
V413HAV

V413HAV

Developing Android on Android
Automate Your Device with Scripts and Tasks

Mike Riley

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

V413HAV

Vaibhav
Typewritten Text
V413HAV

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The Android robot is reproduced or modified from work created and shared by Google and
used according to terms described in the Creative Commons 3.0 Attribution License.

The team that produced this book includes:

Jacquelyn Carter (editor)
Potomac Indexing, LLC (indexer)
Molly McBeath (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-54-3
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—November 2013

V413HAV

http://pragprog.com

This book is dedicated to my three favorite
M’s: Marinette, Marielle, and Mitchell.

V413HAV

Contents

Acknowledgments ix

Introduction xi

Part I — Customize

1. Getting Started 3
1.1 Analyzing Your Mobile Lifestyle 3
1.2 Mobile Personalization 6
1.3 Next Steps 8

2. Personalizing Your Home Screen 9
Launchers 102.1

2.2 Widgets 14
2.3 Floaters 19
2.4 Home Screen Customization 22
2.5 Next Steps 25

3. Listening to Your Android 27
Wearable Computing 273.1

3.2 The Sound of Data 29
3.3 Button Control 33
3.4 Next Steps 37

Part II — Explore

4. Automating with Tasker 41
Introducing Tasker 414.1

4.2 Talking Clock 43
4.3 Train Station Alarm 53

V413HAV

4.4 Tasker App Factory 57
4.5 Next Steps 61

5. Scripting with SL4A 63
SL4A: Scripting Layer for Android 635.1

5.2 Programming with SL4A 67
5.3 Scheduling the SL4A Script 69
5.4 Other Android-Ported Languages 71
5.5 Next Steps 72

6. Programming with AIDE 75
Getting Started 766.1

6.2 Programming the Clock 78
6.3 The Clock Is Running 84
6.4 Talking Clock Automation 86
6.5 Next Steps 88

Part III — Build

7. Tasker Pomodoro Widget 93
Rapid Tasker Prototyping 937.1

7.2 Pomodoro Widget Redux 98
7.3 Testing the Revised Widget 107
7.4 Addressing the Limitations 111
7.5 Next Steps 113

8. Messaging Projects 115
Check Email 1158.1

8.2 Speak ’n’ Tweet 126
8.3 Jabber Tracker 136
8.4 Next Steps 143

9. Notification Projects 145
Talking Notifications 1459.1

9.2 Forecast.io 151
9.3 AutoNotification 158
9.4 Next Steps 163

10. Graphics Projects 165
10.1 Application Launcher 165
10.2 Twitch.tv Widget 172
10.3 Next Steps 183

Contents • vi

V413HAV

Part IV — Appendixes

A1. Android Programming Tools 187
A1.1 Code Editors 187
A1.2 Source Version Control 193
A1.3 Miscellaneous Tools 198

A2. Resources on the Web 201

Bibliography 203

Index 205

Contents • vii

V413HAV

Acknowledgments
This is my second book for Pragmatic Bookshelf, and it has been a pleasure
to once again work with my dedicated and insightful development editor,
Jackie Carter. If you can follow along with the projects without any problem,
you have Jackie to thank. Her editorial skills and professional project man-
agement were crucial in keeping the book flowing smoothly and on schedule.

I would also like to thank all the wonderful technical editors and beta reader
participants who shared valuable feedback, caught typos and other errors,
and generally offered excellent suggestions on improving the quality of the
book. In particular, I would like to thank Mike Bengtson for his awesome
ingenuity, Corey Butler for his progressive technical edge, Ed Burnette for
his pragmatic expertise, John Cairns for his eagle-eye criticality, and Glen
Ferrel for his proofreading expertise and infectious enthusiasm. I also want
to give a big shout-out to Dr. James Withers and Simon Wood (two of the
geniuses behind the awesome SwiftKey Android soft keyboard replacement
program) for their eagle-eye analysis of the book’s content. And a special
thank-you goes to Jan Debiec and Cristina Zamora for their vigilant review
of the material, active participation in the beta, and unending encouragement
for my work. I am so blessed and humbled to be surrounded by such techni-
cally minded people as gifted, kind, and supportive as you.

No amount of thanks can match the sacrifice my family made to give me the
time to devote to another book. I promise to take a break from book writing
for a while so I can make up for lost time with you.

Lastly, a big high-five to publishers Andy Hunt and Dave Thomas for once
again entrusting me to deliver a book worthy of the Pragmatic Bookshelf
imprint. Thank you for giving me such a wonderfully rewarding opportunity
to do so.

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Introduction
In this book, we’re going on a journey of discovery. We’re going to discover
how amazing the Android OS is and how it is transforming the way people
communicate. We’re also going to learn how to leave our legacy desktop PCs
behind, even for native Android application development needs.

The idea for this book was the result of a conversation I had with Pragmatic
Bookshelf publisher Dave Thomas. He had just acquired a Galaxy S3 Android
phone and wanted to know what kind of cool things he could do with it. Since
I have been an Android user since the release of the first commercial Android
phone, the G1, I had a few suggestions on where to start. As he became more
enthusiastic about the broad possibilities of customization and personalization
that the Android platform has to offer, a new book on the subject started to
crystallize.

The objectives of this book are simple. You will learn about how to apply and
codify your mobile automation needs in an Android program. Using both
scripting and native application development approaches, we will build several
programs that not only teach you how to quickly automate your mobile lifestyle
but also give you the skills to extend these programs beyond their tutorial
roots.

Why Android? Why Now?

The Android OS is several years old, and its design principles (a modern, true
multitasking mobile OS with built-in memory, permissions management, and
so on) have been the same since its inception. So why is this book relevant
now compared to five years ago, when Android was first introduced?

Obviously, the platform has matured considerably in that time. It has also
greatly benefited from its open source approach by fostering significantly
faster innovation compared to closed, proprietary operating systems. Take a
look at a first-generation iPhone compared to the iPhone 5. While the hardware
has vastly improved, the primary user interface is nearly identical. Consider

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

the differences between Android 1.0 running on a G1 phone and Android 4.2
running on a Nexus 4. The differences are striking. The user interface, hard-
ware support, design aesthetics, and everything but the original design prin-
ciples have rapidly evolved for the better. One benefit from this co-evolution
of hardware and software is that you can do things on a modern Android
device that was the stuff of fiction five years ago. To think that on your Android
device you can now do computing on a scale that was the exclusive domain
of desktop PCs for the last thirty years is awe-inspiring.

This evolutionary path is also manifested in Android application development
tools. Once clunky and incomplete, the Android SDK and Eclipse plug-ins
are finally capable of stable, team-based, test-driven development. While the
user interface construction toolkit could still use more polish, every other
aspect of the typical Android development and emulation on a desktop PC is
polished and professional.

One of the most exciting aspects of Android programming, testing, and
deployment is that its application development life cycle can now be done
directly on the Android device. This is a big deal. When compared to other
mobile operating systems that require an expensive PC outfitted with a decent
processor and plenty of RAM to run the target emulator, the projects discussed
in this book require only your Android device. When you code and run
applications on the same device, it greatly accelerates the development process,
just as it did during the desktop PC era.

Let’s also not forget that, like a desktop computer, Android’s home screen
can be highly customized and extended via custom wallpapers, animations,
icons, folder actions, transition animations, and much more. This degree of
personalization allows you to make your Android device fit your aesthetic
values, daily workflow, and communication and notification preferences, not
the other way around. Third-party extensions and widgets also help push the
envelope of what is possible, further contributing to Android’s success and
dominant market position.

Who This Book Is For

This book is for anyone who is interested in doing much more with an Android
device than downloading and using apps from the Google Play store. If you
love your Android phone or tablet and you love to tinker with technology, this
is the perfect book for you. And while prior programming experience is not
required, it will be helpful to understand some of the scripts that we will
create in the chapters ahead.

Introduction • xii

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Requirements

This is a book about Android, so it should come as no surprise that a must-
have requirement is an Android phone or tablet running Android OS 4.2
(known by its friendly code name Jelly Bean) or newer. The screenshots used
throughout this book were taken on a Galaxy Nexus phone and Nexus 7
tablet.

In addition to the Android phone or tablet, you should have an active account
on the Google Play store, since a good portion of the software used in this
book is exclusively distributed via the Google Play service.

Lastly, while it’s not required, I strongly recommend you obtain a quality
Bluetooth keyboard known to be compatible with the Android OS. I have yet
to use a Bluetooth keyboard that could not be paired with Android, but key-
boards designed specifically with Android in mind are optimal since they often
have special keys associated with functions such as play/pause music, volume
control, toggle between applications, lock the screen, and so on. My current
favorite mobile Bluetooth keyboard is the Logitech Tablet Keyboard for
Win8/RT and Android, shown in the following figure.1 It is a full-size keyboard
and thus larger than other mobile Bluetooth keyboards that have a smaller
footprint or fold in half for greater portability. Plus, Logitech’s full-size key-
board combined with the protective cover doubles as a phone or tablet stand.

Figure 1—The Logitech Tablet Keyboard for Win8/RT and Android

1. http://www.logitech.com/en-us/tablet-accessories/android/tablet-keyboard-android-win8-rt

report erratum • discuss

Requirements • xiii

V413HAV

http://www.logitech.com/en-us/tablet-accessories/android/tablet-keyboard-android-win8-rt
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

While you are understandably not going to be able to use this keyboard in a
cramped moving vehicle such as a bus or train, it works perfectly fine sitting
on an airplane fold-down seat tray or desk. And since I’m usually bringing
along a backpack during my commutes, the Logitech keyboard adds practi-
cally no additional weight or bulk to the bag. Besides, you will find that the
keyboard is a sanity saver when editing code or documents on the Android
device.

So, that’s it—a phone or tablet, an active Google Play account, and maybe an
Android-compatible Bluetooth keyboard. For folks like me who have been
around since the dawn of the personal computer era, it is simply amazing to
think how far we have come in the past forty years and how much further
we’ll go in the next forty years.

Jailbreaking and Rooting

Unlike traditional desktop operating systems, mobile OSs like Android and
iOS are locked down in such a way so that the system-level files cannot be
tampered with by ordinary users. This keeps the device more secure by pre-
venting malicious applications from modifying system files without the user’s
knowledge. Similarly, it prevents the user from altering these files.

Jailbreaking is a term used in the mobile device market to mean a procedure
that allows users to bypass the normal operating system–level restrictions,
typically to gain root-level access (rooting the device). Once root access is
obtained, the user or application has full read-write access to all aspects of
the operating system files. This allows modification of the device’s behavior
in ways that weren’t originally intended by the OS developer.

While Android OS tinkerers can benefit from rooting a device by understanding
the internal workings of the OS better, average users could be putting the
contents and operation of their phones’ security at risk if they are untrained
in the various aspects of mobile OS security best practices. In the early days
of Android, when many features were immature or missing, jailbreaking and
rooting were more attractive, since doing so provided power users with a
degree of customization that matched their needs. These custom modifications
could range from modifying system-level virtual private network (VPN) software
stacks to changing the look and feel of the home screen.

Android today is a much more mature operating system, so many of these
limitations have a viable and more secure alternative. The projects in this
book do not require jailbreaking or rooting your device. Unless you are a
security researcher or a technology tinkerer who likes to crack things open

Introduction • xiv

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

to see how they work, there is no overwhelming reason for average users to
consider jailbreaking and rooting their Android devices.

What’s in This Book

Now that we have packed our bags for the journey, let’s look at the road map
we’ll use to progress along the trail.

In the first part of the book, we will look at the variety of options we have to
customize our Android experience. The home screen, lock screen, widgets,
backgrounds, icons, and touch behaviors can all be personalized to your liking.
Unlike some mobile operating systems that enforce a structured, inflexible
design aesthetic, Android offers desktop-like customization in a mobile
package. We will dive into specific examples for home screen renovation. We
will also take a look at extending our Android experience by calling upon a
variety of Android’s hardware capabilities, such as using the headphone jack
to transform our Android applications into better, more convenient, and
information-rich wearable-computing user experiences.

In Part II, we will dip our toe in the automation waters by taking a look at a
very powerful application called Tasker. We will use Tasker to automate sev-
eral personal workflow needs and get introduced to some basic conditional
programming and control flow while we’re at it. We will also delve further into
the programming landscape with the introduction of Scripting Layer for
Android (SL4A). SL4A will allow us to write scripts in Python, Ruby, and
other popular interpreted languages that will execute on Android and give us
access to most of the system-level calls exposed by the Android SDK. We will
conclude the Explore section of the book by actually programming Android
using the native SDK. But instead of using a personal computer loaded with
the Android SDK, emulator, and related development tools, we will write,
compile, test, and deploy these native applications entirely on our Android
phone or tablet.

In Part III of the book, we will apply what we learned in the first two parts by
first creating a custom Android widget entirely on the device—no PC required.
The final set of projects in the book will wrap these scripting and automation
technologies in friendly user interfaces. These projects will show the versatil-
ity and automation opportunities that Android has to offer. The book also
includes appendixes that review a variety of programming tools that run on
the Android platform, as well as offer additional web resources to further your
own project ideas.

report erratum • discuss

What’s in This Book • xv

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

By the end of the book, you should be well prepared to continue the journey
on your own to create an Android experience that perfectly complements your
information-interaction lifestyle.

Online Help

Many websites are devoted to the dissemination of Android news, reviews,
hacking, modding, and programming. Check out Appendix 1, Android Pro-
gramming Tools, on page 187, for a list of some of my favorites. It should go
without saying that for Android development, Google’s http://developer.android.com
website offers the official word on Android application development. This isn’t
just a repository of bland technical documentation but a wealth of useful and
well-written articles, tutorials, and tech notes from the folks responsible for
various portions of the operating system. It’s a resource that any serious
Android developer should have permanently bookmarked.

There are a number of footnotes in the book featuring web links to more online
resources. I also encourage you to post specific questions or comments about
the ideas presented in the book at the book’s web forum. Should you happen
to spot an error, feel free to mention it on the book’s website errata page.
You’re also welcome to contact me directly via my mike@mikeriley.com email
address or follow me on Twitter @mriley. I look forward to hearing from you!

With that, we’re ready to take a look at all the things we can customize in a
nonrooted device running the stock Android 4.2 or newer operating system.

Mike Riley

mike@mikeriley.com
November 2013

Introduction • xvi

report erratum • discussV413HAV

http://developer.android.com
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Part I

Customize

V413HAV

CHAPTER 1

Getting Started
Today’s smartphones are amazing devices. They are such powerful and
capable computing devices that they have even replaced traditional desktop
personal computers for some people. And like traditional desktops, one of the
most exciting aspects of the Android platform, especially when compared to
other mobile operating systems, is its ability to be highly customized. This
customization goes beyond just wallpaper and icon replacements. You can
use Android to create custom tasks, scripts, workflows, and behaviors that
can’t be done easily on most other mobile platforms.

In this book we’re going to go beyond simply locating and installing commercial
Android applications that provide generic functionality to fulfill your needs.
But before we can start crafting scripts and applications that do what generic
Android applications cannot, we need to evaluate key features of what an
Android device has to offer. Then we can determine what to look for in the
Google Play market. If we can’t find what we’re looking for, we can build it
ourselves.

In this chapter, we will take a look at some of these key aspects before decking
out your phone or tablet with themes, widgets, and applications that might
not optimally suit your mobile lifestyle needs.

1.1 Analyzing Your Mobile Lifestyle

Before you can begin building a solution, you need to determine the problem
to be solved. Even though today’s high-end smartphones are more powerful
than desktop computers were only a few years ago, this power is often not
fully harnessed by users until they learn how to leverage all facets of the
device. To do that, compare how you use your smartphone today with how
you would like to use it in the future.

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand
Vaibhav
Typewritten Text
V413HAV

If your Android device is a phone, do you use it primarily for voice calls or
texting? If you use an Android tablet, is it used mostly for reading ebooks or
for surfing the Web? Deciding where you spend the most time with your device
will help narrow down what functionality can be enhanced to improve your
efficiency and satisfaction with the Android OS.

Think about how much time you spend with an application. Is it because it
is so helpful that you can’t imagine life without it? Or is it because the
application is so cumbersome and nonintuitive that it sucks up a substantial
amount of time while you’re fighting the interface? Do you find yourself run-
ning the same type of task over and over again?

If you had the chance to re-create your most frequently used applications,
what would you change about them? Do you have special needs that are not
addressed in these apps?

Here is a personal example. I am bound by train schedules for my commute
into work. As such, an important feature that I needed from my Android
phone was a way for me to know the current time without having to dig into
my pocket for my phone and fumble with the security unlock code. Just
imagine how cumbersome that would be wearing thick gloves on a subzero
Chicago winter morning. Since I was already wearing earbuds to actively listen
to tech podcasts during my commute, hearing the time spoken was a much
more advantageous solution than the visual clock display.

At first, I wrote a simple talking clock app using the Android SDK but found
it to be inflexible when it came to making tweaks to the routines. If I discovered
a bug or came up with an idea to extend the program’s functionality, I had
to wait until I got home to fire up my computer, run Eclipse, spin up an
Android emulator, load the project, make changes to the codebase, go through
a test/debug cycle in the emulator, and then push the compiled .apk file to
my Android phone via the Android Debug Bridge (ADB). All that work for a
few minor tweaks! Needless to say, there had to be a better way. Hence, the
journey I’ll take you through in this book mirrors my own iterations that best
suited my mobile lifestyle needs.

If you’re like me and you live in the post-PC era by deprecating your desktop
or laptop computer for a phone or tablet alternative most of the time, your
mobile lifestyle is all-encompassing. My phone is always by my side during
my waking hours and on my nightstand when I sleep. Likewise, my tablet is
with me during my commutes and anytime I’m driving somewhere where I
will be away from home longer than an hour. Just as noteworthy to-dos pop
into my head while on the go, ideas for enhancements to existing Android

Chapter 1. Getting Started • 4

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

apps I have written have to be captured at that moment before they are lost
into the ether of the day’s demands.

Having the flexibility to make these changes on the fly has been about as
game-changing for me as when I bought my first home computer in the 1980s
(an Atari 400 with its craptaculous membrane keyboard) and then could write
my own apps without having to wait for computer lab time at school. That
freedom and flexibility changed my life back then, and as the Android platform
matures with the ability to develop apps on the device rather than a hulking
piece of hardware, that life-changing experience is resurfacing.

To put yourself in a mobile lifestyle frame of mind, here are some questions
to ponder when considering how you use your Android device for your own
customization opportunities:

• What hours of the day do you use your phone or tablet? If you respond
“All the time,” what are the time ranges that you use the device the most?

• What applications do you spend the most time using? If you’re not sure,
Android’s Data Usage and Running apps (shown in the following figures)
are accessible via the Android Settings application.

Figure 3—A list of currently running
applications

Figure 2—An example of Android’s data
usage

report erratum • discuss

Analyzing Your Mobile Lifestyle • 5

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

While not a true reflection of time spent with each application, these two
measurements can help you to a certain degree by showing you which
programs consume the most bandwidth and power. These data collections
can help you become more aware of which applications are frequently
running (whether you’re aware of them doing so in the background or
not).

• What repetitive tasks do you perform with your device that would save
time if you could automate these efforts? For example, I used to make an
effort to turn on my phone every morning, turn on the WiFi radio, launch
my podcast application (I’m currently a fan of the DoggCatcher Podcast
Player1), and wait for the application to download whatever podcasts were
available. When done, I would then turn off the WiFi radio to conserve
battery. If I forgot or ran out of time, I wouldn’t have any new podcasts
to listen to on the way to work. By the way, I no longer do this manual
process since I’ve scripted the entire procedure to kick off thirty minutes
before I wake up. I’ve also created automated tasks to grab the latest news
and weather to read to me after the clock alarm awakens me. We’ll explore
how to write your own scripts and tasks later in the book.

• What dream applications or widgets do you wish you had but haven’t
seen in the Google Play store? Be as specific as possible. Do you want an
application that will wake you up, turn on the lights, and start brewing
a pot of coffee at the same time? After reading this book and another book
I wrote called Programming Your Home [Ril12], also published by Pragmatic
Bookshelf, you will have the knowledge necessary to bring an automation
example like this to fruition.

With these thoughts in mind, let’s take a closer look at some of the more
interesting personal automation ideas we could build upon.

1.2 Mobile Personalization

After you have considered what opportunities for automation exist, start
brainstorming how to make those ideas come to life. You will discover that
the more you think about the improvements that customized automation can
bring, the faster new program ideas will flow. Some of the automated scripts
and applications that I have created on my Android devices include the follow-
ing examples:

1. https://play.google.com/store/apps/details?id=com.snoggdoggler.android.applications.doggcatcher.v1_0

Chapter 1. Getting Started • 6

report erratum • discussV413HAV

https://play.google.com/store/apps/details?id=com.snoggdoggler.android.applications.doggcatcher.v1_0
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

• Parse SMS alerts for keywords and react accordingly. If you’re a system
administrator, you could parse SMS messages for the phrase “Server
down” and set off a klaxon-style alarm on your phone or tablet.

• Grab RSS news feeds and repackage them for your own personalized news
broadcast. Set your Android device to connect to the Internet at specific
times throughout the day to fetch RSS feeds, parse them, and convert
the text to speech. Then have it read the news stories to you during your
commute to and from work.

• Transmit Wake-On-LAN (WOL) packets in the middle of the night to
computers on your LAN or home network. This will wake them up, run
backups on their users’ home directories, and send a backup report of
success or failure to your Android device. Then let the computers go back
to sleep.

• Have your Android phone automatically turn off all radios except mobile
voice calls and set your display to night mode from the time you go to bed
to the time you wake up in the morning. To help you fall asleep, have
your phone play soothing music or sounds of nature (seashore, forest,
meadow, rain shower, and so on) for twenty minutes, giving you enough
time to peacefully fall asleep.

• Take a photo with your phone or tablet and have that image automatically
cropped, filtered, resized, and posted to your online photo album or blog.

• Divert inbound phone calls based on caller ID information to voicemail
or automatically forward the call to a secondary number (such as a Google
Voice number that offers message transcription services) depending on
time of day or level of personal importance.

Once you have a list of needs in mind, you can start to define what is neces-
sary to bring these ideas to fruition. If someone hasn’t already done the work
for you and posted the results of their efforts online or in the Google Play
store, you have a few more factors to consider before diving in and expending
the time and effort needed to bring your ideas to life.

Consider Your Skill Level

If you consider yourself more of a power user than a programmer, you will
find that most of the applications and tools mentioned in this book are easy
and approachable. While some of the scripts require knowledge of the Python
or Ruby language, it isn’t essential that you know how to program in either.
Tasks can be created with a minimum of programming knowledge, but it

report erratum • discuss

Mobile Personalization • 7

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

certainly helps if you have some coding skills and are willing to learn new
things.

If you’re already a programmer familiar with object-oriented languages like
Java, picking up the necessary skills to develop Android applications is
straightforward. Several books are available, and hundreds of text-based and
video tutorials exist online to help get you started. As you will see later in this
book, you can build applications that rival natively constructed commercial
Android programs using these tools built for programmers and nonprogram-
mers alike.

Features vs. Time

When starting with an idea, I find it is best to begin with a prototype that can
help crystallize how the application should behave. If I encounter constraints
or roadblocks that simply cannot be overcome with the prototype, I make a
note of these issues so I can evaluate whether those features are worth the
effort to implement using more time-consuming native development
approaches.

There are also times when writing automated tasks or scripts accomplishes
enough of the intended objective that writing a native application is no longer
necessary. This is particularly true if the script or workflow you are creating
is targeted for your specific mobile lifestyle need. But what I have often dis-
covered with my workflows is that as I show my creations to others, they
excitedly ask whether they can have something similar. That’s where this
book comes in. As the classic Chinese proverb says, “Give a man a fish, and
you feed him for a day. Teach a man to fish, and you feed him for a lifetime.”
Let’s go fishing.

1.3 Next Steps

Keep the ideas presented in this chapter in mind as you read this book. As
you learn how to make Android perform automated tasks, consider how these
novel tasks can be expanded to make your life easier. The more you practice
creativity, the more creative you will become.

In the next chapter, we will dive into our first layer of customization by mod-
ifying the look and feel of the Android home screen. With the help of a handful
of utilities available from the Google Play store, we can transform the default
Android user interface into a whole new experience.

Chapter 1. Getting Started • 8

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

CHAPTER 2

Personalizing Your Home Screen
For those old enough to remember the days of Windows 3.0, a key differentia-
tor between that GUI-based operating system and the competing Apple Mac
OS 7 was that Microsoft’s offering allowed third-party shells to transform the
look and feel of the Windows experience. As time went on and Microsoft’s
dominance was assured, this level of customization was practiced less fre-
quently but could still be applied for those who preferred an alternative user
interface.

Within the mobile space scenario, Google’s Android has replaced Apple as
the dominant operating system, in part because of the same openness to
customizing the user experience. A variety of home-screen shells, better known
as launchers, are available through the Google Play marketplace that can
swap out default home-screen graphics, icons, and behaviors. And in contrast
to Apple’s iOS platform, Android allows the placement of onscreen mini-
applications known as widgets to alter the stock Android UI. Pushing the
envelope a bit further are what I call floaters. These are Android applications
that run in a resizable desktop-like window that can multitask and hover on
top of the home screen or other full-screen Android programs.

In this chapter, we will take a look at several home-screen customization
approaches. We will also review several widgets in preparation for building
our own later in the book. Then we will assess some of the more popular
floater applications as well as explore a few hardware and software enhance-
ments that can be used to further manipulate Android’s standard application
launching interface. Lastly, we will put all these pieces together to create an
emulated Windows Phone or Mac desktop user experience running on an
Android device.

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

2.1 Launchers

The stock home screen that comes on the standard Google Nexus devices
offers a crisp, clean interface. But if you don’t like how it looks or want to
remove the Google search bar widget that refuses to budge when you try, you
have several alternative approaches to choose from. These replacement home-
screen layout and theme applications, called launchers, are available for
download directly from the Google Play store. As the name implies, launchers
can be used to launch applications. But they can also be used to customize
everything from the look of icons to the transition animations that are dis-
played when moving between screens.

Some device manufacturers have created their own custom launchers to
enhance and differentiate their Android devices. These include Samsung’s
TouchWiz1 and HTC’s Sense.2 This degree of customization demonstrates a
major advantage that Android has over competing mobile operating systems.
This also helps to accelerate user experience innovations because Android
offers a platform where experimentation is not only possible but embraced.

Most of the commercially available launchers offer a free version to play with
that are either ad-banner supported, restricted in features, or constrained to
a certain degree of customization. If customers like what they see, they are
encouraged to reward the launcher’s creator with a paid upgrade that will
remove ads and/or unlock additional features. The nice thing about these
commercial launchers is that they can easily be installed just like any other
program that can be obtained from the Google Play store. Once downloaded
and installed, the replacement launcher will ask for your permission to always
be used as the default launcher. You can also choose to run a launcher once
before making the launcher replacement a global change. At the time of this
writing, the most popular launchers on Google Play are ADWLauncher EX,3

Apex Launcher Pro,4 GO Launcher EX,5 and Nova Launcher Prime.6 Let’s take
a brief look at each of these to see what they have to offer and what differen-
tiates one from the other.

1. http://en.wikipedia.org/wiki/TouchWiz
2. http://en.wikipedia.org/wiki/HTC_Sense
3. https://play.google.com/store/apps/details?id=org.adwfreak.launcher
4. https://play.google.com/store/apps/details?id=com.anddoes.launcher.pro
5. https://play.google.com/store/apps/details?id=com.gau.go.launcherex
6. https://play.google.com/store/apps/details?id=com.teslacoilsw.launcher.prime

Chapter 2. Personalizing Your Home Screen • 10

report erratum • discussV413HAV

http://en.wikipedia.org/wiki/TouchWiz
http://en.wikipedia.org/wiki/HTC_Sense
https://play.google.com/store/apps/details?id=org.adwfreak.launcher
https://play.google.com/store/apps/details?id=com.anddoes.launcher.pro
https://play.google.com/store/apps/details?id=com.gau.go.launcherex
https://play.google.com/store/apps/details?id=com.teslacoilsw.launcher.prime
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

ADWLauncher EX

One of the most downloaded launchers on the market, ADWLauncher EX’s
main claim to fame is that it runs on platforms as far back as Android OS
version 1.6. Even on that early Android release, ADWLauncher EX offers the
same kind of eye candy and customization features found on later Android
releases. However, maintaining this visual compatibility comes at the price
of a slightly larger application installation size compared to other launchers.

Pros

• Runs on the Android operating systems as far back as version 1.6 (aka
Donut)

• Fair number of customization options and graphical flourishes, such as
page transitions, icon adjustments, and app organization styles

Cons

• Larger installation footprint compared to other third-party launchers
• Not yet optimized for Android 4.2 and newer
• Can be problematic with some widgets

Apex Launcher Pro

This launcher has become popular among the Android 4.0 crowd, partly
because it doesn’t run on any Android versions older than the 4.0 release.
As such, the install footprint is tiny in comparison to something like
ADWLauncher EX. Apex Launcher Pro can also use launcher themes created
for competing launcher platforms like ADW and Go Launcher.

Pros

• Optimized for Android 4.0 and newer
• Tiny install footprint
• Can import themes from several competing third-party launchers

Cons

• More expensive than other third-party launchers
• Not quite bleeding edge, but good enough to take advantage of the latest

themes and design aesthetics that Android 4.2 utilizes

GO Launcher EX

With more than a million installations since its release into the Play market-
place, GO Launcher EX is by far the most popular on Google Play and has

report erratum • discuss

Launchers • 11

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

the largest variety of third-party add-ons and inventive creations formatted
for the program’s graphic templates. It’s also free, but at a big price in the
form of in-app advertising. While other launchers offer free, ad-supported
versions, most of the alternatives offer a paid upgrade version that eliminates
in-app advertising along with expanded graphic options.

Pros

• It’s free.
• This is the most popular launcher on the market, with a thriving add-on

and custom theme market (more than 5,000 and counting).
• It runs on Android 2.0 and newer.

Cons

• In-app push advertising clutters the experience.
• It doesn’t consume themes built with other third-party launchers.

Nova Launcher Prime

Figure 4—Nova Launcher Prime
is my preferred launcher.

TeslaCoil Software’s Nova Launcher Prime
(shown in the figure here) is one of the
newest Android launcher programs on the
market. Like Apex Launcher Pro, Nova
Launcher Prime runs only on Android 4.0
and newer devices. As such, its minuscule
install size coupled with its ability to import
ADW or Go Launcher icon themes elevate
it beyond a casual launcher replacement.
It’s one of the more expensive launchers
analyzed in this chapter, but I find that it
is also one of the most flexible and intuitive-
ly designed.

Nova Launcher Prime is my personal
launcher of choice and the one I used
throughout this book. And because this
book assumes you are also using a device
running Android OS 4.0 or newer, Nova
Launcher Prime is an even easier top recom-
mendation to make.

Chapter 2. Personalizing Your Home Screen • 12

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Pros

• Optimized for the Android 4.0 user experience
• Flexible yet intuitive user interface options
• Can import and use ADW and Go Launcher icon themes
• Built-in unread count badges for Gmail, missed calls, and SMS

Cons

• Comparatively expensive

Who Can You Trust?

While these launchers offer a fun and visually exciting way to customize the
look and feel of the home screen and icons that populate the screen, they
require an extraordinary level of access to a number of areas within the
Android operating system to do their magic. Even though a majority of Android
applications usually need only two or three permissions (such as Internet
access, read-write access to the SD card, and so on), several of the Android
launchers featured in this chapter require a whole host of OS-level permis-
sions, from reading your contacts, text messages, call log, and email to having
full network access. Given such broad access to your data and a connection
to a network, untrustworthy launchers could harvest that data for their own
nefarious purposes.

Fortunately, it’s unlikely that the more popular launchers highlighted in this
book would be engaging in such practices since they are used by so many
people; the likelihood is small that security-conscious customers using these
products would be monitoring the application’s network interaction for any
funny business. Yet while companies that create these launchers are seeking
commercial gain through the sale of their application, the more popular a
launcher becomes, the more likely unscrupulous hackers could seek out and
exploit security flaws in the launcher by exploiting unintentional vulnerabilities
in the target launcher application.

The lesson to be learned with this array of launchers is that Google could
step up its game and bake launcher customization within the Android OS.
Not only will this alleviate security concerns (that these third-party launchers
have unfettered access to so many sensitive areas of the phone or tablet), but
it will also help to standardize on theme formats. Instead of being locked into
one vendor’s interpretation of what a launcher theme should consist of, Google
could help set a universal protocol that Android users and independent theme
designers could follow. Until then, we’re stuck with entrusting these third-
party providers with our device’s security.

report erratum • discuss

Launchers • 13

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Launchers can be combined with custom wallpaper images, icons, and screen
transitions to create a new level of personalized artistic expression among a
new generation of mobile connected users. Just as car exteriors were
customized during the mid-1960s through the ’70s by that generation’s youth,
this design trend has been reborn in the mobile generation. Even more levels
of customization can be realized using widgets. Let’s take a closer look at this
standout feature that is part of the Android OS experience.

2.2 Widgets

A major distinction between a desktop computer and a mobile OS such as
Android is the way people interact with information on the display. A desktop
offers considerably more screen real estate (even more so with multiple
monitors) than is typically offered on a mobile display. As such, running
dozens of windowed applications on a mobile device isn’t very practical. Yet
the power of a multitasking OS such as Android allows for many programs
to be running at the same time.

Android has solved this constraint somewhat with the creation of widgets.
Widgets are small graphical applications anchored to the home screen that
can display data in a space as small as a single icon or expand to take over
most of the screen. In this section, we’ll take a look at how to select and use
widgets, as well as sample a few of my favorite Android widgets.

When widgets were introduced in the early days of Android, they were one of
the most defining features of the OS when compared to competing mobile
platforms. Since then, widgets have found their niche as a collection of useful
albeit limited views often for larger host applications.

For example, many media players available for sale on the Google Play store
include widgets of various sizes that distill basic functions such as play/pause
and forward/rewind onto screen areas that span anywhere from one-by-two
to four-by-four tiles. Other widgets offer scrolling news-ticker-style updates
from RSS feeds, server status, and to-do list reminders, among other things.
In addition to the widgets available on the Google Play store, Android ships
with its own collection of widgets to support the variety of Google applications
on the phone.

Discovering the widgets installed on your Android device and adding a widget to
your home screen is easy. To view the widgets installed on your phone on a
standard Android 4.2 launcher configuration, select the Applications group icon
from the lower center of the screen. This will display icons of all the visible pro-
grams on your device. From this screen, select the Widget tab to view the installed
widgets as shown in Figure 5, Android widgets selection screen, on page 15.

Chapter 2. Personalizing Your Home Screen • 14

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Figure 5—Android widgets
selection screen

Choose a widget by long-pressing the widget’s
icon. This will transform the icon into a float-
ing representation that you can select and
drag on your Android’s home screen.
Depending on the type of widget, a preference
settings screen may appear after you have
released the widget’s floating icon for place-
ment. This settings screen may be specific to
that widget or, if the widget is a window to a
full Android application, display the settings
screen for that host program. And in Android
4.2 and newer, widgets can be resized to
consume more or less space on the home
screens. This flexibility adds an even higher
degree of home-screen customization, allowing
you to tweak exactly how you want your
screen to appear.

Lock-Screen Widgets

While the original intent of the lock screen
was to prevent the phone from accidentally
launching apps or dialing numbers while
jostling in your pocket, lock screens are increasingly important. Mobile devices
have become containers of personal information, and the content should be
protected with the same security applied in the physical world. But as secu-
rity increases, convenience decreases. So, something as simple as checking
your calendar can become a time-consuming dance of unlocking your phone,
scrolling to the calendar icon, launching the program, scrolling to the
appointment, and expanding the view for details.

To offset this kind of inconvenience, Google introduced a widget enhancement
feature for the lock screen called, you guessed it, lock-screen widgets. The
lock-screen widgets that are bundled in the standard Android 4.2 OS allow
you to view items such as your calendar, email, and contacts and to even
launch the Camera app without having to unlock the screen.

To select a lock-screen widget, swipe to the left while the lock screen is
enabled. This will display a blank grid with a plus symbol in the center, as
shown in Figure 6, Adding widgets to the lock screen, on page 16. Select the
plus symbol, and a list of widgets that are lock screen–compliant will be dis-
played, as shown in Figure 7, A selection of lock-screen widgets, on page 16.

report erratum • discuss

Widgets • 15

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Scroll through the list to choose the one you want and place it on the lock
screen via the same procedure as placing a regular widget on the home screen.

Figure 7—A selection of
lock-screen widgets

Figure 6—Adding widgets to
the lock screen

Considering the number of home-screen widgets available in the Google Play
store, the choice of lock-screen widgets is not nearly as expansive. This is
surprising considering how easy it is for developers to take existing widgets
and convert them to be lock screen–compatible.

Perhaps as a result of this dearth of lock-screen widgets compared to home-
screen widgets, Android engineer Roman Nurik created the DashClock widget.7

This innovative replacement for the standard Android lock-screen clock
application can host additional details in neatly defined groupings of informa-
tion. DashClock also solves the problem, related to both home-screen and
lock-screen widgets, of when your screens start filling up quickly, requiring
you to scroll back and forth to look for quick tidbits of information.

7. https://play.google.com/store/apps/details?id=net.nurik.roman.dashclock

Chapter 2. Personalizing Your Home Screen • 16

report erratum • discussV413HAV

https://play.google.com/store/apps/details?id=net.nurik.roman.dashclock
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

The other advantage that DashClock offers is a very easy way to hook into
its API so that third-party data sources can be displayed in DashClock’s
container.8 Roman released the DashClock source code under the open source
Apache License 2.0, making it a hit among developers who have rewarded
Roman’s efforts with a thriving number of add-ons. These range from battery
and dialing extensions to word-of-the-day and Facebook message counts.

Of course, with all these extensions, you have to be cautious about the type
of lock-screen enhancements you install. As is the case with something like
the Gmail or Calendar lock-screen widget, DashClock extensions might be
exposing data that you don’t want to display on a pocket billboard. DashClock
also has access to permissions such as contacts, email, and location that can
be polled by it and the extensions it hosts. So, unless you implicitly trust
whatever extension you host within DashClock, be wary of what you install.

My Favorite Widgets

Figure 8—These are a few of my
favorite things.

I try to keep my widget count to a minimum
(see the figure here). Too many widgets,
especially those polling for frequent network
updates, can impact performance and battery
life. I also stay away from the widgets with
lots of graphical flourishes and large screen
footprints because I find them distracting and
overstepping their intention of quickly
assessing the data they are trying to convey.
That said, here are some of the widgets I pre-
fer.

• Calendar

This is the widget component of Google’s
calendar application that is included with
Android running Google applications. It’s
helpful for taking a quick glance at
upcoming scheduled events.

• Moon Phase Pro

Being a child of the 1960s and having
early memories of watching a blurry tele-
vision screen showing Neil Armstrong step

8. http://code.google.com/p/dashclock/wiki/API

report erratum • discuss

Widgets • 17

V413HAV

http://code.google.com/p/dashclock/wiki/API
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

onto the surface of the moon has endeared me to all things space. Moon
Phase Pro9 created by developer Udell Enterprises keeps me in touch with
my fascination with celestial bodies. In addition to the main program that
displays the monthly phases of the moon along with other interesting
statistics, the program comes bundled with several widgets of various
sizes and levels of detail.

• Headset Button Controller

I use this application each time I press the button on my Android headset.
Created by Android developer Christoph Kober, Headset Button Controller
essentially allows you to assign different actions to each type of headset
button press.10 Those actions can span from running scripts and applica-
tions to reassigning behaviors to other button presses. The program
includes a widget that allows you to quickly switch between different
headset button profiles. We will explore in greater detail and make use
of this application in the next chapter.

• Smart Tools Flashlight

The Smart Tools bundle is a helpful collection of fifteen measurement
tools ranging from virtual rulers and protractors to metal detectors and
magnifiers. The program includes a helpful Flashlight widget that turns
on and off the rear camera light (if you have one on your phone or tablet)
with the touch of the Flashlight widget icon. This has helped me more
than a couple times while searching for keyholes and safe walkways and
for paper-based reading at night. Since I always have my Android phone
with me, I always have a flashlight with me as well thanks to this useful
widget.

• Python Interpreter

This widget provides a shortcut to the Python interpreter hosted within
the Scripting Layer for Android (SL4A) program. Besides Python, SL4A
can host a number of other different languages within the Android envi-
ronment. We will learn much more about the SL4A in Chapter 5, Scripting
with SL4A, on page 63.

• Pomodoro Clock Widget

This is my second favorite widget and one I built myself. Touching this
widget activates a Pomodoro countdown timer. I will tell you more about

9. https://play.google.com/store/apps/details?id=com.daylightmap.moon.pro.android
10. https://play.google.com/store/apps/details?id=com.kober.headsetbutton

Chapter 2. Personalizing Your Home Screen • 18

report erratum • discussV413HAV

https://play.google.com/store/apps/details?id=com.daylightmap.moon.pro.android
https://play.google.com/store/apps/details?id=com.kober.headsetbutton
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Pomodoro timers and walk you through the process of building this widget
in Chapter 7, Tasker Pomodoro Widget, on page 93.

• Check Mail Widget

This is my favorite widget and, like the Pomodoro Clock widget, is also
one I built myself. When tapped, the Check Mail widget will check for new
email and speak any new unread messages received. I find that this widget
and the corresponding script it executes is crucial for the hands-free
reporting of new mail messages. We will be building this widget and the
backend script that powers it in Chapter 8, Messaging Projects, on page
115.

Now you should have a pretty good idea of the types of custom application
launchers and widgets that Android has to offer. In the next section, we will
take a look at a special type of Android application that gives your Android
device a retro feel by harkening back to the days of traditional PC-based,
window-driven GUIs.

2.3 Floaters

Figure 9—Several floaters in action

There is another category of Android applica-
tions that can be displayed on the screen
within a movable window. I call these pro-
grams floaters. Floaters behave just like a
window in a modern desktop computing OS.
Most can be resized, minimized, and maxi-
mized, and some even support multiple
instances, allowing multiple windows on the
screen at the same time. See the figure here.

The advantages of using floaters are not as
great as you might expect. They really don’t
work all that well on an Android phone with
a small display. Screen real estate is already
at a premium, and managing windows on top
of an already limited overall display field can
get annoying after a while. There’s also the
dissonance problem of merging an old GUI
desktop application metaphor onto a modern
mobile operating system. It breaks up the
flow, and you may find yourself spending more

report erratum • discuss

Floaters • 19

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

time moving around and organizing windowed applications than actually
interacting with the data they contain.

That said, there are a few benefits. Let’s say you’re watching a video and need
to check and respond to email. Normally you would have to pause the playback
to do so. Using a floater media player, you can just resize the window while
perusing your messages and then expand the playback to full screen without
missing a moment of content. There’s also the coolness and geek credibility
factors to be able to show colleagues something they might not have thought
possible on a mobile device. Lastly, floaters work rather nicely on a 10-inch
Android tablet thanks to the much larger screen size that gives you the ability
to effortlessly move and resize windows. I tend to use floaters most frequently
on these types of large-screen devices.

While quite a few floater-style applications are available in the Google Play
store, here are a few worthy of a closer look:

• AirCalc11

AirCalc is a simple yet free calculator for Android. It also provides a nice
introduction to floaters and is a great way to determine whether your
Android device supports the app screen overlay techniques employed by
most floater programs. AirCalc can be resized, minimized, and maximized
just as you would expect a traditional windowed application to behave.

• AirTerm12

AirTerm is another program written by MBFG (short for My Boyfriend is
a Geek), the same folks behind AirCalc and several other floaters available
from the Google Play store. AirTerm incorporates KBOX,13 a full-featured
Busybox clone for nonrooted Android devices.14 KBOX includes useful
Unix-oriented command-line utilities such as scp, ssh, vim, wget, and
more. While not as complete as something like Terminal IDE (refer to
Appendix 1, Android Programming Tools, on page 187, for more information
on this tremendously useful Android utility), AirTerm can help out in a
pinch. I typically call upon AirTerm on my tablet when simultaneously
administering several Linux servers at the same time.

11. https://play.google.com/store/apps/details?id=com.myboyfriendisageek.aircalc
12. https://play.google.com/store/apps/details?id=com.myboyfriendisageek.airterm
13. http://kevinboone.net/kbox.html
14. http://www.busybox.net

Chapter 2. Personalizing Your Home Screen • 20

report erratum • discussV413HAV

https://play.google.com/store/apps/details?id=com.myboyfriendisageek.aircalc
https://play.google.com/store/apps/details?id=com.myboyfriendisageek.airterm
http://kevinboone.net/kbox.html
http://www.busybox.net
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

• DICE Player15

DICE Player is a free (donations encouraged), full-featured media player
for Android. In addition to supporting a variety of playback formats, DICE
Player includes the ability to convert the normal full-screen playback
mode into a floating pop-up player. The windowed player can be resized
like any other floater-style application. One nifty aspect I like about the
DICE Player is its ability to speed up playback without altering the pitch.
This allows me to watch screencasts twice as fast without changing the
pitch of the audio. A typical scenario on my tablet is to have DICE play
back a screencast in double time while I have Terminal IDE or AirTerm
open, interacting with a server running the configuration being presented
in the screencast. It’s the ultimate post-PC learning experience.

• Overskreen16

Overskreen is another MBFG application that brings the floater technique
to the standard Android web browser. Because of this, Overskreen is a
no-frills browser that can’t compete with the likes of Chrome or Firefox.
Still, its floater properties come in handy when searching the Web or
referring to a website while writing a document. It sure beats the alterna-
tive tap-and-swipe dance common when switching between running
Android programs.

• Stick it!17

Stick it! is another Android media player that, like DICE Player, provides
video playback within a pop-up window. However, unlike DICE Player,
Stick it! offers a neat feature on higher-end Android devices called Multi-
View. This essentially allows for multiple windows to play back different
video content at the same time. It’s an awesome technology demo, but I
honestly haven’t used MultiView in many real-world scenarios. And as
you can imagine, playing several videos at the same time can be rather
taxing on your battery and system resources. But for a whiz-bang Android
showcase program, Stick it! is hard to beat.

Now that we have all the visual customization tools and applications that we
need to have Android’s home screen look and behave the way we want, let’s
apply these ideas to re-create two home screens. One will emulate a competing

15. https://play.google.com/store/apps/details?id=com.inisoft.mediaplayer.a
16. https://play.google.com/store/apps/details?id=com.myboyfriendisageek.airbrowser
17. https://play.google.com/store/apps/details?id=com.myboyfriendisageek.stickit

report erratum • discuss

Floaters • 21

V413HAV

https://play.google.com/store/apps/details?id=com.inisoft.mediaplayer.a
https://play.google.com/store/apps/details?id=com.myboyfriendisageek.airbrowser
https://play.google.com/store/apps/details?id=com.myboyfriendisageek.stickit
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

phone operating system, and another will re-create the look and feel of a
popular desktop operating system.

2.4 Home Screen Customization

Part of the fun of having the level of customization that Android allows is to
re-create familiar computing metaphors. We’re going to do just that with a
quick walk-through of applying themes, widgets, and floaters to emulate the
look and feel of an alternative mobile OS platform. The other will be the re-
creation of a prevalent desktop operating system. Let’s begin by emulating
Microsoft Windows Phone.

Emulating the Windows Phone Look

Our first emulated home screen will be that of a Microsoft Windows Phone.
Like many themes available for free download from Google Play, the GO
Launcher EX Windows Phone 7 pays homage to the clean interface that the
Windows Phone user interface offers.18 While this theme doesn’t completely
redefine your Android’s phone behavior to emulate a Windows Phone, it does
provide a way to dress up the background and icons to give the appearance
of a Windows Phone–inspired home screen.

If you’re using the GO Launcher EX as your launcher of choice, installing
this theme is a breeze. Simply download it from Google Play and select it from
the list of themes in the Go Launcher preferences screen. On the other hand,
if, like me, you’ve opted to use TeslaCoil’s Nova Launcher Prime as your pre-
ferred Android launcher replacement, there are a few more steps you need to
take to incorporate the graphical elements contained in this Windows Phone
theme.

Configuring Nova Launcher Prime

After the theme has been downloaded, open Nova Launcher Prime’s settings.
Before you replace anything or alter your existing launcher settings, make a
backup of your existing Nova Launcher Prime configuration by selecting the
Backup and Import option. This will display the Backup and Import screen,
as shown in Figure 10, Nova Launcher Prime's Backup and Import screen, on
page 23.

Select the Backup label and name your backup or accept the default name of a
date stamp for your backup file. Now if something unexpected should happen
during the import of a new theme or you don’t like the way the new theme looks,
you can easily restore your current launcher layout and behavior.

18. https://play.google.com/store/apps/details?id=com.gau.go.launcherex.theme.wpsevenstyle

Chapter 2. Personalizing Your Home Screen • 22

report erratum • discussV413HAV

https://play.google.com/store/apps/details?id=com.gau.go.launcherex.theme.wpsevenstyle
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

With a backup made, select the Import label from the Backup and Import
screen. Nova Launcher Prime will remind you that your existing launcher
settings will be replaced by the theme being imported. You know, the one you
were supposed to make a backup of, right? Since you do have a backup of
your current configuration, return to the Nova Settings screen and select the
Look and Feel option. From there, choose the Icon Theme option. The list of
the various themes installed on your Android device will be displayed, as
shown in Figure 11, A selection of installed icon themes.

Figure 11—A selection of
installed icon themes

Figure 10—Nova Launcher Prime’s
Backup and Import screen

Now we’re going to use Nova Launcher Prime’s ability to import icons from
other launcher application themes. In this case, we will borrow some Windows
Phone–like icons from a Windows 7 GO Launcher theme. Choose the GO
Launcher EX Windows Phone 7 theme from the list. This will replace icons
for standard Android programs such as Browser, Email, and Settings with a
Windows Phone icon lookalike. Arrange your choice of applications on your
home screen accordingly. Press and hold on the home-screen background to
either change it to a solid color or incorporate a matching Android wallpaper.
I prefer the live wallpaper that is installed with the Moon Phase Pro program.

report erratum • discuss

Home Screen Customization • 23

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Tinker with the layout until you achieve the look and feel you’re comfortable
with. When you’re done, it may look similar to the one shown in Figure 12,
A Windows Phone theme.

Figure 12—A Windows Phone
theme

In the next example, we will use a free theme
originally designed for ADW.Launcher and
pull in its icon assets to reflect a popular
desktop OS.

Emulating the OS X Desktop

For this next theme, you can either use the
launcher it was initially designed for
(ADW.Launcher) or use the icon import capa-
bility of Nova Launcher Prime, as we did in
the previous example. And as before, it’s
always a good idea to make a backup of your
existing settings in case something goes wrong
or you want to return to your original
launcher settings.

Install the ADW Theme MacOS Theme from
Google Play.19 Then, just as we did for the
Windows Phone theme, go into Nova Launcher
Prime’s settings screen. Select the “Look and
feel” option followed by the Icon Theme option.
This will display a list of compatible themes
that Nova Launcher Prime can use. Select the
ADW MacOS theme from the list. Doing so will replace some of the standard
Android program icons with facsimiles of popular Mac OS X icons.

Next, replace the home screen’s background wallpaper with a Mac desktop
wallpaper. Launch the default Android or Google Chrome browser, search
Google Images for “Mac desktop wallpaper,”20 and select any of the ones that
appeal to you. Set the image to your wallpaper by long-pressing the image of
choice. A pop-up menu will appear, as shown in Figure 13, Setting background
wallpaper using an image from the Web, on page 25.

Select the “Set as wallpaper” option. This will download the selected image,
save it locally to your Android file storage, and set the image as the default
home-screen background.

19. https://play.google.com/store/apps/details?id=akglo.themes.macos
20. https://images.google.com

Chapter 2. Personalizing Your Home Screen • 24

report erratum • discussV413HAV

https://play.google.com/store/apps/details?id=akglo.themes.macos
https://images.google.com
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand
Vaibhav
Typewritten Text

Vaibhav
Typewritten Text

Vaibhav
Typewritten Text
V413HAV

Figure 13—Setting background
wallpaper using an image from the

Web

With the background wallpaper set, create
shortcuts to popular Android programs such
as Browser, Email, and Settings on the home
screen. Complete the effect by running a
floater application like Stick it! to give the
home screen the look and feel of a mini OS X
desktop computer, as shown in Figure 14, Re-
creation of the OS X desktop, on page 26.

Making Your Own Home Screen

Now that you have an idea how to apply
existing themes to re-create familiar desktop
platforms, try making your own themes using
a similar approach. Go retro and re-create a
Commodore Amiga or Atari ST desktop on
your Android. How about blending several
desktop metaphors into your own unique
creation? Depending on how artistic you are,
you can even create your own background
and icon images based on a favorite interest
or hobby. Android allows you to explore and
apply your ideas at your leisure.

2.5 Next Steps

This chapter showed just how easy it is to customize the Android graphical
user experience to your liking. Whether it’s embracing the mobile lifestyle to
the fullest or harkening back to a legacy PC user experience, Android gives
you the freedom to choose how you want the interface to look and behave.
This is a significant advantage, especially compared to platforms like those
powered by Apple iOS. Android allows you to express yourself without jail-
breaking or rooting your device, something that might be required to do to
achieve the same effect on other mobile platforms.

Now that you have the knowledge and the tools to customize your Android
device the way you see fit, explore the numerous themes available for down-
load. If you’re using TeslaCoil’s Nova Launcher Prime, you will find that most
background and icon themes are compatible. However, most graphical
embellishment behaviors that accompany these themes, especially those
written for Go Launcher, don’t work as expected, if at all. Still, there are
hundreds of freely available themes to choose from, and that number is
expanding every day. If you don’t find one you like, you can create your own

report erratum • discuss

Next Steps • 25

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Figure 14—Re-creation of the OS X desktop

by converting pictures you took with your Android’s camera into home-screen
backgrounds and icons. Your first attempts might not be works of art, but
they will most definitely express what you want your mobile computing
experience to look like!

In the next chapter, we will explore how to customize the other side of the
user experience by focusing on audio. Specifically, we will learn how to
leverage audio in Android to augment and in some cases even replace the
Android user interface. Get ready to listen up!

Chapter 2. Personalizing Your Home Screen • 26

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

CHAPTER 3

Listening to Your Android
Customizing your home screen’s look and behavior is visually stimulating,
but there are so many other facets of Android that allow it to be personalized.
In this chapter, we’ll take a look at interacting with the information that your
Android device can deliver.

For example, did you know that your Android can speak to you? Ever since
the Android 1.6 OS release, Android has had built-in text-to-speech (TTS)
functionality that could convert text into spoken words. However, it wasn’t
until the release of Android 4.2 that this TTS technology was actually tolerable
to listen to for long stretches. Earlier releases were robotic and lifeless. The
4.2 release includes a far more natural and less obnoxious voice. And if this
default voice isn’t to your liking, third-party text-to-speech synthesis products
like those from SVOX offer a selection of more than forty voices in multiple
languages.1 Before 4.2 came along, I used SVOX for my TTS needs.

But before we get to hear our phone, we should optimize our listening envi-
ronment for on-the-go audio data consumption.

3.1 Wearable Computing

With all the recent interest in wearable computing, people often forget that
an Android phone already is a wearable computer. I have been using my
Android phone as a wearable computing device for years. Let me explain.

The term wearable computer has a broad definition applying to everything
from a wristwatch to a powered laptop strapped to a backpack. In terms of
my Android phone, I wear it in a case attached to my belt loop. However,
rather than reaching for the phone every time I hear its message chime, I
have written scripts and applications that inform me of those messages

1. https://play.google.com/store/apps/details?id=com.svox.classic

report erratum • discussV413HAV

https://play.google.com/store/apps/details?id=com.svox.classic
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

without ever having to remove the phone from its case. Email, text messages,
meeting notifications, countdown timers, motivational reminders, and other
information are controlled and delivered via my audio headset.

This chapter will show you how to put the pieces into place to allow you to
do the same thing. The setup is simple and inexpensive. And unlike Google’s
much hyped and considerably more expensive Glass project, my Android
wearable configuration doesn’t obstruct or distract my vision in any way.

Many people prefer to put their smartphones in their pocket, but I find it far
easier to use a wired headset when the device is holstered in a case strapped
to my belt. I prefer the Case Logic TBC-412 model. Even though this product
is officially designated as a video camera case, I find that it snuggly fits my
Galaxy Nexus even with the added thickness of a 3850mAh extra-capacity
battery. It also protects the phone from the elements, whether that is a drizzle
of rain or a dusty biking trail. The price is also cheaper than custom-designed
slip cases made specifically for the phone.

With the phone safely enclosed, run a headphone wire from your shoulders
to the phone. You can run the wire between layers of clothing to keep it out
of the way. Some headsets come with a helpful plastic clip that allows you to
put some slack into the wire. That keeps the earphones from tugging at your
ears. I attach this clip to my shirt collar to keep the left and right earphone
wires from slipping as I walk. The headphones I use on a daily basis are a
cheap single-button design with a built-in mic that is compatible with most
Samsung Galaxy phone models. These can often be found on Amazon for as
low as a dollar plus shipping. Note that the headset you use must have a
headset button, since you will use that button to answer calls, start and stop
audio, and run applications.

You can opt for a more expensive headset or earphones tailored to your phone
hardware. You can also choose to go entirely wireless via a Bluetooth headset.
But I have found from years of using my wearable configuration that these
choices produce annoyances. For expensive wired headsets, I find that the
wire at the stem of the headphone jack becomes weak over time and eventu-
ally loses either the left or right ear connection. I have even tried shielding
the wire from this wear and tear by looping the wire at the stem of the head-
phone jack and tightly wrapping it with electrical tape to no avail.

As for Bluetooth headsets, I find that the sound quality still hasn’t quite
matched the frequency ranges offered by wired headsets. There is also the
hassle of having to recharge the Bluetooth headset’s battery before use. And

Chapter 3. Listening to Your Android • 28

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

it can be a pain when that charge dies midway through the day without
having the means to recharge it until you’re home.

If you choose a wired approach, you need to manage the path of the wires
from your ears to your encased Android. Depending on the type of activity,
you can try running the wire in between your outer and undershirts, either
in front or back of you. Gadget-friendly clothing from progressive fashion
designers like ScottEVest includes shirts and jackets with dedicated enclosures
to run headphone wiring through so as not to flop around and get in your
way.2

After spending a wad of cash on replacing expensive earphones and wireless
headsets, I have reverted to cheap, throwaway headsets. They sound fine and
offer nearly the same level of durability as more expensive alternatives yet at
a far lower replacement cost.

With the headphones in place and the headphone button in a location that
is easy access, you can use this button to control the basic features of the
phone. Answer an incoming phone call as well as pause and play music with
a single short press of the center headphone button. The basic button press
behaviors are more or less universal across all Android phones that support
headset controls.

With your Android by your side and your audio headset on, let’s next turn
our focus to the software involved in voice recognition and spoken text inter-
action.

3.2 The Sound of Data

Before we can have Android speak to us, we first need to give it a voice. Setting
up TTS on Android 4.2 and newer is easy. Select the “Language & input”
option in the Settings program, then scroll down and select the “Text-to-speech
output” item. This will display the text-to-speech output settings shown in
Figure 15, Text-to-speech output settings, on page 30.

The default preferred speech engine in Android 4.2 is Google’s own TTS
technology. If you have SVOX or another third-party engine installed, it will
also be listed on this settings page. From this screen, you can also modify
the rate of speech playback, ranging from very slow to very fast. I prefer the
default normal speed, but try each setting to see which of the five playback
speeds works best for you. Select the “Listen to an example” option to hear

2. http://www.scottevest.com

report erratum • discuss

The Sound of Data • 29

V413HAV

http://www.scottevest.com
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Android speak at the playback speed you chose. And now that we know
Android can talk, let’s explore how we can talk back to Android.

Figure 15—Text-to-speech output
settings

Running Android 4.2 and newer, you can hold
down the earphone button for about a second,
and the Google Now service will pop up,3 ready
to submit your query to Google for processing.
In addition to submitting who, when, what,
where, why, and how questions to Google’s
search engine, you can also command certain
aspects of the phone by voicing key phrases,
such as the following:

• “Call <contact>” will locate the contact
name most closely matching your spoken
entry and place a phone call to that con-
tact.

• “Listen to <track>” will play back the
requested music track using the default
music player.

• “Go to <URL>” will open a web browser
and display the requested URL.

• “Open app <app name>” will launch the
application, assuming it is installed on
your device.

• “What time is it?” will display the time.

• “Set an alarm for <time>” will set an alarm to sound at the requested
time.

• “Remind me to <task> at <time>” will convert your speech to text and add
the converted statement to your default calendar at the designated time
on the current day.

• “Navigate to <destination>” will map a route from your current location
to your stated destination.

So, that’s pretty cool, but Google Now has two notable drawbacks. First, while
Google’s voice recognition and speech-to-text translation services are amazing,

3. http://www.google.com/landing/now/

Chapter 3. Listening to Your Android • 30

report erratum • discussV413HAV

http://www.google.com/landing/now/
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

they’re far from perfect. Try any of these phrases on a noisy bus or outside
on a windy day, and you’re not likely to see the results you expected.

Second, Google Now requires an Internet connection to work. That’s right. If
you want to play a song that is already stored on your device, ask to open an
application, or play a music track, Google Now has to submit your converted
speech-to-text request to its web service for these things to happen.

You would think that’s because Google needs its server farm to chew through
your speech input, convert it to a text string, and figure out the meaning of
the submitted phrase. But that doesn’t explain why Google offers offline
speech-to-text translation in Android 4.2 and newer. Until Google creates an
API that allows developers to access this offline speech-to-text translation
service, developers need to continue submitting spoken phrases over the
Internet to Google’s servers.

The takeaway from all this is that if you live and commute in a well-connected
city where wireless Internet connectivity is trustworthy, fast, and ubiquitous
and you’re not concerned about the voiceprint data Google is collecting from
your audible queries, then Google Now can be mighty helpful at times. But
while Google Now does a good job of translating responses such as the time
and reminders into audio, most answers require looking at the screen to
review the replies.

When I’m on the go, whether walking crowded city streets to work or riding
my recumbent along winding bike trails, I really don’t want to pull my phone
out of my pocket to see who sent me a text message and what they said, view
any upcoming events on my calendar, or simply check the time.

Fortunately, several hardworking Android developers have created applications
that address these needs. Let’s take a closer look at some of my favorites.

Talking SMS and Caller ID

Talking SMS and Caller ID offer hands-free text-to-speech announcements
of inbound text messages and calls.4 Knowing that you won’t miss an impor-
tant message or wonder whether the call you’re receiving is from someone
worth stopping to talk to is a nice anxiety dissipater. When you accept the
application’s permissions, it has complete access to your contacts list. If an
inbound caller’s phone number isn’t associated with an existing contact, the
program will read the phone number instead. If an SMS is received from an
unknown contact, it won’t bother reading the message (kind of nice when

4. https://play.google.com/store/apps/details?id=mahmed.net.spokencallername

report erratum • discuss

The Sound of Data • 31

V413HAV

https://play.google.com/store/apps/details?id=mahmed.net.spokencallername
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

minimizing SMS spam). It also doesn’t consume a lot of system resources
while running in the background awaiting a call or SMS to trigger it into
action.

Talking Calendar

Figure 16—Configuring Talking
Calendar

One of my biggest frustrations with program
audio cues is that they provide only part of
the story. Let’s say you use a custom chime
whenever a calendar reminder is triggered.
Instead of knowing exactly what event is
coming up, you have to stop whatever you
were doing, dig out your phone, unlock the
screen, flick down the notification bar, and
parse through the various notifications just
to figure out what’s going on.

Talking Calendar eliminates this hassle by
actually speaking the event to you instead.5

Talking Calendar, shown in Figure 16, Config-
uring Talking Calendar, hooks into not only
your Google Calendar but your Exchange and
CalDAV-formatted calendars as well, which
is perfect for those who prefer to keep work-
life and home-life events separate. The appli-
cation is also smart enough to pause whatever
audio might be playing long enough to read
(via text-to-speech) the calendar event.

Android Voice Xtreme

The Google Play store has several other TTS-enabled applications, some of
which compete with the ones I’ve already mentioned. But only one is what I
label as the kitchen sink of speech recognition text-to-speech extravaganzas.
As of the publication date of this book, Bulletproof’s Android Voice Xtreme
(AVX) is one of the most comprehensive and expensive voice-driven applica-
tions for sale on Google Play.6 In addition to capturing and speaking text
messages and caller IDs, it can also read email messages and integrate with
third-party applications such as Google Hangouts (formerly known as Google
Talk) and Evernote, among other things.

5. https://play.google.com/store/apps/details?id=com.pwnwithyourphone.talkingcalendar
6. https://play.google.com/store/apps/details?id=com.bulletproof.voicerec.avx

Chapter 3. Listening to Your Android • 32

report erratum • discussV413HAV

https://play.google.com/store/apps/details?id=com.pwnwithyourphone.talkingcalendar
https://play.google.com/store/apps/details?id=com.bulletproof.voicerec.avx
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

The main drawbacks of AVX are that it relies on an Internet connection to
interpret speech-to-text entries and it consumes a hunk of system resources.
It is also not the peppiest-performing Android commercial application either.
Even more notable is that, because of the program’s broad capabilities to
interact with your Android device on so many levels, AVX also requests access
to a number of permissions on your device. Approach with caution.

Once you have these hands-free utilities loaded and working, you’ll quickly
discover that they are great for incoming information and events, but they
either can’t send outbound messages or don’t do so very well. There are a
couple of reasons for this deficiency. The most obvious problem is lack of a
proven input mechanic like an onscreen keyboard. We have already discussed
the problems with speech-to-text conversion. Until Google opens up its offline
speech translation engine API to developers, this will continue to be an issue.
And even with access to this API, speech recognition degrades considerably
in a noisy environment. If you have an active lifestyle, you’re probably inter-
acting and commuting in a noisy environment most of the time. But all is not
lost. Button presses to the rescue!

3.3 Button Control

As I write this chapter, Google is ramping up hype for its impending release
of Google Glass, its self-proclaimed game-changing wearable-computing
device. Having been professionally around the computing block for nearly
thirty years, I have seen the rise and fall of a variety of devices. I worked with
Windows CE-powered wearable-computing head-mounted displays over a
decade ago, and while it was a thrill developing applications on bleeding-edge
technology at the time, those types of displays ultimately lost their luster for
me. Why?

The most notable reasons are centered around eyestrain, obstructed views,
and the uncomfortable feeling of a headband gradually making a dent into
my forehead. While I still fantasize for the day when I can walk around like
a futuristic superhero with total situational awareness, swirling graphics,
flagging call-outs, and an always-on voice assistant ready to immediately act
upon my lazy utterances, we still have a long way to go technologically before
those science-fiction visions are fully realized. But while it’s fun to dream of
the future, I need an unobtrusive working solution today without all the
annoyances I’ve already encountered.

report erratum • discuss

Button Control • 33

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Headset Button Controller,7 created by Android developer Christoph Kober,
has become my control interface of choice. This helpful piece of software
allows you to assign tasks, scripts, and applications to execute on your phone
with a click of your built-in headset button. I have assigned it to execute all
of my hands-free, vision-free automation tasks, from telling me the time and
current battery charge level of my device to checking for new email messages
and Twitter posts. And because text-to-speech technology has improved so
much in the last few years, hearing your phone or tablet read you lengthy
passages of content isn’t as monotonous as it sounds.

So Long, Long Button Press

Prior to the release of Android 4.2, Headset Button Controller provided considerably
more flexibility and button press combinations to assign tasks and trigger actions.
Unfortunately, the long press headset button event is no longer an option in Android
4.2 and newer. That’s because Google has now reserved that single long-click action
to launching Google Now from a headset. Even if you attempted a long press after a
series of short presses, Google steps in as soon as that long press is recognized and
takes over. By doing so, Google has severely constrained Headset Button Controller’s
combination of buttons to essentially four assignments for single-button headsets
(plus two more for the headset plug-in and unplug events) and up to sixteen (along
with the plug-in and unplug assignments) for those devices that include a volume
control along with the middle button (since there can be up to four short-press
assignments per button).

Google intended to capture the long-press headset button event to offer a consistent
behavior across devices using Android 4.2 and newer. But forcing this upon all users
without the ability to disable or reassign to a different button combination seems a
tad heavy-handed. I hope Google will allow users to customize this choice in future
iterations of the operating system, but for now we have to accept this imposed con-
straint.

As odd as it sounds, I look forward to hearing the synthetic female voice used
as the default TTS engine in Android 4.2. It’s nice to know that she’s always
there, keeping me informed of appointments, messages, to-dos, and directions.
And like Aladdin rubbing a lamp to wake the genie, I use my assigned clicks
interpreted by Headset Button Controller to instantiate a variety of automated
workflows. Some of these workflows will be described in later chapters. But
for now, think of the variety of click combinations to launch applications as
a terse subset of Morse Code. One click to pause, two clicks to fast-forward,
three to report time and battery life, and four to check email. We’ll talk more
about the last two custom programs in that click list later in the book.

7. https://play.google.com/store/apps/details?id=com.kober.headsetbutton

Chapter 3. Listening to Your Android • 34

report erratum • discussV413HAV

https://play.google.com/store/apps/details?id=com.kober.headsetbutton
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Before purchasing the commercial version of Headset Button Controller, it’s
best to test the trial version to verify compatibility with your Android device.
You will also need a headset with at least one inline button that you can use
to initiate click events.

For example, my Galaxy Nexus phone supports only a single button headset,
leaving me with a total of six actions I can assign to Headset Button Controller.
So, grab your Android phone, plug in a compatible headset, install the trial
edition of the button controller software, and let’s configure it to launch the
standard Android web browser when three headset button presses are
detected.

Configuring the Headset Button

Figure 17—Headset Button
Controller easy tab

Before we can use the Headset Button Con-
troller, we first need to configure it. Launch
the Headset Button Controller program and
select the easy tab, as shown in the figure
here.

For our test, we will assign an action to open
the web browser application. Select the “Triple
click” option on the screen. This will display
a dialog of various commands that can be
assigned to that action, as shown in Figure
18, Headset Button Controller easy tab, on
page 36.

Select the “Launch app” option. Doing so will
display a list of applications installed on your
device. Choose the Browser application. An
alert like the one shown in Figure 19, Allowing
Android to wake up when launching a task,
on page 36, will pop up asking whether you
want your phone to wake up when the launch
action is started.

Choosing to wake the phone when the action
is initiated will turn on the screen and wake up the WiFi or cellular radios if
they were in a low-power state. This way, when your browser’s assigned home
page is requested, the screen will be visible, and the network will be actively
retrieving the content.

report erratum • discuss

Button Control • 35

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Figure 19—Allowing Android to wake up
when launching a task

Figure 18—Headset Button Controller
easy tab

Operating the Headset Button

If you haven’t already done so, plug your headset into your Android device
and triple-click the headphone’s center button. As long as your headset
hardware is compatible with the Headset Button Controller program, this
action should launch and display the web browser. Congratulations, you now
have the ability to initiate events without ever having to touch your phone’s
screen. This action will work whether or not your Android’s screen is locked.
We will leverage this newfound power to instantiate scripts and programs we
will write later in the book.

Keep in mind that we can still use other applications that react to headset
button presses while Headset Button Controller is running. You can have the
program send button presses to a specific application (such as an audio
player) or to whatever media player had been most recently used.

Chapter 3. Listening to Your Android • 36

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Figure 20—The smart
audiobook player

The most popular scenarios that have been
enhanced by using the Headset Button Con-
troller are for managing audio playback while
listening to audiobooks, music, and podcasts.
For example, you can control audio playback
using commercial applications like Alex
Kravchencko’s Smart AudioBook Player (shown
in the figure here),8 or the DoggCatcher podcast
program can be controlled entirely from the
headset button.9 A single click will pause and
play the audio. Need to skip over boring commen-
tary? Assign that action to a double-click of the
headset button.

Headset Button Controller even has a built-in
speak-the-time function using Android’s text-
to-speech feature, but I find the program’s
implementation somewhat lacking. Consequent-
ly, I wrote my own talking clock application that
I have assigned to a triple-click of the headset
button. We will walk through the creation of this
program and its configuration with Headset
Button Controller in later chapters.

Distraction-free applications like the Headset Button Controller do a
remarkable job of relieving you from having to fumble with your phone every
time you want to skip over a song, answer a call, or check the time. It also
elevates your phone to wearable-computing status as you realize how, using
the right mix of applications and workflows, a good deal of information can
be processed without ever having to look at a display. It’s quite a liberating
feeling as you become more skilled with this level of audio-delivered informa-
tion optimization.

3.4 Next Steps

In this chapter, we learned about wearable computing and how it relates to
today’s Android devices. To that effect, we learned how to give Android
smartphones and tablets a voice by enabling Android’s text-to-speech capa-
bility. We also discovered how several commercially available Android programs
take advantage of this built-in feature. And we configured a useful utility that

8. https://play.google.com/store/apps/details?id=ak.alizandro.smartaudiobookplayer
9. https://play.google.com/store/apps/details?id=com.snoggdoggler.android.applications.doggcatcher.v1_0

report erratum • discuss

Next Steps • 37

V413HAV

https://play.google.com/store/apps/details?id=ak.alizandro.smartaudiobookplayer
https://play.google.com/store/apps/details?id=com.snoggdoggler.android.applications.doggcatcher.v1_0
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Soldering More Buttons

After getting over the dismay of losing the ability to reassign a single long press
headset button in Android 4.2, I came across a post on the excellent Instructables.com
website that reexpanded my options.a While I can only vouch for the effectiveness of
the Galaxy Nexus, the author of the instructions indicates that it should work with
other Android phones as well.

The idea is to take an inexpensive three-button inline remote designed for Apple
products like the iPod touch or iPhone (the article suggests the iLuv iEA15BLK). Open
the button casing, solder in two tiny resistors, and you can triple your Headset button
options as a result.

The procedure does require soldering skills, steady hands, and good eyesight to be
able to set the spec-sized resistors in place, but it worked like a charm for me and
gave me another sixteen actions to assign to running various programs and tasks. If
you enjoy tinkering with hardware and have the right equipment, try this approach.

Many thanks to my good friend and tech extraordinaire John Winans for use of his
top-notch soldering equipment and laser-eye soldering technique. I couldn’t have
verified that this Instructables technique worked without his help.

a. http://www.instructables.com/id/Galaxy-Nexus-and-others-headset-remote-with-medi/

gives us the ability to initiate actions on an Android smartphone with the
click of a headset button.

Speaking of the headset button, take some time to explore your own applica-
tion assignments for Headset Button Controller. Couple its functionality with
the audio-oriented informational and productivity programs suggested in this
chapter. As you reorient yourself toward a more audio-centric mobile lifestyle,
consider the data that you would like to bring to your attention and have
spoken to you. You will be able to put those ideas into action because we will
soon learn how to automate workflow tasks and write custom scripts and
programs that help process and deliver this data.

In the next section, we will put the sonic configuration promoted in this
chapter to good use. We will construct a talking clock that will speak the time
every fifteen minutes or whenever a triple-click is received by an attached
headset button.

Chapter 3. Listening to Your Android • 38

report erratum • discussV413HAV

http://www.instructables.com/id/Galaxy-Nexus-and-others-headset-remote-with-medi/
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Part II

Explore

V413HAV

CHAPTER 4

Automating with Tasker
You can create sophisticated programs on Android that do what you want,
when you want, all without having to learn anything about the Java language
or the Android SDK. Better yet, you can wire up these programs using simple
dialogs and icons that represent all the major functions that your Android
device can do. In this chapter, I will show you how to do so with a little help
from an Android program called Tasker.1

Tasker provides the ability to easily define and execute powerfully scripted
actions that can be triggered by application, time, location, state, and event
changes. With it, you could create a simple task that would automatically
change the screen orientation to landscape and turn on the GPS radio
whenever you launched a favorite navigation utility. You can also create more
complex programs by linking together dozens of tasks. Tasker even has the
ability to compile your programs so they can be freely executed on other
Android devices that don’t even have Tasker installed on them. Let’s take a
closer look at this popular and versatile workflow automation utility.

4.1 Introducing Tasker

Available for purchase from the Google Play marketplace for only a couple of
dollars, Tasker centers around the ability to define tasks that execute a set
of predefined actions to take when certain conditions are met. This can be
something as simple as putting the phone into Airplane mode at bedtime or
as complex as having your phone autonomously send your family a text
message containing a Google Map link of your location when you reach a
destination.

1. http://tasker.dinglisch.net

report erratum • discussV413HAV

http://tasker.dinglisch.net
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Of all the apps I use on a new Android device, Tasker is consistently the first
one I install. Tasker was written by developer Lee Wilmot during the early
days of Android. Google was enticing new developers to the platform via prize-
winning programming competitions called Android Developer Challenges, and
Tasker was one of the finalists in that competition.

Tasker is somewhat equivalent to Apple’s Automator on OS X, and while
Tasker’s user interface is in need of a makeover, the power imparted by the
sophisticated scripts it can execute is unparalleled. Tasker exposes nearly
every part of the addressable hardware and event-oriented portions of the
operating system, making it relatively easy for people to configure their phones
to certain triggers and respond to certain events.

How Tasker Works

Figure 21—A listing of
custom Tasker tasks

Tasker offers the ability to run a series of
tasks that you define based on several trigger-
ing criteria. Check out the figure here for
examples of some of the individual tasks I
created on my smartphone.

Task triggers can range from time and events
to location or device state, such as an orienta-
tion change or headphone plug insertion. We
will take a look at some of these trigger con-
texts in the example Tasker profiles we create
in this chapter.

Installation and Configuration

Search the Google Play store for Tasker and
click the Purchase button to buy and down-
load the application to your Android device.
Before approving the transaction, note the
large number of permissions required by
Tasker. This should come as no surprise given
what is required for Tasker to run such a
variety of hardware- and software-accessible
functions.

Once installed, launch Tasker and take a look at the variety of parameters
that can be changed via the UI, Monitor, Action, and Misc Preference tabs.
For example, you can tweak the polling frequency of your current location
coordinates more frequently than the default thirty seconds by modifying the

Chapter 4. Automating with Tasker • 42

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

value, as shown in the following figure. Note that all screenshots of Tasker
shown in this book are from Tasker 4.0 installed on a Galaxy Nexus or Nexus
7 running Android 4.2. Tasker 4.0 incorporates Google’s Holo theme. Prior
versions of Tasker can run on devices running older versions of Android.
However, since Holo is natively supported only on Android 4.x and newer
versions of the operating system, Tasker’s screens will look somewhat different
on those older platforms. The good news is that the placement of dialog ele-
ments and Tasker’s core functionality are mostly the same between platforms.

Figure 22—Network Location
Check Seconds field on

the Monitor tab

After you have become acquainted with the
bevy of settings and polling frequencies that
can be customized, exit the Preferences screen
and switch to the Profiles tab. Profiles are
used to organize various tasks under a single
set to execute when a predefined condition is
met. If you created a task to turn on the GPS
radio and another task to sound an alarm
when a desired location condition is met, you
can combine these two tasks under a single
profile. There are two major advantages to
doing this. First, you can easily activate and
deactivate a set of tasks to be run as needed.
Second, you can reuse individually defined
tasks in other profiles without having to rein-
vent and version control the same task routine
over and over.

In the next section, we will put these ideas of
tasks and profiles to use for our first Tasker
program, a talking clock.

4.2 Talking Clock

The goal of this task is to automatically speak
the time every fifteen minutes using Android’s built-in text-to-speech (TTS)
engine. Once we get the clock task working, we will create a second task that
announces the device’s current battery charge percentage at the top of every
hour. We also don’t want our clock to be waking us up every fifteen minutes
while we’re sleeping, so we will define in the profile the time frame for when
the talking clock and battery tasks should run.

Launch Tasker and select the Tasks tab (as shown in Figure 23, Creating a
new task, on page 44) by selecting the center plus icon in the bottom toolbar.

report erratum • discuss

Talking Clock • 43

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Type in Say Time as the new task name and touch the check mark to accept
the name. Doing so will present you with an empty Task Edit screen that you
can add new discrete tasks to. Select the center plus icon in the lower toolbar
to add a new action to the task. This will display the dialog shown in Figure
24, Tasker's Select Action Category dialog, providing a list of more than
twenty action categories to choose from.

Figure 24—Tasker’s Select Action
Category dialog

Figure 23—Creating a
new task

Select the Misc button, which features a question mark icon, and then select
the Say button from the Select Misc Action dialog. This will display the Say
form that allows us to manipulate a number of options, from what text to say
and the voice engine to use to the speed and pitch of the text-to-speech
playback. Select the gray tag icon to the upper right of the Text entry box.
This will pop up a list that allows you to select from both Tasker’s built-in
variables as well as ones you have created (Figure 25, Variable Select dialog,
on page 45).

Scroll down the list until you see the Time variable. Select it, and notice that
Tasker populates the Text textbox with a predefined built-in variable called

Chapter 4. Automating with Tasker • 44

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Tasker Variables

Tasker has three types of variables: local, global, and built-in. Local variables are
identified by all-lowercase variable names, such as %my_local_variable. Local variables
are accessible only within the scope of a single task, and their values cannot be read
by other tasks. Global variables are identified by the first letter in their names being
uppercase, such as %My_global_variable. These can be read by any task created in Tasker
and are useful for storing values that need to remain persistent and accessible across
multiple tasks. The last type of Tasker variable are the built-in variables, such as
%TIME, %GPS, %ROOT, and %WIFI. For a complete list of Tasker’s built-in variable names,
visit the Tasker website.a

a. http://tasker.dinglisch.net/userguide/en/variables.html

%TIME. Next, assign the voice engine you want to use to speak the time by
selecting the magnifying glass icon to the upper right of the Engine:Voice
label. This will display a list of the various speech engines installed on the
phone, such as Pico, SVOX,2 or Google’s own text-to-speech engine. Select
your engine of choice.

Figure 26—Tasker Say options dialogFigure 25—Variable Select dialog

2. https://play.google.com/store/apps/details?id=com.svox.classic

report erratum • discuss

Talking Clock • 45

V413HAV

http://tasker.dinglisch.net/userguide/en/variables.html
https://play.google.com/store/apps/details?id=com.svox.classic
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

The Stream field allows you to assign the audio output to Android’s Call,
System, Ringer, Media, Alarm, and Notification audio channels. Choose the
default “Media stream” option and leave Pitch and Speed at their midpoint
default values, as shown in Figure 26, Tasker Say options dialog, on page 45.

Now that the Say action has been defined with what we want our phone to
say and how to say it, select the Action Edit label located on the upper-left
toolbar. This will save the first step in our Say Time task. Test the results by
selecting the Play icon in the lower-right corner of the dialog box. You should
hear your Android phone or tablet speak the current time in 24-hour format.

As an example, if it’s 4:22 p.m. when you run the task, your phone will say
“Sixteen point two two.” Well, that’s literally the time but not the common
North American way of speaking it. Let’s fix that.

Enhancing the Clock

We could just keep the spoken time format of the talking clock as is, but I
prefer a traditional 12-hour reading that indicates morning (a.m.) or after-
noon/evening (p.m.). To convert the 24-hour clock to a 12-hour reading, we
have to do the following:

1. Create a variable to hold the current time value.

2. Split the current time string into hours and minutes.

3. Determine whether it’s a.m. or p.m. If the current hour on the 24-hour
clock is greater than 11, it’s p.m. Otherwise, it’s a.m.

4. Take into account zero-hour substitutions with the phrase “o’clock” so
that when the clock strikes 5 a.m., it says “Five o’clock A-M” and not “Five
zero A-M.“

5. The same goes for any minutes announcements less than 10. For example,
if the time is 9:07 p.m., the Talking Clock task should say “Nine oh seven
P-M” and not “Nine zero seven P-M.”

The first thing we need to do is create and assign the value of the built-in
%TIME variable to a local variable (let’s call it %current_time) that we can manipu-
late. Select the Say Time task we created earlier. Delete the action we created
for the original Say Time task by long-selecting (i.e., holding your finger on
the selection for at least two seconds). Choose Cut from the Action Options
pop-up menu. Then create the new first step in the task list by selecting the
center plus icon from Tasker’s bottom toolbar. The Variable Select dialog will
once again be displayed. Select the Variable category from the Action Category
dialog, followed by the Variable Set action from this Variable pop-up dialog

Chapter 4. Automating with Tasker • 46

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

box. This will pop up a Variable Set dialog. Set the name of one of the new
variables we will create for this task to %current_time and assign it to the built-
in %TIME variable that we called upon earlier. Save the step by selecting the
Action Edit label in the left of Tasker’s top toolbar.

Next, we need to split this captured %current_time value into hours and minutes.
This is done by creating a new step using Tasker’s Variable Split function.
Choose this function from the Variable action category like we did for the first
Variable Set step. The Variable Split task function works by splitting the
variable passed to it into two or more elements based on the delimiter chosen.
In the case of %current_time, this delimiter is a period, so enter that character
into the Splitter field. When Tasker executes a Variable Split task, it will
incrementally number the original variable name and assign the split values
accordingly. So, when the Variable Split function is applied to the %current_time
variable, Tasker separates it between the period character into hours and
minutes. Tasker will generate a %current_time1 and %current_time2 to hold the
newly split values of hours and minutes, respectively. Save this action and
continue.

We could leave the split variable names %current_time1 and %current_time2, but
that may be confusing should we need to revisit or modify the script later.
So, let’s give them the appropriate names of %current_hour and %current_minute,
respectively. Just as before, choose Tasker’s Variable Set action from the
Action Category -> Variable dialog. Once completed, you should have four
action steps created in your Say Time task.

Now let’s determine whether it’s a.m. or p.m. If the 24-hour value is less than
twelve, it’s a.m. If it’s greater than eleven, it’s p.m. Once again, call upon
Variable Set action, name the variable %am_pm, and then scroll down the
Variable Set form to the If field. Add the condition If %current_hour < 12. Since
this is a mathematical operation, select the Maths: Less Than choice from the
Select Conditional Operator menu accessed by tapping the gray tag icon in
the If row of the form. Once defined, the screen should look like Figure 27,
Variable Set form for the %am_pm variable, on page 48.

Do a similar type of operation for creating and setting the %am_pm variable to
p.m. if %current_hour is greater than eleven, as shown in Figure 28, Select Task
Action dialog, on page 48.

You may be wondering why I didn’t just create the %am_pm and use If and Else
actions from Tasker’s Task Action options. Simple—I’m lazy. My initial con-
struction accomplished the same objective in fewer steps.

report erratum • discuss

Talking Clock • 47

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Figure 28—Select Task
Action dialog

Figure 27—Variable Set form for the
%am_pm variable

We now have the current hour, minute, and a.m. or p.m. values, but if we
were to stop at this point, we would have a few problems. First, we want the
clock to read a 12-hour, not 24-hour, time clock. The existing version will
read midnight as “Zero A-M” and not the more appropriate “12 A-M.” If the
time is 11 p.m, we want our clock to say “Eleven o’clock P-M” and not
“Twenty three zero P-M.” And as the example error shows, we also need to
account for substituting a zero minute value with the more appropriate “oh”
sound. Lastly, we need to test for the condition when it is the top of the hour
so that we can append the word clock during the read.

We will fix the midnight problem by setting the %current_hour variable to 12 if
the %current_hour is equal to 0. Next, subtract 12 from the %current_hour if the
%current_hour is greater than 12. These two actions properly set the hour reading
value for a 12-hour clock.

Only a few more steps to go before our talking clock task is complete.

Let’s now take care of the “oh” sound by setting a new variable that we’ll call
%say_oh to the “oh” string. We will also need to add a step that will check to

Chapter 4. Automating with Tasker • 48

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

see whether we need to include the “oh” in the time reading. You need to say
the “oh” word only when substituting for a zero in the second place of the
minutes field, such as 00 through 09. As such, we should omit an inserted
“oh” word for any minutes greater than nine minutes after the hour. To do
so, add another Variable Set step that sets the %say_oh variable to an empty
string If %current_minute is greater than nine.

Now let’s address the top of the hour by appending the word clock in the time
readout. Do so by setting the %current_minute variable to the word clock if the
%current_minute matches the value 00. Tasker uses the tilde (~) character to test
for matching conditions, as shown in Figure 29, Use the tilde character to test
for match equality.

Figure 29—Use the tilde character
to test for match equality.

We can assemble and pass the complete string
to Tasker to pass to its Say function.

%current_hour %say_oh %current_minute %am_pm

Now for the moment you have been waiting
for. Run the Talking Clock task by touching
the run icon with the gray arrow in the lower-
right corner of the Task Edit/Talking Clock
screen. If everything was entered correctly,
you should hear your Android device speak
the correct North American current time
reading to you. Awesome!

In the next section, we will embellish our
Talking Clock task by having Tasker also
speak at the top of every hour the current
percentage of battery charge remaining. That
way we will know whether we need to plug in
the device for a recharge before the battery
runs out of charge.

Battery Status

Create a new Tasker task and call it Battery
Status. Thanks to the fact that Tasker already has a built-in variable for
current battery charge called %BATT, this new task consists of a simple step.
Select the plus icon to add this step, and choose the Say action from Tasker’s
Misc action category. Then in the Say Text field, enter the following string:

Battery at %BATT %.

report erratum • discuss

Talking Clock • 49

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Adding the % symbol at the end of the string will make the read sound more
natural (for example, “Battery at 83 percent”). Just remember to put a space
between the %BATT variable and the percent symbol. Save and test the task
by selecting the task’s play button. Yep, all that information in just a single
line of instruction. That’s pretty cool, especially considering how much code
this would have taken to write if this were a native Android SDK application.

The final step we need to do before assigning a profile to our Talking Clock
task is to tell it to run our Battery Status task if the %current_minute value is
equal to the “clock” string (remember, we set that to “clock” earlier if %cur-
rent_minute matched 00). So, let’s add one last step to our Talking Clock task
by selecting Perform Task from the Select Task Action dialog. Save the step
and run the task to hear both the current time and current battery percentage
of your device. Now reopen the Perform Task step we just added and add an
If condition to check whether %current_minute matches the word clock. Now when
the clock time is at the top of the hour, the current time and remaining charge
will be read out loud. The steps of the full task should look like Figure 30,
The Complete Talking Clock Tasker task, on page 51.

There’s only one more requirement to address: have the time automatically
be spoken out loud every fifteen minutes during normal waking hours. To do
so, we will need to create a profile for our Talking Clock task.

Creating a Profile

Now that we have our Talking Clock task defined, we need to place it into
context by assigning it to a profile. Tasker profiles are triggers to run a task.
These triggers can be initiated by an application running on your Android
device, a starting and ending time that can also repeat at set intervals and
specific days (even weeks or months). This context can also be defined by a
location based on a predefined radius of GPS coordinates, the state of various
apps or hardware of your device (Tasker provides more than twenty states to
choose from), and events (more than forty events to choose from).

Since we want the Talking Clock task to run every fifteen minutes while we’re
awake, select the plus icon in the Profiles toolbar at the bottom of the screen.
Name the new profile Talking Clock and select the check icon to continue.
This will display a list of actions to associate the event with. Select the Time
menu option as our First Context. In the Time form, set the From time a half
hour before you wake up and the To time a half hour before you go to bed.
In my case, that’s 4:30 a.m. to 11 p.m. Check the Repeat check box and set
the Talking Clock Profile option to run every fifteen minutes, as shown in
Figure 31, The Talking Clock profile settings, on page 52.

Chapter 4. Automating with Tasker • 50

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Figure 30—The Complete Talking Clock Tasker task

report erratum • discuss

Talking Clock • 51

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

When you’re satisfied with the start, end, and time intervals defined, select
the Time Edit label to save the settings. This will pop up a list of tasks you
defined. Select the Talking Clock task we created earlier. Once configured,
your profile should look like Figure 32, The Talking Clock profile.

Figure 32—The Talking
Clock profile

Figure 31—The Talking Clock profile
settings

Now that we have instructed Tasker to run our Talking Clock profile every
fifteen minutes during our waking hours, it should trigger your phone or
tablet to speak the time every quarter of the hour. If it doesn’t, make sure
your volume is turned up and your device isn’t on mute. Also, double-check
your profile to make sure it is enabled. Whew! We’re done!

Back Up Your Work

When you have completed any significant amount of task creation in Tasker,
make a backup of the scripts by selecting the Data icon from Tasker’s main
menu. The Data option will allow you to back up, restore, and completely

Chapter 4. Automating with Tasker • 52

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

clear the tasks you have compiled in Tasker. The backup will be stored in an
XML-formatted file called userbackup.xml and saved in the /sdcard/Tasker directory.
As you build more Tasker profiles and tasks, copy this backup file off the
device for safe keeping, just in case you need to restore the scripts or obtain
a new Android device that you want to run Tasker tasks on.

As you discovered with this project, Tasker might not have the expressive
scripting language of something like Ruby, but these constraints are a worthy
trade-off considering the power that Tasker has to offer. Play around with the
Talking Clock task by adding and subtracting steps. This will help you more
quickly understand how to affect the final output. You can use what you
learned in this example to create other talking alarm clock tasks, such as
creating a profile that executes at 6 p.m. with a task containing a Say action
reminding you that it is “Time to eat dinner.”

In the next Tasker example, we will build a much simpler but very powerful
task that will sound an alarm and hook that up to a profile that will trigger
the task when we reach a specified geographic location. Using it, you will
never fall asleep on a train or bus and accidentally miss your stop again.

4.3 Train Station Alarm

Those who regularly commute by train know all too well how the lull of a
rocking train can put tired passengers to sleep in no time. If you’re a light
sleeper, you may hear the conductor announce your train stop. If not, you
may wake up with the conductor tapping you on the shoulder and asking
you to exit the train at the end of the line, usually a long way from home. If
the train always runs on time, you could simply set a clock alarm to go off.
But what if the train runs late because of rush-hour traffic conditions?
Wouldn’t it be nicer to get a few more minutes of a power nap in before
confidently being alerted that you will be arriving shortly at your intended
destination? Thanks to a relatively simple Tasker script, taking this idea from
conception to reality will take only a few minutes to implement.

Creating the Alarm

The first thing we need to do is create a task that will sound an alarm. Do so
by selecting the Task tab from Tasker’s main screen and then create a new
task by selecting the plus symbol in the bottom toolbar. Name the new task
Alarm and then add the one and only action to this task by selecting the plus
symbol in the new task screen. Since we want to sound an alert with this
task, select the Alert action category. This will display the dialog shown in
Figure 33, The Select Alert Action dialog, on page 54.

report erratum • discuss

Train Station Alarm • 53

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Choose the Notify Sound action and for this example name the action Train
Stop Ahead. Tasker will display this name in Android’s notification bar area
when the action is triggered. If you prefer to display text other than the name
of the task we assigned, you can do so by entering it in the Notify Sound
optional Text field. Next, choose a sound file you prefer to play when this
action is triggered. This can be an audio file in any format that your Android
device can natively play back, such as a WAV or MP3 file. Select the file to be
played back by tapping the magnifying glass icon in the Sound File row and
navigating to and choosing the audio file you prefer. Once configured, your
configuration should look similar to the one in Figure 34, The Notify Sound
dialog.

Figure 34—The Notify Sound dialogFigure 33—The Select Alert Action dialog

Now that the Alarm task has been defined, we need to wrap it around a context
and create a profile that will sound the alarm when a radius within a defined
geographic location is entered.

Chapter 4. Automating with Tasker • 54

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Profiling the Alarm

Select Tasker’s Profile tab followed by the plus symbol on the Profile toolbar.
Call this new profile Train Station and choose Location from the First Context
pop-up menu. A Google-powered map will appear, allowing you to place a
marker at the location you want to trigger the task to run. To set the trigger
marker, touch and hold the screen over the map location you want to use.

Tasker sets the default geographic radius trigger to 30 meters and sets the
global GPS location sampling rate to 30 seconds. We could increase the
sampling rate value located on Tasker’s Monitor preference tab, as shown in
Figure 22, Network Location Check Seconds field on the Monitor tab, on page
43, but it would also burn up our battery charge. Instead, consider how much
distance a train might cover in thirty seconds and expand the trigger radius
accordingly. Change this value by selecting the Radius field (this will display
a list of distances in meters, as shown in Figure 35, GPS radius list of dis-
tances) and setting the GPS sampling radius.

In my example, I expanded this to a 300-meter radius. It’s an adequate setting
for my needs, since the train reduces its speed as it approaches the station.
Once set, your screen will overlay a circle highlighting the event trigger area
similar to the one in Figure 36, Map with GPS radius overlay.

Figure 36—Map with GPS radius overlayFigure 35—GPS radius list of distances

report erratum • discuss

Train Station Alarm • 55

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

If you need additional time to wake up and gather your items, relocate the
trigger point a quarter mile (roughly 400 meters) or further from the station.
Also, expand the sampling radius to 600 or more meters depending on how
fast the train is traveling. I hope that Tasker’s developer allows users to enter
their own radius values in a future update, since I have found that the list
of radius choices can be limiting at times.

Once you have set your location marker and the desired sampling radius,
touch the Location Edit label to save your settings. Tasker will then ask you
to name the context that you just created. Call it Sound Alarm and assign
the Alarm task we created to this context. The completed profile screen should
look similar to the one shown in Figure 37, The Train Station Tasker profile.

Figure 37—The Train Station
Tasker profile

That’s all there is to it. But before placing your
waking trust entirely in the alert, test the task
to account for train speed, music playback
volume, GPS signal, and battery consumption
rate.

Enhancing the Alarm

For the alarm to work, we need to make sure
the GPS radio is turned on and the music
playback volume is loud enough to hear. And
what the heck, let’s also make the Android
phone vibrate to really get our attention.

Open the Alarm task and insert a new task
above the existing Notify Sound action by
selecting the Notify Sound step and holding
down until the Action Options dialog pops up.
Select Insert Action from the list. You could
try to select the GPS action from the Misc
Action category, but if you’re running Android
OS 2.3 or newer, you won’t be able to unless
your device has been rooted (something I don’t
recommend doing if you don’t need to). If you

opt not to jailbreak and root your phone, you will need to remember to man-
ually turn on the GPS for the location trigger to work.

Let’s increase the media playback volume before the Notify Sound event.
Select the Notify Sound step as before and select Notification Volume from
the Audio Settings Action category. The default level is 3, but we’ll bump that

Chapter 4. Automating with Tasker • 56

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

all the way up to 7, the highest level. Assuming your sound file is normalized,
that sound level should definitely get your attention.

Now let’s add one more activity to get our attention after the Notify Sound
step. Select the plus toolbar icon in the Task Edit screen and add the Vibrate
action from the Alert Action category. The default vibrate duration is 200
milliseconds. Increase that to the full 1000 milliseconds (equal to 1 second).
If that isn’t a long enough duration, duplicate this step for as many seconds
as you need the phone to vibrate.

Test the revised profile to see how it performs, and tweak the audio levels,
GPS target location, and trigger radius until you consistently and reliably set
off the alarm at the time and location that works best for you. Once perfected,
remember to save your work!

4.4 Tasker App Factory

The more you use Tasker, the more interesting and complex the tasks evolve
to be as a result. After you build your tasks, you can share your useful and
innovative scripts with others. You can export your profiles to an XML file
that can be imported by other Tasker users, but what about those who have
no plans on purchasing let alone learning how to use Tasker? It would be
easier if you could compile your Tasker profiles into a native Android .apk
application that could be distributed on the Google Play store. Thanks to a
free add-on called the Tasker App Factory, you can!

Search for and install the Tasker App Factory from the Google Play market-
place.3 Once installed, the Tasker App Factory will add a new set of application
compilation features into Tasker that are easy to configure and use. Let’s find
out just how easy it is to create an Android app using Tasker by compiling
the Talking Clock task into a native TalkingClock.apk file.

Compiling Tasker Apps

Compiling and installing Tasker App Factory–generated applications requires
only a few taps on the screen. In the case of the Talking Clock, go to Tasker’s
Task tab and touch and hold the Talking Clock task. This will add a new
menu option to the top toolbar. Select this menu (it looks like three vertical
dots) located in the upper-right corner. Doing so will pop up a list of options,
one of which is Export. When you select the Export label, a pop-up menu will
appear, as shown in Figure 38, Task export options, on page 58.

3. https://play.google.com/store/apps/details?id=net.dinglisch.android.appfactory

report erratum • discuss

Tasker App Factory • 57

V413HAV

https://play.google.com/store/apps/details?id=net.dinglisch.android.appfactory
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Choose to export the task As App. This will display the Tasker App Factory
disclaimer, essentially reminding you that Tasker’s developer isn’t responsible
for anything bad that might happen as a result of running or distributing
your program. You take full responsibility for any damage that bugs in your
script, or even those of Tasker itself, might do to a user’s data or device.

Figure 39—Application package settingsFigure 38—Task export options

After you accept the disclaimer, enter the package name (usually the
namespace of your domain plus the app name), the version of the program
you will build, and the name of the Tasker task you want to compile. Once
completed, your configuration screen should look similar to Figure 39,
Application package settings.

If your task requires additional permissions, such as accessing the Internet,
reading contact information, writing to the file system, and the like, you will
need to indicate those by selecting the Advanced Configuration check box.

Once you have completed the required configuration details, select the Con-
figure Talking Clock label in the upper-left corner of the screen to export the
task to a compiled native Android package (.apk) file. Then you can install the

Chapter 4. Automating with Tasker • 58

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

generated .apk directly on your device by selecting the Android robot icon
located in the lower right of the Export dialog box.

Note that during the application installation process, you will most likely
encounter a problem like the one shown in Figure 40, Blocked Installation
dialog when attempting to install the .apk file on your device for the first time.
This is because the Android OS by default prevents the installation of appli-
cations acquired from sources that are not directly obtained from the Google
Play store.

To allow Tasker to install the freshly compiled .apk file for you, you need to
give it permission to do so. This can be done by checking the “Unknown
sources” option in the Security section of the Android Settings screen (Figure
41, Allow app installations from unknown sources).

Figure 41—Allow app installations from
unknown sources

Figure 40—Blocked
Installation dialog

report erratum • discuss

Tasker App Factory • 59

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

As one last security check, Android will alert you with an application display
screen (Figure 42, Talking Clock permissions alert dialog) to remind you what
permissions, if any, the application will be granted access to once it’s installed.

While you already know the reasons why your compiled Tasker app needs
the permissions it is asking for, others may not be aware of the data and
hardware your program will have access to. If you plan on distributing your
Tasker .apk files on Google Play, you had better make sure you have a good
reason for requesting the permissions you need. A rule of thumb that Android
users have learned over time is that any application that needs more than
three sensitive-level permissions is probably an application they won’t bother
installing.

Figure 42—Talking Clock
permissions alert dialog

If your app really needs a cornucopia of per-
missions, you should spell out the reason for
each permission in your program’s description
on the Google Play market. Even then, a lot
of potential users may balk at the installation
permissions.

As you can imagine, the potential benefits of
Tasker-compiled apps are huge. Besides that
you can freely distribute or sell your own
Tasker-generated native Android applications
to non-Tasker users, you can also reduce the
vast number of permissions required by
Tasker to just those you need in your own
app. In the case of the Talking Clock, there’s
no reason it needs to have all the permissions
that Tasker needs to run. Since the Talking
Clock doesn’t require any special permissions,
you can make the compiled Talking Clock
program far more secure than the Tasker-
hosted version.

Check out the Tasker App Factory Online User
Guide for more information on the various

options associated with the App Factory add-on.4

4. http://tasker.dinglisch.net/userguide/en/appcreation.html

Chapter 4. Automating with Tasker • 60

report erratum • discussV413HAV

http://tasker.dinglisch.net/userguide/en/appcreation.html
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

4.5 Next Steps

So, that’s Tasker, the wonderfully versatile Android script and application
generator that can automate a number of highly customized tasks. And you
can do so without knowing anything about the Android SDK or the Java
programming language. It’s an amazing utility, one I use every day and one
that I know you will too.

Now that you have enough of an introduction to Tasker to get started
exploring on your own, here are a few ideas to jump-start your creativity:

• Run an automated daily backup of your music and photos to Dropbox or
other cloud storage service while you sleep.

• Wake up to a spoken reading of your favorite RSS feeds.

• Download podcasts using your favorite podcast-catching client while
you’re sleeping and have the latest batch queued up and ready to go when
you head out the door.

• Activate an automation Location profile when you arrive home that turns
on your indoor lights and your media center and sends a text message to
your family that you have arrived. For more home automation ideas using
a combination of Arduino and Android programs, check out my book
Programming Your Home [Ril12], published by Pragmatic Bookshelf.

• Create launcher toggles to turn on and off your most frequently used
hardware radios (Bluetooth, WiFi, GPS, and so on).

• Create a profile that turns off your phone’s radios at the time you go to
bed so you can get a good night of uninterrupted sleep.

• Capture and send a photo to your email account when the accelerometer
detects movement. Add audio playback of a scream or have your device
say “Put me down!” when the event is triggered.

• Detect incoming messages while driving and use the Say action to read
the text so you don’t have to take your eyes off the road.

• If you manage physical servers or virtual machines, ping or send HTTP
requests to your machines and sound an alert if the servers fail to return
a response.

• Develop your own Apple Siri or Google Now client using Tasker’s Get Voice
action combined with the HTTP Get action calling various web service
APIs.

report erratum • discuss

Next Steps • 61

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

• Further extend Tasker’s functionality to control other application events
via third-party plug-ins.5

Visit the Tasker wiki for dozens of preconstructed Tasker profiles to give you
a template to build your own Tasker scripts and applications.6

Next up, we’ll take a look at creating Android applications and services using
more traditional scripting languages like Python and Ruby. We’ll also discover
a couple more pleasant surprises along the way.

5. http://tasker.wikidot.com/plug-ins-and-3rd-party
6. http://tasker.wikidot.com/profile-index

Chapter 4. Automating with Tasker • 62

report erratum • discussV413HAV

http://tasker.wikidot.com/plug-ins-and-3rd-party
http://tasker.wikidot.com/profile-index
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

CHAPTER 5

Scripting with SL4A
Utilities such as Tasker make assembling and running scripts on your Android
device a breeze. Yet for those who are already fluent with a favorite scripting
language, several popular choices have been ported to the Android platform.
Even though many of these languages were created in an era when servers
and desktop PCs were the intended hosts to run the scripts, the Android ports
presented in this chapter have been retooled for the mobile experience.

While you won’t be compiling most of these scripts into native Android
applications, the sheer volume of code snippets and routines that have been
made public for these languages is huge. And because these scripting lan-
guages are accompanied by their own libraries that handle everything from
network protocols to regular expression parsing, you can accomplish a great
deal of data processing with a minimal amount of code. We’ll take advantage
of this fact as we revisit the Talking Clock script we previously created in
Tasker. We’ll rewrite it in Python and Ruby with help from a host application
called Scripting Layer for Android, better known as SL4A.

Because of the security model that Android enforces, applications must con-
form to and run within Android’s Dalvik virtual machine (VM). So unless you
have a rooted device and compile native system-level applications and drivers,
you have to stay within the Java-centric boundaries of Android’s VM.

Fortunately, there have already been a number of C-based languages like
Ruby and Python that have been ported to run within the Java framework.
Let’s take a closer look at SL4A and the variety of languages it currently
supports.

5.1 SL4A: Scripting Layer for Android

In the early days of commercial maturation of the Android OS, Googler Damon
Kohler designed the SL4A to help promote the Android OS. SL4A helped

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

differentiate Android from competitors like iOS because the early iPhone didn’t
allow such scripting languages to coexist on the platform. When it was first
introduced, it was called the Android Scripting Environment (ASE). SL4A
intended to become the host container for a variety of scripting languages.
SL4A can currently host seven languages:

• BeanShell 2.0b4
• Erlang
• JRuby
• Lua 5.1.4
• PHP 5.3.3
• Perl 5.10.1
• Python 2.6.2
• Rhino 1.7R2

Unlike most of the applications and utilities featured in this book, SL4A
oddly cannot be directly installed from the Google Play store. Instead, it has
to be side-loaded (installed by copying the Android program to the device via
a PC) or installed by downloading and installing it directly on the device. This
is perplexing, since the discoverability of public Android applications is almost
always made these days via a Google Play search. This is especially true for
newcomers to the platform. Perhaps this is one of the reasons why SL4A
continues to fly below the radar for many Android users.

You can download the sl4a_r6.apk file directly from its Google code repository.1

Your downloaded version may be a higher number from the Release 6 I used
in this book.

After the main SL4A container is installed, we will need to install both the
Python and Ruby interpreters for our code examples. Launch SL4A and select
View from the main menu. Then select Interpreters from the View pop-up
dialog box. This will list the SL4A-compliant interpreters currently installed
on your device. Select the Add icon from the Interpreters menu. A pop-up
dialog will display a list of available SL4A interpreters available for download.

Installing the Python Interpreter

First choose the Python Interpreter. This downloads the PythonForAndroid_r5-2.apk
package. Like the SL4A installation package, your downloaded version number
may be different from the Release 5-2 I used for the examples. Install the
Python package (as shown in Figure 43, Python for Android package, on page

1. https://code.google.com/p/android-scripting/downloads/

Chapter 5. Scripting with SL4A • 64

report erratum • discussV413HAV

https://code.google.com/p/android-scripting/downloads/
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

65) by opening the .apk file from your file system or via the “Download complete”
label in the notification tray.

Figure 44—Python for Android interpreter
and library bundles

Figure 43—Python for Android package

Launch the downloaded Python installer to retrieve the interpreter files and
whatever additional Python modules you need to use in your Python scripts.
Do so by pressing the Install button on the screen when you load the Python
for Android program, as shown in Figure 44, Python for Android interpreter
and library bundles.

Besides the interpreter, you can also opt to install additional libraries that
have been compiled to work with Python for Android. At the time I wrote this
chapter, the prepackaged .egg modules freely available for download include
the following:2

2. https://code.google.com/p/python/python-for-android/wiki/Modules

report erratum • discuss

SL4A: Scripting Layer for Android • 65

V413HAV

https://code.google.com/p/python/python-for-android/wiki/Modules
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

• pyCrypto
• PyBluez
• pyEphem
• pySerial
• Twisted
• Zope

We won’t need any of these additional packages for our scripting needs, but
it’s pretty cool to know you can write a full-blown enterprise-class asyn-
chronous network application and dynamic web server running on an Android
phone.

Try running a few of the example scripts that came with Python for Android
by launching SL4A and selecting something like the say_weather.py or take_pic-
ture.py script. If these scripts execute successfully, we’re ready to do the same
for the Ruby interpreter.

Installing the Ruby Interpreter

If you prefer the Ruby language, SL4A can accommodate this with the option
to use the JRuby implementation on Android. Install the SL4A JRuby inter-
preter the same way we did earlier for the Python interpreter. From the main
menu, select View, then Interpreters, then Add, and finally select the JRuby
interpreter. This will initiate the download sequence and retrieve the latest
JRuby for Android .apk file. Once downloaded, install it the same way we did
for the Python interpreter. After the installation is complete, launch the SL4A
shell application and there should be a hello_world.rb Ruby file listed in the main
window. Select the file and execute the script by touching the sprocket icon.
If a bounded box faded in and out from the screen (known as a toast message
in Android-speak) and appeared with the message “Hello, Android!” then you
are ready to run Ruby scripts on your Android device.

Just a quick note before we start writing some code. While the built-in SL4A
editor can come in handy for quick scripts or minor edits to existing code,
using it to write programs spanning more than fifty lines of code is a stretch.
It’s much easier to do so on a tablet paired with a Bluetooth keyboard, and
it’s easier still to write and test scripts on a desktop PC. Part of the reason is
because of the desktop legacy these languages have inherited and partly
because of the additional screen real estate available on high-resolution
monitors.

But this is a temporary condition. As the rest of the world migrates to a mobile
device for the majority of their computing and communication needs and as

Chapter 5. Scripting with SL4A • 66

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Joe asks:

Can I Compile a Ruby Script into a Native Android
Executable?

Yes, but you need a computer running Java, JRuby, the Android SDK, and a frame-
work called Ruboto to do so.

Ruboto has two components. The first is the Ruboto gem that allows for the coding
of real Android applications using a desktop computer and the Ruby syntax instead
of the Java syntax. Once the aforementioned software prerequisites are satisfied,
running the gem install ruboto command will install the Ruboto gem into the computer’s
Ruby gem collection. Then, generating a new Ruby-based Android program can be
done by typing ruboto gen app --package com.mydomain.myrubyapp at the terminal of your PC.
You can replace com.mydomain.myrubyapp with your domain and app name. Once the
basic app template has been generated, you can use Ruby syntax to call upon the
Android API for a native Android presentation experience.

The second component is called the Ruboto Core. This is the runtime library that is
installed on the Android device. It is required to execute Ruboto-generated Android
applications. One major benefit of installing the Ruboto Core over the standard
JRuby for Android runtime is that the Ruboto Core package is installed with an
Interactive Ruby Shell (IRB). It also installs a built-in editor and a cleaner user
interface. This makes Ruboto Core and Ruboto IRB useful not only for developing
Ruby scripts on Android but also for quickly testing Ruby code without having to
resort to a desktop to see the results. You can install the Ruboto IRB from Google
Play.a This will also prompt you to install the much larger Ruboto Core package.

If you would like to learn more about Ruboto, visit the http://ruboto.org website.

a. https://play.google.com/store/apps/details?id=org.ruboto.irb

technologies like Chromecast and Miracast allow for easy broadcasting to
external high-resolution monitors,3 the day that average people exclusively
use tablets for their work and play is swiftly approaching.

Now that all the dependencies have been installed and tested, we can port
the Talking Clock Tasker script we created in the previous chapter to both a
Python and Ruby-scripted equivalent.

5.2 Programming with SL4A

Since this is a book about Android and not about Python, Ruby, or even Java
programming for that matter, I won’t consume book space with language
tutorials. However, the syntax for both Ruby and Python is easy enough to

3. http://www.google.com/chromecast and http://www.wi-fi.org/wi-fi-certified-miracast™, respectively.

report erratum • discuss

Programming with SL4A • 67

V413HAV

http://ruboto.org
https://play.google.com/store/apps/details?id=org.ruboto.irb
http://www.google.com/chromecast
http://www.wi-fi.org/wi-fi-certified-miracast�
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

understand that you should be able to follow along. Let’s begin by considering
the Python port of the Talking Clock application.

Talking Clock in Python

Python programmers appreciate the fact that Python is a “batteries included”
language. This means that Python already includes a good portion of function-
ality in its standard library. In the case of the Talking Clock script, we’re going
to take advantage of that fact by using Python’s time library to poll the current
time. We’re also going to use a string-formatting function common in both
Python and Ruby to help say the current time string the way we want it to
be spoken. Here is the four-line Python script that speaks the current time:

SL4A/talkingclock.py
import android❶
import time

droid = android.Android()❷
droid.ttsSpeak(time.strftime("The time is %_I:%M %p."))❸

Let’s take a line-by-line look at what this code does:

❶ The first import statement imports the custom SL4A android library that
is used to access Android-specific hardware and software functions. You
will see this import statement in most Python SL4A scripts. The second
statement imports Python’s standard Time library, which we will use to
poll and format the current time.

❷ This line initializes the android object from the Android library we imported
earlier. We will use this object to pass a string value to Android’s text-to-
speech (TTS) parser.

❸ This line combines a few function calls. The first calls upon the time
library to poll the current time. This value is passed to the strftime() function
call that formats the current time into a preferred readable string. In this
case, we have reformatted the current hour string to a twelve-hour clock
(%_I), followed by a colon (:), followed by the current minutes (%M) and
whether it’s a.m. or p.m. (%p). This formatted string is then passed to the
android strftime() function, where the formatted time is read by Android’s
default TTS engine.

You can enter this code directly into your Android device using the rudimentary
text editor included in SL4A. To do so, select the Add icon from SL4A’s main
menu, and select Python 2.6.2 from the Add pop-up dialog. SL4A assists by giving
you a head start by generating the import android statement and creating the droid
object. However, as these scripts grow in length, it may be easier to either pair

Chapter 5. Scripting with SL4A • 68

report erratum • discussV413HAV

http://media.pragprog.com/titles/mrand/code/SL4A/talkingclock.py
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand
Vaibhav
Typewritten Text
V413HAV

your phone or tablet with a Bluetooth keyboard or use a desktop computer to
enter the initial code set. Then use the SL4A editor for minor tweaks and additions.
Save the file as talkingclock.py via the Save & Exit icon on the SL4A toolbar.

To run the script, simply select talkingclock.py from the list of scripts on the
SL4A main scripts listing. Then select the sprocket icon on the toolbar that
pops up. As long as the code was typed in correctly and the volume is turned
up loud enough, you should hear your Android device speak the current time.
By the way, if you’re interested in learning more about programming in Python,
check out Practical Programming: An Introduction to Computer Science Using
Python 3 [CGMW13] by Jennifer Campbell, Paul Gries, Jason Montojo, and
Greg Wilson, available from Pragmatic Bookshelf.

Talking Clock in Ruby

Now that we have ported the Talking Clock program to Python, let’s do the
same thing using the Ruby language. You will see that it will be easy to pro-
gram the same functionality into the script using even fewer lines of code
compared to the Python version. That’s because Ruby’s time and date libraries
are included as part of Ruby’s standard language distribution, so there is no
need to require more time functionality than is already there. Here’s the code:

SL4A/talkingclock.rb
time = Time.new
droid = Android.new
droid.ttsSpeak(time.strftime("The time is %I:%M %p."))

That’s a pretty impressive feat to be able to speak the current time in three
lines of code, and it nicely shows off the power of the Ruby language.

If you’re new to programming and want to learn the fundamentals using Ruby
syntax, Chris Pine’s book Learn to Program [Pin09] uses the language to teach
programming essentials. If you want to delve deeper into understanding Ruby,
check out Pragmatic Bookshelf’s Programming Ruby 1.9 & 2.0: The Pragmatic
Programmer’s Guide [TFH13] by Dave Thomas, Chad Fowler, and Andy Hunt,
which is affectionately known as the Pick-Axe book.

5.3 Scheduling the SL4A Script

Even though Tasker might not have all the tools required to code a complex
parser or be able to make certain API-level calls, it has the facility to execute SL4A
scripts. Using the Run Script action category,4 you can easily hook up a timed
execution of either the Python or Ruby implementation of the Talking Clock task.

4. http://tasker.wikidot.com/sl4a

report erratum • discuss

Scheduling the SL4A Script • 69

V413HAV

http://media.pragprog.com/titles/mrand/code/SL4A/talkingclock.rb
http://tasker.wikidot.com/sl4a
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

If you don’t want to rely on Tasker to run the script at timed intervals, you
could wrap either the Python or Ruby script in an infinite loop. The loop’s
query condition would check the current time once a minute and see whether
the current minute string value is 00, 15, 30, or 45. If it is, then execute the
speech event. However, this ties up the resources required to run the script,
and SL4A already takes up a lot of system resources.

A third possibility would be to search the Google Play store for a utility that
acts like a cron job scheduler (a Unix term for a task triggered at a predefined
time). It just so happens that one exists. TaskBomb is a free (albeit ad-sup-
ported) service application that works like Tasker in that it executes applica-
tions at given times and/or time intervals.

Cron Jobs with TaskBomb

TaskBomb5 is like a basic version of Tasker’s profile feature, in that TaskBomb
can be used to schedule one-off or recurring events based on time triggers.
To paraphrase Ken Fehling (the application’s author) regarding the description
of his application, TaskBomb is basically an Android job scheduler.

By default, TaskBomb does not include built-in support for SL4A. So Ken
wrote a TaskBomb add-on called the SL4A Script Launcher.6 This extends
TaskBomb to kick off SL4A scripts the same way Tasker’s Run Script action
works. Installing the SL4A Script Launcher from the Google Play market will
add a “Select script” option to TaskBomb’s Task definition Data field. With
everything installed, we can build a scheduled task that will run the talking-
clock.py script every fifteen minutes.

Launch the Script Launcher program and touch through the welcome and
tutorial screens. If you plan on using TaskBomb beyond our simple talking
clock example, take advantage of the online documentation and tutorial videos
that Ken has created for the product. And if TaskBomb fulfills your needs,
consider paying for the ad-free version.

Configuring a TaskBomb Task

Setting a task in TaskBomb isn’t as intuitive as I would like, but once you
have gone through the process the first time, it’s much easier with subsequent
task schedule creations. To create our Talking Clock task, we need to do the
following:

5. https://play.google.com/store/apps/details?id=org.androidideas.taskbomb
6. https://play.google.com/store/apps/details?id=org.androidideas.scriptlauncher

Chapter 5. Scripting with SL4A • 70

report erratum • discussV413HAV

https://play.google.com/store/apps/details?id=org.androidideas.taskbomb
https://play.google.com/store/apps/details?id=org.androidideas.scriptlauncher
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

1. Select the Tasks icon (it looks like a stick of dynamite). This will take you
to the Tasks screen.

2. Select the + symbol in the upper-right corner of the Tasks screen to add
a new task. This will take you to the Task definition screen.

3. Assign a name to the task (for example, Talking Clock) and, in the case
of the Python version of the Talking Clock script, assign it the talkingclock.py
script by selecting the Data option. This will pop up with a “Select data
using” dialog. Choose the “Select script” option. This will display the files
in the default SL4A scripts directory.

4. Choose the talkingclock.py script. The task has been defined. Now all we have
to do is schedule it to run every fifteen minutes. To do so, return to
TaskBomb’s main screen and select the Schedule icon (it’s the one that
looks like a bundle of dynamite). Select the + icon to create a new schedule.

5. Give the name of this new schedule Talking Clock Every 15 Minutes. Next,
select the Item field and assign the Talking Clock task we created earlier
to the schedule. This will display the Item screen.

6. Leave the Start Time and End Time fields with their default settings, and
just change the Repeat Interval field to 15 minutes. Touch the back button
to save your changes.

7. The last step we need to take to get the task running is to assign the
schedule a Default duration. This is how long the task will run before
having to return to TaskBomb to restart the task. Since we want to run
the Talking Clock task for as long as possible, set this value to 99:59:59.
This will run the task every fifteen minutes for the next four days.

TaskBomb isn’t the best task-scheduling software available, but it’s certainly
cheap and, more importantly, it works.

These simple scripting examples, combined with either Tasker or TaskBomb
as the script execution triggers, only scratch the surface of what can be done.
Entire legacy libraries and routines from the desktop or server can be quickly
ported to run on the Android platform, making SL4A a very powerful tool on
your Android utility belt.

5.4 Other Android-Ported Languages

As the hulking legacy of desktop computing continues to give way to the more
nimble generation of mobile devices, developers will continue to seek out and
ideally invent new languages that take into account these new platform display
and resource constraints. Just as Dennis Richie invented the C language to

report erratum • discuss

Other Android-Ported Languages • 71

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

support the shift to Unix, someone will no doubt crack the new language nut
that will become the baseline upon which future programming paradigms
will be constructed. In the meantime, we will contend with the advantages
and disadvantages of today’s popular languages during this postdesktop
transition phase.

So far, we have considered only the more popular languages that can be
hosted within the SL4A shell. While Perl, Python, and Ruby cover a major
segment of the programming market, more ported languages are showing up
in the Google Play market all the time. Here’s a look at some of the more
interesting additions:

• Clojure REPL7

• Haskell8

• Lisp9

• Scala10 (requires root access)
• Scheme REPL11

As Android continues to mature, other programming languages both old and
new will find their way to the platform. So, regardless of which scripting lan-
guage is your favorite, tools like SL4A will be there to host them for you.

5.5 Next Steps

In this chapter, we learned about how to install and use the Scripting Layer
for Android to write programs using powerful scripting languages like Python
and Ruby. We also learned about scheduling those scripts to execute at pre-
defined intervals using Tasker and TaskBomb. And we also discovered that
there are a host of other programming language runtimes available for the
Android platform, giving us considerable flexibility in choosing a language
for building our Android scripts and applications.

Keep in mind that no matter how elegantly we structure our scripts using
the approaches described in this chapter, the system resources (memory,
processor utilization, and so on) consumed by interpreted scripts running on
the phone are often considerably higher compared to a native Android appli-
cation counterpart.

7. https://play.google.com/store/apps/details?id=com.sattvik.clojure_repl
8. https://play.google.com/store/apps/details?id=nl.bneijt.tryhaskell
9. https://play.google.com/store/apps/details?id=info.gomi.android.lisp.islisp
10. https://play.google.com/store/apps/details?id=com.mobilemagic.scalainstaller
11. https://play.google.com/store/apps/details?id=com.folone.replscheme

Chapter 5. Scripting with SL4A • 72

report erratum • discussV413HAV

https://play.google.com/store/apps/details?id=com.sattvik.clojure_repl
https://play.google.com/store/apps/details?id=nl.bneijt.tryhaskell
https://play.google.com/store/apps/details?id=info.gomi.android.lisp.islisp
https://play.google.com/store/apps/details?id=com.mobilemagic.scalainstaller
https://play.google.com/store/apps/details?id=com.folone.replscheme
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Processing for Android

All the languages I have mentioned in this chapter can interpret raw script on the
fly, entirely on an Android device—no PC required. However, there are times when
you may want to program a slick-looking graphically impressive native Android
application without having to learn the intricacies of the Android API and OpenGL
graphics programming.

Fortunately, there is an easy-to-learn language that can be used to satisfy these
requirements, assuming you have access to a PC and are willing to set up the Java
and Android SDK dependencies. The language is called Processing, and it may be
just what you’re looking for. While there currently isn’t a Processing interpreter
available for Android, you can use the simple syntax of the Processing language to
compile a native and beautiful-looking Android application. And unlike Ruboto, there
is no runtime dependency required to execute Processing-compiled apps on Android.

Processing can do more than just pretty graphics. It has access to all the major APIs,
hardware sensors, radios, touch points, and just about everything else you may need
to create a native Android application. Processing’s syntax is also intuitive and easy
to learn, allowing anyone with basic computing skills to create useful Android pro-
grams at a vastly faster rate compared to using the standard Android SDK.

To learn more about Processing for Android, read Daniel Sauter’s Rapid Android
Development: Build Rich, Sensor-Based Applications with Processing [Sau12], published
by Pragmatic Bookshelf, or visit the Processing for Android wiki page on the Processing
website.a

a. http://wiki.processing.org/w/Android

Since most of the SL4A-supported languages offer access to the Android API
as well as the considerable number of libraries available for them, the potent
combination of scripted access to API calls allows for some really creative
uses. Here are a few ideas worthy of further exploration:

• Poll your favorite websites or Facebook or Twitter pages to verify site
availability, as well as to display any new content that has been posted
since you last ran the script.

• Use the camera to take a snapshot of a bar code or QR code and perform
a Google lookup of the code along with a Google Images query. Pull down
the results and display them in a dialog box along with price and rating
details of the product in question.

• Use the respective APIs for popular web services like weather forecasts,
music searches, reviewing databases, or package delivery. Poll for

report erratum • discuss

Next Steps • 73

V413HAV

http://wiki.processing.org/w/Android
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

weather in your area based on your GPS coordinates, pull down the
results, and read them to you via Android’s text-to-speech engine.

• Perform a package delivery status lookup based on shipment date and
tracking number. If the courier indicates that the package has been
delivered, send an email or SMS containing the tracking details to the
sender or other designated party.

• Submit song title and artist queries to a music search service based on
a scan of your MP3 library. Return results could be everything from images
of the artist to reviews of the songs or albums being searched.

• Create your own dynamic Android web server using the various web
microframeworks, like Bottle and Flask for Python or Camping and
Sinatra for Ruby.12

In the next chapter, we will put this concept into practice by creating a true,
native Android SDK–based application. What’s more, we will compile this
application entirely on an actual Android hardware device. That’s right. Unlike
other mobile platforms like iOS, BlackBerry, or Windows, you can compile
and deploy real, native Android applications using just your Android phone
or tablet—no other computer required.

12. http://bottlepy.org, http://flask.pocoo.org, http://camping.io, and http://www.sinatrarb.com, respectively.

Chapter 5. Scripting with SL4A • 74

report erratum • discussV413HAV

http://bottlepy.org
http://flask.pocoo.org
http://camping.io
http://www.sinatrarb.com
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

CHAPTER 6

Programming with AIDE
Up to this point, we have learned how to customize Android to look the way
we want it to and to script Android to do what we want it to do. Now it’s time
to make Android do exactly what we want by writing and compiling a native
Android application entirely on the device. This is something no other mobile
operating system today has yet been capable of supporting. We will explore
how to take advantage of this unique, self-contained mobile programming
capability.

There are a number of benefits to using this on-device approach. First, it
offers a much faster development approach compared to the more traditional
tethered PC model since you don’t have to go through the hassles of installing
the Android SDK, the Android emulators, and the drivers necessary to
transfer and debug programs compiled on the PC to the Android hardware.
It’s also faster because PC-based Android emulators don’t emulate everything
as well as the authentic hardware, such as multitouch interactions and
Bluetooth, GPS, and NFC communication.

Compared to the scripting approaches we took earlier using Tasker and SL4A,
native apps built with the Android software development kit (SDK) will typi-
cally consume far fewer system resources. They also often run faster than a
Tasker or SL4A script because no intermediary interpreter is required to
convert the scripted actions into executable code.

To demonstrate these advantages, we’re going to revisit the Talking Clock
program we created previously with Tasker and scripted in SL4A. We’re going
to take a slightly different approach compared to most introductory chapters
on Android application development. Our application won’t have any user
interface whatsoever. And just like we did for the Tasker and SL4A versions,
we will code, build, and deploy this native version of the Talking Clock program
entirely on the Android device. Lastly, we will demonstrate the added benefit

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

of native application development by enhancing the clock app with a special
Android API call that isn’t programmable in tools like Tasker. Let’s dive in.

6.1 Getting Started

This chapter assumes you have at least some exposure to the Java language,
which is the language that Android uses as its preferred development syntax.
Our Talking Clock application is simple enough to understand even without
much exposure to the language, but the more experience you have with Java,
the better.

You will also be ahead of the class by having some familiarity with the Android
SDK,1 though this is not required. The calls that we will make to the Android
APIs are not difficult to follow. The API documentation is also just a click
away online for those who want to read about all the various parameters that
can be passed to the functions we will be calling.

For those who would feel more comfortable learning more about the Java
language before proceeding, there are numerous books, screencasts, and
online resources available, and many of them are free. And for those who
would like to learn more about traditional Android programming using a
desktop computer, check out Pragmatic Bookshelf’s Hello, Android: Introducing
Google’s Mobile Development Platform [Bur10] by Ed Burnette.

As you become more comfortable with Java and the various Android APIs,
you will be able to build upon simple programs like the one presented in this
chapter using more sophisticated API calls and programming logic. Like most
anything else in the computing field, the more you use, the more you learn.
The more you learn, the more you apply. The more you apply, the more you
use.

AIDE: The Android Java IDE

So, how are we going to bring all the rich capabilities of desktop-centric
Android development into the mobile constraints of an Android device? Had
you asked me that question a year ago, I would have said it wasn’t possible.
However, a lot can happen in a year, and one of the most exciting programming
tools I have seen on the Android platform to date has made this crazy dream
into an entirely sane reality.

The daring developers at appfour GmbH have created AIDE—the Android
Java IDE.2 AIDE is available for download from Google Play in both a free

1. http://developer.android.com/sdk
2. https://play.google.com/store/apps/details?id=com.aide.ui

Chapter 6. Programming with AIDE • 76

report erratum • discussV413HAV

http://developer.android.com/sdk
https://play.google.com/store/apps/details?id=com.aide.ui
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

(albeit limited) version and a premium key (costing up to $10, though some-
times on sale for much less) that unlocks all the limitations imposed by the
free edition. While the limitations of the free edition won’t prevent you from
completing the Talking Clock project in this chapter, I recommend purchasing
the premium key. Not only will it give you unrestricted file counts and add
Git source code management support, doing so will also properly compensate
appfour GmbH for all that hard work.

The first thing we will do is install AIDE. Then we will create a new project
with it. We’ll then remove some of the template-generated code we don’t need
and add the code we do need. Then we will compile, install, and run our
Talking Clock conversion and discuss ways that we can take the project to
the next level.

Creating a New Project

Download and install AIDE from the Google Play market, noting the number
of permissions the app requires. appfour explains what every permission does
and why, something I would like to see more Android developers who sell
their wares do.

Figure 45—AIDE’s Create new
App dialog

Once everything is installed, launch the AIDE
app and select the “Create new App Project
here...” option from the main screen. This will
display an overlay that will allow you to specify
the parameters to create a new application, as
shown in the figure here.

Fill in the fields as shown, noting that app
names cannot include spaces or special charac-
ters, since this will be the name of the Android
main activity Java class. As we saw earlier with
the Tasker App Creator, Android apps use the
package name as a unique identifier. I typically
use my name (which also happens to be the
name of my web domain) along with the name
of the app. In my case, this is com.mikeriley.talking-
clock.

Leave the default App type as Hello World. Note
that AIDE provides two other useful App starter
templates, Tetris and Android Clock Widget.
These other two project templates are definitely

report erratum • discuss

Getting Started • 77

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

AIDE Saves Time

Using the AIDE to program Android applications like the Talking Clock is a lot easier
compared to the steps you would need to take if you were connecting your Android
device to a desktop for development purposes. In a traditional PC desktop scenario,
you would need to install the Java SDK, the Eclipse IDE, the Android SDK, and the
Android Eclipse plug-in; and on Linux or Windows, you would need to configure the
USB port to talk to your Android device when tethered to the computer. In addition,
you would need to activate the Developer options on your Android device located in
the Settings app and turn on USB debugging. That whole process often takes up a
chapter in most introductory Android programming books. Developing Android pro-
grams on an Android device negates all that hassle entirely.

worth checking out on your own, but we will stick with the Hello World tem-
plate. We will be making a few modifications and additions to the main class.
Select the Hello World project and press the Create button. AIDE will generate
all the necessary files and images required for a basic form-based Android
application and open the MainActivity.java file in AIDE’s code editor. The contents
of this file are pretty basic.

package com.mikeriley.talkingclock

import android.app.*;
import android.os.*;
import android.view.*;
import android.widget.*;

public class MainActivity extends Activity
{

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState)
{

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

}
}

We will use this file as a starting point for our native Talking Clock project.

6.2 Programming the Clock

Before we start changing the MainActivity class, let’s run the program first to
ensure that AIDE has everything it needs to compile and execute the program.
Select Run from the main menu, shown in Figure 46, AIDE's main menu, on
page 79.

Chapter 6. Programming with AIDE • 78

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Figure 47—Block application installations
from unknown sources is enabled by

default on Android

Figure 46—AIDE’s main menu

This will compile the app and attempt to install it on your phone. However,
as we saw with the Tasker App Creator, Android’s security model prevents
apps from arbitrarily installing on your device unless you give explicit permis-
sion to do so. As such, Android will display the error shown in Figure 47,
Block application installations from unknown sources is enabled by default on
Android, unless you set the security with the appropriate developer options
earlier.

If this security dialog does appear, select the Settings button and check the
Unknown Sources option on the Security settings screen to allow AIDE to
install and execute our program. However, note that when you are not using
AIDE to compile and launch applications, you should really disable the
“Unknown sources security” setting. Otherwise, your Android device will be
vulnerable to malicious applications installing bad things on your hardware.

report erratum • discuss

Programming the Clock • 79

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

With the “Unknown sources options” checked, return to AIDE and run the
program again. This time, Android will ask if you want to install the applica-
tion. If there are any permissions used by the app, it will list them. In the
case of this application, there are no special permissions. Go ahead and select
Install. When that’s done, select Open. This will display the main form of the
program, as shown in the following figure.

Figure 48—The MainActivity
screen

Most Android applications have some kind of
user interface. After all, a significant reason
for the platform’s success is its tactile nature
of screen interface interactivity. But in our
case, we’re building a program that doesn’t
need a user interface. It just has to speak the
current time and battery charge. Let’s make
that change.

Return to the AIDE editor and select the Main-
Activity.java file from AIDE’s file browser. This
will open the file in AIDE’s editor. Note how
AIDE’s code editor automatically highlights
Java keyword syntax like package and import,
just like a regular desktop code editor! The
first thing we need to do is remove the
setContentView(R.layout.main); line. If you ran the
application again with this change, you would
not see anything show up. That’s because we
removed the call to show the main layout that
the boilerplate AIDE project created. We also
can remove both the import android.view.*; and
import android.widget.*; statements, since we won’t

be building a view or widget, respectively. But we do have other libraries to
import.

Next we need to replace the boilerplate code that the Hello World project
template generated in the MainActivity class with our own code. Once we declare
a unique package name for the app so that it won’t conflict with other pro-
grams on the device, we import the code libraries that we need to call the
battery status on the device and perform a text-to-speech conversion of the
time. Finally, we will close down any open resources and cleanly exit the
program after the time is spoken.

Chapter 6. Programming with AIDE • 80

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Use a Keyboard

If you plan on typing in this code on an Android phone via the onscreen keyboard,
you are far more patient than I am. Instead, you can use a paired Bluetooth keyboard
or, faster yet, download the code sample from the book’s website. You can also edit
MainActivity.java on a desktop computer, email your phone a copy, and then paste it to
the Talking Clock project directory on your Android device.

MainActivity.java
package com.mikeriley.talkingclock;

import android.app.Activity;❶
import android.content.BroadcastReceiver;
import android.os.Bundle;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.speech.tts.TextToSpeech;
import android.speech.tts.TextToSpeech.OnInitListener;
import android.os.CountDownTimer;
import java.text.SimpleDateFormat;
import java.util.Date;

public class MainActivity extends Activity implements OnInitListener {❷

private TextToSpeech tts;❸
public String batlevel;
public String charging;
static final int TTS_CHECK_CODE = 0;

private BroadcastReceiver mBatInfoReceiver = new BroadcastReceiver(){❹
@Override
public void onReceive(Context c, Intent i) {

int level = i.getIntExtra("level", 0);
batlevel = " at "+Integer.toString(level)+"%";

IntentFilter ifilter = new IntentFilter(Intent.ACTION_BATTERY_CHANGED);❺
Intent batteryStatus = c.registerReceiver(null, ifilter);
int status = batteryStatus.getIntExtra(BatteryManager.EXTRA_STATUS, -1);
boolean isCharging = status == BatteryManager.BATTERY_STATUS_CHARGING ||

status == BatteryManager.BATTERY_STATUS_FULL;
if (isCharging) {
batlevel = batlevel + " and charging.";
}

}
};

report erratum • discuss

Programming the Clock • 81

V413HAV

http://media.pragprog.com/titles/mrand/code/MainActivity.java
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

@Override
public void onCreate(Bundle savedInstanceState) {❻

super.onCreate(savedInstanceState);
registerReceiver(mBatInfoReceiver,

new IntentFilter(Intent.ACTION_BATTERY_CHANGED));
tts = new TextToSpeech(this, this);

}

@Override
public void onInit(int status) {❼

if (status == TextToSpeech.SUCCESS)
{

Date todaysDate = new java.util.Date();
SimpleDateFormat hour = new SimpleDateFormat("h");
SimpleDateFormat minute = new SimpleDateFormat("m");
SimpleDateFormat ampm = new SimpleDateFormat("a");
String sHour = hour.format(todaysDate);
String sMinute = minute.format(todaysDate);
String sAMPM = ampm.format(todaysDate);
if (sAMPM.equals("AM")) {

sAMPM = "A M";
} else {

sAMPM = "P M";
}
String current_hour = sHour.concat(" ");
current_hour.replaceAll("00 ", "");
if (sMinute.contentEquals("0")) {

sMinute = "o clock";
} else {

if (sMinute.matches("\\d")) {
sMinute = "o ".concat(sMinute);

}
}

String current_time = current_hour.concat(sMinute);
current_time = current_time.concat(sAMPM);
String current_status = current_time.concat(batlevel);
tts.speak(current_status, TextToSpeech.QUEUE_FLUSH, null);❽
new CountDownTimer(3000, 1000) {
public void onTick(long millisUntilFinished) {❾
}
public void onFinish() {❿

unregisterReceiver(mBatInfoReceiver);
tts.shutdown();
finish();
}

}.start();
}

}
}

Chapter 6. Programming with AIDE • 82

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

❶ Here we will import all the libraries we need to call upon for the program’s
functions. Note that we don’t need to import every class that the android.app.*
and android.os.* libraries offer, just the android.app.Activity, android.os.Bundle, and
android.os.CountDownTimer.

❷ To call upon the TTS engine, we have to implement the OnInitListener interface
with the MainActivity class. This will also enforce declarations of the onInit(),
onTick(), and onFinish() event handlers within the class, whether we use them
or not.

❸ We need to create two public variables, batlevel and charging. These will hold
the text string values of the current battery level and whether the battery
is charging.

❹ We need to create an object called mBatInfoReceiver to collect the current
battery level and assign that level to a batlevel string.

❺ Here we can determine whether the battery is currently charging. This is
the bonus feature I mentioned earlier in the chapter. This is a function
that we can’t normally do with a standard Tasker task. We call the Battery-
Manager Intent (basically an exposed routine of an application that can be
called upon by another Android program) to determine whether the battery
is either charging or fully charged. Either way, the battery must be con-
nected to a power source and we pass that fact to a boolean variable called
isCharging. If isCharging is true, we tack onto the batlevel string the phrase “is
charging.” Why would you want the device to say this when you can tell
by looking if it’s plugged into a power source? Consider a hands-free
driving scenario, where not only knowing the time but also whether the
phone was currently charging would be a nice-to-know benefit. If you’re
a person who is always on the go, knowing not only the time but also the
battery status and charging state will help you maximize your power
management. It will also remind you that your phone is tethered to a
power cable and that you should disconnect it before leaving the vehicle.

❻ During the application’s creation event, we register the mBatInfoReceiver so
we can use it to collect the results of calling the ACTION_BATTERY_CHANGED
intent. We also register the TTS engine so we can call upon it after we
obtain the battery and time results.

❼ This is the heart of the program. Here we create variables to obtain the
current time by calling the standard java.util.Date() Java call and then break
that value down into its hour, minute, and a.m./p.m. components using
a series of SimpleDateFormat objects. And just like we did in the Tasker
Talking Clock script, we need to account for the twelve-hour clock, top of

report erratum • discuss

Programming the Clock • 83

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

the hour “o’clock,” and 01–09 minute “oh” designations. Then we concate-
nate the hour, minute, and a.m./p.m. strings together with the battery
level string we obtained earlier in order to have a complete sentence to
pass to the TTS engine for output.

❽ This is where we pass the compiled time and battery level string to the
TTS engine to speak the output. We also need to put in a three-second
CountDownTimer() to account for the reading of the string. If we don’t put this
delay into the program, we won’t hear anything spoken because the pro-
gram will exit before the speech has finished. While three seconds has
worked for me, you may need to extend this to four or five seconds (4,000
or 5,000 milliseconds) if you happen to hear the end of the sentence being
clipped when spoken.

❾ We don’t use the onTick() event in this program, but we have to declare it
to satisfy the OnInitListener implementation we used in the MainActivity class.

❿ Finally, we clean up the program by unregistering the Intent receiver we
created to capture the battery level, shut down the TTS engine to free up
that resource, and then call Android’s finish() function to tell the OS we’re
done with all the variables we created. Android’s garbage collector will
automatically take care of the rest.

With the code out of the way, we’re ready to give the project a spin!

6.3 The Clock Is Running

Just like we did earlier with the Hello World AIDE template program, run the
Talking Clock project by selecting the Run option from AIDE’s main menu.
As long as you have allowed Unknown Sources in Android’s Security settings,
the application should install and give you the option to launch it. Do so by
selecting the Open button. If the source code was entered correctly and the
volume on your device is turned up, you should hear Android say the current
time and battery level. If you have a syntax error, AIDE will let you know.

Now here’s the kicker. Remember when we used Tasker to generate the
Talking Clock app in the previous chapter? Well, take a look at the difference
in application size of the Tasker App Factor–compiled version vs. the native
AIDE-assisted one in Figure 49, Native applications make a difference, on
page 85.

The Talking Clock program with the generic Android icon is the native program
we just created, while the Tasker-generated program is the one with the clock
icon that we assigned to the Tasker task and compiled in Section 4.4, Tasker
App Factory, on page 57.

Chapter 6. Programming with AIDE • 84

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Figure 49—Native applications
make a difference.

The Tasker-generated version clocks in at
roughly 2MB in size. That consumes a lot of
resources for such a simple program. Com-
pare that size with the natively compiled AIDE
version that comes in at a minuscule 48KB!
As you may recall from the Tasker App Facto-
ry discussion, the reason for the bulky size of
the Tasker App Factory–generated stand-alone
applications is the runtime that must be
linked into the final executable. Tasker App
Factory, Mono for Android,3 Adobe Integrated
Runtime (AIR),4 and other language abstrac-
tion tools require these bulky runtimes to
execute a wide variety of application scenar-
ios. In the case of the AIDE natively compiled
app, we know exactly what the program has
to do, so we have to import only the libraries
we need to get the job done.

All that remains to match the scheduled
functionality of the Tasker or Python and
Ruby-scripted versions is the need to
announce the time every fifteen minutes. The
typical approach would require us to write an Android service to run in the
background, waking up every fifteen minutes to run the time and battery
data collection and TTS-output routines. While writing an Android service
isn’t hard, it does require more intermediate knowledge of the Android SDK
and Java language than we have space to cover here.

But there are alternatives we can consider. The most obvious is using Tasker’s
Load App task to launch our compiled Talking Clock program via a profile
that runs every fifteen minutes. Of course, this goes counter to the resource-
saving benefits of native apps that we just talked about. Besides, what’s the
point if we can just write everything we need in a Tasker script anyway?

We could also use a scheduling application like TaskBomb to kick off the app,
but that’s still a bit of a hassle to set up and run. And when it comes right
down to it, do we really want our phone or tablet announcing the time every
fifteen minutes regardless of where we’re at or what we’re doing? Wouldn’t it

3. http://xamarin.com/monoforandroid
4. www.adobe.com/go/HRTDI

report erratum • discuss

The Clock Is Running • 85

V413HAV

http://xamarin.com/monoforandroid
http://www.adobe.com/go/HRTDI
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand
Vaibhav
Typewritten Text
V413HAV

be better if we control the execution of this application in an appropriate
setting or condition instead? That’s exactly what we will do with this compiled
version of the Talking Clock program.

6.4 Talking Clock Automation

Recall that in Section 3.3, Button Control, on page 33, we introduced Christoph
Kober’s Headset Button Controller application and how you can assign
applications to headset button press events. In this case of the GUI-less
application we just wrote, combining the Talking Clock program with
Christoph’s program is an ideal match.

We’re going to assign the Talking Clock program with a headset button click
action. I prefer using a triple-click assignment to make it more unique. When
the headset button is clicked three times in a row, Headset Button Controller
will launch our Talking Clock program. And because the Talking Clock app
has no user interface, we don’t have to worry about fiddling with a user
interface while driving or walking. It’s really convenient!

Compatibility Disclaimer

Note that the Headset Button Controller application works only with certain types of
Android devices and headsets. For example, my Samsung Galaxy Nexus phone works
perfectly with a Samsung single-button stereo headset, but my Asus Nexus 7 does
not support headset buttons and therefore responds only to headset plug-in/plug-
out actions.

Launch the Headset Button Controller application. Select the “Triple click”
action from the Easy menu and select Launch app from “Triple click” list of
options. The Headset Button Controller will then list all the applications
installed on your Android device. Choose the Talking Clock application we
compiled using the AIDE. Your screen should look similar to the one shown
in Figure 50, Assigning Talking Clock to a triple-click headset button action,
on page 87.

Let’s do one more assignment with Headset Button Controller and run our
Talking Clock application when we plug our headphones into our phone.
Select the program’s Advanced tab and scroll down to the “Plug in action”
option within the “Headset plug in/out” category. Choose “Plug in action”
followed by the “Launch app” option. Then select the Talking Clock application
from the list. When you’re done, your screen should look similar to Figure
51, Assigning Talking Clock to a headset plug insertion action, on page 87.

Chapter 6. Programming with AIDE • 86

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Figure 51—Assigning Talking Clock to a
headset plug insertion action

Figure 50—Assigning Talking Clock to a
triple-click headset button action

Test the assignments by plugging your headphones into your phone. You
should hear the time and current battery status through your headset. If you
don’t, check your settings and headset volume. Once you have confirmed that
the headset plug-in action works, test the triple-click assignment by triple-
clicking your headset button. You should hear the same results as the plug-in
test. Lastly, plug your phone into a charging cable while you have your
headset attached, and triple-click the headset button. You should hear the
time, the battery charge level, and the phrase “and charging” indicating that
your Android phone is currently charging. Pretty sweet! As you build more
native Android applications like the Talking Clock, you can expand your
headset control by assigning other available headset button actions to your
applications. Pretty soon you will be able to consume and react to many
activities on your Android device without even looking at your screen. You
could live a good portion of your mobile life with just a few clicks of a headset
button.

report erratum • discuss

Talking Clock Automation • 87

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

6.5 Next Steps

In this chapter we went from zero to sixty and learned a lot about programming
native Android applications. However, unlike other introductory books on
Android programming, we wrote our native application entirely using the
Android device. While the future of computing is clearly moving away from a
desktop-centric world to a mobile-centric one, Android is the first among its
competitors to declare its ecosystem entirely post PC–enabled. I suspect that
Apple and Microsoft will eventually reach a milestone when developers will
be able to create applications entirely on those platforms (no OS X or Windows
desktop software required), but as of today, Android is in the top slot.

Now that you can build truly native Android applications without relying on an
external computer or Android emulator, the speed and agility gained will allow
you to rapidly prototype and build app ideas. And because these apps are built
using Android’s native SDK, there are no additional runtimes or dependencies
required. This allows you to very quickly post your finished app online or distribute
it via the Google Play store. Using the AIDE also allows you to access APIs that
are not supported in third-party automation tools like Tasker. In addition to the
enhanced Talking Clock application we built, consider building other short yet
highly relevant utilities for your personal workflow, such as the following:

• Create a calendar event notification application using Android’s Calendar
Provider that goes beyond a simple audio ping alert by reading to you
using Android’s text-to-speech engine.5

• Write an integrated file transfer utility that uses Android’s WiFi Direct
protocol,6 allowing you to quickly transfer files between devices without
having to be connected to a WiFi access point.

• Develop a personalized messaging service app using Google Cloud Mes-
saging for Android (GCM).7 Although this service requires a back-end
Java-based web server for message management, you could inexpensively
set up this instance using Google App Engine (GAE).8

• Capture a series of audio notes, process them through the Google Translate
API,9 and send the output via email or SMS to a foreign language–speaking
recipient.

5. http://developer.android.com/guide/topics/providers/calendar-provider.html
6. http://developer.android.com/guide/topics/connectivity/wifip2p.html
7. http://developer.android.com/guide/google/gcm/index.html
8. https://developers.google.com/appengine/
9. https://developers.google.com/translate/

Chapter 6. Programming with AIDE • 88

report erratum • discussV413HAV

http://developer.android.com/guide/topics/providers/calendar-provider.html
http://developer.android.com/guide/topics/connectivity/wifip2p.html
http://developer.android.com/guide/google/gcm/index.html
https://developers.google.com/appengine/
https://developers.google.com/translate/
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

• Write a location-based lookup service that queries local weather, traffic,
and news and that highlights your favorite store chains on a map.10

• Create a Near Field Communication (NFC) client that pairs with the door
lock to your home or office and unlocks it with a secret code.11

In the next part, we will create a fully functional Android widget. But instead
of relying on AIDE to build it, we’re going to create the widget entirely using
Tasker. By doing so, we will discover the advantages and trade-offs made
between native Android application development and scripted, task-driven
development.

10. http://developer.android.com/guide/topics/location/index.html
11. http://developer.android.com/guide/topics/connectivity/nfc/nfc.html

report erratum • discuss

Next Steps • 89

V413HAV

http://developer.android.com/guide/topics/location/index.html
http://developer.android.com/guide/topics/connectivity/nfc/nfc.html
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Part III

Build

V413HAV

CHAPTER 7

Tasker Pomodoro Widget
Now that we have a good introduction to using Android scripting tools like
Tasker and programming tools like AIDE, let’s put our knowledge to practical
use by building an Android widget. As we discussed in the first part of this
book, a widget is a special type of Android application that can be hosted on
the Android home screen. It can autonomously update itself and run alongside
other home-screen widgets.

The widget we will build is a countdown timer based on the Pomodoro Tech-
nique.1 The basic idea behind a Pomodoro is simple—work distraction free
for twenty-five minutes several times throughout a workday. There are a
number of other details that go into successfully implementing the Pomodoro
Technique into your own workflow, but our project widget will focus on
replicating the physical kitchen clock timer that Pomodoro masters have
popularized. If you’re interested in learning more about the various aspects
of the Pomodoro Technique, check out Staffan Nöteberg’s Pomodoro Technique
Illustrated: The Easy Way to Do More in Less Time [Nö09], available in both
print and audiobook formats.

For this project, we are going to leverage the rapid prototyping power of Tasker
to help visualize the behavior of the widget. Once we have embodied the basic
functionality using Tasker, fans of system optimization can consider converting
the Tasker version into a native Android widget using a programming tool
like the AIDE.

7.1 Rapid Tasker Prototyping

We’re going to start prototyping the widget using Tasker instead of going
straight for the gold and coding a native version using AIDE. That’s because

1. http://www.pomodorotechnique.com

report erratum • discussV413HAV

http://www.pomodorotechnique.com
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

our end product will morph based on how we end up using the widget. Using
this approach, we can quickly implement design modifications and see
immediately how these changes affect the experience. This is especially
important early in the development phase, where we still might not know
exactly what features we want to emphasize.

If we were to modify the native Java version, we would have to go through a
compile, deploy, and testing phase compared to Tasker’s two-step edit-and-
run process. We would also need to lug around a keyboard if we were to make
a large modification to the codebase in the native client. By keeping the design
iterations in Tasker for as long as possible, not only do we make the develop-
ment process considerably easier on ourselves, but we also benefit from the
fact that when we ultimately sit down and code the native version, we will
know exactly what it needs to do.

We will begin by first outlining the basic functionality of what we want the
application to do and then wire up this design in Tasker. We will encounter
a few unexpected issues along the way, not apparent before we began the
process, that will prompt us to make compromises in the app design as well
as take advantage of the operating system. By the end of this chapter, we will
have created a Tasker-based widget that fulfills a majority of our design goals.

Figure 52—Two types of
Tasker widgets

At its core, the widget we will construct is essen-
tially a countdown timer. We will start the
countdown at twenty-five minutes by clicking the
widget’s icon. It will display the minutes remain-
ing before the timer expires. When the timer
reaches zero, the Android device running the
widget will play a sound effect and vibrate for a
brief period.

Tasker includes two types of widgets that can be
hooked up to Tasker-scripted tasks. The first
offers more of a shortcut to launching a task, with
the main feature being the ability to control the
widget’s icon, related scene, and text label. The
other Tasker widget offers a simple countdown
timer interface that can be used to trigger a task
script when the timer reaches zero. Refer to these
choices in Figure 52, Two types of Tasker widgets.

Chapter 7. Tasker Pomodoro Widget • 94

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

By the sound of it, using Tasker’s Task Timer widget satisfies most of our
application’s requirements. Yet before we jump to placing this Tasker widget
on the home screen, we first need to construct the task that the widget will
run when the countdown is finished.

First Task

When the timer expires, we want to hear an audio cue and feel the phone
vibrate, so let’s build a task to do just that. Open Tasker and select the Tasks
tab. Create a new task by selecting the plus icon. Call the task Pomodoro in
the New Task textbox that pops up. Select the check icon to accept the name
and proceed to the task definition dialog. Add a task that plays a sound. We
will eventually have Tasker play a custom sound of our choice, but in the
interest of saving time in this initial design pass, select an existing ring tone
for the audio cue.

Next, select the plus icon in the lower toolbar to add a new task, and choose
the “Media action” category. From there, choose the Play Ringtone action.
Select your ring tone of choice by touching the magnifying glass icon to the
right of the Sound property. This will display a list of all the ring tones avail-
able on your phone. You can play back this sound via Android’s six sound
channels by selecting the list of Stream options. Let’s leave it on the default
Notification channel. Touch the Action Edit label in the upper-left corner of
the form to save this first step in the Pomodoro task.

Now let’s add the Vibrate step. Select the plus icon to add a second step to the
Pomodoro task, and choose the “Alert action” category. Then select Vibrate from
the grid of alert actions. The default duration of the Vibrate function is 200 mil-
liseconds. This brief burst may be too short to notice, so let’s triple this vibration
time to 600 milliseconds.

Finally, let’s assign a built-in icon to the task so that when it appears on the
home page in its widget trigger form, it looks more appropriate than Tasker’s
default sprocket icon. Select the Image Select icon on the far lower-right corner
of the Pomodoro task dialog. It looks like a gray checkerboard. By selecting
this icon, the Image Select pop-up will appear, allowing you to choose the
source of your icon. Select Built-In Icon. This will display a variety of icons
that are available to all Tasker profiles and tasks. One of those built-in icons
is a clock. Choose that, and Tasker will show that icon when the widget
associated with that task is displayed on the home page. If everything went
according to plan, your Pomodoro task should look like Figure 53, The
Pomodoro task in Tasker, on page 96.

With our task defined, we can now assign it to the Tasker countdown widget.

report erratum • discuss

Rapid Tasker Prototyping • 95

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Countdown Widget

Return to Android’s home screen and select the Task Timer Tasker widget
from the Android Widget screen or via the selection dialog that pops up when
you press and hold your finger on the home screen. Place the Task Timer
widget on an open area on your home screen and assign the Pomodoro task
we just created to the timer. Before accepting the selection, press the timer
clock in the lower-right corner of the Widget/Pomodoro dialog that appears
and set the Minutes field to 25. Select the green check to approve the settings.
This will place the timer on your home screen and preset the clock timer to
twenty-five minutes, ready for action. The home page widget should look
similar to Figure 54, Setting the Pomodoro Timer widget.

Figure 54—Setting the Pomodoro Timer
widget

Figure 53—The Pomodoro task in Tasker

Test the Timer

Before we start the timer, let’s first make sure the ring tone and vibration
duration adequately meets our requirements. Open the Pomodoro task in
Tasker and select the gray Play icon in the lower-left corner of the Task Edit

Chapter 7. Tasker Pomodoro Widget • 96

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Pomodoro dialog. If the ring tone isn’t loud enough or the vibration isn’t long
enough, tweak those settings until they work best for you. Then return to the
home screen where you placed the Task Timer widget and select the clock
icon associated with it. This will display a large timer dialog with Days, Hours,
Mins, and Secs preset for twenty-five minutes based on our earlier starting
timer value assignment. Select the OK button in the lower-right corner of the
dialog to start the countdown.

The timer readout text on the widget will turn green, indicating that the
countdown clock is running. You can pause the countdown by tapping this
green text readout, upon which the timer text will change from green to red.
Tapping the text again will start the countdown again where it left off. To reset
the timer, tap the clock icon we assigned the task to once again pop up the
timer dialog. The timer value will return to its original default of twenty-five
minutes. You can also change the value here as well, such as setting it for
two minutes to test the task trigger vs. waiting a full twenty-five minutes.
Select the green check icon to proceed with the countdown. When the Task
Timer widget text reads 00 00 00 00, the Pomodoro task we created should kick
off, playing the assigned ring tone and vibrating the phone for a little more
than half a second.

If your Android device has an aggressive power management setting, it might
shut off the phone and prevent the timer from counting down and triggering
the Pomodoro task. This is because Android by default doesn’t want widgets
to continue running while the device is in standby mode. You can imagine
the impact a dozen widgets polling the network or constantly refreshing
graphics to the screen would have on battery charge and system performance.
Unless an application or widget specifically requires wake lock in its manifest
of permissions, the Android OS will take over and do its job. In the case of
Tasker, it was already granted this permission (not to mention a bunch of
other system-wide permissions) when you installed it.

So, if the timer behaves erratically, force the task to keep your Android device
awake by editing the Pomodoro task in Tasker and selecting the Task Proper-
ties icon to the right of the clock icon we assigned earlier in the Task Edit
dialog. Then check the Keep Device Awake box and heed the warning that
Tasker reminds you about battery drain when selecting this option for
resource-intensive tasks.

Task Timer Limitations

Well, that was pretty easy. In fact, once you become proficient with Tasker,
you should be able to rebuild this simple countdown timer widget in less than

report erratum • discuss

Rapid Tasker Prototyping • 97

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

a minute. Considering the time it would take to construct a comparable native
widget from scratch, that’s pretty amazing and further helps showcase Tasker’s
power and versatility. If you’re satisfied with the timer, then we’re done! There’s
no need to read the rest of this chapter. But if you’re like me, you want the
widget to do more.

How about playing a wind-up sound that emulates a real kitchen clock timer
and sounds a ding from that same kind of timer at the end of the Pomodoro?
Wouldn’t it also be nice for the Android network radio to turn off so we aren’t
interrupted with email notifications and Twitter tweets and turn back on
when the Pomodoro session has finished? To add these and other enhance-
ments, we need to take a different approach to our widget construction. Let’s
proceed to do just that.

7.2 Pomodoro Widget Redux

Our first attempt at a Pomodoro widget went pretty well, considering how
little effort was required to build it. Now it’s time to step up our game and
add more features and polish to the widget.

One of those enhancements is the elimination of the unnecessary days, hours,
and seconds field from the Task Timer widget, since we are primarily interested
in minutes remaining in the countdown. Unfortunately, the Task Timer widget
currently does not allow hiding of these fields. We will have to think differently.

Widget Requirements, Take Two

Let’s take what we have already assembled and build upon the basic premise
of a countdown timer with an audible alarm. Then let’s consider the other
things we would like this widget to do for us.

1. Before the countdown begins, play an audio clip of a kitchen clock timer
being wound up.

2. Turn off the cellular and WiFi radios so we can minimize disruptions for
the duration of the Pomodoro.

3. Display only minutes remaining in the countdown on the widget.

4. When the countdown reaches zero, display the phrase “DONE!” in the
widget’s label area, play an audio clip of a kitchen clock timer’s ding
sound, and vibrate the device.

5. When the Pomodoro is done, stop the task and turn the cellular and WiFi
radios back on.

Chapter 7. Tasker Pomodoro Widget • 98

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

We could add other tasks as well with the start and stop events of the
Pomodoro, but these should give us enough to work with for now. But because
of the way the Task Timer widget works and displays the countdown clock,
we’re going to have to ditch it in favor of Tasker’s other widget, simply called
the Task widget.

Creating the Tasks

The fact that our revised widget design needs to be completely self-contained
presents us with a conundrum. How do we host both a start action (by
touching the widget) and a stop action (when the timer runs out) in a single
widget? While we might be able to devise a convoluted if-then statement
structure in a single task, a more elegant approach that we will employ is
creating two tasks. One will be used to trigger the start of the countdown,
and the other will be responsible for incrementing the countdown clock and
doing something when the time runs out. We will start with building the task
that will start the clock.

Choosing an Audio Clip

Based on our requirements, we need to play the sound of a kitchen timer being wound
up. You could scour the Web for sound effects or record your own with your Android
device. The easiest option would be to download the pomostart.mp3 file from this book’s
code download page on the Pragmatic Bookshelf website. This file, along with the
audio file pomostop.mp3, were generously provided by Andy Hunt, Pragmatic Bookshelf
publisher and audio engineer extraordinaire. Andy was the recording engineer for
Pragmatic Bookshelf’s first audiobook, which just happened to be the audio version
of Staffan Nöteberg’s Pomodoro Technique Illustrated: The Easy Way to Do More in
Less Time [Nö09].

Note that while these audio files can be freely downloaded as part of this book’s source
code bundle from the Pragmatic Bookshelf website and used in your own applications,
please be kind and attribute Andy’s work if you use the audio clips in any applications
that you distribute. Free is nice, and being courteous about it is nicer!

Once you have obtained an MP3 audio start clip of your choice (for the pur-
poses of this exercise, I’ll assume you chose the pomostart.mp3 file), copy the
file to the Ringtones folder on your Android device. You can do this either by
downloading the file from the Web and saving it directly in the /sdcard/Ringtones
folder or by mounting Android’s file system on your computer and copying it
via either File Explorer on Windows or the Android File Transfer program for
OS X.2 You might as well save some time and copy the sound clip for when

2. http://www.android.com/filetransfer/

report erratum • discuss

Pomodoro Widget Redux • 99

V413HAV

http://www.android.com/filetransfer/
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

the timer countdown expires, and I’ll assume you chose the pomostop.mp3 file
available from this book’s code download bundle.

With both MP3 audio clips now stored in the /sdcard/Ringtones folder, launch
Tasker and create a new task called PomoStart. Then create a step that plays
the pomostart.mp3 audio file. Do so by selecting the plus icon in the lower toolbar
of the Task Edit dialog. Then select the Media category followed by the Music
Play option. With the Music Play screen displayed, select the magnifying glass
icon to the right of the File label and navigate the File Select dialog to the
Ringtones folder. Then choose the pomostart.mp3 file. Upon doing so, the screen
should look like the figure shown here.

Figure 55—The Music Play task
dialog

Leave the Stream option set to Media. This
will play back the MP3 audio clip on the same
channel and volume as the standard Android
audio application (such as the music player)
volume. After accepting the settings by
choosing the Action Edit label in the upper-
left corner of the dialog, verify that Tasker can
correctly locate and play back the file and that
the volume is loud enough to hear. Do this by
selecting the Play icon in the lower-right cor-
ner of the PomoStart task edit dialog. If you
don’t hear anything, check your Android’s
volume and mute settings. If successful, you
should hear a few windings of a kitchen clock
timer.

Turn Off the Radios

The next item on the requirements agenda to
tackle is disabling the WiFi and 3G radios so
that we are not distracted by incoming emails,
Twitter, and other social network notifications.
Tasker can granularly turn off some of

Android’s radios. In Android OS versions prior to 4.2, Tasker and other
applications could programmatically turn on and off airplane mode, thereby
disabling all radios in an instant. Version 4.2 no longer allows this
autonomous activity except in the unlikely state that your application has
root-level access.

Chapter 7. Tasker Pomodoro Widget • 100

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Joe asks:

Why Can’t I Automatically Turn On and Off
Android’s Airplane Mode or GPS Radio?

Prior to Android 4.2 (aka Jelly Bean), you could enable and disable Android’s airplane
mode or GPS radio from an Android application or Tasker task. Beginning with the
release of Jelly Bean, Google smartly decided that it wasn’t a good idea to give appli-
cations the ability to turn on and off Android’s cellular and GPS radios. For example,
consider a scenario of traveling overseas where cellular data rates are exorbitantly
expensive. You explicitly turn on airplane mode to block the phone from connecting
to the cell towers to exchange data.

Thinking that all is well, you discover midway through your trip that a demanding
application decided to override your settings and forcibly disable airplane mode and
allow your device’s cellular radio to chatter away. Worse yet, a malicious application
could decide to upload your screen activity captured from the previous day at 3 a.m.
when you’re likely asleep. You would expect to have the airplane mode protect your
device from these scenarios, and it would be quite an angry disappointment if the
phone took instructions from something other than you for such a critically important
setting.

If you still have a burning desire to activate and deactivate the airplane mode or GPS
radio within a Tasker task, you can do so by jailbreaking and rooting your Android
device. Doing so will not only provide Tasker with the elevated system privileges of
turning on and off airplane mode but also grant control to a number of other system-
level functions, including forcing the display to stay on regardless of power settings,
putting the WiFi radio to sleep, and rebooting the phone.

Add the WiFi Off action to the PomoStart task by selecting the plus icon, and
select the “Net action” category. When the Net Action Category dialog is dis-
played, choose the WiFi action and leave the default value set to Off. Do the
same thing for the Mobile Data action by choosing the plus icon to add a new
action. Select the Net action category and then the Mobile Data option. Like
the WiFi action, set the Mobile Data option to Off.

Return to the PomoStart task edit dialog. Before trying the expanded task,
check to see whether your WiFi and Mobile radios are turned on. Return to
the PomoStart task edit dialog and select the play icon to run the task. After
the clock winding sounds, your mobile and WiFi radios should turn off. Verify
this by opening Android’s web browser and attempt to load your favorite
website. The browser should complain that the web page you were trying to
reach is unavailable.

report erratum • discuss

Pomodoro Widget Redux • 101

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Start the Countdown

So, we’re done with starting up the Pomodoro Widget clock, right? Not quite.
We still need an action in this task to initialize the starting countdown value
and then trigger the countdown activity. Let’s go through this process step
by step:

1. Create a new action in the PomoStart task via the task’s plus icon and
select Variable from the Select Action Category dialog. Then choose the
Variable Set action. Create a new global variable name called%COUNTDOWN
and set its initial value to 25 to represent the duration of the Pomodoro.
Now that we have initialized the clock to twenty-five minutes, we need to
actually start the countdown. But we won’t be able to do that until we
define a second task that manages the clock countdown behavior. Let’s
do that next.

2. Create a new task and call it PomoWidget. This is going to be the task
that is run when PomoStart calls on it to start running. After that, we
need to decrement the value of the %COUNTDOWN variable each time the
PomoWidget task is called. How do we run the PomoWidget task at a fixed,
repeating time duration? We will need to create a time-based profile that
triggers the PomoWidget task to run. But before we do that, we first need
to define a few more actions in the PomoWidget task.

Besides getting the PomoWidget task to run at a set interval, we also need to
stop the countdown once it reaches zero, play back the pomostop.mp3 audio
clip, vibrate our Android device, and turn the WiFi and Mobile Data radios
back on. Let’s work backward and address the latter requirements first.

We already know how to turn on and off the WiFi and Mobile Data radios
from the PomoStart task, so let’s repeat those actions in the PomoWidget task
with one small addition. Select the add action plus icon and then the Net
action category followed by the WiFi action. Set the WiFi option to On. Since
we don’t want the WiFi radio to turn on until the timer reaches zero, also
select the If check box in the WiFi action dialog to check whether %COUNTDOWN
is less than the value of 1. Once set, the WiFi action dialog should look like
Figure 56, Set WiFi On Action dialog, on page 103.

Save the changes and repeat these same steps for the Mobile Data action.
And just as we set the PomoStart task to play back the pomostart.mp3 audio
file, we will do the same by assigning a new action to play the pomostop.mp3
file.

Chapter 7. Tasker Pomodoro Widget • 102

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Figure 56—Set WiFi On Action
dialog

1. Create a new action in the PomoWidget
task, and select the “Media action” catego-
ry followed by the Music Play action.
When the Music Play action dialog
appears, select the magnifying glass icon
to select the MP3 file located at Ring-
tones/pomostop.mp3. We also need to check
the If box to check and see whether the
condition of the %COUNTDOWN variable is
less than 1, since we don’t want the
kitchen clock ding to sound until the
timer runs out.

2. We can also set the Vibrate action using
the same approach as the radio activation
and sound file playback steps. Namely,
create a new action in the PomoWidget
task and select the “Alert action” category
followed by the Vibrate action. Set the
time to 600 milliseconds. You can set the
vibrate duration longer if you prefer, but
I find that 600 milliseconds is just right
for my needs.

3. We also need to check the value of the %COUNTDOWN variable so as not to
trigger the Vibrate action until our timer reaches zero, so check the If box
in the Vibrate dialog and test for the condition If %COUNTDOWN < 1. Upon
saving this action step, you should now have actions that play the
pomostop.mp3 audio clip, turn the Mobile Data and WiFi radios back on,
and vibrate the device for slightly more than half a second.

4. One more action we need to add to the PomoWidget task is decrementing
the %COUNTDOWN variable so that each time the task is run, we reduce the
countdown by one. So, add a Variable Set action that sets the %COUNTDOWN
variable equal to %COUNTDOWN minus 1. We need to do this as long as
%COUNTDOWN is greater than zero since we don’t want to take our countdown
into negative number territory. So, in this Variable Set action step, check
the If box to test If %COUNTDOWN>0 and save the action and the PomoWidget
task.

Good work! But we still have a few more things to take care of, namely, setting
the Pomodoro task to execute at set intervals as well as show the remaining

report erratum • discuss

Pomodoro Widget Redux • 103

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

countdown value in the icon text area of the Tasker-generated Pomodoro
widget that we will create on our home screen.

Pomodoro Profile

To decrement the countdown value to eventually reach zero, we will create a
Tasker profile to run the PomoWidget task at a set timed interval. Create a
new profile by clicking the plus icon in Tasker’s Profile tab and call the new
profile Pomodoro.

When the First Context dialog pops up, select the Time option since we want
to run the PomoWidget task at a timed interval. In the screen that follows,
deselect the check marks for the From and To ranges and then select the
Repeat check box. Then set the repeat value to run the task every one minute
and select the green check icon in the lower-left corner of the dialog to accept
the value. But there’s a problem. Tasker won’t accept our value of running
the task every one minute, as you can see in the following figure.

Figure 57—Tasker will not execute
profiles at an interval less than two

minutes apart.

It looks like Tasker won’t let us set up a profile
to run a task at intervals less than two min-
utes apart. The reason for this limitation is
to prevent the task(s) assigned to a profile
from running so frequently as to have a
notable degrading impact on your Android’s
battery charge. So, in order for us to create
this Pomodoro timed interval context, we have
no choice but to set the lowest value of the
context interval to execute every two minutes.

Now that we have created the timed interval
context, we need to assign it to a task. From
the Task Selection dialog that popped up after
we accepted the context interval, select the
PomoWidget task we created earlier. We now
have a Pomodoro context to trigger our
PomoWidget task every two minutes. Cool!
With a context ready to run our PomoWidget
countdown task every two minutes, we can
create the widget, right? Not yet. We still have
a few more important issues to address. The
first is figuring out how to set the Pomodoro
timed interval context to start running when

we touch the Pomodoro widget icon. We also have to find a way to stop running

Chapter 7. Tasker Pomodoro Widget • 104

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

the context when the countdown reaches zero. Lastly, it would be good user
feedback to see the current value of %COUNTDOWN on the widget’s icon text field
so we know how much time is remaining before the countdown clock expires.

1. To address starting the Pomodoro context upon the touch of the widget
icon, we can call upon a helpful task action in Tasker called Profile Status.
Open the PomoStart task for editing and add a task. Select the Tasker
action category, followed by the Profile Status action. Name the Profile
Status action Pomodoro and set the task to On. This means that when
the PomoStart task is run, it will turn on the normally disabled Pomodoro
profile containing the instruction to run the PomoWidget action every two
minutes.

2.

Figure 58—Turning off the
Pomodoro profile when the

countdown ends

We have a running clock, but now we have
to instruct the profile to turn off when
%COUNTDOWN reaches zero. To do so, open
the PomoWidget task for editing and add a
Profile Status action called Pomodoro, just
like we did for the PomoStart task. But this
time, instead of setting the value to On, we
are going to set Profile Status to Off under
one condition, that being If %COUNTDOWN < 1.
When set correctly, the Profile Status dialog
for this task should look like the figure here.

Time Remaining

With the starting and stopping actions of the
Pomodoro profile interval timer in place, we’re
almost ready to test our widget. But before we
do, we still need to display the remaining time
on the widget. It would also be a nice touch if
we displayed “DONE!” in addition to the other
concluding tasks we set up earlier (turning the
radios back on, playing the pomostop.mp3 audio
file, and so on). The “DONE!” label will also come in handy when testing for
the first time you touch the widget to start the clock.

1. Open the PomoWidget task for editing and add a Variable Set action via
the plus icon; then select the Variable Action category and then the
Variable Set action. In the Name field, enter the %COUNTDOWN variable we’ve
been tracking all this time. But instead of setting it to a number, we are

report erratum • discuss

Pomodoro Widget Redux • 105

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

going to set it to DONE! as long as the condition If %COUNTDOWN < 1 is true.
Set the If statement accordingly and save the action.

2. At last, we need to add an action to the PomoWidget task that displays
the current value of %COUNTDOWN on the widget icon text. Do so by selecting
the plus icon while editing the PomoWidget task and choose the Tasker
Action category. From there, select the Set Widget Label action. Call the
action PomoWidget and set its label to %COUNTDOWN. By doing so, the
current value of the %COUNTDOWN variable will be displayed and updated
each time the PomoWidget task is run.

Finishing Touches

Figure 59—The PomoStart task

Let’s do one more thing and place the prover-
bial cherry on top of our creation. Let’s assign
an icon to the PomoWidget task so that when
we place the Tasker widget on our home
screen and assign it to the PomoWidget task,
Tasker knows to use the icon we assigned the
PomoWidget task rather than Tasker’s default
sprocket icon. Assign the icon by opening the
PomoWidget task for editing and selecting the
checkerboard icon in the lower-right corner.
This will display the Image Select dialog. You
can assign whatever image you like for the
icon. These include existing application icons,
bundled icons installed with Tasker, and
individual icon files. Icon sets for Tasker can
also be downloaded from the Play app store
or obtained from commercial websites like
Iconfinder.3

With all the pieces now in place, your
PomoStart and PomoWidget tasks should look
like the screens in Figure 59, The PomoStart

task, and Figure 60, The PomoWidget task, on page 107, respectively, and the
Pomodoro profile should look like the one shown in Figure 61, The final
Pomodoro profile, on page 107.

Verify that these screens look similar to yours, making sure to account for
the %COUNTDOWN variable assignments and conditional tests in the right order.

3. http://www.iconfinder.com

Chapter 7. Tasker Pomodoro Widget • 106

report erratum • discussV413HAV

http://www.iconfinder.com
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Figure 61—The final Pomodoro profile

Figure 60—The PomoWidget task

The big moment has finally arrived. It’s time to try our Tasker-constructed
Pomodoro widget and see whether it performs the way we expect it to perform.

7.3 Testing the Revised Widget

Tasker lacks any type of traditional programming debugging tools. As such,
we have to rely on old-fashioned brute-force testing of running the script over
and over again until it produces the desired response. In the case of our
widget, we need to set up the onscreen widget, initiate the countdown, observe
the results, and modify until the intended outcome is achieved. We will begin
by hooking up the tasks we wrote to a home-screen widget.

Creating our widget on the home screen is similar to the way we did it earlier.
But this time, instead of selecting Tasker’s Task Timer widget, we’re going to

report erratum • discuss

Testing the Revised Widget • 107

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

choose Tasker’s Task widget. Upon doing so, Tasker’s Task Selection dialog
will pop up onscreen. Locate and select the PomoWidget task. Tasker will
then display the PomoWidget task in case we want to do any further editing
before we accept the placement of the widget. Since we don’t have any addi-
tional editing to do at the moment, select the check mark to set the widget
on the home page. Note that the initial icon text of the widget partially displays
the PomoWidget label.

If you don’t disturb the widget, you will eventually notice that the label will
refresh and show the number 25. Two minutes later, it should read 23, and
so on. Or at least that’s what is supposed to happen. But that’s not what is
happening. Instead of decrementing the countdown by two units every two
minutes, it is decrementing the number by only one. Why is this happening?

Remember when we set up the task to decrement %COUNTDOWN by 1 each time
the PomoWidget task was run? Well, that would have worked had Tasker
allowed us to run the task once a minute. But Tasker restricts us to running
tasks at a minimum of every two minutes. That means we need to change
the Variable Set action in the PomoWidget task from %COUNTDOWN - 1 to
%COUNTDOWN - 2. Go ahead and do that now and save the changes to the
PomoWidget task. Note that you don’t have to remove the widget you just
created. Instead, just edit the PomoWidget task in Tasker, and the widget we
created earlier will simply adopt the new instructions. That’s pretty cool.

Return to the home screen where you placed the PomoWidget task-assigned
widget. Now repeatedly touch the widget to more quickly advance the count-
down. Observe that with each touch, the countdown value will decrement the
displayed countdown value by 2. The reason for this behavior is because
when you touch the widget, you are executing the PomoWidget task again.
Doing so decrements the %COUNTDOWN variable accordingly.

Keep touching the widget until it displays the “DONE!” label. When “DONE!”
finally shows up, you should also hear the Ding! audio clip, feel the device
vibrate (if it’s an Android phone, since Android tablets usually don’t have a
vibrate function because they don’t usually fit in a pocket), and see your WiFi
and mobile radios turn back on. While you could have just let the Pomodoro
Tasker profile execute the PomoWidget task every two minutes, touching the
widget to execute the PomoWidget task allows us to more quickly test the
start and stop actions.

Now let’s start the timer again from the beginning. Touch the widget and take
notice of the starting time. You should have heard the winding clock audio
clip play and seen the WiFi and mobile radios turn off. But something still

Chapter 7. Tasker Pomodoro Widget • 108

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

isn’t quite right. The widget icon text shows a starting value of 23. If you
practice the Pomodoro Technique, Pomodoro durations are supposed to last
for twenty-five minutes, not twenty-three minutes. We have another bug, and
just like the last bug we fixed, this one is just as easy to spot and fix.
Remember when we set the starting value of %COUNTDOWN equal to 25 in the
PomoStart task? Well, that value didn’t take into account that PomoWidget
runs each time we touch the widget.

Since we have to touch the widget to start the clock, the PomoWidget task
ran and immediately decremented our starting value of 25 to 23, even though
two minutes didn’t pass yet. So, to fix this, simply edit the Variable Set action
in the PomoStart task and change the %COUNTDOWN variable from 25 to 27 so
that it looks like Figure 62, Starting %COUNTDOWN at 27 instead of 25.

Figure 63—The final PomoStart taskFigure 62—Starting %COUNTDOWN at 27
instead of 25

With these two bugs eradicated, the PomoStart and PomoWidget tasks should
now look like the ones shown in Figure 63, The final PomoStart task, and
Figure 64, The final PomoWidget task, on page 110, respectively.

report erratum • discuss

Testing the Revised Widget • 109

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Head back to the home screen and repeatedly touch the widget until it decrements
to showing the “DONE!” label. Wait for the ending Ding! audio clip to play and
the radios to turn back on. Then touch the widget again to restart the timer. If
the changes were made correctly, you should see the icon text display a starting
value of 25 and properly decrement by two every two minutes. When the count-
down expires, the icon text will show “DONE!” and you should hear the concluding
Ding! audio effect, feel the vibration, and notice the radios turn back on.

Figure 65—The finished Tasker-built
Pomodoro widget

Figure 64—The final PomoWidget task

Once you have confirmed that everything is working as expected, you can
take advantage of Android’s widget behaviors and move the Pomodoro widget
to any screen location that works for your layout needs. I prefer a dedicated
uncluttered screen for mine (as shown in Figure 65, The finished Tasker-built

Chapter 7. Tasker Pomodoro Widget • 110

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Pomodoro widget) so that I’m not distracted by any other widgets while
working through my Pomodoro sessions.

Congratulations! You just built a very slick and especially handy Pomodoro
widget for your Android device. You also saved yourself a little money in the
process, since you no longer need to purchase one of several Pomodoro widgets
available in the Google Play market.

7.4 Addressing the Limitations

Creating the Pomodoro widget entirely in Tasker is a nice showcase of how
powerful Tasker is for building your own widgets. But it also shows off Tasker’s
limitations. A couple of problems with the widget’s current implementation
are as follows:

• The icon text label updates only every two minutes because of Tasker’s
two-minute profile execution limitation. It would be more intuitive to see
the time remaining reflected every minute, just as you would expect a
countdown to behave.

• When the countdown is finished and the remaining time is replaced by
the “DONE!” label, the “DONE!” label persists until the next time the
widget is touched again so that the countdown can be reinitiated. It would
be nicer to see the “DONE!” label replaced with something like Pomodoro
when the widget is not in use. Fixing this in Tasker isn’t difficult. You
would essentially need to set up a PomoStop task coupled with a profile
that fires after a certain duration has passed after the Pomodoro count-
down has finished. But it would be nicer if such a growing list of tasks
and profiles could all be self-contained in a single package such as a
native Android widget.

• The widget is susceptible to advancing the time when it is touched. While
this so-called feature was helpful during the testing of our widget, it’s
probably not necessary (and perhaps even undesirable) in working pro-
duction mode. A more intuitive behavior would be to touch the widget to
start and stop the countdown and perhaps use a double-tap or a long-
press to restart the countdown and/or bring up a dialog that allowed us
to modify the countdown time.

• Speaking of modifying the countdown duration, customizing the time
requires us to open the PomoStart task in Tasker and edit the initial
Variable Set value for %COUNTDOWN each time we want to set the duration
to something other than twenty-five minutes. Granted, true practitioners
of the Pomodoro Technique shouldn’t deviate from the twenty-five minute

report erratum • discuss

Addressing the Limitations • 111

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

duration, but some individuals would likely appreciate the ability to easily
modify the duration for their own time-boxing practices. While you could
build a dialog box using Tasker’s scenes capability that allowed users to
modify the duration in a graphical way rather than directly editing the
PomoStart task, doing so would require time to learn how to use scenes
as well as to build the dialog and the task structure to support it. Again,
that time would probably be better spent investing in building a native
widget instead.

• Distributing this widget to other Android users who don’t own Tasker
isn’t possible, since the current version of Tasker App Factory does not
support widget generation (although Tasker’s developer has hinted that
this may be possible in a future release). Therefore, only those who have
already bought and are actively using Tasker can use this Pomodoro
widget prototype. Even if you sent these Tasker users the task list, they
would still need to wire up the profile and widget on their own. Considering
we spent a chunk of this chapter on that very subject, asking others to
set up this widget is nowhere near as intuitive as downloading and
installing a widget from the Google Play store.

• Most important is the fact that our Tasker-based Pomodoro widget is not
a real widget in the truest sense of the Android ecosystem. Yes, Tasker’s
own Task and Task Timer widgets are real widgets, but the Tasker Task
widget is simply a wrapper that needs to point to a task written in Tasker
to use. We can’t see our Tasker-based Pomodoro widget on Android’s
widget selection screen (along with a nice graphic indicating the widget
itself), and it can’t be resized like some other native Android widgets allow.

While some of these issues could be addressed in Tasker, the amount of time
and effort to do so would probably be better spent investing in programming
a native Pomodoro widget. But using a programming tool like the AIDE makes
this a possibility. AIDE even has a widget project template you can use to get
started. Those interested in taking Tasker widgets to the next level should
further explore the AIDE. You can use AIDE to code enhancements that would
be difficult if not impossible to do using Tasker alone.

Even with the option to pursue a native development path, Tasker has cer-
tainly served its purpose by helping us envision and bring to life a working
Pomodoro widget. It has also allowed us to create this working widget in
considerably less time than it would take to develop a native Android widget
that does more or less the same thing.

Chapter 7. Tasker Pomodoro Widget • 112

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

7.5 Next Steps

We spent quite a bit of time going over the construction of the Pomodoro
widget using Tasker. But now that you know the specifics of doing so, building
a Tasker widget from scratch should be a much faster and more intuitive
experience. This chapter also introduced a number of new ideas and Tasker
features, including audio playback and event intervals, that you will be able
to apply to other Tasker-related projects. You can also use the Pomodoro
widget as a foundation to build other interval-driven task triggers. We can
also enhance the widget with features that will deliver more than just a
Pomodoro stop clock. Here are a couple of ideas to get you started:

• Make a call to the Talking Clock Tasker project when the countdown ends
so you will know the current time without having to look at your phone
or tablet.

• Write the date and timestamp of the Pomodoros you practice to a text file
using Tasker’s Write File action. Create a Tasker scene to view the data,
send it as an email attachment, or post it to a website.

• If you enjoy listening to music but want to make sure the music stops
during the Pomodoro and starts back up again after the Pomodoro period
is completed, call upon Tasker’s Music Stop and Music Start Media
actions, respectively.

• Reward yourself with the successful completion of a Pomodoro by pulling
from a random list of encouragement text and have Tasker’s Say action
speak phrases like “Way to go!” and “Nice job.” Take this concept further
by pulling down famous quotes or a fortune cookie text generator from a
free web service API like the one found on http://iheartquotes.com/api, convert
the text to speech, and be surprised by what your Android device will say
to you.

In the next chapter, we will combine the Tasker knowledge we’ve acquired
with the scripting power of Python to create several neat programs that send
and receive messages such as emails, instant messages, and even Twitter
postings in a distraction-free way.

report erratum • discuss

Next Steps • 113

V413HAV

http://iheartquotes.com/api
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

CHAPTER 8

Messaging Projects
We previously learned about how to create tasks with Tasker, scripts with
SL4A, and native applications with AIDE. In this chapter, we are going to
combine tasks and scripts so that we may benefit from the strengths of each.
That is because Tasker has the ability to pass values to and from SL4A scripts.
Both can be used for prototyping and refining apps that we choose to convert
to native programs with a tool like AIDE or keep in perpetual, iterative
development with the tasks and scripts being run.

Let’s begin with a project that leverages the power of an SL4A-hosted Python
script with the easy-to-use task management of Tasker. If you’re like me, this
simple project will also be one of the most used scripts throughout the day.

8.1 Check Email

This project will run a Python script to check for new email messages and
speak their subject lines should any messages arrive in the inbox. We will
use Tasker to schedule the script to run at regular intervals as well as make
it easy to run from the home screen via a Tasker widget.

Because I prefer to listen to music or podcasts while commuting, working
out, or cleaning the house, I’m often wearing headphones. Any chance I can
hear information without having to dig out my phone to do so is a great time-
saver. Email is one of the primary reasons I carry around a smartphone, even
more so than voice calls or SMS messages. Yet I find it maddening to hear
an email notification chime sound during my commute, dig the phone out of
my case, unlock the screen, and bring up the email client only to discover
that a spam message arrived.

While this project won’t reduce spam, it will reduce the number of steps
necessary to discover whether you have received such a message. It will also

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand
Vaibhav
Typewritten Text
V413HAV

do an awesome job of helping you decide whether a message is important
enough to stop what you’re doing and immediately respond.

Scripting with Python

As we saw in Chapter 5, Scripting with SL4A, on page 63, SL4A can host a variety of
scripting languages. I chose the Python scripting language with the projects in this
book for a few reasons. First, Python is an easy language to understand thanks to
its simple, well-formatted syntax and intuitive style. Second, its distribution is often
referred to as one with “batteries included” because it bundles several powerful fea-
tures in its standard library that other languages require as separate installations.

For example, Python bundles libraries for SQLite (a portable SQL-capable database),
built-in libraries for web protocols, email and instant messaging, and much more.
Lastly, Python is my personal favorite scripting language. Even though languages
like Ruby are beautiful, there is just something about the engineering practicality of
Python that appeals to my nuts-and-bolts tinkering mentality.

We will begin by writing and testing the Python script for checking and
reading email. Once the script is working, we will tie it into the Talking Clock
Tasker profile we created previously. We will also create a Task widget for
easy access to the script. This widget will allow us to execute the script with
a single touch vs. having to open SL4A, scroll through a list of scripts, select
the checkmail.py file, and then the run script sprocket icon.

Check Mail Setup

Before we can write a script to check email, we need a mail server that sup-
ports the open protocols that Python’s mail libraries encapsulate. While a
variety of protocols can be used to access email, this script will be written
with secure Internet Message Access Protocol (IMAP) in mind. This is the
same protocol that Google and other free Internet email services offer. So, if
you don’t already have a secure IMAP-capable email account, you will need
to create one for this script to work.

If you’re able to access the Google Play market on your Android device, you
already have a Gmail account. You can use that account or create a new
account specifically for the purposes of testing and tweaking this script.
Secure IMAP is not normally enabled by default in Gmail. To do so, log into
your Gmail account via a web browser and select the Settings menu option
after clicking the sprocket icon. From there, choose the Forwarding and
POP/IMAP menu. Then select the Enable IMAP button. You can leave the
other options at their default values. Upon doing so, your screen should look
similar to Figure 66, Gmail IMAP-enabled settings, on page 117.

Chapter 8. Messaging Projects • 116

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Figure 66—Gmail IMAP-enabled settings

The script we write will work with any secure IMAP standards-based service,
not just Gmail. But for the purposes of our demonstration, Gmail should be
more than adequate. Regardless of which service you use, make sure you can
access it via an IMAP-capable email client first. The standard Mail client on
Android is IMAP-capable, and you can use it to verify that secure IMAP on
your email server of choice is properly configured.

To do so, open the Mail application on your Android device and choose the
Settings menu option. Then select the Add Account label. In the setup screen,
enter your username and password for the IMAP server of choice, and select
the Manual Setup button, followed by the IMAP button on the next screen.
The settings for Gmail secure IMAP are shown in Figure 67, Gmail secure
IMAP client settings, on page 118. While not required for our purposes, you
can also configure the Simple Mail Transport Protocol (SMTP) settings on the
next screen. For example, Gmail uses secure SMTP over port 465 (Gmail can
also use port 587), as shown in Figure 68, Gmail secure SMTP client settings,
on page 118.

Accept the settings, and accept the defaults for the next screen as well. Give
the account a name, such as IMAP Email Test. If you already had messages
in your Gmail inbox, they should show up in the Inbox on your Android device.

report erratum • discuss

Check Email • 117

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Figure 68—Gmail secure SMTP client
settings

Figure 67—Gmail secure IMAP client
settings

You can also send yourself a message to that Gmail address to see whether
it is received and displayed properly.

Once you have confirmed that the IMAP server and login settings are working,
we can create the Python script that will check for unread messages in the
Inbox. If any are located, the script will have our Android device speak the
subjects of each unread message identified.

Check Mail Script

Assuming you have installed SL4A and the Python interpreter as discussed
in Chapter 5, Scripting with SL4A, on page 63, launch SL4A. Create a new
Python script by selecting the Add icon from the main SL4A menu and select
Python 2.6.2 (or whatever version of the Python interpreter you installed on
your device). Name the new Python script checkmail.py. SL4A has already
imported the android library and created a new android object called droid.

Let’s begin by importing several Python libraries (that we will call upon) into
this file. These include the email, imaplib, re (regular expressions), and sys

Chapter 8. Messaging Projects • 118

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

(system) libraries. Fortunately, these are all included in Python’s standard
library, so there is no need to download and install additional Python modules
to bring these capabilities into our script.

Messaging/checkmail.py
import imaplib, email, re, sys
import android

droid = android.Android()

Next, let’s try connecting to the IMAP server (in our example, we’ll use Gmail)
and navigate to our email Inbox. Notice the use of the word try in the last
sentence. We will use Python’s try-except block to wrap around the server
connection logic. If we fail to connect to the server, we can catch the exception
and have Android tell us that there was a problem connecting to the server.

Messaging/checkmail.py
try:

server = imaplib.IMAP4_SSL('imap.gmail.com')
server.login('MY_GMAIL_USER_NAME', 'MY_GMAIL_PASSWORD')
mailboxes = server.list()
server.select("INBOX")

except:
droid.ttsSpeak("There was a problem connecting to the server.")
sys.exit()

Assuming that the connection to the server was successful and we were able
to locate and focus on the Inbox, we can scan the Inbox for unread messages.
The code we use will incorporate the power of regular expressions to efficiently
identify and parse any unread messages in our Inbox. If you are unfamiliar
with using regular expressions, Mastering Regular Expressions [Fri97] by
Jeffrey E. F. Friedl is a good resource to start reading about their practical
use. Let’s take a look at the code used to retrieve and read email messages.

Messaging/checkmail.py
try:

unread_messages = server.search(None, "UNSEEN")[1][0].split()❶
unread_count = len(unread_messages)❷
if unread_count == 1:❸

droid.ttsSpeak(str(unread_count) + " unread message.")
elif unread_count == 0:

droid.ttsSpeak("No unread messages.")
else:

droid.ttsSpeak(str(unread_count) + "unread messages.")

for item in unread_messages:❹
droid.ttsSpeak("Message " + str(item) + ".")
typ, message_content = server.fetch(str(item), '(RFC822)')
for response in message_content:❺

report erratum • discuss

Check Email • 119

V413HAV

http://media.pragprog.com/titles/mrand/code/Messaging/checkmail.py
http://media.pragprog.com/titles/mrand/code/Messaging/checkmail.py
http://media.pragprog.com/titles/mrand/code/Messaging/checkmail.py
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

if isinstance(response, tuple):
message = email.message_from_string(response[1])
for header in ['FROM', 'SUBJECT']:❻

droid.ttsSpeak(str(header.upper()) + " " + \
str(re.sub(r'<.*>', "", message[header])))

except:❼
droid.ttsSpeak("There was a problem parsing the messages.")

❶ Using the IMAP UNSEEN command, we search the server for new messages
by using the Python IMAP library’s search function. Then we use split() on
the results to separate each message independently.

❷ Here we capture the length of the unread_messages array so Android can tell
us how many unread messages there are in our Inbox.

❸ Since there can be zero, one, or more unread messages that have been
identified in our Inbox, we have Android tell us via SL4A’s ttsSpeak() function
in a grammatically correct way.

❹ The For loop iterates through our unread_messages array so that we can parse
who the message was from and what is contained within the subject of
the message. While we could also parse out the body of the message, I
have found that this is burdensome (especially when the email is spam).
If I know both the sender and the subject, I can often tell based on the
sender and subject if a message requires my immediate attention.

❺ After speaking the message number and retrieving the message from the
mail server via the Python IMAP fetch() function, we deconstruct the parts
of the message in order to parse it for the message subject and sender.

❻ Since we’re interested only in the email subject and sender, we need to
parse the email message header only. Note the use of the regular expres-
sion function re.sub(r'<.*>', "", message[header])). This searches for and replaces
the email address with a blank string. We do this so we don’t have to listen
to Android say both the sender’s name and email address. If you have
ever looked at the raw source of an email message, you will see that the
person sending the message is listed as Sender Name <sender_email_
address@theirdomain.com>. Since we often know people primarily by
their names, not their email addresses, it’s unnecessary and redundant
to have Android speak both their names and their email addresses to us.

❼ If we have a problem retrieving or parsing the messages, we can gracefully
exit the routine by having Android inform us that there was a problem
doing so.

Chapter 8. Messaging Projects • 120

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Figure 69—Save the checkmail.py
script.

Save the checkmail.py file by selecting Android’s
back button. SL4A will display a dialog asking
whether you would like to save the file, as
shown in the figure here. Select Yes to do so.

Before we run the script, send the target email
address with two or three test messages. That
way, we can verify that the script not only con-
nects to the mail server but also properly iden-
tifies and reads the subject lines of our test
messages. Also, it should go without saying
that you should check to make sure you have
an active Internet connection before testing the
script.

Now select the checkmail.py script from the list.
This will pop up a row of icons, as shown in
Figure 70, Executing the checkmail.py script.
Select the sprocket icon to run the script. If
everything goes according to plan, your Android
device should tell you how many unread mes-
sages you have in your Inbox and proceed to
read the subject lines of each unread message
that it encountered. If there was a problem with either connecting to the
server or parsing the messages, your Android will let you know that too.

Figure 70—Executing the
checkmail.py script

With the checkmail.py script working, we can use
Tasker to run the script periodically to check
on the status of unread email messages. Since
we already built a task that runs every fifteen
minutes, we don’t need to create a separate
Tasker profile to execute this task at set time
intervals. We already have a profile that we
created for the Talking Clock task, so let’s take
advantage of this by adding onto an existing
Tasker task.

Tasker Integration

Let’s create a new stand-alone task for the Check Mail script. This way, we’ll
have the flexibility to reuse the Check Mail routine in other tasks. We’ll also
be able to assign the Check Mail task to a widget, allowing us to check for

report erratum • discuss

Check Email • 121

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Wait...Just a Little Bit Longer

If you have a lot of unread email messages in your Inbox, your script will take a long
time to complete its execution. Consequently, Android might complain with a dialog
box asking if you want to wait or kill the task that is taking so long to complete. This
is because Android doesn’t like processes tying up system resources, especially those
that might make the user interface unresponsive.

However, as we’ll see when we wire up this script to other tasks, we won’t have the
luxury of waiting around until the script finishes. That’s not a bad thing, since we
probably don’t want to listen to more than a minute or so of email senders and sub-
jects. Also, it’s not nice to tie up Android with background processes that don’t
quickly finish up their tasks.

unread messages whenever we want rather than waiting for the fifteen-minute
interval to run.

Create a new task and call it Check Email. This task will consist of a single
action, running the checkmail.py Python script. To add this action to the Check
Email task, select the plus icon in the middle of Tasker’s lower toolbar. Select
the Script action, and then choose Run SL4A Script. Touch the Edit button
and then choose the checkmail.py file. This will be the script that the SL4A action
will execute when the Check Email task runs.

We could stop here, but I prefer to add a conditional statement to this task.
If I know my Android phone is not connected to a network, then there is no
reason to attempt to run the script. Doing so will produce the same result,
with Android speaking, “There was a problem connecting to the server.” To
be even more specific, I chose to have the script run only when WiFi is turned
on.

We can also opt to check whether we have 3G connectivity using the same
technique, but let’s keep it simple for now and just check to see whether the
WiFi radio is on. To do so, check the If box in the SL4A Action Edit task and
test to see whether the %WIFI variable matches the On state. And even though
it’s not necessary in this single step task, I usually enable the Continue Task
After Error checkbox to keep the rest of the task running in case the SL4A
script execution fails. Your configured SL4A task should look like the one
shown in Figure 71, The checkmail.py SL4A action in Tasker, on page 123.

Save your changes by selecting the Action Edit label in the upper-left corner
of the screen. Then confirm that the task has been configured correctly by
selecting the Run icon on the left side of the lower toolbar in the Check Email
Task Edit screen. If it didn’t run, make sure your WiFi radio is turned on.

Chapter 8. Messaging Projects • 122

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Figure 71—The checkmail.py
SL4A action in Tasker

One more thing I like to do with my tasks is
assign them a relevant icon. Not only does this
assist as a visual reminder of what the task does,
but Tasker also uses that assigned icon when
creating a widget from the chosen task. In this
case, touch the image select icon in the lower-
right side of the bottom task toolbar.

You can use an existing application icon (the
Android Email application icon for example), but
that’s not a good idea since it might get confusing
on the home screen if both the Email application
and the Check Mail widget have the same icon.
Instead, I used an envelope icon in Android-
friendly .png format that I found on Iconfinder.com.

With the working individual Check Email task
defined, we can add it to the Talking Clock task
we created earlier. To do so, open the Talking
Clock task in Tasker and add a new action to it
by selecting the plus icon.

Figure 72—The Check Email
Perform Task action in Tasker

Then, just as we did previously with the Battery
Status task, choose the Task action category fol-
lowed by the Perform Task action. Then select the
magnifying glass icon to choose the Check Email
task from the pop-up dialog box that lists all the
tasks you have created so far in Tasker. When
done, the Check Email Perform Task dialog should
look similar to the one shown in Figure 72, The
Check Email Perform Task action in Tasker.

Select the Task Edit label in the upper-left corner
of the screen to save your changes. Now run the
Talking Clock script. Assuming the WiFi radio is
on, you should hear your Android device speak
the time, followed shortly thereafter with a tally
of unread messages and the sender and subject
of those unread emails. However, you will quickly
notice that if the email reading goes on longer
than a minute or so, Tasker ends the checkmail.py
Python script, often in mid-sentence. Alas, this
is one of the limitations we can’t easily address.

report erratum • discuss

Check Email • 123

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

But as I mentioned earlier, I don’t mind that Tasker puts the brakes on the
running script. If I have a stack of unread emails waiting for me, I am going
to have to respond to some of them anyway. So, while the task doesn’t perform
exactly as intended, I honestly like the fact that Tasker takes command and
stops the script on my behalf. If this isn’t the kind of behavior you appreciate,
you can always consider going native and converting the Check Email task
to a native Android application like we did in Chapter 6, Programming with
AIDE, on page 75.

Another more annoying limitation of the Check Email script, as well as any
SL4A script in general, is that it stops video playback when it executes. If you
happen to be watching a YouTube or other media player video when the script
launches, video playback will halt and require you to manually unpause the
playback to continue. It’s literally a showstopper. Ideally this problem can be
fixed in a future SL4A update.

Before we move on to our next project, let’s make the Check Email function
accessible via a Tasker widget so we can easily run it from the Android home
screen.

Check Mail Widget

Figure 73—A selection of Tasker
tasks

Similar to the steps we used in Section 7.2,
Pomodoro Widget Redux, on page 98, we will
apply the same approach to exposing the Check
Email Tasker task as a widget. Doing so is a
simple two-step process. First, select the Tasker
Task widget from the Android Widgets selection
screen, as we did with the Pomodoro widget,
and then select the Check Email task from the
list of tasks you have on your phone. For
example, my list of Tasker tasks looks like the
one shown in the figure here.

Tasker will then present you with the steps of
the selected task as confirmation that this is the
task you want to assign to the widget. Select the
Task Widget/Check Email label in the upper left
corner of the screen to confirm the assignment.
The envelope icon we previously assigned to the
Check Email task will appear on the home

Chapter 8. Messaging Projects • 124

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

screen. Now you can easily run the Check Email task at any time by touching
the Check Email widget envelope icon.

Another even cooler approach you can take with the Check Email task is to
assign it to a Headset Button Controller action. In my case, I have set a four-
button press on my middle headset hardware button to trigger the action to
run the Check Email script.

Figure 74—Assigning a Tasker task
to a quadruple-click

To do so, launch the Headset Button Con-
troller program and select Quadruple Click
from the Easy tab. Select “Tasker task” from
the pop-up list, as shown in the figure here.

For longer clicks like these, I recommend
leaving the “Play beep sound” checkbox
enabled as an audio cue that you have indeed
tapped the headset hardware button four
times. Then, just as we did with the task
widget assignment, select the Check Email
task from the Tasker task list. Once the
assignment is configured, test it by plugging
in your headset and tapping the headset
hardware button four times. Doing so should
launch the Check Email Tasker task that will
in turn run the checkemail.py Python SL4A
script. Now whenever you’re on the go and
want to check for new email without having
to reach for your smartphone, just tap your
headset button four times to hear any new
email messages you may have received. Now
that’s pretty cool!

Enhancements

The aforementioned SL4A limitations notwithstanding, think about the kind
of improvements that could be made to the Check Email project. Here are
some ways to add upon the foundation we built:

• Minimize the reading of spam by filtering out message readings from
unknown sources. Create an array of approved senders and iterate through
it to verify that the sender is in the list before retrieving and reading the
subject.

report erratum • discuss

Check Email • 125

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Tasker Task Widget vs. SL4A Script Shortcut

If you have been exploring SL4A a bit on your own, you may have come across the
ability to create shortcuts to either edit or run your SL4A scripts. If so, you may be
wondering why I am going through the trouble of creating Tasker task widgets when
the SL4A script shortcuts do nearly the same thing. That is, both will launch the
target script when the assigned icon is touched on the home screen.

There are two reasons why I prefer using the Tasker Task widget above the SL4A
script shortcut. First, Tasker allows you to assign an icon to the task that the widget
will run. SL4A uses the same language-specific icon for the shortcut, making it hard
to quickly identify by sight which shortcut launches which script. And while most
Android third-party launchers such as Nova Launcher allow you to swap out a home-
screen icon with an alternate of your choice, you lose these icon assignments if you
switch to a different launcher or revert to the stock Android home-screen settings.

The second and more important advantage of using Tasker to encapsulate each SL4A
script into a distinct task is so that they can be easily mixed and matched with other
Tasker tasks. For example, if you have already built an SL4A script that parses HTML
tags, you can easily reuse that in a future Tasker task that may require that function-
ality. As you amass a library of Tasker tasks and SL4A scripts, you will appreciate
how much easier it is to manage and organize these functional assets under a single
umbrella.

• Prioritize message reading based on the sender. Have two lists of names,
one for normal and one for high priority, and rearrange the subjects so
that those received from high-priority senders are read first.

• Add the option to read the message body, especially if the message sender
is on a high-priority list. If the subject is important or intriguing, Android
can ask “Would you like me to read the full message?” We will learn how
to interactively respond to scripted conditions using just our voice in the
next project.

• Add the ability to respond to a message via speech-to-text conversion. We
will learn how to do this in the next project.

8.2 Speak ’n’ Tweet

Keeping with the theme of hands-free audio-delivered data exchange, our
next project will post a speech-to-text translation to your Twitter timeline.
Select a widget or a few clicks of your headset hardware button, wait for the
audio cue to speak, say what you want posted, and Android will convert your
speech to text, confirm what you said, post it to your Twitter account, and
read back to you what was just posted. Just as we did with the Check Email

Chapter 8. Messaging Projects • 126

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

project, we’re going to employ both SL4A and Tasker, with Tasker serving as
a container to let us call the SL4A Python script from a widget or headset
button press.

If you took the time to explore the contents of the Python libraries included
in the Python for Android distribution, you may have discovered that it
includes a Twitter library. Unfortunately, that library is outdated because it
uses an old username/password authentication scheme that Twitter has
since replaced with the OAuth authentication standard scheme. OAuth is far
more secure than the old username/password approach, but it is also far
more complex to configure. In fact, we will spend far more time creating and
configuring the OAuth credentials for this project than writing the speech-
translation and tweet-posting Python script.

The Tweepy Library

Since the Twitter library included in the Python for Android distribution won’t
work with OAuth, we need to replace it with a Python Twitter library that is
OAuth-aware. We can do this by adding a pure Python Twitter library to the
Python distribution that was installed on our Android device. However, the
important point to keep in mind about this approach is that it works only
when using pure Python libraries that don’t require platform-specific compi-
lation to call upon external system-level OS features.

Visit the Tweepy library page on GitHub and click the Download ZIP button.
Proceed to download and extract the Tweepy library from the project’s GitHub
repository. Since Tweepy (and many other third-party Python libraries) are
designed to be distributed via popular Python package deployment tools such
as easy_install or pip, there are a lot of extra setup files that don’t need to be
copied to the extras Python directory on our Android device. All we really need
is the extracted tweepy directory. Copy that directory to your Android device.
The easiest way to do this is to use Google’s Android File Transfer tool that
was mentioned in Choosing an Audio Clip, on page 99.

Connect your Android device to your computer and, if it didn’t automatically
start, launch the Android File Transfer utility. Expand the com.googlecode.python-
forandroid directory, followed by the extras directory and then the python directory.
This is where our Python for Android libraries reside. Copy the tweepy folder
to this location. Note that Figure 75, Location of Python library files, on page
128 doesn’t show the entire contents of the python directory, and it also shows
the tweepy directory already copied into the proper location.

report erratum • discuss

Speak ’n’ Tweet • 127

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Figure 75—Location of Python library files

Chapter 8. Messaging Projects • 128

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

SL4A Python Libraries

If you were to try to install a nifty Python workflow library called Fabric,a it wouldn’t
work by just copying the Fabric Python files into your project. That’s because Fabric
relies on a cryptographic library called PyCrypto that requires a natively compiled
library to execute its cryptographic functions.b In this case, the SL4A community has
recognized the importance of this library and made the effort to natively compile the
PyCrypto library as a separate download.c

For the adventurous and determined Python and Android programmer, there exists
a way to create these natively compiled Python libraries packages for use on Android
that involves the Android Native Development Kit (NDK) and a fair amount of native
Android and C++ development expertise. That said, it’s easier to search for a pure
Python library than to attempt to compile one that relies on native system code. In
the case of our need for a pure Python OAuth-capable Twitter library, such a solution
exists in a project called Tweepy.d

a. http://fabfile.org
b. https://www.dlitz.net/software/pycrypto/
c. http://code.google.com/p/python-for-android/wiki/Modules
d. https://github.com/tweepy/tweepy

With these files in place, you’re ready to import the Tweepy library into your
own projects. But before we actually use the Tweepy library, we need a Twitter
developer account and the appropriate OAuth keys, tokens, and secret values
to authenticate an OAuth session with the Twitter service.

OAuth Credentials

To obtain the four keys to the Twitter application kingdom (the consumer
key, consumer secret, access token, and access secret), visit the Twitter
Developers apps website.1 You can sign in with your existing Twitter account
or create a new account specifically for your Twitter applications. Since this
project is intended for your own personal use rather than an application that
will be distributed in the Play store, feel free to log in with your own Twitter
account login credentials.

Select the “Create a new application” button. Fill out the form with the required
fields (unique name, app description at least ten characters long, and your
website URL), agree to the terms of use, supply the CAPTCHA values, and
select the “Create your Twitter application” button.

1. https://dev.twitter.com/apps

report erratum • discuss

Speak ’n’ Tweet • 129

V413HAV

http://fabfile.org
https://www.dlitz.net/software/pycrypto/
http://code.google.com/p/python-for-android/wiki/Modules
https://github.com/tweepy/tweepy
https://dev.twitter.com/apps
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Assuming you entered the information correctly, you should see a page listing
the details of the Twitter application you just created, including the OAuth
settings. By default, new applications are created with a read-only access
level, as shown in the next figure.

Figure 76—Apps set to read-only by default

We need to change this permission to read-write since our Python script will
be posting tweets to our timeline. To do so, select the Settings tab at the top
of the web page and scroll down to the application type. Change the value
from read-only to read-write, as shown in Figure 77, Setting the app type to
read-write. Then select the “Update this Twitter application’s settings” button
on the bottom of the page to update the access level.

Figure 77—Setting the app type to read-write

Return to the application details screen by selecting the Details tab at the
top of the page. Confirm that the application access level has been set to read-
write, as shown in Figure 78, OAuth access set to read-write, on page 131.

We have one more step to do before we can authenticate a Tweepy session.
We need to generate an access token and its secret. Twitter has made this
easy for dedicated apps like ours. Simply select the “Create my access token”
button on the Details page, and Twitter will automatically generate these for
the Twitter account you used to log into the developer website. These creden-
tials cannot be used with other Twitter logins, so if you want to use the
application’s consumer key and secret with a different Twitter account, you

Chapter 8. Messaging Projects • 130

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Figure 78—OAuth access set to read-write

will have to generate an access token and secret specific to that account. For
our script, we will use the access token and secret that Twitter generated for
us. Take a look at this example, keeping in mind that your token values will
be different from the ones shown in the screenshots.

Figure 79—OAuth access tokens

Now that we have all four values required for OAuth authentication, we can
move on to writing our Tweepy-powered SL4A Python script.

Speak Tweet Script

The SL4A Python script we will create for this project will import the Tweepy
library to authenticate and post our spoken tweets to our Twitter timeline.

report erratum • discuss

Speak ’n’ Tweet • 131

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

We will also leverage Python for Android’s Android library to capture and
convert our speech to text for both tweet entry and posting confirmation.

Open SL4A, add a new Python script, name it speaktweet.py, and begin by
importing the required modules. In addition to the default Android module
that SL4A already included for us, we will import the sys, tweepy, and time
libraries. The reason for including the time library is because we will need
the script to wait for Android to stop talking before we can ask it to capture
our voice for translation.

Messaging/speaktweet.py
import time, tweepy, sys
import android
droid = android.Android()

Next, we’re going to make a call to the Android recognizeSpeech() function to
capture and convert our speech. Then we will have Android say back to us
what it converted using the ttsSpeak() function. Android will then ask us whether
this is the tweet we want to post. This is important because although the
speech-to-text capabilities of Android are amazing, they’re not perfect. This
step allows us to confirm the accuracy of the tweet before it gets posted.
However, we have to wait until Android is done speaking the tweet in question
before it can listen for a response, which is why we need to ask the script to
wait using the time.sleep(1) function. If we agree to the phrase captured, we can
allow the script to continue its execution. Any other response will exit the
program.

Messaging/speaktweet.py
while True:

tweet = str(droid.recognizeSpeech().result)
droid.ttsSpeak("I heard " + tweet + ". Is this what you want to post?")
while droid.ttsIsSpeaking()[1] is True:

time.sleep(1)

response = str(droid.recognizeSpeech().result)
if response == "yes":

break
else:

droid.ttsSpeak("The post has been cancelled.")
sys.exit()

If we respond with a spoken “Yes” that Android recognized, the next step is
to authenticate to our Twitter account using our OAuth credentials. Set the
consumer key, consumer secret, access token, and access token secret values
and pass these to Tweepy’s OAuthHander function.

Chapter 8. Messaging Projects • 132

report erratum • discussV413HAV

http://media.pragprog.com/titles/mrand/code/Messaging/speaktweet.py
http://media.pragprog.com/titles/mrand/code/Messaging/speaktweet.py
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Messaging/speaktweet.py
consumer_key = "YOUR_CONSUMER_KEY_GOES_HERE"
consumer_secret = "YOUR_CONSUMER_KEY_SECRET_GOES_HERE"

access_token = "YOUR_ACCESS_TOKEN_GOES_HERE"
access_token_secret = "YOUR_ACCESS_TOKEN_SECRET_GOES_HERE"

auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)

Google’s speech-to-text service does a nice job in this case, but it doesn’t
make implicit assumptions about punctuation and sentence structure. If you
were to post the converted text as is, your post would be in lowercase and be
missing a period at the end of the sentence. We’ll fix that before the text gets
posted by making the first letter in the tweet string uppercase and adding a
period to the end of the string.

Messaging/speaktweet.py
tweet = tweet[0].upper() + tweet[1:] + '.'

With the sentence properly formatted, we can finally authenticate to Twitter
and post the tweet. If the tweet was successfully posted, Android will tell us
so. If the tweet didn’t get posted, whether because of a network problem or
authentication error, Android will let us know that too.

Messaging/speaktweet.py
try:

api = tweepy.API(auth)
api.update_status(tweet)
droid.ttsSpeak(tweet[:-1] + " has been posted to your Twitter timeline.")

except:
droid.ttsSpeak("There was a problem connecting to the server.")
sys.exit()

Save the speaktweet.py file, make sure your Android device has a connection to
the Internet, and give the script a try. Select the file from the SL4A Scripts
screen; then select the sprocket icon to run the script. A chime will sound
indicating that Android is recording your voice. Speak a brief test phrase like
“Hello, world.” Android should respond with “I heard ‘Hello, world.’ Is this
what you want to post?” If that’s not the phrase that was spoken back to you,
a “No” response will cancel the post and exit the script. If Android did speak
the phrase correctly, responding with a “Yes” will allow the script to proceed.

Assuming you entered your OAuth values correctly into the script and the
Twitter service is network accessible, the next phrase you should hear spoken
from your Android device is “Hello, world has been posted to your Twitter
timeline.” Confirm this statement by visiting your Twitter page and reviewing

report erratum • discuss

Speak ’n’ Tweet • 133

V413HAV

http://media.pragprog.com/titles/mrand/code/Messaging/speaktweet.py
http://media.pragprog.com/titles/mrand/code/Messaging/speaktweet.py
http://media.pragprog.com/titles/mrand/code/Messaging/speaktweet.py
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

your most recent posts. There you should see a recently added “Hello world.”
entry on your Twitter timeline. Awesome!

Now let’s make the speaktweet.py script more easily accessible to Tasker tasks
and on the Android home screen by wrapping it in a Tasker task and widget,
just like we previously did for the Check Email project.

Tasker Wrapper

Following the same procedure we used for the Check Email Tasker integration,
open Tasker and create a new task called Speak Tweet. The task will host a
single action, running the speaktweet.py SL4A Python script. Add the action by
selecting the plus icon in the lower Task Edit toolbar. Select the Script Action
Category followed by the Run SL4A Script action. Touch the magnifying glass
icon in the Action Edit Name field and choose the speaktweet.py file from the
list. Save the action by selecting the Action Edit label in the upper left of the
screen.

While we’re in the Task Edit screen, let’s also assign an icon for the task so
we’ll be able to easily identify it when we create the Tasker widget for the
script. I chose a free Twitter .png-formatted icon from the IconFinder website.
To set the icon, select the checkerboard icon in the lower-right corner of the
Task Edit toolbar. In my case, the Twitter icon I used was a Local Media file.
Navigate to the file path of the icon and set it by selecting the icon file of
choice.

With the icon configured, we can save the Speak Tweet task by selecting the
Task Edit label in the upper-left corner of the Task Edit screen. Verify that
the script has been correctly configured by running the Speak Tweet task.
Your results should be the same as before when you ran the script within
the SL4A shell.

Now that the Tasker Task has been created, we can either call upon it within
a Tasker widget or assign it to a headset button action using the Headset
Button Controller program. To set up a widget, add a new widget on your
home screen and select the Tasker Task widget from the list. From there,
choose the Speak Tweet task from the Task Selection pop-up list. Verify that
the task you chose is correct and select the Task label in the upper-left corner
of the screen to set the Speak Tweet task widget on your home page. If you
used the free Twitter icon from the IconFinder website, your Speak Tweet
widget may look similar to mine, as shown in Figure 80, The Speak Tweet
widget, on page 135. Now you’ll be able to run the Speak Tweet task directly
from your home screen by selecting the Speak Tweet widget!

Chapter 8. Messaging Projects • 134

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Figure 80—The Speak Tweet
widget

Finally, let’s assign the click of our headset but-
ton to the Speak Tweet task. Choose how many
clicks you prefer. For the sake of this project,
let’s assign it to four clicks of the headset button.
Open the Headset Button Controller program
and select the “Quadruple click” from the Easy
tab. Choose the Tasker task followed by the
Speak Tweet task from the Task Selection list.
Save the changes, plug in your headset, and click
the headset hardware button four times in a row.
You should hear the familiar Android speech
recognition indicator chime in your ears. Say what you want to tweet,
acknowledge, and verify that the tweet was posted on your Twitter timeline.

If you’re a frequent tweeter, imagine the convenience and ease by which you
can now post tweets to your timeline. Want to notify your followers of what
you’re thinking about while walking to work? Tap your headset button and
speak your mind.

Enhancements

We just built something straight out of a science-fiction story with a couple
of lines of code. To think that we can speak a phrase into our mobile device
and have it broadcast to the planet is just too cool. Here are a few ideas to
make it even better:

• Add the ability to replace or expand text phrases based on your own set
of keywords. So when you speak the word “smiley,” Speak Tweet will
replace the word with a :-) character string. Think of it as TextExpander
for voice input.2

• Use the StreamListener function of the Tweepy library to listen to tweets
being posted in real time by the accounts you follow on Twitter. Refer to
the streamwatcher.py example from the Tweepy project GitHub page.3

• Enhance the script using Tweepy’s friends_timeline() function by asking
Android to “Read new tweets.”

• Add geolocation data to your tweets by enabling the GPS radio and cap-
turing and posting your coordinates. We will learn how to record and
transmit GPS data in our next project.

2. http://smilesoftware.com/TextExpander/index.html
3. https://github.com/tweepy/examples/blob/master/streamwatcher.py

report erratum • discuss

Speak ’n’ Tweet • 135

V413HAV

http://smilesoftware.com/TextExpander/index.html
https://github.com/tweepy/examples/blob/master/streamwatcher.py
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

8.3 Jabber Tracker

The projects we have worked on so far in this chapter have used SL4A for
code logic and Tasker as the shell and script execution scheduler. But Tasker
can also be used to pass values it has acquired to SL4A scripts via Tasker’s
Pass Variables field in its Run SL4A Script action. Using the familiar Tasker
variable name syntax of %NAME_OF_VARIABLE, we can supply our Python
scripts with values for additional processing. We’re going to take advantage
of this feature in this project.

One of the many libraries included in the Python for Android bundle is for
the Extensible Messaging and Presence instant messaging protocol (XMPP).4

Historically referred to as the Jabber protocol, XMPP is used in a number of
instant messaging clients for desktop and mobile devices. Apple Messages
(formerly known as iChat) and Google Hangouts (formerly known as Google
Talk) both use XMPP as a messaging protocol. In this project, we are going
to tap into this capability by creating our own Jabber client that will transmit
our location to a designated recipient as an instant message.

The task will run every ten minutes and embed a link prepopulated with the
device’s latitude and longitude to Google Maps. This will allow the message’s
recipient to click the link and see on a map exactly where the device is located
whenever the script is running. While we’re at it, we’ll also send the current
battery level so the recipient knows how much charge the Android device has
remaining. This is important because the GPS radio has a tendency to
aggressively deplete the battery. If the script stops sending an update, the
last message might show why if the battery level reported was less than 10
percent charge remaining.

We will start with writing the XMPP message transmission script, and that will
use a Jabber-aware instant messaging server to relay the message. Using valid
IM account credentials, we will associate the account used in the Jabber Tracker
with a recipient account that will receive the messages. Then we will create the
Tasker task that will supply the Python script with current latitude and longitude
values captured by the Android’s GPS radio. Finally, we will take our Android for
a test ride to see how well the tracking messages account for its location.

XMPP Client Account

If you have a Gmail account, you already have an XMPP client by default.
Google Hangouts is an instant messaging client that uses standard XMPP to
authenticate and communicate. Of course, if you would rather use a different

4. http://xmpp.org

Chapter 8. Messaging Projects • 136

report erratum • discussV413HAV

http://xmpp.org
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

XMPP server, the iChat (aka Messages in OS X 10.8) server included with
Apple’s OS X server works. If you prefer Linux, you can install and run the
open source Jabber server, which works perfectly with the client we will create
as well. To learn more about installing a Jabber server and creating user
accounts, check out the excellent ejabberd open source project.5

Let’s keep things simple for now. Since we already used a Gmail account for
the Check Mail project, we are going to use the Google Hangouts login asso-
ciated with the Gmail account you used for it. Assuming you have already
created a Gmail account, launch the Google Hangouts program on your
Android device and log in with the same credentials you use for Gmail. This
will be the instant messaging client that receives the inbound messages.

Next, visit http://gmail.google.com and create another Gmail account to be exclu-
sively used for sending instant messages to your primary Gmail account.
After you create the second account, you need to allow your primary account
to receive messages from this second account. To do so, add the Gmail.com
address of the second account to your Google Hangouts chat list via the Add
Contact menu item. Once the invitation has been sent, log into Gmail with
the second account and accept the Google Hangouts invitation. And with
that, your primary and secondary Gmail accounts are associated with each
other. You should now be able to verify this association by sending a test
instant message from your secondary Gmail account to your primary account.

Now that you have two instant messaging accounts configured, one to send
the instant message and one to receive it, we can use the account credentials
for sending the message in our XMPP script.

The XMPP Python Script

The Python script for this project will do three simple tasks. The first will be
to capture the current latitude and longitude values reported and supplied
by Tasker. The second step will be to authenticate to the XMPP server. The
final step will be to send a formatted XMPP message containing the geographic
coordinates to a designated recipient. Since the GPS radio tends to consume
battery charge quickly, we will also include the current battery status and
timestamp in the instant message.

Thanks to the bundled XMPP Python library, authenticating to the XMPP
server and sending an XMPP message takes only a few lines of code. We will
start by taking a look at the full script.

5. http://www.ejabberd.im

report erratum • discuss

Jabber Tracker • 137

V413HAV

http://gmail.google.com
http://www.ejabberd.im
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Messaging/jabbertracker.py
import android❶
import random
import xmpp

droid = android.Android()❷
location = droid.getIntent().result[u'extras'][u'%LOC']
battery = droid.getIntent().result[u'extras'][u'%BATT']
date = droid.getIntent().result[u'extras'][u'%DATE']
time = droid.getIntent().result[u'extras'][u'%TIME']

username = 'secondary_address@gmail.com'❸
password = 'secondary_address_password'
recipient = 'primary_address@gmail.com'

uid = xmpp.protocol.JID(username)❹
client = xmpp.Client(uid.getDomain(), debug=[])
client.connect(server=('talk.google.com',5223))

auth = client.auth(uid.getNode(), password, 'JabberTracker')

client.sendInitPresence()
❺

message = xmpp.Message(recipient,
'I am here: http://maps.google.com/maps?q='
+ location + ' at ' + time + ' on ' + date
+ '. Battery level at ' + battery + '%.')

message.setAttr('type', 'chat')
message.setAttr('id', random.randrange(1,10000000))❻
client.send(message)❼
client.disconnect()

This short yet powerful script performs the following functions:

❶ In addition to importing the obligatory Android library, we will pull in the
XMPP library. This will allow us to authenticate and send a message via
the XMPP server. We also need to pull in Python’s random library to make
up for a helpful but limiting feature of Google Hangouts that we discuss
shortly in more detail.

❷ Here we initialize an Android object and assign it the droid variable. We
need this object to obtain the geolocation data, battery level, date, and
time from Tasker. Then we will create four variables (location, battery, date,
and time) and assign the %LOC, %BATT, %DATE, and %TIME values that will be
passed from Tasker to this script.

❸ In this segment, we assign the username, password, and message recipient
variables in one easy-to-edit section. Be sure to replace the placeholder
values with your own Gmail login credentials and the name of the paired

Chapter 8. Messaging Projects • 138

report erratum • discussV413HAV

http://media.pragprog.com/titles/mrand/code/Messaging/jabbertracker.py
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

recipient Google Hangouts account you want to send your instant mes-
sages to.

❹ This portion of the script creates the XMPP user identifier from the user-
name and instructs the XMPP results to be output in verbose debug mode.
That way, if we encounter problems with getting the script to run, we can
examine the SL4A console output to review any errors that were encoun-
tered. We also connect the client to the XMPP server (in this case,
talk.google.com) and the server’s port number (in the case of Google Hangouts,
which uses XMPP secure login, the port number is 5223). Once we’re
connected to the server, we authenticate our XMPP client login credentials
with the server and prepare to transmit our instant message.

❺ This is where we format our XMPP message by incorporating the location
and battery values passed from Tasker to the script. The location data
will be incorporated into a Google Maps URL. Assuming that the message
recipient is using a modern XMPP-compatible client like Apple iChat/
Messages, Google Hangouts, Pidgin, or similar applications, this URL will
display the location pin icon in the browser.

❻ When we imported the random Python library earlier to create a random
number, we did so because Google has incorporated a feature that filters
out repeating messages. This way, if someone is accidentally sending the
same instant message twice, the recipient sees the message only once.
However, since we want to see all messages regardless of whether the
message contents are identical, we need to bypass this message-filtering
feature by assigning a unique message ID to each instant message we
transmit. We do this by generating a random integer between one and
ten million, assuring that the likelihood of generating the same message
ID in the same user session is very low.

❼ With our message formatted with the contents and message ID type and
attributes, we can finally send the message to the recipient. After the
message has been transmitted, we disconnect from the XMPP server.

Remember to update the script with the login credentials of your secondary
Gmail account and the address of your primary (message recipient) address.
Save the changes to a file called jabbertracker.py to the sl4a/scripts directory on
your Android device. But don’t try running the script just yet. If you do, it
will fail because it isn’t receiving the latitude, longitude, date, and battery
values being passed to it by Tasker. Let’s work on fixing that now.

report erratum • discuss

Jabber Tracker • 139

V413HAV

http://talk.google.com
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Geolocation Tasker Task

With the Python script done, we can create a new Tasker task called Jabber
Tracker. Do so by selecting the plus icon in the Tasker task toolbar. Create
an action that acquires the current location coordinates. To d this this, add
a new action and once again select the Misc action category followed by the
Get Location action. Accept the default values and save the action.

Now that the Jabber Tracker task has captured the current latitude and
longitude location, we can pass those values to our jabbertracker.py script. Add
a new action and select the Script Action Category followed by the Run SL4A
Script item. In the Name field of the Run SL4A Script Action Edit screen, add
jabbertracker.py. In the Pass Variables field, we want to have Tasker pass the
four variables that jabbertracker.py expects to receive. These are %BATT, %LOC,
%TIME, and %DATE. Once these variable names have been entered, the screen
should look like Figure 81, The jabbertracker.py Script Tasker action.

Figure 82—The Complete Jabber Tracker
Tasker task

Figure 81—The jabbertracker.py Script
Tasker action

Save this action. With the Jabber Tracker task complete, it should look like
Figure 82, The Complete Jabber Tracker Tasker task.

Chapter 8. Messaging Projects • 140

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Figure 83—The Jabber Tracker
Tasker profile

Now create a Tasker profile that will execute
the Jabber Tracker task every ten minutes.
Select the Profiles tab in Tasker, followed by
the plus icon to create a new profile. Name
the profile Jabber Tracker. Then choose Time
from the pop-up menu. Deselect the From
and To checkboxes and instead select and
activate the Repeat checkbox. Set the profile
to execute every ten minutes and save the
changes. Lastly, choose the Jabber Tracker
task that appears in the pop-up menu. When
done, the Jabber Tracker profile should look
like the one shown in Figure 83, The Jabber
Tracker Tasker profile.

With the profile created and associated with
the Jabber Tracker task, we are ready to test
our handiwork.

Testing the Tracker

You can choose to send and receive instant
messages on the same device or use your
Android to send messages and use a laptop
or a different Android device to receive messages. I prefer to use the same
device to keep debugging any problems simple.

To verify that you are in an area that can receive GPS signals, turn on your
Android’s GPS radio by toggling it on in the Location page within the Android
Settings program. Then verify that your GPS radio is working correctly by
launching Google Maps. Wait for the GPS signal to be acquired, and then ask
Google Maps to determine your current location. Once confirmed, activate
the Jabber Tracker profile and take your Android along for a walk, bike ride,
or drive. You should see an instant message display on the recipient’s IM
application every ten minutes with the updated location, battery level, date,
and time.

If ten minutes is too long or too short between transmissions, you can vary
the frequency of executing the Jabber Tracker task by changing the Repeat
Every value in the Jabber Tracker profile we created earlier. If you’re using
the Google Hangouts application on an Android device and are logged into it
with the recipient’s account, then your results may look similar to the ones
shown in Figure 84, Jabber Tracker instant messages, on page 142.

report erratum • discuss

Jabber Tracker • 141

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand
Vaibhav
Typewritten Text
V413HAV

Figure 85—Android location as displayed
in the Google Chrome Browser

Figure 84—Jabber Tracker instant
messages

When you select the URL, it will open whatever you have set as your default
map display application on your Android device and show the location when
the instant message was transmitted, as shown in Figure 85, Android location
as displayed in the Google Chrome Browser.

Enhancements

The combination of geolocation and messaging is pretty powerful, but there
are improvements we can add to make this project even more interesting.
Here are just a few ideas to get started with:

• Take a photo with the camera and attach it in the instant message along
with the geographic details.

• Create a Tasker profile that activates the Jabber Tracker task when
entering or leaving a particular geographic location.

• Transmit an instant message whenever the state of the device changes,
such as whenever the Bluetooth or WiFi radios turn on or off, when the

Chapter 8. Messaging Projects • 142

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

remaining battery or storage capacity drops below a certain threshold,
and when the screen turns on or off.

• Combine the elements of the Jabber Tracker with the segments of the
Speak ’n’ Tweet project to allow you to send instant messages and post
Twitter tweets at the same time.

8.4 Next Steps

In this chapter, we created several practical tasks and scripts that provided
us with multiple types of hands-free messaging. We also saw how easy it was
to integrate the power of scripting languages like Python with the ease of
integrating these scripts with Tasker profiles and tasks. In addition to building
upon these projects by enhancing their interactivity or extending their features,
we can create new Tasker and SL4A combinations. Consider the following
ideas:

• Build your own Google Now or Apple Siri replacement using Android’s
speech-to-text and text-to-speech capabilities. Customize your intelligent
assistant with domain-specific knowledge such as querying sites like
Stack Overflow for answers to programming questions.6

• Create a geocache recording app that tracks your explorations and exports
the tagged map locations to a Keyhole Markup Language (KML)–formatted
file for viewing in geographic mapping applications like Google Earth.7

• Write a script that obtains your mobile account details, and set up a
Tasker task to execute once a day to keep track of your data usage and
alert you when you’re close to exceeding your mobile data plan.

• Control home automation projects by voice using Tasker tasks and Python
or Ruby scripts that send messages to electrified relays and servos con-
nected to Arduinos and Raspberry Pis.8

In the next chapter, we are going to take a look at another kind of Android
messaging. Specifically, we are going to see how Tasker not only can react to
Android notifications but also create them with eye-catching details.

6. http://www.stackoverflow.com
7. http://en.wikipedia.org/wiki/Keyhole_Markup_Language
8. http://arduino.cc and http://raspberrypi.org, respectively.

report erratum • discuss

Next Steps • 143

V413HAV

http://www.stackoverflow.com
http://en.wikipedia.org/wiki/Keyhole_Markup_Language
http://arduino.cc
http://raspberrypi.org
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

CHAPTER 9

Notification Projects
One of the early innovations that made Android distinct among the various
mobile operating systems was its notification tray. Rather than annoy users
with modal alert boxes popping up whenever system messages are received,
Android neatly organizes these notices into a drop-down list that can be
accessed from the upper-left corner of the home screen with the flick of a
finger. This approach was so well designed that Apple incorporated the idea
into its own iOS mobile operating system.

In this chapter, we will see how we can take Android notifications to a new
level with three projects. The first will allow us to selectively convert any
notification to speech. This will allow us to continue along the earlier theme
of using a headset with Android to keep abreast of all sorts of messaging
inputs. The second project will leverage SL4A to grab a very innovative
weather-forecasting web service to selectively speak or display the forecast
data as a notification. The final project extends Tasker with a plug-in that
will allow us to tailor a variety of notification formats for our personal workflow
needs. Let’s get talking!

9.1 Talking Notifications

Applications that intercept notifications and convert these messages to speech
are nothing new. A popular open source program called Voice Notify is a
personal favorite.1 But if you already use Tasker, these types of applications
are unnecessary since Tasker offers excellent built-in support for a variety of
ways to use and interact with notifications.

This project will essentially replicate entirely in Tasker what programs like
Voice Notify can do. We will also use Tasker’s built-in regular expression

1. https://play.google.com/store/apps/details?id=com.pilot51.voicenotify

report erratum • discussV413HAV

https://play.google.com/store/apps/details?id=com.pilot51.voicenotify
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

capabilities to filter out notifications that we don’t need to hear. Remarkably,
we will be able to do all this in just a few simple steps. All we need to do is
define a single task and profile for the job.

Tasker’s notification events hook into a special type of service on Android
used for accessibility purposes. Consequently, you must explicitly allow Tasker
to receive these types of events within Android’s accessibility settings. Access
these settings via the Android Settings application and select the Accessibility
menu item. Locate and select the “Tasker - JB” service and set its slider to
the On position.

Upon doing so, Android will display a warning that you are explicitly granting
Tasker access to any data being entered into the keyboard, screen, and other
means of input. Malicious Android applications hooking into this type of
service could capture passwords, credit card numbers, and login credentials
and send them off to the bad guys without your knowledge. As such, grant
access to such sensitive areas only to those programs that you trust with
absolute certainty.

Figure 86—Enabling Android
accessibility functionality for

Tasker

After granting Tasker permission to access
Android’s screen accessibility features, your
screen should look like figure shown here.

Now you can call upon Tasker’s notification
features to capture and create notification
events. Let’s set up the configuration to do
just that.

Tasks and Profiles

Create a new Tasker task by the usual method
of selecting the plus icon from the Tasks tab.
Name the new task Read Notification. Next,
add a single task action by selecting the plus
icon within the Task Edit screen. Doing so
will display the now familiar Select Action
Category dialog. Since we want the task to
speak whatever appears in the notification
tray, we’ll select the now familiar Say action
within the Misc action category. This will dis-
play the Say Action Edit form.

Choose the tag icon in the Text field to display
the Tasker Variable Select pop-up dialog.

Chapter 9. Notification Projects • 146

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Scroll down and select the Notification Title from the list. This will place the
Tasker built-in variable name %NTITLE in the Text field. The Action Edit form
should look like Figure 87, The Action Edit notification form.

Figure 88—The Notification Event profileFigure 87—The Action Edit notification
form

Save the changes by selecting the Action Edit Say label in the upper-left corner
of the screen. Now we need to tell Tasker to run the task whenever a notifica-
tion is received in Android’s notification area. To do so, we need to create a
new profile. Select the Profiles tab, followed by the plus icon. Call the new
profile Notification and save the name. When the pop-up menu appears, select
Event. Within the Event category, choose UI, followed by Notification. Save
the changes by selecting the Event Edit Notification label in the upper-left
corner. Doing so will display the Tasks pop-up menu. Choose the Read Noti-
fication task we created earlier. With the Notification Event profile configured,
the Profile screen should look similar to Figure 88, The Notification Event
profile.

That’s all there is to it. Now whenever you receive a text notification in
Android’s notification area, your device should speak the contents of that

report erratum • discuss

Talking Notifications • 147

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

message. This comes in handy when using programs such as instant messag-
ing, email, media players, meeting reminders, and news readers that post
message updates to the notifications area. If you’re already wearing a headset,
there’s no need to reach for your phone after hearing a notification chime,
since Android will read to you whatever message was received.

After the novelty wears off, having Android speak every notification event to
you might get annoying and downright aggravating. For instance, whenever
SL4A runs a script, it posts a started and exited notification. So if you use
the Check Mail script, you will hear not only the results of the script but also
that the checkmail.py file has started and exited. That’s a lot of chatter. It would
be nice if we could filter out unwanted messages from our talking notification
task. Thanks to the fact that Tasker supports regular expressions, we can do
so. Let’s find out how in the next section.

Notification Filter

Tasker’s support for regular expressions can be found mainly in its interpre-
tation of conditional statements. In the case of our Read Notification task, we
can add a condition to check for a matching pattern in the %NTITLE notification
title variable and act on it accordingly. Initially, we want to see whether any
part of the %NTITLE string contains a Python file (indicated by the .py extension)
followed by SL4A’s notification that the Python script has either started or
exited.

Building this pattern-matching instruction in a regular expression may look
strange if you don’t have prior experience building regular expression state-
ments. But once you become familiar with regular expression syntax and
experiment with its parsing capabilities, you quickly appreciate the succinct
power that is inherent in the technology. Here’s the regular expression we
will test for in the Read Notification task:

/.*\.py\s(started|exited)\.

Let’s deconstruct the meaning of this statement. The beginning forward slash
indicates this is a regular expression statement. The dot, asterisk, backslash,
and dot before the py Python file extension tells the parser to accept any
character or set of characters leading up to the extension. However, the string
being tested must contain the .py literal characters exactly in that order. The
\s sequence tells the parser to accept any whitespace character between the
.py and the next word in the string. Next, the (started|exited) sequence tells the
parser to match the word started or exited after the .py extension. Lastly, since
the . (dot) character has a different meaning than just a normal period in

Chapter 9. Notification Projects • 148

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

regular expression parsing, we need to indicate a period via the escaped
sequence (\.) instead. Qualifying matching strings for this regular expression
statement would be “MyScript.py started.” and “areallylongfilenameforapython-
script.py exited.” but not “PerlFile.pl started.” or “MyPythonScript.py is
running.”

Add the completed regular expression conditional test to the Read Notification
task by editing the Say task and scrolling down until you see the If option.
Check the box for the If statement to activate it. Add %NTITLE in the If state-
ment’s text edit field as the value to check. Select the conditional operator
icon next to it and choose Doesn’t Match Regex. This will replace the operator
icon with the characters !~R, Tasker’s shorthand for not matching a regular
expression. Finally, insert the /*.py\s(started|exited)\. expression to test the %NTITLE
string against and save the action. Once all the parameters have been set,
the Read Notification task assignment should look like the screen shown here:

Figure 89—The Read Notification task

Now that the notification filter is in place, you’re ready to give Tasker’s regular
expression parser a test-drive. Execute an SL4A-hosted Python script, such
as the checkmail.py script from the Section 8.1, Check Email, on page 115, project.
If the regular expression condition did its job, you should only hear the spoken
results of the checkmail.py script and nothing else. If you hear “checkmail.py
started” or “checkmail.py exited,” review the conditional regular expression
to verify that the syntax is correct.

report erratum • discuss

Talking Notifications • 149

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Figure 90—Show notifications
checkbox

Incidentally, besides going through the effort
of filtering out specific notifications, you can
also opt to disable the display of notifications
entirely from a specific application. For
example, if we wanted to prevent SL4A from
displaying any messages in the notification
area, we can go into the application settings
via Android settings, select the Apps category,
and then select All tab and scroll down to the
SL4A program. Selecting it will display an
“App info” screen showing how much storage
space the application uses, its permissions,
and the ability to force stop and uninstall the
program. There is also a “Show notifications”
checkbox enabled by default, as shown in
Figure 90, Show notifications checkbox.

Deselecting this checkbox will prevent SL4A
from reporting any of its activity, including
script starts and stops, in the notification
area. While this method will initially accom-
plish the same objective as our regular
expression approach, it is a brute-force tech-

nique that we might not want to use. This is because every message from
SL4A, regardless of importance, will be prevented from being displayed. Doing
so could make debugging and understanding what is happening on your
Android a problem. Hence, the more finely tuned regular expression is a
better solution overall.

Enhancements

With the regular expression filter, our spoken notification task has allowed
us to hear important events without having to look down at our phone or
tablet. This includes calendar reminders, instant messaging and SMS posts,
system-level notifications, and more. Here are a couple of ideas on how to
further enhance these notification events:

• As you become more familiar with the variety of notifications being read,
you can decide which ones to filter out and which ones to highlight. Tweak
the regular expression to filter out Ruby (*.rb) or Perl (*.pl) scripts if you
use those languages instead of Python.

Chapter 9. Notification Projects • 150

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

• Check for high-priority events based on the notification text. For example,
if you have a critical meeting that you must be reminded about, add a
keyword of your choosing to the subject of the meeting. Then add a task
that compares that subject string for a keyword match. If a match occurs,
use Tasker’s Play Ringtone action to bring additional attention to the
event. You can further enhance the notification by adding the Notify
Vibrate and Notify LED to vibrate and turn on Android’s notification light
if your hardware supports those features.

• Execute additional scripts or tasks depending on the notifications being
received. For example, load your favorite SMS program whenever an SMS
notification is received, ready for you to reply to the message as soon as
you unlock your screen.

In the next project, we will call upon a really helpful web service to determine
a precise near-term weather forecast for our immediate vicinity and post the
results to Android’s notification area.

9.2 Forecast.io

One of the most useful iPhone programs I’ve seen is a remarkably accurate
weather forecast utility called Dark Sky.2 Unfortunately, the developers of
that program have not ported it to Android. But what they have done is expose
their forecast engine as a commercial web service. To help entice developers
to incorporate this web service into programs for operating systems other
than iOS, the developers offer up to 1,000 free method calls to their Forecast.io
service.3 This is more than enough for our daily needs. Of course, if you plan
on using this service beyond this 1,000 method call limit, you can consider
additional payment options. But for our single-purpose notification needs,
their free limit should be more than enough for now.

Before you can write a script to call the Forecast.io web service, you need to
sign up for a free developer account.4 Upon doing so, you will receive a
developer key that you will need to append to your calls to the Forecast.io
service. You won’t get very far without a key.

Writing the Script

With our developer key in hand, we can write a Python script that will use
the GPS coordinates provided by the Tasker %LOC variable just like we did for

2. http://www.darkskyapp.com
3. http://forecast.io
4. https://developer.forecast.io/register

report erratum • discuss

Forecast.io • 151

V413HAV

http://www.darkskyapp.com
http://forecast.io
https://developer.forecast.io/register
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

the Jabber Tracker project. Then we will combine the latitude and longitude
values from the %LOC variable along with the developer key to call to the
forecast API. We will then format the response we received from Forecast.io
and post the results to Android’s notification bar.

While we could work directly with Python’s built-in urllib and json modules
to unpack the response we received from Forecast.io’s servers, there is an
easier way. Developer Ze’ev Gilovitz created an easy-to-use Python wrapper
for Forecast.io that we’ll use for this project. Download the python-forcast.io
module from GitHub,5 and place the uncompressed forecastio.py file (found
inside the forecastio folder) into the /sdcard/com.googlecode.pythonforandroid/extras/python
folder on your Android device.

With these prerequisites now satisfied, let’s take a look at the SL4A Python
script and describe each step in detail.

Notifications/forecast.py
from forecastio import Forecastio❶
import android
import datetime

droid = android.Android()

MY_API_KEY = "YOUR_FORECASTIO_DEVELOPER_API_KEY_GOES_HERE"❷

forecast = Forecastio(MY_API_KEY)❸
location = droid.getIntent().result[u'extras'][u'%LOC']

latitude, longitude = location.split(',')❹
current_time = datetime.datetime.now()
response = forecast.loadForecast(latitude,longitude, time=current_time, units="us")

if response['success'] is True:❺
Current = forecast.getCurrently()
Hour = forecast.getHourly()
result = str(Current.temperature) +
"F and " + str(Current.summary) + ":" + str(Hour.summary)
droid.ttsSpeak(result)
droid.setClipboard(result)❻

else:
droid.setClipboard("There was a problem connecting to the server.")

❶ The from keyword is something we haven’t seen before in previous SL4A
Python programs in this book, but it’s simply a way for Python to call
upon specific classes in various modules. In this case, we’re telling the
Python interpreter to reference the Forecastio class within the forecastio

5. https://github.com/ZeevG/python-forcast.io

Chapter 9. Notification Projects • 152

report erratum • discussV413HAV

http://media.pragprog.com/titles/mrand/code/Notifications/forecast.py
https://github.com/ZeevG/python-forcast.io
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

module. We will be instantiating a Forecastio object shortly. In addition, we
will also import the datetime module from Python’s standard library and
the obligatory Android module for our Android-specific function calls.

❷ This is where you will add your Forecast.io developer API key that was
generated for you when you signed up for the service.

❸ On this line, we create a Forecastio object by passing it the developer API
key to instantiate the object. Next, we will request the %LOC value from
the Tasker script action that we will be creating shortly.

❹ Because the %LOC value combines the latitude and longitude values, we
need to separate these into two distinct values to be passed into the forecast
object we created earlier. Fortunately, these values are separated by a
comma, and Python has a function that makes it easy to assign such
known delimited values to distinct variables. In our case, we know that
the value of %LOC consists first of the latitude value followed by a comma
and then the longitude value. By using the split(',') function, we can separate
the two values and assign them to individual latitude and longitude vari-
ables accordingly.

In addition to latitude and longitude, we need one more important piece
of data to pass to the loadforecast function, that being the time we want the
forecast data to reflect. In addition to current forecast data, Forecast.io
also offers historical weather data for analysis. However, since we’re
interested in the current weather and forecast conditions, we will pass
the current time by calling upon Python’s datetime.datetime.now() function.
With our latitude, longitude, and forecast time values in hand, we can
submit our request to the Forecast.io web service. Note that we can also
specify the type of measurement units we would like Forecast.io to return
to us so we don’t have to perform our own temperature conversions on
the fly. In this case, we are assigning units="us" for temperature values to
be returned in degrees Fahrenheit.

❺ Assuming we have received an acceptable response from the Forecast.io
web service, we can then parse the response data for the current temper-
ature and day’s forecast summary. Convert these responses to a string
and format it for placement into the notification area. Note the inclusion
of the colon in the string. This is done so we can place the current tem-
perature and weather condition in a notification title and the day’s forecast
into the notification body. We will use this inserted colon later as a
delimiter for Tasker to split the string into title and body portions.

report erratum • discuss

Forecast.io • 153

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Also note the call to the droid.ttsSpeak() function that has been commented
out. You can uncomment this if you want to hear the forecast summary
spoken to you right away, or you can use it in place of the notification
altogether. I found it helpful to uncomment while testing and then,
depending on my needs, comment it out if I choose to have the Talking
Notifications project we created earlier running. After all, if the Talking
Notifications is active and the droid.ttsSpeak() line is uncommented, we will
hear the current weather conditions spoken twice.

❻ This last line is used as a hack to get around an annoying limitation.
While Tasker is perfectly capable of passing parameters to SL4A running
Python, doing the reverse isn’t supported. What Tasker does support is
the ability to read and assign the contents of Android’s clipboard to a
Tasker variable. That’s why we’re copying the results of our concatenated
weather forecast string into the clipboard.

While you will see how this works when we create the Tasker task for this
project, you may have also correctly surmised that using the clipboard
for this purpose isn’t the most elegant way to handle the passing of vari-
ables from a script’s output to a Tasker variable. While its occurrence is
rare, you may see the forecast notification show the contents of the last
text copy operation if such an action was performed while the script was
running. But it’s what we have to work with until Tasker’s creator can
provide a more elegant format for accepting passed values.

After you have entered the script, save it to a file called localforecast.py by
selecting Android’s back button. Once the file is saved, we can configure
Tasker to call the localforecast.py Python script.

Tasker Integration

Just as we did earlier with the Jabber Tracker project, we will pass the latitude
and longitude values that Tasker captured and supply them to the localforecast.py
Python script for processing. After this script has executed, we will then have
Tasker incorporate the forecast results that were copied to Android’s clipboard
into the notification output.

We will start by creating a new task called Forecast.io. Normally, the first
action in this new task would have been to turn on the GPS radio so we could
capture the current latitude and longitude coordinates. But as we discovered
previously in the Section 8.3, Jabber Tracker, on page 136, project, the auto-
mated GPS On/Off functionality works only on older or rooted Android devices.

Chapter 9. Notification Projects • 154

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Therefore, to have this task execute properly, we will need to make sure to
manually turn on the GPS radio before the Forecast.io task is run.

With that in mind, the first step in our Forecast.io task will be to add a Get
Location action via Tasker’s Misc Action category. You can alter the GPS signal
acquisition timeout value, but the default setting of 100 seconds is typically
enough for most purposes. Leave everything else on this action to the default
values. This includes leaving the Continue Task Immediately and Continue
Task After Error settings both unchecked. After all, we need the current
location information to pass to the localforecast.py script. We also don’t want to
execute the rest of the task if we fail to obtain this vital GPS information.

Following a successful GPS coordinate lock-on, we can proceed to run the
localforecast.py SL4A script. Add this by selecting the plus icon in the middle of
the lower Task toolbar and choose Script followed by the Run SL4A Script
action. Assign the Name field of this action to the localforecast.py file. Add the
%LOC location variable to the Pass Variables field and save the action. That
takes care of providing the script with latitude and longitude data and execut-
ing the Python script.

Next, we have to assign the contents of the Android clipboard that contains
the copy of the script’s results to a Tasker variable. To do so, create a new
Tasker variable called %FORECASTIO and set it equal to the contents of the
clipboard. Tasker’s built-in variable name for the clipboard is %CLIP. Thus,
add a new action to the task and select the Variables action category followed
by the Variable Set action. In the Name field, enter the new %FORECASTIO variable
name. In the To field, enter the built-in %CLIP variable.

But there’s a problem. If we ran this action immediately following the Run
SL4A Script action, we wouldn’t see the correct results being assigned to the
%FORECASTIO variable. That’s because Tasker doesn’t wait for the localforecast.py
to finish executing. Instead, it runs the next action immediately, so whatever
happens to be in the Android clipboard at the time is what gets assigned to
the %FORECASTIO variable. To fix this, we need to tell Tasker to wait a few sec-
onds before running the next action to give enough time for the Forecast.io
server to respond.

In between the Run SL4A Script action and the Variable Set action, add a
new action that will tell Tasker to wait for several seconds. Five seconds seems
to work for me, but your delay needs may vary based on network speeds and
your device’s processing and resource constraints. Select the Wait action from
the Task action category. In the Wait Action Edit screen, set the Seconds
value to 5 or more, depending on your needs. Save the changes.

report erratum • discuss

Forecast.io • 155

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Recall how we added the colon character to the following line in our Python
script:

result = str(Current.temperature) +
"F and " + str(Current.summary) + ":" + str(Hour.summary)

It’s time to put that delimiting colon character to use. We are going to use
Tasker’s Variable Split action as we did earlier in the Talking Clock task, but
instead of splitting on a period, we’re going to split on the colon character
instead. Add the action via the Variables category followed by the Variable
Split action. In the Name field, add the %FORECASTIO variable. In the Splitter
field, add the colon (:) character. Recall from the Talking Clock task that the
Variable Split action will split the results of the task into consecutively named
variables from the root variable named in the Variable Split Name field. In
our case, this action will generate two new variables, %FORECASTIO1 and
%FORECASTIO2.

Now take these two newly generated variables and assign them to a new
notification notice. Add a Notify action from the Alert action category. In the
Title field, add the %FORECASTIO1 variable. In the Text field, add the %FORECASTIO2
variable. You can also add a custom icon to accompany the notification if you
want, just as I have done in Figure 91, The Action Edit dialog.

Figure 92—The complete Forecast.io taskFigure 91—The Action Edit dialog

Chapter 9. Notification Projects • 156

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Save the Notify action. Your Forecast.io task is now complete, and the task
definition should look like the one shown in Figure 92, The complete Forecast.io
task, on page 156.

Testing the Weather

We’re ready to take it for a test run. Since this task is so heavily dependent
on your current geographic coordinates, turning on and ensuring that your
GPS radio has a lock on the GPS satellites is vital. Once the GPS radio is
activated, verify that your location is accurately reported in Google Maps.
Then make sure you have an active Internet connection and run the task
within Tasker. You can also create a Task widget to make accessing the
Forecast.io task easier from the Android home screen, as we have done with
previous projects.

If your run was successful, you should see a notification appear. Pull the
notification tray down to view both the notification title and the body text. It
should look something like Figure 93, A Forecast.io notification. Depending
on the length of the body text, you may notice that the text doesn’t wrap if it
exceeds the length of the notification pull-down tray. See the example in
Figure 94, The notification text field length exceeded.

Figure 94—The notification text field
length exceeded

Figure 93—A Forecast.io notification

report erratum • discuss

Forecast.io • 157

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Unfortunately, this text overflow issue is a limitation in the current version
of Tasker. Prior releases of the Android OS limited text lengths to the width
of the notification area. With the release of Android OS versions 4.1 and
newer, notification text can now be programmed to wrap around and accom-
modate longer messages in the text field. You have likely noticed this with
the display of email and SMS notifications. Tasker hasn’t yet adopted this
new OS feature, but it’s on the developer’s to-do list. In the meantime, is there
anything we can do to fix this? As a matter of fact there is, but we need some
outside assistance to make it happen. That’s what we will explore in the next
project.

Enhancements

I have found in my projects that the most effective use of the notification area
is for semi-persistent messages, such as meeting reminders, instant messages,
and important system state changes. Be cautious with using notifications
too frequently, since you will quickly become desensitized to them and they
lose their effectiveness. With that in mind, here are a couple ideas that can
benefit from employing notifications:

• Revisit earlier projects in the book and retrofit them with an option to use
notifications. For example, adding notifiers to the Tasker Pomodoro widget
could enhance the widget’s end alarm, as well as provide a timestamp of
when the Pomodoro session began and ended.

• For more complex tasks that take a long time to complete, posting a
notification when the task is done will go a long way toward keeping you
informed of the status of automated processes on your device.

• Incorporate push notification services like Google Cloud Services (GCM)
for Android or third-party services like Pushover to keep track of events
from other people and machines.6

In the next project, we’re going to not only correct the text autowrap limitation
in the Forecast.io project but also learn how to incorporate Tasker plug-ins
to further enhance ease-of-use automation control over our devices.

9.3 AutoNotification

One of the best, most forward-thinking features of Tasker is its ability to be
extended via third-party plug-ins. These plug-ins are available in the Google
Play store as dedicated Tasker add-ons, or they can be occasionally incorpo-
rated into Android programs. The Headset Button Controller program, for

6. http://developer.android.com/google/gcm/index.html or https://pushover.net, respectively.

Chapter 9. Notification Projects • 158

report erratum • discussV413HAV

http://developer.android.com/google/gcm/index.html
https://pushover.net
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

instance, includes a Tasker plug-in that allows you to automatically select a
headset profile to use. For example, you could have a Tasker profile that
detects when you have entered or left your home and change to a different
headset profile using a different set of assigned button presses as a result.

In the case of notifications, a really useful plug-in has been created by prolific
Tasker plug-in developer João Dias. His AutoNotification Tasker plug-in gives
you an easy way to access, format, and manipulate Android notifications.7

In addition to AutoNotification, João has created several other compelling
Tasker plug-ins.8 One of these is called AutoRemote.9 This plug-in allows you
to send messages to and from your Android device and other smartphones
or computers like those running Windows, OS X, or Linux. This greatly extends
your smartphone or tablet’s participation in a much wider workflow. But for
now, let’s install the AutoNotification plug-in and take a closer look at what
it has to offer. We’ll also use it to fix the word-wrap problem we discovered
using the standard Tasker notification action in the Forecast.io project.

Installing Tasker Plug-ins

AutoNotification is available from the Google Play store initially as a free,
albeit limited, plug-in. The free version allows you to try it before you buy the
in-app purchase that removes constraints on text message size and profile
names. The commercial version also offers the ability to change LED color
and blink duration along with vibration and custom sound effect support.
Note that some of the features of the plug-in, such as the expanded multiline
notification text option, are available only on devices running Android 4.2 or
newer. Thus, the following example won’t work on devices running older ver-
sions of the Android OS.

Let’s try it in Tasker by creating a new task called AutoNotify Test. Then add
a new action via the plus icon in the middle of the lower Tasker toolbar. Select
the Plugin Action Category followed by the AutoNotification action, as shown
in Figure 95, The Notify Action Edit dialog, on page 160.

Select the Edit button in the Configuration Action Edit setting. Doing so will
open AutoNotification’s Share Options dialog, as shown in Figure 96,
AutoNotification share options, on page 160. This is where the genius of this
plug-in shines. Nearly every facet of Android’s notification properties can be
configured in this screen. These include the usual title and text that we’re

7. https://play.google.com/store/apps/details?id=com.joaomgcd.autonotification
8. https://play.google.com/store/search?q=joaomgcd&c=apps
9. https://play.google.com/store/apps/details?id=com.joaomgcd.autoremote

report erratum • discuss

AutoNotification • 159

V413HAV

https://play.google.com/store/apps/details?id=com.joaomgcd.autonotification
https://play.google.com/store/search?q=joaomgcd&c=apps
https://play.google.com/store/apps/details?id=com.joaomgcd.autoremote
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Figure 96—AutoNotification share optionsFigure 95—The Notify Action Edit dialog

already familiar with in Tasker, as well as more exotic settings such as subtext,
ticker text, notification persistence, picture, vibration patterns, progress bars,
and more.

We will create a test notification to see how some of these custom settings
are rendered. Set the title of the notification to AutoNotification Test. Set the
text to “The AutoNotification plug-in is pretty cool and extends notifications
in many different ways.” Set SubText equal to “I need to learn more about
this plug-in.” Lastly, scroll down and check the Share option. This will allow
the content of the notification to be shared with other Android applications
via a Share option that will appear below the notification text. Save the
changes and run the task. Pull down the notification bar to reveal the gener-
ated notification, which should look similar to the one shown in Figure 97,
AutoNotification example, on page 161.

That looks much better than the standard notification text. It matches the
kind of feature-rich polish that you might see in high-end Android programs.
Using this newfound enhanced ability, we can revisit the notification feature
in the Forecast.io project to properly format overflowing text.

Chapter 9. Notification Projects • 160

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Figure 97—AutoNotification
example

Word Wrap Repair

Reopen the Forecast.io task and remove the
Notify action by long-pressing the action until
the Tasker toolbar is at the top of the screen.
The toolbar allows only selected tasks to be
cut or copied. Cutting an action or task is
essentially the same thing as deleting one,
assuming you replace or clear Android’s copy
buffer with other contents. So, in this case,
choose the Cut icon (the one that looks like
scissors lying on a sheet of paper). Doing so
removes the Notify action from the Forecast.io
task.

Now replace the cut Notify task with one that
calls the AutoNotification plug-in. Select the
plus icon in the lower toolbar and select the
Plugin Action Category. From there, choose
the AutoNotification Plugin Action and select
the Edit button to the right of the Configura-
tion label. Enter the %FORECASTIO0 variable in
the Title field. In the Text field, enter the
%FORECASTIO1 variable. Then in the SubText
field, enter the phrase “Select for Weather Map.”

Figure 98—The revised AutoNotifi-
cation action for Forecast.io

Finally in the URL field, enter the URL of the
weather map in your area. Since I live in the
United States, I chose to use radar maps
made available from Accuweather.com.10 Enter
your city and state in Accuweather’s search
box. From the weather overview for your city,
select the Radar tab followed by the More
Radar & Maps hyperlink. Doing so will show
a static image of your state radar map.
Depending on your browser, you should be
able to right-click (or in the case of a Mac,
control-click) the radar map and copy the
image address. This will provide a static URL
where this frequently updated radar image resides. In my case, Accuweather

10. http://www.accuweather.com

report erratum • discuss

AutoNotification • 161

V413HAV

http://www.accuweather.com
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

served up a GIF image of the radar overview with the filename INMREIL_.gif.11

With these parameters set, the AutoNotification Action Edit screen should
look like the one in Figure 98, The revised AutoNotification action for Forecast.io,
on page 161.

Figure 99—Selecting the notification displays the
weather map in a web browser.

Running the Forecast.io task
generates an AutoNotification-
styled Android notification
complete with the weather
map link. Since we didn’t
choose an icon to use for the
notification, AutoNotification
substituted the default Tasker
icon for us instead. AutoNotifi-
cation not only allows us to
change this icon but also add
an icon in the notification
message. And check out how
choosing the “Select for Weather Map” SubText opens a web browser showing
the weather map at the time the Forecast.io task was last executed, like the
one shown here.

Enhancements

We have scratched the surface of what AutoNotification can do and the degree
of customization it has to offer. Because there are so many ideas, layouts,
formats, and other options within this extensive plug-in, spend time exploring
it and tinkering with the settings. As you become more familiar with it, you
will quickly realize new possibilities of how to apply it to your own Android
notification needs. Here are just a few enhancements worth exploring further:

• Include a routine in the Forecast.io script that properly sets the weather
map URL for the appropriate region of the captured GPS coordinates.

• Include an image file fetching routine in the Forecast.io Python script for
the weather radar map. Reference the weather map image in AutoNotifi-
cation’s Picture field and display it along with the rest of the retrieved
forecast text.

• Create a Tasker profile that runs the modified Forecast.io task at set time
intervals or whenever you travel into or out of a defined geographic region.

11. http://sirocco.accuweather.com/nx_mosaic_400x300c/RE/INMREIL_.gif

Chapter 9. Notification Projects • 162

report erratum • discussV413HAV

http://sirocco.accuweather.com/nx_mosaic_400x300c/RE/INMREIL_.gif
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

• Make the Forecast.io notification persistent so that you don’t have to keep
clearing the notification each time you review the notification bar. This
advantage will become even more apparent after you set up the time-based
event profile for the task.

9.4 Next Steps

The Android notification area plays an important role in managing real-time
inbound information and helps keep you informed without cluttering your
screen with annoying pop-up messages. Skilled user interface designers and
developers make this look obvious and effortless in elegant Android applica-
tions, but it takes practice coupled with a lot of trial and error to see what
works and what doesn’t. That’s why I find working with Tasker’s notification
functionality coupled with plug-ins like AutoNotification to be so helpful. If
something doesn’t look quite right, I can immediately jump into the task and
tweak the settings until the results are satisfying.

Using this approach, consider other uses for pouring the results of your own
programs, scripts, and tasks into the notification bar, such as the following:

• Enhance the Pomodoro widget with time-stamped start and stop notifica-
tions. When selecting the stop notification, open a Pomodoro log file that
prepopulates the entry with your start and stop time and allows you to
enter additional notes, completed tasks, or other measures of productivity
success completed within that duration.

• Create a task that executes additional scripts upon receiving text in a
notification that matches a defined string. For example, if the string con-
tains the SMS name, phone number, or other unique identifier of your
partner, set the phone to a unique vibrate pattern and/or audio cue until
the notification bar is accessed.

• Make your own pull-down system stats notification area showing
remaining battery charge, GPS coordinates, and radio on/off status in a
static or ticker-style format.

In the next chapter, we are going to explore projects that incorporate graphic
user interface elements. Doing so will demonstrate how Tasker and SL4A can
be used to create applications that rival native graphic application function-
ality. We will also further extend Tasker with additional plug-ins to help us
realize these project possibilities faster than ever before.

report erratum • discuss

Next Steps • 163

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

CHAPTER 10

Graphics Projects
Nearly all the projects in this book leading up to this chapter have been
focused on audio-oriented, hands-free operation. While that satisfies a great
deal of useful tasks, especially when you’re constantly on the go, sometimes
a picture truly speaks a thousand words.

In this chapter, we’re going to take a look at a couple of projects that work
best with a user interface. We will learn about the graphic user interface (GUI)
designer that is bundled with Tasker. We’ll create the interface elements and
wire those up with tasks that execute when those onscreen elements are
interacted with.

Let’s start with a simple yet essential visual application that will help us get
used to the GUI tools while at the same time producing a toolbar that can be
built upon with our own expanding library of Tasker tasks and GUI-based
programs.

10.1 Application Launcher

The Application Launcher will provide us with a row of icons that will be dis-
played onscreen. We can launch this application either via a Tasker widget
or, the way I prefer, using a gesture courtesy of Nova Launcher Prime’s gesture
assignment options. The icon toolbar features icons assigned to run some of
the projects we have created in earlier chapters. As our task library grows,
we can use this custom icon-centric app-launching program to help organize
and categorize the expanding variety of custom tasks we build.

To get started, we are going to use Tasker’s Scene Designer to build the user
interface and create a layout to place task-centric icons. Using the icons that
were assigned earlier to each task, we can first draw a rectangle that will
serve as the surface where the icons will be placed. Touching the appropriate
icon will launch the associated task or program.

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Creating a Scene

Tasker scene elements essentially act as containers for other scene elements
or Tasker actions. For example, a button selection can be assigned to run a
task. In the case of our application launcher, we will use the Perform Task
function and assign various tasks to be run (such as running the Talking
Clock task for one of our app launcher buttons).

Figure 100—The App Launcher
scene container

While we could create a series of freestanding
buttons for each task or program we want to
run, it will be easier to organize and nicer-
looking if we place these buttons into a rect-
angular frame. To do so, select the Scenes tab
in Tasker and create a new scene via the plus
icon. Name the scene App Launcher. Tasker
will then show a blank screen with a center
rectangle. This is the scene container. You
can resize the container by long-pressing the
container and moving your finger left, right,
up, or down to alter its width and height. Set
the width and height roughly to the size of a
Tasker task icon, as shown in the figure here.

Once you’re satisfied with the container’s
dimensions, you can save your changes by
selecting the back button or the Tasker icon
in the upper-left corner of the screen. Then
reselect the scene to continue editing it.

Now that we have a container to house our
task program icons, we can begin adding
tasks in the form of buttons. You can assign

different actions to buttons depending on whether the button graphic registers
a tap or long-tap event. For our app launcher, we will use the same single-
tap event to run the Perform task for each of the tasks we have chosen to
include in the launcher container. To add a new button, press and hold your
finger within the container. This will pop up an element menu, allowing you
to select from a variety of graphic elements, as shown in Figure 101, A
selection of scene elements, on page 167.

When you create a button for our app launcher toolbar, it will initially display
the UI tab for that element. This is where you can set the size, background
color, icon, and position. For example, let’s add the Talking Clock launch

Chapter 10. Graphics Projects • 166

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Figure 102—Editing a button elementFigure 101—A selection of scene elements

action to our toolbar. Leave the default UI values and select an icon to visually
represent the task. For the Talking Clock, I chose the same icon as the one
I assigned previously to the Talking Clock task. (See Figure 102, Editing a
button element.)

With the look defined, we need to assign an action to perform when the button
is selected. Choose the TAP tab and add a new action by selecting the plus
icon. Since we want to run the Talking Clock task, choose the Task category
followed by the Perform Task action. In the Name field, select the magnifying
glass icon to select the Talking Clock task.

Continue populating the app launcher container with other buttons and
assign them the appropriate tasks. In my case, I chose to populate my app
launcher with the Talking Clock, Check Email, Forecast.io, Jabber Tracker,
and Speak ’n’ Tweet tasks, as shown in Figure 103, The fully populated app
launcher, on page 168.

You will also notice I created a button with an X character to represent a close
toolbar button action. I chose to create my own custom close button so that
I didn’t have to rely on Tasker’s built-in close scene button size.

report erratum • discuss

Application Launcher • 167

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Figure 103—The fully populated
app launcher

For our custom close scene button to work,
we need to select it just as we did with our
other app launcher buttons and assign it an
action to hide the toolbar (in other words, the
scene). Do so by choosing the TAP tab and
adding a new action. Select the Scene action
from the Select Action Category screen, fol-
lowed by the Hide Scene Action option. Tasker
should autopopulate the scene Name field for
you with our App Launcher scene name, but
if it doesn’t, simply select the magnifying glass
and choose it from the Select Scene pop-up
listing. (See Figure 103, The fully populated
app launcher)

Building the Task

With our custom close button action assigned,
our toolbar is complete. But we still need to
create a Tasker task to initially display our
App Launcher toolbar. Select the Task tab in
Tasker and create a new task called App
Launcher. Create a new action and choose
the Scene category. Then select the Show Scene action. Select the magnifying
glass in the Name field of the Show Scene dialog and select the App Launcher
scene from the pop-up list.

Next, select the Display As drop-down list box and take a moment to review
the number of display combinations Tasker can apply to scenes. These range
from full windows to dialogs to overlays. Because we want to display our
application launcher as a toolbar that overlays on top of our home screen as
well as grab input focus to capture touch events, choose the Overlay, Blocking
display style.

Moving on to the Horizontal and Vertical position settings, you can choose
wherever you like to place the overlay toolbar on the screen. In my case, I
prefer the top center of the screen. So, that means setting the Horizontal
Position slider to Centre and the Vertical Position slider to Up. Finally, deselect
the Show Exit Button setting, since we previously created our own exit button
on the form. Note that when you do so, Tasker will warn you with a reminder
that you will have to manage the closing action and hiding of the forms
yourself (see Figure 104, Exit button warning for overlay scenes, on page 169).

Chapter 10. Graphics Projects • 168

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Figure 104—Exit button warning
for overlay scenes

Save the action by selecting the Action Edit
Show Scene label in the upper-left corner of
the screen. Your App Launcher task should
look similar to Figure 105, The App Launcher
task, on page 170.

You can test your handiwork by running the
App Launcher task. Doing so, you should see
your App Launcher scene display in the upper
center of the screen. Touching any of the
application icons should launch the appropri-
ately assigned program. You should also be
able to hide the scene by selecting the X but-
ton that we assigned to hide the scene.

Assigning a Gesture

Now that you have a working application
launcher task, we need an easy way to invoke
it. While we could create a widget icon to ref-
erence the task and launch our App Launcher
task when we select that widget, it would be
more elegant if we could instantiate it with a
simple two-finger swipe up on the home
screen. Thanks to Nova Launcher Prime (Nova Launcher Prime, on page 12),
assigning gestures like this to tasks or programs is a simple affair.

Access the Nova Launcher Prime settings screen via the Nova Settings app
icon in the Android applications screen. From there, select the Gestures and
Buttons category. This screen allows you to reassign the gesture behaviors
for several popular home screen gestures, such as pinching in and out and
swiping up or down using one or two fingers, as you can see in Figure 106,
Nova Launcher Prime gesture settings, on page 170.

Select the Swipe up (Two Fingers) item. Nova Launcher will ask you to assign
an action to this gesture. Select the Shortcuts tab and scroll down to the Task
Shortcut. Selecting the Task Shortcut item will display a list of Tasker tasks.
Choose the App Launcher task and save the changes. If everything has been
correctly configured, you should be able to swipe up on the home screen with
two fingers, and the App Launcher should display in the top of the screen,
as shown in Figure 107, The final running Application Launcher, on page 170.

report erratum • discuss

Application Launcher • 169

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Figure 105—The App Launcher task

Figure 107—The final running Application
Launcher

Figure 106—Nova Launcher Prime gesture
settings

Chapter 10. Graphics Projects • 170

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Depending on what kind of desktop background you use or the number of
icons on your home screen, the translucent nature of the App Launcher’s
background may make it difficult to see and select the launch icons. If that
turns out to be the case, edit the App Launcher scene and change the back-
ground from its current semitransparent value to a more solid color. You can
do this by selecting the Background Colour menu option from the Scene Edit
menu, as shown in the next figure.

Figure 108—Scene Edit menu

Feel free to alter the size of the icons to increase their touch target areas or
make them smaller to fit more icons in a single row. You can also enhance
the application launcher in several useful ways to make it more than just a
toolbar of shortcuts.

Enhancements

Since this is our first foray into the ability to construct graphic user interfaces
for our Tasker (and even SL4A) tasks, the App Launcher project offers a useful
starter template to build upon. It can also be used as a timesaving sandbox
to play with new ideas, since the basic interface and display rules have already
been created. You can extend the application launcher’s functionality with
the following ideas:

• Replace toolbar icons based on the current state. For example, if you have
a toggle to turn on and off the Bluetooth or WiFi radios, display the
appropriate icon to show whether the radio is active.

report erratum • discuss

Application Launcher • 171

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

• Take a minimal clutter approach to the home screen by removing all icons
and widgets and place only your most popular apps on the App Launcher
toolbar. In addition to befuddling others with your strikingly empty screen,
there is also a mild “security through obscurity” benefit because only you
know the correct gesture to access the launch targets for your favorite
Android programs, scripts, and tasks.

• Turn the application launcher into a full-blown web browser that overlays
on top of the home screen whenever you need to quickly refer to a web
page. Extend the background frame to host a TextEdit Tasker component
along with a WebView Tasker component for the web URL entry and
browser window, respectively. Create a button with a globe icon and
instruct Tasker to visit whatever URL is in the TextEdit component when
the globe icon button is selected.

Creating GUIs with Tasker is a breeze once you get used to the basic drawing
and task assignment procedures. We will build upon these skills in the next
project that will check the online status of several Internet-accessible servers
and display their up or down status in a Tasker screen.

10.2 Twitch.tv Widget

Before pursuing a full-time technology career more than fifteen years ago, I
was a magazine editor of both a computer and a videogaming magazine. Even
though I don’t have the time to dedicate to electronic gaming, I still enjoy both
watching and playing with skilled gamers (with my son being my favorite
gaming opponent and mentor). One streaming media service that taps into
this joy of sharing gaming strategies is Twitch.tv.1 The service was also chosen
by Microsoft to be a premier game broadcast provider for the Xbox One gaming
console, though Twitch.tv accepts game streams from all the major platforms,
including Sony’s PlayStation 3, PCs, and even Android and iOS devices. If
you haven’t seen Twitch.tv streams, head over to the site and take a look at
the various live channels broadcasting dozens of different games twenty-four
hours a day. Note that while creating a free account allows you to follow
favorite users on the service, it’s not mandatory that you have an account to
check on user status and watch broadcasts.

Twitch.tv released an Android client to log into and view its services (you can
obtain the free Twitch.tv application from the Play store2), but it’s not as fea-
ture-rich as its iOS counterpart. Besides lacking a built-in live chat client

1. http://twitch.tv
2. https://play.google.com/store/apps/details?id=tv.twitch.android.viewer

Chapter 10. Graphics Projects • 172

report erratum • discussV413HAV

http://twitch.tv
https://play.google.com/store/apps/details?id=tv.twitch.android.viewer
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand
Vaibhav
Typewritten Text
V413HAV

and having occasional bugs, Twitch.tv for Android lacks a key feature that
could make it stand out above any feature on other platforms. Specifically,
having a Twitch.tv widget that shows the current broadcast status of favorite
gaming broadcasters would be far more helpful than digging for that informa-
tion in the full application. Fortunately, using Tasker, JavaScript, the Twitch.tv
web API, and a widget-building toolkit called Zoom, we can create our own
Twitch.tv broadcast status widget.

Using JavaScript

Like the web service project in Section 9.2, Forecast.io, on page 151, the web
API for Twitch.tv returns JavaScript Object Notation (JSON)–formatted results.
And while we certainly could use the same Python-scripted SL4A approach
for this project that we used for the Forecast project, we’re going to use
Tasker’s built-in support for JavaScript instead. In addition to the features
available for Android’s browser-based JavaScript engine, Tasker has added
a number of JavaScript functions of its own to provide more extensive inter-
operability with Tasker’s capabilities.3

Tasker offers two options for working with JavaScript code. The first is similar
to SL4A by accessing, parsing, and interpreting an external script file. The
second more interesting option is embedding the script within a Tasker task.
Tasker calls this a JavaScriptlet, and that’s the approach we are going to take
with this project. While there’s no discernible performance improvement using
JavaScriptlets over external .js files, the benefit of packaging tasks into a
single dependency is to make it more manageable, since everything you need
is located in the same place within the same program. More importantly, the
JavaScript interpreter supported by Android includes a full JSON stack,
exactly what we will need to decode the results of the Twitch.tv web API call.

Constructing the Task

The task we’ll build for this project is straightforward. We will essentially
make an HTTP GET web request to Twitch.tv’s API, parse the JSON results
that are returned, format the data for rich-text output, and post the text to
a text area within a widget. We’ll also create a username variable that can be
easily modified and passed to the web request URL string. So let’s start with
that step and move forward.

Create a new task in Tasker and name it Twitch Channel. Create a new
variable called %CHANNEL by selecting Variable Set from the Variables Action

3. http://tasker.dinglisch.net/userguide/en/javascript.html

report erratum • discuss

Twitch.tv Widget • 173

V413HAV

http://tasker.dinglisch.net/userguide/en/javascript.html
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

category. In the NAME field, enter the variable name %CHANNEL. In the To field,
enter the username of a Twitch.tv user you enjoy following. For this example,
I am going to set the username to one of my favorite Twitch.tv broadcasters
known as Dan’s Gaming. Dan employs a clever green-screen effect on his
broadcasts that allows viewers to see him speak comments and see his reac-
tions to onscreen events. He is also a passionate gamer who makes clever,
often funny, and insightful comments about his entertaining gaming adven-
tures. His Twitch.tv username is dansgaming.

With the %CHANNEL variable assigned, our next step will be to create an HTTP
Get action from the Net action category. This is where we will call the Twitch.tv
API for user channel broadcast status and pass our %CHANNEL variable into
the URL request. For the Server:Port value, enter the URL https://api.twitch.tv/
kraken/streams/%CHANNEL. If you’re curious about learning what this and other
Twitch.tv web service URLs can provide, visit Twitch.tv’s GitHub page for
more details about the Twitch.tv web API.4

The default global variable that Tasker assigns to and stores the results of
an HTTP Get request is called HTTPD. This is the variable we will access in our
JavaScriptlet to retrieve channel details, such as the title of the stream being
broadcast as well as the number of people currently watching the stream.
Create a JavaScriptlet action from the Script action category. In the Code
field, enter the following JavaScript:

Graphics/twitch.js
var channelDetails = JSON.parse(global('HTTPD'));❶
var info = "";

try {
info = channelDetails['stream']['channel']['status'];❷
info += " (";❸
info += channelDetails['stream']['viewers'];
info += ")";

} catch(error) {❹
info = "" + global('CHANNEL') + " unavailable.";

}

setGlobal('TWITCHRESULT', info);❺

Let’s take a closer look at what this code does.

❶ We create a variable called channelDetails and run JavaScript’s JSON.Parse
function on the %HTTPD global variable that we created from the prior
Tasker HTTP Get action. We also initialize an empty string variable called

4. https://github.com/justintv/Twitch-API

Chapter 10. Graphics Projects • 174

report erratum • discussV413HAV

https://api.twitch.tv/kraken/streams/%CHANNEL
https://api.twitch.tv/kraken/streams/%CHANNEL
http://media.pragprog.com/titles/mrand/code/Graphics/twitch.js
https://github.com/justintv/Twitch-API
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

info that will be used to build the HTML-rich text string to be displayed in
our widget’s text area.

❷ Within a try/catch block, we begin by interrogating the JSON-parsed chan-
nelDetails object and query the value of the ['stream']['channel']['status'] channel
status. Then we assign the channel status results to our info string. We
will append more text to this info string later via the += operator.

❸ We continue to build the info string with HTML formatting (setting the
name of the channel in the color green), since we will place the results of
info into a text area that interprets and renders HTML markup. This will
give our final text string more presentation polish and help us visually
identify different details being displayed in the combined info string. We
also query the value of channelDetails again, this time requesting the number
of people watching the currently broadcasting stream via the
['stream']['viewers'] value. Then we conclude the info string with closing font
and bold tags.

❹ In the event that we encounter an error retrieving the channel status and
stream viewers values, we need to alert the widget with an error. The most
likely reason for this error is that the chosen username is not broadcasting
and therefore does not return any values for those two fields. The other
possibility is a problem connecting to the network to query the Twitch.tv
web API. Either way, the channel status is unavailable and we need to
report it as such. Wrapping the results in a red font color will help it stand
out even more.

❺ Lastly, regardless of whether the user is broadcasting, we need to place
the concatenated string of the info variable into a Tasker variable that we
can pass along to other Tasker-connected task assignments, such as the
contents of a text field within a custom widget.

The last step we need to do to complete the task is place the contents of the
compiled %TWITCHRESULT global variable into a text field on a custom widget.
But before we can do that, we need to create the custom widget user interface
and name the elements of the user interface. It is via these names that we
will be able to access and assign the user interface elements text properties.

But unlike the application launcher project, we can’t use scenes to create a
widget. That is because a widget is a fixture on the home screen, and widgets
can be embedded in selected areas of individual home-screen pages. Converse-
ly, a Tasker scene is an overlay that stays in a fixed location on the screen.
It doesn’t give you the option of embedding the user interface the way a widget

report erratum • discuss

Twitch.tv Widget • 175

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

does. Fortunately, the makers of Tasker addressed this limitation by creating
a free Android utility that solves this problem.

Zooming Along

Zoom, developed by Crafty Apps EU (the same people who created Tasker),
is a free widget construction utility available from the Google Play store.5 It
can be used to make widgets with buttons, images, text, and other graphics.
Better yet, each of these elements can be accessed and modified by Tasker
actions. So in the case of our Twitch.tv channel widget, we can create a user
interface in Zoom and assign the main text field the contents of the
%TWITCHRESULT variable.

Building a widget user interface using Zoom is similar to building Tasker
scenes, though Zoom does have a few quirks of its own. One of these annoy-
ances is how Zoom rarely renders a widget UI the way you designed it. Because
of various factors such as different Android hardware devices with different
screen dimensions, calibrations, and font metrics, it’s just one of those design
aspects that you will have to tweak to get the widget’s graphic and text ele-
ments to look just right.

Figure 109—Twitch Widget
Zoom template properties

Once Zoom has been installed from the Google
Play store, launch it and create a new widget
template by selecting the green plus arrow in the
lower-right corner. Name the template Twitch
Channel and assign it a cell width and height of
2 x 1. Zoom will warn you that the dimension
chosen won’t be able to create the widget with
those dimensions. However, because Zoom was
created prior to the changes made to the way
widgets can be displayed and resized on the fly
in Android 4.2 and newer, this warning is no
longer relevant. As for the other settings, you can
leave the default values in place, as shown in the
figure here.

Select the green check mark icon in the lower left
of the Template Properties screen to save the
changes. You will then be asked to name the
template. Name the template Twitch Channel.
Then you will be taken to the design screen. You

5. https://play.google.com/store/apps/details?id=net.dinglisch.android.zoom

Chapter 10. Graphics Projects • 176

report erratum • discussV413HAV

https://play.google.com/store/apps/details?id=net.dinglisch.android.zoom
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

can add various graphic items to the layout by long-touching the screen,
keeping the graphic items within the white margin of the widget. Doing so
will pop up the New Element Type dialog, where you can choose to add but-
tons, images, text elements, and more to the screen. For the Twitch widget,
we will need two text elements, one for the title and one for the body text of
the widget.

Create the first text element by long-pressing the design screen and selecting
Text from the New Element Type dialog. This will display the various properties
that can be set for the text element. Since this will be the element we will use
to show the title of our widget, call the element Broadcast Status. Set the
Text property to Broadcast Status as well. Text elements can be formatted
either as Standard Text or as HTML. HTML is useful when you want to alter
the various characters displayed in the text element with different font styles,
sizes, and colors. But since our title text is going to be consistently the same
color and size, we can keep the format in Standard Text. Then you can set
the Text Colour, Text Size, Text Scale Width, and Center attributes of the text.
You can set these attributes to whatever works for your screen size. For my
Galaxy Nexus, I chose the text size equal to 22 and the text scale width equal
to 0.75. For text color, either enter the HTML color code equivalent or select
the magnifying glass icon to choose the color from a color wheel and slider.
Lastly, the Click Action property represents the action that Zoom should take
when the text element is selected within the working widget. Select the mag-
nifying glass icon to display the Action Type dialog. Scroll down to find and
select the Tasker task. This will display the Task Selection dialog. Find the
Twitch Channel task we created earlier and select it. This way, we can man-
ually run the Twitch Channel task whenever we select the Broadcast Status
title text in the widget. When done, the Broadcast Status property screen
should look similar to Figure 110, Broadcast Text properties, on page 178.

Add a second text element as a container for the %TWITCHRESULT variable result
from running the Twitch Channel task. Set the Element Name and Text
property fields to Status. Because we want to render the HTML code in the
%TWITCHRESULT result, set the Format field to HTML. And like the Broadcast
Status text field, change the Text Colour, Size, and Scale Width to what best
suits your particular device. For my Galaxy Nexus, I set the text color to white
(#FFFFFFFF), size to 12, and scale width to 1.0. As for the Click Action setting,
select the magnifying glass icon and choose Launch App from the Action Type
dialog. Assuming you have already installed the Twitch.tv client for Android,
scroll down until you find and then select the Twitch program. Once set, your

report erratum • discuss

Twitch.tv Widget • 177

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Figure 111—Status text propertiesFigure 110—Broadcast Text properties

Status property screen should look similar to the one in Figure 111, Status
text properties.

Returning to the design screen, you may need to resize and/or reposition the
widget margin and the Broadcast Status and Status elements to appear cor-
rectly on your display. You can select the magnifying glass icon in the lower
left of the design screen to get a sense of the final display size and visual
representation of the layout. However, I have found that this can be mislead-
ing. Instead, you will more likely have to run the widget, switching back and

Chapter 10. Graphics Projects • 178

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

forth between the runtime version and the design screen to tweak the size
and position of the various graphic elements. For my Galaxy Nexus, I settled
on the design shown in Figure 112, Twitch Widget Zoom layout.

Figure 112—Twitch Widget
Zoom layout

When you are satisfied with the design layout,
save the changes by selecting the green check
mark icon in the lower-left corner of the screen.

But before we can place the new widget on our
home screen and use it, we need to add one more
action to our Twitch Channel task. This action
will be to tell Tasker which text element to place
the results of the %TWITCHRESULT variable into.

Open the Twitch Channel task in Tasker and add
the final action. With Zoom installed, you will
now see a new Zoom icon and category in the
Select Action Category dialog. Select the Zoom
category followed by the Zoom Text action. Select
the magnifying glass for the Element field. This
will pop up a list of Zoom text elements that we
created earlier. Choose the “Twitch Channel
/Status” element from the list. Then set the Text
field to our %TWITCHRESULT variable and save the
changes. Once completed, the final Twitch
Channel task should look like Figure 113, Com-
plete Twitch Channel Tasker task, on page 180.

Now that our Twitch Channel task knows where to send its results to be
displayed on the widget, we can create the widget by long-pressing the home
screen and selecting Widgets. Scroll down to select the Zoom widget. Then
choose the Zoom 2x1 option from the list. A pop-up dialog will ask you to
select the widget template you want to use. Select the Twitch Channel widget
template that we created.

Zoom will then display the Widget Properties dialog as a final design check
before placing the widget on the home screen.

But notice that Zoom appended an extra character to the Name property. I’m
not sure if this is a bug or a feature, but we need to change the Name field
back to the original name by removing whatever character Zoom added to
the field. If we don’t, the results of the Twitch Channel task won’t be able to
find our Twitch Channel/Status field. Once the Name property has been
corrected, select the green check mark in the lower-left corner to accept the

report erratum • discuss

Twitch.tv Widget • 179

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Figure 113—Complete Twitch Channel Tasker task

widget properties. Zoom will then display the design surface to allow you to
make any last-minute alterations. Select the green check mark to save the
changes and place the widget on your home screen.

Channel Surfing

Figure 114—Allowing Tasker
external program access

With the widget on the home screen, we can see
whether all our work has been wired up correctly.
Select the Broadcast Status text in the widget.
What happened? Tasker displayed a brief message
on the screen stating External Access Denied -
See Prefs/Misc/Allow External Access. That’s
because Tasker needs to be granted explicit per-
mission to access and control other programs on
your Android device, including access to Zoom’s
widget properties. To grant such permission to
Tasker, follow the message’s instructions by
selecting Preferences from Tasker’s main menu.
Then select the MISC tab and locate and check
the Allow External Access checkbox, as shown in
the figure here.

Now that Tasker has been granted external access
to programs like Zoom, return to the widget and
once again touch the Broadcast Status title text.
For example, if you set the %CHANNEL to dansgaming
and Dan is broadcasting at the moment, you

Chapter 10. Graphics Projects • 180

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

should see the title of Dan’s active Twitch broadcast and the number of people
currently watching his show.

Figure 115—The Custom Twitch.tv
Channel Status widget

If Dan isn’t currently broadcasting his show
or your Android device is not connected to
the Internet, the status text will state in red
text that his channel is unavailable. When
working, your widget may show something
similar to Figure 115, The Custom Twitch.tv
Channel Status widget.

If Dan is broadcasting his show, we can
conveniently launch the Twitch client by
selecting any part of the status text. (Of
course, if you haven’t created and/or signed in with a Twitch account already,
follow the onscreen prompts to do so. Once you are a registered Twitch.tv
member, you can follow other people on the service.)

Figure 116—The Twitch.tv Android
client

If Dan is broadcasting, you can scroll
through the channels until you find his
username and follow him. Once a username
is being followed, it will show up in the
Following section of the Twitch Android
application, as shown in Figure 116, The
Twitch.tv Android client.

When I tested my Zoom-based Twitch wid-
get for this book, Dan was broadcasting a
week-long twenty-four-hour-a-day adven-
ture-gaming marathon, featuring both live
and prerecorded content. So, when I
selected his channel from my Following list,
a stream of his gaming efforts was played
within the Twitch client.

The custom Twitch widget has made moni-
toring favorite channels so much easier and
interactive, and I rarely ever miss a chance
to see game players like Dan broadcast live
as a result. But even though the option to
manually run the Twitch Channel task by
touching the Broadcast Status text in the
widget is convenient, it would be even more

report erratum • discuss

Twitch.tv Widget • 181

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

convenient for Tasker to run the Twitch Channel task at regular intervals.
That way, our Twitch widget will work the way most Internet-dependent
widgets work on Android, such that it polls for information changes and
updates automatically. Let’s create a new Tasker profile that automatically
runs the Twitch Channel task at regular intervals.

Setting the Update Profile

Launch Tasker and navigate to the PROFILES tab. Create a new profile by
selecting the plus icon in the lower toolbar and call the profile Twitch Update.
We can choose to run the profile twenty-four hours a day, but because I know
I’ll be asleep during certain hours and I don’t want to unnecessarily run the
task, I set my Twitch Update profile to execute from 06:00 (6 a.m.) to 22:00
(10 p.m.). Then I set the profile to run every fifteen minutes. Upon saving the
changes, Tasker will ask you to assign a task to the profile. Select the Twitch
Channel task. Once configured, the Twitch Update profile should look like
the one shown in the following figure.

Figure 117—The Twitch Widget Update profile

Now your custom Twitch widget will automatically check every fifteen minutes
to see whether users like Dan are actively broadcasting and update the wid-
get’s status text accordingly. If you want to query a status update immediately,
simply select the Broadcast Status title text on the widget. Monitoring Twitch
user broadcast status has never been so easy!

Chapter 10. Graphics Projects • 182

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Enhancements

This window into the Twitch.tv web service provides a solid base to further
expand upon the possibilities of graphically displaying data from the Internet.
It also shows how you can build your own widgets based upon any JSON-
conforming web service. You can even combine Tasker scenes with Zoom
widgets to create some truly versatile Android programs. Here are a few ideas
to keep you Zoom’ing further along:

• Parse an array of usernames to check the broadcast status on more than
one user.

• Include additional details from the Twitch.tv JSON data, such as displaying
the user icon in the widget.

• Perform a character count on the info variable so you can concatenate the
string with ellipses before it exceeds the fixed text area you have defined
in your widget.

• Revisit the Forecast.io project and swap out SL4A script with a JavaScriptlet
to keep the entire project self-contained within Tasker.

10.3 Next Steps

This concludes our exploration with graphics projects and the book in general.
I hope you have enjoyed and learned much throughout this journey. With
the knowledge you have gained and the projects that have been completed,
you have the ability to quickly create nearly any custom interface or applica-
tion type that is possible in the standard Android operating system.

While we have done quite a bit with Tasker and SL4A, we have only scratched
the surface of what this powerful combination has to offer. Play with the
numerous other categories and actions that Tasker exposes. Assemble
workflows that do simple tasks and build upon them. If the need arises for
more advanced text processing or networking, call upon SL4A to manage that
part of the workflow. Depending on the language runtime you configure with
SL4A, there are likely thousands of code samples waiting for you on the Web
to review and incorporate into your programs.

As you become more comfortable with Tasker and SL4A and want to step up
to native Android application development, use the AIDE to codify the work-
flows you have refined over weeks of iterative testing and tweaking. While the
AIDE allows you to quickly change, recompile, and reinstall native Android
programs on the device, nothing beats the speed of Tasker and SL4A for on-
the-fly task editing and implementation.

report erratum • discuss

Next Steps • 183

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Visit the book’s online forum to keep the discussion going with me and other
Android personalization and automation enthusiasts. Share your experiences,
Tasker profiles, tasks, and ideas on what would be some awesome Android
workflows. Also take advantage of other communities and documentation on
the Web, listed in Appendix 2, Resources on the Web, on page 201. They helped
me with my own Android projects and will no doubt offer the same level of
service for you. Most of all, have fun. Unlike most other mobile operating
systems, Android encourages tinkering, tweaking, and out-of-the-box explo-
ration. It was this level of freedom and flexibility that drew me to the Android
platform in the first place, and it is bound to only get better with every
successive release.

Chapter 10. Graphics Projects • 184

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Part IV

Appendixes

V413HAV

APPENDIX 1

Android Programming Tools
One of the advantages that Android’s open, true-multitasking platform has
over mobile OS competitors such as Apple’s iOS is that you can run developer-
centric utilities such as AIDE on the device without jailbreaking or rooting
the phone or tablet. The open nature attracts tinkerers and developers who
want to bring the power of their desktop coding environment onto their post-
PC devices. Terminal editors like Nano and Vim can also be used on Android,
as well as source version control systems like Git and Subversion. Let’s start
with a review of some of the best code editors available on Android.

A1.1 Code Editors

Code editors ride waves of popularity depending on the code being written
and the target platform that the code will run on. During the early heydays
of Unix, Vi and Emacs ruled the roost. Then came GUI desktop environments
where rich graphic text editors became the norm. Now that a new platform
is emerging, code editors need to evolve to offer a best-in-breed code-authoring
experience. However, that will take time to develop as the new way to think
about writing code diffuses throughout the phone and tablet coding ecosystem.

Even though Android still has a way to go before its presentation layer
matches the rich and creamy user experience on iOS devices, Android benefits
from having an active and enthusiastic can-do coding community that often
offers up inexpensive or even free solutions to programming needs. Like air,
code editors are often taken for granted, but life without them becomes painful
rather quickly. Let’s take a look at some of the editors that many coders
running Android will have a hard time living without.

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

DroidEdit Pro

If there is one native code editing application that stands out among the rest
in the Android app market, it would have to be DroidEdit Pro.1 Created by
André Restivo, DroidEdit Pro offers the most comprehensive language syntax
highlighting and secure file copying combination code editor at the time of
this writing. The editor supports twenty-five languages, including Assembly,
C, C++, C#, Clojure and Scala to Delphi, Pascal and Perl, PHP, Python, and
Ruby. Files can be opened from and transferred to DroidEdit Pro via SFTP,
Dropbox, and local file system transports. Themes can be customized by
color and font size, and the app scales well between phone and tablet screen
sizes. An example of what DroidEdit Pro looks like running on an Android
phone is shown in the following figure.

Figure 118—The DroidEdit Pro
code editor

DroidEdit Pro is also cloud-friendly in that it
can be used to issue remote build commands
on the server receiving file transfers like
Ruby’s Capistrano project. For example, you
can create and save a sophisticated build
script on the file-receiving server that can be
triggered by DroidEdit Pro’s Add External
Command function. Upon completion of a file
transfer, the commands you define are execut-
ed on the remote server, and the results of
the execution can be displayed in a result
screen or in a new or existing document. You
can use it to compile C or Java programs and
run Ruby or Python scripts or even complex
Puppet server workflows.

André offers a free, ad-supported non-Pro
version that provides a taste of the full ver-
sion, but it’s not one I would advocate using
for the long haul. Besides its lack of remote
file transfer support, who wants annoying ads
popping in and out while you’re trying to
concentrate on writing code?

• Pros: Supports syntax highlighting for many languages, including C/C++,
CSS/HTML, Java, JavaScript, Perl, PHP, Python, Ruby, and fifteen others. It
can connect directly to Dropbox and OpenSSH/SFTP servers. DroidEdit Pro

1. https://play.google.com/store/apps/details?id=com.aor.droidedit.pro

Appendix 1. Android Programming Tools • 188

report erratum • discussV413HAV

https://play.google.com/store/apps/details?id=com.aor.droidedit.pro
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

The Best Post-PC Code Editor

With all its useful capabilities, DroidEdit Pro has yet to even come close to the
incredible Textastic (http://www.textasticapp.com) which is exclusively available on the iOS
platform. For anyone who has used programs like TextMate and Sublime Text 2 on
the desktop, Textastic at the time of this writing is the closest you will get to a full-
featured editor on any mobile platform. When I checked in with Alexander Blach,
Textastic’s creator, I never received a reply to my question of Textastic showing up
on the Android platform. That leads me to believe it’s likely not going to happen any
time soon, if ever. While that’s a letdown, this leaves a huge opportunity for an
enterprising Android developer to take advantage. DroidEdit Pro is a nice start, but
it has a long way to go before it comes close to presenting what Textastic has to offer
as the gold standard in mobile OS code editing.

can also remotely issue commands to the host server when files are trans-
ferred, such as build instructions, workflow direction, and such.

• Cons: Cannot extend the editor with plug-ins. You cannot define your own
behaviors or syntax highlighting based on file extension. It has harsh default
color schemes and an unattractive layout.

• Price: $1.91 US.

Terminal IDE

There is one Android Terminal program I consistently use above all others—Ter-
minal IDE.2 Created by hacker Spartucus Rex, the application’s GPLv2-licensed
source code and helpful, albeit minimal, documentation are freely available
for download from its Google Code project home page.3

In addition to providing a clean terminal interface to the rudimentary subset
of Linux command-line utilities on Android, Terminal IDE includes an Install
System button on its main screen that downloads and installs a vast array
of terminal applications. Secure shell, a minimal Java SDK, rsync, git, and
many more programs help round out the Terminal IDE experience. And all
of this command-line goodness is available for standard devices (no root
access required) running Android 2.3 or newer.

One of the neatest things to see Terminal IDE do is run a split-screen tmux
session on an Android tablet, as shown in Figure 119, Terminal IDE running
tmux and Vim, on page 190.

2. https://play.google.com/store/apps/details?id=com.spartacusrex.spartacuside
3. http://code.google.com/p/terminal-ide/

report erratum • discuss

Code Editors • 189

V413HAV

http://www.textasticapp.com
https://play.google.com/store/apps/details?id=com.spartacusrex.spartacuside
http://code.google.com/p/terminal-ide/
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Figure 119—Terminal IDE running tmux and Vim

Try doing that locally on a non-jailbroken iPad! By the way, for those unfamil-
iar with the joys of using tmux, check out Brian Hogan’s tmux: Productive
Mouse-Free Development [Hog12]. It’s an easy read that will make you vastly
more productive when operating within a terminal window.

Of course, the point of including Terminal IDE in the category of code editors
is because the system install includes one of my favorite terminal-based code
editors, Vim. (Incidentally, fellow Pragmatic Bookshelf author Drew Neil’s
Practical Vim: Edit Text at the Speed of Thought [Nei12] is an excellent book
to refer to if you’re learning Vim.) Terminal IDE’s version of Vim already has
a number of Vim extensions preconfigured for HTML and Java development.
Autocomplete, tag lookup, navigational key mapping, and more make you
immediately productive without having to start Vim with the usual bare-bones
minimum features. If you are a power Vim user with a favorite .vimrc file, just
copy it to the /data/data/com.spatacusrex.spartacuside/files path that serves as your
home directory, and Vim will behave exactly as you would expect.

You can even build Android .apk files using the Java kit installed by Terminal
IDE, though I still find working within AIDE, even with its less-than-Vim GUI-
based editor, easier thanks to the visual interface it provides. Still, it’s nice
to know that if you don’t want to spend the money for a fully operational AIDE

Appendix 1. Android Programming Tools • 190

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

license, Terminal IDE provides all the tools you need to replicate the compiled
native Android application outcome.

One last killer feature available as a result of Terminal IDE’s system install
is the inclusion of Telnet and SSH daemons that you can run on your Android.
Doing so allows you to SSH into your Android device from another computer
on your network, all without having to even root your phone or tablet to do
so. Wireless file copying and editing on the device is not only possible, it’s
downright cool.

Terminal IDE runs on both Android phones and tablets, but as you can
imagine, the small screen on the phone makes a multipaned terminal session
(pardon the pun) multipained. Unless you have the eyesight of a hawk and
the patience of a saint, editing anything more than a simple script file in
Terminal IDE on a phone is a hassle. But given the much more expansive
screen real estate on a tablet, Terminal IDE is an ideal utility to have at the
ready. The app also includes an onscreen keyboard replacement that can be
swapped out via the Language & input panel within the Android Settings
application. The keyboard adds much-needed terminal keys that are not
included with the standard Android onscreen keyboard, such as the Escape,
function, special character, and arrow keys. Considering all that is bundled
with Terminal IDE, it’s a shining example of the open source ideology on the
Android platform.

• Pros: Comprehensive terminal package with a slew of useful, preconfigured
command-line utilities. It does not require root-level access to install and
use. It includes useful onscreen keyboard replacement optimized to work
with terminal entry. It’s also free with source code available for download
and study.

• Cons: Some lesser used but useful command-line apps like Subversion
are not included. It has limited Java implementation. When using most
terminal applications, especially Vim and tmux, it requires a Bluetooth
keyboard to be useful and effective.

• Price: Free.

Emacs

For every Vi/Vim fan, there is an Emacs fan. Android coders are no exception,
which is why developer zielmicha ported GNU Emacs to the Android platform.4

The 1.33MB installer available in the Play Store requires an additional 22MB

4. https://play.google.com/store/apps/details?id=com.zielm.emacs

report erratum • discuss

Code Editors • 191

V413HAV

https://play.google.com/store/apps/details?id=com.zielm.emacs
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

download from the http://emacs.zielm.com website to run the included busyboxrc.sh.dl
bash shell script. This in turn downloads, decompresses, and installs the
terminfo.tar.lzma, etc.tar.lzma, lisp.tar.lzma, and emacs.bin.lzma library dependencies.
After everything is set up and running, the editor delivers all the power that
the desktop version of Emacs has to offer on mobile devices.

An editor like Emacs that was initially designed for a desktop-centric experi-
ence practically requires a Bluetooth keyboard (though you could also install
Klaus Weidner’s popular Hacker’s Keyboard onscreen keyboard replacement
if necessary5) and large tablet screen to work effectively on Android. Yet for
those with Emacs keystrokes embedded into their muscle memory, Emacs
for Android has arrived. See the following figure.

Figure 120—The full Emacs experience on Android

• Pros: Full Emacs implementation on Android. It is fully compatible with
desktop .emacs configuration files. And like most good open source projects,
the app is free with the GPL source code available for download.

• Cons: Large install with large memory footprint for just one application
(albeit a powerful one). It really requires an Android tablet and Bluetooth
keyboard to do anything useful with the editor. It might not run on all
Android devices.

• Price: Free.

5. https://play.google.com/store/apps/details?id=org.pocketworkstation.pckeyboard

Appendix 1. Android Programming Tools • 192

report erratum • discussV413HAV

http://emacs.zielm.com
https://play.google.com/store/apps/details?id=org.pocketworkstation.pckeyboard
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

TextWarrior

While not optimized as a code editor per se, TextWarrior by MyopicMobile is
a text editor that nevertheless has basic syntax support for several languages,
including C, C++, Objective-C, C#, Java, JavaScript, PHP, Python, and Ruby.6

It’s also a native Android application, with its own unique spin on the usual
Android user interface in order to better facilitate the text-editing experience
on a small touchscreen. Perhaps the best feature that TextWarrior has above
less industrial-strength editors is its ability to load large files, as shown in
the following figure.

Figure 121—Viewing a large debug file
using TextWarrior

TextWarrior also features a text clipboard
on a virtual shelf that slides in and out of
the screen, as well as the usual auto-
indent and word wrapping that is expected
with modern-day editors. Word and char-
acter count are also standard, as is its
unique ability to copy selected text
dragged onto a target area. All this, com-
bined with the free open source software
license, makes TextWarrior a text editor
worth installing.

• Pros: Handles large text files that
would crash other GUI-based Android
text editors. It has a drag-and-drop
text editing interface. It supports a
rudimentary set of markup and pro-
gramming languages, and it’s free.

• Cons: Does not syntax highlight HTML
or XML. It can have problems with
nonstandard Android onscreen key-
boards. The interface and cursor
operation take time to get used to.

• Price: Free.

A1.2 Source Version Control

I have worked with a number of open source and proprietary source version
control systems. When Subversion (SVN) arrived in the year 2000, it forced

6. https://play.google.com/store/apps/details?id=com.myopicmobile.textwarrior.android

report erratum • discuss

Source Version Control • 193

V413HAV

https://play.google.com/store/apps/details?id=com.myopicmobile.textwarrior.android
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

people to recalibrate how source control should work in a broadly defined
network. It also fixed a number of shortcomings and issues compared to
existing version control systems, one of the more popular being the original
Unix-centric Concurrent Versions System (CVS), at the time the most prevalent
source management system available.

However, SVN was eclipsed by Git, a distributed version control system
(DVCS). Git combines the best of what both CVS and SVN had to offer by
allowing developers to work and manage source code in an entirely distributed
and disconnected way. Unlike SVN, which requires online connectivity to the
central server when committing changes to the source code repository, Git
allows for local commits, branches, and merges to happen entirely on the
developer’s computer. The developer’s computer can also serve as the source
code client or server, and a network connection to a centralized source is
required only when developers need to “push” their changes to that location.
Let’s take a look at some of the source control options available on the Android
platform.

Git

Git is bundled in two products we have already evaluated: AIDE and Terminal
IDE. AIDE’s version of Git is unlocked when the AIDE Premium key is pur-
chased. Terminal IDE is included for free as part of the system installation
option. Both offer full Git pull/merge/commit/push functionality that you
can perform from desktop versions of the source control utility. However,
neither offers a graphical interface showing diffs across commits. For that,
Android developer Roberto Tyler has created a read-only paid Git client called
Agit.7 When this application is combined with either AIDE’s or Terminal IDE’s
version of Git, you will have the full Git desktop experience on your Android
device, as shown in Figure 122, Running Git via Terminal IDE, on page 195.

If you’re already an experienced Git user, the Terminal IDE version works
exactly as you would expect. In addition to managing code, you could use
this onboard version management system for more than just code. Combine
it with Vim’s Git extensions (vim-fugitive is awesome,8 though git.vim will do
the job as well9), and you can version manage just about anything you create.
You could host your own internal Git server to sync and back up all your
work, or you can rely on external providers such as GitHub to manage the
backend for you.

7. https://play.google.com/store/apps/details?id=com.madgag.agit
8. https://github.com/tpope/vim-fugitive
9. https://github.com/motemen/git-vim

Appendix 1. Android Programming Tools • 194

report erratum • discussV413HAV

https://play.google.com/store/apps/details?id=com.madgag.agit
https://github.com/tpope/vim-fugitive
https://github.com/motemen/git-vim
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Figure 122—Running Git via Terminal IDE

report erratum • discuss

Source Version Control • 195

V413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

If you’re not already familiar with Git and would like to learn how to use it
and quickly understand why it has taken the developer world by storm, check
out Travis Swicegood’s book Pragmatic Guide to Git [Swi10], published by
Pragmatic Bookshelf.

• Pros: Free. It has exceptional DCVS.

• Cons: No GUI-friendly read-write Git client exists yet on Android, although
developer Roberto Tyler aspires that his Agit client will achieve this status
one day, eventually. However, I have been waiting for nearly a year to see
this much-needed functionality added, so I have low expectations that
Agit will receive such an upgrade any time soon.

• Price: Free.

Mercurial

Figure 123—Mercury for Android

Even though Mercurial never really gained
the kind of sizable following that Subversion
and Git achieved, it is an excellent DVCS still
in use. It is especially popular among die-hard
Python coders. Android developer Spencer
Elliot created one of the first of the few Mercu-
rial clients available as a free download from
the Google Play store. Mercury,10 shown in
the figure here, is a well-intentioned Mercurial
client that works from a rudimentary level but
falls short on execution. Given that the
application hasn’t been updated in more than
two years, it may eventually dissipate into the
ether along with Mercurial.

• Pros: One of the only Mercurial-compatible
clients available on Google Play. It can
import Mercurial repositories from popular
public Mercurial repositories such as Google
Code, Bitbucket, and CodePlex. It’s free.

• Cons: Read-only client with bare-bones beta
interface. It does not support secure repositories, and it’s yet another appli-
cation that unnecessarily requires it automatically start at boot time.

• Price: Free.

10. https://play.google.com/store/apps/details?id=ca.spencerelliott.mercury

Appendix 1. Android Programming Tools • 196

report erratum • discussV413HAV

https://play.google.com/store/apps/details?id=ca.spencerelliott.mercury
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Subversion

Even though these days Subversion has taken a backseat to Git, there is still
a mountain of legacy projects and workflow systems built around SVN that
will be in place for a long time to come. And now that the Apache Project
manages the Subversion codebase, its pedigree has been solidified into the
pantheon of great (for its time) software upon which even better software (like
Git) can rest upon its giant shoulders.

While several Subversion clients are available for Android, I prefer the paid
OASVN PRO.11 OASVN delivers the full Subversion experience in a native
Android GUI application. While I do wish Terminal IDE had an SVN installation
option, OASVN is a working alternative. However, OASVN does not have the
most attractive interface, as you can see in the following figure.

Figure 124—Open Android SVN PRO (OASVN)

It is also slow compared to the desktop version of Subversion. Even small,
single-character changes can take minutes (or longer, depending on the
number of source files being managed) to synchronize with an SVN server.
But it’s one of the only Subversion clients available in the Google Play store
that offers full read-write checkout, updates, commits, and reverts. OASVN
also supports file conflict resolution as well as local and remote file repository
browsing. Until an Android terminal-based Subversion client is available,
OASVN PRO is the best option Subversion users have to date on the Android
platform.

11. https://play.google.com/store/apps/details?id=com.valleytg.oasvn.android

report erratum • discuss

Source Version Control • 197

V413HAV

https://play.google.com/store/apps/details?id=com.valleytg.oasvn.android
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

To learn more about Subversion, read Mike Mason’s book titled Pragmatic
Version Control Using Subversion [Mas06], also published by Pragmatic
Bookshelf.

• Pros: Stable and actively maintained. The Pro version supports full SVN
updates and commits.

• Cons: Kludgey interface. It’s slow. There is no GUI-based diff visualization.

• Price: Free.

A1.3 Miscellaneous Tools

Given how developer- and hacker-friendly the Android OS is, it should come
as no surprise that a vast array of free and paid developer-centric utilities
are available for the platform. Here are just a few of the gems I have discovered
in my own Android application explorations.

AndroZip File Manager12 is a feature-complete file archiver application for
Android that supports a variety of compressed file types, including GZIP,
RAR, TAR, and ZIP. This program really comes in handy when zipping up a
project to send as an email file attachment or post for download from a website
link.

PHP developers will appreciate the free LAMP-like stack for Android by DK
Labs called KSWEB.13 Not only will you be able to write your PHP code using
the text editors discussed earlier, but with KSWEB, you will also be able to
locally test and debug your PHP code. You can even have others view the
results of your work by visiting your Android’s IP address and project URL
with a web browser.

Need to move files on and off your Android device via standard FTP? FTP
Server,14 a fork from the original (but now dead) SwiFTP FTP Server, delivers
a basic and intuitive FTP server on Android.

Nic Raboy’s SQLTool Pro Database Editor is an inexpensive app that can be
used to directly connect to and edit MySQL, Oracle PostgreSQL, and SQL
Server databases.15 Query results can be exported to CSV. It works best on
tablets.

12. https://play.google.com/store/apps/details?id=com.agilesoftresource
13. https://play.google.com/store/apps/details?id=ru.kslabs.ksweb
14. https://play.google.com/store/apps/details?id=be.ppareit.swiftp
15. https://play.google.com/store/apps/details?id=com.nraboy.sqltool

Appendix 1. Android Programming Tools • 198

report erratum • discussV413HAV

https://play.google.com/store/apps/details?id=com.agilesoftresource
https://play.google.com/store/apps/details?id=ru.kslabs.ksweb
https://play.google.com/store/apps/details?id=be.ppareit.swiftp
https://play.google.com/store/apps/details?id=com.nraboy.sqltool
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

If you’re a developer who prefers using the Git and Mercurial-supported Bit-
bucket DVCS service,16 Saibotd’s free and open sourced application called
Bitbeaker offers a clean, Android-friendly interface to this GitHub competitor.17

For those looking to reminisce with ancient DOS-based coding tools and
utilities like Turbo Pascal and VisiCalc,18 check out AnDOSBox,19 one of the
better DOS emulators available on Android.

Hundreds of other excellent code-centric utilities are available for download
from the Google Play store. Google has made searching for applications a
breeze via the Play Store Android app or the Play Store website.20 You will
likely find what you are looking for.

16. http://www.bitbucket.org
17. https://play.google.com/store/apps/details?id=ca.spencerelliott.mercury
18. http://edn.embarcadero.com/article/20803 and http://www.bricklin.com/history/vcexecutable.htm, respec-

tively.
19. https://play.google.com/store/apps/details?id=com.locnet.dosbox
20. https://play.google.com/store/apps

report erratum • discuss

Miscellaneous Tools • 199

V413HAV

http://www.bitbucket.org
https://play.google.com/store/apps/details?id=ca.spencerelliott.mercury
http://edn.embarcadero.com/article/20803
http://www.bricklin.com/history/vcexecutable.htm
https://play.google.com/store/apps/details?id=com.locnet.dosbox
https://play.google.com/store/apps
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

APPENDIX 2

Resources on the Web
Here is a list of helpful links to articles, forums, and other information avail-
able on the Internet to further your learning of Android automation, customiza-
tion, and programming:

• Android AIDE on Google+ is the community forum where the developers
of AIDE interact with users, post links to the latest AIDE-related articles,
and offer insights on how to get the most out of programming Android
with the AIDE.1

• Android Scripting Tutorials is a listing maintained on the SL4A Google
Code–hosted website that features links to dozens of articles and projects
highlighting SL4A in action.2

• Pocketables Tasker Articles is a variety of Tasker-related articles ranging
from a detailed walk-through of the product to a series of how-to articles
to implement or gain additional inspiration for your own projects.3

• Reddit Tasker Forum is a popular location on the Web where both amateur
and experienced Tasker users go to ask questions, post helpful and unique
Tasker applications, and engage with fellow fans of the program.4

• Stack Overflow SL4A Tagged Questions offers a developer-to-developer
ranked question and answer forum for people seeking assistance with
SL4A-hosted scripts.5

1. https://plus.google.com/101304250883271700981/posts
2. http://code.google.com/p/android-scripting/wiki/Tutorials
3. http://www.pocketables.com/2013/03/overview-of-pocketables-tasker-articles.html
4. http://www.reddit.com/r/Tasker
5. http://stackoverflow.com/questions/tagged/sl4a

report erratum • discussV413HAV

https://plus.google.com/101304250883271700981/posts
http://code.google.com/p/android-scripting/wiki/Tutorials
http://www.pocketables.com/2013/03/overview-of-pocketables-tasker-articles.html
http://www.reddit.com/r/Tasker
http://stackoverflow.com/questions/tagged/sl4a
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

• Tasker Wiki is a comprehensive resource guide for Tasker that features
links to the Tasker online user guide, along with a number of custom
Tasker profile, scene, and task walk-throughs and links to third-party
Tasker plug-ins and supported tools.6

6. http://tasker.wikidot.com

Appendix 2. Resources on the Web • 202

report erratum • discussV413HAV

http://tasker.wikidot.com
http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Bibliography
[Bur10] Ed Burnette. Hello, Android: Introducing Google’s Mobile Development

Platform. The Pragmatic Bookshelf, Raleigh, NC and Dallas, TX, Third
Edition, 2010.

[CGMW13] Jennifer Campbell, Paul Gries, Jason Montojo, and Greg Wilson. Practical
Programming: An Introduction to Computer Science Using Python 3. The
Pragmatic Bookshelf, Raleigh, NC and Dallas, TX, Second Edition, 2013.

[Fri97] Jeffrey E. F. Friedl. Mastering Regular Expressions. O’Reilly & Associates,
Inc., Sebastopol, CA, 1997.

[Hog12] Brian P. Hogan. tmux: Productive Mouse-Free Development. The Pragmatic
Bookshelf, Raleigh, NC and Dallas, TX, 2012.

[Mas06] Mike Mason. Pragmatic Version Control Using Subversion. The Pragmatic
Bookshelf, Raleigh, NC and Dallas, TX, 2006.

[Nei12] Drew Neil. Practical Vim: Edit Text at the Speed of Thought. The Pragmatic
Bookshelf, Raleigh, NC and Dallas, TX, 2012.

[Nö09] Staffan Nöteberg. Pomodoro Technique Illustrated: The Easy Way to Do More
in Less Time. The Pragmatic Bookshelf, Raleigh, NC and Dallas, TX, 2009.

[Pin09] Chris Pine. Learn to Program. The Pragmatic Bookshelf, Raleigh, NC and
Dallas, TX, Second Edition, 2009.

[Ril12] Mike Riley. Programming Your Home. The Pragmatic Bookshelf, Raleigh,
NC and Dallas, TX, 2012.

[Sau12] Daniel Sauter. Rapid Android Development: Build Rich, Sensor-Based
Applications with Processing. The Pragmatic Bookshelf, Raleigh, NC and
Dallas, TX, 2012.

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand
Vaibhav
Typewritten Text
V413HAV

[Swi10] Travis Swicegood. Pragmatic Guide to Git. The Pragmatic Bookshelf, Raleigh,
NC and Dallas, TX, 2010.

[TFH13] David Thomas, Chad Fowler, and Andrew Hunt. Programming Ruby 1.9 &
2.0: The Pragmatic Programmer’s Guide. The Pragmatic Bookshelf, Raleigh,
NC and Dallas, TX, Fourth Edition, 2013.

Bibliography • 204

report erratum • discussV413HAV

http://pragprog.com/titles/mrand/errata/add
http://forums.pragprog.com/forums/mrand

Index
SYMBOLS
% (percent sign), preceding

Tasker variables, 45

DIGITS
3G radio, disabling, 100–101

A
accessibility settings, 146

ACTION_BATTERY_CHANGED intent,
83

actions, for tasks
Hide Scene action, 167
JavaScriptlet action, 174
Notify action, 156, 159
Perform Task action,

123, 167
Run SL4A Script action,

69, 134, 140, 155
Say action, 44–46, 49,

146
Show Scene action, 168
Variable Set action, 46,

102–103, 105, 155
Variable Split action, 47,

156
Wait action, 155
Zoom Text action, 179

ADW Theme MacOS, 24–25

ADWLauncher EX, 11

Agit, Git client, 194

AIDE (Android Java IDE), 76–
84

creating apps, 77–78
downloading and in-

stalling, 77
Git included in, 194
libraries for, 76, 83
online resources for, 201

running apps, 84
Talking Clock application

using, 77–84
templates for, 77

AirCalc floater, 20

airplaine mode, turning on or
off, 101

AirTerm floater, 20

alarms
based on GPS location,

53–57
setting with spoken com-

mands, 30

AnDOSBox tool, 199

Android AIDE on Google+,
201

Android APIs, 76, 83

Android device, see device

Android Java IDE, see AIDE

Android OS
advantages of develop-

ment with, xii
history of, xi
jailbreaking, xiv–xv
rooting, xiv–xv
version requirements for,

xiii

Android Scripting Environ-
ment (ASE), see SL4A

Android Scripting Tutorials,
201

Android Voice Xtreme applica-
tion, 32–33

AndroZip File Manager, 198

Apex Launcher Pro, 11

.apk file extension, 57

Application Launcher toolbar,
165–172

gesture assigned to, 169–
171

scenes for, 165–168
task for, 168–169

applications
assigning to headset but-

tons, 86–87
creating from Ruby

scripts, 67
creating from Tasker, 57–

60
creating from scripts, 73
effort involved in, analyz-

ing, 8
floaters, 9, 19–22
installing, security set-

tings for, 79
launchers, 9–14
launching with headset

buttons, 35
launching with spoken

commands, 30
programming with AIDE,

76–84
size of, 84–85
types of, 9
use of, analyzing, 5
widgets, 9, 14–19

ASE (Android Scripting Envi-
ronment), see SL4A

audio, see media players;
speech-to-text translation;
TTS technology

audio clips for widget sound
effects, 99

automating tasks, see Tasker
automation tool

V413HAV

Automator application, OS X,
42

AutoNotification Tasker plug-
in, 158–163

AutoRemote Tasker plug-in,
159

B
backups, automating, 7

battery status, programming
with AIDE, 83

Battery Status task, 49–50

BatteryManager intent, 83

Bitbreaker tool, 199

Bluetooth keyboard for An-
droid, xiii, 81

browsers
Overskreen floater, 21
spoken commands for, 30

button controls, headset, 33–
37

configuring, 35
long button press restric-

tions, 34
operating, 36–37
soldering more buttons,

38

buttons, in Tasker scenes,
166–168

C
calculators, AirCalc floater,

20

Calendar widget, 17

calendars
adding events with spo-

ken commands, 30
spoken events from, 32

Case Logic TBC-412, 28

cellular data, disabling, 100–
101

Check Email widget, 19, 115–
126

assigning to headset but-
ton, 125

checking for WiFi in, 122
mail server compatibility

for, 116–118
Python script for, 115–

116, 118–121
task for, 121–124
testing, 121, 123
time and resources used

by, 122–123
widget for, creating from

task, 124

clipboard, reading into Tasker
variable, 154–155

clocks
alarms based on GPS lo-

cation, 53–57
controlling with headset

buttons, 37
lock-screen widget for, 16
spoken commands for, 30
spoken time notifications,

43–53

clothing, gadget-friendly, 29

code editors, 187–193

command line applications
AirTerm floater, 20
Terminal IDE, 189–191

contact information for this
book, xvi

countdown timer, 18, 93, see
also Pomodoro widget

CountDownTimer() function, 84

cron jobs, scheduling, 70–71

D
Dalvik virtual machine, 63

Dark Sky program, 151

DashClock widget, 16

Data Usage app, 5

database editors, SQLTool Pro
Database Editor, 198

device
accessibility settings for,

146
clipboard, reading into

Tasker variable, 154–
155

keeping awake while
running applications,
97

mobile lifestyle using, 3–
7

programming on, 75, 78
radios on, disabling, 100–

101

Dias, João, developer
AutoNotification Tasker

plug-in, 159
AutoRemote Tasker plug-

in, 159

DICE Player floater, 21

DoggCatcher Podcast Player,
6

DOS emulators, 199

DroidEdit Pro code editor,
188–189

E
.egg file extension, 65

Elliot, Spencer (developer,
Mercury), 196

Emacs code editor, 191–192

email, spoken
Android Voice Xtreme,

32–33
Check Email widget, 19,

115–126

events, see calendars

Extensible Messaging and
Presence Protocol,
see XMPP

F
Fabric library, Python, 129

Fehling, Ken (developer,
TaskBomb), 70

fetch() function, 120

file managers, AndroZip File
Manager, 198

finish() function, 84

flashlights, Smart Tools
Flashlist widget, 18

floaters, 9, 19–22

For loop, Python, 120

Forecast.io web service, 151
Python wrapper for, 152

from keyword, Python, 152

FTP Server, 198

G
GAE (Google App Engine), 88

GCM (Google Cloud Messag-
ing), 88

geographical location,
see GPS

gestures, assigning to tasks,
169–171

Gilovitz, Ze’ev (developer
Forecast.io Python wrap-
per), 152

Git source version control,
194–196

Gmail IMAP settings, 117

GO Launcher EX, 11

GO Launcher EX Windows
Phone 7, 22–24

Google App Engine (GAE), 88

Google Cloud Messaging
(GCM), 88

Google Now, 30–31, 34

Index • 206

V413HAV

Google Translate API, 88

GPS
alarms based on location,

53–57
capturing location to

send in message, 140
turning radio on or off,

101
weather forecasts based

on location, 151–158

graphics
Application Launcher

toolbar using, 165–172
Twitch.tv widget using,

172–183

H
Hacker’s Keyboard, 192

hardware requirements, xiii–
xiv

headset
button controls for, 18,

33–37
features and attachment

methods, 28–29
role in wearable comput-

ing, 27

Headset Button Controller
widget, 18, 34–37

assigning apps to, 86–87
assigning scripts to, 135
assigning tasks to, 125
configuring, 35
device compatibility with,

86
operating, 36–37

Hide Scene action, 167

home-screen shells,
see launchers

HTC Sense launcher, 10

HTTPD variable, 174

I
images, see graphics; photos

IMAP (Internet Message Ac-
cess Protocol), 116–118

IMAP UNSEEN command,
120

Instructables.com website, 38

Internet Message Access Pro-
tocol (IMAP), 116–118

J
Jabber Tracker task, 136–143

capturing location, 140
frequency of, 141

Python script for, 136–
139

task for, 140–141
testing, 141–142

jailbreaking, xiv–xv

Java, AIDE using, 76

java.util.Date() function, 83

JavaScript, Tasker support
for, 173–176

JavaScriptlet action, 174

JavaScriptlets, 173–174

JSON data
from Forecast.io, 152
from Twitch.tv, 173

K
keyboard

Bluetooth, xiii, 81
on-screen, 192

KML (Keyhole Markup Lan-
guage), 143

Kober, Christoph (developer,
Headset Button Controller),
18, 34

Kravchencko, Alex (developer,
Smart AudioBook Player),
37

KSWEB tool, 198

L
launchers, 9–14

list of, 11–13
security issues with, 13
themes for, applying, 22–

24

libraries
Android APIs, 76, 83
Python, 116, 118, 127–

129, 136

location, geographical,
see GPS

lock-screen widgets, 15–17

Logitech Tablet Keyboard for
Win8/RT and Android, xiii

M
Mac desktop wallpaper, 24

Mac OS X desktop, emulat-
ing, 24–25

maps, spoken directions
from, 30

MBFG (My Boyfriend is a
Geek), floaters by, 20–21

media players
controlling with headset

buttons, 37
DICE Player floater, 21
SL4A scripts stopping,

124
spoken commands for, 30
Stick it! floater, 21

Mercurial source version
control, 196

Mercury source version con-
trol, 196

mobile lifestyle
analyzing, 3–6
needs for, determining,

6–7

Moon Phase Pro widget, 17

My Boyfriend is a Geek
(MBFG), floaters by, 20–21

N
NFC (Near Field Communica-

tion), 89

notifications
disabling, 100–101, 150
filtering, 148–150
talking, 145–151
of weather forecasts,

151–158
word wrap limitations for,

158, 161–162

Notify action, 156, 159

Nova Launcher Prime, 12, 22–
25, 169–171

Nurik, Roman (developer,
DashClock widget), 16

O
OASVN PRO, Subversion

client, 197

OAuth credentials for Twitter,
129–131

onFinish() event handler, 83

onInit() event handler, 83

onTick() event handler, 83

OnInitListener interface, 83

online resources, xvi, 187–
202

AIDE, 76, 201
Android SDK, 76
Bitbreaker tool, 199
browsers, 21
button soldering tech-

nique, 38
calculators, 20
Calendar Provider, 88

Index • 207

V413HAV

code editors, 187–193
command line applica-

tions, 20
cron job scheduler, 70
database editor, 198
DOS emulators, 199
file manager, 198
file transfer programs,

100
floaters, 20–21
FTP Server, 198
gadget-friendly clothing,

29
GAE, 88
GCM, 88
Google Translate API, 88
Headset Button Con-

troller widget, 18
KML, 143
launchers, 10
lock-screen widgets, 16
media players, 21, 37
Moon Phase Pro widget,

17
NFC, 89
onscreen keyboard, 192
OS X emulators, 24
PHP development, 198
podcast applications, 6
Pomodoro Technique, 93
Python libraries, 65,

129, 136
Ruboto framework, 67
SL4A scripting, 201
SL4A scripting languages,

72–73
source version control

systems, 193–198
SVOX text-to-speech

synthesis, 27
Tasker App Factory, 57,

60
Tasker automation tool,

41, 62, 201–202
Tasker icon sets, 106
Tasker JavaScript func-

tions, 173
Tasker plug-ins, 159
Tasker variables, 45
text-to-speech applica-

tions, 31–33
Textastic code editor, 189
TTS, 145
Twitch.tv service, 172
Twitter Developers apps,

129
weather forecasts, 151,

161
web microframeworks, 74

WiFi Direct, 88
Windows Phone emula-

tors, 22
Zoom utility, 176

Overskreen floater, 21

P
pattern matching, see regular

expressions

percent sign (%), preceding
Tasker variables, 45

Perform Task action, 123, 167

permissions
DashClock widget requir-

ing, 17
launchers requiring, 13
Tasker tasks requiring,

58, 60, 180

phone calls, see voice calls

photos, automatically editing
and posting, 7

PHP development tools,
KSWEB tool, 198

Pocketables Tasker Articles,
201

podcast applications, 6

Pomodoro Technique, 93

Pomodoro widget, 18, 93–112
assigning tasks to widget,

96
audio clips for, 99
disabling radios during,

100–101
features of, 93, 98
icon for, 95, 106
keeping device awake

during, 97
limitations of, 111–112
profile for, 104–105
prototyping, 93–98
task for decrementing

and ending timer, 95,
102–107

task for starting timer,
99–102, 105–106, 109

testing, 96–97, 107–111

Processing language, 73

profiles, for tasks, 43, 50–52,
55–56, 147

programming skill require-
ments, 7

programming tools, 187–199,
see also AIDE; SL4A

prototypes, 8, 93–98

PyCrypto library, Python, 129

Python interpreter for SL4A,
64–66, 116

Check Email widget us-
ing, 115–116, 118–121

fetch() function, 120
For loop, 120
from keyword, 152
Jabber Tracker task us-

ing, 136–139
libraries for, 116, 118,

127–129, 136
regular expressions, 119–

120
Speak ’n’ Tweet widget

using, 126–134
split() block, 120
Talking Clock application

using, 68–69
Tasker variables passed

to, 136
try-except block, 119
ttsSpeak() function, 120
weather notification us-

ing, 151–154
widget for, 18

R
Raboy, Nic (developer, SQL-

Tool Pro Database Editor,
198

radios, disabling, 100–101

recognizeSpeech() function, 132

Reddit Tasker Forum, 201

regular expressions
in Python, 119–120
in Tasker, 148–150

Restivo, André (developer,
DroidEdit Pro, 188

Rex, Spartucus (developer,
Terminal IDE), 189

rooting, xiv–xv

RSS news feeds, converting
to speech, 7

Ruboto framework, 67

Ruby interpreter for SL4A,
66, 69

Run SL4A Script action, 69,
134, 140, 155

Running Applications app, 5

S
Samsung TouchWiz launcher,

10

Say action, 44–46, 49, 146

scenes, in Tasker, 165–168

Index • 208

V413HAV

scheduling SL4A scripts, 69–
71

ScottEVest clothing, 29

Scripting Layer for Android,
see SL4A

scripting, effort involved in, 8

security
installation of pro-

grammed apps, allow-
ing, 79

permissions required by
DashClock widget, 17

permissions required by
Tasker tasks, 58, 60,
180

permissions required by
launchers, 13

Sense launcher, HTC, 10

Show Scene action, 168

SimpleDateFormat class, 83

SL4A (Scripting Layer for An-
droid), 18, 63–72, see al-
so Python interpreter for
SL4A

Check Email widget us-
ing, 115–116, 118–121

downloading and in-
stalling, 64

Jabber Tracker task us-
ing, 136–139

languages hosted by, 64,
72–73

media players stopped
by, 124

online resources for, 201
Ruby interpreter for, 66,

69
scheduling scripts, 69–71
shortcuts for, compared

to task widgets, 126
Speak ’n’ Tweet widget

using, 126–134
Talking Clock application

using, 68–69
Tasker variables passed

to, 136
weather notification us-

ing, 151–154

SL4A editor, 66

SL4A Script Launcher, for
TaskBomb, 70

Smart AudioBook Player appli-
cation, 37

Smart Tools Flashlight wid-
get, 18

smartphone cases, 28

SMS, see text messages

software requirements, xiii–
xiv

software tools, xvi

sound, see media players;
speech-to-text translation;
TTS technology

sound effects, audio clips for,
99

source version control sys-
tems, 193–198

Speak ’n’ Tweet widget, 126–
135

assigning to headset but-
ton, 135

Python script for, 126–
134

task for, 134–135
widget for, creating from

task, 134

speech-to-text translation,
30–31

split() function, 120

SQLTool Pro Database Editor,
198

Stack Overflow SL4A Tagged
Questions, 201

Stick it! floater, 21

SVN (Subversion) source ver-
sion control, 193, 197–198

SVOX text-to-speech synthe-
sis, 27

T
Talking Calendar application,

32

Talking Clock application
assigning to headset but-

ton press event, 86–87
programming with AIDE,

77–84
Python script for, 68–69
Ruby script for, 69
task for, 43–53

Talking SMS and Caller ID
application, 31

TaskBomb application, 70–71

Tasker App Factory, 57–60

Tasker automation tool, 41–
43

actions for tasks, 44–46
Application Launcher

toolbar using, 165–172
apps, creating from

tasks, 57–60

AutoNotification plug-in,
158–163

AutoRemote plug-in, 159
backing up and restoring

scripts, 52
Battery Status task us-

ing, 49–50
buttons for scenes, 166–

168
Check Email widget us-

ing, 121–124
configuring, 42–43
gestures, assigning to

tasks, 169–171
icon sets for, 106
installing, 42
Jabber Tracker task us-

ing, 140–141
JavaScript functions for,

173–176
online resources for, 201–

202
passing variables to

scripts, 136
permissions required for

tasks, 58, 60, 180
plug-ins for, installing,

159–160
polling frequency for, 42
profiles for, 43, 50–52,

55–56, 104–105, 147
prototyping with, 93–98
reading clipboard con-

tents, 154–155
regular expressions in,

148–150
running SL4A scripts

from, 69, 122, 154–157
scenes, creating, 165–168
Speak ’n’ Tweet widget

using, 134–135
Talking Clock application

using, 43–53
tasks for, creating, 43–

46, 53–54, 95, 99–107,
146

testing scripts, 96–97
text-to-speech notifica-

tions using, 145–151
Train Station Alarm task

using, 53–57
triggers for tasks, 42, 50–

52, 55–56
Twitch.tv widget using,

172–183
variables in, 45–49
weather notification us-

ing, 154–157

Index • 209

V413HAV

widgets, compared to
SL4A script shortcuts,
126

widgets, creating from
tasks, 94, 96, 107,
124, 134, 176–180

Zoom utility for, 176–180

Tasker Wiki, 202

terminal emulators, see com-
mand line applications

Terminal IDE code editor,
189–191, 194

text messages
parsing and reacting to,

7
spoken, 31–33

text-to-speech technology,
see TTS technology

Textastic code editor, 189

TextWarrior code editor, 193

3G radio, disabling, 100–101

time.sleep() function, 132

timer, 18, 93, see also Po-
modoro widget

TouchWiz launcher, Sam-
sung, 10

Train Station Alarm task, 53–
57

triggers, for tasks, 42, 50–52,
55–56

try-except block, Python, 119

TTS (text-to-speech) technolo-
gy, 27

accessibility settings for,
146

Android Voice Xtreme
application, 32–33

APIs for, 83
configuring, 29–30
Headset Button Con-

troller widget, 33–37
Talking Calendar applica-

tion, 32
Talking Clock applica-

tion, 43–53
talking notifications,

145–151
Talking SMS and Caller

ID application, 31
Voice Notify program, 145

ttsSpeak() function, 120, 132

Tweepy library, Python, 127–
129

Twitch.tv web API, 173–174

Twitch.tv widget, 172–183
JavaScript for, 173–176
JSON data from, 173
permissions required by,

180
task for, 173–176
testing, 180–182
update profile for, 182
Zoom utility for widget

creation, 176–180

Twitter
OAuth credentials for,

129–131
Python libraries for, 127–

129
Speak ’n’ Tweet widget,

126–135

Tyler, Roberto (developer, Ag-
it), 194

U
Udell Enterprises (developer,

Moon Phase Pro widget), 17

Unknown sources security
setting, 79

UNSEEN command, IMAP,
120

V
Variable Set action, 46, 102–

103, 105, 155

Variable Split action, 47, 156

variables
passing from Tasker to

scripts, 136
in Tasker, 45–49

version control systems,
see source version control
systems

Vim code editor, 190, 194

VM (virtual machine), 63

voice calls
handling based on caller

ID, 7
making with spoken

commands, 30
spoken notification of,

31–33

Voice Notify program, 145

voice recognition, 27, 30–31,
see also speech-to-text
translation

W
Wait action, 155

Wake-On-LAN (WOL) packets,
7

wallpaper, applying, 23–24

wearable computing, 27–29

weather forecasts
Dark Sky program, 151
Forecast.io web service,

151
notification of, based on

location, 151–158

web microframeworks, 74

Weidner, Klaus (developer,
Hacker’s Keyboard), 192

widgets, 9, 14–19, see al-
so specific widgets

displaying on home
screen, 15

displaying on lock screen,
15

installed, viewing, 14
list of, 17–19
lock-screen compliant,

15–17

WiFi radio, disabling, 100–
101

Wilmot, Lee (developer,
Tasker), 42

Windows Phone user inter-
face, emulating, 22–24

WOL (Wake-On-LAN) packets,
7

X
XMPP (Extensible Messaging

and Presence Protocol)
client account for, 136–

137
Jabber Tracker task us-

ing, 136–143
Python library for, 136

Z
Zoom Text action, 179

Zoom utility, 176–180

Index • 210

V413HAV

Android Apps and 3D for Kids
Create mobile apps for Android phones and tablets, and get your kids (ages 10-99) writing
3D games in JavaScript.

Create mobile apps for Android phones and tablets
faster and more easily than you ever imagined. Use
“Processing,” the free, award-winning, graphics-savvy
language and development environment, to work with
the touchscreens, hardware sensors, cameras, network
transceivers, and other devices and software in the
latest Android phones and tablets.

Daniel Sauter
(392 pages) ISBN: 9781937785062. $35
http://pragprog.com/book/dsproc

You know what’s even better than playing games?
Creating your own. Even if you’re an absolute beginner,
this book will teach you how to make your own online
games with interactive examples. You’ll learn program-
ming using nothing more than a browser, and see cool,
3D results as you type. You’ll learn real-world program-
ming skills in a real programming language: Java-
Script, the language of the web. You’ll be amazed at
what you can do as you build interactive worlds and
fun games. Appropriate for ages 10-99!

Chris Strom
(250 pages) ISBN: 9781937785444. $36
http://pragprog.com/book/csjava

V413HAV

http://pragprog.com/book/dsproc
http://pragprog.com/book/csjava

Long Live the Command Line!
Use tmux and Vim for incredible mouse-free productivity.

Your mouse is slowing you down. The time you spend
context switching between your editor and your con-
soles eats away at your productivity. Take control of
your environment with tmux, a terminal multiplexer
that you can tailor to your workflow. Learn how to
customize, script, and leverage tmux’s unique abilities
and keep your fingers on your keyboard’s home row.

Brian P. Hogan
(88 pages) ISBN: 9781934356968. $16.25
http://pragprog.com/book/bhtmux

Vim is a fast and efficient text editor that will make
you a faster and more efficient developer. It’s available
on almost every OS—if you master the techniques in
this book, you’ll never need another text editor. In more
than 100 Vim tips, you’ll quickly learn the editor’s core
functionality and tackle your trickiest editing and
writing tasks.

Drew Neil
(346 pages) ISBN: 9781934356982. $29
http://pragprog.com/book/dnvim

V413HAV

http://pragprog.com/book/bhtmux
http://pragprog.com/book/dnvim

Seven in Seven
Go beyond learning a new language—learn seven. And get up to speed on the latest NoSQL
databases.

You should learn a programming language every year,
as recommended by The Pragmatic Programmer. But
if one per year is good, how about Seven Languages in
Seven Weeks? In this book you’ll get a hands-on tour
of Clojure, Haskell, Io, Prolog, Scala, Erlang, and Ruby.
Whether or not your favorite language is on that list,
you’ll broaden your perspective of programming by
examining these languages side-by-side. You’ll learn
something new from each, and best of all, you’ll learn
how to learn a language quickly.

Bruce A. Tate
(330 pages) ISBN: 9781934356593. $34.95
http://pragprog.com/book/btlang

Data is getting bigger and more complex by the day,
and so are your choices in handling it. From traditional
RDBMS to newer NoSQL approaches, Seven Databases
in Seven Weeks takes you on a tour of some of the
hottest open source databases today. In the tradition
of Bruce A. Tate’s Seven Languages in Seven Weeks,
this book goes beyond your basic tutorial to explore
the essential concepts at the core of each technology.

Eric Redmond and Jim R. Wilson
(354 pages) ISBN: 9781934356920. $35
http://pragprog.com/book/rwdata

V413HAV

http://pragprog.com/book/btlang
http://pragprog.com/book/rwdata
Vaibhav
Typewritten Text
V413HAV

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
http://pragprog.com/book/mrand
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
http://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available
for purchase at our store: http://pragprog.com/book/mrand

Contact Us
http://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://pragprog.com/write-for-usWrite for Us:

+1 800-699-7764Or Call:

V413HAV

http://pragprog.com/book/mrand
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/book/mrand
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-us

	Cover
	Table of Contents
	Acknowledgments
	Introduction
	Why Android? Why Now?
	Who This Book Is For
	Requirements
	Jailbreaking and Rooting
	What's in This Book
	Online Help

	Part I—Customize
	1. Getting Started
	Analyzing Your Mobile Lifestyle
	Mobile Personalization
	Next Steps

	2. Personalizing Your Home Screen
	Launchers
	Widgets
	Floaters
	Home Screen Customization
	Next Steps

	3. Listening to Your Android
	Wearable Computing
	The Sound of Data
	Button Control
	Next Steps

	Part II—Explore
	4. Automating with Tasker
	Introducing Tasker
	Talking Clock
	Train Station Alarm
	Tasker App Factory
	Next Steps

	5. Scripting with SL4A
	SL4A: Scripting Layer for Android
	Programming with SL4A
	Scheduling the SL4A Script
	Other Android-Ported Languages
	Next Steps

	6. Programming with AIDE
	Getting Started
	Programming the Clock
	The Clock Is Running
	Talking Clock Automation
	Next Steps

	Part III—Build
	7. Tasker Pomodoro Widget
	Rapid Tasker Prototyping
	Pomodoro Widget Redux
	Testing the Revised Widget
	Addressing the Limitations
	Next Steps

	8. Messaging Projects
	Check Email
	Speak 'n' Tweet
	Jabber Tracker
	Next Steps

	9. Notification Projects
	Talking Notifications
	Forecast.io
	AutoNotification
	Next Steps

	10. Graphics Projects
	Application Launcher
	Twitch.tv Widget
	Next Steps

	Part IV—Appendixes
	A1. Android Programming Tools
	Code Editors
	Source Version Control
	Miscellaneous Tools

	A2. Resources on the Web

	Bibliography
	Index
	– SYMBOLS –
	– DIGITS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –
	– Z –

