
Information
Theory
and
Data
Compression

Introduction to

Second Edition

© 2003 by CRC Press LLC

Abstract Algebra Applications with Maple,
Richard E. Klima, Ernest Stitzinger, and Neil P. Sigmon

Algebraic Number Theory, Richard A. Mollin

An Atlas of the Smaller Maps in Orientable and Nonorientable Surfaces,
David M. Jackson and Terry I. Visentin

An Introduction to Crytography, Richard A. Mollin

Combinatorial Algorithms: Generation Enumeration and Search,
Donald L. Kreher and Douglas R. Stinson

The CRC Handbook of Combinatorial Designs,
Charles J. Colbourn and Jeffrey H. Dinitz

Cryptography: Theory and Practice, Second Edition, Douglas R. Stinson

Design Theory, Charles C. Lindner and Christopher A. Rodgers

Frames and Resolvable Designs: Uses, Constructions, and Existence,
Steven Furino, Ying Miao, and Jianxing Yin

Fundamental Number Theory with Applications, Richard A. Mollin

Graph Theory and Its Applications, Jonathan Gross and Jay Yellen

Handbook of Applied Cryptography,
Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone

Handbook of Constrained Optimization,
Herbert B. Shulman and Venkat Venkateswaran

Handbook of Discrete and Combinatorial Mathematics, Kenneth H. Rosen

Handbook of Discrete and Computational Geometry,
Jacob E. Goodman and Joseph O’Rourke

Introduction to Information Theory and Data Compression,
Darrel R. Hankerson, Greg A. Harris, and Peter D. Johnson

Network Reliability: Experiments with a Symbolic Algebra Environment,
Daryl D. Harms, Miroslav Kraetzl, Charles J. Colbourn, and John S. Devitt

RSA and Public-Key Cryptography
Richard A. Mollin

Quadratics, Richard A. Mollin
Verification of Computer Codes in Computational Science and Engineering,

Patrick Knupp and Kambiz Salari

Series Editor

Kenneth H. Rosen, Ph.D.
AT&T Laboratories, Middletown, New Jersey

and

DISCRETE
MATHEMATICS
ITS APPLICATIONS

© 2003 by CRC Press LLC

CHAPMAN & HALL/CRC
A CRC Press Company

Boca Raton London New York Washington, D.C.

Darrel Hankerson
Greg A. Harris

Peter D. Johnson, Jr.

Information
Theory
and
Data
Compression

Introduction to

Second Edition

© 2003 by CRC Press LLC

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with
permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish
reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials
or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior
permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works,
or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice:

Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2003 by CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 1-58488-313-8

Library of Congress Card Number 2002041506
Printed in the United States of America 1 2 3 4 5 6 7 8 9 0

Printed on acid-free paper

Library of Congress Cataloging-in-Publication Data

Hankerson, Darrel R.
Introduction to information theory and data compression / Darrel R. Hankerson, Greg A.
Harris, Peter D. Johnson.--2nd ed.

 p. cm. (Discrete mathematics and its applications)
Includes bibliographical references and index.
ISBN 1-58488-313-8 (alk. paper)
1. Information theory. 2. Data compression (Computer science) I. Harris, Greg A. II.
Johnson, Peter D. (Peter Dexter), 1945- III. Title. IV. Series.

Q360.H35 2003
005.74

¢6

—dc21 2002041506
CIP

C3138-discl. Page 1 Friday, January 17, 2003 1:19 PM

© 2003 by CRC Press LLC

Preface

This textbook is aimed at graduate students and upper level undergraduates
in mathematics, engineering, and computer science. The material and the ap-
proach of the text were developed over several years at Auburn University in two
independent courses, Information Theory and Data Compression. Although the
material in the two courses is related, we think it unwise for information theory
to be a prerequisite for data compression, and have written the data compression
section of the text so that it can be read by or presented to students with no prior
knowledge of information theory. There are references in the data compression
part to results and proofs in the information theory part of the text, and those
who are interested may browse over those references, but it is not absolutely
necessary to do so. In fact, perhaps the best pedagogical order of approach to
these subjects is the reverse of the apparent logical order: students will come
to information theory curious and better prepared for having seen some of the
definitions and theorems of that subject playing a role in data compression.

Our main aim in the data compression part of the text, as well as in the
course it grew from, is to acquaint the students with a number of significant
lossless compression techniques, and to discuss two lossy compression meth-
ods. Our aim is for the students to emerge competent in and broadly conversant
with a large range of techniques. We have striven for a “practical” style of
presentation: here is what you do and here is what it is good for. Nonethe-
less, proofs are provided, sometimes in the text, sometimes in the exercises, so
that the instructor can have the option of emphasizing the mathematics of data
compression to some degree.

Information theory is of a more theoretical nature than data compression.
It provides a vocabulary and a certain abstraction that can bring the power of
simplification to many different situations. We thought it reasonable to treat it
as a mathematical theory and to present the fundamental definitions and ele-
mentary results of that theory in utter abstraction from the particular problems
of communication through noisy channels, which inspired the theory in the first
place. We bring the theory to bear on noisy channels in Chapters 3 and 4.

The treatment of information theory given here is extremely elementary.
The channels are memoryless and discrete, and the sources are all “zeroth-
order,” one-state sources (although more complicated source models are dis-
cussed in Chapter 7). We feel that this elementary approach is appropriate for
the target audience, and that, by leaving more complicated sources and channels
out of the picture, we more effectively impart the grasp of Information Theory
that we hope our students will take with them.

The exercises range from the routine to somewhat lengthy problems that
introduce additional material or establish more difficult results. An asterisk by

v

© 2003 by CRC Press LLC

vi Preface

an exercise or section indicates that the material is off the main road, so to speak,
and might reasonably be skipped. In the case of exercises, it may also indicate
that the problem is hard and/or unusual.

In the data compression portion of the book, a number of projects require
the use of a computer. Appendix A documents Octave and Matlab scripts writ-
ten by the authors that can be used on some of the exercises and projects involv-
ing transform methods and images, and that can also serve as building blocks
for other explorations. The software can be obtained from the authors’ site,
listed in Appendix C. In addition, the site contains information about the book,
an online version of Appendix A, and links to other sites of interest.

Organization

Here’s a brief synopsis of each chapter and appendix.

Chapter 1 contains an introduction to the language and results of probability
theory.

Chapter 2 presents the elementary definitions of information theory, a justifi-
cation of the quantification of information on which the theory is based,
and the fundamental relations among various sorts of information and
entropy.

Chapter 3 is about information flow through discrete memoryless noisy chan-
nels.

Chapter 4 is about coding text from a discrete source, transmitting the en-
coded text through a discrete memoryless noisy channel, and decoding
the output. The “classical” fundamental theorems of information theory,
including the Noisy Channel Theorem, appear in this chapter.

Chapter 5 begins the material of the data compression portion of this book.
Replacement schemes are discussed and the chapter concludes with the
Noiseless Coding Theorem, proved here for a binary code alphabet. (It
appears in Chapter 4 in more general form.)

Chapter 6 discusses arithmetic coding, which is of considerable interest since
it is optimal in a certain way that the replacement schemes are not. Con-
siderations for both an “ideal” scheme and for practical implementation
on a computer are presented.

Chapter 7 focuses on the modeling aspects of Chapters 5 and 6 (Chapter 8
continues the discussion). Since coding methods such as those presented
in Chapter 6 can (in theory) produce optimal-length output for a given
model of the source, much of the interest in improving compression in
statistical schemes lies in improving the model of the source. Higher-
order models attempt to use larger contexts for predictions. In the second

© 2003 by CRC Press LLC

Preface vii

edition, a section on probabilistic finite state source automata has been
added.

Chapter 8 considers another approach to modeling, using statistics that are
updated as the source is read and encoded. These have the advantage that
no statistical study needs to be done in advance and the scheme can also
detect changes in the nature of the source.

Chapter 9 discusses popular dictionary methods. These have been widely
used, in part due to their simplicity, speed, and relatively good compres-
sion. Applications such as Ross Williams’ LZRW1 algorithm, Unix com-
press, and GNU zip (gzip) are examined.

Chapter 10 develops the Fourier, cosine, and wavelet transforms, and dis-
cusses their use in compression of signals or images. The lossy scheme
in JPEG is presented as a widely-used standard that relies on transform
techniques. The chapter concludes with an introduction to wavelet-based
compression.

Appendix A documents the use of the “JPEGtool” collection of Octave and
Matlab scripts in understanding JPEG-like image compression.

Appendix B contains the source listing for Ross Williams’ LZRW1-A algo-
rithm, which rather concisely illustrates a viable dictionary compression
method.

Appendix C contains material that didn’t fit elsewhere. The first section lists
sources for information and code for many areas of data compression.
The second section contains a few notes on patents affecting the field.
The final section contains a semi-famous story illustrating some of the
misunderstandings about compression.

Appendix D offers solutions and notes on the exercises.

Acknowledgments

We’d like to thank Ross Williams for permission to reprint his LZRW1-A al-
gorithm, and for notes on his sources. Alistair Moffat provided preprints and
alerted us to other information concerning arithmetic coding. Ian H. Witten was
kind enough to respond to our questions concerning a detail in Text Compres-
sion. We especially wish to acknowledge the help of four reviewers: Jean-loup
Gailly offered many important suggestions concerning Chapter 9 and Appendix
C, and granted permission to use portions of the “Frequently Asked Questions”
document that he authors; Tom Lane suggested a number of improvements and
clarifications in Chapter 10; we are grateful to James R. Wall and to Isidore
Fleischer for reviewing portions of Chapters 1–5.

There are many folks who have made it easier for the community to un-
derstand the subject; some of their names are in this book. Others, working

© 2003 by CRC Press LLC

viii Preface

on “GNU Project” and other freely distributable software, made this book pos-
sible. The list of major contributors to this software is lengthy, and includes
those involved with AUC TeX, dvips[k], Emacs, Ghostview and Ghostscript,
GNU/Linux, the Independent JPEG Group, Info-ZIP, LATEX, Netpbm, PICTEX,
Portable Network Graphics, TEX, xdvi[k], xfig, xv, XY-pic, and many GNU util-
ities such as bash, gawk, gcc and gdb, gzip, and make. We wish to especially
thank the principal developer of Octave, John Eaton.

Thanks are due to A. Scottedward Hodel, Alfred Menezes, Stan Reeves,
and Greg Roelofs for some early advice on the data compression course. Our
students were also generous with their advice. Douglas Leonard and Luc Teir-
linck provided some insightful suggestions and clarifications. Alfred Menezes
gets the credit (and the blame) for setting us on the road to a course in data
compression and this book.

Some of the computer resources for the course and book were made possi-
ble by a grant from the National Science Foundation, for which we are grateful.
Our direct contacts at CRC Press were Bob Stern, Nora Konopka, Suzanne
Lassandro, Tim Pletscher, Jamie Sigal, Mimi Williams, and Sylvia Wood, and
it was a pleasure working with them.

© 2003 by CRC Press LLC

Contents

Preface v

Part I: Information Theory

1 Elementary Probability 1
1.1 Introduction . 1
1.2 Events . 3
1.3 Conditional probability . 7
1.4 Independence . 11
1.5 Bernoulli trials . 13
1.6 An elementary counting principle 15
1.7* On drawing without replacement 17
1.8 Random variables and expected, or average, value 18
1.9 The Law of Large Numbers . 22

2 Information and Entropy 25
2.1 How is information quantified? 25

2.1.1 Naming the units . 27
2.1.2 Information connecting two events 29
2.1.3 The inevitability of Shannon’s quantification of infor-

mation . 30
2.2 Systems of events and mutual information 33
2.3 Entropy . 40
2.4 Information and entropy . 43

3 Channels and Channel Capacity 47
3.1 Discrete memoryless channels 47
3.2 Transition probabilities and binary symmetric channels 50
3.3 Input frequencies . 52
3.4 Channel capacity . 56
3.5* Proof of Theorem 3.4.3, on the capacity equations 67

4 Coding Theory 71
4.1 Encoding and decoding . 71
4.2 Prefix-condition codes and the Kraft-McMillan inequality 75
4.3 Average code word length and Huffman’s algorithm 79

4.3.1 The validity of Huffman’s algorithm 86
4.4 Optimizing the input frequencies 90
4.5 Error correction, maximum likelihood decoding, nearest code

word decoding, and reliability 95

ix

© 2003 by CRC Press LLC

x CONTENTS

4.6 Shannon’s Noisy Channel Theorem 106
4.7 Error correction with binary symmetric channels and equal source

frequencies . 111
4.8 The information rate of a code 115

Part II: Data Compression

5 Lossless Data Compression by Replacement Schemes 119
5.1 Replacement via encoding scheme 120
5.2 Review of the prefix condition 123
5.3 Choosing an encoding scheme 126

5.3.1 Shannon’s method . 127
5.3.2 Fano’s method . 130
5.3.3 Huffman’s algorithm 131

5.4 The Noiseless Coding Theorem and Shannon’s bound 134

6 Arithmetic Coding 141
6.1 Pure zeroth-order arithmetic coding: dfwld 142

6.1.1 Rescaling while encoding 146
6.1.2 Decoding . 150

6.2 What’s good about dfwld coding: the compression ratio 155
6.3 What’s bad about dfwld coding and some ways to fix it 160

6.3.1 Supplying the source word length 161
6.3.2 Computation . 162
6.3.3 Must decoding wait until encoding is completed? 164

6.4 Implementing arithmetic coding 167
6.5 Notes . 179

7 Higher-order Modeling 181
7.1 Higher-order Huffman encoding 182
7.2 The Shannon bound for higher-order encoding 186
7.3 Higher-order arithmetic coding 191
7.4 Statistical models, statistics, and the possibly unknowable truth . 193
7.5 Probabilistic finite state source automata 197

8 Adaptive Methods 205
8.1 Adaptive Huffman encoding 206

8.1.1 Compression and readjustment 209
8.1.2 Higher-order adaptive Huffman encoding 210

8.2 Maintaining the tree in adaptive Huffman encoding: the method
of Knuth and Gallager . 212
8.2.1 Gallager’s method . 215
8.2.2 Knuth’s algorithm . 216

8.3 Adaptive arithmetic coding . 219
8.4 Interval and recency rank encoding 221

© 2003 by CRC Press LLC

CONTENTS xi

8.4.1 Interval encoding . 221
8.4.2 Recency rank encoding 224

9 Dictionary Methods 229
9.1 LZ77 (sliding window) schemes 230

9.1.1 An LZ77 implementation 232
9.1.2 Case study: GNU zip 235

9.2 The LZ78 approach . 237
9.2.1 The LZW variant . 240
9.2.2 Case study: Unix compress 242

9.3 Notes . 244

10 Transform Methods and Image Compression 245
10.1 Transforms . 247
10.2 Periodic signals and the Fourier transform 249

10.2.1 The Fourier transform and compression: an example . . 256
10.3 The cosine and sine transforms 267

10.3.1 A general orthogonal transform 270
10.3.2 Summary . 271

10.4 Two-dimensional transforms 273
10.4.1 The 2D Fourier, cosine, and sine transforms 275
10.4.2 Matrix expressions for 2D transforms 279

10.5 An application: JPEG image compression 281
10.6 A brief introduction to wavelets 291

10.6.1 2D Haar wavelets . 296
10.7 Notes . 300

Appendices 303

A JPEGtool User’s Guide 303
A.1 Using the tools . 304
A.2 Reference . 314
A.3 Obtaining Octave . 319

B Source Listing for LZRW1-A 321

C Resources, Patents, and Illusions 333
C.1 Resources . 333
C.2 Data compression and patents 335
C.3 Illusions . 338

D Notes on and Solutions to Some Exercises 343

Bibliography 357

© 2003 by CRC Press LLC

Chapter 1

Elementary Probability

1.1 Introduction

Definition A finite probability space is a pair (S, P), in which S is a finite
non-empty set and P : S → [0,1] is a function satisfying

∑
s∈S P(s) = 1.

When the space (S, P) is fixed in the discussion, we will call S the set of
outcomes of the space (or of the experiment with which the space is associated—
see the discussion below), and P the probability assignment to the (set of) out-
comes.

The “real” situations we are concerned with consist of an action, or experi-
ment, with a finite number of mutually exclusive possible outcomes. For a given
action, there may be many different ways of listing the possible outcomes, but
all acceptable lists of possible outcomes satisfy this test: whatever happens, it
shall be the case that one and only one of the listed outcomes will have occurred.

For instance, suppose that the experiment consists of someone jumping out
of a plane somewhere over Ohio (parachute optional). Assuming that there is
some way of defining the “patch upon which the jumper lands,” it is possible to
view this experiment as having infinitely many possible outcomes, correspond-
ing to the infinitely many patches that might be landed upon. But we can collect
these infinitely many possibilities into a finite number of different categories
which are, one would think, much more interesting and useful to the jumper
and everyone else concerned than are the undifferentiated infinity of fundamen-
tal possible outcomes. For instance, our finite list of possibilities might look
like: (1) the jumper lands on some power line(s); (2) the jumper lands in a tree;
. . . ; (n) none of the above (in case we overlooked a possibility).

Clearly there are infinitely many ways to make a finite list of outcomes of
this experiment. How would you, in practice, choose a list? That depends on
your concerns. If the jumper is a parachutist, items like “lands in water” should
probably be on the list. If the jumper is a suicidal terrorist carrying an atom
bomb, items like “lands within 15 miles of the center of Cincinnati” might well
be on the list. There is some art in the science of parsing the outcomes to suit
your interest. Never forget the constraint that one and only one of the listed
outcomes will occur, whatever happens. For instance, it is unacceptable to have
“lands in water” and “lands within 15 miles of the center of Cincinnati” on the

1

© 2003 by CRC Press LLC

2 1 Elementary Probability

same list, since it is possible for the jumper to land in water within 15 miles of
the center of Cincinnati. (See Exercise 1 at the end of this section.)

Now consider the definition at the beginning of this section. The set S is in-
terpretable as the finite list of outcomes, or of outcome categories, of whatever
experiment we have at hand. The function P is, as the term probability as-
signment suggests, an assessment or measure of the likelihoods of the different
outcomes.

There is nothing in the definition that tells you how to provide yourself with
S and P , given some actual experiment. The jumper-from-the-airplaneexample
is one of a multitude that show that there may be cause for debate and occasion
for subtlety even in the task of listing the possible outcomes of the given ex-
periment. And once the outcomes are listed to your satisfaction, how do you
arrive at a satisfactory assessment of the likelihoods of occurrence of the vari-
ous outcomes? That is a long story, only the beginnings of which will be told
in this chapter. There are plenty of people—actuaries, pollsters, quality-control
engineers, market analysts, and epidemiologists—who make their living partly
by their sophistication in the matter of assigning probabilities; assigning proba-
bilities in different situations is the problem at the center of applied statistics.

To the novice, it may be heartening to note that two great minds once got
into a confused dispute over the analysis of a very simple experiment. Before
the description of the experiment and the dispute, we interject a couple of com-
ments that will be referred to throughout this chapter.

Experiments with outcomes of equal likelihood

If it is judged that the different outcomes are equally likely, then the condition∑
s∈S P(s) = 1 forces the probability assignment P(s) = 1

|S| for all s ∈ S,
where |S| stands for the size of S, also known as the number of elements in S,
also known as the cardinality of S.

Coins. In this chapter, each coin shall have two sides, designated “heads”
and “tails,” or H and T , for short. On each flip, toss, or throw of a coin, one
of these two “comes up.” Sometimes H will be an abbreviation of the phrase
“heads comes up,” and T similarly. Thus, in the experiment of tossing a coin
once, the only reasonable set of outcomes is abbreviable {H,T }.

A fair coin is one for which the outcomes H and T of the one-toss experi-
ment are equally likely—i.e., each has probability 1/2.

The D’Alembert-Laplace controversy

D’Alembert and Laplace were great mathematicians of the 18th and 19th cen-
turies. Here is the experiment about the analysis of which they disagreed: a fair
coin is tossed twice.

The assumption that the coin is fair tells us all about the experiment of
tossing it once. Tossing it twice is the next-simplest experiment we can perform
with this coin. How can controversy arise? Consider the question: what is the

© 2003 by CRC Press LLC

1.2 Events 3

probability that heads will come up on each toss? D’Alembert’s answer: 1/3.
Laplace’s answer: 1/4.

D’Alembert and Laplace differed right off in their choices of sets of out-
comes. D’Alembert took SD = {both heads, both tails, one head and one tail},
and Laplace favored SL = {H H, H T,T H,T T } where, for instance, H T stands
for “heads on the first toss, tails on the second.” Both D’Alembert and Laplace
asserted that the outcomes in their respective sets of outcomes are equally likely,
from which assertions you can see how they got their answers. Neither provided
a convincing justification of his assertion.

We will give a plausible justification of one of the two assertions above in
Section 1.3. Whether or not the disagreement between D’Alembert and Laplace
is settled by that justification will be left to your judgment.

Exercises 1.1

1. Someone jumps out of a plane over Ohio. You are concerned with whether
or not the jumper lands in water, and whether or not the jumper lands within
15 miles of the center of Cincinnati, and with nothing else. [Perhaps the
jumper carries a bomb that will not go off if the jumper lands in water, and
you have relatives in Cincinnati.]

Give an acceptable list of possible outcomes, as short as possible, that will
permit discussion of your concerns. [Hint: the shortest possible list has
length 4.]

2. Notice that we can get D’Alembert’s set of outcomes from Laplace’s by
“amalgamating” a couple of Laplace’s outcomes into a single outcome.

More generally, given any set S of outcomes, you can make a new set of
outcomes Ŝ by partitioning S into non-empty sets P1, . . . , Pm and setting
Ŝ = {P1, . . . , Pm }. [To say that subsets P1, . . . , Pm of S partition S is to
say that P1, . . . , Pm are pairwise disjoint, i.e., ∅ = Pi ∩ Pj , 1 ≤ i < j ≤ m,
and cover S, i.e., S = ⋃m

i=1 Pi . Thus, “partitioning” is “dividing up into
non-overlapping parts.”]

How may different sets of outcomes can be made, in this way, from a set of
outcomes with four elements?

1.2 Events

Throughout, (S, P) will be some finite probability space. An event in this space
is a subset of S. If E ⊆ S is an event, the probability of E , denoted P(E), is

P(E) =
∑
s∈E

P(s).

Some elementary observations:

© 2003 by CRC Press LLC

4 1 Elementary Probability

(i) if s ∈ S, then P({s}) = P(s);

(ii) P(∅) = 0;

(iii) P(S) = 1;

(iv) if the outcomes in S are equally likely, then, for each E ⊆ S, P(E) =
|E |/|S|.

Events are usually described in plain English, by a sentence or phrase in-
dicating what happens when that event occurs. The set indicated by such a
description consists of those outcomes that satisfy, or conform to, the descrip-
tion. For instance, suppose an urn contains red, green, and yellow balls; suppose
that two are drawn, without replacement. We take S = {rr,rg,ry,gr,gg,gy,

yr, yg, yy}, in which, for instance, rg is short for “a red ball was drawn on the
first draw, and a green on the second.” Let E = “no red ball was drawn.” Then
E = {gg,gy, yg, yy}.

Notice that the verbal description of an event need not refer to the set S
of outcomes, and thus may be represented differently as a set of outcomes for
different choices of S. For instance, in the experiment of tossing a coin twice,
the event “both heads and tails came up” is a set consisting of a single out-
come in D’Alembert’s way of looking at things, but consists of two outcomes
according to Laplace. (Notice that the event “tails came up on first toss, heads
on the second” is not an admissible event in D’Alembert’s space; this does not
mean that D’Alembert was wrong, only that his analysis is insufficiently fine
to permit discussion of certain events associable with the experiment. Perhaps
he would argue that distinguishing between the tosses, labeling one “the first”
and the other “the second,” makes a different experiment from the one he was
concerned with.)

Skeptics can, and should, be alarmed by the “definition” above of the prob-
ability P(E) of an event E . If an event E has a description that makes no
reference to the set S of outcomes, then E should have a probability that does
not vary as you consider different realizations of E as a subset of different out-
come sets S. Yet the probability of E is “defined” to be

∑
s∈E P(s), which

clearly involves S and P . This “definition” hides an assertion that deserves
our scrutiny. The assertion is that, however an event E is realized as a subset
of a set S of outcomes, if the probability assignment P to S is “correct,” then
the number

∑
s∈E P(s) will be “correct,” the “correct” probability of E by any

“correct” assessment.
Here is an argument that seems to justify the equation P(E) = ∑

s∈E P(s)
in all cases where we agree that P is a correct assignment of probabilities to the
elements of S, and that there is a correct à priori probability P(E) of the event
E , realizable as a subset of S. Let Ŝ = (S \ E)∪{E}. That is, we are forming a
new set of outcomes by amalgamating the outcomes in E into a single outcome,
which we will denote by E . What shall the correct probability assignment P̂
to Ŝ be? P̂(E) ought to be the sought-after P(E), the correct probability of E .
Meanwhile, the outcomes of S \ E are indifferent to our changed view of the

© 2003 by CRC Press LLC

1.2 Events 5

experiment; we should have P(s) = P̂(s) for s ∈ S \ E . Then 1 = ∑
s∈Ŝ P̂(s) =

P̂(E) + ∑
s∈S\E P(s) = P(E) + (1 − ∑

s∈E P(s)), which implies the desired
equation.

Definition Events E1 and E2 in a probability space (S, P) are mutually exclu-
sive in case P(E1 ∩ E2) = 0.

In common parlance, to say that two events are mutually exclusive is to say
that they cannot both happen. Thus, it might seem reasonable to define E1 and
E2 to be mutually exclusive if and only if E1 ∩ E2 = ∅, a stronger condition
than P(E1 ∩ E2) = 0. It will be convenient to allow outcomes of experiments
that have zero probability just because ruling out such outcomes may require
a lengthy verbal digression or may spoil the symmetry of some array. In the
service of this convenience, we define mutual exclusivity as above.

Example Suppose an urn contains a number of red and green balls, and exactly
one yellow ball. Suppose that two balls are drawn, without replacement. If, as
above, we take S = {rr,rg,ry,gr,gg,gy, yr, yg, yy}, then the outcome yy is
impossible. However we assign probabilities to S, the only reasonable proba-
bility assignment to yy is zero. Thus, if E1 = “a yellow ball was chosen on the
first draw” and E2 = “a yellow ball was chosen on the second draw,” then E1
and E2 are mutually exclusive, even though E1 ∩ E2 = {yy} �= ∅.

Why not simply omit the impossible outcome yy from S? We may, for
some reason, be performing this experiment on different occasions with differ-
ent urns, and, for most of these, yy may be a possible outcome. It is a great
convenience to be able to refer to the same set S of outcomes in discussing
these different experiments.

Some useful observations and results As heretofore, (S, P) will be a proba-
bility space, and E , F , E1, E2, etc., will stand for events in this space.

1.2.1 If E1 ⊆ E2, then P(E1) ≤ P(E2).

1.2.2 If E1 and E2 are mutually exclusive, and F1 ⊆ E1 and F2 ⊆ E2, then F1
and F2 are mutually exclusive.

1.2.3 If E1, . . . , Em are pairwise mutually exclusive (meaning Ei and E j are
mutually exclusive when 1 ≤ i < j ≤ m), then

P(

m⋃
i=1

Ei) =
m∑

i=1

P(Ei).

For a “clean” proof, go by induction on m. For an instructive proof, first con-
sider the case in which E1, . . . , Em are pairwise disjoint.

1.2.4 If E ⊆ F ⊆ S, then P(F \ E) = P(F)− P(E).

Proof: Apply 1.2.3 with m = 2, E1 = E and E2 = F \ E .

© 2003 by CRC Press LLC

6 1 Elementary Probability

1.2.5 P(E ∪ F)+ P(E ∩ F) = P(E)+ P(F).

Proof: Observe that E ∪ F = (E ∩ F)∪ (E \ (E ∩ F))∪ (F \ (E ∩ F)), a union
of pairwise disjoint events. Apply 1.2.3 and 1.2.4.

1.2.6 P(E)+ P(S \ E) = 1.

Proof: This is a corollary of 1.2.4.

[When propositions are stated without proof, or when the proof is merely
sketched, as in 1.2.4, it is hoped that the student will supply the details. The or-
der in which the propositions are stated is intended to facilitate the verification.
For instance, proposition 1.2.2 follows smoothly from 1.2.1.]

Example Suppose that, in a certain population, 40% of the people have red
hair, 25% tuberculosis, and 15% have both. What percentage has neither?

The experiment that can be associated to this question is: choose a person
“at random” from the population. The set S of outcomes can be identified with
the population; the outcomes are equally likely if the selection process is indeed
“random.”

Let R stand for the event “the person selected has red hair,” and T for the
event “the person selected has tuberculosis.” As subsets of the set of outcomes,
R and T are the sets of people in the population which have red hair and tuber-
culosis, respectively. We are given that P(R) = 40/100, P(T) = 25/100, and
P(R ∩ T) = 15/100. Then

P(S \ (R ∪ T)) = 1 − P(R ∪ T) [by 1.2.6]

= 1 −[P(R)+ P(T)− P(R ∩ T)] [by 1.2.5]

= 1 − [40

100
+ 25

100
− 15

100

] = 50

100
.

Answer: 50% have neither.

Exercises 1.2

1. In a certain population, 25% of the people are small and dirty, 35% are
large and clean, and 60% are small. What percentage are dirty?

2. In the experiment of tossing a fair coin twice, let us consider Laplace’s
set of outcomes, {H H, H T,T H,T T }. We do not know how to assign
probabilities to these outcomes as yet, but surely H T and T H ought to have
the same probability, and the events “heads on the first toss” and “heads on
the second toss” each ought to have probability 1/2.

Do these considerations determine a probability assignment?

3. In a certain population, 30% of the people have acne, 10% have bubonic
plague, and 12% have cholera. In addition,

© 2003 by CRC Press LLC

1.3 Conditional probability 7

8% have acne and bubonic plague,
7% have acne and cholera,
4% have bubonic plague and cholera,
and 2% have all three diseases.

What percentage of the population has none of the three diseases?

1.3 Conditional probability

Definition Suppose that (S, P) is a finite probability space, E1, E2 ⊆ S, and
P(E2) �= 0. The conditional probability of E1, given E2, is P(E1 | E2) =
P(E1 ∩ E2)/P(E2).

Interpretation. You may as well imagine that you were not present when
the experiment or action took place, and you received an incomplete report on
what happened. You learn that event E2 occurred (meaning the outcome was
one of those in E2), and nothing else. How shall you adjust your estimate of
the probabilities of the various outcomes and events, in light of what you now
know? The definition above proposes such an adjustment. Why this? Is it valid?

Justification. Supposing that E2 has occurred, let’s make a new probability
space, (E2, P̂), taking E2 to be the new set of outcomes. What about the new
probability assignment, P̂? We assume that the new probabilities P̂(s), s ∈ E2,
are proportional to the old probabilities P(s); that is, for some number r , we
have P̂(s) = r P(s) for all s ∈ E2.

This might seem a reasonable assumption in many specific instances, but is
it universally valid? Might not the knowledge that E2 has occurred change our
assessment of the relative likelihoods of the outcomes in E2? If some outcome
in E2 was judged to be twice as likely as some other outcome in E2 before
the experiment was performed, must it continue to be judged twice as likely as
the other after we learn that E2 has occurred? We see no way to convincingly
demonstrate the validity of this “proportionality” assumption, nor do we have in
mind an example in which the assumption is clearly violated. We shall accept
this assumption with qualms, and forge on.

Since P̂ is to be a probability assignment, we have

1 =
∑
s∈E2

P̂(s) = r
∑
s∈E2

P(s) = r P(E2),

so r = 1/P(E2). Therefore, the probability that E1 has occurred, given that E2
has occurred, ought to be given by

P(E1|E2) = P̂(E1 ∩ E2) =
∑

s∈E1∩E2

P̂(s) = r
∑

s∈E1∩E2

P(s) = P(E1 ∩ E2)

P(E2)
.

End of justification.

© 2003 by CRC Press LLC

8 1 Elementary Probability

Application to multi-stage experiments

Suppose that we have in mind an experiment with two stages, or sub-experi-
ments. (Examples: tossing a coin twice, drawing two balls from an urn.) Let
x1, . . . ,xn denote the possible outcomes at the first stage, and y1, . . . , ym at the
second. Suppose that the probabilities of the first-stage outcomes are known:
say

P(“xi occurs at the first stage”) = pi , i = 1, . . . ,n.

Suppose that the probabilities of the y j occurring are known, whenever it is
known what happened at the first stage. Let us say that

P(“y j occurs at the 2nd stage, supposing xi occurred at the first”) = qi j .

Now we will consider the full experiment. We take as the set of outcomes
the set of ordered pairs

S = {x1, . . . ,xn}× {y1, . . . , ym}
= {(xi , y j); i ∈ {1, . . . ,n}, j ∈ {1, . . . ,m}},

in which (xi , y j) is short for the statement “xi occurred at the first stage, and y j

at the second.” What shall the probability assignment P be?
Let Ei = “xi occurred at the first stage” = {(xi , y1), . . . , (xi , ym)}, for each

i ∈ {1, . . . ,n}, and let Fj = “y j occurred at the second stage” = {(x1, y j), . . . ,

(xn, y j)}, for each j ∈ {1, . . . ,m}. Even though we do not yet know what P is,
we supposedly know something about the probabilities of these events. What
we know is that P(Ei) = pi , and P(Fj | Ei) = qi j , for each i and j . Therefore,

qi j = P(Fj | Ei) = P(Ei ∩ Fj)

P(Ei)
= P({(xi , y j)})

pi

which implies

P((xi , y j)) = P({(xi , y j)}) = pi qi j .

We now know how to assign probabilities to outcomes of two stage experi-
ments, given certain information about the experiment that might, plausibly, be
obtainable a priori, from the description of the experiment. To put it simply,
you multiply. (But what do you multiply?) Something similar applies to ex-
periments of three or more stages. It is left to you to formulate what you do to
assign probabilities to the outcomes of such experiments.

Examples

1.3.1 An urn contains 5 red, 12 green, and 8 yellow balls. Three are drawn
without replacement.

(a) What is the probability that a red, a green, and a yellow ball will be
drawn?

(b) What is the probability that the last ball to be drawn will be green?

© 2003 by CRC Press LLC

1.3 Conditional probability 9

Solution and discussion. If we identify the set of outcomes with the set of
all sequences of length three of the letters r,g, and y, in the obvious way (e.g.,
ryy stands for a red ball was drawn first, then two yellows), then we will have
27 outcomes; no need to list them all. The event described in part (a) is

E = {rgy,ryg,gry,gyr, yrg, ygr}.
These are assigned probabilities, thus:

P(rgy) = 5

25
· 12

24
· 8

23
, P(ryg) = 5

25
· 8

24
· 12

23
,

etc. How are these obtained? Well, for instance, to see that P(rgy) = 5
25 · 12

24 · 8
23 ,

you reason thus: on the first draw, we have 25 balls, all equally likely to be
drawn (it is presumed from the description of the experiment), of which 5 are
red, hence a probability of 5

25 of a red on the first draw; having drawn that red,
there is then a 12

24 probability of a green on the second draw, and having drawn

first a red, then a green, there is probability 8
23 of a yellow on the third draw.

Multiply.
In this case, we observe that all six outcomes in E have the same probability

assignment. Thus the answer to (a) is 6 · 5
25 · 12

24 · 8
23 = 24

115 .
For (b), we cleverly take a different set of outcomes, and ponder the event

F = {N Ng, Ngg,gNg,ggg},
where N stands for “not green.” We have

P(F) = 13

25
· 12

24
· 12

23
+ 13

25
· 12

24
· 11

23
+ 12

25
· 13

24
· 11

23
+ 12

25
· 11

24
· 10

23

= 12

25

[1

23 ·24
(13 · (12 + 11)+ (13+ 10) ·11)

]
= 12

25

[1

23 ·24
23 ·24

] = 12

25
,

which is, interestingly, the probability of drawing a green on the first draw.
Could we have foreseen the outcome of this calculation, and saved ourselves
some trouble? It is left to you to decide whether or not the probability of draw-
ing a green on draw number k, 1 ≤ k ≤ 25, when we are drawing without re-
placement, might depend on k.

1.3.2 A room contains two urns, A and B . A contains nine red balls and one
green ball; B contains four red balls and four green balls. The room is dark-
ened, a man stumbles into it, gropes about for an urn, draws two balls without
replacement, and leaves the room.

(a) What is the probability that both balls will be red?

(b) Suppose that one ball is red and one is green: what is the probability that
urn A now contains only eight balls?

© 2003 by CRC Press LLC

10 1 Elementary Probability

Solutions. (a) Using obvious and self-explanatory abbreviations,

P(“both red”) = P(Arr)+ P(Brr) = 1

2

9

10

8

9
+ 1

2

4

8

3

7
(b) We calculate

P(“Urn A was the urn chosen” | “One ball is red and one green”)

= P({Arg, Agr})
P({Arg, Agr, Brg, Bgr}) =

1
2

9
10

1
9 + 1

2
1

10
9
9

1
2

9
10

1
9 + 1

2
1

10
9
9 + 1

2
4
8

4
7 + 1

2
4
8

4
7

= 7

27
.

Notice that this result is satisfyingly less than 1/2, the a priori probability that
urn A was chosen.

Exercises 1.3

1. An urn contains six red balls, five green balls, and three yellow balls. Two
are drawn without replacement. What is the probability that at least one is
yellow?

2. Same question as in 1, except that three balls are drawn without replace-
ment.

3. Same question as in 1, except that the drawing is with replacement.

4. An actuary figures that for a plane of a certain type, there is a 1 in 100,000
chance of a crash somewhere during a flight from New York to Chicago,
and a 1 in 150,000 chance of a crash somewhere during a flight from
Chicago to Los Angeles.

A plane of that type is to attempt to fly from New York to Chicago and then
from Chicago to Los Angeles.

(a) What is the probability of a crash somewhere along the way? [Please
do not use your calculator to convert to a decimal approximation.]

(b) Suppose that you know that the plane crashed, but you know noth-
ing else. What is the probability that the crash occurred during the
Chicago-L.A. leg of the journey?

5. Urn A contains 11 red and seven green balls, urn B contains four red and
one green, and urn C contains two red and six green balls. The three urns
are placed in a dark room. Someone stumbles into the room, gropes around,
finds an urn, draws a ball from it, lurches from the room, and looks at the
ball. It is green. What is the probability that it was drawn from urn A?

In this experiment, what is the probability that a red ball will be chosen?
What is the proportion of red balls in the room?

6. Who was right, D’Alembert or Laplace? Or neither?

7. What is the probability of heads coming up exactly twice in three flips of a
fair coin?

© 2003 by CRC Press LLC

1.4 Independence 11

8. Let pi and qi j be as in the text preceding these exercises. What is the value
of

∑n
i=1

∑m
j=1 piqi j ?

9. On each of three different occasions, a fair coin is flipped twice.

(a) On the first occasion, you witness the second flip, but not the first. You
see that heads comes up. What is the probability that heads came up
on both flips?

(b) On the second occasion, you are not present, but are shown a video of
one of the flips, you know not which; either is as likely as the other.
On the video, heads comes up. What is the probability that heads came
up on both flips?

(c) On the third occasion, you are not present; a so-called friend teases
you with the following information, that heads came up at least once
in the two flips. What is the probability that heads came up on both
flips?

*10. For planes of a certain type, the actuarial estimate of the probability of a
crash during a flight (including take-off and landing) from New York to
Chicago is p1; from Chicago to L.A., p2.

In experiment #1, a plane of that type is trying to fly from New York to
L.A., with a stop in Chicago. Let a denote the conditional probability that,
if there is a crash, it occurs on the Chicago-L.A. leg of the journey.

In experiment #2, two different planes of the fatal type are involved; one
is to fly from N.Y. to Chicago, the other from Chicago to L.A. Let b de-
note the conditional probability that the Chicago-L.A. plane crashed, if it is
known that at least one of the two crashed, and let c denote the conditional
probability that the Chicago-L.A. plane crashed, if it is known that exactly
one of the two crashed.

Express a, b, and c in terms of p1 and p2, and show that a ≤ c ≤ b for all
possible p1, p2.

1.4 Independence

Definition Suppose that (S, P) is a finite probability space, and E1, E2 ⊆ S.
The events E1, E2 are independent if and only if

P(E1 ∩ E2) = P(E1)P(E2).

1.4.1 Suppose that both P(E1) and P(E2) are non-zero. The following are
equivalent:

(a) E1 and E2 are independent;

(b) P(E1 | E2) = P(E1);

© 2003 by CRC Press LLC

12 1 Elementary Probability

(c) P(E2 | E1) = P(E2).

Proof: Left to you.

The intuitive meaning of independence should be fairly clear from the
proposition; if the events have non-zero probability, then two events are inde-
pendent if and only if the occurrence of either has no influence on the likelihood
of the occurrence of the other. Besides saying that two events are independent,
we will also say that one event is independent of another.

We shall say that two stages, say the i th and j th, i �= j , of a multi-stage
experiment, are independent if and only if for any outcome x at the i th stage,
and any outcome y at the j th stage, the events “x occurred at the i th stage” and
“y occurred at the j th stage” are independent. This means that no outcome at
either stage will influence the outcome at the other stage. It is intuitively evident,
and can be proven, that when two stages are independent, any two events whose
descriptions involve only those stages, respectively, will be independent. See
Exercises 2.2.5 and 2.2.6.

Exercises 1.4

1. Suppose that E and F are independent events in a finite probability space
(S, P). Show that

(a) E and S \ F are independent;

(b) S \ E and F are independent;

(c) S \ E and S \ F are independent.

2. Show that each event with probability 0 or 1 is independent of every event
in its space.

3. Suppose that S = {a,b,c,d}, all outcomes equally likely, and E = {a,b}.
List all the events in this space that are independent of E .

4. Suppose that S = {a,b,c,d,e}, all outcomes equally likely, and E = {a,b}.
List all the events in this space that are independent of E .

5. Urn A contains 3 red balls and 1 green ball, and urn B contains no red balls
and 75 green balls. The action will be: select one of urns A, B , or C at
random (meaning they are equally likely to be selected), and draw one ball
from it.

How many balls of each color should be in urn C , if the event “a green
ball is selected” is to be independent of “urn C is chosen,” and urn C is to
contain as few balls as possible?

6. Is it possible for two events to be both independent and mutually exclusive?
If so, in what circumstances does this happen?

7. Suppose that S = {a,b,c,d}, and these outcomes are equally likely. Sup-
pose that E = {a,b}, F = {a,c}, and G = {b,c}. Verify that E , F , and G

© 2003 by CRC Press LLC

1.5 Bernoulli trials 13

are pairwise independent. Verify that

P(E ∩ F ∩ G) �= P(E)P(F)P(G).

Draw a moral by completing this sentence: just because E1, . . . , Ek are
pairwise independent, it does not follow that . What if
E1, . . . , Ek belong to the distinct, pairwise independent stages of a multi-
stage experiment?

1.5 Bernoulli trials

Definition Suppose that n ≥ 0 and k are integers;
(n

k

)
, read as “n-choose-k” or

“the binomial coefficient n,k,” is the number of different k-subsets of an n-set
(a set with n elements).

It is hoped that the reader is well-versed in the fundamentals of the binomial
coefficients

(n
k

)
, and that the following few facts constitute a mere review.

Note that
(n

k

) = 0 for k > n and for k < 0, by the definition above, and that(n
0

) = (n
n

) = 1 and
(n

1

) = n for all non-negative integers n. Some of those facts
force us to adopt the convention that 0! = 1, in what follows and forever after.

1.5.1 For 0 ≤ k ≤ n,
(n

k

) = n!
k!(n−k)! . If 1 ≤ k,

(n
k

) = n(n−1)···(n−k+1)
k! .

1.5.2
(n

k

) = (n
n−k

)
.

1.5.3
(n

k

)+ (n
k+1

) = (n+1
k+1

)
.

Definition An alphabet is just a non-empty finite set, and a word of length n
over an alphabet A is a sequence, of length n, of elements of A, written without
using parentheses and commas; for instance, 101 is a word of length 3 over
{0,1}.
1.5.4 Suppose α and β are distinct symbols. Then

(n
k

) = |{w;w is a word of
length n over {α,β} and α appears exactly k times in w}|.
1.5.5 For any numbers α,β,

(α +β)n =
n∑

k=0

(
n

k

)
αkβn−k .

1.5.6 2n = ∑n
k=0

(n
k

)
.

Of the propositions above, 1.5.1 and 1.5.4 are the most fundamental, in
that each of the others can be seen to follow from these two. However, 1.5.2
and 1.5.3 also have “combinatorial” proofs that appeal directly to the definition
of

(n
k

)
.

Proposition 1.5.5 is the famous binomial theorem of Pascal; it is from the
role of the

(n
k

)
in this proposition that the term “binomial coefficient” arises.

© 2003 by CRC Press LLC

14 1 Elementary Probability

Definitions A Bernoulli trial is an experiment with exactly two possible out-
comes. A sequence of independent Bernoulli trials is a multi-stage experiment
in which the stages are the same Bernoulli trial, and the stages are independent.

Tossing a coin is an example of a Bernoulli trial. So is drawing a ball
from an urn, if we are distinguishing between only two types of balls. If the
drawing is with replacement (and, it is understood, with mixing of the balls
after replacement), a sequence of such drawings from an urn is a sequence of
independent Bernoulli trials.

When speaking of some unspecified Bernoulli trial, we will call one pos-
sible outcome Success, or S, and the other Failure, or F . The distinction is
arbitrary. For instance, in the Bernoulli trial consisting of a commercial DC-10
flight from New York to Chicago, you can let the outcome “plane crashes” cor-
respond to the word Success in the theory, and “plane doesn’t crash” to Failure,
or the other way around.

Another way of saying that a sequence of Bernoulli trials (of the same type)
is independent is: the probability of Success does not vary from trial to trial.
Notice that if the probability of Success is p, then the probability of Failure is
1 − p.

1.5.7 Theorem Suppose the probability of Success in a particular Bernoulli
trial is p. Then the probability of exactly k successes in a sequence of n inde-
pendent such trials is (

n

k

)
pk(1 − p)n−k.

Proof: Let the set of outcomes of the experiment consisting of the sequence of
n independent Bernoulli trials be identified with {S, F}n , the set of all sequences
of length n of the symbols S and F . If u is such a sequence in which S appears
exactly k times, then, by what we know about assigning probabilities to the
outcomes of multi-stage experiments, we have

P(u) = pk(1 − p)n−k .

Therefore,

P(“exactly k successes”) =
∑

S occurs exactly
k times in u

P(u)

= |{u; S occurs exactly k times in u}|pk(1 − p)n−k

=
(

n

k

)
pk(1 − p)n−k,

by 1.5.4
In case k < 0 or k > n, when there are no such u, the truth of the theorem

follows from the fact that
(n

k

) = 0.

© 2003 by CRC Press LLC

1.6 An elementary counting principle 15

Example Suppose an urn contains 7 red and 10 green balls, and 20 balls are
drawn with replacement (and mixing) after each draw. What is the probability
that (a) exactly 4, or (b) at least 4, of the balls drawn will be red?
Answers:

(a)

(
20

4

)(7

17

)4(10

17

)16 = 20 ·19 ·18 ·17

4 ·3 ·2

(7

17

)4(10

17

)16.

(b)

20∑
k=4

(
20

k

)(7

17

)k(10

17

)20−k = 1 −
3∑

k=0

(
20

k

)(7

17

)k(10

17

)20−k

= 1 − [(10

17

)20 + 20
(7

17

)(10

17

)19 + 20 ·19

2

(7

17

)2(10

17

)18

+ 20 ·19 ·18

3 ·2

(7

17

)3(10

17

)17]
.

Observe that, in (b), the second expression for the probability is much more
economical and evaluable than the first.

Exercises 1.5

1. An urn contains five red, seven green, and three yellow balls. Nine are
drawn, with replacement. Find the probability that

(a) exactly six of the balls drawn are green;
(b) at least two of the balls drawn are yellow;
(c) at most four of the balls drawn are red.

2. In eight tosses of a fair coin, find the probability that heads will come up

(a) exactly three times;
(b) at least three times;
(c) at most three times.

3. Show that the probability of heads coming up exactly n times in 2n flips of
a fair coin decreases with n.

*4. Find a simple representation of the polynomial
∑n

k=0

(n
k

)
xk(1 − x)n−k .

1.6 An elementary counting principle

1.6.1 Suppose that, in a k-stage experiment, for each i , 1 ≤ i ≤ k, whatever
may have happened in stages preceding, there are exactly ni outcomes possible
at the i th stage. Then there are �k

i=1ni possible sequences of outcomes in the k
stages.

© 2003 by CRC Press LLC

16 1 Elementary Probability

The proof can be done by induction on k. The word “preceding” in the
statement above may seem to some to be too imprecise, and to others to be too
precise, introducing an assumption about the order of the stages that need not be
introduced. I shall leave the statement as it is, with “preceding” to be construed,
in applications, as the applier deems wise.

The idea behind the wording is that the possible outcomes at the different
stages may depend on the outcomes at other stages (those “preceding”), but
whatever has happened at those other stages upon which the list of possible
outcomes at the i th stage depends, the list of possible outcomes at the i th stage
will always be of the same length, ni .

For instance, with k = 2, suppose stage one is flipping a coin, and stage two
is drawing a ball from one of two urns, RWB, which contains only red, white,
and blue balls, and BGY, which contains only blue, green, and yellow balls.
If the outcome at stage 1 is H , the ball is drawn from RWB; otherwise, from
BGY. In this case, there are five possible outcomes at stage 2; yet n3 = 3, and
there are 2 · 3 = 6 possible sequences of outcomes of the experiment, namely
H R, H W , H B , T B , T G, and T Y , in abbreviated form. If, say, the second
urn contained balls of only two different colors, then this two-stage experiment
would not satisfy the hypothesis of 1.6.1.

In applying this counting principle, you think of a way to make, or con-
struct, the objects you are trying to count. If you are lucky and clever, you will
come up with a k-stage construction process satisfying the hypothesis of 1.6.1,
and each object you are trying to count will result from exactly one sequence
of outcomes or choices in the construction process. [But beware of situations in
which the objects you want to count each arise from more than one construction
sequence. See Exercise 4, below.]

For instance, to see that |A1 ×·· ·× Ak| = ∏k
i=1 |Ai |, when A1, . . . , Ak are

sets, you think of making sequences (a1, . . . ,ak), with ai ∈ Ai , i = 1, . . . ,k,
by the obvious process of first choosing a1 from A1, then a2 from A2, etc.
For another instance, the number of different five-card hands dealable from a
standard 52-card deck that are full houses is 13

(4
3

)
12

(4
2

)
. [Why?]

Exercises 1.6

1. In the example above involving an urn, if the first urn contains balls of three
different colors, and the second contains balls of two different colors, how
many different possible sequences of outcomes are there in the two stages
of the experiment?

2. How many different words of length � are there over an alphabet with n
letters? What does this have to do with 1.6.1?

3. In a certain collection of 23 balls, 15 are red and 8 are blue. How many
different 7-subsets of the 23 balls are there, with 5 red and 2 blue balls?

4. How many different five-card hands dealable from a standard deck are
“two-pair” hands?

© 2003 by CRC Press LLC

1.7* On drawing without replacement 17

1.7* On drawing without replacement

Suppose that an urn contains x red balls and y green balls. We draw n without
replacement. What is the probability that exactly k will be red?

The set of outcomes of interest is identifiable with the set of all sequences,
of length n, of the symbols r and g. We are interested in the event consisting of
all such sequences in which r appears exactly k times.

We are not in the happy circumstances of Section 1.5, in which the prob-
ability of a red would be unchanging from draw to draw, but we do enjoy one
piece of good fortune similar to something in that section: the different out-
comes in the event “exactly k reds” all have the same probability. (Verify!) For
0 < k < n ≤ x + y, that probability is

x(x − 1) · · ·(x − k + 1)y(y − 1) · · ·(y − (n − k)+ 1)

(x + y)(x + y − 1) · · ·(x + y − n + 1)

= x ! y!(x + y − n)!
(x − k)!(y − (n − k))!(x + y)! ;

this last expression is only valid when k ≤ x and n −k ≤ y, which are necessary
conditions for the probability to be non-zero. Under those conditions, the last
expression is valid for k = 0 and k = n, as well.

By the same reasoning as in the proof of the independent Bernoulli trial
theorem, 1.5.7, invoking 1.5.4, we have that

P(“exactly k reds”)

=
(

n

k

)
x(x − 1) · · ·(x − k + 1)y(y − 1) · · ·(y − (n − k)+ 1)

(x + y) · · ·(x + y − n + 1)

=
(

n

k

)
x ! y!(x + y − n)!

(x − k)!(y − (n − k))!(x + y)!
for 0 < k < n, provided we understand this last expression to be zero when
k > x or when n − k > y.

There is another way of looking at this experiment. Instead of drawing n
balls one after the other, suppose you just reach into the urn and scoop up n
balls all at once. Is this really different from drawing the balls one at a time,
when you look at the final result? Supposing the two to be the same, we can
take as the set of outcomes all n-subsets of the x + y balls in the urn. Surely
no n-subset is more likely than any other to be scooped up, so the outcomes
are equiprobable, each with probability 1/

(x+y
n

)
(provided n ≤ x + y). How

many of these outcomes are in the event “exactly k reds are among the n balls
selected?” Here is a two-stage method for forming such outcomes: first take
a k-subset of the x red balls in the urn, then an (n − k)-subset of the y green
balls (and put them together to make an n-set). Observe that different outcomes
at either stage result in different n-sets, and that every n-set of these balls with

© 2003 by CRC Press LLC

18 1 Elementary Probability

exactly k reds is the result of one run of the two stages. By 1.6.1, it follows that

| “exactly k reds” | =
(

x

k

)(
y

n − k

)
.

Thus P(“exactly k reds”) = (x
k

)(y
n−k

)
/
(x+y

n

)
, provided n ≤ x + y.

Exercises 1.7

1. Verify that the two different ways of looking at drawing without replace-
ment give the same probability for the event “exactly k balls are red.”

2. Suppose an urn contains 10 red, 13 green, and 4 yellow balls. Nine are
drawn, without replacement.

(a) What is the probability that exactly three of the nine balls drawn will
be yellow?

(b) Find the probability that there are four red, four green, and one yellow
among the nine balls drawn.

3. Find the probability of being dealt a flush (all cards of the same suit) in a
five-card poker game.

1.8 Random variables and expected, or average, value

Suppose that (S, P) is a finite probability space. A random variable on this
space is a function from S into the real numbers, R. If X : S → R is a random
variable on (S, P), the expected or average value of X is

E(X) =
∑
u∈S

X (u)P(u).

Random variables are commonly denoted X,Y, Z , or with subscripts: X1,

X2, · · · . It is sometimes useful, as in 1.8.2, to think of a random variable as
a measurement on the outcomes, and the average value as the average of the
measurements. The average value of a random variable X is sometimes denoted
X ; you may recall that a bar over a letter connotes the arithmetic average, in
elementary statistics.

The word “expected” in “expected value” requires interpretation. As nu-
merous examples show (see 1.8.1, below), a random variable which takes only
integer values can have a non-integer expected value. The point is that the ex-
pected value is not necessarily a possible value of the random variable, and thus
is not really necessarily to be “expected” in any running of the experiment to
which (S, P) is associated.

© 2003 by CRC Press LLC

1.8 Random variables and expected, or average, value 19

Examples

1.8.1 The experiment consists of n independent Bernoulli trials, with probabil-
ity p of success on each trial. Let X = “number of successes.” Finding E(X) in
these circumstances is one of our goals; for now we’ll have to be content with a
special case.

Sub-example: n = 3, p = 1/2; let the experiment be flipping a fair coin
three times, and let “success” be “heads.” With X = “number of heads,” we
have

E(X) = X (H H H)P(H H H)+ X (H H T)P(H H T)

+·· ·+ X (T T T)P(T T T)

= 1

8
[3 + 2 + 2 + 1 +2+ 1+1+0]= 12

8
= 3

2
.

1.8.2 We have some finite population (voters in a city, chickens on a farm)
and some measurement M that can be applied to each individual of the pop-
ulation (blood pressure, weight, hat size, length of femur, . . .). Once units
are decided upon, M(s) is a pure real number for each individual s. We can
regard M as a random variable on the probability space associated with the
experiment of choosing a member of the population “at random.” Here S is
the population, the outcomes are equiprobable (so P is the constant assignment
1/|S|), and M assigns to each outcome (individual of the population) what-
ever real number measures that individual’s M-measure. If S = {s1, . . . ,sn},
then E(M) = (M(s1)+·· ·+ M(sn))/n, the arithmetic average, or mean, of the
measurements M(s),s ∈ S.

1.8.3 Let an urn contain 8 red and 11 green balls. Four are drawn without
replacement. Let X be the number of green balls drawn. What is E(X)?

Note that we have at our disposal two different views of this experiment.
In one view, the set of outcomes is the set of ordered quadruples of the symbols
r and g; i.e., S = {rrrr,rrrg, . . . ,gggg}. In the other view, an outcome is a
four-subset of the 19 balls in the urn.

Taking the first view, we have

E(X) = 0 · 8 ·7 ·6 ·5

19 ·18 ·17 ·16
+ 1 ·4 · 8 ·7 ·6 ·11

19 ·18 ·17 ·16

+ 2 ·
(

4

2

)
8 ·7 ·11 ·10

19 ·18 ·17 ·16
+ 3 ·4

8 ·11 ·10 ·9

19 ·18 ·17 ·16

+ 4 · 11 ·10 ·9 ·8

19 ·18 ·17 ·16

Verify: E(X) = 4 · 11
19 . Verify: the same answer is obtained if the other view of

this experiment is taken. [Use 1.8.4, below, to express E(X).]

1.8.4 Theorem Suppose X is a random variable on (S, P). Then E(X) =∑
x∈R

x P(X = x).

© 2003 by CRC Press LLC

20 1 Elementary Probability

Here, “X = x” is the event {u ∈ S; X (u) = x} = X−1({x}). Note that
X−1({x}) = ∅ unless x ∈ ran(X). Since S is finite, so is ran(X). If ran(X) ⊆
{x1, . . . ,xr }, and x1, . . . ,xr are distinct, then

∑
x∈R

x P(X = x) =
r∑

k=1

xk P(X = xk).

Proof: Let x1, . . . ,xr be the possible values that X might take; i.e., ran(X) ⊆
{x1, . . . ,xr }. Let, for k ∈ {1, . . . ,r}, Ek = “X = xk” = X−1({xk}). Then E1, . . . ,

Er partition S. Therefore,

E(X) =
∑
u∈S

X (u)P(u) =
r∑

k=1

∑
u∈Ek

X (u)P(u)

=
r∑

k=1

xk

∑
u∈Ek

P(u) =
r∑

k=1

xk P(Ek).

1.8.5 Corollary The expected or average number of successes, in a run of n
independent Bernoulli trials with probability p of success in each, is

n∑
k=1

k

(
n

k

)
pk(1 − p)n−k .

Proof: The possible values that X = “number of successes” might take are 0,1,

. . . ,n, and P(X = k) = (n
k

)
pk(1 − p)n−k , for k ∈ {0,1, . . . ,n}, by 1.5.7.

1.8.6 Theorem If X1, . . . , Xn are random variables on (S, P), and a1, . . . ,an

are real numbers, then E(
∑n

k=1 ak Xk) = ∑n
k=1 ak E(Xk).

Proof:

E
(n∑

k=1

ak Xk
) =

∑
u∈S

(n∑
k=1

ak Xk
)
(u)P(u)

=
∑
u∈S

n∑
k=1

ak Xk(u)P(u)

=
n∑

k=1

ak

∑
u∈S

Xk(u)P(u) =
n∑

k=1

ak E(Xk).

1.8.7 Corollary The expected, or average, number of successes, in a run of n
independent Bernoulli trials with probability p of success in each, is np.

Proof: First, let n = 1. Let X be the “number of successes.” By definition and
by the hypothesis,

E(X) = 0 · (1 − p)+ 1 · p = 1 · p.

© 2003 by CRC Press LLC

1.8 Random variables and expected, or average, value 21

Now suppose that n > 1. Let X = “number of successes.” For k ∈ {1, . . . ,

n}, let Xk = “number of successes on the kth trial.” By the case already done,
we have that E(Xk) = p,k = 1, . . . ,n. Therefore,

E(X) = E(

n∑
k=1

Xk) =
n∑

k=1

E(Xk) =
n∑

k=1

p = np.

1.8.8 Corollary For 0 ≤ p ≤ 1, and any positive integer n,
n∑

k=1

k

(
n

k

)
pk(1 − p)n−k = np.

Proof: This follows from 1.8.5 and 1.8.7, provided there exists, for each p ∈
[0,1], a Bernoulli trial with probability p of success. You are invited to ponder
the existence of such trials (problem 1 at the end of this section).

Alternatively, using a sharper argument based on an elementary theorem
about polynomials, the conclusion here (and the result called for in problem
2 at the end of this section) follows from 1.8.5 and 1.8.7 and the existence of
such trials for only n + 1 distinct values of p. Therefore, the result follows
from the existence of such trials for rational numbers p between 0 and 1. If
p = s/b, where s and b are positive integers and s < b, let the Bernoulli trial
with probability p of Success be: draw a ball from an urn containing s Success
balls and b − s Failure balls.

1.8.9 Corollary Suppose k balls are drawn, without replacement, from an urn
containing x red balls and y green balls, where 1 ≤ k ≤ x + y. The expected
number of red balls to be drawn is kx/(x + y).

Proof: It is left to the reader to see that the probability of a red being drawn on
the i th draw, 1 ≤ i ≤ k, is the same as the probability of a red being drawn on
the first draw, namely x/(x + y). [Before the drawing starts, the various x + y
balls are equally likely to be drawn on the i th draw, and x of them are red.]
Once this is agreed to, the proof follows the lines of that of 1.8.7.

Exercises 1.8

1. Suppose 0 ≤ p ≤ 1. Describe a Bernoulli trial with probability p of Suc-
cess. You may suppose that there is a way of “picking a number at random”
from a given interval.

2. Suppose that n is a positive integer. Find a simple representation of the
polynomial

∑n
k=1 k

(n
k

)
xk(1 − x)n−k .

*3. State a result that is to 1.8.9 as 1.8.8 is to 1.8.7.

4. An urn contains 4 red and 13 green balls. Five are drawn. What is the
expected number of reds to be drawn if the drawing is

(a) with replacement?

© 2003 by CRC Press LLC

22 1 Elementary Probability

(b) without replacement?

5. For any radioactive substance, if the material is not tightly packed, it is
thought that whether or not any one atom decays is independent of whether
or not any other atom decays. [We are all aware, I hope, that this assump-
tion fails, in a big way, when the atoms are tightly packed together.]

For a certain mystery substance, let p denote the probability that any par-
ticular atom of the substance will decay during any particular 6-hour period
at the start of which the atom is undecayed. A handful of this substance is
left in a laboratory, in spread-out, unpacked condition, for 24 hours. At the
end of the 24 hours it is found that approximately 1/10 of the substance
has decayed. Find p, approximately. [Hint: let n be the number of atoms,
and think of the process of leaving the substance for 24 hours as n inde-
pendent Bernoulli trials. Note that p here is not the probability of Success,
whichever of two possibilities you choose to be Success, but that probabil-
ity is expressible in terms of p. Assume that the amount of substance that
decayed was approximately the “expected” amount.]

6. An actuary reckons that for any given year that you start alive, you have a
1 in 6,000 chance of dying during that year.

You are going to buy $100,000 worth of five-year term life insurance. How-
ever you pay for the insurance, let us define the payment to be fair if the
life insurance company’s expected gain from the transaction is zero.

(a) In payment plan number one, you pay a single premium at the begin-
ning of the five-year-coverage period. Assuming the actuary’s estimate
is correct, what is the fair value of this premium?

(b) In payment plan number two, you pay five equal premiums, one at the
beginning of each year of the coverage, provided you are alive to make
the payment. Assuming the actuary’s estimate is correct, what is the
fair value of this premium?

7. (a) Find the expected total showing on the upper faces of two fair dice
after a throw.

(b) Same question as in (a), except use backgammon scoring, in which
doubles count quadruple. For instance, double threes count 12.

1.9 The Law of Large Numbers

1.9.1 Theorem Suppose that, for a certain Bernoulli trial, the probability of
Success is p. For a sequence of n independent such trials, let Xn be the random
variable “number of Successes in the n trials.” Suppose ε > 0. Then

P
(∣∣ Xn

n
− p

∣∣ < ε
) → 1 as n → ∞.

© 2003 by CRC Press LLC

1.9 The Law of Large Numbers 23

For instance, if you toss a fair coin 10 times, the probability that | X10
10 −

1
2 | < 1

100 , i.e., that the number of heads, say, is between 4.9 and 5.1, is just the

probability that heads came up exactly 5 times, which is
(10

5

) 1
210 = 63

256 , not very
close to 1. Suppose the same coin is tossed a thousand times; the probability that
| X1000

1000 − 1
2 | < 1

100 is the probability that between 490 and 510 heads appear in
the thousand flips. By approximation methods that we will not go into here, this
probability can be shown to be approximately 0.45. The probability of heads
coming up between 4900 and 5100 times in 10,000 flips is around 0.95.

For a large number of independent Bernoulli trials of the same species, it is
plausible that the proportion of Successes “ought” to be near p, the probability
of Success on each trial. The Law of Large Numbers, 1.9.1, gives precise form
to this plausibility. This theorem has a purely mathematical proof that will not
be given here.

Theorem 1.9.1 is not the only way of stating that the proportion of Suc-
cesses will tend, with high probability, to be around p, the probability of Suc-
cess on each trial. Indeed, Feller [18] maligns this theorem as the weakest and
least interesting of the various laws of large numbers available. Still, 1.9.1 is
the best-known law of large numbers, and ’twill serve our purpose.

Exercises 1.9

*1. With n, ε, p, and Xn as in 1.9.1, express P(| Xn
n − p| ≤ ε) explicitly as a

sum of terms of the form
(n

k

)
pk(1 − p)n−k . You will need the symbols �·�

and �·�, which stand for “round up” and “round down,” respectively.

2. An urn contains three red and seven green balls. Twenty are drawn, with
replacement. What is the probability of exactly six reds being drawn? Of
five, six, or seven reds being drawn?

3. An urn contains an unknown number of red balls, and 10 balls total. You
draw 100 balls, with replacement; 42 are red. What is your best guess as to
the number of red balls in the urn?

*4. A pollster asks some question of 100 people, and finds that 42 of the 100
give “favorable” responses. The pollster estimates from this result that
(probably) between 40 and 45 percent of the total population would be
“favorable” on this question, if asked.

Ponder the similarities and differences between this inference and that in
problem 3. Which is more closely analogous to the inference you used in
doing Exercise 1.8.5?

© 2003 by CRC Press LLC

Chapter 2

Information and Entropy

2.1 How is information quantified?

Information theory leaped fully clothed from the forehead of Claude Shannon
in 1948 [63]. The foundation of the theory is a quantification of information,
a quantification that a few researchers had been floundering toward for 20 or
30 years (see [29] and [56]). The definition will appear strange and unnatural
at first glance. The purpose of this first section of Chapter 2 is to acquaint the
reader with certain issues regarding this definition, and finally to present the
brilliant proof of its inevitability due, as far as we know, to Aczél and Daroczy
in 1975 [1].

To begin to make sense of what follows, think of the familiar quantities area
and volume. These are associated with certain kinds of objects—planar regions
or regions on surfaces, in the case of area; bodies in space, in the case of volume.
The assignment of these quantities to appropriate objects is defined, and the
definitions can be quite involved; in fact, the final chapter on the question of
mere definitions of area and volume was perhaps not written until the twentieth
century, with the introduction of Lebesgue measure.

These definitions are not simply masterpieces of arbitrary mathematical
cleverness—they have to respond to certain human agreements on the nature of
these quantities. The more elaborate definitions have to agree with simpler ways
of computing area on simple geometric figures, and a planar region composed
of two other non-overlapping planar regions should have area equal to the sum
of the areas of the two.

The class of objects to which the quantity information will be attached are
occurrences of events associated with probabilistic experiments; another name
for this class is random phenomena. It is supposed1 that every such event or
phenomenon E has a pre-assigned, a priori probability P(E) of occurrence.
Here is Shannon’s definition of the “self-information” I (E) of an event E :

I (E) = log1/P(E) = − log P(E).

1Take care! Paradoxes and absurdities are known to be obtainable by loose manipulation of
this assumption. These are avoidable by staying within the strict framework of a well-specified
probabilistic experiment, in each situation.

25

© 2003 by CRC Press LLC

26 2 Information and Entropy

If P(E) = 0, I (E) = ∞.
Feinstein [17] used other terminology that many would find more explana-

tory than “self-information”: I (E) is the amount of information disclosed or
given off by the occurrence of E . This terminology coaxes our agreement to the
premise that information ought to be a quantity attached to random phenomena
with prior probabilities. And if that is agreed to, then it seems unavoidable that
the quantity of information must be some function of the prior probability, i.e.,
I (E) = f (P(E)) for some function f , just because prior probability is the only
quantity associated with all random phenomena, the only thing to work with.

Lest this seem a frightful simplification of the wild world of random phe-
nomena, to compute information content as a function of prior probability alone,
let us observe that this sort of simplification happens with other quantities; in-
deed, such simplification is one of the charms of quantification. Planar regions
of radically different shapes and with very different topological properties can
have the same area. Just so; why shouldn’t a stock market crash in Tokyo and
an Ebola virus outbreak in the Sudan possibly release the same amount of in-
formation? The quantification of information should take no account of the
“quality” or category of the random phenomenon whose occurrence releases
the information.

Suppose we agree that I (E) ought to equal f (P(E)) for some function f
defined on (0,1], at least, for all probabilistic events E . Then why did Shannon
take f (x) = log(1/x)? (And which log are we talking about? But we will
deal with that question in the next subsection.) We will take up the question
of Shannon’s inspiration, and Aczél and Daroczy’s final word on the matter, in
Section 2.1.3. But to get acclimated, let’s notice some properties of f (x) =
log(1/x), with log to any base > 1: f is a decreasing, non-negative function on
(0,1], and f (1) = 0. These seem to be necessary properties for a function to be
used to quantify information, via the equation I (E) = f (P(E)). Since I (E)

is to be a quantity, it should be non-negative. The smaller the prior probability
of an event the greater the quantity of information released when it occurs, so
f should be decreasing. And an event of prior probability 1 should release no
information at all when it occurs, so f (1) should be 0.

Even among functions definable by elementary formulas, there are an infi-
nite number of functions on (0,1] satisfying the requirements noted above; for
instance, 1 − xq and (1/x)q − 1 satisfy those requirements, for any q > 0. One
advantage that log(1/x) has over these functions is that it converts products to
sums, and a lot of products occur in the calculation of probabilities. As we shall
see in section 2.1.3, this facile, shallow observation in favor of log(1/x) as the
choice of function to be used to quantify information is remarkably close to the
reason why log(1/x) is the only possible choice for that purpose.

© 2003 by CRC Press LLC

2.1 How is information quantified? 27

2.1.1 Naming the units

For any a,b > 0, a 	= 1 	= b, and x > 0, loga x = (loga b) logb x ; that is, the
functions log x to different bases are just constant multiples of each other. So,
in Shannon’s use of log in the quantification of information, changing bases is
like changing units. Choosing a base amounts to choosing a unit of information.
What requires discussion is the name of the unit that Shannon chose when the
base is 2: Shannon chose to call that unit a bit.

Yes, the unit name when log = log2 is the very same abbreviation of “binary
digit” widely reported to have been invented by J. W. Tukey, who was at Bell
Labs with Shannon in the several years before [63] appeared. (In [76] we read
that the word “bit”, with the meaning of “binary digit”, first appeared in print
in “A mathematical theory of communication.”)

Now, we do not normally pay much attention to unit names in other con-
texts. For example, “square meter” as a unit of area seems rather self-explan-
atory. But in this case the connection between “bit” as a unit of information,
an arbitrarily divisible quantifiable substance, like a liquid, and “bit” meaning
a binary digit, either 0 or 1, is not immediately self-evident to human intuition;
yet Shannon uses the two meanings interchangeably, as has virtually every other
information theorist since Shannon (although Solomon Golomb, in [24], is care-
ful to distinguish between the two). We shall attempt to justify the unit name,
and, in the process, to throw light on the meaning of the information unit when
the base of the logarithm is a positive integer greater than 2.

Think of one square meter of area as the greatest amount of area that can be
squeezed into a square of side length one meter. (You may object that when one
has a square of side length 1 meter, one already has a maximum area “squeezed”
into it. Fine; just humor us on this point.) Reciprocally, the square meter mea-
sure of the area of a planar region is the side length, in meters, of the smallest
square into which the region can hypothetically be squeezed, by deformation
without shrinking or expanding (don’t ask for a rigorous definition here!).

With this in mind, let us take, in analogy to a planar region, an entire prob-
abilistic experiment, initially unanalyzed as to its possible outcomes; and now
let it be analyzed, the possible outcomes broken into a list E1, . . . , Em of pair-
wise mutually exclusive events which exhaust the possibilities: P(∪m

i=1 Ei) =∑m
i=1 P(Ei) = 1 (recall 1.2.3). If you wish, think of each Ei as a single out-

come, in a set of outcomes. Assume P(Ei) > 0, i = 1, . . . ,m.
It may be objected that rather than analogizing a planar region by an entire

probabilistic experiment, a planar region to which the quantity area is assigned
should be analogous to the kind of thing to which the quantity information is
assigned, namely a single event. This is a valid objection.

In what follows, rather than squeezing the information contained in a sin-
gle event into a “box” of agreed size, we will be squeezing the information
contained in the ensemble of the events E1, . . . , Em into a very special box, the
set of binary words of a certain length. We will compare the average informa-

© 2003 by CRC Press LLC

28 2 Information and Entropy

tion content of the events E1, . . . , Em with that length. This comparison will
be taken to indicate what the maximum average (over a list like E1, . . . , Em)
number of units of information can be represented by the typical (aren’t they
all?) binary word of that length.

We admit that this is all rather tortuous, as a justification for terminology.
Until someone thinks of something better, we seem to be forced to this approach
by the circumstance that we are trying to squeeze the information content of
events into binary words, whereas, in the case of area, we deform a region
to fit into another region of standard shape. If we considered only one event,
extracted without reference to the probabilistic experiment to which it is asso-
ciated, we could let it be named with a single bit, 0 or 1, and this does not seem
to be telling us anything. Considering a non-exhaustive ensemble of events as-
sociated with the same probabilistic experiment (pairwise mutually exclusive
so that their information contents are separate) we have a generalization of the
situation with a single event; we can store a lot of information by encoding with
relatively short binary words, just because we are ignoring the full universe
of possibilities. Again, this does not seem to lead to a satisfactory conclusion
about the relation between information and the length of binary words required
to store it. What about looking at ensembles of events from possibly different
probabilistic experiments? Again, unless there is some constraint on the num-
ber of these events and their probabilities, it does not seem that encoding these
as binary words of fixed length tells us anything about units of information, any
more than in the case when the events are associated with the same probabilistic
experiment.

We realize that this discussion is not wholly convincing; perhaps some-
one will develop a more compelling way of justifying our setup in the future.
For now, let us return to E1, . . . , Em , pairwise mutually exclusive events with∑m

i=1 P(Ei) = 1. If we agree that I (E) = − log P(E) for any event E , with log
to some base > 1, then the average information content of an event in the list
E1, . . . , Em is

H (E1, . . . , Em) =
m∑

i=1

P(Ei)I (Ei) = −
m∑

i=1

P(Ei) log P(Ei).

(Recall Section 1.8.)
As is conventional, let ln = loge, the natural logarithm.

2.1.1 Lemma For x > 0, ln x ≤ x − 1, with equality when and only when
x = 1.

Indication of proof Apply elementary calculus to f (x) = x − 1 − ln x to see
that f (x) ≥ 0 on (0,∞), with equality only when x = 1.

2.1.2 Theorem If p1, . . . , pm are positive numbers summing to 1, then
−∑m

i=1 pi log pi ≤ logm, with equality if and only if pi = 1/m, i = 1, . . . ,m.

© 2003 by CRC Press LLC

2.1 How is information quantified? 29

Proof: Let c = loge > 0. Since
∑

pi = 1,

(−
m∑

i=1

pi log pi)− logm =
m∑

i=1

pi (log(1/pi)− logm)

=
m∑

i=1

pi log(1/(mpi))

= c
m∑

i=1

pi ln(1/(mpi)) ≤ c
m∑

i=1

pi(
1

mpi
− 1)

= c
(m∑

i=1

(1/m)−
m∑

i=1

pi
) = c(1 − 1) = 0,

by Lemma 2.1.1, with equality if and only if 1/(mpi) = 1 for each i = 1, . . . ,m.

Now back to considering E1, . . . , Em . Let k be an integer such that m ≤ 2k

and let us put the Ei in one-to-one correspondence with m of the binary words
of length k. That is, the Ei have been encoded, or named, by members of {0,1}k ,
and thereby we consider the ensemble E1, . . . , Em to be stored in {0,1}k .

By Theorem 2.1.2, the average information content among the Ei satisfies
H (E1, . . . , Em) = −∑m

i=1 P(Ei) log P(Ei) ≤ logm ≤ log2k = k, if log = log2;
and equality can be achieved if m = 2k and P(Ei) = 1/m, i = 1, . . . ,m. That is,
the greatest average number of information units per event contained in a “sys-
tem of events”, as we shall call them, which can be stored as k-bit binary words,
is k, if the unit corresponds to log = log2. And that, ladies and gentlemen, is
why we call the unit of information a bit when log = log2.

In case log = logn , for an integer n > 2, we would like to call the unit of
information a nit, but the term probably won’t catch on. Whatever it is called,
the discussion preceding can be adapted to justify the equivalence of the infor-
mation unit, when log = logn , and a single letter of an n-element alphabet.

2.1.2 Information connecting two events

Let log = logb for some b > 1, and suppose that E and F are events in the same
probability space (i.e., associated with the same probabilistic experiment).

If P(F) > 0, the conditional information contained in E , conditional upon
F , denoted I (E | F), is

I (E | F) = − log P(E | F) = − log
P(E ∩ F)

P(F)
.

If P(E ∩ F) = 0 we declare I (E | F) = ∞.
The mutual information of (or between) E and F , denoted I (E, F), is

I (E, F) = log
P(E ∩ F)

P(E)P(F)
, if P(E)P(F) > 0,

© 2003 by CRC Press LLC

30 2 Information and Entropy

and I (E, F) = 0 otherwise, i.e., if either P(E) = 0 or P(F) = 0.
If Shannon’s quantification of information is agreed to, and if account is

taken of the justification of the formula for conditional probability given in Sec-
tion 1.3, then there should be no perplexity regarding the definition of I (E | F).
But it is a different story with I (E, F). For one thing, I (E, F) can be positive
or negative. Indeed, if P(E)P(F) > 0 and P(E ∩ F) = 0, we have no choice
but to set I (E, F) = −∞; also, I (E, F) can take finite negative values, as well
as positive ones.

We do not know of a neat justification for the term “mutual information”,
applied to I (E, F), but quite a strong case for the terminology can be built on
circumstantial evidence, so to speak. The mutual information function and the
important index based on it, the mutual information between two systems of
events, to be introduced in Section 2.2, behave as one would hope that indices
so named would behave. As a first instance of this behavior, consider the fol-
lowing, the verification of which is left as an exercise.

2.1.3 Proposition I (E, F) = 0 if and only if E and F are independent events.

2.1.3 The inevitability of Shannon’s quantification of information

Shannon himself provided a demonstration (in [63]) that information must be
quantified as he proposed, given that it is to be a quantity attached to random
phenomena, and supposing certain other fundamental premises about its behav-
ior. His demonstration was mathematically intriguing, and certainly contributed
to the shocked awe with which “A mathematical theory of communication” was
received. However, after the initial astonishment at Shannon’s virtuosity wears
off, one notices a certain infelicity in this demonstration, arising from the ab-
struseness of those certain other fundamental premises referred to above. These
premises are not about information directly, but about something called entropy,
defined in Section 2.3 as the average information content of events in a system of
events. [Yes, we have already seen this average in Section 2.1.1.] Defined thus,
entropy can also be regarded as a function on the space of all finite probability
vectors, and it is as such that certain premises—we could call them axioms—
about entropy were posed by Shannon. He then showed that if entropy, defined
with respect to information, is to satisfy these axioms, then information must be
defined as it is.

The problem with the demonstration has to do with our assent to the ax-
ioms. This assent is supposed to arise from a prior acquaintance with the word
“entropy,” connoting disorder or unpredictability, in thermodynamics or the ki-
netic theory of gases. Even supposing an acquaintance with entropy in those
contexts, there are a couple of intellectual leaps required to assent to Shannon’s
axioms for entropy: why should this newly defined, information-theoretic en-
tropy carry the connotation of the older entropy, and how does this connotation
translate into the specific axioms set by Shannon?

© 2003 by CRC Press LLC

2.1 How is information quantified? 31

The demonstration of Feinstein [17] is of the same sort as Shannon’s, with
a somewhat more agreeable set of axioms, lessening the vertigo associated with
the second of the intellectual leaps mentioned above. The first leap remains.
Why should we assent to requirements on something called entropy just because
we are calling it entropy, a word that occurs in other contexts?

Here are some requirements directly on the function f appearing in I (E) =
f (P(E)) enunciated by Aczél and Daroczy [1]:

(i) f (x) ≥ 0 for all x ∈ (0,1];
(ii) f (x) > 0 for all x ∈ (0,1); and

(iii) f (pq) = f (p)+ f (q) for all p,q ∈ (0,1].
Requirements (i) and (ii) have been discussed in section 2.1.1. Notice that

there is no requirement that f be decreasing here.
Obviously requirement (iii) above is a strong requirement, and deserves

considerable comment. Suppose that p,q ∈ (0,1]. Suppose that we can find
events E and F , possibly associated with different probabilistic experiments,
such that P(E) = p and P(F) = q . (We pass over the question of whether
or not probabilistic experiments providing events of arbitrary prior probability
can be found.) Now imagine the two-stage experiment consisting of performing
copies of the experiments associated with E and F independently. Let G be the
event “E occurred in the one experiment and F occurred in the other”. Then,
as we know from section 1.3, P(G) = pq , so I (G) = f (pq).

On the other hand, the independence of the performance of the probabilistic
experiments means that the information given off by the occurrence of E in one,
and F in the other, ought to be the sum of the information quantities disclosed
by the occurrence of each separately. This is like saying that the area of a region
made up of two non-overlapping regions ought to be the sum of the areas of the
constituent regions. Thus we should have

f (pq) = I (G) = I (E)+ I (F) = f (p)+ f (q).

We leave it to the reader to scrutinize the heart of the matter, the contention
that because the two probabilistic experiments are performed with indifference,
or obliviousness, to each other, the information that an observer will obtain
from the occurrences of E and F , in the different experiments, ought to be
I (E)+ I (F). We make the obvious remark that if you receive something—say,
money—from one source, and then some more money from a totally different
source, then the total amount of money received will be the sum of the two
amounts received.

We achieve the purpose of this subsection by proving a slightly stronger
version of Aczél and Daroczy’s result, that if f satisfies (i), (ii), and (iii), above,
then f (x) = − logb x for some b > 1 for all x ∈ (0,1].
2.1.4 Theorem Suppose that f is a real-valued function on [0,1) satisfying

(a) f (x) ≥ 0 for all x ∈ (0,1];

© 2003 by CRC Press LLC

32 2 Information and Entropy

(b) f (α) > 0 for some α ∈ (0,1]; and

(c) f (pq) = f (p)+ f (q) for all p,q ∈ (0,1].
Then for some b > 1, f (x) = − logb x for all x ∈ (0,1].
Proof: First we show that f is monotone non-increasing on (0,1]. Suppose
that 0 < x < y ≤ 1. Then f (x) = f (y x

y) = f (y)+ f (x/y) ≥ f (y), by (a) and
(c).

Now we use a standard argument using (c) alone to show that f (xr) =
r f (x) for any x ∈ (0,1] and any positive rational r . First, using (c) repeatedly,
or, if you prefer, proceeding by induction on m, it is straightforward to see that
for each x ∈ (0,1] and each positive integer m, f (xm) = m f (x). Now suppose
that x ∈ (0,1] and that m and n are positive integers. Then xm,xm/n ∈ (0,1],
and

m f (x) = f (xm) = f ((xm/n)n) = n f (xm/n),

so f (xm/n) = m
n f (x).

By (c), f (1) = f (1) + f (1), so f (1) = 0. Therefore the α mentioned in
(b) is not 1. As b ranges over (1,∞), − logb α = − lnα

lnb ranges over (0,∞).
Therefore, for some b > 1, − logb α = f (α). By the result of the paragraph
preceding and the properties of logb, the functions f and − logb agree at each
point αr , r a positive rational.

The set of such points is dense in (0,1]. An easy way to see this is to note
that lnαr = r lnα, so {lnαr ; r is a positive rational} is dense in (−∞,0), by the
well-known density of the rationals in the real numbers; and the inverse of ln,
the exponential function, being continuous and increasing, will map a dense set
in (−∞,0) onto a dense set in (0,1].

We have that f and − logb are both non-increasing, they agree on a dense
subset of (0,1], and − logb is continuous. We conclude that f = − logb on
(0,1]. The argument forcing this conclusion is left as an exercise.

Exercises 2.1

1. Regarding the experiment described in Exercise 1.3.5, let E A = “urn A
was chosen” and Fg = “a green ball was drawn”. Write explicitly: (a)
I (E A, Fg); (b) I (E A | Fg); (c) I (Fg | E A).

2. Suppose that E is an event in some probability space, and P(E) > 0. Show
that I (E, E) = I (E), and that I (E | E) = 0.

3. Suppose that E and F are events in some probability space. Show that
I (E, F) = 0 if and only if E and F are independent. Show that I (E, F) =
I (E)− I (E | F), if P(E)P(F) > 0. Show that I (E, F) ≤ min(I (E), I (F)).
Show that I (E, F) = I (F) if and only if E is essentially contained in F ,
meaning, P(E \ F) = 0.

4. Fill in the proof of Lemma 2.1.1.

© 2003 by CRC Press LLC

2.2 Systems of events and mutual information 33

5. Suppose that p1, . . . , pn , q1, . . . ,qn are positive numbers and
∑

i pi = 1 =∑
i qi . Show that

∑m
i=1 pi log(1/qi) ≤ ∑m

i=1 pi log(1/pi) with equality if
and only if pi = qi , i = 1, . . . ,n. [Hint: look at the proof of Theorem 2.1.2.]

6. Show that if f and g are monotone non-increasing real-valued functions on
a real interval I which agree on a dense subset of I , and g is continuous,
then f = g on I . Give an example to show that the conclusion is not valid
if the assumption that g is continuous is omitted.

2.2 Systems of events and mutual information

Suppose that (S, P) is a finite probability space. A system of events in (S, P) is
a finite indexed collection E = [Ei ; i ∈ I] of pairwise mutually exclusive events
satisfying 1 = P(

⋃
i∈I Ei).

Remarks

2.2.1 When 1 = P(
⋃

i∈I Ei), it is common to say that the Ei exhaust S.

2.2.2 Note that if the Ei are pairwise mutually exclusive, then P(
⋃

i∈I Ei) =∑
i∈I P(Ei), by 1.2.3.

2.2.3 Any partition of S is a system of events in (S, P) (see exercise 1.1.2),
and partitioning is the most obvious way of obtaining systems of events. For
instance, in the case of n Bernoulli trials, with S = {S, F}n , if we take Ek =
“exactly k successes,” then E0, . . . , En partition S.

It is possible to have a system of events in (S, P) which does not partition
S only when S contains outcomes with zero probability. Just as it is convenient
to allow outcomes of zero probability to be elements of sets of outcomes, it
is convenient to allow events of zero probability in systems of events. One
aspect of this convenience is that when we derive new systems from old, as we
shall, we do not have to stop and weed out the events of probability zero in the
resultant system.

In deriving or describing systems of events we may have repeated events
in the system, Ei = E j for some indices i 	= j . In this case, P(Ei) = 0. For
better or for worse, the formality of defining a system of events as an indexed
collection, rather than as a set or list of events, permits such repetition.

2.2.4 If E = [Ei; i ∈ I] is a system of events in (S, P), we can take E as a new
set of outcomes. The technical niceties are satisfied since 1 = P(

⋃
i∈I Ei) =∑

i∈I P(Ei); in viewing E as a set we regard the Ei as distinct, even when they
are not.

Taking E as a new set of outcomes involves a certain change of view. The
old outcomes are merged into “larger” conglomerate outcomes, the events Ei .
The changes in point of view achievable in this way are constrained by the

© 2003 by CRC Press LLC

34 2 Information and Entropy

choice of the original set of outcomes, S. Notice that S itself can be thought of
as a system of events, if we identify each s ∈ S with the event {s}.

If F is a system of events in (S, P), and we choose to view F as a set of
outcomes, then we can form systems of events in the “new” space (F , P) just
as F is formed from S. Systems of events in (F , P) are really just systems in
(S, P) that bear a certain relation to F .

2.2.5 Definition Suppose E = [Ei ; i ∈ I] and F = [Fj ; j ∈ J] are systems of
events in a finite probability space (S, P); we say that E is an amalgamation of
F in case for each j ∈ J there is some i ∈ I such that P(Ei ∩ Fj) = P(Fj).

2.2.6 Definition If (S, P) is a finite probability space and E, F ⊆ S, we will
say that F ⊆ E essentially if P(F \ E) = 0, and F = E essentially if F ⊆ E
essentially and E ⊆ F essentially.

To make sense of Definition 2.2.5, notice that P(Ei ∩ Fj) = P(Fj) is equiv-
alent to P(Fj \ (Ei ∩ Fj)) = 0, which means that Fj is contained in Ei , except,
possibly, for outcomes of zero probability. So, the condition in the definition
says that each Fj is essentially contained in some Ei . By Corollary 2.2.8, be-
low, P(Fj) = ∑

i∈I P(Ei ∩ Fj) for each j ∈ J , so if 0 < P(Fj) = P(Ei0 ∩ Fj)

for some i0 ∈ I , then i0 is unique and P(Ei ∩ Fj) = 0 for all i ∈ I , i 	= i0. This
says that, when E is an amalgamation of F , each Fj of positive probability is
essentially contained in exactly one Ei . Since the Fj are mutually exclusive and
essentially cover S, it also follows that each Ei is essentially (neglecting out-
comes of zero probability) the union of the Fj it essentially contains; i.e., the
Ei are obtained by “amalgamating” the Fj somehow. (Recall exercise 1.1.2.)

Indeed, the most straightforward way to obtain amalgamations of F is as
follows: partition J into non-empty subsets J1, . . . , Jk , and set E = [E1, . . . ,

Ek], with Ei = ⋃
j∈Ji

Fj . It is left to you to verify that E thus obtained is an
amalgamation of F . We shall prove the insinuations of the preceding paragraph,
and see that every amalgamation is essentially (neglecting outcomes of proba-
bility zero) obtained in this way. This formality will also justify the interpreta-
tion of an amalgamation of F as a system of events in the new space (F , P),
treating F as a set of outcomes. Readers who already see this interpretation and
abhor formalities may skip to 2.2.10.

2.2.7 Lemma If (S, P) is a finite probability space, E, F ⊆ S, and P(F) = 1,
then P(E) = P(E ∩ F).

Proof: P(E) = P(E ∩ F)+ P(E ∩ (S \ F)) = P(E ∩ F)+ 0, since E ∩ (S \
F) ⊆ S \ F and P(S \ F) = 1 − P(F) = 1 − 1 = 0.

2.2.8 Corollary If F = [Fj ; j ∈ J] is a system of events in (S, P), and E ⊆ S,
then P(E) = ∑

j∈J P(E ∩ Fj).

Proof: Suppose j1, j2 ∈ J and j1 	= j2. We have (E ∩ Fj1)∩ (E ∩ Fj2) ⊆ Fj1 ∩
Fj2 , so 0 ≤ P((E ∩ Fj1)∩ (E ∩ Fj2)) ≤ P(Fj1 ∩ Fj2) = 0 since Fj1 and Fj2 are

© 2003 by CRC Press LLC

2.2 Systems of events and mutual information 35

mutually exclusive. Thus E ∩ Fj1 and E ∩ Fj2 are mutually exclusive. It follows
that

∑
j∈J P(E ∩ Fj) = P(

⋃
j∈J (E ∩ Fj)) = P(E ∩ (

⋃
j∈J Fj)) = P(E) by

2.2.7, taking F = ⋃
j∈J Fj .

2.2.9 Theorem Suppose that F = [Fj ; j ∈ J] is a system of events in a finite
probability space (S, P), and I is a finite non-empty set. An indexed collection
E = [Ei; i ∈ I] of subsets of S is an amalgamation of F if and only if there is
a partition [Ji ; i ∈ I] of J (into not necessarily non-empty sets) such that, for
each i ∈ I, Ei = ⋃

j∈Ji
Fj essentially.

Proof: The proof of the “if” assertion is left to the reader. Note that as part of
this proof it should be verified that E is a system of events.

Suppose that E is an amalgamation of F . If i ∈ I and P(Ei) > 0, set
Ji = { j ∈ J ; P(Ei ∩ Fj) > 0}. If j ∈ J and P(Fj) > 0, then there is a unique
i0 ∈ I such that j ∈ Ji0 , by the argument in the paragraph following Definition
2.2.6. Note that P(Fj) = P(Fj ∩ Ei) if j ∈ Ji , by that argument.

Thus we have pairwise disjoint sets Ji ⊆ J containing every j ∈ J such
that P(Fj) > 0. If P(Fj) = 0, put j into one of the Ji , it doesn’t matter which.
If P(Ei) = 0, set Ji = ∅. The Ji , i ∈ I , now partition J . It remains to be seen
that Ei = ⋃

j∈Ji
Fj essentially for each i ∈ I . This is clear if P(Ei) = 0. If

P(Ei) > 0, then, since P(Ei ∩ Fj) > 0 only for j ∈ Ji , we have

P(Ei) =
∑
j∈J

P(Ei ∩ Fj) [by Corollary 2.2.8]

=
∑
j∈Ji

P(Ei ∩ Fj) = P(
⋃

j∈Ji

(Ei ∩ Fj)), so

P(Ei \ ⋃
j∈Ji

Fj) =P(Ei \ ⋃
j∈Ji

(Ei ∩ Fj))

=P(Ei)− P(
⋃
j∈Ji

(Ei ∩ Fj)) = 0.

On the other hand,

P(Ei) =
∑
j∈Ji

P(Ei ∩ Fj) =
∑
j∈Ji

P(Fj)

implies that

P(
⋃

j∈Ji

Fj \ Ei) = P(
⋃

j∈Ji

(Fj \ (Ei ∩ Fj)))

=
∑
j∈Ji

[P(Fj)− P(Ei ∩ Fj)] = 0.

Thus Ei = ⋃
j∈Ji

Fj , essentially.

When E is an amalgamation of F , we say that E is coarser than F , and F
is finer than E . Given E and F , neither necessarily coarser than the other, there
is an obvious way to obtain a coarsest system of events which is finer than each
of E , F . (See Exercise 2.2.2.)

© 2003 by CRC Press LLC

36 2 Information and Entropy

2.2.10 Definition Suppose that E = [Ei ; i ∈ I] andF = [Fj ; j ∈ J] are systems
of events in a finite probability space (S, P). The joint system associated with
E and F , denoted E ∧F , is

E ∧F = [Ei ∩ Fj ; (i, j) ∈ I × J].
E ∧F is also called the join of E and F .

2.2.11 Theorem If E and F are systems of events in (S, P) then E ∧F is a
system of events in (S, P).

Proof: If (i, j),(i ′, j ′) ∈ I × J and (i, j) 	= (i ′, j ′), then either i 	= i ′ or j 	= j ′.
Suppose that i 	= i ′. Since (Ei ∩ Fj)∩ (E ′

i ∩ F ′
j) ⊆ Ei ∩ E ′

i , we have

0 ≤ P((Ei ∩ Fj)∩ (E ′
i ∩ F ′

j)) ≤ P(Ei ∩ E ′
i) = 0,

so Ei ∩ Fj and E ′
i ∩ F ′

j are mutually exclusive. The case i = i ′ but j 	= j ′ is
handled symmetrically.

Next, since mutual exclusivity has already been established,

P
(⋃
(i, j)∈I×J

(Ei ∩ Fj)
) =

∑
(i, j)∈I×J

P(Ei ∩ Fj)

=
∑
i∈I

∑
j∈J

P(Ei ∩ Fj)

=
∑
i∈I

P(Ei) [by Corollary 2.2.8]

= 1.

Definition Suppose that E = [Ei; i ∈ I] and F = [Fj ; j ∈ J] are systems of
events in some finite probability space (S, P);E and F are statistically inde-
pendent if and only if Ei and Fj are independent events, for each i ∈ I and
j ∈ J .

Statistically independent systems of events occur quite commonly in asso-
ciation with multistage experiments in which two of the stages are “indepen-
dent” – i.e., outcomes at one of the two stages do not influence the probabilities
of the outcomes at the other. For instance, think of an experiment consisting of
flipping a coin, and then drawing a ball from an urn, and two systems, one con-
sisting of the two events “heads came up”, “tails came up”, with reference to the
coin flip, and the other consisting of the events associated with the colors of the
balls that might be drawn. For a more formal discussion of stage, or component,
systems associated with multistage experiments, see Exercise 2.2.5.

2.2.12 Definition Suppose that E = [Ei ; i ∈ I] andF = [Fj ; j ∈ J] are systems
of events in a finite probability space (S, P). The mutual information between
E and F is

I (E,F) =
∑
i∈I

∑
j∈J

P(Ei ∩ Fj)I (Ei , Fj).

© 2003 by CRC Press LLC

2.2 Systems of events and mutual information 37

In the expression for I (E,F) above, I (Ei , Fj) is the mutual information

between events Ei and Fj as defined in Section 2.1.2: I (Ei , Fj) = log
P(Ei ∩Fj)

P(Ei)P(Fj)

if P(Ei)P(Fj) > 0, and I (Ei , Fj) = 0 otherwise. If we adopt the convention
that 0 log(anything) = 0, then we are permitted to write

I (E,F) =
∑
i∈I

∑
j∈J

P(Ei ∩ Fj) log
P(Ei ∩ Fj)

P(Ei)P(Fj)
;

this rewriting will turn out to be a great convenience.
The mutual information between two systems of events will be an ex-

tremely important parameter in the assessment of the performance of commu-
nication channels, in Chapters 3 and 4, so it behooves us to seek some justifi-
cation of the term “mutual information.” Given E and F , we can think of the
mapping (i, j) → I (Ei , Fj) as a random variable on the system E ∧F , and we
then see that I (E,F) is the average value of this random variable, the “mutual
information between events” random variable. This observation would justify
the naming of I (E,F), if only we were quite sure that the mutual-information-
between-events function is well named. It seems that the naming of both mutual
informations, between events and between systems of events, will have to be
justified by the behavior of these quantities. We have seen one such justification
in Proposition 2.1.3, and there is another in the next Theorem. This theorem, by
the way, is quite surprising in view of the fact that the terms in the sum defining
I (E,F) can be negative.

2.2.13 Theorem Suppose that E and F are systems of events in a finite proba-
bility space. Then I (E,F) ≥ 0 with equality if and only if E and F are statisti-
cally independent.

Proof: Let c = loge, so that log x = c ln x for all x > 0. If i ∈ I , j ∈ J , and
P(Ei ∩ Fj) > 0, we have, by Lemma 2.1.1,

P(Ei ∩ Fj) log
P(Ei)P(Fj)

P(Ei ∩ Fj)
≤ cP(Ei ∩ Fj)

[
P(Ei)P(Fj)

P(Ei ∩ Fj)
− 1

]
= c

[
P(Ei)P(Fj)− P(Ei ∩ Fj)

]
with equality if and only if

P(Ei)P(Fj)

P(Ei∩Fj)
= 1, i.e., if and only if Ei and Fj

are independent events. If P(Ei ∩ Fj) = 0 then, using the convention that
0 log(anything) = 0, we have

0 = P(Ei ∩ Fj) log
P(Ei)P(Fj)

P(Ei ∩ Fj)
≤ c[P(Ei)P(Fj)− P(Ei ∩ Fj)],

again, with equality if and only if P(Ei)P(Fj) = 0 = P(Ei ∩ Fj). Thus

© 2003 by CRC Press LLC

38 2 Information and Entropy

−I (E,F) =
∑
i∈I

∑
j∈J

P(Ei ∩ Fj) log
P(Ei)P(Fj)

P(Ei ∩ Fj)

≤ c
∑
i∈I

∑
j∈J

[P(Ei)P(Fj)− P(Ei ∩ Fj)]

= c

[∑
i∈I

P(Ei)
∑
j∈J

P(Fj)−
∑
i∈I

∑
j∈J

P(Ei ∩ Fj)

]

= c[1 − 1] = 0 [note Theorem 2.2.11]

with equality if and only if Ei and Fj are independent, for each i ∈ I , j ∈ J .

Exercises 2.2

1. You have two fair dice, one red, one green. You roll them once. We can
make a probability space referring to this experiment in a number of differ-
ent ways. Let

S1 ={“i appeared on the red die, j on the green” ; i, j ∈ {1, . . . ,6}},
S2 ={“i appeared on one of the dice, and j on the other” ;

i, j ∈ {1, . . . ,6}},
S3 = {“the sum of the numbers appearing on the dice was k”;

k ∈ {2, . . . ,12}}, and

S4 = {“even numbers on both dice”, “even on the red, odd on the green”,

“even on the green, odd on the red”, “odd numbers on both dice”}.
Which pairs of these sets of outcomes have the property that neither is an
amalgamation of the other?

2. Suppose that E and F are systems of events in a finite probability space.

(a) Prove that each of E,F is an amalgamation of E ∧F . [Thus, E ∧F is
finer than each of E,F .]

(b) Suppose that each of E,F is an amalgamation of a system of events G.
Show that E ∧F is an amalgamation of G. [So E ∧F is the coarsest
system of events, among those that are finer than each of E,F .] Here
is a hint for (b): Suppose that E , F , and G are events in E,F and G,
respectively, and P(G ∩ E ∩ F) > 0. Then P(G ∩ E), P(G ∩ F) > 0.
By the assumption that E,F are amalgamations of G and an argument
in the proof of Theorem 2.2.9, it follows that G is essentially contained
in E , and in F . So . . .

3. Two fair dice, one red, one green, are rolled once. Let E = [E1, . . . , E6],
where Ei = “i came up on the red die”, and F = [F2, . . . , F12], where
Fj = “the sum of the numbers that came up on the two dice was j”. Write
I (E,F) explicitly, in a form that permits calculation once a base for “log”
is specified.

© 2003 by CRC Press LLC

2.2 Systems of events and mutual information 39

4. Regarding the experiment described in Exercise 1.3.5, let EU = “urn U
was chosen”, U ∈ {A, B,C}, Fr = “a red ball was drawn”, Fg = “a green
ball was drawn”, E = [E A, EB , EC], and F = [Fr , Fg]. Write I (E,F)

explicitly, in a form that permits calculation, given a base for “log”.

5. Suppose we have a k-stage experiment, with possible outcomes x (i)
1 , . . . ,x (i)

ni

at the i th stage, i = 1, . . . ,k. Let us take, as we often do, S = {(x (i)
j1

, . . . ,x (k)
jk

),

1 ≤ ji ≤ ni , i = 1, . . . ,k}, the set of all sequences of possible outcomes at
the different stages.

For 1 ≤ i ≤ k, 1 ≤ j ≤ ni , let E (i)
j = “x (i)

j occurred at the i th stage”, and

E (i) = [E (i)
j ; j = 1, . . . ,ni]. We will call E (i) the i th stage, or i th compo-

nent, system of events in (S, P). Two stages will be called independent if
and only if their corresponding component systems are statistically inde-
pendent.

In the case k = 2, let us simplify notation by letting the possible outcomes at
the first stage be x1, . . . ,xn and at the second stage y1, . . . , ym . Let Ei = “xi

occurred at the first stage”, i = 1, . . . ,n, Fj = “y j occurred at the second
stage”, j = 1, . . . ,m, be the events comprising the component systems E
and F , respectively.

(a) Let pi = P(Ei) and qi j = P(Fj | Ei), i = 1, . . . ,n, j = 1, . . . ,m, as in
Section 1.3. Assume that each pi is positive. Show that E and F are
statistically independent if and only if the qi j depend only on j , not i .
(That is, for any i1, i2 ∈ {1, . . . ,n} and j ∈ {1, . . . ,m}, qi1 j = qi2 j .)

(b) Verify that if S is regarded as a system of events in the space (S, P)

(i.e., identify each pair (xi , y j) with the event {(xi , y j)}), then
S = E ∧F .

∗(c) Suppose that three component systems of a multistage experiment, say
E (1),E (2), and E (3), are pairwise statistically independent. Does it fol-
low that they are jointly statistically independent? This would mean
that for all 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, and 1 ≤ k ≤ n3, P(E (1)

i ∩ E (2)
j ∩

E (3)
k) = P(E (1)

i)P(E (2)
j)P(E (3)

k). Take note of Exercise 1.4.7.

6. (a) Suppose that E1, . . . , Ek, F1, . . . , Fr are events in a finite probability
space (S, P) satisfying

(i) E1, . . . , Ek are pairwise mutually exclusive;
(ii) F1, . . . , Fr are pairwise mutually exclusive; and

(iii) for each i ∈ {1, . . . ,k}, j ∈ {1, . . . ,r}, Ei and Fj are independent.

Show that
⋃k

i=1 Ei and
⋃r

j=1 Fj are independent.

(b) Suppose that E , Ê , F , and F̂ are systems of events in some finite prob-
ability space, and Ê and F̂ are amalgamations of E and F , respectively.
Show that if E and F are statistically independent, then so are Ê and
F̂ . [You did the hard work in part (a).]

© 2003 by CRC Press LLC

40 2 Information and Entropy

(c) It is asserted at the end of Section 1.4 that “when two stages [of a multi-
stage experiment] are independent, any two events whose descriptions
involve only those stages, respectively, will be independent.” Explain
how this assertion is a special case of the result of 6(a), above.

7. Succinctly characterize the systems of events E such that I (E,E) = 0.

8. Suppose that E andF are systems of events in some finite probability space,
and that Ê is an amalgamation of E . Show that I (Ê,F) ≤ I (E,F). [You
may have to use Lemma 2.1.1.]

2.3 Entropy

Suppose that E = [Ei ; i ∈ I] and F = [Fj ; j ∈ J] are systems of events in some
finite probability space (S, P). The entropy of E , denoted H (E), is

H (E) = −
∑
i∈I

P(Ei) log P(Ei).

The joint entropy of the systems E and F is the entropy of the joint system,

H (E∧F) = −
∑
i∈I

∑
j∈J

P(Ei ∩ Fj) log P(Ei ∩ Fj).

The conditional entropy of E , conditional upon F , is

H (E | F) =
∑
i∈I

∑
j∈J

P(Ei ∩ Fj)I (Ei | Fj)

= −
∑
i∈I

∑
j∈J

P(Ei ∩ Fj) log
P(Ei ∩ Fj)

P(Fj)
.

Remarks

2.3.1 In the definitions above, we continue to observe the convention that
0 log(anything) = 0. As in the preceding section, the base of the logarithm
is unspecified; any base greater than 1 may be used.

2.3.2 Taking E as a new set of outcomes for the probability space, we see that
H (E) is the average value of the self-information of the events (now outcomes)
in E . Similarly, the joint and conditional entropies are average values of certain
kinds of information.

2.3.3 The word entropy connotes disorder, or uncertainty, and the number H (E)

is to be taken as a measure of the disorder or uncertainty inherent in the system
E . What sort of disorder or uncertainty is associable with a system E , and why
is H (E), as defined here, a good measure of it?

© 2003 by CRC Press LLC

2.3 Entropy 41

A system of events represents a way of looking at an experiment. The pesky
little individual outcomes are grouped into events according to some organizing
principle. We have the vague intuition that the more finely we divide the set
of outcomes into events, the greater the “complexity” of our point of view, and
the less order and simplicity we have brought to the analysis of the experiment.
Thus, there is an intuitive feeling that some systems of events are more complex,
less simple, than others, and it is not too great a stretch to make complexity a
synonym, in this context, of disorder or uncertainty.

As to why H is a suitable measure of this felt complexity: as with mutual
information, the justification resides in the behavior of the quantity. We refer
to the theorem below, and to the result of Exercise 4 at the end of this section.
The theorem says that H (E) is a minimum (zero) when and only when E con-
sists of one big event that is certain to occur, together, possibly, with massless
events (events with probability zero). Surely this is the situation of maximum
simplicity, minimum disorder. (A colleague has facetiously suggested that such
systems of events be called “Mussolini systems”. The reference is to the level
of order in the system; in correlation to this terminology, an event of probability
one may be called a Mussolini.) The theorem also says that, for a fixed value
of |E | = |I |, the greatest value H (E) can take is achieved when and only when
the events in E are equally likely. This taxes the intuition a bit, but it does seem
that having a particular number of equiprobable events is a more “uncertain”
or “complex” situation than having the same number of events, but with some
events more likely than others.

The result of Exercise 2.3.4 is that if Ê is obtained from E by amalgamation,
then H (Ê) ≤ H (E). To put this the other way around, if you obtain a new system
from an old system by dividing the old events into smaller events, the entropy
goes up, as it should.

Shannon ([63] and [65]) introduced an axiom system for entropy, a series
of statements that the symbol H ought to satisfy to be worthy of the name
entropy, and showed that the definition of entropy given here is the only one
compatible with these requirements. As previously mentioned, Feinstein [17]
did something similar, with (perhaps) a more congenial axiom system. For an
excellent explanation of these axioms and further references on the matter, see
the book by Dominic Welsh [81] or that of D. S. Jones [37]. We shall not pursue
further the question of the validity of the definition of H , nor its uniqueness.

2.3.4 Theorem Suppose that E = [Ei; i ∈ I] is a system of events in a finite
probability space. Then 0 ≤ H (E) ≤ log |I |. Equality at the lower extreme oc-
curs if and only if all but one of the events in E have probability zero. [That
one event would then be forced to have probability 1, since

∑
i∈I P(Ei) =

P(∪i∈I Ei) = 1.] Equality occurs at the upper extreme if and only if the events
in E are equally likely. [In this case, each event in E would have probability
1/|I |.]
Proof: It is straightforward to see that the given conditions for equality at the
two extremes are sufficient.

© 2003 by CRC Press LLC

42 2 Information and Entropy

Since 0 ≤ P(Ei) ≤ 1 for each i ∈ I,−P(Ei) log P(Ei) ≥ 0 with equality if
and only if either P(Ei) = 0 (by convention) or P(Ei) = 1. Thus H (E)≥ 0, and
equality forces P(Ei) = 0 or 1 for each i . Since the Ei are pairwise mutually
exclusive, and

∑
i P(Ei) = 1, H (E) = 0 implies that exactly one of the Ei has

probability 1 and the rest have probability zero.
Let c = loge. We have

H (E)− log|I | =
∑
i∈I

P(Ei) log
1

P(Ei)
−

∑
i∈I

P(Ei) log |I |

= c
∑
i∈I

P(Ei) ln(P(Ei)|I |)−1

≤ c
∑
i∈I

P(Ei)[(P(Ei)|I |)−1 − 1] (by Lemma 2.1.1)

= c

[∑
i∈I

|I |−1 −
∑
i∈I

P(Ei)

]
= c[1 − 1] = 0,

with equality if and only if P(Ei)|I | = 1 for each i ∈ I .

The following theorem gives a useful connection between conditional en-
tropy and the set-wise relation between two systems. Notice that if E is an
amalgamation of F , then whenever you know which event in F occurred, you
also know which event in E occurred; i.e., there is no uncertainty regarding E .

2.3.5 Theorem Suppose that E = [Ei ; i ∈ I] and F = [Fj ; j ∈ J] are systems
of events in some finite probability space. Then H (E |F) = 0 if and only if E is
an amalgamation of F .

Proof: H (E |F) = ∑
i∈I

∑
j∈J P(Ei ∩ Fj) log P(Fj)

P(Ei ∩Fj)
= 0 ⇔ for each i ∈

I, j ∈ J , P(Ei ∩ Fj) log P(Fj)

P(Ei ∩Fj)
= 0, since the terms of the sum above are

all non-negative.
If P(Fj) = 0 then P(Ei ∩ Fj) = P(Fj) for any choice of i ∈ I . Since

P(Fj) = ∑
i∈I P(Ei ∩ Fj) by Corollary 2.2.8, if P(Fj) > 0 then P(Ei ∩ Fj) >

0 for some i ∈ I , and then P(Ei ∩ Fj) log
P(Fj)

P(Ei ∩Fj)
= 0 implies P(Ei ∩ Fj) =

P(Fj). Thus H (E |F) = 0 implies that E is an amalgamation of F , and the
converse is straightforward to see.

Exercises 2.3

1. Treating the sets of outcomes as systems of events, write out the entropies
of each of S1, . . . ,S4 in Exercise 2.2.1.

2. In the experiment of n independent Bernoulli trials with probability p of
success on each trial, let Ek = “exactly k successes,” and E = [E0, . . . , En].
Let S = {S, F}n , and treat S as a system of events (i.e., each element of S,

© 2003 by CRC Press LLC

2.4 Information and entropy 43

regarded as an outcome of the experiment, is also to be thought of as an
event). Write out both H (E) and H (S).

3. For a system E of events, show that I (E,E) = H (E).

4. (a) Show that, if x1, . . . ,xn ≥ 0, then(n∑
i=1

xi

)
log

(n∑
i=1

xi

)
≥

n∑
i=1

xi log xi .

(b) Show that if Ê is obtained from E by amalgamation, then H (Ê) ≤
H (E).

5. Suppose that E = [Ei; i ∈ I] and F = [Fj ; j ∈ J] are systems of events in
some finite probability space. Under what conditions on E and F will it be
the case that H (E | F) = H (E)? [See Theorem 2.4.4, next section.]

6. Suppose that E and F are systems of events in probability spaces associ-
ated with two (different) experiments. Suppose that the two experiments
are performed independently, and the set of outcomes of the compound
experiment is identified with S1 ×S2, where S1 and S2 are the sets of out-
comes for the two experiments separately. Let

E ·F = [E × F; E ∈ E, F ∈ F].
Verify that E ·F is a system of events in the space of the compound exper-
iment.

Show that H (E ·F) = H (E)+ H (F). Will this result hold (necessarily) if
the two experiments are not independent?

2.4 Information and entropy

Throughout this section, E and F will be systems of events in some finite prob-
ability space.

2.4.1 Theorem I (E,F) = H (E)+ H (F)− H(E∧F).

Proof:

I (E,F) =
∑

i

∑
j

P(Ei ∩ Fj) log
P(Ei ∩ Fj)

P(Ei)P(Fj)

=
∑

i

∑
j

P(Ei ∩ Fj) log P(Ei ∩ Fj)

−
∑

i

∑
j

P(Ei ∩ Fj) log P(Ei)−
∑

i

∑
j

P(Ei ∩ Fj) log P(Fj)

© 2003 by CRC Press LLC

44 2 Information and Entropy

= −H (E∧F)−
∑

i

P(Ei) log P(Ei)

−
∑

j

P(Fj) log P(Fj) [using Corollary 2.2.8]

= −H (E∧F)+ H (E)+ H (F).

2.4.2 Corollary I (E,F) ≤ H (E)+ H (F).

2.4.3 Corollary H (E∧F) ≤ H (E)+ H (F), with equality if and only if E and
F are statistically independent.

2.4.4 Theorem H (E | F) = H (E∧F)− H (F) = H (E)− I (E,F).

2.4.5 Corollary H (E | F) ≤ H (E), with equality if and only if E and F are
statistically independent.

2.4.6 Corollary I (E,F) ≤ min(H (E), H (F)).

Proof: It will suffice to see that I (E,F) ≤ H (E). This follows from Theorem
2.4.4 and the observation that H (E | F) ≥ 0.

Notice that Corollary 2.4.6 is much stronger than Corollary 2.4.2.

Exercises 2.4

1–4. Prove 2.4.2, 2.4.3, 2.4.4, and 2.4.5, above.

5. From 2.4.1 and 2.3.4 deduce necessary and sufficient conditions on E and
F for I (E,F) = H (E)+ H (F).

6. Express H (E∧E) and H (E | E) as simply as possible.

7. Three urns, A, B , and C , contain colored balls, as follows:

A contains three red and five green balls,
B contains one red and two green balls, and
C contains seven red and six green balls.

An urn is chosen, at random, and then a ball is drawn from that urn. Let the
urn names also stand for the event that that urn was chosen, and let R = “a
red ball was chosen,” and G = “a green ball was chosen.” Let E = {A, B,C}
and F = {R,G}. Write out I (E,F), H (E), H (F), H (E ∧F), H (E | F),
and H (F | E). If, at any stage, you can express whatever you are trying to
express in terms of items already written out, do so.

8. Regarding Corollary 2.4.6: under what conditions on E and F is it in the
case that I (E,F) = H (E)?

9. With the urns of problem 7 above, we play a new game. First draw a ball
from urn A; if it is red, draw a ball from urn B; if the ball from urn A
is green, draw a ball from urn C . Let E and F be the first and second

© 2003 by CRC Press LLC

2.4 Information and entropy 45

stage systems of events for this two-stage experiment; i.e., E = [R,G] and
F = [R̃, G̃], where, for instance, R = “the first ball drawn was red” and
R̃ = “the second ball drawn was red.”

(a) Write out I (E,F), H (E), H (F), H (E ∧F), H (E | F), and H (F | E)

in this new situation.

(b) Suppose now that you are allowed to transfer balls between urns B
and C . How would you rearrange the balls in those urns to maximize
I (E,F)? What is that maximum value?

(c) How would you rearrange the balls in urns B and C to minimize
I (E,F)? What is that minimum value?

(d) Answer the same questions in (b) and (c) with I (E,F) replaced by
H (E | F).

(e) Under which of the rearrangements you produced in (b), (c), and (d) is
E an amalgamation of F? Under which is F an amalgamation of E?
Under which are E and F statistically independent?

© 2003 by CRC Press LLC

Chapter 3

Channels and Channel Capacity

3.1 Discrete memoryless channels

A channel is a communication device with two ends, an input end, or trans-
mitter, and an output end, or receiver. A discrete channel accepts for trans-
mission the characters of some finite alphabet A = {a1, . . . ,an}, the input al-
phabet, and delivers characters of an output alphabet B = {b1, . . . ,bk} to the
receiver. Every time an input character is accepted for transmission, an output
character subsequently arrives at the receiver. That is, we do not encompass
situations in which the channel responds to an input character by delivering
several output characters, or no output. Such situations may be defined out of
existence: once the input alphabet and the channel are fixed, the output alpha-
bet is defined to consist of all possible outputs that may result from an input.
For instance, suppose A = {0,1}, the binary alphabet, and suppose that it is
known that the channel is rickety, and may fuzz the input digit so that the re-
ceiver cannot tell which digit, 0 or 1, is being received, or may stutter and
deliver two digits, either of which might be fuzzed, upon the transmission of
a single digit. Then, with ∗ standing for “fuzzy digit,” we are forced to take
B = {0,1,∗,00,01,10,11,0∗,1∗,∗0,∗1,∗∗}.

For a finite alphabet A, we let, as convention dictates,

A� = the Cartesian product of A with itself � times

= the set of words of length �, over A.

Further, let

A+ =
∞⋃

�=1

A� = the set of all (non-empty) words over A.

Note that if A is the input alphabet of a channel, then any finite non-empty
subset of A+ could be taken as the input alphabet of the same channel. Chang-
ing the input alphabet in this way will necessitate a change in the output al-
phabet. For instance, if A = {0,1}, and the corresponding output alphabet is
B = {0,1,∗}, then if we take Â = {00,11}, the new output alphabet will be

B̂ = {00,01,0∗,10,11,1∗,∗0,∗1,∗∗}.

47

© 2003 by CRC Press LLC

48 3 Channels and Channel Capacity

It is possible to vary the output alphabet by merging or amalgamating let-
ters; for instance, if B = {0,1,∗,x}, we could take B̃ = {0,1,α}, with α mean-
ing “either ∗ or x .” This might be a shrewd simplification if, for instance, the
original letters ∗ and x are different sorts of error indicators, and the distinction
is of no importance.

Another common method of simplifying the output alphabet involves mod-
ifying the channel by “adding a coin flip.” For instance, if B = {0,1,∗} and you
really do not want to bother with ∗, you can flip a coin whenever ∗ is received
to decide if it will be read as 0 or 1. The coin need not be fair. The same idea
can be used to shrink B from any finite size down to any smaller size of 2 or
more. The details of the process depend on the particular situation; they are left
to the ingenuity of the engineer. See Exercise 3.2.6.

It may be that there are fundamental input and output alphabets forced upon
us by the physical nature of the channel; or, as in the case of the telegraph, for
which the time-hallowed input and output alphabet is {dot, dash} (or, as Shan-
non [65] has it, {dot, dash, short pause (between letters), long pause (between
words)}), it may be that some fundamental input alphabet is strongly recom-
mended, although not forced, by the physical nature of the channel. In the most
widespread class of examples, the binary channels, the input alphabet has size
2, and we usually identify the input characters with 0 and 1. Note that, for
any channel that accepts at least two input characters, we can always confine
ourselves to two input characters, and thus make the channel binary.

The telegraph provides a historically fundamental example of a channel; it
is a somewhat uninteresting, or misleading, example for the student of infor-
mation theory, because it is so reliable. Over the telegraph, if a “dot” is trans-
mitted, then a “dot” is received (unless the lines are down), and the same goes
for “dash.” What makes life interesting in modern times is “channel noise”;
you cannot be dead certain what the output will be for a given input. Modern
channels run from outer space, to the ocean floor, to downtown Cleveland—a
lot can go wrong. Specks of dust momentarily lodge in the receiver, birds fly
up in front of the transmitter, a storm briefly disrupts the local electromagnetic
environment—it’s a wonder that successful communication ever takes place.

We take account of the uncertainty of communication by regarding the at-
tempt to transmit a single digit as a probabilistic experiment. Before we become
thoroughly engaged in working out the consequences of this view, it is time to
announce a blanket assumption that will be in force from here on in this text:
our channels will all be memoryless. This means that the likelihood of b j being
the output when ai is the input does not vary with local conditions, nor with re-
cent history, for each i and j . These unvarying likelihoods are called transition
probabilities and will be discussed in the next section.

Please note that this assumption may well be invalid in a real situation. For
instance, when you hear a “skip” from a record on a turntable,1 your estimate

1If you are unacquainted with “records” and “turntables,” ask the nearest elderly person about
them.

© 2003 by CRC Press LLC

3.1 Discrete memoryless channels 49

of the probability of a skip in the near future changes drastically. You now es-
timate that there is a great likelihood of another skip soon, because experience
tells you that these skips occur for an underlying reason, usually a piece of fluff
or lint caught on the phonograph needle. Just so, in a great many situations
wobbles and glitches in the communication occur for some underlying reason
that will not go away for a while, and the assumption of memorylessness is
rendered invalid. What can you do in such situations? There is a good deal of
theory and practice available on the subject of correcting burst errors, as they are
called in some parts. This theory and practice will not, however, be part of this
course. We are calling your attention to the phenomenon of burst errors, and
to the indefensibility of our blanket assumption of memorylessness in certain
situations, just because one of the worst things you can do with mathematics
is to misapply it to situations outside the umbrella of assumption. Probabilis-
tic assumptions about randomness and independence are very tricky, and the
assumption of memorylessness of a channel is one such.

This is not the place to go into detail, but let us assure you that you can
misapply a result about randomly occurring phenomena (such as the glitches,
skips, and wobbles in transmissions over our memoryless channels are assumed
to be) to “show,” in a dignified, sincere manner, that the probability that the
sun will not rise tomorrow is a little greater than 1/3. The moral is that you
should stare and ponder a bit, to see if your mathematics applies to the situation
at hand, and if it doesn’t, don’t try to force it.

Exercises 3.1

1. (a) Suppose A = {0,1} and B = {0,1,∗}; suppose we decide to use Â =
{0000,1111} as the new input alphabet, for some reason. How large
will the new output alphabet be?

(b) In general, for any input alphabet A and output alphabet B , with |B| =
k, if we take a new input alphabet Â ⊂ A�, how many elements will
the new output alphabet have? What will the new output alphabet be?

2. A certain binary channel has the binary alphabet as its output alphabet, as
well: A = B = {0,1}. This channel has a memory, albeit a very short one.
At the start of a transmission, or right after the successful transmission of
a digit, the probability of a correct transmission is p (regardless of which
digit, 0 or 1, is being transmitted); right after an error (0 input, 1 output,
or 1 input, 0 output), the probability of a correct transmission is q . (If this
situation were real, we would plausibly have 1/2 < q < p < 1.) In terms
of p and q , find

(a) the probability that the string 10001 is received, if 11101 was sent;

(b) the probability that 10111 was received, if 11101 was sent;

(c) the probability of exactly two errors in transmitting a binary word of
length 5;

© 2003 by CRC Press LLC

50 3 Channels and Channel Capacity

(d) the probability of two or fewer errors, in transmitting a binary word of
length n.

3. Another binary channel has A = B = {0,1}, and no memory; the proba-
bility of a correct transmission is p, for each digit transmitted. Find the
probabilities in problem 2, above, for this channel.

3.2 Transition probabilities and binary symmetric
channels

Now we shall begin to work out the consequences of the assumption of memo-
rylessness. Let the input alphabet be A = {a1, . . . ,an}, and the output alphabet
be B = {b1, . . . ,bk}. By the assumption of memorylessness, the probability that
b j will be received, if ai is the input character, depends only on i, j , and the
nature of the channel, not on the weather nor the recent history of the channel.
We denote this probability by qi j .

The qi j are called the transition probabilities of the channel, and the n×k
matrix Q = [qi j] is the matrix of transition probabilities. After the input and
output alphabets have been agreed upon, Q depends on the hardware, the chan-
nel itself; or, we could say that Q is a property of the channel. In principle, qi j

could be estimated by testing the channel: send ai many times and record how
often b j is received. In practice, such testing may be difficult or impossible,
and the qi j are either estimated through theoretical considerations, or remain
hypothetical. Note that

∑k
j=1 qi j = 1, for each i ; that is, the row sums of Q are

all 1.
A binary symmetric channel (BSC, for short) is a memoryless channel with

A = B = {0,1} like that described in Exercise 3.1.3; whichever digit, 0 or 1, is
being transmitted, the probability p that it will get through correctly is called
the reliability of the channel. Usually, 1/2 < p < 1, and we hope p is close to 1.
Letting 0 and 1 index the transition probabilities in the obvious way, the matrix
of transition probabilities for a binary symmetric channel with reliability p is

Q =
[

q00 q01
q10 q11

]
=

[
p 1 − p

1 − p p

]
.

The word “symmetric” in “binary symmetric channel” refers to the symmetry
of Q, or to the fact that the channel treats the digits 0 and 1 symmetrically.

Observe that sending any particular binary word of length n through a
binary symmetric channel with reliability p is an instance of n independent
Bernoulli trials, with probability p of Success on each trial (if you count a cor-
rect transmission of a digit as a Success). Thus, the probability of exactly k
errors (n − k Successes) in such a transmission is

(n
k

)
pn−k(1 − p)k, and the av-

erage or expected number of errors is n(1 − p).

© 2003 by CRC Press LLC

3.2 Transition probabilities and binary symmetric channels 51

Exercises 3.2

1. For a particular memoryless channel we have A = {0,1}, B = {0,1,∗}, and
the channel treats the input digits symmetrically; each digit has probability
p of being transmitted correctly, probability q of being switched to the
other digit, and probability r of being fuzzed, so that the output is ∗. Note
that p + q + r = 1.

(a) Give the matrix of transition probabilities, in terms of p,q , and r .
(b) In terms of n, p, and k, what is the probability of exactly k errors

(where an error is either a fuzzed digit or a switched digit) in the trans-
mission of a binary word of length n, over this channel?

(c) Suppose that ∗ is eliminated from the output alphabet by means of
coin flip, with a fair coin. Whenever ∗ is received, the coin is flipped;
if heads comes up, the ∗ is read is 0, and if tails comes up, it is read
as 1. What is the new matrix of transition probabilities? Is the channel
now binary symmetric?

(d) Suppose that ∗ is eliminated from the output alphabet by merging it
with 1. That is, whenever ∗ is received, it is read as 1 (this amounts to
a coin flip with a very unfair coin). What is the new matrix of transition
probabilities? Is the channel now binary symmetric?

2. A binary symmetric channel has reliability p.

(a) What is the minimum value of p allowable, if there is to be at least a
95% chance of no errors at all in the transmission of a binary word of
length 15?

(b) Give the inequality that p must satisfy if there is to be at least a 95%
chance of no more than one error in the transmission of a binary word
of length 15. For the numerically deft and/or curious: is the minimum
value of p satisfying this requirement significantly less than the mini-
mum p satisfying the more stringent requirement in part (a)?

(c) What is the minimum value of p allowable if the average number of
errors in transmitting binary words of length 15 is to be no greater than
1/2?

3. A = B = {0,1}, and the channel is memoryless, but is not a binary symmet-
ric channel because it treats 0 and 1 differently. The probability is p0 that
0 will be transmitted correctly, and p1 that 1 will be transmitted correctly.

In terms of p0 and p1, find the probabilities described in Exercise 3.1.2 (a)
and (b). Also, if a binary word of length n has z zeros and n − z ones, with
n ≥ 2, find, in terms of p0, p1,n, and z, the probability of two or fewer
errors in the transmission of the word.

4. Suppose we decide to take A2 as the new input alphabet. Then B2 will
be the new output alphabet. How will the new transition probabilities
q(i,i ′)(j, j ′) be related to the old transition probabilities qi j ?

© 2003 by CRC Press LLC

52 3 Channels and Channel Capacity

5. We have a binary symmetric channel with reliability p. We take Â = {000,

111} as the new input alphabet. Find the new output alphabet and the new
transition probabilities.

6. Here is a quite general way of modifying the output alphabet of a discrete
channel that includes the idea of “amalgamation” discussed in Section 3.1
and the idea of “amalgamation with a coin flip” broached in Exercise 3.2.1.
We may as well call this method probabilistic amalgamation. Suppose that
A = {a1, . . . ,an} and B = {b1, . . . ,bk} are the input and output alphabets,
respectively, of a discrete memoryless channel, with transition probabilities
qi j . Let B̃ = {β1, . . . ,βm}, m ≥ 2, be a new (output) alphabet, and let
u j t , j = 1, . . . ,k, t = 1, . . . ,m, be probabilities satisfying

∑m
t=1 u j t = 1

for each j = 1, . . . ,k. We make B̃ into the new output alphabet of the
channel by declaring that b j will be read as βt with probability u j t . That
is, whenever b j is the output letter, a probabilistic experiment is performed
with outcomes β1, . . . ,βm and corresponding probabilities u j1, . . . ,u jm to
determine which of the new output letters will be the output.

(a) In each of Exercises 3.2.1 (c) and (d) identify B̃ and give the matrix
U = [ut j].

(b) In general, supposing that B has been replaced by B̃ as described,
express the new matrix of transition probabilities Q̃ = [̃qit] for the new
channel with input alphabet A and output alphabet B̃ in terms of the
old matrix of transition probabilities Q and the matrix of probabilities
U = [u j t].

(c) Suppose that A = {0,1}, B = {0,1,∗}, and

Q =
[

q00 q01 q0∗
q10 q11 q1∗

]
=

[
.9 .02 .08
.05 .88 .07

]
.

Find a way to probabilistically amalgamate B to B̃ = A, so that the
resulting channel is binary symmetric, and u00 = u11 = 1. (That is, find
a 3 × 2 matrix U = [u j t] that will do the job.) Is there any other way
(i.e., possibly with u00 �= 1 or u11 �= 1) to probabilistically amalgamate
B to A to give a BSC with a greater reliability?

3.3 Input frequencies

As before, we have a memoryless channel with input alphabet A = {a1, . . . ,

an}, output alphabet B = {b1, . . . ,bk}, and transition probabilities qi j . For
i ∈ {1, . . . ,n}, let pi denote the relative frequency of transmission, or input fre-
quency, of the input character ai . In a large number of situations, it makes sense
to think of pi as the proportion of the occurrences of ai in the text (written in
input alphabetic characters) to be transmitted through the channel.

© 2003 by CRC Press LLC

3.3 Input frequencies 53

There is a bit of ambiguity here: by “the text to be transmitted” do we mean
some particular segment of input text, or a “typical” segment of input text, or
the totality of all possible input text that ever will or could be transmitted? This
is one of those ambiguities that will never be satisfactorily resolved, we think;
we shall just admit that “the input text” may mean different things on different
occasions. Whatever it means, pi is to be thought of as the (hypothetical) prob-
ability that a character selected at random from the input text will be ai . This
probability can sometimes be estimated by examining particular segments of
text. For instance, if you count the number of characters, including punctuation
marks and blanks, in this text, from the beginning of this section until the end
of this sentence, and then tally the number of occurrences of the letter ‘e’ in
the same stretch of text, you will find that ‘e’ accounts for a little less than 1/10
of all characters; its relative frequency is estimated, by this tally, to be around
0.096. You can take this as an estimate of the input frequency of the letter ‘e’
for any channel accepting the typographical characters of this text as input. This
estimate is likely to be close to the “true” input frequency of ‘e’, if such there
be, provided the text segments to be transmitted are not significantly different
in kind from the sample segment from which 0.096 was derived. On the other
hand, you might well doubt the validity of this estimate in case the text to be
transmitted were the translation of “Romeo and Juliet” into Polish.

There are situations in which there is a way to estimate the input frequen-
cies other than by inspecting a segment of input text. For instance, suppose we
are trying to transmit data by means of a binary code; each datum is represented
by a binary word, a member of {0,1}+, and the binary word is input to a binary
channel. We take A = {0,1}. Now, the input frequencies p0 and p1 of 0 and 1,
respectively, will depend on the frequencies with which the various data emerge
from the data source, and on how these are encoded as binary words. We know,
in fact we control, the latter, but the former may well be beyond our powers of
conjecture. If the probabilities of the various data emerging are known a pri-
ori, and the encoding scheme is agreed upon, then p0 and p1 can be calculated
straightforwardly (see Exercise 1 at the end of this section).

Otherwise, when the relative frequencies of the source data are not known
beforehand, it is a good working rule that different data are to be regarded as
equally likely. The justification for this rule is ignorance; since probability in
practice is an a priori assessment of likelihood, in case there is no prior knowl-
edge you may as well assess the known possibilities as equally likely.

We now return to the general case, with A = {a1, . . . ,an} and ai having
input frequency pi . Observe that

∑n
i=1 pi = 1. Also, note that the probabilities

pi have nothing to do with the channel; they depend on how we use the input
alphabet to form text. They are therefore manageable, in principle; we feel that
if we know enough about what is to be transmitted, we can make arrangements
(in the encoding of the messages to be sent) so that the input frequencies of
a1, . . . ,an are as close as desired to any prescribed values p1, . . . , pn ≥ 0 satis-
fying

∑n
i=1 pi = 1. The practical difficulties involved in approaching prescribed

© 2003 by CRC Press LLC

54 3 Channels and Channel Capacity

input frequencies are part of the next chapter’s subject. For now, we will ignore
those difficulties and consider the pi to be variables; we pretend to be able to
vary them, within the constraints that pi ≥ 0, i = 1, . . . ,n and

∑
i pi = 1. In

this respect the pi are quite different from the qi j , about which we can do noth-
ing; the transition probabilities are constant parameters, forced upon us by the
choice of channel.

We now focus on the act of attempting to transmit a single input character.
We regard this as a two-stage experiment. The first stage: selecting some ai for
transmission. The second stage: observing which b j emerges at the receiving
end of the channel. We take, as the set of outcomes,

S = {(ai ,b j); i ∈ {1, . . . ,n}, j ∈ {1, . . . ,k}},
in which (ai ,b j) is short for “ai was selected for transmission, and b j was
received.” We commit further semantic atrocities in the interest of brevity: ai

will stand for the event

{(ai ,b1), . . . , (ai ,bk)} = “ai was selected for transmission,”

as well as standing for the i th input character; similarly b j will sometimes de-
note the event “b j was received.” Readers will have to be alert to the context, in
order to divine what means what. For instance, in the sentence “P(ai) = pi ,” it
is evident that ai stands for an event, not a letter.

3.3.1 With P denoting the probability assignment to S, and noting the abbre-
viations introduced above, it seems that we are given the following:

(i) P(ai) = pi , and

(ii) P(b j | ai) = qi j , whence

(iii) P(ai ,b j) = P(ai ∩b j) = pi qi j , and

(iv) P(b j) = ∑n
t=1 pt qt j .

The probabilities P(b j) in (iv) are called the output frequencies of b j , j = 1,

. . . ,k. It is readily checked that P(b j) ≥ 0 and
∑k

j=1 P(b j) = 1.
Now, the careful and skeptical reader will, we hope, experience a shiver of

doubt in thinking all of this over. Putting aside qualms about memorylessness
and the invariability of the qi j , there is still an infelicity in the correspondence
between the “model” and “reality” in this two-stage experiment view of trans-
mission of a single character, and the problem is in the first stage. In order to
assert (i), above, we must view the process of “selecting an input character”
as similar to drawing a ball from an urn; we envision a large urn, containing
balls colored a1, . . . ,an , with proportion pi of them colored ai , i = 1, . . . ,n.
Attempting to transmit a string of input symbols means successively drawing
balls from this urn, with replacement and remixing after each draw; this is what
our “model” says we are up to.

The problem is that this does not seem much like what we actually do when
dealing with input text. If you are at some point in the text, it doesn’t seem that

© 2003 by CRC Press LLC

3.3 Input frequencies 55

the next character pops up at random from an urn; it seems that the probabilities
of the various characters appearing next in the text ought to be affected by where
we are in the text, by what has gone before. This is certainly the way it is with
natural languages; for instance, in English, ‘u’ almost always follows ‘q’ and
‘b’ rarely follows ‘z’. Thus, for the English-speaking reader, the “draw from
an urn” model of “selecting the next character for transmission” breaks down
badly, when the input text is in English.

Notice also the situation of Exercise 3.3.1. Because of the way the source
messages are encoded, it seems intuitively obvious that whenever a 0 is input,
the probability of the next letter for transmission being 0 is greater than p0, the
relative frequency of 0 in the input text. (And that is, in fact, the case. You
might verify that, after a 0, assuming we know nothing else of what has been
transmitted already, the probability that the next letter will be 0 is 17/24, while
p0 < 1/2.)

Nevertheless, we shall hold to the simplifying assumption that pi , the pro-
portion of ai ’s in the input text, is also the probability that the next letter is ai ,
at any point in the input stream. This assumption is valid if we are ignorant of
grammar and spelling in the input language; we are again, as with the transition
probabilities, in the weird position of bringing a probability into existence by
assuming ignorance. In the case of the transition probabilities, that assumption
of ignorance is usually truthful; in the present case, it is more often for con-
venience, because it is difficult to take into account what we know of the input
language. There are ways to analyze information transfer through discrete chan-
nels with account taken of grammar and/or spelling in the input language—see
Shannon’s paper [65], and the discussion in Chapter 7 of this text. We shall not
burden the reader here with that more difficult analysis, but content ourselves
with a crude but useful simplification, in this introduction to the subject.

Exercises 3.3

1. Suppose a data, or message, source gives off, from time to time, any one
of three data, or messages, M1, M2, and M3. M1 accounts for 30% of all
emanations from the source, M2 for 50%, and M3 for 20%.

These messages are to be transmitted using a binary channel. To this end,
M1 is encoded as 11111, M2 as 100001, and M3 as 1100. Find p0 and p1,
the input frequencies of 0 and 1, respectively, into the channel to be used
for this task.

[Hint: suppose that a large number N of messages are in line to be trans-
mitted, with 3N/10 of them instances of M1, N/2 of them M2, and N/5
of them M3. Count up the number of 0’s and the number of 1’s in the
corresponding input text.]

2. Same question as in Exercise 1 above, except that nothing is known about
the relative frequencies of M1, M2, and M3; apply the convention of as-
suming that M1, M2, and M3 are equally likely.

© 2003 by CRC Press LLC

56 3 Channels and Channel Capacity

3. A binary symmetric channel with reliability p is used in a particular com-
munication task for which the input frequencies of 0 and 1 are p0 = 2/3
and p1 = 1/3. Find the output frequencies of 0 and 1 in terms of p. [Hint:
apply 3.3.1(iv).]

4. Let A = {a1,a2,a3}, B = {b1,b2,b3},

Q =

.94 .04 .02

.01 .93 .06

.03 .04 .93

 ,

p1 = .4, p2 = .5, and p3 = .1. Find the output frequencies, P(b1), P(b2),
and P(b3).

5. Suppose, in using the channel of the preceding problem, there is a cost as-
sociated with each attempted transmission of a single input letter. Suppose
the (i, j)-entry of the following matrix gives the cost, to the user, of b j

being received when ai was sent, in some monetary units:

C =

 0 5 9

10 0 2
4 2 0

 .

(a) Express, in terms of p1, p2, and p3, the average cost per transmission-
of-a-single-input-letter of using this channel. Evaluate when p1 = .4,
p2 = .5, and p3 = .1.

(b) What choice of p1, p2, p3 minimizes the average cost-per-use of this
channel? Would the user be wise to aim to minimize that average cost?

3.4 Channel capacity

A, B , qi j , and the pi will be as in the preceding section. With the ai standing for
events, not characters, A = {a1, . . . ,an} is a system of events in the probability
space associated with the two-stage experiment of sending a single character
through a memoryless channel with input alphabet A and output alphabet B .
Observe that we have taken on yet another risk of misunderstanding; A will
sometimes be an alphabet, sometimes a system of events, and you must infer
which from the context. When a system of events, A, is the input system of
events, for the channel with input alphabet A. Similarly, B = {b1, . . . ,bk} will
sometimes stand for a system of events called the output system.

We are interested in communication, the transfer of information; it is rea-
sonable to suppose that we ought, therefore, to be interested in the mutual in-
formation between the input and output systems,

© 2003 by CRC Press LLC

3.4 Channel capacity 57

I (A, B) =
n∑

i=1

k∑
j=1

P(ai ∩b j) log
P(ai ∩b j)

P(ai)P(b j)

=
n∑

i=1

k∑
j=1

piqi j log
pi qi j

pi
∑n

t=1 pt qt j

=
n∑

i=1

pi

k∑
j=1

qi j log
qi j∑n

t=1 ptqt j
.

I (A, B) is a function of the variables p1, . . . , pn , the input frequencies. It would
be interesting to know the maximum value that I (A, B) can have. That maxi-
mum value is called the capacity of the channel, and any values of p1, . . . , pn

for which that value is achieved are called optimal input (or transmission) fre-
quencies for the channel. If you accept I (A, B) as an index, or measure, of the
potential effectiveness of communication attempts using this channel, then the
capacity is the fragile acme of effectiveness. This peak is achieved by optimally
adjusting the only quantities within our power to adjust, once the hardware has
been established and the input alphabet has been agreed to, namely, the input
frequencies. The main result of this section will show how to find the optimal
input frequencies (in principle). But before launching into the technical details,
let us muse a while on the meaning of what it is that we are optimizing.

3.4.1 Shannon’s interpretation of I (A, B) as rate of information transfer or
flow. Suppose that input letters are arriving at the transmitter at the rate of r
letters per second. The average information content of an input letter is H (A);
therefore, since the average of a sum is the sum of the averages, there are, on
average, r H (A) units of information per second arriving at the transmitter. The
information flow is mussed up a bit by the channel; at what average rate is
information “flowing” through the channel?

C. E. Shannon’s answer [63, 65]: at the rate r I (A, B) = r(H (A)− H (A |
B)). This answer becomes plausible if you bear down on the interpretation of
H (A | B) as a measure of the average uncertainty of the input letter, conditional
upon knowing the output letter. Shannon calls H (A | B) the “average ambiguity
of the received signal,” or “the equivocation,” and this last terminology has
taken root. Note that “the equivocation” is not dependent on the channel alone,
but also on the input frequencies. In Shannon’s interpretation, it is the amount
of information removed, on average, by the channel from the input stream, per
input letter.

The validity of this interpretation is bolstered by the role the equivocation
plays in Shannon’s Noisy Channel Theorem, which we will encounter later. For
right now, here is an elementary example due to Shannon himself.

Let the base of log be 2, so the units of information are bits. Suppose we
have a binary symmetric channel with reliability .99, and the input is streaming
into the receiver at the rate of 1000 symbols (binary digits) per second, with in-
put frequencies p0 = p1 = 1/2. These are, we shall see soon, optimal, and give

© 2003 by CRC Press LLC

58 3 Channels and Channel Capacity

I (A, B) = .99log1.98 + .01log .02 ≈ .919. By the interpretation of I (A, B)

under consideration, this says that information is flowing to the receiver at the
average rate of 1000(.919) = 919 bits per second.

You might object that, on average, 990 of the 1000 digits arriving at the
receiver each second are correct (i.e., equal to the digit transmitted), so perhaps
990 bits/second ought to be the average rate of information flow to the receiver.
Shannon points out that by that reasoning, if the reliability of the channel were
1/2, i.e., if the channel were perfectly useless, you would compute that informa-
tion flow to the receiver at 500 bits/second, on average, whereas the true rate of
information flow in this case ought to be zero. The problem is, whether p = 1/2
or p = .99, we do not know which of the 1000 p correct digits (on average, each
second) are correct; our uncertainty in this regard means that our estimate of
the rate of information flow to the receiver ought to be revised downward from
1000 p bits/sec. (Verify: p log2 2 p + (1 − p) log2 2(1 − p) < p, 1/2 ≤ p < 1.)
Why this particular revision, from 990 down to 919 bits/sec? This is where
H (A | B) = −(.01log .01 + .99log.99) ≈ .081 comes in; supposing you know
which letter, 0 or 1, is received, H (A | B) is the entropy, i.e., average uncer-
tainty, of the input letter (system), so it is a good measure of the amount of
information to be subtracted from one (the number of bits just received) due to
uncertainty about what was sent. (Convinced? Feel uncertain about something?
Well, that’s entropy, and it’s good for you, taken in moderation.)

It is preferable to speak of I (A, B) as the average information flow through
the channel, or flow to the receiver, per input letter, rather than as the average
amount of information arriving at the receiver (per input letter). The latter
might reasonably be taken to be H (B), which is, indeed, the average amount
of information contained in the set of outcomes of the probabilistic experiment
of “choosing” an input letter and then attempting to transmit it, if we were to
take B as the set of outcomes; and taking B as the set of outcomes does seem to
respond to the question of how much information is arriving at the receiver, per
input letter. But H (B) as a measure of information has no connection with how
well the channel is communicating the input stream. For instance, for a BSC
with reliability 1/2, H (B) = log2, while surely the level of communication
ought to be 0 = I (A, B).

Use of the word “flow” in this context will aid in understanding the Noisy
Channel Theorem, in Section 4.6. That theorem discloses a remarkable analogy
between information flowing through a channel and fluid flowing through a
pipe.

3.4.2 Supposing the transition probabilities qi j are known, finding the optimal
input frequencies for, and thus the capacity of, a given channel is a straightfor-
ward multi-variable optimization problem; we wish to find where I (A, B), as a
function of p1, . . . , pn, achieves its maximum on

Kn = {(p1, . . . , pn) ∈ R
n; p1, . . . pn ≥ 0 and

∑n
i=1 pi = 1}.

By convention, the terms in the sum for I (A, B) corresponding to pairs

© 2003 by CRC Press LLC

3.4 Channel capacity 59

(i, j) for which qi j = 0 do not actually appear in that sum. Note that if pt > 0,
t = 1, . . . ,n and

∑n
t=1 pt qt j = 0, then qt j = 0, t = 1, . . . ,n. It follows that

the formula for I (A, B) defines a differentiable function in the positive part
of R

n , {(p1, . . . , pn) ∈ R
n; pt > 0, t = 1, . . . ,n}. Consequently, the Lagrange

Multiplier Theorem asserts that if I (A, B) achieves a maximum on Kn in K +
n =

{(p1, . . . , pn) ∈ Kn ; pi > 0, i = 1, . . . ,n}, then the maximum is necessarily
achieved at a point where ∂

∂pk
(I (A, B)−λ

∑n
i=1 pi) = 0, k = 1, . . . ,n, for some

λ.

The main content of Theorem 3.4.3, below, is that a sort of converse of this
statement holds: if the equations arising from the Lagrange Multiplier Theorem
hold at a point (p1, . . . , pn) ∈ K +

n , then I (A, B) necessarily achieves a maxi-
mum, on Kn , at (p1, . . . , pn). The proof of this statement is a bit technical, and
is relegated to the next section, which is optional; although it is preferable that
even students of applied mathematics understand the theoretical foundations of
their subject, in this case it probably won’t overly imperil your immortal soul to
accept the result without proof.

Let us see where the Lagrange Multiplier method tells us to look for the
optimal input frequencies. Setting F(p1, . . . , pn) = I (A, B)−λ

∑n
i=1 pi , con-

sidering only points (p1, . . . , pn) where all coordinates are positive, and setting
c = log(e), we have

∂ F

∂ps
= ∂

∂ps
(I (A, B))−λ

=
k∑

j=1

qsj log
qsj∑n

t=1 ptqt j
− c

n∑
i=1

pi

k∑
j=1

qi j qs j∑n
t=1 ptqt j

−λ

=
k∑

j=1

qsj log
qsj∑n

t=1 ptqt j
− c

k∑
j=1

∑n
i=1 pi qi j∑n
t=1 pt qt j

qs j −λ

=
k∑

j=1

qsj log
qsj∑n

t=1 ptqt j
− c

k∑
j=1

qsj −λ

=
k∑

j=1

qsj log
qsj∑n

t=1 ptqt j
− (c +λ).

Replacing c+λ by C , and setting the partial derivative equal to 0, we obtain the
capacity equations for the channel.

3.4.3 Theorem Suppose a memoryless channel has input alphabet A = {a1,

. . . ,an}, output alphabet B = {b1, . . . ,bk}, and transition probabilities qi j , i ∈
{1, . . . ,n}, j ∈ {1, . . . ,k}. There are optimal input frequencies for this chan-
nel. If p1, . . . , pn are positive real numbers, then p1, . . . , pn are optimal input
frequencies for this channel if and only if p1, . . . , pn satisfy the following, for

© 2003 by CRC Press LLC

60 3 Channels and Channel Capacity

some value of C:
n∑

i=1

pi = 1 and
k∑

j=1

qsj log
qsj∑n

t=1 pt qt j
= C, s = 1, . . . ,n.

Furthermore, if p1, . . . , pn are optimal input frequencies satisfying these equa-
tions, for some value of C , then C is the channel capacity.

This theorem may seem, at first glance, to be saying that all you have to do
to find the capacity of a channel and the optimal input frequencies is to solve
the capacity equations of the channel, the equations arising from the Lagrange
Multiplier Theorem, and the condition

∑n
i=1 pi = 1, for p1, . . . , pn > 0. There

is a loophole, however, a possibility that slips through a crack in the wording
of the theorem: it is possible that the capacity equations have no solution. See
problems 9 and 14 at the end of this section. Note that in problem 9, it is not
just that the equations have no solution (p1, . . . , pn) with all the pi positive; the
equations have no solution, period.

From Theorem 3.4.3 you can infer that this unpleasant phenomenon, the ca-
pacity equations having no solution, occurs only when the capacity is achieved
at points (p1, . . . , pn) ∈ Kn with one or more of the pi equal to zero. If pi = 0,
then ai is never used; we have thrown away an input character; we are not using
all the tricks at our disposal. Problems 9 and 14 show that it can, indeed, happen
that there are input characters that we are better off without. Note, however, the
result of problem 10, in which the channel quite severely mangles and bullies
one of the input letters, an , while maintaining seamlessly perfect respect of the
others; yet, in the optimal input frequencies, pn is positive, which shows that
we are better off using an than leaving it out, in spite of how terribly the chan-
nel treats it (provided we accept I (A, B) as a measure of how well off we are).
In this respect, note also the results of exercise problems 2, 6 (a special case
of problem 10 when p = 1/2), and 7. The practical moral to be drawn from
these examples seems to be that if the channel respects an input character even
a little bit, if you occasionally get some information from the output (upon in-
putting this character) about the input, then you are better off with the character
than without it. The surprising result of Exercise 14 obliterates this tentative
conclusion, and shows that we may be in the presence of a mystery.

How will we know when we are in the rare necessity of banishing one or
more input characters, and what do we do about determining the optimal input
frequencies in such cases? According to Theorem 3.4.3, we are in such a case
when and only when the capacity equations of the channel have no solution in
K +

n . In such a situation, the n-tuple (p1, . . . , pn) of optimal input frequencies
lies on one of the faces of Kn , FR = {(p1, . . . , pn) ∈ Kn; pi > 0 for i ∈ R and
pi = 0 for i /∈ R}, where R is a proper subset of {1, . . . ,n}. For such an R, let
AR = {ai ∈ A; i ∈ R}, the input alphabet obtained by deleting the ai indexed by
indices not in R. Finding (p1, . . . , pn) on FR amounts to solving the channel
capacity problem with A replaced by AR; if (p1, . . . , pn) ∈ FR is the n-tuple of
optimal input frequencies, then the non-zero pi , those indexed by i ∈ R, will

© 2003 by CRC Press LLC

3.4 Channel capacity 61

satisfy the capacity equations associated with this modified problem. (These
equations are obtainable from the original capacity equations by omitting those
pi and qi j with i /∈ R.)

Thus, if the capacity equations for the channel have no solution (p1, . . . , pn)

with pi > 0, i = 1, . . . ,n, we need merely solve the 2n − n − 2 systems of
capacity equations associated with the AR , for R satisfying 2 ≤ |R| ≤ n − 1.
It is a consequence of Theorem 3.4.3 that we may first consider all AR with
|R| = n −1, and from among the various solutions select one for which the cor-
responding capacity is maximal. If there are no solutions, move on to AR with
|R| = n −2, and so on. All of this is straightforward, but it is also a great deal of
trouble; we hope that in most real situations the optimal input frequencies will
be all positive.

3.4.4 As mentioned above, the proof of the main assertion of 3.4.3 is postponed
until the next section, the last of this chapter. However, we can give the proof of
the last assertion here. If p1, . . . , pn satisfy the equations above, then the value
of I (A, B) at (p1, . . . , pn) is

I (A, B) =
n∑

i=1

pi

k∑
j=1

qi j log
qi j∑n

t=1 pt qt j
= C

n∑
i=1

pi = C.

To remember the capacity equations, other than
∑n

i=1 pi = 1, it is helpful
to remember that the left-hand side of

k∑
j=1

qsj log
qsj∑n

t=1 pt qt j
= C

is the thing multiplying ps in the formula for

I (A, B) =
n∑

i=1

pi

k∑
j=1

qi j log
qi j∑n

t=1 pt qt j
.

3.4.5 The capacity of a binary symmetric channel. Suppose a binary symmetric
channel has reliability p. Let p0, p1 denote the input frequencies of 0 and 1,
respectively. The capacity equations are:

(1) p0 + p1 = 1,

(2) p log
p

p0 p + p1(1 − p)
+ (1 − p) log

1 − p

p0(1 − p)+ p1 p
= C , and

(3) (1 − p) log
1 − p

p0 p + p1(1 − p)
+ p log

p

p0(1 − p)+ p1 p
= C .

Setting the left-hand sides of (2) and (3) equal, and canceling p log p and (1 −
p) log(1 − p), we obtain

p log(p0 p + p1(1 − p))+ (1 − p) log(p0(1 − p)+ p1 p)

= (1 − p) log(p0 p + p1(1 − p))+ p log(p0(1 − p)+ p1 p),

© 2003 by CRC Press LLC

62 3 Channels and Channel Capacity

whence

(2 p − 1) log(p0 p + p1(1 − p)) = (2 p − 1) log(p0(1 − p)+ p1 p),

so either p = 1/2 or

p0 p + p1(1 − p) = p0(1 − p)+ p1 p,

i.e.,

(2 p − 1)p0 = (2 p − 1)p1,

so p0 = p1 = 1/2 (in view of (1)) if p �= 1/2, and the channel capacity is
C = p log2 p + (1 − p) log2(1 − p), obtainable by plugging p0 = p1 = 1/2
into either (2) or (3) above.

If p = 1/2, then, since

p

p0 p + p1(1 − p)
= 1 − p

p0(1 − p)+ p1 p
= 1

for all values of p0, p1 satisfying p0 + p1 = 1, in this case, we have I (A, B) = 0
for all values of p0, p1. This is as it should be, since when p = 1/2, sending
a digit through this channel is like flipping a fair coin. We learn nothing about
the input by examining the output, the input and output systems are statistically
independent, the channel is worthless for communication.

Note that it is not obvious, a priori, that p log2 p + (1 − p) log2(1 − p) is
positive for all values of p ∈ [0,1] \ {1/2}, but that this is the case follows from
Theorem 2.2.13.

The foregoing shows that when p �= 1/2, p0, p1 = 1/2 are the unique opti-
mal input frequencies of a binary symmetric channel of reliability p. If we had
wished only to verify that p0 = p1 = 1/2 are optimal—i.e., if the uniqueness is
of no interest—then we could have saved ourselves some trouble, and found the
capacity, by simply noting that p0 = p1 = 1/2 satisfy (1) and make the left-hand
sides of (2) and (3) equal. The optimality of p0 = p1 = 1/2, and the expression
for C , then follow from Theorem 3.4.3. For a generalization of this observation,
see 3.4.7, below.

3.4.6 Here are two questions of possible practical importance that are related,
and to which the answers we have are incomplete:

(i) When (under what conditions on Q) are the optimal input frequencies of
a channel unique?

(ii) Do the optimal input frequencies of a channel depend continuously on
the transition probabilities of the channel?

Regarding (i), the only instances we know of when the optimal input fre-
quencies are not unique are when the capacity of the channel is zero. (Certainly,
in this case, any input frequencies will be optimal; but the remarkable thing is
that it is only in this case that we have encountered non-unique optimal input
frequencies.) We hesitantly conjecture that if the channel capacity is non-zero,

© 2003 by CRC Press LLC

3.4 Channel capacity 63

then the optimal input frequencies are unique. For those interested, perhaps the
proof in Section 3.5 will reward study.

Regarding (ii), there is a body of knowledge related to the Implicit Func-
tion Theorem in the calculus of functions of several variables that provides an
answer of sorts. Regarding the left-hand sides of the capacity equations as func-
tions of both the pi and qi j , supposing there is a solution of the equations at
positive pi , i = 1, . . . ,n, and supposing that a certain large matrix of partial
derivatives has maximum rank, then for every small wiggle of the qi j there will
be a positive solution of the new capacity equations quite close to the solution
of the original system. When will that certain large matrix of partial derivatives
fail to have maximum rank? We can’t tell you exactly, but the short answer is:
almost never. Thus, the answer to (ii) is: yes, except possibly in certain rare
pathological circumstances that we haven’t worked out yet.

Here is an example illustrating the possible implications and uses of the
continuous dependence of the optimal input frequencies on the transition prob-
abilities. Suppose that A = {0,1}, B = {0,1,∗}, and

Q =
[

q00 q01 q0∗
q10 q11 q1∗

]
=

[
.93 .02 .05
.01 .95 .04

]
.

Then Q is “close” to Q̃ =
[

1 0 0
0 1 0

]
which is the matrix of transition proba-

bilities of a BSC. (For the channel associated with Q̃, ∗ has been removed as an
output letter.) Therefore the optimal input frequencies of the original channel
are “close” to p0 = p1 = 1/2 – and the channel capacity is “close” to log 2.
Caution: there is a risk involved in rough estimation of this sort. For instance,
would you say that the matrix of transition probabilities in Exercise 3.4.14 is

“close” to

1/2 1/4 1/4

1/4 1/2 1/4
1/4 1/4 1/2

? If you are in a reckless mood, you might well

do so, yet the optimal input frequencies for the channel with the latter matrix of
transition probabilities are 1/3,1/3,1/3 (this will be shown below), while the
optimal input frequencies for the channel of problem 14 are 1/2,0,1/2. Dis-
concerting discrepancies of this sort should chasten our fudging and make us
appreciate numerical error analysis of functions of several variables. But we
will pursue this matter no further in this text.

3.4.7 n-ary symmetric channels An n-ary symmetric channel of reliability p
is a discrete memoryless channel with

A = B and Q =

p 1−p
n−1

. . .
1−p
n−1 p

 ;

that is, the main diagonal entries of Q are all the same (namely, p), and the
off-diagonal entries of Q are all the same. (Their common value will have to be
1−p
n−1 if the row sums are to be 1.)

© 2003 by CRC Press LLC

64 3 Channels and Channel Capacity

It is straightforward to verify that p1 = ·· · = pn = 1/n satisfy the capacity
equations of such a channel, with

C =p lognp + (1 − p) log
n(1 − p)

n − 1

= logn + (p log p + (1 − p) log
1 − p

n − 1
),

so by Theorem 3.4.3, (1/n, . . . ,1/n) are optimal input frequencies for the chan-
nel and the capacity is C , above. These optimal input frequencies and this ca-
pacity are also discoverable by the method explained in the exercise section,
after Exercise 3.4.12, and this method has the advantage that by it and the ap-
plication of a little linear algebra theory, it can easily be seen that pi = 1/n,
i = 1, . . . ,n are unique optimal input frequencies except in the case p = 1/n,
which is precisely the case C = 0.

Exercises 3.4

1. Verify directly that f (p) = p log2 p+(1− p) log2(1− p) achieves its max-
imum, log2, on [0,1] at the endpoints, 0 and 1, and its minimum, 0, at 1/2.

2. Verify that the value of I (A, B) at the extreme points {(1,0, . . . ,0),(0,1,0,

. . . ,0), . . . , (0, . . . ,0,1)} of Kn is zero.

3. Suppose A = B = {0,1}, but the channel is not symmetric; suppose a trans-
mitted 0 has probability p of being received as 0, and a transmitted 1 has
probability q of being received as 1. Let p0 and p1 denote the input fre-
quencies. In terms of p, q , p0, and p1, write I (A, B), and give the capacity
equations for this channel.

4. Give I (A, B) and the capacity equations for the channel described in Ex-
ercise 3.3.4.

5. A = {0,1}, B = {0,1,∗}, and the channel treats the input characters sym-
metrically; for each input, 0 or 1, the probability that it will be received as
sent is p, the probability that it will be received as the other digit is q, and
the probability that it will be received as ∗ is r. Note that p + q + r = 1.

Find, in terms of p, q , and r , the capacity of this channel and the optimal
input frequencies.

6. A = B = {a,b}; a is always transmitted correctly; when b is transmitted,
the probability is p that b will be received (and, thus, 1 − p that a will be
received). Find, in terms of p, the capacity of this channel and the optimal
input frequencies. Verify that even when p = 1/2 (a condition of maximum
disrespect for the input letter b), the capacity is positive (which is greater
than the capacity would be if the letter b were discarded as an input letter—
see Exercise 2, above).

7. [Part of this exercise was lifted from [37].] A = B = {a,b,c}, a is always
transmitted correctly, and the channel behaves symmetrically with respect

© 2003 by CRC Press LLC

3.4 Channel capacity 65

to b and c. Each has probability p of being transmitted correctly, and prob-
ability 1− p of being received as the other character (c or b). (Thus, if a is
received, it is certain that a was sent.)

(a) Find the capacity of this channel, and the optimal input frequencies, as
functions of p.

(b) Suppose that c is omitted from the input alphabet (but not the output
alphabet). Find the capacity of the channel and the optimal input fre-
quencies in this new situation.

(c) Are there any values of p for which the capacity found in (b) is greater
than that in (a)? What about the case p = 1/2?

8. Suppose that A = B = {a1, . . . ,an}, and the channel is perfectly reliable:
when ai is sent, ai is certain to be received. Find the capacity of this channel
and the optimal input frequencies.

9. Suppose that A = {a1, . . . ,an+1}, B = {a1, . . . ,an}, and the channel respects
a1, . . . ,an perfectly; when ai is sent, ai is certain to be received, 1 ≤ i ≤ n.

(a) Suppose that when an+1 is sent, the output characters a1, . . . ,an are
equally likely to be received. Show that the capacity equations for the
channel have no solution in this case. Find the optimal input frequen-
cies and the capacity of this channel.

(b) Are there any transition probabilities qn+1, j , j = 1, . . . ,n, for which
there are optimal input frequencies p1, . . . , pn+1 for this channel with
pn+1 > 0? If so, find them, and find the corresponding optimal input
frequencies and the channel capacity.

10. Suppose that n ≥ 2, A = {a1, . . . ,an} = B , and the channel respects a1, . . . ,

an−1 perfectly. Suppose that, when an is sent, the output characters a1, . . . ,

an are equally likely to be received. Find the optimal input frequencies and
the capacity of this channel.

11. We have a binary symmetric channel with reliability p, but we take A =
{000,111}. Let the input frequencies be denoted p0 and p1. In terms of
p, p0, and p1, write the mutual information between inputs and outputs,
and the capacity equations of this channel. Assuming that p0 = p1 = 1/2
are the optimal input frequencies, write the capacity of this channel as a
function of p.

12. (a) Show that I (A, B) ≤ H (A). (This is a special case of a result in Sec-
tion 2.4.)

(b) Show that I (A, B) = H (A) if and only if for each letter b j received,
there is exactly one input letter ai such that P(ai | b j) = 1 (so P(ak |
b j) = 0 for k �= i). [Hint: recall that H (A | B) = H (A)− I (A, B); use
Theorem 2.3.5 or its proof.] In other words, I (A, B) = H (A) if and
only if the input is determinable with certainty from the output. In yet

© 2003 by CRC Press LLC

66 3 Channels and Channel Capacity

other words, I (A, B) = H (A) if and only if the input system of events
is an amalgamation of the output system.

For exercises 13–15, we are indebted to Luc Teirlinck, who observed that

I (A, B) = H (B)− H (B | A),

so that if

−H (B | A) =
∑

i

pi

∑
j

qi j logqi j [verify!]

does not depend on p1, . . . , pn , as it will not if the sums Si = ∑
j qi j logqi j

are all the same, i = 1, . . . ,n, then I (A, B) is maximized when H (B) is. The
obvious way to maximize H (B) is to “make” P(b j) = ∑n

t=1 pt qt j equal to
1/k, j = 1, . . . ,k. Thus, in these cases, the optimal input frequencies p1, . . . , pn

might be found by solving the linear system

p1 +·· ·+ pn = 1
n∑

t=1

pt qt j = 1/k, j = 1, . . . ,k.

[The first equation is redundant: to see this, sum the r equations just above over
j .] This method is not certain to succeed because the solutions of this linear
system may fail to be non-negative, or may fail to exist.

Notice that the sums Si will be all the same if each row of Q is a rearrange-
ment of the first row.

13. Find the optimal input frequencies when

Q =

2/3 0 1/3

1/3 2/3 0
0 1/3 2/3

 .

Also, find the capacity of the channel.

14. Find the optimal input frequencies and the channel capacity, when

Q =

1/2 1/3 1/6

1/6 1/2 1/3
1/6 1/3 1/2

 .

15. Suppose that n ≥ 3, 0 ≤ p ≤ 1, and

Q =

p 0 . . . 0 1− p
0 p . . . 0 1− p
...

...
. . .

...
...

0 0 . . . p 1− p
1− p 0 . . . 0 p

 .

© 2003 by CRC Press LLC

3.5* Proof of Theorem 3.4.3, on the capacity equations 67

(a) For which values of p does the method of solving a linear system give
the optimal input frequencies for this channel?

*(b) What are the optimal input frequencies and the channel capacity, in
terms of p, in all cases?

Exercises 14 and 15 are instructive for those interested in the problem of
getting conditions on Q under which the optimal input frequencies are
unique and positive.

*16. Suppose a channel has input alphabet A, output alphabet B, and capacity C.
Suppose we take Ak as the new input alphabet. Show that the new capacity
is kC . (This result is a theorem in [81]. You may find the results of 2.4
helpful, as well as the result of exercise 2.3.6.)

3.5* Proof of Theorem 3.4.3, on the capacity equations

By the remarks of the preceding section, what remains to be shown is that (i)
I (A, B) does achieve a maximum on Kn and (ii) if the capacity equations are
satisfied, for some C , by some p1, . . . , pn > 0, then p1, . . . , pn are optimal input
frequencies for the channel.

Since Kn is closed and bounded, to prove (i) it suffices to show that I (A, B)

is continuous on Kn . This may seem trivial, since I (A, B) appears to be given
by a formula involving only linear functions of p1, . . . , pn and log, but please
note that this formula is valid at points (p1, . . . , pn) ∈ Kn \ K +

n only by conven-
tion; there is trouble when one or more of the pi is zero. Still, the verification
that I (A, B) is continuous at such points is straightforward, and is left to the
reader to sort out. Keep in mind that x log x → 0 as x → 0+. See problem 1 at
the end of this section.

A real-valued function f defined on a convex subset K of R
n is said to be

concave if

f (tu + (1 − t)v) ≥ t f (u)+ (1 − t) f (v) for all u,v ∈ K , t ∈ [0,1].
If strict inequality holds whenever u �= v and t ∈ (0,1), we will say that f is
strictly concave.

We shall now list some facts about concave functions to be used to finish
the proof of Theorem 3.4.3. Proofs of these facts are omitted. It is recom-
mended that the reader try to supply the proofs. Notice that 3.5.3 and 3.5.4,
taken together, constitute the well-known “second derivative test” for concavity
and relative maxima of functions of one variable.

3.5.1 Any sum of concave functions is concave, and if one of the summands is
strictly concave, then the sum is strictly concave. A positive constant times a
(strictly) concave function is (strictly) concave.

© 2003 by CRC Press LLC

68 3 Channels and Channel Capacity

3.5.2 Any linear function is concave, and the composition of a linear function
with a concave function of one variable is concave.

3.5.3 If I ⊆ R is an interval, f : I → R is continuous, and f ′′ ≤ 0 on the interior
of I , then f is concave on I . If f ′′ < 0 on the interior of I , then f is strictly
concave on I .

3.5.4 If I ⊆ R is an interval, f : I → R is concave on I , and f ′(x0) = 0 for
some x0 ∈ I , then f achieves a maximum on I at x0. If f is strictly concave on
I and f ′(x0) = 0, then f achieves a maximum on I only at x0.

Now we are ready to finish the proof of Theorem 3.4.3. Let

f (x) =
{−x log x, x > 0

0, x = 0.

By 3.5.3, f is strictly concave on [0,∞). Now,

I (A, B) =
n∑

i=1

pi
(k∑

j=1

qi j logqi j
)−

k∑
j=1

(n∑
i=1

piqi j
)

log
(n∑

t=1

ptqt j
)

=
n∑

i=1

(k∑
j=1

qi j logqi j
)

pi +
k∑

j=1

f
(n∑

i=1

pi qi j
)
,

so by 3.5.1 and 3.5.2, I (A, B) is a concave function on Kn . It is evident that
Kn is convex.

If the capacity equations are satisfied, for some C , at a point (p1, . . . , pn)

with p1, . . . , pn > 0, then (p1, . . . , pn) ∈ Kn and the gradient of I (A, B) at
(p1, . . . , pn) is

∇ I (A, B)
∣∣
(p1,...,pn)

= (C − loge,C − loge, . . . ,C − loge).

That is, the gradient of I (A, B) at (p1, . . . , pn) is a scalar multiple of (1, . . . ,1),
which is normal to the hyperplane with equation x1 + ·· · + xn = 1, in R

n , of
which Kn is a fragment. It follows that the directional derivative of I (A, B), at
(p1, . . . , pn), in any direction parallel to this hyperplane, is zero. It follows that
the function of one variable obtained by restricting I (A, B) to any line segment
in Kn through (p1, . . . , pn) will have derivative zero at the value of the one vari-
able corresponding to the point (p1, . . . , pn). It follows that I (A, B) achieves
its maximum on each such line segment at (p1, . . . , pn), by 3.5.4. Therefore,
I (A, B) achieves its maximum on Kn at (p1, . . . , pn).

Exercises 3.5

1. Suppose that (p̃1, . . . , p̃n−1,0) ∈ Kn , and p̃1, . . . , p̃n−1 > 0. Show that

I (A, B)
∣∣
(p1,...,pn)

→ I (A, B)
∣∣
(p̃1,..., p̃n−1,0)

© 2003 by CRC Press LLC

3.5* Proof of Theorem 3.4.3, on the capacity equations 69

as (p1, . . . , pn) → (p̃1, . . . , p̃n−1,0), with (p1, . . . , pn) ∈ Kn . [You may
assume that, for each j ∈ {1, . . . ,k}, qi j > 0 for some i ∈ {1, . . . ,n}. (In-
terpretation?) You may as well inspect the functions fi j (p1, . . . , pn) =
piqi j log(

∑n
t=1 ptqt j). No problem when qi j = 0, and no problem when

1 ≤ i ≤ n − 1. When i = n, you will need to consider two cases: qi j =
·· · = qn−1, j = 0, and otherwise.]

∗2. Under what conditions on the transition probabilities is I (A, B) strictly
concave on Kn?

3. Prove the statements in 3.5.1 and 3.5.2.

© 2003 by CRC Press LLC

Chapter 4

Coding Theory

4.1 Encoding and decoding

The situation is this: we have a source alphabet S = {s1, . . . ,sm } and a code
alphabet A = {a1, . . . ,an}, which is also the input alphabet of some channel.
We would like to transmit text written in the source alphabet, but our channel
accepts only code alphabetic characters. Therefore, we aim to associate a code
alphabet word to represent each source alphabet word that we might wish to
send.

In many real situations, it is not really necessary to represent each member
of S+, the set of all source words, by a code word, a member of A+. For
instance, if the source text is a chunk of ordinary English prose, we can be
reasonably certain that we will not have to transmit nonsense words like “zrdfle”
or “cccm.” However, it does not seem that there is any great advantage to be had
by omitting part of S+ from consideration, and there is some disadvantage—the
discussion gets complicated, quarrels break out, anxieties flourish.

Definitions An encoding function is a function φ : S+ → A+. We say that such
a function defines, or determines, a code. The code determined by φ is said to
be unambiguous if and only if φ is one-to-one (injective). Otherwise, the code
is ambiguous.

A valid decoder-recognizer (VDR) for the code determined by φ is an al-
gorithm which accepts as input any w ∈ A+, and produces as output either the
message “does not represent a source word” if, indeed, w is not in the range of
φ, or, if w ∈ ranφ, some v ∈ S+ such that φ(v) = w.

The code determined by φ is uniquely decodable if and only if it is unam-
biguous and there exists a VDR for it.

Some remarks are in order.

4.1.1 Note that the definitions above do not really say what a code is. It is
something determined by an encoding function, but what? It might be more
satisfying logically to identify the code with the encoding function which deter-
mines it, but, unfortunately, that would lead to syntactic constructions that clash

71

© 2003 by CRC Press LLC

72 4 Coding Theory

with common usage. The definition above stands without apology, but the uses
of the word “code” may increase in the future.

4.1.2 A VDR is, as its name indicates, an algorithm that either correctly de-
codes a code word, or correctly recognizes that the code word cannot be de-
coded.

We shall be quite informal about describing VDRs, and extremely cavalier
about proving that a given algorithm is a VDR for a given code. For instance,
suppose that S = A = {0,1}, and that φ is described by: φ doubles each 0 and
leaves 1 as is. [Thus, for instance, φ(1010) = 100100.] Then the following
describes a VDR for this code: given v ∈ {0,1}+, scan v, and if any maximal
block of consecutive 0’s of odd length is found in v, report “does not represent a
source word”; otherwise, halve each maximal block of consecutive 0’s in v, and
output the resulting word w. We leave it to the reader to divine what is meant
by “maximal block of consecutive 0’s.”

The point is that we do not make a fuss about how you scan or how you
find a maximal block of consecutive 0’s in v and determine its length. Any
implementation of the algorithm described would have to handle these and other
matters, but the details are not our concern here. Also, it is possible to prove
formally that this algorithm is a VDR for the given code, and that the code is
uniquely decodable, but a bit of thought will convince anybody that these things
are true, so that writing out formal proofs becomes an empty exercise, as well as
being no fun. It can be of practical value to attempt proofs of algorithm validity
and unique decodability, especially when these matters are in doubt, but we
shall not be at all conscientious about such proofs.

4.1.3 In modern naive set theory, it is proven that for any non-empty S and A,
there are uncountably many injective functions from S+ into A+. The codes
determined by two different such functions cannot have the same VDR. It is
also proven that there are but countably many algorithms expressible in any
natural language. It follows that there are quite a few, in fact, uncountably
many codes with no VDR. We certainly want nothing to do with such codes,
but don’t worry—there is very little danger of encountering such a code.

In most of the codes actually in use in real life, the encoding function is
defined in a particularly straightforward way.

Definition An encoding scheme for a source alphabet S = {s1, . . . ,sm} in terms
of a code alphabet A is a list of productions,

s1 →w1
...

sm →wm,

in which w1, . . . ,wm ∈ A+. For short, we will say that such a list is a scheme
for S → A.

© 2003 by CRC Press LLC

4.1 Encoding and decoding 73

Each encoding scheme gives rise to an encoding function φ : S+ → A+
by concatenation. The concatenation of a sequence of words is just the word
obtained by writing them down in order, with no separating spaces, commas, or
other marks. Given an encoding scheme, as above, and a word v ∈ S+, we let
φ(v) be the concatenation of the sequence of the wi ,1 ≤ i ≤ m, corresponding,
according to the scheme, to the source letters occurring in v. For example, if
S = {a,b,c}, A = {0,1}, and the scheme is

a → 01
b → 10
c → 111,

then φ(acbba) = 01111101001.
It is sometimes useful to be more formal; given an encoding scheme, we

could define the corresponding encoding function by induction on the length of
the source word. For v ∈ S+, let lgth(v) stand for the length of v, the number of
letters appearing in v. If lgth(v) = 1, then v ∈ S, so v = si for some i , and we set
φ(v) = wi , where wi is the code word on the right-hand side of the production
si → wi in the scheme. If lgth(v) > 1, then v = usi for some si ∈ S, and some
u ∈ S+ with lgth(u) = lgth(v) − 1; φ(u) has already been defined, so we set
φ(v) = φ(u)wi .

The formality of this definition of φ is unnecessary for most purposes, but
it is advisable to keep it in mind. It provides a form for proving by induction
statements about the code determined by φ. Sometimes the other obvious in-
ductive definition of φ, in which source words are formed by adding letters on
the left rather than on the right, is more convenient.

4.1.4 When an encoding scheme is given, and thereby an encoding function,
the term “the code” can refer to (i) the encoding scheme, (ii) the list w1, . . . ,wm

of code words appearing in the scheme, or (iii) the set {w1, . . . ,wm}.
4.1.5 Theorem Every code determined by an encoding scheme has a VDR.

Proof: Given a scheme si → wi , i = 1, . . . ,m, and a word w ∈ A+, look among
all concatenations of the wi , with length of the concatenation equal to lgth(w).
[There are surely systematic ways to go about forming all such concatena-
tions—but it would be tiresome to dwell upon those ways here.] If none of them
match w, report “does not represent a source word.” If one of them matches w,
decode in the obvious way, by replacing each wi in the concatenation by some
corresponding si in the encoding scheme. It is left to you to convince yourself
that this prescription constitutes a VDR for the given code.

The algorithm plan described above is a very bad one, extremely slow and
inefficient, and should never be used. It is of interest only because it works
whatever the encoding scheme.

4.1.6 Given an encoding scheme si → wi , i = 1, . . . ,m, reading-left-to-right
with reference to this scheme is the following algorithm: given w ∈ A+, scan

© 2003 by CRC Press LLC

74 4 Coding Theory

from left to right along w until you recognize some wi as an initial segment
of w. If the wi you recognize is also w j for some i �= j (i.e., if the same
code word represents different source letters according to the encoding scheme,
heaven forfend), then decide for which i you have recognized wi by some rule
– for instance, you could let i be the smallest of the eligible indices.

If no wi has been recognized as an initial segment of w, after scanning over
max1≤i≤m lgth(wi) letters of w, or if you come to the end of w after scanning
fewer letters, without recognizing some wi , report “does not represent a source
word.” Otherwise, having recognized wi , jot down si on your decoder pad,
to the right of any source letters already recorded, peel (delete) the segment wi

from w, and begin the process anew, with the smaller word replacing w. If there
is nothing left after wi is peeled from w, stop, and declare that the decoding is
complete. Reading-right-to-left is described similarly.

For example, suppose that S = {a,b,c}, A = {0,1}, and the scheme is

a → 0
b → 01
c → 001.

(This is a particularly stupid scheme, for all practical purposes. Note that 001
represents both ab and c in the code defined by this scheme.) With reference
to this scheme, what will be the outcome of applying the reading-left-to-right
algorithm to 001? Answer: the output will be “does not represent a source
word.” (Surprised?) It follows that reading-left-to-right is not a VDR for this
code. However, reading-right-to-left is a VDR for this code. Verification, or
proof, of this assertion is left to you. (Take a look at Exercise 4.2.2.)

4.1.7 If the words wi appearing in an encoding scheme are all of the same
length, the code is said to be a fixed-length or block code, and the common
length � of the wi is said to be the length of the code. Otherwise, the code is
said to be a variable-length code.

4.1.8 If A = {0,1}, or some other two-element set, the code is said to be binary.

Exercises 4.1

1. Let S be the set of all English words, let A be the set of letters a,b, . . . ,z,
and let the encoding scheme be defined by a very complete unabridged dic-
tionary—the O.E.D. will do. Ignore capitalizations. Show that the code
defined by this scheme is ambiguous.

2. Suppose that S = A and φ : S+ → S+ is defined by

φ(w) =
{
w, if lgth(w) is odd,
ww, if lgth(w) is even.

Show that φ is not given by an encoding scheme. Describe a VDR for this
code. Is this code uniquely decodable? Justify your answer.

© 2003 by CRC Press LLC

4.2 Prefix-condition codes and the Kraft-McMillan inequality 75

3. Same questions as in 2, except that φ(w) =
{
w, if lgth(w) is even,
ww, if lgth(w) is odd.

4. Suppose that S = {a,b,c}, A = {0,1}, and consider the scheme

a → 0, b → 010, c → 0110.

Show that neither reading-left-to-right nor reading-right-to-left provides a
VDR for this code. Describe a VDR for this code—make it a better one
than the clunker described in the proof of Theorem 4.1.5. Is this code
uniquely decodable? Justify your answer.

5. Give an encoding scheme for a uniquely decodable code for which reading-
left-to-right is a VDR, but reading-right-to-left is not.

6. Suppose that S = {a,b,c}, A = {0,1}, and the encoding scheme is

a → 010, b → 0100, c → 0010.

Is the code defined by this scheme uniquely decodable? Justify your an-
swer.

7. Give an encoding scheme for the code described in 4.1.2.

4.2 Prefix-condition codes and the Kraft-McMillan
inequality

An encoding scheme si → wi , i = 1, . . . ,m, satisfies the prefix condition if there
do not exist i, j ∈ {1, . . .m}, i �= j , such that wi is an initial segment, or prefix,
(reading left to right) of w j . The code determined by such a scheme is said to
be a prefix-condition code. The suffix condition is similarly defined.

4.2.1 Theorem Each prefix-condition code is uniquely decodable, with read-
ing left-to-right providing a VDR.

Proof: Left to you.

Remark: a converse of this theorem holds; see Exercise 4.2.2.

4.2.2 Proposition If si → wi , i = 1, . . . ,m, is a fixed-length encoding scheme,
then the following are equivalent:

(a) the scheme satisfies the prefix condition;

(b) the code defined by the scheme is uniquely decodable;

(c) w1, . . . ,wm are distinct.

Proof: Left to you.

© 2003 by CRC Press LLC

76 4 Coding Theory

4.2.3 Corollary Given n = |A|, m = |S|, and a positive integer �, there is a
uniquely decodable fixed-length scheme for S → A, of length �, if and only if
m ≤ n�.

Proof: n� = |A�|, so m ≤ n� means that there are m distinct code words of
length � available for the desired scheme.

4.2.4 The code in Exercise 4.1.4 is neither prefix-condition nor suffix-condition,
but is, nonetheless, uniquely decodable.

4.2.5 If the beginning of the code word is on the left—i.e., if the code word is to
be fed into the decoder from left to right—then it is clearly a great convenience
for reading-left-to-right to be a VDR for the code; you can decode as the code
word is being read. By contrast, in order to decode using reading-right-to-left,
if the code word starts on the left, you have to wait until the entire code word or
message has arrived before you can start decoding. Because of this advantage,
prefix-condition codes are also instantaneous codes (see [81]). Note Exercise
4.2.2.

4.2.6 Theorem (Kraft’s Inequality) Suppose that S = {s1, . . . ,sm} is a source
alphabet, A = {a1, . . . ,an} is a code alphabet, and �1, . . . ,�m are positive inte-
gers. Then there is an encoding scheme si → wi , i = 1, . . . ,m, for S in terms of
A, satisfying the prefix condition, with lgth(wi) = �i , i = 1, . . . ,m, if and only
if

∑m
i=1 n−�i ≤ 1.

Proof: For w ∈ A+ and � ≥ lgth(w), let

A(w,�) = {v ∈ A�;w is a prefix of v} (4.1)

= {wu;u ∈ A�−lgth(w)}. (4.2)

Then |A(w,�)| = |A�−lgth(w)| = n�−lgth(w). Observe that, if neither of w1,w2 ∈
A+ is a prefix of the other, and � ≥ lgth(wi), i = 1,2, then A(w1,�) and
A(w2,�) are disjoint.

Assume, without loss of generality, that 1 ≤ �1 ≤ �2 ≤ ·· · ≤ �m . First
suppose that

∑m
i=1 n−�i ≤ 1. We will choose w1, . . . ,wm ∈ A+ such that no wi

is a prefix of any w j ,1 ≤ i < j ≤ m, and the choosing will be straightforward.
Let w1 be any member of A�1 . Supposing we have obtained w1, . . . ,wk with
wi ∈ A�i , i = 1, . . . ,k, and no wi a prefix of any w j ,1 ≤ i < j ≤ k ≤ m −1, we
wonder if there is any wk+1 ∈ A�k+1 such that none of w1, . . . ,wk is a prefix of
wk+1. Clearly there is such a wk+1 if and only if

A�k+1 \
k⋃

i=1

A(wi ,�k+1)

is non-empty. By the remarks above (and since the A(wi ,�k+1), i = 1, . . . ,k,
are pairwise disjoint),

© 2003 by CRC Press LLC

4.2 Prefix-condition codes and the Kraft-McMillan inequality 77

∣∣ k⋃
i=1

A(wi ,�k+1)
∣∣ =

k∑
i=1

|A(wi ,�k+1)| =
k∑

i=1

n�k+1−lgth(wi)

= n�k+1

k∑
i=1

n−�i < n�k+1

m∑
i=1

n−�i ≤ n�k+1 = |A�k+1 |.

Thus A�k+1 \⋃k
i=1 A(wi ,�k+1) is non-empty. Thus we can find w1, . . . ,wm as

desired, by simple hunting and finding.
On the other hand, if 1 ≤ �1 ≤ ·· · ≤ �m and there is a prefix-condition

scheme si → wi , with lgth(wi) = �i , i = 1, . . . ,m, then

wm ∈ A�m \
m−1⋃
j=1

A(w j ,�m),

so

1 ≤ |A�m |−
m−1∑
j=1

|A(w j ,�m)| = n�m − n�m

m−1∑
j=1

n−� j ,

whence
∑m

j=1 n−� j ≤ 1.

4.2.7 The usefulness of being able to prescribe the lengths �1, . . . ,�m of the
words w1, . . . ,wm in a prefix-condition encoding scheme will become clear in
the next two sections. See also Exercise 4.2.5.

Once �1, . . . ,�m satisfying
∑m

i=1 n−�i ≤ 1 have been prescribed, there is no
obstacle, according to the proof preceding, to choosing the wi for the scheme,
provided �1 ≤ �2 ≤ ·· · ≤ �m . It may be necessary to reorder s1, . . . ,sm to achieve
this ordering of the �i .

In some situations it may be wise to prescribe �1, . . . ,�m satisfying the
inequality

∑m
i=1 n−�i < 1, i.e., to avoid �1, . . . ,�m satisfying

∑m
i=1 n−�i = 1,

even though the �i in such a sequence may be more desirable in the short run.
The practical reason is that the customer buying the encoding scheme may wish
to enlarge the source alphabet at some future time.

4.2.8 When �1 = �2 = ·· · = �m = �, i.e., when the scheme is to be fixed-length,
then the condition given in Kraft’s Inequality for the existence of a prefix-
condition code simplifies to n� ≥ m. Since n� = |A�| and m = |S|, this condition
is also seen to be necessary and sufficient by Proposition 4.2.2.

4.2.9 Theorem (McMillan’s Inequality) If |S| = m, |A| = n, and si → wi ∈
A�i , i = 1, . . . ,m, is an encoding scheme resulting in a uniquely decodable code,
then

∑m
i=1 n−�i ≤ 1.

Proof: Without loss of generality, assume that �m is the largest of the � j . For
any positive integer k,

© 2003 by CRC Press LLC

78 4 Coding Theory

(m∑
i=1

n−�i
)k = (m∑

i1=1

n−�i1
) · · ·(m∑

ik =1

n−�ik
)

=
m∑

i1=1

m∑
i2=1

· · ·
m∑

ik=1

n−(�i1 +···+�ik) =
k�m∑
r=1

h(r)

nr
,

where h(r) is the number of times r occurs as a sum �i1 +·· ·+�ik , as i1, . . . , ik

roam independently over {1, . . . ,m}.
If r = �i1 +·· ·+�ik , then r = lgth(wi1 · · ·wik). By the assumption of unique

decodability, if (i1, . . . , ik) �= (i ′
1, . . . , i ′

k), then wi1 · · ·wik �= wi ′1 · · ·wi ′k . This
means that the function (i1, . . . , ik) �→ wi1 · · ·wik from {(i1, . . . , ik);1 ≤ i j ≤ m,
j = 1, . . . ,k and

∑k
j=1 i j = r} into Ar is an injection; since the size of the

domain is h(r) and the size of Ar is nr , it follows that h(r) ≤ nr , and we have

(m∑
i=1

n−�i
)k =

k�m∑
r=1

h(r)

nr
≤

k�m∑
r=1

1 = k�m,

so
∑m

i=1 n−�i ≤ k1/k�
1/k
m → 1 as k → ∞.

The elegant proof of McMillan’s Inequality given here is due to Karush
[38].

4.2.10 The encoding scheme in the hypothesis of Theorem 4.2.9 is not as-
sumed to be a prefix-condition scheme. Thus McMillan’s Inequality improves
the “only if” assertion of Kraft’s Inequality.

4.2.11 Corollary (of 4.2.6 and 4.2.9) Suppose |S| = m, |A| = n, and �1, . . . ,

�m are positive integers. The following are equivalent:

(a) there is an encoding scheme si → wi ∈ A�i , i = 1, . . . ,m, resulting in a
uniquely decodable code;

(b) there is a prefix-condition encoding scheme si → wi ∈ A�i , i = 1, . . . ,m;

(c)
∑m

i=1 n−�i ≤ 1.

The moral is that if unique decodability and prescribing the lengths of the
wi in the scheme are the only considerations, then there is no reason to consider
anything except prefix-condition (or, in some countries, suffix-condition) codes.

Exercises 4.2

1. Suppose |S| = m, |A| = n, and we are considering only fixed-length encod-
ing schemes of length �. The resulting code is to be uniquely decodable.
Find (a) the smallest value of � possible if m = 26 and n = 2; (b) the small-
est value of � possible if m = 26 and n = 3; (c) the smallest value of n
possible if m = 80 and � ≤ 4; (d) the largest value of m possible if n = 2
and � ≤ 6.

© 2003 by CRC Press LLC

4.3 Average code word length and Huffman’s algorithm 79

2. Prove that if a code, given by an encoding scheme, is uniquely decodable,
with reading-left-to-right a VDR for the code, then the scheme satisfies the
prefix condition. (Hint: prove the contrapositive. That is, start by suppos-
ing that the scheme does not satisfy the prefix condition, and prove that
either reading-left-to-right is not a VDR for the code, or the code is not
uniquely decodable.) Give an example of a scheme that does not satisfy the
prefix condition for which reading-left-to-right does provide a VDR.

3. Suppose that |S| = m ≥ 2 and |A| = n ≥ 2. For reasons that may become
clear later, we will say that a non-decreasing sequence �1 ≤ ·· · ≤ �m of
positive integers is an n-ary Huffman sequence if there is a prefix-condition
encoding scheme s j → w j ∈ A� j , j = 1, . . . ,m, but if any of the � j is
reduced by one and the new sequence is denoted �′

1, . . . ,�
′
m , then there is

no prefix-condition scheme s j → w′
j ∈ A�′

j , j = 1, . . . ,m. [Convention:

A0 = ∅.] Find the n-ary Huffman sequences �1 ≤ ·· · ≤ �m when

(a) n = 2 and m = 5

(b) n = 3 and m = 5

*(c) n = 2 and m = 26.

4. Suppose S = {a,b,c,d,e} and A = {0,1}. Find a prefix-condition encoding
scheme for S in terms of A, corresponding to each of the sequences you
found in 3(a), above.

5. Let |A|= n, |S| = m, and L = max1≤ j≤m lgth(w j). Let us say that a scheme
s j → w j ∈ A+, j = 1, . . . ,m, is good if it results in a uniquely decodable
code.

(a) For fixed n and L, what is the largest value of m possible if there is to
be a good scheme for S?

(b) For fixed m and L, what is the smallest value of n possible if there is
to be a good scheme for S?

(c) For fixed m and n, what is the smallest value of L possible if there is
to be a good scheme for S?

[Hint: in every case, the optimum is achieved with a fixed-length encoding
scheme.]

4.3 Average code word length and Huffman’s algorithm

Suppose that si → wi ∈ A+, i = 1, . . . ,m, is an encoding scheme for a source
alphabet S = {s1, . . . ,sm}. Suppose it is known that the source letters s1, . . . ,sm

occur with relative frequencies f1, . . . , fm , respectively. That is, fi is to be
regarded as the probability that a letter selected at random from the source text

© 2003 by CRC Press LLC

80 4 Coding Theory

will be si . It follows that
∑m

i=1 fi = 1. We will refer to the fi as the relative
source letter frequencies, or source frequencies, for short.

Definition In the circumstances described above, the average code word length
of the code defined by the encoding scheme is

�̄ =
m∑

i=1

fi lgth(wi).

4.3.1 Note that “average code word length” is a bit of a misnomer. The correct
term would be “average length of a code word replacing a source letter.”

4.3.2 �̄ is, in fact, the average value of the random variable “length of the code
word replacing the source letter” associated with the experiment of randomly
selecting a source letter from the source text. On the (dubious?) grounds that
reading a section of source text amounts to carrying out the selection of source
letters a number of times, it follows from Theorem 1.8.6 that the average, or
expected, number of code letters required to encode a source text consisting of
N source letters is �̄N .

Recall that the code letters are also the input letters of a channel. It may
be expensive and time consuming to transmit long sequences of code letters;
therefore, it may be desirable for �̄ to be as small as possible. It is within our
power to make �̄ small by cleverly making arrangements when we devise the
encoding scheme. What constraints must we observe?

For one thing, we want the resulting code to be uniquely decodable; since �̄

is a function of the �i = lgth(wi), it follows from Corollary 4.2.11 that we may
as well confine ourselves to prefix-condition codes.

This is the only constraint we will observe in this section; it is, happily, a
simplifying constraint—it makes life easier to be confined to a smaller array of
choices. In later sections, however, we will encounter other purposes that might
be served in the construction of the encoding scheme. These other purposes are:
good approximation of the optimal input frequencies of the channel and error
correction. In no case do these matters require us to abandon prefix-condition
codes, but they sometimes do conflict with the minimization of �̄. When there
are more concerns to juggle than just the shortening of the input text, when
compromises must be made, the methods to be described in this section may
have to be modified or abandoned.

Common sense or intuition suggests that, in order to minimize �̄, we ought
to have the frequently occurring source letters represented by short code words,
and to reserve the longer code words of the scheme for the rarely occurring
source letters. It is left to the reader to decide whether or not a proof of the
validity of this strategy is required. Proofs are available, and, in fact, the validity
is enshrined in a famous theorem.

4.3.3 Theorem [Ch. 10, 28] Suppose that f1 ≥ f2 ≥ ·· · ≥ fm and �1 ≤ �2 ≤
·· · ≤ �m . Then for any rearrangement �′

1, . . . ,�
′
m of the list �1, . . . ,�m ,

∑m
i=1 fi�i

≤ ∑m
i=1 fi�

′
i .

© 2003 by CRC Press LLC

4.3 Average code word length and Huffman’s algorithm 81

Recall that, to obtain a prefix-condition encoding scheme s j → w j , j =
1, . . . ,m, with lgth(w j) = � j , where

∑m
j=1 n−� j ≤ 1, we have no worries pro-

vided �1 ≤ �2 ≤ ·· · ≤ �m . With � j in non-decreasing order, we happily choose
our w j avoiding prefixes, without a snag.

It follows that, given the source frequencies, it would be a shrewd first
move to reorder the input alphabet, and, correspondingly, the fi , so that f1 ≥
f2 ≥ ·· · ≥ fm . We shall henceforward consider the fi to be so ordered. To
minimize �̄, we look among sequences �1, . . . ,�m of positive integers satisfying
�1 ≤ ·· · ≤ �m and

∑m
j=1 n−� j ≤ 1.

One way to proceed would be to look among the minimal such sequences,
the n-ary Huffman sequences defined in Exercise 4.2.3, and to select from those
the one that makes �̄ the smallest.

4.3.4 Example Suppose S = {a,b,c,d,e}, A = {0,1}, and the source frequen-
cies are fa = 0.25, fb = 0.15, fc = 0.1, fd = 0.2, and fe = 0.3. We reorder the
source alphabet: e,a,d,b,c. We look among minimal sequences (also called
n-ary Huffman sequences) �e ≤ �a ≤ �d ≤ �b ≤ �c. It is hoped that you found
three such sequences, in doing problem 3(a) at the end of the preceding section:

(1) 1, 2, 3, 4, 4;

(2) 1, 3, 3, 3, 3; and

(3) 2, 2, 2, 3, 3.

The average code word lengths corresponding to these different sequences are

�̄1 = (0.3)1 + (0.25)2 + (0.2)3+ (0.15)4+ (0.1)4 = 2.4,

�̄2 = (0.3)1 + (0.25 + 0.2+ 0.15+0.1)3 = 2.4, and
�̄3 = (0.3 + 0.25 + 0.2)2+ (0.15+0.1)3 = 2.25.

Thus list (3) is the winner. An optimal encoding scheme:

e → 00
a → 11
d → 10
b → 010
c → 011.

The process of finding all possible minimal sequences �1 ≤ ·· · ≤ �m satis-
fying

∑m
j=1 n−� j ≤ 1 can be algorithmized. This approach to minimizing �̄ is

worth keeping in mind, especially since it is adaptable to “mixed” optimization
problems, in which we want to keep �̄ small and serve some other purpose—for
instance, we might like the input frequency of the code letters to be close to
the optimal input frequencies for the channel (see Section 4.4). In such prob-
lems we may agree to an encoding scheme that effects a compromise between
(or among) the contending requirements; perhaps �̄ won’t be as small as we
could get, but it will still be quite small and our other purposes will be served
reasonably well.

© 2003 by CRC Press LLC

82 4 Coding Theory

In making shopper’s choices in such mixed problems, it is not at all inef-
ficient or unreasonable to have all the alternative schemes arrayed before us,
among which to choose. If the numbers involved are not astronomical, and the
time consumed is not prohibitive, especially since we are shopping for a “big
ticket” item, it is reasonable to take the trouble to find an encoding scheme
which, once chosen, will be installed and used for the foreseeable future.

But mathematicians dislike “brute force” in making choices; the brute-
force, shopping-in-the-warehouse approach suggested above may, in fact, be
forced upon us in real life for some purposes, but what follows is faster and
more elegant in the cases where minimizing �̄ (with a prefix-condition scheme)
is our only objective.

4.3.5 Huffman’s algorithm We suppose that f1 ≥ f2 ≥ ·· · ≥ fm , and that
m = n + k(n − 1) for some non-negative integer k. This last requirement can
be achieved by adding letters to the source alphabet and assigning source fre-
quency zero to the added letters. Note that when n = 2 ≤ m, this bothersome
preliminary is unnecessary.

Merge. If m = n, go to encode, below. Otherwise, form a new source
alphabet with n + (k − 1)(n − 1) letters by merging the n source letters with
least source frequencies into a single source letter, whose frequency will be
the sum of the source frequencies of the merged letters. Thus, the new source
alphabet is S′ = {s1, . . . ,sm−n ,σ } and the s j , 1 ≤ j ≤ m − n, have frequencies
f j , while σ has frequency

∑m
j=m−n+1 f j .

Note which letters were merged into σ , and reorder S′ so that source fre-
quencies are in non-increasing order. With S′ replacing S and with the new
source frequencies replacing f1, . . . , fm , go to merge.

Encode. We are here initially with a source alphabet S̃ with n letters. We
form a scheme by which these letters are put into one-to-one correspondence
with the letters of A, the code alphabet. We will derive from this scheme an
optimal encoding scheme for the original source alphabet S, by working our
way back through the sequence of source alphabets obtained by merging. At
each stage of the journey from S̃ back to S, we obtain, from the current encoding
scheme, an encoding scheme for the next alphabet (along the road back to S) by
an obvious and straightforward procedure. Suppose that S′′ was obtained from
S′ by merging, and suppose that we have an encoding scheme for S′′. Suppose
that σ ∈ S′′ was obtained by merging s′

t+1, . . . ,s′
t+n ∈ S′. Suppose that, in the

encoding scheme for S′′, the production involving σ is σ →w. Then the scheme
for S′ is obtained from that for S′′ by replacing the single production σ → w by
the n productions

s′
t+1 → wa1

...

s′
t+n → wan.

4.3.6 Examples Consider the situation in 4.3.4, in which S = {a,b,c,d,e},
A = {0,1} and fe = 0.3 ≥ fa = 0.25 ≥ fd = 0.2 ≥ fb = 0.15 ≥ fc = 0.1. We

© 2003 by CRC Press LLC

4.3 Average code word length and Huffman’s algorithm 83

run Huffman’s algorithm. First merge (b and c merged into σ1):

S1 = {e, a, σ1, d}
Frequencies: 0.3, 0.25, 0.25, 0.2

Second merge (σ1 and d merged into σ2):

S2 = {σ2, e, a}
Frequencies: 0.45, 0.3, 0.25

Last merge (e and a merged into σ3)

S3 = {σ3,σ2}.
For the encoding, we obtain

S3 :
{

σ3 →0
σ2 →1

S2 :

σ2 →1
e →00
a →01

and

S1 :

e →00
a →01
σ1 →10
d →11

S :

e →00
a →01
d →11
b →100
c →101

Note that the algorithm does, indeed, give a code with minimal �̄, by the
work done in 4.3.4. Note that the encoding scheme is different from that given
in 4.3.4, and that, in fact, there is no way to apply Huffman’s algorithm to this
example to obtain the scheme of 4.3.4. This is because Huffman’s algorithm
will result in the code words representing e and a having the same first digit.

Let us apply Huffman’s algorithm with the same S and source frequencies,
but with A = {0,1,∗}, i.e., with n = 3. Note that 5 = 3 + 1 · 2, so we need not
add any source letters with zero frequency (or, equivalently, we need not merge
fewer than n letters on the first merge).

The first and only merge: S1 = {e,a,σ } [d , b, and c are merged]. The
schemes are given by S1 : e → 0, a → 1, σ → ∗ and S : e → 0, a → 1, d → ∗0,
b → ∗1, c → ∗∗.

The proof of the fact that Huffman’s algorithm always results in an opti-
mal prefix-condition encoding scheme is outlined in Section 4.3.1 (filling in the
details is left to the reader as Exercise 4.3.5).

We conclude this section with the statement of a famous theorem of Shan-
non which relates the �̄ achievable by Huffman’s algorithm to the source en-
tropy. The proof of this theorem is postponed until Section 5.4 where a sharper
statement of the theorem is proven for only the binary case. However, the proof
there can be easily modified to give an equally sharp theorem for all n ≥ 2.

© 2003 by CRC Press LLC

84 4 Coding Theory

4.3.7 Noiseless Coding Theorem for memoryless sources Suppose |S| = m,
|A| = n ≥ 2, and the source frequencies are f1, . . . , fm . Let H =
−∑m

i=1 fi log fi . For every encoding scheme for S, in terms of A, resulting
in a uniquely decodable code, the average code word length �̄ satisfies

�̄ ≥ H/ logn.

Furthermore, there exists a prefix-condition scheme for which

�̄ < H/ logn + 1.

The first inequality above, �̄ ≥ H/ logn, has an interpretation that makes
the result seem self-evident, if you do not look too closely. Let the base of
the logarithm be n, the size of the code alphabet. Then the inequality becomes
�̄ ≥ H . Also, setting this base for the logarithm defines the unit of information:
each code letter can carry at most one unit of information. (See Section 2.1.1.)

Now, H is the average number of information units per source letter and �̄

is the average number of code letters per source letter arising from the encoding
scheme. If we have unique decodability, no information is lost; so the average
amount of information carried by the code words representing the source letters,
which is �̄ units at most, must be at least as great as H , the average number of
units of information per source letter; for if the volume of a vessel is less than
that of the fluid that is poured into it, there will be spillage.

The fact that there is a rigorous mathematical proof of this inequality is
further evidence that Shannon’s definition of information is satisfactory on an
intuitive level.

Exercises 4.3

1. Suppose S = {a, b, c, d, e, f, g} and the source frequencies are given in the
following table:

letter a b c d e f g
freq .2 .12 .08 .15 .25 .1 .1

Use the Huffman encoding algorithm to obtain an optimal prefix-condition
scheme for S when

(a) A = {0,1}
(b) A = {0,1,∗}.

2. Table 4.1 gives the relative frequencies, in English prose minus punctuation
and blanks, ignoring capitalization, of the alphabetic characters a, b, . . . , z,
estimated by examination of a large block of English prose, believed to be
typical. This table is copied, with one small change, from [6, Appendix 1].
Find an optimal (with respect to average code word length) prefix-condition
encoding scheme for S = {a, b, . . . , z} if

(a) A = {0,1};

© 2003 by CRC Press LLC

4.3 Average code word length and Huffman’s algorithm 85

Table 4.1: Single-letter frequencies in English text.

Character % Freq Character % Freq
a 8.167 n 6.749
b 1.492 o 7.507
c 2.782 p 1.929
d 4.253 q 0.095
e 12.702 r 5.987
f 2.228 s 6.327
g 2.015 t 9.056
h 6.094 u 2.758
i 6.966 v 0.978
j 0.153 w 2.360
k 0.772 x 0.150
l 4.025 y 1.974

m 2.406 z 0.075

(b) A = {0,1,∗}.
(c) What are the lengths of the shortest fixed-length encoding schemes, re-

sulting in uniquely decodable codes, for S, in cases (a) and (b), above?

*3. (For those with calculators and some free time.) Verify the conclusion of
Theorem 4.3.7 in the circumstances of the preceding exercise.

4. Suppose S = {a, b, c, d, e, f} and the source frequencies are given in:

letter a b c d e f
freq .2 .15 .05 .2 .25 .15

Use Huffman’s algorithm to encode S → A when (a) A = {0,1} and (b)
A = {0,1,∗}. Did you notice that there were choices to be made in running
the algorithms in the “merge” part of the process? Run the algorithm in
all possible ways, in (a) and (b), if you haven’t already. In each case, you
should arrive at two essentially different schemes, essentially different in
that the sequences of code word lengths are different. However, in each
case, �̄ is minimized by both schemes.

*5. Establish the validity of Huffman’s algorithm by filling the gaps in the proof
given in Section 4.3.1, below.

*6. Suppose that �1 ≤ ·· · ≤ �m is an n-ary Huffman sequence. Show that �̄ =∑m
j=1 f j � j is minimal among the numbers h(x1, . . . ,xm) = ∑m

j=1 f j x j ,
where x1, . . . ,xm are integers satisfying

∑m
j=1 n−x j ≤ 1, if the f j are de-

fined by f j = n−� j (
∑m

i=1 n−�i)−1, j = 1, . . . ,m. [You may as well assume
that x1 ≥ ·· · ≥ xm is an n-ary Huffman sequence. There are only finitely
many of these, and thus only finitely many values of G0 = ∑m

i=1 n−xi to
consider. Fix one of these, and now suddenly allow the xi to vary freely,
even into non-integer values, but subject to the constraint G0 = ∑m

i=1 n−xi .

© 2003 by CRC Press LLC

86 4 Coding Theory

Use the Lagrange multiplier method to attempt to find where h(x1, . . . ,xm)

achieves its minimum, subject to this constraint. You will find that when
G0 �= G = ∑m

i=1 n−�i , the minimum is not achieved at an n-ary Huffman
sequence x1, . . . ,xm , and when G0 = G, the minimum is achieved when
xi = �i , i = 1, . . . ,m.]

4.3.1 The validity of Huffman’s algorithm

In this section we will try to lead whomever is interested through a proof of
the validity of Huffman’s algorithm. In fact, we will prove more: not only
does Huffman’s algorithm always give a “right answer,” but, also, every “right
answer,” in case there is more than one, as in problem 4, above, can be obtained
by some instance of Huffman’s algorithm. By a “right answer” here we do
not mean any actual prefix-condition encoding scheme which minimizes �̄, but
rather the sequence of lengths of the code words in such an encoding scheme.
(That Huffman’s algorithm always produces a prefix-condition scheme is quite
easy to see; we leave it to the reader to work through the proof.)

There is a concise proof of the validity of Huffman’s algorithm in the binary
case, in Huffman’s original paper [36], and this proof can be easily extended
to prove the stronger statement given here, when n = 2. However, there are
some unexpected difficulties that crop up when n > 2 that appear to necessitate
a much longer proof. We have not seen a proof for n > 2 elsewhere. Both
Huffman [36] and Welsh [81] give proofs for n = 2 and dismiss the cases n > 2
as similar. Jones [37] notes that the case n > 2 is significantly different from
the case n = 2 but does not give a proof for n > 2.

Thanks are due to Luc Teirlinck for several of the observations on which the
proof given here is based. Even more thanks are due to Heather-Jean Matheson,
who, while an undergraduate at the University of Prince Edward Island, discov-
ered a serious error in the purported proof in the first edition of this text. (She not
only noticed that the logic of a certain inference was wrong, she demonstrated
that it could not be made right, by giving a beautiful example. Unfortunately, it
would take us too far afield to explain that example here.) Yet further portions
of gratitude are due to Maxim Burke for elegantly fixing the error, in a way that
improves the entire proof. The statements and proofs of Propositions 4.3.8 and
4.3.9 are entirely due to him.

Recall, from Exercise 4.2.3, that an n-ary Huffman sequence is a sequence
�1 ≤ ·· · ≤ �m of positive integers such that there is a prefix-condition encoding
scheme s j → w j ∈ A� j , j = 1, . . . ,n, for encoding an m-letter source alphabet
S with an n-letter code alphabet A, minimal in the sense that if any of the � j is
reduced by one and the new sequence is denoted �′

1, . . . ,�
′
m , there is no prefix-

condition scheme s j → w′
j ∈ A�′

j , j = 1, . . . ,m. [Convention: A0 = ∅.]
Notice that, given relative source frequencies f1 ≥ ·· · ≥ fm > 0, any se-

quence �1 ≤ ·· · ≤ �m of code word lengths for a prefix-condition scheme s j →
w j ∈ A� j , j = 1, . . . ,m, which minimizes �̄ = ∑m

j=1 f j � j is an n-ary Huffman

© 2003 by CRC Press LLC

4.3 Average code word length and Huffman’s algorithm 87

sequence. (Why? In fact, the converse is true, as well: every n-ary Huffman
sequence is the sequence of code word lengths in a prefix-condition scheme for
S → A that minimizes �̄ with respect to some sequence f1, . . . , fm of relative
source frequencies. See Exercise 4.3.6. But we will not need this fact here.)

By Kraft’s Theorem (Theorem 4.2.6), a sequence �1 ≤ ·· · ≤ �m of positive
integers is an n-ary Huffman sequence if and only if it is minimal with respect
to satisfying Kraft’s Inequality,

∑m
j=1 n−� j ≤ 1. Since diminishing the largest

of the �j increases the sum
∑m

j=1 n−� j the least, it follows that �1 ≤ ·· · ≤ �m is
an n-ary Huffman sequence if and only if

m∑
j=1

n−� j ≤ 1 <

m∑
j=1

n−� j + n1−�m .

Therefore
∑m

j=1 n−� j = 1 for any positive integers �1, . . . ,�m implies that their
non-decreasing rearrangement is n-ary Huffman.

4.3.8 Proposition If 1 ≤ �1 ≤ ·· · ≤ �m and n ≥ 2 are integers and
∑m

i=1 n−�i =
1, then m = n + k(n − 1) for some non-negative integer k, and �m−n+1 = ·· · =
�m .

Proof: We go by induction on L = �m . If L = 1 then
∑m

j=1 n−1 = 1 implies
m = n (k = 0) and �1 = ·· · = �n = 1.

Suppose that L = �m > 1 and
∑n

i=1 n−�i = 1. If K is the number of i
such that �i = L, then 1 = ∑

{i;�i ≤L−1} n−�i + K/nL ; solving for K shows that
K is a multiple of n. Since K ≥ 1, this establishes the last conclusion of the
proposition, that �i = L for the last n values of i . It remains to be shown that
m = n + k(n − 1).

Set K = an and set m′ = m − an, the number of indices i such that �i ≤
L − 1. We have

1 =
∑

{i;�i ≤L−1}
n−�i + an

nL
=

m′∑
i=1

n−�i + a

nL−1
.

By the induction hypothesis, m′ +a = n +k ′(n −1) for some non-negative inte-
ger k ′. Thus m = m′ +an = n + (k ′ +a)(n −1), which has the desired form.

4.3.9 Proposition If 1 ≤ �1 ≤ ·· · ≤ �m = L is an n-ary Huffman sequence and
m = n + k(n −1)+ t , where k is a non-negative integer and 1 ≤ t ≤ n −1, then∑m

i=1 n−�i + n−1−t
nL = 1, and �m−t = ·· · = �m = L.

Proof: The second conclusion follows from the first and Proposition 4.3.8, ap-
plied to the longer sequence �1 ≤ ·· · ≤ �m+n−1−t = L.

Since �1 ≤ ·· · ≤ �m is an n-ary Huffman sequence,
∑m

i=1 n−�i ≤ 1 and
clearly

∑m
i=1 n−�i is an integer multiple of n−L . Therefore, for some non-

negative integer r ,
∑m

i=1 n−�i + r
nL = 1.

© 2003 by CRC Press LLC

88 4 Coding Theory

If r ≥ n − 1 then
∑m−1

i=1 n−�i + n1−L = ∑m
i=1 n−�i + n−1

nL ≤ ∑m
i=1 n−�i +

r
nL = 1, contradicting that �1 ≤ ·· · ≤ �m is an n-ary Huffman sequence. There-
fore 0 ≤ r ≤ n − 2.

By Proposition 4.3.8, m + r = n + k′(n − 1) for some non-negative integer
k ′. Thus m = n + k(n − 1)+ t = n + k ′(n − 1)− r = n + (k ′ − 1)(n − 1)+ (n −
1−r). Since both t and n −1−r are among 1, . . . ,n −1, and t = n −1−r mod
(n − 1), it follows that t = n − 1 − r , so r = n − 1 − t , as desired.

4.3.10 Corollary If 1 ≤ �1 ≤ ·· · ≤ �m = L is an n-ary Huffman sequence,
where m = n + k(n − 1)+ t for integers k ≥ 0 and 1 ≤ t ≤ n − 1, then so is the
non-decreasing rearrangement of �′

1, . . . ,�
′
m−t , where �′

j = � j ,1 ≤ j < m − t ,
and �′

m−t = L − 1.

Proof:
m−t∑
j=1

n−�′
j =

m−t−1∑
j=1

n−� j + n/nL

=
m−t−1∑

j=1

n−� j + t + 1

nL
+ n − t − 1

nL

=
m∑

j=1

n−� j + n − t − 1

nL
= 1.

Corollary 4.3.10 allows us to provide a relatively easy proof by induction
on m that if f1 ≥ ·· · ≥ fm > 0,

∑m
i=1 fi = 1, and integers �1 ≤ ·· · ≤ �m sat-

isfying
∑m

i=1 n−�i ≤ 1 minimize
∑m

j=1 f j� j , then some instance of Huffman’s
algorithm applied to f1, . . . , fm with respect to a code alphabet A with n letters
will produce an encoding scheme with code word lengths �1, . . . ,�m . In these
circumstances, if m ≤ n we must have �1 = ·· · = �m = 1 and Huffman’s algo-
rithm trivially gives the desired result. So suppose that m = n + k(n − 1)+ t
for some integers k ≥ 0 and t ∈ {1, . . . ,n − 1}; we go by induction on m. Note
that although there may well be different instances of Huffman’s algorithm ap-
plicable to f1, . . . , fm , based on different merging choices in the “merge” part
of the algorithm, the first merge will invariably merge the t + 1 source letters
sm−t , . . . ,sm into a letter σ , which will be given relative frequency

∑m
j=m−t f j .

Let L = �m . By the previous observation that �1 ≤ ·· · ≤ �m is an n-ary
Huffman sequence and Proposition 4.3.9, we have that �m = ·· · = �m−t = L,
and by Corollary 4.3.10, the non-decreasing rearrangement of �1, . . . ,�m−t−1,

L − 1 is an n-ary Huffman sequence. We verify that these code word lengths
minimize the average code word length of a possible prefix-condition code
for S′ = {s1, . . . ,sm−t−1,σ } → A with respect to the relative frequencies f ′

1 =
f1, . . . , f ′

m−t−1 = fm−t−1, f ′
m−t = ∑m

j=m−t f j . Suppose that �′
1, . . . ,�

′
m−t are

© 2003 by CRC Press LLC

4.3 Average code word length and Huffman’s algorithm 89

positive integers such that
∑m−t

j=1 n−�′
j ≤ 1 and

m−t∑
j=1

f ′
j �

′
j =

m−t−1∑
j=1

f j �
′
j + �′

m−t

m∑
j=m−t

f j

<

m−t−1∑
j=1

f j � j + (L − 1)

m∑
j=m−t

f j . (∗)

We have
∑m−t−1

j=1 n−�′
j + (t + 1)n−(�′

m−t+1) = ∑m−t−1
j=1 n−�′

j + t+1
n n−�′

m−t ≤∑m−t
j=1 n−�′

j ≤ 1, showing that there is a prefix-condition encoding scheme
for S → A with code word lengths �′

1, . . . ,�
′
m−t−1,�

′
m−t + 1, . . . ,�′

m−t + 1.

But
∑m−t−1

j=1 f j �
′
j + (�′

m−t +1)
∑m

j=m−t f j <
∑m−t−1

j−1 f j � j + L
∑m

j=m−t f j =∑m
j=1 f j � j (by (∗)), contradicting the assumed minimality of

∑m
j=1 f j � j .

By the induction hypothesis, there is an instance of Huffman’s algorithm
resulting in a prefix-condition scheme for S′ → A with code word lengths
�1, . . . ,�m−t−1, L −1 for s1, . . . ,sm−t−1,σ , respectively. Let u denote the word
of length L − 1 assigned to σ in this encoding scheme. Then ua1, . . . ,uat+1
will be the words of length L = �m−t = ·· · = �m assigned to sm−t , . . . ,sm in the
scheme obtained by the instance of Huffman’s algorithm consisting of preced-
ing that for S′ → A by merging sm−t , . . . ,sm . Thus some instance of Huffman’s
algorithm results in an encoding scheme for S → A with code word lengths
�1, . . . ,�m .

It remains to show that every instance of Huffman’s algorithm produces an
optimal encoding scheme, with respect to the given source frequencies. In view
of what has already been shown, this task amounts to showing that different
instances of Huffman’s algorithm applied to relative source frequencies f1 ≥
·· · ≥ fm result in schemes with the same average code word length. We leave
the details of this demonstration to the reader. Go by induction on m, and use
the observation that if m = n + k(n − 1)+ t , k ≥ 0, 1 ≤ t ≤ n − 1, then every
instance of Huffman’s algorithm applied to f1 ≥ ·· · ≥ fm , up to switching the
order of source letters with equal source frequencies, starts with the merging of
sm−t , . . . ,sm into a new letter with relative frequency

∑m
j=m−t f j .

Exercises 4.3 (continued)

7. Suppose that m = n + k(n − 1)+ t,k ≥ 0,1 ≤ t ≤ n − 1, 1 ≤ �1 ≤ ·· · ≤
�m = L are integers, and G = ∑m

i=1 n−�i . Show that �1, . . . ,�m is an n-
ary Huffman sequence if and only if G + n−1−t

nL ≤ 1 ≤ G + n−2
nL . (Note

that Proposition 4.3.9 can be used for part of the proof, and provides the
funny corollary that if the two inequalities above hold, then the leftmost
is equality.)

© 2003 by CRC Press LLC

90 4 Coding Theory

4.4 Optimizing the input frequencies

As before, let S = {s1, . . . ,sm} be the source alphabet, and A = {a1, . . . ,an} the
code alphabet. A is also the input alphabet of the channel we plan to use. Sup-
pose that the (relative) source frequencies f1, . . . , fm are known, and also the
optimal channel input frequencies p̂1, . . . , p̂n of the input letters a1, . . . ,an . We
have the problem of coming up with a “good” encoding scheme, s j → w j ∈
A+, j = 1, . . . ,m. The goodness of the scheme is judged with reference to
a number of criteria. We have already seen that for unique decodability, we
may as well have a scheme that satisfies the prefix condition. For minimiz-
ing �̄ = ∑m

j=1 f j lgth(w j), we have Huffman’s algorithm. Now let us consider
the requirement that the input frequencies p1, . . . , pn of the letters a1, . . . ,an

should be as close as possible, in some sense, to the optimal input frequencies
p̂1, . . . , p̂n .

In particular circumstances we can wrangle over the metric, the sense
of “closeness,” to be used, and we can debate the rank of this requirement
among the various contending requirements, but it is clear that we will make
no progress toward satisfying this requirement if we cannot compute the input
frequencies p1, . . . , pn arising from a particular encoding scheme. This compu-
tation is the subject of the following theorem.

4.4.1 Theorem Suppose that s j → w j ∈ A+, j = 1, . . . ,m, is an encoding
scheme. Suppose that ai occurs exactly ui j times in w j , i = 1, . . . ,n, j =
1, . . . ,m. Then, for i = 1, . . . ,m,

pi =
∑m

j=1 ui j f j∑m
j=1 f j lgth(w j)

= (�̄)−1
m∑

j=1

ui j f j .

Proof: We will have a rather informal proof; logicians and philosophers can be
hired later to dignify it.

Suppose we have a block of source text with a large number N of source
characters, with the marvelous property that, for each j = 1, . . .m, s j occurs
exactly the expected number of times, N f j . After encoding, the total number
of characters in the code text is

∑m
j=1(N f j) lgth(w j) = N �̄. The number of

occurrences of ai in the code text is
∑m

j=1 ui j (N f j) = N
∑m

j=1 ui j f j . Dividing,
we find that the proportion of ai ’s in the code text is

pi = N
∑

j ui j f j

N �̄
= (�̄)−1

m∑
j=1

ui j f j .

4.4.2 Example Suppose that S = {a,b,c}, A = {0,1} and fa = .6, fb = .3, and
fc = .1. Suppose that the encoding scheme is

© 2003 by CRC Press LLC

4.4 Optimizing the input frequencies 91

a → 00
b → 101
c → 010.

This scheme does not minimize average code word length, but it may have
compensatory virtues that suit the situation. Letting the alphabet characters
serve as indices, we have

u0a = 2,u0b = 1,u0c = 2,

and u1a = 0,u1b = 2,u1c = 1.

Thus the input frequencies will be

p0 = 2(.6)+ (.3)+ 2(.1)

2(.6)+ 3(.3)+ 3(.1)
= 17

24

and p1 = 1− p0 = 7/24. If the channel involved is a binary symmetric channel,
then the optimal input frequencies are p̂0 = p̂1 = 1/2 (see 3.4.5), so p0 and p1
here are quite far from optimal.

The code designer may have had good reasons for the choice of this scheme.
Would the designer agree to changing the second digit in each of the code words
of the scheme? This would not change any lengths, nor the relationships among
the code words. (You might ponder what “relationships” means here.) The new
scheme:

a → 01
b → 111
c → 000.

The new input frequencies: p0 = 3/8, p1 = 5/8. These are not optimal, but
they are closer to 1/2 than were the former input frequencies, 17/24 and 7/24.
If the new scheme is as good as the original in every other respect, then we may
as well use the new scheme.

Optimizing the input frequencies, after minimizing �̄, with a prefix-condition
code

4.4.3 Problem The input consists of S, A, the source frequencies f1, . . . , fm ,
and the optimal input frequencies p̂1, . . . , p̂n for the channel of which A is the
input alphabet. The output is to be an encoding scheme s j → w j ∈ A+, j =
1, . . . ,m such that

(i) the prefix condition is satisfied;

(ii) �̄ = ∑
j f j lgth(w j) is minimal, among average code word lengths of

schemes satisfying (i); and

(iii) the n-tuple (p1, . . . , pn), computed as in Theorem 4.4.1, is as close as pos-
sible to (p̂1, . . . , p̂n), by some previously agreed upon measure of close-
ness. If d(p, p̂) denotes the distance from p = (p1, . . . , pn) to p̂ = (p̂1,

. . . , p̂n), this means that d(p, p̂) is to be minimal among all such numbers
computed from schemes satisfying (i) and (ii).

© 2003 by CRC Press LLC

92 4 Coding Theory

4.4.4 Usually, d(p, p̂) = ∑n
j=1(p j − p̂ j)

2, but you can take

d(p, p̂) =
n∑

j=1

|p j − p̂ j |α

for some power α other than 2, or d(p, p̂) = max1≤ j≤n |p j − p̂ j |. When n = 2,
these different measures of distance are equivalent: for any choice of d , above,
d(p, p̂) ≤ d(p′, p̂) if and only if |p1 − p̂1| ≤ |p′

1 − p̂1|. See Exercise 4.4.4.

It would be nice to have a slick algorithm to solve Problem 4.4.3, especially
in the case n = 2, when the output will not vary with different reasonable defi-
nitions of d(p, p̂). Also, the case n = 2 is distinguished by the fact that binary
channels are in widespread use in the real world.

We have no such good algorithm! Perhaps someone reading this will sup-
ply one some day. However, we do have an algorithm; it’s brutish, but it’s an
algorithm. Here it is: Supposing f1 ≥ f2 ≥ ·· · ≥ fm , use Huffman’s algorithm
to find all n-ary Huffman sequences �1 ≤ ·· · ≤ �m that minimize �̄ = ∑

f j� j ;
for each of these sequences, we find all possible prefix-condition schemes s j →
w j ∈ A� j and compute pi = (�̄)−1 ∑m

j=1 ui j f j , i = 1, . . . ,n. We choose the
scheme for which (p1, . . . , pn) is closest to (p̂1, . . . , p̂n).

4.4.5 Example Let’s carry out the brute-force program suggested above in the
easy circumstances of Example 4.4.2, assuming that the channel is a BSC. We
have S = {a,b,c}, A = {0,1}, fa = .6, fb = .3, fc = .1, and p̂0 = p̂1 = 1/2.
There is only one sequence of code word lengths to consider: �a = 1, �b =
2 = �c. We have �̄ = 1.4. There are four different prefix-condition schemes to
consider; the two that start with a → 0 are: a → 0, b → 10, c → 11 and a → 0,
b → 11, c → 10. For the first of these, p0 = (1.4)−1(.6+ .3)= 9/14, and, for the
second, p0 = (1.4)−1(.6 + .1) = 1/2. Clearly the second wins! Alternatively,
the scheme a → 1, b → 00, c → 01 gives optimal input frequencies.

With the same S, A, and source frequencies, if the channel had been so
oddly constructed that p̂0 = 1/3, p̂1 = 2/3, then the optimal scheme of the four
candidates would have been a → 1, b → 01, c → 00.

4.4.6 Example S = {a,b,c,d,e}, A = {0,1}, p̂0 = p̂ 1 = 1/2, f e = . 35, f a =
.3, fd = . 2, f b = . 1, and f c = . 05. The sequences (� e,�a ,�d ,�b,�c) satis-
fying

∑
j∈ S 2

−� j ≤ 1 for which �̄ = ∑
f j � j is m in imal are (1, 2, 3, 4, 4) and

(2, 2, 2, 3, 3). [See Exercise 4.2.3 and Example 4.3.4.] The value of �̄ is 2 . 15.
Bo th o p tim al seq u e nces are obtainable from Huffman’s algorith m; th e d iffer-
ence arises from the choice of th e o rderin g o f the alphabet obtained from the
second merge.

The optimal schemes in this case are associated with (2,2,2,3,3). (There
are quite a number of schemes to look at, but, taking into account that p̂0 =
p̂1 = 1/2, the possibilities boil down to only eight or nine essentially different
schemes.) Here is one of the optimal schemes:

© 2003 by CRC Press LLC

4.4 Optimizing the input frequencies 93

e → 01
a → 10
d → 11
b → 000
c → 001.

Verify that p0 = 1.05/2.15 = 21/43, and that this is as close to 1/2 as you can
get in this situation. (Since each f j is an integer multiple of .05, the numerator

of p0 =
∑

u0 j f j

2.15 will be an integer multiple of .05. Thus the closest p0 can be
made to 1/2 is 1.05/2.15 or 1.10/2.15.)

Observe that in this case we can have p0 = p1 = 1/2 exactly, with a prefix-
condition scheme, if we sacrifice the minimization of �̄. For instance, the fixed-
length scheme e → 0011, a → 1100, d → 0101, b → 1001, c → 1010 gives
unique decodability and p0 = p1 = 1/2.

4.4.7 In general, whenever the optimal input frequencies p̂1, . . . , p̂n are ra-
tional numbers, we can achieve exact input frequency optimization, pi = p̂i ,
i = 1, . . . ,n, with a uniquely decodable block code; just make � = lgth(w j),
j = 1, . . . ,m so large that it is possible to find m distinct words w1, . . . ,wm ∈ A�

such that the proportion of the occurrences of ai in each is exactly p̂i . And, if
some of the p̂i are irrational, we can approximate p̂ = (p̂1, . . . , p̂n) by a ratio-
nal vector (p1, . . . , pn) = p (satisfying

∑n
i=1 pi = 1, pi ≥ 0, i = 1, . . . ,n) as

closely as we wish, and then produce a fixed-length scheme from which the pi

arise as the input frequencies of the ai . Thus the variables p1, . . . , pn are truly
“vary-able,” as we promised in Chapter 3, and arrangements can be made in the
code, or input, “language,” so that the relative input frequencies are as close as
desired to optimal.

However, the method suggested in the preceding paragraph for approximat-
ing the optimal input frequencies is clearly inpractical; the code words would
have to be quite long, so that the rate of processing of source text would be quite
slow, and increasing that rate is generally reckoned to be of greater consequence
than the close approximation of the optimal input frequencies.

In the same vein, one might well question the importance of Problem 4.4.3,
although in this problem the approximation of the optimal input frequencies is
subordinated to minimizing �̄ – i.e., to speeding up the processing of source
text. As long as the scheme is uniquely decodable and �̄ is minimized, why
fiddle with trying to approximate the optimal input frequencies? Optimizing the
average amount of information conveyed by the channel per input letter, with
the input stream somewhat artificially regarded as randomly generated, may
seem an ivory-tower objective, an academic exercise of doubtful connection to
the real world problem of communicating a source stream through a channel.

However, it is an indirect and little-noted consequence of the famed Noisy
Channel Theorem, to be explained in Section 4.6, that there is a connection be-
tween the practical problems of communication and the problem of encoding
the source stream so that the input frequencies are approximately optimal. Not

© 2003 by CRC Press LLC

94 4 Coding Theory

to go into detail, the import of the NCT is that there exist ways of encoding the
source stream that simultaneously do about as well as can be done regarding
the two most obvious practical problems of communication: keeping pace with
the source stream (up to a threshold that depends on the channel capacity), and
reducing the error frequency, in the reconstitution of the source stream (decod-
ing) at the receiver of the channel. Although it is not explicitly proven in any of
the rigorous treatments of the NCT, the role of the channel capacity in the NCT
strongly argues for the information-theoretic folk theorem that the relative input
frequencies resulting from those wonderful optimizing coding methods whose
existence is asserted by the NCT must be nearly optimal, themselves.

This folk theorem is of particular interest when you realize that all known
proofs of the NCT are probabilistic existence proofs; there is no good construc-
tive way known of acquiring those coding methods whose existence is proved.
Furthermore, when you understand the nature of those methods, you will un-
derstand that they would be totally impractical, even if found. [The situation
reminds us of contrived gambling games in which the expected gain per play
is infinite, yet the probability of going bankrupt due to accumulated losses is
very close to one, even for Bill Gates.] So the problem of effective coding
realizing the aspirations expressed in the NCT is still on the agenda, and has
been for the 54 years (as this is written) since Shannon’s masterpiece [63]. So
far as we know, the indirect approach of aiming, among other things, to get
close to the optimal relative input frequencies by astute coding has not been a
factor in the progress of the past half-century. In part this has to do with the
fact that binary symmetric channels are the only channels that have been seri-
ously considered; also, it has been generally assumed that the relative source
frequencies are equal (see the discussion, next section, on the equivalence of
Maximum Likelihood Decoding and Nearest Code Word Decoding), and the
dazzling algebraic methods used to produce great coding and decoding under
these assumptions automatically produce a sort of uniformity that makes p0 and
p1 equal or trivially close to 1/2. Perhaps the problem of approximating the op-
timal input frequencies by astute encoding will become important in the future,
as communication engineering ventures away from the simplifying assumption
of equal source frequencies.

Exercises 4.4

1. We return to 4.3.4: S = {a,b,c,d,e}, fe = 0.3, fa = 0.25, fd = 0.2, fb =
0.15, and fc = 0.1. Find a scheme which solves the problem in paragraph
4.4.3 when

(a) A = {0,1}, p̂0 = 1/2 = p̂1;

(b) A = {0,1}, p̂0 = 2/3, p̂1 = 1/3;

(c) A = {0,1,∗}, p̂0 = p̂1 = p̂∗ = 1/3;

(d) A = {0,1,∗}, p̂0 = p̂1 = 2/5, p̂∗ = 1/5.

© 2003 by CRC Press LLC

4.5 Error correction and reliability 95

2. In each of (a)–(d) in the preceding problem, find a uniquely decodable
fixed-length scheme which gives the optimal input frequencies exactly. The
shorter the length, the better.

3. When |S| = m = 26, find the shortest length of a fixed-length prefix-condi-
tion scheme, by which the optimal input frequencies are realized exactly,
constructed as suggested in 4.4.7, when the code alphabet and optimal input
frequencies are as in 1(a)–(d), above. [Notice that the method suggested in
4.4.7 takes no account of the source frequencies.] Compare with the �̄ you
found in exercise 4.3.2 (a) and (b).

4. Verify the assertion about the case n = 2 made in 4.4.4. [Hint: observe that
if p1 + p2 = p′

1 + p′
2 = p̂1 + p̂2, then if |p1 − p̂1| ≤ |p′

1 − p̂1|, it follows
that |p2 − p̂2| ≤ |p′

2 − p̂2|, since |p1 − p̂1| = |p2 − p̂2| and |p′
1 − p̂1| =

|p′
2 − p̂2|.]

5. Suppose the source text is encoded by the scheme s j → w j ∈ A+, j =
1, . . . ,m, the source frequencies are f1, . . . , fm , and the ui j are as in The-
orem 4.4.1. We select a letter at random from the source text and look
at it; if it is s j , we then select a letter at random from w j . What is the
probability that ai will be selected by this procedure? Is this the same as
(�̄)−1 ∑m

j=1 ui j f j ? If not, why not?

6. This exerise concerns the efficiency of the brute-force algorithm suggested
for solving Problem 4.4.3.

(a) How many prefix-condition binary encoding schemes are there with
code word lengths 2,2,3,3,3,3?

(b) How many prefix-condition binary encoding schemes are there with
code word lengths 2,2,2,3,4,4?

(c) How many prefix-condition ternary (|A| = 3) encoding schemes are
there with code word lengths 1,2,2,2,2,2?

∗(d) Given |A| = n ≥ 2 and positive integers �1 ≤ ·· · ≤ �m satisfying∑m
j=1 n−� j ≤ 1, give a formula, in terms of n and �1, . . . ,�m , for the

number of different prefix-condition encoding schemes for S → A,
S = {s1, . . . ,sm}, with code word lengths �1, . . . ,�m . [See Section 1.6
and the proof of Kraft’s Inequality.]

4.5 Error correction, maximum likelihood decoding,
nearest code word decoding, and reliability

Let S = {s1, . . . ,sm } and A = {a1, . . . ,an} be as in the preceding sections, and
suppose that B = {b1, . . . ,bk} is the output alphabet of the channel of which
A is the input alphabet, the channel that we plan to use. Let Q = [qi j] be the

© 2003 by CRC Press LLC

96 4 Coding Theory

matrix of transition probabilities of this channel. Let f1, . . . , fm be the (relative)
source frequencies of s1, . . . ,sm , respectively. We shall consider only fixed-
length encoding schemes s j → w j ∈ A�, j = 1, . . . ,m, with the w j distinct, as
nature usually demands; so m ≤ n�.

Suppose we are trying to convey some source letter s j through the channel.
What we really send is the sequence w j of input characters. The channel does
whatever it does to w j , and what is received is a word w ∈ B+ of length �. You
are at the receiving end. You know the encoding scheme. The input string has
been timed and blocked so that you know that the output segment w resulted
from an attempt to transmit one of w1, . . . ,wm . How are you going to guess
which w j (and thus, which s j) was intended?

4.5.1 We are in a conditional probabilistic situation not unlike that of the man
who draws balls from an urn in a dark room, and later wonders which urn he
drew from (see 1.3.2 and exercise 1.3.5).

Surely the most reasonable choice of w j is that for which the conditional
probability

P(w j was sent | w was received) = P(w j was sent and w was received)

P(w was received)

is the greatest; thus it behooves us to inspect the numbers

P(w j ,w) = P(w j was sent and w was received).

These are calculated as follows. Suppose that w j = ai(1, j) · · ·ai(�, j); that is,
suppose that ai(s, j) ∈ A is the sth code letter in w j , reading left to right. Suppose
that w = bt1 · · ·bt� . Then

P(w j ,w) = P(w j was sent)P(w was received | w j was sent)

= f j qi(1, j),t1 . . .qi(�, j),t�

= f j

�∏
s=1

qi(s, j),ts

4.5.2 Example Suppose that S = {a,b,c}, A = {0,1}, B = {0,1,∗}, fa = .5,
fb = .3, fc = .2, and the transition probabilities are[

q00 q01 q0∗
q10 q11 q1∗

]
=

[
.9 .06 .04
.05 .92 .03

]
.

Suppose that the encoding scheme is a → 00, b → 11, and c → 01. Suppose
that w = 0∗ is received. Then

P(00,0∗) = faq00q0∗ = (.5)(.9)(.04) = .018,

P(11,0∗) = fbq10q1∗ = (.3)(.05)(.03) = .00045, and

P(01,0∗) = fcq00q1∗ = (.2)(.9)(.03) = .0054.

Of these, .018 is the greatest; having received 0∗, we would bet that 00, the code
word for a, was intended.

© 2003 by CRC Press LLC

4.5 Error correction and reliability 97

The practice of decoding received words w ∈ B� by choosing the j for
which P(w j ,w) is the greatest is called maximum likelihood decoding, or MLD,
for short. [In case there are two values of j for which P(w j ,w) is maximal,
and in case we choose not to decode such w, the practice is sometimes called
incomplete maximum likelihood decoding, or IMLD. We will stand by MLD, in
this text, even though we will not, in fact, decode w in case of ties.]

The MLD Table In a real situation, we would take care of the drudgery of
computing and comparing the numbers P(w j ,w) before attempting to decode
words received at the receiving end of the channel. The results of this computing
and comparing are collected in an MLD table, which consists of two columns:
on the left we list all k� = |B�| words w that might possibly be received, and
on the right the source letters s j corresponding to the w j for which P(w j ,w)

is maximal. That is, opposite each possible received word w ∈ B�, we put the
source letter s recommended by MLD for decoding w.1

It should be obvious how the MLD table is to be used at the receiving end
of the channel. It functions as a dictionary, and for that reason the words w ∈ B�

should be arranged in some reasonable lexicographic order for rapid “looking
up.” In practice, the process of looking up w and decoding will be electronic.

4.5.3 Example In the situation of Example 4.5.2, the MLD table (with B� ar-
ranged in one of the two obvious lexicographic orders) is

(Receive) w Decode s
00 a
01 c
0∗ a
10 a
11 b
1∗ b
∗0 a
∗1 b
∗∗ a

(Verify that this table is correct.) Thus, if ∗0 were received, we would quickly
decode a.

It may come as a surprise that MLD, as described, is virtually never used in
current practice, except when it coincides with Nearest Code Word Decoding,
to be described next.

Definition Suppose that B is an alphabet, and that u,v ∈ B� for some positive
integer �. The Hamming distance between u and v, denoted dH (u,v), is the
number of places at which u and v differ.

1In case there are two or more values of j for which P(w j ,w) is maximal, tie-breaking rules
can be introduced to choose among the candidates s j . These rules might arise from considerations
peculiar to the particular situation. In this text, we will enter “dnd” for “do not decode” in the
decoding column, in case of ties.

© 2003 by CRC Press LLC

98 4 Coding Theory

For instance, if B = {0,1,∗}, then dH (01101,111 ∗0) = 3. Verify that dH

is a metric on B�; that is, for any u,v,w ∈ B�, dH (u,v) = dH (v,u) ≥ 0, with
equality if and only if u = v, and dH (u,v) ≤ dH (u,w)+ dH (w,v).

4.5.4 The metric dH represents one reasonable way of defining the distances
between the words of B�. We could jazz things up considerably, and provide se-
rious mathematicians with hours of fun, by generalizing the Hamming distance
as follows. Let δ be any metric on B , and let ρ : [0,∞)� → [0,∞) satisfy:

(i) 0 ≤ xi ≤ yi , i = 1, . . . ,� ⇒ ρ(x1, . . . ,x�) ≤ ρ(y1, . . . , y�);

(ii) ρ(x + y) ≤ ρ(x)+ρ(y), for x, y ∈ [0,∞)�; and

(iii) ρ(x) = 0 if and only if x = 0 ∈ [0,∞)�.

Then the generalized Hamming distance between words u = u1 . . .u� ∈ B� and
v = v1 . . .v� ∈ B�, associated with δ and ρ, is dG H (u,v) = ρ(δ(u1,v1), . . . ,

δ(u�,v�)). Observe that dG H = dH when δ is the so-called trivial metric defined
by

δ(a,b) =
{

1, if a �= b,

0, if a = b,

and ρ is defined by ρ(x1, . . . ,x�) = ∑�
i=1 xi .

This sort of thing is amusing, but is it useful? So far as anyone can tell, at
this stage of history, no. However, see Exercise 4.5.3.

Nearest Code Word Decoding (NCWD) Suppose that A ⊆ B , and we have a
fixed length encoding scheme s j → w j ∈ A�. In NCWD, having received w ∈
B�, we decode w as that s j (if there is exactly one such) for which dH (w j ,w)

is least. If there are two or more j such that dH (w j ,w) is minimal, we do not
decode.

For example, if S = {a,b,c}, A = B = {0,1}, and the encoding scheme is
a → 000, b → 111, c → 010, then if 100 is received, we decode a in NCWD.
If 011 is received, we do not decode in NCWD, because both 111 and 010 are a
(minimal) distance one from 011.

NCWD is a much easier decoding method than MLD. It is not just that
it is easier to make up a decoding table or dictionary under the “nearest code
word” criterion, than under the “most likely to have been sent” measure; the
act of comparing words to determine their Hamming distance apart is so simply
algebraic that it lends itself to slick, fast decoding algorithms that run much
faster than the “looking up w on a list” method that we use for MLD. Instances
of clever choices of w1, . . . ,wm leading to clever NCWD algorithms are beyond
the scope of this course, but they form the majority of the subject matter of
advanced algebraic coding theory (see [30]).

But the simplicity of NCWD comes at a price; NCWD ignores the transi-
tion probabilities and the source frequencies, and is therefore possibly unreli-
able. See Exercise 4.5.2(a), and note the difference between NCWD and MLD
in this case. What if the infrequently transmitted source message were “launch

© 2003 by CRC Press LLC

4.5 Error correction and reliability 99

the missiles” or some such apocalyptic command? Pretend that you are the
manager in charge of communications at a missile silo emplacement in North
Dakota, and the source frequencies are not, in fact, known a priori, as is often
the case. Pretend that you have a Master’s Degree in Applied Mathematics from
a large southern state university, and have taken a couple of courses in coding
theory that get into sophisticated codes and decoding algorithms that are, in fact,
NCWD. Will you “use your education” by resorting to some satisfyingly fancy
form of NCWD for transmissions to and from the missile silos, for messages
ranging from “Fred, please pick up a bunch of parsley and a pound of Vaseline
on the way home” to “Arm and launch immediately!”? Let’s hope not. The
scene is fanciful, but there is an important point, which we hope you get.

So, when can you depend on NCWD? The following theorem gives a suf-
ficient condition.

4.5.5 Theorem Suppose that A = B , that the relative source frequencies are
equal (to 1/m), that qii = q > 1/n, i = 1, . . . ,n, and that the off-diagonal tran-
sition probabilities qi j , i �= j , are equal. Then NCWD and MLD are the same,
whatever the fixed-length encoding scheme.

Proof: Under the hypotheses, qi j = (1−q)/(n −1) for i �= j . For any scheme
s j → w j ∈ A�, j = 1, . . . ,m, and any w ∈ B� = A�,

P(w j ,w) = 1

m
q�−d(1 − q

n − 1

)d = q�

m

(1 − q

q(n − 1)

)d
,

where d = dH (w j ,w). Since 1/n < q ≤ 1, it follows that 0 ≤ 1−q
q(n−1)

< 1, and
thus P(w j ,w) is a decreasing function of d = dH (w j ,w). If q = 1, the channel
is perfect, and NCWD and MLD coincide trivially. If q < 1, then P(w j ,w) is
a strictly decreasing function of d = dH (w j ,w); consequently, the unique j , if
any, for which dH (w j ,w) is minimal, is also the unique j for which P(w j ,w)

is the greatest.

4.5.6 Corollary When the channel is a binary symmetric channel, with reli-
ability greater than 1/2, and the relative source frequencies are equal, then
NCWD and MLD are the same.

4.5.7 The hypothesis of Theorem 4.5.5, regarding the transition probabilities,
says that the channel is an n-ary symmetric channel with reliability q > 1/n
(see section 3.4). It is quite common to know, or strongly suspect, a channel to
be n-ary symmetric without knowing the reliability.

The hypothesis of Theorem 4.5.5 regarding the source frequencies raises
a philosophical question about probability: if the source frequencies are not
known a priori, should we take them to be equal? Clearly whatever knowledge
we have should affect our estimates of probability—for instance, although we
do not know for sure that the sun will rise tomorrow, it would be rash to as-
sign probability 1/2 to the possibility that it will not. So we are in delicate

© 2003 by CRC Press LLC

100 4 Coding Theory

circumstances when we have a binary symmetric or, more generally, an n-ary
symmetric channel and a data communication problem in which we do not know
beforehand how frequently the various data are likely to be transmitted. Should
we attempt to complicate the decoding process by taking into account our sense
of likely bias in the frequencies of the source messages? And, if so, how?

The usual answer is to ignore the problem and to resort to NCWD. The
usual theory of binary block codes starts from the implicit assumption that the
relative source frequencies are equal; indeed, the source alphabet and the en-
coding scheme are not elements of the theory, nor even mentioned. We mention
this as a caution to future appliers of coding theory.

It can be persuasively argued that the alleged weakness of NCWD—that it
leaves the source frequencies and the transition probabilities out of account—is
actually a practical strength. The argument rests, not on the ease of NCWD, but
on the undebatable fact that in many situations the source frequencies and the
transition probabilities are fictional quantities, unknown and unknowable.

Reliability and Error Given a source, a channel, a way of encoding the source
stream into a string of channel input letters, and a method of decoding the output
at the channel receiver, so that for each letter appearing in the original source
stream, some source letter will appear in its place in the hopefully resurrected
source letter stream emerging from the decoder: the reliability R of the given
code-and-channel system is the probability that a letter randomly selected from
the source stream will be decoded correctly at the receiver—i.e., R is the proba-
bility that a randomly selected letter from the source stream will be successfully
communicated by the code-and-channel system.

The (average) error probability of the code-and-channel system is E = 1−
R. The maximum error probability of the system, denoted Ê , is the maximum,
over the source letters s, of the probability of an error at a randomly selected
spot in the source stream, supposing that s occupied that spot in the original
stream.

We will calculate R, E , and Ê in the circumstances that allow full-fledged
MLD. That is, suppose we are given S, f1, . . . , fm , A, B, Q, and a fixed-length
encoding scheme s j → w j ∈ A�, j = 1, . . . ,m, for S → A.

Given an MLD table for the code-and-channel system, the reliability R can
be calculated as follows. For each j = 1, . . . ,m, let

N j = {w ∈ B�; MLD decodes w as s j }.
The N j can be read off from the MLD table; N j consists of those w in the
left-hand column of the table opposite the occurrences of s j in the right. Then

© 2003 by CRC Press LLC

4.5 Error correction and reliability 101

R =
m∑

j=1

P
(s j is selected for transmission,
and the word w received lies in N j

)

=
m∑

j=1

f j P(transmission of w j results in a received word w ∈ N j)

=
m∑

j=1

f j

∑
w∈N j

P(w was received | w j was sent)

=
m∑

j=1

f j

∑
w∈N j

P(w | w j),

where, as noted in 4.5.1, P(w | w j) = ∏�
s=1 qi(s, j),ts , when w j = ai(1, j) · · ·ai(�, j)

and w = bt1 · · ·bt� .

Example In Example 4.5.3, we have Na = {00,0∗,10,∗0,∗∗}, Nb = {11,1∗,

∗1}, and Nc = {01}. Thus

R = .5[(.9)2 + (.9)(.04)+ (.06)(.9)+ (.04)(.9)+ (.04)2]
+ .3[(.92)2 + (.92)(.03)+ (.03)(.92)]+ .2[(.9)(.92)]

= .90488,

and E = 1 − R = 0.09512.

The maximum error probability Ê is calculated as follows:

Ê = max
1≤ j≤m

P(incorrect decoding | s j was intended)

= max
1≤ j≤m

P(the received w ∈ B� does not lie in N j | w j was transmitted)

= 1 − min
1≤ j≤m

P(w ∈ N j | w j was transmitted).

Notice that, for each j , P(w ∈ N j | w j was transmitted) is the quantity mul-
tiplied by f j in the expression for R, above. For instance, again referring to
the circumstances of Examples 4.5.2 and 4.5.3, we calculate that c has the least
likelihood, 0.828, of being correctly transmitted, and thus, for that code and
channel, Ê = 1 − .828 = .172.

Observe that Ê does not take the source frequencies into account (although
they do enter anyway, in the construction of the MLD table). It is a “worst-case”
sort of measure of error likelihood.

4.5.8 For many code-and-channel systems we have “do not decode” occurring
in the right hand column (the decode column) of the MLD table, corresponding
to words w ∈ B� for which there are two or more j for which P(w j ,w) is
maximal. With such a table, we have a number of choices to make in assessing
the likelihood of error. Should a “do not decode” message, which surely signals

© 2003 by CRC Press LLC

102 4 Coding Theory

some sort of failure of the system, weigh as much in our estimation as an out-
and-out error, in which we decode the wrong source message from the received
word w? In the definitions of E and Ê , above, the two different sorts of error are
treated as the same, but most people would agree that in most situations the “do
not decode” message is a less serious sort of error than an incorrect decoding of
which we are unaware.

There are an endless number of ways of weighting the significance of the
various errors that could occur, using any particular code-and-channel system.
You should be aware that the definitions of E and Ê given here are not graven
in stone, and that in the real world you might do well to fashion a measure of
error likelihood appropriate to the real situation, a measure which takes your
weighting of error significance into account. See the end of this section for
exercises on error weighting, and on the computation of reliability and error
when NCWD is used.

Reliability of a channel Suppose we have a channel with input alphabet A,
output alphabet B , and transition probabilities qi j , i = 1, . . . ,n, j = 1, . . . ,k. Let
us adjoin a code by taking S = A, f j = p̂ j , j = 1, . . . ,n, where (p̂1, . . . , p̂n) is
some n-tuple of optimal input frequencies, and the encoding scheme a j → a j ,
j = 1, . . . ,n. The reliability R (with respect to MLD) of the resulting code-and-
channel system will be called the reliability of the channel. (Perhaps the definite
article is not justified here when (p̂1, . . . , p̂n) is not unique; we pass over this
difficulty for now.)

In the case of an n-ary symmetric channel, one satisfying the hypothesis of
Theorem 4.5.5, we can take (p̂1, . . . , p̂n) = (1/n, . . . ,1/n), and then the equal-
ity of the imposed source frequencies f1, . . . , fn implies that MLD and NCWD
coincide, by Theorem 4.5.5. Clearly, for each a j ∈ A, the unique word over A
of length 1 closest to a j is a j itself. That is, N j = {a j }. Thus

R = 1

n

n∑
j=1

P(a j is received | a j is sent)

= 1

n

n∑
j=1

q j j = 1

n
nq = q,

the constant main diagonal entry in the matrix of transition probabilities.
Consequently, the definition of channel reliability given here agrees with

the prior definition of the reliability of an n-ary symmetric channel, at least
when that reliability is greater than 1/n.

When the optimal input frequencies are difficult to obtain, and the channel
is “close” to being n-ary symmetric (see the discussion in section 3.4), a rough
estimate of the reliability of the channel may be obtained by taking the source
frequencies to be equal (to 1/n). For instance, consider the channel described
in Example 4.5.2. With respect to the the encoding scheme 0 → 0, 1 → 1, we

© 2003 by CRC Press LLC

4.5 Error correction and reliability 103

have N0 = {0,∗} and N1 = {1} (since P(0,∗) = 1
2 (.04) > P(1,∗) = 1

2 (.03)),
whence R ≈ 1

2 [.9 + .04]+ 1
2 [.92] = .93.

The reliability of a discrete memoryless channel, as defined here, appears
to be a new index of channel quality. Its relation to channel capacity has not
been worked out, and it is not yet clear what role, if any, reliability will play in
the theory of communication.

Exercises 4.5

1. In each of the following, you are given a source alphabet S, a code (and
input) alphabet A, an output alphabet B , source frequencies f1, . . . , fm , an
encoding scheme, and the matrix Q of transition probabilities. In each case,
produce (i) an MLD table, (ii) the reliability R, and (iii) the maximum error
probability of the code-and-channel system.

(a) S = {a,b,c}, A = {0,1}, B = {0,1,∗}, fa = .4, fb = .35, fc = .25,
a → 00, b → 11, c → 01, and

Q =
[

q00 q01 q0∗
q10 q11 q1∗

]
=

[
.8 .15 .05
.1 .86 .04

]
.

(b) S = {a,b,c,d,e}, A = B = {0,1,∗}, fa = .25, fb = .15, fc = .05,
fd = .15, fe = .4, a → 00, b → 01, c → 0∗, d → 10, e → 11, and

Q =

q00 q01 q0∗

q10 q11 q1∗
q∗0 q∗1 q∗∗

 =

.95 .03 .02

.04 .92 .04

.06 .04 .9

 .

(c) S = {a,b,c,d,e}, A = B = {0,1}, the source frequencies are as in
(b), the encoding scheme is a → 000, b → 001, c → 010, d → 011,
e → 100, and the channel is binary symmetric with reliability .9.

2. Suppose the available channel is binary symmetric with reliability .8.
Suppose S = {a,b}, fa = .999, fb = .001, and the encoding scheme is
a → 000,b → 111.

(a) Verify that MLD will decode every word w ∈ {0,1}3 as ‘a’.
(b) Calculate the reliability of this code-and-channel system and the max-

imum error probability.

(c) Same question as (b), but use NCWD.
(d) How large must t be so that, if we consider the encoding scheme a →

0t = 0 · · ·0 (t zeroes) and b → 1t , then MLD will decode 1t as b?

(e) Find the reliability and the maximum error probability of the code-
and-channel system obtained by taking the scheme you found in part
(d), when the decoding method is MLD and again when it is NCWD.

3. For each instance of δ and ρ as in 4.5.4, and each code-and-channel system
with A = B and a fixed-length encoding scheme s j → w j , j = 1, . . . ,m

© 2003 by CRC Press LLC

104 4 Coding Theory

of length �, we can define a nearest-code-word sort of decoding associated
with δ and ρ, to be denoted NCWD(δ,ρ), as NCWD was defined, but with
the metric dG H arising from δ and ρ playing the role that dH plays in the
definition of NCWD. That is, having received w ∈ A�, we decode w as that
s j for which dG H (w,w j) is the least, provided there is a unique such j . If
there is no unique such j , we report “do not decode.”

One reason for considering the metrics dG H is the possibility that, given
a code-and-channel system, there may be choice of δ and ρ such that
NCWD(δ,ρ) and MLD coincide for that system. The requirements on the
system for the existence of such a pair (δ,ρ) await disclosure, but we can
see readily that there are cases when there is no such pair.

(a) Show that, with (δ,ρ) and NCWD(δ,ρ) as above, if the code words
w j , j = 1, . . . ,m, are distinct, then NCWD(δ,ρ) will decode w j as s j .

(b) Conclude that there is no pair (δ,ρ) for which NCWD(δ,ρ) and MLD
coincide on the code-and-channel system of Exercise 2(a), above.

4. Estimate the reliability of each of the channels mentioned in exercise 1,
above, by imposing equal source frequencies on the input characters. (Of
course, in (c) the result will be exact.)

5. The average error probability can be thought of as the average cost of an
attempted transmission of a source letter (from the choosing of the source
letter to the result after decoding), where the cost of an error is one unit,
and the cost of no error is zero.

It follows that we can refine the average error probability as a measure
of system failure by distinguishing more finely among the outcomes of
the “choose s j – transmit w j – decode” experiment, assigning different
appropriate costs to these outcomes, and then calculating average cost. This
type of refinement was alluded to in 4.5.8.

For example, in the circumstances of Exercise 2 above, it may be that
source message b is extremely grave and that it would be very costly to
mistake a for b. Let us suppose that, whatever the decoding method, de-
coding b when a was intended costs 1000 units, decoding a when b was
intended costs 100 units, getting “do not decode” when a was intended
costs one unit, and “do not decode” when b was intended costs 50 units. A
correct transmission costs nothing. Find the average cost of an attempted
transmission when

(a) the decoding method is MLD and the scheme is as in Exercise 2(a),
above;

(b) the decoding method is NCWD and the scheme is as in 2(a);
(c) the decoding method is MLD and the scheme is the one you found in

2(d);
(d) the decoding method is NCWD and the scheme is that of 2(d).

© 2003 by CRC Press LLC

4.5 Error correction and reliability 105

6. In each part of Exercise 1, compute the reliability, the average error proba-
bility, and the maximum error probability of the system in which decoding
is by NCWD and in which

(i) “do not decode” counts as an error;
(ii) “do not decode” does not count as an error;

(iii) “do not decode” counts as one-half of an error.

In each case, assume that the relative source frequencies are known, and
are as given.

7. The channel is binary and symmetric, with reliability p, 1/2 < p < 1.
There are two source messages, a and b, with equal frequency. For a pos-
itive integer t , consider the encoding scheme a → 0t , b → 1t . Let R(t)
and E(t) = 1 − R(t) denote the reliability and average error probability,
respectively, of this code-and-channel system, using MLD (= NCWD, in
this case); note that E(t) = Ê(t) by the symmetry of the situation. Let
R0(t) and E0(t) denote the corresponding probabilities if “do not decode”
is considered a success, not a failure.

(a) Express R(t) and R0(t) explicitly as functions of p and t .
(b) Show that R(t +1) = R0(t)−

(t
�t/2�

)
p�t/2	(1− p)�t/2�+1 for each pos-

itive integer t .
(c) Show that R(t) ≤ R(t +2) and that R0(t) ≤ R0(t +2) for each positive

integer t .
(d) Show that R(t) → 1 as t → ∞.

[Hints: consider the cases where t is odd or even separately, for (a), (b),
and (c). For (d), use the fact that p > 1/2, and the Law of Large Numbers;
see section 1.9.]

8. Suppose that |S| = m = 35, and we have a shortest possible fixed-length
encoding scheme for a uniquely decodable code. How long will the MLD
table be when

(a) |A| = |B| = 2;
(b) |A| = 2, |B| = 3;
(c) |A| = |B| = 3?

9. In Exercises 1 (b) and (c), above, note that the encoding schemes are as
short as possible, but not thoughtfully conceived. For instance, in 1(b),
the code word for e, the most commonly encountered source letter, is a
Hamming distance 2 from the word for c, the least common code word, but
a distance 1 from each of the words for b and d . Surely it would increase
the reliability R if we interchange the code words representing c and d , or
c and b.

Verify that this is so. Also, find a fixed-length scheme, of length 3, to
replace the scheme in 1(c), which increases the reliability.

© 2003 by CRC Press LLC

106 4 Coding Theory

4.6 Shannon’s Noisy Channel Theorem

The theorem referred to describes a beautiful relationship between the compet-
ing goals of (a) transmitting information as rapidly as possible, and (b) making
the average error probability as small as possible, given a source and a channel.

For us, a “source” consists of a source alphabet and a probability distribu-
tion over the source alphabet, the relative source frequencies. In the “model”
that we have been using, the source letters are emitted, randomly and indepen-
dently, with the given relative frequencies (which may be arrived at by observ-
ing the source for a long time). Shannon’s Noisy Channel theorem applies to a
more general sort of source, one which emits source letters, but not necessarily
randomly and independently. We will have a more thorough discussion of these
sources at the end of Chapter 7.

It is curious that the Noisy Channel Theorem is widely regarded as the
centerpiece of information theory, yet both the statement and the proof of the
theorem are largely useless for practical purposes. Nor can it be said that the
theorem has worked indirectly as an inspiration in the actual devising of efficient
“error-correcting” codes, nor in the theory of such things, which could be, and
usually is, laid out without a single occurrence of the word entropy. Yes, the
greats of coding theory were aware of Shannon’s theory and the Noisy Channel
Theorem, but so are professors of accounting or finance aware of the Unique
Factorization Theorem for the positive integers.

The rightful acclaim that the Noisy Channel Theorem enjoys arises, we
think, from its beauty. Shannon’s definitions of information and entropy were
audacious and not immediately convincing. Of course, a definition is not usually
required to be convincing, but when you attempt a definition of a word that
carries a prior connotation, as do information and entropy, the definition should
have implications and overtones that agree with the prior connotation. Shannon
was very aware of this informal requirement; he went so far as to show ([63] and
[65]) that if the entropy of a system is to be the average information contained in
the system (of events), and if entropy is to satisfy certain plausible axioms, then
information must be defined as it is. (As we saw in Section 2.1, a simpler and
more convincing demonstration of the inevitability of Shannon’s quantification
of information was later discovered by Aczél and Daroczy [1].)

Still, the newcomer to the theory might be forgiven a bit of queasiness
as conditional entropy and mutual information are added to the list of funda-
mentals, with channel capacity coming along as a corollary. As touched on
in Section 3.4, Shannon’s interpretation of channel capacity as measuring the
maximum possible rate of information flow through a channel, which is what
channel capacity sounds like it ought to measure, was supported by examples
and extremal considerations—but is that enough?

The beauty of the Noisy Channel Theorem lies at least partly in the valida-
tion it provides of the interpretation of maximum mutual information between

© 2003 by CRC Press LLC

4.6 Shannon’s Noisy Channel Theorem 107

inputs and outputs as measuring maximum possible information flow. In brief,
the main statement of the theorem says that if the rate of information flow from
the source is less than the channel capacity, then you have enough room to afford
the luxury of error correction—you can make the maximum error probability as
small as you please, if you are willing to take the trouble, while accommodating
the information flow from the source with no accumulated delays or backlog.
Does that not make the channel capacity sound like a maximum possible rate
of information flow? Another similarly telling assertion in Shannon’s original
formulation of the theorem is that if the rate of information flow from the source
is greater than the channel capacity, then the average error probability cannot be
reduced below a certain positive amount, a function of the source frequencies
and time rate and of the channel’s transition probabilities.

Think of a flash flood bearing down on a culvert. The culvert pipe can
convey a certain maximum volume of water per unit time. If the rate at which
the flood is arriving at the pipe entrance is below that maximum rate, then,
in ideal principle, the water can be directed through the pipe without a drop
sloshing over the roadway above the culvert, and without a pond of unconveyed
water building up on the flood side of the culvert. In practice, the directing of
the flood waters into the pipe, a civil engineering problem, will not be perfect –
some water will be lost by sloshing. But as long as the flood flow is below the
theoretical maximum that the pipe can handle (the pipe’s capacity), steps can be
taken to reduce the sloshing loss (error) below any required positive threshold,
while maintaining flow and avoiding backup. If the flood rate exceeds the pipe
capacity, then no engineering genius will be able to avoid some combination
of water loss and backup; the flood volume per unit time in excess of the pipe
capacity has to wind up somewhere other than the pipe.

These common sense observations regarding floods and culverts serve as a
good analogy to the conclusions of the NCT, with the source stream playing the
role of the flood waters, the channel playing the role of the culvert pipe, and the
coding/decoding method playing the role of the hypothetical engineering mea-
sures taken to direct the flood water into the pipe, so as to keep slosh tolerable
while maintaining flow. The beauty and inevitability of the NCT reside in the
closeness of this analogy, in our opinion.

The geometry of the ancient Greeks could have been used by ancient Greek
craftsmen to make measurements and designs, but the historical evidence appar-
ently indicates that it was not so used. Geometry was propagated in the intel-
lectual world over two millenia purely because of its beauty; utility was not a
factor. The Noisy Channel Theorem inserts a promise of inevitability, of im-
mortality, in information theory. It is analogous to the theorem in geometry that
the sum of the interior angles of a planar triangle is a straight angle. There is
more to geometry than that, and we hope that there will be more to information
theory than the Noisy Channel Theorem; nonetheless, the theorem alone, and
its immediate consequences, are of considerable weight.

© 2003 by CRC Press LLC

108 4 Coding Theory

Preliminaries Suppose a channel, (A, B, Q), is given, and also a source alpha-
bet S = {s1, . . . ,sm } with relative source frequencies f1, . . . , fm , all positive. As
usual, H (S) = ∑

j f j log1/ f j .
Suppose that the source emits r characters per unit time. Since the average

information content per character is H (S), it follows that the source is emitting
information at the rate r H (S) information units per unit time, on average. Let
C denote the channel capacity. Suppose that the channel transmitter can send
off ρ input letters per unit time. (So, by Shannon’s interpretation of I (A, B),
the channel can convey a maximum of ρC units of information per unit time,
on average.)

4.6.1 The Noisy Channel Theorem If r H (S) < ρC , then for any ε > 0 it is
possible to encode the source stream and arrange a decoding method so that on
average each source character is represented by no more than ρ/r input charac-
ters, and so that the maximum, over the source characters, of the probability of
an error at an occurrence of the character in the source stream, is less than ε.

If r H (S) > ρC , then there is a positive number ε0 such that no matter
how the source stream is encoded and decoded, if, on average, each source
character is represented by no more than ρ/r input characters, the average error
probability of the code-and-channel system will be greater than or equal to ε0.

We will give a synopsis of the proof shortly, but first a few comments are in
order. Since input letters are transmitted at the rate of ρ per unit time and source
letters appear at the rate of r per unit time, clearly the requirement that the
source stream be encoded so that the average number of input letters per source
letter is not greater than ρ/r is meant to insinuate that the flow of information
from the source, through the channel to the receiver, and then to the decoder,
proceeds smoothly, with no backlog of unprocessed source letters. It can be,
and often is, objected that this view of things leaves out of account the time
spent encoding and decoding. However, this objection is not entirely fair.

In the proof of the NCT, the encoding is to be by a fixed length scheme
applied, not to S, but to SN , for some large integer N . The length of the
fixed-length scheme is to be approximately ρN/r . Another objection to this
procedure is that the encoder has to wait N/r time units for a sequence of N
source letters to accumulate. But the two objections, about time spent encod-
ing and decoding on the one hand, and time spent waiting for N source letters
to accumulate on the other, cancel each other out, if we can be quick enough
in encoding and decoding—and by “quick enough” we do not mean instanta-
neous, we mean taking no longer than N/r time units to encode a source word
of length N and to decode an output word, at the receiver, of length ρN/r . If
we can encode and decode that quickly, then we can spend the time waiting for
the next source word of length N to accumulate by encoding the most recently
emerged source word, transmitting the encoded version of the one before that,
and decoding the one before that. It is true that there will be a hiatus of up to
N/r time units between reports from the decoder, but the reward for the wait

© 2003 by CRC Press LLC

4.6 Shannon’s Noisy Channel Theorem 109

will be, not a lone source letter, but a great hulking source word of length N .
So the source stream lurches rather than flows, but the average rate at which
source letters emerge from the decoder will be the same as the rate at which
they entered the encoder: r per unit time.

If you followed this discussion, you might then look back at the statement
of the NCT and wonder what that business is about the maximum error proba-
bility over the source characters. If we are going to encode SN , shouldn’t we
think about the maximum error probability over SN ? Well, no; and, in fact,
that maximum error probability will not be made small. What is meant by the
probability of an error at an occurrence of a source letter s is the probability
that, when s occurs in the source stream, the place in the stream emerging from
the decoder that was occupied by s originally, is occupied by something other
than s. If we are encoding source words of length N , such an error can oc-
cur only if s occurred in some source block of length N that got misconstrued
by the code-channel-decode system; that is, every such error is part of a larger
catastrophe.

In asserting that the maximum error probability over the single source let-
ters can be made as small as desired, with a code that keeps up the rate of
information flow when r H (S) < ρC , we are departing from the usual state-
ment of this part of the NCT. The usual statement these days (see [4] and [81])
is mathematically stronger, or no weaker, than our statement, but suffers from
opacity. We think it is wise to sacrifice strength for friendliness in a theorem
that is not really used for anything. We will mention the usual conclusion in the
proof synopsis, below.

In the last assertion of the NCT, we also depart from Shannon’s version,
again for esthetic reasons. We will indicate how Shannon put it below.

Synopsis of the proof of the NCT As mentioned above, the idea is to encode
SN , with N a large integer, by a fixed-length scheme of length � = �ρN/r�.

By the Law of Large Numbers, if N is large, the source words of length N
in which the proportions of the source letters within the word differ markedly
from the f j have very small probability, collectively. [For instance, if S =
{a,b,c}, fc = .2, and n = 10,000, the probability that a source word of length
10,000 will contain fewer than 1,000 c’s, or more than 3,000 c’s, is minuscule.]
We take N large and divide SN into two sets of words, L (for likely), in the
words of which the source letters occur in proportions quite close to the f j , and
U (for unlikely), U = SN \ L. How large N is, and how close those proportions
are to the f j , depend on ε, r , H (S), ρ, and C . In any case, P(U) = ∑

w∈U P(w)

is very small.
Now the idea will be to assign to each word in L a code word w ∈ A�,

� = �ρN/r�. As for the words in U—ignore them! If you must encode them,
assign them any which way to the code words for L. This means that when a
word in U actually occurs, after encoding and transmission the word received is
almost certain to be misdecoded—but the likelihood of a word in U emerging
from the source is, by arrangement, so small that this certainty of error in these

© 2003 by CRC Press LLC

110 4 Coding Theory

cases will have very little effect on the probabilities of errors at occurrences of
the source characters.

Now, how do we find an encoding scheme for L → A�? This is where we
will be very synoptic; we don’t actually “find” an effective encoding scheme.
There is a probabilistic proof of the existence of w1, . . . ,w|L| ∈ A� such that if
the w j are transmitted and decoded by MLD, assuming they have approximately

equal likelihood L−1 ≈ (∏m
j=1 f

f j
j

)N , then max1≤ j≤L P(the received word is
misdecoded | w j was transmitted) < ε/2, say. (This is the stronger conclusion
in this part of the NCT alluded to in earlier discussion. Provided P(U) < ε/2,
it certainly implies that the maximum probability of an error at a single source
character is less than ε.)

It is in this probabilistic existence proof that the inequality r H (S) < ρC en-
ters strongly—of course, it has already subtly influenced the foresightful choice
of N to be sufficiently large to make everything work. We omit all details of
this proof—we hope to stimulate the reader’s curiosity. Be warned, however, in
looking at the proofs in [4], [37], and [81], that the tendency is to first convert
the source S to a binary source, which murks everything up.

As for the other conclusion of the NCT, when r H (S)> ρC , it can be shown
by general monkeying around as in Shannon’s original proof in [63] that the
conditional entropy or equivocation, H (S | B), the measure of uncertainty about
the source, given the output, no matter what the coding method, can be no less
that (r/p)H (S)− C . Shannon would have left it at that. To get the conclusion
we desire, we need a connection between the equivocation and the average error
probability. There is one. It is called Fano’s Inequality. See, e.g., [81], p. 43.

This concludes our synopsis. You can see that the horrible thing about the
proof is that, when r H < C , it does not tell you how to encode SN so that maxi-
mum single-letter error probability is made less than ε. Sharper formulations do
give estimates of N , but the estimates are discouragingly large. Small wonder
that NCT is solemnly saluted by coding theorists far and wide, and then put in
a drawer; in the next section we will look at the fields where practical coders
really play.

Exercises 4.6

1. Suppose that S = {a,b,c}, fa = .5, fb = .3, fc = .2, and the channel is
binary and symmetric with reliability .95. Suppose that the channel can
transmit 100 bits (binary digits) per second. According to the NCT, what
is the upper limit on the number of source characters per second that this
channel can theoretically handle without backlog and with maximum single
letter error probability as small as desired (but not zero)?

2. Suppose that the source alphabet S, the relative source frequencies, and the
channel are as in problem 1. Suppose that S2 is encoded as follows:

© 2003 by CRC Press LLC

4.7 Error correction with binary symmetric channels and equal source frequencies 111

aa → 0000 ba → 0101 ca → 1001
ab → 1111 bb → 1100 cb → 0110
ac → 1010 bc → 0011 cc → 1110

Find the maximum single letter error probability and the average single
letter error probability. [This will involve more than making an MLD table,
but you may as well make one as an aid. Assume that the source letters are
emitted randomly and independently, so that the relative frequency of the
two-letter sequence ac, for instance, would be (.5)(.2) = .1.]

3. Again, S and the relative source frequencies are as in problem 1, and it is as-
sumed that the source letters are emitted randomly and independently. Find
a binary encoding scheme for S2 using Huffman’s algorithm, and compute
the average number of code letters per source letter if this scheme is used
to encode the source stream.

4.7 Error correction with binary symmetric channels
and equal source frequencies

The case of equal source frequencies and a binary symmetric channel is a very
important special case because it is the case we think we are in, in a great
number of real, practical situations in the world today. Or, perhaps we just
hope and assume that we are in this situation; see 4.5.7 and Section 3.1.

By Corollary 4.5.6, when the channel is binary and symmetric with reli-
ability p > 1/2 and the source frequencies are equal, MLD and NCWD coin-
cide. Thus, for each w ∈ {0,1}� received, we decode by examining the words
w1, . . . ,wm ∈ {0,1}� in the encoding scheme and picking the one, if any, closer
to w in the Hamming distance sense than are any of the other wi . In this section
we will see a way that this procedure might be simplified, at the cost of some
reliability.

As remarked in 4.5.7, the situation described in the title of this section is
the setting of most of coding theory, which is mainly about binary block codes.
We shall not go far into that theory, but during our excursion we shall observe
its customs. For one thing, we shall refer to the set C = {w1, . . . ,wm} ⊆ {0,1}�
of code words appearing in the encoding scheme as the code, and all mention
of the source alphabet and of the encoding scheme will be suppressed. This is
not unreasonable in the circumstances, since our decoding method is NCWD;
the only thing we need to know about the source alphabet is its size, m ≤ 2�.

Definitions The operation + is defined on {0,1} by 0+0 = 0, 0+1 = 1+0 = 1,
and 1+1 = 0. The operation + is then defined on {0,1}� coordinatewise, given
the definition above. [For example, with � = 5, 01101 + 11110 = 10011.]

The Hamming weight of a word w ∈ {0,1}� is wt(w) = number of ones
appearing in w. [For example, wt(10110) = 3.]

© 2003 by CRC Press LLC

112 4 Coding Theory

If w1, . . . ,wm ∈ {0,1}� are distinct words, the distance of the code C = {w1,

. . . ,wm} is

d(C) = min
1≤i< j≤m

dH (wi ,w j) = min
w,v∈C
w �=v

dH (w,v)

4.7.1 For u,v ∈ {0,1}�, note that u +v has ones precisely where u and v differ.
Thus dH (u,v) = wt(u + v).

4.7.2 Verify that wt(u + v) ≤ wt(u)+ wt(v), for all u,v ∈ {0,1}�.

Definition We will say that a code C ⊆ {0,1}� corrects the error pattern u ∈
{0,1}�, if and only if, for each w ∈ C , NCWD will decode w + u as w (or, as
whatever source letter w represents).

The u appearing in the last definition above could be any binary word of
length �. When we call u an error pattern we are thinking that, during the
transmission of a binary word of length � through the channel, errors occurred
at precisely those places in the word marked by 1’s in u. Thus, by the definition
of +, if w was transmitted and the error pattern u occurred, the word received
at the receiving end of the channel would be w + u. Thus the definition above
says that C corrects u if and only if, whenever the error pattern u occurs and
the code C is in use, NCWD (= MLD) will correctly decode the received word,
whichever w ∈ C was sent.

4.7.3 Example Let C = {00000,11100,01111}. Verify that C corrects: 00000,
10000, 01000, 00100, 00010, 00001, and no other error patterns. Note that if
11100 is transmitted and the error pattern 01010 occurs, then 10110 will be
received, which is closer to 11100 than to either of the other two code words;
but if 00000 or 01111 is transmitted and that error pattern occurs, NCWD will
decide not to decode. Thus that error pattern is not corrected by the code.

4.7.4 Let C = {06,0313,1303,16}. Verify that the set of error patterns cor-
rected by C is {06}∪ {all 6 binary words of length 6, of Hamming weight 1}∪
{100100,100010,100001,010100,010010,010001,001100,001010,001001}.
4.7.5 Theorem Suppose C ⊆ {0,1}� and |C| ≥ 2. Then C corrects all error
patterns of length �, of Hamming weight ≤ (d(C)− 1)/2.

Proof: Suppose u ∈ {0,1}� and wt(u) ≤ (d(C)− 1)/2. Suppose that w,v ∈ C
and w �= v. Then

d(C) ≤ dH (w,v) ≤ dH (w,w + u)+ dH(w + u,v)

= wt(w + (w + u))+ dH(w + u,v)

= wt(u)+ dH (w + u,v)

© 2003 by CRC Press LLC

4.7 Error correction with binary symmetric channels and equal source frequencies 113

which implies

dH (w + u,v) ≥ d(C)− wt(u) ≥ d(C)− d(C)− 1

2

= d(C)+ 1

2
>

d(C)− 1

2
≥ wt(u) = dH (w,w + u).

Thus, for each w ∈ C,w is the unique word in C closest to w + u, so NCWD
will decode w + u as w.

4.7.6 Corollary Let t = � d(C)−1
2 �. Then, with Ê denoting the maximum error

probability with C in use, with a binary symmetric channel with reliability p >

1/2,

Ê ≤ 1 −
t∑

j=0

(
�

j

)
p�− j (1 − p) j .

Proof: Let U = {u ∈ {0,1}�;wt(u) ≤ t}, and, for each v ∈ C , Nv = {w ∈ {0,1}�;
NCWD decodes w as v}. By the theorem,

v +U = {v + u;u ∈ U} ⊆ Nv, for each v ∈ C.

Therefore, for each v ∈ C , with w denoting “the received word,”

P(w ∈ Nv | v is sent) ≥ P(w ∈ v +U | v is sent)

= P (the error pattern u lies in U | v is sent)

= P(u ∈ U)

= P
(t or fewer errors occurred, in � trials,
with probability 1 − p of error on each trial

)

=
t∑

j=0

(
�

j

)
p�− j (1 − p) j , by Theorem 1.5.7.

Since v ∈ C is arbitrary, the desired conclusion follows.

Definition Suppose C ⊆ {0,1}� and |C| ≥ 2. Let d = d(C). In simplified
nearest code word decoding (SNCWD), a received word w ∈ {0,1}� is decoded
as v ∈ C if and only if dH (v,w) ≤ d−1

2 . If there is no such v ∈ C , do not decode
w.

By the proof of Theorem 4.7.5, for each w ∈ {0,1}� there is at most one
v ∈ C such that dH (v,w) = wt(v + w) ≤ (d(C) − 1)/2. Observe that if u =
v +w then v = w + u, because of the peculiar definition of +. Consequently,
the carrying out of SNCWD can proceed as follows: given w, start calculating
the words v +w,v ∈ C , until you run across one of weight ≤ (d(C)− 1)/2. If
you have saved the v, report that as the intended code word. Alternatively, v

can be recovered from v +w and w by addition. If there is no v ∈ C for which
wt(v +w) ≤ (d(C)− 1)/2, report “do not decode.”

© 2003 by CRC Press LLC

114 4 Coding Theory

Is this procedure any easier than plain old NCWD? From the naive point of
view, no. In both procedures you have to calculate dH (v,w),v ∈ C until either
a v is found for which dH (v,w) ≤ (d(C)− 1)/2, or until all v ∈ C have been
tried, at which point, with NCWD, the numbers dH (v,w) must be compared.
You save a little trouble with SNCWD by omitting this last comparison; but
surely, you might think, this saving would not compensate us sufficiently for
the loss of reliability incurred by forsaking NCWD for SNCWD.

But the fact is that SNCWD is very commonly used. The details are beyond
the scope of this course. Suffice it to say that knowing exactly which error
patterns will be corrected sometimes leads, in the presence of certain algebraic
properties of C , to very efficient decoding procedures.

If we define “C corrects the error pattern u” for SNCWD as it was defined
for NCWD, it is easy to see that, with SNCWD, the error patterns corrected
by C are precisely the words of weight ≤ (d(C)− 1)/2; furthermore, the error
patterns corrected correctly are the same for different code words—see Example
4.7.3 to see that this is not necessarily the case with NCWD. Note also Example
4.7.4 and compare the error patterns corrected there by NCWD with the error
patterns corrected by SNCWD.

Reliability For C ⊆ {0,1}�, let R(C, p) denote the reliability of the code-and-
channel system obtained by using C , a binary symmetric channel with relia-
bility p, and NCWD. (As elsewhere in this section, the source frequencies are
assumed to be equal.) Let RS(C, P) denote the reliability when SNCWD is
used. Corollary 4.7.6 implies that

R(C, p) ≥
� d(C)−1

2 �∑
j=0

(
�

j

)
p�− j (1 − p) j .

4.7.7 Proposition RS(C, P) = ∑� d(C)−1
2 �

j=0

(
�
j

)
p�− j (1 − p) j .

The proof, after that of 4.7.5 and the remarks above, is straightforward.
R0(C, p) and (RS)0(C, p) will denote, as in Exercise 4.5.7, the relaxed

reliabilities obtained by not considering a “do not decode” message to be an
error.

Exercises 4.7

1. Express explicitly, as formulas in p, the reliabilities R(C, p), RS(C, p),
R0(C, p), and (RS)0(C, p), when C is the code of Example 4.7.3.

2. Same question for Example 4.7.4.

3. There are two famous binary block codes, of lengths 23 and 24, called the
Golay code and the extended Golay code, respectively. Let us denote the
Golay code by C23, and the extended Golay code by C24. Their distances
are d(C23) = 7 and d(C24) = 8.

© 2003 by CRC Press LLC

4.8 The information rate of a code 115

Both codes have the remarkable property that NCWD and SNCWD coin-
cide when these codes are in use. C23 has the further property that there is
never a “do not decode” result. This is not the case with C24, however, and,
in fact, every error pattern of weight 4 occurring when C24 is in use will
result in a “do not decode” message.

(a) Express R(C23, p) and R(C24, p) explicitly as functions of p, assum-
ing p > 1/2.

(b) Show that R(C23, p) > R(C24, p) for 1/2 < p < 1, but that
R0(C23, p) = R(C23, p) < R0(C24, p) for 1/2 < p < 1.

(c) |C23| = |C24|, both codes come equipped with very fast NCWD algo-
rithms, and the slightly greater length of C24 is a negligible drawback;
so, what do the results of part (b), above, suggest to you about which
of the two codes you would choose to use? In some circumstances you
would take C23 over C24, and in other circumstances it would be the
other way around. What sort of consideration decides the choice? Be
brief.

4. C ⊆ {0,1}� and the channel is binary and symmetric with reliability p.
Show that t = � d(C)−1

2 � is the largest integer among the integers i with the
property that C will correct (using NCWD) all error patterns of weight ≤ i .

4.8 The information rate of a code

For a binary code C ⊂ {0,1}�, the information rate of C is generally defined
to be (log2 |C|)/�. To see what this really means, and how to generalize it
to variable-length encoding schemes over possibly non-binary code alphabets,
suppose that C is used to encode a source alphabet S with m = |C| letters, of
equal relative frequencies. Then H (S) = log2 m = log2 |C|; this is the number
of bits of information carried by each code word. Since each code word is �

bits long, the number of bits per bit, so to speak, carried by the code words is
(log2 |C|)/�. To put it another way, (log2 |C|)/� is the rate at which the code
words are carrying information, in bits per input (code) letter.

The account preceding rests on the assumption that the relative source fre-
quencies are equal. In the more general situation when we have a source al-
phabet S, |S| = m, with possibly unequal relative frequencies, and a uniquely
decodable scheme for S → A, where A is a code alphabet with |A| = n ≥ 2, the
discussion above is adaptable to give the result that the information rate of the
code, interpreted as the average amount of (source) information carried by the
code words, per code letter, is H (S)/�̄, where �̄ is the average code word length,
computed from the scheme and the relative source frequencies. The units of in-
formation are determined by the choice of the base of the log appearing in the
computation of H (S). To accord with the binary case, we may as well adopt the
convention that that base is to be n = |A|.

© 2003 by CRC Press LLC

116 4 Coding Theory

If A is the input alphabet of a channel, at what rate, then, is information
originating from the source appearing at the receiver of the channel, per out-
put letter, given a uniquely decodable scheme for S → A? Since there is one
output letter per input letter, and I (A, B) gives the rate of flow of information
through the channel, i.e., the average number of units of information arriving
at the receiver for each unit of information transmitted, it follows that the aver-
age amount of information from the source to the receiver, per output letter, is
(H (S)/�̄)(I (A, B)|p1,...,pn), with log = logn and p1, . . . , pn computed from the
encoding scheme and the relative source frequencies, as in section 4.4.

Both H (S)/�̄ and this quantity multiplied by I (A, B)|p1,...,pn are indica-
tors of an encoding scheme’s efficacy, but let us be under no illusions as to
the sensitivity of these indices. Notice that H (S)/�̄ is increased only by de-
creasing �̄, within the requirement of unique decodability; clearly different
uniquely decodable encoding schemes with the same �̄ can have very different
qualities. In particular, in the case of fixed-length encoding schemes, this in-
dex leaves error-correction facility and encoding/decoding speed and efficiency
completely out of account. The index (H (S)/�̄)(I (A, B)|p1,...,pn) is somewhat
more interesting—it goes up as �̄ decreases and/or as the p1, . . . , pn resulting
from the scheme better approximate the optimal input frequencies of the chan-
nel. But it still leaves out of account code qualities of practical interest. (See
Exercise 4.8.3.)

This does not mean that these indices are useless! Consider that knowing
the area of a planar figure tells you nothing about the shape or other geometric
and topological properties of the figure. Does that mean that we should give up
on the parameter we call “area?” Just so, the two parameters we are discussing
here will have their uses in the discussion and comparison of code-and-channel
systems. We need to be aware of the limitations of these discussions and com-
parisons, but if we are aware, then let’s proceed! From here on, we will refer
to H (S)/�̄ as the (pretransmission) information rate of the code involved, and
(H (S)/�̄)(I (A, B)|p1,...,pn) as the (post-transmission) information rate of the
code-and-channel system.

Given S, f1, . . . , fm , A, B, Q, and a fixed-length uniquely decodable scheme
for S → A, s j → w j ∈ A�, j = 1, . . . ,m, as in Section 4.5, there is another pa-
rameter associable to the code-and-channel system that might be preferable to
(H (S)/�)(I (A, B)) as a measure of information flow from the source to the
channel receiver, per output letter: I (S, B�)/�. Here S and B� stand for the
obvious systems of events associable to the multistage probabilistic experiment
described in section 4.5. The mutual information I (S, B�) is divided by �,
above, to make the result comparable to (H (S)/�)(I (A, B)|p1,...,pm) as a mea-
sure of information conveyed per output letter.

Shannon’s interpretation of I (A, B) as measuring the average amount of
information conveyed by the channel (given certain relative input frequencies)
per input letter (see Section 3.4) transfers to an interpretation of I (S, B�), in this
more complicated situation, as the average amount of information conveyed by

© 2003 by CRC Press LLC

4.8 The information rate of a code 117

the code-and-channel system, per source letter, given f1, . . . , fm and a fixed-
length encoding scheme for S → A. Thus I (S, B�)/� would seem to be a mea-
sure of rate of information flow from the source to the channel receiver, per
output letter, that is more reflective of error correction concerns and a gener-
ally more sensitive index of the efficacy of the code-and-channel system than is
(H (S)/�)(I (A, B)).

However, I (S, B�)/� as an index of goodness suffers from a grave defect:
it is frightfully difficult to calculate, even in the simplified circumstances of
binary block codes with equal source frequencies and a binary symmetric chan-
nel. Suppose we are in these circumstances and, in addition, the relative input
frequencies generated by the use of the code are p0 = p1 = 1/2. (This is a
common circumstance in practice. For instance, 0 and 1 occur equally often
when the Golay codes, mentioned in Exercise 4.7.3, are used with equal source
frequencies. The same holds for any linear block code – see [30] for definitions
– containing the word with all ones, and almost all of the commonly used bi-
nary block codes are of this sort.) Then (H (S)/�)I (A, B) = log2 |C |

�
(p log2 2 p+

(1 − p) log2 2(1 − p)), where C ⊆ {0,1}� is the code (|C| = m = |S|) and p is
the reliability of the channel. That is, the post-transmission information rate is
just the conventional information rate times the channel capacity. Meanwhile,
I (S, B�) is a daunting sum of m · 2� terms – see Exercise 4.8.2. For particular
binary block codes this expression can be greatly simplified – but not enough
to put it in the category of (log2 |C|)/�, d(C), or � itself as easily consulted
indices of the quality of a binary block code, in standard circumstances. One
could argue that the difficulty of calculating I (S, B�) is the price you pay for
the subtle power of this index. But an indicator that is harder to calculate than
the items of interest that it might be an indicator of, like reliability and error
probability, is not a useful indicator.

Still, I (S, B�) is an important and interesting number associated with a
fixed-length code-and-channel system, and an academic study of its behavior
and its relation to other indicators may bring some rewards. Here is a question
for anyone who might be interested: by Corollary 2.4.6, I (S, B�) ≤ H (S); is it
necessarily the case that I (S, B�) ≤ H (S)I (A, B)? I (A, B) here is, of course,
calculated with the relative input frequencies produced by the encoding scheme
and the relative source frequencies.

Exercises 4.8

1. Calculate H (S)/� and (H (S)/�)(I (A, B)) for each of the fixed-length
code-and-channel systems in Exercise 4.5.1.

2. Given S, f1, . . . , fm , A, B , Q, and a fixed-length encoding scheme s j →
w j = ai(1, j) , . . . ,ai(�, j) ∈ A�; verify that

I (S, B�) =
m∑

j=1

f j

∑
1≤t1,...,t�≤k

�∏
z=1

qi(z, j),tz log

∏�
z=1 qi(z, j),tz∑m

u=1 fu
∏�

u=1 qi(z,u),tz

.

© 2003 by CRC Press LLC

118 4 Coding Theory

Write this out as a function of p, using log = log2, in case m = 4, f j =
1/4, j = 1, . . . ,m, {w1,w2,w3,w4} = {0000,0011,1100,1111}, and the
channel is binary symmetric with reliability p. Compare I (S, B�) to H (S)

and to H (S)I (A, B) in this case.

3. Describe a binary block code C of length 23 with the same information rate
and post-transmission information rate as the Golay code, C23, mentioned
in Exercise 4.7.3, with d(C) = 1. [You need to know that |C23| = 212 and
that 0 and 1 occur equally often, overall, in the code words of C23. Assume
equal source frequencies.]

© 2003 by CRC Press LLC

Chapter 5

Lossless Data Compression by
Replacement Schemes

Most (but not all) modern data compression problems are of the following form:
you have a long binary word (or “file”) W which you wish to transform into a
shorter binary word U in such a way that W is recoverable from U , or, in ways to
be defined case by case, almost or substantially recoverable from U . In case W
is completely recoverable from U , we say we have lossless compression. Oth-
erwise, we have lossy compression. The compression ratio is lgth(W)/ lgth(U).
The “compression ratio achieved by a method” is the average compression ra-
tio obtained, using that method, with the average taken over all instances of W
in the cases where the method is used. (This taking of the average is usually
hypothetical, not actual.)

Sometimes the file W is sitting there, available for leisurely perusal and
sampling. Sometimes the file W is coming at you at thousands of bits per sec-
ond, with immediate compression required and with no way of foretelling with
certainty what the bit stream will be like 5 seconds from now. Therefore, our
compression methods will be distinguished not only by how great a compres-
sion ratio they achieve, together with how much information they preserve, but
also by how fast they work, and how they deal with fundamental changes in
the stream W (such as changing from a stream in which the digits 0,1 occur
approximately randomly to one which is mostly 0’s).

There is another item to keep account of in assessing and distinguishing
between compression methods: hidden costs. These often occur as instructions
for recovering W from U . Clearly it is not helpful to achieve great compression,
if the instructions for recovering W from U take almost as much storage as W
would. We will see another sort of hidden cost when we come to arithmetic
coding: the cost of doing floating-point arithmetic with great precision. Clearly
hidden costs are related to speed, adaptability, compression ratio, and informa-
tion recovery in a generally inverse way; when you think you have made a great
improvement in a method, or you think you have a new method with improved
performance over what went before, do not celebrate until you have looked for
the hidden costs!

In the compression method to be described in this chapter, the hidden costs
are usually negligible—an encoding scheme very much smaller than the file has
to be stored—and the method is lossless with very fast decompression (recover-

119

© 2003 by CRC Press LLC

120 5 Lossless Data Compression by Replacement Schemes

ing W from U). On the down side, the method is applicable mainly in the cases
where the file W is lying still and you have all the time in the world, and the
compression ratios achieved are not spectacular. Roughly, “spectacular” begins
at 10-to-1, and the compression ratios we will see by this method are nowhere
near that.

From now on, the code alphabet will be {0,1}, unless otherwise specified.
We will survey extensions of our methods and results to the non-binary cases
from time to time, but the binary alphabet is king at this point in history, so
it seems more practical to do everything binary-wise and occasionally mention
generalizations, rather than to struggle with the general case in everything.

5.1 Replacement via encoding scheme

In a nutshell, the game is to choose binary words s1, . . . ,sm into which the orig-
inal file can be parsed (divided up), and then to replace each occurrence of each
si in the parsed file with another binary word wi ; the wi are to be chosen so
that the new file is shorter than the original, but the original is recoverable from
the new. This kind of game is sometimes called zeroth-order replacement. You
will see how “zero” gets into it later, when we consider higher order replace-
ment. The assignment of the wi to the si is, as in Chapter 4, called an encoding
scheme.

For example, suppose we take

s1 = 0
s2 = 10
s3 = 110
s4 = 1110
s5 = 1111,

(∗)

and the original “file” is 111110111111101110111101110110. (Of course this is an
unrealistic example!) The file can be parsed into the string s5s2s5s4s4s5s1s4s3.
(Notice that there was no choice in the matter of parsing; the original binary
word is uniquely parsable into a string of the si . Notice also that we are avoiding
a certain difficulty in this example. If we had one, two, or three more 1’s at
the end of the original file on the right, there is no way that we could have
incorporated them into the source word, the string of si ’s.)

Now, suppose we encode the si according to the encoding scheme

s1 → 1111
s2 → 1110
s3 → 110
s4 → 10
s5 → 0.

(∗∗)

The resulting new file is 01110010100111110110. Notice that this file is 20 bits
long, while the original is 30 bits long, so we have a compression ratio of 3/2.

© 2003 by CRC Press LLC

5. 1 R epl ac em ent v i a enc odi ng s c hem e 121

(Not bad for an unrealistically small example! But, o f course, for any positive
number R it is possible to m ake u p an example like the preceding in which the
compression ratio is greater than R . See Exercise 5.1.3.)

Bu t i s t h e old file recoverable from the new file? Ask a friend to translate
th e n ew file in to a string of the symbols si , according to (∗∗). Be sure to hint
th at scanning left to right is a good idea. Your friend should have no trouble in
tr an slatin g th e n ew file in to s5 s2 s5 s4 s4 s5 s1 s4 s3 , from which you (or your friend!)
can recover the old file by replacing th e s j with binary wo rds according to (∗).

Those who have perused chapter 4, or at least the first two sections, will not
be su rprised about the first stage of the recovery process, because the encoding
sc h e m e (∗∗) satisfies th e p r efix c o n d itio n . Yo u m ig h t n o tice, as well, th at th e
defin itio n o f th e si in (∗), regarded as an encoding scheme, satisfies the prefix
condition, as well. This is no accident!

We sh all r ev iew what we n eed to know about the p refix condition in the
next section. For now, we single out a property of s1, . . . ,s5 in the p receding
ex a m p l e t hat may not be so obvious, but which played an important role in
making things “work” in the example.

Definition A list s1, . . . ,sm of binary words has the strong parsing property
(SPP) if and only if every binary word W is uniquely a concatenation,

W = si1 · · ·sit v,

of some of the si and a (possibly empty) word v, with no si as a prefix (see
Sectio n 5 .2) , satisf y in g lg th(v) < max1≤i≤m lgth(si).

The word v is called the leave of the parsing of W into a sequence of
the si . The uniqueness requirement says that if W = si1 · · · sit v = s j1 · · · s jr u,
with neither u nor v having any of the si as a prefix and lgth(v), lgth(u) <

maxi lgth(si), then t = r , and i1 = j1, . . . , it = jr , and v = u.
Notice that in any list with the SPP the si must be distinct (why?), and

any rearrangement of the list will have the SPP as well. Therefore, we will
allow ourselves the convenience of sometimes attributing the SPP to finite sets
of binary words; such a set has the SPP if and only if any list of its distinct
elements has the SPP.

To see that s1, . . . ,s5 in (∗) in the preceding example have the SPP, think
about trying to parse a binary word W into a string of the si , scanning left to
right. Because of the form of s1, . . . ,s5, the parsing procedure can be described
thus: scan until you come to the first zero, or until you have scanned four ones.
Jot down which s j you have identified and resume scanning. Pretty clearly this
procedure will parse any W into a string of the si with leave v = λ, 1, 11, or 111
(with λ denoting the empty string). It becomes clear that this parsing is always
possible, and most would agree that the parsing is unique, on the grounds that
there is never any choice or uncertainty about what happens next during the
parsing. We will indicate a logically rigorous proof of uniqueness, in a general
setting, in the exercises at the end of the next section.

© 2003 by CRC Press LLC

122 5 Lossless Data Compression by Replacement Schemes

Which sets of binary words have the SPP? We shall answer this question
fully in the next section. But there is a large class of sets with the SPP that ought
to be kept in mind, not least because these are the source alphabets that are
commonly used in current data compression programs, not only with the zeroth-
order replacement strategy under discussion here, but also with all combinations
of higher order, adaptive, and/or arithmetic methods, to be looked at later. All
of these methods start by parsing the original file W into a source string, a long
word over the source alphabet S. The methods differ in what is then done with
the source string.

The most common sort of choice for source alphabet is: S = {0,1}L , the set
of binary words of some fixed length L. Since computer files are commonly or-
ganized into bytes, binary words of length 8, the choice L = 8 is very common.
Also, L = 12, a byte-and-a-half, seems popular.

If S = {0,1}L , the process of parsing a binary word W into a source string
amounts to chopping W into segments of length L. If L = 8 and the original
file is already organized into bytes, that’s that; the parsing is immediate. There
is another good reason for the choice L = 8. When information is stored byte
by byte, it very often happens that you rarely need all 8 bits in the byte to record
the datum, whatever it is. For instance, suppose there are only 55 different basic
data messages to store, presumably in some significant order. You need only 6
bits (for a total of 26 = 64 possibilities) to accommodate the storage task, yet it
is customary to store 1 datum per byte. Thus one can expect a compression ratio
of at least 8/6 = 4/3 in this situation, just by deleting the 2 unused bits per byte.
Thus the historical accident that files are, sometimes inefficiently, organized into
bytes, makes the choice L = 8 rather shrewd. The best zeroth-order replacement
method, Huffman encoding, takes advantage of this inefficiency, and more. In
the hypothetical situation mentioned above, we might expect something more
like 8/ log2 55 as a compression ratio, using S = {0,1}8 and zeroth-order simple
Huffman encoding. Details to follow!

Even though S = {0,1}L is the most common sort of choice of source al-
phabet, we do not want to limit our options, so we will continue to allow all S
with the SPP; these S will be completely characterized in the next section.

A problem that may have occurred to the attentive anxious reader is: what
effect should the leave have in the calculation of the compression ratio? In real
life, the original binary word W to be parsed and compressed is quite long;
saving and pointing out the leave may require many more bits than the leave
itself, but the added length to the compressed file will generally be negligible,
compared to the total length of the file. For this reason, we shall ignore the
leave in the calculation of the compression ratio. Therefore, if S = {s1, . . . ,sm }
and a file W parses into W = si1 · · · sit v, lgth(v) < maxi lgth(si), and if the
si are replaced according to the encoding scheme si → wi , i = 1, . . . ,m, the
compression ratio will be

∑t
j=1 lgth(si j)/

∑t
j=1 lgth(wi j), regardless of v, by

convention.

© 2003 by CRC Press LLC

5.2 Review of the prefix condition 123

Exercises 5.1

1. Suppose S = {0,1}L is the source alphabet. What are the possible leaves in
the parsing of files by S?

2. Show that each of the following does not possess the SPP.

(a) S = {0,01,011,0111,1111}. [Hint: let W = 01.]

(b) S = {00,11,01}
(c) S = {0,1}L \ {w}, for any binary word w of length L.

3. Invent a situation, with a source alphabet S = {s1, . . . ,sm } satisfying the
SPP, an encoding scheme si → w j , j = 1, . . . ,m, satisfying the prefix con-
dition (see the next section), and an original file W , such that the compres-
sion ratio achieved by parsing and then encoding W is at least 5 to 1. [Hint:
you could take the example of this section as a model, with s1 = 0, s2 = 10,
. . . , with an encoding scheme in the mode of the example, and with a silly
W ; what if W has all 1’s?]

4. Find the compression ratio if the original file in the example in this section
is parsed using S = {0,1}3 and encoded using the scheme

000 → 1111111 100 → 1110
001 → 1111110 101 → 110
010 → 111110 110 → 10
011 → 11110 111 → 0

5.2 Review of the prefix condition

We collect here some of the definitions and results from Chapter 4 and apply
them to our current purpose, the characterization of lists of binary words with
the strong parsing property.

A binary word u is a prefix of a binary word w if and only if w = uv for
some (possibly empty) word v. A list w1, . . . ,wm of binary words satisfies the
prefix condition if and only if whenever 1 ≤ i, j ≤ m and i �= j , then wi is not
a prefix of w j . An encoding scheme si → wi , i = 1, . . . ,m, satisfies the prefix
condition if and only if the list w1, . . . ,wm does. It is common usage to say that
such a scheme defines a prefix-condition code, or simply a prefix code. Take
note that this terminology is somewhat misleading, because “prefix code” is
characterized by an absence of prefix relations in its encoding scheme.

The practical importance of prefix codes is encapsulated in Theorem 4.2.1,
which says:

5.2.1 Every prefix code is uniquely decodable, with reading-left-to-right serv-
ing as a valid decoder-recognizer.

© 2003 by CRC Press LLC

124 5 Lossless Data Compression by Replacement Schemes

In case you have not read Section 4.1, here is a translation:

5.2.2 If s j → w j , j = 1, . . . ,m, is a prefix-condition encoding scheme, and if
for some subscripts 1 ≤ i1, . . . , it , j1, . . . , jr ≤ m, wi1 · · ·wit = w j1 · · ·w jr , then
t = r and ik = jk , k = 1, . . . , t . Furthermore, the source word si1 · · · sit can
infallibly be recovered from the code word wi1 · · ·wit by scanning left to right
and noting the source letter sik each time a word wik from the encoding scheme
is recognized.

(Actually, the assertion that “reading-left-to-right is a valid decoder-recog-
nizer” for a code given by a particular scheme is a stronger statement than is
given in the last part of 5.2.2, because of the word “recognizer”—the last as-
sertion in 5.2.2 says that reading-left-to-right is a valid decoder for a prefix
code—but we will not tarry further over this point.)

In the example in the preceding section, the encoding scheme (∗∗) satisfies
the prefix condition, and if you followed the example you experienced directly
the pleasures of reading-left-to-right with respect to the scheme (∗∗). This sort
of decoding is also called instantaneous decoding, for reasons that should be
obvious.

Pretty clearly, 5.2.2 is telling us that lists of words with the prefix condition
satisfy something resembling the uniqueness provision of the strong parsing
property. We will give the full relation between the prefix condition and the
SPP after restating the Kraft and McMillan Theorems for binary codes. More
general statements and proofs are given in Section 4.2.

5.2.3 Kraft’s Theorem for binary codes Suppose m and �1, . . . ,�m are posi-
tive integers. There is a list w1, . . . ,wm of binary words, satisfying the prefix
condition and lgth(wi) = �i , i = 1, . . . ,m, if and only if

∑m
i=1 2−�i ≤ 1.

5.2.4 McMillan’s Theorem for binary codes Suppose m and �1, . . . ,�m are
positive integers, and w1, . . . ,wm are binary words satisfying lgth(wi) = �i ,
i = 1, . . . ,m. If si → wi , i = 1, . . . ,m is a uniquely decodable encoding scheme
(see the first part of 5.2.2 for the meaning of this) then

∑m
i=1 2−�i ≤ 1.

McMillan’s Theorem has virtually no practical significance at this point.
We repeat it here just because it is a beautiful theorem. Together with Kraft’s
Theorem, what it says of pseudo-practical importance is that if your primary
criteria for goodness of an encoding scheme are unique decodability, first, and
prescribed code word lengths, second, then there is no need to leave the friendly
family of prefix codes.

Kraft’s Theorem brings us to the main result of this section. The proof is
outlined in Exercise 5.2.2.

5.2.5 Theorem A list w1, . . . ,wm of binary words has the strong parsing prop-
erty if and only if the list satisfies the prefix condition and

∑m
i=1 2− lgth(wi) = 1.

© 2003 by CRC Press LLC

5.2 Review of the prefix condition 125

Exercises 5.2

1. Complete the following to lists with the SPP, adding as few new words to
the lists as possible.

(a) 00, 01, 10.
(b) 00, 10, 110, 011.
(c) 0, 10, 110, 1110.

2. Prove Theorem 5.2.5 by completing the following.

(a) Show that if binary words w1, . . . ,wm do not satisfy the prefix condition,
then the list cannot possess the SPP. [If wi = w jv, i �= j , then wi = w jv

can be parsed in at least two different ways by w1, . . . ,wm .]

(b) Prove this part of the assertion in 5.2.2: If w1, . . . ,wm satisfy the pre-
fix condition, and if wi1 · · ·wit = w j1 · · ·w jr , then r = t and ik = jk , k =
1, . . . , t . [Hint: if not, let k be the smallest index such that ik �= jk . Then
wik · · ·wit = w jk · · ·w jr ; since the two strings agree at every position, they
must agree in the first min(lgth(wik), lgth(w jk)) places. But then w1, . . . ,wm

do not satisfy the prefix condition, contrary to supposition. Why don’t
they?]

(c) Suppose w1, . . . ,wm are binary words satisfying the prefix condition,
and

∑m
i=1 2−�i < 1, where �i = lgth(wi), i = 1, . . . ,m. Let � ≥ maxi �i be

sufficiently large that 2−� +∑m
i=1 2−�i ≤ 1. By the proof of Kraft’s Theo-

rem (see Section 4.2), there is a binary word W of length � that has none of
w1, . . . ,wm as a prefix. Conclude that W cannot be parsed into a string
wi1 · · ·wit v for some indices i1, . . . , it and leave v satisfying lgth(v) <

maxi lgth(wi) (why not?) and that, therefore, w1, . . . ,wm does not have
the SPP.

(d) Suppose w1, . . . ,wm are binary words satisfying the prefix condition
and

∑m
i=1 2−�i = 1, where �i = lgth(wi), i = 1, . . . ,m. If W is a binary

word of length � ≥ maxi �i , then W must have one of the wi as a prefix,
for, if not, then the list w1, . . . ,wm ,W satisfies the prefix condition, yet
2− lgth(W) +∑m

i=1 2− lgth(wi) = 2−� +1 > 1, which is impossible, by Kraft’s
Theorem. Conclude that every such W can be written W = wi1 · · ·wit v for
some indices i1, . . . , it and v satisfying lgth(v) < maxi �i . [How do you
arrive at this conclusion?]

Put (a)–(d) together for a proof of Theorem 5.2.5.

3. What are the analogues of the SPP and Theorem 5.2.5 for non-binary code
alphabets?

4. Show that any list w1, . . . ,wk of binary words satisfying the prefix condi-
tion can be completed to a list w1, . . . ,wm with the SPP. [You will probably
need to use a result, mentioned in part (c) of Exercise 2, above, which is
embedded in the proof of Kraft’s Theorem. Incidentally, the result of this
exercise holds for non-binary alphabets, as well.]

© 2003 by CRC Press LLC

126 5 Lossless Data Compression by Replacement Schemes

5.3 Choosing an encoding scheme

Suppose that binary words s1, . . . ,sm with the SPP have been settled upon, and
the original file has been parsed (at least hypothetically) into what we will con-
tinue to call a source string, Z = si1 · · · siN , together with, possibly, a small leave
at the end. [How does one select the best source alphabet, S = {s1, . . . ,sm}, for
the job? Not much thought has been given to this question! Recall from previ-
ous discussion that the blue-collar solution to the problem of choosing S is to
take S = {0,1}L , usually with L = 8.]

Now consider the problem of deciding on an encoding scheme, si → wi ,
i = 1, . . . ,m, for the replacement of the si by other binary words, the wi , so that
the resulting file U is as much shorter than the original as possible, and so that
the original file is recoverable from U . It suffices to recover Z from U . (The
leave, if any, is handled in separate arrangements.)

Pretty clearly the length of U will be completely determined by the lengths
of the wi . McMillan’s Theorem now enters to assure us that we lose nothing by
requiring that w1, . . . ,wm satisfy the prefix condition—which takes care of the
recoverability of Z from U . Plus, the recovery will be as rapid as can reasonably
be expected.

So we are looking for w1, . . . ,wm , satisfying the prefix condition, such
that wi1 · · ·wiN is of minimal length. Common sense says, find a prefix code
that assigns to the most frequently occurring si the shortest wi , and to the least
frequently occurring si the longest wi (which will be no longer than necessary).
Common sense is not mistaken, in this instance. (See Theorem 4.3.3, after
reading what follows.) But common sense still leaves us wondering what to do.

Let us focus on the phrase “most frequently occurring”; let, as in Chapter 4,
fi stand for the relative frequency of the source letter si in the source text. To put
it another way, fi is the proportion of si ’s in the source string Z . For instance,
if Z = s1s4s4s2s3s1s4, then f1 = 2/7, f2 = 1/7 = f3, and f4 = 3/7. (And what
about f5, in case m > 4? f5 = 0 in this case.) Note again that

∑m
i=1 fi = 1.

Recall that f1, . . . , fm can be thought of as the probabilities assigned to the
distinct outcomes of a probabilistic experiment; the experiment is choosing a
source letter “at random” from the source string Z , and fi is the probability that
the letter chosen will be si .

Recall that if si → wi ∈ {0,1}�i is an encoding scheme, the average code
word length of the scheme is �̄ = ∑m

i=1 fi�i . The length of the file U obtained
by replacing the si by the wi , in Z , will be �̄N , where N is the length of Z as a
word over S = {s1, . . . ,sm }. (Verify! This assertion arises from the definitions
of the fi and of �̄.) If the binary word si has length Li , and L̄ = ∑m

i=1 fi Li ,
then the length of the original file W , parsed by the si into Z (we neglect the
leave), has length L̄ N . Thus the compression ratio would be L̄ N/�̄N = L̄/�̄.

The problem we face here is the same as that enunciated in Section 4.3:
given s1, . . . ,sm and f1, . . . , fm , find a prefix-condition scheme si →wi ∈ {0,1}�i

© 2003 by CRC Press LLC

5.3 Choosing an encoding scheme 127

which minimizes �̄ = ∑m
i=1 fi�i . We know how to solve this problem; the solu-

tion is Huffman’s algorithm, discovered in 1951 (published in 1952) by David
Huffman, then a graduate student at M.I.T. He discovered the algorithm in re-
sponse to a problem—the very problem to which his algorithm is the solution—
posed in a course on communication theory by the great mathematician, R. M.
Fano. (Professor Fano did not tell the class that the problem was unsolved!)

In Section 4.3 Huffman’s algorithm is described approximately as Huff-
man described it in his paper of 1952 [36]. Later in this section we will take
another look at it and give an equivalent description, involving tree diagrams,
which turns out to be much easier to implement and lends itself to more clever
improvements than the merge-and-rearrange, merge-and-rearrange procedure
described in 4.3.

Before that we will look at two other algorithmic methods for approxi-
mately solving the problem of finding an optimal prefix-condition encoding
scheme, given s1, . . . ,sn and f1, . . . , fn . The first is due to Claude Shannon,
who is to the theory of communication as Euclid is to geometry; the second is
due to the aforementioned R. M. Fano. Both are given in Shannon’s opus [63],
published in 1948. They do not always give optimal encoding schemes, but they
are of historical and academic interest, they leave unanswered questions pursuit
of which might be fruitful, and Shannon’s method provides a proof of an impor-
tant theorem that tells you approximately how good a compression ratio can be
achieved by zeroth order replacement, before you do the hard work of achieving
it.

5.3.1 Shannon’s method

Given s1, . . . ,sm and f1, . . . , fm , rename, if necessary, so that f1 ≥ ·· · ≥ fm > 0.
(Any source letters that do not appear are deleted from the source alphabet.)
Define F1 = 0 and Fk = ∑k−1

i=1 fi , 2 ≤ k ≤ m. Let �k be the positive integer
satisfying 2−�k ≤ fk < 2−�k+1. In other words, �k = �log2 f −1

k �. (Verify! Inci-
dentally, �·� stands for “round up.”)

In Shannon’s method, the encoding scheme is s j → w j , j = 1, . . . ,m, with
w j consisting of the first � j bits in the binary expansion of Fj . Two remarks are
necessary before we look at an example.

Dyadic fractions are rational numbers of the form p/2m , with m a non-
negative integer and p an integer. If 1 ≤ p < 2m , then p = ∑m−1

j=0 a j 2 j for some

(binary) digits a0, . . . ,am−1 ∈ {0,1}; it follows that p/2m = ∑m−1
j=0 a j 2 j−m =∑m

k=1 am−k2−k = (.am−1 · · ·a0)2. The point is, every dyadic fraction between 0
and 1 has a “finite” binary representation, meaning a binary expansion with an
infinite string of zeros at the end. And conversely, every number between 0 and

© 2003 by CRC Press LLC

128 5 Lossless Data Compression by Replacement Schemes

1 with a finite binary representation is a dyadic fraction:

(.b1 · · ·bm)2 =
m∑

j=1

b j 2− j = 1

2m

m∑

j=1

b j 2m− j = p/2m,

with p an integer between 0 and 2m − 1, inclusive, if b1, . . . ,bm ∈ {0,1}.
Because 1 = ∑∞

k=1 2−k , the non-zero dyadic fractions have the unpleasant
property that they each have two different binary representations, one ending in
an infinite string of ones. For instance,

3

4
= 1

2
+ 1

4
= (.11)2 = (.1011 · · ·)2 = (.101)2

= 1

2
+

∞∑

k=3

2−k .

(We will sometimes use the common bar notation, as in (.101)2, to indicate
infinite repetition. Thus (.11101)2 = (.11101101 · · ·)2.) This is a nuisance be-
cause, in the description of Shannon’s method, we have the reference to “the
binary expansion of Fj .” What if Fj is a dyadic fraction? The answer is that,
here and elsewhere, we take “the” binary expansion of a dyadic fraction to be
the “finite” one, the one that ends in an infinite string of zeros.

Incidentally, if you have never checked such a thing before, it might be a
salutary exercise to prove that the non-zero dyadic fractions are the only num-
bers with two distinct binary expansions. Or, you can take our word for it.

The second remark concerns the following question: given a number r ∈
(0,1), how do you determine its binary expansion if r is given as a fraction or
as a decimal? Here is a trick we lifted from Neal Koblitz [41]. Start doubling.
Every time the “answer” is less than one, the corresponding binary digit is 0.
Every time the “answer” is ≥ 1, the next binary digit is 1; then subtract 1 from
the “answer” before doubling again.

For instance, if r = 2/7, the process looks like:

double after adjustment 4/7 8/7 2/7 4/7
binary digit 0 1 0 0

· · ·

So, 2/7 = (.010)2.
Another instance: suppose r = .314, in decimal form. The process looks

like

double after adjustment .628 1.256 .512 1.024 .048
binary digit 0 1 0 1 0

.096 .192 .384 .768 1.536 1.072 .144
0 0 0 0 1 1 0

and we mercifully stop here, since the “period” of the binary expansion could
be 499 bits long, and we are not really interested in finding out just how long it

© 2003 by CRC Press LLC

5.3 Choosing an encoding scheme 129

is. Anyway, we have the first 12 bits of the binary expansion:

.314 = (.010100000110 · · ·)2

We leave it to those interested to ponder why Koblitz’s method works. Think
about the effect of doubling a number between 0 and 1 already in binary form.

Examples of Shannon’s method Let’s first recall the example in Section 5.1.
After parsing, the source string was s5s2s5s4s4s5s1s4s3 = Z . So f1 = f2 = f3 =
1/9, f4 = f5 = 3/9. But wait! Shannon’s method applies to source frequencies
in non-increasing order, the reverse of what we have here. So put s′

i = s5−i+1,
f ′
i = f5−i+1 and let’s follow Shannon’s method with the Fk in the recipe re-

named F ′
k and the �k renamed �′

k .
It is easy to see that �′

1 = �′
2 = 2 and �′

3 = �′
4 = �′

5 = 4. [It is easy to
calculate the �k in Shannon’s recipe if you bear in mind that �k is the “first”
positive integer exponent such that that power of 1/2 is ≤ fk . So, for instance,
if fk = 1/9, the first power of 1/2 less than or equal to 1/9 is 1/16 = (1/2)4, so
�k = 4.] Using our method for calculating binary expansions, we have

F ′
1 = 0 = (.00 . . .)2

F ′
2 = 3/9 = (.01 . . .)2

F ′
3 = 6/9 = (.1010 . . .)2

F ′
4 = 7/9 = (.1100 . . .)2

F ′
5 = 8/9 = (.1110 . . .)2

Thus the encoding scheme given by Shannon’s method is

s5 = s′
1 → 00

s4 = s′
2 → 01

s3 = s′
3 → 1010

s2 = s′
4 → 1100

s1 = s′
5 → 1110

This gives �̄ = 2(3/9) + 2(3/9) + 4(1/9) + 4(1/9) + 4(1/9) = 8/3; we also
have L̄ = 1/9 + 2/9 + 3/9 + 4(3/9) + 4(3/9) = 10/3, for a compression ra-
tio of L̄/�̄ = 5/4 (which you can verify directly by plugging the code words for
the s j into Z to obtain a compressed string U with 24 bits, compared to the 30
bits we started with). Since we achieved a compression ratio of 3/2 with the
prefix code (∗∗) in Section 5.1, this example shows that Shannon’s method may
fail to give an optimal encoding scheme. The shrewd will notice that we can
modify our encoding scheme by lopping off the final zero of the code words
for s3, s2, and s1, and still have a prefix code. Even this modification does not
optimize compression; we would have �̄ = 7/3 and L̄/�̄ = 10/7 < 3/2.

Another example: m = 6 and f1 = .25 > f2 = f3 = .2 > f4 = f5 = .15 >

f6 = .05. (Here we have already renamed, or rearranged, the source letters
s1, . . . ,s6, if necessary, so that their relative frequencies are in non-increasing
order.) We compute �1 = 2, �2 = �3 = �4 = �5 = 3, �6 = 5,

© 2003 by CRC Press LLC

130 5 Lossless Data Compression by Replacement Schemes

F1 = 0 = (.00 . . .)2 F4 = .65 = (.101 . . .)2
F2 = .25 = (.010 . . .)2 F5 = .80 = (.110 . . .)2
F3 = .45 = (.011 . . .)2 F6 = .95 = (.11110 . . .)2

so the encoding scheme is

s1 → 00 s4 → 101
s2 → 010 s5 → 110
s3 → 011 s6 → 11110

with �̄ = 2.85 (check!). We cannot compute the compression ratio without
knowing L̄; still, we will see later that �̄ = 2.85 is far from optimal in this
situation. Note that we could obtain a shorter prefix code by lopping off the last
two bits of w6 = 11110, but the new value of �̄, 2.75, is still far from optimal.

So, the experimental evidence is that Shannon’s method is not so great. We
will see that it has certain charms, and is worth knowing about for “academic”
reasons, in the next section.

5.3.2 Fano’s method

Once again, assume that s1, . . . ,sm and f1 ≥ ·· · ≥ fm are given. In Fano’s
method, you start by dividing s1, . . . ,sm into two “blocks” with consecutive in-
dices, s1, . . . ,sk and sk+1, . . . ,sm , with k chosen so that

∑k
j=1 f j and

∑m
j=k+1 f j

are as close as possible to being equal. The code representatives w1, . . . ,wk of
s1, . . . ,sk start (on the left) with 0, and wk+1, . . . ,wm start with 1. At the next
stage, the two blocks are each divided into two smaller blocks, according to the
same rule, and so on. At each new division, a zero is appended to the code
representatives of the letters in one of the new blocks, and one is appended to
the code representatives of the letters in the other. Blocks consisting of a single
letter cannot be further subdivided.

Examples of Fano’s method We will apply Fano’s method in the two cases to
which we applied Shannon’s method. In the first case, we will not fuss about
the renaming, as we did in 5.3.1.

For the first example, consider

Frequency Letter Code word
3/9 s1 → 00

23/9 s2 → 01
11/9 s3 → 10
21/9 s4 → 110
31/9 s5 → 111

The number on the right indicates the order in which the divisions were drawn.
Observe that we do not, for instance, group s1 and s3 together in the first block,
with s2,s4,s5 in the other, even though 4/9 and 5/9 are more nearly equal than
2/3 and 1/3. Once the si are arranged in order of non-increasing frequency, the
blocks must consist of consecutive si ’s.

© 2003 by CRC Press LLC

5.3 Choosing an encoding scheme 131

Could we have started by putting s1 in a block by itself, and s2, . . . ,s5 in
the other block? Yes, and, interestingly, the encoding scheme obtained would
have been like (∗∗) in 5.1. The average code word length for each scheme is
�̄ = 20/9.

For the second example, consider

Frequency Letter Code word
.25 s1 → 00

2.20 s2 → 01
1.20 s3 → 10
2.15 s4 → 110
3.15 s5 → 1110
4.05 s6 → 1111

There is a choice at the second division of blocks in Fano’s method applied
to this source alphabet with these relative frequencies. The encoding scheme
resulting from the other choice has the same average code word length, �̄ = 2.55,
considerably better than that achieved with Shannon’s method. (In fact, this is
the best �̄ achievable, with a prefix code.)

In some cases when there is a choice in the execution of Fano’s method,
schemes with different values of �̄ are obtained. For instance, try Fano’s method
in two different ways on a source alphabet with relative frequencies 4/9,1/9,

1/9,1/9,1/9,1/9.
Therefore, it is not the case that Fano’s method always solves the problem

of minimizing �̄ with a prefix code. In Exercise 3 at the end of this section
we offer some examples (for two of which we are indebted to Doug Leonard)
which show that sometimes no instance of Fano’s method solves that problem,
and sometimes the one that does, when there is a choice, is not the one arrived
at by the obvious make-the-upper-block-as-small-as-possible convention.

Since Huffman’s algorithm, coming up next, solves the problem of min-
imizing �̄ with a prefix code, Fano’s method is apparently only of historical
and academic interest. But sometimes pursuit of academic questions leads to
practical advances. Here are some academic questions to ponder, for those so
inclined:

(i) For which relative source frequencies f1 ≥ ·· · ≥ fm does Fano’s method
minimize �̄?

(ii) Same question, for Shannon’s method.

(iii) Does Fano’s method always do at least as well as Shannon’s?

We leave to the reader the verification that Fano’s method always results in a
prefix code.

5.3.3 Huffman’s algorithm

We repeat, in abbreviated form, the account of the binary case of Huffman’s
algorithm given in 4.2, which is essentially that given by Huffman [36]. Given

© 2003 by CRC Press LLC

132 5 Lossless Data Compression by Replacement Schemes

s1, . . . ,sm and f1 ≥ ·· · ≥ fm , start by merging sm−1 and sm into a new letter, σ ,
with relative frequency fm−1 + fm . Now rearrange the letters s1, . . . ,sm−2,σ

into s′
1, . . . ,s′

m−1 with relative frequencies f ′
1 ≥ ·· · ≥ f ′

m−1 and repeat the pro-
cess. Continue until you have merged down to two letters, τ0 and τ1. Begin
encoding by τ0 → 0, τ1 → 1. Follow through the merging in reverse, coding as
you go; if, for instance, σ is encoded as w, then sm−1 → w0, sm → w1.

Here is another account of the algorithm which seems to lead to imple-
mentations which take care of all that rearranging in the merging part of the
algorithm. In the language of graph theory, we start constructing a tree, called a
Huffman tree, the leaf nodes of which are the letters s1, . . . ,sm , sporting weights
f1, . . . , fm , respectively. The nodes sm , sm−1 now become siblings and are at-
tached to a parent node σ , with weight fm + fm−1. At the next stage, two nodes
with least weight that have not yet been used as siblings are paired as siblings
and attached to a parent node which gets the sum of their weights as its weight.
Continue this process until the last two siblings are paired. The final parent
node, with weight 1, is called the root of the tree.

From each parent there are two edges going to siblings. Label one of these
0, the other 1. (Which gets which label does not really matter, but there might be
practical reasons for establishing conventions governing this label assignment,
as we shall see later when we consider “adaptive” or “dynamic” coding.)

The code word representing each s j is obtained by following the path from
s j to the root node, writing down each edge label, right to left.

Examples of Huffman’s algorithm We will do the two examples already
treated by the methods of Shannon and Fano. In the first example, a Huffman
tree can be created as follows:

s1 1/3�������� 1��������0

1���
��

s2 1/3�������� 2/3��������0

1��
��s3 1/9��������

1/3��������0������

1��s4 1/9��������
2/9��������

0��

1
��s5 1/9��������

Scheme
s1 → 0
s2 → 10
s3 → 110
s4 → 1110
s5 → 1111

and �̄ = 20/9. The careful reader will note that there was a certain choice in-
volved at the third “merge” in the construction of the tree above. If we make
the other essentially different choice, we get

s1 1/3�������� 1/3��������0

1������� 1��������0

1

��
��

��
��

s2 1/3��������

s3 1/9�������� 1/3��������0

1

		
		
	

s4 1/9��������
2/9��������

0

1
��s5 1/9��������

Scheme
s1 → 00
s2 → 01
s3 → 10
s4 → 110
s5 → 111

© 2003 by CRC Press LLC

5.3 Choosing an encoding scheme 133

and, again, �̄ = 20/9.
For the second example, consider

s1 .25�������� .6��������0

1
��

��
��
��
��

1��������0

1

���������������

s2 .2��������
.4��������

0

1������
s3 .2��������

s4 .15�������� .35��������0

1

��
��

��
��

s5 .15��������
.2��������

0��

1
��s6 .05��������

Scheme
s1 → 00
s2 → 10
s3 → 11
s4 → 010
s5 → 0110
s6 → 0111

with �̄ = 2.55.
There is one essentially different tree obtainable by making a different

choice at the second merge, which results in a scheme with code word lengths
2,2,3,3,3,3; again, we have �̄ = 2.55.

In fact, by the proof outlined in Section 4.3.1, Huffman’s algorithm al-
ways results in a prefix condition scheme which minimizes �̄, and for every
p.c. scheme minimizing �̄ (given f1, . . . , fm), there is an instance of Huffman’s
algorithm that will produce a scheme with the same code word lengths as the
given scheme.

Exercises 5.3

1. (a) s1 = 00, s2 = 01, s3 = 10, s4 = 11; f1 = .4, f2 = .25 = f3, f4 = .1. Find
the compression ratio if the s j are encoded by Huffman’s algorithm.

(b) Same question, with

s1 = 00 f1 = .1 s4 = 101 f4 = .2
s2 = 01 f2 = .2 s5 = 110 f5 = .15
s3 = 100 f3 = .1 s6 = 111 f6 = .25

2. Find the encoding schemes and the compression ratios when the methods
of Shannon and Fano are applied in 1(a) and 1(b), above.

3. Process the following by the method of Fano, taking every possibility into
account. When are the results optimal? (You could use Huffman’s al-
gorithm on the same data to determine optimality.) The relative source
frequencies are:

(a) .38, .24, .095, .095, .095, .095

(b) 5/13, 2/13, 2/13, 2/13, 2/13

(c) .4, .15, .1, .09, .09, .09, .08

© 2003 by CRC Press LLC

134 5 Lossless Data Compression by Replacement Schemes

5.4 The Noiseless Coding Theorem and Shannon’s
bound

Here are two good things about Shannon’s method.

5.4.1 Shannon’s method always results in a prefix-condition encoding scheme.

Proof: Suppose s1, . . . ,sm and f1 ≥ ·· · ≥ fm > 0 are given. Since �k =
�log2 f −1

k �, we have �1 ≤ ·· · ≤ �m . Therefore, since �k is the length of the
code word wk to which sk is assigned in the encoding scheme arrived at by
Shannon’s method, it will suffice to show that for 1 ≤ k < r ≤ m, wk is not a
prefix of wr .

For such k and r ,

Fr ≥ Fk+1 = Fk + fk ≥ Fk + 2−�k .

If the binary expansions of Fr and Fk were to agree in the first �k positions, then
the most they could differ by would be

∑∞
j=k+1 2− j = 2−k , and they could only

differ by this much if the binary expansion of one of them were all zeroes from
the (k +1)st place on, and the binary expansion of the other were all ones from
that point on. None of our binary expansions end with an infinite string of ones,
by convention. Therefore, if the binary representations of Fr and Fk agree in
the first �k places, they are less than 2−�k apart. Since they are, in fact, at least
2−�k apart, it follows that their binary representations do not agree in the first
�k places, so wk is not a prefix of wr .

5.4.2 Given S = {s1, . . . ,sm } and f1, . . . , fm , the encoding scheme resulting
from Shannon’s method has average code word length �̄ satisfying �̄ < H + 1,
where H = H (S) = ∑m

k=1 fk log2 f −1
k .

Proof:

�̄ =
m∑

k=1

fk�k =
m∑

k=1

fk�log2 f −1
k �

<

m∑

k=1

fk(log2 f −1
k + 1)

= H +
m∑

k=1

fk = H + 1.

Those who have read certain parts of the first four chapters will recognize
H (S) as the source entropy. More exactly, H (S) is the source entropy when
the “source” is a random emitter of source letters, with s j being emitted with
relative frequency (probability) f j . We will consider slightly more sophisticated
models of the “source,” that mysterious and, legend has it, imaginary entity that
produces source text, in Chapter 7.

© 2003 by CRC Press LLC

5.4 The Noiseless Coding Theorem and Shannon’s bound 135

Assertion 5.4.2 is half of the binary version of the Noiseless Coding The-
orem for Memoryless Sources, stated in full, for code alphabets of any size, as
Theorem 4.3.7. We will give the proof for the binary case here and relegate the
proof of the more general theorem to the problem section. We owe our proof of
the second half of the theorem to Dominic Welsh [81] or to Robert Ash [4].

5.4.3 Noiseless Binary Coding Theorem for Memoryless Sources Given S
= {s1, . . . ,sm } and f1, . . . , fm > 0, with f j being the relative frequency of s j

in the source text; then the smallest average code word length �̄ achievable by a
uniquely decodable scheme s j → w j ∈ {0,1}� j satisfies H (S) ≤ �̄ < H (S)+1.
Furthermore, �̄ = H (S) is achievable if and only if each f j is an integral power
of 1/2.

Proof: �̄ < H (S)+ 1 follows from 5.4.1 and 5.4.2. Now suppose s j → w j ∈
{0,1}� j is any uniquely decodable scheme, and �̄ = ∑m

j=1 f j � j . By McMillan’s

Theorem, G = ∑m
j=1 2−� j ≤ 1. Set qk = 2−�k/G, k = 1, . . . ,m. Note that∑m

k=1 qk = 1.
We will use Lemma 2.1.1, which says that ln x ≤ x − 1 for all x > 0, with

equality only if x = 1. It follows that
m∑

j=1

f j log2 f −1
j −

m∑

j=1

f j log2 q−1
j

= log2(e)
m∑

j=1

f j ln
q j

f j
≤ log2(e)

m∑

j=1

f j (
q j

f j
− 1)

= log2(e)
(m∑

j=1

q j −
m∑

j=1

f j
) = log2(e)(1 − 1) = 0.

Thus H (S) = ∑m
j=1 f j log2 f −1

j ≤ ∑m
j=1 f j log2 q−1

j with equality if and only
if q j = f j , j = 1, . . . ,m.

We also have
m∑

j=1

f j log2 q−1
j =

m∑

j=1

f j log2(2
� j G)

=
m∑

j=1

f j � j + (log2 G)

m∑

j=1

f j ≤
m∑

j=1

f j � j = �̄,

since G ≤ 1 implies log2 G ≤ 0. We have equality in this last inequality if and
only if G = 1. Thus H (S) ≤ �̄, and equality implies f j = q j = 2−� j /G =
2−� j /1 = 2−� j , j = 1, . . . ,m.

This proves everything except that �̄ = H can be achieved if f j = 2−� j , j =
1, . . . ,m, for positive integers �1, . . . ,�m . However, in this case the code word
lengths in the scheme resulting from Shannon’s method are precisely �1, . . . ,�m ,

© 2003 by CRC Press LLC

136 5 Lossless Data Compression by Replacement Schemes

so the �̄ for that scheme is

�̄ =
m∑

j=1

f j� j =
m∑

j=1

f j log2 f −1
j = H (S).

For instance, returning to the example in 5.1, with f1 = f2 = f3 = 1/9,
f4 = f5 = 3/9, and L̄ = 10/3, the Noiseless Coding Theorem says that the best
�̄ we can get with a prefix-condition scheme satisfies

2.113 ≈ H ≤ �̄ < H + 1 ≈ 3.113,

so the best compression ratio we can hope for by the method of this chapter
with this choice of source alphabet satisfies

1.07 ≈ 10/3

H + 1
<

L̄

�̄
≤ 10/3

H
≈ 1.577.

(In fact, the compression ratio of 1.5 achieved in 5.1 is the best possible, be-
cause the encoding scheme there was generated by Huffman’s algorithm, which
always gives the smallest �̄ among those arising from prefix-condition schemes.)

The Noiseless Coding Theorem has practical value. If you have chosen s1,

. . . ,sm binary words with the SPP, and determined, or estimated, f1, . . . , fm ,
their relative frequencies in the source text obtained by parsing the original
file, then you know L̄ = ∑

j f j lgth(s j) and H = ∑
j f j log2 f −1

j ; the Noiseless
Coding Theorem says that you cannot achieve a greater compression ratio, by
replacement of the s j according to some prefix-condition encoding scheme, than
L̄/H . If L̄/H is not big enough for your purposes, then you can stop wasting
your time, back up, and either try again with a different source alphabet, or try
some entirely different method of data compression.

In the context of this chapter, with s1, . . . ,sm and f1, . . . , fm given so that
L̄ and H are calculable, L̄/H is called the Shannon bound on the compression
ratio. Shannon noted that, under a certain assumption about the source, there is
a trick that enables you to approach the Shannon bound as closely as desired,
for long, long source strings. This trick is contained in the proof of the next
result.

5.4.4 Theorem Suppose that S = {s1, . . . ,sm} is a set of binary words with the
SPP, and suppose we confine our efforts to files which are parsed by S into
source strings in which the s j occur randomly and independently with relative
frequencies f j . Then for any ε > 0, it is possible to achieve a compression ratio
greater than (L̄/H)− ε, with lossless compression, on sufficiently long files,
where

L̄ =
m∑

j=1

f j lgth(s j) and H =
m∑

j=1

f j log2 f −1
j .

Proof: The trick is, instead of encoding s1, . . . ,sm , we take as source alphabet
SN , the set of all words of length N over S, where N is a positive integer that
we will soon take to be large enough for our purposes, depending on ε.

© 2003 by CRC Press LLC

5.4 The Noiseless Coding Theorem and Shannon’s bound 137

The assumption about the source (which is essentially unverifiable in real
life) implies that the relative frequency of the word si1 · · · siN ∈ SN , among all
source words of length N in long source texts, will be the product fi1 · · · fiN .
Therefore,

H (SN) =
∑

1≤i1,...,iN ≤m

fi1 · · · fiN log2(fi1 · · · fiN)−1

=
∑

1≤i1,...,iN ≤m

fi1 · · · fiN

N∑

j=1

log2 f −1
i j

=
m∑

i1=1

fi1 log2 f −1
i1

(∑

1≤i2,...,iN ≤m

fi2 · · · fiN

)+·· ·+

+
m∑

iN =1

fiN log2 f −1
iN

(∑

1≤i1,...,iN−1≤m

fi1 · · · fiN−1

)
.

Now, for instance,
∑

1≤i2,...,iN ≤m fi2 · · · fiN = (
∑

i2
fi2) · · · (

∑
iN

fiN) = 1, so

H (SN) =
m∑

i1=1

fi1 log2 f −1
i1

+·· ·+
m∑

iN =1

fiN log2 f −1
iN

= N
m∑

i=1

fi log2 f −1
i = N H (S) = N H.

Also, by the statistical principle that the average of the sum is the sum of
the averages (see Section 1.8), the binary words represented by the source words
si1 · · · siN ∈ SN will have average length N L̄ .

By, say, Shannon’s method (see 5.3.1), SN can be encoded with a prefix-
condition scheme with average code word length �̄(N) < H (SN)+1 = N H +1.
Thus the compression ratio achieved over original files so long that lengths of
the source strings obtained by parsing them are considerably greater than N will
be

N L̄

�̄(N)
>

N L̄

N H + 1
= L̄

H + 1
N

>
L̄

H
− ε

for N sufficiently large.

The trick contained in the proof, of jazzing up the source alphabet by re-
placing it by the set of all words of length N over it, with introduced probabili-
ties defined by

(freq. of si1 · · · siN) = fi1 · · · fiN ,

is worth remembering. The assumption about the source in Theorem 5.4.4 is
essentially the same as the assumption that these defined probabilities are valid.
When would they not be? Well, for instance, if S = {s1,s2,s3,s4} and the source

© 2003 by CRC Press LLC

138 5 Lossless Data Compression by Replacement Schemes

string consists of s1s1s3s2s4 repeated over and over, then f1 = 2/5, f2 = f3 =
f4 = 1/5, but the probability of, say, with N = 4, s2s1s2s3, is zero, not 2/54.

However, in practice, even if there is some orderliness in the source which
violates the assumption in Theorem 5.4.4, it often happens that imposing prob-
abilities on SN by multiplication is not a bad approximation to reality, and the
compression ratios obtained by applying, say, Huffman’s algorithm to SN with
those assumed probabilities results in improved compression.

A last note on the Shannon bound: does it have anything to tell us about
how to choose a source alphabet? The choice of a source alphabet affects both L̄
and H . In principle, we want L̄ to be large and H to be small. Roughly speak-
ing, L̄ = ∑

j f j lgth(s j) will be large when the longer s j have larger relative
frequency f j ; and from the basics about entropy, in Chapter 2, H will be small
when f j is negligibly small except for a very few f j . [H is zero when one f j

is 1 and the rest are zero.] So Theorems 5.4.4 and 5.4.3 verify common sense:
we can achieve large, handsome compression ratios if we can choose s1, . . . ,sm

such that the longer binary words s j occur with great frequency, relatively. This
does not tell us how to find s1, . . . ,sm , it just gives some targets to shoot for.

Exercises 5.4

1. Compute the Shannon bound L̄/H on the compression ratio in both parts
of Exercise 5.3.1.

2. Let S = {s1,s2,s3,s4} with

s1 = 111 f1 = .4
s2 = 110 f2 = .3
s3 = 10 f3 = .2
s4 = 0 f4 = .1

(a) Find the compression ratio if the s j are encoded using Huffman’s al-
gorithm.

(b) Find the compression ratio if S2 = {si s j ;1 ≤ i, j ≤ 4} is encoded using
Huffman’s algorithm, assuming that the relative frequency of si s j is
fi f j .

(c) Find the Shannon bounds on the compression ratios in (a) and (b).
[Hint: if they are not the same, then something is wrong!]

3. Suppose that S = {0,1}L for some positive integer L and all source char-
acters are equally likely. Compute the Shannon bound on the compression
ratio in this case, and the compression ratios actually achieved by the meth-
ods of Shannon, Fano, and Huffman.

4. Suppose S = {s1, . . . ,sm } is a source alphabet with relative source frequen-
cies f j = (1/2)� j , where �1, . . . ,�m are positive integers. Show that Shan-
non’s method results in an encoding scheme with average code word length
�̄ = H (S). [Hint: this demonstration appears somewhere in Section 5.4.]
Do Fano’s and Huffman’s methods do as well in such a case?

© 2003 by CRC Press LLC

5.4 The Noiseless Coding Theorem and Shannon’s bound 139

5. Prove the Noiseless Coding Theorem for code alphabets A = {a1, . . . ,an},
n ≥ 2. The statement is just the same as for the binary case, except that
log2 is replaced by logn . In the version of Shannon’s method used in one
part of the proof, binary expansions are replaced by n-ary expansions. The
version of McMillan’s theorem to be used in the other part of the proof is
the general one, to be found in 4.2.

© 2003 by CRC Press LLC

Chapter 6

Arithmetic Coding

As in the preceding chapter, we have a source alphabet S = {s1, . . . ,sm} and rel-
ative source frequencies f1, . . . , fm , presumably estimated by a statistical study
of the source text. However, in arithmetic coding it is not the case that indi-
vidual source letters, or even blocks of source letters, are replaced by binary
code words (although replacing blocks of source letters by binary words de-
rived arithmetically is an option; see Section 6.3). Rather, the entire source text,
si1 · · · siN , is assigned a codeword arrived at by a rather complicated process, to
be described below.

Methods of arithmetic coding vary, but they all have certain things in com-
mon. Each source word si1 · · · siN is assigned a subinterval A(i1, . . . , iN) of the
unit interval [0,1). This assignment takes place in such a way that A(1), . . . ,

A(m) are disjoint subintervals of [0,1), and for N > 1, the m intervals A(i1, . . . ,

iN−1,1), . . . , A(i1, . . . , iN−1,m) are disjoint subintervals of A(i1, . . . , iN−1); the
lengths of these subintervals are to be proportional, or roughly proportional, to
f1, . . . , fm .

Having determined (in principle) the interval A(i1, . . . , iN) = A, the arith-
metic encoder chooses a number r = r(i1, . . . , iN) ∈ A and represents the source
word si1 · · · siN (which is usually the entire source text) by some finite segment
of the binary expansion of r . Arithmetic coding methods differ in how r is ar-
rived at, and in how much of the binary expansion of r is taken to encode the
source word. Enough of the binary expansion of r will have to be taken so that
the decoder will be able to figure out (in principle) in which of the intervals
A(i1, . . . , iN) the number r lies; from this the decoder can recover the source
word si1 · · · siN . Usually, the smaller the interval A(i1, . . . , iN) is, the farther out
you will have to go in the binary expansion of any number in it to let the decoder
know which interval, and thus which source word, is signified by the code. For
this reason, the larger the intervals A(i1, . . . , iN) are, the better the compression,
because the code representative of the source text will be shorter, on average.

Therefore, in “pure” arithmetic coding, the intervals A(i1, . . . , iN), 1 ≤ i1,

. . . , iN ≤ m, are not only disjoint, they partition [0,1). Also, you can see the
justification for making the lengths of A(i1, . . . , ik, j), 1 ≤ j ≤ m, proportional
to or, at least, increasing functions of, the relative source frequencies f j , for
each k. This policy will result in the more likely source texts si1 · · · siN , in which
letters of higher relative source frequency predominate, being assigned longer
intervals A(i1, . . . , iN), and will therefore achieve better compression, on the

141

© 2003 by CRC Press LLC

142 6 Arithmetic Coding

average, than any perverse policy which inverts the order of the lengths of the
A(i1, . . . , ik, j) relative to the f j . More about this later.

The first variety of arithmetic coding that we will consider is probably the
best zeroth-order non-adaptive lossless compression method that will ever exist,
if such methods are to be judged by the compression ratios achieved over a wide
range of source texts. The particular version that we will present in Section 6.1
is not, in fact, in use in the real world. We think that it conveys the main idea
of arithmetic coding better than the real world implementations, in which the
main idea is somewhat obscured by practical tinkering. Further, since this is a
textbook and not a how-to manual, it is appropriate that general paradigms be
presented whenever possible. The method of Section 6.1 can be modified in a
number of ways to be more practicable, but it might be difficult to go from one
of these offspring to another, without understanding their parent.

We will look at the compression ratio achievable by the method of Section
6.1 in Section 6.2, and then consider some of the drawbacks of the method,
and possible modifications to overcome those drawbacks, in 6.3. In Section
6.4 we will present a full-fledged practical implementation of arithmetic coding
which overcomes every problem with the “pure” method of Section 6.1, at the
cost of a certain amount of fudging and approximation that may diminish the
compressive power of arithmetic coding, but which seems to compress as well
as or better than Huffman encoding, in practice.

6.1 Pure zeroth-order arithmetic coding: dfwld

The ‘dfwld’ in the title of this section is the acronym for dyadic fraction with
least denominator. The plan will be to select the dyadic fraction r = p

2L , p an
odd integer (or p = 0 when r = 0), with L as small as possible, as the represen-
tative of the interval A = A(i1, . . . , iN). To see why we do this, observe that if
the decoder is supplied the source word length N and a number in A, then the
decoder can recover the sequence i1, . . . , iN , and thus the source word si1 · · · siN .
(The decoder knows how the intervals A(i ′

1, . . . , i ′
N), 1 ≤ i ′

1, . . . , i ′
N ≤ m, are cal-

culated, so the decoder could, in principle, calculate them all and then pick the
one containing the given number. We shall see a more efficient method of calcu-
lating i1, . . . , iN from r and N later in this section.) If b1 · · ·bt is a binary word
and ρ = (.b1 · · ·bt)2 ∈ A, then ρ is a dyadic fraction in A, with denominator
2q , where L ≤ q ≤ t; L ≤ q because r is the dfwld in A. Therefore, the binary
expansion of r , r = (.a1 · · ·aL−11)2, supplies the shortest possible code word,
namely a1 · · ·aL−11, from which the decoder can recover the source word.

Thus, choosing the dfwld to represent the interval A = A(i1, . . . , iN) is al-
ways a good idea in arithmetic coding, no matter how the intervals are gener-
ated.

© 2003 by CRC Press LLC

6.1 Pure zeroth-order arithmetic coding: dfwld 143

About notation: when w = si1 · · · sik , a source word, it will sometimes be
convenient to denote A(i1, . . . , ik) alternatively as A(si1 · · · sik) or A(w).

Subdividing to find A(w)

Suppose that S = {s1, . . . ,sm} and the relative source frequencies are f1 ≥ ·· · ≥
fm > 0. Our intervals will always be closed on the left, open on the right,
starting with [0,1). If [α,β) = [α,α + �), � = β − α, is our “current inter-
val,” either [0,1) or A(si1 · · · sik−1) for some k ≥ 2 and i1, . . . , ik−1 ∈ {1, . . . ,m},
we want to subdivide [α,β) into half-open intervals with lengths proportional
to f1, . . . , fm . Here are the endpoints of the sought-for subintervals of [α,β):
α,α + f1�,α + (f1 + f2)�, . . . ,α + (

∑m−1
i=1 fi)�,β. That is, the j th subinter-

val, 1 ≤ j ≤ m, is [α + (
∑

i< j fi)�,α + (
∑

i≤ j fi)�), where, when j = 1, the
sum over the empty set of indices is interpreted as zero. It is recommended
that the reader verify that the length of the j th subinterval is f j � and that the
right-hand endpoint of the mth subinterval is β. [Recall that � = β −α and that∑m

i=1 fi = 1.]
The process of subdividing these intervals is illustrated below, with S =

{a,b,c,d}, fa = .4, fb = .3, fc = .2, and fd = .1.

0 .4 .7 .9

A(a) A(d)

.52.4 .61 .67 .7

1

A(c)A(b)

A(bb) A(bd)A(bc)A(ba)

.4 .448 .484 .508 .52

A(bad)A(bac)A(bab)A(baa)

Meanwhile, A(a) and A(d) are subdivided as follows:

A(aa) A(ad)

.4

A(ab)

0

.94.9 .97 .99 1

A(dc)A(da) A(db) A(dd)

A(ac)

.36.16 .28

A(i1, . . . , iN) is specified by its left-hand endpoint α and its length �, and

© 2003 by CRC Press LLC

144 6 Arithmetic Coding

these are straightforward to compute iteratively. If the computation were orga-
nized into a table with columns for “next (source) letter”, “left-hand endpoint
α”, and “length �”, the table would look like this:

next letter α �

0 1
si1

∑
j<i1 f j fi1

..

.
..
.

..

.

sik−1 α �

sik α + (
∑

j<ik f j)� fik �

.

..
.
..

.

..

Examples

Suppose that S = {a,b,c,d}, fa = .4, fb = .3, fc = .2, and fd = .1. (As usual,
in the absence of subscripts on the source letters, we use the letters themselves
to subscript the relative source frequencies.) We will calculate the intervals
assigned to the source words bacb and ccda.

For bacb, the table is

next letter
left-hand

endpoint α
length

�

0 1
b .4 .3
a .4 .12
c .4+ (.12)(.7) = .484 .024
b .484+ (.024)(.4) = .4936 .0072

Thus A(bacb) = [.4936, .4936+ .0072)= [.4936, .5008). Notice that it is very
easy to find the dfwld in A(bacb), since clearly .5 = 1/2 is in this interval,
and 1/2 is the dfwld in all of (0,1); in [0,1) only 0 = 0/1 beats 1/2 for least
denominator, among the dyadic fractions. Thus the source word bacb would be
encoded by 1, a single bit, by the method of arithmetic coding of this section.

For the source word ccda, the table is

next letter α �

0 1
c .7 .2
c .7+ (.2)(.7) = .84 .04
d .84+ (.04)(.9) = .876 .004
a .876 .0016

Thus A(ccda) = [.876, .8776). This time we are unlucky, and the dfwld in this
interval is not immediately apparent.

Finding the dfwld in a subinterval

Suppose that the interval is [α,β). We consider two methods to find the best
representative for the interval.

© 2003 by CRC Press LLC

6.1 Pure zeroth-order arithmetic coding: dfwld 145

Method 1 Find the smallest integer t such that 1
2t ≤ � = β − α; i.e., find the

integer t satisfying 2−t ≤ � < 2−t+1. Then solve the inequalities α ≤ x
2t < β for

integers x . There will be at least one, and at most two, integers x satisfying this
inequality. In case there are two, they will be consecutive. Take the even one.
In any case, r = x

2t (reduce to lowest terms!) is the dfwld in the interval.
In the first example above, suppose we did not notice that the dfwld is 1/2.

Applying this method, we would find t = 8 and set about solving

.4936 ≤ x

256
< .5008 or 126.3616 ≤ x < 128.2048.

There are two whole numbers x satisfying these inequalities, 127 and 128. We
take x = 128 and get r = 128

256 = 1/2.
In the second example, by this method, we find t = 10 and set about solving

.876 ≤ x
1024 < .8776; 897.024 ≤ x < 898.6624. This time there is only one x ,

namely x = 898. We find

r = 898

1024
= 449

512
= 256 + 128 + 64 +1

512
= (.111000001)2.

Thus the code for ccda is 111000001.

Method 2 Carry out the binary expansions of α and β until they differ. At the
first place they differ, there will be a 0 in the expansion of α, and a 1 in the ex-
pansion of β; i.e., α = (.a1 · · ·at−10at+1 · · ·)2 and β = (.a1 · · ·at−11bt+1 · · ·)2.
In most cases, the dfwld in [α,β) will then be r = (.a1 · · ·at−11)2. There are
two annoying exceptions to this rule.1

Exception 1. If α = (.a1 · · ·at−1)2, then α itself is the dfwld in [α,β).
Exception 2. If α > (.a1 · · ·at−1)2 (i.e., ai = 1 for some i > t) and β =

(.a1 · · ·at−11)2 (i.e., bi = 0 for all i > t), then (.a1 · · ·at−11)2 = β is not actually
in [α,β), and so cannot be the dfwld in that interval. In this case the dfwld r in
[α,β) is found by continuing the binary expansion of α until a 0 is found among
at+1,at+2, · · · . If all ai beyond that point are zero, then, again, α itself is the
dfwld in [α,β). Otherwise, change that zero to a one and truncate the binary ex-
pression at that point to obtain the dfwld. Examples: if α = (.101010111)2 and
β = (.101011)2, then r = α; if α = (.10101011001 · · ·)2 and β = (.101011)2
then r = (101010111)2.

In spite of these exceptions, Method 2 is the more “machinable” of the two
methods. Note that, with α and β as above, regardless of everything else, the

1Doug Leonard points out that if α = (.a1 · · ·at−10 · · ·)2 and β = (.a1 · · ·at−11 · · ·)2 then r =
(.a1 · · ·at−11)2 is the dfwld in (α,β], in all circumstances. Therefore, we could avoid those pesky
exceptions in Method 2 by changing our way of subdividing intervals so that the intervals wind up
closed on the right, open on the left, for the most part. In fact, there is a reasonable way to do this so
that for all N , A(w) is of the form (α,β] for every w ∈ S N , with two exceptions: A(s N

1) = [0, f N
1]

and A(s N
m) = (1− f N

m ,1). However, in real live arithmetic coding, to be described in Section 6.4,
it is conventional to take intervals closed on the left, and finding the exact dfwld at the end of the
process is not insisted upon. We decided that it would overly complicate the transition from the
finicky academic version of arithmetic coding of this section to the implementation version in 6.4
to have our intervals here closed on the right, and our intervals there closed on the left.

© 2003 by CRC Press LLC

146 6 Arithmetic Coding

binary word a1 · · ·at−1 will be part of the code stream. The next subsection is
about how to take advantage of this fact.

Notice that the annoying exceptional cases occur only when at least one of
α,β is a dyadic fraction. Therefore, when neither is, we can forget about those
exceptions and take r = (.a1 · · ·at−11)2 as the dfwld. For instance, in the first
example on page 144, we had α = .4936 = (.0 · · ·)2 and β = .5008 = (.1 · · ·)2
and neither α nor β is a dyadic fraction, clearly, so r = (.1)2 = 1/2. Similarly,
in the second example, leaving out the details of finding the binary expansions,
α = .876 = (.111000000 · · ·)2, β = .8776 = (.111000001 · · ·)2, neither dyadic
fractions, so r = (.111000001)2.

6.1.1 Rescaling while encoding

The encoding method described in the preceding subsections is, in abbreviation:
find the interval A(i1, . . . , iN) = A, and then the dfwld r in A. The procedure
thus described is wasteful in that initial segments of the final code, the binary
expansion of r , are stored twice in the endpoints αk and αk + �k of the inter-
mediate intervals A(i1, . . . , ik). Furthermore, there is a waste of time involved:
you have to wait until the entire source string is scanned and processed before
you have the code for it. Recall that in compression by replacement schemes,
you can encode as you go along, without waiting to see what is up ahead in the
source string. There are some situations in which this is a great advantage—in
digital communications, for instance, when speed is required and typically de-
coding of the code string starts before encoding of the source string is finished.

But now Method 2 of calculating dfwlds suggests a way of beginning the
arithmetic encoding of a source string without waiting for the end of the string,
while lessening the burden of computation of the endpoints of the intervals
A(i1, . . . , ik), as those endpoints get closer and closer together.

If α = (.a1 · · ·at−10 · · ·)2 and α+� = (.a1 · · ·at−11 · · ·)2, then the first t −1
digits in the binary expansion of any number in an interval with endpoints α and
α + � will be a1 · · ·at−1. Consequently, if r = r(i1, . . . , iN) is in that interval
somewhere, then we know the first t − 1 bits of the code for si1 · · · siN . We
extract those t − 1 bits and multiply α and α + � by 2t−1 mod 1 to obtain the
endpoints of the new current interval. Multiplying α and α + � by 2t−1 mod 1
means that we subtract the integer (a1 · · ·at−1)2 from 2t−1α and 2t−1(α + �).
Note that this amounts to shifting a1 · · ·at−1 in each of α and α+� to the left of
the binary point and out of the picture. By storing a1 · · ·at−1 in the code word
being constructed (tack it on to the right of whatever part of the code word had
been found previously) we are really keeping track of α and α + �, but we do
not need to leave a1 · · ·at−1 in the binary expressions of these numbers—these
extra bits complicate the calculations needlessly.

This process of finding a1 · · ·at−1 and then replacing the interval by a new
interval obtained by multiplying the old endpoints by 2t−1 mod 1 is called
rescaling. Rescaling does not affect the final code word because we go from

© 2003 by CRC Press LLC

6. 1 P ure zerot h-order ar i t hm et i c c odi ng: df w l d 147

A(i1, . . . , i k−1) to th e in ter va ls A(i 1, . . . , i k), 1 ≤ i k ≤ m by dividing the large
in ter val in to su b in ter va ls with len g th s proportional to f1, . . . , f m , and because
we r e scale b y m u ltip ly in g b y a p ower o f 2 , wh ich p r eser ve s b in ar y ex p r essio n s
beyond th e p art that g ets shifted away. Let’s try it with S = {a, b, c, d} , f1 = . 4,
fb = . 3, f c = . 2, f d = . 1, and w = ccd a .

Next letter or rescale α � code so far
0 1

c . 7 . 2
Rescal e (fi nd the bi nar y

expansi ons of . 7 = (. 10 . . .)2
and . 9 = (. 11 . . .)2 and s hi ft

out t he part w here t hey agree)

. 4 = 2(. 7)− 1 . 4 = 2(. 2) 1

c . 68 = . 4+ (. 4)(. 7) . 08 = (. 2)(. 4) 1
Rescal e [. 68 = (. 10 . . .)2

and . 76 = (. 11 . . .)2] . 36 = 2(. 68)− 1 . 16 = 2(. 08) 11

d . 504 = . 36+ (. 9)(. 16) . 016 = . 16(. 1) 11
Rescal e [. 504 = (. 100000 . . .)2

and . 520 = (. 100001 . . .)2] . 128 = 25(. 504)− 16 . 512 = 32(. 016) 1110000

a . 128 . 2048 = (. 512)(. 4) 1110000
Rescal e [. 128 = (. 00 . . .)2

and . 3328 = (. 01 . . .)2] . 256 = 2(. 128) . 4096 11100000

Now fin d th e d f w ld in [. 256, .6656); it is 1/2 = (. 1)2 . Tack th is o n to th e last
“code so far” to obtain 111000001 as th e code wo rd for ccd a .

This process superficially may seem more complicated than what we went
th rough before to encode ccd a because of the added r escaling steps, but the
lin es o n th e fir st tab le f o r ccd a th at we g enerated were filled in at the cost of
increasingly onerous arithmetic. Rescaling lifts the burden of that arithmetic
somewhat and, as an important bonus, gives us initial segments of the final
code word early on. (There is one extreme case in which this is not true; i.e.,
in one case the partial code words supplied by rescaling are not prefixes of the
final code wo rd. See Exercise 6.1.5.)

However, as the preceding example shows, rescaling does not supply those
initial segments at a regular pace, as the encoder reads through the source word.
Furthermore, the example of bacb shows that you may not get any initial seg-
ments of the code word at all; in that example, the binary expansions of the
endpoints α and α + � always differ in the very first position, so there is no
rescaling and no partial construction of the code word until the very end of the
calculation. A little thought shows that this sort of unpleasantness—no rescal-
ing for a long time—occurs when the dfwld in A(si1 · · · sik) is the same for
many values of k. It is slightly ironic that those occasions when the compres-
sion with dfwld arithmetic coding is great—when the dfwld in A(si1 · · · siN)

has a small denominator—are occasions when there is certain to be a long
run of no rescaling in the computation of the intervals and the code word, be-
cause r = r(i1, . . . , iN), the dfwld in A(si1 · · · siN), will also be the dfwld in
A(si1 · · · sik) for many values of k ≤ N .

© 2003 by CRC Press LLC

148 6 Arithmetic Coding

There are two inconveniences to be dealt with when there is a long run of
no rescaling. The first is that we have to carry on doing exact computations
of the endpoints α and α + � with smaller and smaller values of �. This is a
major drawback, the Achilles heel of arithmetic coding, and we will consider
some ways to overcome this difficulty in later sections of this chapter. The other
inconvenience is that initial segments of the code representative of the source
text are not available beyond a certain point.

We will deal with the first of these problems by a device called the under-
flow expansion, which we found in the work of Cleary, Neal, and Witten [84]. It
is essential for their arithmetic coding and decoding algorithm, to be presented
in Section 6.4. Before describing the underflow expansion, however, we will
make the rescaling operation more practical.

Rescaling one bit at a time

In the account of rescaling given above, the binary expansions of the endpoints
α and β of the current interval arc worked out until they disagree. This compu-
tation is wasteful and unnecessary.

If the binary expansions of α and β agree at all in the first few bits, then
they agree in the first bit. This bit will be 1 if and only if 1/2 ≤ α < β, and will
be 0 if and only if α < β < 1/2. We may as well enlarge this second case to
α < β ≤ 1/2, since if the current interval is [α,1/2) then the eventually-to-be-
discovered dfwld r in the eventually-to-be-discovered final interval is < 1/2,
so the first bit in its binary expansion—in other words, the next bit in the code
stream—will be 0.

If 1/2 ≤ α < β ≤ 1, shifting out the initial bit, 1, in the binary expansions
of α and β and adding it to the code stream results in [2α − 1,2β − 1) as the
new current interval (and the new dfwld that we are seeking is 2r − 1, if r was
the old dfwld, somewhere in [α,β). If 0 ≤ α < β ≤ 1/2, shifting out the bit 0
into the code stream results in [2α,2β) as the new current interval. Thus the
rules for rescaling one bit at a time are: if 0 ≤ α < β ≤ 1/2, replace [α,β) by
[2α,2β) and add 0 to the code stream; if 1/2 ≤ α < β ≤ 1, replace [α,β) by
[2α− 1,2β − 1) and add 1 to the code stream.

Notice that the length � = β − α is multiplied by 2, in each case. Notice
also that rescaling will not be possible when and only when α < 1/2 < β, i.e.,
when 1/2 is in the interior of the current interval.

Although rescaling one bit at a time superficially seems to increase the
number of operations in dfwld encoding, it in fact provides a “machinable”
and efficient way of carrying out the computation of the new code stored in
the endpoints of the current interval. Here is the encoding of ccda, with source
letters and relative frequencies as before, with rescaling one bit at a time. We use
“x → 2x” and “x → 2x −1” to indicate which of the rescaling transformations
is being applied.

© 2003 by CRC Press LLC

6.1 Pure zeroth-order arithmetic coding: dfwld 149

Next letter or rescale α � New code
0 1

c .7 .2
x → 2x −1 .4 .4 1

c .68 = .4+ (.4)(.7) .08 = (.2)(.4)

x → 2x −1 .36 .16 1
d .504 = .36+ (.9)(.16) .016 = (.16)(.1)

x → 2x −1 .008 .032 1
x → 2x .016 .064 0
x → 2x .032 .128 0
x → 2x .064 .256 0
x → 2x .128 .512 0

a .128 .2048 = (.512)(.4)

x → 2x .256 .4096 0

As before, 1/2 is the dfwld in the last interval, so the code obtained is again
111000001; of course!

The underflow expansion

Suppose that 1/2 is the interior of the current interval [α,β), in the course of
arithmetic encoding, so that rescaling is not possible. Suppose also that [α,β) ⊆
[1/4,3/4); so, we have 1/4 ≤ α < 1/2 < β ≤ 3/4.

Now, the eventually-to-be-discovered dfwld r in [α,β), whose binary ex-
pansion constitutes the rest of the code (added on to the code already generated)
is either in [α,1/2) or in [1/2,β). In the former case, r = (.01 . . .)2 because
α ≥ 1/4; in the latter, r = (.10 . . .)2 because β ≤ 3/4. The point is that the first
and second bits of the binary expansion of r are different. Therefore, if you
know one, you know the other.

The transformation x → 2x − 1/2 doubles the directed distance from x
to 1/2; call it the “doubling expansion around 1/2” if you like. Further, if
r is the dfwld in the final interval to be discovered by subdividing [α,β) ⊆
[1/4,3/4), according to the source text, then 2r −1/2 will be the dfwld in final
interval obtained by so subdividing [2α − 1/2,2β − 1/2) ⊆ [0,1). (Verify!)
Inspecting the effect of this transformation on r ∈ [1/4,3/4) we see: if r =
(.01a3a4 . . .)2 then 2r −1/2 = (.0a3a4 . . .)2, and if r = (.10a3a4 . . .)2 then 2r −
1/2 = (.1a3a4 . . .)2. That is, the effect of this transformation on r ∈ [1/4,3/4)

is to delete the second bit of its binary expansion. But that bit is the opposite of
the first bit, which will be discovered the next time a rescaling occurs.

This leads to the following rules for using the underflow expansion.

1. Keep track of the underflow count, the number of times that the underflow
expansion has been applied since the last rescaling.

2. When the current interval [α,α + �) satisfies 1/4 ≤ α < 1/2 < α + � ≤
3/4, replace α by 2α − 1/2 and � by 2�, and add one to the underflow
count.

© 2003 by CRC Press LLC

150 6 Arithmetic Coding

3. Upon rescaling if the underflow count is k, add 01k to the code stream if
the rescaling transformation is x → 2x , and 10k to the code stream if the
rescaling transformation is x → 2x − 1; reset the underflow count to 0.
[ξ k means ξ iterated k times. When k = 0, this means the empty string.]

Let’s try encoding babc, when S = {a,b,c,d}, in that order, with fa = .4,
fb = .3, fc = .2, and fd = .1, using rescaling and the underflow expansion.

Next letter
or rescale

or underflow α �
New
code

Underflow
count

0 1 0
b .4 .3 0

x → 2x −1/2 .3 .6 1
a .3 .24 1

x → 2x −1/2 .1 .48 2
b .292 .144 2

x → 2x .584 .288 011 0
x → 2x −1 .168 .576 1 0

c .5712 .1152 0
x → 2x −1 .1424 .2304 1 0

x → 2x .2848 .4608 0 0

The code is, therefore, 0111101, the last 1 arising from the dfwld 1/2 in the
final interval, [.2848, .7456).

Notice that if the rules for encoding with the underflow expansion are used
for encoding bacb, we wind up with a final interval containing 1/2, no code
generated, and an underflow count of 4. In this section, we ignore final un-
derflow counts and give the code as 1. In modified arithmetic encoding, we
may wind up with 104 = 10000, possibly followed by some more bits of local
significance.

Notice that the underflow expansion prevents the current interval from get-
ting arbitrarily small, in arithmetic encoding. But it does not prevent the end-
points of the current interval from having increasingly lengthy representations,
if we require exact computation.

6.1.2 Decoding

We assume that the decoder has been supplied the code word for the source
word and the length N of the source word. If the code word is 0, then the
source word is s1 · · · s1 = sN

1 . In all other cases, from the code word the decoder
knows the number r , the dfwld in the interval A(i1, . . . , iN) corresponding to
the sought-for source word.

As mentioned above, the decoder could, in principle, recover the source
word si1 · · ·siN from r and N by computing all the intervals A(j1, . . . , jN),
1 ≤ j1, . . . , jN ≤ m, and deciding which of them contains r . A moment’s

© 2003 by CRC Press LLC

6.1 Pure zeroth-order arithmetic coding: dfwld 151

thought shows that this would be senselessly inefficient. A much more sen-
sible approach is to find the index i1 such that r ∈ A(i1), then the index i2 such
that r ∈ A(i1, i2), and so on, until i1, . . . , iN —or, equivalently, si1 , . . . ,siN —are
found. The process neatly exploits the fact that the intervals A(i1), A(i1, i2), . . .

are nested, i.e., each is a subinterval of the preceding.
Once we have found A(i1, . . . , ik), we are looking for the unique j ∈ {1,

. . . ,m} such that r lies in the subinterval A(i1, . . . , ik, j) of A(i1, . . . , ik). This
j will be ik+1. How do we go about finding ik+1? This is where we have to
refer to the method by which the interval A(i1, . . . , ik) is sliced up. Suppose
A(i1, . . . , ik) = [α,α +�). The endpoints of the intervals at the next level are α,
α + f1�, . . . ,α + (

∑
i< j fi)�, . . . ,α + (

∑
i<m fi)�, α + �. Therefore, ik+1 will

be the index satisfying

α + (∑
i<ik+1

fi
)
� ≤ r < α + (∑

i≤ik+1

fi
)
�

or, equivalently, ∑
i<ik+1

fi ≤ r −α

�
<

∑
i≤ik+1

fi .

So, to sum up: having found A(i1, . . . , ik) = [α,α + �) containing r , find ik+1,
the largest index among those j such that

∑
i< j fi ≤ r−α

�
. Then

A(i1, . . . , ik, ik+1) = [
α + (∑

i<ik+1

fi
)
�,α + (∑

i≤ik+1

fi
)
�
);

iterate the process until i1, . . . , iN have been found.
Let’s try the procedure in the case S = {a,b,c,d}, fa = .4, fb = .3, fc = .2,

and fd = .1 and the decoder is given the code word 1 and N = 4.2 As before,
we use the source letters themselves rather than indices. In the following table,
α denotes the left-hand endpoint of the current interval and � denotes its length;
also, r = 1/2 = (.1)2:

α �
r −α

�
Next letter

0 1 1/2 = .5
b

(since .4 ≤ .5 < .7)

.4 .3 .5−.4
.3 = .33

a
(since 0 ≤ .33 < .4)

.4 .12 .5−.4
.12 = 5

6 = .83
c

(since .7 ≤ .83 < .9)
.4+ (.12)(.7)

= .484
.024 .5−.484

.024 = 2
3 b

and the process is complete since N = 4.
Now, let’s try it with the code 111000001 and N = 4. We know the right

answer: ccda. And, this time, we will put into the mix the decoder’s version

2Incidentally, the decoder knows the source alphabet and the source frequencies.

© 2003 by CRC Press LLC

152 6 Arithmetic Coding

of rescaling and the underflow expansion. The rescaling and underflow trans-
formations will be applied to r , of course. We start with r = (.111000001)2 =
449/512

α � r
r −α

�

Next letter
or rescale

or underflow

0 1 449
512

449
512 ≈ .88 c

.7 .2 449
512 wait for rescaling x → 2x −1

.4 .4 193
256

193
256 −.4

.4 ≈ .88 c

.68 = .4+ (.7)(.4) .08 = (.4)(.2) 193
256 wait x → 2x −1

.36 .16 65
128 wait x → 2x −1/2

.22 .32 33
64

33
64 −.22

.32 ≈ .92 d

.22+ (.9)(.32) = .508 .032 33
64 wait x → 2x −1

.016 .064 1
32 wait x → 8x

.128 .512 .25 .25−.128
.512 ≈ .24 a

We apologize for cheating by combining three rescalings of the form x → 2x
into one, x → 8x , in the next to last line of the decoding table above.

There is a way to simplify the decoding process that combines rescaling
with the discovery of the next source letter. This method superficially seems
more efficient than the decoding method (or methods, if you count with and
without rescaling as different) used so far, but it contains a fatal defect that
limits its applicability. We will discuss this defect in Section 6.3. Meanwhile,
for all its practical defects, this method may be of academic interest, so here it
is.

Given r = r(i1, . . . , iN) and N , we generate two sequences, r0,r1,r2, . . .

and j1, j2, . . . (or, equivalently, s j1,s j2 , . . .), as follows:

1. Set r0 = r .

2. For 1 ≤ k ≤ N , having found j1, . . . , jk−1 and rk−1, the decoder finds jk ,
the largest index such that

∑
j< jk f j ≤ rk−1.

3. If k = N , the decoder is done. Otherwise, the decoder sets rk = f −1
jk

(rk−1

−∑
j< jk f j) and returns to 2, with k replaced by k + 1.

You are asked to show, in Exercise 6.1.4, that the sequence j1, . . . , jN is actually
the sought-for sequence i1, . . . , iN such that r = r(i1, . . . , iN).

For example, let us decode the code words for bacb and for ccda that were
found on page 144. As usual, we will use source letters instead of numeric
indices.

Code: 1; r = r0 = .5; N = 4. Decoding table:

© 2003 by CRC Press LLC

6.1 Pure zeroth-order arithmetic coding: dfwld 153

k rk next letter
0 .5 b (since .4 ≤ r0 < .7)

1
(.3)−1(.5− .4)

= 1/3 = .33 . . .
a

2
(.4)−1(1/3−0)

= 5/6 = .833 . . .
c

3
(.2)−1(5

6 − .7)

= 2/3 = .66 . . .
b

Thus we decode 1, with N = 4, as bacb.
Code: 111000001; r = r0 = 449

512 = 0.876953125; N = 4. Table:

k rk next letter
0 449/512 c

1
(.2)−1(449/512− .7)

= 453
512 = .884765625

c

2
(.2)−1(453

512 − .7)

= 473
512 = .923828125

d

3
(.1)−1(473

512 − .9)

= 61
256 = .23828125

a

The source word decoded by this process is ccda, which is what it should have
been.

Notice that we do not have to find the intervals A(i1, . . . , ik), 1 ≤ k ≤ N , in
this method. Calculating those mysterious rk does the job.

Exercises 6.1

1. Suppose that S = {a,b,c,d} and fa = .35, fb = .3, fc = .25, and fd = .1.

(a) Encode bbbb, abcd , dcba, and badd by the method of this section,
assuming that the decoder will be given the source word length.

(b) Decode 11, 010001, 10101, and 0101, assuming the source word
lengths are all 4.

2. One of the disadvantages of the method of arithmetic coding described in
this section is that the encoder must supply the decoder with the length N
of the source word that has been encoded. Supplying information of a dif-
ferent type outside the main code stream is usually extremely inconvenient.

What if the encoder were to supply just the code and not N? Then the
decoder would know the dfwld r in A(i1, . . . , iN), where si1 · · ·siN is the
source word encoded. The problem is that r may also be the dfwld in
various intervals A(i1, . . . , ik), k < N ; if r is the dfwld in A(i1, . . . , ik),
then r is the dfwld in any interval A(i1, . . . , ik, . . . , it), t > k, that r happens
to lie in, because the intervals are getting smaller and the denominator of r
is not getting any bigger.

© 2003 by CRC Press LLC

154 6 Arithmetic Coding

Here is one way that the encoder could communicate the source word
length N without special arrangements. Having found A(i1, . . . , iN) and
r , the encoder finds the smallest value of k such that r is the dfwld in
A(i1, . . . , ik), and then adds N − k zeros to the code string. For exam-
ple, on page 144, bcba would be encoded 1000, while ccda would be
encoded 111000001, the same as before, because the dfwld in A(ccd) is
225
256 = (.11100001)2.

The decoder would proceed by the recovering-the-intervals method, with
the additional burden of checking whether or not r is the dfwld in each
successive interval. (Since rescaling amounts to shifting out the prefixes
in which the interval endpoints agree, this checking is not too terrible; you
apply rescaling to r until the current value of r is 1/2 or zero.) Once r is
the dfwld, then the decoder knows from the number of zeros remaining in
the code how long the source word is, and can proceed to decode by any
effective method.

Pretty clearly there are some awkwardnesses and inefficiencies to be dealt
with in the implementation of such a coding method, and adding those zeros
makes the code representatives of source words longer. Still, you might
keep this in mind as a possible solution to the problem of specifying the
source text length in arithmetic coding. Compare it with the trick employed
in Section 6.4, for elegance. Now, some exercise!

(a) In Exercise 1(a) above, how would the encoding be different if the
encoder communicates the source word length (4) by adding zeros to
the code words?

(b) In the situation of Exercise 1, decode 011000, assuming that the source
word length has been indicated by those three extra zeros, as described
above.

3. In the situation of Exercise 1 above, suppose that decoding has to proceed
before encoding is finished, and the encoder, by rescaling, is supplying as
much of the code string as possible to the decoder, and well as the length of
the source string read through so far. Suppose that the encoder informs the
decoder that the first 3 bits of the code string are 010 and that seven source
letters have been read (and no more bits of the code string are available
beyond 010). What are those first seven source letters? (After attempting
this problem, see Section 6.3.3.)

4. Suppose that S = {s1, . . . ,sm } is a source alphabet with relative frequen-
cies f1 ≥ ·· · ≥ fm > 0, and si1 · · · siN is a source word. For 1 ≤ k ≤ N , let
A(i1, . . . , ik) have endpoints αk and αk +�k . (No rescaling in this problem!)
Let r ∈ A(i1, . . . , iN). (If you want, take r to be the dfwld in A(i1, . . . , iN).)
Let r0,r1, . . . and j1, j2, . . . be the sequences described at the end of Sec-
tion 6.1.2; i.e., r0 = r , jk is the largest index among 1, . . . ,m satisfying∑

j< jk f j ≤ rk−1, and rk = f −1
jk

(rk−1 −∑
j< jk f j), k = 1,2, Prove the

© 2003 by CRC Press LLC

6.2 What’s good about dfwld coding: the compression ratio 155

validity of the method that involves the rk , i.e., that ik = jk , k = 1,2, . . . ,
by showing that rk = r−αk

�k
, k = 1,2, [Go by induction on k; note that

r0 = r−α0
�0

= r . Next show that i1 = j1 and r1 = r−α1
�1

. In the induction

step, assume that ik−1 = jk−1, rk−1 = r−αk−1
�k−1

, and show that ik = jk and

that rk = r−αk
�k

.]

5. If the first few source letters are all s1, what will the partial code word
provided by rescaling look like? Try it with f1 = .4 and source text W =
s1s1s1s1 · · · . Now you know the only case, alluded to in Section 6.1.1, in
which the partial code word provided by rescaling is not necessarily an
initial segment of the final code word: it is the case in which the source text
W is sN

1 .

6.2 What’s good about dfwld coding: the compression
ratio

Suppose that A = [α,β) is an interval of length � ≤ 1 and that t is an integer
satisfying 2−t ≤ � < 2−(t−1). The basis for method 1 on page 144 is the obser-
vation that A must contain some fraction of the form x/2t , x an integer; if not,
then A would be contained in an interval of the form (x

2t ,
x+1
2t) and would thus

have length < 2−t .
Therefore, the binary expansion through the last 1 of the dfwld in A (ne-

glecting the possibility that the dfwld might be zero) is of length no greater than
t . On the other hand, � < 2−(t−1) implies t < log2(1/�)+1. These observations
give rise to the following.

6.2.1 Theorem Suppose that S = {s1, . . . ,sm} is a source alphabet, and the
source letters have relative frequencies f1, . . . , fm > 0 in the source text. Then
the average length of the code words for the source words of length N , derived
by the arithmetic coding method of Section 6.1, is no greater than N H (S)+ 1
where (as usual) H (S) = −∑m

j=1 f j log2 f j .

Proof: Let (as in Chapter 7) f (i1, . . . , iN) denote the relative frequency of
si1 · · · siN among all source words of length N , for 1 ≤ i1, . . . , iN ≤ m. Let
t (i1, . . . , iN) denote the length of the arithmetic code word for si1 · · · siN ; so the
average length of the code words for the source words of length N is∑

1≤i1,...,iN ≤m

f (i1, . . . , iN)t (i1, . . . , iN).

By the observations preceding this theorem, and the fact that the interval A(i1,

. . . , iN) has length
∏N

j=1 fi j , we have

© 2003 by CRC Press LLC

156 6 Arithmetic Coding

∑
1≤i1,...,iN ≤m

f (i1, . . . , iN)t (i1. . . . , iN)

<
∑

i

f (i1, . . . , iN)

(
log2

(N∏
j=1

fi j

)−1

+ 1

)

=
∑

i

f (i1, . . . , iN)

(N∑
j=1

log2 f −1
i j

)
+

∑
i

f (i1, . . . , iN)

=
m∑

i1=1

(∑
1≤i2,...,iN ≤m

f (i1, . . . , iN)

)
log2 f −1

i1

+
m∑

i2=1

(∑
1≤i1,i3,...,iN ≤m

f (i1, . . . , iN)

)
log2 f −1

i2

+·· ·+
m∑

iN =1

(∑
1≤i1,...,iN−1≤m

f (i1, . . . , iN)

)
log2 f −1

iN
+ 1

=
m∑

i1=1

fi1 log2 f −1
i1

+
m∑

i2=1

fi2 log2 f −1
i2

+·· ·+
m∑

iN =1

fiN log2 f −1
iN

+ 1

= N H (S)+ 1.

The reader should scrutinize and ponder the equation∑
1≤i2,...,iN ≤m

f (i1, . . . , iN) = fi1 ,

one of N such used in the proof above. See Chapter 7.
Theorem 6.2.1 draws a conclusion about zeroth-order arithmetic encod-

ing, and that conclusion is that the average number of bits per source letter
achieved by pure dfwld encoding, as in Section 6.1, is vanishingly close to the
Holy Grail, H (S) (widely believed, although not proven, except for replace-
ment methods by fixed encoding schemes, to be an absolute lower bound on the
number of bits per source letter achievable by uniquely decodable zeroth-order
coding methods; see comment 4 below). We will see a corresponding theorem
about higher-order arithmetic encoding in Section 7.3. We prefer not to attempt
a rigorous definition of “zeroth-order,” but it might help the reader to under-
stand the comments below if we mention the following. Zeroth-order statistical
coding methods are distinguished by being based on the relative source let-
ter frequencies alone, and not on more complicated statistical information like
the relative frequencies of certain two-letter sequences, for instance. A perfect
zeroth-order source is a source that emits source letters randomly and indepen-
dently, with certain probabilities. Note that it is not assumed in Theorem 6.2.1
that the source is a perfect zeroth-order source; it is the coding method that is
zeroth-order.

© 2003 by CRC Press LLC

6.2 What’s good about dfwld coding: the compression ratio 157

Comments

1. Perhaps it should be emphasized that “the source,” envisaged by Shannon as
a mysterious probabilistic finite state automaton (see Section 7.5), produces, or
could produce, an infinite amount of “source text.” The usual situation is that
we do not know the structure of the source and can only carry out statistical
studies of finite samples of source text. The relative frequencies f1, . . . , fm are
really a priori probabilities that we would be able to calculate exactly if only we
knew the structure of the source; usually we can only hope to approximate them
by statistical study. Roughly speaking, the Law of Large Numbers says that our
approximations will be good with high probability if our sample of the source
text is large.

In Theorem 6.2.1, f1, . . . , fm are assumed to be exact, the true a priori
probabilities of the various source letters being emitted by the source (at ran-
domly chosen instants). However, analysis similar to that contained in the proof
of Theorem 6.2.1 shows that if f1, . . . , fm are merely good approximations
to the true relative source frequencies f̂1, . . . , f̂m , in the sense that the ratios
f̂i/ fi are all close to 1, and if these approximate relative source frequencies
are used to subdivide intervals in zeroth-order arithmetic encoding of source
words of length N , then the average number of bits per code representative of
these source words will be no greater than N H (S) + 1 + ε, where ε → 0 as
maxi |1 − (f̂i/ fi)| → 0, and H (S) = −∑m

i=1 f̂i log2 f̂i , the true zeroth-order
source entropy. Note also that H (S) will be well approximated in this case by
−∑m

i=1 fi log2 fi .

2. It may be useful to think of the source words of length N that are
being encoded arithmetically as blocks of N consecutive letters taken at ran-
dom from the infinite source text referred to above. Because we are consider-
ing all possible source words of length N , the proof of Theorem 6.2.1 has to
resort to an averaging process that may possibly obscure the important point
that zeroth-order arithmetic coding with respect to the relative source frequen-
cies f1, . . . , fm will encode any source word w in around − log2 �(w) bits or
less, where, for w = si1 · · · siN , �(w) = ∏N

j=1 fi j , the length of the “final in-
terval” A(w). Notice that if w is completely typical, and the source letters
occur in w in exactly the proportions f1, . . . , fm , then �(w) = ∏m

i=1 f fi N
i and

− log2 �(w) = −N
∑

i fi log2 fi = N H (S). If you don’t mind a certain amount
of fudging, you could say that this observation establishes that zeroth-order
arithmetic coding of text from a source S encodes “typical” source text in
around H (S) bits per source letter.

Bell, Cleary, Neal, and Witten [8, 84] call − log2 �(w) the entropy of the
message w, and they and Langdon and Rissanen [43,44] interpret it as the num-
ber of bits that “ought” to be allocated to the encoding of w, if the given relative
source frequencies are correct.

3. It may be worth emphasizing again that in Theorem 6.2.1 there are no
assumptions about the nature of the source, beyond the existence of the rela-

© 2003 by CRC Press LLC

158 6 Arithmetic Coding

tive source letter frequencies f1, . . . , fm and f (i1, . . . , iN),1 ≤ i1, . . . , iN ≤ m.
In particular, the source is not assumed to be a perfect zeroth-order source,
emitting the source letters randomly and independently. The information given
about the source (i.e., the relative source letter frequencies) is zeroth-order, but
the source itself need not be.

4. Restated in statistical shopkeeper’s terms, Theorem 6.2.1 says that dfwld
arithmetic coding uses, on average, no more than H (S)+ 1/N bits per source
letter, in the encoding of source words of length N . Now as has been men-
tioned from time to time in the information theory part of this book (see Chap-
ter 2, the discussion following Theorem 4.3.7, and Section 4.6), the source
entropy H (S) bears the interpretation of being the average amount of infor-
mation carried by an individual source letter in the source text, and the use of
the base 2 in the logarithm involved in H (S) means that information is being
measured in bits. That is, the average source letter in the source text carries
H (S) = ∑m

j=1 f j log2(1/ f j) bits of information.
Therefore, it should be impossible for any lossless (zeroth-order statistical)

method of encoding to encode source text using, on the average, less than H (S)

bits per source letter. The content of Theorem 6.2.1 is the often repeated mantra
that arithmetic coding is optimal among lossless zeroth-order statistical coding
methods, that it takes you as close to the shrieking limit of compression the-
oretically achievable by such methods as you could wish. (In fact, the words
“zeroth-order” often are omitted from this mantra.)

Let us digress briefly into controversy concerning those words “should be
impossible” in the paragraph above. It is a widely held belief that “should be”
can be confidently replaced by “is” in that statement (although, as noted, it
would be reckless to omit “zeroth-order statistical”). This belief arises from
faith in Shannon’s quantification of information, which treats information as
an incompressible fluid; you can compress text by squeezing out redundancy
and unused space between nuggets of information, but you cannot (so the belief
says) put a certain amount of information into a container (a code representa-
tion) that is too small for that amount of information, without losing informa-
tion. Try pouring 12 ounces of your favorite liquid into a glass that holds only
10 ounces, and the intuitive idea becomes clear.

We are believers, also, but would like to point out that, so far as we know,
it has never been rigorously proven that there cannot be a source S and a bi-
nary zeroth-order lossless statistical encoding method which encodes text from
this source in fewer than H (S) bits per source letter. For one thing, there is
the problem of saying exactly what we mean by a zeroth-order statistical en-
coding method. Notice that the Noiseless Source Coding Theorem (5.4.3 and
also 7.2.1) establishes the result for a particular class of such methods, namely,
replacement via encoding scheme. Bell, Cleary, and Witten, in their canonical
classic on lossless methods [8], attempt (p. 47) a proof of the Noiseless Source
Coding Theorem in apparently greater generality, but their proof may suffer
from some difficulties, located near the beginning of the attempt. In fact, Exer-

© 2003 by CRC Press LLC

6.2 What’s good about dfwld coding: the compression ratio 159

cise 6.2.1 at the end of this section shows that what they seem to aim to prove
there cannot be proven because it is not true—although this assertion can be de-
bated on the grounds that some fudging is possible in the understanding, in Bell,
Cleary, and Witten’s proof, of what it means for a “set of codes” to represent
“messages” (i.e., source words), and on the admission below of a hidden cost
that is left out of account in Exercise 6.2.1. Perhaps a more devastating objec-
tion to their attempted proof, and a test for all such attempted proofs, is provided
by the observation that it is quite normal for higher order Huffman encoding to
encode in significantly fewer bits per source letter than H (S) (see Section 7.1).
Therefore, a proof based on assumptions about the encoding method that does
not rule out higher order Huffman encoding must be fallacious.

Without giving away any answers, we note that it appears that Exercise
6.2.1 suggests that it is possible, in a certain extreme case, to encode source
words of length N by dfwld arithmetic coding at an average cost per source
letter of slightly less (where “slightly less” is a function of N) than H (S) bits
per source letter. This is enough to shoot down certain rash statements about the
entropy being an absolute lower bound on the “average code word length,” or at
least to make us skeptical of such statements; but the result of the exercise, and
of the preceding theorem, leave out of account a certain hidden cost of arith-
metic coding as described in Section 6.1, namely, the necessity of supplying to
the decoder the length N of the source word. This will require 1+�log2 N	 bits,
and will therefore increase the average number of bits per source letter by about
(1 + log2 N)/N . When you throw this into the average computed in Exercise
6.2.1, “slightly less” than H (S) becomes “slightly more.”

In Section 6.4 we will consider an algorithm for arithmetic coding that sim-
ulates pure dfwld encoding without passing the length N of the source word en-
coded. However, this algorithm operates with a new cost, an extraneous source
symbol EOF for “end of file,” to be used once at the end of the source text.
This symbol has to be assigned a relative frequency, and the other source letters
have to have their relative frequencies trimmed. We haven’t done the arithmetic,
but surely this new device costs enough to keep the average number of bits per
source letter above the entropy. We are Shannonite believers, you see, but we
like to keep track of what has been proven and what has not.

Exercises 6.2

1. Suppose that m = 2L for some positive integer L, and that f j = 2−L , j =
1, . . . ,m. Note that, by Theorem 5.4.3, since the f j are integral powers of
1/2, and since Huffman’s algorithm always gives the smallest �̄ that can
be achieved with a prefix code, in this case the �̄ produced by Huffman’s
algorithm will be H , the source entropy.

(a) Compute H . If the source letters s1, . . . ,s2L are really the binary words
of length L, what is the compression ratio achieved by Huffman’s algorithm
in this case?

© 2003 by CRC Press LLC

160 6 Arithmetic Coding

(b) Suppose that the source is a perfect zeroth-order source, meaning
that f (i1, . . . , iN) = ∏N

j=1 fi j = 2−N L for all positive integers N and
1 ≤ i1, . . . , iN ≤ m, with f (i1, . . . , iN) denoting, as in the text, the relative
frequency of the source word si1 · · · siN among all source words of length
N . Recall that H (SN) = N H (S) in this case.

Therefore, this assumption implies that encoding SN by Huffman’s algo-
rithm will result in no compression at all by (a). The average code word
length achieved by applying Huffman’s algorithm to SN will be N L; thus
the average number of bits per original source letter in the encoding will be
L.

Show that the average length of a code word representing a source word
of length N , derived by the arithmetic coding method of Section 6.1, is
N L − 1 + 2−(N L−1). (Get started by noting that the dfwld in A(i1, . . . ,

iN) is the left hand-endpoint. These left-hand endpoints are j
2N L , 0 ≤ j ≤

2N L −1. You will probably need to know that
∑k

j=1 j2 j−1 = (k −1)2k +1,
k = 1,2, · · · . You can prove this by induction; or, differentiate both sides

of
∑k

j=0 x j = xk+1−1
x−1 and plug in x = 2.)

Thus, arithmetic coding appears to beat Huffman in this case. Not by much,
but then it is a severely intractable case. However, the appearance is decep-
tive because, as noted in the remarks at the end of this section, you have to
pass the length N of the source text to the decoder along with the code text,
and that adds around log2 N bits to the total code package; this is not much
compared with N L, but it is much bigger than 1 − 2−(N L−1).

2. Suppose that s1, . . . ,sm are binary words with the SPP and, in the class
of files to be parsed by the s j , the relative frequencies of s1, . . . ,sm in
the resulting source text are f1, . . . , fm , respectively. Suppose that L̄
= ∑m

j=1 f j lgth(s j). Show that the typical compression ratio achieved in
arithmetically encoding original files that translate into source words of
length N is no less than L̄/[H (S)+ N−1(2 + log2 N)].

6.3 What’s bad about dfwld coding and some ways to
fix it

As promised, we look at some of the impractical features of pure dfwld arith-
metic coding and make some suggestions. In Section 6.4 all of these impracti-
calities will be overcome, with the sacrifice of a certain purity.

© 2003 by CRC Press LLC

6.3 What’s bad about dfwld coding and some ways to fix it 161

6.3.1 Supplying the source word length

In the method of Section 6.1, the encoder must supply the decoder with the
length N of the source text, but how is this to be done? If the encoder sends the
binary representation of N at the beginning of the code stream, how is the de-
coder to know when that representation is finished and the code proper begins?
Some possibilities:

1. If it is known that there will never be more than M source letters in
any source text to be dealt with, then you can reserve �log2 M�+ 1 bits at the
beginning of the code text for transmitting N . If no bound on the source text
length is known, you can still use this device by choosing M reasonably large
and reserving �log2 M�+ 2 bits at the beginning of the code text; the last bit of
these is a “warning bit” which, if set at 1, warns the decoder that the expression
for N has overflowed the allotted space and will continue into the next block
of �log2 M�+ 2 bits equipped with its warning bit; and so on. The code finally
commences when the last warning bit is zero.

The disadvantage of this solution to the problem of supplying N is that it
compounds the problem discussed in 6.3.3, below. Presumably the encoder will
keep a count of the source letters while encoding. If the encoder is to convey
the number N of source letters at the beginning of the code text, then there
will be a great delay; the decoder will not even get a peek at the partial code
word supplied by rescaling until the encoding is complete. This is all right in
those leisurely situations in which the encoded, compressed text is to be stored
away and decompressed later, but the other kind of situation is encountered with
increasing frequency.

We could convey N or a running count of the source letters encoded in some
other location outside the main code stream. However, providing companion
locations or parallel streams is inconvenient precisely in those situations when
we are in a hurry and hope to decode on the heels of encoding. We will have
more to say about this in 6.3.3.

2. The method of Exercise 6.1.2 smoothly communicates the source word
length by adding a certain number of zeros onto the code word. The method
imposes an extra burden of computation on both the encoder and the decoder,
but this disadvantage is not as important as the fact that this method appears
to be incompatible with solutions to the problem addressed in 6.3.3; how can
decoding proceed on the heels of encoding if the decoder does not know whether
a string of zeros in the code stream is part of the regular code word or part of the
extra zeros at the end? This problem could be dealt with by providing a marker
of, or a pointer to, the end of the regular code word, but this would again raise
the technical difficulty of supplying an extra location or stream of information
outside the main code stream.

3. The algorithm of Section 6.4, yet to come, eliminates the necessity of
counting the source letters, at the cost of introducing an extra source letter,
usually called EOF, for “end of file.” This extra letter will be used once, to

© 2003 by CRC Press LLC

162 6 Arithmetic Coding

mark the end of the source text.
The disadvantage in this trick is that compression will be somewhat less

than optimal, not so much because of the extra bits required for EOF as because
the original relative source frequencies will have to be trimmed a bit to make
room for the small relative frequency to be assigned to EOF. However, the
entropy of the modified source can be made as close as desired to the original
entropy by making fEOF sufficiently small (because x log2 x is a continuous
function of x > 0 and x log2 x → 0 as x ↓ 0). Therefore, by analysis similar
to that in the proof of Theorem 6.2.1 and the remarks following, you can get
within a cat’s whisker of optimal lossless compression, on the average, for long
source texts, using EOF and the algorithm of Section 6.4.

6.3.2 Computation

The arithmetic coding method of Section 6.1 requires exact computations, both
in encoding and decoding. These are costly, especially the multiplications. The
length of A(i1, . . . , iN) is

∏N
j=1 fi j , which on the average requires around N

times the number of bits to store (never mind compute) as the average number
of bits per number required to store the (rational) numbers f1, . . . , fm .

Rescaling and the underflow expansion may appear to relieve the burden of
exact computation. However, note that these operations involve multiplying the
interval lengths by powers of two. Therefore, odd factors of the denominators
of the f j are never reduced by rescaling, and, if bigger than one, will cause
the complexity of and storage space required for exact computations to grow
inexorably, approximately linearly with the number of source letters. This ob-
servation inspires the first of three suggestions for lessening the burden of exact
computation.

Replace the f j by approximations which are dyadic fractions. For exam-
ple, if m = 4 and f1 = .4, f2 = .3, f3 = .2, and f4 = .1, you could take f̃1 = 102

256 ,

f̃2 = 77
256 , f̃3 = 51

256 , and f̃4 = 26
256 , these being the closest (by most definitions of

closeness) dyadic fractions with common denominator 256 to the actual values
of f1, f2, f3, and f4. It may appear that replacing the f j in this case by these
approximations will actually increase the burden of computation, because the
approximations are nastier-looking fractions than the original f j , and this is in-
deed a consideration; we could make life easier if we replace the f j by dyadic
fraction approximations with denominator 8 or 16—but then our approxima-
tions would not be very close to the true relative frequencies, and that might
affect compression deleteriously. [It can be shown, by analysis similar to that
in the proof of Theorem 6.2.1, that as approximate relative frequencies tend to
the true relative frequencies, the average number of bits per source letter in code
resulting from arithmetic coding of source words of length N , using the approx-
imate relative frequencies, will eventually be bounded above by H (S)+ 1+ε

N ,
for any ε > 0, where H (S) is the true source entropy. Thus good approxima-

© 2003 by CRC Press LLC

6.3 What’s bad about dfwld coding and some ways to fix it 163

tions ensure good approaches to optimal lossless encoding; however, not much
is known about the penalty to be paid for bad approximations.]

Encode blocks of source letters of a certain fixed length. After each block
is encoded, the encoder starts over on the next block. The computational ad-
vantage is that the denominators of the rational numbers that give the interval
endpoints and lengths cannot grow without bound, even if the relative source
frequencies are not dyadic fractions, since the calculations start over periodi-
cally.3

But how will the decoder know where the code for one block ends and the
code for the next block begins? If an efficient method of providing non-binary
markers or a parallel pointer/counter stream outside the main code stream is
ever devised, this might be a good place to use it. In the absence of any such
technical convenience, we could use a modification of the method of Section
6.4, with the artificial source letter EOB for “end of block” to be inserted by
the encoder into the source text at the end of each block. Of course, this device
costs something in diminished compression. The longer the blocks, the less the
cost of EOB, but the greater the cost of computation.

Use approximate arithmetic. This third suggestion for avoiding computa-
tional arthritis in arithmetic coding is the method actually used in the proposed
implementation in Section 6.4. The interval [0,1) is replaced by an “interval” of
consecutive integers, {0, . . . , M − 1}, which we will continue to denote [0, M),
and in subdivisions of this interval the source words are allocated blocks of
consecutive integers approximately as they would be allocated in pure dfwld
arithmetic coding using the full interval of real numbers from 0 to M . Thus, if
f1 = .4, f2 = .3, f3 = .2, f4 = .1, and M = 16, then A(1) = A(s1) = {0,1,2,3,

4,5} = [0,6), A(2) = A(s2) = {6,7,8,9,10} = [6,11), etc. Are you worried
that subsequent subdivision will shrink the intervals to lengths less than one so
that they may fail to contain any integers at all? Well may you worry! This un-
pleasant possibility is taken care of by starting with M sufficiently large, with
respect to the relative source frequencies, and by rescaling and applying the
underflow expansion.

This trick solves the problem of exact computation by simply doing away
with exact computation. The disadvantage lies in the level of compression
achievable. This disadvantage has been considered in [8, 33, 48], but there is
room for further analysis. Some experimental results comparing pure dfwld

3You might observe that block arithmetic encoding amounts to using an encoding scheme for
S N , where N is the length of the source blocks. This encoding scheme definitely does not satisfy
the prefix condition; for instance, the single digit 1 is the code word representative of some member
of S N , and is also the first digit of the code representatives of a great many others.

However, the luxury of instantaneous decoding available with a prefix-condition encoding
scheme for S N is illusory. If |S| is fairly large, say |S| = 256, and N is fairly hefty, say N = 10,
then an encoding scheme for S N would have a huge number, |S N | = |S|N , of lines; 25610 = 280

is an unmanageable number of registers necessary to store an encoding scheme. So a nice prefix-
condition scheme for S N is of no practical value in any case. You can think of the decoding process
in block arithmetic coding as a clever and relatively efficient way of looking up code words in an
encoding scheme without having actually to store the scheme.

© 2003 by CRC Press LLC

164 6 Arithmetic Coding

arithmetic encoding involving exact computation with slapdash integer-interval
methods of the type in Section 6.4 appears in [51].

Note that if M is a multiple, or, better yet, a power, of the common denom-
inator of f1, . . . , fm , then interval subdivision of the blocks of integers substi-
tuting for real intervals in this form of arithmetic coding is sometimes exact. In
practice, M is usually taken to be a power of 2, M = 2K . It might be a shrewd
move in these cases to replace the f j by dyadic fraction approximations with
common denominator 2k , with k being an integer divisor of K . (Of course, it
is a luxury to know the f j beforehand. In adaptive arithmetic coding, to be
described in Chapter 8, the f j are changing as the source is processed, and it is
not convenient to repeatedly replace them by approximations.)

6.3.3 Must decoding wait until encoding is completed?

According to the description of dfwld arithmetic encoding in Section 6.1, in or-
der that a source text be encoded and the code word for it subsequently decoded,
the encoder has to read through the entire source text and compute the dfwld r
associated with the source text, and the decoder has to wait until encoding is
completed before beginning to decode.

Compare this train of events with the corresponding operation in the case of
replacement encoding, in which each occurrence of a source letter is replaced by
a binary word. In all forms of such encoding (including the adaptive varieties,
which will be described in Chapter 8), encoding can begin as soon as scanning
of the source text begins, and decoding can begin as soon as the beginnings of
the code text are supplied to the decoder. Clearly there are situations in which
it is highly desirable, or even indispensable, that encoding not wait upon the
reading of the entire source text, nor decoding upon the delivery of the entire
code text.

Can this apparent disadvantage of dfwld arithmetic coding be overcome?
Well, yes; for instance, one could limit the delays by resorting to encoding of
blocks of source letters of a pre-set length, as discussed above, at the cost of
providing a parallel counter or pointer stream, or an extra source letter, EOB,
which would be discarded by the decoder.

Is there any way to take advantage of the partial code words, prefixes of the
final code word, supplied to the decoder by the encoder through rescaling? Yes:
as noted at the end of Section 6.1.1, the decoder can deduce what the source
text is right up to and including the last letter processed by the encoder if the
decoder is supplied with the code text shifted out by rescaling together with the
number of source letters processed so far. In Exercise 6.1.3 you were asked to
struggle with the deduction process. Let us look now at what the decoder has to
do.

Suppose that the code text supplied by rescaling after the scanning of the
prefix W of the source text, say with N letters, is a binary word u. Recall
from the introductory discussion of rescaling that u consists of the part of the

© 2003 by CRC Press LLC

6.3 What’s bad about dfwld coding and some ways to fix it 165

initial segments of the binary expansions of the endpoints of the interval A(W)

where those binary expansions agree. [In case A(W) = [1−ε,1), this statement
holds true if you take 1 = (.11 · · ·)2.] That is, the binary expansion of the lower
endpoint of A(W) looks like (.u0 · · ·)2, and the binary expansion of the upper
endpoint is (.u1 · · ·)2. Therefore, provided no interval endpoints are dyadic
fractions, (.u1)2 is the dfwld in A(W)! That is, given u and N , the decoder
needs only to tack 1 on the end of u and decode normally.

Thus, in Exercise 6.1.3, in which the relative source frequencies make it
unlikely that any interval endpoint other than 0 or 1 is a dyadic fraction, you
take 010, tack on a 1 to get 0101, and decode normally by any of the methods of
Section 6.1.1. [Note r = (.0101)2 = 5/16 and N = 7.] You should get acdcaca.
You can check that this is correct by encoding acdcaca, with rescaling, to see
if 010 is the partial code word provided by rescaling.

The problem of dyadic fraction interval endpoints is a nuisance, but can
be overcome. As mentioned in the footnote on page 145, this would not be a
problem if we made our intervals open on the left, closed on the right, and that is
one way out. Even with intervals closed on the left, note that if (.u1)2 is not the
dfwld in A(W), then either (.u1)2 is in A(W), in which case normal decoding
of u1 gives the source word W , or (.u1)2 is the upper endpoint of A(W). This
second possibility can be checked for by the decoder, and adjustments can be
made.

Although we will not dwell upon it here, this process of decoding from
knowing N and the partial code supplied by rescaling can be adapted so that it
proceeds right “on the heels” of encoding, with the decoder’s rescaling sweep-
ing away old code and keeping the eager decoder one source letter behind the
encoder.

The great impediment to our happiness with this method of eager decoding
is the necessity of supplying the source letter count N corresponding to the par-
tial code supplied by rescaling. If N is to be conveyed by some pointer/counter
stream parallel to the regular code stream, compression is seriously reduced.
Perhaps there are situations in which code can be delivered to the decoder in
conformity with a certain rhythm, so that the decoder gets N by some sort of
timing device; barring some such trick, this sort of decoding on the heels of
encoding appears infeasible.

Another, more promising, path to allowing decoding to follow soon upon
the start of encoding arises from the observation that in the decoding of Section
6.1, we need only decide in which of several large intervals (r −α)/� lies. We
usually do not need to know (r −α)/� exactly, which means that we usually do
not need to know r exactly.

What would happen if we replaced r by the approximation r̃ obtained by
truncating the binary expansion of r somewhere – i.e., if we tried to proceed
using just the (current) first few bits of the (current) code stream? The ap-
proximation r̃ will be a little less than r , so (̃r −α)/� will be a little less than
(r − α)/�. If the latter is exactly equal to the lower endpoint of the interval

© 2003 by CRC Press LLC

166 6 Arithmetic Coding

A(sk) = [∑ j<k f j ,
∑

j≤k f j) in which it lies (so that we ought to decode sk)
then we are doomed: (̃r − α)/� will be in the next interval down, we will
wrongly decode sk−1, the next “current interval” will be wrong, and we will
be in a world of trouble. The same catastrophe will occur if (r − α)/� is not
equal to the lower endpoint of A(sk), but is very close to it, and r̃ is not close
enough to r to put (̃r −α)/� in A(sk).

These catastrophes could be avoided at some cost in compression if we
roughened the arithmetic coding process by putting some space – an “error
zone” – between the intervals into which the current interval is subdivided. That
is, the initial intervals A(s1), . . . , A(sm) would not cover [0,1), and subsequent
subdivisions would be similar to the first. Then we can proceed to decode fear-
lessly, replacing r by r̃ , provided we have figured out how far to take the binary
expansion of r , to obtain r̃ , so as to ensure that whenever (r −α)/� is in A(sk),
1 < k ≤ m, then (̃r −α)/� will be greater than the upper endpoint of A(sk−1).

This roughening is somehow, happily, built into the algorithm of Section
6.4, but not explicitly. The algorithm is a discrete simulation of pure dfwld
arithmetic coding which corrects all the defects of the pure process that we
have discussed here, at a controllable cost.

Exercises 6.3

1. Suppose that S = {a,b,c,d}, and fa = .35, fb = .3, fc = .25, and fd =
.1, as in Exercise 6.1.1. Find the dyadic fractions f̂a, f̂b, f̂c , and f̂d with
common denominator 16, adding up to 1, such that (f̂a, f̂b, f̂c, f̂d) is as
close as possible to (fa, fb, fc, fd). (Take “as close as possible” to mean
that

∑
s∈S

| fs − f̂s | is minimized.)

Redo Exercise 6.1.1 using the f̂s as the relative source frequencies. Does
rescaling do much to curb the growth of the denominators of the interval
lengths?

2. S = {a,b,c,d}, fa = .4, fb = .3, fc = .2, and fd = .1. The encoder, rescal-
ing whenever possible, passes to the decoder the following information,
one line at a time (λ stands for the empty string):

Number of source
letters processed

New bits added to the
code stream by rescaling

1 λ

2 10
3 λ

4 1010
5 110
6 λ

7 λ

Decode on the run, on the heels of the encoding, as best you can. (Note
that the code string, with N = 7, stands at 101010110, so you can always
check your work by decoding 1010101101, with N = 7.)

© 2003 by CRC Press LLC

6.4 Implementing arithmetic coding 167

6.4 Implementing arithmetic coding

In this section, some of the practical considerations for implementing arith-
metic coding are examined. As with all the probabilistic methods presented,
any model producing symbol probabilities can be used with arithmetic coding.
The examples in this section use the simplest case of a fixed order-0 model.

So far, arithmetic coding has been presented with the understanding that
the encoded stream is determined after the entire input stream is examined, al-
though rescaling may produce a good part of the code as the source is processed.
In practice, it is generally not feasible to maintain the precision required to com-
pute the interval corresponding to the entire source stream, even with rescal-
ing. In addition, in many applications transmission must begin before the entire
stream has been coded.

Typically, arithmetic will be of limited precision; in fact, an approximate
version of dfwld arithmetic coding can be implemented entirely with integer
arithmetic (32 bits of precision is common). On many machines, integer opera-
tions are much faster than floating-point, and, in addition, portability consider-
ations are simpler.

The scheme of this section will use the rescaling and incremental transmis-
sion described earlier: as soon as a digit in the binary representation of the final
interval is determined, send that bit out as part of the encoded stream and then
expand the interval. In order to prevent the current interval from becoming too
small, the underflow expansion will be done in the case that the current interval
is short but includes 1/2 as an interior point.

The decoder will need a method to determine when all symbols have been
recovered. If the source length cannot be provided “up front,” then another
method will be needed to terminate decoding. One possibility is to enlarge
the symbol set S by adding a special end-of-file symbol, denoted by EOF. Of
course, enlarging S has a price: the new symbol requires code space. In practice,
this may be quite small; see Section 6.3 and also [34] for some discussion.

The algorithm that we will describe here for practical arithmetic coding is
due to Witten, Neal, and Cleary [84]; in their honor, we will call it the WNC
algorithm, for short. It is best thought of as a simulation of pure dfwld arithmetic
encoding and decoding.

The main feature of the WNC algorithm is that the interval [0,1) will be
replaced by a finite set of consecutive integers, {0, . . . , M − 1}, to be denoted
[0, M). The choice of M is critical, and will be discussed later. In practice, M
is always a power of 2, but there is no harm in leaving M unspecified, in what
follows.

The WNC encoding algorithm follows dfwld encoding exactly, with the
reservations that computations are replaced by “integer arithmetic”, best ex-
plained by example below; the rescaling and underflow expansions are obliga-
tory, not optional; and the finish of the encoding process is not just “add 1 for

© 2003 by CRC Press LLC

168 6 Arithmetic Coding

1/2, the dfwld in the final interval”—there is more to it than that.
The parallels and differences between the two processes are given in Table

6.1. In this table, [L, H) = {L, . . . , H −1} will be the “current interval” in WNC
decoding, where L and H are integers. As before, the “current interval” in dfwld
encoding will be denoted [α,β). The operation “round down” will be denoted
�·�. Both dfwld and WNC assume an ordered source alphabet s1, . . . ,sm with
positive relative frequencies f1, . . . , fm , usually (but not necessarily) in non-
increasing order. In the WNC algorithm, one of the si , usually sm , is EOF, with
a small putative relative frequency obtained by taxing the relative frequencies
of the real source letters.

Table 6.1: Encoding comparison between dfwld and WNC methods.

Dfwld WNC
Starting
interval [0,1) [0, M) = {0, . . . , M −1}

New current
interval after

reading sk

α ← α + (
∑

i<k fi)(β −α)

β ← α + (
∑

i≤k fi)(β −α)

L ← L +�(∑i<k fi)(H − L)�
H ← L +�(∑i≤k fi)(H − L)�

Rescaling When β ≤ 1/2:
α ← 2α,β ← 2β.

When 1/2 ≤ α:
α ← 2α −1,β ← 2β −1.

When H ≤ M/2:
L ← 2L , H ← 2H.

When M/2 ≤ L :
L ← 2L − M, H ← 2H − M.

Underflow
expansion

When 1/4 ≤ α < 1/2 < β ≤ 3/4:
α ← 2α −1/2,

β ← 2β −1/2.

When M/4 ≤ L < M/2 < H ≤
3M/4:

L ← 2L −�M/2�,
H ← 2H −�M/2�.

(Usually M is even, so �M/2� =
M/2.)

Ending
encoding

At the end, carry out rescaling un-
til α < 1/2 < β, then add 1 to the
code stream

At the end, having read EOF, carry
out rescaling and the underflow ex-
pansion until neither can be car-
ried out. At this point, either L <

M/4 < M/2 < H or M/4 ≤ L <

M/2 < 3M/4 < H . In the former
case add 01k+1 to the code stream,
where k is the underflow count; in
the latter case add 10k+1 to the
code stream.

6.4.1 Example (WNC encoding) (a) S = {a,b,EOF}, fa = 6/10, fb = 3/10,
fEOF = 1/10; M = 16. We encode abaEOF, using a table similar to those in
Section 6.1.

© 2003 by CRC Press LLC

6.4 Implementing arithmetic coding 169

Next letter
or rescale

or underflow L H
New
code

Underflow
count

0 16 0
a 0 0+�(.6)16� = 9 0
b 0+�(.6)9� = 5 0+�(.9)9� = 8 0

x → 2x 10 16 0 0
x → 2x −16 4 16 1 0

a 4 4+�(.6)12� = 11 0
x → 2x −8 0 14 1

EOF 0+�(.9)14� = 12 14 1
x → 2x −16 8 12 10 0
x → 2x −16 0 8 1 0

x → 2x 0 16 0 0

Thus the code for abaEOF is 01101001. The last “01” is added because the
final interval is [0,16); L = 0 < M/4 = 4 < M/2 = 8 < H = 16. See the last
part of Table 6.1.

(b) S = {a,b,c,EOF}, fa = .4, fb = .3, fc = .2, and fEOF = .1. This time,
we take M = 32. We encode bacbEOF.

Next letter
or rescale

or underflow L H
New
code

Underflow
count

0 32 0
b 12 22 0

x → 2x −16 8 28 1
a 8 8+�(20).4� = 16 1

x → 2x 16 32 01 0
x → 2x −32 0 32 1 0

c 22 28 0
x → 2x −32 12 24 1 0
x → 2x −16 8 32 1

b 8+�(.4)24� = 17 8+�.7(24)� = 24 1
x → 2x −32 2 16 10 0

x → 2x 4 32 0 0
EOF 29 32 0

x → 2x −32 26 32 1 0
x → 2x −32 20 32 1 0
x → 2x −32 8 32 1 0

The output code is: 011110011110.

6.4.2 The WNC algorithm for encoding An ordered source alphabet s1, . . . ,

sm , including a special symbol EOF, and corresponding relative frequencies
f1, . . . , fm are given. Also, a (large) positive integer M has been chosen. The
following applies to encoding a source word in which EOF occurs once, at the
end. For j = 1, . . . ,m + 1, let Fj = ∑

i< j fi .

© 2003 by CRC Press LLC

170 6 Arithmetic Coding

1. A current interval [L, H) is initialized as [0, M) = {0, . . . , M − 1} and
maintained at each step. Also, an underflow count is initialized at 0 and main-
tained to the end of the file.

2. (Underflow condition) If the current interval [L, H) satisfies M/4 ≤ L <

M/2 < H ≤ 3M/4, replace the current interval by [2L −�M/2�,2H −�M/2�)
and add 1 to the underflow count. [If M is even, the round down signs may be
deleted from the preceding.]

3. (Shift condition) If the current interval [L, H) satisfies H ≤ M/2, re-
place the current interval by [2L,2H) and output 01k , k = underflow count, to
the code stream. If M/2 ≤ 1, replace the current interval by [2L − M,2H − M)

and output 10k to the code stream. In either case, reset the underflow count to
0.

4. If none of the conditions in 2 or 3 hold, look at the next source letter
(indicated by a pointer). If it is s j , assign L ← L + �Fj (H − L)�, H ← L +
�Fj+1(H − L)� and move the pointer forward, unless s j = EOF.

5. Repeat 2-4 until EOF has been encountered and none of the conditions
in 2 or 3 hold. If, at this point, L < M/4 < M/2 < H , output 01k+1 to the code
stream, where k is the underflow count. Otherwise, output 10k+1. The encoding
is now finished.

Decoding WNC decoding differs significantly from pure dfwld decoding in
that the decoder does not use the entire code stream to decode, but rather just the
(current) first N = �log2 M	 bits of the code stream. These appear in a register
called v (for value), and change as decoding proceeds, as code bits from the
right are shifted into v and (one of the first two) code bits on the left (start) of
v are deleted. (We will make the process clear below.) It is this dependence on
only the first few bits of the code stream, in decoding, together with the use of
integer arithmetic, which makes WNC encoding and decoding so practical and
fast.

The decoder tracks the encoding process. This means that a current interval
[L, H) is maintained and whenever any of the conditions in 2 and 3 of the
algorithm in 6.4.2 hold, the appropriate expansion brings about a shift into and
out of v. It is not necessary to keep an underflow count, but the underflow
expansion brings about an unusual shift into the v register:

a1a2 . . .aN aN+1aN+2 · · · → a1a3 . . .aN aN+1 aN+2 . . .

That is, the second bit in v is deleted and a new code bit is shifted in. Mean-
while, the rescaling expansions in 3 of 6.4.2 both bring about

a1a2 . . .aN aN+1aN+2 · · · → a2 . . .aN aN+1 aN+2 . . .

(In all of the above, a1a2 . . .aN aN+1aN+2 are the bits of the current code stream
and the box represents the v register.)

Decoding of source letters occurs when, finally, no condition in 2 or 3 of
6.4.2 holds. In order to decode, the different subintervals [L j , H j) of [L, H)

© 2003 by CRC Press LLC

6.4 Implementing arithmetic coding 171

corresponding to the source letters s1, . . . ,sm have to be computed, and v has to
be viewed as the binary expansion of a non-negative integer; whichever interval
[L j , H j) the value v falls in determines which s j is next decoded, and [L j , H j)

replaces [L, H) as the current interval. When EOF is decoded, decoding stops.
One very slight inconvenience of the use of integer arithmetic and the round

down operation is that it is not determinable invariably which interval �L j , H j)

v lies in simply by calculating � v−L
H−L �. We could be off by one interval if we try

to use the “ r−α
�

” method of 6.1. There are ways of avoiding the full burden (see
the discussion at the end of “Implementation and performance issues”, below),
but, in what follows, we will calculate the subintervals [L j , H j) corresponding
to the letters s j , j = 1, . . . ,m, whenever the time to decode has arrived.

6.4.3 Example (decoding) (a) S = {a,b,EOF}, fa = 6/10, fb = 3/10, fEOF

= 1/10, M = 16, and the code is 01101001; N = 4.

v L H [La, Ha) [Lb, Hb) [LEOF, HEOF)
Decode
or . . .

(0110)2 = 6 0 16 [0,9) [9,14) [14,16) a
0110 0 9 [0,5) [5,8) [8,9) b
0110 5 8 x → 2x
1101 10 16 x → 2x −16

(1010)2 = 10 4 16 [4,11) [11,14) [14,16) a
1010 4 11 x → 2x −8

(1100)2 = 12 0 14 [0,8) [8,12) [12,14) EOF

The decoded source message is: abaEOF.

(b) S = {a,b,c,EOF}, fa = .4, fb = .3, fc = .2, fEOF = .1, M = 32, and
the code is 011110011110. [N = 5].

v L H [La, Ha) [Lb, Hb) [Lc, Hc) [LEOF, HEOF)
Decode
or . . .

(01111)2 = 15 0 32 [0,12) [12,22) [22,28) [28,32) b
01111 12 22 x → 2x −16

(01110)2 = 14 8 28 [8,16) [16,22) [22,26) [26,28) a
01110 8 16 x → 2x
11100 16 32 x → 2x −32

(11001)2 = 25 0 32 [0,12) [12,22) [22,28) [28,32) c
11001 22 28 x → 2x −32
10011 12 24 x → 2x −16

(10111)2 = 23 8 32 [8,17) [17,24) [24,29) [29,32) b
10111 17 24 x → 2x −32
01111 2 16 x → 2x

(11110)2 = 30 4 32 [4,15) [15,23) [23,29) [29,32) EOF

Decoded source message: bacbEOF. We leave the formulation of the WNC
decoding algorithm as an exercise.

© 2003 by CRC Press LLC

172 6 Arithmetic Coding

Implementation and performance issues

Some issues related to implementation on a machine have been discussed in
previous sections. In this section, some additional programming considerations
are examined. The section concludes with a few notes on performance issues.

The first question regarding WNC encoding/decoding we need to deal with
is: how large does M have to be, and why? The larger M is, the more accu-
rate is the simulation of pure dfwld arithmetic coding provided by the WNC
algorithms (on the grounds that long intervals of consecutive integers are more
divisible than short ones, and so better simulate the continuum), and thus the
closer we are to the Holy Grail, encoding losslessly in H (S) bits per source
letter. On the other hand, letting M be simply enormous is computationally
impractical.

There is a more prosaic consideration concerning the size of M , other than
compression performance: during encoding, when the current interval [L, H)

is subdivided into subintervals [L j , H j), j = 1, . . . ,m, it must never happen
that L j = H j for some j . For if L j = H j then [L j , H j) is empty, and if the
next letter is s j , the encoding process will proceed to crash, or enter an infinite
rescaling loop.

Given S = {s1, . . . ,sm} and positive relative frequencies f1, . . . , fm , let Fj =∑
i< j fi , j = 1, . . . ,m +1. The disaster we have to avoid is L +�Fj (H − L)� =

L +�Fj+1(H − L)�, i.e., �Fj (H − L)� = �Fj+1(H − L)�, for some j , when we
have a current interval [L, H) satisfying none of the conditions in 2 or 3 of 6.4.2.
(That is, the time has come to read the next source letter and replace [L, H) by
the subinterval [L j , H j) corresponding to that source letter.)

Notice that Fm+1 = 1 > Fm = 1 − fm , and H − L is a positive integer, so
�Fm(H − L)� < H − L = �Fm+1(H − L)�. Therefore, the disaster we fear will
never occur with j = m. Therefore, to avoid calamity it suffices that f j (H −
L) ≥ 1 (why?) for j = 1, . . . ,m − 1.

If none of the conditions in 2 and 3 of 6.4.2 holds, then either L < M/4 <

M/2 < H or L < M/2 < 3M/4 < H . Let us suppose that M is divisible by
4. Then we see that if the current interval [L, H) is about to be subdivided, it
must be that H − L ≥ M/4 + 2. Putting this together with the condition in the
paragraph preceding we obtain the following.

6.4.4 Given S = {s1, . . . ,sm} and positive relative frequencies f1, . . . , fm , let
fmin = min[f1, . . . , fm−1]. The WNC encoding algorithm, applied to source
text over S, will not crash due to an empty interval if the integer M is divisible
by 4 and M ≥ (4/ fmin)− 8.

In the situation of 6.4.1(a), for example, fmin = .3 and we could have pro-
ceeded with M = 8. In 6.4.1(b), fmin = .2 and we could have proceeded with
M = 12. Of course, the compression achievable with these smaller values of M
will probably not match that achievable with the larger values, 16 and 32, over
the long haul, but it might be interesting to experiment and find out roughly how
much we lose with the smaller values.

© 2003 by CRC Press LLC

6.4 Implementing arithmetic coding 173

The test of sufficiency of M given in 6.4.4 becomes important in adaptive
arithmetic coding, in which the relative frequencies vary—see Section 8.3. In
every case it is good policy to make EOF the last in the order of source letters,
with the smallest relative frequency.

As mentioned earlier, the arithmetic is easiest to follow in the case that the
interval length M satisfies M = 2N for some N ∈ N, which is a natural choice
for implementing on a machine. The values for the interval (and the value of
v used in decoding) can be maintained in N bits. In addition, a number of the
steps in the scheme can be managed as simple bitwise operations.

To be precise, if the current interval is to be maintained in N bits, then the
register for the right endpoint will contain H −1 rather than H . It turns out that
this is the natural choice if bitwise operations are to be used. The shift condition
in step 3 of the algorithm 6.4.2 is a simple test on the leftmost (called the most
significant bit or MSB) of the N bits of L and H −1: if MSB(L) = MSB(H −1)

then shift these registers left, sending the MSB to the output and giving new
values for L and H − 1. The shift on L doubles the value represented in the
lower N − 1 bits, which is what is desired. However, the shift on the right
endpoint is performed on H − 1 and hence 1 must be added to the result.

The underflow condition in step 2 of the algorithm also corresponds to
simple bitwise operations. Underflow occurs when the two leftmost bits of L
and H − 1 are ‘01’ and ‘10’, respectively. In the expansion, the second bit is
deleted in each of L and H − 1, the last N − 2 bits are shifted one space left, a
0 is the new last bit of the L register, and a 1 is the new last bit of H −1. (Also,
the underflow count is incremented.)

An example is the best way to understand the process. The encoding of
6.4.1(a) is repeated in Table 6.2. The format of the table has changed somewhat,
in order to better illustrate the bitwise operations. The calculations haven’t
changed, but the current interval is maintained in N-bit registers as L and H −1,
with the understanding that this corresponds to the interval [L, H). The left end-
point of the corresponding subinterval for each symbol is listed as La , Lb, and
LEOF, respectively. The result, of course, is the same as before. The algorithm
gives ‘01101001’ as the encoded stream.

For illustration, the table lists all of the left endpoints La , Lb, and LEOF.
This is more arithmetic than is required and would be expensive if S has many
symbols. Only the endpoints corresponding to the current input symbol are
needed (and can be calculated from number 4 of 6.4.2).

In decoding, only the subinterval corresponding to the value is needed. In
the decoding examples we calculated all the subintervals [Li , Hi) corresponding
to different letters, when it came time to decode, but there is a way to avoid this
calculation. Suppose that the relative frequencies fi are rational numbers, say
fi = ci/C , ci and C positive integers, i = 1, . . . ,m. [We use the letters c and C
here to suggest the word “counts”, in anticipation of adaptive arithmetic coding.
See Chapter 8.] Let C0 = 0 and Ci = ∑

j≤i c j , i = 1, . . . ,m. Thus Cm = C and
ci/C = Fi+1, i = 0, . . . ,m, with the Fj as defined previously. Now the amount

© 2003 by CRC Press LLC

174 6 Arithmetic Coding

Table 6.2: The encoding of Example 6.4.1 (a).

Current interval
Symbol L H −1 La Lb LEOF Output

start 0000 1111 0000 1001 1101
a 0000 1000 0000 0101 1000
b 0101 0111 expanda x �→ 2x 0

1010 1111 expandb x �→ 2(x − M/2) 1
0100 1111 0100 1011 1110

a 0100 1010 expandc x �→ 2(x − M/4) underflow
0000 1101 0000 1000 1100

EOF 1100 1101 expandb x �→ 2(x − M/2) 10
1000 1011 expandb x �→ 2(x − M/2) 1
0000 0111 expanda x �→ 2x 0
0000 1111

aUsing notation from the C programming language, the expansion is L � 1
and (H −1) � 1 | 1.
bThe expansion is the same as above, but the leftmost bit must be discarded.
cThis can be written as the bitwise operations (L &(M/4−1)) � 1 and
((H −1) ∧ (3M/4)) � 1 | 1.

of arithmetic can be minimized by scaling the value v back to the subintervals
[Ci−1,Ci) in order to find the current output symbol. To see how this works,
consider the stage in decoding where L ≤ v < H and we wish to find i so that
Li ≤ v < Hi (giving output symbol si). From the formulas in 6.4.2, this means⌊Ci−1

C
(H − L)

⌋ ≤ v − L <
⌊Ci

C
(H − L)

⌋
and hence

Ci−1(H − L) < (v − L + 1)C ≤ Ci (H − L).

Every term is an integer, and it follows that

Ci−1 ≤ w = ⌊ (v − L + 1)C − 1

H − L

⌋
< Ci . (6.1)

The steps can be reversed, showing that the scaled value w satisfies Ci−1 ≤ w <

Ci if and only if Li ≤ v < Li+1. It is w (along with the cumulative counts, in
the case of adaptive coding; see Section 8.3) which can be used by the decoder
to find the current symbol.

As an example of the use of w to find the current symbol, consider the
second step in the decoding example in 6.4.3 (a) where v = 6 and the current
interval is [L, H) = [0,9). We can take C1 = 6, C2 = 9, and C = C3 = 10. Our
calculation gives

w = ⌊ (v − L + 1)C − 1

H − L

⌋ = ⌊ (6 − 0 + 1)10 − 1

9 − 0

⌋ = ⌊69

9

⌋ = 7.

© 2003 by CRC Press LLC

6.4 Implementing arithmetic coding 175

Since C1 = 6 ≤ w = 7 < 9 = C2, it follows that the current symbol is s2 = b. At
this stage, the current interval corresponding to ‘b’ must be calculated and then
decoding continues.

Precision

If, for some reason, we require the M in the WNC algorithm to be small, we
may allow rough and arbitrary approximation of the relative source frequencies.
If we allow the fmin in 6.4.4 to be as large as 1/m = 1/|S|, then, by the analysis
preceding 6.4.4, the rather minimal condition |S| ≤ M/4 + 2 and M divisible
by 4 will guarantee that the algorithm can proceed. This will not leave much
room to accurately reflect probabilities, however, and in practice M may be
much larger than 4|S|. Performance considerations will place an upper bound
on the number of bits which can be required for the calculations. Letting fi =
ci
C as above, i = 1, . . . ,m, clearly fmin ≥ 1/C and therefore the subintervals
[Li , Hi) will be nonempty if C ≤ M/4 + 2. With some programming care, the
intermediate calculations can be done if C M ≤ 2p , where p is the number of
bits of precision. Hence, if M = 2m , it suffices to require that C ≤ 2c, where

log2 |S| ≤ c ≤ m − 2 and c + m ≤ p. (6.2)

Today, p = 32 is common, and m = 16 and c = 14 may be a natural choice.
For large symbol sets, conditions (6.2) could be rather unpleasant even with
larger p; see Moffat, Neal, and Witten [48] for an improved coder which is
more flexible.

As an alternate viewpoint (especially in the case that p is small), one could
consider that m and c are given, and then choose S appropriately. Finally, note
that the number of underflow bits is not bounded by the algorithm. However,
since any pending underflow bits are all the same, only a count need be main-
tained.

Performance

For a given model, Huffman coding is “best possible” among probabilistic
methods which replace source symbols by an integral number of bits. However,
it is not optimal in the sense of “entropy.” As the simplest example, consider
an alphabet with two symbols. Regardless of the probabilities, Huffman will
assign a single bit to each of the symbols, giving no compression.

On the other hand, arithmetic coding is optimal, and it can do better than
Huffman. In particular, arithmetic coding on the two-symbol alphabet can yield
compression, in contrast to Huffman. It is important to note that implementa-
tions of arithmetic coding (such as that presented here) will be somewhat less
than optimal, due to the integer arithmetic and other compromises. Since Huff-
man is nearly optimal in many cases [23], the choice between Huffman and
arithmetic is not as simple as the theory might suggest, although it appears safe
to say that, in practice, arithmetic coding usually gives better compression.

© 2003 by CRC Press LLC

176 6 Arithmetic Coding

Implementing arithmetic coding is not much more difficult than Huffman
coding, but execution speed has been a serious concern. In the case of fixed
probabilities (static or semi-static coding), Huffman will be significantly faster.
In the adaptive case, however, maintaining the Huffman codes is expensive
in time and memory. An optimized arithmetic coding implementation can be
faster, use less memory, and give better compression [48–51].

There has been considerable work to reduce the number of multiplications
required. Using approximate probabilities can permit replacement of multipli-
cations by simple shift operations. The QM-coder (a binary arithmetic coder)
used in JPEG image compression schemes [57] is an attempt to maximize per-
formance with such methods.

JPEG provides an example of another consideration in choosing a com-
pression method. As discussed in Chapter 10, lossy JPEG schemes get most of
their compression using a transform method, and then Huffman or arithmetic
coding is used on the output. The QM-coder used in the arithmetic mode may
be covered by patent, according to the Independent JPEG Group (IJG) [25]. The
free JPEG software implements the Huffman portion of the specification. Arith-
metic coding may offer some additional compression, but the IJG writes “Since
arithmetic coding provides only a marginal gain over the unpatented Huffman
mode, it is unlikely that very many [JPEG] implementations will support it.”

Exercises 6.4

1. A stream from S = {a,b,c,EOF,d} is to be encoded using the statistics
fa = 3/7 and 1/7 = fb = fc = fEOF = fd .

(a) Encode ‘db’, followed by EOF, using (integer) arithmetic coding with
M = 24 (i.e., the registers for L and H −1 are 4-bit). Keep the symbols
in the order listed when assigning subintervals.

(b) Given that the encoder and decoder have agreed on the algorithm, what
information must be passed in order for the decoder to recover the
source string?

(c) Decode the result of (a), showing the details. Minimize the arithmetic
by using 6.1 to find the symbol. (Let C = 7.)

2. It is sometimes possible to reduce the size of the output file at the last stage
of the encoding process. Consider encoding b followed by EOF, using the
arrangements from Exercise 1.

(a) Show that the algorithm gives ‘1000001’.
(b) Let’s try to save a few bits at the last stage. Assume that the decoder

understands that any encoded string ends with an infinite number of
zeros. In our problem, the final interval includes 0, and if there are
no underflow bits pending, then two bits could be saved at the final
stage. In every case (even if there are underflow bits), sending a single
1 suffices. (Why?)

© 2003 by CRC Press LLC

6.4 Implementing arithmetic coding 177

Suppose the algorithm is modified so that the encoder never outputs
until it has a maximum number of equal consecutive bits (and the de-
coder understands that the encoded string ends with all zeros). Show
that these changes give ‘1’ as the encoded string for this example. Are
there any “problems” with these changes?

3. In Exercise 1, show that it is not possible to scale the symbol counts and
choose c to satisfy 6.2. However, after expansions, the current interval
[L, H) is always wide enough to assign symbols to distinct subintervals.

4. Verify that the bitwise operations in the footnotes to the table on page 174
agree with the expansions described in the algorithm.

5. For a given S, the minimal condition |S| ≤ M/4 + 2 guarantees that the
algorithm can proceed. Name two important advantages in choosing M
larger than this lower bound.

6. Langdon and Rissanen [44] describe a method called bit stuffing to han-
dle the “carry-over problem” (which corresponds to the underflow case
discussed in this chapter). The current interval length is maintained in a
fixed-width register, but normalized so that it represents lengths in [1/2,1);
i.e., the register is shifted so that the (implied) binary point is followed by
a 1). The code string is shifted by the same amount in order to maintain
alignment.

Table 6.3 illustrates the process with a binary arithmetic code.4 The source
alphabet is S = {0,1}, and the first portion of the string to be encoded is
‘0100010’. The probabilities depend on the context s, and P(1 | s) denotes
the probability of 1 in context s. The symbol ‘0’ is “more probable” in this
example, and is assigned to the left subinterval at each stage. Following
the notation of [44], the code string at each stage is C = C(s), and the
(normalized) length is contained in A = A(s). It is understood that the
length A(s1) is obtained by truncating the value P(1 | s)A(s), and then
A(s0) = A(s)− A(s1).5

The lines containing “shift” indicate the number of left shifts to be per-
formed on A and C so that the most significant digit of A is 1 (and the
result is shown in the following line of the table). This allows the working
part of C to be maintained in a fixed-length register (4 bits in the table), but
additions can cause carry-over into the digits preceding the binary point.
In the example, the last 0 input leads to a string of ones in C . If the next
input symbol is 1, then a carry-over may propagate up this long string of
1s, converting each to 0, and terminating only when it reaches a 0.

4See also Langdon’s paper [43] for additional notes and extended examples of a similar algo-
rithm.

5In this example, the probabilities are of the form 1/2 j , and so the calculation is particularly
simple (and amounts to shifting A(s) right by j bits). These probabilities may be approximations to
the actual values and result in a multiplication-free scheme. See [44] for a discussion on how these
estimates should be chosen.

© 2003 by CRC Press LLC

178 6 Arithmetic Coding

Table 6.3: Binary arithmetic coding with bit stuffing.

string s input P(1 | s) C(s) A(s) A(s0) A(s1)

null 0 1/22 .0000 1 .1100 .0100
0 1 1/2 .0000 .1100 .0110 .0110
01 .0110 .0110 shift 1
01 0 1/22 0.1100 .1100 .1001 .0011
010 0 1/22 0.1100 .1001 .0111 .0010
0100 0.1100 .0111 shift 1
0100 0 1/23 01.1000 .1110 .1101 .0001
01000 1 1/2 01.1000 .1101 .0111 .0110
010001 01.1111 .0110 shift 1
010001 0 1/2 011.1110 .1100 .0110 .0110
0100010 011.1110 .0110 shift 1, bit stuff
0100010 01110.1100 .1100

In order to limit the number of bits that can be affected by carry-over, an
extra 0 is “stuffed” into C (shown in the last line of the table). This extra
zero blocks the propagation of a carry: the digits which appear to the left of
this stuffed bit no longer participate in the arithmetic, and can be sent out.

(a) Assume that the probability at the last line of the table is P(1 | s) =
1/22. If the next input symbol is ‘1’, show that the carry propagates
into the stuffed bit.

(b) The string s = 01000101 (i.e., the stream in the table along with the
digit from (a)) is encoded. Recall that any number in [C(s),C(s) +
A(s)) determines a valid encoded stream. Show that ‘01111011’ is the
best representative.6

The decoder must also manage the stuffed bit. After receiving a predeter-
mined number of consecutive 1s (three, in this example), the decoder ex-
amines the next bit (the stuffed bit). If the bit is 0, then no carry at the next
stage has propagated into the current digits, and the stuffed bit is ignored.
If the bit is 1, then it is added to the current value of the codeword.

(c) Show the decoding details for the encoded stream ‘01111011’.

(d) What is the cost of bit stuffing?

6Langdon and Rissanen do not include the leading 0 (apparently since the decoder can manage
this case); it has been retained here since it simplifies the discussion.

© 2003 by CRC Press LLC

6.5 Notes 179

6.5 Notes

A complete implementation of the scheme by Witten, Neal, and Cleary appears
in their well-known paper [84]. This article is the basis for corresponding ma-
terial in Text Compression [8]. Appendix C gives addresses where the original
and optimized versions may be found. A separate implementation of the same
coding scheme can be found in the book by Nelson and Gailly [53]. Portabil-
ity has been a goal in this code, but it should be noted that the sources make a
few optimizations that assume certain widths on data types. Moffat, Neal, and
Witten [48] provide a number of improvements to the earlier version.

The QM-coder used in JPEG is a descendent of the IBM Q-coder, devel-
oped out of work on compressing bilevel images. A description of the Q-coder
can be found in a series of articles in the IBM Journal of Research and Devel-
opment, November 1988. Rabbani and Jones [59] present a short section on the
Q-coder, and [57] contains a discussion of the QM-coder.

Binary coders (such as the Q-coder) are an important special case in arith-
metic coding. Alphabets with more than two symbols can be managed by en-
coding the current bit according to a suitable context, although performance
may be unsatisfactory [34, 49, 50]. Howard and Vitter [34, 35] discuss mod-
eling and coding methods to improve the speed while preserving most of the
compression.

Ross Williams’ thesis [82] contains a lengthy survey of text compression.
The section on arithmetic coding is short, but includes an interesting alternate
view of the scheme and a few notes on the basic ideas in the Q-coder devel-
opment. The internet newsgroups comp.compression (established by Williams
in 1991) and comp.compression.research can be good sources of information,
although, like many newsgroups, there is a considerable amount of noise to fil-
ter. Jean-loup Gailly coordinates the FAQ (Frequently Asked Questions) for
these newsgroups, which is a good source for introductory material, pointers to
source code, references, and other information (see Appendix C).

© 2003 by CRC Press LLC

Chapter 7

Higher-order Modeling

In understanding probabilistic or statistical coding methods, it is useful to think
of the coding process or apparatus as divided into two autonomous packages,
the coder and the model. The model, or statistical processor, passes information
about the statistical nature of the source text to the coder, which then uses this
information to encode the source text efficiently.

Chapters 5 and 6 were about different kinds of coder, and the model was
very rudimentary; supposedly a statistical study of the source text was con-
ducted before encoding to estimate the relative source frequencies, f1, . . . , fm ,
which are supplied to the coder once and for all (for that source text). In this
chapter and the next we will look at two different kinds of statistical proces-
sor more complicated than the plain old non-adaptive, zeroth-order model pre-
sumed heretofore. In Chapter 8, we take up adaptive methods. Here, we study
higher-order non-adaptive methods. As noted in Chapter 8, the two sorts of
model can be crossed to produce hybrid processors, higher-order adaptive mod-
els.

All of these different models can be used with either the Huffman or the
arithmetic coder (or with other statistical coders, such as those based on Shan-
non’s or Fano’s methods). As long as the coder knows the current values of
f1, . . . , fm , the coder knows how to process the source text. In principle, the
coder need not be tailored to fit the statistical processor. In practice, it may
increase the efficiency if the coder is modified to mix better with the model,
in the necessary exchange of information between them. We will present the
higher-order models (and, in the next chapter, the adaptive statistical processor)
in alliance with the Huffman and arithmetic coders, and speak as though there
were such things as “kth-order Huffman encoding,” or “adaptive arithmetic en-
coding,” because it is convenient to do so, and because we think it might be
easier for somebody learning about these models for the first time to do so in
connection with the coders, so that they can see how the full package works.
But we wish to emphasize, for reasons of academic purity, that, as the title of
this chapter indicates, “higher-order” is a quality of the model, or statistical
processor, and can be considered separately from any particular coding method.
Perhaps it is time to reveal what higher-order modeling is all about.

Suppose S = {s1, . . . ,sm }, a source alphabet, and an integer k ≥ 0 are given.
In kth-order encoding, we assume that the relative source frequencies f (i1, . . . ,

ik+1) of the words si1 · · · sik+1 , among all source words of length k +1, are given.

181

© 2003 by CRC Press LLC

182 7 Higher-order Modeling

In the cases k = 0,1,2, we write f (i) = fi (the relative frequency of si much
used in the preceding chapters), f (i, j) = fi j , the so-called digram frequency
of si s j and f (i, j,k) = fi j k , the trigram frequency of si s j sk .

If the relative frequencies f (i1, . . . , ik+1) are given, then so are all the rel-
ative frequencies f (i1, . . . , it), 1 ≤ i1, . . . , it ≤ m, 1 ≤ t ≤ k + 1. For instance,
f (i1, . . . , ik) = ∑m

j=1 f (i1, . . . , ik, j). Notice that, for instance, when k = 1,
[fi j] = F , an m ×m matrix of non-negative numbers, is an acceptable matrix of
digram frequencies if and only if for each i , the i th row sum and the i th column
sum of F are equal, and 1 = ∑

i
∑

j fi j .

7.1 Higher-order Huffman encoding

One way to use the hard-won knowledge of the relative frequencies f (i1, . . . ,

ik+1) would be to treat Sk+1 as the source alphabet and to produce an encoding
scheme using Huffman’s algorithm. This encoding scheme would have mk+1

lines.
In kth-order Huffman encoding, k ≥ 1, we have, instead of one big scheme,

rather a lot of little schemes, mk of them, in fact, each with m lines, so the
total hidden cost of kth-order encoding is about the same as that of zeroth-order
encoding using the huge source alphabet Sk+1. Let us call each source word
si1 · · · sik of length k a kth-order context. For each such context, and 1 ≤ j ≤ m,
let

P(s j | si1 · · · sik) = f (i1, . . . , ik, j)

f (i1, . . . , ik)
,

the conditional probability that, if you have just scanned the word si1 · · · sik in
the source text, the next letter will be s j . The mk encoding schemes come
about by applying Huffman’s algorithm to S = {s1, . . . ,sm} equipped with the
conditional relative frequencies P(s1 | si1 · · · sik), . . . , P(sm | si1 · · ·sik), for each
context si1 · · · sik . Thus there is one scheme per context, which makes mk of
them, and each is an encoding scheme for S, and so has m lines.

Once you have all these schemes, how do you encode source text? Each
occurrence of the letter s j is encoded with the code word for s j in the scheme
associated with the context si1 · · · sik , the k-letter word immediately preceding
that occurrence of s j . Thus different occurrences of s j may well be encoded
differently. How, then, will the decoder be able to recognize the code for that
occurrence of s j , following si1 · · · sik ? Very simple: the decoder has decoded
the code text preceding the code for that occurrence of s j , so the decoder knows
that it is “in context si1 · · · sik ”; the decoder proceeds to scan the code text with
reference to the encoding scheme associated with the correct context.

The discerning reader will have detected that there is a problem with those
first k letters in the source text, which are not preceded by a k-letter context.
No problem—decide on some prefix-condition “starter scheme” for S and use

© 2003 by CRC Press LLC

7.1 Higher-order Huffman encoding 183

it for those first k letters. (Of course, the decoder will have to be told what the
starter scheme is.) It seems reasonable to use the Huffman scheme based on the
relative frequencies f1, . . . , fm of the source letters, calculable as follows:

f j =
∑

1≤i1,...,ik ≤m

f (i1, . . . , ik , j).

7.1.1 Example k = 1, S = {s1,s2,s3,s4}, and

[f (i, j)] = [fi j] =

.16 .10 .10 .04

.08 .17 .04 .01

.14 .01 .01 .04

.02 .02 .05 .01

 .

(How are these fi j found? Sampling. But these particular fi j were just made
up.) We find (how?) that the relative source frequencies of s1,s2,s3,s4 are
f1 = .4, f2 = .3, f3 = .2, f4 = .1, so we take the following as starter scheme:

s1 → 0, s2 → 10, s3 → 110, s4 → 111.

Now we compute the context schemes. For context si , we are supposed to assign
to s1, . . . ,s4 the conditional relative frequencies fi1/ fi , . . . , fi4/ fi ; since these
are proportional to fi1, . . . , fi4, we use these to form the Huffman tree. Simi-
larly, in general, in kth-order encoding, the Huffman tree for context si1 · · · sik is
formable with the assignment of the f (i1, . . . , ik, j) to the s j ; it is not necessary
to compute P(s j | si1 · · · sik) = f (i1, . . . , ik, j)/ f (i1, . . . , ik).

Context s1:

s1 .16�������� .4��������0

1���
�

s2 .10�������� .24��������0

1���
�

s3 .10�������� .14��������0

1���
�

s4 .04��������

This gives the same
scheme as the starter
scheme.

Context s2:

s1 .08�������� .13��������0

1��
�

��
�

s2 .17�������� .3��������
0

����

1

s3 .04�������� .05��������0

1���
�

s4 .01��������

Scheme
s1 → 00
s2 → 1
s3 → 010
s4 → 011

(Of course, a different labeling of the edges will give a different scheme,
but with the same code word lengths.)

© 2003 by CRC Press LLC

184 7 Higher-order Modeling

Context s3:

s1 .14�������� .2��������0

1

��
��
��

s2 .01��������
.02��������0���

1
��� .06��������0

1

���
���

���s3 .01��������
s4 .04��������

Scheme
s1 → 0
s2 → 100
s3 → 101
s4 → 11

Context s4:

s1 .02�������� .05��������0

1���
�

s2 .02�������� .03��������0

1��
�

��
�

s3 .05�������� .1��������
0

��������

1

s4 .01��������

Scheme
s1 → 00
s2 → 010
s3 → 1
s4 → 011

So, for instance, with the four context schemes and the starter scheme at our
disposal, the source text s2s1s1s2s1s4s3s3s1 is encoded 10000100011111010.
Check the encoding, and also check that the decoder can recover the source
string from the code string, if supplied with the starter and the context schemes.

7.1.2 Computing the compression ratio Again, S = {s1, . . . ,sm } and the rel-
ative frequencies f (i1, . . . , ik+1) of the words in Sk+1 are given. For a context
si1 · · · sik (assuming k ≥ 1) and 1 ≤ j ≤ m, let �(i1, . . . , ik, j) be the length of the
code word for s j in the encoding scheme for the context. The average length
of a code word replacing a source letter (neglecting the starter scheme, the ef-
fect of which would be negligible with a large source text) is, by elementary
considerations (see Section 1.8)

�̄(k) =
∑

1≤i1,...,ik ≤m

f (i1, . . . , ik)
m∑

j=1

P(s j | si1 · · · sik)�(i1, . . . , ik, j)

=
∑

1≤i1,...,ik+1≤m

f (i1, . . . , ik+1)�(i1, . . . , ik+1). (Verify!)

Thus, for instance, in Example 7.1.1, we have

[�(i, j)] = [�i j] =

1 2 3 3
2 1 3 3
1 3 3 2
2 3 1 3

 ,

and �̄(1) = ∑
1≤i, j≤4 fi j �i j = 1.72. (Verify!) By comparison, applying Huff-

man’s algorithm to S, with f1 = .4, f2 = .3, f3 = .2, f4 = .1, gives �̄ = �̄(0) =
1.9. If you apply Huffman’s algorithm to S2, with si s j assigned relative fre-
quency fi j , you will get �̄ = �̄(0)(S2) = 3.53. Thus the compression ratio

© 2003 by CRC Press LLC

7.1 Higher-order Huffman encoding 185

achievable by this method, 2L̄/3.53, assuming the s j themselves are binary
words with average length L̄, is less than that achieved by first-order encoding,
L̄/1.72.

Here is an academic question of practical importance. Given f (i1, . . . ,

ik+1), 1 ≤ i1, . . . , ik+1 ≤ m, let �̄(k) be as defined above, and let �̄(Sk+1) be the
average code word length achieved by Huffman’s algorithm applied to Sk+1 as
the source alphabet equipped with the relative frequencies f (i1, . . . , ik+1). Is
it always the case that �̄(k) ≤ k

k+1 �̄(Sk+1)? In other words, is the compression
achieved by kth-order Huffman encoding always at least as good as the com-
pression achieved by zeroth-order encoding, treating Sk+1 as the source alpha-
bet? (Notice that when k = 0, these two are the same.) It is somewhat surprising
that the answer is: not always. See Exercise 7.1.4. Notice that the situation in
that exercise is rather extreme. The next question is: under what conditions do
we have �̄(k) ≤ 1

k+1 �̄(Sk+1)? It is a large question that probably does not have
a snappy answer given the current state of our knowledge and terminology, but
its obvious practical importance makes it worth looking into.

Here is another question of practical importance: in case k ≥ 1, is it neces-
sarily the case that �̄(k) ≤ �̄(k−1)? Or, can increasing the order sometimes give
you worse compression? We suspect that �̄(k) ≤ �̄(k−1) always holds, but we
have no proof.

Exercises 7.1

1. Suppose S = {s1,s2,s3,s4}, with s1 = 000, s2 = 001, s3 = 01, s4 = 1, and
digram frequencies f (i, j) = fi j given in

[fi j] =

.2 .04 .06 .05

.05 .17 .08 .02

.07 .08 .06 .02

.03 .03 .03 .01

 .

(a) Find the single-letter relative frequencies f1, f2, f3, f4, and the com-
pression ratio achieved if Huffman’s algorithm is applied to S.

(b) Find the compression ratio achieved if Huffman’s algorithm is applied
to S2 (with the relative frequencies fi j given above, of course).

(c) Give the four context schemes for first-order encoding of this source
and encode the source string s2s2s1s3s1s1s1s3s2s3s3s1s4. (Use the
scheme associated with (a) for the first letter, s2. There are differ-
ent correct schemes for the starter and the contexts, so, if doing this
exercise as part of a problem set, clearly label your schemes.)

(d) Find the compression ratio achieved by first-order encoding of this
source alphabet. (This does not mean the compression ratio achieved
in part (c) on that small segment of source text, but in general, on the
average, on very large “typical” blocks of source text.)

© 2003 by CRC Press LLC

186 7 Higher-order Modeling

2. Suppose someone were to examine the source text of problem 1 and to dis-
cover the single-letter source frequencies, f1, f2, f3, and f4, but to remain
ignorant of the digram frequencies fi j . Suppose this person applies Huff-
man’s algorithm to S2, assuming the relative frequency of si s j among all
two-letter source words to be fi f j .

(a) What compression ratio would this person believe they have achieved,
given their assumption about the digram frequencies?

(b) What compression ratio would they actually have achieved?

3. The lazy but earnest person of problem 2 also tries first-order Huffman
encoding of the source text of problem 1, again assuming that the relative
frequency of si s j is fi f j .

(a) What compression ratio does the encoder believe has been achieved by
this method?

(b) What is the actual compression ratio achieved?

4. Let S = {s1,s2,s3} and suppose the digram frequencies are given by

[fi j] =

.7 .05 .05

.02 .04 .04

.08 .01 .01

 .

Recalling the notation of this section, compute �̄(0), �̄(1), and �̄(S2) for this
source alphabet. Observe that �̄(1) > �̄(S2)/2.

7.2 The Shannon bound for higher-order encoding

Again, suppose that k ≥ 1 and the “(k + 1)-gram” frequencies f (i1, . . . , ik+1)

are given. Recall that the k-gram frequencies are then known: f (i1, . . . , ik) =∑m
j=1 f (i1, . . . , ik, j) = ∑m

j=1 f (j, i1, . . . , ik).
In the preceding section we looked at kth-order Huffman encoding. Clearly

other kth-order replacement scheme strategies are possible; you need only sup-
ply a prefix-condition scheme for encoding s1, . . . ,sm for each context si1 · · · sik .
Let, for some such association of schemes to contexts, �(i1, . . . , ik, j) be the
length of the code word for s j in the scheme corresponding to context si1 · · · sik ,
and

�̄(i1, . . . , ik) =
m∑

j=1

P(s j | si1 · · · sik)�(i1, . . . , ik, j)

=
m∑

j=1

f (i1, . . . , ik , j)

f (i1, . . . , ik)
�(i1, . . . , ik, j).

© 2003 by CRC Press LLC

7.2 The Shannon bound for higher-order encoding 187

Then the average length of a code word replacing a source letter, using whatever
our context schemes are, is

�̄ =
∑

1≤i1,...,ik ≤m

f (i1, . . . , ik)�̄(i1, . . . , ik)

=
∑

1≤i1,...,ik+1≤m

f (i1, . . . , ik+1)�(i1, . . . , ik+1),

as in the preceding section, where the method was kth-order Huffman encoding.
Since Huffman’s algorithm gives the minimal �̄(i1, . . . , ik) for each context

si · · · sik , among prefix-condition schemes associable to that context, it follows
from the preceding that �̄(k), the value of �̄ for kth-order Huffman encoding, will
be the smallest kth-order �̄ achievable. Therefore, in thinking about bounds on
compression achievable with kth-order replacement schemes, we may as well
stick with kth-order Huffman encoding. Henceforward, �(i1, . . . , ik, j) and �̄(k)

will be as in Section 7.1.
Let

H (i1, . . . , ik) = −
m∑

j=1

P(s j | si1 · · · sik) log2 P(s j | si1 · · · sik)

= −
m∑

j=1

f (i1, . . . , ik , j)

f (i1, . . . , ik)
log2

f (i1, . . . , ik, j)

f (i1, . . . , ik)
,

the “entropy of the source in context si1 · · · sik .” We define the kth-order entropy
of S = {s1, . . . ,sm } to be

H (k)(S) = H (k) =
∑

1≤i1,...,ik ≤m

f (i1, . . . , ik)H (i1, . . . , ik).

Plugging the full gory expression for H (i1, . . . , ik) into the expression for H (k),
thrashing about and doing what comes naturally with logarithms, one finds that

H (k)(S) = H (Sk+1)− H (Sk),

where

H (Sk+1) = −
∑

1≤i1,...,ik+1≤m

f (i1, . . . , ik+1) log2 f (i1, . . . , ik+1)

is the plain old zeroth-order entropy of Sk+1.
We have, for each context si1 · · · sik ,

H (i1, . . . , ik) ≤ �̄(i1, . . . , ik) < H (i1, . . . , ik)+ 1,

by the Noiseless Coding Theorem, plus the fact that the average code word
length obtainable by Huffman’s algorithm is the best (smallest) obtainable with
a prefix code.

© 2003 by CRC Press LLC

188 7 Higher-order Modeling

7.2.1 Theorem The average code word length �̄(k)(S) achieved by kth-order
Huffman encoding applied to a source alphabet S satisfies H (k)(S) ≤ �̄(k)(S) <

H (k)(S)+ 1.

Proof: By the preceding remarks,

H (k)(S) =
∑

1≤i1,...,ik≤m

f (i1, . . . , ik)H (i1, . . . , ik)

≤
∑

1≤i1,...,ik≤m

f (i1, . . . , ik)�̄(i1, . . . , ik) = �̄(k)(S)

<
∑

1≤i1,...,ik≤m

f (i1, . . . , ik)(H (i1, . . . , ik)+ 1)

= H (k)(S)+
∑

i1,...,ik

f (i1, . . . , ik) = H (k)(S)+ 1.

7.2.2 Corollary If the s j are binary words with average length L̄, then the
compression ratio L̄/�̄(k)(S) achieved by kth-order Huffman encoding applied
to S satisfies L̄/(H (k)(S)+ 1) < L̄/�̄(k) ≤ L̄/H (k).

As mentioned in the last section, we do not know whether or not �̄(k) always
decreases as k increases. If this were the case, then increasing the order repays
your effort with a better compression ratio. However, when m = 256, as is often
the case, it is a lot of trouble to increase the order, and actual case studies with
k = 0,1,2,3 show a discouragingly small improvement in the compression ratio
going from k = 1 to k = 2, and a minuscule improvement obtainable by taking
k = 3.

This sort of experimental observation agrees with the behavior predicted by
the theory developed by Claude Shannon [63,65]. In practice it is impossible to
let k get very large, much less go to infinity. And, in fact, there is a theoretical
obstacle to letting k go to infinity: we would have to have an infinitely long
source text, given our notion of how the relative frequencies f (i1, . . . , ik+1)

are obtained. Shannon gets around this difficulty by envisioning “the source”
as a probabilistic finite state automaton, a system of states; as time pulses on
discretely, the current state changes (or not) at each pulse, and source letters are
emitted. What the next state will be and which letter is emitted are both random
variables depending on the current state—that is, the different possibilities have
their probabilities, and those probabilities vary with the current state. Thus
there is a hypothetically endless string of source letters emitted, with statistical
properties, including the probabilities f (i1, . . . , ik+1), for each k, determined by
the nature of the source automaton.

Is every source “language” correctly (whatever that means) modeled by
some such source automaton? This is a far deeper question than we will ever an-
swer, although we will have a bit more to say about it in Section 7.4. For now, let
us assume that our source is one of these Shannon automata. Shannon showed

© 2003 by CRC Press LLC

7.2 The Shannon bound for higher-order encoding 189

that the kth-order entropies H (k) tend to a limit, let us call it H (∞), which Shan-
non called the entropy of the source. Thus the Shannon bound L̄/H (k) on the
compression ratio achieved with kth-order Huffman encoding tends to a limit
L̄/H (∞) if H (∞) > 0. Consequently, when H (∞) > 0, the compression ratio
L̄/�̄(k) cannot be increased without bound by taking k larger and larger. The ex-
perimental case studies mentioned above, with �̄(2) not much smaller than �̄(1)

and �̄(3) very close to �̄(2), are very much in accord with the picture suggested
by Shannon’s results and Theorem 7.2.1 of the compression ratio coming to a
screeching halt at some unbreachable limit, as k increases.

This is an instance of difficult mathematics confirming intuition. If we re-
quire lossless compression, meaning that the original file shall always be com-
pletely recoverable from its encoded version, then surely there should be some
natural limits, depending on the nature of the original file, to how much com-
pression can be realized. However, it is important to realize that the Shannon
bounds on the compression ratio, of the form L̄/H (k), k = 0,1, . . . ,∞, apply
to the replacement-by-encoding-scheme methods discussed in this chapter. As
we have seen in the last chapter, these bounds can be beaten by other methods
in some cases. So the natural bound to the compression ratio, even given a
Shannon automaton-type source, may not be the Shannon bound L̄/H (∞).

One last remark about the Shannon bounds L̄/H (k): Shannon asserts, but
does not show, that the H (k) non-increase with k in case the source is a proba-
bilistic finite state automaton. Therefore, the Shannon bounds on the compres-
sion ratio, L̄/H (k), are going in the right direction (up!) as k increases, even
though we do not know about the actual compression ratios, L̄/�̄(k), achievable
by kth-order Huffman encoding.

We finish this section with an elementary verification of Shannon’s asser-
tion about the monotonicity of the H (k), without assuming anything about the
nature of the source.

7.2.3 Theorem Suppose that k ≥ 1 and the (k +1)-gram frequencies f (i1, . . . ,

ik+1), 1 ≤ i1, . . . , ik+1 ≤ m, for an m-letter source S are known. Then

H (k)(S) ≤ H (k−1)(S).

Proof: Observe that h(x) = −x log2 x has negative second derivative on (0,∞)

and so is concave on [0,∞). (Note: h(0) = 0, by convention.) Therefore, for
λ1, . . . ,λr ≥ 0 with

∑
λi = 1, and x1, . . . ,xr ≥ 0,

∑
i λi h(xi) ≤ h(

∑
i λi xi).

Therefore,

H (k)(S) =
∑

1≤i1,...,ik ≤m

f (i1, . . . , ik)
m∑

j=1

h

(
f (i1, . . . , ik, j)

f (i1, . . . , ik)

)

=
∑

1≤i2,...,ik , j≤m

m∑
i1=1

f (i1, . . . , ik)h

(
f (i1, . . . , ik, j)

f (i1, . . . , ik)

)

© 2003 by CRC Press LLC

190 7 Higher-order Modeling

=
∑

1≤i2,...,ik , j≤m

f (i2, . . . , ik)
m∑

i1=1

f (i1, . . . , ik)

f (i2, . . . , ik)
h

(
f (i1, . . . , ik, j)

f (i1, . . . , ik)

)

≤
∑

1≤i2,...,ik , j≤m

f (i2, . . . , ik)h

(m∑
i1=1

f (i1, . . . , ik, j)

f (i2, . . . , ik)

)

=
∑

1≤i2,...,ik , j≤m

f (i2, . . . , ik)h

(
f (i2, . . . , ik, j)

f (i2, . . . , ik)

)

=
∑

1≤r1,...,rk≤m

f (r1, . . . ,rk−1)h

(
f (r1, . . . ,rk)

f (r1, . . . ,rk−1)

)
= H (k−1)(S)

(When k = 1, the sums over i2, . . . , ik, j are just sums over j .)

7.2.4 Corollary With k and S as above,

(k + 1)H (k)(S) ≤ H (Sk+1) ≤ k + 1

k
H (Sk) ≤ (k + 1)H (S).

The left-hand inequality, and its proof below, are due to Shannon [63].

Proof:

H (Sk+1) = (H (Sk+1)− H (Sk))

+ (H (Sk)− H (Sk−1))+·· ·+ (H (S)− 0)

= H (k)(S)+ H (k−1)(S)+·· ·+ H (0)(S)

≥ (k + 1)H (k)(S),

by the theorem above. Therefore, also,

H (Sk+1) ≥ (k + 1)H (k)(S) = (k + 1)(H (Sk+1)− H (Sk))

implies H (Sk+1) ≤ k+1
k H (Sk). Hence,

H (Sk+1) ≤ k + 1

k
H (Sk) ≤ k + 1

k

k

k − 1
H (Sk−1)

≤ ·· · ≤ k + 1

k

k

k − 1
· · · 2

1
H (S) = (k + 1)H (S).

Exercises 7.2

1. Compute H (0) and H (1) for the source of Exercise 7.1.1, and the Shannon
bounds L̄/H (0) and L̄/H (1).

2. Compute H (0) and H (1) for the source of Exercise 7.1.4.

3. Show that, for k ≥ 1, H (k)(S) = H (Sk+1)− H (Sk), as asserted in this sec-
tion.

4. Show that if the s j occur randomly and independently in the source text,
with relative frequencies f1, . . . , fm , so that, for each k, f (i1, . . . , ik) =

© 2003 by CRC Press LLC

7.3 Higher-order arithmetic coding 191

∏k
j=1 fi j , 1 ≤ i1, . . . , ik ≤ m, then H (k)(S) = H (0)(S) = H (S) =

−∑m
j=1 f j log2 f j for every k ≥ 0.

5. Notice that, in the proof of Theorem 7.2.3, h is strictly concave. This im-
plies that if λ1, . . . ,λr > 0,

∑
λi = 1, and x1, . . . ,xr ≥ 0, then

∑
λi h(xi)

< h(
∑

λi xi) unless all the xi are equal.

Find a necessary and sufficient condition on the k- and (k + 1)-gram fre-
quencies for a source S for the equality H (k)(S) = H (k−1)(S) to hold.

6. What does Corollary 7.2.4 say about the Shannon bounds on the compres-
sion ratios for zeroth-order Huffman replacement, kth-order Huffman re-
placement, and Huffman replacement using Sk+1 or Sk as the source al-
phabet?

7.3 Higher-order arithmetic coding

For k a positive integer, kth-order encoding of any sort departs from the “(k+1)-
gram” relative frequencies, f (i1, . . . , ik+1), 1 ≤ i1, . . . , ik+1 ≤ m, where f (i1,

. . . , ik+1) is the relative frequency of the source string si1 · · · sik+1 among all
blocks of k + 1 consecutive letters in the source text. Supposing that we know
what these (k +1)-gram relative frequencies are, how would we proceed to take
advantage of this knowledge in arithmetic coding?

The main idea is that, for t ≥ k, the intervals A(i1, . . . , it , j), 1 ≤ j ≤ m,
for the source words si1 · · ·sit s j , are obtained by subdividing A(i1, . . . , it)
into subintervals of lengths proportional to the numbers f (it−k+1, . . . , it , j),
j = 1, . . . ,m. The actual probabilities associated to the s j after si1 · · · sit are
f (it−k+1, . . . , it , j)/ f (it−k+1, . . . , it), where the k-gram frequencies f (j1, . . . ,
jk) are given by f (j1, . . . , jk) = ∑m

i=1 f (i, j1, . . . , jk) = ∑m
i=1 f (j1, . . . , jk, i).

These probabilities are just constant multiples of the f (it−k+1, . . . , it , j) but,
unlike the case of higher-order Huffman encoding, in which absolute probabil-
ities are not important, you will have to use these probabilities in calculations.

For instance, let us return to Example 7.1.1, in which S = {s1,s2,s3,s4},
and the digram frequencies are given by

[f (i, j)] = [fi j] =

.16 .10 .10 .04

.08 .17 .04 .01

.14 .01 .01 .04

.02 .02 .05 .01

 .

The single letter frequencies are f1 = .4, f2 = .3, f3 = .2, and f4 = .1. We will
use these to start first-order encoding, so the first intervals are A(1) = [0, .4),
A(2) = [.4, .7), A(3) = [.7, .9), and A(4) = [.9,1). From there on we have
context; every letter after the first has a predecessor. So, for instance, A(2,1) =
A(s2s1) = [.4, .48); the length is .08 because the probability of an s1 when we
are in first-order context s2 is .08

.3 , and this is multiplied by the length .3 of the

© 2003 by CRC Press LLC

192 7 Higher-order Modeling

interval A(2). Similarly, A(2,1,3) = A(s2s1s3) = [.452, .472). (Because we
are in context s1, you look at the first row of the matrix of digram frequencies.
The left-hand endpoint of A(2,1,3) is .4 + .16+.10

.4 (.08) = .452, and the length
is (.08) .10

.4 = .02.)
Notice that it is not necessary or advisable to put the source letters in order

of non-increasing context probability in subdividing successive intervals. For
instance, in the situation above, A(4,3) may as well be the third interval from
the left in A(4), not the first, even though f43 is the largest of f41, f42, f43, and
f44.

Decoding in the manner of Section 6.1 proceeds as in that section, except
that, after the first k letters have been decoded, the decoder has to keep account
of the changing context probabilities. For example, with k = 1 and the digram
relative frequencies as above, given 01111 and N = 3 the decoder could proceed
as follows [r = (.01111)2 = 15/32]:

Next letter α �
r −α

�
0 1 15/32

s2 .4 .3 about .23
s1 .4 .08 about .86
s3

Thus, 01111 would be decoded, correctly, as s2s1s3. (Check that (.01111)2
is the dfwld in [.452, .472) = A(2,1,3), found earlier.) Finding α and � on
the third line of the table above, after s1 has been decoded, follows the same
procedure as in encoding. It is notable that in the second line r−α

�
≈ .23 is

compared, not to 0 and .4, but to 0 and .08
.3 ≈ .27, to decode s1 on the next line.

Similarly, on that line r−α
�

≈ .86 is compared to .26
.4 = .65 and to .36

.4 = .9, to
decode s3.

The methods of Section 6.4 can be adapted to higher-order situations—as
in the examples just exhibited, it is a matter of keeping account of the context
and adjusting the current source letter probabilities according to the context.

It is a bit of trouble to take—is it worth it? Zeroth-order dfwld arithmetic
coding encodes in close to the zeroth-order source entropy bits per source letter;
will kth-order arithmetic encoding do the job in something like the kth-order
source entropy bits per letter? (See Section 7.2 for the definition of the kth-
order source entropy, H (k)(S), and note Theorem 7.2.3 which says that H (k)(S)

is non-increasing with k.) Happily, the answer is yes.

7.3.1 Theorem The average length of the code representatives of source words
of length N over a source alphabet S, if the code words are derived by kth-order
dfwld arithmetic coding, where k < N and the first k letters of each source
word are processed in zeroth-order fashion, is no greater than 1 + kH (S) +
(N − k)H (k)(S).

Thus the average number of bits per source letter with kth-order arithmetic
coding applied to source words of length N is no greater than 1

N + k
N H (S)+

© 2003 by CRC Press LLC

7.4 Statistical models, statistics, and the possibly unknowable truth 193

(1 − k
N)H (k)(S)), which is quite close to H (k)(S), for large N .

Theorem 7.3.1 is proved by the same sort of thrashing around as in the
proof of Theorem 6.2.1. The main constituents of the proof are the observations
that the dfwld in an interval of length � has a binary expansion of no more than
log2(�

−1) + 1 bits, and that the length of the interval A(si1 · · · siN) derived by
the kth-order subdivision procedure is

(k∏
j=1

fi j

)
f (i1, . . . , ik+1)

f (i1, . . . , ik)

f (i2, . . . , ik+2)

f (i2, . . . , ik+1)
· · · f (iN−k , . . . , iN)

f (iN−k , . . . , iN−1)
.

We omit the details. See Exercise 2 below.

Exercises 7.3

1. Suppose S = {s1,s2,s3,s4} and the digram frequencies are as in Example
7.1.1 (and again in this section).

(a) Encode s2s2s2s2, s1s2s3s4, s4s3s2s1, and s2s1s4s4 by first-order dfwld
arithmetic coding.

(b) Decode 11, 01001, 10101, and 0101, assuming that the source word
lengths are all 4, and that the encoding method was first-order dfwld
arithmetic coding.

2. Prove Theorem 7.3.1. [The hard part will be the following: there are num-
bers C(j1, . . . , jk+1), 1 ≤ j1, . . . , jk+1 ≤ m, which satisfy

∑
1≤i1,...,iN ≤m

f (i1, . . . , iN)

N−k∑
r=1

g(ir , . . . , ir+k)

=
∑

1≤ j1,..., jk+1≤m

C(j1, . . . , jk+1)g(j1, . . . , jk+1),

where f (i1, . . . , iN) is the relative frequency of si1 · · · siN among source
words of length N , and g could be anything, but will be given by g(j1, . . . ,
jk+1) = log2

f j1,..., jk)
f (j1,..., jk+1)

in the proof; the C’s are given by C(j1, . . . , jk+1)

= (N −k) f (j1, . . . , jk+1). Once you see this, the proof is straightforward.]

7.4 Statistical models, statistics, and the possibly
unknowable truth

Statistical parameters such as the probabilities f (i1, . . . , ik+1) are estimated, in
this case by taking sample means, through real statistics collected from some
messy reality and are then used to talk about, or to do calculations concerning,
that reality. It is always the case that these parameters are used in conjunction

© 2003 by CRC Press LLC

194 7 Higher-order Modeling

with some sort of mental picture of what that messy reality is like. We dignify
this mental picture with the term “statistical model.”

In many cases the statistical model need not be spelled out. For instance,
consider the parameter “average number of children per household in the United
States.” What’s the model? There are children, there are households, and
each child belongs to a household; we know all about this from our daily
experience—no need to make a fuss about the picture of the reality to which
the parameter applies or from which it is estimated.

Here is an example that shows that sometimes a fuss is in order. There is a
probability distribution called the Poisson distribution which applies to simple
statistical models concerning the number of occurrences of some specific event
during specified time intervals. For instance, the Poisson distribution is used to
talk about the number of cars passing a certain point on a certain road between,
say, 2 and 3 PM every Tuesday, or the number of cesium atoms, in a certain hunk
of cesium, that will decay in a month. You need one statistical parameter to use
the Poisson distribution: it is the average number of occurrences of the event
during the time interval. Clearly this parameter can be estimated by observation.

Let us take the time interval to be the 24 hours from midnight to midnight,
and the event to be: the sun rises. Observation clearly suggests that the average
number of occurrences of this event per time interval is one. Plugging this
into the Poisson distribution, one finds that the probability that the sun will not
rise tomorrow is 1/e, the probability that it will rise exactly once is 1/e, and,
therefore, the probability that it will rise 2 or more times is 1−(2/e), about 1/4.

Have we just been lucky all these millenia? How do we resolve the disparity
between our experience of the sun rising with probabilities calculated using
the Poisson distribution? The resolution seems clear—shrug and dismiss the
calculations on the grounds that the rising of the sun every day does not fall into
the class of phenomena that even approximately conform to a statistical model
for which the Poisson distribution is valid. We know it doesn’t because the
conclusions we get from the assumption that it does are absurd. We can leave
it to the philosophers to sort out the a priori reasons why we should never have
bothered applying the Poisson distribution to the rising of the sun.

Unfortunately, in dealing with a source text we are not on such familiar
ground as we are with the rising of the sun. In attempting the replacement
encoding that is the subject of this chapter, we estimate certain statistical pa-
rameters, the relative frequencies f (i1, . . . , ik+1), and proceed essentially on
the faith that we are taking advantage of a good statistical model of the source
to achieve compression. The bottom line for us is the compression ratio.

Whatever the true nature of the source, there is associated to kth-order en-
coding a particular statistical model of the probabilistic finite state automaton
type. For k = 0 there is only one state. At each pulse of time a letter is emitted,
with each s j having probability f j of being emitted, and the system stays in that
state.

For k ≥ 1 there is one state for each context. When we are in context
si1 · · · sik , we are also in that state. During the next pulse of time, a letter s j is

© 2003 by CRC Press LLC

7.4 Statistical models, statistics, and the possibly unknowable truth 195

emitted with probability P(s j | si1 · · · sik) and we move to state si2 · · · sik s j . For
example, the following state diagram, with the discs representing states and the
labels on the arrows being the probabilities, depicts a statistical model for the
situation of Exercise 7.1.4:

s1	
�����
P(s1|s1)=7/8��

1/16

��		
		

		
		

	 1/16

���
��

��
��

��

s2	
�����2/5
��

1/5
��									 2/5 �� s3	
�����1/10

��

4/5

�����������

1/10
		

(We leave it to the reader to ponder whether or not the source diagrammed
just above really will produce source text exhibiting the digram frequencies in
Exercise 7.1.4. Since fi j = fi P(s j | si), and the P(s j | si) are given in the
diagram, it suffices to verify that the single letter sequences in the source text
will be f1 = .8, f2 = f3 = .1.)

The practical question is, will kth-order Huffman or arithmetic encoding
achieve good compression? This is not really the same as asking if the kth-
order model is a good model of the source. For example, if the zeroth-order
model is a perfect model of the source and the relative source frequencies are
approximately equal, then no spectacular compression is possible by the meth-
ods of this chapter, and probably not by any methods. Good compression is
achievable when the relative frequencies are decidedly unequal.

But you might feel that the question of “goodness” of the model is impor-
tant, because you feel that if the kth-order model is “good,” then, say, kth-order
Huffman encoding, while it may not give very good compression, and even, as
we have seen in the last chapter, may be slightly less compressive than arith-
metic coding, will still give almost as good lossless compression as can be had.
Perhaps this feeling is valid in the majority of cases; we would need some def-
initions of “goodness,” and “as good as can be had” to analyze the situation.
Meanwhile, here is an extreme and disturbing example that shows that good-
ness of the kth-order model does not always give as good compression as can
be had.

7.4.1 Example S = {a,b,c,d} and the source text is abcd = abcdabcd · · · .
That is, the source text consists of the word abcd repeated over and over.

If we knew or noticed that the source text is of this nature, then we could
achieve great compression by what is called “run-length” encoding. If the par-
ticular chunk of source text that we want to encode is (abcd)N , we could leave
a note saying “repeat abcd N times.” The amount of space such a message
would occupy would be no greater than constant + log2 N bits, so the “local”
compression ratio achieved, if a,b,c,d are binary words with average length L̄ ,
would be no less than 4N L̄/(const + log2 N) → ∞ as N → ∞. (This does not
beat the Shannon bound L̄/H (∞), however, because H (∞) = 0 in this case. See
Exercise 7.4.3.)

© 2003 by CRC Press LLC

196 7 Higher-order Modeling

Suppose we do not notice the nature of the source and attempt kth-order
Huffman encoding. With k = 0 we have fa = fb = fc = fd = 1/4, and Huff-
man’s algorithm replaces each source letter with a 2-bit binary word. Let s1,s2,

s3,s4 be auxiliary names for a,b,c,d . When k ≥ 1, only four contexts si1 · · · sik
have positive probability (1/4 in each case) and for each of these we have
P(s j | si1 · · · sik) = 1 for one value of j , and P(s j | si1 · · · sik) = 0 for other
values of j . You carry out kth-order encoding by ignoring the contexts with
zero probability. The result is that every source letter gets replaced by one bit.
Thus the compression ratio achieved is L̄/1 = L̄ for each k ≥ 1. This is better
than the zeroth-order compression ratio, but a far cry from what is possible. Yet,
the first-order model of this source is correct. See the comment in Exercise 2
below.

Exercises 7.4

1. Give the state diagram of the first-order model of the source in Example
7.1.1.

2. Give the state diagram of the first-order model of the source in Example
7.4.1. (Disconcertingly, this first-order model can be regarded as a perfect
model of the source—it produces exactly the right source string, although
not necessarily starting with ‘a’. Yet first-order Huffman encoding does
not achieve compression as good as can be obtained.)

3. Show that for the source of Example 7.4.1, H (0)(S) = 2 and H (k)(S) = 0,
for k ≥ 1. [Thus H (∞)(S) = 0. Perhaps disturbing examples like Example
7.4.1 are only possible with sources of zero entropy.]

4. Generating text according to some statistical model can be a mildly amus-
ing experiment, and it also gives some insights into the model itself. The
basic goal in compression is to remove redundancy, so the output of a good
model/coder is typically rather random. We want to reverse the process,
sending random data to a specific model to generate text. As Bell, Cleary,
and Witten [8] remark, the output of this reverse process is a rough indica-
tion of how well the model captured information about the original source.

Single-letter frequencies from a 133,000-character sample of English ap-
pear in Table 4.1. Text generated according to these probabilities is not
likely to be mistaken for lucid prose, as the model knows very little about
the structure of English. Higher-order models may do better, where the
necessary statistics are gathered from a sample of “typical” text.

As an example, models were built from Kate Chopin’s The Awakening.1

An order-1 model produced the following text when given random input:

asthe thetas tol t dinfrer the Yo Do smp thle s slawhee pss,
tepimuneatage le indave tha cars atuxpre ad merong? d ur atinsinth g

1The electronic source for the book was obtained from Project Gutenberg, available via
ftp://uiarchive.cso.uiuc.edu/pub/etext. Thanks to Judith Boss and Michael Hart.

© 2003 by CRC Press LLC

ftp://uiarchive.cso.uiuc.edu

7.5 Probabilistic finite state source automata 197

teres runs l ie t ther Mrenorend t fff mbendit’sa aldrea ke Shintimal
”Alesunghed thaf y, He,” ongthagn buid co. fouterokiste singr. fod,

Moving to higher-order models will capture more of the structure of the
source. An order-3 model, given the same random data, produced:

assione mult-walking, hous the bodes, to site scoverselestillier from the
for might. The eart bruthould Celeter, ange brouse, of him. They was
made theight opened the of her tunear bathe mid notion habited. Mrs.
She fun andled sumed a vel even stremoiself the was the looke hang!

Choose your favorite software tool and write a program that builds an order-
k (k > 0) model from a given source, and then uses that model to generate
characters from random input.2

7.5 Probabilistic finite state source automata

The first-order state diagrams introduced in the preceding section are special
cases (actually, slightly degenerate special cases) of diagrams that we will call
probabilistic finite state source automata, or pfssa’s, for short. These were intro-
duced by Shannon in “A mathematical theory of communication” [63], although
he gave them no special name. They are sources; they produce source text. It
appears that Shannon entertained the belief that human language, produced by
a single hypothetical human, could be well approximated – perhaps simulated
would be a better word – by a large pfssa, or even that human language produc-
tion could be described exactly by a very large pfssa.

A pfssa is a finite directed graph (i.e., a diagram consisting of nodes and
arrows or arcs among the nodes, with each arc having a starting node at one
end and a not necessarily different finishing node at the arrowhead end) in which
each arc e is furnished with two labels. One label, g(e), is a positive probability,
and the other label, s(e), is a letter from a fixed source alphabet S. The labeling
must satisfy two requirements: every source letter must appear somewhere, and
for each node, the sum of the probability labels on the arcs leaving that node is
one.

7.5.1 Example The following diagram shows a pfssa, with three nodes, S1, S2,
S3, over a source alphabet S = {a,b,c,d}.

S2 S3

S11
4 ,a

1,d

1
4 ,c

2
3 ,a

1
2 ,b

1
3 ,c

2The authors used awk, which offers associative arrays and other magical features. The script
contained roughly 80 lines of awk code, and required approximately 5 megabytes of memory for
the order-3 example.

© 2003 by CRC Press LLC

198 7 Higher-order Modeling

The nodes of a pfssa are called states, which is why we named the nodes by
indexing the letter S. (It is just our bad luck that the words “source” and “state”
start with the same letter.) Pfssa’s differ from probabilistic finite state automata,
pfsa’s, only in the presence of the letter labels on the arcs. (Also, sometimes
pfsa’s come equipped with a designated “starting state” which may or may not
ever be revisited. In this text, there will be no such starting states.) A pfssa pro-
duces source text in the following fashion: time is discretized, and an imaginary
entity, the source gremlin, is moving among the states of the pfssa, making one
move per pulse of time. When the gremlin makes a move, the gremlin chooses
an arc leaving the state in which it currently resides probabilistically, with the
different arcs having the chance of being chosen indicated by their probability
labels. Whichever arc is chosen, the letter label of that arc is emitted; it is the
next letter of the source text. Notice that the source text produced is hypothet-
ically a two-way infinite string, with no beginning and no end. Because the
text is produced probabilistically, there are typically many (a very great many!)
different possible two-way infinite strings that could be produced by a given
psffa. When we are reading a particular piece of source text, what we have on
our hands is a finite substring of one of the possible two-way infinite strings of
source letters producible by the pfssa.

Note that the first-order diagrams in Section 7.4 have no letter labels on the
arcs. However, they can be considered pfssa’s because the states are identified
with the letters of a source text; in this identification, each letter stands for a
first-order context, but there is no harm in using the same letter as indicating the
“next letter”, as well. That is, each arc is considered to be labeled with the letter
with which its destination node is identified.

The mathematics of pfsa’s had been pretty well worked out by the late
1940’s, when Shannon created information theory, and he made good use of
that mathematics in working out the essentials of pfssa’s. What follows is a
brief account of some of that mathematics, and some of those essentials.

For two states, S, S′ in a pfsa D, the transition probability from S to S′,
denoted q(S, S′), is the sum of the probability labels on the arcs going from S
to S′. Thus q(S, S′) is interpretable as the probability that the pfsa gremlin will
next be in S′, if currently residing in S.

If the states ofD are ordered, S1, . . . , Sn , then we will abbreviate q(Si , Sj) =
qi j . Thus, for the pfssa given in 7.5.1, with states S1, S2, S3, the matrix Q = [qi j]
of transition probabilities is

Q =

0 3

4
1
4

2
3

1
3 0

0 1 0

Now, let us consider the proposition that there are state probabilities P(S),
the probability that, at a randomly selected pulse of time, at the end of that pulse
the pfsa gremlin will be residing in state S. The problem with this “definition,”
aside from the fact that is presumes existence, is in the phrase “a randomly

© 2003 by CRC Press LLC

7.5 Probabilistic finite state source automata 199

selected pulse of time.” There is no probability assignment to the integers which
gives each integer (i.e., each pulse of time) the same probability.

The standard way of dealing with this difficulty is rather daunting: the set
of all possible two-sided sequences of states in which the gremlin might be
residing is made into a probability measure space in such a way that for each
state S and for any two different sequence places – i.e. pulses of time – the
measures of the two sets of sequences with S appearing in those places are
the same; call this common value P(S). (Se e [66] for an account of how the
measure is defined, in slightly different circumstances.)

Here is a more facile approach that bypasses the philosophical problems
in defining the probabilities P(S) and leads directly to their computation. If it
were possible to pick a pulse of time at random, then the next pulse would be
selected with equal randomness. Thus, if the state probabilities exist, they must
satisfy

P(S′) =
∑

S

P(S)q(S, S′)

for each state S′ of D, with the sum above taken over the set of states of D. This
leads to the following.

7.5.2 Definition If a pfsa D has states S1, . . . , Sn with transition probabilities
Q = [q(Si , Sj)] = [qi j], and if the linear system QT p = p has a unique solution
among the probability vectors

p =

p1
...

pn

 ,

then (and only then) pi = P(Si) will be called the state probability of (or, the
probability of the state) Si , i = 1, . . . ,n.

7.5.3 For example, for the pfssa of Example 7.5.1, regarded as a pfsa, it is
straightforward to verify that the homogeneous linear system with matrix of
coefficients

QT − I =

−1 2
3 0

3
4 − 2

3 1
1
4 0 −1

has a unique solution among the probability vectors, namely

p1

p2
p3

 =

4/11

6/11
1/11

.

On the other hand, for the pfsa

© 2003 by CRC Press LLC

200 7 Higher-order Modeling

S1

S2

S3

1

1

1
2

1
4

1
4

the system

QT p =

1
2 0 0
1
4 1 0
1
4 0 1

p1

p2
p3

 =

p1

p2
p3

has an infinite number of solutions among the probability vectors:

 0

t
1 − t

 is a

solution for any t ∈ [0,1].
A directed graph (digraph) is strongly connected if for any ordered pair

(u,v) of different nodes in the graph there is a directed walk (i.e., a walk along
arcs in the directions of the arcs) in the digraph from u to v. For example, the
underlying digraph of the pfssa in Example 7.5.1 is strongly connected, while
the pfsa in 7.5.3 is not strongly connected—there is no way to walk from S2
to S3 in the digraph. The following is the great truth about strongly connected
pfsa’s upon which much else is based.

7.5.4 Suppose that D is a strongly connected pfsa with transition probabilities
Q = [qi j]. Then QT p = p has a unique solution among the probability vectors
p.

See [21] for a proof of this, and a characterization of those D for which the
conclusion of 7.5.4 holds. (It is not necessary that D be strongly connected.)

Henceforward, our pfssa’s will be assumed to be strongly connected, with
states S1, . . . , Sn , transition probabilities qi j , 1 ≤ i, j ≤ n, and state proba-
bilities pi = P(Si). Let the source alphabet be S = {s1, . . . ,sn}. Then for
1 ≤ i1, . . . , ik,≤ m, 1 ≤ k, the relative frequency of the k-gram si1 . . .sik in the
source text is given by

f (i1, . . . , ik) =
n∑

j=1

p j

∑
e1,...,ek

k∏
t=1

g(et)

in which the inner sum is taken over those sequences e1, . . . ,ek on a directed
walk starting from Sj whose letter labels are si1 , . . . ,sik , in that order. (Recall
that g(e) is the probability on the arc e.) Thus, for instance, for the pfssa of
7.5.1, in view of 7.5.3, using the letters instead of indices to indicate the k-
gram, the single letter frequencies are given by f (a) = 4

11
1
4 + 6

11
2
3 = 5

11 , f (b) =
4

11
1
2 = 2

11 , f (c) = 4
11

1
4 + 6

11
1
3 = 3

11 , f (d) = 1
11 ·1 = 1

11 . Meanwhile, examples
of digram frequencies are f (ac) = 4

11
1
4

1
3 + 6

11
2
3 · 1

4 = 4
33 , and f (ad) = 0.

© 2003 by CRC Press LLC

7.5 Probabilistic finite state source automata 201

With the relative k-gram frequencies at our disposal, for all k = 1,2, . . . ,

we have the kth-order entropies H (k)(D) of the text produced by a strongly
connected pfssa D, as in section 7.2, and H (∞)(D) = limk→∞ H (k)(D). One of
Shannon’s great theorems is that H (∞)(D) is directly computable if the struc-
ture ofD is known: it is the average, over the states, of the ordinary, zeroth-order
entropies of the zeroth-order sources you would get by turning each arc into a
loop, returning to the state it comes from.

7.5.5 Theorem (Shannon [63]) Suppose that D is a strongly connected pfssa
with states S1, . . . , Sn , with state probabilities P(Si) = pi , i = 1, . . . ,n. Suppose
that the source alphabet is S = {s1, . . . ,sm }, and for each i ∈ {1, . . . ,m}, j ∈
{1, . . . ,n}, hi j = P(s j | Si) is the sum of the probability labels on arcs leaving
Si with letter label s j . Then

H (∞)(D) = −
n∑

i=1

pi

m∑
j=1

hi j loghi j .

For example, if D is the pfssa in 7.5.1, then

H (∞)(D) = 4

11
[1

4
log4 + 1

2
log2 + 1

4
log4]

+ 6

11
[2

3
log

3

2
+ 1

3
log3]+ 1

11
·0.

Simulating a source with a pfssa

Suppose we have some sourceD emitting text, with source alphabet S = {s1, . . . ,

sm}. We do not presume anything about the inner workings of the source; it
need not be a pfssa. We suppose that we have somehow (perhaps by sam-
pling the text) obtained the relative (k + 1)-gram frequencies f (i1, . . . , ik+1) =
f (si1 . . .sik+1), 1 ≤ i1, . . . , ik+1 ≤ m, of blocks of k +1 consecutive letters in the
source text, for some k ≥ 0.

The kth-order simulant D(k) of the given source is the pfssa whose states
are (or, are identified with) those kth order contexts si1 . . .sik which have positive
relative frequency f (i1, . . . , ik) = ∑m

j=1 f (i1, . . . , ik, j). When k = 0 there is
only one state, and the arcs are loops with (probability, letter) labels (fi ,si), i =
1, . . . ,m. When k > 0, for each context si1 . . .sik with positive relative frequency
there is an arc to the state of each context si2 . . .sik s j such that f (i1, . . . , ik , j) >

0, with probability label f (i1,...,ik , j)
f (i1,...,ik)

and letter label s j . [When k = 1 this might
be a bit misleading. In this case there is an arc from state (context) si to state
s j , whenever f (i, j) > 0, with probability label f (i, j)/ fi and letter label s j .]
As noted previously, in the special case k = 1 it is convenient to let the name of
the destination state serve as the letter label on the arc. In fact, a convenience
of the same type applies to any of these simulant pfssa’s, when k > 0; the letter
label on an arc into a state corresponding to a context will be understood to be
the last letter of that context.

© 2003 by CRC Press LLC

202 7 Higher-order Modeling

The first-order simulant of the pfssa in 7.5.1 has four states, corresponding
to the four letters a,b,c,d . Using the convention above about letter labels, this
simulant is

4
15

1
3

2
3

1
32

9

c d

ba
1
3

2
3

1
3

2
5

4
9

A good deal of calculation went into making this simulant. For example, to
calculate the probability on the arc from context a to context c (which arc has
letter label c, it is understood), we calculated

f (ac) = 6

11

2

3

1

4
+ 4

11

1

4

1

3
= 4

33
and then f (ac)/ f (a) = (4/33)/(5/11) = 4/15.

The second-order simulant for the pfssa of 7.5.1 will have 10 states, not 16,
because six of the second-order contexts, namely ad , bb, bd , cb, db and dd ,
never occur in the text generated by that pfssa. In that second-order simulant
there are, for instance, arcs from the state ab to the states ba and bc, and only to
those. There are arcs from bc to ca and cc, but not to cd , because f (bcd) = 0
(i.e., bcd does not appear in the source text). The arc from state ab to state bc
has probability label f (abc)/ f (ab) = (2/33)/(2/11) = 1/3 and letter label c.

We are just using the pfssa of 7.5.1 as an example – there doesn’t seem to
be any good reason to replace a perfectly good pfssa as in 7.5.1 by a simulant
that is more complicated than the original. Simulants are for sources of which
the inner workings are unknown, but the statistics of the source text output are
available.

Shannon had simulants in mind as pfssa simulations of natural language
production, using either the alphabet of the language, plus some punctuation
marks, as a source alphabet, or, more promisingly, a significant subset of the
set of words of the language. If one took as the source alphabet only the 1,000
most commonly used English words, and compiled statistics by running through
a huge assortment of modern texts, the third-order simulant obtainable might
have as many as (1000)3 = one billion states. Higher order simulants will be
impossibly huge. So it appears that while simulants might be of interest in
the theory of pfssa’s and their uses in simulating sources, they are not really
practical for playing around with artificial language production.

Simulants are too complicated for natural language simulation in one way,
and not complicated enough in another. We think that a rich area of exploration

© 2003 by CRC Press LLC

7.5 Probabilistic finite state source automata 203

would be opened by letting time play a more dynamic role in the operation of
pfssa’s: let the probability labels on the arcs be allowed to vary from pulse to
pulse. So far as we know, no work has been done on this obvious idea—and we
shall do none here. We return to the subject of simulation by pfssa’s and finish
this section by giving some facts and raising some questions.

Suppose that D(k) is the kth-order simulant of a source D with source al-
phabet S = {s1, . . . ,sm}. Proofs of 7.5.7–7.5.9 can be found in [21]; a proof of
7.5.6 will appear soon.

7.5.6 If D is a “true source” then D(k) is strongly connected. More precisely,
D(k) is strongly connected if the (k + 1)-gram frequencies used to construct it
satisfy

(i)
∑m

j=1 f (i1, . . . , ik, j) = ∑m
j=1 f (j, i1, . . . , ik) for each i1, . . . , ik ∈ {1, . . . ,

m}; and

(ii) for no proper subset S′ of S is it the case that f (i1, . . . , ik+1) > 0 only for
(i1, . . . , ik+1) ∈ (S′)k+1 ∪ (S \ S′)k+1.

7.5.7 If D(k) is strongly connected, the state probabilities for D(k) are what you
would expect: P (“si1 . . .sik ”) = f (i1, . . . , ik).

7.5.8 If D(k) is strongly connected, the relative (k +1)-gram frequencies in the
source text produced by D(k) are the same as those in the source text produced
by D. Therefore, H (j)(D) = H (j)(D(k)),0 ≤ j ≤ k.

7.5.9 H (∞)(D(k)) = H (k)(D(k)).

Two sources with the same source alphabet are equivalent if the relative
k-gram frequencies in the texts produced by the two sources are the same, for
every k. The great theoretical goal, given a source of unknown structure, is to
produce a pfssa which is equivalent to the given source. Let us call a source
which satisfies (i) and (ii) of 7.5.6 for every k ≥ 1 a true source.

7.5.10 Is every true source equivalent to a strongly connected pfssa? If not,
how can the source texts produced by strongly connected pfssa’s be distin-
guished from source texts produced by true sources that are not equivalent to
pfssa’s?

7.5.11 If D is a true source with kth-order simulant D(k), and if H (∞)(D) =
H (k)(D), are D and D(k) necessarily equivalent?

Exercises 7.5

1. Find the state probabilities, single letter, digram, and trigram relative fre-
quencies, and the zeroth-, first-, and second-order simulants of the follow-
ing pfssa.

© 2003 by CRC Press LLC

204 7 Higher-order Modeling

S2

S1

S3

b, 1
6a, 1

6

a, 1
2

c, 1
4

b, 1
3

c, 1
3

a, 1
4

a, 1
2 b, 1

2

2. Consider the following pfssa D:

S1 S2

c, 2
3

b, 1
3

a,1

Notice that for k ≥ 2, a k-gram in the text generated by this pfssa must end
in one of ab,ac,bb,bc,ca. For a non-empty word u ∈ {a,b,c}+, let u′
denote the word obtained by deleting the first letter of u (on the left). Thus,
if lgth(u) = 1, then u′ = λ, the empty word. We will use this notation to
talk about kth-order contexts in the text generated by D, and the kth order
simulants of D. For instance, for k ≥ 3, a state uab in D(k) (lgth(u) = k −2)
has arcs to the states u′abb and u′abc.

(a) For k ≥ 3, describe the states in D(k) receiving arcs from the states of
the form uab,uac,ubb,ubc, and uca. Give the probability and letter
labels on these arcs.

(b) By 7.5.6 and 7.5.7, H (k)(D) = H (k)(D(k)) = H (∞)(D(k)). Use this to
show that the sequence (H (k)(D))k≥0 is strictly decreasing, and that,
therefore, D is not equivalent to any of its simulants.

© 2003 by CRC Press LLC

Chapter 8

Adaptive Methods

The methods to be described in this chapter are, as in Chapters 5 and 6, meth-
ods for lossless encoding of source text over a fixed source alphabet S = {s1,

. . . ,sm}. The new feature is that no statistical study of the source text need be
done beforehand. The encoder starts right in encoding the source text, initially
according to some convention, but with the intention of modifying the encoding
procedure as more and more source text is scanned. In the cases of adaptive
Huffman (Section 8.1) and adaptive arithmetic (Section 8.3) encoding, the en-
coder keeps statistics, in the form of counts of source letters, as the encoding
proceeds, and modifies the encoding according to those statistics. In interval
and in recency rank encoding (Section 8.4), encoding of a source letter also
depends on the statistical nature of the source text preceding the letter, but the
statistics gathering is not boundless; the encoding rules do not change, but rather
cleverly take into account the recent statistical history of the source text.

With the encoding procedure varying according to the statistical nature of
the source text (unlike higher-order encoding in which the encoding procedure
varies according to the syntactic nature of the source text), you might wonder,
how is decoding going to work? No problem, in principle; notice that after
the decoder has managed to decode an initial segment of the source text, the
decoder then knows as much about the statistical nature of that segment as did
the encoder, having come that far in the encoding process. If the decoder knows
the rules and conventions under which the encoder proceeded, then the decoder
will know how to decode the next letter. Thus, besides the code stream, the
decoder will have to be supplied with the details of how the encoder started, and
of how the encoder will proceed in each situation. The hidden cost suffered here
is fixed, independent of the length of the source text, and is, therefore, usually
essentially negligible; indeed, the required understanding between encoder and
decoder can be “built in” in any implementation of an adaptive method and need
not be resupplied for each instance of source text.

A note on classification: the “dictionary” methods to be described in Chap-
ter 9 are adaptive, but so different from the methods of this chapter that they
deserve a chapter to themselves. Some would argue that interval and recency
rank encoding are really dictionary methods; we leave debate on the matter to
those who enjoy debate.

205

© 2003 by CRC Press LLC

206 8 Adaptive Methods

8.1 Adaptive Huffman encoding

In adaptive Huffman encoding, counts of the source letters are kept as scanning
of the source text proceeds, and the Huffman tree and corresponding encoding
scheme change accordingly. The counts are proportional to the relative fre-
quencies of the source letters in the segment of source text processed so far.
(Or, almost proportional—in many cases it is convenient to start with the source
letter counts set at some small positive value, like one, which makes the ostensi-
ble relative frequencies slightly different from the true relative frequencies. The
difference diminishes as you go deeper into the source text. It is possible to start
with all counts at zero. The drawback is that the presence of zero node weights
complicates the tree management technique due to Knuth, to be described in
the next section.) Thus it makes sense to use the counts as weights on the leaf
nodes—the nodes associated with the source letters—of the Huffman tree.

Unfortunately, different Huffman trees can be constructed from the same
leaf node weights because of choices that sometimes have to be made when two
or more nodes carry the same weight. Also, different encoding schemes are
associable with the same Huffman tree, because of different choices that can
be made in labeling the edges. Therefore, to do adaptive Huffman encoding
and decoding, we suffer the annoying necessity of adopting explicit conven-
tions governing how we start and how the choices are to be made in drawing
the Huffman trees and labeling their edges. We will also need conventions gov-
erning how to go from one Huffman tree to the next after a count has been
incremented.

The conventions of this section, to be described below, are not really prac-
tical, but will (we think) serve better than “the real thing” as an introduction
to adaptive Huffman coding. The real thing, i.e., the actual conventions used
in practice are a bit trickier to describe; they are well adapted for computer
implementations, but not so easy to walk through in doing pencil and paper ex-
ercises. We describe the real conventions, the Knuth-Gallager method of tree
management, in Section 8.2.

In this section we shall draw our Huffman trees horizontally, as we did in
Chapter 5. The weights in the leaf nodes will be non-increasing as you scan
from top to bottom. Each leaf node establishes a level in the tree; all nodes will
be on one of these levels. When two nodes are merged, i.e., when they become
siblings, the parent node will be on the higher of the two levels of the sibling
nodes. (Thus the root node is guaranteed to be on the level of the highest leaf,
not that this is any great advantage.) Here’s an example:

© 2003 by CRC Press LLC

8.1 Adaptive Huffman encoding 207

s3 5�������� 13��������0

1

��
��
��
��
��
��
�

23��������0

1

�������������������

s1 5�������� 10��������0

1

������������

s2 5��������

s6 4�������� 8��������0

1
����

��

s5 3�������� 4��������0

1
���

���

s4 1��������

s1 → 10
s2 → 11
s3 → 00
s4 → 0111
s5 → 0110
s6 → 010

This example illustrates two other conventions we will observe: (1) in the
labeling of the edges (or “branches”) of the tree, the edge going from parent to
highest sibling is labeled zero, and the lower edge is labeled 1; (2) we “merge
from below in case of ties.” For instance, in the construction of the tree above,
when it came to pass that the smallest weight of an unmerged node was 5, there
were three such nodes to choose among; we chose to merge the two lowest in
level.

It remains to specify how to get started, and how the tree will be modified
when a count is incremented.

Start: All letters start with a count of 1, and the initial ranking of the source
letters, from top to bottom, will be s1, . . . ,sm . Thus the initial Huffman tree for
source text over S = {s1,s2,s3,s4,s5,s6} will look like this:

s1 1�������� 2��������0

1
���

���
6��������0

1

��
��

��
��

�

s2 1��������

s3 1�������� 2��������0

1
���

���
4��������0

1

��
��

��
��

�

s4 1��������

s5 1�������� 2��������0

1
���

���

s6 1��������

s1 → 00
s2 → 01
s3 → 100
s4 → 101
s5 → 110
s6 → 111

Update after count incrementation: The assignment of leaf nodes to source
letters is redone so that the weights are once again in non-increasing order, and
the source letter whose count has gone up by one is now attached to the lowest
possible node consistent with this monotonicity; the ranking of the other letters
is unchanged, but for the possible promotion of that one letter. For instance, in
the first example, if any of s4, s5, or s6 is the next letter scanned, the weight in the
corresponding leaf node is increased by one and the letter-to-leaf assignments
remain the same. In this particular example, incrementing any one of these letter
counts does not affect the tree structure, and the encoding scheme remains the

© 2003 by CRC Press LLC

208 8 Adaptive Methods

same. If s2 is scanned, the next tree has its top three leaf nodes assigned to s2,s3,
and s1, in that order, with weights 6, 5, and 5, respectively. If s1 is scanned, the
order of the top 3 letters is s1,s3,s2; if s3 is scanned, the order stays as it is.

Let’s try some encoding! We will take S = {s1,s2,s3,s4,s5,s6} and source
text starting s3s3s2s6s1s1s2s6s5s1s3s3s5s6s1s2s2s2. We leave the full encoding
of these 18 letters as Exercise 8.1.1, but this is how the code will start:

100

s3

00

s3

110

s2

111

s6
· · ·

The Huffman tree after the first two letters (s3’s) are scanned looks like this:

s3 3�������� 8��������0

1
���

���

s1 1�������� 3��������0

1

��
��
��
��
��
��
�

5��������0

1

������������

s2 1�������� 2��������0

1
���

���

s4 1��������

s5 1�������� 2��������0

1
���

���

s6 1��������

(Are you surprised that the tree comes out like this? Recall the convention that
when there is a choice of unmerged nodes with smallest possible weights, merge
the two at the lowest possible level.)

Now let’s try decoding. With S = {s1,s2,s3,s4,s5,s6}, and all the conven-
tions mentioned above, suppose the decoder is faced with

01100011001011111100 . . .

The decoder knows the starting scheme; scanning left to right, the decoder rec-
ognizes 01, which is the code word in the starting scheme for s2. Now the
decoder knows what the next Huffman tree will be:

s2 2�������� 4��������0

1

��
��

��
��

�
7��������0

1
���

���

s1 1�������� 3��������0

1

��
��
��
��
��
��
�

s3 1�������� 2��������0

1
���

���

s4 1��������

s5 1�������� 2��������0

1
���

���

s6 1��������

Having recorded s2, the decoder resumes scanning and soon recognizes 10, the

© 2003 by CRC Press LLC

8.1 Adaptive Huffman encoding 209

code word in the current scheme, derived from the tree above, for s1. The
decoder records s1, makes a new tree, with s1 now having a count of 2, and
forges on.

8.1.1 Compression and readjustment

Keeping letter counts as the source text is scanned amounts to estimating the
relative source frequencies by sampling. Therefore, the Huffman tree and as-
sociated encoding scheme derived from the letter counts are expected to set-
tle down eventually to the fixed tree and scheme that might have arisen from
counting the letters in a large sample of source text before encoding. Because
adaptive Huffman encoding is a bit of trouble, and decoding is slow, you might
think it is worth the trouble to do a statistical study of the source text first, and
proceed with a fixed encoding scheme.

But adaptive Huffman encoding offers an advantage over plain zeroth-order
Huffman encoding that can be quite important in situations when the nature
of the source text might change. Let us illustrate by taking an extreme case,
in which the source text consists of the letter a repeated 10,000 times, then
the letter b repeated 10,000 times, then the letter c repeated 10,000 times, and
finally the letter d repeated 10,000 times. A thorough statistical study of the
source text will reveal that the relative source frequencies are all 1/4. Plain
zeroth-order Huffman encoding will represent a, b, c, and d by the four binary
words of length 2. (Of course, first-order Huffman encoding will do very well
in this example, but we are trying to compare zeroth-order adaptive and non-
adaptive Huffman encoding.)

Now, adaptive Huffman encoding will start well, and, whatever conventions
are in force, will encode almost all of those a’s by single digits. However, the
b’s will be encoded with 2 bits each, and then the c’s and d’s with 3 bits each,
squandering the early advantage over static Huffman encoding. Obviously the
problem is that when the nature of the source text changes, one or more of the
letters may have built up such hefty counts that it takes a long time for the other
letters to catch up. To put it another way, the new statistical nature of the source
text is obscured by the statistics from the earlier part of the source text.

This defect has a perfectly straightforward remedy, first proposed, we think,
by Gallager [23]. The trick is to periodically multiply all the counts by some
fraction, like 1/16, and round down. (If the counts are stored as binary numbers,
this operation is particularly easy if the fraction is an integral power of 1/2.) The
beauty of this trick is that if the source text is not in the process of changing its
statistical nature, no harm is done, because the new counts after multiplication
and rounding are approximately proportional to the old counts; and if the source
text is changing, the pile of statistics from earlier text has been reduced from a
mountain to a molehill, and it will not take so long for the statistical lineaments
of the current text to emerge in the letter counts.

Of course, the decoder must know when and by how much the counts are

© 2003 by CRC Press LLC

210 8 Adaptive Methods

to be scaled down. Also, if zero counts are not allowed, then steps might have
to be taken to deal with occasional rounding down to zero. But this is a mere
annoying detail.

8.1.2 Higher-order adaptive Huffman encoding

For k ≥ 1, kth-order adaptive Huffman encoding proceeds as you might sup-
pose: for each kth-order context si1 · · · sik the encoder keeps counts of the source
letters occurring in that context (i.e., the scanning of si1 · · · sik s j causes the count
of s j in context si1 · · · sik to increase by 1). Huffman trees are maintained for
each context. The encoder and decoder have to agree on conventions for tree
formation and maintenance (updating) and also on how to get started; pretty
obviously these starting rules will be more extensive than in the zeroth-order
case. It seems reasonable to agree to encode the first k letters (before any con-
text is established) according to the zeroth-order adaptive Huffman conventions,
whatever they may be.

For example, let us take S = {s1, . . . ,s6} and the source text we looked at
before,

s3s3s2s6s1s1s2s6s5s1s3s3s5s6s1s2s2s2 · · · (∗)

With tree formation and updating conventions as before, and with all single
letter counts starting at 1 (as before) for zeroth-order encoding, let us stipulate
that all counts start at 0 in the context schemes; thus, each Huffman tree, in each
context, starts off like so:

s1 0�������� 0��������0

1
���

���

s2 0�������� 0��������0

1
���

���

s3 0�������� 0��������0

1
���

���

s4 0�������� 0��������0

1
���

���

s5 0�������� 0��������0

1
���

���

s6 0��������

s1 → 0
s2 → 10
s3 → 110
s4 → 1110
s5 → 11110
s6 → 11111

Note that we are allowing zero counts in this instance.
If we attempt second-order adaptive Huffman encoding of (∗), with the

various conventions and stipulations, the encoding starts

100

s3

00

s3

10

s2

11111

s6
· · ·

The first two code words are just as before, in the zeroth-order case. After that,
the encoding scheme will be stuck on the scheme above, the starting scheme

© 2003 by CRC Press LLC

8.1 Adaptive Huffman encoding 211

for all contexts, until a context repeats. In (∗) the first context to repeat is
s2s6. However, since s1 followed s2s6 the first time s2s6 occurred, the encod-
ing scheme for context s2s6 will not have changed, and the s5 that follows its
second occurrence will be encoded 11110. (Verify!) By contrast, by the second
occurrence of context s1s2, the tree for that context is as follows:

s6 1�������� 1��������0

1
���

���

s1 0�������� 0��������0

1
���

���

s2 0�������� 0��������0

1
���

���

s3 0�������� 0��������0

1
���

���

s4 0�������� 0��������0

1
���

���

s5 0��������

Thus the s2 following the second occurrence of s1s2 is encoded 110.
If the source alphabet is quite large, say m = |S| = 256, for instance, then

maintaining the context trees for k > 0 can be expensive. There are m2 contexts
of order 2, and each context tree has m leaf nodes, and that is really a lot of stuff
to maintain and to hunt through. Of course, the same volume of stuff has to be
kept in static (non-adaptive) higher-order Huffman encoding. One way to lessen
the burden in static kth-order Huffman encoding is to store the array of (k +1)-
gram relative frequencies in some sort of alphabetized order so that the line
f (i1, . . . , ik,1), . . . , f (i1, . . . , ik,m) for context si1 · · · sik can be quickly found,
and then the tree and scheme for that context can be quickly constructed (and
stored, if desired) from those relative frequencies. The savings achieved are not
great; it does not take much more space to store the static context schemes than
it does to store the (k + 1)-gram relative frequencies.

In adaptive higher-order Huffman encoding we do not have the simplicity
of fixed encoding schemes for each context, and it turns out that something
similar to the storage procedure suggested above is useful. Letter counts in
contexts replace the (k + 1)-gram relative frequencies. As we shall see in the
next section, lists of counts with a few frills and pointers added can function as
easily updated Huffman trees/schemes.

There is a further savings possible with adaptive kth-order Huffman (and
with adaptive kth-order arithmetic) coding that takes advantage of the fact that
some contexts may occur very infrequently. The trick is not to reserve space
and maintain counts for a particular context until that context actually occurs.
For more detail on the implementation of adaptive higher-order encoding, we
refer the interested reader to Bell, Cleary, and Witten [8].

© 2003 by CRC Press LLC

212 8 Adaptive Methods

Exercises 8.1

1. Complete the zeroth-order adaptive Huffman encoding of the source text
labeled (∗), above, under the conventions of this section.

2. Give the first-order adaptive Huffman encoding of the source text labeled
(∗), under the conventions of this section. (In particular: in each context
the letter counts start at 0.)

3. Complete the decoding of 01100011001011111100 . . ., with S = {s1,s2,s3,

s4,s5,s6}, under the conventions for zeroth-order adaptive Huffman coding
in this section.

4. Decode the fragment of code in problem 3 under the conventions for first-
order adaptive Huffman coding in this section (with S as above).

8.2 Maintaining the tree in adaptive Huffman encoding:
the method of Knuth and Gallager

The problem with the version of adaptive Huffman encoding presented in Sec-
tion 8.1 is in the updating of the Huffman tree, after a count is incremented.
Sometimes the tree does not change at all, and sometimes it changes drastically.
It can change drastically even if the order of assignment of source letters to leaf
nodes does not change. There does not seem to be any easy way to see what the
next tree will look like; you have to construct the full tree at each stage, after
each source letter, and that is a lot of trouble, especially if m = |S| is large.

In practice, the Huffman tree at each stage is a sequence of registers or
locations, each representing a node. The contents of each register will be (a)
the weight of the node, (b) pointers to the sibling children of that node, or an
indication of which source letter the node represents, should it be a leaf, (c)
a pointer to the parent of the node, unless the node is the root node, and (d)
optionally, an indication, in case the node has sibling children, as to which edge
to them is labeled 0, and which is labeled 1. (We will see later why this feature
could be optional.)

A tree stored in this way can be used for decoding more easily than the
encoding scheme associated with the tree. In order to decode binary code text,
start at the root node of the tree; having scanned the first bit, go to the register
associated with the sibling child of the root node indicated by that bit, whether
0 or 1. Continue in this way until you arrive at a leaf node; decode the segment
of code just scanned as the source letter assigned to that leaf, update the tree,
return to the root node, and resume scanning.

Thus, in any Huffman encoding, whether adaptive or not, the Huffman tree
can serve efficiently as the Huffman encoding scheme. Now, keeping in mind
the sequence-of-registers form of the Huffman tree in storage, we will look at

© 2003 by CRC Press LLC

8.2 Maintaining the tree in adaptive Huffman encoding: the method of Knuth and Gallager 213

the efficient tree-updating algorithm due to Knuth [40], based on a mathematical
result of Gallager [23]. First, we need to understand Gallager’s result.

The tree resulting from an application of Huffman’s algorithm to an initial
assignment of weights to the leaf nodes belongs to a special class of diagrams
called binary trees.1 It is easy to see by induction on m that a binary tree with m
leaf nodes has a total of 2m − 1 nodes altogether, and thus 2m − 2 nodes other
than the root. (See Exercise 8.2.3.) Gallager’s result is the following.

8.2.1 Theorem Suppose that T is a binary tree with m leaf nodes, m ≥ 2, with
each node u assigned a non-negative weight wt(u). Suppose that each parent is
weighted with the sum of the weights of its children. Then T is a Huffman tree
(meaning T is obtainable by some instance of Huffman’s algorithm applied to
the leaf nodes, with their weights), if and only if the 2m − 2 non-root nodes of
T can be arranged in a sequence u1,u2, . . . ,u2m−2 with the properties that

(a) wt(u1) ≤ wt(u2) ≤ ·· · ≤ wt(u2m−2) and

(b) for 1 ≤ k ≤ m − 1, u2k−1 and u2k are siblings, in T .

We leave the proof of this theorem as an exercise (see Exercise 8.2.4) for
those interested.

Both Gallager [23] and Knuth [40] propose to manage the Huffman tree at
each stage in adaptive Huffman encoding by ordering the nodes u1, . . . ,u2m−1
so that the weight on uk is non-decreasing with k and so that u2k−1 and u2k

are siblings in the tree, for 1 ≤ k ≤ m − 1. (u2m−1 will be the root node.) This
arrangement allows updating after a count increment in a leaf node in, at worst,
a constant times m operations (where m is the number of leaf nodes), while re-
doing the whole tree from scratch requires a constant times m2 operations. Plus,
you never catch a break redoing the whole tree; it always takes the same number
of operations, whereas applying the method of Knuth and Gallager sometimes
updates the tree in very few operations.

We refer to the method of Knuth and Gallager because the two methods are
essentially the same, a fact that may not be evident from their descriptions; but
the fact is that they always result in the same updated tree (except, possibly, for
the leaf labels) by essentially the same steps. Gallager’s, the first on the scene, is
the slower and more awkward to carry out. Indeed, you can think of Gallager’s
method as a somewhat inefficient way of carrying out Knuth’s algorithm, al-
though the historical truth is that Knuth’s algorithm is a clever improvement of
Gallager’s method. We shall give an account of Gallager’s method here as a
historical curiosity, and to warm the reader up for Knuth’s algorithm, but the
reader keen on applications may skip the subsection on Gallager’s method.

1The technical definition of binary trees is easy but unmemorable: a binary tree is an acyclic
connected graph in which exactly one node has degree 2 and all the other nodes have degrees 3 or
1. You can think of a binary tree as the finite diagram obtained by starting at the root node, drawing
two edges or branches to two sibling children of the root node, and continuing in this way, deciding
for each new node whether it will have two children or remain a childless leaf. The finiteness
requirement says that you cannot continue forever allowing some node or other to have children.

© 2003 by CRC Press LLC

214 8 Adaptive Methods

In describing the method, we will identify the nodes of the tree with the
registers or locations in which information about the nodes are stored. Both
versions of the method use node interchange, which results in entire subtrees
of the current tree being lopped off and regrafted in new positions. It works
like this: suppose ui and u j are distinct nodes in a node-weighted binary tree.
To exchange these nodes, switch the node weights and the names of associated
source letters, in case one or both of ui ,u j are leaf nodes, between the locations.
Leave the “forward” pointers to the parents as they are, in locations ui and u j .
So, effectively, the nodes have exchanged parents; but they keep their children
and other descendants, and to effect this you have to go to the registers of the
children of ui (and of u j), if any, and change their forward pointers so that they
point to u j (resp. ui). Also, the backward pointers, if any, in ui and u j have to
switch. (Of course, the names of the nodes are switched as well, so that what
was once referred to as ui is now u j , but this has nothing to do with what is
going on in the registers.)

For example, consider the Huffman tree below, lifted from Knuth’s paper.
Edges will substitute for pointers and the weights are indicated inside the nodes,
as usual. The names of the nodes are beside the nodes, as well as the names of
the associated source letters, in the case of leaf nodes.

u9;s5 11��������

u3;s1 5�������� 32��������
���������

									

u1;s3 2�������� 10��������
���������

									
21��������

u11

5��������
									

��������� u7 u10

u2;s6 3�������� u4

u5;s2 5�������� 11��������

��
��

��
��

��
�

u8

u6;s4 6��������

(T1)

Verify that the weight stored at uk is a non-decreasing function of k, and that
successive nodes u2k−1,u2k , 1 ≤ k ≤ 5, in the list u1, . . . ,u10 are siblings.

Now, the interchange of u4 and u5 results in the tree (T2). This also is a
Huffman tree, with nodes in the “Gallager order” described in Theorem 8.2.1.
It is worth noting that if you start with one Huffman tree with nodes in Gallager
order and interchange two nodes, if the two nodes have the same weight then
the result will be a Huffman tree with nodes in Gallager order. If the two nodes
do not have the same weight then the resulting tree could be a Huffman tree,
but, in any case, the nodes will not be in Gallager order; requirement (a) will be
no longer satisfied.

© 2003 by CRC Press LLC

8.2 Maintaining the tree in adaptive Huffman encoding: the method of Knuth and Gallager 215

u9;s5 11��������

u3;s1 5�������� 32��������
���������

									

10��������
���������

									
21��������

u11

u4;s2 5�������� u7 u10

u1;s3 2��������

5��������
���������

��������� 11��������

u2;s6 3�������� u5 u8

u6;s4 6��������

(T2)

Note also the “subtree regrafting” feature of this interchange. The subtree
originally rooted at u4 has been snipped off and regrafted into the tree, now
with u5 as the root. The same is true of the subtree originally rooted at u5—
it is rerooted at u4—but this rerooting is not very dramatic since that subtree
consists of a single node.

8.2.1 Gallager’s method

We suppose that the nodes u1, . . . ,u2m−1 of the Huffman tree are stored in Gal-
lager order; for 1 ≤ k ≤ m − 1, we refer to u2k−1,u2k as a sibling pair.

Suppose a count wt(u) in a leaf node u is to be incremented. Change its
weight to wt(u) + 1 and inspect the next sibling pair up from the one u is in.
If the smaller weight in this sibling pair, say on the node v, is smaller than
wt(u)+ 1 (which will be the case if and only if wt(u) = wt(v)), interchange u
and v. In case there is a choice, interchange u with the sibling with larger index.
Now again compare wt(u)+1 with the weights in the next sibling pair up (from
v). Interchange if wt(u)+ 1 is larger than one of these. Continue interchanging
until the incremented weight, wt(u)+ 1, is, in fact, smaller than both weights
in the sibling pair beyond the node on which that weight now resides, or until
there is no sibling pair beyond that node (which will happen if and only if the
current residence of wt(u)+ 1 is a child of the root node).

Suppose the incremented weight is now at node ũ. Next increment the
weight on the parent of ũ by one. If the parent of ũ is the root node, you are
done. Otherwise, proceed with the parent of ũ as with u, interchanging until its
incremented weight is no greater than that on either node in the next sibling pair
up. Then increment its parent—and so on.

For example, suppose the current Huffman tree is T1, above, and s6 is
scanned. The count in u2 is increased to 4. The next sibling pair up from
u2 is u3,u4, each with weight 5, so we leave location u2 alone (for now; it will
soon have its forward pointers changed) and increment the weight in u4 by 1;
it is now 6. This is greater than the weight in u5, in the next sibling pair up, so

© 2003 by CRC Press LLC

216 8 Adaptive Methods

nodes u4 and u5 are interchanged. (So, in particular, nodes u1 and u2 are now
the children of u5.) Now the weight 6 in u5 is less than each weight in u7 and
u8, corresponding to the next sibling pair up, so increment the weight in u8 (the
parent of u5) by 1 up to 12. This is greater than the weight in u9, so exchange
u8 and u9. Finally, increment the root node. The result of all this:

u1;s3 2��������

6��������
���������

���������
12��������

���������������

u2;s6 4�������� u5 u9 33��������
���������

��
��

��
��

��
��

�

u6;s4 6�������� u11

u3;s1 5��������

10��������
���������

���������
21��������

��
��

��
�

u4;s2 5�������� u7 u10

u8;s5 11��������

(T3)

It is heartily recommended that the reader work through the steps in this exam-
ple.

8.2.2 Knuth’s algorithm

The main differences between the methods of Knuth and Gallager are that
Knuth’s calls for node interchange before any counts are incremented, and there
is no emphasis at all on sibling pairs. (Nor did there need to be, really, in Gal-
lager’s method.) All node interchanges are of nodes of equal weight, so there
need be no interchange of weights between locations. Interchanges involve only
changes of pointers and of source letter identities of leaf nodes.

We start with the nodes in Gallager order, u1, . . . ,u2m−1. Suppose that the
count on a leaf node u, currently with count wt(u), is to be incremented. Look
up the list from u and find the node ũ furthest up the list with the same weight,
wt(u), as u, and interchange u and ũ. [This ũ will be the same node discovered
in the first stage of Gallager’s method.] Now go to the parent of ũ. If it is the
root node, go to the incrementation phase, described below. Otherwise, find
the node the furthest up the list from the parent of ũ with the same weight as
the parent of ũ, interchange the parent of ũ with that node, proceed to the next
parent, and so on.

After all the node interchange is finished, the leaf node now corresponding
to the source letter scanned, and each node on the unique path from that node
to the root node, have their weights increased by 1, and the update is complete.

For example, let us again suppose that T1 is the current state of the Huffman
tree, and that s6 is scanned. The current count 3 in u2, corresponding to s6, is

© 2003 by CRC Press LLC

8.2 Maintaining the tree in adaptive Huffman encoding: the method of Knuth and Gallager 217

the only 3 appearing, so we move to the next parent node, u4; u5 is the location
with greatest index (5) bearing the same weight as u4 (5, by coincidence), so
nodes u4 and u5 are interchanged. The current picture is then T2, above.

The next parent to be processed is the node u8 with weight 11. The highest
indexed node with weight 11 is currently u9, so u8 and u9 are interchanged. The
next parent is then the root node, so we are done. Now the counts in locations
u2, u5, u9, and u11 are increased by 1, and we are ready to scan the next letter.
Notice that the tree arrived at after incrementation is T3, the tree arrived at by
Gallager’s method, and that all the interchanges that took place were between
the same pairs of nodes, in the same order, as in Gallager’s method. It is al-
ways thus, if all weights on the nodes are positive. We leave verification of this
statement to the reader.

There is a slight problem with Knuth’s algorithm as described when zero
counts are allowed on the leaf nodes; it can happen that the ui with largest index
i , with the same weight as the node v you are currently looking at, is u2m−1, the
root node. In this eventuality, simply interchange v with u2m−2 and proceed to
the incrementation stage. By an accident of logic and reference, because of the
business about sibling pairs, this provision is built into Gallager’s method.

You may be wondering about labeling of the edges of the Huffman tree
with 0 or 1, in the Knuth-Gallager procedure. The easiest rule is that if a parent
u has children u2k−1,u2k , in the current Gallager ordering of the nodes, then let
the edge from u to u2k be labeled 0, and the edge from u to u2k−1 be labeled
1. In practice, it might be convenient to have a couple of bits in the register
corresponding to u reserved for signaling this labeling, even though it can be
figured out from the order of the sibling children in the current Gallager ordering
of the nodes.

u6;s1 1��������

2��������
0

���������

1��������� 6��������1

0

u5;s2 1�������� u9 u11

u4;s3 1��������

2��������
0

���������

1��������� 4��������0

1

u3;s4 1�������� u8 u10

u2;s5 1��������

2��������
0

���������

1���������

u1;s6 1�������� u7

(T4)

The Knuth-Gallager procedure requires some sort of initialization conven-
tion, because whether the initial counts are set at 1 or 0, there are many choices
as to the Gallager order of the nodes at the outset. In the exercise set to follow,

© 2003 by CRC Press LLC

218 8 Adaptive Methods

S = {s1, . . . ,s6}, the initial counts are set at 1, and the initial Gallager ordering is
indicated by (T4). Please note that by the edge-labeling convention mentioned
above, the edge from u11 to u10 will be labeled 0.

Exercises 8.2

1. With the initialization and the edge labeling conventions mentioned above,
do encoding Exercise 8.1.1 with Knuth’s algorithm governing the tree up-
dating.

2. Similarly, do decoding Exercise 8.1.3 with Knuth’s algorithm.

3. (a) Show that in a binary tree, there must be at least two leaf nodes that
are siblings. [If a binary tree is defined as a tree formed by a certain
process, this proposition is evident; the last two children formed will
be siblings and leaf nodes.
Here is another proof. Take a node a greatest distance from the root
node. It and its sibling must be leaf nodes. Why?]

(b) Show that a binary tree with m leaf nodes has 2m −1 nodes, total. [Use
(a) and go by induction on m.]

4. Prove Theorem 8.2.1. You might follow the following program.

(a) If T is a binary tree generated by applying Huffman’s algorithm to the
non-negatively weighted leaf nodes, then the two smallest node weights
appear on sibling leaf nodes, by appeal to the procedure of formation. By a
similar appeal, the tree obtained by deleting those two leaf nodes, thereby
making their parent a leaf, is also a Huffman tree.

The proof that the nodes of T can be put in Gallager order is now straight-
forward, by induction on the number of leaf nodes of T .

(b) Suppose T is a binary tree with non-negatively weighted nodes, with
each parent weighted with the sum of the weights of its children. Suppose
the nodes of T can be put in Gallager order, u1,u2, . . . ,u2m−1. If all the
weights on nodes are positive, then u1 and u2, siblings, must be leaf nodes.
(Why?) If zero appears as a weight, then it is possible that one of u1,u2 is
a parent, say of u2k−1,u2k , k ≥ 2, but only if the weights on u2k−1 and u2k

are both zero (verify this assertion, under the assumptions), in which case
all the weights on u1, . . . ,u2k are zero. Switch the sibling pairs u1,u2 and
u2k−1,u2k , in the ordering; the new ordering is still a Gallager ordering.
Switch again, if necessary, and continue switching until the first two nodes
in the ordering are sibling leaf nodes. (How can you be sure that all this
switching will come to an end with the desired result?) Now consider the
tree T ′ obtained from T by deleting u1,u2. Draw the conclusion that T is
a Huffman tree, by induction on the number of leaf nodes. (The important
formalities are left to you.)

© 2003 by CRC Press LLC

8.3 Adaptive arithmetic coding 219

8.3 Adaptive arithmetic coding

If you understand the general procedure in arithmetic coding, the main idea in
adaptive arithmetic coding (including higher-order adaptive arithmetic coding)
is quite straightforward. Counts of the source letters are maintained in both the
encoding and in the decoding; in the case of higher-order adaptive arithmetic
coding, counts are maintained in the different contexts. Whatever the current
interval is, it is subdivided into subintervals, corresponding to the source letters,
with lengths proportional (or, in the case of integer intervals, approximately
proportional) to the current source letter counts. It is simplest to maintain the
order s1, . . . ,sm of the source letters, as in higher-order arithmetic coding. That
is, there is usually no good reason to rearrange the source letters, and thus the
order of the next subintervals, so that the counts of the letters and the lengths of
the subintervals are in non-increasing order.

Explicitly, if S = {s1, . . . ,sm }, if the current interval A = A(si1 · · · sik) (pos-
sibly the result of rescaling) has left-hand endpoint α and length �, and if
s1, . . . ,sm have counts c1, . . . ,cm , respectively, then the endpoints of the subin-
tervals A(si1 · · · sik s1), . . . , A(si1 · · · sik sm) will be α, α + c1

C �, α + c1+c2
C �, . . . ,

α + c1+···+cm−1
C �,α + �, where C = ∑m

i=1 ci .
Let’s try an example of adaptive dfwld encoding in the fashion of Sec-

tion 6.1. We take S = {a,b,c,d}, initial counts all 1, and we will encode
bbca. At the outset, the intervals A(a), A(b), A(c), and A(d) are, respec-
tively, [0,25), [.25, .5), [.5, .75), and [.75,1). After the first b is scanned, the
counts of a,b,c,d become 1,2,1,1, respectively, so A(b) = [.25, .5) is broken
into [.25, .3), [.3, .4), [.4, .45), and [.45, .5). When the next b is scanned, we
are in interval A(bb) = [.3, .4), and rescaling is possible. The resulting interval
will be divided into subintervals with lengths in the proportions 1,3,1,1, which
will make the arithmetic annoying. Here is the encoding table, similar to these
in Section 6.1, with an extra column for the counts. As usual, α is the left-hand
endpoint and � is the length of the current interval.

Counts of
a,b,c,d

Next letter
or rescale α �

Code
so far

1,1,1,1 0 1

1,1,1,1 b .25 .25

1,2,1,1 b .3 .1

1,3,1,1 rescale .2 .4 01

1,3,1,1 c 7/15 = .2+ (.4) 4
6 1/15 = (.4) 1

6 01

1,3,2,1 a 7/15 1
105 = 1

15 · 1
7 01

The last interval is [7/15,7/15 + 1
105) = [7

15 , 10
21), the dfwld in which is

(.01111)2, easily obtained by carrying out the binary expansions of the end-
points until they disagree. We add the bits of the binary expansion of the dfwld

© 2003 by CRC Press LLC

220 8 Adaptive Methods

to the “code so far” to obtain 0101111 as the code for bbca.
Perhaps we are making too much of this. The point is that in both the en-

coding and the decoding, however they are carried out, the role of the relative
source frequencies f j (or, in the higher-order cases, of the conditional con-
text probabilities f (i1, . . . , ik, j)/ f (i1, . . . , ik)) is taken over by the constantly
changing ratios c j/C . (In the higher-order cases, these are relative to the con-
text.) Whatever you did in Section 6.1, you are doing the same in adaptive
arithmetic coding, with the constantly updated c j/C playing the roles of the f j .

The same is true in the more practical setting of Section 6.4, but here prob-
lems arise. Suppose we replace the continuum [0,1) and exact computation
by an integer interval [0, M) = {0,1, . . . , M − 1}, and approximate computa-
tion. If the relative source frequencies f1, . . . , fm are known ahead of time, M
can be chosen so that, with “underflow condition” rescaling, every letter will
always have a non-empty interval as a subinterval of the current interval. But
with adaptive arithmetic coding, we know not what horrors await. M is chosen
ahead of time, and it may well be that for some j , c j/C will fall so low that the
subinterval allocated to s j in the current interval vanishes. Another, related dan-
ger is that when Gallager’s idea of allowing for statistical change in the source
text by multiplying the counts by a fraction and rounding down (see Section
8.1) is carried out, some source letter will get count zero, and thus be allocated
an empty subinterval in the current interval.

One simple way to deal with both problems is to modify Gallager’s method
by rounding up instead of rounding down, so that each source letter gets a pos-
itive count, and to agree, between the encoder and the decoder, that the frac-
tionalizing procedure will be repeated, if necessary, until the new count sum C
satisfies C ≤ M/4 + 2. Recall from Section 6.4 that this inequality guarantees
that every source letter will be allocated a non-empty integer interval, in the
subdivision of the current interval in the algorithm of that section.

Adaptive Huffman and adaptive arithmetic encoding have been regarded as
approximately equivalent in effectiveness and cost, in the past. Current gossip
has it that adaptive arithmetic now has an edge over adaptive Huffman encod-
ing, because implementation of arithmetic coding has been improved lately,
while tree maintenance techniques for adaptive Huffman encoding remain ap-
proximately where Knuth left them. But the pace of technological advance is
swift, so it may be that adaptive Huffman encoding may be the less costly of the
two, by the time you read this. Of course, many hold the view that arithmetic
encoding of any sort has an insurmountable theoretical advantage over the cor-
responding Huffman encoding, but it is not clear that this theoretical advantage
persists in practice.

Exercises 8.3

1. Redo Exercise 6.1.1 adaptively, with all counts initially set at 1.

2. This is about adaptive arithmetic coding using the method of Section 6.4

© 2003 by CRC Press LLC

8.4 Interval and recency rank encoding 221

with an integer interval [0, M) = {0, . . . , M − 1}. Suppose that M = 32.
Suppose the source letters are a, b, and EOF, and all source letters start with
a count of 1. Suppose that the Gallager fraction by which the letter counts
will be occasionally multiplied is 1/2, with rounding up, as suggested in
the text above. Suppose that this fractionalizing of the counts will occur
whenever the count sum rises to 11 = (M/4 + 2) + 1. Give the current
counts of a, b, and EOF after each source letter is read, if the source stream
is baabbbbabbaabaaabaaaaEOF.

8.4 Interval and recency rank encoding

Both encoding methods referred to in the title of this section were introduced
by Elias [16], although he gives credit for the independent discovery of recency
rank encoding to Bentley, Sleator, Torjan, and Wei.

Both methods are lossless, adaptive methods for encoding text over a source
alphabet S = {s1, . . . ,sm }.

8.4.1 Interval encoding

In interval encoding we start with an infinite set C = {u0,u1, . . . } of binary
words, satisfying the prefix condition and lgth(u0) ≤ lgth(u1) ≤ ·· · . A letter s j

occurring the source text is encoded by ui , where i is the number of source let-
ters between this occurrence of s j and its last occurrence, in previously scanned
source text. We get started by imagining the source text to be preceded by the
string s1 · · · sm .

For example, let us take C = {0,10,110, . . .} and consider the source text
(∗) in Section 8.1.2,

s3s3s2s6s1s1s2s6s5s1s3s3s5s6s1s2s2s2 · · · (∗)

The encoder (and the decoder, as well) knows that the source alphabet is {s1, . . . ,

s6}. The first s3 in the source text is encoded by u3 = 1110, because there are
three letters, namely s4,s5, and s6, between it and its imaginary first occurrence,
in the imagined block s1 · · · s6 preceding the real source text. The next s3 is
encoded with u0 = 0. The s2 following is encoded with u6 = 1111110. (Why?)
The code for the first 6 letters of (∗), s3s3s2s6s1s1, will be 111001111110111019 00
(with 19 standing for nine ones). Notice that if s4 ever shows up in this source
text, its first occurrence will be represented by a frightfully long code word.

In fact, although interval encoding intuitively seems elegant and efficient,
it is rather disappointing in practice, with regard to compression. The source of
the infelicity is the choice C of a set of code words, chosen without reference
to any particular properties of the source text. You do not need to know any
properties of the source text to do adaptive Huffman or arithmetic encoding, but

© 2003 by CRC Press LLC

222 8 Adaptive Methods

the encoding will reflect statistical properties of the source text discovered or
collected as the encoding proceeds. In interval encoding, you are stuck with
the set C chosen at the outset. Of course, there are situations involving com-
munications in which it is a good thing for everybody in the conversation to be
using the same code word set, so this weakness of interval encoding can also be
a strength.

The C we used for the example above, in which uk = 1k0, k = 0,1,2, . . . ,
is a particularly bad choice. It can be shown (see Exercise 8.4.3) that for any
zeroth-order source with alphabet S = {s1, . . . ,sm}, the average length of a code
word replacing a source letter in interval encoding of the source text, using
the set C of code words above, will be m. This compares very unfavorably
with 1 + H (S) ≤ 1 + log2(m) (see Chapters 2 and 5) an upper bound on the
average length of a code word replacing a source letter if Huffman encoding
were possible, and thus an upper bound on the (long term) average code word
length if adaptive Huffman encoding is used.

Elias [16] proposes two infinite code word sets, that we will refer to here-
after as C1 = {u0,u1,u2, . . . } and C2 = {v0,v1,v2, . . . }, which do a much better
job of compression when used in interval encoding than C , above, although they
still do not give an average code word length close to H (S), for a zeroth-order
source S. The code word uk is formed by following a string of �log2(k +1)� ze-
roes by the binary expansion of k +1, which will be of length 1+�log2(k +1)�.
Thus lgth(uk) = 1 + 2�log2(k + 1)�. The first few uk’s are as follows:

u0 = 1 u4 = 00101
u1 = 010 u5 = 00110
u2 = 011 u6 = 00111
u3 = 00100 u7 = 0001000

The code word vk is formed by following ug(k), where g(k) = �log2(k +
1)�, by the binary expansion of k + 1. Thus

v0 = 11 v4 = 011101
v1 = 01010 v5 = 011110
v2 = 01011 v6 = 011111
v3 = 011100 v7 = 001001000

(Verify!) It may appear that the vk are longer than the uk , and so it is, in the
early going, but

lgth(vk) = 1 +�log2(k + 1)�+ lgth(ug(k))

= 2 +�log2(k + 1)�+ 2�log2(1 +�log2(k + 1)�)�,
which is asymptotically about half of lgth(uk) = 1+2�log2(k +1)�, as k → ∞.

It is left to the reader to verify that the sets C1 and C2 are prefix-free; i.e.,
they satisfy the prefix condition.

It can be shown (see Exercise 8.4.4) that in interval encoding using C1 on
text from a zeroth-order source S, the average length of a code word replacing

© 2003 by CRC Press LLC

8.4 Interval and recency rank encoding 223

a source letter is no greater than 1+2H (S); using C2, that average is no greater
than

2 + H (S)+ 2
m∑

j=1

f j log2(1 + log2(1/ f j)),

where the f j are the relative frequencies of the source letters. If m and H (S) are
large, the latter is usually the smaller of the two upper bounds, but for the small
source alphabets we use for examples, C1 is the superior set of code words.

If you do Exercise 8.4.4, you will see that, for m large and the f j small,
the upper bounds on the average code word lengths in the paragraph preceding
are not very pessimistic; that is, the true average length of a code word replac-
ing a source letter is not far from the upper bound given. We leave the precise
analysis necessary to demonstrate this to the ambitious; the point is that by in-
terval encoding using C1 or C2, we cannot hope for the compression achievable
with adaptive Huffman or arithmetic coding applied to text from a zeroth-order
source.

On the other hand, the upper bounds mentioned above say that interval
encoding using C1 or C2 results in code text, at worst, no more than twice as
long as the code text from Huffman or arithmetic encoding, on the average,
when applied to text from a perfect zeroth-order source; and there are offsetting
advantages, such as a common, system-wide code word set, and great ease and
speed in encoding and decoding.

The decoding procedure should be clear, but just to be sure that we under-
stand it, let’s decode

011001101001110100100001000100100,

the result of applying interval encoding using C1 to a short passage of source
text over S = {s1,s2,s3,s4,s5,s6}. Recall that it is imagined that the actual
source text is preceded by s1 · · · s6, to get things started.

Scanning the string above from left to right, we first recognize u2 = 011.
(All uk in the string above are among u0, . . . ,u7, listed above. We will have a
few words to say below about a more systematic way of recognizing the uk .)
Thus the first source letter is s4. Do you see why? Because s4 is the choice that
puts two letters between it and its previous occurrence in the preliminary block
s1 · · · s6.

After u2, we next recognize u5 = 00110. Counting back six places, we
come to s2, and that is the next source letter. The next code word is u0 = 1, so
s2 is repeated. Continuing in this way, you should decode the given string as
s4s2s2s3s2s3s5s5s2.

Given the rules of formation of the uk , it is quite easy to program so that the
uk can be recognized by reading-left-to-right, without checking any lists. You
count the number of zeroes until the first 1 in the word being scanned. If there
are t zeroes, then the next t +1 bits give the binary expansion of k +1, which is
the number of places you will count back through the source text so far to find
the next source letter to be decoded.

© 2003 by CRC Press LLC

224 8 Adaptive Methods

8.4.2 Recency rank encoding

Recency rank encoding is quite similar to interval encoding—it applies to the
same situations and shares some of the same advantages—but requires only a
finite prefix-free set C = {u0, . . . ,um−1} of m = |S| code words. Given C , an
occurrence of a source letter s j in the source text is encoded by uk , where k is
the number of distinct source letters that have appeared in the source text since
the last appearance of s j . As in interval encoding, we pretend that the source
text is preceded by s1 · · · sm , to get things started.

For example, with S = {s1, . . . ,s6} and C = {0,10,110,1110,11110,

111110}, the source text (∗) presented earlier in this section will be encoded

(s1s2s3s4s5s6)
1110

s3

0

s3

11110

s2

110

s6

111110

s1

0

s1

110

s2

110

s6

11110

s5

1110

s1

11110

s3
· · ·

(We leave the rest of the encoding as an exercise.) Note that s4, when it first
occurs, if ever, will be encoded 111110.

Clearly recency rank encoding shares with interval encoding the advantage
of a common code word set to be used by all in a communication environment.
Clearly recency rank encoding will compress better than interval encoding, for
any reasonable choice of the finite code word set C . (The rigorous analysis
of recency rank encoding in this respect remains to be done, but the point is
that the number of distinct letters in a given block of source text is certainly no
greater than the length of the block.) In fact, the only advantage that interval
encoding has over recency rank encoding is in the speed and ease of encoding
and decoding: clearly it is a little more trouble to count the number of distinct
symbols in a block of symbols, than just to count the length of the block. And in
recency rank decoding, having scanned uk , 0 ≤ k ≤ m −1, you have to go back
into the source string decoded so far until you come to the (k + 1)st different
symbol, and clearly this involves some sorting and checking and a good deal
more trouble than just counting back k + 1 places, as in interval decoding. But
when the amount of trouble involved in recency rank encoding and decoding
is compared to the corresponding difficulties in adaptive Huffman or arithmetic
coding, that trouble does not seem like much.

We are indebted to Greg Hanks, a student, for proposing the following:
while encoding either by the interval method or by recency rank, keep counts
of the original source letters and of the code words (the uk) and then, after the
source text has been encoded, recode the whole thing by zeroth-order Huffman
replacement of S or of C , whichever has the lesser entropy; the entropies will be
calculated from the relative frequencies that arise from those counts you kept.
Or, you could recode arithmetically using those relative frequencies—again, the
recoding is applied either to the original source text or to the code text, regarded
as a string of uk’s, depending on which alphabet has lower zeroth-order entropy.

Now, this procedure defaces the speedy online character of the interval and
recency rank methods; and, anyway, don’t we do adaptive encoding to avoid

© 2003 by CRC Press LLC

8.4 Interval and recency rank encoding 225

advance statistical study of the source text? But it is an interesting idea, all the
same, and merits some experimentation to see if any significant compression is
achievable by such recoding.

Further, such experimentation should provide an interesting test of faith.
Recall the discussion at the end of Section 6.2; it is widely believed that no
lossless “zeroth-order” method, whatever that may mean, can encode source
text over a source alphabet S in fewer than H (S) bits per source letter, on av-
erage, with H (S) denoting the zeroth-order entropy of the source. Now, if the
source text is encoded by the interval or the recency rank method, each source
letter s has been replaced by a code word u belonging to a set C of code words;
we can regard C as a source alphabet now, and the encoded text as a new source
text. According to the faith about entropy, and by the fact that you can encode
text in entropy-plus-epsilon bits per symbol by indisputably zeroth-order loss-
less methods (see Sections 6.2 and 5.4) either (a) it must be that H (C) ≥ H (S);
otherwise, if H (C) < H (S), we could encode the text over C , and thus the orig-
inal source text, in fewer than H (S) bits per symbol; or (b) the coding method
is not zeroth-order. There is a good argument for this latter assertion, because
in both interval and recency rank encoding, the encoding of each letter s has
something to do with the context—either the number of letters since s’s last ap-
pearance, or the number of different letters since that appearance. Perhaps this
objection is sufficient to preserve the faith. In any case, it would be interesting
to see if we get H (C) < H (S) in many plausible “real” situations. When we do,
Hanks’ suggestion provides a way of achieving better compression than could
be had by plain zeroth-order Huffman or arithmetic coding of the source text,
were the relative source letter frequencies known.

In the silly situation considered at the end of Section 7.4, where S = {a,b,

c,d} and the source text consists of abcd repeated over and over, all relative
frequencies are 1/4, so the zeroth-order entropy is H (S)= log2 4 = 2. Encoding
either by interval or by recency rank, every source letter gets replaced by u3 ∈ C;
thus the entropy of C , considered as the source alphabet of the resulting text,
is H (C) = 0. Using Shannon’s trick, as described in Section 5.4, and encoding
blocks of N of those u3’s by a single bit, we can encode the original text at the
rate of 1/N bits per original source letter.

True believers (and we are among them, we just wonder what it is we be-
lieve) will say that this is evidence either that this is a lousy example, or that
interval and recency rank encoding are not zeroth-order methods. We tend to
the latter view, without absolutely ruling out the former.

One last comment; should it happen that experiment shows that we fre-
quently have H (C) < H (S) after interval or recency rank encoding, then the
idea of Greg Hanks might profitably be put into practice with preservation of
the online, no-second-pass character of those coding methods, simply by imme-
diately following the interval or recency rank encoding with adaptive Huffman
or arithmetic coding, applied to the symbol set C = {u0,u1,u2, . . . } of the first
encoding.

© 2003 by CRC Press LLC

226 8 Adaptive Methods

Exercises 8.4

1. (a) Encode source sequence (∗), above, by interval encoding using the set
C1 of code words defined in the text.

(b) Complete the encoding of (∗) by recency rank encoding, using C =
{0,10,110,1110,11110,111110}.

2. (a) Supposing S = {s1, . . . ,s6}, decode

0010101001010011000010000101

assuming the encoding was by the interval method, using C1.
(b) Supposing S = {s1, . . . ,s6}, decode

11101011100111101101011100011110,

assuming the encoding was by recency rank, using C = {0,10,110,

1110,11110,11110}.
3. Before getting to the question, we need some observations.

(i) Recall the formula for the sum of a geometric series:
∑∞

k=0 ρk =
(1 −ρ)−1, for |ρ| < 1.

(ii) Differentiating both sides of the equation in (i) with respect to ρ, we
obtain

∑∞
k=1 kρk−1 = (1 −ρ)−2.

(iii) If a symbol s from a perfect zeroth-order source occurs in the source
text (randomly and independently of all other occurrences) with relative
frequency f , then, starting from any point in the source text and going
either forward or backward, assuming the source text extends infinitely in
both directions, the probability of reading through exactly k letters before
coming to the first occurrence of s (at the (k +1)st place scanned) is f (1−
f)k . (Thus the average gap between occurrences of s in the source text is∑∞

k=0 k f (1− f)k = f (1− f)
∑∞

k=1 k(1− f)k−1 = f (1− f) f −2 = 1
f −1,

using (ii). To put it another way, s occurs on average once every 1/ f letters,
which agrees with intuition, since f is the relative frequency of s.)

(iv) Suppose that S = {s1, . . . ,sm } is the alphabet of a perfect zeroth-order
source, with s j having relative frequency f j , 1 ≤ j ≤ m. Suppose the
source text is encoded by the interval method, using some prefix-free set
C = {w0,w1, . . . } of code words. Then the average length of a code word
replacing s j will be �̄ j = ∑∞

k=0 f j (1− f j)
k lgth(wk), so the average length

of a code word replacing a source letter will be �̄ = ∑m
j=1 f j �̄ j =∑m

j=1 f j
∑∞

k=0(1 − f j)
k lgth(wk).

Finally, the problem. Show that for any zeroth-order source, in interval
encoding using C = {0,10,110, · · · }, the average length of a code word
replacing a source letter will be m = |S|.

4. To get at the average length of a code word replacing a source letter in in-
terval encoding using the code word sets C1 or C2, we need to recall some-
thing about concave (some say, concave down) functions which played a

© 2003 by CRC Press LLC

8.4 Interval and recency rank encoding 227

role in the proof of Theorem 5.6.3. If h is a concave function defined on
an interval, x1,x2, . . . are points in that interval, and λ1,λ2, . . . are non-
negative numbers summing to 1, then

∑
i λi h(xi) ≤ h(

∑
i λi xi). (In some

treatments, this is true by the definition of concave functions. Whether def-
inition or theorem, we take it as a given fact.) If h is continuous as well,
then this inequality holds for infinite sums, provided

∑
i λi xi converges.

(a) Show that if text from a zeroth-order source with alphabet S = {s1,

. . . ,sm} and relative source frequencies f1, . . . , fm is encoded by the
interval method using C1, then the average length of a code word
replacing a source letter is ≤ 1 + 2H (S), where, as usual, H (S) =∑m

j=1 f j log2(1/ f j). [Use (iv) in problem 3, above, and the fact that
log2 is concave.]

(b) Show that if C2 is used in interval encoding, the average number of
bits per source letter is ≤ 2+ H (S)+2

∑m
j=1 f j log2(1+ log2(1/ f j)).

[Verify that h(x) = log2(1+ log2 x) is concave on [1,∞) by taking its
second derivative. Proceed as in (a).]

© 2003 by CRC Press LLC

Chapter 9

Dictionary Methods

In the previous chapters, lossless compression was obtained by using a proba-
bility model to drive a coder. Dictionary methods use a list of phrases (the dic-
tionary), which hopefully includes many of the phrases in the source, to replace
source fragments by pointers to the list. Compression occurs if the pointers re-
quire less space than the corresponding fragments. (Of course, the method of
passing the dictionary must also be considered.)

In many ways, dictionary methods are easier to understand than probabilis-
tic methods. At the simplest level, several (fixed) specialized dictionaries could
be made available to both the coder and decoder. For text in English, a few
thousand of the most commonly used words could serve as the dictionary; if the
source consisted of code in some computer language such as C, then a list of
the keywords and standard library functions might serve as a dictionary. Fixed
dictionaries may be useful in some situations, but there are at least two serious
drawbacks. First, the dictionaries must be known to both the coder and decoder.
Changes to the dictionary would have to be propagated to all the sites which
use the scheme. Second, fixed dictionary schemes cannot compress “unknown”
text. In the case of C code, there would likely be little compression of the vari-
able names created by the programmer.

Our main interest here is methods which adapt to the source; that is, meth-
ods which build the dictionary from the source, and which usually do this on-
the-fly as the source is scanned. Communication via modem commonly uses
such a scheme (V.42bis). Fixed dictionaries would be of little use for general-
purpose communications, and, in addition, on-the-fly dictionary creation is per-
haps essential if the session is interactive.

Adaptive1 dictionary methods can often be traced to the 1977 and 1978
papers by Ziv and Lempel [85, 86]. The general schemes are known as LZ77
and LZ78, respectively. Applications employing variations on LZ77 include
LHarc, PKZIP, GNU zip, Info-ZIP, and Portable Network Graphics (PNG),
which is a lossless image compression format designed as a GIF successor.2

LZ78-type schemes are used in modem communications (V.42bis), the Unix
compress program, and in the GIF graphics format.

1The use of “adaptive” in the literature has not always been consistent. See Langdon and Rissa-
nen [44] or Williams [82] for some discussion.

2See http://www.clione.co.jp/clione/lha, http://www.pkware.com, http://www.gnu.org, http://
www.info-zip.org, and http://www.libpng.org, respectively.

229

© 2003 by CRC Press LLC

http://www.clione.co.jp
http://www.pkware.com
http://www.gnu.org
http://www.info-zip.org
http://www.info-zip.org
http://www.libpng.org

230 9 Dictionary Methods

The basic difference between LZ77 and LZ78 is in the management of
the dictionary. In LZ77, the dictionary consists of fragments from a window
(the “sliding window”) into recently seen text. LZ78 maintains a dictionary of
phrases. In practice, LZ77 and LZ78 schemes may share characteristics. There
are distinct advantages of each scheme: roughly speaking, LZ78 uses a more
structured approach in managing a slow-growing dictionary (possibly trading
compression for speed at the coding stage), and LZ77 has a rapidly changing
dictionary (which may offer better matches) and is faster for decoding. In ap-
plications, the choice of basic scheme may be complicated by various patent
claims (see Appendix C).

If dictionary methods are both simple and popular, the reader may be won-
dering why they’ve been presented after the probabilistic methods. Part of the
reason is historical, but it should also be noted that, subject to fairly modest re-
strictions, the compression achieved by a dictionary method can be matched by
a statistical method (see Section 9.3). However, dictionary methods continue to
be very popular due to their simplicity, speed, relatively good compression, and
lower memory requirements compared to the best statistical methods.

A combination of dictionary and probabilistic schemes is possible. An
example is provided by the GNU zip program discussed in Section 9.1.2, which
uses a statistical method on the output of the dictionary coder.

9.1 LZ77 (sliding window) schemes

In the basic scheme, a two-part window is passed over the source:

history lookahead
...She sells sea shells by the seashore...

09876543210987654321

In the simplest case, the history and lookahead are of fixed length, and the
dictionary consists of all phrases (that is, fragments of consecutive characters)
which start in the history and which are no longer than the length of the looka-
head.3 With such a dictionary, it is convenient to think of the history as the
dictionary; however, we will exhibit schemes where these differ. Typically, the
history is much longer than the lookahead.

The idea is to replace an initial segment of the lookahead with a pointer
into the dictionary, and then slide the window along. In the example, the ini-
tial segment ‘he’ matches the second two characters of the dictionary phrase
‘shell’ (at an offset of 10 into the dictionary, counting right to left). The orig-
inal scheme would output a triple (offset, length,character), where the third
component is the next character from the source (the “unmatched character”),
and then the window is moved:

3It is understood that the source symbols are also included in the dictionary.

© 2003 by CRC Press LLC

9.1 LZ77 (sliding window) schemes 231

history lookahead
...She sells sea shells by the seashore...

09876543210987654321

In this example, the triple is (10,2,�), where ‘�’ represents the space character.
Compression is achieved if this triple requires fewer bits than the three symbols
replaced.

Sending the unmatched character in the triple allows the scheme to proceed
even in the case of no match in the history. However, it is sometimes wasteful
in the case that the character can be part of a match at the next stage. This
occurs in the example, with ‘�sea’ matching the dictionary, and it is common
for LZ77 schemes to look for this match. Conceptually, this means that the
output consists of two kinds of data, rather than triples: (offset, length) pairs,
and single (unmatched) characters. The following diagram shows a few steps in
the process for the example problem:

history lookahead output
...She sells sea shells by the seashore (10,2)

.She sells sea shells by the seashore.. (18,4)

sells sea shells by the seashore...... (17,2)

ells sea shells by the seashore........ ‘o’
09876543210987654321

The decoder receives the output tokens, from which it can reconstruct the
source (by maintaining the same dictionary as the coder). There are several
observations which can be made concerning this type of scheme:

• The decoder must be able to distinguish between ordered pairs and char-
acters. This implies that there will be some overhead in transmitting an
unmatched character, and hence the scheme can cause expansion (this
should not come as a surprise).

• The compression achieved by transmitting an ordered pair depends on the
match length and the sizes of the dictionary and lookahead. Too short a
match length will cause expansion (in which case it may be desirable to
transmit an unmatched character).

• The match can extend into the lookahead. As an example, suppose the
window contains the fragment

history lookahead
ababa
2 1

A match for the lookahead is ‘aba’, beginning at offset 2 into the history
and extending into the lookahead.

• At each stage, greedy parsing was used: the dictionary was searched for
a longest match for the initial segment. There is no guarantee that greedy
parsing maximizes compression. It would be preferable if the scheme

© 2003 by CRC Press LLC

232 9 Dictionary Methods

could search for the “best” combination of ordered pairs and characters,
but this is intractable. A very limited form (lazy evaluation) of this is
discussed below.

Searching for the longest match in the dictionary could be expensive. A
number of LZ77-variants maintain a dictionary (and structures to speed
searching) which includes only some of the phrases in the history, thus
limiting the amount of searches. This may result in less compression:
in the example, instead of the 4-character match at the second stage, we
could have matched ‘�s’ with the the first two characters of ‘�shells’
from the dictionary.

• An attractive feature of many of the LZ77-variants (other than their sim-
plicity) is fast decoding: while the coder must do the hard work of finding
matches, the decoder need only do simple lookups to rebuild the source.

• The output of the coder could be subject to additional compression. As
an example, suppose a fixed number of bits are used to store the length
component of the ordered pair. If short match lengths are more common,
then a probabilistic scheme on the match lengths may be effective.

Among schemes of this form, there is considerable flexibility in choosing
the sizes of the history and lookahead, and in management of the dictionary.
To understand the process and considerations more clearly, some notes on two
specific implementations of LZ77-type schemes are presented. The first of these
is a revised version of the LZRW1 scheme proposed by Ross Williams in [83],
and illustrates design decisions favoring speed over compression. The second
is the well-known GNU zip (gzip) utility, which is similar to LZRW1 but uses
more advanced techniques in managing a larger dictionary and lookahead.

9.1.1 An LZ77 implementation

Suppose the symbol set consists of the 256 8-bit characters. The history and
lookahead are both fixed-length, with offsets represented in 12 bits (giving a
history of length 212 = 4096 bytes) and match lengths in 4 bits. A single “con-
trol bit” is used to distinguish (offset, length)-pairs from single characters in the
output stream.

The cost of transmitting an (offset, length)-pair and control bit is then 17
bits, while 2 characters cost 18 bits. For this reason, we transmit a pair only if
the match length is at least 2. Accordingly, the 4 bits used for the length will
represent lengths from 2 to 17. Note that expansion occurs whenever a single
character is output, or if a pair is output with match length 2.

As an illustration, the phrase from the previous section is passed through
the coder. The portions replaced by (offset, length)-pairs are underlined:

© 2003 by CRC Press LLC

9.1 LZ77 (sliding window) schemes 233

 l se shells by the seashoreaShe sel s
(6,3)

(24,5)

(4,2)(14,2)

(17,2)
(11,4)

The original string required 36 ·8 = 288 bits. In the encoded stream, a total of
18 characters are replaced by 6 pairs (leaving 18 unmatched characters to send),
giving an encoded stream of length 6 ·17+18 ·9 = 264 bits. It should be noted
that the example has been chosen so that matches against the dictionary occur
almost immediately—typically, more of the source must make its way into the
dictionary before many matches occur.

The parsing has been greedy: at each stage, the dictionary is searched for a
longest match to an initial segment of the lookahead. Here, we’ve assumed that
the dictionary includes every phrase of length 2–17 which begins in the history.

The LZ77 variation described is known as LZSS,4 and an implementation
with well-documented source in the C programming language appears in Nel-
son and Gailly [53]. A tree structure is placed over the history, reducing search
times but adding to the complexity and storage requirements. Even so, an ex-
haustive search for the longest match among every phrase of the history may
be prohibitively expensive. Both LZRW1 and GNU zip limit the search for
repeated strings in order to improve speed at the coding stage.

LZRW1

The LZRW1 algorithm was presented by Ross Williams in [83]. Its main design
goals favored speed over compression, and the result was a very compact and
fast method. The sources from a revised version appear in Appendix B.

As above, the history and lookahead are fixed-length, with sizes represented
in 12 and 4 bits, respectively. However, the dictionary includes only a subset
of the phrases which start in the history, and a hash function is used to speed
searches. More specifically, the hash is a function of the first three characters
of the lookahead, pointing to the last occurrence of a 3-character string with the
same hash. If a match occurs, then this offset is used in the output. This can
provide very fast matching, but it significantly reduces the size of the diction-
ary.5

Use of the hash function means that only match lengths of at least 3 will
be considered. Accordingly, the 4 bits used for the length will represent lengths
from 3 to 18.6 This allows a longer match-length than that used above (18 bytes
instead of 17); however, the overhead in representing characters and pairs hasn’t
changed, so the inability to code a 2-character sequence as a pair may degrade
compression (which occurs in the “She sells...” example above).

4See Storer and Szymanski [75] and Bell [7].
5It is essential to identify the dictionary in LZ schemes. Appendix B describes the use of the

hash in LZRW1 more completely, and from this the dictionary can be determined.
6In LZRW1, match lengths were limited to 16. This was mostly an oversight, and was corrected

in the LZRW1-A algorithm.

© 2003 by CRC Press LLC

234 9 Dictionary Methods

Table 9.1: Compression (% remaining) for selected Calgary corpus files.

(12,4) (13,4) (13,5) (15,4)
File Kbyte RW1 LZSS LZSS LZSS LZSS gzip compress
bib 109 59.4 48.6 43.0 43.9 37.2 31.5 41.8
book1 751 67.9 56.8 51.8 54.3 46.8 40.8 43.2
geo 100 84.4 83.0 80.3 83.0 81.8 66.9 76.0
obj1 21 61.7 57.3 57.2 57.1 60.0 48.0 65.3
pic 501 25.6 21.3 20.9 16.8 22.0 11.0 12.1
progc 39 54.6 45.4 41.7 42.3 41.6 33.5 48.3
Average 60.0 52.1 49.2 49.6 48.2 38.6 47.8

LZRW1 obtains moderate compression using few resources. Table 9.1
gives compression results on a subset of the “Calgary corpus” [8]. The columns
for LZSS are tagged with pairs indicating the number of bits used to represent
history and lookahead sizes. For reference, two well-known dictionary-type
implementations are included: gzip (an LZ77-type scheme) and compress (an
LZ78 scheme). The speed and simplicity of LZRW1 comes at a price: the
compression with LZSS is generally superior (even with the same history and
lookahead sizes). The difference is perhaps not as large as we might have ex-
pected, given the very minimal dictionary searching used by LZRW1.

In applications, it may be acceptable to sacrifice some speed during coding
in order to improve compression. For example, on-line documentation may
be viewed frequently—the speed of compression may be less important than
amount of compression and the speed of decompression. LZ77 schemes such
as LZRW1, LZSS, and that used in gzip all have very fast decoding due to the
way the history is used as the dictionary. If this feature is to be retained, then
the following are perhaps the simplest modifications to improve compression.

Enlarge the history (and dictionary) and/or lookahead. However, more
bits will be needed for (offset, length)-pairs, and this can increase the breakeven
point. In our example, 12 bits were used for the offset and 4 bits for the length
(and 1 bit for control). The breakeven point is just over 2 characters. If, say, a
pair requires 15 bits and 8 bits, respectively, then the breakeven is 3 characters;
i.e., no compression will be achieved unless the match length is at least 4.

Recall also that increasing either of these can greatly increase search times.
The use of a hash function in LZRW1 is fast, but LZSS finds longer matches.
A compromise might involve the use of a hash chain to follow (some of) the
matches in the history.

Improve the parsing. We’ve been greedy: there has been no lookahead for
the best combination of literals and matches. For our example, greedy parsing
was used at the stage

She sells sea shells by the seashore

© 2003 by CRC Press LLC

9.1 LZ77 (sliding window) schemes 235

and the next output items were the pairs corresponding to ‘he’ and ‘lls�’,
respectively, for a total of 17 + 17 = 34 bits. For this fragment, it would be
preferable to use lazy evaluation: send ‘h’ as a literal and then send the pair for
‘ells�’ using a total of 9 + 17 = 26 bits.

Compress the output of the coder. The output of the coder has been de-
scribed as a mix of literals and (offset, length)-pairs. If, say, short match lengths
are more common, then a statistical coder may be able to compress the lengths.
Of course, this modification may somewhat increase the work for the decoder.

The “gzip” column in Table 9.1 is of special interest. It uses an LZ77-type
scheme of the same basic form as LZRW1 and LZSS, but typically offers supe-
rior compression. To some extent, it implements all three of the modifications
mentioned above.

9.1.2 Case study: GNU zip

The gzip program is widely used as a general purpose compressor for files (or
streams of data), and was designed as a replacement for the compress utility
(which uses a patented LZ78-type scheme). Sources for gzip can be found in
the references listed in Appendix C.

As GNU Project software, it was essential to have a patent-free scheme
with freely distributable sources. Design goals included portability and accept-
able “worst case” performance. The history of the development suggests that
compression performance was of less importance (but perhaps decompression
speed was essential). Ross Williams’ LZRW1 met these conditions, and was to
have been used as the basic scheme in gzip.7 To the dismay of Williams, it was
discovered that (use of) the algorithm was covered by patent (see Appendix C).

The “deflation” compression method used in the current gzip shares many
of the features of LZRW1. It cannot match the speed of coding, but it generally
gives more compression and faster decompression than that obtained with the
compress utility (a common reference for dictionary schemes). As noted above,
LZRW1 gives somewhat less compression than compress.

The algorithm in gzip is LZ77-type, with 15 bits reserved for the offset
(giving a 32K history) and 8 bits for the length. An (offset, length)-pair then
requires 23 + 1 bits, so the breakeven is 3 characters. Since literals cost 9 bits,
only matches of length 3 or more are worth considering. Hence, the 8 bits
represent match lengths of 3 to (28 − 1)+ 3 = 258 characters.

A hash of the first three characters from the lookahead is used to speed
searches into the history. Unlike LZRW1, a hash chain is maintained in order to
permit searching for longer matches. Searching through the chain is expensive,
but it is performed only during coding.

7Confirmed via private email with Jean-loup Gailly, the principal gzip developer. Quoted by
permission.

© 2003 by CRC Press LLC

236 9 Dictionary Methods

Lazy evaluation is used: after finding the longest match at the current sym-
bol, gzip looks for a longer match at the next symbol. If a longer match is
found, the current symbol is sent as a literal, and the process continues at the
next symbol.8

To be precise, the lazy evaluation and the search through the hash chain are
subject to runtime choices (the ‘-0’ to ‘-9’ compression level options). Several
parameters are set, including:

good length: If the current match has length at least good length, then the
maximum depth for a lazy search is reduced (divide max chain by 2).

max lazy: Do not perform lazy search above this match length.

nice length: Quit search above this match length.

max chain: Limit on depth of hash chain search.

Example choices for the parameters appear in Table 9.2. With the exception
of the step between compression levels 3 and 4, the parameter values increase
with the compression level. It seems reasonable to expect that larger values
should correspond to improved compression, but there is no guarantee of this.

Table 9.2: Parameter values corresponding to gzip compression level.

Compression level
Parameter 1 3 4 6a 8 9
good length 4 8 32 32
max lazyb 4 16 128 258
nice length 8 32 16 128 258 258
max chain 4 32 16 128 1024 4096

aDefault value.
bNo lazy search on levels 0–3. A fifth parameter (max insert length) limits the updat-

ing of the hash table (for speed).

The output of the “dictionary-scheme” portion of gzip may be compress-
ible. This is perhaps easiest to see in the match lengths—short matches may
be much more common than longer matches. A second “back-end” compressor
is used which compresses literals or match lengths with one Huffman tree, and
match offsets with another.

Performance results for various choices of the compression level can be
seen in Table 9.3 on page 243. These tests were run on a SPARCstation 20,
with timings obtained by averaging several blocks of 20 runs. Included are
results from the Unix compress program, which uses an LZ78 scheme and has
become a standard reference for dictionary methods.

8The notes in ‘algorithm.doc’ in the gzip-1.2.4 distribution may be misleading on this point;
however, the actual source code explains it well.

© 2003 by CRC Press LLC

9.2 The LZ78 approach 237

Exercises 9.1

1. Williams’ paper [83] contains the following bit of poetry:

A walrus in Spain is a walrus in vain

(a) Find the (offset, length)-pairs produced by the LZRW1 scheme. Indi-
cate the text fragment corresponding to each pair.

(b) Calculate the compression (or expansion) in this example.

2. Lazy evaluation can do worse than greedy parsing. Consider an LZSS-type
scheme where offsets are represented in 12 bits and lengths are represented
in 4 bits with match lengths from 2–17. The use of a control bit means that
an (offset, length)-pair requires 17 bits and a literal requires 9 bits. Suppose
the current window contains

history lookahead
abcbcdedefgabcdefg

Show that greedy parsing leads to 34 bits output, while lazy evaluation
results in 43 bits.

3. gzip searches the hash chains so that the most recent strings are found first,
and matches of length 3 which are too distant (more than 4K bytes) are
ignored. How does this help compression? (Hint: Consider the back-end
Huffman processing.)

4. (Programming exercise) Choose a set of test files and determine if the lazy
evaluation of gzip is effective (consider both time and compression). It will
be necessary to modify the sources of gzip so that the parameter values
(other than lazy evaluation) remain the same for tests with and without lazy
evaluation.

5. The hash function used in LZRW1 can be found in Appendix B. Knuth [39]
writes that such functions should be quick to compute and should minimize
collisions. Does the choice in LZRW1 satisfy these criteria? The constant
40543 which appears in the definition is prime, but is there any other reason
for its choice? (You may wish to consult Knuth’s book.)

9.2 The LZ78 approach

The LZ77-schemes discussed in the previous section are attractive for their sim-
plicity, relatively good speed and compression for the resources required, and
fast decoding. An exhaustive search through the history during coding can be
expensive, but implementations such as LZRW1 and gzip illustrate methods to
trade compression for speed. Another possible concern with the scheme as pre-
sented is that only “recently-seen” strings can be matched. The history (and/or

© 2003 by CRC Press LLC

238 9 Dictionary Methods

Input: abababa abababa abababa abababa

�� �� �� ��
Trie: #0 #0+a �� #0

a

#1

#0+b �� #0
a
��
� b��

�

#1 #2

#1+b �� #0
a
��
� b��

�

#1

b

#2

#3

�� �� �� ��
Output: (#0,a) (#0,b) (#1,b) (#3,a)

Figure 9.1: LZ78 coding on ‘abababa’.

lookahead) could be enlarged (and offsets could be represented with variable-
length pointers), but this can add complexity and search time to the scheme.

LZ78 takes a different approach in building a slow-growing dictionary. The
source is parsed into phrases, and a new phrase enters the dictionary by adding a
single character to an existing phrase. In practice, there is a ceiling on the num-
ber of phrases, and some action is performed when the dictionary fills. There
is a price for this “more structured” approach: the decoder must maintain the
dictionary.9

In its basic form, LZ78 starts with an empty dictionary (denoted by ‘#0’ in
Figure 9.1). At each stage the longest match for the lookahead is sought from
the dictionary, and a pointer #n to this phrase, along with the “unmatched”
character c, is output as the ordered pair (#n,c). The dictionary is updated,
adding c to the phrase represented by #n. The decoder must maintain the same
dictionary of phrases.

To see how this works, consider encoding ‘abababa’. The top row of Fig-
ure 9.1 shows the source, with a vertical line separating the history from the
lookahead. The second row illustrates the updating of the dictionary trie.10

Phrases corresponding to a pointer #n are found by walking up the tree: for
example, phrase #3 is ‘ab’. At each stage, the dictionary is traversed for the
longest match against the lookahead, and then the phrase number and unmatched
character are output (the last row in the figure). The notation ‘#n + c’ in the
dictionary update means that the character c is to be added to the the phrase
represented by #n.

Figure 9.1 shows that four steps are needed to encode the sample source,

9The LZ77 decoder must maintain the history; however, for the schemes described, this is con-
siderably less than maintaining the LZ78 dictionary.

10The name “trie” was suggested by E. Fredkin, according to Knuth [39]. In a footnote to Fred-
kin’s paper (Trie memory, Communications of the ACM, 3(9):490-499, September 1960), an editor
remarks that “trie is apparently derived from retrieval.” Knuth describes a trie as essentially an
n-ary tree, whose nodes are n-vectors. Each node represents the set of keys that begin with a certain
sequence of characters; the node specifies an n-way branch, depending on the next character.

© 2003 by CRC Press LLC

9. 2 T he LZ78 approac h 239

Input: (#0, a) (#0, b) (#1, b) (#3, a)

�� �� �� ��
Tr i e : #0 #0+a �� #0

a

#1

#0+b �� #0
a
��
� b��

�

#1 #2

#1+b �� #0
a
��
� b��

�

#1

b

#2

#3

�� �� �� ��
Ou tput: a b ab aba

Figure 9 .2: LZ7 8 d eco d i ng on the output of Figure 9.1.

and the output consists of the ordered pairs (#0,a), (#0,b), (#1,b), and (#3,a).
The dictionary at the next stage would consist of the following phrases:

Dictionary trie Corresponding phrases
#0

a
��
� b��

�

#1

b

#2

#3

a

#4

Entry Phrase
#0 null
#1 a
#2 b
#3 ab
#4 aba

Note that phrases always start at the root. For example, the string ‘ba’ appears as
part of ‘aba’ in the trie, but it is not a phrase in the dictionary. Unlike LZ77, the
length is not passed as part of the pointer—the length of a phrase is understood
from the trie structure. Also, the possibility of |S| children at a given node can
make for a more complicated trie structure in the case of a larger symbol set S.

Decoding the output of Figure 9.1 is very simple, and consists of revers-
ing the vertical arrows. Since we wish to compare this carefully with a modi-
fied scheme, the decoding is shown in detail in Figure 9.2. The last row gives
‘abababa’ as the recovered string, as expected.

In implementations, the dictionary will eventually fill. Indeed, LZ78 vari-
ants such as Unix compress and the V.42bis method commonly used in com-
munication via modem have relatively low ceilings (64K and 2K, respectively)
on the total number of phrases. There have been many schemes proposed for
handling overflow:

• Freeze the dictionary at this stage. Compression can suffer if the nature
of source changes after the dictionary is frozen.

• Flush the dictionary and start over. This can discard much of what was
learned about the source.

• Monitor compression, and flush the dictionary only when performance
falls below a threshold. This is the approach in Unix compress.

© 2003 by CRC Press LLC

240 9 Dictionary Methods

• Prune the trie. This could perhaps be a “remove least recently used
phrase” scheme. V.42bis and the ‘shrink’ method of PKZIP 1.0 use prun-
ing.

Many variants of the basic LZ78 scheme have been described. One of these,
known as LZW [80], drops the explicit transmission of the unmatched character.
This variant is the basis for the method used in Unix compress, V.42bis modem
compression, and the GIF graphics format. Unisys currently holds a patent
on some portions of the algorithm, and sells the license for use in modems
supporting V.42bis. In 1995, Unisys announced that it would start pressing its
claims in connection with the GIF graphics format. As Greg Roelofs wrote,
“GIF became decidedly less popular right around New Year’s Day 1995 when
Unisys and CompuServe suddenly announced that programs implementing GIF
would require royalties, due to Unisys’ patent on the LZW compression method
used in the GIF format.”11 Since PNG offers technical advantages over GIF, it
is likely to receive considerable attention.

9.2.1 The LZW variant

In the basic LZ78 scheme described above, the output of the coder consists of
a sequence of ordered pairs (#n,c), where #n is a pointer into the dictionary
and c is the unmatched character from the search. LZ78 is said to have pointer
guaranteed progress through the source, since c (known as the innovation or
instance) is part of the output token. Explicit transmission of c may be wasteful
in the case that c could be part of a match at the next stage. This same consid-
eration motivated the development of the deferred innovation variation (LZSS)
of LZ77.

The idea in LZW is to completely drop the transmission of characters c.
The dictionary updating process remains essentially unchanged, but the pro-
gression through the source will differ from LZ78 (resulting in a different trie).
LZW is said to have dictionary guaranteed progress through the source. In or-
der for this to work, the dictionary is preloaded with the 1-character phrases
from the symbol set.

As an example, the LZW scheme is applied to the string ‘abababa’. The
dictionary starts with entries for the 1-character phrases ‘a’ and ‘b’. At each
stage, the longest match for the lookahead is found, and then the unmatched
character c is added to #n, giving a new phrase #n + c. The procedure is illus-
trated in Figure 9.3.

The process looks quite similar to that in the LZ78 scheme of Figure 9.1.
However, we obtain a different collection of phrases, and apparently some com-
pression since only four pointers are output (rather than the four pairs of Figure
9.1). The differences are more dramatic in the decoding process, and this ex-
ample shows an exceptional case in LZW which must be handled.

11Quoted from the Portable Network Graphics (PNG) page at http://www.wco.com/˜png/. Used
by permission. A short history of PNG appears in [60].

© 2003 by CRC Press LLC

http://www.wco.com

9.2 The LZ78 approach 241

Input: abababa abababa abababa abababa

�� �� �� ��
Trie: #0

a
��
� b��

�

#1 #2

#1+b �� #0
a
��
� b��

�

#1

b

#2

#3

#2+a �� #0
a
��
� b��

�

#1

b

#2
a

#3 #4

#3+a �� #0
a
��
� b��

�

#1

b

#2
a

#3

a

#4

#5

�� �� �� ��
Output: #1 #2 #3 #5

Figure 9.3: LZW coding on ‘abababa’.

Input: #1 #2 #3 #5

�� �� �� ��
Trie: #0

a
��
� b��

�

#1 #2

�� #0
a
��
� b��

�

#1 #2

#1+#20 �� #0
a
��
� b��

�

#1

b

#2

#3

#2+#30 �� #0
a
��
� b��

�

#1

b

#2
a

#3 #4

�� �� �� ��
Output: a b ab aba

Figure 9.4: LZW decoding on the output of Figure 9.3.

In the LZW decoding of Figure 9.4, the updating of the dictionary is indi-
cated with expressions of the form #n +#m0, where the new subscript indicates
that the first character corresponding to phrase #m is to be added to phrase #n.
For example, the dictionary update #1 + #20 adds ‘b’ (the first, and only, char-
acter of phrase #2) to ‘a’ (the phrase corresponding to #1), giving a new phrase
‘ab’ (phrase #3).

The last column of Figure 9.4 requires some explanation, since phrase #5 is
not even listed in the trie (so how did we know the output is ‘aba’?). This is the
exceptional case in LZW, and can be resolved by noting that the update of the
dictionary occurs one step later than in LZ78. The next update of the dictionary
would be #3 + #50, so the new phrase #5 satisfies #5 = #3 + #50. This implies
that phrase #5 begins with the first characters of phrase #3; e.g., #50 = #30.
Hence, #5 = #3 + #50 = #3 + #30 = ‘aba’.

Looking back at the coding stage, it can be seen that the exceptional case
occurs when the newest node at a given stage is used as the output. This occurs
in the last column of Figure 9.3. This case could be avoided (possibly resulting

© 2003 by CRC Press LLC

242 9 Dictionary Methods

in less compression) if the newest node at a given stage is not considered for
output. In the example, the coder could have split the match into #3 and #1.

9.2.2 Case study: Unix compress

The compress program uses an LZW variant called LZC. The utility compresses
single files (or streams of data). Versions exist across many platforms, and it
has become a standard reference when comparing compression schemes. It has
relatively good performance, given the resource requirements.

The scheme uses pointers of variable size to tag dictionary entries, starting
with 9 bits and increasing up to a ceiling of 16 bits (corresponding to a diction-
ary with 216 = 64K entries). An option allows setting a lower ceiling, typically
so that files can be uncompressed on small machines.

The dictionary will eventually fill. In this case, compress monitors com-
pression, flushing the dictionary when performance drops. This is a simple
scheme to implement, and gives compress the ability to adjust to changes in the
nature of the data after the dictionary fills. Automatically clearing the diction-
ary on a periodic basis has a similar goal, but may be wasteful if the dictionary
is performing well.

Compress can perform rather badly on random data, since the output at
each stage consists of a pointer of 9–16 bits (corresponding to an expansion of
9/8 to 2 for a single character match). The parsing of LZ78 with a preloaded
dictionary may do better in this special case, since tokens would represent at
least 2 characters of the source (corresponding to an expansion of 17/16 to 3/2
for a single character match if compress were minimally modified to use an
LZ78 approach).

The results are mixed: compress gives better compression than LZRW1, but
perhaps not as much as expected, given the very minimal resource requirements
of LZRW1. Table 9.1 shows a sample from the Calgary corpus. LZRW1 “com-
presses about 10% absolute worse than [compress], but runs four times faster”
in the tests run by Williams [83]. Note that LZRW1 actually beat compress on
‘obj1’ (VAX object code).

The GNU zip (gzip) utility discussed in Section 9.1.2 was designed as a
replacement for compress, and Table 9.3 gives performance results on several
of the Calgary files. The tests were performed on a SPARCstation 20, with tim-
ings obtained by averaging the results from the Unix time command on blocks
of 20 runs. The decode rates are based on the size of the original file. As ex-
pected, compress is faster than gzip for compression, but considerably slower
on decoding.

Although gzip can only look at the most recent 32K of history, the diction-
ary contains many more entries than the 64K phrases maintained by compress.
For the test files in Table 9.3, gzip gives superior compression, even at the low-
est (fastest) setting. The increased compression at the higher levels comes at a

© 2003 by CRC Press LLC

9.2 The LZ78 approach 243

Table 9.3: Performance of gzip vs compress.

Encode (10K/s) [compression (% remaining)] Decode (10K/s)
File Kbyte compress gzip (-1) gzip (-3) gzip (-6) compress gzip
bib 109 58 [41.8] 51 [39.4] 39 [35.7] 18 [31.5] 95 158
book1 751 42 [43.2] 42 [47.5] 28 [43.8] 12 [40.8] 102 167
geo 100 45 [76.0] 27 [68.2] 14 [67.9] 6 [66.9] 70 107
obj1 21 44 [65.3] 37 [49.8] 34 [49.2] 23 [48.0] 56 62
pic 501 125 [12.1] 101 [12.8] 84 [12.2] 36 [11.0] 187 313
progc 39 52 [48.3] 46 [39.0] 38 [36.6] 22 [33.5] 76 107
Average 70 [47.8] 51 [42.8] 39 [40.9] 20 [38.6] 98 152

rather steep price, due to the more exhaustive searches (and lazy matching at
levels above 3).

Exercises 9.2

1. LZ78 coding produced the pairs: (#0, M), (#0, i), (#0, s), (#3, i), (#3, s),
(#2, p), (#0, p), (#0, i). Decode this to obtain ‘Mississippi’. Show the final
dictionary obtained.

2. Encode ‘Mississippi’ using an LZW scheme with symbol set {M, i, p, s}
and initial dictionary

Entry Phrase
#1 M
#2 i
#3 p
#4 s

Show the final trie obtained.

3. The symbol set {a,b} was used for LZW encoding, with initial dictionary

Entry Phrase
#1 a
#2 b

Decode the sequence #1, #2, #4. Explain your steps.

4. Some dictionary coders can be converted into a statistical model which
gives the same compression. The code space used by a phrase in the dic-
tionary scheme is decomposed into the space used by the individual char-
acters. As an example, consider a greedy parsing scheme with S = {a,b}
and dictionary {a,ba,bb}. Suppose the dictionary scheme assigns 1/4 of
the code space to ‘a’, 1/4 to ‘ba’, and the remaining 1/2 to ‘bb’. The

© 2003 by CRC Press LLC

244 9 Dictionary Methods

���������
P(a|�)= 1

4

��
��

�� P(b|�)= 3
4

��
��

��

a�������� b��������
P(a|b)= 1

3

��
��

�� P(b|b)= 2
3

��
��

��

a�������� b��������

Figure 9.5: The symbol-wise decomposition in Exercise 4.

decomposition into a symbol-wise equivalent is shown in Figure 9.5.12

The statistical model is determined by the probabilities listed in the figure.
Calculate the ideal number of bits assigned to each of the nodes by the
symbol-wise equivalent (i.e., determine the number of bits used to encode
an ‘a’ following ‘b’, etc.). Verify that that both the dictionary scheme and
the statistical model give the same code length for ‘bb’.

9.3 Notes

Many LZ variants are discussed in Text Compression [8], and summarized con-
cisely in [82]. Some schemes possess characteristics from both LZ77 and LZ78:
the LZFG algorithm [19] combines the history structure of LZ77 with the phrase
structure of LZ78.

In practice, the slow growth of phrases in LZ78 may degrade compression.
Horspool [31] proposes modifications to LZW involving more rapid phrase
growth and phased in binary numbers, as a way to improve the compression
without significantly degrading the speed. Non-greedy parsing schemes (such
as the lazy evaluation used in gzip) for dictionary schemes are considered in
Horspool [32]. These trade time for limited compression improvements, with
only minimal (if any) changes needed on the decoding side. The cost of deferred
innovation is examined in Cohn [11].

The relationship between statistical and dictionary schemes is sometimes
direct: some greedy dictionary methods can be decomposed into statistical
methods which give the same compression (see Exercise 9.2.4). Gutmann and
Bell [26] present an approach which is the opposite of this decomposition in an
attempt to obtain the better compression of statistical methods with the speed of
dictionary schemes.

12This example is adapted directly from Bell and Witten [9]. Their construction of a symbol-wise
equivalent for any nonadaptive greedy parsing method is more involved than this simple example
might suggest, and the interested reader should consult their paper and also [8,42] for a much more
complete discussion.

© 2003 by CRC Press LLC

Chapter 10

Transform Methods and Image
Compression

Images are natural and efficient conveyors of information and have been used
throughout history as models for both reality and abstract concepts. Our ap-
petite for visual information seems insatiable, and efficient image management
continues to be of pressing concern. An image can contain a large amount of in-
formation (more than a thousand words?) and often translates to a data structure
whose large size can pose problems to storage and transmission management.
The situation only gets worse when several images or animation is involved.

Up to this point we’ve confined ourselves to compression methods involv-
ing zero information loss, i.e., to “lossless” schemes, and any of the schemes
from Chapters 5 through 9 could be used on images. However, “images” have
certain common features that are better exploited by methods designed specif-
ically for them. Some well-known lossless compression schemes for images
include GIF and PNG and each do a respectable compression job. But unless
something surprising comes along from the realm of “lossless technology,” we
are not likely to see anything more than incremental improvements over these
two methods. Large gains in compression ratios will come by dropping the re-
quirement that all information be retained in the compression process.1 This
quickly brings up the question as to whether or not we can actually remove in-
formation from data in a way that allows it to be significantly compressed and
yet doesn’t thoroughly corrupt it. Fortunately, a moment’s reflection is all it
takes to convince us that for many applications images have room to give. As
an example, consider a black and white photograph in a newspaper. The pho-
tograph itself is a (compressed) model of the image it was meant to capture.
Close inspection (a magnifying glass will do) reveals simply an array of black
and white dots. And yet, this global arrangement of dots presents information
in a way that allows us to readily grasp the message it was meant to convey.
(sometimes we may need a little help from the caption).

An image can contain more information than necessary to accomplish its
purpose. If there was a way of identifying this “unnecessary” detail then we
could compress an image by discarding the detail. The message behind an im-

1The phrase compression ratio is used loosely throughout this chapter and generally refers to
some way of comparing the size of the source after it has been compressed to its size before or vice
versa. At times throughout the chapter we will be more precise.

245

© 2003 by CRC Press LLC

246 10 Transform Methods and Image Compression

age can be subjective, and so the “surplus” information. Avoiding issues of
artistic representation, there do exist some general principles that lead to ac-
ceptable solutions of the compression problem for “everday” images . They’re
based on observations that the human eye can be rather insensitive to certain
fluctuations in an image, and also quite tolerant of a wide range of approxi-
mations. Within the environment defined by our subjectivity and the physical
characteristics of our visual system, lossy schemes can flourish. The purpose of
the chapter is to explore these “tried and true” principles and some of the lossy
methods that use them.

Two important such schemes are discussed toward the end of this chapter:
the JPEG image compression standard in Section 10.5, and a wavelet technique
in Section 10.6. Each one is supported upon a linear algebraic structure called a
transform, i.e., a change of basis.. The theme behind compression in the widely-
used JPEG standard is based on the observation that local visual information at
high (spatial) frequencies is often not as important in our global interpretation
of the image as the low frequencies. JPEG tends to suppress this high-frequency
information and often eliminates it completely. To gain some understanding of
the JPEG process, we’ll need to know something about the cosine transform
and how it reveals image information in ways that enable us to decide what to
keep and what to throw away. Since the cosine transform is an offspring of the
Fourier transform, we devote a section to the motivation and development of
the classical discrete Fourier transform and how it can be used as a compression
device. Along the way we uncover some mathematical structure that is also
useful in our discussions of wavelets.

The thrust behind our development and presentation of the Fourier trans-
form is pragmatic rather than theoretical; in brief, we approach it from a clas-
sical signal analysis point of view. The function to be transformed will be re-
garded as a signal in time with the information it contains being composed
of several key signals of special frequencies. Later, Fourier transforms are
extended to operate on two-dimensional “signals”, i.e., images, via a general
method that works also with wavelets. The chapter ends with a section devoted
to the JPEG image compression method and a section outlining an applied ap-
proach to wavelet compression.2

Many of the exercises in this chapter are designed to fill in details and
to briefly explore what we think to be interesting topics in themselves, e.g.,
Shannon’s Sampling Theorem 10.2.11 and the Fast Fourier Transform 10.2.12.
The reader is encouraged to try them.

2The JPEG 2000 standard is wavelet based. See, for example, [46].

© 2003 by CRC Press LLC

10.1 Transforms 247

10.1 Transforms

Dividing an image in two and tossing away one of the pieces is a compression
method that most of us wouldn’t tolerate well. Contrast this with a method that
defines a detail structure within an image, tagging details with their level of
importance. When information from an image is presented to us in this way, a
lossy compression scheme becomes obvious: discard the least important details.
Both JPEG and wavelet methods basically do this, even though the way in which
they define detail is different.

Images have mathematical representations as rectangular arrays of num-
bers, typically of integers. Each pixel in the image is assigned an integer whose
value, in some way, represents its color. In this chapter we identify arrays with
images and images with arrays, often making no distinction between the two.
Since arrays of numbers can be scaled (each entry multiplied by the same num-
ber) or added together entry by entry without altering their shape, then an image
can be thought of as a point in a linear space, that is, as a vector in a vector
space. For example, if an image has m rows and n columns of pixels then we
can think of it as a member of the vector space of m ×n matrices: a point in a
space of dimension mn. It’s important to note that the images we usually deal
with in practice are not just arbitrary arrays of numbers corresponding to points
scattered willy-nilly throughout mn-space. Rather, typical images share certain
traits which, when regarded as points in mn-space, translate to a group geometry
susceptible to quick approximation by several linear schemes. This observation
is at the heart of lossy compression methods based on linear transforms.

Mathematically, image analysis takes place in linear spaces. As such, we
have at our disposal all of the processing tools from linear algebra. To use these
powerful tools effectively, we’ll need to start with a good choice of fundamental
or basis images (basis arrays). If chosen properly, these basic images can be
effectively used to describe detail levels within a large class of images.

The selection of basis images provides insight into the methods discussed in
this chapter. For example, JPEG chooses them purely from a classical frequency
content point of view while wavelet techniques attempt to blend “frequency
content” together with the location of these frequencies in the image.3 Once
these fundamental detail images have been defined we can then resolve a given
image into a linear combination of them and by examining coefficients (i.e.,
amplitudes) weight the importance of particular detail image to the entire given
image.

An image is a special kind of signal, or vector, and the resolution process
above is referred to in linear algebra as a change of basis. At the root of any
(invertible) linear transformation is a change of basis and corresponding to any
change of basis is a linear transform. All transformations important to us in this

3JPEG does this locally, throughout the image.

© 2003 by CRC Press LLC

248 10 Transform Methods and Image Compression

chapter are linear and so have at their foundation a special set of basis vectors.
The Fourier transform is a well-known example and a starting point for us, but
before we define it, let’s briefly look at some general reasons for transforming
information in the first place.

By a signal, we loosely mean some sort of ordered collection of information
(ordered data) indexed by what will generically be referred to as time (usually
discrete time). When such a signal is presented to us, we normally wish to do
something with it; change it somehow, or extract information from it. To do
the latter it is sometimes necessary to first do the former. For example, in this
chapter our goal is to compress a signal by discarding some of the information it
contains. How do we determine what to throw away? We transform the signal
into a form in which, we hope, important features can be distinguished from
unimportant and then keep only the important.

Transform techniques for data analysis have been around for some time and
scientists often speak of “transforming” their data during data analysis. Here is
a definition of the word “transform” taken from the dictionary:

transform: to change in structure, appearance, or character.4

A more mathematical definition could read:

transform: a rule used to exchange one set of objects for another.
A function from one space to itself or another, i.e., a function.

Neither definition, by itself, does much to explain how someone goes about ob-
taining a useful transform. In a practical sense a useful transform will be more
than just an arbitrary function: it should have some additional properties, e.g.,
perhaps it should be invertible (information preserving) or “easy” to compute.
Changing variables or coordinates is usually done simply because the new co-
ordinates turn out to be more convenient to work with than the old.

As is an example consider the integral
∫

D e1−(x2+y2) dx dy, where D is the
unit disk in the plane R2. If the exact value of this integral is the goal then the
standard polar coordinate transformation x = r cosθ , y = r sinθ turns out to be
a good choice:∫

D
e1−(x2+y2) dx dy =

∫ 2π

0

∫ 1

0
e1−r2

r dr dθ = π(e − 1).

This is not the sort of transform we have in mind for image processing (for one
thing, it’s not a linear transformation) but it does the job, and it’s suggested
by the circular symmetry of the disk D and by the argument to the exponential
integrand: it is suggested by information contained in the problem.

The polar coordinate transformation is often an appropriate choice for a
large class of problems exhibiting radial symmetries. An arbitrary change of
variable would have been unlikely to produce anything useful. A useful change

4The “The Merriam-Webster Dictionary,” 1974.

© 2003 by CRC Press LLC

10.2 Periodic signals and the Fourier transform 249

of variable not only can simplify form but can characterize it in ways that enable
decisions to be made based on the signal’s “new look.” These decisions can be
of a nature that would have been difficult, maybe impossible, to accurately make
before the transformation.

For our purposes a transform will be an invertible linear transformation on
a single vector space. Mathematically, this is the same as exchanging one set
of basis vectors of the space for another. Although this restriction eliminates
polar coordinate and other nonlinear transforms, it is not as confining as may
first appear.

10.2 Periodic signals and the Fourier transform

Consider a basic sine wave t �→ A sinωt , t ∈ R. It carries two pieces of infor-
mation: the scaling factor A (|A| is known as the amplitude of the wave), and
its oscillation frequency ω/2π (or, equivalently, its period 2π/ω). These two
bits of information, along with the knowledge that the original signal was a sine
function, allows it to be perfectly reconstructed for all time t , i.e., a “sine-wave”
is completely characterized by its frequency and amplitude coefficient.5 Not all
signals are so simple. How do we distill down to the essential information that
they contain? It might be nice to have our signals all defined on some common
domain. The sine wave above is defined for all time t whereas most signals we
observe have a finite life. This “defect” can be fixed if we imagine extending
what has been observed over a finite time interval to a periodic function defined
for all time.

1

i

........

........

........

........
........
.........
.........
.........
..........

...........
............

.............
.................

..........................
..

..................
..............
............
...........
..........
.........
.........
.........
........
........
........
........
........
.............

..........
.........
..........
..........
..........
..........
..........
.........
..........
..........
.....

..............................
........................

................
.............

.
........
........
........

•eiωt

ωt

The Unit Circle

In order to analyze periodic signals more
complex than a particular sine wave, we start
with perhaps the most fundamental of oscillations:
θ �→ eiθ , θ ∈ R. It maps the interval 0 ≤ θ < 2π

(or any interval of length 2π) onto the unit circle
and is the basic starting point for classical Fourier
analysis. Fix a real number ω and let θ = ωt (al-
though not necessary, think of t as representing
time). This gives the map t �→ eiωt , an oscillation
about the unit circle that completes precisely one
revolution (clockwise if ω < 0 and counterclockwise if ω > 0) of 2π radians in
T = 2π/|ω| units of time. The constant ω can be thought of as angular velocity
with units of radians (unit-less) per unit time. T is the period of the oscilla-
tion and the frequency of oscillation is f = ω/2π = ±1/T cycles per second.
Thus, a basic oscillation with frequency f can be described by the function
t �→ e2π i f t , t ∈ R.

5We should consider here a phase-shift also, but let’s assume that our sine-waves are zero when
time is zero.

© 2003 by CRC Press LLC

250 10 Transform Methods and Image Compression

0 T−T
t

h

..........
...........
............
..............
.......................

..
...........
........
.......
......
......
.....
.....
.....
....
.....
......
..........
..

..
...
...

....
........................

..
..
..
.
.
.
.
.
..
..
.............

...........
..
..
..
.
.
.
.
.
..
..
.............

..
...
...

....
.............

Figure 10.1: A periodic signal.

Imagine a signal, that is, a function h of time t . It it’s helpful, you can think
of h as an audio signal, i.e., a voltage level, fluctuating with time. Or scan from
left to right along a horizontal line in a greyscale photograph; in this case t is
not a temporal variable but a spatial measurement and h(t) the shade of grey at
position t . We can’t observe a signal forever (even if we can imagine it lasting
that long) so we watch it for awhile, say T > 0 units of time. By replaying this
piece of signal over and over again we can think of it as defined for all time,
i.e., we regard the portion of the signal sampled as just one period of a period
T function defined on all of R, c.f., Figure 10.1. It could be possible that this
period T signal is built up from a few basic, more elementary period T signals.
But before we try to find out exactly what these elementary period T signals are
and how they can be used to synthesize h, we’ll first try and make precise our
notion of an elementary signal.

What could be a simpler example of an elementary period T signal than
the oscillation t �→ eiωt referred to and pictured in the figure of the unit circle
above. If, for each integer n, we set ωn = 2πn/T = 2π fn , then the map

t �→ eiωn t = e2π i fn t , t ∈ R

completes n trips around the unit circle (counterclockwise if n is positive and
clockwise if n is negative) during the time interval 0 ≤ t ≤ T .

Exactly one of these basic signals exists for each integer n; that is, for each
n ∈ Z, t �→ e2π i fn t is a signal on R of period T and frequency fn = n/T . The
collection of all of these fundamental signals

A =
{
t �→ e2π i fn t | n ∈ Z

}
is a set of raw material we can use to generate other period T signals. The
collection A contains infinitely many different signals and they each have a
common period T of oscillation. However, even though A is large, it does not
contain enough functions for our purposes, in that it’s easy to write down a
signal with period T that does not belong to A. We need a bigger set. It doesn’t
seem prudent to enlarge A any more than necessary, and since we’re trying to
generate period T signals there seems to be no reason to add signals other than
period T signals. One natural way to add more such signals is to combine those

© 2003 by CRC Press LLC

10.2 Periodic signals and the Fourier transform 251

1

−1

T

...
period T extension

1

−1

T 2T

Figure 10.2: A square wave.

that are already in A. For each complex number an , the map t �→ ane2π i fn t is
still an oscillation with period T (frequency fn), it’s just not on the unit circle
any more; instead the motion takes place on a circle of radius |an|, that is, the
amplitude of the oscillation is |an|.6 Going a step further, take two amplitudes;
|ak| and |an|, and two frequencies; fk and fn , and sum their corresponding
oscillations. This signal

t �→ ake2π i fk t +ane2π i fn t , t ∈ R

has period T and generally differs from anything in A.7

To reach other period T signals, combine more than just two oscillations:
select k numbers a1, . . . ,ak and k frequencies (basic signals) fn1 , . . . , fnk and

form the function t �→∑k
j=1 a j e

2π i fn j t . This linear combination of e2π i fn1 t , . . . ,

e2π i fnk t from A will always have period T (Exercise 10.2.2). Since A contains
an infinite number of signals then we should expect this linear combination pro-
cess to generate a tremendous number of new period T functions. It does—but
the resulting set, let’s call it span A, is still not large enough to contain the
signals we might be interested in. For example, extend the map, t �→ 1 on
0 < t ≤ T/2 and t �→ −1 on T/2 < t ≤ T to a period T map on R; see Fig-
ure 10.2. This square wave jumps at 0,±T/2,±T, . . . and does not belong to
span A because span A contains only continuous functions.

However, we can obtain square waves and other discontinuous functions, if
we allow linear combinations of infinite numbers of oscillations from A. There
are convergence issues and subtleties associated with infinite series of functions
that arise when we do this but these are issues we will avoid. In fact, in a few
paragraphs we’ll be back to considering only finite sums. For the interested
reader though, good resources dealing with convergence questions and basic
(Fourier) analysis include [61] and [67].

6If |an | = 1 then the resulting oscillation is still on the unit circle but, unless an = 1, it starts out
of phase with the rest of the signals in A.

7Multiplying basic signals t �→ e2π i fk t and t �→ e2π i fn t together results in a basic signal, i.e.,
is an element of A (cf. Exercise 10.2.1) and doesn’t give us anything new. Scaling a basic signal,
however, is a way to escape the group A.

© 2003 by CRC Press LLC

252 10 Transform Methods and Image Compression

0 T
t

h

..........
...........
...........
...........
.............
..............
...................

..
.............
..........
.........
........
.......
......
......
......
.....
.....
.....
.....
....
....
.....
......
.......
.........
.................
...

Figure 10.3: A step function approximation to h.

Denote by B the formal collection of all functions generated from A in this
manner. Thus,

B = {
t �→

∑
n∈Z

ane2π i fn t | an ∈ C
}
.

It turns out that B will include just about any period T signal we are likely to
encounter in practice.8 The sequence n �→ an of coefficients is sometimes called
the Fourier transform of a signal

∑
n∈Z

ane2π i fn t from B; however, we normally
start with a signal h and not its Fourier coefficients an . We need a recipe for
converting a signal h to its Fourier coefficients, i.e., a way to compute from h a
sequence of coefficients 〈an〉n∈Z so that

h(t) =
∑

n

ane2π i fn t , 0 ≤ t < T . (10.1)

Exercise 10.2.4 leads to the simple formula

an = 1

T

∫ T

0
h(t)e−2π i fn t dt (10.2)

which allows each an to be computed directly from h. The formula holds when
h is known to have a convergent expansion (10.1).

Equations (10.1) and (10.2) are interesting formulae and find their way into
a variety of engineering applications, but we’re after something different. For
one thing, in practice we can hardly ever hope to know a signal h for every value
of t in some continuous time interval 0 ≤ t ≤ T . Rather, a signal is typically
measured or sampled at discrete moments tn , n = 0, . . . , N with 0 ≤ tn < T . It’s
quite common to keep the sampling interval constant and T some multiple of it.
The result is a collection of sampling times tn that are equi-spaced between 0
and T . More precisely, if N samples of the signal are desired, then the sampling

8As long as the signal h is of finite power, i.e.,
∫ T

0 |h|2 < ∞, and provided that we are willing
to relax the condition that equality in (10.1) hold for all t in the interval 0 < t ≤ T to that of holding
for nearly or almost all t in this interval.

© 2003 by CRC Press LLC

10.2 Periodic signals and the Fourier transform 253

interval is T/N and the sample times are 0,T/N, . . . , (N − 1)T/N . The effect
of this discrete sampling procedure is equivalent to replacing the continuous
si gnal h with th e step f u n c tio n a p p r o x im a tio n h̃ defin ed by 9˜
Figure 10.3 contains an illustration o f this p rocess and suggests that we should
really be using a discontinuous step function h̃ in place of the ideal signal h in
equations (10.1) and (10.2).

How will the use of h̃ instead of h change things? If k/T ≤ t < (k +1)T/N ,
then h̃(t) = h(kT/N) and (10.1) becomes

h̃(t) = h(kT/N) =
∑
n∈Z

ane2π i fn kT/N =
∑
n∈Z

ane2π ink/N . (10.3)

Here is how to get a finite sum from this last expression: since e2π i j = 1 for
each integer j then e2π i(n+ j N)k/N = e2π ink/N , so grouping terms and factoring
reduces (10.3) to a finite sum

hk = h(kT/N) =
N−1∑
n=0

bne2π ink/N

where bn is defined from the sequence 〈an〉 by the relationship bn = ∑
j∈Z

an+ j N .
The coefficients 〈an〉n∈Z of (10.3) now fade into the background and we no
longer worry about them; our problem is now finite dimensional.

Problem Given a discrete signal h = (h0, . . . ,hN−1), find a vector (of ampli-
tude coefficients) b = (b0, . . . ,bN−1) so that for each k = 0, . . . , N − 1

hk =
N−1∑
n=0

bne2π ink/N . (10.4)

This is a well-posed mathematical problem and for a given vector (signal) h we
can solve these N equations for the N unknowns in b by methods learned in
any linear algebra course, e.g., Gaussian elimination. However, there is more
to system (10.4) than can be seen at first glance because the orthogonality rela-
tionship10

N−1∑
n=0

e2π ink/N e−2π in j/N =
{

N, if k = j ,
0, if k �= j ,

(10.5)

developed in Exercise 10.2.5, permits us to easily describe its solution. From

9In practice, the values of this step function are also determined by the number of bits used to
measure or resolve the value of the signal at the moment it is being sampled—a quantization effect
which we shall not be concerned with.

10The word orthogonal is used to generalize the notion of perpendicular and is typically used in
dimensions higher than 3 or when the inner product is different than the usual dot product.

© 2003 by CRC Press LLC

h(t) = h(kT/ N) for kT/ N ≤ t < (k + 1) T/ N and k = 0, . . . , N − 1.

254 10 Transform Methods and Image Compression

(10.4) and (10.5) one can show (cf., Exercise 10.2.6) that

bk = 1

N

N−1∑
n=0

hne−2π ink/N , k = 0, . . . , N − 1. (10.6)

This equation defines a map h �→ b, from CN back into CN , and the vector b is
often called the (discrete) Fourier transform of h.

In this text, though, we reserve this title for a slightly modified form of
(10.6), which has more symmetry. Set ĥ = √

Nb in equations (10.4) and (10.6)
to get the form of what, henceforth, will be called the discrete Fourier transform

ĥ(v) = 1√
N

N−1∑
k=0

h(k)e−2π ikv/N , v = 0, . . . , N − 1, (10.7)

h(k) = 1√
N

N−1∑
v=0

ĥ(v)e2π ikv/N , k = 0, . . . , N − 1. (10.8)

The vector ĥ = (̂h0, . . . , ĥN−1) defined by (10.7) is called the Fourier transform
of h = (h0, . . . ,hN−1).11 The vector h defined by (10.8) is called the inverse
Fourier transform of ĥ.12 The two systems (10.7) and (10.8) enable us to com-
pute either ĥ from h or h from ĥ, that is, given one of them, we can compute the
other.

Each of (10.7) and (10.8) defines a linear transformation on CN (Exer-
cise 10.2.3), and hence have matrix expressions. If we let W be the N×N ma-
trix whose entry in the j th row and kth column is W (j,k) = (1/

√
N)e2π i j k/N ,

then (10.7) and (10.8) assume simple forms:

ĥ = Wh (10.7′)
h = W ĥ. (10.8′)

W is notation for the matrix whose entries are just the complex conjugates of
the entries in W . It’s worth noting that (10.7′) and (10.8′) together imply that
h = W W h for all h ∈ CN or that ĥ = W W ĥ for each ĥ ∈ CN ; either implies
that W−1 = W . This observation, together with symmetry of W , allows for an
easy proof showing that the Fourier transform is an isometry on CN , i.e., a map
from C

N → C
N that preserves lengths of vectors (Exercises 10.2.7 and 10.2.8

have the details).
There is another way to regard the Fourier transform, one which has the

advantage of enabling us to identify vectors as the frequency elements that com-
pose the signal. Let Wk denote the kth column vector of the matrix W , i.e., for

11In reference to sequences and vectors, we’ll interchangeably use the notation x(k) and xk to
denote the same kth entry of the sequence or vector x.

12Be warned: some sources may refer to (10.8) as the Fourier transform and (10.7) as the inverse
transform.

© 2003 by CRC Press LLC

10.2 Periodic signals and the Fourier transform 255

k = 0, . . . , N − 1 put

Wk = 1√
N

1
e2π ik/N

...

e2π i j k/N

...

e2π i(N−1)k/N

. (10.9)

Equations (10.7) and (10.8) can now be written as

ĥ =
N−1∑
k=0

h(k)Wk (10.7′′)

h =
N−1∑
v=0

ĥ(v)Wv. (10.8′′)

The columns of W , then, are the basic signals or elements associated with the
Fourier transform. From a linear algebra perspective, the columns of W form
a basis for the vector space CN and the Fourier transform ĥ of h is just the
(ordered) collection of coefficients needed to expand h with this basis.

Note that the j th component of the basis vector Wk is just

Wk(j) = 1√
N

(e2π ik/N) j

and, hence, the entries in the kth column of W are generated by taking suc-
cessive powers of e2π ik/N . The column (vector) Wk , like any vector, is just a
function of its index j ,13 and since the right-hand side of the above equation
makes sense for any integer j then it provides a natural extension of Wk from
j = 0,1, . . . , N − 1 to all of Z. Also, since (e2π ik/N) j+N = (e2π ik/N) j for all
integers j , then the extension is a sequence with period N .

When regarded as a function on Z, each “column” Wk oscillates with pe-
riod N and, because time is measured discretely, the frequency of oscillation
increases as the argument 2πk/N gets closer to π , that is, when k ≈ N/2.14

Consequently, high frequency oscillations correspond to columns at the “mid-
dle” of the matrix W , i.e., Wk with k at or near N/2. The columns on the
left and right of W oscillate at lower frequencies. Also, the orthogonality re-

13An N -vector v is a function of its index: v : {0,1, . . . , N −1} → C with v(k) = vk .
14 For each j , (e2π ik/N) j is a point on the unit circle. The map j �→ (e2π ik/N) j defines a

sequence of points that march around the unit circle with time j . To see that these points march
“faster” when k ≈ N/2 consider the following argument. For any real number �, there is a unique
θ with −π ≤ θ < π and ei� = eiθ (in fact, if you like, you can write θ = � (mod 2π) − π). If
ei� is close to 1, then θ must be close to 0 and the point (eiθ) j = ei jθ marches slowly around the
unit circle as j ranges over the integers. At the other extreme, if ei� is close to −1, then θ is close
to either π or −π and the argument jθ changes more dramatically with j ; the net effect is that the
point ei jθ jumps rapidly around the unit circle as j clicks from one integer to the next.

© 2003 by CRC Press LLC

256 10 Transform Methods and Image Compression

0 2 4 6 8

15

30

Re
(∑

k≤ j x̂(k)Wk
)

• • •
•

• •
•

•

..................
.................

..................
.................

.................
..........
..........
..........
..........
..........
..........
..........
.........
..........
..........
.........
.........
..........
...

.........
.........
..........
.........
.........
..........
...........
.........
.........
..........
.........
.........
..........
........

....................
...

...
...
...
...
...
...
...

.....
..............

..
.....
....
..........
.........
......
....
....
.....
.........
..........
......
....
....
..........
...........
......
...
....
......
..........
...........
...
....
....
...................................

..
........
.........
..........
.......
........
..........
..........
......
........
..........
..........
......
........
..........
..........
......
..............

............................
........
.........
.........
........
.........
.........
........
........
...............................

0 2 4 6 8

15

30

Im
(∑

k≤ j x̂(k)Wk
)

• • • • • • • •
...

...
...

...
...
...
...
...

...
....

...................................
...........
............
.....
....
..............

...
............
.....
....
................

...
.............

..........
..

........
...........
............
...

......
...........
...........
.......
..

............ j = 1; two terms
.. j = 3; four terms

.. j = 5; six terms
... j = 7; i.e., x

Figure 10.4: Real and imaginary parts of partial sum approximations to x.

lationships (10.5) imply the orthogonality of the vectors Wk , k = 0, . . . , N − 1.
Since each Wk has unit length, then the collection {Wk | k = 0, . . . , N −1} is an
orthonormal basis for CN , cf. Exercise 10.2.9.15

We end this section with a quick example of a vector x and its Fourier
transform x̂:

x =

0.0
2.5
5.0

12.5
20.0
20.0
27.5
35.0

 , x̂ =

43.31
−5.82 + 17.96i
−4.42 + 8.84i
−8.32 + 2.05i
−6.19
−8.32 − 2.05i
−4.42 − 8.84i
−5.82 − 17.96i

 .

Figure 10.4 contains some of the partial sums from the Fourier expansion (10.8′′)
of x (split into real and imaginary parts). The solid piecewise linear curve
is a graph of x, the dotted curve is obtained from the first 2 terms from the
sum (10.8′′), the dash-dots curve from the first 4, and the dashed line from the
first 6.

10.2.1 The Fourier transform and compression: an example

The Fourier transform x̂ of a signal x is a vector containing the amplitudes of
the fundamental frequencies that make up x. Each component of x̂ indicates
the strength of a particular frequency in x. In certain classes of signals, e.g.,

15Unless otherwise stated, we take the usual inner product in C
N : 〈v,w〉 = ∑N−1

ν=0 vνwν for
vectors v = (v0, . . . ,vN−1) and w = (w0, . . . ,wN−1) in CN . A collection of vectors is orthonormal
if the vectors are mutually orthogonal and have unit length.

© 2003 by CRC Press LLC

10.2 Periodic signals and the Fourier transform 257

audio signals, entire frequency ranges may not be relevant or meaningful to
our interpretation of the signal’s quality. The Fourier transform gives us direct
control over these frequencies: replacing an entry in x̂ with zero “removes” the
corresponding frequency from x.

The decision to remove frequency information may be based on mathe-
matical or physical importance of the frequencies. Coefficients in x̂ of small
magnitude indicate frequencies with weak mathematical presence in x, and dis-
carding them may be done with relative impunity. In applications, there may be
physical considerations which allow the suppression of certain frequency infor-
mation, even if these frequencies have significant mathematical presence. For
example, if very high frequencies are suppressed in an audio signal, then the
signal changes, but we may not be aware of it.16 The approximation obtained
by zeroing certain coefficients is a special case of quantizing, a method which
reduces the precision of coefficients, and which will be discussed in connection
with JPEG in Section 10.5. Thoughtful quantizing can help suppress both non-
meaningful and weak mathematical frequencies simultaneously. A similar story
holds for wavelet transforms and the process of selectively eliminating or ap-
proximating transform coefficients provides a foundation for the lossy schemes
discussed in this book.

Let’s examine the action of the Fourier transform on the two signals

x =

0.0
2.5
5.0

12.5
20.0
20.0
27.5
35.0

 and y =

20.0
14.2
0.0

−10.0
−15.0
−10.0

0.0
14.2

 .

Think of x and y as single periods of two larger signals whose graphs appear in
Figure 10.5. The Fourier transforms x̂ and ŷ are approximately

x̂ =

43.31
−5.82 + 17.96i
−4.42 + 8.84i
−8.32 + 2.05i
−6.19
−8.32 − 2.05i
−4.42 − 8.84i
−5.82 − 17.96i

 and ŷ =

4.74
24.47
1.77
0.27

−1.20
0.27
1.76

24.47

 .

One clear difference in these two vectors is that ŷ is real and x̂ isn’t. A glance
at (10.7) shows that the Fourier transform generally outputs complex vectors
even if the input vectors are real. So why is ŷ real? Is it just by chance or is
y special in some way that makes vectors like it have real Fourier transforms?
This question is something we’ll return to in the next section, but for now we’re
content to emphasize that each entry of x̂ and ŷ measures the amplitude of a par-

16A dog might be able to notice the change.

© 2003 by CRC Press LLC

258 10 Transform Methods and Image Compression

−8 −6 −4 −2 0 2 4 6 8 10 12 14 16

x

• • • • • • • •◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦

−8 −6 −4 −2 0 2 4 6 8 10 12 14 16

y

• •
•

• • •
•

•◦ ◦ ◦
◦

◦ ◦ ◦
◦

◦ ◦ ◦
◦

◦ ◦ ◦
◦

◦ ◦ ◦

Figure 10.5: Signals x and y, and their periodic extensions.

ticular frequency component of x and y, respectively, and that high-frequency
components correspond to middle entries of x̂ and ŷ.

Before we do additional analysis, some notation is required. If z ∈ CN

is any N-vector of complex numbers, then define Abs(z) to be the vector of
absolute values or magnitudes of z. Thus, the kth component Abs(z)(k) of
Abs(z) is just |z(k)|, that is, Abs(z)(k) = |z(k)|, k = 0,1, . . . , N − 1. With this
notation, consider

Abs(̂x) =

43.31
18.88
9.88
8.57
6.19
8.57
9.88

18.88

 and Abs(̂y) =

4.74
24.47
1.77
0.27
1.20
0.27
1.77

24.47

 .

From these magnitudes it’s clear that high frequencies are more prevalent in x
than in y. We could wonder whether this difference was apparent before their
transforms were taken. Look again to the graphs of x and y in Figure 10.5. High
frequencies can be “spotted” by looking for abrupt changes in values over small
changes in (in our case, discrete) time, rather than gentle trends. If our attention
is fixed to only the part of the graphs over the integers 0,1, . . . ,7, then we might
be led to believe that x is as smooth, if not smoother, than y. Over just these
eight integers this may be true, but remember, the Fourier transform sees these
signals as defined on all of Z, not just 0,1, . . . ,7.

Since each Wk has the same length (unit length in this case) then the kth
Fourier coefficient of a signal is all we need to determine the importance of its
frequency component in the Wk “direction.” If the vectors Wk were of differing

© 2003 by CRC Press LLC

10.2 Periodic signals and the Fourier transform 259

lengths then the relative importance of a particular frequency Wk0 could not be
reliably determined by examining its Fourier coefficient alone. In this case,
throwing out “small” coefficients, thinking the corresponding frequencies are
unimportant, could be a mistake.17 This is a good argument for normalizing
basis signals.

Because the high-frequency entries in ŷ are quite small when compared
to other coefficients (particularly when compared to the low-frequency entries)
they may not play much of a role and we could ask what would happen to y if
we left them out. More specifically, how does it affect y to set ŷ(2) = ŷ(3) =
ŷ(4) = ŷ(5) = ŷ(6) = 0? Doing this gives a vector, say ẑ, where

ẑ =

4.74
24.47

0
0
0
0
0

24.47

 .

ẑ is not the Fourier transform of y, but it’s natural to ask which vector z has ẑ as
its Fourier transform? ẑ is not too far from ŷ so we could hope that z is not far
from y. It is easy to compute z using the inverse Fourier transform, (10.8), on
ẑ. Then z and the entry-by-entry error z−y are given by

z =

18.98
13.91
1.68

−10.56
−15.63
−10.56

1.68
13.91

 and z−y =

1.02
0.28

−1.68
0.56
0.63

−0.56
−1.68

0.29

 .

Whether or not this error is acceptable depends on the purpose of the original
signal and on how accurately it needs to be known.18 In any event, consider
this: we threw away 5/8 or 62.5% of the components of ŷ and we were able to
invert and get something that appears to be fairly “close” to the original y.

Now let’s repeat the above procedure on x. In fact, let’s keep even more
of x̂ than we did of ŷ by setting just the three smallest components x̂(3), x̂(4),

17For example, in a compression scheme, tossing out an innocuous looking coefficient could
prove dangerous if the associated basis element’s magnitude is much larger than some of the others.
More precisely, suppose u and v have the same length, say |u| = |v| = 1, and that w = au+ bv. If
|a| |b| then a/b ≈ 0 and w = b[(a/b)u+ v] ≈ bv. On the other hand, if |u| is much larger than
|v| then, even though a/b ≈ 0, it could be the case that |(a/b)u| � 0. The statement w ≈ bv could
then be extremely misleading.

18Often engineers will use the l2 or Euclidean norm to measure error between two vectors v and

w: ‖v − w‖ =
√∑

k |vk −wk |2. Since the Fourier transform is an isometry (in this l2 sense, see

Exercise 10.2.8) then the l2-error found after reconstruction of y from a modification of its transform
will be exactly the same as the error introduced into its transform ŷ. This practical feature is shared
by all orthogonal (and unitary) transforms.

© 2003 by CRC Press LLC

260 10 Transform Methods and Image Compression

and x̂(5) to zero (note that these coefficients are not, relative to the rest of the
components, as small as the smallest components of ŷ). Call this modification
ẑ again and invert to obtain

z =

8.07
−2.83

5.74
15.50
16.30
20.95
31.13
27.63

 and z−x =

8.07
−5.33

0.74
2.30
−3.7
0.95
3.63

−7.37

 .

We didn’t do as well in this case even though we altered less frequency informa-
tion. Does this mean that x cannot be compressed effectively? No, it could just
mean that the Fourier transform is not the right compression tool to use on x. If
signals like x need to be compressed, then perhaps better results could be ob-
tained by using a different set of basis signals than the Fourier {W0, . . . ,WN−1}.

Just how to construct such a “compression” basis can be a problem that is
not easily solved. The above strategy can be thought of as a “projection” scheme
in the sense that setting Fourier coefficients to zero projects the transform vector
(orthogonally) into a subspace of smaller dimension (dimension 3 in the case
of ŷ, 5 in the case of x̂). Projection methods can work if the subset of the data
type space from which we will select vectors to compress is “thin” in several
directions.19 In this setting, the job of choosing basis elements amounts to
finding these special “directions.”

The following example may better illustrate our meaning here. Consider
the set

G =

 α a12 a13
a21 α a23
a31 a32 β

 : α,β ≥ 1, |ai j | 1 if i �= j

 .

G is a subset of the (9-dimensional) space of 3 by 3 matrices and can be de-
scribed “well” using only two matrices;

M1 =
[

1 0 0
0 1 0
0 0 0

]
, M2 =

[
0 0 0
0 0 0
0 0 1

]
.

To fill out a basis, select seven more 3 by 3 arrays having directions as different
as possible from M1 and M2, i.e., choose them orthogonal to the span of M1
and M2.20 The nine arrays will form a basis for the space of 3 by 3 matrices.
With respect to this basis, the subset G is “thin” in any basis direction other
than M1 and M2. One could ask why it has been suggested that the other basis
elements be chosen orthogonal to both M1 and M2—after all, to get a basis they

19An effect of quantizing can be to turn a “thin” set into a “thinner” discrete set.
20Think of 3 by 3 matrices as vectors in R9 and use the inner product there to determine orthogo-

nality. Also, see Exercise 10.2.10 for more on why these directions are as different as possible from
each other.

© 2003 by CRC Press LLC

10.2 Periodic signals and the Fourier transform 261

only need to be linearly independent of M1, M2 and each other. In answer to
this suppose we take as a basis element an array that is not too different from
M2 (and definitely not orthogonal to it), e.g.,

M =
[

0 0 0
0 0 0

0.001 0 1

]
.

M doesn’t belong to the span of {M1, M2} but its close proximity to M2 means
that it plays a significant role in describing any array that also relies on M2,
in particular, in describing arrays in G. In other words, G isn’t “thin” in the
direction of M . To see this more precisely, the matrix

A =
[

2 0 0
0 2 0

0.001 0 2

]
certainly belongs to G, but since A = 2M1 + M2 + M , its construction from any
basis containing M1, M2 and M requires the “same amount” of M as M2.21

In summary, we were able to suppress much of the information contained
in ŷ (setting 5 of the 8 coefficients to zero), still having something whose inverse
transform looked like the original y. The Fourier transform may not have been
the best tool to use in compressing x. We can’t dismiss the Fourier transform
so easily though, and interestingly enough it will provide us with a better tool
to use on vectors like x. We just need to better understand the way in which
the Fourier transform looks at signals as single periods of larger signals defined
for all (discrete) time. In this context, the Fourier transform will also aid us in
understanding why ŷ is real and x̂ is not. In the next section we pursue this
thread, leading us to the cosine transform.

Exercises 10.2

Throughout these exercises, T is a nonzero real number and, for each n ∈ Z,
fn := n/T .

1. The collection G = {e2π i fn t | t ∈ R,n ∈ Z} forms a (commutative) group
under pointwise multiplication.22 To check this, show the following:

(a) e2π i fn t e2π i fm t = e2π i fn+mt ; multiplication of two elementary signals is
an elementary signal,

21Both M and M2 are about the same magnitude so their coefficients are comparable.
22A group is a basic algebraic structure. It consists of a set G together with a multiplication on

G such that

(a) ab ∈ G whenever a and b are in G ,

(b) a(bc) = (ab)c whenever a, b, and c belong to G ,

(c) there is an identity element e in G , i.e., there exists e ∈ G such that ae = ea = a for every
a ∈ G ,

(d) each element in G has an inverse in G , i.e., for each element a ∈ G there is an element a−1 ∈ G
with aa−1 = a−1a = e.

© 2003 by CRC Press LLC

262 10 Transform Methods and Image Compression

(b) e2π i f0 t = 1; the identity element t �→ 1, is an elementary signal, and

(c) e2π i fn t e2π i f−n t = 1; each elementary signal has an inverse.

To reach functions outside of G requires some operation other than just
multiplying its elements together.

2. (a) If a1, . . . ,aN are any N complex numbers and n1, . . . ,nN any N inte-
gers, then show that the map t �→ ∑N

k=1 ake2π i fnk t has period T .

(b) If an ∈ C for each n ∈ Z then (formally) show that the map t �→∑
n∈Z

ane2π i fn t still has period T .

3. Show that the Fourier transform map :̂ CN → CN defined by (10.7) is
a linear map; that is, show that ̂αg+βh = α̂g +βĥ for any α,β ∈ C and
g,h ∈ CN .

4. (a) Show that the functions e2π i fn t are orthogonal over the interval 0 ≤ t ≤
T ; that is, show that∫ T

0
e2π i fn t e−2π i fm t dt =

{
T, if m = n
0, if m �= n.

(b) Now suppose that h(t) = ∑
k∈Z

ake2π i fk t , for 0 ≤ t ≤ T . Multiply
each side by e−2π i fn t and then integrate both sides over the interval
0 ≤ t ≤ T . Use part (a) above to conclude that

an = 1

T

∫ T

0
h(t)e−2π i fn t dt .

5. Equation (10.5)

N−1∑
n=0

e2π ink/N e−2π in j/N =
{

N, if j = k,

0, if j �= k

is a discrete version of the orthogonality relationship in Exercise 4(a) above.
To see this, fix N ∈ Z and, for each k ∈ Z, put zk = e2π ik/N . Now do the
following:

(a) Show that z = zk is a solution to the equation zN − 1 = 0. (The N
distinct complex numbers z0, . . . ,zN−1 are known as the N th roots of
unity.)

(b) Plot zk for k = 0, . . . , N − 1 for several values of N , say N = 2, 3, 4,
and 8.

(c) Argue that, if zk �= 1, then
∑N−1

m=0 (zk)
m = 0; i.e., that

∑N−1
m=0 e2π imk/N =

0. Hint: The expression zN − 1 can be factored: zN − 1 = (z − 1)(1 +
z + z2 +·· ·+ zN−1).

(d) Now prove the orthogonality relationship above.

© 2003 by CRC Press LLC

10.2 Periodic signals and the Fourier transform 263

6. Starting with equation (10.4) and the orthogonality relationship (10.5) show
that equation (10.6) follows, i.e., show that

bk = 1

N

N−1∑
n=0

hne−2π ink/N , k = 0, . . . , N − 1

whenever hk = ∑N−1
n=0 bne2π ink/N .

7. Let W (j,k) = (1/
√

N)e2π i j k/N for 0 ≤ j,k ≤ N −1 and show that the pair
of equations (10.7) and (10.8) can be written as the pair (10.7′) and (10.8′).

8. If v = (v0, . . . ,vN−1) and w = (w0, . . . ,wN−1) are vectors in C
N then we

define their inner product 〈v,w〉 to be

〈v,w〉 =
N−1∑
k=0

v(k)w(k).

The length |v| of a vector v is defined in the usual way

|v| =
√√√√N−1∑

k=0

|v(k)|2.

(a) If v ∈ CN then show that 〈v,v〉 is always a nonnegative real number
and that |v| = √〈v,v〉.

(b) If A is an N×N matrix of complex numbers then show that 〈Av,w〉 =
〈v, A∗w〉 where the matrix A∗ is the conjugate transpose of A.

(c) Using equations (10.7′), (10.8′) and parts (a) and (b) above, argue that
|̂h| = |h| for any h ∈ CN . This shows that the Fourier transform is an
isometric automorphism on CN .

9. Use the orthogonality relationship (10.5) or the relationship W−1 = W
from page 254 to show that the columns Wk , k = 0, . . . , N −1, of the matrix
W exhibit the following property

〈Wj ,Wk〉 =
{

1, if j = k,

0, if j �= k.

Thus, the columns of W form an orthonormal set of vectors in C
N . What

about the rows of W?

10. Let u and v be orthogonal unit vectors in C
N . Suppose that w ∈ C

N is
another unit vector not orthogonal to u. Then show that there is a complex
number α, with |α| = 1, such that ‖αu−w‖ < ‖u−v‖.

Remark: The exercise shows that, direction-wise, orthogonal vectors are
further from each other than nonorthogonal vectors.

© 2003 by CRC Press LLC

264 10 Transform Methods and Image Compression

11. Shannon’s sampling theorem. Suppose that h is a continuous signal de-
fined on the interval [−T/2,T/2] of length T . Then, from equations (10.1)
and (10.2)

h(t) =
∑
n∈Z

ane2π i fn t , (10.10)

where fn = n/T and

an = 1

T

∫ T/2

−T/2
h(t)e−2π i fn t dt . (10.11)

The sequence of coefficients, 〈an〉n∈Z, is called the Fourier transform ĥ of
h, i.e., ĥ(n) = an . If, instead of being defined on some finite interval, h is
defined on all of R then it may still have a Fourier transform.23 Generally,
to synthesize such a signal we need to use basic signals of all frequencies
f :

h(t) =
∫

R

ĥ(f)e2π i f t d f, (10.12)

ĥ(f) =
∫

R

h(t)e−2π i f t dt . (10.13)

A signal h : R → R is called “band-limited” if for some frequency fc, its
Fourier transform ĥ(f) = 0 whenever | f | > fc, that is, if h is composed of
only a finite range of frequencies.

(a) If ĥ(f) = 0 for | f | > fc, then use (10.12) to show that

h(t) =
∫ fc

− fc
ĥ(f)e2π i f t d f. (10.14)

Use (10.10) and (10.11), with ĥ in place of h, to show that

ĥ(f) =
∑
n∈Z

cne2π i n
2 fc

f
, (10.15)

where

cn = 1

2 fc

∫ fc

− fc
ĥ(f)e−2π i n

2 fc
f d f. (10.16)

23 It turns out that h ∈ L2[−T/2,T/2] (i.e.,
∫ T/2
−T/2 |h|2 < ∞) if and only if there is a sequence

〈an〉n∈Z ∈ �2 (i.e.,
∑

n∈Z |an |2 < ∞) and (10.10) holds. In this case the sequence 〈an〉n∈Z (the
Fourier transform of h) is given by (10.11) and (Parseval’s theorem)

∑
n∈Z |an |2 = ∫ T/2

−T/2 |h|2, i.e.,
‖〈an〉n∈Z‖�2 = ‖h‖L2[−T/2,T/2] . Similarly, h ∈ L2(R) (i.e,

∫
R

|h|2 < ∞) if and only if there exists

a function ĥ also in L2(R) such that (10.12) holds. In this case the function ĥ (the Fourier transform
of h) is given by (10.13) and (the Plancherel theorem)

∫
R

|h|2 = ∫
R

|̂h|2, i.e., ‖h‖L2(R) = ‖ĥ‖L2(R).

© 2003 by CRC Press LLC

10.2 Periodic signals and the Fourier transform 265

(b) Now argue from (10.14) and (10.16) that

h

(
− n

2 fc

)
= 2 fccn

and, hence, from (10.15)

ĥ(f) =
∑
n∈Z

1

2 fc
h

(
− n

2 fc

)
e2π i n

2 fc
f =

∑
n∈Z

1

2 fc
h

(
n

2 fc

)
e−2π i n

2 fc
f
.

(c) Use this last equation in (10.14) and integrate term by term to get

h(t) = 1

2 fc

∑
n∈Z

h

(
n

2 fc

) sin2π fc(t − n
2 fc

)

π(t − n
2 fc

)
.

(d) Finally, letting � = 1/2 fc in the above sum, show that

h(t) = �
∑
n∈Z

h(n�)
sin2π fc(t −n�)

π(t −n�)
.

This last equation is known as Shannon’s sampling theorem. It allows
the reconstruction of a continuous signal h everywhere if its values are
sampled at a rate at least twice as frequently as the critical value fc.
The cut-off frequency fc is called a Nyquist critical frequency and �

the corresponding sampling interval.

12. A fast Fourier transform. To compute the Fourier transform ĥ directly from
its definition

ĥ(v) = 1√
N

N−1∑
k=0

h(k)e−2π ikv/N , v = 0, . . . , N − 1 (10.17)

requires basically N2 add-multiply operations (you should count them!).
Fast Fourier transforms (FFTs) are attempts to speed up this computation
by more efficiently handling arithmetic.

In parts (a), (b), and (c) of this problem, we’ll assume that N can be factored
N = p1 p2.24

(a) Convince yourself that each of the indices k and v can be expressed in
the following forms:

k = k1 p1 + k0; for k0 = 0, . . . , p1 − 1 and k1 = 0, . . . , p2 − 1

v = v1 p2 + v0; for v0 = 0, . . . , p2 − 1 and v1 = 0, . . . , p1 − 1.

24By the end of the exercise we hope to see that even if the signal length N is prime it could be
advantageous to pad its length, to say a power of 2, with zeros and use an FFT.

© 2003 by CRC Press LLC

266 10 Transform Methods and Image Compression

Consequently, the transform equation (10.17) can be written as

ĥ(v) = 1√
N

p2−1∑
k1=0

p1−1∑
k0=0

h(k1 p1 + k0)e
−2π i

(k1 p1+k0)v

N . (10.18)

(b) Now argue that

e−2π i
(k1 p1+k0)v

N = e−2π i
vk0
N e−2π i

v0k1 p1
N

and hence, from (10.18)

ĥ(v) = 1√
p1

p1−1∑
k0=0

e−2π i
vk0
N h̃(k0,v0)

where

h̃(x, y) = 1√
p2

p2−1∑
k1=0

h(k1 p1 + x)e−2π i
yk1 p1

N

for x = 0,1, . . . , p1 − 1 and y = 0,1, . . . , p2 − 1.

(c) Argue that there are exactly N different h̃(x, y) and each one takes p2
add-multiplies to compute. To compute them all requires Np2 add-
multiplies. After they are computed we can go about computing the
ĥ(v). Convince yourself that now p1 add-multiplies are needed to
compute each ĥ(v). Thus, the total number of add-multiply opera-
tions required to compute ĥ(v), v = 0,1, . . . , N − 1, in this manner is
Np1 + Np2 = N(p1 + p2). Part (d) compares this number with the N2

operations required of (10.17) when it is used directly.

(d) This process can be repeated: if N = p1 p2 · · · p j then the total add-
multiplies will be N(p1 + p2 + ·· · + p j). Now take the special case
that p1 = p2 = ·· · = p j = p so that N = p j . Show that the total
number of add-multiplies is N j p = pN logp N .

The computational savings using an FFT can be considerable. To get some
idea of how much faster the FFT can be, take the case p = 2 and look at
the ratio of the number of add-multiplies using the FFT (2N log2 N) to the
number N2: 2N log2 N/N2 = 2log2 N/N . In a signal with N = 210 = 1024
(a relatively short signal) this ratio is

2 log2 210

210
= 20

210
≈ 1

50
.

The FFT transforms this signal with about 50 times fewer operations than
the direct use of (10.17). Approximate the speed increase for a signal with
N = 220.

© 2003 by CRC Press LLC

10.3 The cosine and sine transforms 267

0 2 N−3 N−1 N N+2 2N−3 2N−1

N−1/2

•
• • •

• • • ◦ ◦ ◦
◦ ◦ ◦

◦
.

signal even extension

Figure 10.6: Even extension of a signal about k = N − 1/2.

10.3 The cosine and sine transforms

The Fourier transform is a map between N-periodic sequences of complex num-
bers. Figure 10.5 illustrates these extensions and so can help explain the high
frequencies prevalent in x but not in y. The sequence x, as seen by the Fourier
transform, makes a considerable jump each time k goes from −9 to −8, −1
to 0, 7 to 8, 15 to 16, etc. The extension contains an artificially introduced
“high-frequency” blip; after transforming x we see this behavior reflected in
significant high-frequency components. On the other hand, y was rigged so that
it didn’t exhibit such large endpoint differences, i.e., compare x(7)−x(0) = 35
to y(7)−y(0) = −5.8. Figure 10.6 suggests the possibility of extending a signal
in a way that avoids introducing a high-frequency blip.

First start with a signal x, defined at times k = 0, . . . , N −1 and then extend
to k = N, N + 1, . . . ,2N − 1 by reflecting its graph across the vertical line that
passes through the horizontal axis at the point k = N − 1/2 (see Figure 10.6).
Mathematically, this amounts to the definition

x(N + k) := x(N − (k + 1)), k = 0, . . . , N − 1. (10.19)

The resulting signal, still call it x, is defined for k = 0, . . . ,2N − 1 and extends
the original x symmetrically. It has the property that x(0) = x(2N −1), i.e., the
endpoint values now match. This type of extension is usually called an “even”
extension or, more precisely, an even extension centered at k = N − 1/2, and
the Fourier transform sees it as now having period 2N instead of N .

Apply the Fourier transform to this new (period 2N) signal and then use
Euler’s identity 2cosθ = eiθ + e−iθ repeatedly. The result is eventually a linear
combination of cosine functions in place of exponential functions; ergo, the
name “cosine transform.” Details of this process are outlined in Exercise 10.3.3
and result in the following pair of equations:

© 2003 by CRC Press LLC

268 10 Transform Methods and Image Compression

x̂(v) =
N−1∑
k=0

x(k)C(v)cos
(2k + 1)vπ

2N
, v = 0, . . . , N − 1, (10.20)

x(k) =
N−1∑
v=0

x̂(v)C(v)cos
(2k + 1)vπ

2N
, k = 0, . . . , N − 1, (10.21)

where C(0) = √
1/N and C(k) = √

2/N if k �= 0. System (10.20) is often
called the forward cosine transform and system (10.21) the backward or inverse
cosine transform. One difference between the cosine transform and the Fourier
transform is that the cosine transform is real, in the sense that if x is real then
so is its cosine transform x̂.25

Both of the above systems have matrix representations. Define the N×N
matrix A whose vth column Av is given by

Av = C(v)

cos vπ

2N

cos 3vπ
2N

...

cos (2N−1)vπ
2N

 . (10.22)

Then (10.20) and (10.21) can be written simply as

x̂ = Atx (10.20′)
x = Âx (10.21′)

Combining (10.20′) and (10.21′) shows that x = AAtx for each x ∈ RN . Thus,
AAt = IN×N , and hence A−1 = At . A matrix of real numbers with this property
is known as an orthogonal matrix. Their columns (and rows) form a set of
mutually orthogonal unit vectors.

From a linear algebra perspective, the Fourier transform process is equiv-
alent to a change of basis—the new basis vectors are just the columns of the
transform’s matrix W (cf., Section 10.2). In similar fashion, the cosine trans-
form is a change in basis, the new basis vectors being the columns of its ma-
trix A. When the vth column Av of A is extended to a function on Z, i.e.,
Av(k) = C(v)cos[(2k + 1)vπ/2N] for k ∈ Z, then Av is periodic with period
2N and its frequency, v/2N , increases with the (column) index v. This orders x̂
compatibly with the frequencies of x, i.e., x̂(0) is the amplitude of A0, the low-
est frequency component of x, x̂(1) is the amplitude of A1, the next-to-lowest
frequency component, and so on with x̂(N − 1) the amplitude of AN−1, the
highest frequency in x. This ordering is in contrast with the Fourier transform
of x where the middle entries of x̂ give information about its high-frequency
components, cf., footnote 14 on page 255.

25Also, if x has nonzero imaginary part and extended in this manner, then x̂ will also have nonzero
imaginary part. This gives a partial answer to the question posed in Section 10.2.1 concerning the
form a real vector must have to be transformed back to a real vector.

© 2003 by CRC Press LLC

10.3 The cosine and sine transforms 269

0 2 N−2

N N+2 2N−2 2N

•
• • •

• • •

◦

◦ ◦ ◦
◦ ◦ ◦

◦

. . .

...

signal

odd extension

Figure 10.7: The odd extension of a signal to all of k = 0, . . . ,2N.

Sine transforms In a similar fashion, sine transforms can be developed by
applying the Fourier transform to an appropriate extension of x. For example, a
sine transform can be obtained by setting x(N) = 0 and defining

x(N + k) := −x(N − k) (10.23)

for k = 1, . . . , N . Figure 10.7 contains a picture of this odd extension of x. The
equations for the corresponding sine transform are

x̂(v) =
√

2

N + 1

N−1∑
k=0

x(k)sin
π(k + 1)(v+ 1)

N + 1
, v = 0, . . . , N − 1 (10.24)

x(k) =
√

2

N + 1

N−1∑
v=0

x̂(v)sin
π(k + 1)(v+ 1)

N + 1
, k = 0, . . . , N − 1. (10.25)

The N×N sine transform matrix B has its vth column given by the vector

Bv =
√

2

N + 1

sin π(v+1)

N+1

sin 2π(v+1)
N+1
...

sin Nπ(v+1)
N+1

 . (10.26)

B is real and symmetric, so the transform equations (10.24) and (10.25) take
the form

x̂ = Bx (10.24′)
x = B x̂. (10.25′)

These two equations imply that B2 = IN×N and, hence, that B is its own in-
verse.26 Exercise 4 has more on the sine transform.

The cosine transform controls high frequencies resulting from endpoint dif-
ferences, but Figure 10.7 suggests that a sine transform could possibly exacer-
bate the problem, introducing high-frequencies not only at endpoints but across

26If B is the matrix

[
1 0
2 −1

]
then B2 = I2×2. Thus, a matrix B with B2 = IN×N can be quite

different from the identity.

© 2003 by CRC Press LLC

270 10 Transform Methods and Image Compression

the line k = N as well.
As an example we compute cosine and sine transforms of the sample vector

x from last section and compare them with each other and its Fourier transform
x̂. For convenience, x and the magnitudes (amplitudes) of its Fourier transform
are reproduced here:

x =

0.0
2.5
5.0

12.5
20.0
20.0
27.5
35.0

 Abs(̂x) =

43.31
18.88
9.88
8.57
6.18
8.57
9.88

18.88

 .

Using Cx and Sx to denote the cosine and sine transform of x, respectively, with
x̂ reserved for its Fourier transform, then (10.20) and (10.24) imply

Cx =

43.31
−32.46

2.11
−2.67

4.42
−2.04
−1.83

0.97

 and Sx =

40.03
−29.54

13.27
−11.88

11.05
−7.14

1.64
−0.71

 .

Entries in Sx, like the cosine transform, are order compatible with increas-
ing frequencies of x. Thus, in this one case anyway, of the three transforms, the
cosine transform seems to be the winner if the race is to represent x with small
high-frequency terms.

10.3.1 A general orthogonal transform

The Fourier, cosine, and sine transforms are all examples of orthogonal trans-
formations. Each could have been developed starting with an appropriate or-
thonormal basis for CN , i.e., a set of vectors {e0,e1, . . . ,eN−1} ⊂ CN with

〈eu,ev〉 =
{

1, if u = v,

0, if u �= v.

Here 〈eu,ev〉 denotes the usual inner product of eu and ev in CN ,

〈eu,ev〉 =
N−1∑
k=0

eu(k)ev(k). (10.27)

For example, the Fourier transform on CN has basis vectors {W0, . . . ,WN−1}
from Section 10.2.

If {e0, . . . ,eN−1} is a basis for CN , then for each vector v ∈ CN there is a
unique vector v̂ ∈ CN such that

© 2003 by CRC Press LLC

10.3 The cosine and sine transforms 271

v =
N−1∑
j=0

v̂(j)e j . (10.28)

We call v̂ the transform of v with respect to the basis {e0,e1, . . . ,eN−1} and to
compute v̂ requires solving the above linear system.

Define an N×N matrix E by letting its kth column be the (column) vector
ek . Thus, E = [e0 e1 · · · eN−1] and v = E v̂. Suppose now, in addition to being
a basis, the set {e0, . . . ,eN−1} is also orthonormal. Then the columns of E are
orthonormal, i.e., E

t
E = IN×N , hence, E−1 = E

t
and the relationship

v̂ = E
t
v (10.29)

v = E v̂ (10.30)

holds for all v ∈ CN .27 To obtain the Fourier, cosine, and sine transforms from
these general transform equations, take the basis vectors ek to be Wk , Ak , and
Bk respectively, i.e., see 10.9, 10.22, and 10.26.

10.3.2 Summary

At this point in the chapter our signals x ∈ RN have been one-dimensional; the
kth component x(k) of x the value of whatever it is we’re recording at time k
(a good example might be a simple audio signal sampled N times). But x can
be just about any ordered list of data, for instance, it could represent a sequence
of N daily observations of the snow depth at the Alta ski area in the Wasatch
mountains near Salt Lake City, Utah. The transforms that have been discussed
are not concerned with the physical nature of the vector x.

The Fourier, cosine, and sine transforms each take as input a vector x and
output a vector x̂ whose components x̂(k) contain information about the funda-
mental frequency make-up of x. The use of any of these classical transforms
can be thought of as a decomposition process, i.e., a process of breaking up a
signal into fundamental frequency “pieces,” and each of them holds a steady
place in the general study, description, and further analysis of signals.

We’ve also indicated how the information in x̂ can help to define a “com-
pression” of x, provided we are willing to allow some error into its reconstruc-
tion. In the next section our goal is to extend these one-dimensional tools to
two-dimensional signals; i.e., to images.

Exercises 10.3

1. Compute cosine and sine transforms, Cy and Sy, of the sample vector y of
Section 10.2.1 and compare results with each other and ŷ.

27A matrix E satisfying E
t = E−1 is called a unitary matrix. If E is also real then it is called an

orthogonal matrix.

© 2003 by CRC Press LLC

272 10 Transform Methods and Image Compression

2. If E is an N×N matrix whose columns are orthonormal, then its rows are,
too. Hint: E

t
E = IN×N implies that E

t = E−1.

3. This exercise develops the cosine transform from the Fourier transform.

If x = (x0, . . . ,xN−1) ∈ RN then we’ve seen that x and its Fourier transform
x̂ are related by

x̂(v) = 1√
N

N−1∑
k=0

x(k)e−2π ikv/N (10.31)

x(k) = 1√
N

N−1∑
v=0

x̂(v)e2π ikv/N . (10.32)

Extend x to a larger interval k = 0, . . . ,2N − 1 by defining

x(N + k) = x(N − (k + 1)) (10.33)

and think of x now as a vector in R2N . Figure 10.6 is helpful here.

(a) Transform x (remember, it’s now in R2N) and use (10.33) to show that

x̂(v) =
√

2

N
eπ iv/2N

N−1∑
k=0

x(k)cos
(2k + 1)vπ

2N
.

Hint: Apply (10.31) to obtain x̂(v) = (1/
√

2N)
∑2N−1

k=0 x(k)e−π ikv/N .

Split the sum
∑2N−1

k=0 into
∑N−1

k=0 +∑2N−1
k=N and, in the second sum,

use the extension definition x(N + v) = x(N − (v + 1)) together with
the fact that cosθ = (eiθ + e−iθ)/2.

Remark: The right-hand side of this equation is defined for any integer
v and has period 2N , providing an extension of x̂ from v = 0, . . . ,2N −
1 to all of Z with the property x̂(v + 2N) = x̂(v).

(b) Define y(v) = e−π iv/2N x̂(v), for v ∈ Z so that the result in part (a) can
be written as

y(v) =
√

2

N

N−1∑
k=0

x(k)cos
(2k + 1)vπ

2N
, v = 0, . . . , N − 1, (10.34)

Now show that

(i) when x is real, so is y,
(ii) y(N) = 0,

(iii) and, for all v ∈ Z, y(−v) = y(v) and y(v + 2N) = −y(v).

(c) Argue that x can be recovered from y from the relation

x(k) = 1√
2N

y(0)+
N−1∑
v=1

√
2

N
y(v)cos

(2k + 1)vπ

2N
. (10.35)

© 2003 by CRC Press LLC

10.4 Two-dimensional transforms 273

Hint: From (10.31),

x(k) = 1√
2N

2N−1∑
v=0

x̂(v)e2π ikv/2N

= 1√
2N

2N−1∑
v=0

eπ iv/2N y(k)e2π ikv/2N

so proceed with an argument similar in spirit with that of part (a).

(d) By defining ỹ(0) = y(0)/
√

2, C(0) = √
1/N and ỹ(v) = y(v), C(v) =√

2/N for v = 1, . . . , N − 1, rewrite (10.34) and (10.35) as

ỹ(v) =
N−1∑
k=0

x(k)C(v)cos
(2k + 1)vπ

2N

x(k) =
N−1∑
v=0

ỹ(v)C(v)cos
(2k + 1)vπ

2N
.

Relabeling ỹ with x̂ gives the symmetric discrete cosine transform
(10.20), (10.21).

4. Consider the sine transform on C N defined by (10.24) and (10.25).

(a) The right-hand sides of these two equations are defined for all integers
Z. Show that these extensions of x̂ and x have period 2N + 2.

(b) Show that x(N) = 0 and that x(2N + 1) = 0.

(c) Show that x(N + k) = −x(N − k), for k = 0, . . . , N (see Figure 10.7).

5. Show the general orthogonal transform defined in Section 10.3.1 is an
isometry on C N , i.e., if v̂ is the (orthogonal) transform of v then ‖̂v‖ = ‖v‖.
This shows, at one stroke, that the Fourier, cosine, and sine transforms are
all isometries on either CN or RN .

10.4 Two-dimensional transforms

The JPEG image compression scheme employs a 2D cosine transform as part of
its specification. In this section we develop the 2D cosine transform as a special
case of a more general type of 2D transform. Section 10.5 discusses the role
this cosine transform plays in the JPEG compression scheme.

The Fourier, cosine, and sine transforms are, at this stage, one-dimensional
orthogonal transforms. However, each can easily be extended to a two dimen-
sional transform. A separate 2D extension process could be argued for each one,
but it’s more efficient (and insightful) to do the argument only once, obtaining

© 2003 by CRC Press LLC

274 10 Transform Methods and Image Compression

a general two-dimensional orthogonal transform. The 2D Fourier, cosine, and
sine transforms will then follow as special cases.

There are three ways we’ve looked at transforms, all of them equivalent:

1. as a list of equations giving explicit instructions on how to compute each
component of the transformed vector, e.g., (10.7) and (10.8),

2. as an operator or matrix expression, e.g., (10.7′) and (10.8′), or

3. as a change of basis, e.g., (10.7′′) and (10.8′′).
The last approach emphasizes a basis choice and defines the path we’ll follow
here.

Basis elements for 2D orthogonal transforms can be constructed from the
basis vectors of orthogonal one-dimensional transforms. The procedure starts
with a basis of mutually orthonormal N-vectors, {e0,e1, . . . ,eN−1}⊂ CN . Thus,

〈eu,ev〉 =
{

1, if u = v,

0, if u �= v,

where the inner product 〈·, ·〉 is defined in Subsection 10.3.1. For each pair of
indices u and v from {0, . . . , N − 1} we can define an N×N array fuv , whose
entry in the j th row and kth column is given by

fuv(j,k) = eu(j)ev(k), 0 ≤ j,k ≤ N − 1. (10.36)

There are N2 of these matrices and they turn out to be mutually orthogonal
when regarded as members of CN2

, i.e.,

〈 fuv, fu′v′ 〉 =
N−1∑
j,k=0

fuv(j,k) fu′v′(j,k)

=
N−1∑
j,k=0

eu(j)ev(k)eu′(j)ev′(k)

=
N−1∑
j=0

eu(j)eu′(j)
N−1∑
k=0

ev(k)ev′(k)

= 〈eu,eu′ 〉 〈ev,ev′ 〉 =
{

1, if u = u′ and v = v′,
0, otherwise.

This computation also shows that each fuv has unit length, i.e., that ‖ fuv‖ = 1.
The collection { fuv | 0 ≤ u,v ≤ N − 1} of N×N arrays forms an orthonormal
subset of CN2

and we’ll use it as a basis for the space of all N×N arrays of
complex numbers.

Now let f be an N×N matrix (think of f as a 2D signal—an image). The
transform of f , corresponding to the N2 basis matrices { fuv | 0 ≤ u,v ≤ N −1},

© 2003 by CRC Press LLC

10.4 Two-dimensional transforms 275

is another N×N matrix f̂ , with entries f̂ (u,v) defined by the equation

f =
N−1∑

u,v=0

f̂ (u,v) fuv . (10.37)

We’ve seen this kind of equation before (cf., (10.28)). It uniquely defines f̂
but it doesn’t explicitly tell us how to compute the entry in its uth row and vth
column, i.e., the entry f̂ (u,v). This is again a linear algebra problem (with N2

unknowns f̂ (u,v), 0 ≤ u,v ≤ N − 1). To solve it we’ll again exploit orthonor-
mality of the construction material, i.e., of the basis matrices { fuv}.

Pick a row index u0 and a column index v0. To compute the entry f̂ (u0,v0)

in the array f̂ , proceed in the usual way by taking the (CN2
) inner product of

both sides of (10.37) with fu0v0 :

〈
f, fu0v0

〉 = 〈 N−1∑
u,v=0

f̂ (u,v) fuv , fu0v0

〉

=
N−1∑

u,v=0

f̂ (u,v)
〈
fuv, fu0v0

〉 = f̂ (u0,v0).

Thus f̂ (u0,v0) = 〈 f, fu0v0〉, i.e., the transform coefficient f̂ (u0,v0) is just the
inner product of f with the basis array fu0v0 . Expanding this inner product
results in the transform formula

f̂ (u0,v0) =
N−1∑
j,k=0

f (j,k) fu0v0(j,k).

Since u0 and v0 are arbitrary row and column indices, then, together with the
system (10.37), we have a general transform pair

f̂ (u,v) =
N−1∑
j,k=0

f (j,k) fuv(j,k), 0 ≤ u,v ≤ N − 1, (10.38)

f (j,k) =
N−1∑

u,v=0

f̂ (u,v) fuv (j,k), 0 ≤ j,k ≤ N − 1. (10.39)

10.4.1 The 2D Fourier, cosine, and sine transforms

In this section, we apply (10.38) and (10.39) to the development of two-dimen-
sional versions of the Fourier, cosine, and sine transforms.

The 2D Fourier transform Recall, from the latter part of Section 10.2, that the
columns from the Fourier transform transform matrix W form the basis vectors
corresponding to the one-dimensional Fourier transform. The kth column Wk

© 2003 by CRC Press LLC

276 10 Transform Methods and Image Compression

is

Wk = 1√
N

1

e2π ik/N

e2π i2k/N

...

e2π i(N−1)k/N

 .

Using (10.36), with Wk in place of ek , we can construct the basis matrices fuv

for the 2D Fourier transform: the (j,k) entry in fuv is given by

fuv(j,k) = eu(j)ev(k) = Wu(j)Wv(k) = 1

N
e2π i j u/N e−2π ikv/N .

It follows that fuv(j,k) = (1/N)e2π i(j u−kv)/N and from (10.38) and (10.39),
the two-dimensional Fourier transform takes the form

f̂ (u,v) = 1

N

N−1∑
j,k=0

f (j,k)e−2π i(j u−kv)/N (10.40)

f (j,k) = 1

N

N−1∑
u,v=0

f̂ (u,v)e2π i(j u−kv)/N . (10.41)

We’ve emphasized before how the one-dimensional Fourier transform is really
a map between periodic sequences. The exponential functions in the right-hand
sides of equations (10.40) and (10.41) give us a 2D analog: they are defined for
any pairs of integers u and v or j and k, and, as such, extend definitions of both
f̂ and f to all of Z×Z = Z2. Moreover, the extension is periodic with period
N in both directions.

In the same manner then that the one-dimensional Fourier transform sees
signals of length N as single periods of periodic signals of period N , the 2D
Fourier transform sees both f̂ and f as maps from Z2 to C with the property that
f̂ (u + N,v) = f̂ (u,v+ N) = f̂ (u,v) and f (j + N,k) = f (j,k + N) = f (j,k)

for any (u,v) or (j,k) in Z2.

The 2D cosine transform From Section 10.3, the vth basis vector ev corre-
sponding to the 2D cosine transform is the vth column of the cosine transform
matrix A. Thus in (10.36), ek = Ak where

Ak = C(k)

cos kπ

2N

cos 3kπ
2N

...

cos (2N−1)kπ
2N

 .

for 0 ≤ k ≤ N − 1 with C(0) = 1/
√

N and C(k) = √
2/N if k �= 0. The (j,k)

© 2003 by CRC Press LLC

10.4 Two-dimensional transforms 277

entry in the basis matrix for the 2D cosine transform then looks like

fuv(j,k) = Au(j)Av(k) = C(u)cos
(2 j + 1)uπ

2N
C(v)cos

(2k + 1)vπ

2N
.

Equations (10.38) and (10.39) then give us the two-dimensional cosine trans-
form pair

f̂ (u,v) =
N−1∑
j,k=0

f (j,k)C(u)cos
(2 j + 1)uπ

2N
C(v)cos

(2k + 1)vπ

2N
(10.42)

f (j,k) =
N−1∑

u,v=0

f̂ (u,v)C(u)cos
(2 j + 1)uπ

2N
C(v)cos

(2k + 1)vπ

2N
. (10.43)

Once again we emphasize that these equations extend f̂ and f to two-dimen-
sional periodic signals (now with period 2N) defined on Z2. This is the global
signal the cosine transform “sees” when given either f̂ or f .

The extension provided by (10.43) is also even, in the sense that it extends
f to an even function in both horizontal and vertical directions. This extended
f is generally smoother than that provided by the 2D Fourier transform or sine
transform. To visualize this extension, picture f as an array and then reflect it
across each of its four boundaries. This creates four more arrays, each having
the same dimensions. Now reflect each one of these “new” arrays across their
boundaries and so on. Continuing this tiling process throughout Z2 yields the
signal that the 2D cosine transform regards as f .

To gain further insight into the 2D-cosine transform, rewrite (10.43) as

f =
N−1∑

u,v=0

f̂ (u,v)Buv (10.44)

where Buv is the N×N basis element whose entry in the j th row and kth column
is

Buv(j,k) = C(u)cos
(2 j + 1)uπ

2N
C(v)cos

(2k + 1)vπ

2N
.

The collection {Buv | 0 ≤ u,v ≤ N − 1} contains the building blocks used to
construct f . Each Buv can be regarded as a basic image element.

A greyscale image can be represented as a table of grey-levels, i.e., an array
of integers. Conversely, an array of integers can be thought of as a table of grey-
levels. Figure 10.8(a) shows the 16 basic image elements Buv arranged in an
array indexed by u and v, corresponding to a 4×4 transform. Any given 4×4
image can be written uniquely as a linear combination of these basic images.
The (transform) coefficient f̂ (u,v) is a measure of the “presence” of Buv in the
overall image. Figure 10.8(b) is an illustration of equation (10.44), showing, in
this case, a randomly generated 4×4 image being built up in stages by linear
combinations of basic images.28 The partial sums of (10.44) are formed by

28Figure A.1 in Appendix A shows a similar example with an 8×8 image.

© 2003 by CRC Press LLC

278 10 Transform Methods and Image Compression

(a) 4×4 basic images (b) sample image and the 16 partial sums

Figure 10.8: Image elements for the 2D cosine transform (N = 4), sample
image, and the 16 partial sums.

1/4 1/2 3/4 Original

Figure 10.9: Partial sums build up to the original image.

following a zigzag sequence through the basis images; Figure 10.12 indicates
this type ordering for the 8×8 case.

In another example, Figure 10.9 shows how the cosine transform might be
applied to an image with 32×32 pixels. In this case there are 32 × 32 = 1024
basic image elements (the Buvs) so it’s impractical to display them all in an array
setting like Figure 10.8(a). We can still “plot” some of the partial sums though.
The original image is on the right and is a representation of the complete sum
in (10.44). The three images to its left each correspond to a certain fraction of
this sum; that is, they are partial sums. The leftmost image contains the first
1/4, or 256, terms of the sum, the next image contains an additional 256 (the
halfway stage), and the next adds 256 more. Scanning from left to right in the
figure illustrates how the image sharpens as more and more basic image terms
get added to this “running” sum.

The 2D sine transform A two-dimensional sine transform is left as Exer-
cise 10.4.3.

© 2003 by CRC Press LLC

10.4 Two-dimensional transforms 279

10.4.2 Matrix expressions for 2D transforms

Not surprisingly, the general 2D transform equations (10.38), (10.39) have ma-
trix forms:

f̂ = E
t
f E (10.38′)

f = E f̂ E
t
. (10.39′)

E has for columns the orthonormal vectors ek , k = 0,1, . . . , N − 1. Any such
matrix E , whose columns form an orthonormal set of vectors, is called a unitary
matrix (orthogonal, if E is real) and has the property that E

t
E = E E

t = IN×N ,
or equivalently, E−1 = E

t
.

The two-dimensional versions of the Fourier, cosine, and sine transforms
have matrix representations of this kind and are quickly obtained from (10.38′)
and (10.39′). Before we do this, we need to check that (10.38′) and (10.39′)
are correct (we haven’t done this yet!). This turns out to be, for the most part,
bookkeeping, but we feel it’s instructive. To proceed we’ll start with the basic
transform (10.38)

f̂ (u,v) =
N−1∑
j,k=0

f (j,k) fu,v(j,k)

=
N−1∑
j,k=0

f (j,k)eu(j)ev(k) =
N−1∑
j=0

eu(j)
N−1∑
k=0

f (j,k)ev(k). (∗)

The inner sum of the above expression can be interpreted as the entry in a matrix
product:

N−1∑
k=0

f (j,k)ev(k) = [
j th row of f

] vth
column

of E

= [
f E

]
(j,v)

where
[

f E
]
(j,v) denotes the (j,v) entry of the (matrix) product f E . Inserting

this expression back into (∗) gives

f̂ (u,v) =
N−1∑
j=0

eu(j)
[

f E
]
(j,v)

= [
uth column of E

]t vth
column
of f E

=

[
uth row of E

t
] vth

column
of f E

=
[
E

t
f E

]
(u,v).

© 2003 by CRC Press LLC

280 10 Transform Methods and Image Compression

Thus, f̂ = E
t
f E , for any N×N matrix f . This is, of course, equation (10.38′)

and, since E is unitary, it easily inverts to equation (10.39′).
The matrix equations (10.38′), (10.39′) provide clean descriptions of the

2D Fourier, cosine, and sine transforms and are found below. However, im-
plementation of these transforms are usually coded in a more efficient manner
(cf., the FFT in Exercise 10.2.12). Nevertheless, the matrix forms above do
make it easy to experiment with images, especially if using a matrix-oriented
mathematical software package such as MATLAB or Octave.

2D Fourier transform The one-dimensional Fourier transform matrix W in
(10.8′) is symmetric, i.e., has the property that Wt = W . From (10.38′) and
(10.39′), with E = W , we see that the 2D Fourier transform can be written as

f̂ = W f W (10.40′)
f = W f̂ W . (10.41′)

2D cosine transform The cosine transform matrix A is real (see Section 10.3),
hence A = A. The matrix form of the 2D cosine transform is then

f̂ = At f A (10.42′)
f = A f̂ At . (10.43′)

2D sine transform The sine transform is even simpler. The matrix B corre-
sponding to the sine transform (Section 10.3 again) is real and symmetric, i.e.,
B = B and Bt = B . Thus, the 2D sine transform is

f̂ = B f B (10.45)

f = B f̂ B. (10.46)

Exercises 10.4

1. Show that the process of cosine transforming an N×N image f is equiv-
alent to first taking the 1D cosine transform of each column followed by the
1D cosine transform of the resulting rows. Hint: f̂ = At f A = (At(At f)t)t .

Does a similar process describe the 2D Fourier transform? The general 2D
transform (10.38′)?

2. In Section 10.4.1 the even 2D signal f seen by the cosine transform was
described in a visual or geometric fashion. Describe the extension of f
provided by the 2D Fourier transform.

3. Show that the two-dimensional sine transform equations have the form

f̂ (u,v) = 2

N + 1

N−1∑
j,k=0

f (j,k)sin
π(j + 1)(u + 1)

N + 1
sin

π(k + 1)(v+ 1)

N + 1

f (j,k) = 2

N + 1

N−1∑
u,v=0

f̂ (u,v)sin
π(j + 1)(u + 1)

N + 1
sin

π(k + 1)(v+ 1)

N + 1

© 2003 by CRC Press LLC

10.5 An application: JPEG image compression 281

10.5 An application: JPEG image compression

The compression methods discussed in Chapters 5–9 can be used on image data.
In fact, the popular GIF format uses an LZW scheme to compress 256-color
images. Portable Network Graphics (PNG) is more sophisticated and capable,
using a predictor (or filter) to prepare the data for a gzip-style compressor. How-
ever, applications using high resolution images with thousands of colors may
require more compression than can be achieved with these lossless methods.

Lossy schemes discard some of the data in order to obtain better compres-
sion. The problem, of course, is deciding just what information is to be com-
promised. Loss of information in compressing text is typically unacceptable,
although simple schemes such as elimination of every vowel from English text
may find application somewhere. The situation is different with images and
sound: some loss of data may be quite acceptable, even imperceptible.

In the 1980s, the Joint Photographic Experts Group (JPEG) was formed to
develop standards for still-image compression. The specification includes both
lossless and lossy modes, although the latter is perhaps of the most interest (and
is usually what is meant by “JPEG compression”). This section will consider
only the ideas of the lossy mode, applied to greyscale images.29

The method in lossy JPEG depends for its compression on an important
mathematical and physical theme: local approximation. Both mathematical and
physical objects are often easier to understand and examine when analyzed lo-
cally. The JPEG group took this idea and fine-tuned it with results gained from
studies on the human visual system. The resulting scheme enjoys wide use, in
part because it is an open standard, but mostly because it does well on a large
class of images, with fairly modest resource requirements.

The ideas can be illustrated with a greyscale image; that is, a matrix of
integer values representing levels of grey. The range of values isn’t important in
understanding the mathematical ideas, although it is common to restrict values
to the interval [0,255], giving a total of 256 levels of grey. The ‘bird’ at left
in Figure 10.10 shows an image containing 256×256 pixels with 145 shades of
grey represented.

Portions of this image appear to contain relatively constant levels of grey.
Working locally, we could collapse these almost-constant regions to their aver-
age shade of grey. Aesthetic questions aside for now, suppose we do this, that
is, partition the 256×256 ‘bird’ image into 1024 8×8 blocks and replace each
of the 8×8 pixel blocks with its average shade of grey. The resulting image ap-
pears on the right in Figure 10.10. The original 256×256 array of numbers has
been reduced to a 32×32 array, or to 1/64 of its original size (64 = 2562/322).

On certain (mostly uninteresting) portions of the image this simple method
works quite well but, of course, considerable detail has been lost in several key

29See Section 10.7 for some remarks on color.

© 2003 by CRC Press LLC

282 10 Transform Methods and Image Compression

Figure 10.10: Block-averaging applied to ‘bird’.

areas. This idea of working locally, though, does seem to have merit. However,
as Figure 10.10 so clearly shows, at the very least it needs considerable refine-
ment before it can be thought of as a viable method. We could refine the block
size, i.e., go to a smaller than 8×8 block, but doing so could sacrifice compres-
sion; in fact, it would perhaps be better to use the largest block size we could get
away with.30 It’s tempting to imagine some sort of adaptive method that uses
large blocks when possible but goes to smaller blocks in image areas of high
detail,31 perhaps carving the picture up into odd shapes (like a jigsaw puzzle)
as the method progresses through the image. However, unless done elegantly,
this complication could add considerable baggage to the information required
for image reconstruction and thus prove self-defeating. Instead of block size
modification, JPEG simply chooses to preserve more detail in an 8×8 block
whenever it determines detail is too important to throw away.

The “detail detector” built into JPEG is the 2D cosine transform of Sec-
tion 10.4. The cosine transform (or, for that matter, any Fourier transform)
exchanges raw image (spatial) information directly for information about fre-
quency content. An 8×8 block is built up with basic 8×8 cosine block images
of increasing detail. There are 64 of these image elements, each of which is
displayed in Figure A.1 of Appendix A.

Figure 10.9 illustrates approximation by sums of the basic cosine block im-
ages (N = 32) described in that section. In the sum, terms have been ordered
so that the “tail” contains the high-frequency information. Roughly speaking,
each successive term in the sum adds a little more detail. Stopping the sum
at a certain point amounts to truncating subsequent (high) frequencies from the
original block, and is equivalent to replacing the appropriate entries in the trans-

30Of course, in the extreme case of reducing block size down to 1×1, the image will not change
nor will there be any compression.

31In a sense, wavelet techniques attempt this.

© 2003 by CRC Press LLC

10.5 An application: JPEG image compression 283

Compression
original
image↓

split into
n×n blocks → transform

blocks → quantize → coder

↓
output

Decompression
input

stream↓
decoder → dequantize

blocks → invert
transform → reconstruct

blocks
↓

output
image

Figure 10.11: A schematic of the JPEG process.

formed matrix with zeros. Discarding these trailing zeros and retaining only the
nonzero coefficients corresponds to a compression method—and can even be
considered a special case of JPEG.32

JPEG exploits the idea of local approximation for its compression: 8×8
portions of the complete image are transformed using the cosine transform and
then the information retained in each block is quantized by a method which
tends to suppress higher-frequency elements. Figure 10.11 is a schematic of
JPEG and JPEG-like compression schemes. Below is a quick summary of the
ideas behind JPEG.

1. Work locally. Carve the image into smaller k×k blocks. In the case of
JPEG, an m×n image is split up into 8 pixel by 8 pixel blocks, i.e., k = 8.
These blocks are usually very small pieces of the entire image, e.g., in
a 256×256 pixel image, an 8×8 block occupies only 100(82/2562) =
.098% of the picture area.

2. Transform. Each block is transformed to expose spatial frequencies (de-
tail) within. JPEG uses the cosine transform and expresses the original
image in terms of 64 basic “cosine” images of fixed horizontal and verti-
cal spatial frequencies; see Figure A.1.

3. Quantize. A “rounding” procedure is performed which reduces magni-
tudes of the transformed coefficients. Typically more aggressive reduc-
tion is performed on coefficients corresponding to high-frequency com-
ponents. The coefficients which quantize to zero correspond to frequen-

32The amount of compression is complicated by the fact that the entries in the original and trans-
formed matrices are not in the same range, but the main idea is correct. Also, to be precise, the
approximation is a special case of JPEG only if the image is 8×8 and the entries in the quantizer
can be chosen sufficiently large.

© 2003 by CRC Press LLC

284 10 Transform Methods and Image Compression

cies omitted during block reconstruction. This is the “lossy” step of
JPEG.

4. Encode. The output of step 3 is compressed with a lossless scheme. Huff-
man and arithmetic coding are specified in the JPEG standard.

We’ve already said something about the benefits of working on small blocks
within an image. But there is an inherent weakness in any local approach that
does not take into account the rest of the image: if small blocks are processed
one at a time, removing information in a way that ignores the rest of the im-
age, then we shouldn’t be surprised to find discontinuities between neighboring
blocks after the image has been, block by block, reassembled. The question is
whether or not they are noticeable—they certainly can be. For example, in Fig-
ure 10.10 these blocking artifacts can be seen just about everywhere (of course,
the simplistic block-averaging scheme used there wiped clean all detail from
every block).

In searching for a tool that would selectively allow more detail to remain
in a block the JPEG group found the cosine transform to have some desirable
properties. It’s relatively easy to compute, depending only on the dimension
of the block to be transformed, and is computed in the same way throughout
the image.33 The coefficients of a cosine transformed array are also arranged
in a “natural” order from the low to high frequencies. However, it is perhaps
the cosine transform’s “smoothing” effect, as much as anything, that helps us to
see that the JPEG group made a good choice. Each of the Fourier transforms,
including the cosine transform, views an image (signal) as defined everywhere
on Z2, but the cosine transform does not generally introduce sharp transients
the others may, cf., Section 10.4.1. This property allows for the design of reli-
able quantizers and their stable implementation: if the cosine transform sees a
block as containing high frequencies, then the high frequencies are likely to be
genuine, that is, they probably haven’t been artificially introduced by the trans-
form process itself. Typical images are largely continuous and locally smooth
so this “extended vision” of the cosine transform often does a decent job at pre-
dicting or guessing a few pixels into a block’s immediate surrounding.34 Even
so, the very act of quantizing transformed block by transformed block results in
abrupt changes to these blocks, producing discontinuities that ultimately will be
passed back onto the image. In practice, artifacts between blocks from a JPEG
processed image are not very noticeable unless aggressive quantizing has been
used. In this case further smoothing may be desirable.35

In the JPEG procedure, information is lost at the quantizing stage; the other
steps are invertible.36 After the transformed coefficients of a block have been

33The KLH transform depends on the data being transformed and requires on-the-fly adjustment
from one block to the next. [2]

34The “smoothing” effect of the cosine transform is discussed and compared with the Fourier and
sine transforms in Section 10.3.

35A smoothing strategy is discussed in Appendix A.
36In applications, there are also roundoff errors when transforming, but these are usually minor

compared with the information loss from quantizing.

© 2003 by CRC Press LLC

10.5 An application: JPEG image compression 285

quantized, the original block cannot generally be recovered. This trade-off al-
lows JPEG to obtain typical compression ratios of 20:1 or better with little no-
ticeable image degradation. Compare this to ratios of, say, 2 or 3 to 1 for the
lossless GIF or PNG methods.

Generically, the word quantize refers to the process of slicing up or par-
titioning continuous objects (intervals of real numbers for us) into sub-pieces
(subintervals) and matching each sub-piece with some member of a discrete
set. We do this all the time when working with numbers. Here are some ex-
amples: rounding to the nearest integer, flooring, truncating a real number after
its third decimal place, or replacing a positive real number with the integer part
of its logarithm. In each of these cases, either the real numbers or some subin-
terval of real numbers has been replaced by a discrete set together with a map
containing instructions on which member of the discrete set we should assign to
a given real number. If we were to sketch the graph of the map associated with
any of the above examples we would see a series of “steps,” i.e., a step-function.

JPEG’s scheme quantizes individual ranges of each coefficient in the cosine
transform with high frequencies more aggressively quantized than low frequen-
cies. The scheme can be described as follows: each 8×8 transformed block T x
is associated with an 8×8 array q of positive integers—an array of “quantizers”
referred to as a quantizing matrix. In the simplest case, the matrix q is fixed for
each block in the image. Each entry in T x is then divided by its corresponding
integer entry in q and the result rounded to the nearest integer. Provided the
quantizer entries are large enough, the effect of this process is, quite frequently,
a very sparse matrix.

One quantizer that is frequently used with JPEG is the luminance matrix

q =

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

 .

Each entry in this array is based on a visual threshold of its corresponding basis
element, see Figure A.1 and [57]. The smaller entries of q are generally found
in its upper left-hand corner and the larger entries in the lower right. In any
(cosine) transformed block T x , the “low frequency” coefficients are located to-
wards its upper left-hand corner and the “high frequency” coefficients towards
its lower right-hand corner. Thus, the effect of quantizing T x with q is to sup-
press the higher frequency signals in the original block x . The design of the
luminance table q is typical of other “JPEG quantizers.”

After the quantizing step is finished, the entries in the output array are or-
dered, from low to high frequency, trailing zeros are truncated, and the resulting
string encoded. Figure 10.12 indicates the low to high frequency ordering of a
transformed (and transformed-quantized) block. In this ordering, an entry cor-

© 2003 by CRC Press LLC

286 10 Transform Methods and Image Compression

0 �� 1

����
�

5 �� 6

����
�

14 �� 15

����
�

27 �� 28

����
�

2
��

4

�����
7

����
�

13

�����
16

����
�

26

�����
29

����
�

42
��

3

�����
8

����
�

12

�����
17

����
�

25

�����
30

����
�

41

�����
43

����
�

9
��

11

�����
18

����
�

24

�����
31

����
�

40

�����
44

����
�

53
��

10

�����
19

����
�

23

�����
32

����
�

39

�����
45

����
�

52

�����
54

����
�

20
��

22

�����
33

����
�

38

�����
46

����
�

51

�����
55

����
�

60
��

21

�����
34

����
�

37

�����
47

����
�

50

�����
56

����
�

59

�����
61

����
�

35 �� 36

�����
48 �� 49

�����
57 �� 58

�����
62 �� 63

Figure 10.12: Ordering of the block entries.

responds to the amplitude of a frequency that is at least as high as the frequency
of its predecessors.

Quantizing considerably reduces the number of distinct values that quan-
tized coefficients can assume. Repetition of values among quantized coeffi-
cients is likely to be found. In practice, zero is the most commonly repeated
value and it’s usually the case that all but a small handful of the 64 coeffi-
cients in the block get quantized to zero. In such cases the block will have a
string representation consisting of a few nonzero quantized coefficients delimit-
ing “long” strings of zeros and, since high frequencies are targeted aggressively,
trailed by zeros to the end of the block. There is no need to encode the trail-
ing zeros, only to mark where they begin in the block. The typical result is a
transformed-quantized block with a string representation containing far fewer
than 64 coefficients. Moreover, a JPEG encoder, designed to exploit the form
of this string, is waiting to compress it even further.

The process (omitting the encoder) on a given matrix x follows the diagram

x
transform−→ T x

quantize−→ QT x
dequantize−→ T x̃

invert−→ x̃

where T is the cosine transform, defined by T x = At x A with A, the 8×8 cosine
transform matrix, given (to a few places of accuracy) by:

A =

.35 .35 .35 .35 .35 .35 .35 .35

.49 .42 .28 .10 −.10 −.28 −.42 −.49

.46 .19 −.19 −.46 −.46 −.19 .19 .46

.42 −.10 −.49 −.28 .28 .49 .10 −.42

.35 −.35 −.35 .35 .35 −.35 −.35 .35

.28 −.49 .10 .42 −.42 −.10 .49 −.28

.19 −.46 .46 −.19 −.19 .46 −.46 .19

.10 −.28 .42 −.49 .49 −.42 .28 −.10

 .

Let’s follow the process on a particular 8×8 matrix x , taken from part of the
smooth background in the ‘Lena’ image in Figure A.3. The background in

© 2003 by CRC Press LLC

10.5 An application: JPEG image compression 287

‘Lena’ has little shade variation (translation: little or no high-frequency pres-
ence), so we expect x to compress well. x is at top left of the following dia-
gram:37

102 104 105 110 111 110 118 115
104 106 107 103 107 106 109 108
104 107 107 111 108 107 109 116
104 104 110 107 113 113 112 111
105 104 108 106 111 111 108 108
104 107 108 109 109 107 107 108
105 103 108 109 108 108 111 111
104 107 106 109 107 112 105 111

T

��

104 105 106 107 109 110 111 112
104 105 106 107 109 110 111 112
104 105 106 107 109 110 111 112
104 105 106 107 109 110 111 112
104 105 106 107 109 110 111 112
104 105 106 107 109 110 111 112
104 105 106 107 109 110 111 112
104 105 106 107 109 110 111 112

864.0 −17.0 −3.8 −3.4 0.5 −1.1 0.7 1.2
1.9 −5.2 2.4 −0.8 −0.6 0.9 −3.8 3.0

−0.9 −2.6 2.7 −1.4 0.3 1.5 −2.5 −3.0
−0.5 −0.9 −1.5 1.6 −0.8 2.4 −2.5 2.9

3.8 −4.5 −2.6 4.1 −1.2 −0.6 1.6 −0.1
5.9 −6.1 −0.6 −1.5 1.4 3.5 −1.3 1.1
2.5 −0.3 −0.3 −3.3 2.6 −1.3 −1.9 −4.5
1.0 −1.9 1.3 −1.4 2.6 1.3 −0.2 −1.4

Q ��

54 −2 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

(QT)−1

��

The encoder receives its information from the sparse matrix QT x . The
entries in the block QT x are ordered (cf., Figure 10.12) and the tokens: 54, −2,
EOB are sent on to the encoder for further compression (EOB denotes an end of
block marker). The information contained in this string permits the array QT x
to be reconstructed exactly. At the receiving end, this is the only information
there is about the original x . From this information, the decoder can produce
the block x̃ at the top right of the diagram. We remark that because 8×8 blocks
make up such a relatively small piece of most images, the sparseness of QT x
may be typical of a large fraction of the total number of blocks in an image.

It’s interesting to note that approximation x̃ has only shade variation in the
horizontal direction and not the vertical—this observation is easy to spot from
the transformed-quantized matrix QT x and the cosine basis image shown in
the first row and second column of Figure A.1. The entry-by-entry difference
between x and its JPEG replacement x̃ is

x − x̃ =

−2 −1 −1 3 2 0 7 3
0 1 1 −4 −2 −4 −2 −4
0 2 1 4 −1 −3 −2 4
0 −1 4 0 4 3 1 −1
1 −1 2 −1 2 1 −3 −4
0 2 2 2 0 −3 −4 −4
1 −2 2 2 −1 −2 0 −1
0 2 0 2 −2 2 −6 −1

 .

The eye, of course, is the best device to measure this error.

37Note that (QT)−1 is used here to indicate dequantizing followed by the inverse transform;
however, the quantizing step T x �→ QT x is not invertible, so this is a slight abuse of notation.
Also, the result of the inverse transform has been rounded.

© 2003 by CRC Press LLC

288 10 Transform Methods and Image Compression

Here is another example. The 8×8 block z in the top left of the following
diagram is taken from the same ‘Lena’ image but from a region where detail is
prevalent:

150 151 155 169 164 149 156 171
156 158 161 162 156 157 172 174
161 145 150 160 164 175 168 155
140 133 154 163 163 154 159 164
140 151 163 156 145 156 168 172
158 154 142 141 155 165 165 146
154 142 142 154 161 152 149 157
147 145 151 156 144 141 158 168

T

��

146 158 170 168 158 153 159 168
161 153 148 156 169 173 164 153
158 150 145 153 167 173 165 155
139 151 162 161 154 152 162 173
139 150 160 158 151 150 161 173
157 147 139 145 159 167 162 154
159 148 139 143 156 164 159 151
144 153 159 154 144 142 154 166

1245.9 −37.3 0.5 −6.4 10.6 10.4 −1.1 1.8
26.4 −3.7 −7.7 −5.0 2.6 1.4 0.0 −0.5
−0.8 9.3 6.7 −9.4 13.9 −3.5 −5.7 −1.9
−1.8 5.6 4.1 1.4 −5.5 −8 −4.5 −0.3
−6.9 −8.2 −3.4 −31.7 6.4 1.3 0.7 0.5

−10.6 1.0 −17.7 12.9 18.4 −3.6 2.7 2.0
−0.9 4.1 −0.2 19.3 −6.7 1.8 −0.9 −1.7

4.8 −0.2 −0.2 −1.8 −0.6 0.3 3.7 −4.1

Q ��

78 −3 0 0 0 0 0 0
2 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

(QT)−1

��

QT z is still sparse but a much longer string

78,−3,2,0,0,0,0,−1,1,0, . . . ,0︸ ︷︷ ︸
23 zeros

,−1,EOB

is sent to the encoder. However, the JPEG standard requires the encoder to
run-length encode the two stretches of zeros, so, in the end, the block will still
compress well. Detail is more important in z than in x and, correspondingly,
the JPEG process keeps more of it.

Software from the Independent JPEG Group was used to compress ‘bird’ at
several “quality” levels, and the results are displayed in Figure 10.13. The sizes
are given in bits per pixel (bpp); i.e., the number of bits, on average, required to
store each of the numbers in the matrix representation of the image. The sizes
for the GIF and PNG versions are included for reference.38

Exercises 10.5

1. Define a quantizing matrix

q =
3 5 7 9

5 7 9 11
7 9 11 13
9 11 13 15

 .

For each x below, compute the transformed matrix T x and then the quan-
tized matrix QT x = round(T x ./q), where we have borrowed the following

38‘bird’ is part of a proposed collection of standard images at the Waterloo BragZone, and has
been modified for this textbook.

© 2003 by CRC Press LLC

10.5 An application: JPEG image compression 289

(a) original test image
4.9 bpp GIF, 4.3 bpp PNG

(b) 1.3 bpp JPEG

(c) .74 bpp JPEG (d) .34 bpp JPEG

(e) .16 bpp JPEG (f) difference between (a) and (e)

Figure 10.13: GIF, PNG, and JPEG compression on ‘bird’.

© 2003 by CRC Press LLC

290 10 Transform Methods and Image Compression

MATLAB notation.

• If A is a matrix, then round(A) is the matrix obtained from A by round-
ing each of its entries to the nearest integer.

• If B is a matrix of the same dimensions as A, then A./B is the matrix
obtained by dividing each entry of A by the corresponding entry of B .

(a)

x =
160 160 160 160

160 160 160 160
160 160 160 160
160 160 160 160

(b)

x =
160 160 160 161

160 160 161 162
160 161 162 163
161 162 163 164

(c)

x =
160 0 0 0

160 0 0 0
160 160 0 0
160 160 160 0

It has been said that JPEG doesn’t do well on cartoons. Why would
someone say this and what do they really mean? Is it a “true” state-
ment? Does this block and how it transforms shed any light on the
matter? The block in part (a) “transforms” well and you could easily
find many like it in a cartoon image. Dequantize QT x to get T x̃ , and
compare with T x . Now do an inverse cosine transform on T x̃ . Does x̃
“look” anything like the matrix x you started with?

(d)

x =
 54 70 182 81

183 1 240 227
33 106 61 167
23 7 46 38

From a compression viewpoint QT x doesn’t look very promising.
What do you think happened? Hint: MATLAB’s rand() command was
used to generate x . Is this result expected?

(e) Exchange the quantizing matrix q with a more aggressive quantizer
of your own design. Using it, repeat items (a)–(d). For example, you
could simply scale up q (multiply q by a number larger than 1), use a
piece (corner) of the JPEG’s luminance matrix, selectively grab thresh-
olds from the luminance quantizer by matching frequencies with the
4×4 basis elements, or even make up one of your own.

© 2003 by CRC Press LLC

10.6 A brief introduction to wavelets 291

2. (Project) The 8×8 transform size in JPEG was chosen for several reasons,
including hardware considerations and the desire to take advantage of local
behavior. Larger transform sizes may offer the possibility of better com-
pression at a given “quality” level, especially in high-resolution images.
Section A.1 contains a simple example of using other transform sizes on
the ‘Lena’ image.

Can JPEG benefit from a larger transform size (ignoring hardware costs)?
This is a more difficult question than can be answered here, but is well
suited for experiment. Choose one or two test images, and compress with
a “typical” JPEG 8×8 scheme. Then attempt to match the image quality,
but obtain superior compression, with larger transform sizes. You will have
to find suitable quantizing matrices for the larger transforms. In addition,
you will need to determine a way to measure compression. This could be
a simple counting of trailing zeros, a compression with some off-the-shelf
lossless compressor on the output of your scheme, or a modification of
the JPEG entropy coder (the first two of these are easy but not ideal; the
third could involve some time). Include some samples, and write a short
summary on the experiments.

3. (Project) One troublesome aspect of JPEG-like schemes is the appearance
of blocking artifacts. Section A.1 discusses a smoothing procedure pro-
posed in [57]. In brief, the scheme on a specific 8×8 block looks at nearest-
neighbor block averages in order to adjust some of the low-frequency AC
coefficients (subject to a certain clamping). Implement such a scheme
(or adapt the supplied MATLAB scripts). There are several areas for ex-
perimentation: the number of coefficients considered for smoothing, the
clamping condition, and the polynomial approximation itself. Attempt to
do better than the example given in Figure A.5.

10.6 A brief introduction to wavelets

The issue at heart in this chapter is really one of signal representation. From a
compression point of view, we would like to represent a signal efficiently, that
is, as a linear combination of basis elements using as few as possible. Since our
signals are discrete and finite, then the signal representation problem is natu-
rally modeled from a linear algebra approach with the problem’s mathematical
setting being a linear space (of “signals”) together with a suitable choice of ba-
sis elements. The linear space needs to be large enough to include all signals
we expect to encounter. For us, this has amounted to selecting RN (or CN) for
some large enough integer N .39 Thus, the real artwork in the subject comes
down to choosing basis vectors with which to describe the signals of the space.

39An N×M array (image) can be identified with a vector in RM N .

© 2003 by CRC Press LLC

292 10 Transform Methods and Image Compression

As alluded to in the preface to this chapter, there are many choices.
Features of a signal that we especially wish to examine can guide us in our

quest for the “right” basis vectors. For example, our development of the Fourier
transform basis vectors in Section 10.2 was, in a sense, a consequence of our
search for basic “frequencies” with which we could resolve periodic signals.
Before starting off on this search we needed to query just what it is we should
regard as “pure” tones or signals of fundamental frequencies. Although there
were details left to stumble over, once this question was answered, the hard
work was really finished because it was at this point where the “linear alge-
bra” machine took control and eventually led us to the (discrete) Fourier basis
elements Wk , k = 0,1, . . . , N − 1 described at the end of the section. Interest-
ingly enough, and not obvious in the process of their development, the vectors
{Wk} ended up being orthogonal. We’ve since seen that much of the mathe-
matical convenience of the Fourier transform stems from the linear algebra of
orthogonal expansions. However, requiring the basis to be orthogonal was not
something we imposed and did nothing to guide us to these special vectors: the
matter at issue was the synthesis of arbitrary signals with linear combinations
of a small, fundamental set of signals with “known” frequencies; orthogonality
was a bonus.

The Fourier transform is a very important tool, indispensable in the realm of
signal analysis. When used as a compression device, though, we might some-
times wish it had the additional capacity of being able to highlight local fre-
quency information—generally, it doesn’t. The coefficient of Wk in the Fourier
expansion of a signal may yield information about the overall strength of the
frequency (vector) Wk in the signal, but this information is global: even if a
coefficient is substantial, it doesn’t normally give us any clue as to what time
interval(s) over which the corresponding frequency is significant.

As an example, consider a signal that is flat for a time, then rises to oscillate
rapidly over a short period of time, and then again becomes flat.40 Omit a co-
efficient from the Fourier transform of such a signal and you may have trouble
reconstructing it well. In such a situation, it could be advantageous to have, at
our disposal, basis elements that reflect this sort of localization property. Per-
haps then we would need fewer of them to describe such a signal—certainly a
desirable situation from a compression standpoint.

The Fourier transform is a general signal analysis tool and as such it is not
too difficult to find special cases where it may not be optimal to use. There have
been attempts to adapt the Fourier transform to better handle local information.
They stretch from JPEG’s approach at cutting signals into small pieces, pro-
cessing them one at a time, to generating new basis elements from the Fourier
elements by taking their product with smooth cutoff functions (“windowed”
Fourier transforms, cf. [13]) to the study of wavelets.

The interest in and use of wavelet transforms has grown appreciably in
the recent years since Ingrid Daubechies [12] demonstrated the existence of

40Scanning left to right along a horizontal line in the bird image could yield such a signal.

© 2003 by CRC Press LLC

10.6 A brief introduction to wavelets 293

1

−1

1

ϕ

1

−1

1

ψ

Figure 10.14: The Haar scaling function ϕ and mother wavelet ψ .

continuous (and smoother) wavelets with compact support.41 They have found
homes as theoretical devices in mathematics and physics and as practical tools
applied to a myriad of areas including the analysis of surfaces, image editing
and querying, and, of course, image compression.

Our goal in this section is to introduce a very simple wavelet family, the
Haar wavelet, and apply it to an image compression problem. We’ll use the
‘bird’ image from the last section as our test image and keep the presentation in
line with the “linear algebra of orthogonal expansions” theme used in the rest
of this chapter. The Haar example can be presented, somewhat superficially,
without the theoretical structure necessary to understand wavelets more fully;
for this same reason it is also an incomplete introduction to the method. We use
it here mainly because of its accessibility and also because it really does work
as an image compression device. However, the Haar wavelet is not nearly the
whole story on wavelets and we refer the interested reader to several excellent
sources on theory and further applications of wavelets, in particular see [13,14,
45, 52, 54, 58, 68,78, 79].

Perhaps the simplest example of wavelets are the Haar wavelets. Start with
the Haar scaling function

ϕ(x) =
{

1, if 0 ≤ x < 1,

0, otherwise.
(10.47)

The mother Haar wavelet, ψ , is defined by

ψ(x) =
1, if 0 ≤ x < 1/2,

−1, if 1/2 ≤ x < 1,

0, otherwise.

The adjective “mother” should become clearer presently. Figure 10.14 contains
the graphs of these two functions.

Note that both of these functions are “finitely” supported and orthogonal on

41The support of a function is defined as the closure of the set of points over which it is nonzero.

© 2003 by CRC Press LLC

294 10 Transform Methods and Image Compression

0.5 1

−1

1

ψ1
0

1

0.5

−1

1

ψ1
1

Figure 10.15: Wavelets ψ1
0 and ψ1

1 .

R. In fact, their common support is the interval [0,1] and they are orthogonal
there as well. The unit interval is the place where all activity occurs and from
now on we confine ourselves to it. The wavelet ψ takes on the two values 1
and −1 on [0,1] so it seems natural to identify ψ with the ordered pair (1,−1).
Over [0,1], ϕ is constant (= 1) and so could be regarded, by itself, as a basis
for the real numbers R, or, if ϕ is identified with the vector (1,1), the pair

{ϕ,ψ} =
{[

1
1

]
,

[
1

−1

]}
is an orthogonal basis for R2.

Further subdivision of the unit interval [0,1] allows us to generate an or-
thogonal basis for R4 by defining two additional wavelets

ψ1
0 (x) =

1, if 0 ≤ x < 1/4,

−1, if 1/4 ≤ x < 1/2,

0, otherwise.
ψ1

1 (x) =
1, if 1/2 ≤ x < 3/4,

−1, if 3/4 ≤ x < 1,

0, otherwise.

Graphs of these wavelets appear in Figure 10.15. Note the size of their sup-
ports is half that of the mother wavelet ψ . In fact, these new wavelets are
just offsprings of ψ in the sense that ψ1

0 (x) = ψ(2x) and ψ1
1 (x) = ψ(2x − 1).

The interval [0,1] is divided into fourths by the two wavelets ψ1
0 and ψ1

1 and
we may think of ϕ, ψ , ψ1

0 , and ψ1
1 as the 4-tuples (1,1,1,1), (1,1,−1,−1),

(1,−1,0,0), and (0,0,1,−1), respectively. In this case the collection

{ϕ,ψ,ψ1
0 ,ψ1

1 } =

1

1
1
1

 ,

 1
1

−1
−1

 ,

 1
−1

0
0

 ,

 0
0
1

−1

is a orthogonal basis for R4.
We can continue to add wavelets in this fashion. For example, add four

more wavelets ψ2
0 , ψ2

1 , ψ2
2 , and ψ2

3 to the set {ϕ,ψ,ψ1
0 ,ψ1

1 } by dividing the

© 2003 by CRC Press LLC

10.6 A brief introduction to wavelets 295

unit interval into eighths and defining, for k = 0,1,2,3,

ψ2
k (x) =

1, if 2k/8 ≤ x < (2k + 1)/8,

−1, if (2k + 1)/8 ≤ x < (2k + 2)/8,

0, otherwise.

Observe that ψ2
k (x) = ψ(4x − k) for k = 0,1,2,3. From inspection we can see

that the set {ϕ,ψ,ψ1
0 ,ψ1

1 ,ψ2
0 ,ψ2

1 ,ψ2
2 ,ψ2

3 } forms an orthogonal basis for R
8

when each is identified with an 8-vector in the above way

(ϕ,ψ,ψ1
0 ,ψ1

1 ,ψ2
0 ,ψ2

1 ,ψ2
2 ,ψ2

3)

=

1
1
1
1
1
1
1
1

 ,

1
1
1
1

−1
−1
−1
−1

 ,

1
1

−1
−1

0
0
0
0

 ,

0
0
0
0
1
1

−1
−1

 ,

1
−1

0
0
0
0
0
0

 ,

0
0
1

−1
0
0
0
0

 ,

0
0
0
0
1

−1
0
0

 ,

0
0
0
0
0
0
1

−1

 .

The supports of these new wavelets ψ2
k are half that of those just one “resolu-

tion” level lower, that is, half that of the ψ1
k . If this set is used as a basis for R8

then coefficients of the ψ2
k yield information about local detail in a signal.

Normalizing these eight vectors produces an orthonormal basis for R8

{ϕ/
√

8,ψ/
√

8,ψ1
0 /2,ψ1

1 /2,ψ2
0 /

√
2,ψ2

1 /
√

2,ψ2
2 /

√
2,ψ2

3 /
√

2}.
The corresponding (wavelet) transform matrix (cf. Section 10.3.1) has the form

H3 =

1/
√

8 1/
√

8 1/2 0 1/
√

2 0 0 0
1/

√
8 1/

√
8 1/2 0 −1/

√
2 0 0 0

1/
√

8 1/
√

8 −1/2 0 0 1/
√

2 0 0
1/

√
8 1/

√
8 −1/2 0 0 −1/

√
2 0 0

1/
√

8 −1/
√

8 0 1/2 0 0 1/
√

2 0
1/

√
8 −1/

√
8 0 1/2 0 0 −1/

√
2 0

1/
√

8 −1/
√

8 0 −1/2 0 0 0 1/
√

2
1/

√
8 −1/

√
8 0 −1/2 0 0 0 −1/

√
2

In general, Haar wavelets of arbitrarily fine resolution can be generated

from the mother wavelet ψ through dyadic shifts and scales of its argument.
More precisely, for a non-negative integer k (resolution level) we can define a
wavelet

ψk
j (x) = ψ(2k x − j), for j = 0,1, . . . ,2k − 1.

With this notation, ψ0
0 = ψ and the 2k+1 vectors

{ϕ}∪ {ψk′
j | k ′ = 0,1, . . . ,k; j = 0,1, . . . ,2k′ − 1}

form an orthogonal basis for R2k+1
. Identifying them with (column) vectors in

R2k+1
then normalizing and using them as columns in a matrix Hk+1 gives a

© 2003 by CRC Press LLC

296 10 Transform Methods and Image Compression

Figure 10.16: The 4×4 Haar basis elements.

wavelet transform (on R
2k+1

)

v̂ = H t
k+1v (10.48)

v = Hk+1̂v. (10.49)

10.6.1 2D Haar wavelets

Because the Haar wavelets are orthogonal, the machinery for producing a 2D
Haar wavelet transform from the 1D transform is already in place (cf., Sec-
tion 10.4). If f is an array (an image) of size R22(k+1)

and Hk+1 is the 1D Haar
wavelet transform matrix of (10.48)–(10.49), then the 2D Haar transform f̂ of
f is given by

f̂ = H t
k+1 f Hk+1.

The original image f is recovered from its transform f̂ by

f = Hk+1 f̂ H t
k+1.

The basis arrays for the 2D Haar wavelet transform are given by the 22(k+1)

matrices

ϕ(j)ϕ(j ′), ϕ(j)ψv
u (j ′), ψv

u (j)ϕ(j ′), ψv
u (j)ψv′

u′ (j ′),

where 0 ≤ v,v′ ≤ k, 0 ≤ u ≤ 2v − 1, 0 ≤ u′ ≤ 2v′ − 1, and 0 ≤ j, j ′ ≤ 2k+1 − 1
are the row and column indices.

The 16 basis images at resolution level k = 1 are shown in Figure 10.16.
They form a 2D Haar basis for the set of 4×4 matrices. Compare these with the
cosine transform elements in Figure 10.8. One can begin to see the formation
of elements with localized supports even at this “coarse” resolution level.

© 2003 by CRC Press LLC

10.6 A brief introduction to wavelets 297

Image compression with wavelets

When an image is expanded with Haar wavelets, the coefficient of the “scaling”
array ϕ(j)ϕ(j ′), 0 ≤ j, j ′ ≤ 2k − 1, is just a scaled average of all values within
the image. Coefficients of the other 2D wavelet arrays in the expansion are
usually called detail coefficients.42 The simple (lossy) compression scheme that
we’ll describe here is not as elaborate as the quantizing scheme used in JPEG.
Basically, we throw away any detail coefficient meeting a very simple criterion:

(1) start with an image f and a tolerance, say ε > 0,

(2) wavelet transform f to f̂ and replace with zero any coefficient in f̂ whose
magnitude is less than ε.

More elaborate criteria can also be used.43 In Figure 10.17 we have used
this simple scheme on ‘bird’, at several tolerance settings. Compare with Fig-
ure 10.13, where JPEG has been used at different settings to compress this same
image. Setting a coefficient to zero in the transformed image is equivalent to
eliminating the corresponding basis array in the expansion of the image—it’s
another way of saying that that particular basis element is not thought impor-
tant enough to keep in the expansion of the overall image.

Unlike JPEG, wavelets have been presented as a method that transforms
the entire image at once, not a “block” at a time. Pedagogically this makes for a
clean description of the process even though it may not always be the best way
to think about it. Also, this approach can involve fairly large matrices. However,
wavelet matrices are generally quite sparse and not too taxing for machines of
even modest performance. Even so, for applications where speed is important,
e.g., motion, fast wavelet transform algorithms exist, cf. [54].

Figure 10.17 illustrates a certain kind of simple-minded partial sum (pro-
jection) approach to compression. Examples of more sophisticated wavelet
schemes appear in Figures 10.18 and 10.19. These were generated using Geoff
Davis’ Wavelet Image Compression Construction Kit (see Appendix C). Davis
cautions, “The coder is not the most sophisticated—it’s a simple transform
coder—but each individual piece of the transform coder has been chosen for
high performance.” Figure 10.18 uses a Haar wavelet scheme, and Figure 10.19
uses a wavelet family from [3], which is the default in the Kit and different from
the Haar wavelets.

Exercises 10.6

1. Apply the Haar wavelet transform to each of the matrices in Exercise 10.5.1.
Choose some threshold of your own and discard the appropriate coeffi-
cients. Now invert and compare your results with the JPEG results, in
particular, on the array in part (c).

42This terminology is analogous to the DC and AC coefficients of the cosine transform mentioned
in Appendix A.

43l1 and l2 schemes are discussed in [15] and [68]. Coefficient quantizing schemes are also used.

© 2003 by CRC Press LLC

298 10 Transform Methods and Image Compression

(a) original, 97% nonzero (b) 21% nonzero

(c) 11% nonzero (d) 7% nonzero

(e) 4% nonzero (f) 1.6% nonzero

Figure 10.17: ‘bird’ (256×256) using Haar wavelet transform with simple
thresholding. In (b)–(f), the percentage indicates the number of nonzero coeffi-
cients in the transformed array after a threshold condition has been applied.

© 2003 by CRC Press LLC

10.6 A brief introduction to wavelets 299

(a) 1.3 bpp (b) .74 bpp

(c) .34 bpp (d) .16 bpp

Figure 10.18: ‘bird’ using Haar wavelet from Davis’ Construction Kit.

2. Find constants cn so that the Haar scaling function ϕ in (10.47) satisfies the
scaling equation

φ(x) =
∑
n∈Z

cnφ(2x − n).

Solutions to this equation are known as scaling functions and used in the
construction of wavelet families. Hint: Think geometrically, i.e., look at
Figure 10.14.

© 2003 by CRC Press LLC

300 10 Transform Methods and Image Compression

(a) 1.3 bpp (b) .74 bpp

(c) .34 bpp (d) .16 bpp

Figure 10.19: ‘bird’ using Davis’ Construction Kit with a wavelet from [3].

10.7 Notes

On color The discussion of JPEG and wavelets has centered on greyscale im-
ages. Color images may identify a red, green, and blue triple (R,G, B) for each
of the pixels, although other choices are possible. Color specified in terms of
brightness, hue, and saturation, known as luminance-chrominance representa-
tions, may be desirable from a compression viewpoint, since the human visual
system is more sensitive to errors in the luminance component than in chromi-
nance [57]. Given a color representation, JPEG and wavelet schemes can be
applied to each of the three planes.

© 2003 by CRC Press LLC

10.7 Notes 301

On JPEG, fractals, and wavelets JPEG enjoys an open, freely usable standard
(other than the arithmetic coding option). This is a significant advantage in
comparison with fractal and wavelet methods. To displace JPEG will require a
scheme with real gains in speed, compression, and/or quality.

Fractal methods were advertised as one such scheme, and very good com-
pression has been achieved on some test images. There are other interesting
features (such as a certain resolution independence), although the scheme can
be somewhat intractable in practice, and the early claims for fractal methods
were probably exaggerated. Yuval Fisher [20] offers a more cautionary assess-
ment, noting two deficiencies: the encoding is computationally expensive and
the encoded image gets very large as perfect reconstruction is approached.

Wavelet and fractal methods are often said to be superior to JPEG at low bit
rates, although this generalization needs to be qualified. Tom Lane, organizer
of the Independent JPEG Group (IJG), writes:

...the limitations of JPEG the standard ought not be confused with the limi-
tations of a particular implementation of JPEG. There are hardly any JPEG
codecs available that are optimized for very low quality settings. Certainly
the IJG code is not (though I hope to do something about that in the next
release). You may see a lot of blockiness in the current IJG encoder’s
output at low [quality] settings, but you should not conclude that JPEG is
incapable of doing better than that.44

The problem, in part, is that the quantization is generally done by simple scaling
of the suggested JPEG quantizing matrices. In an earlier post, Lane remarked:

...the usual technique involves scaling the sample tables mentioned in the
JPEG standard up or down by some given ratio. This works [reason-
ably well] for scale ratios around 0.5 to 1.0 (that’s Q 50 to Q 75 in the
IJG software, for example) but loses badly at much higher or lower set-
tings. The spec’s sample tables are only samples anyway—much more is
known about quantization-table design now than was true when the spec
was drafted. Not a lot of that research has propagated into shipping prod-
ucts, though.45

In addition, compression improvements could be obtained on the encoding side
without breaking existing decoders:

...just because the decoder will reconstruct DCT coefficients [with simple
multiplication] doesn’t mean the encoder must form the encoded values
by simple division. Adobe’s (formerly Storm’s) encoder uses this idea a
little bit, but it could be taken much further. In particular, you can do “poor
man’s variable quantization” this way, without breaking compatibility with
existing decoders, just by zeroing out coefficients that shouldn’t be zero
according to a strict encoder.

44comp.compression newsgroup post, 30 Apr 1997.
45comp.compression newsgroup post, 2 Sep 1996. Quoted by permission.

© 2003 by CRC Press LLC

302 10 Transform Methods and Image Compression

This kind of adaptive quantization is discussed [57]. The problem of block-
ing artifacts could be addressed on the decoding side, possibly along the lines
outlined in [57] and Appendix A.

One can imagine having three open standards, and, perhaps with some hu-
man intervention, choosing the best scheme for a given image and given “qual-
ity” criteria. However, the climate has changed somewhat since the JPEG stan-
dard was developed, now that companies have discovered that the US Patent
Office will (in essence) grant patents on algorithms.

© 2003 by CRC Press LLC

Appendix A

JPEGtool User’s Guide

This appendix describes the “JPEGtool” package of scripts used to study aspects
of JPEG (or JPEG-like) image compression. Scripts for Matlab1 and Octave2

(and an optional Maple3 script) are provided which perform, for example, an
N×N discrete cosine transform of a matrix (image) and quantization. Section
A.1 illustrates the use of the package, and Section A.2 provides a synopsis.

At the simplest level, a standard JPEG transform and quantization scheme
can be requested with a command of the form

jpeg(’bird.pgm’)

The result can easily be displayed on-screen with standard Octave or Matlab
commands. More interesting use of the package includes display of partial
sums (as matrices or images), experiments with the transform size N and the
quantization matrices, and “smoothing” filters to reduce blocking artifacts.

Requirements

Matlab or Octave is required. Matlab is available for Macintosh computers,
OS/2, Microsoft Windows, and many Unix-like platforms including Linux. Stu-
dent editions for some platforms are also available, although these versions may
place low ceilings on the size of matrices which can be manipulated. Section
A.3 contains information on obtaining Octave.

Maple was used to illustrate the calculation of coefficients in the smoothing
program (which attempts to remove blocking artifacts), but it is not required. It
should be routine to convert this for use with one of the other mathematical
packages (MuPAD4 is a possibility).

Installation

The scripts, along with various test images in the proper form, can be obtained
by anonymous ftp from www.dms.auburn.edu in pub/compression. Users of

1The Math Works, Inc. On-line information available through http://www.mathworks.com.
2Roughly speaking, Octave is a Matlab-like tool running on many Unix-like platforms and OS/2,

and is freely-distributable under the GNU Public License (see Section A.3).
3Maple is a general-purpose symbolic algebra system from Waterloo Maple Software. On-line

information is available through http://www.maplesoft.com.
4See http://www.mupad.de or MuPAD User’s Manual, John Wiley & Sons: 0-471-96716-5,

1996.

303

© 2003 by CRC Press LLC

http://www.mathworks.com
http://www.maplesoft.com
http://www.mupad.de
http://www.dms.auburn.edu

304 A JPEGtool User’s Guide

web browsers can retrieve these using the location

http://www.dms.auburn.edu/compression

The files are “packaged” in various formats, in order to simplify installation.
The files also appear individually in the jpegtool/src subdirectory.

The files should be unpackaged if necessary and placed in a separate direc-
tory or folder on your machine. Matlab or Octave must then be made aware of
the location of these scripts (on some platforms, it suffices to set the location as
the “working directory”). The precise methods for doing these tasks depends
on the platform, and will not be discussed in this appendix.

Some sample images are delivered with the scripts, including several which
have been widely used as test images for various articles on compression. Other
images can be used, but the scripts currently require that these be in portable
graymap format. Many utilities can provide conversions between various graph-
ics formats and graymaps. Under Unix-like platforms, Poskanzer’s Pbmplus
toolkit5 and xv are commonly used.

A.1 Using the tools

This section describes some ways that the image tools can be used with Octave
or Matlab to study JPEG-like image compression. Strictly speaking, a graphical
display is not required, although most users will want to experiment with actual
images rather than just looking at the matrices.

An “image” in this context is simply a matrix of integers ranging from 0 to
255 (representing levels of gray). There are many ways to generate such images
in Matlab or Octave, but typically the starting point is a “real” image or picture
which has been saved in portable graymap format.

Approximation by partial sums

We begin with a simple example of the use of these scripts. As discussed in
Chapter 10, the cosine transform exchanges spatial information for frequency
information. If the transform is 8×8, then a given 8×8 portion of an image
can be written as a linear combination of the 64 basis matrices which appear
in Figure A.1(a). The transform provides the coefficients in the linear combi-
nation, allowing approximations or adjustments to the original image based on
frequency content. Partial sum approximations are a special case. Often, the
higher-frequency information in an image is of less importance to the eye, so
if the terms are ordered roughly according to increasing frequency, then partial
sum approximations may do well even with relatively few terms.

5Extended Portable Bitmap Toolkit. Netpbm is based on the Pbmplus distribution of 10 Dec 91,
and includes improvements and additions.

© 2003 by CRC Press LLC

http://www.dms.auburn.edu

A.1 Using the tools 305

(a) 8×8 basis elements (b) sample image and the 64 partial sums

Figure A.1: 8 ×8 basis elements, sample image, and the 64 partial sums.

Let’s take a specific 8×8 example. (Users of the student edition of Matlab
may need to use a 5×5 matrix.) We’ll use ‘>’ to denote the prompt printed by
Matlab or Octave, but this will vary by platform. Define the test image:

> x = round(rand(8)*255) % 8x8 random matrix, integer entries in [0,255]

This will display some (random) matrix, perhaps

x =

64 80 76 59 157 123 90 237
252 109 214 220 83 194 181 3
130 176 10 91 154 148 112 95
153 124 149 26 29 199 60 228
92 166 107 166 108 233 234 111
91 32 10 190 248 231 160 4
25 128 255 16 198 209 235 1
89 217 195 107 213 119 103 183

and we can view this “image” with
> imagesc(x) % Matlab users
> imagesc(x, 8) % Octave users

Something similar to the smaller image at the lower left in Figure A.1(b) will
be displayed.6 Now ask for the matrix of partial sums (the larger image in
Figure A.1(b)):

> imagesc(psumgrid(x)); % Display the 64 partial sums

The partial sums are built up from the basis elements in the order shown in
the zigzag sequence of Figure A.2. This path through A.1 is approximately
according to increasing frequency of the basis elements.

Roughly speaking, the image in Figure A.1(b) is the worst kind as far as
JPEG compression is concerned. Since it is random, it will likely have signifi-
cant high-frequency terms. We can see these by transforming:

6Octave users may see a somewhat blurred image; if so, and if xv is your viewer, try the “r”
command while the image window is active.

© 2003 by CRC Press LLC

306 A JPEGtool User’s Guide

0 �� 1

����
�

5 �� 6

����
�

14 �� 15

����
�

27 �� 28

����
�

2
��

4

�����
7

����
�

13

�����
16

����
�

26

�����
29

����
�

42
��

3

�����
8

����
�

12

�����
17

����
�

25

�����
30

����
�

41

�����
43

����
�

9
��

11

�����
18

����
�

24

�����
31

����
�

40

�����
44

����
�

53
��

10

�����
19

����
�

23

�����
32

����
�

39

�����
45

����
�

52

�����
54

����
�

20
��

22

�����
33

����
�

38

�����
46

����
�

51

�����
55

����
�

60
��

21

�����
34

����
�

37

�����
47

����
�

50

�����
56

����
�

59

�����
61

����
�

35 �� 36

�����
48 �� 49

�����
57 �� 58

�����
62 �� 63

Figure A.2: The zigzag sequence.

> Tx = dct(x) % discrete cosine transform of x

For the example above, this gives the matrix

T x =

1062.8 −69.2 −68.1 117.2 −107.0 −33.3 22.5 5.2
−44.7 26.7 117.0 −3.4 96.9 49.7 46.5 −82.4

17.9 25.2 −39.1 −81.1 18.4 −54.4 −5.4 112.0
−23.4 −115.5 −112.2 68.9 9.3 73.0 −25.7 8.5

11.5 −65.7 146.3 −149.9 43.7 −126.2 58.5 −41.2
−104.5 −82.1 61.4 −27.9 −36.9 −128.5 67.1 74.1
−77.0 −71.7 −16.9 50.6 170.4 −115.3 −90.4 −54.3

5.5 −42.3 −4.4 −5.7 −77.5 −40.3 −102.2 21.9

of coefficients used to build the partial sums in Figure A.1 from the basis el-
ements. The top left entry gets special recognition as the DC coefficient; the
others are the AC coefficients, AC0,1 through AC7,7.

The terms in the lower right of T x correspond to the high-frequency portion
of the image. Notice that even in this “worst” case, Figure A.1 suggests that a
fairly good image can be obtained with somewhat less than all of the 64 terms.
A similar example with 4×4 basis elements appears in Figure 10.8 on page 278.

It would be a good exercise at this stage to repeat the above steps with
some nicer matrix. A constant matrix might be “too nice,” but something “less
random” than the example may be appropriate.

The process of approximation by partial sums is applied to a “real” image in
Figure 10.9 on page 278, where 1/4, 1/2, and 3/4 of the 1024 terms for a 32×32
image are displayed. Our approximations retain all of the frequency information
corresponding to terms from the zigzag sequence below some selected threshold
value; the remaining higher-frequency information is discarded. Although this
can be considered a special case of a JPEG-like scheme, JPEG allows more
sophisticated use of the frequency information.

© 2003 by CRC Press LLC

A.1 Using the tools 307

On to JPEG

The ‘Lena’ image of Figure A.3 has been widely used in publications on com-
pression. However, it may be too large for some configurations; if so, the 32×32
‘math4.pgm’ image can be substituted in the examples. Perform the transform
and quantization schemes of JPEG, and view the result:

> setdefaults; % Set default quantizer, etc.
> y = jpeg(’lena.pgm’); % Do JPEG transform and quantization scheme
> imagesc(y); % Display the resulting image

At this point, the image in Figure A.3(b) should be visible. This isn’t a very
exciting use of the tools, but it does illustrate the mechanics.7

Let’s examine the process more carefully. Recall that JPEG compression
works by transforming an image so that the frequency information is directly
available, and then quantizing in a way that tends to suppress some of the high-
frequency information and also so that most of the terms can be represented in
fewer bits. To “recover” the image, there is a dequantizing step followed by
an inverse transform. (We’ve ignored the portion of JPEG which does lossless
compression on the output of the quantizer, but this doesn’t affect the image
quality.)

In the above example, the default quantizer stdQ is used. If we do the
individual steps which correspond to the above fragment, we might write

> setdefaults; % Set the default quantizer, etc.
> x = getpgm(’lena.pgm’); % Get a graymap image
> Tx = dct(x); % Do the 8x8 cosine transform
> QTx = quant(Tx); % Quantize, using standard 8x8 quantizer
> Ty = dequant(QTx); % Dequantize
> y = invdct(Ty); % Recover the image
> imagesc(y); % Display the image

It should be emphasized that we cannot recover the image completely—there
has been loss of information at the quantizing stage. It is illustrative to compare
the matrices x and y. The difference image x − y for this kind of experiment
appears in Figure 10.13 on page 289. There is considerable interest in measur-
ing the “loss of image quality” using some function of these matrices. This is a
difficult problem, given the complexity of the human visual system.

This still isn’t very exciting. In JPEG-like schemes, there are (at least) two
obvious places to experiment: choice of quantizer, and size of the block used in
the transform (which also affects the choice of quantizer).

Adjusting the quantizer

The choice of quantizer can, of course, greatly affect the results, both in terms
of compression and quality. The default quantizer in these tools is the standard

7To be precise, a rounding procedure should be done on the matrix y. In addition, we have
ignored the zero-shift specified in the standard, which affects the quantized DC coefficients.

© 2003 by CRC Press LLC

308 A JPEGtool User’s Guide

JPEG 8×8 luminance matrix

stdQ =

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

.

We can see the effects of more (or less) quantizing by scaling this matrix (or
choosing an entirely different matrix). In addition, we can ask jpeg or quant to
report the amount of compression. For example, using the standard quantizer,

> x = getpgm(’lena.pgm’); % Store the original image in x
> [y, r] = jpeg(x); % jpeg, result in y and ratio in r
> r % Print the compression ratio
r = 73.0

where the last line represents the compression achieved at the quantizing stage.8

Now we’ll use a more aggressive quantizer (namely, stdQ*2):

> [z, r] = jpeg(x, stdQ*2); % jpeg, more aggressive quantizer
> r % Print the compression ratio
r = 82.8

The compression is better, but at the cost of some degradation in the image
quality. The images are in x, y, and z, respectively, and can be displayed with
the image commands shown earlier. It may also be illustrative to examine the
errors x− y and x− z.

Many of the tools can be called with different numbers of arguments, with
different types of arguments in a given position, and with different return val-
ues. This is typical of routines in Octave or Matlab, and can be very convenient.
It is important to understand how the tools choose the quantizer and blocksize
if these are not explicitly specified in the call. For example, if quant is called
without a second argument (i.e., there is no quantizer specified), then a global
quantizer QMAT is used (where QMAT defaults to stdQ). The quantizer used by
quant becomes the new value for QMAT, and is used by default in other func-
tions such as dequant. Hence, the following sequence of calls would give the
expected results:

> q = stdQ*2; Tx = dct(x, length(q));
> QTx = quant(Tx, q); dequant(QTx);

This “works” because the call to quant will set q as the new value for the global
quantizer QMAT. Since dequant is called without specifying a quantizer as the
second argument, the routine will use QMAT as the quantizer. (In this example,
it would be preferable to set QMAT directly, and then omit passing the blocksize
to dct and the quantizer to quant.)

Of course, it would also be “legal” to replace the second line with the se-
quence

8See the reference section A.2 for the interpretation of the compression percent.

© 2003 by CRC Press LLC

A.1 Using the tools 309

QTx = quant(Tx, stdQ*2); dequant(QTx, stdQ); % wrong

This may lead to interesting results, but it is probably not what was intended,
since quant and dequant are using different quantizers. Similarly, the fragment

Tx = dct(x, 16); quant(Tx, stdQ); % wrong

is “legal,” but probably undesirable since the transform is on 16×16 blocks but
stdQ is 8×8. As a final example, note that a call such as jpeg(x,stdQ*2) will
set the global quantizer. If this call is followed by jpeg(x), then the result will
be the same as the first call.

Adjusting the blocksize

The second obvious area for experimentation is the blocksize used in the trans-
form. There are a number of reasons given for the 8×8 blocksize, includ-
ing hardware constraints. One heuristic consideration mentioned is that larger
blocks are more likely to include portions of the image which are very different,
in contrast to the “roughly constant” blocks on which JPEG does best. This is,
of course, dependent on the resolution, but it is perhaps reasonable by today’s
standards.

On the other hand, better compression may be achieved on some images
if a larger blocksize is chosen. Changing the blocksize, however, also changes
the quantizer. As an experiment, we examine the 256×256 ‘Lena’ image under
the standard JPEG 8×8 scheme and with modified schemes using transforms of
sizes 16×16 and 32×32. For the 8×8 quantizer, the suggested JPEG luminance
quantizer was used. For the other quantizers, matrices were chosen with the
typical properties of a quantizer; e.g., entries increase from the top left to the
bottom right. Matrices with this rough property can be obtained from the Hilbert
matrix, available in Matlab or Octave with the ‘hilb’ function. The fragment
for the 16×16 experiment appears below:

> x = getpgm(’lena.pgm’); % Get the Lena image
> q = 6 ./ hilb(16) + 26 % Possible 16x16 quantizer
> y = jpeg(x, q); % Do 16x16 transform
> imagesc(y); % Matlab users
> imagesc(y, 2); % Octave users

Figure A.3 shows the results. An analysis of the compression and the image
quality needs to be done before making any definitive statements. In addition,
there are some serious questions about our choice of quantizers for the larger
blocksizes. However, it is perhaps safe to say that the 32×32 transform is
too large for this particular example. It’s not hard to see why there is serious
degradation: a 32×32 block covers a relatively large portion of the image, and
much of the “local” property on which JPEG relies has been lost.

A JPEG enhancement

As a final example of the use of these scripts, we consider an enhancement to
JPEG described in Pennebaker and Mitchell [57]. One troublesome aspect of

© 2003 by CRC Press LLC

310 A JPEGtool User’s Guide

(a) 256×256 original (b) standard 8×8 JPEG

(c) 16×16 JPEG (d) 32×32 JPEG

Figure A.3: ‘Lena’ with various transform sizes.

JPEG-like schemes is the appearance of “blocking artifacts,” the telltale discon-
tinuities between blocks which often follow aggressive quantizing. The image
on the left in Figure A.5 was produced using stdQ*4 as the quantizer. Clearly
visible blocks can be seen, especially in the “smoother” areas of the image.

1DC 2DC 3DC

4DC 5DC 6DC

7DC 8DC 9DC

Since the DC coefficients represent the (scaled)
average value over the block, it might be reasonable
to use the nearest-neighbor coefficients to smooth
a given block by predicting the low-frequency AC
coefficients. Any low-frequency AC coefficients
which are zero will be replaced by the predicted
values. However, the replacement values should
be “clamped” so that (in magnitude) they do not
exceed one-half of the corresponding value in the
quantizer (values larger than this would not have quantized to zero).

© 2003 by CRC Press LLC

A.1 Using the tools 311

Think of the original image X as a surface with height at (y,x) given by
X (y,x). For a given N×N block (the block corresponding to DC5 in the grid),
the 3×3 superblock consisting of its nearest neighbors contains 32 N2 total en-
tries. Fit a polynomial

p(y,x) = a1x2y2 + a2x2y + a3xy2 + a4x2 + a5xy + a6y2 + a7x + a8y + a9

by requiring that the average value over the kth submatrix equal DCk (this gives
nine equations for the unknowns a1, ...,a9). The polynomial defines a surface
over the center block, which approximates the corresponding portion of the
original surface.9 Figure A.4 shows a surface X in (a) and the polynomial ap-
proximations in (b).

The polynomial approximation is fed through the cosine transform, giving
AC “predictor” coefficients (in terms of the DC coefficients) for the correspond-
ing portion of the original surface. The first two such predictors (which can be
obtained from from the ‘deblockc’ Maple script) are given by

AC0,1 = α(DC4 − DC6) and AC1,0 = α(DC2 − DC8),

where

α =
√

2
128

(
cos 7π

16 + 3cos 5π
16 + 5cos 3π

16 + 7cos π
16

) ≈ 0.14235657.

The decoder, which only has the quantized information from the original sur-
face, uses these predictors to “guess” suitable values for the low-frequency AC
coefficients (subject to the clamping described above). Figure A.4 illustrates the
process, where the lowest five AC coefficients were considered for smoothing.
The procedure applied to an aggressively quantized ‘bird’ appears in Figure A.5.

As an elementary example of this smoothing process, we can consider a
single 3×3 superblock. Since the smoothing process is done on the matrix
which results from

x
transform−→ T x

quantize−→ QT x
dequantize−→ T y,

we may as well define T y directly. Let’s take T y to be zero, except for the 9
DC coefficients (which we take to be 1–9, respectively):

> Ty = zeros(8*3); % Initialize 24x24 superblock
> for k=1:9 % 9 DC coefficients to define
> r = floor((k-1)/3)*8+1; % Determine proper (row,col) of DC_k
> c = rem(k-1,3)*8+1;
> Ty(r, c) = k; % Define the DC_k entry
> end
> Ty % Display the matrix

Since all the AC coefficients are zero, the result of the inverse transform (on
one of the 9 blocks) will be a matrix with k/8 in every entry, where k is the DC
coefficient. Display this with:

> imagesc(invdct(Ty,8)); % Display the result

9There is a scaling involved at this stage.

© 2003 by CRC Press LLC

312 A JPEGtool User’s Guide

0
10

20
30

40
50

0

10

20

30

40

50
−100

−50

0

50

100

(a) original surface
0

10
20

30
40

50

0

20

40

60
−100

−50

0

50

100

(b) polynomial approximation

0
10

20
30

40
50

0

10

20

30

40

50
−100

−50

0

50

100

(c) JPEG on original surface
0

10
20

30
40

50

0

10

20

30

40

50
−100

−50

0

50

100

(d) smoothed version

Figure A.4: The smoothing process.

Figure A.5: ‘bird’ with aggressive quantizing, then smoothed.

© 2003 by CRC Press LLC

A.1 Using the tools 313

Figure A.6: Original and the “smoothed” superblock.

Finally, we can see the results of the smoothing process with

> Tz = deblock(Ty, stdQ); % Smooth
> imagesc(invdct(Tz,8)); % Display the result

The two images appear in Figure A.6.
This simple example shows what the smoothing process would do with

such a superblock, but it is not very clear if this is a viable process. Looking
back at Figure A.5, we might even ask why the process didn’t do better. As an
experiment, the smoothing procedure can be directed to consider more (or less)
than the five lowest-frequency AC coefficients.

A better question might be “How much could be expected?” Recall that
the procedure uses only the DC coefficients of nearest neighbors. This scheme
is attractive, in part because of its simplicity and the fact that it can be used as
a back-end procedure to JPEG (regardless if the original file was compressed
with this in mind). However, JPEG achieves its rather impressive compression
by discarding information. The smoothing procedure sometimes makes good
guesses about the missing data, but it cannot recover the original information.

© 2003 by CRC Press LLC

314 A JPEGtool User’s Guide

A.2 Reference

basis

Purpose Calculate basis matrices.

Synopsis basis(v,u)

basis(v,u, N)

Description basis finds the (v,u) basis matrix of size N×N . N defaults to 8.

See also basisgrid, psum, psumgrid

basisgrid

Purpose Create matrix of N×N basis elements.

Synopsis basisgrid
basisgrid(N)

Description The N×N basis matrices in a cosine expansion are returned in a
matrix (with (N + 1)N rows, due to the space between submatrices). N
defaults to 8.

See also basis, psumgrid

dct

Purpose Perform discrete cosine transform on an image.

Synopsis dct
dct(X)

dct(X, N)

Description dct cuts an m×n image X into N×N subimages and transforms
these images. If X is not given, then X = ans. If N is not given, then N is
the size of the global quantizing matrix QMAT, or, if QMAT is undefined
or of size 0, then N = 8.

See also invdct

dctmat

Purpose Build the N×N matrix for the cosine transform.

Synopsis dctmat
dctmat(N)

Description The N×N matrix for the cosine transform is returned. N defaults
to 8.

Example If X is N×N , then

c = dctmat(N); c ∗ X ∗ c′

would give the cosine transform of X.

© 2003 by CRC Press LLC

A.2 Reference 315

deblock

Purpose Smooth blocking artifacts.

Synopsis deblock(X)

deblock(X, Q)

deblock(X,k)

deblock(X, Q,k)

Description deblock performs a smoothing procedure in an effort to reduce
blocking artifacts (the telltale discontinuities between blocks which of-
ten follow aggressive quantizing). For a given block, a polynomial is
fitted using the DC coefficients from nearest neighbors. The k (default
5) lowest-frequency zero AC coefficients are replaced by values from the
polynomial. Replaced values are clamped so that (in magnitude) they do
not exceed values which would not have quantized to zero. If the quan-
tizer Q is not given, then the global QMAT is used.

The procedure is applied to the matrix T y which (at least conceptually)
is the result of

x
transform−→ T x

quantize−→ QT x
dequantize−→ T y,

Bugs It’s slow.

deblockc [Maple]

Purpose Calculate AC coefficients in a smoothing scheme.

Synopsis deblockc()
deblockc(k)

deblockc(k, N)

Description deblockc is a Maple procedure to find the AC coefficients (in
terms of the DC coefficients) which could be used as part of a smoothing
procedure to reduce blocking artifacts (the telltale discontinuities between
blocks which often follow aggressive quantizing) in JPEG.

This procedure may be of interest since it symbolically solves for the co-
efficients; however, no routines depend on deblockc. See the text for ex-
amples and more information. The procedure is described in Pennebaker
and Mitchell [57].

Example

AC := deblockc(k, N) :
will display k (default value is 5) of the terms in the zigzag sequence
{AC0,1, AC1,0, AC2,0, . . . } (first symbolically, then numerically) and the
results are stored in AC . N is the blocksize used by the transform (default
is 8).

© 2003 by CRC Press LLC

316 A JPEGtool User’s Guide

dequant

Purpose Unapply quantizing matrix.

Synopsis dequant
dequant(X)

dequant(X, Q)

Description dequant cuts an m×n matrix X into N×N matrices and dequan-
tizes using the matrix Q. If X is not given, then X = ans. If Q is not
given, then Q = QMAT.

do dct

Purpose Utility routine to do forward or inverse transform.

Synopsis do dct(X, N, inv)

Description do dct cuts an m×n image X into N ×N subimages and trans-
forms these images. It is designed to be called from higher-level routines
such as dct and invdct. N is the size of the transform, and inv is a flag
indicating forward (FALSE) or inverse (TRUE).

Bugs It’s slow.

See also dct, invdct

getint

Purpose Retrieve an integer from a stream.

Synopsis getint(fid)

Description getint reads the next integer from fid. All characters from ‘#’ to
the end of a line are ignored. Intended to be used by other scripts, such
as getpgm.

getpgm

Purpose Read a graymap file.

Synopsis getpgm(filename)
[x,maxgray] = getpgm(filename)

Description getpgm reads a pgm file (in either raw P5 or ascii P2 format)
and returns a matrix suitable for display with the image function. The
maxgray return value is the maximum gray value (see pgm(5)).

Bugs Under Octave-1.1.1, only raw P5 format can be used.

invdct

Purpose Perform inverse cosine transform on an image.

Synopsis invdct
invdct(X)

invdct(X, N)

© 2003 by CRC Press LLC

A.2 Reference 317

Description invdct cuts an m×n image X into N×N subimages and performs
an inverse cosine transform. If X is not given, then X = ans. If N is not
given, then N is the size of the global quantizing matrix QMAT, or, if
QMAT is undefined or of size 0, then N = 8.

See also dct

jpeg

Purpose Converts image via transform → quantize → invert.

Synopsis jpeg(X)

jpeg(X, Q)

[Y,r] = jpeg(X)

[Y,r] = jpeg(X, Q)

Description jpeg takes the original image X (which may be a matrix or a file-
name) and uses the cosine transform and the specified quantizing matrix
Q to generate a new image Y . The process is lossy at the quantizing
stage, and Y will usually differ from X .

If the quantizer is not given, then the global quantizer QMAT will be
used. Initially, QMAT is the 8×8 JPEG luminance matrix. The quantizer
becomes the new value for QMAT.

If the ratio r is requested, then a calculation of the “lossy compression”
is performed. This is returned as a percentage and measures the amount
of savings obtained at the quantizing stage.

Bugs The ratio measures only the savings obtained by removing “trailing ze-
ros” in the submatrices. This often gives useful information about the
choice of quantizer, but it is not the whole story of compression.

psum

Purpose Calculate partial sums.

Synopsis psum(X,n)

Description The nth partial sum in the cosine series for X is returned.

psumgrid

Purpose Calculate partial sum grid.

Synopsis psumgrid(X)

Description The partial sums for X are collected (in zigzag order) in a matrix.

See also basisgrid, psum

© 2003 by CRC Press LLC

318 A JPEGtool User’s Guide

quant

Purpose Apply quantizing matrix.

Synopsis quant
quant(X)

quant(X, Q)

[Y,r] = quant
[Y,r] = quant(X)

[Y,r] = quant(X, Q)

Description quant cuts an m×n matrix X into N×N submatrices and quantizes
using the N×N matrix Q. If X is not given, then X = ans. If Q is not
given, then Q = QMAT, or, if QMAT is undefined or of size 0, then Q is
chosen to be the 8×8 JPEG luminance matrix. Q becomes the new value
for QMAT.

If the ratio r is requested, then a calculation of the “lossy compression”
is performed. This is returned as a percentage and measures the amount
of savings obtained at the quantizing stage.

Bugs See the Bugs under jpeg for the interpretation of the ratio.

setdefaults

Purpose Set defaults for jpegtool session.

Synopsis setdefaults

Description Sets various global defaults, such as the quantizing matrix QMAT
and the colormap. Should be run at the start of every session.

trailnum

Purpose Count trailing zeros in zigzag sequence.

Synopsis trailnum(X)

Description JPEG-like compression leads to matrices which usually contain
zeros in the high-frequency entries. Counting the number of trailing zeros
(in the zigzag pattern) gives an indication of the compression achieved at
the quantizing stage; trailnum returns this count.

See also jpeg, quant

zigzag

Purpose Generate traversal-through-matrix used by jpeg.

Synopsis zigzag
zigzag(N)

Description The skew-diagonal-traversal-pattern of jpeg for an N×N matrix
is returned in an N×2 matrix. N defaults to 8. The N×2 matrix contains
the appropriate row and column indices (starting at 1).

© 2003 by CRC Press LLC

A.3 Obtaining Octave 319

A.3 Obtaining Octave

Octave is a high-level language, primarily intended for numerical computations.
It provides a convenient command line interface for solving linear and nonlinear
problems numerically. Currently, Octave runs on Unix-like platforms, OS/2,
and MS-Windows (via Cygwin).10

Octave is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation (FSF).11 You can get Octave from a friend who has a copy, by
anonymous ftp, or by ordering a tape or CD-ROM from the FSF.

Free Software Foundation Voice: +1-617-542-5942
59 Temple Place - Suite 330 Fax: +1-617-542-2652
Boston, MA 02111-1307, USA E-Mail: gnu@gnu.org

Octave is developed by John W. Eaton, with contributions from many folks.
Complete sources, documentatation, and ready-to-run executables for several
popular systems are available via www.octave.org. The GNU Octave Manual
by John W. Eaton “is also now available and may be ordered from http://www.
network-theory.co.uk/octave/manual/. Any money raised from the sale of this
book will support the development of free software. For each copy sold, $1 will
be donated to the GNU Octave Development Fund.”

Support Programs

Octave relies on an external program to view images. The default is John
Bradley’s xv, but xloadimage or xli can also be used (OS/2 uses ghostview).

xv has a generous license, and use of xv generally requires registration.
Complete details are available with the source distribution. The latest version of
xv (or at least a pointer to it) is available via anonymous ftp on ftp.cis.upenn.edu,
in the directory pub/xv; the official site is now http://www.trilon.com.

xloadimage was written by Jim Frost and may be obtained from ftp.x.org
under R5contrib. The xli viewer was written by Graeme Gill and is based on
xloadimage. It may be obtained from ftp.x.org in contrib/applications.

Information on GSview, ghostview, and ghostscript may be obtained from
http://www.cs.wisc.edu/∼ghost, which is maintained by the author of GSview,
Russell Lang.

10The authors have used Octave under GNU/Linux i486 and on Sun SPARCs running So-
laris. The OS/2 port was done by Klaus Gebhardt and is available from http://hobbes.nmsu.edu
in os2/apps/math/. An article by Isaac Leung on the OS/2 version appears in OS/2 eZine magazine,
16 July 2002, www.os2ezine.com.

11The FSF is a nonprofit organization that promotes the development and use of free software.
(The word “free” refers to freedom, not price.) The GNU Project was launched in 1984 to develop
a complete Unix-like operating system (the Hurd). Variants of the GNU operating system, which
use the kernel Linux, are now widely used. GNU (guh-NEW) is a recursive acronym for “GNU’s
Not Unix.”

© 2003 by CRC Press LLC

http://www.network-theory.co.uk
http://www.network-theory.co.uk
http://www.trilon.com
http://www.cs.wisc.edu
http://hobbes.nmsu.edu
http://www.octave.org
http://www.os2ezine.com
ftp://ftp.cis.upenn.edu
ftp://ftp.x.org
ftp://ftp.x.org
mailto:gnu@gnu.org
http://hobbes.nmsu.edu

Appendix B

Source Listing for LZRW1-A

This appendix contains the complete listing of the LZRW1-A dictionary scheme
discussed in Chapter 9, along with some additional notes on the algorithm. The
authors of this book are grateful to Dr. Ross N. Williams for permission to
include the sources.1

Williams describes LZRW1-A as “a direct descendant of LZRW1 [83]”
with optimizations. These algorithms illustrate design decisions favoring speed
and low resource requirements over compression. The expensive search through
the history for a match has been almost completely eliminated by the use of a
hash function, illustrated in Figure B.1. At each stage, a hash of the first three
characters of the lookahead gives an index into the hash table. The current
value in the hash table is used for attempting a match, the hash table is updated
to point at the first character of the lookahead, and then the window is moved.
In the case of a match, the window will be moved by at least 3 characters, and
no additional updating of the hash table occurs until the next match attempt.

hash
function

hash table

 l se hells by the seashoahe sel s sS

4095 bytes 18 bytes
history lookahead

4095

0

Figure B.1: Hashing in LZRW1-A.

In short, at each stage the hash table contains pointers to the most recent oc-
currence of a 3-character sequence with the same hash, and which was obtained
at some previous matching attempt. From this, the dictionary can be identified
as all the 3–18 character sequences which start at offsets from the hash table

1Permission obtained via email 6 August 1996. Williams can be reached electronically through
http://www.rocksoft.com/ross.

321

© 2003 by CRC Press LLC

http://www.quantum.com

322 B Source Listing for LZRW1-A

(and which start in the history), together with the characters from the symbol
set.

As an example, suppose the fragment ‘�sea’ is added to the end of the
“She sells...” text, giving

 l se shells by the seashoreaShe sel s
(6,3)

(11,5)

(24,5)

sea

where the underlines indicate characters matched against the dictionary, and
the vertical line indicates the current position in the scan. At this stage, the
“preferred” match is to ‘e�sea’ in the history. However, this fragment is not
in the dictionary, and the match will actually be to the letters ‘e�se’ in the first
two words of the example.

Definitions and documentation

The C sources for LZRW1-A are listed on the next few pages. Some changes
for portability have been made; in particular, it was necessary to change the in-
terface slightly. Williams wrote a family of LZRW algorithms,2 and his basic
framework has been retained in these sources. In addition, minor reformatting
was done, and the note on patents was deleted since it was discovered that the
algorithm may be covered by patent (see Appendix C). The first portion pre-
sented below consists of definitions and documentation.

/**/
/* */
/* LZRW1-A.C */
/* */
/**/
/* */
/* Author : Ross Williams. */
/* Date : 25 June 1991. */
/* Release : 1. */
/* */
/**/
/* */
/* This file contains an implementation of the LZRW1-A data compression */
/* algorithm in C. */
/* */
/* The algorithm is a general purpose compression algorithm that runs */
/* fast and gives reasonable compression. The algorithm is a member of */
/* the Lempel-Ziv family of algorithms and bases its compression on the */
/* presence in the data of repeated substrings. */
/* */
/* The algorithm/code is based on the LZRW1 algorithm/code. Changes are: */
/* 1) The copy length range is now 3..18 instead of 3..16 as in LZRW1. */
/* 2) The code for both the compressor and decompressor has been */

2LZRW 1–3 are described briefly in [26]. Complete sources are available on Williams’ site (see
Appendix C).

© 2003 by CRC Press LLC

323

/* optimized and made a little more portable. */
/* */
/* WARNING: This algorithm is non-deterministic. Its compression */
/* performance may vary slightly from run to run. */
/* */
/**/

/* INCLUDE FILES */
/* ============= */

#include "port.h" /* Defines symbols for the non portable stuff. */
#include "compress.h" /* Defines single exported function "compress". */

/**/

/* The following structure is returned by the "compress" function below */
/* when the user asks the function to return identifying information. */
/* The most important field in the record is the working memory field */
/* which tells the calling program how much working memory should be */
/* passed to "compress" when it is called to perform a compression or */
/* decompression. For more information on this structure see compress.h. */

static struct compress_identity identity =
{
0x4B3E387B, /* Algorithm identification number. */
sizeof(UBYTE**)*4096, /* Working memory (bytes) to alg. */
"LZRW1-A", /* Name of algorithm. */
"1.0", /* Version number of algorithm. */
"22-Jun-1991", /* Date of algorithm. */
"Public Domain", /* Copyright notice. */
"Ross N. Williams", /* Author of algorithm. */
"Renaissance Software", /* Affiliation of author. */
"Public Domain" /* Vendor of algorithm. */
};

LOCAL void compress_compress (void *,UBYTE *,ULONG,UBYTE *,ULONG *);
LOCAL void compress_decompress(UBYTE *,ULONG,UBYTE *,ULONG *);

/**/

/* This function is the only function exported by this module. Depending */
/* on its first parameter, the function can be requested to compress a */
/* block of memory, decompress a block of memory, or to identify itself. */
/* For more information, see the specification file "compress.h". */

EXPORT void compress(action,wrk_mem,src_adr,src_len,dst_adr,p_dst_len)
UWORD action; /* Action to be performed. */
void *wrk_mem; /* Address of working memory we can use. */
UBYTE *src_adr; /* Address of input data. */
ULONG src_len; /* Length of input data. */
UBYTE *dst_adr; /* Address to put output data. */
ULONG *p_dst_len; /* Address of longword for length of output data. */
{
switch (action)

{
case COMPRESS_ACTION_IDENTITY:

*(struct compress_identity **) wrk_mem = &identity;

© 2003 by CRC Press LLC

324 B Source Listing for LZRW1-A

break;
case COMPRESS_ACTION_COMPRESS:

compress_compress(wrk_mem,src_adr,src_len,dst_adr,p_dst_len);
break;

case COMPRESS_ACTION_DECOMPRESS:
compress_decompress(src_adr,src_len,dst_adr,p_dst_len);
break;

}
}

/**/
/* */
/* The remainder of this file contains some definitions and two more */
/* functions, one for compression and one for decompression. This section */
/* contains information and definitions common to both algorithms. */
/* Most of this information relates to the compression format which is */
/* common to both routines. */
/* */
/**/
/* */
/* DEFINITION OF COMPRESSED FILE FORMAT */
/* ==================================== */
/* * A compressed file consists of a COPY FLAG followed by a REMAINDER. */
/* * The copy flag CF uses up four bytes with the first byte being the */
/* least significant. */
/* * If CF=1, then the compressed file represents the remainder of the */
/* file exactly. Otherwise CF=0 and the remainder of the file consists */
/* of zero or more GROUPS, each of which represents one or more bytes. */
/* * Each group consists of two bytes of CONTROL information followed by */
/* sixteen ITEMs except for the last group which can contain from one */
/* to sixteen items. */
/* * An item can be either a LITERAL item or a COPY item. */
/* * Each item corresponds to a bit in the control bytes. */
/* * The first control byte corresponds to the first 8 items in the */
/* group with bit 0 corresponding to the first item in the group and */
/* bit 7 to the eighth item in the group. */
/* * The second control byte corresponds to the second 8 items in the */
/* group with bit 0 corresponding to the ninth item in the group and */
/* bit 7 to the sixteenth item in the group. */
/* * A zero bit in a control word means that the corresponding item is a */
/* literal item. A one bit corresponds to a copy item. */
/* * A literal item consists of a single byte which represents itself. */
/* * A copy item consists of two bytes that represent from 3 to 18 bytes.*/
/* * The first byte in a copy item will be denoted C1. */
/* * The second byte in a copy item will be denoted C2. */
/* * Bits will be selected using square brackets. */
/* For example: C1[0..3] is the low nibble of the first control byte. */
/* of copy item C1. */
/* * The LENGTH of a copy item is defined to be C1[0..3]+3 which is a */
/* number in the range [3,18]. */
/* * The OFFSET of a copy item is defined to be C1[4..7]*256+C2[0..8] */
/* which is a number in the range [1,4095] (the value 0 is never used).*/
/* * A copy item represents the sequence of bytes */
/* text[POS-OFFSET..POS-OFFSET+LENGTH-1] where "text" is the entire */
/* text of the uncompressed string, and POS is the index in the text */
/* of the character following the string represented by all the items */

© 2003 by CRC Press LLC

325

/* preceeding the item being defined. */
/* */
/**/

/* The following define defines the length of the copy flag that appears */
/* at the start of the compressed file. I have decided on four bytes so */
/* as to make the source and destination longword aligned in the case */
/* where a copy operation must be performed. */
/* The actual flag data appears in the first byte. The rest are zero. */
#define FLAG_BYTES 4 /* How many bytes does the flag use up? */

/* The following defines define the meaning of the values of the copy */
/* flag at the start of the compressed file. */
#define FLAG_COMPRESS 0 /* Signals that output was result of compression.*/
#define FLAG_COPY 1 /* Signals that output was simply copied over. */

/**/

The compress routine

The main compression routine is listed next. The hash function can be seen in
the assignment of p entry. (See exercise 9.1.5 for information on this type of
hash function.) The routine returns the original string (after the header bytes) in
the case that expansion occurs (this is the overrun case).

LOCAL void compress_compress(p_wrk_mem,p_src_first,src_len,
p_dst_first,p_dst_len)

/* Input : Specify input block using p_src_first and src_len. */
/* Input : Point p_dst_first to the start of the output zone (OZ). */
/* Input : Point p_dst_len to a ULONG to receive the output length. */
/* Input : Input block and output zone must not overlap. */
/* Output : Length of output block written to *p_dst_len. */
/* Output : Output block in Mem[p_dst_first..p_dst_first+*p_dst_len-1]. */
/* Output : May write in OZ=Mem[p_dst_first..p_dst_first+src_len+288-1].*/
/* Output : Upon completion guaranteed *p_dst_len<=src_len+FLAG_BYTES. */
UBYTE *p_src_first,*p_dst_first; ULONG src_len,*p_dst_len; void *p_wrk_mem;
#define PS *p++!=*p_src++ /* Body of inner unrolled matching loop. */
#define ITEMMAX 18 /* Max number of bytes in an expanded item. */
#define TOPWORD 0xFFFF0000
{
register UBYTE *p_src=p_src_first,*p_dst=p_dst_first;
UBYTE *p_src_post=p_src_first+src_len,*p_dst_post=p_dst_first+src_len;
UBYTE *p_src_max1,*p_src_max16;
register UBYTE **hash= p_wrk_mem;
UBYTE *p_control; register ULONG control=TOPWORD;
p_src_max1= (src_len>=ITEMMAX) ? p_src_post-ITEMMAX+1 : p_src;
p_src_max16= (src_len>=16*ITEMMAX) ? p_src_post-16*ITEMMAX+1 : p_src;
*p_dst=FLAG_COMPRESS; {UWORD i; for (i=1;i<FLAG_BYTES;i++) p_dst[i]=0;}
p_dst+=FLAG_BYTES; p_control=p_dst; p_dst+=2;

while (TRUE)
{register UBYTE *p,**p_entry; register UWORD unroll=16;
register ULONG offset;
if (p_dst>p_dst_post) goto overrun;

© 2003 by CRC Press LLC

326 B Source Listing for LZRW1-A

if (p_src>=p_src_max16)
{unroll=1;
if (p_src>=p_src_max1)
{if (p_src==p_src_post) break; goto literal;}}

begin_unrolled_loop:
p_entry=&hash

[((40543*((((p_src[0]<<4)ˆp_src[1])<<4)ˆp_src[2]))>>4) & 0xFFF];
p=*p_entry; *p_entry=p_src; offset=p_src-p;
if (offset>4095 || p<p_src_first || offset==0 || PS || PS || PS)
{p_src=*p_entry; literal: *p_dst++=*p_src++; control&=0xFFFEFFFF;}

else
{PS || PS || PS || PS || PS || PS || PS || PS ||
PS || PS || PS || PS || PS || PS || PS || p_src++;
*p_dst++=((offset&0xF00)>>4)|(--p_src-*p_entry-3);
*p_dst++=offset&0xFF;}

control>>=1;
end_unrolled_loop: if (--unroll) goto begin_unrolled_loop;
if ((control&TOPWORD) == 0)

{*p_control=control&0xFF; *(p_control+1)=(control>>8)&0xFF;
p_control=p_dst; p_dst+=2; control=TOPWORD;}

}

while (control&TOPWORD) control>>=1;
*p_control++=control&0xFF; *p_control++=control>>8;
if (p_control==p_dst) p_dst-=2;
*p_dst_len=p_dst-p_dst_first;
return;

overrun: fast_copy(p_src_first,p_dst_first+FLAG_BYTES,src_len);
*p_dst_first=FLAG_COPY; *p_dst_len=src_len+FLAG_BYTES;

}

The decompress routine

Like many LZ77 schemes, the decoder is especially simple and fast. The as-
signment of bits to the offset and length, and the separation of the control bits
into a control word minimize the amount of bit-shifting which must be done.

LOCAL void compress_decompress(p_src_first,src_len,p_dst_first,p_dst_len)
/* Input : Specify input block using p_src_first and src_len. */
/* Input : Point p_dst_first to the start of the output zone. */
/* Input : Point p_dst_len to a ULONG to receive the output length. */
/* Input : Input block and output zone must not overlap. User knows */
/* Input : upperbound on output block length from earlier compression. */
/* Input : In any case, maximum expansion possible is nine times. */
/* Output : Length of output block written to *p_dst_len. */
/* Output : Output block in Mem[p_dst_first..p_dst_first+*p_dst_len-1]. */
/* Output : Writes only in Mem[p_dst_first..p_dst_first+*p_dst_len-1]. */
UBYTE *p_src_first, *p_dst_first; ULONG src_len, *p_dst_len;
{
register UBYTE *p_src=p_src_first+FLAG_BYTES, *p_dst=p_dst_first;
UBYTE *p_src_post=p_src_first+src_len;
UBYTE *p_src_max16=p_src_first+src_len-(16*2);
register ULONG control=1;
if (*p_src_first==FLAG_COPY)

© 2003 by CRC Press LLC

327

{fast_copy(p_src_first+FLAG_BYTES,p_dst_first,src_len-FLAG_BYTES);
*p_dst_len=src_len-FLAG_BYTES; return;}

while (p_src!=p_src_post)
{register UWORD unroll;
if (control==1) {control=0x10000|*p_src++; control|=(*p_src++)<<8;}
unroll= p_src<=p_src_max16 ? 16 : 1;
while (unroll--)

{if (control&1)
{register UWORD lenmt; register UBYTE *p;
lenmt=*p_src++; p=p_dst-(((lenmt&0xF0)<<4)|*p_src++);
*p_dst++=*p++; *p_dst++=*p++; *p_dst++=*p++;
lenmt&=0xF; while (lenmt--) *p_dst++=*p++;}

else
*p_dst++=*p_src++;

control>>=1;
}

}
*p_dst_len=p_dst-p_dst_first;
}

The compress header

This is a generic header file used by Williams in implementing several compres-
sion schemes.

/**/
/* */
/* COMPRESS.H */
/* */
/**/
/* */
/* Author : Ross Williams. */
/* Date : December 1989. */
/* */
/* This header file defines the interface to a set of functions called */
/* ’compress’, each member of which implements a particular data */
/* compression algorithm. */
/* */
/* Normally in C programming, for each .H file, there is a corresponding */
/* .C file that implements the functions promised in the .H file. */
/* Here, there are many .C files corresponding to this header file. */
/* Each comforming implementation file contains a single function */
/* called ’compress’ that implements a single data compression algorithm */
/* that conforms with the interface specified in this header file. */
/* Only one algorithm can be linked in at a time in this organization. */
/* */
/**/
/* */
/* DEFINITION OF FUNCTION COMPRESS */
/* =============================== */
/* */
/* Summary of Function Compress */
/* ---------------------------- */
/* The action that ’compress’ takes depends on its first argument called */
/* ’action’. The function provides three actions: */

© 2003 by CRC Press LLC

328 B Source Listing for LZRW1-A

/* */
/* - Return information about the algorithm. */
/* - Compress a block of memory. */
/* - Decompress a block of memory. */
/* */
/* Parameters */
/* ---------- */
/* See the formal C definition later for a description of the parameters. */
/* */
/* Constants */
/* --------- */
/* COMPRESS_OVERRUN: The constant defines by how many bytes an algorithm */
/* is allowed to expand a block during a compression operation. */
/* */
/* Although compression algorithms usually compress data, there will */
/* always be data that a given compressor will expand. Fortunately, the */
/* degree of expansion can be limited to a single bit, by copying over */
/* the input data if the data gets bigger during compression. To allow */
/* for this possibility, the first bit of a compressed representation can */
/* be used as a flag indicating whether the input data was copied over, */
/* or truly compressed. In practice, the first byte would be used to */
/* store this bit so as to maintain byte alignment. */
/* */
/* Unfortunately, in general, the only way to tell if an algorithm will */
/* expand a particular block of data is to run the algorithm on the data. */
/* If the algorithm does not continuously monitor how many output bytes */
/* it has written, it might write an output block far larger than the */
/* input block before realizing that it has done so. On the other hand, */
/* continuous checks on output length are inefficient. */
/* */
/* To cater for all these problems, this interface definition: */
/* > Allows a compression algorithm to return an output block that is up */
/* to COMPRESS_OVERRUN bytes longer than the input block. */
/* > Allows a compression algorithm to write up to COMPRESS_OVERRUN bytes */
/* more than the length of the input block to the memory of the output */
/* block regardless of the length of the output block eventually */
/* returned. This allows an algorithm to overrun the length of the */
/* input block in the output block by up to COMPRESS_OVERRUN bytes */
/* between expansion checks. */
/* */
/* The problem does not arise for decompression. */
/* */
/* Identity Action */
/* --------------- */
/* > action must be COMPRESS_ACTION_IDENTITY. */
/* > wrk_mem must point to a pointer to struct compress_identity. */
/* > The value of the other parameters does not matter. */
/* > After execution, p=*((struct identity **) wrk_mem) is a pointer */
/* to a structure of type compress_identity. */
/* Thus, for example, after the call, p->memory will return the number */
/* of bytes of working memory that the algorithm requires to run. */
/* > The values of the identity structure returned are fixed constant */
/* attributes of the algorithm and must not vary from call to call. */
/* */
/* Common Requirements for Compression and Decompression Actions */
/* --- */

© 2003 by CRC Press LLC

329

/* > wrk_mem must point to an unused block of memory of a length */
/* specified in the algorithm’s identity block. The identity block can */
/* be obtained by making a separate call to compress, specifying the */
/* identity action. */
/* > The INPUT BLOCK is defined to be Memory[src_addr,src_addr+src_len-1].*/
/* > dst_len will be used to denote *p_dst_len. */
/* > dst_len is not read by compress, only written. */
/* > The value of dst_len is defined only upon termination. */
/* > OUTPUT BLOCK is defined to be Memory[dst_addr,dst_addr+dst_len-1]. */
/* */
/* Compression Action */
/* ------------------ */
/* > action must be COMPRESS_ACTION_COMPRESS. */
/* > src_len must be in the range [0,COMPRESS_MAX_ORG]. */
/* > The OUTPUT ZONE is defined to be */
/* Memory[dst_addr,dst_addr+src_len-1+COMPRESS_OVERRUN]. */
/* > The function can modify any part of the output zone regardless of */
/* the final length of the output block. */
/* > The input block and the output zone must not overlap. */
/* > dst_len will be in the range [0,src_len+COMPRESS_OVERRUN]. */
/* > dst_len will be in the range [0,COMPRESS_MAX_COM] (from prev fact). */
/* > The output block will consist of a representation of the input block.*/
/* */
/* Decompression Action */
/* -------------------- */
/* > action must be COMPRESS_ACTION_DECOMPRESS. */
/* > The input block must be the result of an earlier compression op. */
/* > If the previous fact is true, the following facts must also be true: */
/* > src_len will be in the range [0,COMPRESS_MAX_COM]. */
/* > dst_len will be in the range [0,COMPRESS_MAX_ORG]. */
/* > The input and output blocks must not overlap. */
/* > Only the output block is modified. */
/* > Upon termination, the output block will consist of the bytes */
/* contained in the input block passed to the earlier compression op. */
/* */
/**/

#include "port.h"

#define COMPRESS_ACTION_IDENTITY 0
#define COMPRESS_ACTION_COMPRESS 1
#define COMPRESS_ACTION_DECOMPRESS 2

#define COMPRESS_OVERRUN 1024
#define COMPRESS_MAX_COM 0x70000000
#define COMPRESS_MAX_ORG (COMPRESS_MAX_COM-COMPRESS_OVERRUN)

#define COMPRESS_MAX_STRLEN 255

/* The following structure provides information about the algorithm. */
/* > The top bit of id must be zero. The remaining bits must be chosen */
/* by the author of the algorithm by tossing a coin 31 times. */
/* > The amount of memory requested by the algorithm is specified in */
/* bytes and must be in the range [0,0x70000000]. */
/* > All strings s must be such that strlen(s)<=COMPRESS_MAX_STRLEN. */
struct compress_identity

© 2003 by CRC Press LLC

330 B Source Listing for LZRW1-A

{
ULONG id; /* Identifying number of algorithm. */
ULONG memory; /* Number of bytes of working memory required. */

char *name; /* Name of algorithm. */
char *version; /* Version number. */
char *date; /* Date of release of this version. */
char *copyright; /* Copyright message. */

char *author; /* Author of algorithm. */
char *affiliation; /* Affiliation of author. */
char *vendor; /* Where the algorithm can be obtained. */

};

void compress(/* Single function interface to compression algorithm. */
UWORD action, /* Action to be performed. */
void *wrk_mem, /* Working memory temporarily given to routine to use. */

/* If action=..IDENTITY => Adr of id structure. */
UBYTE *src_adr, /* Address of input data. */
ULONG src_len, /* Length of input data. */
UBYTE *dst_adr, /* Address of output data. */
ULONG *p_dst_len /* Pointer to a longword where routine will write: */

/* If action=..COMPRESS => Length of output data. */
/* If action=..DECOMPRESS => Length of output data. */

);

The port header

In the original version, a fast copy routine specific to the 68000 was used. Ap-
propriate definitions for other platforms have been placed in this header file.

/**/
/* */
/* PORT.H */
/* */
/**/
/* */
/* This module contains macro definitions and types that are likely to */
/* change between computers. */
/* */
/**/

#ifndef DONE_PORT /* Only do this if not previously done. */
#define UBYTE unsigned char /* Unsigned byte */
#define UWORD unsigned int /* Unsigned word (2 bytes) */
#define ULONG unsigned long /* Unsigned word (4 bytes) */
#define LOCAL static /* For non-exported routines. */
#define EXPORT /* Signals exported function. */
#ifndef TRUE
define TRUE 1
#endif

#ifdef HAVE_FAST_COPY_H
include "fast_copy.h"
#else

© 2003 by CRC Press LLC

331

ifdef USE_BCOPY
define fast_copy bcopy
else
include <string.h>
define fast_copy(src, dst, len) memcpy(dst, src, len)
endif
#endif

#define DONE_PORT /* Don’t do all this again. */
#endif

Testing

A very simple program using two copies of the “She sells...” fragment as the
src test string will illustrate the process. The calls may look like:

/* Retrieve a pointer to the compress_identity structure. */
struct compress_identity *p;
compress(COMPRESS_ACTION_IDENTITY, &p, NULL, 0, NULL, NULL);

/* allocate p->memory bytes for wrk_mem, etc. Then call the
* compress routine.
*/
compress(COMPRESS_ACTION_COMPRESS, wrk_mem, src, src_len, dst, &dst_len);

/* The bytes in dst should be examined. The source can be recovered
* with the following call.
*/
compress(COMPRESS_ACTION_DECOMPRESS, wrk_mem, dst, dst_len, src, &src_len);

After dst is filled by the second call to compress, it is illustrative to print the
bytes and verify the contents. Also, the process might be repeated using a single
copy of the “She sells...” example. After the third call to compress, the original
string and length should be recovered in src and src len, respectively.

© 2003 by CRC Press LLC

Appendix C

Resources, Patents, and Illusions

This appendix is divided into three sections. The first contains information on
finding software and other resources. The second introduces some of the patent
issues which affect developers and users of compression algorithms. The final
section is presented as somewhat of an amusement, and shows what happens
when lack of basic mathematical reasoning is combined with advertising. It
is centered on what is known as the “WEB Compressor,” but it is a story that
seems to be repeated regularly.

C.1 Resources

Vast amounts of information and source code may be found via computer using
standard retrieval methods. This section lists some links which the authors have
found useful, along with the site for material for this book.

Documentation and scripts for this book Material directly related to this
book is maintained on

http://www.dms.auburn.edu/compression

which is also visible by anonymous ftp under pub/compression. The doc-
umentation and scripts discussed in Appendix A appear in the ‘jpegtool’
subdirectory.

Frequently Asked Questions The FAQ (maintained by Jean-loup Gailly) for
the newsgroups comp.compression and comp.compression.research is a
good source for introductory material, pointers to source code, references,
and other information. It is posted regularly on the newsgroups, and may
also be obtained via http://www.faqs.org in compression-faq. The site
contains FAQs for many newsgroups.

Arithmetic coding The implementation from [84] may be found via

ftp://ftp.cpsc.ucalgary.ca/projects/ar.cod/

333

© 2003 by CRC Press LLC

http://www.dms.auburn.edu
http://www.faqs.org
ftp://ftp.cpsc.ucalgary.ca

334 C Resources, Patents, and Illusions

A separate implementation of the same coding scheme can be found in
the book by Nelson and Gailly [53]. The code from [48] can be found on
Moffat’s page http://www.cs.mu.oz.au/˜alistair.

Barnsley and Hurd [5] present arithmetic coding in the language of frac-
tals.

Fractal image encoding Yuval Fisher’s page contains a wealth of information
and pointers to fractal methods:

http://inls.ucsd.edu/Research/Fisher/Fractals

His book [20] contains a nicely-done introduction to the topic. The Wa-
terloo Fractal Compression Project at http://links.uwaterloo.ca is another
large page. Included is a pointer to the “Waterloo BragZone” which in-
troduces a test suite and includes test results from various coders.

The second edition of [53] includes a chapter on fractal compression (by
Jean-loup Gailly). On-line information is available through Nelson’s page
and http://www.teaser.fr/˜jlgailly/.

The GNU Project and the Free Software Foundation started in 1984 to de-
velop a complete free Unix-like operating system. A number of software
packages (including Octave) used by the authors of this book are released
under the GNU General Public License. Information about the Project
and the FSF is available through http://www.fsf.org.

Info-ZIP This group supports the Zip and UnZip programs, widely used on
many platforms. Their page contains pointers to source code and doc-
umentation, and information about the authors: http://www.info-zip.org.
The zlib compression library uses the same algorithm as Zip and gzip,
and the documentation may be of interest: http://www.gzip.org/zlib/.

JPEG The images in Figure 10.13 were generated with release 6 software from
the Independent JPEG Group (IJG). Their software, along with a revised
version of [77], errata for the first printing of [57], and other information
is available via ftp://ftp.uu.net/graphics/jpeg.

League for Programming Freedom The LPF is an organization that opposes
software patents and user-interface copyrights (but is not opposed to
copyright on individual programs), http://lpf.ai.mit.edu/.

Mark Nelson maintains a collection of his articles, source code, information
on books (such as [53]), and other notes via http://marknelson.us.

US Patent and Trademark Office A searchable database of patent informa-
tion is available via http://www.uspto.gov.

© 2003 by CRC Press LLC

http://www.csse.unimelb.edu.au
http://inls.ucsd.edu
http://links.uwaterloo.ca
http://www.teaser.fr
http://www.fsf.org
http://www.info-zip.org
http://www.gzip.org/zlib
http://lpf.ai.mit.edu
http://marknelson.us
http://www.uspto.gov
ftp://ftp.uu.net

C.2 Data compression and patents 335

Portable Network Graphics PNG is designed as a GIF successor, and uses
the LZ77-variant found in gzip: http://www.libpng.org. A short history
of PNG may be found in [60].

Wavelets The Wavelet Digest at http:/www.wavelet.org may be a good starting
point. Colm Mulcahy’s Mathematics Magazine article [52] contains an
elementary introduction. A number of his papers, along with Matlab code
and images, are available from http://www.spelman.edu/˜colm.

The images in Figures 10.18 and 10.19 were generated with Geoff
Davis’ Wavelet Image Compression Construction Kit, available through
http://www.cs.dartmouth.edu/˜gdavis.

Ross Williams opened “Dr Ross’s Compression Crypt” as the first edition of
this book was going to press. http://www.ross.net/compression/ contains
notes and sources for his work on various compression-related topics,
including the LZRW family of algorithms.

C.2 Data compression and patents

The area of patents is a minefield for those interested in data compression. In
testimony prepared by the LPF for the 1994 Patent Office Hearings, Gordon
Irlam and Ross Williams write:

As a result of software patents, many areas of software development are
simply becoming out of bounds. A good example is the field of text data
compression. There are now so many patents in this field that it is virtually
impossible to create a data compression algorithm that does not infringe
at least one of the patents. It is possible that such a patent-free algorithm
exists, but it would take a team of patent attorneys weeks to establish this
fact, and in the end, any of the relevant patent holders would be able to
launch a crippling unfair lawsuit anyway.1

Companies such as Oracle, Adobe, and Autodesk presented testimony against
software patents; on the other side were companies such as IBM, Intel, Mi-
crosoft, and SGI. There were middle-ground positions: Sun testified that “the
[patent] system is indeed broken and needs addressing,” but did not call for
elimination.

Donald E. Knuth, in a letter to the patent office, writes

In the period 1945–1980, it was generally believed that patent law did
not pertain to software. However, it now appears that some people have
received patents for algorithms of practical importance—e.g., Lempel-
Ziv compression and RSA public key encryption—and are now legally

1From “Software Patents: An Industry at Risk” by Gordon Irlam and Ross Williams.

© 2003 by CRC Press LLC

http://www.libpng.org
http:/www.wavelet.org
http://www.spelman.edu
http://www.cs.dartmouth.edu
http://www.ross.net

336 C Resources, Patents, and Illusions

preventing other programmers from using these algorithms...If software
patents had been commonplace in 1980, I would not have been able to cre-
ate [TEX], nor would I probably ever have thought of doing it, nor can I
imagine anyone else doing so...The basic algorithmic ideas that people are
now rushing to patent are so fundamental, the result threatens to be like
what would happen if we allowed authors to have patents on individual
words and concepts...There are far better ways to protect the intellectual
property rights of software developers than to take away their right to use
fundamental building blocks.2

Perhaps the best known patent problem (other than the infamous exclusive-
or patent)3 concerns an LZ78-type scheme (Lempel-Ziv-Welch). The scheme
is widely used, but the general internet user probably only heard of the patent
problem when Unisys pressed for royalties in late 1994 in connection with the
GIF graphics format:4

The LZW algorithm used in compress is patented by IBM and Unisys. It
is also used in the V.42bis compression standard, in Postscript Level 2,
in GIF and TIFF. Unisys sells the license to modem manufacturers for a
onetime fee. CompuServe is licensing the usage of LZW in GIF products
for 1.5% of the product price, of which 1% goes to Unisys; usage of LZW
in non-GIF products must be licensed directly from Unisys.

And, as an example of the patent mess,

The IBM patent application was first filed three weeks before that of Unisys,
but the US patent office failed to recognize that they covered the same algo-
rithm. (The IBM patent is more general, but its claim 7 is exactly LZW.)5

To be precise, the patent office maintains that algorithms are not patentable,
but an algorithm used to solve some particular problem is considered patentable.
Irlam and Williams write: “Thus the ‘RSA algorithm’ is not patentable, but ‘use
of the RSA algorithm to encrypt data’ is patentable...For all practical purposes,
such patents can be considered patents on algorithms.”

The Stac–Microsoft lawsuit involved an LZ77-type scheme:

Waterworth patented6 the algorithm now known as LZRW1 (the “RW” is
because Ross Williams reinvented it later and posted it on comp.compres-
sion on April 22, 1991). The same algorithm has later been patented by

2Reported in Programming Freedom, the Newsletter of the League for Programming Freedom,
February 1995.

34,197,590 Method for dynamically viewing image elements stored in a random access memory
array, filed Jan 19, 1978, granted Apr 8, 1980. Cadtrack has collected large sums of money and suc-
cessfully defended this patent which includes claims of “XOR feature permits part of the drawing
to be moved or ‘dragged’ into place without erasing other parts of the drawing.”

4A short note on the Unisys action and an introduction to software patent issues can be found in
the March 1995 issue of Scientific American [10]. A new graphics specification, Portable Network
Graphics (PNG or “ping”), was developed partly in response to the Unisys action. PNG is a lossless
scheme with more capabilities than GIF.

5The patents are 4,814,746 (IBM) and 4,558,302 (Unisys). Much of this patent information
comes from the FAQ maintained by Jean-loup Gailly, and from the LPF.

64,701,745 Data compression system, filed Mar 3, 1986, granted Oct 20, 1987.

© 2003 by CRC Press LLC

C.2 Data compression and patents 337

Gibson & Graybill.7 The patent office failed to recognize that the same
algorithm was patented twice, even though the wording used in the two
patents is very similar.

The Waterworth patent is now owned by Stac Inc., which won a lawsuit
against Microsoft, concerning the compression feature of MSDOS 6.0.
Damages awarded were $120 million. (Microsoft and Stac later settled
out of court.)

The Gibson & Graybill patent is very general and could be interpreted
as applying to any LZ algorithm using hashing (including all variants of
LZ78). However, the text of the patent and the other claims make clear
that the patent should cover the LZRW1 algorithm only. (In any case the
Gibson & Graybill patent is likely to be invalid because of the prior art in
the Waterworth patent.)

The LZRW1 scheme was presented by Williams in [83]. The original GNU
zip (gzip) was to have used LZRW1. Patents on arithmetic coding affect the
graphics compression scheme known as JPEG:

IBM holds many patents on arithmetic coding.8 It has patented in par-
ticular the Q-coder implementation of arithmetic coding. The arithmetic
coding option of the JPEG standard requires use of the patented algorithm.
No JPEG-compatible method is possible without infringing the patent, be-
cause what IBM actually claims rights to is the underlying probability
model (the heart of an arithmetic coder).

From the the documents in the Independent JPEG Group’s source distribution:

It appears that the arithmetic coding option of the JPEG spec is covered
by patents owned by IBM, AT&T, and Mitsubishi...For this reason, sup-
port for arithmetic coding has been removed from the free JPEG software.
(Since arithmetic coding provides only a marginal gain over the unpatented
Huffman mode, it is unlikely that very many implementations will support
it.)

More information and references (on both sides of the patent issue) can be
found in the LPF materials.

75,049,881 Apparatus and method for very high data rate-compression incorporating lossless
data compression and expansion utilizing a hashing technique, filed Jun 18, 1990, granted Sep 17,
1991.

8Here’s a few from the FAQ: 4,286,256 Method and means for arithmetic coding using a reduced
number of operations, granted Aug 25, 1981.

4,463,342 A method and means for carry-over control in a high order to low order combining of
digits of a decodable set of relatively shifted finite number strings, granted Jul 31, 1984.

4,467,317 High-speed arithmetic compression using concurrent value updating, granted Aug 21,
1984.

4,652,856 A multiplication-free multi-alphabet arithmetic code, granted Feb 4, 1986.
4,935,882 Probability adaptation for arithmetic coders, granted Jun 19, 1990.

© 2003 by CRC Press LLC

338 C Resources, Patents, and Illusions

C.3 Illusions

Webster defines an illusion as a “mistaken idea,” and the field of data compres-
sion has had a few amusing cases. The specific example given here concerns
the “WEB compressor,” but the claims are perhaps the classic ones presented
by those who haven’t done their homework.

The FAQ has additional material on this topic. Concerning the WEB fiasco,
Jean-loup Gailly writes:

Such algorithms are claimed to be applicable recursively, that is, apply-
ing the compressor to the compressed output of the previous run, possibly
multiple times. Fantastic compression ratios of over 100:1 on random data
are claimed to be actually obtained.

Such claims inevitably generate a lot of activity on comp.compression,
which can last for several months. The two largest bursts of activity were
generated by WEB Technologies and by Jules Gilbert. Premier Research
Corporation (with a compressor called MINC) made only a brief appear-
ance.

Other people have also claimed incredible compression ratios, but the pro-
grams (OWS, WIC) were quickly shown to be fake (not compressing at
all).

The story

The claims made by WEB Technologies are not unique, and certainly illustrate
that sometimes not even common-sense analysis is performed. According to
BYTE:9

In an announcement that has generated quite a bit of interest, and more
than a healthy dose of skepticism, WEB Technologies (Smyrna, GA) says
it has developed a utility that will compress files larger than 64KB to about
one-sixteenth their original size. Furthermore, WEB says its DataFiles/16
program can compress files that the program has already compressed.

We might be willing to play along at this stage. Perhaps the announcement
exaggerates a little, and the company meant to say that it can achieve very good
compression on a large class of files. The last sentence is also cause for concern,
although it is not proof that the claims are completely bogus. However, the
article goes on to say:

In fact, according to the company, virtually any amount of data can be
compressed to under 1024 bytes by using DataFiles/16 to compress its
own output files multiple times.

9“Instant Gigabytes?”, BYTE Magazine 17(6):45, June 1992. c© by The McGraw-Hill Compa-
nies, Inc. All rights reserved. Used by permission.

© 2003 by CRC Press LLC

C.3 Illusions 339

According to the FAQ, the company’s promotional materials clearly indi-
cate that this is a lossless scheme:

DataFiles/16 will compress all types of binary files to approximately one-
sixteenth of their original size...regardless of the type of file (word pro-
cessing document, spreadsheet file, image file, executable file, etc.), no
data will be lost by DataFiles/16 [for files of at least 64K].

Performed on a 386/25 machine, the program can complete a compres-
sion/decompression cycle on one megabyte of data in less than thirty sec-
onds.

The compressed output file created by DataFiles/16 can be used as the in-
put file to subsequent executions of the program. This feature of the utility
is known as recursive or iterative compression, and will enable you to com-
press your data files to a tiny fraction of the original size. In fact, virtually
any amount of computer data can be compressed to under 1024 bytes us-
ing DataFiles/16 to compress its own output files multiple times. Then, by
repeating in reverse the steps taken to perform the recursive compression,
all original data can be decompressed to its original form without the loss
of a single bit.

The report in the FAQ goes on to say “Decompression is done by using only the
data in the compressed file; there are no hidden or extra files.”

The company apparently failed to make even the most basic mathemati-
cal analysis. A simple counting argument (such as that contained in the next
section) would have convinced them to review their statements.

The counting argument10

The WEB compressor was claimed to compress without loss all files of greater
than 64KB in size to about 1/16th their original length. A very simple counting
argument shows that this is impossible, regardless of the compression method.
It is even impossible to guarantee lossless compression of all files by at least 1
bit. (Many other proofs have been posted on comp.compression, please do not
post yet another one.)

Assume that the program can compress without loss all files of size at least
N bits. Compress with this program all the 2N files which have exactly N
bits. All compressed files have at most N − 1 bits, so there are at most 2N − 1
different compressed files (2N−1 files of size N −1, 2N−2 of size N −2, and so
on, down to 1 file of size 0). So at least two different input files must compress to
the same output file. Hence the compression program cannot be lossless. (Much
stronger results about the number of incompressible files can be obtained, but
the proofs are a little more complex.)

This argument applies of course to WEB’s case (take N = 64K · 8 bits).
Note that no assumption is made about the compression algorithm. The proof

10Contributed by Jean-loup Gailly. Used by permission.

© 2003 by CRC Press LLC

340 C Resources, Patents, and Illusions

applies to any algorithm, including those using an external dictionary, or re-
peated application of another algorithm, or combination of different algorithms,
or representation of the data as formulas, etc. All schemes are subject to the
counting argument. There is no need to use information theory to provide a
proof, just basic mathematics.

This assumes, of course, that the information available to the decompressor
is only the bit sequence of the compressed data. If external information such as
a file name, a number of iterations, or a bit length is necessary to decompress
the data, the bits necessary to provide the extra information must be included
in the bit count of the compressed data. Otherwise, it would be sufficient to
consider any input data as a number, use this as the file name, iteration count
or bit length, and pretend that the compressed size is zero. For an example
of storing information in the file name, see the program ‘lmfjyh’ in the 1993
International Obfuscated C Code Contest, available on all comp.sources.misc
archives (Volume 39, Issue 104).

A common flaw in the algorithms claimed to compress all files is to assume
that arbitrary bit strings can be sent to the decompressor without actually trans-
mitting their bit length. If the decompressor needs such bit lengths to decode
the data (when the bit strings do not form a prefix code), the number of bits
needed to encode those lengths must be taken into account in the total size of
the compressed data.

Conclusion

To get a more complete story, we recommend reading the BYTE article and the
FAQ. The folks at BYTE were clearly skeptical, and reported:

[A beta-test version] did create archive files that were compressed to the
degree that the company claimed. The beta version decompressed these
files into their original names and sizes, but, unfortunately, the contents of
the decompressed files bore little resemblance to that of the original files.

The FAQ reported:

[WEB] now says that they have put off releasing a software version of
the algorithm because they are close to signing a major contract with a
big company to put the algorithm in silicon. He said he could not name the
company due to non-disclosure agreements, but that they had run extensive
independent tests of their own and verified that the algorithm works.

He said the algorithm is so simple that he doesn’t want anybody getting
their hands on it and copying it even though he said they have filed a patent
on it. [He] said the silicon version would hold up much better to patent
enforcement and be harder to copy.

He claimed that the algorithm takes up about 4K of code, uses only integer
math, and the current software implementation only uses a 65K buffer. He
said the silicon version would likely use a parallel version and work in
real-time.

© 2003 by CRC Press LLC

C.3 Illusions 341

Our favorite statement from the BYTE article is:

According to...WEB Technologies’ vice president of sales and marketing,
the compression algorithm used by DataFiles/16 is not subject to the laws
of information theory.

Also, “The company’s spokespersons have declined to discuss the nature of
the algorithm” and, of course, there was no product. BYTE did a followup,
reporting:

WEB said it would send us a version of the program that worked, but we
never received it.

When we attempted to follow up on the story about three months later,
the company’s phone had been disconnected. Attempts to reach company
officers were also unsuccessful. WEB appears to have compressed itself
right off the computing radar screen.11

Concerning stories such as the WEB compressor, Gailly adds: “similar
affairs tend to come up regularly on comp.compression. The advertised revolu-
tionary methods have all in common their supposed ability to compress signif-
icantly random or already compressed data. I will keep this item in the FAQ to
encourage people to take such claims with great precautions.”

The US patent office apparently doesn’t read the FAQ. In July 1996, they
granted a patent (5,533,051) on a “Method for Data Compression” that repeats
several of the mathematically impossible claims discussed in the WEB story.
Gailly has an analysis on his page (see Section C.1 or the FAQ).

11“Whatever Happened To...WEB Technologies’ Amazing Compression?” BYTE Magazine
20(11):48, November 1995. c© by The McGraw-Hill Companies, Inc. All rights reserved. Used by
permission.

© 2003 by CRC Press LLC

Appendix D

Notes on and Solutions to Some
Exercises

1.1 Introduction

2. 15

1.2 Events

1. 30%

2. No. Let a = P(H H), b = P(H T), c = P(T H), and d = P(T T). The consid-
erations posed are: b = c and a + b = a + c = 1/2. In addition, a,b,c,d ≥ 0
and a +b + c +d = 1. Do these requirements determine a,b,c, and d? No: for
instance, a = b = c = d = 1/4 and a = d = 1/8, b = c = 3/8 are two different
probability assignments satisfying the requirements.

Notice that even requiring, in addition, that a = d and that b +d = c +d = 1/2
will not suffice to determine a,b,c, and d .

3. 65%. With S standing for the population and A, B,C having the obvious mean-
ings,

P(S \ (A ∪ B ∪C)) = 1 − P((A ∪ B)∪C)

= 1 −[P(A ∪ B)+ P(C)− P(A ∪ B)∩C)]
= 1 −[P(A)+ P(B)+ P(C)− P(A ∩ B)− P((A ∩C)∪ (B∩C))]
= 1 −[P(A)+ P(B)+ P(C)− P(A ∩ B)− P(A ∩C)− P(B∩C)

+ P(A ∩ B ∩C)]
= 1 − [30

100
+ 10

100
+ 12

100
− 8

100
− 7

100
− 4

100
+ 2

100

] = 65

100

1.3 Conditional probability

1. 3·2
14·13 + 11·3

14·13 + 3·11
14·13 = 1 − 11·10

14·13 = 36
91

2. 1 − 11·10·9
14·13·12 = 199

364

3. 1 − (11
14)2 = 75

196

343

© 2003 by CRC Press LLC

344 D Notes on and Solutions to Some Exercises

4. (a) 1
100,000 + 99,999

100,000
1

150,000 = 249,999
15,000,000,000

(b)
99,999

100,000
1

150,000
(249,999)/15 billion = 99,999

249,999

5. P(A | green) = (1/3)(7/18)
1
3

7
18 + 1

3
1
5 + 1

3
3
4

= 70
241 , P(red) = 1

3 (11
18 + 4

5 + 1
4) = 299

540 , proportion

of red balls = 17/31

1.4 Independence

3. S, ∅,{a,c},{a,d},{b,c},{b,d}
4. S, ∅
5. Urn C will contain three red and five green balls. [Let x be the number of

red and y the number of green balls in urn C . The independence requirement
translates into the equation 1

3
y

x+y = 1
3

1
3 (1

4 +1+ y
x+y). Solve for y

x+y : y
x+y = 5

8 .
The positive integers x, y satisfying this equation with x + y smallest are x = 3,
y = 5.]

1.5 Bernoulli trials

1. (a)
(9

6

)
(7

15)6(8
15)3 (b) 1 −[(4

5)9 + 9
5 (4

5)8] (c)
4∑

k=0

(9
k

) 29−k

39

2. (a)
(8

3

) 1
28 = 7

32 (b) 1 −
2∑

k=0

(8
k

) 1
28 = 219

256 (c) 1
28

3∑
k=0

(8
k

) = 93
256

3. P(n+1 heads in 2n+2 flips)
P(n heads in 2n flips) = 1

22n+2
(2n+2)!

((n+1)!)2

/ 1
22n

(2n)!
(n!)2 = 2n+1

2n+2 < 1

1.6 An elementary counting principle

3.
(15

5

)(8
2

)
1.7 On drawing without replacement

2. (a) (4
3)(

23
6)

(27
9)

= 28
325 (b) (10

4)(
13
4)(

4
1)

(27
9)

= 56
2185

1.8 Random variables and expected, or average, value

4. (a) 20
17 (b) 20

17

5. The probability of an atom not decaying in 24 hours (four successive 6-hour
periods) is (1− p)4. Therefore, the probability of an atom decaying in 24 hours
is 1−(1− p)4. Let n be the number of undecayed atoms present at the beginning
of the 24-hour period: n(1 − (1 − p)4) = n

10 implies p = 1 − (9
10)1/4.

© 2003 by CRC Press LLC

345

2.1 How is information quantified?

1. (a) I (Ea, Fg) = 1
3

7
18 log

1
3

7
18

1
3 [1

3
7

18 + 1
3

1
5 + 1

3
3
4]

(b) I (Fg |Fa) = log 18
7

(c) I (Ea |Fg) = log 18
7 (7

18 + 1
5 + 3

4)

2.2 Systems of events and mutual information

1. S2 and S4; S3 and S4

3. I (E,F) = 1
36

[
log 1/36

(1/6)(1/36)
+ log 1/36

(1/6)(2/36)
+ log 1/36

(1/6)(3/36)
+ log 1/36

(1/6)(4/36)
+

log 1/36
(1/6)(5/36)

+ log 1/36
(1/6)(6/36)

+ log 1/36
(1/6)(2/36)

+·· ·+ log 1/36
(1/6)(6/36)

+
log 1/36

(1/6)(5/36)
+·· ·+ log 1/36

(1/6)(6/36)
+·· ·+ log 1/36

(1/6)(1/36)

] =
1

36 [24log3 + 10log2 − 10log5]
4. I (E,F) = 1

3
11
18 log (1/3)(11/18)

(1/3)(1/3)(11
18 + 4

5 + 1
4)

+ 1
3

7
18 log (1/3)(7/18)

(1/3)(1/3)(7
18 + 1

5 + 3
4)

+
1
3

4
5 log (1/3)(4/5)

(1/3)(1/3)(11
18 + 4

5 + 1
4)

+ 1
3

1
5 log (1/3)(1/5)

(1/3)(1/3)(7
18 + 1

5 + 3
4)

+
1
3

1
4 log (1/3)(1/4)

(1/3)(1/3)(11
18 + 4

5 + 1
4)

+ 1
3

3
4 log (1/3)(3/4)

(1/3)(3/4)(7
18 + 1

5 + 3
4)

(If simplification is desired, hire a small child.)

7. I (E,E) = 0 if and only if E contains one event of probability one, with the other
events, if any, in E necessarily of zero probability.

2.3 Entropy

2. H (E) = −
n∑

k=0

(
n

k

)
pk(1 − p)n−k log

(
n

k

)
pk(1 − p)n−k

H (S) = −
n∑

k=0

(
n

k

)
pk(1 − p)n−k log pk(1 − p)n−k

3. I (E,E) =
∑
i∈I

∑
j∈I

P(Ei ∩ E j) log
P(Ei ∩ E j)

P(Ei)P(E j)

=
∑
i∈I

P(Ei ∩ Ei) log
P(Ei ∩ Ei)

P(Ei)2 (since i �= j ⇒ P(Ei ∩ E j) = 0)

=
∑
i∈I

P(Ei) log
1

P(Ei)
= H (E).

5. By Theorem 2.4.4, H (E |F) = H (E)− I (E,F) = H (E) ⇔ I (E,F) = 0 ⇔ E
and F are statistically independent (Theorem 2.2.13).

© 2003 by CRC Press LLC

346 D Notes on and Solutions to Some Exercises

2.4 Information and entropy

5. Necessary and sufficient: both E andF are the trivial sort of system with exactly
one event of probability 1 and the others of probability zero.

6. H (E∧E) = H (E), H (E | E) = 0.

7. H (E) = log3,
H (F)= −[1

3 (3
8 + 1

3 + 7
13) log 1

3 (3
8 + 1

3 + 7
13)+ 1

3 (5
8 + 2

3 + 6
13) log 1

3 (5
8 + 2

3 + 6
13)],

I (E,F) = 1
3

3
8 log (1/3)(3/8)

1
3

1
3 (3

8 + 1
3 + 7

13)
+ 1

3
1
3 log (1/3)(1/3)

1
3

1
3 (3

8 + 1
3 + 7

13)
+ 1

3
7

13 log (1/3)(7/13)
1
3

1
3 (3

8 + 1
3 + 7

13)

+ 1
3

5
8 log (1/3)(5/8)

1
3

1
3 (5

8 + 2
3 + 6

13)
+ 1

3
2
3 log (1/3)(2/3)

1
3

1
3 (5

8 + 2
3 + 6

13)
+ 1

3
6

13 log (1/3)(6/13)
1
3

1
3 (5

8 + 2
3 + 6

13)
,

H (E∧F) = H (E)+ H (F)− I (E,F), H (E | F) = H (E)− I (E,F),
H (F | E) = H (F)− I (E,F).

8. Necessary and sufficient: E is an amalgamation of F .

9. (b) Put all the balls of one color in B , and all the balls of the other color in C;
I (E,F) = H (E).
(c) Make the proportions of red and green balls in B and C the same. (In this
case, it will be necessary to make the numbers of red and green balls equal in
each urn.) I (E,F) = 0.

3.1 Discrete memoryless channels

2. (a) p2q(1 − p)(1 − q) (b) pq2(1 − p)2

(c) 3 p2q(1 − p)(1 − q)+3pq2(1 − p)2 + 3 p2q(1 − p)2 + p3(1 − p)(1 − q)

(d) For n = 1, the answer is 1. For n ≥ 2, the answer is pn + pn−1(1− p)+(n−
1)pn−2q(1 − p)+ (n − 2)pn−3q(1 − p)(1 − q)+ (n−2

2

)
pn−4q2(1 − p)2 +

(n − 2)pn−3q(1 − p)2 + pn−2(1 − p)(1 − q).

3. (a) p3(1 − p)2 (b) p3(1 − p)2

(c)
(5

2

)
p3(1 − p)2 (d) pn + npn−1(1 − p)+ (n

2

)
pn−2(1 − p)2

3.2 Transition probabilities and binary symmetric channels

1. (a) Q =
[

q00 q01 q0∗
q10 q11 q1∗

]
=

[
p q r
q p r

]
(b)

(n
k

)
pn−k(1 − p)k

(c)

[
p + r/2 q + r/2
q + r/2 p + r/2

]
; yes, a BSC. (d)

[
p q + r
q p + r

]
; not a BSC unless r =

0.

2. (a) p ≥ (.95)1/15 (b) p15 + 15 p14(1 − p) ≥ .95 (c) p ≥ 29
30

3. (a) p0 p2
1(1 − p1)

2 (b) p3
1(1 − p0)(1 − p1)

(c) pz
0 pn−z

1 +zpz−1
0 pn−z

1 (1− p0)+(n−z)pz
0 pn−z−1

1 (1− p1)+z(n−z)pz−1
0 ×

pn−z−1
1 (1− p0)(1− p1)+

(z
2

)
pz−2

0 pn−z
1 (1− p0)

2+(n−z
2

)
pz

0 pn−z−2
1 (1− p1)

2

© 2003 by CRC Press LLC

347

5. B̂ = {0,1}3. Transition probabilities: q000,000 = q111,111 = p3; q000,111 = q111,000
= (1 − p)3; the other six are either p2(1 − p) or p(1 − p)2.

6. (a) In 3.2.1 (c), B̃ = {0,1}, U =

 1 0

0 1
1/2 1/2

. In 3.2.1 (d) B̃ = {0,1}, U =

1 0

0 1
0 1

.

3.3 Input frequencies

1. p0 = 24/53, p1 = 29/53

3. Output frequency of 0: (1 + p)/3; output frequency of 1: (2 − p)/3.

4. P(b1) = .384, P(ba) = .485, P(b3) = .131

5. (a) Average cost = .38 p1 + .22 p2 + .20 p3. When p1 = .4, p2 = .5, p3 = .1, the
average cost is .282. (b) Set p3 = 1, p1 = p2 = 0 to minimize cost; an unwise
choice, however, since it renders the channel useless.

3.4 Channel capacity

3. Q =
[

p 1 − p
1 − q q

]
, I (A, B) = p0[p log p

p0 p+p1(1−q)
+(1− p) log 1−p

p0(1−p)+p1q]
+ p1[(1 − q) log 1−q

p0 p+p1(1−q)
+ q log q

p0(1−p)+p1q]
Capacity equations: p0 + p1 = 1

p log p
p0 p+p1(1−q)

+ (1 − p) log 1−p
p0(1−p)+p1q = C

(1 − q) log 1−q
p0 p+p1(1−q)

+ q log q
p0(1−p)+p1q = C

4. The capacity equations are

p1 + p2 + p3 = 1

C=.94log .94
.94p1+.01p2+.03p3

+ .04log .04
.04p1+.93p2+.04p3

+ .02log .02
.02p1+.06p2+.93p3

C=.01log .01
.94p1+.01p2+.03p3

+ .93log .93
.04p1+.93p2+.04p3

+ .06log .06
.02p1+.06p2+.93p3

C=.03log .03
.94p1+.01p2+.03p3

+ .04log .04
.04p1+.93p2+.04p3

+ .93log .93
.02p1+.06p2+.93p3

5. p0 = p1 = 1/2 are optimal, and the capacity is p log 2p
p+q + q log 2q

p+q .

6. For 0 < p ≤ 1 (with 00 = 1 in case p = 1), the optimal input frequencies are

pa = 1−(1−p)1/p

1+p(1−p)(1−p)/p , pb = (1−p)(1−p)/p

1+p(1−p)(1−p)/p , and the capacity is log(1 + p(1 −
p)(1−p)/p). When p = 0, the capacity is zero, and any relative input frequencies
are “optimal.”

7. (a) pa = (2 p p(1 − p)1−p + 1)−1, pb = pc = (1 − pa)/2, C = log(2 p p(1 −
p)1−p + 1).

© 2003 by CRC Press LLC

348 D Notes on and Solutions to Some Exercises

(b) pa = pb = 1/2, C = log2.

(c) No; and there is equality when and only when p = 1/2. Explanation left to
you.

8. p1 = ·· · = pn = 1/n, C = logn.

10. For 1 ≤ j ≤ n −1; p j = nn−1
nn+1−nn+1

, and pn = n
nn+1−nn+1

, C = log(n −1+n−n).

11. Capacity = p3 log 2p3

p3+(1−p)3 + (1 − p)3 log 2(1−p)3

p3+(1−p)3 + 3 p(1 − p)[p log2 p +
(1 − p) log2(1 − p)].

13. p1 = p2 = p3 = 1/3, C = 2/3log2

14. p1 = p3 = 1/2, p2 = 0, C = 1
2 log3 − 2

3 log2

[It is somewhat shocking that one of the optimal input frequencies is zero. We
are indebted to Luc Teirlinck for this example.]

4.2 Prefix-condition codes and the Kraft-McMillan inequality

1. (a) � = 5 (b) � = 3 (c) n = 3 (d) m = 64

4.3 Average code word length and Huffman’s algorithm

1. (a) There are various correct answers arising from choices made in running
through Huffman’s algorithm, but the unique sequence of code word lengths
is 2,2,3,3,3,4,4. One correct answer: e → 01, a → 10, d → 001, b →
110, f → 111, g → 0000, c → 0001.

(b) One correct answer: e → 1, a → ∗0, d → ∗1, b → ∗∗, f → 00, g → 01,
c → 0∗.

4.4 Optimizing the input frequencies

1. The answers given are not unique, and in (c) and (d), they are debatable.

(a) e → 01, a → 10, d → 00, b → 110, c → 111.

(b) e → 00, a → 01, d → 11, b → 100, c → 101.

(c) e → 0, a → 1, d → ∗1, b → ∗0, c → ∗∗.

(d) e → 0, a → ∗, d → 10, b → 11, c → 1∗.

2. Again, the following are not unique,

(a) e → 001, a → 110, d → 101, b → 011, c → 000.

(b) e → 000, a → 001, d → 010, b → 111, c → 100.

(c) e → 01∗, a → 0∗1, d → ∗01, b → ∗10, c → 1∗0.

(d) e → 01, a → 00, d → 11, b → ∗∗, c → 1∗.

© 2003 by CRC Press LLC

349

4.5 Error correction and reliability

1. (a) (i) Receive w : 00 01 0∗ 10 11 1∗ ∗0 ∗1 ∗∗
Decode s : a c a a b b a b a

(ii) R = .79194 (iii) Ê = .312

4.6 Shannon’s Noisy Channel Theorem

1. C = .95log2 1.9 + (.05) log2(.1) ≈ .7136; H = (.5) log2 2 + .3log2(.3)−1 +
.2log2 5 ≈ 1.4855; p = 100, if the unit of time is one second. Therefore, the up-
per limit on the number of source letters per second that the channel can handle,
with vanishingly small error probability, is 100C

H ≈ 48.0385.

5.1 Replacement via encoding scheme

4. 5/3 [With s1 = 000, . . . ,s8 = 111, the original file parses into the source text
s8s7s8s8s6s7s8s6s7s7 which is encoded 010001101001101010,18 bits compared
to 30 in the original file.]

5.2 Review of the prefix condition

1. (a) Add 11; (b) add 010 and 111; (c) add 1111.

5.3 Choosing an encoding scheme

1. (a) 2/1.95 (b) 2.7/2.55

2. (a) Shannon: 2/2.2 (less than one!), Fano: 2/1.95

(b) Shannon: 2.7/2.95 (again!), Fano: 2.7/2.55

5.4 The Noiseless Coding Theorem and Shannon’s bound

1. (a) H = .4log2(.4)−1 + 2(.25log2(.25)−1)+ .1log2 10 ≈ 1.8610
L̄/H ≈ 2/1.861 ≈ 1.0747

(b) H ≈ 2.5037, L̄ = 2.7, so L̄/H ≈ 1.0784.

2. Compute L̄ = 2.6.

(a) �̄ = 1.9, so L̄/�̄ ≈ 1.3684.

(b) It is a struggle computing �̄(S2), but here is a tip: it is not necessary to write
out the full encoding scheme; the code word lengths can be found by counting
edges along the paths from the terminal (leaf) nodes of the Huffman tree to the
root node. �̄(S2) = 3.73, so the compression ratio is 2L̄/�̄(S2) = 5.2/3.73 ≈
1.3941, assuming those “digram” frequencies are correct.

© 2003 by CRC Press LLC

350 D Notes on and Solutions to Some Exercises

Another labor-saving remark: if the average length of a source letter, in its
original incarnation as a binary word, is L̄ , then the average length of two of
them together will be 2L̄, and this holds with no assumptions on the relation
between the digram and the single letter frequencies.

(c) Because the relative frequency of the digram si s j is fi f j , by assumption,
for each i and j , we have H (S2) = 2H (S), so the Shannon bound on the com-
pression ratio is the same in both cases: 2L̄/H (S2) = 2L̄/2H (S) = L̄/H ≈

2.6
1.8464 ≈ 1.4081.

3. H = L so the Shannon bound is L/L = 1. Shannon’s method will give an
encoding scheme with every word of length L. (In fact, if S = {0,1}L is ordered
correctly, the scheme will be w → w for all w ∈ {0,1}L .) Thus the compression
ratio achieved by Shannon’s method is 1. Huffman’s algorithm cannot do worse
than Shannon’s method, nor better than the Shannon bound, so the compression
ratio will again be 1 (and, in fact, all code words will be of length L). The same
holds for Fano’s method; an easy induction on L shows that the code words in
the resulting scheme will all have length L.

6.1 Pure zeroth-order arithmetic coding: dfwld

1. (a) bbbb → 1, abcd → 00110111, dcba → 111110011, badd → 0111010001

(b) 11 → cbab, 010001 → acba, 10101 → caaa, 0101 → acdc

2. (a) bbbb is encoded 1000. The other three words are encoded as in Exercise
6.1.1(a).

(b) baaca

3. acdcaca

6.4 Implementing arithmetic coding

1. (a) Next letter
or rescale

or underflow L H
New
code

Underflow
count

0 16 0
d 13 16 0

x → 2x −16 10 16 1 0
x → 2x −16 4 16 1 0

b 9 10 0
x → 2x −16 2 4 1 0

x → 2x 4 8 0 0
x → 2x 8 16 0 0

x → 2x −16 0 16 1 0
EOF 11 13 0

x → 2x −16 6 10 1 0
x → 2x −8 4 12 1
x → 2x −8 0 16 2

© 2003 by CRC Press LLC

351

The code: 11100110111. Notice that in this problem we have violated the policy
guideline that EOF should be last in the ordering of the source letters.

(c) In [0,C), the subintervals [0,3), [3,4), [4,5), [5,6), and [6,7) correspond to
a, b, c, EOF, and d , resp. As in the text, we scale back to these subintervals to
determine the current symbol (and then (6.1) is used to obtain the new current
interval).

current output
value v interval interval calculation symbol

11102 = 14 [0,16) w = ⌊ (14−0+1)7−1
16−0

⌋ = ⌊97
16

⌋ = 6 d
[13,16) expand x �→ 2(x − M/2)

11002 = 12 [10,16) expand x �→ 2(x − M/2)

..

.
..
.

..

.
..
.

10112 = 11 [0,16) w = ⌊ (11−0+1)7−1
16−0

⌋ = ⌊83
16

⌋ = 5 EOF

Of course, the decoding could also be done without the calculation of w. As
in the decoding examples in the text, that would involve the calculation of the
subintervals of [L, H) corresponding to a, b, c, EOF, and d each time decoding
is about to take place.

3. Here, 16 = M = 2m , so condition (6.2) requires log2 5 = log2 |S| ≤ c and c ≤
m −2 = 2, which is not possible. Although the condition in 6.4.5 is not satisfied,
direct calculation in the critical case when [L, H) = [3.9) or [7,13), i.e., when
H − L = 6, shows that the last statement in the exercise holds.

4. In the expansion tagged ‘x �→ 2x’, the values L and H −1 should be replaced by
2L and 2H − 1, respectively. Shifting left gives the same result as multiplying
by 2, and the bitwise ‘| 1’ adds 1 to an even number. Hence, L � 1 = 2L and
(H − 1) � 1 | 1 = (H − 1)2 + 1 = 2H − 1, as desired.

6. (a) The corresponding lines in the table are

string s input P(1 | s) C(s) A(s) A(s0) A(s1)

...
...

...
...

...
...

...

0100010 1 1/22 01110.1100 .1100 .1001 .0011
01000101 01111.0101 .0011 shift 2
01000101 0111101.0100 .1100

(c) The handling of the stuffed bit by the decoder leads to a starting codeword
of ‘1000’.

(d) The increased code length can be estimated. If a limit of k consecutive 1s is
imposed, then a stuffed bit will be inserted every 2k output bits on average.

7.1 Higher-order Huffman encoding

1. (a) f1 = .35, f2 = .32, f3 = .23, f4 = .10; L̄ = 2.57 and the unique code word
lengths in the scheme from Huffman’s algorithm are 1,2,3,3, so �̄ = 1.98; the
compression ratio is L̄/�̄ = 2.57/1.98 ≈ 1.298.

© 2003 by CRC Press LLC

352 D Notes on and Solutions to Some Exercises

(b) �̄(S2) = 3.64; the compression ratio is 2(2.57)/3.64 ≈ 1.4121. Review the
remarks in the answer to Exercise 5.4.2(b).

(c) The following schemes are not unique, of course, but the code word lengths
are, except in context s3.

Starter scheme : s1 → 0 Context s1 : s1 → 0
s2 → 10 s2 → 111
s3 → 110 s3 → 10
s4 → 111 s4 → 110

Context s2 : s1 → 110 Context s3 : s1 → 10 00
s2 → 0 s2 → 0 or 01
s3 → 10 s3 → 110 10
s4 → 111 s4 → 111 11

Context s4 : s1 → 00
s2 → 01
s3 → 10
s4 → 11

Encoding s2 s2 s1 s3 s1 s1 s1 s3 s2 s3 s3 s1 s4
→ 10 0 110 10 10 0 0 10 0 10 110 10 110

(d) [�i j] =

1 3 2 3

3 1 2 3
2 1 3 3
2 2 2 2

; �̄(1) = ∑

i
∑

j fi j �i j = 1.79. Compression ratio =

2.57
1.79 ≈ 1.4358.

2. (a) Letting �̄(S2) denote the average length of a code word replacing a digram,
using the erroneous digram frequencies to produce a scheme via Huffman’s al-
gorithm and to calculate the average, you obtain �̄(S2) = 3.7741, for a supposed
compression ratio of 2(2.57)/3.7741 ≈ 1.3619.

(b) Using the code word lengths from the scheme alluded to in (a), but using the
true digram frequencies to compute the average code word length, you obtain
�̄(S2) = 3.77, for a compression ratio of 5.14/3.77 ≈ 1.3634. Notice that the
encoder using the erroneous digram frequencies has done better than he thinks,
but not as well as the encoder in Exercise 7.1.1(b), using the true digram fre-
quencies.

3. In both (a) and (b) the average code word length is 1.98, the same as for zeroth-
order Huffman encoding, and so the compression ratio is the same as in Exercise
7.1.1(a).

This is no accident. A little reflection reveals a moral here, that there is no point
in attempting higher order encoding with a zeroth-order source.

4. �̄(0) = 1.2, �̄(1) = 1.18, �̄(S2) = 1.83.

© 2003 by CRC Press LLC

353

7.2 The Shannon bound for higher-order encoding

1. H (S) = H (0)(S) =
.35log2(.35)−1 + .32log2(.32)−1 + .23log2(.23)−1 + .1log2 10 ≈ 1.8760,
H (S2) = ∑

i
∑

j fi j log2 fi j ≈ 3.603, H (1)(S) = H (S2)− H (S) ≈ 1.7271,

L̄/H (0) ≈ 2.57/1.876 ≈ 1.3699, L̄/H (1) ≈ 2.57/1.7271 ≈ 1.4880.

2. H (0) ≈ .9219, H (S2) ≈ 1.7012, H (1)(S) = H (S2)− H (0) ≈ .7793.

7.3 Higher-order arithmetic coding

1. (a) s2s2s2s2 → 1001, s1s2s3s4 → 010000011,
s4s3s2s1 → 1111100111, s2s1s4s4 → 0111101011

(b) 11 → s3s1s1s3, 01001 → s1s3s1s1, 10101 → s2s3s1s1, 0101 → s1s3s1s3

8.1 Adaptive Huffman encoding

1. 1000011011101001011010011110101001100111001001011

2. 100110110111110010011110011001111011111001011010

3. s2s1s2s5s3s5s1s1s1

4. s2s2s2s2s3s1s2s6s2s2

8.3 Adaptive arithmetic coding

1. Note: this exercise was not done using the algorithm of Section 6.4, but rather
the ivory-tower, “pure” dfwld method of Section 6.1. If you did it via Section
6.4, your answers will be different.

(a) bbbb → 01011, abcd → 001001, dcba → 110111, badd → 010011001

(b) 11 → daaa, 010001 → baad , 10101 → cccc, 0101 → bbac

8.4 Interval and recency rank encoding

1. (a) 0010010011100100000101010010000010100010000010011001000011000101000100111

(b) 11100111101101111100110110111101110111100110111011101111000

2. (a) s2s6s2s2s5s4s5s5

(b) s3s6s4s4s2s6s2s3s3s3s5

9.1 LZ77 (sliding window) schemes

1. Only three pairs are produced, due to the minimum on match lengths.

2. Lazy evaluation will send ‘a’ as a literal and (offset, length)-pairs for ‘bcde’
and ‘fg’.

© 2003 by CRC Press LLC

354 D Notes on and Solutions to Some Exercises

3. Both conventions favor small match distances, hopefully improving compres-
sion obtained by the Huffman back-end. Note that ignoring length-3 matches
which are too distant expands the output at the dictionary stage of the scheme
by 3 bits in the case of no matches starting at any of the 3 characters.

5. The material surrounding the discussion of Fibonacci hashing (with w = 216

and M = 212) in [39] applies. However, the constant A = 40543 does not sat-
isfy all of the recommendations, and other choices are possible. In experiments
performed by Williams during the development of LZRW1, the choice did as
well as 40507 (which corresponds to a value closer to the “golden ratio recom-
mendation”) and better than 40637. The tests were not exhaustive, and Williams
cautions that there may exist formulae of this basic type that do better.1

9.2 The LZ78 approach

1. The dictionary is

Entry Phrase Entry Phrase
#0 null #4 si
#1 M #5 ss
#2 i #6 ip
#3 s #7 p

2. #1, #2, #4, #4, #6, #8, #3, #3, #2. The final trie is

#0
M

���������

i��
��

p ���
�� s

����������

#1

i

#2

s

#3
p
����

i

#4

s
i
��

��

#5 #6

s

#11 #12 #7 #8
p

#9 #10

3. This is an example of the “exceptional case” in LZW; the string ‘abbb’ is ob-
tained.

4. An ‘a’ following ‘b’ is allocated 1/3 of the code space or − log2 1/3 ≈ 1.58
bits.

10.2 Periodic signals and the Fourier transform

5. (a) (zk)
N = (e2π ik/N)N = e2kπ i = 1.

1Notes written during the development of LZRW1 on the experimental results were provided by
Williams.

© 2003 by CRC Press LLC

355

(b)
N = 2

........

........
.........
.........
...........

................
...
.............
..........
.........
........
........
...•z0•z1

N = 3

........

........
.........
.........
...........

................
...
.............
..........
.........
........
........
...•z0

•z1

•z2

N = 4

........

........
.........
.........
...........

................
...
.............
..........
.........
........
........
...•z0

•z1

•z2

•z3

N = 8

........

........
.........
.........
...........

................
...
.............
..........
.........
........
........
...•z0

•z1•z2
•z3

•z4 •z5 •z6

•z7

10. Take α = 〈u,w〉/|〈u,w〉|. Hint: ‖u − v‖2 = 2.

10.3 The cosine and sine transforms

1. Cy = [4.74,12.01,31.98,−5.27,1.77,−2.30,0.15,−1.67]
Sy = [−5.87,13.24,29.97,−0.62,10.09,−1.39,3.72,−1.61]

5. ‖̂v‖2 = 〈̂v, v̂〉 = 〈Ev, Ev〉 = 〈v, E
t
Ev〉 = 〈v,v〉 = ‖v‖2

10.5 An application: JPEG image compression

1. (a) T x =

640 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 QT x =

213 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

(b) T x =

645.00 −3.35 0.50 −0.24

−3.35 1.21 0.46 0.00
0.50 0.46 0.00 −0.19

−0.24 0.00 −0.19 −0.21

 QT x =

215 −1 0 0

−1 0 0 0
0 0 0 0
0 0 0 0

(c) T x =

 280.00 230.70 40.00 34.33

−126.17 −11.72 126.17 28.28
40.00 −21.65 −40.00 52.26
8.97 28.28 −8.97 −68.28

 QT x =

 93 46 6 4

−25 −2 14 3
6 −2 −4 4
1 3 −1 −5

Dequantize: T x̃ =

 279 230 42 36

−125 −14 126 33
42 −18 −44 52
9 33 −13 −75

 x̃ =

161 1 3 −2

160 −9 3 4
159 162 −5 0
161 161 159 −1

(d) T x =

 379.75 −118.54 23.25 82.93

127.60 −22.91 −22.43 85.83
−129.25 50.24 −77.75 4.36
−55.83 4.33 −61.34 −125.09

 QT x =

 127 −24 3 9

26 −3 −2 8
−18 6 −7 0
−6 0 −5 −8

10.6 A brief introduction to wavelets

1. A threshold value of 10 was chosen, giving the “clipped” matrices below.

(a) H x =

640 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 clipped H x =

640 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

x̃ =

160 160 160 160

160 160 160 160
160 160 160 160
160 160 160 160

© 2003 by CRC Press LLC

356 D Notes on and Solutions to Some Exercises

(b) H x =

645.00 −3.00 −0.71 −1.41

−3.00 1.00 0.71 0
−0.71 0.71 0 0
−1.41 0 0 0

 clipped H x =

645 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

x̃ =

161 161 161 161

161 161 161 161
161 161 161 161
161 161 161 161

(c) H x =

 280.00 200.00 113.14 56.57

−120.00 −40.00 113.14 −56.57
0 0 0 0

−56.57 56.57 0 −80.00

clipped H x =

 280.00 200.00 113.14 56.57

−120.00 −40.00 113.14 −56.57
0 0 0 0

−56.57 56.57 0 −80.00

 x̃ =

160 0 0 0

160 0 0 0
160 160 0 0
160 160 160 0

(d) H x =

 379.75 −141.25 38.54 5.66

139.25 −69.75 78.84 74.95
−93.34 50.91 −99.00 44.00

89.45 −12.37 −44.50 −57.00

clipped H x =

 379.75 −141.25 38.54 0

139.25 −69.75 78.84 74.95
−93.34 50.91 −99.00 44.00

89.45 −12.37 −44.50 −57.00

 x̃ =

 54 70 180 83

183 1 238 229
33 106 59 169
23 7 44 40

2. c0 = c1 = 1, c j = 0 otherwise.

© 2003 by CRC Press LLC

Bibliography

[1] J. Aczél and Z. Daróczy. On Measures of
Information and Their Characterizations.
Academic Press, New York, 1975.

[2] N. Ahmed, T. Natarajan, and K. R. Rao.
Discrete cosine transform. IEEE Transac-
tions on Computers, 23(1):90–93, January
1974.

[3] M. Antonini, M. Barlaud, P. Mathieu,
and I. Daubechies. Image coding using
wavelet transform. IEEE Transactions
on Image Processing, 1(2):205–220, April
1992.

[4] Robert B. Ash. Information Theory.
Dover, New York, 1990.

[5] M. F. Barnsley and L. P. Hurd. Frac-
tal Image Compression. AK Peters, Ltd.,
Wellesley, Massachusetts, 1992.

[6] Henry Beker and Fred Piper. Cipher Sys-
tems: The Protection of Communication.
John Wiley & Sons, New York, 1982.

[7] Timothy C. Bell. Better OPM/L text com-
pression. IEEE Transactions on Commu-
nications, 34(12):1176–1182, December
1986.

[8] Timothy C. Bell, John G. Cleary, and
Ian H. Witten. Text Compression.
Prentice-Hall, New York, 1990.

[9] Timothy C. Bell and Ian H. Witten. The
relationship between greedy parsing and
symbolwise text compression. Journal of
the ACM, 41(4):708–724, July 1994.

[10] John Browning. GIF us a break. Scientific
American, page 40, March 1995.

[11] Martin Cohn. Ziv-Lempel compressors
with deferred-innovation. In Storer [70],
pages 145–157.

[12] Ingrid Daubechies. Orthonormal bases of
compactly supported wavelets. Communi-
cations on Pure and Applied Mathematics,
41(7):909–996, October 1988.

[13] . Ten Lectures on Wavelets. SIAM,
Philadelphia, 1992.

[14] Lokenath Debnath. Wavelet Transforms
and their Applications. Birkhauser,
Boston, 2002.

[15] R. DeVore, B. Jawerth, and B. J. Lucier.
Image compression through wavelet trans-
form coding. IEEE Transactions on In-
formation Theory, 38(2):719–146, March
1992.

[16] Peter Elias. Internal and recovery rank
source coding: two on-line adaptive
variable-length schemes. IEEE Transac-
tions on Information Theory, 33(1):3–10,
January 1987.

[17] A. Feinstein. Foundations of Information
Theory. McGraw-Hill, New York, 1958.

[18] William Feller. An Introduction to Prob-
ability Theory and its Applications, vol-
ume 1. John Wiley & Sons, New York,
2nd edition, 1957.

[19] E. R. Fiala and D. H. Greene. Data com-
pression with finite windows. Communi-
cations of the ACM, 32(4):490–505, 1989.

[20] Yuval Fisher, editor. Fractal Image Com-
pression. Springer-Verlag, New York,
1995.

[21] Michelle J. Foster. Operations on proba-
bilistic finite state source automata. PhD
thesis, Auburn University, 2000.

[22] R. G. Gallager. Information Theory and
Reliable Communication. John Wiley &
Sons, New York, 1968.

357

© 2003 by CRC Press LLC

358 Bibliography

[23] . Variations on a theme by Huff-
man. IEEE Transactions on Information
Theory, 24(6):668–674, November 1978.

[24] Solomon W. Golomb. Claude Elwood
Shannon (1916-2001). Notices of the
American Mathematical Society, 49(1):8–
16, January 2002.

[25] Independent JPEG Group. JPEG software
release 6. Available electronically from
ftp://ftp.uu.net/graphics/jpeg, Aug 1995.
Email contact: jpeg-info@uunet.uu.net.

[26] Peter C. Gutmann and Timothy C. Bell. A
hybrid approach to text compression. In
Storer and Cohn [72], pages 225–233.

[27] R. W. Hamming. Coding and Information
Theory. Prentice Hall, New York, 2nd edi-
tion, 1986.

[28] G. H. Hardy, John E. Littlewood, and
George Polya. Inequalities. Cambridge
University Press, London, 1934.

[29] R. V. L. Hartley. Transmission of informa-
tion. Bell System Technical Journal, page
535, July 1928.

[30] D. G. Hoffman, D. A. Leonard, C. C.
Lindner, K. T. Phelps, C. A. Rodger, and
J. R. Wall. Coding Theory: The Essen-
tials. Marcel Dekker, New York, 1991.

[31] R. Nigel Horspool. Improving LZW. In
Storer and Reif [74], pages 332–341.

[32] . The effect of non-greedy parsing
in Ziv-Lempel compression methods. In
Storer and Cohn [73], pages 303–311.

[33] Paul G. Howard and Jeffrey Scott Vit-
ter. Analysis of arithmetic coding for data
compression. In Storer and Reif [74],
pages 3–12.

[34] . Practical implementations of arith-
metic coding. In Storer [70], pages 85–
112.

[35] . Design and analysis of fast text
compression based on quasi-arithmetic
coding. In Storer and Cohn [71], pages
98–107.

[36] D. A. Huffman. A method for the con-
struction of minimum redundancy codes.
Proceedings of the IRE, 40(9):1098–1101,
September 1952.

[37] D. S. Jones. Elementary Information The-
ory. Clarendon Press, Oxford, 1979.

[38] J. Karush. A simple proof of an inequality
of McMillan. IRE Transactions on Infor-
mation Theory, 7(2):118, April 1961.

[39] Donald E. Knuth. The Art of Com-
puter Programming, volume 3. Addison-
Wesley, Reading, Massachusetts, 1973.

[40] . Dynamic Huffman coding. Jour-
nal of Algorithms, 6:163–180, 1985.

[41] Neal Koblitz. A Course in Number Theory
and Cryptography. Springer Verlag, New
York, 2nd edition, 1994.

[42] Glen G. Langdon, Jr. A note on the Ziv-
Lempel model for compressing individ-
ual sequences. IEEE Transactions on In-
formation Theory, 29(2):284–287, March
1983.

[43] . An introduction to arithmetic cod-
ing. IBM Journal of Research and Devel-
opment, 28(2):135–149, March 1984.

[44] Glen G. Langdon, Jr. and Jorma Rissa-
nen. Compression of black-white images
with arithmetic coding. IEEE Transac-
tions on Communications, 29(6):858–867,
June 1981.

[45] Stephane Mallat. Multiresolution repre-
sentation and wavelets. PhD thesis, Uni-
versity of Pennsylvania, 1988.

[46] Michael W. Marcellin and David S. Taub-
man. JPEG 2000: Image Compression,
Fundamentals, Standards, and Practice.
Kluwer Academic, Boston, 2002.

[47] B. McMillan. The basic theorems of in-
formation theory. Annals of Mathematical
Statistics, 24(2):196–219, 1953.

[48] Alistair Moffat, Radford Neal, and Ian H.
Witten. Arithmetic coding revisited.
Preprint. Revised from [49].

[49] . Arithmetic coding revisited. In
Storer and Cohn [73], pages 202–211. Re-
vised and extended in [48].

© 2003 by CRC Press LLC

ftp://ftp.uu.net
mailto:jpeg-info@uunet.uu.net

Bibliography 359

[50] Alistair Moffat, Neil Sharman, Ian H. Wit-
ten, and Timothy C. Bell. An empirical
evaluation of coding methods for multi-
symbol alphabets. In Storer and Cohn
[71], pages 108–117. Revised and ex-
panded in [51].

[51] . An empirical evaluation of cod-
ing methods for multi-symbol alphabets.
Information Processing & Management,
30(6):791–804, November 1994.

[52] Colm Mulcahy. Plotting and scheming
with wavelets. Mathematics Magazine,
69(5):323–343, December 1996.

[53] Mark Nelson and Jean-loup Gailly. The
Data Compression Book. M&T Books,
New York, 2nd edition, 1996.

[54] Truong Nguyen and Gilbert Strang.
Wavelets and Filter Banks. Wellesley-
Cambridge Press, Wellesley, Mas-
sachusetts, 1996.

[55] H. Nyquist. Certain factors affecting tele-
graph speed. Bell System Technical Jour-
nal, page 324, April 1924.

[56] . Certain topics in telegraph trans-
mission theory. A. I. E. E. Trans., 47:617,
April 1928.

[57] W. B. Pennebaker and J. L. Mitchell.
JPEG Still Image Data Compression Stan-
dard. Van Nostrand Reinhold, New York,
1992.

[58] Arthur Petrosian and Francois Meyer, ed-
itors. Wavelets in Signal and Image Anal-
ysis: From Theory to Practice. Kluwer
Academic, Dordrecht, 2001.

[59] Majid Rabbani and Paul. W. Jones. Digi-
tal Image Compression Techniques. SPIE
Press, Bellingham, Washington, 1991.

[60] Greg Roelofs. History of the Portable Net-
work Graphics (PNG) format. Linux Jour-
nal, pages 34–40, April 1997.

[61] Walter Rudin. Principles of Mathematical
Analysis. McGraw-Hill, New York, third
edition, 1976.

[62] Khalid Sayood. Introduction to Data
Compression. Morgan Kaufmann Pub-
lishers, San Francisco, 1995.

[63] C. E. Shannon. A mathematical theory
of communication. Bell System Technical
Journal, 27:379–423 and 623–56, 1948.

[64] . Certain results in coding theory for
noisy channels. Information and Control,
1(1):6–25, 1957.

[65] C. E. Shannon and W. Weaver. The Math-
ematical Theory of Communication. Uni-
versity of Illinois Press, Urbana, Illinois,
1949.

[66] Paul C. Shields. The ergodic theory of
discrete sample paths. Graduate Studies
in Mathematics, The American Mathemat-
ical Society, 13, 1996.

[67] Lawrence Sirovich. Introduction to Ap-
plied Mathematics. Springer-Verlag, New
York, 1988.

[68] Eric Stollnitz, Tony DeRose, and David
Salesin. Wavelets for Computer Graphics.
Morgan Kaufmann, San Francisco, 1996.

[69] James A. Storer. Data Compression:
Methods and Theory. Computer Science
Press, Rockville, Maryland, 1988.

[70] , editor. Image and Text Compres-
sion. Kluwer Academic Publishers, Dor-
drecht, 1992.

[71] James A. Storer and Martin Cohn, editors.
Proceedings, Data Compression Confer-
ence. IEEE Computer Society Press, Los
Alamitos, California, 1993.

[72] , editors. Proceedings, Data Com-
pression Conference. IEEE Computer
Society Press, Los Alamitos, California,
1994.

[73] , editors. Proceedings, Data Com-
pression Conference. IEEE Computer
Society Press, Los Alamitos, California,
1995.

[74] James A. Storer and John H. Reif, editors.
Proceedings, Data Compression Confer-
ence. IEEE Computer Society Press, Los
Alamitos, California, 1991.

© 2003 by CRC Press LLC

360 Bibliography

[75] James A. Storer and Thomas G. Szyman-
ski. Data compression via textual substitu-
tion. Journal of the ACM, 29(4):928–951,
October 1982.

[76] M. Mitchell Waldrop. Claude Shannon,
reluctant father of the digital age. Technol-
ogy Review, 104(6):64–71, July/August
2001.

[77] Gregory K. Wallace. The JPEG still pic-
ture compression standard. Communi-
cations of the ACM, 34(4):30–44, April
1991. A revised version is available with
the IJG’s sources [25].

[78] David F. Walnut. An Introduction to
Wavelet Analysis. Birkhauser, Boston,
2002.

[79] Gilbert G. Walter. Wavelets and Other Or-
thogonal Systems with Applications. CRC
Press, Boca Raton, Florida, 1994.

[80] Terry A. Welch. A technique for high-
performance data compression. IEEE
Computer, 17(6):8–19, 1984.

[81] Dominic Welsh. Codes and Cryptogra-
phy. Oxford University Press, Oxford,
1988.

[82] Ross N. Williams. Adaptive Data Com-
pression. Kluwer Academic Publishers,
Dordrecht, 1991.

[83] . An extremely fast Ziv-Lempel
data compression algorithm. In Storer and
Reif [74], pages 362–371.

[84] Ian H. Witten, Radford M. Neal, and
John G. Cleary. Arithmetic coding for
data compression. Communications of the
ACM, 30(6):520–540, June 1987.

[85] Jacob Ziv and Abraham Lempel. A uni-
versal algorithm for seqential data com-
pression. IEEE Transactions on Informa-
tion Theory, 23(3):337–343, May 1977.

[86] . Compression of individual
sequences via variable-rate encoding.
IEEE Transactions on Information The-
ory, 24(5):530–536, September 1978.

© 2003 by CRC Press LLC

	Introduction to Information Theory and Data Compression, Second Edition
	Preface
	Organization
	Acknowledgments

	Contents
	Appendix A: JPEGtool User’s Guide
	Appendix B: Source Listing for LZRW1-A
	Appendix C: Resources, Patents, and Illusions
	Appendix D: Notes on and Solutions to Some Exercises
	Bibliography

	Table of Contents
	Chapter 1: Elementary Probability
	1.1 Introduction
	Experiments with outcomes of equal likelihood
	The D’Alembert-Laplace controversy

	1.2 Events
	1.3 Conditional probability
	Application to multi-stage experiments
	Examples

	1.4 Independence
	1.5 Bernoulli trials
	1.6 An elementary counting principle
	1.7 On drawing without replacement
	Exercises 1.7

	1.8 Random variables and expected, or average, value
	Examples

	1.9 The Law of Large Numbers
	Appendix A: JPEGtool User’s Guide
	Appendix B: Source Listing for LZRW1-A
	Appendix C: Resources, Patents, and Illusions
	Appendix D: Notes on and Solutions to Some Exercises
	Bibliography

	Table of Contents
	Chapter 2: Information and Entropy
	2.1 How is information quantified?
	2.1.1 Naming the units
	2.1.2 Information connecting two events
	2.1.3 The inevitability of Shannon’s quantification of information

	2.2 Systems of events and mutual information
	2.3 Entropy
	2.4 Information and entropy
	Appendix A: JPEGtool User’s Guide
	Appendix B: Source Listing for LZRW1-A
	Appendix C: Resources, Patents, and Illusions
	Appendix D: Notes on and Solutions to Some Exercises
	Bibliography

	Table of Contents
	Chapter 3: Channels and Channel Capacity
	3.1 Discrete memoryless channels
	3.2 Transition probabilities and binary symmetric channels
	3.3 Input frequencies
	3.4 Channel capacity
	3.5 Proof of Theorem 3.4.3, on the capacity equations
	Appendix A: JPEGtool User’s Guide
	Appendix B: Source Listing for LZRW1-A
	Appendix C: Resources, Patents, and Illusions
	Appendix D: Notes on and Solutions to Some Exercises
	Bibliography

	Table of Contents
	Chapter 4: Coding Theory
	4.1 Encoding and decoding
	4.2 Prefix-condition codes and the Kraft-McMillan inequality
	4.3 Average code word length and Huffman’s algorithm
	4.3.1 The validity of Huffman’s algorithm

	4.4 Optimizing the input frequencies
	Optimizing the input frequencies, after minimizing…

	4.5 Error correction, maximum likelihood decoding, nearest code word decoding, and reliability
	4.6 Shannon’s Noisy Channel Theorem
	4.7 Error correction with binary symmetric channels and equal source frequencies
	4.8 The information rate of a code
	Appendix A: JPEGtool User’s Guide
	Appendix B: Source Listing for LZRW1-A
	Appendix C: Resources, Patents, and Illusions
	Appendix D: Notes on and Solutions to Some Exercises
	Bibliography

	Table of Contents
	Chapter 5: Lossless Data Compression by Replacement Schemes
	5.1 Replacement via encoding scheme
	5.2 Review of the prefix condition
	5.3 Choosing an encoding scheme
	5.3.1 Shannon’s method
	5.3.2 Fano’s method
	5.3.3 Huffman’s algorithm

	5.4 The Noiseless Coding Theorem and Shannon’s bound
	Appendix A: JPEGtool User’s Guide
	Appendix B: Source Listing for LZRW1-A
	Appendix C: Resources, Patents, and Illusions
	Appendix D: Notes on and Solutions to Some Exercises
	Bibliography

	Table of Contents
	Chapter 6: Arithmetic Coding
	6.1 Pure zeroth-order arithmetic coding: dfwld
	Subdividing to find A (w)
	Examples
	Finding the dfwld in a subinterval
	6.1.1 Rescaling while encoding
	Rescaling one bit at a time
	The underflow expansion

	6.1.2 Decoding

	6.2 What’s good about dfwld coding: the compression ratio
	Comments

	6.3 What’s bad about dfwld coding and some ways to fix it
	6.3.1 Supplying the source word length
	6.3.2 Computation
	6.3.3 Must decoding wait until encoding is completed?

	6.4 Implementing arithmetic coding
	Implementation and performance issues
	Precision
	Performance

	6.5 Notes
	Appendix A: JPEGtool User’s Guide
	Appendix B: Source Listing for LZRW1-A
	Appendix C: Resources, Patents, and Illusions
	Appendix D: Notes on and Solutions to Some Exercises
	Bibliography

	Table of Contents
	Chapter 7: Higher-order Modeling
	7.1 Higher-order Huffman encoding
	7.2 The Shannon bound for higher-order encoding
	7.3 Higher-order arithmetic coding
	7.4 Statistical models, statistics, and the possibly unknowable truth
	7.5 Probabilistic finite state source automata
	Simulating a source with a pfssa

	Appendix A: JPEGtool User’s Guide
	Appendix B: Source Listing for LZRW1-A
	Appendix C: Resources, Patents, and Illusions
	Appendix D: Notes on and Solutions to Some Exercises
	Bibliography

	Table of Contents
	Chapter 8: Adaptive Methods
	8.1 Adaptive Huffman encoding
	8.1.1 Compression and readjustment
	8.1.2 Higher-order adaptive Huffman encoding

	8.2 Maintaining the tree in adaptive Huffman encoding: the method of Knuth and Gallager
	8.2.1 Gallager’s method
	8.2.2 Knuth’s algorithm

	8.3 Adaptive arithmetic coding
	8.4 Interval and recency rank encoding
	8.4.1 Interval encoding
	8.4.2 Recency rank encoding

	Appendix A: JPEGtool User’s Guide
	Appendix B: Source Listing for LZRW1-A
	Appendix C: Resources, Patents, and Illusions
	Appendix D: Notes on and Solutions to Some Exercises
	Bibliography

	Table of Contents
	Chapter 9: Dictionary Methods
	9.1 LZ77 (sliding window) schemes
	9.1.1 An LZ77 implementation
	LZRW1

	9.1.2 Case study: GNU zip

	9.2 The LZ78 approach
	9.2.1 The LZW variant
	9.2.2 Case study: Unix compress

	9.3 Notes
	Appendix A: JPEGtool User’s Guide
	Appendix B: Source Listing for LZRW1-A
	Appendix C: Resources, Patents, and Illusions
	Appendix D: Notes on and Solutions to Some Exercises
	Bibliography

	Table of Contents
	Chapter 10: Transform Methods and Image Compression
	10.1 Transforms
	10.2 Periodic signals and the Fourier transform
	10.2.1 The Fourier transform and compression: an example

	10.3 The cosine and sine transforms
	10.3.1 A general orthogonal transform
	10.3.2 Summary

	10.4 Two-dimensional transforms
	10.4.1 The 2D Fourier, cosine, and sine transforms
	10.4.2 Matrix expressions for 2D transforms

	10.5 An application: JPEG image compression
	10.6 A brief introduction to wavelets
	10.6.1 2D Haar wavelets
	Image compression with wavelets

	10.7 Notes
	Appendix A: JPEGtool User’s Guide
	Appendix B: Source Listing for LZRW1-A
	Appendix C: Resources, Patents, and Illusions
	Appendix D: Notes on and Solutions to Some Exercises
	Bibliography

	Table of Contents
	Appendix A: JPEGtool User’s Guide
	Requirements
	Installation
	A.1 Using the tools
	Approximation by partial sums
	On to JPEG
	Adjusting the quantizer
	Adjusting the blocksize
	A JPEG enhancement

	A.2 Reference
	A.3 Obtaining Octave
	Support Programs

	Appendix B: Source Listing for LZRW1-A
	Appendix C: Resources, Patents, and Illusions
	Appendix D: Notes on and Solutions to Some Exercises
	Bibliography

	Table of Contents
	Appendix B: Source Listing for LZRW1-A
	Definitions and documentation
	The compress routine
	The decompress routine
	The compress header
	The port header
	Testing
	Appendix A: JPEGtool User’s Guide
	Appendix C: Resources, Patents, and Illusions
	Appendix D: Notes on and Solutions to Some Exercises
	Bibliography

	Table of Contents
	Appendix C: Resources, Patents, and Illusions
	C.1 Resources
	C.2 Data compression and patents
	C.3 Illusions
	The story
	The counting argument
	Conclusion

	Appendix A: JPEGtool User’s Guide
	Appendix B: Source Listing for LZRW1-A
	Appendix D: Notes on and Solutions to Some Exercises
	Bibliography

	Table of Contents
	Appendix D: Notes on and Solutions to Some Exercises
	1.1 Introduction
	1.2 Events
	1.3 Conditional probability
	1.4 Independence
	1.5 Bernoulli trials
	1.6 An elementary counting principle
	1.7 On drawing without replacement
	1.8 Random variables and expected, or average, value
	2.1 How is information quantified?
	2.2 Systems of events and mutual information
	2.3 Entropy
	2.4 Information and entropy
	3.1 Discrete memoryless channels
	3.2 Transition probabilities and binary symmetric channels
	3.3 Input frequencies
	3.4 Channel capacity
	4.2 Prefix-condition codes and the Kraft-McMillan inequality
	4.3 Average code word length and Huffman’s algorithm
	4.4 Optimizing the input frequencies
	4.5 Error correction and reliability
	4.6 Shannon’s Noisy Channel Theorem
	5.1 Replacement via encoding scheme
	5.2 Review of the prefix condition
	5.3 Choosing an encoding scheme
	5.4 The Noiseless Coding Theorem and Shannon’s bound
	6.1 Pure zeroth-order arithmetic coding: dfwld
	6.4 Implementing arithmetic coding
	7.1 Higher-order Huffman encoding
	7.2 The Shannon bound for higher-order encoding
	7.3 Higher-order arithmetic coding
	8.1 Adaptive Huffman encoding
	8.3 Adaptive arithmetic coding
	8.4 Interval and recency rank encoding
	9.1 LZ77 (sliding window) schemes
	9.2 The LZ78 approach
	10.2 Periodic signals and the Fourier transform
	10.3 The cosine and sine transforms
	10.5 An application: JPEG image compression
	10.6 brief introduction toA wavelets
	Appendix A: JPEGtool User’s Guide
	Appendix B: Source Listing for LZRW1-A
	Appendix C: Resources, Patents, and Illusions
	Bibliography

	Table of Contents
	Bibliography
	Appendix A: JPEGtool User’s Guide
	Appendix B: Source Listing for LZRW1-A
	Appendix C: Resources, Patents, and Illusions
	Appendix D: Notes on and Solutions to Some Exercises

