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Preface

Preface of the First Author

This book was written on the basis of a graduate course on mathematical statistics
given at the mathematical faculty of the Humboldt-University Berlin.

The classical theory of parametric estimation, since the seminal works by Fisher,
Wald, and Le Cam, among many others, has now reached maturity and an elegant
form. It can be considered as more or less complete, at least for the so-called regular
case. The question of the optimality and efficiency of the classical methods has been
rigorously studied and typical results state the asymptotic normality and efficiency
of the maximum likelihood and/or Bayes estimates; see an excellent monograph by
Ibragimov and Khas’minskij (1981) for a comprehensive study.

In the time around 1984 when I started my own Ph.D. at the Lomonosoff
University, a popular joke in our statistical community in Moscow was that all
the problems in the parametric statistical theory have been solved and described
in a complete way in Ibragimov and Khas’minskij (1981), there is nothing to do
any more for mathematical statisticians. If at all, only few nonparametric problems
remain open. After finishing my Ph.D. I also moved to nonparametric statistics for
a while with the focus on local adaptive estimation. In the year 2005 I started to
write a monograph on nonparametric estimation using local parametric methods
which was supposed to systemize my previous experience in this area. The very first
draft of this book was available already in the autumn 2005, and it only included
few sections about basics of parametric estimation. However, attempts to prepare
a more systematic and more general presentation of the nonparametric theory led
me back to the very basic parametric concepts. In 2007 I extended significantly the
part about parametric methods. In the spring 2009 I taught a graduate course on
parametric statistics at the mathematical faculty of the Humboldt-University Berlin.
My intention was to present a “modern” version of the classical theory which in
particular addresses the following questions:

what do you need to know from parametric statistics to work on modern parametric and
nonparametric methods?

vii



viii Preface

how to identify the borderline between the classical parametric and the modern nonpara-
metric statistics?

The basic assumptions of the classical parametric theory are that the parametric
specification is exact and the sample size is large relative to the dimension of the
parameter space. Unfortunately, this viewpoint limits applicability of the classical
theory: it is usually unrealistic to assume that the parametric specification is fulfilled
exactly. So, the modern version of the parametric theory has to include a possible
model misspecification. The issue of large samples is even more critical. Many
modern applications face a situation when the number of parameters p is not
only comparable with the sample size n, it can be even much larger than n. It
is probably the main challenge of the modern parametric theory to include in a
rigorous way the case of “large p small n.” One can say that the parametric theory
that is able to systematically treat the issues of model misspecification and of small
fixed samples already includes the nonparametric statistics. The present study aims
at reconsidering the basics of the parametric theory in this sense. The “modern
parametric” view can be stressed as follows:

- any model is parametric;
- any parametric model is wrong;
- even a wrong model can be useful.

The model mentioned in the first item can be understood as a set of assumptions
describing the unknown distribution of the underlying data. This description is
usually given in terms of some parameters. The parameter space can be large or
infinite dimensional, however, the model is uniquely specified by the parameter
value. In this sense “any model is parametric.”

The second statement “any parametric model is wrong” means that any imag-
inary model is only an idealization (approximation) of reality. It is unrealistic to
assume that the data exactly follow the parametric model, even if this model is
flexible and involves a lot of parameters. Model misspecification naturally leads
to the notion of the modeling bias measuring the distance between the underly-
ing model and the selected parametric family. It also separates parametric and
nonparametric viewpoint. The parametric approach focuses on “estimation within
the model” ignoring the modeling bias. The nonparametric approach attempts to
account for the modeling bias and to optimize the joint impact of two kinds of errors:
estimation error within the model and the modeling bias. This volume is limited to
parametric estimation and testing for some special models like exponential families
or linear models. However, it prepares some important tools for doing the general
parametric theory presented in the second volume.

The last statement “even a wrong model can be useful” introduces the notion of a
“useful” parametric specification. In some sense it indicates a change of a paradigm
in the parametric statistics. Trying to find the true model is hopeless anyway. Instead,
one aims at taking a potentially wrong parametric model which, however, possesses
some useful properties. Among others, one can figure out the following “useful”
features:
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- a nice geometric structure of the likelihood leading to a numerically efficient estimation
procedure;

- parameter identifiability.

Lack of identifiability in the considered model is just an indication that
the considered parametric model is poorly selected. A proper parametrization
should involve a reasonable regularization ensuring both features: numerical
efficiency/stability and a proper parameter identification. The present volume
presents some examples of “useful models” like linear or exponential families. The
second volume will extend such models to a quite general regular case involving
some smoothness and moment conditions on the log-likelihood process of the
considered parametric family.

This book does not pretend to systematically cover the scope of the classical
parametric theory. Some very important and even fundamental issues are not
considered at all in this book. One characteristic example is given by the notion of
sufficiency, which can be hardly combined with model misspecification. At the same
time, much more attention is paid to the questions of nonasymptotic inference under
model misspecification including concentration and confidence sets in dependence
of the sample size and dimensionality of the parameter space. In the first volume
we especially focus on linear models. This can be explained by their role for the
general theory in which a linear model naturally arises from local approximation of
a general regular model.

This volume can be used as textbook for a graduate course in mathematical
statistics. It assumes that the reader is familiar with the basic notions of the
probability theory including the Lebesgue measure, Radon–Nycodim derivative,
etc. Knowledge of basic statistics is not required. I tried to be as self-contained as
possible; the most of the presented results are proved in a rigorous way. Sometimes
the details are left to the reader as exercises, in those cases some hints are given.

Preface of the Second Author

It was in early 2012 when Prof. Spokoiny approached me with the idea of a joint
lecture on Mathematical Statistics at Humboldt-University Berlin, where I was a
junior professor at that time. Up to then, my own education in statistical inference
had been based on the German textbooks by Witting (1985) and Witting and Müller-
Funk (1995), and for teaching in English I had always used the books by Lehmann
and Casella (1998), Lehmann and Romano (2005), and Lehmann (1999). However,
I was aware of Prof. Spokoiny’s own textbook project and so the question was which
text to use as the basis for the lecture. Finally, the first part of the lecture (estimation
theory) was given by Prof. Spokoiny based on the by then already substantiated
Chaps. 1–5 of the present work, while I gave the second part on test theory based
on my own teaching material which was mainly based on Lehmann and Romano
(2005).
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This joint teaching activity turned out to be the starting point of a collaboration
between Prof. Spokoiny and myself, and I was invited to join him as a coauthor
of the present work for the Chaps. 6–8 on test theory, matching my own research
interests. By the summer term of 2013, the book manuscript had substantially been
extended, and I used it as the sole basis for the Mathematical Statistics lecture.
During the course of this 2013 lecture, I received many constructive comments
and suggestions from students and teaching assistants, which led to a further
improvement of the text.

Berlin, Germany Vladimir Spokoiny
Berlin, Germany Thorsten Dickhaus
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Chapter 1
Basic Notions

The starting point of any statistical analysis is data, also called observations or
a sample. A statistical model is used to explain the nature of the data. A standard
approach assumes that the data is random and utilizes some probabilistic framework.
On the contrary to probability theory, the distribution of the data is not known
precisely and the goal of the analysis is to infer on this unknown distribution.

The parametric approach assumes that the distribution of the data is known up
to the value of a parameter � from some subset ‚ of a finite-dimensional space
Rp. In this case the statistical analysis is naturally reduced to the estimation of
the parameter �: as soon as � is known, we know the whole distribution of the
data. Before introducing the general notion of a statistical model, we discuss some
popular examples.

1.1 Example of a Bernoulli Experiment

Let Y D .Y1; : : : ; Yn/
> be a sequence of binary digits zero or one. We distinguish

between deterministic and random sequences. Deterministic sequences appear, e.g.,
from the binary representation of a real number, or from digitally coded images,
etc. Random binary sequences appear, e.g., from coin throw, games, etc. In many
situations incomplete information can be treated as random data: the classification
of healthy and sick patients, individual vote results, the bankruptcy of a firm or credit
default, etc.

Basic assumptions behind a Bernoulli experiment are:

• the observed data Yi are independent and identically distributed.
• each Yi assumes the value one with probability � 2 Œ0; 1�.
The parameter � completely identifies the distribution of the data Y . Indeed, for
every i � n and y 2 f0; 1g,

V. Spokoiny and T. Dickhaus, Basics of Modern Mathematical Statistics,
Springer Texts in Statistics, DOI 10.1007/978-3-642-39909-1__1,
© Springer-Verlag Berlin Heidelberg 2015
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P.Yi D y/ D �y.1 � �/1�y ;

and the independence of the Yi ’s implies for every sequence y D .y1; : : : ; yn/ that

P
�
Y D y

� D
nY

iD1
�yi .1 � �/1�yi : (1.1)

To indicate this fact, we write P� in place of P.
Equation (1.1) can be rewritten as

P�
�
Y D y

� D �sn .1 � �/n�sn ;

where

sn D
nX

iD1
yi :

The value sn is often interpreted as the number of successes in the sequence y.
Probabilistic theory focuses on the probabilistic properties of the data Y under

the given measure P� . The aim of the statistical analysis is to infer on the measure
P� for an unknown � based on the available data Y . Typical examples of statistical
problems are:

1. Estimate the parameter � , i.e. build a function Q� of the data Y into Œ0; 1� which
approximates the unknown value � as well as possible;

2. Build a confidence set for � , i.e. a random (data-based) set (usually an interval)
containing � with a prescribed probability;

3. Testing a simple hypothesis that � coincides with a prescribed value �0, e.g. �0 D
1=2;

4. Testing a composite hypothesis that � belongs to a prescribed subset ‚0 of the
interval Œ0; 1�.

Usually any statistical method is based on a preliminary probabilistic analysis of
the model under the given � .

Theorem 1.1.1. Let Y be i.i.d. Bernoulli with the parameter � . Then the mean and
the variance of the sum Sn D Y1 C : : :C Yn satisfy

E�Sn D n�;

Var� Sn
defD E�

�
Sn � E�Sn

�2 D n�.1 � �/:

Exercise 1.1.1. Prove this theorem.

This result suggests that the empirical mean Q� D Sn=n is a reasonable estimate of
� . Indeed, the result of the theorem implies
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E� Q� D �; E�
� Q� � �

�2 D �.1� �/=n:

The first equation means that Q� is an unbiased estimate of � , that is, E� Q� D � for
all � . The second equation yields a kind of concentration (consistency) property of
Q� : with n growing, the estimate Q� concentrates in a small neighborhood of the point
� . By the Chebyshev inequality

P�
�ˇˇ Q� � �

ˇ
ˇ > ı

� � �.1� �/=.nı2/:

This result is refined by the famous de Moivre–Laplace theorem.

Theorem 1.1.2. Let Y be i.i.d. Bernoulli with the parameter � . Then for every
k � n

P�
�
Sn D k

� D
 
n

k

!

�k.1 � �/n�k

� 1
p
2�n�.1 � �/ exp

�
�
�
k � n��2
2n�.1 � �/

�
;

where an � bn means an=bn ! 1 as n ! 1. Moreover, for any fixed z > 0,

P�

�ˇ̌
ˇ
Sn

n
� �

ˇ̌
ˇ > z

p
�.1 � �/=n

�
� 2p

2�

Z 1

z
e�t 2=2dt :

This concentration result yields that the estimate Q� deviates from a root-n neighbor-

hood A.z; �/
defD fu W j� � uj � z

p
�.1 � �/=ng with probability of order e�z2=2.

This result bounding the difference j Q� � � j can also be used to build random
confidence intervals around the point Q� . Indeed, by the result of the theorem, the
random intervalE�.z/ D fu W j Q� �uj � z

p
�.1� �/=ng fails to cover the true point

� with approximately the same probability:

P�
�
E�.z/ 63 �� � 2p

2�

Z 1

z
e�t 2=2dt : (1.2)

Unfortunately, the construction of this interval E�.z/ is not entirely data-based.
Its width involves the true unknown value � . A data-based confidence set can be
obtained by replacing the population variance �2

defD E�
�
Y1 � �

�2 D �.1 � �/ with
its empirical counterpart

Q�2 defD 1

n

nX

iD1

�
Yi � Q��2
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The resulting confidence set E.z/ reads as

E.z/
defD fu W j Q� � uj � z

p
n�1 Q�2g:

It possesses the same asymptotic properties as E�.z/ including (1.2).
The hypothesis that the value � is equal to a prescribed value �0, e.g. �0 D 1=2,

can be checked by examining the difference j Q� � 1=2j. If this value is too large
compared to �n�1=2 or with Q�n�1=2, then the hypothesis is wrong with high
probability. Similarly one can consider a composite hypothesis that � belongs to
some interval Œ�1; �2� � Œ0; 1�. If Q� deviates from this interval at least by the value
z Q�n�1=2 with a large z, then the data significantly contradict this hypothesis.

1.2 Least Squares Estimation in a Linear Model

A linear model assumes a linear systematic dependence between the output (also
called response or explained variable) Y from the input (also called regressor
or explanatory variable) ‰ which in general can be multidimensional. The linear
model is usually written in the form

E
�
Y
� D ‰>��

with an unknown vector of coefficients �� D .��
1 ; : : : ; �

�
p /

>. Equivalently one
writes

Y D ‰>�� C " (1.3)

where " stands for the individual error with zero mean:E" D 0. Such a linear model
is often used to describe the influence of the response on the regressor ‰ from the
collection of data in the form of a sample .Yi ; ‰i/ for i D 1; : : : ; n.

Let � be a vector of coefficients considered as a candidate for ��. Then
each observation Yi is approximated by ‰>

i � . One often measures the quality
of approximation by the sum of quadratic errors jYi � ‰>

i � j2. Under the model
assumption (1.3), the expected value of this sum is

E
X

jYi �‰>
i � j2 D E

Xˇ
ˇ‰>

i .�
� � �/C "i

ˇ
ˇ2 D

Xˇ
ˇ‰>

i .�
� � �/ˇˇ2 C

X
E"2i :

The cross term cancels in view of E"i D 0. Note that minimizing this expression
w.r.t. � is equivalent to minimizing the first sum because the second sum does not
depend on � . Therefore,

argmin
�

E
X

jYi �‰>
i � j2 D argmin

�

Xˇ
ˇ‰>

i .�
� � �/ˇˇ2 D ��:
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In other words, the true parameter vector �� minimizes the expected quadratic error
of fitting the data with a linear combinations of the ‰i ’s. The least squares estimate
of the parameter vector �� is defined by minimizing in � its empirical counterpart,
that is, the sum of the squared errors

ˇ
ˇYi �‰>

i �
ˇ
ˇ2 over all i :

Q� defD argmin
�

nX

iD1

ˇ
ˇYi �‰>

i �
ˇ
ˇ2:

This equation can be solved explicitly under some condition on the ‰i ’s. Define the
p � n design matrix ‰ D .‰1; : : : ; ‰n/. The aforementioned condition means that
this matrix is of rank p.

Theorem 1.2.1. Let Yi D ‰>
i �

� C "i for i D 1; : : : ; n, where "i are independent
and satisfy E"i D 0, E"2i D �2. Suppose that the matrix ‰ is of rank p. Then

Q� D �
‰‰>��1‰Y ;

where Y D .Y1; : : : ; Yn/
>. Moreover, Q� is unbiased in the sense that

E��
Q� D ��

and its variance satisfies Var
� Q�� D �2

�
‰‰>��1.

For each vector h 2 Rp , the random value Qa D ˝
h; Q�˛ D h> Q� is an unbiased

estimate of a� D h>��:

E��. Qa/ D a� (1.4)

with the variance

Var
� Qa� D �2h>�‰‰>��1h:

Proof. Define

Q.�/
defD

nX

iD1

ˇ
ˇYi �‰>

i �
ˇ
ˇ2 D kY �‰>�k2;

where kyk2 defD P
i y

2
i . The normal equation dQ.�/=d� D 0 can be written as

‰‰>� D ‰Y yielding the representation of Q� . Now the model equation yields
E�Y D ‰>�� and thus

E��
Q� D �

‰‰>��1‰E��Y D �
‰‰>��1‰‰>�� D ��

as required.
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Exercise 1.2.1. Check that Var
� Q�� D �2

�
‰‰>��1.

Similarly one obtainsE��. Qa/ D E��

�
h> Q�� D h>�� D a�, that is, Qa is an unbiased

estimate of a�. Also

Var
� Qa� D Var

�
h> Q�� D h> Var

� Q��h D �2h>�‰‰>��1h:

which completes the proof.

The next result states that the proposed estimate Qa is in some sense the best
possible one. Namely, we consider the class of all linear unbiased estimates Qa
satisfying the identity (1.4). It appears that the variance �2h>�‰‰>��1h of Qa is
the smallest possible in this class.

Theorem 1.2.2 (Gauss–Markov). Let Yi D ‰>
i �

� C "i for i D 1; : : : ; n with
uncorrelated "i satisfying E"i D 0 and E"2i D �2. Let rank.‰/ D p. Suppose that

the value a� defD ˝
h;��˛ D h>�� is to be estimated for a given vector h 2 Rp . Then

Qa D ˝
h; Q�˛ D h> Q� is an unbiased estimate of a�. Moreover, Qa has the minimal

possible variance over the class of all linear unbiased estimates of a�.

This result was historically one of the first optimality results in statistics. It
presents a lower efficiency bound of any statistical procedure. Under the imposed
restrictions it is impossible to do better than the LSE does. This and more general
results will be proved later in Chap. 4.

Define also the vector of residuals

O" defD Y �‰> Q� :

If Q� is a good estimate of the vector ��, then due to the model equation, O" is a good
estimate of the vector " of individual errors. Many statistical procedures utilize this
observation by checking the quality of estimation via the analysis of the estimated
vector O". In the case when this vector still shows a nonzero systematic component,
there is evidence that the assumed linear model is incorrect. This vector can also be
used to estimate the noise variance �2.

Theorem 1.2.3. Consider the linear model Yi D ‰>
i �

� C "i with independent
homogeneous errors "i . Then the variance �2 D E"2i can be estimated by

O�2 D kO"k2
n � p D kY �‰> Q�k2

n � p

and O�2 is an unbiased estimate of �2, that is, E�� O�2 D �2 for all �� and � .

Theorems 1.2.2 and 1.2.3 can be used to describe the concentration properties of
the estimate Qa and to build confidence sets based on Qa and O� , especially if the errors
"i are normally distributed.
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Theorem 1.2.4. Let Yi D ‰>
i �

� C "i for i D 1; : : : ; n with "i � N.0; �2/. Let
rank.‰/ D p. Then it holds for the estimate Qa D h> Q� of a� D h>��

Qa � a� � N
�
0; s2

�

with s2 D �2h>�‰‰>��1h.

Corollary 1.2.1 (Concentration). If for some ˛ > 0, z˛ is the 1 � ˛=2-quantile of
the standard normal law (i.e., ˆ.z˛/ D 1 � ˛=2), then

P��

�j Qa � a�j > z˛ s
� D ˛

Exercise 1.2.2. Check Corollary 1.2.1.

The next result describes the confidence set for a�. The unknown variance s2 is
replaced by its estimate

Os2 defD O�2h>�‰‰>��1h

Corollary 1.2.2 (Confidence Set). If E.z˛/
defD fa W j Qa � aj � Os z˛g, then

P��

�
E.z˛/ 63 a�� � ˛:

1.3 General Parametric Model

Let Y denote the observed data with values in the observation space Y. In most
cases, Y 2 Rn, that is, Y D .Y1; : : : ; Yn/

>. Here n denotes the sample size (number
of observations). The basic assumption about these data is that the vector Y is a
random variable on a probability space .Y;B.Y/;P/, where B.Y/ is the Borel �-
algebra on Y. The probabilistic approach assumes that the probability measure P

is known and studies the distributional (population) properties of the vector Y . On
the contrary, the statistical approach assumes that the data Y are given and tries to
recover the distribution P on the basis of the available data Y . One can say that the
statistical problem is inverse to the probabilistic one.

The statistical analysis is usually based on the notion of statistical experiment.
This notion assumes that a family P of probability measures on .Y;B.Y// is fixed
and the unknown underlying measure P belongs to this family. Often this family is
parameterized by the value � from some parameter set ‚: P D .P� ;� 2 ‚/. The
corresponding statistical experiment can be written as

�
Y;B.Y/; .P� ;� 2 ‚/�:

The value �� denotes the “true” parameter value, that is, P D P�� .
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The statistical experiment is dominated if there exists a dominating �-finite
measure �0 such that all the P� are absolutely continuous w.r.t. �0. In what
follows we assume without further mention that the considered statistical models
are dominated. Usually the choice of a dominating measure is unimportant and any
one can be used.

The parametric approach assumes that ‚ is a subset of a finite-dimensional
Euclidean space Rp. In this case, the unknown data distribution is specified by
the value of a finite-dimensional parameter � from ‚ � Rp. Since in this case
the parameter � completely identifies the distribution of the observations Y , the
statistical estimation problem is reduced to recovering (estimating) this parameter
from the data. The nice feature of the parametric theory is that the estimation
problem can be solved in a rather general way.

1.4 Statistical decision problem. Loss and Risk

The statistical decision problem is usually formulated in terms of game theory, the
statistician playing as it were against nature. Let D denote the decision space that
is assumed to be a topological space. Next, let }.	; 	/ be a loss function given on
the product D�‚. The value }.d;�/ denotes the loss associated with the decision
d 2 D when the true parameter value is � 2 ‚. The statistical decision problem
is composed of a statistical experiment .Y;B.Y/;P/, a decision space D and a loss
function }.	; 	/.

A statistical decision � D �.Y / is a measurable function of the observed data Y
with values in the decision space D. Clearly, �.Y / can be considered as a randomD-
valued element on the space .Y;B.Y//. The corresponding loss under the true model
.Y;B.Y/;P��/ reads as }.�.Y /;��/. Finally, the risk is defined as the expected
value of the loss:

R.�;��/ defD E��}.�.Y /;��/:

Below we present a list of typical statistical decision problems.

Example 1.4.1 (Point Estimation Problem). Let the target of analysis be the true
parameter �� itself, that is, D coincides with ‚. Let }.	; 	/ be a kind of distance
on ‚, that is, }.�;��/ denotes the loss of estimation, when the selected value is �
while the true parameter is ��. Typical examples of the loss function are quadratic
loss }.�;��/ D k� ���k2, l1-loss }.�;��/ D k� ���k1 or sup-loss }.�;��/ D
k� � ��k1 D maxjD1;:::;p j�j � ��

j j.
If Q� is an estimate of ��, that is, Q� is a ‚-valued function of the data Y , then the

corresponding risk is

R.�;��/ defD E��}. Q�;��/:

Particularly, the quadratic risk reads as E��k Q� � ��k2.
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Example 1.4.2 (Testing Problem). Let ‚0 and ‚1 be two complementary subsets
of ‚, that is, ‚0 \‚1 D ;, ‚0 [‚1 D ‚. Our target is to check whether the true
parameter �� belongs to the subset ‚0. The decision space consists of two points
f0; 1g for which d D 0 means the acceptance of the hypothesisH0 W �� 2 ‚0 while
d D 1 rejects H0 in favor of the alternative H1 W �� 2 ‚1. Define the loss

}.d;�/ D 1.d D 1;� 2 ‚0/C 1.d D 0;� 2 ‚1/:

A test � is a binary valued function of the data, � D �.Y / 2 f0; 1g. The
corresponding risk R.�;��/ D E���.Y / can be interpreted as the probability of
selecting the wrong subset.

Example 1.4.3 (Confidence Estimation). Let the target of analysis again be the
parameter ��. However, we aim to identify a subset A of ‚, as small as possible,
that covers with a prescribed probability the true value ��. Our decision space D

is now the set of all measurable subsets in ‚. For any A 2 D, the loss function is
defined as }.A;��/ D 1.A 63 ��/. A confidence set is a random set E selected from
the data Y , E D E.Y /. The corresponding risk R.E;��/ D E��}.E;��/ is just the
probability that E does not cover ��.

Example 1.4.4 (Estimation of a Functional). Let the target of estimation be a given
function f .��/ of the parameter �� with values in another space F . A typical
example is given by a single component of the vector ��. An estimate � of f .��/
is a function of the data Y into F : � D �.Y / 2 F . The loss function } is
defined on the product F � F , yielding the loss }.�.Y /; f .��// and the risk
R.�.Y /; f .��// D E��}.�.Y /; f .��//.

Exercise 1.4.1. Define the statistical decision problem for testing a simple hypoth-
esis �� D �0 for a given point �0.

1.5 Efficiency

After the statistical decision problem is stated, one can ask for its optimal solution.
Equivalently one can say that the aim of statistical analysis is to build a decision
with the minimal possible risk. However, a comparison of any two decisions on the
basis of risk can be a nontrivial problem. Indeed, the risk R.�;��/ of a decision �
depends on the true parameter value ��. It may happen that one decision performs
better for some points �� 2 ‚ but worse at other points ��. An extreme example of
such an estimate is the trivial deterministic decision Q� D �0 which sets the estimate
equal to the value �0 whatever the data is. This is, of course, a very strange and
poor estimate, but it clearly outperforms all other methods if the true parameter ��
is indeed �0.

Two approaches are typically used to compare different statistical decisions:
the minimax approach considers the maximum R.�/ of the risks R.�;�/ over the
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parameter set ‚ while the Bayes approach is based on the weighted sum (integral)
R�.�/ of such risks with respect to some measure � on the parameter set ‚ which
is called the prior distribution:

R.�/ D sup
�2‚

R.�;�/;

R�.�/ D
Z

R.�;�/�.d�/:

The decision �� is called minimax if

R.��/ D inf
�
R.�/ D inf

�
sup
�2‚

R.�;�/;

where the infimum is taken over the set of all possible decisions �. The value R� D
R.��/ is called the minimax risk.

Similarly, the decision �� is called Bayes for the prior � if

R�.��/ D inf
�
R�.�/:

The corresponding value R�.��/ is called the Bayes risk.

Exercise 1.5.1. Show that the minimax risk is greater than or equal to the Bayes
risk whatever the prior measure � is.

Hint: show that for any decision �, it holds R.�/ 
 R�.�/.

Usually the problem of finding a minimax or Bayes estimate is quite hard and a
closed form solution is available only in very few special cases. A standard way out
of this problem is to switch to an asymptotic setup in which the sample size grows
to infinity.



Chapter 2
Parameter Estimation for an i.i.d. Model

This chapter is very important for understanding the whole book. It starts with very
classical stuff: Glivenko–Cantelli results for the empirical measure that motivate
the famous substitution principle. Then the method of moments is studied in
more detail including the risk analysis and asymptotic properties. Some other
classical estimation procedures are briefly discussed including the methods of
minimum distance, M-estimates, and its special cases: least squares, least absolute
deviations, and maximum likelihood estimates (MLEs). The concept of efficiency
is discussed in context of the Cramér–Rao risk bound which is given in univariate
and multivariate case. The last sections of Chap. 2 start a kind of smooth transition
from classical to “modern” parametric statistics and they reveal the approach of the
book. The presentation is focused on the (quasi) likelihood-based concentration and
confidence sets. The basic concentration result is first introduced for the simplest
Gaussian shift model and then extended to the case of a univariate exponential
family in Sect. 2.11.

Below in this chapter we consider the estimation problem for a sample of
independent identically distributed (i.i.d.) observations. Throughout the chapter the
data Y are assumed to be given in the form of a sample .Y1; : : : ; Yn/>. We assume
that the observations Y1; : : : ; Yn are i.i.d.; each Yi is from an unknown distribution
P , also called a marginal measure. The joint data distributionP is the n-fold product
of P : P D P˝n. Thus, the measure P is uniquely identified by P and the statistical
problem can be reduced to recovering P .

The further step in model specification is based on a parametric assumption (PA):
the measure P belongs to a given parametric family.

2.1 Empirical Distribution: Glivenko–Cantelli Theorem

Let Y D .Y1; : : : ; Yn/
> be an i.i.d. sample. For simplicity we assume that the Yi ’s

are univariate with values in R. Let P denote the distribution of each Yi :

V. Spokoiny and T. Dickhaus, Basics of Modern Mathematical Statistics,
Springer Texts in Statistics, DOI 10.1007/978-3-642-39909-1__2,
© Springer-Verlag Berlin Heidelberg 2015

11
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P.B/ D P.Yi 2 B/; B 2 B.R/:

One often says that Y is an i.i.d. sample from P . Let also F be the corresponding
distribution function (cdf):

F.y/ D P.Y1 � y/ D P..�1; y�/:

The assumption that the Yi ’s are i.i.d. implies that the joint distribution P of the data
Y is given by the n-fold product of the marginal measure P :

P D P˝n:

Let also Pn (resp. Fn) be the empirical measure (resp. empirical distribution
function (edf))

Pn.B/ D 1

n

X
1.Yi 2 B/; Fn.y/ D 1

n

X
1.Yi � y/:

Here and everywhere in this chapter the symbol
P

stands for
Pn

iD1. One can
consider Fn as the distribution function of the empirical measure Pn defined as the
atomic measure at the Yi ’s:

Pn.A/
defD 1

n

nX

iD1
1.Yi 2 A/:

So, Pn.A/ is the empirical frequency of the event A, that is, the fraction of
observations Yi belonging to A. By the law of large numbers one can expect that
this empirical frequency is close to the true probability P.A/ if the number of
observations is sufficiently large.

An equivalent definition of the empirical measure and edf can be given in terms
of the empirical mean Eng for a measurable function g:

Eng
defD
Z 1

�1
g.y/Pn.dy/ D

Z 1

�1
g.y/ dFn.y/ D 1

n

nX

iD1
g.Yi /:

The first results claims that indeed, for every Borel set B on the real line, the
empirical mass Pn.B/ (which is random) is close in probability to the population
counterpart P.B/.

Theorem 2.1.1. For any Borel set B , it holds

1. EPn.B/ D P.B/.
2. Var

˚
Pn.B/

� D n�1�2B with �2B D P.B/
˚
1 � P.B/

�
.

3. Pn.B/ ! P.B/ in probability as n ! 1.

4.
p
nfPn.B/� P.B/g w�! N.0; �2B/.
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Proof. Denote �i D 1.Yi 2 B/. This is a Bernoulli r.v. with parameterP.B/ D E�i .
The first statement holds by definition of Pn.B/ D n�1P

i �i . Next, for each i � n,

Var �i
defD E�2i � �

E�i
�2 D P.B/

˚
1 � P.B/

�

in view of �2i D �i . Independence of the �i ’s yields

Var
˚
Pn.B/

� D Var

	
n�1

nX

iD1
�i



D n�2

nX

iD1
Var �i D n�1�2B :

The third statement follows by the law of large numbers for the i.i.d. r.v. �i :

1

n

nX

iD1
�i

P�! E�1 :

Finally, the last statement follows by the Central Limit Theorem for the �i :

1p
n

nX

iD1

�
�i � E�i

� w�! N
�
0; �2B

�
:

The next important result shows that the edf Fn is a good approximation of the
cdf F in the uniform norm.

Theorem 2.1.2 (Glivenko–Cantelli). It holds

sup
y

ˇ
ˇFn.y/ � F.y/ˇˇ ! 0; n ! 1

Proof. Consider first the case when the function F is continuous in y. Fix any
integer N and define with " D 1=N the points t1 < t2 < : : : < tN D C1 such that
F.tj / � F.tj�1/ D " for j D 2; : : : ; N . For every j , by (3) of Theorem 2.1.1, it
holds Fn.tj / ! F.tj /. This implies that for some n.N /, it holds for all n 
 n.N /

with a probability at least 1 � "
ˇ
ˇFn.tj / � F.tj /

ˇ
ˇ � "; j D 1; : : : ; N: (2.1)

Now for every t 2 Œtj�1; tj �, it holds by definition

F.tj�1/ � F.t/ � F.tj /; Fn.tj�1/ � Fn.t/ � Fn.tj /:

This together with (2.1) implies

P
�ˇ̌
Fn.t/ � F.t/ˇ̌ > 2"� � ":
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If the function F.	/ is not continuous, then for every positive ", there exists a finite
set S" of points of discontinuity sm with F.sm/ � F.sm � 0/ 
 ". One can proceed
as in the continuous case by adding the points from S" to the discrete set ftj g.

Exercise 2.1.1. Check the details of the proof of Theorem 2.1.2.

The results of Theorems 2.1.1 and 2.1.2 can be extended to certain functionals of
the distribution P . Let g.y/ be a function on the real line. Consider its expectation

s0
defD Eg.Y1/ D

Z 1

�1
g.y/ dF.y/:

Its empirical counterpart is defined by

Sn
defD
Z 1

�1
g.y/ dFn.y/ D 1

n

nX

iD1
g.Yi /:

It appears that Sn indeed well estimates s0, at least for large n.

Theorem 2.1.3. Let g.y/ be a function on the real line such that

Z 1

�1
g2.y/ dF.y/ < 1

Then

Sn
P�! s0;

p
n.Sn � s0/ w�! N.0; �2g/; n ! 1;

where

�2g
defD
Z 1

�1
g2.y/ dF.y/ � s20 D

Z 1

�1
�
g.y/ � s0

�2
dF.y/:

Moreover, if h.z/ is a twice continuously differentiable function on the real line, and
h0.s0/ ¤ 0, then

h.Sn/
P�! h.s0/;

p
n
˚
h.Sn/ � h.s0/

� w�! N.0; �2h /; n ! 1;

where �2h
defD jh0.s0/j2�2g .

Proof. The first statement is again the CLT for the i.i.d. random variables �i D g.Yi /

having mean value s0 and variance �2g .
It also implies the second statement in view of the Taylor expansion h.Sn/ �

h.s0/ � h0.s0/ .Sn � s0/.
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Exercise 2.1.2. Complete the proof.
Hint: use the first result to show that Sn belongs with high probability to a small

neighborhoodU of the point s0.
Then apply the Taylor expansion of second order to h.Sn/ � h.s0/ D h

�
s0 C

n�1=2�n
� � h.s0/ with �n D p

n.Sn � s0/:

ˇ
ˇn1=2Œh.Sn/� h.s0/�� h0.s0/ �n

ˇ
ˇ � n�1=2H��2n=2;

where H� D maxU jh00.y/j. Show that n�1=2�2n
P�! 0 because �n is stochastically

bounded by the first statement of the theorem.

The results of Theorems 2.1.2 and 2.1.3 can be extended to the case of a vectorial
function g.	/WR1 ! Rm, that is, g.y/ D �

g1.y/; : : : ; gm.y/
�>

for y 2 R1. Then
s0 D .s0;1; : : : ; s0;m/

> and its empirical counterpart S n D .Sn;1; : : : ; Sn;m/
> are

vectors in Rm as well:

s0;j
defD
Z 1

�1
gj .y/ dF.y/; Sn;j

defD
Z 1

�1
gj .y/ dFn.y/; j D 1; : : : ; m:

Theorem 2.1.4. Let g.y/ be anRm-valued function on the real line with a bounded
covariance matrix † D .†jk/j;kD1;:::;m:

†jk
defD
Z 1

�1
�
gj .y/� s0;j

��
gk.y/� s0;k

�
dF.y/ < 1; j; k � m

Then

S n
P�! s0;

p
n
�
S n � s0

� w�! N.0;†/; n ! 1:

Moreover, if H.z/ is a twice continuously differentiable function on Rm and
†H 0.s0/ ¤ 0 where H 0.z/ stands for the gradient of H at z, then

H.S n/
P�! H.s0/;

p
n
˚
H.S n/�H.s0/

� w�! N.0; �2H /; n ! 1;

where �2H
defD H 0.s0/>†H 0.s0/.

Exercise 2.1.3. Prove Theorem 2.1.4.
Hint: consider for every h 2 Rm the scalar products h>g.y/, h>s0, h>Sn.

For the first statement, it suffices to show that

h>S n
P�! h>s0;

p
nh>�S n � s0

� w�! N.0;h>†h/; n ! 1:

For the second statement, consider the expansion

ˇ
ˇn1=2ŒH.S n/�H.s0/� � �>

n H
0.s0/

ˇ
ˇ � n�1=2H� k�nk2=2

P�! 0;
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with �n D n1=2.S n � s0/ and H� D maxy2U kH 00.y/k for a neighborhood U of
s0. Here kAk means the maximal eigenvalue of a symmetric matrix A.

2.2 Substitution Principle: Method of Moments

By the Glivenko–Cantelli theorem the empirical measurePn (resp. edf Fn) is a good
approximation of the true measure P (resp. pdf F ), at least, if n is sufficiently large.
This leads to the important substitution method of statistical estimation: represent
the target of estimation as a function of the distribution P , then replace P by Pn.

Suppose that there exists some functional g of a measure P� from the family
P D .P� ;� 2 ‚/ such that the following identity holds:

� � g.P� /; � 2 ‚:

This particularly implies �� D g.P��/ D g.P /. The substitution estimate is
defined by substituting Pn for P :

Q� D g.Pn/:

Sometimes the obtained value Q� can lie outside the parameter set ‚. Then one can
redefine the estimate Q� as the value providing the best fit of g.Pn/:

Q� D argmin
�

kg.P�/ � g.Pn/k:

Here k 	 k denotes some norm on the parameter set ‚, e.g. the Euclidean norm.

2.2.1 Method of Moments: Univariate Parameter

The method of moments is a special but at the same time the most frequently used
case of the substitution method. For illustration, we start with the univariate case.
Let ‚ � R, that is, � is a univariate parameter. Let g.y/ be a function on R such
that the first moment

m.�/
defD E�g.Y1/ D

Z
g.y/ dP� .y/

is continuous and monotonic. Then the parameter � can be uniquely identified by
the value m.�/, that is, there exists an inverse functionm�1 satisfying

� D m�1
	Z

g.y/ dP� .y/



:
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The substitution method leads to the estimate

Q� D m�1
	Z

g.y/ dPn.y/



D m�1

	
1

n

X
g.Yi/



:

Usually g.x/ D x or g.x/ D x2, which explains the name of the method. This
method was proposed by Pearson and is historically the first regular method of
constructing a statistical estimate.

2.2.2 Method of Moments: Multivariate Parameter

The method of moments can be easily extended to the multivariate case. Let ‚ �
Rp, and let g.y/ D �

g1.y/; : : : ; gp.y/
�>

be a function with values in Rp. Define
the momentsm.�/ D �

m1.�/; : : : ; mp.�/
�

by

mj .�/ D E�gj .Y1/ D
Z
gj .y/ dP�.y/:

The main requirement on the choice of the vector function g is that the function m
is invertible, that is, the system of equations

mj .�/ D tj

has a unique solution for any t 2 Rp . The empirical counterpart Mn of the true
momentsm.��/ is given by

M n
defD
Z
g.y/ dPn.y/ D

	
1

n

X
g1.Yi /; : : : ;

1

n

X
gp.Yi /


>
:

Then the estimate Q� can be defined as

Q� defD m�1.Mn/ D m�1
	
1

n

X
g1.Yi /; : : : ;

1

n

X
gp.Yi /



:

2.2.3 Method of Moments: Examples

This section lists some widely used parametric families and discusses the problem
of constructing the parameter estimates by different methods. In all the examples
we assume that an i.i.d. sample from a distribution P is observed, and this measure
P belongs to a given parametric family .P� ;� 2 ‚/, that is, P D P�� for �� 2 ‚.
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2.2.3.1 Gaussian Shift

Let P� be the normal distribution on the real line with mean � and the known
variance �2. The corresponding density w.r.t. the Lebesgue measure reads as

p.y; �/ D 1p
2��2

exp
n
� .y � �/2

2�2

o
:

It holds E�Y1 D � and Var� .Y1/ D �2 leading to the moment estimate

Q� D
Z
y dPn.y/ D 1

n

X
Yi

with mean E� Q� D � and variance

Var� . Q�/ D �2=n:

2.2.3.2 Univariate Normal Distribution

Let Yi � N.˛; �2/ as in the previous example but both mean ˛ and the variance
�2 are unknown. This leads to the problem of estimating the vector � D .�1; �2/ D
.˛; �2/ from the i.i.d. sample Y .

The method of moments suggests to estimate the parameters from the first two
empirical moments of the Yi ’s using the equations m1.�/ D E�Y1 D ˛, m2.�/ D
E�Y

2
1 D ˛2 C �2. Inverting these equalities leads to

˛ D m1.�/ ; �2 D m2.�/�m2
1.�/:

Substituting the empirical measure Pn yields the expressions for Q� :

Q̨ D 1

n

X
Yi ; Q�2 D 1

n

X
Y 2i �

	
1

n

X
Yi


2
D 1

n

X�
Yi � Q̨ �2: (2.2)

As previously for the case of a known variance, it holds under P D P� :

E Q̨ D ˛; Var�. Q̨ / D �2=n:

However, for the estimate Q�2 of �2, the result is slightly different and it is described
in the next theorem.

Theorem 2.2.1. It holds

E� Q�2 D n � 1

n
�2; Var�. Q�2/ D 2.n� 1/

n2
�4:
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Proof. We use vector notation. Consider the unit vector e D n�1=2.1; : : : ; 1/> 2 Rn

and denote by…1 the projector on e:

…1h D .e>h/e:

Then by definition Q̨ D n�1=2e>…1Y and Q�2 D n�1kY � …1Y k2. Moreover, the
model equation Y D n1=2˛e C " implies in view of…1e D e that

…1Y D .n1=2˛e C…1"/:

Now

n Q�2 D kY �…1Y k2 D k" �…1"k2 D k.In �…1/"k2

where In is the identity operator in Rn and In�…1 is the projector on the hyperplane
in Rn orthogonal to the vector e. Obviously .In � …1/" is a Gaussian vector with
zero mean and the covariance matrix V defined by

V D E
�
.In �…1/""

>.In �…1/
� D .In �…1/E.""

>/.In �…1/

D �2.In �…1/
2 D �2.In �…1/:

It remains to note that for any Gaussian vector � � N.0; V / it holds

Ek�k2 D trV; Var
�k�k2� D 2 tr.V 2/:

Exercise 2.2.1. Check the details of the proof.
Hint: reduce to the case of diagonal V .

Exercise 2.2.2. Compute the covariance E. Q̨ � ˛/. Q�2 � �2/ . Show that Q̨ and Q�2
are independent.

Hint: represent Q̨ � ˛ D n�1=2e>…1" and Q�2 D n�1k.In � …1/"k2. Use that
…1" and .In�…1/" are independent if…1 is a projector and " is a Gaussian vector.

2.2.3.3 Uniform Distribution on Œ0; ��

Let Yi be uniformly distributed on the interval Œ0; �� of the real line where the right
end point � is unknown. The density p.y; �/ of P� w.r.t. the Lebesgue measure is
��11.y � �/. It is easy to compute that for an integer k

E� .Y
k
1 / D ��1

Z �

0

yk dy D �k=.k C 1/;
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or � D ˚
.k C 1/E� .Y

k
1 /
�1=k

. This leads to the family of estimates

Q�k D
	
k C 1

n

X
Y ki


1=.kC1/
:

Letting k to infinity leads to the estimate

Q�1 D maxfY1; : : : ; Yng:

This estimate is quite natural in the context of the univariate distribution. Later it
will appear once again as the MLE. However, it is not a moment estimate.

2.2.3.4 Bernoulli or Binomial Model

Let P� be a Bernoulli law for � 2 Œ0; 1�. Then every Yi is binary with

E�Yi D �:

This leads to the moment estimate

Q� D
Z
y dPn.y/ D 1

n

X
Yi :

Exercise 2.2.3. Compute the moment estimate for g.y/ D yk , k 
 1.

2.2.3.5 Multinomial Model

The multinomial distribution Bm
� describes the number of successes in m experi-

ments when each success has the probability � 2 Œ0; 1�. This distribution can be
viewed as the sum of m binomials with the same parameter � . Observed is the
sample Y where each Yi is the number of successes in the i th experiment. One has

P�.Y1 D k/ D
 
m

k

!

�k.1 � �/m�k; k D 0; : : : ; m:

Exercise 2.2.4. Check that method of moments with g.x/ D x leads to the estimate

Q� D 1

mn

X
Yi :

Compute Var� . Q�/.
Hint: Reduce the multinomial model to the sum of m Bernoulli.
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2.2.3.6 Exponential Model

Let P� be an exponential distribution on the positive semiaxis with the parameter � .
This means

P� .Y1 > y/ D e�y=� :

Exercise 2.2.5. Check that method of moments with g.x/ D x leads to the estimate

Q� D 1

n

X
Yi :

Compute Var� . Q�/.

2.2.3.7 Poisson Model

Let P� be the Poisson distribution with the parameter � . The Poisson random
variable Y1 is integer-valued with

P�.Y1 D k/ D �k

kŠ
e�� :

Exercise 2.2.6. Check that method of moments with g.x/ D x leads to the estimate

Q� D 1

n

X
Yi :

Compute Var� . Q�/.

2.2.3.8 Shift of a Laplace (Double Exponential) Law

Let P0 be a symmetric distribution defined by the equations

P0.jY1j > y/ D e�y=� ; y 
 0;

for some given � >0. Equivalently one can say that the absolute value of Y1 is
exponential with parameter � under P0. Now define P� by shifting P0 by the
value � . This means that

P�.jY1 � � j > y/ D e�y=� ; y 
 0:

It is obvious that E0Y1 D 0 and E�Y1 D � .
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Exercise 2.2.7. Check that method of moments leads to the estimate

Q� D 1

n

X
Yi :

Compute Var� . Q�/.

2.2.3.9 Shift of a Symmetric Density

Let the observations Yi be defined by the equation

Yi D �� C "i

where �� is an unknown parameter and the errors "i are i.i.d. with a density
symmetric around zero and finite second moment �2 D E"21. This particularly
yields that E"i D 0 and EYi D ��. The method of moments immediately yields the
empirical mean estimate

Q� D 1

n

X
Yi

with Var� . Q�/ D �2=n.

2.3 Unbiased Estimates, Bias, and Quadratic Risk

Consider a parametric i.i.d. experiment corresponding to a sample Y D .Y1; : : : ;

Yn/
> from a distribution P�� 2 .P� ;� 2 ‚ � Rp/. By �� we denote the true

parameter from ‚. Let Q� be an estimate of ��, that is, a function of the available
data Y with values in ‚: Q� D Q�.Y /.

An estimate Q� of the parameter �� is called unbiased if

E��
Q� D ��:

This property seems to be rather natural and desirable. However, it is often just
matter of parametrization. Indeed, if g W ‚ ! ‚ is a linear transformation of the

parameter set ‚, that is, g.�/ D A� C b, then the estimate Q# defD A Q� C b of the
new parameter # D A� C b is again unbiased. However, if m.	/ is a nonlinear
transformation, then the identity E��m. Q�/ D m.��/ is not preserved.

Example 2.3.1. Consider the Gaussian shift experiments for Yi i.i.d. N.��; �2/with
known variance �2 but the shift parameter �� is unknown. Then Q� D n�1.Y1C: : :C
Yn/ is an unbiased estimate of ��. However, for m.�/ D �2, it holds
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E�� j Q� j2 D j��j2 C �2=n;

that is, the estimate j Q� j2 of j��j2 is slightly biased.

The property of “no bias” is especially important in connection with the quadratic
risk of the estimate Q� . To illustrate this point, we first consider the case of a
univariate parameter.

2.3.1 Univariate Parameter

Let � 2 ‚ � R1. Denote by Var. Q�/ the variance of the estimate Q� :

Var��. Q�/ D E��

� Q� � E��
Q��2:

The quadratic risk of Q� is defined by

R. Q�; ��/ defD E��

ˇ̌ Q� � ��ˇ̌2:

It is obvious that R. Q�; ��/ D Var��. Q�/ if Q� is unbiased. It turns out that the quadratic
risk of Q� is larger than the variance when this property is not fulfilled. Define the
bias of Q� as

b. Q�; ��/ defD E��
Q� � ��:

Theorem 2.3.1. It holds for any estimate Q� of the univariate parameter ��:

R. Q�; ��/ D Var��. Q�/C b2. Q�; ��/:

Due to this result, the bias b. Q�; ��/ contributes the value b2. Q�; ��/ in the quadratic
risk. This particularly explains why one is interested in considering unbiased or at
least nearly unbiased estimates.

2.3.2 Multivariate Case

Now we extend the result to the multivariate case with � 2 ‚ � Rp. Then Q� is a
vector in Rp . The corresponding variance–covariance matrix Var��. Q�/ is defined as

Var��. Q�/ defD E��

�� Q� � E��
Q��� Q� � E��

Q��>�:

As previously, Q� is unbiased if E��
Q� D ��, and the bias of Q� is b. Q�;��/ defD

E��
Q����.
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The quadratic risk of the estimate Q� in the multivariate case is usually defined via
the Euclidean norm of the difference Q� � ��:

R. Q�;��/ defD E��


 Q� � ��2:

Theorem 2.3.2. It holds

R. Q�;��/ D tr
�
Var��. Q�/�C 

b. Q�;��/

2

Proof. The result follows similarly to the univariate case using the identity kvk2 D
tr.vv>/ for any vector v 2 Rp .

Exercise 2.3.1. Complete the proof of Theorem 2.3.2.

2.4 Asymptotic Properties

The properties of the previously introduced estimate Q� heavily depend on the sample
size n. We therefore use the notation Q�n to highlight this dependence. A natural
extension of the condition that Q� is unbiased is the requirement that the bias b. Q�;��/
becomes negligible as the sample size n increases. This leads to the notion of
consistency.

Definition 2.4.1. A sequence of estimates Q�n is consistent if

Q�n P�! �� n ! 1:

Q�n is mean consistent if

E��k Q�n � ��k ! 0; n ! 1:

Clearly mean consistency implies consistency and also asymptotic unbiasedness:

b. Q�n;��/ D E Q�n � �� P�! 0; n ! 1:

The property of consistency means that the difference Q���� is small for n large. The
next natural question to address is how fast this difference tends to zero with n. The
Glivenko–Cantelli result suggests that

p
n
� Q�n � ��� is asymptotically normal.

Definition 2.4.2. A sequence of estimates Q�n is root-n normal if

p
n
� Q�n � ��� w�! N.0; V 2/

for some fixed matrix V 2.
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We aim to show that the moment estimates are consistent and asymptotically
root-n normal under very general conditions. We start again with the univariate case.

2.4.1 Root-n Normality: Univariate Parameter

Our first result describes the simplest situation when the parameter of interest ��
can be represented as an integral

R
g.y/dP�� .y/ for some function g.	/.

Theorem 2.4.1. Suppose that ‚ � R and a function g.	/ W R ! R satisfies for
every � 2 ‚

Z
g.y/ dP� .y/ D �;

Z �
g.y/ � �

�2
dP� .y/ D �2.�/ < 1:

Then the moment estimates Q�n D n�1P g.Yi / satisfy the following conditions:

1. each Q�n is unbiased, that is, E��
Q�n D ��.

2. the normalized quadratic risk nE��

� Q�n � ���2 fulfills

nE��

� Q�n � ���2 D �2.��/:

3. Q�n is asymptotically root-n normal:

p
n
� Q�n � ��� w�! N.0; �2.��//:

This result has already been proved, see Theorem 2.1.3. Next we extend this
result to the more general situation when �� is defined implicitly via the moment
s0.�

�/ D R
g.y/ dP��.y/. This means that there exists another functionm.��/ such

that m.��/ D R
g.y/ dP��.y/.

Theorem 2.4.2. Suppose that ‚ � R and a functions g.y/ W R ! R and m.�/ W
‚ ! R satisfy

Z
g.y/ dP� .y/ � m.�/;

Z ˚
g.y/ �m.�/�2 dP� .y/ � �2g.�/ < 1:

We also assume that m.	/ is monotonic and twice continuously differentiable with
m0�m.��/

� ¤ 0. Then the moment estimates Q�n D m�1�n�1P g.Yi/
�

satisfy the
following conditions:
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1. Q�n is consistent, that is, Q�n P�! ��.
2. Q�n is asymptotically root-n normal:

p
n
� Q�n � ��� w�! N.0; �2.��//; (2.3)

where �2.��/ D jm0�m.��/
�j�2�2g.��/.

This result also follows directly from Theorem 2.1.3 with h.s/ D m�1.s/.
The property of asymptotic normality allows us to study the asymptotic concen-

tration of Q�n and to build asymptotic confidence sets.

Corollary 2.4.1. Let Q�n be asymptotically root-n normal: see (2.3). Then for any
z > 0

lim
n!1P��

�p
n
ˇ
ˇ Q�n � ��ˇˇ > z�.��/

� D 2ˆ.�z/

where ˆ.z/ is the cdf of the standard normal law.

In particular, this result implies that the estimate Q�n belongs to a small root-n
neighborhood

A.z/
defD Œ�� � n�1=2�.��/z; �� C n�1=2�.��/z�

with the probability about 2ˆ.�z/ which is small provided that z is sufficiently
large.

Next we briefly discuss the problem of interval (or confidence) estimation of
the parameter ��. This problem differs from the problem of point estimation: the
target is to build an interval (a set) E˛ on the basis of the observations Y such
that P.E˛ 3 ��/ � 1 � ˛ for a given ˛ 2 .0; 1/. This problem can be attacked
similarly to the problem of concentration by considering the interval of width
2�.��/z centered at the estimate Q� . However, the major difficulty is raised by the fact
that this construction involves the true parameter value �� via the variance �2.��/.
In some situations this variance does not depend on ��: �2.��/ � �2 with a known
value �2. In this case the construction is immediate.

Corollary 2.4.2. Let Q�n be asymptotically root-n normal: see (2.3). Let also
�2.��/ � �2. Then for any ˛ 2 .0; 1/, the set

Eı.z˛/
defD Œ Q�n � n�1=2�z˛; Q�n C n�1=2�z˛�;

where z˛ is defined by 2ˆ.�z˛/ D ˛, satisfies

lim
n!1P��

�
E.z˛/ 3 ��/

� D 1 � ˛: (2.4)
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Exercise 2.4.1. Check Corollaries 2.4.1 and 2.4.2.

Next we consider the case when the variance �2.��/ is unknown. Instead we
assume that a consistent variance estimate Q�2 is available. Then we plug this
estimate in the construction of the confidence set in place of the unknown true
variance �2.��/ leading to the following confidence set:

E.z˛/
defD Œ Q�n � n�1=2 Q�z˛; Q�n C n�1=2 Q�z˛�: (2.5)

Theorem 2.4.3. Let Q�n be asymptotically root-n normal: see (2.3). Let �.��/ > 0

and Q�2 be a consistent estimate of �2.��/ in the sense that Q�2 P�! �2.��/. Then for
any ˛ 2 .0; 1/, the set E.z˛/ is asymptotically ˛-confident in the sense of (2.4).

One natural estimate of the variance �.��/ can be obtained by plugging in the
estimate Q� in place of �� leading to Q� D �. Q�/. If �.�/ is a continuous function of
� in a neighborhood of ��, then consistency of Q� implies consistency of Q� .

Corollary 2.4.3. Let Q�n be asymptotically root-n normal and let the variance �2.�/

be a continuous function of � at ��. Then Q� defD �. Q�n/ is a consistent estimate of
�.��/ and the set E.z˛/ from (2.5) is asymptotically ˛-confident.

2.4.2 Root-n Normality: Multivariate Parameter

Let now ‚ � Rp and �� be the true parameter vector. The method of moments
requires at least p different moment functions for identifying p parameters. Let

g.y/ W R ! Rp be a vector of moment functions, g.y/ D �
g1.y/; : : : ; gp.y/

�>
.

Suppose first that the true parameter can be obtained just by integration: �� DR
g.y/ dP��.y/. This yields the moment estimate Q�n D n�1Pg.Yi /.

Theorem 2.4.4. Suppose that a vector-function g.y/ W R ! Rp satisfies the
following conditions:

Z
g.y/ dP�.y/ D �;

Z ˚
g.y/ � ��˚g.y/ � ��>

dP�.y/ D †.�/:

Then it holds for the moment estimate Q�n D n�1Pg.Yi /:

1. Q� is unbiased, that is, E��
Q� D ��.

2. Q�n is asymptotically root-n normal:

p
n
� Q�n � ��� w�! N.0;†.��//: (2.6)
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3. the normalized quadratic risk nE��

 Q�n � ��2 fulfills

nE��


 Q�n � ��2 D tr†.��/:

Similarly to the univariate case, this result yields corollaries about concentration
and confidence sets with intervals replaced by ellipsoids. Indeed, due to the second
statement, the vector

�n
defD p

nf†.��/g�1=2.� � ��/

is asymptotically standard normal: �n
w�! � � N.0; Ip/. This also implies that the

squared norm of �n is asymptotically 	2p-distributed where �2p is the law of k�k2 D
�21 C : : :C �2p . Define the value z˛ via the quantiles of 	2p by the relation

P
�k�k > z˛

� D ˛: (2.7)

Corollary 2.4.4. Suppose that Q�n is root-n normal, see (2.6). Define for a given z
the ellipsoid

A.z/
defD f� W .� � ��/>f†.��/g�1.� � ��/ � z2=ng:

Then A.z˛/ is asymptotically .1 � ˛/-concentration set for Q�n in the sense that

lim
n!1P

� Q� 62 A.z˛/
� D ˛:

The weak convergence �n
w�! � suggests to build confidence sets also in form of

ellipsoids with the axis defined by the covariance matrix †.��/. Define for ˛ > 0

Eı.z˛/
defD ˚

� W p
n

f†.��/g�1=2. Q� � �/ � z˛

�
:

The result of Theorem 2.4.4 implies that this set covers the true value �� with
probability approaching 1 � ˛.

Unfortunately, in typical situations the matrix †.��/ is unknown because it
depends on the unknown parameter ��. It is natural to replace it with the matrix
†. Q�/ replacing the true value �� with its consistent estimate Q� . If †.�/ is a
continuous function of � , then †. Q�/ provides a consistent estimate of †.��/. This
leads to the data-driven confidence set:

E.z˛/
defD ˚

�W p
n

f†. Q�/g�1=2. Q� � �/ � z

�
:
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Corollary 2.4.5. Suppose that Q�n is root-n normal, see (2.6), with a non-degenerate
matrix †.��/. Let the matrix function †.�/ be continuous at ��. Let z˛ be
defined by (2.7). ThenEı.z˛/ and E.z˛/ are asymptotically .1�˛/-confidence sets
for ��:

lim
n!1P

�
Eı.z˛/ 3 ��� D lim

n!1P
�
E.z˛/ 3 ��� D 1 � ˛:

Exercise 2.4.2. Check Corollaries 2.4.4 and 2.4.5 about the set Eı.z˛/.

Exercise 2.4.3. Check Corollary 2.4.5 about the set E.z˛/.
Hint: Q� is consistent and†.�/ is continuous and invertible at ��. This implies

†. Q�/�†.��/ P�! 0; f†. Q�/g�1 � f†.��/g�1 P�! 0;

and hence, the sets Eı.z˛/ and E.z˛/ are nearly the same.

Finally we discuss the general situation when the target parameter is a function
of the moments. This means the relations

m.�/ D
Z
g.y/ dP� .y/; � D m�1�m.�/

�
:

Of course, these relations assume that the vector function m.	/ is invertible. The
substitution principle leads to the estimate

Q� defD m�1.M n/;

whereM n is the vector of empirical moments:

Mn
defD
Z
g.y/ dPn.y/ D 1

n

X
g.Yi /:

The central limit theorem implies (see Theorem 2.1.4) that M n is a consistent
estimate ofm.��/ and the vector

p
n
�
Mn �m.��/

�
is asymptotically normal with

some covariance matrix †g.�
�/. Moreover, if m�1 is differentiable at the point

m.��/, then
p
n. Q� � ��/ is asymptotically normal as well:

p
n. Q� � ��/ w�! N.0;†.��//

where†.��/ D H>†g.��/H andH is the p�p-Jacobi matrix ofm�1 atm.��/:
H

defD d
d�
m�1�m.��/

�
.
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2.5 Some Geometric Properties of a Parametric Family

The parametric situation means that the true marginal distribution P belongs to
some given parametric family .P� ;� 2 ‚ � Rp/. By �� we denote the true value,
that is, P D P�� 2 .P�/. The natural target of estimation in this situation is the
parameter �� itself. Below we assume that the family .P� / is dominated, that is,
there exists a dominating measure 
0. The corresponding density is denoted by

p.y;�/ D dP�
d
0

.y/:

We also use the notation

`.y;�/
defD logp.y;�/

for the log-density.
The following two important characteristics of the parametric family .P�/ will

be frequently used in the sequel: the Kullback–Leibler divergence and Fisher
information.

2.5.1 Kullback–Leibler Divergence

For any two parameters � ;� 0, the value

K.P� ; P�0/D
Z

log
p.y;�/

p.y;� 0/
p.y;�/d
0.y/D

Z �
`.y;�/�`.y;� 0/

�
p.y;�/d
0.y/

is called the Kullback–Leibler divergence (KL-divergence) between P� and P� 0 .
We also write K.�;� 0/ instead of K.P� ; P�0/ if there is no risk of confusion.
Equivalently one can represent the KL-divergence as

K.�;� 0/ D E� log
p.Y;�/

p.Y;� 0/
D E�

�
`.Y;�/ � `.Y;� 0/

�
;

where Y � P� . An important feature of the Kullback–Leibler divergence is that it
is always non-negative and it is equal to zero iff the measures P� and P� 0 coincide.

Lemma 2.5.1. For any � ;� 0, it holds

K.�;� 0/ 
 0:

Moreover, K.� ;� 0/ D 0 implies that the densities p.y;�/ and p.y;� 0/ coincide

0-a.s.
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Proof. Define Z.y/ D p.y;� 0/=p.y;�/. Then

Z
Z.y/p.y;�/ d
0.y/ D

Z
p.y;� 0/ d
0.y/ D 1

because p.y;� 0/ is the density of P� 0 w.r.t. 
0. Next, d
2

dt2
log.t/ D �t�2 < 0, thus,

the log-function is strictly concave. The Jensen inequality implies

K.�;� 0/ D �
Z

log.Z.y//p.y;�/ d
0.y/ 
 � log

	Z
Z.y/p.y;�/ d
0.y/




D � log.1/ D 0:

Moreover, the strict concavity of the log-function implies that the equality in this
relation is only possible if Z.y/ � 1 P� -a.s. This implies the last statement of the
lemma.

The two mentioned features of the Kullback–Leibler divergence suggest to
consider it as a kind of distance on the parameter space. In some sense, it measures
how far P� 0 is from P� . Unfortunately, it is not a metric because it is not symmetric:

K.�;� 0/ ¤ K.� 0;�/

with very few exceptions for some special situations.

Exercise 2.5.1. Compute KL-divergence for the Gaussian shift, Bernoulli, Poisson,
volatility, and exponential families. Check in which cases it is symmetric.

Exercise 2.5.2. Consider the shift experiment given by the equation Y D � C "

where " is an error with the given density function p.	/ on R. Compute the KL-
divergence and check for symmetry.

One more important feature of the KL-divergence is its additivity.

Lemma 2.5.2. Let .P .1/

� ;� 2 ‚/ and .P .2/

� ;� 2 ‚/ be two parametric families

with the same parameter set ‚, and let .P� D P
.1/

� � P .2/

� ;� 2 ‚/ be the product
family. Then for any � ;� 0 2 ‚

K.P� ; P�0/ D K.P
.1/

� ; P
.1/

�0 /C K.P
.2/

� ; P
.2/

�0 /

Exercise 2.5.3. Prove Lemma 2.5.2. Extend the result to the case of the m-fold
product of measures.

Hint: use that the log-density `.y1; y2;�/ of the product measure P� fulfills
`.y1; y2;�/ D `.1/.y1;�/C `.2/.y2;�/.

The additivity of the KL-divergence helps to easily compute the KL quantity for
two measures P� and P�0 describing the i.i.d. sample Y D .Y1; : : : ; Yn/

>. The log-
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density of the measure P� w.r.t. �0 D 
˝n
0 at the point y D .y1; : : : ; yn/

> is given
by

L.y ;�/ D
X

`.yi ;�/:

An extension of the result of Lemma 2.5.2 yields

K.P� ;P� 0/
defD E�

˚
L.Y ;�/ �L.Y ;� 0/

� D nK.� ;� 0/:

2.5.2 Hellinger Distance

Another useful characteristic of a parametric family .P� / is the so-called Hellinger
distance. For a fixed 
 2 Œ0; 1� and any �;� 0 2 ‚, define

h.
;P� ; P� 0/ D E�

	
dP�0

dP�
.Y /





D
Z �p.y;� 0/

p.y;�/

�

dP� .y/

D
Z
p
.y;� 0/p1�
.y;�/ d
0.y/:

Note that this function can be represented as an exponential moment of the log-
likelihood ratio `.Y;� ;� 0/ D `.Y;�/� `.Y;� 0/:

h.
;P� ; P�0/ D E� exp
˚

`.Y;� 0;�/

� D E�

	
dP�0

dP�
.Y /




:

It is obvious that h.
;P� ; P� 0/ 
 0. Moreover, h.
;P� ; P�0/ � 1. Indeed, the
function x
 for 
 2 Œ0; 1� is concave and by the Jensen inequality:

E�

	
dP�0

dP�
.Y /




�
	
E�

dP� 0

dP�
.Y /




D 1:

Similarly to the Kullback–Leibler, we often write h.
;� ;� 0/ in place of
h.
;P� ; P� 0/.

Typically the Hellinger distance is considered for 
 D 1=2. Then

h.1=2;�;� 0/ D
Z
p1=2.y;� 0/p1=2.y;�/d
0.y/:
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In contrast to the Kullback–Leibler divergence, this quantity is symmetric and can
be used to define a metric on the parameter set ‚.

Introduce

m.
;�;� 0/ D � logh.
;� ;� 0/ D � logE� exp
˚

`.Y;� 0;�/

�
:

The property h.
;�;� 0/ � 1 implies m.
;� ;� 0/ 
 0.
The rate function, similarly to the KL-divergence, is additive.

Lemma 2.5.3. Let .P .1/

� ;� 2 ‚/ and .P .2/

� ;� 2 ‚/ be two parametric families

with the same parameter set ‚, and let .P� D P
.1/
� � P .2/

� ;� 2 ‚/ be the product
family. Then for any � ;� 0 2 ‚ and any 
 2 Œ0; 1�

m.
; P� ; P� 0/ D m.P
.1/
� ; P

.1/

�0 /C m.P
.2/
� ; P

.2/

� 0 /:

Exercise 2.5.4. Prove Lemma 2.5.3. Extend the result to the case of an m-fold
product of measures.

Hint: use that the log-density `.y1; y2;�/ of the product measure P� fulfills
`.y1; y2;�/ D `.1/.y1;�/C `.2/.y2;�/.

Application of this lemma to the i.i.d. product family yields

M.
;� 0;�/ defD � logE� exp
˚

L.Y ;� ;� 0/

� D nm.
;� 0;�/:

2.5.3 Regularity and the Fisher Information: Univariate
Parameter

An important assumption on the considered parametric family .P� / is that the
corresponding density functionp.y;�/ is absolutely continuous w.r.t. the parameter
� for almost all y. Then the log-density `.y;�/ is differentiable as well with

r`.y;�/ defD @`.y;�/

@�
D 1

p.y;�/

@p.y;�/

@�

with the convention 1
0

log.0/ D 0. In the case of a univariate parameter � 2 R, we
also write `0.y; �/ instead of r`.y; �/.

Moreover, we usually assume some regularity conditions on the density p.y;�/ .
The next definition presents one possible set of such conditions for the case of a
univariate parameter � .

Definition 2.5.1. The family .P� ; � 2 ‚ � R/ is regular if the following condi-
tions are fulfilled:

1. The sets A.�/
defD fyWp.y; �/ D 0g are the same for all � 2 ‚.
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2. Differentiability under the integration sign: for any function s.y/ satisfying

Z
s2.y/p.y; �/d
0.y/ � C; � 2 ‚

it holds

@

@�

Z
s.y/ dP� .y/ D @

@�

Z
s.y/p.y; �/d
0.y/ D

Z
s.y/

@p.y; �/

@�
d
0.y/:

3. Finite Fisher information: the log-density function `.y; �/ is differentiable in �
and its derivative is square integrable w.r.t. P� :

Z ˇ
ˇ`0.y; �/

ˇ
ˇ2dP� .y/ D

Z jp0.y; �/j2
p.y; �/

d
0.y/: (2.8)

The quantity in the condition (2.8) plays an important role in asymptotic
statistics. It is usually referred to as the Fisher information.

Definition 2.5.2. Let .P� ; � 2 ‚ � R/ be a regular parametric family with the
univariate parameter. Then the quantity

F.�/
defD
Z ˇ
ˇ`0.y; �/

ˇ
ˇ2p.y; �/d
0.y/ D

Z jp0.y; �/j2
p.y; �/

d
0.y/

is called the Fisher information of .P� / at � 2 ‚.

The definition of F.�/ can be written as

F.�/ D E�
ˇ
ˇ`0.Y; �/

ˇ
ˇ2

with Y � P� .
A simple sufficient condition for regularity of a family .P� / is given by the next

lemma.

Lemma 2.5.4. Let the log-density `.y; �/ D logp.y; �/ of a dominated family
.P� / be differentiable in � and let the Fisher information F.�/ be a continuous
function on‚. Then .P� / is regular.

The proof is technical and can be found, e.g., in Borokov (1998). Some useful
properties of the regular families are listed in the next lemma.

Lemma 2.5.5. Let .P� / be a regular family. Then for any � 2 ‚ and Y � P�

1. E�`0.Y; �/ D R
`0.y; �/ p.y; �/ d
0.y/ D 0 and F.�/ D Var�

�
`0.Y; �/

�
.

2. F.�/ D �E�`00.Y; �/ D � R `00.y; �/p.y; �/d
0.y/:

Proof. Differentiating the identity
R
p.y; �/d
0.y/ D R

expf`.y; �/gd
0.y/ � 1

implies under the regularity conditions the first statement of the lemma. Differen-
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tiating once more yields the second statement with another representation of the
Fisher information.

Like the KL-divergence, the Fisher information possesses the important additiv-
ity property.

Lemma 2.5.6. Let .P .1/

� ; � 2 ‚/ and .P .2/

� ; � 2 ‚/ be two parametric families

with the same parameter set ‚, and let .P� D P
.1/

� � P .2/

� ; � 2 ‚/ be the product
family. Then for any � 2 ‚, the Fisher information F.�/ satisfies

F.�/ D F
.1/.�/C F

.2/.�/

where F.1/.�/ (resp. F.2/.�/) is the Fisher information for .P .1/

� / (resp. for .P .2/

� /).

Exercise 2.5.5. Prove Lemma 2.5.6.
Hint: use that the log-density of the product experiment can be represented as

`.y1; y2; �/ D `1.y1; �/C `2.y2; �/. The independence of Y1 and Y2 implies

F.�/ D Var�
�
`0.Y1; Y2; �/

� D Var�
�
`0
1.Y1; �/C `0

2.Y2; �/
�

D Var�
�
`0
1.Y1; �/

�C Var�
�
`0
2.Y2; �/

�
:

Exercise 2.5.6. Compute the Fisher information for the Gaussian shift, Bernoulli,
Poisson, volatility, and exponential families. Check in which cases it is constant.

Exercise 2.5.7. Consider the shift experiment given by the equation Y D � C "

where " is an error with the given density function p.	/ on R. Compute the Fisher
information and check whether it is constant.

Exercise 2.5.8. Check that the i.i.d. experiment from the uniform distribution on
the interval Œ0; �� with unknown � is not regular.

Now we consider the properties of the i.i.d. experiment from a given regular
family .P� /. The distribution of the whole i.i.d. sample Y is described by the
product measure P� D P˝n

� which is dominated by the measure �0 D 
˝n
0 . The

corresponding log-density L.y ;�/ is given by

L.y ; �/
defD log

dP�

d�0
.y/ D

X
`.yi ; �/:

The function expL.y; �/ is the density of P� w.r.t. �0 and hence, for any r.v. �

E� � D E0
�
� expL.Y ; �/

�
:

In particular, for � � 1, this formula leads to the identity

E0
�
expL.Y ; �/

� D
Z

exp
˚
L.y ; �/

�
�0.dy/ � 1: (2.9)
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The next lemma claims that the product family .P� / for an i.i.d. sample from a
regular family is also regular.

Lemma 2.5.7. Let .P� / be a regular family and P� D P˝n
� . Then

1. The set An
defD fy D .y1; : : : ; yn/

>WQp.yi ; �/ D 0g is the same for all � 2 ‚.
2. For any r.v. S D S.Y / with E�S

2 � C , � 2 ‚, it holds

@

@�
E�S D @

@�
E0
�
S expL.Y ; �/

� D E0
�
SL0.Y ; �/ expL.Y ; �/

�
;

where L0.Y ; �/ defD @
@�
L.Y ; �/.

3. The derivative L0.Y ; �/ is square integrable and

E�
ˇ
ˇL0.Y ; �/

ˇ
ˇ2 D nF.�/:

2.5.4 Local Properties of the Kullback–Leibler Divergence and
Hellinger Distance

Here we show that the quantities introduced so far are closely related to each other.
We start with the Kullback–Leibler divergence.

Lemma 2.5.8. Let .P� / be a regular family. Then the KL-divergence K.�; � 0/
satisfies:

K.�; � 0/
ˇ
ˇ
ˇ
� 0D� D 0;

d

d� 0K.�; �
0/
ˇ
ˇ̌
� 0D� D 0;

d 2

d� 02K.�; �
0/
ˇ
ˇ
ˇ
� 0D� D F.�/:

In a small neighborhood of � , the KL-divergence can be approximated by

K.�; � 0/ � F.�/j� 0 � � j2=2:

Similar properties can be established for the rate function m.
; �; � 0/.

Lemma 2.5.9. Let .P� / be a regular family. Then the rate function m.
; �; � 0/
satisfies:

m.
; �; � 0/
ˇ
ˇ̌
� 0D� D 0;

d

d� 0 m.
; �; �
0/
ˇ
ˇ
ˇ
� 0D� D 0;
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d2

d� 02m.
; �; �
0/
ˇ
ˇ̌
� 0D� D 
.1 � 
/F.�/:

In a small neighborhood of � , the rate function m.
; �; � 0/ can be approximated by

m.
; �; � 0/ � 
.1� 
/F.�/j� 0 � � j2=2:

Moreover, for any �; � 0 2 ‚

m.
; �; � 0/
ˇ
ˇ
ˇ

D0 D 0;

d

d

m.
; �; � 0/

ˇ
ˇ
ˇ

D0 D E�`.Y; �; �

0/ D K.�; � 0/;

d 2

d
2
m.
; �; � 0/

ˇ
ˇ̌

D0 D � Var�

�
`.Y; �; � 0/

�
:

This implies an approximation for 
 small

m.
; �; � 0/ � 
K.�; � 0/ � 
2

2
Var�

�
`.Y; �; � 0/

�
:

Exercise 2.5.9. Check the statements of Lemmas 2.5.8 and 2.5.9.

2.6 Cramér–Rao Inequality

Let Q� be an estimate of the parameter ��. We are interested in establishing a lower
bound for the risk of this estimate. This bound indicates that under some conditions
the quadratic risk of this estimate can never be below a specific value.

2.6.1 Univariate Parameter

We again start with the univariate case and consider the case of an unbiased estimate
Q� . Suppose that the family .P� ; � 2 ‚/ is dominated by a �-finite measure 
0 on
the real line and denote by p.y; �/ the density of P� w.r.t. 
0:

p.y; �/
defD dP�
d
0

.y/:

Theorem 2.6.1 (Cramér–Rao Inequality). Let Q� D Q�.Y / be an unbiased esti-
mate of � for an i.i.d. sample from a regular family .P� /. Then
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E� j Q� � � j2 D Var� . Q�/ 
 1

nF.�/

with the equality iff Q� �� D fnF.�/g�1L0.Y ; �/ almost surely. Moreover, if Q� is not

unbiased and �.�/ D E� Q� , then with � 0.�/ defD d
d�
�.�/, it holds

Var� . Q�/ 
 j� 0.�/j2
nF.�/

and

E� j Q� � � j2 D Var� . Q�/C j�.�/ � � j2 
 j� 0.�/j2
nF.�/

C j�.�/ � � j2:

Proof. Consider first the case of an unbiased estimate Q� with E� Q� � � . Differenti-
ating the identity (2.9) E� expL.Y ; �/ � 1 w.r.t. � yields

0 �
Z �
L0.y; �/ exp

˚
L.y ; �/

��
�0.dy/ D E�L

0.Y ; �/: (2.10)

Similarly, the identity E� Q� D � implies

1 �
Z � Q�L0.Y ; �/ exp

˚
L.Y ; �/

��
�0.dy/ D E�

� Q�L0.Y ; �/
�
:

Together with (2.10), this gives

E�
�
. Q� � �/L0.Y ; �/

� � 1: (2.11)

Define h D fnF.�/g�1L0.Y ; �/. Then E
˚
hL0.Y ; �/

� D 1 and (2.11) yields

E�
�
. Q� � � � h/h

� � 0:

Now

E� . Q� � �/2 D E� . Q� � � � hC h/2 D E� . Q� � � � h/2 C E�h
2

D E� . Q� � � � h/2 C ˚
nF.�/

��1 
 ˚
nF.�/

��1

with the equality iff Q� � � D fnF.�/g�1L0.Y ; �/ almost surely. This implies the
first assertion.

Now we consider the general case. The proof is similar. The property (2.10)
continues to hold. Next, the identity E� Q� D � is replaced with E� Q� D �.�/ yielding

E�
� Q�L0.Y ; �/

� � � 0.�/
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and

E�
�f Q� � �.�/gL0.Y ; �/

� � � 0.�/:

Again by the Cauchy–Schwartz inequality

ˇ
ˇ� 0.�/

ˇ
ˇ2 D E2�

�f Q� � �.�/gL0.Y ; �/
�

� E� f Q� � �.�/g2E� jL0.Y ; �/j2
D Var� . Q�/ nF.�/

and the second assertion follows. The last statement is the usual decomposition of
the quadratic risk into the squared bias and the variance of the estimate.

2.6.2 Exponential Families and R-Efficiency

An interesting question is how good (precise) the Cramér–Rao lower bound is.
In particular, when it is an equality. Indeed, if we restrict ourselves to unbiased
estimates, no estimate can have quadratic risk smaller than ŒnF.�/��1. If an estimate
has exactly the risk ŒnF.�/��1, then this estimate is automatically efficient in the
sense that it is the best in the class in terms of the quadratic risk.

Definition 2.6.1. An unbiased estimate Q� is R-efficient if

Var� . Q�/ D ŒnF.�/��1:

Theorem 2.6.2. An unbiased estimate Q� is R-efficient if and only if

Q� D n�1XU.Yi /;

where the function U.	/ on R satisfies
R
U.y/ dP� .y/ � � and the log-density

`.y; �/ of P� can be represented as

`.y; �/ D C.�/U.y/ � B.�/C `.y/; (2.12)

for some functions C.	/ and B.	/ on ‚ and a function `.	/ on R.

Proof. Suppose first that the representation (2.12) for the log-density is correct.
Then `0.y; �/ D C 0.�/U.y/ � B 0.�/ and the identity E�`0.y; �/ D 0 implies the
relation between the functions B.	/ and C.	/:

�C 0.�/ D B 0.�/: (2.13)



40 2 Parameter Estimation for an i.i.d. Model

Next, differentiating the equality

0 �
Z

fU.y/� �g dP� .y/ D
Z

fU.y/ � �geL.y;�/d
0.y/

w.r.t. � implies in view of (2.13)

1 � E�
�fU.Y / � �g � ˚C 0.�/U.Y / � B 0.�/

�� D C 0.�/E�
˚
U.Y / � ��2:

This yields Var�
˚
U.Y /

� D 1=C 0.�/. This leads to the following representation for
the Fisher information:

F.�/ D Var�
˚
`0.Y; �/

�

D Var� fC 0.�/U.Y / � B 0.�/g
D ˚

C 0.�/
�2

Var�
˚
U.Y /

� D C 0.�/:

The estimate Q� D n�1PU.Yi/ satisfies

E� Q� D �;

that is, it is unbiased. Moreover,

Var�
� Q�� D Var�

n1
n

X
U.Yi/

o
D 1

n2

X
Var
˚
U.Yi/

� D 1

nC 0.�/
D 1

nF.�/

and Q� is R-efficient.
Now we show a reverse statement. Due to the proof of the Cramér–Rao

inequality, the only possibility of getting the equality in this inequality is if

L0.Y ; �/ D nF.�/ . Q� � �/:

This implies for some fixed �0 and any �ı

L.Y ; �ı/� L.Y ; �0/ D
Z �ı

�0

L0.Y ; �/d�

D
Z �

�0

nF.�/. Q� � �/d� D n
˚ Q�C.�/� B.�/

�

with C.�/ D R �
�0
F.�/d� and B.�/ D R �

�0
�F.�/d� . Applying this equality to a

sample with n D 1 yields U.Y1/ D Q�.Y1/, and

`.Y1; �/ D `.Y1; �0/C C.�/U.Y1/ � B.�/:
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The desired representation follows.

Exercise 2.6.1. Apply the Cramér–Rao inequality and check R-efficiency to the
empirical mean estimate Q� D n�1PYi for the Gaussian shift, Bernoulli, Poisson,
exponential, and volatility families.

2.7 Cramér–Rao Inequality: Multivariate Parameter

This section extends the notions and results of the previous sections from the case
of a univariate parameter to the case of a multivariate parameter with � 2 ‚ � Rp .

2.7.1 Regularity and Fisher Information: Multivariate
Parameter

The definition of regularity naturally extends to the case of a multivariate parameter
� D .�1; : : : ; �p/

>. It suffices to check the same conditions as in the univariate case
for every partial derivative @p.y;�/=@�j of the density p.y;�/ for j D 1; : : : ; p.

Definition 2.7.1. The family .P� ;� 2 ‚ � Rp/ is regular if the following
conditions are fulfilled:

1. The sets A.�/
defD fyWp.y; �/ D 0g are the same for all � 2 ‚.

2. Differentiability under the integration sign: for any function s.y/ satisfying

Z
s2.y/p.y;�/d
0.y/ � C; � 2 ‚

it holds

@

@�

Z
s.y/ dP�.y/ D @

@�

Z
s.y/p.y;�/d
0.y/ D

Z
s.y/

@p.y;�/

@�
d
0.y/:

3. Finite Fisher information: the log-density function `.y;�/ is differentiable in �
and its derivative r`.y;�/ D @`.y;�/=@� is square integrable w.r.t. P� :

Z ˇ
ˇr`.y;�/ˇˇ2dP� .y/ D

Z jrp.y; �/j2
p.y; �/

d
0.y/ < 1:

In the case of a multivariate parameter, the notion of the Fisher information leads
to the Fisher information matrix.
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Definition 2.7.2. Let .P� ;� 2 ‚ � Rp/ be a parametric family. The matrix

F.�/
defD
Z

r`.y;�/r>`.y;�/p.y;�/d
0.y/

D
Z

rp.y;�/r>p.y;�/
1

p.y;�/
d
0.y/

is called the Fisher information matrix of .P�/ at � 2 ‚.

This definition can be rewritten as

F.�/ D E�
�r`.Y1; �/fr`.Y1; �/g>�:

The additivity property of the Fisher information extends to the multivariate case as
well.

Lemma 2.7.1. Let .P� ;� 2 ‚/ be a regular family. Then the n-fold product family
.P�/ with P� D P˝n

� is also regular. The Fisher information matrix F.�/ satisfies

E�
�rL.Y ;�/frL.Y ;�/g>� D nF.�/: (2.14)

Exercise 2.7.1. Compute the Fisher information matrix for the i.i.d. experiment
Yi D � C �"i with unknown � and � and "i i.i.d. standard normal.

2.7.2 Local Properties of the Kullback–Leibler Divergence
and Hellinger Distance

The local relations between the Kullback–Leibler divergence, rate function, and
Fisher information naturally extend to the case of a multivariate parameter. We start
with the Kullback–Leibler divergence.

Lemma 2.7.2. Let .P� / be a regular family. Then the KL-divergence K.�;� 0/
satisfies:

K.�;� 0/
ˇ̌
ˇ
�0D� D 0;

d

d� 0K.�;�
0/
ˇ
ˇ
ˇ
�0D� D 0;

d 2

d� 02K.�;�
0/
ˇ
ˇ̌
�0D� D F.�/:

In a small neighborhood of � , the KL-divergence can be approximated by

K.�;� 0/ � .� 0 � �/>F.�/ .� 0 � �/=2:



2.7 Cramér–Rao Inequality: Multivariate Parameter 43

Similar properties can be established for the rate function m.
;�;� 0/.

Lemma 2.7.3. Let .P�/ be a regular family. Then the rate function m.
;�;� 0/
satisfies:

m.
;�;� 0/
ˇ
ˇ
ˇ
� 0D� D 0;

d

d� 0 m.
;�;�
0/
ˇ
ˇ̌
� 0D� D 0;

d 2

d� 02m.
;�;�
0/
ˇ
ˇ
ˇ
� 0D� D 
.1 � 
/F.�/:

In a small neighborhood of � , the rate function can be approximated by

m.
;� ;� 0/ � 
.1 � 
/.� 0 � �/>F.�/ .� 0 � �/=2:

Moreover, for any �;� 0 2 ‚

m.
;�;� 0/
ˇ
ˇ
ˇ

D0 D 0;

d

d

m.
;�;� 0/

ˇ
ˇ
ˇ

D0 D E�`.Y;�;�

0/ D K.� ;� 0/;

d 2

d
2
m.
;�;� 0/

ˇ
ˇ
ˇ

D0 D � Var�

�
`.Y;�;� 0/

�
:

This implies an approximation for 
 small:

m.
;� ;� 0/ � 
K.� ;� 0/ � 
2

2
Var�

�
`.Y;�;� 0/

�
:

Exercise 2.7.2. Check the statements of Lemmas 2.7.2 and 2.7.3.

2.7.3 Multivariate Cramér–Rao Inequality

Let Q� D Q�.Y / be an estimate of the unknown parameter vector. This estimate is
called unbiased if

E� Q� � � :

Theorem 2.7.1 (Multivariate Cramér–Rao Inequality). Let Q� D Q�.Y / be an
unbiased estimate of � for an i.i.d. sample from a regular family .P� /. Then
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Var� . Q�/ 
 ˚
nF.�/

��1
;

E�k Q� � �k2 D tr
˚
Var�. Q�/� 
 tr

�˚
nF.�/

��1�
:

Moreover, if Q� is not unbiased and �.�/ D E� Q� , then with r�.�/ defD d
d�
�.�/, it

holds

Var�. Q�/ 
 r�.�/ ˚nF.�/��1˚r�.�/�>
;

and

E�k Q� � �k2 D tr
�
Var�. Q�/�C k�.�/ � �k2


 tr
�r�.�/ ˚nF.�/��1˚r�.�/�>�C k�.�/� �k2:

Proof. Consider first the case of an unbiased estimate Q� with E� Q� � � . Differenti-
ating the identity (2.9) E� expL.Y ;�/ � 1 w.r.t. � yields

0 �
Z

rL.y ;�/ exp
˚
L.y;�/

�
�0.dy/ D E�

�rL.Y ;�/� � 0: (2.15)

Similarly, the identity E� Q� D � implies

I �
Z

Q�.y/ ˚rL.y ;�/�>
exp

˚
L.y;�/

�
�0.dy/ D E�

� Q� frL.Y ;�/g>�:

Together with (2.15), this gives

E�
�
. Q� � �/ frL.Y ;�/g>� � I: (2.16)

Consider the random vector

h
defD ˚

nF.�/
��1rL.Y ;�/:

By (2.15) E�h D 0 and by (2.14)

Var� .h/ D E�
�
hh>� D n�2E�

�
I�1.�/rL.Y ;�/˚I�1.�/rL.Y ;�/�>�

D n�2I�1.�/E�
�rL.Y ;�/frL.Y ;�/g>�I�1.�/ D ˚

nF.�/
��1

:

and the identities (2.15) and (2.16) imply that

E�
�
. Q� � � � h/h>� D 0: (2.17)
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The “no bias” property yields E�
� Q���� D 0 and E�

�
. Q���/. Q���/>� D Var� . Q�/.

Finally by the orthogonality (2.17) and

Var� . Q�/ D Var�.h/C Var
� Q� � � � h�

D ˚
nF.�/

��1 C Var�
� Q� � � � h�

and the variance of Q� is not smaller than
˚
nF.�/

��1
. Moreover, the equality is only

possible if Q� � � � h is equal to zero almost surely.
Now we consider the general case. The proof is similar. The property (2.15)

continues to hold. Next, the identity E� Q� D � is replaced with E� Q� D �.�/

yielding

E�
� Q� frL.Y ;�/g>� � r�.�/

and

E�
�˚ Q� � �.�/

� ˚rL.Y ;�/�>� � r�.�/:

Define

h
defD r�.�/ ˚nF.�/��1rL.Y ;�/:

Then similarly to the above

E�
�
hh>� D r�.�/ ˚nF.�/��1 ˚r�.�/�>

;

E�
�
. Q� � � � h/h>� D 0;

and the second assertion follows. The statements about the quadratic risk follow
from its usual decomposition into squared bias and the variance of the estimate.

2.7.4 Exponential Families and R-Efficiency

The notion of R-efficiency naturally extends to the case of a multivariate parameter.

Definition 2.7.3. An unbiased estimate Q� is R-efficient if

Var�. Q�/ D ˚
nF.�/

��1
:

Theorem 2.7.2. An unbiased estimate Q� is R-efficient if and only if

Q� D n�1XU .Yi /;
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where the vector function U .	/ on R satisfies
R
U .y/dP� .y/ � � and the log-

density `.y;�/ of P� can be represented as

`.y;�/ D C .�/>U .y/� B.�/C `.y/; (2.18)

for some functions C .	/ and B.	/ on‚ and a function `.	/ on R.

Proof. Suppose first that the representation (2.18) for the log-density is correct.

Denote by C 0.�/ the p � p Jacobi matrix of the vector function C : C 0.�/ defD
d
d�
C.�/. Then r`.y;�/ D C 0.�/U .y/� rB.�/ and the identityE�r`.y;�/ D 0

implies the relation between the functions B.	/ and C .	/:

C 0.�/ � D rB.�/: (2.19)

Next, differentiating the equality

0 �
Z �
U .y/ � �� dP� .y/ D

Z
ŒU .y/ � ��eL.y;�/d
0.y/

w.r.t. � implies in view of (2.19)

I � E�
�fU .Y / � �g ˚C 0.�/U .Y /� rB.�/��>

D C 0.�/E�
�fU .Y /� �g fU .Y / � �g>�:

This yields Var�
�
U .Y /

� D ŒC 0.�/��1. This leads to the following representation
for the Fisher information matrix:

F.�/ D Var�
�r`.Y;�/� D Var� ŒC

0.�/U .Y /� rB.�/�
D �

C 0.�/
�2

Var�
�
U .Y /

� D C .�/:

The estimate Q� D n�1PU .Yi / satisfies

E� Q� D �;

that is, it is unbiased. Moreover,

Var�
� Q�� D Var�

�1
n

X
U .Yi /

�

D 1

n2

X
Var
�
U .Yi /

� D 1

n

�
C 0.�/

��1 D ˚
nF.�/

��1

and Q� is R-efficient.
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As in the univariate case, one can show that equality in the Cramér–Rao bound
is only possible if rL.Y ;�/ and Q� � � are linearly dependent. This leads again to
the exponential family structure of the likelihood function.

Exercise 2.7.3. Complete the proof of the Theorem 2.7.2.

2.8 Maximum Likelihood and Other Estimation Methods

This section presents some other popular methods of estimating the unknown
parameter including minimum distance and M-estimation, maximum likelihood
procedure, etc.

2.8.1 Minimum Distance Estimation

Let �.P; P 0/ denote some functional (distance) defined for measures P;P 0 on the
real line. We assume that � satisfies the following conditions: �.P�1 ; P�2 / 
 0 and
�.P�1 ; P�2 / D 0 iff �1 D �2 . This implies for every �� 2 ‚ that

argmin
�2‚

�.P� ; P��/ D ��:

The Glivenko–Cantelli theorem states that Pn converges weakly to the true distribu-
tion P�� . Therefore, it is natural to define an estimate Q� of �� by replacing in this
formula the true measureP�� by its empirical counterpartPn, that is, by minimizing
the distance � between the measures P� and Pn over the set .P� /. This leads to the
minimum distance estimate

Q� D argmin
�2‚

�.P� ; Pn/:

2.8.2 M -Estimation and Maximum Likelihood Estimation

Another general method of building an estimate of ��, the so-called M -estimation
is defined via a contrast function  .y;�/ given for every y 2 R and � 2 ‚. The
principal condition on  is that the integral E� .Y1;�

0/ is minimized for � D � 0:

� D argmin
�0

Z
 .y;� 0/ dP�.y/; � 2 ‚: (2.20)
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In particular,

�� D argmin
�2‚

Z
 .y;�/ dP��.y/;

and the M -estimate is again obtained by substitution, that is, by replacing the true
measure P�� with its empirical counterpart Pn:

Q� D argmin
�2‚

Z
 .y;�/ dPn.y/ D argmin

�2‚
1

n

X
 .Yi ;�/:

Exercise 2.8.1. Let Y be an i.i.d. sample from P 2 .P� ; � 2 ‚ � R/.

(i) Let also g.y/ satisfy
R
g.y/ dP� .y/ � � , leading to the moment estimate

Q� D n�1Xg.Yi /:

Show that this estimate can be obtained as the M-estimate for a properly
selected function  .	/.

(ii) Let
R
g.y/ dP� .y/�m.�/ for the given functions g.	/ and m.	/ whereas

m.	/ is monotonous. Show that the moment estimate Q� Dm�1.Mn/ with
Mn D n�1P g.Yi / can be obtained as the M-estimate for a properly selected
function  .	/.

We mention three prominent examples of the contrast function  and the
resulting estimates: least squares, least absolute deviation (LAD), and maximum
likelihood.

2.8.2.1 Least Squares Estimation

The least squares estimate (LSE) corresponds to the quadratic contrast

 .y;�/ D kg.y/� �k2;

where g.y/ is a p-dimensional function of the observation y satisfying

Z
g.y/ dP�.y/ � �; � 2 ‚:

Then the true parameter �� fulfills the relation

�� D argmin
�2‚

Z
kg.y/ � �k2 dP��.y/



2.8 Maximum Likelihood and Other Estimation Methods 49

because
Z

kg.y/� �k2 dP��.y/ D k�� � �k2 C
Z

kg.y/ � ��k2 dP��.y/:

The substitution method leads to the estimate Q� of �� defined by minimization of
the empirical version of the integral

R kg.y/ � �k2 dP��.y/:

Q� defD argmin
�2‚

Z
kg.y/� �k2 dPn.y/ D argmin

�2‚

X
kg.Yi /� �k2:

This is again a quadratic optimization problem having a closed form solution called
least squares or ordinary LSE.

Lemma 2.8.1. It holds

Q� D argmin
�2‚

X
kg.Yi /� �k2 D 1

n

X
g.Yi /:

One can see that the LSE Q� coincides with the moment estimate based on the
function g.	/. Indeed, the equality

R
g.y/ dP��.y/ D �� leads directly to the LSE

Q� D n�1Pg.Yi /.

2.8.2.2 LAD (Median) Estimation

The next example of an M-estimate is given by the absolute deviation contrast
fit. For simplicity of presentation, we consider here only the case of a univariate

parameter. The contrast function  .y; �/ is given by  .y; �/
defD jy � � j. The

solution of the related optimization problem (2.20) is given by the median med.P� /
of the distribution P� .

Definition 2.8.1. The value t is called the median of a distribution function F if

F.t/ 
 1=2; F.t�/ < 1=2:

If F.	/ is a continuous function, then the median t D med.F / satisfies F.t/ D 1=2.

Theorem 2.8.1. For any cdf F , the median med.F / satisfies

inf
�2R

Z
jy � � j dF.y/ D

Z
jy � med.F /j dF.y/:

Proof. Consider for simplicity the case of a continuous distribution functionF . One
has jy � � j D .� � y/1.y < �/C .y � �/1.y 
 �/ . Differentiating w.r.t. � yields
the following equation for any extreme point of

R jy � � j dF.y/:
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�
Z �

�1
dF.y/C

Z 1

�

dF.y/ D 0:

The median is the only solution of this equation.

Let the family .P� / be such that � D med.P� / for all � 2 R. Then the M-
estimation approach leads to the LAD estimate

Q� defD argmin
�2R

Z
jy � � j dFn.y/ D argmin

�2R

X
jYi � � j:

Due to Theorem 2.8.1, the solution of this problem is given by the median of the
edf Fn.

2.8.2.3 Maximum Likelihood Estimation

Let now  .y;�/ D �`.y;�/ D � logp.y;�/ where p.y;�/ is the density of the
measure P� at y w.r.t. some dominating measure 
0. This choice leads to the MLE:

Q� D argmax
�2‚

1

n

X
logp.Yi ;�/:

The condition (2.20) is fulfilled because

argmin
�0

Z
 .y;� 0/ dP�.y/ D argmin

�0

Z ˚
 .y;� 0/ �  .y;�/� dP� .y/

D argmin
�0

Z
log

p.y;�/

p.y;� 0/
dP� .y/

D argmin
�0

K.� ;� 0/ D �:

Here we used that the Kullback–Leibler divergence K.� ;� 0/ attains its minimum
equal to zero at the point � 0 D � which in turn follows from the concavity of the
log-function by the Jensen inequality.

Note that the definition of the MLE does not depend on the choice of the
dominating measure 
0.

Exercise 2.8.2. Show that the MLE Q� does not change if another dominating
measure is used.

Computing an M -estimate or MLE leads to solving an optimization problem
for the empirical quantity

P
 .Yi ;�/ w.r.t. the parameter � . If the function  is

differentiable w.r.t. � , then the solution can be found from the estimating equation

@

@�

X
 .Yi ;�/ D 0:
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Exercise 2.8.3. Show that any M -estimate and particularly the MLE can be
represented as minimum distance estimate with a properly defined distance �.

Hint: define �.P� ; P��/ as
R �
 .y;�/�  .y;��/

�
dP��.y/.

Recall that the MLE Q� is defined by maximizing the expression L.�/ D
P
`.Yi ;�/ w.r.t. � . Below we use the notation L.� ;� 0/ defD L.�/ � L.� 0/, often

called the log-likelihood ratio.
In our study we will focus on the value of the maximum L. Q�/ D max� L.�/.

Let L.�/ D P
`.Yi ;�/ be the likelihood function. The value

L. Q�/ defD max
�
L.�/

is called the maximum log-likelihood or fitted log-likelihood. The excess L. Q�/ �
L.��/ is the difference between the maximum of the likelihood functionL.�/ over
� and its particular value at the true parameter ��:

L. Q�;��/ defD max
�
L.�/ �L.��/:

The next section collects some examples of computing the MLE Q� and the
corresponding maximum log-likelihood.

2.9 Maximum Likelihood for Some Parametric Families

The examples of this section focus on the structure of the log-likelihood and the
corresponding MLE Q� and the maximum log-likelihoodL. Q�/.

2.9.1 Gaussian Shift

Let P� be the normal distribution on the real line with mean � and the known
variance �2. The corresponding density w.r.t. the Lebesgue measure reads as

p.y;�/ D 1p
2��2

exp
n
� .y � �/2

2�2

o
:

The log-likelihoodL.�/ is

L.�/ D
X

logp.Yi ; �/ D �n
2

log.2��2/ � 1

2�2

X
.Yi � �/2:
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The corresponding normal equation L0.�/ D 0 yields

� 1

�2

X
.Yi � �/ D 0 (2.21)

leading to the empirical mean solution Q� D n�1PYi .
The computation of the fitted likelihood is a bit more involved.

Theorem 2.9.1. Let Yi D �� C "i with "i � N.0; �2/. For any �

L. Q�; �/ D n��2. Q� � �/2=2: (2.22)

Moreover,

L. Q�; ��/ D n��2. Q� � ��/2=2 D �2=2

where � is a standard normal r.v. so that 2L. Q�; ��/ has the fixed 	21 distribution with
one degree of freedom. If z˛ is the quantile of 	21=2 with P.�2=2 > z˛/ D ˛, then

E.z˛/ D fuWL. Q�; u/ � z˛g (2.23)

is an ˛-confidence set: P��.E.z˛/ 63 ��/ D ˛.
For every r > 0,

E��

ˇ
ˇ2L. Q�; ��/

ˇ
ˇr D cr ;

where cr D Ej�j2r with � � N.0; 1/.

Proof (Proof 1). Consider L. Q�; �/ defD L. Q�/�L.�/ as a function of the parameter � .
Obviously

L. Q�; �/ D � 1

2�2

X�
.Yi � Q�/2 � .Yi � �/2

�
;

so that L. Q�; �/ is a quadratic function of � . Next, it holds L. Q�; �/ˇˇ
�D Q� D 0 and

d
d�
L. Q�; �/ˇˇ

�D Q� D � d
d�
L.�/

ˇ
ˇ
�D Q� D 0 due to the normal equation (2.21). Finally,

d2

d�2
L. Q�; �/ˇˇ

�D Q� D � d2

d�2
L.�/

ˇ
ˇ
�D Q� D n=�2:

This implies by the Taylor expansion of a quadratic function L. Q�; �/ at � D Q� :

L. Q�; �/ D n

2�2
. Q� � �/2:

Proof 2. First observe that for any two points � 0; � , the log-likelihood ratio
L.� 0; �/ D log.dP� 0=dP� / D L.� 0/� L.�/ can be represented in the form
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L.� 0; �/ D L.� 0/ �L.�/ D ��2.S � n�/.� 0 � �/ � n��2.� 0 � �/2=2:

Substituting the MLE Q� D S=n in place of � 0 implies

L. Q�; �/ D n��2. Q� � �/2=2:
Now we consider the second statement about the distribution of L. Q�; ��/. The

substitution � D �� in (2.22) and the model equation Yi D �� C "i imply Q� � �� D
n�1=2��, where

�
defD 1

�
p
n

X
"i

is standard normal. Therefore,

L. Q�; ��/ D �2=2:

This easily implies the result of the theorem.

We see that under P�� the variable 2L. Q�; ��/ is 	21 distributed with one degree
of freedom, and this distribution does not depend on the sample size n and the scale
parameter � . This fact is known in a more general form as chi-squared theorem.

Exercise 2.9.1. Check that the confidence sets

Eı.z˛/
defD Œ Q� � n�1=2�z˛; Q� C n�1=2�z˛�;

where z˛ is defined by 2ˆ.�z˛/ D ˛, and E.z˛/ from (2.23) coincide.

Exercise 2.9.2. Compute the constant cr from Theorem 2.9.1 for r D 0:5; 1; 1:5; 2.

Already now we point out an interesting feature of the fitted log-likelihood
L. Q�; ��/. It can be viewed as the normalized squared loss of the estimate Q� because
L. Q�; ��/ D n��2j Q� � ��j2. The last statement of Theorem 2.9.1 yields that

E�� j Q� � ��j2r D cr�
2rn�r :

2.9.2 Variance Estimation for the Normal Law

Let Yi be i.i.d. normal with mean zero and unknown variance ��:

Yi � N.0; ��/; �� 2 RC :

The likelihood function reads as

L.�/ D
X

logp.Yi ; �/ D �n
2

log.2��/ � 1

2�

X
Y 2i :
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The normal equation L0.�/ D 0 yields

L0.�/ D � n

2�
C 1

2�2

X
Y 2i D 0

leading to

Q� D 1

n
Sn

with Sn D P
Y 2i . Moreover, for any �

L. Q�; �/ D �n
2

log. Q�=�/� Sn

2

�
1= Q� � 1=�

� D nK. Q�; �/

where

K.�; � 0/ D �1
2

�
log.�=� 0/C 1 � �=� 0�

is the Kullback–Leibler divergence for two Gaussian measuresN.0; �/ andN.0; � 0/.

2.9.3 Univariate Normal Distribution

Let Yi be as in previous example Nf˛; �2g but neither the mean ˛ nor the variance
�2 are known. This leads to estimating the vector � D .�1; �2/ D .˛; �2/ from the
i.i.d. sample Y .

The maximum likelihood approach leads to maximizing the log-likelihood w.r.t.
the vector � D .˛; �2/>:

L.�/ D
X

logp.Yi ;�/ D �n
2

log.2��2/� 1

2�2

X
.Yi � �1/

2:

Exercise 2.9.3. Check that the ML approach leads to the same estimates (2.2) as
the method of moments.

2.9.4 Uniform Distribution on Œ0; ��

Let Yi be uniformly distributed on the interval Œ0; ��� of the real line where the right
end point �� is unknown. The density p.y; �/ of P� w.r.t. the Lebesgue measure is
��11.y � �/. The likelihood reads as
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Z.�/ D ��n1.max
i
Yi � �/:

This density is positive iff � 
 maxi Yi and it is maximized exactly for Q� D maxi Yi .
One can see that the MLE Q� is the limiting case of the moment estimate Q�k as k
grows to infinity.

2.9.5 Bernoulli or Binomial Model

LetP� be a Bernoulli law for � 2 Œ0; 1�. The density of Yi underP� can be written as

p.y; �/ D �y.1 � �/1�y:

The corresponding log-likelihood reads as

L.�/ D
X˚

Yi log � C .1 � Yi/ log.1 � �/
� D Sn log

�

1 � � C n log.1 � �/

with Sn D P
Yi . Maximizing this expression w.r.t. � results again in the empirical

mean

Q� D Sn=n:

This implies

L. Q�; �/ D n Q� log
Q�
�

C n.1 � Q�/ log
1 � Q�
1 � � D nK. Q�; �/

where K.�; � 0/ D � log.�=� 0/C.1��/ logf.1��/=.1�� 0/ is the Kullback–Leibler
divergence for the Bernoulli law.

2.9.6 Multinomial Model

The multinomial distribution Bm
� describes the number of successes in m experi-

ments when one success has the probability � 2 Œ0; 1�. This distribution can be
viewed as the sum ofm binomials with the same parameter � .

One has

P�.Y1 D k/ D
 
m

k

!

�k.1 � �/m�k; k D 0; : : : ; m:
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Exercise 2.9.4. Check that the ML approach leads to the estimate

Q� D 1

mn

X
Yi :

Compute L. Q�; �/.

2.9.7 Exponential Model

Let Y1; : : : ; Yn be i.i.d. exponential random variables with parameter �� > 0. This
means that Yi are nonnegative and satisfy P.Yi > t/ D e�t=��

. The density of
the exponential law w.r.t. the Lebesgue measure is p.y; ��/ D e�y=��

=��. The
corresponding log-likelihood can be written as

L.�/ D �n log � �
nX

iD1
Yi=� D �S=� � n log �;

where S D Y1 C : : :C Yn.
The ML estimating equation yields S=�2 D n=� or

Q� D S=n:

For the fitted log-likelihood L. Q�; �/ this gives

L. Q�; �/ D �n.1 � Q�=�/ � n log. Q�=�/ D nK. Q�; �/:

Here once againK.�; � 0/ D �=� 0�1�log.�=� 0/ is the Kullback–Leibler divergence
for the exponential law.

2.9.8 Poisson Model

Let Y1; : : : ; Yn be i.i.d. Poisson random variables satisfying P.Yi Dm/ D
j��jme���

=mŠ for m D 0; 1; 2; : : :. The corresponding log-likelihood can be
written as

L.�/ D
nX

iD1
log
�
�Yi e��=Yi Š

� D log �
nX

iD1
Yi � � � log.Yi Š/ D S log � � n� CR;

where S D Y1 C : : :C Yn and R D Pn
iD1 log.Yi Š/. Here we leave out that 0Š D 1.
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The ML estimating equation immediately yields S=� D n or

Q� D S=n:

For the fitted log-likelihood L. Q�; �/ this gives

L. Q�; �/ D n Q� log. Q�=�/� n. Q� � �/ D nK. Q�; �/:

Here again K.�; � 0/ D � log.�=� 0/ � .� � � 0/ is the Kullback–Leibler divergence
for the Poisson law.

2.9.9 Shift of a Laplace (Double Exponential) Law

Let P0 be the symmetric distribution defined by the equations

P0.jY1j > y/ D e�y=� ; y 
 0;

for some given � > 0. Equivalently one can say that the absolute value of Y1
is exponential with parameter � under P0. Now define P� by shifting P0 by the
value � . This means that

P�.jY1 � � j > y/ D e�y=� ; y 
 0:

The density of Y1 � � under P� is p.y/ D .2�/�1e�jyj=� . The maximum
likelihood approach leads to maximizing the sum

L.�/ D �n log.2�/ �
X

jYi � � j=�;

or equivalently to minimizing the sum
P jYi � � j:

Q� D argmin
�

X
jYi � � j: (2.24)

This is just the LAD estimate given by the median of the edf:

Q� D med.Fn/:

Exercise 2.9.5. Show that the median solves the problem (2.24).
Hint: suppose that n is odd. Consider the ordered observations Y.1/ � Y.2/ �

: : : � Y.n/ . Show that the median of Pn is given by Y..nC1/=2/. Show that this point
solves (2.24).
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2.10 Quasi Maximum Likelihood Approach

Let Y D .Y1; : : : ; Yn/
> be a sample from a marginal distribution P . Let also

.P� ;� 2 ‚/ be a given parametric family with the log-likelihood `.y;�/. The
parametric approach is based on the assumption that the underlying distribution P
belongs to this family. The quasi maximum likelihood method applies the maximum
likelihood approach for family .P� / even if the underlying distribution P does
not belong to this family. This leads again to the estimate Q� that maximizes the
expression L.�/ D P

`.Yi ;�/ and is called the quasi MLE. It might happen that
the true distribution belongs to some other parametric family for which one also
can construct the MLE. However, there could be serious reasons for applying the
quasi maximum likelihood approach even in this misspecified case. One of them is
that the properties of the estimate Q� are essentially determined by the geometrical
structure of the log-likelihood. The use of a parametric family with a nice geometric
structure (which are quadratic or convex functions of the parameter) can seriously
simplify the algorithmic burdens and improve the behavior of the method.

2.10.1 LSE as Quasi Likelihood Estimation

Consider the model

Yi D �� C "i (2.25)

where �� is the parameter of interest from R and "i are random errors satisfying
E"i D 0 . The assumption that "i are i.i.d. normal N.0; �2/ leads to the quasi log-
likelihood

L.�/ D �n
2

log.2��2/� 1

2�2

X
.Yi � �/2:

Maximizing the expression L.�/ leads to minimizing the sum of squared residuals
.Yi � �/2:

Q� D argmin
�

X
.Yi � �/2 D 1

n

X
Yi :

This estimate is called a LSE or ordinary least squares estimate (oLSE).

Example 2.10.1. Consider the model (2.25) with heterogeneous errors, that is, "i
are independent normal with zero mean and variances �2i . The corresponding log-
likelihood reads

Lı.�/ D �1
2

Xn
log.2��2i /C .Yi � �/2

�2i

o
:



2.10 Quasi Maximum Likelihood Approach 59

The MLE Q�ı is

Q�ı defD argmax
�

Lı.�/ D N�1XYi=�
2
i ; N D

X
��2
i :

We now compare the estimates Q� and Q�ı.

Lemma 2.10.1. The following assertions hold for the estimate Q�:

1. Q� is unbiased: E��
Q� D ��.

2. The quadratic risk of Q� is equal to the variance Var. Q�/ given by

R. Q�; ��/ defD E�� j Q� � ��j2 D Var. Q�/ D n�2X �2i :

3. Q� is not R-efficient unless all �2i are equal.

Now we consider the MLE Q�ı.

Lemma 2.10.2. The following assertions hold for the estimate Q�ı:

1. Q�ı is unbiased: E��
Q�ı D ��.

2. The quadratic risk of Q�ı is equal to the variance Var. Q�ı/ given by

R. Q�ı; ��/ defD E�� j Q�ı � ��j2 D Var. Q�ı/ D N�2X ��2
i D N�1:

3. Q�ı is R-efficient.

Exercise 2.10.1. Check the statements of Lemmas 2.10.1 and 2.10.2.
Hint: compute the Fisher information for the model (2.25) using the property of

additivity:

F.�/ D
X

F
.i/.�/ D

X
��2
i D N;

where F
.i/.�/ is the Fisher information in the marginal model Yi D � C "i with

just one observation Yi . Apply the Cramér–Rao inequality for one observation of
the vector Y .

2.10.2 LAD and Robust Estimation as Quasi Likelihood
Estimation

Consider again the model (2.25). The classical least squares approach faces serious
problems if the available data Y are contaminated with outliers. The reasons for
contamination could be missing data or typing errors, etc. Unfortunately, even
a single outlier can significantly disturb the sum L.�/ and thus, the estimate Q� .
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A typical approach proposed and developed by Huber is to apply another “influence
function”  .Yi � �/ in the sum L.�/ in place of the squared residual jYi � � j2
leading to the M-estimate

Q� D argmin
�

X
 .Yi � �/: (2.26)

A popular  -function for robust estimation is the absolute value jYi � � j. The
resulting estimate

Q� D argmin
�

X
jYi � � j

is called LAD and the solution is the median of the empirical distribution Pn.
Another proposal is called the Huber function: it is quadratic in a vicinity of zero
and linear outside:

 .x/ D
(
x2 if jxj � t;

ajxj C b otherwise:

Exercise 2.10.2. Show that for each t > 0, the coefficients a D a.t/ and b D b.t/

can be selected to provide that  .x/ and its derivatives are continuous.

A remarkable fact about this approach is that every such estimate can be viewed
as a quasi MLE for the model (2.25). Indeed, for a given function  , define the
measure P� with the log-density `.y; �/ D � .y � �/. Then the log-likelihood is
L.�/ D �P .Yi � �/ and the corresponding (quasi) MLE coincides with (2.26).

Exercise 2.10.3. Suggest a �-finite measure 
 such that exp
˚� .y � �/

�
is the

density of Yi for the model (2.25) w.r.t. the measure 
.
Hint: suppose for simplicity that

C 
defD
Z

exp
˚� .x/� dx < 1:

Show that C�1
 exp

˚� .y � �/� is a density w.r.t. the Lebesgue measure for any � .

Exercise 2.10.4. Show that the LAD Q� D argmin�
P jYi � � j is the quasi MLE

for the model (2.25) when the errors "i are assumed Laplacian (double exponential)
with density p.x/ D .1=2/e�jxj.

2.11 Univariate Exponential Families

Most parametric families considered in the previous sections are particular cases of
exponential families (EF) distributions. This includes the Gaussian shift, Bernoulli,
Poisson, exponential, volatility models. The notion of an EF already appeared in
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the context of the Cramér–Rao inequality. Now we study such families in further
detail.

We say that P is an exponential family if all measures P� 2 P are dominated by
a �-finite measure 
0 on Y and the density functions p.y; �/ D dP�=d
0.y/ are of
the form

p.y; �/
defD dP�

d
0
.y/ D p.y/eyC.�/�B.�/:

Here C.�/ and B.�/ are some given nondecreasing functions on ‚ and p.y/ is a
nonnegative function on Y.

Usually one assumes some regularity conditions on the family P. One possibility
was already given when we discussed the Cramér–Rao inequality; see Defini-
tion 2.5.1. Below we assume that condition is always fulfilled. It basically means
that we can differentiate w.r.t. � under the integral sign.

For an EF, the log-likelihood admits an especially simple representation, nearly
linear in y:

`.y; �/
defD logp.y; �/ D yC.�/� B.�/C logp.y/

so that the log-likelihood ratio for �; � 0 2 ‚ reads as

`.y; �; � 0/ defD `.y; �/ � `.y; � 0/ D y
�
C.�/� C.� 0/

� � �
B.�/ � B.� 0/

�
:

2.11.1 Natural Parametrization

Let P D �
P�
�

be an EF. By Y we denote one observation from the distribution
P� 2 P. In addition to the regularity conditions, one often assumes the natural
parametrization for the family P which means the relation E�Y D � . Note that
this relation is fulfilled for all the examples of EF’s that we considered so far in
the previous section. It is obvious that the natural parametrization is only possible
if the following identifiability condition is fulfilled: for any two different measures
from the considered parametric family, the corresponding mean values are different.
Otherwise the natural parametrization is always possible: just define � as the
expectation of Y . Below we use the abbreviation EFn for an exponential family
with natural parametrization.

2.11.1.1 Some Properties of an EFn

The natural parametrization implies an important property for the functions B.�/
and C.�/.
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Lemma 2.11.1. Let
�
P�
�

be a naturally parameterized EF. Then

B 0.�/ D �C 0.�/:

Proof. Differentiating both sides of the equation
R
p.y; �/
0.dy/ D 1 w.r.t. �

yields

0 D
Z ˚

yC 0.�/ � B 0.�/
�
p.y; �/
0.dy/

D
Z ˚

yC 0.�/ � B 0.�/
�
P�.dy/

D �C 0.�/ � B 0.�/

and the result follows.

The next lemma computes the important characteristics of a natural EF such
as the Kullback–Leibler divergence K.�; � 0/ D E� log

�
p.Y; �/=p.Y; � 0/

�
, the

Fisher information F.�/
defD E� j`0.Y; �/j2, and the rate function m.
; �; � 0/ D

� logE� exp
˚

`.Y; �; � 0/

�
.

Lemma 2.11.2. Let .P� / be an EFn. Then with �; � 0 2 ‚ fixed, it holds for

• the Kullback–Leibler divergence K.�; � 0/ D E� log
�
p.Y; �/=p.Y; � 0/

� W

K.�; � 0/ D
Z

log
p.y; �/

p.y; � 0/
P� .dy/

D ˚
C.�/ � C.� 0/

� Z
yP� .dy/ � ˚

B.�/ � B.� 0/
�

D �
˚
C.�/ � C.� 0/

�� ˚
B.�/ � B.� 0/

�I (2.27)

• the Fisher information F.�/
defD E� j`0.Y; �/j2 W

F.�/ D C 0.�/I

• the rate function m.
; �; � 0/ D � logE� exp
˚

`.Y; �; � 0/

� W

m.
; �; � 0/ D K
�
�; � C 
.� 0 � �/�I

• the variance Var� .Y / W

Var� .Y / D 1=F.�/ D 1=C 0.�/: (2.28)
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Proof. Differentiating the equality

0 �
Z
.y � �/P�.dy/ D

Z
.y � �/eL.y;�/
0.dy/

w.r.t. � implies in view of Lemma 2.11.1

1 � E�
�
.Y � �/

˚
C 0.�/Y � B 0.�/

�� D C 0.�/E� .Y � �/2:

This yields Var� .Y / D 1=C 0.�/. This leads to the following representation of the
Fisher information:

F.�/ D Var�
�
`0.Y; �/

� D Var� ŒC
0.�/Y � B 0.�/� D �

C 0.�/
�2

Var� .Y / D C 0.�/:

Exercise 2.11.1. Check the equations for the Kullback–Leibler divergence and
Fisher information from Lemma 2.11.2.

2.11.1.2 MLE and Maximum Likelihood for an EFn

Now we discuss the maximum likelihood estimation for a sample from an EFn. The
log-likelihood can be represented in the form

L.�/ D
nX

iD1
logp.Yi ; �/ D C.�/

nX

iD1
Yi � B.�/

nX

iD1
1C

nX

iD1
logp.Yi / (2.29)

D SC.�/ � nB.�/CR;

where

S D
nX

iD1
Yi ; R D

nX

iD1
logp.Yi /:

The remainder term R is unimportant because it does not depend on � and thus it
does not enter in the likelihood ratio. The MLE Q� is defined by maximizing L.�/
w.r.t. � , that is,

Q� D argmax
�2‚

L.�/ D argmax
�2‚

˚
SC.�/� nB.�/�:

In the case of an EF with the natural parametrization, this optimization problem
admits a closed form solution given by the next theorem.
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Theorem 2.11.1. Let .P� / be an EFn. Then the MLE Q� fulfills

Q� D S=n D n�1
nX

iD1
Yi :

It holds

E� Q� D �; Var� . Q�/ D ŒnF.�/��1 D ŒnC 0.�/��1

so that Q� is R-efficient. Moreover, the fitted log-likelihood L. Q�; �/ defD L. Q�/ � L.�/

satisfies for any � 2 ‚:

L. Q�; �/ D nK. Q�; �/: (2.30)

Proof. Maximization of L.�/ w.r.t. � leads to the estimating equation nB 0.�/ �
SC 0.�/ D 0. This and the identity B 0.�/ D �C 0.�/ yield the MLE

Q� D S=n:

The variance Var� . Q�/ is computed using (2.28) from Lemma 2.11.2. The for-
mula (2.27) for the Kullback–Leibler divergence and (2.29) yield the representa-
tion (2.30) for the fitted log-likelihood L. Q�; �/ for any � 2 ‚.

One can see that the estimate Q� is the mean of the Yi ’s. As for the Gaussian
shift model, this estimate can be motivated by the fact that the expectation of every
observation Yi under P� is just � and by the law of large numbers the empirical
mean converges to its expectation as the sample size n grows.

2.11.2 Canonical Parametrization

Another useful representation of an EF is given by the so-called canonical
parametrization. We say that � is the canonical parameter for this EF if the density
of each measure P� w.r.t. the dominating measure 
0 is of the form:

p.y; �/
defD dP�
d
0

.y/ D p.y/ exp
˚
y� � d.�/�:

Here d.�/ is a given convex function on ‚ and p.y/ is a nonnegative function on
Y. The abbreviation EFc will indicate an EF with the canonical parametrization.
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2.11.2.1 Some Properties of an EFc

The next relation is an obvious corollary of the definition:

Lemma 2.11.3. An EFn .P� / always permits a unique canonical representation.
The canonical parameter � is related to the natural parameter � by � D C.�/,
d.�/ D B.�/ and � D d 0.�/.

Proof. The first two relations follow from the definition. They imply B 0.�/ D
d 0.�/	d�=d� D d 0.�/	C 0.�/ and the last statement follows fromB 0.�/ D �C 0.�/.

The log-likelihood ratio `.y; �; �1/ for an EFc reads as

`.Y; �; �1/ D Y.� � �1/� d.�/C d.�1/:

The next lemma collects some useful facts about an EFc.

Lemma 2.11.4. Let P D �
P�; � 2 U

�
be an EFc and let the function d.	/ be two

times continuously differentiable. Then it holds for any �; �1 2 U W
(i). The mean E�Y and the variance Var�.Y / fulfill

E�Y D d 0.�/; Var�.Y / D E�.Y �E�Y /2 D d 00.�/:

(ii). The Fisher information F.�/
defD E� j`0.Y; �/j2 satisfies

F.�/ D d 00.�/:

(iii). The Kullback–Leibler divergence Kc.�; �1/ D E�`.Y; �; �1/ satisfies

Kc.�; �1/ D
Z

log
p.y; �/

p.y; �1/
P�.dy/

D d 0.�/
�
� � �1

� � ˚
d.�/� d.�1/

�

D d 00. M�/ .�1 � �/2=2;

where M� is a point between � and �1 . Moreover, for � � �1 2 U

Kc.�; �1/ D
Z �1

�

.�1 � u/d 00.u/ du:

(iv). The rate function m.
; �1; �/
defD � logE� exp

˚

`.Y; �1; �/

�
fulfills

m.
; �1; �/ D 
Kc
�
�; �1

� � Kc
�
�; � C 
.�1 � �/

�
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Table 2.1 �.�/, d.�/, F.�/ D d 00.�/ and � D �.�/ for the examples from Sect. 2.9

Model � d.�/ I.�/ �.�/

Gaussian regression �=�2 �2�2=2 �2 �2�

Bernoulli model log
�
�=.1� �/

�
log.1C e�/ e�=.1C e�/2 e�=.1C e�/

Poisson model log � e� e� e�

Exponential model 1=� � log� 1=�2 1=�

Volatility model �1=.2�/ � 1
2

log.�2�/ 1=.2�2/ �1=.2�/

Proof. Differentiating the equation
R
p.y; �/
0.dy/ D 1 w.r.t. � yields

Z ˚
y � d 0.�/

�
p.y; �/
0.dy/ D 0;

that is, E�Y D d 0.�/. The expression for the variance can be proved by one more
differentiating of this equation. Similarly one can check .ii/. The item .iii/ can be
checked by simple algebra and .iv/ follows from .i/.

Further, for any �; �1 2 U, it holds

`.Y; �1; �/� E�`.Y; �1; �/ D .�1 � �/˚Y � d 0.�/
�

and with u D 
.�1 � �/

logE� exp
˚
u
�
Y � d 0.�/

��

D �ud 0.�/C d.� C u/� d.�/C logE� exp
˚
uY � d.� C u/C d.�/

�

D d.� C u/� d.�/� ud 0.�/ D Kc.�; � C u/;

because

E� exp
˚
uY � d.� C u/C d.�/

� D E�
dP�Cu

dP�
D 1

and .iv/ follows by .iii/.

Table 2.1 presents the canonical parameter and the Fisher information for the
examples of exponential families from Sect. 2.9.

Exercise 2.11.2. Check .iii/ and .iv/ in Lemma 2.11.4.

Exercise 2.11.3. Check the entries of Table 2.1.

Exercise 2.11.4. Check that Kc.�; � 0/ D K
�
�.�/; �.� 0/

�
.

Exercise 2.11.5. Plot Kc.��; �/ as a function of � for the families from Table 2.1.
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2.11.2.2 Maximum Likelihood Estimation for an EFc

The structure of the log-likelihood in the case of the canonical parametrization is
particularly simple:

L.�/ D
nX

iD1
logp.Yi ; �/ D �

nX

iD1
Yi � d.�/

nX

iD1
1C

nX

iD1
logp.Yi /

D S� � nd.�/CR

where

S D
nX

iD1
Yi ; R D

nX

iD1
logp.Yi /:

Again, as in the case of an EFn, we can ignore the remainder termR. The estimating
equation dL.�/=d� D 0 for the maximum likelihood estimate Q� reads as

d 0.�/ D S=n:

This and the relation � D d 0.�/ lead to the following result.

Theorem 2.11.2. The MLEs Q� and Q� for the natural and canonical parametrization
are related by the equations

Q� D d 0. Q�/ Q� D C. Q�/:

The next result describes the structure of the fitted log-likelihood and basically
repeats the result of Theorem 2.11.1.

Theorem 2.11.3. Let .P�/ be an EF with canonical parametrization. Then for any

� 2 U the fitted log-likelihood L. Q�; �/ defD max�0 L.� 0; �/ satisfies

L. Q�; �/ D nKc. Q�; �/:

Exercise 2.11.6. Check the statement of Theorem 2.11.3.

2.11.3 Deviation Probabilities for the Maximum Likelihood

Let Y1; : : : ; Yn be i.i.d. observations from an EF P. This section presents a
probability bound for the fitted likelihood. To be more specific we assume that P is
canonically parameterized,P D .P�/. However, the bound applies to the natural and
any other parametrization because the value of maximum of the likelihood process
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L.�/ does not depend on the choice of parametrization. The log-likelihood ratio
L.� 0; �/ is given by the expression (2.29) and its maximum over � 0 leads to the
fitted log-likelihood L. Q�; �/ D nKc. Q�; �/.

Our first result concerns a deviation bound for L. Q�; �/. It utilizes the representa-
tion for the fitted log-likelihood given by Theorem 2.11.1. As usual, we assume that
the family P is regular. In addition, we require the following condition.

.Pc/ P D .P�; � 2 U � R/ is a regular EF. The parameter set U is convex. The
function d.�/ is two times continuously differentiable and the Fisher information
F.�/ D d 00.�/ satisfies F.�/ > 0 for all � .

The condition .Pc/ implies that for any compact set U0 there is a constant a D
a.U0/ > 0 such that

jF.�1/=F.�2/j1=2 � a; �1; �2 2 U0 :

Theorem 2.11.4. Let Yi be i.i.d. from a distribution P�� which belongs to an EFc
satisfying .Pc/. For any z > 0

P��

�
L. Q�; ��/ > z

� D P��

�
nKc. Q�; ��/ > z

� � 2e�z:

Proof. The proof is based on two properties of the log-likelihood. The first one is
that the expectation of the likelihood ratio is just one: E�� expL.�; ��/ D 1. This
and the exponential Markov inequality imply for z 
 0

P��

�
L.�; ��/ 
 z

� � e�z: (2.31)

The second property is specific to the considered univariate EF and is based on
geometric properties of the log-likelihood function: linearity in the observations Yi
and convexity in the parameter � . We formulate this important fact in a separate
statement.

Lemma 2.11.5. Let the EFc P fulfill .Pc/. For given z and any �0 2 U, there exist
two values �C > �0 and �� < �0 satisfying Kc.�˙; �0/ D z=n such that

fL. Q�; �0/ > zg � fL.�C; �0/ > zg [ fL.��; �0/ > zg:

Proof. It holds

fL. Q�; �0/ > zg D ˚
sup
�

�
S
�
� � �0

� � n
˚
d.�/� d.�0/

��
> z

�

�
�
S > inf

�>�0

z C n
˚
d.�/� d.�0/

�

� � �0

�
[
�

�S > inf
�<�0

z C n
˚
d.�/� d.�0/

�

�0 � �
�
:
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Define for every u > 0

f .u/ D z C n
˚
d.�0 C u/� d.�0/

�

u
:

This function attains its minimum at a point u satisfying the equation

z=nC d.�0 C u/� d.�0/� d 0.�0 C u/u D 0

or, equivalently,

K.�0 C u; �0/ D z=n:

The condition .Pc/ provides that there is only one solution u 
 0 of this equation.

Exercise 2.11.7. Check that the equationK.�0Cu; �0/ D z=n has only one positive
solution for any z > 0.
Hint: use that K.�0 C u; �0/ is a convex function of u with minimum at u D 0.

Now, it holds with �C D �0 C u

�
S > inf

�>�0

z C n
�
d.�/� d.�0/

�

� � �0

�
D
�
S >

z C n
�
d.�C/� d.�0/

�

�C � �0
�

� fL.�C; �0/ > zg:

Similarly

�
�S > inf

�<�0

z C n
˚
d.�/� d.�0/

�

�0 � �

�
D
�

�S > z C n
�
d.��/ � d.�0/

�

�0 � ��

�

� fL.��; �0/ > zg:

for some �� < �0.

The assertion of the theorem is now easy to obtain. Indeed,

P��

�
L. Q�; ��/ 
 z

� � P��

�
L.�C; ��/ 
 z

�C P��

�
L.��; ��/ 
 z

� � 2e�z

yielding the result.

Exercise 2.11.8. Let .P�/ be a Gaussian shift experiment, that is, P� D N.�; 1/.

• Check that L. Q�; �/ D nj Q� � �j2=2;
• Given z 
 0, find the points �C and �� such that

fL. Q�; ��/ > zg � fL.�C; ��/ > zg [ fL.��; ��/ > zg:



70 2 Parameter Estimation for an i.i.d. Model

• Plot the mentioned sets f� W L. Q�; �/ > zg, f� W L.�C; �/ > zg, and f� W
L.��; �/ > zg as functions of � for a fixed S D P

Yi .

Remark 2.11.1. Note that the mentioned result only utilizes the geometric structure
of the univariate EFc. The most important feature of the log-likelihood ratio
L.�; ��/ D S.� � ��/ � d.�/ C d.��/ is its linearity w.r.t. the stochastic term
S . This allows us to replace the maximum over the whole set U by the maximum
over the set consisting of two points �˙. Note that the proof does not rely on the
distribution of the observations Yi . In particular, Lemma 2.11.5 continues to hold
even within the quasi likelihood approach when L.�/ is not the true log-likelihood.
However, the bound (2.31) relies on the nature of L.�; ��/. Namely, it utilizes that
E exp

˚
L.�˙; ��/

� D 1, which is true under P D P�� nut generally false in the
quasi likelihood setup. Nevertheless, the exponential bound can be extended to the
quasi likelihood approach under the condition of bounded exponential moments for
L.�; ��/: for some 
 > 0, it should hold E exp

˚

L.�; ��/

� D C.
/ < 1.

Theorem 2.11.4 yields a simple construction of a confidence interval for the
parameter �� and the concentration property of the MLE Q�.

Theorem 2.11.5. Let Yi be i.i.d. from P�� 2 P with P satisfying .Pc/.

1. If z˛ satisfies e�z˛ � ˛=2, then

E.z˛/ D ˚
� W nKc

� Q�; �� � z˛
�

is an ˛-confidence set for the parameter ��.
2. Define for any z > 0 the set A.z; ��/ D f� W Kc.�; ��/ � z=ng. Then

P��

� Q� … A.z; ��/
� � 2e�z:

The second assertion of the theorem claims that the estimate Q� belongs with
a high probability to the vicinity A.z; ��/ of the central point �� defined by the
Kullback–Leibler divergence. Due to Lemma 2.11.4(iii) Kc.�; ��/ � F.��/ .� �
��/2=2, where F.��/ is the Fisher information at ��. This vicinity is an interval
around �� of length of order n�1=2. In other words, this result implies the root-n
consistency of Q�.

The deviation bound for the fitted log-likelihood from Theorem 2.11.4 can be
viewed as a bound for the normalized loss of the estimate Q� . Indeed, define the loss
function }.� 0; �/ D K1=2.� 0; �/. Then Theorem 2.11.4 yields that the loss is with
high probability bounded by

p
z=n provided that z is sufficiently large. Similarly

one can establish the bound for the risk.

Theorem 2.11.6. Let Yi be i.i.d. from the distribution P�� which belongs to a
canonically parameterized EF satisfying .Pc/. The following properties hold:

(i). For any r > 0 there is a constant rr such that

E��Lr. Q�; ��/ D nrE��Kr . Q�; ��/ � rr :
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(ii). For every  < 1

E�� exp
˚
L. Q�; ��/

� D E�� exp
˚
nK. Q�; ��/

� � .1C /=.1 � /:

Proof. By Theorem 2.11.4

E��Lr. Q�; ��/ D �
Z

z�0
zr dP��

˚
L. Q�; ��/ > z

�

D r

Z

z�0
zr�1P��

˚
L. Q�; ��/ > z

�
d z

� r

Z

z�0
2zr�1e�zd z

and the first assertion is fulfilled with rr D 2r
R
z�0 z

r�1e�zd z. The assertion .ii/ is
proved similarly.

2.11.3.1 Deviation Bound for Other Parameterizations

The results for the maximum likelihood and their corollaries have been stated for
an EFc. An immediate question that arises in this respect is whether the use of the
canonical parametrization is essential. The answer is “no”: a similar result can be
stated for any EF whatever the parametrization is used. This fact is based on the
simple observation that the maximum likelihood is the value of the maximum of the
likelihood process; this value does not depend on the parametrization.

Lemma 2.11.6. Let .P� / be an EF. Then for any �

L. Q�; �/ D nK.P Q� ; P� /: (2.32)

Exercise 2.11.9. Check the result of Lemma 2.11.6.
Hint: use that both sides of (2.32) depend only on measures P Q� ; P� and not on the
parametrization.

Below we write as before K. Q�; �/ instead of K.P Q� ; P� /. The property (2.32) and
the exponential bound of Theorem 2.11.4 imply the bound for a general EF:

Theorem 2.11.7. Let .P� / be a univariate EF. Then for any z > 0

P��

�
L. Q�; ��/ > z

� D P��

�
nK. Q�; ��/ > z

� � 2e�z:

This result allows us to build confidence sets for the parameter �� and concen-
tration sets for the MLE Q� in terms of the Kullback–Leibler divergence:
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A.z; ��/ D f� W K.�; ��/ � z=ng;
E.z/ D f� W K. Q�; �/ � z=ng:

Corollary 2.11.1. Let .P� / be an EF. If e�z˛ D ˛=2, then

P��

� Q� 62 A.z˛; �
�/
� � ˛;

and

P��

�
E.z˛/ 63 �� � ˛:

Moreover, for any r > 0

E��Lr. Q�; ��/ D nrE��Kr . Q�; ��/ � rr :

2.11.3.2 Asymptotic Against Likelihood-Based Approach

The asymptotic approach recommends to apply symmetric confidence and concen-
tration sets with width of order ŒnF.��/��1=2:

An.z; �
�/ D f� W F.��/ .� � ��/2 � 2z=ng;

En.z/ D f� W F.��/ .� � Q�/2 � 2z=ng;
E0
n.z/ D f� W I. Q�/ .� � Q�/2 � 2z=ng:

Then asymptotically, i.e. for large n, these sets do approximately the same job as the
non-asymptotic sets A.z; ��/ and E.z/. However, the difference for finite samples
can be quite significant. In particular, for some cases, e.g. the Bernoulli of Poisson
families, the sets An.z; �

�/ and E0
n.z/ may extend beyond the parameter set ‚.

2.12 Historical Remarks and Further Reading

The main part of the chapter is inspired by the nice textbook (Borokov, 1998). The
concept of exponential families is credited to Edwin Pitman, Georges Darmois, and
Bernard Koopman in 1935–1936.

The notion of Kullback–Leibler divergence was originally introduced by
Solomon Kullback and Richard Leibler in 1951 as the directed divergence between
two distributions. Many of its useful properties are studied in monograph (Kullback,
1997).

The Fisher information was discussed by several early statisticians, notably
Francis Edgeworth. Maximum-likelihood estimation was recommended, analyzed,
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and vastly popularized by Robert Fisher between 1912 and 1922, although it
had been used earlier by Carl Gauss, Pierre-Simon Laplace, Thorvald Thiele, and
Francis Edgeworth.

The Cramér–Rao inequality was independently obtained by Maurice Fréchet,
Calyampudi Rao, and Harald Cramér around 1943–1945.

For further reading we recommend textbooks by Lehmann and Casella (1998),
Borokov (1998), and Strasser (1985). The deviation bound of Theorem 2.11.4
follows Polzehl and Spokoiny (2006).



Chapter 3
Regression Estimation

This chapter discusses the estimation problem for the regression model. First a linear
regression model is considered, then a generalized linear modeling is discussed. We
also mention median and quantile regression.

3.1 Regression Model

The (mean) regression model can be written in the form E.Y jX/ D f .X/, or
equivalently,

Y D f .X/C "; (3.1)

where Y is the dependent (explained) variable and X is the explanatory variable
(regressor) which can be multidimensional. The target of analysis is the systematic
dependence of the explained variable Y from the explanatory variable X . The
regression function f describes the dependence of the mean of Y as a function ofX .
The value " can be treated as an individual deviation (error). It is usually assumed
to be random with zero mean. Below we discuss in more detail the components of
the regression model (3.1).

3.1.1 Observations

In almost all practical situations, regression analysis is performed on the basis of
available data (observations) given in the form of a sample of pairs .Xi ; Yi / for
i D 1; : : : ; n, where n is the sample size. Here Y1; : : : ; Yn are observed values

V. Spokoiny and T. Dickhaus, Basics of Modern Mathematical Statistics,
Springer Texts in Statistics, DOI 10.1007/978-3-642-39909-1__3,
© Springer-Verlag Berlin Heidelberg 2015

75
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of the regression variable Y and X1; : : : ; Xn are the corresponding values of the
explanatory variable X . For each observation Yi , the regression model reads as:

Yi D f .Xi /C "i

where "i is the individual i th error.

3.1.2 Design

The set X1; : : : ; Xn of the regressor’s values is called a design. The set X of all
possible values of the regressorX is called the design space. If this set X is compact,
then one speaks of a compactly supported design.

The nature of the design can be different for different statistical models. However,
it is important to mention that the design is always observable. Two kinds of design
assumptions are usually used in statistical modeling. A deterministic design assumes
that the points X1; : : : ; Xn are nonrandom and given in advance. Here are typical
examples:

Example 3.1.1 (Time Series). Let Yt0 ; Yt0C1; : : : ; YT be a time series. The time
points t0; t0 C1; : : : ; T build a regular deterministic design. The regression function
f explains the trend of the time series Yt as a function of time.

Example 3.1.2 (Imaging). Let Yij be the observed gray value at the pixel .i; j / of
an image. The coordinate Xij of this pixel is the corresponding design value. The
regression functionf .Xij / gives the true image value atXij which is to be recovered
from the noisy observations Yij .

If the design is supported on a cube in Rd and the design points Xi form a grid
in this cube, then the design is called equidistant. An important feature of such a
design is that the number NA of design points in any “massive” subset A of the
unit cube is nearly the volume of this subset VA multiplied by the sample size n:
NA � nVA. Design regularity means that the value NA is nearly proportional to
nVA, that is, NA � cnVA for some positive constant c which may depend on the
set A.

In some applications, it is natural to assume that the design values Xi are
randomly drawn from some design distribution. Typical examples are given by
sociological studies. In this case one speaks of a random design. The design values
X1; : : : ; Xn are assumed to be independent and identically distributed from a law
PX on the design space X which is a subset of the Euclidean space Rd . The design
variablesX are also assumed to be independent of the observations Y .

One special case of random design is the uniform design when the design
distribution is uniform on the unit cube in Rd . The uniform design possesses a
similar, important property to an equidistant design: the number of design points in
a “massive” subset of the unit cube is on average close to the volume of this set
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multiplied by n. The random design is called regular on X if the design distribution
is absolutely continuous with respect to the Lebesgue measure and the design
density �.x/ D dPX.x/=d is positive and continuous on X. This again ensures
with a probability close to one the regularity property NA � cnVA with c D �.x/

for some x 2 A.
It is worth mentioning that the case of a random design can be reduced to the

case of a deterministic design by considering the conditional distribution of the data
given the design variables X1; : : : ; Xn.

3.1.3 Errors

The decomposition of the observed response variable Y into the systematic compo-
nent f .x/ and the error " in the model equation (3.1) is not formally defined and
cannot be done without some assumptions on the errors "i . The standard approach
is to assume that the mean value of every "i is zero. Equivalently this means that the
expected value of the observation Yi is just the regression function f .Xi /. This case
is called mean regression or simply regression. It is usually assumed that the errors
"i have finite second moments. Homogeneous errors case means that all the errors
"i have the same variance �2 D Var "2i . The variance of heterogeneous errors "i may
vary with i . In many applications not only the systematic component f .Xi/ D EYi
but also the error variance VarYi D Var "i depend on the regressor (location) Xi .
Such models are often written in the form

Yi D f .Xi /C �.Xi /"i :

The observation (noise) variance �2.x/ can be the target of analysis similarly to the
mean regression function.

The assumption of zero mean noise, E"i D 0, is very natural and has a clear
interpretation. However, in some applications, it can cause trouble, especially if data
are contaminated by outliers. In this case, the assumption of a zero mean can be
replaced by a more robust assumption of a zero median. This leads to the median
regression model which assumes P."i � 0/ D 1=2, or, equivalently

P
�
Yi � f .Xi / � 0

� D 1=2:

A further important assumption concerns the joint distribution of the errors "i . In
the majority of applications the errors are assumed to be independent. However, in
some situations, the dependence of the errors is quite natural. One example can be
given by time series analysis. The errors "i are defined as the difference between
the observed values Yi and the trend function fi at the i th time moment. These
errors are often serially correlated and indicate short or long range dependence.
Another example comes from imaging. The neighbor observations in an image are
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often correlated due to the imaging technique used for recoding the images. The
correlation particularly results from the automatic movement correction.

For theoretical study one often assumes that the errors "i are not only independent
but also identically distributed. This, of course, yields a homogeneous noise. The
theoretical study can be simplified even further if the error distribution is normal.
This case is called Gaussian regression and is denoted as "i � N.0; �2/. This
assumption is very useful and greatly simplifies the theoretical study. The main
advantage of Gaussian noise is that the observations and their linear combinations
are also normally distributed. This is an exclusive property of the normal law which
helps to simplify the exposition and avoid technicalities.

Under the given distribution of the errors, the joint distribution of the observa-
tions Yi is determined by the regression function f .	/.

3.1.4 Regression Function

By Eq. (3.1), the regression variable Y can be decomposed into a systematic
component and a (random) error ". The systematic component is a deterministic
function f of the explanatory variable X called the regression function. Classical
regression theory considers the case of linear dependence, that is, one fits a linear
relation between Y and X :

f .x/ D a C bx

leading to the model equation

Yi D �1 C �2Xi C "i :

Here �1 and �2 are the parameters of the linear model. If the regressor x is
multidimensional, then �2 is a vector from Rd and �2x becomes the scalar product
of two vectors. In many practical examples the assumption of linear dependence is
too restrictive. It can be extended by several ways. One can try a more sophisticated
functional dependence of Y on X , for instance polynomial. More generally, one
can assume that the regression function f is known up to the finite-dimensional
parameter � D .�1; : : : ; �p/

> 2 Rp . This situation is called parametric regression
and denoted by f .	/ D f .	;�/. If the function f .	;�/ depends on � linearly, that
is, f .x;�/ D �1 1.x/ C : : : C �p p.x/ for some given functions  1; : : : ;  p ,
then the model is called linear regression. An important special case is given
by polynomial regression when f .x/ is a polynomial function of degree p � 1:
f .x/ D �1 C �2x C : : :C �px

p�1.
In many applications a parametric form of the regression function cannot be

justified. Then one speaks of nonparametric regression.
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3.2 Method of Substitution and M-Estimation

Observe that the parametric regression equation can be rewritten as

"i D Yi � f .Xi ;�/:

If Q� is an estimate of the parameter � , then the residuals Q"i D Yi � f .Xi ; Q�/ are
estimates of the individual errors "i . So, the idea of the method is to select the
parameter estimate Q� in a way that the empirical distribution Pn of the residuals Q"i
mimics as well as possible certain prescribed features of the error distribution. We
consider one approach called minimum contrast or M-estimation. Let  .y/ be an
influence or contrast function. The main condition on the choice of this function is
that

E ."i C z/ 
 E ."i /

for all i D 1; : : : ; n and all z. Then the true value �� clearly minimizes the
expectation of the sum

P
i  
�
Yi � f .Xi ;�/

�
:

�� D argmin
�

E
X

i

 
�
Yi � f .Xi ;�/

�
:

This leads to the M-estimate

Q� D argmin
�2‚

X

i

 
�
Yi � f .Xi ;�/

�
:

This estimation method can be treated as replacing the true expectation of the errors
by the empirical distribution of the residuals.

We specify this approach for regression estimation by the classical examples of
least squares, least absolute deviation (LAD) and maximum likelihood estimation
corresponding to  .x/ D x2,  .x/ D jxj and  .x/ D � log �.x/, where �.x/ is
the error density. All these examples belong within framework of M-estimation and
the quasi maximum likelihood approach.

3.2.1 Mean Regression: Least Squares Estimate

The observations Yi are assumed to follow the model

Yi D f .Xi ;�
�/C "i ; E"i D 0 (3.2)
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with an unknown target ��. Suppose in addition that �2i D E"2i < 1. Then for
every � 2 ‚ and every i � n due to (3.2)

E��

˚
Yi � f .Xi ;�/

�2 D E��

˚
"i C f .Xi ;�

�/� f .Xi ;�/
�2

D �2i C ˇ
ˇf .Xi ;��/� f .Xi ;�/

ˇ
ˇ2:

This yields for the whole sample

E��

X˚
Yi � f .Xi ;�/

�2 D
X˚

�2i C ˇ
ˇf .Xi ;��/ � f .Xi ;�/

ˇ
ˇ2�:

This expression is clearly minimized at � D ��. This leads to the idea of estimating
the parameter �� by maximizing its empirical counterpart. The resulting estimate is
called the (ordinary) least squares estimate (LSE):

Q�LSE D argmin
�2‚

X˚
Yi � f .Xi ;�/

�2
:

This estimate is very natural and requires minimal information about the errors "i .
Namely, one only needs E"i D 0 and E"2i < 1.

3.2.2 Median Regression: LAD Estimate

Consider the same regression model as in (3.2), but the errors "i are not zero-mean.
Instead we assume that their median is zero:

Yi D f .Xi ;�
�/C "i ; med."i / D 0:

As previously, the target of estimation is the parameter ��. Observe that "i D Yi �
f .Xi ;�

�/ and hence, the latter r.v. has median zero. We now use the following
simple fact: if med."/ D 0, then for any z ¤ 0

Ej"C zj 
 Ej"j: (3.3)

Exercise 3.2.1. Prove (3.3).

The property (3.3) implies for every �

E��

Xˇ
ˇYi � f .Xi ;�/

ˇ
ˇ 
 E��

Xˇ
ˇYi � f .Xi ;�

�/
ˇ
ˇ;

that is, �� minimizes over � the expectation under the true measure of the sumPˇ
ˇYi � f .Xi ;�/

ˇ
ˇ. This leads to the empirical counterpart of �� given by
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Q� D argmin
�2‚

Xˇ
ˇYi � f .Xi ;�/

ˇ
ˇ:

This procedure is usually referred to as LADs regression estimate.

3.2.3 Maximum Likelihood Regression Estimation

Let the density function �.	/ of the errors "i be known. The regression equation (3.2)
implies "i D Yi �f .Xi ;��/. Therefore, every Yi has the density �.y�f .Xi ;��//.
Independence of the Yi ’s implies the product structure of the density of the joint
distribution:

Y
�.yi � f .Xi ;�//;

yielding the log-likelihood

L.�/ D
X

`.Yi � f .Xi ;�//

with `.t/ D log �.t/. The maximum likelihood estimate (MLE) is the point of
maximum of L.�/:

Q� D argmax
�2‚

L.�/ D argmax
�2‚

X
`.Yi � f .Xi ;�//:

A closed form solution for this equation exists only in some special cases like linear
Gaussian regression. Otherwise this equation has to be solved numerically.

Consider an important special case corresponding to the i.i.d. Gaussian errors
when �.y/ is the density of the normal law with mean zero and variance �2. Then

L.�/ D �n
2

log.2��2/� 1

2�2

Xˇ
ˇYi � f .Xi ;�/

ˇ
ˇ2:

The corresponding MLE maximizes L.�/ or, equivalently, minimizes the sum
Pˇ
ˇYi � f .Xi ;�/

ˇ
ˇ2:

Q� D argmax
�2‚

L.�/ D argmin
�2‚

Xˇ
ˇYi � f .Xi ;�/

ˇ
ˇ2: (3.4)

This estimate has already been introduced as the ordinary least squares estimate
(oLSE).

An extension of the previous example is given by inhomogeneous Gaussian
regression, when the errors "i are independent Gaussian zero-mean but the variances
depend on i : E"2i D �2i . Then the log-likelihood L.�/ is given by the sum
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L.�/ D
Xn

�
ˇ̌
Yi � f .Xi ;�/

ˇ̌2

2�2i
� 1

2
log.2��2i /

o
:

Maximizing this expression w.r.t. � is equivalent to minimizing the weighted sum
P
��2
i

ˇ
ˇYi � f .Xi ;�/

ˇ
ˇ2:

Q� D argmin
�2‚

X
��2
i

ˇ
ˇYi � f .Xi ;�/

ˇ
ˇ2:

Such an estimate is also called the weighted least squares (wLSE).
Another example corresponds to the case when the errors "i are i.i.d. double

exponential, so that P.˙"1 > t/ D e�t=� for some given � > 0. Then �.y/ D
.2�/�1e�jyj=� and

L.�/ D �n log.2�/ � ��1Xˇ
ˇYi � f .Xi ;�/

ˇ
ˇ:

The MLE Q� maximizesL.�/ or, equivalently, minimizes the sum
PˇˇYi�f .Xi ;�/

ˇ
ˇ:

Q� D argmax
�2‚

L.�/ D argmin
�2‚

Xˇ
ˇYi � f .Xi ;�/

ˇ
ˇ:

So the maximum likelihood regression with Laplacian errors leads back to the LADs
estimate.

3.2.4 Quasi Maximum Likelihood Approach

This section very briefly discusses an extension of the maximum likelihood
approach. A more detailed discussion will be given in context of linear modeling
in Chap. 4. To be specific, consider a regression model

Yi D f .Xi /C "i :

The maximum likelihood approach requires to specify the two main ingredients
of this model: a parametric class ff .x;�/;� 2 ‚g of regression functions and
the distribution of the errors "i . Sometimes such information is lacking. One or
even both modeling assumptions can be misspecified. In such situations one speaks
of a quasi maximum likelihood approach, where the estimate Q� is defined via
maximizing over � the random function L.�/ even though it is not necessarily the
real log-likelihood. Some examples of this approach have already been given.

Below we distinguish between misspecification of the first and second kind. The
first kind corresponds to the parametric assumption about the regression function:
assumed is the equality f .Xi / D f .Xi ;�

�/ for some �� 2 ‚. In reality one
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can only expect a reasonable quality of approximating f .	/ by f .	;��/. A typical
example is given by linear (polynomial) regression. The linear structure of the
regression function is useful and tractable but it can only be a rough approximation
of the real relation between Y and X . The quasi maximum likelihood approach
suggests to ignore this misspecification and proceed as if the parametric assumption
is fulfilled. This approach raises a number of questions: what is the target of
estimation and what is really estimated by such quasi ML procedure? In Chap. 4 we
show in the context of linear modeling that the target of estimation can be naturally
defined as the parameter �� providing the best approximation of the true regression
function f .	/ by its parametric counterpart f .	;�/.

The second kind of misspecification concerns the assumption about the errors
"i . In most of the applications, the distribution of errors is unknown. Moreover,
the errors can be dependent or non-identically distributed. Assumption of a specific
i.i.d. structure leads to a model misspecification and thus, to the quasi maximum
likelihood approach. We illustrate this situation by few examples.

Consider the regression model Yi D f .Xi ;�
�/C "i and suppose for a moment

that the errors "i are i.i.d. normal. Then the principal term of the corresponding log-
likelihood is given by the negative sum of the squared residuals:

Pˇ
ˇYi �f .Xi ;�/

ˇ
ˇ2,

and its maximization leads to the least squares method. So, one can say that the LSE
method is the quasi MLE when the errors are assumed to be i.i.d. normal. That is,
the LSE can be obtained as the MLE for the imaginary Gaussian regression model
when the errors "i are not necessarily i.i.d. Gaussian.

If the data are contaminated or the errors have heavy tails, it could be unwise
to apply the LSE method. The LAD method is known to be more robust against
outliers and data contamination. At the same time, it has already been shown in
Sect. 3.2.3 that the LAD estimates is the MLE when the errors are Laplacian (double
exponential). In other words, LAD is the quasi MLE for the model with Laplacian
errors.

Inference for the quasi ML approach is discussed in detail in Chap. 4 in the
context of linear modeling.

3.3 Linear Regression

One standard way of modeling the regression relationship is based on a linear
expansion of the regression function. This approach is based on the assumption that
the unknown regression function f .	/ can be represented as a linear combination of
given basis functions  1.	/; : : : ;  p.	/:

f .x/ D �1 1.x/C : : :C �p p.x/:

A couple of popular examples are listed in this section. More examples are given
below in Sect. 3.3.1 in context of projection estimation.
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Example 3.3.1 (Multivariate Linear Regression). Let x D .x1; : : : ; xd /
> be d -

dimensional. The linear regression function f .x/ can be written as

f .x/ D a C b1x1 C : : :C bdxd :

Here we have p D d C 1 and the basis functions are  1.x/ � 1 and  m D xm�1
for m D 2; : : : ; p. The coefficient a is often called the intercept and b1; : : : ; bd
are the slope coefficients. The vector of coefficients � D .a; b1; : : : ; bd /

> uniquely
describes the linear relation.

Example 3.3.2 (Polynomial Regression). Let x be univariate and f .	/ be a polyno-
mial function of degree p � 1, that is,

f .x/ D �1 C �2x C : : :C �px
p�1:

Then the basic functions are  1.x/ � 1,  2.x/ � x,  p.x/ � xp�1, while � D
.�1; : : : ; �p/

> is the corresponding vector of coefficients.

Exercise 3.3.1. Let the regressor x be d -dimensional, x D .x1; : : : ; xd /
>.

Describe the basis system and the corresponding vector of coefficients for the
case when f is a quadratic function of x.

Linear regression is often described using vector–matrix notation. Let ‰i be the
vector in Rp whose entries are the values m.Xi / of the basis functions at the design
pointXi ,m D 1; : : : ; p. Then f .Xi / D ‰>

i �
�, and the linear regression model can

be written as

Yi D ‰>
i �

� C "i ; i D 1; : : : ; n:

Denote by Y D .Y1; : : : ; Yn/
> the vector of observations (responses), and " D

."1; : : : ; "n/
> the vector of errors. Let finally ‰ be the p � n matrix with columns

‰1; : : : ; ‰n, that is, ‰ D �
 m.Xi /

�iD1;:::;n
mD1;:::;p . Note that each row of ‰ is composed

by the values of the corresponding basis function  m at the design points Xi . Now
the regression equation reads as

Y D ‰>�� C ":

The estimation problem for this linear model will be discussed in detail in Chap. 4.

3.3.1 Projection Estimation

Consider a (mean) regression model

Yi D f .Xi/C "i ; i D 1; : : : ; n: (3.5)
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The target of the analysis is the unknown nonparametric function f which has
to be recovered from the noisy data Y . This approach is usually considered
within the nonparametric statistical theory because it avoids fixing any parametric
specification of the model function f , and thus, of the distribution of the data Y .
This section discusses how this nonparametric problem can be put back into the
parametric theory.

The standard way of estimating the regression function f is based on some
smoothness assumption about this function. It enables us to expand the given
function w.r.t. some given functional basis and to evaluate the accuracy of approxi-
mation by finite sums. More precisely, let  1.x/; : : : ;  m.x/; : : : be a given system
of functions. Specific examples are trigonometric (Fourier, cosine), orthogonal
polynomial (Chebyshev, Legendre, Jacobi), and wavelet systems among many
others. The completeness of this system means that a given function f can be
uniquely expanded in the form

f .x/ D
1X

mD1
�m m.x/: (3.6)

A very desirable feature of the basis system is orthogonality:

Z
 m.x/ m0.x/
X.dx/ D 0; m ¤ m0:

Here 
X can be some design measure on X or the empirical design measure
n�1P ıXi . However, the expansion (3.6) is untractable because it involves infinitely
many coefficients �m. A standard procedure is to truncate this expansion after the
first p terms leading to the finite approximation

f .x/ �
pX

mD1
�m m.x/: (3.7)

Accuracy of such an approximation becomes better and better as the number p of
terms grows. A smoothness assumption helps to estimate the rate of convergence to
zero of the remainder term f � �1 1 � : : : � �p p :


f � �1 1 � : : : � �p p


 � rp ; (3.8)

where rp describes the accuracy of approximation of the function f by the
considered finite sums uniformly over the class of functions with the prescribed
smoothness. The norm used in the definition (3.8) as well as the basis f mg depends
on the particular smoothness class. Popular examples are given by Hölder classes
for the L1 norm, Sobolev smoothness for L2-norm or more generally Ls-norm for
some s 
 1.
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A choice of a proper truncation value p is one of the central problems in non-
parametric function estimation. With p growing, the quality of approximation (3.7)
improves in the sense that rp ! 0 as p ! 1. However, the growth of the
parameter dimension yields the growth of model complexity, one has to estimate
more and more coefficients. Section 4.7 below briefly discusses how the problem
can be formalized and how one can define the optimal choice. However, a rigorous
solution is postponed until the next volume. Here we suppose that the value p
is fixed by some reasons and apply the quasi maximum likelihood parametric
approach. Namely, the approximation (3.7) is assumed to be the exact equality:

f .x/ � f .x;��/ defD ��
1  1.x/ C : : : C ��

p p . Model misspecification f .	/ 6�
f .	;�/ defD �1 1.x/C: : :C�p p for any vector � 2 ‚means the modeling error, or,
the modeling bias. The parametric approach ignores this modeling error and focuses
on the error within the model which describes the accuracy of the qMLE Q� .

The qMLE procedure requires to specify the error distribution which appears in
the log-likelihood. In the most general form, let P0 be the joint distribution of the
error vector ", and let �.n/."/ be its density function on Rn. The identities "i D
Yi � f .Xi ;�/ yield the log-likelihood

L.�/ D log�.n/
�
Y � f .X ;�/�: (3.9)

If the errors "i are i.i.d. with the density �.y/, then

L.�/ D
X

log �.Yi � f .Xi ;�//: (3.10)

The most popular least squares method (3.4) implicitly assumes Gaussian homoge-
neous noise: "i are i.i.d. N.0; �2/. The LAD approach is based on the assumption
of Laplace error distribution. Categorical data are modeled by a proper exponential
family distribution; see Sect. 3.5. Below we assume that the one or another assump-
tion about errors is fixed and the log-likelihood is described by (3.9) or (3.10). This
assumption can be misspecified and the qMLE analysis has to be done under the true
error distribution. Some examples of this sort for linear models are given in Sect. 4.6.

In the rest of this section we only discuss how the regression function f in (3.5)
can be approximated by different series expansions. With the selected expansion
and the assumption on the errors, the approximating parametric model is fixed due
to (3.9). In most of the examples we only consider a univariate design with d D 1.

3.3.2 Polynomial Approximation

It is well known that any smooth function f .	/ can be approximated by a
polynomial. Moreover, the larger smoothness of f .	/ is the better the accuracy of
approximation. The Taylor expansion yields an approximation in the form

f .x/ � �0 C �1x C �2x
2 C : : :C �mx

m: (3.11)
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Such an approximation is very natural, however, it is rarely used in statistical
applications. The main reason is that the different power functions  m.x/ D xm

are highly correlated between each other. This makes difficult to identify the
corresponding coefficients. Instead one can use different polynomial systems which
fulfill certain orthogonality conditions.

We say that f .x/ is a polynomial of degree m if it can be represented in the
form (3.11) with �m ¤ 0. Any sequence 1;  1.x/; : : : ;  m.x/ of such polynomials
yields a basis in the vector space of polynomials of degreem.

Exercise 3.3.2. Let for each j � m a polynomial of degree j be fixed. Then any
polynomial Pm.x/ of degreem can be represented in a unique way in the form

Pm.x/ D c0 C c1 1.x/C : : :C cm m.x/

Hint: define cm D P
.m/
m = 

.m/
m and apply induction to Pm.x/ � cm m.x/.

3.3.3 Orthogonal Polynomials

Let 
 be any measure on the real line satisfying the condition

Z
xm
.dx/ < 1; (3.12)

for any integer m. This enables us to define the scalar product for two polynomial
functions f; g by

˝
f; g

˛ defD
Z
f .x/g.x/
.dx/:

With such a Hilbert structure we aim to define an orthonormal polynomial system
of polynomials  m of degreem form D 0; 1; 2; : : : such that

˝
 j ;  m

˛ D ıj;m D 1I.j D m/; j;m D 0; 1; 2; : : : :

Theorem 3.3.1. Given a measure 
 satisfying the condition (3.12) there exists
unique orthonormal polynomial system  1; 2; : : :. Any polynomial Pm of degree
m can be represented as

Pm.x/ D a0 C a1 1.x/C : : :C am m.x/

with

aj D ˝
Pm; j

˛
: (3.13)
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Proof. We construct the function  m successively. The function  0 is a constant
defined by

 20

Z

.dx/ D 1:

Suppose now that the orthonormal polynomials  1; : : : ;  m�1 have been already
constructed. Define the coefficients

aj
defD
Z
xm j .x/
.dx/; j D 0; 1; : : : ; m � 1;

and consider the function

gm.x/
defD xm � a0 0 � a1 1.x/ � : : : � am�1 m�1.x/:

This is obviously a polynomial of degree m. Moreover, by orthonormality of the
 j ’s for j < m

Z
gm.x/ j .x/
.dx/ D

Z
xm j .x/
.dx/� aj

Z
 2j .x/
.dx/ D 0:

So, one can define  m by normalization of gm:

 m.x/
defD ˝

gm; gm
˛�1=2

gm.x/:

One can also easily see that such defined  m is only polynomial of degreem which
is orthogonal to  j for j < m and fulfills

˝
 m; m

˛ D 1, because the number of
constraints is equal to the number of coefficients �0; : : : ; �m of  m.x/.

Let now Pm be a polynomial of degree m. Define the coefficient am by (3.13).
Similarly to above one can show that

Pm.x/ � ˚
a0 C a1 1.x/C : : :C am m.x/

� � 0

which implies the second claim.

Exercise 3.3.3. Let
˚
 m
�

be an orthonormal polynomial system. Show that for any
polynomial Pj .x/ of degree j < m, it holds

˝
Pj ;  m

˛ D 0:

3.3.3.1 Finite Approximation and the Associated Kernel

Let f be a function satisfying
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Z
f 2.x/
.dx/ < 1: (3.14)

Then the scalar product aj D ˝
f; j

˛
is well defined for all j 
 0 leading for each

m 
 1 to the following approximation:

fm.x/
defD

mX

jD0
aj j .x/ D

mX

jD0

Z
f .u/ j .u/
.du/ j .x/

D
Z
f .u/ˆm.x; u/
.du/ (3.15)

with

ˆm.x; u/ D
mX

jD0
 j .x/ j .u/:

3.3.3.2 Completeness

The accuracy of approximation of f by fm with m growing is one of the central
questions in the approximation theory. The answer depends on the regularity of the
function f and on choice of the system

˚
 m
�
. Let F be a linear space of functions f

on the real line satisfying (3.14). We say that the basis system f m.x/g is complete
in F if the identities

˝
f; m

˛ D 0 for all m 
 0 imply f � 0. As  m.x/ is a
polynomial of degreem, this definition is equivalent to the condition

˝
f; xm

˛ D 0; m D 0; 1; 2; : : : ” f � 0:

3.3.3.3 Squared Bias and Accuracy of Approximation

Let f 2 F be a function in L2 satisfying (3.14), and let f mg be a complete basis.
Consider the error f .x/�fm.x/ of the finite approximation fm.x/ from (3.15). The
Parseval identity yields

Z
f 2.x/
.dx/ D

1X

mD0
a2m:

This yields that the finite sums of
Pm

jD0 a2j converge to the infinite sum
P1

mD0 a2m
and the remainder bm D P1

jDmC1 a2j tends to zero with m:
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bm
defD ˝

f � fm
˛ D

Z ˇ
ˇf .x/ � fm.x/

ˇ
ˇ2
.dx/ D

1X

jDmC1
a2j ! 0

as m ! 1. The value bm is often called the squared bias. Below in this section
we briefly overview some popular polynomial systems used in the approximation
theory.

3.3.4 Chebyshev Polynomials

Chebyshev polynomials are frequently used in the approximation theory because of
their very useful features. These polynomials can be defined by many ways: explicit
formulas, recurrent relations, differential equations, among others.

3.3.4.1 A Trigonometric Definition

Chebyshev polynomials is usually defined in the trigonometric form:

Tm.x/ D cos
�
m arccos.x/

�
: (3.16)

Exercise 3.3.4. Check that Tm.x/ from (3.16) is a polynomial of degreem.

Hint: use the formula cos
�
.m C 1/u

� D 2 cos.u/ cos.mu/ � cos
�
.m � 1/u

�
and

induction arguments.

3.3.4.2 Recurrent Formula

The trigonometric identity cos
�
.m C 1/u

� D 2 cos.u/ cos.mu/ � cos
�
.m � 1/u

�

yields the recurrent relation between Chebyshev polynomials:

TmC1.x/ D 2xTm.x/ � Tm�1.x/; m 
 1: (3.17)

Exercise 3.3.5. Describe the first 5 polynomials Tm.

Hint: use that T0.x/ � 1 and T1.x/ � x and use the recurrent formula (3.17).

3.3.4.3 The Leading Coefficient

The recurrent relation (3.17) and the formulas T0.x/ � 1 and T1.x/ � x imply
that the leading coefficient of Tm.x/ is equal to 2m�1 by induction arguments.
Equivalently



3.3 Linear Regression 91

T .m/m .x/ � 2m�1mŠ

3.3.4.4 Orthogonality and Normalization

Consider the measure 
.dx/ on the open interval .�1; 1/ with the density .1 �
x2/�1=2 with respect to the Lebesgue measure. By the change of variables x D
cos.u/ we obtain for all j ¤ m

Z 1

�1
Tm.x/Tj .x/

dxp
1 � x2

D
Z �

0

cos.mu/ cos.ju/du D 0:

Moreover, form 
 1

Z 1

�1
T 2m.x/

dxp
1 � x2 D

Z �

0

cos2.mu/du D 1

2

Z �

0

˚
1C cos.2mu/

�
du D �

2
:

Finally,

Z 1

�1
dxp
1 � x2

D
Z �

0

du D �:

So, the orthonormal system can be defined by normalizing the Chebyshev polyno-
mials Tm.x/:

 0.x/ � ��1=2;  m.x/ D
p
2=� Tm.x/; m 
 1:

3.3.4.5 The Moment Generating Function

The bivariate function

f .t; x/ D
1X

mD0
Tm.x/t

m (3.18)

is called the moment generating function. It holds for the Chebyshev polynomials

f .t; x/ D 1 � tx

1 � 2tx C t2
:

This fact can be proven by using the recurrent formula (3.17) and the following
relation:
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f .x; t/ D 1C tx C t

1X

mD1
TmC1.x/tm

D 1C tx C t

1X

mD1

˚
2xTm.x/ � Tm�1.x/

�
tm

D 1C tx C 2tx
˚
f .x; t/ � 1� � t2f .x; t/: (3.19)

Exercise 3.3.6. Check (3.19) and (3.18).

3.3.4.6 Roots of Tm

The identity cos
�
�.k�1=2/� � 0 for all integer k yields the roots of the polynomial

Tm.x/:

xk;m D cos
��.k � 1=2/

m

�
; k D 1; : : : ; m: (3.20)

This means that Tm.xk;m/ D 0 for k D 1; : : : ; m and hence, Tm.x/ has exactly m
roots on the interval Œ�1; 1�.

3.3.4.7 Discrete Orthogonality

Let x1;N ; : : : ; xN;N be the roots of TN due to (3.20): xk;N D cos
�
�.2k�1/
2N

�
. Define

the discrete inner product

˝
Tm; Tj

˛
N

D
NX

kD1
Tm.xk;N /Tj .xk;N /:

Then it holds similarly to the continuous case

˝
Tm; Tj

˛
N

D

8
ˆ̂
<

ˆ̂
:

0 m ¤ j;

N=2 m D j ¤ 0

N m D j D 0:

(3.21)

Exercise 3.3.7. Prove (3.21).
Hint: use that for all m > 0

NX

kD1
cos
��m.k � 1=2/

N

�
D 0
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yielding for all m0 ¤ m

NX

kD1
cos
��m.k � 1=2/

N

�
cos
��m0.k � 1=2/

N

�
D 0

3.3.4.8 Extremes of Tm.x/

Obviously
ˇ
ˇTm.x/

ˇ
ˇ � 1 because the cos-function is bounded by one in absolute

value. Moreover, cos.k�/ D .�1/k yields the extreme points ek with Tm.ek/ D
.�1/k for

ek D cos

	
�k

m



; k D 0; 1; : : : ; m: (3.22)

In particular, the edge points x D 1 and x D �1 are extremes of Tm.x/.

Exercise 3.3.8. Check that Tm.ek/ D .�1/k for ek from (3.22). Show that Tm.1/ D
1 and Tm.�1/ D .�1/m. Show that jTm.x/j < 1 for x ¤ ek on Œ�1; 1�.
Hint: Tm is a polynomial of degree m, hence, it can have at most m � 1 extreme
points inside the interval .�1; 1/, which are e1; : : : ; em�1.

3.3.4.9 Sup-Norm

The important feature of the Chebyshev polynomials which makes them very useful
for the approximation theory is that each of them minimizes the sup-norm over all
polynomial of the certain degree with the fixed leading coefficient.

Theorem 3.3.2. The scaled Chebyshev polynomial fm.x/ D 21�mTm minimizes

the sup-norm kf k1
defD supx2Œ�1;1� jf .x/j over the class of all polynomials of degree

m with the leading coefficient 1.

Proof. As jTm.x/j � 1, the sup-norm of fm fulfills kfmk1 D 21�m. Let w.x/ be
any other polynomial with the leading coefficient one and jw.x/j < 21�m. Consider
the difference fm.x/ � w.x/ at the extreme points ek from (3.22). Then fm.ek/ �
w.ek/ > 0 for all even k D 0; 2; 4; : : : and fm.ek/ � w.ek/ < 0 for all odd k D
1; 3; 5; : : :. This means that this difference has at least m roots on Œ�1; 1� which is
impossible because it is a polynomial of degree m � 1.

3.3.4.10 Expansion by Chebyshev Polynomials and Discrete Cosine
Transform

Let f .x/ be a measurable function satisfying
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Z 1

�1
f 2.x/

dxp
1 � x2

< 1:

Then this function can be uniquely expanded by Chebyshev polynomials:

f .x/ D
1X

mD0
amTm.x/:

The coefficients am in this expansion can be obtained by projection

am D ˝
f; Tm

˛ D
Z 1

�1
f .x/Tm.x/

dxp
1 � x2

< 1:

However, this method is numerically intensive. Instead, one can use the discrete

orthogonality (3.21). Let some N be fixed and xk;N D cos
�
�.k�1=2/

N

�
. Then for

m 
 1

am D 1

N

NX

kD1
f .xk;N / cos

��.k � 1=2/

N

�
:

This sum can be computed very efficiently via the discrete cosine transform.

3.3.5 Legendre Polynomials

The Legendre polynomials Pm.x/ are often used in physics and in harmonic
analysis. It is an orthogonal polynomial system on the interval Œ�1; 1� w.r.t. the
Lebesgue measure, that is,

Z 1

�1
Pm.x/Pm0.x/dx D 0; m ¤ m0: (3.23)

They also can be defined as solutions of the Legendre differential equation

d

dx

�
.1 � x2/

d

dx
Pm.x/

�Cm.mC 1/Pm.x/ D 0: (3.24)

An explicit representation is given by the Rodrigues’ formula

Pm.x/ D 1

2mmŠ

dm

dxm
�
.1 � x2/m

�
: (3.25)
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Exercise 3.3.9. Check that Pm.x/ from (3.25) fulfills (3.24).
Hint: differentiatemC 1 times the identity

.x2 � 1/
d

dx
.x2 � 1/m D 2mx.x2 � 1/m

yielding

2Pm.x/C 2x
d

dx
Pm.x/C .x2 � 1/

d2

dx2
Pm.x/

D 2mPm.x/C 2mx
d

dx
Pm.x/:

3.3.5.1 Orthogonality

The orthogonality property (3.23) can be checked by using the Rodrigues’ formula.

Exercise 3.3.10. Check that for m < m0

Z 1

�1
Pm.x/Pm0.x/dx D 0: (3.26)

Hint: integrate (3.26) by part m C 1 times with Pm from (3.25) and use that the
mC 1th derivative of Pm vanishes.

3.3.5.2 Recursive Definition

It is easy to check that P0.x/ � 1 and P1.x/ � x. Bonnet’s recursion formula
relates 3 subsequent Legendre polynomials: form 
 1

.mC 1/PmC1.x/ D .2mC 1/xPm.x/ �mPm�1.x/: (3.27)

From Bonnet’s recursion formula one obtains by induction the explicit representa-
tion

Pm.x/ D
mX

kD0
.�1/k

 
m

k

!2�1C x

2

�n�k�1 � x
2

�k
:

3.3.5.3 More Recursions

Further, the definition (3.25) yields the following 3-term recursion:
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x2 � 1
m

d

dx
Pm.x/ D xPm.x/ � Pm�1.x/ (3.28)

Useful for the integration of Legendre polynomials is another recursion

.2mC 1/Pm.x/ D d

dx

�
PmC1.x/ � Pm�1.x/

�
:

Exercise 3.3.11. Check (3.28) by using the definition (3.25).
Hint: use that

x
dm

dxm

h .1� x2/m

m

i
D 2x

dm�1

dxm�1
h
x.1 � x2/m�1i

D 2x2
dm�1

dxm�1 .1 � x2/m�1 � 2x
dm�2

dxm�2 .1 � x2/m�1

Exercise 3.3.12. Check (3.27).
Hint: use that

dm

dxm
d

dx

h .1 � x2/mC1

mC 1

i
D �2 d

m

dxm
�
x.1 � x2/m�

D �2x d
m

dxm
�
.1 � x2/m

� � 2
dm�1

dxm�1
�
.1 � x2/m

�

3.3.5.4 Generating Function

The Legendre generating function is defined by

f .t; x/
defD

1X

mD0
Pm.x/t

m:

It holds

f .t; x/ D .1 � 2tx C x2/�1=2: (3.29)

Exercise 3.3.13. Check (3.29).

3.3.6 Lagrange Polynomials

In numerical analysis, Lagrange polynomials are used for polynomial interpolation.
The Lagrange polynomials are widely applied in cryptography, such as in Shamir’s
Secret Sharing scheme.
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Given a set of pC1 data points .X0; Y0/, . . . , .Xp; Yp/, where no two Xj are the
same, the interpolation polynomial in the Lagrange form is a linear combination

L.x/ D
pX

mD0
`m.x/Ym (3.30)

of Lagrange basis polynomials

`m.x/
defD

Y

jD0;:::;p;
j¤m

x �Xj
Xm �Xj

D x � X0

Xm � X0
: : :

x � Xm�1
Xm �Xm�1

x �XmC1
Xm �XmC1

: : :
x � Xp

Xm � Xp
:

This definition yields that `m.Xm/ D 1 and `m.Xj / D 0 for j ¤ m. Hence,
P.Xm/ D Ym for the polynomial Lm.x/ from (3.30). One can easily see that L.x/
is the only polynomial of degree p that fulfills P.Xm/ D Ym.

The main disadvantage of the Lagrange forms is that any change of the design
X1; : : : ; Xn requires to change each basis function `m.x/. Another problem is that
the Lagrange basis polynomials `m.x/ are not necessarily orthogonal. This explains
why these polynomials are rarely used in statistical applications.

3.3.6.1 Barycentric Interpolation

Introduce a polynomial `.x/ of degree p C 1 by

`.x/ D .x �X0/ : : : .x � Xp/:

Then the Lagrange basis polynomials can be rewritten as

`m.x/ D `.x/
wm

x � Xm

with the barycentric weights wm defined by

w�1
m D

Y

jD0;:::;p;
j¤m

.Xm �Xj /

which is commonly referred to as the first form of the barycentric interpolation
formula. The advantage of this representation is that the interpolation polynomial
may now be evaluated as
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L.x/ D `.x/

pX

mD0

wm
x �XmYm

which, if the weights wm have been pre-computed, requires only O.p/ operations
(evaluating `.x/ and the weights wm=.x�Xm/) as opposed to O.p2/ for evaluating
the Lagrange basis polynomials `m.x/ individually.

The barycentric interpolation formula can also easily be updated to incorporate
a new nodeXpC1 by dividing each of the wm by .Xm �XpC1/ and constructing the
new wpC1 as above.

We can further simplify the first form by first considering the barycentric
interpolation of the constant function g.x/ � 1:

g.x/ D `.x/

pX

mD0

wm
x � Xm

:

Dividing L.x/ by g.x/ does not modify the interpolation, yet yields

L.x/ D
Pp

mD0 wmYm=.x � Xm/Pp
mD0 wm=.x �Xm/

which is referred to as the second form or true form of the barycentric interpolation
formula. This second form has the advantage that `.x/ need not be evaluated for
each evaluation of L.x/.

3.3.7 Hermite Polynomials

The Hermite polynomials build an orthogonal system on the whole real line. The
explicit representation is given by

Hm.x/
defD .�1/mex

2 dm

dxm
e�x2:

Sometimes one uses a “probabilistic” definition

MHm.x/
defD .�1/mex

2=2 d
m

dxm
e�x2=2:

Exercise 3.3.14. Show that each Hm.x/ and MHm.x/ is a polynomial of degreem.

Hint: Use induction arguments to show that dm

dxm e�x2 can be represented in the form

Pm.x/e�x2 with a polynomial Pm.x/ of degreem.
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Exercise 3.3.15. Check that the leading coefficient of Hm.x/ is equal to 2m while
the leading coefficient of MHm.x/ is equal to one.

3.3.7.1 Orthogonality

The Hermite polynomials are orthogonal on the whole real line with the weight
function w.x/ D e�x2 : for j ¤ m

Z 1

�1
Hm.x/Hj .x/w.x/dx D 0: (3.31)

Note first that each Hm.x/ is a polynomial so the scalar product (3.31) is well
defined. Suppose thatm > j . It is obvious that it suffices to check that

Z 1

�1
Hm.x/x

jw.x/dx D 0; j < m: (3.32)

Define fm.x/
defD dm

dxm e�x2 . Obviously f 0
m�1.x/ � fm.x/. Integration by part yields

for any j 
 1

Z 1

�1
Hm.x/x

jw.x/dx D .�1/m
Z 1

�1
xj fm.x/dx

D .�1/m
Z 1

�1
xj f 0

m�1.x/dx

D .�1/m�1j
Z 1

�1
xj�1fm�1.x/dx :

By the same arguments, form 
 1

Z 1

�1
fm.x/dx D

Z 1

�1
f 0
m�1.x/dx D f 0

m�1.1/� f 0
m�1.�1/ D 0: (3.33)

This implies (3.32) and hence the orthogonality property (3.31).
Now we compute the scalar product of Hm.x/. Formula (3.33) with j D m

implies

Z 1

�1
Hm.x/x

mw.x/dx D mŠ

Z 1

�1
e�x2dx D p

� mŠ:

As the leading coefficient of Hm.x/ is equal to 2m, this implies

Z 1

�1
H2
m.x/w.x/dx D 2m

Z 1

�1
Hm.x/x

mw.x/dx D p
� 2mmŠ:
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Exercise 3.3.16. Prove the orthogonality of the probabilistic Hermite polynomials
MHm.x/. Compute their norm.

3.3.7.2 Recurrent Formula

The definition yields

H0.x/ � 1; H1.x/ D 2x:

Further, for m 
 1, we use the formula

d

dx
Hm.x/ D .�1/m d

dx

�
ex

2 dm

dxm
e�x2

�
D 2xHm.x/ �HmC1.x/ (3.34)

yielding the recurrent relation

HmC1.x/ D 2xHm.x/ �H 0
m.x/:

Moreover, integration by part, the formula (3.34), and the orthogonality property
yield for j < m � 1

Z 1

�1
H 0
m.x/Hj .x/w.x/dx D �

Z 1

�1
Hm.x/H

0
j .x/w.x/dx D 0

This means that H 0
m.x/ is a polynomial of degree m � 1 and it is orthogonal

to all Hj .x/ for j < m � 1. Thus, H 0
m.x/ coincides with Hm�1.x/ up to a

multiplicative factor. The leading coefficient of H 0
m.x/ is equal to m2m while the

leading coefficient of Hm�1.x/ is equal to 2m�1 yielding

H 0
m.x/ D 2mHm�1.x/:

This results in another recurrent equation

HmC1.x/ D 2xHm.x/ � 2mHm�1.x/:

Exercise 3.3.17. Derive the recurrent formulas for the probabilistic Hermite poly-
nomials MHm.x/.

3.3.7.3 Generating Function

The exponential generating function f .x; t/ for the Hermite polynomials is
defined as
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f .x; t/
defD

1X

mD0
Hm.x/

tm

mŠ
: (3.35)

It holds

f .x; t/ D exp
˚
2xt � t2

�
:

It can be proved by checking the formula

@m

@tm
f .x; t/ D Hm.x � t/f .x; t/ (3.36)

Exercise 3.3.18. Check the formula (3.36) and derive (3.35).

3.3.7.4 Completeness

This property means that the system of the normalized Hermite polynomials builds
an orthonormal basis inL2 Hilbert space of functionsf .x/ on the real line satisfying

Z 1

�1
f 2.x/w.x/dx < 1:

3.3.8 Trigonometric Series Expansion

The trigonometric functions are frequently used in the approximation theory, in
particular due to their relation to the spectral theory. One usually applies either the
Fourier basis or the cosine basis.

The Fourier basis is composed by the constant function F0 � 1 and the functions
F2m�1.x/ D sin.2m�x/ and F2m.x/ D cos.2m�x/ for m D 1; 2; : : :. These
functions are considered on the interval Œ0; 1� and are all periodic: f .0/ D f .1/.
Therefore, it can be only used for approximation of periodic functions.

The cosine basis is composed by the functions S0 � 1, and Sm.x/ D cos.m�x/
form 
 1. These functions are periodic for evenm and antiperiodic for oddm, this
allows to approximate functions which are not necessarily periodic.

3.3.8.1 Orthogonality

Trigonometric identities imply orthogonality

˝
Fm; Fj

˛ D
Z 1

0

Fm.x/Fj .x/dx D 0; j ¤ m: (3.37)
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Also

Z 1

0

F 2
m.x/dx D 1=2 (3.38)

Exercise 3.3.19. Check (3.37) and (3.38).

Exercise 3.3.20. Check that

Z 1

0

Sj .x/Sm.x/dx D 1

2
1I.j D m/:

Many nice features of the Chebyshev polynomials can be translated to the cosine
basis by a simple change of variable: with u D cos.�x/, it holds Sm.x/ D Tm.u/.
So, any expansion of the function f .u/ by the Chebyshev polynomials yields an
expansion of f

�
cos.�x/

�
by the cosine system.

3.4 Piecewise Methods and Splines

This section discusses piecewise polynomial methods of approximation of the
univariate regression functions.

3.4.1 Piecewise Constant Estimation

Any continuous function can be locally approximated by a constant. This naturally
leads to the basis consisting of piecewise constant functions. Let A1; : : : ; AK be a
non-overlapping partition of the design space X:

X D
[

kD1;:::;K
Ak ; Ak \Ak0 D ;; k ¤ k0: (3.39)

We approximate the function f by a finite sum

f .x/ � f .x;�/ D
KX

kD1
�k 1I.x 2 Ak/: (3.40)

Here � D .�1; : : : ; �p/
> with p D K . A nice feature of this approximation is

that the basis indicator functions  1; : : : ;  K are orthogonal because they have
non-overlapping supports. For the case of independent errors, this makes the
computation of the qMLE Q� very simple. In fact, every coefficient Q�k can be
estimated independently of the others. Indeed, the general formula (3.10) yields
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Q� D argmax
�

L.�/ D argmax
�

nX

iD1
`.Yi � f .Xi ;�//

D argmax
�D.�k/

MX

kD1

X

Xi2Ak
`.Yi � �k/: (3.41)

Exercise 3.4.1. Show that Q�k can be obtained by the constant approximation of the
data Yi for Xi 2 Ak :

Q�k D argmax
�k

X

Xi2Ak
`.Yi � �k/; k D 1; : : : ; K: (3.42)

A similar formula can be obtained for the target �� D .��
k / D argmax� EL.�/:

��
k D argmax

�k

X

Xi2Ak
E`.Yi � �k/; m D 1; : : : ; K:

The estimator Q� can be computed explicitly in some special cases. In particular,
if � corresponds a density of a normal distribution, then the resulting estimator Q�k is
nothing but the mean of observations Yi over the piece Ak . For the Laplacian errors,
the solution is the median of the observations over Ak . First we consider the case of
Gaussian likelihood.

Theorem 3.4.1. Let `.y/ D �y2=.2�2/CR be a log-density of a normal law. Then
for every k D 1; : : : ; K

Q�k D 1

Nk

X

Xi2Ak
Yi ;

��
k D 1

Nk

X

Xi2Ak
EYi ;

where Nk stands for the number of design pointsXi within the piece Ak:

Nk
defD

X

Xi2Ak
1 D #

˚
i WXi 2 Ak

�
:

Exercise 3.4.2. Check the statements of Theorem 3.4.1.

The properties of each estimator Q�k repeats ones of the MLE for the sample
retracted to Ak ; see Sect. 2.9.1.

Theorem 3.4.2. Let Q� be defined by (3.41) for a normal density �.y/. Then with
�� D .��

1 ; : : : ; �K/
> D argmax� EL.�/, it holds



104 3 Regression Estimation

E Q�k D ��
k ; Var. Q�k/ D 1

N 2
k

X

Xi2Ak
Var.Yi /:

Moreover,

L. Q� ;��/ D
KX

kD1

Nk

2�2
. Q�k � ��

k /
2:

The statements follow by direct calculus on each interval separately.
If the errors "i D Yi � EYi are normal and homogeneous, then the distribution

of the maximum likelihood L. Q� ;��/ is available.

Theorem 3.4.3. Consider a Gaussian regression Yi � N.f .Xi /; �
2/ for i D

1; : : : ; n. Then Q�k � N.��
k ; �

2=Nk/ and

L. Q� ;��/ D
KX

mD1

Nk

2�2

� Q�k � ��
k

�2 � 	2K ;

where 	2K stands for the chi-squared distribution with K degrees of freedom.

This result is again a combination of the results from Sect. 2.9.1 for different
pieces Ak . It is worth mentioning once again that the regression function f .	/ is not
assumed to be piecewise constant, it can be whatever function. Each Q�k estimates
the mean ��

k of f .	/ over the design points Xi withinAk.
The results on the behavior of the maximum likelihood L. Q�;��/ are often used

for studying the properties of the chi-squared test; see Sect. 7.1 for more details.
A choice of the partition is an important issue in the piecewise constant

approximation. The presented results indicate that the accuracy of estimation of
��
k by Q�k is inversely proportional to the number of points Nk within each piece
Ak . In the univariate case one usually applies the equidistant partition: the design
interval is split into p equal intervals Ak leading to approximately equal values
Nk. Sometimes, especially if the design is irregular, a nonuniform partition can be
preferable. In general it can be recommended to split the whole design space into
intervals with approximately the same numberNk of design points Xi .

A constant approximation is often not accurate enough to expand a regular
regression function. One often uses a linear or polynomial approximation. The next
sections explain this approach for the case of a univariate regression.

3.4.2 Piecewise Linear Univariate Estimation

The piecewise constant approximation can be naturally extended to piecewise
linear and piecewise polynomial construction. The starting point is again a
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non-overlapping partition of X into intervals Ak for k D 1; : : : ; K . First we explain
the idea for the linear approximation of the function f on each interval Ak . Any
linear function onAk can be represented in the form akCckx with some coefficients
ak; ck . This yields in total p D 2K coefficients: � D .a1; c1; : : : ; aK; cK/

>. The
corresponding function f .	;�/ can be represented as

f .x/ � f .x;�/ D
KX

kD1
.ak C ckx/ 1I.x 2 Ak/:

The non-overlapping structure of the sets Ak yields orthogonality of basis functions
for different pieces. As a corollary, one can optimize the linear approximation on
every interval Ak independently of the others.

Exercise 3.4.3. Show that Qak; Qck can be obtained by the linear approximation of the
data Yi for Xi 2 Ak :

. Qak; Qck/ D argmax
.ak;ck/

X
`.Yi � ak � ckXi/ 1I.Xi 2 Ak/; k D 1; : : : ; K:

On every piece Ak , the constant and the linear function x are not orthogonal
except some very special situation. However, one can easily achieve orthogonality
by a shift of the linear term.

Exercise 3.4.4. For each k � K , there exists a point xk such that

X
.Xi � xk/ 1I.Xi 2 Ak/ D 0: (3.43)

Introduce for each k � K two basis functions �j�1.x/ D 1I.x 2 Ak/ and
�j .x/ D .x � xk/ 1I.x 2 Ak/ with j D 2k.

Exercise 3.4.5. Assume (3.43) for each k � K . Check that any piecewise linear
function can be uniquely represented in the form

f .x/ D
pX

jD1
�j �j .x/

with p D 2K and the functions �j are orthogonal in the sense that for j ¤ j 0

nX

iD1
�j .Xi /�j 0.Xi/ D 0:

In addition, for each k � K
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k�jk2 defD
nX

iD1
�2j .Xi/ D

(
Nk; j D 2k � 1;

V 2
k j D 2k:

N 2
k

defD
X

Xi2Ak
1; V 2

k

defD
X

Xi2Ak
.Xi � xk/

2:

In the case of Gaussian regression, orthogonality of the basis helps to gain a
simple closed form for the estimators Q� D . Q�j /:

Q�j D 1

k j k2
nX

iD1
Yi j .Xi / D

8
<

:

1
Nk

P
Xi2Ak Yi ; j D 2k � 1;

1

V 2k

P
Xi2Ak Yi .Xi � xk/; j D 2k:

see Sect. 4.2 in the next chapter for a comprehensive study.

3.4.3 Piecewise Polynomial Estimation

Local linear expansion of the function f .x/ on each piece Ak can be extended to a
piecewise polynomial case. The basic idea is to apply a polynomial approximation
of a certain degree q on each piece Ak independently. One can use for each piece
a basis of the form .x � xk/

m 1I.x 2 Ak/ for m D 0; 1; : : : ; q with xk from (3.43)
yielding the approximation

f .x/ 1I.x 2 Ak/ D f .x;ak/ 1I.x 2 Ak/

D
KX

kD1

˚
a0;k C a1;k.x � xk/C : : :C aq;k.x � xk/

q
�

1I.x 2 Ak/

for ak D .a0;k; a1;k ; : : : ; aq;k/
>. This involves q C 1 parameter for each piece and

p D K.q C 1/ parameters in total. A nice feature of the piecewise approach is
that the coefficients ak of the piecewise polynomial approximation can be estimated
independently for each piece. Namely,

Qak D argmax
a

X

Xi2Ak

˚
Yi � f .Xi ; a/

�2

The properties of this estimator will be discussed in detail in Chap. 4.

3.4.4 Spline Estimation

The main drawback of the piecewise polynomial approximation is that the resulting
function f is discontinuous at the edge points between different pieces. A natural
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way of improving the boundary effect is to force some conditions on the boundary
behavior. One important special case is given by the spline system. Let X be an
interval on the real line, perhaps infinite. Let also t0 < t1 < : : : < tK be some
ordered points in X such that t0 is the left edge and tK the right edge of X. Such
points are called knots. We say that a function f is a spline of degree q at knots
.tk/ if it is polynomial on each span .tk�1; tk/ for k D 1; : : : ; K and satisfies the
boundary conditions

f .m/.tk�/ D f .m/.tkC/; m D 0; : : : ; q � 1; k D 1; : : : ; K � 1:

Here f .m/.t�/ stands for the left derivative of f at t . In other words, the function f
and its first q � 1 derivatives are continuous on X and only the qth derivatives may
have discontinuities at the knots tk . It is obvious that the q derivative f .q/.t/ of the
spline of degree q is a piecewise constant functions on the spans Ak D Œtk�1; tk/.

The spline is called uniform if the knots are equidistant, or, in other words, if all
the spans Ak have equal length. Otherwise it is nonuniform.

Lemma 3.4.1. The set of all splines of degree q at knots .tk/ is a linear space, that
is, any linear combination of such splines is again a spline. Any function having a
continuous mth derivative for m < K and piecewise constant qth derivative is a
q-spline.

Splines of degree zero are just piecewise constant functions studied in Sect. 3.4.1.
Linear splines are particularly transparent: this is the set of all piecewise linear
continuous functions on X. Each of them can be easily constructed from left to right
or from right to left: start with a linear function a1 C c1x on the piece A1 D Œt0; t1�.
Then f .t1/ D a1 C c1t1. On the piece A2 the slope of f can be changed for c2
leading to the function f .x/ D f .t1/ C c2.x � t1/ for x 2 Œt1; t2�. Similarly, at
t2 the slop of f s can change for c3 yielding f .x/ D f .t2/ C c3.x � t2/ on A3,
and so on. Splines of higher order can be constructed similarly step by step: one
fixes the polynomial form on the very first piece A1 and then continues the spline
function to every next piece Ak using the boundary conditions and the value of the
qth derivative of f on Ak . This construction explains the next result.

Lemma 3.4.2. Each spline f of degree q and knots .tk/ is uniquely described by
the vector of coefficients a1 on the first span and the values f .q/.x/ for each span
A1; : : : ; AK .

This result explains that the parameter dimension of the linear spline space is
q C K . One possible basis in this space is given by polynomials xm�1 of degree

m D 0; 1; : : : ; q and the functions �k.x/
defD .x � tk/

q
C for k D 1; : : : ; K � 1.

Exercise 3.4.6. Check that �j .x/ for j D 1; : : : ; q CK form a basis in the linear
spline space, and any q-spline f can be represented as
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f .x/ D
qX

mD0
˛mx

m C
K�1X

kD1
�k�k.x/: (3.44)

Hint: check that the functions �j .x/ are linearly independent and that each qth

derivative �.q/j .x/ is piecewise constant.

3.4.4.1 B-Splines

Unfortunately, the basis functions f�k.x/g with �k.x/ D .x � tk/
q
C are only useful

for theoretical study. The main problem is that the functions �j .x/ are strongly
correlated, and the recovering the coefficients �j in the expansion (3.44) is a hard
numerical task. by this reason, one often uses another basis called B-splines. The
idea is to build splines of the given degree with the minimal support. Each B-spline
basis function bk;q.x/ is only nonzero on the q neighbor spansAk ,AkC1, . . .AkCq�1
for k D 1; : : : ; K � q.

Exercise 3.4.7. Let f .x/ be a q-spline with the support on q0 < q neighbor spans
Ak , AkC1, . . .AkCq0�1. Then f .x/ � 0.

Hint: consider any spline of the form f .x/ D PkCq0�1
jDk cj �j .x/. Show that the

boundary conditions f .m/.tkCq0/ D 0 for m D 0; 1; : : : ; q yield cj � 0.

The basis B-spline functions can be constructed successfully. For q D 0, the
B-splines bk;0.x/ coincide with the functions �k.x/ D 1I.x 2 Ak/, k D 1; : : : ; K .
Each linear B-spline bk;1.x/ has a triangle shape on the two connected intervals Ak
and AkC1. It can be defined by the formula

bk;1.x/
defD x � tk�1
tk � tk�1

bk;0.x/C tkC1 � x
tkC1 � tk

bkC1;0.x/; k D 1; : : : ; K � 1:

One can continue this way leading to the Cox–de Boor recursion formula

bk;m.x/
defD x � tk�1
tkCm�1 � tk�1

bk;m�1.x/C tkCm � x

tkCm � tk
bkC1;m�1.x/

for k D 1; : : : ; K �m.

Exercise 3.4.8. Check by induction for each function bk;m.x/ the following condi-
tions:

1. bk;m.x/ a polynomial of degree m on each span Ak; : : : ; AkCm�1 and zero
outside;

2. bk;m.x/ can be uniquely represented as a sum bk;m.x/ D Pm�1
lD0 cl;k�kCl .x/;

3. bk;m.x/ is a m-spline.
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The formulas simplify for the uniform splines with equal span length� D jAkj:

bk;m.x/
defD x � tk�1

m�
bk;m�1.x/C tkCm � x

m�
bkC1;m�1.x/

for k D 1; : : : ; K �m.

Exercise 3.4.9. Check that

bk;m.x/ D
mX

lD0
!l;m�kCl .x/

with

!l;m
defD .�1/l
�mlŠ.m � l/Š

3.4.4.2 Smoothing Splines

Such a spline system naturally arises as a solution of a penalized maximum
likelihood problem. Suppose we are given the regression data .Yi ; Xi/ with the
univariate design X1 � X2 � : : : � Xn. Consider the mean regression model
Yi D f .Xi / C "i with zero mean errors "i . The assumption of independent
homogeneous Gaussian errors leads to the Gaussian log-likelihood

L.f / D �
nX

iD1

ˇ
ˇYi � f .Xi /

ˇ
ˇ2=.2�2/ (3.45)

Maximization of this expression w.r.t. all possible functions f or, equivalently, all

vectors
�
f .X1/; : : : ; f .Xn/

�>
results in the trivial solution: f .Xi / D Yi . This

means that the full dimensional maximum likelihood perfectly reproduces the
original noisy data. Some additional assumptions are needed to force any desirable
feature of the reconstructed function. One popular example is given by smoothness
of the function f . Degree of smoothness (or, inversely, degree of roughness) can be
measured by the value

Rq.f /
defD
Z

X

ˇ
ˇf .q/.x/

ˇ
ˇ2dx: (3.46)

One can try to optimize the fit (3.45) subject to the constraint on the amount of
roughness from (3.46). Equivalently, one can optimize the penalized log-likelihood

L.f /
defD L.f / � Rq.f / D � 1

2�2

nX

iD1

ˇ̌
Yi � f .Xi /

ˇ̌2 � 
Z

X

ˇ̌
f .q/.x/

ˇ̌2
dx;
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where  > 0 is a Lagrange multiplier. The corresponding maximizer is the penalized
maximum likelihood estimator:

Qf D argmax
f

L.f /; (3.47)

where the maximum is taken over the class of all measurable functions. It is
remarkable that the solution of this optimization problem is a spline of degree q
with the knots X1; : : : ; Xn.

Theorem 3.4.4. For any  > 0 and any integer q, the problem (3.47) has a unique
solution which is a q-spline with knots at design points .Xi/.

For the proof we refer to Green and Silverman (1994). Due to this result, one
can simplify the problem and look for a spline f which minimizes the objective
L.f /. A solution to (3.47) is called a smoothing spline. If f is a q-spline, the
integral Rq.f / can be easily computed. Indeed, f .q/.x/ is piecewise constant, that
is, f .q/.x/ D ck for x 2 Ak , and

Rq.f / D
KX

kD1
c2k jtk � tk�1j:

For the uniform design, the formula simplifies even more, and by change of the
multiplier , one can use Rq.f / D P

k c
2
k . The use of any parametric representation

of a spline function f allows to represent the optimization problem (3.47) as a
penalized least squares problem. Estimation and inference in such problems are
studied below in Sect. 4.7.

3.5 Generalized Regression

Let the response Yi be observed at the design point Xi 2 Rd , i D 1; : : : ; n.
A (mean) regression model assumes that the observed values Yi are independent
and can be decomposed into the systematic component f .Xi / and the individual
centered stochastic error "i . In some cases such a decomposition is questionable.
This especially concerns the case when the data Yi are categorical, e.g. binary
or discrete. Another striking example is given by nonnegative observations Yi . In
such cases one usually assumes that the distribution of Yi belongs to some given
parametric family .P� ; � 2 U/ and only the parameter of this distribution depends
on the design point Xi . We denote this parameter value as f .Xi / 2 U and write the
model in the form

Yi � Pf.Xi / :
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As previously, f .	/ is called a regression function and its values at the design points
Xi completely specify the joint data distribution:

Y �
Y

i

Pf .Xi /:

Below we assume that .P�/ is a univariate exponential family with the log-density
`.y; �/.

The parametric modeling approach assumes that the regression function f can
be specified by a finite-dimensional parameter � 2 ‚ � Rp: f .x/ D f .x;�/. As
usual, by �� we denote the true parameter value. The log-likelihood function for
this model reads

L.�/ D
X

i

`
�
Yi ; f .Xi ;�/

�
:

The corresponding MLE Q� maximizes L.�/:

Q� D argmax
�

X

i

`
�
Yi ; f .Xi ;�/

�
:

The estimating equation rL.�/ D 0 reads as

X

i

`0�Yi ; f .Xi ;�/
�rf .Xi ;�/ D 0

where `0.y; �/ defD @`.y; �/=@� .
The approach essentially depends on the parametrization of the considered EF.

Usually one applies either the natural or canonical parametrization. In the case of the
natural parametrization, `.y; �/ D C.�/y � B.�/, where the functions C.	/; B.	/
satisfy B 0.�/ D �C 0.�/. This implies `0.y; �/ D yC 0.�/�B 0.�/ D .y��/C 0.�/
and the estimating equation reads as

X

i

�
Yi � f .Xi ;�/

�
C 0�f .Xi ;�/

�rf .Xi ;�/ D 0

Unfortunately, a closed form solution for this equation exists only in very special
cases. Even the questions of existence and uniqueness of the solution cannot be
studied in whole generality. Some numerical algorithms are usually applied to solve
the estimating equation.

Exercise 3.5.1. Specify the estimating equation for generalized EFn regression and
find the solution for the case of the constant regression function f .Xi ; �/ � � .
Hint: If f .Xi ; �/ � � , then the Yi are i.i.d. from P� .
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The equation can be slightly simplified by using the canonical parametrization.
If .P�/ is an EFc with the log-density `.y; �/ D y� �d.�/, then the log-likelihood
L.�/ can be represented in the form

L.�/ D
X

i

˚
Yif .Xi ;�/� d

�
f .Xi ;�/

��
:

The corresponding estimating equation is

X

i

˚
Yi � d 0�f .Xi ;�/

��rf .Xi ;�/ D 0:

Exercise 3.5.2. Specify the estimating equation for generalized EFc regression and
find the solution for the case of constant regression with f .Xi ; �/ � � . Relate the
natural and canonical representation.

A generalized regression with a canonical link is often applied in combination with
linear modeling of the regression function considered in the next section.

3.5.1 Generalized Linear Models

Consider the generalized regression model

Yi � Pf.Xi / 2 P:

In addition we assume a linear (in parameters) structure of the regression func-
tion f .X/. Such modeling is particularly useful to combine with the canonical
parametrization of the considered EF with the log-density `.y; �/ D y� � d.�/.
The reason is that the stochastic part in the log-likelihood of an EFc linearly depends
on the parameter. So, below we assume that P D .P�; � 2 U/ is an EFc.

Linear regression f .Xi / D ‰>
i � with given feature vectors ‰i 2 Rp leads to

the model with the log-likelihood

L.�/ D
X

i

˚
Yi‰

>
i � � d

�
‰>
i �
��
:

Such a setup is called generalized linear model (GLM). Note that the log-likelihood
can be represented as

L.�/ D S>� � A.�/;

where

S D
X

i

Yi‰i ; A.�/ D
X

i

d
�
‰>
i �
�
:
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The corresponding MLE Q� maximizes L.�/. Again, a closed form solution only
exists in special cases. However, an important advantage of the GLM approach is
that the solution always exists and is unique. The reason is that the log-likelihood
function L.�/ is concave in � .

Lemma 3.5.1. The MLE Q� solves the following estimating equation:

rL.�/ D S � rA.�/ D
X

i

�
Yi � d 0.‰>

i �/
�
‰i D 0: (3.48)

The solution exists and is unique.

Proof. Define the matrix

B.�/ D
X

i

d 00.‰>
i �/‰i‰

>
i : (3.49)

Since d 00.�/ is strictly positive for all u, the matrix B.�/ is positively defined as
well. It holds

r2L.�/ D �r2A.�/ D �
X

i

d 00.‰>
i �/‰i‰

>
i D �B.�/:

Thus, the function L.�/ is strictly concave w.r.t. � and the estimating equation
rL.�/ D S � rA.�/ D 0 has the unique solution Q� .

The solution of (3.48) can be easily obtained numerically by the Newton–
Raphson algorithm: select the initial estimate �.0/. Then for every k 
 1 apply

� .kC1/ D � .k/ C ˚
B.� .k//

��1˚
S � rA.� .k//� (3.50)

until convergence.
Below we consider two special cases of GLMs for binary and Poissonian data.

3.5.2 Logit Regression for Binary Data

Suppose that the observed data Yi are independent and binary, that is, each Yi is
either zero or one, i D 1; : : : ; n. Such models are often used in, e.g., sociological
and medical study, two-class classification, binary imaging, among many other
fields. We treat each Yi as a Bernoulli r.v. with the corresponding parameter
fi D f .Xi/. This is a special case of generalized regression also called binary
response models. The parametric modeling assumption means that the regression
function f .	/ can be represented in the form f .Xi / D f .Xi ;�/ for a given class of
functions ff .	;�/;� 2 ‚ 2 Rpg. Then the log-likelihoodL.�/ reads as
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L.�/ D
X

i

`.Yi ; f .Xi ;�//; (3.51)

where `.y; �/ is the log-density of the Bernoulli law. For linear modeling, it is more
useful to work with the canonical parametrization. Then `.y; �/ D y��log.1Ce�/,
and the log-likelihood reads

L.�/ D
X

i

�
Yif .Xi ;�/� log

�
1C ef .Xi ;�/

��
:

In particular, if the regression function f .	;�/ is linear, that is, f .Xi ;�/ D ‰>
i � ,

then

L.�/ D
X

i

�
Yi‰

>
i � � log.1C e‰

>

i � /
�
: (3.52)

The corresponding estimate reads as

Q� D argmax
�

L.�/ D argmax
�

X

i

�
Yi‰

>
i � � log.1C e‰

>

i � /
�

This modeling is usually referred to as logit regression.

Exercise 3.5.3. Specify the estimating equation for the case of logit regression.

Exercise 3.5.4. Specify the step of the Newton–Raphson procedure for the case of
logit regression.

3.5.3 Parametric Poisson Regression

Suppose that the observations Yi are nonnegative integer numbers. The Poisson
distribution is a natural candidate for modeling such data. It is supposed that the
underlying Poisson parameter depends on the regressor Xi . Typical examples arise
in different types of imaging including medical positron emission and magnet
resonance tomography, satellite and low-luminosity imaging, queueing theory, high
frequency trading, etc. The regression equation reads

Yi � Poisson.f .Xi //:

The Poisson regression function f .Xi / is usually the target of estimation. The
parametric specification f .	/ 2 ˚

f .	;�/; � 2 ‚
�

reduces this problem to
estimating the parameter � . Under the assumption of independent observations Yi ,
the corresponding maximum likelihood L.�/ is given by

L.�/ D
X�

Yi log
˚
f .Xi ;�/

� � f .Xi ;�/
�CR;
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where the remainder R does not depend on � and can be omitted. Obviously, the
constant function family f .	; �/ � � leads back to the case of i.i.d. modeling studied
in Sect. 2.11. A further extension is given by linear Poisson regression: f .Xi ;�/ D
‰>
i � for some given factors ‰i . The regression equation reads

L.�/ D
X

i

�
Yi log.‰>

i �/ �‰>
i �/

�
: (3.53)

Exercise 3.5.5. Specify the estimating equation and the Newton–Raphson proce-
dure for the linear Poisson regression (3.53).

An obvious problem of linear Poisson modeling is that it requires all the values
‰>
i � to be positive. The use of canonical parametrization helps to avoid this

problem. The linear structure is assumed for the canonical parameter leading to the
representation f .Xi / D exp.‰>

i �/. Then the general log-likelihood process L.�/
from (3.51) translates into

L.�/ D
X

i

�
Yi‰

>
i � � exp.‰>

i �/
�I (3.54)

cf. with (3.52).

Exercise 3.5.6. Specify the estimating equation and the Newton–Raphson proce-
dure for the canonical link linear Poisson regression (3.54).

If the factors ‰i are properly scaled, then the scalar products ‰>
i � for all i and

all � 2 ‚0 belong to some bounded interval. For the matrix B.�/ from (3.49), it
holds

B.�/ D
X

i

exp.‰>
i �/‰i‰

>
i :

Initializing the ML optimization problem with � D 0 leads to the oLSE

Q� .0/ D
�X

i

‰i‰
>
i

��1X

i

‰iYi :

The further steps of the algorithm (3.50) can be done as weighted LSE with the

weights exp
�
‰>
i

Q� .k/� for the estimate Q� .k/ obtained at the previous step.

3.5.4 Piecewise Constant Methods in Generalized Regression

Consider a generalized regression model

Yi � Pf.Xi / 2 .P�/
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for a given exponential family .P�/. Further, let A1; : : : ; AK be a non-overlapping
partition of the design space X; see (3.39). A piecewise constant approxima-
tion (3.40) of the regression function f .	/ leads to the additive log-likelihood
structure: for � D .�1; : : : ; �K/

>

Q� D argmax
�

L.�/ D argmax
�1;:::;�K

KX

kD1

X

Xi2Ak
`.Yi ; �k/I

cf. (3.41). Similarly to the mean regression case, the global optimization w.r.t. the
vector � can be decomposed into K separated simple optimization problems:

Q�k D argmax
�

X

Xi2Ak
`.Yi ; �/I

cf. (3.42). The same decomposition can be obtained for the target �� D
.�1; : : : ; �K/

>:

�� D argmax
�

EL.�/ D argmax
�1;:::;�K

KX

kD1

X

Xi2Ak
E`.Yi ; �k/:

The properties of each estimator Q�k repeats ones of the qMLE for a univariate EFn;
see Sect. 2.11.

Theorem 3.5.1. Let `.y; �/ D C.�/y � B.�/ be a density of an EFn, so that the
functions B.�/ and C.�/ satisfy B 0.�/ D �C 0.�/. Then for every k D 1; : : : ; K

Q�k D 1

Nk

X

Xi2Ak
Yi ;

��
k D 1

Nk

X

Xi2Ak
EYi ;

where Nk stands for the number of design pointsXi within the piece Ak:

Nk
defD

X

Xi2Ak
1 D #

˚
i WXi 2 Ak

�
:

Moreover, it holds

E Q�k D ��
k

and
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L. Q�;��/ D
KX

kD1
NkK. Q�k; ��

k / (3.55)

where K.�; � 0/ defD E�
˚
`.Yi ; �/� `.Yi ; �

0/
�
.

These statements follow from Theorem 3.5.1 and Theorem 2.11.1 of Sect. 2.11.
For the presented results, the true regression function f .	/ can be of arbitrary
structure, the true distribution of each Yi can differ from Pf.Xi /.

Exercise 3.5.7. Check the statements of Theorem 3.5.1.

If PA is correct, that is, if f is indeed piecewise constant and the distribution of Yi
is indeed Pf.Xi /, the deviation bound for the excessL. Q�k; ��

k / from Theorem 2.11.4
can be applied to each piece Ak yielding the following result.

Theorem 3.5.2. Let .P� / be a EFn and let Yi � P�k for Xi 2 Ak and k D
1; : : : ; K . Then for any z > 0

P
�
L. Q� ;��/ > Kz

� � 2Ke�z:

Proof. By (3.55) and Theorem 2.11.4

P
�
L. Q�;��/ > Kz

� D P

	 KX

kD1
NkK. Q�k; ��

k / > Kz




�
KX

kD1
P
�
NkK. Q�k; ��

k / > z
�

� 2Ke�z

and the result follows.

A piecewise linear generalized regression can be treated in a similar way. The
main benefit of piecewise modeling remains preserved: a global optimization over
the vector � can be decomposed into a set of small optimization problems for each
piece Ak . However, a closed form solution is available only in some special cases
like Gaussian regression.

3.5.5 Smoothing Splines for Generalized Regression

Consider again the generalized regression model

Yi � Pf.Xi / 2 P
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for an exponential family P with canonical parametrization. Now we do not assume
any specific parametric structure for the function f . Instead, the function f is
supposed to be smooth and its smoothness is measured by the roughness Rq.f /

from (3.46). Similarly to the regression case of Sect. 3.4.4, the function f can be
estimated directly by optimizing the penalized log-likelihoodL.f /:

Qf D argmax
f

L.f / D argmax
f

˚
L.f / � Rq.f /

�

D argmax
f

X

i

˚
Yif .Xi/ � d �f .Xi/

�� �
Z

X

ˇ
ˇf .q/.x/

ˇ
ˇ2dx: (3.56)

The maximum is taken over the class of all regular q-times differentiable functions.
In the regression case, the function d.	/ is quadratic and the solution is a spline
functions with knots Xi . This conclusion can be extended to the case of any
convex function d.	/, thus, the problem (3.56) yields a smoothing spline solution.
Numerically this problem is usually solved by iterations. One starts with a quadratic
function d.�/ D �2=2 to obtain an initial approximation Qf .0/.	/ of f .	/ by a
standard smoothing spline regression. Further, at each new step k C 1, the use
of the estimate Qf .k/.	/ from the previous step k for k 
 0 helps to approximate
the problem (3.56) by a weighted regression. The corresponding iterations can be
written in the form (3.50).

3.6 Historical Remarks and Further Reading

A nice introduction in the use of smoothing splines in statistics can be found in
Green and Silverman (1994) and Wahba (1990). For further properties of the spline
approximation and algorithmic use of splines see de Boor (2001).

Orthogonal polynomials have long stories and have been applied in many
different fields of mathematics. We refer to Szegö (1939) and Chihara (2011) for
the classical results and history around different polynomial systems.

Some further methods in regression estimation and their features are described,
e.g., in Lehmann and Casella (1998), Fan and Gijbels (1996), and Wasserman
(2006).



Chapter 4
Estimation in Linear Models

This chapter studies the estimation problem for a linear model. The first four
sections are fairly classical and the presented results are based on the direct analysis
of the linear estimation procedures. Sections 4.5 and 4.6 reproduce in a very short
form the same results but now based on the likelihood analysis. The presentation
is based on the celebrated chi-squared phenomenon which appears to be the
fundamental fact yielding the exact likelihood-based concentration and confidence
properties. The further sections are complementary and can be recommended for a
more profound reading. The issues like regularization, shrinkage, smoothness, and
roughness are usually studied within the nonparametric theory, here we try to fit
them to the classical linear parametric setup. A special focus is on semiparametric
estimation in Sect. 4.9. In particular, efficient estimation and chi-squared result are
extended to the semiparametric framework.

The main tool of the study is the quasi maximum likelihood method. We
especially focus on the validity of the presented results under possible model
misspecification. Another important issue is the way of measuring the estimation
loss and risk. We distinguish below between response estimation or prediction
and the parameter estimation. The most advanced results like chi-squared result
in Sect. 4.6 are established under the assumption of a Gaussian noise. However, a
misspecification of noise structure is allowed and addressed.

4.1 Modeling Assumptions

A linear model assumes that the observations Yi follow the equation:

Yi D ‰>
i �

� C "i (4.1)

for i D 1; : : : ; n, where �� D .��
1 ; : : : ; �

�
p /

> 2 Rp is an unknown parameter
vector,‰i are given vectors in Rp , and the "i ’s are individual errors with zero mean.

V. Spokoiny and T. Dickhaus, Basics of Modern Mathematical Statistics,
Springer Texts in Statistics, DOI 10.1007/978-3-642-39909-1__4,
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A typical example is given by linear regression (see Sect. 3.3) when the vectors ‰i
are the values of a set of functions (e.g., polynomial, trigonometric) series at the
design points Xi .

A linear Gaussian model assumes in addition that the vector of errors " D
."1; : : : "n/

> is normally distributed with zero mean and a covariance matrix †:

" � N.0;†/:

In this chapter we suppose that † is given in advance. We will distinguish between
three cases:

1. the errors "i are i.i.d. N.0; �2/, or equivalently, the matrix † is equal to �2In
with In being the unit matrix in Rn.

2. the errors are independent but not homogeneous, that is, E"2i D �2i . Then the
matrix † is diagonal:† D diag.�21 ; : : : ; �

2
n /.

3. the errors "i are dependent with a covariance matrix †.

In practical applications one mostly starts with the white Gaussian noise assump-
tion and more general cases 2 and 3 are only considered if there are clear indications
of the noise inhomogeneity or correlation. The second situation is typical, e.g., for
the eigenvector decomposition in an inverse problem. The last case is the most
general and includes the first two.

4.2 Quasi Maximum Likelihood Estimation

Denote by Y D .Y1; : : : ; Yn/
> (resp. " D ."1; : : : ; "n/

>) the vector of observations
(resp. of errors) in Rn and by ‰ the p � n matrix with columns ‰i . Let also ‰>
denote its transpose. Then the model equation can be rewritten as:

Y D ‰>�� C "; " � N.0;†/:

An equivalent formulation is that †�1=2.Y � ‰>�/ is a standard normal vector in
Rn. The log-density of the distribution of the vector Y D .Y1; : : : ; Yn/

> w.r.t. the
Lebesgue measure in Rn is therefore of the form

L.�/ D �n
2

log.2�/ � log
�
det†

�

2
� 1

2
k†�1=2.Y �‰>�/k2

D �n
2

log.2�/ � log
�
det†

�

2
� 1

2
.Y �‰>�/>†�1.Y �‰>�/:

In case 1 this expression can be rewritten as

L.�/ D �n
2

log.2��2/� 1

2�2

nX

iD1
.Yi �‰>

i �/
2:
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In case 2 the expression is similar:

L.�/ D �
nX

iD1

n1
2

log.2��2i /C .Yi �‰>
i �/

2

2�2i

o
:

The maximum likelihood estimate (MLE) Q� of �� is defined by maximizing the
log-likelihoodL.�/:

Q� D argmax
�2Rp

L.�/ D argmin
�2Rp

.Y �‰>�/>†�1.Y �‰>�/: (4.2)

We omit the other terms in the expression ofL.�/ because they do not depend on � .
This estimate is the least squares estimate (LSE) because it minimizes the sum of
squared distances between the observations Yi and the linear responses ‰>

i � . Note
that (4.2) is a quadratic optimization problem which has a closed form solution.
Differentiating the right-hand side of (4.2) w.r.t. � yields the normal equation

‰†�1‰> Q� D ‰†�1Y :

If the p � p-matrix ‰†�1‰> is non-degenerate, then the normal equation has the
unique solution

Q� D �
‰†�1‰>��1‰†�1Y D SY ; (4.3)

where

S D �
‰†�1‰>��1‰†�1

is a p � n matrix. We denote by Q�m the entries of the vector Q� , m D 1; : : : ; p.
If the matrix ‰†�1‰> is degenerate, then the normal equation has infinitely

many solutions. However, one can still apply the formula (4.3) where .‰†�1‰>/�1
is a pseudo-inverse of the matrix ‰†�1‰>.

The ML approach leads to the parameter estimate Q� . Note that due to the

model (4.1), the product Qf D ‰> Q� is an estimate of the mean f � defD EY of
the vector of observations Y :

Qf D ‰> Q� D ‰>�‰†�1‰>��1‰†�1Y D …Y ;

where

… D ‰>�‰†�1‰>��1‰†�1

is an n � n matrix (linear operator) in Rn. The vector Qf is called a prediction or
response regression estimate.
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Below we study the properties of the estimates Q� and Qf . In this study we try to
address both types of possible model misspecification: due to a wrong assumption
about the error distribution and due to a possibly wrong linear parametric structure.
Namely we consider the model

Yi D fi C "i ; " � N.0;†0/: (4.4)

The response values fi are usually treated as the value of the regression function
f .	/ at the design points Xi . The parametric model (4.1) can be viewed as an
approximation of (4.4) while † is an approximation of the true covariance matrix
†0. If f � is indeed equal to‰>�� and† D †0, then Q� and Qf are MLEs, otherwise
quasi MLEs. In our study we mostly restrict ourselves to the case 1 assumption
about the noise ": " � N.0; �2In/. The general case can be reduced to this one by a
simple data transformation, namely, by multiplying the Eq. (4.4) Y D f � C " with
the matrix †�1=2, see Sect. 4.6 for more detail.

4.2.1 Estimation Under the Homogeneous Noise Assumption

If a homogeneous noise is assumed, that is† D �2In and " � N.0; �2In/, then the
formulae for the MLEs Q�; Qf slightly simplify. In particular, the variance �2 cancels
and the resulting estimate is the ordinary least squares (oLSE):

Q� D �
‰‰>��1‰Y D SY

with S D �
‰‰>��1‰. Also

Qf D ‰>�‰‰>��1‰Y D …Y

with … D ‰>�‰‰>��1‰.

Exercise 4.2.1. Derive the formulae for Q�; Qf directly from the log-likelihoodL.�/
for homogeneous noise.

If the assumption " � N.0; �2In/ about the errors is not precisely fulfilled, then
the oLSE can be viewed as a quasi MLE.

4.2.2 Linear Basis Transformation

Denote by  >
1 ; : : : ; 

>
p the rows of the matrix ‰. Then the  i ’s are vectors in Rn

and we call them the basis vectors. In the linear regression case the i ’s are obtained
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as the values of the basis functions at the design points. Our linear parametric
assumption simply means that the underlying vector f � can be represented as a
linear combination of the vectors 1; : : : ; p:

f � D ��
1  1 C : : :C ��

p p :

In other words, f � belongs to the linear subspace in Rn spanned by the vectors
 1; : : : ; p . It is clear that this assumption still holds if we select another basis in
this subspace.

Let U be any linear orthogonal transformation in Rp with UU> D Ip. Then the
linear relation f � D ‰>�� can be rewritten as

f � D ‰>UU>�� D M‰>u�

with M‰ D U>‰ and u� D U>��. Here the columns of M‰ mean the new basis
vectors M m in the same subspace while u� is the vector of coefficients describing
the decomposition of the vector f � w.r.t. this new basis:

f � D u�
1

M 1 C : : :C u�
p

M p :

The natural question is how the expression for the MLEs Q� and Qf changes with
the change of the basis. The answer is straightforward. For notational simplicity, we
only consider the case with † D �2In. The model can be rewritten as

Y D M‰>u� C "

yielding the solutions

Qu D � M‰ M‰>��1 M‰Y D MSY ; Qf D M‰>� M‰ M‰>��1 M‰Y D M…Y ;

where M‰ D U>‰ implies

MS D � M‰ M‰>��1 M‰ D U>S;
M… D M‰>� M‰ M‰>��1 M‰ D …:

This yields

Qu D U> Q�

and moreover, the estimate Qf is not changed for any linear transformation of
the basis. The first statement can be expected in view of �� D Uu�, while the
second one will be explained in the next section: … is the linear projector on the
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subspace spanned by the basis vectors and this projector is invariant w.r.t. basis
transformations.

Exercise 4.2.2. Consider univariate polynomial regression of degree p � 1. This
means that f is a polynomial function of degreep�1 observed at the pointsXi with
errors "i that are assumed to be i.i.d. normal. The function f can be represented as

f .x/ D ��
1 C ��

2 x C : : :C ��
p x

p�1

using the basis functions  m.x/ D xm�1 for m D 0; : : : ; p � 1. At the same time,
for any point x0, this function can also be written as

f .x/ D u�
1 C u�

2 .x � x0/C : : :C u�
p.x � x0/p�1

using the basis functions M m D .x � x0/m�1.

• Write the matrices ‰ and ‰‰> and similarly M‰ and M‰ M‰>.
• Describe the linear transformation A such that u D A� for p D 1.
• Describe the transformation A such that u D A� for p > 1.

Hint: use the formula

u�
m D 1

.m � 1/Š
f .m�1/.x0/; m D 1; : : : ; p

to identify the coefficient u�
m via ��

m; : : : ; �
�
p .

4.2.3 Orthogonal and Orthonormal Design

Orthogonality of the design matrix ‰ means that the basis vectors  1; : : : ;  p are
orthonormal in the sense

 >
m m0 D

nX

iD1
 m;i m0;i D

(
0 if m ¤ m0;
m if m D m0;

for some positive values 1; : : : ; p . Equivalently one can write

‰‰> D ƒ D diag.1; : : : ; p/:

This feature of the design is very useful and it essentially simplifies the computation
and analysis of the properties of Q� . Indeed, ‰‰> D ƒ implies

Q� D ƒ�1‰Y ; Qf D ‰> Q� D ‰>ƒ�1‰Y
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with ƒ�1 D diag.�1
1 ; : : : ; 

�1
p /. In particular, the first relation means

Q�m D �1
m

nX

iD1
Yi m;i ;

that is, Q�m is the scalar product of the data and the basis vector m form D 1; : : : ; p.
The estimate of the response f reads as

Qf D Q�1 1 C : : :C Q�p p:

Theorem 4.2.1. Consider the model Y D ‰>� C " with homogeneous errors ":
E""> D �2In. If the design ‰ is orthogonal, that is, if ‰‰> D ƒ for a diagonal
matrix ƒ, then the estimated coefficients Q�m are uncorrelated: Var. Q�/ D �2ƒ�1.
Moreover, if " � N.0; �2In/, then Q� � N.��; �2ƒ�1/.

An important message of this result is that the orthogonal design allows for
splitting the original multivariate problem into a collection of independent univariate
problems: each coefficient ��

m is estimated by Q�m independently on the remaining
coefficients.

The calculus can be further simplified in the case of an orthogonal design with
‰‰> D Ip . Then one speaks about an orthonormal design. This also implies that
every basis function (vector)  m is standardized: k mk2 D Pn

iD1  2m;i D 1. In

the case of an orthonormal design, the estimate Q� is particularly simple: Q� D ‰Y .
Correspondingly, the target of estimation �� satisfies �� D ‰f �. In other words,
the target is the collection .��

m/ of the Fourier coefficients of the underlying function
(vector) f � w.r.t. the basis ‰ while the estimate Q� is the collection of empirical
Fourier coefficients Q�m:

��
m D

nX

iD1
fi m;i ; Q�m D

nX

iD1
Yi m;i

An important feature of the orthonormal design is that it preserves the noise
homogeneity:

Var
� Q�� D �2Ip :

4.2.4 Spectral Representation

Consider a linear model

Y D ‰>� C " (4.5)
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with homogeneous errors ": Var."/ D �2In. The rows of the matrix ‰ can be
viewed as basis vectors in Rn and the product‰>� is a linear combinations of these
vectors with the coefficients .�1; : : : ; �p/. Effectively linear least squares estimation
does a kind of projection of the data onto the subspace generated by the basis
functions. This projection is of course invariant w.r.t. a basis transformation within
this linear subspace. This fact can be used to reduce the model to the case of an
orthogonal design considered in the previous section. Namely, one can always find
a linear orthogonal transformation U W Rp ! Rp ensuring the orthogonality of the
transformed basis. This means that the rows of the matrix M‰ D U‰ are orthogonal
and the matrix M‰ M‰> is diagonal:

M‰ M‰> D U‰‰>U> D ƒ D diag.1; : : : ; p/:

The original model reads after this transformation in the form

Y D M‰>u C "; M‰ M‰> D ƒ;

where u D U� 2 Rp . Within this model, the transformed parameter u can be

estimated using the empirical Fourier coefficients Zm D M >
mY , where M m is the

mth row of M‰, m D 1; : : : ; p. The original parameter vector � can be recovered via
the equation � D U>u. This set of equations can be written in the form

Z D ƒu Cƒ1=2� (4.6)

where Z D M‰Y D U‰Y is a vector in Rp and � D ƒ�1=2 M‰" D ƒ�1=2U‰" 2
Rp. Equation (4.6) is called the spectral representation of the linear model (4.5).
The reason is that the basic transformation U can be built by a singular value
decomposition of ‰. This representation is widely used in context of linear inverse
problems; see Sect. 4.8.

Theorem 4.2.2. Consider the model (4.5) with homogeneous errors ", that is,
E""> D �2In. Then there exists an orthogonal transform U W Rp ! Rp

leading to the spectral representation (4.6) with homogeneous uncorrelated errors
�: E��> D �2Ip . If " � N.0; �2In/, then the vector � is normal as well:
� D N.0; �2Ip/.

Exercise 4.2.3. Prove the result of Theorem 4.2.2.
Hint: select any U ensuring U>‰‰>U D ƒ. Then

E��> D ƒ�1=2U‰E"">‰>U>ƒ�1=2 D �2ƒ�1=2U>‰‰>Uƒ�1=2 D �2Ip:

A special case of the spectral representation corresponds to the orthonormal
design with ‰‰> D Ip . In this situation, the spectral model reads as Z D u C �,
that is, we simply observe the target u corrupted with a homogeneous noise �. Such
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an equation is often called the sequence space model and it is intensively used in the
literature for the theoretical study; cf. Sect. 4.7 below.

4.3 Properties of the Response Estimate Qf

This section discusses some properties of the estimate Qf D ‰> Q� D …Y of
the response vector f �. It is worth noting that the first and essential part of the
analysis does not rely on the underlying model distribution, only on our parametric
assumptions that f D ‰>�� and Cov."/ D † D �2In. The real model only
appears when studying the risk of estimation. We will comment on the cases of
misspecified f and †.

When † D �2In, the operator… in the representation Qf D …Y of the estimate
Qf reads as

… D ‰>�‰‰>��1‰: (4.7)

First we make use of the linear structure of the model (4.1) and of the estimate
Qf to derive a number of its simple but important properties.

4.3.1 Decomposition into a Deterministic and a Stochastic
Component

The model equation Y D f � C " yields

Qf D …Y D ….f � C "/ D …f � C…": (4.8)

The first element of this sum, …f � is purely deterministic, but it depends on the
unknown response vector f �. Moreover, it will be shown in the next lemma that
…f � D f � if the parametric assumption holds and the vector f � indeed can be
represented as‰>��. The second element is stochastic as a linear transformation of
the stochastic vector " but is independent of the model response f �. The properties
of the estimate Qf heavily rely on the properties of the linear operator… from (4.7)
which we collect in the next section.

4.3.2 Properties of the Operator…

Let  1; : : : ; p be the columns of the matrix ‰>. These are the vectors in Rn also
called the basis vectors.
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Lemma 4.3.1. Let the matrix‰‰> be non-degenerate. Then the operator… fulfills
the following conditions:

(i) … is symmetric (self-adjoint), that is, …> D ….
(ii) … is a projector in Rn, i.e. …>… D …2 D … and ….1n �…/ D 0, where 1n

means the unity operator in Rn.
(iii) For an arbitrary vector v from Rn, it holds kvk2 D k…vk2 C kv �…vk2.
(iv) The trace of … is equal to the dimension of its image, tr … D p.
(v) … projects the linear space Rn on the linear subspace Lp D ˝

 1; : : : ; p

˛
,

which is spanned by the basis vectors  1; : : : p , that is,

kf � �…f �k D inf
g2Lp

kf � � gk:

(vi) The matrix … can be represented in the form

… D U>ƒpU

where U is an orthonormal matrix and ƒp is a diagonal matrix with the first
p diagonal elements equal to 1 and the others equal to zero:

ƒp D diagf1; : : : ; 1„ ƒ‚ …
p

; 0; : : : ; 0„ ƒ‚ …
n�p

g:

Proof. It holds

˚
‰>�‰‰>��1‰

�> D ‰>�‰‰>��1‰

and

…2 D ‰>�‰‰>��1‰‰>�‰‰>��1‰ D ‰>�‰‰>��1‰ D …;

which proves the first two statements of the lemma. The third one follows directly
from the first two. Next,

tr … D tr ‰>�‰‰>��1‰ D tr ‰‰>�‰‰>��1 D tr Ip D p:

The second property means that … is a projector in Rn and the fourth one means
that the dimension of its image space is equal to p. The basis vectors  1; : : : ; p

are the rows of the matrix ‰. It is clear that

…‰> D ‰>�‰‰>��1‰‰> D ‰>:

Therefore, the vectors m are invariants of the operator… and in particular, all these
vectors belong to the image space of this operator. If now g is a vector in Lp , then
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it can be represented as g D c1 1 C : : : C cp p and therefore, …g D g and
…Lp D Lp . Finally, the non-singularity of the matrix ‰‰> means that the vectors
 1; : : : ; p forming the rows of ‰ are linearly independent. Therefore, the space
Lp spanned by the vectors  1; : : : ; p is of dimension p, and hence it coincides
with the image space of the operation….

The last property is the usual diagonal decomposition of a projector.

Exercise 4.3.1. Consider the case of an orthogonal design with ‰‰> D Ip . Spec-
ify the projector… of Lemma 4.3.1 for this situation, particularly its decomposition
from (vi).

4.3.3 Quadratic Loss and Risk of the Response Estimation

In this section we study the quadratic risk of estimating the responsef �. The reason
for studying the quadratic risk of estimating the response f � will be made clear
when we discuss the properties of the fitted likelihood in the next section.

The loss }. Qf ;f �/ of the estimate Qf can be naturally defined as the squared
norm of the difference Qf � f �:

}. Qf ;f �/ D k Qf � f �k2 D
nX

iD1
jfi � Qfi j2:

Correspondingly, the quadratic risk of the estimate Qf is the mean of this loss

R. Qf / D E}. Qf ;f �/ D E
�
. Qf � f �/>. Qf � f �/

�
: (4.9)

The next result describes the loss and risk decomposition for two cases: when the
parametric assumption f � D ‰>�� is correct and in the general case.

Theorem 4.3.1. Suppose that the errors "i from (4.1) are independent with E "i D
0 and E "2i D �2, i.e. † D �2In. Then the loss }. Qf ;f �/ D k…Y � f �k2 and the
risk R. Qf / of the LSE Qf fulfill

}. Qf ;f �/ D kf � �…f �k2 C k…"k2;
R. Qf / D kf � �…f �k2 C p�2:

Moreover, if f � D ‰>��, then

}. Qf ;f �/ D k…"k2;
R. Qf / D p�2:
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Proof. We apply (4.9) and the decomposition (4.8) of the estimate Qf . It follows

}. Qf ;f �/ D k Qf � f �k2 D kf � �…f � �…"k2
D kf � �…f �k2 C 2.f � �…f �/>…"C k…"k2:

This implies the decomposition for the loss of Qf by Lemma 4.3.1(ii). Next we
compute the mean of k…"k2 applying again Lemma 4.3.1. Indeed

Ek…"k2 D E.…"/>…" D E tr
˚
…".…"/>

� D E tr
�
…"">…>�

D tr
˚
…E."">/…

� D �2 tr.…2/ D p�2:

Now consider the case when f � D ‰>��. By Lemma 4.3.1 f � D …f � and and
the last two statements of the theorem clearly follow.

4.3.4 Misspecified “Colored Noise”

Here we briefly comment on the case when " is not a white noise. So, our
assumption about the errors "i is that they are uncorrelated and homogeneous, that
is, † D �2In while the true covariance matrix is given by †0. Many properties of
the estimate Qf D …Y which are simply based on the linearity of the model (4.1)
and of the estimate Qf itself continue to apply. In particular, the loss }

� Qf ;f �� D
k Qf � f �k2 can again be decomposed as

k Qf � f �k2 D kf � �…f �k2 C k…"k2:

Theorem 4.3.2. Suppose that E" D 0 and Var."/ D †0. Then the loss }. Qf ;f /
and the risk R. Qf / of the LSE Qf fulfill

}. Qf ;f �/ D kf � �…f �k2 C k…"k2;
R. Qf / D kf � �…f �k2 C tr

�
…†0…

�
:

Moreover, if f � D ‰>��, then

}. Qf ;f �/ D k…"k2;
R. Qf / D tr

�
…†0…

�
:

Proof. The decomposition of the loss from Theorem 4.3.1 only relies on the
geometric properties of the projector… and does not use the covariance structure of
the noise. Hence, it only remains to check the expectation of k…"k2. Observe that
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Ek…"k2 D E tr
�
…".…"/>

� D tr
�
…E."">/…

� D tr
�
…†0…

�

as required.

4.4 Properties of the MLE Q�

In this section we focus on the properties of the quasi MLE Q� built for the idealized
linear Gaussian model Y D ‰>�� C " with " � N.0; �2In/. As in the previous
section, we do not assume the parametric structure of the underlying model and
consider a more general model Y D f � C" with an unknown vector f � and errors
" with zero mean and covariance matrix †0. Due to (4.3), it holds Q� D SY with
S D �

‰‰>��1‰. An important feature of this estimate is its linear dependence on
the data. The linear model equation Y D f � C" and linear structure of the estimate
Q� D SY allow us for decomposing the vector Q� into a deterministic and stochastic
terms:

Q� D SY D S�f � C "
� D Sf � C S": (4.10)

The first term Sf � is deterministic but depends on the unknown vector f � while
the second term S" is stochastic but it does not involve the model response f �.
Below we study the properties of each component separately.

4.4.1 Properties of the Stochastic Component

The next result describes the distributional properties of the stochastic component
ı D S" for S D �

‰‰>��1‰ and thus, of the estimate Q� .

Theorem 4.4.1. Assume Y D f � C " with E" D 0 and Var."/ D †0. The
stochastic component ı D S" in (4.10) fulfills

Eı D 0; W 2 defD Var.ı/ D S†0S>; Ekık2 D trW 2 D tr
�S†0S>�:

Moreover, if † D †0 D �2In, then

W 2 D �2
�
‰‰>��1; Ekık2 D tr.W 2/ D �2 tr

��
‰‰>��1�: (4.11)

Similarly for the estimate Q� it holds

E Q� D Sf �; Var. Q�/ D W 2:
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If the errors " are Gaussian, then both ı and Q� are Gaussian as well:

ı � N.0;W 2/ Q� � N.Sf �;W 2/:

Proof. For the varianceW 2 of ı holds

Var.ı/ D Eıı> D ES"">S> D S†0S>:

Next we use that Ekık2 D Eı>ı D E tr.ıı>/ D trW 2. If † D †0 D �2In,
then (4.11) follows by simple algebra.

If " is a Gaussian vector, then ı as its linear transformation is Gaussian as well.
The properties of Q� follow directly from the decomposition (4.10).

With †0 ¤ �2In, the varianceW 2 can be represented as

W 2 D �
‰‰>��1‰†0‰>�‰‰>��1:

Exercise 4.4.1. Let ı be the stochastic component of Q� built for the misspecified
linear model Y D ‰>�� C " with Var."/ D †. Let also the true noise variance is
†0. Then Var. Q�/ D W 2 with

W 2 D �
‰†�1‰>��1‰†�1†0†�1‰>�‰†�1‰>��1: (4.12)

The main finding in the presented study is that the stochastic part ı D S" of
the estimate Q� is completely independent of the structure of the vector f �. In other
words, the behavior of the stochastic component ı does not change even if the linear
parametric assumption is misspecified.

4.4.2 Properties of the Deterministic Component

Now we study the deterministic term starting with the parametric situation f � D
‰>��. Here we only specify the results for the case 1 with † D �2In.

Theorem 4.4.2. Let f � D ‰>��. Then Q� D SY with S D �
‰‰>��1‰ is

unbiased, that is, E Q� D Sf � D ��.

Proof. For the proof, just observe that Sf � D �
‰‰>��1‰‰>�� D ��.

Now we briefly discuss what happens when the linear parametric assumption is
not fulfilled, that is, f � cannot be represented as‰>��. In this case it is not yet clear
what Q� really estimates. The answer is given in the context of the general theory of
minimum contrast estimation. Namely, define �� as the point which maximizes the
expectation of the (quasi) log-likelihood L.�/:

�� D argmax
�

EL.�/: (4.13)
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Theorem 4.4.3. The solution �� of the optimization problem (4.13) is given by

�� D Sf � D �
‰‰>��1‰f �:

Moreover,

‰>�� D …f � D ‰>�‰‰>��1‰f �:

In particular, if f � D ‰>��, then �� follows (4.13).

Proof. The use of the model equation Y D f � C " and of the properties of the
stochastic component ı yield by simple algebra

argmax
�

EL.�/ D argmin
�

E
�
f � �‰>� C "

�>�
f � �‰>� C "

�

D argmin
�

˚
.f � �‰>�/>.f � �‰>�/C E

�
">"

��

D argmin
�

˚
.f � �‰>�/>.f � �‰>�/

�
:

Differentiating w.r.t. � leads to the equation

‰.f � �‰>�/ D 0

and the solution �� D �
‰‰>��1‰f � which is exactly the expected value of Q� by

Theorem 4.4.1.

Exercise 4.4.2. State the result of Theorems 4.4.2 and 4.4.3 for the MLE Q� built in
the model Y D ‰>�� C " with Var."/ D †.
Hint: check that the statements continue to apply with S D �

‰†�1‰>��1‰†�1.

The last results and the decomposition (4.10) explain the behavior of the estimate
Q� in a very general situation. The considered model is Y D f � C ". We assume
a linear parametric structure and independent homogeneous noise. The estimation
procedure means in fact a kind of projection of the data Y on a p-dimensional linear
subspace in Rn spanned by the given basis vectors  1; : : : ; p . This projection, as
a linear operator, can be decomposed into a projection of the deterministic vector
f � and a projection of the random noise ". If the linear parametric assumption
f � 2 ˝ 1; : : : ; p

˛
is correct, that is, f � D ��

1  1C: : :C��
p p , then this projection

keepsf � unchanged and only the random noise is reduced via this projection. Iff �
cannot be exactly expanded using the basis 1; : : : ; p , then the procedure recovers
the projection of f � onto this subspace. The latter projection can be written as
‰>�� and the vector �� can be viewed as the target of estimation.
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4.4.3 Risk of Estimation: R-Efficiency

This section briefly discusses how the obtained properties of the estimate Q� can
be used to evaluate the risk of estimation. A particularly important question is the
optimality of the MLE Q� . The main result of the section claims that Q� is R-efficient
if the model is correctly specified and is not if there is a misspecification.

We start with the case of a correct parametric specification Y D ‰>�� C ", that
is, the linear parametric assumption f � D ‰>�� is exactly fulfilled and the noise
" is homogeneous: " � N.0; �2In/. Later we extend the result to the case when the
LPA f � D ‰>�� is not fulfilled and to the case when the noise is not homogeneous
but still correctly specified. Finally we discuss the case when the noise structure is
misspecified.

Under LPA Y D ‰>�� C " with " � N.0; �2In/, the estimate Q� is also normal
with mean �� and the variance W 2 D �2SS> D �2

�
‰‰>��1. Define a p � p

symmetric matrix D by the equation

D2 D 1

�2

nX

iD1
‰i‰

>
i D 1

�2
‰‰>:

Clearly W 2 D D�2.
Now we show that Q� is R-efficient. Actually this fact can be derived from

the Cramér–Rao Theorem because the Gaussian model is a special case of an
exponential family. However, we check this statement directly by computing the
Cramér–Rao efficiency bound. Recall that the Fisher information matrix F.�/ for
the log-likelihoodL.�/ is defined as the variance of rL.�/ under P� .

Theorem 4.4.4 (Gauss–Markov). Let Y D ‰>�� C" with " � N.0; �2In/. Then
Q� is R-efficient estimate of ��: E Q� D ��,

E
�� Q� � ���� Q� � ���>� D Var

� Q�� D D�2;

and for any unbiased linear estimate O� satisfying E� O� � � , it holds

Var
� O�� 
 Var

� Q�� D D�2:

Proof. Theorems 4.4.1 and 4.4.2 imply that Q� � N.��;W 2/ with W 2 D
�2.‰‰>/�1 D D�2. Next we show that for any �

Var
�rL.�/� D D2;

that is, the Fisher information does not depend on the model function f �. The log-
likelihood L.�/ for the model Y � N.‰>��; �2In/ reads as
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L.�/ D � 1

2�2
.Y �‰>�/>.Y �‰>�/ � n

2
log.2��2/:

This yields for its gradient rL.�/:

rL.�/ D ��2‰.Y �‰>�/

and in view of Var.Y / D † D �2In, it holds

Var
�rL.�/� D ��4‰Var.Y /‰> D ��2‰‰>

as required.
The R-efficiency Q� follows from the Cramér–Rao efficiency bound because˚

Var. Q�/��1 D Var
˚rL.�/�. However, we present an independent proof of this fact.

Actually we prove a sharper result that the variance of a linear unbiased estimate O�
coincides with the variance of Q� only if O� coincides almost surely with Q� , otherwise
it is larger. The idea of the proof is quite simple. Consider the difference O� � Q� and
show that the condition E O� D E Q� D �� implies orthogonalityE

˚ Q�. O�� Q�/>� D 0.

This, in turns, implies Var. O�/ D Var. Q�/ C Var. O� � Q�/ 
 Var. Q�/. So, it remains
to check the orthogonality of Q� and O� � Q� . Let O� D AY for a p � n matrix
A and E� O� � � and all � . These two equalities and EY D ‰>�� imply that
A‰>�� � ��, i.e. A‰> is the identity p �p matrix. The same is true for Q� D SY
yielding S‰> D Ip . Next, in view of E O� D E Q� D ��

E
˚
. O� � Q�/ Q�>� D E.A � S/"">S> D �2.A� S/‰>.‰‰>/�1 D 0;

and the assertion follows.

Exercise 4.4.3. Check the details of the proof of the theorem. Show that the
statement Var. O�/ 
 Var

� Q�� only uses that O� is unbiased and that EY D ‰>��
and Var.Y / D �2In.

Exercise 4.4.4. Compute r2L.�/. Check that it is non-random, does not depend
on � , and fulfills for every � the identity

r2L.�/ � � Var
�rL.�/� D �D2:

4.4.3.1 A Colored Noise

The majority of the presented results continue to apply in the case of heterogeneous
and even dependent noise with Var."/ D †0. The key facts behind this extension
are the decomposition (4.10) and the properties of the stochastic component ı from
Sect. 4.4.1: ı � N.0;W 2/. In the case of a colored noise, the definition of W and
D is changed for
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D2 defD W �2 D ‰†�1
0 ‰

>:

Exercise 4.4.5. State and prove the analog of Theorem 4.4.4 for the colored noise
" � N.0;†0/.

4.4.3.2 A Misspecified LPA

An interesting feature of our results so far is that they equally apply for the correct
linear specification f � D ‰>�� and for the case when the identity f � D ‰>� is
not precisely fulfilled whatever � is taken. In this situation the target of analysis is
the vector �� describing the best linear approximation of f � by ‰>� . We already
know from the results of Sects. 4.4.1 and 4.4.2 that the estimate Q� is also normal
with mean �� D Sf � D �

‰‰>��1‰f � and the variance W 2 D �2SS> D
�2
�
‰‰>��1.

Theorem 4.4.5. Assume Y D f � C " with " � N.0; �2In/. Let �� D Sf �. Then
Q� is R-efficient estimate of ��: E Q� D ��,

E
�� Q� � ���� Q� � ���>� D Var

� Q�� D D�2;

and for any unbiased linear estimate O� satisfying E� O� � � , it holds

Var
� O�� 
 Var

� Q�� D D�2:

Proof. The proofs only utilize that Q� � N.��;W 2/ with W 2 D D�2. The only
small remark concerns the equality Var

�rL.�/� D D2 from Theorem 4.4.4.

Exercise 4.4.6. Check the identity Var
�rL.�/� D D2 from Theorem 4.4.4 for

" � N.0;†0/.

4.4.4 The Case of a Misspecified Noise

Here we again consider the linear parametric assumption Y D ‰>�� C". However,
contrary to the previous section, we admit that the noise " is not homogeneous
normal: " � N.0;†0/ while our estimation procedure is the quasi MLE based on
the assumption of noise homogeneity " � N.0; �2In/. We already know that the
estimate Q� is unbiased with mean �� and variance W 2 D S†0S>, where S D�
‰‰>��1‰. This gives

W 2 D �
‰‰>��1‰†0‰>�‰‰>��1:
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The question is whether the estimate Q� based on the misspecified distributional
assumption is efficient. The Cramér–Rao result delivers the lower bound for the
quadratic risk in form of Var. Q�/ 
 �

Var
�rL.�/���1. We already know that the

use of the correctly specified covariance matrix of the errors leads to an R-efficient
estimate Q� . The next result show that the use of a misspecified matrix † results in
an estimate which is unbiased but not R-efficient, that is, the best estimation risk is
achieved if we apply the correct model assumptions.

Theorem 4.4.6. Let Y D ‰>�� C " with " � N.0;†0/. Then

Var
�rL.�/� D ‰†�1

0 ‰
>:

The estimate Q� D �
‰‰>��1‰Y is unbiased, that is, E Q� D ��, but it is not R-

efficient unless †0 D †.

Proof. Let Q�0 be the MLE for the correct model specification with the noise " �
N.0;†0/. As Q� is unbiased, the difference Q� � Q�0 is orthogonal to Q�0 and it holds
for the variance of Q�

Var. Q�/ D Var. Q�0/C Var. Q� � Q�0/I

cf. with the proof of Gauss–Markov-Theorem 4.4.4.

Exercise 4.4.7. Compare directly the variances of Q� and of Q�0.

4.5 Linear Models and Quadratic Log-Likelihood

Linear Gaussian modeling leads to a specific log-likelihood structure; see Sect. 4.2.
Namely, the log-likelihood function L.�/ is quadratic in � , the coefficients of the
quadratic terms are deterministic and the cross term is linear both in � and in the
observations Yi . Here we show that this geometric structure of the log-likelihood
characterizes linear models. We say that L.�/ is quadratic if it is a quadratic
function of � and there is a deterministic symmetric matrix D2 such that for any
�ı;�

L.�/ �L.�ı/ D .� � �ı/>rL.�ı/� .� � �ı/>D2.� � �ı/=2: (4.14)

Here rL.�/ defD dL.�/

d�
. As usual we define

Q� defD argmax
�

L.�/;

�� D argmax
�

EL.�/:
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The next result describes some properties of the estimate Q� which are entirely based
on the geometric (quadratic) structure of the functionL.�/. All the results are stated
by using the matrix D2 and the vector � D rL.��/.

Theorem 4.5.1. Let L.�/ be quadratic for a matrix D2 > 0. Then for any �ı

Q� � �ı D D�2rL.�ı/: (4.15)

In particular, with �ı D 0, it holds

Q� D D�2rL.0/:
Taking �ı D �� yields

Q� � �� D D�2� (4.16)

with �
defD rL.��/. Moreover, E� D 0, and it holds with V 2 D Var.�/ D E��>

E Q� D ��

Var
� Q�� D D�2V 2D�2:

Further, for any � ,

L. Q�/� L.�/ D . Q� � �/>D2. Q� � �/=2 D kD. Q� � �/k2=2: (4.17)

Finally, it holds for the excess L. Q� ;��/ defD L. Q�/� L.��/

2L. Q�;��/ D . Q� � ��/>D2. Q� � ��/ D �>D�2� D k�k2 (4.18)

with � D D�1�.

Proof. The extremal point equation rL.�/ D 0 for the quadratic function L.�/
from (4.14) yields (4.15). Equation (4.14) with �ı D �� implies for any �

rL.�/ D rL.�ı/ �D2.� � �ı/ D � �D2.� � ��/: (4.19)

Therefore, it holds for the expectation EL.�/

rEL.�/ D E� �D2.� � ��/;

and the equation rEL.��/ D 0 implies E� D 0.
To show (4.17), apply again the property (4.14) with �ı D Q�:

L.�/� L. Q�/ D .� � Q�/>rL. Q�/� .� � Q�/>D2.� � Q�/=2
D �. Q� � �/>D2. Q� � �/=2:
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Here we used that rL. Q�/ D 0 because Q� is an extreme point of L.�/. The last
result (4.18) is a special case with � D �� in view of (4.16).

This theorem delivers an important message: the main properties of the MLE
Q� can be explained via the geometric (quadratic) structure of the log-likelihood.
An interesting question to clarify is whether a quadratic log-likelihood structure
is specific for linear Gaussian model. The answer is positive: there is one-to-
one correspondence between linear Gaussian models and quadratic log-likelihood
functions. Indeed, the identity (4.19) with �ı D �� can be rewritten as

rL.�/CD2� � � CD2��:

If we fix any � and define Y D rL.�/CD2� , this yields

Y D D2�� C �:

Similarly, Y
defD D�1˚rL.�/CD2�

�
yields the equation

Y D D�� C �; (4.20)

where � D D�1�. We can summarize as follows.

Theorem 4.5.2. Let L.�/ be quadratic with a non-degenerated matrix D2. Then

Y
defD D�1˚rL.�/ C D2�

�
does not depend on � and L.�/ � L.��/ is the quasi

log-likelihood ratio for the linear Gaussian model (4.20) with � standard normal. It
is the true log-likelihood if and only if � � N.0;D2/.

Proof. The model (4.20) with � � N.0; Ip/ leads to the log-likelihood ratio

.� � ��/>D.Y �D��/ � kD.� � ��/k2=2 D .� � ��/>� � kD.� � ��/k2=2

in view of the definition of Y . The definition (4.14) implies

L.�/ �L.��/ D .� � ��/>rL.��/ � kD.� � ��/k2=2:

As these two expressions coincide, it follows that L.�/ is the true log-likelihood if
and only if � D D�1� is standard normal.

4.6 Inference Based on the Maximum Likelihood

All the results presented above for linear models were based on the explicit
representation of the (quasi) MLE Q� . Here we present the approach based on the
analysis of the maximum likelihood. This approach does not require to fix any
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analytic expression for the point of maximum of the (quasi) likelihood process
L.�/. Instead we work directly with the maximum of this process. We establish
exponential inequalities for the excess or the maximum likelihood L. Q�;��/. We
also show how these results can be used to study the accuracy of the MLE Q� , in
particular, for building confidence sets.

One more benefit of the ML-based approach is that it equally applies to a
homogeneous and to a heterogeneous noise provided that the noise structure is
not misspecified. The celebrated chi-squared result about the maximum likelihood
L. Q�;��/ claims that the distribution of 2L. Q�;��/ is chi-squared with p degrees of
freedom 	2p and it does not depend on the noise covariance; see Sect. 4.6.

Now we specify the setup. The starting point of the ML-approach is the linear
Gaussian model assumption Y D ‰>�� C " with " � N.0;†/. The corresponding
log-likelihood ratio L.�/ can be written as

L.�/ D �1
2
.Y �‰>�/>†�1.Y �‰>�/CR; (4.21)

where the remainder term R does not depend on � . Now one can see that L.�/ is a
quadratic function of � . Moreover, r2L.�/ D ‰†�1‰>, so that L.�/ is quadratic
withD2 D ‰†�1‰>. This enables us to apply the general results of Sect. 4.5 which
are only based on the geometric (quadratic) structure of the log-likelihoodL.�/: the
true data distribution can be arbitrary.

Theorem 4.6.1. Consider L.�/ from (4.21). For any � , it holds with D2 D
‰†�1‰>

L. Q�;�/ D . Q� � �/>D2. Q� � �/=2: (4.22)

In particular, if † D �2In then the fitted log-likelihood is proportional to the
quadratic loss k Qf � f �k2 for Qf D ‰> Q� and f � D ‰>�:

L. Q�;�/ D 1

2�2


‰>. Q� � �/2 D 1

2�2


 Qf � f �


2:

If �� defD argmax� EL.�/ D D�2‰†�1f � for f � D EY , then

2L. Q�;��/ D �>D�2� D k�k2 (4.23)

with � D rL.��/ and �
defD D�1�.

Proof. The results (4.22) and (4.23) follow from Theorem 4.5.1; see (4.17)
and (4.18).

If the model assumptions are not misspecified, one can establish the remarkable
	2 result.
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Theorem 4.6.2. Let L.�/ from (4.21) be the log-likelihood for the model Y D
‰>�� C " with " � N.0;†/. Then � D D�1� � N.0; Ip/ and 2L. Q�;��/ � 	2p is
chi-squared with p degrees of freedom.

Proof. By direct calculus

� D rL.��/ D ‰†�1.Y �‰>��/ D ‰†�1":

So, � is a linear transformation of a Gaussian vector Y and thus it is Gaussian as
well. By Theorem 4.5.1, E� D 0. Moreover, Var."/ D † implies

Var.�/ D E‰>†�1"">†�1‰> D ‰†�1‰> D D2

yielding that � D D�1� is standard normal.

The last result 2L. Q�;��/ � 	2p is sometimes called the “chi-squared phe-
nomenon”: the distribution of the maximum likelihood only depends on the number
of parameters to be estimated and is independent of the design ‰, of the noise
covariance matrix †, etc. This particularly explains the use of word “phenomenon”
in the name of the result.

Exercise 4.6.1. Check that the linear transformation LY D †�1=2Y of the data
does not change the value of the log-likelihood ratio L.�;��/ and hence, of the
maximum likelihood L. Q�;��/.
Hint: use the representation

L.�/ D 1

2
.Y �‰>�/>†�1.Y �‰>�/CR

D 1

2
. LY � L‰>�/>. LY � L‰>�/CR

and check that the transformed data LY is described by the model LY D L‰>�� C L"
with L‰ D ‰†�1=2 and L" D †�1=2" � N.0; In/ yielding the same log-likelihood
ratio as in the original model.

Exercise 4.6.2. Assume homogeneous noise in (4.21) with † D �2In. Then it
holds

2L. Q�;��/ D ��2k…"k2

where … D ‰>�‰‰>��1‰ is the projector in Rn on the subspace spanned by the
vectors 1; : : : ; p.
Hint: use that � D ��2‰", D2 D ��2‰‰>, and

��2k…"k2 D ��2">…>…" D ��2">…" D �>D�2�:
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We write the result of Theorem 4.6.1 in the form 2L. Q�;��/ � 	2p , where 	2p
stands for the chi-squared distribution with p degrees of freedom. This result can
be used to build likelihood-based confidence ellipsoids for the parameter ��. Given
z > 0, define

E.z/ D ˚
� W L. Q�;�/ � z

� D
n
� W sup

�0

L.� 0/� L.�/ � z
o
: (4.24)

Theorem 4.6.3. Assume Y D ‰>�� C " with " � N.0;†/ and consider the MLE
Q� . Define z˛ by P

�
	2p > 2z˛

� D ˛. Then E.z˛/ from (4.24) is an ˛-confidence set
for ��.

Exercise 4.6.3. Let D2 D ‰†�1‰>. Check that the likelihood-based CS E.z˛/
and estimate-based CS E.z˛/ D f� W kD. Q� � �/k � z˛g, z2˛ D 2z˛ , coincide in the
case of the linear modeling:

E.z˛/ D ˚
� W D. Q� � �/2 � 2z˛

�
:

Another corollary of the chi-squared result is a concentration bound for the
maximum likelihood. A similar result was stated for the univariate exponential
family model: the value L. Q�; ��/ is stochastically bounded with exponential
moments, and the bound does not depend on the particular family, parameter
value, sample size, etc. Now we can extend this result to the case of a linear
Gaussian model. Indeed, Theorem 4.6.1 states that the distribution of 2L. Q�;��/
is chi-squared and only depends on the number of parameters to be estimated. The
latter distribution concentrates on the ball of radius of order p1=2 and the deviation
probability is exponentially small.

Theorem 4.6.4. Assume Y D ‰>�� C " with " � N.0;†/. Then for every x > 0,
it holds with � 
 6:6

P
�
2L. Q�;��/ > p C p

~xp _ .~x/�

D P
�D. Q� � ��/


2 > p C p

~xp _ .~x/� � exp.�x/: (4.25)

Proof. Define �
defD D. Q����/. By Theorem 4.4.4 � is standard normal vector in Rp

and by Theorem 4.6.1 2L. Q�;��/ D k�k2. Now the statement (4.25) follows from
the general deviation bound for the Gaussian quadratic forms; see Theorem A.2.1.

The main message of this result can be explained as follows: the deviation
probability that the estimate Q� does not belong to the elliptic set E.z/ D f� W
kD. Q� � �/k � zg starts to vanish when z2 exceeds the dimensionality p of the
parameter space. Similarly, the coverage probability that the true parameter �� is
not covered by the confidence set E.z/ starts to vanish when 2z exceeds p.



4.6 Inference Based on the Maximum Likelihood 143

Corollary 4.6.1. Assume Y D ‰>�� C" with " � N.0;†/. Then for every x > 0,
it holds with 2z D p C p

~xp _ .~x/ for ~ 
 6:6

P
�
E.z/ 63 ��� � exp.�x/:

Exercise 4.6.4. Compute z ensuring the covering of 95 % in the dimension p D
1; 2; 10; 20.

4.6.1 A Misspecified LPA

Now we discuss the behavior of the fitted log-likelihood for the misspecified linear
parametric assumption EY D ‰>��. Let the response function f � not be linearly
expandable as f � D ‰>��. Following to Theorem 4.4.3, define �� D Sf �

with S D �
‰†�1‰>��1‰†�1. This point provides the best approximation of the

nonlinear response f � by a linear parametric fit ‰>� .

Theorem 4.6.5. Assume Y D f � C " with " � N.0;†/. Let �� D Sf �. Then Q�
is an R-efficient estimate of �� and

2L. Q�;��/ D �>D�2� D k�k2 � 	2p ;

where D2 D ‰†�1‰>, � D rL.��/ D ‰†�1", � D D�1� is standard normal
vector in Rp and 	2p is a chi-squared random variable with p degrees of freedom.
In particular, E.z˛/ is an ˛-CS for the vector �� and the bound of Corollary 4.6.1
applies.

Exercise 4.6.5. Prove the result of Theorem 4.6.5.

4.6.2 A Misspecified Noise Structure

This section addresses the question about the features of the maximum likelihood
in the case when the likelihood is built under a wrong assumption about the noise
structure. As one can expect, the chi-squared result is not valid anymore in this
situation and the distribution of the maximum likelihood depends on the true
noise covariance. However, the nice geometric structure of the maximum likelihood
manifested by Theorems 4.6.1 and 4.6.3 does not rely on the true data distribution
and it is only based on our structural assumptions on the considered model. This
helps to get rigorous results about the behaviors of the maximum likelihood and
particularly about its concentration properties.

Theorem 4.6.6. Let Q� be built for the model Y D ‰>�� C " with " � N.0;†/,
while the true noise covariance is †0: E" D 0 and Var."/ D †0. Then
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E Q� D ��;

Var
� Q�� D D�2W 2D�2;

where

D2 D ‰†�1‰>;

W 2 D ‰†�1†0†�1‰>:

Further,

2L. Q�;��/ D kD. Q� � ��/k2 D k�k2; (4.26)

where � is a random vector in Rp with E� D 0 and

Var.�/ D B
defD D�1W 2D�1:

Moreover, if " � N.0;†0/, then Q� � N
�
��;D�2W 2D�2� and � � N.0; B/.

Proof. The moments of Q� have been computed in Theorem 4.5.1 while the equality
2L. Q�;��/ D kD. Q� � ��/k2 D k�k2 is given in Theorem 4.6.1. Next, � D
rL.��/ D ‰†�1" and

W 2 defD Var.�/ D ‰†�1 Var."/†�1‰> D ‰†�1†0†�1‰>:

This implies that

Var.�/ D E��> D D�1 Var.�/D�1 D D�1W 2D�1:

It remains to note that if " is a Gaussian vector, then � D ‰†�1", � D D�1�, and
Q� � �� D D�2� are Gaussian as well.

Exercise 4.6.6. Check that †0 D † leads back to the 	2-result.

One can see that the chi-squared result is not valid any more if the noise structure
is misspecified. An interesting question is whether the CS E.z/ can be applied
in the case of a misspecified noise under some proper adjustment of the value z.
Surprisingly, the answer is not entirely negative. The reason is that the vector �
from (4.26) is zero mean and its norm has a similar behavior as in the case of the
correct noise specification: the probability P

�k�k > z
�

starts to degenerate when
z2 exceeds Ek�k2. A general bound from Theorem A.2.2 in Sect. A.1 implies the
following bound for the coverage probability.

Corollary 4.6.2. Under the conditions of Theorem 4.6.6, for every x > 0, it holds
with p D tr.B/, v2 D 2 tr.B2/, and a� D kBk1
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P
�
2L. Q�;��/ > pC .2vx1=2/ _ .6a�x/

� � exp.�x/:

Exercise 4.6.7. Show that an overestimation of the noise in the sense † 
 †0
preserves the coverage probability for the CS E.z˛/, that is, if 2z˛ is the 1 � ˛

quantile of 	2p , then P
�
E.z˛/ 63 ��� � ˛.

4.7 Ridge Regression, Projection, and Shrinkage

This section discusses the important situation when the number of predictors  j

and hence the number of parameters p in the linear model Y D ‰>�� C " is not
small relative to the sample size. Then the least square or the maximum likelihood
approach meets serious problems. The first one relates to the numerical issues. The
definition of the LSE Q� involves the inversion of the p � p matrix ‰‰> and such
an inversion becomes a delicate task for p large. The other problem concerns the
inference for the estimated parameter ��. The risk bound and the width of the
confidence set are proportional to the parameter dimension p and thus, with large p,
the inference statements become almost uninformative. In particular, if p is of order
the sample size n, even consistency is not achievable. One faces a really critical
situation. We already know that the MLE is the efficient estimate in the class of
all unbiased estimates. At the same time it is highly inefficient in overparametrized
models. The only way out of this situation is to sacrifice the unbiasedness property
in favor of reducing the model complexity: some procedures can be more efficient
than MLE even if they are biased. This section discusses one way of resolving these
problems by regularization or shrinkage. To be more specific, for the rest of the
section we consider the following setup. The observed vector Y follows the model

Y D f � C " (4.27)

with a homogeneous error vector ": E" D 0, Var."/ D �2In. Noise misspecifica-
tion is not considered in this section.

Furthermore, we assume a basis or a collection of basis vectors  1; : : : ; p is
given with p large. This allows for approximating the response vector f D EY in
the form f D ‰>��, or, equivalently,

f D ��
1  1 C : : :C ��

p p :

In many cases we will assume that the basis is already orthogonalized:‰‰> D Ip .
The model (4.27) can be rewritten as

Y D ‰>�� C "; Var."/ D �2In :

The MLE or oLSE of the parameter vector �� for this model reads as
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Q� D �
‰‰>��1‰Y ; Qf D ‰> Q� D ‰>�‰‰>��1‰Y :

If the matrix ‰‰> is degenerate or badly posed, computing the MLE Q� is a hard
task. Below we discuss how this problem can be treated.

4.7.1 Regularization and Ridge Regression

Let R be a positive symmetric p � p matrix. Then the sum ‰‰> C R is positive
symmetric as well and can be inverted whatever the matrix ‰ is. This suggests to
replace

�
‰‰>��1 by

�
‰‰>CR��1 leading to the regularized least squares estimate

Q�R of the parameter vector � and the corresponding response estimate Qf R:

Q�R defD �
‰‰> CR

��1
‰Y ; Qf R

defD ‰>�‰‰> CR
��1
‰Y : (4.28)

Such a method is also called ridge regression. An example of choosing R is the
multiple of the unit matrix:R D ˛Ip where ˛ > 0 and Ip stands for the unit matrix.
This method is also called Tikhonov regularization and it results in the parameter
estimate Q�˛ and the response estimate Qf ˛:

Q�˛ defD �
‰‰> C ˛Ip

��1
‰Y ; Qf ˛

defD ‰>�‰‰> C ˛Ip
��1
‰Y : (4.29)

A proper choice of the matrix R for the ridge regression method (4.28) or the
parameter ˛ for the Tikhonov regularization (4.29) is an important issue. Below we
discuss several approaches which lead to the estimate (4.28) with a specific choice of
the matrix R. The properties of the estimates Q�R and Qf R will be studied in context
of penalized likelihood estimation in the next section.

4.7.2 Penalized Likelihood: Bias and Variance

The estimate (4.28) can be obtained in a natural way within the (quasi) ML approach
using the penalized least squares. The classical unpenalized method is based on
minimizing the sum of residuals squared:

Q� D argmax
�

L.�/ D arginf
�

kY �‰>�k2

with L.�/ D ��2kY � ‰>�k2=2. (Here we omit the terms which do not depend
on � .) Now we introduce an additional penalty on the objective function which
penalizes for the complexity of the candidate vector � which is expressed by the
value kG�k2=2 for a given symmetric matrixG. This choice of complexity measure
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implicitly assumes that the vector � � 0 has the smallest complexity equal to
zero and this complexity increases with the norm of G� . Define the penalized log-
likelihood

LG.�/
defD L.�/� kG�k2=2
D �.2�2/�1kY �‰>�k2 � kG�k2=2� .n=2/ log.2��2/: (4.30)

The penalized MLE reads as

Q�G D argmax
�

LG.�/ D argmin
�

˚
.2�2/�1kY �‰>�k2 C kG�k2=2�:

A straightforward calculus leads to the expression (4.28) for Q�G with R D �2G2:

Q�G defD �
‰‰> C �2G2

��1
‰Y : (4.31)

We see that Q�G is again a linear estimate: Q�G D SGY with SG D �
‰‰> C

�2G2
��1
‰. The results of Sect. 4.4 explain that Q�G in fact estimates the value �G

defined by

�G D argmax
�

ELG.�/

D arginf
�

E
˚kY �‰>�k2 C �2kG�k2�

D �
‰‰> C �2G2

��1
‰f � D SGf �: (4.32)

In particular, if f � D ‰>��, then

�G D �
‰‰> C �2G2

��1
‰‰>�� (4.33)

and �G ¤ �� unless G D 0. In other words, the penalized MLE Q�G is biased.

Exercise 4.7.1. Check that E Q�˛ D �˛ for �˛ D �
‰‰> C ˛Ip

��1
‰‰>��, the

bias k�˛ � ��k grows with the regularization parameter ˛.

The penalized MLE Q�G leads to the response estimate Qf G D ‰> Q�G .

Exercise 4.7.2. Check that the penalized ML approach leads to the response
estimate

Qf G D ‰> Q�G D ‰>�‰‰> C �2G2
��1
‰Y D …GY

with …G D ‰>�‰‰> C �2G2
��1
‰. Show that …G is a sub-projector in the sense

that k…Guk � kuk for any u 2 Rn.
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Exercise 4.7.3. Let ‰ be orthonormal: ‰‰> D Ip. Then the penalized MLE Q�G
can be represented as

Q�G D .Ip C �2G2/�1Z ;

whereZ D ‰Y is the vector of empirical Fourier coefficients. Specify the result for
the case of a diagonal matrixG D diag.g1; : : : ; gp/ and describe the corresponding
response estimate Qf G .

The previous results indicate that introducing the penalization leads to some bias of
estimation. One can ask about a benefit of using a penalized procedure. The next
result shows that penalization decreases the variance of estimation and thus makes
the procedure more stable.

Theorem 4.7.1. Let Q�G be a penalized MLE from (4.31). Then E Q�G D �G ,
see (4.33), and under noise homogeneity Var."/ D �2In, it holds

Var. Q�G/ D �
��2‰‰> CG2

��1
��2‰‰>���2‰‰> CG2

��1

D D�2
G D

2D�2
G

with D2
G D ��2‰‰> C G2. In particular, Var. Q�G/ � D�2

G . If " � N.0; �2In/,
then Q�G is also normal: Q�G � N.�G;D

�2
G D2D�2

G /.
Moreover, the bias k�G � ��k monotonously increases in G2 while the variance

monotonously decreases with the penalization G.

Proof. The first two moments of Q�G are computed from Q�G D SGY . Monotonicity
of the bias and variance of Q�G is proved below in Exercise 4.7.6.

Exercise 4.7.4. Let ‰ be orthonormal:‰‰> D Ip . Describe Var. Q�G/. Show that
the variance decreases with the penalization G in the sense that G1 
 G implies
Var. Q�G1/ � Var. Q�G/.
Exercise 4.7.5. Let ‰‰> D Ip and let G D diag.g1; : : : ; gp/ be a diagonal
matrix. Compute the squared bias k�G � ��k2 and show that it monotonously
increases in each gj for j D 1; : : : ; p.

Exercise 4.7.6. Let G be a symmetric matrix and Q�G the corresponding penalized
MLE. Show that the variance Var. Q�G/ decreases while the bias k�G���k increases
in G2.
Hint: with D2 D ��2‰‰>, show that for any vector w 2 Rp and u D D�1w, it
holds

w> Var. Q�G/w D u>.Ip CD�1G2D�1/�2u

and this value decreases with G2 because Ip C D�1G2D�1 increases. Show in a
similar way that
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k�G � ��k2 D k.D2 CG2/�1G2��k2 D ��>
��1��

with � D �
Ip C G�2D2

��
Ip C D2G�2�. Show that the matrix � monotonously

increases and thus ��1 monotonously decreases as a function of the symmetric
matrix B D G�2.

Putting together the results about the bias and the variance of Q�G yields the
statement about the quadratic risk.

Theorem 4.7.2. Assume the model Y D ‰>�� C " with Var."/ D �2In. Then the
estimate Q�G fulfills

Ek Q�G � ��k2 D k�G � ��k2 C tr
�
D�2
G D2D�2

G

�
:

This result is called the bias-variance decomposition. The choice of a proper
regularization is usually based on this decomposition: one selects a regularization
from a given class to provide the minimal possible risk. This approach is referred to
as bias-variance trade-off.

4.7.3 Inference for the Penalized MLE

Here we discuss some properties of the penalized MLE Q�G . In particular, we focus
on the construction of confidence and concentration sets based on the penalized log-
likelihood. We know that the regularized estimate Q�G is the empirical counterpart
of the value �G which solves the regularized deterministic problem (4.32). We also
know that the key results are expressed via the value of the supremum sup� LG.�/�
LG.�G/. The next result extends Theorem 4.6.1 to the penalized likelihood.

Theorem 4.7.3. Let LG.�/ be the penalized log-likelihood from (4.30). Then

2LG. Q�G;�G/ D � Q�G � �G
�>
D2
G

� Q�G � �G
�

(4.34)

D ��2">…G " (4.35)

with …G D ‰>�‰‰> C �2G2
��1
‰.

In general the matrix …G is not a projector and hence, ��2">…G " is not 	2-
distributed, the chi-squared result does not apply.

Exercise 4.7.7. Prove (4.34).
Hint: apply the Taylor expansion to LG.�/ at Q�G . Use that rLG.�G/ D 0 and
�r2LG.�/ � ��2‰‰> CG2.

Exercise 4.7.8. Prove (4.35).
Hint: show that Q�G � �G D SG" with SG D �

‰‰> C �2G2
��1
‰.
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The straightforward corollaries of Theorem 4.7.3 are the concentration and
confidence probabilities. Define the confidence set EG.z/ for �G as

EG.z/
defD ˚

� W LG. Q�G;�/ � z
�
:

The definition implies the following result for the coverage probability:

P
�
EG.z/ 63 �G

� � P
�
LG. Q�G;�G/ > z

�
:

Now the representation (4.35) for LG. Q�G;�G/ reduces the problem to a deviation
bound for a quadratic form. We apply the general result of Sect. A.1.

Theorem 4.7.4. Let LG.�/ be the penalized log-likelihood from (4.30) and let " �
N.0; �2In/. Then it holds with pG D tr.…G/ and v2G D 2 tr.…2

G/ that

P
�
2LG. Q�G;�G/ > pG C .2vGx

1=2/ _ .6x/� � exp.�x/:

Similarly one can state the concentration result. With D2
G D ��2‰‰> CG2

2LG. Q�G;�G/ D 
DG

� Q�G � �G
�2

and the result of Theorem 4.7.4 can be restated as the concentration bound:

P
�kDG. Q�G � �G/k2 > pG C .2vGx

1=2/ _ .6x/� � exp.�x/:

In other words, Q�G concentrates on the set A.z;�G/ D ˚
� W k� � �Gk2 � 2z

�
for

2z > pG .

4.7.4 Projection and Shrinkage Estimates

Consider a linear model Y D ‰>�� C " in which the matrix ‰ is orthonormal
in the sense ‰‰> D Ip . Then the multiplication with ‰ maps this model in the
sequence space model Z D �� C �, where Z D ‰Y D .z1; : : : ; zp/> is the vector
of empirical Fourier coefficients zj D  >

j Y . The noise � D ‰" borrows the feature
of the original noise ": if " is zero mean and homogeneous, the same applies to �.
The number of coefficientsp can be large or even infinite. To get a sensible estimate,
one has to apply some regularization method. The simplest one is called projection:
one just considers the first m empirical coefficients z1; : : : ; zm and drop the others.
The corresponding parameter estimate Q�m reads as

Q�m;j D
(

zj if j � m;

0 otherwise:
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The response vector f � D EY is estimated by ‰> Q�m leading to the representation

Qf m D z1 1 C : : :C zm m

with zj D  >
j Y . In other words, Qf m is just a projection of the observed vector

Y onto the subspace Lm spanned by the first m basis vectors  1; : : : ; m: Lm D˝
 1; : : : ; m

˛
. This explains the name of the method. Clearly one can study the

properties of Q�m or Qf m using the methods of previous sections. However, one more
question for this approach is still open: a proper choice of m. The standard way of
accessing this issue is based on the analysis of the quadratic risk.

Consider first the prediction risk defined as R. Qf m/ D Ek Qf m�f �k2. Below we
focus on the case of a homogeneous noise with Var."/ D �2Ip . An extension to
the colored noise is possible. Recall that Qf m effectively estimates the vector f m D
…mf

�, where …m is the projector on Lm; see Sect. 4.3.3. Moreover, the quadratic
risk R. Qf m/ can be decomposed as

R. Qf m/ D kf � �…mf
�k2 C �2m D �2mC

pX

jDmC1
��
j
2
:

Obviously the squared bias kf � � …mf
�k2 decreases with m while the variance

�2m linearly grows with m. Risk minimization leads to the so-called bias-variance
trade-off : one selects m which minimizes the risk R. Qf m/ over all possible m:

m� defD argmin
m

R. Qf m/ D argmin
m

˚kf � �…mf
�k2 C �2m

�
:

Unfortunately this choice requires some information about the bias kf � �…mf
�k

which depends on the unknown vector f . As this information is not available in
typical situation, the value m� is also called an oracle choice. A data-driven choice
of m is one of the central issues in the nonparametric statistics.

The situation is not changed if we consider the estimation risk Ek Q�m � ��k2.
Indeed, the basis orthogonality‰‰> D Ip implies for f � D ‰>��

k Qf m � f �k2 D k‰> Q�m �‰>��k2 D k Q�m � ��k2

and minimization of the estimation risk coincides with minimization of the predic-
tion risk.

A disadvantage of the projection method is that it either keeps each empirical
coefficient zm or completely discards it. An extension of the projection method is
called shrinkage: one multiplies every empirical coefficient zj with a factor ˛j 2
.0; 1/. This leads to the shrinkage estimate Q�˛ with

Q�˛;j D ˛j zj :
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Here ˛ stands for the vector of coefficients ˛j for j D 1; : : : ; p. A projection
method is a special case of this shrinkage with ˛j equal to one or zero. Another
popular choice of the coefficients ˛j is given by

˛j D .1 � j=m/ˇ1.j � m/ (4.36)

for some ˇ > 0 and m � p. This choice ensures that the coefficients ˛j smoothly
approach zero as j approaches the value m, and ˛j vanish for j > m. In this case,
the vector ˛ is completely specified by two parameters m and ˇ. The projection
method corresponds to ˇ D 0. The design orthogonality ‰‰> D Ip yields
again that the estimation risk Ek Q�˛ � ��k2 coincides with the prediction risk
Ek Qf ˛ � f �k2.
Exercise 4.7.9. Let Var."/ D �2Ip . The risk R. Qf ˛/ of the shrinkage estimate Qf ˛

fulfills

R. Qf ˛/
defD Ek Qf ˛ � f �k2 D

pX

jD1
��
j
2
.1 � ˛j /

2 C
pX

jD1
˛2j �

2:

Specify the cases of ˛ D ˛.m; ˇ/ from (4.36). Evaluate the variance term
P

j ˛
2
j �

2.

Hint: approximate the sum over j by the integral
R
.1 � x=m/

2ˇ
C dx.

The oracle choice is again defined by risk minimization:

˛� defD argmin
˛

R. Qf ˛/;

where minimization is taken over the class of all considered coefficient vectors ˛.
One way of obtaining a shrinkage estimate in the sequence space model Z D

�� C� is by using a roughness penalization. LetG be a symmetric matrix. Consider
the regularized estimate Q�G from (4.28). The next result claims that if G is a
diagonal matrix, then Q�G is a shrinkage estimate. Moreover, a general penalized
MLE can be represented as shrinkage by an orthogonal basis transformation.

Theorem 4.7.5. Let G be a diagonal matrix, G D diag.g1; : : : ; gp/. The penalized
MLE Q�G in the sequence space modelZ D �� C � with � � N.0; �2Ip/ coincides
with the shrinkage estimate Q�˛ for ˛j D .1C �2g2j /

�1 � 1. Moreover, a penalized

MLE Q�G for a general matrix G can be reduced to a shrinkage estimate by a basis
transformation in the sequence space model.

Proof. The first statement for a diagonal matrix G follows from the representation
Q�G D .Ip C �2G2/�1Z . Next, let U be an orthogonal transform leading to the
diagonal representationG2 D U>D2U with D2 D diag.g1; : : : ; gp/. Then
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U Q�G D .Ip C �2D2/�1UZ

that is, U Q�G is a shrinkage estimate in the transformed model UZ D U�� C U �.

In other words, roughness penalization results in some kind of shrinkage.
Interestingly, the inverse statement holds as well.

Exercise 4.7.10. Let Q�˛ is a shrinkage estimate for a vector ˛ D .˛j /. Then there
is a diagonal penalty matrix G such that Q�˛ D Q�G .
Hint: define the j th diagonal entry gj by the equation ˛j D .1C �2g2j /

�1.

4.7.5 Smoothness Constraints and Roughness Penalty
Approach

Another way of reducing the complexity of the estimation procedure is based
on smoothness constraints. The notion of smoothness originates from regression
estimation. A nonlinear regression function f is expanded using a Fourier or
some other functional basis and �� is the corresponding vector of coefficients.
Smoothness properties of the regression function imply certain rate of decay of
the corresponding Fourier coefficients: the larger frequency is, the fewer amount
of information about the regression function is contained in the related coefficient.
This leads to the natural idea to replace the original optimization problem over the
whole parameter space with the constrained optimization over a subset of “smooth”
parameter vectors. Here we consider one popular example of Sobolev smoothness
constraints which effectively means that the sth derivative of the function f � has a
boundedL2-norm. A general Sobolev ball can be defined using a diagonal matrixG:

BG.R/
defD kG�k � R:

Now we consider a constrained ML problem:

Q�G;R D argmax
�2BG.R/

L.�/ D argmin
�2‚W kG�k�R

kY �‰>�k2: (4.37)

The Lagrange multiplier method leads to an unconstrained problem

Q�G; D argmin
�

˚kY �‰>�k2 C kG�k2�:

A proper choice of  ensures that the solution Q�G; belongs to BG.R/ and
solves also the problem (4.37). So, the approach based on a Sobolev smoothness
assumption leads back to regularization and shrinkage.
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4.8 Shrinkage in a Linear Inverse Problem

This section extends the previous approaches to the situation with indirect observa-
tions. More precisely, we focus on the model

Y D Af � C "; (4.38)

where A is a given linear operator (matrix) and f � is the target of analysis. With
the obvious change of notation this problem can be put back in the general linear
setup Y D ‰>�C". The special focus is due to the facts that the target can be high
dimensional or even functional and that the product A>A is usually badly posed
and its inversion is a hard task. Below we consider separately the cases when the
spectral representation for this problem is available and the general case.

4.8.1 Spectral Cut-Off and Spectral Penalization: Diagonal
Estimates

Suppose that the eigenvectors of the matrix A>A are available. This allows for
reducing the model to the spectral representation by an orthogonal change of the
coordinate system:Z D ƒuCƒ1=2� with a diagonal matrixƒ D diagf1; : : : ; pg
and a homogeneous noise Var.�/ D �2Ip; see Sect. 4.2.4. Below we assume
without loss of generality that the eigenvalues j are ordered and decrease with j .
This spectral representation means that one observes empirical Fourier coefficients
zm described by the equation zj D j uj C 

1=2
j �j for j D 1; : : : ; p. The LSE or

qMLE estimate of the spectral parameter u is given by

Qu D ƒ�1Z D .�1
1 z1; : : : ; 

�1
p zp/

>:

Exercise 4.8.1. Consider the spectral representationZ D ƒu Cƒ1=2�. The LSE Qu
reads as Qu D ƒ�1Z .

If the dimension p of the model is high or, specifically, if the spectral values
j rapidly go to zero, it might be useful to only track few coefficients u1; : : : ; um
and to set all the remaining ones to zero. The corresponding estimate Qum D
.Qum;1; : : : ; Qum;p/> reads as

Qum;j defD
(
�1
j zj if j � m;

0 otherwise:

It is usually referred to as a spectral cut-off estimate.

Exercise 4.8.2. Consider the linear model Y D Af � C ". Let U be an orthogonal
transform in Rp providing UA>AU> D ƒ with a diagonal matrix ƒ leading to
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the spectral representation for Z D UAY . Write the corresponding spectral cut-off
estimate Qf m for the original vector f �. Show that computing this estimate only
requires to know the first m eigenvalues and eigenvectors of the matrix A>A.

Similarly to the direct case, a spectral cut-off can be extended to spectral
shrinkage: one multiplies every empirical coefficient zj with a factor ˛j 2 .0; 1/.
This leads to the spectral shrinkage estimate Qu˛ with Qu˛;j D ˛j 

�1
j zj . Here˛ stands

for the vector of coefficients ˛j for j D 1; : : : ; p. A spectral cut-off method is a
special case of this shrinkage with ˛j equal to one or zero.

Exercise 4.8.3. Specify the spectral shrinkage Qu˛ with a given vector ˛ for the
situation of Exercise 4.8.2.

The spectral cut-off method can be described as follows. Let  1; 2; : : : be
the intrinsic orthonormal basis of the problem composed of the standardized
eigenvectors of A>A and leading to the spectral representation Z D ƒu C ƒ1=2�

with the target vector u. In terms of the original target f �, one is looking for a
solution or an estimate in the form f D P

j uj j . The design orthogonality allows
to estimate every coefficient uj independently of the others using the empirical
Fourier coefficient  >

j Y . Namely, Quj D �1
j  

>
j Y D �1

j zj . The LSE procedure

tries to recover f as the full sum Qf D P
j Quj j . The projection method suggests

to cut this sum at the index m: Qf m D P
j�m Quj j , while the shrinkage procedure

is based on downweighting the empirical coefficients Quj : Qf ˛ D P
j ˛j Quj j .

Next we study the risk of the shrinkage method. Orthonormality of the basis
 j allows to represent the loss as kQu˛ � u�k2 D k Qf ˛ � f �k2. Under the noise
homogeneity one obtains the following result.

Theorem 4.8.1. Let Z D ƒu� C ƒ1=2� with Var.�/ D �2Ip. It holds for the
shrinkage estimate Qu˛

R. Qu˛/ defD EkQu˛ � u�k2 D
pX

jD1
j˛j � 1j2u�

j
2 C

pX

jD1
˛2j �

2�1
j :

Proof. The empirical Fourier coefficients zj are uncorrelated and Ezj D ju�
j ,

Var zj D �2j . This implies

EkQu˛ � u�k2 D
pX

jD1
Ej˛j�1

j zj � u�
j j2 D

pX

jD1

˚j˛j � 1j2u�
j
2 C ˛2j �

2�1
j

�

as required.

Risk minimization leads to the oracle choice of the vector ˛ or

˛� D argmin
˛

R. Qu˛/

where the minimum is taken over the set of all admissible vectors ˛.
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Similar analysis can be done for the spectral cut-off method.

Exercise 4.8.4. The risk of the spectral cut-off estimate Qum fulfills

R. Qum/ D
mX

jD1
�1
j �

2 C
pX

jDmC1
u�
j
2
:

Specify the choice of the oracle cut-off indexm�.

4.8.2 Galerkin Method

A general problem with the spectral shrinkage approach is that it requires to
precisely know the intrinsic basis  1; 2; : : : or equivalently the eigenvalue decom-
position of A leading to the spectral representation. After this basis is fixed, one
can apply the projection or shrinkage method using the corresponding Fourier
coefficients. In some situations this basis is hardly available or difficult to compute.
A possible way out of this problem is to take some other orthogonal basis 	1;	2; : : :
which is tractable and convenient but does not lead to the spectral representation
of the model. The Galerkin method is based on projecting the original high
dimensional problem to a lower dimensional problem in terms of the new basic
f	j g. Namely, without loss of generality suppose that the target function f � can be
decomposed as

f � D
X

j

uj	j :

This can be achieved, e.g., if f � belongs to some Hilbert space and f	j g is
an orthonormal basis in this space. Now we cut this sum and replace this exact
decomposition by a finite approximation

f � � f m D
X

j�m
uj	j D ˆ>

mum ;

where um D .u1; : : : ; um/> and the matrix ˆm is built of the vectors 	1; : : : ;	m:
ˆm D .	1; : : : ;	m/. Now we plug this decomposition in the original equation Y D
Af � C ". This leads to the linear model Y D Aˆ>

mum C " D ‰>
mum C " with

‰m D ˆmA
>. The corresponding (quasi) MLE reads

Qum D �
‰m‰

>
m

��1
‰mY :

Note that for computing this estimate one only needs to evaluate the action of the
operator A on the basis functions 	1; : : : ;	m and on the data Y . With this estimate
Qum of the vector u�, one obtains the response estimate Qf m of the form
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Qf m D ˆ>
m Qum D Qu1	1 C : : :C Qum	m :

The properties of this estimate can be studied in the same way as for a general
qMLE in a linear model: the true data distribution follows (4.38) while we use the
approximating model Y D Af �

m C " with " � N.0; �2I / for building the quasi
likelihood.

A further extension of the qMLE approach concerns the case when the operator
A is not precisely known. Instead, an approximation or an estimate QA is available.
The pragmatic way of tackling this problem is to use the model Y D QAf �

m C "

for building the quasi likelihood. The use of the Galerkin method is quite natural in
this situation because the spectral representation for QA will not necessarily result in
a similar representation for the true operator A.

4.9 Semiparametric Estimation

This section discusses the situation when the target of estimation does not coincide
with the parameter vector. This problem is usually referred to as semiparametric
estimation. One typical example is the problem of estimating a part of the parameter
vector. More generally one can try to estimate a given function/functional of the
unknown parameter. We focus here on linear modeling, that is, the considered model
and the considered mapping of the parameter space to the target space are linear.
For the ease of presentation we assume everywhere the homogeneous noise with
Var."/ D �2In.

4.9.1 .�; �/- and �-Setup

This section presents two equivalent descriptions of the semiparametric problem.
The first one assumes that the total parameter vector can be decomposed into the
target parameter � and the nuisance parameter �. The second one operates with the
total parameter � and the target � is a linear mapping of �.

We start with the .�;�/-setup. Let the response Y be modeled in dependence of
two sets of factors: f j ; j D 1; : : : ; pg and f	m;m D 1; : : : ; p1g. We are mostly
interested in understanding the impact of the first set f j g but we cannot ignore the
influence of the f	mg’s. Otherwise the model would be incomplete. This situation
can be described by the linear model

Y D ‰>�� Cˆ>�� C "; (4.39)

where‰ is the p�nmatrix with the columns j , whileˆ is the p1�n-matrix with
the columns	m. We primarily aim at recovering the vector ��, while the coefficients
�� are of secondary importance. The corresponding (quasi) log-likelihood reads as
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L.� ;�/ D �.2�2/�1kY �‰>� �ˆ>�k2 CR;

whereR denotes the remainder term which does not depend on the parameters � ;�.
The more general �-setup considers a general linear model

Y D ‡>�� C "; (4.40)

where ‡ is p� � n matrix of p� factors, and the target of estimation is a linear
mapping �� D P�� for a given operator P from Rp�

to Rp . Obviously the .�;�/-
setup is a special case of the �-setup. However, a general �-setup can be reduced
back to the .�;�/-setup by a change of variable.

Exercise 4.9.1. Consider the sequence space model Y D �� C � in Rp and let
the target of estimation be the sum of the coefficients ��

1 C : : : C ��
p . Describe the

�-setup for the problem. Reduce to .�;�/-setup by an orthogonal change of the
basis.

In the �-setup, the (quasi) log-likelihood reads as

L.�/ D �.2�2/�1kY �‡>�k2 CR;

whereR is the remainder which does not depend on �. It implies quadraticity of the
log-likelihood L.�/: given by

D2 D �r2L.�/ D Var
˚rL.�/

� D ��2‡‡>: (4.41)

Exercise 4.9.2. Check the statements in (4.41).

Exercise 4.9.3. Show that for the model (4.39) holds with ‡ D �
‰
ˆ

�

D2 D ��2‡‡> D ��2
	
‰‰> ‰ˆ>
ˆ‰> ˆˆ>



; (4.42)

rL.��/ D ��2‡" D ��2
	
‰"

ˆ"



:

4.9.2 Orthogonality and Product Structure

Consider the model (4.39) under the orthogonality condition ‰ˆ> D 0. This
condition effectively means that the factors of interest f j g are orthogonal to the
nuisance factors f	mg. An important feature of this orthogonal case is that the model
has the product structure leading to the additive form of the log-likelihood. Consider
the partial �-model Y D ‰>� C " with the (quasi) log-likelihood
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L.�/ D �.2�2/�1kY �‰>�k2 CR

Similarly L1.�/ D �.2�2/�1kY � ˆ>�k2 C R1 denotes the log-likelihood in the
partial �-model Y D ˆ>� C ".

Theorem 4.9.1. Assume the condition‰ˆ> D 0. Then

L.� ;�/ D L.�/CL1.�/CR.Y /; (4.43)

where R.Y / is independent of � and �. This implies the block diagonal structure of
the matrix D2 D ��2‡‡>:

D2 D ��2
	
‰‰> 0

0 ˆˆ>



D
	
D2 0

0 H2



; (4.44)

with D2 D ��2‰‰>, H2 D ��2ˆˆ>.

Proof. The formula (4.44) follows from (4.42) and the orthogonality condition. The
statement (4.43) follows if we show that the difference

L.� ;�/� L.�/ �L1.�/

does not depend on � and �. This is a quadratic expression in �;�, so it suffices to
check its first and the second derivative w.r.t. the parameters. For the first derivative,
it holds by the orthogonality condition

r�L.�;�/ defD @L.� ;�/=@� D ��2‰
�
Y �‰>� �ˆ>�

� D ��2‰
�
Y �‰>�

�

that coincides with rL.�/. Similarly r�L.� ;�/ D rL1.�/ yielding

r˚L.� ;�/ �L.�/� L1.�/
� D 0:

The identities (4.41) and (4.42) imply that r2
˚
L.�;�/�L.�/�L1.�/

� D 0. This
implies the desired assertion.

Exercise 4.9.4. Check the statement (4.43) by direct computations. Describe the
term R.Y /.

Now we demonstrate how the general case can be reduced to the orthogonal one
by a linear transformation of the nuisance parameter. Let C be a p � p1 matrix.
Define M� D � C C>� . Then the model equation Y D ‰>� C ˆ>� C " can be
rewritten as

Y D ‰>� Cˆ>. M� � C>�/C " D .‰ � Cˆ/>� Cˆ> M�C ":

Now we select C to ensure the orthogonality. This leads to the equation



160 4 Estimation in Linear Models

.‰ � Cˆ/ˆ> D 0

or C D ‰ˆ>�ˆˆ>��1. So, the original model can be rewritten as

Y D M‰>� Cˆ> M�C ";

M‰ D ‰ � Cˆ D ‰.I �…�/; (4.45)

where…� D ˆ>�ˆˆ>��1ˆ being the projector on the linear subspace spanned by
the nuisance factors f	mg. This construction has a natural interpretation: correction
the �-factors  1; : : : ; p by removing their interaction with the nuisance factors
	1; : : : ;	p1 reduces the general case to the orthogonal one. We summarize:

Theorem 4.9.2. The linear model (4.39) can be represented in the orthogonal form

Y D M‰>� Cˆ> M�C ";

where M‰ from (4.45) satisfies M‰ˆ> D 0 and M� D � C C>� for C D
‰ˆ>�ˆˆ>��1. Moreover, it holds for � D .� ;�/

L.�/ D ML.�/C L1. M�/CR.Y / (4.46)

with

ML.�/ D �.2�2/�1kY � M‰>�k2 CR;

L1.�/ D �.2�2/�1kY �ˆ>�k2 CR1:

Exercise 4.9.5. Show that for C D ‰ˆ>�ˆˆ>��1

r ML.�/ D r�L.�/ � Cr�L.�/:

Exercise 4.9.6. Show that the remainder term R.Y / in the Eq. (4.46) is the same
as in the orthogonal case (4.43).

Exercise 4.9.7. Show that M‰ M‰> < ‰‰> if ‰ˆ> ¤ 0.
Hint: for any vector 
 2 Rp, it holds with h D ‰>



> M‰ M‰>
 D k.‰ �‰…�/
>
k2 D kh �…�hk2 � khk2:

Moreover, the equality here for any 
 is only possible if

…�h D ˆ>�ˆˆ>��1ˆ‰>
 � 0;

that is, if ˆ‰> D 0.
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4.9.3 Partial Estimation

This section explains the important notion of partial estimation which is quite
natural and transparent in the .�;�/-setup. Let some value �ı of the nuisance
parameter be fixed. A particular case of this sort is just ignoring the factors f	mg
corresponding to the nuisance component, that is, one uses �ı � 0. This approach
is reasonable in certain situation, e.g. in context of projection method or spectral
cut-off.

Define the estimate Q�.�ı/ by partial optimization of the joint log-likelihood
L.�;�ı/ w.r.t. the first parameter �:

Q�.�ı/ D argmax
�

L.�;�ı/:

Obviously Q�.�ı/ is the MLE in the residual model Y �ˆ>�ı D ‰>�� C ":

Q�.�ı/ D �
‰‰>��1‰.Y �ˆ>�ı/:

This allows for describing the properties of the partial estimate Q�.�ı/ similarly to
the usual parametric situation.

Theorem 4.9.3. Consider the model (4.39). Then the partial estimate Q�.�ı/ fulfills

E Q�.�ı/ D �� C �
‰‰>��1‰ˆ>.�� � �ı/; Var

˚ Q�.�ı/
� D �2

�
‰‰>��1:

In other words, Q�.�/ has the same variance as the MLE in the partial model Y D
‰>�� C" but it is biased if ‰ˆ>.�� ��ı/ ¤ 0. The ideal situation corresponds to
the case when �ı D ��. Then Q�.��/ is the MLE in the correctly specified �-model:

with Y .��/ defD Y �ˆ>��,

Y .��/ D ‰>�� C ":

An interesting and natural question is a legitimation of the partial estimation
method: under which conditions it is justified and does not produce any estimation
bias. The answer is given by Theorem 4.9.1: the orthogonality condition‰ˆ> D 0

would ensure the desired feature because of the decomposition (4.43).

Theorem 4.9.4. Assume orthogonality‰ˆ> D 0. Then the partial estimate Q�.�ı/
does not depend on the nuisance parameter �ı used:

Q� D Q�.�ı/ D Q�.��/ D �
‰‰>��1‰Y :

In particular, one can ignore the nuisance parameter and estimate �� from the
partial incomplete model Y D ‰>�� C ".
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Exercise 4.9.8. Check that the partial derivative @
@�
L.� ;�/ does not depend on �

under the orthogonality condition.

The partial estimation can be considered in context of estimating the nuisance
parameter � by inverting the role of � and �. Namely, given a fixed value �ı, one
can optimize the joint log-likelihood L.�;�/ w.r.t. the second argument � leading
to the estimate

Q�.�ı/ defD argmax
�

L.�ı;�/

In the orthogonal situation the initial point �ı is not important and one can use the
partial incomplete model Y D ˆ>�� C ".

4.9.4 Profile Estimation

This section discusses one general profile likelihood method of estimating the target
parameter � in the semiparametric situation. Later we show its optimality and R-
efficiency. The method suggests to first estimate the entire parameter vector �
by using the (quasi) ML method. Then the operator P is applied to the obtained
estimate Q� to produce the estimate Q� . One can describe this method as

Q� D argmax
�

L.�/; Q� D P Q�: (4.47)

The first step here is the usual LS estimation of �� in the linear model (4.40):

Q� D arginf
�

kY �‡>�k2 D �
‡‡>��1‡Y :

The estimate Q� is obtained by applying P to Q�:

Q� D P Q� D P
�
‡‡>��1‡Y D SY (4.48)

with S D P
�
‡‡>��1‡ . The properties of this estimate can be studied using the

decomposition Y D f � C " with f � D EY ; cf. Sect. 4.4. In particular, it holds

E Q� D Sf �; Var. Q�/ D S Var."/S>: (4.49)

If the noise " is homogeneous with Var."/ D �2In, then

Var. Q�/ D �2SS> D �2P
�
‡‡>��1P>: (4.50)

The next theorem summarizes our findings.
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Theorem 4.9.5. Consider the model (4.40) with homogeneous error Var."/ D
�2In. The profile MLE Q� follows (4.48). Its means and variance are given by (4.49)
and (4.50).

The profile MLE is usually written in the .�;�/-setup. Let � D .�;�/. Then
the target � is obtained by projecting the MLE . Q�; Q�/ on the �-coordinates. This
procedure can be formalized as

Q� D argmax
�

max
�

L.� ;�/:

Another way of describing the profile MLE is based on the partial optimization
considered in the previous section. Define for each � the value ML.�/ by optimizing
the log-likelihood L.�/ under the condition P� D � :

ML.�/ defD sup
�W P�D�

L.�/ D sup
�

L.� ;�/: (4.51)

Then Q� is defined by maximizing the partial fit ML.�/:

Q� defD argmax
�

ML.�/: (4.52)

Exercise 4.9.9. Check that (4.47) and (4.52) lead to the same estimate Q� .

We use for the function ML.�/ obtained by partial optimization (4.51) the same
notation as for the function obtained by the orthogonal decomposition (4.43) in
Sect. 4.9.2. Later we show that these two functions indeed coincide. This helps in
understanding the structure of the profile estimate Q� .

Consider first the orthogonal case ‰ˆ> D 0. This assumption gradually
simplifies the study. In particular, the result of Theorem 4.9.4 for partial estimation
can be obviously extended to the profile method in view of product structure (4.43):
when estimating the parameter � , one can ignore the nuisance parameter � and
proceed as if the partial model Y D ‰>�� C"were correct. Theorem 4.9.1 implies:

Theorem 4.9.6. Assume that ‰ˆ> D 0 in the model (4.39). Then the profile MLE
Q� from (4.52) coincides with the MLE from the partial model Y D ‰>�� C ":

Q� D argmax
�

L.�/ D argmin
�

kY �‰>�k2 D �
‰‰>��1‰Y :

It holds E Q� D �� and

Q� � �� D D�2� D D�1�

with D2 D ��2‰‰>, � D ��2‰", and � D D�1�. Finally, ML.�/ from (4.51)
fulfills
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2
˚ ML. Q�/� ML.��/

� D kD� Q� � ���k2 D �>D�2� D k�k2:

Moreover, if Var."/ D �2In, then Var.�/ D Ip . If " � N.0; �2In/, then � is
standard normal in Rp.

The general case can be reduced to the orthogonal one by the construction from
Theorem 4.9.2. Let

M‰ D ‰ �‰…� D ‰ �‰ˆ>�ˆˆ>��1ˆ

be the corrected ‰-factors after removing their interactions with the ˆ-factors.

Theorem 4.9.7. Consider the model (4.39), and let the matrix MD2 D ��2 M‰ M‰> is
non-degenerated. Then the profile MLE Q� reads as

Q� D argmin
�

kY � M‰>�k2 D � M‰ M‰>��1 M‰Y : (4.53)

It holds E Q� D �� and

Q� � �� D � M‰ M‰>��1 M‰" D MD�2 M� D MD�1 M� (4.54)

with MD2 D ��2 M‰ M‰>, M� D ��2 M‰", and M� D MD�1 M�. Furthermore, ML.�/ from (4.51)
fulfills

2
˚ ML. Q�/� ML.��/

� D k MD� Q� � ���k2 D M�> MD�2 M� D kM�k2: (4.55)

Moreover, if Var."/ D �2In, then Var. M�/ D Ip. If " � N.0; �2In/, then M� �
N.0; Ip/.

Finally we present the same result in terms of the original log-likelihood L.�/.

Theorem 4.9.8. Write D2 D �r2EL.�/ for the model (4.39) in the block form

D2 D
	
D2 A

A> H2



(4.56)

Let D2 andH2 be invertible. Then MD2 and M� in (4.54) can be represented as

MD2 D D2 � AH�2A>;
M� D r�L.��/ � AH�2r�L.��/:

Proof. In view of Theorem 4.9.7, it suffices to check the formulas for MD2 and M�.
One has for M‰ D ‰.In �…�/ and A D ��2‰ˆ>
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MD2 D ��2 M‰ M‰> D ��2‰
�
In �…�

�
‰>

D ��2‰‰> � ��2‰ˆ>�ˆˆ>��1ˆ‰> D D2 � AH�2A>:

Similarly, by AH�2 D ‰ˆ>�ˆˆ>��1, r�L.��/ D ‰", and r�L.��/ D ˆ"

M� D M‰" D ‰" �‰ˆ>�ˆˆ>��1ˆ" D r�L.��/� AH�2r�L.��/:

as required.

It is worth stressing again that the result of Theorems 4.9.6 through 4.9.8 is
purely geometrical. We only used the condition E" D 0 in the model (4.39) and
the quadratic structure of the log-likelihood function L.�/. The distribution of the
vector " does not enter in the results and proofs. However, the representation (4.54)
allows for straightforward analysis of the probabilistic properties of the estimate Q� .

Theorem 4.9.9. Consider the model (4.39) and let Var.Y / D Var."/ D †0. Then

Var. Q�/ D ��4 MD�2 M‰†0 M‰> MD�2; Var. M�/ D ��4 MD�1 M‰†0 M‰> MD�1:

In particular, if Var.Y / D �2In, this implies that

Var. Q�/ D MD�2; Var. M�/ D Ip:

Exercise 4.9.10. Check the result of Theorem 4.9.9. Specify this result to the
orthogonal case ‰ˆ> D 0.

4.9.5 Semiparametric Efficiency Bound

The main goal of this section is to show that the profile method in the semiparametric
estimation leads to R-efficient procedures. Remind that the target of estimation
is �� D P�� for a given linear mapping P . The profile MLE Q� is one natural
candidate. The next result claims its optimality.

Theorem 4.9.10 (Gauss–Markov). Let Y follow Y D ‡>�� C " for homoge-
neous errors ". Then the estimate Q� of �� D P�� from (4.48) is unbiased and

Var. Q�/ D �2P
�
‡‡>��1P>

yielding

Ek Q� � ��k2 D �2 tr
˚
P
�
‡‡>��1P>�:

Moreover, this risk is minimal in the class of all unbiased linear estimates of ��.
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Proof. The statements about the properties of Q� have been already proved. The
lower bound can be proved by the same arguments as in the case of the MLE
estimation in Sect. 4.4.3. We only outline the main steps. Let O� be any unbiased
linear estimate of ��. The idea is to show that the difference O� � Q� is orthogonal to
Q� in the sense E

� O� � Q�� Q�> D 0. This implies that the variance of O� is the sum of

Var. Q�/ and Var
� O� � Q�� and therefore larger than Var. Q�/.

Let O� D BY for some matrix B . Then E O� D BEY D B‡>��. The no-bias
property yields the identity E O� D �� D P�� and thus

B‡> � P D 0: (4.57)

Next, E Q� D E O� D �� and thus

E Q� Q�> D ����> C Var. Q�/;
E O� Q�> D ����> C E. O� � E O�/. Q� � E Q�/>:

Obviously O� � E O� D B" and Q� � E Q� D S" yielding Var. Q�/ D �2SS> and
EB".S"/> D �2BS>. So

E. O� � Q�/ Q�> D �2.B � S/S>:

The identity (4.57) implies

.B � S/S> D ˚
B � P �‡‡>��1‡

�
‡>�‡‡>��1P>

D .B‡> � P/
�
‡‡>��1P> D 0

and the result follows.

Now we specify the efficiency bound for the .� ;�/-setup (4.39). In this case P
is just the projector onto the �-coordinates.

4.9.6 Inference for the Profile Likelihood Approach

This section discusses the construction of confidence and concentration sets for the
profile ML estimation. The key fact behind this construction is the chi-squared
result which extends without any change from the parametric to semiparametric
framework.

The definition Q� from (4.52) suggests to define a CS for �� as the level set of
ML.�/ D sup�WP�D� L.�/:

E.z/
defD ˚

� W ML. Q�/� ML.�/ � z
�
:
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This definition can be rewritten as

E.z/
defD
n
� W sup

�

L.�/� sup
�WP�D�

L.�/ � z
o
:

It is obvious that the unconstrained optimization of the log-likelihood L.�/ w.r.t. �
is not smaller than the optimization under the constraint that P� D � . The point
� belongs to E.z/ if the difference between these two values does not exceed z.
As usual, the main question is the choice of a value z which ensures the prescribed
coverage probability of ��. This naturally leads to studying the deviation probability

P
�

sup
�

L.�/� sup
�WP�D��

L.�/ > z
�
:

Such a study is especially simple in the orthogonal case. The answer can be
expected: the expression and the value are exactly the same as in the case without
any nuisance parameter �, it simply has no impact. In particular, the chi-squared
result still holds.

In this section we follow the line and the notation of Sect. 4.9.4. In particular, we
use the block notation (4.56) for the matrix D2 D �r2L.�/.

Theorem 4.9.11. Consider the model (4.39). Let the matrix D2 be non-
degenerated. If " � N.0; �2In/, then

2
˚ ML. Q�/� ML.��/

� � 	2p ; (4.58)

that is, this 2
˚ ML. Q�/� ML.��/

�
is chi-squared with p degrees of freedom.

Proof. The result is based on representation (4.55) 2
˚ ML. Q�/� ML.��/

� D kM�k2 from

Theorem 4.9.7. It remains to note that normality of " implies normality of M� and the
moment conditions E M� D 0, Var. M�/ D Ip imply (4.58).

This result means that the chi-squared result continues to hold in the general
semiparametric framework as well. One possible explanation is as follows: it applies
in the orthogonal case, and the general situation can be reduced to the orthogonal
case by a change of coordinates which preserves the value of the maximum
likelihood.

The statement (4.58) of Theorem 4.9.11 has an interesting geometric interpreta-
tion which is often used in analysis of variance. Consider the expansion

ML. Q�/� ML.��/ D ML. Q�/ � L.��;��/ � ˚ ML.��/ � L.��;��/
�
:

The quantity L1
defD ML. Q�/ � L.��/ coincides with L. Q�;��/; see (4.47). Thus,

2L1 chi-squared with p� degrees of freedom by the chi-squared result. Moreover,
2�2L. Q�;��/ D k…�"k2, where …� D ‡>�‡‡>��1‡ is the projector on the
linear subspace spanned by the joint collection of factors f j g and f	mg. Similarly,
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the quantityL2
defD ML.��/�L.��;��/ D sup� L.�

�;�/�L.��;��/ is the maximum
likelihood in the partial �-model. Therefore, 2L2 is also chi-squared distributed with
p1 degrees of freedom, and 2�2L2 D k…�"k2, where …� D ˆ>�ˆˆ>��1ˆ is the
projector on the linear subspace spanned by the �-factors f	mg. Now we use the
decomposition…� D …� C…� �…�, in which…� �…� is also a projector on the
subspace of dimension p. This explains the result (4.58) that the difference of these
two quantities is chi-squared with p D p� � p1 degrees of freedom. The above
consideration leads to the following result.

Theorem 4.9.12. It holds for the model (4.39) with M…� D …� �…�

2 ML. Q�/� 2 ML.��/ D ��2�k…�"k2 � k…�"k2�

D ��2k M…�"k2 D ��2"> M…�": (4.59)

Exercise 4.9.11. Check the formula (4.59). Show that it implies (4.58).

4.9.7 Plug-In Method

Although the profile MLE can be represented in a closed form, its computing can
be a hard task if the dimensionality p1 of the nuisance parameter is high. Here we
discuss an approach which simplifies the computations but leads to a suboptimal
solution.

We start with the approach called plug-in. It is based on the assumption that
a pilot estimate O� of the nuisance parameter � is available. Then one obtains the
estimate O� of the target �� from the residuals Y �ˆ> O�.

This means that the residual vector OY D Y � ˆ> O� is used as observations and
the estimate O� is defined as the best fit to such observations in the �-model:

O� D argmin
�

k OY �‰>�k2 D �
‰‰>��1‰ OY : (4.60)

A very particular case of the plug-in method is partial estimation from Sect. 4.9.3
with O� � �ı.

The plug-in method can be naturally described in context of partial estimation.
We use the following representation of the plug-in method: O� D Q�. O�/.
Exercise 4.9.12. Check the identity O� D Q�. O�/ for the plug-in method. Describe the
plug-in estimate for O� � 0.

The behavior of the O� heavily depends upon the quality of the pilot O�. A detailed
study is complicated and a closed form solution is only available for the special case
of a linear pilot estimate. Let O� D AY . Then (4.60) implies
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O� D �
‰‰>��1‰.Y �ˆ>AY / D SY

with S D �
‰‰>��1‰.In � ˆ>A/. This is a linear estimate whose properties can

be studied in a usual way.

4.9.8 Two-Step Procedure

The ideas of partial and plug-in estimation can be combined yielding the so-called
two-step procedures. One starts with the initial guess �ı for the target ��. A very
special choice is �ı � 0. This leads to the partial �-model Y .�ı/ D ˆ>� C "

for the residuals Y .�ı/ D Y � ‰>�ı. Next compute the partial MLE Q�.�ı/ D�
ˆˆ>��1ˆY .�ı/ in this model and use it as a pilot for the plug-in method:

compute the residuals

OY .�ı/ D Y �ˆ> Q�.�ı/ D Y �…�Y .�
ı/

with…� D ˆ>�ˆˆ>��1ˆ, and then estimate the target parameter � by fitting‰>�
to the residuals OY .�ı/. This method results in the estimate

O�.�ı/ D �
‰‰>��1‰ OY .�ı/ (4.61)

A simple comparison with the formula (4.53) reveals that the pragmatic two-step
approach is sub-optimal: the resulting estimate does not fit the profile MLE Q� unless
we have an orthogonal situation with ‰…� D 0. In particular, the estimate O�.�ı/
from (4.61) is biased.

Exercise 4.9.13. Consider the orthogonal case with ‰ˆ> D 0. Show that the two-
step estimate O�.�ı/ coincides with the partial MLE Q� D �

‰‰>��1‰Y .

Exercise 4.9.14. Compute the mean of O�.�ı/. Show that there exists some �� such
that E

˚ O�.�ı/
� ¤ �� unless the orthogonality condition ‰ˆ> D 0 is fulfilled.

Exercise 4.9.15. Compute the variance of O�.�ı/.
Hint: use that Var

˚
Y .�ı/

� D Var.Y / D �2In. Derive that Var
˚ OY .�ı/

� D �2.In �
…�/.

Exercise 4.9.16. Let ‰ be orthogonal, i.e. ‰‰> D Ip . Show that

Var
˚ O�.�ı/

� D �2.Ip �‰…�‰
>/:
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4.9.9 Alternating Method

The idea of partial and two-step estimation can be applied in an iterative way. One
starts with some initial value for �ı and sequentially performs the two steps of
partial estimation. Set

O�0 D Q�.�ı/ D argmin
�

kY �‰>�ı �ˆ>�k2 D �
ˆˆ>��1ˆ.Y �‰>�ı/:

With this estimate fixed, compute O�1 D Q�. O�1/ and continue in this way. Generically,
with O�k and O�k computed, one recomputes

O�kC1 D Q�. O�k/ D �
‰‰>��1‰.Y �ˆ> O�k/; (4.62)

O�kC1 D Q�. O�kC1/ D �
ˆˆ>��1ˆ.Y �‰> O�kC1/: (4.63)

The procedure is especially transparent if the partial design matrices ‰ and ˆ are
orthonormal:‰‰> D Ip, ˆˆ> D Ip1 . Then

O�kC1 D ‰.Y �ˆ> O�k/;
O�kC1 D ˆ.Y �‰> O�kC1/:

In other words, having an estimate O� of the parameter �� one computes the residuals
OY D Y � ‰> O� and then build the estimate O� of the nuisance �� by the empirical
coefficients ˆ OY . Then this estimate O� is used in a similar way to recompute the
estimate of ��, and so on.

It is worth noting that every doubled step of alternation improves the cur-
rent value L. O�k; O�k/. Indeed, O�kC1 is defined by maximizing L.�; O�k/, that is,
L. O�kC1; O�k/ 
 L. O�k; O�k/. Similarly, L. O�kC1; O�kC1/ 
 L. O�kC1; O�k/ yielding

L. O�kC1; O�kC1/ 
 L. O�k; O�k/: (4.64)

A very interesting question is whether the procedure (4.62), (4.63) converges and
whether it converges to the maximum likelihood solution. The answer is positive and
in the simplest orthogonal case the result is straightforward.

Exercise 4.9.17. Consider the orthogonal situation with‰ˆ> D 0. Then the above
procedure stabilizes in one step with the solution from Theorem 4.9.4.

In the non-orthogonal case the situation is much more complicated. The idea is
to show that the alternating procedure can be represented a sequence of actions of
a shrinking linear operator to the data. The key observation behind the result is the
following recurrent formula for ‰> O�k and ˆ> O�k :
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‰> O�kC1 D …�.Y �ˆ> O�k/ D �
…� �…�…�

�
Y C…�…�‰

> O�k; (4.65)

ˆ> O�kC1 D …�.Y �‰> O�kC1/ D �
…� �…�…�

�
Y C…�…�ˆ

> O�k (4.66)

with …� D ‰>�‰‰>��1‰ and …� D ˆ>�ˆˆ>��1ˆ.

Exercise 4.9.18. Show (4.65) and (4.66).

This representation explains necessary and sufficient conditions for convergence
of the alternating procedure. Namely, the spectral norm k…�…�k1 (the largest
singular value) of the product operator …�…� should be strictly less than one, and
similarly for…�…�.

Exercise 4.9.19. Show that k…�…�k1 D k…�…�k1.

Theorem 4.9.13. Suppose that k…�…�k1 D  < 1. Then the alternating
procedure converges geometrically, the limiting values O� and O� are unique and fulfill

‰> O� D .In �…�…�/
�1.…� �…�…�/Y ;

ˆ> O� D .In �…�…�/
�1.…� �…�…�/Y ; (4.67)

and O� coincides with the profile MLE Q� from (4.52).

Proof. The convergence will be discussed below. Now we comment on the identity
O� D Q� . A direct comparison of the formulas for these two estimates can be a
hard task. Instead we use the monotonicity property (4.64). By definition, . Q�; Q�/
maximize globally L.�;�/. If we start the procedure with �ı D Q� , we would
improve the value L. Q� ; Q�/ at every step. By uniqueness, the procedure stabilizes
with O�k D Q� and O�k D Q� for every k.

Exercise 4.9.20. 1. Show by induction arguments that

ˆ> O�kC1 D AkC1Y C �
…�…�

�k
ˆ> O�1;

where the linear operator Ak fulfills A1 D 0 and

AkC1 D …� �…�…� C…�…�Ak D
k�1X

iD0
.…�…�/

i .…� �…�…�/:

2. Show that Ak converges to A D .In � …�…�/
�1.…� � …�…�/ and evaluate

kA � Akk1 and kˆ>. O�k � O�/k.
Hint: use that k…� �…�…�k1 � 1 and k.…�…�/

ik1 � k…�…�ki1 � i .
3. Prove (4.67) by inserting O� in place of O�k and O�kC1 in (4.66).
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4.10 Historical Remarks and Further Reading

The least squares method goes back to Carl Gauss (around 1795 but published first
1809) and Adrien Marie Legendre in 1805.

The notion of linear regression was introduced by Fransis Galton around 1868
for biological problem and then extended by Karl Pearson and Robert Fisher
between 1912 and 1922.

Chi-squared distribution was first described by the German statistician Friedrich
Robert Helmert in papers of 1875/1876. The distribution was independently redis-
covered by Karl Pearson in the context of goodness of fit.

The Gauss–Markov theorem is attributed to Gauß (1995) (originally published in
Latin in 1821/1823) and Markoff (1912).

Classical references for the sandwich formula (see, e.g., (4.12)) for the variance
of the maximum likelihood estimator in a misspecified model are Huber (1967) and
White (1982).

It seems that the term ridge regression has first been used by Hoerl (1962); see
also the original paper by Tikhonov (1963) for what is nowadays referred to as
Tikhonov regularization. An early reference on penalized maximum likelihood is
Good and Gaskins (1971) who discussed the usage of a roughness penalty.

The original reference for the Galerkin method is Galerkin (1915). Its application
in the context of regularization of inverse problems has been described, e.g., by
Donoho (1995). The theory of shrinkage estimation started with the fundamental
article by Stein (1956).

A systematic treatment of profile maximum likelihood is provided by Murphy
and van der Vaart (2000), but the origins of this concept can be traced back to Fisher
(1956).

The alternating procedure has been introduced by Dempster et al. (1977) in the
form of the expectation-maximization algorithm.



Chapter 5
Bayes Estimation

This chapter discusses the Bayes approach to parameter estimation. This approach
differs essentially from classical parametric modeling also called the frequentist
approach. Classical frequentist modeling assumes that the observed data Y follow a
distribution law P from a given parametric family .P� ;� 2 ‚ � Rp/, that is,

P D P�� 2 .P�/:

Suppose that the family .P� / is dominated by a measure �0 and denote by p.y
ˇ
ˇ�/

the corresponding density:

p.y
ˇ
ˇ �/ D dP�

d�0
.y/:

The likelihood is defined as the density at the observed point and the maximum
likelihood approach tries to recover the true parameter �� by maximizing this
likelihood over � 2 ‚.

In the Bayes approach, the paradigm is changed and the true data distribution is
not assumed to be specified by a single parameter value ��. Instead, the unknown
parameter is considered to be a random variable # with a distribution � on the
parameter space ‚ called a prior. The measure P� can be considered to be the
data distribution conditioned that the randomly selected parameter is exactly � . The
target of analysis is not a single value ��, this value is no longer defined. Instead
one is interested in the posterior distribution of the random parameter # given the
observed data:

what is the distribution of # given the prior � and the data Y ?

In other words, one aims at inferring on the distribution of # on the basis of the
observed data Y and our prior knowledge � . Below we distinguish between the
random variable # and its particular values � . However, one often uses the same
symbol � for denoting the both objects.

V. Spokoiny and T. Dickhaus, Basics of Modern Mathematical Statistics,
Springer Texts in Statistics, DOI 10.1007/978-3-642-39909-1__5,
© Springer-Verlag Berlin Heidelberg 2015

173



174 5 Bayes Estimation

5.1 Bayes Formula

The Bayes modeling assumptions can be put together in the form

Y
ˇ̌
� � p.	 ˇ̌�/;
# � �.	/:

The first line has to be understood as the conditional distribution of Y given the
particular value � of the random parameter # : Y

ˇ
ˇ � means Y

ˇ
ˇ# D � . This section

formalizes and states the Bayes approach in a formal mathematical way. The answer
is given by the Bayes formula for the conditional distribution of # given Y . First
consider the joint distribution P of Y and # . If B is a Borel set in the space Y of
observations and A is a measurable subset of ‚, then

P.B � A/ D
Z

A

	Z

B

P� .dy/



�.d�/

The marginal or unconditional distribution of Y is given by averaging the joint
probability w.r.t. the distribution of # :

P.B/ D
Z

‚

Z

B

P�.dy/�.d�/ D
Z

‚

P�.B/�.d�/:

The posterior (conditional) distribution of # given the event Y 2 B is defined as
the ratio of the joint and marginal probabilities:

P.# 2 A ˇ̌Y 2 B/ D P.B � A/
P.B/

:

Equivalently one can write this formula in terms of the related densities. In what
follows we denote by the same letter � the prior measure � and its density w.r.t.
some other measure , e.g. the Lebesgue or uniform measure on ‚. Then the joint
measure P has the density

p.y ;�/ D p.y
ˇ
ˇ �/�.�/;

while the marginal density p.y/ is the integral of the joint density w.r.t. the prior �:

p.y/ D
Z

‚

p.y ;�/d� D
Z

‚

p.y
ˇ̌
�/�.�/d�:

Finally the posterior (conditional) density p.�
ˇ̌
y/ of # given y is defined as the

ratio of the joint density p.y ;�/ and the marginal density p.y/:
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p.�
ˇ
ˇy/ D p.y ;�/

p.y/
D p.y

ˇ
ˇ �/�.�/

R
‚
p.y

ˇ
ˇ�/�.�/d�

:

Our definitions are summarized in the next lines:

Y
ˇ
ˇ� � p.y

ˇ
ˇ�/;

# � �.�/;

Y � p.y/ D
Z

‚

p.y
ˇ
ˇ �/�.�/d�;

#
ˇ
ˇY � p.�

ˇ
ˇY / D p.Y ;�/

p.Y /
D p.Y

ˇ
ˇ �/�.�/

R
‚
p.Y

ˇ
ˇ �/�.�/d�

: (5.1)

Note that given the prior � and the observations Y , the posterior density p.�
ˇ
ˇY / is

uniquely defined and can be viewed as the solution or target of analysis within the
Bayes approach. The expression (5.1) for the posterior density is called the Bayes
formula.

The value p.y/ of the marginal density of Y at y does not depend on the
parameter � . Given the data Y , it is just a numeric normalizing factor. Often one
skips this factor writing

#
ˇ
ˇY _ p.Y

ˇ
ˇ �/�.�/:

Below we consider a couple of examples.

Example 5.1.1. Let Y D .Y1; : : : ; Yn/
> be a sequence of zeros and ones considered

to be a realization of a Bernoulli experiment for n D 10. Let also the underlying
parameter � be random and let it take the values 1=2 or 1 each with probability 1=2,
that is,

�.1=2/ D �.1/ D 1=2:

Then the probability of observing y D “10 ones” is

P.y/ D 1

2
P.y

ˇ̌
# D 1=2/C 1

2
P.y

ˇ̌
# D 1/:

The first probability is quite small, it is 2�10, while the second one is just one.
Therefore,P.y/ D .2�10C1/=2. If we observedy D .1; : : : ; 1/>, then the posterior
probability of # D 1 is

P.# D 1
ˇ̌
y/ D P.y

ˇ
ˇ# D 1/P.# D 1/

P.y/
D 1

2�10 C 1

that is, it is quite close to one.



176 5 Bayes Estimation

Exercise 5.1.1. Consider the Bernoulli experiment Y D .Y1; : : : ; Yn/
> with n D

10 and let

�.1=2/ D �.0:9/ D 1=2:

Compute the posterior distribution of # if we observe y D .y1; : : : ; yn/
> with

• y D .1; : : : ; 1/>
• the number of successes S D y1 C : : :C yn is 5.

Show that the posterior density p.�
ˇ
ˇy/ only depends on the numbers of suc-

cesses S .

5.2 Conjugated Priors

Let .P� / be a dominated parametric family with the density function p.y
ˇ̌
�/. For a

prior � with the density �.�/, the posterior density is proportional to p.y
ˇ̌
�/�.�/.

Now consider the case when the prior � belongs to some other parametric family
indexed by a parameter ˛, that is, �.�/ D �.� ;˛/. A very desirable feature of
the Bayes approach is that the posterior density also belongs to this family. Then
computing the posterior is equivalent to fixing the related parameter ˛ D ˛.Y /.
Such priors are usually called conjugated.

To illustrate this notion, we present some examples.

Example 5.2.1 (Gaussian Shift). Let Yi � N.�; �2/ with � known, i D 1; : : : ; n.
Consider # � N.�; g2/, ˛ D .�; g2/. Then for y D .y1; : : : ; yn/

> 2 Rn

p.y
ˇ
ˇ �/�.�;˛/ D C exp

˚�
X

.yi � �/2=.2�2/� .� � �/2=.2g2/
�
;

where the normalizing factor C does not depend on � and y. The expression in the
exponent is a quadratic form of � and the Taylor expansion w.r.t. � at � D � implies

#
ˇ
ˇY / exp

n
�
X .yi � �/2

2�2
C � � �

�2

X
.yi � �/ � n.� � �/2

2
.��2 C g�2/

o
:

This representation indicates that the conditional distribution of � givenY is normal.
The parameters of the posterior will be computed in the next section.

Example 5.2.2 (Bernoulli). Let Yi be a Bernoulli r.v. with P.Yi D 1/ D � . Then for
y D .y1; : : : ; yn/

>, it holds p.y
ˇ
ˇ �/ D Qn

iD1 �yi .1 � �/1�yi . Consider the family
of priors from the Beta-distribution: �.�;˛/ D �.˛/�a.1 � �/b for ˛ D .a; b/,
where �.�/ is a normalizing constant. It follows

#
ˇ
ˇy / �a.1� �/b

Y
�yi .1 � �/1�yi D �sCa.1 � �/n�sCb
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for s D y1 C : : : C yn. Obviously given s this is again a distribution from the
Beta-family.

Example 5.2.3 (Exponential). Let Yi be an exponential r.v. with P.Yi 
 y/ D
e�y� . Then p.y

ˇ
ˇ �/ D Qn

iD1 �e�yi � . For the family of priors from the Gamma-
distribution with �.�;˛/ D C.˛/�ae��b for ˛ D .a; b/. One has for the vector
y D .y1; : : : ; yn/

>

#
ˇ
ˇy / �ae��b

nY

iD1
�e�yi � D �nCae�.sCb/:

which yields that the posterior is Gamma with the parameters nC a and s C b.

All the previous examples can be systematically treated as special case an
exponential family. Let Y D .Y1; : : : ; Yn/ be an i.i.d. sample from a univariate EF
.P� / with the density

p1.y
ˇ
ˇ �/ D p1.y/ exp

˚
yC.�/� B.�/

�

for some fixed functions C.�/ and B.�/. For y D .y1; : : : ; yn/
>, the joint density

at the point y is given by

p.y
ˇ̌
�/ / exp

˚
sC.�/ � nB.�/

�
:

This suggests to take a prior from the family �.�;˛/ D �.˛/ exp
˚
aC.�/� bB.�/�

with ˛ D .a; b/>. This yields for the posterior density

#
ˇ
ˇy / p.y

ˇ
ˇ �/�.�;˛/ / exp

˚
.s C a/C.�/ � .nC b/B.�/

�

which is from the same family with the new parameters ˛.Y / D .S C a; nC b/.

Exercise 5.2.1. Build a conjugate prior the Poisson family.

Exercise 5.2.2. Build a conjugate prior the variance of the normal family with the
mean zero and unknown variance.

5.3 Linear Gaussian Model and Gaussian Priors

An interesting and important class of prior distributions is given by Gaussian priors.
The very nice and desirable feature of this class is that the posterior distribution for
the Gaussian model and Gaussian prior is also Gaussian.
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5.3.1 Univariate Case

We start with the case of a univariate parameter and one observation Y � N.�; �2/,
where the variance �2 is known and only the mean � is unknown. The Bayes
approach suggests to treat � as a random variable. Suppose that the prior � is also
normal with mean � and variance r2.

Theorem 5.3.1. Let Y � N.�; �2/, and let the prior � be the normal distribution
N.�; r2/:

Y
ˇ
ˇ � � N.�; �2/;

# � N.�; r2/:

Then the joint, marginal, and posterior distributions are normal as well. Moreover,
it holds

Y � N.�; �2 C r2/;

#
ˇ
ˇY � N

	
��2 C Y r2

�2 C r2
;
�2r2

�2 C r2



:

Proof. It holds Y D # C " with # � N.�; r2/ and " � N.0; �2/ independent of # .
Therefore, Y is normal with mean EY D E# C E" D � and the variance is

Var.Y / D E.Y � �/2 D r2 C �2:

This implies the formula for the marginal density p.Y /. Next, for � D �2=.r2C�2/,

E
�
.# � �/.Y � �/

� D E.# � �/2 D r2 D .1 � �/Var.Y /:

Thus, the random variables Y � � and � with

� D # � � � .1 � �/.Y � �/ D �.# � �/ � .1 � �/"

are Gaussian and uncorrelated and therefore, independent. The conditional distri-
bution of � given Y coincides with the unconditional distribution and hence, it is
normal with mean zero and variance

Var.�/ D �2 Var.#/C .1 � �/2 Var."/ D �2r2 C .1 � �/2�2 D �2r2

�2 C r2
:

This yields the result because # D � C �� C .1 � �/Y .

Exercise 5.3.1. Check the result of Theorem 5.3.1 by direct calculation using
Bayes formula (5.1).
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Now consider the i.i.d. model from N.�; �2/ where the variance �2 is known.

Theorem 5.3.2. Let Y D .Y1; : : : ; Yn/
> be i.i.d. and for each Yi

Yi
ˇ
ˇ � � N.�; �2/; (5.2)

# � N.�; r2/: (5.3)

Then for Y D .Y1 C : : :C Yn/=n

#
ˇ
ˇY � N

 
��2=nC Y r2

r2 C �2=n
;
r2�2=n

r2 C �2=n

!

:

So, the posterior mean of # is a weighted average of the prior mean � and the
sample estimate Y ; the sample estimate is pulled back (or shrunk) toward the prior
mean. Moreover, the weight � on the prior mean is close to one if �2 is large relative
to r2 (i.e., our prior knowledge is more precise than the data information), producing
substantial shrinkage. If �2 is small (i.e., our prior knowledge is imprecise relative
to the data information), � is close to zero and the direct estimate Y is moved very
little towards the prior mean.

Exercise 5.3.2. Prove Theorem 5.3.2 using the technique of the proof of Theo-
rem 5.3.1.
Hint: consider Yi D # C "i , Y D S=n, and define � D # � � � .1 � �/.Y � �/.
Check that � and Y are uncorrelated and hence, independent.

The result of Theorem 5.3.2 can formally be derived from Theorem 5.3.1
by replacing n i.i.d. observations Y1; : : : ; Yn with one single observation Y with
conditional mean � and variance �2=n.

5.3.2 Linear Gaussian Model and Gaussian Prior

Now we consider the general case when both Y and # are vectors. Namely we
consider the linear model Y D ‰># C " with Gaussian errors " in which the
random parameter vector # is multivariate normal as well:

# � N.�; �/; Y
ˇ̌
� � N.‰>�; †/: (5.4)

Here ‰ is a given p � n design matrix, and † is a given error covariance matrix.
Below we assume that both † and � are non-degenerate. The model (5.4) can be
represented in the form

# D � C �; � � N.0; �/; (5.5)

Y D ‰>� C‰>� C "; " � N.0;†/; " ? �; (5.6)
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where � ? " means independence of the error vectors � and ". This representation
makes clear that the vectors # ;Y are jointly normal. Now we state the result about
the conditional distribution of # given Y .

Theorem 5.3.3. Assume (5.4). Then the joint distribution of # ;Y is normal with

E D
 
#

Y

!

D
 
�

‰>�

!

Var

 
#

Y

!

D
	
� ‰>�
�‰ ‰>�‰ C†



:

Moreover, the posterior #
ˇ
ˇY is also normal. With B D ��1 C‰†�1‰>,

E
�
#
ˇ
ˇY
� D � C �‰

�
‰>�‰ C†

��1
.Y �‰>�/

D B�1��1� CB�1‰†�1Y ; (5.7)

Var
�
#
ˇ
ˇY
� D B�1: (5.8)

Proof. The following technical lemma explains a very important property of the
normal law: conditional normal is again normal.

Lemma 5.3.1. Let � and � be jointly normal. Denote U D Var.�/, W D Var.�/,
C D Cov.�;�/ D E.� � E�/.� � E�/>. Then the conditional distribution of �
given � is also normal with

E
�
�
ˇ
ˇ�
� D E� C CW�1.� � E�/;

Var
�
�
ˇ
ˇ�
� D U � CW�1C>:

Proof. First consider the case when � and � are zero-mean. Then the vector

�
defD � � CW�1�

is also normal zero mean and fulfills

E.��>/ D E
�
.� � CW�1�/�>� D E.��>/� CW�1E.��>/ D 0;

Var.�/ D E
�
.� � CW�1�/.� � CW�1�/>

�

D E
�
.� � CW�1�/�> D U � CW�1C>:

The vectors � and � are jointly normal and uncorrelated, thus, independent. This
means that the conditional distribution of � given � coincides with the unconditional
one. It remains to note that the � D � C CW�1�. Hence, conditionally on �, the
vector � is just a shift of the normal vector � by a fixed vector CW�1�. Therefore, the
conditional distribution of � given � is normal with mean CW�1� and the variance
Var.�/ D U � CW�1C>.
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Exercise 5.3.3. Extend the proof of Lemma 5.3.1 to the case when the vectors �
and � are not zero mean.

It remains to deduce the desired result about posterior distribution from this
lemma. The formulas for the first two moments of # and Y follow directly
from (5.5) and (5.6). Now we apply Lemma 5.3.1 with U D � , C D �‰,
W D ‰>�‰ C†. It follows that the vector # conditioned on Y is normal with

E
�
#
ˇ
ˇY
� D � C �‰W �1.Y �‰>�/ (5.9)

Var
�
#
ˇ
ˇY
� D � � �‰W �1‰>�:

Now we apply the following identity: for any p � n-matrix A

A
�
In C A>A

��1 D �
Ip C AA>��1A: (5.10)

Ip � A
�
In C A>A

��1
A> D �

Ip C AA>��1;

The latter implies with A D �1=2‰†�1=2 that

� � �‰W �1‰>� D �1=2
˚
Ip � A

�
In C A>A

��1
A>��1=2

D �1=2
�
Ip C AA>��1�1=2 D �

��1 C‰†�1‰>��1 D B�1

Similarly (5.10) yields with the same A

�‰W �1 D �1=2A
�
In CA>A

��1
†�1=2

D �1=2
�
Ip C AA>��1A†�1=2 D B�1‰†�1:

This implies (5.7) by (5.9).

Exercise 5.3.4. Check the details of the proof of Theorem 5.3.3.

Exercise 5.3.5. Derive the result of Theorem 5.3.3 by direct computation of the
density of # given Y .
Hint: use that # and Y are jointly normal vectors. Consider their joint density
p.�;Y / for Y fixed and obtain the conditional density by analyzing its linear and
quadratic terms w.r.t. � .

Exercise 5.3.6. Show that Var.#
ˇ
ˇY / < Var.#/ D � .

Hint: use that Var
�
#
ˇ
ˇY
� D B�1 and B

defD ��1 C‰†�1‰> > ��1.

The last exercise delivers an important message: the variance of the posterior is
smaller than the variance of the prior. This is intuitively clear because the posterior
utilizes the both sources of information: those contained in the prior and those
we get from the data Y . However, even in the simple Gaussian case, the proof is
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quite complicated. Another interpretation of this fact will be given later: the Bayes
approach effectively performs a kind of regularization and thus, leads to a reduction
of the variance; cf. Sect. 4.7. Another conclusion from the formulas (5.7), (5.8) is
that the moments of the posterior distribution approach the moments of the MLE
Q� D �

‰†�1‰>��1‰†�1Y as � grows.

5.3.3 Homogeneous Errors, Orthogonal Design

Consider a linear model Yi D ‰>
i # C "i for i D 1; : : : ; n, where ‰i are given

vectors in Rp and "i are i.i.d. normal N.0; �2/. This model is a special case of
the model (5.4) with ‰ D .‰1; : : : ; ‰n/ and uncorrelated homogeneous errors "
yielding† D �2In. Then †�1 D ��2In, B D ��1 C ��2‰‰>

E
�
#
ˇ
ˇY
� D B�1��1� C ��2B�1‰Y ; (5.11)

Var
�
#
ˇ
ˇY
� D B�1;

where ‰‰> D P
i ‰i‰

>
i . If the prior variance is also homogeneous, that is, � D

r2Ip , then the formulas can be further simplified. In particular,

Var
�
#
ˇ
ˇY
� D �

r�2Ip C ��2‰‰>��1:

The most transparent case corresponds to the orthogonal design with ‰‰> D �2Ip
for some �2 > 0. Then

E
�
#
ˇ
ˇY
� D �2=r2

�2 C �2=r2
� C 1

�2 C �2=r2
‰Y ; (5.12)

Var
�
#
ˇ
ˇY
� D �2

�2 C �2=r2
Ip: (5.13)

Exercise 5.3.7. Derive (5.12) and (5.13) from Theorem 5.3.3 with † D �2In, � D
r2Ip , and ‰‰> D Ip.

Exercise 5.3.8. Show that the posterior mean is the convex combination of the
MLE Q� D ��2‰Y and the prior mean �:

E
�
#
ˇ
ˇY
� D �� C .1 � �/ Q�;

with � D .�2=r2/=.�2 C �2=r2/. Moreover, � ! 0 as � ! 1, that is, the posterior
mean approaches the MLE Q� .
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5.4 Non-informative Priors

The Bayes approach requires to fix a prior distribution on the values of the parameter
# . What happens if no such information is available? Is the Bayes approach still
applicable? An immediate answer is “no,” however it is a bit hasty. Actually one
can still apply the Bayes approach with the priors which do not give any preference
to one point against the others. Such priors are called non-informative. Consider
first the case when the set‚ is finite:‚ D f�1; : : : ;�M g. Then the non-informative
prior is just the uniform measure on‚ giving to every point �m the equal probability
1=M . Then the joint probability of Y and # is the average of the measures P�m and
the same holds for the marginal distribution of the data:

p.y/ D 1

M

MX

mD1
p.y

ˇ̌
�m/:

The posterior distribution is already “informative” and it differs from the uniform
prior:

p.�k
ˇ
ˇy/ D p.y

ˇ̌
�k/�.�k/

p.y/
D p.y

ˇ̌
�k/

PM
mD1 p.y

ˇ
ˇ�m/

; k D 1; : : : ;M:

Exercise 5.4.1. Check that the posterior measure is non-informative iff all the
measures P�m coincide.

A similar situation arises if the set ‚ is a non-discrete bounded subset in Rp. A
typical example is given by the case of a univariate parameter restricted to a finite
interval Œa; b�. Define �.�/ D 1=�.‚/, where

�.‚/
defD
Z

‚

d�:

Then

p.y/ D 1

�.‚/

Z

‚

p.y
ˇ̌
�/d�:

p.�
ˇ
ˇy/ D p.y

ˇ
ˇ �/�.�/
p.y/

D p.y
ˇ
ˇ�/

R
‚
p.y

ˇ
ˇ �/d�

: (5.14)

In some cases the non-informative uniform prior can be used even for unbounded
parameter sets. Indeed, what we really need is that the integrals in the denominator
of the last formula are finite:

Z

‚

p.y
ˇ
ˇ�/d� < 1 8y:

Then we can apply (5.14) even if ‚ is unbounded.
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Exercise 5.4.2. Consider the Gaussian Shift model (5.2) and (5.3).

(i) Check that for n D 1, the value
R1

�1 p.y
ˇ
ˇ �/d� is finite for every y and the

posterior distribution of # coincides with the distribution of Y .
(ii) Compute the posterior for n > 1.

Exercise 5.4.3. Consider the Gaussian regression model Y D ‰># C ",
" � N.0;†/, and the non-informative prior � which is the Lebesgue measure
on the space Rp . Show that the posterior for # is normal with mean Q� D
.‰†�1‰>/�1‰†�1Y and variance .‰†�1‰>/�1. Compare with the result of
Theorem 5.3.3.

Note that the result of this exercise can be formally derived from Theorem 5.3.3 by
replacing ��1 with 0.

Another way of tackling the case of an unbounded parameter set is to consider a
sequence of priors that approaches the uniform distribution on the whole parameter
set. In the case of linear Gaussian models and normal priors, a natural way is to let
the prior variance tend to infinity. Consider first the univariate case; see Sect. 5.3.1.
A non-informative prior can be approximated by the normal distribution with mean
zero and variance r2 tending to infinity. Then

#
ˇ
ˇY � N

	
Y r2

�2 C r2
;
�2r2

�2 C r2



w�! N.Y; �2/ r ! 1:

It is interesting to note that the case of an i.i.d. sample in fact reduces the situation
to the case of a non-informative prior. Indeed, the result of Theorem 5.3.3 implies
with r2n D nr2

#
ˇ
ˇY � N

 
Y r2n

�2 C r2n
;
�2r2n
�2 C r2n

!

:

One says that the prior information “washes out” from the posterior distribution as
the sample size n tends to infinity.

5.5 Bayes Estimate and Posterior Mean

Given a loss function }.�;� 0/ on ‚ �‚, the Bayes risk of an estimate O� D O�.Y /
is defined as

R�. O�/ defD E}. O�;#/ D
Z

‚

	Z

Y

}. O�.y/;�/ p.y ˇˇ �/�0.dy/



�.�/d�:

Note that # in this formula is treated as a random variable that follows the prior
distribution � . One can represent this formula symbolically in the form
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R�. O�/ D E
�
E
�
}. O�;#/ ˇˇ ��� D ER. O�;#/:

Here the external integration averages the pointwise risk R. O�;#/ over all possible
values of # due to the prior distribution.

The Bayes formula p.y
ˇ
ˇ �/�.�/ D p.�

ˇ
ˇy/p.y/ and change of order of

integration can be used to represent the Bayes risk via the posterior density:

R�. O�/ D
Z

Y

	Z

‚

}. O�.y/;#/ p.� ˇ̌y/ d�


p.y/�0.dy/

D E
�
E
˚
}. O�;#/ ˇˇY ��:

The estimate Q�� is called Bayes or �-Bayes if it minimizes the corresponding risk:

Q�� D argmin
O�

R�. O�/;

where the infimum is taken over the class of all feasible estimates. The most
widespread choice of the loss function is the quadratic one:

}.�;� 0/ defD k� � � 0k2:

The great advantage of this choice is that the Bayes solution can be given explicitly;
it is the posterior mean

Q�� defD E.#
ˇ̌
Y / D

Z

‚

� p.�
ˇ̌
Y / d�:

Note that due to Bayes’ formula, this value can be rewritten

Q�� D 1

p.Y /

Z

‚

� p.Y
ˇ
ˇ �/ �.�/d�

p.Y / D
Z

‚

p.Y
ˇ
ˇ �/ �.�/d�:

Theorem 5.5.1. It holds for any estimate O�

R�. O�/ 
 R�. Q��/:

Proof. The main feature of the posterior mean is that it provides a kind of projection
of the data. This property can be formalized as follows:

E
� Q�� � # ˇˇY � D

Z

‚

� Q�� � ��p.� ˇˇY / d� D 0
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yielding for any estimate O� D O�.Y /

E
�k O� � #k2 ˇˇY �

D E
�k Q�� � #k2 ˇ̌Y �C E

�k Q�� � O�k2 ˇ̌Y �C 2. O� � Q��/E
� Q�� � # ˇ̌Y �

D E
�k Q�� � #k2 ˇ̌Y �C E

�k Q�� � O�k2 ˇ̌Y �


 E
�k Q�� � #k2 ˇˇY �:

Here we have used that both O� and Q�� are functions of Y and can be considered as
constants when taking the conditional expectation w.r.t. Y . Now

R�. O�/ D Ek O� � #k2 D E
�
E
�k O� � #k2 ˇˇY ��


 E
�
E
�k Q�� � #k2 ˇ̌Y �� D R�. Q��/

and the result follows.

Exercise 5.5.1. Consider the univariate case with the loss function j� � � 0j. Check
that the posterior median minimizes the Bayes risk.

5.6 Posterior Mean and Ridge Regression

Here we again consider the case of a linear Gaussian model

Y D ‰># C "; " � N.0; �2In/:

(To simplify the presentation, we focus here on the case of homogeneous errors with
† D �2In.) Recall that the maximum likelihood estimate Q� for this model reads as

Q� D �
‰‰>��1‰Y :

A penalized MLE Q�G for the roughness penalty kG�k2 is given by

Q�G D �
‰‰> C �2G2

��1
‰Y I

see Sect. 4.7. It turns out that a similar estimate appears in quite a natural way
within the Bayes approach. Consider the normal prior distribution # � N.0;G�2/.
The posterior will be normal as well with the posterior mean:

Q�� D ��2B�1Y D �
‰‰> C �2G2

��1
‰Y I

see (5.11). It appears that Q�� D Q�G for the normal prior � D N.0;G�2/.
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One can say that the Bayes approach with a Gaussian prior leads to a regu-
larization of the least squares method which is similar to quadratic penalization.
The degree of regularization is inversely proportional to the variance of the prior.
The larger the variance, the closer the prior is to the non-informative one and the
posterior mean Q�� to the MLE Q� .

5.7 Bayes and Minimax Risks

Consider the parametric model Y � P 2 .P� ;� 2 ‚ � Rp/. Let Q� be an estimate
of the parameter # from the available data Y . Formally Q� is a measurable function
of Y with values in ‚:

Q� D Q�.Y / W Y ! ‚:

The quality of estimation is assigned by the loss function %.� ;� 0/. In estimation
problem one usually selects this function in the form %.� ;� 0/ D %1.� � � 0/ for
another function %1 of one argument. Typical examples are given by quadratic loss
%1.�/ D k�k2 or absolute loss %1.�/ D k�k. Given such a loss function, the
pointwise risk of Q� at � is defined as

R. Q�;�/ defD E�%. Q� ;�/:
The minimax risk is defined as the maximum of pointwise risks over all � 2 ‚:

R. Q�/ defD sup
�2‚

R. Q�;�/ D sup
�2‚

E�%. Q�;�/:

Similarly, the Bayes risk for a prior � is defined by weighting the pointwise risks
according to the prior distribution:

R�. Q�/ defD R. Q�;�/ D
Z

�

E�%. Q� ;�/�.�/d�:

It is obvious that the Bayes risk is always smaller or equal than the minimax one,
whatever the prior measure is:

R�. Q�/ � R. Q�/

The famous Le Cam theorem states that the minimax risk can be recovered by taking
the maximum over all priors:

R. Q�/ D sup
�

R�. Q�/:

Moreover, the maximum can be taken over all discrete priors with finite supports.
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5.8 Van Trees Inequality

The Cramér–Rao inequality yields a low bounds of the risk for any unbiased
estimator. However, it appears to be sub-optimal if the condition of no-bias is
dropped. Another way to get a general bound on the quadratic risk of any estimator
is to bound from below a Bayes risk for any suitable prior and then to maximize this
lower bound in a class of all such priors.

Let Y be an observed vector in Rn and .P� / be the corresponding parametric
family with the density function p.y

ˇ
ˇ �/ w.r.t. a measure �0 on Rn. Let also O� D

O�.Y / be an arbitrary estimator of � . For any prior � , we aim to lower bound the
�-Bayes risk R�. O�/ of O� . We already know that this risk minimizes by the posterior
mean estimator Q�� . However, the presented bound does not rely on a particular
structure of the considered estimator. Similarly to the Cramér–Rao inequality, it is
entirely based on some geometric properties of the log-likelihood function p.y

ˇ
ˇ �/.

To simplify the explanation, consider first the case of a univariate parameter
� 2 ‚ � R. Below we assume that the prior � has a positive continuously
differentiable density �.�/. In addition we suppose that the parameter set ‚ is an
interval, probably infinite, and the prior density �.�/ vanishes at the edges of‚. By
F� we denote the Fisher information for the prior distribution �:

F�
defD
Z

‚

ˇ
ˇ� 0.�/

ˇ
ˇ2

�.�/
d�

Remind also the definition of the full Fisher information for the family .P� /:

F.�/
defD E�

ˇ̌
ˇ
ˇ
@

@�
logp.Y

ˇ
ˇ �/

ˇ̌
ˇ
ˇ

2

D
Z ˇ
ˇp0.y

ˇ
ˇ �/

ˇ
ˇ2

p.y
ˇ̌
�/

�0.dy/:

These quantities will enter in the risk bound. In what follows we also use the
notation

p�.y ; �/ D p.y
ˇ
ˇ �/�.�/;

p0
�.y ; �/

defD dp�.y ; �/

d�
:

The Bayesian analog of the score function is

L0
�.Y ; �/

defD p0
�.Y ; �/

p�.Y ; �/
D p0.Y

ˇ
ˇ �/

p.Y
ˇ
ˇ �/

C � 0.�/
�.�/

: (5.15)

The use of p�.y; �/ � 0 at the edges of ‚ implies for any O� D O�.y/ and any
y 2 Rn
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Z

‚

˚� O�.y/� �
�
p�.y; �/

�0
d� D

h˚ O�.y/� �
�
p�.y; �/

i
D 0;

and hence
Z

‚

˚ O�.y/� �
�
p0
�.y; �/ d� D

Z

‚

p�.y ; �/d�: (5.16)

This is an interesting identity. It holds for each y with �0-probability one and the
estimate O� only appears in its left-hand side. This can be explained by the fact
that

R
‚
p0
�.y; �/ d� D 0 which follows by the same calculus. Based on (5.16),

one can compute the expectation of the product of O�.Y / � # and L0
�.Y ; #/ D

p0
�.Y ; #/=p�.Y ; #/:

E�

h˚ O�.Y /� #
�
L0
�.Y ; #/

� D
Z

Rn

Z

‚

˚ O�.y/� �
�
p0
�.y ; �/ d� d�0.y/

D
Z

Rn

Z

‚

p�.y; �/ d� d�0.y/ D 1: (5.17)

Again, the remarkable feature of this equality is that the estimate O� only appears in
the left-hand side. Now the idea of the obtained bound is very simple. We introduce
a r.v. h.Y ; #/ D L0

�.Y ; #/=E� jL0
�.Y ; #/j2 and use orthogonality of O�.Y / � # �

h.Y ; #/ and h.Y ; #/ and the Pythagoras Theorem to show that the squared risk of
O� is not smaller than E�

�
h2.Y ; #/

�
. More precisely, denote

I� defD E�

h˚
L0
�.Y ; #/

�2i
;

h.Y ; #/
defD I�1

� L0
�.Y ; #/:

Then E�
�
h2.Y ; #/

� D I�1
� and (5.17) implies

E�

h˚ O�.Y /� # � h.Y ; #/
�
h.Y ; #/

i

D I�1
� E�

h˚ O�.Y /� #
�
L0
�.Y ; #/

i
� E�

�
h2.Y ; #/

� D 0

and

E�

h� O�.Y /� #
�2i D E�

h˚ O�.Y /� # � h.Y ; #/C h.Y ; #/
�2i

D E�

h˚ O�.Y /� # � h.Y ; #/
�2iC E�

�
h2.Y ; #/

�

C 2E�

h˚ O�.Y /� # � h.Y ; #/
�
h.Y ; #/

i
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D E�

h˚ O�.Y /� # � h.Y ; #/
�2iC E�

�
h2.Y ; #/

�


 E�
�
h2.Y ; #/

� D I�1
� :

It remains to compute I� . We use the representation (5.15) for L0
�.Y ; �/. Further

we use the identity
R
p.y

ˇ
ˇ �/d�0.y/ � 1 which implies by differentiating in �

Z
p0.y

ˇ
ˇ �/ d�0.y/ � 0:

This yields that two random variables p0.Y
ˇ
ˇ �/=p.Y

ˇ
ˇ �/ and � 0.�/=�.�/ are

orthogonal under the measure P� :

E�

�
p0.Y

ˇ
ˇ �/

p.Y
ˇ
ˇ �/

� 0.�/
�.�/

�
D
Z

‚

Z

Rn

p0.y
ˇ̌
�/ � 0.�/ d�0.y/ d�

D
Z

‚

�Z

Rn

p0.y
ˇ
ˇ �/ d�0.y/

�
� 0.�/d� D 0:

Now by the Pythagoras Theorem

E�
˚
L0
�.Y ; #/

�2 D E�

�
p0.Y

ˇ
ˇ#/

p.Y
ˇ
ˇ#/

� 2
C E�

�
� 0.#/
�.#/

� 2

D E�E#

��
p0.Y

ˇ
ˇ#/

p.Y
ˇ
ˇ#/

� 2 ˇˇ
ˇ
ˇ#
�

C E�

�
� 0.#/
�.#/

� 2

D
Z

‚

F.�/ �.�/ d� C F� :

Now we can summarize the derivations in the form of van Trees’ inequality.

Theorem 5.8.1 (van Trees). Let ‚ be an interval on R and let the prior density
�.�/ have piecewise continuous first derivative, �.�/ be positive in the interior of
‚ and vanish at the edges. Then for any estimator O� of �

E�. O� � #/2 

	Z

‚

F.�/ �.�/ d� C F�


�1
:

Now we consider a multivariate extension. We will say that a real function g.�/,
� 2 ‚, is nice if it is piecewise continuously differentiable in � for almost all values
of � . Everywhere g0.	/ means the derivative w.r.t. � , that is, g0.�/ D d

d�
g.�/.

We consider the following assumptions:

1. p.y
ˇ
ˇ �/ is nice in � for almost all y;

2. The full Fisher information matrix
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F.�/
defD Var�

�
p0.Y

ˇ
ˇ �/

p.Y
ˇ̌
�/

�
D E�

�
p0.Y

ˇ
ˇ�/

p.Y
ˇ̌
�/

�
p0.Y

ˇ
ˇ �/

p.Y
ˇ̌
�/

�>�

exists and continuous in �;
3. ‚ is compact with boundary which is piecewise C1-smooth;
4. �.�/ is nice; �.�/ is positive on the interior of ‚ and zero on its boundary. The

Fisher information matrix F� of the prior � is positive and finite:

F�
defD E�

�
� 0.#/
�.#/

�
� 0.#/
�.#/

�>�
< 1:

Theorem 5.8.2. Let the assumptions 1–4 hold. For any estimate O� D O�.Y /, it holds

E�

h˚ O�.Y /� #�˚ O�.Y /� #�>i 
 I�1
� ; (5.18)

where

I� defD
Z

‚

F.�/ �.�/ d� C F� :

Proof. The use of p�.y;�/ D p.y
ˇ
ˇ �/�.�/ � 0 at the boundary of ‚ implies for

any O� D O�.y/ and any y 2 Rn by Stokes’ theorem

Z

‚

�˚ O�.y/� ��p�.y;�/
�0
d� D 0;

and hence
Z

‚

p0
�.y;�/

˚ O�.y/� ��>
d� D Ip

Z

‚

p�.y;�/d�;

where Ip is the identity matrix. Therefore, the random vector L0
�.Y ;�/

defD
p0
�.Y ;�/=p�.Y ;�/ fulfills

E�

h
L0
�.Y ;#/

˚ O�.Y /� #�>i D
Z

Rn

Z

‚

p0
�.y ;�/

˚ O�.y/� ��>
d� d�0.y/

D Ip

Z

Rn

Z

‚

p�.y;�/ d� d�0.y/ D Ip:

(5.19)

Denote
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I� defD E�

h
L0
�.Y ;#/

˚
L0
�.Y ;#/

�>i
;

h.Y ;#/
defD I�1

� L0
�.Y ;#/:

Then E�
�
h.Y ;#/

˚
h.Y ;#/

�>� D I�1
� and (5.19) implies

E�

h
h.Y ;#/

˚ O�.Y /� # � h.Y ;#/�>i

D I�1
� E�

h
L0
�.Y ;#/

˚ O�.Y / � #�>i � E�

h
h.Y ;#/

˚
h.Y ;#/

�>i D 0

and hence

E�

h˚ O�.Y /� #�˚ O�.Y / � #�>

i

D E�

h˚ O�.Y /� # � h.Y ;#/C h.Y ;#/
�˚ O�.Y /� # � h.Y ;#/C h.Y ;#/

�
>

i

D E�

h˚ O�.Y /� # � h.Y ;#/
�˚ O�.Y /� # � h.Y ;#/�>

i

CE�

h˚
h.Y ;#/

�˚
h.Y ;#/

�
>

i


 E�

h˚
h.Y ;#/

�˚
h.Y ;#/

�
>

i
D I�1

� :

It remains to compute I� . The definition implies

L0
�.Y ;�/

defD 1

p�.Y ;�/
p0
�.Y ;�/ D 1

p.Y
ˇ
ˇ�/

p0.Y
ˇ
ˇ�/C 1

�.�/
� 0.�/:

Further, the identity
R
p.y

ˇ̌
�/d�0.y/ � 1 yields by differentiating in �

Z
p0.y

ˇ̌
�/ d�0.y/ � 0:

Using this identity, we show that the random vectors p0.Y
ˇ
ˇ �/=p.Y

ˇ
ˇ�/ and

� 0.�/=�.�/ are orthogonal w.r.t. the measure P� . Indeed,

E�

�
p0.Y

ˇ̌
�/

p.Y
ˇ
ˇ �/

�
� 0.�/
�.�/

�>�
D
Z

‚

� 0.�/
�Z

Rn

p0.y
ˇ
ˇ �/ d�0.y/

�>
d�

D
Z

‚

� 0.�/
�Z

Rn

p0.y
ˇ
ˇ �/ d�0.y/

�>
d� D 0:

Now by usual Pythagorus calculus, we obtain
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E�

h˚
L0
�.Y ;#/

�˚
L0
�.Y ;#/

�>i

D E�

�
p0.Y

ˇ
ˇ#/

p.Y
ˇ
ˇ#/

�
p0.Y

ˇ
ˇ#/

p.Y
ˇ
ˇ#/

�>�
C E�

�
� 0.#/
�.#/

�
� 0.#/
�.#/

�>�

D E�E#

��
p0.Y

ˇ
ˇ#/

p.Y
ˇ
ˇ#/

��
p0.Y

ˇ
ˇ#/

p.Y
ˇ
ˇ#/

�>ˇˇ̌
ˇ#
�

C E�

�
� 0.#/
�.#/

�
� 0.#/
�.#/

�>�

D
Z

‚

F.�/ �.�/ d� C F� ;

and the result follows.

This matrix inequality can be used for obtaining a number of L2 bounds. We
present only two bounds for the squared norm k O�.Y /� #k2.
Corollary 5.8.1. Under the same conditions 1–4, it holds

E�k O�.Y /� #k2 
 tr
�I�1
�

� 
 p2= tr.I�/:

Proof. The first inequality follows directly from the bound (5.18) of Theorem 5.8.2.
For the second one, it suffices to note that for any positive symmetric p � p matrix
B , it holds

tr.B/ tr.B�1/ 
 p2: (5.20)

This fact can be proved by the Cauchy–Schwarz inequality.

Exercise 5.8.1. Prove (5.20).
Hint: use the Cauchy–Schwarz inequality for the scalar product tr.B1=2B�1=2/ of
two matrices B1=2 and B�1=2 (considered as vectors in Rp2 ).

5.9 Historical Remarks and Further Reading

The origin of the Bayesian approach to statistics was the article by Bayes (1763).
Further theoretical foundations are due to de Finetti (1937), Savage (1954), and
Jeffreys (1957).

The theory of conjugated priors was developed by Raiffa and Schlaifer (1961).
Conjugated priors for exponential families have been characterized by Diaconis and
Ylvisaker (1979). Non-informative priors were considered by Jeffreys (1961).

Bayes optimality of the posterior mean estimator under quadratic loss is a
classical result which can be found, for instance, in Sect. 4.4.2 of Berger (1985).
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The van Trees inequality is originally due to Van Trees (1968), p. 72. Gill and
Levit (1995) applied it to the problem of establishing a Bayesian version of the
Cramér–Rao bound.

For further reading, we recommend the books by Berger (1985), Bernardo and
Smith (1994), and Robert (2001).



Chapter 6
Testing a Statistical Hypothesis

Let Y be the observed sample. The hypothesis testing problem assumes that there
is some external information (hypothesis) about the distribution of this sample and
the target is to check this hypothesis on the basis of the available data.

6.1 Testing Problem

This section specifies the main notions of the theory of hypothesis testing. We start
with a simple hypothesis. Afterwards a composite hypothesis will be discussed. We
also introduce the notions of the testing error, level, power, etc.

6.1.1 Simple Hypothesis

The classical testing problem consists in checking a specific hypothesis that the
available data indeed follow an externally precisely given distribution. We illustrate
this notion by several examples.

Example 6.1.1 (Simple Game). Let Y D .Y1; : : : ; Yn/
> be a Bernoulli sequence of

zeros and ones. This sequence can be viewed as the sequence of successes, or results
of throwing a coin, etc. The hypothesis about this sequence is that wins (associated
with one) and losses (associated with zero) are equally frequent in the long run. This
hypothesis can be formalized as follows: P D .P��/˝n with �� D 1=2, where P�
describes the Bernoulli experiment with parameter � .

Example 6.1.2 (No Treatment Effect). Let .Yi ; ‰i/ be experimental results, i D
1; : : : ; n. The linear regression model assumes a certain dependence of the form
Yi D ‰>

i � C "i with errors "i having zero mean. The “no effect” hypothesis means

V. Spokoiny and T. Dickhaus, Basics of Modern Mathematical Statistics,
Springer Texts in Statistics, DOI 10.1007/978-3-642-39909-1__6,
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that there is no systematic dependence of Yi on the factors ‰i , i.e., � D �� D 0,
and the observations Yi are just noise.

Example 6.1.3 (Quality Control). Assume that the Yi are the results of a production
process which can be represented in the form Yi D �� C "i , where �� is a nominal
value and "i is a measurement error. The hypothesis is that the observed process
indeed follows this model.

The general problem of testing a simple hypothesis is stated as follows: to check
on the basis of the available observations Y that their distribution is described by a
given measure P. The hypothesis is often called a null hypothesis or just null.

6.1.2 Composite Hypothesis

More generally, one can treat the problem of testing a composite hypothesis. Let
.P� ;� 2 ‚ � Rp/ be a given parametric family, and let ‚0 � ‚ be a nonempty
subset in‚. The hypothesis is that the data distributionP belongs to the set .P� ;� 2
‚0/. Often, this hypothesis and the subset‚0 are identified with each other and one
says that the hypothesis is given by‚0.

We give some typical examples where such a formulation is natural.

Example 6.1.4 (Testing a Subvector). Assume that the vector � 2 ‚ can be
decomposed into two parts: � D .
;�/. The subvector 
 is the target of analysis
while the subvector � matters for the distribution of the data but is not the target of
analysis. It is often called the nuisance parameter. The hypothesis we want to test is

 D 
� for some fixed value 
�. A typical situation in factor analysis where such
problems arise is to check on “no effect” for one particular factor in the presence of
many different, potentially interrelated factors.

Example 6.1.5 (Interval Testing). Let‚ be the real line and‚0 be an interval. The
hypothesis is that P D P�� for �� 2 ‚0. Such problems are typical for quality
control or warning (monitoring) systems when the controlled parameter should be
in the prescribed range.

Example 6.1.6 (Testing a Hypothesis About the Error Distribution). Consider the
regression model Yi D ‰>

i � C "i . The typical assumption about the errors "i is
that they are zero-mean normal. One may be interested in testing this assumption,
having in mind that the cases of discrete, or heavy-tailed, or heteroscedastic errors
can also occur.

6.1.3 Statistical Tests

A test is a statistical decision on the basis of the available data whether the
prespecified hypothesis is rejected or retained. So the decision space consists of
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only two points, which we denote by zero and one. A decision � is a mapping of the
data Y to this space and is called a test:

� W Y ! f0; 1g:

The event f� D 1g means that the null hypothesis is rejected and the opposite event
means non-rejection (acceptance) of the null. Usually the testing results are qualified
in the following way: rejection of the null hypothesis means that the data are not
consistent with the null, or, equivalently, the data contain some evidence against the
null hypothesis. Acceptance simply means that the data do not contradict the null.
Therefore, the term “non-rejection” is often considered more appropriate.

The region of acceptance is a subset of the observation space Y on which � D 0.
One also says that this region is the set of values for which we fail to reject the null
hypothesis. The region of rejection or critical region is, on the other hand, the subset
of Y on which � D 1.

6.1.4 Errors of the First Kind, Test Level

In the hypothesis testing framework one distinguishes between errors of the first
and second kind. An error of the first kind means that the null hypothesis is falsely
rejected when it is correct. We formalize this notion first for the case of a simple
hypothesis and then extend it to the general case.

LetH0 W Y � P�� be a null hypothesis. The error of the first kind is the situation
in which the data indeed follow the null, but the decision of the test is to reject this
hypothesis: � D 1. Clearly the probability of such an error is P��.� D 1/. The
latter number in Œ0; 1� is called the size of the test �. One says that � is a test of level
˛ for some ˛ 2 .0; 1/ if

P��.� D 1/ � ˛:

The value ˛ is called level of the test or significance level. Often, size and level of
a test coincide; however, especially in discrete models, it is not always possible to
attain the significance level exactly by the chosen test �, meaning that the actual
size of � is smaller than ˛, see Example 6.1.7 below.

If the hypothesis is composite, then the level of the test is the maximum rejection
probability over the null subset ‚0. Here, a test � is of level ˛ if

sup
�2‚0

P�.� D 1/ � ˛:

Example 6.1.7 (One-Sided Binomial Test). Consider again the situation from
Example 6.1.1 (an i.i.d. sample Y D .Y1; : : : ; Yn/

> from a Bernoulli distribution
is observed). We let n D 13 and‚0 D Œ0; 1=5�. For instance, one may want to test if
the cancer-related mortality in a subpopulation of individuals which are exposed
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to some environmental risk factor is not significantly larger than in the general
population, in which it is equal to 1=5. To this end, death causes are assessed for
13 decedents and for every decedent we get the information if s/he died because of
cancer or not. From Sect. 2.6, we know that Sn=n efficiently estimates the success
probability ��, where Sn D Pn

iD1 Yi . Therefore, it appears natural to use Sn also
as the basis for a solution of the test problem. Under ��, it holds Sn � Bin.n; ��/.
Since a large value of Sn implies evidence against the null, we choose a test of the
form � D 1.c˛;n�.Sn/, where the constant c˛ has to be chosen such that � is of level
˛. This condition can equivalently be expressed as

inf
0���1=5P� .Sn � c˛/ 
 1 � ˛:

For fixed k 2 f0; : : : ; ng, we have

P� .Sn � k/ D
kX

`D0

 
n

`

!

�`.1 � �/n�` D F.�; k/ (say):

Exercise 6.1.1. Show that for all k 2 f0; : : : ; ng, the function F.	; k/ is decreasing
on ‚0 D Œ0; 1=5�.

Due to Exercise 6.1.1, we have to calculate c˛ under the least favorable
parameter configuration (LFC) � D 1=5 and we obtain

c˛ D min

(

k 2 f0; : : : ; ng W
kX

`D0

 
n

`

!	
1

5


` 	
4

5


n�`

 1 � ˛

)

;

because we want to exhaust the significance level ˛ as tightly as possible. For the
standard choice of ˛ D 0:05, we have

4X

`D0

 
13

`

!	
1

5


` 	
4

5


13�`
� 0:901;

5X

`D0

 
13

`

!	
1

5


` 	
4

5


13�`
� 0:9700;

hence, we choose c˛ D 5. However, the size of the test � D 1.5;13�.Sn/ is strictly
smaller than the significance level ˛ D 0:05, namely

sup
0���1=5

P� .Sn > 5/ D P1=5.Sn > 5/ D 1 � P1=5.Sn � 5/ � 0:03 < ˛:

6.1.5 Randomized Tests

In some situations it is difficult to decide about acceptance or rejection of the
hypothesis. A randomized test can be viewed as a weighted decision: with a certain
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probability the hypothesis is rejected, otherwise retained. The decision space for a
randomized test � is the unit interval Œ0; 1�, that is, �.Y / is a number between zero
and one. The hypothesis H0 is rejected with probability �.Y / on the basis of the
observed data Y . If �.Y / only admits the binary values 0 and 1 for every Y , then
we are back at the usual non-randomized test that we have considered before. The
probability of an error of the first kind is naturally given by the value E�.Y /. For a
simple hypothesisH0 W P D P�� , a test � is now of level ˛ if

E�.Y / D ˛:

For a randomized test �, the significance level ˛ is typically attainable exactly, even
for discrete models. In the case of a composite hypothesisH0 W P 2 .P� ;� 2 ‚0/,
the level condition reads as

sup
�2‚0

E�.Y / � ˛

as before. In what follows we mostly consider non-randomized tests and only
comment on whether a randomization can be useful. Note that any randomized test
can be reduced to a non-randomized test by extending the probability space.

Exercise 6.1.2. Construct for any randomized test � its non-randomized version
using a random data generator.

Randomized tests are a satisfactory solution of the test problem from a mathe-
matical point of view, but they are disliked by practitioners, because the test result
may not be reproducible, due to randomization.

Example 6.1.8 (Example 6.1.7 Continued). Under the setup of Example 6.1.7,
consider the randomized test �, given by

�.Y / D
8
<

:

0; Sn < 5

2=7; Sn D 5

1; Sn > 5

9
=

;

It is easy to show that under the LFC � D 1=5, the size of � is (up to rounding)
exactly equal to ˛ D 5%.

6.1.6 Alternative Hypotheses, Error of the Second Kind, Power
of a Test

The setup of hypothesis testing is asymmetric in the sense that it focuses on
the null hypothesis. However, for a complete analysis, one has to specify the
data distribution when the hypothesis is false. Within the parametric framework,
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one usually makes the assumption that the unknown data distribution belongs to
some parametric family .P� ;� 2 ‚ � Rp/. This assumption has to be fulfilled
independently of whether the hypothesis is true or false. In other words, we assume
that P 2 .P� ;� 2 ‚/ and there is a subset ‚0 � ‚ corresponding to the null
hypothesis. The measure P D P� for � 62 ‚0 is called an alternative. Furthermore,

we call ‚1
defD ‚ n‚0 the alternative hypothesis.

Now we can consider the performance of a test � when the hypothesis H0 is
false. The decision to retain the hypothesis when it is false is called the error of the
second kind. The probability of such an error is equal to P.� D 0/, whenever P is
an alternative. This value certainly depends on the alternative P D P� for � 62 ‚0.
The value ˇ.�/ D 1 � P� .� D 0/ is often called the test power at � 62 ‚0. The
function ˇ.�/ of � 2 ‚ n‚0 given by

ˇ.�/
defD 1 � P� .� D 0/

is called power function. Ideally one would desire to build a test which simulta-
neously and separately minimizes the size and maximizes the power. These two
wishes are somehow contradictory. A decrease of the size usually results in a
decrease of the power and vice versa. Usually one imposes the level ˛ constraint
on the size of the test and tries to optimize its power under this constraint. Under
the general framework of statistical decision problems as discussed in Sect. 1.4,
one can thus regard R.�;�/ D 1 � ˇ.�/; � 2 ‚1, as a risk function. If we
agree on this risk measure and restrict attention to level ˛ tests, then the test
problem, regarded as a statistical decision problem, is already completely specified
by .Y;B.Y/; .P� W � 2 ‚/;‚0/.

Definition 6.1.1. A test �� is called uniformly most powerful (UMP) test of level ˛
if it is of level ˛ and for any other test of level ˛, it holds

1 � P�.�
� D 0/ 
 1 � P�.� D 0/; � 62 ‚0:

Unfortunately, such UMP tests exist only in very few special models; otherwise,
optimization of the power given the level is a complicated task.

In the case of a univariate parameter � 2 ‚ � R1 and a simple hypothesis
� D ��, one often considers one-sided alternatives

H1 W � 
 �� or H1 W � � ��

or a two-sided alternative

H1 W � ¤ ��:
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6.2 Neyman–Pearson Test for Two Simple Hypotheses

This section discusses one very special case of hypothesis testing when both the
null hypothesis and the alternative are simple one-point sets. This special situation
by itself can be viewed as a toy problem, but it is very important from the
methodological point of view. In particular, it introduces and justifies the so-called
likelihood ratio test and demonstrates its efficiency.

For simplicity we write P0 for the measure corresponding to the null hypothesis
and P1 for the alternative measure. A test � is a measurable function of the
observations with values in the two-point set f0; 1g. The event � D 0 is treated
as acceptance of the null hypothesis H0 while � D 1 means rejection of the null
hypothesis and, consequently, decision in favor ofH1.

For ease of presentation we assume that the measure P1 is absolutely continuous
w.r.t. the measure P0 and denote by Z.Y / the corresponding derivative at the
observation point:

Z.Y /
defD dP1

dP0
.Y /:

Similarly L.Y / means the log-density:

L.Y /
defD logZ.Y / D log

dP1

dP0
.Y /:

The solution of the test problem in the case of two simple hypotheses is known as
the Neyman–Pearson test: reject the hypothesisH0 if the log-likelihood ratio L.Y /
exceeds a specific critical value z:

��
z

defD 1
�
L.Y / > z

� D 1
�
Z.Y / > ez

�
:

The Neyman–Pearson test is known as the one minimizing the weighted sum of the
errors of the first and second kind. For a non-randomized test this sum is equal to

}0P0.� D 1/C }1P1.� D 0/;

while the weighted error of a randomized test � is

}0E0� C }1E1.1 � �/: (6.1)

Theorem 6.2.1. For every two positive values }0 and }1, the test ��
z with z D

log.}0=}1/ minimizes (6.1) over all possible (randomized) tests �:

��
z

defD 1.L.Y / 
 z/ D argmin
�

˚
}0E0� C }1E1.1 � �/�:
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Proof. We use the formula for a change of measure:

E1� D E0
�
�Z.Y /

�

for any r.v. �. It holds for any test � with z D log.}0=}1/

}0E0� C }1E1.1 � �/ D E0
�
}0� � }1Z.Y /�

�C }1

D �}1E0Œ.Z.Y /� ez/��C }1


 �}1E0ŒZ.Y /� ez�C C }1

with equality for � D 1.L.Y / 
 z/.

The Neyman–Pearson test belongs to a large class of tests of the form

� D 1.T 
 z/;

where T is a function of the observations Y . This random variable is usually called
a test statistic while the threshold z is called a critical value. The hypothesis is
rejected if the test statistic exceeds the critical value. For the Neyman–Pearson test,
the test statistic is the log-likelihood ratio L.Y / and the critical value is selected as
a suitable quantile of this test statistic.

The next result shows that the Neyman–Pearson test ��
z with a proper critical

value z can be constructed to maximize the power E1� under the level constraint
E0� � ˛.

Theorem 6.2.2. Given ˛ 2 .0; 1/, let z˛ be such that

P0.L.Y / 
 z˛/ D ˛: (6.2)

Then it holds

��
z˛

defD 1
�
L.Y / 
 z˛

� D argmax
�WE0��˛

˚
E1�

�
:

Proof. Let � satisfy E0� � ˛. Then

E1� � ˛z˛ � E0
˚
Z.Y /�

�� ez˛E0�

D E0
�˚
Z.Y / � ez˛

�
�
�

� E0ŒZ.Y /� ez˛ �C;

again with equality for � D 1.L.Y / 
 z˛/.

The previous result assumes that for a given ˛ there is a critical value z˛ such
that (6.2) is fulfilled. However, this is not always the case.



6.2 Neyman–Pearson Test for Two Simple Hypotheses 203

Exercise 6.2.1. Let L.Y / D logdP1.Y /=dP0.

• Show that the relation (6.2) can always be fulfilled with a proper choice of z˛ if
the pdf of L.Y / under P0 is a continuous function.

• Suppose that the pdf of L.Y / is discontinuous and z˛ fulfills

P0.L.Y / 
 z˛/ > ˛; P0.L.Y / � z˛/ > 1 � ˛:

Construct a randomized test that fulfills E0� D ˛ and maximizes the test power
E1� among all such tests.

The Neyman–Pearson test can be viewed as a special case of the general
likelihood ratio test. Indeed, it decides in favor of the null or the alternative by
looking at the likelihood ratio. Informally one can say: we decide in favor of the
alternative if it is significantly more likely at the point of observation Y .

An interesting question that arises in relation with the Neyman–Pearson result is
how to interpret it when the true distribution P does not coincide either with P0 or
with P1 and probably it is not even within the considered parametric family .P� /.
Wald called this situation the third-kind error. It is worth mentioning that the test ��

z

remains meaningful: it decides which of two given measures P0 and P1 describes
the given data better. However, it is not any more a likelihood ratio test. In analogy
with estimation theory, one can call it a quasi likelihood ratio test.

6.2.1 Neyman–Pearson Test for an i.i.d. Sample

Let Y D .Y1; : : : ; Yn/
> be an i.i.d. sample from a measure P . Suppose that P

belongs to some parametric family .P� ;� 2 ‚ � Rp/, that is, P D P�� for
�� 2 ‚. Let also a special point �0 be fixed. A simple null hypothesis can be
formulated as �� D �0. Similarly, a simple alternative is �� D �1 for some other
point �1 2 ‚. The Neyman–Pearson test situation is a bit artificial: one reduces the
whole parameter set ‚ to just these two points �0 and �1 and tests �0 against �1.

As usual, the distribution of the data Y is described by the product measure P� D
P˝n
� . If 
0 is a dominating measure for .P� / and `.y;�/

defD logŒdP� .y/=d
0�, then
the log-likelihoodL.Y ;�/ is

L.Y ;�/
defD log

dP�

�0
.Y / D

X

i

`.Yi ;�/;

where �0 D 
˝n
0 . The log-likelihood ratio of P�1 w.r.t. P�0 can be defined as

L.Y ;�1;�0/
defD L.Y ;�1/ �L.Y ;�0/:
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The related Neyman–Pearson test can be written as

��
z

defD 1
�
L.Y ;�1;�0/ > z

�
:

6.3 Likelihood Ratio Test

This section introduces a general likelihood ratio test in the framework of parametric
testing theory. Let, as usual, Y be the observed data, and P be their distribution. The
parametric assumption is that P 2 .P� ;� 2 ‚/, that is, P D P�� for �� 2 ‚. Let
now two subsets‚0 and‚1 of the set‚ be given. The hypothesisH0 that we would
like to test is that P 2 .P� ;� 2 ‚0/, or equivalently, �� 2 ‚0. The alternative is
that �� 2 ‚1.

The general likelihood approach leads to comparing the (maximum) likelihood
values L.Y ;�/ on the hypothesis and alternative sets. Namely, the hypothesis is
rejected if there is one alternative point �1 2 ‚1 such that the value L.Y ;�1/
exceeds all corresponding values for � 2 ‚0 by a certain amount which is defined
by assigning losses or by fixing a significance level. In other words, rejection takes
place if observing the sample Y under alternative P�1 is significantly more likely
than under any measure P� from the null. Formally this relation can be written as:

sup
�2‚0

L.Y ;�/C z < sup
�2‚1

L.Y ;�/;

where the constant z makes the term “significantly” explicit. In particular, a simple
hypothesis means that the set ‚0 consists of one single point �0 and the latter
relation takes of the form

L.Y ;�0/C z < sup
�2‚1

L.Y ;�/:

In general, the likelihood ratio (LR) test corresponds to the test statistic

T
defD sup

�2‚1
L.Y ;�/� sup

�2‚0
L.Y ;�/: (6.3)

The hypothesis is rejected if this test statistic exceeds some critical value z. Usually
this critical value is selected to ensure the level condition:

P
�
T > z˛

� � ˛

for a given level ˛, whenever P is a measure under the null hypothesis.
We have already seen that the LR test is optimal for testing a simple hypothesis

against a simple alternative. Later we show that this optimality property can be
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extended to some more general situations. Now and in the following Sect. 6.4 we
consider further examples of an LR test.

Example 6.3.1 (Chi-Square Test for Goodness-of-Fit). Let the observation space
(which is a subset of R1) be split into non-overlapping subsets A1; : : : ; Ad and
assume one observes indicators 1.Yi 2 Aj / for 1 � i � n and 1 � j � d .
Define �j D P0.Aj / D R

Aj
P0.dy/ for 1 � j � d . Let counting variables Nj ,

1 � j � d , be given by Nj D Pn
iD1 1.Yi 2 Aj /. The vector N D .N1; : : : ; Nd /

>
follows the multinomial distribution with parameters n, d , and � D .�1; : : : ; �d /

>,
where we assume n and d as fixed, leading to dim.‚/ D d � 1. More specifically,
it holds

‚ D
n
� D .�1; : : : ; �d /

> 2 Œ0; 1�d W
dX

jD1
�j D 1

o
:

The likelihood statistic for this model with respect to the counting measure is given
by

Z.N;p/ D nŠ
Qd
jD1 Nj Š

dY

`D1
�
N`
` ;

and the MLE is given by Q�j D Nj=n; 1 � j � d . Now, consider the point
hypothesis � D p for a fixed given vector p 2 ‚. We obtain the likelihood ratio
statistic

T D sup
�2‚

log
Z.N;�/

Z.N;p/
;

leading to

T D n

dX

jD1
Q�j log

Q�j
pj
;

In practice, this LR test is often carried out as Pearson’s chi-square test. To this end,
consider the function h W R ! R, given by h.x/ D x log.x=x0/ for a fixed real
number x0 2 .0; 1/. Then, the Taylor expansion of h.x/ around x0 is given by

h.x/ D .x � x0/C 1

2x0
.x � x0/2 C oŒ.x � x0/

2� as x ! x0:

Consequently, for Q� close to p, the use of
P

j
Q�j D P

j pj D 1 implies
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2T �
dX

jD1

.Nj � npj /
2

npj

in probability under the null hypothesis. The statistic Q, given by

Q
defD

dX

jD1

.Nj � npj /
2

npj
;

is called Pearson’s chi-square statistic.

6.4 Likelihood Ratio Tests for Parameters of a Normal
Distribution

For all examples considered in this section, we assume that the data Y in form of an
i.i.d. sample .Y1; : : : ; Yn/> follow the model Yi D �� C "i with "i � N.0; �2/ for
�2 known or unknown. Equivalently Yi � N.��; �2/. The log-likelihood L.Y ; �/
(which we also denote by L.�/) reads as

L.�/ D �n
2

log.2��2/ � 1

2�2

nX

iD1
.Yi � �/2 (6.4)

and the log-likelihood ratio L.�; �0/ D L.�/ �L.�0/ is given by

L.�; �0/ D ��2�.S � n�0/.� � �0/� n.� � �0/2=2
�

(6.5)

with S
defD Y1 C : : :C Yn.

6.4.1 Distributions Related to an i.i.d. Sample from a Normal
Distribution

As a preparation for the subsequent sections, we introduce here some important
probability distributions which correspond to functions of an i.i.d. sample Y D
.Y1; : : : ; Yn/

> from a normal distribution.

Lemma 6.4.1. If Y follows the standard normal distribution on R, then Y 2 has the
gamma distribution �.1=2; 1=2/.

Exercise 6.4.1. Prove Lemma 6.4.1.
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Corollary 6.4.1. Let Y D .Y1; : : : ; Yn/
> denote an i.i.d. sample from the standard

normal distribution on R. Then, it holds that

nX

iD1
Y 2i � �.1=2; n=2/:

We call �.1=2; n=2/ the chi-square distribution with n degrees of freedom, 	2n for
short.

Proof. From Lemma 6.4.1, we have that Y 21 � �.1=2; 1=2/. Convolution stability
of the family of gamma distributions with respect to the second parameter yields the
assertion.

Lemma 6.4.2. Let ˛; r; s > 0 nonnegative constants andX; Y independent random
variables with X � �.˛; r/ and Y � �.˛; s/. Then S D X C Y and
RDX=.X CY / are independent with S � �.˛; r C s/ and R � Beta.r; s/.

Exercise 6.4.2. Prove Lemma 6.4.2.

Theorem 6.4.1. Let X1; : : : ; Xm; Y1; : : : ; Yn i.i.d., with X1 following the standard
normal distribution on R. Then, the ratio

Fm;n
defD m�1

mX

iD1
X2
i

.
.n�1

nX

jD1
Y 2j /

has the following pdf with respect to the Lebesgue measure.

fm;n.x/ D mm=2nn=2

B.m=2; n=2/

xm=2�1

.nC mx/.mCn/=2 1.0;1/.x/:

The distribution of Fm;n is called Fisher’s F -distribution with m and n degrees of
freedom (Sir R. A. Fisher, 1890–1962).

Exercise 6.4.3. Prove Theorem 6.4.1.

Corollary 6.4.2. Let X; Y1; : : : ; Yn i.i.d., with X following the standard normal
distribution on R. Then, the statistic

T D X
q
n�1Pn

jD1 Y 2j

has the Lebesgue density

t 7! �n.t/ D
�
1C t2

n

�� nC1
2 ˚p

nB.1=2; n=2/
��1
:

The distribution of T is called Student’s t-distribution with n degrees of freedom, tn
for short.
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Proof. According to Theorem 6.4.1, T 2 � F1;n. Thus, due to the transformation
formula for densities, jT j D p

T 2 has Lebesgue density t 7! 2tf1;n.t
2/; t > 0.

Because of the symmetry of the standard normal density, also the distribution of T
is symmetric around 0, i.e., T and �T have the same distribution. Hence, T has the
Lebesgue density t 7! jt jf1;n.t2/ D �n.t/.

Theorem 6.4.2 (Student 1908).
In the Gaussian product model .Rn;B.Rn/; .N .
; �2/˝n/�D.
;�2/2‚/, where ‚ D
R � .0;1/, it holds for all � 2 ‚:

(a) The statistics Y n
defD n�1Pn

jD1 Yj and Q�2 defD .n � 1/�1
Pn

iD1.Yi � Y n/
2 are

independent.
(b) Y n � N .
; �2=n/ and .n � 1/ Q�2=�2 � 	2n�1.
(c) The statistic Tn

defD p
n.Y n � 
/= Q� is distributed as tn�1.

6.4.2 Gaussian Shift Model

Under the measure P�0 , the variable S �n�0 is normal zero-mean with the variance
n�2. This particularly implies that .S � n�0/=

p
n�2 is standard normal under P�0 :

L

	
1

�
p
n
.S � n�0/

ˇ
ˇ
ˇP�0



D N.0; 1/:

We start with the simplest case of a simple null and simple alternative.

6.4.2.1 Simple Null and Simple Alternative

Let the null H0 W �� D �0 be tested against the alternative H1 W �� D �1 for some
fixed �1 ¤ �0. The log-likelihood L.�1; �0/ is given by (6.5) leading to the test
statistic

T D ��2�.S � n�0/.�1 � �0/ � n.�1 � �0/
2=2

�
:

The proper critical value z can be selected from the condition of ˛-level: P�0.T >

z˛/ D ˛. We use that the sum S � n�0 is under the null normal zero-mean with
variance n�2, and hence, the random variable

� D .S � n�0/=
p
n�2

is under �0 standard normal: � � N.0; 1/. The level condition can be rewritten as
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P�0

	
� >

1

j�1 � �0j�p
n

�
�2z˛ C n.�1 � �0/2=2

�
 D ˛:

As � is standard normal under �0, the proper z˛ can be computed as a quantile of the
standard normal law: if z˛ is defined by P�0.� > z˛/ D ˛, then

1

j�1 � �0j�p
n

�
�2z˛ C nj�1 � �0j2=2

� D z˛

or

z˛ D ��2�z˛j�1 � �0j�
p
n � nj�1 � �0j2=2

�
:

It is worth noting that this value actually does not depend on �0. It only depends on
the difference j�1��0j between the null and the alternative. This is a very important
and useful property of the normal family and is called pivotality. Another way of
selecting the critical value z is given by minimizing the sum of the first and second-
kind error probabilities. Theorem 6.2.1 leads to the choice z D 0, or equivalently, to
the test

� D 1fS=n ? .�0 C �1/=2g; �1 ? �0;

D 1f Q� ? .�0 C �1/=2g; �1 ? �0:

This test is also called the Fisher discrimination. It naturally appears in classification
problems.

6.4.2.2 Two-Sided Test

Now we consider a more general situation when the simple null �� D �0 is tested
against the alternative �� ¤ �0. Then the LR test compares the likelihood at �0 with
the maximum likelihood over ‚ n f�0g which clearly coincides with the maximum
over the whole parameter set. This leads to the test statistic:

T D max
�
L.�; �0/ D n

2�2
j Q� � �0j2:

(see Sect. 2.9), where Q� D S=n is the MLE. The LR test rejects the null if T 
 z
for a critical value z. The value z can be selected from the level condition:

P�0
�
T > z

� D P�0
�
n��2j Q� � �0j2 > 2z

� D ˛:

Now we use that n��2j Q� � �0j2 is 	21-distributed according to Lemma 6.4.1. If z˛ is
defined by P.�2 
 2z˛/ D ˛ for standard normal �, then the test � D 1.T > z˛/ is
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of level ˛. Again, this value does not depend on the null point �0, and the LR test is
pivotal.

Exercise 6.4.4. Compute the power function of the resulting two-sided test

� D 1.T > z˛/:

6.4.2.3 One-Sided Test

Now we consider the problem of testing the null �� D �0 against the one-sided
alternative H1 W � > �0. To apply the LR test we have to compute the maximum of
the log-likelihood ratio L.�; �0/ over the set ‚1 D f� > �0g.

Exercise 6.4.5. Check that

sup
�>�0

L.�; �0/ D
(
n��2j Q� � �0j2=2 if Q� 
 �0;

0 otherwise:

Hint: if Q� 
 �0, then the supremum over ‚1 coincides with the global maximum,
otherwise it is attained at the edge �0.

Now the LR test rejects the null if Q� > �0 and n��2j Q� � �0j2 > 2z for a critical
value (CV) z. That is,

� D 1
� Q� � �0 > �

p
2z=n

�
:

The CV z can be again chosen by the level condition. As � D p
n. Q� � �0/=� is

standard normal under P�0 , one has to select z such that P.� >
p
2z/ D ˛, leading

to

� D 1
� Q� > �0 C �z1�˛=

p
n
�
;

where z1�˛ denotes the .1 � ˛/-quantile of the standard normal distribution.

6.4.3 Testing the Mean When the Variance Is Unknown

This section discusses the Gaussian shift model Yi D �� C ��"i with standard
normal errors "i and unknown variance ��2. The log-likelihood function is still
given by (6.4) but now ��2 is a part of the parameter vector.
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6.4.3.1 Two-Sided Test Problem

Here, we are considered with the two-sided testing problem H0 W �� D �0 against
H1 W �1 ¤ �0. Notice that the null hypothesis is composite, because it involves the
unknown variance ��2.

Maximizing the log-likelihood L.�; �2/ under the null leads to the value
L.�0; Q�20 / with

Q�20 defD argmax
�2

L.�0; �
2/ D n�1X

i

.Yi � �0/
2:

As in Sect. 2.9.2 for the problem of variance estimation, it holds for any �

L.�0; Q�20 / �L.�0; �2/ D nK. Q�20 ; �2/:

At the same time, maximizing L.�; �2/ over the alternative is equivalent to the
global maximization leading to the value L. Q�; Q�2/ with

Q� D S=n; Q�2 D 1

n

X

i

.Yi � Q�/2:

The LR test statistic reads as

T D L. Q�; Q�2/� L.�0; Q�20 /:

This expression can be decomposed in the following way:

T D L. Q�; Q�2/� L.�0; Q�2/C L.�0; Q�2/� L.�0; Q�20 /

D 1

2 Q�2 .
Q� � �0/

2 � nK. Q�20 ; Q�2/:

In order to derive the CV z, notice that

exp.T / D exp.L. Q�; Q�2//
exp.L.�0; Q�20 //

D
	 Q�20

Q�2

n=2

:

Consequently, the LR test rejects for large values of

Q�20
Q�2 D 1C n. Q� � �0/

2

Pn
iD1.Yi � Q�/2 :

In view of Theorems 6.4.1 and 6.4.2, z is therefore a deterministic transformation
of the suitable quantile from Fisher’s F -distribution with 1 and n � 1 degrees of
freedom or from Student’s t-distribution with n � 1 degrees of freedom.
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Exercise 6.4.6. Derive the explicit form of z˛ for given significance level ˛ in terms
of Fisher’s F -distribution and in terms of Student’s t-distribution.

Often one considers the case in which the variance is only estimated under the
alternative, that is, Q� is used in place of Q�0. This is quite natural because the null
can be viewed as a particular case of the alternative. This leads to the test statistic

T � D L. Q�; Q�2/ �L.�0; Q�2/ D n

2 Q�2 .
Q� � �0/

2:

Since T � is an isotone transformation of T , both tests are equivalent.

6.4.3.2 One-Sided Test Problem

In analogy to the considerations in Sect. 6.4.2, the LR test for the one-sided problem
H0 W �� D �0 against H1 W �� > �0 rejects if Q� > �0 and T exceeds a suitable
critical value z.

Exercise 6.4.7. Derive the explicit form of the LR test for the one-sided test prob-
lem. Compute z˛ for given significance level ˛ in terms of Student’s t-distribution.

6.4.4 Testing the Variance

In this section, we consider the LR test for the hypothesis H0 W �2 D �20 against
H1 W �2 > �20 or H0 W �2 D �20 against H1 W �2 ¤ �20 , respectively. In this,
we assume that �� is known. The case of unknown �� can be treated similarly, cf.
Exercise 6.4.10 below. As discussed before, maximization of the likelihood under
the constraint of known mean yields

Q�2� defD argmax
�2

L.��; �2/ D n�1X

i

.Yi � ��/2:

The LR test for H0 againstH1 rejects the null hypothesis if

T D L.��; Q�2�/� L.��; �20 /

exceeds a critical value z. For determining the rejection regions, notice that

2T D n.Q � log.Q/� 1/; Q
defD Q�2�=�20 : (6.6)

Exercise 6.4.8. (a) Verify representation (6.6).
(b) Show that x 7! x � log.x/ � 1 is a convex function on .0;1/ with minimum

value 0 at x D 1.
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Combining Exercise 6.4.8 and Corollary 6.4.1, we conclude that the critical value
z for the LR test for the one-sided test problem is a deterministic transformation
of a suitable quantile of the 	2n-distribution. For the two-sided test problem, the
acceptance region of the LR test is an interval for Q which is bounded by
deterministic transformations of lower and upper quantiles of the 	2n-distribution.

Exercise 6.4.9. Derive the rejection regions of the LR tests for the one- and the
two-sided test problems explicitly.

Exercise 6.4.10. Derive one- and two-sided LR tests for �2 in the case of unknown
��. Hint: Use Theorem 6.4.2(b).

6.5 LR Tests: Further Examples

We return to the models investigated in Sect. 2.9 and derive LR tests for the
respective parameters.

6.5.1 Bernoulli or Binomial Model

Assume that .Yi ; : : : ; Yn/ are i.i.d. with Y1 � Bernoulli.��/. Letting Sn D P
Yi ,

the log-likelihood is given by

L.�/ D
X˚

Yi log � C .1 � Yi / log.1 � �/�

D Sn log
�

1 � �
C n log.1 � �/:

6.5.1.1 Simple Null Versus Simple Alternative

The LR statistic for testing the simple null hypothesis H0 W �� D �0 against the
simple alternativeH1 W �� D �1 reads as

T D L.�1/ �L.�0/ D Sn log
�1.1 � �0/

�0.1 � �1/
C n log

1 � �1

1 � �0
:

For a fixed significance level ˛, the resulting LR test rejects if

Q� ?
	
z˛

n
� log

1 � �1
1 � �0


.
log

�1.1 � �0/
�0.1 � �1/ ; �1 ? �0;
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where Q� D Sn=n. For the determination of z˛ , it is convenient to notice that for any
pair .�0; �1/ 2 .0; 1/2, the function

x 7! x log
�1.1 � �0/

�0.1 � �1/
C log

1 � �1

1 � �0

is increasing (decreasing) in x 2 Œ0; 1� if �1 > �0 (�1 < �0). Hence, the LR statistic
T is an isotone (antitone) transformation of Q� if �1 > �0 (�1 < �0). Since Sn D n Q�
is under H0 binomially distributed with parameters n and �0, the LR test � is given
by

� D
(
1fSn > F �1

Bin.n;�0/
.1 � ˛/g; �1 > �0;

1fSn < F �1
Bin.n;�0/

.˛/g; �1 < �0:
(6.7)

6.5.1.2 Composite Alternatives

Obviously, the LR test in (6.7) depends on the value of �1 only via the sign of
�1 � �0. Therefore, the LR test for the one-sided test problemH0 W �� D �0 against
H1 W �� > �0 rejects if

Sn > F
�1

Bin.n;�0/.1 � ˛/

and the LR test forH0 againstH1 W �� < �0 rejects if

Sn < F
�1

Bin.n;�0/.˛/:

The LR test for the two-sided test problemH0 againstH1 W �� ¤ �0 rejects if

Sn 62 ŒF �1
Bin.n;�0/.˛=2/; F

�1
Bin.n;�0/.1 � ˛=2/�:

6.5.2 Uniform Distribution on Œ0; ��

Consider again the model from Sect. 2.9.4, i.e., Y1; : : : ; Yn are i.i.d. with Y1 �
UNIŒ0; ���, where the upper endpoint �� of the support is unknown. It holds that

Z.�/ D ��n1.max
i
Yi � �/

and that the maximum of Z.�/ over .0;1/ is obtained for Q� D maxi Yi . Let us
consider the two-sided test problem H0 W �� D �0 against H1 W �� ¤ �0 for some
given value �0 > 0. We get that
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exp.T / D Z. Q�/
Z.�0/

D
( �
�0= Q��n; maxi Yi � �0;

1; maxi Yi > �0:

It follows that exp.T / > z if Q� > �0 or Q� < �0z�1=n. We compute the critical value
z˛ for a level ˛ test by noticing that

P�0 .f Q� > �0g [ f Q� < �0 z�1=ng/ D P�0.
Q� < �0 z�1=n/ D �

FY1.�0 z
�1=n/

�n D 1=z:

Thus, the LR test at level ˛ for the two-sided problemH0 againstH1 is given by

� D 1f Q� > �0g C 1f Q� < �0 ˛1=ng:

6.5.3 Exponential Model

We return to the model considered in Sect. 2.9.7 and assume that Y1; : : : ; Yn are
i.i.d. exponential random variables with parameter �� > 0. The corresponding log-
likelihood can be written as

L.�/ D �n log � �
nX

iD1
Yi=� D �S=� � n log �;

where S D Y1 C : : :C Yn.
In order to derive the LR test for the simple hypothesisH0 W �� D �0 against the

simple alternativeH0 W �� D �1, notice that the LR statistic T is given by

T D L.�1/ �L.�0/ D S

	
�1 � �0

�1�0



C n log

�0

�1
:

Since the function

x 7! x

	
�1 � �0

�1�0



C n log.�0=�1/

is increasing (decreasing) in x > 0 whenever �1 > �0 (�1 < �0), the LR test
rejects for large values of S in the case that �1 > �0 and for small values of S
if �1 < �0. Due to the facts that the exponential distribution with parameter �0 is
identical to Gamma.�0; 1/ and the family of gamma distributions is convolution-
stable with respect to its second parameter whenever the first parameter is fixed, we
obtain that S is under �0 distributed as Gamma.�0; n/. This implies that the LR test
� for H0 againstH1 at significance level ˛ is given by
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� D
(
1fS > F�1

Gamma.�0;n/
.1 � ˛/g; �1 > �0;

1fS < F�1
Gamma.�0;n/

.˛/g; �1 < �0:

Moreover, composite alternatives can be tested in analogy to the considerations in
Sect. 6.5.1.

6.5.4 Poisson Model

Let Y1; : : : ; Yn be i.i.d. Poisson random variables satisfying P.Yi D m/ D
j��jme���

=mŠ form D 0; 1; 2; : : :. According to Sect. 2.9.8, we have that

L.�/ D S log � � n� CR;

L.�1/� L.�0/ D S log
�1

�0
C n.�0 � �1/;

where the remainder termR does not depend on � . In order to derive the LR test for
the simple hypothesis H0 W �� D �0 against the simple alternative H0 W �� D �1,
we again check easily that x 7! x log.�1=�0/Cn.�0��1/ is increasing (decreasing)
in x > 0 if �1 > �0 (�1 < �0). Convolution stability of the family of Poisson
distributions entails that the LR test � for H0 against H1 at significance level ˛ is
given by

� D
(
1fS > F�1

Poisson.n�0/
.1� ˛/g; �1 > �0;

1fS < F�1
Poisson.n�0/

.˛/g; �1 < �0:

Moreover, composite alternatives can be tested in analogy to Sect. 6.5.1.

6.6 Testing Problem for a Univariate Exponential Family

Let .P� ; � 2 ‚ � R1/ be a univariate exponential family. The choice of
parametrization is unimportant, any parametrization can be taken. To be specific, we
assume the natural parametrization that simplifies the expression for the maximum
likelihood estimate.

We assume that the two functions C.�/ and B.�/ of � are fixed, with which the
log-density of P� can be written in the form:

`.y; �/
defD logp.y; �/ D yC.�/� B.�/ � `.y/
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for some other function `.y/. The function C.�/ is monotonic in � and C.�/ and
B.�/ are related (for the case of an EFn) by the identity B 0.�/ D �C 0.�/, see
Sect. 2.11.

Let now Y D .Y1; : : : ; Yn/
> be an i.i.d. sample from P�� for �� 2 ‚. The task is

to test a simple hypothesis �� D �0 against an alternative �� 2 ‚1 for some subset
‚1 that does not contain �0.

6.6.1 Two-Sided Alternative

We start with the case of a simple hypothesis H0 W �� D �0 against a full two-
sided alternative H1 W �� ¤ �0. The likelihood ratio approach suggests to compare
the likelihood at �0 with the maximum of the likelihood over the alternative, which
effectively means the maximum over the whole parameter set ‚. In the case of a
univariate exponential family, this maximum is computed in Sect. 2.11. For

L.�; �0/
defD L.�/ � L.�0/ D S

�
C.�/ � C.�0/

� � n
�
B.�/ � B.�0/

�

with S D Y1 C : : :C Yn, it holds

T
defD sup

�

L.�; �0/ D nK. Q�; �0/;

where K.�; � 0/ D E�`.�; �
0/ is the Kullback–Leibler divergence between the

measures P� and P� 0 . For an EFn, the MLE Q� is the empirical mean of the
observations Yi , Q� D S=n, and the KL divergence K.�; �0/ is of the form

K.�; �0/ D �
�
C.�/� C.�0/

� � �
B.�/ � B.�0/

�
:

Therefore, the test statistic T is a function of the empirical mean Q� D S=n:

T D nK. Q�; �0/ D n Q��C. Q�/ � C.�0/
� � n

�
B. Q�/� B.�0/

�
: (6.8)

The LR test rejects H0 if the test statistic T exceeds a critical value z. Given ˛ 2
.0; 1/, a proper CV z˛ can be specified by the level condition

P�0.T > z˛/ D ˛:

In view of (6.8), the LR test rejects the null if the “distance” K. Q�; �0/ between
the estimate Q� and the null �0 is significantly larger than zero. In the case of an
exponential family, one can simplify the test just by considering the estimate Q� as
test statistic. We use the following technical result for the KL divergence K.�; �0/:
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Lemma 6.6.1. Let .P� / be an EFn. Then for every z there are two positive values
t�.z/ and tC.z/ such that

f� W K.�; �0/ � zg D f� W �0 � t�.z/ � � � �0 C tC.z/g: (6.9)

In other words, the conditions K.�; �0/ � z and �0 � t�.z/ � � � �0 C tC.z/ are
equivalent.

Proof. The function K.�; �0/ of the first argument � fulfills

@K.�; �0/

@�
D C.�/ � C.�0/; @2K.�; �0/

@�2
D C 0.�/ > 0:

Therefore, it is convex in � with minimum at �0, and it can cross the level z only
once from the left of �0 and once from the right. This yields that for any z > 0, there
are two positive values t�.z/ and tC.z/ such that (6.9) holds. Note that one or even
both of these values can be infinite.

Due to the result of this lemma, the LR test can be rewritten as

� D 1
�
T > z

� D 1 � 1
�
T � z

�

D 1 � 1
��t�.z/ � Q� � �0 � tC.z/

�

D 1
� Q� > �0 C tC.z/

�C 1
� Q� < �0 � t�.z/

�
;

that is, the test rejects the null hypothesis if the estimate Q� deviates significantly
from �0.

6.6.2 One-Sided Alternative

Now we consider the problem of testing the same null H0 W �� D �0 against the
one-sided alternative H1 W �� > �0. Of course, the other one-sided alternative H1 W
�� < �0 can be considered analogously.

The LR test requires computing the maximum of the log-likelihood over the
alternative set f� W � > �0g. This can be done as in the Gaussian shift model.
If Q� > �0, then this maximum coincides with the global maximum over all � .
Otherwise, it is attained at � D �0.

Lemma 6.6.2. Let .P� / be an EFn. Then

sup
�>�0

L.�; �0/ D
(
nK. Q�; �0/ if Q� 
 �0;

0 otherwise:
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Proof. It is only necessary to consider the case Q� < �0. The difference L.�/ �
L.�0/ can be represented as SŒC.�/�C.�0/��nŒB.�/�B.�0/�. Next, usage of the
identities Q� D S=n and B 0.�/ D �C 0.�/ yields

@L.�; �0/

@�
D �@L.

Q�; �/
@�

D �n@K.
Q�; �/
@�

D n. Q� � �/C 0.�/ < 0

for any � > Q� . This implies that L.�/�L.�0/ becomes negative as � grows beyond
�0 and thus, L.�; �0/ has its supremum over f� W � > �0g at � D �0, yielding the
assertion.

This fact implies the following representation of the LR test in the case of a
one-sided alternative.

Theorem 6.6.1. Let .P� / be an EFn. Then the ˛-level LR test for the null H0 W
�� D �0 against the one-sided alternativeH1 W �� > �0 is

� D 1. Q� > �0 C t˛/; (6.10)

where t˛ is selected to ensure P�0
� Q� > �0 C t˛

� D ˛.

Proof. Let T be the LR test statistic. Due to Lemmas 6.6.2 and 6.6.1, the event
fT 
 zg can be rewritten as f Q� > �0 C t.z/g for some constant t.z/. It remains to
select a proper value t.z/ D t˛ to fulfill the level condition.

This result can be extended naturally to the case of a composite null hypothesis
H0 W �� � �0.

Theorem 6.6.2. Let .P� / be an EFn. Then the ˛-level LR test for the composite
null H0 W �� � �0 against the one-sided alternativeH1 W �� > �0 is

��̨ D 1. Q� > �0 C t˛/; (6.11)

where t˛ is selected to ensure P�0
� Q� > �0 C t˛

� D ˛.

Proof. The same arguments as in the proof of Theorem 6.6.1 lead to exactly the
same LR test statistic T and thus to the test of the form (6.10). In particular, the
estimate Q� should significantly deviate from the null set. It remains to check that the
level condition for the edge point �0 ensures the level for all � < �0. This follows
from the next monotonicity property.

Lemma 6.6.3. Let .P� / be an EFn. Then for any t 
 0

P� . Q� > �0 C t/ � P�0 .
Q� > �0 C t/; 8� < �0 :

Proof. Let � < �0. We apply

P� . Q� > �0 C t/ D E�0

h
exp

˚
L.�; �0/

�
1. Q� > �0 C t/

i
:
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Now the monotonicity of L.�; �0/ w.r.t. � (see the proof of Lemma 6.6.2) implies
L.�; �0/ < 0 on the set f� < �0 < Q�g. This yields the result.

Therefore, if the level is controlled under P�0 , it is well checked for all other points
in the null set.

A very nice feature of the LR test is that it can be universally represented in terms
of Q� independently of the form of the alternative set. In particular, for the case of a
one-sided alternative, this test just compares the estimate Q� with the value �0 C t˛ .
Moreover, the value t˛ only depends on the distribution of Q� under P�0 via the level
condition. This and the monotonicity of the error probability from Lemma 6.6.3
allow us to state the nice optimality property of this test: ��̨ is uniformly most
powerful in the sense of Definition 6.1.1, that is, it maximizes the test power under
the level constraint.

Theorem 6.6.3. Let .P� / be an EFn, and let ��̨ be the test from (6.11) for testing
H0 W �� � �0 againstH1 W �� > �0. For any (randomized) test � satisfying E�0 � ˛

and any � > �0, it holds

E�� � P� .�
�̨ D 1/:

In fact, this theorem repeats the Neyman–Pearson result of Theorem 6.2.2,
because the test ��̨ is at the same time the LR ˛-level test of the simple hypothesis
�� D �0 against �� D �1, for any value �1 > �0.

6.6.3 Interval Hypothesis

In some applications, the null hypothesis is naturally formulated in the form that
the parameter �� belongs to a given interval Œ�0; �1�. The alternative H1 W �� 2
‚ n Œ�0; �1� is the complement of this interval. The likelihood ratio test is based on
the test statistic T from (6.3) which compares the maximum of the log-likelihood
L.�/ under the null Œ�0; �1� with the maximum over the alternative set. The special
structure of the log-likelihood in the case of an EFn permits representing this test
statistics in terms of the estimate Q� : the hypothesis is rejected if the estimate Q�
significantly deviates from the interval Œ�0; �1�.

Theorem 6.6.4. Let .P� / be an EFn. Then the ˛-level LR test for the nullH0 W � 2
Œ�0; �1� against the alternative H1 W � 62 Œ�0; �1� can be written as

� D 1. Q� > �1 C tC̨/C 1. Q� < �0 � t �̨/; (6.12)

where the non-negative constants tC̨ and t �̨ are selected to ensure P�0.
Q� < �0 �

t �̨/C P�1.
Q� > �1 C tC̨/ D ˛.



6.7 Historical Remarks and Further Reading 221

Exercise 6.6.1. Prove the result of Theorem 6.6.4.
Hint: Consider three cases: Q� 2 Œ�0; �1�, Q� > �1, and Q� < �0. For every case, apply
the monotonicity of L. Q�; �/ in � .

One can consider the alternative of the interval hypothesis as a combination of
two one-sided alternatives. The LR test � from (6.12) involves only one critical
value z and the parameters t �̨ and tC̨ are related via the structure of this test: they are
obtained by transforming the inequality T > z˛ into Q� > �1 C tC̨ and Q� < �0 � t �̨.
However, one can just apply two one-sided tests separately: one for the alternative
H�
1 W �� < �0 and one for HC

1 W �� > �1. This leads to the two tests

�� defD 1
� Q� < �0 � t��; �C defD 1

� Q� > �1 C tC
�
: (6.13)

The values t�; tC can be chosen by the so-called Bonferroni rule: just perform each
of the two tests at level ˛=2.

Exercise 6.6.2. For fixed ˛ 2 .0; 1/, let the values t �̨; tC̨ be selected to ensure

P�0
� Q� < �0 � t �̨� D ˛=2; P�1

� Q� > �1 C tC̨
� D ˛=2:

Then for any � 2 Œ�0; �1�, the test �, given by � D �� C �C (cf. (6.13)) fulfills

P� .� D 1/ � ˛:

Hint: Use the monotonicity from Lemma 6.6.3.

6.7 Historical Remarks and Further Reading

The theory of optimal tests goes back to Jerzy Neyman (1894–1981) and Egon
Sharpe Pearson (1895–1980). Some early considerations with respect to likelihood
ratio tests can be found in Neyman and Pearson (1928). Neyman and Pearson
(1933)’s fundamental lemma is core to the derivation of most powerful (likelihood
ratio) tests. Fisher (1934) showed that uniformly best tests (over the parameter
subspace defining a composite alternative) only exist in one-parametric exponential
families. More details about the origins of the theory of optimal tests can be found
in the book by Lehmann (2011).

Important contributions to the theory of tests for parameters of a normal
distribution have moreover been made by William Sealy Gosset (1876–1937; under
the pen name “Student,” see Student (1908)) and Ernst Abbe (1840–1905; cf.
Kendall (1971) for an account of Abbe’s work).

The 	2-test for goodness-of-fit is due to Pearson (1900). The phenomenon that
the limiting distribution of twice the log-likelihood ratio statistic in nested models is
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under regularity conditions a chi-square distribution, has been discovered by Wilks
(1938).

An excellent textbook reference for the theory of testing statistical hypotheses is
Lehmann and Romano (2005).



Chapter 7
Testing in Linear Models

This chapter discusses testing problems for linear Gaussian models given by the
equation

Y D f � C " (7.1)

with the vector of observations Y , response vector f � , and vector of errors " in
Rn . The linear parametric assumption (linear PA) means that

Y D ‰>�� C "; " � N.0;†/; (7.2)

where ‰ is the p � n design matrix. By � we denote the p-dimensional target
parameter vector, � 2 ‚ � Rp . Usually we assume that the parameter set
coincides with the whole space Rp , i.e. ‚ D Rp . The most general assumption
about the vector of errors " D ."1; : : : ; "n/

> is Var."/ D † , which permits for
inhomogeneous and correlated errors. However, for most results we assume i.i.d.
errors "i � N.0; �2/ . The variance �2 could be unknown as well. As in previous
chapters, �� denotes the true value of the parameter vector (assumed that the model
(7.2) is correct).

7.1 Likelihood Ratio Test for a Simple Null

This section discusses the problem of testing a simple hypothesis H0W�� D �0 for
a given vector �0 . A natural “non-informative” alternative is H1W�� ¤ �0 .

V. Spokoiny and T. Dickhaus, Basics of Modern Mathematical Statistics,
Springer Texts in Statistics, DOI 10.1007/978-3-642-39909-1__7,
© Springer-Verlag Berlin Heidelberg 2015
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7.1.1 General Errors

We start from the case of general errors with known covariance matrix † . The
results obtained for the estimation problem in Chap. 4 will be heavily used in our
study. In particular, the MLE Q� of �� is

Q� D �
‰†�1‰>��1‰†�1Y

and the corresponding maximum likelihood is

L. Q� ;�0/ D 1

2

� Q� � �0
�>
B
� Q� � �0

�

with a p � p-matrix B given by

B D ‰†�1‰>:

This immediately leads to the following representation for the likelihood ratio (LR)
test in this setup:

T
defD sup

�

L.�;�0/ D 1

2

� Q� � �0
�>
B
� Q� � �0

�
: (7.3)

Moreover, Wilks’ phenomenon claims that under P�0 , the test statistic T has a
fixed distribution: namely, 2T is 	2p-distributed (chi-squared with p degrees of
freedom).

Theorem 7.1.1. Consider the model (7.2) with " � N.0;†/ for a known matrix
† . Then the LR test statistic T is given by (7.3). Moreover, if z˛ fulfills P.�p >

2z˛/ D ˛ with �p � 	2p , then the LR test � with

�
defD 1

�
T > z˛

�
(7.4)

is of exact level ˛ :

P�0 .� D 1/ D ˛:

This result follows directly from Theorems 4.6.1 and 4.6.2. We see again the
important pivotal property of the test: the critical value z˛ only depends on the
dimension of the parameter space ‚ . It does not depend on the design matrix ‰ ,
error covariance † , and the null value �0 .
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7.1.2 I.i.d. Errors, Known Variance

We now specify this result for the case of i.i.d. errors. We also focus on the residuals

Q" defD Y �‰> Q� D Y � Qf ;

where Qf D ‰> Q� is the estimated response of the true regression function
f � D ‰>�� .

We start with some geometric properties of the residuals Q" and the test statistic
T from (7.3).

Theorem 7.1.2. Consider the model (7.1). Let T be the LR test statistic built under
the assumptions f � D ‰>�� and Var."/ D �2In with a known value �2 . Then
T is given by

T D 1

2�2


‰>. Q� � �0/


2 D 1

2�2


 Qf � f 0


2: (7.5)

Moreover, the following decompositions for the vector of observations Y and for
the errors " D Y � f 0 hold:

Y � f 0 D . Qf � f 0/C Q"; (7.6)

kY � f 0k2 D k Qf � f 0k2 C kQ"k2; (7.7)

where Qf � f 0 is the estimation error and Q" D Y � Qf is the vector of residuals.

Proof. The key step of the proof is the representation of the estimated response
Qf under the model assumption Y D f � C " as a projection of the data on the
p-dimensional linear subspace L in Rn spanned by the rows of the matrix ‰ :

Qf D …Y D ….f � C "/

where … D ‰>�‰‰>��1‰ is the projector onto L ; see Sect. 4.3. Note that
this decomposition is valid for the general linear model; the parametric form of
the response f and the noise normality is not required. The identity ‰>. Q� �
�0/ D Qf � f 0 follows directly from the definition implying the representation
(7.5) for the test statistic T . The identity (7.6) follows from the definition. Next,
…f 0 D f 0 and thus Qf � f 0 D ….Y � f 0/ . Similarly,

Q" D Y � Qf D .In �…/Y :

As … and In �… are orthogonal projectors, it follows

kY � f 0k2 D k.In �…/Y C….Y � f 0/k2 D k.In �…/Y k2 C k….Y � f 0/k2

and the decomposition (7.7) follows.
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The decomposition (7.6), although straightforward, is very important for
understanding the structure of the residuals under the null and under the alternative.
Under the null H0 , the response f � is assumed to be known and coincides with
f 0 , so the residuals Q" coincide with the errors " . The sum of squared residuals is
usually abbreviated as RSS:

RSS0
defD kY � f 0k2

Under the alternative, the response is unknown and is estimated by Qf . The residuals
are Q" D Y � Qf resulting in the RSS

RSS
defD kY � Qf k2:

The decomposition (7.7) can be rewritten as

RSS0 D RSS Ck Qf � f 0k2: (7.8)

We see that the RSS under the null and the alternative can be essentially different
only if the estimate Qf significantly deviates from the null assumption f � D f 0 .
The test statistic T from (7.3) can be written as

T D RSS0 � RSS

2�2
:

For the proofs in the remainder of this chapter, the following results concerning
the distribution of quadratic forms of Gaussians are helpful.

Theorem 7.1.3. 1. Let X � Nn.
;†/ , where † is symmetric and positive
definite. Then, .X � 
/>†�1.X � 
/ � 	2n .

2. Let X � Nn.0; In/ , R a symmetric, idempotent .n�n/-matrix with rank .R/ D
r and B a .p � n/-matrix with p � n . Then it holds

(a) X>RX � 	2r
(b) From BR D 0 , it follows that X>RX is independent of BX .

3. Let X � Nn.0; In/ and R , S symmetric and idempotent .n�n/-matrices with
rank .R/ D r , rank .S/ D s and RS D 0 . Then it holds

(a) X>RX and X>SX are independent.

(b) X>RX=r
X>SX=s

� Fr;s .

Proof. For proving the first assertion, let †1=2 denote the uniquely defined,
symmetric, and positive definite matrix fulfilling †1=2 	 †1=2 D † , with inverse

matrix †�1=2 . Then, Z
defD †�1=2.X �
/ � Nn.0; In/ . The assertion Z>Z � 	2n

follows from the definition of the chi-squared distribution.
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For the second part, notice that, due to symmetry and idempotence of R , there

exists an orthogonal matrix P with R D PDrP
> , where Dr D

	
I r 0

0 0



.

Orthogonality of P implies W
defD P>X � Nn.0; In/ . We conclude

X>RX D X>R2X D .RX/>.RX/ D .PDrW /
>.PDrW /

D W >DrP
>PDrW D W >DrW D

rX

iD1
W 2
i � 	2r :

Furthermore, we have Z1
defD BX � Nn.0; B

>B/ , Z2
defD RX � Nn.0;R/ , and

Cov.Z1;Z2/ D Cov.BX;RX/ D B Cov.X/R> D BR D 0 . As uncorrelation
implies independence under Gaussianity, statement 2.(b) follows.

To prove the third part, let Z1
defD SX � Nn.0; S/ and Z2

defD RX � Nn.0;R/ and
notice that Cov.Z1;Z2/ D S Cov.X/R D SR D S>R> D .RS/> D 0 . Assertion
(a) is then implied by the identities X>SX D Z>

1 Z1 and X>RX D Z>
2 Z2 .

Assertion (b) immediately follows from 3(a) and 1.

Exercise 7.1.1. Prove Theorem 6.4.2.
Hint: Use Theorem 7.1.3.

Now we show that if the model assumptions are correct, the LR test based on T
from (7.3) has the exact level ˛ and is pivotal.

Theorem 7.1.4. Consider the model (7.1) with " � N.0; �2In/ for a known value
�2 , implying that the "i are i.i.d. normal. The LR test � from (7.4) is of exact level
˛ . Moreover, Qf � f 0 and Q" are under P�0 zero-mean independent Gaussian
vectors satisfying

2T D ��2k Qf � f 0k2 � 	2p ; ��2kQ"k2 � 	2n�p : (7.9)

Proof. The null assumption f � D f 0 together with …f 0 D f 0 implies now the
following decomposition:

Qf � f 0 D …"; Q" D " �…" D .In �…/":

Next, … and In � … are orthogonal projectors implying orthogonal and thus
uncorrelated vectors …" and .In � …/" . Under normality of " , these vectors
are also normal, and uncorrelation implies independence. The property (7.9) for
the distribution of …" was proved in Theorem 4.6.1. For the distribution of
Q" D .In �…/" , we can apply Theorem 7.1.3.

Next we discuss the power of the LR test � defined as the probability of
detecting the alternative when the response f � deviates from the null f 0 . In
the next result we do not assume that the true response f � follows the linear PA
f � D ‰>� and show that the test power depends on the value k….f � � f 0/k2 .
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Theorem 7.1.5. Consider the model (7.1) with Var."/ D �2In for a known value
�2 . Define

� D ��2k….f � � f 0/k2:

Then the power of the LR test � only depends on � , i.e. it is the same for all f �
with equal � -value. It holds

P
�
� D 1

� D P
�ˇ̌
�1 C p

�
ˇ̌2 C �22 C : : :C �2p > 2z˛

�

with � D .�1; : : : ; �p/
> � N.0; Ip/ .

Proof. It follows from Qf D …Y D ….f � C "/ and f 0 D …f 0 for the test
statistic T D .2�2/�1k Qf � f 0k2 that

T D .2�2/�1k….f � � f 0/C…"k2:

Now we show that the distribution of T depends on the response f � only via the
value � . For this we compute the Laplace transform of T .

Lemma 7.1.1. It holds for 
 < 1

g.
/
defD logE exp

˚

T

� D 
�

2.1� 
/ � p

2
log.1 � 
/:

Proof. For a standard Gaussian random variable � and any a , it holds

E exp
˚

j� C aj2=2�

D e
a
2=2.2�/�1=2

Z
exp

˚

ax C 
x2=2� x2=2�dx

D exp

�

a2

2
C 
2a2

2.1� 
/
�

1p
2�

Z
exp

�
�1 � 


2

	
x � a


1 � 



2�
dx

D exp

�

a2

2.1 � 
/
�
.1 � 
/�1=2:

The projector … can be represented as … D U>ƒpU for an orthogonal transform
U and the diagonal matrix ƒp D diag.1; : : : ; 1; 0; : : : ; 0/ with only p unit
eigenvalues. This permits representing T in the form

T D
pX

jD1
.�j C aj /

2=2

with i.i.d. standard normal r.v. �j and numbers aj satisfying
P

j a
2
j D � . The

independence of the �j ’s implies
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g.
/ D
pX

jD1

�

a2j

2
C 
2a2j

2.1� 
/
� 1

2
log.1 � 
/

�
D 
�

2.1� 
/
� p

2
log.1 � 
/

as required.

The result of Lemma 7.1.1 claims that the Laplace transform of T depends on f �
only via � and so this also holds for the distribution of T .

The distribution of the squared norm k� C hk2 for � � N.0; Ip/ and any
fixed vector h 2 Rp with khk2 D � is called non-central chi-squared with
the non-centrality parameter � . In particular, for each ˛; ˛1 one can define the
minimal value � providing the prescribed error ˛1 of the second kind by the
equation under the given level ˛ :

P
�k� C hk2 
 2z˛

� 
 1 � ˛1 subject to P
�k�k2 
 2z˛

� � ˛ (7.10)

with khk2 
 � . The results from Sect. 4.6 indicate that the value z˛ can be
bounded from above by p C p

2p log˛�1 for moderate values of ˛�1 . For
evaluating the value � , the following decomposition is useful:

k� C hk2 � khk2 � p D k�k2 � p C 2h>�:

The right-hand side of this equality is a sum of centered Gaussian quadratic and
linear forms. In particular, the cross term 2h>� is a centered Gaussian r.v. with the
variance 4khk2 , while Var

�k�k2� D 2p . These arguments suggest to take � of
order p to ensure the prescribed power ˛1 .

Theorem 7.1.6. For each ˛; ˛1 2 .0; 1/ , there are absolute constants C and C1
such that (7.10) is fulfilled for khk2 
 � with

�1=2 D
p
Cp log˛�1 C

q
C1p log˛�1

1 :

The result of Theorem 7.1.6 reveals some problem with the power of the LR
test when the dimensionality of the parameter space grows. Indeed, the test remains
insensitive for all alternatives in the zone ��2k….f � �f 0/k2 � Cp and this zone
becomes larger and larger with p .

7.1.3 I.i.d. Errors with Unknown Variance

This section briefly discusses the case when the errors "i are i.i.d. but the variance
�2 D Var."i / is unknown. A natural idea in this case is to estimate the variance
from the data. The decomposition (7.8) and independence of RSS D kY � Qf k2
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and k Qf � f 0k2 are particularly helpful. Theorem 7.1.4 suggests to estimate �2

from RSS by

Q�2 D 1

n � p
RSS D 1

n � p kY � Qf k2:

Indeed, due to the result (7.9), ��2 RSS � 	2p yielding

E Q�2 D �2; Var Q�2 D 2

n � p
�4 (7.11)

and therefore, Q�2 is an unbiased, root-n consistent estimate of �2 .

Exercise 7.1.2. Check (7.11). Show that Q�2 � �2 P�! 0 .

Now we consider the LR test (7.5) in which the true variance is replaced by its
estimate Q�2 :

QT defD 1

2 Q�2

 Qf � f 0


2 D .n � p/ Qf � f 0


2

2kY � Qf k2 D RSS0 � RSS

2RSS =.n� p/
:

The result of Theorem 7.1.4 implies the pivotal property for this test statistic as well.

Theorem 7.1.7. Consider the model (7.1) with " � N.0; �2In/ for an unknown
value �2 . Then the distribution of the test statistic QT under P�0 only depends on
p and n � p :

2p�1 QT D n � p
p

RSS0 � RSS

RSS
� Fp;n�p ;

where Fp;n�p denotes the Fisher distribution with parameters p; n� p :

Fp;n�p D L

	 k�pk2=p
k�n�pk2=.n � p/




where �p and �n�p are two independent standard Gaussian vectors of dimension
p and n � p , see Theorem 6.4.1. In particular, it does not depend on the design
matrix ‰ , the noise variance �2 , and the true parameter �0 .

This result suggests to fix the critical value z for the test statistic QT using the
quantiles of the Fisher distribution: If t˛ is such that Fp;n�p.t˛/ D 1 � ˛ , then
z˛ D p t˛=2 .

Theorem 7.1.8. Consider the model (7.1) with " � N.0; �2In/ for a unknown
value �2 . If Fp;n�p.t˛/ D 1 � ˛ and Qz˛ D pt˛=2 , then the test Q� D 1. QT 
 Qz˛/
is a level- ˛ test:
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P�0
� Q� D 1

� D P�0
� QT 
 Qz˛

� D ˛:

Exercise 7.1.3. Prove the result of Theorem 7.1.8.

If the sample size n is sufficiently large, then Q�2 is very close to �2 and one can
apply an approximate choice of the critical value z˛ from the case of �2 known:

M� D 1. QT 
 z˛/:

This test is not of exact level ˛ but it is of asymptotic level ˛ . Its power
function is also close to the power function of the test � corresponding to the
known variance �2 .

Theorem 7.1.9. Consider the model (7.1) with " � N.0; �2In/ for a unknown
value �2 . Then

lim
n!1P�0

� M� D 1
� D ˛: (7.12)

Moreover,

lim
n!1 sup

f �

ˇ
ˇP�0

� Q� D 1
� � P�0

� M� D 1
�ˇˇ D 0: (7.13)

Exercise 7.1.4. Consider the model (7.1) with " � N.0; �2In/ for �2 unknown
and prove (7.12) and (7.13).
Hints:

• The consistency of Q�2 permits to restrict to the case
ˇ̌ Q�2=�2 � 1

ˇ̌ � ın for
ın ! 0 .

• The independence of k Qf �f 0k2 and Q�2 permits to consider the distribution of
2 QT D k Qf � f 0k2= Q�2 as if Q�2 were a fixed number close to ı .

• Use that for �p � 	2p ,

P
�
�p 
 z˛.1C ın/

� � P
�
�p 
 z˛

� ! 0; n ! 1:

7.2 Likelihood Ratio Test for a Subvector

The previous section dealt with the case of a simple null hypothesis. This section
considers a more general situation when the null hypothesis concerns a subvector
of � . This means that the whole model is given by (7.2) but the vector � is
decomposed into two parts: � D .
;�/ , where 
 is of dimension p0 < p . The
null hypothesis assumes that � D �0 for all 
 . Usually �0 D 0 but the particular
value of �0 is not important. To simplify the presentation we assume �0 D 0

leading to the subset ‚0 of ‚ , given by
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‚0 D f� D .
; 0/g:

Under the null hypothesis, the model is still linear:

Y D ‰>

 
 C ";

where ‰
 denotes a submatrix of ‰ composed by the rows of ‰ corresponding
to the 
 -components of � .

Fix any point �0 2 ‚0 , e.g., �0 D 0 and define the corresponding response
f 0 D ‰>�0 . The LR test T can be written in the form

T D max
�2‚ L.�;�0/ � max

�2‚0
L.�;�0/: (7.14)

The results of both maximization problems are known:

max
�2‚ L.�;�0/ D 1

2�2
k Qf � f 0k2;

max
�2‚0

L.�;�0/ D 1

2�2
k Qf 0 � f 0k2;

where Qf and Qf 0 are estimates of the response under the null and the alternative,
respectively. As in Theorem 7.1.2 we can establish the following geometric
decomposition.

Theorem 7.2.1. Consider the model (7.1). Let T be the LR test statistic from (7.14)
built under the assumptions f � D ‰>�� and Var."/ D �2In with a known value
�2 . Then T is given by

T D 1

2�2


 Qf � Qf 0


2:

Moreover, the following decompositions for the vector of observations Y and for
the residuals Q"0 D Y � Qf 0 from the null hold:

Y � Qf 0 D . Qf � Qf 0/C Q";
kY � Qf 0k2 D k Qf � Qf 0k2 C kQ"k2; (7.15)

where Qf � Qf 0 is the difference between the estimated response under the null and
under the alternative, and Q" D Y � Qf is the vector of residuals from the alternative.

Proof. The proof is similar to the proof of Theorem 7.1.2. We use that Qf D …Y

where … D ‰>�‰‰>��1‰ is the projector on the space L spanned by the rows

of ‰ . Similarly Qf 0 D …0Y where …0 D ‰>



�
‰
‰

>



��1
‰
 is the projector

on the subspace L0 spanned by the rows of ‰
 . This yields the decomposition
Qf � f 0 D ….Y � f 0/ . Similarly,
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Qf � Qf 0 D .… �…0/Y ; Q" D Y � Qf D .In �…/Y :

As … �…0 and In �… are orthogonal projectors, it follows

kY � Qf 0k2 D k.In �…/Y C .… �…0/Y k2 D k.In �…/Y k2 C k.… �…0/Y k2

and the decomposition (7.15) follows.

The decomposition (7.15) can again be represented as RSS0 D RSS C2�2T ,
where RSS is the sum of squared residuals, while RSS0 is the same as in the case
of a simple null.

Now we show how a pivotal test of exact level ˛ based on T can be constructed
if the model assumptions are correct.

Theorem 7.2.2. Consider the model (7.1) with " � N.0; �2In/ for a known value
�2 , i.e., the "i are i.i.d. normal. Then Qf � Qf 0 and Q" are under P�0 zero-mean
independent Gaussian vectors satisfying

2T D ��2k Qf � Qf 0k2 � 	2p�p0 ; ��2kQ"k2 � 	2n�p : (7.16)

Let z˛ fulfill P.�p�p0 
 z˛/ D ˛ . Then the test � D 1.T 
 z˛=2/ is an LR test of
exact level ˛ .

Proof. The null assumption �� 2 ‚0 implies f � 2 L0 . This, together with
…0f

� D f � implies now the following decomposition:

Qf � Qf 0 D .… �…0/"; Q" D " �…" D .In �…/":

Next, … � …0 and In � … are orthogonal projectors implying orthogonal and
thus uncorrelated vectors .… � …0/" and .In � …/" . Under normality of " ,
these vectors are also normal, and uncorrelation implies independence. The property
(7.16) is similar to (7.9) and can easily be verified by making use of Theorem 7.1.3.

If the variance �2 of the noise is unknown, one can proceed exactly as in the case
of a simple null: estimate the variance from the residuals using their independence
of the test statistic T . This leads to the estimate

Q�2 D 1

n � p
RSS D 1

n � p
kY � Qf k2

and to the test statistic

QT D RSS0 � RSS

2RSS =.n� p/
D .n � p/k Qf � Qf 0k2

2kY � Qf k2 :

The property of pivotality is preserved here as well: properly scaled, the test statistic
QT has a Fisher distribution.
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Theorem 7.2.3. Consider the model (7.1) with " � N.0; �2In/ for an unknown
value �2 . Then 2 QT =.p � p0/ has the Fisher distribution Fp�p0;n�p with
parameters p �p0 and n�p . If t˛ is the 1�˛ quantile of this distribution, then
the test Q� D 1

� QT > .p � p0/t˛=2
�

is of exact level ˛ .

If the sample size is sufficiently large, one can proceed as if Q�2 were the true
variance ignoring the error of variance estimation. This would lead to the critical
value z˛ from Theorem 7.2.2 and the corresponding test is of asymptotic level ˛ .

Exercise 7.2.1. Prove Theorem 7.2.3.

The study of the power of the test T does not differ from the case of a simple
hypothesis. One only needs to redefine � as

�
defD ��2k.… �…0/f

�k2:

7.3 Likelihood Ratio Test for a Linear Hypothesis

In this section, we generalize the test problem for the Gaussian linear model further
and assume that we want to test the linear hypothesis H0WC� D d for a given
contrast matrix C 2 Rr�p with rank.C / D r � p and a right-hand side vector
d 2 Rr . Notice that the point null hypothesis H0W� D �0 and the hypothesis
H0W� D �0 regarded in Sect. 7.2 are linear hypotheses. Here, we restrict our
attention to the case that the error variance �2 is unknown, as it is typically the
case in practice.

Theorem 7.3.1. Assume model (7.1) with " � N.0; �2In/ for an unknown value
�2 and consider the linear hypothesis H0WC� D d . Then it holds

(a) The likelihood ratio statistic QT is an isotone transformation of F
defD n�p

r
�RSS
RSS ,

where �RSS
defD RSS0 � RSS .

(b) The restricted MLE Q�0 is given by

Q�0 D Q� � .‰‰>/�1C>˚C.‰‰>/�1C>��1
.C Q� � d/:

(c) �RSS and RSS are independent.
(d) Under H0 , �RSS =�2 � 	2r and F � Fr;n�p .

Proof. For proving (a), verify that 2 QT D n log. O�20 = O�2/ , where O�2 and O�20 are
the unrestricted and restricted (i.e., under H0 ) MLEs of the error variance �2 ,
respectively. Plugging in of the explicit representations for O�2 and O�20 yields that
2 QT D n log.�RSS

RSS C 1/ , implying the assertion. Part (b) is an application of the
following well-known result from quadratic optimization theory.
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Lemma 7.3.1. Let A 2 Rr�p and b 2 Rr fixed and define M D fz 2 RpWAz D
bg . Moreover, let f WRp ! R , given by f .z/ D z>Qz=2 � c>z for a symmetric,
positive semi-definite .p � p/ -matrix Q and a vector c 2 Rp . Then, the unique
minimum of f over the search space M is characterized by solving the system of
linear equations

Qz �A>y D c

Az D b

for .y ; z/ . The component z of this solution minimizes f over M .

For part (c), we utilize the explicit form of Q�0 from part (b) and write �RSS in
the form

�RSS D .C Q� � d/>˚C.‰‰>/�1C>��1
.C Q� � d/:

This shows that �RSS is a deterministic transformation of Q� . Since Q� and RSS
are independent, the assertion follows. This representation of �RSS moreover
shows that �RSS =�2 is a quadratic form of a (under H0 ) standard normal random
vector and part (d) follows from Theorem 7.1.3.

To sum up, Theorem 7.3.1 shows that general linear hypotheses can be tested
with F -tests under model (7.1) with " � N.0; �2In/ for an unknown value �2 .

7.4 Wald Test

The drawback of the LR test method for testing a linear hypothesis H0WC� D
d without assuming Gaussian noise is that a constrained maximization of the
log-likelihood function under the constraints encoded by C and d has to be
performed. This computationally intensive step can be avoided by using Wald
statistics. The Wald statistic for testing H0 is given by

W D .C Q� � d/>�C OV C>��1.C Q� � d/;

where Q� and OV denote the MLE in the full (unrestricted) model and the estimated
covariance matrix of Q� , respectively.

Theorem 7.4.1. Under model (7.2), the statistic W is asymptotically equivalent to
the LR test statistic 2T . In particular, under H0 , the distribution of W converges

to 	2r : W
w�! 	2r as n ! 1 . In the case of normally distributed noise, it holds

W D rF , where F is as in Theorem 7.3.1.
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Proof. For proving the asymptotic 	2r -distribution of W , we use the asymptotic
normality of the MLE Q� . If the model is regular, it holds

p
n. Q�n � �0/ w�! N.0;F.�0/

�1/ under �0 for n ! 1;

and, consequently,

F.�0/
1=2n1=2. Q�n � �0/ w�! N.0; I r /; where r

defD dim.�0/:

Applying the Continuous Mapping Theorem, we get

. Q�n � �0/>nF.�0/. Q�n � �0/ w�! 	2r :

If the Fisher information is continuous and OF. Q�n/ is a consistent estimator for
F.�0/ , it still holds that

. Q�n � �0/>n OF. Q�n/. Q�n � �0/ w�! 	2r :

Substituting Q�n D C Q� � d and �0 D 0 2 Rr , we obtain the assertion concerning
the asymptotic distribution of W under H0 . For proving the relationship between
W and F in the case of Gaussian noise, we notice that

F D n� p

r

�RSS

RSS

D n� p

r

.C Q� � d/>˚C.‰‰>/�1C>��1
.C Q� � d/

.n� p/ Q�2

D .C Q� � d/>.C OV C>/�1.C Q� � d/
r

D W

r

as required.

7.5 Analysis of Variance

Important special cases of linear models arise when all entries of the design matrix
‰ are binary, i.e., ‰ij 2 f0; 1g for all 1 � i � p , 1 � j � n . Every row of
‰ then has the interpretation of a group indicator, where ‰ij D 1 if and only if
observational unit j belongs to group i . The target of such an analysis of variance
is to determine if the mean response differs between groups. In this section, we
specialize the theory of testing in linear models to this situation.
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7.5.1 Two-Sample Test

First, we consider the case of p D 2 , meaning that exactly two samples
corresponding to the two groups A and B are given. We let nA denote the number
of observations in group A and nB D n� nA the number of observations in group
B . The parameter of interest � 2 R2 in this model consists of the two population
means �A and �B and the model reads

Yij D �i C "ij; i 2 fA;Bg; j D 1; : : : ; ni :

Noticing that .‰‰>/�1 D
	
1=nA 0

0 1=nB



, we get that Q� D .Y A; Y B/

> , where

Y A and Y B denote the two sample means. With this, we immediately obtain that
the estimator for the noise variance is in this model given by

Q�2 D RSS

n � p D 1

nA C nB � 2

0

@
nAX

jD1
.YA;j � Y A/2 C

nBX

jD1
.YB;j � Y B/

2

1

A :

The quantity s2
defD Q�2 is called the pooled sample variance. Denoting the

group-specific sample variances by

s2A D 1

nA

nAX

jD1
.YA;j � Y A/

2; s2B D 1

nB

nBX

jD1
.YB;j � Y B/

2;

we have that

s2 D .nAs
2
A C nBs

2
B/=.nA C nB � 2/

is a weighted average of s2A and s2B .
Under this model, we are interested in testing the null hypothesis H0W �A D �B

of equal group means against the two-sided alternative H1W �A ¤ �B or the one-
sided alternative HC

1 W �A > �B . The one-sided alternative hypothesis H�
1 W �A <

�B can be treated by switching the group labels.
The null hypothesis H0W �A � �B D 0 is a linear hypothesis in the sense of

Sect. 7.3, where the number of restrictions is r D 1 . Under H0 , the grand average

Y
defD n�1 X

i2fA;Bg

niX

jD1
Yij

is the MLE for the (common) population mean. Straightforwardly, we calculate that
the sum of squares of residuals under H0 is given by
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RSS0 D
X

i2fA;Bg

niX

jD1
.Yij � Y /2:

For computing �RSS D RSS0 � RSS and the statistic F from Theorem 7.3.1(a),
we obtain the following results.

Lemma 7.5.1.

RSS0 D RSS C �
nA.Y A � Y /2 C nB.Y B � Y /2

�
; (7.17)

F D nAnB

nA C nB

.Y A � Y B/
2

s2
: (7.18)

Exercise 7.5.1. Prove Lemma 7.5.1.

We conclude from Theorem 7.3.1 that, if the individual errors are homogeneous
between samples, the test statistic

t D .Y A � Y B/
s
p
1=nA C 1=nB

is t-distributed with nACnB �2 degrees of freedom under the null hypothesis H0 .
For a given significance level ˛ , define the quantile q˛ of Student’s t-

distribution with nA C nB � 2 degrees of freedom by the equation

P.t0 > q˛/ D ˛;

where t0 represents the distribution of t in the case that H0 is true. Utilizing the
symmetry property

P.jt0j > q˛=2/ D 2P.t > q˛=2/ D ˛;

the one-sided two-sample t -test for H0 versus HC
1 rejects if t > q˛ and the

two-sided two-sample t -test for H0 versus H1 rejects if jt j > q˛=2 .

7.5.2 ComparingK Treatment Means

This section deals with the more general one-factorial analysis of variance in
presence of K 
 2 groups. We assume that K samples are given, each of size
nk for k D 1; : : : ; K . The following quantities are relevant for testing the null
hypothesis of equal group (treatment) means.

Sample means in treatment group k :

Y k D 1

nk

X

i

Yki
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Sum of squares (SS) within treatment group k :

Sk D
X

i

.Yki � Y k/2

Sample variance within treatment group k :

s2k D Sk=.nk � 1/

Denoting the pooled sample size by N D n1 C : : :CnK , we furthermore define
the following pooled measures.

Pooled (grand) mean:

Y D 1

N

X

k

X

i

Yki

Within-treatment sum of squares:

SR D S1 C : : :C SK

Between treatment sum of squares:

ST D
X

k

nk.Y k � Y /2

Within- and between-treatment mean square:

s2R D SR

N � k
s2T D ST

K � 1

In analogy to Lemma 7.5.1, the following results regarding the decomposition of
spread holds.

Lemma 7.5.2. Let the overall variation in the data be defined by

SD
defD
X

k

X

i

.Yki � Y /2:

Then it holds

SD D
X

k

X

i

.Yki � Y k/
2 C

X

k

nk.Y k � Y /2 D ST C SR:

Exercise 7.5.2. Prove Lemma 7.5.2.

The variance components in a one-factorial analysis of variance can be summa-
rized in an analysis of variance table, cf. Table 7.1.
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Table 7.1 Variance components in a one-factorial analysis of variance

Source of Sum of Degrees of Mean
variation squares freedom square

Average SA D NY
2

�A D 1 s2A D SA=�A
Between
treatments ST D P

k nk.Y k � Y /2 �T D K � 1 s2T D ST =�T
Within
treatments SR D P

k

P
i .Yki � Y k/

2 �R D N �K s2R D SR=�R
Total SD D P

k

P
i .Yki � Y /2 N � 1

For testing the global hypothesis H0W �1 D �2 D : : : D �K against the (two-
sided) alternative H1W 9.i; j / with �i ¤ �j , we again apply Theorem 7.3.1, leading
to the following result.

Corollary 7.5.1. Under the model of the analysis of variance with K groups,
assume homogeneous Gaussian noise with noise variance �2 > 0 . Then it holds:

(i) SR=�
2 � 	2N�K:

(ii) Under H0 , ST =�2 � 	2K�1 .
(iii) SR and ST are stochastically independent.
(iv) Under H0 , the statistic F D ST =.K�1/

SR=.N�K/ is distributed as FK�1;N�K :

F
defD ST =.K � 1/

SR=.N �K/
� FK�1;N�K :

Therefore, H0 is rejected by a level ˛ F -test if the value of F exceeds the quantile
FK�1;N�KI1�˛ of Fisher’s F -distribution with K � 1 and N � K degrees of
freedom.

7.5.2.1 Treatment Effects

For estimating the amount of shift in the mean response caused by treatment k (the
k -th treatment effect), it is convenient to re-parametrize the model as follows. We
start with the basic model, given by

Yki D �k C "ki ; "ki � N.0; �2/ i.i.d.;

where �k is the true treatment mean.
Now, we introduce the averaged treatment mean � and the k -th treatment effect

�k , given by

�
defD 1

N

X
nk�k; �k

defD �k � �:
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The re-parametrized model is then given by

Yki D �C �k C "ki : (7.19)

It is important to notice that this new model representation involves K C 1

unknowns. In order to achieve maximum rank of the design matrix, one therefore
has to take the constraint

PK
kD1 nk�k D 0 into account when building ‰ , for

instance by coding

�K D �n�1
K

K�1X

kD1
nk�k:

For the data analysis, it is helpful to consider the decomposition of the observed
data points:

Yki D Y C .Y k � Y /C .Yki � Y k/:

Routine algebra then leads to the following results concerning inference in the
treatment effect representation of the analysis of variance model.

Theorem 7.5.1. Under Model (7.19) with
PK

kD1 nk�k D 0 , it holds:

(i) The MLEs for the unknown model parameters are given by

Q� D Y ; Q�k D Y k � Y ; 1 � k � K:

(ii) The F -statistic for testing the global hypothesis H0W �1 D �2 D : : : D �k�1 D
0 is identical to the one given in Theorem 7.5.1(iv), i.e., F D ST =.K�1/

SR=.N�K/ .

7.5.3 Randomized Blocks

This section deals with a special case of the two-factorial analysis of variance. We
assume that the observational units are grouped into n blocks, where in each block
the K treatments under investigation are applied exactly once. The total sample
size is then given by N D nK . Since there may be a “block effect” on the mean
response, we consider the model

Yki D �C ˇi C �k C "ki ; 1 � k � K; 1 � i � n; (7.20)

where � is the general mean, ˇi the block effect, and �k the treatment effect.
The data can be decomposed as

Yki D Y C .Y i � Y /C .Y k � Y /C .Yki � Y i � Y k C Y /;
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Table 7.2 Analysis of variance table for a randomized block design

Source of variation Sum of squares Degrees of freedom

Average

(correction factor) S D nKY
2

1

Between
blocks SB D K

P
i .Y i � Y /2 n� 1

Between
treatments ST D n

P
k.Y k � Y /2 K � 1

Residuals SR D P
k

P
i .Yki � Y i � Y k C Y /2 .n� 1/.K � 1/

Total SD D P
k

P
i .Yki � Y /2 N � 1 D nK � 1

where Y is the grand average, Y i the block average, Y k the treatment average,
and Yki � Y i � Y k C Y the residual.

Applying decomposition of spread to the model given by (7.20), we arrive
at Table 7.2. Based on this, the following corollary summarizes the inference
techniques under the model defined by (7.20).

Corollary 7.5.2. Under the model defined by (7.20), it holds:

(i) The MLEs for the unknown model parameters are given by

Q� D Y ; Q̌
i D Y i � Y ; Q�k D Y k � Y :

(ii) The F -statistic for testing the hypothesis HB of no block effects is given by

FB D SB=.n � 1/
SR=Œ.n � 1/.K � 1/�

:

Under HB , the distribution of FB is Fisher’s F -distribution with .n�1/ and
.n � 1/.K � 1/ degrees of freedom.

(iii) The F -statistic for testing the null hypothesis HT of no treatment effects is
given by

FT D ST =.K � 1/
SR=Œ.n � 1/.K � 1/�

:

Under HT , the distribution of FT is Fisher’s F -distribution with .K � 1/

and .n � 1/.K � 1/ degrees of freedom.
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7.6 Historical Remarks and Further Reading

Hotelling (1931) derived a deterministic transformation of Fisher’s F -distribution
and demonstrated its usage in the context of testing for differences among several
Gaussian means with a likelihood ratio test. The general idea of the Wald test goes
back to Wald (1943).

A classical textbook on the analysis of variance is that of Scheffé (1959). The
general theory of testing linear hypotheses in linear models is described, e.g., in the
textbook by Searle (1971).



Chapter 8
Some Other Testing Methods

This chapter discusses some nonparametric testing methods. First, we treat classical
testing procedures such as the Kolmogorov–Smirnov and the Cramér–Smirnov–von
Mises test as particular cases of the substitution approach. Then, we are considered
with Bayesian approaches towards hypothesis testing. Finally, Sect. 8.4 deals with
locally best tests. It is demonstrated that the score function is the natural equivalent
to the LR statistic if no uniformly best tests exist, but locally best tests are aimed
at, assuming that the model is differentiable in the mean. Conditioning on the ranks
of the observations leads to the theory of rank tests. Due to the close connection of
rank tests and permutation tests (the null distribution of a rank test is a permutation
distribution), we end the chapter with some general remarks on permutation tests.

Let Y D .Y1; : : : ; Yn/
> be an i.i.d. sample from a distribution P . The joint

distribution P of Y is the n-fold product of P , so a hypothesis about P can be
formulated as a hypothesis about the marginal measure P . A simple hypothesis
H0 means the assumption that P D P0 for a given measure P0 . The empirical
measure Pn is a natural empirical counterpart of P leading to the idea of testing
the hypothesis by checking whether Pn significantly deviates from P0 . As in the
estimation problem, this substitution idea can be realized in several different ways.
We briefly discuss below the method of moments and the minimal distance method.

8.1 Method of Moments for an i.i.d. Sample

Let g.	/ be any d -vector function on R1 . The assumption P D P0 leads to the
population moment

m0 D E0g.Y1/:

V. Spokoiny and T. Dickhaus, Basics of Modern Mathematical Statistics,
Springer Texts in Statistics, DOI 10.1007/978-3-642-39909-1__8,
© Springer-Verlag Berlin Heidelberg 2015
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The empirical counterpart of this quantity is given by

Mn D Eng.Y / D 1

n

X

i

g.Yi /:

The method of moments (MOM) suggests to consider the difference M n � m0

for building a reasonable test. The properties of M n were stated in Sect. 2.4. In
particular, under the null P D P0 , the first two moments of the vector M n �m0

can be easily computed: E0.Mn �m0/ D 0 and

Var0.M / D E0
�
.M n �m0/ .M n �m0/

>� D n�1V;

V
defD E0

��
g.Y /�m0

��
g.Y / �m0

�>�
:

For simplicity of presentation we assume that the moment function g is selected to
ensure a non-degenerate matrix V . Standardization by the covariance matrix leads
to the vector

�n D n1=2V �1=2.M n �m0/;

which has under the null measure zero mean and a unit covariance matrix. Moreover,
�n is, under the null hypothesis, asymptotically standard normal, i.e., its distribution
is approximately standard normal if the sample size n is sufficiently large; see
Theorem 2.4.4. The MOM test rejects the null hypothesis if the vector �n computed
from the available data Y is very unlikely standard normal, that is, if it deviates
significantly from zero. We specify the procedure separately for the univariate and
multivariate cases.

8.1.1 Univariate Case

Let g.	/ be a univariate function with E0g.Y / D m0 and E0
�
g.Y /�m0

�2 D �2 .
Define the linear test statistic

Tn D 1p
n�2

X

i

�
g.Yi/ �m0

� D n1=2��1.Mn �m0/

leading to the test

� D 1
�jTnj > z˛=2

�
; (8.1)

where z˛ denotes the upper ˛-quantile of the standard normal law.
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Theorem 8.1.1. Let Y be an i.i.d. sample from P . Then the test statistic Tn is
asymptotically standard normal under the null and the test � from (8.1) for H0 W
P D P0 is of asymptotic level ˛ , that is,

P0
�
� D 1

� ! ˛; n ! 1:

Similarly one can consider a one-sided alternative HC
1 W m > m0 or H�

1 W m < m0

about the moment m D Eg.Y / of the distribution P and the corresponding one-
sided tests

�C D 1.Tn > z˛/; �� D 1.Tn < �z˛/:

As in Theorem 8.1.1, both tests �C and �� are of asymptotic level ˛ .

8.1.2 Multivariate Case

The components of the vector function g.	/ 2 Rd are usually associated with
“directions” in which the null hypothesis is tested. The multivariate situation means
that we test simultaneously in d > 1 directions. The most natural test statistic is
the squared Euclidean norm of the standardized vector �n :

Tn
defD k�nk2 D nkV �1=2.Mn �m0/k2: (8.2)

By Theorem 2.4.4 the vector �n is asymptotically standard normal so that Tn
is asymptotically chi-squared with d degrees of freedom. This yields the natural
definition of the test � using quantiles of 	2d , i.e.,

� D 1
�
Tn > z˛

�
(8.3)

with z˛ denoting the upper ˛-quantile of the 	2d distribution.

Theorem 8.1.2. Let Y be an i.i.d. sample from P . If z˛ fulfills P
�
	2d > z˛

� D ˛ ,
then the test statistic Tn from (8.2) is asymptotically 	2d -distributed under the null
and the test � from (8.3) for H0 W P D P0 is of asymptotic level ˛ .

8.1.3 Series Expansion

A standard method of building the moment tests or, alternatively, of choosing the
directions g.	/ is based on some series expansion. Let  1; 2; : : : ; be a given set
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of basis functions in the related functional space. It is especially useful to select
these basis functions to be orthonormal under the measure P0 :

Z
 j .y/P0.dy/ D 0;

Z
 j .y/ j 0.y/P0.dy/ D ıj;j 0; 8j; j 0: (8.4)

Select a fixed index d and take the first d basis functions  1; : : : ;  d as
“directions” or components of g . Then

mj;0
defD
Z
 j .y/P0.dy/ D 0

is the j th population moment under the null hypothesis H0 and it is tested by
checking whether the empirical moments Mj;n with

Mj;n
defD 1

n

X

i

 j .Yi /

do not deviate significantly from zero. The condition (8.4) effectively permits to test
each direction  j independently of the others.

For each d one obtains a test statistic Tn;d with

Tn;d
defD n

�
M2
1;n C : : :CM2

d;n

�

leading to the test

�d D 1
�
Tn;d > z˛;d

�
;

where z˛;d is the upper ˛-quantile of 	2d . In practical applications the choice of d
is particularly relevant and is subject of various studies.

8.1.4 Testing a Parametric Hypothesis

The method of moments can be extended to the situation when the null hypothesis is
parametric: H0 W P 2 .P� ;� 2 ‚0/ . It is natural to apply the method of moments
both to estimate the parameter � under the null and to test the null. So, we assume
two different moment vector functions g0 and g1 to be given. The first one is
selected to fulfill

� � E�g0.Y1/; � 2 ‚0 :
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This permits estimating the parameter � directly by the empirical moment:

Q� D 1

n

X

i

g0.Yi /:

The second vector of moment functions is composed by directional alternatives.
An identifiability condition suggests to select the directional alternative functions
orthogonal to g0 in the following sense. We choose g1 D .g

.1/
1 ; : : : ;g

.k/
1 /

> W
Rr ! Rk such that for all � 2 ‚0 it holds g1.m1; : : : ; mr/ D 0 2 Rk , where
.m` W 1 � ` � r/ denote the first r (population) moments of the distribution P� .

Theorem 8.1.3. Let Qm` D n�1Pn
iD1 Y `i denote the ` -th sample moment for 1 �

` � r . Then, under regularity assumptions discussed in Sect. 2.4 and assuming
that each g.j /1 is continuously differentiable and that all .m` W 1 � ` � 2r/ are
continuous functions of � , it holds that the distribution of

Tn
defD ng>

1 . Qm1; : : : ; Qmr/ V
�1. Q�/g1. Qm1; : : : ; Qmr/

converges under H0 weakly to 	2k , where

V.�/
defD J.g1/†J.g1/

> 2 Rk�k;

J.g1/
defD
 
@g

.j /
1 .m1; : : : ; mr/

@m`

!

1�j�k
1�`�r

2 Rk�r

and † D .�ij / 2 Rr�r with �ij D miCj �mimj .

Theorem 8.1.3, which is an application of the Delta method in connection with
the asymptotic normality of MOM estimators, leads to the goodness-of-fit test

� D 1
�
Tn > z˛

�
;

where z˛ is the upper ˛-quantile of 	2k , for testing H0 .

8.2 Minimum Distance Method for an i.i.d. Sample

The method of moments is especially useful for the case of a simple hypothesis
because it compares the population moments computed under the null with their
empirical counterpart. However, if a more complicated composite hypothesis is
tested, the population moments cannot be computed directly: the null measure is
not specified precisely. In this case, the minimum distance idea appears to be useful.
Let .P� ;� 2 ‚ � Rp/ be a parametric family and ‚0 be a subset of ‚ . The null
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hypothesis about an i.i.d. sample Y from P is that P 2 .P� ;� 2 ‚0/ . Let
�.P; P 0/ denote some functional (distance) defined for measures P;P 0 on the real
line. We assume that � satisfies the following conditions: �.P�1 ; P�2 / 
 0 and
�.P�1 ; P�2 / D 0 iff �1 D �2 . The condition P 2 .P� ;� 2 ‚0/ can be rewritten
in the form

inf
�2‚0

�.P; P� / D 0:

Now we can apply the substitution principle: use Pn in place of P . Define the
value T by

T
defD inf

�2‚0
�.Pn; P� /: (8.5)

Large values of the test statistic T indicate a possible violation of the null
hypothesis.

In particular, if H0 is a simple hypothesis, that is, if the set ‚0 consists of one
point �0 , the test statistic reads as T D �.Pn; P�0 / . The critical value for this test
is usually selected by the level condition:

P�0
�
�.Pn; P�0 / > t˛

� � ˛:

Note that the test statistic (8.5) can be viewed as a combination of two different
steps. First we estimate under the null the parameter � 2 ‚0 which provides the
best possible parametric fit under the assumption P 2 .P� ;� 2 ‚0/ :

Q�0 D arginf
�2‚0

�.Pn; P� /:

Next we formally apply the minimum distance test with the simple hypothesis given
by �0 D Q�0 .

Below we discuss some standard choices of the distance � .

8.2.1 Kolmogorov–Smirnov Test

Let P0; P1 be two distributions on the real line with distribution functions F0; F1 :
Fj .y/ D Pj .Y � y/ for j D 0; 1 . Define

�.P0; P1/ D �.F0; F1/ D sup
y

ˇ
ˇF0.y/� F1.y/

ˇ
ˇ: (8.6)

Now consider the related test starting from the case of a simple null hypothesis
P D P0 with corresponding c.d.f. F0 . Then the distance � from (8.6) (properly
scaled) leads to the Kolmogorov–Smirnov test statistic
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Tn
defD sup

y
n1=2

ˇ
ˇF0.y/� Fn.y/

ˇ
ˇ:

A nice feature of this test is the property of asymptotic pivotality.

Theorem 8.2.1 (Kolmogorov). Let F0 be a continuous c.d.f. Then

Tn D sup
y

n1=2
ˇ
ˇF0.y/� Fn.y/

ˇ
ˇ D! �;

where � is a fixed random variable (maximum of a Brownian bridge on Œ0; 1� ).

Proof. Idea of the proof: The c.d.f. F0 is monotonic and continuous. Therefore, its
inverse function F�1

0 is uniquely defined. Consider the r.v.’s

Ui
defD F0.Yi /:

The basic fact about this transformation is that the Ui ’s are i.i.d. uniform on the
interval Œ0; 1� .

Lemma 8.2.1. The r.v.’s Ui are i.i.d. with values in Œ0; 1� and for any u 2 Œ0; 1� it
holds

P
�
Ui � u

� D u:

By definition of F �1
0 , it holds for any u 2 Œ0; 1�

F0
�
F�1
0 .u/

� � u:

Moreover, if Gn is the c.d.f. of the Ui ’s, that is, if

Gn.u/
defD 1

n

X

i

1.Ui � u/;

then

Gn.u/ � Fn
�
F�1
0 .u/

�
: (8.7)

Exercise 8.2.1. Check Lemma 8.2.1 and (8.7).

Now by the change of variable y D F �1
0 .u/ we obtain

Tn D sup
u2Œ0;1�

n1=2
ˇ
ˇF0.F �1

0 .u//� Fn.F
�1
0 .u//

ˇ
ˇ D sup

u2Œ0;1�
n1=2

ˇ
ˇu �Gn.u/

ˇ
ˇ:

It is obvious that the right-hand side of this expression does not depend on the
original model. Actually, it is for fixed n a precisely described random variable, and
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so its distribution only depends on n . It only remains to show that this distribution
for large n is close to some fixed limit distribution with a continuous c.d.f. allowing
for a choice of a proper critical value. We indicate the main steps of the proof.

Given a sample U1; : : : ; Un , define the random function

�n.u/
defD n1=2

�
u �Gn.u/

�
:

Clearly Tn D supu2Œ0;1� �n.u/ . Next, convergence of the random functions �n.	/
would imply the convergence of their maximum over u 2 Œ0; 1� , because the
maximum is a continuous functional of a function. Finally, the weak convergence

of �n.	/ w�! �.	/ can be checked if for any continuous function h.u/ , it holds

˝
�n; h

˛ defD n1=2
Z 1

0

h.u/
�
u �Gn.u/

�
du

w�! ˝
�; h

˛ defD
Z 1

0

h.u/�.u/du:

Now the result can be derived from the representation

˝
�n; h

˛ D n1=2
Z 1

0

�
h.u/Gn.u/�m.h/

�
du D n�1=2

nX

iD1

�
Uih.Ui /�m.h/

�

with m.h/ D R 1
0 h.u/�.u/du and from the central limit theorem for a sum of i.i.d.

random variables.

8.2.1.1 The Case of a Composite Hypothesis

If H0 W P 2 .P� ;� 2 ‚0/ is considered, then the test statistic is described by
(8.5). As we already mentioned, testing of a composite hypothesis can be viewed as
a two-step procedure. In the first step, � is estimated by Q�0 and in the second step,
the goodness-of-fit test based on Tn is carried out, where F0 is replaced by the
c.d.f. corresponding to PQ�0 . It turns out that pivotality of the distribution of Tn is
preserved if � is a location and/or scale parameter, but a general (asymptotic) theory
allowing to derive t˛ analytically is not available. Therefore, computer simulations
are typically employed to approximate t˛ .

8.2.2 !2 Test (Cramér–Smirnov–von Mises)

Here we briefly discuss another distance also based on the c.d.f. of the null measure.
Namely, define for a measure P on the real line with c.d.f. F

�.Pn; P / D �.Fn; F / D n

Z �
Fn.y/� F.y/

�2
dF.x/: (8.8)
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For the case of a simple hypothesis P D P0 , the Cramér–Smirnov–von Mises
(CSvM) test statistic is given by (8.8) with F D F0 . This is another functional of
the path of the random function n1=2

�
Fn.y/ � F0.y/

�
. The Kolmogorov test uses

the maximum of this function while the CSvM test uses the integral of this function
squared. The property of pivotality is preserved for the CSvM test statistic as well.

Theorem 8.2.2. Let F0 be a continuous c.d.f. Then

Tn D n

Z �
Fn.y/� F0.y/

�2
dF.x/

D! �;

where � is a fixed random variable (integral of a Brownian bridge squared on
Œ0; 1� ).

Proof. The idea of the proof is the same as in the case of the Kolmogorov–Smirnov
test. First the transformation by F �1

0 translates the general case to the case of the
uniform distribution on Œ0; 1� . Next one can again use the functional convergence
of the process �n.u/ .

8.3 Partially Bayes Tests and Bayes Testing

In the above sections we mostly focused on the likelihood ratio testing approach.
As in estimation theory, the LR approach is very general and possesses some
nice properties. This section briefly discusses some possible alternative approaches
including partially Bayes and Bayes approaches.

8.3.1 Partial Bayes Approach and Bayes Tests

Let ‚0 and ‚1 be two subsets of the parameter set ‚ . We test the null hypothesis
H0 W �� 2 ‚0 against the alternative H1 W �� 2 ‚1 . The LR approach compares
the maximum of the likelihood process over ‚0 with the similar maximum over
‚1 . Let now two measures �0 on ‚0 and �1 on ‚1 be given. Now instead of the
maximum of L.Y ;�/ we consider its weighted sum (integral) over ‚0 (resp. ‚1)
with weights �0.�/ resp. �1.�/ . More precisely, we consider the value

T�0;�1 D
Z

‚1

L.Y ;�/�1.�/.d�/�
Z

‚0

L.Y ;�/�0.�/.d�/:

Significantly positive values of this expression indicate that the null hypothesis is
likely to be false.
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Similarly and more commonly used, we may define measures g0 and g1 such
that

�.�/ D
(
�0g0.�/; � 2 ‚0;

�1g1.�/; � 2 ‚1;

where � is a prior on the entire parameter space ‚ and �i
defD R

‚i
�.�/.d�/ D

P.‚i/ for i D 0; 1 . Then, the Bayes factor for comparing H0 and H1 is given by

B0j1 D
R
‚0
L.Y ;�/g0.�/.d�/

R
‚1
L.Y ;�/g1.�/.d�/

D P.‚0

ˇ
ˇY /=P.‚1

ˇ
ˇY /

P.‚0/=P.‚1/
: (8.9)

The representation of the Bayes factor on the right-hand side of (8.9) shows that it
can be interpreted as the ratio of the posterior odds for H0 and the prior odds for
H0 . The resulting test rejects the null hypothesis for significantly small values of
B0j1 , or, equivalently, for significantly large values of B1j0 D 1=B0j1 . In the special
case that H0 and H1 are two simple hypotheses, i.e., ‚0 D f�0g and ‚1 D f�1g ,
the Bayes factor is simply given by

B0j1 D L.Y ;�0/

L.Y ;�1/
;

hence, in such a case the testing approach based on the Bayes factor is equivalent to
the LR approach.

8.3.2 Bayes Approach

Within the Bayes approach the true data distribution and the true parameter value
are not defined. Instead one considers the prior and posterior distribution of the
parameter. The parametric Bayes model can be represented as

Y j � � p.y
ˇ
ˇ �/; � � �.�/:

The posterior density p.�
ˇ
ˇY / can be computed via the Bayes formula:

p.�
ˇ
ˇY / D p.Y

ˇ
ˇ�/�.�/
p.Y /

with the marginal density p.Y / D R
‚
p.Y

ˇ
ˇ �/�.�/.d�/ . The Bayes approach

suggests instead of checking the hypothesis about the location of the parameter �
to look directly at the posterior distribution. Namely, one can construct the so-called
credible sets which contain a prespecified fraction, say 1 � ˛ , of the mass of the
whole posterior distribution. Then one can say that the probability for the parameter



8.4 Score, Rank, and Permutation Tests 255

� to lie outside of this credible set is at most ˛ . So, the testing problem in the
frequentist approach is replaced by the problem of confidence estimation for the
Bayes method.

Example 8.3.1 (Example 5.2.2 Continued). Consider again the situation of a
Bernoulli product likelihood for Y D .Y1; : : : ; Yn/

> with unknown success
probability � . In example 5.2.2 we saw that this family of likelihoods is conjugated
to the family of beta distributions as priors on Œ0; 1� . More specifically, if
� � Beta.a; b/ , then � j Y D y � Beta.a C s; b C n � s/ , where s D Pn

iD1 yi
denotes the observed number of successes. Under quadratic risk, the Bayes-optimal
point estimate for � is given by EŒ� j Y D y � D .a C s/=.a C b C n/ , and a
credible interval can be constructed around this value by utilizing quantiles of the
posterior Beta.aC s; b C n � s/ -distribution.

8.4 Score, Rank, and Permutation Tests

8.4.1 Score Tests

Testing a composite null hypothesis H0 against a composite alternative H1 is in
general a challenging problem, because only in some special cases uniformly (over
� 2 H1 ) most powerful level ˛ -tests exist. In all other cases, one has to decide
against which regions in H1 optimal power is targeted. One class of procedures is
given by locally best tests, optimizing power in regions close to H0 . To formalize
this class mathematically, one needs the concept of differentiability in the mean.

Definition 8.4.1 (Differentiability in the Mean). Let .Y;B.Y/; .P� /�2‚/ denote
a statistical model and assume that .P� /�2‚ is a dominated (by 
 ) family of
measures, where ‚ � R . Then, .Y;B.Y/; .P� /�2‚/ is called differentiable in the

mean in �0 2 V‚ , if a function g 2 L1.
/ exists with



t

�1
�dP�0Ct

d

� dP�0

d


�
� g




L1.
/

! 0 as t ! 0:

The function g is called L1.
/-derivative of � 7! P� in �0 . In the sequel, we
choose w.l.o.g. �0 � 0 .

Theorem 8.4.1 (§18 in Hewitt and Stromberg (1975)). Under the assumptions of

Definition 8.4.1 let �0 D 0 and let densities be given by f�.y/
defD dP�=.d
/.y/ .

Assume that there exists an open neighborhood U of 0 such that for 
 -almost all
y the mapping U 3 � 7! f�.y/ is absolutely continuous, i.e., it exists an integrable
function � 7! Pf .y; �/ on U with

Z �2

�1

Pf .y; �/d� D f�2 .y/� f�1.y/; �1 < �2;
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and assume that @
@�
f� .y/j�D0 D Pf .y; 0/ 
 -almost everywhere. Furthermore,

assume that for � 2 U the function y 7! Pf .y; �/ is 
 -integrable with

Z ˇ
ˇ
ˇ Pf .y; �/

ˇ
ˇ
ˇ d
.y/ !

Z ˇ
ˇ
ˇ Pf .y; 0/

ˇ
ˇ
ˇ d
.y/; � ! 0:

Then, � 7! P� is differentiable in the mean in 0 with g D Pf .	; 0/ .

Theorem 8.4.2. Under the assumptions of Definition 8.4.1 assume that the densi-
ties � 7! f� are differentiable in the mean in 0 with L1.
/ derivative g . Then,

��1 log.f� .y/=f0.y// D ��1.logf�.y/ � logf0.y//

converges for � ! 0 to PL.y/ (say) in P0 probability. We call PL the derivative of
the (logarithmic) likelihood ratio or score function. It holds

PL.y/ D g.y/=f0.y/;

Z
PLdP0 D 0; ff0 D 0g � fg D 0g P0 -almost surely:

Proof. ��1.f�=f0 � 1/ ! g=f0 converges in L1.P0/ and, consequently, in
P0 probability. The chain rule yields PL.y/ D g.y/=f0.y/ . Noting that

R
.f� �

f0/d
 D 0 we conclude

Z
PLdP0 D

Z
gd
 D 0:

Example 8.4.1. (a) Location parameter model:
Let Y D �CX; � 
 0 , and assume that X has a density f which is absolutely
continuous with respect to the Lebesgue measure and does not dependent on � .
Then, the densities � 7! f .y��/ of Y under � are differentiable in the mean
in zero with score function PL.y/ D �f 0.y/=f .y/ (differentiation with respect
to y ).

(b) Scale parameter model:
Let Y D exp.�/X and assume again that X has density f with the properties
stated in part (a). Moreover, assume that

R jxf 0.x/jdx < 1 . Then, the
densities � 7! exp.��/f .y exp.��// of Y under � are differentiable in the
mean in zero with score function PL.y/ D �.1C yf 0.y/=f .y// .

Lemma 8.4.1. Assume that the family � 7! P� is differentiable in the mean with
score function PL in �0 D 0 and that ci , 1 � i � n , are real constants. Then, also
� 7! Nn

iD1Pci � is differentiable in the mean in zero, and has score function

.y1; : : : ; yn/
> 7!

nX

iD1
ci PL.yi /:
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Fig. 8.1 Locally best test �� with expectation ˛ under �0

Exercise 8.4.1. Prove Lemma 8.4.1.

Definition 8.4.2 (Score Test). Let � 7! P� be differentiable in the mean in �0
with score function PL . Then, every test � of the form

�.y/ D

8
ˆ̂
<

ˆ̂
:

1; if PL.y/ > c;
�; if PL.y/ D c;

0; if PL.y/ < c;

is called a score test. In this, � 2 Œ0; 1� denotes a randomization constant.

Definition 8.4.3 (Locally Best Test). Let .P� /�2‚ with ‚ � R denote a family
which is differentiable in the mean in �0 2 V‚ . A test �� with E�0 Œ�

�� D ˛ is
called locally best test among all tests with expectation ˛ under �0 for the test
problem H0 D f�0g versus H1 D f� > �0g if

d

d�
E� Œ�

��
ˇ
ˇ
ˇ
ˇ
�D�0


 d

d�
E� Œ��

ˇ
ˇ
ˇ
ˇ
�D�0

for all tests � with E�0 Œ�� D ˛ .

Figure 8.1 illustrates the situation considered in Definition 8.4.3 graphically.
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Theorem 8.4.3. Under the assumptions of Definition 8.4.3, the score test

�.y/ D

8
ˆ̂<

ˆ̂
:

1; if PL.y/ > c.˛/
�; if PL.y/ D c.˛/; � 2 Œ0; 1�
0; if PL.y/ < c.˛/

with E�0 Œ�� D ˛ is a locally best test for testing H0 D f�0g against H1 D
f� > �0g .

Proof. We notice that for any test � , it holds

d

d�
E� Œ��

ˇ
ˇ
ˇ̌
�D�0

D E�0 Œ�
PL�:

Hence, we have to optimize
R
�.y/ PL.y/P�0.dy/ with respect to � under the level

constraint, yielding the assertion in analogy to the argumentation in the proof of
Theorem 6.2.1.

Theorem 8.4.3 shows that in the theory of locally best tests the score function PL
takes the role that the likelihood ratio has in the LR theory. Notice that, for an i.i.d.
sample Y D .Y1; : : : ; Yn/

>, the joint product measure .P� /˝n has score function
.y1; : : : ; yn/ 7! Pn

iD1 PL.yi / according to Lemma 8.4.1 and Theorem 8.4.3 can be
applied to test H0 D f�0g against H1 D f� > �0g based on Y .

Moreover, for k -sample problems with k 
 2 groups and n jointly independent
observations, Lemma 8.4.1 can be utilized to test the homogeneity hypothesis

H0 D ˚
PY1 D PY2 D : : : D PYn WPY1 continuous

�
: (8.10)

To this end, one considers parametric families � 7! Pn;� which belong to H0 only
in case of � D 0 , i.e., Pn;0 2 H0 . For � ¤ 0 , Pn;� is a product measure with
non-identical factors.

Example 8.4.2. (a) Regression model for a location parameter:
Let Yi D ci� C Xi , 1 � i � n , where � 
 0 . In this, assume that the
Xi are i.i.d. with Lebesgue density f which is independent of � . Now, for a
two-sample problem with n1 observations in the first group and n2 D n � n1
observations in the second group, we set c1 D c2 D 	 	 	 D cn1 D 1 and ci D 0

for all n1 C 1 � i � n . Under alternatives, the observations in the first group
are shifted by � > 0 .

(b) Regression model for a scale parameter:
Let ci ; 1 � i � n, denote real regression coefficients and consider the model
Yi D exp.ci �/Xi , 1 � i � n , � 2 R , where we assume again that the Xi are
iid with Lebesgue density f which is independent of � . Then, it holds
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dPn;�

dn
.y/ D

nY

iD1
exp.�ci �/f .yi exp.�ci�//:

Under �0 D 0 , the product measure Pn;0 belongs to H0 , while under
alternatives it does not.

8.4.2 Rank Tests

In this section, we will consider the case that only the ranks of the observations are
trustworthy (or available). Theorem 8.4.4 will be utilized to define resulting rank
tests based on parametric families Pn;� as considered in Example 8.4.2. It turns out
that the score test based on ranks has a very simple structure.

Theorem 8.4.4. Let � 7! P� denote a parametric family which is differentiable
in the mean in �0 D 0 with respect to some reference measure 
 , L1.
/ -
differentiable for short, with score function PL . Furthermore, let S W Y ! S
measurable. Then, � 7! PS� is L1.
S/ -differentiable with score function s 7!
E0Œ PL

ˇ
ˇS D s� .

Proof. First, we show that the L1.

S/-derivative of � 7! PS� is given by s 7!

E
Œg
ˇ
ˇS D s� , where g is the L1.
/-derivative of � 7! P� . To this end, notice

that

dPS�
d
S

.s/ D E
Œf�
ˇ̌
S D s�; where f� D dP�

d

:

Linearity of E
Œ	
ˇ
ˇS� and transformation of measures leads to

Z ˇ
ˇ
ˇ
ˇ�

�1
	
dPS�
d
S

� dPS0
d
S



� E
Œg

ˇ
ˇS D s�

ˇ
ˇ
ˇ
ˇ d


S.y/

D
Z ˇ
ˇE
Œ��1.f� � f0/ � g ˇˇS�ˇˇ d
:

Applying Jensen’s inequality and Vitali’s theorem, we conclude that s 7!
E
Œg

ˇ
ˇS D s� is L1.


S/ -derivative of � 7! PS� . Now, the chain rule yields
that the score function of PS� in zero is given by

s 7! E
Œg
ˇ
ˇS D s�fE
ŒdP0

d


ˇ
ˇS D s�g�1

and the assertion follows by substituting g D PLdP0=.d
/ and verifying that
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E0Œ PL
ˇ
ˇS�E
Œ

dP0

d


ˇ
ˇS� D E
Œ PLdP0

d


ˇ
ˇS� 
-almost surely:

For applying the latter theorem to rank statistics, we need to gather some basic
facts about ranks and order statistics.

Definition 8.4.4. Let y D .y1; : : : ; yn/ be a point in Rn . Assume that the yi are
pairwise distinct and denote their ordered values by y1Wn < y2Wn < : : : < ynWn .

(a) For 1 � i � n , the integer ri � ri .y/
defD #fj 2 f1; : : : ; ngWyj � yi g is called

the rank of yi (in y ). The vector r.y/
defD .r1.y/; : : : ; rn.y// 2 Sn is called

rank vector of y .

(b) The inverse permutation d.y/ D .d1.y/; : : : ; dn.y//
defD Œr.y/��1 is called the

vector of antiranks of y , and the integer di.y/ is called antirank of i (the
index that corresponds to the i -th smallest observation in y ).

Now, let Y1; : : : ; Yn with Yi W Yi ! R be stochastically independent, continuously
distributed random variables and denote the joint distribution of .Y1; : : : ; Yn/ by
P .

(c) Because of P.
S
i¤j fYi D Yj g/ D 0 the following objects are P -almost surely

uniquely defined: Yi Wn is called i -th order statistic of Y D .Y1; : : : ; Yn/
> ,

Ri.Y /
defD n OFn.Yi/ D ri .Y1; : : : ; Yn/ is called rank of Yi , R.Y /

defD
.R1.Y /; : : : ; Rn.Y //

> is called vector of rank statistics of Y , Di.Y /
defD

di.Y1; : : : ; Yn/ is called antirank of i with respect to Y and D.Y /
defD d.Y /

is called vector of antiranks of Y .

Lemma 8.4.2. Under the assumptions of Definition 8.4.4, it holds

(a) i D rdi D dri ; yi D yri Wn; yi Wn D ydi :

(b) If Y1; : : : ; Yn are exchangeable random variables, then R.Y / is uniformly
distributed on Sn , i.e., P.R.Y / D �/ D 1=nŠ for all permutations � D
.r1; : : : ; rn/ 2 Sn .

(c) If U1; : : : ; Un are i.i.d. with U1 � UNIŒ0; 1� , and Yi D F�1.Ui/ , 1 � i � n ,
for some distribution function F , then it holds Yi Wn D F �1.Ui Wn/ . If F is
continuous, then it holds R.Y / D R.U1; : : : ; Un/ .

(d) If .Y1; : : : ; Yn/ are i.i.d. with c.d.f. F of Y1 , then we have

(i) P.Yi Wn � y/ D Pn
jDi

�
n

j

�
F.y/j .1 � F.y//n�j .

(ii) dPYiWn

dPY1
.y/ D n

�
n�1
i�1
�
F.y/i�1.1 � F.y//n�i . If PY1 has Lebesgue den-

sity f , then PYiWn has Lebesgue density fi Wn , given by fi Wn.y/ D
n
�
n�1
i�1
�
F.y/i�1.1 � F.y//n�if .y/:

(iii) Letting 

defD PY1 , .Yi Wn/1�i�n has the joint 
n -density .y1; : : : ; yn/ 7!

nŠ 1Ify1<y2<:::<yng : If 
 has Lebesgue density f , then .Yi Wn/1�i�n has
n -density .y1; : : : ; yn/ 7! nŠ

Qn
iD1 f .yi / 1Ify1<y2<:::<yng :
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Remark 8.4.1. Lemma 8.4.2(c) (quantile transformation) shows the special impor-
tance of the distribution of order statistics of i.i.d. UNIŒ0; 1� -distributed random
variables U1; : : : ; Un . According to Lemma 8.4.2(d), the order statistic Ui Wn has
a Beta .i; n � i C 1/ distribution with EŒUi Wn� D i=.n C 1/ and Var.Ui Wn/ D
.i.n � i C 1//=..n C 1/2.n C 2// . For computing the joint distribution function
of .U1Wn; : : : ; UnWn/ , efficient recursive algorithms exist, for instance Bolshev’s
recursion and Steck’s recursion (see Shorack and Wellner (1986), p. 362 ff.).

Theorem 8.4.5. Let Y D .Y1; : : : ; Yn/
> be a vector of real-valued i.i.d. random

variables with continuous 
 D PY1 .

(a) The random vectors R.Y / and .Yi Wn/1�i�n are stochastically independent.
(b) Let T W Rn ! R denote a mapping such that the statistic T .Y / is integrable.

For any � D .r1; : : : ; rn/ 2 Sn , it holds

EŒT .Y /
ˇ
ˇR.Y / D �� D EŒT ..Yri Wn/1�i�n/�:

Proof. For proving part (a), let � D .r1; : : : ; rn/ 2 Sn and Borel sets Ai , 1 � i �
n , arbitrary but fixed and define .d1; : : : ; dn/

defD ��1 . We note that R.Y / D �

if and only if Yd1 < Yd2 < : : : < Ydn and that Ydi D Yi Wn 2 Ai if and only if
Yi 2 Ari .

Define B
defD fy 2 RnWy1 < y2 < : : : < yng . Then we obtain that

P .R.Y / D �;81 � i � n W Yi Wn 2 Ai/
D P .81 � i � nWYdi 2 Ai ; .Ydi /1�i�n 2 B/

D
Z

�niD1Ari

1IB.yd1 ; : : : ; ydn /d

n.y1; : : : ; yn/

D
Z

�niD1Ari

1IB.y1; : : : ; yn/d
n.y1; : : : ; yn/;

because 
n is invariant under the transformation .y1; : : : ; yn/ 7! .yd1 ; : : : ; ydn/

due to exchangeability.
Summation over all � 2 Sn yields

P .81 � i � n W Yi Wn 2 Ai/ D nŠ

Z

�niD1Ari

1IB.y1; : : : ; yn/d
n.y1; : : : ; yn/:

Making use of Lemma 8.4.2(b), we conclude

P
�
R.Y / D �;81 � i � n W Yi Wn 2 Ai

�

D P
�
R.Y / D �

�
P
�81 � i � nWYi Wn 2 Ai

�
;
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hence, the assertion of part (a). For proving part (b), we verify

EŒT .Y /
ˇ
ˇR.Y / D �� D

Z

fR.Y /D�g
T .Y /

P.R.Y / D �/
dP

D EŒT ..Yri Wn/1�i�n/
ˇ
ˇR.Y / D ��

D EŒT ..Yri Wn/1�i�n/�;

where we used that Y D .Yri Wn/niD1 if R.Y / D � in the second line and part (a) in
the third line.

Now we are ready to apply Theorem 8.4.4 to vectors of rank statistics.

Corollary 8.4.1. Let .P� /�2‚ with ‚ � R denote an L1.
/ -differentiable
family with score function PL in �0 D 0 . Let Y D .Y1; : : : ; Yn/

> be a sample
from Pn;� D Nn

iD1Pci � . Then, PRn;� has score function

� D .r1; : : : ; rn/ 7! En;0

"
nX

iD1
ci PL.Yi /

ˇ
ˇR.Y / D �

#

D
nX

iD1
ciEn;0Œ PL.Yi/

ˇ
ˇR.Y / D ��

D
nX

iD1
ciEn;0Œ PL.Yri Wn/� D

nX

iD1
cia.ri /

with En;0 denoting the expectation with respect to Pn;0 and scores a.i/
defD

En;0Œ PL.Yi Wn/� .
Remark 8.4.2. (a) The test statistic T .Y / D Pn

iD1 cia.Ri .Y // is called a linear
rank statistic.

(b) The hypothesis H0 from (8.10) leads under conditioning on R.Y / to a simple
null hypothesis on Sn , namely, the discrete uniform distribution on Sn , see
Lemma 8.4.2(b). Therefore, the critical value c.˛/ for the rank test � D
�.R.Y // , given by

�.y/ D

8
ˆ̂
<

ˆ̂:

1; if T .y/ > c.˛/;

�; if T .y/ D c.˛/;

0; if T .y/ < c.˛/;

can be computed by traversing all possible permutations � 2 Sn and thereby
determining the discrete distribution of T .Y / under H0 . For large n , we can
approximate c.˛/ by only traversing B < nŠ randomly chosen permutations
� 2 Sn .
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(c) For the scores, it holds
Pn

iD1 a.i/ D 0 . If PL is isotone, then it holds a.1/ �
a.2/ � : : : � a.n/ .

(d) Due to the relation Yi Wn
DD F�1.Ui Wn/ , the scores are often given in the form

a.i/ D EŒ PL ı F�1.Ui Wn/� and the function PL ı F�1 is called score-generating

function. For large n , one can approximately work with b.i/
defD PLıF�1. i

nC1 /
(since EŒUi Wn� D 1=.nC 1/ , see Remark 8.4.1) or with Qb.i/ D n

R i=n
.i�1/=n PL ı

F�1.u/du instead of a.i/ .

In the case that the score function is isotone, rank tests can also be used to test
for stochastically ordered distributions in two-sample problems.

Lemma 8.4.3 (Two-Sample Problems with Stochastically Ordered Distribu-
tions). Assume that a.1/ � a.2/ � : : : � a.n/ , cf. Remark 8.4.2(c), and let
� denote a rank test at level ˛ for H0 from (8.10), i.e., EH0Œ�� D ˛ . Assume that
Y1; : : : ; Yn1 are i.i.d. with c.d.f. F1 of Y1 and Yn1C1; : : : ; Yn i.i.d. with c.d.f. F2 of
Yn1C1 .

(a) If F1 
 F2 , then EŒ�� � ˛ .
(b) If F1 � F2 , then EŒ�� 
 ˛ .

Proof. Lemma 4.4 in Janssen (1998).

In location parameter models as considered in Example 8.4.1(a), the score
function is isotone if and only if the density f is unimodal. The following example
discusses some specific instances of such densities and derives the corresponding
rank tests.

Example 8.4.3 (Two-Sample Rank Tests in Location Parameter Models with
“Stochastically Larger” Alternatives).

(i) Fisher–Yates test:
Let f denote the density of N.0; 1/ . Then it holds PL.y/ D y and we obtain

T D
n1X

iD1
a.Ri / with a.i/ D EŒYi Wn�:

In this, Yi Wn denotes the i -th order statistic of i.i.d. random variables
Y1; : : : ; Yn with Y1 � N.0; 1/ .

(ii) Van der Waerden test:
Let f be as in part (i). The score-generating function is given by u 7!
ˆ�1.u/ . Following Remark 8.4.2(e), b.i/ D ˆ�1.i=.nC1// are approximate
scores, leading to the test statistic

T D
n1X

iD1
ˆ�1.

Ri

nC 1
/:
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(iii) Wilcoxon’s rank sum test:
Let f be the density of the standard logistic distribution, given by f .y/ D

exp.�y/.1C exp.�y//�2 with corresponding cdf F.y/ D .1C exp.�y//�1 .
The score-generating function is in this case given by u 7! 2u � 1 , leading to
the scores

a.i/ D EŒ PL ı F �1.Ui Wn/� D 2i

nC 1
� 1:

These scores are an affine transformation of the identity and therefore, the test
can equivalently be carried out by means of the test statistic

T D
n1X

iD1
Ri .Y /;

which is the sum of the ranks in the first group.
(iv) Median test:

The Lebesgue density of the Laplace distribution is given by f .y/ D
exp.� jyj/=2 , with induced score-generating function u 7! sgn.ln.2u// D
sgn.2u � 1/ . Approximate scores are therefore given by

b.i/ D PL ı F�1.
i

nC 1
/ D

8
ˆ̂
<

ˆ̂:

1; if i > .nC 1/=2;

0; if i D .nC 1/=2;

�1; if i < .nC 1/=2:

We conclude this section with the Savage test (or log-rank test), an example for a
scale parameter test, cf. Example 8.4.1(b).

Example 8.4.4. Under the scale parameter model considered in Example 8.4.1(b),
assume that X is exponentially distributed with density f .x/D exp.�x/ 1I.0;1/.x/ .
Then we obtain for y > 0 the score function

PL.y/ D �.1C y
f 0.y/
f .y/

/ D y � 1:

Exercise 8.4.2. Show that for i.i.d. random variables Y1; : : : ; Yn with Y1 �
Exp.1/ , it holds

EŒYi Wn� D
iX

jD1

1

nC 1� j
:

Making use of the latter result, exact scores are given by
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a.i/ D
iX

jD1

1

nC 1 � j
� 1:

Since X is almost surely positive, the model Y D exp.�/X can be transformed
into the location parameter model log.Y / D � C log.X/ . For X � Exp.1/ , it
holds that log.X/ possesses a reflected Gumbel distribution, satisfying

P
�

log.X/ � x
� D 1 � exp.� exp.x//; x > 0:

8.4.3 Permutation Tests

Permutation tests can be regarded as special instances of rank tests for k -sample
problems.

Example 8.4.5 (Two-Sample Problem in Gaussian Location Parameter Model).
Let .Yi /1�i�n denote real-valued, stochastically independent random variables,
where Y1; : : : ; Yn1 are i.i.d. with Y1 � F1 and Yn1C1; : : : ; Yn are i.i.d. with
Yn1C1 � F2 . Assume that the test problem of interest is given by

H0W fF1 D F2g versus H1W fF1 ¤ F2g: (8.11)

In the special case that F1 and F2 are Gaussian cdfs which only differ in their
means, one would compare the empirical group means to carry out a test for problem

(8.11). More specifically, we let n2
defD n � n1 and define group means by Y n1

defD
n�1
1

Pn1
iD1 Yi and Y n2

defD n�1
2

Pn
jDn1C1 Yj , assuming that 0 < n1 < n . The test

statistic of the resulting two-sample Z -test is then given by QT defD ˇ
ˇY n1 � Y n2

ˇ
ˇ

and the test for (8.11) can easily be calibrated by noticing that Y n1 � Y n2 is again
normally distributed under H0 .

However, in the case of general F1 and F2 , exact distributional results for QT
are difficult to obtain. Assuming that F1 and F2 are continuous, we consider more
general statistics of the form

T D
nX

iD1
cig.Yi / D

nX

iD1
cDi .Y /g.Yi Wn/ (8.12)

for a given function g W R ! R and real numbers .ci /1�i�n .
The representation of T on the right-hand side of (8.12) establishes the connec-

tion to rank tests. For example, jT j equals QT if we choose g D id , ci D n�1
1

for i � n1 and ci D �n�1
2 for i > n1 . Under H0 from (8.11), the antiranks

D.Y / D .Di .Y ///1�i�n and the order statistics .Yi Wn/1�i�n are stochastically
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independent, see Theorem 8.4.5. Due to this property, the two-sample permutation
test based on T can be carried out according to the following resampling scheme.

Example 8.4.6 (Resampling Scheme for a Two-Sample Permutation Test). The
following resampling scheme is appropriate for a one-sided “stochastically larger”
alternative. The two-sided case is obtained by obvious modifications.

(A) Consider the order statistics .Yi Wn/1�i�n and regard a.i/
defD g.Yi Wn/ as random

scores.
(B) Denote by QD D . QDi/1�i�n a random vector which is uniformly distributed on

Sn and let c D c.˛; .Yi Wn/1�i�n/ denote the .1�˛/ -quantile of the discretely
distributed random variable QD 7! Pn

iD1 c QDi a.i/ .
(C) The permutation test � for testing (8.11) is then given by

� D

8
ˆ̂
<

ˆ̂:

1; T > c;

�; T D c;

0 T < c;

where � 2 Œ0; 1� denotes a randomization constant.

Remark 8.4.3. If we choose g D id and .cj /1�j�n as in Example 8.4.5, leading
to jT j D QT , then the test � from Example 8.4.6 is called Pitman’s permutation
test, see Pitman (1937).

The permutation test principle can be adapted to test the more general null
hypothesis

H0WY1; : : : ; Yn are i.i.d. (8.13)

In the generalized form, the Yj W 1 � j � n are not even restricted to be real-valued.
The modified resampling scheme is given as follows.

Example 8.4.7 (Modified Resampling Scheme for General Permutation Tests).

(A) Consider n random variates Yj , 1 � j � n with values in some space Y

and a real-valued test statistic T D T .Y1; : : : ; Yn/ .
(B) In the remainder, consider permutations � with values in Sn which are

independent of Y1; : : : ; Yn .
(C) Denote by Q0 the uniform distribution on Sn and let c D c.Y1; : : : ; Yn/

denote the .1 � ˛/ -quantile of t 7! Q0.f� 2 Sn W T .Y�.1/; : : : ; Y�.n// � tg/ .
(D) The modified permutation test Q� for testing (8.13) is then given by

Q� D

8
ˆ̂
<

ˆ̂
:

1; T > c;

�; T D c;

0; T < c:



8.5 Historical Remarks and Further Reading 267

Theorem 8.4.6. Under the respective assumptions, the permutation test � defined
in Example 8.4.6 and the modified permutation test Q� defined in Example 8.4.7 are
under the null hypothesis H0 from (8.11) or (8.13), respectively, tests of exact level
˛ for any fixed n 2 N .

Proof. Conditional to the order statistics (Example 8.4.6) or to the data themselves
(Example 8.4.7), the critical value c and the randomization constant � are chosen
such that

EL. QD/Œ'
ˇ
ˇY D y� D EQ0Œ Q'

ˇ
ˇY D y � D ˛

holds true. Furthermore, the antiranks D.Y / are under H0 from (8.11) stochasti-
cally independent of the order statistics. Analogously, the random permutations �
are chosen stochastically independent of .Y1; : : : ; Yn/ in the case of Q� . The result
of the theorem follows by averaging with respect to the distribution of Y .

8.5 Historical Remarks and Further Reading

The Kolmogorov–Smirnov test goes back to Kolmogorov (1933) and Smirnov
(1948). The origins of the !2 test can be traced back to Cramér (1928) and
the German lecture notes by von Mises (1931). The limiting !2 distribution
has been derived in the work by Smirnov (1937). A comprehensive resource
for (nonparametric) goodness-of-fit tests is the book edited by D’Agostino and
Stephens (1986).

The concept of Bayes factors goes back to Jeffreys (1935) and is treated
comprehensively by Kass and Raftery (1995). Bayesian approaches to hypothesis
testing are discussed in Sect. 4.3.3 of Berger (1985); see also the references therein.

Our treatment of score tests mainly follows (Janssen 1998). The theory of rank
tests is developed in the textbook by Hájek and Šidák (1967). The classical reference
for permutation tests is Pitman (1937). Recent textbook and monograph references
on the subject are Good (2005), Edgington and Onghena (2007), and Pesarin and
Salmaso (2010).



Appendix A
Deviation Probability for Quadratic Forms

A.1 Introduction

This chapter presents a number of deviation probability bounds for a quadratic form
k�k2 or more generally kB�k2 of a random p vector � satisfying a general
exponential moment condition. Such quadratic forms arise in many applications.
Baraud (2010) lists some statistical tasks relying on such deviation bounds including
hypothesis testing for linear models or linear model selection. We also refer to
Massart (2007) for an extensive overview and numerous results on probability
bounds and their applications in statistical model selection. Limit theorems for
quadratic forms can be found e.g. in Götze and Tikhomirov (1999) and Horváth
and Shao (1999). Some concentration bounds for U-statistics are available in
Bretagnolle (1999), Giné et al. (2000), Houdré and Reynaud-Bouret (2003). Most of
results assumes that the components of the vector � are independent and bounded.

Hsu et al. (2012) study the tail behavior of the quadratic form under the condition
of sub-Gaussianity of the random vector � and show that the deviation probability
are essentially the same as in the Gaussian case. However, the assumption that the
vector � has finite exponential moments of arbitrary order is quite strict and is
not fulfilled in many applications. A particular example is given by the Poisson
and exponential cases. In the present work we only suppose that some exponential
moments of � are finite. This makes the problem much more involved and requires
new approaches and tools.

If � is standard normal then k�k2 is chi-squared with p degrees of freedom.
We aim to extend this behavior to the case of a general vector � satisfying the
following exponential moment condition:

logE exp
�

>�

� � k
k2=2; 
 2 Rp; k
k � g: (A.1)

Here g is a positive constant which appears to be very important in our results.
Namely, it determines the frontier between the Gaussian and non-Gaussian type
deviation bounds. Our first result shows that under (A.1) the deviation bounds for

V. Spokoiny and T. Dickhaus, Basics of Modern Mathematical Statistics,
Springer Texts in Statistics, DOI 10.1007/978-3-642-39909-1,
© Springer-Verlag Berlin Heidelberg 2015
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the quadratic form k�k2 are essentially the same as in the Gaussian case, if the
value g2 exceeds Cp for a fixed constant C . Further we extend the result to
the case of a more general form kB�k2 . An important advantage of the presented
approach which makes it different from all the previous studies is that there is no
any additional conditions on the structure or origin of the vector � . For instance,
we do not assume that � is a sum of independent or weakly dependent random
variables, or components of � are independent. The results are exact stated in a non-
asymptotic fashion, all the constants are explicit and the leading terms are sharp.

As a motivating example, we consider a linear regression model Y D ‰>�� C"
in which Y is a n -vector of observations, " is the vector of errors with zero mean,
and ‰ is a p � n design matrix. The ordinary least square estimator Q� for the
parameter vector �� 2 Rp reads as

Q� D �
‰‰>��1‰Y

and it can be viewed as the maximum likelihood estimator in a Gaussian linear
model with a diagonal covariance matrix, that is, Y � N.‰>� ; �2In/ . Define the
p � p matrix

D2
0

defD ‰‰>;

Then

D0. Q� � ��/ D D�1
0 �

with �
defD ‰" . The likelihood ratio test statistic for this problem is exactly

kD�1
0 �k2=2 . Similarly, the model selection procedure is based on comparing such

quadratic forms for different matrices D0 ; see e.g. Baraud (2010).
Now we indicate how this situation can be reduced to a bound for a vector �

satisfying the condition (A.1). Suppose for simplicity that the entries "i of the error
vector " are independent and have exponential moments.

.e1/ There exist some constants �0 and g1 > 0 , and for every i a constant si
such that E

�
"i=si

�2 � 1 and

logE exp
�
"i=si

� � �20
2=2; jj � g1: (A.2)

Here g1 is a fixed positive constant. One can show that if this condition is
fulfilled for some g1 > 0 and a constant �0 
 1 , then one can get a similar
condition with �0 arbitrary close to one and g1 slightly decreased. A natural
candidate for si is �i where �2i D E"2i is the variance of "i . Under (A.2),
introduce a p � p matrix V0 defined by

V 2
0

defD
X

s2i ‰i‰
>
i ;



A.2 Gaussian Case 271

where ‰1; : : : ; ‰n 2 Rp are the columns of the matrix ‰ . Define also

� D V �1
0 ‰";

N�1=2 defD max
i

sup

2Rp

si j‰>
i 
j

kV0
k :

Simple calculation shows that for k
k � g D g1N 1=2

logE exp
�

>�

� � �20k
k2=2; 
 2 Rp; k
k � g:

We conclude that (A.1) is nearly fulfilled under .e1/ and moreover, the value g2 is
proportional to the effective sample size N . The results below allow to get a nearly
	2 -behavior of the test statistic k�k2 which is a finite sample version of the famous
Wilks phenomenon; see e.g. Fan et al. (2001), Fan and Huang (2005), Boucheron
and Massart (2011).

Section A.2 reminds the classical results about deviation probability of a
Gaussian quadratic form. These results are presented only for comparison and to
make the presentation selfcontained.

Section A.3 studies the probability of the form P
�k�k > y

�
under the condition

logE exp
�

>�

� � �20k
k2=2; 
 2 Rp; k
k � g:

The general case can be reduced to �0 D 1 by rescaling � and g :

logE exp
�

>�=�0

� � k
k2=2; 
 2 Rp; k
k � �0g

that is, ��1
0 � fulfills (A.1) with a slightly increased g .

The obtained result is extended to the case of a general quadratic form in
Sect. A.4. Some more extensions motivated by different statistical problems are
given in Sects. A.6 and A.7. They include the bound with sup-norm constraint and
the bound under Bernstein conditions. Among the statistical problems demanding
such bounds is estimation of the regression model with Poissonian or bounded
random noise. More examples can be found in Baraud (2010). All the proofs are
collected in Sect. A.8.

A.2 Gaussian Case

Our benchmark will be a deviation bound for k�k2 for a standard Gaussian vector
� . The ultimate goal is to show that under (A.1) the norm of the vector �
exhibits behavior expected for a Gaussian vector, at least in the region of moderate
deviations. For the reason of comparison, we begin by stating the result for a
Gaussian vector � . We use the notation a _ b for the maximum of a and b ,
while a ^ b D minfa; bg .
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Theorem A.2.1. Let � be a standard normal vector in Rp . Then for any u > 0 ,
it holds

P
�k�k2 > p C u

� � exp
˚�.p=2/�.u=p/��

with

�.t/
defD t � log.1C t/:

Let ��1.	/ stand for the inverse of �.	/ . For any x ,

P
�k�k2 > p C p ��1.2x=p/

� � exp.�x/:

This particularly yields with ~ D 6:6

P
�k�k2 > p C p

~xp _ .~x/� � exp.�x/:

This is a simple version of a well known result and we present it only for
comparison with the non-Gaussian case. The message of this result is that the
squared norm of the Gaussian vector � concentrates around the value p and its
deviation over the level p C p

xp is exponentially small in x .
A similar bound can be obtained for a norm of the vector B� where B is

some given deterministic matrix. For notational simplicity we assume that B is
symmetric. Otherwise one should replace it with .B>B/1=2 .

Theorem A.2.2. Let � be standard normal in Rp . Then for every x > 0 and any
symmetric matrix B , it holds with p D tr.B2/ , v2 D 2 tr.B4/ , and a� D kB2k1

P
�kB�k2 > pC .2vx1=2/ _ .6a�x/

� � exp.�x/:

Below we establish similar bounds for a non-Gaussian vector � obeying (A.1).

A.3 A Bound for the `2 -Norm

This section presents a general exponential bound for the probability P
�k�k > y

�

under (A.1). The main result tells us that if y is not too large, namely if y �
yc with y2c � g2 , then the deviation probability is essentially the same as in the
Gaussian case.

To describe the value yc , introduce the following notation. Given g and p ,
define the values w0 D gp�1=2 and wc by the equation

wc.1C wc/

.1C w2c/
1=2

D w0 D gp�1=2: (A.3)
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It is easy to see that w0=
p
2 � wc � w0 . Further define


c
defD w2c=.1C w2c/

yc
defD
q
.1C w2c/p;

xc
defD 0:5p

�
w2c � log

�
1C w2c

��
: (A.4)

Note that for g2 
 p , the quantities yc and xc can be evaluated as y2c 
 w2cp 

g2=2 and xc & pw2c=2 
 g2=4 .

Theorem A.3.1. Let � 2 Rp fulfill (A.1). Then it holds for each x � xc

P
�k�k2 > p C p

~xp _ .~x/; k�k � yc
� � 2 exp.�x/;

where ~ D 6:6 . Moreover, for y 
 yc , it holds with gc D g�p

cp D gwc=.1C

wc/

P
�k�k > y

� � 8:4 exp
˚�gcy=2� .p=2/ log.1 � gc=y/

�

� 8:4 exp
˚�xc � gc.y � yc/=2

�
:

The statements of Theorem A.4.1 can be simplified under the assumption g2
p.

Corollary A.3.1. Let � fulfill (A.1) and g2 
 p . Then it holds for x � xc

P
�k�k2 
 z.x; p/

� � 2e�x C 8:4e�xc ; (A.5)

z.x; p/
defD
(
p C p

~xp; x � p=~;

p C ~x p=~ < x � xc;
(A.6)

with ~ D 6:6 . For x > xc

P
�k�k2 
 zc.x; p/

� � 8:4e�x; zc.x; p/
defD ˇ
ˇyc C 2.x � xc/=gc

ˇ
ˇ2:

This result implicitly assumes that p � ~xc which is fulfilled if w20 Dg2=p 
 1:

~xc D 0:5~
�
w20 � log.1C w20/

�
p 
 3:3

�
1 � log.2/

�
p > p:

For x � xc , the function z.x; p/ mimics the quantile behavior of the chi-squared
distribution 	2p with p degrees of freedom. Moreover, increase of the value g
yields a growth of the sub-Gaussian zone. In particular, for g D 1 , a general
quadratic form k�k2 has under (A.1) the same tail behavior as in the Gaussian
case.
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Finally, in the large deviation zone x > xc the deviation probability decays
as e�cx1=2 for some fixed c . However, if the constant g in the condition (A.1)
is sufficiently large relative to p , then xc is large as well and the large deviation
zone x > xc can be ignored at a small price of 8:4e�xc and one can focus on the
deviation bound described by (A.5) and (A.6).

A.4 A Bound for a Quadratic Form

Now we extend the result to more general bound for kB�k2 D �>B2� with a given
matrix B and a vector � obeying the condition (A.1). Similarly to the Gaussian
case we assume that B is symmetric. Define important characteristics of B

p D tr.B2/; v2 D 2 tr.B4/; B
defD kB2k1

defD max.B
2/:

For simplicity of formulation we suppose that B D 1 , otherwise one has to replace
p and v2 with p=B and v2=B .

Let g be shown in (A.1). Define similarly to the `2 -case wc by the equation

wc.1C wc/

.1C w2c/
1=2

D gp�1=2:

Define also 
c D w2c=.1 C w2c/ ^ 2=3 . Note that w2c 
 2 implies 
c D 2=3 .
Further define

y2c D .1C w2c/p; 2xc D 
cy
2
c C log detfIp � 
cB

2g: (A.7)

Similarly to the case with B D Ip , under the condition g2 
 p , one can bound
y2c 
 g2=2 and xc & g2=4 .

Theorem A.4.1. Let a random vector � in Rp fulfill (A.1). Then for each x < xc

P
�kB�k2 > pC .2vx1=2/ _ .6x/; kB�k � yc

� � 2 exp.�x/:

Moreover, for y 
 yc , with gc D g � p

cp D gwc=.1C wc/ , it holds

P
�kB�k > y

� � 8:4 exp
��xc � gc.y � yc/=2

�
:

Now we describe the value z.x; B/ ensuring a small value for the large deviation
probability P

�kB�k2 > z.x; B/
�

. For ease of formulation, we suppose that g2 

2p yielding 
�1

c � 3=2 . The other case can be easily adjusted.

Corollary A.4.1. Let � fulfill (A.1) with g2 
 2p . Then it holds for x � xc with
xc from (A.7):
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P
�kB�k2 
 z.x; B/

� � 2e�x C 8:4e�xc ;

z.x; B/
defD
(
pC 2vx1=2; x � v=18;

pC 6x v=18 < x � xc:
(A.8)

For x > xc

P
�kB�k2 
 zc.x; B/

� � 8:4e�x; zc.x; B/
defD ˇ
ˇyc C 2.x� xc/=gc

ˇ
ˇ2:

A.5 Rescaling and Regularity Condition

The result of Theorem A.4.1 can be extended to a more general situation when the
condition (A.1) is fulfilled for a vector � rescaled by a matrix V0 . More precisely,
let the random p -vector � fulfills for some p � p matrix V0 the condition

sup

2Rp

logE exp
�


>�

kV0
k
�

� �20
2=2; jj � g; (A.9)

with some constants g > 0 , �0 
 1 . Again, a simple change of variables reduces
the case of an arbitrary �0 
 1 to �0 D 1 . Our aim is to bound the squared norm
kD�1

0 �k2 of a vector D�1
0 � for another p�p positive symmetric matrix D2

0 . Note
that condition (A.9) implies (A.1) for the rescaled vector � D V �1

0 � . This leads to
bounding the quadratic form kD�1

0 V0�k2 D kB�k2 with B2 D D�1
0 V

2
0 D

�1
0 . It

obviously holds

p D tr.B2/ D tr.D�2
0 V 2

0 /:

Now we can apply the result of Corollary A.4.1.

Corollary A.5.1. Let � fulfill (A.9) with some V0 and g . Given D0 , define B2 D
D�1
0 V

2
0 D

�1
0 , and let g2 
 2p . Then it holds for x � xc with xc from (A.7):

P
�kD�1

0 �k2 
 z.x; B/
� � 2e�x C 8:4e�xc ;

with z.x; B/ from (A.8). For x > xc

P
�kD�1

0 �k2 
 zc.x; B/
� � 8:4e�x; zc.x; B/

defD ˇ
ˇyc C 2.x� xc/=gc

ˇ
ˇ2:

In the regular case with D0 
 aV0 for some a > 0 , one obtains kBk1 � a�1
and

v2 D 2 tr.B4/ � 2a�2p:
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A.6 A Chi-Squared Bound with Norm-Constraints

This section extends the results to the case when the bound (A.1) requires some
other conditions than the `2 -norm of the vector 
 . Namely, we suppose that

logE exp
�

>�

� � k
k2=2; 
 2 Rp; k
kı � gı; (A.10)

where k 	 kı is a norm which differs from the usual Euclidean norm. Our driving
example is given by the sup-norm case with k
kı � k
k1 . We are interested to
check whether the previous results of Sect. A.3 still apply. The answer depends on
how massive the set A.r/ D f
 W k
kı � rg is in terms of the standard Gaussian
measure on Rp . Recall that the quadratic norm k"k2 of a standard Gaussian
vector " in Rp concentrates around p at least for p large. We need a similar
concentration property for the norm k 	 kı . More precisely, we assume for a fixed
r� that

P
�k"kı � r�

� 
 1=2; " � N.0; Ip/: (A.11)

This implies for any value uı > 0 and all u 2 Rp with kukı � uı that

P
�k" � ukı � r� C uı

� 
 1=2; " � N.0; Ip/:

For each z > p , consider


.z/ D .z � p/=z:

Given uı , denote by zı D zı.uı/ the root of the equation

gı

.zı/

� r�

1=2.zı/

D uı: (A.12)

One can easily see that this value exists and unique if uı 
 gı � r� and it can be
defined as the largest z for which gı


.z/
� r�


1=2.z/

 uı . Let 
ı D 
.zı/ be the

corresponding 
 -value. Define also xı by

2xı D 
ızı C p log.1 � 
ı/:

If uı < gı � r� , then set zı D 1 , xı D 1 .

Theorem A.6.1. Let a random vector � in Rp fulfill (A.10). Suppose (A.11) and
let, given uı , the value zı be defined by (A.12). Then it holds for any u > 0

P
�k�k2 > p C u; k�kı � uı

� � 2 exp
˚�.p=2/�.u/��: (A.13)
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yielding for x � xı

P
�k�k2 > p C p

~xp _ .~x/; k�kı � uı
� � 2 exp.�x/; (A.14)

where ~ D 6:6 . Moreover, for z 
 zı , it holds

P
�k�k2 > z; k�kı � uı

� � 2 exp
˚�
ız=2 � .p=2/ log.1 � 
ı/

�

D 2 exp
˚�xı � gı.z � zı/=2

�
:

It is easy to check that the result continues to hold for the norm of …� for a
given sub-projector … in Rp satisfying … D …> , …2 � … . As above, denote

p
defD tr.…2/ , v2

defD 2 tr.…4/ . Let r� be fixed to ensure

P
�k…"kı � r�

� 
 1=2; " � N.0; Ip/:

The next result is stated for gı 
 r� C uı , which simplifies the formulation.

Theorem A.6.2. Let a random vector � in Rp fulfill (A.10) and … follows … D
…> , …2 � … . Let some uı be fixed. Then for any 
ı � 2=3 with gı
�1ı �
r�
�1=2ı 
 uı ,

E exp
n
ı
2
.k…�k2 � p/

o
�
�k…2�kı � uı

� � 2 exp.
2ıv2=4/; (A.15)

where v2 D 2 tr.…4/ . Moreover, if gı 
 r� C uı , then for any z 
 0

P
�k…�k2 > z; k…2�kı � uı

�

� P
�k…�k2 > pC .2vx1=2/ _ .6x/; k…2�kı � uı

� � 2 exp.�x/:

A.7 A Bound for the `2 -Norm Under Bernstein Conditions

For comparison, we specify the results to the case considered recently in Baraud
(2010). Let � be a random vector in Rn whose components �i are independent
and satisfy the Bernstein type conditions: for all jj < c�1

logEe�i � 2�2

1 � cjj : (A.16)

Denote � D �=.2�/ and consider k
kı D k
k1 . Fix gı D �=c . If k
kı � gı ,
then 1 � c�i=.2�/ 
 1=2 and

logE exp
�

>�

� �
X

i

logE exp
��i�i
2�

�
�
X

i

j�i=.2�/j2�2
1 � c�i =.2�/ � k
k2=2:
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Let also S be some linear subspace of Rn with dimension p and …S denote the
projector on S . For applying the result of Theorem A.6.1, the value r� has to be
fixed. We use that the infinity norm k"k1 concentrates around

p
2 logp .

Lemma A.7.1. It holds for a standard normal vector " 2 Rp with r� D p
2 logp

P
�k"kı � r�

� 
 1=2:

Indeed

P
�k"kı > r�

� � P
�k"k1 >

p
2 logp

� � pP
�j"1j >

p
2 logp

� � 1=2:

Now the general bound of Theorem A.6.1 is applied to bounding the norm of
k…S�k . For simplicity of formulation we assume that gı 
 uı C r� .

Theorem A.7.1. Let S be some linear subspace of Rn with dimension p . Let
gı 
 uı C r� . If the coordinates �i of � are independent and satisfy (A.16), then
for all x ,

P
�
.4�2/�1k…S�k2 > p C p

~xp _ .~x/; k…S�k1 � 2�uı
� � 2 exp.�x/;

The bound of Baraud (2010) reads

P

	
k…S�k2 >

�
3� _ p

6cu
�p

xC 3p; k…S�k1 � 2�uı



� e�x:

As expected, in the region x � xc of Gaussian approximation, the bound of Baraud
is not sharp and actually quite rough.

A.8 Proofs

Proof of Theorem A.2.1

The proof utilizes the following well known fact, which can be obtained by
straightforward calculus : for 
 < 1

logE exp
�

k�k2=2� D �0:5p log.1 � 
/:

Now consider any u > 0 . By the exponential Chebyshev inequality

P
�k�k2 > p C u

� � exp
˚�
.p C u/=2

�
E exp

�

k�k2=2� (A.17)

D exp
˚�
.p C u/=2� .p=2/ log.1 � 
/

�
:
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It is easy to see that the value 
 D u=.u Cp/ maximizes 
.pC u/Cp log.1�
/
w.r.t. 
 yielding


.p C u/C p log.1 � 
/ D u � p log.1C u=p/:

Further we use that x�log.1Cx/ 
 a0x
2 for x � 1 and x�log.1Cx/ 
 a0x for

x > 1 with a0 D 1 � log.2/ 
 0:3 . This implies with x D u=p for u D p
~xp

or u D ~x and ~ D 2=a0 < 6:6 that

P
�k�k2 
 p C p

~xp _ .~x/� � exp.�x/

as required.

Proof of Theorem A.2.2

The matrix B2 can be represented as U> diag.a1; : : : ; ap/U for an orthogonal
matrix U . The vector Q� D U � is also standard normal and kB�k2 D
Q�>
UB2U> Q� . This means that one can reduce the situation to the case of a diagonal

matrix B2 D diag.a1; : : : ; ap/ . We can also assume without loss of generality that
a1 
 a2 
 : : : 
 ap . The expressions for the quantities p and v2 simplifies to

p D tr.B2/ D a1 C : : :C ap;

v2 D 2 tr.B4/ D 2.a21 C : : :C a2p/:

Moreover, rescaling the matrix B2 by a1 reduces the situation to the case with
a1 D 1 .

Lemma A.8.1. It holds

EkB�k2 D tr.B2/; Var
�kB�k2� D 2 tr.B4/:

Moreover, for 
 < 1

E exp
˚

kB�k2=2� D det.1 � 
B2/�1=2 D

pY

iD1
.1 � 
ai /

�1=2: (A.18)

Proof. If B2 is diagonal, then kB�k2 D P
i ai �

2
i and the summands ai �2i are

independent. It remains to note that E.ai �
2
i / D ai , Var.ai �2i / D 2a2i , and for


ai < 1 ,

E exp
˚

ai �

2
i =2

� D .1 � 
ai /�1=2

yielding (A.18).
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Given u , fix 
 < 1 . The exponential Markov inequality yields

P
�kB�k2 > pC u

� � exp
n
�
.pC u/

2

o
E exp

�
kB�k2
2

�

� exp
n
�
u

2
� 1

2

pX

iD1

�

ai C log

�
1 � 
ai

��o
:

We start with the case when x1=2 � v=3 . Then u D 2x1=2v fulfills u � 2v2=3 .
Define 
 D u=v2 � 2=3 and use that t C log.1 � t/ 
 �t2 for t � 2=3 . This
implies

P
�kB�k2 > pC u

�

� exp
n
�
u

2
C 1

2

pX

iD1

2a2i

o
D exp

��u2=.4v2/
� D e�x: (A.19)

Next, let x1=2 > v=3 . Set 
 D 2=3 . It holds similarly to the above

pX

iD1

�

ai C log

�
1 � 
ai

�� 
 �
pX

iD1

2a2i 
 �2v2=9 
 �2x:

Now, for u D 6x and 
u=2 D 2x , (A.19) implies

P
�kB�k2 > pC u

� � exp
˚��2x � x

�� D exp.�x/

as required.

Proof of Theorem A.3.1

The main step of the proof is the following exponential bound.

Lemma A.8.2. Suppose (A.1). For any 
 < 1 with g2 > p
 , it holds

E exp
�
k�k2

2

�
�

�
k�k � g=
�

p
p=


�
� 2.1� 
/�p=2: (A.20)

Proof. Let " be a standard normal vector in Rp and u 2 Rp . The bound
P
�k"k2 > p

� � 1=2 and the triangle inequality imply for any vector u and any
r with r 
 kuk C p1=2 that P

�ku C "k � r
� 
 1=2 . Let us fix some � with

k�k � g=
 �p
p=
 and denote by P� the conditional probability given � . The

previous arguments yield:

P�
�k"C 
1=2�k � 
�1=2g

� 
 0:5:
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It holds with cp D .2�/�p=2

cp

Z
exp

�

>� � k
k2

2


�
�.k
k � g/d


D cp exp
�

k�k2=2�

Z
exp

�
�1
2



�1=2
 � 
1=2�


2
�
�.
�1=2k
k � 
�1=2g/d


D 
p=2 exp
�

k�k2=2�P�

�k"C 
1=2�k � 
�1=2g
�


 0:5
p=2 exp
�

k�k2=2�;

because k
1=2�k C p1=2 � 
�1=2g . This implies in view of p < g2=
 that

exp
�

k�k2=2���k�k2 � g=
�p

p=

�

� 2
�p=2cp
Z

exp
�

>� � k
k2

2


�
�.k
k � g/d
:

Further, by (A.1)

cpE

Z
exp

�

>� � 1

2

k
k2

�
�.k
k � g/d


� cp

Z
exp

�
�


�1 � 1

2
k
k2

�
�.k
k � g/d


� cp

Z
exp

�
�


�1 � 1

2
k
k2

�
d


� .
�1 � 1/�p=2

and (A.20) follows.

Due to this result, the scaled squared norm 
k�k2=2 after a proper truncation
possesses the same exponential moments as in the Gaussian case. A straightforward
implication is the probability bound P

�k�k2 > p C u
�

for moderate values u .
Namely, given u > 0 , define 
 D u=.u C p/ . This value optimizes the inequality
(A.17) in the Gaussian case. Now we can apply a similar bound under the constraints
k�k � g=
 � p

p=
 . Therefore, the bound is only meaningful if
p

u C p �
g=
�p

p=
 with 
 D u=.u C p/ , or, with w D p
u=p � wc ; see (A.3).

The largest value u for which this constraint is still valid, is given by pCu D y2c .
Hence, (A.20) yields for p C u � y2c

P
�k�k2 > p C u; k�k � yc

�

� exp
n
�
.p C u/

2

o
E exp

�
k�k2
2

�
�

�
k�k � g=
�

p
p=


�



282 A Deviation Probability for Quadratic Forms

� 2 exp
˚�0:5�
.p C u/C p log.1 � 
/

��

D 2 exp
˚�0:5�u � p log.1C u=p/

��
:

Similarly to the Gaussian case, this implies with ~ D 6:6 that

P
�k�k 
 p C p

~xp _ .~x/; k�k � yc
� � 2 exp.�x/:

The Gaussian case means that (A.1) holds with g D 1 yielding yc D 1 . In the
non-Gaussian case with a finite g , we have to accompany the moderate deviation
bound with a large deviation bound P

�k�k > y
�

for y 
 yc . This is done by
combining the bound (A.20) with the standard slicing arguments.

Lemma A.8.3. Let 
0 � g2=p . Define y0 D g=
0 �pp=
0 and g0 D 
0y0 D
g � p


0p . It holds for y 
 y0

P
�k�k > y

� � 8:4.1� g0=y/
�p=2 exp

��g0y=2
�

(A.21)

� 8:4 exp
˚�x0 � g0.y � y0/=2

�
: (A.22)

with x0 defined by

2x0 D 
0y
2
0 C p log.1 � 
0/ D g2=
0 � p C p log.1 � 
0/:

Proof. Consider the growing sequence yk with y1 D y and g0ykC1 D g0yC k .
Define also 
k D g0=yk . In particular, 
k � 
1 D g0=y . Obviously

P
�k�k > y

� D
1X

kD1
P
�k�k > yk; k�k � ykC1

�
:

Now we try to evaluate every slicing probability in this expression. We use that


kC1y2k D .g0yC k � 1/2

g0y C k

 g0y C k � 2;

and also g=
k �p
p=
k 
 yk because g � g0 D p


0p >
p

kp and

g=
k �
p
p=
k � yk D 
�1

k .g � p

kp � g0/ 
 0:

Hence by (A.20)

P
�
k�k > y

�
D

1X

kD1
P
�
k�k > yk; k�k � ykC1

�
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�
1X

kD1
exp

�
�
kC1y2k

2

�
E exp

�
kC1k�k2
2

�
�
�k�k � ykC1

�

�
1X

kD1
2
�
1 � 
kC1

��p=2
exp

�
�
kC1y2k

2

�

� 2
�
1 � 
1

��p=2 1X

kD1
exp

�
�g0yC k � 2

2

�

D 2e1=2.1 � e�1=2/�1.1 � 
1/�p=2 exp
��g0y=2

�

� 8:4.1� 
1/�p=2 exp
��g0y=2

�

and the first assertion follows. For y D y0 , it holds

g0y0 C p log.1 � 
0/ D 
0y
2
0 C p log.1 � 
0/ D 2x0

and (A.21) implies P
�k�k > y0

� � 8:4 exp.�x0/ . Now observe that the function
f .y/ D g0y=2 C .p=2/ log

�
1 � g0=y

�
fulfills f .y0/ D x0 and f 0.y/ 
 g0=2

yielding f .y/ 
 x0 C g0.y � y0/=2 . This implies (A.22).

The statements of the theorem are obtained by applying the lemmas with 
0 D

c D w2c=.1 C w2c/ . This also implies y0 D yc , x0 D xc , and g0 D gc D
g � p


cp ; cf. (A.4).

Proof of Theorem A.4.1

The main steps of the proof are similar to the proof of Theorem A.3.1.

Lemma A.8.4. Suppose (A.1). For any 
 < 1 with g2=
 
 p , it holds

E exp
�

kB�k2=2���kB2�k�g=
�pp=


� � 2det.Ip�
B2/�1=2: (A.23)

Proof. With cp.B/ D �
2�
��p=2

det.B�1/

cp.B/

Z
exp

�

>� � 1

2

kB�1
k2

�
�.k
k � g/d


D cp.B/ exp
�
kB�k2

2

� Z
exp

�
�1
2



1=2B� � 
�1=2B�1



2
�
�.k
k � g/d


D 
p=2 exp
�
kB�k2

2

�
P�
�k
�1=2B"C B2�k � g=


�
;
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where " denotes a standard normal vector in Rp and P� means the conditional
probability given � . Moreover, for any u 2 Rp and r 
 p1=2 C kuk , it holds in
view of P

�kB"k2 > p
� � 1=2

P
�kB" � uk � r

� 
 P
�kB"k � p

p
� 
 1=2:

This implies

exp
�

kB�k2=2

�
�
�kB2�k � g=
�p

p=

�

� 2
�p=2cp.B/
Z

exp
�

>� � 1

2

kB�1
k2

�
�.k
k � g/d
:

Further, by (A.1)

cp.B/E

Z
exp

�

>� � 1

2

kB�1
k2

�
�.k
k � g/d


� cp.B/

Z
exp

�k
k2
2

� 1

2

kB�1
k2

�
d


� det.B�1/ det.
�1B�2 � Ip/�1=2 D 
p=2 det.Ip � 
B2/�1=2

and (A.23) follows.

Now we evaluate the probability P
�kB�k > y

�
for moderate values of y .

Lemma A.8.5. Let 
0 < 1^ .g2=p/ . With y0 D g=
0�pp=
0 , it holds for any
u > 0

P
�kB�k2 > pC u; kB2�k � y0

�

� 2 exp
˚�0:5
0.p C u/� 0:5 log det.Ip � 
0B2/

�
: (A.24)

In particular, if B2 is diagonal, that is, B2 D diag
�
a1; : : : ; ap

�
, then

P
�kB�k2 > pC u; kB2�k � y0

�

� 2 exp
n
�
0u
2

� 1

2

pX

iD1

�

0ai C log

�
1 � 
0ai

��o
: (A.25)

Proof. The exponential Chebyshev inequality and (A.23) imply

P
�kB�k2 > pC u; kB2�k � y0

�

� exp
n
�
0.pC u/

2

o
E exp

�
0kB�k2
2

�
�
�kB2�k � g=
0 �p

p=
0
�

� 2 exp
˚�0:5
0.pC u/� 0:5 log det.Ip � 
0B2/

�
:
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Moreover, the standard change-of-basis arguments allow us to reduce the problem
to the case of a diagonal matrix B2 D diag

�
a1; : : : ; ap

�
where 1 D a1 
 a2 


: : : 
 ap > 0 . Note that p D a1 C : : :C ap . Then the claim (A.24) can be written
in the form (A.25).

Now we evaluate a large deviation probability that kB�k > y for a large y .
Note that the condition kB2k1 � 1 implies kB2�k � kB�k . So, the bound
(A.24) continues to hold when kB2�k � y0 is replaced by kB�k � y0 .

Lemma A.8.6. Let 
0 < 1 and 
0p < g2 . Define g0 by g0 D g � p

0p . For

any y 
 y0
defD g0=
0 , it holds

P
�kB�k > y

� � 8:4 detfIp � .g0=y/B
2g�1=2 exp

��g0y=2
�
:

� 8:4 exp
��x0 � g0.y � y0/=2

�
; (A.26)

where x0 is defined by

2x0 D g0y0 C log detfIp � .g0=y0/B
2g:

Proof. The slicing arguments of Lemma A.8.3 apply here in the same manner. One
has to replace k�k by kB�k and .1 � 
1/

�p=2 by detfIp � .g0=y/B2g�1=2 . We
omit the details. In particular, with y D y0 D g0=
 , this yields

P
�kB�k > y0

� � 8:4 exp.�x0/:

Moreover, for the function f .y/ D g0y C log detfIp � .g0=y/B2g , it holds
f 0.y/ 
 g0 and hence, f .y/ 
 f .y0/ C g0.y � y0/ for y > y0 . This implies
(A.26).

One important feature of the results of Lemma A.8.5 and Lemma A.8.6 is that
the value 
0 < 1 ^ .g2=p/ can be selected arbitrarily. In particular, for y 
 yc ,
Lemma A.8.6 with 
0 D 
c yields the large deviation probability P

�kB�k >

y
�

. For bounding the probability P
�kB�k2 > p C u; kB�k � yc

�
, we use the

inequality log.1 � t/ 
 �t � t2 for t � 2=3 . It implies for 
 � 2=3 that

� logP
�kB�k2 > pC u; kB�k � yc

�


 
.pC u/C
pX

iD1
log
�
1 � 
ai

�


 
.pC u/�
pX

iD1
.
ai C 
2a2i / 
 
u � 
2v2=2: (A.27)

Now we distinguish between 
c D 2=3 and 
c < 2=3 starting with 
c D 2=3 .
The bound (A.27) with 
 D 2=3 and with u D .2vx1=2/ _ .6x/ yields
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P
�kB�k2 > p C u; kB�k � yc

� � 2 exp.�x/I

see the proof of Theorem A.2.2 for the Gaussian case.
Now consider 
c < 2=3 . For x1=2 � 
cv=2 , use u D 2vx1=2 and 
0 D u=v2 .

It holds 
0 D u=v2 � 
c and u2=.4v2/ D x yielding the desired bound by (A.27).
For x1=2 > 
cv=2 , we select again 
0 D 
c . It holds with u D 4
�1

c x that

cu=2� 
2cv

2=4 
 2x � x D x . This completes the proof.

Proof of Theorem A.6.1

The arguments behind the result are the same as in the one-norm case of Theo-
rem A.3.1. We only outline the main steps.

Lemma A.8.7. Suppose (A.10) and (A.11). For any 
 < 1 with gı > 
1=2r� , it
holds

E exp
�

k�k2=2���k�kı � gı=
� r�=
1=2

� � 2.1� 
/�p=2: (A.28)

Proof. Let " be a standard normal vector in Rp and u 2 Rp . Let us fix some �
with 
1=2k�kı � 
�1=2gı �r� and denote by P� the conditional probability given
� . It holds by (A.11) with cp D .2�/�p=2

cp

Z
exp

�

>� � 1

2

k
k2

�
�.k
kı � gı/d


D cp exp
�

k�k2=2�

Z
exp

�
�1
2



1=2� � 
�1=2



2
�
�.k
�1=2
kı � 
�1=2gı/d


D 
p=2 exp
�

k�k2=2�P�

�k" � 
1=2�kı � 
�1=2gı
�


 0:5
p=2 exp
�

k�k2=2�:

This implies

exp
�
k�k2

2

�
�
�k�kı � gı=
� r�=
1=2

�

� 2
�p=2cp
Z

exp
�

>� � 1

2

k
k2

�
�.k
kı � gı/d
:

Further, by (A.10)

cpE

Z
exp

�

>� � 1

2

k
k2

�
�.k
kı � gı/d
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� cp

Z
exp

�
�


�1 � 1

2
k
k2

�
d
 � .
�1 � 1/�p=2

and (A.28) follows.

As in the Gaussian case, (A.28) implies for z > p with 
 D 
.z/ D .z �
p/=z the bounds (A.13) and (A.14). Note that the value 
.z/ clearly grows with
z from zero to one, while gı=
.z/ � r�=
1=2.z/ is strictly decreasing. The value
zı is defined exactly as the point where gı=
.z/ � r�=
1=2.z/ crosses uı , so that
gı=
.z/ � r�=
1=2.z/ 
 uı for z � zı .

For z > zı , the choice 
 D 
.y/ conflicts with gı=
.z/ � r�=
1=2.z/ 
 uı .
So, we apply 
 D 
ı yielding by the Markov inequality

P
�k�k2 > z; k�kı � uı

� � 2 exp
˚�
ız=2 � .p=2/ log.1 � 
ı/

�
;

and the assertion follows.

Proof of Theorem A.6.2

Arguments from the proof of Lemmas A.8.4 and A.8.7 yield in view of gı
�1ı �
r�
�1=2ı 
 uı

E exp
˚

ık…�k2=2

o
�
�k…2�kı � uı

�

� E exp
�

ık…�k2=2���k…2�kı � gı=
ı � p=
1=2ı

�

� 2det.Ip � 
ı…2/�1=2:

The inequality log.1 � t/ 
 �t � t2 for t � 2=3 and symmetricity of the matrix
… imply

� log det.Ip � 
ı…2/ � 
ıpC 
2ıv2=2

cf. (A.27); the assertion (A.15) follows.
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