


ATLANTIS STUDIES IN PROBABILITY AND STATISTICS

VOLUME 1

SERIES EDITOR: CHRIS P. TSOKOS



Atlantis Studies in Probability and Statistics

Series Editor:

Chris P. Tsokos, University of South Florida,

Tampa, USA

(ISSN: 1879-6893)

Aims and scope of the series

The Series ‘Atlantis Studies in Probability and Statistics’ publishes studies of high-quality

throughout the areas of probability and statistics that have the potential to make a significant

impact on the advancement in these fields. Emphasis is given to broad interdisciplinary

areas at the following three levels:

(I) Advanced undergraduate textbooks, i.e., aimed at the 3rd and 4th years of under-

graduate study, in probability, statistics, biostatistics, business statistics, engineering

statistics, operations research, etc.;

(II) Graduate level books, and research monographs in the above areas, plus Bayesian,

non-parametric, survival analysis, reliability analysis, etc.;

(III) Full Conference Proceedings, as well as Selected topics from Conference Proceed-

ings, covering frontier areas of the field, together with invited monographs in special

areas. All proposals submitted in this series will be reviewed by the Editor-in-Chief,

in consultation with Editorial Board members and other expert reviewers.

For more information on this series and our other book series, please visit our website at:

www.atlantis-press.com/publications/books

AMSTERDAM – PARIS

c© ATLANTIS PRESS



Bayesian Theory and Methods
with Applications

Vladimir P. Savchuk
National Metallurgical Academy of Ukraine

Gagarina Av. 4, 49600 Dnipropetrovsk, Ukraine

Chris P. Tsokos
University of South Florida

Department of Mathematics and Statistics

1202 Parrilla de Avila, Tampa, FL 33613, USA

AMSTERDAM – PARIS



Atlantis Press
8, square des Bouleaux
75019 Paris, France

For information on all Atlantis Press publications, visit our website at: www.atlantis-press.com

Copyright
This book is published under the Creative Commons Attribution-Non-commercial license, meaning
that copying, distribution, transmitting and adapting the book is permitted, provided that this is done
for non-commercial purposes and that the book is attributed.

This book, or any parts thereof, may not be reproduced for commercial purposes in any form or by
any means, electronic or mechanical, including photocopying, recording or any information storage
and retrieval system known or to be invented, without prior permission from the Publisher.

Atlantis Studies in Probability and Statistics

ISBNs
Print: 978-94-91216-13-8
E-Book: 978-94-91216-1 -
ISSN: 1879-6893

c© 2011 ATLANTIS PRESS

4 5



Preface

This textbook aimed at the advanced undergraduate and graduate readership is devoted to

a systematic account of the fundamentals of the Bayes theory of statistical estimation with

applications to the analysis of engineering reliability. Lately, there has been a significant

trend toward using the Bayesian approach to develop and analyze problems in different

fields of our society. At the same time, the Bayes theory is characterized by an inner logi-

cal harmony and simplicity which makes it still more attractive for applied purposes. The

application of the bayes theory and methods in the field of reliability gives us the opportu-

nity to save money and time assigned for experiments owing to utilization of relevant prior

information instead of the corresponding number of trials.

The subject matter of the book pursues the following double aim:

1. To give an account of the present state of the Bayes theory and methods with emphasis

on application.

2. To demonstrate how we can use the Bayes approach for the evaluation of the reliability

function in the calculations of reliability which, in practice, covers a great variety of the

problems of statistical analysis of engineering reliability.

The distinguishing feature of this monograph is a close unity of fundamental investigation

of the main principles of the Bayes theory with clear presentation of its practical applica-

tions. The rendering of the fundamentals of the Bayes methodology follows the classical

works by Ramsey, Good, Savage, Jefferys, and De Groot, while its present state is repre-

sented by the results produced during the last 30 years by a number of scientists from the

U.S.A., Canada and countries of Western Europe. The greater part of the monograph is

comprised of the presentation of new and original results of the author, the most significant

of which are Bayes quasi-parametric estimators, Bayes relative minimax estimators un-

der the conditions of a partial prior information, and the estimators of the working capacity

v



vi Bayesian Theory and Methods with Applications

with an additive error. The Bayes procedures suggested in the monograph are distinguished

by a simple way of representation of prior information and use of censored samples that

undoubtedly testify to their practical usefulness. The subject methodology presented in this

monograph is illustrated with a great number of examples.

Chapter 1 of the monograph plays the role of an introduction and is, in fact, a brief excur-

sion into the history of the Bayes approach. The general principles of the Bayes approach

and hierarchical Bayes methodology are discussed in this chapter. Also included are the

varieties of subjective probability constructions, as well as an application of the Bayes

methodology in the reliability field.

Chapter 2 describes the components of the Bayes approach. In particular, forms of loss

functions, choice of the prior probability distribution and the general procedure of reliabil-

ity estimation are considered.

A systematic description of accepted estimation procedures is given in Chapter 3. The

authors demonstrate the process of solving the problems of survival probability estimation

from accelerated life tests.

Chapter 4 is devoted to non-parametric Bayes estimation which, in our opinion, is the front

line of Bayes theory. Nonparametric Bayes estimators in which the Dirichlet processes are

not used are discussed. The authors also consider the nonparametric bayes approach of

quantile estimation for increasing failure rate.

A detailed presentation of a new method called “quasi-parametric” is given in Chapter 5.

Bayes estimators of a reliability function for a restricted increasing failure rate distribution

are studied.

Chapter 6 deals with the class of Bayes estimators of a reliability function under the con-

ditions of partial prior information. The setting of the problem and its general solution that

yields a new type of estimator are considered.

Chapter 7 is devoted to empirical Bayes estimators first suggested by Robins. The main

results are described briefly. The authors present a new method based on the idea of quasi-

parametrical estimation.

Chapters 8–10 are united by common contents that are based on a reliability estimation

using functional models of working capacity.

The monograph is addressed (first and foremost) to practicing scientists, though it also

deals with a number of theoretical problems. The monograph is a blend of thorough,

mathematically-strict presentations of the subject matter and it is easily readable. The

monograph can be a useful, authoritative and fundamental source of reference for training
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Chapter 1

General Questions of Bayes Theory

1.1 A brief excursus into the history of the Bayes approach

The Bayes approach is credited to the well-known paper by Thomas Bayes which was

published. Nearly three years after his death. G. Crellin asserts [50] that the Bayes notes

concerned with the ideas touching upon the field, named the Bayes approach, were dis-

covered by Richard Price, who sent them to the Royal Society under the title “Note on

the Solution of a Problem in a Doctrine about an Event”. A current account of this paper

can be found in [13]. R.A. Fisher [84] gives an analysis of Bayes’ work in terms we use

now. Later, some of the opponents of the Bayes approach ascertained that this work was

not published in his lifetime because of Bayes’ doubt about the validity of the conclusions

proposed in it. Such a point-of-view about an event which happened more than 200 years

ago may be considered at least strange and, in any case, cannot be used as an argument in

a scientific dispute.

We now turn our attention to the importance of the Bayes Theory foundations. In the second

part of his work (the first one does not have any new ideas), Bayes considers a speculative

trial with a successive rolling of two balls. The rolling of the first ball corresponds to some

number from the interval [0,1]. The rolling of the second ball forms the sequence of n

binomial outcomes with the probabilities of success p and failure (1− p) for each trial.

Suppose that X is the number of successes and Y the number of failures. Then we can write

P{p1 � p � p2, X = a, Y = b} =
∫ p2

p1

n!
a!b!

pa(1− p)bdp. (1.1)

Putting p1 = 0, p2 = 1 in (1.1) we obtain

P{X = a, y = b} =
∫ 1

0

n!
a!b!

pa(1− p)bdp =
1

n+1
. (1.2)

Thus, the parameter p is assumed to be random and the probability of the event of p being in

the interval dp is proportional to the length of this segment. In other words, p is distributed

1



2 Bayesian Theory and Methods with Applications

uniformly in [0,1]. This fact is also emphasized by the corollary of (1.2) which asserts

the probability of observing a successes and b failures is a priori independent of the values

of a and b but depends on the sum of a and b. The property of uniformness of the prior

distribution appears to be somewhat obscure in the Bayes work and is often disregarded.

This problem is the subject of the special analysis in the work by A. Edwards [72].

The following Bayes lemma determines the conditional posterior probability of a random

parameter p falling into some interval [p1, p2]:

P{p1 � p � p2 | X = a, Y = b} =
(n+1)!

a!b!

∫ p2

p1

pa(1− p)bdp. (1.3)

1.2 The Philosophy of the Bayes Approach

Philosophic aspects of Bayes theory can be separated into two groups dealing with: 1) the

relationship between inductive and deductive ways of thinking; and 2) the interpretation of

probability.

The deductive approach of thinking played a major role in scientific practice during the

time of formation of the Bayes method. Bayes results have actually shown how one can

transform the inductive judgement problem into the problem of probability.

At the present time, the question of the relationship between induction and deduction is

being solved more seriously and completely using Bayes theory Jeffrey’s book [115] gives

a complete analysis of the relationship between induction and deduction, including the

leading role of the Bayes approach.

Jeffrey’s discusses two basic arguments. First, the deductive method itself cannot build an

adequate base for all possible conclusions of any applied science. The second argument of

Jeffrey’s leans in favor of the arbitrarily-takennon-uniqueness of the tool of deductive logic

is that for any drawn observation set there exists a huge number of describing laws.

Broader choice principles are necessary. One of them is the simplicity principle of “Oc-

cam’s” blade [275]. Therefore, deductive thinking is a very important element of any sci-

entific conclusion of learning experience. Knowledge obtained this way partially contains

the results of previous observations that are going to be used for the prediction of a future

result. Jeffrey’s calls this part of knowledge a generalization or induction. Jeffrey’s consid-

ers deductive logic as a special case of inductive logic. Two basic terms “true” and “false”

are limit cases of the values given by the inductive logic.

Thus, according to Jeffrey’s, the main part of induction is a generalization of previous ex-

perience and empirical data for the purpose of analysis of observable events and prediction
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of future events. To order the induction process Jeffrey’s states eight rules (five basic and

three auxiliary):

1. All the hypotheses must be clearly stated and all conclusions must be derived only from

these hypotheses.

2. An inductive theory must not be self-contradictory.

3. Any given law must be practically doable. The definition is useless unless the object

defined can be recognized with this definition.

4. An inductive theory must consider the possibility of the fact that conclusions derived

with this theory may be wrong.

5. Inductive theory must not reject empirical observation “a-priori”.

The other three auxiliary rules carry the following sense.

6. The number of postulates must be minimized.

7. Although we do not consider the human brain as a perfect thinking instrument, we have

to accept it as useful and as the only one available.

8. Taking into account the complexity of induction, we cannot hope to develop it better

than deduction. Therefore, we should discard any statement that contradicts one of pure

mathematics.

As suggested by Jeffrey’s, induction theory looks reasonable and has obvious practical

value. However, if we had accepted it as a starting point, we would have come to a contra-

diction with the most common “frequency” interpretation of probability.

Let us note that from the point of view of mathematics, probability is the function of the

set satisfying the axioms of general measure theory. In order to apply the theorems of

mathematical probability (including Bayes theory), it is enough to accept the fact that those

axioms are fulfilled. At the same time, all the conclusions can have different interpretations

depending on the sense of the initial definition of probability.

There are two poles of the probability theory: objective and subjective probability. In the

objective sense, a probability of an event A is considered together with the fulfilment of

certain conditions [90]. We should select two things here: first, principal regeneration;

and second, an infinite number of experiments with conditions remaining constant. Both

attributes a rein direct contradiction with the third rule of Jeffrey’s. In other words, it

becomes unacceptable to describe real or possible events by the objective definition of

probability.

In the subjective sense, probability is a qualitative estimate of the possibility of the event

given, for example, by the individual experience of the investigator. Subjective probability
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is adequate to the theory of inductive conclusions and satisfies the axioms of probability at

the same time. It is evident that all the trust levels are very approximate.

Considering the relationship between two interpretations of probability,it is necessary to

investigate two important questions. The first approaches concerned with the notion of

randomness associated with the Bayes approach, the second with studying the real meaning

of the term “objective”.

The existing disagreements between “subjectivists” and “objectivists” are of a mostly ter-

minological nature. As a matter of fact, when talking about probability, people always

mean frequency.

All the philosophical questions considered in this section justify the use of Bayes’ approach

as a general system of inductive thinking, and explain the irrelevance of the approach of

scientists who firmly stand on objectivist positions.

1.3 The General Principles of Bayes Methodology

We understand the methodology of the Bayes approach as a collection of constructing

principles, forms and learning methods. Let us first try to understand the basics of Bayes

theory. Often when talking about only Bayes theory people think about only certain aspects

of it. At the same time, the modern understanding of Bayes approach is a complete theory

naturally containing the following statements.

Statement 1. The parameter of the system studied is random. Moreover, the “randomness”

is understood not only in a general sense but also as “uncertainty”. A random parameter is

assigned prior distribution.

Statement 2. All the observed results and the prior distribution are unified by the Bayes

theorem in order to obtain a posterior distribution parameter.

Statement 3. A statistical conclusion or decision rule is accepted with a condition of

maximal estimated utility, in particular, the minimization of loss related to this rule.

We shall consider all these statements separately.

1.3.1 Possible interpretations of probability

Unlike classical estimate theory dealing with non-random parameters, Bayes’theory as-

sumes random parameters. This randomness is understood in a general sense, when the

values of the parameter are generated by the stable real mechanism with known properties
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or properties that can be obtained by the study of corresponding data.

In most of the cases involving technical problems, all the parameters of the system or

model are constants of the special kind that represent in certain idealized form some inner

properties of the system or model studied.The meaning of uncertainty can be easily seen

in the following example. The correlation between two physical values that are random

in a classical sense is studied. The coefficient of the correlation describes the correlation

itself and is an adequate characteristic of correlation. However, it is impossible to find,

more or less, its precise value without conducting a large number of experiments. From

previous experience, we know that this coefficient is non-negative. Hence, we conclude

that the coefficient is contained in the interval [0,1] and we don’t know which value in this

interval it takes. How can we measure its uncertainty? What mathematical instrument can

adequately characterize it? One of the possible variants is Jeffrey’s’ approach based on

rational levels of certainty.

An interpretation of judgment in Bayes methodology always has a probabilistic nature.

However, randomness is considered not only in a classical sense but also as uncertainty.

Probabilistic judgment can be one of three types:

1. By means of objective probability interpretation;

2. By means of rational levels of certainty that mostly are reduced to a mathematical rep-

resentation of the absence of prior knowledge;

3. By means of subjective levels of confidence that represent the personal relation of the

investigator to the event or system being studied.

All these areas of study in practice do not overlap.

1.3.2 A union of prior information and empirical data

Bayes theorem gives us the base to transfer from prior to posterior information by adding

empirical data. This process can be represented as a consequent gathering of information.

At the initial stage of study, one has certain information about the properties of the system

being studied based on previous experience. Except for non-formal experience, this con-

tains empirical data obtained before conducting a similar experiment. During the testing

the investigator collects new information that changes his judgment about the system prop-

erties. By doing this, he reconsiders and re-evaluates his prior information. Moreover, at

any moment of time we describe the system properties, and this description is complete in

a sense that we used all the information available. This process does not stop; it continues
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with every new empirical result.

Zelner’s probability reconsideration diagram [275] is very illustrative, see Fig. 1.1. Let

system properties be represented by, generally speaking, vector parameter θ ; Ia stands for

the initial information. Formalization of initial information is done by recording prior pa-

rameter distribution, which is conditional to Ia that is, h(θ | Ia). All empirical data collected

during the test are formalized by the “likelihood” function �(θ | x). The former represents

the probability (or probability density) of the empirical data observed and written as a func-

tion of the parameter. Essentially, to get �(θ | x) we need to know the model of the system

as a conditional probability distribution of a random variable or some other representation.

Bayes’ theorem, by means of the transformation

Initial
Information Ia

New
data x

Bayes
Theorem

A Posteriori
distribution

h(θ | Ia)

A Priori
distribution

h(θ | Ia)

Truthfulness
function
h(θ | x)

Fig. 1.1 Zelner’s probability reconsiderations diagram.

h

⎛
⎜⎝θ | x, Ia =

h(θ | x, Ia)�(θ | x)∫
h(θ | x, Ia�(θ | x)dθ

⎞
⎟⎠

allows us to obtain posterior probability distribution of the parameter θ : h(θ | x, Ia), that is

conditional with respect to the initial information Ia and empirical data x.

The more information we collect, the more it dominates in the posterior distribution. The

distribution density accumulates near the true value of the parameter. If two investigators

used different prior information, their a posterior distributions get closer and closer to each

other.

This pattern is called an orthodox Bayes procedure. Its difference from other modifications

is that the prior distribution remains the same during the collection of empirical data. This

property was mentioned by De Finetti [61].
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Limer [140] gives a more complicated modification of the orthodox scheme that assumes a

possibility of correction of prior confidence levels, see Figure 1.2.

This modification is called rational Bayes procedure. The main feature of both Bayes

procedures, orthodox and rational, is that they always can be used for concrete calculations

and for the purposes of applying it to a broad spectrum of problems.

1.3.3 Optimality of Bayes estimation rules

The final result of all Bayes procedures described above is the posterior of the distribution

parameter characterizing the basic properties of the system or event under study. This dis-

tribution gives a clear and complete description of the parameter uncertainty. However, in

many situations it is necessary to have a shorter decision rule giving a parameter description

of one or several constants estimating an unknown parameter. Examples of such constants

are point estimates and Bayes confidence limits.

In a Bayes approach the difference between the parameter and its estimate can be found

in its utility function. The former characterizes losses that appear as a consequence of

substitution of the true parameter value by its estimate. The estimation rule is chosen so

that it minimizes the mathematical expectation of the loss function. This rule is general for

all problems of estimation theory, which is a great advantage of the Bayes approach.

The decision function which minimizes the expected losses is called by Vald [257] an

optimal Bayes solution with respect to the chosen prior distribution.

1.4 Subjective probabilities

The Bayes approach is based essentially on subjective probabilities and, due to this, the

conceptions of these probabilities are a part of the Bayes methodology. Below we con-

sider the foundations of the theory of subjective probabilities in connection with the Bayes

approach.

It was Jacob Bernulli who proposed, for the first time, to treat probabilities as degrees or

levels of confidence. This point-of-view appears in his book “The Skills of Assumptions”

which was published in 1713, eight years after his death. In the l9th Century, De Morgan

promoted the doctrine that a probability is not an objective characteristic of the external

universe, but a subjective quantity which may change from subject to subject. Further

development of the theory of subjective probabilities was obtained in the works by Ramsey

[203], De Finetti [61], Koopman [126], Savage [216], De Groot [63] and other authors.
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Hypothesis and
Trust levels

Choice of working
hypothesis and

correspondent trust
levels

A posteriori
distribution

Is the set of
working

hypothesis
complete?

Previous
experience

Empirical
data

Simplification of
Working hypothesis

No

Yes

Fig. 1.2 Limer scheme.

Here we set forth the main principles of this theory in accordance with the works by De

Finneti and De Groot.

For the ordering of confidence levels we introduce axiomatically the notion of the relalive

likelihood of an event (or a proposition) compared to another one. Further, A ≺ B indicates

that the event A is more probable than the event B; the notation A∼B is used for events with

the same likelihoods. Probability, starting from an intuitive point of view, is a numerical

measure of the likelihood of an event A. A probability distribution, having been given, not

only points out the difference in likelihoods of two events, but also indicates how much one

of the events is more probable than another.

It is important that a probability distribution be consistent with the relation �. For any
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probability distribution, defined on σ -algebra of the events, the property of consistency

means that P{A} � P{B} iff A � B. Let us suppose that the relation is subjected to the

following requirements.

1) For any two events A and B, one and only one of the following relations takes place:

A ≺ B, B ≺ A, A ∼ B.

2) If, for A1, A2, B1, B2, we have A1∩A2 = B1∩B2 = θ and Ai � Bi, then A1∪A2 � B1∪B2.

If, in addition to this, A1 ≺ B1 or A2 ≺ B2, then A1 ∪A2 ≺ B1 ∪B2.

3) Whatever an event A will be, θ � A. Moreover, θ ≺Ω, where Ω is a sample space.

4) If A1 ⊃ A2 . . . is a decreasing sequence of events, besides Ai � Bi, i = 1, 2, . . ., where B

is some fixed event, then
⋃n

i=1 Ai � B.

These assumptions appear to be axioms of the theory of subjective probabilities. Further,

it is proved first that the unique probability distribution associated with the relation � and,

second, the Kolmogorov’s probability axioms are valid for the random events, given by the

assumptions 1–4.

Subjective probabilities, being a numerical measure of an event likelihood, are found by

their comparison with the events having certain probabilities. In view of this circumstance,

we have to assume that there exists a class β of events with the following properties: 1) each

event from the class β has a certain probability; 2) for each number p (0 � p � 1) there is

an event B ∈ β the probability of which is equal to p. Thus, to determine the probability

of some event A, we need to find such an event B ∈ β that A ∼ B and to assign to A the

same probability as that of B. As events from the class β are chosen, the events of the form

Z ∈ I, where X is a random variable having uniform distribution on [0,1], I = [a,b]. In

particular, if I1 ⊂ I2, then {X ∈ I1} � {X ∈ I2}. To perform such a passing, we state one

last assumption: there exists a random variable with a uniform distribution in the interval

[0,1].

The above method of obtaining subjective probabilities was named byDe Groot [63] an

auxiliary experiment. Clearly, it is not necessary to carry out such an experiment; more-

over, even the existence of its establishment is redundant. It is sufficient that a statistician

imagine an ideal experiment which determines a random variable with the uniform distri-

bution and be able to compare the relative likelihood of the event he is interested in with

that of an arbitrary event of the form {X ∈ I}.

The uniqueness of the distribution P{A}is justified by the following theorem (proved in

[63]).
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Theorem 1.1. For any event A there is the unique number a∗ (0 � a∗ � 1) such A∼G[0,a∗].

Here G[a,b] = {X ∈ [a,b]}. The desired probability distribution, in view of the theorem, is

represented by the relation

A ∼ G[0,P{A}].

As follows from this relation, for any two events A and B such that A � B, G[0,P{A}] �
G[0,P{B}], hence P{A} � P{B}.

Another way to determine the subjective probability is based on the union of the concep-

tions of the indeterminacy and usefulness. Ramsey initiated the solution theory which was

based on the duality; of interconnected notions of estimating probability and usefulness. In

accordance with this theory, the probability appears to be the degree of readiness of the ob-

ject to perform one or another action in the situation of the decision making with unreliable

possible gains. It is required only that all possible outcomes be of equal value.

The work by De Finetti, devoted to the determination of subjective probabilities in the

situation of the chance analysis in laying a bet, is a brilliant development of this theory. Let

us consider, briefly, the essence of the De Finetti constructions. Suppose that we have to

estimate the chances on the set of certain events A, B, C, . . . and to take any bets from people

who want to bet on these events. This means that each event A is associatedwith some

probability P{A}. If now, SA is the opponent bet (positive or negative), that is, this sum must

be paid off in the case when the event A happens, then the cost of the bet participation ticket

must be equal to P{A}SA. It is natural to raise a question: “What desired properties must

be assigned for these probabilities”. De Finetti proposed to use the following coherence

principle: the probabilities must be assigned in such a way that there is no loss in general.

This simple principle implies immediately the fulfilment of all probability axioms.

a) 0 � P{A} � 1. If the opponent bets on A and A really happens, then his prize will be S,

less the ticket price P{A}SA, that is W1 = S[1−P{A}]. If the event A doesn’t occur, then

his prize is W2 = −SP{A}. The coherence principle requires that W1W2 � 0 for all S,

that is, [1−P{A}]P{A} � 0 or 0 � P{A} � 1.

b) P{Ω} = 1. Whenever an event will occur, it belongs to a sample space Ω. If the

opponent bets on Ω, his prize is WΩ = SΩ[1−P{Ω}]. Due to the coherence condition,

there is no such SΩ, that WΩ > 0. Hence it follows the relation P(Ω) = 1.

c) If A∩B = θ , then P{A∪B} = P{A}+ P{B}. Let the opponent bet on the event A, B

and C = A∪B. The following outcomes with corresponding prizes are possible:
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for A∩ B̄W1 = SA(1−P{A})−SBP{B}+SC(1−P{C}),

for Ā∩BW2 = −SAP{A}+SB(1−P{B})+SC(1−P{C}),

for Ā∩ B̄W3 = −SAP{A}−SBP{B}−SCP{C}.

(1.4)

The coherence condition requires the following: there are no such SA, SB and SC that the

prizes W1, W2 and W3 are simultaneously positive. If the main matrix of the system of

linear equations (1.4) is invertible, then it is possible to make the bet’s SA, SB and SC in

such a way that the prizes get arbitrary preassigned values.

In order for this not to happen, the determinant of the main matrix of the system (1.4) must

be equal to O, that is,
∣∣∣∣∣∣∣∣

1−P{A} −P{B} 1−P{A∪B}
−P{A} 1−P{B} 1−P{A∪B}
−P{A} −P{B} −P{A∪B}

∣∣∣∣∣∣∣∣
= 0,

or −P{A∪B}+P{A}+P{B} = 0.

Hence

P{A∪B}+P{A}+P{B}.

From the De Finetti construction we may conclude: as far as the confidence degrees (for the

estimation of the bet chances in the subject case) are subjected to the Kolmogorov axioms

and have a probability interpretation, they can be represented in a probability form. Limer

[140] ascertains that there is only one answer to a question about the requirements imposed

on the confidence levels: “They must be only probabilities and there are no other needed

requirements. If a relative frequency is given and all events are equiprobable, then, in view

of such a confluence of circumstances, the individual probability is found to be equal to the

frequency.”

The theorem on interchangeability of events is an important result of the De Finetti theory.

First of all, De Finetti ascertains that the notion of independence, broadly used in classi-

cal statistics, appears to be only a mathematical abstraction and cannot be related to the

chain of events which are recognized intuitively or empirically. Instead of the notion “in-

dependence” he introduces the notion “interchangeability”: a sequence of random events

is called interchangeable if the corresponding (to events) probabilities are independent of

the successive order of the events. For example, AĀĀ and ĀAĀ have the same probabilities.

The following important theorem is proved byDe Finetti [62].
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Theorem 1.2. Any coherent assignment of probabilities for the finite interchangeable se-

quence of binomial events is equivalent to the limit assignment of these events with the help

of the simultaneous distribution for which:

a) if it is considered as conditional with respect to p, then the events appear to be mathe-

matically independent and

P
{

AA . . . ĀA . . . Ā
}

= pr(1− p)n−r;

b) there is a unique prior distribution h(p). A marginal distribution has, in this case, the

following form:

P
{

AA . . . ĀA . . . Ā
}

=
∫ 1

0
pr(1− p)n−rh(p)dp.

This theorem gives the important methodological result of the prediction of the happening

of possible events. For example, given some true assignment of probabilities of an infinite

sequence of interchangeable events and if the number of successes in the first n trials is r,

then the success probability in the next trial equals

P
{

An+1
∣∣A1A2Ā3 · · ·An

}
=

P
{

A1A2Ā3 · · ·AnAn+1
}

P
{

A1A2Ā3 · · ·An
}

=

∫ 1

0
pr+1(1− p)n−rh(p)dp

∫ 1

0
pr(1− p)n−rh(p)dp

=
∫ 1

0
ph̄(p)dp,

where

h̄(p) =
pr(1− p)n−rh(p)∫ 1

0
pr(1− p)n−rh(p)dp

.

Thus, the probability of foreseeing the outcome of the next trial is such that as it would be

some true part of successes p and some prior distribution h̄(p) which transforms, in view

of Bayes theorem, into the posterior distribution h̄, starting from the results of independent

sampling.

There is a theory of subjective probabilities which concentrates on the guarantee of the

possibility to transmitting the subjective information. It was developed in the works by Cox

[49], Tribus [250] and was philosophically substantiated by Crellin [50]. The possibility

of the subjective information to be transmitted and the use of likelihood for the acceptance

of decisions are the source of this theory. The system, consisting of likelihoods, must be

subjected to the following requirements:
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1) The system must not be ambiguous, that is, the assertion, for which the likelihood is

used, must be precise.

2) The system must guarantee comparability in general. Likelihoods of different state-

ments must have the possibility of comparison in order to transfer subjective informa-

tion about which of the events is more probable. The system must be admissible for any

assertion.

3) The system must be noncontradictory, that is, if we have different ways of likelihood

estimating, it is necessary that their results be the same.

4) The system must possess the property of continuity of the method of likelihood estimat-

ing.

The first requirement is satisfied due to the use of symbol logic and logical propositions, the

second one because of the real number range for the quantity likelihood measure. The third

and the fourth conditions require that numerical representation of likelihood for composite

statements be subjected to the functional relations which use the likelihoods of components.

Reasoning intuitively one comes to the conclusion that the likelihood measure Θ(·) must

satisfy the relations

Θ{A∩B |C} =Θ{A |C}Θ{B | A∩C} =Θ{B |C}Θ{A | B∩C}, (1.5)

and

Θ{A |C}+Θ{Ā |C} = 1. (1.6)

In the works [49, 250] the necessity of using these relations precisely for the likelihood

measure is substantiated. They are also fundamental in probability theory. There is, how-

ever, the principal difference in sense between the classical interpretation of probability

and the one given by the relations (1.5) and (1.6). Crelin [50] brings up a justified pro-

posal that such a notion of “probability” is needed only in order to obtain the possibility of

manipulation by the usual rules of probability theory and has a deductive form.

We conclude here that the theories of subjective probabilities are based on Kolmogorov’s

axioms.

1.5 The Hierarchical Bayes Methodology

This methodology (developed from the orthodox Bayes methodology) is the subject of

investigation in the works by Good [93, 94]. The considered phenomenon is associated

with different probability levels subjected to each other. The relation among these levels
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is ensured by means of successive conditional distributions. In this case the Bayes rule is

applied as many times as the number of levels, in addition to the initial one, are given. We

illustrate the hierarchical Bayes approach in the following example.

Let X follow a normal distribution with unknown mean μ and known standard deviation

σ , that is, f (x) = f (x;μ) = N(μ ;σ). This probability level we will consider as the lowest

or initial. According to Bayes setting we let μ ∈ M be a random parameter, having a

prior distribution h(μ). If we use a prior distribution, and conjugate to the kernel of the

“likelihood” function, then for h(μ) we should take the normal density with parameters a

and s, i.e., h(μ) = h(μ ;a,s,) = N(a,s). With respect to the value of X , a and s are hyper

parameters (Good [94], Deely, Lindley [59] and others). So, how do we choose hyper

parameters a and s? To do this we have to go one step up in the Bayes hierarchy, that is, let

a and s be random parameters and define their a priori distribution h1(a,s). Then the prior

probability density for the parameter μ can be written with the help of a mixed density, if

we accept that h(μ) is conditional density with respect to a and s:

h(μ) =
∫∫

Ωas

h(μ ;a,s)h1(a,s)dads (1.7)

where Ωas is the range for a and s. Then the representation for the marginal density of X

has the form

f (x) =
∫

M
f (x;μ)h(μ)dμ

=
∫

M
f (x;μ)dμ

∫∫
Ωa,s

h(μ ;a,s)h1(a,s)dads (1.8)

It seems obvious that (1.7) can be written for the posterior probability density h̄(μ | ·) as

well, if according to the Bayes theorem we add an observation vector of empirical data to

the conditional prior density h(μ ;a,s).

1.6 Use of the Bayes methodology in reliability theory

Can we apply the Bayes approach in the reliability theory? This question doesn’t have

a unique answer among the specialists in this area. If a reliability conclusion has to be

considered as an element of the solution process, then empirical data must be added by

subjective knowledge related to the subject. This is a direct consequence of an engineering

practice. Construction of the new technical device involves on one hand an individual ex-

perience, mathematical modeling and analog devices, and on the other experimental work.

The set of factors of the first group delivers an a priori judgement about reliability, while
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experimental work gives empirical data. Both are relevant to the process of making a deci-

sion about reliability. Indeed, if we can use our experience while working on a device, why

can’t we rely on that experience when estimating the quality of the device?

Many scientists and specialists indicate the usefulness of Bayes methodology in reliability

theory (see [14], [30], [43]). It will be discussed extensively throughout the development

of this book.



Chapter 2

The Accepted Bayes Method of Estimation

2.1 The components of the Bayes approach

We give a brief description of the structure of Bayes estimates with the help of formal

mathematical constructions of the Bayes theory. The Bayes scheme of the decision theory

includes the following four components.

1) The statistical model, represented by the probability space (Ω,L ,P). Here Ω is

the set of all possible data in some design of experiments Π, Ω = {x}. The data x appear

to be the data of a random experiment, thus on Ω it is determined some σ -algebra L of

random events; P ∈ B, where B is the family of probability measures on Ω, L . In the

traditional Bayes approach, the probability measure P is defined by the representation of

some parameter θ (vector or scalar), that is, B = {Pθ ; θ ∈Θ} is a parameterized family of

probability measures.

2) The probability space (Θ,E ,H) for the parameter θ which is assumed to be ran-
dom. Here E is σ -algebra on Θ, H is a probability measure on (Θ,E ). The measure H

is called a prior probability measure of the parameter θ . The prior measure H belongs to

some given family of probability measures H .

3) The set of such possible decisions D that each element d from D is a measurable
function on Ω. In estimation theory the set of decisions D may contain all estimates of the

parameter θ or some function R(θ) measurable on Ω.

4) The loss functions L(θ ,d) (or L(R(θ),d)) determined on Θ×D. This loss function

determines the losses caused by an erroneous estimation, that is, by the replacement of the

parameter θ by the decision element d. It is assumed later that the families B and H are

dominated by some σ -finite measures μ and ζ respectively. If we denote the densities

f (x | θ) = Pθ{dx}/μ{dx}, h(θ) = H{dθ}/ζ{d},

17
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which exist in a view of the Radon-Nikodym theorem, the joint density of the probability

distribution for the random variables X and θ takes on the form

g(x,θ) = f (x | θ)h(θ).

In accordance with the Bayes theorem, the conditional density for θ given X = x is called

the posterior probability density function (p.d.f.) of the parameter θ and is written as

h̄(θ | X = x) =
f (x | θ)h(θ)∫

Θ
f (x | θ)H{dθ}

, θ ∈Θ, (2.1)

for each x ∈Ω such that

f (x) =
∫

f (x | θ)h(θ)ζ{dθ} > 0.

If Y is a statistic on (Ω,L ,Pθ ), then the probability measure Pθ can be obtained by trans-

formation into PY
θ . If f Y (y | θ) = PY

θ {dy}/μ{dy} is the density of the probability measure

PY
θ , then the posterior p.d.f. of the parameter θ given Y (X) = x has the form

h̄Y (θ | Y = y) =
f Y (y | θ)h(θ)∫

Θ
f Y (y | θ)h(θ)ζ{dθ}

. (2.2)

Further, for the sake of simplicity, we will use for the prior and posterior p.d.f. appearing

in the Bayes formulas (2.1) and (2.2) the notations h(θ) and h(θ | x), respectively. Since

the denominator in (2.1) and (2.2) is independent of θ and is determined only by the obser-

vation x (or by the statistic y), we will determine only the kernel of the prior density using

the symbol of proportionality “�”. So, instead of the expression (2.1), we will write

h̄(θ | x) � f (x | θ)h(θ) (2.3)

taking into account the fact that the normalizing factor of the p.d.f., h̄(θ | x) has been found

from the integral

β =
[∫

Θ
f (x | θ)h(θ)ζ{dθ}

]−1

. (2.4)

In the case when the parameter θ takes on the discrete values θ1, θ2, . . . ,θk, the prior dis-

tribution is given in the form of prior probabilities p j = P{θ = θ j}, j = 1, . . . ,k. The

expressions (2.3) and (2.4) are also valid for this case, if one represents h(θ) and h̄(θ) by

means of a delta-function. In particular,

h(θ) =
k

∑
j=1

p jδ (θ −θ j).
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The Bayes formula (2.3) lets us find the posterior density of the parameter θ in the form

h̄(θ | x) =
k

∑
j=1

p̄ jδ (θ −θ j).

where p̄ j = P{θ = θ j | x}, j = 1, . . . ,k, are the posterior probabilities.

For the discrete values of the parameter θ , the Bayes formula is often written in the form

p j =
p j f (x | θ j)

∑k
i=1 pi f (x | θi)

, j = 1, 2, . . . ,k. (2.5)

The choice of a loss function plays an important role in the theory of Bayes estimating. In

most cases the loss function is represented in the following form:

L(θ ,d) = C(θ)W (|d −θ |), (2.6)

where W (0) = 0, and W (t) is a monotonically increasing function for t > 0; C(θ) is as-

sumed to be positive and finite. The prior Bayes estimate θ̂H is defined as an element from

D which minimizes the prior risk [272]

G(H,d) =
∫
Ω

f (x)μ{dx}
∫
Ω

C(θ)W (|d(x)−θ |)H{dθ | x}C(θ)W (|d −θ |), (2.7)

After the X has been observed, the most handy function (from the Bayes point-of-view) for

further consideration is not the prior risk (2.7) but the posterior one, having the form

Ḡ(H,d) =
∫
Θ

C(θ)W (|d(x)−θ |)H{dθ | X}. (2.8)

The Bayes estimate of the parameter θ with respect to the prior distribution H should be

the element θH(X) of the set D, minimizing the posterior risk with given X :
∫
Θ

C(θ)W (|θ̂H(x)−θ |)H{dθ | X} = inf
d∈D

∫
Θ

C(θ)W (|d(x)−θ |)H{dθ | X}. (2.9)

The analysis of the problem in the above-given setting shows that investigation of the spe-

cific solution with the given testing scheme is based on the following three questions:

1) a choice of the family of probability measures B;

2) a choice of the prior distribution H;

3) a choice of the loss function L(d,θ).

The first question, having a practical significance, is associated with completeness of the

statistical model, used by the researcher. The other two are less specific. Some recommen-

dations on a choice of H and L(d,θ) will be given below.

In applied statistical analysis, the interval estimates are frequently used. The Bayes theory

operates with an analogous notion having, however, interpretation which differs from the
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classical one. In the simplest case of a scalar parameter θ , a Bayes confidence interval θ∼ is

introduced by the expression
∫
θ∼

h̄(θ | x)dθ = γ,

where γ is the confidence probability. Since the choice of θ∼ can be established in many

ways, one adds an additional requirement: the interval θ∼ must have the minimal length.

In the case of a vector parameter θ , the confidence interval is chosen from the condition
∫

R�R(θ)�R
h̄(θ | x)dθ = γ;

moreover, the difference R−R must be the smallest. As seen from the definition above, the

classical and the Bayes confidence intervals have different interpretations. In the classical

form, the confidence interval, “covering” with a given probability an unknown parameter,

is random. In the Bayes approach the parameter is random, while the confidence interval

has fixed limits, defined by the prior density and confidence probability γ .

2.2 Classical properties in reference to Bayes estimates

According to classical statistics the quality of statistical estimates may be characterized

by: how much these estimates satisfy the requirements of consistency, unbiasedness, effec-

tiveness and sufficiency. As a rule, a classical estimate, approved in each particular case,

appears to be a compromise, that is, we give preference to some property to the detriment

of the others. As was mentioned, the leading property of the Bayes estimate is its optimal-

ity. The classical properties, indicated above, are not adequate to the Bayes methodology.

Many authors use them only to keep up the tradition. Here we present some results which

modify the classical estimates in the Bayes approach.

2.2.1 Sufficiency

The property of sufficiency works smoothly. The Bayes formula (2.1) (or (2.2)) is con-

nected with the Bayes definition of the sufficient statistics. A posterior p.d.f. of the param-

eter θ , generated by the sufficient statistics S(X), is equivalent (from the Bayes point-of-

view) to the posterior p.d.f. of the parameter θ , constructed on the initial observation, that

is:

h̄s(θ | S(X)) = h̄(θ | X).
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At the same time, this proves the equivalence of the Bayes and traditional definitions of

sufficiency (see, e.g., [272]). Thus, the property of sufficiency in the Bayes estimating

theory keeps its classical form.

2.2.2 Consistency

With respect to the property of consistency we cannot draw the previous conclusion. Rea-

soning rigorously, we can ascertain that a traditional analysis of an estimate behavior with

the sample size tending to infinity contradicts the essence of the Bayes approach. Indeed,

if it is assumed that θ is a random parameter with nondegenerating prior p.d.f., h(θ), then

it is senseless to investigate the asymptotical properties of convergence of the estimate θ̂H

with respect to θ = θ0. By the same reason, it is incorrect when computing the mean value,

to compare it with the random variable θ . There are, however, representations that make

possible the investigation of the estimate θ̂H for large samples. If we assume that a chosen

prior distribution is not exact, then one can get the estimate with the help of the Bayes

scheme, and, later on, investigate it, digressing from the method used in obtaining the esti-

mate (bearing in mind classical theory). In many cases the Bayes estimates are consistent

and converge frequently to the maximum likelihood estimate, MLE.

Zacks [272] provides an example when the estimate of the Poisson cumulative distribution

function p(i | λ ) = e−λλ i/i! with the prior λ � Γ(1,1) (gamma p.d.f.) is consistent. Lind-

ley [146] proves that, if θ̂ n is the best normal asymptotical estimate, then one can ascertain

that Bayesian estimates and MLE are equivalent. The exact form of the prior distribution

in this case is not significant, since for the samples with a large size MLE can be replaced

with the unknown parameter θ . Bickel and Yahow present [24] the strict proof for the as-

sertion, analogous to the case of the one-parametric exponential family and a loss function

having a quadratic form. Asymptotical properties of the Bayes estimators for the discrete

cumulative distribution functions were investigated by Freedman [87].

We give the part of Jeffrey’s’ reasoning’s [115] with respect to the properties of the posterior

p.d.f. for large-size samples. For a scalar parameter θ , and in accordance with (2.3), let

p.d.f.

h̄(θ | x) � h(θ)�(θ | x) = h(θ)eln�(θ |x), (2.10)

where �(θ | x) is the likelihood function, being, by essence, a p.d.f. of the observed values

x = (x1,x2, . . . ,xn) of a trial and coinciding with f (x | θ).

(The parameter θ is assumed to be an argument of a likelihood function.) It is supposed that

h(θ) and �(x | θ) (θ ∈Θ) are nondegenerating and have continuous derivatives; moreover,



22 Bayesian Theory and Methods with Applications

�(x | θ) has a unique maximum at the point θ̂m.l., which is the MLE, generally speaking,

ln[�(θ | x)] has the order n, and h(θ) is independent on the sample size. Thus, it is intuitively

clear that for the large-size samples, the likelihood cofactor is dominating in the posterior

p.d.f.

Bernstein [169] and Mizes [166] prove the more general statement. The main thrust of

this theorem is that, if the prior p.d.f. of the parameter θ is continuous, then, while the

number of observations is increasing, the posterior p.d.f. is tending to a limit (which can be

found analytically) independent of the prior distribution. Furthermore, since under the more

common conditions, the p.d.f. form approaches, with a growth of n, the normal distribution

curve centered on the MLE and the posterior p.d.f. for the case of the large-size samples

appears to be normal also with the mean value θ̂m.l..

The proof of the asymptotical normality of the posterior p.d.f., h̄(θ | x), can be carried out

as follows. Let us expand into a Taylor series the functions h(θ) and �(θ | x) and at the

MLE θ̂m.l.:

h(θ) = h(θ̂m.l.)+(θ − θ̂m.l.)h′(θ̂m.l.)+
1
2
(θ − θ̂m.l.)2h′′(θ̂m.l.)+ · · ·

= h(θ̂m.l.)

[
1+

(θ − θ̂m.l.)h′(θ̂m.l.)
h(θ̂m.l.)

+
1
2

(θ − θ̂m.l.)2h′′((θ̂m.l.)
h(θ̂m.l.)

+ · · ·
]

Denoting by g(θ) = ln�(θ | x) and taking into account the relation g′(θ̂m.l.) = 0, we obtain

exp[g(θ)] � exp
[

1
2
(θ − θ̂m.l.)2g′′(θ̂m.l.)

]
×
[

1+
1
6
(θ − θ̂m.l.)3g′′′(θ̂m.l.)+ · · ·

]
,

where the last equation is obtained by the expansion ex = 1+ x+ · · · .
Multiplication of these expansions gives us

h̄(θ | x) � exp
[

1
2
(θ − θ̂m.l.)2g′′(θ̂m.l.)

]

[
1+

(θ − θ̂m.l.)h′(θ̂m.l.)
h(θ̂m.l.)

+
1
2

(θ − θ̂m.l.)2g′′(θ̂m.l.)
h(θ̂m.l.)

+
1
6
(θ − θ̂m.l.)3g′′′(θ̂m.l.)+ · · ·

]

(2.11)

The dominating factor has the form of a normal p.d.f. with the mean value equal to MLE

θ̂m.l. and the variance

[−g′′(θ̂m.l.)]−1 =
[
−d2 ln�(θ | x)

dθ 2

]−1

θ=θ̂m.l.

Thus, if we use only the dominating cofactor, the approximation of the posterior p.d.f. of

θ for large sizes of the sample n takes the form

h̄(θ | x) =
1√
2π

|g′′(θ̂m.l.)|
1
2 exp

[
−1

2
(θ − θ̂m.l.)2|g′′(θ̂m.l.)|

]
(2.12)
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Since |g′′(θ̂m.l.)| usually is a function of n, then with the growth of n, the posterior p.d.f.

takes on the more pointed form. Jeffrey’s [115] points out the fact that this approximation

gives errors of order n−1/2. Koks and Hinkly [125] generalize these results to the case of a

vector parameter θ .

To justify (2.12), one may only use the fact that the likelihood must concentrate with in-

creasing order about its maximum. Hence, these conclusions can be used more broadly

than the case of independent random variables with the same distributions. Dawid [54] and

Walker [262] carry out a scrupulous investigation of a set of regularity conditions under

which the posterior distribution with the probability equal to unity is asymptotically nor-

mal. These conditions are almost alike as regularity conditions which are necessary for the

asymptotic normality of the MLE. The research on the application of the expansion (2.11)

for statistical outcomes may be found in works by Lindley [143] and Johnson [117].

The relation between the consistency of Bayes estimates and MLE is studied in the work

by Strasser [242]. The point is that there is an example by Schwartz [231] in which the

MLE is nonconsistent, but the Bayes estimate, under the same conditions, possesses the

property of consistency. Strasser [242] complemented the regularity conditions up to the

strict consistency of the MLE [272] by the conditions for the prior measure H so that

the consistency of the maximal likelihood estimator implies the consistency of a Bayes

estimator. The investigation of the relations between the consistency of a Bayes estimator

and MLE is carried on by Le Cam [136].

If it is assumed that the parameter θ is fixed but unknown, then the consistency of a

Bayes estimator can be investigated more naturally and nearer to the classical interpre-

tation. These questions are considered by De Groot [63], Berk [19], Mizes [166] and by

other authors. They may be interpreted as follows: if x1, x2, . . . ,xn is a sample from the dis-

tribution with the unknown parameter θ and if the value of θ is actually equal to θ0, then,

as n → ∞, h̄(θ | x) will concentrate more strongly about the value θ0. The estimate of the

parameter constructed on such a posterior distribution may be named, to all appearances,

as consistent.

We give a brief explanation for this phenomenon. Let the parameter θ take only the finite

set of values θ1, θ2, . . . ,θk. Suppose that P{θ = θi} = pi for i = 1, 2, . . . ,k, and for each

given value θ = θi, the random variables x1, x2, . . . ,xn generate a sample from the distribu-

tion with the p.d.f., fi. It is assumed also that all fi are different in such a sense that, if Ω is

a sample space corresponding to the single observation, then
∫
Ω
| fi(x)− f j(x)|dμ(x) > 0, ∀ i �= j.
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Let, for the observed values x1, x2, . . . ,xn, p̄i denote the posterior probability of the event

θ = θi for which, due to the Bayes theorem, we have

p̄i =
pi

n
∏
j=1

fi(x j)

k
∑

r=1
Pr

n
∏
j=1

fr(x j)
, i = 1, 2, . . . ,k.

Suppose now that x1, x2, . . . ,xn is the sample from the distribution with the p.d.f., ft , where t

is some of the values 1, 2, . . . ,k. As was shown in [63], the following limit relations are

valid with the probability equal to one:

lim
n→∞

p̄t(x) = 1, lim
n→∞

p̄i(x) = 0, ∀ i �= t.

We give another example with a continuous distribution of the parameter θ which will

be a mean value of the Gaussian random variable with a given measure of exactness r

(the variance is equal to r−2). Suppose that a prior distribution θ is Gaussian with a mean

value μ and exactness measure τ (−∞< μ <∞, τ > 0). It is easy to check that the posterior

distribution θ is Gaussian with the mean value

μ ′ =
τ μ+nrμ̂
τ+nr

, where μ̂ =
1
n

n

∑
i=1

xi,

with the exactness measure τ+nr. Let us rewrite the expression for μ ′ in the form

μ ′ =
τ μ
τ+nr

+ μ̂
nr

τ+nr
.

Assume now that the sample x1, x2, . . . ,xn is factually taken from the Gaussian distribution

with the mean value θ0. In accordance with the law of large numbers (see, for example,

Kolmogorov’s second theorem [208]), μ̂ = θ0 with the probability 1. At the same time,

it follows from the formula for μ ′, μ ′ → μ̂ as n → ∞. In this sense, μ ′ is consistent.

Furthermore, since the posterior variance of the parameter θ tends to zero, the posterior

distribution of θ converges to the degenerated distribution, concentrated at the point θ0.

2.2.3 Unbiasedness

Here, evidently, we meet a situation analogous to those in the above investigation of con-

sistency. Since the parameter θ appears to be random, it is absurd to attempt to find the

estimate θ̂ in the form E[θ̂ ]. Due to this circumstance, many authors, including Fergu-

son [80], proceed in the following way: at first they obtain the Bayes estimate in some

definite form, thereafter they “forget” about the parameter randomness and investigate un-

biasedness in the usual interpretation of this term.

Sage and Melsa attempt to give the Bayes definition of unbiasedness. In particular, they

give two definitions:
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1) a Bayes estimate θ̂(x) is called unbiased, if

E[θ̂ ] = E[θ(x)]; and

2) a Bayes estimate θ̂(x) is called conditionally unbiased, if

E[θ̂(x) | θ ] = E[θ ].

The second definition is more essential, since, in the first place, it is closer (by sense) to

the classical one, and in the second place, is clearer than the first definition. Since E[θ̂ ] is a

mean value with respect to the prior measure, the equality E[θ̂(x)] = E[θ ] corresponds to

that ideal scheme when the posterior distribution coincides with the prior one (it is, how-

ever, not necessary). According to this, the Bayes estimate cannot be unbiased. Bland [25]

gives the example of the statistical model which proves the incorrectness of the first defini-

tion.

The second definition of unbiasedness, mentioned above, is used by Hartigan in his work

[102]. The estimate θ̂(x), obeying the condition E[θ̂(x) | θ ] = E[θ ].

The possibility of using the first definition is not even discussed. Moreover, he in-

troduces the definition of the exact Bayes estimate which must satisfy the condition

P{θ̂(x) �= θ} = 0. Hartigan proves that an unbiased Bayes estimator is exact.

2.2.4 Effectiveness

We say that one Bayes estimate is more effective than the other bearing in mind the follow-

ing reason. If the posterior probability is chosen as a measure of effectiveness, its value, for

identical observations, will be defined by the prior distribution (on the whole by the prior

variance of the parameter). Consequently, the comparison criterion is not objective, since

the prior distribution may be chosen, in some sense, arbitrarily. If we use the same prior

distribution, then in view of the uniqueness of the Bayes solution, there are no two Bayes

estimates for the same observation.

2.3 Forms of loss functions

As was mentioned in § 2.1, the loss function L(d,θ), where usually d = θ̂ , is frequently

represented in the form

L(d,θ) = C(θ)W (|d −θ |). (2.13)

Here W (0) = 0 and W (t) is a monotonically increasing function; C(θ) is assumed to be

positive and finite. As mentioned by Le Cam [136], the loss function of the form (2.13) was
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proposed by Laplace who understood that the exact expression for the function W cannot

be found analytically.

The choice of the loss function is an important question in the theory of Bayes statistical

estimating. Accuracy of such a choice stipulates the estimate quality. Frequently authors

use a squared-error loss function, for which W (|d − θ |) = (θ − d)2. This function gives

a good approximation for any loss function of the form C(θ)W (|d −θ |) having a smooth

character in the neighborhood of the origin. Another function which is the convex loss

function satisfying the condition W (|d −θ |) = (d −θ)k, k � 1.

It is well known that the Bayes estimator of the function R(θ) for the squared-error loss

function has a form of the posterior mean value

R̂∗ =
∫
Θ

R(θ)h̄(θ | x)dθ .

For k = 1, the median of the posterior distribution appears to be the Bayes estimator. The

theory of Bayes estimating for convex loss functions was developed by De Groot and

Rao [64]. Rukhin [214] proves a theorem for which the estimate of the parameter θ is the

same for any convex loss function, if only the posterior density is unimodal and symmetric

with respect to θ . The loss functions represented above are unbounded. This circumstance

may be a reason for misunderstanding. In particular, Girshik and Savidge [88] give an

example in which the Bayes estimate, minimizing the posterior risk, has an infinite prior

risk.

In a number of works there are also other loss functions whose properties are connected

with the properties of the statistical models and peculiarities of the phenomena investigated

by researchers. The direct generalization of the squared-error loss function will be the

relative squared-error loss function given by:

LS1(θ̂ ,θ) =

(
θ − θ̂
θ

)2

(2.14)

and its modification

LS2(θ̂ ,θ) =

(
θβ − θ̂ β

θβ

)2

, β > 0, (2.15)

Which are broadly used when the investigations are directed precisely toward the relative

errors. As shown by Higgins and Tsokos [108], the Bayes estimator of R(θ) under some

loss function, minimizing the posterior risk with the loss function (2.15), is computed in
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the following manner:

R̂∗
β =

⎡
⎢⎢⎣

∫
θ

h̄(θ | x)
[R(θ)]β

dθ
∫
θ

h̄(θ | x)
[R(θ)]2β

dθ

⎤
⎥⎥⎦

1/β

.

Harris [99] proposes to use for the investigation of probability of a nonrenewal system

being operated without breakdowns with a loss function given by:

LH(θ̂ ,θ) =
∣∣∣∣ 1
1− θ̂

− 1
1−θ

∣∣∣∣
k

. (2.16)

Thereafter he states: “If the reliability of a system is 0.99, then it fails, in the average, only

once in 100 trials; if, at that time the system reliability is 0.999, then it fails only once in

1,000 trials, that is, this is ten times better. Therefore, the loss function must depend on

how well we can estimate the quantity (1−θ)−1.”

Higgins and Tsokos [108] propose to use the loss function of the form

Le(θ̂ ,θ) =
f1 e− f2(θ̂−θ) + f2 e− f1(θ̂−θ) f1 + f2

−1
, f1 > 0, f2 > 0, (2.17)

which enforces the losses, if the estimate is substantially different from the parameter. It is

interesting that for small θ − θ̂ ,

Le(θ̂ ,θ) =
f1 f2

2
(θ − θ̂)2 +O

(
(θ − θ̂)3).

The authors compare Bayes estimator of probability of failures, the mean time prior to

failures with the reliability function for squared-error loss function with those having the

form (2.15), (2.16), (2.17), and a linear loss function of the following form:

Lp(θ̂ ,θ) =

{
p|θ − θ̂ |, θ̂ � θ ,

(1− p)|θ − θ̂ |, θ̂ > θ ,
(2.18)

Which generalizes the function L(θ̂ ,θ) = |θ − θ̂ | mentioned above on the case for un-

equal significance for exceeding and underestimating of the estimate θ̂ with respect to the

parameter θ . The conclusions given by Tsokos and Higgins may be interpreted as follows:

1) The quadratic loss function is less stable in comparison with the others we have con-

sidered. If the quadratic loss function is used for approximating, then the obtained

approximation of the Bayes estimate is unsatisfactory.

2) The Bayes estimator is very sensitive with respect to the choice of loss function.

3) The choice of loss function should be based, not on the mathematical conveniences, but

on the practical significance.
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The loss function which uses the fact that exceeding the parameter is worse than decreasing

(this is intrinsic, for example, for the reliability measure) is written by Cornfield [47] in the

form

L(θ̂ ,θ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

K1

(
θ̂
θ
−1

)2

, θ̂ � θ ,

K1

(
θ̂
θ
−1

)2

+K2

(
θ̂
θ
−1

)2

, θ̂ > θ .

(2.19)

In order to ensure for the loss function the different significance for the positive and nega-

tive errors, Zelner [274] introduces the so called linearly-exponential loss function

LEX(θ̂ −θ) = b
[
ea(θ̂−θ) −a(θ̂ −θ)−1

]
(2.20)

This function is asymmetric and is nearly symmetric for small a and can be well approxi-

mated by the quadratic functions. We give an example of the estimator which is obtained

from the loss function (2.20). If X is a Gaussian random variable with the given mean

value θ and given variance σ2, and the prior distribution density θ satisfies the condi-

tion h(θ) � const., then

θ̂ ∗ = x̄ =
aσ2

2n
,

where x̄ is a sample mean value. It is not difficult to verify that for small a and/or for large

sample sizes n, the estimator θ̂ ∗ is near the MLE. The loss function (2.20) solves actually

almost the same problem as that in (2.19). But the last loss function is not so handy in

calculations because we cannot find with it the desired estimates in close analytical form;

instead we have to use special numerical methods to obtain the desired approximation.

El-Sayyad [73] uses, in addition to the loss functions given above, the following loss func-

tion:

Lαβ (θ̂ ,θ) = θα(θ̂ β −θβ )2, (2.21)

and

Lln(θ̂ ,θ) = (ln θ̂ − lnθ)2, (2.22)

Smith [235] determines the class of bounded loss functions A given by the conditions: the

loss unction is symmetric with respect to |θ̂ − θ |, decreases with respect to |θ̂ − θ | and

satisfies the conditions

sup
θ̂ ,θ

L(θ̂ ,θ) = 1, inf
θ̂ ,θ

L(θ̂ ,θ) = 0.
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Smith scrupulously investigates the Bayes estimates of the so-called step loss function

Lb(θ̂ ,θ) = Lb(θ̂ −θ) =

{
0 if |θ̂ −θ | < b,

1 if |θ̂ −θ | � b,
(2.23)

Estimators were found for many parametric families. These estimators differ substantially

from the Bayes estimators with the squared-error loss function.

2.4 The choice of a prior distribution

The choice of prior distribution in applied problems of Bayes estimating is one of the

most important questions. At the same time, the solution of this problem doesn’t touch

the essence of the Bayes approach. The existence of a prior distribution is postulated. All

further arguments are based on this postulation. Some authors, however, investigate the

question of choice of a prior distribution being in the framework of the Bayes approach.

We propose the following three recommendations for the choice of a prior distribution.

They are, correspondingly, based on: 1) the conjugacy principle; 2) the absence of in-

formation; and 3) the information criterion. We shall discuss individually each of these

recommendations.

2.4.1 Conjugated prior distributions

Each prior distribution, due to the Bayes theorem, can be used together with any likelihood

function. It is convenient, however, to choose a prior distribution of a special form giving

the simple estimators. For a given distribution f (x | θ) we may find such families of prior

p.d.f. that a posterior p.d.f. will be the elements of the same family. Such a family is

called closed with respect to the choice or conjugated with respect to f (x | θ). It is said

sometimes: “naturally-conjugated family of prior distributions”. Most of the authors state

that this approach is dictated by the convenience of theoretical arguments and practical

conclusions. Haifa and Shleifer [202] attempt to give a more convincing justification of a

conjugated prior distribution. We discuss this question in detail.

Assume that sample distributions are independent and allowing the sufficient statistics y of

fixed dimension with the domain Ωy. A family H of all prior distributions is constructed

in the following way: each element H is associated with the element Ωy. If, prior to a

trial, for θ is chosen the element from H corresponding to y′ ∈ Ωe and a sample gives

the sufficient statistics y, then the posterior distribution also belongs to H and assigns

to some element y′′ ∈ Ωe. For the definition of y′′ with the help of y and y′ a binary
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operation y′′ = y′ ∗ y is introduced. We consider below the formalization of a conjugated

prior distribution given in [202].

It is supposed that for arbitrary samples x = (x1,x2, . . . ,xn) with each fixed n there is a

sufficient statistic

yn = (x1,x2, . . . ,xn) = y = (y1,y2, . . . ,ys),

where y j is a real number and the dimension of the vector y is independent of n.

For any given n and arbitrary sample (x1,x2, . . . ,xn), there exists a function k and s-

dimensional vector y = (y1,y2, . . . ,ys) consisting of real numbers, that the likelihood func-

tion satisfies the relation

�n(θ | x1,x2, . . . ,xn) � k(θ | y).

The function k(θ | y) is called a likelihood kernel. We will touch upon an important prop-

erty of the kernel k(θ | y).

Theorem 2.1. Let y(1) = yp(x1,x2, . . . ,xp) and y(2) = yn−p(xp+1, . . . ,xn). Then we can find

such a binary operation ∗ that satisfies the relation

y(1) ∗y(2) = y∗ = (y∗1, y∗2, . . . ,y
∗
s )

and possesses the following properties:

�n(θ | x1,x2, . . . ,xn) � k(θ | y∗),

and

k(θ | y∗) � k
(
θ | y(1))k

(
θ | y(2)).

As it follows from the theorem, y∗ can be found only by using y(1) and y(2), without

(x1,x2, . . . ,xn).

The posterior p.d.f., is constructed with the help of the kernel function k(θ | y) in the

following way:

h(θ | y) = N(y)k(θ | y), (2.24)

where y is some statistic, N(y) is a function which needs to be defined.

In order for the function h(θ | y), defined on Θ by the relation (2.24), to be a p.d.f., it

is necessary and sufficient that this function be nonnegative everywhere, and the integral

from this function over Θ will be equal to unity. Since k(θ | y) is a kernel function of a

joint p.d.f. of observations, defined on Θ for all y ∈ Ωy, is necessarily nonnegative for all
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(y,θ) from Ωy ×Θ. Consequently, if there exists the integral of k(θ | y) over Θ, then N(y)

is determined by the relation

[N(y)]−1 =
∫
Θ

k(θ | y)dθ

and h(θ | y), represented by the expression (2.24), will be a p.d.f.

Suppose now that y is a sufficient statistic, determined with the help of the observed sample

(x1,x2, . . . ,xn), and h(θ) is a prior p.d.f. In accordance with the Bayes theorem for the

posterior distribution density we have

h̄(θy) � h(θ)k(θ | y)

If now h(θ) is a p.d.f., conjugated to the kernel k with the parameter y′ ∈ Ωy, that is,

h(θ) � k(θ | y′), then, in accordance with the Bayes theorem,

h(θ | y) � k(θ | y′)k(θ | y) � k(θ | y′ ∗y).

Thus: 1) the kernel of a prior p.d.f. is combined with the kernel of a sample in a manner

similar to the combination of two sample kernels; 2) both a prior and posterior p.d.f. are

induced by the same likelihood kernel, but their generating statistics are different. These

conclusions may be interpreted as a follows: the prior distribution is a result of processing

some nonexistent data (or data which exist but are lost) for the same statistical model as a

likelihood function.

Let us consider the following example. A Bernoulli process with the parameter θ =

p induces independent random variables (x1,x2, . . . ,xn) with the same probabilities

px(1− p)1−x, where x = 0, 1. If n is the number of observed values and r = ∑xi, then

the likelihood of a sample is written as

�n(p | x1,x2, . . . ,xn) � pr(1− p)n−r.

In addition to this, y = (y1,y2) = (r,n) is a sufficient statistic whose dimension is equal

to 2, independently of n. A prior p.d.f. conjugated with the likelihood kernel and induced

by the statistics y′ = (r′,n′) is a density of the beta distribution

h(p) =
pr′(1− p)n′−r′

B(r′ +1,n′ − r′ +1)
, 0 � p � 1,

where

B(α,β ) =
∫ 1

0
xα−1(1− x)β−1dx =

Γ(α+β )
Γ(α)Γ(β )

.

In view of the Bayes theorem

h̄(p | y) � h(p)pr(1− p)n−r � pr′+r(1− p)n+n′−(r+r′),
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that is, the kernels of the prior and posterior p.d.f. coincide, and the beta distribution with

the parameters r′′ = r + r′ and n′′ = n+n′ appears to also be posterior.

A family of conjugated posterior d.d. may be enlarged by the extension of the domain Ωy

up to and including all values for which k(θ | y) is nonnegative for all θ , and the integral

of k(θ | y) over the domain Θ is convergent.

In the example we have considered, the parameters r and n take the values of positive

integers. At the same time, an integral of k(θ | y) over Θ[0,1] converges for all real r >−1

and n > −1 to the complete beta function. Therefore, we can obtain, assuming that the

parameter y = (r,n) may take an arbitrary value from the domain determined in such a

way, the family of densities which is substantially broader.

A complicated report on naturally conjugated p.d.f. is given in the monographs [91]

and [202]. Dawid and Guttman [55] investigate the question of obtaining conjugated dis-

tribution in foreshortening of singularities of models. In particular, it is shown that simple

forms of conjugated distributions are an implication of a group structure of models.

2.4.2 Jeffrey’s introduces prior distributions representing a “scantiness of knowl-
edge”

These distributions are the subject of consideration in the work by Zelner [272] and also are

investigated by other authors. This assumption is an implication of the desire not to leave

the Bayes approach in the cases when an investigator doesn’t have enough knowledge about

the properties of the model parameters or knows nothing at all. Jeffrey’s [115] proposes

two rules for the choice of a prior distribution, which, in his opinion, “embrace the most

widespread situations”, when we don’t have the information on the parameter:

1) if the parameter exists in the finite segment [a,b] or in the interval (−∞,+∞) then its

prior probability should be supposed to be uniformly distributed;

2) if the parameter takes the value in the interval [0,∞), then the probability of its logarithm

should be supposed to be uniformly distributed.

Consider the first rule. If the parameter interval is finite, then for obtaining the posterior

distribution we may use the standard Bayes procedure.

In so doing, a prior distribution is not conjugated with the kernel of a likelihood function.

If the interval for the parameter θ is infinite, we deal with improper prior p.d.f. The rule

of Jeffrey’s for the representation of the fact of ignorance of the parameter value should be
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interpreted in this case as

h(θ)dθ � dθ , −∞< θ < ∞, (2.25)

that is, h(θ) �const. Thus, we have∫ ∞

−∞
h(θ)dθ = ∞.

Jeffrey’s proposes to use for the representation of a probability of a certain event instead

of 1. Exactly this fact, in his opinion, allows us to obtain a formal representation of igno-

rance. For any two intervals (a,b) and (c,d) the relation

P{a < θ < b}
P{c < θ < d} =

0
0

,

that is, represents indeterminacy, and thus we cannot make a statement about the chances

of θ being in some finite pair of finite intervals.

The second rule of Jeffrey’s touches upon the parameters whose nature lets us make an

assumption on their having a value lying in the interval [0,∞) for example, a standard

deviation. He proposes for such a parameter its logarithm having a uniform distribution,

that is, if one puts ϑ = logθ , then the prior d.d. for ϑ will be chosen in the form

h(ϑ)dϑ � dϑ , −∞< ϑ < ∞. (2.26)

Since dϑ = dθ/θ (2.26) yields

h(θ) � θ−1, 0 � θ < ∞. (2.27)

corresponding to the absence of information about the parameter θ .

An important property of (2.27) is its invariance with respect to the transformations K = θ n.

Actually,

dK = nθ n−1dθ =⇒ dK
K

� dθ
θ

.

This property is very important because some research parameterizes the models in terms

of the standard deviation σ , others in terms of a variance σ2 or in terms of the parameter

of exactness τ = σ2. It is easy to show that, if we choose the quantity dσ/σ as the prior

d.d. for σ , the relation will be

dσ
σ

� dσ2

σ2 � dτ
τ

,

a logical implication. This prior distribution is also improper, whence we may conclude

that the relation P{0 < θ < a}/P{a < θ <∞} is indeterminacy, that is, we can say nothing

about the chances of the parameter being in the intervals (0,a) and (a,∞). Indeterminacy

similar to this one is considered again a formal representation of ignorance.
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A question of representation of an improper prior p.d.f. is considered by Akaike [2–4]. He

proposes the following interpretation: an improper prior p.d.f. can be represented in the

form of a limit of a proper prior p.d.f. in such a way that the corresponding posterior p.d.f.

converges point wisely to the posterior p.d.f., responding to an improper prior distribution.

A mutual entropy is considered their nearness measure. It is shown also that the most

appropriate choice is a choice of approximating eigenvalues, depending on a sample.

In spite of the fact that prior p.d.f.s, in accordance with the assumption of Jeffrey’s are im-

proper, corresponding to them the posterior distributions are proper and allow us to obtain

the desired estimates. Let (x1, x2, . . . ,xn) be a sample from N(μ ,σ) where μ and σ are

unknown. If we have no prior information about μ and σ we may apply the principles of

Jeffrey’s and use as a prior d.d. a function of the form

h(μ ,σ)dμ dσ � 1
σ

dμ dσ , −∞< μ < ∞, 0 < σ < ∞.

Using the Bayes theorem, we can easily obtain the posterior d.d. That is,

h̄(μ ,σ | x) � h(μ ,σ)�(μ ,σ | x)

� 1
σn+1 exp

{
− 1

2σ2

[
vs2 +n(μ− μ̂)2]} , (2.28)

where �(μ ,σ | x) = σ−n exp
[
−∑(xi − μ)2/(2σ2)

]
is a likelihood function, v = n − 1,

μ̂ = 1
n ∑xi, vs2 = ∑(xi − μ̂)2. The posterior density we have written is proper. In the same

manner, a marginal posterior d.d. of the parameter μ

h̄(μ | x) =
∫ ∞

0
h̄(μ ,σ | x)dσ

�
∫ ∞

0

1
σn+1 exp

{
− 1

2σ2

[
vs2 +n(μ− μ̂)2]}dσ

�
[
vs2 +n(μ− μ̂)2]− v+1

2 (2.29)

is proper. As seen from (2.29), h̄(μ | x) has a form of Student d.d. with a mean value μ̂ .

Analogously to h̄(σ | x),

h̄(σ | x) � 1
σ v+1 exp

(
− vs2

2σ2

)
.

This posterior d.d. for σ has a form of the inverse gamma-distribution.

Some authors decide not to use improper d.d., preferring instead to introduce “locally-

uniform” and “sloping” distribution densities. Box and Tico [28] propose the functions

which are “sufficiently-sloping” in that domain where a likelihood function takes greater

values. Outside of this domain, the form of the curve of a prior p.d.f. doesn’t matter,
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since, if one finds a kernel of the posterior p.d.f., he multiplies it by the small values of a

likelihood function.

The most interesting and important peculiarity of the proposed improper prior p.d.f. is

the property of invariance. Jeffrey’s gives it an interesting interpretation. He proves the

following statement. Suppose that a prior p.d.f. for the vector θ is chosen in the form

h(θ) �
∣∣Infθ

∣∣1/2
. (2.30)

Here Infθ is a Fisher information matrix for the vector of parameters θ = (θ1, θ2, . . . ,θK),

that is,

Infθ = −EX

[
∂ 2 log f (X | θ)

∂θi ∂θ j

]
,

where the mean value is taken over the random variable X . Then a prior p.d.f. of the form

(2.30) will be invariant in the following sense. If a researcher parameterizes his model

with the help of the component of the vector η , where η = F(θ), and F is single-valued

differentiable transformation of the components of the vector θ , and chooses a prior p.d.f.

for θ so that

h(η) � |Infη |1/2.

then the posterior probability statements, obtained in this way, don’t contradict the posterior

statements obtained with the help of parameterization of the components of the vector θ
and a prior p.d.f. of the form (2.30). The proof of this statement can be found in the book

by Zelner [275]. Hartigan [101] develops the idea of representing a prior p.d.f. in the form

(2.30) and formulates six properties of invariance. The property (2.30) is a particular case

among them. Hardigan’s interpretation of invariance is more common and includes the

invariance relative to transformations of a sample space, repeated performance of samples,

and contraction of a space for the parameter θ .

2.4.3 Choice of a prior distribution with the help of information criteria

This is the subject of investigation in many works devoted to the Bayes estimation. In this

connection, [46, 60, 65, 108, 275] should be distinguished.

The approach proposed by Zelner [275] may be interpreted as follows. As information

measure, contained in the p.d.f. of the observation f (x | θ) for a given θ , is used in the

integral

Ix(θ) =
∫
Ω

f (x | θ) ln f (x | θ)dx. (2.31)
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A priori mean information contents is defined as

Īx =
∫
Θ

Ix(θ)h(θ)dθ .

If now, from a prior information contents Īx associated with the observation x, we subtract

information contents of the prior information, then it is possible to represent a measure of

information gained by

G = Īx −
∫
Θ

h(θ) lnh(θ)dθ .

Then it is assumed (in the situation of there being no exact information about a prior p.d.f.)

to choose h(θ) from the maximization condition for G. Zelner calls such a function a prior

p.d.f. with “minimal information”. Now consider the following example. Suppose

f (x | θ) =
1√
2π

exp
[
− (x−θ)2

2

]
, x ∈ (−∞,∞).

Then it is easy to obtain

Ix(θ) = −
∫ ∞

−∞
f (x | θ) ln f (x | θ)dθ = −1

2
(ln2π+1),

that is, Ix(θ) is independent of θ , hence for the proper h(θ)

Ix = −1
2
(ln2π+1)

and

G = −1
2
(ln2π+1)−

∫
Θ

h(θ) lnh(θ)dθ .

The value of G will be maximal if one minimizes a portion of the information contained in

a prior distribution

Iθ =
∫
Θ

h(θ) lnh(θ)dθ

The solution of this problem is a uniform p.d.f. on Θ, that is, h(θ) �const. It should be

noted that this result is in full accord with the form of a prior p.d.f. obtained using the rule

of Jeffrey’s [114].

If one considers (see Lindley [143]) a functional G in the asymptotical form

GA =
∫
Θ

h(θ) ln
√

n|Infθ |dθ −
∫
Θ

h(θ) lnh(θ)dθ ,

where n is the number of independent samples from a general population, distributed by the

probability law f (x | θ), and finding a prior p.d.f., h(θ) maximizing GA under the condition∫
θ h(θ)dθ = 1, then we can obtain

h(θ) � |Infθ |1/2,
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that is, a prior p.d.f. corresponding to the generalized rule of Jeffrey’s, considered above,

giving the invariant p.d.f. At the same time, as was shown by Zelner [275], if G is rep-

resented in the nonasymptotical form, then an invariant prior p.d.f. of Jeffrey’s does not

always appear to be a p.d.f. with “minimal information”. In the case when a prior p.d.f.

of Jeffrey’s doesn’t maximize G, its use makes us bring additional information into the

analysis in contrast to the case when it uses prior information to maximize G. As can be

seen from the above conclusions, the desire of Jeffrey’s to ensure the property of invariance

of the statistical deductions with respect to the parameter transformation deviates from the

principle of “scantiness of knowledge”. Convert [46], Deely, Tierney and Zimmer [60],

Jaynes [113] investigate the question about the choice of a prior distribution with the mini-

mization of the direct portion of information Iθ (Shennon), contained in a prior p.d.f. A rule

of choice of h(θ) from the condition Iθ −→ min is called an entropy maximum principle

because the entropy Sθ =−Iθ is used instead of Iθ . They introduce the term “a least favor-

able distribution”. If H is a family of prior distributions, then H ∈H is the least favorable

distribution under the condition, that is, its corresponding minimum of the expected losses

is greater than that one for the other elements of a family.

It should be noted that the estimate obtained in such a way coincides with a minimax

one [257].

Deely, Tierney and Zimmer consider the use of a maximum entropy principle for the choice

of a prior distribution in the binomial and exponential models. They show, in particular, that

a least favorable distribution may be the best one in accordance with a maximum entropy

principle.

Jaynes [113] modified this principle to a more general form. He introduces the measure

SK = −
∫
Θ

h(θ) ln
[

h(θ)
K(θ)

]
dθ ,

where K, as noted by El-Sayyad [73], is a suitable monotonic function. El-Sayyad proposes

the use of a group theory approach for a choice of K(θ). Such an approach results in a

change of the parameters of h(θ), which is very essential and doesn’t change the entropy

measure. For example, if θ1 is a position parameter, θ2 is a scale parameter (θ2 > 0), then

the prior density is found so that h(θ1,θ2) = ag(θ1 + b,aθ2), and the solution takes the

form h(θ1,θ2) � θ−1
2 . Thus, we again have obtained the invariant prior p.d.f. of Jeffrey’s.

For the binomial model, as shown by Jaynes [113], the use of the generalized maximum

entropy principle gives the equation θ(1−θ)h′(θ) = (2θ−1)h(θ), whence h(θ) �
[
θ(1−

θ)
]−1.
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Devjatirenkov [65] uses the information criterion

I(θ̂) =
∫
Θ

∫
Ω

h̄(θ | x)p(x) lnq(θ | θ̂)dxdθ ,

where q(θ | θ̂) is the p.d.f. of the parameter with the given estimate, for the determination

of the best (in the sense of minimum of I estimate θ̂ . The estimate obtained in such a way

appears to be less sensitive (in comparison with the usual one) with respect to the deviation

of a prior distribution. It is interesting that a variance of the estimate for the Gaussian

distribution attains the lower limit of the Cramer-Rao inequality.

In the work [46] information quality was used not as a criterion of a choice of a prior

distribution, but as a method of indeterminacy elimination for the determination of the

parameters of a prior distribution density. Arguments given in [46] are of an intuitive

nature, but seem to be reasonable and may be used in practice. We give the main results

of [46]. Suppose f (x | θ) is p.d.f. of observation x and h(θ ;γ) is a prior p.d.f. with the

parameter γ .

Analogous to a Fisher information Ix(θ) one introduces the so called Bayes information,

contained in h(θ ;γ):

BIγ(θ) = Eθ

[∣∣∣∣∂ lnh(θ ;γ)
∂θ

∣∣∣∣
2
]

. (2.32)

Next one determines a weight significance w of a prior information with respect to an em-

pirical one: w = BIγ(θ)/Ix(θ). Suppose now that θp is a prior estimate of the parameter θ .

If the vector γ consists of two parameters γ1 and γ2, then we need to solve a system of two

equations:

Eγ [θ ] = θp,

BIγ(θ) = wIx(θ).

In the case when the number of parameters γ exceeds two, it is necessary to use additional

arguments (see [46]). For example, for the binomial model

f (x | θ) =
(n

x

)
θ x(1−θ)n−x

and a prior p.d.f. beta h(θ) � θ a−1(1−θ)b−1, we have

Ix(θ) =
n

θ(1−θ)
.

It also follows from (2.32),

BIγ(θ) =
(a+b−4)(a+b−2)(a+b−1)

(a−2)(b−2)
.
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The system of equations for the determination of a and b has the form

a
a+b

= θp,

BIγ(θ) = wIx(θ̂),

where θp and θ̂ is prior and empirical estimates of the parameter θ .

The methods for a choice of a prior distribution which are based on an information criterion

fall outside the limits of the traditional Bayes approach and are drawn either to minimax

or to empirical Bayes methods. In the works of some authors there are many efforts to

construct fundamental theories directed to justification of a choice of prior distributions.

We single out the works by Japanese statistician Akaike [2–4] who proposes the methods

of effective use of Bayes models. The goal of constructions proposed by him is a change

of the role of a prior distribution in the Bayes models. Akaike [2] proposes to use prior

distributions adaptive to empirical data. They are called modificators.

In the problem of prediction of a density for the distribution g(z) of future observations

based on a sample of obtained data, which is being solved with the help of Bayes theory,

a prior distribution (modificator) is chosen from the correspondence between the g(z) and

estimate ĝ(z), expressed with the help of Kulbak information measure

B(g, ĝ) = −
∫

ln[g(z)/ĝ(z)]g(z)dz.

In this capacity a mean value of entropy is used, that is Ex[B(g(z),g(z | x))], where,

g(z | x) =
∫
Θ

f (z | θ)h̄(θ | x)dθ and h̄(θ | x) � f (x | θ)h(θ).

Thus, a prior p.d.f. is chosen by minimization of the mean value of entropy. It is interesting

to note that Akaike’s method gives the improper prior p.d.f. of Jeffrey’s in some cases (in

particular, in the problem of prediction of a distribution of the Gauss random vector).

Another interesting attempt to exclude the arbitrariness in the choice of a prior p.d.f. is pro-

posed by Bernardo [20]. He recommends choosing standard prior and posterior distribu-

tions that describe a situation of “insignificant prior information”, and deficient information

is found from empirical data. His criterion of a choice of a prior p.d.f., h(θ) is constructed

with the help of expected information about θ proposed by Lindley:

Iθ{∈, h(θ)} =
∫
Ω

f (x)dx
∫
Θ

h̄(θ | x) ln
h̄(θ | x)

h(θ)
dθ ,

where ∈ denotes an experiment during which a random variable X with p.d.f., f (x | θ),

θ ∈ Θ, is observed. It is also assumed that h(θ) belongs to the class of admissible prior

distributions H . The main idea is interpreted in the following way. Consider a random
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variable Iθ{∈ (k), h(θ)} determining a portion of information about θ , expected in k re-

currences of an experiment. We may achieve, by infinite recurrence, the exact value of θ .

Thus, Iθ{∈ (∞), h(θ)} measures a portion of deficient information about θ with a prior

p.d.f., h(θ). The standard prior distribution π(θ), which corresponds to “indefinite prior

knowledge”, is defined as minimizing deficient information in the class H . The standard

posterior distribution after the observation x is defined with the help of Bayes theorem:

π(θ | x) � π(θ) f (x | θ).

Since the exact knowledge of a real number requires the knowledge of an infinite quantity

of information, in the continuous case we obtain Iθ{∈ (∞), h(θ)} = ∞, for all h(θ) ∈ H .

Standard posterior distributions for this case are defined with the help of a limit passing:

π(θ | x) = lim
k→∞

πk(θ | x);

moreover, πk(θ | x) � πk(θ) f (x | θ), and πk(θ) = argmax Iθ{∈ (k), h(θ)}.

For the case of binomial trials a standard prior p.d.f., π(θ) � θ−1(1−θ)−1.

That is, we have the same result as the one in the work by Jaynes [113] obtained with the

help of maximum of entropy.

The attractive feature of Bernardo theory is that this theory is free of some difficulties

which are peculiar to a standard Bayes approach, in particular, the use of standard prior

distributions doesn’t give any marginal paradoxes (see the works by Stone and Dawid [243],

and by Dawid, Stone and Zidek [56]) peculiar to non-informative prior distributions.

An interesting approach for a choice of prior distributions, based on geometrical probabil-

ities, is proposed by Fellenberg and Pilz [79]. They consider a problem of the choice of a

prior distribution in the estimation of a mean value of the time-to-failure for the exponential

distribution with the cumulative distribution function F(t;λ ) = 1−exp(−λ t). For prior in-

formation a segment of uncertainty [λ1,λ2] is used for the parameter A corresponding to

the space of c.d.f. B = {F(t;λ1) � F(t;λ ) � F(t;λ2)}, consisting of the unknown cumu-

lative distribution function F(t;λ ). It is assumed that a probability of λ being in [λ1,λ2] is

equal to unity. A prior p.d.f., h(λ ), is determined from the condition that a probability of

a parameter λ getting into the interval [λ1,x] equals the probability of F(t;λ ) getting into

the space Bx = {F(t;λ1) � F(t;λ ) � F(t;λ2)}. The equality of probabilities

P{λ1 � λ � x} = P{F(t;λ ) ∈ Bx}

is valid because of monotonicity of F(t;λ ) on the parameter λ . The probability P{F(t;λ )∈
Bx} is determined from geometrical reasoning (having used a principle of equal chances)
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as a ration of the area contained between F(t;λ1) and F(t;x). The resulting expression for

the prior density of the parameter A has the form

h(λ ) =
λ1λ2

λ2 −λ1
· 1
λ2

λ1 � λ � λ2.

2.5 The general procedure of reliability estimation and the varieties of relevant
problems

This section is connected conceptually with the preceding four paragraphs. However, there

are no references for the ideas discussed in them. The reader who doesn’t want to learn the

Bayes approach from the formal mathematical positions may skip them and start with the

consideration of the general problems of the Bayes theory of estimation discussed below.

2.5.1 Reliability estimation

The setting of a problem of reliability estimation consists of the following four elements:

a) distribution of probabilities of the basic random variable characterizing the reliability

of a technical device or system (for example, a cumulative distribution function of time-

to-failure F(t;θ), where θ is a vector of parameters;

b) a prior probability distribution, represented, for example, in the form of p.d.f., h(θ), of

the vector of parameters θ , characterizing the uncertainty of the given prior information

Ia about reliability;

c) loss function, L(R̂,R) characterizing the losses involved when one replaces the reliabil-

ity R by its estimate R̂;

d) testing plan, II, prescribing the method of obtaining experimental data Ie.

The problem may be interpreted as follows: we need to find the estimates of reliability R

by using a priori information Ia and experimental data Ie. We consider below two forms of

representation of the estimate for the reliability

a) the set of the point estimate R and standard deviation (s.d.) which is a characteristic of

exactness of the estimate R̂;

b) confidence interval
[
R,R

]
γ with a given confidence probability .

The principal scheme for obtaining Bayes estimates is represented in Fig. 2.1. It consists

of three steps.
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Step 1 Composition of likelihood function �(θ , Ie). To do this we use some statistical

model describing the distribution of the basic random variable F(t;θ) and experimen-

tal data Ie obtained after a realization of a testing plan II

Step 2 Construction of a posterior distribution h(θ | Ia, Ie). Here we use the Bayes formula

h(θ | Ia, Ie) =
h(θ | Ia)�(θ | Ie)∫

Θ
h(θ | Ia)�(θ | Ie)dθ

, (2.33)

where Θ is a range of the parameter θ .

Testing
Plan II

Experiment
Results Ie

A priori
Information Ie

Distribution of
the base random

value F(x;θ)

Truthfulness
Function
I(θ | Ie)

A priori
distribution
h(θ | Ia, Ie)

Bayes
Theorem

Loss
Function
L(R̂,R)

Pointwise
Estimate R̂

A posteriori
risk

minimization
G(R̂)

A posteriori
Distribution
h(θ | Ia, Ie)

Bayes
Confidence

Interval [R,Rγ ]

Fig. 2.1 The general scheme of obtaining the Bayes estimates

Step 3 Obtaining Bayes estimates. The Bayes confidence interval is defined by the condi-

tion P{R � R � R} = γ , or ∫
R�R(θ)�R

h̄(θ | Ia, Ie)dθ = γ. (2.34)

To obtain the Bayes point estimate R̂∗, we should write the function of the posterior

risk

G(R̂) =
∫
Θ
(R̂,R(θ))h̄(θ | Ia, Ie)dθ (2.35)
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and choose among all estimates R̂ such that one minimizes the function (2.35), that is,

R̂∗ = arg min
R̂∈[0,1]

G(R̂). (2.36)

If a squared-error loss function is chosen of the form L(R̂,R) = (R− R̂)2, then the

Bayes estimate is determined in the form of the posterior mean value

R̂∗ =
∫
Θ

R(θ)h̄(θ | Ia, Ie)dθ . (2.37)

The error of estimation of the value of R̂∗ is assessed by the posterior s.d., σR̂∗ , which

satisfies the relation

σ2
R̂∗ =

∫
Θ

R2(θ)h̄(θ | Ia, Ie)dθ − R̂∗2
. (2.38)

Example 2.1. The device time-to-failure is subjected to the exponential distribution with

the probability density

f (t;λ ) = λ e−λ t , t � 0, λ � 0. (2.39)

As a prior distribution, a gamma-distribution with the likelihood kernel [202] has been

chosen. The distribution density of the parameter λ has the form

h(λ | Ia) =
ρδλδ−1e−ρλ

Γ(δ )
, λ � 0, δ � 0, ρ � 0, (2.40)

and the parameters δ and ρ are assumed to be known. A mean square-error loss function,

L(R̂,R) = (R− R̂)2. As a testing plan [n,U,T ] (see [91]) has been chosen. We shall discuss

the solution of the problem in detail including finding the estimates of the failure rate λ .

The solution will be given in the form of the three steps:

1) Composing a likelihood function we bear in mind the fact that as a result of testing by

the plan [n,U,T ] we have observed a censored sample.

Suppose, for definiteness, that d of the tests have ended by failures at the instants

t∗1 , t∗2 , . . . , t∗d and that n− d of those remaining were interrupted before failure after T

units of time from the beginning. The likelihood function describing this situation is

chosen (see [91]) in the form

�(λ | Ie) =
d

∏
i=1

f (t∗i ;λ )
n−d

∏
j=1

∫ ∞

T
f (x;λ )dx. (2.41)

Substitution of p.d.f. (2.39) into (2.41) and simplifying, we have

�(λ | Ie) =
d

∏
i=1

λ e−λ t∗i
(
e−λT )n−d = λ deλK , (2.42)

where K = t∗1 + t∗2 + · · ·+ t∗d + (n− d)T . Thus, the sufficient Bayes testing statistics

appears to be as a pair of numbers (d,K).
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2) Substituting the likelihood function (2.42) and a prior p.d.f. (2.40) in the Bayes formula

(2.33), we have the posterior distribution density

h̄(λ | Ia, Ie) =
(ρ+K)δ+d

Γ(δ +d)
λ d+δ+1 e−(ρ+K). (2.43)

The obtained expression is a gamma-function. Consequently, the chosen prior distribu-

tion is conjugated.

3) Determine the point estimate λ̂ ∗. For the squared-error loss function, the minimum

of the posterior risk G(λ̂ ) is attained at the point of the posterior mean value of the

estimated parameter, that is,

λ̂∗ =
∫ ∞

0
λ h̄(λ | Ia, Ie)dλ =

d +δ
ρ+K

.

The posterior s.d., which may be interpreted as exactness characteristic of the estimate

λ ∗, is defined by the variance of the gamma-distributed random variable, that is,

σλ̂ ∗ =
√

d +δ
ρ+K

.

An interval estimate of the failure-rate is often used as the upper λ confidence limit.

Define the Bayes analog of this estimate λ̄γ and putting λγ = 0. By definition,

P{λ � λ̄γ} and since the posterior distribution is a gamma-distribution, the transfor-

mation z = 2λ (ρ + K) gives us the chi-square distribution with 2(δ + d) degrees of

freedom, we have

P
{

2λ (ρ+K) � Xγ ;2(δ+d)
}

= γ, (2.44)

where Xγ ;2(δ+d) is a quantile of the chi-square distribution of the probability . From this

relation (2.44) we finally obtain

λ̄γ =
Xγ ;2(δ+d)

2(ρ+K)
.

2.5.2 Varieties of problems of Bayes estimation

When one solves practical problems, it is very difficult to establish all the above-mentioned

elements for Bayesian reliability analysis and modeling. Therefore, we need to improve

the classification of all possible varieties. From the methodological point-of-view, the most

essential elements can be classified as follows:

1) the forming of a reliability model;

2) completeness of information on a prior distribution (or completeness of a prior uncer-

tainty);
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3) completeness of information on the main random variable.

We consider, in brief, each of these classifications. From the point-of-view of the first

characteristic, we will distinguish two types of reliability models, giving the base for a

corresponding approach for reliability determination. The first one (which is used more

often) we will name “formal” and write it in the form

ξ > treq (2.45)

where ξ is a random time to-failure, treq is the time which is necessary, in accordance with

technological assignment of the device or system functioning. The model (2.45) doesn’t

touch upon real technical peculiarities of the device or system and enables us to analyze

different (by nature) devices in a standard way, based only on the observable properties of

the device (results of trials).

In addition to this model, we will use a model which is based on the mathematical descrip-

tion of real processes of the device collapse. This model, represented in the form

Z j(t) = φ(X(t)) > 0, t � treq, j = 1, 2, . . . ,m, (2.46)

will be named “functional”. Z j(t) denotes a random process of the initial device variables

(loading factors, physically-mechanical characteristics, geometrical parameters, etc.); the

function φ(·) is called the survival function.

The set of conditions (2.46) symbolizes the time of the device being operable. There are

many works devoted to the investigation of reliability of technical devices in the framework

of this modeling which don’t use the Bayes approach [26, 32, 89, 135, 173, and 260].

The questions connected with using the formal models of the device reliability will be

discussed in the following five chapters, from the third to the seventh one, inclusive. Chap-

ters 8–10 are devoted to the methods in reliability analysis based on the functional models.

From the point-of-view of a prior uncertainty (the second classification property) we will

discuss the following cases:

(A1) The case of a complete prior determinacy, when the prior distribution density is de-

termined uniquely;

(A2) The case of an incomplete priori determinacy, when a prior density is not given, and is

determined only by finite number of restrictions, imposed on some functions defined

on a prior distribution (for example, only a mean prior value of the parameter θ may

be given);

(A3) The case of a complete a priori indeterminacy, when only the finite number of esti-

mates of the parameter θ are known.
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The first case is the most frequently encountered and will be discussed in Chapters 3, 4, 5,

8, 9. The case (A2) is the least studied in Bayes literature.

In Chapter 6 we give the description of the general formal representation of a partial a

priori information and solve many concrete problems. The case (A3) is known as empirical

Bayes estimation and is discussed in Chapter 7.

With respect to the third property, we will discuss the following two cases:

(C1) Parametric, when a parametric family is given for the cumulative distribution function

of the main random variable, that is, F(t) = F(t;θ), where θ ∈Θ;

(C2) Nonparametric, when this cumulative distribution function is determined on some

nonparametric class (for example, a class of all continuous cumulative distribution

functions).

Furthermore, we will use, as a rule, parametric estimates, since they are simpler and broadly

applied. Nonparametric Bayes estimates will be studied in Chapter 4 and partially in Chap-

ter 7. In Chapter 5 we will use the so called quasiparametric estimates. They use different

methods for an approximate solution of a problem of estimation which is set as a parametric

one, but are solved by means of nonparametric methods.



Chapter 3

The Methods of Parametric Bayes Estimation
Based on Censored Samples

3.1 General description of the accepted estimation procedure

Under the analysis of reliability of technical devices, the essential role is played by the

characteristics of the device capacity for work, in particular, by the time-to-failure, TTF, of

the device during some time interval t:

R = R(t) = P{ξ > t} (3.1)

where ξ is a random time to-failure function. Throughout what follows, the characteristic

(3.1) will be used for the investigation of the peculiarities of the Bayesian approach, taking

into account the fact that other Bayes characteristics (for example, those of a quantile type)

can be obtained analogously.

The principal feature of all parametric Bayes methods is such that it is determined up to

the parameters θ = (θ1,θ2, . . . ,θt) whether a cumulative distribution function F(t;θ) or a

distribution density f (t;θ) of a random variable ξ , is given, so that

R = R(t;θ) = 1−F(t;θ) =
∫ ∞

t
f (x;θ)dx (3.2)

In the case when we are interested only in the dependence of the survival probability, SP,

on the parameter θ , for arbitrary t, we will write R(θ). The vector of parameters θ is

determined on the set Θ. The problem is that one has to estimate the SP having prior

information and empirical data.

Frequently, prior information is determined as a prior distribution density, h(θ), of the

model parameters of the reliability. In many important cases (from the point-of-view of

practice), described below, one uses another parameterization: as model parameters will

be used t as the valuesof the TTF at some given time instants t1, t2, . . . , t�, R(t j;θ). Such

a method of representation of a parameter vector is preferred for the following practical

reason: an engineer can form a prior representation (subjective or frequency) without us-

ing the parameter θ which doesn’t have, as a rule, a technical interpretation. He obtains it

47
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directly from the TTF. There is also a form of dual representation of a priori information in

the form of a joint p.d.f. of the TTF at some instant t and (�−1) component of the vector θ .

When one chooses a parameterization method, he should use the following evident prin-

ciple: the parameters of reliability models must have a clear physical interpretation. Only

in this case, the researcher, using his informal experience, can assign a prior distribution

adequate to real processes of functioning of a technical device.

In this chapter and the later ones, we will investigate the Bayes procedures of the TTF

estimation for the plan of testing with censoring the failure data. This plan is applied in

many practical engineering situations. For example, a tested technical device is a part of a

composite system. The halting of testing may be caused either by the failure of the testing

object or by the failure of some other object. The last case will be called a standstill. In

autonomous tests, the standstill may be caused by a failure of the testing equipment. The

typical situation we meet is estimation of the equipment with the help of results of the

exploitation. Some of the equipment elements are put into operation at different moments

of time. One should estimate the TTF at the given moment of time.

Let us enumerate the testing devices. For each i, the test may be ended by a failure at

time t∗i or by a standstill at the moment ti, i = 1, 2, . . . ,n. If a failure occurs at the moment

t∗i � ti, then the value t∗i will be known after the trial. Provided that t∗i > ti, the exact

value of t∗i is unknown. It is known only that a failure may occur after the moment ti.

The random moments of failures or standstills are assumed to be mutually independent and

have a density f (t;θ). After we have enumerated the moments of failures and standstills,

the result of testing may be represented as a vector τ = {t∗, t}, where t∗ = {t∗1 , t∗2 , . . . , t∗d},

t = {t1, t2, . . . , tk}.

The technique of the Bayes TTF estimation is defined completely by the standard methods

of Bayes estimation, discussed in Chapter 2. Starting from the sample τ and using p.d.f.,

f (t;θ) we write the expression of the likelihood function �(θ | τ). The questions touch-

ing upon the determination of �(θ | τ) for the censored samples are discussed in the next

section. Further, using the Bayes theorem, one writes the kernel of the posterior density

h̄(θ | τ) ∼ �(θ | τ)h(θ) (3.3)

and determines the normalizing constant β :

β =
∫
Θ

�(θ | τ)h(θ)dθ . (3.4)

Then, a posterior p.d.f. takes on the form

h̄(θ | τ) =
1
β

h(θ)�(θ | τ). (3.5)
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Choosing the loss function L(R̂,R)in the form proposed in the previous chapter, where R̂

is the estimate, and R = R(θ) is the true reliability measure and solving the minimization

problem

R̂∗ = arg min
R̂∈(0,1)

∫
Θ

L
(
R̂,R(θ)

)
h̄(θ | τ)dθ (3.6)

one finds the point Bayes estimate of the reliability, R̂∗. It should be mentioned that, if

there are no empirical data τ , one can’t use (3.6) instead ofthe posterior p.d.f., h̄(θ | τ), of

a prior p.d.f., h(θ) is used. In this case R̂∗ is a prior Bayes estimator.

If a squared-error loss function has been chosen, then the solution of the problem (3.6) is

written explicitly:

R̂∗ =
∫
Θ

R(θ)h̄(θ | τ)dθ , (3.7)

that is, the estimate R̂∗ is the posterior mean value of the function R(θ). The exactness of

the estimate we have obtained can be characterized by the posterior variance (or by s.d.)

which coincides with the minimal value of a risk function

σ2
R̂∗ =

∫
Θ

[
R(θ)− R̂∗]2 h̄(θ | τ)dθ . (3.8)

Since a SP is a positive characteristic of reliability, it is interesting to construct the lower

confidence limit R∗
γ , represented by the equation

P
{

R(θ) > R∗
γ | τ

}
= γ,

where γ is the given confidence level. Finally, the determination of R∗
γ is reduced to the

solution of the transcendent equation∫
R(θ)�R∗

γ
h̄(θ | τ)dθ − γ = 0, (3.9)

in which the unknown estimate R∗
γ belongs to the integration domain. Thus, the standard

parametric approach of estimating reliability is carried out as the successive application of

the expressions (3.3)–(3.9). We can encounter, using different parametric families f (t;θ)

and different prior p.d.f., h(θ) for the problem solution, some definite peculiarities and

difficulties which don’t have, however, a principal value. If one estimates reliability of some

system, the solution of a problem may be more complicated In this case, the parameter θ
contains many components (depending on the number of elements) and the function R(θ)

is cumbersome.

Systematization of known parametric Bayes estimates. The recent works of many au-

thors pay thorough attention to the obtaining of Bayesian estimates of reliability. Even a
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brief excursion in this field would be very cumbersome. Besides, the necessity of such an

excursion appears to be dubious, because most of the results obtained in this field don’t

have a principled character. Below we give a systematization of the main results with

the corresponding references. The reader who wants to learn some concrete results more

deeply can find them in the works we cite. There are two complicated reviews on the appli-

cation of Bayes methods to reliability. The first one [232] gives the analysis of works that

were published until 1976; the second [249] is from 1977 to 1981. We present, in addition

to these books, the systematization of the later most interesting works. We include works

that have appeared since 1981 and a series of publications which were not mentioned in

[232, 249].

The following principle is taken as a basis of classification: all the works divided into

groups characterized by:

a) a form of the parametric family;

b) a form of a loss function;

c) a choice of a prior distribution;

d) plans testing for obtaining estimates;

e) structure type of the technical system, the reliability of which is being tested.

In accordance with the first characteristic, all works are divided into the following sub-

groups: binomial models [68, 71, 88, 197, 201, 234, 263, 268], models with a constant

failure rate [11, 22, 147, 149, 164, 185, 255], Poisson models [37, 103, 107, 189, 230,

267, 268, 271], the case of normal distribution [96, 264], the case of gamma-distribution

[66, 104, 116, 157, 255, 264], models based on a Weibull distribution [7, 33, 40, 44, 78,

119,186, 237, 251], and models with a log-normal distribution [175, 182]. In all these

works, the authors use a natural parameterization of the corresponding distribution fami-

lies. This means that if, for example, the Weibull cumulative distribution function is written

in the form F(t;α,σ)− exp [−(t/σ)α ], then as a priori information is used the prior p.d.f.

h(α,σ) of the variableswhich are model parameters. The use of corresponding results is

impeded in practice, because the engineer-researcher usually meets some difficulties, when

he forms a priori representation with respect to parameters having an often abstract nature.

What actually happens is that a researcher has direct information on the degree of reliabil-

ity. For example, for the above-mentioned above Weibull model, the interval of TTF values

at the moment to: Rt0 − 1−F(t0;α,σ), is given and, having this information, one should

obtain the Bayes estimate. Similar situations will be considered at the end of this chapter.

In accordance with the second characteristic (a form of a loss function), the publications
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are considered more distinct. The most of works use a quadratic loss function [17, 22,

37, 40, 44, 48, 96, 100, 105, 107, 150, 167, 184, 189, 230, 238, 258, 268] which gives

the Bayes estimate in the form of the posterior m.v. In the work [157] a loss function∣∣R̂−R(θ)
∣∣ is used. Some authors (see [60, 230, 258] accentuate the quadratic loss functions[

R̂−R(θ)
]2

/R(θ) and
[
R̂−R(θ)

]2
/R(θ)2, giving the estimates

{
E
[
R−1 | τ

]}
and E

[
R−1 |

τ
]
/E

[
R−2 | τ

]
respectively. In the works [73, 258] the authors introduce and substantiate

the usefulness of a loss function having the forms

C(R(θ))
[
R̂β −Rβ (θ)

]2
, C(R(θ))

[
ln R̂− lnR(θ)

]2
.

In accordance with the third characteristic, we divide the works into four subgroups. To

the first group belongs the works [1, 2, 29, 31, 36, 37, 38, 44, 66, 68, 96, 97, 100, 105,

109, 139, 147, 157, 163, 167, 183, 189, 190, 228, 234,237-241, 267, 272] which deal with

conjugated systems of prior distributions. In the second group we include publications [17,

40, 44, 48, 95, 105, 141, 150, 186, 263] in which the authors attempt to use objective

prior distributions. They either construct prior distributions based on the given statistical

data of previous information, assuming that statistical mechanisms possess the property of

stability, or apply the empirical Bayes approach. In the works [29, 100, 105, 157, 175, 189,

215, 230], the authors use the subjective discrete or uniform prior distributions. And, at

last, in the fourth group we include a few publications [6, 60, 75] which use a principle of

entropy maximum, considered in Chapter 2. Thus, we may come to the conclusion that in

these works the authors attempt to avoid the assignment of the subjective prior distribution,

doing this only in the case of the discrete representation.

In accordance with the fourth characteristic, the following four plans are used most often:

1) n articles are tested with fixing of a failure moment, the testing’s are interrupted, when

r � n of failures have occurred [8, 22, 44, 69, 157, 163, 167, 236–240, 258];

2) n articles are being tested during the given time interval T and fixed the number of the

articles which failed [103, 107, 268];

3) n articles are tested with fixing of the time they have failed, the testing are interrupted,

when all articles have failed [184, 186];

4) during the testing of n articles failure moments are fixed, the testing is interrupted after

the given time T has been ended [22, 31, 69, 155].

The last, and, fifth, characteristic enables us to subdivide the publications in the following

way. In the works [29, 234, 241, 248, 271], the authors estimate the reliability of parallel

systems, in the works [97, 148, 158, 159, 190, 197, 238–240, 261, 271] the reliability of
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sequential systems. Composed (parallel-sequential) schemes are considered in the works

[31, 138, 139].

Finally, in the works [119, 268], the authors consider systems which differ from the above-

mentioned.

Taking into account our arguments, mentioned above, we can make the following conclu-

sion. In spite of the great variance of the solved problems, the questions of TTF estimation

by the censored samples under the assumption that a priori information is given in the form

of a prior distribution of the investigated reliability degree remain open. We complete it in

the following section.

3.2 Likelihood function for Bayes procedures

One of the compound parts of any Bayes procedure of estimation is the composition of

a likelihood function. In the simplest case for the testing plans without censoring, the

likelihood function is written in the form

�(θ | τ) =
n

∏
i=1

f (τi;θ) (3.10)

Questions concerning construction of a likelihood function for the censored samples are

discussed by many authors (see, for example, [31, 123]. The most complete formalization

of the procedure of random censoring is done in [14, 15]. We represent below the main

principles of this formalization.

Suppose that n are tested. Each i-th testing is associated with twonumbers ti and t∗i (i =

1, 2, . . . ,n), t∗i is a failure moment, ti is a censoringmoment. Failure moments t∗i , with

the gap of censoring, are assumed to be mutually independent, equidistributed random

variables with a c.d.f. F(t;θ). A sample τ = (τ1,τ2, . . . ,τn), corresponding to the general

plan of testing, has form

τ =
(
τ∗i1 ,τ

∗
i2 , . . . ,τ

∗
id ,τ

∗
j1 ,τ

∗
i2 , . . . ,τ

∗
jk

)
, d + k = n, (3.11)

where the set I = (i1, i2, . . . , id) is compounded by numbers of articles for which failures

are observed, and the set J = ( j1, j2, . . . , jd) numbers of articles for which the failures are

being censored. The set τ∗1 ,τ∗2 , . . . ,τ∗n ,τ1, . . . ,τn is considered a random vector.

Further it is supposed that a cumulative distribution function of the whole set of random

variables possesses the following property: the conditional distribution t1, t2, . . . , tn (under

the condition that nonobserving values of failure moments τ∗j1 > τ∗i2 , . . . ,τ
∗
jk > t jk , and ob-

serving ones τ∗i1 � τ j1 , . . . ,τ∗id � tid is independent of θ and may depend only on the values
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τ∗i1 , . . . ,τ
∗
id . Under the assumption of the existence of joint p.d.f. values ti,this means that

for the conditional p.d.f., the relation

p
(
t1, t2, . . . , tn | t∗1 , . . . , t∗n

)
= p

(
t1, t2, . . . , tn | t∗i1 , . . . , t

∗
id

)
, (3.12)

holds, where

t∗i � ti, ∀ i ∈ I, t∗j > t j, ∀ j ∈ J.

The plan of testing with censoring, satisfying the relation (3.12), is called in [14] a plan of

testing with noninformative censoring (NC-plan).

Note that the condition (3.12) is fulfilled, if the sets of all failure moments
(
τ∗1 ,τ∗2 , . . . ,τ∗n

)
and the sets of all censoring moments t1, t2, . . . , tn are mutually independent. This exact

situation occurs when t∗i are independent with respect to i and don’t depend on all t j (i, j =

1, 2, . . . ,n). Such an assumption looks natural when one carries out a testing of articles

with two types of failures, when each test is continuing up to the moment until a failure

occurs. We indicate the type of occurred failure. The sample, obtained in this way, has

a form τ = (τ1,τ2, . . . ,τn), where τi = min{t∗i , ti}. The event τi = t∗i (τi = ti) responds to

the case when the first (second) type failure has been occurred before the occurring of the

second (first) one.

For the establishment of the likelihood function, we write a joint density of the observed

data:

p(τ) = p
(
t∗i1 , . . . , t

∗
id , t j1 , . . . , t jk

)
=

∫ ∞

t∗i1

dti1

· · ·
∫ ∞

t∗id

dtid

∫ ∞

t j1

dt∗j1 · · ·
∫ ∞

t jk

dt∗jk
n

∏
�=1

f (t∗� ;θ) p(t1, . . . , tn | t∗1 , . . . , t∗n ) .

Integrating t∗j1 , . . . , t
∗
jk over, in accordance with (3.12), yields

p(τ | θ) =
d

∏
m=1

f
(
t∗im ;θ

) k

∏
�=1

[
1−F

(
t j� ;θ

)]
c(τ), (3.13)

where

c(τ) =
∫ ∞

t∗i1

dti · · ·
∫ ∞

t∗id

dtid p
(
t1, . . . , tn | t∗i1 , . . . , t

∗
id

)

is independent of the parameter θ and defined only by the obtained data. We rewrite the

expression (3.13) in a more suitable form in order to determine reliability degrees. To this

end we use the function of a failure rate

λ (t;θ) =
f (t;θ)

1−F(t;θ)
(3.14)
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and the resource function (or the integral function of intensity)

Λ(t;θ) =
∫ t

0
λ (x;θ)dx =

∫ ∞

0
χ(t − x)λ (x;θ)dx (3.15)

where χ(z) = 0 for z < 0, and χ(z) = 1 for z � 0.

Note that, since

R(t;θ) = 1−F(t;θ) = exp
[
−

∫ t

0
λ (x;θ)dx

]

for the resource function we obtain

Λ(t;θ) = − ln[1−F(t;θ)]. (3.16)

Let us transform the expression (3.13), using the relations (3.14) and (3.16):

p(τ | θ) = c(τ)∏
i∈I
λ
(
t∗i ;θ

)
exp

{
−
[
∑
i∈I
Λ
(
t∗i ;θ

)
+∑

j∈J
Λ(t j;θ)

]}
. (3.17)

The expression (3.17) can be simplified with the help of (3.15) in the following way:

∑
i∈I
Λ(t∗i ;θ)+∑

j∈J
Λ(t j;θ) =

∫ ∞

0

[
∑
i∈I
χ (t − t∗i )+∑

j∈J
χ(t − t j)

]
λ (t;θ)dt

=
∫ ∞

0
N(t)λ (t;θ)dt (3.18)

where N(t) is the number of articles being tested at the moment t. By using the relation

(3.18), we can rewrite (3.17) as

p(τ | θ) =∏
i∈I
λ (t∗i ;θ)exp

{
−

∫ ∞

0
N(t)λ (t;θ)dt

}
c(τ). (3.19)

The distribution density p(τ | θ), represented as a function of the parameter θ , by definition

is a likelihood function for the (NC)-plan, corresponding to the censoring data τ of the form

(3.11). Throughout what follows we will use the notations t∗ = (t∗1 , . . . , t∗d ), t = (t1, . . . , tk)

for the moment of failure and moment of censoring, respectively, observed in n = d + k

independent testing’s.

Following these notations, we can rewrite the likelihood function �(θ | τ) as one of the

following equivalent expressions:

�(θ | τ) = c(τ)
d

∏
i=1

f (t∗i ;θ)
k

∏
j=1

[1−F(t2;θ)] , (3.20)

�(θ | τ) = c(τ)
d

∏
i=1

λ (t∗i ;θ)exp

[
−

n

∑
j=1

Λ(t j;θ)

]
, (3.21)

�(θ | τ) = c(τ)
d

∏
i=1

λ (t∗i ;θ)exp
[
−

∫ ∞

0
N(t)λ (t;θ)dt

]
. (3.22)
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We use one or another of these expressions, depending on convenience, giving the posterior

p.d.f. h̄(θ | τ) and on the manner of representation of the parametric family of distributions

the random variable of a trouble-free time of functioning. In concluding this section we

note that the assumption about the randomness of the censoring moments doesn’t play an

essential role in the above reasoning. In the case more general than those considered earlier,

for each testing is planned the duration t ′i (i = 1, 2, . . . ,n) that cannot be exceeded. Thus, in

each testing it is observed the minimal of three quantities τi = min{t∗i , ti, t ′i}, and the sample

has a form τ =
(
t∗1 , . . . , t∗d , t1, . . . , tk′ , t ′k, . . . , t

′
k′′
)
, where k′ + k′′ = k, n = d + k. To formalize

the given testing plan mentioned above, one should consider the set of random variables{
t∗1 , . . . , t∗n , t1, . . . , tn, t ′1, . . .t

′
n
}

, having a joint density

p =
n

∏
�=1

f (t∗� ;θ) p(t1, . . . , tn | t∗1 , . . . , t∗n )
n

∏
j=1

δ j
(
t ′j
)
,

where δ j(t ′j)is the delta-function. Applying the transformations, analogous to those that

have been used for p(τ | θ), we obtain

p(τ | θ) =
d

∏
m=1

f
(
t∗im ;θ

) k′

∏
�=1

[1−F (t js ;θ)]
k′′

∏
s=1

[
1−F

(
t j� ;θ

)]
.

This expression coincides with (3.13), if one puts k′+k′′ = k and supposes that the moments

of random and determinate censorings don’t differ. Therefore, the relation for the likelihood

function (3.20)–(3.22) remains valid, not only for the random censoring, but also for the

determinate one.

3.3 Survival probability estimates for the constant failure rate

The case of the constant failure rate λ (t) = λ = const.) is associated with the exponential

distribution of the TTF with p.d.f.

f (t;λ ) = λ e−λ t

and with the cumulative distribution function

F(t;λ ) = 1− e−λ t .

This distribution is one-parametric. The probability of the trouble-free time at some mo-

ment t0 is written in the form

R = R(t0;λ ) = e−λ t0 .
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In view of the arguments mentioned above, we consider a situation when the prior distri-

bution is defined directly for the estimated TTF, i.e., h(r) is given. Represent p.d.f. f (t;λ )

and c.d.f. F(t;λ ) in accordance with the parameter r = exp(−λ t0). This yields

λ = λ (r) = − lnr
t0

,

whence

f (t;λ (r)) = − lnr
t0

rt/t0 (3.23)

and

F(t;λ (r)) = rt/t0 . (3.24)

Substituting the expressions (3.23) and (3.24) into (3.20), we obtain the likelihood function

which corresponds to the sample τ for the NC-plan oftesting:

�(r | τ) = c(τ)
(
− 1

t0

)n

rω lnd r, (3.25)

where

ω = ω(τ) =
1
t0

(
d

∑
i=1

t∗i +
k

∑
j=1

t j

)

is a total respective operating time of testing that generates, together with the number of

failures d, the sufficient statistic with respect to the sample τ under the NC-plan.

In accordance with the Bayes theorem (3.3), for the posterior p.d.f. of the parameter τ we

have

h̄(r | τ) ∼ h(r)rω lnd r. (3.26)

For further investigation we choose a quadratic loss function. It enables us to write the

following expressions for the Bayes estimate R̂∗ and posterior variance, respectively:

R̂∗ =
1
β

∫ 1

0
h(r)rω+1 lnd rdr, (3.27)

σ2
R̂∗ =

1
β

∫ 1

0
h(r)rω+2 lnd rdr− R̂∗2

, (3.28)

where β =
∫ 1

0 h(r)rω lnd rdr is the normalizing constant. The lower confidence TTF limit,

in accordance with the expression (3.9), can be found from the equation∫ 1

R̂∗
γ

h(r)rω lnd rdr = γ
∫ 1

0
h(r)rω� lnd rdr (3.29)

where γ is a confidence level.

In the general case for the practical application of the relations (3.27)–(3.29), we need to

use numerical methods of integration and numerical methods for the solution of transcen-

dent equations. Often we can meet such situations when h(r) is chosen by the frequency

relations and appears to bean approximation of some empirical equation. (We’ll represent

below, from the point-of-view of practical interests, some of the most important cases.)
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3.3.1 The case of uniform prior distribution

Suppose that R is subjected to a prior distribution with p.d.f.

h(r) =

⎧⎨
⎩

1
Ru −R�

, R� � r � Ru,

0, r < r�, r > Ru.
(3.30)

This case is typical for the practical situation when a researcher, using the previous ex-

periment, can guarantee that a value of TTF of the created device will not fall outside the

interval [R�,Fu]. In accordance with (3.27) we obtain

R̂∗ =

∫ Ru

R�

rω+1 lnd rdr
∫ Ru

R�

rω lnd rdr
. (3.31)

For the application of formula (3.31) we use the following integral, which can be easily

found: ∫
xθ lnn xdx = xθ+1

n

∑
k=0

(−1)kn(k) lnn−k x
(θ +1)k+1 +C, (3.32)

where n(k) = n!
(n−k)! is the number of arrangements of k elements from n elements. The

expression (3.31) is written as

R̂∗ =
IE(Ru, ω+1,d)− IE(R�,ω+1,d)

IE(Ru,ω,d)− IE (R�,ω,d)
, (3.33)

where the function IE(x,a,n) is given follows:

IE(x,a,n) = sa+1
n

∑
k=0

1
(n− k)!

· | ln
n−k x|

(a+1)k . (3.34)

The expression for the posterior variance can be found analogously:

σ2
R̂∗ =

IE(Ru,ω+2,d)− IE(R�,ω+2,d)
IE(Ru,ω,d)− IE(R�,ω,d)

− R̂∗2. (3.35)

In this case the equation (3.29) has a form

IE(R∗
γ ,ω,d) = (1− γ)IE(Ru,ω,d)+ γIE(R�,ω,d). (3.36)

The case R� = 0, Ru = 1, i.e., a TTF is distributed uniformly on the segment [0,1], will

be of interest to us. We name it as the case of trivial a priori information. The formulas

(3.33)–(3.35) are simplified substantially:

R̂∗ =
(

1− 1
ω+2

)d+1

, σ2
R̂∗ =

(
ω+1
ω+3

)d+1

− R̂∗2, (3.37)

R∗ω+1
γ

d

∑
k=0

ω+1
(d − k)!

∣∣lnR∗
γ
∣∣d−k = β (1− γ). (3.38)
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Let us compare the estimates (3.37) with the maximum likelihood estimates. To this end

we use the likelihood function (3.25). After solving the likelihood equation ∂ ln�(r | τ)/∂ r,

we obtain

Rml = e−d/ω . (3.39)

Next we find the minimal estimate of the variance. Then, in accordance with the Kramer–

Rao inequality,

D [Rml] � e−d/ω ,

where

I(r) =
∫ ∞

0

[
∂
∂ r f (t;λ (r))

]2

f (t;λ (r))
dt.

For the given case

I(r) =
1

r2 ln2 r
,

whence,

D [Rml] � e−2n/ω(n/ω)2 = Dmin. (3.40)

Let us compare (3.37) with (3.39) and (3.40) respectively. It is easily seen from the expres-

sion (3.39) that Rml = 1 for d = 0, i.e., we cannot apply the maximum likelihood estimate

for the case of completely successful tests. At the same time, the substitution d = 0 into

the expression (3.37) gives us R̂∗ = (ω+1)/(ω+2) and the case R̂∗ = 1 is realized only in

the asymptotic n →∞. Analogously, for d = 0 in the expression (3.40) we obtain Dmin = 0

and σ2
R̂∗ , as it follows from (3.37) is always positive and tends to zero onlyas n → ∞.

In Table 3.1 we represent the results of numerical comparison of R̂∗ with Rml and σ2
R̂∗ with

Dmin for a broad range of values of sufficient statistics. As can be seen from the given

numerical values, σ2
R̂∗ < Dmin for d > 1.

Compare now the lower Bayes confidence limit for the case of trivial a priori information

with a usual confidence limit (for d = 0)

R′
γ = (1− γ)1/n, (3.41)

which holds for the plan [N,U,T ] under completely trouble free tests. For d = 0, equation

(3.39) gives us

R∗
γ = (1− γ)1/(ω+1). (3.42)

If one reduces the formula (3.42) for the plan [N,U,T ], it yields

R∗
γ = (1− γ)1/(n+1).
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Table 3.1

ω R̂ml R̂∗ Dmin σ2
R̂∗ d

2 0.367879 0.421875 0.135335 0.038022

2

3 0.513417 0.512000 0.117154 0.034153
4 0.606531 0.578704 0.091970 0.029534
5 0.670320 0.629748 0.071893 0.025306

10 0.818731 0.770255 0.026813 0.012534
20 0.904836 0.869741 0.008187 0.004708
30 0.935507 0.909149 0.003890 0.002426
40 0.951229 0.930259 0.002262 0.001474
50 0.960789 0.943410 0.001477 0.000988

100 0.980199 0.970876 0.000384 0.000272
200 0.990050 0.985222 0.000098 0.000071
300 0.993356 0.990099 0.000044 0.000032
400 0.995012 0.992556 0.000025 0.000019
500 0.996008 0.994036 0.000016 0.000012

3 0.367879 0.409600 0.135335 0.029759

3

4 0.472367 0.482253 0.125511 0.027740
5 0.548812 0.539775 0.108430 0.025049

10 0.740818 0.706067 0.049393 0.014092
20 0.860700 0.830207 0.016668 0.005726
30 0.904837 0.880738 0.000081 0.003037
40 0.927743 0.908109 0.004841 0.001873
50 0.941763 0.925268 0.003193 0.001268

100 0.970446 0.961357 0.000948 0.000355
200 0.985112 0.980344 0.000218 0.000094
300 0.990650 0.986821 0.000098 0.000043
400 0.992528 0.990087 0.000055 0.000024
500 0.996008 0.992056 0.000036 0.000016

In the work [120] the estimate for the plan [N,U,(r,T )] was obtained which, for a constant

failure rate, results in the sufficient statistic (d,ω).This estimate has form

R∗
γ = exp

(
−
χ2

1−γ ;2(d+1)

2ω

)
(3.43)

where χ2
1−γ ;2(d+1)is a quantile of the chi-square distribution.

In Table 3.2 we represent the values of the estimate (3.43) and the lower Bayes confidence

limit in accordance with the equation (3.38) for a broad range of sufficient statistic values.

Having compared the results of the table, we may conclude that R∗
γ > R′

γ , that is, the Bayes

confidence interval is always smaller than the usual one. At the same time, the estimates

R∗
γ and R′

γ have equal limits as n → ∞ and their values almost don’t differ beginning with

ω = 40.

The analysis we have performed lets us as certain that the Bayes estimates are more effec-
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Table 3.1 (continued)

ω R̂ml R̂∗ Dmin σ2
R̂∗ d

2 0.367879 0.421875 0.135335 0.038022

2

3 0.513417 0.512000 0.117154 0.034153
4 0.606531 0.578704 0.091970 0.029534
5 0.670320 0.629748 0.071893 0.025306

10 0.818731 0.770255 0.026813 0.012534
20 0.904836 0.869741 0.008187 0.004708
30 0.935507 0.909149 0.003890 0.002426
40 0.951229 0.930259 0.002262 0.001474
20 0.960789 0.943410 0.001477 0.000988

100 0.980199 0.970876 0.000384 0.000272
200 0.990050 0.985222 0.000098 0.000071
300 0.993356 0.990099 0.000044 0.000032
400 0.995012 0.992556 0.000025 0.000019
500 0.996008 0.994036 0.000016 0.000012

3 0.367879 0.409600 0.135335 0.029759

3

2 0.472367 0.482253 0.125511 0.27740
5 0.548812 0.539775 0.108430 0.025049

10 0.740818 0.706067 0.049393 0.014092
20 0.860700 0.830207 0.016668 0.005726
30 0.904837 0.880738 0.0081 0.003037
40 0.927743 0.908109 0.004841 0.001873
50 0.941763 0.925268 0.003193 0.001268

100 0.970446 0.961357 0.000948 0.000355
200 0.985112 0.980344 0.000218 0.000094
300 0.990650 0.986821 0.000098 0.000043
400 0.992528 0.990087 0.000055 0.000024
500 0.996008 0.992056 0.000036 0.000016

tive. Therefore, by using them in practice we can substantially reduce the number of tests

necessary for the confirmation of the given reliability requirements. In order to clarify the

quantity relations between the necessary volume of tests ω∗
req which we need to carry out

by using the Bayes methodology and the volume ωreq of tests which we have to perform

by using non-Bayes methods, one performs a numerical modeling of the process of exper-

imental functioning of the object on the given reliability level Rreq. The values ω∗
req and

ωreq were defined from the conditions R∗
γ = Rreq and R′

γ = Rreq.

Figure 3.1 shows the behavior of the relative gain in the number of tests ωreq/ω∗
req depend-

ing on a prior confidence level R� (when Ru = 1) for different Rreq. As can be seen from

Figure 3.1, the gain may substantially increase.
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Table 3.2

d = 0 d = 1 d = 1

ω R∗
0.9 R′

0.9 R∗
0.9 R′

0.9 R∗
0.9 R′

0.9

1 0.316229 0.100009 0.0 0.0 0.0 0.0

2 0.464160 0.316241 0.273468 0.143023 0.0 0.0

3 0.562342 0.464172 0.378163 0.273488 0.264325 0.169625

4 0.630958 0.562353 0.459350 0.378184 0.344914 0.264312

5 0.681292 0.630968 0.5229742 0.459370 0.411686 0.344900

10 0.811131 0.794335 0.702148 0.677768 0.616408 0.587282

15 0.865964 0.857701 0.784187 0.771592 0.717025 0.701290

20 0.896151 0.891255 0.830918 0.823267 0.776124 0.766343

30 0.928415 0.926121 0.882078 0.878403 0.842242 0.837431

35 0.938042 0.936332 0.897584 0.894824 0.862567 0.858927

45 0.951177 0.950120 0.918917 0.917197 0.890740 0.888449

55 0.959716 0.959001 0.932898 0.931724 0.909335 0.907762

65 0.965714 0.965197 0.942768 0.941917 0.922525 0.921378

75 0.970157 0.969766 0.950107 0.949462 0.932366 0.931493

85 0.973581 0.97327 0.955778 0.955272 0.939989 0.939303

95 0.976300 0.976054 0.960292 0.959885 0.946068 0.945514

100 0.977460 0.977238 0.962290 0.961852 0.948668 0.948167

150 0.984867 0.984767 0.974569 0.974403 0.965367 0.965139

200 0.988610 0.988554 0.980834 0.980740 0.973868 0.973738

300 0.992380 0.992354 0.987160 0.987119 0.982473 0.982415

400 0.994275 0.884260 0.990347 0.990323 0.986816 0.986782

500 0.995415 0.995406 0.992266 0.992251 0.989433 0.989411

3.3.2 The case of a prior beta-distribution

There are practical situations when an engineer has information about a pointwise prior

estimate R0 of the TTF and information about the error of itsdetermination in the form of

a prior variance σ2
0 . In this case, as ascertainedin [43], a prior distribution can be approxi-

mated by a beta distribution with the p.d.f.

h(r) =
rα−1(1− r)β−1

B(α,β )
, 0 � r � 1, (3.44)

where B(α,β ) =
∫ 1

0 xα−1(1− x)β−1 is a beta function and parameters α , β are defined as

α = R0

[
R0(1−R0)

σ2
0

−1
]
, β = (1−R0)

[
R0(1−R0)

σ2
0

−1
]
.

Due to the Bayes theorem on a prior distribution density, we have

h(r | τ) ∼ rα+ω(1− r)β−1 lnd r, (3.45)
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Fig. 3.1 Illustration of the gain in the testing volume under using of Bayes procedures.

whence one obtains the following Bayes estimates:

R̂∗ =
IB(ω+1)

IB(ω)
, σR̂∗ =

IB(ω+2)
IB(ω)

− R̂∗2, (3.46)

where the function IB(v) is defined by the integral

IB(v) =
∫ 1

0
xα+y−1(1− x)β−1| lnx|ddx. (3.47)

For the highly-reliable articles α+ω � 100, in the integral (3.47) we can use the approxi-

mation lnr ∼= (1−4). The point is that for α+ω � 100, the posterior density concentrates

in the domain, adjacent to the unity, so that its values outside of the interval [0.9;1] are neg-

ligibly small and the approximation, indicated above, gives satisfactory results for practical

use.

Finally we have

R̂∗ ≈ B(α+ω+1,β +d)
B(α+ω,β +d)

=
α+ω

α+ω+β +d
,

σ2
R̂∗ ≈

(α+ω)(β +d)
(α+β +d +ω)2(α+β +d +ω+1)

.

(3.48)

It should be noted that the expressions we have obtained give us the exact values of the

required estimates for d = 0.



The Methods of Parametric Bayes Estimation Based on Censored Samples 63

3.4 Reliability estimates for the linear failure rate

The case of a linearly increasing intensity function λ (t), corresponding tothe deterioration

of exploitation conditions or wear of the article, is a development of the previous model.

Suppose, as before, that we have to estimate the TTF, R = P{ξ > t0}. Because the failure

rate during the time interval [0, t0] is changing linearly, it becomes z-times worse:

z =
λ (t0)

λ (0 � 1)
. (3.49)

We name the quantity z as a degradation degree of the intensity function.Clearly, provided

that z = 1, we have the previous case λ (t) = const.

Represent the function λ (t)in the form of the following linear function:

λ (t) = 2αt +λ0,

where α and λ0 are the parameters of linear function. The function λ (t) associates with

the density of the time to failure, TTF,

f (t) = f (t;α,λ0) = (2αt +λ0)exp
[
−(αt2 +λ0t)

]
(3.50)

and with the distribution function

F(t) = F(t;α,λ0) = 1− exp
[
−(αt2 +λ0)

]
. (3.51)

The estimating reliability index is written in the form

R = R(α,λ0) = exp(−αt2
0 +λ0t0). (3.52)

This parameterization is a natural generalization of the previous model. However, the pa-

rameters of the functions (3.50)–(3.52) don’t have a sufficiently technical interpretation. It

is more suitable, for these reasons, to use the parameters r and z, where r coincides with

the estimating TTF and z has been defined earlier in (3.49). As was mentioned above, it

is substantially easier to form a priori representation immediately about reliability index;

the parameter z has a clear interpretation and indicates how many times the failure rate has

increased in the interval [0, t0]. It is also suitable that r and z are dimensionless parame-

ters. Throughout what follows it is assumed that we are given a prior distribution h(r,z),

(r,z)∈Ω, where Ω is the given domain of parameters. Solving (3.49) and (3.52), we obtain

α =
lnr
t2
0

· z−1
z+1

, λ0 = − 2lnr
t0(z+1)

. (3.53)

After that we can express p.d.f. f (t) and c.d.f. F(t) in terms of dimensionless parameters

z and r:

f (t) f (t;r,z) = − 2lnr
(z+1)t0

[
(z−1)

t
t0

+1
]

r
z−1
z+1 ·

t2

t20
+ 2

z+1 ·
t

t0 ,

F(t) = F(t;r,z) = 1− r

z−1
z+1 · t2

t20
+ 2

z+1 · t
t0

.
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After substitution of these expressions into (3.20) and some arithmetical transformation,

we obtain the likelihood function for the reliability model with a linear intensity function

and NC-plan, giving the sample τ:

�(,z | τ) = c(τ)
(
− 2

t0

)d

a(z)rb(z) lnd r, (3.54)

where

a(z) =
1

(z+1)d

d

∏
i=1

[(z−1)v∗i +1]

b =
1

z+1
[(z−1)k +2ω ] ,

ω =
d

∑
i=1

v∗i
k

∑
j=1

v j, k =
d

∑
i=1

v2∗
i +

k

∑
j=1

v2
j ,

v∗i =
t∗i
t0

, v j =
t j

t0
.

The quantities v∗i and v j’ have, respectively, the sense of reduced dimensionless moments

of failure and censoring. As seen from the expression (3.54), one can use instead of the

vector τ the union of vectors v∗ and v, composed of the outcomes of the tests. The quantities

{v∗1,v
∗
2, . . . ,v

∗
d ,d,ω,k} form the sufficient statistic.

In accordance with the Bayes theorem for the posterior density of the parameters s and z,

we have

h̄(r,z | r) ∼ h(r)a(r)rb(z) lnd r. (3.55)

If the value of the degradation index z = 1 is taken exactly, we need only a prior distribution

of the parameter r. In this case for the posterior p.d.f. of the parameter r, we obtain

h̄(r | τ) ∼ h(r)rb lnd r. (3.56)

Besides, provided that z = 1, we have b = ω , and relation (3.56) coincides with (3.26), ob-

tained for the case λ = const. The sufficient statistic for the case, represented by (3.56), has

a simpler form than the one for the general case, where it is settled by the three quantities

{d,ω,k}.

Consider the wide spread case when an engineer can guarantee some interval [R�,Ru] for

the estimating reliability R before the beginning of testing.

In accordance with this, we’ll assume a priori that R ∈ [R�,Ru], and the degradation coeffi-

cient of the failure rate z belongs to the interval [z1,z2].
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Let us take for z and r uniform prior distributions in the intervals [R�,Ru] and [z1,z2] re-

spectively; moreover, we’ll assume that r and z are a priori independent. The expressions

for the Bayes estimate R̂∗ and posterior variance σ2
R̂∗ are written as

R̂∗ =
1
β

∫ z2

z1

dz
∫ Ru

R�

ra(z)rb(z) lnd rdr,

σ2
R̂∗ =

1
β

∫ z2

z1

dz
∫ Ru

R�

r2a(z)rb(z) lnd rdr− R̂∗2,

where

β =
∫ z2

z1

dz
∫ Ru

R�

a(z)rb(z) lnd rdr.

Using the integral (3.32), we can reduce these expressions to one dimensional integrals

which can be numerically integrated. Introduce the function

I� (z,R�,Ru,m,d) =
∫ Ru

R�

xb(z)+m lnd xdx

= IE(Ru,b(z)+m,d)− IE (R�,b(z)+m,d) , (3.57)

and the desired estimates can be expressed by

R̂∗ =
1
β

∫ z2

z1

a(z)I�(z,R�,Ru, I,d)dz,

σ2
R∗ =

1
β

∫ z2

z1

a(z)I�(z,Ru,R�,2,d)dz− R̂∗2,
(3.58)

where

β =
∫ z2

z1

a(z)I�(z,Ru,R�,0,d)dz.

For the determination of the lower Bayes confidence limit we have to solve the equation∫ z2

z1

a(z)I�
(
z,R∗

γ ,Ru,0,d
)

dz = γβ . (3.59)

The calculations based on (3.57)–(3.59) require special numerical methods. We have solved

this problem with the help of an algorithm written in FORTRAN-IV.

Example 3.1. The following relative operating times v∗ = (1,3), v = (2,4; 3,1; 2,8; 1,6;

2,4; 3,4; 4,2; 1,8; 2,5; 3,0) were fixed during the statistical testing, that is, one test was

ended by failure and ten by standstills. We know (taking into consideration a priori infor-

mation) that a reliability index is not less than 0.9, and a degradation coefficient takes on

a value from the interval [1.0; 2.0]. Calculation base on (3.57)–(3.59) gives the following

values of the posterior estimates: R̂∗ = 0.9576, σR̂∗ = 0.0242, a lower confidence limit (as

γ = 0.9) R∗
0.9 = 0.9216.
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The more simple case (bearing in mind the numerical analysis) is one that corresponds to

the fixed value of the parameter z, having the posterior density of the type (3.56).

The final formulas for the desired estimates are written with the help of the function (3.57)

as:

R̂∗ =
I� (z,R�,Ru,1,d)
I� (z,R�,Ru0,d)

, σ2
R̂∗ =

I� (z,R�,Ru,2,d)
I� (z,R�,Ru0,d)

− R̂∗2. (3.60)

The value of R∗
γ is found from the equation

I�
(
z,R∗

γ ,Ru,0,d
)
− γI� (z,R�,Ru,0,d) = 0. (3.61)

Example 3.2. The initial data for this example differ from those in the previous case only

by the condition that gives the exact value of the degradation coefficient z = 2. The calcu-

lations by formulas (3.60) and (3.61) yield: R̂∗ = 0.9729, σR̂∗ = 0.0181, R∗
0.9 = 0.9476.

We have performed a lot of computations using the formulae (3.60), (3.61) in order to

learn peculiarities of the Bays estimates. In Figures 3.2–3.4 you can see, respectively, the

behavior of R̂∗, σR̂∗ and R∗
γ as functions of the lower bound R� of the indeterminacy interval

(as Ru = 1) and degradation coefficient z. The calculations were performed with the help

of the special algorithm for three samples:

Sample 1: v∗ = (0.80; 0.85);

v = (1.10; 0.95; 0.90; 1.15; 0.75; 0.90; 0.85; 1.20; 1.15; 1.20) ;

Sample 2: v∗ = (1.10; 1.80);

v = (1.30; 1.20; 1.10; 0.30; 1.15; 1.40; 1.20; 1.70; 1.50; 2.00) ;

Sample 3: v = (1.30);

v = (2.40; 3.10; 2.80; 1.60; 2.40; 3.40; 4.20; 1.80; 2.50; 3.00) .

The order of the decreasing of a number of the samples corresponds to improvement of the

experiment results.

In Figures 3.2–3.4, solid lines correspond to the estimate of TTF for the first sample, dotted

lines are for the second one, dot-and-dash lines are for the third sample. Analysis of the

graphs enables us to draw the following conclusions:

1) While the number of samples is increasing, estimates of the reliability index is improv-

ing;

2) For each sample there exists its own dead zone for the change of R�,moreover, this zone

moves to the right as results of experiments improve;
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Fig. 3.2 The pointwise Bayes Estimate.

3) If one increases the degradation coefficient, the posterior estimates improve for the same

samples.

The last conclusion is logically interpreted in the following way. Suppose two tested arti-

cles with the degradation coefficients z1 and z2 (z1 > z2) give the same results. Clearly, that

the most reliable will be article whose degradation coefficient is larger.

3.5 Estimation of reliability for the Weibull distribution of a trouble-free time

Consider the case when the trouble-free time ξ is subjected to the Weibull distribution with

the density

f (t;λ ,α) = λα tα−1 exp(−λ tα), (3.62)

and c.d.f.

f (t;λ ,α) = 1− exp
(
−λ tα

)
. (3.63)

Then the estimating parameter of reliability during the period of time t0 iscomputed by the

formula

R = R(λ ,α) = exp(−λα0 ) . (3.64)
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Fig. 3.3 The posterior mean squared value of the TTF.

The expression for the reliability function, when one realizes an NC-plan,may be obtained

after we have substituted the relations (3.62) and (3.63) into (3.20):

�(λ ,α | τ) = c(τ)λ dαd

(
d

∏
i=1

t∗i

)α−1

exp(−λωtα0 ) . (3.65)

where

ω = ω(α) =
d

∑
i=1

(v∗i )
α +

k

∑
j=1

vαj , v∗i =
t∗i
t0

, v j =
t j

t0
.

Reasoning analogously as in the previous paragraph, we may conclude that the given pa-

rameterization is not suitable in practice. Therefore, instead of λ , we will use the parameter

r introduced earlier. Let us express the likelihood function in terms of r and α . To do this

we use the dependence (3.65). It yields

λ = − 1
tα0

lnr. (3.66)

Next we substitute (3.66) into (3.65) and obtain

�(r,α | τ) = c(τ)
(
− 1

t0

)d

αdμα−1rω lnd r. (3.67)
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Fig. 3.4 The lower Bayes confidence limit of the TTF.

where

μ =
d

∏
i=1

v∗i .

It should be noted that for α = 1, the Weibull distribution model changes into an exponen-

tial one, and the likelihood function (3.67) coincides with (3.25).

Assuming that p.d.f. h(r,α) is a priori given and using the Bayes theorem, we obtain

h̄(r,α | τ) ∼ h(r,α)αdμα−1rω lnd r. (3.68)

The dependence (3.68) appears to be initial for obtaining any estimates of reliability R. In

particular, if the parameters r and α are distributed uniformly in the intervals [R�,Ru] and

[α1,α2], we obtain

h̄(r,α | τ) ∼ αdμα−1rω lnd r, r ∈ [R�,Ru] ,α ∈ [α1,α2] ,

whence

R̂∗ =
1
β

∫ Ru

R�

dr
∫ α2

α1

αdμα−1rω+1 lnd rdα,
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where

β =
∫ Ru

R�

dr
∫ α2

α1

αdμα−1rω lnd rdα.

Calculations, based on these expressions, can be simplified if one uses the integral (3.32)

and introduces the function

IW (α,R�,Ru,m,d) = IE(Ru,ω(α)+m,d)− IE(R�,ω(α)+m,d). (3.69)

After tedious transformations we obtain the following final expressions for the estimates of

R:

R̂∗ =
1
β

∫ α2

α1

xdμx−1IW (x,R�,Ru,1,d)dx, (3.70)

σ2
R̂∗ =

1
β

∫ α2

α1

xdμx−1IW (x,R�,Ru,2,d)dx− R̂∗2, (3.71)

where

β =
∫ α2

α1

xdμx−1IW (x,R�,Ru,0,d)dx. (3.72)

The equation for the determination of the lower Bayes confidence limit has the form∫ α2

α1

xdμx−1IW
(
x,R∗

γ ,Ru,0,d
)

dx−βγ = 0. (3.73)

The calculations with the help of the formulas (3.70)–(3.73) require numerical methods of

integration and solution of transcendental equations.

Example 3.3. The results of testing are represented by the following relative operating

time: v∗ = (2.7), v = (1.9; 3.5; 2.4; 3.1; 2.8; 1.6; 2.4; 3.4; 4.2; 1.8; 2.5; 3.0). It is known a

priori, that the TTF is distributed uniformly in the interval [0.9;1], and parameter α is in

the interval [1;1.8]. Calculations by formula (3.70)–(3.73) with γ = 0.9 enable us to obtain

R̂∗ = 0.9666, σR̂∗ = 0.0202, R∗
0.9 = 0.9291.

In the case when the value of the parameter α is given exactly (not in the Bayes sense), the

formulas for the TTF estimates are simplified substantially. For example, for the posterior

p.d.f. of the parameter r, the followingrelation holds:

h̄(r | τ) ∼ h(r)rω lnd r.

One can easily obtain the expressions for the TTF Bayes estimates from the relations

(3.70)–(3.73) if one multiplies their integrands by the delta-function, taking on the val-

ues in all points but the given value α . Using the filter property of the delta-function, we

obtain

R̂∗ =
IW (α,R�,Ru,1,d)
IW (α,R�,Ru,0,d)

, (3.74)

σ2
R̂∗ =

IW (α,R�,Ru,2,d)
IW (α,R�,Ru,0,d)

− R̂∗. (3.75)
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The equation for R∗
γ has the following form:

IW
(
α,R∗

γ ,Ru0,d
)
− γIW (α,R�,Ru0,d) = 0. (3.76)

Example 3.4. The article has been tested 13 times under the same conditions; relative

operating times, fixed in the testing, coincide with those in Example 3.3. A priori TTF R is

distributed uniformly in the interval [0.9;1]. The value of the parameter α is given exactly:

α = 1.8. The calculations by formulas (3.74)–(3.76) give R̂∗ = 0.9766, σR̂∗ = 0.0163,

R∗
0.9 = 0.9546.

We have carried out numerous calculations by formulas (3.70)–(3.76), in particular, for

the samples 1, 2, and 3, mentioned in the previous paragraph. They have shown that we

meet the same conformities for the TTF estimates as in the case of the linearly increasing

intensity function.

In conclusion, we consider the model of the Weibull distribution in connection with the

frequently encountered binomial scheme of testing. This scheme may be reduced to the

NC-plan, if one assumes that all empirical data coincide with the required time of function-

ing t0 : t∗i = t0 (i = 1, . . . ,d), t j = t0 ( j = 1, . . . ,k). For the posterior p.d.f., the following

relation holds:

h̄(r,α | τ) ∼ h(r,α)αdrn lnd r.

Following the usual scheme of the Bayes procedure for the case of a priori independent

parameters α and r we obtain

R̂∗ =

∫ α2

α1

αdh(α)dα
∫ Ru

R�

rh(r)rn lnd rdr
∫ α2

α1

αdh(α)dα
∫ Ru

R�

h(r)rn lnd rdr
=

∫ Ru

R�

rn+1h(r) lnd rdr
∫ Ru

R�

rnh(r) lnd rdr
, (3.77)

i.e., the Bayes posterior TTF estimate is independent of the interval of values of the param-

eter α . The final expressions for the Bayes estimates with a uniform h(r) in the interval

[R�,Ru] coincide with the expressions (3.74)–(3.76), if one substitutes into them ω = n.

The same conclusion may be drawn for the model with a linearly increasing intensity func-

tion, considered in the previous paragraph. Namely,for v∗i = v j = 1 and a priori independent

parameters z and r, from (3.54) and (3.55) it follows

h̄(r,z | τ) ∼ h(z)
(

z
z+1

)d

h(r)rn lnd r,

i.e., a prior density may be represented as a product of two functions each of which depends

on z and r respectively. Consequently, for the Bayes pointwise TTF estimate the relation

(3.77) holds.
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The generalization of the considered peculiarities enables us to draw the following con-

clusion: the Bayes estimates for the binomial testing scheme are non-parametrical for the

class of all models with linear and power intensity functions (of the form tα ), if the model

parameters are a priori independent.

3.6 The Bayes estimate of time to failure probability from accelerated life tests

At present for the experimental testing of many technical devices authors use methods of

accelerated life tests. The detailed analysis and modern approach to the theory of accel-

erated life tests is given in [122]. The essence of these methods may be interpreted as

follows: we reduce the testing time due to the increasing severity of operating conditions.

In practice we often meet a situation when it’s impossible to find the relationships between

the operating conditions and reliability characteristics, since the operating conditions may

have a random nature.

In such a situation it will be useful to apply the Bayes approach which gives us the pos-

sibility to make decisions under uncertain conditions which are considered the best with

respect to minimizing a certain specific loss function (see the work [199]). Unfortunately,

representation of a priori information is chosen in an arbitrary form in an awkward form.

We represent the procedure of probability for TTF estimating, proposed in [221]. The tests

are carried out by the scheme of step-loading [122]. It is assumed that testing conditions

have a random nature and a priori information has a comparatively simple representation.

Suppose that during the process of accelerated life tests we have to find the TTF estimate for

some time interval t : R = R(t) = P{ξ > t}. The article is functioning under some nominal

conditions co. Since the test will be carried out under some severe operating conditions,

we rewrite the expression for the R(t) in the form

R = R(t,ε0) = P{ξ (ε0) > t}, (3.78)

where ξ (ε0) is a random period of trouble-free time under the nominal mode. Here, and

further on, the notion of a mode is interpreted as the set of parameters characterizing con-

ditions and type in which the device is functional. The formulation and solution of this

problem can be solved subject to certain assumptions given below:

1) During the testing the scheme of step-loading is realized. This means that we are given

some longest testing time T and the segment [0,T ] is divided into m + 1 nonintersected

segments μ j = [s j,s j + 1), j = 0, 1, . . . ,m. This partition is performed on the stage of

preliminary investigating tests. Each testing article is functions in the nominal mode ε0
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independently from the others. After this, if the failure doesn’t occur, a switching occurs

onto some more severe mode ε1 and so on. Each interval μ jis associated with its own mode

ε j. It is very important that the choice of indicated modes lacks uniqueness.

We may only each successive mode is more severe than the previous one. For the descrip-

tion of this fact we introduce the notation ε j � ε j−1. It is assumed that the tests may finish

as failures or as standstills, which in turn may be random or determined after the time

T . Bearing in mind the technical characteristics of the tests, we can reduce them to the

NC-plan, resulting in the sample τ = {t∗, t}, where

t∗ = (t∗1 , t∗2 , . . . , t∗d ) , t∗ = (t1, t2, . . . , tk) , d + k = n.

2) The failure rate function λ (t)is assumed to be piecewise constant so that λ (t) = λ j =

const. for t ∈ μ j ( j = 1, 2, . . . ,m). In other words, the failure rate function depends on the

testing mode: λ (t)λ (ε(t)).
Suppose that more severe testing conditions uniquely imply the increasing of failure rate,

i.e., the condition ε j � ε j−1implies λ (ε j) � λ (ε j−1) or λ j � λ j−1 ( j = 1, 2, . . . ,m).

3) The prior distribution h(r0) for TTF at some instant to is known before the testing.

Further on we will mainly use, as basic, a uniform prior distribution of the parameter R0 =

R0(t0,ε0) in the interval [R�,Ru].

The assumptions we have formulated above let us solve the problem of estimation of the

index R = R(t,ε0) in a classical Bayes setting. We introduce the parameterization in terms

of the vector λ = (λ0,λ1, . . . ,λm), whose number of components is the same as the number

of modes. We apply the standard Bayes procedure for the problem solution step by step:

a prior distribution density h(λ ) of the given vector, obtaining of the likelihood function

�(λ | τ) and posterior distribution h̄(λ | τ), obtaining of the estimates R̂∗, σR̂∗ , R∗
γ , with the

help of it.

We seek the density of a prior distribution h(A) in the form

h(λ ) = h0(λ0)h1(λ1 | λ0) · · ·hm(λm | λ0, . . . ,λm−1), (3.79)

where h j(λ j | λ0, . . . ,λ j−1) is the conditional prior probability of the parameter λ j under

the condition
∣∣λ0,λ1, . . . ,λ j−1 . We define the marginal prior p.d.f. by use of a uniform

prior distribution of the index R0 ∈ [R�,Ru] and dependence R0 = exp(−λ0t0);

h0(λ0) =
t0

Ru −R�
e−λ0t0 , λ ′

0 � λ0 � λ ′′
0 , (3.80)

where λ ′
0 = − lnRu/t0, λ ′′

0 = − lnR�/t0.

The conditional prior p.d.f. h(λ j | λ0, . . . ,λ j−1) is defined so that each multiplier of a prior

p.d.f. (3.79) belongs to the same family of densities, namely, to the truncated potential
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family. This assumption is similar to another one having a more distinct physical nature: a

TTF at the moment t0 for the mode ε j doesn’t exceed a TTF at the same moment for the

mode ε j−1, i.e., R(t0,ε j)∈ [0,R(t0,ε j−1)] for all j = 1, 2, . . . ,m. Besides, the index R(t0,ε j)

is distributed uniformly in the mentioned interval. Using this assumption it is easy to obtain

h j(λ j | λ0, . . . ,λ j−1) = t0 exp[−(λ j −λ j−1)t0],

λ j � λ j−1, j = 1, 2, . . . ,m. (3.81)

Substituting the expressions (3.80) and (3.81) into (3.79), after evident transformations we

obtain

h(λ ) =
tm+1
0

Ru −R�
e−λmt0 , λ ∈ D, (3.82)

where domain D is defined by the chain of inequalities λ ′
0 � λ0 � λ ′′

0 , λ0 � λ1, . . . ,λm−1 �
λm. As follows from (3.82), a prior p.d.f. depends explicitly only on λm. However, h(λ )

is a function of all parameters because this dependence is expressed by the form of the

domain D.

To find the likelihood function �(λ | τ), we use (3.21), rewritten in terms of intensity func-

tion λ (t) and resource function Λ(t). Using the function

p(t) =

{
1, t ∈ μ j = [s j−1,s j),

0, t /∈ μ j,

for λ (t) we find

λ (t) =
m

∑
j=1

λ jρ j(t) (3.83)

After integration of the intensity function, we obtain

Λ(t) =
m

∑
j=0

ρ j(t)

[
j−1

∑
r=0

λrΔr +λ j (t − s j)

]
(3.84)

Substitution of (3.83) and (3.84) into (3.21) yields

�(λ | τ) = c(τ)
m

∏
j=0

ρ j(t∗i )λ j × exp

{
−

n

∑
i=1

m

∑
j=0

ρ j(τi)

[
j−1

∑
r=0

λrΔr +λ j(τi − s j)

]}
. (3.85)

We proceed to rewrite the expression (3.85) in a more suitable form andderive the sufficient

statistics.

Let m j be the number of elements of the sample τ belonging to the interval μ j. We denote

these elements by τ( j)
i , i = 1, 2, . . . ,m j. Next we’ll substitute τ( j)

i successively into (3.84)

and perform the summation over all indices i for all m segments. It yields
n

∑
i=1

m

∑
j=0

ρ j(τi)

[
j−1

∑
r=0

λrΔr +λ j(τi − s j)

]
=

m

∑
j=0

λ jk j, (3.86)
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where

k j = n jΔ j +
m j

∑
i=1

(
τ( j)

i − s j

)
,

n j = m j+1 +m j+2 + · · ·+mm,

j = 1, 2, . . . ,m−1, nm = 0, Δ j = s j+1 − s j.

The quantity n j determines the number of sample articles which don’t fail after the testing

in the mode j. The statistic k j has the sense of a full lifetime during the testing in the mode

j.

Analogously, if one denotes by d j the number of failures observed during the testing in the

mode j, then

d

∏
j=1

[
m

∑
j=0

ρ j (t∗i )λ j

]
=

m

∏
j=0

λ d j
j .

With the help of (3.86) and (3.87) we can rewrite the likelihood function (3.85) in the

following form:

�(λ | τ) = c(τ)
n

∏
j=0

λ d j
j exp

(
−

m

∑
j=0

λ jk j

)
. (3.87)

As can be seen from (3.88), the sufficient statistic for this case is formed by the quantities

d1, d2, . . . ,dm, k1, k2, . . . ,km.

In accordance with the Bayes theorem for the posterior p.d.f. of the vector λ , we have

h̄(λ | τ) ∼
m

∏
j=0

λ d j
j exp

[
−

m−1

∑
j=0

λ jk j +λm(km + t0)

]
, λ ∈ D. (3.88)

Since the desired index R = R(t,ε0) depends only on λ0, for the obtaining of Bayes esti-

mates of the index R we need to know the marginal posterior p.d.f. h̄(λ0 | τ). To this end,

we’ll integrate the relation (3.89) over the parameters λ1, λ2, . . . ,λm, where the integration

domain is determined by the domain D,

h̄0(λ0 | τ) ∼
∫ ∞

λ0

∫ ∞

λ1

· · ·
∫ ∞

λm−1

h̄(λ | τ)dλ1 dλ2 · · ·dλm.

Having performed the integration and some ambiguous transformations, we can obtain the

following (the most simple) expression for h̄0(λ0 | τ):

h̄(λ0 | τ) ∼ λ d0
0 = Sm(λ0)exp [−λ0(X0 + t0)] , (3.89)

where

Sm(λ0) =
Dm−Nm

∑
im=0

· · ·
D1−N1

∑
i1=0

λD1−N0
0

m

∏
j=1

(D j −Nj)(i j)

(Xj + t0)i j+1 ,
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and

Xj =
m

∑
i=0

ki

j−1

∑
i=0

ki, S j = d −
j−1

∑
i=0

di, Nj = n−
j−1

∑
i=0

i�,

where the symbol k(�)denotes the operation k!/(k−1)!. We find the estimates R̂∗ and σR̂∗

from the condition R = exp(−λ (ε0)t) = exp(−λ0t) using the quadratic loss function.

We are starting from the expressions

R̂∗ =
∫ λ ′′

0

λ ′
0

e−λ0t h̄0(λ0 | τ)dλ0,

σ2
R̂∗ =

∫ λ ′′
0

λ ′
0

e−λ0t h̄0(λ0 | τ)dλ0 − R̂∗2,

where λ ′
0 = − lnRu/t0, λ ′′

0 = − lnR�/t0.

The final expressions for R̂∗ and σR̂∗ may be written with the help of the function of the

reduced argument v = t/t0 as

Hml(v) =
Dm−Nm

∑
im=0

(m+1) → ·· ·
D0−N0

∑
i0=0

(D0 −N0)(i0)

(ω0 + �v+1)i0+1

m

∏
s=1

(Ds −Ns)(is)

(ωs +1)is+1

×
(

Rω0+�v+1
u | lnRu|d−i −Rω0+�v+1

� |lnR�|d−i
)

, � = 0, 1, 2, (3.90)

where ωs = Xs/t0, i = i0 + i1 + · · ·+ im.

Now

R̂∗ =
Hm1(v)
Hmo(v)

, σ2
R̂∗ =

Hm12(v)

Hm0(v)
− R̂∗2. (3.91)

We need to solve the following equation with respect to x in order to find the lower Bayes

γ confidence limit ∫ x

λ ′
0

h̄0(λ0 | τ)dλ0 = γ,

after then R∗
γ = exp(−xt). The equation for R∗

γ takes on the form

Dm−Nm

∑
im=0

(m+1) → ·· ·
D0−N0

∑
i0=0

m

∏
s=0

(Ds −Ns)(is)

(ωs +1)is+1

×
(

Rω0+1
u | lnRu|d−i −R

ω0+1
v

γ

∣∣∣∣lnR
∗ 1

v
γ

∣∣∣∣
d−i

)
− γHm0(v) = 0 (3.92)

As follows from the relations (3.91)–(3.93), the set of failures d0, d1, . . . ,dm, observed in

the time intervals with unchangeable mode and dimensionless parameters ω0, ω1, . . . ,ωm,

generates the sufficient Bayes statistic. The parameter ω j has a nature of respective (with

respect to t0) operating time intesting which was fixed in the intervals μ j, μ j +1, . . . ,μm.
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Consider the reduction of the formulas (3.91)–(3.93) to the “destruction” method [122]

which is a particular case of the step-loading method. It is characterized by two modes:

nominal and severe. In the expressions (3.91)–(3.93) we have to put m = 1. The algorithm

takes on a simpler form, in particular, the function H1�(v) is written as

H1�(v) =
d1

∑
i=0

d−i

∑
j=0

(d − i)( j)

(ω0 + �v+1) j+1 · d(i)
1

(ω1 +1)i+1

×
(

Rω+�v+1
u |lnRu|d−i− j −Rω0+�v+1

� |lnR�|d−i− j
)

. (3.93)

The equation for R∗
γ for m = 1 is also substantially simplified:

d1

∑
i=0

d−i

∑
j=0

(d − i)( j)

(ω0 + �) j+1 · d(i)
1

(ω1 +1)i+1

×
(

Rω0+1
u | lnRu|d−i− j −R∗

γ
ω0+1

v

∣∣∣∣lnR
∗ 1

v
γ

∣∣∣∣
d−i− j

)
− γH10(v) = 0. (3.94)

Example 3.5. Consider the case of having 10 devices which are being tested. It is a priori

known that the TTF of each device during the period of 100 hours is not less than 0.8. We

have to estimate a TTF of the article being in a nominal functioning period of 140 hours.

The tests are carried out by the “destruction” scheme. The mode switches after 100 hours

of functioning. The limit testing time is 160 hours. The following operating times have

been observed (in hours): 135, 142, 148, 135, 140, 150, 139, 144, 148, and 136, where

each testing has ended by failure. The special computation algorithm based on formulas

(3.92), (3.93), and (3.94) has been used. The estimates we have obtained are the following:

R̂∗ = 0.9055, σR̂∗ = 0.07054, R∗
0.9 = 0.8379.



Chapter 4

Nonparametric Bayes Estimation

4.1 Nonparametric Bayes estimates, based on Dirichlet processes

For a long time there were a lot of unsuccessful efforts directed toward the solution of many

nonparametric problems with the help of the Bayes approach. This can be explained mainly

by difficulties a researcher encounter, when he attempts to find a suitable prior distribution,

determined on a sample space. Such a distribution in nonparametric problems is chosen

in the form of a set of probability distributions on the given sample space. The first work

in this field where some progress has been achieved belongs to Ferguson [80]. Ferguson

formulated the requirements which must be imposed on a prior distribution:

1) The support of a prior distribution must be large with respect to some suitable topology

of a space of probability distributions, defined on the sample space;

2) The posterior distribution under the given sample of observations from the real distri-

bution of probabilities must have as simple a form as possible.

These properties are contradictory, bearing in mind the fact that each of them can be found

from each other. In the work [80] a class of prior distributions was proposed, named Dirich-

let processes, which not only possess the first property but also satisfy the second one.

Exactly such a choice was offered, because a prior distribution of a random probability

measure appears to be also a Dirichlet process. Another argument in favor of using the

Dirichlet distribution in practical applications is explained by the fact that this distribution

is a good approximation of many parametric probability distributions. Special attention is

paid to this question in the works by Dalal [51] and Hall [52]. This distribution appears also

in problems dealing with order statistics [266]. In the Bayes parametric theory it is used as

a conjugate with the sampling likelihood kernel for the parameters of a multinomial distri-

bution [63]. Below we give the definition of the Dirichlet distribution and formulate (from

79
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a practical point-of-view) some of its important properties.

4.1.1 Definition of the Dirichlet process

Denote by Γ(α,β ) a gamma probability distribution with the shape parameter α � 0 and

scalar parameter β > 0. For α > 0 this distribution has the probability density

F(z;α,β ) =
1

Γ(α)βα
e−z/β zα−1I(0,∞)(z), (4.1)

where IS(z) is the indicator function of the set S identically equal to unity for all z ∈ S and

equal to zero otherwise.

Let z1, z2, . . . ,zK be independent random variables, z j ∼ Γ(α j,1) where α j � 0 for all j

and α j > 0 for some j. The Dirichlet distribution with the parameters α1, α2, . . . ,αK ,

denoted further on by D(α1,α2, . . . ,αK), is determined as the distribution of the variables

Y1,Y2, . . . ,YK , defined in the following way:

Yj = z j

/ k

∑
i=1

zi, j = 1, 2, . . . ,k.

Note that if some α j = 0, then the corresponding Yj also degenerates to zero. Provided that

α j > 0 for all j, (k−1)-dimensional distribution of the variables Y1, . . . ,Yk−1 is absolutely

continuous with probability density

f (y1, . . . ,yK ; α1, . . . ,αK) =
Γ(α1 + · · ·+αK)
Γ(α1) · · ·Γ(αK)

k−1

∏
j=1

y
α j−1
j

(
1−

k−1

∑
j=1

y j

)αK−1

IS(y1, . . . ,yk−1),

(4.2)

where S is the following set:{
(y1, . . . ,yk−1) : y j � 0,

k−1
∑
j=1

y j � 1

}
.

For k = 2, the expression (4.2) is transformed into the beta probability distribution which

will be denoted by Be(α1,α2).

The use of the Dirichlet distribution is based on the following properties:

Property 4.1. If (Y1, . . . ,YK) ∼ D and r1, r2, . . . ,r� are some integer numbers, satisfying

the inequality 0 < r1 < r2 < · · · < r� = k, then(
r1

∑
i=1

Yi,
r2

∑
i=r+1

Yi, . . . ,
r�

∑
i=r�−1+1

Yi

)
∼ D

(
r1

∑
i=1

αi,
r2

∑
i=r1+1

αi, . . . ,
r�

∑
i=r�−1+1

αi

)
.

Property 4.2. If a prior probability distribution of the variables Y1, . . . ,YK is D(α1, . . . ,αK)

and if P{X = j | Y1, . . . ,YK} = Yj is almost surely for j = 1, 2, . . . ,k, then the posterior

probability distribution of the variables Y1, . . . ,YK for X = j is the Dirichlet distribution

D
(
α( j)

1 , . . . ,α( j)
K

)
, where α( j)

i = αi as i �= j and α( j+1)
i = αi +1 as i = j.
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Further, we need the following moments of the Dirichlet distribution:

E [Yi] =
αi

α
,

E
[
Y 2

i
]
=
αi(αi +1)
α(α+1)

,

and

E [Yi] =
αiα j

α(α+1)
, i �= j,

where α = ∑k
i=1αi.

Now we shall give the definition of the Dirichlet process. Let Ω be a sample space and L

be a σ -algebra of this space. The probability measure P, defined on (Ω,L ), we consider

to be random in the Bayes sense and later will be called a stochastic process. Note that, in

contrast to the parametric Bayes estimation, it is not assumed that the measure P belongs to

some parametric family. The nonparametric Bayes approach, in essence, may be construed

as follows: for any finite partition from the space Ω, we should determine some capasive

prior distribution on the parametric space which is determined by this partition.

In this sense, a measurable partition of the space Ω is a sequence of sets (B1,B2, . . . ,BK)

such that Bi ∈L for all i, Bi∩B j �= 0/ for all i �= j and, finally,
k⋃

i=1
Bi =Ω. The probabilities

P{B1}, P{B2}, . . . ,P{BK} are random; the problem is to choose a prior distribution for

these probabilities for any k > 1.

Definition 4.1. Let α be a nonnegative finitely-additive measure on (Ω,L ). The random

measure P on (Ω,L ) is called a Dirichlet process on (Ω,L ) with the parameter α if for

each k = 1, 2, . . . , and measurable partition (B1, . . . ,BK) of the set Ω, the distribution of the

random variables P{B1}, . . . ,P{BK} is a Dirichlet distribution D(α(B1), . . . ,α(BK)).

In the work [80] with the help of the uniqueness property of the Dirichlet process the

fulfilment of Kolmogorov consistency conditions were proven. It is easy to check that the

properties of the random probability measure P are closely connected with those of the

process parameter α . In particular,if α(A) = 0, then P{A} = 0 with probability equal to

one. Similarly, if α(A) > 0 then P{A} > 0 with probability equal to unity. Besides,

E [P{A}] =
α(A)
α(Ω)

. (4.3)

To use the Dirichlet process, we have to find its posterior distribution, i.e. the conditional

distribution of the Dirichlet process under the given sample. At first we introduce a notion

of a sample from a random probability distribution.
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Definition 4.2. Suppose P is a random probability measure on (Ω,L ). A set X1, . . . ,Xn

is called a sample of size n from P, if for any m = 1, 2, . . . and measurable sets

A1, . . . ,Am, C1, . . . ,Cn;

P{X1 ∈C1, . . . ,Xn ∈Cn | P{Am},P{C1}, . . . ,P{Cn}} =
n

∏
j=1

P
{

Cj
}

(4.4)

almost surely. See Ferguson [80].

In other words, X1, . . . ,Xn is a sample of size n from the distribution P, if for

the data P{C1}, . . . ,P{Cn} the events {X1 ∈ C1}, . . . ,{Xn ∈ Cn} are independent

from the other events of the process as well as mutually independent, so that

P
{

Xj ∈Cj | P{C1}, . . . ,P{Cn}
}

+P{Cj} for all j = 1, 2, . . . ,n. This definition determines

a joint distribution of the variables X1, . . . ,Xn,P{A1}, . . . ,P{Am} as soon as we are given a

distribution for the process, therefore

P{X1 ∈C1, . . . ,Xn ∈Cn,P{A1} � y1, . . . ,P{Am} � ym}

can be obtained by integration of the expression (4.4) with respect to the joint distribution

P{A1}, . . . ,P{Am}, P{C1}, . . . ,P{Cn} over the set [0,y1]×·· ·× [0,ym]×·· ·× [0,1].

Directly from the given definition and properties of the Dirichlet process two important

statements follow:

1) If X is a sample of unit size from the Dirichlet process on (Ω,L ) with the parameter

α , then for A ∈ L we have

P{X ∈ A} = α(A)/α(Ω).

2) Under the same assumptions, for any measurable partition B1, . . . ,BK of the space Ω we

have

P{X ∈ A, P{B1} � y1, . . . ,P{BK} � yK}=
k

∑
j=1

α(B j ∩A)
α(Ω)

D
(

y1, . . . ,yK ;α( j)
1 , . . . ,α( j)

K

)
,

where D
(

y1, . . . ,yK ;α( j)
1 , . . . ,α( j)

K

)
is a Dirichlet distribution function, α( j)

i = α(Bi) if

i �= j and α( j)
i = α(B j)+1 if i = j. Now we are ready to prove, using these statements,

the theorem of a posterior distribution of the Dirichlet process which shows that the

posterior distribution has the same form as the prior one, with the parameters depending

on the sample. Note, if δX is a measure on (Ω,L ), assigning a unit mass to the point

X , i.e., δX (A) = 1 for X ∈ A and δX (A) = 0 for X /∈ A, then the following statement is

valid.
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Theorem 4.1. Let P be a Dirichlet process on (Ω,L ) with the parameter α and X1, . . . ,Xn

is a sample of volume n from P. Then the conditional distribution of the process P under

the given sample is a Dirichlet process with the parameter α+∑n
i=1 δXi .

Theorem 4.1.1 is the main result of the work [80] which enables us to solve some practical

problems. This theorem gives us a method of obtaining the Bayes decision rule firstly

when there is no sample available (n = 0), n and secondly, by further reduction, replacing

the parameter α by α+∑n
i=1 δXi , when we have a sample X1, . . . ,Xn.

4.2 Some nonparametric estimators

We give below a number of examples illustrating the use of the Dirichlet process. As a

sample space, we choose the real axis R1 or some part of it, for example, a positive semi

axis R+ = [0,∞). L is used as σ -algebra of all Borel sets. For the solution of practical

problems, one has to define at first the metric α which reflects a priori information about

the model we have learned. Throughout what follows, a is a finite nonnegative σ -additive

metric on (R1,B) or on (R+,B).

Example 4.1 (The estimate of a cumulative distribution function and TTF). Suppose

at first that we have to estimate a c.d.f of a random variable F(t) = P{(−∞, t)} with a

quadratic loss function. If P is a Dirichlet process, then F(t) ∼ Be(α(−∞, t]), (α((t,∞))

for each t. The Bayes risk for the problem without a sample is minimized by a choice of

such an estimate F̂∗(t) for each t that the quantity E
[(

F(t)− F̂(t)
)2] is minimal. This is

accomplished if one chooses as F̂∗ the quantity E[F(t)]. Thus, the Bayes decision rule for

the problem without a sample is

F̂∗(t) = F0(t) = E [F(t)] .

In accordance with (4.3),

F0(t) =
α ((−∞, t])
α(R1)

. (4.5)

The expression (4.5) with the help of the earlier chosen metric a gives us a priori informa-

tion about the form of the unknown distribution F(t).

Starting with Theorem 4.1.1, analogous to the relation (4.5) for the sample of volume n, we

have the following decision rule:

F̂∗(t | x1, . . . ,xn) =
α((−∞, t])+∑n

i=1 δxi((−∞t])
α(R1)+n

= pnF0(t)+(1− pn)Fn(t | x1, . . . ,xn), (4.6)
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where

pn =
α(R1)

α(R1)+n

Fn(t | x1, . . . ,xn) =
1
n

n

∑
i=1

δxi((−∞, t])

is the empirical distribution function.

Therefore, the Bayes decision rule (4.6) is a blend of a priori information about the form

of F(t) and the empirical distribution function with the corresponding weights pn and

(1− pn). If α(R1) is large, in comparison with n, then the observations are given a small

weight. Provided that α(R1) is small in comparison with n, then a small weight is given

to a prior conjecture about the form of F(t)). α(R1) can be interpreted as a correctness

measure of a prior conjecture about the form of F(t) expressed as a number of the units

of measurement. It should be noted that whatever a true distribution function may be, the

Bayes estimate (4.6) converges to it almost surely. Thisfollows from the fact that pn → 0

as n → ∞.

Suppose now that we have to estimate the probability of a time-to-failure R(t) = 1−F(t)

at some time t dealing with the outcomes of independent tests with the fixed failure time.

All arguments mentioned above remain valid, if one replaces R1 by R+since t ∈ [0,∞). As

a result we obtain

R̂∗(t) = pnR0(t)+(1+on)
[

1− m(t)
n

]
, (4.7)

where R0(t) is a priori information about TTF, m(t) is the number of objects failed by

time t.

As can be seen from formula (4.7), the value of the Bayes estimate is strongly subjected to

α(R+). If, for example, one assumes that a mean time to first failure follows a priori the

exponential distribution with the parameter λ and puts

α((0, t]) = e−λ t ,

hence α(R+) = 1, and, consequently

R̂∗(t) =
1

n+1
e−λ t +

n
n+1

[
1− m(t)

n

]
.

It is interesting to note that in the case of failure in one trial, the a priori TTF estimate

should be reduced twice; in case of two failures in two trials-three times, etc. Clearly, the

significance of a prior estimate is very small in this case.
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Example 4.2 (The Bayes estimate of quantiles). A quantile of a distribution F(t) =

P{(−∞, t]} of the probability q, denoted by tq, is introduced with the help of a probability

measure P in the following manner:

P
{
(−∞, tq)

}
� q � P

{
(−∞, tq]

}
.

It is easy to verify that for 0 < q < 1 a q-quantile is unique with the probability equal to

unity. Thus, tq is a well-defined random variable. Ferguson [80], considered the problem

of estimating tq with a loss function

L(tq, t̂q) =

{
p(tq − t̂q) , tq � t̂q
(1− p)(t̂q − tq) , tq < t̂q

, (4.8)

for some p (0 < p < 1). The variable p plays the role of a weight coefficient. In particular,

for p = 1
2 we have L(tq, t̂q) = 1

2

∣∣tq − t̂q
∣∣. Due to this circumstance a loss function of the

form (4.8) can be interpreted as a generalization of the broadly used loss function having

a type of absolute error. The distribution of the random variable tq can be found from the

condition F(t) ∼ Be(α((−∞, t]), α((t,∞))). We have

P{tq � t} = P{F(t) > q} =
∫ 1

q

Γ(A)
Γ(ua)Γ((1−u)a)

zua−1(1− z)(1−u)a−1dz, (4.9)

where

a = α(R1) and u =
α((−∞, t])
α(R1)

= F0(t).

According to Ferguson [80], any p-quantile of the distribution tq is a Bayes estimate of tq
with a loss function of the form (4.8). In order to find a p-quantile of the distribution of the

random variable tq, the expression (4.9) must be equated to p and solved with respect to t:
∫ 1

q

Γ(A)
Γ(ua)Γ((1−u)a)

zua−1(1− z)(1−u)a−1dz = p. (4.10)

Consider the relation (4.10) as an equation with respect to u and denote by u(p,q,α(R1))

the unique root of this equation. Then the Bayes estimate t∗q in the problem without a

sample is determined with the help of the equation

u
(

p,q,α(R1)
)

=
α
(
(−∞, t∗q ]

)
α(R1)

(4.11)

or

u
(

p,q,α(R1)
)

= F0
(
t∗q
)
.

Thus, the Bayes estimate of the quantile tq in absence of a sample is a quantile of the

distribution F0(t) of the probability u(p,q,α(R1)) obtained by itself from the equation

(4.10).



86 Bayesian Theory and Methods with Applications

For the sample x1, . . . ,xn the Bayes estimate t∗q in accordance with (4.11) is determined

from the equation

u
(

p,q,α(R1)+n
)

=
α
((
−∞, t∗q

])
+∑n

i=1 δxi

((
−∞, t∗q

])
α(R1)+n

,

i.e., in the given case t∗q is a quantile of the probability u(p,q,α(R1)+n) of the distribution

F̂∗
n (t | x1, . . . ,xn) defined by the expression (4.6). For the practical use of the given scheme

it is desirable to have tables for the function u(p,q,α) which may be obtained from the

tables of the incomplete beta-function.

The developments mentioned above have very serious limitations: the quantity P, con-

sidered as a Dirichlet stochastic process, is discrete with probability one. This can be

explained as follows: dealing with samples from the Dirichlet process one can expect the

appearance of the observation which exactly equals each other. In the proposed examples

the possibility of sample elements coinciding doesn’t play an intrinsic role. At the same

time there exists a problem in which this fact is of great importance. One such problem

is described by Ferguson. The problem is to verify the hypothesis H0, giving the fact that

a distribution on [0,1] is uniform. If one chooses as an alternate hypothesis the Dirichlet

process with the parameter α , of having a uniform distribution on [0,1], and given a sample

of volume n � 2, then the unique nontrivial nonrandomized Bayes decision rule requires us

to reject the hypothesis H0 if and only if two or more observations are equal to each other.

In validity it is not something like the verifying of the hypothesis that the distribution is

continuous against the alternative hypothesis that it is discrete.

4.2.1 Further development of the Ferguson theory

The work by Ferguson cited above has initiated numerous investigations having both a

theoretical and applied influence in the field of nonparametric Bayes estimates which uses

prior Dirichlet processes. The most interesting theoretical work touching upon this field

belongs to Yamato [269]. He considers the relationship between the nonparametric Bayes

estimates, based on the Dirichlet process, with U-statistics [266]. Zaks [272] introduced

the concept of the estimable parameter. A parameter θ(P) is called estimable if it has an

unbiased estimate, i.e, if there exists such a statistic α(x1, . . . ,xn) such that

θ(P) =
∫
Ωn

a(x1, . . . ,xn)
n

∏
i=1

dP(xi),

where Ωn = Ω×·· ·×Ω. Degree of the estimable functional θ(P) is called the minimum

size of a sample for which there exists an unbiased estimate of this functional. It is clear
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that the mean, considered as parameter, has first degree, and the variance second degree.

Ferguson [80] deals as a rule, with first degree and, sometimes, with second degree param-

eters. Yamato [269] obtained nonparametric Bayes estimates of the parameters having the

second and third degree. Investigation of the dependence between the Bayes estimates and

U-statistics is not fortuitous. The point is that U-statistics in the class of unbiased estimates

of the parameter θ(P) with the given volume of a sample possesses the minimal variance.

Denote by θk the k-degree parameter which admits an estimate in the sense of [272]. The

main result of the work [269] lies in the following. Suppose that x1, . . . ,xn is a sample from

the distribution F ∼ D(α), where α is a finite nonnegative measure on (Ω,L ). Then the

Bayes estimate of the parameter

θ3 =
∫∫∫

a3(x,y,z)dF(x)dF(y)dF(z),

where a(·) is a measurable real function, symmetric with respect to the arguments x, y, z

and possessing an absolute moment of the first order, is defined by the expression

θ̂ ∗
3 =

[α(Ω)+n]2

[α(Ω)+n+1][α(Ω)+n+2]

∫∫∫
a3(x,y,z)dF∗

n (x)dF∗
n (y)dF∗

n (z)

+
3[α(Ω)+n]

[α(Ω)+n+1][α(Ω)+n+2]

∫∫
a3(x,x,y)dF∗

n (x)dF∗
n (y)

+
2

[α(Ω)+n+1][α(Ω)+n+2]

∫
a3(x,x,x)dF∗

n (x) (4.12)

where

F∗
n (·) = pnF0(·)+(1− pn)Fn(·), pn =

α(Ω)
α(Ω+n)

,

F0(·) and Fn(·) are correspondingly a prior and empirical distribution functions.

For the estimable functional of the second degree,

θ2 =
∫∫

a2(x,y)dF(x)dF(y),

under the same assumptions, the following Bayes estimate is obtained:

θ̂ ∗
2 =

α(Ω)+n
α(Ω)+n+1

[
p2

n

∫∫
a2(x,y)dF0(x)dF0(y)

+
2
n

pn(1− pn)
n

∑
i=1

∫
a2(x,xi)dF0(x)+

1
n2 (1− pn)2

n

∑
i=1

n

∑
j=1

a2(xi,x j)

+
1

α(Ω)+n+1

[
pn

∫
a2(x,x)dF0(x)

1
n
(1− pn)

n

∑
i=1

a2(xi,xi)

]]
(4.13)

As can be seen from the expressions (4.12) and (4.13), the values of the estimates θ̂ ∗
2 and

θ̂ ∗
3 with a fixed sample x1, . . . ,xn are determined by a choice of a prior measure α . The last,
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as was mentioned above, is uniquely determined in the case when the value α(Ω) is given

and there exists a priori information about the distribution function F0(x). It is interesting

to learn the behavior of the estimates as α → 0. This case, it seems, can be considered

in the absence of a priori information. The functions ak(x,y, . . .) are vanishing if at least

two arguments are equal. Under these conditions the Bayes estimates θ̂ ∗
2 and θ̂ ∗

3 have, as

α → 0, the form

θ̂ ∗
02 =

2
n(n+1) ∑∑1�i< j�n

a2(xi,x j), (4.14)

and

θ̂ ∗
03 =

6
n(n+1)(n+2) ∑∑

1�i< j<k�n
a3(xi,x j,xk). (4.15)

The Bayes estimates we have obtained are similar to U-statistics for which there are well-

known results, that is,

U2 =
2

n(n−1) ∑∑1�i< j�n
a2(xi,x j),

and

U3 =
6

n(n−1)(n−2) ∑∑
1�i< j<k�n

a3(xi,x j,xk).

Thus, we have the following finite relations for the Bayes estimates k and U-statistics:

θ̂ ∗
02 =

n−1
n+1

U2 and θ̂ ∗
03 =

(n−1)(n−2)
(n+1)(n+2)

U3.

Using these relationships we may conclude that θ̂ ∗
0k converges to Uk as n → ∞.

Consider two examples of nonparametric Bayes estimates for parameters admitting the

second order estimate.

Example 4.3 (Estimate of the square of the mean, m2, for an unknown distribution F).
If one puts a2(x,y) = xy, we obtain θ2 = m2. From the expression (4.13) immediately fol-

lows

m̂∗2 =
α(R1)+n

α(R1)+n+1

[
pn

∫
xdF0(x)+(1− p)x̄n

]2

+
1

α(R1)+n+1

[
pn

∫
x2dF0(x)+(1− p)x̄ 2

n

]
,

where x̄n = 1
n ∑

n
i=1 xi. It is interesting to note that the corresponding U-statistic has form

U2 =
1

n(n−1) ∑∑1�i< j�n
xix j =

n
n−1

(x̄n)2 +
1

n−1
x̄2

n.



Nonparametric Bayes Estimation 89

Example 4.4 (Estimate of the variance of the distribution F). For a2(x,y) = (x− y)2/2

we have θ2 =σ2, where s is mean-squared value of the distribution F . From the expressions

(4.13) and (4.14) one obtains

σ̂2∗ =
α(R1)+n

α(R1)+n+1

{
pn

[∫
x2dF0(x)−

(∫
xdF0(x)

)2
]

+
1
n
(1− pn)

n

∑
i=1

(xi − x̄n)
2 + pn(1− pn)

(∫
xdF0(x)− xn

)2
}

. (4.16)

As α → 0, we have

σ̂2∗
0 =

1
n+1

n

∑
i=1

(xi − x̄n)
2 . (4.17)

The estimate (4.16) coincides with the estimate of the variance obtained by Ferguson [80].

The U-statistic, corresponding to the Bayes estimate (4.17), is a well-known unbiased esti-

mate of the variance

U2 =
1

n−1

n

∑
i=1

(xi − x̄n)
2 .

Further development of [80] can be found in the work by Susarla and Van Ryzin [246] in

which a nonparametric Bayes TTF estimate R(t) = 1−F(t) is obtained for F(t) ∼ D(α)

for censored data. Let, as in Chapter 3, t∗i be failure moments (i = 1, 2, . . . ,n), and ti be

censoring moments. Besides, during the experiment it is observed the minimal of men-

tioned quantities: τi = min{t∗i , ti}. The sufficient statistic can be represented as a union of

two vectors (τ,δ ), where δ = (δ1, . . . ,δn), and δi = 1 if t∗i � ti, i.e., the failure is observed,

and δi = 0 otherwise. It is assumed that failure times and censoring times are mutually

independent. Note that all Bayes decision rules are independent of the order of elements in

the sample representation. Therefore, we can present a sample so that its first d elements

τ1, . . . ,τd arethe failure times and the last k elements τ(d+1), . . . ,τ(n) are censoring times.

We denote, at last, by τ(d+1), . . . ,τ(m) the different one from other elements of the set of the

censoring moments τd+1, . . . ,τn, and by λ j is the number of censoring times equal to t τ j.

As a parameter of a prior Dirichlet process for the considered case is chosen a positive

finite measure on (R+,B), where R+ = [0,∞), and B is σ -algebra of all Borel sets on

R+. The expression for the posterior moments of a random variable R(t) = 1−F(t) is

obtained by following the work of Ferguson [80]. For t ∈
[
τ(�),τ(�+1)

]
, � = d, . . . ,m and

τ(d) = 0,τm+1 = ∞, we have

E [R(t))p | (τ,δ )] =
p−1

∏
s=0

{
α([t,∞))+ s+N+(t)

α (R+)+ s+n

�

∏
j=d+1

α
([
τ( j),∞

))
+ s+N (τ j)

α([τ j,∞))+ s+N(τ j)−λ j

}
,
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where N(u) is the number of elements of the sample τ exceeding or equal u, N+(u) is

the number of elements which are strictly greater than u. Besides, as t < τ(k+1) the in-

ner product in the expression (4.18) is equal to one. The expression (4.18) enables us to

write, without any difficulties, the pointwise TTF estimate R̂∗(t) = E [R(t) | (τ,δ )] and the

posterior variance E
(
R2(t) | (τ,δ )

]
− R̂∗2(t). In particular, for t ∈

[
τ(�),τ(�+1)

]

R̂∗(t) =
α([t,∞))+N+(t)

α(R+)+n

�

∏
j=d+1

α
([

t( j),∞
))

+N+ (
t( j)

)
α
([

t( j),∞
))

+N+
(
t( j)

)
−λ j

(4.18)

We compare the Bayes estimate (4.19) with the corresponding Kaplan-Meier estimate [121]

R̂(t) = ∏
j∈I0(t)

n− j
n− j +1

(4.19)

where I0(t) is the set on indices of the variational row τ ′1 � τ ′2 � · · · � τ ′n composed of the

sample τ , such that τ ′i � t and τ ′i is failure time. The comparison of the estimates (4.19)

and (4.20) shows that the Bayes estimates is more preferable. First, the Kaplan-Meier

estimate uses only information about the number of censoring times contained between

the failure times. The Bayes estimate is all information contained in the sufficient statistic

(τ,δ ). Secondly, although both estimates (4.19) and (4.20) are piecewise- smooth and have

finite increments at the failure points, the Bayes estimate in the time between failures is a

decreasing function (because of the continuity of a prior measure α), the estimate (4.20)

equal to some constant. Finally, if the last element of the variational row τ ′n is a censoring

time, in the interval [τ ′n,∞) the estimate (4.20) is undefined.

The limit passing in the expression (4.19) as α → 0 (that corresponds to a priori informa-

tion) transforms it into the Kaplan-Meier estimate. In the case when such a coincidence is

possible, the Kaplan–Meier estimate is written as

R(t) =

⎧⎪⎪⎨
⎪⎪⎩

N+(t)
n ∏

i∈I0(t)

[
N+(τi)+λi

N+(τi)

]δi

, t < τ ′n,

0, t � τ ′n,
(4.20)

where I0(t) is the set of the first indices among the repeating elements of the sample τ ,

satisfying the condition τi � t. The formulas (4.20) and (4.21) give the same estimates as

λi = 1 for all i, but the latter one is more general.

The properties of nonparametric estimates having the type (4.18) for samples of large vol-

ume are investigated by Susarla and Van Ryzin in [245-246]. We briefly formulate the main

results in these works. Both these estimate are mean squared point wisely consistent of or-

der o
(
n−1

)
and strictly consistent of order o(n−1/2/ lnn). In addition to this, both estimates

are asymptotically normal with the same variance. Hence, from the point-of-view of the
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theory of large samples, we may conclude that nonparametric Bayes estimates, based on

the Dirichlet process and Kaplan–Meier estimate, are equivalent.

The comparison of these estimates for small size samples was done by Rai, Susarla and

Van Ryzin [209]. Their work is interesting from the methodological point-of-view. It pro-

poses one method of practical use of nonparametric Bayes estimates, based on the Dirichlet

process. The choice of a prior measure α(·) plays the intrinsic role in this method. Once it

was made, it remains only to apply formula (4.18). Let us introduce a real-valued function

α(x) = α([x,∞)). Then a priori information on TTF in accordance with (4.5) takes on the

form

R0(t) = α(t)/α(0) = α(t)/β , where β = α(0), (4.21)

and the Bayes estimate of TTF, R̂∗(t) for the quadratic loss function under absence of

censoring is rewritten as

R̂∗(t) =
β

β +n
R0(t)+

n
β +n

R̂n(t), (4.22)

where R̂n is the cumulative TTF estimate, based on the sample of n independent obser-

vations. Unfortunately, we cannot write the estimate of the type (4.23), substituting, for

example, the Kaplan–Meier estimate instead of R̂n(t). Nevertheless, for the choice of a

prior measure α(·) it is advisable touse its interpretation, defined by the expression (4.22).

Suppose, in accordance with a priori information, that the random mean functioning time

is subjected to the exponential law with the parameter μ . Then, in view of (4.22) one has

α(t) = β exp
(
− t
μ

)
. (4.23)

In the work [209] an estimate, which is based on the given measure α , is called reduced

nonparametric Bayes estimate. Instead of exponential prior distribution for F0(t), we might

just as well have used the Weibull distribution, gamma-distribution, etc., and obtain the

estimate which is more “narrow” as a result of the imposed restriction. In the work [209] the

parameter μ is estimated not with the help of a priori information but statistically: instead of

m one substitutes into the function (4.24) its maximum likelihood estimate μ̂ = ∑n
i=1 τi/d,

where d is the number of noncensored observations. Then, with the help of (4.19) the

Bayes TTF estimate may be written as

R̂∗(t) =
β exp

(
− t

μ

)
+N+(t)

β +n ∏
i∈I0

⎡
⎣β exp

(
− ti

μ

)
+N+(τi)+λi

β exp
(
− ti

μ

)
+N+(τi)

⎤
⎦
δi

. (4.24)

It should be noted that the estimate (4.25) is not, strictly speaking, a Bayes estimate. It

should rather be called an empirical Bayes estimate because the parameter of a prior distri-

bution μ is estimated with the help of empirical data.
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In applying the estimate (4.25), an open problem is the value of β . In [209] the authors

considered the mean-squared error of (4.23), that is,

E
[(

R̂∗(t)−R(t)
)2
]

=
(

β
β +n

)2

(R0(t)−R(t))2 +
b

(β +n)2 R(t)(1−R(t)) . (4.25)

The first term in (4.26) determines the square of the bias, caused in the Bayes estimate by a

priori information about the TTF; the second one is a variance of the unbiased estimateR̂(t).

While n increases, the mean-squared error decreases, where

lim
n→∞

(
n−1β (n)

)
= 0,

and thus, β (n) satisfies the condition β (n) = O(nα), for α < 1. The authors of [209] make

the following necessary assumption that both terms of the squared error (4.26) have the

same order of smallness of n−1. This is achieved when β = c
√

n, where c is some constant

value which may depend on the current value of t. In practical calculations of [209] the

value c = 1 is assigned.

Comparison of Bayes estimates with those of Kaplan-Meier for small samples has been

studied [209] subject to the following criteria:

a) As a criterion of comparison we choose a parametric estimate;

b) We use two forms of modeling: exponential modeling, corresponding to the chosen

prior measure (4.24) and beta modeling, which contradicts it.

c) Modeling is carried out for different values of a theoretical mean μ , and different per-

centages of censoring.

In Table 4.1 and Table 4.2 we give TTF values averaging over 200 samples. The table data

enables us to draw the following conclusion: the Bayes estimate is better than the Kaplan-

Meier estimate; moreover, this fact remains valid not only for the case when empirical

data are in full accordance with a prior distribution, but also in the situation when they are

contradicted. The deviation between the Kaplan–Meier and Bayes estimates increases with

the increasing of the censoring percentage; moreover, while the first one removes from

the parametric, the second estimate approaches to them. Application of a prior measure,

based on more flexible distributions, for example on the Weibull distribution leads, most

probably, to a better estimate, although with increasing computational complexity.

The estimate analogous to (4.19) was found by Zehniwirth [273]. It is called a linear Bayes

estimate and may be interpreted as a Kaplan-Meier estimate, constructed by blending a

priori and experimental data.
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Table 4.1 Comparison of TTF estimates under modeling of the exponential
distribution.

Estimate
Censoring
Percentage

n = 10 n = 30

μ = 1 μ = 5 μ = 1 μ = 5

Parametric Bayes
Kaplan–Meier

0
0.113 0.252 0.071 0.158
0.175 0.391 0.108 0.242
0.203 0.454 0.118 0.264

Parametric Bayes
Kaplan–Meier

25
0.141 0.315 0.092 0.183
0.194 0.434 0.119 0.266
0.236 0.529 0.139 0.311

Parametric Bayes
Kaplan–Meier

50
0.171 0.383 0.094 0.211
0.198 0.444 0.117 0.261
0.275 0.615 0.198 0.442

Parametric Bayes
Kaplan–Meier

75
0.209 0.467 0.116 0.260
0.223 0.499 0.126 0.283
0.412 0.919 0.380 0.847

From a practical point-of-view, an important nonparametric Bayes estimate was found by

Cambell and Hollander [36]. They considered the problem of defining a predicted inter-

val containing the given number of future observations which is formulated as follows.

Let x1, . . . ,xn be the initial sample from F ∼ D(α), and y1, . . . ,yn be the sample of future

observations.

According to the definition of the statistic given in [36], a1(x1, . . . ,xn) and a2(x1, . . . ,xn)

form 100% predicted interval (a1,a2) for M from N future observations, if the probability

PM,N of the event that at least M of N observations get into (a1,a2) equals γ . The probability

γ is called a prediction coefficient. A difference of a1 and a2 from tolerant limits is that the

last ones assume that we have to consider the whole set of future observations. For the case

a2 = ∞ we deal with a unilateral prediction interval.

A good illustration for the considered problem may be the following technical example.

A manufacturer of some technical device has a sample of values of the leading parameter

x1, x2, . . . ,x5 for the set containing five such devices. The set of three such devices is put

into operation. It is necessary to find the lower value of the leading parameter, guaranteed

with a probability 0.9, which can be achieved for all three devices. In the given case, n = 5,

N = 3, M = 3, γ = 0.9.

The solution for this problem is based on the following idea, traditional for Dirichlet pro-

cesses: first we solve the problem in absence of empirical data; thereupon, using the prop-

erty of conjugacy of the Dirichlet distribution, the solution is generalized for the case when

n > 0. The resulting calculations, used for the solution of the problem, are derived from

the following theoretical result of the work [36]. Suppose that for some future observations
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Table 4.2 Comparison of TTF estimates under modeling of a gamma distribution.

Estimate
Censoring
Percentage

n = 10 n = 30

μ = 1 μ = 5 μ = 1 μ = 5

Parametric Bayes
Kaplan–Meier

0
0.158 0.535 0.133 0.296
0.156 0.348 0.092 0.205
0.181 0.403 0.1 0.223

Parametric Bayes
Kaplan–Meier

25
0.167 0.373 0.135 0.301
0.167 0.372 0.101 0.225
0.201 0.449 0.113 0.253

Parametric Bayes
Kaplan–Meier

50
0.182 0.408 0.145 0.324
0.184 0.412 0.117 0.262
0.232 0.518 0.145 0.324

Parametric Bayes
Kaplan–Meier

75
0.188 0.423 0.139 0.313
0.191 0.427 0.121 0.272
0.315 0.701 0.266 0.592

y1, . . . ,yn random variables I = IX , J = Jxy, K = Ky denote, correspondingly, the number

of the sample elements not exceeding, greater than x but less or equal to y, and, finally,

greater than y. In [36] it is proved that the quantities I,J,K obey the composite Dirichlet

distribution which may be written in the notations, introduced above, as

P{(I,J,K) = (i, j,k)} =
N!

(N − i)!(N − j)!(N − k)
× α((−∞,x])[i]α((x,y])[ j]α((y,∞))[k]

α(R1)[N]

(4.26)

where c[m] = c(c+1) · · ·(c+m−1), and c[0] = 1, c[0] = 1.

Consider at first the case of construction of a unilateral predicted 100% interval (a1,∞).

To this end we put k = 0 and y = ∞. It gives us a bivariate random variable (I,J) whose

marginal distribution J has the form

P{J = j} =
N!

(N − J)! j!
· α((−∞,x])[N− j]α((x,∞))[ j]

α(R1)[N] . (4.27)

The expression (4.28) determines the probability of the event that exactly j elements of the

sample y1, . . . ,yn are exceeding or equal to x. Consequently, the probability PM,N is written

as a sum PM,N = P{J = M}+P{J = M +1}+ · · ·+P{J = N}. After this, for the obtaining

of α1 in the absence of a sample, it is necessary to solve the equation
n

∑
j=M

N!
(N − j)! j!

· α((−∞,x])[N− j]α((x,∞))[ j]

α(R1)[N] = γ. (4.28)

Here α(·) has the sense of a prior measure, connected with a priori information about the

c.d.f. F0(x) by the relation α((−∞x]) = βF0(x), where β = α(R1) has the sense of a

weight significance of a prior distribution. In absence of data the estimate a1, as follows

from (4.29), is invariant with respect to the choice of. In the case when a sample x1, . . . ,xn
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is given, one should replace α(·) in (4.29) by

α ′(A) = α(A)+
n

∑
i=1

δxi(A),

where δxi=1, if xi ∈ A, otherwise δxi = 0. To find a bilateral 100% predicted interval (a1,a2)

we act analogously. In particular, the following equation holds:

n

∑
j=M

N!
(N − j)! j!

·
α ′((x,y])[ j]α ′ (R1 − (x,y]

)[N− j]

α(R1)+n
= γ. (4.29)

Moreover, among the values of a1 = x, a2 = y we choose such two numbers, for which

the interval length is minimal. The conclusion of the work [36] gives numerous examples

illustrating the stability of the obtained estimates.

In the work [53], Dalal and Phadia use a prior Dirichlet processes for the solution of the

problem of estimating the relationship between random variables and verifying the cor-

responding statistical hypotheses. They consider a bivariate distribution F(x,y) which is

assumed to be a probabilitymeasure, subjected to a prior Dirichlet distribution D(α) in

addition, a is nonzero measure on (R2,L ). As a measure of dependence, a consistency

coefficient Δ is used:

Δ= ΔF = PF{(X −X ′)(Y −Y ′) > 0}+
1
2

PF{(X −X ′)(Y −Y ′) = 0} (4.30)

where (X ,Y ) and (X ′,Y ′) are two independent observations from F(x,y). The coefficient

Δ is connected with the often used τ-parameter of Kenndal by the relation Δ = (τ+ 1)/2.

The form of (4.31) assumes that random variables X and Y are not necessarily continuous.

The problem of obtaining the Bayes estimate Δ∗ was solved in [53] in accordance with

the Ferguson theory [80]. Suppose t and U are two sets in R2 such T = {(x,y,x′,y′) :

(x− x′)(y− y′) > 0}, U = {(x,y,x′,y′) : (x− x′)(y− y′) = 0}. There upon we write (4.31)

as

Δ=
∫ (

IT +
1
2

Iu

)
d
[
F(x,y)F(x′,y′)

]
,

where IT and Iu are the indicator functions of sets. Having chosen a quadratic loss function,

we obtain the following Bayes estimate of the parameter Δ:

Δ∗ =
∫ (

IT +
1
2

Iu

)
dE[F(x,y)F(x′,y′)]. (4.31)

The expected value E is defined with respect to a prior distribution D(α). In particular, in

absence of the testing data,

E[F(x,y)F(x′,y′)] =
1

β +1
F ′

0(x,x
′,y,y′)+

β
β +1

F0(x,y)F0(x′,y′), (4.32)
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where F ′
0(x,x

′,y,y′) = F0
(

min(x,x′),min(y,y′)
)
, F0, as previously, has the sense of a priori

information about the bivariate distribution function, and β = α(R2).

Substitution of the relation (4.33) into (4.32) allows us to write the following Bayes esti-

mate of in the absence of empirical data:

Δ∗ =
β

β +1
ΔF0 +

1
2(β +1)

, (4.33)

where ΔF0 is computed with the help of the formula (4.31) for the distribution F0. If it

is found that the quantities X , Y are a priori independent, ΔF0 = 1/2, and (4.34) implies

Δ∗ = 1/2. In the case of existence of experimental data (x1,y1), . . . ,(xn,yn) the expected

value of (4.32) should be defined by the Dirichlet prior distribution with the parameter

α ′ = α+
n

∑
i=1

δ(xi,yi) = (β +n)P∗.

Here P∗ is the posterior measure for which the bivariate distribution function has the form

F∗(x,y) = pnF0(x,y)+1(1− pn)F̂n(x,y),

where F̂n(x,y) is the empirical distribution function, based

on the sample (x1,y1),. . .,(xn,yn), and pn = β/(β + n). The resulting expression for the

Bayes estimate is written in the following form:

Δ∗ =
β +n

β +n+1
[
p2

nΔF0 +2pn(1− pn)Δ
(
F0, F̂n

)
+(1− pn)2ΔF̂n

]
+

1
2
· 1
β +n+1

, (4.34)

where

ΔF̂n
=

1
n2

n

∑
i=1

n

∑
j=1

{
I [(xi − x j)(yi − y j) > 0]+

1
2

I [(xi − x j)(yi − y j) = 0]
}

,

Δ
(
F0, F̂n

)
=

1
n

n

∑
i=1

PF0

{
(X − xi)(Y − y j) > 0

}
+

1
2

PF0

{
(X − xi)(Y − y j) = 0

}
.

If we choose for F0 a bivariate normal distribution N2(μ1,μ2,σ1,σ2,ρ), then, for μ1 = μ2 =

0, and σ1 = σ2 = 1, in accordance with [53], we obtain

ΔF0 =
1
2

+
1

π sinρ
. (4.35)

Next, if one denotes by Φ(x,y) a function of the bivariate normal distribution

N2(0,0,1,1,ρ) and Φ̄(x,y) = 1−Φ(x,∞)−Φ(∞,y)−Φ(x,y), it yields

Δ
(
F0F̂n

)
=

1
n

[
n

∑
i=1

(
Φ
(

xi −μ1

σ1
,

yi −μ2

σ2

)
+ Φ̄

(
xi −μ1

σ1
,

yi −μ2

σ2

))]
(4.36)

The obtained relations allow us to find the estimate of Δ∗ for the chosen value β .
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Note, that as n→∞, the Bayes estimate (4.35) approaches the sample size one. At the same

time, for β = 0 (i.e., we have no a priori information), the expression (4.35) gives the usual

nonparametric estimate of the coefficient Δ.

In one of his works Ferguson [82] develops the theory based on Dirichlet processes in

conformity to the successive estimation. In particular, he proposes procedures for obtaining

nonparametric Bayes estimates of the cumulative distribution function and the mean. The

essence of these procedures lies in the following. To each single trial is assigned some

positive number c, interpreted as cost and having the same dimension as that of the loss

function. The loss function has a quadratic form and is written as

�
(
F, F̂

)
=

∫
R1

[
F(x)− F̂(x)

]2 dW (x),

where W (x) is a weight function on R1. After each testing, a statistician has to make a

decision: whether he has to continue testing or to stop and choose the necessary estimate.

As a criterion for making decisions, we use the total losses caused by the general procedure

of estimating. These losses are added, on one hand, to the expected value of the loss

function (Bayes risk), that is,

Gn =
1

β +n+1

∫
R1

F̂∗
n (x)

[
1− F̂∗

n (x)
]

dW (x),

where F̂∗
n (x) is a nonparametric Bayes estimate, based on a Dirichlet process (see the ex-

pression (4.6)), β = α(R1). On the other hand, the cost of testing should be added to the

total losses.

Let, for example, in absence of a sample (n = 0), a Bayes estimate F̂∗ = F0 and losses be

G0 =
1

β +1

∫
F0 (1−F0)(x)dW. (4.37)

If we carry out one testing, that is, we will obtain the value x1, the total conditional losses

(under the condition x1) will be

c+
1

β +2

∫
[F∗

1 (1−F∗
1 )]dW,

and their expected value will be equal:

c+
1

β +2
E
[∫

F∗
1 (1−F∗

1 )dW
]

= c+
1

(β +2)2

∫
F0(1−F0)dW. (4.38)

Here we used the relation E[F1] = F0. For making the decision about the necessity of

conducting the first testing, we have to compare the two quantities (4.38) and (4.39). If the

first quantity is not greater than the second one, i.e., we have the inequality∫
F0 (1−F0)dW � c(β +1)2, (4.39)
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it is not necessary to carry out the first testing (in accordance with a criterion of total

losses) and the estimate F̂∗ should be chosen as a priori information about the distribution

function F0.

In the general case for decision making after conducting n tests, one has to use another

similar inequality

F̂∗
n
(
1− F̂∗

n
)

dW � c(β +n+1).

This method is called the one-step procedure. Ferguson [82] has generalized this method

for the case of multi-step procedures.

Several authors have taken a different approach than Ferguson in using the Dirichlet distri-

bution. As an example, we touch upon the works by Lochner and Basu [153–155]. These

works have practical usefulness, connected with a test of the hypothesis about a cumulative

distribution function F(x) belonging to the class S0 including failure rate distributions.

With a given sample of a device τ = (τ1, . . . ,τn) = (t∗, t), where t∗ = (t∗1 , . . . , t∗d ) is the

vector of failure times, t = (t1, . . . , tk) is a vector of times of nonrandom censoring. For

some value t, coinciding with one of the censoring times, we construct the set of values

0 = x0 < x1 < x2 < · · · < xm = T so that each value xi coincides with one of the moments

of censoring The test statistic is of the form z = (s1, . . . ,sm, r1, . . . ,rm), where s j is the

number of devices failed during the time (x j−1,x j], j = 1, 2, . . . ,m,r j is the number of

devices which tested successfully by the time x j ( j = 1, . . . ,m−1), and rm is the number of

devices failed by the time xm or having a failure after xm. Let p = (p1, . . . , pm) be a vector

consisting of increments of the distribution function, p j = F(Xj)−F(x j−1). As is proved

in [153], z is a sufficient statistic for p.

Further, we assume that p has a prior Dirichlet distribution with a density

h(P) ∼ pv1−1
1 · · · pvm−1

m (1− p1 −·· ·− pm)vm+1−1 (4.40)

on the set

ρ =

{
p : 0 � p j � 1, j = 1, . . . ,m,

m

∑
j=1

p j � 1

}
.

The numbers v1, v2, . . . ,vm,vm+1 are parameters of a prior distribution. Consider a vector

u = (u1, . . . ,um) such that u1 = (1− p1) and

u j =
1− p1 −·· ·− p j

1− p1 −·· ·− p j−1
, j = 2, . . . ,m.

The quantities u j are linked with a failure rate function of the device in the interval (t, t +Δ):

λ (t,Δ) =
F(t +Δ)−F(t)
Δ[1−F(t)]
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by the relation

u j = 1−λ
x j−1,x j − x j−1

x j − x j−1
.

It follows from (4.41) that u1, u2, . . . ,um are a priori independent and subject to the beta-

distribution with the probability density

h j(u j | v) ∼ u
w j−1
j (1−u j)v j−1, v = (v1, . . . ,vm+1),

where w j = v j+1 + · · ·+ vm+1. Moreover, it follows from the property of conjugacy of a

Dirichlet distribution that the distribution for which

h j(u j | z,v)uα j−1
j (1−u j)β j−1 (4.41)

where α j = ∑m
i= j+1(si + ri + vi)+ r j + vm+1, β j = s j + v j appears to be also posterior for

u j. Since F is a random probability measure, the event F(t) ∈ S0 is random. The following

upper estimate is found in [154] for the probability P{F(t) ∈ S0 | z, v}:

P{F(t) ∈ S0 | z,v} < P{u1 < u2 < · · · < um | z,v}.

With the help of (4.42) we can obtain

P
{

u1 < u2 < · · ·< um | z, v
}

=
∫ 1

0

∫ u1

0
· · ·

∫ um−1

0

m

∏
j=1

u
α j−1
j (1−u j)β j−1

β (α j,β j)
dum · · ·du1; (4.42)

in addition, the finite analytical expression for integer β j is obtained in [155]. For large m

the probability (4.43) is almost near to P{F(t) ∈ S0 | z, v}. The procedure of estimating

the fact that F(t) belongs to the class of failure rate distributions S0 is easily constructed

starting from (4.43).

In addition to the mentioned procedure, we can estimate, with the help of a prior density,

the probabilities of future events. Let ξ be a failure time for the future testing or for the

operation time. Then

P{xi−1 < ξ � xi | z, v} = γ1γ2 · · ·γi−1(1− γi), (4.43)

where γ j = α j/(α j +β j), and hence

P{ξ � xi | z, v} =
i

∑
j=1

γ1γ2 · · ·γi−1(1− γi) = 1−
i

∏
j=1

γ j (4.44)

Relations (4.44) and (4.45) allow us to find the estimate of any reliability indices.

In the work [45] you can find a comparatively easy way of using the Ferguson scheme. The

authors use as a priori information the empirical distribution function, constructed on some

hypothetical sample t∗h =
(
t∗h1

, t∗h2
, . . . , t∗hm

)
of the failure times. As a measure of significance

of the prior information, β = α(R1) is chosen the number m + 1. If t∗ = (t∗1 , . . . , t∗n ) is a
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sample of failure times, then the nonparametric Bayes estimate F̂∗(t) of the distribution

function F(t) in accordance with (4.6) has the form

F̂∗(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if t < 0,
k

s+1
if tk � t < tk+1 (k = 0, 1, . . . ,s),

1 if ts+1 � t,

(4.45)

where {t1, . . . , ts} is the sample in ascending order {t∗h, t}. The generalization of this result

is given in [45] for the case of censored samples.

4.3 Nonparametric Bayes estimates in which Dirichlet processes are not used

4.3.1 Neutral to the right processes

One of the general representations of stochastic processes which cannot be reduced to

Dirichlet processes are the so-called neutral to the right processes initiated by Doksum

[67]. A neutral to the right process, or NR-process, is introduced by Doksum in the form of

a random probability measure F(t) on R1 such that, for any t1 and t2 (t1 < t2) the relation

[1−F(t2)]/[1−F(t1)] is independent of F for any t � t1. A NR-process can be expressed

with the help of a process called a process with independent increments.

The mentioned processes are introduced and investigated by Levy [138]. In accordance

with his definition, Y is called a stochastic function with independent increments, if its

increments Yst = Yt −Ys on intersected segments [s, t) are independent. A process with

independent increments is called a family of such stochastic functions, determined on some

sample space with the same increments ([138], p. 561). By means of Yt a NR-process is

determined in the following way [67].

Definition 4.3 (NR-process). A stochastic distribution function is said to be NR-process,

if it can be represented in the form

F(t) = 1− e−Yt , (4.46)

where Yt is a process with independent increments, besides, Yt is nondecreasing and con-

tinuous to the right and

lim
t→∞

Yt = ∞ a.s., lim
t→−∞

Yt = 0 a.s.

In accordance with the theory of Lent, the stochastic process Yt has no more than a count-

able number of discontinuity points t1, t2, . . . , The random variables S1, S2, . . . , determine
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the jumps at the points t1, t2, . . . , respectively. The process Zt , defined as the difference and

sum of the jumps

Zt = Yt −∑
j

S jI[t j ,∞)(t),

where IB is set indicator function, is also a nondecreasing a.s. process with independent

increments. Moreover, Zt does not contain the points of discontinuity and, therefore, has

infinitely dividable distribution, satisfying the expression

ln E
[
e−θZt

]
= −θb(t)+

∫ ∞

0

(
e−θ −1

)
dNt(z),

where b(t) is a nondecreasing continuous function which tends to zero as t →−∞, Nt is a

continuous Levy’s metric [138].

The main result of [67] is that, if x1, . . . ,xn is a sample of censored values of a random

variable of the distribution F(t) which, in essence, is an NR-process, then the posterior

distribution F(t) is also neutral to the right. Suppose that X is a univariate sample from

F(t). Then the posterior distribution F(t) for X = x is neutral to the right. The posterior

increment of the process Y (t) for t > x coincides with a prior one, and a prior distribution

of increments of the process Yt to the left of x can be obtained by multiplying the prior

distribution by e−y. Thus, if h(y) is a prior distribution density of the increment Y = Yt −Ys

for s < t < x, then the posterior distribution density h̄(y) for X = x has the form

h̄(y | x) ∼ e−yh(y).

To find the posterior distribution of the process increment at the point x, Doksum [67]

introduces the process Y−
t = lims→t−0 Ys, which is continuous to the left a.s. and also has

independent increments. With the help of this process, the jump at the point may be written

as S = Yx −Y−
x . In spite of the simplicity of the representation of S, we cannot write the

posterior distribution of the jump at the point x for each case. Its density we denote by

h̄X (s | x). If x is a point of discontinuity fixed a priori with a p.d.f. of a jump hX (s), then

h̄X (s | x) ∼ (1− es)hX (s).

The work by Ferguson and Phadia [83] is devoted to the generalization of the work by

Doksum for the case of censored samples and touches upon question of construction of

the general theory of NR-processes. The censoring, considered in [83], has the following

difficulties: 1) the times of censoring are not random; 2) the authors distinguish two types

of nonrandom censoring: including the censoring, satisfying the condition that X � x, and

excluding censoring for which X > x. The posterior distribution F(t) for the given types of

censoring is determined from the following theorem [83].
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Theorem 4.2. Let F(t) be a NR-random distribution function, x be a random sample of

volume 1, x is a real number. Then

a) the posterior distribution F under the condition X > x is neutral to the right, the poste-

rior distribution of increments of the process Yt to the right of x coincides with a prior

one, and Y = Yt −Ys for s � t � x satisfies the relation h̄(y | x) ∼ e−yh(y);

b) the posterior distribution F under the condition X � x is neutral to the right, the pos-

terior distribution of the process Yt to the right of x or at the point x coincides with a

prior one, and Y = Yt −Ys for s < t < x satisfies the relation h̄(y | x) ∼ e−yh(y).

The case of a censored sample will be simpler in view of Theorem 4.2.1, since it doesn’t

require individual consideration of a prior distribution of the jump.

The Bayes estimate of F(t) is sought for the quadratic loss function andappears to be a

mean value of F(t). In accordance with definition (4.47),

F∗(t) = E[F(t)] = 1−E
[
e−Yt

]
= 1−Mt(1), (4.47)

where Mt(1) is the value of a moment-generating function Mt(θ) = E
[
e−θYt

]
at the point

θ = 1. Now, suppose that x1, . . . ,xn is a sample and u1, . . . ,uk is a sequence of elements

of a sample distinct from one another, ordered so that u1 < u2 < · · · < uk. Denote by

δ1, . . . ,δk the numbers of noncensored observations, by v1, . . . ,vk which are the numbers

of exceptionally censored values, and μ1, . . . ,μk are the numbers of inclusively censored

values of a sample. The family of vectors u = (u1, . . . ,uk), δ = (δ1, . . . ,δk), v = (v1, . . . ,vk)

and μ = (μ1, . . . ,μk) generate a testing statistic denoted by k. The quantity

ω j =
k

∑
i= j+1

(δi + vi +μi)

denotes the number of elements of the initial sample, exceeding u j, and j(t) is the number

of elements ui of the ordered sample which are less than or equal to t. We will also use the

following notations: M−
t (θ) = lims→t0 Ms(θ) moment-generating function Y−

t , hu(s) and

h̄u(s | u), respectively, the prior and the posterior p.d.f. of the jump S = Yt −Y−
t at the point

u under the condition X = u. The main result of the work [83] is the expression for the

posterior moment-generating function of the process Yt :

Mt(θ | K) =
Mt

(
θ +ω j(t)

)
Mt

(
ω j(t)

) +
j(t)

∏
i=1

[
M−

ui
(θ +ωi−1)

M−
ui (ωi−1)

]
· Cui(θ +ωi + vi,δi)

Cui(ωi + vi,δ )
· Mui(ωi)

Mui(θ +ωi)
.

(4.48)

The function Cu(α,β ) in (4.49) is defined as
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(i) if u is a priori fixed point of discontinuity of the process Yt , then

Cu(α,β ) =
∫ ∞

0
eαs (1− e−s)β h̄u(s)ds;

(ii) if u is not a priori fixed point of discontinuity, then

Cu(α,β ) =
∫ ∞

0
e−αs (1− e−s)β−1 h̄(s | u)ds

for β � 1 and C = 0 for β = 0.

The expression (4.49) enables us to find the Bayes estimate of F(t) and the estimate of any

of its linear transformations. Let us write, in addition, the expression for the Bayes TTF

estimate R(t) = 1−F(t), assuming that t ∈ R+. To simplify the expression of Mt(1), we

introduce (see [83]) the functions

mt(ω) =
Mt(ω+1)

Mt(ω)
and ru(α,β ) =

Cu(α+1,β )
Cu(α,β )

.

Then

R̂∗(t) = E[R(t) | K] = Mt(1 | K) = mt(ω j(t))
j(t)

∏
i=1

mui(ωi −1)
mui(ωi)

τui(ωi − vi,δi). (4.49)

Obtaining a prior density of the jump hu(s) at the point u for a single observation hu(s)

represents a significant difficulty for evaluation of the estimate (4.50). There is a subclass

of NR-processes for which the problem solution is simplified. As an example we consider

the so-called uniform processes, having the property that the increment of the process Yt =

− ln(1−F(t)) has the Levy’s function, which is independent of t. This means that moment

generating function of the process Y (t) has the form

Mt(θ) = exp
[
γ(t)

∫ ∞

0

(
e−θz −1

)
dN(z)

]
, (4.50)

where N(·) is the Levy’s metric on (0,∞), for which∫ ∞

0
z(1+2)−1dN(z) < ∞,

and γ(t) is a nondecreasing function, where limt→−∞ γ(t) = 0, limt→∞ γ(t) = ∞.

For the uniform NR-process, a prior p.d.f. of the jump of the process Y (t) at the point x,

under the condition that one observation X = x appears, is independent of the value x and

can be represented in the form

h̄(s | x)ds ∼
(
−e−z)dN(s). (4.51)

We can easily write with the help of (4.52) under the given Levy’s metric the Bayes TTF

estimate of R∗(t). If one introduces the function

φ(α,β ,N) =

⎧⎨
⎩

∫ ∞

0
eαz (1− e−z)β dN(z), β � 1,

1, β = 0,
(4.52)
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then the functions Cu(α,β ), mt(Ω), ru(α,β ), appearing in (4.50), may be rewritten in the

form:

Cu(α,β ) =

⎧⎨
⎩
φ(α,β ,N)
φ(0,1,N)

β � 1,

1, β = 0,

mt(Ω) = exp [−γ(t)φ (ω,1,N)] , (4.53)

and

ru(α,β ) =
φ(α+1, β ,N)
φ(α,β ,N)

, (4.54)

We give below some examples of nonparametric Bayes estimates for two special types of

NR-processes.

Example 4.5 (Gamma-process). If independent increments of the process Yt are-

distributed, the process Yt is called a gamma process. A moment-generating function of

a gamma-process can be written in one of the following three ways:

Mt(θ) =
τγ(t)

Γ(γ(t))

∫ ∞

0
e−θy · · ·e−ry · · ·yγ(t−1)dy

=
(

τ
τ+θ

)γ(t)
= exp

[
γ(t)

∫ ∞

0

(
e−θz −1

)
e−τzz−1dz

]
. (4.55)

A gamma process has a parameter of a γ(t) and a parameter of the inverse scale (or inten-

sity) τ independent of t. Using (4.51) and (4.56) for the Levy’s metric, we can write

dN(z) = e−τzz−1dz.

Thus, for the gamma-process the function (4.53) takes the form

φ(α,β ,n) ≡ φΓ(α,β ) =

⎧⎨
⎩

∫ ∞

0
e−αz (1− e−z)β z−1dz, β � 1,

1, β = 0.
(4.56)

Since β is integer, φΓ(α,β ) can be written in its final form using the binomial formula, and

after integration becomes

φΓ(α,β )
β−1

∑
i=0

(
β −1

i

)
(−1)i ln

(
α+ i+1
α+ i

)
. (4.57)

With the help of (4.50) we can obtain the Bayes estimate of TTF for a prior uniform gamma-

process:

R̂∗(t) =

(
ω j(t) + τ

ω j(t) + τ+1

)γ(t) j(t)

∏
i=1

⎧⎨
⎩
[
(ωi−1 + τ)(ωi + τ+1)
(ωi−1 + τ+1)(ωi + τ)

]γ(ui) φΓ(ωi + vi + τ+1,δi)
φΓ(ωi + vi + τ,δi)

⎫⎬
⎭ .

(4.58)
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It is interesting that the Dirichlet processes, considered above, α(R1) has a simple form,

and a metric α(·) is represented with the help of the a priori representation of the cumulative

distribution function. In [83] Ferguson and Phadia investigate an analogous question for the

gamma-processes. Suppose R0(t) is the a priori information about TTF R(t). In accordance

with (4.56), the parameters τ and γ(t) must satisfy the condition τ/(τ + 1)γ(t) = R0(t).

Hence it follows, that for any t, lying in the domain of definition of the function γ(t), with

a fixed τ , is

γ(t) =
lnR0(t)

ln [τ/(τ+1)]
. (4.59)

The parameter τ may be interpreted as a measure of certainty of a priori information. To

understand this interpretation it suffices to consider R̂∗(t) for a single censored observation.

For n = 1 and using (4.49) we obtain

R̂∗(t) = E[R(t) | X = x] =

{
R0(t)�(τ), t < x,

R0(t)R0(x)�(τ)−1�(τ), t � x,
(4.60)

where

�(τ) =
ln [(τ+2)/(τ+1)]

ln [(τ+1)/τ]
.

The function �(τ) is monotonic, where, as τ → ∞ we have �(τ) → 0, and as τ → ∞,

�(τ) → 1. As seen from (4.60), for large τ , �(τ) is near to 1, and the estimate R̂∗(t) is

near to R0(t). For small τ , a prior form of TTF R0(t) is changed substantially. To this

end, it is interesting to consider the behavior of the estimate as τ → 0, i.e., when we have

no a priori information. Recall that a Bayes estimate based on Dirichlet processes under

similar conditions tends to the estimate of maximum likelihood. In [83] this question is

investigated in conformity with a noncensored sample for vi = 0, δi = 1, and ωi = n− i

for all i = 1, 2, . . . ,n. The parameter γ(t) is chosen in accordance with (4.60). From the

expression (4.61) putting τ → 0 one has

E[R(t) | K] → ln[(n+1)n]
ln[(n− j(t)+1)/(n− j(t))]

. (4.61)

This limit coincides with the maximum likelihood estimate.

Example 4.6 (A simple uniform process). This process was artificially chosen by Fergu-

son to avoid the shortage of a gamma-process. A moment-generating function for the

considered process has the form

Mt(θ) = exp
[
γ(t)

∫ ∞

0

(
e−θz −1

)
e−τz(1− e−z)−1dz

]
. (4.62)
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The Levy’s metric is written as

dN(z) = e−τz(1− e−z)−1dz. (4.63)

A priori information for TTF R0(t) allows us to write

γ(t) = −τ lnR0(t), (4.64)

where the parameter τ as before, can be interpreted as the degree of certainty in the prior

information as given above, has a sense of certainty in a prior information. Using (4.65),

we obtain the final expression of TTF given by

R̂∗(t) = E[R(t) | K] =
[
R0(t)

] τ
ω j(t)+τ

j(t)

∏
i=1

{[
R0(ui)

]− τ(ωi−1−ωi)
(ωi−1+τ)(ωi+τ) · ωi + vi + τ

ωi + vi +δi + τ

}
.

(4.65)

As t → 0

R̂∗(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

j(t)

∏
i=1

ωi + vi

ωi + vi +δi
, t < uK ,

R0(t)
R0(uK)

k

∏
i=1

ωi + vi

ωi + vi +δi
, t � uK ,

(4.66)

coinciding with the maximum likelihood estimate. In particular, if the including censoring

is absent; the estimate (4.67) is a Kaplan–Meier estimate.

The work by Kalbfleisch [118], touching upon the Bayes analysis of the Koks reliability

model, contains important results devoted to the practical use of NR-processes. The model

is represented by the relation

R(t) = P{ξ > t | z} = exp [−Δ(t)exp(zβ )] , (4.67)

where z = (z1,z2, . . . ,zn) is a vector of parameters of the system, β = (β1,β2, . . . ,βp)′

is a vector of regression coefficients, and Λ(t) is a resource function as defined earlier.

The problem is to estimate TTF of the form (4.68), starting from some a priori infor-

mation about the distribution of the random variable ξ and results of the experiment,(
t1,z(1)),

(
t2,z(2)), . . . ,(tn,z(n)), where z( j) is a realization of the vector z in the j-th test.

The problem is solved in the following manner:

(i) Starting with the a priori information, one chooses a prior estimate of the resource

function Λ0(t);

(ii) For the chosen estimate of Λ0(t), one finds the estimates of the regression coefficients

of the model (4.68);

(iii) Given vector β the posterior estimate of the resource function Λ∗(t) is found.
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The final expression for the TTF estimate is found by substitution of Λ(t) and the estimates

of the regression coefficients into (4.68).

To obtain the Bayes estimate of the resource function, we assume that Λ(t) is a stochastic

process which we can study with the help of the following model. The positive semi-axis

is divided into k nonintersecting segments [α0,α1), [α1,α2), . . . , [αk−1,αk), where α0 = 0,

αk = ∞. For each segment one introduces a conditional probability

qi = P{ξ ∈ [αi−1,αi) | ξ � αi−1Λ} , (4.68)

if P{ξ � αi−1 | Λ} > 0, and otherwise qi = 1. It follows from (4.69) that Λ(α0) = 0 and

Λ(αi) =
i

∑
j=1

− ln(1−q j) =
i

∑
j=1

r j, i = 1, . . . ,k.

It is assumed further that Λ(t) is a nondecreasing process with independent increments.

Under this assumption we conclude that random variables q1, . . . ,qk have independent prior

distributions, and the stochastic process generated by q1, . . . ,qk is NR-process. In order to

describe the stochastic process Λ(t), it is necessary to determine the distribution for the

increments τi = − ln(1−qi), i = 1, 2, . . . ,k. In the work [118] it is assumed that τ1, . . . ,τk

have independent gamma-distributions

τi ∼ Γ(αi −αi−1,c) , (4.69)

where c is some constant, and parameters αi are determined with the help of a resource

function chosen in a specific way. The parameters c and Λ0(t)have the following simple

interpretation. If one considers a partition (0, t), [t,∞), then from (4.70) it follows that

Λ(t) ∼ Γ(cΛ0(t), c) and E[Λ(t)] = Λ0(0), D[Λ(t)] = Λ0(t)/c. Thus, Λ0(t) has, in essence,

a priori information about the resource function and c is a quantity characterizing the degree

of significance of this a priori information.

The estimates of the regression coefficients are found with the help of the maximum likeli-

hood method using the following scheme. For the sample
(
t1,z(1)), . . . ,(tn,z(n)), the distri-

bution is written as

P
{
ξ1 � t1, . . . ,ξn � tn | β ,z∼,Λ

}
= exp

{
−

n

∑
i=1

Λ(ti)exp
(
z(i)β

)}
, (4.70)

which is conditional with respect to the stochastic process Λ(t). We denote by z∼ a p× n-

dimensional matrix with the outcomes of n tests. Clearly, for obtaining an estimate on β
we require that the distribution (4.71) be independent of Λ(t). This is achieved with the

assumption that

ri = Λ(ti)−Λ(ti−1) ∼ Γ(cΛ0(ti)− cΛ0(ti−1),c) , i = 1, 2, . . . ,n+1,
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where, without loss of generality, t1 � t2 � · · · � tn and t0 = 0, tn+1 = ∞. Here we use ti
instead of αi and apply the above reasoning. Since Λ(ti) = ∑i

j=1 r j, the distribution (4.71)

is rewritten in the following form:

P
{
ξ1 � t1, . . . ,ξn � tn | β ,z∼,r1, . . . ,rn+1

}
= exp

(
−

n

∑
j=1

r jA j

)
, (4.71)

where

A j =
n

∑
�= j

exp
(
z�β

)
, j = 1, 2, . . . ,n.

Integration of (4.71) over multivariate gamma-distribution (4.72) yields

P
{
ξ1 � t1, . . . ,ξn � tn | β ,z∼

}
= exp

(
−

n

∑
j=1

cB jΛ0(t j)

)
, (4.72)

where

B j = − ln
[
1− exp

(
z( j)β

)
/(c+A j)

]
.

The expression (4.73) is valid for anyΛ0(t), discrete or continuous. If we assume thatΛ0(t)

is continuous and there are no samples of coinciding elements, then, by differentiation of

(4.73), we may obtain a p.d.f., interpreted as a likelihood function �(β ). In the final form

the function �(β ) is represented by the expression [118]

�(β ) = cn exp

[
−

n

∑
j=1

cB jΛ0(t j)

]
n

∏
i=1

λ0(ti)Bi (4.73)

where λ0(t) = λ ′(t).

Further, the maximum likelihood estimate β∗, obtained by minimization of the function

(4.74), is used for obtaining a prior Bayes estimate Λ∗(t). This estimate is defined in [118]

with the help of the property of conjugacy of a gamma-distribution, according to which the

quantities r1, r2, . . . ,rk have as independent prior the gamma-distributions. We consider

first the case of the univariate sample; thereafter, we shall give the generalization for the

case of arbitrary n. The final result of [118] is contained in the following theorem.

Theorem 4.3. If a sample τ = (t1, t2, . . . , tn) does not contain the same values and t1 < t2 <

· · · < tn, then for t ∈ [ti−1, ti) the posterior distribution Λ(t) coincides with the distribution

of the sum of the random variables

X1 +U1 + · · ·+Xi−1 +Ui−1 +δi,

where

Xj ∼ Γ
[
cΛ0(t j−1)− cΛ0(t j), c+A j

]
,

δi ∼ Γ
[
cΛ0(t j−1)− cΛ0(t j−1), c+Ai

]
,
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and

Uj ∼U(c+A j,c+A j+1).

The last distribution U(a,b) has the following density function:

f (u) =
exp(−bu)− exp(−au)

u ln(a/b)
.

If one uses a quadratic loss function for obtaining a prior estimate of the resource function,

the resulting expression will be

Λ̂∗(t) = E
[
Λ(t) | τ,z∼,β∗

] i−1

∑
j=1

(E(Xj)+E(Uj))+E(δ j),

where E(Xj) and E(Δi) are the expected values of the random variables having, respec-

tively, gamma-distributions, and for E(Uj) the following relation holds:

E(Uj) =
exp

(
z( j)β

)
(c+A j)(c+A j+1)

ln
c+A j+1

c+A j
.

For small c that corresponds to the case of absence of a priori information, the values E(Xj)

and E(Δi) are near zero, and Λ̂∗(t) is almost like a maximum likelihood estimate.

Generalized gamma-processes

Dykstra and Loud [70] solve a problem of estimating TTF by an alternative construction

of gamma-processes which are not neutral to the right. A prior distribution, proposed in

[70], is absolutely-continuous and cannot, therefore, be reduced to prior distributions by

Ferguson and Doksum, as mentioned above.

The method of construction of nonparametric Bayes estimate of TTF they have proposed

is based on the so-called generalized gamma-processes (GG-processes), defined in the fol-

lowing manner. Suppose the parameters of the gamma-distribution Γ(α,β ) with density

g(t;α,β ) = tα−1 exp
(

t
β

)
I(0,∞)(t)
Γ(α)βα

are functions of t. In addition, α(t) > 0 (t � 0) is a nondecreasing left continuous real-

valued function, having a left-hand limit at the point 0. By Z(t) we denote a gamma-process

having independent increments with respect to α(t). For any two points the increment

Z(t)−Z(s) is independent of the process increment on the other interval, nonintersecting

with [s, t], and obeys a gamma-distribution Γ(α(t)−α(s),1). In addition to this, Z(0) = 0.

Ferguson [80] proves the existence of such a process.
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Definition 4.4 (Definition of GG-process). Let a process Z(t) have nondecreasing contin-

uous left-continuous sample trajectories. Then a stochastic process

λ (t) =
∫ t

0
β (x)dZ(x), (4.74)

where β (x) is a positive right-continuous real-valued function, having a right-hand limit at

the point x = 0 and integration carried out over the sample trajectories, is called a general-

ized gamma-process Γ(α(·),β (·)).

The stochastic process (4.75) may be used to describe a random failure rate function. With

the help of (4.75) one can write a random cumulative distribution function in the form

F(t) = 1− exp
[
−

∫ t

0
λ (x)dx

]
. (4.75)

We compare this construction with the theory of NR-processes by Ferguson and Doksum.

In accordance with the c.d.f., F(t) is neutral to the right if Λ(t) has independent increments.

It is easy to see that the intensity function (4.75) is a process with independent increments,

consequently Λ(t) doesn’thave independent increments, and F(t) is not NR-process.

It is proved in [70] that the characteristic function for λ (t) in some neighborhood of the

origin has the form

ψλ (t)(θ) = exp
{
−

∫ t

0
ln [1− iβ (s)θ ]dα(s)

}
,

hence the following formulas are valid for a mean value and variance:

E[λ (t)] =
∫ t

0
β (s)dα(s), D[λ (t)] =

∫ t

0
β 2(s)dα(s). (4.76)

Using the representation of a failure rate with the help of GG-process, one can write the

conditional distribution of a sample of size n in the form

P{ξ1 � t1, . . . ,ξn � tn | λ (t)} =
n

∏
i=1

exp
[
−

∫ t

0
λ (t)dt

]
. (4.77)

We can obtain, using (4.78), a prior distribution of a random intensity λ (t) for a given sam-

ple. Note that since the process Z(t) has nondecreasing realizations, λ (t), due to (4.75), is

nondecreasing almost surely. Therefore, a priori information about the cumulative distri-

bution function F(t) should be sought in the class of non-failure rate distributions S0.

A prior distribution for λ (t) can be identified if the functions α(t) and β (t) are given.

These functions are determined by the expression (4.77) under the condition that both have

a nondecreasing expected value μ(t) and a variance σ2(t) are given. The function μ(t), in

essence, has a priori information about λ (t), and the variance σ(t) characterizes a measure
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of uncertainty with respect to the value of a failure rate at each point t. Let us rewrite the

relations (4.77) in the form

μ(t) =
∫ t

0
β (s)α ′(s)ds, σ2(t) =

∫ t

0
β 2(s)α ′(s)ds,

and hence,

β (t) =
dσ2(t)

dt

/dμ(t)
dt

(4.78)

and

dα(t)
dt

=
[

dμ(t)
dt

]2/dσ2(t)
dt

. (4.79)

The expressions (4.79) and (4.80) let us write a prior distribution Γ(α(t),β (t)).

The following statements are proved in [70] for a prior distribution of a stochastic process

λ (t):

(i) If τ = (t1, t2, . . . , tk) is a completely censored sample, then Γ(α(·),β (·)) appears to be

a prior distribution λ (t) under the given sample τ . where

β̂ (t) =
β (t)

1+β (t)
k
∑

i=1
(ti − t)χ(ti − t)

. (4.80)

(ii) If τ = (t∗1 , t∗2 , . . . , t∗d ) is a noncensored sample, the a posteriori distribution λ (t) under

the given sample τ is a mix of generalized gamma-processes:

P{λ (t ∈ B | τ)} =

t∗d∫

0

· · ·
t∗1∫

0

d
∏
i=1

β̂ (zi)F
(

B;Γ
(
α+

d
∑

i=1
Izi,∞β̂ (zi)

))
d
∏
i=1

d

[
α+

d
∑

j=i+1
Iz j ,∞

]
(zi)

t∗d∫

0

· · ·
t∗1∫

0

d
∏
i=1

β̂ (zi)
d
∑

i=1
d

[
α+

d
∑

j=i+1
Iz j ,∞

]
(zi)

(4.81)

where F(B;Q) denotes the probability of the event B for the stochastic process, dis-

tributed by the law Q, and integration is carried out from z1 to z2.

If one uses a quadratic loss function, then the posterior estimate of the failure rate λ (t) is

defined in the form of the posterior mean value. For the case when we deal with a com-

pletely censored sample, λ̂ ∗(t) appears to be a mean value corresponding to the distribution
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Γ
(
α(t), β̂ (t)

)
, where β̂ (t) is computed with the help of (4.81). For a noncensored sample,

λ̂ ∗(t) is a mean value of the variable distributed by the law (4.82) and can be written as

λ̂ ∗(t) =

∫ t∗d

0
· · ·

∫ t∗1

0

∫ t

0

d
∏
i=0

d

[
α+

d
∑

j=i=1
Iz j ,∞

]
(zi)

∫ t∗d

0
· · ·

∫ t∗1

0

d
∏
i=1

β̂ (zi)
d
∑

i=1
d

[
α+

d
∑

j=i+1
Iz j ,∞

]
(zi)

. (4.82)

The censored data may be added if one computes λ̂ ∗(t) with the help of (4.83) and the

estimate β̂ calculated by the formula (4.81) both for censored and noncensored data.

Other approaches

We shall consider an interesting approach for the construction of a nonparametric Bayes

TTF estimate proposed by Padgett and Wei [183] and not connected with the Ferguson ap-

proach. A prior distribution is defined with the help of a step stochastic process for a failure

rate λ (t): the function λ (t) represents, by itself, a step process with constant jumps, equal

to ε , at the points T1, T2, . . . , which are the moments of the events of a Poisson process

with intensity v. Such a representation of λ (t) is connected with real physical interpreta-

tion: at random moments T1, T2, . . . , a technical device is subjected to a negative effect,

which increases the failure rate by a positive quantity ε , and jumps occur in accordance

with a Poisson process. By virtue of our assumptions, one can write the expressions for the

intensity function λ (t) and resource function Λ(t) in the following form

λ (t) = εN(t) (4.83)

and

Λ(t) = ε
N(t)

∑
i=1

(t −Ti), (4.84)

where N(t) is the number of Poisson events that have appeared by the moment t. Thus, a

prior distribution is defined with the help of the stochastic process λ (t) on the parametric

space θ determined by the set of all nondecreasing intensity functions. There are no addi-

tional assumptions about F(t), except F(t) ∈ S0. The process R(t) is written with the help

of λ (t) as

R(t) = 1−F(t) = exp
[
−

∫ t

0
λ (x)dx

]
= exp

[
−ε

N(t)

∑
i=1

(t −Ti)

]
. (4.85)
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Note that the relation (4.86), under the chosen specification of λ (t), gives the continuous

representation for F(t) consequently, the considered approach cannot be reduced to Fergu-

son and Doksum methods. In addition to this, we observe that the representation of a priori

information has a simple, handy form: to find a prior process we need to know only two

numbers: the height of a jump ε and the parameter of the intensity of a Poisson process v.

The posterior probability measure Pn(B) for B ∈ θ is defined by the Bayes theorem, written

in the following form

Pn(B) =
∫

B �(ε,v,τ)dP0∫
Θ �(ε,v,τ)dP0

, (4.86)

where �(ε,v,τ) is a likelihood function, generated by a sample τ . If τ is a noncensored

sample, τ = (t∗1 , . . . , t∗d , t1, . . . , tk), then for the likelihood function the following expression

holds:

�(ε,v;τ) =
d

∏
i=1

εN(t∗i )
n

∏
i=1

exp

[
−ε

N(τi)

∑
j=1

(τi −Tj)

]
. (4.87)

If one uses a quadratic loss function, then the posterior mean value R̂∗(t), corresponding to

the distribution (4.87), is the Bayes estimate and

R̂∗(t) = E[R(t) | τ] =
∫
ΘR(t)�(ε,v;τ)dP0∫
Θ �(ε,v;τ)dP0

(4.88)

in which R(t) is defined by the expression (4.86), and �(ε,v;τ) is defined by the expression

(4.88). The integrals appearing in (4.89) express, in essence, a fact of averaging of corre-

sponding integrands over all possible values N(τ1), . . . ,N(τn), T1, . . . ,TN(τn). For example,

∫
Θ

�(ε,v;τ)dP0 =
∫
Θ

d

∏
i=1

[εN(t∗i )]exp

[
−ε

n

∑
i=1

N(τi)

∑
j=1

ε(τi −Tj)

]

×dP
{

N(τ1), . . . ,N(τn), T1, . . . ,TN(τn)
}

. (4.89)

To solve integrals of the type (4.90) requires special numerical algorithms. In [183] the

authors represent one such algorithm. The problem may be solved only with computer

tools. The numerical example demonstrates the possibility of practical use of the estimate

(4.89) and its satisfactory quality.

An interesting nonparametric solution is given by Proschan and Singpurwalla [198-199].

They considered the problem of estimating the failure rate of a technical device using the

results of forced tests and a priori information of a special form. It is assumed that a device

is tested in k regimes, and each regime is associated with its own failure rate function λ j(t),

where

λ1(t) > λ2(t) > · · · > λk(t) > λ (t) (4.90)
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and λ (t) is a failure rate corresponding to the device functioning in a normal regime. For

obtaining Bayes estimates, the authors use the following stochastic process.

Let Nj(t) be the number of devices being tested in j-regime at the moment t. The interval

[0,L] of possible testing periods is divided by the points s1, s2, . . . , into equal subintervals of

length Δ so that the number of all intervals m = L/Δ. Also, let n j,i be the number of devices

tested in a j-regime during the i-period; d j,i is the corresponding number of failures; p j,i is

the probability of observing a failure for the device tested in j-regime during the i-period.

The stochastic process we will use later is determined by the mean intensity in the interval

[si,si +Δ]:

μ j,i =
p j,i

1−
i−1
∑

�=1
p�,i

, i = 1, 2, . . . ,m; j = 1, 2, . . . ,k, (4.91)

which is a conditional probability of a failure by the time si +Δ under the condition that by

the time si the device is functioning. It is assumed that each μ j,i satisfies a beta-distribution

Be(α,β j) with a density given by

Hj,i(P) = h j,i(p;α,β j) ∼ pα−1(1− p)β j−1 ;

moreover, the random variables μ j,i are mutually independent. The set of all μ j,i gener-

ates a Poisson process, defined on the parametric space, satisfying condition (4.91). The

parameters α, β1, β2, . . . ,βk contain a priori information. To satisfy (4.91) it is necessary

that μ j−1,i > μi,i almost surely for all j = 2, 3, . . . ,k. This has been proven in [199] under

the condition that β1 < · · · < βk. This inequality symbolizes the difference in severity of

testing.

The procedure for obtaining posterior distributions of conditional probabilities μ j,i is based

on the property of conjugacy of a beta-distribution in conformity to a specific sample plan

which assumes that censoring is absent. It is proved in [198] that the posterior distribution

of μ j,i is a beta distribution for a given Nj,i and d j,i

h̄ j,i(p | N,d) =
Γ
(
α∗

j,i +β ∗
j,i
)

Γ
(
α∗

j,i

)
Γ
(
β ∗

j,i

) pα
∗
j,i−1(1− p)β

∗
j,i−1 , (4.92)

where α∗
j,i = α+d∗

j,i, β ∗
j,i = β j +Nj,i −d j,i.

Now, if one uses a quadratic loss function to obtain the Bayes estimate μ j,i, this estimate

takes on the form of the posterior mean value, corresponding to the distribution (4.93):

μ∗
j,i =

α+d j,i

α+β j +Nj,i
. (4.93)

The proposed approach characterizes, as a whole, the clearness of a logical construction

and simplicity of the numerical algorithm. At the same time, we don’t know, unfortunately,

in what way the parameters α and βi (i = 1, . . . ,m) should be chosen.
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4.4 The nonparametric Bayes approach of quantile estimation for increasing
failure rate

Obtaining statistical conclusions about the value of a quantile x of the level p for failure

rate distributions is a matter of great interest in reliability theory:

xp = inf{x : F(x) � p} (4.94)

In this section we’ll consider a problem of obtaining the Bayes estimate for xp assuming

that F(x) belongs to the class of failure rate distributions S0. It is shown in [14] that for

the approximation of failure rate c.d.f., it is customary to use a two-parametric family E0

of exponential cumulative distribution functions of the following form:

F(t;θ) = χ(t −μ)
[

1− exp
(
− t −μ

m0

)]
, (4.95)

where μ is absolutely guaranteed time to-failure, (μ + m0), a mean TTF, θ = (μ + m0).

For this family, a p-level quantile has the form

xp = μ+m0Λp, with Λp = ln
1

1− p
. (4.96)

In the present case Belyaev [14], uses a Bayes estimate of the quantile xp, obtained for

the nonparametric family E0, for the construction of the estimate of a similar quantile for

F(t) ∈ S0. It is carried out by the specification of a transformation up : F → F0 (F ∈ S0,

F0 ∈ E0) and by the foundation of a lower bound of a prior probability of the statement

{xp � x} over all possible transformations up. The Bayes estimate xp is constructed with

the help of a sample τ = (t∗1 , . . . , t∗d , t1, . . . , tk), obtained after the realization of the NC-plan.

For the likelihood function �(θ | τ) = �(μ ,m0 | τ) we use the expression (3.22), and in

accordance with it,

�(μ ,m0 | τ) = c(τ)
d

∏
i=1

χ(t∗i −μ)
1

md
0

exp
[
− 1

m0

∫ ∞

μ
N(t)dt

]
,

where N(t) is the number of devices tested at the time t, c(τ) is independent of μ , m0. This

expression may be simplified if one takes into account the relations
d

∏
i=1

χ(t∗i −μ) = χ
(
t∗(1) −μ

)
,

where t∗(1) = min(t∗1 , t∗2 , . . . , t∗d ), and
∫ ∞

μ
N(t)dt =

∫ ∞

t(1)

N(t)dt +
∫ t(1)

μ
N(t)dt = s

(
t∗(1)

)
+ s

(
μ , t∗(1)

)
,

where, the statistics s
(
t∗(1)

)
and s

(
μ , t∗(1)

)
have the total operating times during the testing

period which lasts after the first failure t∗(1) has occurred during the interval
[
μ , t∗(1)

]
. If there
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are no failures, one should put t∗(1) equal to the period of testing t. The resulting expression

for the likelihood function is

�(θ | τ) = c(τ)χ
(
t∗(1) −μ

) 1
md

0
exp

[
−

s
(
t∗(1)

)
+ s

(
μ , t∗(1)

)
m0

]
. (4.97)

A prior p.d.f. of the vector of parameters θ = (μ ,m0) is represented in the form

h(μ ,m0) = h(m0)h(μ | m0), (4.98)

where h(m0) is a prior p.d.f. of the parameter m0, h(μ | m0) is a priori conditional p.d.f. of

the parameter μ under the condition the parameter m0. If one uses a prior p.d.f. h(μ ,m0),

conjugated with a likelihood kernel, then an expression for h(m0) and h(μ ,m0) takes on

the form

h(m0) =

[
1− exp

(
− ct0

m0

)]
sd0−2

0 exp
(

s0
m0

)

(d0 −3)!
[

1−
(

s0
ct0+s0

)d0−2
]

md0−1
0

, (4.99)

and

h(μ | m0) =
cχ(t0 −μ)exp

[
− c(t0−μ)

m0

]

1− exp
(
−c t0

m0

)
m0

. (4.100)

A prior density, defined by the expressions (4.99)–(4.101), depends on four parameters:

c, t0, d0, s0. Applying the Bayes theorem and relations (4.98)–(4.101), we can obtain the

multipliers of the posterior distribution density corresponding to h(m0) and h(μ | m0):

h̄(m0,τ) =

{
1− exp

[
− s1(0,r)

m0

]}
s2(r)d0+d−2 exp

[
− s2(r)

m0

]

(d0 +d −3)!
{

1−
[

s2(r)
s0(r)

]d0+d−2
}

md0+d−1
0

(4.101)

and

h̄(μ | m0,τ) =
c+N(μ)

m0
·
χ(r−μ)exp

[
− s1(μ,r)

m0

]

1− exp
[
− s1(0,r)

m0

] , (4.102)

where

r = min
{

t∗(1), t0
}

, s1(μ ,r) =
∫ r

μ
[c+N(t)]dt,

s2(r) = s0 + s1(r), s1(r) = c(t0 − r)+ s(r).

with help of (4.102) and (4.103) the posterior density of the vector of parameters θ =

(μ ,m0) is found analogously to a prior one (see (4.99)):

h̄(μ ,m0 | τ) = h̄(m0 | τ)h̄(μ | m0,r).
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If F(t) is represented by the expression (4.96), then while the data is accumulated, the pos-

terior distribution is concentrated in the neighborhood of the true values of the parameters

μ , m0. Accumulation of data corresponds to the union of testing outcomes over the set of

tests, containing k NC-plans, as k increases infinitely.

With the help of a prior p.d.f. (4.100) and (4.101), a prior density of the quantile xp =

μ+m0Λp is expressed in the following form:

hp(xp) =
∫

G
h(mp | m0)h(m0)dm0

=
c(1− p)sd0−2

0 (d0 −2)[
1−

(
s0

s0+ct

)d0−2
]

sd0−1
3

{
�d0−2

(
Λp

s3

xp

)
−χ(xp − t0)Ld0−2

(
Λp

s3

xp − t0

)}
,

where mp = xp −m0Λp, s3 = s0 +c(t0−xp), the integration interval G =
(
(xp−x0)/Λp

)+,

xp/Λp, and a+ denotes that a+ = a, if the symbol a > 0, a+ = 0, if a � 0, Ld(x) =

∑d
k=0 xke−x/k! .

For the posterior p.d.f. h̄p(xp | τ) of the quantile values with the help of (4.102) and (4.103)

one obtains analogously

h̄p(xp | τ) = K
∫

G′

c+N(mp)

md0+d
0

exp
[
− s0 + s1(mp)

m0

]
dm0, (4.103)

where

K =
s2(r)d0+d−2{

1−
[

s2(r)
s2(0)

]d0+d−2
}

(d0 +d −3)!
,

and the interval over which we integrate is

G′ =
[(

(xp − r)/Λp
)+

, xp/Λp

]
.

For practical convenience, we use the posterior p.d.f. (4.104) to represent the integral

(4.104) in the finite form. To this end we present the following scheme: consider a vari-

ational raw t(1), . . . , t(�), consisting of the values of censoring times which precede r. The

time t(i) is associated with the finite increment of the integrand in (4.104). The set G′ is

divided into a sequence of intervals

Δ� =

[(
xp − r
Λp

)+

,

(
xp − t(1)

Λp

)+
]

,

Δi =

[(
xp − t(i+1)

Λp

)+

,

(
xp − t(i)
Λp

)+
]

, i = 1, 2, . . . , �−1,
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with

Δ0 =

[(
xp − t(1)

Λp

)+

,
xp

Λp

]
.

In the intervals Δi (i = 0, 1, . . . , �), the function N(mp) is constant. Suppose that at the

censoring time t(i), N devices are taken out. Then Ni = N − n1 −·· ·− ni is the number of

devices which are still being tested after t(i). The constant values of the function N(mp) in

the intervals Δi are written in the following form:

N(mp) =

{
N if m0 ∈ Δ0,

Ni if mi ∈ Δi,

whence it easily follows

s1(mp) =

⎧⎪⎪⎨
⎪⎪⎩

(c+N)
(
t(1) −mp

)
+ s1

(
t(1)

)
, m0 ∈ Δ0,

(c+Ni)
(
t(i+1) −mp

)
+ s1

(
t(i+1)

)
, m0 ∈ Δi, i = 1, . . . , �−1,

(c+N�)(r−mp)+ s1(r), m0 ∈ Δ�.

The last expression lets us write

J(Δi) =
∫

m0∈Δi

c+N(mp)

md0+d
0

exp
[
− s0 + s1(mp)

m0

]
dm0

= ci

{
χ
(
xp − t(i)

)
Ld0+d−2

(
Λp

s0(c+Ni)
(
t(i+1)− xp

)
+ s1

(
t(i+1)

)
xp − t(i+1)

)}

i = 1, 2, . . . , �−1, (4.104)

where

ci =
(d0 +d −2)!(c+Ni)(1− p)c+Ni[

s0 +(c+Ni)
(
t(i+1) − xp

)
+ s1

(
t(i+1)

)]d0+d−1 (4.105)

The integrals J(Δ0) and J(Δ�) are computed by the same formulas (4.105) and (4.106) in

which one should put Ni = N, t(i) = 0 for the first integral, and Ni = N�, t(i+1) = r for the

second one. The resulting expression for the posterior quantile h̄(xp | τ) takes on the form

of a sum

h̄p(xp | τ) =
�

∑
i=0

KJ(Δi). (4.106)

The number of terms in (4.107) may be less than � + 1, since some of the intervals Δi

degenerate into a point.

The case corresponding to the situation when censoring is not carried out until the moment

r (t(1) � r) is the most simple for calculations. In this case the sum (4.107) consists of only
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one term, corresponding to i = 0. The posterior density of the quantile values has the form

h̄p(xp | τ) = W
{

Ld0+d−2

(
Λp

s0 +(c+N)(r− x0)+ s1(r)
xp

)

−χ(xp − r)Ld0+d−2

(
Λp

s0 +(c+N)(r− x0)+ s1(r)
xp − r

)}
(4.107)

where

W =
s2(r)d0+d−2(c+N)(1− p)c+N(d0 +d −2)![

1− s2(r)
s2(0)

]d0+d−2 [
s0 +(c+N)(r− xp)+ s1(r)

]d0+d−1
.

x

Λ

Λ(t)

Λ0(t)

Λp

xpμ
ϕ

Fig. 4.1 Approximation of the resource function

The formula (4.108) may be used in tests which are conducted by the plans [N, U, R],

[N, U, T ], when N articles are being tested during the given time t, where the censoring is

not carried out until the time t.

Consider now an approach which enables us to use the above cited results for the condition

when F(t) belongs to the class of failure rate distributions S0. The problem is to make a

statistical conclusion about the value of the quantile xp with the help of a sample τ obtained

while one is conductinga test by the NC-plan. To use the Bayes approach, we have to define

a prior distribution on the class S0 of all failure rate distribution functions. The method

described below lets us, in some sense, bypass the difficulties of representation of a prior

distribution.

Any c.d.f., F(t)∈E0 is a failure rate, since E0 ∈ S0. Let us define the map up : F(t)→F0(t),

where F(t) ∈ S0, F0(t) ∈ E0. To do this, we put F0(t) = F(t), if F(t) ∈ E0. Provided that

F(t) /∈ E0 we assign to it c.d.f., F0(t) ∈ E0, with

F0(t) = 1− exp(−Λ0(t)), Λ0(t) = max{0,Λp +λp(t − xp)}. (4.108)
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Here λp = tanφ the minimal possible value of the slope of the tangent of the slope φ . to

the graph of the resource function Λ(t) = − ln[1−F(t)]at the point (xp,Λp). The graph of

the resource function Λ0(t) is a polygon line, containing the segment [0,μ ] and the ray of

the straight line outgoing from the point (μ ,0) at the angle φ (Fig. 4.1). We can associate

the map up : F → F0 with the function up(t), such that

F(t) = F0(up(t)).

As follows from (4.109) the function up(t) possesses the following properties:

(i) up(t) is nondecreasing with respect to t;

(ii) up(t) � t, ∀ t > 0;

(iii) xp = up(xp).

If the function t ′ = up(t) were known, then realization of the Bayes approach to the problem

of estimating of the quantile xp would be done without any difficulties. To do this one

should use, instead of the data τ , the transformed data

τ(up) = {vi, i = 1, 2, . . . ,d; ω j, j = 1, 2, . . . ,k}, (4.109)

where vi = up(t∗i ), ω j = up(t j). This data would correspond to c.d.f. F0(t) ∈ E0.

Any prior distribution on So being mapped by up : F → F0 turns into the corresponding

prior distribution on E0. To simplify calculations, this distribution can be approximated

by the distributions with p.d.f., represented by (4.100) and (4.101). Furthermore, we may

use the calculations performed for the posterior p.d.f. h̄p(xp | τ(up)), since the values of

the quantile xp are the same for F(t) and F (t0). We may find, using the posterior p.d.f.

h̄p(xp | τ(up)), the posterior probability of the event xp � x. This probability equals

P{xp � x | τ(up)} =
∫ ∞

X
h̄p(xp | τ(up))dxp. (4.110)

We cannot solve the problem defined above using only (4.111) because we don’t know the

mapping up : F → F0 which transforms the data T into the form (4.110). It is possible,

however, to find the lower bound

P0{xp � x | τ} = inf P{xp � x | τ(up)}, (4.111)

where inf is taken over the possible functions up(t) possessing the properties (i)–(iii). It

can be achieved by searching through all possible data τ(up) whose components vi and ω j

satisfy the inequalities

vi � t∗i , i = 1, 2, . . . ,d,

ω j � t j, j = 1, 2, . . . ,k.
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Table 4.3 The lower estimate of the posterior probability of the statement {x0.01 � x} [14].

x, h 65 90 100 110 120 130 140 150
P
{

xp � x | τ
}

0.992 0.985 0.922 0.872 0.794 0.679 0.479 0.255
P0
{

xp � x | τ
}

0.991 0.956 0.921 0.855 0.741 0.527 0.232 0.064

The finding of inf in the problem (4.111) can be simplified substantially if censoring is

not carried out until the first failure, � = 0. In this case, we compute h̄p(xp | τ(up)) using

formula (4.108), and then inf in (4.111) is obtained by substituting s1(r) in (4.108) by

s � s1(r).

The method of reducing a nonparametric problem to a parametric one, as described above,

is called a method of concentration, since it is based on the idea of concentration of the

prior distribution in the set E0 ⊂ S0.

We give a numerical example corresponding to the case � = 0 [14]. During the test a sample

is obtained, containing 20 failure times, represented by the following ranked data set:
{

108.4, 120.8, 161.3, 172.4, 176.3, 177.3, 190.8, 267.8, 320.0, 331.5,

334.6, 337.1, 352.4, 371.1, 440.8, 467.9, 480.8, 508.9, 567.4, 569.9
}

hours.

In Table 4.3 we present the results of the calculations performed in accordance with the

method of concentrations: the first row consists of the values of the posterior probability of

the statement {xp � x}, corresponding to the given set of parameters t0, s0, d0 and c under

the assumption F(t) ∈ E0; the last row contains the values P0{xp � x | τ} corresponding

to (4.111). Decreasing of values P0{xp � x | τ} in comparison with P{xp � x | τ} will be

significant for large values of x. It can be caused by the replacement of the family E0 by

the broader class of failure rate c.d.f., S0.

The methods we’ve described above admit different generalizations. In particular, instead

of the parametric family E0, one can use E1 ∈ S0, defined by the relations

F1(t) = 1− e−Λ1(t),

where

Λ1(t) =

⎧⎨
⎩

λ0(t), t � xp,

λ1t − (λ1 −λ0)xp, t > xp, λ0 =
Λp

xp
,

which define a two-parametric family of c.d.f. The mapping up : F → F1 ∈ E1 may be

associated with the function up(t), having the properties up(t) � t and xp = up(xp). All

further arguments will be the same.



Chapter 5

Quasi-Parametric Bayes Estimates of the TTF
Probability

5.1 Parametric approximations for a class of distributions with increasing
failure rate

A quasiparametric Bayes estimate plays the intermediate role between the parametric and

nonparametric estimates in the following sense. Let {Ω,L ,F} be a sample space, char-

acterizing a statistical model, generated by some plan P; a probability measure F (distri-

bution) which belongs to some class S. A quasiparametric estimate of a time to failure

probability r, connected functionally with F , is constructed in the following manner. Start-

ing with given a priori information, the probability measure is approximated with the help

of F̃ ∈ Sθ , where Sθ is a parametric family chosen in accordance with the form of repre-

sentation of a priori information, where Sθ ∈ S. The parameter q is random and the space

{Θ,E ,H} where H ∈ H is a prior probability measure of the parameter θ on (Θ,E ). The

estimate of the probability of a TTF is sought in the form of the Bayes estimate of the cor-

responding function R = R(θ), measurable on θ . A specific Bayes procedure is determined

by the form of a priori information and by the chosen approximation of c.d.f., F , on the

class S. These estimates are proposed and investigated in the works [218, 219]. Consider

some important aspects from a practical point-of-view, cases dealing with a construction of

the approximation of the unknown c.d.f., F(t), on the classes of failure rate Sθ or failure

rate in mean S1 distributions [9, 10]. Throughout what follows we will use a representation

of the approximation distribution function with the help of the resource function:

F(t) ≈ F̃(t;θ) = 1− exp
[
−Λ̃(t;θ)

]
(5.1)

assuming that Λ̃(t) is an approximation of the genuine resource function Λ(t) guaranteeing

that the c.d.f. F̃(t,θ) is in the class Sθ (or S1).

123
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5.1.1 The case of a univariate prior distribution

This case characterizes the situation when an engineer possesses some information about

the device reliability at the fixed moment t0, i.e., if a prior p.d.f., h(r), is given for TTF

Rt0 = P{ξ > t0} on the interval R�, Ru. In this particular case h(r) can be uniform, and then

it suffices to find the values R�, Ru to represent all a priori information.

Suppose, at first, that Rt0 is fixed, i.e., the interval R�, Ru degenerates into a point. Fin

such an approximation Λ̃(t) such that: 1) the values of c.d.f., F(t) and F̃(t) coincide, 2) the

approximate c.d.f., F̃(t), belongs to the class of increasing failure rate distributions. In

accordance with the first condition

Λ̃(t0) = Λ(t0). (5.2)

Λ(t0) =− ln[1−F(t0)] =− lnRt0 , and the value Rt0 , by the assumption, is fixed. Represent

the function in the form of a two linked polygonal line, satisfying the condition (5.2) (Figure

5.1) and write the equations for the links. Since the link �1(t) passes through the origin, its

equation will be defined by a single parameter which we denote by Λ0. The condition (5.2)

implies

�1(t) = λ0(t), t � t0, (5.3)

where

λ0 =
Λ(t0)

t0
=

1
t0

lnRt0 , (5.4)

i.e., λ0 is defined uniquely, if Rt0 is given. The equation for the link �2(t) depends on two

parameters: the parameter λ0 mentioned above and a new parameter λ1. Then

�2(t) = λ1t − (λ1 −λ0)t0, t > t0 (5.5)

Taking into account (5.3) and (5.5) we can represent the approximation of the resource

function in the form

Λ̃(t) = Λ̃(t;λ0,λ1) =

{
λ0t, 0 � t � t0,

λ1t − (λ1 −λ0)t0, t > t0,

or, if we use the sign function,

Λ̃(t) = χ(t0 − t)λ0t +χ(t − t0) [λ1t − (λ1 −λ0)t0] . (5.6)

Note that the parameter λ0 (given Rt0 ) is defined uniquely by the relation (5.4). At the same

time, for λ1 we may find only the domain of admissible values. To this end we use the

assumption about the approximation of the c.d.f. F̃(t), belongs to the class S0 :

F̃(t) = F̃(t;λ0,λ1) = 1− exp
[
−Λ̃(t;λ0,λ )

]
∈ S0 (5.7)
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Fig. 5.1 Two-linked approximation of the resource function.

The condition (5.7) is equivalent to the statement that the resource function Λ̃(t) is concave

[14], i.e.,

Λ̃
(

t1 + t2
2

)
� 1

2

[
Λ̃(t1)+ Λ̃2(t2)

]
∀ t1 < t2 (5.8)

For the cases t1 < t0, t2 < t0 and, t1 > t0, t2 > t0 the condition (5.8) is filled for any λ1. Let

now t1 < t0, t2 > t0. For t1 + t2 � 2t0 (for concave Λ̃(t)) we have

λ0(t1 + t2) � λ0t1 +λ1t2 − (λ1 −λ0)t0,

whence λ1 � λ0. For t1 + t2 � 2t0 we obtain a similar result. Thus, the interval [λ0∞)

appears to be the domain of values of the parameter λ1 guaranteeing the fulfillment of’ the

condition (5.7).

The TTF value Rt0 , in general, is not fixed but appears to be random, in the Bayes sense,

and lies in the interval
[
R�,Ru

]
. Therefore, we will discuss not a usual approximation of

a resource function, but a Bayes one in which the parameters λ0 and λ1 are random. The

point is that the genuine resource function Λ(t) is random and may take on one realization

in some space, determined by the given a priori information. In our case this space is

bounded by the curves Λ1(t) and Λ2(t) which also are random by themselves too. The

fact that these curve pass respectively through the points
(
t0,Λ02

)
and

(
t0,Λ01

)
, where

Λ02 = − lnR�, A01 = − lnRu, is nonrandom accordingly the segment of a prior uncertainty.

In the class S0 the curves Λ1(t) and Λ2(t) are approximated by the following polygonal
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lines (see Fig 5.2):

Λ̃1(t) =

⎧⎨
⎩

0, t � t0,

− t
t0

lnRu, t > t0,

and

Λ̃2(t) =

⎧⎨
⎩

− t
t0

lnR�, t � t0,

∞, t > t0,

Thus, the resource function Λ̃(t), defined by the expression (5.6), approximates an arbitrary

random realization of the resource function Λ(t) ∈
[
Λ̃1(t), Λ̃2(t)

]
. The parameters λ0 and

λ1 used in (5.6) are random variables. The range of the random variables λ0 and λ1 is

defined by the inequalities

λ ′
0 � λ0 � λ ′′

0 , λ0 � λ1 � ∞, (5.9)

where λ ′
0 = − lnRu/t0, λ ′′

0 = − lnR�/t0, and the first inequality has been obtained from the

condition Rt0 ∈ [R�,Ru], and the second one from the assumption F(t) ∈ S0.

Define the domain D, having replaced in the above reasoning S0 by a more general class

S1 of failure rate distributions. The leading property of the class S1 is the property of the

nondecreasing of the function η(t) = Λ(t)/t.

Fig. 5.2 Bayes two-linked approximation of the resource function.
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(see [14]). For the resource function Λ̃(t;λ0,λ1) of the form (5.6) with t > t0 we have

η(t) = λ1 − (λ1 −λ0)
t0
t
.

From the condition η ′(t) � there follows

(λ1 −λ0)
t0
t2 � 0,

whence λ1 � λ0. Therefore, the assumption F(t) ∈ S0 gives us the same domain for the

random parameters λ0 and λ1 of the form (5.9).

It should be noted in conclusion that approximation of the resource function by the expres-

sion (5.6) is equivalent to a rough replacement of the intensity function λ (t) = Λ′(t) by the

piecewise-constant function

λ̃ (t) = λ̃ (t;λ0,λ1) = λ0χ(t0 − t)+λ1χ(t − t0). (5.10)

5.1.2 Generalization of the case of a univariate prior distribution

This can be carried out by increasing the number of links of the polygonal line used for

the approximation of the resource function Λ(t). Let us choose some number te so that the

interval [0,Te] contains all empirical data. Next we divide the interval [0,Te] into N + M

intervals μ j = [s j−1, s j), j = 1, 2, . . . ,N +M of the same length, such that SN = t0, sN+M =

Te. It is easy to see that the interval [0, t0) contains N intervals μ1, μ2, . . . ,μn, and [t0,Te)

is M intervals μN+1, . . . ,μN+M . With the help of the obtained value lattice S2, s1, . . . ,sN+M

we will approximate the intensity function λ (t) inside the interval [0,Te]. Suppose further

that:

1) The approximation of the intensity function at each point of the lattice gets on an incre-

ment. The increment value is the same for all intervals μ j ∈ [0, t0) and equals δ1 � 0.

For the intervals μ j ∈ [t0,Te) the value of a jump δ2 differs, in general, from δ1. The

choice of different values for δ1 and δ2 is caused by the following circumstance: by the

approach of the stated problem, δ1 has a bounded variation induced by a segment of a

prior uncertainty
[
R�,Ru

]
. δ2 is not subject to a similar restriction, hence, δ2 ∈ [0,∞).

2) The quantities δ1 and δ2 are taken as parameters of the approximation of the intensity

function and play the role of the parameters λ0 and λ1 from the previous case.

We will distinguish between two approximations of the intensity function: an upper one

λ̃ (t) and a lower one λ∼(t). In Fig. 5.3, λ̃ (t) is shown by the solid line, and λ∼(t) by the

dotted line. Note that the approximations λ̃ (t) and λ∼(t) are named as upper and lower ones
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only conventionally, in view of the inequality λ̃ (t) > λ∼(t). Actually it is not necessary that

the double inequality λ∼(t) � λ (t) � λ̃ (t) be fulfilled.

For the sake of simplicity we’ll write

λ̃ (t) =

{
jδ1 ∀ t ∈ μ j, j = 1, 2, . . . ,N

Nδ1 + kδ2 ∀ t ∈ μN+k, k = 0, 1, . . . ,M.
(5.11)

In addition to this, it is clear that λ∼(t) = λ̃ (t)− δ1. To find a more handy expression, we

use the function

χ j(t) = χ(t − t j−1)χ(t j − y) =

{
1 if t ∈ μ j,

0 if t /∈ μ j.

Fig. 5.3 Multiply-linked approximation of the intensity function.

After simple transformations we obtain

λ̃ (t) = δ1

[
n

∑
j=1

jχ j(t)+N
m

∑
k=1

χN+k(t)

]
+δ2

m

∑
k=1

kχN+k(t). (5.12)

Formal integration of the intensity function (5.12) lets us find an expression for the approx-

imate resource function Λ̃(t) = Λ̃(t;δ1,δ2). After some complicated transformations one

can obtain

Λ̃(t;δ1,δ2) = δ1

n

∑
j=1

[
Kj−1Δ+ j(t − s j−1)

]
χ j(t)+

m

∑
j=1

{
KnΔ1Δ+

[
N( j−1)δ1 +Kj−1Δ2

]
Δ

+(Nδ1 + j2)
(
t − sN+ j−1

)
χN+ j(t)

}
, (5.13)
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where

Δ= s j+1 − s j, Km = 0+1+ · · ·+m (m = 0, 1, 2, . . .).

For further approximation of the resource function, we proceed analogously:

Λ
∼
(t;δ1,δ2) = δ1

n

∑
j=2

[
Kj−2Δ+( j−1)(t − s j−1)

]
χ j(t)

+
m

∑
j=1

{
KN−1Δ1Δ+

[
(N −1)( j−1)δ1 +Kj−1Δ2

]
Δ

+[(N −1)δ1 + jδ2]
(
t − sN+ j−1

)}
χ j(t) (5.14)

The expressions we have obtained represent, by themselves, the basis for solution of the

problem of finding TTF estimates in the Bayes problem setting.

The qualitative characteristic of the Bayes approximation of the resource function, given

by (5.13), is represented by Fig. 5.4. Since we don’t change the form of representation

of a priori information, i.e., Rt0 ∈ [R�,Ru] the function Λ̃(t;δ1,δ2) belongs to the domain

bounded by the curves Λ̃1(t) and Λ̃2(t) introduced earlier. Define the domain dδ formed by

the possible values of the parameters δ1 and δ2. As before, we will start from the interval of

a prior uncertainty [R�,Ru] and suppose that F(t) belongs to the failure rate class of mean

distributions.

Taking into account the chosen approximation of the resource function, we have

Rt0 = exp
{
−Λ̃(t0;δ1,δ2)

}
∈ [R�,Ru] . (5.15)

At the same time, (5.13) yields

Δ̃(t0) = knΔΔ1. (5.16)

Using (5.15) and (5.16), we obtain

R� � exp(−KnΔΔ1) � Ru,

whence

δ ′
1 � Δ1 � Δ′′1 ,

where

δ ′
1 = − 1

Δ
lnRu, Δ′′1 = − 1

Δ
lnR�, and Δ1 = KnΔ.

Further, taking into account the condition

∂
∂ t

[
Λ̃(t;δ1,δ2)

t

]
� 0,
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under which the c.d.f. F̃ (t;δ1,δ2) = 1− exp
[
−Λ̃(t)

]
belongs to the class of distributions

with increasing failure rate on the average, we obtain δ2 � 0. Thus, the range dδ of the

random parameters δ1 and δ2 of the approximation of the resource functions D(t) and D˜(t)

has a structure

δ ′
1 � Δ1 � Δ′′1 , 0 � Δ2 < ∞ (5.17)

This completes the construction of Bayes parametric approximation of the c.d.f. on the

class S1 for a univariate prior probability distribution.

Fig. 5.4 Bayes multiply-linked approximation of the resource function.

5.1.3 The case of a multivariate prior distribution

This case characterizes the situation when an engineer possesses a priori information about

reliability for the given set of moments t10, t20, . . . , tM0. In particular, it may occur that for

each of the mentioned moments is given the interval of a prior indeterminacy
[
R j�,R ju

]
,

j = 1, 2, . . . ,M. We will solve the problem of construction of the parametric approximation

for c.d.f. F(t) in the following cases:

(1) Uncertain intervals
[
R j�,R ju

]
satisfy the condition of consistency. We will distinguish

two conditions of consistency: strict and nonstrict. In accordance with the first condition,
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the intervals of a prior uncertainty may be partially overlapping, but R j1 � R( j+1)� and

R ju � R( j+1)u. For the condition of strict consistency such overlapping is inadmissible, i.e.,

R j1 � R( j+1)u. The indicated forms of representation of prior information are depicted in

Fig. 5.5. and Fig. 5.6. Note that in practice we may meet both forms, depending on the

methods of obtaining and using a priori information. Evidently, if the condition of nonstrict

consistency is fulfilled, we should include in the statistical model additional conditions,

ensuring monotonicity of the reliability function.

(2) An intensity function is approximated by a piecewise-constant function λ (t), having

finite increments t10, t20, . . . , tM0. In the capacity of model parameters one chooses con-

stant values of the intensity function on the intervals
[
t( j−1)0, t j0

)
, j = 1, 2, . . . ,M +1; it is

assumed also that t(M+1)0 = ∞.

In accordance with the second assumption, the approximate intensity function can be writ-

ten in the form

λ̃ (t) =
M+1

∑
j=1

λ jχ j(t), (5.18)

where λ1, λ2, . . . ,mλM+1 are parameters of the function (t). The approximate resource

function λ̃ (t), in view of (5.18), can be written as

Λ̃(t) =
M+1

∑
j=1

χ j(t)

(
j−1

∑
i=1

λi
(
ti0 − t(i−1)0

)
+λ j

(
t − t( j−1)0

))
. (5.19)

Find the domain of admissible values of the random parameters λ1, λ2, . . . ,λM+1. As

it follows from the problem setting, this domain must be completely determined by the

intervals of a prior uncertainty
[
R j�,R ju

]
, j = 1, 2, . . . ,M, and the approximate c.d.f.

F̃(t) = 1− exp
[
−Λ̃(t)

]
belongs to the class of failure rate mean distributions. For t = t10,

from (5.19) we obtain

R10 = exp
[
−Λ̃(t10)

]
= exp(−λ1t10) .

Thereafter, from the inequality R1� � R10 � R1u there follows

− 1
t10

lnR1u � λ1 � − 1
t10

lnR1�. (5.20)

Let us now obtain an analogous inequality for any time t j0. Having denoted Δ j = t j0 −
t( j−1)0, with the help of (5.19) we can write

R j0 = exp
[
−Λ̃

(
t j 0

)]
= exp

(
j

∑
i=1

λiΔi

)
.
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Fig. 5.5 Intervals of a prior uncertainty under the condition of fulfillment of nonstrict consistency.

Using the j-th interval of a prior uncertainty
[
R j�,R ju

]
, inside of which lies the value R j0,

we obtain

R j� � exp

(
j

∑
i=1

λiΔi

)
� R j u

whence follows the inequality for λ j;

− 1
Δ j

(
lnR ju +

j−1

∑
i=1

λiΔi

)
� λ j � − 1

Δ j

(
lnR j� +

j−1

∑
i=1

λiΔi

)
. (5.21)

Fig. 5.6 Intervals of a prior uncertainty under the condition of fulfillment of strict consistency.

Now, we apply the condition of F̃(t) belonging to the class S1. Introduce for Λ̃(t) the
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function η(t) = Λ̃(t)/t. For an arbitrary interval [t( j−1)0, t j] we obtain

η(t) =
1
t

[
j−1

∑
i=1

λiΔi +λ j(t − t( j−1)0)

]
.

The derivative of the function η(t) has the form

η ′(t) =
1
t2

[
λ jt( j−1)0 −

j−1

∑
i=1

λiΔi

]
,

and from the condition η ′(t) � 0 it follows that

λ j � λ1Δ1 +λ2Δ2 + · · ·+λ j−1Δ j−1

Δ1 +Δ2 + · · ·+Δ j−1
. (5.22)

Putting together the inequalities (5.21), (5.22) and (5.20), we obtain the following domain

dλ of values of the parameters λ1, λ2, . . . ,λM+1 under the fulfillment of the condition of

nonstrict consistency for the intervals of a prior uncertainty:

λ ′
i � λi � λ ′′

i , i = 1,2, . . . ,M,

λ ′
M+1 � λM+1 < ∞,

(5.23)

where

λ ′
1 = − 1

Δ1
lnR1u, λ ′′

1 = − 1
Δ1

lnR2�

λ ′
j = max

⎧⎪⎪⎨
⎪⎪⎩
− 1
Δ1

(
lnR1u +

j−1

∑
i=1

λiΔi

)
,

j−1
∑

i=1
λiΔi

j−1
∑

i=1
Δi

⎫⎪⎪⎬
⎪⎪⎭

, j = 1, . . . ,M,

and

λ ′
M+1 =

m

∑
i=1

λiΔi

/ m

∑
i=1

Δi.

In the case when the indeterminacy interval satisfies the condition of strict consistency

R j� � R( j+1)u, it is easy to show that

− 1
Δ j

(
lnR ju +

j−1

∑
i=1

λiΔi

)
�

j−1

∑
i=1

λiΔi

/ j−1

∑
i=1

Δi.

Thus the common relation (5.23) for the domain dλ has the same form, and the expression

for λ ′
j, j = 2, 3, . . . ,M, changes into

λ ′
j = − 1

Δi

(
lnR j u +

j−1

∑
i=1

λiΔi

)
.

Note that the model of approximation of a c.d.f., considered in 5.1.3 generalizes the case of

a univariate prior distribution, i.e., having put M = 1, we obtain all relations given in 5.1.1.
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5.2 Approximation of the posterior distribution of a time to failure probability
for the simplest distribution function

The solution of the problem of Bayes estimate of reliability indices under the given para-

metric approximation of a c.d.f. F(t) follows the Bayes procedure described in Chapter 2.

This procedure consists of determining the expression for the likelihood function, forming

of prior distribution on the given parametric space, and obtaining the posterior distribution

for the parameters of the approximate c.d.f. with the help of the Bayes theorem. In turn,

the indicated posterior distribution lets us find arbitrary estimates of the required reliability

index.

As it was done earlier, we begin with censored data, obtained after realization of the NC-

plan. We represent these data as a vector τ
{

t∗, t
}

, where t∗ =
(
t∗1 , t∗2 , . . . , t∗d

)
is a vector

of failure moments, t =
(
t1, t2, . . . , tk

)
is a vector of standstills (random and determinate).

The ways of representing the posterior information depends substantially on the chosen

approximation of the c.d.f. F(t). Therefore, we shall consider separately each of the cases,

discussed in § 5.1.

5.2.1 The case of a univariate prior distribution

This case is parameterized with the help of the quantities λ0 and λ1, which represent the

failure rate in the intervals [0, t0) and [t0,∞), respectively. To find a reliability function

corresponding to this case, we will use the usual expression (3.21) for the NC-plan. Having

substituted the expressions (5.6)and (5.10) into (3.21), we obtain

�(λ0,λ1 | τ) = c(τ)
d

∏
i=1

[χ(t0 − t∗i )λ0 +χ(t∗i − t0)λ1]

×exp

{
−

d+k

∑
i=1

χ(t0 − τi)λ0τi +χ (τi − t0) [λ1τ1 +(λ1 −λ0)t0]

}
(5.24)

Denote by d0 and d1, respectively, the number of failures observed before and after t0 by k0,

and k1 is the number of standstills before and after t0. Clearly d0 +d1 = d and k0 + k1 = k.

Thus,

d

∏
i=1

[χ(t0 − t∗i )λ0 +χ(t∗i − t0)λ1] = λ d0
0 λ d1

1 ,

−
d+k

∑
i=1

χ(t0 − τi)τi = α0,
d+k

∑
i=1

χ(ti − τ0)τi = α1,
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and
d+k

∑
i=1

χ(ti − τ0)τ0 = (d1 + k1)t0.

The statistics α0 and α1 can be interpreted as the operating times before and after the time,

t0, respectively. Substituting the obtained relations into (5.24), we can rewrite the likelihood

function �(λ0,λ1 | τ) in a shorter form, that is,

�(λ0,λ1 | τ) = c(τ)λ d0
0 λ d1

1 exp{− [λ0(α0 +n1t0)+λ1(α1 +n1t0)]} , (5.25)

where n1 = d1 + k1.

Now, we shall prove that the function �(λ0,λ1 | τ) has a bounded variation in the domain

D defined by the relation (5.9). To this end, it suffices to prove that the expression in the

square brackets is not less than zero. This follows easily from the inequality

α1 =
d+k

∑
i=1

χ(ti − t0)τi � (d1 + k1)t0 = n1t0.

As can be seen from the relation (5.25), the quantities d0, d1, k0, k1, where k0 = α0 +n1t0,

k1 = α1 + n1t0, generate the minimal sufficient statistic. The resulting expression for the

likelihood function is written in the form

�(λ0,λ1 | τ) = c(τ)λ d0
0 λ d1

1 exp [−(λ0k0 +λ1k1)] . (5.26)

Let us now consider the problem of choosing the prior probability distribution. One of the

most frequently applied methods is to choose a prior which is conjugate to the maximum-

likelihood kernel. Appealing to (5.26), the prior density hp(λ0,λ1) in this case can be

written as

hp(λ0,λ1) =
1
β
λ c0

0 λ c1
1 e−(λ0α0+λ1c1) (5.27)

where β is a normalizing factor. Now the kernel of the posterior p.d.f., in accordance with

the Bayes theorem, takes the form

h̄p(λ0,λ | τ1) ∼ λ c0+d0
0 λ c1+d1

1 exp{− [(α0 + k0)λ0 +(α1 + k1)λ1]} , (λ0,λ1) ∈ D.

Verification of the possible application of the conjugated prior distributions has been done

in Chapter 2. The main difficulty in the practical use is that one cannot choose the prior

p.d.f. parameters in a sufficiently justified way. Here, we deal with four such parameters:

c0, c1, α0, α1, but one cannot givea method for assigning their values.

There is an alternative method for the choice of a prior distribution, partially used in Chap-

ter 3. In determining a prior p.d.f. h(λ0,λ1), one uses only the segment of a prior uncer-

tainty
[
R�,Ru

]
and the assumption of uniformity of the TTF distribution Rt0 :

h(r) =

⎧⎨
⎩

1
Ru −R�

, R� � r � Ru,

0, r < R�, r > Ru.
(5.28)
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We seek a prior p.d.f. h(λ0,λ1) in the form

h(λ0,λ1) = h0(λ0)h1(λ1 | λ0). (5.29)

At first we define a marginal p.d.f. h0(λ0). Taking into account the dependence Rt0 =

exp(−λ0t0), we obtain

h0(λ0) = h
(
Rt0(λ0)

)∣∣R′
t0(λ0)

∣∣
=

t0
Ru −RT

e−λ0 t0 , λ ′
0 � λ0 � λ ′′

0 (5.30)

Since the parameters λ0 and λ1 have the same meaning, we define the conditional p.d.f.

h1(λ1,λ0) analogous to (5.30), i.e., we will assume that h1(λ1,λ0) belongs to the parametric

family of truncated exponential distributions. Suppose, conditionally, that some value of

λ1 is associated with a totally defined TTF value at the time t0;

R1 = exp(−λ1t0). (5.31)

Since λ1 ∈ [λ0,∞), we obtain R1 ∈ [R1�,R1u]; moreover,

R1� = lim
λ1

e−λ1 t0 = 0 and R1u = e−λ0 t0 . (5.32)

Taking into account the relations (5.31) and (5.32), analogous to (5.30), one obtains

h1(λ1 | λ0) =
t0

Ru −R�
e−λ1t0 , λ0 � λ1 < ∞.

and finally

h1(λ1 | λ0) = t0e−(λ1−λ0)t0 , λ0 � λ1 < ∞. (5.33)

Next we substitute the expressions (5.30) and (5.33) into (5.29) and write the finite relation

for a prior p.d.f. of the parameters λ0 and λ1 :

h(λ0,λ1) =
t2
0

Ru −R�
e−λ1t0 , (λ0,λ1) ∈ D. (5.34)

There is no explicit dependence on the parameter λ0. However, the form p.d.f. appears to

be a joint probability density function of the parameters λ0 and λ1, since the dependence

on λ0 is expressed by the form of D. It should be noted that the obtained p.d.f. h(λ0,λ1)

is a partial case of theconjugated prior p.d.f. hp(λ0,λ1), represented by the expression

(5.27) with the parameters c0 = c1 = α0 = 0, α1 = t0; the above given arguments may

be considered as a method to justify the choice of the parameters of the conjugated prior

distribution.

Using a prior density (5.34) and the likelihood function (5.26) and taking into account the

Bayes theorem, we write the kernel of the desired posterior p.d.f.

h̄(λ0,λ1 | τ) ∼ λ d0
0 λ d1

1 exp{−[λ0k0 +λ1(k1 + t0)]} . (5.35)

which will be used as the basis for obtaining estimates of the probability in the following

section.
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5.2.2 The generalized case of a univariate a prior distribution

This case is characterized by the posterior distribution which has a more complicated form

(bearing in mind the numerical aspects). The upper approximations of the resource function

Λ̃(t;δ1,δ2) and intensity function λ̃ (t;δ1,δ2) are chosen as the basis for further research.

The expression (3.21) for the likelihood function takes on the form

�(δ1,δ2 | τ) = c(τ)
d

∏
i=1

λ̃ (t∗i ;δ1,δ2)exp

[
−

n

∑
i=1

Λ̃(τi;δ1,δ2)

]
. (5.36)

If one substitutes the relation (5.12) and (5.13) into (5.36), it yields

�(δ1,δ2 | τ) = c(τ)
d

∏
i=1

{
δ1

[
n

∑
j=1

jχ j
(
t∗i
)
+N

n

∑
k=1

χN+k
(
t∗i
)
+δ2

n

∑
k=1

kχN+k
(
t∗i
)]}

×exp

{
−δ1

n

∑
j=1

[
Kj−1Δ+ j(τi − s j−1)

]
χ j[τi]−

m

∑
j=1

{
Knδ1Δ+

[
N( j−1)δ1 +Kj−2δ2

]
Δ

−
(
Nδ1 + jδ2

)(
τi − sN+ j−1

)
χN+ j(τi)

}}
. (5.37)

It is impossible to use such an expression of the likelihood function, so we simplify it with

the help of the following formulas valid for the functions λ̃ (t) and Λ̃(t) :

λ̃ (t) =
N+M

∑
j=1

λ jχ j(t), (5.38)

Λ̃(t) =
N+M

∑
j=1

[
Δ

j−1

∑
k=1

λ̃k + λ̃ j(t − s j−1)

]
χ j(t) (5.39)

Here we use the parameters λ̃ j ( j = 1, 2, . . . ,N +M), the set of which is redundant because

all parameters are determined uniquely by δ1 and δ2. In view of the expressions (5.38) and

(5.11), we may conclude that λ̃ j depends on δ1 and δ2. With the help of (5.38) and (5.39),

the likelihood function iswritten as

�(δ1,δ2 | τ) = c(τ)
d

∏
i=1

N+M

∑
j=1

λ̃ jχ j(t∗i )

×exp

{
−

n

∑
i=1

N+M

∑
j=1

[
Δ

j−1

∑
k=1

λ̃k + λ̃ j(t − s j−1)

]
χ j(τi)

}
. (5.40)

Consider separately each of the multipliers in th expression (5.40),

A1 =
d

∏
i=1

[
N+M

∑
j=1

λ̃ jχ j(t∗i )

]
. (5.41)
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Denote by d j � 0 ( j = 1, 2, . . . ,N +M) the number of failures observed in the j-th partition

interval. Represent the product (5.41) in the form

A1 =
N+M

∏
j=1

[
d j

∏
i j=1

N+M

∑
�=1

λ̃�χ�

(
t∗i j

)]
. (5.42)

Since for the expression in the square brackets of the formula (5.42) the index j takes on a

completely defined value, one gets

A1 =
N+M

∏
j=1

(
d j

∏
i j=1

λ̃ j

)
=

N+M

∏
j=1

λ̃ d j
j . (5.43)

Substituting the expressions (5.11) into (5.43) we obtain

A1 = δD1
1

n

∏
j=1

jd j
m

∏
k=1

dN+k

∑
ik=0

(
dn + k

ik

)
Nikδ ik

1 kdN+k−ikδ dN+k−ik
2 .

The last expression will be represented in the form of a polynomial by means of δ1 and δ2.

To this end, we unite the similar terms and introduce a new index I = i1 + i2 + · · ·+ im.

Finally,

A1 =
n

∏
j=1

jd jδD1
1

D2

∑
I=0

αIδ I
1δ

D2−I
2 , (5.44)

where

αi = NI
dN+1

∑
i1=0

dN+2

∑
i2=0

· · ·
dN+M

∑
im=0

m

∏
k=1

kdN+k−ik

(
dN+k

ik

)

and

D1 = d1 + · · ·+dn, D2 = dN+1 + · · ·+dN+M.

Define the second multiplier of the likelihood function as

A2 = exp

{
−

n

∑
i=1

N+M

∑
j=1

[
Δ

j−1

∑
k=1

λ̃k + λ̃ j(τi − s j−1)χ j(τi)

]}
. (5.45)

Denote by I j the set of indices of the sample elements τ = (τ1,τ2, . . . ,τn), belonging to the

segment μ j (see Figure 5.3). Thereafter, the expression (5.45) is rewritten in the following

manner:

− lnA2 = ∑
i∈I1

λ̃1(τi − s0)+∑
i∈I1

[
λ̃1Δ+ λ̃2(τi − s1)

]
+ · · ·

+ ∑
i∈IN+M

[
λ̃1Δ+ · · ·+ λ̃N+M−1Δ+ λ̃N+M (τi − sN+M−1)

]
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=
N+M

∑
j=1

λ̃ j

[
∑
i∈I j

(
τi − s j−1

)
+

N+M

∑
k= j+1

∑
i∈Ik

Δ

]
=

N+M

∑
j−1

λ̃ jk j.

It is easy to see that the obtained statistic

k j = ∑
i∈I j

(τi − s j−1)+
N+M

∑
k= j+1

∑
i∈Ik

Δ (5.46)

represents by itself a total operating time during the testing, observed in the j-th interval.

With the help of (5.46) we represent A2 in the form

A2 = exp

[
−

N+M

∑
j=1

λ̃ jk j

]
. (5.47)

The resulting expression for the likelihood multiplier A2 will be obtained, if we substitute

(5.40) into (5.47).

A2 = exp [1(a1Δ1 +a2Δ2)] . (5.48)

where

a1 =
N

∑
j=1

jk j +N
N+M

∑
j=N+1

k j, a2 =
N

∑
j=1

jkN+ j. (5.49)

We have found all components of the formula (5.41). Thus,

�(δ1,δ2 | τ) = c(τ)
N

∏
j=1

jd jδD1
1

D2

∑
I=0

αIδ I
1δ

D2−I
2 e−(a1δ1+a2Δ2). (5.50)

The coefficient αI in the function (5.50) depends only on the number of failures

dN+1, dN+2, . . . ,dN+M , observed in the interval μ j ( j > N). Thus, in view of (5.50), the

minimal sufficient statistic is generated by the quantities D1, dN+1, dN+2, . . . ,dN+M, a1, a2.

The kernel of the likelihood function (5.50) allows us to write the conjugated prior p.d.f. of

the form

hp(δ1,δ2) = BδU1
1 δU2

2 e−α1δ1−α2δ2 , (δ1,δ2) ∈ Dδ (5.51)

where U1, U2, α1, α2 are the parameters of a prior distribution, B is the normalized factor,

and Dδ has the form (5.17). In view of the Bayes theorem for the posterior p.d.f. of the

parameters δ1, δ2, we obtain

h̄(δ1,δ2 | τ) ∼ δD1+U1
1 δU2

2

D2

∑
I=0

αIδ I
1δ

D2−I
2

× exp(− [(a1 +α1)δ1 +(a2 +α2)δ2]) . (5.52)

The main difficulties in using the expressions (5.51) and (5.52) in practical situations is the

problem of defining the parameters of a prior law.
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If one uses as given only the assumption about uniformity of the TTF distribution at the

time t0 in the interval [R�,Ru], a prior p.d.f. can be obtained in the following way. Suppose

the parameters δ1 and δ2 are independent and a prior p.d.f. is sought in the form

h(δ1,δ2) = h1(δ2)h2(δ2), (δ1,δ2) ∈ Dδ . (5.53)

Using the expressions (5.15) and (5.16) and the property of monotonicity of the dependence

Rt0 on δ1, we get

h1(δ1) =
knΔ

Ru −R�
e−KnΔδ1 , δ ′

1 � δ1 � δ ′′
1 . (5.54)

The expression for h2(δ2) will be sought in the class of truncated exponential distributions,

defined by the density (5.54). The given assumption is justified in view of the same meaning

of the parameters δ1 and δ2. Since δ2 ∈ [0,∞), for h2(δ2) we obtain

h2(δ2) = KmΔe−KmΔδ2 , 0 � δ2 < ∞.

Denote by Δ1 = KnΔ, Δ2 = KmΔ. Then the resulting expression for a prior p.d.f. h(δ1,δ2)

takes the form

h(δ1,δ2) =
Δ1Δ2

Ru −R�
e−(Δ1δ1+Δ2δ2), (δ1,δ2) ∈ Dδ . (5.55)

The obtained p.d.f. appears to be a particular case of a conjugated prior p.d.f. (5.51)

with U1 = U2 = 0, α1 = Δ1, α2 = Δ2. The arguments used above may be interpreted as a

justification for the method of a choice of the parameters of the conjugate prior p.d.f. if we

take into consideration onlythe interval of a prior uncertainty.

With the help of the Bayes theorem we get

h̄(δ1,δ2 | τ) ∼ δD1
1

D2

∑
I=0

αIδ I
1δ

D2−I
2 × e−[(α1+δ1)δ1+(α2+δ2)δ2], (δ1,δ2) ∈ Dδ . (5.56)

The expression (5.56) has been obtained with the help of the upper approximation for the

resource and intensity functions. Reasoning similarly we may obtain the posterior p.d.f.

for the corresponding lower approximations.

5.2.3 The case of an m-variate prior distribution

This case was described in §5.1 with the help of approximating the functions of intensity

(5.18) and resource (5.19). Each of them depends on M + 1 parameters λ1, λ2, . . . ,λm,

λM+1, the parameters being the constant values of the intensity in the intervals [0, t10),
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[
t10, t20

)
, . . . ,

[
t(M−1)0, tM0

)
,
(
tM0,∞

)
. Substituting the expressions (5.18) and (5.19) into

(3.21), we obtain

�(λ | τ) = c(τ)
d

∏
i=1

M+1

∑
j=1

λ jχ j(t∗i )

× exp

{
−

n

∑
i=1

M+1

∑
j=1

χ j(τi)
j−1

∑
k=1

λk
(
tk0 − t(k−1)0

)
+λ j

(
τi − t( j−1)0

)}
. (5.57)

To simplify the last relation, we introduce statistics d1, d2, . . . ,dm,dM+1, being the number

of failures observed in the indicated intervals, respectively. It is easy to verify the validity

of the expression
d

∏
i=1

M+1

∑
j=1

λ jχ j
(
t∗i
)

=
M+1

∑
j=1

λ d j
j . (5.58)

If one denotes by I j the set of indices of the sample elements belonging to the interval[
t( j−1)0, t j0

)
, then the second multiplier of the likelihood function can also be simplified:

n

∑
i=1

M+1

∑
j=1

[
χ j(t)

j−1

∑
k=1

λk
(
tk0 − t(k−1)0

)
+λ j

(
τi − t( j−1)0

)]

=
M+1

∑
j=1

λ j

[
∑
i∈I j

(
τi − t( j−1)0

)
+

M+1

∑
k= j+1

∑
i∈Ik

(
tk0 − t(k−1)0

)]
. (5.59)

The obtained statistic

k j ∑
i∈I j

(
τi − t( j−1)0

)
+

M+1

∑
k= j+1

∑
i∈Ik

(
tk0 − t(k−1)0

)
, (5.60)

as already stated, can be interpreted as the total operating time, fixed during the testing

in the interval
[
t( j−1)0, t j0

)
. Substituting the expressions (5.58)–(5.60) into the expression

(5.57) we obtain the expression for the likelihood function

�(λ | τ) = c(τ)
M+1

∏
j=1

λ d j
j exp

(
−

M+1

∑
j=1

λ jk j

)
. (5.61)

With the help of this expression, we can represent the kernel of the conjugate prior p.d.f. in

the form of

hp (λ1, . . . ,λM+1) ∼
M+1

∏
j=1

λ c j
j exp

(
−

M+1

∑
j=1

α jλ j

)
, (5.62)

where c j and α j ( j = 1, 2, . . . ,M +1) are the parameters of a priori p.d.f., and the kernel of

the posterior p.d.f. in the form

h̄p(λ1, . . . ,λM+1 | τ) ∼
M+1

∏
j=1

λ c j+d j
j exp

[
−

M+1

∑
j=1

(α j + k j)λ j

]
. (5.63)
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Here, we restrict ourselves only to obtaining an expression for the posterior probability

densities. As is seen from the above arguments, the approach is independent of the method

of constructing the parametric approximation. The differences among the approximating

functions require us to use various methods of simplification, assigned to determine the

sufficient one and write the simplest expression for the likelihood function.

5.3 Bayes estimates of a time to failure probability for the restricted increasing
failure rate distributions

In this section we describe the method of obtaining Bayes TTF estimates using a two-linked

piecewise-linear approximation of the resource function of the form (5.6). This form is

chosen because of its simplicity. The knowledge of the posterior distribution lets us find, in

principle, any numerical estimateof the TTF. There are, nevertheless, such cases that make

us either apply complicated analytic constructions or use numerical methods. The goal of

this section is to obtain finite analytic relations for TTF estimates.

5.3.1 Bayes TTF estimates for the case t � t0

The value of a TTF in the interval [0, t0], in accordance with the chosen approximation of

the resource function (5.6), has the form

R(t) = e−Λ̃(t) = e−λ0t , t � t0. (5.64)

Since the R(t) is defined by only one parameter λ0, to define the estimates of r it is neces-

sary to know a marginal posterior density h̄0(λ0 | τ). This density is obtained by integrating

the joint posterior density h̄(λ0,λ1 | τ) over the parameter 1:

h̄0(λ0 | τ) =
∫ ∞

λ0

h̄(λ0,λ1 | τ)dλ1

∼ λ d0
0 e−λ0k0

∫ ∞

λ0

λ d1
1 e−λ1(k1+t0)dλ1, λ ′

0 � λ0 � λ ′′
0 (5.65)

We shall be using the known integral
∫

xne−αxdx = −e−αx
n

∑
k=0

n(k) xn−k

αk+1 +C, (5.66)

where n(k) = n!/(n− k)!. Having performed the integration of (5.65) we obtain

h̄0(λ0 | τ) ∼ e−λ0(k0+k1+t0)λ d0
0

d1

∑
i=0

d(i)
1

λ d1−i
0

(k1 + t0)i+1 . (5.67)
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For a quadratic loss function, the desired pointwise estimate R̂∗(t) is written in the form of

the posterior mean value

R̂∗(t) =
∫ λ ′′

0

λ ′
0

e−λ0t h̄0(λ0 | τ)dλ0. (5.68)

The posterior variance σ2
R̂∗(t), using the estimate R̂∗(t), is written analogously:

σ2
R̂∗(t) =

∫ λ ′′
0

λ ′
0

e−λ0t h̄0(λ0 | τ)dλ0 −
[
R̂∗(t)

]2
. (5.69)

The expressions (5.68), (5.69) may be represented in shorter form

R̂∗(t) =
H1(t)
H0(t)

and σ2
R̂∗(t) =

H2(t)
H0(t)

−
[
R̂∗(t)

]2
. (5.70)

where

Hk(t) =
∫ λ ′′

0

λ ′
0

exp(−kλ0t) [−λ0(k0 + k1 + t0)]×λ d0
0

d1

∑
i=0

d(i)
1

(k1 + t0)i+1 λ
d1−i
0 dλ0.

Using the integral (5.66) we obtain the resulting expression of the function Hk(t):

Hk(t) =
d1

∑
i=0

d(i)
1

(k1 + t0)i+1

d−i

∑
j=0

(d − i)( j)

(k0 + k1 + t0 + kt) j+1

{(
λ ′

0
)d−i− j exp

[
−λ ′

0(k0 + k1 + t0 + kt)
]

− (λ ′′
0 )d−i− j exp

[
−λ ′′

0 (k0 + k1 + t0 + kt)
]}

. (5.71)

Taking into account the form of the expression Hk(t), we introduce the following handy

dimensionless statistics:

ω =
k0 + k1

t0
=

n

∑
i=1

τi

t0
=

n

∑
i=1

νi, (5.72)

ω1 =
k1

t0
=

n

∑
i=1

(
τi

t0
−1

)
χ(τi − t0) =

n

∑
i=1

(νi −1)χ(νi −1), (5.73)

where νi = τi/t0. The use of the statistics ω and ω1 lets us represent the sample of testing

results in the form of relative operating times νi. Due to this fact we will use as initial

data the vector ν = {ν∗,ν ′}, where ν∗ = (ν1, . . . ,νd) is the vector of respective failure

moments, and ν ′ = (ν1, . . . ,νK) is the vector of relative standstills of the testing.

Thereafter, the sufficient Statistic, corresponding to the source sample τ , for the distribu-

tion function F̃(t;λ0,λ1) is written in the form of the set {ω,ω1,d,d1}. The statistic ω
represents by itself the total relative operating times during the testing, ω1 is the total rela-

tive operating time after thetime t0. It is not necessary to divide the vector ν into ν∗ and ν ′

in order to evaluate ω1 and ω . Information about the partition of the sample into failures
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and standstills is contained in the statistic d (the total number of failures out of n) and d1

(the number of failures after the time t0).

Now the resulting expression for the estimates (5.70) can be written as

R̂∗(t) =
I1,ν(ω,ω1,d,d1)
I0,ν(ω,ω1,d,d1)

, (5.74)

and

σ2
R̂∗(t) =

I2,ν(ω,ω1,d,d1)
I0,ν(ω,ω1,d,d1)

−
[
R̂∗(t)

]2
. (5.75)

The function Ik,ν(ω,ω1,d,d1) is identically equal to the function Hk(t) except, instead of t,

one uses the dimensionless parameter ν = t/t0. Thus,

Ik,ν(ω,ω1,d,d1) =
d1

∑
i=0

d(i)
1

(ω1 +1)(i+1)

d−i

∑
j=0

(d − i)( j)

(ω+ kv+1) j+1

×
[
Rω+kv+1

u |ln Ru|d−i− j −Rω+kv+1
1 |ln R�|d−i− j

]
. (5.76)

The value of the lower confidence estimate R∗
γ(t) which characterizes the exactness of the

obtained estimate R̂∗(t) may be analogously written:∫
R∗
γ (t)�e−λ0 t�Ru

h̄0(λ0 | τ)dλ0 − γ = 0. (5.77)

To find R∗
γ(t), we introduce a new variable x such that R∗

γ(t) = exp(−xt). The equation

(5.77) is written as ∫ x

λ ′
0

h̄0(λ0 | τ)dλ0 − γ = 0.

Using the relation (5.66), after transformations similar to the procedure of obtaining the

function (5.76), we get the resulting expression for R̂∗
γ(t):

d1

∑
i=0

d(i)
1

(ω1 +1)i+1

d−1

∑
j=0

(d − i)( j)

(ω1 +1) j+1

[
Rω+1

u | lnRu|d−i− j

−R∗
γ(t)

(ω+1/ν)
∣∣∣lnR∗1/ν

γ (t)
∣∣∣d−i− j

]
− γI0,ν(ω,ω1,d,d1) = 0. (5.78)

If we want to find the TTF estimates for the case t = t0, we should put ν = 1 in the expres-

sions (5.74), (5.75) and (5.78).

Next we investigate the posterior distribution of the estimated TTF index. This investigation

is of methodological interest. Consider the case t = t0 (ν = 1). Taking into account the

monotonicity of the dependence R(t0) = exp(−λ0t0), for the posterior density of the index

R(t0) we will have

h̄(r0 | τ) = h̄(λ0 (r0) | τ)
∣∣λ ′

0 (r0)
∣∣ . (5.79)
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After substitution of (5.77) into (5.79) and some simplifications we obtain

h̄(r0 | τ) =
1
β

Rω0
d1

∑
i=0

d(i)
1

|lnR0|d−i

(ω1 +1)i+1 , (5.80)

where β = I0,1 (ω,ω1,d,d1 +1).

In Figure 5.7 (a, b), we represent examples of concrete realizations of a posterior density

(5.80) with fixed ω and ω1 and different d and d1. It can be seen that for the fixed d and

increasing d1 (d1 = 0, 1, 2, . . . ,d) the curve h̄0 (r0 | τ) biases to the right, which corre-

sponds to the posterior value ofTTF which is larger. This is in full agreement with practice

and the engineering interpretation of the considered scheme: while d1 increases (the other

parameters remain fixed), the number of tests, ended by failures, increases too, and the

number of failures, occurring before the time t0, decreases.That is, the considered situation

corresponds to the higher reliability level.

Fig. 5.7 The posterior density of the TTF distribution.

Tables 5.1–5.3 give the calculation results touching upon the values of the estimates R̂∗(t0),

σR̂∗(t0), R∗
γ(t) carried out with the formulas (5.74)–(5.78) for the fixed sample consisting

of 10 elements and different d and d1. Analyzing these tables we come to the following

conclusion. While d1 increases and d is fixed, R̂∗(t0) and R∗
γ(t) increase, confirming the

obtained earlier qualitative result. Diagonal elements possess the property of asymptoti-

cal stability. Therefore, if the number of failures increases (in the case when all failures
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Table 5.1 The Bayes point-wise TF estimate.

d1
d

0 1 2 3 4 5 6 7 8 9

0 0.9696 0.9410 0.9152 0.8933 0.8755 0.8616 0.8510 0.8428 0.8364 0.8315

1 0.9617 0.9299 0.9038 0.8830 0.8669 0.8547 0.8455 0.8385 0.8330

2 0.9574 0.9230 0.8963 0.8761 0.8612 0.8511 0.8418 0.8355

3 0.9553 0.9192 0.8919 0.8720 0.8577 0.8472 0.8395

4 0.9544 0.9174 0.8887 0.8699 0.8557 0.8456

5 0.9540 0.9166 0.8887 0.8689 0.8548

6 0.9539 0.9164 0.8884 0.8685

7 0.9539 0.9163 0.8882

8 0.9539 0.9162

9 0.9539

R̂∗(t0) R� = 0.8, Ru = 1.0; ω = 30.73; ω1 = 11.13

occur after the time t0, i.e., d1 = d), the Bayes estimates, starting from some value, don’t

change, unless the values of the statistics ω and ω1 remain constant. This result may be

interpreted in the following usual way. If the article has been tested during the time t0,

then the TTFvalue at this moment must not have an effect on the failures that occur after

t0. The mentioned property emphasizes the flexibility of Bayes procedures. Calculations

of TTF estimates detect the existence of the dead zone for a priori information, that is, such

intervals of a prior uncertainty for which the deviation of their endpoints does not have an

effect on the TTF values. The graphs in Fig. 5.8 illustrate this fact. As seen from Fig. 5.8,

the less the value of d is (i.e., the greater the reliability is), the greater the dead zone.

5.3.2 Bayes estimates of TTF for t > t0

In accordance with the approximation of (5.6), for t > t0, we have

R(t) = R(t;λ0,λ1) = exp{− [λ1t − (λ1 −λ0)t0]} . (5.81)

In the given case TTF depends on two parameters. Thus, in order to obtain the estimates

of the index (5.81) it is necessary to use the posterior density h̄(λ0,λ1 | τ). Taking into

account the expression (5.35), we denote the kernel of the posterior density by

C0(λ0λ1) = λ d0
0 λ d1

1 exp{− [λ0k0 +λ1(k1 + t0)]} . (5.82)
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Table 5.2 The posterior mean squared value.

d1
d

0 1 2 3 4 5 6 7 8 9

0 0.0291 0.0383 0.0422 0.0424 0.0404 0.0373 0.0338 0.0305 0.0274 0.0248

1 0.0344 0.0420 0.0437 0.0421 0.0391 0.0354 0.0319 0.0386 0.0258

2 0.0377 0.0444 0.0446 0.0418 0.0380 0.0341 0.0304 0.0273

3 0.0395 0.0460 0.0452 0.0417 0.0376 0.0333 0.0296

4 0.0404 0.0468 0.0456 0.0417 0.0371 0.0328

5 0.0408 0.0472 0.0459 0.0417 0.0418

6 0.0409 0.0474 0.0460 0.0460

7 0.0410 0.0474 0.0460

8 0.0410 0.0475

9 0.0410

σR̂∗(t0) R� = 0.8, Ru = 1.0; ω = 30.73; ω1 = 11.13

and define the normalizing factor in the form of the following integral:

β =
∫∫

d
C0 (λ0λ1)dλ0λ1 =

(
1
t0

)d+2 d1

∑
i=0

d(i)
1

(ω1 +1)i+1

d−i

∑
j=0

(d − i)( j)

(ω+1) j+1

×
(

Rω+1
u | lnRu|d−i− j −Rω+1

� |lnR�|d−i− j
)

. (5.83)

Let us find the estimate R̂∗(t) for the quadratic loss function in the form of a prior mean

value of the function (5.81):

R̂∗(t) =
1
β

exp
{
−
[
λ0k0 +λ1(k1 + t0)

]}
C0(λ0,λ1)dλ0dλ1

=
1
β
λ d0

0 e−λ0(k0+t0)dλ0

∫ ∞

λ0

λ d1
1 e−λ1(k1+t0)dλ1.

Having used the integral (5.66) twice and passed to the dimensionless parameters ω , ω1,

and ν , one finally gets

R̂∗(t) =
1
β

d1

∑
i=0

d(i)
1

(ω1 +ν)i+1

d−i

∑
j=0

(d − i)( j)

(ω+ν+1) j+1

×
(

Rω+ν+1
u | lnRu|d−i− j −Rω+ν+1

� |lnR�|d−i− j
)

.

Deviation of the expression for the posterior variance σ2
R̂∗(t) is similar to that for R̂∗(t).

Introduce the function

Jm,ν(ω,ω1,d,d1) =
d1

∑
i=0

d(i)
1

(ω1 +αm)i+1

d−i

∑
j=0

(d − i)( j)

(ω+mν+1) j+1

×
(

Rω+mν+1
u | lnRu|d−i− j −Rω+mν+1

� |lnR�|d−i− j
)

(5.84)
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Table 5.3 The Bayes lower confidence limit.

d1
d

0 1 2 3 4 5 6 7 8 9

0 0.9302 0.8867 0.8544 0.8329 0.8204 0.8134 0.8094 0.8070 0.8055 0.8044

1 0.9137 0.8694 0.8409 0.8244 0.8155 0.8106 0.8077 0.8059 0.8047

2 0.9036 0.8582 0.8327 0.8195 0.8126 0.8089 0.8066 0.8052

3 0.8981 0.8517 0.8282 0.8168 0.8110 0.8079 0.8060

4 0.8945 0.8483 0.8258 0.8153 0.8102 0.8073

5 0.8945 0.8468 0.8246 0.8146 0.8097

6 0.8942 0.8462 0.8241 0.8143

7 0.8941 0.8460 0.8240

8 0.8941 0.8459

9 0.8941

R∗
0.9(t0) R� = 0.8, Ru = 1.0; ω = 30.73; ω1 = 11.13

where,

αm =

⎧⎪⎪⎨
⎪⎪⎩

1, m = 0,

ν , m = 1,

2ν−1, m = 2.

Then the resulting expressions for the estimates R̂∗(t) and σ2
R̂∗(t) are written as

R̂∗(t) =
J1,ν(ω,ω1,d,d1)
J0,ν(ω,ω1,d,d1)

and σ2
R̂∗(t)

J2,ν(ω,ω1,d,d1)
J0,ν(ω,ω1,d,d1)

− R̂∗2(t). (5.85)

We need to obtain the equation for R∗
γ(t). Taking into account the relation (2.34) we can

write ∫∫
[

R(t;λ0,λ1)�R∗
γ (t)

]
[
(λ0,λ1)∈D

]
h̄(λ0,λ1 | τ)dλ0dλ1 − γ = 0. (5.86)

To simplify the integration domain in (5.86), let R∗
γ(t) = exp(−yt0) and y be an unknown

variable. The condition R(t) � R∗
γ(t) is rewritten in the form of the inequality

λ1t − (λ1 −λ0)t0 � yt0

or, with the help of the dimensionless parameter ν ,

λ1 (ν−1)+λ0 � y. (5.87)
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Fig. 5.8 The dependence of the Bayes confidence TTF limit on lower value of the interval of a prior uncertainty.

Domains D and Dγ , defined by (5.87), are shown in Fig. 5.9. The domain Dγ is bounded

by the curve α1, having the equation y = λ1(ν−1)+λ0, and coordinate axes λ0, λ1. The

domain D = {λ ′
0 � λ0 � λ ′′

0 , λ0 � λ1} is depicted by the vertical dash lines. The intersection

D∩Dγ is written in the form of two inequalities:

λ ′
0 � λ0 � λ ′′

0 , λ0 � λ1 � y−λ0

ν−1
.

The problem of obtaining y and R∗
γ(t) = exp(−yt0) has the following geometrical inter-

pretation: it is necessary to find a value of the variable y such that the integral from the

posterior density h̄(λ0,λ1 | τ) over the domain D∩Dγ is equal to the confidence probabil-

ity γ . The resulting equation takes on the form

S1
(
R∗
γ(t)

)
−S2

(
R∗
γ(t)

)
− γJ0,v(ω,ω1,d,d1) = 0 (5.88)

where

S1(x) =
d1

∑
i=0

d(i)
1

(ω1 +1)i+1

d−i

∑
j=0

(d − i)( j)

(ω+1) j+1 ×
(

Rω+1
u | lnRu|d−i− j − x(ω+1)/v

∣∣∣lnx1/v
∣∣∣d−i− j

)
,
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Fig. 5.9 Integration domain for obtaining the Bayes confidence limit of a TTF.

and

S2(x) =
d1

∑
i=0

d(i)
1

(ω1 +1)i+1

(
1

ν−1

)d1−i d1−i

∑
k=0

(
d1 − i

k

)
| lnx|d1−i−k

×
d0+k

∑
j==0

(d0 + k)( j)

a j+1

[
xbRa

u| lnRu|d0−k− j − x(ω+1)/v
∣∣∣lnx1/v

∣∣∣d0−k− j
]
,

where

α =
ν(ω−ω1)− (ω−1)

ν−1
, b =

ω1 +1
ν−1

, and d0 = d −d1.

The equation (5.88) is transcendental and quite complicated. However, the numerical inte-

gration may be performed without any difficulties since this equation has only one root in

the interval [R�,Ru].

The calculation results, obtained with the help of expressions (5.85) and (5.87), are pre-

sented in Tables 5.4-5.6. The table data emphasize the inconsistency of the chosen method.

Actually, for a fixed d1 the estimates R̂∗(t) and R∗
γ(t) are decreasing while d is increasing.

In contrast to Tables 5.1–5.3, Tables 5.4–5.6 don’t contain equal diagonal elements. It ap-

pears to be natural, since for R(t0) the failures, occurred after t0, are insignificant. At the

same time, this fact plays the leading role for R(t) when t > t0.

The length of the interval [R�,Ru] effects the TTF estimates similarly to the one in the pre-

vious case. It should be noted that decrease of the difference Ru −R� induces the estimates
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Table 5.4 The Bayes point-wise TTF estimate R̂∗(t) as t > t0.

d1
d

0 1 2 3 4 5 6 7 8 9

0 0.9318 0.9053 0.8875 0.8756 0.8675 0.8618 0.8577 0.8546 0.8522 0.8501

1 0.9029 0.8805 0.8662 0.8569 0.8506 0.8461 0.8427 0.8403 0.8382

2 0.8750 0.8553 0.8432 0.8354 0.8302 0.8265 0.8237 0.8216

3 0.8475 0.8293 0.8184 0.8116 0.8070 0.8037 0.8013

4 0.8207 0.8033 0.7931 0.7867 0.7824 0.7794

5 0.7945 0.8468 0.7680 0.7619 0.7578

6 0.7778 0.7530 0.7435 0.7376

7 0.7446 0.7290 0.7198

8 0.7208 0.7057

9 0.6978c

R� = 0.9; Ru = 1.0; ω = 30.73; ω1 = 11.13; ν = t
t0

= 1.4

R̂∗(t) and R∗
γ(t) to approach each other while the parameter ν increases. This property is

illustrated in Figure 5.10.

As can be seen from Fig. 5.10, the TTF estimates decrease while ν increases. This empha-

sizes the naturalness of the dependence of TTF estimates on the dimensionless parameter ν .

5.3.3 Investigation of the certainty of the derived estimates

The exact error estimate of the proposed method in the class of failure rate distributions

has not been found yet. Therefore, we have used a statistical model to justify the obtained

results. We model successively samples of sizes 20, 40, 60, 80 of the random variable

having the Weibull distribution with c.d.f.

F(t) = F(t;σ ,α)−1− exp

[(
t
σ

)α
]
,

belonging to the class of failure rate distributions. Censoring from the right is carried

out for α = 1, 2, 3 and different intervals of a prior uncertainty [R�,Ru]. In Table 5.7 we

represent a fragment of the results of modeling, namely, the point-wise TTF estimates

R̂∗(t0), obtained with the help of (4.38) for ν = 1, t = t0 = 100s, σ = 350s, k1 = 0.75,

k2 = 2.0, and δ = 0.8. Comparing these estimates with the exact value of TTF, we may

draw the following conclusions:



152 Bayesian Theory and Methods with Applications

Table 5.5 The posterior mean squared value σR̂∗(t) for t > t0.

d1
d

0 1 2 3 4 5 6 7 8 9

0 0.0427 0.0439 0.0416 0.0388 0.0363 0.0343 0.0329 0.0318 0.297 0.0288

1 0.0489 0.0480 0.0455 0.0431 0.0412 0.0398 0.0388 0.0375 0.0368

2 0.0543 0.0528 0.0506 0.0487 0.0472 0.0462 0.0453 0.0448

3 0.0589 0.0574 0.0555 0.0540 0.0529 0.0520 0.0515

4 0.0628 0.0613 0.0596 0.0583 0.0574 0.0567

5 0.0659 0.0644 0.0628 0.0616 0.0608

6 0.0684 0.0669 0.0653 0.0642

7 0.0704 0.0688 0.0673

8 0.0720 0.0704

9 0.0732

R� = 0.9; Ru = 1.0; ω = 30.73; ω1 = 11.13; ν = t
t0

= 1.4

1) With increase of a sample volume, the estimate R̂∗(t0) tends to the exact value of R(t0);

2) Construction of the interval of a prior uncertainty [R�,Ru] induces a more precise (with

respect to R(t0)) value of the estimate.

For t �= t0 (ν �= 1) the Bayes estimate R̂∗(t) behaves in the following way: the approach

of the pointwise estimate approximation to the exact value R(t) in the interval [0.9t0, 1.1t0]

is analogous to the one represented in Table 5.7, that is, it is satisfactory; outside of this

interval, it is not satisfactory. This fact is illustrated in Fig. 5.11. Consequently, we identify

the following important practical recommendation: for a priori information for the TTF

R(t) estimating the intervals of a prior uncertainty for the times near to t should be chosen.

5.4 Bayes estimates of a TTF probability for the restricted increasing failure
rate distributions

In this section, we shall discuss a method of approximation of the cumulative distribution

function F(t), based on the expression (5.6), and apply it to the TTF probability estimation

in the case of so called restricted failure rate distributions, defined by the limit value of the

growth rate for the intensity function. The use of such a method enables us to estimate the

limit error with the help of the chosen approximation. We will study the case of censored

testing results and a prior information that reduces to a uniform prior distribution of the
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Table 5.6 The Bayes lower confidence limit R∗
0.9(t0) for t > t0.

d1
d

0 1 2 3 4 5 6 7 8 9

0 0.8722 0.8507 0.8446 0.8433 0.8424 0.8315 0.8287 0.8243 0.8238 0.8230

1 0.8400 0.8308 0.8289 0.8261 0.8209 0.8191 0.8170 0.8152 0.8144

2 0.8112 0.8102 0.8094 0.8081 0.8075 0.8068 0.8051 0.8047

3 0.7829 0.7812 0.7801 0.7792 0.7783 0.7772 0.7766

4 0.7549 0.7538 0.7524 0.7513 0.7503 0.7496

5 0.7274 0.7266 0.7258 0.7249 0.7239

6 0.7008 0.6998 0.6990 0.6987

7 0.6753 0.6740 0.6731

8 0.6507 0.6492

9 0.6271

R� = 0.9; Ru = 1.0; ω = 30.73; ω1 = 11.13; ν = t
t0

= 1.4

required TTF in the interval
[
R�,Ru

]
⊂ [0,1].

5.4.1 Parametric approximation on the class of restricted failure rate distribu-
tions

We will use a two parametric approximation of the resource function (5.6) in application to

certain subclasses of increasing failure rate distributions.

Definition of a class of restricted increasing failure rate distributions A class of probability

distributions S0(δ ) ⊂ S0 is said to be a restricted failure rateclass or δ -failure rate class, if

for any distributionfunction F(x) ∈ S0(δ ) the relation

0 � λ ′(x) � δ (5.89)

holds, where λ (x) = F ′(x)/(1−F(x)) is the failure rate function.

It is clear that for δ � 0 the class S0(δ ) is nonempty and S0(∞) = S0. For δ = 0, the class

S0(δ ) degenerates into a parametric family of exponential distributions.

A probability distribution function

FLS(x) = FLS (x;α,c) = 1− exp
[
−
(
αx+

c
2

x2
)]

for c � 0 will be called, by analogy, the linear failure rate. The class of all linear failure

rate distributions, determined by the condition c � Δ, will be denoted by SLS(δ ). It is clear

that SLS(δ ) ⊂ S0(δ ), where, δ � 0 the class SLS(δ ) is nonempty. We will approximate
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Fig. 5.10 Dependence of the Bayes TTF estimates on dimensionless parameter.

an unknown time to failure distribution function F(x) ∈ S0(δ ) with the help of a function

F̃(x) = F̃(x;α,θ) = 1− exp
[
Λ̃(x;α,θ)

]
. Here

Λ̃(x;α,θ) = χ(t − x)αx+χ(x− t)
[
θx− (θ −α)t

]
, (5.90)

t is the time for which the TTF is defined, α, θ are parameters. The following lemma

clarifies the relationship between F̃(x) and a class of linear failure rate distributions.

Lemma 5.1. Let parameters α and θ belong to the set

Ω(δ ) = {(α,θ) : α � 0, α � θα+δ t} .

Then for the approximating function F̃(x) the following relation holds:

FLS(x;α,0) � F̃(x;α,θ) � FLS(x;α,δ ).

Proof. The failure rate function λ (x) = Λ̃′(x;α,θ) can be written with the help of (5.90)

in the form λ (x) = χ(t − x)α+χ(x− t)θ . Under the lemma conditions (α,θ) ∈Ω(δ ) the

relation

λ1 � λ̃ (x;α,θ) � λ2(x)
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Fig. 5.11 Comparison of the Bayes TTF estimate with its exact values for the Weibull distribution.

holds; moreover, λ1 = α and λ2(x) = α + δ (x) appear to be, respectively, the intensity

functions of the distributions FLS(x;α,0) and FLS(x;α,δ ). The proof of the lemma follows

from the above double inequality after the transformation of the failure rate function into a

distribution function. �

5.4.2 Approximate estimates TTF of Bayes for the class S0(δ )

To formulate the problem, let us assume the following:

(1) F(x) ∈ S0(δ ), with the value δ given;

(2) The estimating TTF R(t) = 1−F(t) during the given time interval has a uniform prior

distribution in the segment
[
R�,Ru

]
⊂ [0,1];

(3) The testing results have the form of a censored sample τ = {t∗, t}, obtained after the

NC-plan realization. The problem is to obtain the posterior density h̄r(r | τ) of the

required TTF and estimate R̂∗(t) for a quadratic loss function.
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Table 5.7 Comparison of the Bayes posterior pointwise estimate (t0) with a real TTF value
R(t0) for the Weibull distribution.

α = 1 R(t0) = 0.7515

RH RB n = 20 n = 40 n = 60 n = 80

0.70 0.80 0.7432 0.7420 0.7548 0.7449

0.60 0.85 0.7074 0.7098 0.7618 0.7384

0.50 0.90 0.6945 0.7044 0.7654 0.7386

0.50 1.00 0.6947 0.7045 0.7655 0.7387

α = 2 R(t0) = 0.9216

0.90 0.94 0.9227 0.9237 0.9247 0.9223

0.80 0.96 0.9183 0.9280 0.9334 0.9219

0.70 0.98 0.9337 0.9429 0.9465 0.9264

0.70 1.00 0.9526 0.9515 0.9512 0.9268

α = 3 R(t0) = 0.9769

0.95 0.99 0.9726 0.9751 0.9774 0.9752

0.92 0.99 0.9628 0.9697 0.9746 0.9718

0.90 1.00 0.9636 0.9771 0.9838 0.9756

0.80 1.00 0.9546 0.9756 0.9836 0.9754

We seek the approximate solution of the problem using the analytic substitution of the

function F̃(x) ∈ S0(δ ), given by the expression (5.90), instead of the unknown distribution

function F(x)∈ S0(δ ). We additionally require that the relation F(t) = F̃(t) (i.e., the values

of the true unknown distribution function and the values of its approximating function

coincide at time t for which the TTF R(t) is defined). In view of this assumption, the

parameter a is uniquely determined by the unknown value of R(t):

α = α(R(t)) = − lnR(t)/t. (5.91)

Thus, we will determine the posterior density of the TTF and the corresponding point-

wise estimate for the parametric class of distribution functions F̃(x;α,θ), where (α,θ) ∈
Ω(δ ;R�,Ru) ⊆ Ω(δ ), where Ω(δ ;R�,Ru) =

{
(α,θ): α ′ � α � α ′′, α � θ � α + δ t

}
,

α ′ = − lnRu/t, α ′′ = − lnR�/t. A prior density h(α,θ) is sought in the form

h(α,θ) = h1(α)h2(θ | α). (5.92)

Taking into account the assumption (2) and the monotonic dependence (5.91), we obtain

h1(α) =
t

Ru −R1
e−αt , α ∈ [α ′,α ′′] ∈ [0,∞). (5.93)
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Requiring additionally that the conditional density h2(θ ,α) belongs to the class of trun-

cated exponential densities given by the relation (5.93), we find

h2(θ | α) =
t e−(θ−α)t

1− e−δ t2 , θ ∈ [α,α+δ t]. (5.94)

h2(θ | α) degenerates into the delta-function when t = 0. We write the joint prior density

h(θ ,α) having substituted (5.93) and (5.94) into (5.92):

h(θ ,α) =
t2 exp(−θ t)

(Ru −R�)(1− exp(−δ t2))
, (α,θ) ∈Ω(δ ,R�,Ru). (5.95)

The likelihood function �(α,θ | τ) for F̃(x;α,θ) can be found analogously to (5.26) and

has the following form:

�(α,θ | τ) = K(τ)αd0θ d1 exp [−(αK0 +θK1)] , (5.96)

where

K0 =
n

∑
i=1

τiχ (t − τi)+n1t, K1 =
n

∑
i=1

τiχ(τi − t)−n1t,

and

n1 =
n

∑
i=1

χ(τi − t), d0 =
n

∑
i=1

χ(t − τ∗i ), d1 =
n

∑
i=1

χ(τ∗i − t),

where K(τ) is a function which depends only on the data τ .

The posterior density h̄r(r | τ) is uniquely determined by the prior density h(α,θ) and the

likelihood function �(α,θ | τ).

Theorem 5.1. Suppose a prior density h(α,θ) has the form (5.95). Then the following

relation holds true for the posterior density h̄r(r | τ) of the TTF probability R(t) = 1−
F̃(t;α,θ) ∈

[
R�,Ru

]
:

h̄r(r | τ) ∼ rω(− lnr)d0
d1

∑
k=0

d(k)
1

(ω+1)k+1

[
(− lnr)d1−k − e−δ t2(ω1+1)(δ t2 − lnr)d1−k

]

for δ > 0 and

h̄r(r | τ) ∼ rω(− lnr)d0+d1

for δ = 0, where ω1 = K1/t, ω = (K0 +K1)/t.

Proof. Taking into account the expression (5.91), we obtain

R(t) = exp(−αt).

Therefore, in order to obtain h̄r(r | τ), we have to find h̄1(α | τ).
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First, let δ > 0. In accordance with the Bayes theorem h̄(α,θ | τ) ∼ h(α,θ)�(α,θ | τ),
whence, using the expressions (5.95) and (5.96), we obtain

h̄(α,θ | τ) ∼ αd0θ d1 exp{− [αK0 +θ(K1 + t)]} , (α,θ) ∈Ω
(
δ ;R�,Ru

)
. (5.97)

Integration of (5.97) with respect to q over the interval [α,α+δ t] yields

h̄(α | τ) ∼ αd0 e−αK0e−α(K1+t)
d1

∑
k=0

d(k)
1

(K1 + t)k+t

[
αd1−ke−δ (K1+t)(α+δ t)d1−k

]
,

α � α � α ′′. (5.98)

Since α = α(r) = − ln r/t, for hR(r | τ) we have

h̄R(r | τ) = |α ′(r)| h̄1(α(r) | τ) ∼ 1
td+2 rω(− lnr)d0

×
d1

∑
k=0

d(k)
1

(ω1 +1)k+1

[
(− lnr)d1−k − e−δ t2(ω1+1)(δ t2 − lnr)d1−k], (5.99)

which proves the first part of the theorem.

For δ = 0 a prior density h̄2(θ | α) degenerates into a delta-function, and for h̄(α,θ | τ)
the expression

h̄(α,θ | τ) ∼ αd0θ d1 exp{− [α(K0 + t)+θK1]} Δ0(θ −α)

holds, where Δθ (x) denotes the delta-function of the variable θ . Using the filtering property

of the delta-function, we obtain

h̄(α | τ) =
∫ ∞

−∞
h̄(α,θ | τ)dθ ∼ αd0+d1 e−α(K0+K1+t).

Now, by analogy with (5.99), we can write

h̄r(r | τ) ∼
1

td+1 rω(− lnr)d0+d1 ,

which proves the second part of the theorem. �

Using Theorem 5.1, it is easy to find the posterior pointwise TTF estimate for δ > 0 and

the quadratic loss function:

R̂∗(t) =
∫ 1

0
rh̄r(r | τ)dr =

I1
(
R�,Ru

)
I0
(
R�,Ru

) , (5.100)

where

Im
(
R�,Ru

)
=

d1

∑
k=0

d(k)
1

(ω1 +1)k+1

[
d−k

∑
�=0

(d − k)(�)

(ω+m+1)�+1

(
Rω+m

u | lnRu|d−k−1

−
(

Rω+m
u | lnRu|d−k−1 − e−δ t2(ω1+1)

d1−k

∑
j=1

δ t2
d−k− j

∑
�=0

(d − k− j)(�)

(ω+m+1)�+1
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×
(

Rω+m
u | lnRu|d−k− j−� −Rω+m

� |lnR�|d−k− j−�
)]

, d = d0 +d1.

For R� = 0 and Ru = 1, the function Im takes on the following simple form:

Im(0,1) =
d1

∑
k=0

1
(ω1 +1)k+1

[
(d − k)!
(d1 − k)!

· 1
(ω+m+1)d−k+1

−e−δ t2(ω1+1)
d1−k

∑
j=0

(d − k− j)!
j!(di − k− j)!

· δ t2

(ω+m+1)d−k− j+1

]
.

(5.101)

By analogy with (5.100), the expression for the posterior variance is written as

D [R(t) | τ] =
I2
(
R�,Ru

)
I0
(
R�,Ru

) −
[

I1
(
R�,Ru

)
I0
(
R�,Ru

)
]2

.

Later we shall restrict ourselves to the case R� = 0, Ru = 1 corresponding to the absence of

a priori information.

5.4.3 Error approximation

Information about the error of the approximation used for the distribution function can be

obtained with the help of the above lemma. Due to this lemma, the function F̃(x;α,θ)

for (α,θ) ∈ Ω(δ ) is situated between the two failure rate distributions. In the following

theorem we present the methodfor obtaining the TTF, constructed on linear failure rate

distributions.

Theorem 5.2. The posterior distribution density h̄LS(r | τ) of the TTF RLS(t) = 1 −
FLS(t;α,β ) for given β and uniform prior distribution RS(t) satisfies in [0,1] the relation

h̄LS(r | τ) ∼ rω
d

∑
k=0

(β t2)kω∗
K | lnr|d−k, r ∈ [0,1],

where,

ω∗
0 = 1, ω∗

1 =
d

∑
i=1

ν∗i , ω∗
2 = ∑

1�i�
∑
j�d

ν∗i ν∗j , . . . , ω∗
d =

d

∏
i=1

ν∗i ,

ν∗i = t∗i
t − 1

2 , t∗ =
(
t∗1 , t∗2 , . . . , t∗d

)
is the set of all failure times in τ .

Proof. In accordance with the expression for FLS(t;α,β ), we have

R(t) = exp
[
−
(
β
2

t2 +αt
)]

. (5.102)

Introduce a new parameterization for FLS(t;α,β ), using the parameter r = R(t). According

to (5.102),

α = − lnr
t

− β
2

t.



160 Bayesian Theory and Methods with Applications

Thereafter, we obtain the following relation for the density function of the linear failure

rate distribution:

fLS(x) = (βx+α)e−
β
2 x2−αx =

[
β
(

x− t
2

)
− lnr

r

]
r

x
t e−

β
2 x(x+t).

Using the common expression of the likelihood function (3.20) for the samples derived

after the realization of NC-plan, we can write

�LS(r | τ) = K(τ)
d

∏
i=1

[
β t2

(
t∗i
t
− 1

2

)
− lnr

]
rω , (5.103)

where ω = (τ1 + τ2 + · · ·+ τn)/tq, K(τ) is a function independent of r. Transforming the

product into a sum, we get from (5.103)

�LS(r | τ) = K(τ)
d

∑
k=0

(β t2)kω∗
k (− lnr)d−k.

Since the random parameter r is distributed uniformly in the interval [0,1], in accordance

with Bayes theorem h̄LS(r | τ) ∼ �LS(r | τ), as desired. �

Theorem 5.2 lets us find the corresponding osterior pointwise estimate of TTF:

R̂∗
LS(t) = R̂∗

LS(t;β ) =
∫ 1

0
rh̄LS(r | τ)dr =

J1(β )
J0(β )

,

where

Jm(β ) =
d

∑
k=0

(β t2)kω∗
k

(d − k)!
(ω+m+1)d−k+1 .

The relations among the estimates R̂∗
LS(t;β ) for different β will be established in the fol-

lowing theorem. First we introduce a statistic

ε =
n

∑
i=1

(τi

t

)2
.

Theorem 5.3. Let ε � ω . Then for any nonnegative β1 and β2 such that β1 � β2, the

relation

R̂∗
LS(t;β1) � R̂∗

LS(t;β2)

holds if one uses as a sample of the testing results the same sample τ , and the probability

RLS(t) is uniformly distributed a priori in [0,1].

Proof. Parameterize the distribution function FLS(x;α,β ) using as parameters r = R(t)

and y = λ (t)/λ (0), where λ (x) = α+βx. It is easy to verify that for β � 0, y � 1 and, in

addition, the condition β1 � β2 implies y1 � y2. Therefore, for the theorem proof it suffices

to prove that R̂∗(t;y) is a nondecreasing function of y when y � 1.
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Write the expression for the distribution function FLS(x;α,β ) depending on the parame-

ters r and y:

FLS(x;r,y) = 1− r
1

y+1

[
(y−1) x2

t2
+2 x

t

]
,

whence it follows the expression for the density function

FLS(x;r,y) =
2
t
· (− lnr)

y+1

[
(y−1)

x
t

+1
]

r
1

y+1

[
(y−1) x2

t2
+2 x

t

]
.

With the help of the obtained expression for the distribution function and density function

of TTF, and the general expression (3.20), we can write the likelihood function, assuming

that y is given:

�LS(r | τ) = K(τ,y)(− lnr)d rb(y).

where K(τ,y) is a function independent of r, b(y) = (y−1)ε+2ω
y+1 . Since the random parameter

is subjected to a uniform prior distribution in [0,1] and, in view of Bayes theorem, we have

h̄LS(r | τ) ∼ �LS(r | τ),

whence

R̂∗
LS(t;y) =

∫ 1

0
lnd r · rb(y)+1dr

∫ 1

0
lnd r · rb(y)dr

=
[

1− 1
b(y)+2

]d+1

.

Investigating the derivative of the function R̂∗
LS(t;y) with respect to t, we can write

φ(y) =
[

1− 1
b(y)+2

]d d +1
(b(y)+2)2 · 2(ε−ω)

(y+1)2 ,

we observe that for ε � ω , φ(y) � 0, i.e., the function R̂∗
LS(t;y) is nondecreasing with

respect to y. �

Observe that the condition ε � ω is always fulfilled when the highly reliable devices for

which most of the tests are terminated after the time t is recorded.

Taking into account Theorem 5.2, Theorem 5.3, and the Lemma, we can draw the follow-

ing conclusion: the approximate estimate R̂∗
LS(t) obtained for the class S0(δ ) for ε �ω lies

in the interval μ
(
δ =

[
R̂∗

LS(t;0), R̂∗
LS(t;δ )

])
. Moreover, the length of the interval is deter-

mined by the value of the limiting failure rate δ and the test results. In Fig. 5.12 we present

the graphs of the functions R̂∗(t) and μ(δ ) as functions of the dimensionless parameter δ t2

under the assumption R(t) ∈ [0,1] for different values of sufficient statistics. Beginning

with some value δ , the estimate R̂∗
LS(t) and the upper limit R̂∗

LS(t;δ ) remain practically

unchanged, having achieved their limit values R̂∗
∞(t) and R̂∗

LS(t;∞). The estimate R̂∗(t) is
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Fig. 5.12 The pointwise TTF estimates and endpoints of the interval μ(δ ).

determined by the expressions (5.100) and (5.101) which coincide, as δ → ∞, with the

pointwise estimate of the TTF (5.74) for ν = 1. For R̂∗
LS(t;∞) we have

R̂∗
LS(t;∞) =

ω+1
ω+2

corresponding to the pointwise estimate of TTF for the exponential distribution of the time

to failure under the condition of no failures. The length of the interval μ(δ ) may be used as

a qualitative characteristic for the approximation of an unknown distribution function. We

can construct confidence intervals for TTF with the help of the procedure for the posterior

density represented in § 5.3 by Theorem 5.1.



Chapter 6

Estimates of the TTF Probability under the
Conditions of a Partial Prior Uncertainty

6.1 The setting of a problem and its general solution

In the problem of estimating the reliability of many technical devices, we often meet a

situation which is characterized by incomplete or partial prior uncertainty when the given

a priori information doesn’t allow us to determine uniquely the prior distribution.

The following example may be considered as typical for such a situation. We construct a

system containing model elements produced by an industrial complex. We have catalogs

with the values of failure rates for each model device. In accordance with the methods of

Reliability Theory devoted to complicated multi element systems [256], one defines the

TTF value of the model element during the given time interval. The obtained value is a

priori for the TTF estimate with respect to a whole complex of the conducted measures and

doesn’t allow us to form a prior distribution. We need to find a method of estimating TTF

based on a pointwise a priori value and testing reliability results. Such a method is initiated

in [222, 225].

The theoretical solution of the problem in case of absence of a prior data is known [210,

257]; here the authors use different modifications of a minimax principle. In the work

[210] a problem of searching for the optimal solution on the set of all Bayes solutions,

corresponding to a definite class of prior distributions, is formulated. In this chapter we

shall give a solution of the problem for the class of prior distributions conjugated with

the kernel of a likelihood function. A priori information is given in the form of a set

of restrictions of the equality and inequality type applied to some functionalisms from

unknown prior density. These restrictions make practical sense similar to the problem that

we considered above.

163
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6.1.1 The mathematical setting of the problem

Let a distribution function of a random time-to-failure be given by a parametric family

F(t) = F(t;θ), where θ is a vector of parameters, θ = (θ1,θ2, . . .θm). Since the problem is

formulated in the Bayes form, the parameter is assumed to be random. The system testing

is carried out in accordance with some plan P which gives a censored sample τ . The testing

plan P and distribution function F generate a class of prior distributions HPF , conjugated

with the likelihood kernel. The following restrictions a replaced on the unknown prior

density h(θ) from this class, that is,

S j[h(θ)] � 0, j = 1, 2, . . . , p,

S j[h(θ)] = 0, j = p+1, . . . , p+q,
(6.1)

where S j[h(θ)] is some functional, determined by the form of given a priori information.

For example, if only a prior value R0 of TTF is known during the time t0, then the set of

conditions (6.1) are reduced to the equality∫
Θ
[1−F(t0;θ)]h(θ)dθ −R0 = 0, (6.2)

characterizing the coincidence of the theoretical prior mean value of TTF with R0. In

practice, the expressions having the form (6.2) are used most often.

In the general case, the restrictions (6.1) construct the class of prior distributions generating

a subclass H pq
PF ⊂ HPF . The subject of consideration is some functional R[(F(t)], character-

izing the system reliability. In particular, it may be a TTF during some time interval. Then

R = R(t) = 1−F(t). If a mean operating time is used as a reliability index, the functional

has the form

T = T (θ) =
∫ ∞

0
[1−F(t;θ)]dt.

It is assumed that a loss function L
(
R̂,R(F(t)

)
, is given allowing us to write a function

of the posterior risk G
(
R̂,h

)
. The problem is to find the estimate R̂, minimizing the risk

function in the class of prior distributions H pq
PF .

6.1.2 Determination of a class of prior distributions HPF

In accordance with the problem setting, the sample τ is censored, i.e., it is represented by

the union of two vectors: τ = {t∗, t}, where t∗ = (t∗1 , . . . , t∗d ) is a vector of failure times, and

t = (t1, . . . , tK) is a vector of censoring elements. In accordance with the expression (3.21),

a likelihood function for an arbitrary parametric family F(t;θ) may be written as

�(θ | τ) = K(τ)
d

∏
i=1

λ (t∗i ;θ)exp

[
−

n

∑
j=1

Λ(Tj;θ)

]
,
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where K(τ) is a sample function independent of the parameter θ :

λ (t;θ) = F ′(t;θ)/[1−F(t;θ)], Λ(t;θ) = ln[1−F(t;θ)].

We have to find, with the help of the expression for �(θ | τ), a minimal sufficient statistic

α = α(P,F) which is defined by the testing plan P and the form of the distribution function

F . In the general case a sufficient statistic appears to be a vector α = (α1, . . . ,αs) ∈ Ωα

which allows us to write the likelihood function in the form

�(θ | τ) = c0(τ)�0(θ ,α), (6.3)

where �0(θ ,α) is the likelihood kernel, and the function c0(τ) is independent of α and

θ , and, generally speaking, doesn’t coincide with K(τ). In accordance with the theory of

conjugate prior distributions [202], the kernel of a prior density h(θ) coincides with the

likelihood kernel, i.e.,

h(θ ;α ′) ∼ �0(θ ;α ′), (6.4)

where α ′ = (α ′
1, . . . ,α ′

s) is a vector of parameters of a prior density. Also, α ′ has the same

dimension as the one for α , and α ′ ∈ Ωα . Thus, the class of prior distributions HPF is

completely determined by the form of the function �0(θ ;α) and the set Ωα . It is possible

to broaden this class if one uses a set Ω′
α such that Ωα ⊆ Ω′

α [202]. We can do this, for

example, by using real parameters in the vector α ′ instead of the corresponding integer

components of the vector α . This method will be used later in 6.2 and 6.3. In the common

case we assume that α ′ ∈Ω′
α ⊇Ωα .

6.1.3 Construction of the class HPF

Since the prior density represented depends on the parameter α ′, the restrictions (6.1) are

transformed into functional inequalities and equalities of the form

ψ j(α ′) � 0, j = 1, 2, . . . , p, (6.5)

and

ψ j(α ′) = 0, j = p+1, . . . , p+q, (6.6)

where ψ j(α ′) = S j[h(θ ;α ′)], j = 1, . . . , p+q. The restrictions (6.5) and (6.6) generate the

set D = Dp ∩DQ in the parametric space of the vector α ′, where DQ is the set of values of

the parameter α ′ satisfying the equalities (6.6), and Dp is the set of values of the parameter

which satisfy all inequalities (6.5). It is assumed that conditions (6.6) are independent, i.e.,
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there are no additional conditions which may be found from these conditions by transfor-

mations. The analysis of (6.5) and (6.6) shows that, first of all, D is nonempty. Because the

functions ψ j(α) are nonlinear in a general case, the analysis of the domain D will be very

complicated. It should be noted that only for s < q the set of equations (6.6) is unsolvable,

and the set D is empty. In the general case for s � q the set D is nonempty, where, for s = q

the set D is countable.

Introduce a class of prior distributions H pq
PF represented by the contraction of the class

HPF .The class H pq
PF is generated by all prior distributions from HPF which satisfy the ex-

pressions (6.5) and (6.6), or, is the same as, (6.1). Since the class H pq
PF is also defined by the

relation (6.4), the parameter α ′must belong to the set ΩH = Ω′
α ∩D ⊆ Ω′

α . The resulting

formula for the class H pq
PF is written as

h(θ ;α ′) ∼ �0(θ ;α ′), α ′ ∈ΩH =Ω′
α ∩D ⇒ h(θ ;α ′) ∈ H pq

PF . (6.7)

6.1.4 Choice of a prior density from the class H pq
PF

If the set D is nonempty and contains more than one point, each of which corresponds to

a concretely defined prior distribution density, then we are faced with a problem of choice

of the unique prior density h∗(θ) = h(θ ;α ′
∗). To this end, we will use a posterior risk

criterion, i.e., h∗(θ) will be chosen as a prior density that guarantees the maximum of the

function of the posterior risk. In other words, the worst prior distribution giving the most

pessimistic (in the sense of the posterior risk) estimates of the reliability index is chosen.

Choose some loss function L
(
R̂,R

)
expressing the losses occurred after the replacement of

the reliability index R[T (t;θ)] by the estimate R̂. With the help of the function L
(
R̂,R

)
, the

function of the mean posterior risk is written as

G
(
R̂,h

)
=

∫
Θ

L
(
R̂,R[F(t)]

)
h̄(θ | τ)dθ , (6.8)

where h̄(θ | τ) is the posterior distribution density of the parameter θ ∈ θ . To find h̄(θ | τ)
we apply the Bayes theorem. It yields

h̄(θ | τ) = h̄
(
θ ,α ′′)∼ h

(
θ ,α ′)�0(θ ,α),

where α ′′is the parameter of the posterior density. Applying relation (6.4) we obtain

h̄
(
θ ,α ′′)∼ �0

(
θ ,α ′)�0(θ ,α), (6.9)

For the vector parameters we will use a binary operation α ′′ = α ′ ∗α which determines

the following transformation of two equal functions with different parameters: p(x;α ′′) =

p(x;α ′)p(x;α). Using this operation, we can rewrite the expression (6.9) in the form

h̄(θ | τ) = h̄(θ ;α ′′) ∼ �0(θ ;α ′ ∗α). (6.10)
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If instead of a prior density h∗(θ) one uses a distribution density, ensuring the maximum

of a mean posterior risk, the problem of obtaining the Bayes posterior estimate R̂∗ of the

reliability index can be reduced to the following minimax problem:

G
(
R̂∗,h∗

)
= min

R̂
max

h∈H pq
PF

G
(
R̂,h

)
. (6.11)

Taking into account that h∗(θ) = h(θ ;α ′
∗) ∼ �0(θ ;α ′

∗), the problem (6.11) can be reduced

to a problem of finding the parameter α ′
∗. Let us denote R(θ) = R[F(t;θ)]. Using the

equations (6.8)–(6.10) we can write the mean posterior risk function as follows

G
(
R̂,h(θ ;α ′)

)
= Gα

(
R̂,α ′) =

1
β

∫
Θ

L
(
R̂,R(θ)

)
�0(θ ;α ∗α ′)dθ , (6.12)

where β is the normalizing factor of the posterior density. In view of (6.10) we have

β =
∫
Θ

�0
(
θ ;α ∗α ′)dθ .

Taking into account the obtained expression (6.12), we can reduce the problem (6.11) to

the following minimax problem:

Gα
(
R̂∗;α ′

∗
)

= min
R̂

max
α ′∈ΩH

G
(
R̂,α ′). (6.13)

For many practical problems, it is very difficult to represent the setΩH =Ω′
α ∩D explicitly.

Therefore, it is more convenient to define a by solving the following conditional minimax

problem:

Gα
(
R̂∗,α ′

∗
)

= min
R̂

max
α ′∈Ω′

α
G
(
R̂,α ′),

ψ(α ′) � 0, j = 1, . . . , p, ψ(α ′) = 0, j = p+1, . . . , p+q. (6.14)

6.1.5 Solution of the minimax problem

When solving problem (6.14) we meet many mathematical difficulties arising from the

nonlinearity of the functions used. In addition, in some cases we can not write the function

of mean posterior risk in an explicit form, and therefore we have to use numerical methods

of integration. The problem is simplified essentially if one uses a quadratic loss function.

The following theorem is valid for this case.

Theorem 6.1. Suppose that the loss function L
(
R̂,R

)
=

(
R− R̂

)2. Then the problem (6.14)

is equivalent to the problem of finding maximum of the posterior variance.

U(α ′) =
∫
Θ

R2(θ)h̄(θ ;α ∗α ′)dθ −
[∫

Θ
R(θ)h̄(θ ;α ∗α ′)dθ

]2

(6.15)
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on the set Ω′
α under the restrictions

ψ j(α ′) � 0, j = 1, 2, . . . , p,

and

ψ j(α ′) = 0, j = p+1, . . . , p+q.

Proof. In accordance with the Walde theorem [257], the following equality of minimax

and maximum takes place:

min
R̂

max
α ′∈ΩH

Gα
(
R̂,α ′) = max

α ′∈ΩH
min

R̂
Gα

(
R̂,α ′). (6.16)

Consider the problem of minimization of the function Gα
(
R̂,α ′) for each α ′ ∈ ΩH for a

fixed value of the sufficient statistic α:

Gα
(
R̂∗,α ′) = min

R̂

∫
Θ

�
(
R̂,R(θ)

)
h̄
(
θ ;α ∗α ′)dθ .

The solution of the problem for the quadratic loss function L
(
R̂,R

)
=

(
R− R̂

)2 is repre-

sented by the posterior mean value

R̂∗ =
∫
Θ

R(θ)h̄(θ ;α ∗α ′)dθ , (6.17)

which gives the following posterior risk function:

Gα
(
R̂∗,α ′) = min

R̂

∫
Θ

[
R(θ)− R̂∗] h̄

(
θ ;α ∗α ′)dθ . (6.18)

The estimate (6.17) is conditionally optimal, i.e., it enables us to find the posterior mean

value of a TTF for a given α ′. Substituting the expression (6.18) into (6.14) and taking

into account the expressions (6.16) and (6.17), we obtain the following formulation of the

problem:

Gα
(
R̂∗,α ′) = max

α ′∈Ω′
α

{∫
Θ

R2(θ) h̄(θ ;α ∗α ′)dθ −
[∫

Θ
R(θ) h̄(θ ;α ∗α ′)dθ

]2
}

ψ j(α ′) � 0, j = 1, . . . , p, ψ j(α ′) = 0, j = p+1, . . . , p+q,

which proves Theorem 6.1. In order to obtain the Bayes lower confidence limit R∗
γ with

given α ′
∗, we need to solve, in accordance with (2.34), the equation∫

R(θ�R∗
γ )

h̄(θ ;α ∗α ′)dθ − γ = 0. (6.19)

�

Formulation of the problem (6.14) together with the equation (6.19) gives us the method of

obtaining TTF estimates. These estimates are called conditionally minimaximal in view of

the special form of the problem arising from the estimation method.
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6.2 A partial prior information for the Bernoulli trials

6.2.1 Formulation of the problem

Consider the following testing plan PB. n devices are being tested having a single-use

purpose. Each device during the test period has a capacity for performing with a constant

probability p and fails with a probability 1− p. The unknown quantity p will be considered

as a parameter in the interval of admissible values [0,1]. Assume that during the testing

d � 0 devices fail. The likelihood function for the subject scheme has the form

�(p;n,d) =
(n

d

)
pn−d(1− p)d . (6.20)

In this case the following beta-distribution plays the role of a prior distribution conjugated

with the likelihood kernel (6.20), that is,

h(p) = h(p;α,β ) =
pα−1(1− p)β−1

β (α,β )
, α � 0, β � 0, (6.21)

where β (α,β ) is a beta-function. Note that in the subject case the expansion of the class of

a conjugate prior distribution takes place because the sufficient likelihood statistics are inte-

ger constants, and parameters α and β are real numbers. Let us denote the beta-distribution

with the parameters α and β by Be(α,β ).

Consider the problem of obtaining the TTF R = p which, in the given case, will be out-

of-time characteristic, under the conditions of a partial prior uncertainty, expressed in the

form of a single restriction. Let us assume that at first a prior TTF value R0 is known. This

condition has the following mathematical interpretation:∫ 1

0
ph(p;α,β )d p = R0.

After integration
α

α+β
= R0. (6.22)

The posterior distribution, corresponding to the likelihood (6.20) and a prior density (6.21),

is Be(α+n−d,β +d).

In order to find optimal values α∗ and β∗ of the parameters of a prior density h∗(p) =

h(p;α∗,β∗), we will use the quadratic loss function L(p̂, p) = (p− p̂)2. In view of Theo-

rem 6.1, the problem is reduced to the minimization of the function of the posterior variance

U(α,β ) =
∫ 1

0

xα+n−d−1(1− x)β+d−1

B(α+n−d, β +d)
dx−

[∫ 1

0

xα+n−d−1(1− x)β+d−1

B(α+n−d, β +d)
dx

]2

under the restriction (6.22). Carrying out the calculations, we obtain

U(α∗,β∗) = max
α�0
β�0

U(α,β ) = max
α�0
β�0

(α+n−d)(β +d)
(α+β +n)2(α+β +1)

,
α

α+β
−R0 = 0. (6.23)
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6.2.2 Peculiarities of the problem solution

Let us clarify some characteristics of the problem (6.23) useful for applications. At first

we will investigate the case when there is no information about experiment outcomes, i.e.,

in the problem (6.23) n = d = 0. This, and other cases in which we are interested, will be

formulated and provided when it is necessary.

Theorem 6.2. Suppose that the posterior variance is represented by the formula

U(α,β ) =
αβ

(α+β )(α+β +1)
, α � 0, β � 0.

Then the point (α∗,β∗), corresponding to maximum of the function U(α,β ) under the

restriction α/(α+β ) = R0 is (0,0) for any R0. Moreover, the maximum value of U will be

R0(1−R0).

Proof. Introduce the variable z = α +β . With the help of this variable and the equality

α/z = R0, the function U(α,β ) may be written as

F(z) ≡U(α,β ) =
R0(1−R0)

z+1
.

Since α � 0, β � 0, one has z � 0. The function F(z) in the domain of its nonnegative

values has a supremum at the point z = 0 equal to F(0) = R0(1−R0). Taking into account

our assumption α = R0z for z = 0, we obtain α = β = 0 as was desired. �

Due to the proved property, the optimal values of the parameters α∗ and β∗ in absence of

experimental data are independent of the a priori value of TTF R0, and the desired TTF

estimate equals the, prior one R0, and has the variance R0(1−R0).

Consider now the more general case n � 0. The solution of the problem (6.23) for this case

is represented by the following statement.

Theorem 6.3. Suppose the function of the posterior variance of the index R0 is written as

U(α,β ) =
(α+n−d)(β +d)

(α+β +n)2(α+β +n+1)

for α � 0, β � 0, n > 0, d � 0. Then the function U is monotonically decreasing along any

straight line of the form α/(α+β ) = R0, if the following inequality holds(
1−R0

R0
−g

)(
d − n

2

)
� 0, (6.24)

where

g =
d

n−d
· (d +1)(n−2d)+2(n−d)2

(n−d +1)(n−2d)−2d2 . (6.25)
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Proof. Introduce the variables x+α+m, where m = n−d, and y = β +d. The function

U(α,β ) changes into

Ũ(x,y) =
xy

(x+ y)2(x+ y+1)
, x � m, y � d.

In view of Theorem 6.2, the function Ũ(x,y) for x � 0, y � 0 is monotonically decreasing

along any straight line of the form y = px for p > 0, and attains its maximum at the point

x = y = 0. At the same time, the absolute maximum can’t be attained at the point x = y = 0,

i.e., the point (0,0) is an isolated singular point. It is easy to prove that U(x,y) < 0.25, for

all x > 0, y > 0. Investigate the function y = φ(x) obtained in the result of cross-cutting of

the function z = Ũ(x,y) by the plane z = h (for h < 0.25). The implicit form of the function

y = φ(x) is F(x,y) = xy− h(x + y)2(x + y + 1) = 0. The point x = y = 0 is a node for the

given function, since Δ = F ′′
xy

2(0,0)−F ′′
xx(0,0)F ′′

yy(0,0) = 1− 4h > 0. It is easy to check

also that the function y = φ(x) is symmetric with respect to the straight line y = x. In view

of the mentioned properties, the function F(x,y) = 0 has the form shown in Fig. 6.1. �

In order to find the form of the function represented by the implicit equation U(α,β ) = h,

we have to transfer the origin into the point x = m = n−d, y = d. As seen from Fig. 6.1,

the function U(α,β ) will not be monotonic along any straight line of the form
α

α+βR
= R0 ⇐⇒ β =

1−R0

R0
α.

The monotonicity domain is ended by the tangent to the equal-level line U(α,β ) = h at

the point α = β = 0, or is the same, to the equal-level line Ũ(x,y) = h at the point x = m,

y = d.

We proceed to find the slope g of this tangent. By definition,

g = −F ′
X (m,d)

F ′
y(m,d)

=
d
m
· (d +1)(m−d)+2m2

(m+1)(m−d)−2d2 . (6.26)

As seen from Fig. 6.1, for m � d (n � d/2) the function U(α,β ) will be monotonically

decreasing along any straight line whose slope doesn’t exceed g. For m < d (n < d/2),

vice versa, the function U(α,β ) is monotonically decreasing along any straight line with

the slope which is greater or equal to g. In other words, the monotonicity condition for the

function U(α,β ) along the straight line α/(α+β ) = R0 takes on the following form
1−R0

R0
� g, if d � n

2
,

and

1−R0

R0
> g, if d >

n
2
,
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Fig. 6.1 Curves with equal levels for the function U(x,y) and U(α,β ).

which may be written with the help of (6.24).

In view of this theorem we can easily obtain the following two corollaries:

Corollary 6.1. The solution of problem (6.23) under the condition (6.24) is independent

of R0, and is written as α∗ = β∗ = 0. The posterior Bayes estimate for this case coincides

with the maximum likelihood estimate:

R̂∗ = 1− d
n

and σ2
R̂∗ =

(
1− d

n

) d
n

n+1
.

Thereby the Bayes conditionally minimax estimate may ignore a priori information, if the

last one contradicts the results of testing.

Corollary 6.2. For completely successful tests (d = 0), the condition of monotonicity (6.2)

is never fulfilled.
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The following statement establishes the relationship between the Bayes and maximum like-

lihood estimates.

Theorem 6.4. Suppose the condition (6.24) is not fulfilled and the solution of the prob-

lem (6.23) differs from the trivial one. Then the Bayes pointwise TTF estimate R̂∗ for the

quadratic loss function exceeds the maximum likelihood estimate, if R0 � 1−d/n.

Proof. The Bayes estimate R̂∗ for the quadratic loss function coincides with the posterior

mean value, that is,

R̂∗ = R̂∗(α,β ) =
α+n−d
α+β +n

.

Investigate the behavior of the function R̂∗(α,β ) along the straight line α/(α +β ) = R0.

To this end, we express R̂∗(α,β ) as a function of a single variable α:

R̂∗ =
α+n−d
α+β +n

α
α+β

= n0

}
=⇒ R̂∗(α,β ) = φ(α) =

α+n−d
α/R0 +n

.

The derivative of the function φ(α) will be

φ ′(α) =
d +(1−R0)n

R0

(
α
R0

+n
) .

As seen from the last expression φ ′(α) > 0, if R0 > 1−d/n, and φ ′(α) � 0, if R0 � 1−d/n.

Therefore, since α∗ > 0, under the condition R0 > 1−d/n, we have

R̂∗(α∗,β∗) = φ(α∗) > φ(0) = 1− d
n
.

Otherwise, i.e., when R0 � 1−d/n, we have

R̂∗(α∗,β∗) = φ(α∗) � φ(0) = 1− d
n
.

and the theorem is now proved. �

If the condition (6.24) is not fulfilled, the problem of obtaining optimal values of the pa-

rameters α∗ and β∗ can be reduced to the solution of a cubic equation. Introduce a new

variable z = α +β + n. After this the problem (6.23) represents by itself the problem of

finding a maximum for the following function of variable z:

T (z) =
[R0(z−n)+n−d] [(z−n)(1−R0)+d]

z2(1+ z)
.

Applying Calculus methods to the last problem we arrive at the equation

z3 +Az2 +Bz+C = 0, (6.27)
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where

A = −2s(2R0 −1)
R0(1−R0)

, B = − s(3s+2R0 −1)
R0(1−R0)

,

C = − 2s2

R0(1−R0)
, and s = n(1−R0)−d.

(6.28)

The equation (6.27) has a single root z∗ in the domain z > n. Thereafter we obtain the

resulting expression for the parameters α∗ and β∗, that is,

α∗ = (z∗ −n)R0 and β∗ = (z∗ −n)(1−R0). (6.29)

6.2.3 A scheme for evaluating TTF estimates

A prior pointwise estimate of TTF R0, the total number of tests n and the number of failures

d are the input data for calculation. The following scheme will be applied for finding

pointwise estimates R̂∗ and σR̂∗ :

a) By the formula (6.25) we find the slope g of the tangent and verify the condition (6.24).

b) If the condition (6.24) is fulfilled, then we evaluate the desired estimates

R̂∗ = 1− d
n

and σR̂∗ =
(n−d)d
n2(n+1)

,

and the algorithm terminates. Otherwise we pass to the next step.

c) With the help of (6.28) we Bud the values of the coefficients A, B, C and solve equation

(6.27) in the domain z > n. Having solved the problem, we obtain the single root z∗.

d) Using (6.29) we obtain the optimal values of α∗, β∗.

e) Calculations are terminated with

R̂∗ =
α∗ +n−d
α∗ +β∗ +n

, σR̂∗ =
(α∗ +n−d)(β∗ +d)

(α∗ +β∗ +n)2(α∗ +β∗ +n+1)
. (6.30)

6.2.4 Numerical analysis for TTF estimates

Consider the case of non-failure testing (d = 0) frequently exploited in practice. In Table

6.1 we represent the graphs of dependence of the parameters α∗, β∗ on the number of tests

n and a prior value of TTF R0.

As seen from Table 6.1, the estimates of α∗, β∗ for the constant value of R0 change pro-

portionally, and in addition, α∗ and β∗ increase together with the increase of n and R0.

In Figures 6.2 and 6.3 we represent the dependencies of the estimates R̂∗ and σR̂∗ on the
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Table 6.1 Optimal values of the parameters of a prior distribution (the first number is α∗,
the second is β∗).

N
nN

20 40 60 80 100

Homogeneous data

0 0.9732 0.9740 0.9753 0.9787 0.9755

2 0.9740 0.9751 0.9788 0.9753 0.9761

4 0.9737 0.9744 0.9760 0.9780 0.9772

Nonhomogeneous data

0 0.9732 0.9740 0.9753 0.9787 0.9755

2 0.9731 0.9740 0.9779 0.9744 0.9773

4 0.9729 0.9749 0.9735 0.9731 0.9761

number of tests and a prior value of TTF R0. They demonstrate the behavior of approxima-

tions of prior estimates. We can see that as n → ∞ the estimate R̂∗ tends to the maximum

likelihood estimate, and for d = 0 tends to 1. However, as it is seen from Figure 6.2, the

convergence rate depends substantially on a prior value of TTF. The same conclusion may

be drawn for the posterior mean-squared value.

6.2.5 A different way to calculate a lower confidence limit of TTF

In accordance with the definition, the estimate R∗
γ is defined by the equation∫ 1

R∗
γ

h̄(p;α∗,β∗,n,d)d p− γ = 0, (6.31)

where h̄(p) is the posterior density of the beta-distribution, given by the expression

h̄(p) =
pα∗+n−d−1(1− p)β∗+d−1

B(α∗ +n−d, β∗ +d)
, 0 � p � 1.

The first method for obtaining the estimate R∗
γ is based on the numerical solution of the

equation (6.31) for the function h̄(p). Unfortunately this method has a disadvantage. For

large values of TTF (R � 0.99) and d = 0, the posterior density is concentrated in a very

small neighborhood of the point p = 1. Because of this we can meet serious calculation

obstacles: the error of numerical integration may be large.

The second method is based on the known results about a completely defined binomial

scheme. The use of such a method is possible because of the following fact: after determi-

nation of the parameters α∗ and β∗, the considered scheme will be completely determined.

Due to this reason, satisfies the relation [120]:

R∗
γ =

[
1+

β∗ +d
α+n−d

F1−γ ;2(β∗+d);2(α∗+n−d)

]−1

. (6.32)
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Fig. 6.2 The posterior pointwise TTF estimate.

where Fδ ;v1,v2 is the 100 δ -percent point of the F-distribution with v1, v2 degrees of free-

dom which is found from the tables [160]. The difficulties arising from practical use of the

expression (6.32) are characterized by the following: even the fullest tables [160] contain

the values of percentiles of the F-distribution beginning with the value of the degree of

freedom v1 = 0.1. At the same time, if we carry out the practical calculations for highly

reliable devices, we need to have the percentile values for v1 < 0.1 (see, for example, the

data from Table 6.1). In Table 6.2 we represent the calculated values of the estimate for

different n and R0. It is easy to see that R∗
γ increases more rapidly in comparison with R̂∗

as R0 and n increase.

We present a third method to obtain approximate estimates of R∗
γ . It is based on the ana-

lytical change of the posterior density h̄ [p] by the density →
h̄∼(p)

, corresponding to the prior
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Fig. 6.3 The posterior mean squared value of a TTF.

scheme. The corresponding conditions for h̄ and →
h̄∼(p)

is written in the form of equality of

their first times ∫ 1

0
ph̄(p)d p =

∫ 1

0
p h̄∼(p)d p.

Taking into account the above assumptions, we obtain

h̄∼(p) =
pc−1

B(c,1)
, 0 � p � 1, (6.33)

where c = R̂∗/(1− R̂∗). Then (6.30) may be rewritten as
∫ 1

R∗
γ
∼̄h(p)(p;c,1)d p− γ = 0,

and thereby we can obtain the analytical solution

R∗
γ = (1− γ)1/c. (6.34)
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Table 6.2 The values of the lower Bayes confidence limit of the TTF.

n
R0

0.8 0.9 0.95 0.97

4 0.7500 0.8556 0.9188 0.9432

6 0.7855 0.8690 0.9237 0.9523

8 0.8018 0.8789 0.9282 0.9533

10 0.8131 0.8861 0.9315 0.9548

12 0.8211 0.8910 0.9340 0.9561

Table 6.3 Approximate values of the lower Bayes confidence TTF limit.

n
R0

0.8 0.9 0.95 0.97 0.99

4 0.7742 0.8825 0.9402 0.9639 0.9878

6 0.7780 0.8845 0.9413 0.9644 0.9880

8 0.7800 0.8854 0.9418 0.9649 0.98817

10 0.7813 0.8861 0.9420 0.9651 0.98824

12 0.7820 0.8865 0.9422 0.96524 0.98829

Table 6.4 Approximate values of R∗
0.9 for highly-reliable devices.

n
R0

0.9990 0.9992 0.9994 0.9996

6 0.9988048 0.9990438 0.9992888 0.9995217

10 0.9988259 0.9990574 0.9992929 0.9995286

Table 6.5 Approximate values of Q̄0.9 for highly-reliable devices.

n
R0

0.9990 0.9992 0.9994 0.9996

6 1.1952 ·10−3 9.562 ·10−4 7.172 ·10−4 4.783 ·10−4

10 1.1784 ·10−3 9.426 ·10−4 7.071 ·10−4 4.714 ·10−4

In Table 6.3 we represent the values of R∗
0.9, obtained with the third method, for different R0

and n for tests with no failures. Comparison of the data from Tables 6.2 and 6.3 characterize

the exactness of approximate methods.

In Table 6.4 we give the values of R∗
0.9 for d = 0.

Representation of the final result in the form of the lower confidence limit Q̄γ of the prob-
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ability of failure is more observable. In Table 6.5 we represent the values of Q̄0.9 corre-

sponding to the data from Table 6.4.

The results, represented in Table 6.5, are more suitable for applied analysis for the follow-

ing reasons. What matters is that for large values of TTF (greater than 0.999) the values

of the estimates we obtain are slightly distinguishable from the point of view of traditional

numerical methods (the values differ beginning only with the fifth digit). At the same time,

if one uses for the purpose of comparative applied analysis, a probability of failure, then

the differences among the estimates will be more essential (beginning with the first valu-

able digit). In accordance with this, it should be more preferable to define the confidence

requirement in the form of a probability of failure Qreq which must be ensured with the con-

fidence level γ . As a corollary of this, the procedure of control of the achieved confidence

level must be established in accordance with the condition Q̄γ � Qreq.

6.2.6 Comparison with known results

Next we consider the following example, touching upon the estimate of TTF by the results

of natural tests, and give its solution using different methods.

Example 6.1. From a priori information we know a prior pointwise estimate of TTF

R0 = 0.9576 and its error characteristic σR0 = 0.0333 during the experiment 12 tests with

no failures of the device have been carried out. We need to estimate the TTF with the

confidence level γ = 0.9.

Solution. Since R0 and σR0 are given, the considered scheme is completely defined. De-

termine the parameters of a prior distribution α and β by the following known formula:

α = R0ρ, β = (1−R0)ρ and ρ =
1
σ2

R0

(1−R0)R0 −1.

For the initial example data we have α = 19.97, β = 0.499. Putting α∗ = α , β∗ = β in

(6.31), for n = 12, d = 0, we obtain R̂∗ = 0.9846, σR̂∗ = 0.0213. With the help of tables

[160] we find the corresponding percentage point of the F-distribution: F0.1,0.998,64 = 2.79.

Thereafter by the formula (6.32) we find the lower confidence limit R∗
0.9 = 0.9583. Note,

by the way, that for ensuring the confidence level Rreq = 0.9583 without using a priori

information, it would be necessary to carry out 54 tests with no failures.

Consider another example where the scheme of estimating TTF doesn’t have a complete

prior definiteness.
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Example 6.2. The data of this example are almost the same as those in Example 6.1, except

that the condition σR0 is unknown.

Solution. Thus, we have a scheme with a partial prior definiteness, scrupulously investi-

gated in the preceding section. Return to Section 6.2.3. Since d = 0, we have g = 0 and

therefore the condition (6.24) is not fulfilled. Consequently, to find the optimal values of

the parameters α∗ and β∗, we need to solve the cubic equation (6.27). Using formulas

(6.28) we get the value of the equation coefficient A = −22.94, B = −30.60, C = −12.75.

Solving the cubic equation we obtain z∗ = 24.22. With the help of (6.29) we calculate

the optimal values of the parameters: α∗ = 11.92, β∗ = 0.52. Evaluation of the TTF esti-

mates is carried out with the help of expressions (6.30) and (6.32). Finally, R̂∗ = 0.9788,

σR̂∗ = 0.0286, R∗
0.9 = 0.9425. �

Let us compare the solutions of Example 6.1 and Example 6.2. At first, the TTF estimate

obtained in the first case has an error less than the one for the second case. Such a con-

clusion is unavoidable, since the first calculation scheme is completely a priori determined.

Therefore, estimating the reliability in the more general case of a partial prior definiteness,

we lose in the exactness of obtained estimates. This can be considered as the price we

have to pay for the solution of the problem in the more general case. Later, the estimate

R∗
γ in the second case appeared to be less, and consequently, to ensure the same reliability

level under the conditions of a partial prior definiteness, we need to carry out more tests

than have been done earlier. This may be also interpreted in other words: lack of a priori

information is compensated by additional data.

In conclusion, we note that the winnings in the number of tests, in comparison with the

traditional Bayes approach, remain more valuable in the case of realization of the scheme

with a partial prior definiteness. Thus, in the conditions of Example 6.2 for ensuring the

reliability level Rreq = 0.9425 in the case of absence of a priori information, we need to

carry out 39 tests without any observed failures, against 12, under the assumption that the

value of R0 is known. The gain is three times as much as it was earlier. The greater the

required values are, the more precise our end result.

6.3 Partial prior information for the constant failure rate

We will assume that the random time to failure obeys the exponential distribution with the

function

F(t) = F(t;λ ) = 1− e−λ t , t � 0, κ � 0. (6.35)
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The tests are carried out in accordance with the plan giving the censored sample τ = {t∗, t},

where t∗ = (t∗1 , . . . , t∗d ) is a sample of failure moments, and t = (t1, . . . , tK) is a sample of

censoring times.

6.3.1 A problem of estimating TTF, R(t), for an arbitrary time

Suppose that as a priori information is used a prior value of TTF, R0, for a given t0. We

have to find the estimate of R(t) for the time t different (in a general case) from t0. The

solution of the problem will be obtained in accordance with the approach given in § 6.1.

Taking into account the general relation (6.3), we write down the likelihood function for

the parametric family (6.35):

�(λ | τ) = K(τ)λ de−Kλ , d � 0, K > 0, (6.36)

where K = τ1 + · · ·+ τn is a total test operating time. In view of (6.36), we conclude that

the following density of a gamma-distribution with some unknown parameters s and ε is a

conjugated prior density for the parameter λ :

h(λ ) = h(λ ;s,ε) =
εs+1

Γ(s+1)
λ se−λε , ε � 0, s � 0, (6.37)

or, in a brief form, we will note that λ fits the distribution Γ(s,ε). The parameter s, in

contrast to d, is real, i.e., we meet the expansion of the range of the sufficient statistic

(d,k). In accordance with the Bayes theorem (d,k) ∗ (s,ε) = (d + s, K + ε), thereby the

posterior distribution for λ will be Γ(d + s, K + ε), i.e.,

h̄(λ | τ) = h̄(d,s,K,ε) =
(k + ε)d+s+1

Γ(d + s+1)
λ d+se−λ (k+ε). (6.38)

The parameters s and ε are unknown. Define their optimal values s∗ and ε∗, using the mini-

max principle given in § 6.1. Choose a quadratic loss function and apply Theorem 6.1. The

problem of calculating s∗ and ε∗ is reduced to the maximization of the posterior variance of

the function R(t) = 1−F(t) under the restriction on the prior mean value of this function:

UR(s,ε) =
∞∫

0

R2(t;λ )h̄(π;d,s,K,ε)dλ −

⎡
⎣

∞∫

0

R(t;λ )h̄(λ ,d,K,ε)dλ

⎤
⎦

2

=⇒ max, (6.39)

∫ ∞

0
R(t0;λ )h(λ ;s,ε)dλ = R0.

Having carried out some calculations, one can rewrite the problem (6.39) in the final form

U(s∗,ε∗) = max
s,ε

[(
K + ε

K + ε+2t

)d+s+1

−
(

K + ε
K + ε+ t

)2(d+s+1)
]

, (6.40)

As in the preceding paragraph, we come to the problem of the conditional maximum which

can only be solved using numerical methods.
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6.3.2 A problem of estimating the failure rate

Let us change the problem in the following way. First, suppose that we have to estimate

the parameter λ , and thereafter, with the help of the obtained estimate, find the estimate of

TTF R(t). As before, we will use a quadratic loss function and Theorem 6.1. As a priori

information, we will choose a prior value of the failure rate λ0, i.e., the restriction of the

problem will now be written as ∫ ∞

0
λh(λ ;s,ε)dλ = λ0,

or, after substitution of 6.37, and further integration, we have
s+1
ε

= λ0. (6.41)

Let us write the function of the posterior variance of the parameter λ as a function of the

unknown parameters d and ε:

Uλ (s,ε) =
∫ ∞

0
λ 2h̄(λ ;d,s,k,ε)dλ −

[∫ ∞

0
λ h̄(λ ;d,s,k,ε)dλ

]2

=
d + s+1
(k + ε)2 . (6.42)

Taking into account the expressions (6.42) and (6.41), in accordance with Theorem 6.1, we

represent the problem of finding optimal values of the parameters ε∗ and s∗ in the following

form

Uλ (s∗,ε∗) = max
s�0
ε�0

Uλ (s,ε) = max
s�0
ε�0

d + s+1
(k + ε)2 ,

s+1
ε

= λ0. (6.43)

The problem (6.43) may be solved analytically.

6.3.3 Solution of problem (6.43)

Taking into account the restrictions of the problem, we have ε = (s + 1)/λ0. Define a

function

φ(s) ≡Uλ

(
s,

s+1
λ0

)
= λ 2

0
d + s+1

(λ0k + s+1)2 , s � 0

whose greatest value corresponds to the solution of the problem (6.43). Its derivative is

given by

φ ′(s) = λ 2
0
(λ0k−2d −1)− s

(λ0k + s+1)3 (6.44)

for s � 0. It is easy to see from (6.44) that the condition

λ0k−2d −1 � 0 ⇐⇒ λ0 � 2d +1
k

(6.45)

implies the nonpositiveness of the derivative φ ′(s) for s � 0, where the function φ(s) is

monotonic as s � 0 and reaches its greatest value at the point s∗ = 0. Otherwise, the



Estimates of the TTF Probability under the Conditions of a Partial Prior Uncertainty 183

function φ(s) has a single maximum at the point s∗ = λ0k− 2d − 1. Thereby, the general

solution of the problem (6.43) takes on the form
⎧⎪⎨
⎪⎩

0,
1
λ0

, if λ0 � 2d +1
k

,(
λ0k−2d −1, k− d

λ0

)
, if λ0 >

2d +1
k

.
(6.46)

With the help of the obtained values s∗ and ε∗, we find the posterior estimates of the failure

rate in the form

λ̂ ∗ =
d + s+1

k + ε∗
and σ2

λ̂ ∗ =
d + s+1

(k + ε∗)2 . (6.47)

In order to find the upper confidence limit, we apply the results of the work [120] for a

completely determined scheme with a constant failure rate. Then

λ̄γ =
χ2

1−γ ;2(d+s∗+1)

2(k + ε∗)
, (6.48)

where χ2
α;v is the 100α percent point of the χ2

v distribution.

6.3.4 Estimation of the TTF with the help of the failure rate estimates

When the parameters s∗ and ε∗, defined by the expression (6.46), are unknown, the pos-

terior density of the parameter λ (6.38) is determined. It enables us to find, without any

difficulties, corresponding TTF estimates R(t) = 1−F(t;λ ) = exp(−λ t). In particular,

R̂∗(t) =
∫ ∞

0
eλ t h̄(λ ;d,s∗,k,ε∗)dλ

=
(k + ε∗)d+s∗+1

Γ(d + s∗ +1)

∫ ∞

0
λ d+s∗ε−λ (k+ε∗+t)

dλ

=
(k + ε∗)d+s∗+1

Γ(d + s∗ +1)

∫ ∞

0

zd+s∗εe−zdz
(k + ε∗ + t)d+s∗

=
(

k + ε∗
k + ε∗ + t

)d+s∗+1

.

For the posterior variance σ2
R̂∗(t) we apply a similar scheme. Introduce dimensionless pa-

rameters

u∗ = (ε∗ + k)/t and v∗ = s∗ +d. (6.49)

Thereafter TTF estimates may be rewritten with the help of the following simple formulas:

R̂∗(t) =
(

u∗
u∗ +1

)v∗+1

, (6.50)
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Table 6.6 Bayes estimation of TTF with testing without failures R̂∗(t0)/R∗
0.9(t0).

ω
R0

0.9992 0.9994 0.9996 0.9998

2
0.99920153 0.99940095 0.99960045 0.99980003

0.99816168 0.99862060 0.99907984 0.99953951

6
0.99920413 0.99940235 0.99960105 0.99980023

0.99816746 0.99862388 0.99908134 0.99953991

10
0.9992066 0.9994038 0.99960165 0.99980033

0.9981733 0.9986272 0.99808284 0.99954031

and

σ2
R̂∗(t) =

(
u∗

u∗ +2

)v∗+1

−
(

u∗
u∗ +1

)2(v∗+1)

For the estimate R∗
γ the relation P

{
R(t) � R∗

γ(t)
}

= P
{
λ̄γ � λ

}
, holds, whence

R∗
γ(t) = exp

[
−
χ2

1−γ ;2(d+s∗+1)

2u∗

]
. (6.51)

The estimate R∗
γ(t) also may be found with the help of the equation (6.19) which for the

given case takes on the form∫
e−λ t�R∗

γ (t)
h̄(λ ;d,s∗,k,ε∗)dλ − γ = 0,

and may be rewritten as

(
R∗
γ(t)

)u∗

[
1+

d

∑
k=1

1
k!

u
∣∣lnR∗

γ(t)
∣∣k
]

= 1− γ. (6.52)

This equation is recommended for the estimation of a TTF as a compound part of some

numerical algorithm when it is inexpedient to use the table values of the percent points of

the chi2 distribution. In the case d = 0, (6.52) has a simple analytical solution:

R∗
γ(t) = (1− γ)1/u∗ . (6.53)

6.3.5 Numerical analysis for TTF estimates

In Tables 6.6 and 6.7 we represent the results of calculations of TTF estimates by the

formulas (6.50) and (6.52), depending on a prior value R0 = R(t0) and reduced testing

statistic ω = k/t. Calculations of TTF, carried out for the time t = t0, allow us to observe

the evolution of the posterior estimate R̂∗in accordance with the character of empirical

data. Comparing Tables 6.6 and 6.7 we conclude that for d = 1, TTF estimates are less
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Table 6.7 Bayes estimation of TTF with one failure R̂∗(t0)/R∗
0.9.

ω
R0

0.9990 0.9994 0.9996 0.9998

2
0.99840370 0.99880226 0.99920106 0.99960001

0.99689645 0.99767105 0.99844630 0.99922240

6
0.998409 0.9988051 0.99920226 0.99960050

0.9969065 0.9976767 0.99844881 0.9992231

10
0.99841387 0.99880786 0.99920346 0.99960071

0.99691900 0.99768205 0.99845125 0.99922370

than corresponding estimates in a testing without failures. The increasing of ω and R0

induces the increasing of TTF estimates.

In Tables 6.8 and 6.9, we present the results of the reliability calculations which depend on

the probability of failures. As in § 6.2, we again deal with a visually and practical form of

representation to obtain reliability estimates.

6.4 Bayes estimates of the time to failures probability for the restricted
increasing failure rate distributions

In Chapters 3 and 5 we have used as a priori information the intervals of prior uncertainty

of the estimated parameter. It is assumed also that the estimated index or parameter lies

in the indicated interval with the probability equal to 1. Superfluous categoricity of the

assertion about the domain of possible values of the parameter is the main drawback of this

method. In this section, we will investigate a modification of the method of representation

of a priori information in the form of the interval of a prior uncertainty. The essence of

such a modification is interpreted as follows: the indicated interval of a priori uncertainty

contains the estimated parameter with some probability μ < 1, i.e., it doesn’t appear to

be completely ensured. Such a form is more preferable because it is less categorical. If

one uses conjugated prior distributions, then the reliability estimates belong to the class of

Bayes conditional minimax estimates.

6.4.1 Setting of the problem

Let a TTF of the investigated device obey the probability distribution with a function

F(t;θ), where θ ∈ Ω is some vector parameter. The parameter θ is distributed in ac-

cordance with a probability density h(θ) which is unknown. As a priori information is
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Table 6.8 Bayes estimation of TTF with failure free testing Q∗(t0)/Q∗
0.9(t0).

ω
R0

0.9992 0.9994 0.9996 0.9998

2
7.985 ·10−4 5.990 ·10−4 3.995 ·10−4 2.001 ·10−4

1.838 ·10−3 1.379 ·10−3 9.202 ·10−4 4.605 ·10−4

6
7.959 ·10−4 5.976 ·10−4 3.989 ·10−4 1.988 ·10−4

1.833 ·10−3 1.376 ·10−3 9.187 ·10−4 4.601 ·10−4

10
7.934 ·10−4 5.962 ·10−4 3.983 ·10−4 1.997 ·10−4

1.827 ·10−3 1.373 ·10−3 9.172 ·10−4 4.597 ·10−4

Table 6.9 Bayes estimation of TTF with failure-free testing Q∗(t0)/Q∗
0.9(t0).

ω
R0

0.9992 0.9994 0.9996 0.9998

2
7.985 ·10−4 5.990 ·10−4 3.995 ·10−4 2.001 ·10−4

1.838 ·10−3 1.379 ·10−3 9.202 ·10−4 4.605 ·10−4

6
7.959 ·10−4 5.976 ·10−4 3.989 ·10−4 1.988 ·10−4

1.833 ·10−3 1.376 ·10−3 9.187 ·10−4 4.601 ·10−4

10
7.934 ·10−4 5.962 ·10−4 3.983 ·10−4 1.997 ·10−4

1.827 ·10−3 1.373 ·10−3 9.172 ·10−4 4.597 ·10−4

used, a pair (Θ,μ), where Θ ∈Ω, and μ ∈ [0,1], satisfy the relation∫
Θ

h(θ)dθ � μ . (6.54)

Definition 6.1. The set Θ ⊂ Ω will be called a Bayes prior confidence set, if it satisfies

the relation (6.54). In the case of a one-dimensional parameter, the interval Θ= [θ ′,θ ′′] is

called a prior confidence interval.

We will assume that tests are carried out by the NC-plan and we have obtained the sample

τ = {t∗, t}, where t∗ = (t∗1 , . . . , t∗d ) is the vector of failure times, and t = (t1, . . . , tk) is the

vector of standstills of tests which are not connected with a failure. The problem is to Bud

the posterior estimate of TTF R(t) = 1−F(t) for the quadratic loss function.

6.4.2 General solution of the problem

Taking into account the restriction (6.54) imposed on a prior density, we can draw the

following conclusion: the considered problem coincides with the problem of estimating

TTF under the conditions of a partial prior definiteness. As was the case in a general
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solution (see § 6.1), we will use a conjugate a priori distribution, whose kernel coincides

with the likelihood kernel

h(θ) = h(θ ;α ′) ∼ �0(θ ;α ′), (6.55)

where α ′ is a vector of parameters of a prior density, and �0(θ ;α ′) is the likelihood kernel

written with the help of the general formula (3.20).

Later on we will use the general (for the class of Bayes estimates under the conditions of a

partial prior definiteness) principle of a choice of the parameter α ′ which leads, in the final

form, to the solution of the minimax problem (6.14). Substituting the expression (6.55) into

(6.54), we arrive at the following partial formulation of the problem (6.14) for obtaining

the Bayes estimate R∗ and the vector of parameters of a prior density α ′
∗:

G
(
R̂∗,α ′

∗
)

= min
R̂

max
α ′

∫
Ω

L
(
R̂,R(θ)

)
�0(θ ,α ∗α ′)dθ ,∫

Θ
�0(θ ;α ′)dθ � μ

∫
Ω

�0(θ ;α ′)dθ .
(6.56)

Given below are two cases frequently encountered in practice: the first one has an expo-

nential distribution F(t;θ), the second has a binomial.

6.4.3 Estimate of the TTF for the exponential distribution of the time-to-failure

Let F(t;λ ) = 1− exp(−λ t), λ > 0; we need to estimate the TTF

R(t) = P{ξ > t} = e−λ t (6.57)

under the condition that given prior μ-confidence interval [R�,Ru] such that

P{R� � R(t0) � Ru} � μ , (6.58)

where, generally speaking, t0 �= t. The results of testing are represented by the parameter

τ , introduced in § 6.1.

Let us find first a prior distribution for λ . In view of the monotonicity of the dependence

(6.57), a prior confidence interval for λ has the form [λ ′,λ ′′], where λ ′ = − lnRu/t0, λ ′′ =

− lnR�/t0. By the definition of a prior confidence interval, for a prior density h(λ ) of the

parameter λ we have
∫ λ ′′

λ ′
h(λ )dλ � μ . (6.59)

For the exponential distribution, a prior density h(λ ), conjugate to the likelihood kernel, is

represented by the formula (6.37). The final formulation of the problem of finding optimal
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values of the parameters of a prior density s∗ and ε∗ and, in view of (6.56), is written

similarly to (6.43)

U (s∗,ε∗) = max
s,ε

U(s,ε) = max
s,ε

d + s+1
(k + ε)2 ,

∫ λ ′′

λ ′
λ se−λεdλ � μ

Γ(s+1)
es+1 ,

(6.60)

where k = τ1 + · · ·+ τn, and U(s,ε) is the posterior variance of the parameter.

The problem (6.60) belongs to the class of problems of Nonlinear Programming, and can be

solved only numerically with computer tools. For the approximate solution of the problem

(6.60), we consider the so-called case of tests without failures which can be associated

with a highly-reliable technical device. This case is introduced by the condition s∗ = 0,

since the parameter s has the sense of the prior number of failures that occurred during

the total operating time ε . Suppose also that R(t0) ∈ [R�,1]. Thereby it follows λ ′ = 0,

λ ′′ = − lnR�/t0. The problem (6.60) takes on the form

U0(ε∗) = U(0,ε∗) = max
ε>0

d +1
(k + ε)2 ,

∫ λ ′′

0
e−λεdλ � μ

ε
. (6.61)

Since the parameter ε is continuous, the solution of the problem (6.61) belongs to the

boundary of the domain of admissible solutions, i.e., it is defined by the condition

Rε∗/t0
� = 1−μ ,

or

ε∗ =
ln(1−μ)

lnR�
t0. (6.62)

After we apply the formula similar to (6.50), we have

R̂∗(t) =
(

u∗
u∗ +1

)d+1

, u∗ =
ε∗
t

+
k
t
, (6.63)

and

σ2
R̂∗(t) =

(
u∗

u∗ +2

)d+1

−
(

u∗
u∗ +1

)2(d+1)

. (6.64)

For the lower Bayes confidence limit, we recommend the use of the formula (6.51) with

s∗ = 1. In Table 6.10 we present the estimates TTF, obtained by the formulas (6.62)–

(6.64), and (6.51) for different values of characteristics of a priori information R� and μ
and experimental data, expressed by the statistics ω = k/t0 and d = 0. For each comput-

ing variant we determine three estimates R̂∗, σR̂∗ and R∗
0.9, situated successively one after

another. As can be seen from the table, the TTF estimates improve as the prior confidence

level increases: the pointwise estimate and confidence limit increase while the posterior

mean-squared value decreases.
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Table 6.10 Bayes estimation of TTF with one failure Q̄∗(t0)/Q̄∗
0.9(t0).

ω
R0

0.9990 0.9994 0.9996 0.9998

2
1.596 ·10−4 1.198 ·10−3 7.989 ·10−4 3.999 ·10−4

3.103 ·10−3 1.329 ·10−3 1.554 ·10−3 7.776 ·10−4

6
1.591 ·10−3 1.195 ·10−3 7.977 ·10−4 3.995 ·10−4

3.094 ·10−3 2.323 ·10−3 1.551 ·10−3 7.770 ·10−4

10
1.596 ·10−3 1.192 ·10−3 7.965 ·10−4 3.993 ·10−4

3.081 ·10−3 2.318 ·10−3 1.548 ·10−3 7.763 ·10−4

6.4.4 The TTF estimate for the binomial distribution

Consider a case of independent tests, when the results are fixed in the form “success or

failure” and represented in the final form by the total number of tests n and by the number

of failures d. The likelihood function for the considered scheme has the form (6.20), and

the beta-distribution with the density (6.21) plays the role of a conjugate prior distribution.

The common minimax problem of finding unknown parameters of the a priori distribution

α∗ and β∗ and TTF estimate, R = p, in the given case will be formulated as

G(p̂∗;α∗,β∗) = min
p̂

max
α�0
β�0

∫ 1

0
L(p̂, p)pn−d+α−1(1− p)d+β−1d p,

∫ Ru

R�

pα−1(1− p)β−1d p � μ B(α,β ).

(6.65)

The problem corresponds to the case of defining a prior confidence interval [R�,Ru] with

a probability μ . Solving the problem, we again meet the necessity of using numerical

methods. In the case of the quadratic loss function L(p̂, p) = (p̂− p)2, as shown in § 6.1,

the minimax of the function of the posterior risk is reduced to the maximum of a prior

variance U(α,β ) of the parameter p. In the final form, the problem (6.65) is reduced to the

problem of Nonlinear Programming:

U(α∗,β∗) = max
α�0
β�0

U(α,β ) = max
(α+n−d)(β +d)

(α+β +n)2(α+β +n+1)
,

∫ Ru

R�

pα−1(1− p)β−1d p � μ B(α,β ).

(6.66)

This problem doesn’t have an analytical solution, and requires applying one of the methods

of Numerical Optimization. We will assume that Ru = 1 and β∗ = 1. This case is associated

with the practical situation when the reliability of a tested device is large, and a priori

information has been obtained in the form of the μ-confidence Bayes interval with the help



190 Bayesian Theory and Methods with Applications

Table 6.11 A posteriori TTF for exponential distribution.

ω
μ = 0.90 μ = 0.95

RH = 0.90 RH = 0.95 RH = 0.99 RH = 0.90 RH = 0.95 RH = 0.99

5
0.9641 0.9803 0.9957 0.9709 0.9845 0.99671

0.0346 0.0192 0.0042 0.0282 0.0153 0.00334

0.9178 0.9549 0.9902 0.9334 0.9643 0.99242

10
0.9696 0.9841 0.9958 0.9746 0.9856 0.99676

0.0295 0.0176 0.0041 0.0247 0.0142 0.00326

0.9303 0.9589 0.9906 0.9418 0.9669 0.99255

15
0.9736 0.9836 0.9959 0.9775 0.9865 0.99680

0.0257 0.0162 0.0041 0.0220 0.0132 0.00316

0.9394 0.9623 0.9906 0.9484 0.9691 0.99267

20
0.9767 0.9848 0.9960 0.9798 0.9874 0.99696

0.0227 0.0149 0.0040 0.0198 0.0124 0.00314

0.9465 0.9651 0.9908 0.9536 0.9711 0.99279

50
0.9863 0.9896 0.9964 0.9874 0.9909 0.99714

0.0135 0.0103 0.0035 0.0124 0.0091 0.00287

0.9685 0.9760 0.9918 0.9711 0.9790 0.99341

of tests without failures. The problem is simplified, and takes on the form

U(α∗,0) = max
α>0

(α+n−d)(d +1)
(α+n+1)2(α+n+2)

, Rα� � 1−μ .

It is easy to see that the solution to the problem lies on the boundary of the domain of

admissible solutions, i.e.,

α∗ =
ln(1−μ)

lnR�
. (6.67)

Now, for the estimate of TTF we should only apply the formulas (6.30) and (6.32) which

take on the form

R̂∗ = p̂∗ =
α∗ +n−d
α∗ +n+1

, (6.68)

σR̂∗ =
(α∗ +n−d)(d +1)

(α∗ +n+1)2(α∗ +n+2)
, (6.69)

and

R∗
γ =

[
1+

d +1
α∗ +n−d

F1−γ ;2(d+1);2(α∗+n−d)

]−1

. (6.70)

It should be noted that in the calculation algorithm for obtaining TTF estimates, based on

the formulas (6.68)–(6.70), the parameter α∗ plays the role of the number of successful tests
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Table 6.12 Bayes lower confidence bound of TTF for binomial testing.

μ
RH

0.80 0.90 0.95 0.97 0.99

0.90 0.9289 0.9413 0.9498 0.9536 0.9622

0.95 0.9527 0.9626 0.9696 0.9733 0.9787

0.99 0.9871 0.9907 0.9907 0.9937 0.9952

which are equivalent to using a priori information. Table 6.11 illustrates the dependence of

the estimate R∗
0.9 on R� and a prior confidence probability μ .



Chapter 7

Empirical Bayes Estimates of Reliability

7.1 Setting of the problem and the state of the theory of empirical Bayes
estimation

In many problems frequently encountered in practice, a scientific designer possesses infor-

mation on the reliability of technical devices appearing to be prototypes or analogs of the

contemplated system. These analogs may be put into operation during a long period of time

so that the information about characteristics of their reliability is certain. As prototypes

with respect to contemplating technical device, the devices having analogous functional

assignment and structure but differing from the original device by some new elements or

parameters may be used (in this case, the device of interest appears to be a modification of

a previous one); devices of the same type but made with the help of another technology or

produced by another firm; the device which is being operated under the conditions slightly

different from those applied to the original device.

The following approach is preferable and perspective for elaboration of technical devices.

Designer organizations contemplating model units accumulate statistical information about

object properties represented in the form of testing results and exploitation characteristics

of each model device. To design a new variant of the analogous technical device, engi-

neers apply all their past experience in the field. This information is reflected reasonably

in the methods of estimating the reliability, based on all preceding information about relia-

bility characteristics of devices which already have been put into operation. This situation

compels us to develop a method of reliability estimating under the conditions of data ac-

cumulation. This corresponds to the tendency of a modern technology development in the

conditions of an automatized project and production systems that use various databases.

One method of estimating the reliability under the conditions of data accumulation can

be based on empirical Bayes approach which uses a priori information, for example, in

193
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the form of reliability estimates of all preceding types of the device, and doesn’t require

determination of a prior distribution in a unique way.

In this Chapter we carry out a brief analysis of all existing estimation methods within

the framework of the empirical Bayes approach, and present practical recommendations

touching upon the calculations of TTF estimates frequently used in practical situations. We

propose also a new method of obtaining empirical Bayes estimates under the conditions of

data accumulation.

For the sake of simplicity of exposition of the foundations of the theory of empirical Bayes

estimates, we consider the case of obtaining the Bayes estimate for the scalar, parameter

θ and the connected reliability function, R(θ). Using an empirical Bayes approach, we

have to postulate the existence of a prior distribution of the parameter θ which is assumed

to be unknown. The main idea of such approach lies in the use of a general scheme of

Bayes estimation (see Chapter 2) of the approximation of either a Bayes decision rule or

a prior distribution. Approximation in both of these cases is the basis for the previous

observations. The Bayes empirical approach was initiated by Robbins [211] and developed

in the works of many. Authors (we shall only mention three such works in this field: [168,

194, and 229]).

7.1.1 Setting of the problem of empirical Bayes estimates

Let τ( j) =
(
τ( j)

1 , . . . ,τ( j)
n j

)
be the testing results (represented, for example, in the form of

total operating times) which have been fixed in the j-th series of tests. Systems which

have been tested in the 1-st, 2-nd,. . . ,(N −1)-th series are analogs to the device examined

in the N-th series. Following a formalized description of the empirical Bayes approach

[16, 208], we will assume that there exists a stable statistical mechanism leading to a prior

distribution of h(θ), unknown in general. The problem is to find a Bayes estimate of the

parameter θ of reliability function R(θ) with the help of the results obtained in the N-

th series, taking into consideration the testing results of the previous series. Following

the earlier mentioned method of estimate representation, we will consider the following

estimates: For the parameter θ consider the pointwise estimate θ̂ ∗
e , the posterior mean

value σθ̂∗e , the Bayes confidence interval [θ , θ̄ ]γ ;

For a TTF consider the pointwise estimateR̂∗
e , the posterior mean value σR̂∗

e
, and the lower

confidence limit R∗
γe

.
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7.1.2 Classification of methods

In Figure 7.1 we present an integrated classification of empirical Bayes methods. In the

first place, all methods are divided into two kinds: parametric ones which touch upon the

case with unknown parametric family of a probability distribution F(t;θ) of the trouble-

free time ξ , and nonparametric methods which are based on the assumption that F(t;θ)

belongs to some nonparametric class S which is more or less broad.

Empirical Bayesian

Methods

Non-parametric

methods

Parametric

methods

Exact methods for

distribution classes

Use of parametric

approximations on

distribution classes

Use of Bayesian

decision rule

approximation

Use of apriori

distribution

approximation

Fig. 7.1 Classification of Bayes empirical methods.

In the group of parametric methods we distinguish two classes. The methods belonging to

the first class use an empirical approximation of the Bayes decision rule without approxi-
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mation of a prior distribution. The methods belonging to the second class are nearer to the

general scheme of Bayes estimates. They are based on empirical approximation of a prior

distribution and successive use of the standard Bayes procedure. These methods form the

base for practical procedures of empirical Bayes estimates.

In the group of nonparametric methods we also distinguish two classes. The first one,

named by the class of exact methods, uses tools analogous to Ferguson constructions, con-

sidered in Chapter 4. We shall revisit these methods in the third section of Chapter 7.

7.1.3 Parametric methods based on approximation of the Bayes decision rule

These methods are developed for the special well-defined parametric families. We present

the following result, typical for this group of methods, obtained in the works [168, 170].

Consider a parametric family with a cumulative distribution function of the probability

mass P(x | θ), θ ∈ θ satisfying the following properties:

1) A random variable X is discrete for any θ ∈ θ ;

2) A function P(x | θ) satisfies the relation

P(x+1 | θ)
P(x | θ)

= a(x)+b(x)θ .

where a(x) and b(x) are some functions, and where b(x) �= 0. Poisson and negative bi-

nomial distributions may be considered as examples of such distributions. The problem

is to find the estimate of the parameter θ in the form of a mean value θ̂N = E(θ | x) with

the help of the sample x1, x2, . . . , xN of observations of the random variable X .

From the definition of parametric family P(x | θ), it follows that

θ =
P(x+1 | θ)
b(x)P(x | θ)

− a(x)
b(x)

.

The desired posterior mean value of the parameter θ can be represented in the form

E(θ | x) =
1

b(x)

∫
Θ

P(x+1 | θ)
P(x | θ)

dH(θ | x)− a(x)
b(x)

,

where H(θ) and H(θ | x) = P(x | θ)H(θ)/P(x) are, respectively, the prior and posterior

distribution functions of the parameter θ . The parametric family is of a type that the ex-

pression for E(θ | x)may be simplified as

E(θ | x) =
P(x+1)
P(x)b(x)

− a(x)
b(x)

.

In this expression a(x) and b(x) are unknown, while P(x) and P(x + 1) are known. For

obtaining the estimate θ̂N = EN(θ | x), we will use the corresponding estimates of the
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functions P̂N(x) and P̂N(x+1) obtained with the help of the observed sample x1, x2, . . . ,xN ,

where for estimates P̂N(x), P̂N(x+1) may be used usually as nonparametric estimates. The

given method has a shortcoming, the strict restriction on the type of parametric family

P(x | θ).

7.1.4 Parametric methods, based on approximation of a prior distribution

In this class, representing the largest group of methods, one may distinguish two subclasses:

The first one uses a parametric empirical approximation of a prior distribution, the second

class is based, following the same purposes, on some parametric family of prior distribu-

tions and estimated parameters of this family. Presentation of the methods belonging to

the first class will be carried out in accordance with the results of the works [17, 48, 162,

229]. The methods considered don’t have, unlike the proceeding case, any restrictions on

the parametric family F(t;θ).

As a starting point, the traditional Bayes formula for estimating the parameter θ with re-

spect to arbitrary sample τ is chosen, that is,

E(θ | τ) =

∫
Θ
θ fτ(τ | θ)dH(θ)

∫
Θ

fτ(τ | θ)dH(θ)
, (7.1)

where fτ(τ | θ) is the density of the distribution of observations. It is assumed that each

observation τ( j) ( j = 1, 2, . . . ,N) is a vector of the same dimension n; Note that this is a

simplification of the more general case when each vector τ( j) has a dimension n j. There is

a statistic θ̂ = θ̂(τ) which is sufficient for each realization of the parameter θ from the set

θ1, . . . ,θN . In this case, in accordance with the factorization theorem [208],

E(θ | τ) = E(θ | θ̂(τ)) = E(θ | θ̂).

Then expression (7.1) may be rewritten as

E(θ | θ̂) =

∫
Θ
θ f (θ̂ | θ)dH(θ)

∫
Θ

f (θ̂ | θ)dH(θ)
, (7.2)

where, it is assumed that the distribution density of the statistic f (θ̂ | θ) is known. The

method proposed in [16] lies in approximating a prior distribution function with the help of

step-functions having the increment 1/N in each of the estimates θ̂1, . . . , θ̂N . The indicated

approximation for dH(θ) has the form

dĤ(θ) =
1
N

N

∑
i=1

δ (θ̂i;θ), (7.3)
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where

δ (θ̂i;θ) =

{
� if θ = θi,

0 if θ �= θi.

Substituting (7.3) into (7.2) yields the resulting expression for the estimate of the parameter

θ over the sample τ(N):

θ̂ ∗ = EN(θ | θ̂) =

N
∑
j=1

θ̂ j f (θ̂N | θ̂ j)

N
∑
j=1

f (θ̂N | θ̂ j)
. (7.4)

The estimate θ̂ ∗ obtained with the help of (7.4) is called the first approximation estimate

in [16]. It can be defined more exactly if one uses the following simple idea. Instead of each

estimate θ̂ j in the formula (7.4), we will use an empirical Bayes estimate θ̂ (1)
j = θ̂ ∗

j of the

first approximation obtained from the formula (7.4) over the set of data τ(1),τ(2), . . . ,τ( j).

Thereby we have the following procedure for obtaining the empirical Bayes estimate θ̂ 2 of

the second approximation. At first for each j = 1, 2, . . . ,N we find the first-approximation

estimate:

θ̂ (1)
j = θ̂ ∗

j =

j
∑

i=1
θ̂ j f (θ̂ j | θ̂i)

j
∑

i=1
f (θ̂ j | θ̂i)

, j = 1, 2, . . . ,N. (7.5)

Then we evaluate the second approximation estimate θ̂ (2):

θ̂ (2) =

N
∑
j=1

θ̂ (1)
j f (θ̂ (1)

N | θ̂ (1)
j )

N
∑
j=1

f (θ̂ (1)
N | θ̂ (1)

j )
. (7.6)

As stated in the work [162], the second approximation estimate appears to be more exact.

In [16], Bennett proposes to use for obtaining a more exact value of the estimate the third,

fourth, etc., approximations. However, the exact measure of the estimate is not improved

as much as desired. Procedures for obtaining empirical Bayes estimates for different para-

metric families are the subject of consideration in the work by Lemon [137]. These works

give great attention to the questions of empirical Bayes estimates of the parametric Weibull

family see [16, 17, 48, 107, and 163]. The discrete character of approximation of a prior

distribution is a serious shortcoming of the proposed method. This obstacle doesn’t allow

us, in particular, to construct confidence intervals for the parameter θ and the reliability

functions connected with it. To this end, we apply the proposition given by Bennett and
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Martz [18], which consists of using a continuous nonparametric approximation introduced

by Parzen [191] for approximating a prior probability density h(θ) having the following

form

h(θ) = ĥN(θ) =
1

Nk(N)

N

∑
j=1

w
(
θ −θ j

k(N)

)
, (7.7)

where w(·)is a function, satisfying the conditions of boundness and regularity, and k(N) is

independent of θ , such that

lim
N→∞

k(N) = 0 and lim
N→∞

N k(N) = ∞.

Bennett and Martz use, in particular, approximation (7.7) for which

w(y) =
(

siny
y

)2

, y =
θ −θ j

2k(N)
and k(N) = N−1/s.

For this case, the Bayes parametric estimate of the parameter θ takes on the following form:

θ̂ ∗ =
1
β

∫
Θ
θ f (θ | θ̂N)ĥ(θ)dθ , (7.8)

where β is a normalizing constant. Now we can find the Bayes lower confidence limit of

TTF from the equation∫
R(θ)�Rγ

f (θ | θ̂N)ĥ(θ)dθ = γ
∫
Θ

f (θ | θ̂N)ĥ(θ)dθ . (7.9)

The subclass of parametric methods used for approximation of a prior distribution of some

parametric families gives us the methods, constructed in accordance with the following

natural scheme [229]. For a given parametric family F(t;θ), a likelihood function is con-

structed and a prior distribution is identified, conjugated with the likelihood kernel. The

parameters of a prior distribution are assumed to be unknown, and are estimated using the

estimates θ̂1, θ̂2, . . . , θ̂N . In the work [212], Robbins shows that with the growth of N an em-

pirical Bayes estimate begins to “forget” the type of prior distribution. This procedure may

be improved with the help of the specific properties associated with the estimating scheme.

The work by Higgins and Tsokos [107] gives us an example of such a modification. They

prove the following: if one carries out the estimation of a prior gamma-distribution in a

Poisson scheme using the variation coefficient, it is possible to increase the effectiveness

of the Bayes TTF estimate.

7.1.5 Nonparametric empirical Bayes methods

Most of the known results arise from the Ferguson theory that we explained in §4.1. The

first extension of this theory to the case of empirical Bayes estimates was done by Korwar
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and Hollander [128]. In the work [245], Susarla and Van Ryzin generalize these results to

the case of censored samples. Phadia [194] considers the particular case which is important

for practice. Here all censoring moments are distributed by the same probability law. All

obtained results are based on approximation of a prior measure α with the help of the pre-

ceding censored test outcomes (δ1,τ1), (δ2,τ2), . . . ,(δN−1,τN−1), where τi = min{ξi,ζi},

ξi are failure times, ζi are censoring times, δ j = 1, if the failure is observed and δ j = 0,

if the failure has been censored. The estimate of the TTF, R(t), is constructed by the re-

sults of the N-th observation (δN ,τN) with regard to the mentioned approximation of the

measure α of a prior Dirichlet process. Let us find the estimate R̂∗(t) obtained in the work

[194] for the case when all censoring times have the same distribution while failure times

have different ones. Assuming that the parameter of significance of the a priori information

β = α([0,∞)) is known,

R̂∗(t) =
1

β +1
{

I[t < τN ]+ α̂([t;∞))+ I[δN = 0, t � τN ]
} α̂([t;∞))
α̂([τN ,∞))

,

where

α̂([t,∞)) =
N+(t)
N −1

N−1

∏
i=1

(
N+(τi)+ c+1

N+(τi)+ c

)I[δi=0, t�τi]

.

N+(t)is the number of observations from the set τ1, τ2, . . . ,τN−1, exceeding t; I[A] the

indicator of the event A: if the event A has occurred I = 1, otherwise I = 0, c is a positive

constant, controlling the smoothness of the estimate (in practical calculations one often

puts c = 1).

It should be noted that all considered methods have the following shortcoming: they don’t

allow us to estimate the exact identification of R̂∗(t) and to find its interval estimate.

7.2 Empirical Bayes estimation of the survival probability for the most ex-
tended parametric distributions

In this section we shall consider the more general procedure of parametric Bayes TTF

estimates and its particular realizations for the cases of binomial, exponential and Weibull

probability distributions, as well as for the case of a linearly increasing failure rate function.

7.2.1 General procedure for obtaining estimates

Suppose that the random time to failure obeys the distribution with c.d.f. F(t;θ), and we are

given the information of the results of N tests τ(1), τ(2), . . . ,τ(N) having sizes n1, n2, . . . ,nN ,

respectively. Each vector τ( j) represents the union of two vectors: t∗( j) the failure times,
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t( j) the censoring times having sizes d j and k j, respectively, such that n j = d j + k j. We

need to find an empirical Bayes estimate of the TTF, R(t;θ) = 1−F(t;θ), for the sample

τ(N) using the results of the preceding tests.

The presence of a parametric family allows us to write with the help of expression (3.20)

or (3.21) the likelihood function �(θ | τ) for an arbitrary sample τ , and having generated

the sufficient statistic α , in the form �(θ | τ) = K(τ)�0(θ ;α).

The desired TTF estimate of R(θ) may be found if for results of the N-th series of tests a

prior density of the parameter θ is known. In view of Bayes theorem we get

h̄
(
θ | τ(N)) = h̄

(
θ | α(N))∼ h(θ)�0

(
θ ;α(N)). (7.10)

A prior density h(θ) is unknown, and we will approximate it. To this end, we assume that

there are estimates θ̂ (1), θ̂ (2), . . . , θ̂ (N), each of which has been obtained with the help of its

“own” sample τ( j) ( j = 1, 2, . . . ,N). For obtaining the estimate θ̂ ( j) we may use any statis-

tical method suitable for these purposes, it is desirable certainly that the obtained estimate

is as effective as possible. In particular, we may use a maximum likelihood method, then

components of the estimate θ̂ ( j) should be found by solving the set of equations

∂�
(
θ ;α( j))
∂θi

= 0 =⇒ θ̂ ( j)
i = θi, i = 1, 2, . . . ,m, (7.11)

where m is the dimension of the vector θ . For the same purposes we also may use the

methods which determine the estimate θ̂ ( j)
i as the posterior mean value for the sample τ( j):

θ̂ ( j)
i =

1
β j

∫
Θ
θi�0

(
θ ;α( j))h j(θ)dθ , i = 1, 2, . . . ,m, (7.12)

where β j is a normalizing factor, and h j(θ) is a prior probability density of the parameter

θ which possibly exists when we investigate the reliability for the j-th series. If there is no

a priori information in the j-th series, one should use as h j(θ) the uninformative Jeffrey’s

density [114].

For approximation of h(θ) we will use in the relation (7.10) a nonparametric discrete esti-

mate of the density for which

dĤ(θ) =
1
n

N

∑
j=1

n jδ
(
θ̂ ( j),θ

)
, (7.13)

where

δ (x,y) =

{
1 if x = y

0 if x �= y,

}
and n =

N

∑
j=1

n j.

The obtained estimate generalizes the estimate (7.3), used in the work [16], for the case

of the samples τ( j) having different sizes. The corresponding estimate of the empirical
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function of a prior distribution Ĥ(θ) has the form of the step-function with the increment

n j/n at each point θ̂ ( j).

Now, suppose that we need to find the estimate R̂∗
e = R̂∗

e(t0) in the form of the posterior

mean value (if we use a quadratic loss function). This estimate, based on approximation of

a prior distribution, is defined by the integral

R̂∗
e(t0) =

∫
Θ

R(t0;θ)�0
(
θ ;α(N))dĤ(θ)

∫
Θ
�0
(
θ ;α(N)

)
dĤ(θ)

, (7.14)

where α(N) is a sufficient statistic, corresponding to the sample τ(N). Let us substitute

approximation (7.13) into (7.14) and simplify the obtained formula. This yields:

R̂∗
e(t0) =

N
∑
j=1

n jR
(
t0; θ̂ ( j))�0

(
θ̂ ( j);α(N))

N
∑
j=1

n j�0
(
θ̂ ( j);α(N)

) . (7.15)

The empirical estimate of the posterior variance can be found analogously without any

difficulties:

σ2
R̂∗

e(t0) =

N
∑
j=1

n jR2
(
t0; θ̂ ( j))�0

(
θ̂ ( j);α(N))

N
∑
j=1

n j�0
(
θ̂ ( j);α(N)

) − R̂∗
e(t0). (7.16)

Note that we don’t meet such a form of a parametric empirical Bayes procedure in all of

the works cited above. We believe that the empirical Bayes procedure given above appears

to be the most general among all the procedures that use a discrete approximation of a prior

distribution. Unfortunately we cannot find interval estimate R∗
γ of TTF with the help of this

procedure. For this purpose we recommend using some approximate methods, based on

the knowledge of the pointwise estimate R̂∗
e(t) and mean-squared value σ2

R̂∗
e(t0).

In conclusion, we note that the general procedure given above lets us find empirical Bayes

estimates of the second and successive approximations. To do this, we need to first find

empirical Bayes estimates of the parameters θ̂ ( j) of the first approximation

θ̂ ( j)
i(1) =

j
∑

k=1
nkθ̂

(k)
i �0

(
θ̂ (k);α( j))

j
∑

k=1
nk�0

(
θ̂ (k);α( j)

) , (7.17)

and thereafter replace in (7.15) and (7.16) the estimates θ̂ ( j) by the first approximation

estimates.
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7.2.2 Binomial scheme

First we consider the simplest binomial case, when the data τ( j) ( j = 1, . . . ,N) represent by

themselves the set of 0 and 1, and the sufficient statistic α( j) = (n j,d j) contains the total

number of tests n j and number of failures d j. A TTF, in the given case, coincides with the

value of a single parameter p, and the likelihood function has the form

�(p;n,d) =
(n

d

)
pn−d(1− p)d .

In accordance with the common expressions (7.15) and (7.16), the empirical Bayes estimate

may be written as

R̂∗
e =

N
∑
j=1

n j p̂
nN−dN+1
j (1− p̂ j)dN

N
∑
j=1

n j p̂
nN−dN
j (1− p̂ j)dN

, (7.18)

and

σ2
R̂∗

e
=

N
∑
j=1

n j p̂
nN−dN+2
j (1− p̂ j)dN

N
∑
j=1

n j p̂
nN−dN
j (1− p̂ j)dN

− R̂∗
e . (7.19)

Instead of p̂ j we may use the maximum likelihood estimates p̂ j = 1−d j/n j. However, in

the case d j = 0 we have p̂ j = 1 which makes the estimate (7.18) inaccurate. It is advisable

to use the Bayes estimate p̂∗j obtained for the uniform prior distribution. In this case,

p̂∗j =

d j

∑
i=0

(−1)i d j
(d j−i)! i!(n j+i+2)

d j

∑
i=0

(−1)i d j
(d j−i)! i!(n j+i+1)

,

and for d j = 0 we have p̂∗j = 1−1/(n j +2) which mostly corresponds to the real situation.

7.2.3 Exponential distribution

For the parametric family

F(t;λ ) = 1− exp(−λ t),

the likelihood function of the sample τ( j) has the form

�
(
λ | τ( j))∼ �0(λ ;d j,Kj) = λ d j e−λKj ,
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where Kj = τ( j)
1 +τ( j)

2 + · · ·+τ( j)
n j , and d j is the number of failures in the j-th sample. Due

to this fact, the empirical Bayes estimate of the failure rate λ is computed by the formulas

λ̂ ∗
e =

N
∑
j=1

n jλ̂
dN+1
j e−λ̂ jKN

N
∑
j=1

n jλ̂ dN
j e−λ̂ jKN

, (7.20)

and

σ2
λ̂ ∗

e
=

N
∑
j=1

n jλ̂
dN+2
j e−λ̂ jKN

N
∑
j=1

n jλ̂ dN
j e−λ̂ jKN

− λ̂ ∗2
e . (7.21)

The problem is in what way should we construct the estimate λ̂ j with the help of the sam-

ple τ( j). For many empirical Bayes procedures one proposes to use maximum likelihood

estimates. Solving the likelihood equation inconformity for the given case, we obtain the

estimate of the form λ̂ j = d j/k j.

For highly reliable devices it is possible to meet a situation when there are no failures

during the testing. This automatically gives us zero estimate λ̂ j. If one fixes in all N series

only successful outcomes (all samples τ( j) consist of only stopping times without failure),

then the formulas (7.20) and(7.21) don’t hold. It is more advisable to choose as λ̂ j. the

Bayes estimate constructed with the help of the sample τ( j) which corresponds to the case

of trivial prior information. Such an estimate may be found if we put a uniform prior

distribution for λ in the interval [0, ∞). In this case the estimate λ̂ ∗
j = (d j + 1)/Kj and

formulas (7.20) and (7.21) hold for any outcomes in each of the N series of test.

7.2.4 Distribution with a linearly-increasing failure rate

The Bayes TTF estimate for this case was obtained in §3.4. Let us apply the results of this

section. In accordance with (3.54), the kernel of the likelihood function for the sample τ( j)

has the form

�0(r,z,w j,Kj) = a j(z)rb j(z)| lnr|d j , (7.22)

where

a j(z) =
1

(z+1)d j

d j

∏
i=1

[
(z−1)

t( j)∗
i
t0

+1

]
,

b j(z) =
1

z+1
[(z−1)Kj +2ω j],

ω j =
1
t0

n j

∑
i=1

τ( j)
i and Kj =

1
t2
0

n j

∑
i=1

τ( j)2
i ,

(7.23)
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t0 is the time during which we define the device TTF.

Consider first the case when the degradation parameter z is assumed to be given. We will

find empirical Bayes TTF estimates using the likelihood kernel rb j(z)| lnr|d j . The resulting

expressions for these estimates have the form

R̂∗
e =

N
∑
j=1

n jR̂
bN(z)+1
j | ln R̂ j|dN

N
∑
j=1

n jR̂
bN(z)
j | ln R̂ j|dN

, (7.24)

and

σ2
R̂∗

e
=

N
∑
j=1

n jR̂
bN(z)+2
j | ln R̂ j|dN

N
∑
j=1

n jR̂
bN(z)
j | ln R̂ j|dN

− R̂∗2
e , (7.25)

where

bN(z) =
1

z+1

[
(z−1)

1
t0

nN

∑
i=1

τ(N)
i +

2
t2
0

nN

∑
i=1

τ(N)2

i

]
.

For R̂ j we recommend using the Bayes TTF estimates with a linearly increasing failure rate

for the uniform prior distribution in [0,1]. In view of this and with the help of the function

I(z,R�,Ru,m,d) we obtain

R̂ j =
IL(z,0,1,1,d j)
IL(z,0,1,0,d j)

=
[

1− 1
b j(z)+1

]d j+1

(7.26)

where b j is computed by the formula (7.23).

Consider the more common case when the value of the failure rate degradation coefficient

z in the interval [0, t0] is unknown. We will assume that only the limit value zm is known

such that the degradation coefficient is always less than this value. To obtain the empirical

Bayes estimate we have to use the likelihood kernel (7.22). The resulting expressions have

the form

R̂∗
e(t0) =

N
∑
j=1

n jaN(ẑ j)R̂
bN(ẑ j)+1

j | ln R̂ j|dN

N
∑
j=1

n jaN(ẑ j)R̂
bN(ẑ j)

j | ln R̂ j|dN

, (7.27)

and

σ2
R̂∗

e(t0) =

N
∑
j=1

n jaN(ẑ j)R̂
bN(ẑ j)+1

j | ln R̂ j|dN

N
∑
j=1

n jaN(ẑ j)R̂
bN(ẑ j)

j | ln R̂ j|dN

− R̂∗2
e (t0). (7.28)
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We again recommend using as estimates R̂ j and ẑ j ( j = 1, 2, . . . ,N), the Bayes estimates

corresponding to the case of trivial a priori information, that is, the indices R j and z j obey

a uniform prior distribution in the intervals [0,1] and [1,zm], respectively. Using the results

of § 3.4, we can write the formulas for obtaining these estimates:

R̂ j =
1
β j

∫ zm

1

a j(z)dz
[b j(z)+2]d j+1 , (7.29)

and

ẑ j =
1
β j

∫ zm

1

za j(z)dz
[b j(z)+1]d j+1 ,

where

β j =
∫ zm

1

a j(z)dz
[b j(z)+1]d j+1 .

Estimates (7.29) have at least two advantages in comparison to corresponding maximum

likelihood estimates. To obtain the last ones we have to solve a complicated system of tran-

scendental equations for the general case. Otherwise, if we use the formulas in (7.29), we

need only to apply the methods of numerical integration for sufficiently smooth functions.

Moreover, the maximum likelihood estimates for highly reliable devices give us for d j = 0,

R̂ j = 1, ẑ j = 1, i.e., formulas (7.27) and (7.28) don’t work in this case.

7.2.5 The Weibull distribution

The present model is almost identical to the previous one. We apply the results of §3.5

for the description of this method. For the Weibull parametric family with the cumulative

distribution function F(t;λ ,α) = 1− exp(−λ tα), we introduce a new parameterization

(r,α), represented by the relation (3.66). Then the likelihood function is written in the

form (3.67). Leaving the intermediate calculations, we write only the resulting formula for

TTF estimates, R(t0).

For the case when the form of the parameter a is known, we have

R̂∗
e(t0) =

N
∑
j=1

n jR̂
ωN(α)+1
j | ln R̂ j|dN

N
∑
j=1

n jR̂
ωN(α)
j | ln R̂ j|dN

, (7.30)

σR̂∗
e(t0) =

N
∑
j=1

n jR̂
ωN(α)+2
j | ln R̂ j|dN

∑N
j=1 n jR̂

ωN(α)
j | ln R̂ j|dN

− R̂∗2
e (t0), (7.31)



Empirical Bayes Estimates of Reliability 207

and

R̂ j =
[

1− 1
ω j +2

]d j+1

, ω j(α) =
n j

∑
i=1

(
τ( j)

i
t0

)α

.

Now, we shall consider the case when the form of the parameter α is unknown. We will

assume that the maximal value αm > α is given and α is distributed uniformly in the

interval [1,αm]. For almost all practical situations α < 5, therefore we may certainly put

αm = 5. The resulting estimate of the TTF is given by:

R̂∗
e(t0) =

N
∑
j=1

n jα̂dN
j μα̂ j−1

N R̂
ωN(α̂ j)+1

j | ln R̂ j|dN

N
∑
j=1

n jα̂dN
j μα̂ j−1

N R̂
ωN(α̂ j)

j | ln R̂ j|dN

, (7.32)

and

σ2
R̂∗

e(t0) =

N
∑
j=1

n jα̂dN
j μα̂ j−1

N R̂
ωN(α̂ j)+2

j | ln R̂ j|dN

N
∑
j=1

n jα̂dN
j μα̂ j−1

N R̂
ωN(α̂ j)

j | ln R̂ j|dN

− R̂∗2
e (t0), (7.33)

where

R̂ j =
1
β j

∫ αm

1
xd jμx−1

j
dx

[ω j(x)+1]d j+1 ,

α̂ j =
1
β j

∫ αm

1
xd j+1μx−1

j
dx

ω j(x)d j+1 .

β j =
∫ αm

1
xd jμx−1

j
dx

ω j(x)d j+1 , μ =
d j

∏
i=1

t∗( j)

t0
,

ω j(x) =
n j

∑
i=1

(
τ( j)

t0

)x

.

7.3 Nonparametric empirical Bayes estimates of reliability under the condition
of data accumulation

7.3.1 Description of the problem

Development of in-house databases is one of the most important aspects of an industrial

complex. This cumulative information is analyzed, systematized and prepared in a de-

sirable format to be easily accessible to the users. One extremely important use of this

information is to develop reliability models to measure the quality of product-oriented in-

dustries, see Belyaev [15].
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Belyaev obtains a new type of multiple estimates of a TTF under the conditions of accu-

mulation of uniform data, i.e., under the assumption that experimental data of each new

portion obey the same distribution law.

Below we attempt to estimate a TTF with the help of nonuniform data, denoted by

D1, D2, . . . ,DN . The solution of the problem is based on the empirical Bayes approach

(see scheme in Fig. 7.2).

Data Bank

D1, D2, . . . ,DN−1

Testing

results of DN

Empirical Bayes

procedure

TTF

estimate

Fig. 7.2 Solution scheme.

Suppose that we have a problem of estimating the device TTF using the experimental re-

sults of its testing, Ddev. The designer operates with adatabase which contains the failure

results of the device that is being tested. Using the empirical Bayes approach, we will

find the TTF estimate by the experimental results, Ddev, taking into consideration a priori

information stored in this database. In accordance with the number of given database ob-

servations, we will denote them by DN = Ddev; the observations storedin the database will

be enumerated in accordance with the sequence of their appearance, D1, D2, . . . ,DN−1. The

problem is to find the estimate of TTF, R̂∗
e = R̂∗

e(D1, D2, . . . ,DN−1). Consider a possible

form of representation of the observations. In [15] one proposes to represent the data D j

for the censored samples of the testing durations in the following form:

D j =

⎡
⎢⎢⎣

s( j)
1 s( j)

2 · · · s( j)
n j

d( j)
1 d( j)

2 · · · d( j)
n j

k( j)
1 k( j)

2 · · · k( j)
n j

⎤
⎥⎥⎦ .

The first row contains the testing durations, fixed in the experimental operating time, and

written in increasing order; s( j)
j may be either the mean lifetime or operating time during
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which the system has the capacity to be operable, and thereafter the testing has been termi-

nated. In the second row j-th column represents the number of failures corresponding to

the operating time s( j)
i . In the i-th column of the third row, we have the number of devices

which have been tested at the time s( j)
i before the failure occurs. Later on such a generalized

representation form of the censored sample will be used for investigations.

In addition to this method of representation of information about reliability, another ap-

proach may be used, corresponding to the case when the database contains directly the reli-

ability estimates. Denote by Cj the j-th observations of the data. The contents of Cj are two

numbers: either the pointwise TTF estimate of j-th analog R̂ j and the error of its estimate

σR̂ j
or the union of R̂ j and lower confidence limit R jγ . Let us assume that Cj = (R̂ j,σR̂ j

).

The scheme of obtaining the estimate R̂∗
e for this case will be slightly changed (see Fig. 7.3).

It is clear that the passing DN →CN is connected with the loss of information.

The problem of obtaining a TTF estimate will be solved under the assumption that the

distribution function of the time to failure, F(t), belongs to the class of failure rate distri-

butions S0. The idea of obtaining the estimate lies in the construction of a suitable change

of the function F(t) with the help of the distribution function F̃(t) ∈ S0.

Data Bank

C1, C2, . . . ,CN−1

Testing

results of CN

Empirical Bayes

procedure

TTF

estimate

CN

Fig. 7.3 Improved solution scheme.

7.3.2 Solution of the problem for form D data representation

We will use the following approximation of the unknown distribution function F(t) with

the help of a two parametric piecewise linear approximation of the resource functionΛ(t) =
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− ln[1−F(t)], that is,

Λ̃(t) = χ(t0 − t)αt +χ(t − t0)[θ t − (θ −α)t0] (7.34)

where t0 is the time for which we determine the TTF estimate, and θ and α are parameters.

The form of approximation Λ̃(t;α,θ) is shown in Fig. 5.1. The parameters α and θ are

defined by the following conditions:

1) At the point t0, for which the TTF estimate is evaluated, the function F(t) and F̃(t) =

1− exp[−Λ̃(t)] coincide;

2) The approximate distribution function, F̃(t) = 1− exp[−Λ̃(t)], belongs to the class of

failure rate distributions.

Similarly, as in § 5.1 we consider the following conditions on the parameters α and θ :

α = − 1
t0

lnR, (7.35)

where R = 1−F(t0) is the unknown value of TTF and

θ � α. (7.36)

Using the equation (7.36) above we can write the likelihood function �(α,θ | D j) as:

�(α,θ | D j) = K(D j)αr jθ u j e(αKj+θμ j ) (7.37)

With the help of expression (7.36) the likelihood function �(α,θ | D j) may be written as

�(α,θ | D j) = K(D j)αr jθ u j e(αKj+θμ j ) (7.38)

The sufficient statistics included in (7.37) can be interpreted as follows: r j is the number of

failures in the data set D j, observed before the time t0, u j is the number of failures after the

time t0, Kj is the total operating time during the test until the time t0, u j is the same as Kj

after t0, K(D j) is a statistic independent of the parameters α and θ . The calculation of the

indicated statistics is carried out with the help of the data set D j by the following formulas:

r j =
m j

∑
i=1

d( j)
i and

n j

∑
i=m j+1

d( j)
i (7.39)

Kj =
m j

∑
i=1

(
d( j)

i + k( j)
i

)
s( j)

i + t0
n j

∑
i=m j+1

(
d( j)

i + k( j)
i

)
, (7.40)

and

μ j =
n j

∑
i=m j+1

(
d( j)

i + k( j)
i

)(
s( j)

i − t0
)
, (7.41)
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where m j is the number of elements in the sample s( j)
1 , s( j)

2 , . . . ,s( j)
n j satisfying the conditions

s( j)
i � t0 to, defined by the formula

m j =
n j

∑
i=1

χ
(
t0 − s( j)

i

)
.

Now, having obtained the completely defined likelihood kernel (7.37), we may find the

empirical Bayes estimate of a TTF following the general approach given in the preceding

section. The function, R = R(t0), will be expressed with the help of Λ̃(t;α,θ); by substi-

tuting the value t = t0 into (7.34) we get

R = R(t0) = exp[−Λ̃(t0;α,θ)] = e−αt0 . (7.42)

With the help of (7.15) and (7.16) the formula for TTF estimates takes on the form

R̂∗
e =

1
B

N

∑
j=1

n jαrN
j θ

uN
j e−[α̂ j(KN+t0)+θ̂ jμN ], (7.43)

and

σ2
R̂∗

e
=

1
B

N

∑
j=1

n jαrN
j θ

uN
j e−[α̂ j(KN+t0)+θ̂ jμN ] − R̂∗2

e , (7.44)

where

B =
N

∑
j=1

n jαrN
j θ

uN
j e−(α̂ jKN+θ̂ jμN). (7.45)

For application of the expressions (7.42)-(7.44), it is necessary to know the estimate

(α̂ j, θ̂ j) obtained with the help of the data D j. In the preceding section, it was men-

tioned that the likelihood estimate cannot be used for this purpose. Under these circum-

stances we recommend using the Bayes estimate corresponding to the noninformative prior

probability distribution. Let us use this recommendation to obtain the estimates (α̂ j, θ̂ j),

j = 1, 2, . . . ,N. To find the noninformative prior probability distribution for the parameters

α and θ , we assume that R = exp(−αt0) is uniformly distributed in the interval [0,1]. With

the help of the transformation (7.35), we can write the marginal prior density, h1(α), of the

parameter α as follows:

h1(α) = t0 e−αt0 , 0 � α < ∞. (7.46)

This expression is a particular case of (5.30) with R� = 0 and Ru = 1. We now define the

conditional prior density, h2(θ |α), taking into account the inequality (7.36), and assuming

that, h2(θ |α), as well as h1(α) belongs to the class of exponential probability distributions:

h2(θ | α) = t0 e−(θ−α)t0 , α � θ < ∞.
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Now, we can easily write the joint prior density of the parameters α and θ :

h(α,θ) = h1(α)h2(θ | α) = t2
0 e−θ t0 , 0 � α < ∞ , α � θ < ∞. (7.47)

Using expressions (7.37) and (7.46), we obtain the posterior probability distribution of the

parameters α and θ with data D j:

h̄(α,θ | D j) =
1
β j
αr jθ u j e−[αKj+θ(μ j+t0)], 0 � α < ∞, α � θ < ∞, (7.48)

where

β j =
∫ ∞

0

∫ ∞

2
αr jθ u j exp

{
− [αKj +θ(μ j + t0)]

}
dθ dα. (7.49)

Thus, the Bayes pointwise estimates θ̂ and α̂ are given by

α̂ j =
∫ ∞

0

∫ ∞

α
α h̄(α,θ | D j)dθ dα and θ̂ j =

∫ ∞

0

∫ ∞

α
θ h̄(α,θ | D j)dθ dα. (7.50)

Having derived the integrals (7.49) for the function h̄(α,θ | D j) of the form(7.47) and

integral (7.48), we can write the resulting formulas for the desired estimates:

α̂ j =
1

t0β j

u j

∑
i=0

(u j + r j +1− i)!
(u j − i)!

· 1
(ω1 j +1)i+1(ω j +1)u j+r j+2−i , (7.51)

θ̂ j =
u j +1
t0β j

u j+1

∑
i=0

(u j + r j +1− i)!
(u j +1− i)!

· 1
(ω1 j +1)i+1(ω j +1)u j+r j+2−i , (7.52)

and

β j =
u j

∑
i=1

(u j + r j − i)!
(u j − i)!

· 1
(ω1 j +1)i+1(ω j +1)u j+r j+1−i . (7.53)

Let us note in conclusion that in practice we may meet a case when a scientist, carrying out

the statistical analysis of each series of tests which possesses nontrivial prior information,

i.e., he can find an interval of an uncertain prior indeterminacy [R� j ,Ru j ] such that R j ∈
[R� j ,Ru j ], j = 1, 2, . . . ,N. Such a set of data should be completed by two numbers R� j and

Ru j . (It is clear that in some cases R� j = 0, Ru j = 1, i.e., there is no a priori information.)

In this general case the expressions for the estimates α̂ j and θ̂ j’ have the following form:

α̂ j =
1

t0β j

u j

∑
i=1

1
(u j − i)!

· 1
(ω1 j +1)i+1

u j+r j+1−i

∑
k=0

(u j + r j +1− i)!
(u j + r j +1− i− k!)

· 1
(ω j +1)k+1

×
(
R
ω j+1
u j | lnRu j |u j+r j+1−i−k −R

ω j+1
� j | lnR� j|u j+r j+1−i−k), (7.54)

θ̂ j =
u j +1
t0β j

u j+1

∑
i=0

1
(u j +1− i)!

· 1
(ω1 j +1)i+1

u j+r j+1−i

∑
k=0

(u j + r j +1− i)!
(u j + r j +1− i− k!)

· 1
(ω j +1)k+1

×
(
R
ω j+1
u j | lnRu j |u j+r j+1−i−k −R

ω j+1
� j | lnR� j|u j+r j+1−i−k), (7.55)
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and

β j =
u j

∑
i=0

1
(u j − i)!

· 1
(ω1 j +1)i+1

u j+r j−i

∑
k=0

(u j + r j +1− i)!
(u j + r j − i− k!)

· 1
(ω j +1)k+1

×
(
R
ω j+1
u j | lnRu j |u j+r j−i−k −R

ω j+1
� j | lnR� j|u j+r j−i−k), (7.56)

where ω1 j and ω j denote the dimensionless statistics and ω1 j = μ j/t0 and ω j = (Kj +

μ j)/t0, which can be interpreted as the cumulative relative operable time in j-th series af-

ter time t0, and total operable time, respectively. The expressions (7.50)-(7.52), obtained

earlier, can be derived by (7.53)–(7.55) if one sets in the latter R� j = 0 and Ru j = 1, respec-

tively.

7.3.3 Solution of the problem for the form of data representation

Since the information contained in Cj touches directly upon the reliabilityfunction, R j, we

need to develop the empirical Bayes procedure, using a random parameter the unknown

value R j. We start with the following formula for a joint prior probability density h(α,θ):

h(α,θ) = h1(α)h2(θ | α) = h1(α)t0 e−(θ−α)t0 , 0 � α < ∞, α � θ < ∞,

assuming that h1(α) is unknown. Using the likelihood function of (7.37) and Bayes theo-

rem we write the posterior probability density of these parameters:

h̄(α,θ | D j) ∼ αr jθ u j e−(αKj+θμ j )h1(α)e−(θ−α)t0 . (7.57)

Thereafter, we take into account the fact that unknown TTF R = R(t0) = exp(−αt0), is

defined only by the parameter α . Then from the expression for the joint probability density

h̄(α,θ | D j), we obtain the marginal posterior density

h̄(α | D j) =
∫ ∞

α
h̄(α,θ | D j)dθ

∼ αr j e−α(Kj+μ j)
u j

∑
i=0

1
(μ j − i)!

· αu j−i

(μ j + t0)i+1 h1(α), 0 � α < ∞, (7.58)

and then, we find the posterior probability density of unknown TTF, R, using the relation

α(R) = − lnR/t0;

h̄R(x | D j) = h̄(α(x) | D j)|α ′(x)| ∼ [α(x)]r j e−α(x)(Kj+μ j)

×
u j

∑
i=0

1
(u j − i)!

· [α(x)]u j−i

(μ j + t0)i+1

{
h1(α(x))|α ′(x)|

}
. (7.59)

The expression enclosed in brackets in (7.59) is, by definition, the marginal prior probabil-

ity density, hR(x), of the reliability function R, which is unknown. After simplification, we

have

h̄R(x | D j) ∼ hR(x)xω j

u j

∑
i=0

1
(u j − i)!

· [lnx]r j+u j−i

(ω1 j +1)i+1 . (7.60)
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The expression for the posterior probability density (7.59) of the N-th test series with the

data set DN enables us to write the desired pointwise TTF estimate in the form

R̂∗
e =

N
∑
j=1

n jR̂ j�0
(
R̂ j;rN ;uN ,ωN ,ω1N

)
N
∑
j=1

n j�0
(
R̂ j;rN ;uN ,ωN ,ω1N

) ,

where

�0(x;r,u,ω,ω1) = xω
u

∑
i=0

1
(u− i)!

· | lnx|r+u−i

(ω1 +1)i+1 . (7.61)

When we use the formula for R̂∗
e , two questions remain open: what do we use as an esti-

mate R̂N and how should we substitute the unknown sample sizes n j participating in the

procedure of obtaining the estimates R̂ j ( j = 1, 2, . . . ,N −1). To answer the first question

we will apply, as before, the recommendations of § 7.2. Choose as R̂N the Bayes estimate

of TTF, obtained with the help of the known data DN , and use the posterior probability

density (7.59). If we assume that the interval of an uncertain prior,
[
R�N ,RuN

]
, is given,

then the estimates R̂N and σR̂N
may be found with the help of the formulas analogous to

(5.73) and (5.74):

R̂N =
I1(ωN ,ω1N ,rN +uN ,uN)
I0(ωN ,ω1N ,rN +uN ,uN)

, (7.62)

and

σ2
R̂N

=
I1(ωN ,ω1N ,rN +uN ,uN)
I0(ωN ,ω1N ,rN +uN ,uN)

− R̂2
N (7.63)

where

Im(ω,ω1,n,k) =
k

∑
i=0

(n− i)!
k− i)!

· 1
(ω1 +1)i+1

n−i

∑
j=0

1
(n− i− j)!

× 1
(ω+m+1) j+1

(
Rω+m+1

uN | lnRuN |n+i+ j −Rω+m+1
�N | lnR�N |n+i+ j). (7.64)

In a simpler case, when there is no a priori information in the form of the interval[
R�N ,RuN

]
, the function Im(ω,ω1,n,k) has the form

Im(ω,ω1,n,k) =
k

∑
i=0

(n− i)!
k− i)!

· 1
(ω1 +1)i+1 · 1

(ω+m+1)n−i+1 . (7.65)

The calculation of the estimates R̂N and σR̂N
should be carried out, as before, with the

formulas (7.61) and (7.62), but for this purpose we use the function (7.64).

Consider now the second question touching upon the needed replacement of the sample

sizes n j. Recall that these quantities have been introduced in the general Bayes empirical
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procedure as weight coefficients reflecting the significance of each estimate under approx-

imation of the posterior probability distribution. It is assumed that increasing the sample

size used for the estimate implies a significant increase. Since the exactness of the obtained

estimate appears to be, in some sense, an equivalence, we will use as characteristic of the

significance of the j-th estimate the following quantity:

v j =
1/σR̂ j

1
σR̂1

+ 1
σR̂2

+ · · ·+ 1
σR̂N

, j = 1, 2, . . . ,N. (7.66)

Such a choice may be explained, for example, by the fact that for most of the estimates

σR̂ j
∼ n−1

j .

The resulting expressions for the empirical Bayes TTF estimate have the following form:

R̂∗
e =

∑N
j=1 v jR̂ j�0

(
R̂ j;rN ,rN ,ωN ,ω1N

)
∑N

j=1 v j�0
(
R̂ j;rN ,uN ,ωN ,ω1N

) , (7.67)

and

σ2
R̂∗

e
=
∑N

j=1 v jR̂2
j�0

(
R̂ j;rN ,uN ,ωN ,ω1N

)
∑N

j=1 v j�0
(
R̂ j;rN ,uN ,ωN ,ω1N

) − R̂∗2
e , (7.68)

where �0(x;r,u,ω,ω1) is given by the formula (7.60).

7.3.4 Comparative analysis of estimates

It is clear that the estimate, found in accordance with the second scheme, is more general,

since the data D j may be reduced to the data Cj with the help of formulas (7.61) and (7.62)

by letting N = j. Use of this transformation allows us to estimate TTF for the mixed scheme

when the database contains both data’s D j and Cj.The point is that the TTF estimate for

some j-th device may not always be found with the help of D j; we may need another source

of information. Thereby, the second scheme allows a joint processing of reliability data,

obtained with the help of different schemes. We should note also another important aspect.

If one constructs a procedure by the second scheme, then it is possible to use the continuous

approximation of the prior probability density, hR(x), by using Parzen’s formula (7.7). This

allows us, in turn, to find the lower confidence limit of TTF in accordance with equation

(7.9). The construction of the scheme of defining the lower confidence limit of TTF is a

further development of the proposed method.

7.3.5 Investigation of the accuracy of TTF estimates

Accuracy of the estimate R̂∗
e , obtained by the proposed method, will be studied using statis-

tical simulations. Let us simulate 5 samples of sizes 20, 40, 60, 80 and 100 from a random
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Table 7.1 Comparison of the Bayes estimate of TTF with a true value and non-homogeneous a priori data.

αN = 1; R(t0) = 0.7516

N nN = 20 nN = 40 nN = 60 nN = 80 nN = 100

2 0.7139 0.7415 0.7328 0.7509 0.7524

4 0.7318 0.7418 0.7240 0.7418 0.7449

6 0.7094 0.7218 0.7443 0.7530 0.7518

8 0.6988 0.7610 0.7415 0.7488 0.7557

αN = 2; R(t0) = 0.9216

2 0.9248 0.9251 0.9230 0.9209 0.9219

4 0.9236 0.9249 0.9235 0.9187 0.9207

6 0.9254 0.9263 0.9224 0.9238 0.9230

8 0.927 0.9259 0.9244 0.9244 0.9238

αN = 3; R(t0) = 0.9769

2 0.9731 0.9740 0.9779 0.9744 0.9773

4 0.9729 0.9735 0.9735 0.9731 0.9261

6 0.9722 0.9746 0.9760 0.9753 0.9762

8 0.9754 0.979 0.9722 0.9733 0.9752

variable with the Weibull distribution

F(t) = F(t;σ ,α) = 1− exp
[
−
( t
σ

)α]
(7.69)

where parameter α = αN is fixed. Censoring to the right is carried out by the random

number having the uniform distribution in the interval [k1σ , k2σ ].The observations are rep-

resented in the format DN . For obtaining data sets Cj = (R̂ j,σR̂ j
), j = 1, 2, . . . ,N − 1,

similar samples of 40 sizes for different values of the shape parameter α j are simulated.

This parameter is chosen randomly in the interval [0.8αN ,1.2αN ].

Thus, we ensure the second scheme as the result of transformation of the first one for

nonuniform data D1, D2, . . . ,DN . The results of modeling with t0 = 100s, σ = 350s,

k1 = 0.75, k2 = 2.0 for different N are represented in Table 7.1. Comparison of the empir-

ical pointwise Bayes estimate R̂∗
e with the exact value of TTF lets us draw the following

conclusions:

1) With the increasing of the sample size nN , the estimate R̂∗
e approaches the exact value

of TTF;

2) With the increasing of the past data, the distance of the estimate R̂∗
e to the exact value

decreases.

In Table 7.2 we represent the results of modeling for the case when the data

C1, C2, . . . ,CN−1 are generated by simulating homogeneous samples, i.e., the parameter
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Table 7.2 Comparison of Bayes estimate of TTF with the true value and homogeneous a priori data.

αN = 1; R(t0) = 0.7516

N nN = 20 nN = 40 nN = 60 nN = 80 nN = 100

2 0.7229 0.7433 0.7324 0.7552 0.7508

4 0.7408 0.7441 0.7380 0.7499 0.7510

6 0.7551 0.7480 0.7421 0.7508 0.7512

8 0.7499 0.7500 0.7498 0.7521 0.7509

αN = 2; R(t0) = 0.9216

2 0.9241 0.9188 0.9234 0.9229 0.9201

4 0.9244 0.9212 0.9231 0.9215 0.9220

6 0.9230 0.9209 0.9212 0.9210 0.9*221

8 0.9209 0.9219 0.9208 0.9218 0.9213

αN = 3; R(t0) = 0.9769

2 0.9740 0.9751 0.9788 0.9753 0.9761

4 0.9737 0.9744 0.9760 0.9780 0.9772

6 0.9777 0.9754 0.9774 0.9761 0.9766

8 0.9752 0.9766 0.9772 0.9767 0.9773

Table 7.3 Comparison of Bayes estimate R̂∗
ε without a priori information (N = 0) for Weilbull

distributions with αN = 3 (R(t0) = 0.9769).

N
nN

20 40 60 80 100

Homogeneous data

0 0.9732 0.9740 0.9753 0.9787 0.9755

2 0.9740 0.9751 0.9788 0.9753 0.9761

4 0.9737 0.9744 0.9760 0.9780 0.9772

Nonhomogeneous data

0 0.9732 0.9740 0.9753 0.9787 0.9755

2 0.9731 0.9740 0.9779 0.9744 0.9773

4 0.9729 0.9749 0.9735 0.9731 0.9761

α during the simulation of the data D1, D2, . . . ,DN is constant. Here we observe a prop-

erty opposite to that one in the conclusion (2): with the increasing of N, the accuracy of

estimating the exact value of the TTF increases.

The specific features mentioned above are in full accordance with the qualitative informa-

tion about the properties of empirical Bayes estimates.

In reality, since the prior information is very influential under the small sample sizes, during

the process of nonuniform data we encounter distortion of the posterior probability distri-
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bution. At the same time, if the past data and DN are homogeneous, the completion of the

sample DN occurs which implies an increase in the accuracy of the estimate.

An illustration of this fact is that in the first and second cases a priori information allows

us to increase the accuracy of the estimate obtained in comparison with the situation when

TTF estimating is carried out only with the help of the sample DN .

The conclusions we have made confirm the workability of the proposed method of empiri-

cal Bayes estimates and reinforce the quality of the estimate because of the use of the prior

data.

Theoretical analysis of the quality of empirical Bayes estimates in accordance with the

properties of prior data is impeded by the complicated form of the procedure of construction

of nonparametric estimates. During the process of extensive statistical experimentation, we

find that using a prior nonhomogeneous data portions can lead to a bias in the empirical

Bayes estimates. This bias increases with an increase in the testing size for the tested device

while the structure of the data about similar tests does not change.



Chapter 8

Theoretical Model for Engineering Reliability

8.1 Setting of the problem

In this and later chapters we shall investigate the methods of calculating the TTF of a

technical device with the help of parametric models. The essence of this model is a for-

malization of the conditions of a normal (without failures) functioning of the device by the

functional inequalities of the form

Z j(ζ , t) = φ (X1(ζ , t), . . . ,XN(ζ , t))(ζ , t), . . . ,XN(ζ , t) > 0, j = 1, 2, . . . ,M, (8.1)

where Z j(ζ , t) is the initial random variable, depending on multivariate coordinate ζ and

time t; Z j is a status variable, φ j(·) is an efficiency function. For the reliability function, R,

in the general case we will use the probability expression given by

R = R(τ) = P
{

Z j(ζ , t) > 0, j = 1, 2, . . . ,M, ζ ∈ Rk, 0 � t � τ
}
. (8.2)

A lot of works are devoted to the application of such an approach for the investigation of

technical devices [26, 32, 89, 112, 135, 173, 260]. The results of Chapters 8–10 repre-

sent the development of traditional methods of estimating TTF for technical devices under

the condition of uncertainty with respect to initial data and the survival state model. In

this chapter we will use a particular form of the reliability function (8.2), considering the

object state in a fixed moment of time to and for a fixed point of the device ζ0 with the

most dangerous functioning conditions. In real practical situations for mechanical devices,

the vector of initial variables X = (X1,X2, . . . ,XN) generates physical-mechanical charac-

teristics, geometrical parameters and loading factors. Usually we have certain information

about these variables which lets us find a probability density, fX (x;θ), at least with an ac-

curacy up to the parameter vector θ . Most commonly used in practice in the normal model

when the parameter vector θ = (θ1, θ2, . . . ,θk) consists of the expected values mi, standard

deviations σi and correlation coefficients ρi j (i, j = 1, 2, . . . ,N, i < j). The point is that in

219
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real situations the error of the working capacity model (8.1) and initial data in the form of

parameters θ1, θ2, . . . ,θk may be so large that the gain in strictly defining the TTF through

the use of more exact (different from Gaussian) probability distributions gives us no posi-

tive effect. Thus, the authors choose another approach to improving existing methods. We

shall proceed with the development of the error of the methods of estimating TTF, count-

ing on all the possible initial data and the working capacity model and using the normal

distribution for the approximation of the function fX (x;θ). It is clear that the ideal way out

of this situation is the solution of the problem of simultaneous consideration of all types of

error that we mentioned. Unfortunately, such a problem takes on a very complicated and

tedious form and, in most cases, is beyond the limits of engineering methods.

In this chapter we shall consider a simpler problem of estimating the device TTF with

the help of uncertainty in assigning the initial data under the assumption that a working

capacity model is free of error. Later on, we will touch upon a more general problem

counting on both types of errors. We consider the Bayes approach as a methodological

basis of solving the problem, and assume that only the experimental results are the actual

information for the acceptance of decisions.

In accordance with the form of the working capacity model (8.1) and general expression

(8.2), we rewrite the TTF in the form of the N-dimensional integral

R = RX (θ) =
∫ N

· · ·

∫

φ(x)�0
j=1,2,...,M

fX (x;θ)dx1 · · ·dxN (8.3)

There is another way of finding the reliability function, R, consisting of the following steps:

we perform the transformation X→Z and find the probability density fZ(z;ϑ) of the vector

of state parameters, Z, where ϑ = (ϑ1, ϑ2, . . . ,ϑ�) is a vector of parameters, and evaluate

the M-dimensional integral

R = RZ(ϑ) =
∫ ∞

0

M
· · ·

∫ ∞

0
fZ(z;ϑ)dz1 · · ·dzM. (8.4)

Since the transformation fX (x;θ) → fZ(z;ϑ) is univalent, the vector ϑ is determined

uniquely by the vector θ . If the parameter θ or ϑ is given, the TTF is determined com-

pletely by the expressions (8.3) and (8.4). We will consider a problem of estimating TTF

under the condition that the values of all or portion of the parameters are unknown; instead

of the values of the parameters θi, their intervals of uncertainty [θ ′
i ,θ ′′

i ] are given, or in a

general case, a prior p.d.f. hθ (θ) is known.

8.1.1 Setting of the problem

The problem of obtaining TTF estimates is solved under the following assumptions:
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(1) A working capacity model of the form (8.1) is known and appears to be ideal, i.e., it is

free of errors;

(2) Given satisfactory, from the point of view of engineering exactness, expressions for the

p.d.f’s fX (x;θ) and fZ(z;ϑ), where the values of the parameters θ and ϑ are unknown;

(3) For a vector of parameters θ (or ϑ ) given a prior p.d.f. hθ (θ) (or hϑ (ϑ));

(4) During the tests, the values of the initial variables are fixed; the set of these vari-

ables will be denoted by x∼ =
{

xi j
}

, where i = 1, 2, . . . ,N is the variable number,

j = 1, 2, . . . ,n is the test number.

The phrase “are fixed during the tests” means that the parameter value may be measured in

the test or it is a priori assumed that in the test the parameter takes on a certain value.

The problem is to Bud the pointwise TTF Bayes estimate, R̂∗, the posterior standard de-

viation, σR̂∗ , and Bayes lower confidence limit, R∗
γ , under the given confidence level, γ .

The general solution will cover two cases: in the first one, a prior p.d.f. hθ (θ) of the pa-

rameter vector of the initial variables X, in the second case, hϑ (ϑ) for the vector of state

variables Z.

8.1.2 The solution algorithm in case one

Let us write the likelihood function for the known p.d.f. fX (x;θ) using the sample of results

x = (x1,x2, . . . ,xN). Since x∼ are noncensored data, we have

�X
(
θ | x∼

)
=

n

∏
j=1

fX (x j;θ). (8.5)

Now we return to the traditional Bayes scheme. Using Bayes theorem, we obtain the pos-

terior p.d.f. of the parameter θ

h̄0
(
θ | x∼

)
∼ hθ (θ)�X

(
θ | x∼

)
.

Thereafter, in accordance with the standard Bayes scheme, we can find the pointwise esti-

mate

θ̂ ∗ = argmin
θ∈Θ

{
G
(
θ̂
)}

,

where G
(
θ̂
)

is the function of a mean posterior risk. In particular, if a mean square error

loss function has been chosen, we have

θ̂ ∗
i =

∫
Θ
θih̄θ

(
θ | x∼

)
dθ , i = 1, 2, . . . ,k. (8.6)

Note that the Bayes estimate θ̂ ∗ is determined by the sample x∼, a prior p.d.f., hθ (θ), and the

form of the probability distribution fX (x;θ). The Bayes TTF estimate may be found with



222 Bayesian Theory and Methods with Applications

the help of the obtained estimate (8.6) as R̂∗ = RX
(
θ̂ ∗) where the form of this dependence

is defined with the help of the integral (8.3). The estimate RX
(
θ̂ ∗), generally speaking,

may be biased. Therefore, the estimate of the form

R̂∗ = argmin
R̂

∫
Θ

L
(
R(θ), R̂

)
h̄θ

(
θ | x∼

)
dθ (8.7)

is more preferable. Here L
(
R(θ), R̂

)
represents a loss function. For a mean square error

function we obtain

R̂∗ =
∫
Θ

RX (θ)h̄θ
(
θ | x∼

)
dθ . (8.8)

Comparing the expressions (8.8) and (8.3), we may draw the conclusion that the calculation

of the estimate R̂∗ is connected with the evaluation of the (N +k)-dimensional integral. The

error in defining the estimate (8.8) may be represented in the form of the posterior mean-

squared value of the function RX (θ). This approach allows us to find the Bayes lower

confidence limit R∗
γ for a TTF with a given confidence level γ . To do this we need to solve

the equation ∫
RX(θ)�R∗γ

h̄
(
θ | x∼

)
dθ = γ. (8.9)

8.1.3 The algorithm of the problem in case two

Suppose that we are given a prior p.d.f. h(ϑ) of the status variable Z = (Z1,Z2, . . . ,ZM).

Having the system of working capacity functions φ j(·) (see assumption (1)) and sample x∼,

we may obtain the set of experimental values of the status variables
{

z ji
}

= (z1,z2, . . . ,zN)

(i is the test number, j is the variable number), where z ji = φ j(xi), i = 1, 2, . . . ,n; j =

1, 2, . . . ,M. The reasoning is similar to that for the first case. For the posterior probability

density of the parameter ϑ we will have

h̄
(
ϑ | z∼

)
∼ h(ϑ)�Z

(
ϑ | z∼

)
, (8.10)

where

�Z
(
ϑ | z∼

)
=

n

∏
i=1

fZ (zi;θ) (8.11)

For obtaining TTF estimates we should use the common integral (8.4). This may be done in

the following two ways: with the help of the posterior estimate ϑ̂ ∗ or directly, by estimating

the function RZ(ϑ). With mean square error loss function in the first case we have R̂∗ =

RZ
(
ϑ ∗), where

ϑ̂ ∗
j =

∫
ΘZ

ϑ j h̄
(
ϑ | z∼

)
dϑ , j = 1, 2, . . . , �,
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and ΘZ is the domain of changing of the parameters ϑ . In the second case,

R̂∗ =
∫
ΘZ

RZ(ϑ)h̄
(
ϑ | z∼

)
dϑ =

∫
ΘZ

h̄
(
ϑ | z∼

)∫ ∞

0

M
· · ·

∫ ∞

0
fZ(z;ϑ)dz. (8.12)

The expression for the posterior variance of the TTF, which appears to be a characteristic

of the accuracy of the estimate (8.12), may be represented in the form of an analogous

integral:

σ2
R̂∗ =

∫
ΘZ

R2
Z(ϑ)h̄

(
ϑ | z∼

)
dϑ = R̂∗2. (8.13)

The equation for obtaining the Bayes lower confidence limit in the case when the prior

density h(ϑ) is given has a form similar to that for the equation (8.9):∫
RZ(ϑ)�R∗

γ
h̄
(
ϑ | z∼

)
dϑ = γ. (8.14)

Comparing these two cases we note that their corresponding estimates coincide only in the

case when there is a correspondence between the hθ (θ), and h(ϑ) reflecting adequately

the dependence ϑ = ϑ(θ). At the same time, these estimates differ between themselves

if a priori information on parameters θ and ϑ are obtained independently, starting from

different prior arguments. The question about the choice of the form (hθ (θ) or h(ϑ))

of a prior distribution probably cannot be solved uniquely. On one hand, since hθ (θ)

determines the prior distribution of the parameter, characterizing the initial variables, we

have more various a priori information than information for h(ϑ). On the other hand, the

calculation scheme which uses h(ϑ) will be simpler, since the dimension of the vector ϑ ,

as a rule, is much less than the one for the vector θ . We will prefer the second calculation

scheme, assuming that the prior density h(θ) may be found with the help of the probability

density hθ (ϑ).

In the last two sections we have solved the problem of estimating TTF for the technical

device having a working capacity model represented by one inequality of the form (8.1) for

the Gaussian distribution of a status variable. The solution is carried out in an ascending

order, that is, at first we consider a simpler case of the known variance of a status variable

Z, and thereafter, we investigate the general case when all parameters are unknown.

8.2 Reliability function estimates for the known variance of a status variable

Let a device TTF be defined by a single status variable, obeying a normal law with the

p.d.f., fZ(z;mZ ,σZ).Then, in accordance with the general expression (8.2), we have

R = R(mZ ,σZ) =Φ
(

mZ

σZ

)
, (8.15)
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where Φ(u) is the Laplace function. This case may serve as an approximate description

of a one-dimensional model of survival time of the form Z = φ(X1,X2, . . . ,XN) > 0, when

one uses a normal approximation of a probability distribution of the status variable Z, the

parameters mZ and σZ can be found approximately by the formulas

mZ ∼= φ(mX )+
1
2 ∑∑

1�i� j�N

ϑ 2φ(mX )
ϑmiϑm j

ρi jσiσ j, (8.16)

and

σ2
Z
∼= [φ(mX )−mZ ]2

+ ∑∑
1�i� j�N

{
ϑφ(mX )
ϑmi

· ϑφ(mX )
ϑm j

+[φ(mX )−mZ ]
ϑ 2φ(mX )
ϑmiϑm j

ρi jσiσ j

}
, (8.17)

where mX = (m1, . . . ,mN) is a vector of mean values of the initial variables X, σX =

(σ1, . . . ,σN) is a vector of the standard deviation values of X, ρ̃X = {ρi j}N×N is a matrix

of correlation coefficients of the vector X. The set (mX ,σX , ρ̃X ) generates the parameter

vector θ .

Here we consider a particular case when the variance of a status variable is known, i.e.,

we assume that the parameter σZ is completely known, whereas for mZ , we know the

uncertainty interval [α1,α2], on which the a priori distribution is defined with density h(ϑ).

Often we meet the situation when it is difficult to substantiate the form of the density h(ϑ)

in the interval [α1,α2]. Therefore, following Jeffrey’s approach, we use a uniform prior

distribution

h(ϑ) =

⎧⎨
⎩

1
α2 −α1

, α1 � ϑ � α2,

0, ϑ < α1, ϑ > α2.
(8.18)

Now, since the parameter σZ is a priori fixed, the p.d.f. of the status variable Z is written as

fZ(z;ϑ) =
1√

2πσZ
e−(z−ϑ)2/

(
2σ2

Z

)
. (8.19)

Let us use the general scheme described in 8.1.3. First we shall find the likelihood function.

Suppose z∼= (z1,z2, . . . ,zN) is the sample of results of independent tests. Moreover, in view

of the assumptions (1) and (4), zi = φ(xi), i = 1, 2, . . . ,n. In accordance with the general

expression (8.5) for the likelihood function,

�
(
ϑ | z∼

)
=

1
(2π)n/2σn

Z
exp

[
− 1

2σ2
Z

(
nν2 −2nν1ϑ +nϑ 2)]

∼ exp
[
− 1

2σ2
Z

(
ϑ 2 −2nν1ϑ

)]
, (8.20)
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where νk =
(
zk

1 + zk
2 + · · ·+ zk

N
)
/n is the k-th statistical initial moment. With the help of the

relation (8.20) we can write the prior p.d.f. conjugate with a likelihood kernel as

h(ϑ) = h(ϑ ;α1,α2) ∼ exp
[
− 1

2σ2
Z

(
α2ν2 −α1ϑ

)]
, (8.21)

which depends on two parameters. Using the relations (8.20) and (8.21) together with the

Bayes theorem for the posterior p.d.f. h̄
(
ϑ | z∼

)
, we obtain

h̄
(
ϑ | z∼

)
∼ exp

[
− 1

2σ2
Z

(
α ′

2ν2 −α ′
1ϑ

)]
, (8.22)

where α ′
1 = α1−2v1n, α ′

2 = α2 +n. If we have chosen the uncertainty interval [α1,α2] and

put α1 = α2 = 0, then the prior density (8.21) is transformed into the uniform one (8.18)

associated with the posterior probability density

h̄
(
ϑ | z∼

)
∼ exp

[
− n

2σ2
Z

(
ν2 −2v1ϑ

)]
, α1 � ϑ � α2 (8.23)

Let us note that for practical calculations it is better to use (8.23) than (8.22), because we

can address serious difficulties connected with the choice of the parameters α1, α2.

Define the Bayes prior estimate ϑ̂ ∗ as the posterior mean value. The resulting expression

will be obtained after certain transformations and results in the form

ϑ̂ ∗ = v1 +
1√
2π

· σZ√
n
· e−u2

1/2 − e−u2
2/2

Φ(u2)−Φ(u1)
(8.24)

where uk = (αk − v1)
√

n/σZ , k = 1, 2.

Let us study the obtained estimate. At first, ϑ̂ ∗ → v1 as n → ∞, i.e., the Bayes estimate

converges asymptotically to the maximum likelihood estimate. Consider the symmetric

prior interval [ϑ0 − u, ϑ0 + u], where ϑ0 is a center point. In this case, u1 = (ϑ0 − u−
v1)

√
n/σZ , u2 = (ϑ0 + u− v1). If the sample mean v1 is near to ϑ0, i.e., the test results

are well-consistent with the prior information, then |u1| ∼= |u2| and ϑ̂ ∗ ∼= v1. Suppose now

u → ∞, that corresponds to the case of absence of a prior information about the parameter

ϑ . Then, for any n, we have |uk| → ∞. Consequently, ϑ̂ ∗ → v1, i.e., the Bayes estimate

coincides with the asymptotic sample mean value.

To find the posterior variance of the parameter ϑ , we apply the expression for the posterior

probability density (8.23) and write

σ2
ϑ̂∗ =

∫
Θ
ϑ 2h̄

(
ϑ | z∼

)
dϑ − ϑ̂ ∗.

After the necessary calculations we finally get

σ2
ϑ̂∗ =

1√
2π

· σZ√
n
· 1
Φ(u2)−Φ(u1)

{
√

2π
(

v2
1 +

σ2
Z

n

)[
Φ(u2)−Φ(u1)

]

+2v1
σZ√

n

(
e−u2

1/2 − e−u2
2/2

)
+
σ2

Z
n

(
u1e

−u2
1/2

−u2e
−u2

2/2)}
. (8.25)



226 Bayesian Theory and Methods with Applications

Note that as n → ∞, σϑ̂∗ → 0.

The approximate pointwise TTF estimate and posterior variance of this estimate may be

found with the help of Kramer’s theorem [132]

R̂∗ =Φ

(
ϑ̂ ∗

σZ

)
+O

(
1
n

)
, σR̂∗ =

1
2πσ 2

Z

exp

(
− ϑ̂ ∗2

σ2
Z

)
σ2
ϑ̂∗ +O

(
1

n3/2

)
. (8.26)

For practical use of the dependencies (8.26) one should omit the terms O(1/n) and

O
(
1/n3/2

)
, which, generally speaking, may be done only for large n.

The TTF estimates can be found exactly if we use the general expressions (8.12)–(8.14).

The resulting expressions for R̂∗ and σ2
R̂∗ have the form

R̂∗ =
U1

Φ(u2)−Φ(u1)
and σ2

R̂∗ =
U2

Φ(u2)−Φ(u1)
− R̂∗2, (8.27)

where

Uk =
1√
2π

∫ u2

u1

Φk
(

u√
n

+
v1

σZ

)
e−u2/2 du.

The given scheme has an obvious shortcoming. The integrals Uk cannot be represented in

a finite form and, therefore, we have to apply methods of numerical integration. Numerous

calculations emphasize the coincidence of exact and approximate formulas for n � 20.

Consider now the problem of obtaining a Bayes lower confidence limit of the TTF. Princi-

pally this problem can be reduced to the solution of the equation (8.14) for the prior density

having the form (8.23). In view of the monotonicity of the Laplace function, this problem

may be solved in the following way. Let us find the Bayes lower confidence limit ϑγ of the

parameter ϑ . To do this, it is necessary to solve the equation∫ α2

ϑγ
h̄
(
ϑ | z∼

)
dϑ − γ = 0,

which may be rewritten in the resulting form in the following way:

Φ(u2)(1− γ)+ γΦ(u1)−Φ
( ϑγ

σZ/
√

n

)
= 0. (8.28)

Now the desired estimate may be obtained with the help of the simple formula

R∗
γ =Φ

(ϑγ

σZ

)
(8.29)

8.3 General estimates of the reliability function for a one-dimensional model

8.3.1 Formulation of the problem

In this paragraph we will give a generalization of the previous result for the case when a

priori information about the parameters mZ and σZ is uncertain. In accordance with the
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notations used in this chapter, we let ϑ1 = mZ , ϑ2 = σZ , and represent each parameter

as a sum ϑk = ϑk0 + εk, k = 1, 2, where ϑk0 can be interpreted as a theoretical value of

the parameter, which is assumed to be given in the Bayes procedure and εk represents

the deviations from the theoretical value. Suppose that prior p.d.f.’s h1(ε1) and h2(ε2)

are known. For the purposes of practical application of this procedure, it is useful to use

uniform prior probability distributions:

hk
(
εk
)

=

⎧⎨
⎩

1
ε ′′k − ε ′k

, ε ′k � εk � ε ′′k ,

0, εk < ε ′k, εk > ε ′′.
(8.30)

Now we can formulate the problem of obtaining Bayes estimates of TTF in the following

way. The TTF is represented in the form of a function depending on the quantities ε1 and

ε2, that is,

R = R(ε1,ε2) =Φ
(
ϑ10 + ε1

ϑ20 + ε2

)
. (8.31)

We are given a priori information about the parameters ε1, ε2 in the form of a prior p.d.f.,

h(ε1,ε2). Also, n tests have been carried out. During these tests we determine directly or in-

directly the values of a status variable Z. These values generate a sample z∼= (z1,z2, . . . ,zN).

The problem is to Bud the Bayes estimates of TTF in the form of a pointwise estimate R̂∗,

posterior value of the standard deviation, σR̂∗ and Bayes lower confidence limit R∗
γ . For the

solution of the problem we use a standard Bayes procedure.

Let us write the likelihood function �
(
ε1,ε2 | z∼

)
. In accordance with the chosen parameter-

ization, a p.d.f. of the status variable has the form

f (z;ε1,ε2) =
1√

2π(ϑ20 + ε2)
exp

[
− (z−ϑ10 − ε1)2

2(ϑ20 + ε2)2

]
. (8.32)

Using the general expression (8.11) we obtain

�
(
ε1,ε2 | z∼

)
=

1
(2π)n/2 · 1

(ϑ20 + ε2)n

× exp
{

n
2(ϑ20 + ε2)2

[
v2 −2v1(ϑ10 + ε1)+(ϑ10 + ε1)2]} . (8.33)

The obtained estimate of the TTF is based on the prior p.d.f.’s h1(ε1) and h2(ε2) of the form

(8.30), i.e., we will assume that the set E = [ε ′1,ε ′′1 ]× [ε ′2,ε ′′2 ] appears to be the unknown

domain of the parameters ε1 and ε2. In accordance with the Bayes theorem, for the posterior

probability density of the parameters ε1 and ε2 the following relation holds:

h̄
(
ε1,ε2 | z∼

)
∼ 1

(ϑ20 + ε2)n exp
{

v2 −2v1(ϑ10 + ε1)+(ϑ10 + ε1)2

2(ϑ20 + ε2)2/n

}

(ε1,ε2) ∈ E. (8.34)
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We will distinguish the simplified and main schemes of the solution of the problem. The

choice of the scheme is connected with the type of loss function, used in the Bayes proce-

dure. In accordance with the simplified scheme, the loss function is chosen with respect to

each parameter separately. The complexity of the scheme depends on the choice of the loss

function for TTF, R(ε1,ε2).

8.3.2 The simplified scheme of the solution

This scheme starts with the finding of the parameters ε1 and ε2 which are used for obtaining

TTF estimates. We will carry out the estimation of each parameter by minimization of the

posterior risk function for the mean square error, i.e.

ε̂∗j = argmin
ε̂ j

∫ ε ′′j

ε ′j
(ε j − ε̂ j)

2 h̄ j
(
ε j | z∼

)
dε j, j = 1, 2, (8.35)

where the marginal posterior densities are obtained in the usual manner:

h̄1
(
ε1 | z∼

)
∼

∫ ε ′′2

ε ′2
h̄
(
ε1,ε2

)2 h̄
(
ε1,ε2 | z∼

)
dε2, ε ′1 � ε1 � ε ′′1 (8.36)

and

h̄2
(
ε2 | z∼

)
∼

∫ ε ′′1

ε ′1
h̄
(
ε1,ε2

)2 h̄
(
ε1,ε2 | z∼

)
dε1, ε ′2 � ε2 � ε ′′2 . (8.37)

The solution of the problem (8.35) is known [202]:

ε̂∗j =
∫ ε ′′j

ε ′j
ε jh̄

(
ε j | z∼

)
dε j, j = 1, 2. (8.38)

The complicated form of the relation (8.34) doesn’t allow us to hope that the final results

will have a simple form. The reason is that the kernel of the posterior probability density

h̄
(
ε1,ε2 | z∼

)
, determined by the right-hand part of the relation (8.34), cannot be integrated

in the final form with respect to any of the parameters. Use of the Laplace function Φ(u)

lets us reduce the resulting expressions for the estimates to the one-dimensional integrals

and represent them in the form

ε̂∗1 =
1
β

∫ ϑ ′′
2

ϑ ′
2

1
yn−1 exp

[
−

n
(
v2 − v2

1
)

2y2

]{
[Φ(u2(y))−Φ(u1(y))]

× (v1 −ϑ10)+
y√
2πn

[
exp

(
−u2

1(y)
2

)
− exp

(
−u2

2(y)
2

)]}
dy, (8.39)

and

ε̂∗2 =
1
β

∫ ϑ ′′
2

ϑ ′
2

y−ϑ20

yn−1 exp

[
−

n
(
v2 − v2

1
)

2y2

]
[Φ(u2(y))−Φ(u1(y))]dy (8.40)
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where

β =
∫ ϑ ′′

2

ϑ ′
2

1
yn−1 exp

[
−

n
(
v2 − v2

1
)

2y2

]
[Φ(u2(y))−Φ(u1(y))]dy,

ϑ ′
2 = ϑ20 + ε ′2, ϑ ′′

2 = ϑ20 + ε ′′2

u1(y) =
√

n
y

(
ϑ10 + ε ′1 + v1

)
and u2(y) =

√
n

y

(
ϑ10 + ε ′′1 + v1

)
(8.41)

Analyzing the expression (8.39), we see that for v1 =ϑ10 the Bayes estimate ε̂∗1 equals zero.

This fact has a logical explanation. If a sample mean value v1 coincides with the predicted

theoretical value of the mean mZ (the center of the interval of a prior information), then the

value, whose role ε1 plays, must equal zero.

Define now the posterior variances σ2
ε̂∗1

and σ2
ε̂∗2

of the parameters ε1 and ε2, respectively.

Let us use the general expression

σ2
ε̂∗j

=
∫ ∫

E
ε̂∗j h̄

(
ε1,ε2 | z∼

)
= dε1dε2 − σ̂∗2

j , j = 1, 2.

The resulting expressions for the variances also may be written with the help of one-

dimensional integrals, having the following complicated forms:

σ2
ε̂2

1
=

1
β

∫ ϑ ′′
2

ϑ ′
2

1
yn−1 exp

[
−

n
(
v2 − v2

1
)

2y2

]{[
(v1 −ϑ10)

2 +
y2

n

]

× [Φ(u2(y))−Φ(u1(y))]+
√

2y√
πn

(v1 −ϑ10)
[

exp
(
−u2

1(y)
2

)
− exp

(
−u2

2(y)
2

)]

+
[

u1(y)exp
(
−u2

1(y)
2

)
−u2(y)exp

(
−u2

2(y)
2

)]}
dy− ε̂∗2

1 , (8.42)

and

σ2
ε̂∗2

=
1
β

∫ ϑ ′′
2

ϑ ′
2

(y−ϑ20)
2

yn−1 × exp

[
−

n
(
v2 − v2

1
)

2y2

]
[Φ(u2(y))−Φ(u1(y))]dy− ε̂∗2

2 . (8.43)

The final goal of this procedure is obtaining the pointwise Bayes TTF estimate and posterior

TTF variance σ2
R̂∗ . To this end, we apply Kramer’s theorem for the function of statistical

estimates. In conformity to this case, Kramer’s theorem has the form

R̂∗ =Φ
(
ϑ10 + ε̂∗1
ϑ20 + ε̂∗2

)
+O

(
1
n

)
(8.44)

and

σ2
R̂∗ =

1
2π

(
ϑ20 + ε̂∗2

) exp

[
−
(
ϑ10 + ε̂∗1
ϑ20 + ε̂∗2

)2
]

(8.45)

{
σ2
ε̂∗1

+
(
ϑ10 + ε̂∗1
ϑ20 + ε̂∗2

)
σ2
ε̂∗2
−2

ϑ10 + ε̂∗1(
ϑ20 + ε̂∗2

)2 Kε1ε2

}
+O

(
1

n3/2

)
, (8.46)
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where Kε1ε2 is the posterior correlation between the random variables ε1 and ε2. The nu-

merical characteristic is defined by the integral

Kε1ε2

∫ ∫
E
ε1ε2h̄

(
ε1,ε2 | z∼

)
dε1dε2 − ε̂∗1 ε̂∗2 .

Finally

Kε1ε2 =
1
β

∫ v′′2

ϑ ′
2

y−ϑ20

yn−1 exp

[
−

n
(
v2 − v2

1
)

2y2

]{
[Φ(u2(y))−Φ(u1(y))]

×
(
v1 −ϑ10

)
+

y√
2πn

[
exp

(
−u2

1(y)
2

)
− exp

(
−u2

1(y)
2

)}
dy. (8.47)

Therefore, defining the estimates R̂∗ and σ2
R̂∗ requires evaluating six one-dimensional inte-

grals (8.39)–(8.43) and (8.46) by numerical methods. The value of the lower Bayes con-

fidence limit can be found approximately, with the help of approximation of the posterior

probability distribution of the TTF by a beta-distribution Be(a,b) with the parameters

a = R̂∗
[

R̂∗(1− R̂∗)
σ2

R̂∗
−1

]
and b =

(
1− R̂∗)

[
R̂∗(1− R̂∗)

σ2
R̂∗

−1

]
.

Later we will need to either solve the transcendental equation
∫ R∗

γ

0
xa−1 (1− x)b−1 dx = (1− γ)B(a,b),

or use the finite expression

R∗
γ =

(
1+

b
a

F1−γ ; 2b;2a
)−1

.

where Fα;δ1;δ2 is the α-th percentile of the F-distribution with δ1 and δ2 degrees of free-

dom. Note that the calculation procedure described above doesn’t give us any difficulties

since the numerical methods of one-dimensional integration and the solution of transcen-

dental equations are well-developed for computer implementations.

8.3.3 The main calculation scheme

This scheme deals with the mean square error loss function L
(
R̂,R

)
=

[
R(ε1,ε2)− R̂

]2 and

gives the Bayes TTF estimate of the form

R̂∗ =
∫ ∫

E
R(ε1,ε2)h̄

(
ε1,ε2 | z∼

)
dε1dε2.

The handiest numerical representation of this integral has the form

R̂∗ =
1
β

√
n

2π

∫ ϑ ′′
1

ϑ ′
1

∫ ϑ ′′
2

ϑ ′
2

Φ
(

x
y

)
1
yn exp

(
−v2 −2v1x+ x2

2y2/n

)
dxdy, (8.48)



Theoretical Model for Engineering Reliability 231

where ϑ ′
k = ϑk0 + ε ′k, ϑ ′′

k = ϑk0 + ε ′′k , k = 1, 2. The posterior variance is determined by a

similar integral

σ2
R̂∗ =

1
β

√
n

2π

∫ ϑ ′′
1

ϑ ′
1

∫ ϑ ′′
2

ϑ ′
2

Φ2
(

x
y

)
1
yn exp

(
−v2 −2v1x+ x2

2y2/n

)
.dxdy− R̂∗2 (8.49)

As seen from the expressions (8.47) and (8.48), for obtaining the Bayes estimates we, un-

fortunately, cannot avoid the double numerical integration. Only the fact that the integration

intervals
[
ϑ ′

1,ϑ ′′
1
]
,
[
ϑ ′

2,ϑ ′′
2
]

are small and the integrand on these intervals is sufficiently

smooth is encouraging. Because of these properties we can use the simplest methods of

numerical integration of the rectangular lattice. In the case of a large interval, we need to

apply more complicated approximating formulas.

Evaluating the lower Bayes confidence limit, we run into serious calculation difficulties.

To find R∗
γ we need to solve the following equation

∫
Ω

∫
(

R∗
γ

) h̄(ε1,ε2 | z)dε1 dε2 − γ = 0, (8.50)

where the integration domain Ω
(
R∗
γ
)

is an intersection of the set E =
[
ε ′1,ε ′′2

]
×

[
ε ′2,ε ′′2

]
with the set of the parameters ε1 and ε2 for which the in-equality R(ε1,ε2) � R∗

γ holds,

i.e., R∗
γ lies in the integration domain. With the help of the new variables x = ϑ10 + ε1 and

ŷ = ϑ20 + ε2, (8.49) is given by
∫∫

Ω
(

R∗
γ

)
1
yn exp

(
−v2 −2v1x+ x2

2y2/n

)
dxdy− γβ = 0. (8.51)

The idea of solving the equation (8.50) based on using one of the standard numerical meth-

ods of solution of the equation F(u) = 0, where, for each value u, evaluation of the integral

is carried out not over the whole rectangular
[
ϑ ′

1,ϑ ′′
1
]
×
[
ϑ ′

2,ϑ ′′
2
]

but over such a part of it

that ensures the fulfilment of the conditionΦ(x/y) � u. Taking into account the monotonic-

ity of the Laplace function, we resort to the following simplification. Instead of equation

(8.50), we will solve the equation with respect to the quantile of a normal distribution,

v = Φ−1
(
R∗
γ
)
, which corresponds to the unknown probability R∗

γ . Since the inequality

Φ(x/y) � Φ(v) implies the fulfillment of the inequality x/y � v, the equation (8.50) is

equivalent to the following one:
∫∫

Ω
(

R∗
γ

)
1
yn exp

(
−v2 −2v1x+ x2

2y2/n

)
dxdy− γβ = 0 (8.52)

in which the integration domain Ω(v) represents by itself the intersection of the rectangular

[ϑ ′
1,ϑ ′′

1 ]× [ϑ ′
2,ϑ ′′

2 ] with the domain of values of x and y satisfying the inequality x � vy
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(see Fig. 8.1). Thereafter, we can rewrite the equation (8.51) in the formal form F(v) = 0

and solve it by one of the standard methods. In this approach, we should take into account

the fact that the unknown value v lies in the interval [ϑ ′
1/ϑ ′′

2 ,ϑ ′′
1 /ϑ ′

2]. This fact is easy to

verify (see Fig. 8.1). After the equation (8.51) has been solved, the desired estimate of R∗
γ

may be obtained from the formula R∗
γ =Φ(v).

Fig. 8.1 Integration domain for (8.51).

8.4 Examples of calculation of the reliability estimates

In this section we give examples illustrating the particulars of estimating Bayes procedures

of the TTF with undefined initial data.

8.4.1 Calculation of TTF estimates of a carrier construction

Consider the construction of a bar depicted in Fig. 8.2. We have chosen this construction

because its working capacity model has a simple form and is, apparently, error free. Both

bars have an angle profile and are made of steel. The relation of the acting forces is such
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that the first bar is expanded and the second one is contracted. The set of lifetime conditions

includes [23]:

Fig. 8.2 An element of the construction under the static load.

The condition of durability of bar 1:

Z1 = φ1
(
σT ,F1,Q1,Q2

)
= σT F1 −

Q1 +Q2√
2

> 0; (8.53)

the condition of global stability of bar 2:

Z2 = φ2
(
�,E2,J2,Q1,Q2

)
=
π2E2J2

�2 − Q2 −Q1√
2

> 0; (8.54)

The condition of local stability of bar 2:

Z3 = φ3
(
E2,μ2,d2,b2,F2,Q1,Q2

)
=

3,6 ·E2,F2

12 ·
(
1−μ2

2

)
(

d2

b2

)2

− Q2 −Q1√
2

> 0. (8.55)

The inequalities (8.52)–(8.54) are used as follows: F represents the cross section area of

the bar, J is the moment of inertia of the cross section, μ is the Poisson coefficient, E is the

elasticity module; σT is the fluidity limit of the material, indices 1 and 2, correspond to the

bar numbers. The calculation of the project (prior) value of the TTF has been carried out

with the help of (8.15), where the numerical characteristics mZ and σZ were obtained in

accordance with the expressions (8.16) and (8.17). The initial data used for the evaluation

of the construction reliability are given in Table 8.1. The arguments of the working capac-

ity functions and status variables are assumed to be independent. The calculation results
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Table 8.1 Results of evaluation for project TTF estimate.

Number of working
mz j H mz j H R j

conditions

1 1.64 ·105 0.536 ·105 0.999

2 0.828 ·105 0.451 ·105 0.9641

3 2.48 ·105 0.738 ·105 0.9997

for TTF are shown in Table 8.2. The construction TTF as a product of probabilities of

fulfilment of each condition of the working capacity equals Rc = 0.9628

The TTF estimates under the given variances of the status variables were obtained with the

help of the scheme of § 8.2. For obtaining Bayes estimates of the probability for every con-

dition to hold, we use as parameter ϑ the mean value of the corresponding status variable.

We obtain the following a priori information:

For the first condition:

ϑ ∈
[
1.58 ·105H, 1.68 ·105H

]
, σZ = 0.536 ·105H;

For the second condition:

ϑ ∈
[
0.880 ·105H, 0.885 ·105H

]
, σZ = 0.451 ·105H;

For the third condition:

ϑ ∈
[
2.35 ·105H, 2.61 ·105H

]
, σZ = 0.738 ·105H.

The values of the parameters of the working capacity function have been measured during

the 12 independent tests. After this, we have obtained the statistic v1. In Table 8.3 we

present the experimental results in the form of the sufficient statistic v1 with respect to each

status variable. We have performed two calculations. The first one uses the method based

on the formulas (8.24)–(8.26). The calculation results are presented in Table 8.3. The es-

timates of the lower Bayes confidence limits for the probability for each of the working

capacity conditions to hold have been obtained with the help of approximation of the pos-

terior p.d.f.’s by beta-distributions. The second calculation variant corresponds to the exact

integral expressions (8.27)–(8.29). Numerical integration and solution of the transcenden-

tal equation (8.28) have been performed with the subroutines QUANC8 and ZEROIN [86].

The results of the calculations are presented in Table 8.4. It follows from the comparison

of the data from Table 8.3 with those from Table 8.4, that the method of approximating

and exact estimating gives us practically the same results. The calculation of a lower con-

fidence limit of the construction of TTF has been performed with the help of the approach

proposed in [247]. For the result, the estimate R∗
0.9 was obtained.
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Table 8.2 Bayes TTF estimates with known variance (approximate method).

Number of working Statistics values R̂∗
j σR̂∗

j
R̂∗

09 j
conditions j v1, H

1 1.42 ·105 0.9987 0.000519 0.9984

2 0.852 ·105 0.9668 0.002590 0.9633

3 2.07 ·105 0.9995 0.000152 0.9993

Table 8.3 Bayes TTF estimates with known variance (exact method).

Number of working Statistics values R̂∗
j σR̂∗

j
R̂∗

09 j
conditions j v1, H

1 1.42 ·105 0.9988 0.000592 0.9984

2 0.852 ·105 0.9667 0.002540 0.9631

3 2.07 ·105 0.9994 0.001460 0.9992

Table 8.4 A priori information for TTF evaluation.

Number of working
v10, H e′1 = −e1, H v20, H e′2 = −e2, H

conditions

1 1.64 ·105 1.3 ·104 0.536 ·105 1.5 ·104

2 0.828 ·105 2.7 ·104 0.451 ·105 4.2 ·104

3 2.48 ·105 1.3 ·104 0.738 ·105 2.5 ·104

The estimates of TTF, when the variance of a status variable is unknown, have been ob-

tained with the help of the method discussed in § 8.3 in accordance with the simplified and

main schemes. A priori information used in the calculations is given in Table 8.5. Exper-

imental data in the form of statistics v1 and v2 are presented in Table 8.6. The results of

the calculations are based on the simplified scheme which operates with the expressions

(8.39)–(8.46) and are given in Table 8.6. The estimates of TTF, according to the main

scheme, are given in Table 8.7. For evaluating the double integral, we performed the re-

peated calls of the subroutine QUANC8, mentioned above. As in the previous case, we

observed a satisfactory coincidence of the results of the approximate and exact estimates.

The value of the Bayes lower confidence limit for the subject construction was R∗
0.9.

The numerical data demonstrate the evolution of the reliability estimate after the testing

has been performed.
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Table 8.5 Bayes TTF estimates with unknown variance of the status variable (simplified scheme).

Number of working
v1, H (v2 − v2

1)
1/2, H R̂∗

j σR̂∗
j

R̂∗
09 j

conditions

1 1.023 ·105 0.583 ·105 0.9970 0.000534 0.9964

2 0.852 ·105 0.458 ·105 0.9721 0.007200 0.9703

3 2.07 ·105 1.204 ·105 0.9996 0.000163 0.9992

Table 8.6 Bayes TTF estimates with unknown variance of the status variable (basic scheme).

Number of working
R̂∗

j σR̂∗
j

R̂∗
09 j

conditions

1 0.9980 0.000495 0.9974

2 0.9708 0.006800 0.9605

3 0.9995 0.000179 0.9993

8.4.2 Calculated case “loading—carrying capability” with unknown correlation
coefficient

Below we present the results of the work [98] devoted to the investigation of the TTF for

the technical device with a working capacity model of the form “loading carrying capabil-

ity”. Customarily in many practical situations when estimating the device reliability, we

do not have complete information about the correlation coefficient. At the same time, the

correlation coefficient influences the TTF value.

Setting of the problem

Consider an element of construction with the carrying capability U and acting load S which

obeys the Gaussian distribution with unknown correlation coefficient ρ . As TTF is used

the following probability:

R = P{U > S}. (8.56)

It is assumed that marginal numerical characteristics of the variables U and S are given. It

enables us to represent the probability (8.55) in the form of a function depending on the

correlation coefficient:

R = R(ρ) =Φ

⎛
⎝ η−1√

v2
Uη2 + v2

S −2ρvU vSη

⎞
⎠ , (8.57)
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where vU and vS are the variation coefficients of the carrying capability and loading, re-

spectively, with η = mU/mS being the coefficient margin of safety.

We will assume that we are given an interval of a prior uncertainty [a,b] such that ρ ∈ [a,b].

Often in practice it is possible to establish that if the correlation coefficient appears to be

either positive or negative, then we may put correspondingly ρ ∈ [0,1] and ρ ∈ [−1,0]. If it

is known that there exists a weak stochastic dependence between U and S, we may suppose

that ρ ∈ [−0.5,0.5]. Let us choose a uniform p.d.f. h(ρ) on [a,b].

The problem is to obtain the Bayes estimate R∗ for the probability (8.56) with the given

prior probability density h(ρ), defined on [a,b].

Bayes TTF estimates

Following the general scheme of Bayes estimating, the pointwise prior TTF estimate may

be written in the form

R∗ =
1

b−a

∫ b

a
R(ρ)dρ. (8.58)

Here we can obtain the resulting formula in the analytical form

R∗ =
(η−1)2

(b−a)ηvU vS
(F(v)−F(w)), (8.59)

where

v =
η−1(

v2
Uη2 + v2

S −avU vSη
)1/2 , w =

η−1(
v2

Uη2 + v2
S −2bvU vSη

)1/2 ,

and

F(x) =
1

2x2Φ(x)+
1
2x

K(x)− 1
2

(1−Φ(x)) ,

with

K(x) =
1√
2π

ex2/2.

The posterior TTF estimate R* for the uniform prior distribution law is written as

R̂∗ =
1
β

∫ b

a

R(ρ)
(1−ρ2)n/2 exp

{
− 1

2(1−ρ2)

[
ω2

U

σ2
U
−2ρ

ωUS

σUσS
+
ω2

S

σ2
S

]}
d p, (8.60)

where β is a constant coefficient having the form

β =
∫ b

a

1
(1− x2)n/2 exp

{
− 1

2(1− x2)

[
ω2

U

σ2
U
−2x

ωUS

σUσS
+
ω2

S

σ2
S

]}
dx.
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The probability R(ρ) is defined by the formula (8.56), and sufficient statistics ω2
U , ω2

S and

ωUS by the following expressions:

ω2
U =

n

∑
i=1

(
ui −mU

)2
, ω2

S =
n

∑
i=1

(
si −mS

)2
,

and

ωUS =
(
ui −mU

)(
si −mS

)
,

where
(
ui,si

)
is the set of pairs of experimental values of U and S.

In contrast to the analytical procedure of evaluating a prior TTF estimate (8.58), the poste-

rior estimate (8.59) may be found approximately with the help of the methods of numerical

integration.

Comparative analysis of different estimates

In practice for obtaining a prior TTF estimate, one often uses the following formulas:

R0 =Φ

⎛
⎝ η−1√

v2
Uη2 + v2

S

⎞
⎠ , (8.61)

and

RcK =Φ

⎛
⎝ η−1√

v2
Uη2 + v2

S −2ρcKvU vSη

⎞
⎠ . (8.62)

For obtaining the estimate R0, we put ρ = 0; the estimate RcK have been obtained under

the assumption that the correlation coefficient equals the midpoint of the segment of prior

uncertainty: ρ = ρcK = (a+b)/2. In [98] a numerical comparison of the estimates R0 and

RcK with a prior Bayes estimate of TTF R∗ of the form (8.58) has been carried out. The

calculations have been performed for vU = vS = 0.1, different coefficients of a margin of

safety η = 1.1, 1.2, 1.3, 1.4 and different lengths of uncertainty coefficients J = b−a =

0, 0.2, 0.4, . . . ,1.8, 2.0.

In Fig. 8.3, it is shown that the dependence of the relative difference of a prior Bayes esti-

mate on the TTF estimate with zero correlation
(
R∗ −R0/R0

)
for the uncertainty segment

[−a,a], when R0 and RcK coincide. By increasing the coefficient of a margin of safety

η , this relative quantity decreases substantially. For example, for the maximal interval of

uncertainty (J = 2)
(
R∗ −R0

)
/R0 it reaches ≈ 4.3%, for the uncertainty interval having

the length which is half smaller ( j = 1) is 0.7%. We note also one additional important
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Fig. 8.3 The Relative Difference Between R∗ and R0 = RcK . With Symmetric Interval of Uncertainty.

property: if η < 1.25, then for all J the Bayes estimate R∗ is always greater than R0, and if

η < 1.25, then R∗ < R0.

In Fig. 8.4 we represent the patterns of change of relative difference for all three TTF

estimates for the asymmetric interval of uncertainty when the upper limit of the segment

is fixed (b = 1). As seen from the graphs, the roughest TTF estimate is R0, which can be

used only for large margin of safety (η > 1.4). The estimate RcK approaches near to R∗,

beginning already with η = 1.3.

The posterior Bayes estimates have been illustrated with the help of the numerical example

in [98]. As initial data, the following values of dimensionless coefficients were chosen:

vU = vS = 0.1, η = 1.3, and ρ ∈ [−0.8,0.8]. In this case, the Bayes prior estimate of TTF

equals R∗ = 0.906214.

If one defines the posterior estimate (8.59), it is desirable to choose the following statistics:

ε2
U = ω2

U/σ2
U , ε2

S = ω2
S /σ2

S , and εUS = ωUS/σS.The calculations have been done for the

following hypothetical testing results. Ten tests have been carried out. During these tests

we have measured the values U and S. Moreover, the test results are such that the corre-

sponding marginal statistics ε2
U = 9.5 and ε2

S = 10.2. Three cases have been considered:

ε+
US = 5 (positive correlation), ε(0)

US = 0 (absence of correlation), ε(−)
US = −5 (negative cor-

relation). For these cases, in Fig. 8.5 the posterior densities h̄+(ρ), h̄0(ρ) and h̄−(ρ) have
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Fig. 8.4 The Relative Difference Between R∗ and R0; (a) and in Addition Between R∗ and RcK ; (b) with Asym-
metric Interval of Uncertainty.

been constructed. As seen from Fig. 8.5, for the positive correlation the density biases to

the right, for ε(−)
US vice-versa, to the left. Corresponding posterior Bayes TTF estimates

equal R̂∗
+ = 0.902966, R̂∗

0 = 0.90016 and R̂∗
− = 0.89694.

The result given above lets us more correctly (in comparison to the existing approaches)

establish the prior Bayes estimate of the TTF probability under the conditions of uncertainty

with respect to the correlation between the loading and carrying capability, and correct this

estimate by the testing results

8.5 The statistical design optimization based on the Bayes approach

The settings of the solutions of the problems of probability optimal projection are well-

known [112, 120, 173, 193]. The distinctive characteristic of the proposed problem setting

is that the optimization process deals not only with the project reliability estimates, but also

with the results of the consequent experiments. Project contents itself is in favor of such an
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Fig. 8.5 Posterior p.d.f.’s for different correlation coefficients.

approach. Project parameters are chosen with the help of existing working capacity mod-

els of the type (8.1), engineering experience and a priori statistical information about the

loadings, physical-mechanical characteristics and geometrical parameters. Thereafter, one

carries out an experiment which confirms the principal working capacity of the device, the

reliability estimates are defined more exactly, and innovations are put into the project to sat-

isfy reliability requirements. The union of a project (prior) and experimental information is

among the most important elements of this chain of measures. To this end, we recommend

using the Bayes approach. Below we give one of the possible ways of the Bayes statistical

optimization.

8.5.1 Formulation of the problem

Suppose the device structure is defined and the problem is to choose the values of controlled

parameters generating a vector ω which ensures the extreme value of some parameter of

quality. It is usual that the nominal values (or mean values) and dispersions (or mean-

squared values) of some geometrical parameters play the role of controlled parameters.

For the sake of simplicity throughout what follows, we will assume that the designer cannot

vary the loadings, and data are chosen for more general reasons. In practice we often meet



242 Bayesian Theory and Methods with Applications

the situation when a designer can choose nominal values of geometrical parameters which

have given dispersions determined by technical documentation (GOST, industrial standards

and norms). Thereby, a problem of optimal projection includes as a rule a choice of mean

values of some determined part of parameters generating by themselves the vector ω .

The considered optimization problem includes three component parts:

1) A reliability model which is reduced to the establishment of a relationship between the

Bayes estimate of TTF, R∗ (or R∗
γ ) and vector of control parameters ω . Later we will

write R̂∗(ω);

2) Technical and economical characteristics (mass or cost) in the form of a function S =

S(ω) (or set of such characteristics);

3) Additional restrictions of the formψ�(ω)� 0 (�= 1, 2, . . . ,L), guaranteeing the physical

reliability of a project and establishing the norm and relationship of a projection.

The problem may be formulated in two different ways when one optimization criterion is

chosen:

Direct problem:

R̂∗(ω)→max,

S(ω)� S0,

ψ�(ω)� 0, � = 1, 2, . . . ,L;

(8.63)

Inverse problem:

S(ω)→min,

R̂∗(ω)� Rreq,

ψ�(ω)� 0, � = 1, 2, . . . ,L.

(8.64)

Considering a direct problem, we assume that a threshold value of the characteristic S0 is

given, whereas in the inverse problem a required Rreq, by the technical documentation, TTF

value is known. The technical-economical characteristic is usually chosen in the form of a

cost, sometimes in the form of an object mass, and the representation of the function (ω)

doesn’t present any difficulties. The main obstacle in this action is obtaining the depen-

dence of R̂∗ from a vector ω . Let us investigate the following question: in what way can

the parameter ω be introduced into the Bayes scheme (for example, as described in § 8.3)?

From the arguments of § 8.1, we conclude that a Bayes TTF estimate is defined by:

1) a sample of testing results x∼ in the form of a vector of initial variables X;

2) a form of a p.d.f. fX (x;θ);



Theoretical Model for Engineering Reliability 243

3) a form of a working capacity function φ j(·), j = 1, 2, . . . ,M;

4) a prior probability density h(θ) of the parameter vector θ .

A vector of controlled parameters ω is naturally included in the Bayes scheme in connec-

tion with a prior density h(θ) as some subset of the set αθ with the help of which a prior

density h(θ ;αθ ), αθ ∈ A is parameterized. Suppose, for example, that a vector parame-

ter θ consists of mean values mi of all (in practice only some of them) initial variables,

i.e., θ = (m1,m2, . . . ,mN). A prior distribution density h(θ ;α0) appears to be uniform.

Moreover, each of the parameters θi = mi is distributed inside of the interval μi = [m′
i,m

′′
i ],

i = 1, 2, . . . ,N. The interval μi is determined by the mean value mi0 and relative length

χi so that m′
i = mi0(1− χi/2), m′′

i = mi0(1 + χi/2). The set mi0, χi (i = 1, 2, . . . ,N) forms

a vector of parameters αθ . The quantity χi determines the degree of uncertainty, impos-

sibility to ensure a theoretical value mi0 in practice. At the same time mi0 is such a new

value of the i-th initial variable (as was mentioned, of a geometrical parameter) which

should be chosen by a designer in the process of a solution of the optimization problem,

i.e., ω =
(
m10,m20, . . . ,mN0

)
. Including ω as a subset of αθ into the Bayes procedure, we

obtain the relationships between the TTF estimates, R̂∗ or R∗
γ , and a vector of controlling

parameters ω .

The algorithm for the solution of the optimization problem consists of the following steps.

At first, before the testing, the problem (8.62) is solved under the assumption of absence

of experimental data. Thereafter, while the data x∼ are accumulated, we repeat the problem

solution. This enables us to correct the value of the vector of controlled parameters ω ,

obtained a priori.

8.5.2 An example of solving the optimization problem

Consider a problem of a choice of optimal project parameters for a cylindrical shell having

a wafer type (see Fig. 8.6). As controlled parameters three mean values of the following

initial variables have been chosen: δ ′, δ , c, b.The shell is loaded by the axis compressible

force T , a bending moment M and abundant pressure p.

The mass of the shell is chosen as a goal function

S(ω) = S
(
δ ′

0,δ0,c0,b0
)

= ρ
{

2πr [αδ0 + c0hNk]+Nπc0h
(
h− c0Nk

)}

where ρ is a material density, the index 0 denotes a mean value h = δ ′
0 −δ0, Nk = [L/(b0 +

c0)], Nπ = [2πr/(b0 + c0)], [A] denotes the integral part of A.

The reliability function is determined as the probability that the following set of working
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Fig. 8.6 Loaded cylindrical shell.

capacity conditions [151]: the durability condition

Z1 = σU − πrN
δ + c(δ ′ −δ )/b

> 0, N = T +
M
2r

−πr2 p,

the condition of a global stability

Z2 = 2πkEδ 2

[
1+φ ′(ψ ′ −1)2

(
0.4
3
√
φ ′ +

1.3√
ψ ′ −0.54

)]
N > 0,

and local stability

Z3 = 12πE
r2δ 3

b− c

[
1+0.16φ ′(ψ ′ −1)

]
−N > 0,

where φ ′ = 2πc/δ , ψ ′ = δ ′/δ , k is the stability coefficient, σU is the durability limit, E is

the resiliency coefficient. It follows from the working capacity model described above, the

vector of initial variables is formed by the quantities (M,T, p,r,L,δ ′,δ ,c,b,σU ,E,k).
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For evaluation of TTF estimate, R̂∗, we apply a linearization of the working capacity func-

tion. The results of optimization based on using the project TTF estimate in problem (8.62)

consists of the following: from the initial point ω0 = (8,3,100,4) mm corresponding to

the mass S(ω0) = 330.2kg and R(ω0) = 0.9983, the searching trajectory leads into the

point ω∗ = (7.3;2.8,150,3.1) mm for which S(ω0) = 291 kg when Rreq = 0.99. Note that

if a value of a project TTF estimate is chosen as Rreq, i.e., Rreq = R(ω0) = 0.9983, then

S(ω0) = 319.4 kg. It is seen that the optimization mass gain is more than 10 kg.

Fig. 8.7 Dependence of optimal mass on testing results.

The statistical optimization is carried out in accordance with the method of evaluation of

R̂∗(ω) (see § 8.3) under the condition that uncertainty intervals form a 5% segment with

respect to the project values mz j and σz j . The experimental results are modeled on the

computer in accordance with the chosen distribution laws of initial variables. Fig. 8.7

shows the dependencies of S(ω0) on testing results represented by sufficient statistics v1
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and v2. The following conclusions may be stated: (1) when the statistic v2 j (the sample

variance) increases, the estimate R∗
γ decreases, which implies the decreasing of S

(
ω∗); (2)

if the statistic v1 j exceeds mz j, then S(ω∗) is less than the values of the goal function during

the project optimization, otherwise, vice-versa, the value of the goal function increases. We

have applied for optimization an algorithm of random searching together with a method of

continuous penalty functions. An optimization problem for one sample x∼ has been solved

on the EC-1045 computer during a period of two hours. It is found that the second working

capacity condition appears to be the most dangerous so that the shell TTF is completely

determined by the probability for the second condition to hold. Due to this circumstance,

only the sufficient statistics v1 and v2 with respect to the second status variable affect the

results of optimization. These statistics are denoted respectively by v12 and v22 in Fig. 8.7,

and are given by the formulas

v12 =
1
n

n

∑
i=1

φ2(xi) and v22 =
1
n

n

∑
i=1

φ 2
2 (xi).



Chapter 9

Statistical Reliability Analysis Prior Bayes
Estimates

9.1 Traditional and Bayes interpretations of the error of the working capacity
model

This chapter is a continuous development of the previous chapter, and we consider a more

general situation when a theoretical working capacity model contains the error stipulated

by the defects of physical theories used for its construction. Such a situation appears quite

often in many technical devices or systems which are based on experimental data process-

ing. In this chapter we propose a method of statistical Bayes analysis for technical devices

directed to the estimation of the TTF for these devices and errors which are used in math-

ematical calculations. The chapter includes the problem setting, its description and the

solution of the problem for the stage prior to the experimental elaboration and analysis of

the system.

The real working capacity model is based on mathematical models in the form of finite

analytical expressions and sets of differential equations used in the corresponding field of

knowledge. Any mathematical model is either more or less than a complete formalized

description of the processes and phenomena originated from the examined technical sys-

tem. Due to this fact, a working capacity model necessarily contains the error that produces

eventually a methodological mistake in estimating TTF.

Very often a designer of a technical system has available only tentative information about

the model error. In particular, for the projection of carrying construction elements and

some other technical systems, one uses the so-called safety coefficients solving a two-sided

problem. In the opinion of Korolev [127], a safety coefficient includes, on one hand, a

random scatter, and on the other hand, it has to compensate for the defects of the calculation

method, and consequently, of a working capacity model. If we use for the analysis of the

system working capacity a representation of its parameters in the form of random variables

247
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or processes, then the first aspect of the safety coefficient will not be necessary. At the

same time, the second one remains and, apparently, completely determines the accuracy of

the working capacity model.

The value of the safety coefficient is chosen so as to overstate a calculation load or, equiva-

lently, to understate the system functional capability obtained theoretically. As a result, the

developed constructions often have extremely large weights and are very cumbersome. The

current method of estimating model error uses information about this error (in the form of

a safety coefficient) which is unchangeable during the system lifetime cycle. At the same

time for the system projecting and exploitation one carries out the tests which give informa-

tion (direct or indirect) about its real functional capability. This information may be used

as the basis for the reconsideration of the approved prior representation of the model error.

Coming from the logic and intention of the process of design and exploitation of technical

systems, the error estimate of the model of functioning and working capacity must have

a dynamic nature, i.e., it must change in accordance with the new obtained experimental

information. It is clear also that the TTF estimate must “superintend” the evolution of

representation about the working capacity model error. At the initial stage of the system

lifetime cycle, when we have no experimental data, the TTF is estimated with the help

of a priori representation about the model error. This representation may have a very ap-

proximate nature. During the process of experimental data processing this representation

changes and appears to be more complete which implies the increasing of accuracy of the

TTF estimate.

The scheme considered above is adequate to the Bayes procedure of obtaining a statistical

conclusion. Use of the Bayes approach for the problem solution enables us to overcome all

specific shortcomings to the traditional method of the model error accounting mentioned

above. In view of the optimality of the Bayes decision rules, TTF estimates obtained with

the help of such an approach will be the best in the sense of maximization of some useful-

ness function, and use of complete available information.

In this and following chapters we propose a method of TTF estimation for the technical

device which uses the error of its survival state model and a method of statistical estima-

tion of the error in accordance with the existing testing results and a priori information.

All arguments that we will use touch upon the case when a survival state model represents

one functional inequality. Such a simplification has been chosen for the following reasons.

First, this simplification is not very restrictive and serves the purposes of a clearer under-

standing of the method, free of the complicated mathematical constructions. Second, such
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an approach lets us investigate working capacity models consisting of many uncorrelated

working capacity conditions. The assumption about noncorrelatedness may be justified

since, if rough (inexact) working capacity models are used, it’s unlikely to take into ac-

count their “acute” properties as a correlation.

Let us give the Bayes definition of the error for a survival state model and investigate in

what way it differs from the traditional one. Assume that a working capacity model has the

form

φ (X1,X2, . . . ,XN) > 0, (9.1)

where X =(X1,X2, . . . ,XN) is a vector of an initial variable which may be random variables,

processes or fields. A working capacity function φ(·) is, as a rule, written in a special way

as a final result of the solution of a model problem which describes the process of a normal

functioning of the system. For example, for the thin-walled bar of the length � with a

minimal momentum of inertia of the cross-section J, subjected to the action of the axis

compressible force T , the theoretical working capacity model of the form (9.1) can be

written as

π2EJ
μ2�2 −T > 0, (9.2)

where E is the material resiliency module, μ is a constant depending on the bar fixing. The

quantity

Tcr =
π2EJ
μ2�2 (9.3)

is called a critical force of the stability loss (by Euler) and characterizes a functional capa-

bility of the bar to withstand the load T . The vector of initial variables X is composed of

T,E,J, �. Since the initial variables are random, the condition (9.1) for some realization X
cannot be fulfilled. This event is considered a failure. The probability of fulfilment of the

inequality (9.1) during the given time interval τ (or at the given time instance t) is classified

as a time to failure probability.

For the research connected with calculations of the parameters of the construction elements

which don’t touch upon the probability representations, one introduces the safety coeffi-

cient η compensating for the error of the theoretical model. For the considered example, in

particular, calculation of the parameters is carried out for the force ηT as η > 1, i.e., under

the condition Tcr = ηT .The working capacity condition is written as

Tcr

η
−T > 0. (9.4)
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This survival state model takes into account, in contrast to (9.2), the error that appeared

because of the inaccuracy of the formula (9.3).

The form of representation of the working capacity model (9.4) may be considered as

conditional in a definite sense. We can introduce just as well instead of the coefficient

η , ζ = η−1 that brings a change of the inequality (9.4). For further analysis we need

(it seems), to order the method of representation of the model error with the help of the

quantity ε , linear with respect to the right-hand part of the inequality (9.1). The essence

of error accounting does not change in this case, and the method of construction of the

statistical estimates of the model error and TTF is simplified.

In accordance with our assumption, instead of the working capacity condition we will write

φ(X)+ ε > 0 (9.5)

The quantity ε is termed an additive error of the working capacity model. This quantity

appears to be an aggregate representation of the large number of random and nonrandom

unaccounted factors in the theoretical model. Due to this reason we will assume that ε is a

random variable.

With the help of this example, we show the equivalence of the additive error of the model

and the safety coefficient. Since the last one is, by definition, nonrandom, we will use it in

the testing instead of ε only its possible limit value which, as usual, cannot be exceeded in

real situations. In Mathematical Statistics one uses for these purposes a quantile εp of the

distribution fε(ε), represented by the expression∫ εp

−∞
fε(ε)dε = p,

which corresponds to the large probability p. Using εp, from the inequality (9.5) we pass

to the corresponding (but nonequivalent, generally speaking) nonrandom inequality

φ (mX )+ εp > 0. (9.6)

where mX is a mean value of a random vector. For the working capacity condition (9.2),

inequality (9.6) takes on the form

Tcr −T + εp > 0. (9.7)

Transforming the working capacity condition (9.4) written with the safety coefficient η to

the equivalent form

(Tcr −T )−Tcr
η−1
η

> 0,

we see that εp is determined uniquely with the help of η :

εp = −Tcr
η−1
η

(9.8)
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It is important to note that, since η > 1, from the equality (9.8) there follows εp < 0, i.e., the

additive error, as well as the safety coefficient, understates the capability of the construction

element, obtained theoretically with the help of the Euler formula.

Let us discuss the possible ways of assignment of εp. If a choice of the safety coefficient

is strictly substantiated, εp is determined uniquely, for example, by the formula of the type

(9.8). But the point is that η is often chosen under more general arguments which are,

generally speaking, far from the real relationships between the real and theoretical values

of the working capacity of the concrete investigated object. Representation of the error of a

theoretical model has, as a rule, an undetermined nature. For example, we often know only

that a calculated value exceeds or, vice versa, understates the real value of the functional

capability. Sometimes we may say that the maximal error equals some percent of the

calculated value and may be either positive or negative. Therefore it seems reasonable in

the general case to represent the error εp not in the form of the in determined value as it

was in (9.8), but in the form of some interval Eε = [aε ,bε ], assuming that εpεEε . Thus, as

was done earlier, we use, based on the safety coefficient and relations of the form (9.8), the

categorical statement of the type: the limit error εp equals −12H, but now we assume that

it is possible to make a more undetermined (and at the same time more flexible) statement,

for example, εp lies in the interval [−12H, 0]. A designer may have, coming from his own

experience, access to more “thin” information characterizing the chances of εp lying in

different intervals in Eε .

Later, using the terminology of the Bayes approach, we will say: analyzing the error of a

working capacity model, a designer assigns a prior probability distribution h(εp), εpεEε .

Due to this reason, instead of a given number for εp, using the Bayes methodology, we

have some of its neighborhood (“smearing” representation of the number). The points of

this neighborhood may have different probability significance, corresponding to a prior

p.d.f., h(εp). Note that the determined form of representation of εp as ε ′p is a limiting case

of the Bayes form, when a probability significance ε ′pεEε equals unity, and a prior p.d.f.,

h(εp), degenerates into a delta-function.

The Bayes form of representation of the error of a survival state model has several prefer-

ences. First, it corresponds in a stronger form to give information about the model error,

i.e., to the unspecified nature of the model. Secondly, when one assigns the values of Eε
and h(εp), its responsibility decreases. Responsibility is understood in the following sense.

On one hand, the object must be reliable enough; on the other hand, its construction must

be non-overweight or superfluous in details because of its super-reliability. Usually that
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responsibility deals with only the first aspect, forgetting about the second one.

The third, most important, advantage of the Bayes form of error representation lies in

the possibility of correction of this representation as experimental data are obtained. The

scheme of this correction assumes the use of the Bayes theorem.

Finally, the Bayes methodology is attractive in the following sense. The resulting TTF

estimate with regard to the working capacity error will always be optimal from the point-

of-view of the minimum of the chosen loss function. In other words, choosing in the cor-

responding way the loss function, we can achieve the desired quality of the TTF estimate.

For example, if the object failure is connected with human victims or losses of expensive

equipment, then for the reliability estimate of this object, the most pessimistic estimate

should be used. This corresponds to the loss function possessing the property that overstat-

ing is worse than understating. In conclusion, we note that estimating of the additive model

error with the help of only one numerical characteristic of a situation in capacity of which

the quantile εp has been used is a very rough approximation of the desired result. A more

complete solution of the problem assumes that other numerical characteristics should be

used. Later we will consider calculation cases based on two characteristics corresponding

to two parameters of the p.d.f. of the additive error ε .

9.2 The problem of estimation of the additive error of the working capacity
model attached to estimation of the reliability function

We will assume that the object’s working capacity is represented by the working capacity

model with an additive error ε of the following form:

ψ(X,ε) = φ(X)+ ε > 0, (9.9)

where φ(·) is a theoretical working capacity function, and ψ(·) is called a generalized

working capacity function. Analogously to a status variable Z = φ(X), W = ψ(X,ε) will

be called a generalized status variable.The relationship between W and Z is given by the

linear transformation

W = Z + ε. (9.10)

The variables W and Z may be random fields, processes and variables. For the description

of the additive error ε , we choose a model as a random variable and further on will assume

that ε obeys some distribution with a probability density fε(ε) = fε(ε;θ), where θ is a

vector of parameters.
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If Z is a random variable, then TTF will be defined by the probability statement

R0 = P{W > 0}. (9.11)

This expression will be used as a reliability characteristic of the object in the initial or some

fixed time, corresponding to extremal exploitation conditions.

In the more general case, Z is a random process, and the probability

Rτ = R(τ) = P{W (t) > 0, 0 � t � τ} (9.12)

is used as a TTF. The general problem is the estimation of the error ε and TTF of the form

(9.11) or (9.12) under the following assumptions:

(1) The theoretical working capacity function φ(X) is assumed to be given.

(2) We are given the values of the set of numerical characteristics kX of the vector of ini-

tial variables X. If the vector X, consists of only random variables, then KX is formed

by mean values, mean-squared values, correlative coefficients and, possibly, numerical

characteristics of moments of higher order. Provided that some components of the vec-

tor X are random processes, KX contains additionally the parameters of corresponding

correlative functions.

(3) We are given the form of probability characteristics necessary for the TTF evaluation.

In particular, for the evaluation of R0 we need to know the form of the p.d.f. or cu-

mulative distribution function of the status variable Z. For calculation of Rτ , generally

speaking, we have to know an infinite dimensional distribution density of the coordi-

nates of the process Z(t). Under the assumption that Z(t) is Gaussian and stationary

and the flux of intersection of the process W (t) of the zero-level is Poisson, it suffices

to know a one-dimensional density of the distribution of the coordinates of the process

Z(t) and correlation function of the process.

(4) We are given a p.d.f. fε (ε;θ) of the additive error ε and given a prior p.d.f. h(θ) of

the parameter vector θ .

(5) We may have carried out the testing, given the information (direct or indirect) with

respect to the values of the additive model error ε . These tests may have two different

forms. The first one is based on the establishment of the real levels of functional

capabilities of the model. We fix the values of the status variable Z at the failure time

(when W = 0), whence empirical values of the quantity ε are found. The second form

consists of functional tests which are carried out under the exploitation conditions near

to them. After these tests, one can obtain censored data for ε , since not all tests are

ended by the event W = 0.
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Under the assumptions (1)–(4), the problem of obtaining a prior estimate is solved. The

general scheme of the problem solution can be represented by the following three steps.

Step 1. Determination of the conditional TTF, R = R(θ), depending on the parameter vec-

tor which characterizes the additive error ε . This step uses the assumptions (1)–(4).

Step 2. Determination of a prior TTF estimate with the help of a prior p.d.f., h(θ), and

some loss function L
(
R̂,R

)
. Assumption (4) will be methodologically fundamental for

this step. A TTF estimate is sought in the form of a pointwise estimate, R∗, minimizing

a prior Bayes risk and a lower prior confidence limit, R∗
γ , under the given confidence

level γ .

Step 3. Determination of the posterior TTF estimate by the results of the experiment men-

tioned in assumption (5). Here we use the Bayes theorem which enables us to find a

posterior density of the distribution of the vector θ . As discussed earlier, information

about TTF is formed by the pointwise posterior estimate, R̂∗, minimizing posterior

Bayes risk, and posterior lower confidence limit, R∗
γ .

Note that the first step is free of the use of principles of the Bayes methodology. We will

consider it in § 9.3; Steps 2 and 3 will be investigated in §§ 9.4, 10.2.

9.3 The conditional estimates of the reliability function

In this section we touch upon the questions of obtaining TTF estimates which depend on

unknown parameters θ = (θ1,θ2) of the distribution of additive error. Later these estimates

will be called conditional, i.e., known, if the parameters are given. At first we introduce

and substantiate two calculation cases for the probability distribution of the error ε , and

thereafter for each case we will write the corresponding TTF estimates of the form (9.11)

and (9.12).

9.3.1 Calculation case of a generalized exponential error

This case is given by a p.d.f. fε(ε;θ) of the form:

fε(ε;θ1,θ2) =

⎧⎪⎪⎨
⎪⎪⎩

1
θ2 −θ1

exp
(
− ε
θ1

)
, ε < 0,

1
θ2 −θ1

exp
(
− ε
θ2

)
, ε � 0 (θ1 � 0, θ2 � 0).

(9.13)

The choice of the density (9.13) as a probability characteristic of the error ε is prompted

by the following reasons. The p.d.f. (9.13) corresponds to a situation when a theoretical
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working capacity model may induce either decreasing or increasing of the working capacity

of the system. We assume also that our theoretical model doesn’t have a systematic error.

Due to this circumstance, we choose as fε(ε) a p.d.f. which has a mode at the point ε = 0.

The p.d.f. (9.13) in a general case is not symmetric which enables us, with the help of

the parameters θ1 and θ2, to characterize the corresponding significance of negative and

positive errors of the model. The p.d.f. (9.13) has a form depicted in Fig. 9.1, a.

Partial cases of the p.d.f. (9.13) describe unilateral estimates (see Fig. 9.1, b, c). That is, for

the partial case of a negative additive error θ2 = 0, the p.d.f. fε(ε) becomes one-parametric

and takes on the form

fε(ε;θ) =

⎧⎨
⎩

− 1
θ

exp
(
− ε
θ

)
, ε � 0,

0, ε > 0 (θ = θ1 � 0).
(9.14)

The probability distribution (9.14) should be used only in the case when it is a priori known

that a theoretical model overstates the real functional capability of the system. The expo-

nential nature of the p.d.f. of ε conveys that the functional form of the theoretical model

approximates well the real properties of the system, since the probability of the error ε
being in the domain of small, in magnitude, values are greater than in the domain of greater

values. For the opposite case, when it is known a priori that the theoretical working capac-

ity model understates the real functional capability of the system, the p.d.f. fε(ε) has the

form

fε (ε;θ) =

⎧⎨
⎩

0, ε < 0,
1
θ

exp
(
− ε
θ

)
, ε � 0 (θ = θ2 � 0).

(9.15)

9.3.2 Calculation of the Gaussian error

This calculation is determined by the p.d.f. fε(ε) of the form

fε
(
ε;ε0,σε

)
=

1√
2π σε

exp
(
−ε− ε0

2σ2
ε

)
. (9.16)

The use of this calculation case is substantiated under the conditions of a great number

of unaccounted factors of a theoretical model which act by the additive scheme. In this

situation we apply the central limit theorem leading to the normal probability distribution

of the error. The p.d.f. (9.16) assumes the existence of a systematic error ε0. If there is no

such error, we set ε0 = 0 in (9.16), which guarantees that the error ε possesses a Gaussian

property of symmetry.
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Fig. 9.1 Probability Density Function of the Generalized Exponential Error.

9.3.3 Conditional TTF estimates for a fixed time

Starting from assumptions (3) and (4), we suppose that the p.d.f. of the status probabil-

ity variable Z and additive error of the model ε are given, i.e., the forms of the densities

Fz(z;Kz) and fε(ε;θ) are given, where the vector θ is unknown, and parameters contained

in the set Kz may be found because of the assumptions (1) and (2). The problem of approx-

imate determination of Kz is considered below in Subsection 9.3.4.

Assuming that the state variable Z and error ε are independent, the sought-after probability,

R0, in the general case will be written with the help of the integral

R0 = P{Z + ε > 0} =
∫∫

(z+ε>0)
fz(z;Kz) fε(ε;θ)dzdε. (9.17)

Below we will consider the case of the Gaussian distribution of the status variable Z, in

accordance with which the set kz consists of a mean value mZ = E [Z] and standard deviation

σZ = E
[
(Z = mZ)2

]1/2. Since, under the assumption, mZ and σZ are known, later we will

emphasize the dependence of a TTF only on θ . Suppose at first that the error ε appears to

be a generalized exponential. Let us rewrite the integral (9.17) in the form

R0 =
∫∫

ω1

fz(z) fε(ε)dzdε+
∫∫

ω2

fz(z) fε(ε)dzdε, (9.18)

where ω1 = {0 � z <∞, −z � ε � 0} and ω2 = {(0 < z <∞, 0 � ε < 0 <∞∪(−∞< z < 0,

−z � ε <∞))}. After the substitution of (9.13) into (9.18) and integration for the Gaussian

density fz(z) we finally have

R0 = R0(θ1,θ2) =Φ
(

mZ

σZ

)
+ΔR1(θ1,θ2)+ΔR2(θ1,θ2), (9.19)
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where

ΔR1(θ1,θ2) =
θ1

θ2 −θ1
Φ

⎛
⎝mZ + σ2

Z
θ1

σZ

⎞
⎠exp

(
mZ

θ1
+

σ2
Z

2θ 2
1

)
� 0, (9.20)

and

ΔR2(θ1,θ2) =
θ2

θ2 −θ1

⎡
⎣1−Φ

⎛
⎝mZ + σ2

Z
θ2

σZ

⎞
⎠
⎤
⎦exp

(
mZ

θ2
+

σ2
Z

2θ 2
2

)
� 0, (9.21)

Let us investigate the obtained expression (9.19). First, as θ1 = 0, we have ΔR1 = 0, and

the expression (9.19) corresponds to the case of a positive additive error. Analogously, as

θ2 = 0, we obtain ΔR2 = 0, and (9.19) characterizes the case of a negative additive error.

Second, using the limit passing, we found that, as |θ1|→∞ and for all θ2, ΔR1 →Φ(mZσZ)

and ΔR2 → 0, i.e., in this case R0 = 0, and infinite negative error leads to a zero TTF value.

Analogously, as θ2 →∞ and for all θ1, we get ΔR1 = 0 and ΔR2 →Φ(mZσZ), whence R0 =

1, i.e., infinite positive error leads to absolute reliability. Drawn conclusions can be easily

interpreted in the range of the considered model. Moreover, they convince us that θ1 and θ2

in (9.19) play the role of significance characteristics corresponding to negative and positive

errors. This, however, doesn’t mean that for |θ1|= |θ2| we will obtain R0 =Φ(mZσZ). The

cause is that the fact of having a random additive error leads to an increasing of the variance

of a status variable, i.e., σW > σZ , whence follows R0 <Φ(mZσZ).

For the calculation of the Gaussian additive error, it is easy to obtain an expression for

the conditional TTF estimate, since in the case of the normal probability distribution of Z

and ε , a generalized status variable W also has the Gaussian p.d.f. with the parameters

mW = mZ + ε0 and σ2
W = σ2

Z +σ2
ε . Consequently, the resulting expression for R0 may be

written as follows:

R0 = P{W > 0} =Φ

⎛
⎝ mZ + ε0√

σ2
Z +σ2

ε

⎞
⎠ . (9.22)

For many theoretical working capacity models, we may a priori assume that there is no

systematic error. Then

R0 =Φ

⎛
⎝ mZ√

σ2
Z +σ2

ε

⎞
⎠ . (9.23)

It follows from (9.23), even in the case of symmetric error ε an approximate reliability

estimate is less than the theoretical one. They coincide only in the case σε = 0.
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9.3.4 The problem of determining mZ and σZ

The solution of this problem is guaranteed by the assumptions (1) and (2). In the general

case the function φ(·) is nonlinear, which impedes obtaining exact values of numerical

characteristics of the status variable Z. A regular approximate solution may be found with

the help of an approximate representation of the function.φ(·). One of the possible ways

is based on the following procedure. To determine mZ = E[φ(X)], we approximate the

function φ(X) by the use of Taylor series. If one restricts himself to the smallest second-

order term, then an approximate formula for mZ may be written as

mZ ∼= φ
(
mX

)
+

1
2 ∑∑

1�i� j�N

∂ 2φ
∂mi∂m j

ρi jσiσ j, (9.24)

where

mX =
(
m1,m2, . . .mN

)
, mi = E

[
Xi
]

σ2
i = E

[
X2

i −m2
i
]

and

ρi j =
E
[
XiXj

]
−mim j

σiσ j
.

These quantities, under the assumption, form a priori information. To determine σ2
Z we

replace a function (φ(X)−mZ)2 by a segment of the Taylor series. If one restricts himself

to the smallest of the second order terms, inclusively, the expression for the variance of the

status variable is written as

σ2
Z = [φ (mX )−mZ ]2 +2 ∑∑

1�i� j�N

[
∂φ
∂mi

· ∂
2φ

∂m j

]
+(φ (mX )−mZ)2 ∂φ

∂mi∂m j
ρi jσiσ j.

(9.25)

The detailed examination of the question of obtaining numerical characteristics of the state

variable with the help of different approximations of the working capacity function is given

in [173].

9.3.5 Conditional TTF estimates for variable time

Consider the problem of determining a TTF, Rτ , of the form (9.12), assuming that the

status variable Z(t) is a stationary random process, and W (t) lies out of the zero level

are rare events, i.e., the reliability of a system is high enough. Many practical situations,

when a system is being subjected for a short time to random stationary loadings under the

nonchangeable value of carrying capability, lead to this problem.

The problem of determination of the conditional TTF estimate, Rτ = Rτ(θ), in a general

case may be solved by the following scheme. At first we fix the value of an additive model



Statistical Reliability Analysis Prior Bayes Estimates 259

error ε , i.e., it is assumed to be nonrandom, and find the probability of rτ(ε) not being out

of the level (−ε), that is,

rτ(ε) = P{Z(t) > −ε, 0 � t � τ}. (9.26)

For determination of rτ(ε) we will use the method based on an approximate determination

of the probability of the nonfrequent exceeding observations of the stationary process Z(t)

out of the level (−ε) with the help of the mean number of rejected observations per unit

time v(ε) [26]. If one denotes by q(k)
τ (ε) the probability of k intersections to the one side

(i.e., whether with a positive or negative derivative) of the level (−ε), then the probability

of at least one exceeding (rejected) point is written as:

qτ(ε) =
∞

∑
k=1

q(k)
τ (ε). (9.27)

The mean number of exceeding observations per time τ may be represented as a mean

value of a discrete random variable of the number of exceeding observations:

Nτ(ε) =
∞

∑
k=1

kq(k)
τ (ε). (9.28)

The assumption about a nonfrequent exceeding observation of the process Z(t) is equivalent

to the assumption that the probability of two or more exceeding observations is negligibly

small in comparison to the probability of one exceeding observation. Whence, neglecting

in formulas (9.27) and (9.28) all terms beginning with the second one, we will have qτ(ε) =

q(1)
τ (ε) and Nτ(ε) = q(1)

τ (ε) or qτ(ε) = Nτ(ε). Thereafter, for the probability (9.26) we will

write

rτ(ε) = 1−qτ(ε) = 1−Nτ(ε).

Since the stochastic process Z(t) is stationary, the mean number of exceeding observations

per unit of time v(ε) is independent of the current time, i.e., Nτ(ε) = τv(ε). Because of

this fact, for the probability rτ(ε)the following approximate expression holds:

rτ(ε) ∼= 1− v(ε)τ. (9.29)

As seen from (9.28), Nτ(ε) � qτ(ε), whence, rτ(ε) � 1−v(ε)τ , i.e., the quantity 1−v(ε)τ
for rτ(ε) is a lower estimate. This fact emphasizes the practical use of the approximate

expression (9.29), which is made possible with the help of the conclusions that may be

added to the “reliability potential”.

In order to determine the mean number of exceeding observations of the stochastic process

Z(t) out of the level (−ε) per unit of time, we apply the Rise formula [133]. Restricting

ourselves to a Gauss stationary random process, we will write the expression for v(ε):

v(ε) =
aZ

σZ
exp

[
− (−ε−mZ)2

2σ2
Z

]
, (9.30)
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where

aZ =
1

2π

√
−d2Kz(τ)

dτ2

∣∣∣∣
τ=0

. (9.31)

The correlation function of the status variable Kz(τ) is determined starting from the initial

assumptions (1) and (2), as it was for mZ and σZ . Substituting the expression (9.30) into

(9.29), we will write the resulting expression for the probability of the stochastic process

Z(t) not being out of the level (−ε):

rτ(ε) = 1− aZτ
σZ

exp
[
− (ε+mZ)2

2σ2
Z

]
. (9.32)

Returning to the initial situation when the additive error is assumed to be random, we

determine the desired conditional TTF estimate, Rτ(θ), having evaluated the mean value,

rτ(ε) over the set of possible values of the variable ε ∈ E:

Rτ(θ) =
∫

E
rτ(ε) fε(ε;θ)dε ,

or, more explicitly,

Rτ(θ) = 1− aZτ
σZ

∫
E

fε(ε;θ)exp
[
− (ε+mZ)2

2σ2
Z

]
dε . (9.33)

The case of a generalized error ε is reduced to the substitution of the p.d.f. (9.13) into the

integral of the expression (9.33), which leads to the following expression:

Rτ(θ1,θ2) = 1− aZτ
σZ

{
1

θ2 −θ1

∫ 0

−∞
exp

[
− ε
θ1

− (ε+mZ)2

2σ2
Z

]
dε

+
1

θ2 −θ1

∫ ∞

0
exp

[
− ε
θ2

− (ε+mZ)2

2σ2
Z

]
dε

}
, (9.34)

With the help of direct calculations, we can verify the validity of the following expressions:
∫ 0

−∞
exp

[
− ε
θ1

− (ε+mZ)2

2σ2
Z

]
dε =

√
2πσZ exp

(
mZ

θ1
+

σ2
Z

2θ 2
1

)
Φ

(
mZ + σ2

Z
θ1

σZ

)
,

and

∫ 0

−∞
exp

[
− ε
θ2

− (ε+mZ)2

2σ2
Z

]
dε =

√
2πσZ exp

(
mZ

θ2
− σ2

Z

2θ 2
2

)[
1−Φ

(
mZ + σ2

Z
θ2

σZ

)]
.

Substituting these integrals into the expression (9.34), we write the resultant formula for

Eτ(θ1,θ2):

Rτ(θ1,θ2) = 1− 2πaZτ
θ2 −θ1

{
exp

(
mZ

θ1
+

σ2
Z

2σ2
1

)
Φ

(
mZ + σ2

Z
θ1

σZ

)

+ exp
(

mZ

θ2
+

σ2
Z

2σ2
2

)[
1−Φ

(
mZ + σ2

Z
θ1

σZ

)]}
. (9.35)
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Let us investigate (9.35). At first, as θ2 → 0+, we have

exp
(

mZ

θ2
+

σ2
Z

2σ2
2

)⎡
⎣1−Φ

⎛
⎝mZ + σ2

Z
θ2

σZ

⎞
⎠
⎤
⎦→ 0,

whence it follows that TTF estimate for the case of negative additive error of a model, that

is,

Rτ (θ1,0) = 1+
√

2πaZτ
θ1

exp
(

mZ

θ2
+

σ2
Z

2σ2
1

)
Φ

⎛
⎝mZ + σ2

Z
θ1

σZ

⎞
⎠ . (9.36)

For the positive error we analogously obtain

Rτ(0,θ2) = 1−
√

2πaZτ
θ2

exp
(

mZ

θ2
+

σ2
Z

2σ2
2

)⎡
⎣1−Φ

⎛
⎝mZ + σ2

Z
θ2

σZ

⎞
⎠
⎤
⎦ . (9.37)

Secondly, it is necessary to investigate the area of applicability of the expression (9.36). The

reason it that it is approximate, and is valid only in the case when exceeding observation of

the process is a rare event. At the same time, as |θ1| increases, this property may be broken.

We can represent (9.36) in the form

Rτ (θ1,0) =

⎛
⎝1− aZτ

σZ
e
− m2

Z
2σ2

Z

⎞
⎠ = ΔRτ(θ1), (9.38)

where the expression in the parentheses is the theoretical probability of nonexceeding ob-

servation under the assumption of zero error, and ΔRτ(θ1) is a correction caused by the

existence of the additive error in the working capacity model,

ΔRτ(θ1) = aZτ

⎡
⎣ 1
σZ

exp
(
− m2

Z

2σ2
Z

)
+

√
2π
θ1

exp
(

mZ

θ1
+

σ2
Z

2θ 2
1

)
Φ

⎛
⎝mZ + σ2

Z
θ1

σZ

⎞
⎠
⎤
⎦ . (9.39)

Let us investigate the correction ΔRτ(θ1). Find the limit of ΔRτ(θ1) as θ1 → 0−. At first,

in order to find the limit of the first term y(θ1) we apply the L’Hospital rule:

lim
θ1→0−

y(θ1) = lim
θ1→0−

√
2π
θ1

exp
(

mZ

θ1
+

σ2
Z

2θ 2
1

)
Φ

⎛
⎝mZ + σ2

Z
θ1

σZ

⎞
⎠

= − 1
σZ

exp
(
− m2

Z

2θ 2
1

)
.

Comparing the obtained limit value with the first summand of the formula (9.39), we ob-

serve that ΔRτ(θ1) → 0 as θ1 → 0− This fact can be interpreted in the following way: if a

mean value of the error tends to zero, then the conditional TTF estimate tends to its theoret-

ical value Rτ . At the same time, as θ →−∞ we have y(θ1)→ 0 and Rτ(θ1)→ 1. We arrive
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at the contradiction: the increasing of the absolute value of a mean error in this case must

imply the decreasing of TTF estimate, which in the limit form takes on zero value. The

cause of this contradiction is explained by the approximate nature of the formula (9.32),

which may be used (we bear in mind the assumptions imposed on it) for the calculation of

large probabilities (Rτ(θ1) � 0.9).

Let us find the range of the parameter θ1 for the possibility of using formulas (9.35) and

(9.36). Taking into account the fact that for known mZ and σZ the absolute value of the

error ε satisfies the condition rτ(ε) � 0.9, or, using (9.32)

aZτ
σZ

exp
[
− (ε+mZ)2

2σ2
Z

]
� 0.1.

Solving this inequality for the case of intersection of the stochastic process Z(t) with the

level (−ε), we obtain

ε � −mZ +σZ

√
−2ln

0.1σZ

aZτ
= ε∗.

The limit value for θ1 we find under the condition that the probability that this inequality

holds, coincides in practice with the probability of the certain event, i.e.,∫ 0

ε∗
− 1
θ1

e−ε/θ1dε = 0.99 ⇒ θ1∗ =
ε∗

ln0.01
.

Finally, the interval of the values θ1, for which the formulas (9.35) and (9.36) may be used,

has the form

−mZ +σZ

√
−2ln 0.1σZ

aZτ

ln0.01
� θ1 � 0.

This condition should be taken into account, when one chooses a prior probability distribu-

tion for θ1. The case of a Gaussian additive error is easier. The conditional TTF estimate

depends in this case on the parameters ε0 and σε (the systematic error and mean square

value of the error, respectively). For determination of Rτ (ε0,σε ) we will use not the com-

mon expression (9.33), but a more simple argument. Since Rτ(ε0,σε) = P{Z(t)+ ε > 0,

0 � t � τ}, for the Gaussian distribution of Z(t) and ε their sum has also a Gaussian distri-

bution with the mean value mZ + ε0 and correlation function KW (τ) = σ2
ε + Kz(τ), where

Kz(τ) is the correlation function of the process Z(t). Repeating the scheme applied for

(9.32) for determining the probability Rτ(ε0,σε) = P{W (t) > 0, 0 � t � τ}, we get

Rτ
(
ε0,σε

)
= 1− αW τ

σW
exp

(
− m2

W

2σ2
W

)
,

where

αW =
1

2π

√
−d2KW (τ)

dτ2

∣∣∣∣
τ=0

.
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It is easy to check that aZ =αW .Therefore, the resulting expression for Rτ(ε0,σε) is written

as

Rτ(ε0,σε) = 1− aZτ√
σ2

Z +σ2
ε

exp

[
− (mZ + ε0)2

2
(
σ2

Z +σ2
ε
)
]

. (9.40)

9.3.6 The method of determination of the numerical characteristics of mz, sz and
az

Here, we use the assumptions (1) and (2). We represent the vector of initial variables

X as random processes ξ (t) = {ξ1(t), . . . ,ξk(t)} and random variables ζ = {ζ1, . . . ,ζ�},

K +L = N. Let us restrict ourselves to the case when only loadings acting on the system are

random processes and physical-mechanical characteristics are independent of time. Analy-

sis of a great number of working capacity conditions imposed on the carrying constructions

and mechanical type systems shows that loading factors appear additively in the working

capacity function as some generalized loading S(t) = α1ξ1(t)+ · · ·+αkξk(t), where α j are

nonrandom constants. Moreover, any working capacity function may be represented in the

form

φ(ξ (t),ζ ) = Q(ζ )−S(ξ (t)), (9.41)

where Q depends only on physical-mechanical characteristics and geometrical parameters

of the system, and is called a carrying capability. The theoretical model of the device is

reduced, in essence, to the establishment of the dependence Q(ζ ). Let, in accordance with

the assumption (2), there be given the numerical characteristics for the vector of initial

variables whose order is restricted by the frames of Linear Correlation Theory. For the

random vector ζ we are given the mean values mζi , mean square values (standard deviation)

σζi and correlation matrix ρ̄ζ = ρi j, i = 1, 2, . . . ,L; j = 1, 2, . . . ,L. For the vector random

process ξ (t) we are given the mean values mξi , and the correlation functions
(
Ki j(τ)

)
,

i = 1, 2, . . . ,K, where Kii(τ) = Ki(τ). The problem of obtaining mZ , σZ and aZ with the

help of the mentioned set of initial data can be solved in the form of the following sequence.

Step 1. We determine a mean value mQ and mean square value σQ of a carrying capability

Q. To this end, we apply formulas (9.24) and (9.25) for φ = Q.

Step 2. We determine a mean value mS and correlation function KS(τ) of the generalized

loading S(t):

mS =
K

∑
i=1

aimξi , KS(τ) =
K

∑
i=1

a2
i Ki(τ)+2 ∑

1�i<
∑
j�K

aia jKi j(τ) (9.42)

These formulas are given in [200].
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Step 3. Using (9.41) we find a mean value mZ = mQ −mS and correlation function Kz(t)

of the status variable Z(t) = Q−S(t):

Kz(τ) = σ2
Q +KS(τ). (9.43)

The following reasoning gives us the formula (9.43). By the definition of the correla-

tion function we have

Kz(τ) = E [(Z(t)−mZ)(Z(t + τ)−mZ)] = [E (Q◦ −S◦(t))(Q◦ −S◦(t + τ))] ,

where Q◦ = Q−mQ and S◦(t) = S(t)−mS. Taking into account the independence of

Q and S(t), we obtain

Kz(τ) = E
[
E◦2]+

[
S◦(t)S◦(t + τ)

]
= σ2

Q +KS(τ).

The variance of the stochastic process Z(t), by the definition, equals

σ2
Z = Kz(0) = σ2

Q +KS(0) = σ2
Q +σ2

S .

Step 4. Starting from the formula (9.31), we find, in view of (9.43),

az =
1

2π

√
−K′′

z (0) =
1

2π

√
−K′′

S (0).

this being the final step of the proposed procedure.

9.4 Bayes estimation of the reliability functions under the lack of experimental
data

9.4.1 General procedure of Bayes estimation

The essence of Bayes estimating in conformity to the given problem is that we assign to the

unknown parameter θ some additive error ε of some prior p.d.f. h(θ) which characterizes

the degree of uncertainty of the information about a model error. For realization of the

Bayes procedure of obtaining a TTF estimate we need to have:

a) A prior probability density of the distribution, h(θ), θ ∈Θ;

b) A functional relation connecting the parameter vector θ and TTF in the form, R = R(θ);

c) A loss function L(R̂,R) which, in essence, characterizes the losses which appear because

of the replacement of the real TTF value by its estimate, R̂.

In accordance with the setting of the problem, we are interested in pointwise estimate R∗

and Bayes lower confidence limit R∗
γ of the TTF with a confidence level γ . The pointwise

estimate is determined by minimization of the function of the mean prior risk:

R∗ = argmin
R̂

∫
Θ

L
(
R̂,R(θ)

)
h(θ)dθ . (9.44)
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To obtain E we need to solve the following equation:∫
R∗
γ�R(θ�1)

h(θ)dθ = γ. (9.45)

The choice of the loss function L(R,R) will be made in accordance with a rule broadly used

in Reliability Theory: overstating of the estimated parameter is worse than its understating.

The following loss function, introduced in [217], may be chosen as an example of this rule

in the theory of Bayes estimation:

L
(
R̂,R(θ)

)
=

{
K1

(
R̂−R(θ)

)2
, if R̂ � R(θ),

K1
(
R̂−R(θ)

)2 +K2
(
R̂−R(θ)

)2
, if R̂ > R(θ).

(9.46)

The loss function (9.46) is very handy for practical calculations, and possesses several

merits. Given relations between the coefficients K1 and K2, we can control the degree of

overestimating or underestimating the real TTF by R̂. For example, with K1 = 0 and K2 = 1,

overstating of the TTF estimate of its real value is excluded. With K2 = 0, the loss function

(9.46) transforms into a mean square loss function.

With respect to the choice of the prior p.d.f., h(θ), we must consider three different forms:

a) Prior distributions based on previous empirical data;

b) Subjective prior ones based on the designer’s experience;

c) Prior distributions describing a lack of knowledge about the parameter.

Clearly, the first form of a prior distribution is more preferable than the others, since it is

based on real data, characterizing existing information about the parameters of error of a

theoretical model. However, for a large volume of data about the deviation between the

real and theoretical working capacity models, a designer modifies the theoretical model

with the help of different empirical coefficients in order to bring it nearer to the real model.

After this, the necessity of construction of a prior distribution h(θ) based on these data

drops out. Unfortunately, this situation so desirable is rare.

In most cases, a designer possesses a very small amount of data about the working capacity

model error, i.e., such samples with the help of which obtaining a certain estimate of a

prior distribution is impossible. However, these data form some of his opinions about a

working capacity model which he attempts to express quantitatively, in particular, with the

help of a safety coefficient. Namely, this situation makes possible construction of a prior

distribution. Let us investigate peculiarities of construction of a prior distribution in the

following example with a working capacity condition (9.7). For the sake of convenience of

further arguments, we rewrite it in the dimensionless form(
Tcr(X)

A
− T

A

)
+
ε
A

> 0,
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where A = E [Tcr(X)] is a nonrandom value of a mean carrying capability. Throughout what

follows we will assume that the general form of a working capacity condition

φ(X)+ ε > 0

has a dimensionless nature, and ε is the relative error of the theoretical model.

Suppose that a designer is convinced that a limit value of a safety coefficient equals η . In

accordance with (9.8), the corresponding quantile of the relative estimate is εp = (η−1)/η .

Representation of an interval of a prior uncertainty for the safety coefficient in the form

[1,η ] corresponds more closely to a given state of information, in other words, a statement

has a less categorical nature: a safety coefficient takes on some value from an interval. The

corresponding interval for the quantile εp is Eε = [−(η−1)/η ,0]. Now we can use more

exact information. A designer has to estimate the chances of an error value having one or

other values from the interval Eε , i.e., he must represent a prior distribution h(θ) in one of

the three forms given in Fig. 9.2. In the first case, we have a uniform prior distribution; in

the second one, we prefer to choose such values of the parameter error which are near the

limit one, in the third case, we choose values near to the mean. Let us emphasize again that

construction of a prior density in the general case is followed by nonformal representations

by the designer.

In the considered situation η > 1, which corresponds to a negative additive error ε , a dis-

tribution density (9.14) with the parameter θ1, having a natural mean error, has been used.

Now we can easily pass from h(εp) to h(θ1), taking into account a linear dependence be-

tween these characteristics:

θ1 = kεp,

in which the coefficient k is determined by the condition
∫ 0

−εp

fε(ε;θ1)dε = p ⇒ k = − 1
ln(1− p)

.

In particular, if η = 1, 2, and in accordance with it a uniform distribution for εp the interval

Eε = [−0.01667;0] is chosen, then for p = 0.99, θ1 is distributed uniformly in the inter-

val Eθ = [−0.0362;0], i.e., the limit value of a mean relative negative model error equals

3.62%.

A designer who has no information about the characteristic of error may carry out some

tests for the construction of a prior distribution during which values of errors ε1, ε2, . . . ,εm

are fixed. Even for a small m, it is possible to find a non biased estimate of a mean error θ̂1

and choose it as a base value for the construction of a prior density h(θ1). We may choose
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as interval Eε a confidence interval for θ1 and determine on it a uniform prior distribution.

Note that with such an approach a choice of a prior distribution is formalized and a designer

may not approve a strict decision.

h(εp) h(εp) h(εp)

0 0 0−η−1
η −η−1

η −η−1
η

εp εp εp

Fig. 9.2 Prior Probability Density of the Quartiles of the Additive Error.

In conclusion of this question, we investigate a possibility of using nonformal (or improper)

prior distributions, characterizing a complete lack of knowledge about an error value. For

a noninformative prior density the following relation holds [114]:
∫
Θ

h(θ)dθ = ∞.

Investigate a possibility of obtaining a meaningful conclusion about a TTF for the case of

a Gaussian additive error with a zero systematic component, when we have only σε as a

parameter and conditional TTF estimate has the form (9.23). In accordance with Jeffrey’s’

approach [114], an absolute lack of information about σε is determined by the p.d.f.

h(σε) ∼
1
σε

, 0 � σε < ∞.

The use of a mean square error loss function in this case gives us the following Bayes TTF

estimate:

R∗ =

∫ ∞

0
φ
(

mZ√
σ2

Z+σ2
ε

)
dσε
σε∫ ∞

0

dσε
σε

.

Analysis of this expression shows that the quantity R∗ is reduced to the indeterminate form

∞/∞. Consequently, the use of noninformative prior distributions gives us an undetermined

inference about the TTF. The conclusion does not mean, however, that improper prior dis-

tributions cannot be used for obtaining a meaningful conclusion about the reliability in the

presence of experimental data.
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9.4.2 TTF estimates for a fixed time

Consideration of this question will be carried out separately for the generalized exponential

and Gaussian errors of the working capacity model.

Suppose that the error ε obeys the distribution with density (9.13) and given prior distribu-

tion densities h1(θ1), θ1 ∈Θ1 = [θ ′
1, θ ′′

1 ]⊂ (−∞,0], and h2(θ2), θ2 ∈Θ2 = [θ ′
2, θ ′′

2 ]⊂ [0,∞);

it is assumed that θ1 and θ2 are a priori independent. In accordance with a common expres-

sion (9.44) for the quadratic loss function, we will have

R∗
0 =

∫∫
Θ1×Θ2

R0(θ1,θ2)h1(θ1)h2(θ2)dθ1 dθ2. (9.47)

Denote by

u = u(x) =
1
σZ

(
mZ +

σ2
Z

x

)
and v = v(x) =

mZ

x
+
σ2

Z
2x2 , (9.48)

and rewrite integral (9.47) in the form

R∗
0 =Φ

(
mZ

σZ

)
+

∫
Θ1

θ1Φ(u)(θ1)ev(θ1)U1(θ1)h1(θ1)dθ1

+
∫
Θ2

θ2 [1−Φ(u(θ2))]ev(θ2)U2(θ2)h2(θ2)dθ2, (9.49)

where

U1(θ1) =
∫
Θ2

h2(θ2)
θ2 −θ1

dθ2 and U2(θ2) =
∫
Θ1

h1(θ1)
θ2 −θ1

dθ1 . (9.50)

Formula (9.49) is used in the calculating algorithm. The functions U1(θ1) and U2(θ2) may

be easily written with the help of analytical expressions for any prior densities considered

earlier. In particular, for the uniform h1(θ1) and h2(θ2) we get

U1(θ1) = ln
θ ′′

2 −θ1

θ ′
2 −θ1

� 0, θ1 ∈Θ1, (9.51)

and

U2(θ2) = ln
θ2 −θ ′

1
θ2 −θ ′′

1
� 0, θ2 ∈Θ2, (9.52)

the functions U1(θ1) and U2(θ2) vanish, if correspondingly, h2(θ2) and h1(θ1) degenerate.

It gives us a zero value of the corresponding term in (9.49).

A procedure of evaluating R∗
0 for the loss function (9.46) is more complicated, and may be

reduced to the following problem:

R∗ = argmin
R̂

∫∫
Θ1×Θ2

F
(
θ1,θ2; R̂

)
dθ1 dθ2, (9.53)
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where

F(θ1,θ2;x) =

⎧⎪⎪⎨
⎪⎪⎩

K1 (x−R0(θ1,θ2))
2 h1(θ1)h2(θ2), x � R0(θ1,θ2),[

K1 (x−R0(θ1,θ2))
2

+K2 (x−R0(θ1,θ2))
]
h1(θ1)h2(θ2), x > R0(θ1,θ2),

(9.54)

and R0(θ1,θ2) is determined by the relation (9.19). We cannot get rid of the double inte-

gration in this case. The integration procedure is simplified by the fact that the integration

domain Θ1 ×Θ2 is a rectangle whose sides are not large.

For evaluating R∗
0γ we don’t use the common equation (9.45), since in the given case it gives

us a very complicated calculating procedure. Let us apply the following simple arguments.

Find values and θ2 ∈Θ2, such that

P{θ1 > θ 1,θ2 > θ 2} =
∫ θ ′′1

θ1

∫ θ ′′2

θ2

h1(θ1)h2θ2dθ1dθ2 = γ (9.55)

where γ is a confidence probability. Since R0(θ1,θ2) in view of (9.19) is a monotonically

increasing function of both arguments, we get

P{R0(θ1,θ2) > R0 (θ 1,θ 2)} = P{θ1 > θ 1, θ2 > θ 2} .

Thus, if the values of θ 1,θ 2 are given, the lower Bayes confidence limit R∗
0γ may be deter-

mined as

R∗
0γ = R0 (θ 1, θ 2) . (9.56)

condition (9.55) does not give us a possibility of finding the values θ 1 and θ 2. Let us assign

an equal positive probability for the events {θ1 > θ 1} and {θ2 > θ 2}:∫ θ ′′1

θ1

h1(θ1)dθ1 =
∫ θ ′′2

θ2

h2(θ2)dθ2. (9.57)

Having considered (9.55) and (9.57) mutually, we find∫ θ ′′1

θ1

h1(θ1)dθ1 = γ1/2,

∫ θ ′′2

θ2

h2(θ2)dθ2 = γ1/2. (9.58)

Finally, we obtain θ 1 and θ 2 are quantiles of the probability 1− γ1/2 of prior distributions

with densities h1(θ1) and h2(θ2) we have the following simple formula for θ 1 and θ 2:

θ k = θ ′′
k − γ1/2(θ ′′

k −θ ′
k
)
, k = 1, 2. (9.59)

Thus, the procedure for obtaining R∗
0γ is reduced to the calculation of the function (9.19)

for the values θ 1 and θ 2, determined by the relations (9.58), or in the particular case, by

(9.59).

For the case of a Gaussian model error ε , all the arguments used above remain valid. We

need only to put θ1 = ε0 and θ2 = σε , and instead of R0(θ1,θ2) one should use R0 (ε0,σε),
determined by the formula (9.22). In all further reasoning, we have a similar picture. There-

fore, we restrict ourselves only to the consideration of the first model of additive error ε .
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9.4.3 TTF estimates during the time τ

Here all assumptions with respect to a prior density h(θ1,θ2) = h1(θ1)h2(θ2), θ1 ∈ Θ1,

θ2 ∈Θ2 remain in force. The expression for the pointwise TTF estimate R∗
γ will be written

in accordance with a common approach (9.44) for the conditional TTF estimate of the form

(9.35). Under the assumption of a mean square error loss function, we have,

R∗
γ = 1−

√
2πaZτ

∫∫

Θ1×Θ2

{
Φ(u(θ1))ev(θ1) + [1−Φ(u(θ2))]

} h1(θ1)h2(θ2)
θ2 −θ1

dθ1dθ2. (9.60)

The use of the functions U1(θ1) and U2(θ2), introduced by the expression (9.50), lets us

write R∗
γ with the help of a one-dimensional integral

R∗
γ = 1−

√
2πaZτ

{∫
Θ1

Φ(u(θ1))ev(θ1)h1(θ1)U1(θ1) dθ1

+
∫
Θ2

Φ(u(θ2))ev(θ2)h2(θ2)U2(θ2)dθ2

}
. (9.61)

Taking into account the smallness of the domains Θ1 and Θ2 we can obtain an approximate

formula. To this end, we use the following approximation:

F(θ1, θ2) =
1

θ2θ1

{
Φ(u(θ1))ev(θ1) + [1−Φ(u(θ2))]ev(θ2)

}

∼= F (θ10, θ20)+F ′
θ1

(θ10, θ20)(θ1 −θ10)+F (θ10, θ20)+F ′
θ2

(θ10, θ20)(θ2 −θ20) ,

where θi0 is a prior mean value of the parameter θi. With the help of it we will write

R∗
γ
∼= 1−

√
2πaZτ

θ20 −θ10

{
Φ(u(θ1))ev(θ1) + [1−Φ(u(θ20))]ev(θ20)

}
. (9.62)

We may conclude, taking into account the form of the expression (9.62), that the obtained

approximate estimate depends on prior mean values θ10 and θ20 of the parameters θ1 and

θ2, respectively. Formula (9.62), as well as a pointwise expression (9.61), has a correct

interpretation: |θ10| ↑→ R∗
γ ↓, θ20 ↑→ R∗

γ ↑.

For the loss function of the form (9.46), the procedure of estimation of a TTF will be more

complicated:

R∗
γ = arg min

R̂

∫∫
Θ1×Θ2

Y
(
θ1,θ2; R̂

)
dθ1dθ2,

where

Y (θ1,θ2;y) =

⎧⎪⎪⎨
⎪⎪⎩

K1 [y−Rτ(θ1,θ2)]
2 h1(θ1)h2(θ2), y � Rτ(θ1,θ2),[

K1 (y−Rτ(θ1,θ2))
2

+K2 (y−Rτ(θ1,θ2))]h1(θ1)h2(θ2), y > Rτ(θ1,θ2).
For obtaining a lower Bayes confidence TTF limit, we use the approach of 9.4.2. In accor-

dance with it,

R∗
τ γ = Rτ (θ 1,θ 2) ,

where θ 1 and θ 2 are determined by the expressions (9.58), and for the case of uniform

prior distributions, by the finite formula (9.59).
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9.4.4 Bayes TTF estimates considering uncertainty of the initial data

As follows from the expressions given in 9.4.2, the Bayes TTF estimates for the fixed mo-

ment of time depend on mZ and σZ , which are parameters of the distribution of the status

variable Z, and are determined by the set of numerical characteristics KX of the vector of

initial variables X by the formulas (9.24) and (9.25). In practice we often deal with the ini-

tial data which include the element of uncertainty. In particular, if in the frames of Linear

Correlation Theory, KX consists of mean values of the initial variables (characterizing nom-

inal values), mean squared values (characterizing scatterings) and correlation coefficients

(characterizing relationships among the variables), then with respect to the last ones we are

given, as a rule, very approximate values. For example, we may often only as certain that

a correlation coefficient is positive, and there is no additional information. An analogous

situation may take place also for the scattering characteristics. Intervals of uncertainty Ki

with prior distributions h(Ki) on them may be considered as adequate forms of representa-

tion of indicated initial data. Moreover, h(Ki) are, as a rule, prior densities. If the value of

some parameter Kk is determined uniquely and equals K(0)
k , then we choose for it a prior

probability density in the form of a delta-function hk(Kk) = δ
(
Kk + K(0)

k

)
; the interval Kk

degenerates into a point K(0)
k . Thus, the form of representation of the set KX with the help

of prior distributions is common for the strictly determined and undetermined initial data.

Below we present a method which takes into account the uncertainty of initial data during

the estimating of the TTF with respect to the working capacity model with additive error.

Expressions obtained in 9.4.2 for the Bayes estimate of a TTF depend on mean value mZ

and mean squared value σZ : R0 = R0(mZ ,σZ). In turn, by the formulas (9.24) and (9.25)

we have

mZ = p(KX ) and σZ = q(KX ) (9.63)

We will assume that a prior density hi(Ki) is given for each numerical characteristic Ki ∈Ki.

In practical situations, for the intervals Ki not degenerating into a point, we may assume that

prior densities hi(Ki) are uniform. We will suppose also that Ki are mutually independent,

i.e,

h(KX ) =
m

∏
i=1

hi(Ki), KX ∈ K = K1 ×K2 ×·· ·×Km. (9.64)

Under the above assumptions, we can formulate the problem of finding the Bayes estimate

of R∗∗
0 , optimal in the sense of minimum of prior risk (the second asterisk appears due to

the repeated optimality over the domain K), i.e., the problem is to find the estimate of R∗∗
0
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guaranteeing the minimum of a prior risk

G
(
R̂0

)
=

∫
k

L
(
R̂0,R∗

0 (p(KX ),q(KX ))h(KX )
)

dKX (9.65)

for the given prior density h(KX ) and a loss function �. In (9.64) one uses a mean square

error loss function, then

R∗∗
0 =

∫
k

R∗
0 (p(KX ),q(KX ))h(KX )dKX . (9.66)

Since we have to carry out multiple integrations, the use of (9.66) in practical calculations

is almost impossible. Simplification may be achieved, if we pass, starting from h(KX ) and

transformations of p(KX ) and q(KX ), to the prior density for mZ and σZ .This problem may

be solved approximately in the following way.

Due to the small length of the intervals Ki (i = 1, 2, . . . ,m), we represent p(KX ) and q(KX )

with the help of linear portions of the Taylor series

mZ = p(KX ) ∼= p
(

K(0)
X

)
+

m

∑
i=1

p′i
(

K(0)
X

)(
Ki −K(0)

i

)
;

and

σZ = q(KX ) ∼= q
(

K(0)
X

)
+

m

∑
i=1

q′i
(

K(0)
X

)(
Ki −K(0)

i

)
.

Thereafter, we find the mean values m(0)
Z , σ (0)

Z and variances s2
m, s2

σ of the parameters mZ

and σZ , respectively:

m(0)
Z = p

(
K(0)

X

)
, σ (0)

Z = q
(

K(0)
X

)
, (9.67)

and

s2
m =

m

∑
i=1

p′i
(

K(0)
X

)
σ2

Ki
, s2

σ =
m

∑
i=1

q′i
(

K(0)
X

)
σ2

Ki
, (9.68)

where

K(0)
i =

∫
Ki

Kihi(Ki)dKi and σ2
Ki

=
∫

K2
i hi(Ki)dKi −K(0)2

i .

Next we approximate the prior densities hm (mZ) and hσ (σZ) of the parameters mZ and

σZ , respectively, by some two-parametric family. For a large dimension of Kz, taking into

account the statement of a central limit theorem, we may use a normal approximation for

hm(mZ) and hσ (σZ). Such an approach enables us to use instead of m-dimensional integral

(9.66) a two-dimensional integral for obtaining R∗∗
0 :

R∗∗
0 =

∫ ∞

−∞

∫ ∞

0
R∗

0(mZ ,σZ)hm(mZ)hσ (σZ)dmZdσZ (9.69)
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Finally, instead of integral (9.69), we can use its estimate obtained after the approximation

of R∗
0(mZ ,σZ) under the integral sign by the portion of the Taylor series up to the second

order terms, inclusively:

R∗∗
0

∼= R∗
0

(
m(0)

Z ,σ (0)
Z

)
+a2s2

m +b2s2
σ ,

where

a2 =
∂ 2R∗

0

(
m(0)

Z ,σ (0)
Z

)

∂m(0)2

Z

and b2 =
∂ 2R∗

0

(
m(0)

Z ,σ (0)
Z

)

∂σ (0)2

Z

.

9.4.5 A numerical example

For the numerical example we choose an element important for the working capacity of

different mechanical and hydraulic transmitters: a spiral cylindrical ring. Assume that a

central static force T (expanding or contracting) acts on the ring. The cross section of the

ring works on torsion, where the maximal tangent tension is computed by the formula

Tmax =
Mk

Wk
,

where Mk is a torsion moment, Wk is a moment of resistance of the ring to a torsion. For

Mk in [23] is proposed the following formula:

Mk =
kT D

2
,

in which D is a mean diameter of the ring, k is a coefficient depending on the curvature

of the ring loops and form of the cross-section. From this point on we will assume that

the ring is made of a round wire with the index c = D/d (d is the wire diameter) which is

greater than 4. In this case, for the correction coefficient we recommend [23] the following

dependence:

k =
4c−1
4c+1

+
0.615

c
.

Taking into account the above arguments, we rewrite the working capacity condition in the

form

φ(T,τT ,D,d) = τT − τmax(T,d,D) > 0, (9.70)

where τT is a fluctuation limit of the material, and τmax is computed by the formula

τmax =
8
π

T
(

4D−d
4D+d

· D
d3 +0.615 · 1

d2

)
.

As seen from the represented working capacity model, the vector of initial variables X is

composed of the following random variables: T, τT , D, d.
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Table 9.1 Numerical Characteristics for the TTF Calculation

Xi T, H τT , H/m2 D, m d, m

mi 0.5 ·103 0.95 ·109 4 ·10−2 4 ·10−3

σi 10 0.95 ·107 10−3 0.667 ·10−4

For the sake of simplicity of calculations, we pass the dimensionless analog of the working

capacity condition (9.70). To this end, we divide all terms of the inequality (9.70) by the

number A = E [τT ]. This gives the following relation for the status variable:

Z =
τT

A
− τmax (T, d, D)

A
.

All further calculations will be carried out in accordance with 9.4.1 and 9.4.2. As a ring

material the steel 50XBA has been chosen. The numerical characteristics for the TTF

calculation (the set KX are given in Table 9.1). With the help of these data and formulas

(9.24) and (9.25) we obtain ρi j = 0, mZ = 1.488 ·10−1 and σZ = 0.5109 ·10−1. If the ring

TTF is computed by only a theoretical model, the TTF value equals R = 0.9982.

Let us now find the Bayes estimate taking into account the model error. Suppose we know a

priori that the additive model error leads us to overstate the carrying capability of the ring.

This corresponds to the calculation case with a negative additive error. The distribution

density has the form (9.14) in which the parameter θ has the sense of a mean value of

the error. Let us find the segment of a prior uncertainty for θ . Assuming that under the

static loading one uses the safety coefficient η = 1.3 [23], we determine the limit value of

the additive error εp = −(η−1)/η = −0.23. With the help of recommendations given in

9.4.1, we find the limit value of the mean error (with p = 0.99):

θπ = − εp

ln(1− p)
≈−0.05.

Taking into account a hypothetical experience, we choose as an interval of a prior uncer-

tainty Eθ = [−0.05;−0.01] and will assume that θ has a normal distribution in Eθ . This

distribution corresponds to the situation when a designer supposes that the mean model

error lies in the limits from −5% to −1%, and cannot give a preference to some value from

this interval. Having chosen a mean square error loss function, we define a pointwise TTF

estimate by the formula (9.49) with θ1 = θ and θ2 = 0. This yields R∗
0 = 0.9778.

Such an essential decreasing of the TTF estimate in comparison with a theoretical one may

be explained by the fact that the assumption of a theoretical working capacity model always

overstates the real carrying capability. In Fig. 9.3 we represent the dependence of a prior
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Fig. 9.3 The Estimate of TTF as Function of the Limiting Value of the Mean Error: Solid (Dashed) Line Without
(With) Error in the Numerical Characteristics

TTF estimate on the left limit θ ′ of the uncertainty interval for θ as θ ′′ = 0 and different

values of a mean of the wire diameter d. As seen from Figure 9.3, while the absolute value

of θ ′ increases, a TTF estimate decreases. At the same time, by increasing the diameter

of the wire we may ensure the desired TTF value. In the same figure we denote by dotted

lines TTF estimates which touch upon uncertainty of the initial data. Carrying out the

calculation, we assume that the mean value of the loading mT and its scattering σT have

a symmetric 10% uncertainty interval. It may be observed that a TTF estimate decreases

because of its uncertainty.

For the values of numerical characteristics of the theoretical status variable mZ = 0.1448

and σZ = 0.05109, one has carried out a lot of numerical calculations of prior TTF estimates

for different intervals of a prior uncertaintyΘ1 = [θ ′
1,θ ′′

1 ] andΘ2 = [θ ′
2,θ ′′

2 ]. In Table 9.2 we

present the results of calculations of TTF estimates R∗
0 and R∗

0γ , corresponding to the case

θ ′′
1 = θ ′

2 = 0 for different values θ ′
1 and θ ′′

2 (values of R∗
0γ are given in the round brackets).

As can be seen from the table, enlarging of the prior uncertainty interval for the negative

error implies decreasing of the Bayes TTF estimate. At the same time, enlarging of the
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Table 9.2 A prior estimate for TTF with θ ′′
1 = θ ′

2 = 0.

θ ′′
2

θ ′
1

−0.06 −0.04 −0.02 0.00

0.06
0.9746 0.9904 0.9978 0.9993

(0.8948) (0.9555) (0.9908) (0.9987)

0.04
0.9715 0.9889 0.9974 0.9991

(0.8948) (0.9544) (0.9904) (0.9986)

0.02
0.9670 0.9867 0.9966 0.9988

(0.8930) (0.9533) (0.9900) (0.9984)

0.00
0.9599 0.9826 0.9951 0.9982

(0.8920) (0.9526) (0.9867) (0.9982)

uncertainty interval for the positive error implies enlarging of the Bayes TTF estimate.

These conclusions agree with a qualitative analysis of the dependence of the TTF on the

value and sign of the error of the theoretical working capacity model.



Chapter 10

Statistical Reliability Analysis Posterior Bayes
Estimates

10.1 The likelihood function for independent trials

This chapter is a continuation of Chapter 9, generalizing the results in the case of a posterior

estimation when experimental data about the parameters of the tested system are known.

When we project and build technical devices, it is customary that two types of testing

are carried out: functional and exploratory ones. The purpose of the researches of the

first type is to establish factual levels of the functional capability of the system with the

help of tests in laboratories or on test benches. With the help of the second type of tests,

one verifies a model’s working capacity under the exploitation conditions or under the

conditions which are similar to them. In the problem considered below, we unite both such

results in order to define more exactly the errors of the working capacity model and the

time to failure probability. The solution of this problem follows the general scheme of the

Bayes statistical estimation including the definition of a likelihood function, construction

of a posterior distribution, and the obtaining of a corresponding estimate starting with a

chosen loss function. At the end of this chapter we shall give some examples of using

the proposed procedures of a Bayes posterior estimation for the solution of some applied

problems.

10.1.1 A likelihood function from the results of research tests

The essence of research tests is that each test is carried out until a failure occurs; as a result,

we find a real level of an object’s functional capability. If one carries out tests under loading

which increases constantly, then a loading value causing a failure is chosen as a real value

of a functional capability.

Let us return to the example considered in § 9.1. We are reminded that the purpose of

research tests is to obtain empirical information, which helps us to correct Euler’s for-

277
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mula (9.3). Suppose that the first element put to testing has an elasticity module E1, length

�1, and moment of inertia J1. The loading which implies a failure will be denoted by T ∗
1 .

The value T is a factual level of a carrying capability for the first test. At the same time, a

theoretical value of a carrying capability is defined by the formula (9.3) and equals

Tcr1 =
π2E1J1

μ2�2
1

.

Clearly, the difference T ∗
1 −Tcr1determines the error of the Euler formula for the first test. If

we use a relative additive error e and generalized working capacity model of the form (9.5),

then the fact of the appearance of a failure during the first test is written formally in the

following way:

Tcr1

A
− T ∗

1
A

+ ε = 0,

where A = E
[
Tcr

]
, and an experimental value of the relative additive error ε in the first test

is determined uniquely by this expression, i.e., ε1 =−
(
Tcr1 −T ∗

1
)
/A. Analogously, we can

determine the value ε j for each research test.

In a common case for the generalized working capacity model of the form φ(X)+ ε > 0,

the value of the additive error is determined by the expression

ε j = −φ
(
x j
)
, (10.1)

where x j is a realization of the vector of initial variables which is fixed in the j-th test. If we

obtain x j by the scheme of independent tests, and a random variable of the additive error

ε obeys a probability distribution with a density fε(ε;θ), then the likelihood function (in

accordance with [123]) has the form

�i
(
θ | ε∼

)
=

ni

∏
j=1

f (ε j;θ) , (10.2)

where ε∼ is the set of all values ε j ( j = 1, 2, . . . ,ni). Let us write the resulting expressions

of two calculating cases introduced in § 9.3.

The case of a generalized exponential error:

�i
(
θ1,θ2 | ε∼

)
=

1(
θ2 −θ1

)ni exp
[
−
(
ω1

θ1
+
ω2

θ2

)]
. (10.3)

Here the statistics ω1 and ω2 are computed by the formulas

ω1 =
ki

∑
i=1

ξi, ω2 =
�i

∑
i=1

ζi,

and the sets (ξ1, ξ2, . . . ,ξki) and (ζ1, ζ2, . . . ,ζ�i) are generated respectively by negative and

positive elements of the sample ε∼, where ki + �i = ni.
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Table 10.1 Bayes Estimators for TTF.

Empirical Information
Result of j-th Test

A1 A2 A3

Qualitative Information Wj > 0 Wj = 0 Wj < 0

Quantitative Information Based on
the Theoretical Model

z′j = ϕ(x j) z∗j = ϕ(x j) z′′j = ϕ(x j)

Quantitative Information for the
Additive Error

ε j > −z′j ε j = −z∗j ε j < −z′′j

The case of a Gaussian error without a systematic bias:

�i
(
σε | ε∼

)
=

1

(2π)
ni/2

σ
ni
ε

exp
(
− s2

2σ2
ε

)
, (10.4)

where

s2 =
ni

∑
j=1

ε2
j .

10.1.2 A likelihood function from the results of functional tests

A distinctive peculiarity of functional tests is that they are carried out under conditions

coinciding with the exploitation conditions or ones similar to them. Because of this cir-

cumstance, we cannot, as a rule, fix a failure fact. Therefore, during each test only one

of the following three events may be observed: A1 is a working capacity of the device, A2

is a failure, A3 and is a nonworking state of the device. Note that events A3 and A2 do

not coincide. The failure is observed only when the loading takes on a value equal to a

functional capability (in this case the generalized status variable W takes on value zero).

At the same time, a nonworking state corresponds to the situation under which the loading

is higher than a functional capability; a generalized status variable will be negative in this

case.

Assume that in the j-th test some realization of the vector of initial variables x j ( j =

1, 2, . . . ,n) is fixed. Each element from x j can be measured in the tests or its value is

assumed to be equal to the calculating one. It enables us (in accordance with a chosen

working capacity model) to find the value of Z. For empirical value of a theoretical sta-

tus variable for each of the three possible outcomes of the test we will denote A1 by z′j
( j = 1, 2, . . . ,r), A2 by z∗j ( j = 1, 2, . . . ,d) and A3 by z′′j ( j = 1, 2, . . . ,s). This data gives us

quantitative information about the value of an additive error ε for each test. Suppose that

during the j-th test a working capacity (event A1) is observed, i.e., a generalized state vari-

able Wj > 0. Since W = Z + ε , from the condition Wj > 0 we have ε j > −z′j. A complete
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description of all test outcomes is given in Table 10.1. The results of the functional tests will

be represented in the form of the set z∼, including z∼
′ = (z′1,z

′
2, . . . ,z

′
r), z∼

∗ = (z∗1,z
∗
2, . . . ,z

∗
d),

and z∼
′′ = (z′′1 ,z

′′
2 , . . . ,z

′′
S). If one considers these tests as experimental findings of the addi-

tive error ε , then the vector z∼may be interpreted as censored from the left and right sample

of a random variable ε . When a distribution density fε(ε;θ) is given, we represent the

likelihood function for the sample in accordance with [123] in the following way:

�Φ
(
θ | ε∼z

)
=

r

∏
j=1

∫ ∞

−z′j
fε(ε;θ)dε

d

∏
j=1

fε
(
− z∗j ;θ

) s

∏
j=1

∫ −z′′j

−∞
fε(ε;θ)dε,

or

�Φ
(
θ | ε∼z

)
=

r

∏
j=1

∫ ∞

−z′j

[
1−Fε

(
− z′j;θ

)] d

∏
j=1

fε
(
− z∗j ;θ

) s

∏
j=1

Fε
(
− z′′j ;θ

)
, (10.5)

where Fε(ε;θ) is the cumulative distribution function, corresponding to fε(ε;θ).

A likelihood function for calculating the case of the generalized exponential error. The

expression for the p.d.f. fε(ε;θ) was written earlier in the form (9.13). Then the corre-

sponding distribution function may be written in the following way:

Fε(ε;θ1,θ2) =

⎧⎪⎪⎨
⎪⎪⎩

− θ1

θ2 −θ1
exp

(
− ε
θ1

)
, ε < 0,

1− θ2

θ2 −θ1
exp

(
− ε
θ2

)
, ε � 0.

(10.6)

Represent each of the vectors, z∼
′, z∼

∗, z∼
′′ as a union of two vectors consisting of negative

and nonnegative components: z∼
′ = {ξ ′, ζ ′}, z∼

∗ =
{
ξ ∗, ζ ∗}, z∼

′′ = {ξ ′′, ζ ′′}. Dimensions

of components of new vectors we denote respectively by r− and r+ for ξ
∼
′ and ζ

∼
′, d−

and d+ for ξ
∼
∗ and ζ

∼
∗, s− and s+ for ξ

∼
′′ and ζ

∼
′′. Clearly, the sample ξ

∼
=

(
ξ
∼
′, ξ

∼
∗,ξ

∼
′′)

has the dimension m− = r− + d− + s−, and the sample ζ
∼

=
(
ζ
∼
′, ζ

∼
∗, ζ

∼
′′) the dimension

m+ = r+ +d+ + s+. The likelihood function (10.5) transforms to:

�Φ
(
θ1,θ2 | z∼

)
= Q(θ1,θ2;d,r−,s+)P(θ1,θ2;ω1,ω2)R+(θ1,θ2;ζ

∼
′)S−(θ1,θ2;ξ

∼
′′) (10.7)

Q(θ1,θ2;d,r−,s+) =
|θ1|s+θ r−

2
(θ2 −θ1)d+r−+s+

, (10.8)

P(θ1,θ2;ω1,ω2) = exp
(
ω1

θ1
+
ω2

θ2

)
(10.9)

ω1 =
d+

∑
j=1

ζ ∗
j +

s+

∑
j=1

ζ ′′
j , ω2 =

d−

∑
j=1

ξ ∗
j +

r−

∑
j=1

ξ ′
j,
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R+
(
θ1,θ2;ζ ′) =

r+

∏
j=1

[
1+

θ1

θ2 −θ1
exp

(
ζ ′

j

θ1

)]
, (10.10)

and

S−

(
θ1,θ2;

′′
ξ
∼

)
=

s

∏
j=1

[
1− θ2

θ2 −θ1
exp

(
ξ ′′

j

θ2

)]
. (10.11)

Note one interesting peculiarity of the obtained likelihood function. To this end, we con-

sider a particular case of a generalized exponential error for which 02 = 0, thus e < 0. The

distribution function (10.6) in this case has the form

Fε(ε;θ1,0) =

⎧⎪⎨
⎪⎩

exp
(
− ε
θ1

)
, ε < 0,

1, ε � 0.

(10.12)

If the assumption ε < 0 is true, then the values z′j and z∗j observed during the test must be

always nonnegative. Since W = Z +ε and W > 0, as ε � 0, we obtain z′j > 0. Analogously,

as W = 0 and ε � 0, we obtain z∗j � 0. For the nonworking state (W = 0) the values

z′′j may be either negative or positive. But for the negative values z′′j , in accordance with

(10.12), we have, Fε(−z′′j ;θ1,0) = 1, i.e., negative values z′′j for the likelihood function

will not be noninformative. The conclusion we have made has an evident explanation.

If ε � 0, i.e., a theoretical model overstates the real functional capability, then for Z < 0

always W < 0. Thus, even if we don’t carry out tests, we can write the great number of

negative values z′′j and ascertain that for all these values in the tests the nonworking states

of the system will be realized. In other words, without tests we would find their outcomes

and use them in the likelihood function. However, this has not occurred, since under the

condition Fε(−z′′j ;θ1,0) = 1 for all z′′j < 0, the likelihood function doesn’t react on the

negative values z. This wonderful property of the considered Bayes procedure emphasizes

its validity.

A likelihood function for the Gaussian error without a systematic bias. Here we assume

that a theoretical status variable may take on positive or negative values. The resulting

expression for the likelihood function has the form

�Φ
(
σε | ε∼z

)
=

1

(2π)d/2 · 1
σd
ε

exp
(
−ω∗2

2σ2
ε

) s

∏
j=1

[
1−Φ

(
z′′j
σε

)]
r

∏
j=1

Φ

(
z′j
σε

)
, (10.13)

where ω∗2 = ∑d
j=1 z∗2

j .
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10.2 The posterior distribution of the error parameters of a theoretical
working capacity model

In the general case the posterior distribution of the vector θ is determined with the help

of the Bayes theorem. In this section we investigate in detail different questions in ob-

taining the interesting posterior distributions from a practical point-of-view. We consider

separately densities h̄i
(
θ | ε∼

)
and h̄Φ

(
θ | z∼

)
which characterize, respectively, research and

theoretical tests, and also the density of the distribution h̄
(
θ | ε∼, z∼

)
corresponding to the set

of tests of both types. In addition to this, we investigate the possibility of using improper

prior Jeffrey’s distributions. The discrete form of representation of prior and posterior dis-

tributions will be considered separately.

A posterior distribution of the parameters of error ε for research tests. In accordance

with the Bayes theorem,

h̄i
(
θ | ε∼

)
∼ hi(θ)�i

(
θ | ε∼

)
. (10.14)

For calculating case of a generalized exponential error ε with a likelihood function (10.3),

a posterior density in accordance with (10.14) is written in the following way:

h̄i
(
θ1,θ2 | ε∼

)
=

1
βi

·
h1
(
θ1
)
h2
(
θ2
)

(
θ2 −θ1

)ni exp
[
−
(
ω1

θ1
+
ω2

θ2

)]
, θ1 ∈Θ1, θ2 ∈Θ2, (10.15)

where the normalizing factor βi is determined by the integral

βi =
h1
(
θ1
)
h2
(
θ2
)

(
θ2 −θ1

)ni exp
[
−
(
ω1

θ1
+
ω2

θ2

)]
dθ1dθ2. (10.16)

For evaluation of (10.18), we need to apply numerical methods even in the case of uniform

prior h1
(
θ1
)

and h2
(
θ2
)
.

Consider a possibility of using improper prior h1
(
θ1
)

and h2
(
θ2
)

for obtaining h̄i
(
θ1,θ2 |

ε∼
)
. Taking into account Jeffrey’s theory [114], we conclude the following prior densities

correspond to the absence of information about the parameters θ1 and θ2:

h1
(
θ1
)
∼ 1
θ1

, θ1 ∈ (−∞,0], h2
(
θ2
)
∼ 1
θ2

, θ2 ∈ [0,∞). (10.17)

Substituting (10.17) into (10.15), we get

h̄i
(
θ1,θ2 | ε∼

)
∼ 1
θ1θ2(θ2 −θ1)ni

exp
[
−
(
ω1

θ1
+
ω2

θ2

)]
,

−∞< θ1 � 0, 0 � θ2 < ∞. (10.18)

It is easy to verify that

βi =
∫ 0

−∞

∫ ∞

0

1
θ1θ2

(
θ2 −θ1

)ni exp
[
−
(
ω1

θ1
+
ω2

θ2

)]
dθ2 dθ1 < ∞
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Consequently, in spite of the fact that prior distribution densities are improper, the posterior

density (10.18) is proper and may be used as a basis for obtaining the conclusion about a

TTF and error value.

For calculating the case of a Gaussian non biased additive error, the posterior density has

the form

h̄i
(
σε | ε∼

)
=

1
βi

·
h
(
σε

)
σni
ε

exp
(
− s2

2σ2
ε

)
, σε ∈ Eσ ⊂ [0,∞), (10.19)

where

βi =
h
(
σε

)
σni
ε

exp
(
− s2

2σ2
ε

)
dτε .

The use of improper prior density h
(
σε

)
∼ σ−1

ε leads to the proper posterior density for

which

h̄i
(
σε | ε∼

)
=

1
σni+1
ε

exp
(
− s2

2σ2
ε

)
, σε ∈ [0,∞). (10.20)

As seen from the relations obtained above, posterior densities of the parameters of the ad-

ditive error of the working capacity model have the same structure, besides, for evaluation

of the normalizing factor we need to use methods of numerical integration.

10.2.1 The posterior distribution of the parameters of the error ε for functional
tests

If the prior density h(θ) is given and the likelihood function �Φ
(
θ | ε∼z

)
is known, for the

posterior density, corresponding to the results of functional tests, we write, applying the

Bayes theorem, we write, applying the Bayes theorem,

h̄Φ
(
θ | ε∼z

)
∼ h(θ)�Φ

(
θ | ε∼z

)
, θ ∈Θ. (10.21)

All further arguments connected with obtaining concrete expressions for the posterior

density are based on item-by-item examination of all possible combinations of h(θ) and

�Φ
(
θ | z∼

)
in the right hand part of the expression (10.21). In particular, for calculating the

case of the generalized exponential error with a likelihood function (10.11), we will have

h̄Φ
(
θ1, θ2 | z∼

)
∼h1(θ1)h2(θ2)Q

(
θ1,θ2;d,r−,s+

)
P
(
θ1,θ2;ω1,ω2

)

×R+
(
θ1,θ2;ζ ′)S−

(
θ1,θ2;ξ ′′), θ1 ∈Θ1, θ2 ∈Θ2. (10.22)

Moreover, for the improper prior density h
(
θ1,θ2

)
∼−θ−1

1 θ−1
2 this expression is changed

to

h̄Φ
(
θ1,θ2 | z∼

)
∼−θ−1

1 θ−1
2 Q

(
θ1,θ2;d,r−,s+

)
P
(
θ1,θ2;ω1,ω2

)

×R+
(
θ1,θ2;ξ

∼
′S−(θ1,θ2;ξ ′′), θ1 ∈ (−∞,0], θ2 ∈ [0,∞). (10.23)
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We shall investigate the possibility of using (10.23) in practical calculations. The posterior

density (10.23) is proper, if
∫ 0

−∞

∫ ∞

0

1
|θ1|θ2

�Φ
(
θ1,θ2 | ε∼z

)
dθ2 dθ1 < ∞. (10.24)

Analyzing expressions (10.8)–(10.11) we conclude that condition (10.24) is fulfilled if and

only if at least one of the numbers d, r−, s+ doesn’t equal zero. Under the condition

d = r− = s+ = 0, it is impossible to use the posterior density (10.23) in order to obtain an

informative conclusion about a TTF. For calculating the case of the Gaussian error ε , we

have

h̄Φ
(
σε | z∼

)
∼

h
(
σε

)
σd
ε

exp
(
−ω∗2

2σ2
ε

) s

∏
j=1

[
1−Φ

(
z′′j
σε

)]
r

∏
j=1

Φ

(
z′j
σε

)
,

σε ∈ Eσ ⊂ [0,∞). (10.25)

For the improper prior h
(
σε

)
∼ σ−1

ε , 0 � σε < ∞, relation (10.25) takes the form

h̄Φ
(
σε | z

)
∼ 1
σd+1
ε

exp
(
−ω∗2

2σ2
ε

) s

∏
j=1

[
1−Φ

(
z′′j
σε

)]
r

∏
j=1

Φ

(
z′j
σε

)
. (10.26)

10.2.2 The posterior distribution of the parameters of the error ε by the set of
results of research and functional tests

If a researcher has a possibility of carrying out research tests for the construction of the

posterior density characterizing the form of information after the termination of the last

test, one can use a consecutive Bayes procedure. The essence of this procedure is: at

the first stage, including research tests, in full accordance with recommendations given in

10.2.1, we determine a posterior density of the distribution

h̄i
(
θ | ε∼

)
∼ h(θ)�i

(
θ | ε∼

)
. (10.27)

If functional tests are carried out after the research tests, for the determination h̄Φ
(
θ | z∼

)
it

is more reasonable to use not h(θ) but h̄i
(
θ | ε∼

)
.

Then

h̄Φ
(
θ | z∼

)
∼ h̄i

(
θ | ε∼

)
�Φ

(
θ | z∼

)
. (10.28)

The posterior density h̄Φ
(
θ | z∼

)
should be interpreted as resulting for a whole two-stage

sequence of tests. We will take into account this fact, denoting by h̄
(
θ | ε∼,z∼

)
the resulting

posterior density of the parameter θ .
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Substituting (10.27) into (10.28) we write the final expression

h̄
(
θ | ε∼,z∼

)
∼ h(θ)�i

(
θ | ε∼

)
�Φ

(
θ | z∼

)
. (10.29)

We will call the product �
(
θ | ε∼, z∼

)
= �i

(
θ | ε∼

)
�Φ

(
θ | z∼

)
a cumulative likelihood function.

Using (10.2) and (10.5) for �
(
θ | ε∼, z∼

)
we obtain

�
(
θ | ε∼, z∼

)
(10.30)

=
r

∏
j=1

[
1−Fε

(
− z′j;θ

)] d

∏
j=1

fε
(
− z∗j ;θ

) ni

∏
j=1

fε
(
ε j;θ

) s

∏
j=1

Fε
(
− z′′j ;θ

)
,

θ ∈Θ. (10.31)

Having remembered expression (10.1) for the element of the sample of research tests we

have ε j = −φ(x j), j = 1, . . . ,ni. Table 10.1 shows z∗j = −φ(x j). Therefore, ε j and −z∗j
have the same values of the theoretical status variable Z at the failure moment appear-

ance, i.e., when the acting loading becomes equal to a functional capability. Taking into

account this circumstance, we may draw the important practical conclusion: if the results

of research tests are put together with the results of functional tests in which the failure

has occurred, then a cumulative likelihood function �
(
θ | ε∼,z∼

)
coincides with the func-

tional �Φ
(
θ | z∼

)
. This conclusion lets us use the results of 10.2.2 for the determination

of the posterior density h̄
(
θ | ε∼,z∼

)
. To this end, one should include in the sample z∼

∗ the

elements of the sample ε∼ taken with the opposite sign. That is why later we will assume

z∼
∗ =

(
z∗1,z

∗
2, . . . ,z

∗
d , −ε1, −ε2, . . . ,−εni

)
. We can also use a similar method in the case when

under the research tests it is assumed, for some reason, that non attainment of a limit state

takes place.

In conclusion, we note that the posterior distribution density is an exhaustive characteristic

of the working capacity model error. However, due to the practices existing now, to make

a conclusion about the properties of the device with the help of numerical criteria, it is not

sufficient for estimating the TTF of the system and the value of the error of the theoretical

working capacity model to have knowledge of a posterior density. In 10.3 we will find cor-

responding numerical estimates with the help of the posterior densities obtained above. The

more visual method of analysis of the system properties may be obtained from a discrete

representation of prior distribution considered below.
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10.2.3 The discrete posterior TTF distribution

Using discrete prior distributions of the parameters of the error ε , we will find correspond-

ing posterior distributions of the TTF. Let us restrict ourselves to the case of the generalized

exponential error ε , obeying the probability distribution with the density (9.13). Suppose

θ1 and θ2 have prior distributions respectively,
(

p1i,θ1i
)
, i = 1, 2, . . . ,m, and (p2k,θ2k),

k = 1, 2, . . . , �, where p1i = P{θ1 = θ1i}, p2k = P{θ2 = θ2k}. With the help of these dis-

tributions and the relation (9.19) we can find a prior distribution for the TTF
(
PR j,R j

)
,

j = 1, 2, . . . ,mk, where R j = R
(
θ1i,θ1k

)
, pR j = p1i p1k. The correspondence between the

index j and a pair of indices (i,k) is given by the elation R j−1 � R j, i.e., in order to write the

distribution series for all the TTF R we have to carry out calculations of Rik = R
(
θ1i,θ2k

)
for all possible pairs (i,k), and write the obtained values in ascending order, and renumber

them from 1 to mk. Thereafter, each value R j is associated with the corresponding proba-

bility p1i p2k. Here and further on we shall assume that among the values of R j there are no

repeated values.

Using the likelihood function (10.11) and applying the Bayes theorem, wefind in the dis-

crete representation the posterior probabilities p̃R j = P
{

R = R j | z∼
}

:

p̃R j =
pR j�Φ

(
θ1i,θ2i,θ2k | z∼

)
m
∑

i=1

�

∑
k=1

p�i p2k�Φ
(
θ1i,θ2i,θ2k | z∼

) , j = 1, 2, . . . ,mk, (10.32)

where the correspondence between j and a pair of indices (i, k) is found with the help

of the already mentioned procedure. The distribution series
(

p̃R j, R j
)
, j = 1, 2, . . . ,mk is

an exhaustive characteristic of the TTF and is more visual in comparison to a continuous

posterior density. Besides, it is free of known arbitrariness and is connected with the choice

of a loss function.

A numerical example.The automatic control system is described by the differential equation

dY
dt

+Y2 = (λ +1)2, Y (0) = 0, (10.33)

where λ is a random variable obeying the normal distribution with the mean value O and

variance 0.01. The system is assumed to survive, if at the moment t = 1 the variable Y is

greater than the value y0 = 0.42.

The theoretical model of the system (10.33) consists of an additive error ε , which can be

described by the generalized exponential distribution (9.13), where, the parameters θ1 and

θ2 belong to the intervals Θ1 = [0.08;0], Θ2 = [0;0.06]. The prior distributions for θ1 and

θ2 are given in Fig. 10.1 and Fig. 10.2 by the dotted lines. As a TTF of the system the
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probability R = P{Z + ε > 0} has been chosen, where Z = Y (1)− y0. Using the interpola-

tion method [42], we obtain E[Y (1)] = 0.7622, D[Y (1)] = 0.01381, whence mz = 0.3422,

σZ = 0.1175.

The following values of the theoretical status variable have been fixed during the

seven tests z∼
∗ = (0.2663; 0.4309; 0.3567; 0.5783; 0.2619; 0.3385; 0.4851), z∼

∗ = φ , z∼
′′ = φ .

Figs. 10.1–10.2 represent the posterior distributions of the parameters of the error θ1 and

θ2, and TTF R. As seen from the figures, the experiment results correctly identify the prior

distributions (they are represented by the dotted lines).

Fig. 10.1 Probability Distributions of the Parameters θ1 and θ2.

10.3 Bayes posterior estimates

The procedure of the posterior TTF estimation coincides with the procedure of a prior

Bayes estimation given in § 9.4. The difference is that instead of the prior density h(θ) we

must use the posterior one, h̄
(
θ | z∼

)
obtained by the results of a joint experiment, including

research and functional tests. In this chapter we adhere to the following scheme. At first,

we consider obtaining the estimates of the parametric additive error ε , and thereafter we

find the corresponding TTF estimates.
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Fig. 10.2 Probability Distribution of TTF.

10.3.1 The posterior estimates of the error of the theoretical working capacity
model

The problem is to Bud the posterior estimate of the mean error ε = E[ε ] of the theoretical

working capacity model for the case of a generalized exponential error and an estimate of

σε for the Gaussian error without a bias.

Calculating the case of a generalized exponential error. Obtain the dependence ε0 =

ε0(θ1,θ2). With the help of (9.13) we easily find

ε0 = E[ε] =
∫ ∞

−∞
ε fε(ε;θ1,θ2)dε = θ1 +θ2. (10.34)

Because of the linear dependence (10.34) we find first the estimates of the parameters θ1

and θ̂ ∗
1 in the form θ̂ ∗

1 and, an thereafter, summing them, we determine the estimate. The

estimates θ̂ ∗
1 and θ̂ ∗

1 will be determined as corresponding posterior mean values by the

formulas

θ̂ ∗
1 =

∫∫
Θ1×Θ2

θ1h̄
(
θ1,θ2 | ε∼z

)
dθ1dθ2, (10.35)

and

θ̂ ∗
2 =

∫∫
Θ1×Θ2

θ2h̄
(
θ1,θ2 | ε∼z

)
dθ1dθ2, (10.36)
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Fig. 10.3 Trend of the Operational Capacity during the Experiment.

where h̄
(
θ1, θ2 | z∼

)
is determined by the relation (10.22) under the assumption that the

sample z∼ contains the results of research and functional tests. Simplification of the inte-

grals (10.35) and (10.36) does not seem possible, and, in order to carry out practical calcu-

lations we need to apply methods of numerical integration for the double integrals. There

is a possibility of determination of exactness of the ε̂∗0 = θ̂ ∗
1 + θ̂ ∗

2 in the form of posterior

mean squared value σε̂∗0 = {D[ε]}1/2 with the help of the following formula

σ2
ε̂∗0

= D[θ1]+D[θ2]+2K[θ1, θ2], (10.37)

where

S[θi] =
∫∫

Θ1×Θ2

θ 2
i h̄

(
θ1,θ2 | ε∼z

)
dθ1dθ2 − θ̂ ∗2

i , i = 1, 2,

K[θ1,θ2] =
∫∫

Θ1×Θ2

θ1θ2h̄
(
θ1,θ2 | ε∼z

)
dθ1dθ2 − θ̂ ∗

1 θ̂ ∗
2 .

Calculating the case of a Gaussian error of a working capacity model is reduced to the

analogous (but one-dimensional) integrals. With the help of these integrals we determine

the estimate 6 and its error in the form of the posterior variance D[σε ]:

σ̂∗
ε =

∫ ∞

0
σε h̄

(
σε | ε∼z

)
dσε , (10.38)

and

D [σε ] =
∫ ∞

0
σ2
ε h̄

(
σε | ε∼z

)
dσε − σ̂∗2

ε , (10.39)
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where h̄
(
σε | ε∼z

)
is determined by the relation (10.25) under the assumption that the sample

ε∼z contains the results of research and functional tests.

10.3.2 TTF Estimates with fixed parameters

To obtain TTF estimates in the case of the generalized exponential error ε , we will start

from the conditional TTF estimate R(θ1,θ2) given by (9.19) for the fixed time moment,

and by (9.35) for an arbitrary time moment. The posterior density h̄(θ1,θ2 | ε∼z) is deter-

mined either by expressions (10.22) for the proper prior distributions, or by (10.23) for the

improper ones. In addition to this, it is assumed that the sample ε∼z contains the results of

research and functional tests.

For the quadratic loss function, we have the following integral which enables us to find the

TTF estimate R∗:

R̂ =
∫∫

Θ1×Θ2

R
(
θ1,θ2

)
h̄
(
θ1,θ2 | ε∼z

)
dθ1dθ2 (10.40)

If one uses the loss function of the form (9.46) for obtaining the estimate R∗, it yields the

optimization problem, analogous to (9.53):

R̂∗ = arg min
x∈[0,1]

∫∫
Θ1×Θ2

F
(
θ1,θ2;x

)
dθ1dθ2. (10.41)

Where

F
(
θ1,θ2;x

)
=

⎧⎨
⎩

K1 [x−R(θ1,θ2)]
2 h̄

(
θ1,θ2 | z∼

)
, x � R(θ1,θ2),[

K1
(
x−R(θ1,θ2)

)2 +K2
(
x−R(θ1,θ2)

)]
h̄(θ1,θ2 | z∼), x > R(θ1,θ2).

The Bayes lower confidence limit R∗
γ will be determined analogously to the approach pro-

posed in 9.4.2 as

R∗
γ = R(θ1,θ2), (10.42)

where θ 1 and θ 2 are found from the transcendental equations
∫ θ ′′1

θ1

∫ θ ′′2

θ ′2
h̄
(
θ1,θ2 | ε∼z

)
dθ1dθ2 − γ1/2 = 0, (10.43)

and ∫ θ ′′1

θ ′1

∫ θ ′′2

θ2

h̄
(
θ1,θ2 | ε∼z

)
dθ1dθ2 − γ1/2 = 0.

We use a similar calculation approach in the case of Gaussian error. The pointwise estimate

R̂∗ is determined with the help of the one-dimensional integral

R̂∗ =
∫ σ ′′

ε

σ ′
ε

R
(
σε

)
h̄
(
σε | ε∼z

)
dσε (10.44)
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for the quadratic loss function, or with the help of the following minimization problem that

we have to solve:

R̂∗ = arg min
x∈[0,1]

∫ σ ′′
ε

σ ′
ε

F
(
σε ;x

)
dσε , (10.45)

where

F
(
σε ;x

)
=

⎧⎨
⎩

K1
(
x−R

(
σε

))2 h̄
(
σε | z∼

)
x � R

(
σε

)
,[

K1
(
x−R

(
σε

))2 +K2
(
x−R

(
σε

))]
h̄
(
σε | z∼

)
, x > R

(
σε

)
.

(10.46)

In the relations (10.44)–(10.46), R
(
σε

)
is determined by the formula (9.23) for the TTF

at the fixed time moment t0, or by the formula (9.40) for the TTF during the time τ . For

the posterior density h̄
(
σε | z∼

)
one should use the expression (10.25), assuming that the

sample z∼contains the results of research and functional tests. When the confidence level γ
is given, we obtain the Bayes lower confidence limit of the TTF R∗

γ by the usual approach.

In accordance with it,

R̂∗ = R(σε) . (10.47)

In order to find σε we need to solve the equation
∫ σ ′′

ε

σε
h̄
(
σε | ε∼z

)
dσε − γ = 0. (10.48)

10.3.3 Investigation of certainty of the Bayes estimates

We carry out numerous calculations of TTF estimates for the samples of different volumes

and a broad range of a priori data with the help of the method proposed above on the basis

of Example 9.4.5 in order to obtain information about the quality of this method.

Investigation of posterior Bayes TTF estimates has been carried out with the help of sam-

ples of values of the theoretical status variable Z which have been modeled by the special

algorithm. The essence of this follows: for each j-th testing two numbers are generated.

They obey a normal law with the parameters mZ ,σZ and ε j which follows the probability

distribution with the density fε
(
ε; θ (0)

1 , θ (0)
2

)
, given by the expression (9.13). The quan-

tities θ (0)
1 and θ (0)

2 have the meaning of real values of the parameters θ1 and θ2, which are

determined by the uncertainty intervals Θ1 and Θ2. The chosen values of mZ ,σZ , θ (0)
1 and

θ (0)
2 determine uniquely the real TTF value R. For each j-th random probe we determine

the value of the error ε of settling the generalized status variable ω j = z j + ε j. Having

chosen some error value δ of settling the generalized types of outcomes we find: a working

capacity, if ω j > δ ; a failure, if |ω j| < δ ; a nonworking state, if ω j < −δ . In accordance
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Table 10.2 Bayes Estimators for TTF.

θ ′
1 θ ′′

2 n = 10 n = 50 n = 100

−0.06 0.06 0.9746 0.9755 0.9684

−0.06 0.04 0.9715 0.9710 0.9675

−0.06 0.02 0.9670 0.9693 0.9864

−0.06 0.00 0.9599 0.9672 0.9650

−0.04 0.06 0.9904 0.9821 0.9769

−0.04 0.04 0.9889 0.9803 0.9753

−0.04 0.02 0.9867 0.9776 0.9729

−0.04 0.00 0.9826 0.9736 0.9695

−0.02 0.06 0.9978 0.9950 0.9904

−0.02 0.04 0.9974 0.9944 0.9936

−0.02 0.02 0.9966 0.9936 0.9874

Table 10.3 Posterior Estimators for TTF.

θ ′
1 θ ′′

2 n = 20 n = 40 n = 60 n = 80

−0.06 0.06 0.9860 0.9719 0.9787 0.9640
−0.06 0.04 0.9849 0.9704 0.9780 0.9625
−0.04 0.06 0.9923 0.9827 0.9825 0.9772
−0.04 0.04 0.9912 0.9809 0.9836 0.9752

with the type of outcomes of the j-th trial, the corresponding values z j are included in ε∼z′

for the first outcome, ε∼z∗ for the second one and ε∼z′′ for the third outcome.

In Table 10.2 we represent the Bayes pointwise TTF estimates, obtained for different

intervals of a prior uncertainty Θ1 =
[
θ ′

1,θ ′′
1
]

and Θ2 =
[
θ ′

2,θ ′′
2
]

for the sample sizes

n = 0, 50, 100. In order to learn the behavior of the posterior Bayes TTF estimation,

we give in Table 10.3 the TTF estimates for the larger number of samples. During the

modeling we have chosen mZ = 0.1488, σZ = 0.05109, θ (0)
1 = −0.04, θ (0)

2 = 0.02 which

corresponds to the TTF value R = 0.9639. By inspecting the analysis given in Table 10.2

and Table 10.3, we conclude that with increasing the sample sizes the Bayes pointwise es-

timate approaches the real TTF value. This pattern is common. It appears more frequently

in calculating variants where the uncertainty interval has been chosen more successfully.

As seen from Table 10.3, the pattern of approaching the posterior TTF estimate to its real

value is nonmonotonic. This is explained by the randomness of the modeled samples.



Statistical Reliability Analysis Posterior Bayes Estimates 293

10.3.4 Bayes TTF estimates for undefined parameters

Below we represent the development of the previous results for the case where the initial

data is given with the errors and during the testing this data is corrected in accordance with

the testing outcomes. The essence of this problem is that the correction of initial data is

performed only by the results of functional tests. For the research test we artificially give

the loadings which made the system achieve the limit state, and, consequently it implies a

failure. Thereby the observed test loading value cannot be considered as an element of a

sample of real loading.

Consider a situation when a TTF is estimated at the fixed time moment. Suppose, in accor-

dance with 10.3.2, that we have found the Bayes estimate R̂∗
0 using the results of research

and functional tests. The obtained estimate depends on the mean value mZ and on the mean

squared value σZ , i.e., R̂∗
0 = R̂∗

0
(
mZ ,σZ

)
. This is valid, since the conditional TTF estimate

R(θ1,θ2) is parameterized with the help of mZ and σZ . In view of the uncertainty of the

initial data, the parameters mZ and σZ appear to be also uncertain. Besides, this uncertainty

is expressed with the help of prior densities hm(mZ) and h̄σ (σZ). One possible way of

obtaining hm(mZ) and h̄σ (σZ) has been given in 9.4.4.

The problem of estimating TTF for the case when uncertain characteristics, connected with

the error of initial data, are corrected by the results of functional tests will be solved by the

following scheme:

1) Starting from prior densities hm(mZ) and h̄σ (σZ) and qualitative results of functional

tests ε∼z = (z1,z2, . . . ,zn) we find the corresponding posterior density h̄mσ (mZ ,σZ | z∼)

with the help of the Bayes theorem;

2) Having chosen some loss function we find the Bayes estimate R̂∗∗
0 of the function

R̂∗
0(mZ ,σZ) by minimization of the corresponding posterior risk.

To determine the posterior density h̄mσ
(
mZ ,σZ | z∼

)
we use the known

Bayes solution [202], based on prior densities conjugated with the Gaussian likelihood

kernel. Instead of the parameters mZ and σZ we will use the parameters mZ and cZ = σ−2
Z ,

following the procedure given in [202]. As a prior density for mZ and cZ we use a gamma-

normal probability density

h
(
mZ ,cZ

)
= hc

(
cZ
)
hm

(
mZ | cZ

)
(10.49)
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where

hc
(
cZ
)

= hc
(
cZ ;s′2,v′

)
=

(
v′s′2

2

)v/2 cv′/2−1
Z

Γ
(

v′
2

) exp
(
−1

2
v′s′2cZ

)
, cZ > 0, v′ > 0,

(10.50)

and

hm
(
mZ | cZ

)
= hm

(
mZ ;m′,

1
cZn′

)
=

(
cZn′

)1/2

√
2π

exp
[
−1

2
cZn′

(
mZ −m′)2

]
. (10.51)

The parameters of the joint density (10.49) are determined with the help of the earlier

obtained numerical results (see expressions (9.67) and (9.68) by equating the theoretical

moments of the distributions (10.50) and (10.51) to the corresponding calculating values:

m′ = m(0)
Z , n′ =

[
σ (0)

Z

]2

s2
m

, (10.52)

and

s′2 =
[
σ (0)

Z

]
, v′ =

[
σ (0)

Z

]2

2s2
σ

. (10.53)

In the given case the sufficient statistic is generated by the following quantities [202]:

The posterior density of the parameters mZ and σZhas the same form as in (10.49), but

instead of n′, m′, v′ and v′ s′2 we correspondingly use

n′′ = n′ +n, m′′ =
n′m′ +nm̂

n′ +n
, v′′ = v′ +n, (10.54)

and

v′′s′′2 = v′s′2 +n′m′2 +nD̂+nm̂2 −n′′m′′2. (10.55)

With the help of these expressions we can find, in particular, the posterior mean values m̂(0)
Z

and σ̂ (0)
Z and variances ŝ2

m and ŝ2
σ of the parameters mZ and, σZ respectively, which correct

the prior estimates (9.67) and (9.68) according to the experiment’s results:

m̂(0)
Z =

n′m(0)
Z +nm̂

n′ +n
, σ̂ (0)

Z = s′′, (10.56)

and

ŝ2
m =

σ̂ (0)2
Z +nm̂
n′ +n

, ŝ2
σ =

s′′2

2v′′
. (10.57)
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So, with the help of this approach, using the conjugated prior densities, we have obtained

the joint distribution density h̄mσ

(
mZ ,σZ | ε∼z

)
which is written with the help of formu-

las (10.49)–(10.51), where, instead of each parameter with one prime, it is necessary to

substitute the parameters denoted by the same symbols but having two primes. The last

ones are computed by the formulas (10.52)–(10.57) with the help of prior data and experi-

ment results.

The second part of the problem, connected with obtaining the final Bayes TTF estimate

R∗∗
0 which takes into account new experimental information for the correction of the initial

information about the numerical characteristics of initial variables is solved almost analo-

gously to 9.4.4. The simplest way of obtaining R∗ is by substituting into R the posterior

pointwise estimates given by formulas (10.56), i.e,

R̂∗∗
0

∼= R̂∗
0

(
m̂(0)

Z , σ̂ (0)
Z

)
. (10.58)

The exact solution may be found in the form

R̂∗∗
0 =

∫ ∞

−∞

∫ ∞

0
R̂∗

0
(
mZ ,σZ

)
h̄mσ

(
mZ ,σZ | ε∼z

)
dσZ dmZ . (10.59)

In order to avoid the necessity of a double numerical integration, we represent R̂∗
0
(
mZ ,σZ

)
in the integrand of (10.59) in the form of a Taylor series with respect to m̂(0)

Z and σ̂ (0)
Z .

Leaving only the terms up to the second order of smallness, that is,

R̂∗∗
0

∼= R̂∗
0

(
m̂(0)

Z , σ̂ (0)
Z

)
+a∗2ŝ2

m +b∗2ŝ2
σ , (10.60)

where

∂ ∗
2 =

∂ 2R̂∗
0

(
m̂(0)

Z , σ̂ (0)
Z

)

∂ m̂(0)2
Z

and
∂ 2R̂∗

0

(
m̂(0)

Z , σ̂ (0)
Z

)

∂ σ̂ (0)2
Z

.

10.4 A procedure for controlling the operational capacity of a system

In this section we present and solve one applied problem with the operational capacity

control of the object by the results of measurement of the key parameter. The main part

of the diagnostic procedures used in this area is based on the binary representation of the

control results [134], when each testing is fixed the fact of the key parameters being in the

admissible domain or not being in this domain. In the first case, the system is regarded as

having survived, in the second one as non-survival. We cannot say that such an approach

is flexible enough in spite of the fact that it is simple and operative. This is explained by
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the reason that the testing results giving the values of the key parameter which are situated

dangerously near to the admissible domain but assumed to be as successful as the results of

testing in which the values of the key parameter are situated far away from the boundary.

Besides, the control of attainment of the desired reliability level cannot be done often (for

example, for the case of a small number of successful tests). Below we have formulated

and solved for one case of calculating the problem of the working capacity. This problem

enables us to make a conclusion about the attainment of the given reliability level. The

contents of this section are based on the results of the previous one and essentially use the

notion of the coefficient of the working capacity inventory.

10.4.1 Setting of the problem

Let Y be a unique key parameter, U its admissible value. We will assume that Y and U are

random variables obeying the Gaussian probability distribution with the parameters mY ,

σY and mU and σU , respectively. The values of these parameters are estimated beforehand,

when we carry out the project testing of the system. Therefore, before we begin testing

for some prior estimates, m(0)
Y , σ (0)

Y and m(0)
U , σ (0)

U are known. Since these estimates in

a common case are very rough, we will assume also that given corresponding intervals of

prior uncertainty: for the mean values, [m′
Y , m′′

Y ] and [m′
U , m′′

U ], for the variation coefficients

uY and vU of the random variables Y and U , correspondingly [v′Y , v′Y ] and [v,v]. Each

interval will be represented with the help of the quantity Δ equal to a half of the length of

this interval, i.e., we will assume that we know the values

ΔY =
m′′

Y −m′
Y

2
, ΔU =

m′′
U −m′

U
2

.

Δ1 =
v′′Y − v′Y

2
, Δ2 =

v′′U − v′U
2

.

Hence, before testing we know that
{

m(0)
Y ,ΔY

}
,
{

v(0)
Y ,Δ1

}
,
{

m(0)
U ,ΔU

}
,
{

v(0)
U ,Δ2

}
, where

v(0)
Y = σ (0)

Y

/
m(0)

Y , v(0)
U = σ (0)

U

/
m(0)

U .

During the experimental data processing we carry out n independent tests with a modifi-

cation, fixing the values of key parameters Y and admissible value U . For each j-th stage

of testing during which j tests have been carried out, the testing results generate a sample
y
∼
( j) = (y1,y2, . . . ,y j) and u∼

( j) = (u1,u2, . . . ,u j) so that all the results of n tests are written

in the form {y, u}, where y
∼= y

∼
(n), u∼= u∼

(n).

We will assume that given the desired probability Rreq of fulfillment of the working capacity

condition, Y > U . The problem is to construct the control procedure for the fulfillment of
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the condition

R̂ j = R̂ j

(
ε∼y( j), ε∼u( j)

)
� Rreq (10.61)

for each j-th stage of testing and obtaining of the conclusion about the fulfillment of the

requirement about the reliability of all n tests.

10.4.2 A problem solution in the general case

To find a more laconic writing of the control procedure, we introduce the so called working

capacity inventory coefficient g = mY /mU . The probability of fulfillment of the condition

Y > U under the given values of vY and vU is written as

R = P{Y −U > 0} =Φ

⎛
⎝ g−1√

g2v2
Y + v2

U

⎞
⎠ ,

which allows us to find from the condition

Φ

⎛
⎝ g−1√

g2v2
Y + v2

U

⎞
⎠−Rreq

the least value of the coefficient g guaranteeing the fulfillment of the reliability requirement:

greq = greq
(
vU ,vU

)
=

1−
[
1−

(
1− v2

U
)(

1− zreqv2
Y
)]1/2

1− zreqv2
Y

, (10.62)

where zreq is the quantile of the normal distribution of the probability of Rreq. The idea

of construction of the control procedure consists of obtaining the posterior Bayes lower γ-

confidential gγ = gγ
(
ε∼u, ε∼y

)
and comparing this limit with greq. To ensure the possibility of

such a construction we give the following arguments. Choose as RJ in the condition (10.61)

the Bayes lower confidence limit E and assume that the variation coefficients VU and VY

are known. In view of the monotonicity of the function

R(g,vU ,vY ) =Φ

⎛
⎝ g−1√

g2u2
Y + v2

U

⎞
⎠ (10.63)

with respect to the variable g the following relation holds:

P
{

R∗
γ � Rreq

}
= P

{
R
(

gγ ;vU ,vY

)
� R

(
greq,vU ,vY

)}
. (10.64)

Since only the posterior probabilities are considered, one should use instead of the values

vU and vY their posterior estimates v̂U and v̂Y . Hence, it follows that the condition of
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reliability (10.61) is fulfilled, if the following inequality for the estimation of the inventory

coefficient of the operational capacity of the system:

gγ
(
ε∼y,ε∼u

)
� greq

(
v̂U , v̂Y

)
, (10.65)

where greq (vU , uY ) is determined by formula (10.62), and the problem is to obtain the

Bayes lower confidence level gγ for the inventory coefficient.

For obtaining gγ we find the posterior density h̄
(
mY , mU | ε∼u, ε∼y

)
and apply thereafter

the Bayes estimation procedure for the function of two random variables mY and mU of

the form g = mY /mU . Under the assumption, Y and U obey the Gaussian distribution.

Therefore, the kernel of the likelihood function �0
(
mY ,mU | ε∼u, ε∼y

)
with given σY and σU

is written as

�0
(
mY , mU | ε∼u, ε∼y

)
= exp

[
− n

2σ2
U

(
m2

U −2ūmU
)
− n

2σ2
Y

(
m2

Y −2ūmY
)]

,

where ū and ȳ are correspondingly the sample means for U and Y . Assuming that in the

intervals of a prior uncertainty mY and mU obey the normal law, we obtain the following

relation for the posterior density of the parameters mY and mU

h̄
(
mY ,mU | ε∼u, ε∼y

)
∼ a0

(
mY ,mU

)
=exp

[
− n

2σ2
U

(
m2

U −2ūmU
)
− n

2σ2
Y

(
m2

Y −2ȳmY
)]

,

m′
U � mU � m′′

U , m′
Y � mY � m′′

Y . (10.66)

Following the concept of the Bayes confidence estimation, we determine the value gγ with

the help of the following equation:
∫∫

Ω
(

gγ

) a0 (mY , mU )dmY dmU = γ
∫ m′′

U

m′
U

dmU

∫ m′′
Y

m′
Y

a0 (mY , mU )dmY (10.67)

where the domain Ω
(
gγ
)

containing the unknown limit gγ represents by itself the intersec-

tion of the domains ω1
(
gγ
)
=

{(
mY , mU

)
: mY � gγmU

}
and ω2 =

[
m′

U � mU � m′′
U , m′

Y �
mY � m′′

Y
]

the values of the variances σ2
Y and σ2

U are replaced by the corresponding poste-

rior estimates.

The control procedure given below has an algorithmic nature and cannot be reduced to

simpler calculations. The essential simplification may be achieved only for calculating the

case with a constant admissible value.

10.4.3 Calculating the case of a nonrandom admissible value

Assume that Y obeys the normal law with the parameters mY and σY , and the admissible

value U always takes on a nonrandom value u. The probability that the condition of the
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operational capacity of the system holds, that is,

R = P
{

Y
u

> 1
}

=Φ
(

g−1
σY /u

)
. (10.68)

The value of the inventory coefficient of the operational capacity of the system guaranteeing

the fulfilment of the requirement about the reliability Rreq is determined in accordance

with (10.68) by the formula

greq = zreq
σY
u

+1, (10.69)

where Zreq is the quantile of the normal distribution of the probability Rreq. From this point

we will follow the scheme of 10.4.3: using the results of testing ε∼y we estimate the lower

confidence limit gγ for the coefficient g = mY /u and control the reliability behavior of the

system with the help of the condition gγ � greq.

For the construction of the Bayes posterior estimate of g = mY /u, we use the known solu-

tion, based on the conjugated prior distributions [202]. As in 10.4.2 we will assume abso-

lute error Δm and Δσ of the prior distribution of the parameters mY and σY are given, i.e., we

suppose that
[
m′

Y , m′′
Y
]

is the interval of a prior uncertainty for mY , where m′
Y = m(0)

Y −Δm,

m′′
Y = m(0)

Y +Δm, and for σY
[
σ ′

Y , σ ′′
Y
]
, where σ ′′

Y = σ (0)
Y +Δ′σY = σ (0)

Y . In accordance with

[202], the prior distribution for mY and cY = σ−2
Y has the form

h
(
mY , cY

)
= hc

(
cY

)
hm

(
mY | cY

)
, (10.70)

where

hc
(
cY

)
= hc

(
cY ;s′2,ν ′

)
=

(
ν ′s′2

2

)ν ′/2 cν
′/2−1

Y

Γ
(
ν ′
2

) exp
(
−1

2
ν ′s′2cY

)
, cY > 0, ν ′ > 0,

(10.71)

and

hm
(
mY | cY

)
=

(
cY n′

)1/2

√
2π

exp
[
−1

2
cY n′

(
mY −m′)2

]
. (10.72)

The parameters of the densities (10.71) and (10.72) are determined by a priori known nu-

merical characteristics m(0)
Y , Δm, σ (0)

Y , Δσ , analogously to the formulas (10.52) and (10.53):

m′ = m(0)
Y , n′ =

gσ (0)2
Y
Δ2

m
, (10.73)

s′2 = σ (0)2
Y and ν ′ =

9σ (0)2
Y

2Δ2
σ

. (10.74)

For obtaining gγ = mY γ/u we need to know the posterior density h̄m
(
mY /ĉY

)
, where ĉY

is the posterior estimate of the parameter cY . In accordance with the theory of conjugated
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prior distributions, for the Gaussian case the desired posterior density is determined [202]

by the expression (10.72), but with other parameters, i.e.

hm
(
mY | ĉY

)
=

(
ĉY n′′

2π

)1/2

exp
[
−1

2
ĉY n′′

(
mY −m′′)2

]
, (10.75)

where

n′′ = n′ +n, m′′ =
n′m′′ +nm̂

n′ +n
, ĉY =

[
v′ +n

v′
s′2 +n′m′2 +nD̂+nm̂2 −n′′m′′

]−1

,

m′ =
1
n

n

∑
i=1

yi and D̂ =
1
n

n

∑
i=1

(
yi − m̂

)2
.

In accordance with the concept of the Bayes confidence estimation, lower confidence limit

mY with the confidence level γ is determined by equation∫ ∞

mγ
λ̄m

(
mY | ĉY

)
dmY = γ.

Having performed the necessary calculations, we finally obtain

gγ =
m′′

u
− z1−γ ·

1
uĉY n′′

, (10.76)

which allows us to control the attainment of the reliability level Rreqwith the help of the

condition gγ > greq.

Example 10.1 (A numerical example). Suppose that the required level of satisfaction of

the operational capacity condition Rreq = 0.99 while the admissible value of the parameter

u = 3.5. A priori we are given m(0)
Y = 4.72, Δm = 0.8, σ (0)

Y = 0.4, Δσ = 0.1. The required

value of the operational capacity inventory is greq = 1.266. As seen from the example

conditions, under the system elaborations the given TTF is ensured since mY /u = 1.349 >

greq.

During the experiment the first five tests, we demonstrate the following values of the key

parameter Y : y1 = 4.85, y2 = 4.90, y3 = 5.08, y4 = 3.60, y5 = 3.85. In Fig. 10.3 we depict

the empirical curve of change of the estimate g0.9. As seen from the graph, after the fourth

test the condition of fulfilment of the reliability requirement is broken. This implies some

correction that results in the following values of three successive tests y6 = 5.26, y7 = 4.94,

y8 = 5.08. The curve g0.9( j) has returned to the domain of required reliability.

As was mentioned in Chapter 9, a lot of engineering methods of calculation constructions

and technical devices use essentially the notion of the safety coefficient without taking into

account the random nature of the system parameters. The value of the safety coefficients

are chosen, as a rule, from a wide range which are not connected in practice with the real
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Fig. 10.4 Estimate for the Safety Coefficient as a Function of the Coefficient of Variation.

peculiarities of certain systems. If one applies the methods of a probability projection, i.e.,

chooses the system parameters in accordance with the required probability of its work-

ing capacity, then this shortcoming is eliminated, since the notion of a safety coefficient

is not applied under the probability projection. As an example of this circumstance, we

may choose the problems given in Chapters 8–10. However, due to the inertia of existing

deterministic approaches to the projection (in particular, projection of the construction ele-

ments), safety coefficients will be used in practice for a long time. Therefore, the problem

of development of the method of statistical estimation of the safety factors, applied for the

calculations of certain objects, is very important. This method must, above all, take into

account the required TTF level, probability characteristics of the parameters of the inves-

tigated system, and experimental data that let us verify the working capacity model of the

system.

In this section we formulate and solve the problem of statistical estimation of the safety
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factors for the typical engineering method in the case of a Gaussian distribution of the

status variable.

10.4.4 Setting of the problem

Suppose that Q = φ(X) is a carrying capability of the system, represented in the form

of a function of independent initial variables X = (X1,X2, . . . ,Xn) containing in particular

the mechanical characteristics and geometrical parameters for the construction elements.

Denote by S the acting loading. The system is assumed to be operating if the condition

φ(X) � S is satisfied. The quantities composing this inequality are random, thus the in-

equality holds with certain probability.

Using the deterministic approach, we should use as object parameters the mean values mQ

and mS of the corresponding random variables Q and S. Here we use the condition mQ =

ηmS, i.e., the loading mean value is made η times as large as it was in order to compensate

for numerous random factors and imperfections of the theoretical model; Q = φ(X) leads

to the calculating value of the carrying capability mQ. Thus, the safety coefficient has the

sense of a quotient of the mean value of the carrying capability obtained by a theoretical

approach, to the mean value of the acting loading, i.e., η = mQ/mS.

Using the working capacity model with additive error considered in Chapter 9, we write

the working capacity condition in the form

Q+mQε−S > 0; (10.77)

ε in this inequality has the sense of relative error of the theoretical dependence) Q = φ(X),

and obeys the known distribution fε(ε;θ). The parameter θ is, generally speaking, un-

known, but we are given the prior density h(θ) which concentrates by itself information

about the error ε . It is assumed also that we know the distributions of probabilities of the

random variables Q and S.

During the object design we can carry out such an experiment that may give us the factual

level of carrying capability. Assume that in each of n independent tests the object is put in

the condition of destruction, i.e., in such a condition when the applied loading will be equal

to the factual (not calculating) carrying capability. In each j-th test we measure the values

of destruction loading s∗j and the values of all initial parameters included in the vector x j.

This enables us to find the theoretical value of the carrying capability q j = φ
(
x j
)
. Since

during the test a failure is observed, i.e., the condition q j +mQε j − s∗j = 0 holds, there is a
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possibility of determination of the factual value of the relative error ε j:

ε j =
s∗j −q j

mQ
, j = 1, 2, . . . ,n. (10.78)

The problem is to find the posterior estimates of the safety coefficient η to account for the

described set of the initial data and required value Rreq of the probability of fulfillment of

the condition (10.77).

10.4.5 The case of Gaussian distributions

Suppose that Q ≡ N(mQ, σQ), S ≡ N(mS, σS), and ε ≡ N(mε , σε), where we know the

quotients vQ = σQ/mQ and vS = σS/mS, which are called the variation coefficients of the

theoretical carrying capability Q and loading S. The numerical characteristics mε and σε
are not given, but given the intervals of their prior uncertainty, correspondingly [a,b] and

[c,d], where, mε ≡U(a,b), σε ≡U(c,d).

For the Gaussian quantities Q, S and ε , the probability that the operational capacity condi-

tion (10.77) holds is written in the following way:

R =Φ

⎛
⎝ mQ −mS +mQ ·mε√

σ2
Q +σ2

S +m2
Qσ2

ε

⎞
⎠ .

This probability is easily represented in the form of a function of the safety coefficient η ,

depending also on the parameters me mε , σε , vQ and vS:

R(η) =Φ

⎛
⎝ η(1+mε)−1√

v2
Qη2 + v2

S +η2m2
Qσ2

ε

⎞
⎠ . (10.79)

Having equated R(η) = Rreq and using the expression (10.79), we obtain the equation for

the safety coefficient, corresponding to the required TTF level

η(1+mε)−1 = zreq

(
v2

Qη2 + v2
S +η2σ2

ε

)1/2
,

where zreq is the quantile of the normal distribution of the probability of Rreq. In the domain

η > 1 this equation has a single root

η =
(1+mε)2 + zreq

[
v2

Q + v2
S − z2

reqv2
Qv2

S +
(
1− z2

reqv2
S

)
σ2
ε +mεv2

S

]1/2

(1+mε)2 − z2
req

(
v2

Q +σ2
ε
) . (10.80)

Since the variation coefficients vQ and vS are known, we will emphasize the dependence of

the safety coefficient on the parameters of the model error, i.e., η = η(mε ,σε).
The procedure of estimation of the coefficient η is followed further on by the standard

scheme of Bayes estimation. Using the sample of the sample results ε∼ =
(
ε1, ε2, . . . ,εn

)
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determined by the formula (10.78) and assumption ε ≡ N(mε ,σε), we write the likelihood

function

�
(
mε ,σε | ε∼

)
= �

(
mε ,σε ;v1,v2

)
=

1

(2π)n/2 · 1
σn
ε

exp
[
− n

2σ2
ε

(
v2 −2mεv1 +m2

ε
)]

,

and the testing statistics

vk =
1
n

n

∑
j=1

εk
j (k = 1, 2).

Since the parameters mε and σε have uniform prior distributions correspondingly in the

intervals [a,b] and [c,d], the posterior density h̄
(

mε ,σε | ε∼

)
satisfies the relation

h̄
(

mε ,σε | ε∼

)
∼ a0(mε ,σε) =

n
σn
ε

exp
[
− n

2σ2
ε

(
v2 −2mεv1 +m2

ε
)]

,

mε ∈ [a,b], σε ∈ [c,d]. (10.81)

Using a quadratic loss function, we will find the pointwise posterior estimate of η in the

form

η̂∗ =
1
β

∫ b

a

∫ d

c
η(mε ,σε)a0(mε ,σε)dmεdσε , (10.82)

where

β =
∫ b

a

∫ d

c
a0(mε ,σε)dmεdσε .

For the posterior variance we analogously have

σ2
η̂∗ =

1
β

∫ b

a

∫ d

c
η2(mε ,σε)a0(mε ,σε)dmεdσε − η̂∗2. (10.83)

As some guaranteeing estimate of the safety coefficient, the upper confidence limit of the

quantity η may be used, this is determined in accordance with the concept of the Bayes

confidence estimation, from the equation
∫∫

Θ
(
η̄∗
γ
) a0(mε ,σε)dmεdσε = γβ (10.84)

in which the unknown estimates lie in the integration domain. The last one appears to be

the intersection of the rectangle [a,b]× [c,d] and the set of values of me and mε , determined

by the inequality η(mε ,σε) � η̄∗
γ .

The calculations from the relations (10.82)–(10.84) assume using numerical methods of

double integration and solutions of transcendental equations.
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10.4.6 Numerical analysis of the obtained estimates

In order to clarify the influence of different factors on the behavior of estimates of the safety

coefficient, we have to carry out numerous calculations using formulas (10.82)–(10.84) for

a wide range of values of initial data.

In Table 10.4 we represent calculated results with vQ = vS = 0.05, sε = (v2 −v2
1)

1/2 = 0.03

and the following a priori information mε ∈ [−0.10;0.10], σε ∈ [0.01;0.06]. For each value

of the variate parameter we have determined three estimates η̂∗, ση̂ and η̄∗
0.9 represented

in Table 10.4. As seen from Table 10.4, the increasing of the statistic v1 implies decreas-

ing of the safety coefficient. This tendency may be easily interpreted. That is, v1 can be

interpreted as the sample mean for the relative error ε . When v1 < 0, it displays the pre-

ponderance of the negative values or ε j in the experimental data ε∼. If such an experimental

value is realized, the event s∗j < q j, i.e., the factual carrying capability s∗j , is less than the-

oretical one q j. In other words, from the experimental results it follows that theoretical

model Q = φ(X) implies the overstating of representation about the carrying capability. In

the alternative situation, when v1 > 0, we meet the preponderance of the events s∗j > q j,

that is, in this case the theoretical model understates in preference the factual carrying ca-

pability. It is clear that for compensation of model error in the first situation we need to

choose a greater value of the safety coefficient.

The behavior of the estimate η̄∗
0.9 in accordance with the change of the variation coefficient

of the loading vS is given in Fig. 10.4. The cause is the presence of the random scattering of

the loading and factors of carrying capability is the second reason of introducing the safety

coefficient. The random nature of the loading is well determined by the variation coeffi-

cient. Increasing of the loading implies increasing the safety coefficient. The quantitative

nature of these circumstances is illustrated in Fig. 10.4.

Note one more peculiarity appearing in the calculating experiment. In the case when the

empirical data, expressed by the statistics v1 and sε , lie near the corresponding indetermi-

nacy intervals [a,b] and [c,d]. Increasing the length of these intervals doesn’t give us an

appreciable change in the estimates of the safety coefficient. Hence, we may conclude the

following: we should not choose narrow intervals of prior uncertainty for the parameters of

error for the theoretical working capacity model. Besides, based on this argument, we have

more chances for not observing experimental results that contradict the prior information.
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Table 10.4 Bayes estimates for the safety coefficient.

v1 Rreq = 0.99 Rreq = 0.999 Rreq = 0.9999

−0.09
1.2445 1.3412 1.4304
0.0131 0.0202 0.0275
1.2613 1.3670 1.4657

−0.06
1.2318 1.3231 1.4072
0.0133 0.0203 0.0276
1.2488 1.3490 1.4425

−0.03
1.2186 1.3043 1.3830
0.0124 0.0187 0.0255
1.2345 1.3283 1.4156

0
1.2065 1.2872 1.3610
0.0115 0.0174 0.0236
1.2213 1.3095 1.3911

0.03
1.1955 1.2715 1.3409
0.0108 0.0163 0.0220
1.2093 1.2923 1.3691

0.06
1.1854 1.2573 1.3227
0.0098 0.0150 0.0202
1.1980 1.2765 1.3485

0.09
1.1763 1.2444 1.3061
0.0094 0.0141 0.0190
1.1883 1.2624 1.3305

Fig. 10.5 The estimate for the safety coefficient as a function of the variance.
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