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Preface

This book is intended as a text for Mathematics students taking their first course in
Statistics, and grew out of my second-year course for mathematics undergraduates at
EPFL. It is a book on “Statistics for Mathematicians” rather than on “Mathematical
Statistics”: the intent is not to focus on the deeper mathematical/theoretical aspects
of the subject but rather to provide an introduction to the basic notions tailored
to the mindset and tastes of the Mathematics student. Mathematics students are
sometimes put off by the informal nature of first courses in Statistics, since many
results are usually stated without proof or are accompanied by heuristic sketches
of proofs. Another risk may be that of “intellectual entropy”, when too many (and
diverse) topics are covered in a single course, risking the impression of Statistics
as a collection of recipes lacking natural connection. This book can be used as a
basis for an elementary semester-long first course in Statistics that presents the basic
ideas of one-parameter inference in a coherent manner, while making essentially no
sacrifices on matters of rigour. It is meant to be compact, so as to be realistic to
be covered in full during a single semester, and yet hopefully attract mathematics
students to pursuing further elective courses in Statistics. In more detail, the three
main tasks this text sets out to address are as follows.

(1) To provide a rigorous yet elementary course The effort is to prove essentially
all the results rigorously. These results include some of the most central results such
as the asymptotics of maximum likelihood, optimality in testing, asymptotics of
likelihood ratio tests, and optimality results regarding confidence intervals. It also
contains detailed proofs of some elementary results that are rarely worked out in
detail in elementary texts (for instance, the derivation of the distribution of the t
statistic). The only results not proven in the main text are some background results
in probability and analysis. In the case of the probabilistic results, detailed proofs are
in fact given in the appendix, and the proofs are still at an elementary level. These
include results such as the continuous mapping theorem, Slutsky’s theorem, the
(third moment) central limit theorem, and results pertaining to moment generating
functions. The analytic results not proven are Taylor’s formula and the univariate
inverse function theorem. These are stated in the appendix, where precise references
are also provided for their proofs. In principle, thus, the course only requires
students to have taken a first course in �=ı-level analysis (including sequences, con-
vergence, series, multivariable differentiation and Riemann integration, and Taylor’s
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formula) and a first course in probability (including basic operations on events and
the corresponding probability calculus, discrete and continuous random variables,
joint/conditional/marginal distributions, and expectation/variance/covariance). A
succinct fact sheet on all the probabilistic prerequisites is provided in the appendix,
for easy reference.

(2) To provide a conceptually compact course, with a firm sense of direction
The entire book can realistically be covered in full during the course of a semester,
and it is also realistic for the students to solve all the exercises during the same
period of study (a solution manual is available upon request for instructors). I have
reduced the number of topics covered in order to be able to have the minimal number
of topics that can be covered during a semester course without compromising on
the mathematics, while still providing an overview of the main ideas of statistical
inference. The course covers the basics of exponential families, exploratory data
analysis, sampling, estimation, testing, and confidence intervals. It’s true that the
book does not tell the whole story and avoids detailed discussions of all the
possible complications and variants in each section. However, I believe that the
topics covered give a firm basis for the students to build on, and every attempt has
been made for the story it tells to flow naturally, without giving the appearance
of a collection of techniques. There is extensive cross-referencing of the material,
illustrating how the different results are tied together, and an effort to develop the
material in a “linear fashion”, explaining why one is doing whatever they are doing
at every point, and what the ultimate purpose is. No result is mentioned in vain (any
results presented are subsequently used), and results are accompanied by substantial
motivation and discussion. References made to results are always accompanied by
the number of the said result, along with the page number in the book which allows
for easy reference and self-study.

(3) To provide a course that is not on “Mathematical Statistics” but rather
on “Statistics for Mathematicians” The audience is primarily intended to be
undergraduate mathematicians, whom I hope to attract into Statistics rather than
statisticians to whom I might want to introduce the more mathematical aspects of
Statistics. Therefore, the course is not primarily intended to be a course in statistical
theory. Rather, it is intended to be an entry-level course in statistical inference,
presented in a way that would be more receptive by an audience comprised of
mathematicians. Therefore, the discussion of different topics and the style and
considerations are adapted to such an audience. For example, optimality, whenever
discussed, is not presented as an end in itself but rather as a means of motivating
methodology (the idea being that mathematicians would be motivated by “best”
results more than by heuristics).

The means to balance the requirement of an elementary yet rigorous text was
to adopt the use of the exponential family of distributions throughout (rather than
aiming for full generality). This is of course a restriction, but in some ways not
a major one, since most of the examples treated in elementary textbooks are, in
fact, exponential families. Focusing on exponential families not only allows for
elementary proofs using basic analysis and probability but also allows for the
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statements of the theorems and the required conditions to be simple and intuitive.
Whenever results do hold more generally, this is remarked as a side note. A more
detailed description of the structure of the text, and the progression of topics, can be
found in the “Brief Overview” Section (p. 1).

The main concessions that regrettably had to be made in terms of coverage
pertain to regression and the Bayesian paradigm, and this deserves an apology. The
textbook is based on the first Statistics course that mathematics students take at
EPFL, but this course is also the only compulsory course in Statistics. It may thus
well be their last (though hopefully the book will convince them otherwise). In this
case there is a dilemma. Does one strive to include as many topics as possible, so
that the student be well equipped in the future in case this is all the Statistics they
will ever see? Or does one try to cover a minimally sufficient number of topics
as clearly and completely as possible, hoping that at least these topics will stick
to mind? I opted for the second approach, as my impression is that adding more
topics does not guarantee that these topics will in fact be remembered (in fact, a
student having only taken a single Statistics course and finding themselves needing
Statistics later will almost certainly have to do further reading anyway) and because
this approach is more in line with the effort to produce a course with low conceptual
entropy. For instance, notions such as p-values and confidence intervals are quite
subtle to understand upon a first encounter (avoiding flawed interpretations such as
“the probability that H0 is valid” or “the probability that the parameter falls in the
interval is 95%”). When the student does not already have a solid grasp, it may be
unsettling—or worse still confusing—to suddenly switch things around.

In writing the book, and preparing examples and exercises, I have drawn inspira-
tion from many excellent textbooks that have stood the test of time (but also more
recent online resources, including Wikipedia and mathstackexchange). In doing this,
I tried to balance the rigour found in advanced textbooks focusing on Mathematical
Statistics, with the more accessible style of entry-level textbooks focusing on the
basics of statistical inference. The former category includes Lehmann and Casella
[15], Lehmann and Romano [16], Cox and Hinkley [6], Bickel and Doksum [1],
Schervish [22], Shao [23], and Young and Smith [26], and the latter category
includes Rice [19], Hogg and Tanis [13], Hogg and Craig [12], and Silvey [24]
(the last one perhaps bordering with the first category). The book by Knight [14]
strikes a very nice balance between the two objectives, though still at a level higher
than the present text aims, and has also been an important source of inspiration
and exercises/examples. More texts striking a good balance and including a more
comprehensive list of topics than the present one (but still not including several
proofs) include Casella and Berger [4], Davison [9], and Wasserman [25]. The
necessary probability background for the present text is covered quite nicely in the
first three chapters of Knight [14], but of course there are several texts devoted
specifically to elementary probability (i.e. non-measure theoretic probability) that
would suffice (e.g. Blitzstein and Hwang [3], Dalang and Conus [8] (in French),
Grimmett and Welsh [11], Pitman [18], and Ross [20]). As mentioned earlier,
Sect. A.1 contains a quick overview of the main prerequisites, for ease of reference.
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While the main audience for the book will be instructors and students in
mathematics undergraduate programmes, the textbook could still be used for
programmes of study with substantial mathematical content, for instance, students
of physics, economics, computer science, and engineering programmes looking
for a more formal coverage of one-parameter inference. After all, to think like a
mathematician is to think rigorously, regardless of the subject matter at hand.

In closing, I would like to express my gratitude to my PhD students
and my undergraduate students whose meticulous comments and suggestions
helped improve earlier drafts. Marie-Hélène Descary, Mikael Kuusela, Valentina
Masarotto, Matthieu Simeoni, and Yoav Zemel provided extensive feedback,
suggestions on exercises, and help with proofreading and layout. I especially
enjoyed chatting with Yoav Zemel about how to best tiptoe around measure theory
in the proofs of some more delicate results in the appendix (while remaining fully
rigorous). I am also very thankful to two anonymous reviewers, who read a first
version of the book and gave constructive and encouraging feedback. Any remaining
glitches are, of course, my own. Finally, I would like to thank Veronika Rosteck and
Springer/Birkhäuser for our pleasant collaboration.

Lausanne, Switzerland Victor M. Panaretos
October 2015
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Brief Overview

In a general sense, one can describe Statistics as the mathematical discipline whose
purpose is to

use empirical data generated by a random phenomenon, in order to
make inferences about some deterministic characteristics of the phe-
nomenon

while simultaneously quantifying the uncertainty inherent in these infer-
ences.

Let’s take a step back and consider the different elements of this description. What
is a random phenomenon? We can think of a random phenomenon as a system
or process whose outcome X is uncertain. This means that, even if we know
every aspect of this system or process, we cannot perfectly predict its outcome X .
Mathematically, such phenomena are formalised via the theory of probability: the
outcomeX is a random variable, and the model that describes the phenomenon is the
probability distribution function F.x/ D PŒX � x� of this random variable. Now
there may be a characteristic � of this phenomenon that influences the probabilities
associated with the outcome of X . Such a characteristic is called a parameter. Since
the probability of fX � xg is influenced by � , the function F.x/ must be a function
of � , so we write it as F.xI �/ D P� ŒX � x�.

If we know the functional form of F.xI �/, and the true value of � , we can
then calculate the probability P� ŒX � x� D F.xI �/ for any possible outcome
x. Statistics deals with the inverse problem: suppose that we know the precise
functional form of F.xI �/, but do not know which is the true � . If we have an
outcome x (a realisation of X ), is it possible to say something useful about �?
It seems that we should be able to do so. Since � influences what outcomes are
most probable, then knowing an outcome should give us information on which �
are plausible. The topic of this text will be how exactly to make this connection
rigorous and show how to exploit it in order to (a) make the best possible use of our
data x to better inform ourselves about � and (b) understand how certain we can be
about our inferences on � for the given data x. In summary, our framework is as
follows:

1. There is a distribution F.xI �/ depending on an unknown � 2 R
p .

2. We observe the realisation of n independent identically distributed random
variables X1; : : : ; Xn that follow this distribution.

xiii



xiv Brief Overview

3. We wish to use our n observations (the realisations of X1; : : : ; Xn) in order
to make statements about the true value of � and to quantify the uncertainty
associated with those statements.

At first glance, this framework may seem restrictive. Indeed, it represents a
significant simplification over the much broader framework where one can develop
statistical methodology. For example, in general, the unknown parameter of interest
� might not be an element of Rp , but an element of a more general mathematical
space (a space of functions, for instance). Also the data .X1; : : : ; Xn/ could be
dependent; they could themselves be vectors, or functions, or some more general
mathematical object.

However, some of the key ideas that statisticians employ in order to attack
these more general situations are already present in the simpler scenario that we
will consider in this text. In fact, many highly more complex situations can often
be reduced to this simpler case by a careful use of mathematics (for example, a
real function can be identified with a vector in R

p when represented by its basis
coefficients in some basis expansion, a dependent collection of random variables
might in fact be approximately independent, and so on). In a sense, the framework
we will consider here is the simplest non-trivial case that nevertheless contains the
germs of generality.

Following is an overview of the contents of this text:
1. In Chap. 1, we will review the different types of probability models that we will

construct statistical methods for. We will try to understand what situations they
are suitable for, and what are some of their key properties. We will also try to find
a unifying framework in which we can describe several of these models at once:
instead of developing results separately for each model, we will try to give an
abstract description of some key common characteristics that will be useful for
obtaining general results. At the end of the chapter, we will consider the problem
of how to choose a type of model, whether by first principles or by means of
exploratory data analysis using numerical and graphical summaries.

2. In Chap. 2, we will develop the relevant concepts and probabilistic results that
are needed in order to study the problem of sampling from probability models.
We will probe the behaviour of the random sample, and how this relates to the
original model, and what aspects of a sample are important for the purposes
of statistical inference. An important focus will be to describe the probabilistic
behaviour of functions of a sample. That is, given a sample X1; : : : ; Xn from a
distribution F , what is the distribution of g.X1; : : : ; Xn/ for some function g?
The reason we will do this is simple: all that we have available to do statistics is
the sample, so anything we do will be a function of the sample!

3. Once we know what probability models we wish to consider, and how to handle
samples from probability models, we will turn to the most basic statistical
inference question one can ask: given a sample X1; : : : ; Xn from a distribution
F� that depends on an unknown parameter � , construct an estimator: a function
of the sample whose purpose is to estimate � . We will consider how to formalise
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the quality of such an estimator in terms of quantifying its accuracy, and what
are methods for constructing good estimators (for example, are there optimal
methods?).

4. Chapter 4 deals with a somewhat different problem. Instead of trying to guess
which � was the one that generated the observed sample X1; : : : ; Xn, we will
attempt to answer the following question: given a candidate value �0 for � (or
some candidate values forming a set �0), decide on the basis of the sample
X1; : : : ; Xn whether this value (or set of values) is good guess for the true � . An
important part of the chapter will be devoted to making formal what we mean by
candidate values, good guesses (and bad guesses), and whether there are optimal
strategies to do so. We will also be considering how to quantify the accuracy of
our decisions.

5. Finally, in Chap. 5, we will deal with the third of the basic trio of problems of
statistical inference: confidence intervals. Roughly speaking, instead of trying
to estimate the precise value of � that generated our sample X1; : : : ; Xn, we
wish to provide a whole range of values in the form of some interval, which will
very likely contain the true parameter � . This chapter will formalise this notion
and consider how we can construct “small” regions that have high probability
of covering the true parameter � . We will, in fact, see that the problem of
constructing confidence intervals is very closely connected both with the problem
of point estimation and with the problem of hypothesis testing.



1Regular Probability Models

Before setting out to explore how we can use statistics in order to learn about
the structure of probability models given data from these models, we must first
specify what types of probability models we shall consider (and some of their
basic properties). For the purposes of this course, a probability model will be the
distribution F of a random variableX which takes values in some subset of the real
line R:

F.x/ D PŒX � x�; x 2 R:

We write X � F to state that F is the distribution ofX . If fXigi2I is a collection of
independent identically distributed random variables with distribution F , we write

Xi
iid� F . The distribution F will typically depend on one or several parameters

that we shall represent as � D .�1; : : : ; �p/
> 2 ‚ � R

p (depending on the
context, a different Greek letter or a Latin letter may be used). The space ‚
where the parameter � belongs is called the parameter space. To indicate that the
distribution F depends on the parameter � , we will often write F� or F.xI �/. All
of the examples we will see and most of the theory we will develop will pertain to
probability models that we shall call regular.

Definition 1.1 (Regular Parametric Probability Models)

Let X be a real-valued random variable, and let F� be its distribution function,
for � a parameter with parameter space ‚ � R

p. The probability model fF� W
� 2 ‚g will be called regular if one of the two following conditions holds:

1. For all � 2 ‚, the distribution F� is continuous with density f .xI �/.
2. For all � 2 ‚, the distribution F� is discrete with probability mass function
f .xI �/ such that

P
x2Z f .xI �/ D 1 for all � 2 ‚.

Simply put, the model F� cannot switch between continuous and discrete
depending on the value of � . And, if it is discrete, the sample will always be taken
to be a subset of the integers (e.g. it cannot be Z C � , where � 2 Œ0; 1�). The set

© Springer International Publishing Switzerland 2016
V.M. Panaretos, Statistics for Mathematicians, Compact Textbooks in Mathematics,
DOI 10.1007/978-3-319-28341-8 1
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2 1 Regular Probability Models

X WD fx 2 R W f .xI �/ > 0g will be called the sample space of X (note that
X could depend on � , but it will always satisfy X � R in the continuous case, or
X � Z in the discrete case).

We will now review several regular probability models and their basic charac-
teristics, explain what situations they are appropriate as models for, and give some
illustrative examples.

I Remark 1.2 (Notation P� and E� ) When F depends on a parameter � , we still
have

F.xI �/ D PŒX � x�:

Since the left-hand side depends on � , the right-hand side also must depend on � ,
even though this is not explicit in our notation. Sometimes we will need to make that
clear, in which case we will write P� instead of just P in order to remind ourselves
of this dependence. Similarly, we will sometimes write E� instead of just E for the
expectation of X when its distribution is F.xI �/.

1.1 Discrete Regular Models

Perhaps the simplest imaginable probability model is the Bernoulli distribution.
This models a situation where there are only two possible outcomes, often termed
“success” and “failure”. The prototypical example is that of flipping a coin, where
success (say heads) has probability p and failure (tails) has probability 1 � p.

Definition 1.3 (Bernoulli Distribution)

A random variable X is said to follow the Bernoulli distribution with parameter
p 2 .0; 1/, denoted X � Bern.p/, if

1. X D f0; 1g,
2. f .xIp/ D p1fx D 1g C .1 � p/1fx D 0g.

The mean, variance and moment generating function of X � Bern.p/ are
given by

EŒX� D p; VarŒX� D p.1 � p/; M.t/ D 1 � p C pet :

Example 1.4

Almost any random phenomenon whose outcomes may be classified in one of two categories can
be modelled via the Bernoulli distribution. We simply name one category as success and the other
as failure (success is usually the case we are most interested in).
1. Sample a voter from some large electorate (so large that we take it to be countably infinite) right

after the ballots have closed, and let X be the vote she cast in the referendum. Then X D 1

(yes) with probability p and X D 0 (no) with probability 1� p, where p is the proportion of
voters who voted yes.



1.1 Discrete Regular Models 3

2. Consider a sonogram that is made with the purpose of determining the sex of a foetus. The
outcome X can either be X D 1 (girl) or X D 0 (boy), with some probabilities p and 1 � p,
respectively. The value of p in this case is determined by many and diverse environmental
factors, but in general can be considered to be constant within homogeneous populations.

3. Consider a quantum measurement on the spin of an electron in a particle system. The outcome
can either be 1 (spin up) or 0 (spin down) with probabilities p and 1 � p. The value of the
parameter here depends on the particular physical properties of the system.

4. Consider the barometric pressure in the lake Geneva region on a typical summer day. This might
be high (if above a certain threshold) or low (otherwise), and these two outcomes may be coded
as 1 and 0, respectively. Their corresponding probabilities, p and 1 � p, are determined by
several environmental factors.

5. More generally, we may create a Bernoulli random variable Y from any other random variable
X in the following way. Let A � X be some event in the sample space of X , and define
Y D 1fX 2 Ag. Then Y has a Bernoulli distribution with p D PŒX 2 A�. Here, we interpret
success as the realisation of X lying in A.

�

More often than not, we have several independent repetitions of an experiment
with two possible outcomes, say “success” and “failure” and we wish to model the
total number of successes. If the individual experiments are modelled as Bernoulli
experiments, then we are inevitably led to the binomial distribution. This models
the total number of heads in a sequence of n independent coin flips.

Definition 1.5 (Binomial Distribution)

A random variable X is said to follow the binomial distribution with parameters
p 2 .0; 1/ and n 2 N, denoted X � Binom.n; p/, if

1. X D f0; 1; 2; : : : ; ng,

2. f .xIn; p/ D
 
n

x

!

px.1 � p/n�x.

The mean, variance and moment generating function of X � Binom.n; p/ are
given by

EŒX� D np; VarŒX� D np.1 � p/; M.t/ D .1 � p C pet /n:

Exercise 1 Show that if X D Pn
iD1 Yi where Yi

iid� Bern.p/, then X �
Binom.n; p/.

Example 1.6

Since the binomial is a sum of independent Bernoulli random variables, we can expect that our
previous examples can be extended to give us examples of using the binomial distribution (though
this is not the case with all of them: we need both independence and equal probabilities of success
for a binomial distribution to be induced).
1. Sample n voters from the same infinite electorate right after the ballots have closed, and let Y

be the number of voters in that sample who voted “yes”. Then Y is binomial with n trials and
success probability p, where p is the proportion of voters who voted yes.
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2. Consider a particle system with the property that the spin of individual particles is independent
of all others. If there are n particles, then the number Y of spin up particles is binomially
distributed with parameters n and p, where p is as before, and is related to the electromagnetic
properties of the system.

3. Consider again the barometric pressure in the lake Geneva region on a typical summer day,
which can be high or low, with corresponding probabilities p and 1� p. Let Y be the number
of days with high barometric pressure within a period of n consecutive days. Though Y is a
sum of Bernoulli variables, it is not a Binom.n; p/. The reason is that the pressure conditions
are dependent between consecutive days (hence the Bernoulli trials are not independent).

4. Going back to the sonogram example, suppose that the probability of a given foetus being of
female sex is p. Consider now a sonogram whose purpose is that of of determining the number
of foetuses of female sex among two foetuses being gestated by the same woman (twins). The
outcome Y can either be 0, or 1 or 2. If we know whether the twins are non-identical (say this
is an event called A), then:

PŒY D 0jA� D .1� p/2;PŒY D 1jA� D 2p.1� p/;PŒY D 2jA� D p2:

In other words, given that the twins are non-identical

PŒY D yjA� D
 
2

y

!

py.1� p/2�y; y D 0; 1; 2;

and so Y is indeed binomial given A. However, if we do not know whether the twins are non-
identical, we factor in the possibility that the twins might be identical. In this case:

PŒY D y� D PŒY D yjA�PŒA�C PŒY D yjAc�PŒAc�

D
 
2

y

!

py.1� p/2�y
PŒA�C

�
p1fy D 2g C .1� p/1fy D 0g

�
PŒAc�:

If PŒAc� ¤ 0, this expression will in general not be expressible as a binomial probability mass
function, and so Y may not be binomial. This example highlights that dependence between trials
may be subtly disguised, and that one must think carefully about the nature of the probability
experiment before proceeding with a specific model.

�

Suppose now that we start a sequence of independent Bernoulli trials, say coin
flips, and we continue flipping the coin until the first time we get heads (success).
The number of tails (failures) until the first apparition of heads (the first success)
has the geometric distribution.

Definition 1.7 (Geometric Distribution)

A random variableX is said to follow the Geometric distribution with parameter
p 2 .0; 1/, denoted X � Geom.p/, if

1. X D f0g [ N,
2. f .xIp/ D .1 � p/xp.
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Fig. 1.1 Binomial probability mass functions for different values of the parameters n and p

The mean, variance and moment generating function ofX � Geom.p/ are given
by

EŒX� D 1 � p
p

; VarŒX� D .1 � p/
p2

; M.t/ D p

1� .1 � p/et ; for t < � log.1�p/:

Exercise 2 Let fYigi�1 be an infinite collection of random variables, where Yi
iid�

Bern.p/. Let T D minfk 2 N W Yk D 1g � 1. Then T � Geom.p/ (Figs. 1.1
and 1.2).

What about the distribution of the number of failures until the r th success in a
sequence of Bernoulli trials? This follows the negative binomial distribution (also
known as the Pólya distribution).
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Fig. 1.2 Geometric probability mass functions for different values of the parameter p

Definition 1.8 (Negative Binomial Distribution)

A random variable X is said to follow the negative binomial distribution with
parameters p 2 .0; 1/ and r > 0, denotedX � NegBin.r; p/, if

1. X D f0g [ N,

2. f .xIp; r/ D
 
x C r � 1

x

!

.1 � p/xpr .

The mean, variance and moment generating function of X � NegBin.r; p/ are
given by

EŒX�D r
1�p
p

; VarŒX�D r
.1�p/
p2

; M.t/D pr

Œ1� .1 � p/et �r ; for t < � log.1�p/:

Exercise 3 Show that if X D Pr
iD1 Yi where Yi

iid� Geom.p/, then X �
NegBin.r; p/. Deduce the mean, variance and moment generating function of X .

What if we would like to count the number of successes not within a discrete set
of trials but within a bounded uncountably infinite set, such as an interval? For
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example, the total number of calls in a call centre within a 10-min interval. In
principle, the phone could ring at any instant of time—but there are uncountably
infinite instants (Dtrials) within the 10-minute interval! It turns out that such a
distribution exists, provided that the probability of a success for any given instant is
“very small”, and it is called the Poisson distribution.

Definition 1.9 (Poisson Distribution)

A random variable X is said to follow the Poisson distribution with parameter
� > 0, denotedX � Poisson.�/, if

1. X D f0g [ N,

2. f .xI�/ D e�� �x

xŠ
:

The mean, variance and moment generating function of X � Poisson.�/ are
given by

EŒX� D �; VarŒX� D �; M.t/ D expf�.et � 1/g:

Exercise 4 Let Xi
iid� Poisson.�/. Show that Y D Pn

iD1 Xi � Poisson.n�/:

Exercise 5 Let X�Poisson.�/ and Y�Poisson.�/ be independent. Show that the
conditional distribution of X given X C Y D k is Binom.k; �=.�C �//.

It would seem that the Poisson distribution came out of nowhere, whereas
the other distributions we considered were linked with the Bernoulli distribu-
tion. It turns out that there is an important connection between the Poisson and
Binomial distributions. Roughly speaking, a Poisson distribution is the limit of
a Binomial distribution when n ! 1 and p D �=n (the number of trials
diverges to infinity but the probability of success decreases to zero linearly with
respect to the number of trials). This link also helps us make precise mathe-
matical sense of the way we motivated the Poisson distribution. It is the Law
of Rare Events, and will be stated rigorously in Exercise 24 (p. 54) (Figs. 1.3
and 1.4).

Example 1.10

We list here some random experiments for which the Poisson distribution is a reasonable
probability model. All of these involve modelling counts over a finite time horizon, when there
is no a priori upper bound on the total.
1. The number of visits to a website during a given day can be well modelled by a Poisson

distribution. The parameter of the Poisson distribution will be interpreted as the mean number
of visits on that day.

2. The yearly number of earthquakes in a given bounded spatial region is typically Poisson
distributed, with parameter equal to the mean number of earthquakes per year in that
region.
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Fig. 1.3 Negative binomial probability mass functions for different values of r and p

3. Radioactive materials have unstable atoms, which emit particles (such as alpha particles and
gamma rays). Quantum theory postulates that, at the level of each atom, the number of
particles emitted within a given fixed time interval is random. The typical model for this
random variable is a Poisson distribution with mean given by the decay constant of the
material.

4. In positron emission tomography, we attempt to image the interior of the human body in order
to detect features of interest, for example cancers. A tracer is injected into the human body
that emits positrons. This tracer is spread throughout the human body, but concentrates more
in tissue with high metabolic activity (e.g. a cancerous tissue). By counting the number of
positrons emitted at a given physical location, we have an indication of the metabolic activity
in that location. The number of particles emitted at a given location typically behaves like
a Poisson distribution with mean parameter given by the concentration of the tracer at that
physical location. In other words, the intensity of the tomography image obtained at any
pixel is Poisson distributed with mean given by the true concentration of the material at that
pixel.

�



1.2 Continuous Regular Models 9

0 5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

Poisson Distribution PMF

x

f(x
)

 = 2
 = 4
 = 8
 = 10

Fig. 1.4 Poisson probability mass functions for different values of the parameter �

1.2 Continuous Regular Models

We now switch to the continuous case, and consider some of the key probability
models for random variables taking values in R. To define these, it suffices to
determine their probability density function. We first consider one of the simplest
continuous probability models: a random variable that is “equally likely” to take
values anywhere on a bounded interval.

Definition 1.11 (Uniform Distribution)

A random variable X is said to follow the uniform distribution with parameters
�1 < �1 < �2 < 1, denoted X � Unif.�1; �2/, if

fX.xI �/ D
(
.�2 � �1/

�1 if x 2 .�1; �2/;
0 otherwise:
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The mean, variance and moment generating function of X � Unif.�1; �2/ are
given by

EŒX� D .�1C�2/=2; VarŒX� D .�2��1/2=12; M.t/ D et�2 � et�1

t.�2 � �1/ ; t ¤ 0;M.0/D 1:

In a discrete setting, the uniform distribution gives equal probability to any
possible simple outcome from within the finite sample space of outcomes. In
the continuous case, the probability of observing a specific number in .�1; �2/ is
precisely zero, but uniformity is understood in the sense that the probability of
observing an outcome falling in a given subinterval of .�1; �2/ is proportional to
the length of that interval.

Example 1.12

The uniform distribution is as spread out as possible over a finite interval. In that sense, it can be
used to model situations where we have “complete ignorance”, where we are not prepared to make
any assumptions, or where the phenomenon under study is highly unpredictable.
1. Suppose that our bus is supposed to pass every 10 min, and we arrive at a random moment at

the bus stop, without knowing the schedule. It is natural to model our waiting time by a uniform
distribution on .0; 10/.

2. Suppose that our compass is broken, and the needle moves freely. Then, if we move in the
direction that the compass indicates for “north” at some random moment, the true direction we
will move in can be modelled as a random variable with the uniform distribution on .0; 2�/
(where we can imagine �=2 to correspond to the true “north”).

3. Consider the movement of excited gas molecules (in high temperature) in a container shaped
as a cube of edge length 1. If we let the molecules move freely inside the container, and then
ask for the location of a specific molecule after some time t (where t is large), the coordinates
of this location .X; Y; Z/ can be modelled very accurately by iid uniform random variables on
.0; 1/, regardless of the starting point of the molecule.

�

Our next model is typically appropriate when we wish to model the time elapsed
until the occurrence of a certain event, or between events, when this time is random.

Definition 1.13 (Exponential Distribution)

A random variableX is said to follow the exponential distribution with parameter
� > 0, denotedX � Exp.�/, if

fX.xI�/ D
(
�e��x; if x � 0

0 if x < 0:
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The mean, variance and moment generating function of X � Exp.�/ are given
by

EŒX� D ��1; VarŒX� D ��2; M.t/ D �

� � t
; t < �:

Note the interpretation here: ��1 is the average time until the occurrence of the
event of interest (measured in some given unit of time). So � is interpreted as a
rate parameter. The exponential distribution can be considered to be the continuous
version of the geometric distribution, when the number of trials becomes large, and
the probability of success becomes small.

A crucial property of the exponential distribution is that it is “memoryless”:
no matter how long you’ve been waiting already, the probability of waiting for an
additional amount of time x only depends on x, and not your past waiting time:

Exercise 6 Let X � Exp.�/. Then PŒX � x C t jX � t � D PŒX � x�.

The exponential distribution is, in fact, the unique distribution on Œ0;1/ with
this property (see Exercise 14, p. 27). Therefore, when choosing the exponential
distribution as a model for a random time, we must always ask if it is reasonable
to assume that this random time has the lack of memory property (Figs. 1.5
and 1.6).

Example 1.14

The exponential distribution has important connections to the Poisson distribution. Roughly
speaking, if the time between consecutive occurrences of a certain phenomenon is independent

Fig. 1.5 Uniform probability density function for general values of .�1; �2/
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Fig. 1.6 Exponential probability density functions for different values of the parameter �

exponential, then the number of occurrences of the phenomenon up to a given time will be Poisson.
For example:
1. The time between two consecutive occurrences of an earthquake at a given spatial region can

be modelled as an exponential random variable.
2. The time between consecutive emissions of alpha particles from an atom of a radioactive

material is very well modelled by an exponential distribution. The rate of this exponential
distribution will be intimately related to the decay constant of the material.

3. The amount of time between two consecutive visits at a website can also be modelled by an
exponential distribution.

�

Exercise 7 Let X; Y be independent exponential random variables with rates �1
and �2. Prove that Z D minfX; Y g is also exponential with rate �1 C �2.

Now suppose that we are interested in the time until the r th event, in a situation
where the times between events are distributed as iid Exp.�/. This resembles the
discrete situation where we are waiting until the r th success in a sequence of
Bernoulli trials, which takes us from the geometric to the negative binomial (the
negative binomial distribution being the sum of r iid geometric random variables).
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It turns out that the sum of r iid exponential random variables has a gamma
distribution:

Definition 1.15 (Gamma Distribution)

A random variable X is said to follow the gamma distribution with parameters
r > 0 and � > 0 (the shape and scale parameters, respectively), denoted X �
Gamma.r; �/, if

fX.xI r; �/ D
(

�r

	.r/
xr�1e��x; if x � 0

0 if x < 0:

The mean, variance and moment generating function of X � Gamma.r; �/ are
given by

EŒX� D r=�; VarŒX� D r=�2; M.t/ D
�

�

� � t
�r
; t < �:

Note that the way we have defined the gamma distribution does not restrict r
to be a natural number. It is indeed true that a gamma distribution can be defined
more generally for r > 0. The interpretation as a sum of r exponentials of rate �
will only be valid when r happens to be a positive integer. The gamma distribution
can provide a flexible model for a wide variety of phenomena that give rise to non-
negative random variables. The suitability of these models is not always completely
founded on concrete physical principles. It is sometimes dictated by convenience,
and other times by extensive practical experience.

The function 	.y/ is the gamma function (from which the distribution inherits
its name). In the special case when r is a positive integer, 	.r/ D .r � 1/Š. There
is a particular special case of the Gamma distribution, known as the chi-squared
distribution, that is especially important in statistical theory and practice:

Definition 1.16 (Chi-Square Distribution)

A random variable X is said to follow the chi-square distribution with parameter
k 2 N (called the number of degrees of freedom), denoted X � 
2k , if it holds
that X � Gamma.k=2; 1=2/. In other words,

fX.xI k/ D
8
<

:

1

2k=2	. k2 /
x
k
2 �1e� x

2 ; if x � 0

0 if x < 0:

The mean, variance and moment generating function of X � 
2k are given by

EŒX� D k; VarŒX� D 2k; M.t/ D .1 � 2t/�k=2; t <
1

2
:
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Exercise 8 Show that X � 
22 if and only if X � Exp.1=2/.

The continuous probability models we have encountered so far have all been
restricted either to a bounded interval or to the positive reals. In many phenomena,
we expect that the random variable can assume any positive value, but its distribution
is centred at (and is symmetric about) a centre location �. The parameter �
represents the “location” or the value around which we expect typical realisations
of the random variable to lie. Further to the location, there is typically a “scale”
parameter, say �2, which expresses how concentrated or diffuse the distribution is
around the centre. A broad such family of models is the so-called location-scale
family of models. Among location-scale models, the most important and well-
studied, and perhaps the most widely applicable is the normal distribution, also
referred to as the Gaussian distribution.

Definition 1.17 (Normal Distribution)

A random variable X is said to follow the normal distribution with parameters
� 2 R and �2 > 0 (the mean and variance parameters, respectively), denoted
X � N.�; �2/, if

fX.xI�; �2/ D 1

�
p
2�

exp

�

�1
2

�x � �
�

�2
�

; x 2 R:

The mean, variance and moment generating function of X � N.�; �2/ are given
by

EŒX� D �; VarŒX� D �2; M.t/ D expft�C t2�2=2g:

I Remark 1.18 In the special caseZ � N.0; 1/, we use the notation '.z/ D fZ.z/
and ˆ.z/ D FZ.z/, and call these the standard normal density and standard normal
CDF, respectively.

Example 1.19

The normal distribution can be a very good model for a bewildering variety of phenomena.
Intuitively, almost any phenomenon that can be thought to arise as the result of the addition of
a large number of random variables with finite variances can be modelled via a normal distribution
(see the Central Limit Theorem for a precise statement, Theorem 2.23 (p. 56)). In general,
the normal distribution will be a good model for random variables with finite variance, whose
distribution is symmetric about a certain value �, and whose probability of being far from � decays
fast.
1. Measurement error is most typically modelled as a normal random variable. Suppose that we

are trying to measure a quantity �, and our measurement device is imperfect, thus yielding
measurements Y corrupted by error ". If the error is additive, then a natural probability model
is to assert that Y D �C ", and " � N.0; �2/. Consequently, Y � N.�; �2/.

2. It is well established that several random physical phenomena are distributed according to
the normal distribution. For example, the position after time t of a molecule that moves on
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a line subject to collisions from other molecules has a normal distribution with a mean at its
starting point and variance equal to t . The velocity of any particle in a one-dimensional space
under thermodynamic equilibrium will be normally distributed. The ground state of a quantum
harmonic oscillator will also be normally distributed.

3. The re-scaled difference between a random variable and its mean can very often be approx-
imated by a normal distribution. Typically this depends on taking a limiting argument over
some parameter of that random variable. This includes variables that are discrete. For example,
we will see later that the approximation is valid in the case of a binomial distribution with a
large number of trials, or a Poisson distribution with a large rate parameter (in both cases, after
appropriate centering and scaling).

4. Experience shows that a wide range of phenomena in the biological sciences, when suitably
transformed, are remarkably well approximated by the normal distribution. The same is true of
phenomena in the social sciences, economics and finance. In most of these cases, the underlying
effect is a central limit theorem effect (Figs. 1.7 and 1.8).

�
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1.3 Exponential Families of Distributions

Though it may not be immediately obvious at first sight, many of the models
we considered earlier—whether discrete or continuous—have some important
similarities in terms of their structure and their properties. For this reason, we will
introduce in this paragraph an additional level of abstraction, and consider most of
the previous models as special cases of a broader family of probability models called
the exponential family of distributions. The advantage of such an approach is that,
once we have this more abstract definition, any properties we prove for the general
case will immediately be inherited by all the special cases. Here is the definition:

Definition 1.20 (The Exponential Family of Distributions)

A regular probability distribution is said to be a member of a k-parameter
exponential family, if its density (or frequency) admits the representation

f .x/ D exp

(
kX

iD1
�iTi .x/ � 
.�1; : : : ; �k/C S.x/

)

; x 2 X ; (1.1)
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where:
1. � D .�1; : : : ; �k/ is a k-dimensional parameter in R

k ;
2. Ti W X ! R, i D 1; : : : ; k, S.x/ W X ! R, and 
 W Rk ! R are real-valued

functions;
3. The sample space X does not depend on �.

I Remark 1.21 The parameter � is called the natural parameter.

I Remark 1.22 The fact that there is an exponential in the formula (1.1) is in
itself not the most important structural property of an exponential family (since
any density function can be written as f .x/ D expflogf .x/g on its support). The
important property is that the density can be factorised into three parts: one that only
depends on �, i.e. expf�
.�/g; one that only depends on x, i.e. expfS.x/g; and one
that depends on both � and x but in a very special way: as a linear combination of
the coordinates of � with coefficients that are functions of x.

I Remark 1.23 The exponential family of distributions should not be confused
with the exponential distribution. It is unfortunate that they share such a similar
name. To avoid confusion, we will always speak of an exponential family to
distinguish from an exponential distribution.

We will see that all the distributions that we have so far seen, except for the
uniform distribution, constitute exponential families. In order to see this, we will
need to manipulate the expressions of the corresponding densities (or frequencies)
in order to bring them to the form given by the form given by Eq. (1.1). It will
often happen that the usual parameter employed does not coincide with the natural
parameter. However, it will typically be the case that � D �.�/ for some twice
differentiable 1–1 mapping � W ‚ ! R

k (and so 
.�/ D 
.�.�// D d.�/, for
d D 
 ı �). In this form, the exponential family density/frequency will take the
form:

exp

(
kX

iD1
�iTi .x/ � 
.�/C S.x/

)

D exp

(
kX

iD1
�i .�/Ti .x/ � d.�/C S.x/

)

:

Either formulation can be used, depending on which is most convenient in a
specific context: for the purpose of doing theory and proving general results,
the natural representation (also called natural parametrisation) given by

exp
nPk

iD1 �iTi .x/ � 
.�/C S.x/
o

is more convenient.1 In most practical settings,

1The reason for this is that in the natural representation, the parameter appears linearly in the
exponent. In the usual representation, the parameter appears nonlinearly, as the image through
the function �. This complicates things when we will need to differentiate with respect to the
parameter.
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problems are presented in such a way that the parameter of interest is the �
parameter from the usual representation (also called usual parametrisation) given

by exp
nPk

iD1 �i .�/Ti .x/ � d.�/C S.x/
o
. Generally, thus, the strategy is to prove

any necessary theorems in the natural representation, and then translate them into
results for the usual representation.

Example 1.24 (Binomial Exponential Family)

Let X � Binom.n; p/. Recall that this means that X D f0; 1; 2; : : : ; ng and f .xIp/ D 
n

x

!

px.1� p/n�x . Now, we may take the log and then exponentiate to obtain:

 
n

x

!

px.1� p/n�x D exp

(

log

�
p

1� p

�

x C n log.1� p/C log

 
n

x

!)

:

Define:

� D log

�
p

1� p

�

; T .x/ D x; S.x/ D log

 
n

x

!

; 
.�/ D n log.1Ce�/ D �n log.1�p/:

Thus, if n is held fixed and only p is allowed to vary, the support of f does not depend on �
and so we see that the Binomial with fixed n is a 1-parameter exponential family. Here the usual
parameter p is a twice differentiable bijection of the natural parameter �:

p D e�

1C e�
& � D �.p/ D log

�
p

1� p

�

:

Here p 2 .0; 1/ but � 2 R. �

Example 1.25 (Counterexample: UniformDistribution)

Let X � Unif.�1; �2/. Notice that f .xI �1; �2/ is positive if and only if x 2 Œ�1; �2�. Therefore
the support of f depends on the parameter, and thus the uniform distribution is not an exponential
family. Notice, though, that if we fix �1 and �2 and consider the specific fixed density (rather than
a whole family as �1 and �2 vary), then we do have an exponential family form, albeit a degenerate
one with a single member. �

Example 1.26 (Gaussian Exponential Family)

Let X � N.�; �2/. Then we may write:

f .xI�; �2/ D 1

�
p
2�

exp

�

�1
2

�x � �

�

�2
�

D exp

�

� 1

2�2
x2 C �

�2
x � 1

2
log.2��2/� �2

2�2

�

:
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Define:

�1 D �

�2
; �2 D � 1

2�2
; T1.x/D x; T2.x/D x2; S.x/D 0; 
.�1; �2/D � �21

4�2
C 1

2
log

�

� �

�2

�

;

and also observe that the support of f is always R, regardless of the parameter values. It follows
that the N.�; �2/ distribution is a 2-parameter exponential family. �

Exercise 9 (More Exponential Families) Show that the following distributions
constitute exponential families (perhaps when one of their parameters is held
fixed):
1. The Poisson distribution.
2. The geometric distribution.
3. The negative binomial distribution.
4. The exponential distribution.
5. The gamma distribution.
6. The chi-square distribution.

There are several more probability models that form exponential families.
Though we have not studied them here explicitly, it is worth mentioning them:
the Pareto distribution, the Weibull distribution, the Laplace distribution, the chi-
squared distribution, the lognormal distribution, the inverse Gaussian distribution,
the inverse gamma distribution, the normal-gamma distribution and the beta distri-
bution, among others.

Later, we will prove some key theorems on estimation and hypothesis testing for
exponential families; and these results will then be valid for any specific exponential
family.

1.4 Transforming Probability Models

It is often the case that we have a model for a particular random phenomenon
whose outcome is described by a random variable X , but we are really interested in
modelling some aspect of this phenomenon, say g.X/, where g is a known function.

Example 1.27

Suppose thatR is a positive random variable denoting the radius of coverage of a wireless antenna.
Assume that R � UnifŒa; b�, for some 0 < a < b. What is the distribution of the area of coverage,
A D �R2? �

The purpose of this section is to investigate what the distribution of g.X/ is,
given knowledge of the distribution of X ; in other words, how the distribution of
a random variable X is transformed, when the random variable X is transformed.
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In the discrete case, things are relatively straightforward (though they rarely give
simple closed form expressions for the resulting distributions).

Lemma 1.28 Let X be a discrete random variable, and Y D g.X/. Then, the
sample space of Y is Y D g.X / and

FY .y/ D PŒg.X/ � y� D
X

x2X
fX.x/1fg.x/ � yg; 8y 2 Y (1.2)

fY .y/ D PŒg.X/ D y� D
X

x2X
fX.x/1fg.x/ D yg; 8y 2 Y: (1.3)

Proof It suffices to observe that PŒY D y� D P
x2X Wg.x/Dy PŒX D x�, 8 y 2 Y .

ut

In the case whereX is continuous, things are a bit more subtle to state and prove:
the obtention of general formulas is not possible for non-bijective g. If g is not a
bijection, the problem has to be attacked by direct methods that are specific to the
setup:

Example 1.29 (Squared Standard Normal Has �2
1
Distribution)

Let Z � N.0; 1/. We would like to find the distribution of Y D Z2. Note that FY .y/ D PŒY �
y� D 0 if y < 0. For y � 0 we have

FY .y/ D PŒZ2 � y� D PŒjZj � p
y�

D PŒ�p
y � Z � p

y� D ˆ.
p
y/�ˆ.�p

y/ D ˆ.
p
y/� .1�ˆ.

p
y//

D 2ˆ.
p
y/� 1:

We can also find the density by differentiating:

fY .y/ D 2
d

dy
ˆ.

p
y/ D 2

d

d
p
y
ˆ.

p
y/
d

dy

p
y

D 2�.
p
y/
y�1=2

2
D 2

1p
2�
e�y=2 y

�1=2

2

D 1p
2
p
�
e�y=2y�1=2 D 1

21=2	.1=2/
y1=2�1e�y=2:
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Notice that the last expression is the density of the 
21 distribution (see Definition 1.16, p. 13). We
therefore have

Z � N.0; 1/ H) Z2 � 
21: (1.4)

�

On the other hand, if g is a monotone differentiable transformation, then we may
derive general explicit (closed form) expressions for the distribution and density of
g.X/.

Lemma 1.30 Let X be a continuous random variable on X � R and let g W
X ! R be monotone and differentiable, with derivative positive on X . Let Y D
g.X/. Then, the sample space of Y is Y D g.X / and
• if g is increasing, then FY .y/ D FX.g

�1.y//, 8y 2 Y ,
• if g is decreasing, then FY .y/ D 1 � FX.g

�1.y//, 8y 2 Y .
In either case, we will have

fY .y/ D
ˇ
ˇ
ˇ
ˇ
@

@y
g�1.y/

ˇ
ˇ
ˇ
ˇ fX.g

�1.y//; 8y 2 Y:

Proof Assume initially that g0 is positive everywhere on X (g is monotone
increasing). This means that x � y ” g.x/ � g.y/. Then, for y 2 Y ,

FY .y/ D PŒg.X/ � y� D PŒX � g�1.y/� D FX.g
�1.y//:

Therefore,

fY .y/D @

@y
FY .y/D @

@y
FX.g

�1.y//D fX.g
�1.y//

@

@y
g�1.y/D fX.g

�1.y//

ˇ
ˇ
ˇ
ˇ
@

@y
g�1.y/

ˇ
ˇ
ˇ
ˇ ;

with the last equality following from the fact that g0 is everywhere positive.
Now consider the case where g is monotone decreasing (and so g0 is negative
everywhere). This means that x < y ” g.x/ > g.y/. Then, for y 2 Y ,

1 � FY .y/ D PŒg.X/ > y� D PŒX < g�1.y/� D FX.g
�1.y// � PŒX D g�1.y/�

„ ƒ‚ …
D0

:

But fY .y/ D � @
@y
.1 � FY .y//. Therefore,

fY .y/D � @

@y
.1�FY .y//D �fX.g�1.y//

@

@y
g�1.y/D fX.g

�1.y//
ˇ
ˇ
ˇ
ˇ
@

@y
g�1.y/

ˇ
ˇ
ˇ
ˇ ;

since �g0 is everywhere negative. This completes the proof. ut
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Exercise 10 (Log-Normal Distribution) Let X � N.�; �2/, and show that the
density of Y D eX is given by

fY .y/ D 1

y�
p
2�

exp

��.lny � �/2
2�2

�

; 0 < y < 1:

The distribution of Y is called the log-normal distribution.

Exercise 11 (Random Number Generation) Let Y � Unif.0; 1/ and let F be a
distribution function. Prove that the distribution function of the random variable
X D F �1.Y / is given precisely by F , where we define F�1.y/ D infft 2
R W F.t/ � yg (see Definition A.6, p. 161). Observe that with this result, we
can generate realisations from any distribution, provided that we can generate
realisations from the uniform distribution.

An easy corollary to the last two lemmas combined is the following:

Corollary 1.31 (Affine Transformations) Let X be a random variable and
Y D g.X/. If g.x/ D ax C b, a ¤ 0, then

8y 2 Y; FY .y/ D
8
<

:

FX

�
y�b
a

�
a > 0;

1 � FX

�
y�b
a

�
C P

�
X D y�b

a

�
a < 0;

with P

�
X D y�b

a

�
D 0 when X is a continuous random variable. Thus, for

y 2 Y:

1. fY .y/ D ja�1jfX
�
y � b

a

�

, if X is continuous,

2. fY .y/ D fX

�
y � b

a

�

, if X is discrete.

An important special case is that of the behavior of aX C b when X � N.�; �2/.

Lemma 1.32 (Affine Transformations of Normal Distributions) Let X �
N.�; �2/, a ¤ 0. Then aX C b � N.a� C b; a2�2/. Consequently, if X �
N.�; �2/, then

FX.x/ D ˆ
�x � �

�

�
;

whereˆ is the standard normal CDF,ˆ.u/ D R u
�1.2�/

�1=2 expf�z2=2gd z, that
is, the distribution function of a random variable Z � N.0; 1/.
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Exercise 12 Prove Lemma 1.32.

This last result is particularly important because it allows us to calculate proba-
bilities associated with normal random variables. The problem is that the integralR u

�1
1

�
p
2�

expf�.x � �/2=2�2gdx cannot be explicitly solved, and so one would
need to tabulate probabilities for all combinations of � and � (an impossible
task). The last result tells us, however, that we only need to tabulate the standard
normal CDF, ˆ, and calculate probabilities by linear transformation. The process
of subtracting the mean and then dividing by the standard deviation is called
standardisation.

As a final result in this section, we state a theorem giving a general formula for
the joint density of a bijective transformation of a collection of multiple random
variables.

Theorem 1.33 (Multidimensional Transformations) Let g W R
n ! R

n be a
continuously differentiable injection,

g.x/ D .g1.x/; : : : ; gn.x//; x D .x1; : : : ; xn/
> 2 R

n:

Let X D .X1; : : : ; Xn/
> be a random vector with joint density fX .x/, x 2 R

n,
and define Y D .Y1; : : : ; Yn/

> D g.X /. Then, if Yn D g.X n/, we have

fY .y/ D fX .g
�1.y//

ˇ
ˇ
ˇ det

h
Jg�1 .y/

iˇ
ˇ
ˇ; for y D .y1; : : : ; yn/

> 2 Yn;

and zero otherwise, provided that Jg�1 .y/ is well defined. Here, Jg�1 .y/ is the
Jacobian of g�1, i.e. the n � n-matrix-valued function,

Jg�1 .y/ D

2

6
6
4

@
@y1
g�1
1 .y/ : : :

@
@yn
g�1
1 .y/

:::
: : :

:::
@
@y1
g�1
n .y/ : : :

@
@yn
g�1
n .y/

3

7
7
5 :

Exercise 13 Use the integration by substitution formula to prove the theorem.

Proposition 1.33 can sometimes be used in a clever way, even if the transforma-
tion involved is not invertible: it suffices to “augment” the transformation, as in the
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corollary that follows:

Corollary 1.34 (Convolution) LetX and Y be independent continuous random
variables with densities fX and fY . Then, the density of X C Y is given by the
convolution of fX with fY :

fXCY .u/ D
Z C1

�1
fX.u � v/fY .v/dv:

Proof To see this, define

g W R2 ! R
2; .x; y/

g7! .x C y; y/

with inverse mapping

.u; v/
g�1

7! .u � v; v/:

The Jacobian of the inverse can be easily seen to be

�
1 0

�1 1
�

whose absolute determinant is equal to 1. It follows from the multivariate transfor-
mation formula that

fXCY;Y .u; v/ D fX;Y .u � v; v/ D fX.u � v/fY .v/;

where we have used the independence of X and Y . Integrating with respect to v
now yields the marginal density fXCY ,

fXCY .u/ D
Z C1

�1
fX.u � v/fY .v/dv:

ut

We conclude this section with an immediate application of the last corollary,
concerning sums of normal random variables.
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Corollary 1.35 (Sums of Independent Normal Random Variables) Let
X1; : : : ; Xn be independent random variables such that Xi � N.�i ; �

2
i /, and

let Sn D Pn
iD1 Xi . Then,

Sn � N

 
nX

iD1
�i ;

nX

iD1
�2i

!

:

Proof It is clear that EŒSn� D Pn
iD1 �i , so that we may assume that �i D 0, and

show that in this case Sn � N.0; �21 C � � � C �2n/. We proceed by induction, starting
with n D 2. For tidiness, write �2 D �21 C �22 . Then, by Corollary 1.34, we have

fX1CX2.u/ D
Z C1

�1
fX.u � v/fY .v/dv

D
Z C1

�1
1

�1�22�
exp

�

��
2
2 u2 C �22 v

2 � 2�22 uvC �21 v
2

2�21 �
2
2

�

dv:

Completing the square, we have

�22 u2 C �22 v
2 � 2�22 uv C �21 v

2 D�22 u2 C �22 v
2 � 2�22uv

C �21 v
2 C �42 �

�2u2 � �42 �
�2u2

D �
�22 � �42 �

�2	 u2 C �
�v � �22 �

�1u
	2

H) ��
2
2 u2 C �22 v

2 � 2�22 uv C �21 v
2

2�21 �
2
2

D � u2

2�2
�
�
�v � �22 �

�1u
	2

2�21 �
2
2

:

Hence, with the change of variables w D �v, we have

fX1CX2.u/ D 1

�
p
2�

exp

�

� u2

2�2

� Z C1

�1
�

�1�2
p
2�

exp

(

�
�
�v � �22 ��1u

	2

2�21 �
2
2

)

dv

D 1

�
p
2�

exp

�

� u2

2�2

� Z C1

�1
1

�1�2
p
2�

exp

(

�
�
w � �22 �

�1u
	2

2�21 �
2
2

)

dw

„ ƒ‚ …
D1

since the integrand is the density of a Gaussian distribution with mean �22 �
�1u and

variance �21 �
2
2 . In summary, we have

fX1CX2.u/ D 1

�
p
2�

exp

�

� u2

2�2

�

which is the density of a N.0; �2/ distribution.
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For the induction step, suppose that we have proven that Sk � N.0; �21C� � �C�2k /,
and wish to prove that SkC1 � N.0; �21 C � � � C �2kC1/. Since

SkC1 D Sk CXkC1

is the sum of aN.0; �21 C� � �C�2k /with an independentN.0; �2kC1/ random variable,
the first part of the proof shows that indeed SkC1 � N.0; �21 C � � � C �2kC1/, and the
proof is complete. ut

1.5 Model Selection and Exploratory Data Analysis

In the sequel, we will typically assume that a specific type of probability model
has already been selected as a description of a random phenomenon, and will
proceed in developing our theory taking this model as given. But before we do
so, we must at least pause for a short moment and consider how or why such a
model was selected in the first place. In other words, why does it make sense to
assume that the exponential distribution is a good model for the waiting time until
the emission of a radioactive particle, or the Poisson distribution in order to model
the number of bacteria in a water tank? In very broad terms, we can say that the
selection of a probability model could be based upon: (1) scientific theory and prior
experimentation; (2) philosophical principles; (3) exploratory data analysis; (4) a
combination of (1), (2) and (3).

The ideal situation is one where the modeler may choose a probability model
as a consequence of a well-founded scientific theory or overwhelming empirical
evidence. This is often the case in random phenomena that occur in the physical
sciences, most commonly in physics, as a result of physical laws and/or experi-
ments. These laws may suggest that the random phenomenon must satisfy certain
conditions and/or possess some properties. If we are fortunate enough, we may
have enough properties and conditions to uniquely determine a suitable probability
model. There is much knowledge on whether or not a certain list of properties
uniquely specifies a certain probability model in the field of characterisation of
probability models.

Example 1.36 (Exponential Distribution for Emission Time)

Scientific theory suggests that it is impossible to predict how long it will take until an unstable
nucleus decays. This time is a random variable T . In fact, the random process is such that even if
a certain amount of time has elapsed and we have not yet seen a decay, this does not give us any
information at all on how much longer we might still have to wait. In mathematical terms:

PŒT > t C sjT > t� D PŒT > s�:
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We know that the exponential distribution f .t/ D �e��t1ft > 0g has this property. In fact, it can
be proven that this is the only distribution supported on Œ0;1/ that has this property, thus dictating
its choice in order to model radioactive particle emission times. �

Exercise 14 Prove that the lack of memory property characterises the exponential.
More precisely, let X be a random variable such that P.X > 0/ > 0 and

P.X > t C sjX > t/ D P.X > s/; 8t; s � 0:

Prove that there exists a � > 0 such that X � Exp.�/.
Hint: LetG.t/ D P.X > t/. Show that the lack of memory property implies that

G.t C s/ D G.t/G.s/ for t; s � 0.Then, define g.t/ D � lnG.t/ and � D g.1/.
Show that g.t/ D t� for all t > 0 rational. Deduce that g.t/ D t� for all t � 0.
What is the sign of �? Finally, show that � < 1 using the fact that G.0/ > 0 and
continuity from the right of G.

It may seem that perfect characterisation of probability models is likely to occur
only in relatively simple phenomena. This is not necessarily the case. Very often, we
can build more and more complex models by combining several different constraints
(stemming from theory or experiment), partial characterisations, approximations
and mathematical manipulation. We will not consider here more elaborate examples,
but will mention that Einstein’s model for the movement of a particle in a gas or a
liquid (the famous Brownian motion) can be developed by such means.

Other times, even if we impose all the necessary conditions, we cannot uniquely
determine a probability model. In other words, there are several candidate proba-
bility models that would respect the conditions imposed by scientific theory and
experiment. If we have no other source of information or no other evidence to help
us choose a model, then we might have to choose one by means of some sort of
principle or postulate, for example a philosophical/epistemological principle.

Example 1.37 (Entropy)

Suppose that we wish to model a natural phenomenon whose outcome is described by a continuous
random variable X taking values on a given X � R. Assume that scientific theory dictates that
the phenomenon should satisfy certain properties on average, in the sense that the expectations of
certain functions of X should be fixed:

EŒTi .X/� D ˛i ; i D 1; : : : ; k:

If there are several probability densities f under which X that would satisfy these expectation
constraints, the philosophical principle of entropy dictates that among these we should prefer the
model that maximises the entropy of X ,

H.f / D �
Z

X
logŒf .x/�f .x/dx:
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The entropy of f is a measure of how “unpredictable” a random variable that follows f is. If we
choose a density f that has low entropy, then we are in essence imposing a more“predictable”
behaviour on X , a behaviour that is more favourable to us in terms of how easy it is to predict X .
If we know nothing beyond our constraints, however, we do not wish to artificially impose such a
simplification. We must therefore choose the worst case scenario, i.e. the most unpredictable model
possible: the one that maximises the entropy.

A very interesting result says the following: if a maximiser of the entropy subject to the k
expectation constraints exists, then it must be a k-parameter exponential family (in fact, the Ti
that appear in the expectation constraints will also appear in the formula for the density of the
specific exponential family). This explains why the exponential family features so prominently
in probability models, and why the members of the exponential family form the fundamental
examples used in much of statistics. �

Example 1.38 (Parsimony)

If we are given two different probability models f .�I �/ and g.�I /, depending on multi-
dimensional parameters � and  , respectively, both of which would satisfy equally well all the
constraints and conditions that the random phenomenon should satisfy, choose the one that depends
on the least effective number of parameters. For example, if � can range in some d -dimensional
set and  can range in some d 0-dimensional set, with d 0 < d , we choose g over f . The
principle of parsimony rests upon the idea that given different models that are adequate for the
same phenomenon, we should choose the one that is least complex. �

Still, there may be situations where a probability model cannot be unequivocally
selected by means of physical laws and/or scientific principles, or where we are
simply not willing to make a choice solely on the basis of a principle. In this case,
we may seek out empirical evidence in order to supplement our principled choice
of model, or in order to validate a model. For example, we may have observed n
independent realisations of the random variableX . By looking at the characteristics
of these n values we might be able to suggest a model that would appear fitting
to the form of the data, or at minimum be able to rule out some models whose
characteristics would be incompatible with what has been observed. The process
of investigating patterns in the observed data in order to select an appropriate
probability model is called exploratory data analysis.

1.5.1 Exploratory Data Analysis

Let x1; : : : ; xn be a data set comprised of n real values. These values constitute
the realisation of n independent and identically distributed random variables
X1; : : : ; Xn whose probability distribution has a density/frequency function f

which is unknown to us. Worse, still, we do not even know what class of distri-
butions f belongs to. In order to be able to select an appropriate probability model,
exploratory data analysis considers various graphical representations and numerical
summaries of the data x1; : : : ; xn that will allow us to gain an appreciation of the
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general form of f , along with some basic characteristics, that will hopefully guide
our model choice.

What are some basic aspects of the form of a probability distribution that we can
try to look for? Here are some of the most important characteristics that one ought
to take into consideration:
1. Location. The location of a distribution is generally understood to be a point on

the real line representing some centre of the distribution. The notion of a centre is
a vague concept that can be made precise in several different ways. For example,
it can be understood as a centre of mass (the mean, � D EŒX�), as a global
maximum (the mode, arg supx2X f .x/), or a point that splits the probability mass
in half (the median, m D inffx W F.x/ � 1=2g). Notice that a location may not
always be uniquely defined: though the mean is unique (when it exists), the mode
may not be (e.g. think of a distribution with two peaks of equal height).

2. Dispersion. The dispersion of a distribution is a measure of how concentrated
or diffuse the distribution is. Similarly to location, it can be formalised by
several different measures. Often one measures dispersion by quantifying how
concentrated the distribution is around a measure of location. For example, the
variance EŒ.X � �/2� is a classical measure of dispersion, that measures the
second moment of inertia of the distribution around the mean. It is not the only
one, though; for example, one may consider the mean absolute deviation (MAD),
EŒjX � �j�, where � D EŒX�. Or further yet, one may consider a measure of
dispersion that does not make explicit reference to the centre of a distribution.
For example, the interquartile range is defined as IQR D inffx W F.x/ �
3=4g � inffx W F.x/ � 1=4g; roughly speaking, it measures the length of the
most central interval supporting 50 % of the mass of the distribution.

3. Symmetry/Skewness. A density/frequency f is symmetric about a point x0 if
f .x0 � x/ D f .x0 C x/ for all x 2 X . A distribution may be symmetric,
mildly asymmetric (mildly skew) or strongly asymmetric (strongly skew). One
may measure the asymmetry of a distribution through the notion of skewness,

which is defined as: E


�
X��
�

�3
�

, where � D EŒX� and � D p
VarŒX�. If a

distribution is symmetric, then its skewness must be zero. When the skewness is
positive, we speak of a right-skew distribution (respectively, negative skewness
yields a left-skew distribution).

4. Tail Behaviour. The tails of a distribution are the values taken by its den-
sity/frequency f .x/ as x ! ˙1. Notice that since f is always positive and
integrates/sums to 1, it must be that limx!1 PŒjX j � x� D 0. The rate of decay
of PŒjX j � x� as x ! 1 is what determines its so-called tail behaviour. A light-
tailed distribution has a fast rate of decay (for example, exponential), and a heavy
tailed distribution has a slow rate of decay (for example, polynomial). A heavy
tailed distribution is such that the probability of observing an extreme value is
non-negligible. It might be that both the left and the right tails of a distribution
are heavy, but it might also be that only one of these two tails is heavy (Fig. 1.9).
If a candidate probability model for a random variable X does not share similar

location/dispersion/symmetry/tail properties as those observed for X , then it is not
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Fig. 1.9 Illustration of the notions of location, dispersion, skewness, and light/heavy tails. (a) Two
densities differing in location. (b) Two densities differing in dispersion. (c) Two densities differing
both in location and in dispersion. (d) Two asymmetric densities: one with positive skewness (red),
and one with negative skewness (blue). (e) A heavy tailed density (red) and a light tailed density
(blue). (f) Plots of the mapping x 7! R

1

x f .y/dy for the two densities on the left (e)
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a good model for the phenomenon described by X . What do we mean by “those
observed for X”? We mean that we can use the sample values x1; : : : ; xn in order
to gain some appreciation of these properties. We will do so quantitatively (using
numerical summaries) and qualitatively (using graphical summaries).

1.5.1.1 Numerical Summaries
We first introduce some useful notation: if x1; : : : ; xn are n real values, we denote by
x.j / the j th sample value, when these are ordered in increasing ordered (so x.1/ D
minfx1; : : : ; xng and x.n/ D maxfx1; : : : ; xng). Notice that this means that

x.1/ � x.2/ � : : : � x.n�1/ � x.n/:

To illustrate the notation, say that n D 4 and we have x1 D 5; x2 D 12; x3 D 2, and
x4 D 12. Then we write x.1/ D 2, x.2/ D 5, and x.3/ D x.4/ D 12. So, in this case,
x.1/ D x3, x.2/ D x1, x.3/ D x.4/ D x2 D x4.

With this notation under our belt, we begin by defining two numerical summaries
of the sample that can be used in order to gauge the location of the sample.

Definition 1.39 (Sample Mean andMedian)

Let x1; : : : ; xn be a collection of real numbers, called a sample. We define:
1. The sample mean as

Nx D 1

n

nX

iD1
xi :

2. The sample median as

M D

8
ˆ̂
<̂

ˆ̂
:̂

x� nC1
2

� if n is odd;

x. n2 /
C x. n2 C1/
2

otherwise:

Both of these characteristics have merits and drawbacks as descriptors of
location. The mean takes into account the magnitude of each observation when
determining location, and can be seen as the barycentre of the sample values.2

However, it can be strongly affected by the presence of a single very large (or
very small) value, which might distort the representativeness of the mean as a good
descriptor of location. On the other hand, the median does not take into account

2That is, if we took the line segment x.n/ � x.1/ and placed equal weights at the points x1; : : : ; xn,
then the point Nx is where the line segment would balance.
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the precise value of the observations, but simply their ordering, and can be seen as
the “middle” observation3 (or the average of the two middle observations, when the
sample size is even). In this sense, it is a cruder indicator of location. This can also
be an advantage, though: the median will not be sensitive to the presence of very
large (or very small) observations, since it only takes their ordering (and not their
magnitude) into account.

Exercise 15 1. Calculate the mean Nx and the medianM of the following data set:

9.2 11.5 9.7 11.0 8.5
9.8 10.0 12.1 10.5 10.1

2. Repeat your calculation when the observation 12.1 is replaced by 48.6.
3. Compare the values of Nx andM in part 1 and part 2. What do you observe?

Exercise 16 Show that
1. The function f .
/ D Pn

iD1.xi � 
/2 has a unique minimum at Nx.
2. The function g.
/ D Pn

iD1 jxi � 
 j is minimised at M . Warning: g is not
differentiable at 
 whenever 
 D xi for i D 1; : : : ; n.

Next, we consider several numerical summaries that can be used in order to
ascertain how disperse the underlying distribution might be on the basis of the
sample values x1; : : : ; xn.

Definition 1.40 (Sample Variance andMAD)

Let x1; : : : ; xn be a collection of real numbers, called a sample. We define:
1. The sample variance as

O�2 D 1

n

nX

iD1
.xi � Nx/2

(the sample standard deviation is defined as O� D pO�2).
2. The sample MAD as

MAD D 1

n

nX

iD1
jxi � Nxj :

Exercise 17 Show that we may also write O�2 D 1
n

Pn
iD1 x2i � Nx2. Comment on why

this formula may be more useful.

3In the sense that half the observations must be greater than or equal to the median, and half the
observations must be less than or equal to the median.
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The sample variance expresses how concentrated or spread out the observations
are relative to their sample mean. From a physics point of view, it represents the
second moment of inertia around the mean.4 As was the case with the sample mean,
the sample variance can also be substantially inflated when there is a single extreme
observation in the sample. This will create an impression of much higher dispersion,
when in fact the sample may be fairly well concentrated, with the exception of a
single rogue observation. The MAD, on the other hand, is somewhat less affected in
such circumstances, since it is formed by summing absolute distances, rather than
squared distances (the square would disproportionally inflate the contribution of an
extreme observation to the sum). One can show that when there are no extreme
observations, the variance is a better indicator of dispersion; in the presence of
extreme observations, the MAD is preferred. How can we judge which observations
are extreme? The pertinent notion is that of outliers, whose presence is in fact an
indicator of heavy tails.

Definition 1.41 (Quartiles, IQR and Outliers)

Let x1; : : : ; xn be a sample of n real values, and let

x.1/; : : : ;M; : : : ; x.n/

be the ordered sample, where M is the median. We define:
1. The first quartile,Q1, as the median of the ordered sub-sample x.1/; x.2/; : : : ;M .
2. The second quartile,Q2 as being the medianM ,Q2 D M .
3. The third quartile, Q3, as the median of the ordered sub-sample M; : : : ; x.n�1/;
x.n/.

4. The inter quartile range (IQR) as IQR D Q3 �Q1.
5. An outlier as an observation falling outside the interval

�
Q1 � 3

2
IQR ; Q3 C

3
2
IQR



.

Just as the median can be interpreted as the “middle” observation, the first
quartile can be seen as the “first quarter” observation (and the third quartile can
be seen as the “third quarter” observation5). Half of the sample observations lie
within the interval ŒQ1;Q3�. In some sense, the interval ŒQ1;Q3� is the most central
interval containing 50 % of the observations. The length of this interval, the IQR,
can also be used as an indicator of dispersion. This length reflects how spread out
the central portion of the sample is. Finally, the notions of quartiles and IQR can
be used in order to define what would qualify as an “extreme” observation (an

4That is, if we took the line segment x.n/ � x.1/ and placed equal weights at the points x1; : : : ; xn,
then tried to rotate the segment around the point Nx, then the variance is an indicator of how much
force we would need to apply. If the observations are spread far from Nx, then we need a lot of force
(high sample variance); but if the observations are close to Nx, then our task is easier (low sample
variance).
5To be precise: 25 % of the sample observations are less than or equal to Q1, and 25 % of the
observations are greater than or equal toQ3.
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outlier). In some sense, extreme observations are removed from the bulk of the other
observations. The definition of an outlier may seem somewhat arbitrary, but there
are deeper mathematical reasons that support this definition.

Exercise 18 Let x1; : : : ; xn be a sample. What are the median M and quartiles Q1

andQ3 when n D 12, 13, 14 or 15? A more tedious generalisation: find the general
formulae (for n arbitrary) for the first and third quartile, Q1 and Q3. Hint: these
formulae are of the form

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

‹ n 	 0 mod 4

‹ n 	 1 mod 4

‹ n 	 2 mod 4

‹ n 	 3 mod 4:

We conclude our brief discussion of numerical summaries by considering a
measure of asymmetry: the sample skewness.

Definition 1.42 (Sample Skewness)

Let x1; : : : ; xn be a sample of n real values. We define the skewness of this sample
as

SK D
1
n

Pn
iD1.xi � Nx/3

�
1
n

Pn
iD1.xi � Nx/2	3=2

:

If both the numerator and denominator are equal to zero (which can occur in
discrete samples), then SK is undefined.

As was earlier discussed, one can look at whether SK is positive, negative, or
close to zero, in order to judge whether the distribution generating the sample had
a right or left asymmetry, or was indeed symmetric. A drawback is that the sample
skewness may not be a good proxy for the true skewness of the distribution, and
defining good bounds on “how large” the skewness should be in order to declare
that the distribution is asymmetric is a subtle problem that requires methods from
later chapters. Instead of embarking on such a project at this point, we turn to the
use of graphical summaries, which will allow us to obtain an intuitive appreciation
of the asymmetry in the data, without needing to resort to elaborate calculations.

1.5.1.2 Graphical Summaries
We now turn to two simple graphical representations of the sample x1; : : : ; xn
that can help us visualise the form of the underlying density/frequency f . The
histogram and the boxplot. A histogram is a proxy for the unknown density built
out of the observed sample values x1; : : : ; xn. The idea is simple: if there are many
observations falling in some interval I , then the density should be relatively high on
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that interval. Therefore, if we partition the x-axis into disjoint intervals, and define
a step function that is constant over these intervals (and such that the height of each
step is proportional to the percentage of observations lying in the corresponding
interval), we will have constructed a step function approximation to the unknown
density.

Definition 1.43 (Histogram)

Let x1; : : : ; xn be a collection of n real values and h > 0 be a constant. Let
fIj gj2Z be a regular partition of R comprised of intervals of length h > 0,

Ij D
h
� C .j � 1/h; � C jh

�
; j 2 Z;

where � 2 R is some fixed real number. The histogram of x1; : : : ; xn with bin
width h > 0 and origin � is defined to be the graph of the function:

y 7! histx1;:::;xn .y/ D 1

h

X

j2Z
1fy 2 Ij g 1

n

nX

iD1
1fxi 2 Ij g:

Notice that the histogram is indeed a reasonable step function approximation
of f : by its definition, the function histx1;:::;xn.y/ takes non-negative values only,
and the integral of the function histx1;:::;xn .y/ is equal to 1. In addition, the integral
of histx1;:::;xn .y/ over an interval Ij gives us the proportion of sample values that
fell inside Ij . It therefore has the properties of a probability density function.
Furthermore,

E

"Z

Ij

histX1;:::;Xn.y/dy

#

D 1

n

nX

iD1
PŒXi 2 Ij � D

Z

Ij

f .y/dy:

In this sense, the histogram is some sort of Riemann-sum-proxy of the density
f , constructed using the values of the sample. It can be used in order to gauge
properties such as location, dispersion, symmetry and tail behaviour via a visual
inspection.

I Remark 1.44 (Bin Width) Depending on the choice of h a histogram may be
more or less informative about the structure of the sample at hand. Consider the two
extremes, h ! 0 and h ! 1. In the first case, the intervals eventually become
so short that any interval contains either no observations or a single observation,
thus simply highlighting where each observation lies on the x-axis (see Fig. 1.10e,
p. 36). In the second case, all the observations are eventually contained in a single
huge interval, and the histogram simply informs us that there is a large region that
contains all observations (see Fig. 1.10f, p. 36). Reasonable values of h allow us to
visualise the structure of the sample. In principle, the value of h should depend on
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Fig. 1.10 Histograms for different samples (and, correspondingly, different bin widths) compared
with the density from which the samples were drawn. (a) Density ofN.0; 1/ (in red) and histogram
for a random sample of size 20 from an N.0; 1/ (in black). (b) Density of N.0; 1/ (in red) and
histogram for a random sample of size 100 from an N.0; 1/ (in black). (c) Density of 
22 (in red)
and histogram for a random sample of size 20 from a 
22 (in black). (d) Density of 
22 (in red) and
histogram for a random sample of size 100 from a 
22 (in black). (e) Density of 
22 (in red) and
histogram for a random sample of size 20 from a 
22 (in black) when the bin width h is taken to be
very small. (f) Density of 
22 (in red) and histogram for a random sample of size 20 from a 
22 (in
black) when the bin width h is taken to be very large
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the sample size n: the larger n, the smaller h needs to be; intuitively, this means
that when we have more observations, we can try to investigate finer aspects of the
structure of the sample x1; : : : ; xn. The precise requirement is that we must have

that h
n!1�! 0 and hn

n!1�! 1. There is a lot of theory on what the optimal h is as
dependent on n, but we will not consider this here. A simple (but often suboptimal)
choice is to take h D n�1=2. A data-dependent choice is the so-called Freedman–
Diaconis choice of h D 2IQR � n� 1

3 .

I Remark 1.45 (Bin Centres) Notice that for any given h > 0, there are
several possible histograms depending on the choice of �. Unfortunately, there is
no unequivocal means of determining what the “right” � is. The analyst must either
try several values or at minimum keep in mind that the histogram should not be
over-interpreted, as its form may be perturbed by changes in � (e.g. because by a
small shift in � some observations that fell in the kth interval may now fall in the
.k C 1/th interval, and so on).

Histograms can be criticised for having some noticeable drawbacks. Chief among
these is the need to choose a bin width h and an origin �. Another drawback is that
they can sometimes become misleading if over-interpreted. For example, looking
at the histogram in Fig. 1.10c (p. 36) we see a slight pattern of asymmetry. Is this
to be taken as an indication that the underlying distribution is asymmetric? Not
necessarily, since a histogram can rarely be perfectly symmetric due to sampling
variation. The message here is that we should not try to extract finer information
than what our graphical summary is really able to offer. Histograms may deceivingly
appear to be interpretable in more detail than they actually are.

A different type of graphical display that allows us to probe the location, scale,
asymmetry and tails of a density is the boxplot. In contrast to the histogram, the
boxplot is a much coarser description of the sample structure and does not require
the specification of any tuning parameters. It simply marks out the points on the x-
axis where some key numerical summaries of a sample are located. This is usually
done in the form of a box, which explains the name of the boxplot:

Definition 1.46 (Boxplot)

Let x1; : : : ; xn be a collection of n real values. Let:
1. M be the median, Q1 be the first quartile, and Q3 be the third quartile of

fx1; : : : ; xng.
2. W1 D min1�j�nfxj W xj � Q1 � 1:5 � IQRg & W2 D max1�j�nfxj W xj �
Q3 C 1:5 � IQRg.

3. O D fi 2 f1; : : : ; ng W xi … ŒW1;W2�g.
The boxplot of x1; : : : ; xn is an annotation of the valuesM ,Q1,Q3,W1,W2, and
fxj W j 2 Og on the real line. The following is a standard annotation:
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The definition is a little difficult to visualise, but the picture says it all: we
annotate the median (M ), the first and third quartiles (Q1 and Q3), and the first
and last observation (W1 andW2) to fall within the interval ŒQ1 � 1:5 � IQR;Q3 C
1:5�IQR� (these two observations are called the whiskers). Any observations falling
outside of the whiskers are marked separately and are outliers (the fxj W j 2 Og).
Since W1 � Q1 � M � Q3 � W2, we usually omit the explicit annotation, since
by their ordering it is clear which component of the boxplot denotes which value.

The boxplot illustrates the location of the sample by means of the median. It
also gives an indication of the underlying dispersion by presenting the quartilesQ1

and Q3 (and their distance) as well as the whiskers (W1 and W2). Large distances
between these values indicate large dispersion. Asymmetries can be probed by
looking at the positioning of the quartiles and of the whiskers relative to the median.
If these are located roughly symmetrically opposite of the median on either side,
then we have a roughly symmetric structure. If the distance of one of the quartiles
or one of the whiskers from the median is greater than that of the other, then we have
skewness towards the side where the distance is greater. Finally a boxplot allows us
to detect the presence of heavy tails, by looking at how many outliers there are, and
on which tail of the distribution these are. Again, it is easiest to appreciate different
forms of boxplots by looking at some pictures (see Fig. 1.11, p. 39).

Exercise 19 The following data are on the maximal weight (in tons) that could be
supported by steel cables produced at a factory:

10.1 12.2 9.3 12.4 13.7 11.1 13.3
10.8 11.6 10.1 11.2 11.4 11.8 7.1
12.2 12.6 9.2 14.2 10.5

1. Represent the data in a histogram with bin width h D 1 and origin � D 10.
Construct a second histogram, this time with h D 2 and � D 11 and compare the
two.

2. What is the approximate weight that at least 3/4 of the cables can support?
3. Find the third quartile.
4. Construct a box plot. Are there any outliers to be noticed? Where does one find

the value determined in part (2) in this diagram?

Exercise 20 The following table contains the results of rugby matches of the
eleventh and twelfth match days (November 2014) of the French rugby first (“Top
14”) and second (“Pro D2”) division. The home team is always mentioned first.
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Fig. 1.11 Three boxplots corresponding to three different samples. In each case, the ticks on the
axis below the boxplot represent the actual sample values from which the boxplot was constructed.
Some noticeable aspects of the three samples based on the boxplots are: the first sample seems to
present a high degree of symmetry. Both of the remaining samples show a clear asymmetry, and
they are both skewed to the right (positive skewness). The third sample appears to present heavy
right tails, as indicated by the presence of multiple outliers

Top 14 D2
Montpellier–Brive 10–25 Albi–Agen 22–9
Castres–Toulon 22–14 Béziers–Aurillac 14–19
Clermont–Stade Français 51–9 Colomiers–Pau 50–10
Grenoble–Lyon 34–30 Montauban–Tarbes 31–13
Oyonnax–La Rochelle 37–9 Biarritz–Massy 21–3
Racing Métro–Bayonne 27–10 Dax–Narbonne 12–3
Bordeaux Bègles–Toulouse 20–21 Perpignan–Bourgoin 42–0

Carcassonne–Mont-de-Marsan 17–28
Toulon–Clermont 27–19 Biarritz–Agen 42–18
Castres–Racing Métro 9–14 Albi–Carcassonne 34–22
La Rochelle–Bayonne 19–19 Aurillac–Colomiers 20–13
Lyon–Montpellier 23–20 Bourgoin–Montauban 14–20
Oyonnax–Bordeaux Bègles 28–23 Massy–Dax 50–13
Toulouse–Grenoble 22–25 Mont-de-Marsan–Béziers 32–18
Stade Français–Brive 20–17 Narbonne–Tarbes 36–23

Pau–Perpignan 22–19
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1. We wish to compare the performance of the teams in the first and second division.
To this aim, calculate the pertinent statistics (mean, median, quartiles, EQR, etc.)
for the score difference, as well as for the total points scored in each match, for
each of the two division.

2. Construct box plots, and juxtapose them, for the sum and difference of points in
each division, respectively. What conclusions can we draw?



2Sampling from Probability Distributions

As mentioned in the introduction, statistical inference deals with the problem of
making inferences from data in the presence of uncertainty. The mathematical
framework for this endeavour is provided by probability models. At a general level,
an inferential task can be cast as:
1. A random phenomenon X is assumed to be described by a regular parametric

probability model fF� W � 2 ‚g. The functional form of each F� is completely
known, for any value of the parameter � 2 ‚ � R

p .
2. We observe a sample from a specific version of this probability model. That is, we

observe n independent and identically distributed realisationsX1; : : : ; Xn having
distribution F.xI �/, for some � 2 ‚. Though we know that our observations
stem from a version of the parametric regular model, we do not know the precise
� that generated the data (i.e. we know the model, but we do not know which
member of the model generated the data).

3. We wish to use the sample .X1; : : : ; Xn/ at hand in order to make statements
about the true value of � that generated it, and quantify the uncertainty attached
to those statements.

2.1 Sampling, Statistics and Sufficiency

Since the sample is all we have, anything we do will essentially be a function of the
sample, say T .X1; : : : ; Xn/. Such a function is called a statistic.

Definition 2.1 (Statistic)

Let X be a sample space. Given n � 1, a statistic is a function T W X n ! R.

Notice that the function T cannot depend on the parameter � , since we do not
know the latter. If the function T also depends on � , it cannot be called a statistic.

Since a statistic T W X n ! R reduces a collection of n numbers to a single
number, it cannot be injective. As a result T .X1; ::; Xn/ will in general provide less
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information about � than the complete data .X1; : : : ; Xn/ will. For some models,
however, we are able to choose a statistic T such that T .X1; : : : ; Xn/ is equally
informative about � as .X1; : : : ; Xn/ is. Such a statistic is called a sufficient statistic
(because it suffices to use T .X1; : : : ; Xn/ in lieu of .X1; : : : ; Xn/).

Definition 2.2 (Sufficiency)

Let X1; : : : ; Xn
i id� f� . A statistic T W X n ! R is called sufficient for the

parameter � , if PŒX1 � x1; : : : ; Xn � xnjT D t � does not depend on � , for all
.x1; : : : ; xn/

> 2 R
n and all t 2 R.

The intuitive interpretation of this definition is: given the value of T .X1; : : : ; Xn/,
the conditional distribution of .X1; : : : ; Xn/ no longer depends on � . Therefore,
knowing .X1; : : : ; Xn/ in addition to knowing T .X1; : : : ; Xn/ cannot furnish any
more or any less information about which � generated the data. The definition
is usually hard to verify, but the following equivalent condition is much easier to
verify:

Theorem 2.3 (Fisher–Neyman Factorisation) Suppose that .X1; : : : ; Xn/ has
a joint density/frequency function fX1;:::;Xn.x1; : : : ; xnI �/, � 2 ‚. A statistic T W
X n ! R is sufficient for � if and only if there exist g W R � ‚ ! R and
h W X n ! R such that

fX1;:::;Xn.x1; : : : ; xnI �/ D g.T .x1; : : : ; xn/; �/h.x1; : : : ; xn/:

Proof The proof in the continuous case requires the use of measure theory.
Therefore, we will only give the proof in the case where the Xi are discrete random
variables. Notice that if the Xi are discrete, then T .X1; : : : ; Xn/ must also be
discrete. Suppose that T is sufficient. Then,

fX1;:::;Xn .x1; : : : ; xnI �/ D P� ŒX1 D x1; : : : ; Xn D xn�

D P� ŒX1 D x1; : : : ; Xn D xn; T D T .x1; : : : ; xn/�

CP� ŒX1 D x1; : : : ; Xn D xn; T ¤ T .x1; : : : ; xn/�
„ ƒ‚ …

D0

D P� ŒTDT .x1; : : : ; xn/�P� ŒX1Dx1; : : : ; Xn D xnjT D T .x1; : : : ; xn/�

Since T is sufficient, the second term is independent of � and so the Fisher–Neyman
factorisation follows. To prove the converse, suppose that fX1;:::;Xn.x1; : : : ; xnI �/ D
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g.T .x1; : : : ; xn/; �/h.x1; : : : ; xn/. Then,

P� ŒX1 D x1; : : : ; Xn D xnjT D t �

D P� ŒX1 D x1; : : : ; Xn D xn; T D t �

P� ŒT D t �

D P� ŒX1 D x1; : : : ; Xn D xn�

P� ŒT D t �
1fT .x1; : : : ; xn/ D tg

D P� ŒX1 D x1; : : : ; Xn D xn�1fT .x1; : : : ; xn/ D tg
P

y12X : : :
P

yn2X P� ŒX1 D y1; : : : ; Xn D yn�1fT .y1; : : : ; yn/ D tg

D g.T .x1; : : : ; xn/I �/h.x1; : : : ; xn/1fT .x1; : : : ; xn/ D tg
P

y12X : : :
P

yn2X g.T .y1; : : : ; yn/I �/h.y1; : : : ; yn/1fT .y1; : : : ; yn/ D tg

D g.t I �/h.x1; : : : ; xn/1fT .x1; : : : ; xn/ D tg
g.t I �/Py12X : : :

P
yn2X h.y1; : : : ; yn/1fT .y1; : : : ; yn/ D tg

D h.x1; : : : ; xn/1fT .x1; : : : ; xn/ D tg
P

y12X : : :
P

yn2X h.y1; : : : ; yn/1fT .y1; : : : ; yn/ D tg :

and the latter does not depend on � because neither h (by its definition) nor T (being
a statistic) depend on � . ut

Example 2.4 (Estimating the Bias of a Coin)

Let X1; : : : ; Xn
iid� Bern. p/. Then,

fX1;:::;Xn .x1; : : : ; xn/ D
nY

iD1

fXi .xi / D p.
Pn
iD1 1fxiD1g/.1� p/.n�

Pn
iD1 1fxiD1g/:

Therefore, the Fisher–Neyman factorisation is satisfied with T .X1; : : : ; Xn/ D Pn
iD1 1fXi D

1g D Pn
iD1 Xi (the last equality is because each Xi is 0 or 1), g.t; p/ D pt .1 � p/n�t and

h.x1; : : : ; xn/ D 1. It follows that
Pn

iD1 Xi is sufficient for p. Intuitively: knowing the total
number of heads is all that matters as far as learning about p. Knowing the precise order in which
these heads came up is irrelevant as far as p is concerned. �

When applied to a sample, any statistic (whether sufficient or not) becomes itself
a random variable, one that has a distribution of its own. This is called a sampling
distribution, because it arises as the result of random sampling.
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Definition 2.5 (Sampling Distribution)

Let X1; : : : ; Xn
i id� F and T W X n ! R be a statistic. The sampling distribution

of T under the distribution F is the probability distribution

FT .t/ D PŒT .X1; : : : ; Xn/ � t �; t 2 R:

I Remark 2.6 (Notation) We always consider statistics as applied to a sample,
and so we will very often suppress the dependence of the statistic onX1; : : : ; Xn, and
write simply T instead of T .X1; : : : ; Xn/. In this notation, the sampling distribution
of T under F is FT .t/ D PŒT � t �.

Exercise 21 Let X1; : : : ; Xn
i id� Unif .0; �/. Show that T .X1; : : : ; Xn/ D X.n/ is a

sufficient statistic for � , and find its sampling distribution.

Exercise 22 Let X1; : : : ; Xn
i id� Pois.�/. Show that T .X1; : : : ; Xn/ D Pn

iD1 Xi
is a sufficient statistic for �, and find its sampling distribution

Note that in the definition of the sampling distribution of T we specified under
which distribution it occurs. This needs to be done, since changing the distribution
of X1; : : : ; Xn to some G instead of F will also change the sampling distribution
of T . In this chapter we will investigate precisely the dependence of this sampling
distribution on the form of T and the form of F . Specifically:
• We will investigate some special forms of T and some special cases of F where

the sampling distribution is known exactly.
• In more general situations, when the form of T and F might not allow for

a straightforward determination of the sampling distribution, we will try to
give ways of establishing an approximate distribution (and the mathematical
framework required to make sense of “approximate distribution”).
The statistics T that we will focus on will be sufficient statistics, and the models

F will be members of exponential families.

2.2 Sampling from a Normal Distribution

We begin with the simplest possible problem: establishing the sampling distribution
of the statistics

NX D 1

n

nX

iD1
Xi & S2 D 1

n � 1
nX

iD1
.Xi � NX/2

when the sample X1; : : : ; Xn is a random sample from the normal distribution, i.e.

X1; : : : ; Xn
i id� N.�; �2/. Note that NX is simply the empirical mean, while S2

is n=.n � 1/ times the empirical variance (the reason for using S2 instead of the
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empirical variance will be seen very shortly). Though this problem seems relatively
elementary, we will see that, for many other distributions, and for many other types
of statistics, we can reduce the problem of determining the sampling distribution
of those statistics to (approximately) a problem involving empirical means and
variances of (approximately) normal random variables. We summarise the sampling
distribution of NX and S2 in the next proposition.

Proposition 2.7 (Gaussian Sampling) Let X1; : : : ; Xn
i id� N.�; �2/. Then,

1. The joint distribution of X1; : : : ; Xn has probability density function,

fX1;:::;Xn.x1; : : : ; xn/ D
�

1

2��2

�n=2
exp

(

� 1

2�2

nX

iD1
.xi � �/2

)

:

2. The sample mean satisfies NX � N.�; �2=n/.
3. The random variables NX and S2 are independent.

4. The random variable S2 satisfies
n � 1
�2

S2 � 
2n�1.

Proof For part (1), it suffices by independence to take the product of the marginal
N.�; �2/ densities in order to arrive at the expression for the joint density.

For part (2), the fact that the random variables X1; : : : ; Xn are independent
normal variables implies that

Pn
iD1 Xi is also a normal random variable, with mean

n� and variance n�2 (by Corollary 1.35, p. 25). It follows that NX D n�1Pn
iD1 Xi �

N.�; �2=n/.
For part (3), we note that if we can prove the independence of NX from X1 �

NX; : : : ; Xn � NX then it will immediately follow that NX and S2 are independent. To
show this, write

Y1 D NX & Yj D Xj � NX; j D 2; : : : ; n:

Notice that the transformation .X1; : : : ; Xn/ 7! .Y1; : : : ; Yn/ is a linear bijection
R
n ! R

n because

Y1 D NX X1 D Y1 �Pn
iD2 Yi

Y2 D X2 � NX X2 D Y2 C Y1

Y3 D X3 � NX X3 D Y3 C Y1
:::

:::

Yn D Xn � NX Xn D Yn C Y1

Since the transformation is linear, its Jacobian is a constant that does not depend on
.X1; ::; Xn/ (it is in fact equal to 1=n). It follows from our results on transformations
of random variables (Theorem 1.33, p. 23) that the joint density of .Y1; : : : ; Yn/ is
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given by

fY1;:::;Yn.y1; : : : ; yn/ D nfX1;:::;Xn.x1; : : : ; xn/

D n

.2��2/
n=2

exp

(

�1
2

nX

iD1

�xi � �

�

�2
)

D n

.2��2/
n=2

exp

(

�1
2

nX

iD1

�
xi � Nx C Nx � �

�

�2
)

:

But
Pn

iD1.xi � Nx/ D Pn
iD1 xi �n Nx D n Nx�n Nx D 0 so, on the one hand,

Pn
iD1.xi �

Nx/. Nx � �/ D 0 and, on the other hand, .x1 � Nx/ D �Pn
iD2.xi � Nx/. Using these

two identities gives us:

fY1;:::;Yn .y1; : : : ; yn/

D n

.2��2/
n=2

exp

(

� 1

2�2

 
nX

iD1

.xi � Nx/2 C n. Nx � �/2

!)

D n

.2��2/
n=2

exp

(

� 1

2�2

 

.x1 � Nx/2 C
nX

iD2

.xi � Nx/2 C n. Nx � �/2

!)

D n

.2��2/
n=2

exp

8
<

:
� 1

2�2

2

4

 
nX

iD2

.xi � Nx/
!2

C
nX

iD2

.xi � Nx/2 C n. Nx � �/2

3

5

9
=

;

D n

.2��2/
n=2

exp

8
<

:
� 1

2�2

2

4

 
nX

iD2

yi

!2

C
nX

iD2

y2i C n.y1 � �/2

3

5

9
=

;

D
p
n

.2��2/
.n�1/=2

exp

8
<

:
� 1

2�2

2

4

 
nX

iD2

yi

!2

C
nX

iD2

y2i

3

5

9
=

;

„ ƒ‚ …
f1.y2;:::;yn/

1

.2��2=n/
1=2

exp

�

� 1

2�2=n

�
.y1 � �/2



�

„ ƒ‚ …
f2.y1/

Notice that f2.y1/ is the marginal density of Y1 D NX � N.�; �2=n/, as proven
in part (2). Therefore, if we integrate both sides with respect to y1, we obtain that
f2.y2; : : : ; yn/ is the joint density of .Y2; : : : ; Yn/. We thus conclude that

fY1;:::;Yn.y1; : : : ; yn/ D fY1.y1/fY2;:::;Yn .y2; : : : ; yn/:

Consequently, Y1 D NX is independent of Y2 D X2 � NX; : : : ; Yn D Xn � NX . Since
.X1 � NX/ D �Pn

iD2.Xi � NX/, it follows that Y1 is also independent of X1 � NX .
This proves (3), i.e. that NX and S2 are independent.
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To prove (4) we note that

nX

iD1
.Xi � �/2 D

nX

iD1
.Xi � NX/2 C 2

nX

iD1
.Xi � NX/. NX � �/

„ ƒ‚ …
D0

C n. NX � �/2

D .n � 1/S2 C n. NX � �/2

H)
nX

iD1

�
Xi � �
�

�2

„ ƒ‚ …
Q

D .n � 1/

�2
S2

„ ƒ‚ …
V

C
 NX � �

�=
p
n

!2

„ ƒ‚ …
W

Since we have proven in part (3) that S2 and NX are independent, it follows that the
MGF ofQ must be the product of the MGFs of V and ofW (again by Lemma A.10,
p. 168):

MQ.t/ D MV .t/MW .t/:

From part (2) we know that
NX��
�=

p
n

� N.0; 1/ and thus W � 
21 (as the square of a
standard normal random variable, see Eq. (1.4), p. 21) and so

MW .t/ D .1 � 2t/�1=2:

We also know that Xi��
�

i id� N.0; 1/, so it is also true that
�
Xi��
�

�2 i id� 
21. Therefore,

the MGF of Q is equal to:

MQ.t/ D
nY

iD1
.1� 2t/�1=2 D .1� 2t/�n=2:

Summarising, we have that

.1 � 2t/�n=2
„ ƒ‚ …

MQ.t/

D MV .t/.1 � 2t/�1=2
„ ƒ‚ …

MW .t/

;

from which it follows that

MV .t/ D .1 � 2t/�.n�1/=2:

This is the MGF of the 
2n�1 distribution. Since the MGF completely determines a
distribution (Proposition A.9, p. 165), this proves part (4) and completes the proof.

ut

The following follows immediately from the theorem:
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Corollary 2.8 (Moments for Normal Sampling) Let X1; : : : ; Xn
i id� N.�; �2/.

Then,

EŒ NX� D �; Var. NX/ D �2

n
; E

�
S2

 D �2; Var.S2/ D 2�4

n � 1 :

This last result explains why we used the factor .n � 1/�1 instead of n�1 in the
definition of S2. This definition gives us a statistic whose expectation is equal to the
true variance. Finally, we mention here a result that we will find quite useful later.

Theorem 2.9 (Student’s Statistic and Its Sampling Distribution) Let

X1; : : : ; Xn
i id� N.�; �2/. Then,

NX � �

S=
p
n

� tn�1:

Here tn�1 denotes Student’s distribution with n � 1 degrees of freedom.

Definition 2.10 (Student’s t Distribution)
A random variable X is said to follow Student’s t distribution with parameter
k 2 N (called the number of degrees of freedom), denoted X � tk , if,

fX.xI k/ D 	
�
kC1
2

	

	
�
k
2

	p
k�

�

1C x2

k

�� kC1
2

;

Assuming k > 2, the mean and variance of X � tk are given by

EŒX� D 0; VarŒX� D k

k � 2 :

The mean is undefined for k D 1 and the variance is undefined for k � 2. The
moment generating function is undefined for any k 2 N.

Proof of Theorem 2.9 LetZ D . NX ��/=.�=pn/ and V D .n�1/S2=�2, and note
that

T D Z
q

V
n�1

D
NX � �

S
p
n
:
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Thus, to prove the theorem, we will find the density of T . To this aim, we observe
that by Proposition 2.7 (p. 45) we have
1. Z is a standard normal random variable.
2. V is a 
2n�1 random variable.
3. Z and V are independent.
We will first find the joint density of .T; V /, and then integrate to find the marginal
of T . To this aim, consider the transformation

g W .Z; V / 7! .T; V / D
 

Z
p
V=.n� 1/ ; V

!

whose inverse is given by

g�1 W .T; V / 7!
 

T

r
V

n � 1 ; V
!

and has a corresponding upper triangular Jacobian

Jg�1 D
 p

V=.n� 1/ T V�1=2

2
p
.n�1/

0 1

!

) det.Jg�1 .t; v// D
r

v

n � 1
:

Since Z and V are independent, it follows that

fZ;V .z; v/ D fZ.z/fV .v/ D 1

2
n
2 �

1
2 	
�
n�1
2

	v
n�1
2 �1e� 1

2 .vCz2/:

The joint density of .T; V / is thus given by

fT;V .t; v/ D fZ;V .g
�1.t; v//jdet.Jg�1 .t; v//j

D 1

2
n
2 �

1
2 	
�
n�1
2

	v
n�1
2 �1e� 1

2 .vCv t2

n�1 / �
� v

n � 1

� 1
2

D 1

2
n
2

p
�.n � 1/	

�
n�1
2

	 � v n�2
2 e� v

2 .1C t2

n�1 /:

It now remains to integrate out v, and find the marginal density of T :

fT .t/ D 1

2
n
2 	
�
n�1
2

	p
.n � 1/�

Z

e
� v
2

�
t2

n�1C1
�

v
n�2
2 dv:
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Putting

y D v

2

�
t2

n � 1 C 1

�

;

we obtain

v D 2y
�

t 2

n�1 C 1
� and dv D 2

�
t 2

n�1 C 1
� ;

and thus

fT .t/ D 1

2
n
2 	
�
n�1
2

	p
.n� 1/�

�
Z

e�y �
"

.2y/

�
t 2

n� 1
C 1

�
�1
# n�2

2

� 2
�

t 2

n� 1
C 1

�
�1

dy

D 1

2
n
2 	
�
n�1
2

	p
.n� 1/�

�
�

t 2

n� 1
C 1

�
�

n
2

� 2 n2 �
Z

y
n�2
2 e�ydy

D 	
�
n
2

	

	
�
n�1
2

	 � 1p
.n� 1/�

�
�

t 2

n� 1
C 1

�
�

n
2

�
Z

1

	
�
n
2

	 � y n
2 �1e�ydy

D 	
�
n
2

	

	
�
n�1
2

	 � 1p
.n� 1/�

�
�

t 2

n� 1
C 1

�
�

n
2

:

where the integral in the penultimate line is equal to 1, being the integral of a
	.n=2; 1/ density function. ut

2.3 Sampling from an Exponential Family

In the previous paragraph we were able to determine the joint distribution of a
normal random sample X1; : : : ; Xn, the sampling distribution of two key statistics,
and the moments of these two key statistics. What if the distribution we are sampling
from is not normal, but binomial, or Poisson, or exponential? More generally: what
if the sample X1; : : : ; Xn comes from some other exponential family? In other

words, let X1; : : : ; Xn
i id� f , where

f .x/ D exp

(
kX

iD1
�iTi .x/� 
.�1; : : : ; �k/C S.x/

)

; x 2 X :

1. Is it possible to find the joint distribution of a sample .X1; : : : ; Xn/?
2. Is it possible to find the exact moments of some key statistics?
3. Is it possible to find the exact sampling distribution of some important statistics?

The next theorem gives an affirmative answer to the first two questions. Unfor-
tunately, the answer to the last question is: it’s complicated. For simplicity, we will



2.3 Sampling from an Exponential Family 51

focus on 1-parameter exponential families, but the results can easily be suitably
generalised to the k-parameter case.

Proposition 2.11 (Sampling from an Exponential Family) Let X1; : : : ; Xn
i id�

f , where

f .x/ D exp f�T .x/ � 
.�/C S.x/g ; x 2 X

where � 2 ˆ � R, be a density of a 1-parameter exponential family form.
Then:
1. The joint density of .X1; : : : ; Xn/ is of a 1-parameter exponential family form,

given by

fX1;:::;Xn.x1; : : : ; xn/ D exp

(

��.x1; : : : ; xn/� n
.�/C
nX

iD1

S.xi /

)

; xi 2 X ;

where

�.x1; : : : ; xn/ D
nX

iD1
T .xi /:

2. If ˆ is open, then 
 is infinitely differentiable, and

EŒ�.X1; : : : ; Xn/� D n
 0.�/ < 1 and VarŒ�.X1; : : : ; Xn/� D n
 00.�/ < 1:

I Remark 2.12 The theorem demonstrates why � is a key statistic that we are
interested in: by the Fisher–Neyman factorisation theorem we can immediately see
that � is sufficient for � (if � D �.�/ for some 1-1 mapping �.�/, then it is clear that
� is also sufficient for �).

I Remark 2.13 The sampling distribution of the sufficient statistic � is still of a
1-parameter exponential family form, with the same natural parameter � and with
the identity as a natural statistic, i.e. it is of the form

f�.t/ D expf�t �A.�/C B.t/g;

for some A W ˆ ! R and B W R ! R (we will not prove this because it
requires measure theory). However, an explicit general form of the density cannot
be given (i.e. we cannot find a general formula for the form of the functions A
and B). For a simple general formula, we will need to resort to approximations of
this sampling distribution, and this we do in the next section. Nevertheless, we can
indeed determine general formulae for the mean and variance of �.X1; : : : ; Xn/.
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I Remark 2.14 The fact that 
 is infinitely differentiable when ˆ is open
(conclusion 2 of the Proposition) will be taken for granted for the remainder of
the text.

Proof of Proposition (2.11) Part (1) is immediate from independence and from the
form of a 1-parameter exponential family. To prove (2), we first calculate the MGF
of T .Xi/, some i � n.

MT .u/ D
Z

X
expfuT .x/g expf�T .x/� 
.�/C S.x/gdx

D expf
.u C �/� 
.�/g
Z

X
expf.u C �/T .x/ � 
.u C �/C S.x/gdx:

Since ˆ is open, there exists an � such that .u C �/ 2 ˆ if juj < �. Thus u C � is a
valid parameter when juj < �, yielding

R
X expf.uC�/T .x/�
.uC�/CS.x/gdx D

1. We conclude:

MT .u/ D expf
.u C �/� 
.�/g; juj < �: (2.1)

Since the moment generating function exists for juj < �, it follows from Proposi-
tion A.8 (p. 163) that MT is infinitely differentiable for juj < � and so it also must
be that 
 is infinitely differentiable onˆ. Furthermore, Proposition A.8 (p. 163) also
implies that all moments of T .Xi/ exist, for all values of � 2 ˆ; and

EŒT .Xi /� D d

du
MT .u/

ˇ
ˇ
ˇ
ˇ
uD0

D 
 0.�/

EŒT 2.Xi /� D d2

du2
MT .u/

ˇ
ˇ
ˇ
ˇ
uD0

D 
 00.�/C Œ
 0.�/�2:

We conclude that EŒT .Xi /� D 
 0.�/ and that VarŒT .Xi/� D EŒT 2.Xi /� �
E
2ŒT .Xi /� D 
 00.�/. It now immediately follows by independence of X1; : : : ; Xn

that

EŒ�.X1; : : : ; Xn/� D E

"
nX

iD1
T .Xi/

#

D
nX

iD1
EŒT .Xi /� D n
 0.�/

VarŒ�.X1; : : : ; Xn/� D Var

"
nX

iD1
T .Xi/

#

D
nX

iD1
VarŒT .Xi /� D n
 00.�/:

ut
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Exercise 23 Let X1; : : : ; Xn
i id� f , where f is of an exponential family form,

expressed in the usual parametrisation as f .x/ D exp Œ�.�/T .x/ � d.�/C S.x/�.
Assuming that ‚ is open, show that:
1. If � is k-times continuously differentiable (k � 1), invertible, and �0.�/ ¤ 0,

then d is k-times continuously differentiable.
2. If � is twice continuously differentiable and invertible with �0.�/ ¤ 0, then

EŒ�.X1; : : : ; Xn/� D n
d 0.�/
�0.�/ & VarŒ�.X1; : : : ; Xn/� D n

d 00.�/�0.�/ � d 0.�/�00.�/
Œ�0.�/�3

Hint: use the inverse function theorem (Theorem A.2, p. 159).

I Remark 2.15 The fact that d is k-times continuously differentiable (for k � 1)
whenever‚ is open and � is k-times continuously differentiable, invertible, and has
a non-vanishing derivative (see part (i) of the exercise) will be taken for granted in
the rest of the text without special mention.

2.4 Approximate Sampling Distributions

We saw in the last section that the sampling distribution of the sufficient statis-
tic �.X1; : : : ; Xn/ when sampling from a one-parameter exponential may not
be straightforward to determine exactly. For this reason, we will often try to
approximate it, assuming that the sample size n is large enough. This requires
a mathematical notion of what it means to say that the distribution F�.X1;:::;Xn/
is approximately given by some other distribution G. If we see F�.X1;:::;Xn/ as
a sequence of distribution functions Fn indexed by the sample size n, then
approximation by G should be formalised by some notion of convergence of Fn
to G as n ! 1. The appropriate type of convergence is called convergence in
distribution.

Definition 2.16 (Convergence in Distribution)

Let fFngn�1 be a sequence of distribution functions and G be a distribution

function on R. We say that Fn converges in distribution to G, and write Fn
d�!

G, if and only if

Fn.x/
n!1�! G.x/;

for all x that are continuity points of G.

I Remark 2.17 Notice that convergence in distribution is similar to pointwise
convergence of the sequence of distributions, except that we do not insist to have
pointwise convergence at the discontinuity points of the limit (recall that any
distribution is cadlag: continuous from the right, and has limits from the left).
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Example 2.18 (Maximum of Uniform RandomVariables)

Let X1; : : : ; Xn
iid� Unif .0; 1/, Mn D maxfX1; : : : ; Xng, and Qn D n.1�Mn/.

PŒQn � x� D PŒMn � 1� x=n� D 1�
�
1� x

n

�n n!1�! 1� e�x:

Note that the limit is the distribution function of an Exp.1/ random variable. �

Exercise 24 (Law of Rare Events) Let fXngn�1 be a sequence of Binom.n; pn/

random variables, such that pn D �=n, for some constant � > 0. Prove thatXn
d�!

Y; where Y � Poisson.�/.

When Fn.x/ D PŒXn � x� for some sequence of random variables fXngn�1 and
G.x/ D PŒZ � x� for some other random variable Z, we will abuse notation and
write

Xn
d�! Z:

This will be taken to mean that the distribution ofXn can be approximated, for large
n, by the distribution of Z. So, if we denote �n D �.X1; : : : ; Xn/, then the problem
of determining an approximate distribution for �.X1; : : : ; Xn/ is equivalent to the
problem of finding some random variableZ whose distribution is explicitly known,

and such that �n
d�! Z. We will give a partial solution to this problem in the next

two subsections.
Before we conclude this introduction, we introduce a second type of convergence

that merits independent consideration.

Definition 2.19 (Convergence in Probability)

If a sequence of random variables fXng is such that PŒjXn � Y j > ��
n!1�! 0 for

all � > 0 and for some other random variable Y , we say that Xn converges in

probability to Y and write Xn
p�! Y .

In general Xn
p�! Y H) Xn

d�! Y , but the converse may fail to hold true:

Exercise 25 Let fXng1
nD1 be a sequence of random variables with

Xn D .�1/nX; PŒX D �1� D PŒX D 1� D 1

2
:

Show that Xn
d! X , but Xn

p
¹ X .
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Suppose, though, that Y D c 2 R is a constant, and fXngn�1 is a sequence such that

Xn
d�! c. Then we have the following result.

Lemma 2.20 Let fXngn�1 be a sequence of random variables taking values in
R, and c 2 R be some constant. Then,

Xn
d�! c ” PŒjXn � cj > �� n!1�! 0; 8 � > 0:

Exercise 26 Prove the last lemma.

2.4.1 Approximate Distributions for Sums

It was seen in Proposition 2.11 (p. 51) that the sufficient statistic for an iid sample
X1; : : : ; Xn from a one-parameter exponential family

f .x/ D expf�T .x/� 
.�/C S.x/g

is of the form �.X1; : : : ; Xn/ D Pn
iD1 T .Xi /, where

EŒ�.X1; : : : ; Xn/� D n
 0.�/ < 1 and VarŒ�.X1; : : : ; Xn/� D n
 00.�/ < 1:

If we define

T n D 1

n
�.X1; : : : ; Xn/ D 1

n

nX

iD1
T .Xi/;

then we notice that we have a random variable that is built as the average of n
iid random variables, of finite mean 
 0.�/ and finite variance 
 00.�/=n. Though
the exact sampling behaviour of such averages might not always be tractable, their
behaviour for large n becomes surprisingly simple. The goal of this section is to
describe this behaviour. In other words, given Y1; : : : ; Yn iid random variables with
EŒYi � D � < 1 and VarŒYi � D �2 < 1, we wish to study the approximate
distribution of

Pn
iD1 Yi .

We note that the expectation of
Pn

iD1 Yi is n�, which tends to infinity as n grows.
Therefore, we cannot hope to get a distributional approximation if we do not tame
this explosion. The first idea that comes to mind is to simply divide by n. That is,
to look at the empirical mean Y n D 1

n

Pn
iD1 Yi instead. The expectation of this

empirical mean is �, which remains constant with respect to n. By Chebyshev’s
inequality (Lemma A.4, p. 159), we have that

PŒjY n � �j > �� � �2

n�2
n!1�! 0; 8 � > 0:
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Theorem 2.21 (L2 Weak Law of Large Numbers) Let Y1; : : : ; Yn be iid
random variables such that EŒYi � D � < 1 and VarŒYi � D �2 < 1. Let
Y n D 1

n

Pn
iD1 Yi . Then,

Y n
p�! �:

I Remark 2.22 (L1 Weak Lawof LargeNumbers) Actually, the same conclusion
can be drawn under weaker assumptions: it suffices to assume that EjYi j < 1,
rather than VarŒYi � < 1.

Consequently, the realisations of the random variable Y n become more and more

concentrated around its mean as n grows, i.e. .Y � �/
p! 0. How does Y n vary

around �, though, as n grows? The factor n�1 was such that it made n�1Pn
iD1 Yi

converge to a constant. The reason is that multiplying with the factor n�1 made the
variance equal to �2=n, and hence made it converge to zero. The key observation is
that the mean of c�Pn

iD1 Yi scales linearly in c but its variance scales quadratically
in c. To get a finer approximation we need to consider the re-scaled differencesp
n.Y ��/. Notice that these have variance �2 for all n. The following remarkable

result tells us that these scaled differences are approximately normal:

Theorem 2.23 (Central Limit Theorem) Let Y1; : : : ; Yn be iid random vari-
ables such that EŒYi � D � < 1 and VarŒYi � D �2 < 1. Let Y n D 1

n

Pn
iD1 Yi .

Then,

p
n.Y n � �/

d�! N.0; �2/:

We discuss the proof of the Central Limit Theorem in Sect. A.8 (p. 173). We
now have an immediate corollary, by combining the Central Limit Theorem with
Proposition 2.11 (p. 51), that will be very useful for statistical inference:

Corollary 2.24 (Approximate Sampling Distribution in Exponential Fami-

lies) Let X1; : : : ; Xn
i id� f , where

f .x/ D exp f�T .x/ � 
.�/C S.x/g ; x 2 X

where � 2 ˆ � R. Let

T n D 1

n

nX

iD1
T .Xi/ D n�1�.X1; : : : ; Xn/:
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If ˆ is open, then

p
n.T n � 
 0.�// d�! N.0; 
 00.�//:

2.4.2 Approximate Distributions for Functions of Sums

What if the statistic whose sampling distribution we wish to determine is not just
a sum of iid random variables, but some smooth function of a sum? For example,
suppose that we wish to consider a statistic of the form g. NYn/ rather than NYn itself.
Can we say anything about the asymptotic behaviour of this new random variable?
The next three results give us affirmative answers to this question in some important
special cases.

Theorem 2.25 (Continuous Mapping Theorem) If X is a random variable
such that PŒX 2 A� D 1 and g W R ! R is continuous everywhere on A,
then

Xn
d! X H) g.Xn/

d! g.X/:

Proof See Sect. A.7 (p. 169) ut

Theorem 2.26 (Slutsky’s Theorem) Let X be a random variable and c 2 R a

constant. If Xn
d! X and Yn

p! c 2 R, then it follows that Xn C Yn
d�! X C c

and XnYn
d! cX , as n ! 1.

Proof See Sect. A.7 (p. 169) ut

It’s important to note that, in general, one cannot replace the constant c 2 R

with a non-degenerate random variable, say Y , in Slutsky’s theorem. The problem
is that we have no information on the joint distribution of .Xn; Yn/. For a simple
counterexample, takeXn D �ZCn�1 and Yn D Z�n�1 D �Xn, forZ � N.0; 1/.

Then,Xn
d! Z (since �Z � N.0; 1/),Yn

p! Z, but for all n, we haveXnCYn D 0,
and thus Xn C Yn fails to converge in distribution to 2Z.

Theorem 2.27 (The Delta Method) LetZn WD an.Xn��/ d! Z where an; � 2
R for all n and an " 1. Let g W R ! R be differentiable at � . Then, an.g.Xn/�
g.�//

d! g0.�/Z, provided that g0.�/ ¤ 0.
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Proof Taylor expanding (Theorem A.1, p. 159) around � gives

g.Xn/ D g.�/C g0.��
n /.Xn � �/;

where ��
n lies betweenXn and � . Thus j��

n �� j < jXn � � j D a�1
n � jan.Xn � �/j D

a�1
n Zn

p! 0 as a result of Slutsky’s theorem. Therefore, ��
n

p! � . By the continuous

mapping theorem it now follows that g0.��
n /

p! g0.�/. Consequently,

an.g.Xn/� g.�// D an.g.�/C g0.��
n /.Xn � �/� g.�//

D g0.��
n /an.X � �/

d! g0.�/Z;

using Slutsky’s theorem once again. ut

These three results enable us to obtain new limit theorems (new approximations)
from old ones. For example, the central limit theorem tells us that if Y1; : : : ; Yn are

iid with mean � and finite variance �2 < 1, then
p
n. NYn ��/ d�! N.0; �2/. Now,

the delta method implies that

p
n.g. NYn/ � g.�// d�! N.0; �2.g0.�//2/;

for all continuously differentiable functions g. Now letWn be a sequence of random

variables such that Wn

p! � . It is an easy exercise to use Slutksy’s theorem and
conclude that

p
n

 
g. NYn/ � g.�//

Wn

!
d�! N.0; .g0.�//2/:

Exercise 27 Let X1; : : : ; Xn
i id� Pois.�/, where � 2 .0;1/nf1g and consider the

probability � D P.Xi D 1/ D �e��. We wish to approximate � by O�n D O�ne�O�n
where O�n D 1

n

Pn
iD1 Xi (effectively replacing the true mean in the expression for

the probability by the empirical mean). We know that the O� satisfies the central limit
theorem. Show that this also gives a central limit theorem for O�n in the form of

p
n. O�n � �/

q
O�ne�O�n.1 � O�n/

d�! Y;

where Y � N .0; 1/. Hint: you will need to use the central limit theorem, the delta
method, the law of large number, and Slutsky’s theorem.
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Exercise 28 Let x1; : : : ; xn be independent realisations of a random variable X
possessing a continuous density function f . Show that the histogram histx1;:::;xn.y/

converges in probability pointwise to f .y/, as n ! 1, hn ! 0 and nhn ! 1.
Hint: the number of observations in the interval Ijn , given by Nn D Pn

iD1 1fxi2Ijn g,
follows a Binom.n; pn/ distribution, where pn D R

Ijn
f .x/dx. You will need to use

the fact that
ˇ
ˇ
ˇ
ˇ
Nn

nhn
� f .y/

ˇ
ˇ
ˇ
ˇ �

ˇ
ˇ
ˇ
ˇ
Nn

nhn
� pn

hn

ˇ
ˇ
ˇ
ˇC

ˇ
ˇ
ˇ
ˇ
pn

hn
� f .y/

ˇ
ˇ
ˇ
ˇ ;

as well as Chebyshev’s inequality (Lemma A.4, p. 159).
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We now return to the bigger picture: we are modelling a stochastic phenomenon by
a regular parametric family of distributions F D fF� W � 2 ‚g, where ‚ � R

p . We
observe n independent and identically distributed outcomes from the phenomenon,

say X1; : : : ; Xn
i id� F� for some �0 2 ‚, but do not know/observe the � 2 ‚ that

generated them (the true state of nature). With this iid sample at our disposal, we
wish to make inferences about � . Perhaps the most obvious inference we may wish
to draw is: which is the � that generated the sample X1; : : : ; Xn? This is known as
the problem of point estimation. Since X1; ::; Xn is all we have available to estimate
the value of � , we will use some function of the sample as an estimator.

Definition 3.1 (Point Estimator)

A statistic whose range is contained in‚ is called a point estimator. Equivalently,
a point estimator is a statistic T W X n ! ‚.

I Remark 3.2 Since the purpose of an estimator is to provide a guess of the true
� that generated the data, we typically denote it by O� . Note that � is a deterministic
parameter, but O� is a random variable, since O� D T .X1; : : : ; Xn/.

Clearly, the purpose of an estimator is to estimate the unknown parameter. But,
according to the definition, essentially any function of the sample that maps into ‚
could be an estimator. Which one should we pick? Or, even more simply, if we are
presented with an estimator O� how can we judge its quality?

The important thing here is that estimators are random variables. Therefore, for
every realisation of the sampleX1; : : : ; Xn the estimator O� will take a different value.
A good estimator should be such that its typical realisations fall “close” to � . In other
words, the distribution of a good estimator is concentrated around the value of the
true parameter � .

© Springer International Publishing Switzerland 2016
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3.1 Criteria for Comparing Estimators

Still however, the question remains: how can we measure the concentration of the
distribution of O�? There are many different criteria that one could use, but there are
two basic concentration characteristics that statisticians typically focus on: the mean
and the variance of O� . Why?
1. One reason is that the mean and the variance are easy to interpret: the mean EŒ O��

tells us how close to the target our estimator is on average. And VarŒ O�� tells us
how dispersed our estimator is around its average. If both are small, we should
have reasonable concentration.

2. A second reason is that the exact distribution of O� is often unknown. As we
saw in previous sections, we then need to resort to asymptotic approximations.
Relatively often, it happens that the approximate distribution of O� is normal.
And, for the normal distribution, the mean and the variance capture all of the
concentration characteristics.

3. Even if the approximate distribution is not normal, concentration inequalities
such as Markov’s inequality or Chebyschev’s inequality (Lemmas A.3, p. 159
and A.4, p. 159) can be used to bound the probability Pfk O� � �k > �g
(which expresses concentration) given knowledge of a mean and a variance. Such
inequalities are valid regardless of the precise distribution of O� .
It turns out that the so-called mean squared error takes both the mean and the

variance into account.

Definition 3.3 (Mean Squared Error)

Let O� be an estimator for a parameter � of a parametric model fF� W � 2 ‚g. The
mean squared error of O� is defined to be

MSE. O�; �/ D EŒk O� � �k2�:

Notice that the MSE depends on both our estimator and the true state of nature.
Therefore, an estimator O� may perform well if the true � is in some region of the
parameter space ‚, but not as well in other regions of the parameter space. We will
revisit this issue later.
For the moment, though, we see why the MSE is connected with the mean and the
variance of O� :

Lemma 3.4 (Bias-Variance Decomposition) Write O� D . O�1; : : : ; O�p/>. The
mean squared error of an estimator admits the decomposition

MSE. O�; �/ D kEŒ O�� � �k2 C EŒk O� � E. O�/k2� D kbias. O�; �/k2 C
pX

kD1
VarŒ O�k�:
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I Remark 3.5 We call the quantity EŒ O���� D bias. O�; �/ the bias of the estimator
O� at true parameter � . It expresses how far off O� is from � on average. When the bias
at some coordinate of � is positive we have overestimation; when it is negative we
have underestimation; when the bias is zero, we speak of an unbiased estimator.
Notice that the variances VarŒ O�k� can also depend on � , even though this is not
explicitly reflected in the notation.

Proof of Lemma 3.4 We expand the MSE after adding and subtracting EŒ O��:

EŒk O� � �k2� D EŒk O� � EŒ O��C EŒ O�� � �k2�
D E

h
. O� � EŒ O��C EŒ O�� � �/>. O� � EŒ O��C EŒ O�� � �/

i

D kEŒ O�� � �k2 C E
�k O� � E. O�/k2�C 2E

h
. O� � EŒ O��/>.EŒ O��� �/

i

D kEŒ O�� � �k2 C EŒk O� � E. O�/k2�C 2.EŒ O��� EŒ O��/
„ ƒ‚ …

D0

>
.EŒ O�� � �/

D kEŒ O�� � �k2 C
pX

kD1
EŒ. O�k � E. O�k//2�;

by linearity of the expectation and since .EŒ O�� � �/ is deterministic. ut

Exercise 29 (Unbiased Estimators Don’t Always Exist) Let Y�Binom.n; p/,
where p 2 .0; 1/.
1. Show that Y=n is an unbiased estimator of p.
2. Show that there exists no unbiased estimator of 1=p.
3. Show that there exists no unbiased estimator of the natural parameter � D

log
�

p

1�p
�

.

Remark: � is called the log odds ratio.

As was noted earlier, the concentration of an estimator O� around the true
parameter � can always be bounded using the mean squared error (provided that
the estimator O� has finite variance).

Lemma 3.6 Let O� be an estimator of � 2 R
p such that VarŒ O�� < 1. Then, for

all � > 0,

PŒk O� � �k > �� � MSE. O�; �/
�2
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Proof Let X D k O� � �k2. Since � > 0, Markov’s inequality (Lemma A.3, p. 159)
yields

PŒk O� � �k > �� D PŒX > �2� � EŒX�

�2
D EŒk O� � �k2�

�2
D MSE. O�; �/

�2
:

ut

Let O�n D T .X1; : : : ; Xn/ be an estimator of a parameter � (we write the subscript
n to emphasize the dependence on the sample size). Notice that if MSE. O�n; �/
converges to zero as n ! 1, then the previous result implies that O�n p�! � . When
an estimator has this last property, we call the estimator consistent.

Definition 3.7 (Consistency)

An estimator O�n of � constructed on the basis of a sample of size n is called

consistent if O�n p�! � as n ! 1.

I Remark 3.8 Notice that convergence of the MSE to zero implies consistency.
The converse is not true in general, though.

Though we will focus on the mean squared error, it is certainly not the only
criterion for judging the performance of an estimator: there are many other criteria
that can be imagined. In general, one can define a loss function,L W ‚�‚ ! Œ0;1/,
which represents the loss incurred when we estimate � by O� . Then, one uses the
average loss, or risk, as a measure of performance: R. O�; �/ D EŒL. O� ; �/�. The
“goodness” or “badness” of an estimator will clearly depend on our choice of loss
function, and so this choice must be made judiciously. Notice that the mean squared
error is the risk function obtained when the loss function is defined to be the squared
Euclidean distance.

3.2 Fundamental Limitations to Estimation Accuracy

We can use the mean squared error to compare any two candidate estimators, and
so have an idea of their relative performance. It would also be nice to have a
more absolute benchmark in order to compare the mean square error of any single
estimator to a best achievable mean square error for the given problem. It turns out
that this is a difficult problem, because it is equivalent to finding a uniformly optimal
estimator: an estimator T� such that MSE.T�; �/ � MSE.T; �/ for all � 2 ‚ and
all candidate estimators T . We will not consider this problem here, and will only
remark that in general this problem cannot be solved unless we restrict the class of
estimators under consideration.

Instead, we will consider a slightly simpler version of the question posed, namely
the following: for a given bias, can we make the variance of an estimator arbitrarily
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small? For example, if the bias is zero, and we have an unbiased estimator, is there
a limit to how small the variance can be? The answer is given in the following
theorem.

Theorem 3.9 (Cramér-Rao Lower Bound) Let X1; : : : ; Xn be an iid sample
from a regular parametric model f . � I �/, ‚ � R. Let T W X n ! ‚ be an
estimator of � , for all n. Assume that:
1. Var.T / < 1, for all � 2 ‚.
2. @

@�

�R
X n fX1;:::;Xn.x1; : : : ; xnI �/dx


 D R
X n

@
@�
fX1;:::;Xn.x1; : : : ; xnI �/dx.

3. @
@�

�R
X n T .x1; : : : ; xn/fX1;:::;Xn.x1; : : : ; xnI �/dx1 : : : dxn


 D
D R

X n T .x1; : : : ; xn/
@
@�
fX1;:::;Xn.x1; : : : ; xnI �/dx1 : : : dxn.

If we denote bias of T by ˇ.�/ D E.T / � � , then it holds that ˇ.�/ is
differentiable, and

Var.T / �
�
ˇ0.�/C 1

�2

n

Z

X

�
@

@�
logf .xI �/

�2
f .xI �/dx

D
�
ˇ0.�/C 1

�2

nE



@

@�
logf .X1I �/

�2 :

I Remark 3.10 When X is a discrete random variable, the integrals above will be
replaced by sums.

Even if the bias is equal to zero, the variance will still be bounded below

by the inverse of the positive quantity n
R
X
�
@
@�

logf .xI �/	2 f .xI �/dx D
nE
�
@
@�

logf .X1I �/
	2 D nI.�/, and thus so will the MSE. For unbiased estimators,

the variance (and hence the MSE) has the fundamental lower bound 1=nI.�/. The
quantity I.�/ is called the Fisher information or simply the information.1 The
presence of the term n�1 on the right-hand side of the Cramér–Rao inequality tells
us that the best achievable variance when the sample size is n is of the order n�1.

The good news is the following: if we are interested in looking only for unbiased

estimators, and we find an unbiased estimator with variance .nI.�//�1, then we
know that we’ve found the best unbiased possible estimator in terms of MSE,
regardless of the true value of � .

1More generally, we may define

In.�/ D E



@

@�
logfX1;:::;Xn .X1; : : : ; XnI �/

�2

to be the Fisher information of a sample of size n. In the case of iid random variables, we have
In.�/ D nI.�/.
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Proof of Theorem 3.9 First we prove the theorem in the special case n D 1. Define
the random variable U1.�/ D @

@�
logf .X1I �/. Since the probability model is

regular, the support of f does not depend on � . Therefore, by Assumption (3),

EŒU1.�/� D
Z

X

�
@

@�
logf .xI �/

�

f .xI �/dx D
Z

X

@
@�
f .xI �/
f .xI �/ f .xI �/dx

D
Z

X

@

@�
f .xI �/dx D @

@�

Z

X
f .xI �/dx

D 0:

Therefore,

VarŒU1.�/� D E
�
U 2
1 .�/


 D
Z

X

�
@

@�
logf .xI �/

�2
f .xI �/dx D I.�/: (3.1)

Again, since the support of f does not depend on � and using Assumption (2),

ˇ0.�/ D @

@�

Z

X
T .x/f .xI �/dx � 1 D

Z

X
T .x/

@

@�
f .xI �/dx � 1

D
Z

X
T .x/

@
@�
f .xI �/
f .xI �/ f .xI �/dx � 1

D
Z

X
T .x/

�
@

@�
logf .xI �/

�

f .xI �/dx � 1

D EŒT U1.�/�� 1 D
8
<̂

:̂
EŒT U1.�/� � EŒT �EŒU1.�/�

„ ƒ‚ …
D0

9
>=

>;
� 1

D Cov ŒU1.�/; T �� 1

H) Cov ŒU1.�/; T � D ˇ0.�/C 1:

Now, using the correlation inequality2 we have

ˇ
ˇ
ˇ
ˇ
ˇ

Cov ŒU1.�/; T �
p

VarŒU1.�/�VarŒT �

ˇ
ˇ
ˇ
ˇ
ˇ

� 1 H) .ˇ0.�/C 1/2 � VarŒU1.�/�VarŒT �:

Finally, Eq. (3.1) allows us to conclude that

VarŒT � � .ˇ0.�/C 1/2

R
X
�
@
@�

logf .xI �/	2 f .xI �/dx
:

2A consequence of the Cauchy–Schwarz inequality.
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which proves the theorem when n D 1. For a more general n, define Ui D
@
@�

logf .Xi I �/ and U.�/ D Pn
iD1 Ui.�/. Note that the Ui.�/ are independent and

identically distributed as U1.�/. Then, by linearity and independence, respectively,

EŒU.�/� D
nX

iD1
EŒUi .�/� D nEŒU1.�/� D 0

VarŒU.�/� D
nX

iD1
VarŒUi .�/� D nVarŒU1.�/�Dn

Z

X

�
@

@�
logf .xI �/

�2
f .xI �/dx

ˇ0.�/ D
Z

X n

T .x1; : : : ; xn/

 
nX

iD1

@

@�
logf .xi I �/

!
nY

iD1
f .xi I �/dx1 : : : dxn�1

D Cov ŒU.�/; T � � 1:

Applying the correlation inequality to Cov ŒU.�/; T � then gives the result and
completes the proof for general n � 1. ut

Exercise 30 Let X1; : : : ; Xn
i id� Poisson.�/. Show that the estimatorb�n D Xn DPn

iD1 Xi=n of � attains the Cramér–Rao lower bound.

I Remark 3.11 Condition (3) of the theorem asks that we be able to interchange
integration and differentiation. It can be checked on a case-by-case basis (for given
fx), or it can be replaced by any sufficient conditions on T and f .xI �/ allowing
this to be the case. Here are two sets of conditions. Either would suffice for (3) to be
true:
1. If T is such that we can write f .xI �/ D expf�.�/T .x/ � d.�/ C S.x/g with
�.�/ being differentiable on‚ with �.�/ and d.�/ functions on‚ as in exercise 23
page 52. In other words, if we have a one-parameter exponential family and the
statistic T in question is its natural sufficient statistic (Bickel & Doksum [1],
Proportion 3.4.1).

2. For f .xI �/ a density with � 2 R, and T .x/ being a real function, we have
@
@�

R
X T .x/f .xI �/dx D R

X T .x/
@
@�
f .xI �/dx for all � 2 .a; b/ if the following

four conditions hold (Durrett [10], [Theorem 9.1]):
(a)

R
X jT .x/jf .xI �/dx < 1 for all � 2 .a; b/.

(b) For any fixed x 2 X , @
@�
f .xI �/ exists and is a continuous function of � 2

.a; b/.
(c)

R
X T .x/

@
@�
f .xI �/dx is continuous on .a; b/.

(d)
R
X
R b
a

ˇ
ˇT .x/ @

@�
f .xI �/ˇˇ d�dx < 1.
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3.3 Methods for Constructing Estimators

Now we know a way to judge the quality of an estimator, and in some cases we also
know what the best quality we can hope for is; but how can we propose candidate
estimators? Any function from X n ! ‚ is an estimator, so there is a bewildering
variety of choice! We need general methods (or principles) that can be applied to
any model in order to produce a candidate estimator. More ambitiously, we want
methods that will generally yield reasonable estimators. If we have such methods,
then we can study the properties of the estimators they induce.

3.3.1 TheMethod of Maximum Likelihood

Perhaps the most important method of point estimation is based on the notion
of likelihood. We first give its rigorous definition, and then consider its intuitive
interpretation.

Definition 3.12 (Likelihood for iid Collections)

LetX1; : : : ; Xn be a collection of independent and identically distributed random
variables with density (or mass function) f .xI �/, where � 2 R

p. The likelihood
of � on the basis of X1; : : : ; Xn is defined as

L.�/ D
nY

iD1
f .Xi I �/:

That is, the likelihood of � is the joint density (or mass function) of the
random variables X1; : : : Xn, evaluated at .X1; : : : ; Xn/, but seen as a function of
� . Notice that the likelihood function is a random function, since it depends on the
random sample X1; : : : ; Xn. Strictly speaking, we should write Ln.�/ to denote the
likelihood, in order to stress the fact that it depends on the sample size. Nevertheless,
we will suppress the n index in general to simplify notation, with the exception of
occasions where it is necessary for clarity.

The interpretation of the likelihood is easiest in the discrete case. In this case, the
likelihood of � is the probability of the observed sample .X1; : : : ; Xn/, viewed as a
function of � . In other words, in the discrete case, the likelihoodL.�/ is the answer
to the question: what is the probability of our observed sample when the parameter
is taken to be equal to �3? When � is unknown, it would seem that its most suitable
estimate would be a value O� that makes what we observed most probable—a value

3In the continuous case, a similar interpretation is feasible by considering a small neighbourhood
around our sample: since F.x C �=2 I �/� F.x � �=2I �/ 	 �f .xI �/ as � # 0, we can think of
�nL.�/ as the approximate probability of a square neighbourhood of edge length � centred around
our sample, and viewed as a function of � .
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that is most compatible with our empirical observation. This motivates the definition
of a maximum likelihood estimator.

Definition 3.13 (Maximum Likelihood Estimator)

Let X1; : : : ; Xn be an iid random sample from a distribution F� with density (or
mass function) f .xI �/. Let O� be such that

L.�/ � L. O�/; 8 � 2 ‚:

Then O� is called a maximum likelihood estimator (MLE) of � .

When there exists a unique maximum of the likelihood function, we speak of
the maximum likelihood estimator O� D arg max

�2‚
L.�/. When the likelihood is a

differentiable function of � , we may determine the maximum likelihood estimator
using differential calculus. A maximum of the function L.�/ must be a root of the
equation

r�L.�/ D 0

and so solving this equation will provide us with a candidate MLE. Before we
declare a root O� of this equation to actually be an MLE, we will first need to verify
that this is indeed a maximum (and not a minimum! See Exercise 32, p. 74). If the
likelihood is twice differentiable, this can be done by verifying that

� r2
�L.�/

ˇ
ˇ
�D O� 
 0;

i.e. that minus the Hessian matrix is positive definite. When the parameter is one
dimensional, this reduces to verifying that the second derivative is negative when
evaluated at the root of the likelihood equation.

Notice that solving r�L.�/ D 0 will involve the determination of the derivative
of a product of n functions, which is a tedious calculation. To avoid this, we focus
on maximising the loglikelihood `.�/ WD logL.�/ instead of the likelihood itself.
Since the log transform is monotone, the likelihood and the loglikelihood have
precisely the same maxima and minima. But the advantage of the loglikelihood
is that it is a sum rather than a product of n functions, making calculations
straightforward:

`.�/ D log

 
nY

iD1
f .Xi I �/

!

D
nX

iD1
logf .Xi I �/:
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Again, if the loglikelihood function is twice differentiable, an MLE O� of � will
satisfy

r� `.�/j�D O� D 0 & � r2
� `.�/

ˇ
ˇ
�D O� 
 0:

Example 3.14 (Bernoulli MLE)

Let X1; : : : ; Xn
iid� Bern.p/ and suppose we wish to use the maximum likelihood method to

construct an estimator for p 2 .0; 1/. The likelihood is

L.p/ D
nY

iD1

f .Xi Ip/ D
nY

iD1

pXi .1� p/1�Xi D p
Pn
iD1 Xi .1� p/n�

Pn
iD1 Xi :

Taking logarithms on both sides, we obtain the log likelihood function

`.p/ D logp
nX

iD1

Xi C log.1� p/

 

n�
nX

iD1

Xi

!

:

We notice that this function is indeed twice differentiable with respect to p, and calculate

d

dp
`.p/ D p�1

nX

iD1

Xi � .1� p/�1

 

n�
nX

iD1

Xi

!

:

Solving for `0.p/ D 0 with respect to p is equivalent to solving

p�1

nX

iD1

Xi � .1� p/�1

 

n�
nX

iD1

Xi

!

D 0

which can be seen to have the unique root 1
n

Pn
iD1 Xi D X . Call this Op. It is our candidate for an

MLE, provided that it yields a maximum. Notice that

d2

dp2
`.p/ D �p2

nX

iD1

Xi � .1� p/�2

 

n�
nX

iD1

Xi

!

which is always non-positive because 0 � Pn
iD1 Xi � n almost surely and p 2 .0; 1/. Hence

Op D X D 1
n

Pn
iD1 Xi is the unique MLE of p. �

Example 3.15 (Exponential MLE)

Let X1; : : : ; Xn
iid� Exp.�/ and suppose we wish to use the maximum likelihood method to

construct an estimator for � 2 .0;1/. The likelihood is

L.�/ D
nY

iD1

f .Xi I�/ D
nY

iD1

�e��Xi D �n exp

(

��
nX

iD1

Xi

)

:
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Taking logarithms on both sides, we obtain the log likelihood function

`.�/ D n log�� �

nX

iD1

Xi :

We notice that this function is indeed twice differentiable with respect to p, and calculate

d

d�
`.�/ D n��1 �

nX

iD1

Xi :

Solving for `0.�/ D 0 with respect to � yields the unique root
�
1
n

Pn
iD1 Xi

	
�1 D 1=X . Call this

O�. It is our candidate for an MLE, provided that it yields a maximum. Notice that

d2

d�2
`.�/ D � n

�2

which is always negative because � > 0. Hence O� D �
1
n

Pn
iD1 Xi

	
�1 D 1=X is the unique MLE

of �. �

Example 3.16 (Gaussian MLE)

Let X1; : : : ; Xn
iid� N.�; �2/ and suppose we wish to use the maximum likelihood method to

construct an estimator for � D .�; �2/ 2 R 
 .0;1/. The likelihood is

L.�; �2/ D
nY

iD1

f .Xi I�; �2/ D
nY

iD1

1p
2��2

exp

�

� .Xi � �/2

2�2

�

D
�

1p
2��2

�n
exp

�

�
Pn

iD1.Xi � �/2

2�2

�

:

Taking logarithms on both sides, we obtain the log likelihood function

`.�; �2/ D �n
2

log.2��2/� 1

2�2

nX

iD1

.Xi � �/2:

We notice that all second order derivatives with respect to � and �2 exist, and calculate

@

@�
`.�; �2/ D 1

�2

nX

iD1

.Xi � �/

@

@�2
`.�; �2/ D � n

2�2
C 1

2�4

nX

iD1

.Xi � �/2:

Solving for r.�;�2/`.�; �
2/ D 0 with respect to .�; �2/ yields a system of two equations in two

unknowns. The unique root of this system can be seen to be
�
X; n�1

Pn
iD1.Xi �X/2

	
. Call this
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. O�; O�2/. It is our candidate for an MLE, provided that it yields a maximum. Notice that

@2

@�2
`.�; �2/ D � n

�2
;

@2

@.�2/2
`.�; �2/ D n

2�4
� 1

�6

nX

iD1

.Xi � �/2

@2

@�@�2
`.�; �2/ D @2

@�2@�
`.�; �2/ D �

Pn
iD1.Xi � �/

�4
D n�� nX

�4
:

Evaluating these second derivatives at . O�; O�2/ yields

@2

@�2
`.�; �2/

ˇ
ˇ
ˇ
ˇ
.�;�2/D. O�;O�2/

D � n

O�2 ;
@2

@.�2/2
`.�; �2/

ˇ
ˇ
ˇ
ˇ
.�;�2/D. O�;O�2/

D n

2O�4 � n O�2
O�6 D � n

2O�4

@2

@�@�2
`.�; �2/

ˇ
ˇ
ˇ
ˇ
.�;�2/D. O�;O�2/

D @2

@�2@�
`.�; �2/

ˇ
ˇ
ˇ
ˇ
.�;�2/D. O�;O�2/

D n O�� n O�
O�4 D 0:

We conclude that the matrix




� r2
.�;�2/

`.�; �2/

ˇ
ˇ
ˇ
.�;�2/D. O�;O�2/

�

is diagonal. To show that it is

positive definite, it suffices to show that its two diagonal elements are positive, which is true since
O�2 is positive with probability one. Therefore, the unique MLE of .�; �2/ is given by

. O�; O�2/ D
 

X;
1

n

nX

iD1

.Xi �X/2

!

:

�

There are situations where we might not be interested in estimating � itself, but
rather some transformation � D g.�/. If g is a bijection, we do not need to repeat
the entire estimation process, since the maxima of a function are equivariant to a
reparametrisation of its domain.

Proposition 3.17 (Bijective Equivariance of the MLE) Let ff .� I �/ W � 2 ‚g
be a parametric model, where ‚ � R

p . Suppose that O� be an MLE of � , on the
basis of a random sample X1; : : : ; Xn from f .xI �/. Let g W ‚ ! ˆ � R

p be a
bijection. Then, O� D g. O�/ is an MLE of � D g.�/.

Proof Define h.xI�/ D f .xIg�1.�//, and note that h is a well-defined function,
because g�1 W ˆ ! ‚ is well defined. The function h.xI�/ is simply the
density/frequency of Xi under the parametrisation given by � 2 ˆ. An MLE of
�, say O� must satisfy

nY

iD1
h.Xi I�/ �

nY

iD1
h.Xi I O�/; 8� 2 ˆ:
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Let O� be an MLE of � , and let O� D g. O�/. Let � 2 ˆ be arbitrary and observe that

nY

iD1
h.Xi I�/ D

nY

iD1
f .Xi Ig�1.�// �

nY

iD1
f .Xi I O�/

D
nY

iD1
f .Xi Ig�1. O�//

D
nY

iD1
h.Xi I O�/;

which proves the proposition. ut

Example 3.18

Let X1; ::; Xn
iid� N .�; 1/, and suppose we are interested in estimating the probability PŒX1 � x�,

for a given x 2 R. We note that

PŒX1 � x� D PŒX1 � � � x � �� D ˆ.x � �/;

where ˆ is the standard normal CDF (see Lemma 1.32, p. 22). But the mapping � 7! ˆ.x��/ is
a bijection because ˆ is monotone; thus, the MLE of PŒX1 � x� isˆ.x� O�/, where O� is the MLE
of � (which from our previous example is O� D X). �

Example 3.19 (Usual vs Natural Parameter in Exponential Families)

Let X1; : : : ; Xn
iid� f , with

f .x/ D exp f�T .x/� 
.�/C S.x/g ; x 2 X

where � 2 ˆ � R is the natural parameter. Now suppose that we can also write � D �.�/

for � 2 ‚ is the usual parameter, and � W ‚ ! ˆ some differentiable 1-1 mapping (and so

.�/ D 
.�.�// D d.�/, for d D 
 ı �). In this form, the exponential family density/frequency
will take the form:

exp f�T .x/� 
.�/C S.x/g D exp f�.�/T .x/� d.�/C S.x/g :

Now, Proposition 3.17 (p. 72) implies that if O� is the MLE of � , then �. O�/ is the MLE of � D
�.�/. The converse is also true: if O� is the unique MLE of �, then ��1. O�/ is the unique MLE of
� D ��1.�/. For concrete examples, see Examples 1.24 (p. 18) and 1.26 (p. 18). �

Exercise 31 Let X1; : : : ; Xn
i id� Exp.�/, where n > 2, and let O�n be the MLE of

� on the basis of the sample.
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1. Show that E�. O�n/ D �n
ı
.n� 1/, and find a new estimator O�U

n that is unbiased
for �. Hint: use the fact that Z D Pn

iD1 Xi � Gamma.n; �/.
2. Show that Var�. O�n/ D n2 �2

ı�
.n � 1/2 .n � 2/

	
:

3. Does the estimator O�U
n attain the Cramér–Rao bound?

4. Determine the MLE O�n and the Cramér–Rao bound associated with the parameter
� D 1=�. Can we use Proposition 3.17?

Compare the variance of O�n and the obtained Cramér–Rao bound.

There are situations where differential calculus will not be applicable, and other
approaches will be necessary. This can happen, for example, in models with discrete
parameter spaces ‚ or in models where the support of L.�/ depends on � . If � is
one-dimensional, one can sometimes employ direct inspection in order to determine
the MLE.

Example 3.20

Let X1; : : : ; Xn
iid� Unif .0; �/. The likelihood is

L.�/ D ��n

nY

iD1

1f0 � Xi � �g D ��n1f� � X.n/g1fX.1/ > 0g:

Hence if � < X.n/ the likelihood is zero. In the domain ŒX.n/;1/, the likelihood is a decreasing

function of � . Hence O� D X.n/ . �

Exercise 32 (Minimum Likelihood) Let X be a discrete random variable taking
the values

8
ˆ̂
<

ˆ̂
:

0 with probability 6�2 � 4� C 1I
1 with probability � � 2�2I
2 with probability 3� � 4�2;

where � 2 Œ0; 1=2�. Determine the maximum likelihood estimator on the basis of a
sample of size 1, X1. What do you observe?

Exercise 33 (Conditional Likelihood) Let X1; : : : ; Xm
iid� Exp.�/, where � >

0. How does the MLE of � change if we somehow are told that all Xi overshot
their mean? (in mathematical terms, conditional on the event fXi > EŒXi �; i D
1 : : : ; ng). Note that as with example 3.20, the support of the conditional distribution
depends on the true parameter value �.
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3.3.2 Maximum Likelihood in Exponential Families

With the exception of the uniform distribution, all the examples of probability
models we have seen so far on the use of the maximum likelihood method are
special cases of exponential families. It is then natural to wonder whether some
general results can be obtained on the use of the method of maximum likelihood in
an arbitrary parametric model that is a member of the exponential family.

It was no accident that the MLE existed and was unique in Examples 3.14 (p. 70),
3.15 (p. 70), and 3.16 (p. 71). This is a general phenomenon for models that are
exponential families. We will consider here the one-parameter case for simplicity.

Proposition 3.21 (One-Parameter Exponential Family MLE) Let
X1; : : : ; Xn be an iid sample from a distribution with density/frequency in
a one-parameter exponential family,

f .xI�/ D expf�T .x/� 
.�/C S.x/g; x 2 X ; � 2 ˆ

with a parameter spaceˆ � R that is an open set and T a non-constant function.
If the MLE O� of � exists, then it is unique, and is given by the unique solution to
the equation


 0.u/ D T ;

with respect to u. Here, T D 1
n

Pn
iD1 T .Xi /.

Proof The likelihood of � on the basis of the sample X1; : : : ; Xn is

L.�/ D
nY

iD1
e�T .Xi /�
.�/CS.Xi /

from which we deduce that the loglikelihood is

`.�/D logL.�/D�n
.�/C
nX

iD1
S.Xi/C�

nX

iD1
T .Xi/D�n
.�/C

nX

iD1
S.Xi/Cn�T :

Since 
.�/ is twice differentiable, we may also differentiate ` twice. Doing so, we
obtain that

`00.�/ D �n
 00.�/ D �Var

"
nX

iD1
T .Xi/

#

� 0;
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where the last equality comes from Proposition 2.11 (p. 51). Since the second
derivative is negative for all �, the function `.�/ is concave. Thus if it attains a
maximum in ˆ this must be the unique maximum, which proves that the MLE is
unique. Since ˆ is open, this maximum O� of `.�/ must uniquely solve the equation
`0.�/ D 0 with respect to �, or equivalently it must uniquely satisfy


 0. O�/ D T :

ut

I Remark 3.22 (Usual Parametrisation) If � D �.�/ for a bijection �, then the
MLE of � is also unique, if it exists, by Proposition 3.17 (p. 72).

Exercise 34 (Cramér–Rao Bound and Exponential Families) Let f .xI �/ D
exp.�.�/T .x/� d.�/CS.x// be a non-degenerate exponential family such that
• The parameter space ‚ � R is open;
• T .X/ is not a constant function (i.e. Var� ŒT .X/� > 0) for all � ;
• The function � W ‚ ! R is a twice differentiable injection with non-vanishing

first derivative.
Let X1; : : : ; Xn

i id� f .xI �/. Suppose that the MLE b�n of � exists and has finite
variance for all � 2 ‚. Prove thatb�n attains the Cramér–Rao bound (for all � 2 ‚)
if and only if h.�/ D d 0.�/=�0.�/ is an affine function (h.�/ D ˛� C ˇ for some
˛; ˇ 2 R).

Hint: at some point in the proof of the Cramér–Rao theorem, we use a certain
inequality. The Exercise 23 (p. 52) will be useful to show thatb�n corresponds to a
maximum.

3.3.3 Large Sample Properties of Maximum Likelihood

Going back to Example 3.16 (p. 71), we recall that the maximum likelihood
estimator for the parameter .�; �2/ of a Gaussian distribution, based on an iid
sample X1; : : : ; Xn, is

. O�n; O�2n/ D
 

NX; 1
n

nX

iD1
.Xi � NX/2

!

D
�

NX; n � 1

n
S2n

�

;

where S2n D 1
n�1

Pn
iD1.Xi � NX/2. Using Proposition 2.7 (p. 45) and Corollary 2.8

(p. 48) we thus have a complete description of the probabilistic behaviour of these
estimators:
• The MLE of �, O�n, is unbiased for all n. Its distribution is normal for all n,

with variance �2=n. Therefore, the mean squared error is, in fact, exactly �2=n,
regardless of the vale of �.
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• The MLE of �2, O�2n is biased for all n. By Corollary 2.8 (p. 48) its bias is equal
to:

bias. O�2n; �2/ D EŒ O�2n � � �2 D E



n � 1
n

S2
�

� �2 D n � 1

n
�2 � �2 D �1

n
�2:

Therefore, O�2n underestimates �2, though asymptotically the bias reduces to zero.
The distribution of O�2n is the same as that of a chi-square random variable,
multiplied by �2=n. That is:

n

�2
O�2n � 
2n�1:

Consequently, the mean squared error of O�2n is

MSE. O�2n ; �2/Dbias2. O�2n ; �2/CVarŒ O�2n �D
�

��
2

n

�2

C2.n � 1/�4
n2

D .2n � 1/�4
n2

:

Exercise 35 Let X1; : : : ; Xn
i id� N.�; �2/ where both parameters are unknown

.n > 1/. We can estimate �2 by S2n D 1
n�1

Pn
iD1.Xi � X/2; or by the MLE given

byb�2n D .n � 1/S2n=n.
1. Which of the two estimators is preferable in terms of mean squared error?
2. More generally, consider estimators of the form aS2n , where a 2 R. Which is the

optimal choice of a in terms of mean squared error?

We can gain a visual understanding of the behaviour of the MLE in the Gaussian
case by looking at Figs. 3.1 (p. 78) and 3.2 (p. 79). These illustrate the sampling
fluctuations of the MLE around the true parameter value, and how these change as
the sample size increases. We note that, as n increases, the realisations of the MLE
concentrate more and more around the true parameter values. This is no accident:
the mean squared error both for O� and for O�2 is decreasing in n, with a limit of 0 as
n ! 1. Therefore, both estimators are consistent (recall Lemma 3.6, p. 63).

The normal case is special in that we can determine the exact sampling distribu-
tion of the maximum likelihood estimator and determine the mean squared error for
every n. This gives us all the information we need in terms of the performance of
the estimator.

Unfortunately, we are not always as lucky with models other than the normal
distribution. The exact sampling distribution of the MLE is often not available, nor
is the exact value of the MSE. As we saw in Sect. 2.4, when we cannot determine a
sampling distribution exactly, we need to resort to approximations using the notion
of convergence in distribution. In fact, we saw that for one-parameter exponential
families the approximate distribution of the natural sufficient statistic T n is normal
(Corollary 2.24, p. 56). Since the MLE in a one-parameter exponential family is
given by the solution of an equation involving T n (see Proposition 3.21, p. 75),
one might conjecture that perhaps the asymptotic distribution of the MLE in a one-
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Fig. 3.1 Illustration of the random fluctuations of the loglikelihood function and its maximum
(the MLE). We consider the estimation of the mean � of a normal distribution with a known
variance equal to 1. We generate 25 iid samples of size n, say fXi;1; : : : ; Xi;ng25iD1 , from anN.�; 1/
where � D 0, and each time plot the loglikelihood function `i .�/ D `.�IXi;1; : : : ; Xi;n/, where
i D 1; 2; : : : ; 25, and the corresponding MLE. We do this for four sample sizes: n D 1, n D 20,
n D 100, n D 400. We observe how the likelihood functions become gradually more curved as
n increases, and so their maximum fluctuates less and less from replication to replication. We also
notice that the maxima tend to concentrate around the true value of � as n increases. The y-axis
values have been removed since they are unimportant in an absolute sense in the determination of
the MLE. (a) Loglikelihood functions for the mean parameter corresponding to 25 replications of
an iidN.0; 1/ sample of size 1. (b) Loglikelihood functions for the mean parameter corresponding
to 25 replications of an iid N.0; 1/ sample of size 20. (c) Loglikelihood functions for the mean
parameter corresponding to 25 replications of an iidN.0; 1/ sample of size 100. (d) Loglikelihood
functions for the mean parameter corresponding to 25 replications of an iid N.0; 1/ sample of size
450
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Fig. 3.2 Illustration of the random fluctuations of the loglikelihood function and its maximum
(the MLE). We consider the estimation of the variance �2 of a normal distribution with a known
mean equal to 0. We generate 25 iid samples of size n, say fXi;1; : : : ; Xi;ng25iD1, from an N.0; �2/
where �2=1, and each time plot the log likelihood function `i .�2/ D `.�2IXi;1; : : : ; Xi;n/, where
i D 1; 2; : : : ; 25, and the corresponding MLE. We do this for four sample sizes: n D 10, n D 50,
n D 150, n D 450. We observe how the likelihood functions become gradually more curved as
n increases, and so their maximum fluctuates less and less from replication to replication. We also
notice that the maxima tend to concentrate around the true value of �2 as n increases—in fact, as
n increases, it looks as though the distribution of the maxima is gradually becoming symmetric
around �2. The y-axis values have been removed since they are unimportant in an absolute
sense in the determination of the MLE. (a) Loglikelihood functions for the variance parameter
corresponding to 25 replications of an iid N.0; 1/ sample of size 10. (b) Loglikelihood functions
for the variance parameter corresponding to 25 replications of an iid N.0; 1/ sample of size 50.
(c) Loglikelihood functions for the variance parameter corresponding to 25 replications of an iid
N.0; 1/ sample of size 150. (d) Loglikelihood functions for the variance parameter corresponding
to 25 replications of an iid N.0; 1/ sample of size 450
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parameter exponential family is also normal (because, if the solution of the equation
depends smoothly on T n, then the delta method (Theorem 2.27, p. 57) could be
invoked). This is indeed the case.

Theorem 3.23 Let X1; : : : ; Xn be an iid sample from a distribution with density
(or mass function) f .xI�0/ which belongs to a non-degenerate one-parameter
exponential family,

f .xI�/ D expf�T .x/� 
.�/C S.x/g; x 2 X ; � 2 ˆ;

such that T is not a constant function. Assume that the parameter space ˆ � R

is an open set (recall that, among others, this implies that the function 
.�/ is
twice differentiable). Let O�n be the maximum likelihood estimator of �0, assumed
to exist. Then,

0 <
1


 00.�0/
< 1

and

p
n. O�n � �0/

d�! N

�

0 ;
1


 00.�0/

�

:

I Remark 3.24 (Non-Degeneracy) To say that a distribution is non-degenerate
(as the theorem requires) means that it does not assign probability 1 to a single value
x 2 X .

Proof of Theorem 3.23 Under the conditions of the Theorem, Proposition 3.21
(p. 75) implies that the MLE O�n is unique for all n. Furthermore, Proposition 2.11
(p. 51) implies that


 00.�/ D 1

n
Var

"
nX

iD1
T .Xi/

#

2 Œ0;1/

which proves that 0 � 1

 00.�0/

< 1 for all � 2 ˆ. To prove that 
 00.�/ > 0 (strict
inequality) we remark that it must be that Var.Ti / > 0. Because if Var.Ti / D 0,
then PŒTi D E.Ti /� D 1 (by Chebyshev’s inequality, Lemma A.4, p. 159) which
means that Xi is almost surely constant or T .�/ is a constant function on X . Either
of these contradicts our assumptions (that the exponential family in question is
non-degenerate and that T is non-constant). We thus conclude that 0 < 1


 00.�/
< 1

for all � 2 ˆ.
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Now, since ˆ is open, the unique maximum O�n of `.�/ must uniquely solve the
equation `0.�/ D 0 with respect to �, or equivalently it must uniquely satisfy


 0. O�n/ D T :

Since 
 0 is continuously differentiable (by assumption (1)) and we’ve shown that

 00 > 0, the inverse function theorem4 implies that there exists an open ball of
radius � > 0 centred at 
 0.�0/, say B�.
 0.�0// D fy 2 R W jy � 
 0.�0/j < �g,
such that g.�/ D Œ
 0��1.�/ exists on B�.
 0.�0// and is itself differentiable with a
continuous first derivative, which is in fact given explicitly by

g0.y/ D fŒ
 0��1g0.y/ D 1


 00.Œ
 0��1.y//
D 1


 00.g.y//
:

By convention, we may define g to be zero outside of B�.
 0.�0//.
Now, Corollary 2.24 (p. 56) implies that5

p
n.T � 
 0.�0//

d! N.0; 
 00.�0//:

If we define Q�n D g.T /, then delta method (Theorem 2.27, p. 57) implies

p
n. Q�n � �0/ D p

n.g.T /� g.
 0.�0///
d! N

�
0 ; 
 00.�0/ � Œg0.
 0.�0//�2

	
:

But, by the inverse function theorem, since g.y/ D Œ
 0��1.y/,

g0.y/ D 1


 00.g.y//
H) g0.
 0.�0// D 1


 00.g.
 0.�0///
D 1


 00.�0/

and so we conclude that

p
n. Q�n � �0/

d! N

�

0 ;
1


 00.�0/

�

:

To complete the proof, suppose that we can show that

p
n. O�n � Q�n/ p�! 0:

4Recall the inverse function theorem: let h.x/ W R ! R be continuously differentiable, with
a non-zero derivative at a point xo 2 R. Then, there exists an " > 0 such h�1 exists and is
continuously differentiable on .h.x0/� �; h.x0/C �/, and in fact .h�1/0.y/ D Œh0.h�1.y//��1 for
jy � h.x0/j < ".
5Remember: since T is the sum of the iid terms T1; : : : ; Tn, each satisfying Var.T .Xi // D

 00.�0/ < 1 and EŒT .Xi /� D 
 0.�0/, so the central limit theorem implies

p
n.T � 
 0.�0//

d!
N.0; 
 00.�0//:
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Then, Slutsky’s theorem (Theorem 2.26, p. 57) will imply that
p
n. O�n � �0/

d!
N
�
0 ; 1


 00.�0/

�
and prove the theorem.6 Note, however, that

T 2 B�.
 0.�0// H) Q�n D O�n H) p
n. Q�n � O�n/ D 0;

because O�n D g.T / D Q�n when T 2 B�.
 0.�0//. Therefore, if ı > 0,

p
nj Q�n � O�nj > ı H) T … B�.
 0.�0// H) jT � 
 0.�0/j > �;

and consequently,

PŒ
p
nj Q�n � O�nj > ı� � PŒjT � 
 0.�0/j > �� n!1�! 0:

The convergence to zero follows from the weak law of large numbers.7 This proves

that
p
n. O�n � Q�n/ p! 0 and completes the proof. ut

I Remark 3.25 (Asymptotic Variance and the Cramér–Rao Bound) The the-
orem can be interpreted as saying that, for large n, the MLE O� is approximately
N.�0; Œn


00.�0/��1/. We notice that the asymptotic mean of the MLE is equal to the
true parameter, so that the asymptotic bias is zero. Furthermore, we note that

EŒ.`0.�//2� D E

(

@

@�
.��.X1; : : : ; Xn/ � n
.�//

�2
)

D E

h�
�.X1; : : : ; Xn/� n
 0.�/

	2
i

D VarŒ�.X1; : : : ; Xn/�

D n
 00.�/:

Now recall the Cramér–Rao lower bound (Theorem 3.9, p. 65) on the variance of
an estimator. It stated that no unbiased estimator can have variance lower than the
inverse of the left-hand side of the equation above. But we have just proved that the
inverse of the right-hand side is the asymptotic variance of the MLE. It follows that,
at least for large sample size n, the maximum likelihood estimator of � attains a
performance which is close to optimal. This explains why the method of maximum
likelihood is so central to point estimation.

6To see this, use Slutsky’s theorem with Xn D p
n. Q�n � �0/, Yn D p

n. O�n � Q�n/ and the
continuous mapping being .Xn; Yn/ 7! .Xn C Yn).
7Since T is the mean of the iid terms T .X1/; : : : ; T .Xn/, each satisfying Var.T .Xi // D 
 00.�0/ <

1 and EŒT .Xi /� D 
 0.�0/, the Law of Large Numbers implies that T
p�! 
 0.�0/
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Corollary 3.26 (Consistency of the MLE in Exponential Families) In the
same setup and with the same conditions as in Theorem 3.23 (p. 80), we have

O�n p�! �0; as n ! 1:

Proof Define Yn D n�1=2,Xn D p
n. O�n��0/ and g W R�R ! R as g.x; y/ D xy.

Then, Theorem 3.23 (p. 80) combined with Slutsky’s theorem (Theorem 2.26, p. 57)
imply that

g.Xn; Yn/ D . O�n � �0/ d! 0:

Consequently, Lemma 2.20 (p. 55) implies that . O�n � �0/
p! 0 and the proof is

complete. ut

Notice that 
 00.�/ D �`00.�/ is minus the second derivative of the loglikelihood.
Even though the loglikelihood is a random function, in the case of an exponential
family its second derivative is a deterministic function of �. What is the interpreta-
tion of this function? Recall that the second derivative of a function at some point
�0 describes the curvature of the function at that point. Therefore, Theorem 3.23
(p. 80) tells us that the asymptotic variance of the MLE is related to the curvature of
the loglikelihood at the true parameter �0. A moment of thought should reveal that
this is quite intuitive: the more flat the loglikelihood is around the true parameter,
the more “uncertain” its maximum will be: a small perturbation in the loglikelihood
(e.g. due to sample variation) will yield a large perturbation of its maximum, due to
flatness (hence high variance). On the other hand, if the loglikelihood is very pointy,
we expect that the maximum will not change very much when the loglikelihood
is perturbed (low variance). This phenomenon is clearly visible in Figs. 3.1 (p. 78)
and 3.2 (p. 79), where we can see that the dispersion of the MLEs reduces as the
curvature of the loglikelihood increases.

The asymptotic distribution for the usual parameter � D ��1.�/ of an exponen-
tial family will now follow as a corollary.

Corollary 3.27 Let X1; : : : ; Xn be an iid sample from a distribution with density
(or mass function) f .xI �0/ which belongs to a non-degenerate one-parameter
exponential family,

f .xI �/ D expf�.�/T .x/� d.�/C S.x/g; x 2 X ; � 2 ‚

Assume that:
1. The parameter space ‚ � R is an open set.
2. The function �.�/ is a twice differentiable bijection between‚ and ˆ D �.‚/

with non-vanishing derivative.
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3. The function T .x/ W X ! R is not a constant.
Let O�n be the maximum likelihood estimator of �0, assumed to exist. Then,

p
n. O�n � �0/ d�! N

�

0 ;
Œ�0.�0/�

d 00.�0/�0.�0/ � d 0.�0/�00.�0/

�

:

Proof Let � D �.�/ and 
.�/ D d.��1.�//. Then, the density/frequency admits
the form

expf�T .x/� 
.�/C S.x/g; x 2 X ; � 2 ˆ;

and the conditions of Theorem 3.23 (p. 80) are all satisfied. Thus, the MLE O�n of
�0 D �.�0/ is unique, and satisfies

p
n. O�n � �0/ d�! N

�

0 ;
1


 00.�0/

�

;

where 0 <
1


 00.�0/
< 1.

It follows by the injective equivariance of maximum likelihood (Proposition 3.17,
p. 72); see also Example 3.19 (p. 73)) that the unique MLE of �0 is O�n D
��1. O�n/. The inverse function theorem now implies that .��1/0.y/ exists in a small
neighbourhoodB�.�0/ of �0 and that

.��1/0.�0/ D Œ�0.��1.�0//��1 D 1=�0.�0/:

Let ��1.�/ be equal to zero by convention outside of B�.�0/. Using the delta method
(Theorem 2.27, p. 57), we obtain

p
n. O�n � �0/ D p

n.��1. O�n/ � ��1.�0//
d�! N

�

0 ;
1

.�0.�0//2
 00.�.�0//

�

:

Note, however, that under the assumed conditions, we have shown in Exercise (23,
p. 52) that

d 00.�0/�0.�0/� d 0.�0/�00.�0/
Œ�0.�0/�3

D VarŒT .Xi /� D 
 00.�0/ > 0;

so that

p
n. O�n � �0/ d�! N

�

0 ;
Œ�0.�0/�

d 00.�0/�0.�0/ � d 0.�0/�00.�0/

�

:

ut
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I Remark 3.28 (Asymptotic Variance and the Cramér–Rao Bound, Again)
Notice that for the usual parametrisation, we also have that the asymptotic mean
of the MLE is equal to the true parameter, so that the asymptotic bias is again zero.
Furthermore, if � D �.�/ and 
.�/ D d.��1.�//, we note that

EŒ.`0.�//2� D E

"�
@`.�/

@�.�/

@�.�/

@�

�2
#

D .�0.�//2EŒ.`0.�//2� D .�0.�//2VarŒ�.X1; : : : ; Xn/�

D n.�0.�//2
d 00.�/�0.�/� d 0.�/�00.�/

Œ�0.�/�3

D n
d 00.�/�0.�/� d 0.�/�00.�/

Œ�0.�/�
;

where we have used the same calculation as in Remark 3.25 (p. 82), and our result
from Exercise 23 (p. 52). The inverse of the LHS is the Cramér–Rao lower bound
(Theorem 3.9, p. 65). The inverse of the RHS is the asymptotic variance of O� . We
thus see that the MLE of � attains a performance that is close to optimal for n large.

I Remark 3.29 A conclusion similar to that of Theorem 3.23 (p. 80) is in fact valid
for a much broader class of distributions than just the exponential family. Under
smoothness conditions on the density/frequency of the model, under analytical
conditions enabling differentiation under the integral, and if the MLE O� of � is
unique, one can show that

p
n. O�n � �0/

d�! N
�
0; J 2.�0/=I.�0/

	
;

where I.�0/ D EŒ.`0.�0//2� is the Fisher information and J.�0/ D �EŒ`00.�0/�. In
fact, when we can differentiate under the integral, it is an easy exercise to show
that I.�/ D J.�/, and so the asymptotic variance becomes 1=I.�0/, attaining the
Cramér-Rao bound.

Exercise 36 In the context of Corollary 3.27 (p. 83), prove that

E



@

@�
logf .X1; : : : ; XnI �/

�

D 0; and

E

"�
@

@�
logf .X1; : : : ; XnI �/

�2
#

D �E



@2

@�2
logf .X1; : : : ; XnI �/

�

: (3.2)

Conclude that

I.�/ D J.�/ D d 00.�/�0.�/ � d 0.�/�00.�/
Œ�0.�/�

:
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Exercise 37 Let f .xI �/ be a regular parametric model (not necessarily an expo-
nential family) such that

X D fx 2 R W f .xI �/ > 0g

does not depend on � , and f twice differentiable with respect to � . Let

X1; : : : ; Xn
i id� f .xI �/. Show that the equality in 3.2 is equivalent to a regularity

condition allowing us to interchange integration and differentiation. Reminder: for
any g W Rn ! R,

EŒg.X /� D
Z

X n

g.x/f .xI �/ dx when the integral exists .x D .x1; : : : ; xn/ 2 R
n/:

Exercise 38 We now consider two examples that fall outside of the realm of
exponential families.

1. Let X1; : : : ; Xn
i id� Unif .0; �/, where � > 0. Letb�n be the MLE of � . Find a

sequence of real numbers an such that an.� �b�n/ converges in distribution to a
non-degenerate limit (i.e. not a constant or infinity).

2. Consider b�n, the estimator from exercise 33, p. 74. Find a sequence of real
numbers an such that an. O�n � �/ converges in distribution to a non-degenerate
limit.

Hint : Show that if X � Exp.�/, then Y D aX � Exp.�=a/ for a > 0,
then use Exercise 8 (p. 13).

3.3.4 Other Estimation Methods

In some situations, the MLE will not be determinable as an explicit function of the
data. In these cases, one may need to numerically evaluate the MLE.

Example 3.30 (Cauchy MLE)

Suppose that X1; : : : ; Xn are iid random variables following the Cauchy distribution with density
function

f .xI �/ D 1

�.1C .x � �/2/
; x 2 R:

The log likelihood function in this case is

`.�/ D �
nX

iD1

logŒ1C .Xi � �/2�� n log.�/:



3.3 Methods for Constructing Estimators 87

This is differentiable, and so if O� is a maximum of `.�/, it must satisfy `0. O�/ D 0, or equivalently

nX

iD1

2.Xi � O�/
1C .Xi � O�/2 D 0:

The equation above cannot be explicitly solved to readily give us the form of the maximum
likelihood estimator as an explicit function of the data. Therefore, the estimator remains implicitly
defined. For any concrete sample X1 D x1; : : : ; Xn D xn, we will need to solve the equation
Pn

iD1
2.xi� O�/

1C.xi� O�/2
D 0 by some iterative/approximate solution method in order to get the numerical

value of the maximum likelihood estimate. �

There are several numerical methods that one can employ in order to calculate
the value of the maximum likelihood estimator in a specific sample (that is, in order
to calculate the estimate). Among these, chief are the Newton–Raphson method, the
method of bisection, the method of gradient descent and the EM-algorithm. Which
one is most appropriate depends on the specific example. What is common to all
of them is that they are iterative: they start at a given input value and iterate some
operation until a convergence criterion is attained. Since the function `0 might not
be monotone (and so may have multiple roots) it is important that the starting input
value O�.0/ be within a reasonable distance of the true maximum (for example, in
Example 3.30, p. 86) we have a non-monotone `0); otherwise, the algorithm may
converge to a root that does not correspond to the maximum.

Example 3.31 (Newton–Raphson Iteration)

We consider the general idea behind the Newton–Raphson iteration. We wish to solve the equation
`0.�/ D 0, but cannot do so explicitly. Suppose that we somehow have a starting value O�.0/ that is

close to the true maximum O� . Since O� is the overall maximum, it satisfies `0. O�/ D 0. Now assume
that ` is smooth enough that we can carry out a Taylor expansion. We will have (Theorem A.1,
p. 159):

0 D `0. O�/ D `0. O�.0//C . O� � O�.0//`00. O�.0//C 1

2
. O� � O�.0//2`000.�

�

/;

where �
�

D � O� C .1� �/ O�.0/ for some � 2 Œ0; 1�. Now assuming that j O� � O�.0/j is small, the term

. O� � O�.0//2 is negligible relative to the term . O� � O�.0//. So, provided `000 is bounded, we may write

`0. O�.0//C . O� � O�.0//`00. O�.0// ' 0

which suggests

O� ' O�.0/ � `0. O�.0//
`00. O�.0//

:
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Now, the procedure can then be iterated by defining O�.1/ D O�.0/� `0. O�.0//

`00. O�.0/ /
, then O�.2/ D O�.1/� `0. O�.1/ /

`00. O�.1/ /
,

and so on. This iteration will eventually lead to convergence. Guarantees on the convergence and
how rapidly this will occur will depend on the specific form of `. �

How can we find a reasonable starting value O�.0/? In some cases, reasonable
starting values may be found by direct inspection.

Example 3.32 (Cauchy MLE, Continued)

Notice that the density f .xI �/ is symmetric about � ,

f .xI �/ D 1

�.1C .x � �/2/
; x 2 R:

A potential starting value for � is thus the median of X1; : : : ; Xn. This could be employed as to
initialise a Newton–Raphson iteration. �

In other cases, things may not be as clear.

Example 3.33 (GammaMLE)

Let X1; : : : ; Xn
iid� Gamma.r; 1/ and suppose we wish to estimate the parameter r by the method

of maximum likelihood. The likelihood is

L.r/ D
nY

iD1

1

	.r/
Xr�1
i e�Xi ;

with corresponding loglikelihood

`.r/ D �n log	.r/C .r � 1/

nX

iD1

logXi �
nX

iD1

Xi :

Differentiating and setting the loglikelihood equal to zero, we find that the MLE Or must satisfy,

	 0.Or/
	.Or/ D logX D 1

n

nX

iD1

logXi :

This equation cannot be solved explicitly. Worse, even, there is no immediate plausible value for r
by simple inspection of the form of the density. In this case, we need some other way of determining
a starting value for a Newton–Raphson iteration. �

To address the issue of finding general methods for the determination of starting
values O�.0/, it is useful to have estimation methods that will yield some explicit
estimates that could be used to initialise iterative techniques in search of a maximum
likelihood estimate. These methods do not necessarily need to be as efficient as the
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method of maximum likelihood, but at least produce estimators that are reasonably
good. A widely used such method is the method of moments.

3.3.4.1 TheMethod of Moments
Consider first a one-dimensional problem, where ff� W � 2 ‚g is a one-parameter
regular model,‚ � R, andX1; ::; Xn is an iid sample generated by a true parameter
� 2 ‚. The method of moments is motivated by the following heuristic. Assuming
EŒjX1j� < 1, the law of large numbers tells us that

1

n

nX

iD1
Xi

p�! EŒX1�:

But EŒX1� D R C1
�1 xf .xI �/dx depends on the unknown parameter � , so we can

write that EŒX1� D m.�/ for some m. Rephrasing, we have

1

n

nX

iD1
Xi

p�! m.�/

and so, in other words, we expect that, for n large enough

1

n

nX

iD1
Xi ' m.�/

for � the true parameter. So, if O� is to be close to � , we expect that it should satisfy

1

n

nX

iD1
Xi ' m. O�/:

This motivated the method of moments:

Definition 3.34 (Method of Moments Estimator: Single Parameter Case)

Let X1; : : : ; Xn be an iid random sample from a distribution F� with density (or
mass function) f .xI �/. Assume that EjX1j < 1 for all � 2 ‚ � R. Let O� be
such that

1

n

nX

iD1
Xi D m. O�/;

where

m.�/ D
Z C1

�1
xf .xI �/dx; � 2 R:
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Then O� is called a Method of Moments (MoM) estimator of � .

In other words, the method of moments says that we should equate the theoretical
first moment with the observed empirical first moment. This will yield an equation
with the unknown being the parameter we wish to estimate. Solving this equation
for the unknown will yield an estimator of � , the Method of Moments estimator.
The thing to note here is that this equation is typically easier to solve than an MLE
score equation, because the data have been separated on one side of the equation
(yielding a single numerical constant given the observed sample) and the function
of the parameter on the other side. So rather than having an equation of the form

g.X1; : : : ; Xn; �/ D 0

we have the easier problem of the form

g.�/ D h.X1; : : : ; Xn/:

Here is an illustration of the technique in a simple example.

Example 3.35 (UniformMoMEstimator)

Let X1; : : : ; Xn
iid� Unif .0; �/, and suppose that we wish to estimate � 2 R

C

. In this case we
have a single parameter, so that the MoM estimator of � , say O� must be such that

1

n

nX

iD1

Xi D m. O�/:

In this case,

m.�/ D
Z �

0

x

�
dx D �

2
:

Therefore, the method of moments estimator is

O� D 2

n

nX

iD1

Xi :

�

In case we need to estimate multiple parameters, say � D .�1; : : : ; �p/
>, then the

method of moments asks that we equate the first p empirical moments to the first p
theoretical moments and obtain a system of p equations with the p parameters as
unknowns. Solving this system will yield an estimator for � .
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Definition 3.36 (Method of Moments Estimator: Multiparameter Case)

Let X1; : : : ; Xn be an iid random sample from a distribution F� with density (or
mass function) f .xI �/. Assume that EjX1jp < 1 for all � 2 ‚ � R

p . Let O� be
such that

1

n

nX

iD1
Xk
i D mk. O�/; k D 1; : : : ; p

where

mk.�/ D
Z C1

�1
xkf .xI �/dx; � 2 R

p; k D 1; : : : ; p:

Then O� is called a Method of Moments (MoM) estimator of � .

The following example illustrates a two-parameter situation where the Method of
Maximum likelihood does not yield explicit estimators, but the Method of Moments
does.

Example 3.37 (GammaMoM Estimator)

Suppose that X1; : : : ; Xn
iid� Gamma.r; �/ and we wish to estimate the parameter vector .r; �/>.

The first two moment equations are

1

n

nX

iD1

Xi D m1.Or; O�/ and
1

n

nX

iD1

X2
i D m2.Or ; O�/:

But we have seen that

m1.r; �/ D r=� and m2.r; �/ D E
2ŒX1�C VarŒX1� D r2=�2 C r=�2 D r.r C 1/=�2:

Solving the system of moment equations with respect to the unknown parameter yields the
estimates

Or D n NX2

Pn
iD1.Xi � NX/2 and O� D n NX

Pn
iD1.Xi � NX/2 :

�

Exercise 39 Let X1; : : : ; Xn be an iid sample from the density

f .xI �/ D
(
3�3x�4; if x � �;

0; otherwise;
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where � > 0.
1. Find the method of moment estimator O�MoM

n of � .
2. Find the ML estimator O�MV

n of � .
3. Show that O�MoM

n is unbiased, but O�MV
n is biased.

4. Calculate the mean squared error of O�MoM
n and O�MV

n . Which estimator would one
prefer?

A drawback of the Method of Moments is that it is not guaranteed to always
work. To even be able to define the procedure, we require the existence of a p-th
absolute moment in order for the method to work in a p-parameter problem. If such
a moment does not exist, the method fails.

Example 3.38 (MoM Failure in Cauchy Case)

Let X1; : : : ; Xn be iid random variables following the Cauchy distribution with density function

f .xI �/ D 1

�.1C .x � �/2/
; x 2 R:

Notice that

m1.0/D 1

�

Z
C1

�1

x

1C x2
dxD 1

�

Z 0

�1

x

1C x2
dxC 1

�

Z
C1

0

x

1C x2
dxD�1C1 (undefined)

Therefore, the moment equations are undefined, and no MoM exists. �

In general, when the moment generating function exists, then the method of
moment is well defined, regardless of the dimension of the parameter. Still, there
can be no guarantees that the system of equations produced will always have a
solution. We will not further pursue conditions under which this could be enforced
to be the case.

3.4 Estimation Methods vs Estimators vs Estimates

We conclude this chapter by a short remark on terminology, that can sometimes be
the source of some confusion. Specifically we distinguish between the notions of
an estimation method, estimator and an estimate. Here are some points to bear in
mind:
1. An estimation method is a general principle or procedure that can be applied in

any particular parametric model in order to obtain estimators. We saw examples
of how we can apply the method of maximum likelihood to get estimators of
parameters in the Bernoulli, exponential, normal and uniform distributions.

2. It can very well happen that the same estimation method produces different
estimators when applied to two different parametric models. For example, the
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method of maximum likelihood produces the estimator X for the mean of a
normal distribution, and the estimator 1=X for the mean of an exponential
distribution.

3. It can also happen that two different estimation methods produce the same
estimator in the same model. For example, the maximum likelihood estimator for
the mean of a normal distribution coincides with the method of moment estimator
for the mean of a normal distribution.

4. An estimate is the specific value that an estimator takes when evaluated on the
basis of an observed sample. Remember: an estimator is a random variable. The
realisation of this random variable is called an estimate.
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So far, we have considered the problem of point estimation: given a parametric
model fF� W � 2 ‚g, and an iid sample X1; : : : ; Xn issued from some specific
F� , estimate the value of � that generated the sample. There are many contexts,
however, where the precise value of the true parameter is not the primary object of
our interest. Rather, we are more interested in using the sample to ascertain whether
the true value of the parameter belongs to some specific subset of parameter values
or not.

Example 4.1 (Coin Tossing)

For a simple example, consider a situation where we wish to ascertain whether a coin is fair, or
is biased. We may flip the coin n times and record the outcome of each coin toss. We then wish
to use the outcomes in order to decide whether the probability of heads is equal to 1/2 or whether

it is different from 1/2. We could formalise this problem by saying that we have X1; : : : ; Xn
iid�

Bern.p/ and wish to decide whether p 2 f 1
2
g or p 2 .0; 1/ n f 1

2
g. �

To make things more concrete, suppose that we know that the parameter has to lie
in one of two sets: either in ‚0 or in ‚1, where ‚0 \‚1 D ;. We wish to employ
the sample X1; ::; Xn that we have at our disposal in order to decide which is the
case. This setup arises very often in the sciences, where there are two competing
scientific hypotheses. The null hypothesisH0, that states that � 2 ‚0,

H0 W � 2 ‚0

and the competing alternative hypothesis that instead postulates that � 2 ‚1,

H1 W � 2 ‚1:
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Example 4.2 (Search for the Higgs Boson)

One of the biggest questions in particle physics in the last quarter century was whether or not the
infamous Higgs boson exists or not. One way to detect whether this elementary particle indeed
exists is via its decay into two photons. Using the Standard Model of particle physics, we can
compute how many such diphoton events would be produced on average if there was no Higgs
boson. Let’s denote this by b. Similarly, we can also compute how many extra diphotons would
be produced on average if the Higgs particle did indeed exist. Let’s call this s. Observed diphoton
events are well documented to follow the Poisson distribution with some mean, say �. Therefore,
the null hypothesis corresponding to the state of nature if the Higgs boson did not exist would be

H0 W � D b

and the competing alternative hypothesis (describing the state of nature if the Higgs boson existed),

H1 W � D b C s:

�

The statistical problem of hypothesis testing considers how to efficiently employ
the sample in order to decide between the two competing hypotheses H0 and H1.
To do this, we must first consider how one can employ the sample to this aim, and
what sorts of error one can incur as a result. The next section introduces the relevant
notions

4.1 Test Functions and Error Types

The decision betweenH0 andH1 is to be made on the basis of the observed sample
X1; ::; Xn. A simple way to state this mathematically is via the following definition.

Definition 4.3 (Test Function)

A test function ı is any function ı W X n ! f0; 1g.

A test function takes the value ‘0’ when we rule in favour of H0 based on the
sample, and it takes the value ‘1’ when we rule in favour of H1. A test function will
typically take the value 0 or 1 depending on whether or not the sample satisfies a
certain condition. In other words, test functions are usually constructed by

ı.X1; : : : ; Xn/ D
(
1; if T .X1; : : : ; Xn/ 2 C;
0; if T .X1; : : : ; Xn/ … C:

where T is a statistic called a test statistic and C a set in the range of T called the
critical region. Notice that in compact notation, we may write

ı.X1; : : : ; Xn/ D 1fT .X1; : : : ; Xn/ 2 C g:
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Therefore the choice of the test function rests on the choice of T and of C . How
should we make this choice in order to obtain a good test function? Notice that ı is
always a Bernoulli random variable, since it takes the values 0 and 1,

ı D
(
1; with probability PŒT .X1; : : : ; Xn/ 2 C �;
0; with probability PŒT .X1; : : : ; Xn/ … C �:

This Bernoulli variable may give different decisions for different realisations of the
random sample. Therefore, just as with the problem of point estimation (where we
needed to choose good estimators), our choice of a test function must be guided by
a careful consideration of what types of errors one can commit. A good test function
will then be a ı whose sampling behaviour fares well relative to these error criteria.

In hypothesis testing, there are two possible states of nature, and two possible
decisions that we can make. Therefore, the “error landscape” is described by the
following table:

Decision/Truth H0 H1

0 No error Type II error
1 Type I error No error

When the truth is H0 W � 2 ‚0, we hope that the distribution of ı.X1; : : : ; Xn/
will concentrate around the value 0. Conversely, when the truth is H1 W � 2 ‚1,
we hope that the distribution of ı.X1; : : : ; Xn/ will concentrate around the value 1.
Therefore, a good decision rule should concentrate around the value i , wheneverHi

is true, for i 2 f0; 1g. So, by a slight abuse of terminology, we can compare decision
rules ı by looking at something like their “mean square error”,

MSE.ı;Hi/ D E� Œ.ı � i/2�; i 2 f0; 1g:

Since ı is a Bernoulli variable and i takes values in f0; 1g, we have

MSE.ı;Hi / D
(
P� Œı D 1�; if � 2 ‚0;

P� Œı D 0�; if � 2 ‚1:

This motivates the following definition.

Definition 4.4 (Error Probabilities)

Let H0 W � 2 ‚0 and H1 W � 2 ‚1 be two competing hypotheses. The Type I
error Probability is defined to be the mapping h W ‚0 ! Œ0; 1�,

h.�/ D P� Œı D 1�; � 2 ‚0:
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The Type II error Probability is defined to be the mapping g W ‚1 ! Œ0; 1�,

g.�/ D P� Œı D 0�; � 2 ‚1:

I Remark 4.5 That the two error probabilities are functions of � simply reflects
the fact that our error depends on the true state of nature: for some � it will be
easier to distinguish between‚0 and‚1 than for some others. For example, consider
‚0 D .�1; b� and ‚1 D .b;1/. For a given test function ı, we expect that it will
be easier to get things right when the true parameter is away from the boundary
value b, then when the true parameter is close to b.

I Remark 4.6 (Warning on Error Probabilities) Notice that h.�/ ¤ 1 � g.�/

since the two functions are defined over different domains. It is a common mistake
to not realise this.

In order to have a good test function, we must try to choose the test statistic T
and the critical region C in such a way that the probability of type I error be small
for all � 2 ‚0 and at the same time the probability of type II error be small for all
values of � 2 ‚1. The Neyman–Pearson framework in the next paragraph considers
how to attack this problem.

I Remark 4.7 (Type I vs Type II Error) It is no coincidence that the two types of
error are given two different names, and in fact names that suggest that one kind
of error is of primary importance (type I) and the other is secondary (type II). In
many practical contexts, the two hypotheses are asymmetric: making one kind of
error is far more serious than the other type of error. The more serious type of error
is named the Type I error and the other is the Type II error. Therefore, in all practical
situations,H0 is chosen to be the hypothesis whose false rejection is more harmful.

Example 4.8 (Spam Filter)

Suppose we wish an automatic test function to decide whether a new email is spam or not. The new
message contains n words X1; ::; Xn and we need a test function in order to decide between two
competing hypotheses: “spam” versus “not spam”. Notice that marking a message as spam when
it is in fact not can have serious consequences (since we will not see it and it could be important).
Marking a message as “not spam” when in fact it is spam is annoying, but perhaps not as big of a
problem. In this context, it is reasonable to define “H0 W Message is not spam” and “H1 W Message
is spam”. If we do so, the type I error will be precisely the probability to mark a message as spam
when it is not. �

Exercise 40 Consider the following statistical hypothesis testing scenarios. Write
down in each case the two competing hypotheses and the two types of errors you
can make. Based on this, decide which hypothesis should be the null hypothesisH0

and which one the alternative hypothesisH1.
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1. You are a physicist working on an experiment to detect dark matter particles. Test
if your data contains a dark matter signal.

2. You are trying to decide if you can drive home after attending a wine tasting. Test
if your blood alcohol level is above the legal limit for driving.

3. Barack Obama and Mitt Romney were the leading candidates in the 2012 US
presidential elections. You are the campaign manager for Mr. Obama trying to
decide how to best allocate his campaign funds. Test whether Obama is leading
the race in the state of Iowa. How would your test change if you were the
campaign manager for Mr. Romney?

4. You are a scientist working at a pharmaceutical company. You have developed a
new drug for reducing high blood pressure. Test if your drug works as advertised.

Exercise 41 LetX1; : : : ; Xn be an iid sample from anN.�; 1/ distribution. We will
test H0 W � D 0 against the alternativeH1 W � ¤ 0 using the test statistic

Tn.X1; : : : ; Xn/ D NXn D 1

n

nX

iD1
Xi ;

and corresponding test function

ı.X1; : : : ; Xn/ D
(
1; if jTn.X1; : : : ; Xn/j � Q;

0; otherwise;

whereQ > 0.
1. Find the probability of committing a type I error.
2. Find the probability of committing a type II error.
3. How do these vary as we increase Q?

Exercise 42 Let X1; : : : ; Xn be an iid sample from the Bernoulli.p/ distribution,
with p 2 .0; 1/ . We will test the null hypothesisH0 W p D 1

2
against the alternative

H1 W p 2 .0; 1/ n f1=2g using the test statistic

Tn.X1; : : : ; Xn/ D NXn � 1

2
D 1

n

nX

iD1
Xi � 1

2
;

and the corresponding test function

ı.X1; : : : ; Xn/ D
(
1; if jTn.X1; : : : ; Xn/j � Q;

0; otherwise;

whereQ 2 .0; 1
2
�.
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1. Find the probability of committing a type I error.
2. Find the probability of committing a type II error.
3. How do these vary as we increase Q?

Exercise 43 (Bonferroni Correction, Multiple Testing) For each j D 1; : : : ; J ,
let

fX1j ; : : : ; Xnj g

be iid Bernoulli random variables with (unknown) success probability pj 2 .0; 1/,
and n > 1. Note that the variables are independent for fixed j and varying i , but
could dependent for fixed i and varying j (e.g.Xij may be a yes/no answer of the i th
individual to the j th question of a customer survey). We wish to test the hypothesis
pair:

�
H0 W pj � 1

2
8 j D 1 : : : ; J

H1 W 9 j 2 f1; : : : ; J g W pj <
1
2

�

:

(in our example: are customers on average satisfied on all J issues, or do there
exist issues where customers are dissatisfied, on average?). Construct a test for the
hypothesis pair that respects a given level ˛ 2 .0; 1/.

4.2 The Neyman–Pearson Framework

Recall the closing of the previous paragraph: we must try to choose the test statistic
T and the critical regionC in such a way that the probability of type I error be small
for all � 2 ‚0 and at the same time the probability of type II error be small for all
values of � 2 ‚1. Is it possible to always make both these probabilities small, for
all � in the respective sets ‚0 and ‚1?

Unfortunately, the answer is no. Here is why. Let ı.X1; : : : ; Xn/ D
1fT .X1; : : : ; Xn/ 2 C g be a test function, and suppose that we wish to reduce
its type I error probability,

h.�/ D P� Œı D 1�; � 2 ‚0:

over all � 2 ‚0. To do this, we must “reject less often”, that is, we must replace C
by a set C� � C and obtain the new test function ı� D 1fT .X1; : : : ; Xn/ 2 C�g.
Observe that

P� Œı� D 1� D PŒT .X1; : : : ; Xn/ 2 C��

� PŒT .X1; : : : ; Xn/ 2 C � D P� Œı D 1�; 8 � 2 ‚0:



4.2 The Neyman–Pearson Framework 101

But now notice that C� � C H) Cc� � Cc and so

P� Œı� D 0� D PŒT .X1; : : : ; Xn/ … C��

� PŒT .X1; : : : ; Xn/ … C � D P� Œı D 0�; 8 � 2 ‚1:

In other words, by trying to reduce the type I error, we have increased the type II
error! By symmetry, we can also show that a similar attempt to reduce the type II
error would inflate the type I error (for two concrete examples, consider Exercises 41
and 42, p. 99).

It seems that we cannot insist on simultaneously reducing the two types of errors,
and we need to make some concessions. The fundamental premise of the Neyman–
Pearson Framework is that since type I error is more important, we should first try
to fix the corresponding probability of type I error to some low level. Once this is
fixed, we can then shift focus on getting a low type II error probability. We describe
the framework in the following steps:

Definition 4.9 (Neyman–Pearson Framework)

Let H0 W � 2 ‚0 andH1 W � 2 ‚1 be two competing hypotheses.
1. Fix an ˛ 2 .0; 1/ and call it the significance level or just level of the test.
2. Consider only test functions ı W X n ! f0; 1g that respect the level, i.e. test

functions ı such that

sup
�2‚0

P� Œı D 1� � ˛:

For ease of reference, we call this class D.‚0; ˛/. In other words,

D.‚0; ˛/ D
(

ı W X n ! f0; 1g
ˇ
ˇ
ˇ sup
�2‚0

P� Œı D 1� � ˛

)

:

3. Within the class of test functions D.‚0; ˛/, compare test functions by consider-
ing which has lower type II error probability

g.�/ D P� Œı D 0�; � 2 ‚1:

Equivalently, one can compare test functions by considering which has higher
power

ˇ.�/ D 1 � g.�/ D P� Œı D 1�; � 2 ‚1:

The intuition behind the Neyman–Pearson reasoning is as follows: we know that
committing a type I error is most harmful. Therefore, we must make it our top
priority to tightly control the probability of type I error. For this reason, we must
only consider test functions whose type I error probability never exceeds some level
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˛ (usually taken to be small, e.g. ˛ D 0:05). Given that this restriction is satisfied,
we can then turn to trying to minimise the type II error probability, or equivalently
to maximising the power.

Exercise 44
1. In the context of exercise 41, p. 99, find the smallest value of Q for which the

significance level is equal to some ˛ 2 .0; 1/. Evaluate this for ˛ D 0:05 and
n D 10. Find the supremum (over the parameter space) of the probability of type
II error for that value of Q.

2. In the context of exercise 42, p. 99, suppose that n D 10. Find the values of Q
for which the significance level is ˛ D 0:05. What is different here as opposed
to the first part of the exercise? Why?

4.3 Methods for Constructing Test Functions

Now we know what a test function is, what sorts of error we can expect to incur, and
what properties test functions should satisfy (as dictated by the Neyman–Pearson
framework). So it’s time to turn to the question of finding general methods for
constructing test functions. It turns out that how one constructs a test function can
depend very heavily on the types of hypotheses under consideration. To simplify
things, we will consider only 1-dimensional parameters � , and hypothesis pairs of
the form:
1. Simple vs Simple (H0 W � D �0, H1 W � D �1, for some given �0 ¤ �1).
2. Left Unilateral vs Right Unilateral: (H0 W � � �0,H1 W � > �0, for some given
�0).

3. Right Unilateral vs Left Unilateral. (H0 W � � �0,H1 W � < �0, for some given
�0).

4. Simple vs Bilateral: (H0 W � D �0, H1 W � ¤ �0, for some given �0).
In short, we will only consider pairs of the form:

(
H0 W � D �0

H1 W � D �1

)

„ ƒ‚ …
simple vs simple

or

(
H0 W � � �0

H1 W � > �0

)

or

(
H0 W � � �0

H1 W � < �0

)

„ ƒ‚ …
unilateral vs unilateral

or

(
H0 W � D �0

H1 W � ¤ �0

)

„ ƒ‚ …
simple vs bilateral

While this may seem restrictive, it encompasses a large variety of applied
situations. In applications, it is often sought to decide between two parameter values,
or to decide whether a certain parameter is above, below or just deviates from a given
threshold.

Now, before we proceed with considering methods for constructing tests, we
recall that in the Neyman–Pearson framework (Definition 4.9, p. 101) we set a level
˛, and consider only test functions that respect this level. In other words, we restrict
attention to elements in D.‚0; ˛/. Within this class, we compare test functions
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by comparing their corresponding power functions. This motivates the following
definition of optimality:

Definition 4.10 (Optimal Tests)

A test function ı of H0 W � 2 ‚0 vs H1 W � 2 ‚1 is called optimal at level ˛ (or
uniformly most powerful at level ˛) if the following two hold.

1. ı 2 D.‚0; ˛/.
2. P�1 Œ D 1� � P�1 Œı D 1� for all �1 2 ‚1 and all  2 D.‚0; ˛/.

Therefore, we wish to find methods that yield tests respecting the level, and with
as high power as possible, for as many elements in the alternative set‚1 as possible.
As it turns out, sometimes there do exist testing methods that are optimal—when this
is the case, there is no reason to consider any other method. The existence of such
optimal tests, though, depends strongly on the structure of ‚0 and ‚1, and also on
the particular probability model under study. We will therefore structure our study of
testing methods according to the types of pairs considered. Here is an overview:
(a) Simple vs Simple: In this case we will be able to find optimal tests that remain

optimal regardless of the underlying model.
(b) Unilateral: In this case we will be able to find optimal tests for specific classes

of models, specifically for the exponential family of distributions.
(c) Bilateral. In this case we will demonstrate that no optimal tests exist in general.

We will nevertheless propose two general methods inspired by the concept of
likelihood, that perform well in general.

4.3.1 Simple Case

In the case of a simple vs a simple hypothesis, the following result due to Neyman
and Pearson gives us a method for constructing optimal tests.

Lemma 4.11 (Neyman–Pearson) Let X D .X1; : : : ; Xn/ have joint density (or
frequency) function fX .xI �/ and suppose we wish to test

H0 W � D �0 vs H1 W � D �1:

at some level ˛ 2 .0; 1/, for �0 ¤ �1. If the random variable

ƒ.X / D fX .X1; : : : ; XnI �1/
fX .X1; : : : ; XnI �0/ D L.�1/

L.�0/

is such that there exists a Q > 0 satisfying

P�0Œƒ > Q� D ˛
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then the test whose test function is given by

ı.X/ D 1fƒ.X/ > Qg;

is an optimal (most powerful) test of H0 versus H1 at significance level ˛.

I Remark 4.12 A sufficient condition for the existence of a suitable Q for any
˛ 2 .0; 1/ is that ƒ be a continuous random variable under the null hypothesis.
If the distribution of ƒ under H0 is discrete or has discontinuities, there may exist
˛ 2 .0; 1/ such that P�0 Œƒ > Q� D ˛ cannot be satisfied for any Q > 0.

Notice the intuition behind the test: we know that the method of maximum
likelihood is a very good estimation method. The higher the likelihood of a
parameter, the more plausible this parameter value is as a guess for the true
parameter. So, in order to test H0 W � D �0 against H1 W � D �1, we decide to
compare the value of the likelihood function at the two competing parameter values
�0 and �1. If the likelihood of �1 is significantly higher than the likelihood of �0, then
we reject H0 in favour of H1. How much higher qualifies as significantly higher?
The theorem tells us thatQ-times higher is significantly higher, whereQ is a critical
value chosen so that the level ˛ be respected.

Proof of Lemma 4.11 We need to verify properties (1) and (2) in Definition 4.10
(p. 103). Since Q is such that P�0 Œƒ > Q� D ˛, then we immediately have that

P�0 Œı D 1� D ˛ .since P�0Œı D 1� D P�0 Œƒ > Q�/: (4.1)

Therefore ı 2 D.f�0g; ˛/ (i.e. ı indeed respects the level ˛) which yields (1).
To show (2), let  2 D.f�0g; ˛/. For notational ease, write .X1; : : : ; Xn/> D X

and .x1; : : : ; xn/> D x. Without loss of generality assume that fX is a density
function (otherwise replace any integrals that follow by sums), and observe that

f .xI �1/�Q � f .xI �0/ > 0 if ı.x/ D 1 & f .xI �1/�Q � f .xI �0/ � 0 if ı.x/ D 0:

Therefore, since  can only take the values 0 or 1,

 .x/.f .xI �1/�Q � f .xI �0// � ı.x/.f .xI �1/ �Q � f .xI �0//
Z

X n

 .x/.f .xI �1/�Q � f .xI �0//dx �
Z

X n

ı.x/.f .xI �1/�Q � f .xI �0//dx
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Rearranging the terms yields

Z

X n

. .x/ � ı.x//f .xI �1/dx � Q

Z

X n

. .x/ � ı.x//f .xI �0/dx

H) E�1 Œ .X /� � E�1 Œı.X/� � Q.E�0 Œ .X /� � E�0 Œı.X/�/

H) P�1 Œ .X / D 1�� P�1 Œı.X/ D 1� � Q.P�0Œ .X / D 1� � P�0 Œı.X/ D 1�/

Equation (4.1), combined with the fact that  2 D.f�0g; ˛/ andQ > 0, implies that
the right-hand side is non-positive. This proves (2) in Definition 4.10 (p. 103), and
thus completes the proof. ut

Example 4.13

Let X1; : : : ; Xn
iid� Exp.�/ and let �1 > �0 be two constants. Consider the problem of testing the

hypothesis pair:

(
H0 W � D �0

H1 W � D �1:

The likelihood is

f .X1; : : : ; XnI�/ D
nY

iD1

�e��Xi D �ne��
Pn
iD1 Xi

So according to the Neyman–Pearson lemma we must base our test on the statistic

ƒ.X1; : : : ; Xn/ D f .X1; : : : ; XnI�1/
f .X1; : : : ; XnI�0/ D

�
�1

�0

�n
exp

"

.�0 � �1/

nX

iD1

Xi

#

:

rejecting the null if ƒ � Q, for Q such that P�0 Œƒ.X1; : : : ; Xn/ � Q� D ˛, provided such a Q
exists. To determine whether it does exist, and if so what it is, we note that ƒ.X1; : : : ; Xn/ is a
decreasing function of �.X1; : : : ; Xn/ D Pn

iD1 X1 (since �0 < �1). Therefore

ƒ.X1; : : : ; Xn/ � Q ” �.X1; : : : ; Xn/ � q

for some q, such that

˛ D P�0 Œƒ � Q� ” ˛ D P�0 Œ�.X1; : : : ; Xn/ � q�

Now, under the null hypothesis, �.X1; : : : ; Xn/ has a gamma distribution with parameters n and �0
(see p. 13). Hence, there exists a q such that ˛ D P�0 Œ�.X1; : : : ; Xn/ � q�, and this q is given by
the q˛ quantile of the gamma.n; �0/ distribution.

In summary, the optimal test is to reject H0 at level ˛ if �.X1; : : : ; Xn/ is smaller than the
˛-quantile of a gamma.n; �0/ distribution. �
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The previous example demonstrated something interesting: the test statistic for an
optimal test reduced to the natural sufficient statistic � of the distribution (notice
that the exponential distribution is a one-parameter exponential family with natural
statistic �.x1; : : : ; xn/ D Pn

iD1 xi ). This is not a coincidence. It works the same
way for all one-parameter exponential families:

Example 4.14 (Simple vs Simple Test in Exponential Families)

Let X1; : : : ; Xn
iid� f .xI �/, where f .xI �/ D expf�.�/T .x/� d.�/C S.x/g is a one-parameter

exponential family, with � being increasing. Suppose we wish to test H0 W � D �0 against
H1 W � D �1. Without loss of generality, assume that �0 < �1. The Neyman–Pearson Lemma
(Lemma 4.11, p. 103) dictates that we should look for a test statistic of the form

ı D 1fL.�1/=L.�0/ > Qg D 1flogL.�1/� logL.�0/ > logQg:
By the exponential family form of f .xI �/, we obtain that

ı D 1

(

.�.�1/� �.�0/

nX

iD1

T .Xi /� n.d.�1/� d.�0// > logQ

)

D 1

(
nX

iD1

T .Xi / >
logQC n.d.�1/� d.�0//

�.�1/� �.�0/

)

:

Notice that �.�1/� �.�0/ > 0 since � is increasing, and n.d.�1/� d.�0// is just a constant. So we
can just write

ı D 1f�.X1; : : : ; Xn/ > qg;
If � is a continuous random variable, and we want a level ˛ test, then q is going to be the .1� ˛/-
quantile of G0.t/ D P�0 Œ�.X1; : : : ; Xn/ � t �, i.e. the .1� ˛/-quantile of the sampling distribution
of �.X1; : : : ; Xn/ when the parameter is taken to be �0 (this is called the null distribution of � ).

If, on the other hand, we have that � is a decreasing function, then for �0 < �1, we have
�.�1/� �.�0/ < 0. In this case, we can see that the optimal test statistic becomes

ı D 1f�.X1; : : : ; Xn/ � qg;
This time, if we want a level ˛ test, then q must be the ˛-quantile ofG0.t/ D P�0 Œ�.X1; : : : ; Xn/ �
t �.

We observe that the form of the test depends on whether � is increasing or decreasing,
and on whether �0 < �1 or �0 > �1. The following table summarises the form of the test
statistic for the different cases. In each case, qs represents the s-quantile of the distribution
G0.t/ D P�0 Œ�.X1; : : : ; Xn/ � t �.

�0 < �1 �0 > �1

�.�/ increasing 1f�.X1; : : : ; Xn/ > q1�˛g 1f�.X1; : : : ; Xn/ � q˛g
�.�/ decreasing 1f�.X1; : : : ; Xn/ � q˛g 1f�.X1; : : : ; Xn/ > q1�˛g

An interesting observation is that the test function does not depend on the precise value of �1, but
only on whether or not �1 < �0 or �1 > �0. �
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It is not always the case that G0.t/ D P�0 Œ�.X1; : : : ; Xn/ � t � is a continuous
distribution. This means that we might not be able to find an optimal test for all ˛
(we will be able to find an optimal test only for some specific ˛). Here is an example.

Example 4.15

Let X1; : : : ; Xn
iid� Poisson.�/ and consider the hypothesis pair

H0 W � D �0 vs H1 W � D �1:

Notice that this is the hypothesis pair we encountered in the Higgs boson example (Example 4.2,
p. 96) if we set �0 D b and �1 D bC s. This is a one-parameter exponential family example, and
it is easy to see that the sufficient statistic is

�.X1; : : : ; Xn/ D
nX

iD1

Xi

and the �.�/ function is strictly increasing (it is equal to the log.�/ function). Since �1 > �0, our
work in Example 4.14 yields the optimal Neyman–Pearson test statistic for this hypothesis as given
by

ı.X1; : : : ; Xn/ D 1

(
nX

iD1

X1 > q1�˛

)

:

provided there exists a q1�˛ such that G0.q1�˛/ D P�0 Œ�.X1; : : : ; Xn/ � q1�˛� D 1 � ˛. Since
the Xi are independent and Poisson distributed, it is a simple exercise (using generating functions;

see Lemma A.10, p. 168) to show that �.X1; : : : ; Xn/
H0� Poisson.n�0/. Since this is a discrete

distribution, the only ˛ for which this will be the case will be

e�n�0; e�n�0 .1C n�0/ ; e
�n�0

�

1C n�0 C .n�0/
2

2

�

; e�n�0

�

1C n�0 C .n�0/
2

2
C .n�0/

3

3Š

�

; : : :

and so on (recall the probability mass function of a Poisson random variable in Definition 1.9, p. 7).
However, an interesting observation is that as n grows, this sequence of values becomes denser and
denser near to the origin. More precisely, for each " > 0 and k 2 N, there exists an N 2 N such
that if n > N then there is at least k possible values of ˛ in the interval Œ0; "�.

�

Exercise 45 Let X1; : : : ; Xn
i.i.d.� N.�; �2/ with �2 > 0 known. Find the most

powerful test for the pairH0 W � D �0 vsH1 W � D �1 with �0 < �1 at significance
level ˛ 2 .0; 1/.

Exercise 46 Given a sample X1; : : : ; Xn
i.i.d.� Bernoulli.p/, we wish to test

H0 W p D 0:49 vs H1 W p D 0:51:

Determine the (approximate) sample size for which both the probability of type I
error and the probability of type II error are equal to 0:01. Use a test function that
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rejects H0 when
P

i Xi is large. Hint: use the central limit theorem, and recall the
last part of Exercise 44 (p. 44). You will need to use the fact that z0:99 
 2:33, where
z0:99 is the 0.99-quantile of the N.0; 1/ distribution.

Exercise 47 LetX1; : : : ; Xn
i.i.d.� Unif .0; �/ and consider the pairH0 W � D �0 and

H1 W � D �1 with �1 < �0.
1. Find the most powerful test ofH0 againstH1 at significance level ˛ D .�1=�0/

n.
Consider the behaviour of this level as a function of �0; �1 and n. What is the
power of this test? Is it possible to define a Neyman–Pearson optimal test for
other values of ˛?

2. Consider a (not necessarily optimal) test at significance level ˛ < .�1=�0/
n that

rejectsH0 when X.n/ < k. Find the appropriate value of k. What is the power of
this test?

Exercise 48 (Intuitive Hypothesis Tests) The goal of this exercise is to motivate
hypothesis testing from a more intuitive perspective, via point estimation. Let
X1; : : : ; Xn be iid with density function

fX.x/ D 1

48
�5x3=2e��p

x; x > 0;

where � > 0 is a parameter. We wish to test H0 W � D �0 vs. H1 W � D �1, where
�0 > �1.
1. Find the maximum likelihood estimatorb�n.
2. As we have seen in Chapter 3,b�n is generally a good estimator. Consequently, a

natural approach is to rejectH0 if �0 is not “compatible” withb�n. In our case this
would translate to: reject H0 ifb�n is small. (If it were the case thatb�n > �0, we
would certainly chooseH0 and notH1.) What is the form of such a test function
(up to a constant, say D)?

3. Now let us find the precise test function. To this aim, we must determine a critical
lower bound forb�n, sufficiently small to reject H0. For a given level ˛ 2 .0; 1/,
we wish to choose the lower bound so that the probability of type I error is ˛.
Describe the relationship between the constantD and the level ˛:

4. We can now wonder whether this is the best test possible. Could we have done
better, i.e. find a test at level ˛ but more powerful yet? Show that the answer to
this question is in the negative, by proving that our test function is precisely the
same as that given by the Neyman–Pearson lemma (you may assume that the
value Q in the lemma exists).

5. Find the simplest formula possible for the test function ı.X1; : : : ; Xn/. Hint:b�n
involves a sum, and we know the distribution of each summand.
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4.3.2 Unilateral Case

In the case of a unilateral null hypothesis vs a unilateral alternative, there is no result
similar to the Neyman–Pearson lemma that describes an optimal test regardless of
the specific type of probability model. However, we can still find broad classes
of models for which optimal tests can be found. We will not consider the general
specifications of such models here, but we note that models that are one-parameter
exponential families do satisfy these conditions. Here is the form of the optimal
unilateral test in one-parameter exponential families.

Theorem 4.16 (UMP Unilateral Tests for Exponential Families) Let
X1; : : : ; Xn be an iid sample from a one-parameter exponential family with
density (or frequency)

f .xI �/ D expf�.�/T .x/� d.�/C S.x/g; x 2 X ; � 2 ‚ � R:

where ‚ an open subset, and �.�/ is strictly increasing and continuously
differentiable. If � D Pn

iD1 T .Xi/ is a continuous random variable, then:
1. For ˛ 2 .0; 1/, the test statistic ı D 1f� > q1�˛g is uniformly most powerful

for testing

�
H0 W � � �0
H1 W � > �0

�

at level ˛. Here, q1�˛ is the .1 � ˛/-quantile of G0.t/ D P�0Œ� � t �.
2. For ˛ 2 .0; 1/, the test statistic ı D 1f� � q˛g is uniformly most powerful for

testing

�
H0 W � � �0
H1 W � < �0

�

at level ˛. Here, q˛ is the ˛-quantile of G0.t/ D P�0 Œ� � t �.

I Remark 4.17 If �.�/ is strictly decreasing, then define �1.�/ D ��.�/ and T1 D
�T . Then we get an exponential family

f .xI �/ D expf�1.�/T1.x/� d.�/C S.x/g; x 2 X ; � 2 ‚ � R;

with �1.�/ strictly increasing. The theorem now applies in the same way, using
�1 D Pn

iD1 T1.Xi/ in lieu of � . We can summarise the form of the test statistic,
as dependent on the direction of the hypotheses and on whether � is increasing or
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decreasing in the following table:

 
H0 W � � �0

H1 W � > �0

!  
H0 W � � �0

H1 W � < �0

!

�.�/ increasing 1f�.X1; : : : ; Xn/ > q1�˛g 1f�.X1; : : : ; Xn/ � q˛g
�.�/ decreasing 1f�.X1; : : : ; Xn/ � q˛g 1f�.X1; : : : ; Xn/ > q1�˛g

I Remark 4.18 Notice that, surprisingly, the form of the test is exactly the same
as the form of the test in an exponential family for a “simple vs simple” hypothesis
pair (compare the table above with the table in Example 4.14, p. 106). How is this
possible? The key observation is that, as we saw in Example 4.14, the form of the
Neyman–Pearson test function did not depend on the precise value of �1, but only
on whether or not �1 < �0 or �1 > �0. It also depended on �0. This explains why
the form of the test function in the unilateral case is the same as in the simple vs
simple case. This is not the true in general, but is true for one-parameter exponential
families due to their special form.

Proof of Theorem 4.16 We will prove part (1), since part (2) follows directly
analogously. To prove (1), we need to verify two things:
(I) That sup�2.�1;�0�

P� Œı D 1� � ˛ (i.e. that ı maintains level ˛ over the entire
null parameter space). Note that since ı is a Bernoulli random variable, P� Œı D
1� D E� Œı�.

(II) That for any  W X n ! f0; 1g such that sup�2.�1;�0�
P� Œ D 1� � ˛, it must

be that

E� Œ � � E� Œı�; 8� 2 .�0;1/:

(i.e. that ı has maximal power over the entire alternative parameter space).
The key to showing (I) is to show that � 7! E� Œı.X1; ::; Xn/� D P� Œı D 1� is
increasing, by showing that its derivative is non-negative. Since �.�/ and d.�/ are
differentiable, f .xI �/ is of the exponential family form and ı W X ! f0; 1g, we
may differentiate under the integral (see Remark 3.11, p. 67),

@

@�
E� Œı� D @

@�

Z

X n

ı.x1; : : : ; xn/

nY

iD1
f .xi I �/dx1 : : : dxn

D
Z

X n

ı.x1; : : : ; xn/
@

@�

nY

iD1
f .xi I �/dx1 : : : dxn

D
Z

X n

ı.x1; : : : ; xn/

�Qn
iD1 f .xi I �/Qn
iD1 f .xi I �/

�
@

@�

nY

iD1
f .xi I �/dx1 : : : dxn
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D
Z

X n

ı.x1; : : : ; xn/

 
@

@�
log

nY

iD1
f .xi I �/

!
nY

iD1
f .xi I �/dx1 : : : dxn

D E�

"

ı.X1; : : : ; Xn/

nX

iD1

@

@�
logf .Xi I �/

#

D Cov�

"

ı.X1; : : : ; Xn/;

nX

iD1

@

@�
logf .Xi I �/

#

D Cov�
�
ı.X1; : : : ; Xn/;

�
�0.�/�.X1; : : : ; Xn/� nd 0.�/

	


D �0.�/Cov� Œı; ��

The third to last equality comes from the fact that when we can differentiate under
the integral sign,1

E�

"
nX

iD1

@

@�
logf .Xi I �/

#

D 0:

In the discrete case, we simply replace integration by summation, of course. With
this result under our belts, we can now verify (I). Notice first that P�0 Œı D 1� D
P�0 Œ� > q1�˛� D 1 � P�0Œ� � q1�˛�. But 1 � P�0 Œ� � q1�˛� D 1 � G0.q1�˛/ D
1 � .1 � ˛/ D ˛, since q1�˛ is the .1 � ˛/-quantile of G0. Further to this, we
have calculated that @

@�
P� Œı D 1� D @

@�
E� Œı� D �0.�/Cov� Œı; ��. But �0.�/ is

positive since �.�/ is increasing, and Cov� Œı; �� � 0 because ı D 1f� > q1�˛g is an
increasing function of � , and is thus positively correlated with � (see Lemma A.5,
p. 160)). It follows that @

@�
P� Œı D 1� � 0, and so P� Œı D 1� is increasing. It must

thus be that P� Œı D 1� � P�0 Œı D 1� D ˛ for all � < �0, and the proof of part (I) is
complete.
To prove part (II), let �1 be an arbitrary element in .�0;1/. Notice that

ƒ WD f .X1; : : : ; XnI �1/
f .X1; : : : ; XnI �0/ D expf�.�1/� � nd.�1/� �.�0/� C nd.�0/g

D expfŒ�.�1/� �.�0/�� � nd.�1/C nd.�0/g

It follows that the likelihood ratio is a strictly monotone function of � , since �.�/ is
strictly increasing. Therefore, ı is equal to the likelihood ratio test function

1
n
ƒ > expfŒ�.�1/� �.�0/�q1�˛ � nd.�1/C nd.�0/g„ ƒ‚ …

Q

o

1To verify this, replace ı by 1 in the array of equations right above.
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since ı is 1 if and only if 1fƒ > Qg is 1. It follows from the Neyman–Pearson
lemma (Lemma 4.11, p. 103) that

E�1 Œ � � E�1 Œı�; 8�1 2 .�0;1/:

for any  W X n ! f0; 1g such that P�0 Œ D 1� � ˛: Note, however, that

sup
���0

P� Œ D 1� � ˛ H) P�0 Œ D 1� � ˛:

And so, from what we have just proven, sup���0 P� Œ D 1� � ˛ must thus imply

E�1 Œ � � E�1 Œı�; 8�1 2 .�0;1/:

This proves (II) and thus the proof is complete. ut

Exercise 49 A bio-imaging laboratory has developed a new method to carry out
brain scans in less than 20 min. A sample of 12 brain scan durations from the lab is
given below:

X D f21; 18; 19; 16; 18; 24; 22; 19; 24; 26; 18; 21g:

1. Suppose that the duration time approximately follows an N.�; 32/ distribution.
Test whether the mean scan time is less than 20 min, i.e., test H0 W � � �0 vs
H1 W � > �0 with �0 D 20 at significance level ˛ D 0:05.

2. Could you carry out the same analysis if the variance were unknown?

Hint:use ı D 1
�p

n. NX��0/
S

� tn�1;1�˛
�

as your test function. Here tn�1;1�˛ is the

1 � ˛ quantile of the Student t distribution with n � 1 degrees of freedom.

Exercise 50 Let Y1; : : : ; Y4 be iid N.�; 42/ random variables. We wish to deter-
mine whether � is larger than �0 D 10 . To this aim, we carry out a test at level
˛ D 5% contrasting the hypothesesH0 W � � 10 andH1 W � > 10.
1. Calculate the power of the test when the true value of � equals 13 and when it

equals 11.
2. Determine what number of observations we need to have to guarantee that the

power of the test is at least 90% when the true mean is � D 13.

Exercise 51 (Paired Test) A standard problem in the pharmaceutical industry is
to determine whether treatment with a new drug will have an effect on a patient.
Consider, for instance, the problem of reducing blood pressure, perhaps even by
placebo effect. Let Xi be the blood pressure of the i th patient before the drug
treatment, and Yi the i th patient’s blood pressure at the end of the treatment. We
may suppose that the Xi are iid, since different patients are chosen at random.
Similarly, the Yi are independent, since all patients received the same treatment.
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Assume thatXi � N.�1; �
2
1 / and Yi � N.�2; �

2
2 /, with unknown �22 ; �

2
2 . Construct

a test in order to test the hypothesis that the drug treatment lowers the blood pressure.
Remark: since Xi and Yi come from the same person (patient i ), we cannot assume
them to be independent. In this context, we speak of a paired test.

4.3.2.1 Approximate Critical Values
Notice that, in order to be able to implement the unilateral test in practice, we
will need to know how to calculate the quantile qs in the table above. This can
be calculated provided that G0.t/ D P�0 Œ�.X1; : : : ; Xn/ � t � is known exactly. In
the examples we considered (e.g. Example 4.13) this was indeed the case, but it
will not always be the case: as we saw in Sect. 2.4 (p. 53) it is often not possible to
determine the precise distribution G0.t/. However, one can approximate it for large
values of the sample size n. Specifically, Corollary 2.24 (p. 56) tells us that

p
n.n�1�.X1; : : : ; Xn/� 
 0.�// d�! N.0; 
 00.�//;

or, equivalently, by Exercise 23 (p. 52)

p
n

�

n�1�.X1; : : : ; Xn/� d 0.�/
�0.�/

�
d�! N

�

0;
d 00.�/�0.�/ � d 0.�/�00.�/

Œ�0.�/�3

�

:

The latter suggests approximating the distribution G0.t/ D P�0Œ�.X1; : : : ; Xn/ � t �

by a

N

�

n
d 0.�0/
�0.�0/

; n
d 00.�0/�0.�0/� d 0.�0/�00.�0/

Œ�0.�0/�3

�

distribution, when n is sufficiently large. Notice that since this latter distribution is
a continuous distribution, it follows that for large enough samples from exponential
families, we are able to approximately construct the Neyman–Pearson optimal test
for any level ˛. This can be done by the method of standardisation (Lemma 1.32, p.
22), thus employing tables of quantiles for the N.0; 1/ distribution.

4.3.3 Bilateral Case

Unfortunately, for hypothesis pairs of the form H0 W � D �0 and H1 W � ¤ �0, there
can be no optimal test, in the sense described in Definition 4.10 (p. 103). To see
this, note that for ı W X n ! f0; 1g to be uniformly most powerful for H0 W � D �0
vs H1 W � ¤ �0, it must be most powerful for H0 W � D �0 and H1 W � D �1,
for all �1 ¤ �0. But consider the problem of testing such a pair, in a one-parameter
exponential family f .xI �/ D expf�.�/T .x/�d.�/CS.x/g. Example 4.14 (p. 106)
tells us that the form of the test is different depending on whether �1 > �0 or �1 < �0,
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so there can be no optimal test: if a test is most powerful over .�0;1/, then it will
necessarily be less powerful than some other test over .�1; �0/.

Because of this, we need to abandon the hope of uniquely determining the best
testing method, as we were able to do in the previous two paragraphs. Instead,
we must look for testing methods that will yield reasonably well-performing tests
in general. We will consider two such methods, both motivated by the notion of
likelihood: The Likelihood Ratio Method and Wald’s Method.

4.3.3.1 Likelihood Ratio Tests
In the previous chapter we saw that the concept of likelihood is of fundamental
importance in the problem of point estimation. In particular, we saw that we can
construct estimators with excellent properties if we use the method of maximum
likelihood: choosing as our estimator the element of the parameter space that
maximises the likelihood.

The motivation behind the likelihood ratio test is to use the concept of likelihood
again, but this time in order to decide between the two competing hypotheses. The
hope is that such an approach will yield powerful tests. The formal definition is as
follows.

Definition 4.19 (Likelihood Ratio Test)

Let X1; : : : ; Xn
i id� f .xI �/, yielding a likelihood

L.�/ D
nY

iD1
f .Xi I �/;

and let H0 W � 2 ‚0 and H1 W � 2 ‚1 be two competing hypotheses. Define the
likelihood ratio as

ƒ.X1; : : : ; Xn/ D sup�2‚1 L.�/
sup�2‚0 L.�/

:

The Likelihood Ratio Test (LRT) at level ˛ 2 .0; 1/ is defined to be the test with
test function

ı.X1; : : : ; Xn/ D 1fƒ.X1; : : : ; Xn/ > Qg;

where Q > 0 is such that sup�2‚0 P� Œƒ.X1; : : : ; Xn/ > Q� D ˛, provided such
a Q exists.

What is the intuition behind the LRT? When we had a simple vs simple
hypothesis pair, the Neyman–Pearson Lemma (Lemma 4.11, p. 103) said that we
should compare the likelihood evaluated at the alternative value �1 to the likelihood
evaluated at the null value �0. When either of these sets may not be a singleton, the
LRT method suggests that we simply compare the maximum achievable likelihood
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from within ‚1 to the maximum achievable likelihood from within ‚0, thus
mimicking the Neyman–Pearson lemma.

I Remark 4.20 (LRT for Bilateral Hypothesis Pairs) Note that whenH0 W � D �0
and H1 W � ¤ �0 we have ‚0 D f�0g and ‚1 D R n f�0g, so, if L is a continuous
function of � and attains its supremum,

ƒ.X1; : : : ; Xn/ D sup�2‚1 L.�/
sup�2‚0 L.�/

D sup�2Rnf�gL.�/
L.�0/

D sup�2RL.�/
L.�0/

D L. O�/
L.�0/

;

where O� is a maximum likelihood estimator of � .

Example 4.21

Let X1; : : : ; Xn
iid� N.�; �2/. Assume that �2 is known and suppose we are interested in testing

the hypothesis pair

H0 W � D �0 vs H1 W � ¤ �0:

Since the MLE of � is NX , we have

L. NX/ D
�

1

2��2

�n=2
exp

(

� 1

2�2

nX

iD1

.Xi � NX/2
)

; &

L.�0/ D
�

1

2��2

�n=2
exp

(

� 1

2�2

nX

iD1

.Xi � �0/
2

)

:

Consequently,

ƒ.X1; : : : ; Xn/ D L. O�/
L.�0/

D L. NX/
L.�0/

D exp

(

� 1

2�2

"
nX

iD1

.Xi �X/2 �
nX

iD1

.Xi � �0/
2

#)

:

But we note that

nX

iD1

.Xi � �0/
2 D

nX

iD1

.Xi �X CX � �0/
2 D

nX

iD1

.Xi �X/2 C n.X � �0/
2;

because the cross-terms vanish. It follows that the likelihood ratio reduces to

ƒ.X1; : : : ; Xn/ D exp
n n

2�2
. NX � �0/

2
o
:

It follows that ƒ.X1; : : : ; Xn/ is a monotone increasing function of S.X1; : : : ; Xn/ D
�

NX��0
�=

p

n

�2
.

Note that when H0 is true, S � 
21 (recall Example 1.29, p. 20). Therefore, the likelihood ratio
test rejects the null hypothesis if and only if S.X1; : : : ; Xn/ > 
21;1�˛, where 
21;1�˛ denotes the



116 4 Tests of Hypotheses for Model Parameters

1� ˛ quantile of the 
21 distribution. Notice that this is equivalent to rejecting the null if and only

if
ˇ
ˇ
ˇ

NX��0
�=

p

n

ˇ
ˇ
ˇ > z1�˛=2, where z1�˛=2 is the .1� ˛=2/ quantile of an N.0; 1/ distribution. �

An important aspect of the Likelihood Ratio method is that it can handle
situations where there are more than one parameters, but we are interested in
testing a bilateral hypothesis for a single parameter. In other words, suppose that

X1; : : : ; Xn
i id� f .xI �; �/, where � 2 R and � 2 R

p are two unknown parameters.
We might be interested in testing

H0 W � D �0 vs H1 W � ¤ �0

at level ˛ > 0, for some �0 2 R, without making any reference to (and without
caring about) the remaining parameter � (a parameter such as � is often referred to
as a nuisance parameter). In this case, the likelihood ratio is formed as

ƒ.X1; : : : ; Xn/ D sup�2Rnf�0g;�2Rp L.�; �/
sup�2f�0g;�2Rp L.�; �/

D sup�2R;�2Rp L.�; �/
sup�2Rp L.�0; �/

D L. O�; O�/
sup�2Rp L.�0; �/

;

where . O�; O�/ is an MLE of .�; �/. The Likelihood Ratio Test at level ˛ 2 .0; 1/ will
be defined again as the test with test function

ı.X1; : : : ; Xn/ D 1fƒ.X1; : : : ; Xn/ > Qg;

whereQ > 0 is such that sup�2Rp P�0;� Œƒ.X1; : : : ; Xn/ > Q� D ˛, provided such a
Q exists. Here is the classical example:

Example 4.22 (Bilateral Test for Means of Gaussian Distributions)

LetX1; : : : ; Xn
iid� N.�; �2/, where � and �2 are unknown. Suppose we wish to test the hypothesis

pair

H0 W � D �0 vs H1 W � ¤ �0

at level ˛ > 0, for some fixed �0 2 R. Let us use the Likelihood Ratio method in order to derive
a suitable test. We notice that we have two parameters, but are only interested in one of them.
Following the reasoning presented above, we need to determine

ƒ.X1; : : : ; Xn/ D L. O�; O�2/
sup�2>0 L.�0; �2/

; (4.2)

where . O�; O�2/ is the MLE of .�; �2/. For the numerator, one may calculate that

@

@�2
`.�0; �

2/ D � n

2�2
C 1

2�4

nX

iD1

.Xi � �0/
2:
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Following the same steps as in Exercise 3.16 (p. 71), we conclude that

arg sup
�2>0

L.�0; �
2/ D 1

n

nX

iD1

.Xi � �0/
2:

In other words, the supremum in the numerator in Eq. (4.2) satisfies

sup
�2>0

L.�0; �
2/ D L

 

�0 ;
1

n

nX

iD1

.Xi � �0/
2

!

;

and so the numerator is equal to

sup
�2>0

L.�0; �
2/ D



1

2�.1=n/
Pn

iD1.Xi � �0/2

�n=2
exp

�

�
Pn

iD1.Xi � �0/
2

.2=n/
Pn

iD1.Xi � �0/2

�

D



ne�1

2�
Pn

iD1.Xi � �0/2

�n=2

:

Next, we turn to the denominator in Eq. (4.2). Recalling Example 3.16 (p. 71), we have that the
MLE of .�; �2/ is given by the pair:

O� D 1

n

nX

iD1

Xi D X; & O�2 D 1

n

nX

iD1

.Xi �X/2:

It follows that

L. O�; O�2/ D
"

1

2�.1=n/
Pn

iD1.Xi �X/2

#n=2

exp

(

�
Pn

iD1.Xi �X/2

.2=n/
Pn

iD1.Xi �X/2

)

D
"

ne�1

2�
Pn

iD1.Xi �X/2

#n=2

:

Consequently, the likelihood ratio is

ƒ.X1; : : : ; Xn/ D L. O�; O�2/
sup�2>0 L.�0; �2/

D
"Pn

iD1.Xi � �0/
2

Pn
iD1.Xi �X/2

#n=2

:

This can be further simplified by recalling that

nX

iD1

.Xi � �0/
2 D

nX

iD1

.Xi �X CX � �0/
2 D

nX

iD1

.Xi �X/2 C n.X � �0/
2;

since the cross-terms vanish. Using this fact, we may write

ƒ.X1; : : : ; Xn/ D
"Pn

iD1.Xi �X/2 C n.X � �0/
2

Pn
iD1.Xi �X/2

#n=2

D
(

1C n.X � �0/
2

Pn
iD1.Xi �X/2

) n=2

:
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Observe now that

ƒ > Q ” n.X � �0/
2

Pn
iD1.Xi �X/2=.n� 1/

„ ƒ‚ …
T 2

> .n� 1/.Q2=n � 1/
„ ƒ‚ …

WDC

”
ˇ
ˇ
ˇ
ˇ
X � �0

S=
p
n

ˇ
ˇ
ˇ
ˇ

„ ƒ‚ …
jT j

>
p
C ;

so the likelihood ratio test is

ı.X1; : : : ; Xn/ D 1fƒ > Qg D 1

� ˇ
ˇ
ˇ
ˇ
X � �0

S=
p
n

ˇ
ˇ
ˇ
ˇ >

p
C

�

;

and
p
C needs to be selected so that PH0

hˇ
ˇ
ˇ
X��0
S=

p

n

ˇ
ˇ
ˇ >

p
C
i

D ˛. But, when H0 is true, we have

that T � tn�1, the latter denoting Student’s distribution with n � 1 degrees of freedom (see
Theorem 2.9, p. 48). It follows that

p
C D tn�1;1�˛=2, where the latter is the .1� ˛=2/-quantile

of the tn�1 distribution. In conclusion, the LRT is

ı D 1
˚jX � �0j > tn�1;1�˛=2S=

p
n
�
:

�

Notice the intuition in this result: we will reject the hypothesis H0 W � D �0 if
X (the MLE of �) is at a “significant” distance from �0. How large is “significant”?
The answer is tn�1;1�˛=2 times the (estimated) standard deviation of X (estimated
by S=

p
n). We will see in Sect. 4.3.3.3 that we can motivate another type of testing

method by generalising this idea. For the moment, though, we turn to consider
another important problem in the next section.

Exercise 52 (Bilateral Test for Variances of Gaussian Distributions) Let
X1; : : : ; Xn be an iid random sample from a N .�; �2/ distribution, where both
� and �2 are unknown. Show that the LRT for the hypothesis pair H0 W �2 D �20
vs H1 W �2 ¤ �20 Ã at level a ˛ is of the form 1fW > c1g C 1fW < c2g, where
W D .1=�20 /

Pn
iD1.Xi � NX/2, and c1 and c2 are such that c�n

1 ec1 D c�n
2 ec2 .

Hint : Write the likelihood ratio as a function of W and investigate the form of
this function. Remark: in practice, one usually chooses c1 and c2 such that PH0.W >

c1/ D PH0.W < c2/ D ˛=2 (which is no longer a likelihood ratio test.)

Exercise 53 (Unpaired Test) Let X1; : : : ; Xn, Y1; : : : ; Ym be a sample of n C m

independent random variables, where Xi
i id� N.�1; �

2/ and Yi
i id� N.�2; �

2/, and
�2 is unknown (but the same for the X and the Y ). The goal of this exercise is to
determine the LRT for the hypothesis pair H0 W �1 D �2 vs H1 W �1 ¤ �2.
1. Define the likelihood of the parameter � D .�1; �2; �

2/.
2. Noting that ‚0 D f.�; �; �2/ W �1 < � < 1; 0 < �2 < 1g and ‚1 D

f.�1; �2; �2/ W �1 < �1 ¤ �2 < 1; 0 < �2 < 1g, show that

sup
�2‚0

L.�/ D
 

e�1

2� O�2‚0

!.mCn/=2
;
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where O�2‚0 D 1
nCm

�Pn
iD1.Xi � O�/2 CPm

jD1.Yj � O�/2
�

, with O� D
1

nCm
�Pn

iD1 Xi CPm
jD1 Yj

�
.

Show further that

sup
�2‚1

L.�/ D
 

e�1

2� O�2‚1

!.mCn/=2
;

where O�2‚1 D 1
nCm

�Pn
iD1.Xi � NX/2 CPm

jD1.Yj � NY /2
�

.

3. Using the fact that
Pn

iD1.Xi � O�/2 D Pn
iD1.Xi � NX/2 C nm2. NX� NY /2

.nCm/2 and that
Pm

jD1.Yj � O�/2 D Pm
jD1.Yj � NY /2 C mn2. NX� NY /2

.nCm/2 , show that

ƒ.X1; : : : ; Xn; Y1; : : : ; Ym/ D
�

1C T 2

mC n � 2

�.nCm/=2
;

where

T D
q

nm
nCm. NX � NY /

q
1

nCm�2 Œ.n � 1/S2X C .m � 1/S2Y �
;

with S2X D 1
n�1

Pn
iD1.Xi � NX/2 and S2Y D 1

m�1
Pm

jD1.Yj � NY /2.
4. Using the fact that the level ˛ test with test function given by 1fƒ.X1; : : : ; Xn;
Y1; : : : ; Ym/ > Qg is the same as the level ˛ test with test function 1fjT j > Q0g
where Q0 is such that sup�2‚0 P� .jt j > Q0/ D ˛, determine the LRT, i.e. find
the law of T underH0 as well as the value of Q0.

Hint: if A � 
2a and B � 
2b are independent, it follows that AC B � 
2aCb .
Theorem 2.9 (p. 48) could also be useful.

4.3.3.2 Approximate Critical Values for Likelihood Ratio Tests
In Example (4.22) we were able to find the precise value of Q needed in the LRT
statistic ı D 1fƒ > Qg, by reducing the test statistic to an equivalent expression,
and by using the properties of the normal distribution. This may not be the case
more generally, though, where we may not be able to find the exact distribution of
ƒ (or a monotone function of it) and thus derive the exactQ. In these cases, we will
need to resort to large sample approximations, as we have done in other cases where
exact sampling distributions were not available. We consider the problem of finding
the approximate distribution ofƒ under simple nulls for one-parameter exponential
families.



120 4 Tests of Hypotheses for Model Parameters

Theorem 4.23 Let X1; : : : ; Xn be an iid sample from a distribution with density
(or mass function) f .xI �/ which belongs to a non-degenerate one-parameter
exponential family,

f .xI �/ D expf�.�/T .x/� d.�/C S.x/g; x 2 X ; � 2 ‚

Assume that:
1. The parameter space ‚ � R is an open set.
2. The function �.�/ is a twice continuously differentiable bijection between ‚

and ˆ D �.‚/.
Let O�n be the maximum likelihood estimator of � , and �0 2 ‚ be some fixed
element of the parameter space such that �0.�0/ ¤ 0. If ƒ.X1; : : : ; Xn/ D
L. O�/=L.�0/ is the likelihood ratio, then

2 logƒ.X1; : : : ; Xn/ D 2.`. O�/ � `.�0// d�! 
21;

whenever fH0 W � D �0g is true.

I Remark 4.24 (Likelihood Ratio vs LogLikelihood Difference) Notice that
knowing the distribution of 2 logƒ under the null hypothesis is equivalent to
knowing the distribution of ƒ under the null hypothesis, since the mapping x 7!
2 logx is monotone. The result above can thus be used in order to determine the
right critical value for a likelihood ratio test. Specifically, the likelihood ratio test
function 1fƒ > Qg will be approximately (for n being large) equivalent to the test
function

1f2 logƒ > 
21;1�˛g D 1

(

ƒ > exp

 

21;1�˛
2

!)

;

where 
21;1�˛ denotes the .1� ˛/-quantile of the 
21 distribution. In other words, for

large n, the approximate critical value should be Q 
 exp

�

21;1�˛
2

�

.

Proof of Theorem 4.23 We apply a second order Taylor expansion with Lagrange
form of remainder (Theorem A.1, p. 159) to obtain

2.`.b�n/�`.�0// D 2`0.b�n/.b�n��0/�`00.��

n /.b�n��0/2 D Œd 00.��

n /��00.��

n /T �Œ
p
n.b�n��0/�2;

where ��
n is betweenb�n and �0, and `0.b�n/ D 0 since O� maximises the likelihood.

It follows that j��
n � �0j � jb�n � �0j, and thus ��

n

p! �0 by consistency of O�n.
We now consider the behaviour of the terms involved in the Taylor expansion as
n ! 1. The continuous mapping theorem (Theorem 2.25 p. 57) implies that

d 00.��
n /

d! d 00.�0/ and �00.��
n /

d! �00.�0/ (since d 00 and �00 are continuous at �0;
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see Remark 2.15, p. 53). Furthermore, T
p! ET D d 0.�0/=�0.�0/ by the law of

large numbers and Exercise 23 (p. 53). Finally, by asymptotic normality of the MLE
(see Corollary 3.27, p. 83), we know that

p
n.b�n � �0/

d! N

�

0;
�0.�0/

d 00.�0/�0.�0/� d 0.�/�00.�0/

�

D
s

�0.�0/

d 00.�0/�0.�0/� d 0.�/�00.�0/
Z;

for some Z � N.0; 1/. Combining all of the above with Slutsky’s theorem
(Theorem 2.26, p. 57) gives

Œ�00.��

n /T�d 00.��

n /�Œ
p
n.b�n � �0/�

2 d! d 00.�0/�
0.�0/��00.�0/d

0.�0/

�0.�0/

�0.�0/

d 00.�0/�0.�0/�d 0.�/�00.�0/
Z2:

In other words, 2.`.b�n/ � `.�0//
d! 
21, since Z2 � 
21, being the square of a

standard normal random variable (see Eq. (1.4), in Example 1.29, p. 20). ut

Exercise 54 Let X1; : : : ; Xn be an iid sample from a Poisson distribution with
parameter � . We wish to test H0 W � D �0 vs H1 W � ¤ �0. Find an approximate
likelihood ratio test for this pair of hypotheses.

4.3.3.3 Wald Tests
Another idea for building tests for bilateral hypotheses fH0 W � D �0; H1 W � ¤ �0g
is to directly use the technology that we’ve developed for point estimation in order to
construct a test function. Suppose that we have an estimator O� of � . Then, we could
compare the null value �0 to the observed value of the estimator O�.X1; : : : ; Xn/. If
these are separated by a “significant” distance, then it is clear that we should reject
H0 W � D �0 in favour of H1 W � ¤ �0. Clearly this distance cannot be expressed in
absolute terms, as it needs to take into account the variability of O� ; so one idea is to
express this distance in terms of the variance of O� . This leads to a test statistic of the
form:

T D . O� � �0/2
Var. O�/ :

and then the test function will be ı.X1; : : : ; Xn/ D 1fT > Qg. The critical value
Q will of course be chosen in order to ensure that the level of the test is ˛, in
other words we ask that P�0 ŒT > Q� D ˛. The problem is that Var. O�/ is typically
unknown, and so an estimatorbVar. O�/must be used instead. Using such an estimator,
we obtain what is called a Wald test.

Definition 4.25 (Wald Test)

Let X1; : : : ; Xn
i id� f .�I �/ and O� be an estimator of � based on the sample

X1; : : : ; Xn. A Wald test for the bilateral hypothesis pair fH0 W � D �0; H1 W
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� ¤ �0g at level ˛ is a test with test function

ı.X1; : : : ; Xn/ D 1

(
. O� � �0/

2

bVar. O�/ > Q

)

where P�0

h
. O���0/2
bVar. O�/ > Q

i
D ˛, provided such a Q exists.

If O� is taken to be a maximum likelihood estimator of � , then we have seen
(Remark 3.29, p. 85), Exercise 36 (p. 85) that the asymptotic variance equals

1

n

Œ�0.�0/�
d 00.�0/�0.�0/� d 0.�0/�00.�0/

D 1

nI.�/
D 1

nJ.�/
:

Therefore, we could use

bJ n D nJ. O�n/ D n
d 00. O�n/�0. O�n/� d 0. O�n/�00. O�n/

Œ�0. O�n/�

instead ofbVar�1.b�/. When we use O� as the estimator andbJ n instead ofbVar�1.b�/ in
a test of this type, then we get the so-called likelihood-based Wald test.

4.3.3.4 Approximate Critical Values for Likelihood-BasedWald Tests
As was the case with likelihood ratio tests, we will rarely be able to find the
critical value Q exactly. Instead, we will need an asymptotic approximation with
respect to n. For a Wald test based on the likelihood estimator, this approximation
can be easily obtained by using our results on the asymptotic distribution of the
maximum likelihood estimator. We will consider, as usual, the case of a one-
parameter exponential family. The assumptions that we will make are the same as
those made when considering approximate critical values for likelihood ratio tests.

Theorem 4.26 (Approximate Critical Values for Wald Tests) Let X1; : : : ; Xn
be an iid sample from a distribution with density (or mass function)f .xI �/ which
belongs to a non-degenerate one-parameter exponential family,

f .xI �/ D expf�.�/T .x/� d.�/C S.x/g; x 2 X ; � 2 ‚

Assume that:
1. The parameter space ‚ � R is an open set.
2. The function �.�/ is a twice continuously differentiable bijection between ‚

and ˆ D �.‚/ with non-vanishing derivative.
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Let O�n be the maximum likelihood estimator of � , and bJ n D nJ. O�n/ D
n
d 00. O�n/�0. O�n/�d 0. O�n/�00. O�n/

Œ�0. O�n/� . Take �0 2 ‚ to be some fixed element of the parameter

space. Then,

bJ n. O�n � �0/2 d�! 
21;

whenever fH0 W � D �0g is true.

I Remark 4.27 (Approximate Critical Values for Wald Tests) The result can
now be used in order to determine the right critical value for a Wald test at level ˛.
The Wald test function at level ˛, say 1fbJ n. O�n � �0/

2 > Qg, will be approximately
(for n being large) equivalent to the test function

1
n
bJ n. O�n � �0/

2 > 
21;1�˛
o
;

where 
21;1�˛ denotes the .1� ˛/-quantile of the 
21 distribution. In other words, for
large n, the approximate critical value should be Q 
 
21;1�˛ .

Proof of Theorem 4.26 Under the conditions of the theorem, and when fH0 W � D
�0g is true, we may invoke Corollary 3.27 (p. 83) to obtain

p
n. O�n � �0/ d�! N

�

0 ;
Œ�0.�0/�

d 00.�0/�0.�0/ � d 0.�0/�00.�0/

�

: (4.3)

Now we may calculate that

1

n
bJ n D d 00. O�n/�0. O�n/� d 0. O�n/�00. O�n/

Œ�0. O�n/�
:

By our smoothness assumptions on � (and their ramifications on the smoothness of
d , see Remark 2.15, p. 53), the right-hand side above is a continuous function of O�n.
Since O�n is consistent, we may apply the continuous mapping theorem Theorem 2.25
(p. 57) to conclude that

1

n
bJ n

p�! d 00.�0/�0.�0/ � d 0.�0/�00.�0/
Œ�0.�0/�

: (4.4)

Combining (4.3) with (4.4), and using Slutsky’s theorem (Theorem 2.26, p. 57) we
conclude that

q
bJ n. O�n � �0/ d�! N.0; 1/:
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Now we may take the square of the left-hand side, and use the continuous mapping
theorem (Theorem 2.25, p. 57) to conclude that


q
bJ n. O�n � �0/

�2
D bJ n. O�n � �0/

2 d�! 
21

because we have seen that the square of a standard normal random variable has the

21 distribution (see Eq. (1.4), in Example 1.29, p. 20). ut

Exercise 55 Let X1; : : : ; Xn be an iid N.0; �2/ sample, where the variance �2 is
unknown. Construct an approximate Wald test (at level ˛) for the hypothesis pair
H0 W �2 D �20 vs H1 W �2 ¤ �20 , for �20 > 0 fixed. Compare this test with the
corresponding likelihood ratio test.

Exercise 56 Let X1; : : : ; Xn be iid Bernoulli random variables with unknown
parameter p. Construct an approximate Wald test (at level ˛) for the hypothesis
pair H0 W p D p0 vs H1 W p ¤ p0 for p0 2 .0; 1/ fixed. Compare this test with the
corresponding likelihood ratio test.

4.4 The p -Value

We saw that, in the Neyman–Pearson framework, we first need to select a signif-
icance level ˛, and then construct our testing procedure in a way that maximises
power, while preserving the level ˛. This yields a reasonable mathematical theory
that can be considered to adequately address the hypothesis testing problem.

There are, nevertheless, two non-negligible weak points when it comes to
practical problems. They can be loosely stated as follows:
1. It is not always clear a priori what the “right” significance level is. Should we take
˛ D 0:05, or should we take ˛ D 0:04? It is the scientist who should suggest
what the “right” significance level is, and then the mathematician gives the test
function. But what if the scientist does not really know what the precise level
should be, or if two different scientists suggest two different levels? This can be
an issue because it might be that, for the same data, picking ˛ D 0:05 could
result in H0 being rejected, while picking ˛ D 0:04 could result in H0 not being
rejected.

2. Suppose we are somehow able to pick a precise level ˛, so that we have bypassed
the problem stated above. Once the level is set, we use the optimal test (if
available), and then for our given data set we make a decision. Suppose we reject
H0 at the level ˛. The problem now is that we have no clear indication of how
comfortable or how marginal our decision was. For instance, would our decision
have been different, had we selected a slightly smaller ˛?
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Fisher popularised an approach that can be thought of as the dual of the Neyman–
Pearson approach, and that provides a means to tackle these two issues. The idea
is that, instead of making an binary statement (i.e. ı D 0 or ı D 1), we define
a continuous measure of how strong the evidence in the data is against the null
hypothesis. This measure is called the p-value.

Definition 4.28 (p-Value)

Let X1; : : : ; Xn
i id� f .�I �/ andH0 W � 2 ‚0 be a null hypothesis that is of one of

the three following forms:

fH0 W � D �0g or fH0 W � � �0g or fH0 W � � �0g:
Let ı˛ be a test function forH0, of one of the two following forms:

ı˛.X1; : : : ; Xn/ WD 1fT .X1; : : : ; Xn/ > q1�˛g or ı˛.X1; : : : ; Xn/ WD 1fT .X1; : : : ; Xn/ � q˛g;

where T is some test statistic, and qz is the z-quantile of the distributionG0.t/ D
P�0 ŒT .X1; : : : ; Xn/ � t �. Then, we define

p.X1; : : : ; Xn/ WD inff˛ 2 .0; 1/ W ı˛.X1; : : : ; Xn/ D 1g:

to be the p-value.

I Remark 4.29 Notice that, in all the tests that we have seen, the test function
always reduces to one of the two forms mentioned in the definition above, though
sometimes perhaps approximately as n ! 1.

In other words, the p-value is a random variable that tells us which is the
smallest significance level ˛ for which our testing method would reject the null
hypothesisH0 on the basis of the sample X1; : : : ; Xn. Why does this quantity have
any relevance? Because it gives us a measure of how stable our decision is under
perturbations of a given level ˛: if the p-value is very small, then this means that
we reject H0 even if we are very strict and impose a rather small ˛ (i.e. very small
probability of type I error). If the p-value is relatively large, this means that we
would only have rejectedH0 if we were willing to tolerate a high probability of type
I error. How small should the p-value be in order to decide that we have rejected ?
The answer is left up to the scientist, who can decide depending on his/her deeper
knowledge of the experiment at hand. Notice that this approach gives a solution to
the problems (1) and (2) outlined above.

The definition of the p-value seems a bit complicated, and it is natural to wonder
whether it is possible to actually calculate it in concrete examples. This is indeed
the case, when the null hypothesis is of one of the forms we have considered thus
far; and, in fact, the calculation is quite easy:
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Lemma 4.30 (Calculation of p-Values) In the setup given in Definition 4.28,
we have:
1. If ı˛ is of the form ı˛.X1; : : : ; Xn/ WD 1fT .X1; : : : ; Xn/ > q1�˛g, then

p.X1; : : : ; Xn/ D 1 �G0.T .X1; : : : ; Xn//

2. If ı˛ is of the form ı˛.X1; : : : ; Xn/ WD 1fT .X1; : : : ; Xn/ � q˛g, then

p.X1; : : : ; Xn/ D G0.T .X1; : : : ; Xn//

I Remark 4.31 (Interpreting p-Values) The Lemma gives us a further way
of understanding p-values. Let’s concentrate on case (1), where we reject for
large values of T . Notice that 1 � G0.T .X1; : : : ; Xn// equals the probability of
observing something as large, or even larger than what we observed, when H0 is
true. Therefore, when the p-value is small, we have in fact observed something that
would be very improbable/unusual if H0 were indeed true. So we expect that H0

is false. A common mistake is to interpret the p-value as the probability that H0 is
true. This is wrong, and in fact does not even make sense, because the parameter �
is not a random variable.

Proof of Lemma 4.30 It suffices to prove (1), as (2) is proven directly analogously.
In the setting (1), we can use the fact that G0 is non-decreasing to write:

ı˛.X1; : : : ; Xn/ D 1 H) T .X1; : : : ; Xn/ > q1�˛ H) G0.T .X1; : : : ; Xn// � G0.q1�˛/

H) G0.T .X1; : : : ; Xn// � 1� ˛ H) ˛ � 1� G0.T .X1; : : : ; Xn//:

It follows that inff˛ 2 .0; 1/ W ı˛.X1; : : : ; Xn/ D 1g D 1 � G0.T .X1; : : : ; Xn//,
and the proof is complete. ut

Example 4.32

Let X1; : : : ; Xn
iid� N.�; 1/ and consider the hypothesis pair:

H0 W � D 0 vs H1 W � ¤ 0

We recall (see Example 4.21, p. 115) that the likelihood ratio test for this pair is given by:

ı.X1; : : : ; Xn/ D 1

(� NX
1=

p
n

�2

> 
21;1�˛

)

;

where 
21;1�˛ is the 1 � ˛ quantile of the 
21 distribution. Notice, therefore, that this test statistic
conforms to the setup given in Definition 4.28. We may thus define the corresponding p-value as

p.X1; : : : ; Xn/ D 1�G
21

�
n NX2

	
;
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where G
21 denotes the CDF of the 
21 distribution. Observe that when NX is at a large distance from

0, then the p-value will be small. In fact, the p-value is monotonically decreasing in NX (note that
G
21

is a monotonically increasing function from .0;1/ to .0; 1/ because the density of a 
21 is
strictly positive over the entire interval .0;1/—see Definition 1.16, p. 13). �

One might finally ask: is there any link between Fisher’s and Neyman &
Pearson’s approach to hypothesis tests? In the case where G0.t/ is strictly mono-
tonic,2 there is a particularly simple and elegant connection:

Corollary 4.33 In the setup given in Definition 4.28, let ˛0 2 .0; 1/ and assume
that G0 is continuous and strictly increasing. If we define a test function

 .X1; : : : ; Xn/ WD 1fp.X1; : : : ; Xn/ � ˛0g;

then  .X1; : : : ; Xn/ D ı˛0.X1; : : : ; Xn/. In other words, if we reject the null
whenever the p-value is smaller than ˛0, then our test reduces to ı˛0 .

Proof Without loss of generality, we assume that we are in the setup
where the p-value corresponds to a statistic of the form ı˛.X1; : : : ; Xn/ WD
1fT .X1; : : : ; Xn/ > q1�˛g. Now, observe that, using Lemma 4.30, and we have:

p.X1; : : : ; Xn/ < ˛0 ” 1�G0.T .X1; : : : ; Xn// < ˛0 ” G0.T .X1; : : : ; Xn// > 1�˛0:

Under our assumptions, G�1
0 exists and is strictly increasing. Applying it to both

sides of the last inequality yields:

p.X1; : : : ; Xn/ < ˛0 ” T .X1; : : : ; Xn/ > G
�1
0 .1 � ˛0/

„ ƒ‚ …
Dq1�˛0

” ı.X1; : : : ; Xn/ D 1:

ut

It follows that the p-value is a versatile tool: reporting a p-value solves some of the
problems that we mentioned earlier in this paragraph. Still, even when we report a
p-value, we can still use it to implement a Neyman–Pearson type test at some level
˛, simply by rejecting whenever p < ˛.

2This is not as restrictive as it may sound. A sufficient condition is that the distribution must be of
the continuous type, with a probability density function satisfying g0.t/ > 0 for all t . This will be
true, for example whenever G0 is a CDF corresponding to a normal, Student, or exponential family
distribution. Furthermore, in many examples, we can approximate G0 for large n by the normal
CDF, so the assumption is again approximately satisfied, even if the exact form of G0 is discrete.



128 4 Tests of Hypotheses for Model Parameters

Exercise 57 Let X1; : : : ; Xn
i id� f .xI �/. Suppose we wish to test H0 W � D �0 vs

H1 W � ¤ �0 using the test function ı˛ of the form

ı˛.T .X1; : : : ; Xn// D 1fT .X1; : : : ; Xn/ > q1�˛g or ı˛.T .X1; : : : ; Xn// D 1fT .X1; : : : ; Xn/ � q˛g;

where q˛ is the ˛-quantile of G0, the CDF of T .X1; : : : ; Xn/ when � D �0.
Assuming that G0 is continuous, show that, under H0, the p-value is uniformly
distributed on Œ0; 1�.

4.5 On Terminology: Accepting Versus Not Rejecting

From the mathematical perspective, the outcome of a hypothesis test is clear cut:
0 or 1. This means that we decide between the two competing hypotheses, H0 and
H1. How do we communicate this decision in the context of an application?

In the context of science, competing hypotheses represent competing scientific
theories. The null hypothesis represents a scientific assertion. The alternative
hypothesis encapsulates how we might expect the assertion to break down.

When the outcome of the test is 0, then the empirical evidence is not sufficient
in order to reject the null hypothesis. Does this mean that the evidence actually
proves that H0 is true? No, it merely does not disprove H0. For this reason, when
the outcome is 0, we say that “we do not reject the null hypothesis H0” instead
of saying “we accept the null hypothesisH0”. From a mathematical perspective, we
can think of this in the context of necessary and sufficient conditions. If the evidence
is such that ı D 0, then a necessary condition for H0 to hold true (=the data being
consistent with H0) is not violated. This does not prove validity of H0, it merely
says that we cannot disprove validity of H0 given the current data set.

On the other hand, when the test results in “1”, the interpretation is that the
evidence does not support the null hypothesis: the data appear to be incompatible
with H0 (we have something like a counterexample). So, we can say that “we
reject the null”. But can we actually say that “we accept the alternative”? The
alternative was used as a device in order to detect possible departures from the null,
by constructing a test function that would be able to detect departures in the direction
of the alternative. It was our “best devil’s advocate”, but it was not necessarily the
most viable alternative scientific theory in itself. For this reason, in the context
of scientific applications, when ı D 1, we almost always say “we reject the null
hypothesisH0”, instead of saying “we accept the alternative hypothesisH1”.

Again, from a mathematical standpoint, things are clear: we decide 0 or 1. But
when communicating a mathematical result to scientists, there are pitfalls due to the
weaknesses of the verbal presentation of otherwise rigorous mathematical results.
The language of mathematics is clear, but the verbal presentation of mathematics
will always be less rigorous, and care must be taken.
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In summary, the next table presents the recommended way of verbally conveying
the result of a hypothesis test:

Mathematical
statement

ı.X1; : : : ; Xn/ D 1 ı.X1; : : : ; Xn/ D 0

Verbal statement We reject the null
hypothesis

We do not reject the null
hypothesis

Exercise 58 As an example of a situation where one must be careful in phrasing
the result of a test, we consider a more complicated scenario. Let .X; Y /, be a
random vector taking values in f1; 2g2. Let .X1; Y1/; : : : ; .Xn; Yn/ be an iid random
sample distributed as .X; Y /. We wish to test the hypothesis that X and Y are
independent random variables. Let p1 D P.X D 1/, p2 D P.Y D 1/ and
p3 D P.X D Y D 1/.
1. Formulate the null and alternative hypotheses in terms of p1, p2 and p3.
2. Find the maximum likelihood estimators of bp1, bp2 and bp3 on the basis of

the sample values .x1; y1/; : : : ; .xn; yn/ in general, as well as when the null
hypothesis is valid.

3. Show that if p1 D p2 D 1=2 are known, we have a one-parameter exponential
family. Test the independence hypothesis in this case, and find the approximate
p-value for the following data : n D 1024, n11 D 266, n12 D 231, n21 D 243,
n22 D 284 where nij is the number k such that Xk D i and Yk D j .

Remark : There exists a test for the more general case when p1, p2, p3 are unknown,
where the limiting distribution of the test statistic is 
21, but we do not yet have the
tools to consider this case rigorously. The test applies also when X takes k > 1

different values, and Y takes l > 1 different values. The limiting distribution will
be 
2.k�1/.l�1/ in this case.
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Once again, let us zoom out to see the bigger picture: there is a regular parametric
family of distributions F D fF� W � 2 ‚g, where ‚ � R, which is our model
for a certain stochastic phenomenon. We are able to observe n independent and

identically distributed outcomes from the phenomenon, say X1; : : : ; Xn
i id� F�

generated for a particular choice of � 2 ‚ � R; but the precise value � 2 ‚

that generated them (the true state of nature) is unknown to us. With this iid sample
at our disposal, we wish to make inferences about � . So far we have made two kinds
of inferences on the true parameter value:
1. Point Estimation. Find the exact value of the unknown parameter � , as accurately

as possible.
2. Hypothesis Testing. Given two candidate regions ‚1 and ‚0 where � might lie,

find optimal ways of deciding in which of the two regions the true � resides.
In this chapter, we will consider the third important problem of statistical inference,
which loosely stated is:
3. Interval Estimation. Find an interval of plausible values for � , in the sense that

the interval has a high probability of containing � .
The essence of the third problem is as follows. We know that an estimator

O�.X1; : : : ; Xn/ of � is a random variable. Therefore, the probability that O� perfectly
estimates � is either low (if O� is a discrete random variable) or even zero (if O� is a
continuous random variable). However, if O� is an estimator with a low mean squared
error, then we expect that � cannot be very far from our estimate O�.X1; : : : ; Xn/. Can
we use our estimator O� and (approximate) knowledge of its sampling distribution in
order to propose an interval that is highly likely to contain the true �? Such an
interval we call a confidence interval.

In the next few paragraphs we will define the notion of a confidence interval
rigorously, and we will show how we can use our knowledge of point estimation
theory in order to construct such intervals. We will then consider the problem of how
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to define “optimal intervals”. To do this, we will use an important duality between
interval estimation and hypothesis testing.1

5.1 Confidence Intervals and Confidence Levels

Let us begin with the rigorous definition of a confidence interval, and then discuss
its elements.

Definition 5.1 (Two-Sided Confidence Interval)

LetX1; : : : ; Xn
i id� f .xI �/, where � 2 ‚ � R, be random sample and ˛ 2 .0; 1/

be a constant. Let L.X1; : : : ; Xn/ and U.X1; : : : ; Xn/ be two statistics, called the
lower limit and upper limit, respectively, such that

inf
�2‚P�

h
L.X1; : : : ; Xn/ � � � U.X1; : : : ; Xn/

i
� 1 � ˛:

Then, the random interval

h
L.X1; : : : ; Xn/ ; U.X1; : : : ; Xn/

i

is called a two-sided confidence interval for � with confidence level .1 � ˛/.

Since anything we do will depend on our sample X1; : : : ; Xn, any candidate
interval we propose will in fact be a random interval that will take different values
for different realisations of our sample. In order to be able to construct this random
interval, its endpoints L and U will be statistics constructed from our sample.

For the interval to truly be a likely region for the true parameter � , we ask that
the probability of the event fL � � � U g be at least as large as 1� ˛, whatever the
true value of � may be2 for some small probability ˛. There are situations where we
are more interested in giving a lower or upper confidence bound on the true value
of a parameter � . In these cases, instead of using a two-sided confidence interval as
defined in Definition 5.1, we use the notion of a one-sided interval.

Definition 5.2 (One-Sided Confidence Interval)

LetX1; : : : ; Xn
i id� f .xI �/, where � 2 ‚ � R, be random sample and ˛ 2 .0; 1/

be a constant. Let L.X1; : : : ; Xn/ be a statistic such that

inf
�2‚P�

h
L.X1; : : : ; Xn/ � �

i
� 1 � ˛:

1Note that the problem “use the data to decide if the region ‚0 contains �” is in some sense dual
to the question “use the data to find a region that is highly likely to contain �”.
2Since this probability obviously depends on the true value of � !
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Then, the random interval

h
L.X1; : : : ; Xn/ ; C1

�

is called a left-sided confidence interval for � with confidence level .1 � ˛/.
Analogously, if U.X1; : : : ; Xn/ is a statistic such that

inf
�2‚P�

h
U.X1; : : : ; Xn/ � �

i
� 1 � ˛;

then the random interval
�

� 1 ; U.X1; : : : ; Xn/
i

is called a right-sided confidence interval for � with confidence level .1 � ˛/.

We now illustrate many essential features of confidence intervals within the
framework of the following prototypical example.

Example 5.3 (Confidence Interval for theMean of a Normal
Distribution)

Let X1; : : : ; Xn
iid� N.�; �2/, where � is unknown and �2 is known. We wish to construct a two-

sided interval for �. We begin by observing that by Lemma (1.32, p. 22) we have:

NX � �

�=
p
n

� N.0; 1/:

Therefore, if z ˛
2

and z1� ˛
2

are the ˛=2 and 1 � ˛=2 quantiles (respectively) of the N.0; 1/
distribution, we must have:

P




z ˛
2

� NX � �

�=
p
n

� z1� ˛
2

�

D 1� ˛:

Now, let us manipulate the expression inside the probability:

P




z ˛
2

� NX � �

�=
p
n

� z1� ˛
2

�

D 1� ˛

” P




z ˛
2

�p
n

� NX � � � z1� ˛
2

�p
n

�

D 1� ˛

” P




� NX C z ˛
2

�p
n

� �� � � NX C z1� ˛
2

�p
n

�

D 1� ˛
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” P



NX � z ˛

2

�p
n

� � � NX � z1� ˛
2

�p
n

�

D 1� ˛

” P



NX � z1� ˛

2

�p
n

� � � NX � z ˛
2

�p
n

�

D 1� ˛:

The above equality is true whatever the true value of � 2 R may be. It follows that if we set

L.X1; : : : ; Xn/ D NX � z1� ˛
2

�p
n

& U.X1; : : : ; Xn/ D NX � z ˛
2

�p
n

then the interval ŒL; U � is a confidence interval with confidence level 1 � ˛. Because the density
of an N.0; 1/ distribution is symmetric, we have that z ˛

2
D �z1� ˛

2
. So our (1 � ˛)-confidence

interval may be written as

2

6
6
6
6
4

NX � z1� ˛
2

�p
n

„ ƒ‚ …
L.X1;:::;Xn/

; NX C z1� ˛
2

�p
n

„ ƒ‚ …
U.X1;:::;Xn/

3

7
7
7
7
5

(5.1)

For brevity, we sometimes represent the endpoints of the interval as NX ˙ z1� ˛
2

�
p

n
. Notice that

the confidence interval is centred around the maximum likelihood estimator of �. It says that our
plausible region is the MLE, plus or minus a constant times the standard deviation of the MLE
(since �2=n is the variance of the MLE NX). The constant is chosen in order to have confidence
level 1� ˛.

We can also make some more observations. The length of the confidence interval (equal to
2z1�˛=2�=

p
n) depends on �2, n and ˛. The parameter �2 is beyond our control, since it is the

variance of the underlying N.�; �2/ distribution. The two parameters that we are able to control
are the sample size n and the confidence level 1� ˛. Increasing n re-scales the length by 1=

p
n.

So, for example, if we want to make the interval ten times shorter, we need to take a sample size
that is 100 times larger. On the other hand, decreasing ˛ (increasing the confidence 1�˛) increases
the length of the interval: the more confident we want to be in our interval, the longer the interval
will be (notice that the length of the interval tends to 1 as ˛ ! 0).

We may also ask how to construct one-sided confidence intervals, in case we are interested in
lower or upper bounds for the parameter �. Let us consider the problem of finding a right-sided

confidence interval. Using the fact that
NX��

�=
p

n
� N.0; 1/, we may write

P


 NX � �

�=
p
n

� z˛

�

D 1� ˛:

This can be manipulated to yield

P

h NX C z1�˛

�p
n

� �
i

D 1� ˛;

and so the interval
�

�1 ; NX C z1�˛

�p
n

�
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is a right-sided confidence interval with confidence level 1 � ˛. Similarly, we can show that a
left-sided .1� ˛/-confidence interval is given by



NX � z1�˛

�p
n

; C1
�

:

In summary:

Confidence 1� ˛ L.X1; : : : ; Xn/ U.X1; : : : ; Xn/

Two-sided NX � z1�˛=2

�p
n

NX C z1�˛=2

�p
n

Left-sided NX � z1�˛

�p
n

C1

Right-sided �1 NX C z1�˛

�p
n

�

Exercise 59 (Normal Case, Unknown Variance) Let X1; : : : ; Xn
i id� N.�; �2/,

where both � and �2 are unknown. Let S2 D Pn
iD1.Xi � NX/2=.n�1/, and tfk;˛g be

the ˛-quantile of Student’s tk distribution (with k degrees of freedom). Prove that
the confidence intervals given by the following table are .1�˛/-confidence intervals
for the mean �.

Confidence 1 � ˛ L.X1; : : : ; Xn/ U.X1; : : : ; Xn/

Two-sided NX � tfn�1;1�˛=2g
Sp
n

NX C tfn�1;1�˛=2g
Sp
n

Left-sided NX � tfn�1;1�˛g
Sp
n

C1

Right-sided �1 NX C tfn�1;1�˛g
Sp
n

Exercise 60 (Optimal Choice of Quantiles) In order to construct the two-sided
confidence interval for the mean of a normal distribution (known variance) in
Example 5.3, we chose z˛=2 and z1�˛=2 as the quantiles to base the interval on.
One can wonder why not choose z˛=3 andz1�2˛=3, for example. It’s true that a more
natural choice of interval is a symmetric interval, but here is a further reason why :
1. Let Z � N.0; 1/ and ˛ 2 .0; 1/ . Show that the interval I D ŒL; U � of minimal

length such that P.I 3 Z/ � 1 � ˛ is given by the choice L D z˛=2 and
U D z1�˛=2.

2. LetX1; : : : ; Xn
i id� N.�; �2/ where �2 is known. Find the interval In D ŒAn; Bn�

of smallest length such that P.In 3 �/ � 1� ˛.
3. Can we generalise this result to the case of unknown variance? Or even to

distributions other than the normal distribution?
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Exercise 61 (Difference Between Means) Let X1; : : : ; Xn
iid� N.�X; �

2/ and

Y1; : : : ; Yn
iid� N.�Y ; �

2/ be two independent samples, where �X , �Y and �2 are all
unknown. Construct a two-sided confidence interval for the parameter � D �X��Y
with confidence level 1 � ˛.

5.2 Pivots and Approximate Pivots

It seems that the construction of confidence intervals is quite straightforward and
indeed transparent in the case of the mean parameter of a normal distribution.
However, it also seems that the way we proceeded in our construction was rather
ad-hoc, and indeed specific to that particular case. How does this example make us
any wiser in terms of constructing confidence intervals in more general situations?
We need to find general methods of constructing such intervals. The crucial step in
Example 5.3 was exploiting the fact that

NX � �

�=
p
n

� N.0; 1/:

This allowed us to write the probability statement

P

"

z˛=2 �
NX � �
�=

p
n

� z1�˛=2

#

D 1 � ˛

which was valid for any value of�. We were then able to manipulate the argument of

the probability to get our interval. The reason this worked was that
NX��
�=

p
n

constitutes
what we call a pivot.

Definition 5.4 (Pivot)

Let X1; : : : ; Xn
i id� f .xI �/. A function

g W X n �‚ ! R

is called a pivot if:
1. � 7! g.x1; : : : ; xn; �/ is continuous for all .x1; : : : ; xn/ 2 X n.
2. PŒg.X1; : : : ; Xn; �/ � x� does not depend on � .

I Remark 5.5 In other words, a pivot g.X1; : : : ; Xn; �/ is a function of the sample
and the parameter, but its distribution is not a function of the parameter. Notice that,
by its very definition, a pivot is not a statistic: it depends on the unknown parameter!
The continuity requirement will become clear soon.
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If we are able to find a pivot for � , whose distribution is known, then we are able
to find quantiles q1 and q2 such that

PŒq1 � g.X1; : : : ; Xn; �/ � q2� D 1 � ˛:

If g is of a form that allows us to manipulate the inequality inside the probability
(similarly to Example 5.3), then we are able to obtain an explicit confidence interval.
Still, though, even if we cannot manipulate the expression, we can numerically try
to determine the set

f� 2 ‚ W q1 � g.X1; : : : ; Xn; �/ � q2g

and retain this set as our confidence interval. Notice that under our continuity
assumption (2) on g, this set may be an interval or a union of intervals depending
on the behaviour of g. A sufficient condition to obtain a single interval is to ask that
g be monotone in � . But this is not a necessary condition, of course. In practice, the
pivots that we will encounter will typically give us intervals rather than unions of
intervals.

Once we have a pivot whose distribution is known, then we are able to construct
confidence intervals. However, there are two challenges that we now face:
1. How can we find pivots in general?
2. How can we determine the distribution of a pivot?

The determination of a pivot (and its distribution) depends upon the particular
probability distribution, and also on which parameter of the distribution we wish
to construct a confidence interval for. Thus, there is no single “explicit formula”,
and pivots are constructed on a case-by-case basis. Nevertheless, it turns out that,
often we can answer both questions (1) and (2) with a general “explicit formula”
by settling for what is called an approximate pivot. This means that it may not be a
pivot for a finite n, but gradually satisfy the assumptions of a pivot as n ! 1.

Definition 5.6 (Approximate Pivot)

Let X1; : : : ; Xn
i id� f .xI �/. A function

g W X n �‚ ! R

is called an approximate pivot if:
1. For all n 2 N, � 7! g.x1; : : : ; xn; �/ is continuous for all .x1; : : : ; xn/ 2 X n.
2. We have

g.X1; : : : ; Xn; �/
d�! Y

where Y is a random variable whose distribution does not depend on � .
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If we know the asymptotic distribution of an approximate pivot, we may
construct an approximate confidence interval. How? Assume that Y is a continuous
random variable. If we take q1 and q2 to be quantiles of FY such that

PŒq1 � Y � q2� D 1 � ˛;

then we have

g.X1; : : : ; Xn; �/
d�! Y H) PŒq1 � g.X1; : : : ; Xn; �/ � q2�

n!1�! 1 � ˛:

We can therefore use the approximate pivot in order to build an approximate
confidence interval.

Example 5.7 (Mean of a General Distribution)

Let X1; : : : ; Xn be an iid collection of random variables with unknown mean � D EŒX� and
unknown variance EŒ.X1 � �/2� D �2 < 1. Suppose we wish to find an approximate pivot in
order to construct a (1� ˛)-confidence interval for �. We remark that:

• By the central limit theorem (Theorem 2.23, p. 56), we have
p
n. NX � �/

d! N.0; �2/.

• By the strong law of large numbers (see Remark 2.22, p. 56), S2n D Pn
iD1.Xi ��/2=.n�1/ p!

�2: Indeed, U2
n D Pn

iD1.Xi ��/2=.n� 1/ p! �2 and U2
n �S2n D n.n� 1/�1.X ��/2 p! 0.

Combining the two facts provided above, we may use Slutsky’s theorem (Theorem 2.26, p. 57) to
conclude that

g.X1; : : : ; Xn; �/ D NX � �

S=
p
n

d! Y � N.0; 1/:

so that we have found an approximate pivot. Mimicking the manipulations carried out in
Exercise (5.3, p. 133), we have that:

P



NX � z1� ˛

2

Sp
n

� � � NX � z ˛
2

Sp
n

�

D PŒz˛=2 � NX � �

S=
p
n

� z1�˛=2�

D PŒz˛=2 � g.X1; : : : ; Xn; �/ � z1�˛=2�

n!1�! PŒz˛=2 � Y � z1�˛=2� D 1� ˛:

It follows that the interval NX ˙ z1� ˛
2

S
p

n
is approximately, for large n, a two-sided .1 � ˛/-

confidence interval for �. By similar arguments, we may construct one-sided confidence intervals.
The results can be summarised in the following table:
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Approximate Confidence 1� ˛ L.X1; : : : ; Xn/ U.X1; : : : ; Xn/

Two-sided NX � z1�˛=2

Sp
n

NX C z1�˛=2

Sp
n

Left-sided NX � z1�˛

Sp
n

C1

Right-sided �1 NX C z1�˛

Sp
n

�

Of course, in general we will be interested in parameters other than just the mean,
so this example is rather special. In the next section we shall consider two ways of
constructing approximate pivots in one-parameter exponential families.

Exercise 62 Combining the reasoning in Example 5.7 and Example 5.3 (p. 133), to

show that if Tk � tk , then Tk
d! Z as k ! 1, where Z � N.0; 1/.

5.2.1 Approximate Pivots in Exponential Families

We have seen thus far that both point estimation and hypothesis testing have some
very attractive properties when considering one-parameter exponential families. The
problem of interval estimation is no exception. We will see in this paragraph that it
is feasible to find approximate pivots for one-parameter exponential families under
very mild conditions. We will consider two types of confidence intervals arising
from two types of pivots:
1. Wald intervals.
2. Likelihood ratio intervals.

Notice that the names of these two methods highly resemble two methods we
saw for constructing hypothesis tests. This is no accident, and we will rigorously
investigate this connection in Sect. 5.3 (p. 141). For the moment, we determine the
approximate pivots.

5.2.1.1 Wald Pivots

Proposition 5.8 (Wald Approximate Pivots) Let X1; : : : ; Xn be an iid sample
from a distribution with density (or mass function) f .xI �/ which belongs to a
non-degenerate one-parameter exponential family,

f .xI �/ D expf�.�/T .x/� d.�/C S.x/g; x 2 X ; � 2 ‚

Assume that:
1. The parameter space ‚ � R is an open set.
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2. The function �.�/ is a twice continuously differentiable bijection between ‚
and ˆ D �.‚/.

Let O�n be the maximum likelihood estimator of � , and bJ n D nJ. O�n/ D
n
d 00. O�n/�0. O�n/�d 0. O�n/�00. O�n/

�0. O�n/ . Define

g.X1; : : : ; Xn; �/ WD bJ 1=2n . O�n � �/:

Then

g.X1; : : : ; Xn; �/
d�! N.0; 1/;

and so g.X1; : : : ; Xn; �/ is an approximate pivot for � .

Proof The proof is exactly the same as that of Theorem (4.26, p. 122) only this time,
instead of �0, we write � . ut

Exercise 63 (Wald Approximate Confidence Intervals) Using the same notation
as in Proposition 5.8 above, prove that the following table indeed yields approximate
.1 � ˛/-confidence intervals for � :

Approximate Confidence 1 � ˛ L.X1; : : : ; Xn/ U.X1; : : : ; Xn/

Two-sided O� � z1�˛=2bJ�1=2
n

O� C z1�˛=2bJ�1=2
n

Left-sided O� � z1�˛bJ�1=2
n C1

Right-sided �1 O� C z1�˛bJ�1=2
n

5.2.1.2 Likelihood Ratio Pivots

Proposition 5.9 (LRT Approximate Pivots) Let X1; : : : ; Xn be an iid sample
from a distribution with density (or mass function) f .xI �/ which belongs to a
non-degenerate one-parameter exponential family,

f .xI �/ D expf�.�/T .x/� d.�/C S.x/g; x 2 X ; � 2 ‚

Assume that:
1. The parameter space ‚ � R is an open set.
2. The function �.�/ is a twice continuously differentiable bijection between ‚

and ˆ D �.‚/.
Let O�n be the maximum likelihood estimator of � , and

g.X1; : : : ; Xn; �/ D 2.`. O�/� `.�//:
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Then,

g.X1; : : : ; Xn; �/
d�! 
21;

and so g.X1; : : : ; Xn; �/ is an approximate pivot for � .

Proof The proof is exactly the same as that of Theorem (4.23, p. 120) only this time,
instead of �0, we write � . ut

Notice that the likelihood ratio approximate pivot g.X1; : : : ; Xn; �/ D 2.`. O�/ �
`.�// is not necessarily of a form that we are able to manipulate in order to get the
explicit form of the approximate confidence interval. However, we may numerically
find the approximate confidence interval of interest, by determining the set

f� 2 ‚ W g.X1; : : : ; Xn; �/ � q1�˛.
21/g;

where q1�˛.
21/ is the .1 � ˛/-quantile of the 
21 distribution.

Exercise 64 (Exact and Approximate Pivots)

1. Let X1; : : : ; Xn
iid� f .xI �/ and Tn.X1; : : : ; Xn/ be a sufficient statistic that is a

continuous random variable. Let Yn D FTn.TnI �/, whereFTn.t I �/ D P� ŒTn � t �

is the sampling distribution function of Tn. Show that Yn � U.0; 1/ and thus Yn
is a pivot.

2. How can you use this result to construct a confidence interval for � , in the case
where FTn is known exactly?

3. Assume that f .xI �/ D e�.x��/1fx 2 Œ�;1/g (not an exponential family). Use
part (1) and the statistic Tn D minfX1; : : : ; Xng to find a confidence interval for
� at confidence level 1 � ˛.

5.3 The Duality with Hypothesis Tests

The careful reader may have become suspicious that there is a structural connection
lurking between confidence intervals and hypothesis tests, while going through the
previous paragraphs. Here are some clues that one might have picked up along the
way:
• In interval estimation, we try to find a region that will contain the parameter.

In hypothesis testing, we are given a region and asked whether it contains the
parameter. It seems like the two problems are dual to each other.

• In hypothesis testing we have the level (the probability of falsely rejecting H0)
which is ˛. In interval estimation we have the confidence level 1 � ˛ (the
probability that the interval cover the true parameter). Is there a relationship
between the two?
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• In hypothesis testing, we constructed likelihood ratio tests and Wald tests for
the parameter. In interval estimation, we constructed Wald and likelihood ratio
intervals for the parameter.

Could it be that we are looking at the two sides of the same coin? This is indeed the
case, and it is now time to make the connection rigorous.

Theorem 5.10 (Duality Theorem) Let X1; : : : ; Xn
i id� f .xI �/ be a random

sample and � 2 ‚ � R.
1. If ŒL.X1; : : : ; Xn/; U.X1; : : : ; Xn/� is a two-sided .1� ˛/-confidence interval

for � , then the test with test function

ı.X1; : : : ; Xn/ D 1f�0 … ŒL.X1; : : : ; Xn/; U.X1; : : : ; Xn/�g

is a level ˛ test of fH0 W � D �0g against fH1 W � ¤ �0g.
2. Conversely, suppose that given any �0 2 ‚, ı.X1; : : : ; XnI �0/ is a test

function for the hypothesis pair fH0 W � D �0g against fH1 W � ¤ �0g with
probability of type I error ˛. Then,

R.X1; : : : ; Xn/ WD f# 2 ‚ W ı.X1; : : : ; XnI#/ D 0g

is a .1 � ˛/-confidence region for � .

Proof of Theorem 5.10 We first prove part (1). It suffices to show that the level of
the test ı is ˛. But observe that

P�0 Œı.X1; : : : ; Xn/ D 1� D 1 � P�0 Œı.X1; : : : ; Xn/ D 0�

D 1 � P�0 ŒL.X1; : : : ; Xn/ � �0 � U.X1; : : : ; Xn/�

� 1 � inf
�2� P� ŒL.X1; : : : ; Xn/ � � � U.X1; : : : ; Xn/�

D 1 � .1 � ˛/

D ˛:

so that the test is indeed a level ˛ test. This proves part (1). Now we turn to part (2).
We need to show thatR.X1; : : : ; Xn/ is a .1�˛/-confidence region. Let us calculate

P� ŒR.X1; : : : ; Xn/ 3 �� D P� Œı.X1; : : : ; XnI �/ D 0�

D 1 � P� Œı.X1; : : : ; XnI �/ D 1�

D 1 � ˛

where the last line follows from our assumption that ı has probability of type I error
˛, for all simple nulls. This proves (2) and completes the proof. ut
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I Remark 5.11 When we follow the process described in part (2) of Theorem 5.10
to get a region R from a test function ı, we speak of inverting a test.

I Remark 5.12 Notice that in part (2) we say that R.X1; : : : ; Xn/ is a region
and not an interval. The reason is that, depending on the exact form of ı and the
model f .xI �/, the set R.X1; : : : ; Xn/ may be a union of intervals, or perhaps even
a more complicated set. For some forms of ı and some models f .xI �/, the region
R.X1; : : : ; Xn/ is indeed an interval. It is not hard to check that likelihood ratio
tests and Wald tests for one-parameter exponential families do indeed yield a region
R.X1; : : : ; Xn/ that is an interval.

Example 5.13 (Mean of a Gaussian)

Compare the form of the test in Example (4.22, p. 116) with the form of the two-sided confidence
interval in Exercise (59, p. 135) and conclude that the test and the interval are dual to each other.

Example 5.14 (Wald Tests and Intervals)

Compare the form of the approximate Wald test in the example following Theorem (4.26, p. 122)
with the form of the two-sided approximate Wald interval in Exercise (63, p. 140).

Example 5.15 (Likelihood Ratio Tests and Intervals)

Compare the form of the approximate likelihood ratio test in the example following Theorem (4.23,
p. 120) with the form of the two-sided approximate likelihood ratio interval discussed after the
proof of Proposition (5.9, p. 140).

Note that in Theorem 5.10, we only considered two-sided intervals and tests.
What about unilateral intervals and tests? For unilateral results, one direction is
very easy: if .�1; U � is a right-sided .1 � ˛/-confidence interval for � , then ı D
1fU < �0g is a level ˛ test for fH0 W � � �0g vs fH1 W � < �0g (and symmetrically
for right-sided intervals).3 So it’s still easy to get unilateral hypothesis tests from
unilateral confidence intervals. The opposite direction is more complicated. Getting
a unilateral interval from a unilateral test depends on the form of the test function
and on the form of the model under consideration.4 Below we give a case where it’s
possible.

3The proof of this is analogous to the first part of Theorem 5.10.
4The problem is that, as we saw in Theorem 5.10, we have no guarantee in general that the region
we get from inverting a test will be an interval, much less so a “one-sided” interval, unless there
are further conditions.



144 5 Confidence Intervals for Model Parameters

Proposition 5.16 (One-Sided Intervals from Unilateral Tests) LetX1; : : : ; Xn
be an iid sample from a one-parameter exponential family with density (or
frequency)

f .xI �/ D expf�.�/T .x/� d.�/C S.x/g; x 2 X ; � 2 ‚ � R:

such that �.�/ is strictly increasing and continuously differentiable, and ‚ is
open. Assume that � D Pn

iD1 T .Xi / is a continuous random variable, with
distribution function P� Œ� � t � D G.t I �/.
1. Let ı.X1; : : : ; XnI �0/ be the UMP test of

�
H0 W � � �0

H1 W � > �0
�

at level ˛, as defined in Theorem (4.16, p. 109). Then, the region

R.X1; : : : ; Xn/ D f# 2 ‚ W ı.X1; : : : ; XnI#/ D 0g

is a .1 � ˛/ left-sided interval of the form ŒL.X1; : : : ; Xn/;C1/.
2. Let ı.X1; : : : ; XnI �0/ be the UMP test of

�
H0 W � � �0

H1 W � < �0
�

at level ˛, as defined in Theorem (4.16, p. 109). Then, the region

R.X1; : : : ; Xn/ D f# 2 ‚ W ı.X1; : : : ; XnI#/ D 0g

is a .1 � ˛/ right-sided interval of the form .�1; U.X1; : : : ; Xn/�.

Proof We will prove only part (1), as (2) will then follow by symmetric arguments.
The form of the test function ı.X1; : : : ; XnI#/ is given by Theorem (4.16, p. 109)
to be

ı.X1; : : : ; XnI �0/D1f�.X1; : : : ; Xn/ > q1�˛.�0/g D 1f�.X1; : : : ; Xn/ � q1�˛.�0/g

where q1�˛.�0/ is the .1 � ˛/-quantile of G.t I �0/. It follows that

R.X1; : : : ; Xn/ D f# 2 ‚ W �.X1; : : : ; Xn/ < q1�˛.#/g
D f# 2 ‚ W G.�.X1; : : : ; Xn/I#/ < G.q1�˛.#/I#/g
D f# 2 ‚ W G.�.X1; : : : ; Xn/I#/ < 1 � ˛g
D f# 2 ‚ W 1 �G.�.X1; : : : ; Xn/I#/ > ˛g
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where the second equality follows since G.t I#/ is non-decreasing in t for all # .
If we can show that G.t I#/ is continuous with respect to # , then the region R
will necessarily be a union of intervals. If f we can also show that 1 � G.t I#/ D
P# Œ�.X1; : : : ; Xn/ > t� is increasing in # for all t , then it will be clear that R will in
fact be a single contiguous interval of the form ŒL;C1/, for some random variable
L. But under our conditions, P# Œ�.X1; : : : ; Xn/ > t� has indeed been proven to be
differentiable and increasing in # in the first part of the proof of Theorem (4.16,
p. 109).5 To complete the proof, we need to show that the confidence level of
R.X1; : : : ; Xn/ D ŒL.X1; : : : ; Xn/;C1/ is indeed 1 � ˛. This follows easily by
observing that for any # 2 ‚:

P# ŒL.X1; : : : ; Xn/ � #� D P# ŒR.X1; : : : ; Xn/ 3 #� D P# Œı.X1; : : : ; XnI#/ D 0�

D P# Œ�.X1; : : : ; Xn/ � q1�˛.#/�

D G.q1�˛.#/I#/
D 1 � ˛:

ut

In non-technical terms, the theorem says that under some conditions, inverting
a one-sided test in an exponential family will give a one-sided confidence interval.
The details of exactly how this interval is constructed are not the most essential part
here. The important thing is that we have found that the optimal one-sided tests can
be used to yield confidence intervals. Since the tests are optimal, should the intervals
not be optimal too? But what do we mean by an optimal confidence interval? We
will consider these questions in the next paragraph.

5.4 Optimality in Interval Estimation

When discussing hypothesis tests, we saw that there are cases (depending on the
hypothesis pair structure) where there was an optimal test function that one should
use. It is therefore natural to wonder whether there are also cases in interval
estimation, where there is an optimal confidence interval that one should use. How
should one define optimal, though? It seems that any definition of optimality should
satisfy the following two criteria:
1. Intuitively, optimal confidence intervals should be as “short” as possible on

average, subject to being able to respect their confidence level: the shorter the
interval, the more precise our localisation of our parameter.

5Recall that in that theorem we proved that the derivative of the mapping # 7!
E# Œı.X1; : : : ; Xn/� D P# Œ� � c� exists and is positive for all # and all c.
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2. Mathematically, we have seen that there exists a natural duality between con-
fidence intervals and hypothesis tests. Therefore, any notion of optimality for
confidence intervals should be dual to the notion of optimality for hypothesis
tests. In other words: inverting an optimal hypothesis test should give us an
optimal confidence interval.
Since we have seen that in general there can be no optimal test in bilateral

hypothesis pairs, the second criterion rules out hopes of being able to obtain optimal
two-sided confidence intervals. What about one-sided intervals, though? It turns out
that the following definition of optimality for one-sided intervals satisfies both of
the stated criteria:

Definition 5.17 (Uniformly Most Accurate One-Sided Intervals)

Let ŒL.X1; : : : ; Xn/;C1/ and ŒM.X1; : : : ; Xn/;C1/ be two left-sided .1 � ˛/

confidence intervals for � . If for all � 2 ‚,

P� Œ� � L � �� � P� Œ� �M � ��; 8 � > 0;

then ŒL.X1; : : : ; Xn/;C1/ is said to be more accurate than ŒM.X1; : : : ; Xn/;
C1/ at confidence level 1 � ˛. If ŒL;C1/ is more accurate than any other
competing .1 � ˛/ left-sided interval, then it is called a uniformly most accurate
(UMA) left-sided interval at confidence level .1 � ˛/.
Let .�1; U.X1; : : : ; Xn/� and .�1;M.X1; : : : ; Xn/� be two right-sided .1�˛/
confidence intervals for � . If for all � 2 ‚,

P� ŒU � � � �� � P� ŒM � � � ��; 8 � > 0;

then .�1; U.X1; : : : ; Xn/� is said to be more accurate than .�1;M.X1; : : : ;

Xn/� at confidence level 1 � ˛. If .�1; U / is more accurate than any other
competing .1�˛/ right-sided interval, then it is called a uniformly most accurate
(UMA) right-sided interval at confidence level .1� ˛/.

I Remark 5.18 (On Interpreting the Optimality of Intervals) Since one-sided
intervals have infinite length, we cannot really make sense of what it means to have
a “shortest” interval. Therefore, we define a one-sided interval to be most accurate
if the bound it provides is less likely to be at a distance larger than � > 0 from the
true parameter than any other competing interval, whatever the true parameter may
be, and whatever � > 0 may be. Loosely speaking, the average tightness of a most
accurate interval’s bound is higher than the average tightness of any other interval’s
bound. Figure 5.1 provides a visual illustration of the concept.

Our definition can be seen to satisfy the requirement of intuitively being equiva-
lent to “shortness” of the confidence intervals. The next proposition establishes that
it also respects the duality with hypothesis tests (at least within the context of one-
parameter exponential families) in the sense that the inversion of the uniformly most
powerful hypothesis test yields the most accurate confidence interval.
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Fig. 5.1 Illustration of the definition of a most accurate left-sided interval. The idea is that, given
" > 0, the optimal interval’s lower bound L.X1; : : : ; Xn/ is less likely to fall in the shaded region
than the lower bound of any other left-sided interval (in both cases subject to the constraint of
having confidence level 1� ˛)

Proposition 5.19 (UMP Tests ) UMA Intervals in Exponential Families)
Let X1; : : : ; Xn be an iid sample from a one-parameter exponential family with
density (or frequency)

f .xI �/ D expf�.�/T .x/� d.�/C S.x/g; x 2 X ; � 2 ‚ � R:

such that �.�/ is strictly increasing and continuously differentiable, and ‚ is
open. Assume that � D Pn

iD1 T .Xi / is a continuous random variable, with
distribution function P� Œ� � t � D G.t I �/.
Given any �0 2 ‚, let ı.X1; : : : ; XnI �0/ be the UMP test of

�
H0 W � � �0
H1 W � > �0

�

at level ˛. Then, the region

R.X1; : : : ; Xn/ D f# 2 ‚ W ı.X1; : : : ; XnI#/ D 0g

is a uniformly most accurate .1 � ˛/ left-sided confidence interval at confidence
level 1 � ˛.

I Remark 5.20 Of course, the symmetric version of this theorem holds true for
right-sided intervals.

Proof From Proposition 5.16 (p. 144) we know that R.X1; : : : ; Xn/ is a confidence
interval of the form ŒL.X1; : : : ; Xn/;C1/, for some statistic L, whose confidence
level is 1 � ˛. So R.X1; : : : ; Xn/ is indeed a left-sided .1 � ˛/ confidence interval.
Therefore, it suffices to show that ŒL;C1/ is uniformly most accurate. To this aim,
let ŒM.X1; : : : ; Xn/;C1/ be any other 1 � ˛ left-sided confidence interval. Define
 .X1; : : : ; XnI �/ D 1fM.X1; : : : ; Xn/ > �g to be its dual test, which will have
level ˛ (to see this, follow the same steps as just above, replacing L byM ). Given a
�1 2 ‚ and an � > 0, define �0 D �1 � � (so that �1 > �0/. Since ı.X1; : : : ; XnI �0/
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is UMP, we have:

P�1 Œı.X1; : : : ; XnI �0/ D 1� � P�1 Œ .X1; : : : ; XnI �0/ D 1�

H) P�1 Œ�0 < L.X1; : : : ; Xn/� � P�1 Œ�0 < M.X1; : : : ; Xn/�

H) P�1 ŒL.X1; : : : ; Xn/ � �0� � P�1 ŒM.X1; : : : ; Xn/ � �0�

H) P�1 Œ�0 � L.X1; : : : ; Xn/� � P�1 Œ�0 � M.X1; : : : ; Xn/�

H) P�1 Œ�1 � � � L.X1; : : : ; Xn/� � P�1 Œ�1 � � � M.X1; : : : ; Xn/�

H) P�1 Œ�1 �L � �� � P�1 Œ�1 �M � ��:

Since �1 2 ‚ and � were arbitrary, we have established that ŒL;C1/ is more
accurate than ŒM;C1/. ut

Exercise 65 Let X1; : : : ; Xn
iid� N.�; �2/, where �2 is known. Find the expression

for the UMA left-sided interval for � at confidence level 1 � ˛.

Exercise 66 Let X1; : : : ; Xn
iid� Bern.p/. Using the sufficient statistic

�n.X1; : : : ; Xn/ for p, find the UMA left-sided interval for p at confidence level
1 � ˛, by inverting the test

H0 W p � p0 vs H1 W p > p0:

The endpoints of this interval are not as explicit as in the previous exercise.
Unfortunately, one of the conditions of Proposition 5.19 is not satisfied (which
one?). Thus, for most value of p, the coverage probability will only approximately
be 1 � ˛.

Exercise 67 Show that the uniformly most accurate interval in Proposition 5.19
coincides with the interval constructed using the pivot Yn D F�n.�n/, as in
Exercise 64, p. 141.

5.5 On Interpreting Confidence Intervals

It is very important to take care when interpreting the meaning of a confidence
interval. Notice that

inf
�2‚P�

h
L.X1; : : : ; Xn/ � � � U.X1; : : : ; Xn/

i
� 1 � ˛

is an equivalent statement to

inf
�2‚P�

n
� 2

h
L.X1; : : : ; Xn/ ; U.X1; : : : ; Xn/

ioi
� 1 � ˛:
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Fig. 5.2 Visualising the notion of a confidence interval at confidence level 1 � ˛. The vertical
line represents the location of the fixed parameter value on the real axis. The parallel black lines
represent realisations of the random interval ŒL; U � for r D 24 different random samples from
f .xI �/. We can see that most of them cover � but some of them fail to do so. By the law of large
numbers, we expect that as the number of replications r ! 1, the proportion of intervals not
covering � will gradually converge to a number smaller than ˛

Though mathematically these statements are equivalent, the second way of writing
the statement may lead to a misinterpretation of what an confidence interval means.

Specifically, it is the interval ŒL; U � that is random and not the parameter � . So
saying that “the probability that the parameter fall inside the interval is at least 1�˛”
is wrong: the parameter is not going or falling anywhere, it is fixed. It is the interval
that may change for different samples X1; ::; Xn, and may or may not cover the
parameter (see Fig. 5.2). Therefore, one should say “the probability that the interval
cover the parameter � is at least .1 � ˛/”.

A different way of clarifying this is by noticing that:

P�

h
L.X1; : : : ; Xn/ � � � U.X1; : : : ; Xn/

i
DP�

h
fL.X1; : : : ; Xn/ � �gg \ fU.X1; : : : ; Xn/ � �g

i

where the right-hand side emphasises that the probability statement applies to the
random confidence limits L and U , rather than to the deterministic parameter � . To
make sure that we avoid confusion, it is better to write P� fŒL ; U � 3 �g instead of
P� f� 2 ŒL ; U �g.

Concluding this section, we give two exercises which show how the notion of
confidence intervals (and dual tests) admits a much more general interpretation
when considering vectors of several parameters.
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Exercise 68 Let X 1; : : : ;Xn be random vectors in R
2, defined as X i D

.Xi1; Xi2/
>, where X11; : : : ; Xn1

i id� N.�1; �
2/, X12; : : : ; Xn2

i id� N.�2; �
2/, and

the fXi1gniD1 are independent of the fXi2gniD1. Assuming that � is known, we wish
to construct a confidence region for the parameter vector � D .�1; �2/

>, that is, a
random subset C.X1; : : : ;Xn/ of R2 satisfying

P� Œ� 2 C.X 1; : : : ;Xn/� � 1 � ˛; 8 � 2 R
2

for a certain given confidence level 1 � ˛, ˛ 2 .0; 1/.
1. Consider confidence regions for � D .�1; �2/

> of the form:

C1.X 1; : : : ;X n/ D
n
� 2 R

2 W NX1 � z1�˛0=2

�p
n

� �1 � NX1 C z1�˛0=2

�p
n
;

NX2 � z1�˛0=2

�p
n

� �2 � NX2 C z1�˛0=2

�p
n

o
:

Find the value of ˛0 for which C1.X 1; : : : ;Xn/ is a confidence region with
confidence level 1 � ˛.

2. Consider now confidence regions for � of a different form, namely:

C2.X 1; : : : ;Xn/ D
n
� 2 R

2 W n
�2

�
. NX1 � �1/

2 C . NX2 � �2/
2
	 � Q

o
:

Find the value ofQ for which C2.X 1; : : : ;Xn/ is a confidence region for � with
confidence level 1 � ˛.

3. Let NX1 D �0:7, NX2 D 0:6, n D 9, �2 D 1. Draw the regions C1 and C2 at
confidence level 95% on the plane R

2. Find the ratio of the areas of the two
regions. Which is preferable?

Exercise 69 In the same notation and under the same assumptions as in the
previous exercise, construct two test functions to test H0 W � D 0 vs H1 W � ¤ 0 at
level ˛ 2 .0; 1/, by inverting the previous regions.
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A.1 Probability Factsheet

This section provides a snapshot of some of the main probabilistic concepts and
properties that are made use of in the text. For a more detailed coverage, the reader
is referred to Knight [14], Chaps. 1–3.

Events

A random experiment is a process whose outcome is uncertain. The possible
outcomes, and combinations thereof, are described in the language of set theory.
In principle, any statement that makes reference to the outcome of a random
experiment should be expressible via this language. In detail:
• A possible outcome ! of a random experiment is called an elementary event.
• The set of all possible outcomes, say � is assumed non-empty,� ¤ ;.
• An event is a subset F � � of �. An event F “is realised” (or “occurs”)

whenever the outcome of the experiment is an element of F .
• The union of two events F1 and F2, written F1 [ F2 occurs if and only if either

of F1 or F2 occurs. Equivalently, ! 2 F1 [ F2 if and only if ! 2 F1 or ! 2 F2,

F1 [ F2 D f! 2 � W ! 2 F1 or ! 2 F2g

• The intersection of two events F1 and F2, written F1 \ F2 occurs if and only if
both F1 and F2 occur. Equivalently, ! 2 F1 \ F2 if and only if ! 2 F1 and
! 2 F2,

F1 \ F2 D f! 2 � W ! 2 F1 and ! 2 F2g

• Unions and intersections of several events, F1 [ : : : [ Fn and F1 \ : : : \ Fn are
defined iteratively from the definition for unions and intersections of pairs.

© Springer International Publishing Switzerland 2016
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• The complement of an event F , denoted F c , contains all the elements of � that
are not contained in F ,

F c D f! 2 � W ! … F g:

• Two events F1 and F2 are called disjoint if they contain no common elements,
that is F1 \ F2 D ;.

• A partition fFngn�1 of � is a collection of events such that Fi \ Fj D ; for all
i ¤ j , and [n�1Fn D �.

• The difference of two eventsF1 andF2 is defined asF1nF2 D F1\F c
2 . It contains

all the elements of F1 that are not contained in F2. Notice that the difference is
not symmetric: F1 n F2 ¤ F2 n F1.

• It can be checked that the following properties hold true
(i) .F1 [ F2/ [ F3 D F1 [ .F2 [ F3/ D F1 [ F2 [ F3

(ii) .F1 \ F2/ \ F3 D F1 \ .F2 \ F3/ D F1 \ F2 \ F3
(iii) F1 \ .F2 [ F3/ D .F1 \ F2/ [ .F1 \ F3/
(iv) F1 [ .F2 \ F3/ D .F1 [ F2/ \ .F1 [ F3/
(v) .F1 [ F2/

c D F c
1 \ F c

2 and .F1 \ F2/c D F c
1 [ F c

2

Probability Axioms

A probability measure P is a real function defined over the events of �, assigning a
probability to any event. This can be interpreted as a measure of how certain we are
that the event will occur. It is postulated to satisfy the following properties:
1. P.F / � 0, for all events F .
2. P.�/ D 1.
3. If fFngn�1 are disjoint events, and F D [n�1Fn is an event given by their union,

then

P .F / D
X

n�1
P.Fn/:

The following properties are immediate consequences of the probability
axioms:
• P.F c/ D 1 � P.F /.
• P.F1 \ F2/ � minfP.F1/;P.F2/g.
• P.F1 [ F2/ D P.F1/C P.F2/� P.F1 \ F2/.
• Continuity from below: let fFngn�1 be nested events, such that Fj � FjC1 for

all j , and let F be an event given by F D [n�1Fn. Then P.Fn/
n!1�! P.F /.

• Continuity from above: let fFngn�1 be nested events, such that Fj � FjC1 for

all j , and let F be an event given by F D \n�1Fn. Then P.Fn/
n!1�! P.F /.

• If� D f!1; : : : ; !Kg,K < 1, is a finite set, then for any event F � �, we have
P.F / D P

j W!j2F P.!j /.
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Conditional Probability and Independence

Suppose we do not know the precise outcome ! 2 � that has occurred, but we are
told that ! 2 F2 for some event F2. If we are asked to now calculate the probability
that ! 2 F1 also, for some other event F1, then we need to calculate the conditional
probability of F1 given F2.
• For any pair of events F1; F2 such that P.F2/ > 0, we define the conditional

probability of F1 given F2 to be

P.F1jF2/ D P.F1 \ F2/
P.F2/

:

• Let G be an event and fFngn�1 be a partition of � such that P.Fn/ > 0 for all n.
We then have:
– Law of total probability:

P.G/ D
1X

nD1
P.GjFn/P.Fn/

– Bayes’ theorem:

P.Fj jG/ D P.Fj \G/

P.G/
D P.GjFj /P.Fj /
P1

nD1 P.GjFn/P.Fn/

• The events fGngn�1 are called independent if and only if for any finite sub-
collection fGi1; : : : ; GiK g, K < 1, we have:

P.Gi1 \ � � � \GiK / D P.Gi1/ � P.Gi2/ � : : : � P.GiK /

RandomVariables and Distribution Functions

Random variables are, simply stated, numerical summaries of the outcome of a
random experiment. Since the result is random, such numerical summaries are
random, too. They allow us to not worry too much about the precise structure of the
outcome ! 2 �, but concentrate on a numerical summary instead. If that numerical
summary is all we really care about, we can concentrate on the range of a random
variable X , rather than consider� itself.
• A random variable is a real functionX W � ! R.
• We write fa � X � bg to denote the event

f! 2 � W a � X.!/ � bg:



154 Appendix

More generally, if A � R is a more general subset, we write fX 2 Ag to denote
the event

f! 2 � W X.!/ 2 Ag:

• If we have a probability measure defined on the events of �, then X induces
a new probability measure on subsets of the real line. This is described by the
distribution function (or cumulative distribution function) FX W R ! Œ0; 1� of a
random variable X (or the law of X ). This is defined as

FX.x/ D P.X � x/:

• By its definition, a distribution function satisfies the following properties:
(i) x � y ) FX.x/ � FX.y/

(ii) limx!1 FX.x/ D 1, limx!�1 FX.x/ D 0

(iii) limy#x FX.y/ D FX.x/, that is, FX is right-continuous.
(iv) limy"x FX.y/ exists, that is, FX is left-limited.
(v) P.a < X � b/ D FX.b/ � FX.a/.

(vi) P.X > a/ D 1 � F.a/.
(vii) Let DX WD fx 2 R W FX.x/ � limy"x FX.y/ > 0g be the set of points

where FX is not continuous.
– DX is a countable set (Lemma A.11, p. 169).
– If P.fX 2 DF g/ D 1, then X is called a discrete random variable

(equivalently,X has a finite or countable range, with probability 1).
– If DX D ;, then X is called a continuous random variable (the

distribution function FX is continuous).
– It may very well happen that a random variable may be neither discrete

nor continuous.

Probability Density and Probability Mass Functions

• The probability mass function (or frequency function) fX W R ! Œ0; 1� of a
discrete random variable X is defined as

fX.x/ D P.X D x/:

By its definition, a probability mass function satisfies
(i) P.X 2 A/ D P

t2A\X fX.t/, for A � R and X D fx 2 R W fX.x/ > 0g.
(ii) FX.x/ D P

t2.�1;x�\X fX.t/, for all x 2 R and X D fx 2 R W fX.x/ > 0g.
(iii) An immediate corollary is that FX.x/ is piecewise constant with jumps at the

points in X D fx 2 R W fX.x/ > 0g.
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• A continuous random variable X has probability density function fX W R !
Œ0;C1/ if

FX.b/ � FX.a/ D
Z b

a

fX.t/dt:

for all real numbers a < b. By its definition, a probability density satisfies
(i) FX.x/ D R x

�1 fX.t/dx

(ii) fX.x/ D F 0
X.x/, whenever fX is continuous at x.

(iii) Note that fX.x/ ¤ P.X D x/ D 0. In fact, it can be f .x/ > 1 for some x. It
can even happen that f is unbounded.

RandomVectors and Joint Distributions

A random vector X D .X1; : : : ; Xd /
> is a finite collection of random variables,

arranged as the coordinates of a vector. The point is that we may want to make
probabilistic statements on the joint behaviour of all these random variables. In this
case, we need to define their joint distribution, and respective joint density (or joint
frequency).
• The joint distribution function of a random vector X D .X1; : : : ; Xd /

> is defined
as:

FX.x1; : : : ; xd / D P.X1 � x1; : : : ; Xd � xd /:

• Correspondingly, one defines the
– joint frequency function, if the fXigdiD1 are all discrete,

fX.x1; : : : ; xd / D P.X1 D x1; : : : ; Xd D xd /:

– the joint density function, if there exists fX W Rd ! Œ0;C1/ such that:

FX.x1; : : : ; xd / D
Z x1

�1
: : :

Z xd

�1
fX.u1; : : : ; ud /du1 : : : dud

In this case, when fX is continuous at the point x,

fX.x1; : : : ; xd / D @d

@x1 : : : @xd
FX.x1; : : : ; xd /

Marginal Distributions

Given the joint distribution of the random vector X D .X1; : : : ; Xd /
>, we can

always isolate the distribution of a single coordinate, say Xi .
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• In the discrete case, the marginal frequency function ofXi is given by fXi W R !
Œ0;C1/:

fXi .xi / D P.Xi D xi / D
X

x1

� � �
X

xi�1

X

xiC1

� � �
X

xd

fX .x1; : : : ; xi�1; xi ; xiC1; : : : ; xd /

• In the continuous case, the marginal density function ofXi is given by fXi W R !
Œ0;C1/:

fXi .xi / D
Z 1

�1
: : :

Z 1

�1
fX .y1; : : : ; yi�1; xi ; yiC1; : : : ; yd /dy1 : : : dyi�1dyiC1dyd :

• More generally, we can define the joint frequency/density of a random vector
formed by a subset of the coordinates of X D .X1; : : : ; Xd/

>, say the first k
(with k < d ), .X1; : : : ; Xk/>, via
– Discrete case: fX1;:::;Xk .x1; : : : ; xk/ D P

xkC1
� � �Pxd

fX .x1; : : : ; xk;

xkC1; : : : ; xd /.
– Continuous case
fX1;:::;Xk .x1; : : : ; xk/ D R C1

�1 : : :
R C1

�1 fX .x1; : : : ; xk; xkC1; : : : ; xd /dxkC1
: : : dxd :

• In other words, in order to find a marginal density/frequency of a subset of
random variables, we need to integrate/sum out the remaining variables from
the overall joint density/frequency.

• It is important to note that the marginals do not uniquely determine the joint
distribution.

Conditional Distributions

Similarly to the notion of conditional probability, we may wish to make probabilistic
statements about the potential outcomes of one random variable, if we already
know the outcome of another. For this we need the notion of conditional density
and conditional frequency functions. If .X1; : : : ; Xd / is a continuous/discrete
random vector, we define the conditional probability density/frequency function of
.X1; : : : ; Xk/ given fXkC1 D xkC1; : : : ; Xd D xd g as

fX1;:::;Xk jXkC1;:::;Xd .x1; : : : ; xk jxkC1; : : : ; xd / D fX1;:::;Xd .x1; : : : ; xk; xkC1; : : : ; xd /
fXkC1;:::;Xd .xkC1; : : : ; xd /

provided that fXkC1;:::;Xd .xkC1; : : : ; xd / > 0. The corresponding distribution
functions are:
• In the discrete case:

FX1;:::;Xk jXkC1;:::;Xd .x1; : : : ; xk jxkC1; : : : ; xd /

D
X

u1�x1
: : :

X

uk�xk
fX1;:::;Xk jXkC1;:::;Xd .u1; : : : ; ukjxkC1; : : : ; xd /:
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• In the continuous case:

FX1;:::;Xk jXkC1;:::;Xd .x1; : : : ; xkjxkC1; : : : ; xd /

D
Z x1

�1
: : :

Z xk

�1
fX1;:::;Xk jXkC1;:::;Xd .u1; : : : ; ukjxkC1; : : : ; xd /du1 : : : duk:

Independent RandomVariables

The random variables X1; : : : ; Xd are called independent if and only if, for all
x1; : : : ; xd 2 R

FX1;:::;Xd .x1; : : : ; xd / D FX1.x1/ � : : : � FXd .xd /:

Equivalently,X1; : : : ; Xd are independent if and only if, for all x1; : : : ; xd 2 R

fX1;:::;Xd .x1; : : : ; xd / D fX1.x1/ � : : : � fXd .xd /:

Note that when random variables are independent, conditional distributions reduce
to the corresponding marginal distributions. Intuitively, knowing the value of one of
the random variables gives us no information about the distribution of the rest.

Expectation, Variance, Covariance

The expectation (or expected value) of a random variable X formalises the notion
of the “average” value taken by that random variable (in a sense, the typical value,
what we expect). It is defined as follows.
– For continuous variables:

EŒX� D
Z C1

�1
x fX.x/dx:

– For discrete variables:

EŒX� D
X

x2X
x fX.x/; X D fx 2 R W fX.x/ > 0g:

The expectation satisfies the following properties:
• Linearity: EŒX1 C ˛X2� D EŒX1�C ˛EŒX2�.
• EŒh.x/� D P

x2X h.x/fX .x/ (discrete case)
or
EŒh.x/� D R C1

�1 h.x/f .x/dx (continuous case).
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The variance of a random variable X expresses how disperse the realisations of X
are around its expectation.

Var.X/ D E
�
.X � E.X//2



(if EŒX2� < 1):

Furthermore, the covariance of a random variable X1 with another random variable
X2 expresses the degree of linear dependency between the two.

Cov.X1;X2/ D E Œ.X1 � E.X1//.X2 � E.X2//� (if EŒX2
i � < 1):

The correlation between X1 and X2 is defined as

Corr.X1;X2/ D Cov.X1;X2/
p

Var.X1/Var.X2/
:

It also expresses the degree of linear dependency. Its advantage is that it is invariant
to changes of units of measurement, and moreover can be understood in absolute
terms (it ranges in Œ�1; 1�), as a result of the correlation inequality (itself a
consequence of the Cauchy–Schwarz inequality):

jCorr.X1;X2/j � p
Var.X1/Var.X2/:

Some useful formulae relating expectations, variance, and covariances are:
• Var.X/ D EŒX2� � .EŒX�/2 D Cov.X;X/
• Var.aX C b/ D a2 Var.X/
• Var.

P
i Xi / D P

i Var.Xi/CP
i¤j Cov.Xi ; Xj /

• Cov.X1;X2/ D EŒX1X2� � EŒX1�EŒX2�

• Cov.aX1 C bX2; Y / D aCov.X1; Y /C bCov.X2; Y /
• if EŒX2

1 �C EŒX2
2 � < 1, then the following are equivalent:

(i) EŒX1X2� D EŒX1�EŒX2�

(ii) Cov.X1;X2/ D 0

(iii) Var.X1 ˙X2/ D Var.X1/C Var.X2/
Independence will imply these three last properties, but none of these properties
imply independence.

A.2 Taylor’s Formula and the Inverse Function Theorem

The following two classic analysis results will often be used. See Rudin [21]
(Chaps. 5 and 9) for their proofs.1

1An elementary proof of the one-dimensional form of the inverse function theorem (which will be
all that will be needed for this text as stated below) can also be found in Corwin and Szczarba [5],
Chap. 9.
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Theorem A.1 (Taylor’s Formula with Lagrange Remainder) Let h.x/ W R !
R be k-times continuously differentiable on the closed interval I with endpoints
x and y, for some k � 0. If f .kC1/ exists on the interior of I , then there exists
t 2 .0; 1/ such that

h.x/ D h.y/C h0.y/.x � y/C h00.y/
2Š

.x � y/2 C � � � C h.k/.y/

kŠ
.x � y/k

Ch.kC1/.�/
.k C 1/Š

.x � y/kC1

for � D tx C .1 � t/y.

Theorem A.2 (Inverse Function Theorem) Let h.x/ W R ! R be continuously
differentiable, with a non-zero derivative at a point xo 2 R. Then, there exists an
" > 0 such h�1 continuously differentiable on .h.x0/� �; h.x0/C �/, and in fact
.h�1/0.y/ D Œh0.h�1.y//��1 for jy � h.x0/j < ".

A.3 Two Concentration Inequalities

Lemma A.3 (Markov’s Inequality) Let X be a non-negative random variable.
Then, given any � > 0,

PŒX � �� � EŒX�

�
:

Proof Notice that 0 � �1fX � �g � X . Therefore, EŒ�1fX � �g� � EŒX�. But

EŒ�1fX � �g� D �EŒ1fX � �g� D � .1 � PŒX � ��C 0 � PŒX < ��/ D �PŒX � ��:

Combining our findings yields the result. ut

Lemma A.4 (Chebyshev’s Inequality) Let X be a random variable with finite
mean EŒX� < 1. Then, given any � > 0,

P

h
jX � EŒX�j � �

i
� VarŒX�

�2
:

Proof Define Y D .X � EŒX�/2 and apply Markov’s inequality to Y . ut
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A.4 Monotonicity and Covariance

Lemma A.5 (Covariance of X and g.X/) Let X be a real random variable
with EŒX2� < 1. Let g W R ! R be a non-decreasing function such that
EŒg2.X/� < 1. Then,

CovŒX; g.X/� � 0:

Proof By definition of covariance:

CovŒX; g.X/� D E

n�
X � �

��
g.X/ � EŒg.X/�

�o

D E

n�
X � �

��
g.X/ � g.�/C g.�/ � EŒg.X/�

�o

D E

n�
X � �

��
g.X/ � g.�/

�o
C E

n�
X � �

��
g.�/ � EŒg.X/�

�o

„ ƒ‚ …
D0

Now g is non-decreasing so if X � �, then g.X/ � g.�/. If X � �, on the other
hand, then g.X/ � g.�/ also. Therefore

.X � �/.g.X/ � g.�// � 0

and the result follows. ut

A.5 Quantiles

Recall that, for a random variable X taking values in X , we define its distribution
function to be:

FX W R ! Œ0; 1�;

FX.x/ D PŒX � x�; x 2 R:

Simply put, the distribution function is the answer to the following question: given
a real number x 2 R, what is the probability PŒX � x� that X fall at or below x?
We could also ask the opposite question:

Given a probability ˛ 2 .0; 1/; is there a real number x such that PŒX � x� D ˛?
(A.1)

The motivates the definition of the so-called quantile function.
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Definition A.6 (Quantile Function and Quantiles)

Let X be a random variable and FX be its distribution function. We define the
quantile function of X to be the function

F�
X W .0; 1/ ! R

F�
X .˛/ D infft 2 R W FX.t/ � ˛g:

Given an ˛ 2 .0; 1/, we call the real number

q˛ D F�
X .˛/

the ˛-quantile of X (or, equivalently, of FX ).

Recall that FX is always non-decreasing, by its definition. Hence, there are two
possibilities:
(A) FX is in fact strictly increasing.2 Then FX is also invertible, and we have

F�
X .˛/ D F�1

X .˛/; 8˛ 2 .0; 1/:

In this case, our question (A.1) has a unique answer, and the interpretation is
very simple.

(B) FX is non-decreasing, but not strictly increasing.3 Then there are two things
that may happen:
(B1) There may be multiple real numbers x that satisfy FX.x/ D ˛ (for

example, take ˛ D 1 � p and take X to be a Bern.p/ random variable;
then any x 2 .0; 1/ satisfies that FX.x/ D 1 � p D ˛). In this case,
F�1
X .˛/ is a set, not a single real number,

F �1
X .˛/ D fx 2 R W FX.x/ D ˛g:

So, which of these numbers should we pick as the answer to our question
(A.1)? The most mathematically appropriate choice turns out to be the
infimum of this set.4 Since FX is right-continuous (being a probability
distribution function) the infimum of this set equals F�

X .˛/.

2This is the case if X is continuous with a density that satisfies fX .x/ > 0 8x 2 R.
3For regular models, this happens if X is discrete (so FX is a step-function) or when X is
continuous but there exists at least one open interval I such that fX.x/ D 0, 8x 2 I .
4This is due to the fact that, with this definition, we have F.X/ � ˛ ” X � F�1.˛/, which
is very useful when generating random variables with a prescribed distribution, see Exercise 11
(p. 22).
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Fig. A.1 Evaluation of the quantile function for scenario (A), (B1) and (B2) above. Intuitively, in
order to find q˛ , we follow the red arrows. (a) Quantile in Scenario (A). (b) Quantile in Scenario
(B1). (c) Quantile in Scenario (B2)

(B2) There may be no real number x such that FX.x/ D ˛ (for example, take
some ˛ 2 .1 � p; 1/ and take X to be a Bern.p/ random variable). In
this case, our question (A.1) has no answer. So, instead we have to settle
for the first time that FX.x/ “jumps” above ˛, which is again given by
F�
X .x/.

If all of this sounds complicated, Fig. A.1 gives an intuitive illustration that should
clarify things.

Exercise 70 Let X � Exp.�/ where � > 0. Show that the ˛�quantile of X is
given by

q˛ D F �
X .˛/ D � log.1 � ˛/=�;

for 0 < ˛ < 1.
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Exercise 71 (Quantiles Determine Distributions) Let X and Y be random vari-
ables with respective distribution functions FX and FY . Suppose that F�

X .˛/ D
F�
Y .˛/ for all ˛ 2 .0; 1/. Prove that FX D FY .

A.6 Moment Generating Functions

The moment generating function (MGF) is a useful tool in probability theory that
can often help us to prove independence of random variables or to determine their
moments (hence the word moment generating).

Definition A.7 (Moment Generating Function)

Let X be a random variable taking values in R. The MGF of X is defined as

MX.t/ W R ! R [ f1g
MX.t/ D E

h
etX
i
; t 2 R:

Notice that MX.0/ D 1 always, so there exists at least one t 2 R for which
MX.t/ < 1. When MX.t/ is finite on an open neighbourhood of zero, then all the
moments of X are defined, and can be determined by evaluating derivatives of MX

at zero.

Proposition A.8 (Moments via the MGF) Let X be a random variable taking
values in R, and let I be an open interval such thatMX.t/ < 1 for all t 2 I . It
holds that
1. EŒjX jketX � < 1 for all k 2 N and all t 2 I .
2. For all t 2 I , the function MX is k times differentiable, for all k 2 N (hence

infinitely differentiable on I ).

3. For all k 2 N and all t 2 I , EŒXketX � D dkMX

dtk
.t/.

4. If f0g � I , then EŒjX jk� < 1 and EŒXk� D dkMX

dtk
.0/, for all k 2 N.

Proof We start with part 1. Fix t0 2 I and k 2 N. Since I is open, there exists a
ı > 0 such that Œt0 � ı; t0 C ı� � I . Since the exponential function is increasing, we
have

jX jket0X D Xket0X1fX � 0g C .�X/ket0X1fX < 0g
D e.t0Cı/Xuk;ı.X/1fX � 0g C e.t0�ı/Xuk;ı.�X/1fX < 0g;

where uk;ı W Œ0;1/ ! Œ0;1/ is given by

uk;ı.x/ D xk exp.�ıx/; k � 0; ı > 0; x � 0:
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It’s not hard to see that Ck;ı D supx�0 uk;ı.x/ < 1, since the exponential will
decay faster than any polynomial. Specifically,

u0
k;ı.x/ D xk�1e�ıx.k � ıx/

(
> 0 x < k

ı

< 0 x > k
ı
;

so that uk;ı attains its maximum at x D k=ı. We conclude that

EjX jket0X � Ck;ıEe
.t0Cı/X1fX � 0g C Ck;ıEe

.t0�ı/X1fX < 0g
� Ck;ıMX.t0 C ı/C Ck;ıMX.t0 C ı/ < 1:

Since the choice of t0 was arbitrary, we have proven part 1.
In order to prove parts 2 and 3, we proceed recursively. Both parts are trivially

valid when k D 0. We will now show that if 2 and 3 are valid for k � 1 (for all
t 2 I ), then they must be valid for k, whenever k � 1.

Fix t0 2 I . We need to show that

lim
t!t0

EXk�1etX � EXk�1et0X

t � t0 D lim
t!t0

M
.k�1/
X .t/ �M.k�1/

X .t0/

t � t0 D EXket0X :

(A.2)

Note that all the expectations in this equation are well defined (finite) as a result of
part 1. Applying Taylor’s formula (Theorem A.1, p. 159) to the function hx.t/ D
xk�1etx (where x is seen as a fixed constant), we obtain

Xk�1etX � Xk�1et0X

t � t0
D hX.t/ � hX.t0/

t � t0 D h0
X.�/ D Xke�X; j� � t0j � jt � t0j:

Note that since � depends on both t and X , it’s in fact a random variable. Similarly,

Xk�1etX � Xk�1et0X

t � t0
� Xket0X D Xke�X � Xket0X

D XkC1e�0X.� � t0/; j� 0 � t0j � j� � t0j:

We must thus show that the expectation on the right-hand side tends to zero as
t ! t0. Since j� � t0j � jt � t0j, it suffices to bound EXkC1e�0X uniformly in t . Let
ı > 0 be such that Œt0 � 2ı; t0 C 2ı� � I . Suppose without loss of generality that
jt � t0j < ı. It follows that t0 � ı � � � t0 C ı and we can use the same approach
as before to write:

jX jkC1e�0X D XkC1e�0X1fX � 0g C .�X/kC1e�0X1fX < 0g
� XkC1e.t0Cı/X1fX � 0g C .�X/kC1e.t0�ı/X1fX < 0g
D e.t0C2ı/XukC1;ı.X/1fX � 0g C e.t0�2ı/XukC1;ı.�X/1fX < 0g:
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It follows that

EjX jkC1e�0X � CkC1;ıMX.t0 C 2ı/C CkC1;ıMX.t0 � 2ı/ < 1;

since t0 ˙ 2ı 2 I and CkC1;ı < 1. Hence

E

ˇ
ˇ
ˇ
ˇ
Xk�1etX �Xk�1et0X

t � t0
� Xket0X

ˇ
ˇ
ˇ
ˇ � CkC1;ıŒMX.t0 C 2ı/

CMX.t0 � 2ı/�jt � t0j ! 0; t ! t0:

Consequently, Eq. (A.2) holds true (since the term on the right-hand side of (A.2) is
finite), which translates to

M
.k/
X .t0/ D EXket0X 8 t0 2 I:

The recurrence thus holds true, which establishes 2 and 3. To complete the proof,
observe that when f0g � I , part 4 follows directly from parts 1 and 3. ut

A further important property of the MGF is that, provided thatMX exists on an open
interval containing zero, it uniquely determines the distribution of X :

Proposition A.9 (Characterisation Property of the MGF) Let X and Y be
two random variables taking values in R, and let FX and FY be their respective
distributions. Let MX;MY W R ! R be their MGFs. If there exists an open
interval I containing zero, such thatMX.t/ < 1 andMY .t/ < 1 for all t 2 I ,
then

FX D FY ” MX D MY :

We will not prove this result in its full generality, as this would require either notions
related to Laplace transforms, or to characteristic functions (see, e.g., Billingsley
[2], Sect. 30). We will only give a proof for the special case of non-negative random
variables (following a saddlepoint argument of Dalang and Conus [8]). This suffices
to cover the situations where we will use the theorem in this text.

Proof of Proposition A.9, Assuming X; Y � 0 We first consider the case of contin-
uous random variables, and focus on the random variable X � 0. Since X � 0, it
follows that MX.t/ < 1 for all t < 0. Combining this fact with our assumption,
means that there exists a ı > 0 such that MX.t/ < 1 for all t < ı. By
Proposition A.8, we now know that dk

dtk
MX exists for all k and all t < ı. Our strategy
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will be to express FX as a function of the derivatives of MX . More specifically,
define the functionGX.t; x/ W Œ0;1/2 ! R as

GX.t; x/ D
btxcX

kD0

tk

kŠ

dkMX

dtk
.�t/;

where bzc is the largest integer less than or equal to z. We will show that for any
given x � 0,

lim
t!1GX.t; x/ D FX.x/:

Fix x � 0. Proposition A.8 shows that, for all k � 0,

dk

dtk
MX.t/ D E

�
XketX


 D
Z 1

0

xketxfX.x/dx;

where the last integral is over Œ0;1/ by non-negativity of X . Thus G may be re-
expressed as

GX.t; x/ D
btxcX

kD0

tk

kŠ

Z C1

0

yke�tyfX.y/dy D
Z C1

0

0

B
@

btxcX

kD0

tk

kŠ
yke�ty

„ ƒ‚ …

1

C
A

D't .x;y/

fX.y/dy;

where 't .x; y/ D PŒWt;y � tx� for Wt;x � Poisson.ty/. Consequently, when
y > x, Chebyshev’s inequality (Lemma A.4, p. 159) implies that

0 � 't.x; y/ D PŒWt;y � tx� D PŒWt;y � ty � t.x � y/�
� PŒjWt;y � tyj � t.y � x/�

� VarŒWt;y�

t2.y � x/2 D y

t.y � x/2
:

Similarly, in the case y < x, we have

0 � 1� 't .x; y/ D PŒWt;y > tx� D PŒWt;y � ty > t.x � y/�
� PŒjWt;y � tyj > t.x � y/�

� VarŒWt;y �

t2.x � y/2
D y

t.x � y/2
:
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Now let � > 0. Choose h > 0 sufficiently small so that FX.x C h/ � FX.x/ < �=3

and FX.x/�FX .x�h/ < �=3 (such a choice is ensured by continuity of FX ). Then
choose t > 0 sufficiently large so that t > 6x=�h2. We have

jGX.t; x/� FX.x/j D
ˇ
ˇ
ˇ
ˇ
ˇ

Z
C1

0

't .x; y/fX.y/dy �
Z x

0

fX.y/dy

ˇ
ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
ˇ

Z x�h

0

.'t .x; y/� 1/fX .y/dy C
Z x

x�h

.'t .x; y/� 1/fX .y/dy

C
Z xCh

x

't .x; y/fX.y/dy C
Z

1

xCh

't .x; y/fX.y/dy

ˇ
ˇ
ˇ
ˇ
ˇ

�
Z x�h

0

j't .x; y/� 1jfX.y/dy C
Z x

x�h

j't .x; y/� 1jfX.y/dy

C
Z xCh

x

j't .x; y/jfX.y/dy C
Z

1

xCh

j't .x; y/jfX.y/dy:

Let us consider the terms on the right-hand side one at a time, and bound them
suitably (note that if x D 0, we only need to consider the last two integrals). We
have

Z x�h

0

j't.x; y/ � 1jfX.y/dy � 1

t

Z x�h

0

y

.x � y/2
fX.y/dy

� x � h

th2

Z x�h

0

fX.y/dy � x � h
th2

;

by our earlier calculation. Similarly,

Z 1

xCh
j't.x; y/jfX.y/dy � x C h

th2
:

Furthermore, j't .x; y/ � 1j � 1 and j't .x; y/j � 1 for all x; y � 0, so that

Z x

x�h
j't.x; y/ � 1jfX.y/dy �

Z x

x�h
fX.y/dy D FX.x/ � FX.x � h/

and

Z xCh

x

j't.x; y/jfX.y/dy �
Z xCh

x

fX.y/dy D FX.x C h/� FX.x/:
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In summary, we have shown that for all t > 6x
�h2

,

jGX.t; x/ � FX.x/j � x � h

th2
C ŒFX .x/ � FX.x � h/�

CŒFX .x C h/� FX.x/�C x C h

th2

D ŒFX .x/ � FX.x � h/�C ŒFX.x C h/� FX.x/�C 2x

th2

D �

3
C �

3
C �

3
D �:

In other words, we have shown that jGX.t; x/ � FX.x/j < � for any � > 0 and t
sufficiently large, which proves that limt!1GX.t; x/ D FX.x/. The exact same
arguments show that limt!1GY .t; x/ D FY .x/, where GY .t; x/ is defined in
analogous fashion as GX.t; x/. But GX D GY since MX D MY , which proves
that FX D FY and completes the proof in the case when the random variablesX; Y
are continuous. For the discrete case, we follow the exact same argument, replacing
integrals by sums, and proving that limt!1GX.t; x/ D FX.x/ for all continuity
points x of FX.x/. For discontinuity points, we then simply use the right-continuity
of FX . The proof is now complete. ut

The next lemma is useful when trying to establish the distribution of a sum or
independent random variables.

Lemma A.10 (Sums and MGFs) Let X and Y be two independent random
variables taking values in R, and let Z D X C Y . If MX.t/ < 1 and
MY .t/ < 1 for all t in an open interval I , then MZ.t/ < 1 for all t 2 I

and

MZ.t/ D MX.t/MY .t/:

Proof By independence, we may write

1 > MX.t/MY .t/ D EŒetX �EŒetY � D EŒetX etY �

D EŒexpft.X C Y /g� D MZ.t/; t 2 I:

ut
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A.7 Continuous Mapping and Slutsky’s Theorem

In order to prove these two results, we will first need a couple of results regarding
distribution functions and their convergence.

Lemma A.11 Let F be a cumulative distribution function. Then F has at most
countably many discontinuities.

Proof Let DF be the set of discontinuity points of F . Given any x 2 DF , we have

lim
�#0

F.x � �/ < lim
�#0

F.x C �/

since F is non-decreasing. It follows that there exists a rational number q.x/ such
that

lim
�#0

F.x � �/ < q.x/ < lim
�#0

F.x C �/; 8x 2 DF :

Furthermore, whenever x1 < x2 (so that we may write x2 D x1Cı, for some ı > 0),
the fact that F is non-decreasing implies that

q.x1/ < lim
�#0

F.x1 C �/ � F.x1 C ı=2/ D F.x2 � ı=2/ � lim
�#0

F.x � �/ < q.x2/:

Summarising, we have constructed an injection q W DF ! Q, and thusDF must be
countable. ut

Lemma A.12 Given a sequence of random variablesX;X1;X2; : : : , the follow-
ing two statements are equivalent:

1. Xn
d! X .

2. For all closed subsets C � R, one has

lim sup
n!1

P.Xn 2 C/ � P.X 2 C/:

Proof Assume first that (2) holds true, so that for C1 D .�1; a� and C2 D Œa;1/,
we have

P.X < a/ D 1 � P.X � a/ � 1 � lim sup
n!1

P.Xn � a/ D lim inf
n!1 P.Xn < a/

� lim inf
n!1 P.Xn � a/ � lim sup

n!1
P.Xn � a/ � P.X � a/:
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If a is a continuity point of the distribution function of X , it must be that P.X <

a/ D P.X � a/ and so P.Xn � a/ ! P.X � a/. This establishes that Xn
d! X .

To prove the converse, assume initially that C D Œa; b�, where �1 < a � b <

1. There exist sequences 0 � �k & 0, 0 � ık & 0 such that F.x/ D P.X � x/ is
continuous at the points a � ık and b C �k for all k (Lemma A.11). Consequently,

lim sup
n!1

P.Xn 2 C/ � lim sup
n!1

P.a � ık < Xn � b C �k/ D lim sup
n!1

P.Xn � b C �k/

�P.Xn � a � ık/ D P.X � b C �k/� P.X � a � ık/ D P.a � ık < X � b C �k/:

Letting k ! 1, continuity from above of probability measures yields

lim sup
n!1

P.Xn 2 C/ � lim
k!1

P.a � ık < X � b C �k/

D P

 
1\

kD1

fa � ık < X � b C �kg
!

D P.X 2 C/:

If a D �1 or b D 1, the statement can be shown to be true by a similar argument.
Thus (2) is true when C is an interval.

IfC D [Ck is the countable union of (potentially infinitely many) closed disjoint
intervals, the subadditivity of limit superior yields

lim sup
n!1

P.Xn 2 C/ D lim sup
n!1

1X

kD1
P.Xn 2 Ck/ �

1X

kD1
lim sup
n!1

P.Xn 2 Ck/

�
1X

kD1
P.X 2 Ck/ D P.X 2 C/:

Suppose now that C D \Ck , where each Ck is a disjoint union of countably many
closed intervals, and CkC1 � Ck for all k. Following the same course as in the first
part of the proof,

lim sup
n!1

P.Xn 2 C/ � lim sup
n!1

P.Xn 2 Ck/ � P.X 2 Ck/ ! P.X 2 C/; k ! 1:

To complete the proof, thus, it suffices to show that any closed set C � R can be
written in this form.

For every k, divideR into closed intervals of length 2�k , that is I .k/j D 2�kŒj; jC
1�. Let Ck be the union of those intervals fI .k/j g that have a non-empty intersection
with C :

Ck D
[

j2ZWI .k/j \C¤;
I
.k/
j :
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It is clear that Ck is the countable union of countably many closed intervals, and
that Ck � C . If x … C , there exists an interval I such that C \ I D ; that contains
x. For k such that 2�k < m.I /=2 it follows that x … Ck. We may thus conclude
that C D \Ck . The fact that Ck is closed follows by a similar reasoning, but we can
argue differently: let xn 2 Ck be a sequence converging to x. There must exist an
M such that the sequence is contained in Ck \ Œ�M;M�. This last set is closed, as
it is the union of finitely many closed intervals. Hence x 2 Ck \ Œ�M;M� and so
Ck is closed.

It remains to show that CkC1 � Ck . Let x 2 CkC1. There exists j 2 Z such
that x 2 I .kC1/

j � CkC1. Or, I .kC1/
j � I

.k/

bj=2c, and thus this last set has a non-empty

intersection with C . It follows that x 2 I .k/bj=2c � Ck , and the proof is complete. ut

Proof of the Continuous Mapping Theorem (Theorem 2.25, p. 57) By Lemma A.12,

it suffices to prove that Xn
d! X implies lim sup

n!1
PŒg.Xn/ � y� � PŒg.X/ 2 C � for

all closed C � R. To this aim, let C � R be an arbitrary closed set, let

A D fx 2 R W g.x/ 2 C g

be the inverse image of C via g, and let A denote the closure of A. If Dg is the set
of discontinuities of g, we may write

A D ˚
A\Dg

� [
n
A\Dc

g

o
� Dg [

n
A \Dc

g

o
:

Now if x 2 A\Dc
g , then there exists a sequence fxkg � A such that limk!1 xk D x

(by definition of the closure,A). Furthermore, it holds that g.x/ D limk!1 g.xk/ 2
C , because x 2 Dc

g also. Consequently x 2 A, and we have proven that A \Dc
g �

A.
Summarising, we have

A � Ay [Dg: (A.3)

We now exploit this inclusion in order to write

PŒg.Xn/ 2 C � D PŒXn 2 A� � PŒXn 2 A�:
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But,

lim sup
n!1

PŒXn 2 A� � PŒX 2 A� [using Xn
d! X , combined with Lemma A.12]

� PŒX 2 A[Dg� [by (A.3)]

� PŒX 2 A�C PŒX 2 Dg�
„ ƒ‚ …

D0
D PŒg.X/ 2 C �:

It follows that lim sup
n!1

PŒg.Xn/ 2 C � � PŒg.X/ 2 C � and our proof is complete.

ut

Proof of Slutsky’s Theorem (Theorem 2.26, p. 57) For the first part, assume that

Xn
d! X and Yn

p! c. We may assume without loss of generality that c D 0.
Let x be a continuity point of FX . We have

PŒXn C Yn � x� D PŒXn C Yn � x; jYnj � ��C PŒXn C Yn � x; jYnj > ��
� PŒXn � x C ��C PŒjYnj > ��

because fXn C Yn � x& jYnj � �g implies that fXn � x C �g. Similarly, we may
obtain the inequality

PŒXn � x � �� � PŒXn C Yn � x�C PŒjYnj > ��:

Rearranging and collecting terms yields:

PŒXn � x � �� � PŒjYnj > �� � PŒXn C Yn � x� � PŒXn � x C ��C PŒjYnj > ��

lim
n!1PŒXn � x � �� � 0 � lim

n!1PŒXn C Yn � x� � lim
n!1PŒXn � x C ��C 0

By Lemma A.11, we may find a sequence 0 < �k # 0 such that xC�k is a continuity
point, for all k. Replacing � by �k gives

FX.x � �k/ � lim
n!1PŒXn C Yn � x� � FX.x C �k/:

Since x is a continuity point of FX , letting k ! 1 establishes Xn C Yn
d! X .

To prove the second part, let Zn D Yn � c, so that Zn
p! 0. Thus, if we can

show XnZn
d! 0, then the conclusion follows by first part of the theorem, which

is already proven. Let � > 0 and Mk " 1 be positive sequence such that �Mk is
a continuity point of FjX j for all k (this choice is feasible by Lemma A.11). Note
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also that jXnj d! jX j by the continuous mapping theorem (Theorem 2.25, 57).
Combining these ingredients yields:

PŒjXnZnj > �� � PŒjXnZnj > �; jZnj � 1=Mk�C PŒjZnj � 1=Mk�

� PŒjXnj > �Mk�C PŒjZnj � 1=Mk�

� 1 � PŒjXnj � �Mk�C PŒjZnj � 1=Mk�

H) lim
n!1PŒjXnZnj > �� � PŒjX j > �Mk�:

The right-hand side can be made arbitrarily small by choosing k sufficiently large.

Thus ZnXn
p! 0. Since XnYn D ZnXn C cXn, we use the first part of the theorem

(already proven) to conclude that XnYn
p! 0. ut

A.8 On the Proof of the Central Limit Theorem

The standard proof of the central limit theorem makes use of the characteristic
function, and thus involves notions from complex analysis, and more specifically the
Lévy continuity theorem (see, e.g., Billingsley [2], Sect. 29). Since the latter result
is beyond the scope of this text, we will provide an elementary proof here due to
Lindeberg [17] (as presented in Dalang [7]), that is based on stronger assumptions,
namely existence of a third absolute moment.5,6

We first need three intermediate results. In what follows,C3
b .R/ denotes the set of

all thrice continuously differentiable bounded functions R ! R, that are bounded,
and whose first three derivatives are also bounded.

Lemma A.13 Let Z be a continuous random variable, and fZngn�1 a sequence
of random variables such that

EŒg.Zn/�
n!1�! EŒg.Z/�

for all g 2 C3
b .R/. Then

FZn.x/
n!1�! FZ.x/; 8 x 2 R:

5As a matter of fact, even this weaker version of the theorem would suffice for the asymptotic
results presented in this text: these require the sufficient statistic of an exponential family to satisfy
the central limit theorem (as Corollary 2.24, p. 56), and the latter statistic will have finite moments
of all orders (see Eq. (2.11), p. 51, in the proof of Proposition 2.11).
6The same method of proof can be “upgraded” to work under only second moment assumptions,
assuming knowledge of measure theory, in particular the monotone convergence theorem (Dalang
[7]).



174 Appendix

Proof Let x 2 R and k � 1 be given. Note that we may always choose a function
gk 2 C3

b .R/ that satisfies the envelope relation

1fz 2 .�1; x�g � gk.z/ � 1fz 2 .�1; x C 1=k�g: (A.4)

Then, for all n � 1,

FZn.x/ D PŒZn � x� D EŒ1fz 2 .�1; x�g� � EŒgk.Zn/�;

and hence by our assumption we have

lim sup
n!1

FZn.x/ � lim
n!1EŒgk.Zn/� D EŒgk.Z/�

� EŒ1fz 2 .�1; x C 1=kg� D FZ.x C 1=k/:

The same type of argument shows that lim infn!1 FZn.x/ � FZ.x � 1=k/. Since
the choice of k was arbitrary, and since FZ is everywhere continuous, we have that

FZn.x/
n!1�! FZ.x/, completing the proof. ut

Lemma A.14 Let g 2 C3
b .R/, and let supx2R jg000.x/j D C < 1. Let .Y;Z/ be

independent random variables such that EŒY � D EŒZ�, and EŒY 2� D EŒZ2�. If
X is independent of Y and Z, we have

ˇ
ˇ
ˇEŒg.X C Y /� g.X CZ/�

ˇ
ˇ
ˇ � C

6

�
EjY j3 C EjZj3	 :

Proof Taylor’s theorem (Theorem A.1, p. 159) yields that

g.x C y/ D g.x/C yg0.x/C 1

2
y2g00.x/C 1

6
y3g000.u/;

where u lies between x and x C y. It follows now by independence that

EŒg.X C Y /� D EŒg.X/�C EŒY �EŒg0.X/�C 1

2
EŒY 2�EŒg00.X/�C 1

6
EŒY 3g000.U /�

EŒg.X CZ/� D EŒg.X/�C EŒZ�EŒg0.X/�C 1

2
EŒZ2�EŒg00.X/�C 1

6
EŒZ3g000.V /�

for a random variable U that lies between X and X C Y almost surely, and a
random variable V that lies between X and X C Z almost surely. Consequently,
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our assumptions yield that

ˇ
ˇ
ˇEŒg.X C Y /� g.X CZ/�

ˇ
ˇ
ˇ D

ˇ
ˇ
ˇ
1

6
EŒY 3g000.U /� � 1

6
EŒZ3g000.V /�

ˇ
ˇ
ˇ

� 1

6
E

ˇ
ˇ
ˇY 3g000.U /

ˇ
ˇ
ˇC 1

6
E

ˇ
ˇ
ˇZ3g000.V /

ˇ
ˇ
ˇ

� C

6

�
EjY j3 C EjZj3	 :

ut

Lemma A.15 Let f QYngn�1 be a sequence of iid random variables such that
Ej QY1j3 < 1, EŒ QY 21 � D 1, and EŒ QY1� D 0. If g 2 C3

b .R/, then it holds that

E

"

g

 Pn
iD1 QYip
n

!#
n!1�! E

h
g. QZ/

i
;

where QZ � N.0; 1/.

Proof Let g 2 C3
b .R/, and n � 1. Let f QZi gniD1 iid� N.0; 1/ (independent of the f QYig)

and define

Yi D QYi=
p
n & Zi D QZi=

p
n:

Since f QZi gniD1 iid� N.0; 1=n/, it follows that
Pn

iD1 Zi � N.0; 1/ (by Corollary 1.35,
p. 25). It thus suffices to show that

ˇ
ˇ
ˇEŒg.Y1 C � � �Yn/� � EŒg.Z1 C � � �Zn/

ˇ
ˇ
ˇ � C

6

EŒj QY1j3�C EŒj QZ1j3�p
n

(A.5)

for C D supx2R jg000.x/j < 1. Define

Ui D Y1 C � � � C Yi�1 C Yi CZiC1 C � � � CZn

Vi D Y1 C � � � C Yi�1 C 0CZiC1 C � � � CZn

and observe that these satisfy

Ui D Vi C Yi & Ui�1 D Vi CZi
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so that we may re-write the left-hand side of Eq. (A.5) as

EŒg.Un/� � EŒg.U0/� D
nX

iD1
.EŒg.Ui /� � EŒg.Ui�1/�/

D
nX

iD1
.EŒg.Vi C Yi /� � EŒg.Vi CZi /�/ :

We now use Lemma A.14 to bound the last expression by

nX

iD1

C

6

�
EŒjYi j3� � EŒjZi j3�

	 D n
C

6
n�3=2 �

EŒj QY1j3�C EŒj QZ1j3�
	

thus establishing the validity of inequality A.5, and completing the proof. ut

Theorem A.16 (Third Moment Central Limit Theorem) Let Y1; : : : ; Yn be iid
random variables such that EŒYi � D � < 1, VarŒYi � D �2, and EjYi j3 < 1.
Let Y n D 1

n

Pn
iD1 Yi . Then,

p
n.Y n � �/

d�! N.0; �2/:

Proof The random variables QYi D Yi��
�

satisfy the conditions of Lemma A.15.
Thus, if we define

Zn WD
QY1 C : : :C QYnp

n
D

p
n.Y n � �/

�
;

we must have

E Œg .Zn/�
n!1�! E

h
g.Z/

i
; 8 g 2 C3

b .R/;

for Z � N.0; 1/. Lemma A.13 now implies that FZn.x/
n!1! FZ.x/ for all x 2 R,

and so �Zn D p
n.Y n � �/ d�! N.0; �2/. ut
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Mathematik, 61(2), 65–73.
8. Dalang, R. C., & Conus, D. (2008). Introduction à la théorie des probabilités. Lausanne:
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