

η ρ = ι 

The statistics computed under (i) and (iii) are of descriptive value in that they 
provide measures of "tightness" of the clusters. The covariance matrix, Sr, is 
used for basing decisions pertaining to the formation of new clusters at the next 
stage. 

The third stage of the ISODATA scheme is the formation of new clusters 
by splitting apart, or lumping together, existent clusters. Roughly speaking, if 
one has too few clusters, splitting will be desirable, if there are too many 
clusters, lumping will be more appropriate. The splitting or lumping is actually 
accomplished by comparing certain cluster properties against user-specified 
values (benchmarks) of two parameters, fJs and 6L, called, respectively, the 
splitting and lumping parameters. Specifically, (a) if the maximum coordinate 
variance in a cluster C, exceeds the specified value of 9S, that is, if the largest 
diagonal element of S, > 9S, then C, is split along that coordinate into two new 
clusters; or (b) if the variance of the first principal component within a cluster 
C, exceeds the specified 6S, that is, if the largest eigenvalue of S, > 6S, then C, 
is split along the direction of the first principal component into two new 
clusters. The user has a choice between the two methods of splitting. The 
decision to lump two clusters, Cr and C,, is based on comparing the distance 
between the two cluster points, y, and y3, with the specified value of the 
lumping parameter, 6L. If the distance, d(yr, ys), is smaller than the value of 6L, 
Cr and C, are combined into a single cluster whose centroid is then computed 
and used as the cluster point of the merged cluster. 

The remaining step of the ISODATA process is to iterate the three 
above-mentioned stages. In the early iterations the method tends to alternate 
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Fig. 8. Flowchart of steps in ISODATA algorithm. 

between splitting and lumping, but in the later iterations a comparison of the 
number of clusters found at the end of a given iteration with the initially 
desired number, k, of clusters also influences the decision to split or lump 
clusters in the next iteration. The number of iterations is also a specification 
under the user's control. In fact, the process will terminate at the end of the 
specified number of iterations, and the number of clusters found may not be 
exactly k, the initially desired number. Figure 8 shows a summary flowchart of 
the steps involved in one computer implementation of the ISODATA pro-
cedure (see Warner, 1968). 

Although ISODATA is nonhierarchical in that it allows splitting (in 
addition to lumping) of existent clusters to form new ones, because it starts off 
with all units in a single cluster and then alternates between splitting and 
lumping there is a tendency in the process to impose a loose tree (hierarchical) 
structure on the clusters. 

The algorithm requires the user to specify several things (the number of 
clusters desired, the number of iterations, the initial values of cluster points, 
and the values of 0 S and and, in the present state of the art, such 
specifications tend to be arrived at by a trial and error process. Little is known 
regarding the statistical-inferential aspects of cluster analysis techniques, and 
no general guidance or simple data-dependent method is available for choosing 
particular values of the quantities that need to be specified. All that one can 
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say is that the number of clusters desired may not be a critical specification in 
that it is not guaranteed anyway and that ISODATA appears to be reasonably 
robust to the initial choice of cluster points provided that the number of 
iterations specified is not inadequate. This robustness implies that, if the user 
does not wish to specify the initial cluster points, the use of default values will 
probably not excessively distort the final results. 

Since the splitting methods in ISODATA are based on variances (either of 
original variables or of the first principal component), and since the Euclidean 
metric is employed as the basis for measuring closeness, the results are scale 
dependent in that different scalings of the initial variables can in general lead 
to different clusterings of the objects. The nonhierarchical clustering method 
proposed by Friedman & Rubin (1967) uses eigenvalues and eigenvectors of a 
W _ , B type of matrix (W would be the pooled within-clusters covariance 
matrix, and Β the between-clusters covariance matrix for a given set of clusters) 
for basing the decisions regarding splitting and lumping. Although computa-
tionally more involved and expensive, this method does, of course, have the 
property that a solution obtained by its use will be invariant under all affine 
transformations of the original set of variables, including simple scaling of each 
of them separately. 

ISODATA is similar in spirit to the fc-means method, one main difference 
being in the cluster splitting and the other being that the number of clusters 
initially specified may not be the number of final chapters. Whereas ISODATA 
bases splitting on intracluster dispersion characteristics, in the /c-means method 
the creation of new clusters depends on the distance of the proposed new 
cluster centroid from the nearest existent cluster centroid exceeding some 
prespecified value of a splitting parameter. MacQueen (1965) has established 
some asymptotic properties of the fc-means method, and, in view of the 
similarities between the methods, it would be interesting to ask whether these 
properties carry over to ISODATA. 

43.3. Outputs 

The typical output of a hierarchical clustering algorithm is a tree which can be 
cut at different levels to produce clusters. With a nonhierarchical method, the 
output often is a list of clusters and their members. From a data analysis 
viewpoint, what is needed is help in understanding and interpreting the clusters 
that have emerged. When there is strong clustering present in the data, perhaps 
they will stand out and be recognizable virtually independent of the method of 
clustering used or the details. However, this is often not the case in practice 
and statistical aids are needed for assessing various aspects of the results of a 
cluster analysis. Despite the lack of attention to the development of such tools, 
there are a few available and these will be discussed in the present section. 

The facets of the results of a cluster analysis which one would like some help 
in understanding include: (i) separations among the clusters; (ii) the relative 
tightnesses of the different clusters; (iii) the orientations or shapes of the 
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clusters; and (iv) the relative stabilities of the clusters that have been found, 
that is, which clusters if any are "strong" or "real" enough to be believable. By 
formulating the last of these as a test of significance problem, based on certain 
assumed distributional or probabilistic models, some authors have proposed 
formal tests. (See, for example, Baker & Hubert, 1975; Hubert, 1974; Ling, 
1973.) These procedures have limitations, aside from the models assumed, in 
terms of the numbers of clusters and observations that can be handled, and of 
the distribution of the observations across clusters that can be accommodated. 
In the remainder of this section, a number of informal data-analytic aids, many 
reliant on graphical displays, are described and illustrated for purposes of 
understanding and interpreting the outputs of clustering algorithms. 

A simple starting point for understanding the clusters determined by any 
algorithm is to see what characteristics, as measured by the different variables, 
are shared by members of the same cluster and how the clusters differ from 
each other. A profile plot of the deviations of the cluster means (or medians) 
from the overall mean (or median) of each variable is useful for this. Also, 
scatter plots of the observations, identified by their cluster membership, for all 
pairs of variables can be helpful. 

Example 24. Fowlkes et al. (1988) illustrate the use of such plots. The data 
involved microwave attenuation measurements at η = 51 locations in the U.S., 
as well as measurements on seven environmental variables that were thought 
to be important influencers of the attenuation. Fitting a global model to all of 
the data rather than to subsets consisting of meaningfully comparable entities 
can be misleading. To avoid this in the present example, it was decided to do 
a preliminary clustering of the 51 locations in terms of the environmental 
variables to be followed up with modeling (e.g., via regression) of the relation-
ship between attenuation and the explanatory variables within each cluster. 
For the specific data, Fowlkes et al. (1988) identified four of the environmental 
variables as being particularly important for clustering the 51 locations which 
were clustered into three groups. 

Exhibit 24a shows a profile plot of the deviations of the means of the three 
clusters from the overall mean for each of the four variables, humidity 
(mg/cubic meter), terrain (measure of roughness in meters), temperature 
(average annual temperature in degrees Fahrenheit), and average annual 
number of days with thunderstorms. Since the variables are on very different 
units of measurement, the deviations for the profile plot are all standardized. 
From Exhibit 24a one would infer that Cluster # 3 has the roughest terrain, 
the lowest annual temperature and the lowest humidity. Geographically, this 
made sense since the sites belonging to Cluster # 3 belonged to Pennsylvania, 
New York, Wyoming, and New Mexico. Cluster #2 , which consisted of sites 
in Florida and other southeastern states, shows up in the profile plot as one 
with the highest humidity, highest temperature and flat terrain. 

Exhibit 24b is a scatter plot of the 51 locations, labeled by their cluster 
identity, in the space of two of the four variables, namely, terrain and 
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Exhibit 24a. Profile plot showing separation of clusters on individual standardized variables 
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temperature. The quantized nature of the terrain measurement is evident, but 
also the separations among the clusters as well as the relative tightness of the 
three clusters can be seen in this scatter plot, at least in terms of two of the 
variables. 

Getting a feel for the separations among clusters and the relative tightnesses 
of the different clusters in the space of all the variables used for the cluster 
analysis, if possible, is a common need in most applications of cluster analysis. 
With metric data, looking at distances among objects belonging to the same 
cluster and those among objects in different clusters can be useful for this 
purpose. The schematic displays in the four panels of Figure 9, taken from 
Gnanadesikan et al. (1977), show examples of plots of distances that can be 
helpful. For purposes of these displays it is assumed that a cluster analysis of 
metric data with η = 5 and ρ = 2 has yielded three clusters, labeled A, B, and 
C, with two objects in each of A and B, and the remaining single item 
belonging to C. Panel (a) of Figure 9 shows a plot of the squared distances of 
every object from each cluster centroid. In this artificial case, the three clusters 
appear to be well separated from each other with cluster A being particularly 
isolated and relatively tight. Panel (b) of Figure 9 is a different way of plotting 
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the same squared distances with the focus now being on objects and the 
strength of their classification into clusters. This plot shows how far away each 
cluster centroid is from each object. 

Panels (c) and (d) of Figure 9 are plots of distances for help in judging the 
relative importance of each of the initial variables in determining the clusters. 
In these pictures, the ordinate is the ratio of the squared distance between 
object and cluster centroid to the number of variables used in computing the 
distance. Dividing by the number of variables used for the distance computa-
tion is a crude normalization that enabes comparisons across columns. The 
first column of panel (c) is exactly the same as the first column of panel (a) 
since no variables have been deleted. The remaining columns of panel (c) show 
the normalized squared distances of the five objects from the same cluster A 
after deleting each of the two variables in turn. The configuration indicates that 
variable # 2 is important since its deletion decreases the separation of cluster 
A from the others. Panel (d), focused on the distances of the cluster centroids 
to object Al, is a detailed look at the relative importance of the variables in 
studying a specific column of panel (b) in the same way that panel (c) elucidates 
the same issue with respect to a specific column of panel (a). 

Example 25. The example is from Gnanadesikan et al. (1977) and concerns 
the comparison of 48 subsidiaries of a single parent company. The subsidiaries 
operate in different environments and seven variables were defined to capture 
these environmental differences. Thus, in this example, η = 48 and ρ = 7. The 
48 subsidiaries were clustered using the seven variables so that comparisons of 
subsidiaries with respect to their business performance could be made within 
clusters, that is, within similar operating environments. Exhibit 25 is a plot for 
this data similar to the schematic display in panel (c) of Figure 9 and it focuses 
on the effects of each of the seven variables on the formation of cluster A. The 
first column, labeled zero, shows the normalized squared distances of members 
of cluster A to the centroid of cluster A and also the distances of the other 
entities to the same centroid. The latter are shifted slightly to the right in the 
display to make them distinct from the A's. [Note: The numbers which identify 
the objects within clusters have not been shown as subscripts to avoid 
complicating the visual appearance.) The columns labeled 1-7 display the 
normalized squared distances obtained by deleting each of the seven variables 
one at a time. Since the gap between the A's and the other letters largely 
disappears when variable # 1 or variable # 6 is deleted, these two variables 
would seem to be providing cluster A with much of its distinctive character. In 
the context of this example, this made sense since cluster A was composed of 
subsidiaries in urban-industrial areas and variable # 1 turned out to be a 
measure of urbanization while variable # 6 was an indicator of industrial-
ization. 

While the simple method of plotting certain distances illustrated above can 
be useful for identifying individual variables that account for the clustering of 
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the objects, its use for such things as looking at a large number of subsets of 
variables for picking out groups of variables that account for the clusters is 
clearly more complicated. The problem of variable selection for cluster analysis 
is an important one in its own right. A closely related problem is the one of 
weighting variables, for example in measuring inter-object distance, so as to 
reflect their differential importance for the clustering that might be present in 
the data. Modest beginnings for developing aids for variable selection and 
weighting have been made but a lot more needs to be done (see, for example, 
Fowlkes et al., 1987, 1988; Gnanadesikan et al., 1993; Gnanadesikan et al., 
1995; and references therein). 

Despite the fact that the groups are not prespecifiable in a cluster analysis 
situation, once they have been determined by an algorithm, one can use the 
clusters as ipso facto groups and use techniques from the known groups 
situation for informally studying such things as degree of separation among the 

Exhibit 25. Plot of type in Fig. 9c to assess the effects of variables on cluster separations 
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clusters, their relative tightnesses and shapes. For instance, one can obtain the 
CRIMCOORDS (see Section 4.2) using the clusters as known groups and then 
display the objects in the space of the first two CRIMCOORDS. This and 
other projection plots for help in interpreting separations, tightness and shapes 
are discussed and illustrated by Gnanadesikan et al. (1982). 

Another idea borrowed from the situation where the groups are prespecified 
is the one of using a "(-statistic" for informal guidance in assessing the 
separation between pairs of clusters, as suggested by Gnanadesikan et al. 
(1977). The following example illustrates what is involved. 

Example 26. Kettenring et al. (1976) described a cluster analysis of η = 452 
workers in terms of ρ = 24 variables (which themselves were composites of 
several directly measured variables) that pertain to the perceived needs for 
training to perform a certain complex job. One objective of the cluster analysis 
here was to group the workers into people with similar training needs. In 
addition to the 24 variables which formed the basis for a hierarchical clustering 
of the 452 workers, there were some exogenous variables, such as age, 
experience and educational level, of interest in the data. 

In examining the hierarchical tree from the analysis, at some step of the tree 
formation wherein two branches (clusters) are being merged, one can compute 
a ί-statistic for each of several variables to measure the separation between the 
branches with respect to the variables. The variables can be either ones on 
which the clustering is based or ones that are extraneous to the clustering 
algorithm but nevertheless useful for interpreting the clusters. To enable 
comparisons of branches across different levels of the tree, which might involve 
looking at ί-statistics with possibly different "degrees of freedom," the p-value 
(i.e, the probability of exceeding the observed absolute value of the statistic) 
associated with the (-value can be computed and, as a further transformation, 
converted to logarithms. Large value of |log(p)| would suggest that the two 
branches (clusters) in question be considered as separate clusters rather than 
be merged into a single cluster. Variants of the ί-statistic to accommodate 
differing variances in the clusters and extensions, including non-parametric and 
multivariate versions of statistics for measuring separations between locations 
of two groups, can also be tried. The use of the procedure based on the 
(-statistic (or any modification or extension) as a formal test of significance is, 
of course, questionable. Among other reasons for this, one that is important to 
keep in mind is that the two groups being compared are data-determined and 
not "independent random samples." An internal comparison of the relative 
magnitudes of the |log(p)|-values can, however, be helpful in identifying 
worthwhile separations and in interpreting the differences among clusters. 
Bearing this in mind, the idea was applied to the training needs example and 
Exhibit 26 shows a table of values of |log(p)| for a few of the variables to enable 
a comparison of two specific clusters that merged at the last step of the tree 
formation. A comparison of the values indicates that the two clusters are far 
less different on the first variable than on the others used as the basis for 
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Exhibit 26. Statistics measuring cluster separation 

VARIABLE \LOGl0(p)\ 

1 0.8 
2 6.9 
3 7.0 

22 6̂ 8 
23 7.0 
24 6.8 

AGE 0.5 
EXPERIENCE 0.6 
EDUCATION 2.1 

clustering. Also, among the exogenous variables, the two clusters are far more 
different with respect to the educational levels of the workers belonging to them 
than with respect to their ages or experience. 

If a hierarchical clustering algorithm has been used to generate clusters, a 
natural thing to do in identifying strong clusters is to look for well-defined 
branches in the tree. In terms of the output, one is thus tempted to look at the 
strengths associated with the steps at which clusters are formed and, more 
specifically, to look at the spacings between strengths, with large spacings in 
the early stages of the tree corresponding to strong clusters. Despite the 
obvious appeal of studying strengths and their spacings, the task is fairly 
difficult. One reason for this is that the configuration of strengths, as pointed 
out in the discussion at the end of Section 4.3.2a, depends on the particular 
method of clustering. Another reason is that there is no satisfactory statistical 
model of the "null" (i.e., case of no clusters) behavior of strengths against which 
one can study departures for assessing the strengths observed in clustering real 
data. Tests of significance and other approaches that are based on tightly 
specified distributional models for the null case, for instance, may not be 
appropriate for many real-life situations. 

An informal graphical procedure, with a "nonparametric" flavor in that it 
avoids specifying a particular distribution as the null model for data, was 
proposed by Cohen et al. (1977). It too, however, involves a model that is less 
realistic in one of its aspects than one would like. The method is reasonably 
simple and seems informative enough in practice to warrant its use especially 
as an informal aid. The steps involved in it are described next. 

First, the η observed values of each of the ρ variables are replaced by their 
ranks within that variable, thus changing the original data matrix to a new 
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ρ χ η matrix each of whose rows contain integers from 1 to n. The transform-
ation to ranks enables the use of a nonparametric approach. With no cluster 
structure in the data, and if the ρ variables are independent (this being the 
unrealistic assumption involved in the method), every permutation of the 
integers 1,2,..., η in a row is equally likely, and the rows are independent. This 
is the null model. Under non-null conditions, such as the existence of clusters, 
all permutations would not be equally likely. Therefore, for assessing the 
presence of real clusters in the data, the clusters from ranked data can be 
compared to clusters obtained from simulations of the null model. Specifically, 
Cohen et al. (1977) suggest an informal use of box plots in conjunction with 
such simulations, and the next example illustrates their proposal. 

Example 27. The portfolios data used in Example 20 constituted the 
starting point. The quarterly rates of return of each of the 52 investment 
portfolios were replaced by their ranks within each of the 11 quarters and the 
Manhattan metric was used to measure the distance between every pair of 
portfolios in terms of these ranks. Employing the interportfolio distances, a 
hierarchical clustering of the portfolios was carried out resulting in 51 
strengths. Then 250 randomly permuted data ranks matrices were generated 
and each such matrix was used with the Manhattan metric again to obtain the 
input to the same clustering algorithm, leading to 51 new strengths each time. 

Exhibit 27a. Comparison of strengths from clustering 52 portfolios against null distributions 
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Exhibit 276. Comparison of strengths of clustering 37 portfolios against null distributions 

Exhibit 27a shows the box plots for displaying the distributions of the 250 
values of each of the 51 strengths, there being 51 box plots in all. The boxes 
are placed along the x-axis so that their medians fall along the 45° line. 
Superimposed on the box plots are the strengths derived from the clustering of 
the actual data ranks matrix for the portfolios. These strengths, except for a 
few of the top end ones, are seen to be consistently lower than the "null 
regions" spanned by the box plots, thus suggesting smaller distances between 
certain portfolios than would be expected by chance. 

Recalling the discussion in Example 20 for using the nearest-neighbors 
distances plot with the same data, there was evidence for a cluster of nine 
portfolios and four "outliers." Removing these portfolios (plus two additional 
possible "outliers" revealed by other analyses), and then repeating the above 
steps on the remaining 37 portfolios led to Exhibit 27fc. The fact that the 36 
strengths from the hierarchical clustering of the actual data now lie within the 
ranges of the box plots summarizing the distributions of the strengths from 
simulations of the null model suggests that these portfolios look more like a 
random sample from the null, "no cluster" situation. 

Ideas based on permuting the similarities that constitute the input to a 
hierarchical clustering algorithm, rather than the above idea of permuting the 
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ranks of the initial data values for each variable, for assessing the "significance" 
of clusters in a real data set have also been considered by several authors. (See, 
for example, Ling, 1973; Hubert, 1974; Baker & Hubert, 1975.) 

A slightly different conceptualization of the problem of assessing the 
believability of clusters in a real data set is to cast it in terms of evaluating the 
relative stability of the clusters. Gnanadesikan et al. (1977), for instance, 
suggest "shaking the tree" by adding "noise" to the data, then clustering the 
resultant data, and finally comparing the trees for the original data and the 
perturbed data to determine which clusters, if any, remain unaltered. If the 
initial data are y y 2 , . . . , yB, then the proposal is to perturb the data by adding 
randomly generated values, e i , e 2 , . . . , e B , to the initial data to obtain 
z( = y, + e(, i = 1 , . . . , n. Two possible choices for the distribution of the e's are: 
(i) a multivariate uniform (perhaps defined over the hypercube [ — c, + c] for 
specified c that can be varied for controlling the scale of the "noise"); and (ii) 
a multivariate normal (say with mean 0 and covariance matrix, cV, where V 
could be chosen to be the covariance matrix of the initial data, and c is a 
specified constant which can be varied to reflect differing degrees of "noise"). 
[Note: When c is "small enough" presumably the data will only be perturbed 
slightly but as c increases the "noise" will become more dominant. In practice, 
what one would be interested in is to identify which clusters remain intact when 
c is neither too small to change any of the clusters nor so large that all the 
clusters fall apart.] For any specific value of c in either of the choices above 
for the distribution of the e's, what one would have are two trees that result 
from a hierarchical cluster analysis, one for the initial data and the other for 
the perturbed data. Comparing the two trees, to see how similar the clusters 
derived from them are, is a tedious if not impossible task. What is needed is a 
systematic scheme for comparing the two trees in terms of the contents of the 
clusters obtained by cutting the two trees at different levels to produce the same 
number of clusters from each tree. 

A graphical method proposed by Fowlkes & Mallows (1983) is one tool for 
this purpose. The steps involved are the following: 

1. Given two hierarchical trees, cut each of them to produce k clusters. 

2. Form the k χ k matrix, M, whose (i, f)th element, miJt is the number of 
objects common to the ith cluster from the first tree and the y'th cluster 
from the second tree; if the two sets of k clusters from the two trees are 
similar one would expect the diagonal elements (after suitably permuting 
columns in each row if necessary) of Μ to be large while the off-diagonal 
elements are close to zero. 

3. Calculate a statistic, Bk, from the elements of Μ for measuring the 
similarity of the contents of the two sets of k clusters. 

4. Repeat steps 1-3 for k = 2 , . . . ,(n — 1), where η is the total number of 
objects clustered. 
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5. Calculate the expected value, £{Bk), and the standard deviation, S(Bk), of 
Bk under assumptions that capture the null case that the two sets of 
clusters are totally unrelated to each other. 

6. Plot the observed values of Bk vs. k, with superimposed connected curves 
showing values of 6{Bk) and 6(Bk) ± 2S(Bk); values of Bk that are large 
and clearly outside the bands indicated by the superimposed curves 
suggest great similarity of the two sets of clusters while values lying 
within the bands indicate lack of such similarity. 

The statistic needed in step 3, as proposed by Fowlkes & Mallows (1983) is, 

Bk = Vjp~Qk, 

where 

Τ * = Σ Σ m f j - n , P k = Σ m j . - n , Q k = £ m 2 j - n , 

1=1j=l i = l j " l 
k k 

mt. = Σ m i ) a n d m j = Σ m u -

j=l i = l 

Bk lies between 0 and 1, taking on the value 0 if the two sets of clusters are 
completely different and the value 1 if they are the same. The statistic has the 
desirable property that it is invariant to the numbering of the clusters drawn 
from each tree. 

The null model involved in step 5 is described by the two assumptions that 
the marginal totals, m,. and m . } , are fixed for all ι andj, and that subject to this 
the m,v-values are random allocations across M. Under such assumptions, 

S{Bk) = JP&Mn - 1), 

and 

s\Bk) = 2 /φ - ι) + 4ρ;ρ;/φ - ιχ« - 2)pkQk 

H(Pk - 2 - WjPMlk - 2 - 4ρ;/β.)]/φ - ΐχη - 2Xn - 3) 

- PkQJn\n - l)2, 

where 

η = Σ m<(m<- - ιχ«ι· - 2 ) . Q'k = Σ mAm)- Wm-j- 2)· 
( = 1 j=\ 

The technique of plotting Bk vs. k can be used in many contexts besides the 
one of studying the stability of clusters. Whenever one wishes to compare two 
hierarchical trees in their entirety with an eye to determining the degree of 
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similarity of the clusters that results from cutting the two trees, this display 
might be helpful. Thus, comparing the effects of using two different metrics or 
measures of similarity, or of using two different hierarchical clustering algo-
rithms, for the same data set are situations in which such a display can be used. 
Fowlkes & Mallows (1983) discuss the application of the method to a number 
of simulated and real data sets. 

Exhibit 28a. Hierarchical tree for data simulating 4 clusters 

Exhibit 28A. Hierarchical tree for data of Exhibit 28a perturbed by adding random noise 

1 
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Example 28. In this example, the use of the {k, Bk) plot for comparing a tree 
with a "shaken" tree obtained by perturbing the data is illustrated. The 
computer-generated data for the example simulated a random sample of 100 
observations from a mixture of four spherical (i.e., with the identity matrix as 
the covariance matrix) multinomial distributions with different means. Thus, 
one would expect that there are four underlying clusters. 

Exhibit 28a shows the tree resulting from the maximum method with 
Euclidean distances between pairs of points as input. The individual items are 
labeled at the bottom of the tree by their known cluster identification, and if 
the tree were cut to produce four clusters, the picture shows that a perfect 
recovery of all four clusters would result. The initial data were then perturbed 
by adding "noise" which consisted of a random sample from the multinormal 
distribution N[0,0.04 χ I], and the shaken tree that results from using these 
data is shown in Exhibit 28b. The items are again labeled by their known 
cluster identifications and it can be seen that if one were to cut this tree to 
produce four clusters, the original clusters are not recovered perfectly. Items 
originally in cluster # s 1 and 2, for example, are now mixed. However, it is 
difficult to get a feel for the similarity of the two trees and appreciate which set 
of clusters (produced by cutting the tree at different heights) are alike and 
which are not. 
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Exhibit 28c shows the (k, plot for the two trees. The configuration of the 
values of Bk relative to the "null" bands shows that the clusterings determined 
by the two trees are quite similar for small values of k and, in particular, for 
k = 4. Only at the lowest levels of the tree that correspond to large values of 
k (say, k > 80) are the two sets of clusterings very different. In this artificial 
data example, the small degree of perturbation has resulted in leaving most of 
the tree unchanged. Clearly, with larger amounts of noise added to the data, 
the clusters corresponding to smaller values of k will start to look less and less 
similar. 
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C H A P T E R 5 

Assessment of Specific Aspects 
of Multivariate Statistical Models 

5.1. GENERAL 

The major portion of formal multivariate statistical theory has been directed 
toward the assessment of specific aspects of an assumed (and often unverified) 
mathematicostatistical model; that is, one assumes a model and then is 
concerned with formal statistical inferences about particular aspects of it. 
Examples include theories and methods of estimating multivariate parameters, 
and tests of hypotheses concerning location and/or dispersion parameters 
under either a multivariate normal or a more general model. 

The assessment of statistical models is a legitimate and important concern 
of data analysis. Typically, however, the multivariate procedures for assessment 
have been developed by mathematical analogy with corresponding univariate 
methods, and often it is not clear that the complex aspects of the multivariate 
problem are incorporated in such an analogy or are better appreciated or 
otherwise benefit from it. For instance, more varied departures from a null 
hypothesis are possible in a multivariate situation than in the "analogous" 
univariate problem, and having a test per se of the null hypothesis against a 
completely general alternative is not of much value for multiresponse data 
analysis. 

The standard results, pertaining to assessments of tightly posed questions in 
the framework of statistical models, are well organized and easily accessible in 
the multivariate literature (see, for example, Anderson, 1984; Puri & Sen, 1971; 
Rao, 1965; Roy, 1957). Therefore the present chapter provides no more than a 
cursory review of some of the standard "classical" results, whereas it concen-
trates on some later developments and covers them in greater detail (see 
Sections 5.2.3, 5.3, and 5.4). 

5.2. ESTIMATION AND TESTS OF HYPOTHESES 

The classical multivariate theory has been based largely on a multivariate 
normal distributional assumption. One consequence of this has been the 

139 

Methods for Statistical Data Analysis of Multivariate Observations, Second Edition 
by R. Gnanadesikan 

Copyright © 1997 Bell Communications Research Inc. 



140 MULTIVARIATE STATISTICAL MODELS 

concentration of almost all of the work on just location and dispersion 
parameters, with relatively little attention paid to questions of shape and other 
high-order characteristics. 

5.2.1. Location and Regression Parameters 

The so-called multivariate general linear model, mentioned toward the end of 
Chapter 3, has been the focus of much of the developments. Specifically, the 
model, which was defined earlier in Eqs. 49 and 50, is a simultaneous statement 
of ρ univariate general linear models: 

Υ ^ Χ Θ , + ε,. for; = Ι , . , . , ρ , (61) 

where Y, is the vector of η observations on the jth response, X is the η χ k 
matrix of known values of design and/or regressor variables, is a k χ 1 
vector of unknown parameters (treatment effects or regression coefficients) 
associated with the v'th response, and tj is a vector of π random errors 
associated with the observations on the ; th response. The multivariate nature 
of the formulation is introduced by assuming that the ρ corresponding elements 
of the vectors ε , , ε ^ . . . , ε , are not necessarily statistically independent. The 
usual assumptions, in fact, are that each of the η sets of ρ elements has a mean 
(expected) value 0 and a common ρ χ ρ covariance matrix Σ, which is 
generally unknown and has to be estimated. 

This general statement of the model subsumes both the multivariate 
multiple regression case and the more standard multivariate designed experi-
ment situation, although it does not include any of the nonstandard multivari-
ate experimental designs. The term "standard" is used to denote the case in 
which the design does not vary for the different responses; that is, one of the 
familiar univariate designs is used, but on each experimental unit ρ responses 
are observed simultaneously. In the multivariate multiple regression case it is 
generally assumed that the matrix X is of "full" rank k (<n), whereas in the 
usual experimental design situations X will be a design matrix of rank r 
(<k<n). In the latter case, however, one can reparametrize the problem in 
terms of a set of r parameters that are linear functions of the 0's and rewrite 
the general linear model in terms of the derived parameters and a new η χ r 
design matrix of "full" rank r (see, for example, Scheffe, 1959, pp. 15-16). 
Hence, for present purposes, it is assumed that the matrix X is of full rank k 
so that X'X, in particular, will be a nonsingular matrix. 

A useful device in the formal treatment of the estimation problem is the 
so-called rolled-out version of the model stated in Eq. 61 (see Section 4.a of 
Chapter III in Roy et al., 1971). By stringing out all the elements of the vector 
Y,, followed by those of Y2, and so on, one can obtain an np-dimensional 
column vector, y*, for which the following linear model is a consequence of 
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Eq. 61: 

ν* = Χ*θ* + ε*, (62) 

where (i) Θ* and ε* are, respectively, kp- and np-dimensional column vectors 
obtained by rolling out the θ/s and ε/s of Eq. 61 in exactly the same manner 
as the Y/s, (ii) the np χ Jlcp matrix, X*, can be written compactly as the 
Kronecker product I(p) ® X, and (iii) the covariance structure for the elements 
of ε* is the np χ np matrix, Σ*, which is the Kronecker product Σ ® I(n). Then, 
if ξ is a linear function of the elements of Θ*, that is, ξ = c'O* = c',0, + c'2e2 + 
··· + ο'ρθρ, it can be established (see Section 4.a of Chapter III of Roy et al., 
1971) that the minimum variance unbiased linear estimate of ξ is ξ - c'jO, + 
c ' 262 + ··· + CpOp, where ĉ O, is the least squares estimate of e'fij, obtained by 
considering only the ;th response and ignoring the rest of the variables. 
Specifically, the unknown covariance matrix Σ is not involved in computing ξ, 
although the variance of ξ would involve Σ. 

This formal result, which is derived within the framework of linear models 
and the method of least squares, is perhaps one reason for the well-worn and 
widespread practice of constructing multivariate location estimates simply by 
assembling together univariate location estimates which have themselves been 
obtained by separate univariate analyses that ignore the multivariate nature of 
the data. In particular, as mentioned in the discussion following Eqs. 49 and 
50 in Chapter 3, the classical result on linear estimation under the multivariate 
general linear model is that the estimate of Θ is 

θ = [ θ „ θ 2 θ,]; Θ , Μ Χ ' Χ Γ ' Χ Ύ , f o r ) = Ι , . , . , ρ . (63) 

For the simple case of an unstructured (or single) sample, the matrix X 
would just be a column vector of l's; θ would be the p-dimensional row vector, 
μ', the unknown mean vector of the p-variate population from which the 
sample is presumed to be drawn; and Eq. 63 would yield as an estimate of Θ 
the sample mean vector, y', defined in Eq. 1 in Section 2.2.1. An interesting 
theoretical sidelight, the critical importance of which for analyzing multivariate 
data is unclear, is the result due to Stein (1956) on the inadmissibility of the 
sample mean vector as an estimator of μ' when ρ ^ 3. From the viewpoint of 
data analysis, a far more significant objection to estimators, such as the sample 
mean vector, associated with the least squares criterion is their nonrobustness 
or susceptibility to the influence of a few outliers (see Section 5.2.3 for a 
discussion of robust estimators). 

In regard to the problem of testing linear hypotheses concerning the 
parameters θ , for the classical normal theory treatment of the multiresponse 
general linear model of Eq. 49 it is assumed that the rows of ε are p-variate 
normally distributed (or, equivalently, that in the rolled-out version given in 
Eq. 62 ε* is np-variate normal with mean 0 and covariance structure Σ*). 



142 MULTIVARIATE STATISTICAL MODELS 

Under this additional distributional assumption, the usual null hypothesis 
considered is 

H0: C 0 U = O, (64) 

where the s χ k matrix, C (s < k), and the ρ χ u matrix, U (w < ρ < η — k), are 
matrices of specified constants with ranks s and «, respectively. For testing H0 

of Eq. 64 against the completely general alternative, HyCQU Φ Ο, several 
statistics have been proposed in the literature (see, for example, Anderson, 
1984; Roy et al, 1971). The test statistics are different functions of the 
eigenvalues of the matrix S^S,- 1, where 

s„ = u 'YX(X'X) - 1c[qx' xj^Cj-Wxr'x 'Y 'u,] 
and \ (65) 

S e = U'Y[I(«) - X(X'X)_ 1X']Y'U. J 

For instance, if oo > c, ^ c 2 ^ ··• ̂  c, > 0 denote the t [ = min(«, s)] ordered 
positive eigenvalues of Ŝ SJ"1, the likelihood ratio test of H0 is based on the 
statistic Λ = ΓΓ}=1 1/(1 + c;), whereas the so-called largest-root test proposed 
by Roy (1953) is based on c t and the sum-of-the roots test on Σ } = 1 c}. Only 
when at least one of the quantities u and s equals 1 are the different tests 
entirely equivalent, and in situations where this condition does not apply the 
application of the different tests may indeed lead to different conclusions 
regarding the tenability of the null hypothesis. A more detailed discussion of 
tests of hypotheses (including not only the general null hypothesis of Eq. 64 
but also more specialized hypotheses) and of formal power properties of such 
tests will be found in Chapters IV and V of Roy et al. (1971). (See also the 
work of Pillai and his students, for example, Pillai & Jayachandran, 1967, on 
power comparisons of the tests.) For present purposes it suffices to say that 
these tests of hypotheses tend to be of very limited value in multivariate data 
analysis, especially of an exploratory nature, when tightly specified models are 
either unavailable or unreasonable to commit oneself to. 

A geometrical description may help to elucidate the concepts and methods 
associated with the general linear model stated in Eq. 61. One can think of the 
η observations on each of the ρ responses, Y l t . . . , Yp, as the coordinates of ρ 
points, Pl,P2,..., Pp, in η-dimensional space (although, as stated in Chapter 1, 
the usual view is to consider the multiresponse observations as η points in 
p-space). Let Ο denote the origin in the π-space. Then the least squares 
estimate, θ ; , from the univariate analysis of the ;'th response is known (see, for 
example, Scheffe, 1959) to be associated with the projection of Ps onto the 
fe-dimensional subspace of η-space spanned by the k columns of X, and the 



ESTIMATION AND TESTS OF HYPOTHESES 143 

matrix X(X'X)_ 1X', which relates Y ; to its projection, is called the projection 
matrix involved in the operation of obtaining the least squares estimate. In the 
multivariate linear model which assumes a common design or regression 
structure, X, for all the responses, Θ of Eq. 63 is then associated with the set 
of ρ projections of Pu...,Pp onto the same space, and the same projection 
operator is applied to each of the ρ points. 

In more specialized situations the matrix X may derive from an orthogonal 
design (e.g., a balanced multifactorial experiment), and then its columns will 
specify a decomposition of the η-space into mutually orthogonal linear sub-
spaces, each associated with a meaningful source of variation (e.g., blocks, main 
effects, error) incorporated in the experimental design. In such situations a 
univariate analysis of variance of the observations on a single response, \ } , for 
instance, will yield, for the particular variable, a decomposition of the total sum 
of squares into sums of squares associated with each of the meaningful 
orthogonal sources of variation, and this process can be viewed geometrically 
as decomposing (a la Pythagoras' theorem) the squared length of the vector 
OPj in terms of the squared lengths of the vectors joining Ο to the projections 
of Pj onto the different mutually orthogonal linear subspaces. Similarly, in 
orthogonal multivariate analyses of variance, the decomposition of the total 
sum-of-products matrices, associated with orthogonal sources of variation 
underlying the experiment, may be visualized as a decomposition of the 
squared lengths of and angles between the ρ vectors, OPv,OP2,OPp, in 
terms of the squared lengths of and the angles between the vectors joining Ο 
to the projections of Pu...,Pp onto the different mutually orthogonal linear 
subspaces. Sum-of-products matrices associated with tests of hypotheses, such 
as Sh in Eq. 65, may be given similar interpretations in these geometrical terms. 

In addition to point estimation and tests of hypotheses, under the normal 
theory various confidence regions and interval estimation schemes have also 
been proposed (see, for example, Chapter VI of Roy et al., 1971) For instance, 
a set of simultaneous confidence intervals can be obtained for bilinear functions 
of Θ, and these are multiresponse analogues of the univariate result due to 
Scheie (1953) and to Roy & Bose (1953). 

With regard to carrying out the computations involved in multiresponse 
multiple regression or analysis of variance, although the algebraic representa-
tions in some of the formulae have involved expressions such as inverses of 
certain matrices (e.g., Eq. 63), they are not intended to suggest that it would 
be appropriate to develop computational algorithms directly from them. In 
fact, the recent literature in statistical computing is rich in its emphasis on 
a v o i d i n g n o t only pitfalls in inverting matrices but also round-off errors i n 

forming sum-of-products matrices. Approaches involving different types of 
matrix decompositions (e.g., singular value decompositions, Givens rotations) 
are the ones recommended currently, and Chambers (1977), Fowlkes & Lee 
(Appendix C in Roy et al., 1971), Golub & Reinsch (1970), and Wilkinson 
(1970) are a few of the relevant references. 
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5.2.2. Dispersion Parameters 

A familiar example of estimation of dispersion is the estimation of the unknown 
covariance matrix Σ that specifies the error structure in the multiresponse 
general linear model stated in Eq. 49 or 62. An unbiased estimate of Σ is 

s « - = ~ J Y W » ) - X ( X ' X ) ~ ' Χ Ί Υ ' . (66) 

while the (biased) maximum likelihood estimate is 

- _ η — k 

η 

With ρ < (η - k), S e r r o r will be nonsingular with probability 1. 
In the special case of an unstructured sample, the expression in Eq. 66 

simplifies to yield the sample covariance matrix S, defined earlier in Eq. 2 (see 
Section 2.2.1). Some (see Lindley, 1972) have worried about the inadmissibility 
issue a la Stein (19S6, 1965) regarding such estimates of dispersion, but once 
again the nonrobustness of these estimates is perhaps more worrisome for 
data-analytic purposes than the theoretically fascinating issue of inadmissibil-
ity. Section 5.2.3 discusses some ideas regarding the robust estimation of 
dispersion parameters. 

The literature pertaining to the standard normal theory treatment of 
multivariate analysis contains much material on formal statistical inference 
procedures (including estimation, tests of hypotheses, and distribution theory) 
associated with covariance matrices. The results on tests of hypotheses range 
from methods for testing the equality of two or more covariance matrices to 
procedures for testing hypotheses concerning specific structures for covariance 
matrices (e.g., sphericity, mutual independence of subsets of variables) and 
concerning eigenvalues and eigenvectors of covariance matrices. Chapters 9-11 
and 13 (especially Chapter 10) of Anderson (1984) and various chapters of Rao 
(1965) contain many of the available results. Some results on confidence 
bounds for dispersion parameters are given by Roy & Gnanadesikan (1957, 
1962). Methods associated with the study of structured covariance matrices 
have been discussed by several authors, including Srivastava (1966), Anderson 
(1969), and Joreskog (1973). 

5.23. Robust Estimation of Location and Dispersion 

For the uniresponse situation, problems and methods of robust estimation 
have received considerable attention, especially over the recent two decades. 
The start of the thrust was the work of Tukey (1960). Huber (1964) provided 
the first theoretical framework for considering the uniresponse situation. 
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The initial focus was on obtaining estimates of uniresponse location that are 
resistant or less sensitive to outliers, and the distributions considered as 
alternatives to the normal (for purposes of modeling outliers and comparison 
of the relative behaviors of the proposed estimates) have almost always been 
symmetrical with heavier or longer tails than the normal. A useful analogy for 
robustness has been the one with insurance: if one has an unforeseen accident 
(which, with data, would be unanticipated outliers) then the insurance is 
intended to pay off but, on the other hand, if one is fortunate to have no 
accident (which would correspond to data being "well behaved", i.e, data 
conform to the usual assumptions underlying the classical statistical methods 
including behaving like a random sample from a normal distribution) then the 
insurance premium should not be prohibitively high. The "premium" involved 
has been measured in terms of the efficiency of the estimator, that is, one would 
like the estimator to be highly efficient in the presence of outliers and yet be 
only moderately less efficient than the optimal estimator for the normal case. 
The uniresponse location problem was studied extensively and reported on by 
Andrews et al. (1972). (See also Huber, 1972.) 

The problem of robust estimation of scale, on the other hand, has received 
less attention (see, for example, Lax, 1975). Considerable attention has also 
been given to the problem of robust estimation of uniresponse multiple 
regression parameters (see, for example, Huber, 1973; Mallows, 1983; Chapter 
6 of Hampel et al , 1986, and the references therein). Indeed the literature on 
robust estimation for the uniresponse case continues to grow steadily, especi-
ally focused on many subtle and esoteric theoretical aspects. Hampel et al. 
(1986) provide a comprehensive state-of-the-art account of the field. 

Two fundamental and useful formulations that have arisen from the 
theoretical work in robust estimation are the concepts of the so-called influence 
function and the breakdown point, both proposed by Hampel (1971, 1974). The 
influence function is useful in that it provides a measure of the influence of an 
observation on an estimator. The observation can be either an actual one (see 
Section 6.4.2) or a conceptualized one, and, in the latter case, one can define 
an influence function with respect to a parameter in addition to the one with 
respect to an estimator of that parameter. The influence function has proven 
to be useful not only in understanding the sensitivity of existent estimators (e.g., 
the sample mean and variance, median) but, more importantly, it has led to 
designing new robust estimators. For example, it has played a central role in 
formalizing estimators on which outlying observations have bounded influence 
(thus providing resistance to such outliers), or even "zero" influence if the 
outliers are truly extreme, leading to the class of estimators with so-called 
redescending influence functions. The concept of the breakdown point of an 
estimator is essentially the largest fraction of observations in a sample that can 
be arbitrarily bad (i.e, be extreme outliers) without distorting the value of the 
estimator. Thus, a highly resistant estimator would have a high breakdown 
point. As an estimator of uniresponse location, the sample mean, for instance, 
has a breakdown point of zero, whereas the sample median has a breakdown 
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value of 0.5. While the influence function and the breakdown point are useful 
aids for designing and assessing estimators, in practice one should be wary of 
emphasizing these to the exclusion of other important considerations such as 
the computational difficulty associated with calculating an estimator from data. 
There are also questions, especially with moderate sized data sets, of the 
meaningfulness of emphasizing high breakdown values (e.g., 0.5): What does it 
mean to estimate some parameter when half the sample consists of outliers? 

Gnanadesikan & Kettenring (1972) have discussed some issues of and 
techniques for the robust estimation of multiresponse location and dispersion, 
and this section is based largely on their discussion and proposals. Although 
these methods are useful in protecting data summaries against certain kinds of 
outliers, it should be emphasized that the variety, both in kind and in effect, of 
outliers in multiresponse data can indeed be large, and the routine use of any 
robust estimate without exploring the data for the existence of specific 
peculiarities in them is neither wise nor necessary. (See Chapter 6 for a 
discussion of additional techniques for facilitating the exposure of peculiarities 
in data.) 

The usual (nonrobust) estimate of multivariate location is the sample mean 
vector, y, whose elements are just the uniresponse means. The initial ap-
proaches (see Mood, 1941; Bickel, 1964) to the problem of robust estimation 
of multivariate location consisted of looking at just vectors of univariate robust 
estimators by analyzing the observations on each of the response variables 
separately. Gentleman (1985) was the first to propose a robust estimate of 
multivariate location which involved the simultaneous manipulation of all 
response variables. Gnanadesikan & Kettenring (1972) proposed a class of ad 
hoc procedures for robust estimation of multivariate location and dispersion, 
that are much in the spirit of the initial attack on the univariate problems of 
location and scale by Tukey (I960). The work of Maronna (1976) cast the 
multivariate problems in the general theoretical framework of m-estimates (see 
also Huber, 1981). While drawing heavily from Gnanadesikan & Kettenring 
(1972), the results on m-estimates are also included in this section for complete-
ness. 

Some possibilities for robust estimators of multivariate location that are 
simply vectors of univariate robust estimators are the following: 

1. y|^, the vector of medians of the observations on each response, as 
suggested by Mood (1941). 

2. yJ)L, the vector of Hodges-Lehmann estimators (i.e., the median of 
averages of pairs of observations) for each response, as proposed and inves-
tigated by Bickel (1964). 

3. y*(JI), the vector of α-trimmed means (i.e., the mean of the data remaining 
after omitting a proportion, a, of the smallest and of the largest observations) 
for each response, as considered by Gnanadesikan & Kettenring (1972), or in 
a similar vein y£ ( l 0 , the vector of α-Winsorized means. 



ESTIMATION AND TESTS OF HYPOTHESES 147 

4. y*, a vector of any of the so-called m-estimates of univariate location for 
each response. An m-estimate of location for the ; th response, when the scale 
is unknown, is generally denned as the solution, Tjy of the equation 

where y t j is the ith observation on the j th response (i = 1,.. . ,n,j = Ι,.,.,ρ), 
and Sj is a simple robust estimate of scale of the jth respose such as the median 
absolute deviation (MAD) of the observations from the median. Two widely 
used choices for the function, φ, are 

I -k, if u < -k, 

u, if \u\ ζ k, with k = 1.5, 

+ k, if u > + k, 
leading to the so-called Huber m-estimate; and 

1
0, if u < -c, 

(n/c)[l - (u/c)l if \u\ < c, 

0, if u > c, with values of c in the range [6,9], leading to the so-called bisquare or biweight 
estimates proposed by Tukey. Calculation of these m-estimates involves iter-
ative computations and, in fact, the process entails iteratively weighted least 
squares with weights that are data dependent and change from iteration to 
iteration. As such, m-estimates of location can be written in the form, 
Σ"=ι w<o>WE"= ι w<o« where y ( l ) j < y { 2 ) } < ··· «ζ y { H ) J denote the ordered obser-
vations and the iteratively determined weights, w( l ), decreases as |v ( i ) ; - 7}| 
increases. Qualitatively, this behavior of the weights explains why the resultant 
estimate of location will be robust since extreme observations will be given far 
less weight than ones in the "middle" of the data. For starting the iterative 
computations involved in m-estimates of location such as those above, the 
common practice is to use the median in the first step. 

5. More generally, a vector each of whose elements is any univariate robust 
estimator (see Andrews et al , 1972, for a variety of possibilities) of the location 
for a single response variable. 

Unlike the above estimators, each of which is just a collation into vector 
form of univariate estimators, the estimator proposed by Gentleman (1965) is 
multivariate in character in that the analysis involves a combined manipulation 
of the observations on the different responses. The essential idea is to choose 
the estimator, y* = (y*, y*)', of μ = (μ,, μ2, • • •,μρ)' so as to minimize 
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the criterion, Σ ? = 1 |y* — /^ | \ for a specified value of k in the range 1 ζ k < 2. 
For k = 2 the estimator is the usual sample mean vector, while for k < 2 one 
obtains an estimator less sensitive to possible outliers. For a general value of 
k between 1 and 2, a closed-form expression of the estimator is not available, 
but Gentleman (1965) describes a numerical logorithm which can be used to 
compute the estimator for any set of multiresponse data. Gentleman also 
discusses some issues of modifying the criterion of Jfcth power deviations to 
reflect the existence, if any, of both differences in the scales of the responses and 
intercorrelations among the responses. 

Another approach to specifying a location estimate which also involves 
considering the responses simultaneously is discussed briefly in Section 6.2 in 
conection with the uses of a technique for plotting high-dimensional data. 

A theoretical issue, which has been raised by Bickel (1964) in connection 
with yj, and y £ t but, in fact, applies to all of the estimators mentioned above, 
is the lack of affine commutativity of the robust estimators of multivariate 
location, in contrast to the usual mean vector y, which does possess this 
property. (A location estimator is affine commutative if the operations of affine 
transformation and formation of the estimate can be interchanged without 
affecting the outcome.) From a practical viewpoint the issue may be viewed in 
terms of commitment to the coordinate system for the observations. At one 
extreme the interest may be confined entirely to the observed variables, and, if 
so, any issue of commutativity will perhaps be remote. At the other extreme 
one may feel that the location problem is intrinsically affine commutative (e.g., 
one may wish to require that when one works with metric and nonmetric scales 
the effect of transforming from one scale to the other and then computing the 
robust location estimate be the same as directly transforming the robust 
estimate on the former scale) and insist that all location estimators have this 
property. As an intermediate position one may seek more limited commutativ-
ity (e-g-. J u s t linear transformations of each variable separately as in the above 
metric-nonmetric example, or just orthogonal transformations) than the very 
general affine commutativity. 

In regard to the robust estimation of multivariate dispersion, there are at 
least two aspects of the problem, namely, the facet that depends on the scales 
(i.e., variances) of the responses and the one that is concerned with orientation 
(i.e., intercorrelations among the responses). For some purposes it may be 
desirable to consider the robust estimation of each of these aspects separately, 
whereas for other purposes a combined view may be in order. 

An approach that separates the two aspects has the advantage of using all 
the available and relevant information for each estimation task, whereas an 
approach that combines the two will involve retaining only observations 
(perhaps fewer in number) which pertain to both aspects simultaneously. On 
the other hand, in many cases the combined approach may be computationally 
simpler and more economical. 

The problem of robust estimation of the variance of a univariate population 
has been considered (see Tukey, 1960; Johnson & Leone, 1964, Section 6.9; 
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Hampel, 1968; Lax, 1975), although not as intensively or extensively as the 
location case. When one leaves the location case, certain conflicting aims seem 
to emerge in estimating higher-order characteristics of a distribution. Thus for 
the variance (and maybe even more so for the shape) there is a possible conflict 
between the desire to protect the estimate from outliers and the fact that the 
information for estimating the variance relies more heavily on the tails. 

This conflict raises certain questions about the routine use of robust 
estimation procedures for these higher-order characteristics, especially in 
relatively small samples. Thus, with a sample of size 10, for instance, the use of 
a 10% (the minimum possible in this case) trimmed sample to provide a robust 
estimate may lead to an estimator whose efficiency is unacceptably and 
unnecessarily low when the data are reasonably well behaved. The main point 
is that, with relatively small, and yet reasonable, samples sizes, it may be both 
expedient and wise to study the observations more closely, omitting only 
clearly indicated outliers (see Chapter 6 for outlier-detection methods) or 
possibly transforming the observations to make them more nearly normally 
distributed (see Section 5.3). 

The usual unbiased estimator of the variance for the j'th response (j = 
1, . . . , p) based on η observations may be denoted as sj}, and a corresponding 
robust estimator, s*., may be developed by any of the following three methods: 

1. The square of the median absolute deviation, (MAD)2, of the observa-
tions from the median for the y'th response. 

2. Trimmed variance from an α-trimmed sample, as suggested by Tukey 
(1960) and further studied by Hampel (1968). 

3. Winsorized variance from an α-Winsorized sample, as sugested by Tukey 
& McLaughlin (1963). 

4. The slope of the lower end of a χ(

2

υ probability plot (see Section 6.2 for 
a brief discussion of probability plots) of the n(n — 1 )/2 squared differen-
ces between pairs of observations. 

The second and third methods need an estimate of location, and a direct 
suggestion would be to use a trimmed mean for the trimmed variance and a 
Winsorized mean for the Winsorized variance. Huber (1970), however, suggests 
using a trimmed mean for getting the Winsorized variance, and for t-statistic 
types of considerations associated with the trimmed mean this may be 
appropriate. But even for applying a trimmed mean for the trimmed variance, 
or a Winsorized mean for the Winsorized variance, because of the consider-
ations mentioned above it would seem advisable to use a smaller proportion 
of trimming (or Winsorizing) for the variance estimation than for the location 
estimation in samples even as large as 20. 

To obtain unbiased, or even consistent, estimates from (MAD)2, or a 
trimmed or Winsorized variance, multiplicative constants are needed. These 
constants are based on an underlying assumption that the "middle" of the 



150 MULTIVARIATE STATISTICAL MODELS 

sample is sufficiently normal, and their values derive from the moments of the 
order statistics of the normal distribution. The required adjusted estimate of 
variance based on the median absolute deviation is (MAD/.675)2. Johnson and 
Leone (1964, p. 173) give a table of the required constants for small (η ^ 15) 
samples, and tables provided by McLaughlin and Tukey (1961), together with 
the tabulation by Teichroew (1956) of the expected values of cross products 
and squares of normal order statistics, may be used for calculating the required 
constant for samples of sizes up to 20. Unfortunately, asymptotic results do not 
appear to be adequate at η = 20, and further work is needed on developing the 
required multiplicative constant for larger values of n. 

One advantage of the third method mentioned above is that it does not 
involve an estimate of location. A second is that the type of adjustment 
provided by the multiplicative constant in the trimmed and Winsorized 
variances is contained in the probability plot itself—namely, the abscissa (or 
quantile axis) is used to scale the ordinate for determining the slope (which will 
be an estimate of twice the variance). A third advantage is that, by looking at 
n(n — l)/2 pieces of information (some of which may be redundant because of 
statistical correlations), the error configuration on the χ2,, probability plot may 
often be indicated more stably than on a normal probability plot of the η 
observations. A fourth, and perhaps the most significant, advantage of the 
approach is its exposure value in facilitating the detection of unanticipated 
peculiarities in the data. On the negative side a disadvantage of the technique 
is that it may not be useful, and may even be misleading, for estimating the 
variance in circumstances where a large proportion of the observations may be 
outliers. 

The multivariate nature of dispersion is introduced inevitably by consider-
ing the estimation of covariance and correlation. A simple idea for estimating 
the covariance between two variables, Y, and Y2, is based on the identity 

One robust estimator, s*2, of the covariance between Yj and Y2 may, therefore, 
be obtained from 

where σ*2 and σ*2 are robust estimators of the variances of (Y1 + Y2) and 
(Y1 - y2), respectively, and may be obtained by any of the methods mentioned 
above. 

When such a robust estimator of the covariance is available, a natural way 
of defining a corresponding robust estimator of the correlation coefficient 
between Yt and Y2 is 

coviT,, Y2) = ${var(Yi + Y2) - vartY, - Y2)}. (67) 

κ 2 - * n (68) 

(69) 

where sf, is a robust estimator of the variance of the jth response. 
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Since the robust estimators involved in Eqs. 68 and 69 are determined with 
no considerations of satisfying the well-known Cauchy-Schwarz inequality 
relationship between the covariance and the variances, therefore, r*2 as 
obtained from Eq. 69 may not necessarily lie in the admissible range, 
[ — 1, +1] , for a correlation coefficient. To ensure an estimate of the correlation 
coefficient in the valid range, while still retaining the above approach of 
obtaining the covariance estimate as the difference between two variance 
estimates, a modification may be suggested. Let Z} = Yj/y/sfj denote the 
"standardized" form of Yj, where s*j is a robust estimate of the variance of Yj. 
Then define 

A* 2 A* 2 

Ρ ΐ 2 = Τ Ϊ 3 — « Ι - (~°) 

σ 3 + σ 4 

where now σ*2 and i j 2 are robust estimators of the variances of (Z, + Z2) 
and (Ζ, — Z 2 ) , respectively. One can use any robust estimate of the variances 
of the standardized sum and difference, but Devlin et al. (1975) have studied 
the use of trimmed variances in particular and have denoted by r*(SSD) the 
associated p*2. Corresponding to p*2, which necessarily lies in the range 
[ - 1 , +1 ] , a covariance estimator may be defined by 

^ ρ μ λ ^ γ 2 . ( 7 i ) 

An interesting consequence of estimating the correlation coefficient by Eq. 
69 or 70 is that the multiplicative constant, which is required for removing the 
biases involved in trimmed or Winsorized variances, cancels out by appearing 
in both the numerator and the denominator of the defining equations 69 and 
70. Hence, for any sample size, the trimmed (or Winsorized) variances that 
provide the bases for obtaining r*2 and p*2 can be used directly without any 
multiplicative constant. This does not, however, imply that r*2 and p*2 are 
unbiased estimators of the population correlation. In fact, just as the usual 
product moment correlation coefficient is biased, these robust estimates are 
biased in small (but not large) samples. Devlin et al. (1975) have studied the 
biases and efficiencies of the above-mentioned as well as other robust es-
timators of correlation, including some well-known nonparametric estimators 
such as Kendall's τ. 

A full-fledged consideration of multiresponse dispersion would be necessary 
if one were interested in the estimation of not just a single covariance or 
correlation but a collection of these, say a covariance or a correlation matrix. 
The usual estimates of the covariance and correlation matrices are, respec-
tively, the sample covariance matrix, S, and the associated sample correlation 
matrix, R (see defining Eqs. 2 and 3 in Section 2.2.1). When robust estimates 
of the variances and covariances have been obtained by the methods discussed 
above, a direct method of obtaining a robust estimate of the covariance matrix 
is just to "put these together" in a matrix. Thus, corresponding to each of the 
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two methods described above (see Eqs. 69 and 70) for obtaining an estimate 
of the correlation coefficient, a robust estimate of the covariance matrix would 
be 

S* = DR*D for α =1 ,2 . (72) 

where D is a diagonal matrix with diagonal elements y/sjj {j = 1, . . . , p), Rf = 
((r*.)), and R* = ((/*.)). 

For some purposes of analyzing the multiresponse data, when the underly-
ing distribution is not singular, it may be desirable to have a positive definite 
estimate of the covariance matrix. For instance, in analyzing the configuration 
of the sample in terms of the generalized squared distances of the observations 
from the sample centroid (see Example 7 in Section 2.4), the inverse of the 
estimate of the covariance matrix is used. 

If the dimensionality, p, does not exceed the number of independent 
observations [(« — 1) in the case of an unstructured sample], the usual 
estimator, S, is positive definite with probability 1. However, neither of the 
estimators, S* and S*, defined above is necessarily positive definite. The 
positive definiteness of these estimators is equivalent to the positive definiteness 
of the corresponding estimators, R* and R*, of the correlation matrix, and even 
though each off-diagonal element of R* necessarily lies in the range [ - 1 , +1] , 
this does not necessarily imply positive definiteness of R*, except for the 
bivariate case. [Note: Positive definiteness of a correlation matrix may be 
conceptualized as a high-dimensional analogue of the property that a single 
correlation coefficient lies between —1 and + 1 , and the constraint of positive 
definiteness seems to introduce the need to consider all the responses simul-
taneously with respect to their dispersion or orientational summary, although 
superficially such a summary might appear to be based only on a pairwise 
consideration of the responses.] Devlin et al. (1975) suggest a way of modifying 
R* when ρ > 2 so as to obtain a positive definite estimate of the correlation 
matrix, which can then be employed in Eq. 72 to obtain a positive definite 
estimate of the covariance matrix. The essential idea is to "shrink" each of the 
estimates, ^ (SSD) , of bivariate correlation sufficiently to ensure positive 
definiteness. It would be desirable for the shrinking scheme to decrease the high 
(in absolute value) correlations only slightly and the low correlations more 
drastically. Thus, the objective is to shrink R* nonlinearly toward the identity 
matrix, I. Dropping the identification, SSD, and denoting the j / ' th element of 
R* as r*y, Devlin et al. (1975) propose the following specific nonlinear 
shrinking scheme: replace r*y by 

rz-'Wr^ + A], if r*. < -ζ (Δ), 

g{r*y) = 0 , if |r*.| < ζ(Δ), (72a) 

( Ζ - ' Ι Χ Γ ^ - Δ ] , i f r* .>z (A) , 
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where ζ = t a n h ' V J ) is Fisher's z-transform and Δ is a prespecified small 
positive constant (e.g., Δ = 0.05). The matrix of resulting correlations is 
checked for positive definiteness and the process is repeated until positive 
definiteness is achieved. The variance stabilizing z-transform puts the correla-
tions on roughly the same footing before the Δ-shift is applied, and hence has 
the desirable effect of nonlinear shrinkage of the correlations themselves. The 
resulting positive definite robust estimate of the correlation matrix can be 
suggestively denoted as Rji + i or R*(SSD). 

An entirely different context, of some practical interest for using this scheme 
of shrinkage, is one with incomplete multivariate observations, that is, where 
not all ρ variables are measured on each of the π units. Such missing data are 
particularly likely in very large data sets. Many archaeological and paleon-
tological data sets seem prone to incomplete observations as a consequence of 
uncontrollable factors. One idea for developing a positive definite estimate of 
the overall correlation matrix from such data would be to use all of the 
observations available for every pair of variables to calculate bivariate corre-
lations first, and then to adjust these by the shrinking scheme in Eq. 72a. 

Gnanadesikan & Kettenring (1972) tentatively proposed some other 
methods for obtaining positive definite robust estimators of covariance (and 
thence correlation) matrices, and these are described next. The essential idea 
underlying all of them is to base the estimate on a "sufficiently large" number, 
v, of the observations (i.e., ν > ρ), which are, nevertheless, subselected from the 
total sample so as to make the estimate robust to outliers. A second feature of 
these estimators is that they are based on a combined consideration of both 
scale and orientational aspects, unlike S* and Sf, which were built up from 
separate considerations of these aspects. 

The first method for ensuring a nonsingular robust estimator of the 
covariance matrix is based on an approach suggeted by Wilk et al. (1962), who 
were concerned with developing appropriate compounding matrices for a 
squared distance function employed in an internal comparisons technique 
suggested by Wilk & Gnanadesikan (1964) for analyzing a collection of 
single-degree-of-freedom contrast vectors (see Section 6.3.1). The first step in 
the procedure is to rank the multiresponse observations, yf (i = Ι , . , . ,η) , in 
terms of their Euclidean distance from some robust estimate of location, 
y*, that is, Hy, - y*|| [or, equivalently, the squared Euclidean distance, 
(ϊί — y*)'(y. — y*)]- Next, a subset of the observations whose ranks are the 
smallest 100(1 — x)% is chosen and used for computing a sum-of-products 
matrix, 

A 0 = Σ (y» - y*)(y/- y*)'- (73) 
I € chosen subset 
of observations 

(The fraction α of the observations not included in A 0 is assumed to be 
small enough to ensure that A„ is positive definite.) After all η observations 
have been ranked in terms of the values of the quadratic form, 
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(ϊι ~ y*Mo '(y,- - y*)> a subset of the observations whose ranks are the 
smallest 100(1 — β)% may be chosen and employed for defining a robust 
estimator of the covariance matrix, 

s * = ^ n r i T Σ (y, - y*Xy, - y*y, (74) 
Ή- 4 P) re chosen subset 

of observations 

where k is a constant that will hopefully make the estimator "sufficiently 
unbiased," and again β has to be small enough so that [n(l — β)~\ > ρ and S* 
is positive definite with probability 1. It may be convenient, but it is not 
imperative, to have α = β. The above steps can be repeated using the sum of 
products on the right-hand side of Eq. 74 in place of A0, repeating the ranking 
of the observations, subselecting a major fraction of them for obtaining a 
further estimate, and iterating the process until a stable estimate is obtained. 
The limited experience of the authors with this method seems to suggest that, 
unless α, β, and η are moderately large (viz., α and β ^ 0.2 and η ^ 50) and 
unless the underlying correlation structure for the observations is nearly 
singular, many iterations will not be necessary to improve the estimate defined 
by Eq. 74. On the other hand, the work of Devlin et al. (1975) indicates that 
some care in the starting point (viz, not starting with ranking on simple 
Euclidean distances) may yield significant improvements in the estimator 
obtained. 

The scheme involved in obtaining S* depends on having an estimate, y*, of 
location. A natural way of obtaining the needed location estimator would be 
to calculate it as the mean of the subset of the observations (i.e, the untrimmed 
ones) at each stage of the iteration. In this case, at convergence, the above 
iterative scheme would lead to estimates of both location and dispersion, y* 
and S*, respectively. While this is the preferred scheme, one can also use any 
of the earlier mentioned location estimators derived from univariate analyses 
of the responses (e.g., vector of medians) without any change from iteration to 
iteration. In fact, even for the iterative determination of y* and S*, it is sensible 
to use a vector of simple univariate robust estimators of location such as the 
vector of medians, as the starting value of y* for the iterations. 

If one is interested in obtaining an estimator of dispersion not involving a 
location estimator, however, exactly as in the estimation of univariate variance 
one can, in the multiresponse situation, work with pairwise differences, 
(y, — y(), the p-dimensional observations. Specifically, an estimator, SJ, can be 
obtained by repeating each of the steps involved in getting Sf with (y,. — y*) 
there replaced by (y, — y,.), working with rankings of these n(n — l)/2 differen-
ces, and obtaining as an estimator analogous to S* the matrix 

dn - lvi - β) Σ (y , - y,Xyr - y X (75) 
\ 1 A i P) r.se chosen subset 

of observations 
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Just as in the univariate variance situation mentioned earlier, this estimator 
may be poor when a large fraction of the observations are outliers. 

The multiplicative constants k and k' in Eqs. 74 and 75 are not as simply 
conceptualized or computed as the constants involved in the trimmed or 
Winsorized variances and covariances. The hope is that, although these 
constants may depend on η ρ, α, and β, they will not depend on the underlying 
variances and/or correlations and also, for practical convenience, that a single 
multiplicative constant will be adequate for "blowing up" the estimator to 
make it sufficiently unbiased or consistent. This aspect of the problem needs 
further research. 

The iterative ellipsoidal trimming of a fraction of the most distant multi-
response observations can be thought of as a multivariate analogue of 
univariate trimming. One advantage of this conceptualization is to ask if it 
would be better, in some sense, to downweight distant observations more 
smoothly than abruptly trimming them. Indeed, such downweighting is what 
is involved in formulating the problem as one of m-estimation. In particular, 
the m-estimates proposed by Maronna (1976) and Huber (1977) are examples 
of such iteratively weighted estimates with weights decreasing more smoothly 
than the ellipsoidal trimming method implies. These m-estimates are affine 
commutative. 

The basic equations defining the m-estimators of multivariate location, y*, 
and of dispersion, S*, are: 

y * = Σ W i W / l ^ ) 
i = l / i = l 

S* = (l/n) Σ w^ fXy , - y*Xy; - y*)', (75a) 
1=1 

and 

^ 2 ( y ) = ( y - y * ) ' S * - , ( y - y * ) . 

[Note: Since the weights, Wjirf,) and w2(df), are themselves functions of y* 

and S*, the m-estimators have to be computed iteratively.] The specific m-
estimators proposed by Maronna and by Huber involve explicit suggestions 
for the functions, w^dt) and w2(df). 

Maronna's suggestion is to use 

*>1(d)=(p+f)/(f + d) = W2(d
2), (75b) 

where / is an integer. This suggestion is related to the maximum likelihood 
estimates of location and dispersion for the so-called multivariate r-distribution 
based on / degrees of freedom (see Section 5.4.3). 
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Fig. 10. Weight functions for two m-estimates 

Huber's proposal, arguing by analogy with the univariate case, is to use 

11, if d ζ *, 
w,(d) = 

k/d, if d > k, 
(75c) 

and 

w2(d
2) = {νν,(<ί)}2/ρ\ 

where β is a constant chosen so as to make the estimator, S*, "unbiased". 
Looked at as iteratively weighted estimates of location, the weights w^d) 

involved in the Huber scheme do not approach zero for distant observations 
as quickly as those for the Maronna scheme. Figure 10 sketches the shapes of 
these two schemes of weighting and indicates this difference at least qualitat-
ively. From the formulae defining the two weighting schemes and this picture, 
one can see that, by appropriately choosing the weights, the Maronna scheme 
could be made to weight distant observations even less than the Huber scheme. 

Associated with each of the robust estimators of the covariance matrix, such 
as S$ and SJ, is a robust estimator of the correlation matrix, which may be 
obtained by pre- and postmultiplying the covariance matrix estimate by a 
diagonal matrix whose elements are reciprocals of the square roots of the 
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diagonal elements of the covariance matrix estimate. For instance, one such 
estimate would be Rf = DS$D, where the j th diagonal element of D would be 
the reciprocal of the square root of the ;'th diagonal element of S*. One 
implication of this is that the robust estimators of the correlation matrix 
derived in this way can be obtained without knowing the multiplicative 
constants, such as k and k', as long as these do not depend on the underlying 
(and unknown) variances and/or correlations. An estimate of bivariate corre-
lation obtained in this manner by trimming whole observations is denoted as 
r*(BVT) and included in the comparative study of robust estimators by Devlin 
et al. (1975). An important feature of this robust estimator is its ability to 
provide protection against asymmetric outliers. 

As to the influence functions of the estimators of location and dispersion 
discussed above, the important feature of the robust estimators is that their 
influence functions are bounded unlike those of the classical estimators. As to 
breakdown points, estimates such as the median for univariate location and 
MAD for univariate scale have the high value of 0.5, whereas the α-trimmed 
estimators have the value a. For the multiresponse situation, Tyler (1983) 
obtains asymptotic efficiencies of robust estimates of dispersion, including 
m-estimates, in the context of likelihood ratio tests. Devlin et al. (1981) 
demonstrate empirically that the α-trimmed estimators, such as y* and S* and 
Rj associated with Eq. 74, have breakdown values equal to a. A curious 
theoretical result due to Maronna (1976) and Huber (1977) is that the 
m-estimates of multiresponse location and dispersion described above have a 
breakdown value < (1/p) regardless of the fraction of outliers! This implies that 
these m-estimates would break down when ρ is large, that is, in high enough 
dimensions. The simulation study of Devlin et al. (1981) provides empirical 
support for this aspect of the m-estimates of multiresponse location and 
dispersion. Motivated in part by seeking an estimator with a breakdown 
property comparable to the univariate median and MAD, Rousseeuw (1983) 
has recently been advocating an estimator known as the minimal volume 
ellipsoid estimator (MVE) for multivariate location and dispersion. 

Robust estimators, such as R*, of correlation matrices can serve as starting 
points for more complex analyses such as principal components and factor 
analysis discussed in Chapter 2 and canonical correlation analysis discussed in 
Chapter 3. In fact, a situation in which robust estimators might be extremely 
useful is one that involves a very large amount of data which are subjected to 
a series of reasonably complex statistical analyses, with the output of one 
analysis constituting the input of another. In such a situation one may not 
want a few observations to influence excessively the final outcome or con-
clusions. 

Example 29. Data on the incidence rates of five types of cancer for white 
males in 41 states is used to illustrate the use of a robust estimate of a 
correlation matrix as the input to a principal components analysis instead of 
the usual correlation matrix. The rates were, in fact, calculated as averages of 
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Exhibit 29a. Correlation matrix, R, for cancer rates 

2. Stomach 3. Small Intest. 4. Colon 5. Rectum 

1. Esophagus .49 .22 .89 .87 

2. Stomach .30 .51 .66 

3. Small Intest. .25 .12 

4. Colon .93 

Eigenvalues: 

Eigenvectors: 

c 2 c 3 
c 4 c 5 

3.28 .97 .58 .14 .03 

.50 .14 - . 0 6 

.40 - . 2 0 - . 2 0 

.19 - . 9 3 .14 

.52 .12 - . 6 6 

.53 .23 .71 

the annual rates for the period 1950-1967, lending some support to consider-
ing the data as being distributed approximately normally. Another feature of 
the variables here is that, being on very similar scales, they are commensurable, 
so that one might hope that the findings of a principal components analysis of 
the covariance matrix and the correlation matrix would be comparable. 

Using the 41 ( = n) 5-dimensional observations, the standard correlation 
matrix, R, was computed and is shown in the top half of Exhibit 29a. The 
correlation between the rates for esophagus and colon cancers, as well as that 
between the rates of esophagus and rectum cancers, are seen to be relatively 
high (0.89 and 0.85, respectively), while the correlation between the rates of 
small intestinal and rectal cancers is low (0.12). The bottom portion of the 
exhibit shows the eigenvalues and eigenvectors of R resulting from a principal 
components analysis of R. [All five eigenvalues are shown but only the 
eigenvectors associated with the largest two eigenvalues and the smallest one 
are displayed.] 

The first two principal components are seen to account for approximately 
85% of the total variance of the five standardized variables. The first principal 
component seems to be a weighted average of the five standardized variables 
with roughly equal weights for all but the standardized small intestinal cancer 
rate, which receives a smaller weight. The second principal component, on the 
other hand, places most weight on the small intestinal cancer rate. Switching 
to the last principal component, the smallness of the eigenvalue (0.03) suggests 
that the linear combination defined by this component is essentially a constant, 
that is, an approximate linear relationship among the five standardized 
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variables is identified. The linear relationship seems not to be simple but a 
somewhat complex contrast between rectal cancer and three of the other cancer 
rates, colon, small intestine and stomach. 

Exhibit 29b shows a plot of the 41 states, using their zip code abbreviations 
as labels, in the space of the first two principal components. An interesting 
indication is that, while there appear to be no outliers with respect to the first 
principal component, Alaska stands out as an outlier in the second principal 
component. North Dakota is also a moderate outlier in the second principal 
component. 

Exhibit 29b. Plot of 41 states in the space of the first two principal components of the usual 
correlation matrix 
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Exhibit 29c. Stem-and-leaf display of squared distances 

η = 41 Median = 4.9 
Quartiles = 3.1, 6.9 

Decimal point is at the colon 
1:57889 
2:26788 
3:145789 
4:005899 
5:023557 
6:089 
7:3 
8: 
9:066 
10:8 
11:1 

High: 25.1 (New Mexico), 26.9 (Vermont), 35.5 (North Dakota), 156.8 (Alaska) 

To study the possibility of outliers in the original 5-dimensional data, a 
robustified version of the Mahalanobis squared distances of the 41 observa-
tions was calculated. The robustification consisted of using the ellipsoidal 
trimming scheme described by Eq. 72 and iteratively trimming the observations 
from the four states with the largest distances, that is, using a trimming fraction 
α ^ 10% for computing the robust estimates of location and dispersion which 
were then utilized in calculating the Mahalanobis squared distances. Exhibit 
29c shows the stem-and-leaf display of the values of the squared distances at 
the last step of the iteration, along with the names of the states whose distances 
were among the largest. Most of the values lie between 1 and 12, then there 
are two between 25 and 27, one at about 35, and one way out at over 156. 
Thus, although not revealed in the two-dimensional space of the principal 
components, in addition to Alaska and North Dakota, both Vermont and New 
Mexico are also well removed from the middle of the original 5-dimensional 
data. 

The robust correlation matrix, R*, derived from the ellipsoidal trimming 
was computed next. The resulting correlations, and the results of the principal 
components analysis of R* are shown in Exhibit 29a\ A striking comparison of 
R and R* is that all of the pairwise correlations, except one, have increased. In 
the one exception, the already high correlation between esophagus and colon 
cancer rates remained at the same high value of 0.89. Many of the smaller and 
moderate correlations have increased noticeably. Thus, in this example, the 
effects of the outliers have been to deflate the pairwise correlations among the 
five variables. 
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1. Esophagus .63 .46 .89 .87 

2. Stomach .57 .74 .83 

3. Small Intest. .54 .57 

4. Colon .96 

Eigenvalues: 

Eigenvectors: 

Cl c 2 c 3 c 4 c 5 

3.87 .64 .36 .11 .02 

.45 .37 - . 0 1 

.44 - . 1 3 - . 1 9 

.35 - . 8 7 .00 

.49 .23 - . 6 1 

.50 .16 .77 

The principal components based on R* are also interesting. The first two 
principal components now account for about 90% of the total variance as 
against the 85% in the case of the first two principal components of R. Also, 
the first principal component now is a more nearly equally weighted average 
of the five standardized cancer rates. The second principal component still 
tends to weight the standardized small intestine rate heavily. Turning to the 
last principal component, the eigenvalue is a bit smaller than the corresponding 
eigenvalue of R. More interestingly, with two very small weights for esophagus 
and small intestine cancer rates, the last principal component now emerges as 
a simpler contrast between the standardized rectum cancer rate and the 
standardized rates of colon (primarily) and stomach (secondarily). 

Exhibit 29e shows all 41 states in the space of the first two principal 
components of R*. Despite the similarity in appearance, the scales in Exhibits 
29b and 29e are very different. Alaska is even more of an outlier as is North 
Dakota. Both states continue to be outliers in the second principal component 
and there are no indications of outliers with respect to the first principal 
component. Other interesting patterns noticed in the display are that, with 
respect to the first principal component which is essentially a weighted average 
or index derived from the five individual standardized cancer rates, the 
northeastern states (Rhode Island, Connecticut, New York, Massachusetts, 
New Jersey, and Pennsylvania) are at the high end, and states such as 
Arkansas, Alabama, Tennessee, Idaho, and Utah sit at the low end. 

An interesting question about the findings is why the outiers affect, and are 
revealed by, the second principal component and not the first. The reason is 
that the first principal component of a correlation matrix is sensitive to the 

Exhibit 29d. Ellipsoidally trimmed correlation matrix, R*, for cancer rates 

2. Stomach 3. Small Intest. 4. Colon 5. Rectum 



162 MULTIVARIATE STATISTICAL MODELS 

Exhibit 29«. Plot of 41 states in the space of the first two principal components of a robust 
estimate of the correlation matrix 

Ό 
C 
CM 

larger pairwise correlations. Alaska has a noticeably high small intestine cancer 
rate and the correlations of small intestine cancer rate with the other cancer 
rates are relatively small (see Exhibits 29a and d). These small correlations may 
be affecting the second principal component but clearly not the first. The 
second principal component gives highest weight to the small intestine rate, on 
the other hand, and hence Alaska stands out. 

The preceding discussion has dealt with robust estimation of location and 
dispersion for unstructured multiresponse data. More important, however, is 
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the case of structured mutiresponse data. Analogously to the treatment of the 
simple location problem, one could of course approach the multiresponse 
multiple regression problem by simply considering as a robust estimator of the 
multiresponse regression coefficient vectors the vectors whose elements are just 
the univariate robust regression coefficients. In other words, with the multi-
response multiple regression structure 

Y' = (Yl f Y 2 , . . . , Υ,) = XB + ε = Χ(β„ β2,..., β„) + ( β „ . . . , ε,), 

given a robust estimator β* of β7, obtained by analyzing the observations on 
the jlh response alone considered according to a uniresponse multiple re-
gression model, 

Υ, = Χρ, + ε, ( ; = Ι , . , . ,ρ) , 

a straightforward way of developing a robust estimator B* of Β is to take 

Β* = {βΤ,βί,...,β*}. 
The estimators β* can be obtained by using any of the currently available 
univariate methods (e.g., Huber, 1973; Mallows, 1973; Krasker & Welsch, 
1982). This approach to multivariate robust estimation mimics the usual 
practice of doing separate univariate analyses of the individual responses, 
"putting together" the univariate results, and considering the amalgamated 
result as a solution for the multiresponse problem. Once again, although this 
approach is simple and appealing in certain ways, it seems to be not fully 
satisfying in the sense that it does not explicitly exploit the multivariate nature 
of the data. 

One approach to simultaneous manipulation of the responses for obtaining 
B* is, initially, to get a robust estimator of the (p + q) χ (ρ + q) covariance 

matrix of , that is, a robust estimator of 

Σ 2 2 

[Note: in the notation employed here, X is an η χ a matrix of values of the q 
regression variables.] If Σ* denotes such a robust estimator, then a robust 
estimator, B*, which is based on the linearity of all regressions for elliptical 
distributions (see Section 5.4.3), would be defined by 

B* = Σ22 Σ*'2. 

Such an estimator would be sensible for a wide class of distributions, including 
the normal and heavier-tailed alternatives that might serve as models of certain 



164 MULTIVARIATE STATISTICAL MODELS 

types of outliers. However, it may not be a reasonable estimator in the presence 
of other types of outliers such as asymmetric ones perhaps. These questions, as 
well as issues of, and methods for, robust estimation of parameters occurring 
in multiresponse designed experiments (the multivariate analysis of variance or 
MANOVA setup), need to be addressed by future research. 

Apart from getting robust estimators of the multiresponse regression coeffi-
cient matrix, there is the very important question of the statistical behavior of 
the "robustified residuals," Y' — XB*, as opposed to the behavior of the usual 
least squares residuals (see Section 6.4 and Examples 51 and 52 for further 
discussion). 

A final comment about robust methods for multivariate data analysis may 
be in order. Formulating most problems as ones of "fitting" a model, one 
approach to robustness represented by the m-estimation framework is to 
replace the more classical scheme of minimizing a squared-error criterion (e.g., 
least squares in location estimation; squares of orthogonal deviations in 
principal components analysis) by criteria that are less sensitive to outliers and 
develop new specialized algorithms for each problem. Such specialization may 
provide methods that have particular advantages for the problem at hand, but 
would typically involve building the algorithms from the ground up. A simpler 
approach that is computationally appealing would be to robustify the input to 
a classical technique and not alter the basic algorithm. This is the approach 
illustrated in Example 29, where a robust correlation matrix was used as input 
to a standard eigenanalysis algorithm for determining the principal compo-
nents. From a practical viewpoint, what is important to keep in mind is the 
need to protect oneself against the possible presence of outliers and keep the 
computational efforts from becoming too cumbersome. Also, the most impor-
tant thing to do is to carry out both a standard (perhaps nonrobust), often 
well-understood, analysis of a data set and a robust analysis of it, and then 
compare the two sets of results. One often gains valuable insights into the data 
from both the similarities of, and the differences between, the results of the two 
analyses. 

5.3. DATA-BASED TRANSFORMATIONS 

As stated in Section 5.2, the classical multivariate theory has been based largely 
on the multivariate normal distribution and the paucity of alternative models 
for the useful guidance of multiresponse data analysis is a well-recognized 
limitation. One way of handling this limitation has been to develop non-
parametric or distribution-free methods for specifically posed problems such as 
the formal inferential ones mentioned in Section 5.2. (See, for example, Puri & 
Sen, 1971, for an extensive treatment of multivariate nonparametric inference.) 
Although such methods may serve the specific purpose for which they are 
designed, the statistics employed by them are not always useful for revealingly 
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summarizing the structure in a body of data. On the other hand, the 
serendipitous value of many classical methods lies in their utility for summariz-
ing the structure underlying data. Hence it is natural and appropriate to 
inquire about ways of transforming the data so as to permit the use of more 
familiar statistical techniques based implicitly or explicitly on normal distribu-
tional theory. The choice of a transformation, of course, should depend on the 
nature of the objectives of the data analysis, and transforming to obtain more 
nearly normally distributed data is only one of several possible reasonable 
motivations. Moreover, even if a transformation of variables does not accom-
plish normality, it may often go a long way toward symmetrizing the data, and 
this can be a significant improvement of the data as a preliminary to 
computing standard statistical summaries such as correlation coefficients and 
covariance matrices. 

A transformation may be based on theoretical (or a priori) considerations 
or be bootstrapped (or estimated) from the data that are being analyzed. 
Examples of the former type are the logistic transformation of binary data 
proposed by Cox (1970, 1972) and the well-known variance-stabilizing trans-
formations of the binomial, the Poisson, the correlation coefficient, etc. Tech-
niques for developing data-based transformations of univariate observations 
have also been proposed by several authors (see, for example, Moore & Tukey, 
1954; Tukey, 1957; Box & Cox, 1964). Andrews et al. (1971) have extended the 
approach of Box & Cox (1964) to the problem of estimating a power 
transformation of multiresponse data so as to enhance normality, and the 
present section is a summary of their proposals and results. 

If y' = ( j i , ^ . • · , > ' , ) denotes the set of ρ response variables, the general 
problem may be formulated as follows: determine the vector of transforma-
tion parameters, λ, such that the transformed variables {gx{y'\ λ), g2(y'; λ ) , . . . , 
ap(y';X)} are "more nearly" p-variate normal, Ν[μ,Σ] , than the original ρ 
variables. The elements of λ are unknown, as are those of μ and Σ. Provided 
that one can obtain an appropriate estimate, λ, of λ (as well as of μ and Σ) 
from the data, the original observations, y'( (i = 1 , . . . , ή), can be transformed 
one at a time to yield new observations, {gl(y'i',ty,...,gp{y'i\i.)}, which may 
then be considered as more nearly conforming to a p-variate normal model 
than the original observations. 

The work of Andrews et al. (1971) is concerned with transformation 
functions, gs, which are direct extensions of the power transformation of a 
single nonnegative response, X, to XiX\ considered by Moore & Tukey (1954) 
and by Box & Cox (1964), where 

for λφΟ, 

for λ-0. 

Furthermore, for simplicity of both the exposition and the computations, some 
of the details are developed only for the bivariate case, that is, ρ = 2. 
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For ease of interpretation it may be desirable to look for transformations 
that operate on each of the original variables separately. A simple family of 
such transformations is defined by 

where j = 1,2 for the bivariate case and j = 1,2,..., ρ for the general p-variate 
case. 

A natural starting point is to choose λ} so as to improve the marginal 
normality of yf'K Although it is recognized that marginal normality does not 
imply joint normality, the choice of transformations to improve marginal 
normality may in many cases yield data more amenable to standard analyses. 
The procedure is merely to apply the method proposed by Box & Cox (1964) 
to each response separately so that only univariate computations are involved 
and the theory and techniques for each are identical with those of Box & Cox. 
Specifically, one of the approaches suggested by Box & Cox leads to estimating 
Xj by maximum likelihood, using only the observations on the ; th response 
variable. The logarithm of a likelihood function (which has been initially 
maximized with respect to the unknown mean and variance for given Xj), 
-^m«x(^). is maximized to provide the estimate ls. If Y ' = [ Υ , , Y 2 , . . . , Y P ] 

denotes the η χ ρ matrix of original observations, and if the transformed 
observations obtained by using Eq. 76 are denoted as 

where Yfj) denotes the vector of η observations on the jth variable, each of 
which has been obtained by transforming according to Eq. 76, then 

where yi} denotes the ith observation on the untransformed;th response, and 
<Sjj is the maximum likelihood estimate of the variance of the presumed normal 
distribution of Y*/ J > [i.e., 

where ξ ; is the maximum likelihood estimate of ξ, = <?(Y j A j ) ) ; specifically, for 
an unstructured sample, ξ, would be an π χ 1 vector all of whose elements are 
equal to the mean of the transformed observations on the ;'th variable, while 
for the more general case of a linear model specification, ξ; = X9j, the 

for kj Φ 0, 

for. λ} = 0, 
(76) 

( Y U ) y = [ Y W . ) . . . , Y ^ ) ] , 

(77) 

σ,, = 1 ( Υ < ^ - ξ / ( Υ ^ - ξ , ) , 
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appropriate estimate would be ξ;- = ΧΘ,]. In addition to the second term on 
the right-hand side of Eq. 77, a}i is also a function of Xs, and the required 
maximum likelihood estimate, Xj, is the value of Xs which maximizes ^mtt{Xj) 
as defined by Eq. 77. Despite the complication caused by <jj} being a function 
of Xj, since the maximization is with respect to a single unknown parameter Xj 
the computations involved are quite simple. In fact, one can compute the value 
of ifm„(Aj) for a sequence of values of X} and empirically determine the value, 
Xj, for which it is a maximum. Also, for this case of a single parameter, one can 
graph ifm a j(Ay) and study its behavior near X}. 

Following Box & Cox (1964), by using approximate asymptotic theory one 
can also obtain an approximate confidence interval for X}. The essential result 
is that a 100(1 — oc)% confidence interval for X} is defined by 

2{^mJXj) - ^mMj)} < x2M 

where χ2(α) denotes the upper 100a% point of a chi-squared distribution with 
ν degrees of freedom. 

The preceding discussion has been concerned with estimating power trans-
formations of multiresponse data so as to improve marginal normality. Next, 
a method is described for choosing the transformations of Eq. 76 so as to 
enhance joint normality. To keep the computations simple, this description will 
be presented just in terms of a bivariate response situation. Thus the π χ 2 
matrix Y' = ((v(j)), / = 1 , . . . , n; j = 1, 2 is the data matrix whose rows, yj, are 
the bivariate observations, and it is assumed that after a transformation of the 
form in Eq. 76 the transformed data (Υ( λ ,) ' may be statistically described by a 
bivariate normal density function with mean μ' and covariance matrix Σ. 

Let Ξ' = <?[(Υμ))'] = 1 ·μ'. [Note: For simplicity the sample is considered to 
be unstructured; however, the treatment for a structured sample with a general 
linear model specification is quite straightforward, requiring only that ΧΘ be 
substituted for 1 · μ'.] If 

is the set of transformation parameters yielding bivariate normality, the density 
function of the original data, Y, is 

/ (Υ |μ ,Σ ,λ ) = | L r ^ 2 ( 2 n ) - e x p [ - i t r E - , ( Y ( A > - S X Y W ) - E ) ' ] J , 

where J, the Jacobian of the transformation from \ w to Y, is 

π f\yfrl-

j=l i = l 
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Thus the log likelihood of μ, Σ, and λ is given (aside from an additive constant) 
by 

Χ(μ, Σ, λ I Υ) = - ί 1η |Σ| - \ tr Σ~ - Ε)(Υ(λ> - Ε)' 

y= ι L ί» ι J 

For specified λχ and λ2, the maximum likelihood estimates of μ and Σ are 
given, respectively, by 

μ = - Υ " ' · 1 , 
η 

and 

Σ = - (Υ<"-Ξ) (Υ< Λ ) -Ξ ) ' , 
η 

where Ξ' = 1 · μ'. If these estimates are substituted in the above log-likelihood 
function, the resulting maximized function (up to an additive constant) is 

#«JH,, λ2) = - \ In |Σ| + Σ [(̂  " 1) Σ In y l V ] , (78) 

a function of two variables that may be computed and studied. The maximum 
likelihood estimates l i and λ2 may be obtained by numerically maximizing Eq. 
78. Also an approximate 100(1 — a)% confidence region for A, and λ2, 
obtained on the basis of asymptotic considerations, is 

2 { # ι μ 1 ( Ι 1 , Λ 2 ) - &mMvX2)} ζ χ2Μ 

where xl(ot) is the upper 100a% of the chi-squared distribution with 2 degrees 
of freedom. 

It is easy to see that Eq. 77 is the univariate version of the bivariate version 
in Eq. 78, and that both result from using the power transformations in Eq. 76 
and a likelihood approach, except that Eq. 77 is the result of specifying 
marginal normality whereas Eq. 78 is a consequence of specifying bivariate 
normality. In fact, for the general case of ρ responses, if one were to start with 
the transformations in Eq. 76 and specify a p-variate normal distribution, 
Ν[μ, Σ], for the transformed observations, then, following the same arguments 
used in arriving at Eq. 78 for the bivariate case, one would obtain for the 
general case the following log-likelihood function of λ = (A,, A 2 , . . . , λρ)' after 
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initial maximization with respect to μ and Σ: 

* 2 , · · · . K) = - \ I" PI + Σ [(̂  - 1 ) Σ l n *>] · (79) 

where yl V is the ith observation on the (untransformed) ;'th response 
(i = 1, . . . , n; j = 1,2,..., p), and the ρ χ ρ matrix 

Σ = - (Υ( λ ) - Ξ)(Υ, λ ) - Ξ)', 
η 

Ι - 1·1'(Υμ )) ' for an unstructured sample, 

( Χ θ for a general linear model specification. 

For this general p-response case, however, i f ^ X ) is a function of ρ variables, 
A„ A 2 , . . . , A p , and thus the problem of studying and numerically maximizing it 
is more complex than in the bivariate case (see Chambers, 1973, for a 
discussion of optimization techniques). Formally, however, if λ λ ρ are the 
values that maximize y^Mi p̂)>

 a n approximate confidence region for 
( A , , . . . , λρ), analogous to the bivariate one mentioned above, is defined by 

2{ymMι \)~ ^ „ . . . , λρ)} < χ2(α), 

where χ2(α) is the upper 100a% point of the chi-squared distribution with ρ 
degrees of freedom. 

In certain situations, data may exhibit nonnormality in some but not all 
directions in the space of the original responses. One way of thinking about 
the two approaches discussed thus far is that the one directed toward 
improving marginal normality is concerned with ρ directions, one for each of 
the original coordinates, whereas the approach directed toward enhancing 
joint normality is concerned with all possible directions. The method to be 
described next is concerned with identifying directions (not necessarily con-
fined to prespecified directions such as those of the coordinate axes) of possible 
nonnormality and then estimating a power transformation of the projections 
of the original observations onto these directions so as to improve normality 
along them. The specification of a direction will in general depend on several 
and possibly all, coordinates, and hence the method no longer involves just 
transformations of each coordinate separately. 

As before, let Y' denote the data matrix whose rows, y-, i = 1 , . . . , n, are the 
multiresponse observations. With a general multivariate linear model specifi-
cation, <?(Υ') = ΧΘ (which includes the case of an unstructured sample by 
specifying X as an η-vector of unities, 1, and θ as the unknown mean vector, 
μ'), one can obtain the residual error covariance matrix, S e r r o r , defined in 
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Eq. 66. For brevity of notation, S e r r o r will be denoted as S in the following 
discussion. 

If S 1 / 2 denotes the symmetric square root of S, one can obtain the set of 
sphericized residual vectors, 

* ; = ( y ; - x ; - o ) s - i / 2 , . · = ι , . . . , η , 

where \[ denotes the ith row of the design matrix X. [Note: Once again, for an 
unstructured sample, χ'(·Θ will just be the sample mean vector, y'.] Any 
nonnormal characteristics of the observations y- will be reflected in corre-
sponding (nonnormal) characteristics of the zj, and the direction of any 
nonnormal clustering of points, if present, may perhaps be identified by 
studying a normalized weighted sum of the τ\: 

Σ wfzi 

Σ 
!= 1 

w, = IMP, 

where ||x|| denotes the Euclidean norm, or length, of the vector x, and α is a 
constant to be chosen. 

The vector provides a parametrization of directions in the z-space (and 
hence in the y-space of the original observations) in terms of the single 
parameter a. If a = — 1, d̂  is a function only of the orientation of the z/s, while 
if α = + 1 , ά'Λ becomes sensitive primarily to the observations, y-, that are far 
from the mean y'. More generally, for α > 0 the vector d, will tend to point 
toward any clustering of observations far from the mean, while for α < 0 the 
vector d̂ , will point in the direction of any abnormal clustering near the center 
of gravity of the data. If the scaled residuals are skewed in one direction, d̂ , will 
tend to point in that direction. 

For a specified a, the vector d, (chosen to be sensitive to particular types of 
nonnormal clusterings if any are present) corresponds to the vector a*' = d'aS

112 

in the space of the original observations. The projections of the original 
observations onto the unidimensional space specified by the "direction" d*' 
constitute a univariate sample, and one can estimate a power transformation 
to improve the normality of these projections by using the univariate technique 
of Box & Cox (1964) on the unidimensional "sample" of the projections. The 
effect of the transformation is to alter the data only in the direction d*'. 

The advantage of this method of enhancing directional normality is that the 
relatively small class of power transformations may be applied to very complex 
data. The procedure may be applied iteratively, using a different value of α at 
each stage so as to transform along a different direction. The computations for 
estimating transformations along each direction are univariate (in the sense 
that one is working only with the projections onto the unidimensional space 
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specified by each direction), and this is an important pragmatic advantage of 
this approach. 

As mentioned in the initial definition of the power transformation, X -* Xik\ 
a requirement for using this transformation is that the data be nonnegative 
since otherwise the transformed values may become imaginary for fractional 
values of X. A simple way of conforming to this requirement is to shift all of 
the observations by an arbitrary amount to make them all nonnegative. A 
different way of handling the problem is to use the more general shifted-power 
class of transformations, X -* (X + ξγι\ where (X + ξ) replaces X, and to 
treat ξ as an unknown parameter as well. For using the shifted-power 
transformations the requirement is that X not be smaller than - ξ, rather than 
that it be nonnegative. The main difficulties in using the shifted-power instead 
of the power transformation are that the computations become more complex 
and that the interpretation of the resulting estimates, ξ and X may be 
complicated because of high correlations between them. Nevertheless, for the 
transformation approaches that involve only univariate computations (i.e, 
the schemes aimed at improving marginal normality and directional normal-
ity), it is not out of the question to use the shifted-power class of transform-
ations. On the other hand, for the method aimed at improving joint 
normality, if one were to use the shifted-power transformation the log-likeli-
hood function corresponding to Eq. 79 would be a function of 2p parameters, 
{^1. <ϋι, Ί 2 £2» · · ·»λρ, ip}> so that even for bivariate response data one would in 
general have to consider maximizing a function of four variables to obtain the 
required maximum likelihood estimates of the transformation parameters. 

Example 30. The data consist of 50 (=n) sets of bivariate normal deviates 
generated on a computer. Pairs of random standard normal deviates, (x l f , x 2 l ) , 

Exhibit 3 0 c Monte Carlo normal data (p = 2, it » 50) 

I II III 

Ρ 2, *2 2i 22 
I A*' 

"1.0 
0 0.896 0.957 0.878 0.984 0.688 - 0 . 7 , 0.7 
0.1 0.896 1.021 0.892 1.009 0.811 - 0 . 6 , 0.8 
0.3 0.896 1.085 0.890 1.035 0.714 - 0 . 9 , 0.4 
0.5 0.896 1.041 0.882 1.011 0.728 - 1 , 0 . 2 
0.75 0.896 0.810 0.887 0.887 0.725 - 0 . 6 , 0.8 
0.8 0.896 0.745 0.886 0.852 0.729 - 0 . 5 , 0.8 
0.9 0.896 0.614 0.884 0.782 0.735 - 0 . 3 , 0.9 
0.95 0.896 0.596 0.884 0.769 0.719 - 0 . 3 , 0.9 
0.975 0.896 0.642 0.883 0.784 0.737 - 0 . 3 , 0.9 
0.999 0.896 0.833 0.884 0.859 0.715 - 0 . 6 , 0.8 
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Exhibit 30A. Plot of log-likelihood function with associated confidence intervals (Method I); 
mle of λ = 0.596 
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were transformed using the relationships 

y » = X " . . } , i = l ,2 , . . . ,50 , 
yn = pxU + ν 1 - ρ x2i> 

to obtain the 50 samples, Οή, y2i). from 

To avoid negative values (so that power transformations could be employed), 
the mean vector was shifted sufficiently away from the origin by adding a 
constant vector (c, c) to each of the observations. A range of values for ρ was 
used to provide a basis for comparing the different approaches discussed above 
for transforming observations. For convenience in referring to the approaches, 
the method of Box & Cox (1964) applied to each variable separately so as to 
improve marginal normality is called Method I, the method for enhancing joint 
normality is termed Method II, and the one aimed at improving directional 
normality is designated as Method III. 
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Exhibit 30c. Contour plot of log-likelihood surface with associated confidence regions 

(Method II) for data with ρ = 0.5; mle of λ' = (0.882, 1.011) 

( » ) £ 9 0 * conf. set 

( » & - ) € 95J conf. set 

(*,=&X) € 97-5% conf. set 

(«,=,X&0) e 99* conf. set 

- O . l l f 

0.882 

1.882 

00 
0X= 

0X=« 
0X=*» 
o = * * * 
χ=»»« 
X=«»t 
X=**» 
0=*»t 
Οχ»»» 

X=«« 
0X-* 

0X« 
00 

00000 
— - x x o 
»t*»««xo 
«»»»**=X0 
**«»»*» = χθ 
*»»*»»* = X0 
*«««*«* = X0 
t*««***=XQ 

»»**i*»=X0 
******cX0 
«»*«»«.00 
«»«»=xxo 
=«=xoo 
xxxoo 
000 

ο 
ο 

Exhibit 30α shows the estimates of the transformation parameters obtained 
by the three approaches described earlier. The actual outputs of the analyses 
consist not only of the maximum likelihood estimates involved in each case but 
also, for Methods I and III, plots of the log-likelihood functions involved, 
together with the associated approximate confidence intervals, and for Method 
II a contour plot of the log-likelihood surface displayed with the approximate 
confidence sets for this case. To minimize the number of displays, only a few 
sample plots are included here. 

Over the range of 10 values of ρ shown in Exhibit 30a, it can be seen that 
the estimates of A, and λ2 obtained by Method I vary between 0.596 and 1.085. 
[Note: Because of the scheme used in generating the data, the sample of values 
of the first variable does not change as ρ changes and hence the estimate of kx 

obtained by Method I remains the same for all p.] Moreover, every 95% 
confidence interval includes not only the "true" value of λ = 1 (since the 
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Exhibit 30a\ Contour plot of log-likelihood surface with associated confidence regions 
(Method II) for data with ρ - 0.95; mle of λ' = (0.884, 0.769) 
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original distributions are all normal) but also every other estimate of A. Exhibit 
30b shows a plot of the log-likelihood function of λ2 when ρ = 0.95, the case 
in which Method I yielded the smallest (and farthest from 1) estimate of the 
transformation parameter. 

Method II yielded estimates of A, and λ2 that range between 0.878 and 
1.035, and Exhibits 30c and d show the contour plots of the log-likelihood 
surfaces for the cases when ρ = 0.5 and ρ = 0.95. Even on the coarse grid used 
for generating these plots, there is some indication that the contours are tighter 
for the higher value of p. 
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Exhibits 30*·,/ Scatter plots of data before and after transformation by Method III 
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A very interesting feature of the results in Exhibit 30a is the greater stability 
shown by the estimates obtained by Method II as compared to the ones yielded 
by Method I. The stability is particularly noticeable as ρ increases, although it 
is evident even for small values of p. This is encouraging in that the bivariate 
approach, that is, seeking joint normality while still using coordinatewise 
transformations, is yielding "more" than the repeated application of the 
univariate approach with each variable separately. It is always legitimate to ask 
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whether one gains anything significant by using a multivariate approach. In 
the present case it seems that a multivariate approach may be able to exploit 
the intercorrelations among the variables to advantage and lead to more stable 
estimates. 

The results of applying Method III are also included in Exhibit 30a. The 
value of α used for obtaining the direction of possible nonnormality d*', was 1. 
The estimate of λ as well as the direction, d*'0) is shown. In this Monte Carlo 
example, the method appears to identify an arbitrary direction; and, as seen by 
the λ values and from the fact that all the 95% confidence intervals included 
the value 1, the transformation has not altered the data very much. This is also 
evident in Exhibits 30e and f, which show, respectively, the data before and 
after the transformation. 

Example 31. To illustrate the use of the method for improving directional 
normality in a "nonnull" case, bivariate observations were generated for which 
the first coordinate was distributed lognormally whereas the second was 
distributed normally independent of the first. For these data, using α = 1 in the 
directional method leads to identifying the direction of nonnormality as 
d*'0 = (1,0), as it should, and λ = —0.003, which again is sufficiently close to 
0, the value one would expect. Exhibits 31a and b show scatter plots of the data 
before and after transformation, and the achievements of the transformation 
are clear. 

Exhibit 31a. Scatter plot of untransformed data 
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Exhibit 31*. Scatter plot of data transformed by Method III 

Other examples of the use of the data-based transformation methods 
discussed in this section will be given in Chapter 6 (see Example 45 in Section 
6.3.1). A key point regarding the transformation methods described heretofore 
is that, although the objective in estimating a transformation is perhaps to 
improve normality, there is no guarantee that the resultant transformation will 
actually achieve adequate normality in any particular application. In other 
words, some kinds of nonnormality may not be ameliorated by relatively 
simple types of nonlinear transformations. 

5.4. ASSESSMENT OF DISTRIBUTIONAL PROPERTIES 

Statistical distributions play a useful role in modeling data. Both fitting and 
assessing the fit of various distributions to univariate data are common 
exercises. One reason for the interest in using appropriate distributions for 
modeling data is the feasibility of obtaining parsimonious representations of 
data in terms of the parameters (hopefully much fewer in number than the 
observations) of such distributions. 

The variety of univariate distributional models is, of course, very rich, 
whereas this is not so in the multivariate situation. In fact, the multivariate 
normal distribution has been almost exclusively at the center of much of the 
development of multivariate methodology, and, although other multivariate 
distributions have been proposed as alternative models, far less use has been 
made of these in practice (see Kendall, 1968). For example, stimulated in part 
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by the need for alternative models in the study of properties of robust 
estimators such as those discussed in Section 5.2.3, a class of distributions 
called the elliptical distributions has been considered. This class includes the 
multivariate normal as a member as well as others which are all elliptically 
symmetric like the multinormal but having either longer (heavier) or shorter 
(lighter) tails. Section 5.4.3 contains a brief discussion of elliptical distributions.. 

The lack of availability of a variety of alternatives is perhaps one explana-
tion for the relative lack of emphasis, in the multiresponse situation as opposed 
to the univariate one, on assessing distributional properties and assumptions 
in the light of the data. Nevertheless, certain questions can be posed and 
solutions to them proposed, and the two subsections that follow are concerned 
with methods addressed to two sets of questions. Section 5.4.1 will discuss 
methods for evaluating the similarity of the marginal distributions of the 
responses, and Section 5.4.2 will describe techniques for assessing the normality 
of multiresponse data. 

5.4.1. Methods for Evaluating Similarity of Marginal Distributions 

Many of the theoretical multivariate distributions that have been proposed as 
bases or models for statistical analyses of data have the feature that the 
marginal distributions are either identical or common up to origin (or location) 
and/or scale parameters. For instance, in addition to the multivariate normal, 
the usual definitions of the multivariate t, F, and beta (or Dirichlet) distribu-
tions all incorporate this feature. 

Many multivariate summaries (e.g, correlation coefficients or the covariance 
matrix) seem to depend, for sense and interpretability, on the degree of 
similarity of the marginal distributions of the components of a multiresponse 
observation. Also, to the extent that multivariate normality motivates many of 
the usual multivariate methods, a preliminary step for matching a body of data 
to such methods might be the assessment of the degree of commonality of the 
marginal distributions. 

The problem to be considered here is the following: given a set of multires-
ponse observations which, for purposes of analysis, is viewed as a random 
sample from a single multivariate distribution, provide ways of assessing the 
degree of similarity or commonality of the marginal distributions of the 
components. Two types of approaches to this problem have been proposed by 
Gnanadesikan (1972) and will be described here. The first consists of informal 
graphical methods in the spirit of probability plotting techniques, while the 
second is based on the methods of Section 5.3 for developing data-based 
transformations to improve the normality of the observations. 

One simple approach to the problem of assessing commonality is to ignore 
the multivariate nature of the observations and to study quantile-versus 
quantile (Q-Q) probability plots (see Wilk & Gnanadesikan, 1968, and the brief 
description in Section 6.2) of the observations on the individual components 
separately, using a common distribution (e.g, univariate normal) as the 
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standard for comparison. Although this method can often be useful, it is not 
parsimonious in some ways and in certain applications may lead to findings in 
the separate analyses that are difficult to integrate into a cohesive overall 
conclusion. 

A second approach, which is more parsimonious than the above one, is to 
calculate the individual averages of the corresponding ordered observations for 
all of the components (i.e., average of smallest observation on each component, 
average of second smallest, etc.) and to make Q-Q probability plots of these 
averages. This is merely an adaptation, to the multiresponse case, of a method 
proposed by Laue and Morse (1968) for studying the assumed common 
distribution underlying several mutually independent, but comparable, sets of 
univariate data. Possible noncommensurability of the components in the 
multiresponse case may be handled by averaging the ordered observations after 
standardizing the individual components. This method, too, can be quite useful 
in some circumstances. However, like the first approach, it also uses an external 
standard distribution for comparison purposes; moreover, the averaging in-
volved is likely to mask the differences among the marginal distributions, and 
thus, for the purpose of assessing the degree of similarity of marginal distribu-
tions, the method may not be sufficiently sensitive. 

A third approach, which avoids the drawbacks of the first two while having 
its own limitations, is the joint plotting of component order statistics as now 
described. Let the rows of the n x p matrix, Y '= ((j,j)), i = 1 , . . . , η; 
7 = Ι , . , . , ρ , denote the ηp-dimensional observations. The jth column of Y' 
then consists of the η observations on the j'th response, and one can order these 
observations to obtain 

for each value of; separately. The first approach mentioned above consists in 
obtaining, for each standard distribution chosen, ρ Q-Q plots of these ρ sets of 
ordered observations. The second approach involves obtaining η averages, 
Σ* = 1 y[i}]lp for i = 1, . . . , n, and studying a single Q-Q plot of these for every 
chosen standard distribution. [Note: One version of the first approach which 
would avoid the need for choosing an external standard distribution would be 
to plot the η ordered observations on the jth response against the ordered 
values of the η averages defined in the second approach. For obtaining usefully 
stable averages, however, this would require a reasonably large value of ρ and 
hence a very much larger value of n, which might prove to be a severe 
requirement in some applications.] 

For the third approach, a set of η sample multivariate order statistics is 
obtained by collecting together the corresponding ordered observations, 

yiu = (>Ί.·ΐ]' y [ i 2 ] » . . . , y [ i p l ) for i = l, 2 , . . . , n. 

A plot of these η derived points in p-space is called a component probability plot 
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(CPP for short). Actual graphical displays may be obtained for two- and 
three-dimensional projections of the π points, that is, for subsets of sizes two 
and three from among the original ρ variates. 

The motivation for this method of intercomparing the distributions of the 
components of the multivariate observation is that if, in the original coordinate 
system, the marginal distributions are the same up to origin and scale 
parameters, one may expect that the combined (i.e, multivariate) order 
statistics will conform to a linear configuration. Departures from linearity 
would indicate noncommonality of the marginal distributions. The procedure 
does not depend on any specific distributional assumptions and is addressed 
to the assessment of the composite hypothesis that the marginal distributions 
are the same up to origin and scale. A negative indication from this analysis 
may suggest the need for a nonlinear transformation on one or more of the 
coordinates. 

In practice, the procedure may be particularly relevant and revelant when 
all the correlations among the variates are nonnegative. One implication of this 
is that two-dimensional CPP's are likely to be particularly useful (since a 
change of sign of one of the variables will accomplish this) and may be 
employed for assessing the similarity of marginal distributions of bivariate 
observations. 

For the case of two variates, when there is no dependence between the 
variates the CPP is just a Q-Q probability plot since one is essentially plotting 
one set of empirical quantiles (sample order statistics) against another. Also, it 
is apparent that, when there is perfect positive correlation between the two 
variates, the two-dimensional CPP will be an exact linear configuration. In 
general, as the correlation decreases toward 0, the scatter about a linear 
configuration may be expected to increase. A useful supplement to the CPP is 
to fit a straight line to the scatter of the η points in p-space by minimizing the 
sum of squares of perpendicular deviations of the points from the line and to 
compute the value of the achieved minimum orthogonal sum of squares 
(MOSS). The algorithms for fitting the MOSS line and computing the MOSS 
value are simply linear principal components analysis ones (i.e, eigenanalysis 
of covariance matrices of the points plotted in the component probability 
plot). 

Noncommensurability of the ρ components will introduce the usual difficul-
ties of principal components analysis. Hence, both as a more reasonable 
graphical scaling technique and as a way of standardizing the above fitting 
procedure, one can define, display, and work with a standardized component 
probability plot (SCPP), which is a component probability plot whose coordi-
nates have been standardized to have unit variance. 

The crux of the graphical nature of the CPP or SCPP is the linearity of the 
configuration under null conditions and the departures from linearity other-
wise. In two- or three-dimensional representations the picture is an adequate 
conveyor of information on conformity to linearity, but in higher-dimensional 
(and perhaps even in three-dimensional) space one needs some summary 
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statistics to facilitate the assessment. The covariance and correlation matrices, 
S 0 and R„, respectively, of the points in the CPP are natural starting points. 
Eigenvalues, and functions derived from them, of S 0 and/or R0 may also be 
studied. Specifically, for instance, the MOSS associated with a p-dimensional 
CPP (SCPP) is the sum of the (ρ - 1) smallest eigenvalues of S 0 (R0). For this 
and other summary statistics, it is useful to obtain some idea of their null 
distributions (i.e, distributions when the marginal distributions are the same 
up to origin and/or scale) so that some benchmarks will be available against 
which to compare observed values. 

A different type of approach to the question of evaluating the similarity of 
marginal distributions can be based on the transformation techniques dis-
cussed in Section S.3. The basic idea in this approach is, first, to transform the 
observations on each coordinate of a multivariate random variable so as to 
make the distributions of the transformed quantities more nearly the same; 
and, second, to intercompare the transformations, deciding that if they are in 
some sense identical or similar the original marginal distributions must have 
been equally similar. The choice of the class of transformations to be employed 
is an important issue. For present purposes only the power class of transform-
ations (see Section 5.3) is considered. Specifically, one looks for a set of ρ 
transformation parameters, λ = ( Α „ . . . , Α ρ ) ' , to transform the set of observa-
tions, Y', to (Y w ) ' = ((yj^)), where 

yu, m yjl_zl for kj φ 0 

= In y,j for k} = 0, 

ytj > 0; ι = 1,.. . ,n; j = 1,...,p. The objective of transforming the initial 
observations is to make the transformed observations have more nearly the 
same marginal distributions, and a natural choice for the common base 
distribution is the normal distribution. Hence the problem is to estimate the 
parameters, ku...,kp, from the data so as to enhance normality on the 
transformed scales (this is exactly the problem discussed earlier in Section 5.3) 
and then to develop methods for comparing the estimates, A„ k2, •.., kp, to 
assess the reasonableness of assuming that they are all essentially estimates of 
a common parameter, λ. In this formulation, if indeed A,,. . . , lp turn out to be 
a cohesive set of estimates of a common parameter, it will not be unreasonable 
to conclude that the original marginal distributions are quite similar except 
possibly for differences in location and/or scale. 

Corresponding to the methods of Section 5.3, there are two possibilities for 
specifying normality of the transformed scales, namely, improving marginal 
normality and enhancing joint normality. As discussed in Section 5.3, the 
method concerned with improving marginal normality would involve a con-
sideration of the ρ log-likelihood functions, &mtt{k}), for; = 1, . . . , p, defined in 
Eq. 77, and the associated maximum likelihood estimates, 2, kp, as well 
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as the ρ approximate confidence intervals for λ1,λ2,... and Xp involved here 
(see the discussion in Section 5.3). As a procedure for assessing the similarity 
of marginal distributions, one can study plots of &mtt(Xj) for j = 1, . . . , ρ on a 
single plot, or the ρ confidence intervals for Xu...,Xp, respectively, and infer 
the cohesiveness of the estimates. Thus, if the plots of &m„{Xj) overlap 
considerably, or, equivalently, if the confidence interval for X} includes not only 
Xj but also Xk for every k^j and this happens for every ;', one can conclude 
that λi,..., Xp behave as if they are estimates of a common parameter, X. [Note: 
For convenience in scaling the superimposed plots, it is desirable to plot the 
likelihood ratios, L(Xj)/L(Xj), where L(Xj) = exp(i?m > 1), instead of the log-
likelihood functions, -S?m a i, since all the ratios have a maximum value of 1.] 

Adopting the more explicitly multivariate approach, one would obtain the 
maximum likelihood estimates that enhance joint normality as the values 
Xv...,Xp that maximize the log-likelihood function, &mtx(XvXp), defined 
in Eq. 79. A simple test of the significance of the hypothesis that Xl = X2 = 
• • • = Xp = X, say, may be obtained by using the approximate asymptotic theory 
associated with the likelihood approach. In particular, the statistic 

2{#«*J&» Κ • • • > Κ) - (80) 

may be referred to the chi-squared distribution with (ρ — 1) degrees of freedom. 
The first term within the curly brackets in Eq. 80 is just the maximum value 
of ^ma,^! , . . . ,Xp) of Eq. 79. The second term is the maximum value of 
&mi(Xi,... ,Xp\Xl = •·• = Xp = X), which may be defined by analogy with Eq. 
79 just by replacing the by y\f, wherein a common value X is used in place 
of the separate Xj. The second term in Eq. 80, therefore, involves just a 
one-dimensional maximization, whereas the first term entails a p-dimensional 
maximization that may require considerable computational effort. (See Cham-
bers, 1973, for a discussion of available numerical optimization algorithms.) 

The computational effort involved in the transformation approach would 
increase considerably if the class of transformations were to be enlarged to 
include the shifted-power transformation [viz., with (y y + ξ}) in place of ytj\, 
which, among other advantages, would enable one to handle negative obser-
vations as well as positive ones. Apart from this important consideration, 
however, once again in principle the above approach can handle the shifted-
power class of transformations. 

Other classes of transformations, which remain simple and yet provide 
additional flexibility, need to be considered. There are, of course, limitations to 
the transformation approach, including general conceptual ones such as the 
possible nontransformability of some distributions by simple classes of trans-
formations. Also, in some circumstances, it may be misleading to conclude that 
the marginal distributions are similar in shape just because the power trans-
formations of the variables are essentially identical. This is illustrated in 
Example 34. 
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The two approaches to evaluating the similarity of marginal distributions 
have been applied to a variety of computer-generated two- and three-dimen-
sional data. For instance, with bivariate normal data it was found repeatedly 
(and comfortingly) that both the graphical technique and the transformation 
test led to no striking or significant departures from null expectations (see 
Gnanadesikan, 1972, for a typical example of this sort). The performances of 
the techniques under nonnull conditions would, of course, be more interesting 
to study, and the next three examples illustrate specific aspects of the two 
approaches as they are revealed in the context of particular types of departures 
from the case of similar marginal distributions. For simplicity of discussion and 
display, the data in each of these examples are two-dimensional. 

Example 32. The data for this example are a computer-generated sample of 
100 bivariate observations in which one component has a standard normal 
distribution and the other an independent lognormal distribution, Λ(0,1), in 
the notation of Aitchison & Brown (1957, p. 7). All of the observations on the 
first coordinate were shifted to make them positive so as to allow the use of 
the simple power transformation. 

Exhibit 32 shows the SCPP for this example. The MOSS value here is 0.16, 
which is about an order of magnitude larger than the typical values observed 

Exhibit 32. SCPP of lognormal vs. normal 

NORMAL 

MIMMUM ORTHOGONAL SUM OF SQUARES IS 0.1633 
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with bivariate normal data (see Example 1 of Gnanadesikan, 1972). The 
departure from linearity is striking and clearly suggests the extreme dissimilar-
ity of the two marginal distributions. 

The value of the log-likelihood ratio test statistic defined in Eq. 80 turns out 
to be 16.06 in this example. The associated probability of exceedance in the xft) 

distribution is 6 χ 10~5, indicating a highly significant departure from com-
monality. 

Example 33. This example is based on a bivariate subset of trivariate data 
in which one component has a χ(

2

2) distribution, another has an independent 
xf3) distribution, and the third component is derived as the sum of the first two 
components, so that it has a χ2

$) distribution that is not independent of the first 
two distributions. The value of η is 50, and the subset chosen is the [χ(

2

2 ), xf5,] 
combination. Exhibit 33 shows the SCPP for this example, together with the 
fitted straight line and the associated MOSS value of 0.06. The systematically 
curved nature of the configuration on this plot would suggest dissimilarity of 
the marginal distributions. 

On the other hand, the statistic defined in Eq. 80 turns out, in this example, 
to have the value 2.14, which is exceeded in xfX) distribution with a probability 
of 0.14, thus suggesting no highly significant departure from commonality. The 
estimated values of A, and λ2, in this bivariate transformation approach, are 
0.41 and 0.69, respectively, while the estimate of λ (the hypothesized common 

Exhibit 33a. SCPP of χ2(2) vs. χ\5) 

CHI - SQUARE ( 5 ) 

MINIMUM ORTHOGONAL SUM OF SQUARES IS 0 . 0 6 0 8 
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Exhibit 336. Superimposed likelihood-ratio plots with associated confidence intervals 
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value of λ{ and λ2) is 0.49. The corresponding univariate transformation 
approach leads to the estimates ) n = 0.33 and 12 = 0.73, and Exhibit 33b 
shows the superimposed plots of L(kj)/L(Xj), j = 1,2, with approximate confi-
dence intervals for λγ and λ2 also displayed on the figure. Although the 
univariate approach tends to pull the transformations of the two variables 
apart to a greater degree than does the bivariate approach, the overall 
indication from both approaches is of a moderate but not very strong difference 
in the two marginal distributions in this example. 

In this example, therefore, the graphical display via the SCPP tends to be 
more revealing than the more formal test of significance based on the 
transformation approach. The next example brings out the same result even 
more forcefully. 

Example 34. The bivariate data for this example consist of 100 observations 
simulated to be a random sample from the bivariate lognormal distribution, 
Λ [μ, Σ], where 

μ' = (0, 5) and Σ = 
2.7' 

9 

Exhibit 34α shows the SCPP for this example, and the departure from 
linearity is very striking. The MOSS value for this SCPP is 0.25. 
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Exhibit 34a. SCPP for bivariate lognormal data 

LOG NORMAL 

MINIMUM ORTHOGONAL SUM OF SQUARES IS 0.2533 

Exhibit 346. Superimposed likelihood ratio plots with associated confidence intervals 

LAMBDA 
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The results of using the transformation approach, however, are totally 
unrevealing^ in this example. The bivariate approach leads to the estimates 
1, = 0.02, X2 = 0.04, and 1 = 0.03, and the value of the log-likelihood ratio 
statistic is 0.07, with an associated exceedance probability of 0.79. The 
univariate transformation approach yields λι = 0.03 and λ2 = 0.05, and Ex-
hibit 34b shows the superimposed plots of L(Xj)/L(Xj), j = 1,2. The closeness 
of the estimates of λι and λ2 and the considerable overlapping of the curves in 
Exhibit 31b sdhould be anticipated in this example, since, although the two 
lognormal distributions are distinctly different in shape (as judged by the 
difference between the diagonal elements of Σ above), the power transform-
ation needed to transform both lognormal distributions to normal distribu-
tions is just the logarithmic one, that is, the one corresponding to λ = 0. In 
fact, all the above estimates of Xl and λ2 are statistically close to this zero value. 

This example thus illustrates a limitation of the transformation approach in 
that the closeness of the transformations (within a class such as the power one) 
required to enhance normality of the marginal distributions is not a sufficient 
condition for similarity of the distributions of the untransformed variables. 

5.4.1 Methods for Assessing Normality 

The assumption of multivariate normality underlies much of the standard 
"classical" multivariate statistical methodology. The effects of departures from 
normality on the methods are not easily or clearly understood. Moreover, for 
analyzing multiresponse data, while techniques that are resistant to outliers are 
currently available (see Section 5.2.3), others that are more generally robust 
against a variety of departures from idealized models are still at a relatively 
nascent stage, especially in terms of experience in using them. Thus it would be 
useful to have procedures for verifying the reasonableness of assuming normal-
ity for a given body of multiresponse observations. If available, such a check 
would be helpful in guiding the subsequent analysis of the data, perhaps by 
suggesting the need for and nature of a transformation of the data to make 
them more nearly normally distributed, or perhaps by indicating appropriate 
modifications of the models and methods for analyzing the data. 

Not only is there a paucity of multivariate nonnormal distributional models, 
but also most of the proposed alternative distribution (e.g., multivariate 
lognormal, exponential) are defined so as to have properties that are similar to 
those of the multivariate normal (e.g., that all marginal distributions belong to 
the same class). Real data will, of course, not necessarily conform to such 
specialized forms of multivariate nonnormality. 

With multiresponse data it is clear that the possibilities for departure from 
joint normality are indeed many and varied. One implication of this is the need 
for a variety of techniques with differing sensitivities to the different types of 
departures: seeking a single best method would seem to be neither pragmati-
cally sensible nor necessary. Developing several techniques and enabling an 
accumulation of experience with, and insight into, their properties is a crucial 
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first step. Aitkin (1972), Andrews et al. (1973), and Malkovich & Afifi (1973) 
have proposed different methods for assessing normality, and the discussion in 
this subsection draws heavily from the work of Andrews and his colleagues. 
Mardia (1980) provides a survey of various tests for normality. 

One way of seeing the need for a variety of techniques in the multivariate 
case is in terms of the degree of commitment one wishes to make to the 
coordinate system for the multiresponse observations. (See also the discussion 
of this issue in Section 5.2.3 regarding robust estimates of multivariate 
location.) At one extreme is the situation in which interest is completely 
confined to the observed coordinates. In this case the marginal distributions of 
each of the observed variables and conditional distributions of certain of these, 
given certain others, will be the objects of interest. On the other hand, the 
interest may lie in the original coordinates as well as all possible orthogonal 
transformations of them, and here summaries (such as Euclidean distance) that 
remain invariant under orthogonal transformations will be the ones of interest. 
More generally, the class of all nonsingular linear transformations of the 
observed variables may be the one of interest, and then affine invariance will 
guide the analysis. Aside from linear transformations, one may sometimes be 
willing to make simple nonlinear transformations (perhaps of each coordinate 
separately) so as to be able to use simple models and techniques. In this case 
the methods used should reflect an awareness of this degree of flexibility and 
should attempt to incorporate it statistically. Much of the formal theory of 
multivariate analysis has been concerned solely with affine invariance, thus 
limiting the class of available procedures. The present subsection will consider 
techniques that are applicable to situations with different degrees of commit-
ment to the observed coordinate system, including the classical one requiring 
affine invariance. 

Another important issue with multivariate techniques is that, although some 
complexity of the methods is to be expected, they should, if possible, be kept 
computationally economical. The feasibility of extensive computing, made 
easily accessible by modern computers, does not imply that every technique is 
economically tenable. One objective used in developing the methods to be 
described below was that, computationally, they be reasonably economic and 
efficient. 

The methods for assessing normality to be discussed here may be grouped 
under the following headings: (i) univariate techniques for evaluating marginal 
normality; (ii) multivariate techniques for evaluating joint normality; and (iii) 
other procedures based on unidimensional views of the multiresponse data. As 
mentioned earlier (see also Section 5.3), performing an initial transformation 
on the data and then using "standard" methods of analysis constitute a 
prevalent and often useful approach in analyzing data. Hence, as a general 
approach under each of the three categories of methods mentioned above, the 
assessment of normality may be made by inquiring about the need for a 
transformation. However, an approach that is not explicitly dependent on 
data-based transformations is also possible. Techniques of both types are 
discussed below. 
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Evaluating Marginal Normality. In practice, a single overall multivariate 
analysis of data is seldom sufficient or adequate by itself, and almost always it 
needs to be augmented by analyses of subsets of the responses, including 
univariate analyses of each of the original variables. Although marginal 
normality does not imply joint normality, the presence of many types of 
nonnormality is often reflected in the marginal distributions as well. Hence a 
natural, simple, and preliminary step in evaluating the normality of multi-
response data is to study the reasonableness of marginal normality for the 
observations on each of the variables. For this purpose one can use a variety 
of well-known tests for univariate normality, some of which are described next. 

Perhaps the most classical method of evaluating the normality of the 
univariate observations Xt,...,XK is by means of the well-known skewness 
and kurtosis coefficients: 

i = l 
3/2 ' 

Σ ( * < - * ) 2 ! 

b 
η χ (Χ, - χγ 

Tables of approximate 5% and 1% points of these two statistics may be found 
in Pearson & Hartley (1966, pp. 207-208). 

D'Agostino & Pearson (1973) have proposed improved schemes for using 
^/bl and b2 to test normality rather than employing these coefficients directly. 
Specifically, they provide (i) graphs (based on extensive computer simula-
tions) for calculating the empirical probability integral of b2 (under the null 
hypothesis of sampling from a normal) for a specified sample size π 
(20 < η ^ 200), and (ii) a table for calculating a standardized normal equival-
ent deviate X(yjb~l) corresponding to ^/bl — the table gives values of δ 
and Ι/λ for use in the definition, X( v / fe7) = δsinh~l(y/b~i/X), for values of 
η = 8(1)50(2)100(5)250(10)500(20)1000. 

Given an observed couplet of values s/bl 0 and b20 derived from a 
sample of n0 observations, one may use the graphs of the empirical probability 
integral of b2 to obtain a value of the cumulative probability, P(b20\n0) = 
P(b2 ^ b20\n = n0), and then the equivalent standard normal deviate, X(b20), 
corresponding to this probability. Also, the table of values of δ and Ι/λ can be 
used to calculate X(yjbl0). These standard normal deviates, X(s/bl 0 ) and 
X(b20), may be utilized individually for testing skewness and kurtosis depar-
tures, and, in addition, they can be combined into a single omnibus test 
statistic, 

Χα, = *\y/bTo) + *2(*>2.o), 



190 MULTIVARIATE STATISTICAL MODELS 

which can be referred to a chi-squared distribution with 2 degrees of freedom. 
D'Agostino & Pearson (1973) also suggest a second omnibus test based on tail 
probabilities rather than the equivalent normal deviates, but they state that the 
two tests are likely to produce very similar results. 

Shapiro & Wilk (1965) have suggested a different omnibus test for normality 
that has appealing power properties including generally good sensitivity to a 
wide variety of alternatives to the normal (see Shapiro et al , 1968). The statistic 
proposed for assessing the univariate normality of Xlt..., X„ is 

where X(l) ^ Xm ^ ··· *ζ X[n) denote the ordered observations, and the unit-
length vector a' = (alt.. .,an) is defined in terms of the vector of expected 
values, m', of standard normal order statistics and their covariance matrix, V, 
as 

The numerator of W is, except for a multiplicative constant, the square of the 
best linear unbiased estimate of the standard deviation from the order statistics 
of a sample assumed to be from a normal population (see Sarhan & Greenberg, 
1956, Section 10C), and the denominator is, of course, (η — 1) times the usual 
unbiased estimate of the variance. Shapiro & Wilk (1965) provide tables of 
values of the coefficients {at} for π = 2(1)50. 

Small values of W correspond to departure from normality, and percentage 
points are given by Shapiro & Wilk for η = 3(1)50. 

For handling η > 50 without extensive tabulation of coefficients (or percen-
tage points), D'Agostino (1971) has proposed an alternate test statistic, 

W = 

Σ ( * . · - * ) 2 

1=1 

a' = 
m'V 1 

llm'V-1!!' 

τ D = 1/2' 

where 

is essentially Gini's mean difference and also, except for the multiplicative 
constant 2λ/π/η(« — 1), the estimator of the standard deviation of a normal 
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distribution proposed by Downton (1966). Thus D is a constant times the ratio 
of two estimates of the standard deviation, and both large and small deviations 
from its expected value correspond to departures from normality. D'Agostino 
(1971) gives a brief table of percentage points of a standardized version of D 
for sample sizes up to 1000. 

For moderately large samples another simple test for normality has been 
proposed by Andrews et al. (1972). The test is based on the normalized gaps, 

9i= , ι = 1 , . . . , ( « — 1 ) , 

m( + 1 - m, 

where m' = (m lt..., m„), as before, is the vector of expected values of standard 
normal order statistics. 

If the distribution of X is normal with mean μ and variance σ2, the gt will 
be approximately independently and exponentially distributed with scale 
parameter σ. Under an alternative, the configuration of the ordered observa-
tions may be expected to depart from the m, with a corresponding effect on the 
configuration of the g,. One approach for studying relatively smooth depar-
tures from the null configuration of the g, proceeds via an examination of 
means of adjacent gr Specifically, one can compute sums of the first quarter, 
the middle half, and the last quarter of the a,: 

[<»-l>/4] [3<n-l) /4] #1-1 

SL = Σ 9i> SM= Σ fli> SU = Σ 9i-
i = l i = I ( i i - l ) /* ] ί = (3(ιι-1)/4] 

Let «! be the number of normalized gaps involved in SL and Sv, and n2 the 
number involved in SM, so that 2 ^ + n2 = (η — 1). Then, under null condi-
tions, 

9L = —SL and gu = — Su 

will have mean σ and variance σ2/η1, while 

9M = ΖΓ$Μ 

has mean a and variance a2/n2. 
On the basis of the approximate exponential distribution of the normalized 

gaps, the ratios rL = gJgM and rv = gv/gM will each have an F distribution 
with degrees of freedom 2ηχ and 2n2. Thus, for large n, rL and rv may each be 
treated as approximately normal with mean 1 and variance (1/n, + \/n2). Also, 
a test statistic (distributed approximately as chi-squared with 2 degrees of 
freedom) which will tend to be more omnibus by combining the information 
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in rL and rv is the quadratic form in (rL — 1) and (rv — 1) with compounding 
matrix n,I - [n2

1/(2n1 + n2)]J, where I is the identity matrix and J is a matrix 
of unities. With n2 = 2nu this xf2) statistic is 

Thus, three statistics, rL, rv, q, together with approximate significance levels, 
may be calculated. The statistics rL and rv may be useful in interpreting and 
acting on significant nonnormality detected by the more omnibus q. 

In addition to the direct tests for univariate normality discussed thus far, on 
can inquire into tests based on transforming the data. One such test can be 
developed in conjunction with the method proposed by Box & Cox (1964) for 
estimating shifted-power transformations, 

The estimation problem and an approach of Box & Cox to it was discussed in 
Section 5.3, where the detailed development was presented for the case in which 
ξ, the shift parameter, is taken to be 0. For the purpose of deriving an 
associated test for univariate normality, using both the shift and power 
parameters would seem to be more advantageous than using just the power 
parameter, A. Basically, A appears to be sensitive to skewness, whereas ξ seems 
to respond to kurtosis and heavy-tailedness. Also, in the univariate situation, 
including ξ implies a two-parameter effort in computational aspects, and this 
is not too difficult to handle. 

Thus, if XvX2,...,Xn are univariate observations, which are to be trans-
formed by a shifted-power transformation of the above form so as to improve 
normality on the transformed scale, then, following Box & Cox (1964) and 
essentially the same steps as outlined in Section 5.3, one can obtain a 
log-likelihood function (initially maximized with respect to the mean and the 
variance for given ξ and A) quite analogous to the one in Eq. 77 of Section 5.3: 

where δ2, a function of both ζ and A, is the maximum likelihood estimate of 
the variance of the presumed normal distribution of the transformed observa-
tions, for example, 

9 = J {3('L - I ) 2 " 2(rL - lXr„ - 1) + 3(rv - l ) 2 } . 

l(X + ξ)1 - 1 ]/A for λΦΟ, 

\τι(Χ + ξ) for A = 0. 

* » Λ ί . Χ) = " Jin σ2 + (A - 1) Σ ϊη(Χι + ξ), 
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for an unstructured sample. The above log-likelihood function may be maxi-
mized to obtain the maximum likelihood estimates, ξ and A, and approximate 
asymptotic theory yields a 100(1 — a) % confidence region for ξ and A, defined 
by 

2{θά)-^. , (^)}^Ι(4 
where xl(ct) denotes the upper 100a% point of a chi-squared distribution with 
2 degrees of freedom. A simple transformation-related procedure for assessing 
the normality of the distribution of X consists in not rejecting (at a 100a% level 
of significance) the hypothesis of normality if the above confidence region 
overlaps with the line A = 1. A related, more stringent "likelihood-ratio test" 
would consist of comparing the value of 2{^f m i I ( | , A) — i ? m „ ( | , 1)} to a 
chi-squared distribution with 1 degree of freedom. [Note that Sfmitf, 1) is 
independent of ξ so that any value, including ξ, maximizes ^ηΛΧ(ζ, 1) as a 
function of £.] 

When the observations on the variable X are structured (i.e, some design 
or regression structure underlies the observations), Andrews (1971) has pro-
posed exact procedures (confidence regions as well as tests) for formal 
inferences regarding ξ and A, and one can use these in place of the approximate 
procedures described above. In many applications the conclusions from using 
the exact procedures are not likely to be markedly different from those arrived 
at by the approximate methods. 

The preceding discussion has been concerned with formal tests of signifi-
cance for detecting departures from univariate normality. For data-analytic 
purposes, plotting on normal probability paper or making a normal Q-Q 
(quantile-versus-quantile) probability plot (see Section 6.2) is often a very 
useful method of assessing the univariate normality of observations. The 
technique consists in plotting the ordered observation, X(i), against the 
quantile, qt, of the standard normal distribution corresponding to the cumu-
lative probability [i—\)/n (or i/n + 1 or similar fraction) for / = l , . . . ,n . 
[Note: q, — Φ _ 1 (ρ ( ) , that is, a, is defined by the equation, 

1 
-7=exp(-2-t

2)dt = pt, 
J - 00 yj 2n 

where p( = (i — \)/n or similar fraction.] A linear configuration on such a plot 
would correspond to adequate normality of the observations, while systematic 
and subtle departures from normality would be indicated by deviations from 
linearity. 

Although a normal probability plot does not provide a single-statistic-based 
formal test, as a graphical tool it conveys a great deal more information about 
the configuration of the observations than any single summary statistic is likely 
to do. In fact, one motivation for the W statistic of Shapiro & Wilk (1965) 
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mentioned earlier is that it provides a comparison of the square of the slope of 
a normal probability plot of the observations against the usual estimate of 
variance and hence is directed towards assessing the linearity of such a plot. 
Devising tests directed toward detecting specific departures from linearity (e.g., 
quadratic or cubic) would be natural extensions of the W test. Also, Filliben 
(1975) has proposed a test based on the correlation coefficient from the normal 
probability plot, that is, for the points (q„ X(l)), i = 1,..., n. The normal 
probability plot is, however, likely to be a valuable supplement to any single 
test procedure. 

A graphical display of the normalized gaps is also possible. A plot of in-
versus i, for i = 1,...,(« — 1), should appear as a random horizontal scatter 
revealing no systematic patterns or extremely deviant observations, provided 
that the original data are reasonably normally distributed. Under several 
nonnormal alternatives, the g, have expected values that deviate smoothly but 
noticeably in the tails, and this will show up as deviations from horizontality 
at the left and right ends of the plot of g, versus i. To reduce the "noisy" 
appearance, some smoothing of such a plot may be helpful. Exponential 
probability plots of the normalized gaps [i.e., a plot of the ith ordered value, 
g{i), versus the "corresponding quantile," viz., the quantile for a fraction such 
as (i — \)/n, for the exponential distribution] can also be made and studied. 
Another variant is to make a normal probability plot of the cube roots of the 
normalized gaps. 

Evaluating Joint Normality. In practice, except for rare or pathological 
examples, the presence of joint nonnormality is likely to be detected quite often 
by methods directed at studying the marginal normality of the observations on 
each variable. However, there is a need for tests that explicitly exploit the 
multivariate nature of the data in order, it is hoped, to yield greater sensitivity. 
Some methods addressed to this need are discussed next. 

Classical goodness-of-fit tests, such as the chi-squared and Kolmogorov-
Smirnov tests, would be possibilities for use in testing for multivariate normal-
ity. However, the drawbacks of these tests in univariate circumstances (e.g., 
choice of the number and boundaries of cells for the chi-squared test) are likely 
to be magnified for the multivariate case, and this may be part of the reason 
for the noticeable lack of use of these procedures with multivariate data. Also, 
Weiss (1958) and Anderson (1966) have suggested tests based on local densities 
of the observations, but perhaps because of the difficulty of the computations 
involved, neither of these has seen wide application. 

A relatively simple test, called the nearest distance test, has been proposed 
by Andrews et al. (1972) for testing joint normality. In this test nearest 
neighbor distances for each point are transformed through a series of steps to 
standard normal deviates. Under the null hypothesis these transformed distan-
ces are independent of the coordinates of points from which they are measured. 
This independence may be tested by multiple regression techniques. 

The first step in the procedure is to transform the data to the unit 
hypercube, using the sample version of a transformation discussed by Rosen-
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blatt (1952). One way of implementing the transformation is to initially 
transform the observations, using the sample mean vector and covariance 
matrix so as to make the transformed data have zero mean and identity 
covariance matrix. Then one applies the probability integral transformation to 
each "observation" on each coordinate separately, using the standard normal 
distribution as the null basis for the probability integral transformation. [Note: 
The degree of nonuniformity in small samples, resulting from using the 
univariate probability integral transformation with estimated values of the 
parameters substituted for the parameters, has been studied by David & 
Johnson (1948).] For adequately large sample sizes, it is perhaps not unreas-
onable to expect the data, if they conform to the null hypothesis of joint 
normality, to be transformed to the unit hypercube by this means. Also, for 
large sample sizes (>50 when ρ is small), the occurrence of points in disjoint 
parts of this space may be usefully approximated by independent Poisson 
events. 

For each point x; in this hypercube, a nearest neighbor distance may be 
calculated by using the metric 

d(xt, Xj) = max{min[|xjk - x j k \ , \ \ x i k - xjk{ - 1|]}. 

[Note: To avoid boundary effects, the metric "wraps around" opposite faces of 
the unit hypercube. Other ways of handling this problem may also be worth 
considering.] Other metrics, such as the Euclidean one, may also be used. 
However, with moderate-sized samples, many distances have to be calculated, 
and the above metric is relatively inexpensive to compute. It seems well suited 
to algorithms that make use of sorted arrays of each coordinate. 

The volume of the set enclosed by a distance d from the point x i ( 

{x:a\x„x)^d}, 

is given by 

V{d) = (2d)'. 

Since the points are assumed to be uniformly distributed in the space, the 
variable V(d), where d is the distance to the nearest neighbor, has an 
exponential distribution, and 

P[V(d) < V(dJ] = 1 - exp{-AK(d\)}. 

Conditionally, given that d ^ d0, the probability 

_ l - c x p { - x K ( 4 ) } 
l - exp{ -AK(d 0 ) } " 
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To this probability there corresponds a standard normal deviate, 

w, = 0 - W i ) } . 

If the w, are calculated from disjoint parts of the unit p-cube, they should 
not show any dependence on x(, the coordinates of the center from which 
nearest neighbors are measured. Such dependence may be tested by examining 
the regression sum of squares associated with fitting to w a quadratic surface 
in the elements of x. Under the null hypothesis this regression sum of squares 
has a chi-squared distribution with (p + l)(p + 2)/2 degrees of freedom. Using 
this distribution, one may readily assess the significance level associated with 
the observed regression sum of squares. If only a first-order (i.e, linear in 
elements of x) model is used, the degrees of freedom are (p + 1). 

For the π χ ρ multiresponse data matrix Y', whose rows y\ (/ = 1, . . . , n) are 
taken for simplicity of discussion to constitute an unstructured sample, the 
computations involved in the nearest distance test are outlined by the following 
steps: 

1. Compute the sample mean vector, y, and covariance matrix, S; obtain the 
sphericized residuals, z, = S" 1 / 2 (y, - y); and, if zl} denotes the;'th element of z i ( 

compute the standard normal probability integral value, xy=tf>(zy), i= 1, . . . , n; 
j = 1,..., p . Let χ,· denote the p-dimensional vector whose ;'th element is xtJ. 

2. Calculate the distances 

d(i, i') = max [min{|xi(! - xrk\, \\xik - xn\ - 1|}] 
k 

and 

^min( ') =min #·,/ ' ) . 

3. For each point x„ if dmin(i) < l/2/ι 1" and if d(i, ϊ) > l /2n1 / p , Γ < i, 
calculate 

r i - e x p { - n [ 2 f l m l n ( Q y } - ] 

* ' · " Φ L l - e x p { - l } J ' 

2 2 

4. For the x( used in step 3, regress w, on 1, x ( 1 , . . . , xip, χ ( ι . · · · >
 χιΡ> 

xnxi2,..., χ ί ( ρ _ υ χ ( ρ ; that is, fit the quadratic relationship (?(w) = β0 + p V i + 
·• + βρΧρ + filial + · · · + βρρΧΐ + βΐ2*1*2 + · · · + r V l ) , * , - ! * , . " " ^ Λ β 

n' [<n and, it is hoped, > ( p + l X p + 2)/2] points that survive step 3, and thus 
obtain a regression sum of squares with ( p + l X p + 2)/2 degrees of freedom. 
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5. Compare the obtained value of the regression sum of squares to a 
chi-squared distribution with (p + lXp + 2)/2 degrees of freedom, rejecting 
joint normality for large values of the regression sum of squares. 

Just as the univariate transformation approach of Box & Cox (1964) 
was utilized to obtain a test of marginal normality, the transformation 
approach of Andrews et al. (1971) directed toward enhancing the joint 
normality of multiresponse data (see Section 5.3) may be used for providing a 
transformation-related test of multivariate normality. The essential idea in a 
transformation-related approach is that evidence suggesting that a nonlinear 
transformation is required to significantly improve joint normality is con-
sidered as evidence that the untransformed data are nonnormal. (See, however, 
the discussion near the end of this subsection regarding a limitation of this 
formulation.) 

For present purposes, even when ρ is not larger than 2, in order to keep the 
computational effort down and also be able to display some of the analyses 
graphically, the transformations actually employed are just power transform-
ations of each variable separately, namely, Y}

1\ with no shift parameters 
involved. (See, however, some of the earlier comments and the discussion of 
Example 36 for possible limitations imposed by not including shift parameters.) 

For the power family, the linear transformation λ = (A^. . . , λρ)' = 1 is the 
only transformation consistent with the hypothesis that the data are normally 
distributed. A likelihood-ratio test of the hypothesis λ = 1 may be based on the 
asymptotically approximate xfp) distribution of 

where ifm„(X) is the log-likelihood function defined in Eq. 79 of Section 5.3, 
and λ is the value of λ that maximizes JSfm„(X). This χ 2

ρ ) distribution may be 
used to obtain both a significance level, a, associated with the observed λ and 
a confidence set for λ. In that the estimation method discussed earlier in 
Section 5.3 is built into this procedure, it not only indicates when data are 
nonnormal — which we may be willing to grant for many large samples—but 
also suggests data transformations that may be used to enhance normality. 

The discussion heretofore of methods for assessing joint normality was 
oriented toward numerical rather than graphical techniques. For evaluating 
univariate normality, normal probability plots were mentioned as having 
particular appeal as a graphical aid in analyzing data. For evaluating joint 
normality, Andrews et al. (1973) have suggested an informal graphical pro-
cedure that utilizes a radius-and-angles representation of multiresponse data. 

The first step in conceptualizing the method, in the simple context of an 
unstructured sample, is to obtain the sphericized residuals 
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which were defined and used in the nearest distance test discussed earlier. 
Under the null hypothesis the sphericized residuals are approximately spheri-
cally symmetrically distributed. The squared radii, or squared lengths of the z(, 

r f - 2 i i l = ( y 1 - y y S - , ( y i - y ) , 

will have approximately a chi-squared distribution with 2 degrees of freedom 
in the bivariate case (and ρ degrees of freedom in the p-variate case). Also, in 
the bivariate case the angle 0, that z, makes with, say, the abscissa direction 
will be approximately uniformly distributed over (0,2π). All quantities, namely, 
the rf's and the 0,'s, will be approximately independent for large n. The 
dependence enters, among other routes, via the estimates of the mean and the 
covariance matrix, and it is hoped that for adequately large samples this 
dependence will have no serious effects. A further comment which may be in 
order is that the exact marginal distribution of rf is known to be a constant 
multiple of a beta rather than a chi-squared distribution; but again, even for 
moderate samples (i.e, η = 20 or 25 in the bivariate case), the difference 
between using the beta and the chi-squared approximation appears to be 
insignificant (see Gnanadesikan & Kettenring, 1972). 

The properties mentioned above suggest that summaries in terms of radii 
and angles may be useful for assessing joint normality. Indeed some authors 
(e.g, Healy, 1968; Kessel & Fukunaga, 1972) have suggested procedures based 
purely on the squared radii. The simple graphical procedures to be described 
next are based on both radii and angles. 

In the bivariate case the procedure is to make a χ2

2) probability plot of the 
rf and a uniform probability plot of the normalized form of 0„ namely, 
θ* = 0,/2π. (See Section 6.2 for a brief discussion of probability plots.) 
Specifically, the η squared radii, rf (i = 1, . . . , n), are ordered in magnitude, and 
the ith-ordered value is plotted against the quantile of a χ2

2) distribution 
corresponding to a cumulative probability of (i — {)/n, for i = 1 , . . . , n. Also, 
the η values of the normalized angles, Θ* (i = 1, . . . , n), are ordered, and the 
/th-ordered value is plotted against (/ - j)/n, for / = 1, . . . , n. If the data 
conform statistically to the null hypothesis of bivariate normality, the configur-
ations on these two probability plots should be reasonably linear. Departures 
from linearity on either or both of the plots would indicate specific types of 
departure from null conditions. [Note: The origin on the plot of the Θ* is 
arbitrary. Also, the Θ* that correspond to large rf may be more statistically 
stable than those with very small rf, and therefore one may wish to "trim" the 
observations with the smallest values of rf and to study an appropriate uniform 
probability plot of the Θ* only for the remaining observations.] 

For bivariate data one can also combine the information in the radii and 
angles in a single two-dimensional display. Let u( denote the probability 
integral transformation of rf based on a xf2) distribution of the latter, that is 
ut = P{xf2) < rf} for ι = 1, . . . , n. Then a plot of the η points whose coordinates 
are («,·,Θ*), i = l , . . . ,n , may be made. Under the null hypothesis one would 



ASSESSMENT OF DISTRIBUTIONAL PROPERTIES 199 

expect to get a uniform scatter of points on the unit square. Nonuniformity of 
scatter, or indication of any relationship between the two coordinates in the 
plot, would suggest departures from the null hypothesis. [Note: Formal tests 
for uniformity can also be made; however, the main value and appeal of the 
procedure is its graphical character.] 

For higher-dimensional data (say, p-dimensional with ρ > 2), the radius-
and-angles representation in terms of the elements of the sphericized residual 
z, (i = Ι , . , . ,η) is: 

so that rf = ζ,'ζ( = Σ ' = 1 zfj. The initial p-dimensional observations are thus 
representable in terms of a radius and (ρ - 1) angles. The relevant approximate 
distributional results, if the initial observation have a p-dimensional normal 
distribution, are that rf will have approximately a chi-squared distribution 
with ρ degrees of freedom, θρ_ϊ will be approximately uniformly distributed 
over (0,2π), θ} for j = 1, . . . , (p — 2) will have approximately a distribution 
whose density is 

and the distribution of the radius and all angles are approximately mutually 
independent. 

These distributional results are useful in suggesting appropriate probability 
plots for checking the p-dimensional normality of the observations. Specifically, 
there are ρ separate probability plots that one could make: (a) a plot of the 
n-ordered squared radii values against the corresponding quantiles of the 
chi-squared distribution with ρ degrees of freedom; (b) a uniform probability 
plot of the n-ordered values of the normalized angle θ*^ί = # ρ _, /2π; and 
(c) for each of the (p — 2) angles, θ} {j = 1,...,ρ - 2), a probability plot of 
the ordered values of 0- against the corresponding quantiles of the distribu-
tion with density f(6j) given above. Regarding the probability plot of 0y 

(j = 1 , . . . , p — 2), the transformation V} = sin20 ; leads to a beta distribution for 
Vj with parameters (p — j)/2 and 1/2. Using this fact, one can either obtain the 
quantiles of the distribution of θχ from those of the associated beta distribution, 
or transform to V} and make a beta probability plot (see Gnanadesikan et al., 
1967) of the n-ordered values of Vs. In terms of the sphericized random 

z„ = r i C o s 0 n , 

za = r(sin 0 n cos 0i ; 

Zij = r, sin θη - sin θ , ; _ , cos 0 y , for up to (ρ - 1), 

z i p = r,.sinθη - s i n 0 ; ^ , 
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variables, Zu Z2,..., Zp, the random variable, V} = ( I £ = j + v Ζ 2 ) / (Σ£ = ; Z\) , j = 
1,2 (p — 2), and θρ = arctan(Zp/Zp_1). Also, r 2 = Σ ' = 1 Z\. Thus, in prac-
tice, all the quantities involved in the probability plots can be computed 
directly from the values of the sphericized random variables. 

Analogous to the bivariate case discussed earlier, in addition to the separate 
probability plots of the radius and (ρ — 1) angles one can also make plots on 
unit squares for pairs of appropriately transformed (viz., the probability 
integral transforms of the radius and the θ} for j = 1, . . . , ρ — 2) radius and 
angle values, and study these for uniformity of scatter. With modern graphical 
display facilities, one can also study triplets of such transforms plotted on the 
unit cube. 

Mardia (1970, 1975) has proposed a large-sample test for multivariate 
normality based on measures of multivariate skewness and kurtosis. The 
measure of multivariate skewness suggested by him is 

* ι . , = Α Σ { ( y . - y V s - ^ - y ) } 3 

1 " 
= ΖΪ Σ irirk cos 9ik}

3, 
" i .*=l 

where 6ik is the angle between the scaled residual vectors z, and zk. [Note: 6ik 

is referred to as the Mahalanobis angle by some authors.] The dependence of 
by p on ΘΛ implies that it reflects the orientation of the data. The large-sample 
test for joint normality based on by p would be to refer the observed value of 
the statistic A = nblp/6 to a chi-squared distribution with p(p + lXp + 2)/6 
degrees of freedom. 

The multivariate kurtosis measure proposed by Mardia (1970) is the 
arithmetic mean of the squares of the Mahalanobis generalized distances of the 
observations from the sample mean, that is, 

Κ, = 1Λ { ( y i - y y s - ^ . - y ) } 2 - ^ ! ^ 

« i = l " i = l 

where the r,2's are the squared radii discussed earlier. This measure depends on 
how far observations are from the mean and thus reflects only the tail behavior 
of the data, and not their orientation. The proposed large-sample test for 
kurtosis departures from joint normality is to compare b2p to a normal 
distribution with mean pip + 2) and variance 8p(j> + 2)/n. In other words, the 
statistic 

[ipip + 2)/nV'2 

is to be compared against the percentage points of the standard normal 
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distribution. Limited investigation of the normality of B, using simulated 
bivariate normal samples, suggests that one would need extremely large 
samples for the normal approximation to be adequate and that, even for 
moderately large n, the distribution of Β can be positively skewed. Hence, in 
small and moderately large samples, the exact significance level associated with 
the above test may be quite different from the assumed nominal level. 

Tests Based on Unidimensional Views. One attractive property of tests for 
marginal normality is that the computational effort involved increases only 
linearly with p, the dimensionality of the data. It is therefore not inappropriate 
to examine the possibility of using various unidimensional views of the data in 
addition to just the marginal variables. A study of the squared radii by 
themselves, as proposed by Healy (1968) and by Kessell & Fukunaga (1972), 
is one example. Investigating the degree to which the regression of each 
variable on all the others is linear (a property of the multivariate normal) is 
another example of using a collection of unidimensional views of the data. 

Another obvious class of techniques to seek is based on the characterization 
of the multivariate normal distribution in terms of univariate normality of all 
linear combinations of the variables. Tests of multivariate normality that look 
at "all possible" unidimensional projections and utilize the union-intersection 
principle of Roy (1953) have received some attention (see Aitkin, 1972; 
Malkovich & Afifi, 1973). The computational efforts involved in some of these 
tests, however, tend to be prohibitive. A different scheme, based on looking at 
unidimensional projections of the multivariate data along specified, rather than 
"all possible," directions is described next. 

Marginal analysis of each of the original variables considers the projections 
of the data onto each of the coordinate axes separately. Other one-dimensional 
projections may also be considered. It is of some interest to use the projections 
that are likely to exhibit certain types of marked nonnormality. 

One approach to this problem is to look at projections of the data along 
directions that are in part determined by the data, but also in part chosen to 
be sensitive to particular types of nonnormality. The work of Andrews et al. 
(1971) described in Section 5.3 in the context of estimating transformations to 
enhance directional normality provides a contact point for the testing problem 
of present concern. 

From the discussion in Section 5.3, it will be recalled that the method 
consists in first obtaining the projections of the observations onto the uni-
dimensional space specified by the direction vector d*', which has been chosen 
to be sensitive to particular types of nonnormality by appropriately specifying 
a value for a. Then, since these projections constitute a univariate sample, they 
may be studied by any of the univariate procedures (described earlier in the 
context of evaluating marginal normality) for detecting departures from 
univariate normality. For instance, the D'Agostino & Pearson (1973) test, the 
Shapiro-Wilk test, the shifted-power transformation test, and a normal prob-
ability plot are all candidates for use. 
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Because of the data-dependent, as well as certain other, aspects of the 
approach the significance levels associated with the formal tests are probably 
not formally applicable when used with the univariate "sample" of the 
projections. However, they do provide useful benchmarks for measuring the 
nonnormality along particular directions (employing different values of α 
would enable one to look in many directions) in the space of the original 
variables. If this measure is not significant, there is some hope that subsequent 
methods of analysis will behave as expected. If, on the other hand, this measure 
is highly significant, a further transformation may make the subsequent 
analysis more meaningful. Since the transformation test derives from the 
estimation technique described in Section 5.3 for enhancing directional normal-
ity, it provides an indication of what transformation will ameliorate the 
abnormalities when the data are viewed in specified directions. 

The various methods for assessing normality described in this subsection are 
applied to specific sets of data in the three examples discussed next. The 
examples, which for simplicity are limited to bivariate observations, are based 
both on computer-simulated (Examples 35 and 36) and "real" (Example 37) 
data. The examples involving computer-simulated data are useful because the 
departure from normality is known since it is part of the data-generation 
process. The two such examples included here are extracted from a larger set 
studied by Andrews et al. (1972), who discuss a greater variety of nonnull (i.e, 
nonnormal) data. 

The scheme involved in generating the computer data was to start with 
observations on two independent standard normal variables, Xx and X2, then 
to transform the observations on each of these variables separately to yield 
observations on two independently distributed variables, Zx and Z 2 , with a 
specified (but same for Zj and Z 2 ) nonnormal distribution, and, finally, to 
combine the variables Zx and Z 2 to form correlated variables, Y1 and Y2, by 
using the linear transformation 

The correlation coefficient between V", and Y2 would thus be p. A different 
scheme for generating correlated bivariate nonnormal distributions is also 
discussed and used by Andrews et al. (1972, 1973), but Examples 35 and 36 
apply only the scheme just described. 

Example 35. This mildly nonnormal example involves 100 observations 
from a bivariate correlated χ,2

1 0 ) distribution. Two independent χ(

2

1 0 ) (i.e, Zj 
and Z 2 of Eq. 81 were χ(

2

1 0 ) variables) samples were taken and then correlated 
as in Eq. 81 with ρ = 0.9. The two variables have marginal distributions that 
are relatively close to normal, the second being "expected" to be more nearly 
normal than the first. 

(81) 



ASSESSMENT OF DISTRIBUTIONAL PROPERTIES 203 

Variable 

Parameter estimates 

I 
λ 

Log likelihood-ratio value 
Approximate significance level 

- 0 . 0 3 2 - 5 . 4 2 9 
0.382 0.604 
5.724 7.639 
0.0007 0.0001 

The first analyses to be performed on the data were addressed to assessing 
the univariate normality of each variable separately. For instance, the two-
parameter family of transformations 

v- . (y + £)' 

yielded parameter estimates and a likelihood-ratio test for each marginal 
variable. These results are summarized in Exhibit 35a. This test gives strong 
evidence of nonnormality of both marginal distributions. 

The skewness and kurtosis measures, y/b~l,b2, were calculated for both 
marginal variables, and the results are recorded in Exhibit 35i>. There is some 
statistical evidence of skewness in the distributions of both variables but not of 
kurtosis. 

The Shapiro-Wilk test, applied to the marginal distributions of these data, 
yielded values of W of 0.954 and 0.965 for the two variables. Without precise 
tables of percentage points for the present sample size, it is difficult to conclude 
anything regarding statistical significance other than that the first value (viz., 
0.954) is "possibly" mildly statistically significant. The D'Agostino test, when 
applied to the two variables, led to values of the D statistic both of which had 
significance levels greater than 0.2. 

Exhibit 35*. Marginal skewness and kurtosis 

Measure Y2 

Skewness 0.699 0.395 
Approximate significance level <0.01 <0.05 

Kurtosis 3.20 2.784 
Approximate significance level Not sig. Not sig. 

Omnibus D'Agostino-Pearson test Z<2) 8.382 2.850 
Significance level 

Z<2) 
^0.015 Not sig. 

Exhibit 35a. Results of Box-Cox transformation test 



204 MULTIVARIATE STATISTICAL MODELS 

Exhibit 35c. Standardized gaps test 

Variable 1 Variable 2 

Left-hand gaps -0.267 -0.325 
Approximate significance level 2<D(-1.08) 2<D(-1.31) 

-0.28 =:0.19 
Right-hand gaps r „ - l 0.351 0.027 

Approximate significance level 2Φ(-1.42) 2Φ(-0.11) 
~0.16 Not sig. 

Combined statistic 1 4.626 1.951 
Approximate significance level 0.1 0.4 

For applying the gaps test, the standardized spacings or gaps were cal-
culated for both marginal distributions. In both cases the difference between 
left and right tail lengths was manifested by gaps shorter on the left and longer 
on the right. The values of (rL - 1) and (rv - 1) for each variable, together with 
approximate significance levels, are recorded in Exhibit 35c. The combined 
statistic, q, was also computed, and its value, together with the approximate 
significance level, is also shown in the exhibit. Both variables show a specific 
skewness departure from normality in that the tails of the distributions appear 
to be short on the left and long on the right. However, these departures are not 
extremely statistically significant as measured by the formal gaps test. 

Exhibits 35d and e are normal probability plots of the data for the first and 
second variables, respectively. The departure from normality is quite striking 
in Exhibit 35a. In Exhibit 35e departure from normality in the second variable, 
although not as striking, can be detected in the gentle curvature away from the 
hypothesized linear configuration. 

The marginal techniques have indicated with differing degrees of strength 
the apparent nonnormality in the marginal distributions for this example. The 
results of applying the techniques for assessing joint normality are described 
next. 

Exhibit 35/ (see page 206) is a scatter plot of the bivariate data. The 
bivariate transformation technique described earlier for assessing bivariate 
normality was applied, and two transformation parameters, A , ,A 2 , were esti-
mated by maximum likelihood. The asymptotic properties of the likelihood 
ratios yielded an approximate test of the null hypothesis A, = A2 = 1. The 
results of this procedure are summarized in Exhibit 35a (see page 206). From 
this test there is some, though not very strong, evidence of nonnormality. 

The nearest distance test did not yield significant results. The significance 
level was about 0.4. This test seems to have relatively low power against 
smooth departures from normality, as is the case in the present example. 

Next, the techniques based on radii and angles were applied. Exhibit 35h 
(see page 207) is a scatter plot of the radius-and-angle reparametrization of 
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Exhibits 3Sd>. Normal probability plots for the two variables 

30.0 ι 1 1 , r r , 
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Exhibit 35 / Scatter plot of data 

CD 
< 

a 
< 
> 

10 15 
VARIABLE 

these data. Under the null hypothesis the plotted points have a uniform 
distribution on the unit square. Departures from this null hypothesis are quite 
apparent in this plot in that several cells are empty and also several horizontal 
and some vertical strips (e.g., the ones marked with arrows) are sparse in points 
relative to other strips. Exhibit 35/ (see page 208) is a χ 2

2 ] probability plot of 
the squared radii for this example. This plot appears to be reasonably linear, 
exhibiting no marked departures of the squared radii from null expectations. 

Exhibit 35; (see page 209) is a uniform probability plot of the normalized 
angles. Under the null hypothesis these normalized angles should have a 
uniform distribution. This plot, however, appears quite irregular, especially at 

Exhibit 35g. Bivariate power transformation test 

A, 

*-jWi.A2)-.sr-»(i, D 
Approximate significance level 

0.937 
0.706 
2.8 
0.061 
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the upper end. A chi-squared goodness-of-fit test based on 10 equal cells yields 
a statistic of 25.4 with a corresponding significance level of ~ 0.002. 

The multivariate skewness and kurtosis tests proposed by Mardia (1970) 
were also used with these data. Whereas the skewness statistic revealed a 
striking departure from bivariate normality, the kurtosis statistic was not 
statistically significant. 

Finally, the technique of testing for directional normality was applied to the 
data in this example. This procedure (with α = 1.0) selected a direction 
d*'0 = (0.788, 0.616) and investigated the projections of the data on this 
one-dimensional subspace. The univariate shifted-power transformation pro-
cedure was then applied, with the results summarized in Exhibit 35k (see page 
209). In the direction chosen, the data exhibit extreme nonnormality, much 
more marked than either of the marginal variables (see Exhibit 35a). Exhibit 
35/ (see page 210) shows a normal probability plot of the projections onto the 
unidimensional space specified by d* 0 , and the departure from linearity here 
is just as striking as the one in Exhibit 35d. 

Exhibit 35*. Scatter plot of normalized angles vs. probability integral transform of squared radii 

\ 
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12.0 

X ( 2 ) QUANTILES 

Exhibit 35m (see page 210) summarizes the results of applying the various 
techniques to this example. Many of the techniques indicate significant depar-
tures from multivariate normality. The exceptions include the D'Agostino test 
and the univariate gaps test for marginal normality, and the nearest distance 
test for bivariate normality. An important aspect of this example is the dis-
covery of which methods did not detect the sort of departure incorporated in 
the data. 

Example 36. The data for this example are 100 points from a correlated 
Laplace distribution, correlated by using Eq. 81 with ρ = 0.9. The distribution 
is long tailed but quite symmetric. Only the results of using the techniques for 
assessing joint and directional normality are described here. 

The bivariate transformation procedure was applied to these data after 
initially shifting the observations to make them all lie in the first quadrant, and 
the results are summarized in Exhibit 36a (see page 211). The transformation 
utilized here involved only power parameters and no shift parameters. For this 

Exhibit 3SL Chi-squared (df = 2) probability plot of squared radii 

12.0 
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Exhibit 35/ Uniform probability plot of normalized angles 

UNIFORM QUANTILES 

reason, one would expect sensitivity to skewness but not to long-tailedness in 
the presence of symmetry. Including shift parameters in the transformations of 
the variables would most probably remedy the situation, but the computa-
tional effort required would be substantially higher. At any rate, the nonsignifi-
cant result in Exhibit 36a is at least interpretable. 

Exhibit 35A. Directional normality test 

Shift parameter estimate ξ —5.66 

Power parameter estimate λ 0.53 

Z^JiS.l) - 1 6 8 . 2 
1) - 1 7 8 . 3 

Approximate significance level 0.00001 
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Exhibit 35L Normal probability plot of projections onto direction of nonnormality 

4.00 

•1.5 -0.5 0.5 1.5 
NORMAL QUANTILES 

3.5 

Exhibit 35m. Example 35 summary 

Technique Significance Level 

Marginal 
Marginal Box-Cox 
Skewness 
Kurtosis 

D'Agostino-Pearson 
Shapiro-Wilk 
D'Agostino 
Univariate gaps 
Marginal probability plots 

Joint 
Scatter plot 
Bivariate transformation 
Nearest distance 
Radius and angles 
Mardia's tests 

Directional transformation 

0.0007 0.0001 
<0.01 <0.05 

Not sig. Not sig. 
= 0.015 Not sig. 

? ? 
>0.02 >0 .2 

- 0 . 2 
Some evidence of nonnormality 

Some evidence of nonnormality 
0.06 
0.4 

Good evidence of nonnormality 
0 .0014(6 1 2 ) fc2>2 not sig. 

0.00001 
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Estimates of transformation parameters 
2, 1.22 
X2 1.20 

- ^ . , ' ί , Λ ) - ^ m . , ( U ) o.9i 
Approximate significance level 0.40 

The nearest distance test also failed to detect any significant departure from 
normality in this case—the observed significance level was 0.7. On the other 
hand, the multivariate skewness and kurtosis tests revealed significant skew-
ness and kurtosis departures; observed levels were 0.0055 and < 10""4, respec-
tively. Examination of a scatter plot of the data suggested that it is quite 
reasonable to reject bivariate normality on grounds of both skewness and 
kurtosis. 

The plotting procedures for radii and angles also proved useful once again. 
Exhibits 36b~d show the combined scatter and marginal probability plots of 

Exhibit 366. Scatter plot of normalized angles vs. probability integral transform of squared radii 
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Exhibit 36a. Bivariate power transformation test 
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Exhibit 36c. Chi-squared (df «= 2) probability plot of squared radii 
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Approximate 

{ 
Significance 

α C { λ - i) Level 

1.0 - 0 . 6 5 , - 0 . 7 6 23.2 - 1 . 0 3.2 0.011 
0.5 - 0 . 6 3 , - 0 . 7 8 24.5 - 1 . 0 3.2 0.011 
0.1 - 0 . 5 9 , - 0 . 8 1 24.5 - 1 . 0 3.1 0.013 

- 0 . 1 0.56, 0.83 10.0 1.8 4.1 0.004 
- 0 . 5 0.48, 0.88 9.7 1.8 4.0 0.005 
- 1 . 0 0.31, 0.95 8.9 1.7 3.9 0.005 

radii and angles for these data. The long-tailedness of the data is clearly evident 
in the χ 2

2 ) probability plot of the squared radii (Exhibit 36c). Some evidence of 
lack of spherical symmetry of the sphericized residuals is provided by the 
uniform probability plot of the angles (Exhibit 36d). 

Lastly, as a means of studying directional normality in this example, 
projections of the data were explored by employing directions d*' for a range 
of values of a, namely, α = — 1, —0.5, —0.1, 0.1, 0.5, 1. Exhibit 36e gives for 
each value of at the resulting direction, d*' together with the results of the 
univariate shifted-power transformation test procedure applied to the projec-
tions on the direction involved. The directions determined by using α < 0, 
being sensitive to the center of the data, do indicate more significant depar-
tures, and this is not very surprising in view of the difference between the 
densities of the Laplace and the normal in the center. 

In summary, as expected, this symmetric nonnormality, which is an impor-
tant though not sufficiently extreme departure, was not clearly detected by 
some procedures. The results for this example are summarized in Exhibit 36/ 

Example 37. Since real data may not conform to any prespecified type of 
nonnormality of the kinds reflected in Examples 35 and 36, it is instructive to 

Exhibit 36 / Example 36 summary 

Technique 

Bivariate power transformation 
Nearest distance 
Mardia's tests 
Radius-and-angles decomposition 
Directional normality 

Approximate Significance Level 

0.4 
0.7 

0.0055(ί>1 ι 2), <10"*(i> 2 > 2 ) 
Indication of departures from normality 

<0.015 for α > 0, ^0.005 for α < 0 

Exhibit 36e. Directional normality tests 
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Exhibit 37a. Scatter plot of dividends/price vs. debt ratio for 94 utilities in 1969 
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apply the techniques for assessing normality to observations that are not 
simulated. Thus the data for this example, which is taken from Standard and 
Poor's COMPUSTAT tape, consist of observed values of debt ratio and the 
dividends/price ratio for each of 94 utilities for the year 1969. Exhibit 37A is a 
scatter plot of the observations, and departures from normality are evident 
even in this simple plot. 

The test proposed by D'Agostino (1971) was applied to both marginal 
distributions and did not indicate any strikingly significant departures from 
normality. The results of estimating a shifted-power transformation of each 
variable by the methods of Box & Cox (1964), and of applying the associated 
likelihood-ratio test of univariate normality to each variable separately, are 
summarized in Exhibit 37ft. The transformation-based test indicates a highly 
significant departure from normality for the distribution of values of the 
dividends/price ratio. 

Exhibits 37c and 37a" (see page 216) are normal probability plots of debt 
ratio and dividends/price ratio, respectively. Both plots exhibit noticeable 
deviations from the null straight line configuration to be expected for normal-
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Debt Ratio Dividends/Price 

Parameter estimates 

I 
λ 

Log likelihood-ratio value 
Approximate significance level 

-0.127 
1.980 
1.826 

0.05 < ρ < 0.058 

0.195 
10.873 
7.854 

0.00006 < ρ < 0.00008 

ity. Exhibit 37<f with marked curvature indicates an abnormally short upper 
tail of the distribution of the dividends/price ratio. Also, six observations in the 
lower tail are distinctly separated from the rest of the data. 

The bivariate transformation procedure also detected significant nonnor-
mality. Exhibit 37e presents the results of this procedure. Some evidence of 
nonnormality appears in both variables, as indicated by the values of Aj 
and λ2. 

Exhibit 37c. Normal probability plot for debt ratio 
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Exhibit 376. Results of Box-Cox transformation test 
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Exhibit 374. Normal probability plot Tor dividends/price 
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The nearest distance test was used with both linear and quadratic re-
gressions as the basis for studying the dependence of transformed nearest 
neighbor distances on the location of the point from which the distances were 
measured. The significance levels of these two regression tests were 0.031 and 
0.093, respectively. In this example, therefore, this test provides some indica-
tion, although not very strong evidence of nonnormality. 

Exhibit 37/ is a scatter plot of the radii-and-angles decomposition. Exhibit 
37g (see page 218) is a xf2) probability plot of the squared radii, and Exhibit 
37/t (see page 219) is the uniform probability plot of the normalized angles. The 

Exhibit 37*. Bivariate power transformation test 

kl 2.719 
λ2 2.375 

™̂„(λ\ Λ)-*".».( 1, 1) 8.227 
Approximate significance level 0.00027 
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Exhibit 37 / Scatter plot of normalized angles vs. probability integral transform of squared radii 
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nonuniform scatter in Exhibit 37/ and especially the sparseness in several 
contiguous blocks, indicate departures from bivariate normality. Exhibit 37a 
shows peculiarities in the upper tail of the distribution of the squared radii, 
Exhibit 37/i also manifests some departures from spherical symmetry in the 
distribution of the sphericized residuals. 

The directional normality procedure also suggested a somewhat, but not 
strikingly, significant departure from normality. Exhibit 37* (see page 219) 
presents the results of the directional normality test for the case of α = 1.0. Here 
d* ο is clearly influenced heavily by the second variable (dividends/price ratio). 
This is not too surprising in the light of the more striking nonnormality of the 
second variable, as revealed by the tests for marginal normality discussed earlier. 

The results for this example are summarized in Exhibit 37; (see page 220). 

In this subsection various techniques have been described for assessing the 
normality of the distribution of multiresponse data. Many of the new tech-
niques (e.g, the nearest distance test, the radius-and-angles plots) need further 
theoretical investigation, as well as practical use and exposure. On the 
theoretical front some refinement of the distributional approximations in-
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Exhibit 37;. Chi-squared (df = 2 ) probability plot of squared radii 

1 2 . 0 

1 0 . 0 r 

volved in some of the procedures (e.g., the univariate gaps test and the 
multivariate nearest distance test) may be in order. Also, a better understand-
ing is needed of issues such as the nonuniqueness of some of the preliminary 
transformations of the data (e.g., the Rosenblatt, 1952, transformation men-
tioned in connection with the nearest distance test) and the effects of using the 
sample mean vector and covariance matrix in place of the corresponding 
population quantities in some of the methods. 

More work, of course, is needed to promote understanding of the relative 
sensitivities of the different procedures. This is necessary, not for picking an 
optimal test for normality, but for general guidance in interpreting the results 
in specific applications of these techniques. 

General indications concerning the newer techniques are that the transform-
ation-related methods and the plotting procedures based on the radius-and-
angles representation of multivariate data appear to be promising tools for 
data analysis. The transformation-related methods have appeal above and 
beyond serving as tests of significance because of the fact that estimates of the 
transformation (admittedly within some class such as the shifted-power one) 
are included as an integral part of the method and are likely to be very useful 
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Exhibit 37*. Uniform probability plot of normalized angles 

UNIFORM ΟΙΙΔΝΤΙΙ ES 

in the next step of the analysis. Here too, however, enlarging the class of 
transformations to include additional types would be useful for practitioners. 
Also, a limitation of the transformation-related approach to testing normality 
should be noted. Since there is no guarantee that a specific member of a class 
of transformations, such as the shifted-power class, will necessarily achieve 
normality, the evidence, as provided by the transformation test, that no 
transformation is required cannot be taken entirely at face value as adequate 
support for normality. Specifically, if one were to transform a set of data by 

Exhibit 37£ Directional normality 
K.o - ( - 0 . 4 6 2 , -0.887) 

Shift parameter estimate ζ 4.415 

Power parameter estimate λ —10.703 

2) " #nu*(il) 2.487 

Approximate significance level 0.026 
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Exhibit 37/ Example 37 summary 

Technique Approximate Significance Level 

Marginal Box-Cox 0.06 0.00008 
Marginal probability plots Good evidence of marginal nonnormality 
Bivariate power transformation 0.0003 
Radii and angles Good evidence of joint nonnormality 
Directional normality 0.03 

the techniques described in Section 5.3 and treat the resulting transformed data 
as input to the same transformation techniques, one would necessarily get 
indications that no further transformation (within the class considered) was 
required, but this would be just an artifact of iterating the transformation 
technique. The "direct" techniques (i.e., those not related to transformations) 
for assessing normality do not suffer from such a limitation. 

The plotting procedures associated with the radius-and-angles decomposi-
tions have particular appeal as informal but informative graphical aids for data 
analysis. Additional graphical methods, especially directed toward assessing 
the normality of high-dimensional data, would indeed be worth developing (see 
the discussion of one such tool in Section 6.2). Such graphical techniques often 
exemplify the significant value of a statistical tool which may have been 
designed for one purpose but turns out to have a variety of additional 
applications. Thus, for instance, the usefulness of the techniques considered in 
this subsection for assessing distributional normality is greatly enhanced by 
their possible utility in detecting additional data anomalies such as outliers. 

5.4 J . Elliptical Distributions 

Most of the distributions (see, for example, Johnson & Katz, 1972) that have 
been proposed as alternatives to the multivariate normal, on which much of 
the classical multivariate theory and methodology are based, have been defined 
by mathematical analogy with univariate distributions. Indeed, conceptualiz-
ation of the sense in which distributions are alternatives to the multivariate 
normal would be a more natural starting point than such formal analogies. For 
some purposes (e.g., empirical study of robust estimators), relatively simple 
alternatives may be desirable. One may wish, for instance, to consider alterna-
tives whose density functions have the same ellipsoidally shaped contours as 
the multivariate normal but still are flexible enough to provide longer- and 
shorter-tailed alternatives to the multivariate normal. Elliptical distributions, 
defined below, are such a class that has received wide attention (e.g., Kelker, 
1970; Chu, 1973; see also Devlin et al , 1976). 

While these elliptical distributions provide a flexible class of alternatives to 
the multinormal, their very simplicity implies of course that they cannot 
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capture all types of departures from multinormality that can occur in real data. 
They serve as useful starting points for certain kinds of investigations, including 
theoretical analyses as well as computer simulations studies, of properties of 
statistical procedures under such alternative distributions. Due to the interest 
in the class of elliptical distributions for providing simple alternatives to the 
multinormal, in this section a number of results pertaining to the properties of 
this class taken from Devlin et al. (1976) are collected together. Details, 
including proofs, can be found in the references indicated throughout the 
discussion. 

A variety of definitions of an elliptically distributed random vector, Y, exists. 
[Note: In this section, the convention of using capital letters for denoting 
random variables is used. Hence Y is a vector and not the usual data matrix.] 
They include definitions in terms of: 

(a) linear combinations 
(i) all a'Y with the same variance should have the same distribution (see 

Vershik, 1964); 
(b) probability density functions, f{y), of Y 

00 f(y) should be a function only of a positive definite quadratic form 
y ' C ' y (seeChu, 1973); and 

(c) characteristic functions, c(t), of Y 
(iii) c(t) should depend only on a quadratic form t'Ct (see Kelker, 1970). 

(For convenience, it is assumed here and in what follows that Y has 
been centered at the origin.) 

The three definitions are not completely equivalent. Vershik's definition, for 
instance, implicitly assumes the existence of the first two moments and would 
thus exclude elliptical r distributions with 1 or 2 degrees of freedom. Most of 
the usual elliptical distributions will, however, satisfy all three definitions. 

The matrix C appearing in (ii) and (iii) is called the characteristic matrix by 
Chu. It is determined only up to a multiplicative constant. Its role is like that 
of the covariance matrix and, indeed, when the latter exists, C must be 
proportional to it. 

Items J1-J7 list a few of the important joint distributional properties of 
elliptical distributions, while C1-C3 summarize their useful conditional dis-
tributional characteristics. 

Jl . The components of Y are mutually independent iff C is diagonal and 
Y is multinormal, N[0, C] (see Kelker, 1970). 

J2. If C = I, then a polar coordinate transformation applied to Y produces 
new variables (D, 0 „ . . . , Θρ_ι), that is, a "radius" and (ρ - 1) 
"angles," which are mutually independent. The distributions of the 0 's 
are the same for all Y, with density f(8k) oc sin""1 In particular, 
Θ ρ _ , has a uniform density on [0,2π]. (See Goldman, 1974, and also 
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Section 5.4.2.) The density of D2 = Y'Y, however, does depend on the 
distribution of Y: 

f{d2) = {n^/rip/Djid^-'gid2), 

where g(d2) is the density of Y evaluated at y'y = d2 (see Kelker, 1970). 

J3. If the covariance matrix V(Y) = C and D2 = Y 'C _ 1 Y , then <?(D2) = p. 

J4. Let Ζ = TY where Τ is an (r χ ρ) matrix of rank r with r < p. Then Ζ 
is also elliptically distributed with characteristic matrix TCT (see 
Kelker, 1970, Chu, 1973). 

J5. If Y, and Y 2 are independent with the same characteristic matrix C, 
then Y, + Y 2 is also elliptically distributed with the same characteristic 
matrix (this follows from definition (iii); see also Yao, 1973). If, 
moreover, Y, and Y 2 are identically distributed with V(Y,) = V(Y2) = 
C, then l/\/2(Yi + Y2) will have the same distribution iff Yj and Y2 

are multinomial, JV[0, C] (see Das Gupta et al, 1972). 

J6. The correlation matrix of Y, assuming it is defined, is given by Γ = 
{(ctjfyfcHcj})) and is, therefore, the same for all elliptical distributions 
with the same (or only rescaled) characteristic matrices (see Kelker, 
1970). 

J7. The density function of Y can be represented as 

/(y) = £°n(y ;v)d W(v), 

where dW is a weighting function (Jo dW(v) = 1) which may assume 
negative values and η is the density function corresponding to 
tf[0,ir2C](see Chu, 1973). 

CI. Let Y' = (Y'„ Y'2) with C = ( £ u ^ 1 2 ) partitioned accordingly. Then 

\ C 2 , C 2 2 / 
<f(Y,IY2 = y2) = C 1 2 C 2 2 y 2 , that is, the "regression" of Y, on Y 2 is 
linear (see Kelker, 1970). In particular, if Y, and Y 2 are uncorrelated, 
then <?(Yi|Y2 = y 2) = 0 = ^(Yj), that is, Y, and Y 2 are semi-indepen-
dent (see Vershik, 1964; Blake & Thomas, 1968). This property indi-
cates that the well-known linearity of all regressions for the 
multinomial distribution is shared by other members of the class of 
elliptical distributions. 

C2. The conditional variance, V(Y x | Y2 = y2), is independent of y 2 iff 
Y is multinomial, 7V[0,C] (see Kelker, 1970). More generally, 
V(Y 1 |Y 2 = y2) = / i (y 2 XC u -C 1 2 C 2 VC 2 1 ) for some function h (see 
Chu, 1973). This property implies that the well-known homoscedastic-
ity property of the multinormal distribution is not shared by other 
distributions in the elliptical class. 
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C3. Suppose Ylt Y2... is an infinite sequence with Y = (Y 1 ( . . . , Yp)'. If for 
any ρ, Y has an elliptical distribution with Cp = I, then there is a 
positive random variable V such that the conditional distribution of Y 
given V = v is Ν[0 , ιΓ 2 Ι ] (see Kelker, 1970; Kingman, 1972). For 
arbitrary covariance structures, C p , the conditional distribution is 
Λ/[0, i T 2 C p ] (this is essentially the result of Yao, 1973). 

Under the conditions of C3, it follows that W in J7 is the cumulative 
distribution function of a positive random variable, namely, V. The resulting 
special class of elliptical distributions to be called compound multinormal 
distributions, are of particular interest. (See also Picinbono, 1970 and Yao, 
1973.) Rogers & Tukey (1972) give several examples of univariate distributions 
which are in this class. 

The multinormal distribution is a member of the compound multinormal 
class obtained by taking V to be a constant. The other members, because they 
are longer tailed than the multinormal, offer a variety of simple, flexible and 
symmetric alternatives to this standard reference distribution. 

Even this special class of elliptical distributions contains an infinity of 
members since every choice of W leads to a new case. On the other hand, an 
arbitrary symmetric probability density may or may not be representable as a 
random mixture of normal components. This is really a univariate issue, and 
Andrews & Mallows (1974) have developed necessary and sufficient conditions 
in terms of the derivatives of a univariate density for a representation of this 
type to be possible. These conditions express in a precise way the long-tailed 
requirements on the distribution of Y which were mentioned earlier. Andrews 
& Mallows also discuss how W can be determined. 

The following are special properties of compound multinormal distribu-
tions: 

51. Y can be represented as K _ 1 X where Κ is a positive random variable, 
X is N[0,L], and V and X are independent (this follows from J7). 

52. If 6(V~*) < oo, then the kurtosis of a'Y is 3<p2, where φ2 = <f(K- 4)/ 
{S(V~2))2 > 1. Equality occurs iff Y is JV[0, ^(K" 2 )L] . 

53. If V(Y) = C, then 

D2 = Y ' C - 1 Y = { Χ ' Σ Τ ' Χ } / ^ 2 ^ - 2 ) } . 

Also, Χ'Σ" 'Χ has a chi-squared distribution with ρ degrees of freedom, 
and is independent of V2. 

54. If SiV-*) < oo, then 

<?(D4) = p{p + 2)φ2 >p(p + 2) 

with equality iff Y is Ν[0, <^(i7"2)L]. 
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(a) 

CM 

*1 
Fig. 11a. Bivariate t4 sample with 75% and 90% probability contours 

Property S4 reflects the fact that the distribution of D2, like that of Y, 
becomes longer tailed when φ2 > 1. Even though S(D2) = ρ (see J3), whatever 
the value of φ2, S(D*) increases with φ2. 

A convenient way of generating samples of observations from compound 
multinormal distributions is suggested by SI: combine a multinomial sample 
of X with an independent sample of an appropriate V. This strategy was used 
to form the examples in Figures 11a and b. The first shows a sample of η = 60 
from a bivariate elliptical r 4 (i.e., ί with four degrees of freedom) distribution 
with correlation ρ = .5. The second is for a like sample from an elliptical 
Cauchy distribution. Technically, ρ is not defined in this case, but it is 
convenient to think of it as the correlation in the associated bivariate normal 
distribution of X, which again is ρ = .5. To facilitate comparison, ellipses which 
theoretically contain 75 and 90 percent of the probability have been drawn and 
the same scale has been kept in both figures. The difference in the sizes of the 
ellipses corresponding to the same percent in the two figures shows how much 
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(b) 

Fig. lib. Bivariate Cauchy sample with 75% and 90% probability contours 

longer the "tail regions" of the Cauchy are relative to the t with four degrees 
of freedom. 

Devlin et al. (1976) discuss a number of additional properties and uses of 
elliptical distributions and compound normal distributions, including the 
behavior of Fisher's z-transformation of the correlation coefficient, influence 
functions, and the distribution of Mahalanobis' D2. 

For instance, the asymptotic distribution of yfn\z(r) — z(p)\ where z( ) is 
the z-transformation, for samples from a compound multinormal distribution 
is JV(0, φ2). This result demonstrates that Fisher's z-transform is variance 
stabilizing for sampling from all compound normal distributions with finite 
fourth moments. Devlin et al. (1976) also discuss radii-and-angles method for 
assessing goodness-of-fit of compound multinormal distributions analogous to 
those described in Section 5.2.2 for assessing multivariate normality. Indeed, as 
a consequence of J2, there is no difference (and, hence, no discrimination 
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capabilities) at all in the distributional properties of the angles while the 
distribution of the radii will be longer tailed for compound multinomial 
distributions, such as the multivariate t-distribution, than for the multivariate 
normal case. Specifically, for sampling from multivariate ί-distributions with 
degrees of freedom >3 , the distribution of the squared radius (i.e., 
Mahalanobis' D2) is approximately ( / — 2)χ2/χ2. This property can be used to 
make a probability plot of the ordered observed squared radii values against 
the corresponding quantiles of an F-distribution with ρ and / degrees of 
freedom. The null configuration on such a plot, confirming that the data have 
a multivariate ί-distribution, would be linear with a slope, p(f — 2 ) / / 
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C H A P T E R 6 

Summarization and Exposure 

6.1. GENERAL 

The main function of statistical data analysis is to extract and explicate the 
informational content of a body of data. The processes of description and 
communication of the information involve summarization, perhaps in terms of 
a statistic (e.g, a correlation coefficient) which may be undergirded by some 
reasonably tightly specified model or, perhaps, in terms of a simple plot (e.g, 
a scatter plot). In addition to the well-recognized traditional role of summar-
ization, however, the meaningful exercise of processes of data analysis requires 
exposure, that is, the presentation of analyses so as to facilitate the detection 
not only of anticipated but also unexpected characteristics of the data. For 
instance, an x-y scatter plot of data is a pictorial representation that is useful 
not only for interpreting the computed value of the correlation coefficient for 
that body of data (see also the scatter plots described in Section 6.4.2), but also 
for indicating the adequacy of assuming linearity of the relationship between χ 
and y. A more substantial example of the twin-pronged process of summariz-
ation and exposure is fitting a straight line to y versus χ data and then studying 
the residuals in a variety of ways, especially through different plots of them, 
such as plots of residuals against observed values of χ and of y, perhaps against 
values of relevant extraneous variables such as time, and also probability plots 
of the residuals. Although the fitting provides summarization, the study of the 
residuals is often crucial in exposing the inadequacies of various assumptions 
that underlie the fitting procedure (e.g, constancy of variance). 

Pedagogy, publications and, more generally, the codification of statistical 
theory and methods have been concerned almost exclusively with formal 
procedures such as tests of hypotheses, confidence region estimation, and 
various optimality criteria and associated methodology. Even when the con-
cern has been with developing methods for summarization, with a clear 
awareness of the possible inadequacies or inappropriateness of certain "stan-
dard" assumptions, the goal of summarization has often been somewhat 
artificially separated from that of exposure. For instance, much of the work on 
robust estimation, while usefully concerned with summary statistics that are 
not unduly influenced by a small fraction of possibly deviant observations, has 
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adopted the formal and familiar framework of point estimation with its criteria 
of bias, efficiency, and so on, and relatively little attention has been given to 
the exposure value of such things as the residuals obtained from using the 
robust estimates in place of the standard estimates. 

The manifold theories of statistical inference that have been advanced as the 
focal points for "unifying" statistics have only relatively recently (Cox, 1973; 
Cox & Hinkley, 1974) been considered and carefully scrutinized in terms of 
their relevance for and relationship to the needs of applications of statistics. No 
single formal theory of statistical inference seems able to encompass and 
completely subsume the flexible and interactive processes involved in summar-
ization and exposure. There are, however, less formal techniques that are, 
perhaps, not in the mainstream of any formal statistical theory but that are 
nevertheless useful tools of informative inference directed toward the dual 
objectives of summarization and exposure. 

The treatment in this book has attempted, even when a problem has been 
formulated fairly narrowly (e.g., tests for commonality of marginal distribu-
tions), to combine formal methods, where available, with informal procedures 
for revealing the relevant information in multiresponse data. A feature com-
mon to most of the informal procedures is their graphical nature. In the 
following sections of this chapter, some general problem areas of summariz-
ation and exposure are distinguished (and inevitably these overlap to some 
degree the concerns of the earlier chapters), and some techniques of relevance 
to these problems are discussed. The emphasis throughout this chapter is on 
graphical methods. 

6.1 STUDY OF AN UNSTRUCTURED MULTIRESPONSE SAMPLE 

One is often interested in examining a body of data as if it were an 
unstructured collection or sample, and many of the techniques discussed in the 
earlier chapters of this book have been described in the context of analyzing 
an unstructured sample (e.g., linear and generalized principal components 
analysis in Chapter 2, robust estimates of location and dispersion in Chapter 
5, and the assessment of distributional properties in Chapter 5). With unires-
ponse data several graphical and semigraphical techniques are available for 
analyzing an unstructured sample. Some examples of such techniques are 
stem-and-leaf displays and box plots (see Chapters 1 and 5 of Tukey, 1970) and 
the more familiar histogram, empirical cumulative distribution function (or 
ecdf, which may be defined as a plot of the ith ordered observation against 
(i — \)/n), and the class of techniques loosely called probability plotting methods 
(see Wilk & Gnanadesikan, 1968). 

Wilk & Gnanadesikan (1968) describe two basic types of probability plots, 
called P-P and Q-Q plots, respectively. Figure 12 may be used for defining the 
two types. In comparing two distribution functions, a plot of points whose 
coordinates are the cumulative probabilities {px(q), py{q)} for different values 
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Fig. 12. Illustration for P-P and Q-Q plots. 

of q is a P-P plot, while a plot of the points whose coordinates are the quantiles 
{qx{p), qyip)} for different values of ρ is a Q-Q plot. For conceptual convenience 
both of the distribution functions displayed in Figure 12 are shown as smooth 
curves, but this is not an essential requirement, in that one or both of the 
distribution functions involved can be a step function or an ecdf. In fact, the 
usual form of the comparison is one in which an ecdf for a body of univariate 
data is compared with a specified (or theoretical) distribution function, that is, 
a step function is compared to a continuous one. Also, Q-Q probability plots 
tend to be more widely used than P-P probability plots. Perhaps one reason 
for this is a property of linear invariance possessed by Q-Q but not P-P plots, 
namely, when the two distributions involved in the comparison are possibly 
different only in location and/or scale, the configuration on the Q-Q plot will 
still be linear (with a nonzero intercept if there is a difference in location, 
and/or a slope different from unity if there is a difference in scale), whereas the 
configuration on a P-P plot will in general be necessarily linear (with zero 
intercept and unit slope) only if the two distributions are identical in all 
respects, including location and scale. 

At any rate the following is a canonical description of a Q-Q probability plot 
in its most widely used form, wherein an ecdf of an unstructured sample, 
x t , . . . , x,, of size η is to be compared with a hypothesized standardized (i.e, 
origin or location parameter is zero and scale parameter is unity) distribution 
function F(x;9) (where the parameters Θ, which do not include origin or 
location and/or scale parameters, have specified values): if x ( n ^ x ( 2 ) ζ ··· x ( B ) 
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are the ordered observations, plot the η points {£,, x ( i ) } , i = 1, . . . , n, where x( is 
the quantile of the distribution function F corresponding to a cumulative 
probability p; [ = (i — α)/(η — 2a 4- 1) with a = j , 5, or 0 as some of the possible 
choices], that is, x, is defined by Fix^O) = pf . The well-known use of normal 
probability paper for plotting data (which was mentioned, for instance, in 
Section 5.4.2 in connection with evaluating marginal normality) is an example 
of the making of a Q-Q plot with F taken as the distribution function Φ of the 
standard normal distribution. Other examples of specification of F are a 
chi-squared distribution with a specified degree of freedom, a gamma distribu-
tion with a specified shape parameter, and a beta distribution with values for 
both of its shape parameters. (See Wilk et al, 1962a; Gnanadesikan et al , 1967.) 

For uniresponse observations, in addition to ecdfs, probability plots, and 
the other displays mentioned above, there are some simple graphical displays 
for aiding in the assessment of symmetry of the data distribution. From the 
viewpoint of multiresponse data analysis, symmetry of the marginal distribu-
tions of each response is not an unreasonable requisite for the meaningful use 
of several summary statistics such as correlation coefficients and covariance 
matrices. If the raw data are quite asymmetric, a preliminary transformation 
of the observations (perhaps by the methods of Section 5.3) to enhance 
symmetry will often be a sensible first step before the subsequent univariate or 
multivariate analyses that may be performed on the transformed data. 

The ecdf itself is often a good means of studying symmetry. However, other 
plots specifically useful for investigating possible asymmetry in data can also 
be made. For instance, if x ( 1 ) < x ( 2 ) < ··· < X ^ - D ^ xw denote the ordered 
observations, Wilk & Gnanadesikan (1968) have suggested plotting the points 
whose coordinates are {x( 1 ) , x ( n ) } , {x ( 2 ) ,x ( n _ i} , etc. If the observations are 
symmetric around a center of symmetry χ = b, such a plot should look 
reasonably linear with intercept approximately equal to 2b and slope approxi-
mately equal to — 1. Departures from such a linear configuration will indicate 
the type of asymmetry present in the data. For instance, an upward bow to the 
plot will indicate a longer upper tail; a downward bow, a longer lower tail. In 
a variant of this plot for assessing symmetry the points plotted have coordinate 
values that are deviations from the median of the observations, that is, the 
points plotted are {x M - x ( I ) , x( r ) ) - x M } , {xM - x ( 2 ) , x(1I_ „ - xM), etc, where 
x M denotes the median. For symmetric data the configuration on such a plot 
will, therefore, be linear with zero intercept and unit slope, and departures from 
such a "null" configuration can be easily appreciated and interpreted. Another 
plotting procedure for studying symmetry, proposed by Tukey (see Wilk & 
Gnanadesikan, 1968), consists in plotting the points whose coordinates are, 
respectively, differences and sums of the symmetrically situated pairs of ordered 
observations x ( i ) and x ( n - f + i , , that is, the plotted points are {x( l l ) — x ( 1 ) , 
x ( 1 ) + x ( n ) } , {x („-i) — x ( 2 ) , x ( 2 ) + x ( n - i ) } , etc. This is a scheme for "tilting" the 
plots so that the "null" configuration becomes a horizontal linear one, and 
departures of the data from symmetry will be indicated by deviations from 
horizontality. The next example illustrates the use of these three graphical 
methods for assessing symmetry. 
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Example 38. The observations are maximum daily ozone measurements (in 
ppm) as observed at a particular air monitoring site in New Jersey during 
certain months in 1973. Exhibit 38a shows a plot of the symmetrically situated 
ordered observations *<,,-(+1>}> 1 = 1» • · •»[«/2], and the upward bow of 
the plot suggests a positively skewed distribution for the observations. Exhibit 
38b (see page 232) shows a plot of the deviations from the median, viz. 
{xM — x ( i ) , χ ( Β _ ί + 1 , — xM) for / = 1, . . . , [n/2], and the departure from the line 
of zero intercept and unit slope is quite strikingly indicative of a positively 
skewed distribution. Exhibit 38c (see page 233) shows the plot suggested by 
Tukey; the systematic deviation from a horizontal linear configuration is 
evident here too. 

In an attempt to improve the symmetry of the data in this example, square 
roots of the observations were taken, and Exhibit 38a" (see page 234) shows a 
plot of the deviations from the median for the transformed data. A comparison 
with Exhibit 38b reveals the clear accomplishment of the square-root trans-

Exhibit 38*. Plot of upper vs. lower half of the sample for ozone data 

0.201 
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formation in symmetrizing the data. The lognormal distribution has often been 
used as the model for ambient air quality measurement data (see for example, 
Zimmer & Larsen, 1965). For the present data Exhibit 38e (see page 235) 
shows a plot of deviations from the median when logarithms of the observa-
tions are used, and a comparison of Exhibits 38b, d, and e reveals that the 
square-root transformation is better for symmetrizing the data than the 
logarithmic transformation, which results in a negatively skewed distribution 
for the data in this example. More extensive evidence in favor of the square-
root transformation in connection with ambient air quality data is contained 
in the work of Cleveland et al. (1975). 

For multiresponse data there does not seem to be any extension of 
uniresponse Q-Q probability plotting, perhaps because no unique (or even 
generally useful) way of defining quantiles is available. Even more basically, 
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convenient graphical representations of multivariate (especially with ρ > 3) 
histograms of the kind proposed by Hartigan (1973) have not been widely 
implemented. 

Nevertheless some things can be done to provide insights into multiresponse 
data configurations, and a few graphical techniques (some of which have been 
described and used in earlier chapters) are worth explicit mention here. 

1. Two- and three-dimensional scatter plots of bivariate and trivariate 
subsets of the original data can be useful for studying cohesiveness, separations 
within the sample, possible outliers, and general shape. Devlin et al. (1975) 
have suggested a way of augmenting the pictorial value of two-dimensional 
scatter plots for judging the effects of individual observations on a correlation 
coefficient computed from the points exhibited in a scatter plot. The suggestion 
is to display on the scatter plot the contours of a so-called influence function 

Exhibit 38c. Plot of sum of and difference between upper and lower quantiles for ozone data 
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Exhibit 384 Plot of deviations of upper quantiles from median vs. deviations of lower quantiles 
from median for square roots of ozone data 
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(see Hampel, 1968, 1974) of the correlation coefficient so as to enable one not 
only to gain an overall appreciation of the strength of the correlation but also 
to gauge how much the computed value of the correlation coefficient can be 
altered (inflated or deflated) by the omission of individual observations. An 
example of a scatter plot with superimposed influence function contours is 
given in Section 6.4.2. 

With the availability of interactive graphical display facilities, one could 
sweep through a series of two-dimensional projections in addition to those 
onto the original coordinate planes and gain a good appreciation of the 
structure of high-dimensional data. The PRIM-9 system developed by Fisher-
keller et al. (1974) was an early implementation of such an interactive, dynamic 
graphical display. A number of later schemes for dynamic displays, incorpor-
ating both flexible user-interaction and aids for selecting interesting projections 
of high-dimensional observations, have emerged subsequently. Many of these 
schemes have been motivated by finding clusters and were mentioned in 
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Exhibit 38*. Plot of deviations of upper quantiles from median vs. deviations of lower quantiles 
from median for logarithms of ozone data 

MEDIAN - LOWER QUANTILE 

Section 4.3.2 (e.g, Azimov et al , 1988; Buja & Hurley, 1990; Cook et al , 1993; 
Swayne et al , 1991). 

2. Probability plots of the observations on each response separately will 
generally be useful, in conjunction with other multivariate analyses. A natural 
base or starting point for such plotting will often be the normal distribution. 
Such plots may indicate the desirability of marginal transformations or of more 
appropriate and insightful kinds of probability plots. 

3. Scatter plots and/or probability plots of projections onto eigenvectors 
from either linear or generalized principal components analysis can also be 
made and studied with benefit in many cases. 

4. Joint evaluation of the eigenvalues of a sample covariance or correlation 
matrix is a problem often associated with the analysis of an unstructured 
multiresponse sample. Such evaluations may, for instance, provide the key to 
possible reduction of dimensionality. The adequate assessment of specific 
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sample eigenvalue results is not, however, an elementary task. The fact is that, 
even for large samples from spherical multivariate distributions, the eigen-
values may exhibit substantial variability (see Example 13 of Gnanadesikan & 
Wilk, 1969). A scree plot, which is a plot of the ordered eigenvalues against 
their ranks, is often used for studying the separations amongst eigenvalues (see 
Cattell, 1966). One looks for "elbows" in the plot to decide where the 
separations might be. However, this can turn out to be very difficult in many 
problems where the fall off in the eigenvalues tends to look like a smooth 
exponential curve. Buja & Eyuboglu (1993) have suggested a useful augmen-
tation of scree plots for assessing the eigenvalues of a correlation matrix. Their 
proposal is discussed below. Example 40 below illustrates the use of the 
standard scree plot and the enhancement proposed by Buja & Eyuboglu. 

Rather than plotting the eigenvalues against their rank order, a Q-Q type of 
probability plot has been proposed (Gnanadesikan, 1968, 1973). The idea is to 
plot the ordered eigenvalues against their expected (or some other typical) 
values, determined by using the null assumption of sampling from a standard 
spherical normal distribution. The plotting positions (i.e., the "expected" 
values) may be determined by either a simple or a more sophisticated and 
efficient (Hastings, 1970) Monte Carlo approach. The work of Stein (1969) and 
of Mallows & Wachter (1970) on asymptotic configurations of eigenvalues of 
Wishart matrices also provides a basis for plotting the ordered eigenvalues of 
a covariance (albeit not a correlation) matrix against a set of corresponding 
quantiles of a particular distribution. 

Example 39. For this example 25 random deviates from a 10-dimensional 
normal distribution were generated. The underlying dispersion of the com-
puter-generated data was much larger along two of the coordinates than along 
the other eight, so that the variability observed in the 10-dimensional sample 
would be expected to be confined largely to a two-dimensional subspace. 

Exhibit 39 shows a plot of the 10 ordered eigenvalues of the sample 
covariance matrix against simple Monte Carlo estimates of their respective 
expected values under sampling from a 10-dimensional standard spherical 
normal distribution. The two largest eigenvalues clearly deviate from the 
configuration indicated by the smaller eight eigenvalues. Replotting (i.e., 
redetermination of the plotting positions on the basis of sampling from an 
eight-dimensional standard spherical normal) the smaller eight eigenvalues 
would be useful for studying the cohesiveness of and/or groupings among them. 

This Q-Q type of graphical analysis of eigenvalues is useful not only for 
isolating large eigenvalues but also for identifying cases in which the overall 
space of the responses is decomposable into subspaces within each of which the 
dispersion of the points is essentially spherical; this will be indicated by a plot 
that has several linear pieces with differing slopes. 

Buja & Eyuboglu (1993) suggest a different method for assessing the 
separations among the eigenvalues of a correlation matrix. The central idea in 
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Exhibit 39. "Q-Q" plot of eigenvalues 
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the approach is to randomly permute the initial data and thence generate 
permutation distributions of the eigenvalues which can then be used to provide 
the quantiles of the distribution of each ordered eigenvalue. The quantiles are 
added to a scree plot and serve as aids to judging the deviations of the observed 
eigenvalues from a "null" model that specifies them all to be equal. The null 
model is thus equivalent to specifying the true correlation matrix to be the 
identity matrix. 

More specifically, starting with the ρ χ η data matrix, Y, Buja & Eyuboglu 
suggest the following as "null" assumptions: (a) the ith row of Y, consisting of 
the η observations on the ith response, is a random sample from a univariate 
distribution with distribution function, Ft, for i = l , . . . , p ; and (b) the ρ 
response variables are mutually independent (which would imply that the 
correlation matrix is I). Under these assumptions, the joint null distribution of 
the multiresponse observations (and hence the null distribution of statistics 
such as the eigenvalues of the sample correlation matrix) is invariant under 
permutations within rows, there being (ηψ possible permutations in all. In 
fact, given that any single row of Y is itself a random realization, one can limit 
the number to (ηψ'1 permutation, which is still a very large number even for 
moderate values of η and p. To generate the required permutation distributions 
of the eigenvalues of the correlation matrix, the suggestion is to take a finite, 
perhaps large, number of permutations and hope that the required permutation 
distributions under null assumptions are reasonably well determined. In 
practice, for moderate values of ρ and n, using 500-1000 random permutations 
may suffice but experimentation in the given context may be wise. At any rate, 
the method consists of generating an adequate number of row-permuted 
"samples" from the data, computing the correlation matrix and its eigenvalues 
from each permutation, and, finally, determining a set of empirical quantiles 
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(e.g., median, lower and upper 25%, 10%, 5%, 1% values) from the distribution 
of each eigenvalue separately and superimposing the loci of these quantiles 
onto a scree plot of the observed eigenvalues of the original data. Those 
eigenvalues that are beyond the outer, upper quantile curves may be judged as 
being really different from other eigenvalues which are within the bands of the 
inner quantiles (e.g., quartiles). 

The simulations involved in the Q-Q type of plot suggested earlier can, of 
course, be used for calculating such things as standard deviations and even the 
quantiles of the distributions of the eigenvalues, which can then be used as aids 
in assessing departures, if any, from the null linear configuration of the plot to 
be expected when the sampling is from 7V[0,1]. A major difference between the 
method proposed by Buja & Eyuboglu and the Q-Q type of plot is that the 
latter is based on simulated samples from a normal distribution, whereas the 
former is nonparametric in nature, since it is based on random permutations 
of the observed data. On the other hand, the Q-Q type plot can be generated 
for studying separations among the eigenvalues of either the covariance matrix, 
S, or the correlation matrix, R, or even robust versions of these, whereas the 
method of Buja and Eyuboglu is confined to correlation matrices including 
robust versions (e.g., R^f+J or R* defined in Section 5.2.3) and also the 
reduced correlation matrix involved in the principal factor analysis method 
(see Section 2.2.2). 

Example 40. This example, taken from Buja & Eyuboglu (1993), illustrates 
the use of the augmented scree plot. The data concern 15 questionnaire items 
that are intended to measure the bargaining behavior of opponents as rated by 
28 subjects involved in a stylized psychological experiment. Using 499 random 
permutations of the data matrix, Buja & Eyuboglu obtained the median, the 
upper quartile, and the 90th, 95th, and 99th percentiles of the permutation 
distributions of the 15 eigenvalues of the correlation matrix. Exhibit 40 shows 
the augmented scree plot obtained by them. The fact that the largest eigenvalue 
is well separated from the second and later eigenvalues would perhaps have 
been evident even from the simple scree plot for this example. The augmented 
scree plot, however, provides a clearer calibration of how far out in the tail of 
the "null" distribution the largest eigenvalue is and, moreover, is helpful in 
aiding the conclusion that the second eigenvalue is beyond the 95th percentile. 
The conclusion in this example would be that the top two eigenvalues are 
worth considering as distinct and well separated from the remaining ones 
which appear to be estimates of a common value. 

5. The use of one, or preferably several, distance functions to convert the 
multiresponse data to single numbers, followed by the probability plotting of 
these numbers, can be very effective. A common useful class of distance 
functions is that of positive semidefinite quadratic forms, x'Ax, where both the 
vector, x, and the matrix, A, may be some functions of the multiresponse 
observations themselves. Example 7 discussed in Section 2.4, as well as 
Examples 44-46 described in Section 6.3.1, illustrate the idea involved here. 
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Exhibil 40. Scree plot with superimposed percentiles from permutation distributions of the 
eigenvalues (Buja & Eyuboglu, 1993). [Percentiles from the bottom: median, 75th, 90th, 95th, and 
99th]. 
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6. The CPP and SCPP techniques of component probability plotting 
described in Section 5.4.1, and the plotting procedures associated with the 
radius-and-angles decomposition discussed in Section 5.4.2, are additional 
examples of graphical methods that are useful in studying the distributional 
characteristics of multiresponse data. 

7. Last, a technique proposed by Andrews (1972) and certain ramifications 
of it constitute promising developments in the graphical display of high-
dimensional data. The rest of this subsection is devoted to a discussion and 
illustration of this class of displays. 

The essential idea in Andrews's proposal is to map each multiresponse 
observation into a function, f(t), of a single variable, r, by defining / ( f ) as a 
linear combination of orthonormal functions in t with the coefficients in the 
linear combination being the observed values of the responses. For instance, 
given the p-dimensional observations, y, = (yn,yi2,• • •,yip)', i= I,···,», one 
can map each observation, y;, into 

+ 

= ν π α , ( ί ) + yi2a2(t) + •••+ yipap(t) 

= yi-a,., i = ! , . . . , « , (82) 

where the functions {a^t), a2(t), ap(t)} are orthonormal in an interval, say 
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0 < r ^ 1. Specifically, Andrews (1972) suggests the set of functions 

•I = {«ΜΟ, <*2(t)> • • ·} 

= \ -^= , sin t, cos i, sin 2i, cos 2t, -4 (83) 

which are orthonormal on ( — π, +π). [/Vote: Simply by taking 2πί in place of 
t in Andrews's definition one would obtain a set of functions orthonormal on 
(0,1) instead of ( - π, + π).] 

The η functions, f^t), f2(t),fH(t), may then be plotted simultaneously 
against values of t in the permissible range, for example, (0,1) or (—π, +π). 
Thus the initial multiresponse observations, which are η points in p-space, will 
now appear as η curves in a two-dimensional display whose ordinate corre-
sponds to the function value and whose abscissa is the range of values of t. 
At a specific value of i, say t = t 0 , / ( (f 0 ) >s the length of the projection of 
the ith observation, y(, onto the vector (or one-dimensional subspace) iiu — 
(ΰι(ί0), a2(t0),..., ap(t0)}. Thus, on the Andrews function plot, at a specific 
value of t one is looking at the lengths of the projections of each of the η 
observations onto a specific one-dimensional subspace of the original p-space, 
and, as one scans the plot across several values of t, one is looking at a 
collection of several such one-dimensional views. An equivalent algebraic way 
of thinking about the function plot is that at each value of t one is looking at 
a specific linear combination of the ρ responses, and thus across different values 
of t one is looking at several different linear combinations. 

Andrews (1972) has established various statistical properties of these func-
tion plots. For instance, since the definition of the functions in Eq. 82 is linear 
in the ρ variables, the technique preserves the mean in the sense that, if y 
denotes the mean vector of the observations, then 

so that the centroid of the observations will correspond to an "average curve" 
on the function plot. Another property of the function plot is that it preserves 
distances in a certain sense. Specifically, as a consequence of the orthonormal-
ity of the functions {αβ)}, = 1,. . . ,p, the squared distance between the pair 
of functions f(t) and f,{t), defined as 

" i - l 

over the 
total range 

of I 

is just proportional to the squared Euclidean distance between y, and y, in the 
p-space of the original observations. This property enables one to think of close 
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curves on the function plot as corresponding to close data points (at least as 
judged by Euclidean distance, which may not itself be a statistically appropri-
ate measure of distance for certain kinds of multiresponse data, as discussed in 
Section 4.2.1) in the p-space of the responses. 

Yet another property of the plot is that, provided the ρ responses have equal 
variances and are mutually uncorrelated, the variance across values of f in the 
function plot is essentially constant. This is so because a) as defined by Eq. 83, 
for instance, is of constant length ( = y/p/2) when ρ is odd, and when ρ is even 
and large it is of approximately constant length since its length is between 
J{p — l)/2 and ^/(p + l)/2. Consequently, if the ρ responses have a common 
variance a1 and, furthermore, are mutually uncorrelated, it follows from Eq. 82 
that the variance a2 of f(t) (defined with a, as in Eq. 83) is σ2ρ/2 when ρ is 
odd and lies between σ2(ρ — l)/2 and σ2(ρ + l)/2 when ρ is even. The 
requirement of a common variance for, and no intercorrelations among, the 
responses is, however, not only unrealistic but also self-defeating, in that if this 
were so the case for a multivariate approach to analyzing the data would not 
be very cogent. In practice, two different ways of moving the data toward 
meeting the requirement for constancy of variance of the function plot are (i) 
rotating the data to standardized principal component coordinates, and (ii) 
standardizing the variables initially (e.g, by scaling the observations on a 
response by either the standard deviation or the interquartile range) without 
any attempts to uncorrelate the data. 

From the definition of ft(t) in Eq. 82, it is clear that the choice of the specific 
elements of A, to associate with each of the variables can be important. For 
instance, the suggestion in Eq. 83 would associate 1/^/2 with the first variable, 
sin t with the second, and so on. A different permutation of the coefficients 
would, of course, lead to weighting the variables differently. One suggestion for 
using a specific ordering of coefficients such as the one in Eq. 83 is to take the 
variables in the order of their importance; however, such an ordering by 
importance may not always be feasible, and as a general rule it may be 
advisable to try a few different permutations of the coefficients with a given set 
of variables. Since the appearance of the function plot is not invariant under 
permutations of the coefficients, the use of different permutations may lead to 
different insights into the data and thus prove to be valuable. 

Ideally, as t varies across its total range of values, the values assumed by the 
vector will "cover" the sphere in ρ dimensions systematically and thoroughly 
so that no interesting unidimensional views (or linear combinations) are 
neglected. This seems to be too much to expect or require, however, even for 
moderately large p, especially if the set of coefficients is prespecified and not 
based on indications from the data. For providing a more complete coverage 
of the sphere and also for including the case of assigning equal weights to the 
ρ variables, a suggestion due to Tukey is the choice 

Λ, = (cost ,cosy/l t ,cosyfl t ,cosyfl t , . . . ) , 0 < ί < kn, (84) 
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for an appropriate value of k. Normalization of a, to constant length would 
seem advisable for comparisons across different values of t. At t = 0, the 
weights for the variables are all equal. [Note: The lack of orthogonality among 
the elements of Λ, in Eq. 84 would imply that interpreting closeness among the 
curves directly in terms of closeness of the original p-dimensional observations 
would not be as easy as it would be in the case of Andrews's original suggestion 
for a,', namely, Eq. 83.] 

A different issue in using the plotting scheme as proposed initially by 
Andrews is its use in the situation where one has a very large number of 
multivariate observations. Since each observation is mapped into a curve, a 
routine Andrews plot with a very large number of curves would tend to look 
quite messy and not particularly revealing of anything but global aspects (e.g., 
clearly separated clusters or outliers) of the configuration of the data. For this 
case when η is large, an adaptation of the Andrews plot is, however, feasible 
and appears to be quite useful for studying the configurational and distribu-
tional aspects of multivariate data. The essential idea in the adaptation is to 
plot, for each point in a specified grid of values of r, only selected quantiles or 
percentage points (e.g., median, upper, and lower quartiles) of the distribution 
of the η values of / and, in addition, perhaps plot selected individual 
observations such as extreme values. The appearance and appreciation of such 
a quantile contour plot, or indeed of any of the versions mentioned above, can 
sometimes be improved by plotting an internally standardized set of values 
(such as deviations of / from its median divided by the interquartile range) 
rather than the values of / itself. 

In addition to issues of choice of a,, that are shared by both function and 
quantile contour plots, the latter also involve the choice of quantiles for display 
purposes. As a general rule, plotting the median and quartiles (or, in the 
standardized version, centering the quantile contour plot at the median and 
scaling by the interquartile range) is useful. With regard to choosing specific 
quantiles beyond the quartiles, however, flexibility in the light of the specific 
application is in order. Thus, choosing the upper and lower 10%, 5%, and 1% 
quantiles is one possibility, while the upper and lower 12̂ %, 65%, and 3 | % 
quantiles (i.e., equally spaced in probability) constitute another useful choice. 

Since, in general, the function representing a specific multiresponse observa-
tion need not correspond to a particular quantile for all values of ί [i.e., for 
instance, if ft{t,) is the median value of the function at t = tt and fj(t2) is the 
median value at ί = I 2 , it is not necessarily true that i = j ] , the quantile 
contours will not enable one to study the behavior of specific observations but 
will only aid in assimilating the general distributional aspects of the high-
dimensional data. The functions corresponding to specific observations that 
are of particular interest can, of course, be displayed on a quantile plot, 
provided that the number of such observations is not so large as to interfere 
with appreciation of the plot as a whole. 

Function plots and quantile contour plots are useful devices for detecting 
clusters and/or outliers. In view of the properties mentioned earlier, on an 
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Andrews function plot the curves corresponding to the multiresponse observa-
tions in a cluster would cohere together, and distinct clusters (or outliers) 
would be indicated by clear separations among the curves (or sets of them). 
On a quantile contour plot the existence of strong clusters may be revealed by 
a disproportionate squeezing together of particular quantiles at some values of 
i. For instance, clustering that is revealed by multimodality of the distribution 
of the projections along the vector corresponding to a specific value of t will 
tend to show up as such a squeezing together of certain of the quantiles at that 
value of t since the multimodality implies that for a small change in some 
quantile values (perhaps usually the "outer" quantiles) there will be a large 
change in the corresponding cumulative probability values. 

Also, the quantile contour plot may be useful for studying the shape and 
more subtle configurational aspects of high-dimensional data distributions. 
Symmetry (as revealed by the appearances of the contours of pairs of upper 
and lower quantiles, especially the outer ones) is most easily appreciated. More 
specifically, if the data distribution is essentially spherical, one would expect to 
see approximately equal spacings between any specified pair of quantiles across 
the entire plot. The existence of high intercorrelations among the responses, 
which will tend to induce "ellipsoidal" types of configurations for the data, is 
likely to be revealed by an approximately proportionate squeezing together of 
almost all the quantiles for some values of t. [Note: An interesting use of 
function and/or quantile contour plots, as a consequence of this property, 
occurs in the context of multiple regression analysis. When one suspects 
difficulties caused by possible multicollinearity in the data, a plot of this type 
for the observations (either just on the independent variables or on both the 
dependent and independent variables) may be useful for identifying the 
singularities, as well as the essentially linearly independent combinations of the 
variables—the singularities would correspond to directions of (or linear 
combinations with) zero variance, which would be revealed by all the curves 
(or all quantiles) going through a single point at one or more values of t, while 
directions in (or linear combinations for) which curves (or quantiles) spread 
out considerably would be useful for picking the essentially linearly indepen-
dent combinations.] 

With quantile contour plots, as a check on the normality of the distribution 
of the data, one can compare the ratios of the observed spacings between 
specified pairs of quantiles with the values of such ratios for the normal 
distribution. Thus, for instance, the spacing between the 10% quantile and the 
median is approximately twice (1.9, more precisely) the spacing between the 
quartile and the median for a normal distribution; and if this relationship is 
not adequately satisfied for one or more values of t by the three quantiles 
involved, one will have reason to question the normality of the distributions of 
the linear combinations of the variables corresponding to these values of f, and 
hence also to question the joint normality of the distribution of the initial 
observations. Since the values of t spanned in a quantile contour plot do not 
generally yield all possible linear combinations of the original variables, 
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indications of reasonable conformity to normality for every value of t in the 
grid chosen for a quantile contour plot, although not equivalent to a confir-
mation of joint normality, will nevertheless be useful evidence for deciding to 
use methods based on normality assumptions for further analyses of the data. 
Also, if normality is singularly inapplicable for only a few values of t, one may 
be able to transform the data initially so as to improve directional normality 
(see Section 5.3) along just these directions without altering the data in other 
directions, and then use standard methods with the transformed data. At any 
rate the quantile contour plot at least provides an informal basis for verifying 
normality. [Note: Since several comparisons of ratios of spacings between 
quantiles may be involved, one may wish to automate this process and have 
the computer not only do the plotting but also provide printout flagging 
situations in which the departures from normality are sufficiently striking.] 

A considerably different problem, which can be motivated in terms of the 
function and quantile contour plots, is that of choosing a "typical" multi-
response observation. The sample mean vector, y, and the more robust 
estimators of location discussed in Section 5.2.3 are examples of statistics that 
summarize one typical aspect of multiresponse data, namely, overall location. 
Even in the context of location estimation, for some applications one may be 
interested in choosing an actual observation as a typical value instead of a 
summary statistic. One approach to this problem is to choose as a typical 
observation the one whose representation as a curve on a function plot is 
closest (in some specified metric) to the set of median values on the correspond-
ing quantile contour plot. In fact, this idea, in addition to its use in developing 
a location estimate, may be worth investigating as a means of defining 
multivariate order statistics and quantiles. 

Example 41. This example, taken from Andrews (1972), pertains to a 
discriminant analysis described by Ashton et al. (1957) of eight measurements 
(p — 8) on teeth of different "races" of men and apes, so as to aid in the 
classification of some fossils on the basis of their measurements with respect to 
the same eight characteristics used for the men and the apes. Nine groups— 
three "races" of men and six groups (three types χ two sexes) of apes were 
involved, so that there were eight CRIMCOORDS (see Section 4.2) in the 
discriminant analysis. 

Exhibit 41a (see page 245) shows the coordinates of the nine group centroids 
in the eight-dimensional space of the CRIMCOORDS and also the represen-
tations for the six fossils in this space. Exhibit 4ib (see page 246) shows a 
graphical representation, obtained by Ashton et al. (1957), of the group 
centroids as well as the fossils in the space of the first two CRIMCOORDS; 
also included in this picture are approximate 90% confidence regions for the 
locations of the nine groups in the two-dimensional CRIMCOORDS space. 
(See the discussion in Section 4.2 pertaining to the methodological details of 
such graphical displays.) In Exhibit 41 b the coordinates of the centers of the 
circles and of the points that correspond to the fossils are the values shown in 
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Exhibit 41*. Representations of the fossil groups and the unknowns in the space of the first two 
CRIMCOORDS (Ashton et al., 1957; Andrews, 1972) 

I I I I t 

A-WEST AFRICAN 
θ-BRITISH 
C-AUSTRALIAN 

D,E-GORILLA 
F,G-ORANG-OUTANG 
H,I-CHIMPANZEE 
J,K - PITHECANTHROPUS PEKINENSIS 

L-PARANTHROPUS ROBUSTUS 
M-PARANTHROPUS CRASSIDENS 
N-MEGANTHROPUS PALAEOJAVANGUS 
0-PROCONSUL AFRICANUS 



UNSTRUCTURED MULTIRESPONSE SAMPLE 247 

Exhibit 41a for just the first two CRIMCOORDS. Thus an inspection of the 
values in Exhibit 41a or of the visual portrayal in Exhibit 416 shows the clear 
separation (especially on the first CRIMCOORD) of the three "races" of men 
from the six groups of apes. Ashton et al. (1957) went further, on the basis of 
Exhibit Alb, to conclude that the fossil Proconsul africanus is very much like a 
chimpanzee, whereas the other five fossils are more akin to the "races" of men. 

Andrews (1972), on the other hand, studied the eight-dimensional data in 
Exhibit 41a by means of his function plots and came to interesting but different 
conclusions regarding the classification of the fossils. Specifically, Exhibit 41c 
(see page 246) shows the function plot obtained by Andrews (1972) for the nine 
group centroids given in Exhibit 33a. The choice of A, in this plot is the one in 
Eq. 83 with l/y/ϊ being associated with the first CRIMCOORD, sin t with the 
second, and so on. [Note: The CRIMCOORDS would have equal variances 
and be uncorrelated, under the usual assumptions of discriminant analysis, even 
if the original variables did not have these properties.] In Exhibit 41c the 
curves for the three human groups are quite well separated from the curves of 
the six groups of apes, and, among the apes, the chimpanzees stand out from 
the other two types. Also, the two sexes within each ape group tend to have 
relatively closely spaced curves, especially in the left part of the plot. 
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Exhibit 4If. High-dimensional plot of the centroids of fossil groups using Eq. 84 for coefficients 

6 . 9 8 ι , 

A - WEST AFRICAN 
Β - BRITISH 
C-AUSTRALIAN 
D,Ε-GORILLA 
F,G - ORANG-OUTANG 
H,l - CHIMPANZEE 

In addition, at specific values of t the separations among the groups are very 
pronounced in relation to the separations within the groups. For instance, at 
t2 and i 4 the human groups are very cohesive and more clearly distinguished 
from the values for the curves for any of the apes. At i t and f3 the chimpanzees 
seem to stand out more clearly from the remaining two groups of apes. Thus 
Exhibit 41c has been useful for detecting directions of clusterings among the 
groups. 

In Exhibit 41(2 (see page 247) the curves for the six fossils in the study have 
been superimposed on the curves of Exhibit 41c. Immediately, one fossil, 
Proconsul africanus, stands out as being different, although for specific (but 
different) values of t it comes close to each of the groups. The remaining fossils 
are quite similar to man, especially at t2 and r4. Andrews (1972) discusses more 
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Exhibit 41/. High-dimensional plot of the centroids of the fossil groups and the unknowns, using 
Eq. 84 for coefficients 

A - W E S T AFRICAN 

Β - BRITISH 

C - AUSTRALIAN 

D , E - G O R I L L A 

F, G - ORANG-OUTANG 

Η, I - CHIMPANZEE 

θ 4 2 

J , Κ - P I T H E C A N T H R O P U S PEKINENSIS 

L -PARANTHROPUS ROBUSTUS 

Μ - P A R A N T H R O P U S CRASSIDENS 

Ν - MEGANTHROPUS PALAEOJAVANICUS 

Ο - PROCONSUL AFRICANUS 

formal tests (based on certain confidence bands obtained by using the af 

discussed earlier) to support the conclusions drawn from the function plot 
shown in Exhibit 4Id. The feature that Proconsul africanus does not seem to 
belong to any of the groups illustrates the fact that in some applications of 
discriminant analysis it is wise to have the option of not classifying an 
unknown as necessarily belonging to any one of the prespecified groups. (See 
also Rao, 1960, 1962, regarding this issue.) 

Exhibits 41e and / show function plots that correspond to Exhibits 41c 
and d when a, is specified according to Eq. 84 rather than Eq. 83. Although 
the appearance of the plots in Exhibits 41e and / is more noisy and 
the separation of the human and ape groups is no longer as striking, the 
general indications and conclusions in this example are quite similar for the 



250 SUMMARIZATION AND EXPOSURE 

two choices of a,. In fact, in this example, a star plot and a ChernofFs faces 
display of the "data" in Exhibit 41a would also have led to the same 
conclusions. 

Example 42. The data collected by Anderson (1935), and also used by 
Fisher (1936), shown in Exhibit 42a consist of 50 quadrivariate observations 
(viz, logarithms of sepal length and width and of petal length and width) for 
Iris setosa. The original data on Iris setosa, as well as on two other species of 
iris (Iris versicolor and Iris virginica), are well known in the multivariate 
literature and have been utilized by many authors as the basis for testing 
different classification and clustering algorithms (e.g., Friedman & Rubin, 
1967). The data set is considered to be generally well behaved with no 
particular peculiarities, and it has been found that Iris setosa is easily 
distinguishable from the other two species (see, for example, Fisher, 1936; 
Friedman & Rubin, 1967; and Exhibit 42c). 

Exhibit 42a. Iris setosa data (Anderson, 1935; Fisher, 1936) 

Sepal 
Length 
(In cm) 

Sepal 
Width 
(In cm) 

Petal 
Length 
(In cm) 

Petal 
Width 
(In cm) 

1.629 
1.589 
1.548 
1.526 
1.609 
1.686 
1.526 
1.609 
1.482 
1.589 
1.686 
1.569 
1.569 
1.459 
1.758 
1.740 
1.686 
1.629 
1.740 
1.629 
1.686 
1.629 
1.526 
1.629 

1.253 
1.099 
1.163 
1.131 
1.281 
1.361 
1.224 
1.224 
1.065 
1.131 
1.308 
1.224 
1.099 
1.099 
1.386 
1.482 
1.361 
1.253 
1.335 
1.335 
1.224 
1.308 
1.281 
1.194 

0.336 
0.336 
0.262 
0.405 
0.336 
0.531 
0.336 
0.405 
0.336 
0.405 
0.405 
0.470 
0.336 
0.095 
0.182 
0.405 
0.262 
0.336 
0.531 
0.405 
0.531 
0.405 
0 

1.609 
1.609 
1.609 
1.609 
1.609 
0.916 
1.204 
1.609 
1.609 
2.303 
1.609 
1.609 
2.303 
2.303 
1.609 
0.916 
0.916 
1.204 
1.204 
1.204 
1.609 
0.916 
1.609 
0.693 0.531 
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Exhibit 42a. (Continued) 

Sepal Sepal Petal Petal 
Length Width Length Width 
(In cm) (In cm) (In cm) (In cm) 

1.569 1.224 0.642 - 1 . 6 0 9 
1.609 1.099 0.470 - 1 . 6 0 9 
1.609 1.224 0.470 - 0 . 9 1 6 
1.649 1.253 0.405 - 1 . 6 0 9 
1.649 1.224 0.336 - 1 . 6 0 9 
1.548 1.163 0.470 - 1 . 6 0 9 
1.569 1.131 0.470 - 1 . 6 0 9 
1.686 1.224 0.405 - 0 . 9 1 6 
1.649 1.411 0.405 - 2 . 3 0 3 
1.705 1.435 0.336 - 1 . 6 0 9 
1.589 1.131 0.405 - 1 . 6 0 9 
1.609 1.163 0.182 - 1 . 6 0 9 
1.705 1.253 0.262 - 1 . 6 0 9 
1.589 1.281 0.336 - 2 . 3 0 3 
1.482 1.099 0.262 - 1 . 6 0 9 
1.629 1.224 0.405 - 1 . 6 0 9 
1.609 1.253 0.262 - 1 . 2 0 4 
1.504 0.833 0.262 - 1 . 2 0 4 
1.482 1.163 0.262 - 1 . 6 0 9 
1.609 1.253 0.470 - 0 . 5 1 1 
1.629 1.335 0.642 - 0 . 9 1 6 
1.569 1.099 0.336 - 1 . 2 0 4 
1.629 1.335 0.470 - 1 . 6 0 9 
1.526 1.163 0.336 - 1 . 6 0 9 
1.668 1.308 0.405 - 1 . 6 0 9 
1.609 1.194 0.336 - 1 . 6 0 9 

For present purposes the data of Exhibit 42a were initially "standardized" 
on each variable by subtracting the median from each observation and then 
dividing by the interquartile range. With as many as the 50 observations in this 
example, a quantile contour plot rather than a function plot is the appropriate 
choice, and Exhibit 42b (see page 252) shows such a plot. The choice for A, in 
this case was {sin i, cos t, sin 2f, cos 2i}, and the quantiles chosen for display 
were the median, the lower and upper quartiles, and the lower and upper 
tenths. In Exhibit 42b the median is labeled Μ, the two quartiles are denoted 
as Q, and the tenths are shown as T's. Exhibit 42b is actually a printer plot 
and is an example of graphical output that does not require any exotic, 
expensive, or specialized hardware. 

Also shown on Exhibit 42b are the two "outermost" points, plotted as 0's. 
An investigation of these points showed that one of them corresponded to the 
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Exhibit 424. Quantile contour plot of Iris setosa data 

TTTTTTT 0 

16th observation in the original set, and the other to the 42nd observation. The 
process of identifying such consistently outlying observations, if they exist, can 
be automated by requiring the computer program to superimpose, with 
appropriate labels, the curves for all observations that are consistently (by 
some quantitive definition such as "for more than half the values of t") well 
separated from the majority. At any rate Exhibit 42b shows directly and simply 
that the 16th and 42nd observations are symmetrically and oppositely situated 
observations which seem to be quite clearly separated from the remaining 
observations as one views the data in several unidimensional directions. 

Exhibit 42c shows a representation of the three groups of irises in the 
two-dimensional discriminant space for this problem. The fifty Iris setosa 
points are labeled 1 in this figure; those for Iris versicolor, 2; and those for /ris 
virginica, 3. In this picture the 16th and 42nd observations in the Iris setosa 
group are seen to lie at opposite ends of the data configuration with respect to 
the second discriminant coordinate, although the separation of the two points 
is by no means as striking as it is in the quantile contour plot. 

Aside from the indications regarding the 16th and 42nd observations, by 
scanning the spacings among the quantiles across the whole picture in Exhibit 
42h one can get a "feeling" for the shape of the quadrivariate distribution of 
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Exhibit 42c. Representation of the three groups of irises in the space of the two CRIMCOORDS 
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IRIS DATA IN DISCRIMINANT SPACE (LOG X) 

the data in Exhibit 42d\ The configurations of the M\ Q\ and Ts in Exhibit 
42b indicate that the data in this example are quite symmetrically, although 
not spherically (perhaps because of the known intercorrelations among the 
variables here), distributed in 4-space. 

Example 43. This example derives from a study of empirical groupings of 
corporations (see Chen et al , 1970, 1974, and also Examples 17, 18, and 23 in 
Chapter 4) on the basis of yearly observations on several variables chosen to 
represent the financial and economic characteristics of the firms. One question 
of interest in this study was what an appropriate classification would be for 
AT&T (American Telephone & Telegraph Company) vis-a-vis the dichotomy 
of corporations as either industrials or utilities. Standard and Poor's COM-
PUSTAT tape was used for deriving annual values for 13 variables (see Chen 
et al. 1970,1974, for a list and definition of the variables), and the investigation 
was carried out by performing separate analyses of each of the years 1960-
1969 in particular. 
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Exhibit 43a. Quantile contour plot of 495 industrials and AT&T for 1969 

A« AT a Τ 
Η» MEDIAN ( Ό ) 
• • 25% OR 75% POINT 
• » 12 1/2% OR β7 1/2% POINT 
- • 6 1/4% OR 93 3/4% POINT 

8.14 ι = 

Quantile contour plots can be employed to summarize the findings regard-
ing AT&Ts classification. Exhibit 43a shows a quantile contour plot of the 
13-dimensional data for 49S industrial firms for 1969; also included on the plot 
is the curve for AT&T, labeled A. [Note: As a preliminary standardization of 
each of the 13 variables, the median was substracted and the resulting 
deviations were divided by the inter-quartile range; the 13-dimensional obser-
vation for AT&T was subjected to the same standardization as was performed 
for the industrial firms displayed in Exhibit 43a.] The choice of Λ, for Exhibit 
43a was the one in Eq. 83, and the displayed quantiles (whose associated 
probabilities are defined in the legend for the figure) are in fact deviations from 
the median, which therefore appears as a steady level line (labeled Η for "half) 
across the middle of the picture. 

Exhibit 436 shows a similar quantile contour plot for the 94 utilities 
involved in the study for the same year (1969), and again AT&Ts curve is 
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Exhibit 434. Quantile contour plot of 94 utilities and AT&T for 1969 

A - A T a Τ 

Η » M E D I A N ( Ό ) 

• « 2 5 % O R 7 5 % P O I N T 

• « 1 2 1 / 2 % O R 8 7 1 / 2 % P O I N T 

- « 6 1M % O R 9 3 3 / 4 % P O I N T 

1 0 . 7 9 

?·•"""—• * * · "·»-.···"· *' 

- « . 9 1 

*·****»»·»** 

. ι 

• 3 1 4 Χ 1 4 

shown as a series of A's across the plot. [Note: The preliminary standardiz-
ation for Exhibit 436 was, of course, based on the 94 utilities in this case.] A 
comparison of Exhibits 43a and b gives a clear visual impression that AT&T 
fits in better with the industrials than with the utilities. A more quantitative 
summary of this point is that for the industrials AT&T falls within the lower 
and upper quartiles for about 50% of the t values, within the lower and upper 
12^% points about 75% of the time, and within the band, defined by the lower 
and upper 6 j % points at a frequency of about 88%. [Note: These frequencies 
are exactly those to be expected for a typical industrial firm.] The correspond-
ing frequencies for the utilities shown in Exhibit 436 are much smaller, being, 
respectively, 10%, 20%, and 40%. 

Also, the configurations of the quantiles exhibit strong asymmetries of the 
data distributions along several directions (e.g., those that correspond to values 
of f = t, and t2 in Exhibit 43a and t = t 3 in Exhibit 436), and thus as an 
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adjunct indication one has clear evidence of departures from joint normality of 
the distribution of the initial 13-dimensional data. The evidence for nonnor-
mality of the distribution of these data is indeed plentiful, and Exhibits 43a and 
b are by no means the only indicators of this facet of the data. (See also 
Example 37 in Section 5.4.2.) 

The above examples have demonstrated the utility of function plots and 
quantile contour plots. Despite their limitations the techniques have significant 
appeal because, at least in part, of the simplicity involved in their two-
dimensional character, although the data being represented in them may be, 
and often are, quite high-dimensional. More work leading to other choices for 
Λ', (to provide, for instance, better coverage of "interesting" directions in 
p-space) and to methods for choosing aj in the light of the data would indeed 
be worthwhile. 

6.3. COMPARISON OF SEVERAL MULTIRESPONSE SAMPLES 

Many situations require the presentation of data from several identified groups 
for comparative purposes. The analysis of variance is a widely used technique 
for comparing two or more samples. In the uniresponse case Student's t and F 
statistics are familiar examples of summary statistics that are used for formal 
comparisons among two or more samples. It will often be useful in analyzing 
uniresponse data to supplement the computation of such summary statistics by 
probability plotting techniques, such as a Q-Q plot of one sample versus 
another, or perhaps superimposed normal probability plots of several samples 
on a single picture. 

In the multiresponse situation Mahalanobis' D2 or Hotelling's T2 can be 
computed and utilized for formally comparing the locations of two groups. 
Also, for the two-group location problem, when the dimensionality (i.e, 
number of responses) exceeds the degrees of freedom available for estimation 
of the error covariance matrix, Dempster (1958) has proposed a test. Multi-
variate analysis of variance (MANOVA) is concerned with certain generaliz-
ations of the two-group procedures proposed by Mahalanobis and by 
Hotelling (see Sections 5.2.1 and 5.2.2). However, the formal analyses involved 
in MANOVA are often not sufficiently revealing. They need to be augmented 
by various graphical analyses, and the discussion of such graphical tools is the 
concern of this section. 

It is perhaps typical of analysis of variance situations that one wishes to ask 
not one or two questions of the same body of data but several. One would also 
like to have a climate for the statistical analysis in such a situation that would 
allow unanticipated characteristics to be spotted. Examples of nonobvious but 
interesting indications are the presence of possibly real treatment effects, the 
existence of outliers in the data, and heteroscedasticity. 
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For these reasons it is reasonable to provide statistical procedures that use 
some sort of statistical model to aid in comparisons of various collections of 
comparable quantities, and yet enable one to make such comparisons without 
the need to commit oneself to any narrow specification of objectives. Examples 
of collections of comparable quantities are a collection of single-degree-of-
freedom contrasts, a collection of mean squares in ANOVA, and a collection 
of sum-of-products matrices in MANOVA. Procedures for such comparisons 
have been called internal comparisons methods by Wilk & Gnanadesikan (1961, 
1964). Specifically, some kinds of probability plotting techniques have been 
developed for internal comparisons of the relative magnitudes that are involved 
in ANOVA and MANOVA. These procedures provide a statistical measure for 
facilitating the assessment of relative magnitudes, which probably becomes 
rather nonintuitive when one is dealing with a large collection of comparable 
quantities. Moreover, the procedures can provide some insight into various 
possible inadequacies of the statistical model used to generate the analysis. The 
procedures are not excessively influenced by some data-independent aspects, 
such as the need to prechoose an error term. 

In particular, Table 2 shows a categorization of orthogonal analysis of 
variance situations according to the multiplicity of response and the degrees-
of-freedom decomposition of the experimental design or model for the data. 
Also given beneath the two-way categorization is a list of specific references 
that describe techniques of relevance to each of the cells in the table. 

Table 2. Categorization of ANOVA and MANOVA Cases 

D F Decomposition 

Response Structure 

D F Decomposition Uniresponse Multiresponse 

All 1 df I IV 
All ν df II V 
Mixed df III VI 

I. A half-normal plot of absolute values of contrasts—C. Daniel, Technomet-
rics 1 (1959), 311-41. 

II. A v-df chi-squared plot of sums of squares (or gamma plot of sums of squares 
with shape parameter η = ν/2)— Μ. B. Wilk, R. Gnanadesikan, and M. J. 
Huyett, Technometrics 4 (1962), 1-20. 

III. A generalized probability plot of mean squares—R. Gnanadesikan and 
Μ. B. Wilk, J. R. Stat. Soc. B32 (1970), 88-101. 

IV. A gamma plot of squared distances with an estimated shape parameter— 
Μ. B. Wilk and R. Gnanadesikan, Ann. Math. Stat. 35 (1964), 613-31; also, 
Chapter VII of Roy et al. (1971). 

V. Gamma plots of certain functions of eigenvalues with an estimated shape 
parameter—R. Gnanadesikan and Ε. T. Lee, Biometrika 57 (1970), 229-37. 
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Gnanadesikan (1980) provides complete step-by-step descriptions of the 
techniques for cells I-V. The two subsections that follow will be concerned 
with describing the methods for cells IV and V, respectively. Methods for cell 
VI are not yet available. 

6.3.1. Graphical Internal Comparisons among Single-Degree-of-Freedom 
Contrast Vectors 

The techniques to be described in this subsection may be employed in any 
situation in which there is a meaningful decomposition of effects (in the sense 
of the analysis of variance) into orthogonal single-degree-of-freedom compo-
nents. For instance, in multifactor experiments in which the factors are 
quantitative and are used at several levels for obtaining the treatment combi-
nations, one has the familiar decomposition into linear, quadratic, etc, compo-
nents for the treatment effects, and these form a natural set of orthogonal 
single-degree-of-freedom components that one may wish to intercompare. 
Two-level factorial (full and/or fractional) experiments, of course, yield a 
meaningful decomposition into main effects and interactions which together 
constitute an orthogonal single-degree-of-freedom set of effects whose interpre-
tations are of prime interest in such experiments. For simplicity the prototype 
experimental situation for developing the methodology here will be taken to 
be that of a 2* factorial experiment, that is, Ν factors each of which has two 
levels, but it should be kept in mind that the methods have wider applicability, 
as indicated by the preceding discussion. More specifically, the setup will be 
one in which there are η = 2s treatment combinations in all, and correspond-
ing to the ith treatment combination one has a p-dimensional observation, y\ 
(i = 1,. . . , n), whose coordinates are the observed values of the ρ responses for 
the particular treatment combination. 

In fact, for motivating some of the basic concepts underlying the methodol-
ogy, consider a 2 3 experiment (N = 3, η = 8) with two responses (p = 2) 
measured on each experimental unit after "application" of one of the eight 
treatment combinations involved. Hence one has eight bivariate observations 
which can be represented as points in a two-dimensional space, as shown, for 
example, in Figure 13. The eight points in the plot are labeled by the respective 
treatment combinations associated with them, and the notation for the 
treatment combinations is the standard one for two-level factorial experiments. 
To illustrate how one may think about a treatment effect in this bivariate case, 
consider the problem of defining the main effect of factor A. The set of eight 
points can be divided into two groups of four observations each; in one group 
(shown in Figure 13 as unshaded circles) all the treatment combinations are 
ones in which the factor A is at its lower level, and in the other group (shown 
in Figure 13 as unshaded squares) the factor A is at its higher level. One can 
define a centroid of each of the sets of four observations, and these are shown 
in Figure 13 as a filled-in circle and a filled-in square. The univariate estimate 
of the main effect of A with respect to the first response, for instance, is just the 



COMPARISON OF SEVERAL MULTIRESPONSE SAMPLES 259 

4 

2 

1 

(t 

(hi 

o A AT LOW LEVEL 
° A AT HIOH LEVEL 

• 
Ο • LOW LEVEL CENTROID 

• HIOH LEVEL CENTROID 

(abc) 
(ab). 

• 

• 

(a) 
• 

O 2 4 β β 10 12 14 16 
RESPONSE 1 

Fig. 13. Pictorial representation for two-dimensional main effect of A in a 2 ' experiment involving 
bivariate observations. 

distance between the projections of the two centroids on the horizontal axis. 
Similarly, the main effect of A with respect to the second response is the 
distance between the projections of these two centroids on the vertical axis. 
Next, a natural and not unreasonable conceptualization of the main effect of 
A in the two-dimensional situation would be as a distance between the two 
centroids in the two-dimensional space. Hence, in particular, one can think of 
a vector going from the filled-in circle to the filled-in square and consider that 
the "larger" (in some sense) this vector is, the greater is the two-dimensional 
main effect of factor A. 

Clearly one can partition the eight observations in the example of the 2 3 

experiment in other specific ways to get various pairs of groups of four 
observations each, and by analogous reasoning to that used above define the 
main effects of, as well as the various interactions among, all the factors. One 
will then have vectors going between the centroids for these different partitions 
corresponding to the seven effects involved, and these vectors, labeled accord-
ing to the effects to which they correspond, can be represented in a two-
dimensional space. There will be seven such vectors emanating from the origin, 
corresponding to the three main effects, the three two-factor interactions, and 
the one three-factor interaction in this case of the 2 3 experiment (see Figure 
14). The transformation involved in obtaining these vector effects from the 
initial observations is essentially an orthogonal transformation—in fact, the 
same one that is well known in the analysis of univariate two-level factorial 
experiments. Explicitly, if y',, y' 2 , . . . ,y'8 denote the bivariate observations in a 
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Y2A 

Fig. 14. Representation of contrast vectors in a 2 3 experiment involving bivariate observations. 

2 3 experiment, where the treatment combinations are taken in so-called 
standard order [i.e, (1), (a), (b), (ab), (c), (ac), (be), (abc)], the seven bivariate 
treatment effect vectors, x , , . . . , x'7 (such as the ones in Figure 14), are defined 
by the transformation 

/ m ' 
"ι 

u . 

where 

Γ+ + + + + + + +1 
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with + and — standing, respectively, for + 1 and — 1. Thus m', associated with 
an overall effect, is proportional to (i.e, 8 times) the mean vector for the data, 
while x'„ x ' 2 > . . . , x'7 are the vectors associated with the effects Α, Β, AB, C, AC, 
BC, and ABC, respectively. Since each of the rows of R that leads to one of the 
treatment effect vectors defines a contrast (i.e, the number of + l's is equal to 
the number of —l's, so that their sum is 0), the treatment effect vectors, 
x\,..., χη, may also be called single-degree-of-freedom contrast vectors. [Note: 
The usual definitions of the effects generally multiply the first row of R by | so 
as to yield the mean vector itself, and also the remaining rows by ? so as to 
yield differences in the means of four observations as described in the 
discussion of Figure 13. Also, to make R an orthogonal matrix all that is 
required is to multiply it by the scalar 1/^/8.] In practice, the transformation 
involved in obtaining the x\ from the initially observed y[ is generally carried 
out by Yates's algorithm, which is not only simple but also computationally 
sound in the sense of numerical accuracy and stability. 

Comparisons of the relative magnitudes of treatment effects are one import-
ant goal of the analysis of variance; and, returning to Figure 14, for this 
purpose one needs some way of measuring the "sizes" of the treatment effect 
vectors (or single-degree-of-freedom contrast vectors), χ ' , , . , - ,χ, , displayed 
there. The problem here can be treated as being just the same as the one of 
choosing a distance measure for classification procedures (see Section 4.2.1), 
since the issues in choosing a measure of "size" for the vectors displayed in 
Figure 14, so that a "large" vector will correspond to a large effect, also arise 
in choosing a metric for measuring distances between centroids of various 
partitions of the observations in the two-dimensional space of the observations 
shown in Figure 13. At any rate, the methodology developed here depends on 
using a squared distance measure, x'Ax, where A is some positive semidefinite 
matrix, for measuring the size of the treatment effect, x. 

More generally, with η = 2" treatment combinations and ρ responses 
observed on each experimental unit, if Y' denotes the η χ ρ matrix whose rows 
are the p-dimensional observations, let 

Y' = - [ Y i , Y 2 YJ. 

so that Yj consists of the η observations on the jxh response (j = l , . . . ,p) . 
Then the univariate analysis of variance for the Jth response will yield 

(χ , ) = Κ Υ ' · J - 1 * — * ( 8 6 ) 

where R is an π χ n matrix that can be built up by analogy with the one in Eq. 
83, mj corresponds to an overall (or mean) effect, and the (η — 1) elements of 
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Xj correspond to the measures of the main effects and interactions for the jth 
response. Thus one obtains 

- - ( χ ! Ζ : #-(ϊ)· 
where the (« - 1) χ ρ matrix, Χ', has as its columns \ u X 2 , . . . , X p , and as its 
rows the (η — 1) single-degree-of-freedom contrast vectors x\, x ' 2 , . . . , xj,_ „ that 
is, 

/ x ; \ 

X' = = [Xi ,X 2 Xp]- (88) 

Equations 86, 87, and 88 suggest that one way of obtaining the vectors 
χ j , . . . , x„_ t is to perform univariate analyses of variance (perhaps via Yates's 
algorithm) of each response separately and then collect the ρ individual 
measures for each effect (main or interaction) together as a p-dimensional 
vector. 

For assessing the relative magnitudes of the contrast vectors, the values 

4 = x;Ax„ i = l B - l , (89) 

for some choice of the positive semidefinite compounding matrix A (more will 
be said later regarding the choice of A) are obtained. Exactly as in the simple 
2 3 example discussed earlier, the i ( 's, which are measures of the sizes of the x,'s, 
can be interpreted as squared distances between the centroids of certain 
partitions of the original observations for defining the different treatment 
effects. 

To assess the contrast vectors by means of these squared distances, one 
needs an "evaluating distribution" or a "null distribution" of such squared 
distances. In other words, one needs a distribution that is reasonable under the 
usual kinds of null assumptions, such as multivariate normality (which may be 
a more reasonable assumption for the contrast vectors than for the original 
observations because of the "averaging" involved in obtaining the contrast 
vectors), homoscedasticity, and the absence of any real treatment effects. 

More explicitly, under the usual linear model assumptions (see Section 
5.2.1), the observations y- are p-variate normally distributed, with location 
parameters (or expected values) that reflect their factorial experimental struc-
ture and a common unknown covariance matrix, Σ. Under these assumptions, 
taken in conjunction with the further null assumption that there are no real 
treatment effects, the contrast vectors χ , , . , . , χ , . , will be mutually indepen-
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dently distributed as N[0, Σ] . [Note: In order for the contrast vectors to have 
exactly the same covariance structure as the initial observations, the transform-
ation matrix R in Eq. 86 must be specified to be orthogonal, that is, with the 
multiplicative constant ΙΑ^/π.] These null assumptions are to be used only as 
a basis for generating internal comparisons techniques, and an appealing 
characteristic of these techniques is that, in any specific application, they 
provide some indications of the appropriateness and adequacy of the assump-
tions themselves. 

The question of an evaluating distribution thus can be formulated as 
follows: given that χ j , . . . , x„_ j are a random sample from /VfO, Σ] , what is the 
distribution of ti, d„~ „ where i t = x',Ax,? In developing an answer to this 
question, one needs to consider the role of the compounding matrix A, which 
itself may be, as mentioned earlier, and in practice often is, computed from the 
observations, y,. For instance, one may decide to use A = I (which amounts to 
measuring squared Euclidean distances between centroids of partitions of the 
data), or in order to reflect differences in the variances of the responses one 
may wish to use a diagonal matrix of reciprocals of either prespecified 
variances or estimates of these from the current data. More generally, one may 
wish to scale the contrast vectors to allow both for different variances of the 
responses and for intercorrelations among them, and then the choice for A will 
be the inverse of a prespecified or estimated covariance matrix of the responses. 
In general, the use of several choices of A in analyzing a single set of data may 
be productive since the different choices may lead to different findings about 
the data. Whatever the choice is for A, however, since it is common to all the 
squared distances that are to be internally compared, it is treated in the 
approach taken here as being a fixed (i.e., nonrandom) quantity. 

With this in mind, under the null assumptions outlined above, each of the 
squared distances <f, (for a selected compounding matrix A) is distributed as 
the linear combination ζχχ\ + ο2χ\ + ··· + crx

2, where c i t . . . , c r are the posi-
tive eigenvalues of ΑΣ, r is the rank of A, and the x 2 , s are mutually independent 
central chi-squared variates, each with 1 degree of freedom. This well-known 
distributional result is not very useful as it stands; rather, its value lies in 
suggesting an equally well-known approximate result (see Satterthwaite, 1941; 
Patnaik, 1949; Box, 1954). The approximate result in question is that the 
distribution is represented reasonably adequately by a gamma distribution. 
Thus, specifically, under the null assumptions one can considerd u d 2 , . . . ,</„_ t 

approximately as a random sample from the gamma distribution with scale 
parameter λ and shape parameter η, that is, with density 

for d < 0, 
(90) 

where both λ and η > 0. 
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To be able to use this evaluating distribution, one needs estimates of λ and 
η since these are in general unknown. In particular, if a "proper" estimate, ή, 
of η is available, one can obtain a gamma probability plot (i.e, a Q-Q plot 
whose abscissa corresponds to a gamma distribution; see the discussion of Q-Q 
plotting in Section 6.2) of the ordered squared distances. The ordinate on such 
a plot will correspond to values of the ordered squared distances, and the 
abscissa will represent the corresponding quantiles of a standard gamma 
distribution with a shape parameter equal to this "properly estimated" value, 
ή. Under null conditions the resulting configuration will be linear, oriented 
toward the origin with a slope that is an estimate of l/X. [Note: For gamma 
probability plotting one does not need a knowledge of the scale parameter 
since it affects, not the linearity, but only the slope of the configuration; 
however, the estimation of X and of η will be carried out simultaneously, 
although only the estimate of η is needed.] 

If the null conditions are not in accord with the data—say, for instance, 
that there are some real treatment effects—the largest squared distances will 
be too "large" and will exhibit themselves as departures from a linear "error" 
configuration defined by the smaller squared distances. Departures from other 
null assumptions (e.g, homoscedasticity, normality) may also be expected to 
show up as systematic departures from the "null" linear configuration of the 
"null" ays (i.e, those that conform adequately to the null assumptions). 

The next question is what a "proper" estimate of η (and X) might be. It is 
desirable that the estimate be based on a null subset of the squared distances 
(i.e, only those ays that satisfy the null assumptions), so that the ays which do 
not conform to such assumptions will stand out against a background defined 
by d̂ 's that do. In particular, when a dt reflects a real treatment effect, its 
distribution will also be a linear combination of independent χ2% but now 
involving a noncentral χ2. It is, however, known (Patnaik, 1949) that such a 
combination involving a noncentral χ2 can also be approximated by a suitably 
chosen gamma distribution. Hence, to minimize the influence of possibly real 
treatment effects on the estimation of the parameters required for the evaluting 
gamma distribution, it is wise to base the estimation on an order statistics 
formulation. In other words, one orders the squared distances to obtain 
0 ^ dn) ^ dl2) ^ ·•· < d{Si) ^ ·•· < diK) < ··· < u . Then, on the basis of 
judgment, one chooses a number, K[^(n — 1)], as the number of squared 
distances that are likely to conform to the null assumptions. As additional 
insurance one bases the actual estimation on the Μ smallest squared distances 
considered as the Μ smallest observations in a random sample of size K. The 
actual method of estimation to be used with this formulation will be maximum 
likelihood. The maximum likelihood estimates, X and r), obtained from 
<W · · •' ^(M) considered as the Μ smallest order statistics in a random sample 
of size Κ [where Μ < Κ ^ (η — 1)] from the gamma distribution with density 
as specified in Eq. 90 are functions only of d{M) and the ratios of the geometric 
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and arithmetic means of dU),..., dm to d m , that is, 

Π & W , / M Σ 4 » 
p = i—d— a n d s = 'w~-

It is necessarily true that O ^ P ^ S ^ l . Wilk et al. (1962b) provide tables 
that enable one to obtain the maximum likelihood estimates, λ and η. They 
also describe numerical methods for computing these estimates (see also 
Gnanadesikan, 1980, and the appendix on computer software at the end of this 
book). 

The above discussion has been cast in terms of an interest in internal 
comparisons among all (« — 1) single-degree-of-freedom contrast vectors. This 
is, however, not a requisite in any application, and in some situations either 
one may wish to consider all η single degrees of freedom (although in most 
analysis of variance situations the overall mean effect would be real a priori 
and hence set aside in making the other assessments), or, more realistically, one 
may wish to compare internally only a subset of the (n — 1) single-
degree-of-freedom contrast vectors, \v...,xH^l. The steps involved in the 
graphical internal comparisons procedure for assessing the relative magnitudes 
of L[^(n — 1)] contrast vectors can therefore be summarized now: 

1. Calculate the (n — 1) single-degree-of-freedom contrasts for each re-
sponse separately. 

2. Form the p-dimensional contrast vectors, x „ . . . , x„_ j . 

3. Choose the subset of L[^(/i - 1)] contrast vectors to be internally 
compared—xi ( i = 1 , . . . , L. 

4. Select the positive semidefinite compounding matrix, A. 

5. Compute the measures of size (or the squared distances), di - xjAXj, 
ι = 1,2,... ,L, and order them to obtain d ( 1 ) ^ d{2) < ··· ^ d(Ly 

6. Select the number Κ (<L) on the basis of judgment. 

7. Select the number Μ (^K), and using d{l) < •·· ^ dm, calculate 

Π LA>J1/M Σ 4,0 

«(M) Me(M) 

8. Using K/M, dm, P, and S, determine the maximum likelihood estimates, 
X and ή. 

9. Plot d(l),d{2),...,d(L) against the corresponding quantiles of the gamma 
distribution with parameters λ = 1, η = ή; that is, plot the points {χ„<ί(ί)} 
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for ι = 1, . . . , L, where xt is defined by 

ιιή 1 exp(-u) du = p(, 

for a specified cumulative probability p, [e.g, (/ — ^)/L, (i - ^)/L + 3 or 
i/(L + 1)]. 

Before presenting examples of application of this graphical internal com-
parisons method, a few comments on certain features of the method may be 
appropriate. First, with regard to the choice of the compounding matrix A, it 
has already been stated that data-analytic wisdom suggests the use of several 
A's in analyzing any given set of data. Once again, the point is that any truly 
multivariate situation cannot usually be fully described by any single uni-
dimensional representation, and the implication of this here is that different 
choices for A may lead to quite different and possibly interesting insights into 
the multivariate nature of the data. A flexible collection to use has, however, 
been developed (see Section II of Appendix C in Roy et al, 1971, and also Wilk 
et al , 1962), and the following is a list of the set: 

1. A, = I, the identity matrix. 

2. A 2 = SIi, the inverse of a covariance (or sum-of-products) matrix 
obtained from all L contrast vectors to be internally compared. 

3. A 3 = '(Ai), the inverse of a sum-of-products matrix obtained from 
the R (< L) contrast vectors whose associated distances based on the 
compounding matrix Aj are the R smallest distances (see also the 
discussion of robust estimators of dispersion in Section 5.2.3). 

4. A 4 = Sg\\2), the inverse of a sum-of-products matrix obtained from 
the R (< L) contrast vectors whose associated distances based on the 
compounding matrix A 2 are the R smallest distances. 

5. A 5 = S - 1 , the inverse of a sum-of-products matrix based on a user-
specified subset of contrast vectors. 

6. A 6 = D(1/S(,(A2)), a diagonal matrix of the reciprocals of the diagonal 
elements of AJ 1 . 

7-9. For j = 7, 8, 9, Aj = D(l/s( l(A,)), a diagonal matrix of the reciprocals 
of the diagonal elements of A," \ / = 3,4,5. 

10. A, 0 = a,aj, where a, is the eigenvector (or principal component) 
corresponding to the Ith largest eivenvalue of either the correlation 
matrix or the covariance matrix computed from all L contrast vectors 
(see Section 2.2.1 for a discussion of principal components). 

A second issue in using the gamma probability plotting procedure outlined 
earlier involves the choice of values for Κ and M, which is deliberately left to 
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5 

the user's discretion. Since this is an informal statistical tool, which is not 
concerned with such things as the precise significance levels to be associated 
with formal tests of hypotheses, it would be expected that both prior and 
posterior (i.e, after seeing the data) considerations would influence the choice 
of values for Κ and Μ. The choice of these values would, of course, affect the 
estimates of λ and η, and one concern may be the sensitivity of these estimates 
to the choices of Κ and M. Figure IS shows a plot of the maximum likelihood 
estimate of η as a function of K/M for various values of Ρ and S (defined 
earlier), and it is seen that the estimate of η is quite insensitive to the value of 
Κ provided that Μ is not too close to K. For many two-level factorial 
experiments a choice of Κ and Μ such that K/M > 3/2 seems to be recom-
mendable as a relatively safe rule. In most situations the loss of efficiency in 
estimating η due to choosing a small value of Μ relative to Κ appears to have 
little or no effect on the interpretations of the configurations observed on the 
gamma probability plots (see Wilk & Gnanadesikan, 1964; and Chapter VII of 
Roy et al, 1971). 

A third facet of the method is that as a multiresponse technique it is 
intended to augment rather than to replace analyses of various subsets of the 
responses, including the responses considered individually. The analyses of 
subsets by comparable gamma probability plots are accomplished quite easily 
by suitably modifying the ρ χ ρ compounding matrix A. For example, if one is 
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interested in studying a subset of q (<p) of the initial variables, a choice of 
zero, for all the elements in rows and columns of A that correspond to the 
complementary subset of (p — q) of the variables, will yield squared distances 
based only on the chosen set of q variables. [Note: If A is to be an inverse of 
a covariance or sum-of-products matrix, an appropriate procedure may be to 
invert the matrix for the q responses of interest rather than extracting a q χ q 
matrix from the inverse of the full ρ χ ρ matrix.] When q = 1 (i.e., a single 
response is to be analyzed by itself). A may be specified as a matrix all of whose 
elements are 0 except for a single element (which can be taken to be equal to 
1) in the diagonal position corresponding to the particular response. For this 
choice of A, to treat the case when q = 1, the squared distances are just the 
squared contrasts for the particular response, and it is customary to treat these 
as having a chi-squared distribution with 1 degree of freedom, which is 
equivalent to specifying η = ^ instead of estimating a value for it. Example 44 
contains some discussion of the issues pertaining to the productive interplay 
between an overall multiresponse analysis and separate univariate analyses of 
the individual responses. 

Example 44. The data are from a study of nine factors thought to affect 
Picturephone® quality, and the experiment was organized as a one-half 
replicate of a 2 9 factorial in a split-plot design (see Wilk & Gnanadesikan, 
1964, and also Chapter VII of Roy et al, 1971). There were ρ = 8 responses 

Exhibit 44a. Gamma probability plot for PICTUREPHONE* data; L •-
Κ/Μ = Ζή = 2.33 

129, A = I, Μ = 64, 

2.79 5.58 
GAMMA QUANTILES 

8.36 
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Exhibit 44*. Gamma probability plot for PICTUREPHONE* data; L= 115, A = I, Μ = 51, 
K/M = 2,ή = 2.40 

8.09 

2.79 5.57 

GAMMA QUANTILES 

8.36 

per experimental unit, and each was a subjective assessment of picture quality 
on a 10-point scale. Exhibit 44a shows a gamma probability plot of squared 
distances obtained by the above method for the 129 main effects and two- and 
three-factor interactions involved. The squared distances are labeled by the 
treatment effects to which they correspond. The choice for A in this example 
was the identity matrix, and the values of K/M, M, and the estimated shape 
parameter are all shown in the figure caption. 

One interpretation of this figure is that the "large" points (viz, those that 
correspond to the larger squared distances and appear in the plot toward the 
right-hand top) all correspond to real treatment effects. On the other hand, one 
might also think that the configuration is suggestive of two intersecting straight 
lines. Since the experiment was of a split-plot type, there are whole-plot factors 
and subplot factors. Typically, in a split-plot experiment, the whole-plot factors 
will have a variance or, in this multiresponse case, a covariance structure that 
is more dispersed than the covariance structure for the subplot factors. It turns 
out here that 14 of the 17 points on the suggested line of steeper slope 
correspond to effects involving the whole-plot factors, A, B, C, and D. Thus the 
two intersecting lines correspond to groups of treatment effects with different 
covariance structures, and one ought to split up the collection of treatment 
effects into those that have a whole-plot covariance structure and another set 
that has a subplot covariance structure. A gamma probability plot of squared 
distances for the 115 main effects and two- and three-factor interactions not 
solely confined to the whole-plot factors is shown in Exhibit 44ft. On this plot 
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= j) of 115 squared contrasts for second variable 

GAMMA QUANTILES 

one can identify the "top" 7 or 8 points as being indicative of real treatment 
effects. 

As with all multiresponse methods, it would be legitimate in this example to 
inquire what might have happened if one had carried out the analysis of this 
experiment by doing separate analyses of the eight responses involved, perhaps 
using the uniresponse probability plotting technique of cell I in Table 2. 
Exhibits 44c, d, and e (see pages 270-271) show typical χ (

2

η (actually, gamma 
with shape parameter \) probability plots of the 1 IS squared contrasts for three 
of the responses. [Note: A chi-squared-with-one-degree-of-freedom probability 
plot of the squared contrasts should yield a configuration "equivalent" to one 
obtained by making a half-normal plot of the absolute contrasts.] These three 
plots are typical of the eight plots that one can get by analyzing the responses 
separately. Comparing Exhibit 44b with these three figures, one sees that one 
is able to identify many more possibly real effects in the multivariate analysis 
than in the separate univariate analyses. In this example the combined evidence 
from the eight separate uniresponse analyses is that three or four of the 
treatment effects are possibly real, whereas the multiresponse analysis provides 
evidence that seven or eight of the effects may be real. 

One possible explanation for the greater sensitivity of the multiresponse 
analysis in this example is provided by the estimated value of the shape 
parameter, namely, ή = 2.4. If the responses were indeed statistically indepen-
dent, one might expect the squared distances to be distributed as a chi-squared 
variate with 8 ( = p) degrees of freedom or, equivalently, as a gamma variate 

Exhibit 44c. Gamma probability plot (η 
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Exhibit 4 4 4 Gamma probability plot (η = \) of 115 squared contrasts for third variable 

GAMMA QUANTILES 

Exhibit 44*. Gamma probability plot (η = \) of 115 squared contrasts for fifth variable 

GAMMA QUANTILES 
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with shape parameter 4 (= p/2). Thus the lower value for ή suggests that there 
is probably an accumulation of several fairly small real effects on the separate 
response scales into a smaller-dimensional space, which is then revealed better 
by the multiresponse analysis. [Note: An interesting modification of the 
separate uniresponse analyses suggested by this is to estimate a shape par-
ameter for the probability plot of the squared contrasts, rather than using the 
prespecified χ2

Χ) distribution for them.] Also, there is perhaps a stabilizing effect 
on the error configuration (i.e, the linear part of the plot) due to the 
intercorrelations among the responses. 

Example 45. This example is based on data (cf. Chapters IV and VII of Roy 
et al , 1971) from a one-quarter replicate of a 2 7 experiment concerned with 
seven factors that might affect the operation of a detergent manufacturing 
process. The original study involved measurements on seven responses, but for 
present purposes only a bivariate subset of the original seven is considered. The 
two responses are called rate (bins/hour) and stickiness, and Exhibit 45a shows 
the 32 bivariate observations involved, together with the treatment combina-
tions that label them. The seven experimental factors involved were as follows: 
A — air injection, Β—nozzle temperature, C — crutcher amperes, D — inlet 
temperature, Ε — tower air flow, F—number of baffles, and G — nozzle 
pressure. 

Andrews et al. (1971) used these data as an example for applying their 
methods (see Section 5.3) for developing data-based transformations, and the 
discussion here is drawn largely from their paper. An indirect way of assessing 
the data-based transformation methods described earlier in Section 5.3 is to 
study the effects of the transformations on the outputs of statistical analyses, 
such as analyses of variance, performed before and after the transformations. 
In the present example, for instance, one can obtain 31 estimated treatment 
effects (or single-degree-of-freedom contrasts) of interest for each response. One 
can use the graphical internal comparisons technique of cell I in Table 2 for 
simultaneously assessing the 31 effects, namely, via either a half-normal 
probability plot of the absolute values of the estimated effects, or equivalently, 
a χ,2,, probability plot of the squared values. One can do this for effects 
estimated on both the untransformed and the transformed scales of the 
responses and compare the resulting configurations. It is perhaps reasonable 
to expect that, because of the averaging involved in obtaining the estimated 
treatment effects, except for bad nonnormality of the original observations the 
estimated effects would be adequately normal in distribution. For instance in 
the last example, despite the initial 10-point scale for the eight responses, all 
the probability plots associated with the contrasts (viz. Exhibits 44c, d, and e) 
are quite linear for the major part, and the lack of systematic curvilinearity in 
these plots lends credence to the "expected" normality of the contrasts. 
However, in the present example, Exhibits 45b and c (see page 274), which are 
xfu (or corresponding gamma) probability plots of the squared contrasts on 
each of the two untransformed response scales, appear to indicate the presence 
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Exhibit 45a. Data matrix for 2 7 2 experiment on detergent manufactur-
ing process (cf. Roy et al., 1971, p. 54) 

Treatment Rate 
Run No . Combination (bins/hour) Stickiness 

1 (1) 38.0 5.40 
2 38.0 5.90 
3 bfg 35.0 2.95 
4 ah 36.0 5.38 
5 eg 38.0 5.22 
6 acf 37.0 5.33 
7 bef 37.0 4.90 
8 abeg 36.0 4.50 
9 df 34.5 3.15 

10 adg 38.0 3.06 
11 bdg 36.0 5.70 
12 abdf 37.0 4.20 
13 cdfg 38.5 4.70 
14 acd 38.0 4.20 
15 bed 38.0 5.17 
16 abedfg 39.0 5.66 
17 eg 37.0 4.60 
18 aef 38.0 5.20 
19 bef 32.0 2.49 
20 abeg 39.0 6.10 
21 ce 39.0 3.84 
22 acefg 37.0 4.90 
23 bcefg 35.0 4.30 
24 abce 34.0 3.50 
25 defg 37.0 3.24 
26 ode 37.0 3.79 
27 bde 39.0 5.80 
28 abdefg 39.0 5.30 
29 cdef 39.0 5.60 
30 acdeg 40.0 6.20 
31 bedeg 40.0 5.47 
32 abedef 40.0 4.77 

of considerable distributional peculiarities. The extremely "choppy" appear-
ance of the lower left-hand end of Exhibit 45fc (see page 274) can perhaps be 
attributed to the essentially discrete nature of the response termed rate, as 
evident in Exhibit 45a, whereas the distributional departure indicated in 
Exhibit 45c (see page 274) and associated with the other response seems to be 
more subtle. 

The transformation method of Box & Cox (1964) to improve marginal 
normality and the one proposed by Andrews et al. (1971) for enhancing joint 



274 SUMMARIZATION AND EXPOSURE 

Exhibit 45*. Gamma probability plot (η = j) of 31 squared contrasts for untransformed rate data 
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Exhibit 45c. Gamma probability plot (η = \) of 31 squared contrasts for untransformed stickiness 
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normality (see Section 5.3) were employed, and the estimated values of the 
power transformation parameters are shown in Exhibit 45d (see page 275). In 
estimating these transformations, in addition to enhancing normality an 
attempt was made to reduce nonadditivities at the same time by specifying a 
fit (or linear model) solely in terms of the seven main effects on the transformed 
scales of the responses. 
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Exhibit 45a\ Estimates of transformation parameters for detergent manufacture data 
(cf. Andrews et al., 1971) 

Box-Cox Method Estimates Andrews et a 1. Method Estimates 

8.88 2.06 7.22 1.88 

Exhibit 45*. Gamma probability plot (η - j) of 31 squared contrasts for rate data transformed by 
Method I 
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The improvements achieved by using the transformations determined by the 
Box & Cox method are evident in Exhibits 45e and /, which show the χ,2,, 
probability plots for squared effects on the transformed scales of the two 
variables involved. The smoother configurations of these two plots, especially 
at the lower end, suggest not only possible improvement of underlying 
normality but also the delineation of a more homogeneous grouping of fairly 
small effects, from which one can hopefully derive a "cleaner" estimate of error 
variance. 

A similar evaluation of the method proposed by Andrews et al. (1971) for 
enhancing joint normality can be made by comparing the two gamma 
probability plots of the squared distances obtained from both the untrans-
formed bivariate data and the transformed bivariate observations obtained by 
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Exhibit 45 / Gamma probability plot (η =\) of 31 squared contrasts for stickiness data trans-
formed by Method 1 
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Exhibit 45;. Bivariate gamma probability plot (ή = 0.75) for detergent data untransformed 
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using the powers in the second set of columns of Exhibit 45<f for the two 
variables. Exhibits 4Sg and h show the gamma probability plots, the former 
derived from the untransformed observations and the latter from observations 
transformed by using A, = 7.22 and A2 = 1.88. The choice for the compounding 
matrix in both these plots was of the A 3 type, involving a subselection of R 
contrast vectors with smallest Euclidean lengths (see the list of choices for A 
given earlier); in particular, R was taken to be IS. Also, for both plots, Κ was 
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Exhibit 45A. Bivariate gamma probability plot (ή = 1.01) for detergent data transformed by 
Method II 
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considered to be 31 and the value of Μ was taken as 15, so that K/M = 2.07. 
The estimated values of the shape parameter are indicated in the captions for 
the figures. 

Not only is the null configuration of the "smaller" points (i.e, the ones in 
the lower left-hand corner) in Exhibit 45/i smoother, but also the delineation 
of the departures at the "large" end (viz, the upper right-hand corner) is clearer 
than in Exhibit 45a. An interesting feature, however, is that the improvement 
in the null configuration (i.e, the lower end) in going from Exhibit 45g to h is 
nowhere near as striking as the improvements from Exhibit 45b to e or from 
Exhibit 45c to / This suggests that the approach used in the internal 
comparisons method for estimating the shape parameter may be introducing a 
very valuable robustness into the process, inasmuch as the suspected marked 
nonnormality of the responses does not seem to unduly distort the configur-
ations on the gamma probability plot. 

Example 46. The main purpose of this example, taken from Wilk & 
Gnanadesikan (1964), is to provide a rather dramatic illustration of the 
importance of using more than one choice for the compounding matrix A. 
Sixty random deviates were generated from a five-dimensional normal distribu-
tion with zero mean vector and a distinctly nonspherical covariance matrix, 

Σ = 

I ι 
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Exhibit 46a. Gamma probability plot for artificial five-dimensional data; L = 55, A = I, M = 30, 
K/M = 1.4, r) = 1.4 
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where the elements above the diagonal are, of course, obtainable by symmetry. 
To a random selection of 10 of these 60 observations were added certain 
constants to shift their means and thus simulate "real" effects. The shifts chosen 
were as follows: three vectors equal to (3, 7, 10, 12, 11), three others equal 
to (5, 5, 5, 5, 5), three more equal to (7, 2, 0, 5, 4), and a last one equal to 
(5, 8, 15, 20, 18). 

Exhibits 46a and b are gamma probability plots of the squared distances 
derived from these observations for two choices of A, namely, A = I and 
A = S" 1 , the inverse of a sum-of-products matrix based on a random selection 
of 30 out of the 50 "central" (i.e, zero mean) observations. Each figure is 
actually a plot of only the 55 smallest squared distances instead of all 60 of 
them, and the values of Λί and K/M, as well as the resulting estimate of η, are 
all indicated in the captions. The ranges of the values of the squared distances 
are quite different, as are the two values of ή, but the most striking thing about 
the two figures is that Exhibit 46a contains no indication of the five known 
nonnull observations, whereas Exhibit 46b clearly delineates them. In light of 
the prespecified nonsphericity of the covarince matrix used in generating the 
observations, it is perhaps not surprising that the identity matrix is not a very 
appropriate choice. The main implication in practice, however, is that without 
a considerable amount of knowledge about the data a safe rule would be to 
use different choices of A and then to compare the results to gain further 
insights into the structure of the data. 
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Exhibit 46b. Gamma probability plot for artificial five-dimensional data; L = 55, A = Sj 
Μ = 30, K/M = 1.4, ή = 3.83 
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63.2. Graphical Internal Comparisons among 
Equal-Degree-of-Freedom Groupings 

This subsection deals with probability plotting techniques for Cell V of Table 
2. In the geometrical terms used in Section 5.2.1 for describing the concepts 
and processes of orthogonal multivariate analysis of variance, the situation 
represented by this cell arises when the decomposition of η-space into orthog-
onal subspaces contains a set of r mutually orthogonal linear subspaces, each 
of dimensionlity ν (>1), and the observations are p-dimensional. Thus the 
prototype here is a situation in which there are rp χ ρ sum-of-products 
matrices, S , , . . . ,S r , each based on ν degrees of freedom, and one wishes to 
compare simultaneously the "sizes" of the dispersions summarized by these 
matrices, or equivalently, by the mean sum-of-products matrices, S./v's, using 
probability plotting techniques. One example of this occurs when internal 
comparisons are desired among all the main effects, or interactions of the same 
order, in an m-level factorial experiment. In this case all the main effects will 
have ν = (m — 1) degrees of freedom, and each rjth order interaction will have 
ν = (m — iy+l. Another example occurs when one has (v + 1) replications 
within cells and wishes to assess the validity of the assumption of a common 
within-cell covariance structure. 

An intrinsic difficulty of the present problem is to define measures of "size" 
of a dispersion matrix. One should not expect that any single measure will 
provide an adequate summary of the dispersion information contained in the 



280 SUMMARIZATION AND EXPOSURE 

matrix. Certain functions of the eigenvalues of a dispersion matrix may be used 
as unidimensional summaries of the size of the dispersion; see, for example, Roy 
et al. (1971, Chapter II, Section 3). Two such functions are the arithmetic mean, 
or sum, and the geometric mean of the eigenvalues. Since the arithmetic mean 
is sensitive to very large and very small eigenvalues, whereas the geometric 
mean tends to be particularly sensitive only to very small eigenvalues, the two 
functions may lead to different insights concerning the dispersion structure. 
The use of both functions is recommended for data-analytic purposes, and the 
two methods described below are based, respectively, on the two functions. 

In analysis of variance applications, such as the factorial experiment 
mentioned earlier, the dimensionality of response ρ may often exceed the value 
v. In this case the matrices Slt...,Sr will have ν positive eigenvalues and 
(p — v) zero eigenvalues. A natural modification of the second function, 
therefore, is to consider the geometric mean of the nonzero eigenvalues. 
Specifically, then, the two functions to be considered as measures of size of a 
sum-of-products matrix, S = ((s^)), with eigenvalues cx > ··· ^ c, > 0, are 

^ = I c i = tr(S) = £ S j J , 
i=i y=i 

When the different responses in a multiresponse analysis of variance are 
measured on very different scales, it may be desirable to weight the responses 
accordingly, so that deviations from null conditions on the different response 
scales are not given the same weight. For incorporating this feature in the 
present mode of analysis, one can use as starting points in the analysis not just 
the sum of products matrices, S,'s, but also scaled versions of them, namely, 
S,A,. . . ,S r A, where A is a positive semidefinite matrix. [Note: Computation-
ally, the eigenvalues required for & may be obtained either from a singular-
value decomposition appropriate to problems, such as discriminant analysis, 
that involves two covariance matrices, or from eigenanalyses of the symmetric 
matrices, Zj AZ;, where S, = Z,ZJ, rather than eigenanalyses of the asymmetric 
forms, SjA, using the mathematical property that the nonzero eigenvalues of 
Z,.Z|A are also the nonzero eigenvalues of ZJAZ,.] However, when the S,'s and 
A are all positive definite, then, since the product of the eigenvalues of S, A is 

Π cj = |S,A| = |S,I |A|, 

the scaling by A is immaterial for purposes of internal comparisons among the 
S,'s in terms of the statistic <§. 

The matrix A plays the same role here as the compounding matrix A did in 
the method discussed in Section 6.3.1. Hence, as before, possible choices for the 
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ρ χ ρ matrix A include (i) the identity matrix, which may be appropriate when 
S , , . . . , S r pertain to a decomposition of the error covariance structure; (ii) a 
diagonal matrix of reciprocals of variances of the responses; and (iii) the inverse 
of a covariance matrix of the responses. Once again, under choices (ii) and (iii), 
the matrix A may be either prespecified or estimated from the data on hand, 
and in either case, since it is used as a common factor to scale all the S,'s, it is 
considered a fixed matrix for the subsequent internal comparisons analyses, 
just as in Section 6.3.1. For the rest of this subsection, it is to be understood 
that the internal comparisons of the "magnitudes" of Su..., Sf are to be made 
via the r associated values of either si or $?, 

Next an evaluating distribution is needed for each of these collections. If such 
a distribution were available for the statistic si, for instance, one could obtain 
a probability plot of the ordered values, 0 < a ( 1 ) < ··· < a w , against the 
corresponding quantiles of the distribution. A similar use may be made of the 
distribution of'S. Under null conditions the distributions of both si and'S turn 
out to be well approximated by gamma distributions. 

That this is so for si can be seen by recognizing that si is the sum of ν 
mutually independent positive semidefinite quadratic forms, each of whose 
distributions may itself be adequately approximated by a gamma distribution, 
as stated in Section 6.3.1. Specifically, each matrix S, can be represented as 
Z,z;, where Z\ = RjY'. Furthermore, Y' is the η χ ρ matrix of original 
observations, and the ν χ η matrix, R,-, is such that R,RJ = I(v) and R,R, = Ο 
(i ¥=j). Then 

where z i ; is the jth column of Z,. [Note: This way of looking at the measure 
of size si is discussed also in Section 5 of Chapter VII of Roy et al , 1971.] 
Null assumptions, which may be employed to develop methodology for 
studying specific departures from them, are that the original observations are 
mutually independent with identical, but unknown, covariance matrices Σ and 
that there are no real effects associated with the r groups. Under such null 
conditions, z,v (i = 1, . . . , r;j = 1 , . . . , v) may be considered as a random sample 
from N(0, Σ), so that a, is the sum of ν mutually independent positive 
semidefinite quadratic forms, and, furthermore, a , , . . . , ar are mutually indepen-
dent. The normality assumption concerning the ζ,/s is not unreasonable since 
they are linear combinations of the original observations. As stated in Section 
6.3.1, under null conditions the distribution of each quadratic form can be 
adequately approximated by a gamma distribution with scale parameter λα and 

V 

a, = tr(Z;Z;A) = £ z -̂Az, 
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Fig. 16. Gamma probability plots for two estimates of shape parameter; O — method of moments 
estimate; ·—maximum likelihood estimate. 

shape parameter ηα/ν, and hence a „ . . . , ap may be considered as approximately 
a random sample from a gamma distribution with scale parameter ka and 
shape parameter η„. 

The use of si is thus seen to be a direct extension of the method discussed 
in Section 6.3.1 for the single-degree-of-freedom case, and one may wonder why 
an analysis of the vr quadratic forms, fyAzy, by that method is not adequate 
for the present problem. The issue, of course, is that the orthogonal decompo-
sition yielding the individual p-dimensional vectors, z(J, is arbitrary and may 
not have any meaningful interpretation, whereas the a,'s are defined uniquely 
and meaningfully. The problem is the same here as in uniresponse analysis of 
variance, where a sum of squares with ν degrees of freedom does not necessarily 
have a unique meaningful decomposition into ν orthogonal single degrees of 
freedom. 

In connection with the null distribution of if, Hoel (1937) suggests approxi-
mating the distribution of the geometric mean of the eigenvalues of a ρ χ ρ 
sample covariance matrix based on a sample of size η with ρ < (« — 1) by a 
gamma distribution whose shape parameter is a function only of ρ and π but 
whose scale parameter is |Σ | 1 / Ρ times a quantity involving ρ and n, where Σ is 
the unknown underlying covariance matrix. The unknown scale and shape 
parameters are then obtained by equating the first two moments. For present 
purposes the null distribution is approximated by a gamma distribution with 
unknown scale and shape parameters, A, and ην respectively, and the par-
ameters are then estimated by maximum likelihood instead of the method of 
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moments. A Monte Carlo investigation was carried out to check on the 
adequacy of the approach. The dots in Figure 16 constitute a typical gamma 
probability plot of geometric means from the Monte Carlo study, and the 
reasonably good linear configuration indicates that the present approach is 
adequate. 

The O's in Figure 16 provide the probability plot for the same set of 
geometric means, employing Hoel's estimate of the shape parameter instead of 
the maximum likelihood estimate. A comparison of the two configurations 
suggests that the maximum likelihood method of fitting the approximating 
distribution is to be preferred to the method of moments. 

In the analysis of variance application, in order to minimize the effects of 
possibly real sources of variation on the estimation of the scale and shape 
parameters, an order statistics formulation along the lines of Section 6.3.1 may 
be employed once again. Specifically, if 

«(!)<••· or a ( 1 ) < ··· < i ? ( r ) 

denote the ordered values of the trace or geometric mean, then, considering the 
Μ (< Κ) smallest of these as the Μ smallest order statistics in a random sample 
of size Κ (<r) from a gamma distribution, one can find the maximum 
likelihood estimate of the scale and shape parameters using only these Μ 
values (see Wilk et al , 1962b). 

Next, using the estimate of the shape parameter, one can obtain a gamma 
probability plot of the r ordered values, α ( 1 ) ^ ··· ^ a ( r ) or a ( 1 ) < •·• ̂  g{r). 
Under null conditions the resulting configuration would be expected to be 
linear with zero intercept and slope 1/A„ on the plot of the a,'s (and 1/Ag on the 
plot of the g,'s). Departures from linearity may then be studied for pinpointing 
violations of the null assumptions, such as the presence of possibly real sources 
of variation, the existence of more than one underlying error covariance 
structure, and other distributional peculiarities. The interpretation of these 
probability plots is similar to that of other probability plotting techniques that 
have been proposed for augmenting analyses of variance; in particular, it is 
quite analogous to the technique discussed in Section 6.3.1. 

Two examples, taken from Gnanadesikan & Lee (1970), are given next to 
demonstrate the use of the techniques described above. 

Example 47. This example (see also Example 4 in Chapter VII of Roy et al , 
1971) consists of computer-generated trivariate normal data that simulate the 
results of a 30-cell experiment with four replications per cell. The data for 15 
of the 30 cells had an underlying covariance matrix I, while in the remaining 
cells the covariance matrix was 91. Exhibit 47a shows a gamma probability plot 
of the 30 ordered values of the trace of the within-cell covariance matrices for 
these data. The shape parameter required for this plot was based on the 15 
( = M) smallest observed trace values, and Κ was taken as 30. Each point on 
the plot is labeled 1 or 2 according as it derives from a cell with one or the 
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Exhibit 47a. Gamma probability plot for s/ in the artificial data example; A = I, r = Κ = 30, 
M = 15, ή = 1.996 
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Exhibit 47/>. Gamma probability for 9 in the artificial data example; A = I, r = Κ = 30, Μ = 15, 
f)= 1.514 
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other of the two covariance structures employed in generating the data. The 
configuration is suggestive of two intersecting straight lines, each of which 
consists of points that correspond to the cells with a common covariance 
structure. Exhibit 47b shows the analogous gamma probability plot for the 30 
ordered values of the geometric mean statistic, and the same phenomenon of 
two intersecting straight lines is seen again, although the general configuration 
in Exhibit 476 is smoother than the one in Exhibit 47a. 

Example 48. The set of data derives from the talker-identification problem 
used also as the basis for earlier examples (e.g., Examples 16 and 19 in Chapter 
4). As part of the analysis for obtaining a discriminant space for representing 
the utterances (see Example 16) and for assigning an unknown to one of the 
contending speakers, it is usual to pool the within-speaker covariance matrices 
of the utterances to obtain an overall within-speakers covariance matrix. It is 
legitimate in such multivariate classification problems to inquire about the 
validity of such a pooling procedure, and it would be useful to have an informal 
statistical procedure for a preliminary, simultaneous intercomparison of the 
covariance matrices from the different speakers. Specifically, for a set of 10 
speakers, one input to a classification analysis consisted of a six-dimensional 

Exhibit 48a. Gamma probability plot for si in talker-identification example; A = 1, r = Κ = 10, 
Μ = 5, ή = 4.236 
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Exhibit 48ft. Gamma probability plot for 9 in talker-identification example; ή = 4.24S 
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representation of each utterance of a given word, and there were seven 
utterances available per speaker. As a preliminary to pooling the 10 with-
in-speaker covariance matrices, one can assess their similarity in "size" by using 
the methods described above in this subsection. Exhibits 48a and b show the 
gamma probability plots for the 10 ( = r) values of each of the functions sf and 
<8, respectively, in this example. No scaling was performed on the covariance 
matrices, so that A = I, and the estimation of the parameters of the evaluating 
gamma distribution was based, in each case, on the Μ = 5 smallest observed 
values with Κ = r = 10. In this example the configurations obtained by using 
the estimates from the complete sample, that is, Μ = Κ = 10, were quite 
similar to the ones in Exhibits 48a and b. 

The points in Exhibits 48a and b are labeled 1 through 10 to correspond 
with the speaker from whose covariance matrix a particular point derives. 
Although the point corresponding to speaker 9 appears to depart from the 
linear configuration suggested by the other points in Exhibit 48a, the departure 
is not marked. The general indication of both plots is that the 10 covariance 
structures form a reasonably homogeneous group in terms of their "sizes." The 
two plots exhibit different internal orderings of the covariance matrices for the 
10 speakers, in accordance with the sensitivities of s4 and <S to different aspects 
of the covariance structures. Thus, for example, speaker 6 who is second from 
the top in Exhibit 48a, turns out to be second from the bottom in Exhibit 48b, 
suggesting that the covariance matrix for that speaker may have a noticeably 
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small eigenvalue, as was indeed the case. Also, the covariance matrix of speaker 
9, the top point in Exhibit 48a and the next-to-top point in Exhibit 48b, is 
indicated as possibly having a markedly large eigenvalue and no significantly 
small eigenvalue, and this again was found to be true. 

The essential concepts in the probability plotting approaches described in 
the last two subsections (and indeed also the others mentioned in Table 2) are 
first to obtain meaningful summary statistics to serve as the medium for 
making the simultaneous assessments and, second, to display the internal 
comparisons against a null background by means of a probability plot of the 
ordered observed values of a statistic versus the corresponding quantiles of an 
appropriate null statistical distribution. Thus, with the method of Section 6.3.1, 
the d,'s constitute the summary statistics, whereas the ajs and gjs are the 
corresponding entities for the method of Section 6.3.2, and the appropriate 
evaluating distribution in each case turns out to be a gamma distribution 
whose parameters are fitted by maximum likelihood, using an order statistics 
approach. 

The probability plotting methods discussed heretofore have been concerned 
with internal comparisons of relative magnitudes and not with orientational 
aspects of multiresponse data. Orientational information is contained in 
eigenvectors associated with covariance matrices, whereas summary statistics 
such as s/ and # are based on eigenvalues. A simple starting point, for example, 
for comparing overall similarities of orientations of k sets of multiresponse data, 
would be in terms of the corresponding principal components of the covariance 
(or correlation) matrices of the data sets. For instance, one could ask if the k 
first principal components are similar, if the k second principal components are 
similar, and so on. Krzanowski (1979) has denned a measure of similarity 
between two sets of corresponding eigenvectors, and Flury (1984) has proposed 
a likelihood ratio test, based on normal distributional assumptions, for the null 
hypothesis that all the eigenvectors of several covariance matrices are the same. 
Keramidas et al. (1987) have suggested an informal, graphical, data analytic 
approach to the problem of assessing the similarities of sets of corresponding 
eigenvectors of covariance matrices, and their proposal is described next. 

Given k sample covariance matrices, SUS2,...,Sk, with S,- based on «( 

(typically > p) observations, one has the spectral decomposition, 

where X( is an orthogonal matrix with ρ column vectors, jX, (j = l , . . . ,p ) , 
representing the eigenvectors of S,. If the njs are either equal, or all large 
enough, one can treat the eigenvectors from the k sets of data to be determined 
with roughly the same degree of precision. The diagonal matrix, D„ has as its 
diagonal elements the nonnegative eigenvalues of S, in decreasing order of 
magnitude. The problem of comparing the orientations of the k data sets can 
then be formulated as one of assessing the statistical similarity of a set of k 
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eigenvectors, { jxj , i = 1, . . . , k, wherej indicates the eigenvector corresponding 
to the ;'th eigenvalue of each covariance matrix. 

The problem of comparing several p-dimensional vectors is clearly complex. 
To simplify the task, Keramidas et al. (1987) propose a one-dimensional 
measure of the similarity among the vectors, and then use the observed values 
of such a measure as the basis of the assessment of similarity. It should, 
however, be reemphasized that any one-dimensional representation of in-
herently high-dimensional information may not be complete despite its attrac-
tive simplicity. 

In considering a comparison of k eigenvectors, there are two key issues that 
have to be addressed. First, for all k covariance matrices, does there exist a 
sufficient separation between the j th eigenvalue and the remaining eigenvalues 
so that the corresponding eigenvector, jXit is well determined? The difficulty is 
that, without such clear separation, the eigenvectors are merely a random set 
of orthogonal directions in a subspace in which the scatter of the data is 
essentially spherical. If k is large, Keramidas et al. (1987) suggest using ρ 
side-by-side box plots of the k realizations of each ordered eigenvalue to 
evaluate the separations amongst eigenvalues. Also, the Q-Q type of probability 
plot, or the augmented scree plot, described in Section 6.2 for assessing 
separations amongst eigenvalues can be used for this purpose. There will be k 
such plots involved. 

The second issue in comparing {^χ(}, i = l,...,k, is what p-dimensional 
vector one should use as the standard for comparison. The choice can be either 
an a priori one, depending on what the data analyst supposes the intrinsic 
nature of the data to be, or a data-based estimate of a common underlying 
eigenvector. Let denote the choice based on a priori specification and ji 
denote a data-determined "typical" vector. 

Given ^ξ, the measure of dissimilarity between }xt and j-ξ proposed by 
Keramidas et al. (1987) is the Euclidean distance between the two points 
defined by the pair of vectors: 

jdf = min[(£ - jXtY(£ ~ Μ (A + A + 

Analogously, the measure of dissimilarity between }χ{ and the data-based 
typical vector, ji is denoted }δ

2 and is obtained by using jX in place of } \ in 
the above expression. The need to use the smaller of two values in the 
right-hand side of the expression is due to the fact that, with the usual 
normalization of eigenvectors to make them of unit length, the elements of the 
eigenvector are the coordinates of either of a pair of points constituting ^he 
ends of a diameter of a unit sphere. The squared distances, {jSf} or {}df}, 
cannot exceed the value 2 since there is a relationship between them and the 
cosine of the angle between two vectors of unit length each, namely, c2 = 
a2 + b2 - lab cos θ = 2(1 - cos Θ) for a triangle with sides of lengths a, b, and 
c and the included angle between the sides of lengths a and b is Θ. 
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There remains the question of how to obtain a data-determined typical 
vector, ft, if one chooses to use that as the standard of comparison. Some 
obvious choices would be a location estimate calculated from {,·χ;}, /' = 
1,..., k, such as the mean or one of the many robust estimators described in 
Section 5.2.3. A different alternative would be to choose as the typical vector 
one that minimizes the angles between itself and the set {7·Χ;}. If the angle 
between a typical vector and ,χ, is denoted 7·6\, then an explicit criterion would 
be to choose that unit-length vector which minimizes Σ* = 1 cos2j(9(. The 
required vector turns out to be (see Keramidas et al , 1987) the eigenvector 
associated with the largest eigenvalue of the matrix, Ε = Σ ^ , jX^xJ. If one 
suspects that there are outliers in the data which might have, in turn, distorted 
the eigenvectors {^x,}, the typical vector can be defined as the eigenvector 
corresponding to the largest eigenvalue of a robust version of Ε by iteratively 
trimming a fraction of the eigenvectors whose angles with the typical vector 
are among the largest. The spirit of the scheme here is similar to the ideas 
discussed in Section 5.2.3 for robust estimation of multivariate dispersion (see 
discussion associated with Eq. 74) but the criterion on which the trimming is 
based is different. 

The graphical procedure for assessing the similarity of {^x,}, i = 1, . . . , k, is 
to make a gamma probability plot of the k ordered values of either $ (in the 
case of comparing against a prespecified standard), or β2 (when the standard 
is data determined), against the corresponding quantiles of a gamma distribu-
tion. The scale and shape parameters of the gamma distribution may be 
estimated using an order statistics formulation, exactly as was done in the case 
of the <f,'s in Section 6.3.1 and of the a('s and the fl,'s in assessing the similarity 
in sizes of several covariance matrices described earlier in this section. Once 
again, to minimize the influence of possible "outliers" among the set of 
eigenvectors under comparison, the maximum likelihood estimation can be 
based on the smallest order statistics of the observed dissimilarity values. 

Keramidas et al. (1987) illustrate their graphical method and its properties 
using both simulated and real data. The gamma probability plotting approach 
to assessing the similarities of sizes and orientations of covariance matrices 
may turn out to be more robust indicators than the more classical formal tests 
for equality of covariance matrices, which are known to be generally quite 
nonrobust in the sense that they tend to be more sensitive to nonnormality of 
data than to heteroscedasticity. Also, these techniques may be extensible in a 
straightforward manner to correlation matrices. Both the issue of robustness 
and the development of such extensions of these methods, however, need 
further study. 

Example 49. To illustrate the gamma probability plotting technique for 
comparing eigenvectors, a real data example from Keramidas et al. (1987) is 
considered. The data resulted from student evaluations of instructors at a large 
university. Students rated the instructors on a seven-point scale, ranging from 
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Exhibit 49a. Gamma Q — Q plot for comparing the eigenvectors defining the first principal 
component with the data-determined typical vector 
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unsatisfactory to exceptional, for each of 18 ( = p) items, including such things 
as "suitability of the textbooks and/or materials," "fairness of grading," and 
"overall rating of the instructor." For preliminary analysis, only classes for 
which at least 75% of the enrolled students completed the questionnaire were 
included. Moreover, to help in distinguishing among the eigenvalues and to 
minimize difficulties of varying sample sizes, classes with less than 30 or more 
than 50 students were excluded. This left data from 117 ( = k) classes. 

One question of interest in analyzing these data was if there was any 
dominant dimension (e.g., a prime principal component) of instructor evalu-
ation underlying the data. To answer this question, 18 side-by-side box plots, 
each consisting of 117 values of an ordered eigenvalue, were made and the 
conclusion was that the largest eigenvalue was well separated from the 
remaining 17 smaller ones. Given this finding that the first principal compo-
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nent was likely to be dominant, a natural second question in analyzing the data 
was if this index remains stable across the 117 classes. A third interesting 
question is if such a stable index gives equal weight to all 18 items so that a 
simple summary such as the student mean across all 18 items might suffice. The 
second question can be addressed by making a gamma probability plot of the 
dissimilarities between the eigenvectors defining the first principal component 
of the covariance matrix of each of the 117 classes and a data-determined 
typical value computed as described above (see discussion of Exhibit 49a 
below). The third question can be addressed either by comparing the typical 
vector with the 18-dimensional vector all of whose elements are equal to 
l/y/ϊϊ, or by making a gamma probability plot of the dissimilarities between 
the latter vector and the eigenvectors defining the first principal component of 
the covariance matrix of each of the 117 classes. Keramidas et al. (1987) using 

Exhibit 49*. Replot of Exhibit 49a omitting classes 8, 56, 80, 35 

0 .081 
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both approaches concluded that the index based on the typical vector is not 
very different from the simple equally-weighted index of all 18 items. 

Exhibit 49a (see page 290) shows a gamma probability plot of the dissimil-
arities between the eigenvectors defining the first principal component of the 
covariance matrix of each of the 117 classs and the typical value. The 
maximum likelihood estimates, λ and ή, of the scale and shape parameters 
needed for this plot were obtained from the full set of 117 values thus ignoring 
the possible presence of "aberrant" eigenvectors. 

Class # 8 is clearly an "outlier," that is, its first principal component is quite 
different from a possibly common typical vector (and by implication from an 
equally weighted combination of the 18 items). Looking into what this class 
was, it was found that the course dealt with speech communications and was 
atypical in that it involved audio-visual aids for recording and then evaluating 
the students' talks, with the instructor acting primarily as a moderator. From 
Exhibit 49a, classes 56, 80 and 35 are also marginally suspect of being different. 
A comparison of the dissimilarities between the first principal components of 
the 117 classes and the vector assigning equal weights to the 18 items, carried 
out by Keramidas et al. (1987) by using a gamma probability plot, confirmed 
the same deviants but indicated that class 79 may also be different. Because of 
the consistency of the findings of these two analyses, they omitted classes 8, 35, 
56 and 80 and replotted the remaining 113 dissimilarities using all of these to 
recalculate the maximum likelihood estimates of the scale and shape par-
ameters of the gamma distribution. Exhibit 49i> (see page 291) shows the 
resulting plot. The points form a strong linear pattern through the origin, 
suggesting that the first principal component for the 113 classes is essentially 
the same and, by implication from other analyses, they are basically an equally 
weighted average of the 18 items. In comparing the first principal component 
of class 8 with the vector of equal weights, it was found that in particular this 
class gave noticeably greater weight to three questions which asked the student 
to rate course materials, assignments and examinations. The first principal 
component for class 8 also gave noticeably smaller weights to four other 
questions that addressed the instructor's involvement in the class. Thus, an 
interpretation of the "aberrant" behavior of class 8 is that the speech communi-
cations course was different in that its focus was on special materials and class 
feedback, with only indirect participation of the instructor. None of the other 
116 classes happened to have a comparable format. 

6.4. MULTIDIMENSIONAL RESIDUALS AND METHODS 
FOR DETECTING MULTIVARIATE OUTLIERS 

With large bodies of data, although models are appealing as parsimonious 
representations that may lead to simple interpretations of the data, it is very 
important to have means of gauging the appropriateness and sensitivities of 
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the models under consideration. The useful role of residuals in exposing any 
inadequacies of a fitted model in the analysis of uniresponse problems has 
come to be widely recognized (see, for example, Terry, 1955; Anscombe, 1960, 
1961; Draper & Smith, 1981). 

One use of univariate residuals is to detect so-called outliers or extremely 
deviant observations, which are not uncommon in large data sets. Robust 
fitting of models or robust estimation (see Section 5.2.3) is one approach for 
handling outliers, namely, by minimizing the influence of such outliers on the 
fitted model. Often, however, pinpointing an outlier for further investigation 
and pursuit can be a valuable outcome of the statistical analysis of the data, 
and procedures directed specifically at detecting outliers can be useful (see, for 
example, Grubbs, 1950, 1969; Dixon, 1953; Barnett & Lewis, 1994). 

The purpose of this section is to discuss multiresponse residuals and 
describe some techniques for identifying multivariate outliers. The discussion 
here draws on the work of Gnanadesikan & Kettenring (1972) and Devlin et 
al. (1975). 

6.4.1. Analysis of Multidimensional Residuals 

Given some summarizing fit to a body of multiresponse data, there exists, in 
principle, a vector of multivariate residuals between the data and the fit; but, 
more than in the univariate case, the important issue arises of how to express 
these multivariate residuals. Although experience is still rudimentary on these 
matters, some things can be done, and the discussion in this section will be 
concerned with some statistical methods for analyzing multivariate residuals. 

For the discussion here and in Section 6.4.2, it is convenient to distinguish 
two broad categories of statistical analyses of multiresponse problems: (i) the 
analysis of internal structure, and (ii) the analysis of superimposed or ex-
traneous structure (see also Section 3.1). The first category includes techniques, 
such as principal components, factor analysis, and multidimensional scaling 
(see Chapter 2), that are useful for studying internal dependencies and for 
reduction of the dimensionality of response. Multivariate multiple regression 
and multivariate analysis of variance (see Section 5.2.1), which are the classical 
techniques for investigating and specifying the dependence of multiresponse 
observations on design characteristics or extraneous independent variables, are 
examples of the second category. 

Each category of analysis gives rise to multivariate residuals. For instance, 
as discussed in Chapter 2 (see pp. 56-57), linear principal components analysis 
may be viewed as fitting a set of mutually orthogonal hyperplanes by 
minimizing the sum of squares of orthogonal deviations of the observations 
from each plane in turn. At any stage, therefore, one has residuals that are 
perpendicular deviations of data from the fitted hyperplane. On the other hand, 
in analyzing superimposed structure (i.e, the second category above) by 
multivariate multiple regression, one has the well-known least squares resid-
uals, namely (observations)-(predictions from a least squares fit). For purposes 
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of data analysis it is often desirable to use the least squares residuals as input 
to a principal components analysis, which, in turn, will lead to the orthogonal 
residuals mentioned earlier. Augmenting multivariate multiple regression fit-
ting by a principal components transformation of the residuals from fit may 
help in describing statistical correlations in the errors of the combined original 
variables, or in indicating inadequacies in the fit of the response variables by 
the design variables. For present purposes principal components residuals and 
least squares residuals are considered separately. 

Principal Components Residuals. Equation 6 (in Chapter 2) defines the 
linear principal components transformation of the data in terms of the 
eigenvectors of the sample covariance matrix, S. Each row, a'j {j = 1, . . . , p), of 
A' provides a principal component coordinate, and each row of Ζ gives the 
deviations of the projections of the original sample from the projection of the 
sample centroid, y. onto a specific principal component coordinate. Using 
standardized variables as the starting point would lead to corresponding 
interpretations of the principal components analysis of R, the sample correla-
tion matrix. 

When the principal components analysis is viewed as a method of fitting 
linear subspaces, or as a statistical technique for detecting and describing 
possible linear singularities in the data, interest lies especially in the projections 
of the data onto the principal component coordinates corresponding to the 
small eigenvalues (i.e., the last few rows of Z). Thus, for instance, with ρ = 2 

ο 

ο 

ο 
2 

Ο 

Ο 

Ο 

Fig. 17. Illustration of principal components residuals. 
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the essential concepts are illustrated in Figure 17, where y x and y 2 denote the 
original coordinates and z, and z2 denote the two principal components 
derived from the covariance matrix of the bivariate data. The straight line of 
closest fit to the data (where closeness is measured by the sum of squares of 
perpendicular deviations) is the ζ,-axis. The orthogonaj residual of a typical 
data point, P, as shown in the figure, is the vector QP, which is seen to be 
equivalent to the vector O'P', where P' is the projection of Ρ onto the z2-axis, 
the second principal component. More generally, with p-dimensional data, the 
projection onto the "smallest" principal component (i.e., the one with least 
variance) will be relevant for studying the deviation of an observation from a 
hyperplane of closest fit, while projections on the "smallest" q principal 
component coordinates will be relevant for studying the deviation of an 
observation from a fitted linear subspace of dimensionality (p - q). 

For detecting lack of fit of individual observations, one method suggested by 
Rao (1964) is to study the sum of squared lengths of the projections of the 
observations on the last few, say q, principal component coordinates. For each 
initial observation, y; (i = 1, . . . , ή), the procedure consists of computing 

= ( y i - y ) ' ( y , - y ) - l f [»,&«•-y)] 2 . 

and considering inappropriately large values of df as indicative of a poor 
(p — q)-dimensional fit to the observation (or, equivalently, that the observa-
tion is possibly an aberrant one). An informal graphical technique, which might 
have value as a tool for exposing other peculiarities of the data in addition to 
assessing the fit, would be to make a gamma probability plot of the df\ using 
an appropriately chosen or estimated shape parameter. One method of 
obtaining a suitable estimate of the shape parameter would be to base it on a 
collection of the smallest observed df's. 

In addition to looking at a single summary statistic, such as df above, it may 
often be useful to study the projections of the data on the last few principal 
component coordinates (i.e., the last few rows of Ζ in Eq. 6) in other ways. 
These might include the following: 

1. Two- and three-dimensional scatter plots of bivariate and trivariate 
subsets of the last few rows of Ζ with points labeled in various ways, such as 
by time if it is a factor. 

2. Probability plots of the values within each of the last few rows of Z. 
Because of the linearity of the transformation involved, it may not be 
unreasonable to expect these values to be distributed more nearly normally 
than the original data, and normal probability plotting will provide a reason-
able starting point for the analysis. This analysis may help in pinpointing 
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specific "smallest" principal component coordinates, if any, on which the 
projection of an observation may look abnormal, and thus may augment the 
earlier-mentioned gamma probability plotting analysis of the df's. 

3. Plots of the values in each of the last few rows of Ζ against certain 
distances in the space of the first few principal components. If, for example, 
most of the variability of a set of five-dimensional data is associated with the 
first two principal components, it may be informative to plot the projections on 
each of the three remaining principal component axes against the distance from 
the centroid of each of the projected points in the two-dimensional plane 
associated with the two largest eigenvalues. This may show a certain kind of 
multidimensional inadequacy of fit—namely, if the magnitude of the residuals 
in the coordinates associated with the smaller eigenvalues is related to the 
clustering of the points in the two-dimensional space of the two eigenvectors 
corresponding to the largest two eigenvalues. 

An important issue concerning the analyses suggested above is their 
robustness. Clearly, if an aberrant observation is detected, one may want to 
exclude it from the initial estimate of S (or R) and then repeat the process of 
obtaining and analyzing the principal components residuals. In some circum-
stances one may also decide to use a robust estimate of the covariance (or 
correlation) matrix, such as the ones considered in Section 5.2.3, even for the 
initial analysis, in the hope that the aberrant observations will become even 
more conspicuous in the subsequent analysis of residuals. (See Example 29.) 

Example SO. To illustrate the use of some of the methods for analyzing 
principal components residuals, two sets of data are taken from a study by 
Chen et al. (1970, 1974) concerned with grouping corporations. (See also 
Examples 17, 18, 23, and 43.) As part of the study, the appropriateness of 
prespecified groupings (e.g, chemicals, oils, drugs) was examined initially, and, 
as mentioned in the discussion of Example 17, a preliminary attempt was made 
to develop core groups of companies from an internal analysis of each 
prespecified category. One approach for forming core groups was to identify 
and eliminate outliers by studying the principal components residuals. 

There were 14 variables per company per year in the study. Specifically, for 
1963 data were available for 20 drug companies, and Exhibit 50a shows a 
scatter plot of all the drug companies in the space of the last two principal 
components of the 14 χ 14 correlation matrix derived from these data. Com-
panies 8 and 9 are indicated as possible outliers with respect to the configur-
ation of the remaining companies in this plot. Company 9 appears to be an 
outlier with respect to the last principal component in particular, while 
company 8 seems to be a moderate outlier on the penultimate principal 
component. 

The second set of data is from 23 drug companies for the year 1967 and 
illustrates the use of probability plotting of the elements in each of the last few 
rows of Z. Exhibit 50b (see page 298) shows a normal probability plot of the 
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tenth principal component of the sample correlation matrix. The points 
corresponding to companies 11 and 19 are seen to deviate at the top right-hand 
end of the plot from the reasonably good linear configuration of the remaining 
points. The original data in this example exhibited considerable nonnormality 
(see Examples 37 and 43), and the earlier-mentioned aspect of improved 
normality induced by the principal components transformation is evident in 
Exhibit 50b by the linearity of the configuration of most of the points, with just 
a mild indication of a distribution with shorter tails than the normal. 

Least Squares Residuals. In the notation employed earlier (see Eqs. 49, 50, 
and 63) in discussing the multivariate multiple regression model, the η 
multivariate least squares residuals (called residuals hereafter) are the p-
dimensional rows (denoted as «\,e2 t'n) of 

έ = Y' — ΧΘ. (91) 

Depending on the structure of X, there will be certain singularities among the 
residuals in that certain linear combinations of the rows of έ will be 0'. 
Depending on the correlational structure and functional dependencies among 
the ρ responses, there could be singularities in the other direction (viz, the 
columns of έ), and the existence and nature of such singularities may be 
investigated by principal components transformations of the p-dimensional 
residuals. 

Exhibit 50a. Plot of 20 drug companies in the space of the last two principal components 
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Exhibit 504. Normal probability plot of the tenth principal component of the 14 χ 14 correlation 
matrix for 23 drug companies 
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In some applications there may be a natural ordering among the responses, 
which may lead one to consider the use of a step-down analysis (see Section 
4.c of Chapter IV in Roy et al , 1971). The analysis at each stage is a univariate 
analysis of a single response, utilizing all the responses that have been analyzed 
at the preceding stages as covariates. At each stage, therefore, step-down 
residuals may be obtained from this approach and studied by any of the 
available techniques for analyzing univariate least squares residuals. 

Larsen & McClearly (1972) have proposed the concept of partial residuals 
and ways of using them. Entirely analogous definitions of multivariate partial 
residuals and methods of analyzing them may be suggested. 

As a first approach to analyzing the residuals defined in Eq. 91, one may 
wish to consider the entire collection of them as an unstructured multivariate 
sample. Sometimes such a view may be more appropriate for subsets of the 
residuals than for the totality of them. For instance, in a two-way table the 
residuals within a particular row (or column) may be considered as an 
unstructured sample. At any rate, with such a view one can then employ 
methods applicable to the study of unstructured multivariate samples (see 
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Section 6.2), including the following: 

1. Separate plotting of uniresponse residuals, perhaps against values of 
certain independent or extraneous variables (e.g., time) or against the predicted 
values. Augmenting such scatter plots with curves of locally smoothed quan-
tiles (e.g., moving median and quartiles) can be very useful (see Cleveland & 
Kleiner, 1975). 

2. One-dimensional probability plotting of the uniresponse residuals. Full-
normal plots of the uniresponse residuals or half-normal plots of their absolute 
values (or, equivalently, xft) plots of squared residuals) provide natural starting 
points. Residuals generally seem to tend to be "supernormal" or at least more 
normally distributed than original data, and such probability plots may be 
useful in delineating outliers or other peculiarities in the data. 

3. The use of one, or preferably several, distance functions to convert the 
multiresponse residuals to single numbers, followed by the probability plotting 
of these. The idea here is simply to treat the residuals (the e's defined in Eq. 
91) as single-degree-of-freedom vectors and to use the gamma probability 
plotting methodology described in Section 6.3.1 for analyzing them. The 
presence of outliers and of heteroscedasticity will be revealed by departures 
from linearity of the configuration on an appropriately chosen gamma prob-
ability plot of the values of a quadratic form in the e's. For instance, an 
aberrant observation may be expected to yield a residual for which the 
associated quadratic form value will be unduly large, thus leading to a 
departure of the corresponding point from the linearity of the other points on 
the gamma probability plot (see Example 51). Heteroscedasticity will be 
indicated by a configuration that is piecewise linear, with the points corre-
sponding to the residuals derived from observations with the same covariance 
structure belonging to the same linear piece. 

The approach of gamma plotting quadratic forms of the residuals assumes 
a particularly simple, and already encountered, form for an unstructured 
sample. The residuals in this case are just deviations of the individual 
multiresponse observations from the sample mean vector, e, = y, - y 
(i = 1, . . . , n). The study of the generalized squared distance of the observations 
from the sample mean (see Example 7 in Chapter 2 and the procedure for 
plotting radii described on pp. 197-200) is thus a special case. (See also Cox, 
1968; Healy, 1968.) 

Example 57. The data derive from an experiment on long-term aging of a 
transistor device used in submarine cable repeaters (see Abrahamson et al , 
1969). Sets of 100 devices, in a configuration of 10 rows by 10 columns, were 
aged, and a characteristic called the gain of each device was obtained at each 
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Exhibit 51a. Gamma probability plot derived from three-dimensional residuals scaled by a robust 
covariance matrix 
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of several test periods. An initial transformation to logarithms was made, and 
the aging phenomenon of interest was then the behavior of the log gain as a 
function of time. One approach to studying the aging behavior for purposes of 
identifying devices with peculiar aging characteristics was to fit a polynomial 
(specifically, a cubic was used) to the data on log gain versus time for 
each device, and to study the fitted coefficients by analysis of variance 
techniques. A separate univariate analysis of variance of each coefficient, as 
well as a multivariate analysis of variance of the four coefficients simultaneous-
ly, was performed. The multivariate approach was employed partly because of 
the high intercorrelations observed among the fitted coefficients. It was not 
used as a substitute for the separate univariate analyses of the individual 
coefficients. For present purposes attention is confined to the multivariate 
approach. 

A simple one-way (i.e, rows and columns-within-rows were the sources of 
variation) multivariate analysis of variance (MANOVA), when used as a 
means for obtaining formal tests of hypotheses, revealed very little. None of the 
usual MANOVA tests of the null hypothesis of no row effects (see Section 5.2.1 
and also Chapter IV of Roy et al , 1971) had an associted p-value smaller than 
0.3. The danger in basing an analysis solely on such tests, which are based on 
single summary statistics, is revealed by the use of the informal gamma plotting 
technique described above. 
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Exhibit 514. Replot obtained from Exhibit 51a after omitting point (1,7) 
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Exhibit 51a shows a gamma probability plot of the 100 values of a quad-
ratic form, ejS* _ l ej (i = 1,...,100), in the four-dimensional residuals. The 
covariance matrix, S*, of the residuals is a robust estimate (of the type 
discussed in Section 5.2.3) obtained from the residuals themselves. [Note: Since 
S*~1 is common to all 100 values of the quadratic form being analyzed, it is 
not necessary to multiply S* by the "unbiasing" constant for the present 
application.] The shape parameter required for the plot was estimated by 
maximum likelihood based on the 50 smaller values of the quadratic form, 
considered as the 50 smallest order statistics in a random sample of size 100. 

The point that stands out clearly from the configuration of the others in 
Exhibit 51a corresponds to the seventh device in the first row, and the 
implication is that the four-dimensional residual for this device is inordinately 
"large," that is, a possibly aberrant observation has been pinpointed! This 
residual (and other such if they exist) has, of course, contributed to the estimate 
of the columns-within-rows dispersion matrix that was employed as the error 
dispersion matrix in the formal tests of significance mentioned earlier. The 
effect would be to inflate the error dispersion inappropriately, and it is not 
surprising, therefore, that the tests revealed no significant departures from the 
null hypothesis. Upon verification, the aging configuration of device 7 in row 
1 was found to be indeed abnormal in relation to the behavior of the majority 
of devices. 
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To facilitate further study of the residuals, a replot, shown in Exhibit 51b 
(see page 301) may be made of the 99 points left after omitting the point 
corresponding to the aberrant device. The configuration on this plot may lead 
one to conclude that device 9 (the one from which the top right-hand corner 
point derives) and also the other devices (1-6 and 8) in row 1 are suspect, that 
is, all 10 devices in row 1 are associated with peculiar residuals. Such a 
conclusion, however, may not be warranted, and the discussion that follows 
will clarify the issue involved. The analysis of the data is then continued in 
Example 52. 

When the matrix X in Eq. 49, the so-called design matrix or matrix of values 
of the regressors, corresponds to more structured situations (e.g., a multiway 
classification), there are at least two sources of statistical difficulty in analyzing 
the residuals. First, there are constraints on subsets of the residuals (e.g., the 
sum of the residuals in a row of a two-way table is the null vector), which imply 
correlations among the residuals. Second, the presence of outliers may seriously 
bias the usual effects which are subtracted from an observation (e.g., row, 
column, and overall mean vectors in a two-way classification) so as to mask 
the local effect of an outlier on the corresponding residual. The first source of 
difficulty (viz, the singularities among residuals) is especially critical when the 
numbers of levels of the factors involved (e.g., the number of rows or columns 
in a two-way table) are small, but the second source can be important even 
when each of the factors has a moderate number of levels. 

Thus in Example 51 the extreme outlier (viz, the observation for device 7 
in row 1) may have so badly biased the mean vector for the first row that all 
the residuals [ = (observation vector)-(row mean vector)] in that row have 
been unduly biased. If the outler is extreme enough, this can indeed happen, 
and a method is needed for insuring against such masking effects of the outliers 
on the residuals. 

One way of accomplishing this is to combine the ideas and methods of 
robust estimation discussed in Section 5.2.3 with the desirability of analyzing 
the residuals. Specifically, instead of using the usual least squares estimates of 
the elements of Θ in the linear model (Eq. 49), one could use robust estimates 
of them, thus obtaining θ*, and then define a set of robustified residuals (see 
also the discussion at the end of Section 5.2.3) as the rows of 

ε* = Y' — ΧΘ*. (92) 

If one were to utilize the simplest direct approach to developing θ*, which was 
described toward the end of Section 5.2.3, Θ* would just be a matrix each of 
whose elements, 0,*, is a uniresponse robust estimator of a univariate location-
type parameter. 

Example 52. To illustrate the use of robustified residuals, the data used in 
Example 51 are employed again. Instead of using the row mean vectors for 
defining the residuals, the vector of midmeans, y ? ( . 2 s ) > discussed in Section 
5.2.3, for each row is used, and the robustified four-dimensional residuals are 
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Exhibit 5 2 a Gamma probability plot derived from three-dimensional robust residuals scaled by a 
robust covariance matrix 
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obtained as the difference between the four-dimensional observation (viz, the 
four coefficients of the aging curve for a device) and the vector of midmeans 
for the row in which the observation appears. 

The 100 four-dimensional robustified residuals thus obtained in this 
example can then be analyzed by the gamma probability plotting technique 
described and illustrated earlier in the context of analyzing the regular 
residuals. Exhibit 52a shows a gamma probability plot of the 100 values of a 
quadratic form in the modified residuals, e*'S*~ 'e* (i = 1, . . . , 100), where S* 
as before is a robust estimate of the covariance matrix, and the shape 
parameter required for the plot is estimated once again using the smallest 50 
observed values of the quadratic form. In Exhibit 52a the point corresponding 
to device 7 in row 1 again stands out, and Exhibit 52b (see page 304) shows a 
replot obtained after omitting this point. Comparing Exhibits 526 and 516, it 
is seen that the biasing effect on all the residuals in the first row caused by the 
extremely deviant observation for device 7 in that row is no longer evident. The 
configuration in Exhibit 52b may be used to delineate additional outliers, such 
as device 1 in row 7, by looking for points in the top right-hand corner that 
deviate noticeably from the linear configuration of the points in the lower 
left-hand portion of the picture. 

Whether I* as defined in Eq. 92 is the most appropriate set of robust 
residuals for purposes of analysis, or whether one needs to modify them (e.g., 
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Exhibit 524. Replot obtained from Exhibit 52a after omitting point (1,7) 
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by weighting them), is a question for further investigation. They do at least 
constitute a simple starting point. The robustified residuals defined by Eq. 92 
will not necessarily satisfy the constraints satisfied by the usual residuals. For 
example, in a two-way classification they will not necessarily add up to the null 
vector, either by rows or by columns, or even across all cells. The robustified 
residuals do not form a cohesive group unless there are no outliers in the data, 
and in the latter case the usual least squares estimator, Θ, and the robust 
estimator, θ*, will not be very different, so that the usual residuals, έ, and the 
robustified residuals, έ*, will also be expected to be very similar when there are 
no outliers. The main use of the robustified residuals is, in fact, to accentuate 
the presence of outliers, and hence the fact that they do not satisfy the same 
constraints as the usual residuals is perhaps unimportant. If, however, one 
desires to have modified residuals satisfy these constraints as nearly as possible, 
then iterating the analysis in certain ways may help. Tukey (1970) has 
suggested such a scheme for using midmeans in analyzing multiway tables with 
uniresponse data, and an extension of this approach to the multiresponse case 
may be feasible. For data-analytic purposes, robustified residuals are useful 
because of their ability to "localize" the effects of outliers. This illustrates the 
importance of such residuals for diagnostics and demonstrates the value of 
robust estimation for both summarization and exposure. 
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6.4.2. Other Methods for Detecting Multivariate Outliers 

In the preceding section ways of pinpointing maverick observations through 
an analysis of multivariate residuals were discussed. In this section some 
additional techniques are suggested for detecting multivariate outliers. 

The consequences of having defective responses are intrinsically more 
complex in a multivariate sample than in the much-discussed univariate case. 
One reason is that a multivariate outlier can distort not only measures of 
location and scale but also those of orientation (i.e, correlation). A second 
reason is that it is much more difficult to characterize a multivariate outlier. A 
single univariate outlier may typically be thought of as "the one that sticks out 
on the end," but no such simple concept suffices in higher dimensions. A third 
reason is the variety of types of multivariate outliers that may arise: a vector 
response may be faulty because of a gross error in one of its components or 
because of systematic mild errors in all of its components. 

The complexity of the multivariate case suggests that it would be fruitless 
to search for a truly omnibus outlier detection procedure. A more reasonable 
approach seems to be to tailor detection procedures to protect against specific 
types of situations, for example, correlation distortion, thus building up an 
arsenal of techniques with different sensitivities. This approach recognizes that 
an outlier for one purpose may not necessarily be one for another purpose! 
However, if several analyses are to be performed on the same sample, the result 
of selective segregation of outliers can be a more efficient and effective use of 
the available data. 

It is essential that the procedures be computationally inexpensive enough to 
allow for routine screening of large data sets. Those that can simultaneously 
expose other features of the data, such as distributional peculiarities, have 
added economic appeal. 

Following the dichotomy of multivariate methods mentioned in Section 
6.4.1, the proposed procedures will be presented under the general headings of 
internal and external analysis techniques. In the former category are the 
techniques, such as principal components analysis, that are appropriate for 
examining an unstructured sample of data; in the latter category are tech-
niques, such as canonical correlation analysis, that are applicable in the 
presence of some superimposed structure. 

An approach that can lead to outlier-detection methods for both categories 
of problems is one which exploits the feature that outliers tend to have an 
unduly large or distorting influence on summary statistics. Gnanadesikan & 
Kettenring (1972) propose a variety of statistics, addressed to different multi-
variate problems, for assessing the influence of each observation on several 
standard multiresponse analyses. A few of these will be described later in this 
section. 

The influence function, advocated by Hampel (1968, 1973, 1974), is a useful 
device for considering the effect of observations on a statistic. As such it can 
be useful not only as a tool for motivating and designing specific types of 
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robust estimators but also as a means for developing methods for outlier 
detection (see Devlin et al , 1975). 

For a general parameter θ = T(F), expressed as a functional of the distribu-
tion function, F, the influence function /(y; Θ) at y is defined (see Hampel, 1974; 
Hampel et al , 1986) as 

where θ = T{F) and F = (1 - E)F + εδ, is a "perturbation" of F by 6y, the 
distribution function for a point mass of 1 at y. The essential concept in this 
"theoretical" influence function is that one can use it to assess the influence of 
the point y on the parameter Θ. 

Three finite sample versions of the influence function may be distinguished. 
The first, termed the empiric influence function by Mallows (1973), is obtained 
by replacing F in the above definition by the empirical cumulative distribution 
function, F„, which is a step-function with a step of height 1/n at each of the 
observations yi,...,jv 

In the second finite sample version, the desire is to study the difference 
between θ (an estimator of θ obtained from the η observations in the sample) 
and 0 + , an estimator of the same form as θ obtained from the η original 
observations plus a conceptualized additional observation, y. Specifically, this 
version of the influence function is defined as 

and it is essentially the so-called sensitivity curve used by Andrews et al. (1972) 
for studying the properties of various robust estimates of location. 

The third version focuses on the individual effects of the actual observations 
in the sample and is particularly suited to assessing the influence of individual 
observations on the estimator Θ. This version, called the sample influence 
function by Devlin et al. (1975), is defined as 

where f9_, is an estimator of the same form as θ but is calculated by omitting 
the ith observation, y,. The quantity (Θ + /_) is the ith pseudo-value in Tukey's 
(1958) jackknife technique (see also Miller, 1974, and references therein). 

[Note: Both I+ and /_ can be considered as approximations to the empiric 
influence function by taking ε in the latter to be l/n + 1 and — i/n — 1, 
respectively (see Mallows, 1973).] 

Hampel (1968) discusses the use of the influence function in the contexts of 
estimating univariate location and scale. Devlin et al. (1975) describe its 
application in the context of bivariate correlation. Specifically, it can be 

U y ; S ) = (» + 1X0+-0) , 

/_(y(;0) = ( „ - lXf> - $ _ , ) , i = 1 , . . . . n, (93) 
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established that the influence function of p, the population product moment 
correlation coefficient, for any bivariate distribution for which ρ is defined (viz, 
second moments are finite) is 

J ( v i , y 2 ; p ) = -\piy\ + f 2 ) + y,y2 , 

where yj is the standardized form of y } [i.e, y } = [y} — P-jVy/^jp j = 1.2]. 
Furthermore, if z, and z 2 denote, respectively, the standardized sum of and 
difference between y, and y 2 , and if u, = ( Z j + z2)/\/^> u 2 = ( z i ~ z

2 ) / \ / 2 > t n e 

above equation may be rewritten as 

ί(>Ί,ν2;ρ) = (1 - p 2 ) u , u 2 . 

Also, the influence function of zip) = t a n h _ 1 p . Fisher's z-transform of p , 
may be shown to be free of p: 

l{yi^2\A0)) = M l « 2 . 

where u t and u 2 are as above. With the additional assumption that Cv 1 ,y 2 ) has 
a bivariate normal distribution, it follows that the influence function of z{p) has 
a psn (product of two independent standard normal variables) distribution. 

The analogous sample influence function of r, the sample product moment 
correlation coefficient, is 

U v , i , y / 2 ; r) = (n - lXr - r_,) w (1 - r2)unul2, i = 1 , . . . , n, (94) 

wherein the first equality follows from the definition of /_ given in Eq. 93, and 
the expression on the right is the value of the empiric influence function at the 
ith observation, y! = (yn,yi2)- The quantity r_, in Eq. 94 denotes the correla-
tion coefficient based on all but the ith observation, and un, ui2 are sample 
analogues of u t and u 2 : 

„ _ \ f i ( d n + d n , d n ~ d i 2 \ 

y/n fdn +di2 t d n - d i 2 \ 

where 

fl 
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For the Fisher transform, z(r), the analogous approximate result is 

'-(JWu.zW) = (" ~ 1)Γ>Μ " * «»««. (95) 

which is free of r. From the forms of Eqs. 94 and 95 it follows that the contours 
of the sample influence functions of both r and z(r) may be approximated by 
hyperbolas with axes oriented along the principal axes of the sample correla-
tion matrix. Also, from Eq. 95 it follows that for a reasonably large sample of 
bivariate normal data one can approximate the distribution of I.(yn, yn; z(r)) 
by a psn distribution. These properties of the sample influence function are 
used below to develop informal graphical tools for detecting bivariate obser-
vations that may unduly distort r. 

Internal Analysis Techniques for Outlier Detection. A basic and widely used 
approach to displaying multiresponse data is through two- and three-dimen-
sional scatter plots of the original and the principal component variables. Of 
the principal components the first and last few are usually of greatest interest 
to study. The first few principal components are especially sensitive to outliers 
which are inappropriately inflating variances and covariances (if one is 
working with S) or correlations (if one is working with R). Motivation, in terms 
of residuals, for looking at the last few principal components was discussed in 
Section 6.4.1. The kind of outlier which can be detected along these axes is one 
that is adding unimportant dimensions to, or obscuring singularities in, the 
data. 

Probability plots (e.g., normal plots) and standard univariate outlier tests 
(such as those due to Grubbs, 1950, 1969, and to Dixon, 1953) may be carried 
out on each row of the observation matrix, Y, or of the derived principal 
components, Ζ (see Eq. 6 in Chapter 2). Outliers that distort location, scale, 
and correlation estimates may be uncovered in this manner. 

Two graphical methods, specifically addressed to detecting observations 
that may have a distorting influence on the correlation coefficient, r, have been 
proposed by Devlin et al. (1975). The first of these is to augment a simple 
x-y scatter plot of the data with contours of the sample influence function of 
r (see Eq. 94) so as to facilitate the assessment of the effect of individual 
bivariate observations on the value of r. Thus, treating the approximation to 
/_(y( 1, y ( 2 ;r) in Eq. 94 as a function of two variables, y, and y2, one super-
imposes selected contours (which will be hyperbolas) of the function directly 
onto the scatter plot. The contour levels chosen for display purposes will 
depend on the sample size and other considerations relevant to the particular 
application. 

The second proposal is to make a suitable Q-Q probability plot of the η 
values, l-(yn,yti,z{r)), for i = 1,...,«, utilizing the approximation in Eq. 95. 
From a data-analytic viewpoint, it is appropriate to use distributional assump-
tions (such as normality) for developing methodology as long as the effects of 
departures from such assumptions are themselves assessable in specific appli-
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cations. With this in mind, it is proposed that bivariate normality of the data 
be assumed as a null background and a Q-Q plot be made of the η ordered 
values of the sample influence function of z\r) against the corresponding 
quantiles of the distribution of the product of two independent standard 
normal deviates (see Eq. 95 and the discussion following it). Despite the facts 
that these sample influence function values, by definition, are just (η — 1) times 
the differences between z(r) and rfr . j ) , and that one would intuitively expect 
the appropriate null distribution to be normal [since z(r) and z(r_;) are 
themselves approximately normal], algebraic manipulations of the sample 
influence function reveal that the relevant distribution is psn rather than 
normal. In fact, initially Gnanadesikan & Kettenring (1972) proposed a normal 
probability plot for the z{r_D values, only to discover later that the more 
appropriate procedure would be to utilize a psn distribution, which is also 
symmetric but has much thicker tails than the normal. 

However, there is an "equivalent" normal probability plot that can be made 
in place of the psn plot. This may be preferred for purposes of interpretation 
because of the greater familiarity of normal plots for many people. The idea 
follows from recognizing that the psn distribution is parameter free, so that one 
can transform the η sample influence function values involved to their equiv-
alent standard normal deviates and then make a normal plot of these 
transformed quantities. Thus, if < i ( 2 ) < ··· ^ iM denote the η ordered 
sample influence function values of z(r) and if G denotes the distribution 
function of the psn distribution, the transformed values needed for the normal 
plot are the u's defined by 

Φ(υ{1) = G0' ( 0 ) , I — 1 , . . . , n, 

where Φ is the distribution function of the standard normal distribution. 
The configuration of the psn probability plot of the i0), or the normal plot 

of the v(l), may be used for checking on possible departures from the assumed 
null conditions, such as the presence of outliers that distort r, or smoother 
departures of the data distribution from bivariate normality. For instance, if 
most of the data are reasonably well behaved, with the exception of a few 
outliers that have disproportionate effects on r, one would expect most of the 
points on the Q-Q plot to conform to a linear configuration, while the points 
that derive from omission of the outlying observations will depart from such a 
linear configuration by being either "too big" or "too small." On the other 
hand, if the entire data distribution is distinctly nonnormal, one will expect 
to see departures from linearity in most regions of the plot (see Examples 53 
and 54). 

The differences, (r — r_,) and [z(r) — z(r _,)], are two examples of unidimen-
sional statistics that can aid in pinpointing the effects of individual observa-
tions on familiar summary statistics. A variety of others, including ones for 
detecting observations that distort eigenanalyses such as principal components 
analysis, are described by Gnanadesikan & Kettenring (1972). Also, Wilks 
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(1963) proposed that a test for a single outlier in an unstructured sample be 
based on the statistic 

where A = (n - 1)S denotes the sum-of-products matrix based on all η obser-
vations in the sample, and A_ ( again denotes a matrix computed just like A 
but without the ith observation. The statistic w turns out to be equivalent to 
the maximum observed generalized squared distance in the sample, that is, 
max, (y, - y)'S~ 1(yi - y), thus establishing a connection with the procedure of 
studying these generalized squared distances as described in Section 6.4.1 in the 
context of least squares residuals. Focusing on the largest observed generalized 
squared distance would be natural for developing a formal single-statistic test, 
but studying a gamma probability plot of the collection of η generalized 
squared distances may be more revealing for data-analytic purposes. For 
carrying out the formal test, the work of Siotani (1959) on the asymptotic 
distribution of the maximum generalized squared distance in multivariate 
normal samples provides some useful results and tables of percentage points. 

The cluster analysis techniques discussed in Chapter 4 provide a differ-
ent type of tool for identifying outliers. If the outliers constitute a distinct 
group of observations that are far removed from the majority of the data, one 
would expect them to be delineated as a cluster of observations. For instance, 
in a hierarchical clustering scheme, if one uses interpoint distances [i.e, 
(y, - yi) 'S _ , (y( _ y*)] a s t n e input, the expectation is that outlier clusters, if 
any exist, will join the main body of points near or at the final level of 
clustering (see Example 56). 

Example 53. The computer-generated data shown in Exhibit 53a are a 
sample of 60 observations, 58 of which are from a bivariate normal distribution 
with ρ = 0.9 and the remaining 2 observations simulate moderate outliers with 
opposite (i.e, inflation vs. deflation) effects on r. Also shown on the scatter plot 
are selected contours of the sample influence function of r. 

The interpretation of the contours would be that the point labeled 1 would 
increase the value of r by about 0.2, while observation 2 would decrease r by 
about the same amount. These separate inferences concerning the two outliers 
are reasonably accurate in these data since the actual computed values are 
r = 0.026, r_, = -0.201, and r_ 2 = 0.253. The value of the correlation coeffi-
cient when both outliers are omitted is, however, 0.029. 

Exhibit 53b shows a psn probability plot of the sample influence function 
values of z(r) for the same data, and Exhibit 53c (see page 312) shows the 
equivalent normal plot of the associated transformed quantities. Although the 
outliers stand out clearly on both these plots, the middle of the configuration 
(i.e, the linear part) in Exhibit 53c is stretched out more than the correspond-
ing part of Exhibit 53b. 
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Exhibit 53a. Scatter plot with influence function contours for sample of bivariate normal data with 
two outliers added; n = 60, p = 0, r = 0.026 
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Exhibit 53c. Normal probability plot of transformed influence function values for data of Exhibit 
53a 
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Example 54. The iris data (Anderson, 1935; Fisher, 1936) employed in 
Example 42 are used here to illustrate the issues and methods of outlier 
detection. Specifically, Exhibit 54a shows a scatter plot of values of the natural 
logarithms of 10 times the sepal lengths and widths for the 50 specimens of Iris 
setosa. Also shown in Exhibit 54a are contours of the sample influence function 
of r. Although the 42nd observations stands out clearly from the rest of 
the data, its location with respect to the contours suggests that it does not have 
a distorting influence on the value of r. Indeed, r _ 4 2 = 0.723, whereas 
r = 0.730. 

Exhibit 54b which shows a normal plot of the transformed sample influence 
function values of z(r), provides further confirmation of this. There ae 11 points 
with more extreme influence on r than the 42nd observation. The most striking 
feature of Exhibit 54b, however, is the nonlinearity of the configuration even 
in the middle region, indicating that the logarithmically transformed data may 
be quite nonnormal, at least with respect to the two variables considered here. 

Exhibit 54c (see page 314) shows a χ(

2

2) probability plot of the 50 generalized 
squared distances in these data. As expected from the scatter plot (Exhibit 54a), 
in terms of the elliptical distance measured by the generalized squared distance, 
the 42nd observation is indeed an outlier (see also Example 42). This example 
thus illustrates the point that a multiresponse observation that is judged to be 
an outlier for one purpose may be quite a reasonable observation for other 
purposes. 
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Exhibit S3*. PSN probability plot of values of z_, for data of Exhibit 53d 
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Exhibit 54c. Chi-squared (df = 2) probability plot of the generalized squared distances for the Iris 
setosa data of Exhibit 54a 

Example 55. This example, taken from Devlin et al. (1976), illustrates the 
use of the psn probability plot (or the equivalent normal plot) of the sample 
influence function values of z(r) to detect relatively smooth departures of the 
data distribution from normality. Five random samples, each of size 200, were 
generated from a bivariae t distribution with 5 degrees of freedom. Each sample 
yielded 200 sample influence function values of z{r). By averaging the five 
corresponding ordered sample influence function values (i.e, average of the 
smallest in each set of 200, average of the second smallest, etc.), a smoothed set 
of ordered values was obtained. Exhibit 55 shows a psn probability plot of 
these, and the smoothly nonlinear configuration obtained indicates that the 
effect of the data having a bivariate t distribution rather than a bivariate 
normal distribution is to induce a longer-tailed (although still symmetric) 
distribution for the influence function values. Such an implication is accurate 
since it can also be established theoretically (Devlin et al , 1976). 

Example 56. For illustrating the use of hierarchical clustering in identifying 
outliers, 14-dimensional data for 32 chemical companies for the year 1965 are 
taken from the study on grouping of corporations by Chen et al. (1970, 1974). 
Data from this study have been used repeatedly in earlier examples, and 
the present illustration is taken from Gnanadesikan & Kettenring (1972). 
The generalized squared intercompany distances in the 14-dimensional 
space were used as input to the minimum method of hierarchical clustering 
described in Section 4.3.2a. The results, along with clustering strength values, 
are displayed in Exhibit 56 (see page 316). Company 14, which joins the cluster 
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Exhibit 55. PSN probability plot of averaged z_, values from samples of bivariate r distribution 
(df = 5) 
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at the very end at a substantially higher clustering strength than the preceding 
value, appears to be an outlier, a finding that was corroborated by a variety of 
other analyses. 

External Analysis Techniques for Outlier Detection. Discriminant analysis of 
two or more groups of multiresponse observations (see Section 4.2) and 
canonical analysis of two or more sets of variables (see Section 3.3) are among 
the basic multivariate external analysis techniques. 

Valuable insight can be gleaned from two- and three-dimensional displays 
of the discriminant and canonical variables. Such views of the discriminant 
space, as illustrated in Examples 16 and 17, show the relative sizes, shapes, and 
locations of the groups, as well as possible peculiarities in the positions of 
individual points. The discriminant analysis may be preceded by internal 
analyses of the individual groups for outliers, with the hope of making the 
dispersions within the individual groups similar, as is required for the validity 
of the standard multigroup discriminant analysis procedure (see the discussion 
in Example 17). The remaining observations can then be used to derive the 
discriminant coordinates, but the visual displays may profitably include the 
positions of all of the data in the transformed space. The canonical variable 
plot, another mechanism for data exposure, can reveal outliers that are 
inducing an artificial linear relationship among the sets. Plots of the principal 
components (or other appropriate linear functions) of the canonical variables, 
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as discussed in Kettenring (1971), are alternative summaries that have special 
appeal when the number of sets is large. 

Normal probability plots and univariate outlier procedures can be applied 
to the canonical variables or to linear functions of them, and to the dis-
criminant variables, making a separate plot for each group. The slopes of the 
configurations on the last-mentioned of these plots provide a partial check on 
the homogeneity of dispersion among the groups. 

Gnanadesikan & Kettenring (1972) propose two examples of univariate 
statistics that are sensitive to the type of multivariate effects of interest in 
discriminant and canonical analyses. The first is 

= -y*)}a 

= (y«-y*)'w '(y*.-yk), k = i,...,g;i = ι nk, 

Exhibit 56. Hierarchical clustering tree for 32 chemical companies 
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where y k i is the ith observation in the kth group, yk is the kth group mean, nk 

is the number of observations in the kth group, and the eigenvalue c„ the 
eigenvector a„ and the matrices Β and W are as defined in Section 4.2 (see Eqs. 
51 and 52). The statistic, w 2 „ is a weighted sum of squares of the projections 
of (yk f — yk) onto the discriminant axes, and ΣΣνν2,· = (η — ς)Σο„ where 
η = Σ η * . 

For the case of canonical analysis of two sets of variables, the proposed 
statistic is 

Π ( Ι - Γ < " 2 ) 

χ,2 = - ! 

r 

{1 - ( i 0 t - lXy u - y ,)'A u \ y u - y,)} {1 - (n/n - l)(y 2 i - y2)'A ^(y2l - y2)} 

1 - ( « / « - l X y - y V A - H ^ - y ) 

1 = 1,...,/!, 

where r ( , ) is the tth canonical correlation computed from all η observations, 
while r'i'j is based on all but the ith observation, and where 

y; —(y'lily'z/). y' = (y',ly2), and A = ( n - i ) S = 

are partitioned in accordance with the dimensions of the two sets. (The 
subscript k, which designated the group in the definition of w 2 , , now refers to 
the set.) 

As aids for examining the collection of w 2 , and of x 2 , it would seem 
reasonable to use gamma probability plots of the w2, and normal probability 
plots of the log xf. These choices for the null distributions, however, need to 
be investigated more carefully for their appropriateness. 
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et al. (1975,1976), Dixon (1953), Fisher (1936), Gnanadesikan & Kettenring (1972), 
Grubbs (1950, 1969), Hampel (1968,1973,1974), Hampel et al. (1986), Kettenring 
(1971), Mallows (1973), Miller (1974), Siotani (1959), Tukey (1958), Wilks (1963). 
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A P P E N D I X 

Software 

The development of software for multivariate data analysis in the last two 
decades has seen a veritable explosion of implementations ranging from 
specialized packages for specific techniques to inclusion of the methods in 
widely-used software systems with broad capabilities for data analysis (e.g., 
S, S-plus, SAS, SPSS). Even with the latter type, there is a variety of platforms 
on which they run resulting in some differences in capabilities and features, 
although general characteristics such as the names of the functions remain the 
same across platforms. In this appendix, with few exceptions, the emphasis is 
on two of the most widely-used systems, S and SAS. 

A perennial peril with advice on software is that it is out of date almost as 
soon as it is given! The material in this appendix is no exception. Despite this 
state of affairs, the practical value and impact of methods such as those 
discussed in this book depend critically on the ability to use them as 
implemented in some software. With this in mind, all that is intended here is 
to provide some pointers to software and references which will enable the 
reader to use several, though not all, of the techniques described in the earlier 
chapters. Specifically, the main aim is to list the function names for the 
techniqus as implemented in S (and S-plus if different) and SAS. In a few cases, 
where specialized computer programs not directly available in either of these 
systems are needed, references to other sources are mentioned. The order 
followed in the discussion and listing will closely parallel the one in which the 
techniques were described in the earlier chapters. 

Before listing the functions, or providing references to sources for specific 
software, a few general comments are appropriate. As documentation sources, 
of course, the most complete are the hardcopy and online "manuals" for S, 
S-plus and SAS. The appropriate references for the hardcopy versions of these 
manuals are: 

For S, 

(1) Becker, R. A, Chambers, J. M., & Wilks, A. R. (1988). The New S 
Language. Wadsworth & Brooks/Cole, Pacific Grove, CA. 

(2) Chambers, J. M. & Hastie, T. J. (eds.) (1992). Statistical Models in S. 
Wadsworth & Brooks/Cole, Pacific Grove, CA. 
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For S-plus, of the many manuals available for it, the following form a useful 
subset: 

(1) Statistical Sciences (1993). A Gentle Introduction to S-PLUS, Version 
3.2. StatSci, Seattle, WA. 

(2) Statistical Sciences (1993). A Crash Course in S-PLUS, Version 3.2. 
StatSci, Seattle, WA. 

(3) Statistical Sciences (1993). S-PLUS User's Manual, Version 3.2. StatSci, 
Seattle, WA. 

(4) Statistical Sciences (1993). S-PLUS Reference Manual, Volume 1, Ver-
sion 3.2. StatSci, Seattle, WA. 

(5) Statistical Sciences (1993). S-PLUS Reference Manual, Volume 2, Ver-
sion 3.2. StatSci, Seattle, WA. 

For SAS: 

(1) SAS Institute (1985). SAS User's Guide: Basics, Version 5. SAS Institute, 
Cary, NC. 

(2) SAS Institute (1985). SAS User's Guide: Statistics, Version 5. SAS 
Institute, Cary, NC. 

For users who may have access to any of these systems, the online 
documentation of them may be easier to use. Given the name of a function, the 
online documentation is obtained either by typing in the command 
"help('function name')" or by an item in a pulldown menu depending on the 
particular implementation. Thus the function names listed in this appendix 
may be useful for such users as a starting point. 

In addition to documentation provided by the developers/distributors of 
these systems, there are a number of books written by others for guiding users 
with different levels of statistical and computing expertise. For instance, for 
users of S-plus, a valuable reference for a whole range of data analyses that one 
may wish to undertake is: 

Venables, W. N. & Ripley, B. D. (1994). Modern Applied Statistics with 
S-Plus. Springer-Verlag, New York. 

Similarly, for SAS an example is the book: 

Hatcher, L. & Stepanski, E. (1994). A Step-by-Step Approach to Using SAS 
for Univariae and Multivariate Statistics. SAS Institute, Cary, NC. 

A list of function names in S/S-plus and in SAS, some comments on details 
of usage in a few cases, and pointers regarding additional software sources, 
follow. 

Matrix Computations 

Since virtually all of the techniques described in the earlier chapters consist of 
building blocks entailing matrix operations, the functions for basic matrix 
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computations are mentioned first. A particular strength of S/S-plus is the 
inclusion of basic matrix operators and functions for the more widely-used 
matrix computations. In the following list, where functions are involved their 
names are shown in quotes while operations are indicated by their symbols: 

Addition and subtraction — A + Β, A — Β 
Multiplication—A%*%B 
Transpose—"t(A)" 
I η verse—"solve( A)" 
Choleski decomposition—"chol(A)" [Note that what is returned in S/S-

plus by this function is the upper triangular matrix, T, where A = TT']. 
Singular Value Decomposition—"svd(A)" 
Eigenanalysis—"eigen(A)". 

In Version 5 of SAS, PROC MATRIX embodies a number of functions for 
matrix manipulations. However, Version 6 of SAS includes a software system 
called SAS/IML (where IML stands for Interactive Matrix Language) and 
PROC IML appears to have some significant advantages over PROC 
MATRIX. The interested reader is referred to: "SAS/IML User's Guide, 
Release 6.03 Edition," SAS Institute, Cary, NC. 

Plotting Multivariate Data 

A major strength of S/S-plus is their graphical capabilities. The functions 
mentioned here are just a few of the more basic ones available in these two 
systems. For obtaining the most widely-used display, an x-y scatter plot, the 
function is "plotix, y)", where "x" and "y" are vectors containing the x-
and y-coordinates of the points to be plotted. [Note: There are a number of 
arguments and graphical parameters that enable the user to manipulate the 
displays in a variety of ways. However, for present purposes, these details are 
left out.] The function, "pairs(x)", where "x" is an η χ ρ matrix of data, will 
produce scatter plots of all possible pairs of the ρ variables. The function, 
"stars(x)", will generate a star plot (or snowflake plot) of the data with a star 
representing each of the η observations. Also, "facesfx)" is the function to use 
in S/S-plus for getting a ChernofFs faces display of the data. (See Section 3.2.) 
At the moment, the reader interested in Andrews's Curves (see Section 6.2) can 
obtain S functions developed by Chris Rogers at Rutgers upon request. Soon 
these may be made available through the statlib facility at Carnegie Mellon 
University (see discussion of statlib below). 

In SAS, PROC PLOT is the basic plotting tool. A reference for the reader 
interested in using SAS for graphics more generally is: Friendly, M. (1991). 
"SAS System for Statistical Graphics," SAS Institute, Cary, NC. This book 
describes ways of getting a large number of graphical dispays in SAS, including 
univariate displays (e.g., standard things such as histograms and box plots as 
well as Q-Q probability plots) and multivariate displays (e.g., glyphs, Andrews's 
curves, star plots, and plots for assessing multivariate normality). SAS macro 
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programs which package together the pieces needed for the various displays 
are described and illustrated. 

As mentioned in various places in the earlier chapters (e.g. Sections 4.3.2, 
6.2), graphical displays that incorporate motion, linking, and interaction are 
now widely available in a variety of systems. In particular, one of the more 
recent implementations is the XGobi system which is linked to S. The 
interested reader will find more details in: Swayne, D. F , Cook, D , & Buja, A. 
(1991). "XGobi: Interactive Dynamic Graphical Displays in the X Window 
System Linked to S," Proc. Statist. Graphics Sec. Am. Statist. Assoc., 1-8. An 
S function called "xgobiQ" is available through statlib. (See discussion of 
statlib at the end of this appendix.) 

Principal Components Analysis (Sections 2.2.1 and 2.4) 

In S/S-plus, "prcompix)"; [Notes: (a) "x" is the π χ ρ matrix of data and the 
function returns quantities associated with the principal components of the 
covariance matrix. If the principal components of the correlation matrix are 
desired then the user will have to specify the standardized form of the data as 
the matrix, x. (b) If the user has, or wishes, to start with either a covariance 
matrix or a correlation matrix, or robust versions of these, then the function, 
"eigen", mentioned above would be the appropriate one to use and not 
"prcomp".] 

In SAS, PROC PRINCOMP, incorporates user specification of "data type" 
and yields the principal components of either the covariance or the correlation 
matrix of the data. 

Factor Analysis (Section 12.2) 

To carry out a principal factor analysis in S/S-plus, the user will need to first 
compute the reduced correlation matrix, R*, or perhaps a robust version of it, 
and then use the function, "eigen", mentioned above. SAS provides PROC 
FACTOR which has options, including the principal factor method and the 
maximum likelihood method as well as facilities for rotation. As for specialized 
software, LISREL, a computer-aided system for fitting so-called linear struc-
tural equations models developed by Joreskog and his collaborators is a rich 
source [see, for example, Joreskog, K. G. & Sorbom, D. (1984). "LISREL VI 
Analysis of Linear Structural Relations by Maximum Likelihood, Instrumental 
Variables, and Least Squares Methods," User's Guide, Department of Statis-
tics, University of Uppsala, Uppsala, Sweden]. 

Multidimensional Scaling (Section 2J) 

Specialized software seems to be the route. For nonmetric multidimensional 
scaling, the best currently available system appears to be one called KYST 
which is distributed by AT&T Bell Labs on request. For the three-way scaling 
method, INDSCAL, mentioned in Section 2.3, a program by that name is also 
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available on request from AT&T Bell Labs. [See Kruskal, J. B. & Wish, M. 
(1978). "Multidimensional Scaling," Sage Publications, Beverly Hills, CA. (See, 
in particular, their pages 78-82).] 

Canonical Correlation Analysis (Section 3.2) 

For the classical case of two sets of variables, in S/S-plus the function is 
"cancor(x,.y)". [Note: If the starting point is a correlation matrix, or a robust 
version of it, instead of the original data, then the user will have to compute 
the matrix, R 1 2 , described in Section 3.2, initially and then use the function, 
"svd(R1 2)'\ to obtain the results needed. (See discussion of computations via 
the singular value decomposition in Section 3.2.)] In SAS, PROC CANCORR 
is the one to use with an option to specify the data type as either the original 
data or the correlation matrix. 

For the extension to more than two sets of variables, as of now it seems that 
the appropriate reference to specialized programs is still the one mentioned in 
the first edition of this book [Chen, H. J. & Kettenring, J. R. (1972). "CANON: 
A Computer Program Package for the Multi-set Canonical Correlation Analy-
sis," Bell Laboratories Technical Memorandum]. 

Discriminant Analysis (Section 4.2) 

In S/S-plus, the function for carrying out a multi-group analysis is "discr(x, k)'\ 
where χ is the η χ ρ matrix of the data from all groups and k is either the 
number of groups if they are all of the same size or the vector of group sizes 
if they are of different sizes. In SAS, the function is PROC DISCRIM with a 
variety of options and formal tests of significance included. 

For the new paradigm of classification trees, the reader is referred to: (a) 
Breiman, L, Friedman, J. H , Olshen, R. A, & Stone, C. J. (1984). "Classifica-
tion and Regression Trees," Wadsworth International Group, Belmont, CA; 
and (b) Clark, L. A. & Pregibon, D. (1992). "Tree-based Models," Chapter 9 
of the book edited by J. M. Chambers & T. J. Hastie listed earlier in this 
appendix. 

Cluster Analysis (Section 4 J ) 

In S/S-plus the function for performing hierarchical cluster analysis is 
"hclust()". As one of the input arguments, the user is expected to provide either 
an η χ η matrix of interobject distances or similarities. [Note: S/S-plus have a 
function called "dist(x)" which will compute either Euclidean distances or 
Manhattan distances between every pair of rows of the π χ ρ matrix, χ. While 
the W*-algorithm described in Section 4.3.1 is not yet available in the standard 
forms of S and S-plus, it is expected that S functions developed by Joann 
Harvey will be made available through statlib (see discussion of statlib below).] 
Another argument in hclust specifies the method of hierarchical clustering to 
be used. The output of hclust is the entire hierarchical tree structure. The 
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function, "plclust()", can be used to plot the tree. Also, the tree can be cut at 
different levels to produce mutually exclusive clusters by using the function, 
"cutree()", with the user specifying either the number of clusters desired, or the 
height of the tree in terms of the strength (see definition of strength in Section 
4.3.2a), for producing the clusters. S-plus has the function, "kmeansO", which 
implements the non-hierarchical clustering algorithm of fc-means described in 
Section 4.3.2b. [Note: This function expects the user to provide not only a 
choice of the number of clusters desired but also a starting point for the cluster 
centers.] As to the aids for interpreting the results of a cluster analysis 
discussed in Section 4.3.3, functions for many exist in private S libraries which 
will hopefully be made available more widely through statlib before long. For 
example, in a Supplement to S developed by Elaine Keramidas and Karen 
Bogucz at Bellcore, there are functions available for getting a cluster profile 
plot ("clprofileO") and the plot of the ^-statistic vs. k ("bkplot()") described 
in Section 4.3.3. 

SAS has a large variety of clustering algorithms to choose from including 
all the hierarchical methods discussed in Section 4.3.2a, /c-means and even 
methods for overlapping clusters. PROC CLUSTER is for hierarchical cluster-
ing and will handle either the data matrix or inter-object distances matrix as 
input to it. PROC FASTCLUS with the data matrix as the input deals with a 
number of non-hierarchical clustering methods. PROC OVERCLUS is the one 
to use if one wishes to allow for overlapping clusters. PROC ACECLUS 
implements a version of the W*-algorithm for computing an estimate of the 
within-cluster covariance matrix. ACECLUS is a preprocessing step to either 
PROC CLUSTER or PROC FASTCLUS in that it provides a means for either 
sphericizing the data prior to PROC FASTCLUS or computing the inter-
object distances as inputs to PROC CLUSTER. 

The reader interested in ISODATA is referred to the specialized package 
mentioned in the first edition of this book. [See, Warner, J. L. (1968). "An 
Adaptation of ISODATA POINTS, an /terative Self-Organizing Data analy-
sis Technique A," Bell Laboratories Technical Memorandum.] 

There are a number of special packages of computer programs directed 
towards the vast array of clustering algorithms that are currently available. A 
good reference source for many of these is: Kaufman, L. & Rousseeuw, P. J. 
(1990). "Finding Groups in Data," Wiley, New York. 

General Linear Model and Analysis of Variance (Sections 5.2.1 and 5.2.2) 

There is an abundance of software for the classical least squares fits and formal 
tests of hypotheses associated with this topic. In S/S-plus the functions "lsfit()" 
and "aov()" are the key ones for univariate analyses of observations on each 
variable separately. In SAS, the corresponding procedures are PROC GLM 
and PROC ANOVA. PROC GLM is the one to use for fitting univariate 
general linear models, including multiple regression and unbalanced designs. 
PROC ANOVA is the efficient method for carrying out univariate analyses 
of variance for each variable. When it comes to carrying out multiresponse 
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analyses, S/S-plus have the feature "maovQ" which collects together the 
fitted effects from the separate analyses together in vectors but there is no 
provision for obtaining a partitioning of the total sum-of-cross-products matrix 
into component matrices or carrying out the standard tests of significance or 
other so-called MANOVA procedures. SAS, however, includes a statement 
MANOVA in PROC GLM which returns the results of a MANOVA including 
all of the standard tests of significance. 

Robust/Resistant Estimates (Section 5.2J) 

Both S/S-plus and SAS contain standard univariate measures of location and 
dispersion that are based on order statistics (e.g., median, inter-quartile range, 
etc.). When it comes to the currently preferred robust estimates, such as 
m-estimates, however, the choices are quite limited. This is especially so in 
dealing with the multivariate case. As of now, S/S-plus have an edge over SAS 
in this area but undoubtedly this will change in the future. The discussion here 
is confined to S/S-plus. 

Location and Dispersion 

To collect together univariate estimates into a vector estimate, S/S-plus have a 
handy function called "apply(x,2,'name of univariate function')", where V is 
the η χ ρ matrix of data, the '2' specifies that the univariate function applies to 
the columns of x, and the name of the univariate function for the third 
argument can be 'mean' if the usual mean, y, is desired, or 'median', if the vector 
of univariate medians is desired. In S-plus, one can use 'robloc' for the third 
argument of apply to obtain a vector of univariate m-estimates of location such 
as Huber's or Tukey's bisquare (see Section 5.2.3). The function, "var(x)", with 
the argument 'x' specified as the η χ ρ matrix of data will yield the usual 
non-robust ρ χ ρ covariance matrix of the data. 

For the full-fledged multivariate robust estimates of location and dispersion, 
such as the ellipsoidally trimmed estimator or the m-estimates proposed by 
Huber and Maronna described in Section 5.2.3, at the moment, S functions are 
available in private libraries that the author has access to but hopefully soon 
these will be made widely available through the statlib facility. [Note: S-plus 
has a function, "cov.mve()", which calculates the minimum volume ellipsoid 
estimate of a covariance matrix mentioned in Section 5.2.3. As part of the 
returned information by this function, one can obtain a "center" which is a 
robust estimate of location.] 

Correlation 

For obtaining the robust estimator, r*(SSD), of bivariate correlation described 
in Section 5.2.3, S/S-plus have the function "cor()" with an argument called, 
'trim', that can be used for specifying the proportion of the observations the 
user wishes to trim. In this usage the first two arguments of "cor()" are two 
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vectors containing the observations on the two variables of interest. To obtain, 
R*(SSD), the ρ χ ρ matrix of bivariate correlations each of which is itself an 
r*(SSD)-type of estimate, the same function "cor()" with one argument V 
specifying the η χ ρ matrix of multivariate observations and a second one 
specifying a value of 'trim' will suffice. [Note: Recall the discussion in Section 
5.2.3 about the need to shrink this estimate if one wants to guarantee positive 
definiteness of the estimate. At the moment, there is no S function for 
producing R^(SSD) from R*(SSD) using the scheme in Eq. (72a).] 

Assessment of Normality 

PROC UNIVARIATE in SAS contains a number of things including histo-
grams, normal probability plots, and an array of formal tests of significance for 
normality. S/S-plus are well equipped to provide a wide range of probability 
plots. The function, "qqnorm()", produces a normal probability plot. However, 
it is a relatively simple matter in S/S-plus to obtain probability plots such as 
those for the "radius-and-angles" representation for checking multivariate 
normality described in Section 5.4.2. The next item pertaining to probability 
plotting clarifies what is involved. [Note: For computing the squared radii, 
which are just the squared Mahalanobis distances of the multivariate observa-
tions from the mean vector using the inverse of the covariance matrix as the 
metric, S-plus has a handy function called, "mahalanobisO". This function 
requires the user to specify not only the data matrix, but a 'center' and a 'cov' 
matrix whose inverse is used as the metric. These specifications enable the user 
to obtain not only the usual squared Mahalanobis distances in a set of data 
but also robust versions of these by specifying robust estimates of location and 
dispersion in place of the mean vector and the usual covariance matrix.] 

Probability Plotting (Section 6.2 and throughout the book) 

For SAS, the book by M. Friendly referred to above under plotting of multi-
variate data is a source for descriptions of macros. The discussion here is, 
however, confined to S/S-plus and pertains to Q-Q plots as defined in Section 
6.2. Basically, what enables the ease of obtaining Q-Q plots of a set of initial 
observations, or of things derived from them (such as radii, angles, projections 
onto a specific principal component, etc.), is the availability of a quantile func-
tion in S/S-plus that enables the computation of quantiles corresponding to 
given values of the cumulative proportion for a number of well-known distri-
butions, including the uniform, chisquare, gamma and beta distributions. For 
generating the vector of appropriate cumulative fractions, (i—a)/(n—la +1) for 
i = 1, . . . , n, there is the function "ppoints()" with an option for specifying a 
choice for 'a'. Next the function, "qxxx(ppoints())'\ where 'xxx' is to be 
specified by a conventional name or abbreviation for a distribution, produces 
the desired quantiles. The choices for 'xxx' include 'unif for the uniform 
distribution, 'chisq' for the chi-squared distribution, 'gamma' for the gamma 
distribution, 'beta' for the beta distribution, and so on. The quantile function, 
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"qxxxQ", also expects the user to specify any shape parameters that may be 
involved in order to calculate the quantiles of the particular member of the 
class of distributions. Thus, values of the degrees of freedom for a chi-squared 
distribution, or of the single shape parameter for the gamma, or of the two 
shape parameters for a beta distribution will need to be specified by the user. 
Finally, to obtain a Q-Q plot of a set of values, ζ (either of initial observations 
or of things derived from data), one would use the scatter plot function, 
"plot('qxxx()',sort(z))". 

As mentioned in the preceding paragraph, for Q-Q plotting against the 
quantiles of a distribution involving shape parameters, the user has to specify 
values of these parameters. Some of the techniques described in the earlier 
chapters of this book (e.g., the gamma, probability plotting methods discussed 
in Section 6.3), depend on estimating such parameters from the data at hand. 
At the moment, there are S functions available in private libraries (e.g., the 
functions, "egamma()" and "ebeta()", for maximum likelihood estimation of 
the parameters of the gamma and beta distributions, respectively, in a Supple-
ment to S developed by Elaine Keramidas and Karen Bogucz of Bellcore) for 
calculating such estimates and hopefully these will be made available through 
statlib. 

A Q-Q plot for comparing the distributions of two sets of data without 
specifying the common distribution, is obtained in S/S-plus by the function, 
"qqplot(x, y)", where 'x' and ' / are the two sets of data. [Note: In this 
connection, the term data includes both raw observations and derived sum-
maries.] This function is useful, for example, in obtaining the component 
probability plot and the standardized component probability plot described in 
Section 5.4.1 for assessing the similarity of the marginal distributions of a pair 
of variables. [Note: This distribution free Q-Q plot can also be used for 
comparing the distributions of two sets of data which are of unequal size. If 'x' 
and 'y' are not of the same size, qqplot(x, y) results in a plot of the ordered 
observations in the smaller set against the corresponding quantiles extracted 
from the larger set.] 

statlib 

This is an archive of S functions supplied by a large population of users and 
made available to the profession at large as a service by Michael Meyer at 
Carnegie Mellon University. Information on the contents of statlib at any 
given time can be obtained by sending electronic mail to the Internet email 
address, statlib@lib.stat.cmu.edu, with the two-line message, 

send index 
send index from S 

as the body of the message. One can also obtain the sources for any of the S 
functions in statlib by using the file transfer program, "ftp". (See also Appendix 
D of the book by W. N. Venables & B. D. Ripley listed above.) 
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49. Q-Q plot for comparing eigenvectors 
in course evaluation data. 289 

50. principal components residuals in 
corporation grouping study. 2% 

51. least squares residuals in device aging 
study. 299 

52. robustified residuals in device aging 
study. 302 

53. influence function plots for outlier 
detection. 310 

54. outlier detection in Iris setosa. 312 
55. influence function plots in assessing 

distributional departures. 314 
56. hierarchical clustering in outlier 

detection. 314 
Exposure und summarization of data. 

227-317 
inadequacy of summarization without 

exposure. 227-228 
residuals and detection of outliers. 

292-304 
techniques for comparing data sets. 

256-292 
techniques for unstructured data. 

228-256 

External analysis, in outlier detection. 305. 
315-317 

canonical variable plots. 315 
classification, discriminant analysis. 

315-317 
definition of. 293 

External dependencies. 68-80 
canonical correlation analysis in. 

68-78 
and multiple correlation coefficient. 68 
and multivariate general linear model. 

78-80 

and multivariate multiple regression 
model. 78-80 

nonlinear models in. 80 

F-ratio. 84 
Face coding. 65-67 
Factor analysis. 15-26 

applications. 26 
common factors, definition of. 15 
communality. definition of. 17 
factor loadings, definition of. 15 
general model. 15-18 
graphical technique in. 25 
maximum likelihood approach in. 23-25 
and multidimensional scaling. 32-34 
nonlinear approaches in. 26 
principal factor method. 19-23 
reduced correlation matrix, definition of. 

IK 

and ridge regression. 22 
unique factors, definition of. 15 
uniqueness, definition of. 17 

Factor loadings: 
definition of. 15 
estimation of. 19-24 

Factor scores: 
definition of. 25 
estimation of. 25 

Friedman-Rubin method, of clustering. 124 
Function plot (Andrews function plot). 

239-250 

Gamma probability plots: 
in comparing multiresponse data sets. 

258-279. 283-287. 289-292 
of distances in unstructured data. 52 

Generalized principal components analysis. 
51-60 

eigenanalysis formulation. 51-56 
function-fitting formulation. 56-57 

Generalized squared distance. 48. 51. 92. 
198.200.310 

GENVAR method. 70-76 
defined. 70 

Geological applications of factor analysis. 
26 

Glyphs. 62-64 
Graphical techniques for internal 

comparisons, eigenvectors. 287-292 
equal-degrec-of-frcedom groupings. 

279-287 
single-degree-of-freedom vectors. 

257-279 

Hierarchical clustering: 
basic approaches. 110-115 
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Hierarchical clustering (Continued) 
in biological applications. 110 
definition of. 109. 110 
minimum, maximum and average methods. 

114-120 
strong clustering, definition of. 110 
weak clustering, definition of. 110 

Histograms, multivariate. 232-233 
Hotelling's T-. 83.256 

Inadmissibility: 
of sample covariance matrix. 144 
of sample mean vector. 141 

Index of continuity, maximization of. 
(method of Shepard & Carroll). 40-43 

Individual differences scaling method. 46 
"Indscal" (inidividual differences scaling). 46 
Influence function. 145. 233-234.305-308 

empiric. 306. 307 
sample. 306-308 

defined. 306 
relationship to the jackknife. 306 

sensitivity curve. 273 
Interactive graphical display, in studying 

data. 108. 234.235 
Internal analysis, in outlier detection. 305. 

308-315 
cluster analysis techniques in. 310. 

314-315 
influence function plots in. 308-314 
probability plots in. 308 
scatter plots in. 308.310-313 

Internal comparisons, definition of. 257 
graphical methods for eigenvalues. 

235-237 

graphical methods for eigenvectors. 
287-292 

graphical methods for equal-degree-of-
freedom groupings. 279-287 

graphical methods for single-degrec-of-
freedom contrast vectors. 258-279 

Internal dependencies. 62-67 
faces plot. 64-67 
glyphs. 62-63 
metroglyphs. 63-64 
and reduction of dimensionality 

techniques. 67 
snowflake plots. 64 
star plots. 64 
weathervane plots. 64.65 

ISODATA method (of clustering). 121-124 

Joint normality tests. 194-201 
bivariate power transformation test. 204. 

206. 208-210. 215. 216. 218-220 

described. 197 
Mardia's tests. 207. 210. 213 

described. 200-201 
nearest distance test. 204.210.211.213.216 

described. 194-197 
power transformation test. 203. 204. 

206-211.213-216.218-220 
described. 192-193. 197 

radius-and-angles plots. 204. 206-208. 
210-213.216-217.218.219.220 

described. 197-200 
see also Normality 

k-mcans method (of clustering). 121 

Least squares, and multivariate general 
linear (or multivariate multiple 
regression) model. 79.141 

nonrobustness of. 141 
residuals. 297-304 

Linear reduction techniques. 7-26 
factor analysis. 15-26 
principal components analysis. 7-15 

Local monotonicity method (of 

multidimensional scaling). 37-40 

Mahalanobis angle. 200 
Mahalanobis* D-. 83. 160. 200. 225. 226. 256. 

339 

see also Generalized squared distance 
MANOVA. 256-257. 300. 338 
MAPCLUS. method of clustering. 109 
Mardia's tests. 207.210.213 

described.200-201 
Marginal distribution, comparisons of. 

178-187 
average quantile-quantile plots. 179 
component probability plots (CPP). 

179-181.239 
standardized component probability plot 

(SCPP). 180-181. 183-186.239 
transformation approach. 181-182. 

184-187 
Marginal normality tests: 

Box-Cox transformation test. 192-193 
described. 189-194 

D'Agostino-Pearson test. 189-190. 203. 
210.214 

described. 189-190 
D'Agostino test. 190-191. 214 

described. 190-191 
normalized gaps test. 191-192. 204.210 

described. 191-192 
normal probability plot, defined. 193 
Shapiro-Wilk test. 190. 193-194. 201.203. 
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210 
described. 190 

sevalso Normality 
Maximizing index of continuity (method of 

Shepard & Carroll). 40-43 
contrast with multidimensional scaling. 41 

Maximum likelihood approach: 
estimating power transformations of data. 

166-177 
in factor analysis. 23-25 

compared with principal factor method. 
25 

convergence problem in. 23-24 
Maximum method (of clustering). 115. 

116-118. 120 
defined. 115 

MAXVAR procedure. 70-73. 76 
defined. 70 

m-estimatcs. 146. 147. 155-157 
Metric, choice of. 89-94. 102-105 

for classification. 89-94 
for clustering. 102-105 

Metroglyphs. 63-64 
Minimum method, of clustering. 114-115. 

116-118 
defined. 114-115 

Minimum volume ellipsoid estimate. 157 
MINVAR method. 70. 72-76 

defined.70 
Models, statistical, assessment of. 139-226 

assessing similarity of marginal 
dislributions. 178-187 

dispersion parameters. 144 
distributional properties. 177-226 
methods for assessing normality. 187-220 
multivariate general linear model. 79-80. 

140-143. 169-170.337-338 
multivariate residuals and outliers. 

292-304 
robust estimation of location and 

dispersion. 144-164 
transformations of data. 164-177 

Monotone least squares, in 
multidimensional scaling. 30 

Monotone regression, in multidimensional 
scaling. 30 

MOSS. 180-1X1. 183-1X5 
Multicollinearity. 22. 243 
Multidimensional scaling techniques. 26-46 

and clustering data. 109 
and continuity-index maximization 

(Shepard-Carroll) method. 40-43 
and factor analysis. 32-34 
general goal. 26 
individual differences method. 46 

and linear principal components analysis. 
32.35-39 

local monotonicity method. 37-40 
"stress" goodncss-of-fit measure. 30-32. 

42-43.45-46 
Multiple correlation coefficient, and 

external dependencies. 68 
Multivariate (or multiresponse) problems 

and approaches. 1-4 
five objectives. 3 
notation. 3 
special difficulties. 1-2 

Multivariate dependencies. 5.62-80 
external. 68-80 
internal. 62-67 
internal vmus external. 62 

Multivariate general linear model, 
description of. 79-80. 140-143 

residuals in. 297-304 
Multivariate normality tests. see Joint 

normality tests 
Multivariate quality control. 82 
Multivariate /-distribution. 224-226 

Nearest distance test. 204. 210. 211. 213. 216 
described. 194-197 

Nearest-neighbors distances plot. 107-108 
Neural networks. 81 
Nonhierarchical clustering. 102. 103. 

121-124 

defined. 109 
Friedman-Rubin method. 124 
ISODATA method. 121-124 
k-means method. 121 

Nonlinear reduction techniques. 26-60 
additive principal components. 60 
by maximizing index of continuity 

(method of Shepard & Carroll). 40-43 
nonlinear factor analysis. 26 
nonlinear reduction by nonmetric 

methods. 26-46 
nonlinear singularities and generalized 

principal components analysis. 46-60 
Nonlinear singularities, and generalized 

principal components analysis. 46-60 
nonlinear singularities. 46-51 

Nonmetric methods of nonlinear reduction. 
26-46 

by maximizing index of continuity 
(method of Shepard & Carroll). 40-43 

by multidimensional scaling. 26-46 
Normality, assessing. 187-220 

directional normality. 201-202 
joint normality. 194-201 
marginal normality. 189-194 
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Normalized gaps: 
definition of. 191 
plots of. 194 
test. 191-192 

examples. 204.210 
Notation. 3 
Numerical optimization. 24. 30.41. 169. 182 

Outliers, detection of. 292-317 
by external analysis techniques. 315-317 
by internal analysis techniques. 308-315 
by means of influence function. 305-313 
residuals and. 293-304 

P-P probability plots, definition of. 228-229 
Pattern recognition. 81 
Principal components analysis. 7-15 

difficulties in assessing eigenvalues in. II. 
235-239 

geometric interpretation. 8 
lack of invariance of. 11-12 
and multidimensional scaling. 32. 35-39 
and principal factors solution. 22-23 
residuals and outlier detection. 294-297. 

308 

and singular value decomposition 
technique. 10 

and spectral decomposition. 9-10 
see also Generalized principal components 

analysis 
Principal factor method. 19-23 

and principal components solution. 22-23 
and ridge regression. 22 

Probability plotting methods, for analyzing 
unstructured multiresponse data. 48-49. 
228-230. 236 

in ANOVA and MANOVA. 256-292 
component probability plotting (CPP & 

SCPP). 179-181. 183-186.239 
defined. 179. 180 

distance functions. 47-49. 238. 264-266. 
289.299 

ecdf. 228 
influence function. 308-309. 310-313 
for outlier detection. 295-297. 299-304. 

308-309.3IO-3I3.3I7 
P-P plots, definition and description of. 

228-229 
0 - 0 plots, definition and description. 

228-229 
for comparing eigenvectors. 287-292 
of eigenvalues. 236-237 

Profile plots, in cluster analysis. 125-126 
Project/on matrix. 143 
Projection plots. 130.235 
Projection pursuit. 106 

Q-Q (quantile-quantile) plots: 
definition and description of. 228-229 
of eigenvalues. 236-237 
software for. 339-340 

Quadratic principal components analysis. 
51-56.57-59 

Quantile contour plots. 242-244. 250-256 

Radius-and-anglcs representation. 197-200. 
204. 206-207. 210. 211-213. 216-217. 218. 
220 

described. 197-199 
Reduced correlation matrix, definition of. 18 
Reduction of dimensionality. 5-61 

comcnsurability. problem of. 7 
excessive elimination. 5-6 
linear reduction techniques. 7-26 
meaningfulness of reductions. 6-7 
nonlinear reduction by nonmetric 

methods. 26-46 
nonlinear singularities and generalized 

principal components analysis. 46-60 
typical application situations. 6 

Residuals, multidimensional, least squares 
residuals. 297-304 

principal components residuals. 294-297 
robustified. 302-304 
scatter plots augmented by locally 

smoothed quantiles. 299 
supernormality of. 299 

Ridge regression and the principal factor 
method. 22 

Robust estimation, of location and 
dispersion. 144-164 

structured data and multivariancc multiple 
regression. 162-164 

unstructured data. 144-162 
Robustified Mahalanobis distance. 160 
Robustified principal components. 157-162 
Robustified residuals, definition of. 302 
Robustness of residuals. 296. 302-304 
"Rotation" of preliminary solution. 18. 32 

Sample influence function, definition of. 306 
SCPP (standardized component probability 

plot). 180-181. 183-186.239 
Scree plot, defined. 236 

augmented. 236-239 
Sensitivity curve (influence function). 

definition of. 306 
Shaking the tree. 134 
Shapiro-Wilk test. 190. 193-194.201. 203. 210 

described. 190 
Similarity, measures of. 26. 101. 105-106 

of two trees. 134-138 
Single-degree-of-freedom contrast vectors. 
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graphical internal comparisons. 258-279 
Single linkage method, of clustering. 114 
Singular value decomposition technique: 

in canonical correlation analysis. 73 
in generalized principal components 

analysis. 60 
in multigroup classification. 84 
in multivariate general linear model 

analysis. 143 
in principal components analysis. 10 

Singularities, nonlinear. 46-60 
Snowflake plot. 64 
Social sciences and factor analysis. 26 
Software. 332-340 

S/S-plus functions. 334-340 
SAS procs. 334-339 
statlib. 340 

Spectral decomposition. 9-10 
SSQCOR method. 70-73. 76 

defined.70 
Star plot. 64 
Statistical models, AW Models 
Steepest-descent numerical optimization 

technique, in maximizing continuity 
index (Shepard & Carroll method). 41 

in multidimensional scaling. 30 
"Stress" goodness-of-fit. definition of. 29-30 
Structured covariance matrices. 144 
SUMCOR method. 70-71. 73. 76 

defined.70 
Summarization and exposure of data. 

227-318 
inadequacy of summarization without 

exposure. 227-228 
residuals and detection of outliers. 292-304 
techniques for comparing data sets. 

256-292 
techniques for unstructured data. 228-256 

Supervised learning. 81 
see also Classification 

Training samples, in classification. 82 
Transformation of data. 164-177 

Unique factors, definition of. 15 
Uniqueness, in factor analysis, definition of. 

17 
Unstructured data, summarization and 

exposure of. 228-256 
box plots. 132-133. 228.288. 290 
component probability plots 

(CPP & SCPP). 239 
distance functions. 47-49. 238 
eedf. 228 
function plots. 239-242. 244-250 
histograms. 228. 232-233 
influence function. 233-234. 305-313 
P-P plots. 228-229 
Q-Q plots. 228-230. 232. 236. 237. 288. 

308 
quantile contour plots. 242-244. 250-256 
stem-and-leaf displays. 160. 228 
symmetry checks. 230-233 

Unsupervised learning. 81 
see also Clustering 

Variables: 
importance of scaling in cluster analysis. 

102 
plots of distances to reveal relative 

importance in clustering. 128. 129 
selection of subsets. 129 

Weathervanc plot. 64. 65 
W*-algorithm. in cluster analysis. 103-105. 
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