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Preface

The present book is devoted to studying optimal experimental designs for
a wide class of linear and nonlinear regression models. This class includes
polynomial, trigonometrical, rational, and exponential models as well as
many particular models used in ecology and microbiology. As the criteria
of optimality, the well known D-, E-, and c-criteria are implemented.

The main idea of the book is to study the dependence of optimal de-
signs on values of unknown parameters and on the bounds of the design
interval. Such a study can be performed on the base of the Implicit Func-
tion Theorem, the classical result of functional analysis. The idea was first
introduced in the author’s paper (Melas, 1978) for nonlinear in parameters
exponential models. Recently, it was developed for other models in a num-
ber of works (Melas (1995, 2000, 2001, 2004, 2005), Dette, Melas (2002,
2003), Dette, Melas, Pepelyshev (2002, 2003, 2004b), and Dette, Melas,
Biederman (2002)).

The purpose of the present book is to bring together the results obtained
and to develop further underlying concepts and tools. The approach, men-
tioned above, will be called the functional approach. Its brief description
can be found in the Introduction.

The book contains eight chapters. The first chapter introduces basic
concepts and results of optimal design theory, initiated mainly by J.Kiefer.
In the second chapter a general theory of the functional approach is de-
veloped. Particularly, it is proved that for the class of models considered
in this book support points of optimal designs are real analytic functions
of some values (the initial values of parameters for nonlinear models and
the bounds of the design interval for linear models). This allows one to
approximate the support points by the Taylor series. In Chapters 3 and
4 this approach is applied to polynomial and trigonometrical models, re-
spectively. Chapters 5, 6, and 7 are devoted to rational and exponential
models. In Chapter 8, a nonlinear model widely used in microbiology and
called the Monod model is thoroughly studied.

I would like to thank Professor Sergey Ermakov, who attracted my
attention to exponential models. A part of this book is based on works
joint with Professor Holger Dette. I thank him for the permission to use our
results here. Note that the computer calculations were performed under my
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guidance by my Ph.D. students Andrey Pepelyshev and Liudmila Krylova. I
am grateful to several anonymous referees for helpful comments on an earlier
version of the book and to Dr. John Kimmel for agreeing to prepare this
book for publication. The work was performed partly under the financial
support of Russian Foundation of Basic Research (Project Ns 00-01-00495
and 04-01-00519).

I thank my wife for her care of me and her help during this work.

Viatcheslav B. Melas
St.Petersburg
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Introduction

The present book is devoted to studying optimal designs for linear and non-
linear regression models possessing some Chebyshev properties – in partic-
ular, for polynomial, trigonometrical, rational and exponential models.

In the past, statistical procedures were applied to data, collected with-
out a definite design. However, even in the 19th century many researchers
felt the importance of rational choice of experimental designs. Interesting
historical facts on the matter can be found in Stiegler (1986).

Fisher was the first to consider design problems systematically. His
research on agrobiological experiments used the designs based on combina-
torial principles, such as the Latin squares, to estimate the influence of some
discrete factors. His popular book (Fisher, 1935) passed through many edi-
tions and affected the development and applications of experimental design.
Fisher’s approach is still developing (e.g., see Street and Street (1987)).

Another branch of experimental design goes back to the paper Box,
Wilson (1951). This paper offers an approach to finding the conditions for
some output variable to be of maximal value. The approach is based on
applying fractional factorial experiments to estimate the gradient of the
goal function. It is called the response surface methodology. The approach
is outlined in the paper by Box (1996) (bibliography included) (see also
Box and Draper (1987)).

The third branch, called the optimal design, was founded mainly by
Kiefer (see the collection of papers Kiefer (1985)). In terms of this approach,
the experimental design is a discrete probability measure, defined by the
set of various experimental conditions and weight coefficients corresponding
to them. These coefficients show how many experiments (with respect to
their total amount) should be performed under the condition. Here, the
optimality criteria are represented as various functionals defined on the set
of information matrices and possessing some statistical sense. A design, at
which such a functional attains its extremum, is called the optimal one.

This branch of the experimental design theory seems to be highly attrac-
tive from the viewpoint of calculations. The equivalence theorem, derived
in Kiefer and Wolfowitz (1960) and its various analogs and expansions,
which are reviewed in Kiefer (1974) and monograph Pukelsheim (1993),
give the necessary and sufficient optimality conditions; they are the main
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2 INTRODUCTION

tools for developing both analytical and numerical methods of construct-
ing the optimal designs. At the same time, it should be noted that the
classical optimality concept is quite severe, since constructing the design
requires a fixed regression model and a fixed range of experimental condi-
tions to be prescribed. To a considerable extent, such a constraint can be
overcome by introducing multicriterial approach [e.g., see the introduction
to the monograph by Ermakov (1983)], considering systematic error [Box
and Draper (1987), Ermakov (1983), Ermakov and Melas (1995); Wiens
(1992, 1993)] and analyzing robust properties of optimal designs [see, e.g.,
Pronzato and Walter(1985)]. The brief review of the monographs, deal-
ing with the systematic statement of the optimal design theory, can be
found in the introduction to Fedorov and Hackl (1997). The monograph
by Schwabe (1996) considers constructing multidimensional designs on the
base of one-dimensional ones. The recent book by Müller (1998) examines
the optimal design for the random fields. Sometimes experimental designs
defined above cannot be applied in practice. In such a case, one should
consider so-called replication free designs (see Rasch (1996))).

For physical experiments, it proved very important to consider the de-
sign region as a functional space. The corresponding approach was devel-
oped by the Russian mathematician V. Kozlov (see the book of his selected
papers Kozlov (2000)).

Reviews of experimental design problems and results can be found in
Bock (1998)and Rasch (2003) as well as in a two-volumed handbook Rasch
et al. (1996, 1998) which is, unfortunately, in German only.

The present book considers optimal designs for a wide class of models
mentioned at the beginning of this Introduction.

Such models were considered by many authors and the corresponding
literature will be cited throughout this book. However, many problems
remained unsolved or were solved only numerically and we will demonstrate
that the approach developed here allows one to obtain almost exhaustive
solutions in many cases.

Note that under nonlinear models we include all of the models for which
optimal (in a usual sense) design depends on true values of parameters.
We concentrate here on problems of parameter estimating. But it should
be noted that a similar approach can be used for discrimination between
competing models and other problems for which the criteria considering
here are appropriate.

The main approach developed here is based on the following ideas. Let
us consider a nonlinear regression model given at a finite or infinite design
interval. Assume that our task is to construct a locally D-optimal design.
This is a discrete probability measure maximizing the determinant of the
information matrix under given initial values of nonlinear parameters. In
many cases, the number of support points of locally D-optimal designs is
equal to the number of parameters and the weights of all points are the
same. Note that the support points are functions of the initial values of



INTRODUCTION 3

parameters. Sometimes these functions can be found explicitly. However,
in general, these functions are given implicitly by an equation system gen-
erated by necessary conditions of optimality. This system can be received
by equating the derivatives of the goal function by design points to zero.
Let the regression function be real analytic, which is the case for all models
considered in this book. Also, it can be proved that the Jacobi matrix of the
equation system is invertible for any fixed value of the parameter vectors.
Now, due to the Implicit Function Theorem (see, e.g., Gunning and Rossi
(1965)), the support points appear to be also real analytic functions of the
initial values. This allows one to approximate these functions by segments
of their Taylor series. In Chapter 2 of this book we introduce very conve-
nient recurrent formulas for calculating the Taylor coefficients. Note that
the zero coefficients can be calculated analytically by constructing a locally
D-optimal design for a special value of the vector parameter. To this end,
a method of asymptotic analysis is introduced.

A similar approach is introduced for studying the dependence of support
points of optimal designs for linear models on the bounds of the design
interval. These ideas go back to papers Melas (1978, 1995, 2000, 2004,
2005) and Dette, Melas and Pepelyshev (2004b).

Numerical studies show that the approach allows one to calculate op-
timal designs with a high precision. Note that it can be done simply by
hand, using the tables of coefficients given in this book.

The book contains eight chapters and an Appendix. The dependence
among chapters is represented in Figure 1.

In the first chapter, the basic concepts and results of the optimal de-
sign theory are briefly described. This chapter also introduces the Implicit
Function Theorem and basic properties of Chebyshev systems, providing
important tools for the functional approach. A general theory of this ap-
proach is developed in Chapter 2. This chapter is devoted to studying
locally D-optimal and maximin efficient designs for nonlinear regression
models of a Chebyshev type. Basic results of this chapter were briefly
described earlier. It is also proved here that under some conditions, sup-
port points of the optimal designs are monotonic functions of initial values
of nonlinear parameters. Similar results for c- and E-optimal designs are
obtained in the following chapters for more special types of model.

Chapter 3 is devoted to the implementation of the approach to poly-
nomial models on an arbitrary interval. It considers E-optimal designs
and designs optimal for estimating individual coefficients (ek-optimal de-
signs). Such designs can be found explicitly only for some types of interval.
Also, the functional approach allows one to study ek-optimal designs for
arbitrary intervals and E-optimal designs for symmetrical intervals of arbi-
trary length. In Chapter 4, D- and E-optimal designs are constructed for
trigonometrical models on arbitrary design intervals. Locally D-optimal
designs for rational and exponential models are studied in Chapter 5 and
6, respectively. Chapter 7 is about locally E- and c-optimal designs for a
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Figure 1: Logical dependence between chapters

wider class of nonlinear models.
The last chapter considers a nonlinear model used in microbiology and

called the Monod model. For this model, locally D-, E- and c-optimal de-
signs are studied. Here maximin efficient designs defined in Müller (1995)
are also investigated. In the Appendix some remarks on computer calcu-
lating the Taylor coefficients are given.

Note that due to a great variety of models, the notations in different
chapters are slightly different. However, the basic notations are the same.

It is worth mentioning that the models considered in this book de-
pend on a single variable. However, the recurrent formulas and the general
scheme of the approach are appropriate for multivariate models as well.
Such a model was considered in Melas, Pepelyshev and Cheng (2003), de-
voted to studying locally optimal designs for estimating an extremum point
of quadratic regression on a hyperball. In that paper, the designs were con-
structed explicitly and that is why they were not included in the present
book. The development of the approach to multivariate models is a matter
of a future work.



Chapter 1

Fundamentals of the
Optimal Experimental
Design

The present chapter is to recall some basic statements and definitions of
the theory of optimal design needed to develop the functional approach.

Here, the results will be outlined only. More detailed layout for Sec-
tions 1.1–1.7 can be found in the introductory chapters of Fedorov (1972),
Pukelsheim (1993), Fedorov and Hackl (1997).

The last two sections of the chapter are devoted to the Implicit Function
Theorem and properties of Chebyshev systems, respectively. The Theorem
is the corner stone of the functional approach. Also, regression models
considered in this book are closely connected with Chebyshev systems.

1.1 The Regression Equation

The following equation appears to be the basic one in regression theory:

yj = η(xj , Θ) + εj , j = 1, . . . , N, (1.1)

where y1, . . . , yN are experimental results, η(x,Θ) is a given function with
unknown parameter vector Θ = (θ1, . . . , θm)T , ε1, . . . , εN are random vari-
ables, corresponding to the observation error and x1, . . . , vN are experimen-
tal conditions, belonging to the set X usually called the design region.

The opportunity to represent the results of real experiments in form
(1.1) has been shown in many examples in Rao (1973), Fedorov (1972),
and Pukelsheim (1993).

Let us recall some basic assumptions of the classical research.

5



6 CHAPTER 1. FUNDAMENTALS OF OPTIMAL DESIGN

(a) Unbiasedness: Eεj = 0 (j = 1, . . . , N). It means that Eyj =
η(xj , θ) (i.e., the model is free of a systematic error).

(b) Uncorrelatedness: Eεiεj = 0 (i �= j).

(c) Variance homogeneity: Eε2j ≡ σ2 > 0 (j = 1, . . . , N).

(d) Linearity of parametrization: η(x, θ) = ΘT f(x), where f(x) =
(f1(x), . . . , fm(x))T , fi(x), i = 1, . . . , m, are given basic functions.

Furthermore, the following assumptions are usual:

(e) Functions {fi(x)}m
i=1 are continuous and linearly independent on X.

(f) X is a fixed set, which can be considered as a compact topological
space.

As is usual in mathematical theory, these assumptions provide observ-
able results to be obtained and correspond to some extent to the features of
real experiments. Note that any assumption can be weakened (e.g., see Rao,
1973; Ermakov, 1983). However, it will imply some substantial difficulties.
The present book deals with weakened assumptions (d).

The main purpose in an experiment is either to estimate a vector of
unknown parameters, or to test a hypothesis on values of the parameters.
Here, the accuracy of statistical conclusions depends on both the method
of the statistical inference and the choice of the experimental conditions
(x1, x2, . . . , xN ).

If (a)–(f) are assumed, then there exists the method (the least squares
technique), which provides the most accurate, in a well-defined sense, esti-
mation of the vector Θ of parameters under any fixed experimental condi-
tions. Thus, the general problem of estimating and selecting experimental
conditions is split into two independent problems. The following section
considers the first of them.

1.2 Gauss–Markov Theorem

Set X = (fi(xj))Nm
j,i=1, X is a matrix of order N × m.

Model (1.1) under assumptions (a)–(d) can be represented as

Y = XΘ + ε, (1.2)

where Y = (y1, . . . , yN )T , ε = (ε1, . . . , εN )T ,

Eε = 0, Vε = σ2I (1.3)

(I is the identity matrix of order N × N and Vε is the variance matrix).
As usual, we call the estimator Θ̃ of the vector Θ unbiased if EΘ̃ = Θ for

any vector Θ ∈ IRm. An estimator is called linear if it can be represented
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in the form Θ = SY , where S is some matrix of order m × N independent
of Y .

A linear unbiased estimator Θ̂ is called the best one if the matrix

VΘ̂ − VΘ̃

is nonpositive definite for any unbiased estimator Θ̃; that is,

V (Θ̂z) = zT VΘ̂z ≤ zT VΘ̃z = V (Θ̃T z)

for any vector z ∈ IRm. Here, the variance of scalar Θ̂T z is denoted by the
same letter as the variance matrix, so do not mix them up.

The procedure of the least squares technique is to select some Θ̂ such
that

Θ̂ = arg inf
Θ̃∈IRm

(Y − XΘ̃)T (Y − XΘ̃).

To simplify the statement, let us assume that the condition

(g) detXT X �= 0

is satisfied.
The following theorem is well known.

Theorem 1.2.1 (Gauss–Markov theorem) The estimator of the least
squares method for model (1.2)–(1.3) under condition (g) is uniquely de-
termined, it is of the form

Θ̂ = (XT X)−1XT Y,

and it is the best linear unbiased estimator. Moreover,

VΘ̂ = σ2(XT X)−1.

The proof of the theorem and its expansions for the case of EεεT =
W , where W is a given nonnegatively definite matrix, and for the case of
estimating the vector Kθ, where K is a given matrix (here condition (g)
can be omitted) can be found, for instance, in Rao (1973) and Pukelsheim
(1993).

The precision of the estimator can be improved by the optimal selection
of experimental conditions. This is the subject of the theory of optimal
design.

1.3 Experimental Designs and Information
Matrices

The set {x̂1, . . . , x̂N} of elements in X (although some of the elements may
coincide with one another) is called an exact (or discrete) design of experi-
ment of size N . Taking into account the possibility of coinciding elements,
we can present such a design in different form.
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Let us have only n < N distinct point. We can rename them
x1, . . . , xn. Suppose that xi occurs ri times among the points {x̂1, . . . , x̂N},
i = 1, . . . , n.

Let us associate weight coefficients ωi = ri/N with each of points xi,
i = 1, . . . , n. A discrete probability measure, given by the table

ξ =
(

x1 . . . xn

ω1 . . . ωn

)
, (1.4)

will be called the normed exact (discrete) design or n-points design of size
N .

The matrix

M(ξ) =
n∑

i=1

f(xi)fT (xi)ωi (1.5)

is called the information matrix of design ξ. By the Gauss–Markov theorem
we have

VΘ̂ =
σ2

N
M−1(ξ)

for the variance matrix of the least squares estimate.
The design ξ is a discrete probability measure, defined by table (1.4),

which includes the points of the set X and the weight coefficients under
some additional restrictions. If these restrictions are omitted, the study of
designs becomes substantially more easy.

Introduce σ–algebra of subsets B on X, including all subsets of one point.
The probability measure on (X, B) is called the approximate (continuous)
design.

In many practical situations it is impossible to realize these designs
and such designs should be considered as approximation of some discrete
designs.

Let us write a design, concentrated at a finite number of points, in the
form (1.4), where coefficients ωi are arbitrary positive numbers such that∑

ωi = 1. As for the general case, let ξ(dx) stand for the corresponding
design. The matrix

M(ξ) =
∫

f(x)fT (x)ξ(dx)

is called the information matrix of the approximate design. This matrix
assumes the form (1.7) for designs, concentrated in a finite number of points.

Let Ξ be the set of all approximate designs and M be the set of infor-
mation matrices corresponding to them:

M = {M ; M = M(ξ) for some ξ ∈ Ξ}.

Let Ξn be the set of approximate designs, concentrated at n points (with
nonzero weights).

The basic properties of information matrices can be stated as a theorem.
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Theorem 1.3.1 ((Properties of information matrices)

(i) Any information matrix is non-negative definite.

(ii) If n < m, then det M(ξ) = 0 for ξ ∈ Ξn.

(iii) The set M is convex.

(iv) If conditions (a)–(e) are satisfied, set M, considered as a collection
of vectors composed of diagonal and off-diagonal elements of the ma-
trices, is a bounded and closed subset of IRs, s = (m + 1)m/2.

(v) For any design ξ ∈ Ξ, there exists a design ξ̃ ∈ Ξn, where n ≤
(m + 1)m/2 + 1, such that

M(ξ̃) = M(ξ).

Proof of the theorem can be found in Karlin and Studden (1966, Chap.
X).

According to property (v), it is sufficient to consider only approximate
designs with a finite support. Thus, they will be considered as experimental
designs if not stated otherwise.

1.4 Optimality Criteria

Let us call the design ξ nonsingular if detM(ξ) �= 0. Such designs exist by
assumption (e). Let us consider only the case of estimating the whole set
of parameters Θ1, . . . ,Θm. Here, only nonsingular designs are of interest.
The version of Gauss–Markov theorem adduced in Section 1.2 is valid for
them.

Typically, there is no design ξ̂ such that the matrix

M−1(ξ̂) − M−1(ξ),

is non-positive definite, where ξ is an arbitrary design. Therefore, some
functions of information matrices, having strict statistical sense, are used
as the optimality criteria.

Let us consider some commonly used optimality criteria.

1.4.1 D-Criterion

The D-criterion is of the form

det M(ξ) → sup
ξ∈Ξ

,

(here and further, the extremum is taken over all approximate designs).
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If the errors are normally distributed, this criterion corresponds to the
requirement to minimize the volume of the confidence ellipsoid with an ar-
bitrary fixed confidence level for the least squares estimators. This ellipsoid
is of the form

{θ̃; (θ̃ − θ̂)T M−1(θ̃ − θ̂) ≤ c}, (1.6)

where c is a constant (depending only on the confidence level).

1.4.2 G-Criterion

Set d(x, ξ) = fT (x)M−1(ξ)f(x).
The G-optimality criterion is of the form

max
x∈X

d(x, ξ) → inf
ξ

.

Note that for normed discrete design ξ,

d(x, ξ) =
σ2

N
V (θ̂T f(x));

that is d(x, ξ) is equal (to constant precision) to the variance of a value,
predicted by the model at point x. The G-criterion has the minimax sense,
it means the minimization of the maximum of prediction variance.

1.4.3 MV -Criterion

trM−1(ξ) → inf
ξ

.

This criterion is to minimize the sum of the variances of the least squares
estimator Θ̂.

1.4.4 c-Criterion

Let us introduce the value

Φc(ξ) =
{

cT M−(ξ)c if c ∈ range M(ξ)
∞ overwise,

where c is a given vector, M− denotes a generalized inverse for M ,and the
notation c ∈ rangeM means that c is a linear combination of rows of the
matrix M .

Let us note that the generalized inverse to a given matrix A can be
defined as an arbitrary matrix with the property AA−AA = A, and if an
equation system Ax = y has a solution, say x̂, this solution is of the form
x̂ = A−y.

A design minimizing Φc(ξ) will be called c-optimal. The statistical sense
of this criterion consists of the minimization of the variance of the best linear
unbiased estimate for a given linear combination of the model parameters
τ = cT θ.
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1.4.5 E-Criterion

λmin(M(ξ)) → sup
ξ

,

where λmin(M) is the minimal eigenvalue of the matrix M = M(ξ).
The E-optimality criterion secures the minimization of the maximum

axis of the confidence ellipsoid (1.6). This criterion was introduced in
Ehrenfeld (1955).

Note that since
λmin(M) = min

cT c=1
cT Mc,

the E-criterion secures minimization of the maximum of variances of linear
combinations cT θ under the restriction cT c = 1.

Sometimes it is useful to consider classes of criteria. The class of linear
criteria is a class of criteria of the form

trLM−1(ξ) → inf
ξ

,

where L is some given non-negative definite matrix. Particularly, for L = I
and L = ccT , we have MV -criterion and c-criterion, respectively.

The class of Φp-criteria, introduced in Kiefer (1974), is of the form

(
trM−p(ξ)

)1/p → inf
ξ

,

where 0 ≤ p ≤ ∞. For p = ∞ we have E-criterion, and for p = 1 we have
MV -criterion.

Note that all the criteria above can be represented as

Φ(M(ξ)) → sup
ξ

or as
Ψ(V (ξ)) → inf

ξ
,

where V (ξ) = M−1(ξ), Φ(M) is a concave function of the matrix M ,and
Ψ(V ) is a convex function of the matrix V . So, the methods of solving
corresponding extremum problems can be unified.

If more optimality criteria are needed, especially for estimating the vec-
tor KΘ, where K is a given matrix of order s × m, s ≤ m, see Pukelsheim
(1993).

1.5 Equivalence Theorems

The following result from Kiefer and Wolfowitz (1960) is of great impor-
tance in the theory of optimal experimental design.
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Theorem 1.5.1 (Kiefer–Wolfowitz equivalence theorem) For model
(1.1), a D-optimal design exists under assumptions (a)–(f) and the follow-
ing conditions are equivalent:

(i) ξ∗ is a D-optimal design.

(ii) ξ∗ is a G-optimal design.

(iii) maxx∈X d(x, ξ∗) = m.

Moreover, all D-optimal designs have the same information matrix, and
the prediction variance function d(x, ξ∗) attains its maximum at the points
of any D-optimal design with finite support.

It is worth stressing that the theorem is true for designs to be D-optimal
in the class of approximate designs.

This theorem not only states equivalency between D- and G-criteria but
also gives the important necessary and sufficient condition of D-optimality:
Design ξ∗ is D-optimal if and only if maxx∈X d(x, ξ∗) = m.

The proof of the theorem can be found in Kiefer and Wolfowitz (1960).
Note that the problem det M(ξ) → supξ is equivalent to ln detM(ξ) →
supξ. In fact, the proof is based on the concavity of the function ln detM
and the ability to evaluate its derivative in an explicit form.

It is worth mentioning that the D-efficiency of a given design with re-
spect to a D-optimal design can be evaluated by Kiefer’s inequality without
an explicit construction of a D-optimal design. This inequality yields for
the D-efficiency, (

det M(ξ
maxξ det M(ξ

)1/m

≥ e1−v/m, (1.7)

where the constant v is defined by

v = max
t∈[0,T ]

fT (t)M−1(ξ)f(t)

(see Pukelsheim (1993)).
Many analogs of the Kiefer–Wolfowitz theorem can be found in Kiefer

(1974). The equivalence theorem seems to be most general one is given in
Whittle (1973).

1.6 Iterative Numerical Techniques

The Kiefer–Wolfowitz duality theorem and its analogs are still the main tool
of constructing optimal design. For some quite slender class of standard
models and design regions (an interval, a circle, a ball and a hyperball,
a parallelepiped, and a hyperparallelepiped) the optimal designs (mainly
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for D-criterion) have been found in explicit form (e. g., see Fedorov (1972),
Kiefer (1985), Pukelsheim (1993), Ermakov et al. (1983)).

If it proves impossible to find an optimal design in an explicit form, it
can be found by numerical techniques.

The equivalence theorems give the basis for the special numerical tech-
niques to be constructed. The special iterative methods of constructing D-
optimal designs, similar to one another and based on the Kiefer–Wolfowitz
equivalence theorem, were originally offered by Fedorov (1972) and Wynn
(1970). Let us outline Fedorov’s version.

Set ξx = {x; 1}. Let ξ0 be some nonsingular design (i. e., detM(ξ0) �= 0),

ξ0 = {x1, . . . , xn0 ; µ1, . . . , µn0}.

For s = 0, 1, . . ., find

xn0+s+1 = arg maxx∈X d(x, ξs),

αs = arg maxα∈[0,1] det M(ξs+1(α)),

where

ξs+1(α) = (1 − α)ξs + αξxn0+s+1 ; that is,

ξs+1(α) = {x1, . . . , xn0+s+1; (1 − α)µ1(s), . . . , (1 − α)µn0+s(s), α}.

It may be proved that αs has the explicit form

αs =
ds − m

(ds − 1)m
, ds = d(xn0+s+1, ξs).

If s → ∞, the sequence of designs ξs under the assumptions of the
Kiefer–Wolfowitz theorem converges to some D-optimal design (in the sense
of weak convergence of probability measures).

A similar algorithm for optimality criteria of a general form also can be
designed (see Fedorov and Hackl (1997)).

The main advantage of such algorithms is that only one-point designs
are to be sought at each step, so dimensionality of the experimental problem
can be sufficiently reduced. In this view, currently they are the main tool
of numerical evaluation of optimal designs.

1.7 Nonlinear Regression Models

In the present book, we will consider the regression function η(x,Θ), which
can not be represented in the form ΘT f(x). Other usual assumptions will
be reserved. Let us describe our basic model in more detail.

Let Ω be a compact in IRm, and X be a compact in IRk. We will assume
that experimental results y1, . . . , yN ∈ IRl can be represented in the form

yj = η(vj , Θ) + εj , (1.8)
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where {εj} are independent and identically distributed random values, such
that Eεj = 0, Eε2

j = σ2 > 0, η(v,Θ) is a known function of unknown
parameters, ΘT = (θ1, . . . , θm), vj ∈X, a Θ ∈ Ω, and σ2 is unknown.

Introduce also the following assumptions:

(a) The function η(x,Θ) is continuous on X × Ω.

(b) The series of designs {ξN} weakly converges to design ξ that is, the
following relation is valid for any continuous function g(x) on X:∫

X
g(x)ξN (dx) →

∫
X

g(x)ξ(dx)

while N → ∞.

(c) The value of ∫
X

[η(x,Θ) − η(x, Θ̄)]2ξ(dx)

for Θ̄, Θ ⊂ Ω vanishes if and only if Θ = Θ̄.

(d) The derivatives

∂η/∂θi, ∂2η/∂θi∂θj , i, j = 1, . . . , m,

exist and are continuous on X × Ω.

(e) Θtr, the true value of parameter vector, is an internal point of Ω and
the matrix

M(ξ,Θ) =
∫
X

f(x,Θ)fT (x,Θ)ξ(dx),

where

fT (x,Θ) =
(

∂η(x,Θ)
∂θ1

, . . . ,
∂η(x,Θ)

∂θm

)
,

is nonsingular at Θ = Θtr.

Let ξN be of the form

ξN =
(

v1 . . . vn

1/N . . . 1/N

)
,

where some points of vi may coincide with each other:

Θ̂N = arg min
Θ∈Ω

N∑
i=1

(η(vi, Θ) − yi)2. (1.9)
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Theorem 1.7.1 If the random errors obey the above assumptions and as-
sumptions (a)–(c) are satisfied, then

Θ̂(N) → Θtr

with probability 1 for N → ∞, where Θ̂N is defined by formula (1.9). If, in
addition, assumptions (d) and (e) are satisfied, then for N → ∞, the dis-
tribution of the random vector

√
N(Θ̂N −Θtr) converges to the normal dis-

tribution with zero vector mean value and variance matrix σ2M−1(ξ,Θtr).

A proof of this theorem can be found in Jennrich (1969).
Simulation studies (see, e.g., Section 8.4) show that the sampling co-

variance matrix become rather close to the asymptotic one, given by Theo-
rem 1.7.1, under moderate values of N . Therefore, the information matrix
M(ξ, θ) can be used for constructing efficient experimental designs. The
majority of papers on design for nonlinear models are based on this ma-
trix. Note that for very small N an alternative approach developed in Vila
(1990) and Pazman and Pronzato (1992) could be more appropriate.

The dependence of the information matrix

M(ξ,Θ) =

(
n∑

s=1

∂η(x(s), Θ)
∂Θi

∂η(x(s), Θ)
∂Θj

µs

)m

i,j=1

on at least one parameter is the basic fact for the models to be nonlinear
in the parameters.

Due to the theorem, the same criteria as in the linear case (e.g.,
det M(ξ,Θ)), can be selected as the optimality criteria, but, here, the op-
timal design depends on the vector of true values of parameters.

To overcome this difficulty, we can apply one of the standard statistical
approaches: locally optimal, sequential, minimax, or Bayesian.

The concept of locally optimal designs was introduced in Chernoff
(1953). A locally optimal design maximizes a certain functional of the
information matrix in which an initial value of the parameter vector is used
instead of the unknown proper value. The same functionals as that for
linear models can be implemented (e.g., det M(ξ, θ)).

For some models with one nonlinear parameter locally optimal designs
were found explicitly in a closed form (see the pioneer paper by Box and
Lucas (1959) or the recent paper by Han and Chaloner (2003) and references
in it). In Melas (1978), support points of locally D-optimal designs with an
arbitrary number of parameters were studied as implicitly given functions of
nonlinear parameters. This approach was developed in Melas (2001, 2004,
2005) for a wide class of nonlinear models. It can be called a functional
approach and will be further elaborated in the present book.

The idea of the sequential approach consists of partitioning the whole
set of experiments into a number of series.The estimates of parameters
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received on the basis of results of previous series are used for constructing an
optimal design for the current series. This approach is thoroughly described
in Fedorov (1972) and Silvey (1980). The design received in this way tends
in the limit (if the number of series tends to the infinity) to the true locally
optimal design (i.e., the design locally optimal for initial values equal to
the proper ones). Thus, studying locally optimal designs is important for
the sequential approach.

A minimax approach was implemented by Melas (1978). The idea of
this approach is to find designs optimal for the least favorable values of
parameters inside a given set of possible values. Let us describe an advanced
version of this approach developed in Müller (1995) and based on the notion
of designs efficiency.

Let Φ(M(ξ, θ)) be a certain optimality criterion. In the present book,
we will consider criteria of D-, E-, and c-optimality:

ΦD(M(ξ, θ)) = (detM(ξ, θ))1/m
,

ΦE(M(ξ, θ)) = λmin (Mξ, θ)) ,

Φc(M(ξ, θ)) =

{ (
cT M−(ξ, θ)c

)−1
, if c ∈ rangeM(ξ, θ)

0 otherwise,

where m is the number of parameters of the model, λmin(A) denotes the
minimal eigenvalue of the matrix A, A− denotes a generalized inverse for
the matrix A, and c is a given vector.

A design ξ∗(θ) will be called locally Φ-optimal if it maximizes

Φ (M(ξ, θ))

for a given θ.
A design will be called maximin efficient Φ-optimal (or, briefly, maximin

efficient) if it maximizes

ΨΩ(ξ) = inf
θ∈Ω

Φ(M(ξ, θ))
Φ(M(ξ∗(θ), θ)

,

where Ω is a given set of possible values of the vector parameter.
Note that ΨΩ(ξ) is the efficiency of the design ξ with respect to a lo-

cally Φ-optimal design for a least favorable value of θ inside Ω. This value
indicates how many more experiments we will need under the design ξ with
respect to an “ideal” design to receive the same accuracy of estimating in
the worst case. This is the reason of the title “maximin efficient”.

Note that the construction of maximin efficient designs includes that of
locally optimal ones. Maximin efficient designs were found numerically for
different models and criteria in Dette, Melas, and Pepelyshev (2003), Dette,
Melas, and Wong (2004a) and other papers. Equivalence theorems for such
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designs were obtained in Müller and Pazman (1998), Dette, Haines, and
Imhof (2003), and Dette, Melas, and Pepelyshev (2003).

Bayesian approach to constructing optimal designs for nonlinear model
consists of maximization of functionals of the form∫

Φ(M(ξ, θ))p(dθ) (1.10)

or of the form ∫
Φ(M(ξ, θ))

Φ(M(ξ∗(θ), θ)
p(dθ),

where p(dθ) is given prior probability measure of θ’s possible values. This
approach was considered in a number of papers (see Pronzato and Walter
(1985) or Chaloner and Larntz (1989) among many others).

It proves that Bayesian designs can be constructed in a close form only
for some simple models with one nonlinear parameter. Studying locally
optimal designs seems to be important in the frame of this approach even if
we use criterion (1.10). The locally optimal approach can be also considered
as a special case of the Bayesian approach with p(dθ) equal to a probability
measure concentrated in one point.

Thus, in all cases, constructing locally optimal design remains an impor-
tant intermediate problem. If one would like to use such designs in practice,
it seems important to study the sensitivity of these designs to the initial
value. Thus the problem of dependence of the designs on these values is
actual.

In this book, we will study such a dependence with the help of the func-
tional approach. This approach is based on the Implicit Function Theorem
considering in the next section.

1.8 The Implicit Function Theorem

As will be shown in the next chapter, the necessary conditions of a design
optimality (D-criterion will be considered) can be transformed to a relation
of the form

q(τ, z) = 0, (1.11)

where τ is the vector containing the design support points and weights, z
is the vector of the auxiliary parameters, and q = (q1, . . . , qs)T is a vector
function.

In such a way, points and weights of a design to be locally D-optimal
in the class of designs with a fixed number of points can be considered as
functions of auxiliary parameters implicitly given by (1.11). Studying this
equation can be performed on the base of the well-known Implicit Function
Theorem. Let us formulate the version of this theorem to be used in the
following chapters.
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Remember the following well-known concept of analysis: Let U be an
open set in IRt, t ≥ 1.

Definition 1.8.1 A real function of vector variable u ∈ U will be called
a real analytic function if in a vicinity of any point u(0) ∈ U , it can be
expanded into a (convergent) Taylor series.

Theorem 1.8.1 (Implicit Function Theorem).
Let q(u) = (q1(u), . . . , qs(u))T , u = (τ, z), τ ∈ IRs, z ∈ IRk be a real con-
tinuously differentiable vector function defined in a vicinity U of a point
(τ(0), z(0)) and

q(τ(0), z(0)) = 0, det
(

∂

∂τj
qi(τ(0), z(0))

)s

i,j=1
�= 0.

Then there exists a vicinity V of the point τ(0) such that at this vicinity, a
unique continuous vector function τ(z) with the properties τ(z(0)) = τ(0),
and (τ(z), z) ∈ U , q(τ(z), z) = 0 is determined.

Moreover, the function τ(z) for z ∈ V satisfies the following differential
equations:

J(τ(z), z)
∂τ(z)
∂zj

= −Lj(τ(z), z), j = 1, . . . , k,

where

J(τ, z) =
(

∂

∂τj
qi(τ, z)

)s

i,j=1
, Lj(τ, z) =

(
∂

∂zj
qi(τ, z)

)s

i=1
.

If q(u) is a real analytic vector function, then τ(z) is also real analytic
vector function.

The proof of this theorem can be found in Gunning and Rossi (1965).

1.9 Chebyshev Models

For applying the Implicit Function Theorem to studying optimal designs,
it is necessary to verify the invertibility of the Jacobi matrix of a corre-
sponding equation system. It can be done usually by numerical methods.
However, there is a wide class of regression models such that it can be done
in a strong theoretical way, which is certainly very important for analytical
studies. This class includes linear models with basis functions generating
a Chebyshev system. It includes also nonlinear models such that the basis
functions of corresponding linearized models generates such a system. For
brevity, we will call all of these models Chebyshev ones.
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Remember that a function system f1(t), . . . , fm(t) is call a Chebyshev
system on an interval X = [a, b] if for any x1, . . . , xm such that

a ≤ x1 < · · · < xm ≤ b,

det (fi(xj))
m
i,j=1 �= 0.

A number of following concepts and results are taken from Karlin and
Studden (1966, Chap. 1).

A set of functions f1, . . . , fm : I → R is called a weak Chebyshev system
(on the interval I) if there exists an ε ∈ {−1, 1} such that

ε ·

∣∣∣∣∣∣∣
f1(x1) . . . f1(xm)

...
. . .

...
fm(x1) . . . fm(xm)

∣∣∣∣∣∣∣ ≥ 0 (1.12)

for all x1, . . . , xm ∈ I with

x1 < x2 < · · · < xm.

If the inequality in (1.12) is strict, then {f1, . . . , fm} is called a Chebyshev
system. It is well known (see Karlin and Studden (1966, Theorem II 10.2))
that if {f1, . . . , fm} is a weak Chebyshev system, then there exists a unique
function

m∑
i=1

c∗
i fi(t) = c∗T f(t), (1.13)

with the following properties:

(i) |c∗T f(t)| ≤ 1 ∀ t ∈ I,

(ii) There exist m points s1 < · · · < sm such that

c∗T f(si) = (−1)i, i = 1, . . . , m.

(1.14)

The function c∗T f(t) is called a Chebyshev polynomial, the points s1, . . . , sm

are called Chebyshev points and need not to be unique. They are unique if
1 ∈ span{f1, . . . , fm}, m ≥ 1 and I is a bounded and closed interval, where,
in this case, s1 = minx∈I x, sm = maxx∈I x.

Let us also define the generalized Chebyshev system of order p, originally
introduced by Karlin and Studden (1966).

Let u0, u1, . . . , um be continuous real functions, defined on the closed
finite interval [c, d]. Let us assume that these functions are p times contin-
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uously differentiable. Set

U

(
1, 2, . . . , m
t1, t2 . . . , tm

)
= det

⎛
⎜⎜⎝

u1(t1) . . . u1(tm)
u2(t1) . . . u2(tm)
. . . . . . . . .
um(t1) . . . um(tm)

⎞
⎟⎟⎠ ,

F

(
1, 2, . . . , m
t1, t2 . . . , tm

)
= det

⎛
⎜⎜⎝

1 1 . . . 1
t1 t2 . . . tm
. . . . . . . . . . . .
tm−1
1 tm−1

2 . . . tm−1
m

⎞
⎟⎟⎠ ,

∆m = {t̄ = (t1, . . . , tm)|c ≤ t1 < t2 < · · · < tm ≤ d},

∆̄m = {t̄ = (t1, . . . , tm)|c ≤ t1 ≤ t2 ≤ · · · ≤ tm ≤ d}
.

Definition. Let us call {ui}m
i the ET -system of order p, if ui ∈ Cp−1[c, d],

i = 0, 1, . . . , n, and

lim
s̄→t̄

U

(
1, 2, . . . , m
s1, s2, . . . , sm

)
F

(
1, 2, . . . , m
t1, t2, . . . , tm

) > 0,

where s̄ ∈ ∆m, t ∈ ∆̄m, and not more than p successive components of t̄
are equal to each other.

Many models are Chebyshev ones. In this book, we will consider polyno-
mial, trigonometrical, rational, and exponential model as well some models
used in microbiology.

Polynomial models are of the form

η(t, θ) =
m∑

i=1

θifi(t), (1.15)

where fi(t) = ti−1, i = 1, . . . , m.
These models as well as their modification with fi(t) = eλti−1 are

Chebyshev ones for any X = [a, b], −∞ < a < b < ∞, and any real λ
since the Wandermonde determinant does not vanish.

With fi(t) = ti/(t+α), i = 1, . . . , m, the model (1.15) is Chebyshev for
X = [a, b], −α < a < b ≤ ∞, by the same reason.

Trigonometrical models have also form (1.15), where m = 2k + 1,

f1(t) ≡ 1, f2j(t) = sin(jt), f2j+1(t) = cos(jt), (1.16)

j = 1, . . . , k. As shown in Karlin and Studden (1966, Chap. 1) the function
system (1.16) is Chebyshev on any interval X ⊂ (−π, π).
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Consider now rational and exponential models

η(t, θ) =
k∑

i=1

θiϕ(t, θi+k), t ∈ [0,∞),

where ϕ(t, θi+k) = 1/[t + θi+k] for rational models and ϕ(t, θi+k) =
exp(−θi+kt) for exponential ones. Corresponding linearized models have
the form

βT f(t, θ),

where β = (β1, . . . , β2k)T are the parameters to be estimated

f(t, θ) =
∂

∂θ
η(t, θ),

f(t, θ) = (f1(t, θ), . . . , fm(t, θ))T
,

f2j−1(t, θ) =
1

t + θj+k
, f2j(t, θ) =

θj

(t + θj+k)2
, (1.17)

j = 1, . . . , k for rational models, and

f2j−1(t, θ) = e−θj+kt, f2j(t, θ) = −θjte
−θj+kt, (1.18)

j = 1, . . . , k for exponential models.
The Chebyshev property of the function system (1.18) on arbitrary in-

tervals [a, b], −∞ ≤ a < b ≤ ∞ is proved in Karlin and Studden (1966).
This property for (1.17) on interval [0,∞) for θ1, . . . , θk > 0 will be proved
in Chapter 6.

In Chapter 8, we will prove that a nonlinear model called the Monod
model and widely used in microbiology is also a Chebyshev model.



Chapter 2

The Functional Approach

This chapter is devoted to studying optimal designs for a wide class of
nonlinear regression models on the basis of a functional approach. This
class includes exponential and rational models as well as many particular
models of the Chebyshev type used in microbiology and other fields of
experimental research.

We consider designs that are locally D-optimal or maximin efficient D-
optimal among designs with the number of points equal to the number of
parameters. In many cases, such designs prove to be optimal or maximin
efficient among all approximate designs.

Support points of such designs are considered here as implicit functions
on the initial value of the nonlinear parameters or on characteristics of sets
containing, by the assumption, the true parameter value. A corresponding
equation system is derived and is called the basic equation system or the
basic (vector) equation. Studying this system allows one to prove that the
functions are real analytic and therefore can be represented by a Taylor se-
ries under natural conditions. Recurrent formulas for computer-calculating
the Taylor coefficients are introduced.

2.1 Introduction

Most results in the modern regression design theory were obtained for linear
models with a fixed design region (see Fedorov, 1972; Silvey, 1980; Kiefer,
1985; Pukelsheim, 1993). However, many models of practical importance
are nonlinear models (see, e.g., Seber and Wild, 1989). The commonly
used approach for experimental design in such models consists of their lin-
earization in a vicinity of some initial values of the nonlinear parameters
and application of locally optimal designs, briefly discussed in the previ-
ous chapter. In spite of such designs are usually depending on the initial
values, they can be used if a reliable knowledge about the parameters is

23
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available. These designs are also used in studying more complicated ap-
proaches: maximin and Bayesian ones (see Section 1.7).

Even if linear models are implemented, the design region often cannot
be considered as fixed. For example, in many microbiological studies (see
Pirt, 1984; Dette, Melas, and Strigul, 2005), the design region is a time
interval and can be chosen by an experimentator in different ways. The
introduction of design intervals with variable bounds can be considered
also as an artificial method for investigations of the structure of optimal
designs.

In the present chapter, we will consider nonlinear models given at a de-
sign interval. Our basic method here is the functional approach introduced
in Melas (1978) for studying exponential nonlinear models and our aim is
to apply it to a wider class of models.

The main idea of this approach consists of studying optimal design
points and weights as implicitly given functions of the bound of the design
interval and/or nonlinear parameters of the model. These functions can be
investigated on the basis of the Implicit Functional Theorem formulated in
Section 1.8 (see also Gunning and Rossi (1965)). In particular, in many
cases these functions prove to be real analytic which enables one to present
them by segments of the Taylor series. We will introduce here general
recurrent formulas for constructing such series and discuss their applications
for studying properties of optimal designs.

The functional approach seems to be useful when an explicit analytical
form of optimal designs is not available. It can be considered as an alterna-
tive or useful addition to merely numerical methods. It is worth mentioning
that similar approaches are well known in many fields of mathematics and
its application. For example, representing indefinite integrals by a power
series is the recognized technique of their calculation, and coefficients of
such series are tabulated and given in textbooks. However, in the field of
experimental design the functional approach is relatively new. References
to existing literature will be given throughout the book.

In Section 2.2∗, we will introduce the basic ideas of the functional ap-
proach using exponential models (nonlinear by parameters) as an example.
Section 2.3 contains a list of assumptions justifying the implementation of
the functional approach and formulates without proofs the main theoretical
results. Section 2.4 is devoted to studying the basic equation. It is also in-
troduces general recurrent formulas for calculating the Taylor coefficients.
The application of the theory to the three-parameter logistic model is given
in Section 2.5. All lengthy proofs are deferred to Section 2.6.

∗Note that in Section 2.2 and in Sections 2.3–2.6 a part of materials are taken from
Melas, V.B. (2005). On the functional approach to optimal designs for nonlinear models.
J. Statist. Plan. and Inference, 132, 93–116. c©2004 Elsevier B.V. with permission of
Elsevier Publisher.
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2.2 Basic Ideas of the Functional Approach

In this section we will introduce some basic ideas of the approach. We
will consider regression models given by linear combinations of unknown
exponentials as a typical example of nonlinear models.

In order to make the explanation more apparent, all technically difficult
mathematical results will be only formulated and their proofs will be given
in further sections.

Let us restrict our attention by the D-criterion and study locally D-
optimal designs and maximin efficient D-optimal designs.

As it was discussed in Section 1.7, the first of the problems has some
independent interest. It is also a necessary step for investigating the second
problem.

2.2.1 Exponential regression models

Let us consider the models given by relations

Yj =
k∑

i=1

aie
−λixj + εj , j = 1, . . . , N, (2.1)

where Y1, . . . , YN are experimental results, a1, . . . , ak and λ1, . . . , λk are the
parameters to be estimated; and

ai �= 0, λi > 0, i = 1, . . . , k, λi �= λj (i �= j), (2.2)

ε1, . . . , εN are independent and identically distributed random values (ex-
perimental errors) with zero mean (Eεi = 0) and the variance Eε2

i = σ2 >
0, and x1, . . . , xN ∈ [0,∞) are observation points.

Let us assume that k is known and the problem consists of an optimal
choice of observation points in order to estimate the parameters as accu-
rately as possible for a given number of possible observations at the interval
[0,∞).

The model (2.1) is of a great theoretical and practical interest. It is
often used in chemical and biological investigations (see, e.g., Becka and
Urfer (1996) and Han and Chaloner (2003)).

A discrete probability measure

ξ =
(

x1 . . . xn

ω1 . . . ωn

)
, (2.3)

where 0 < x1 < · · · < xn are support points and ωi > 0, i = 1, . . . , n,
and

∑
ωi = 1 are weight coefficients, will be called the (approximate)

experimental design.
Let we have an opportunity to realize N experiments. We will say that

the experiments are performed in accordance with the design (2.3) if ri
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observations are performed in points xi (i = 1, . . . , n), where

ri = �ωiN� or �ωiN� + 1,

and �a� denotes the integer part of a, in such a way that
∑

ri = N .
Set θ = (a1, λ1, . . . , ak, λk)T . Denote by θ̂(N) the least squares estima-

tor for θ obtained from the results of N experiments in accordance with a
design of the form (2.3); that is,

θ̂ = θ̂(N) = arg min
θ∈R2k

n∑
i=1

ri∑
j=1

[Yij − η(xi, θ)]
2
,

where

η(x, θ) =
k∑

i=1

aie
−λix

and Yij is the result of the j-th experiment in the point xi.
Let θ∗ denote the true value of θ in the model (2.1). It can be shown

by verification of regularity conditions of the Jennrich theorem (Jenrich,
1969) that with n ≥ 3 and N → ∞, the covariance matrix of the vector
(θ̂(N) − θ∗)/

√
N tends to the matrix

σ2
[∫

f(x, θ)fT (x, θ)ξ(dx)
]−1

, (2.4)

where

f(x, θ) =
∂

∂θ
η(x, θ),∫

g(x)ξ(dx) =
n∑

i=1

g(xi)ωi,

θ = θ∗.

The matrix (
n∑

s=1

∂η(xs, θ)
∂θi

∂η(xs, θ)
∂θj

ωs

)2k

i,j=1

is usually called the Fisher information matrix.
By immediate application of Binet–Cauchy’s formula to the determinant

of this matrix, we obtain

det
(∫

f(x, θ)fT (x, θ)ξ(dx)
)

= a2
1 . . . a2

k

∑
1≤i<···<i2k≤n

(∏2k
s=1 ωis

)
det2

(
ψl(xij )

)2k

l,j=1 ,
(2.5)
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where
ψ1(x) =

∂

∂a1
η(x, θ) = e−λ1x,

ψ2(x) =
∂

∂λ1
η(x, θ) = −xe−λ1x,

...

ψ2k−1(x) =
∂

∂ak
η(x, θ) = e−λkx,

ψ2k(x) =
∂

∂λk
η(x, θ) = −xe−λkx.

Let us restrict ourselves by the D-criterion of optimality (for other cri-
teria, we can proceed in a similar way). A design is called D-optimal if
it maximizes the determinant of the information matrix. The problem is
to find a design maximizing the determinant among all possible (approx-
imate) designs. Note that with ai �= 0, i = 1, . . . , k, values of a1, . . . , ak

do not influence the solution of this problem (since they involve only in
the multipliers a2

1, . . . , a
2
k). Therefore, we can assume in the following that

a2
1 = · · · = a2

k = 1.
However, the design maximizing the value (2.5) depends, generally

speaking, on the value Λ = (λ1, . . . , λk) = Λ∗ = (λ∗
1, . . . , λ

∗
k). Such a

dependence is the main feature of all nonlinear models.
There are several ways to overcome this difficulty. Let us begin with

the locally optimal approach (introduced by Chernoff (1953)). This ap-
proach consists of the replacement of the unknown value Λ∗ by a known
approximation for it (an initial guess).

A design will be called locally D-optimal if it maximizes the determinant
(2.5) with a1 = · · · = ak = 1 and Λ = (λ1, . . . , λk) = Λ(0) = (λ(0)

1 , . . . , λ
(0)
k ).

Let us set
M(ξ,Λ) =

∫
f(x, θ)f(x, θ)T ξ(dx),

where θ = (1, λ1, . . . , 1, λk) and Λ = (λ1, . . . , λk)T .
Note that this matrix coincides with the information matrix for the

corresponding linear model

Y = β1e
−λ1x + β2xe−λ1x + · · · + β2k−1e

−λkx + β2ke−λkx + ε, (2.6)

where β1, . . . , β2k are parameters to be estimated and λ1, . . . , λk are as-
sumed to be known.

Now, we should make a very important remark. Note that we assumed
λi �= λj i �= j, when we formulated our model. In fact, if λi = λj for some
i �= j, then the model (2.1) contains no more than k − 1 terms of the form

aie
−λix.

However, we restrict ourselves by the models with k terms.
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It should be noted that if λi = λj for some i and j (i �= j), then for each
of the determinants in the right-hand side of (2.5) the two corresponding
columns coincide. Thus, in this case, det M(ξ,Λ) = 0 for any design ξ.

However, from a mathematical point of view, it is useful to admit that
the value

min
i�=j

∣∣λi − λj

∣∣
can be as small as we like. Moreover, it can be verified [see Melas (1978)]
that the function

V (ξ,Λ) = (det M(ξ,Λ))
/∏

i<j

(λi − λj)8 (2.7)

can be codefined with preserving continuity at the set of all positive values
λ1, . . . , λk.

Now, we are prepared to introduce a more convenient definition.

Definition 2.2.1 A design, maximizing the value (2.7) among all (approx-
imate) designs for an arbitrary fixed vector Λ with positive coordinates will
be called a locally D-optimal design.

For arbitrary Λ such that λi �= λj (i �= j), this definition corresponds
to the usual definition of locally D-optimal designs.

Note that designs that maximize the limit of (2.7) with Λ → Λγ =
γ(1, . . . , 1) that is locally D-optimal designs for points Λ = Λγ will play
an important role in the following consideration. Due to the continuity
arguments these designs will be nearly optimal for all vectors Λ whose
coordinates are close enough to each other.

We will construct and study locally D-optimal designs in the next sub-
section.

It should be noted that locally D-optimal (LD)designs depend on the
initial vector Λ = Λ(0) and could be not very efficient if this vector is far
from the vector of true parameter values Λ∗. However, the design could
be implemented in a sequential manner. One can take Λ = Λ(0), construct
an LD design for this vector, and realize N1 experiments in accordance
with this design. Then one can construct the LS (least squares) estimator
θ̂ = θ̂(N1) and take the parameter vector Λ̂(1) = Λ̂(N1) in order to construct
the new LD design. By repeating this procedure several times, we will
obtain a design close to the LD design with Λ = Λ∗.

The described procedure (see, e.g., Silvey (1980) for more accurate ex-
planation) cannot be appropriate if we need to have a design for all exper-
iments in advance. An alternative to such a sequential implementation of
LD design consists of using a minimax approach (see Section 1.7 for a more
detailed discussion).

Let us consider a reasonable version of the minimax approach.
Assume that for the vector Λ∗, a set Ω of its possible values is given. In

particular, such a set can be obtained from preliminary experiments or by
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theoretical consideration of the underlying real problem. From a practical
point of view, the following type of set seems to be of a great interest:

Ω = Ω(δ) = {Λ; (1 − δ)xi ≤ λi ≤ (1 + δ)ci, i = 1, . . . , k} , (2.8)

where ci is an approximation to λ∗
i , i = 1, . . . , k, and the value δ ∈ (0, 1)

can be interpreted as a relative error of this approximation.
Note that the intervals [(1 − δ)ci, (1 + δ)ci] can be overlapped and even

can coincide with each other.
From a methodical point of view, it is very convenient that the set (2.8)

under fixed c1, . . . , ck is determined by a single parameter δ.
Let us call a design a maximin efficient D-optimal design if it maximizes

the value

min
Λ∈Ω

[
V (ξ,Λ)

V (ξ(Λ), Λ)

]1/m

, m = 2k, (2.9)

where ξ(Λ) is a LD design, Ω = Ω(δ) is determined by (2.8).
Note that the minimum here is achieved at some values Λ̄ ∈ Ω since Ω

is a bounded and closed set.
The value (2.9) for a given design will be called the minimal efficiency.
Note that [

V ξ,Λ)
V (ξ(Λ), Λ)

]1/m

=
[

det M(ξ,Λ)
det M(ξ(Λ), Λ)

]1/m

if Λ satisfies the restriction λi �= λj (i �= j).
If we perform N experiments in accordance with a design ξ, then the

volume of a confidence ellipsoid for LS estimates will be proportional to(
1√
N

)m√
det M(ξ,Λ)

(see, e.g., Pukelsheim (1993)).
Thus, the minimal efficiency of a given design is equal to the ratio

N/N∗, where N is the number of experiments along the design ξ needed
for obtaining estimates with a given accuracy and N∗ is the similar number
for a LD design.

In the following subsections we will demonstrate opportunities of the
functional approach to constructing and studying LD and maximin efficient
D-optimal designs.

2.2.2 Locally D-optimal designs

It is easy to check that if the number of support points of a design ξ
is less than the number of parameters to be estimated (n < 2k), then
det M(ξ,Λ) = 0. By this reason, the designs with n = 2k is usually called
designs with minimal support. In the following we restrict our attention
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by such designs, and in Chapter 6, it will be shown that LD designs for
the exponential model (2.1) usually belong to this class of designs. Designs
that are LD in the class of designs with minimal support will be called, for
brevity, LDMS designs.

An immediate calculation shows that with n = 2k,

M(ξ,Λ) = FT WF,

where W = diag{ω1, . . . , ω2k}, F = (ψl(xj)2k
l,j=1, and ψl(x) are defined in

(2.8). Therefore,

det M(ξ,Λ) =
∏2k

i=1 ωi det2 F

≤
(∑

ωi

2k

)2k

det2 F =
( 1

2k

)2k) det2 F,

whereas the equality takes place if and only if ωi = 1
2k , i = 1, . . . , 2k. Thus

LDMS designs have the form

ξ =
(

x1 . . . xm
1
m . . . 1

m

)
, 0 ≤ x1 < · · · < xm, m = 2k,

that is, all weight coefficients in such designs are the same.
Let us prove that in each of LDMS designs x1 = 0. Set

ξ∆ =
(

x1 + ∆ . . . xm + ∆
1
m . . . 1

m

)
, F∆ = (ψl(xj + ∆))m

l,j=1.

Consider the determinant

det F∆ = det

⎛
⎜⎜⎜⎜⎜⎝

e−λ1(x1+∆) · · · e−λ1(xm+∆)

−(x1 + ∆)e−λ1(x1+∆) · · · − (xm + ∆)e−λ1(xm+∆)

e−λk(x1+∆) · · · e−λk(xm+∆)

−(x1 + ∆)e−λk(x1+∆) · · · − (xm + ∆)e−λk(xm+∆)

⎞
⎟⎟⎟⎟⎟⎠ .

Let us add the first line multiplied by ∆ to the second line, . . . , and
the (2k − 1)-st line multiplied by ∆ to the (2k)-th line. Then let us extract
from each of the lines the multiplies of the form e−λi∆, i = 1, . . . , k. In this
way, we obtain

det F∆ = e−2(
∑k

i=1 λi)∆ det F,

and with ∆ < 0,
det2F∆ > det2F.

Thus, with x1 > 0, a design ξ cannot be LDMS since with ∆ = −x1,

det M(ξ∆, Λ) =
(

1
m

)m 2
det F∆ > det M(ξ,Λ).
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Therefore, for any LDMS design, we have x1 = 0.
Let us introduce the following notation:

τ = (τ1, . . . , τm−1) = (x2, . . . , xm),

ξτ =
(

0 x2 . . . xm
1
m

1
m . . . 1

m

)
,

ϕ(τ, Λ) = (V (ξτ , Λ))1/m
,

Rs
+ = {u : u ∈ Rs, u = (u1, . . . , us); ui > 0, i = 1, . . . , s}.

Note that there exists a one-to-one correspondence between vectors τ ∈
Rm−1

+ and designs of the form

ξ = ξτ =
(

0 x2 . . . xm
1
m

1
m . . . 1

m

)
.

The problem of LDMS designs is now reduced to the maximization of the
function ϕ(τ, Λ) by τ ∈ Rm−1

+ under a fixed Λ, where Λ = (λ1, . . . , λk),
λi > 0, and i = 1, . . . , 1.

Since
ϕ(τ, Λ) = C(Λ)(det F )2/m,

F = (ψl(xj))2m
l,j=1, where C(Λ) does not depend on τ and each of elements of

F tends to zero with xm → ∞, then the maximum of ϕ(τ, Λ) by τ ∈ Rm−1
+

is achieved in an inner point of Rm−1
+ for which 0 < τ1 < · · · < τm. Due to

the known necessary conditions for extremum points in order for a design
ξ = ξτ∗ to be an LDMS design, it is necessary that with τ = τ∗, the
following equalities be satisfied,

∂

∂τi
ϕ(τ, Λ) = 0, i = 1, . . . , m − 1. (2.10)

Consider the case k = 1. In this case,

det M(ξτ , Λ) =
[
1
2

det
(

1 e−λ1x2

0 −x2e
−λ1x2

)]2

=
1
4
x2

2e
−2λ1x2 ,

ϕ(τ, Λ) = [det M(ξτ , Λ)]1/2

=
1
2
x2e

−λ1x2 =
1
2
τ1e

−λ1τ1 .

Equalities (2.10) assume the form of the single equation

∂

∂τ1
(τ1e

−λ1τ1) = e−λ1τ1(1 − λ1τ1) = 0.
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The unique solution of this equation under fixed λ1 is

τ1 = 1/λ1.

Thus, in the case k = 1, there exists the unique LDMS design

ξ∗ = ξτ∗ =
(

0 1/λ
1/2 1/2

)
.

It can be proved (see Chapter 6) that this design is a LD design among all
approximate designs.

In the case k > 1, it seems impossible to find such an explicit solution
of the problem for arbitrary vectors Λ. However, we can find an explicit
solution for points Λ of the form Λ = (γ, . . . , γ), where γ > 0 is an arbitrary
given number.

In fact, in this case,

V (ξτ , Λγ) = lim
Λ→Λγ

det M(ξτ , Λ)/
∏
i<j

(λi − λj)8.

In order to calculate this limit, use the expansion of the exponential into
the Taylor series and elementary properties of the determinant. In Melas
(1978) it was proved that this limit is equal to(

1
m

)m

e−γ
∑m

i=2 xi

∏
i<j

(xj − xi)2. (2.11)

It is easy to check that the value (2.11) coincides with the value of the
determinant of the information matrix for linear (by parameters) regression
model

E(Y |x) = e−γx
m∑

i=1

βix
i−1,

where γ > 0 is a given number and β1, . . . , βm are the parameters to be
estimated.

As it is known (see Karlin and Studden (1966, Chap. X)), (2.11) has
the unique extremal point

τ∗ = (x∗
2, . . . , x

∗
m) =

1
γ

(γ1, . . . , γm−1),

where γ1, . . . , γm−1 are the roots of the Laugerre’s polynomial of degree
m− 1 with the associated parameter 1. Thus, we know the unique solution
of the equation system (2.10) under Λ = Λγ . For the case of an arbitrary
Λ, it can be proved (see Melas (1978)) that the equation system (2.10) has
a unique solution. Denote this solution by τ∗ = τ∗(Λ). With arbitrary k,
the unique LDMS design is

ξ∗ = ξ ∗ (Λ) = ξτ∗(Λ).
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Considering the determinant of the matrix F , it is easy to check that for
any scalar h �= 0,

ϕ(τ, hΛ) = hϕ
( τ

h
, Λ
)

.

Therefore, τ∗(hΛ) = τ∗(Λ)/h and we can restrict our attention to vectors
Λ with

∑k
i=1 λi = k. It allows one to reduce the number of parameters.

Let us introduce the new parameters

z = (z1, . . . , zk−1)T , zi = 1 − λi, i = 1, . . . , k − 1.

Note that, for k = 2, the number of new parameters is equal to 1. Note also
that with

∑k
i=1 λi = k, there exists the one-to-one correspondence between

the set of new parameters and the set of vectors Λ:

λi = 1 − zi, i = 1, . . . , k − 1; λk = k −
k−1∑
i=1

λi = 1 +
k−1∑
i=1

zi.

Denote
ϕ̄(τ, z) = ϕ(τ, Λ(z)),

gi(τ, z) =
∂

∂τi
ϕ̄(τ, z), i = 1, . . . , m − 1,

g(τ, z) = (g1(τ, z), . . . , gm−1(τ, z))T
.

(2.12)

Now the equation system (2.10) can be written as the vector equation

g(τ, z) = 0. (2.13)

This equation determines the vector function

z → τ̄∗(z) = τ∗(Λ(z))

implicitly, which allows to apply the Implicit Function Theorem (see Section
1.8).

We will now present an extended formulation of this theorem for the
vector function g(τ, Λ) of a general form (not necessary connected with the
design problem considering here).

Let g(τ, z), τ ∈ Rm−1, z ∈ Rk−1, be an arbitrary vector function g =
(g1, . . . , gm−1)T with the following properties:

(i) g(τ, z) is a real analytic vector function in the point (τ(0), z(0)) (this
means that the component of this vector function can be expanded
into a convergent multivariate Taylor series in the point).

(ii) g(τ(0), z(0)) = 0.
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(iii) The Jacobi matrix

J(0) =
(

∂gi(τ, z)
∂τj

)m−1

i,j=1

∣∣∣∣
τ=τ(0),z=z(0)

is invertible.

In order to formulate the theorem, let us introduce the following nota-
tions. Let Q(u) be an arbitrary (scalar or vector) function of one variable
that is infinitely many times differentiable in a point u(0). Denote

Q(0) = Q(u(0)),

Q(3) =
1
s!

ds

dus
Q(u)

∣∣∣∣
u=u(0)

, s = 1, 2, . . .

If the function Q(u) is real analytic in a vicinity of the point u = u(0), then

Q(u) = Q(0) +
∞∑

s=1

Q(s)(u − u(0))s

in this vicinity.
In the multidimensional case u = (u1, . . . , uk−1), it is necessary to in-

terpret s as the multi-index s = (s1, . . . , sk−1) and denote

Q(s) =
1

s1!
. . .

1
sk−1!

∂s−1

∂us1
1

. . .
∂sk−1

∂usk

k−1
Q(u)

∣∣∣∣
u=u(0)

.

Theorem 2.2.1 Let a vector function g(τ, z), τ ∈ Rk−1, z ∈ Rk−1, possess
the properties (i)–(iii). Then in a vicinity (say U) of the point z(0), there
exists a vector function τ̃ = τ̃(z) such that the following hold:

(I) g(τ̃(z), z) = 0, z ∈ U .

(II) τ̃(z(0)) = τ(0) and τ̃(z) is a real analytic vector function in U .

(III) The coefficients τ̂(s) of the expansion τ̃((z) into the Taylor series

τ̃(z) =
∞∑

s1=0

. . .

∞∑
sk−1=0

τ̃(s)(z1 − z1(0))s1 . . . (zk−1 − zk−1(0))sk−1

can be calculated by recurrent formula that in the case k = 2 has the
form

τ̃(s+1) = −J−1
(0) g(s+1)(τ̃<s>(z), z), s = 0, 1, . . . ,

where

τ̃<s>(z) = τ̃(0) +
s∑

j=1

τ̃(j)(z − z(0))j .
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Note that assertions (I) and (II) are simply a reformulation of Theo-
rem 1.8.1. Assertion (III) was established in Dette, Melas and Pepelyshev
(2004b) and will be proved for the case of arbitrary k in Section 2.6.

Let us now apply this theorem to the function g(τ, z) given by relations
(2.12). As is well known, the exponentials are real analytic at R1 since

e−λt = 1 − λt +
(−λt)2

2!
+ . . . +

(−λt)n

n!
+ . . .

and the series is convergent for any λ and t.
Additionally, multiplications and sums of real analytic functions are real

analytic and, therefore,
det(ψl(xj))m

l,j=1

is a real analytic function in Λ = (λ1, . . . , λk)T and (x1, . . . , xm) in Rk+m.
Note that the function ϕ(τ, Λ) and the vector function g(τ, z) are real

analytic in a vicinity of the points (τ(0), Λ(0)), and (τ(0), z(0)), respec-
tively, where Λ(0) = (1, . . . , 1), τ(0) = τ∗(Λ(0)) = (γ1, . . . , γn−1), and
Z(0) = (0, . . . , 0),

In fact,

V (ξτ , Λ) =
det M(ξτ , Λ)∏
i<j(λi − λj)8

and it can be verified [see Melas (1978)] that this function, codefined with
preserving the continuity in points Λ such that λi = λj for some i �= j, is
real analytic for arbitrary τ ∈ Rm−1 and arbitrary Λ ∈ Rk.

Additionally, the function

ϕ(τ, λ) = (V (ξτ , Λ))1/m

is real analytic as a rational degree of the real analytic function. It follows
from here by the standard arguments that the function ϕ̄(τ, z) and the
vector function g(τ, z) are also real analytic for arbitrary τ ∈ Rm−1 and
z ∈ Rk−1.

Let us now calculate the matrix

J(0) =
(

∂gi(τ, z)
∂τj

)m−1

i,j=1

∣∣∣∣
τ=τ(0),z=z(0)

=
(

∂2

∂τi∂τj
ϕ̄(τ, z)

)m−1

i,j=1

∣∣∣∣
τ=τ(0),z=z(0)

.

Due to (2.11) and the definition of ϕ̄(τ, z) given in (2.12), we have

m(ϕ(τ, z(0))m = e−2
∑m−1

i=1 τi

(
m−1∏
i=1

τ2
i

)
m−1∏
i<j

(τi − τj)2.
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A direct calculation shows that

∂ϕ̄(τ, Z(0))
∂τj

=

⎡
⎣−1 +

1
τj

+
∑
s�=j

1
τj − τs

⎤
⎦ ϕ̄(τ, z(0)), i = 1, . . . , m − 1,

and the derivatives are equal to zero with τ = τ(0) by the definition of the
point τ(0).

Therefore,

(J(0))ij =
∂2ϕ̄(τ, z(0))

∂τi∂τj

∣∣∣∣
τ=τ(0)

=
ϕ̄(τ(0), z(0))
(γj − γi)2

(i �= j),

(J(0))ij =
∂2ϕ̄(τ, z(0))

∂2τj

∣∣∣∣
τ=τ(0)

= −
⎛
⎝ 1

γ2 +
∑
s�=j

1
(γj − γs)2

⎞
⎠ ϕ̄(τ(0), z(0)),

i, j = 1, . . . , m − 1.
Thus, for the matrix J = J(0), we have

(J)ij > 0, i �= j, Jij < 0, i, j = 1, . . . , m − 1,

m−1∑
j=1

(J)ij = − ϕ̄(τ(0), z(0))
γ2

j

< 0, i = 1, . . . , m − 1.

Due to the Hadamard criterion (see, e.g., Gantmacher (1998)), for an (m−
1) × (m − 1) matrix A

det A �= 0 if (A)ii >
∑
i�=j

|Aij |, i = 1, 2, . . . , m − 1.

The matrix (−J(0)) satisfies these conditions and, therefore, det J(0) �= 0.
Thus, we proved that the function g(τ, z) determined by equalities (2.11)

satisfies the conditions of Theorem 2.2.1 with z(0) = (0, . . . , 0). τ(0) =
(γ1. . . . , γm−1).

Consider now the case k = 2. In this case, the regression function is

η(x, θ) = a1e
−λix + a2e

−λ2x, a1, a2 �= 0, λ1 �= λ2,

where λ1 > 0 and λ2 > 0. As will be shown in Chapter 6, LDMS designs
are in this case LD among all (approximate) designs. Support points of
these designs, as was already shown, do not depend on a1 and a2 and if λ1
and λ2 are multiplied by the same number h > 0, then the points should
be divided by this number. Therefore, it will do to consider Λ such that
λ1 + λ2 = 2 and to study the dependence of the support points of LDMS
design on the parameter

z = z1 = 1 − λ1 = (λ2 − λ1)/2.
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Let z(0) = 0 and τ(0) = (γ1, γ2, γ3) = (0.467, 1.652, 3.879).
Note that the function ϕ(τ, z) is even,

ϕ(τ, z) = ϕ(τ,−z).

By this reason τ∗(z) = τ∗(−z) and all odd coefficients τ∗
(2j+1), j = 0, 1, . . .

are equal to zero. Therefore

τ∗(z) = τ(0) +
∞∑

t=1

τ∗
(2k)z

2t. (2.14)

The coefficients can be calculated by recurrent formulas of Theorem 2.2.1.
These calculations can be easily realized with the help of the software pack-
age Maple. Some details of the implementation of the package are given in
the Appendix of the present book.

First even coefficients calculated in this way are presented in Table 2.1.

Table 2.1: Coefficients τ<2t>, t = 0, 1, . . . , 6

0 1 2 3 4 5 6
0.46791 0.02919 0.00305 0.00056 0.00022 0.00008 −0.00005
1.65270 0.36419 0.21113 0.15971 0.13371 0.11650 0.10252
3.87938 2.00661 1.86581 1.92887 2.04481 2.16523 2.26335

The method allows one to calculate as many coefficients as we like. Since
the coefficients are already obtained, one can construct the corresponding
designs simply by several first coefficients in the expansion (2.14).

However, we have a few problems here. The first problem concerns the
radius of convergency of the series (2.14). Note that 0 ≤ |z| ≤ 1 since

z = (λ1 − λ2)/2 and (λ1 + λ2)/2 = 1.

Numerical studies show that the series are convergent for any |z| < 1.
However, a strong theoretical proof of this fact is not obtained up to now.

The next problem consists of the determination of how many coefficients
should be used in order to calculate support points of LDMS designs with
an appropriate precision.

Denote τ(z, s) = τ(0) +
∑s

t=1 τ2tz
2t and

I(s) = I(s)(z) =
(

det M(ξτ(z,s), z)
det M(ξ∗(z), z)

)1/m

, s = 0, 1, . . . ,

where ξ∗(z) = ξτ∗(z) is a LDMS design.
The value I(s)(z) is the efficiency of the design ξτ(z,s) constructed by

s first even coefficients with respect to the LDMS for a given z. This
value can be evaluated with the help of Kiefer’s inequality (see Section 1.6)
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Figure 2.1: The dependence of support points of the LDMS designs on z
for the exponential model with k = 2

without calculating the LDMS design. Some numerical results are given in
Table 2.2. They represent an evaluation of I(s)(z), obtained with the help
of Kiefer’s inequality. Note that with 0 < z < 0.5, I(0) = 1.00 and there is
no reason to calculate more coefficients.

Table 2.2: The efficiency of designs ξτ<t>(z)

z\t 0 1 2 3 4 5 6 7 8 9
0.50 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.70 0.90 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.80 0.80 0.93 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00
0.85 0.72 0.88 0.94 0.97 0.98 0.99 1.00 1.00 1.00 1.00
0.90 0.61 0.79 0.87 0.92 0.95 0.97 0.98 0.99 0.99 1.00
0.95 0.45 0.61 0.71 0.78 0.83 0.87 0.90 0.93 0.94 0.96
0.97 0.35 0.49 0.58 0.65 0.71 0.76 0.80 0.84 0.86 0.89

From Table 2.2 we can conclude that with |z| ≤ 0.7, it will do to use
only one or two nonzero coefficients. However, for z = 0.9, we need 20
coefficients in order to obtain the efficiency greater than 0.995. Table 2.2
also shows that with |z| ≤ 0.9, the expansions allow one to construct locally
optimal designs with a very high precision. For |z| > 0.9, we can use a
similar expansion with z(0) = 0, 9 as the initial point. The dependence of
support points of the LD designs on z is presented in Figure 2.1. Note that
we used 10 nonzero Taylor coefficients in order to construct this figure.

The next important question is: How efficient are LD designs with re-
spect to equidistant designs usually implemented in practice?
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Table 2.3: The efficiency of LD designs in respect to the best equidistant
design

λ1 1.1 1.3 1.5 1.7 1.9 1.95
λ2 0.9 0.7 0.5 0.3 0.1 0.05
I 2.13 2.06 1.92 1.70 1.80 2.20

Denote by

ξN,T =
(

0 T/(N − 1) . . . T (N − 2)/(N − 1) T
1
N

1
N . . . 1

N
1
N

)

the design located in N equidistant points at the interval [0, T ]. For large
N , the quality of this design is not very sensitive to the value of N , but it
depends on T .

Consider the efficiency of LD designs constructed above with respect
to equidistant design with an optimal choice of T ; that is, we will take
the value of T in such a way that the minimal efficiency of the equidistant
designs for z ∈ [0.1, 0.9] is the maximal one.

Our numerical results are given in Table 2.3. In this table, T = 10,
N = 20;

I =
(

det M(ξτ∗(Λ), Λ)
det M(ξN,T , Λ)

)1/m

, m = 4.

We see from Table 2.3 that in the most cases the efficiency of the LD
design with respect to the equidistant design is more than 2 or close to 2.
This means that the number of experiments in accordance with a LD design
needed in order to achieve a given accuracy is approximately twice less than
the same number for the best equidistant design if Λ(0) = Λ∗. However,
since Λ∗ is unknown, these results describe the efficiency of LD designs
only in an asymptotical sense. The influence of the choice of Λ(0) on the
quality of LD designs can be studied numerically. However, in the following
subsection we will show that the application of the functional approach can
be used for such a study and allows one to compare LD designs with the
maximin efficient ones.

2.2.3 Maximin efficient designs

Assume that it is known that Λ∗ ∈ Ω, where Ω is a given bounded and
closed set in Rk

+ = {Λ = (λ1, . . . λk); λi > 0, i = 1, . . . , k}. Then a natural
criterion of the efficiency of a given design is the value

min
Λ∈Ω

(
V (ξ,Λ)

V (ξ(Λ), Λ)

)1/m

, (2.15)
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where ξ(Λ) is a LD design, and for Λ such that λi �= λj (i �= j), the value
V (ξ,Λ)/V (ξ(Λ), Λ) is equal to det M(ξ,Λ)/ det M(ξ(Λ), Λ) [see the end of
Section 2.2.1 for a discussion on this matter]. The value (2.15) will be
called the minimal efficiency and the designs that maximize this value will
be called maximin efficient D-optimal designs or, briefly, MME designs.

We will study the MME designs for the exponential model (2.1) and the
set Ω = Ω(δ),

Ω(δ) = Ω(δ, c) = {Λ = (λ1, . . . , λk) : (1−δ)xi ≤ λi ≤ (1+δ)ci, i = 1, . . . , k},

where δ ∈ (0, 1), c = (c1, . . . , ck), ci > 0, and i = 1, . . . , k.
Let us restrict our attention to designs with the minimal support. In

the following, it will be shown (see Theorems 2.2.2 and 2.2.3 and numerical
results) that MME designs have the minimal support for sufficiently small
δ and arbitrary c.

We have already proved that

det M(ξ∆, Λ) < det M(ξ,Λ),

where

ξ∆ =
(

∆ x2 + ∆ . . . xm + ∆
1
m

1
m . . . 1

m

)
, ∆ > 0,

ξ =
(

0 x2 . . . xm
1
m

1
m . . . 1

m

)
.

Therefore, MME designs with a minimal support have the from

ξτ =
(

0 x2 . . . xm
1
m

1
m . . . 1

m

)
, τ = (τ1, . . . , τm−1) = (x2, . . . , xm). (2.16)

Let us introduce the function

ϕ̂(τ, Λ) =
(

V (ξτ , Λ)
V (ξτ∗(Λ), Λ)

)1/m

,

where ξτ∗(Λ) is a LDMS design.
Theoretical studies (see Theorems 2.2.2 and 2.2.3) show that for suffi-

ciently small δ > 0,

minΛ∈Ω(δ,c) ϕ̂(τ, Λ) = min{ϕ̂(τ, (1 − δ)c), ϕ̂(τ, (1 + δ)c}

= min0≤α≤1 αϕ̂(τ, (1 − δ)c) + (1 − α)ϕ̂(τ, (1 + δ)c).

Based on this, let us introduce the following class of designs. Let us
say that a design is a maximin efficient design with a minimal structure or,
briefly, MMEMS design, if this design is of the form (2.16), where τ = τ̂
and τ̂ maximizes the value

min
0≤α≤1

αϕ̂(τ, (1 − δ)c) + (1 − α)ϕ̂(τ, (1 + δ)c)
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at the set of all vectors τ with positive coordinates.
In the case when intervals of possible values are the same for all para-

meters λi, i = 1, . . . , k (i.e., c1 = c2 = · · · = ck) the MMEMS designs can
be found explicitly.

In order to describe these designs, let us denote

u = (τ, α) = (τ1, . . . , τm−1, α),

Φ(u, δ) = αϕ̂(τ, (1 − δ)c) + (1 − α)ϕ̂(τ, (1 + δ)c),

ξ̂ = ξτ̂ - MMEMS design.

Let γ1, . . . , γm−1 be, as above, the roots of Laugerre’s polynomial of
degree m − 1 with the associated parameter 1,

h = h(δ) = 2δ/ ln
(

1+δ
1−δ

)
,

I(δ) = [h(δ)e(1−h(δ))]m(m−1)/2,

H =
(
det M(ξτ∗(c), c)

)1/m
.

Remember that τ∗(γc) = τ∗(c)/γ for any γ > 0. Also, it follows from
here that

ϕ̂(τ, (1 − δ)c) = (detM(ξτ , (1 − δ)c))1/m /(H(1 − δ)),

ϕ̂(τ, (1 + δ)c) = (detM(ξτ , (1 + δ)c))1/m /(H(1 + δ)).

This simplifies theoretical and numerical studies of the MMEMS designs.
An explicit solution of the problem in the case c1 = c2 = · · · = ck is

given by the following theorem.

Theorem 2.2.2 Consider model (2.1) and the set Ω = Ω(δ, c) of the form
(2.4), where c1 = · · · = ck. In this case the following hold:

(I) There exists a unique MMEMS design for any fixed c1 > 0 and δ < 1.
This design is

ξ̂ = ξτ̂ , τ̂ = (τ̂1, . . . , τ̂m−1),

τ̂i = γi

/
(c1h(δ)), i = 1, . . . , m − 1,

and
Φ(û, δ) = I(δ).

(II) This design is a locally D-optimal design for Λ = c/h(δ).

(III) For any sufficiently small positive δ, this design is MME among all
(approximate) designs and its minimal efficiency is equal to I(δ).
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Proof. Note that for Λ = (c1, . . . , ck), c1 = · · · = ck the value of V (ξ,Λ)
coincides with the value of determinant of the information matrix for the
linear (by parameters) regression function

e−c1x(β1 + β2 + · · · + βmxm−1),

where β = (β1, . . . , βm) is the vector of estimating parameters and c1 is a
given number (as we already mentioned a detailed proof can be found in
Melas (1978)). For this reason assertions (I) and (II) follows immediately
from the results of Dette, Haines and Imhof (2003). Assertion (III) is a
special case of Theorem 2.2.3(II).

Note that the set of δ values for which assertion (III) holds can be found
numerically. In particular, we found in such a way that assertion (III) is
true for k = 1 with δ ≤ 0.54, for k = 2 it holds with δ ≤ 0.22, and for
k = 3 it holds with δ ≤ 0.18. Thus, under realistic values of δ in the
case c1 = · · · = ck, MMEMS designs described in Theorem 2.2.2 are in fact
MME designs among all (approximate) designs. It is also worth mentioning
that in all of the cases, mentioned above, the minimal efficiency proves to
be grater than 0.9, which can be easily checked by the explicit formula for
I(δ).

In the case of arbitrary values c1, . . . , ck, it seems does not possible to
find MMEMS designs explicitly. However, the dependence of such designs
on δ with a given c can be investigated with the help of constructing Taylor
series in a way very similar to that was already applied to LDMS designs.

As is well known, the function of minimum is continuous. Also, we
have already shown that the value V (ξτ , Λ) tends to zero with τm−1 → ∞.
Therefore, the function

min
0≤α≤1

Φ(u, δ), u = (τ, α) (2.17)

is bounded with τ ∈ Rm−1
+ and there exists an MMEMS design (i.e., the

design that maximizes (2.17) by τ ∈ Rm−1
+ ).

Consider the equation system

∂

∂ui
Φ(u, δ) = 0, i = 1, . . . , m. (2.18)

Let Ĵ(δ) be the Jacobi matrix of this system,

Ĵ(δ) =
(

∂2

∂ui∂uj
Φ(u, δ)

)m

i,j=1

∣∣∣∣
u=u(δ)

,

where u(δ) is a solution of (2.18); the existence of this solution is provided
by the following theorem.
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Theorem 2.2.3 Consider the regression model (2.1) for the set Ω =
Ω(c, δ) defined in (2.4); the following assertions take place:

(I) There exists a unique MMEMS design. Moreover, there exists a
unique solution of the equation system (2.18), first m − 1 compo-
nents of this solution generate the vector τ̂ , and the matrix J(δ) is
invertible. The solution is a real analytic function of δ.

(II) If in a vicinity of Λ = c the unique LDSM design is locally D-optimal
among all (approximate) designs, then the MMEMS design is MME
among all (approximate) designs for sufficiently small positive δ.

A proof of this theorem will be given in Section 2.6.3.
Note that as in the case of Theorem 2.2.2(III), the set of δ values for

which assertion (II) is valid can be found numerically. For example, with
k = 2 and c = (1, 5), the MMEMS designs prove to be MME among all
designs for all δ ≤ 0.27.

Theorem 2.2.3 justifies studying MMEMS and MME designs along the
following steps:

1. Find numerically the MMEMS design for some value δ = δ0 (in our
calculations, we took δ0 = 0.5).

2. With the help of the recurrent formulas, construct the Taylor expan-
sions for functions α̂(δ) and τ̂1(δ), . . . , τ̂m−1(δ).

3. Check whether the designs constructed are MME designs among all
approximate designs for different values of δ by the equivalence the-
orem from Dette, Haines and Imhof (2003).

Let us illustrate the approach by examples.
With k = 1, the MMEMS designs are given by Theorem 2.2.2:

ξ̂ = ξτ̂ =
(

0 τ̂1
1/2 1/2

)
,

where τ̂1 = 1/(c1h(δ)). A numerical calculation shows that this design is
MME among all approximate designs if δ ≤ 0.54.

Let k = 2 and the set Ω be

Ω = Ω(z) = {(λ1, λ2); ci(1 − δ) ≤ λi ≤ ci(1 + δ), i = 1, 2}.

Without loss of generality, assume that 1 = c1 ≤ c2. Set c2 = 5 (for other
cases we obtain similar results).

Taylor coefficients for the functions x̂i(δ), i = 2, 3, 4 and α̂(δ) in a vicin-
ity of δ = δ0 = 0.5 are given in Table 2.4. Note that the series are convergent
for δ ∈ [0, 1), and with δ < 0.8, we need only three first coefficients to cal-
culate MMEMS with a good precision. The values of the functions received
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by usage of the first 11 coefficients are depicted at Figure2.2. Note that
the minimum efficiency is always achieved at the two points (1 − δ)c and
(1 + δ)c. The behavior of the function ϕ(τ̂ , Λ) with τ̂ = τ̂(0.5), Λ ∈ Ω(0.5)
is shown in Figure 2.2. The dependence of the minimal efficiency on δ is
presented in Figure 2.2.

Table 2.4: Coefficients in the Taylor expansion for the functions x̂2(δ),
x̂3(δ), x̂4(δ), and α(δ) by degrees of (δ − 0.5).

j x̂2 x̂3 x̂4 α j x̂2 x̂3 x̂4 α
0 0.17 0.69 2.06 0.44 6 0.49 5.33 13.56 −0.54
1 0.05 0.34 1.16 −0.14 7 0.88 9.55 23.80 −0.94
2 0.09 0.67 2.13 −0.09 8 1.60 17.26 42.59 −1.66
3 0.11 0.99 2.87 −0.14 9 2.95 31.35 77.19 −2.97
4 0.17 1.73 4.76 −0.19 10 5.50 57.22 141.40 −5.37
5 0.28 2.99 7.85 −0.32 11 10.32 104.91 261.17 −9.74

The verification by the equivalence theorem mentioned above shows
that the MMEMS designs are MME among all approximate designs with
δ ≤ 0.28. Additionally, our calculations (not presented here) show that
MMEMS designs have the minimal efficiency at 40–50% more than the
best equidistant designs (such designs are often used in practice).

However, for δ > 0.28, it is possible to construct even more efficient
designs. For example, with δ = 0.5 we constructed numerically a design
that is MME among all approximate designs. This design has six support
points and is approximately equal to(

0 0.140 0.440 1.048 1.75 3.25
0.24 0.18 0.19 0.16 0.13 0.10

)
.

The minimal efficiency of this design is equal to 0.8431, whereas such effi-
ciency for the MMEMS design is 0.7045. Note that for the LD design at the
central point Λ = (1, 5), this value is 0.6150, and for the best equidistant
design, it is 0.5904.

For model (2.1) with three exponentials, we obtained similar results.
However, the critical value of δ, for which the MMEMS designs remains
MME among all designs, is smaller than that for the two exponential mod-
els.

2.3 Description of the Model

In this section we will introduce assumptions on the regression functions
providing the application of the functional approach. The corresponding
class of nonlinear regression models includes, in particular, the exponential
models, considered in Section 2.2, as well as rational models and the three
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Figure 2.2: Functions x̂2(δ), x̂3(δ), and x̂4(δ); z = δ(top) and the minimal of
efficiency of MMEMS design (bottom right) with δ ∈ (0, 1). The efficiency
of MMEMS design with δ = 0.5 over Ω(0.5) (bottom left).

parameters logistic model. One more example is the Monod model to be
studied in Chapter 8. For this class of models we introduce the basic
equation determining the support points of locally D-optimal designs as
implicit functions of values of the model parameters.

2.3.1 Assumptions and notation

Let us consider the general nonlinear regression model

yj = η(xj ,Θ) + εj , j = 1, . . . , N, (2.19)

where y1, . . . , yN ∈ R1 are experimental results, Θ = (θ1, . . . , θm)T is the
vector of unknown parameters, η(x,Θ) is a function of known form contin-
uously differentiable along the parameters, xj ∈ X, X is a given set, and
ε1, . . . , εN are independent and identically distributed random values with
zero expectation and a finite (unknown) variance σ2 > 0.

Let us introduce the following notation (it was already given in Sections
1.7 and 2.2 but will be represented here for the sake of convenience of the
reader):

fi(x,Θ) = ∂
∂θi

η(x,Θ), i = 1, . . . , m,

f(x,Θ) = (f1(x,Θ), . . . , fm(x,Θ))T
,

M(ξ,Θ) =
∫

f(x,Θ)fT (x,Θ)ξ(dx),

the information matrix,

ξ =
(

x1 . . . xn

ω1 . . . ωn

)
, xi �= xj (i �= j), xi ∈ X, ωi > 0,

∑
ωi = 1,

approximate experimental design.
Denote by Θ∗ the proper vector of the parameters. Designs maximizing

the determinant of the information matrix for a fixed vector Θ will be
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called the LD designs. Usually, such designs depend only on a part of
parameters (see Section 2.2). Without loss of generality, assume that these
parameters are θk+1, . . . , θm and call them nonlinear parameters. Denote
Θ1 = (θ1, . . . , θk)T and Θ2 = (θk+1, . . . , θm)T . Let us fix Θ1 and consider
the matrix M(ξ,Θ2) = M(ξ,Θ).

2.3.2 The basic equation

In many practical problems, X = [a, b], and we will restrict our attention
by this case.

The triple (n1, n2, n3), where n1(n3) is the number of support points of
design at the left (right) bound, n1, n3 = 0 or 1, and n2 = n − n1 − n2 will
be called a type of design.

Let us consider designs LD among designs with the minimal support
(i.e., with n = m). We call them LDMS designs. They often prove to be
LD among all approximate designs. As was shown in Section 2.2, for such
designs ω1 = · · · , = ωm = 1/m.

Let Θ2 ∈ Ω, where Ω is a given open set of possible values of Θ∗
2.

Assume that LDMS designs under Θ2 ∈ Ω have a fixed type (n1, n2, n3),
n1 +n2 +n3 = m. Consider the case n1 = 1 and n3 = 0 (for all other cases,
we can proceed in a very similar way). In this case, we will define the vector
τ and the design ξτ as follows

τ = (x2, . . . , xm) = (τ1, . . . , τm−1),

ξτ =
(

x1 x2 . . . xm

1/m 1/m . . . 1/m

)
, x1 = a.

Assume that the set Ω contains r linearly independent vectors and there
are no r + 1 linearly independent vectors belonging to Ω. For example, for

Ω = {(θk+1, . . . , θm)T : θi > 0,

m∑
i=k+1

θi = m − k}

r = m − k − 1.
Let Q be a given real analytic vector function on Ω such that

Θ2 → z = Q(Θ2) ∈ Rr

is a one-to-one correspondence and, therefore, the inverse function Q−1(z)
at the set Z = Q(Ω) is well defined. As an example, we can point out the
vector function

zi = 1 − θk+i, i = 1, . . . , r; r = m − k − 1, (2.20)

introduced in Section 2.2.
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Denote ΘT (z) =
(
ΘT

1 , (Q−1(z))T
)
. Let N be the set of all vectors

z ∈ Z = Q(Ω) such that

det M(ξτ , Θ(r)) = 0

for any τ ∈ [a, b]m−1. For the case of exponential models described in
Section 2.2, we have N = Q(Ω̄), where Ω̄ is the set of all vectors Θ2 ∈ Ω
such that two or more coordinates coincide with each other and Q is given
by (2.20).

Let us introduce the following definition.

Definition 2.3.1 A vector function

τ∗(z) : Z → V,

where
V = {τ = (τ1, . . . , τm−1) : a < τ1 < · · · < τm−1 < b}

will be called the optimal design function if for any z ∈ Z \ N , the design
ξτ∗(z) is a LDMS design for ΘT = (ΘT

1 , ΘT
2 (z)), Θ2(z) = Q−1(z) and for

any sequence z(1), z(2), . . . such that z(i) ∈ Z \ N , zi → z̄ ∈ N , i → ∞,

lim
i→∞

τ∗(zi) = τ∗(ẑ).

This definition is given for the case n1 = 1 and n3 = 0. The modification
for other design types seems to be obvious.

Let us define the function

ϕ(τ, z) = [detM(ξτ , Θ(z))]1/m; (2.21)

the degree 1/m is introduced in order to secure a local convexity in a vicinity
of the extreme points.

Due to the above assumption for any fixed z ∈ Z \ N , the maximal
value of the function ϕ(τ, z) by τ ∈ [a, b]m−1 is achieved in V . Therefore,
a necessary condition for ξτ to be an LDMS design consists of vanishing of
the derivatives

∂

∂τi
ϕ(τ, z) = 0, i = 1, . . . , m − 1. (2.22)

Set
gi = gi(τ, z) =

∂

∂τi
ϕ(τ, z), i = 1, . . . , m − 1,

g = (g1, . . . , gm−1)T .

The equation system (2.22) can be now written in the form

g(τ, z) = 0. (2.23)

This equation will be called the basic equation of the functional approach. It
allows one to reduce the LDMS designs problem to the analysis of implicit
functions. Such an analysis will be performed in Section 2.4. Now we will
describe a class of regression functions for which this equation has a unique
solution.
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2.3.3 The uniqueness and the analytical properties

Let Z, N , and Q be as described above. Let us introduce the following
assumptions:

A1. The functions
fi(x,Θ(z)), i = 1, . . . , m,

are real analytic by the variables {x1, z1, . . . , zr} at (a, b) × Z.

A2. For Θ2 ∈ Ω all LDMS designs have the same type (n1, n2, n3). For
certainty, we will consider the case n1 = 1 and n3 = 0. Denote
H(τ) =

∏
1≤i≤j≤m(xi − xj)2, τ = (x2, . . . , xm), x1 = a.

A3. There exists an algebraic polynomial Ψ(z) such that

inf
z∈Z\N

inf
τ∈V

ϕm(τ, z)
Ψ(z)H(τ)

> 0,

sup
z∈Z\N

sup
τ∈V

ϕm(τ, z)
Ψ(z)H(τ)

< ∞.

Note that if the closure of Z does not intersect N , we can take Ψ(z) ≡ 1.
In this case, the assumption A3 means simply that the functions

f1(x,Θ), . . . , fm(x,Θ)

generate an extended Chebyshev system of order m on [a, b] (see Section
1.9 for the definition) for all Θz = (Θ1, Θ2), Θz ∈ Ω.

Note also that the exponential regression functions introduced in Section
2.2 possess this property and all other assumptions were justified in that
section.

Let us codefine the function

ϕ̄(τ, z) =
ϕ(τ, z)

(Ψ(z))1/m
=
[
det M(ξtau, Θ(z))

Ψ(z)

]1/m

by continuity with z ∈ N . This is possible due to assumption A3.

A4. There exists a vector z(0) ∈ Z such that the equation system

∂

∂τi
ϕ̄(τ, z(0)) = 0, i = 1, . . . , m − 1,

has a unique solution with τ ∈ V .

In Section 2.2, we have shown that this assumption holds for the expo-
nential models with z(0) = (0, . . . , 0).

Now, the basic theorem of the functional approach can be formulated
in the following way.
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Theorem 2.3.1 Let assumptions A1–A4 be fulfilled. Then the following
hold:

(I) There exists a unique optimal design function τ∗(z) : Z → V . It is
a real analytic vector function in Z.

(II) Taylor coefficients of this vector function can be calculated by recur-
rent formulas given in Section 2.4.

A proof of this theorem will be given in Section 2.6.

2.4 The Study of the Basic Equation

In this section we will study (2.23) for a vector function g(τ, z) of a general
form not necessarily connected with studying optimal experimental designs.
We will obtain results stronger than that of Theorem 2.2.1(I, II), namely
we will prove that under certain conditions, the function τ(z) determined
implicitly by this equation is unique.

2.4.1 Properties of implicit functions

Assume that m and r are arbitrary natural numbers, and m ≥ r and m ≥ z.
Let

V̂ = {τ = (τ1, . . . , τm−1)T : a ≤ τ1 ≤ · · · ≤ τm−1 ≤ b},

V = {τ = (τ1, . . . , τm−1)T : a < τ1 < · · · < τm−1 < b},

and Z be an open one-connected set in Rr.
Let ϕ(τ, z), τ ∈ V̂ , z ∈ Z, be a function of a general form real analytic

in V × Z, and ϕ(τ, z) ≥ 0.
Consider the case when ϕ(τ, z) = 0 for some points z ∈ Z. Let N be

the set of all such points. Assume that there exists an algebraic polynomial
Ψ(z) such that Ψ(z) = 0 for z ∈ N and the function

ϕ̄(τ, z) = ϕ(τ, z)/Ψ(z)

can be codefined in points z ∈ N by continuity.
Let ϕ̄(τ, z) be the function codefined in the points z ∈ N in this way.

Assume that ϕ̄(τ, z) > 0, τ ∈ V , z ∈ Z, and

inf
τ∈V

(ϕ̄(τ, z))m

H(τ)
> 0,

sup
τ∈V

(ϕ̄(τ, z))m

H(τ)
< ∞,

for any z ∈ Z, where

H(τ) =
m−1∏
i=1

(τi − a)2
∏

1≤i≤j≤m−1

(τi − τj)2.
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Let us denote

g(τ, z) = (g1(τ, z), . . . , gm−1(τ, z)) ,

gi(τ, z) =
∂

∂τi
ϕ(τ, z),

G(τ, z) =
(

∂2

∂τi∂τj
ϕ(τ, z)

)m−1

i,j=1
,

ḡ(τ, z) = g(τ, z)/Ψ(z),

Ḡ(τ, z) = G(τ, z)/Ψ(z) =
(

∂2

∂τi∂τj
ϕ̄(τ, z)

)m−1

i,j=1
.

Consider the equations
g(τ, z) = 0,

ḡ(τ, z) = 0,
(2.24)

z ∈ Z, τ ∈ V . For z ∈ Z \ N , these equations are equivalent to each other.
Let us introduce the following assumptions:

(a) There exists a point z(0) ∈ Z such that (2.24) has a unique solution
belonging to V .

(b) For any point z and any solution z = τ(z) of (2.24),

det Ḡ(τ, z)
∣∣∣∣
τ=τ(z)

�= 0.

Theorem 2.4.1 Let the assumptions formulated above be satisfied. Then
there exists a unique vector function τ∗(z) : Z → V such that

ḡ(τ∗(z), z) = 0.

This vector function is real analytic for z ∈ Z and satisfies the equation

G(τ∗(z), z)τ ′
zi

(z) = (g(τ, z))′
zi

∣∣∣∣
τ=τ∗(z)

, i = 1, . . . , m − 1.

Proof. Due to assumptions (a) and (b) and the Implicit Function Theorem
(Theorem 1.8.1), there exists a vicinity of the point z(0) such that there
exists a unique vector function, say τ̄(z), satisfying (2.24). This vector
function is real analytic. Let U be a union of all such vicinities. Then τ̄(z)
can be extended to U in a unique way and this extended function is real
analytic in U .
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Suppose that U �= Z. Denote the closure of U by Ū . Since U �= Z, there
exists a point z̄ ∈ Ū \ U , z̄ ∈ Z. Then there exists a sequence z(1), z(2), . . . ,
such that z(i) ∈ U and limi→∞ z(i) = z̄. Denote by τ̄ the limit

lim
i→∞

τ̄(z(i)).

Then we have
ḡ(τ̄ , z̄) = 0.

Suppose that τ̄ ∈ V . Then, due to assumption (b),

det Ḡ(τ̄ , z̄) �= 0

and there exists a vicinity of point z̄, say W , and vector function τ(1)(z)
such that τ(1)(z̄) = τ̄ and this vector function is real analytic in this vicinity.
Moreover, for sufficiently large i, z(i) belongs to this vicinity. It follows from
here that τ(1)(z) and τ̄(z) coincide in W ∩ Z �= ∅. Therefore, τ̄(1)(z) is a
real analytical extension of τ̄(z) to W and W ⊂̄U . This is impossible by our
supposition and we obtained a contradiction.

Now, let τ̄ ∈ V̂ \ V . Denote τ(i) = τ(z(i)), i = 1, 2, . . .. Then

lim
j→∞

∂

∂τi

[
(ϕ̄(τ, zj))

m

Q(τ)

] ∣∣∣∣
τ=τ(j)

= lim
j→∞

{{
∂

∂τi

(
ϕ̄(τ, z(1))

)m} ∣∣∣∣
tau=τ(j)

/
Q(τ(j))

− (ϕ̄(τ(j), z(i)
)m ∂Q(τ)/∂τi

Q2(τ)

∣∣∣∣
τ=τ(i)

}
= ∞.

However, due to our assumption, the function

ϕ̄(τ, z)
Q(τ)

is real analytic in V × Z, and the limit should be finite. The obtained
contradiction shows that U = Z. In a similar way, it can be proved that
for any z ∈ Z, (2.24) has a unique solution.

In order to apply Theorem 2.4.1 to the function ϕ(τ, z) defined in Section
2.3, we need only to verify property (b). To this end we will introduce a
representation for the Jacobi matrix of (2.24).

2.4.2 Jacobian of the basic equation

First, we analyze the Jacobian of the basic equation for functions ϕ(τ, z)
of a general kind that can be represented as the minimum of some convex
function.
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Let m, r, and t be arbitrary natural numbers, T ⊂ IRm−1, Z ⊂ IRr, and
A ⊂ IRt be arbitrary open sets, and A be convex.

Consider the function q(τ, a, z), τ ∈ T, a ∈ A, z ∈ Z, that satisfies the
following conditions: Function q(τ, a, z) is twice continuously differentiable
along τ and a; function q(τ, a, z) is strictly convex along a.

Moreover, let function ϕ(τ, z) have the form

ϕ(τ, z) = min
a∈A

q(τ, a, z), (2.25)

where the minimum is attained for any τ ∈ T and z ∈ Z. Since the function
q(τ, a, z) is strictly convex along a, this minimum is attained on the unique
vector a = ã = ã(τ, z). Therefore, function ϕ(τ, z) is twice continuously
differentiable along τ .

For any fixed z, let there exist a point τ̃ = τ̃(z) satisfying the equation
∂
∂τ ϕ(τ, z) = 0.

Consider the following matrices:

E =
(

∂2

∂τj∂τi
q(τ, a, z)

)m−1

i,j=1
,

B =
(

∂2

∂τj∂ai
q(τ, a, z)

)t,m−1

i,j=1
,

D =
(

∂2

∂aj∂ai
q(τ, a, z)

)t

i,j=1

(2.26)

at τ = τ̃ and a = ã(τ̃ , z). It follows from the above conditions that matrix
D is positive definite and hence the inverse matrix D−1 exists.

Theorem 2.4.2 Under the above conditions, the following formula is valid:

J(τ̃(z), z) = E − BT D−1B.

Let us apply this theorem to the function ϕ(τ, z), defined by (2.21).
Denote the set of all positive definite m × m matrices A = (aij), such

that amm = 1 by A. Assign a number ν = ν(i, j) in alphabetical order to
each pair of indices (i, j), i ≤ j, i, j = 1, . . . , m, where (i, j) �= (m, m). For
any vector a ∈ IRt, t = m(m + 1)/2 − 1, define a matrix A(a) that satisfies
the following relations:

aji = aij = aν(i,j), amm = 1, i, j = 1, . . . , m, i ≤ j.

Define set A as
A = {a ∈ IRt : A(a) ∈ A}.

Evidently, A is open and convex in IRt. Introduce the function

q(τ, a, z) = (detA(a))−1/m tr (A(a)M(ξ, z)) /m. (2.27)
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Consider the function ϕ(τ, z) = (detM(ξ, z))1/m. It is known (Karlin and
Studden, 1966, Chap. 10.2) that (2.25) is valid for this function. It can
also be checked that the function (2.27) possesses the required properties.
Therefore, by Theorem 2.4.2,

J(τ̃(z), z) = E − BT D−1B, (2.28)

where τ̃(z) = τ∗(z). Set δ(a) = (det A(a))−1/m. It is easy to verify by
direct differentiation that the following formulas are valid for matrices B
and E:

E = diag{E11, . . . , Em−1m−1},

Eii = δ(a∗)
∂2

∂x2 (fT (x)A(a∗)f(x))
∣∣∣∣
x=x∗

i+1

, i = 1, . . . , m − 1,

A(a∗) = const
(
M(ξτ∗(z), z)

)−1
,

B = (bνk)t,m−1
ν,k=1 ,

bνk = 2δ(a∗)
∂

∂x
(fi(x)fj(x))

∣∣∣∣
x=x∗

k

, ν = ν(i, j).

(2.29)

Remark 2.4.1 Note that the matrix J = J(τ∗(z), z) is negative definite
and hence nonsingular provided at least one of the following conditions is
satisfied:

(1) All diagonal elements of matrix E are negative;
(2) Matrix B is of full rank.
Indeed, matrix BT D−1B has the form SST ; hence, it is nonnegative

definite in the general case and positive definite if matrix B has full rank.
Since J = E − BT D−1B, J is negative definite if either of conditions (1)
and (2) is valid.

This remark will be applied in Section 2.6.2 in order to prove that the
matrix J is invertible under assumptions A1–A4.

2.4.3 On the representation of implicit functions

It is well known that derivatives of implicit functions can be calculated with
the help of indefinite coefficients techniques, as introduced by Euler. In this
subsection we offer recurrent formulas convenient for the implementation
in software packages such as Maple and Mathcad. These formulas are
a generalization for the multidimensional case of formulas introduced in
Dette, Melas and Pepelyshev (2004b).

Let us assume that s = (s1, . . . , sr), where si ≥ 0, i = 1, . . . , r, are
integers. For an arbitrary (scalar, vector, or matrix) function F , denote

(F(z))(s) =
1

s1! · · · sr!
∂s1

∂zs1
1

. . .
∂sr

∂zsr
r

F(z)|z=z(0) ,



54 CHAPTER 2. THE FUNCTIONAL APPROACH

where z(0) is a given point.
Introduce also the notation

St =

{
s = (s1, . . . , sr); si ≥ 0,

r∑
i=1

si = t

}
,

t = 0, 1, . . ., and

(z − z(0))s = (z1 − z1(0))s1 . . . (zr − zr(0))sr .

Let the function ψ(z) be of the form

ψ(z) = (z − z(0))lψ̄(z),

where l = (l1, . . . , lr),li ≥ 0, i = 1, . . . , r, are integers, and ψ̄(z) is a homo-
geneous polynomial of degree p ≥ 0,

ψ̄(z) =
∑
s∈Sp

a(s)(z − z(0))s,

such that a(p,0,...,0) �= 0.
Let

It = U t
j=0Sj ,

τ<It>(z) =
∑

s∈It
τ(s)(z − z(0))s, τ(s) = (τ(z))(s),

J(l) =
(
J(τ(0), z)

)
(l) .

First, let p = 0. Note that under condition (a), the matrices J(s), si ≤ li,
i = 1, . . . , r, s �= l, are zero matrices and det J(l) �= 0.

Theorem 2.4.3 Under conditions (a) and (b) for the function τ(z), de-
fined in Theorem 2.4.1, the following formulas hold:

(τ(z))(s) = −J−1
(l) g(τ<I>(z), z)(s+l), (2.30)

where I = It−1, s ∈ St, t = 1, 2, . . . , K − 1.
If condition (c) is also fulfilled, then these formulas hold for t = 1, 2, . . ..

Thus, if τ(0) is known, coefficients {τ(s)} can be calculated in the follow-
ing way. At the step t (t = 1, 2, . . .), calculate all coefficients with indices
from St by (2.30). This calculation can be easily performed by a computer
with the help of packages such as Maple or Mathcad.

Consider now the case p > 0. Define the set

Ŝt =

{
s = (s1, . . . , sr); si ≥ 0, i = 1, . . . , r, s1 + 2

r∑
i=2

si = t

}
.
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Let
Ît = U t

j=0Ŝj , u = (p, 0, . . . , 0),

J(l+u) =
(
J(τ(0), z)

)
(l+u) .

It can be verified that, under condition (a), detJ(l+u) �= 0.

Theorem 2.4.4 With p > 0, Theorem 2.4.3 remains true with (2.30) re-
placed by

(τ(z))(s) = −J−1
(l+u)g(τ<I>(z), z)(s+l+u),

where s ∈ Ŝt, I = Ît−1, and t = 1, 2, . . ..

Note that u can be replaced by any vector of the form (0, . . . , p, 0, . . . , 0).

2.4.4 The monotony property

Let us obtain another representation for the Jacobi matrix. It is based
on the known formula for the derivative of the matrix determinant. This
representation is to help us to derive the monotony of coordinates of the
optimal design function for some forms of regression.

At first, let x ∈ X and z ∈ Z, where Z is some bounded set in IRr and
fi(x, z), i = 1, . . . , m, are arbitrary twice differentiable with respect to x
functions.

Let the function ϕ(τ, z) be defined by (2.21). Let assumptions A1–A4 be
satisfied. We will use the formula of differentiating the matrix determinant
(see, e.g., Fedorov (1972)).

∂

∂α
det M(α) = detM(α)

(
trM−1(α)

∂

∂α
M(α)

)
,

as well as the formula

∂

∂α
M−1(α) = −M−1(α)

∂M(α)
∂α

M−1(α)

and the explicit form of matrix M(ξ, z):

M(ξ, z) =
m∑

i=1

f(xi)fT (xi)/m,

where f(x) = f(x, z) and

ξ =

(
x1 . . . xm−1 xm

1
m . . . 1

m
1
m

)
.

Let us calculate the derivatives of the function

ϕ(τ, z) = (detM(ξτ , z))1/m
,
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ξτ =

(
τ1 . . . τm−1 b

1
m . . . 1

m
1
m

)
.

We obtain
∂ϕ(τ, z)

∂τi
=

1
m2 ϕ(τ, z) tr M−1(ξ, z)(f(τi)fT (τi))′

=
2

m2 ϕ(τ, z)fT (τi)M−1(ξ, z)f ′(τi),

i = 1, . . . , m − 1. Let z be fixed and τ be such that

g(τ, z) =
(

∂

∂τi
ϕ(τ, z)

)m−1

i=1
= 0. (2.31)

Moreover, let τ be a local maximum of the function ϕ(τ, z). Set F =
(fj(xi))m

i,j=1. Then the relation M = FFT /m is valid,

fT (τi)M−1(ξ, z)f(τj) = mfT (τi)(F−1)T F−1f(τj)

= m eT
i+1e

T
j+1 =

{
0 i �= j
m i = j

.

Let us consider the matrix

G =
(

∂2

∂τi∂τj
ϕ(τ, z)

)m−1

i,j=1
, τ = τ(z),

where τ(z) is the unique solution of (2.31).
Using these relations and the formula of the inverse matrix differentia-

tion, derive

(G)ij =
∂2

∂τi∂τj
ϕ(τ, z)

= − 4
m3 ϕ(τ, z)

(
fT (τi)M−1(ξ, z)f ′(τj)

) (
fT (τj)M−1(ξ, z)f ′(τi)

)
= − 4

m
ϕ(τ, z)

(
eT

i F−1f ′(τj)
) (

eT
j F−1f ′(τi)

)
for i �= j, i, j = 1, . . . , m − 1. For calculating the diagonal elements of the
matrix, let us also use the following relation:

fT (τi)M−1(ξ, z)f ′(τi) =
m2

2ϕ(τ, z)
∂ϕ(τ, z)

∂τi
= 0, i = 1, . . . , m − 1.

The direct differentiation gives the following result

(G)ii =
∂2

∂τi∂τi
ϕ(τ, z)

=
2

m2 ϕ(τ, z)fT (τi)M−1(ξ, z)f ′′(τi)

=
2
m

ϕ(τ, z)eT
i F−1f ′′(τi), i = 1, . . . , m − 1.
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Now, assume the that functions fi(x) = fi(x, z), i = 1, . . . , m, form an
ET-system (see Section 1.9 for the definition) of the first order under any
fixed z ∈ Z.

Since the matrix F−1 is formed by the cofactors of the elements of
matrix F , divided by its determinant, then, for j > i, i > 2, we have

eT
i F−1f ′(τj)

=
det

(
f(x1)

...f(x2)
... . . .

...f(xi−1)
...f ′(xj)

...f(xi+1)
... . . .

...f(xm)
)

det F

(with the evident changes for i ≤ 2). Inserting a column f ′(xj) between a
line f(xj) and the following one, derive

eT
i F−1f ′(τj) = (−1)j−i det F̃ / det F,

F̃ =
(

f(x1)
...f(x2)

... . . .
...f(xi−1)

...f(xi+1)
... . . .

...f(xj)
...f ′(xj)

... . . .
...f(xm)

)
.

By definition of the ET-system of the first order, det F̃ > 0. Thus,

sign
[
eT

i F−1f ′(τj)
]

= (−1)j−i.

Similarly, for i < j, we have

sign
[
eT

j+1F
−1f ′(τi)

]
= (−1)i−j .

Therefore, for i �= j

sign (G)ij = (−1)(−1)j−i−1(−1)i−j = 1.

It will be proved in Section 2.6.2 that the matrix G is negative definite. Let
us use the following statement (see Szegö, 1959): If matrix A is positive
definite and each of its off-diagonal elements is negative, then all of the
elements of the matrix A−1 are positive. Since the matrix G is negative
definite and its off-diagonal elements are positive, then the matrix A = −G
possesses the required properties. Applying the above statement, we have
that all of the elements of the matrix G−1 are negative.

Thus, we have derived the following result.

Lemma 2.4.1 If functions fi(x, z), i = 1, . . . , m, x ∈ X, z ∈ Z, are twice
continuously differentiable on X and form an ET-system of the first order
for any fixed z ∈ Z, the matrix G is invertible and all of the elements of
matrix G−1 are negative.

Let the conditions of Lemma 2.4.1 be satisfied. By Theorem 2.3.1, the
optimal design function τ(z) : Z → V is uniquely determined. Let Lj stand
for the vector

∂

∂zj
g(τ, z) =

(
∂2

∂τi∂zj
ϕ(τ, z)

)s−u

i=1
, j = 1, 2, . . . , r.
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By the Implicit Function Theorem, we have

τ
′
zj

= −G−1Lj . (2.32)

Thus, if all of the elements of vector Lj are positive, then

(τi(z))
′
zj

< 0, i = 1, . . . , m − 1;

that is, all of the coordinates of function τ(z) monotonously decrease with
respect to zj .

Let us introduce a class of regression functions for which all the unfixed
points of a locally D-optimal design monotonously depend on each parame-
ter. We will show further that this class contains the exponential models
considered in Section 2.2, as well as some rational models.

Consider a real function K(x, y), defined for (x, y) ∈ X × X1, where X
and X1 are intervals. Let function K(x, y) be an extended strictly positive
kernel of the m-th order (ESP(m)) along both variables. The corresponding
definition can be found in Karlin and Studden (1966, Chap. I).

Consider the regression function

η(x,Θ) =
k∑

i=1

θiK(x, θi+k), θi �= 0, i = 1, . . . , k, m = 2k.

Let the functions fi(x,Θ) = ∂
∂θi

η(x,Θ), i = 1, . . . , m, for Θ2 =
(θk+1, . . . , θm)T = (z1, . . . , zk)T ∈ Z ⊂ Xk

1 be real analytic.
By the definition of ESP(m) functions fi(x, z), i = 1, . . . , m (for fixed

Θ1) at any fixed z ∈ Z form an ET-system. Therefore, the optimal design
function τ(z) is uniquely determined at z ∈ Z.

Assume that for some point z(0) for z = z(0), τ = τ(z(0)) the following
inequality is valid:

∂2ϕ(τ, z)
∂τi∂zj

> 0, i = 1, . . . , s − u, j = 1, . . . , k. (2.33)

Theorem 2.4.5 Under the above conditions, all of the components of the
vector function τ(z) decrease with respect to each of z1, . . . , zk in a strictly
monotonous way.

Proof. By Lemma 2.4.1 and formula (2.32), it is sufficient to prove that

∂2ϕ(τ, z)
∂τi∂zj

> 0, i = 1, . . . , m − 1, j = 1, . . . , k.

for any z ∈ Z.
Let z1 < z2 < · · · < zk. Set v = zj and consider the function

∂ϕ(τ, z)/∂τν (ν = 1, . . . , m−1) as a function of v under fixed zi, i = 1, . . . , k,
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i �= j, x1, . . . , xm−1. Denote this function by h(v). Note that the function
h(v) has second-order zeros at points zi, i �= j, i = 1, . . . , k, since the de-
terminants corresponding to h(v) and h′(v) have common lines. Moreover,
h(zj) = 0. Since ϕm(τ, z) equals

const det (K(xj , z1), K ′
z(xj , z1), . . . ,

K(xj , zk), K ′
z(xj , zk))m

j=1 ,
(2.34)

then the function h(v) has no more than 2k − 1 zeros (counting with their
multiplicities). Therefore, h′(zj) �= 0. The case that some zi coincide with
one another can be processed in a similar way (here determinant (2.34) is
to be modified as is stated in the definition of the ESP kernel). Thus, the
functions

∂2

∂τi∂zj
ϕ(τ, z)

do not vanish. Since, by assumption, condition (2.33) is valid for z = z(0),
it is valid for any z ∈ Z.

Consider two examples.

Example 2.4.1 Algebraic sum of simplest fractions.

Let
K(x, y) =

1
x + y

, X ⊂ [0,∞), X1 ⊂ [0,∞).

It is known that such a function is an ESP kernel of any order (Karlin and
Studden 1966, Chap. I). The corresponding regression function takes the
form

η(x,Θ) =
k∑

i=1

θi

x + θi+k
, x ∈ [0,∞),

θi+k > 0, θi �= 0, i = 1, . . . , k. For corresponding basis functions
fi(x,Θ), i = 1, . . . , k, condition (2.33) can be verified directly. It can be
demonstrated also that condition A4 is satisfied. These models will be
thoroughly investigated in Chapter 5.

Example 2.4.2 Algebraic sum of exponential functions.

Let
K(x, y) = exy, X ⊂ (−∞,∞), X1 ⊂ (−∞,∞).

This function is an ESP kernel of any order [Karlin and Studden (1966,
Chap. I)]. The corresponding regression function takes the form

η(x,Θ) =
k∑

i=1

θie
−θi+kx,

θi �= 0, i = 1, . . . , k. ,k
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2.5 Three-Parameter Logistic Distribution

Consider the function

η(t, α, β, γ) =
αeγt+β

1 + eγt+β
.

It is called a three-parameter logistic distribution. By the substitution
x = et, θ1 = α and θ2 = γ, θ3 = e−β this function is reduced to

η(x,Θ) =
θ1x

θ2

θ3 + xθ2
, (2.35)

which is called the Hill equation in microbiological studies (see Bezeau and
Endrenyi (1986)).

We will construct locally D-optimal designs for model (2.35) using the
functional approach described above.

Assume that x ∈ [a, b], a ≥ 0, θ1 �= 0, θ3 > 0. By a direct calculation,
we obtain

det M(ξ,Θ) = θ4
1θ

2
3 det M̄(ζξ, θ3),

where

ξ =

(
x1 x2 x3

1/3 1/3 1/3

)
, ζξ =

(
t1 t2 t3

1/3 1/3 1/3

)
,

ti = xθ2
i , i = 1, 2, 3,

M̄(ζξ, θ3) =
3∑

i=1

f(ti, θ3)fT (ti, θ3)/3,

f(t, θ) =
(

t

θ + t
,

t

(θ + t)2
,

t ln t

(θ + t)2

)T

.

Set
z = 1/θ3, r = 1, Ω = [0,∞), ψ(z) = z6, N = {0}. (2.36)

Assumption A1 follows here from the properties of elementary functions,
A2 and A3 follows from the results of Dette, Melas, and Wong (2004b). It
was also proved there that a locally D-optimal design has the type (0, 2, 1)
and is unique. It can be also proved that A4 holds for the considered model.

Thus, due to Theorem 2.3.1, it follows that support points of locally
D-optimal designs are real analytic functions of z with z ∈ [0, 1).

Let us consider the case [a, b] = [0, 1], θ2 = 1. For arbitrary 0 ≤ a < b, θ2
optimal designs can be calculated by a scale transformation. With θ3 → ∞
and z = 1

θ3
→ 0, we obtain

det2(fi(xj , θ3))
z6 → det2

⎛
⎝ x2

1 x2
2 1

x1 x2 1
x1 lnx1 x2 lnx2 0

⎞
⎠ := Q(x1, x2)
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and
(x∗

1(z), x∗
2(z)) → arg max

0<x1<x2<1
Q(x1, x2).

Thus, it is easy to calculate numerically that x∗
1(0) = 0.15370 and x∗

2(0) =
0.61680.

By the recurrent formulas (2.30) given in Section 2.4, we calculated the
Taylor coefficients with z(0) = 0. The first coefficients are represented in
Table 2.5.

Table 2.5: Coefficients of the Taylor expansions for x1 and x2 in a vicinity
of point z = 0

0 1 2 3 4 5 6
x1 0.15370 −0.09435 0.06747 −0.05117 0.04089 −0.03371 0.02845
x2 0.61680 −0.20012 0.08251 −0.03885 0.02085 −0.01212 0.00754

Let ξ<n>(z) be the design constructed by using n first coefficients and
let z̄n be the maximal z such that

maxx∈[0,1] |d(x, ξ<n>(z)) − 3| ≤ 10−5,

d(x, ξ) = fT (x)M−1(ξ, z)f(x),
(2.37)

where

f(x) =
∂η(x,Θ)

∂θi
, M(ξ, z) := M(ξ,Θ(z)), Θ(z) = (1, 1, 1/z)T .

Note that due to the Kiefer–Wolfowitz equivalence theorem (see Section
1.5), a design satisfying condition (2.37) will be very close to a locally D-
optimal design. Numerical calculations show that z̄10 ≈ 0.705 and z̄20 ≈
0.865.

In a similar way we constructed expansions of the vector function
τ∗(z) = (x∗

1(z), x∗
2(z))T in a vicinity of point z(0) = 1 by degrees of (z − 1)

and (1/z−1). The corresponding coefficients are presented in Tables 2.6 and
2.7, respectively. It proves that for the first expansion with 20 coefficients,
the inequality (2.37) holds with 0 < z ≤ 2.7. For the second expansion
with the same number of the coefficients, it holds for 0.6 ≤ z ≤ 13.8.

The behavior of the design points for 0 ≤ z ≤ 10 is presented in Figure
2.3. We used the first expansion for z ≤ 1 and the second for 1 ≤ z ≤ 10
to construct Figure 2.3.

Note also that the efficiency of the limiting design (at the point z(0) = 0)
measured by the quantity

I(ξ, z) =
(

det M(ξ, z)
det M(ξτ(z), z)

)1/3

, ξ = ξτ(0) := ξ(0),

proves to be very high with z ≤ 1 (θ3 ≥ 1). This efficiency is presented in
Table 2.8.
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Table 2.6: Coefficients of the Taylor expansions for x1 and x2 in a vicinity
of point z = 1 by degrees of (z − 1)

0 1 2 3 4 5 6
x1 0.09723 −0.03401 0.01308 −0.00530 0.00222 -0.00095 0.00041
x2 0.47233 −0.10533 0.02743 −0.00791 0.00245 −0.00080 0.00027

Table 2.7: Coefficients of the Taylor expansions for x1 and x2 in a vicinity
of point z = 1 by degrees of (1/z − 1)

0 1 2 3 4 5 6
x1 0.09723 0.03401 −0.02093 0.01314 −0.00844 0.00555 −0.00375
x2 0.47233 0.10533 −0.07790 0.05838 −0.04431 0.03404 −0.02647

Figure 2.3: The dependence of the support points x1 and x2 on z

Table 2.8: Efficiency of designs ξ(0) and ξ(1) and the points of locally
D-optimal designs

z 0.2 0.4 0.6 0.8 1.0
x1 0.13690 0.12387 0.11333 0.10460 0.09723
x2 0.57956 0.54751 0.51943 0.49456 0.47233(

det M(ξ(0),z)
det M(ξz,z)

)1/3
0.99343 0.97771 0.95681 0.93310 0.90801(

det M(ξ(1),z)
det M(ξz,z)

)1/3
0.94919 0.97468 0.98995 0.99774 1

At the same time, the minimal efficiency of the design ξ(1) = ξτ∗(1)
with 0 < z ≤ 1 is even more than that of ξ(0) = ξτ∗(0) = ξτ(0) ; see Table
2.8. Moreover, numerical calculations show that the design ξ(z∗) = ξτ∗(z∗)
with z∗ = 0.5 has a maximum of the minimal efficiency at the interval (0, 1]
among locally D-optimal designs at points z = 0.1, . . . , 0.9, 1. Its minimal
efficiency is equal to 0.981.
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Note that a maximin efficient D-optimal design that is the design max-
imizing the minimum by z ∈ [0.1, 1] of the efficiency among all (approx-
imate) designs, was constructed numerically in Dette, Melas, and Wong
(2004b). This design is very close to ξ(0.5) and has the minimal efficiency
0.982.

A similar calculation was performed for the interval [1, 10] for z. It
showed that the design ξ(4), the best design among ξ(1), ξ(2),. . .,ξ(10), has
minimal efficiency 0.8407. The maximin efficient design calculated in Dette,
Melas and Wong (2004b) has four support points with unequal weights and
its minimal efficiency equals 0.885. However, for example, design ξ(1), the
locally optimal design for z=1, has the minimal efficiency 0.5430 on [1, 10].
This design is rather bad! It requires almost twice as many observations as
ξ(4) to achieve the same accuracy of the estimates of the parameters if the
true value of z equals 10.

Thus, we see that the approach allows very efficient calculation of locally
D-optimal designs and gives an opportunity to study their efficiency.

We conclude also that locally D-optimal designs could be very efficient
if the initial values are chosen in an optimal way inside given intervals of
possible values.

2.6 Appendix: Proofs

We begin with the proofs for the theorems of Section 2.4.

2.6.1 Proof of Theorems 2.4.2, 2.4.3, and 2.4.4

Proof of Theorem 2.4.2. Due to the necessary condition for an extremum
point, we have

∂

∂a
q(τ, a, z) = 0

with an arbitrary fixed z ∈ Z and with τ = τ̃ = τ̃(z) and a = ã = ã(z, τ̃(z)).
Consider this vector equality at fixed z and arbitrary a and τ as an

equation system that implicitly defines a function a(τ). The Jacobian of
this system at the points (τ̃ , ã) equals det D �= 0. Therefore, by the Im-
plicit Function Theorem, in a vicinity of τ̃ there exists a unique continuous
vector function a(τ) such that a(τ̃) = ã. This function is continuously
differentiable and

∂a(τ)
∂τ

∣∣∣∣
τ=τ̃

= −D−1B.

An immediate calculation now gives

(
∂2

∂τj∂τi
q(τ, a(τ), z)

∣∣∣∣
τ=τ̃

)m−1

i,j=1

= E − BT D−1B.
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For any fixed z ∈ Z, we have

ϕ(τ, z) = min
a∈A

q(τ, a, z) = q(τ, a(τ), z),

with τ from a vicinity of τ̃ = τ̃(z).
Differentiating this equality twice by τ , we obtain

J(τ̃(z), z) = J(τ̃ , z) = E − BT D−1B.

Proof of Theorem 2.4.3. Let τ(z) be an arbitrary K − 1 times continu-
ously differentiable vector function in a vicinity of a point z(0), z(0) ∈ IRr,
τ(z) = (τ1(z), . . . , τm−1(z)). Consider the following auxiliary result.

Lemma 2.6.1 Under condition (b) and with p = 0 and l = 0 the following
equalities are valid:

∂t

∂zs1
1 · · · ∂zsk

k

[g (τ<I>(z), z) − g (τ(z), z)] |z=z(0) = 0,

for k ≥ 1, s ∈ St, where I = It, t = 1, 2, . . . , K − 1.

Proof of Lemma 2.6.1. At first, consider k = 1. Since

∂

∂z
g (τ(z), z) =

∂

∂τ
g(τ, z)|τ=τ(z) × τ

′
(z) +

∂

∂z
g(τ, z)|τ=τ(z),

we obtain for t = 1, . . . , K − 1:

∂t

∂zt
g(τ(z), z)|z=z(0)

= t!J(0)τ(t) +
∂t

∂zt
g(τ(0), z(0)) + · · ·

+
m∑

i1,...,it=1

∂t

∂τi1 . . . ∂τit

g(τ(0), z(0))τi1(1) · · · τit(1)i1! · · · it!,

(2.38)

where the right-hand side depends only on τ(0), . . . , τ(t) and does not depend
on τ(t+1), . . .. Therefore,

∂t

∂zt
g (τ(z), z) |z=z(0) =

∂t

∂zt
g
(
τ(t)(z), z

) |z=z(0) .

In the case k > 1, the proof is similar.

Return to the proof of Theorem 2.4.3. Let k = 1 and l = 0. Note that
on the right-hand side of (2.38), only the first term depends on τ(t), as the
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other ones depend only on τ(s), s ≤ t−1. Since g(τ∗(z), z) ≡ 0 in a vicinity
of z(0),

− ∂t

∂zt
g
(
τ∗
<t−1>(z), z

) |z=z0 = t!J(0)τ
∗
(t).

For k > 1, l �= 0, the proof is similar.
Proof of Theorem 2.4.4. At first, consider l = 0. Note that

(g(τ<I>(z), z))(s+u) =
∑

w+v=s+u

a(w)g̃(τ<I>(z), z)(v) (2.39)

for any collection of indexes I,

τ<I>(z) =
∑
s∈I

τ(s)(z − z(0))s.

For w = u, vector s is the only vector v such that w + v = s + u. Let
s ∈ Ŝn, I = În. Note that for w �= u, any vector v such that w + v = s + u
belongs to set Ŝt, t ≤ n − 1, from which it follows that the right-hand side
of (2.39) has the form

a(u)g̃
(
τ∗
<Ĩn>

(z), z
)

(s)
.

It can be verified by direct calculation that J(u) = a(u)J̃(0). Therefore,
Theorem 2.4.4 is valid at l = 0. For arbitrary l, its validity can be verified
by direct calculation.

2.6.2 Proof of Theorem 2.3.1

Consider a vector function τ̃(z) = (τ̃1(z), . . . , τ̃m−1(z))T , τ̃(z) : Z → Rm−1

such that ξτ̃ with τ̃ = τ̃(z) is a saturated locally D-optimal design at
the point Θ0T

=
(
Θ0T

1 , (q−1(z))T
)
. This function should satisfy equation

(2.10) and due to the Implicit Function Theorem (Gunning and Rossi, 1965)
we need only to prove that the Jacobi matrix, J , is invertible. For this, it
will do to prove that matrix B is of full rank. Suppose, oppositely, that
it is not the case. Then there exists a vector d ∈ Rm−1, d �= 0, such that
dT B = 0 and therefore

m∑
s=2

[
fi(x∗

s)f
′
j(x

∗
s) + f

′
i (x

∗
s)fj(x∗

s)
]
ds = 0, (2.40)

i, j = 1, . . . , m, (i, j) �= (m, m), x∗
s = τ̃s−1(z), fi(x) := fi(x, z), i = 1, . . . .m,

s = 1, . . . , m − 1.
Note that (2.40) holds also for (i, j) = (m, m). In fact, since

ξτ̄ =
(

x∗
1 . . . x∗

m−1 b
1/m . . . 1/m 1/m

)
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is a saturated locally D-optimal design, we have

∂

∂xs
det M(ξτ̄ , z) =

m∑
i,j=1

(fi(x∗
s)fj(x∗

s))
′
dij = 0, (2.41)

where dij = (M−1(ξτ̄ , z))i,j , s = 1, . . . , m − 1.
Multiplying (2.40) by ds and summing the results, we obtain

m∑
i,j=1

(
m∑

s=2

(fi(x∗
s)fj(x∗

s))
′
ds

)
dij = 0.

Substituting (2.40) in the above equation, we obtain(
m∑

s=2

(
f2

m(x∗
s)
)′

ds

)
dmm = 0.

Since (M(ξτ̄ , z))−1 is a positive definite matrix,

dmm = eT
m (M(ξτ̄ , z))−1

em �= 0, e, = (0, . . . , 0, 1)T ,

and, thus, (2.40) holds for (i, j) = (m, m).
Define a vector ν by the equality

νT f(x) = det

⎛
⎜⎜⎝

f1(x∗
1) . . . fm(x∗

1)
. . . . . . . . .
f1(x∗

m−1) . . . fm(x∗
m−1)

f1(x) . . . fm(x)

⎞
⎟⎟⎠ .

Certainly, νT f(x∗
i ) = 0, i = 1, . . . , m − 1, and we obtain from (2.40) that

m∑
s=2

νT f
′
(x∗

s)fj(x∗
s)ds = 0, j = 1, . . . , m.

Due to assumption A1, we have qT f
′
(x∗

s) �= 0, s = 1, . . . , m − 1. There-
fore,

L(t)α = 0, t = 1, . . . , m, (2.42)

where α =
(
dsν

T f
′
(x∗

s)
)m−1

s=1
; L(t) is obtained from the matrix(

fi(x∗
j )
)m,m−1
i,j=1

by rejecting the t-th line. It follows from (2.45) that

det L(t) = 0, t = 1, . . . , m, and it implies det
(
fi(x∗

j )
)m
i,j=1

= 0. However,
the last equality is impossible.

Note that if f1(x), . . . , fm−1(x) generate a Chebyshev system on [a,b],
then we need not use (2.41) and the points x∗i, i = 2, . . . , m need not to be
support points of a locally D-optimal design in order for the matrix B be of
full rank. This remark will be needed in the following for the consideration
of MMEMS designs.
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2.6.3 Proof of Theorem 2.2.3

Let us begin with the proof of part (I). A direct calculation shows that the
matrix J = J(δ) is of the form

J =
(

A l
lT 0

)
,

where

A =
(

∂2

∂τi∂τj
Φ(u, δ)

)m−1

i,j=1

∣∣∣∣
u=û(δ)

,

l = (l1, . . . , lm−1)T ,

li =
R1(τ̂i)
1 − δ

− R2(τ̂i)
1 + δ

, i = 1, . . . , m − 1,

Rs(τ̂i) =
∂

∂τi

(
det M(ξτ̂ , Λ(s))

)1/m

=
(
det M(ξτ̂ , Λ(s))

)1/m

fT (τ̂ , Λ(s))M−1(ξτ̂ , Λ(s))f(τ̂ , Λ(s),

s = 1, 2, Λ(1) = (1 − δ)c, Λ(2) = (1 + δ)c.

Let us prove that l �= (0, . . . , 0)T . Suppose, oppositely, that l = (0, . . . , 0)T .
With u = û, from the definition of û, we have

∂

∂α
Φ(u, δ) = 0,

∂

∂τi
Φ(u, δ) = 0, i = 1, . . . , m − 1

for u = û. From the first equality we obtain

det M(ξτ̂ , Λ(1))
1 − δ

=
detM(ξτ̂ , Λ(2))

1 + δ
.

Due to other m − 1 equalities, we have

1
1 + δ

R2(τ̂i) + α

{
R1(τ̂i)
1 − δ

− R2(τ̂i)
1 + δ

}
= 0, i = 1, . . . , m − 1.

Now, it follows from the supposition l = (0, . . . , 0)T that

∂

∂τi
ϕ(τ, Λ(s)) = 0, i = 1, . . . , m, s = 1, 2

with τ = τ̂ .
A direct calculation shows that

ϕ(τ, Λ(2)) = ϕ

(
τ

1 + δ
(1 − δ), Λ(1)

)
1 + δ

1 + δ
.
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Therefore,

∂

∂τi
ϕ(τ̂ , Λ(1)) = 0, i = 1, . . . , m − 1,

∂

∂τi
ϕ(hτ̂ , Λ(1)) = 0, h =

1 + δ

1 − δ
, i = 1, . . . , m − 1.

(2.43)

However, in Melas (1978) it was proved that the equation system (2.43)
has a unique solution in the set V . The contradiction obtained proves that
l �= (0, . . . , 0)T .

Let us now study the matrix A. Similar to the proof of Theorem 2.4.2,
it can be proved that the matrix A has the form

A = E − αBT
(1)D−1

(1)B(1) − (1 − α)BT
(2)D−1

(2)B(2),

where E is a diagonal matrix, D(1) and D(2) are positive definite, and α = α̂.
Repeating the arguments from the proof of Theorem 2.3.1, obtain that

the matrices B(1) and B(2)) have full rank and (E)ii ≤ 0, i = 1, . . . , m − 1.
Therefore the matrix A is negative definite and invertible.

Now, we have
det J = −lT Al �= 0.

Now, assertion (I) of Theorem 2.2.3 follows from Theorem 2.4.1.
Let us prove part (II). From the general equivalence theorem for max-

imin efficient designs (see Dette, Haines and Imhof (2003) or Müller and
Pazman (1998)) it follows that the MMEMS design ξτ̂ is MME design
among all approximate designs if and only if the two following conditions
are satisfied:

α̂fT (x,Λ(1))M−1(ξτ̂ , Λ(1))f(x,Λ(1))

+(1 − α̂)FT (x,Λ(2))M−1(ξτ̂ , Λ(2))f(x,Λ(2)) ≤ m
(2.44)

with x ≥ 0, where Λ(1) = (1 − δ)c, Λ(2) = (1 + δ)c, and τ̂ = τ̂(δ), and

min
Λ∈Ω(δ)

(τ, Λ) = min
0≤α≤1

αQ(τ, Λ(1)) + (1 − α)Q(τ, Λ(2)), (2.45)

where
Q(τ, Λ) = ϕ(τ, Λ)/ϕ(τ∗(Λ), Λ).

In a vicinity of Λ = c let LDMS designs be locally D-optimal among all
approximate designs. Then, due to the standard continuity arguments,
inequality (2.44) holds for sufficiently small δ.

In order to prove (2.45), we will need the following auxiliary result.

Lemma 2.6.2 Consider a general function ϕ : V ×Ω → R, where V ⊂ Rs

and Ω ⊂ Rk are open sets.
Suppose that the following assumptions are satisfied:
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(a1) The function ϕ is positive and twice continuously differentiable.

(a2) For any Λ ∈ Ω, the equation

g(τ, Λ) = 0,

where g(τ, Λ) =
(

∂
∂τ1

ϕ(τ, Λ), . . . , ∂
∂τ3

ϕ(τ, Λ)
)T

possess a unique solu-
tion τ∗ = τ∗(Λ).

(a3) For all Λ ∈ Ω, the matrix

K = BT J(Λ)B,

where

J(Λ) =
(

∂2

∂τi∂τj
ϕ(τ, Λ)

)s

i,j=1

∣∣∣∣
tau=τ∗(Λ)

,

B =
(

∂τi(Λ)
∂λj

)sk

i,j=1
, λj = (Λ)j ,

consists of negative elements.
Let Ω = Ω(δ), where

Ω(δ) =
{
Λ
∣∣Λ = (λ1, . . . , λk), (1 − δ)ci ≤ λi ≤ (1 + δ)ci, i = 1, . . . , k

}
,

0 < δ < 1, and
Q(τ, Λ) = ϕ(τ, Λ)

/
ϕ(τ∗(Λ), Λ).

Then for τ sufficiently close to τ∗(Λ)

min
Λ∈Ω(δ)

Q(τ, Λ) = min
0≤α≤1

α(Q(τ, Λ(1)) + (1 − α)Q(τ, Λ(2)),

where Λ(1) = (1 − δ)c, Λ(2) = (1 + δ)c.

Proof of the lemma. The proof is similar to that of Proposition A1 in
Dette, Melas and Pepelyshev (2003). A direct calculation shows that

∂

∂λi
ϕ(τ∗(Λ), Λ) =

∂

∂λi
ϕ(τ, Λ)

∣∣∣∣
τ=τ∗(Λ)

+
s∑

j=1

∂

∂τj
ϕ(τ, Λ)

∣∣∣∣
τ=τ∗(Λ)

∂

∂λi
(τ∗

j (Λ))
, (2.46)

i = 1, 2, . . . , k.
Due to assumption (a2), we obtain that

∂2

∂λi∂λj
ϕ(τ∗(Λ), Λ) =

∂2

∂λi∂λj
ϕ(τ, λ)

∣∣∣∣
tau=τ∗(Λ)

+
s∑

u,v=1

∂2

∂τu∂τv
ϕ(τ, Λ)

∣∣∣∣
rau=tau∗(Λ

∂

∂λi
τ∗
u(Λ)

∂

∂λj
τ∗
v (Λ),

(2.47)
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i, j = 1, . . . , k.
Now, it is easy to calculate

∂2

∂λi∂λj
Q(τ, Λ) = Q1ij(τ, Λ) + Q2ij(τ, Λ),

where Q1ij(τ, Λ) is such that Q1ij(τ∗(Λ), Λ) = 0,

Q2ij(τ, Λ) =
[(

∂2

∂λi∂λj
ϕ(τ, Λ)

)
H(Λ) − ϕ(τ, Λ)

∂2

∂λi∂λj
H(Λ)

]/
H2(Λ),

H(λ) = ϕ(τ∗(Λ), Λ),

i, j = 1, 2, . . . , k.
From (2.47) and the above formulas it follows that the matrix

(
∂2

∂λ1∂λj
Q(τ, Λ)

)k

i,j=1

∣∣∣∣
τ=τ∗(Λ)

is equal to K.
Since all elements of this matrix are negative by assumption (a3), the

minimum of Q(τ, Λ) by Λ ∈ Ω(δ) is achieved at the set {Λ(1), Λ(2)} for
sufficiently small δ and with τ sufficiently close to τ∗(Λ). This is equivalent
to the assertion of the lemma.

Now, let

ϕ(τ, Λ) =

(
det M(ξτ , Λ)∏
i<j(λi − λj)8

)1/m

. (2.48)

We can assume that the function in the points Λ with λi = λj for some
i �= j is codetermined with preserving the continuity (it can be done due
to the discussion in Section 2.2).

Condition (a1) is evidently satisfied for this function and conditions (a2)
and (a3) are proved in Melas (1978).

Thus, due to Lemma 2.6.2 for the function ϕ(τ, Λ) determined by (2.48)
condition (2.45) takes place for sufficiently small δ. This completes the
proof of part (II) of Theorem 2.2.3.



Chapter 3

Polynomial Models

Here, we study ek-optimal designs (i.e., designs to be optimal for individual
coefficients) and E-optimal designs in polynomial regression models.

On the basis of the functional approach, a full analytical solution is ob-
tained for ek-optimal designs on arbitrary intervals and E-optimal designs
on symmetrical segments of arbitrary length.

3.1 Introduction

The present chapter is devoted to constructing and studying optimal designs
for polynomial regression models on arbitrary intervals on the basis of the
functional approach. Here, we will demonstrate some peculiarities of the
approach for criteria different from D-criterion.

We will study ek-optimal designs (i.e., designs optimal for estimating
individual coefficients) as well as E-optimal designs. The results seem to
be rather completed.

Polynomial models are the classical tool for approximating dependen-
cies of different kinds to be experimentally studied. These models possess a
great universality and applicability. They remain actual in spite of various
alternatives, elaborated in the last years, such as rational models, spline
functions, wavelet models, and exponential and other nonlinear (by para-
meters) regression models.

Basic results for optimal designs for the polynomial models can be
found in Karlin and Studden (1966), Fedorov (1972), Pukelsheim (1993). A
great number of articles are also devoted to such optimal designs (see, e.g.,
Studden (1980a), Pukeisheim and Torsney (1991), Dette (1993), Heiligers
(1994), Huang, Chang, and Wong (1995), Lopez-Fedalgo and Rodriquez-
Diez (2004) among many others). However, if we consider the three popular
criteria: D-, c-, and E-optimality we discover that only for D-criterion, the
problem is completely solved (under the condition that the observation er-
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rors are uncorrelated and their variances are either the same or described
by one of the standard weight functions).

The presence of a simple and complete solution in this case caused by
the invariance of the problem with respect to shift and scale transformations
(the support points of the D-optimal designs can be received by the same
shift and scale transformation). On the standard design interval [−1, 1] the
problem of D-optimal designs is reduced to that of maximization of the
corresponding Wandermonde determinants. The last problem was solved
in view of other purposes in the 19th century by Stilties (see, Karlin and
Studden (1966, Chap. X)).

The problem of c-optimal designs, (i.e., the designs minimizing the vari-
ance of a given linear combination of parameters) was studied mainly for
the case of estimating individual coefficients (Studden, 1968; Sahm, 1998;
Dette, Melas, and Pepelyshev, 2004b). A full solution of the problem for
this case was obtained in the last of these papers with the help of the
functional approach. This solution will be presented in the next section.

The substantial difference of this case from the case of the D-criterion
consists of the following. The ek-optimal designs nontrivially depend on
a parameter (equal to the ratio of the origin of the design interval to its
length) and can be of different types. The application of the functional
approach allows one to study this dependence.

E-Optimal designs have a similar peculiarity, but they are even more
difficult for the study. An E-optimal design is defined as a design maxi-
mizing the minimal eigenvalue of the information matrix. Also, the form
of E-optimal designs depends substantially on the multiplicity of this value
(see Melas, 1995).

The first to consider E-optimal designs for the general polynomial model
was Kovrigin (see Kovrigin (1980); unfortunately only an abstract of his
work was published in English). In that paper E-optimal designs were con-
structed for the standard design interval [−1, 1]. This result in a slightly
more general form (truncated E-optimal designs were also considered) was
rediscovered in Pukelsheim and Studden (1993). In Heiligers (1991), E-
optimal designs were constructed for rather small symmetrical intervals and
segments lying on the nonnegative or nonpositive semiaxis. A generaliza-
tion of these results for heteroscedastic models can be found in Dette (1993)
and Heiligers (1994). In all of the cases, mentioned above, support points
of E-optimal design are extremal points of the polynomial least deviated
from zero on the corresponding interval. These points can be received from
extremal points of the Chebyshev polynomial of the first kind by the shift
and scale transformations. Such designs naturally can be called Chebyshev
designs. However, Chebyshev designs are the solution of the problem only
if its information matrix have multiplicity one or is a limit of such matri-
ces (Melas, 1995). Even, in the case of rather large symmetrical intervals
Chebyshev designs can not be E-optimal (Heiligers, 1991). Methods of con-
structing non-Chebyshev E-optimal designs were elaborated in Melas and
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Krylova (1998) and Melas (2000) on the basis of the functional approach.
Sections 3.3 and 3.4 are devoted to the elaboration of these methods.

3.2 Designs for Individual Coefficients

Individual coefficients in the polynomial model η(t, θ) =
∑m

i=0 θit
i are pro-

portional to derivatives of the regression function at the point t = 0: θ0 =
η(0, θ), θ1 = η

′
(0, θ), and θ2 = 1

2η
′′
(0, θ), . . . , θm−1 = η(m−1)(0, θ)/(m−1)!.

At least the first and second derivative have the natural interpretation as
velocity and acceleration. By this reason, estimating of individual coef-
ficients can be of certain practical value. A more detailed discussion on
this question can be found in Sahm (1998). The theoretical interest in the
problem was caused, particularly, by the fact that the information matrix
of optimal design can be singular.

The main peculiarity of the application of the functional approach in
this case is the necessity of a joint study of the direct and the dual prob-
lems. Both problems are incorporated in the minimax representation of the
criterion. In the present section we will introduce and study an equation
system that determines solutions of both problems as implicit functions of
the value (a + b)/(b − a), where a and b are the bounds of the design inter-
val. It will be shown that the function can be expanded into a Taylor series
using general recurrent formulas introduced in Section 2.4. Also, it will
be shown through examples that these expansions allow one to calculate
optimal designs with a high precision∗.

3.2.1 Statement of the problem

Consider the homoscedastic polynomial model

E[y(t)] = βT f(t) =
∑d

i=0 βit
i,

Var[y|t] = σ2 > 0,

where the variable t belongs to the compact design interval [a, b] (−∞ <
a < b < ∞), β = (β1, . . . , βn)T is the vector of unknown parameters, and
f(t) = (1, t, . . . , td)T – the vector of basic regression functions; results of
different observations assumed uncorrelated.

As in the previous chapter, we will call (approximate) experimental
design a discrete probability measure

ξ =
(

t1 . . . tn
ω1 . . . ωn

)
,

∗In this section materials (theorems, tables, and figures) are taken from Dette H.,
Melas, V.B., Pepelyshev, A.N. (2004b). Optimal designs for estimating individual coef-
ficients in polynomial regression — a functional approach. J. Statist. Plan. Inference,
118, 201–219. c©2002 Elsevier B.V. with permission of Elsevier Publisher.
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where ti �= tj (i �= j) are observation points and ωi > 0,
∑m

i=1 ωi = 1 are
weight coefficients. As in Chapters 1 and 2, by M(ξ) we will denote the
information matrix

M(ξ) =
n∑

i=1

f(ti)fT (ti)ωi.

As the criterion of optimality we will use the value

Φk(ξ) =

{
eT

k M−(ξ)ek, ek ∈ rangeM(ξ)

∞, otherwise,

k = 1, . . . , m, where A− denotes a generalized inverse for A and e1 =
(1, 0, . . . , 0)T , . . . , em = (0, 0, . . . , 0, 1)T .

A design will be called ek-optimal if it minimizes Φk(ξ) in the class of
all approximate designs. Note that Φk(ξ) equals the variance of the best
linear unbiased estimator of βk.

3.2.2 ek-Optimal designs

In this section, we briefly review the known results about ek-optimal de-
signs that form the basis for our analytic approach in the following section.
Because the cases k = 0 (estimation of the intercept) and k = d (estima-
tion of the highest coefficient) are well known (see, e.g., Sahm (1998) or
Studden (1980a)), we restrict ourselves to the case 1 ≤ k ≤ d − 1. Sahm
(1998) introduced the sets

Ai = (−νd−k+1−i, νi+1), i = 0, . . . , d − k,

B1,i = −B2,i = [νi, ρi], i = 1, . . . , d − k,

Ci = (ρi,−ρd−k+1−i), i = 1, . . . , d − k,

(3.1)

where νd−k+1 = ∞ and ν1 < ν2 < · · · < νd−k are the roots of the k-th
derivative of the polynomial

(x + 1)Ud−1(x) (3.2)

and Uj(x) = sin((j + 1) arccos x)/ sin(arccos x) is the j-th Chebyshev poly-
nomial of the second kind. The points ρi are obtained from these roots via
the transformation

ρi = νi + (1 + νi)
1 − cos(π/d)
1 + cos(π/d)

.

Note that the union of these sets defines a partition of the real axis and
Sahm (1998) proved that the location of the parameter s∗ = b+a

b−a determines
the structure of the optimal design as follows. If

s∗ ∈
d−k⋃
i=0

Ai,
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the ek-optimal design is supported at d + 1 points, including the boundary
points a and b. If

s∗ ∈
d−k⋃
i=1

B1,i,

the optimal design for estimating the parameter βk is supported at d points,
including the boundary point a, and the case

s∗ ∈
d−k⋃
i=1

B2,i

is essentially obtained by symmetry arguments interchanging the role of
a and b. In these cases, the ek-optimal design can be described explicitly
in terms of transformed Chebyshev points tj = cos(πj/d) and we refer to
Sahm (1998) for more details. In the remaining case,

s∗ ∈
d−k⋃
i=1

Ci, (3.3)

the situation is substantially more difficult. Here, the design is supported at
d points including both boundary points of the design space but an explicit
representation of the weights and support points is not available. Sahm
(1998) characterized the solution for this case by a constrained optimization
problem, which is difficult to use for the numerical construction of the
optimal design. Additionally, he proved the existence of points

µi ∈ Ci, i = 1, . . . , d − k, (3.4)

for which the solution of the design problem can be found explicitly. The
points µi are the zeros of the k-th derivative of the polynomial

(x2 − 1)Ud−2(x), (3.5)

and for s∗ = µi, the ek-optimal design is obtained as the optimal design
for estimating βk in a polynomial regression of degree d−1, where the case
s∗ ∈ ∪d−k−1

i=0 Ai is applicable (see Section 3.2.3 for more details). Further, we
will propose an analytic approach that allows the (numerical) determination
in all cases specified by (3.3) and, therefore, closes the final gap in the
solution of the ek-optimal design problem on arbitrary intervals.

3.2.3 Analytical properties of ek-optimal designs

Throughout this section we restrict ourselves to the (unsolved) case (3.3).
In this case, as it was mentioned above, the optimal design is of the form

ξ∗
k =

(
a, t∗2, . . . , t

∗
d−1, b

ω∗
1 , ω∗

2 , . . . , ω∗
d−1, ω

∗
d

)
. (3.6)
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If a is fixed and we vary b such that (2.3) is satisfied, the weights and
support points in (3.1) are functions of the right boundary point b, (i.e.,
t∗j = t∗j (b), j = 2, . . . , d − 1, w∗

j = w∗
j (b),and j = 1, . . . , d). We collect the

information given by the ek-optimal design ξ∗
k in the vector

τ∗ = τ∗(b) = (t∗2(b), . . . , t
∗
d−1(b), w

∗
2(b), . . . , w∗

d(b)) (3.7)

and note that this function is well defined due to the uniqueness of the
ek-optimal design ξ∗

k in (3.1) for 1 ≤ k ≤ d (see Sahm (1998)). Note that
formally the optimality criterion (1.3) could be considered as a function of
nontrivial weights and support points

τ = (t2, . . . , td−1, w2, . . . , wd), (3.8)

where the points ti and wi correspond to the support points and weights of
a design of the form (3.1), and the optimal design is implicitly determined
as a solution of the equations

∂

∂τ
Φk = 0.

However, a direct differentiation of the optimality criterion with respect to
support points and weights seems to be intractable due to the singularity
of the corresponding information matrix of the d-point design. In order
to circumvent this problem, we will relate the design problem to a dual
extremal problem for polynomials. This duality is used to derive a necessary
and sufficient condition for the parameters of the design and the coefficients
of the extremal polynomial by differentiating an appropriate function. We
begin with a slightly different formulation of the equivalence theorem for
ek-optimal designs than is usually stated in the literature (for a proof of
the following lemma, see, e.g., Pukelsheim (1993)).

Lemma 3.2.1 Let fk(t) = (1, t, . . . , tk−1, tk+1, . . . , td)T denote the vector
obtained from f(t) = (1, t, . . . , td)T by omitting the monomial tk. A design
ξ∗
k is ek-optimal on the interval [a, b] if and only if there exist a positive

number hk and a vector q∗ ∈ R
d such that the polynomial ρk(t) = tk −

fT
k (t)q∗ satisfies the following conditions:

(1) hkρ2
k(t) ≤ 1 ∀ t ∈ [a, b],

(2) supp (ξ∗
k) ⊂ {t ∈ [a, b] | hkρ2

k(t) = 1},

(3)
∫

ρk(t)fk(t)dξ∗
k(t) = 0 ∈ R

d.

Moreover, in this case, hk = Φk(ξ∗
k). The polynomial ρk(t) is called an

extremal polynomial.
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Throughout this section let

T =
{

(t2, . . . , td−1, ω2, . . . , ωd)T | a < t1 < · · · < td−1 < b;

ωi > 0;
∑d

j=2 ωj < 1
} (3.9)

define for any τ ∈ T the design ξτ by

ξτ =
(

a t1 . . . td−1 b
ω1 ω2 . . . ωd−1 ωd

)
, (3.10)

where ω1 = 1−∑d
j=2 ωj , and a vector dq ∈ R

d+1 for q ∈ R
d by the equation

fT (t)dq = tk − fT
k (t)q (q ∈ R

d). (3.11)

For any τ ∈ T , we will consider the function

ϕ(q, τ, b) = dT
q M(ξτ )dq. (3.12)

It is well known (see Karlin and Studden (1966) or Pukelsheim (1993)) that
the optimal design ξτ∗ satisfies a saddle point characterization; that is,

ϕ−1(q∗, τ∗, b) = minτ∈T maxq∈Rd ϕ−1(q, τ, b)

= maxq∈Rd minτ∈T ϕ−1(q, τ, b).
(3.13)

Here, the vector q∗ is the optimal solution of the extremal problem

inf
q∈Rd

sup
x∈[a,b]

|xk − fT
k (x)q|, (3.14)

and the saddle point is unique, because the extremal polynomial ρk(x) =
xk−fT

k (x)q∗ must attain its extremal values at the support points of the ek-
optimal design ξ∗

k, which is unique whenever 1 ≤ k ≤ d. Note that formally
the minimum has to be taken over the set of all vectors τ ∈ T such that
ek is estimable by the design ξτ , i.e., ek ∈ Range(M(ξτ )). However, it is
straightforward to see that in the case ek �∈ Range(M(ξτ )), we have

max
q∈Rd

ϕ−1(q, τ, b) = ∞

(see also Studden (1968)). Consequently, the optimization over the slightly
larger set T in (3.9) will yield a solution τ∗, q∗ such that ek is estimable
by the design ξτ∗ , even if this restriction is not incorporated in the defini-
tion of the set T. The following result is an immediate consequence of this
discussion and its proof is therefore omitted.
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Lemma 3.2.2 The design ξτ∗ is ek-optimal and the vector q∗ corresponds
to the solution of the generalized Chebyshev problem (3.14) if and only if
the point (q∗, τ∗) ∈ R

d × T is the unique solution of the system

∂

∂τ
ϕ(q, τ, b) = 0,

∂

∂q
ϕ(q, τ, b) = 0

(3.15)

in the set of all pairs (q, τ) ∈ R
d ×T such that ek is estimable by the design

ξτ and such that

|dT
q f(t)|2 = |tk − qT fk(t)|2 ≤ dT

q M(ξτ )dq for all t ∈ [a, b] .

Here, ∂
∂τ ϕ and ∂

∂q ϕ denote the gradient of ϕ with respect to τ ∈ T and
q ∈ R

d, respectively.

Lemma 3.2.2 determines a vector differential equation, which implicitly
determines τ∗, q∗ as a vector-valued function of the boundary point b such
that (3.3) is satisfied (where the left boundary of the design space has
been fixed). In the following discussion, we will show that the Jacobian
matrix of equation (3.15) is nonsingular, which allows the application of
the Implicit Function Theorem to study the functions τ∗(b) and q∗(b) as
analytic functions of the right boundary b such that (2.3) is satisfied. To
this end, define

Θ = (Θ1, . . .Θ3(d−1)) = (qT , τT ),

Θ∗(b) = (q∗T (b), τ∗T (b))
(3.16)

as the vector containing the parameters of the ek-optimal design and the
coefficients of the solution of the corresponding Chebyshev problem and

ϕ̄(Θ, b) = ϕ(q, τ, b);

then the basic equation (3.15) can be rewritten as

∂

∂Θ
ϕ̄(Θ, b) = 0 ∈ R

3(d−1). (3.17)

Theorem 3.2.1 For any fixed a ∈ R, define a function s : (a,∞) → R by

s(b) =
(a + b)
(a − b)

and Bi = s−1(Ci); then the components of the function

Θ∗ :

{ ⋃d−k
i=1 Bi → R

3(d−1)

b → Θ∗(b)



3.2. DESIGNS FOR INDIVIDUAL COEFFICIENTS 79

are real analytic functions. Moreover, the vector function Θ∗ is a solution
of the system

G(Θ(b), b) · Θ′(b) = Q(Θ(b), b) (3.18)

with initial conditions

Θ(b0) = Θ∗(b0), (3.19)

where b0 is any arbitrary point such that (3.3) is satisfied for s0 = s(b0)
and the functions G and Q are defined by

G(Θ, b) =
( ∂2

∂Θi∂Θj
ϕ̄(Θ, b)

)3(d−1)

i,j=1
, (3.20)

Q(Θ, b) =
( ∂2

∂b∂Θi
ϕ̄(Θ, b)

)3(d−1)

i=1
. (3.21)

Proof. We will prove that the Jacobi matrix

J(b) = G(Θ∗(b), b) ∈ R
3(d−1)×3(d−1) (3.22)

is nonsingular. The assertion of Theorem 3.2.1 then follows by a straight-
forward application of the Implicit Function Theorem (see, e. g., Gunning
and Rossi (1965)). For this Jacobi matrix, we obtain the representation

J = J(b) = 2

⎛
⎝ D BT

1 BT
2

B1 E 0
B2 0 0

⎞
⎠

−

, (3.23)

where A− denotes the 3(d − 1) × 3(d − 1) matrix obtained from A ∈
R

(3d−2)×(3d−2) by deleting the (k + 1)-st row and (k + 1)-st column. The
matrices D, B1, B2, and E in (3.23) are defined as follows (t∗1 = a, t∗d = b):

D = M(ξτ∗) ∈ R
d+1×(d+1),

BT
1 =

(
w∗

2f ′(t∗2) · dT
q∗f(t∗2), . . . , w

∗
d−1f

′(t∗d−1) · dT
q∗f(t∗d−1)

)
= c
(
w∗

2f(t∗2),−w∗
3f(t∗3), . . . , (−1)d−1w∗

d−1f
′(t∗d−1)

)
,

BT
2 =

(
dT

q∗f(t∗2) · {f(t∗2) − f(t∗1)}, . . . , dT
q∗f(t∗d) · {f(t∗d) − f(t∗1)}

)
= c
(
f(t∗2) − f(t∗1), (−1){f(t∗3) − f(t∗1)}}, . . . , (−1)d{f(t∗d) − f(t∗1)}

)
,

E = diag
(
w∗

2dT
q∗f(t∗2) · dT

q∗f ′′(t∗2), . . . , w
∗
d−1d

∗
qf(t∗d−1) · d∗

qf
′′(t∗d−1)

)
= diag

(
w∗

2ρ′′(t∗2)ρ(t∗2), w
∗
3ρ′′(t∗3)ρ(t∗3), . . . , w

∗
d−1ρ

′′(t∗d−1)ρ(t∗d−1)
)
,

(3.24)
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where c = ∆Φ−1/2(ξτ∗), ∆ ∈ {−1, 1} is a fixed constant, and the polyno-
mial ρ is defined by ρ(t) = dT

q∗f(t) (all other entries in the matrix J are 0).
The Jacobi matrix J in (3.23) is essentially obtained by direct differentia-
tion and the properties of the extremal polynomial ρ(t) = dT

q∗f(t) presented
in Lemma 3.2.1. For example, consider the calculation of the matrix BT

1
and let I− ∈ R

d+1×d denote the identity matrix with the deleted (k + 1)-st
column. We obtain, by straightforward calculation,

∂2ϕ

∂t∂q
=

∂

∂t
2IT

−M(ξτ ) dq

= 2IT
−
(
wj+1d

T
q f ′(tj+1) · f(tj+1) + wj+1d

T
q f(tj+1) · f ′(tj+1)

)d−2

j=1
.

Now, for q = q∗, we have ρ(t∗j ) = dT
q∗f(t∗j ) = ∆(−1)jΦ−1/2(ξτ∗) (j =

2, . . . , d) for some ∆ ∈ {−1, 1}. This follows from Lemma 3.2.1, which shows
that ρ is equioscillating and implies ρ′(t∗j ) = dT

q∗f ′(t∗j ) = 0. Consequently,
we obtain

BT
1 =

2 · ∆

Φ1/2
k (ξτ∗)

(
(−1)j+1w∗

j+1f
′(t∗j+1)

)d−2

j=1
,

which proves the representation of the block BT
1 in (3.23). The other cases

are treated similarly and left to the reader.
On the basis of the representation (3.23), the proof of the nonsingularity

of the Jacobi matrix J(b) is straightforward. Note that the matrix D− is
non-negative definite, because it is obtained from the non-negative definite
matrix M(ξτ∗) by deleting the (k+1)-st row and column. Similarly, the ma-
trix E defined in (3.24) is negative definite, which follows, because it essen-
tially contains the second derivatives ρ′′(ti) (i = 2, . . . , d−1) of the extremal
polynomial ρ(t) = tk − fT

k (t)q∗ specified in Lemma 3.2.1. To be precise,
we note that the results of Sahm (1998) show that for the case b = µi, this
polynomial is of degree d − 1 whereas in the case b ∈ Ci\{µi}, the polyno-
mial is of degree d with one extremum outside the interval [a, b]. A careful
counting of the multiplicities of the zeros of the polynomial Φ(ξτ∗)ρ2(t)− 1
shows

ρ′′(ti) = dT
q∗f ′′(ti) �= 0, i = 2, . . . , d − 1. (3.25)

Moreover, by the oscillating property of the extremal polynomial, the
second derivative must alternate in sign, yielding ρ′′(ti)ρ(ti) < 0 (i =
2, . . . , d − 1), and the definition of the matrix E in (3.24) shows that this
matrix has negative diagonal elements.

From these auxiliary results, it follows that the matrix

D− − B̃T
1 E−1B̃1

is positive definite, where B̃T
1 denotes the matrix obtained from BT

1 by
deleting the (k + 1)-st row. Similarly, let B̃T

2 be obtained from BT
2 by
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deleting the (k + 1)-st row, then it follows by the Frobenius formula (see,
e.g., Fedorov (1972)) and the representation (3.23) that detJ(b) is equal to

det

⎛
⎝ D− B̃T

1 B̃T
2

B̃1 E 0
B̃2 0 0

⎞
⎠

= − det
(

D− B̃T
1

B̃1 E

)
· det

{
(B̃2 | 0)

(
D− B̃T

1
B̃1 E

)−1(
B̃T

2
0

)}
= − det E · det(D− − B̃T

1 E−1B̃1) · det{B̃2(D− − B̃T
1 E−1B̃1)−1B̃T

2 }.
(3.26)

Now, the matrix B̃T
2 is of rank d − 1 (because of the Chebyshev property

of the polynomials 1, x, . . . , xd) and the matrix D− − B̃T
1 E−1B̃1 is positive

definite by the preceding discussion. Consequently, all determinants in
(3.26) are different from zero, which proves the nonsingularity of the Jacobi
matrix J(b).

Theorem 3.2.2 Let b0 ∈ Bi = s−1(Ci) for some i = 1, . . . , d − k, and Θ∗

be the function defined in Theorem 3.2.1; then the coefficients in the Taylor
expansion

Θ∗(b) = Θ∗(b0) +
∞∑

j=1

Θ∗(j, b0)(b − b0)j

in a neighborhood of the point b0 can be obtained recursively by the formulas

Θ∗(n + 1, b0) = − 1
(n + 1)!

J−1(b0)(
d

db
)n+1g(Θ∗

(n)(b), b)
∣∣∣
b=b0

, (3.27)

where n = 0, 1, 2, . . ., the polynomial Θ∗
(s) of degree s∗ is defined by

Θ∗
(s)(b) = Θ∗(b0) +

s∑
j=1

Θ∗(j, b0)(b − b0)j ,

and the function g is given by

g(Θ̃, b) =
∂

∂Θ
ϕ̄(Θ, b) |Θ=Θ̃ . (3.28)

This theorem is a particular case of Theorem 2.4.3.
In general, Theorems 3.2.1 and 3.2.2 show that for any b0 such that

(3.3) is satisfied, the functions

t∗j : b → t∗j (b), j = 2, . . . , d − 1,

w∗
j : b → w∗

j (b), j = 2, . . . , d,

q∗
j : b → q∗

j (b), j = 1, . . . , d
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(here q∗
j denotes the j-th component of the vector of coefficients q∗ of the

extremal polynomial) can be expanded into a Taylor series in a neighbor-
hood of the point b0. The coefficients of these expansions can be directly
computed from the recurrence formulas (3.27) and, therefore, the remaining
case in the optimal design problem for estimating the individual coefficients
in a polynomial regression on an arbitrary interval can be easily solved nu-
merically if we are able to find a point b0 such that (3.2) is satisfied and for
which the solution of the ek-optimal design problem is known. But such
a point has been identified by Sahm (1998), who showed that there exist
d − k points

µi = s(bi) =
a + bi

a − bi
∈ Ci, i = 1, . . . , d − k,

such that the optimal design for estimating the parameter βk is supported
at the d Chebyshev points

t∗j (bi) =
bi − a

2

{
cos

(
j − 1
d − 1

π

)
− µi

}
, j = 1, . . . , d, (3.29)

with weights

w∗
j (bi) = 2γj−1

∑k
=0(d − � − 1)γ cos( (j−1)

d−1 π)C(d−k−1)
k− (µi)

C
(d−k−1)
k (µi)

, (3.30)

j = 1, . . . , d, where γ0 = γd−1 = 1/2(d−1), γj = 1/(d−1), j = 1, . . . , d−2,
and C

(λ)
n (x) denotes the n-th ultraspherical polynomial (see, e.g., Szegö

(1959)). Moreover, the points µi (or, equivalently, bi) are determined as
the zeros of the polynomial in (3.5). For this reason, we are able to find
in each interval s−1(Ci) a Taylor expansion for the weights and support
points of the ek-optimal design, which is based on the location bi = s−1(µi)
(i = 1, . . . , d − k). This technique provides a numerical solution for the
open design problem and will be illustrated in the following subsection.
We finally remark that the Taylor expansion is not necessarily valid on
the whole interval Bi. From a theoretical point of view, it is possible that
further expansions have to be performed in order to cover the whole range
of Bi. However, in all of our numerical examples only one expansion was
sufficient (although we cannot prove this in general).

3.2.4 A numerical example

Consider the case d = 4. We are interested in the estimation of the coeffi-
cient of β1, β2, and β3 in the case that cannot be treated by the results of
Sahm (1998). We concentrate on the case a = −1 and vary the parameter b,
which corresponds to the situation considered in Section 3.2.3. The general
case can be reduced to this case by an appropriate scaling of the symmetry
parameter s∗ = s(b) = (a + b)/(a − b).
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(a) If k = 3, we have one critical interval for the symmetry parameter s∗

given by
C1 = (ρ1,−ρ1) = (−0.1213, 0.1213),

and µ1 = 0, which corresponds in the b scale to the interval

B1 = s−1(C1) = (0.7836, 1.2761) (3.31)

and b1 = s−1(0) = 1. The first six coefficients in the Taylor expan-
sion for the coefficients of the extremal polynomial, interior support
points and weights are listed in Table 3.1 and are calculated by the
procedure described at the end of Section 3.2.3 using the recursive
relation (3.27). For example, if b = 1.2, we obtain for the e3-optimal
design on the interval [−1, 1.2],

ξ∗
3 =

( −1 −0.595 0.395 1.2
0.239 0.412 0.261 0.088

)
and the extremal polynomial is given by

ρ3(t) = t3 − 0.654t4 + 0.685t2 − 0.808t − 0.134.

Similarly, the optimal design for estimating the coefficient of x3 on
the interval [−1, 0.9] is given by

ξ∗
3 =

( −1 −0.406 0.506 0.9
0.121 0.290 0.379 0.210

)
and the extremal polynomial is

ρ3(t) = t3 + 0.426t4 − 0.333t2 − 0.650t + 0.052.

The corresponding weights and support points are displayed in Fig-
ures 3.1 and 3.2 for a parameter b running continuously through the
interval (−1,∞). Note that this covers all cases in (3.1) and that the
structure of the design changes four times.

In order to investigate the efficiency of the determined designs, we
use a lower bound for the efficiency derived in Dette (1996). For the
situation of ek-optimality, this bound is given by

eff(ξ∗
3) =

(eT
k M−(ξ∗

3)ek)−1

supξ(eT
k M−(ξ)ek)−1

≥ 1
supt∈[−1,b]

√
h∗

3|t3 − fT
3 (t)q∗|

(3.32)

with h∗
3 = eT

3 M−(ξ∗
3)e3. We obtain for the cases b = 1.2 and b = 0.9

the lower bounds 0.975 and 0.997, respectively, which demonstrates
that the designs determined numerically by the Taylor expansion are
nearly the optimal ones.
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Table 3.1: First six coefficients of the Taylor expansions of the coefficients
of the extremal polynomial t3 + q∗

4t4 + q∗
3t2 + q∗

2t + q∗
1 the interior support

points t∗2 and t∗3 and weights w∗
2 , w∗

3 , and w∗
4 of the e3-optimal design

in a polynomial regression of degree 4 on the interval [−1, b], where b ∈
(0.8836, 1.2761). The center of the expansion is b1 = 1.

0 1 2 3 4 5
q∗
1 0.0000 −0.6250 −0.6250 5.4688 0.0000 −87.2500

q∗
2 −0.7500 −0.7500 2.5625 0.0000 −8.0000 8.0000

q∗
3 0.0000 3.5000 0.0000 −18.0000 18.0000 314.5000

q∗
4 0.0000 −4.0000 4.0000 13.0000 −30.0000 −217.2500

t∗
2 −0.5000 −0.7500 2.0000 −1.0000 −15.5000 23.7500

t∗
3 0.5000 −0.2500 −2.0000 1.0000 15.5000 −23.7500

w∗
2 0.3333 0.4444 −0.0741 −2.2099 1.4053 26.1485

w∗
3 0.3333 −0.4444 0.3704 1.9136 −5.0021 −18.6588

w∗
4 0.1667 −0.4444 0.0741 2.2099 −1.4053 −26.1485

Figure 3.1: Support points of e3-optimal designs for the cubic regression
model

Figure 3.2: Weight coefficients of e3-optimal designs for the cubic regression
model

(b) If k = 2, we have two critical intervals for the symmetry parameter
s∗ given by

C1 = (−0.5687,−0.1213), C2 = (0.1213, 0.5687),
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and the specific points (where the solution is known) are µ1 =
−0.4564andµ2 = 0.4564. This corresponds to the intervals

B1 = s−1(C1) = (1.9677, 3.6374),

B2 = s−1(C2) = (0.2749, 0.5082)
(3.33)

and the points b1 = s−1(µ1) = 2.6794andb2 = s−1(µ2) = 0.3732 for
the parameter b, which can be used for the Taylor expansion in the
respective intervals. The corresponding support points and weights
are depicted in Figures 3.3 and 3.4, where the parameter b runs con-
tinuously through the interval (−1,∞). Note that this covers all cases
in (3.1) and that the structure of the design changes eight times.

For example, if b = 2.2, the optimal design for estimating the para-
meter β2 on the interval [−1, 2.2] is

ξ∗
2 =

( −1 0.109 1.582 2.2
0.217 0.415 0.283 0.085

)
and the extremal polynomial is given by

ρ2(t) = −0.498 − 0.217t + t2 + 0.061t3 − 0.194t4 .

The e2-optimal design on the interval [−1, 0.45] is given by

ξ∗
2 =

( −1 −0.716 −0.044 0.45
0.083 0.280 0.417 0.220

)
and the extremal polynomial is given by

ρ2(t) = −0.103 + 0.090t + t2 + 0.010t3 − 0.902t4

(note that for b = 0.45, we have s∗ = 11/29, which corresponds to
the case b ∈ B2). The corresponding lower bounds in (3.32) for the
efficiencies are given by 0.9906 in the case b = 2.2 and 0.9745 for
b = 0.45.

For the sake of completeness, the first coefficients of the corresponding
expansions are listed in Tables 3.2 and 3.3.

(c) If k = 3, the critical intervals for the symmetry parameter are given
by

C1 = (−0.8504,−0.6925),

C2 = (−0.2060, 0.2060),

C3 = (0.6925, 0.8504)

and the specific points (for which the solution is known) are µ1 =
0.7906, µ2 = 0, and µ3 = 0.7906, respectively. This gives in the bscale
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Figure 3.3: Support points of e2-optimal designs for the cubic regression
model

Figure 3.4: Weight coefficients of e2-optimal designs for the cubic regression
model

Table 3.2: First six coefficients of the Taylor expansions of the coefficients
of the extremal polynomial t2 + q∗

4t4 + q∗
3t3 + q∗

2t + q∗
1 and the interior

support points t∗2 and t∗3 and weights w∗
2 , w∗

3 ,and w∗
4 of the e2-optimal

design in a polynomial regression of degree 4 on the interval [−1, b], where
b ∈ (1.9677, 3.6374). The center of the expansion is b1 ≈ 2.6794.

0 1 2 3 4 5
q∗
1 −0.6111 −0.0837 0.2284 −0.2006 −0.0144 0.1035

q∗
2 0.1679 0.6556 −0.3245 −0.1527 −0.0306 0.5245

q∗
3 −0.3970 −0.6202 0.4635 −0.0246 −0.0262 −0.3029

q∗
4 0.0000 0.2550 −0.2492 0.0956 −0.0232 0.0922

t∗
2 −0.0801 −0.2936 0.2332 0.0121 −0.1175 −0.0640

t∗
3 1.7596 0.2064 −0.4092 −0.0212 0.3126 0.0944

w∗
2 0.4550 0.0679 −0.0338 −0.0097 −0.0004 0.0283

w∗
3 0.2116 −0.1159 0.0804 0.0117 −0.0308 −0.0320

w∗
4 0.0450 −0.0679 0.0338 0.0097 0.0004 −0.0283
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Table 3.3: First six coefficients of the Taylor expansions of the coefficients
of the extremal polynomial t2 + q∗

4t4 + q∗
3t3 + q∗

2t + q∗
1 and the interior

support points t∗2 and t∗3 and weights w∗
2 , w∗

3 ,and w∗
4 of the e2-optimal

design in a polynomial regression of degree 4 on the interval [−1, b], where
b ∈ (0.2749, 0.5082). The center of the expansion is b2 ≈ 0.3732.

0 1 2 3 4 5
q∗
1 −0.0851 −0.3725 1.2528 10.3417 −33.0375 −172.2301

q∗
2 −0.0627 1.5888 6.2421 −37.8069 188.1016 2915.9334

q∗
3 1.0636 −14.7798 7.5615 212.6852 −1336.5488 −10635.3851

q∗
4 0.0000 −13.1439 13.4439 168.2561 −1132.4771 −7551.2227

t∗
2 −0.6567 −1.2064 7.8709 −24.0211 −237.7108 2949.0192

t∗
3 0.0299 −0.7064 −4.4867 13.6928 75.3346 −1269.9645

w∗
2 0.2116 0.8321 1.9158 −20.5706 26.1568 1026.1537

w∗
3 0.4550 −0.4878 −0.4334 9.4172 −57.9234 −266.3371

w∗
4 0.2884 −0.8321 −1.9158 20.5706 −26.1568 −1026.1537

the intervals

B1 = s−1(C1) = (5.5041, 12.369),

B2 = s−1(C2) = (0.6583, 1.5190),

B3 = s−1(B3) = (0.0808, 0.1817)

and b1 = s−1(µ1) = 8.5511, b2 = s−1(0) = 1 and b3 = s−1(µ3) =
0.1169, respectively. The corresponding tables for the coefficients
in the Taylor expansions and the figures for the support points and
weights as functions of the parameter b can be found in the technical
report of Dette, Melas, and Pepelyshev (2000). The interpretation
of these graphs and tables is exactly the same as in the previous
examples and therefore omitted.

3.3 E-Optimal Designs: Preliminary Results

As it was pointed out in Chapter 1 E-optimal designs minimize the variance
of the least favorable linear combination of the parameters and by this
reason can be of a practical interest. The main task of the present and the
next section is to derive a solution of the problem for polynomial models
of arbitrary degree on arbitrary symmetrical segments. Some results for
nonsymmetrical segments are also will be presented. Moreover we will
begin with a dual theorem for general linear model to provide a tool for the
study.
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3.3.1 Statement of the problem and a dual theorem

Consider the standard homoscedastic linear regression model

E(y|t) = θT f(t), (3.34)

where f(t) = (f1(t), . . . , fm(t))T is the vector of known functions that are
linear independent and continuous on a compact topological space X and
θ = (θ1, . . . , θm)T is the vector of parameters to be evaluated.

Let ξ be a discrete probability measure on X (approximate experimental
design) given by the table

ξ =
(

t1 . . . tn
ω1 . . . ωn

)
,

where ti �= tj (i �= j), ωi > 0,
∑m

i=1 ωi = 1, and

M(ξ) =
∫

f(t)fT (t)ξ(dt).

A design is called E-optimal if it maximizes

λmin(M(ξ)),

where λmin denotes the minimal eigenvalue of M in the class of all approx-
imate designs.

Our main problem is constructing and studying E-optimal designs for
the case X = [−r, r], fi(t) = ti−1, i = a, . . . , m. For this purpose, we will
need a duality theorem obtained independently in Pukelsheim (1980) (see
also Pukelsheim (1993)) and Melas (1982). In the last paper a more direct
approach was implemented and we will use it throughout the section.

Since the set of information matrices is compact (e. g., see Karlin and
Studden (1966, Chap. X)), an E-optimal design for the standard model of
linear regression exists.

Let ξα be an E-optimal design. Let Pα denote a linear subset of Rm,
spanned by the eigenvectors corresponding to the minimal eigenvalue of
M(ξα). Let P = ∩Pα, where the intersection is realized over all E-optimal
designs.

Let A be the class of non-negative definite matrices A, such that trA =
1. The results of Melas (1982) can be stated in the following way.

Theorem 3.3.1 (Duality and equivalence theorem) For the model
described above, the E-optimality of a design ξ∗ is equivalent to the ex-
istence of a matrix A∗ ∈ A such that

max
t∈X

fT (t)A∗f(t) ≤ λmin(M(ξ∗)).

Moreover,
min
A∈A

max
t∈X

fT (t)Af(t) = max
ξ

λmin(M(ξ)),
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where the minimum on the right-hand side is taken over all experimental
designs, and equality

fT (t)A∗f(t) = λmin(M(ξ∗))

is valid for all support points t ∈ supp ξ∗ of any E-optimal design ξ∗.
The polynomial

ρ(t) = fT (t)A∗f(t)

will be called an extremal polynomial.

Theorem 3.3.2 Any matrix A∗ from Theorem 3.3.1 is of the form

A∗ =
ν∑

i=1

αip(i)p
T
(i),

where ν = dimP, αi ≥ o,
∑

αi = 1, and {p(i)} is some orthonormed basis
in P. This basis will be called an extremal basis.

Note that the matrix A∗ is a solution of the dual problem,

max
t∈X

fT (t)Af(t) → min
A∈A

.

3.3.2 The number of support points

Now, we will consider polynomial models on arbitrary design intervals; that
is, we will assume X = [a, b], fi(t) = ti−1, i = 1, . . . , m.

The case m = 1 is trivial since the regression function is a constant and
does not depend on the choice of design.

For the case m = 2,
θT f(t) = θ1 + θ2t; (3.35)

a full solution is given by the following theorem.

Theorem 3.3.3 Consider the linear model (3.35) on the arbitrary design
interval [a, b], −∞ < a < b < ∞.

I. If ab ≥ −1, then an E-optimal design is unique; this design is

ξ∗ =
(

a b
ω 1 − ω

)
,

where ω = (2 + b2 + ab)/[4 + (a + b)2], and

λmin(M(ξ∗)) = r2/(r2 + v2),

where r = (b − a)/2 and v = (b + a)/2.
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II. If ab < −1, then any design of the form

ξu1,u2 =
(

u1 u2
u2

u2−u1
− u1

u2−u1

)
,

where 0 > u1 ≥ a, 0 < u2 ≤ b, |u1u2| ≥ 1 is E-optimal, and

λmin (M(ξu1,u2)) = 1.

Proof. Let ab < −1. Then designs of the form ξu1,u2 exist, and for them,

M(ξu1,u2) =
(

1 0
0 |u1u2|

)
, λmin(M(ξu1,u2)) = 1

since |u1u2| ≥ 1. Note that for an arbitrary design ξ,

λmin(M(ξ)) ≤ eT
1 M(ξ)e1 = 1.

Thus designs ξu1,u2 are E-optimal designs.
Now, let ab ≥ −1. By an immediate calculation, we obtain that

λmin(M(ξ∗)) =
[

1
r2 +

v2

r2

]−1

,

where r = (b − a)/2 v = (b + a)/2.
Set

q =
(

−u

r
,
1
r

)T

, A∗ = qqT /qT q.

Then we have

max
t∈[a,b]

fT (t)A∗f(t) = max
t∈[a,b]

(
t − u

r

)2 /
qT q = 1

/
qT q = λmin(M(ξ∗)),

and by Theorem 3.3.1, the design ξ∗ is an E-optimal design. A verification
that the E-optimal design is unique can be done with the help of Theorem
3.3.1 and is left to the reader.

Now, let m > 2. Denote by ξ∗,

ξ∗ =
(

t∗1 . . . t∗n
ω∗

1 . . . ω∗
n

)
,

an E-optimal design and set

λ∗ = λmin (M(ξ∗)) .



3.3. E-OPTIMAL DESIGNS: PRELIMINARY RESULTS 91

Lemma 3.3.1 If m > 2, then all E-optimal designs have the same support
with the interval endpoints included.

An extremal polynomial is uniquely determined by the expression

ρ(t) = λ∗ + γ(t − a)(t − b)
m−1∏
i=2

(t − t∗i )
2,

where a < t∗2 < · · · < t∗m−1 < b are support points of an E-optimal design
and γ > 0 is a constant. Additionally, λ∗ < 1.

Proof. Let us fix a matrix A∗ from Theorem 3.3.1. Let ξ∗ be an arbitrary
E-optimal design and t∗ a support points of ξ∗. Then we have

fT (t)A∗f(t) ≤ λ∗, t ∈ [a, b],

fT (t∗)A∗f(t∗) = λ∗.

Suppose that
ρ(t) = fT (t)A∗f(t) �≡ λ∗.

Note that ρ(t) is a polynomial of degree ≤ 2m − 2. If t∗ = a or b, then
t∗ is a root of the polynomial ρ̃(t) = λ∗ − ρ(t). Also, if t∗ �= a, b, then t∗ is
a root of multiplicity ≥ 2 of this polynomial.

If n < m, then λmin(M(ξ)) = 0. Therefore, an E-optimal design pos-
sesses no fewer than m support points. This means that the polynomial ρ̃(t)
has degree 2m − 2 and the same number of real roots on [a, b] with regard
to their multiplicity. It follows from here that ρ(t) has the form pointed
out in the lemma and all E-optimal designs have the same support, a and
b belong to ξ∗, and n = m.

Let us now demonstrate that the polynomial equals λ∗ identically cannot
be an extremal one. Suppose, oppositely, that

ρ(t) = fT (t)A∗f(t) ≡ λ∗. (3.36)

According to Theorem 3.3.2, any matrix A∗ is of the form∑ν
i=1 p(i)p

T
(i)αi, where {p(i)} is some orthogonal bases of P, αi ≥ 0, and∑

αi = 1. Therefore, equality (3.36) can be represented in the form
ν∑

i=1

(
pT
(i)f(t)

)2
αi ≡ λ∗.

This equality is valid if and only if e1 = (1, 0, . . . , 0)T ∈ P and λ∗ = 1.
Let us demonstrate that if m > 2, then λ∗ < 1 for any interval [a, b].
Indeed,

λ∗ = λmin(M(ξ∗)) ≤ eT
1 M(ξ∗)e1 = 1,

and since M(ξ∗)e1 �= e1 for m > 2, λ∗ < 1.

The following result is needed in order to prove the uniqueness of an
E-optimal design.
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Lemma 3.3.2 Let m and s be arbitrary integers. If vectors b(i) =
(b(i)

1 , . . . , b
(i)
s ), i = 1, . . . , m, are not all null vectors, then there exists a

vector β = (β1, . . . , βs) such that

s∑
j=1

βjb
(i)
j �= 0, i = 1, 2, . . . .m.

Proof. It b = (b1, . . . , bs) �= 0, the equation
∑s

j=1 βjbi = 0 is a hyperplane
equation. It is obvious that there exists a vector β that lies outside of m
hyperplanes.

Theorem 3.3.4 For the model of polynomial regression on an arbitrary
compact interval with m > 2, an E-optimal design is unique. By Lemma
3.3.1, it is concentrated at m points, including a and b.

Proof. By Lemma 3.3.1, all E-optimal designs have the same support
points {a = t∗1, t

∗
2, . . . , t

∗
m−1, t

∗
m = b}. Let us demonstrate that the weight

vector ω = (ω∗
1 , . . . , ω∗

m)T is determined uniquely.
According to Theorems 3.3.1 and 3.3.2,

ν∑
i=1

(
pT
(i)f(x∗

l )
)2

αi = λ∗, l = 1, . . . , m,

where {p(i)} is some orthonormal basis of P, αi ≥ 0, and
∑

αi = 1.
Without loss of generality, assume that α1, . . . , αν′ > 0, ν

′ ≤ ν. Vec-

tors b(j) =
(
pT
(1)f(x∗)j , . . . , p

T
(ν′ )f(x∗

j )
)

are not null vectors for any j =
1, . . . , m. By Lemma 3.3.2, there exists a vector β = (β1, . . . , βs′ ) such that∑s

′

j=1 βjb
(l)
j �= 0, l = 1, . . . , m.

Consider the vector p =
∑ν

′

j=1 βjp(j). Since this vector is a linear com-
bination of vectors p(j) ∈ P, we have p ∈ P and

M(ξ∗)p = λ∗p.

Denote
L = (fi(x∗

l )dl)
m
i,l=1 ,

where

dl =
m∑

i=1

fi(xl)pi =
ν

′∑
j=1

βjb
(l)
j �= 0, l = 1, . . . .m.

Note that

Lω∗ =

⎛
⎝ m∑

j=1

m∑
l=1

fi(x∗
l )fj(x∗

l )pjω
∗
l

⎞
⎠m

i=1

= M(ξ∗)p.
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We obtain

Lω∗ = λ∗p.

The matrix L is invertible due to

det L = d1 · · · dm det
(
x∗j−1

i

)m

i,j=1
�= 0.

Thus, the vector ω∗ = λ∗L−1p is uniquely determined.

As in the previous section, the triple (n1, n2, n3), where n1(n3) is the
number of support points equal to the left (right) bound of the design
interval and n2 = n − n1 − n3, will be called a type of design.

Theorem 3.3.4 asserts that all E-optimal designs are of one and the
same type (1, m − 2, 1).

However, for E-optimal designs, the concept of design type is not suffi-
cient because the method of design constructing depends also on one more
value: the multiplicity of the minimal eigenvalue of the information matrix.

3.3.3 Chebyshev designs

Consider now a model, that is a generalization of the polynomial model.
Assume that X = [a, b], −∞ < a < b,∞, and the functions {fi(t)}M

i=1
generate a Chebyshev system on [a, b]. Remember that a system {fi(t)}m

i=1
is called a Chebyshev system if for any t1, . . . , tm such that a ≤ t1 < t2 <
· · · < tm ≤ b, the determinant det (fi(tj))

m
i,j=1 does not vanish. Since

Vandermonde’s determinants do not vanish, the system 1, t, . . . , tm−1 is a
Chebyshev one on the arbitrary interval [a, b].

We will need the following results concerning Chebyshev systems (see
Section 1.9).

For any Chebyshev system, there exist points a ≤ t̄1 < t̄2 < · · · < t̄m ≤ b
and a vector γ = (γ1, . . . , γm)T such that

γT f(t̄i) = (−1)i, i = 1, . . . , m,

|γT f(t)| ≤ 1, t ∈ [a, b].

The function γT f(t) is often called a Chebyshev polynomial and points
t̄1, . . . , t̄m are called Chebyshev points. The Chebyshev polynomial is de-
termined uniquely. As for Chebyshev points, they are determined uniquely
under the condition that a constant belongs to the linear space spanned by
the functions f1(t), . . . , fm(t).
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Let us introduce the following notation:

F =
(
fi(t̄j)(−1)j

)m
i,j=1 ,

Aj = (eT
i F−1γ), i = 1, . . . , m,

ω̄i = |Ai| /
∑m

i=1 |Aj |, i = 1, . . . , m,

ω̄ = (ω̄1, . . . , ω̄m)T , λ̄ = 1
/
γT γ.

(3.37)

The design

ξ̄ =
(

t̄1 . . . t̄m
ω̄1 . . . ω̄m

)
concentrated in the Chebyshev points will be called the Chebyshev design
(in the E-optimal design problem).

Denote by A the matrix A with the last row and last column rejected.
Let

λ2(A) = λmin(A ).

In many cases, the Chebyshev design is an E-optimal design, as can be
seen from the following theorem.

Theorem 3.3.5 Consider the regression model (3.34), where X = [a, b]
and the basic functions f1(t), . . . , fm(t) generate a Chebyshev system on
[a, b]. Then the following assertions hold:

(a) ω̄ = F−1γ/γT γ and ξ̄ is a c-optimal design with c = γ.

(b) If λ2(M(ξ̄)) > λ̄, then ξ̄ is an E-optimal design and dimP = 1.

(c) If dimP = 1 and Chebyshev points are determined uniquely, then ξ̄
is the unique E-optimal design and λ2(M(ξ̄)) > λ̄.

Proof. (a) By the definition of ω̄i, we have ω̄i ≥ 0, i = 1, . . . , m. At first,
assume that ω̄i �= 0, i = 1, . . . , m.

Let ξ̄ω be an arbitrary design with the support in points t̄1, . . . , t̄m:

ξ̄ω =
(

t̄1 . . . t̄m
ω1 . . . ωm

)
, ωi ≥ 0, i = 1, . . . , m.

Denote H = diag{ω1, . . . , ωm}.
Due to Cauchy’s inequality, we have

γT M−1(ξ̄ω)γ = γT (F−1)T H−1(F−1)γ

=
m∑

i=1

(eT
i F−1γ)2 /ωi

≥
(

m∑
i=1

|eT
i F−1γ|

)2

,
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and the equality holds if and only if ω = ω̄.
In addition, due to the inequality

pT ApqT A−1q ≥ (pT q)2,

which is true for arbitrary vectors p and q and a positive definite matrix
A (see, e.g., Gantmacher (1998)), and the properties of the Chebyshev
polynomial γT f(t) we have

γT M(ξ̄ω)γγT M−1(ξ̄ω)γ

=

[
m∑

i=1

(
γT f(t̄i)

)2
ωi

]
γT M−1(ξ̄ω)γ

= γT M−1(ξ̄ω)γ ≥ γT γ,

and the equality holds if and only if

M−1(ξ̄ω)γ = (γT γ)γ.

By multiplying both sides of the last equality by M(ξ̄ω), we obtain that
it is equivalent to the equality

M(ξ̄ω)γ = γ(γT γ),

and since fT (t̄i)γ = (−1)i, it follows that

M(ξ̄ω)γ = Fω = γ
/
(γT γ)

Thus, the minimum of γT M−1(ξ̄ω)γ by all ω such that ωi > 0, i = 1, . . . , m,
and

∑m
i=1 ωi = 1 is achieved if and only if

ω = F−1γ
/
γT γ.

Therefore, ω̄ = F−1γ
/
γT γ .

The case when ω̄i = 0 for some i can be considered similarly with
replacement of the inverse matrix by the pseudoinverse in the sense of
Moor–Penrous.

Note that for the vector γ and the design ξ̄, we have

|fT (t)γ| ≤ 1, t ∈ [a, b],

|fT (t̄i)γ| = 1, i = 1, . . . , m

and
Fω̄ = γ

/
γT γ.

Due to an obvious extension of Lemma 3.2.1, the design ξ̄ is c-optimal
for the vector c = γ.
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(b) Denote M̄ = M(ξ̄). Let λ2(M(ξ̄)) > λ̄ and let p ∈ Rm−1 be an

arbitrary vector. Then, with p̄T = (pT
...0) ∈ Rm, we have

P̄T M̄p̄

p̄T p̄
≥ λmin(M̄ ) = λ2(M̄) > λ̄ = 1

/
γT γ.

Additionally, as it was proved above,

M̄γ = Fω̄ = λ̄γ.

Therefore, for arbitrary vector q ∈ Rm, we have a representation q =
αp̄ + βγ for some α, β ∈ R1 and

qT M̄q

qT q
=

α2p̄T M̄p + 2αβλ̄(p̄T γ) + β2

α2p̄T p̄ + 2αβ(p̄T γ) + β2γT γ
≥ λ̄,

and the equality holds if and only if α = 0. Thus,

λmin(M̄) =
γT M̄γ

γT γ
= λ̄.

Let us verify that the matrix A∗ = γγT
/
γT γ satisfies conditions of The-

orem 3.3.1 for ξ∗ = ξ̄. Due to the properties of the Chebyshev polynomial,
we have

max
t∈[a,b]

fT (t)A∗f(t) = max
t∈[a,b]

(fT (t)γ)2

γT γ
=

1
γT γ

= λmin(M̄).

Therefore, due to Theorem 3.3.1, ξ̄ is an E-optimal design and P = {αγ},
α ∈ R1, and dim P = 1.

(c) Assume that dimP = 1. Let p be the unique vector in P such that
||p|| = 1. By Theorem 3.3.2 we obtain that A∗ = ppT . Therefore,

fT (t)A∗f(t) = (pT f(t))2,

and by Theorem 3.3.1,

max
t∈[a,b]

(
pT f(t)

)2
= λ∗,

(
pT f(t)

)2
= λ∗, t ∈ supp ξ∗,

where ξ∗ is an E-optimal design and λ∗ = λmin(M(ξ∗)).
Due to the uniqueness of the Chebyshev polynomial, it follows from here

that
p = γ/

√
λ∗, A∗ = γγT /γT γ and λ∗ = λ̄.

Additionally, if the Chebyshev points are uniquely determined, then

supp ξ∗ = {t̄1, . . . , t̄n}
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for any E-optimal design. Let ω∗ be the vector of weight coefficients of an

E-optimal design ξ∗; then ξ∗ = ξ̄ω∗ =
(

t̄1 . . . t̄m
ω∗ . . . ω∗

)
.

Since γ ∈ P, we have

M(ξ∗)γ = Fω∗ = λ∗γ = λ̄γ

and this means that

ω∗ = F−1γ
/
γT γ = ω̄, ξ∗ = ξ̄.

Thus, ξ̄ is a unique E-optimal design, λ̄ = λmin(M(ξ̄)), and λ̄ is a simple
eigenvalue of M(ξ̄).

Hence,
λ2(M(ξ̄)) > λmin(M(ξ̄)) = λ̄.

Let us return to the system f1(t) = 1, f2(t) = t, . . . , fm(t) = tm−1 on
arbitrary interval [a, b]. This system is a Chebyshev one and it is easy to
check that

γT f(t) = Tm−1

(
t − v

r

)
, r =

b − a

2
, v =

b + a

2
,

where Tm−1(t) = cos[(m − 1) arccos t], the Chebyshev polynomial of the
first kind. Additionally, points t̄i = t̄i(r, v) are determined uniquely, and

t̄i(r, v) = rt̄i(1, 0) + v, (3.38)

where t̄i(1, 0) = cos
(

i−1
m−1π

)
, i = 1, . . . , m.

Let us call a design ξ nonsingular if the matrix M(ξ) is invertible.
The following lemma provides a basis for the application of Theorem

3.3.5.

Lemma 3.3.3 Consider the polynomial regression model on an interval
[a, b]. Let either of the following two conditions be fulfilled:

(i) m > 2 and [a, b] ⊂ [−1, 1].

(ii) ab ≥ 0.

Then, for an arbitrary nonsingular design ξ, the minimal eigenvalue of
M(ξ) is simple.

From this lemma it obviously follows that under condition (i) we have
dim P = 1 and, therefore, due to Theorem 3.3.5(c), the Chebyshev design
ξ̄ is the unique E-optimal design.
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Proof of Lemma 3.3.3. Let condition (i) be fulfilled and ξ be an arbitrary
nonsingular design on [a, b]. Since [a, b] ⊂ [−1, 1] ξ is a nonsingular design
on [−1, 1]. Let us prove that the minimal eigenvalue of M(ξ) is simple.
Assume, oppositely, that the multiplicity of the minimal eigenvalue is equal

to or more than 2. Then there exists a vector q̄T = (qT
...0), where q ∈ Rm−1

such that
q̄T Mq̄ = λq̄T q̄, M = M(ξ), λ = λmin(M).

Set q̃T = (0
...qT ) ∈ Rm. Then

q̃T Mq̃ =
∫ 1

−1

(
q̃T f(t)

)2
ξ(dt)

=
∫ 1

−1

(
q̄T f(t)

)2
t2ξ(dt)

≤
∫ 1

−1

(
q̄T f(t)

)2
ξ(dt)

= q̄T Mq̄ = λq̄T q̄ = λq̃T q̃

and equality is achieved if and only if supp ξ = {−1, 1}. However, any
nonsingular design has at least m > 2 support points and, therefore,

q̃T Mq̃

q̃T q̃
< λ,

which is impossible. The obtained contradiction proves the proposition of
the lemma in case (i).

Now, let condition (ii) be fulfilled and ξ be an arbitrary nonsingular
design on [a, b]. Consider the case b > a ≥ 0. The case a < b ≤ 0 can be
obtained by the substitution t → −t.

Denote {t1, . . . , tn} = supp ξ, t1 < t2 < · · · < tn. From nonsingularity
of M(ξ), it follows that n ≥ m. Note that any determinants of the form(

fij (tkl
)
)s
j,l=1 ,

s = 1, 2, . . . , m does not vanish (see, e.g., Gantmacher (1998)). Due to
the Binet–Cauchy’s formula, it follows from here that any minor of matrix
M(ξ) is positive. For matrices with this property (such matrices are called
strictly positive), all eigenvalues are simple (Gantmacher, 1998).

Denote by ξ̄ = ξ̄(r, v), r = (b − a)/2, v = (b + a)/2, the Chebyshev
design for the polynomial model (with m parameters) on the interval [a, b],

ξ̄ = ξ̄(r, v) =
(

t̄1 . . . t̄m
ω̄1 . . . ω̄m

)
,

where t̄i = t̄i(r, v), ω̄i = ω̄i(r, v) are defined by formulas (3.38) and (3.37),
respectively.
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Due to Theorem 3.3.5(c), this design is an unique E-optimal design for
intervals defined in Lemma 3.3.3.

Consider now the case of symmetrical design intervals [−r, r] and show
that the Chebyshev design is not an E-optimal design for such intervals
with sufficiently large r. First, let us show that support points of an E-
optimal design for symmetrical design intervals are located symmetrically
with respect to the origin.

Denote by ξ∗ = ξ∗(r),

ξ∗(r) =
(

x∗
1 . . . x∗

n

ω∗
1 . . . ω∗

n

)
,

x∗
i = x∗

i (r), ω∗
i = ω∗

i (r), x∗
1 < x∗

2 < · · · < x∗
n, i = 1, . . . , n, an E-optimal

design on [−r, r],
λ∗ = λ∗(r) = λmin(M(ξ∗(r)).

Due to Theorem 3.3.4, an E-optimal design is unique and n = m for
m > 2.

Lemma 3.3.4 For m > 2, an E-optimal design for polynomial regression
on symmetrical intervals is unique and located in points symmetrical with
respect to the origin:

−x∗
i = x∗

2k+1−i, i = 1, . . . , k with m = 2k,

−x∗
i = x∗

2k+2−i, i = 1, . . . , k, x∗
k+1 = 0 with m = 2k + 1.

Weight coefficients of the design have also symmetrical values:

ω∗ = ω∗
2k+1−i, i = 1, . . . , k with m = 2k,

ω∗
i = ω∗

2k+2−i, i = 1, . . . , k, with m = 2k + 1

Moreover, for symmetrical intervals, dimP = 1 or 2.

Proof. Let

ξ∗ =
(

x∗
1 . . . x∗

m

ω∗
1 . . . ω∗

m

)
be an E-optimal design on the design interval [−r, r]. Assume that m = 2k
(the proof for m = 2k + 1 is similar). Consider the design

ξ̃ =
(

x̃1 . . . x̃m

ω̃1 . . . ω̃m

)
, x̃i = −x∗

2k+1−i, ω̃i = ω∗
2k+1−i, i = 1, . . . , k.

The matrix M(ξ) for the design ξ = (ξ∗ + ξ̃)/2 with rows and columns
moved to the first positive assumes the form(

M1 0
0 M2

)
.
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It is known (see, e.g., Gantmacher (1998)) that the minimal eigenvalue
of any non-negative definite matrix M can be represented in the form

min
||p||=1

pT Mp.

Therefore,

λmin

(
M1 0
0 M2

)
≥ λmin

(
M1 C
CT M2

)
for M1, M2 ≥ 0 and any matrix C, from which

λmin(M(ξ) ≥ λmin(M(ξ∗)),

and ξ is an E-optimal design. If the design ξ∗ does not satisfy conditions
of the lemma, then ξ �= ξ∗. Since by Theorem 3.3.4 an E-optimal design is
unique for m > 2, this is impossible.

Let us now prove that dim P ≤ 2. Note that the set of eigenvalues of
matrix M(ξ) = M(ξ∗) is a conjunction of such sets for M1 and M2.

Similar to the proof of the second part of Lemma 3.3.3, it can be checked
that all eigenvalues of M1 and M2 are simple. Therefore the multiplicitly
of any eigenvalue of M(ξ∗) is no more than 2 and it means that dimP ≤ 2.

In the following, we will use a lemma on polynomials with fixed absolute
values.

Let p(x) =
∑n+1

i=1 pix
i−1 be a polynomial of degree n such that for

0 ≤ x1 < · · · < xn+1

p(xi) = (−1)iai,

where ai > 0, i = 1, 2, . . . , n + 1. Let

p̃(x) =
n+1∑
i=1

p̃ix
i−1

be a polynomial such that |p̃(xi)| ≤ ai, i = 1, . . . , n + 1.

Lemma 3.3.5 |pi| ≥ |p̃i| and pi(−1)i > 0, i = 1, . . . , n + 1, for the
polynomials being considered.

Proof. Represent the polynomial ϕ̃(x) in the form

ϕ̃(x) =
n+1∑
i=1

p̃ix
i−1 = det

⎛
⎜⎜⎜⎝

0 1 x . . . xn

ã1 1 x1 . . . xn
1

...
...

...
. . .

...
ãn+1 1 xn+1 . . . xn

n+1

⎞
⎟⎟⎟⎠
/∏

j<i

(xi − xj),
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where ãi = ϕ̃(xi). Note that

p̃i = (−1)i det
(
ãj 1 . . . xi−1

j xi+1
j . . . xn

j

)n+1

j=1
/δ

= (−1)i
n+1∑
s=1

ãs(−1)s+1δi,s/δ,

where
δi,s = det

(
1 . . . xi−1

j xi+1
j . . . xk

j

)
j �=s, j∈1 : n+1

=
∏

l<j, l,j �=s

(xj − xl)
∑

xj1 . . . xjn−1 > 0,

δ =
∏
j<i

(xi − xj) > 0.

Since ϕ(xi) = (−1)iai, |pi| = |∑k
s=0 as(−1)sδi,s/δ| ≥ |p̃i|, i = 1, . . . , n + 1.

Lemma 3.3.6 The Chebyshev design ξ̄ = ξ̄(r, 0) is not an E-optimal de-
sign for polynomial regression on design interval [−r, r] with sufficiently
large r.

Proof. Let q̄ = q̄(r) be the coefficient vector of the polynomial Tm−1(t/r),

q̄T f(t) = Tm−1(t/r),

where Tm−1(x) = cos[(m − 1) arccos x] is the Chebyshev polynomial of the
first kind.

Denote
λ̄(r) =

(
q̄T (r)q̄(r)

)−1
,

ξ̄ = ξ̄(r) = ξ̄(r, 0) =
(

t̄1 . . . t̄m
ω̄1 . . . ω̄m

)
,

where t̄i = t̄i(r) and ω̄i = ω̄i(r), i = 1, . . . , m, are defined by formulas
(3.38) and (3.37).

Consider the case m = 2k + 1, k = 1, 2, . . .. Let us show that in this
case,

ω̄i(r) = O(r−4), i = 1, . . . , k − 1, k + 1, . . . ; m, r → ∞.

It is easy to check that M = M(ξ̄(r)) is of the form

M = FΛFT ,

where Λ = diag{ω̄1, . . . , ω̄m} and F =
(
fi(tj)(−1)j

)m
i,j=1.
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Also, it can be checked that rows of F−1 (denote them by l(1), . . . , l(m))
consists of coefficients of the Lagrange interpolation polynomials con-
structed by points t̄1, . . . , t̄m:

lT(i)f(t) = eT
i F−1f(t) =

∏
j �=i

t − t̄j
t̄i − t̄j

, i = 1, . . . , m,

where eT
1 = (1, 0, . . . , 0), . . ., eT

m = (0, 0, . . . , 0, 1).
The vector q̄(r) is

q̄(r) =
√

λ̄(r)(q1, 0, q3r
−2, 0, . . . , 0, q2k+1r

−2k)T ,

where (q1, 0, q3, 0, . . . , 0, q2k+1)T = q̄(1).
Since t̄i(r) = rt̄i(1),

l(i)j = b
(i)
j r−j+i, i, j = 1, . . . , m,

where b
(i)
j does not depend on r.

Therefore,

ω̄i = ω̄m+1−i = λ̄(r)
k∑

j=1

b
(i)
2j q2j+1r

−4j = O
(

1
r4

)

with r → ∞ since λ̄(r) → 1 with r → ∞.
Thus, we obtain that

λmin
(
M(ξ̄(r))

)
= min

||p||=1
pT M(ξ(r))p ≤ (

M(ξ̄(r))
)
22

=
m∑

i=1

t̄2(r)ω̄i(r)

=
∑
i�=k

t̄2i (0)r2ω̄i(r) = O
(

1
r2

)
.

Therefore,
λmin

(
M(ξ̄(r)

) → 0

with r → ∞ and it means that ξ̄(r) cannot be an E-optimal design for
sufficiently large r.

Let now m = 2k. Note that, in this case, the vector q̄ = q̄(r) has the
form q̄ = (q̄1, q̄2, . . . , q̄2k)T , where q̄2i+1 = 0, i = 0, 1, . . . , k − 1. Therefore,

λ̄(r) =

(
k∑

i=1

(q̄(0))22i r−2(2i−1)

)−1

→ ∞

with r → ∞.
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Suppose that λ∗(r) = λmin
(
M(ξ̄(r))

)
.

Due to Lemma 3.3.1, λ∗(r) < 1 for any r > 0. Let us move rows
and columns of the matrix M(ξ̄(r)) to the first positions; then the matrix
assumes the form(

M1 0
0 M2

)
=
(

M1(ξ̄(r)) 0
0 M2(ξ̄(r))

)
.

By the arguments in the proof of Lemma 3.3.1, all eigenvalues of M1 are
simple and, therefore,

λ̄(r) = min{λmin
(
M1(ξ̄(r))

)
, λmin

(
M2(ξ̄(r)

)
)}.

Hence, λ∗(r) is a simple eigenvalue of M(ξ̄(r)) for r > r̄, where r̄ is a
sufficiently large number, providing that λ̄(r) > 1.

Let q∗ be the eigenvector corresponding to λ∗(r) such that ||q∗|| = 1.
With r > r̄, we obtain by Theorems 3.3.1 and 3.3.2 that A∗ = q∗q∗T

and ∣∣q∗T f(t̄i)
∣∣2 = λ∗(r) < λ̄(r), i = 1, . . . , m.

At the same time, we have(
q̄T (r)f(t̄i)

)2
= 1, i = 1, . . . , m,

and, therefore, ∣∣qT f(t̄i)
∣∣2 = λ̄(r), i = 1, . . . , m,

where q = q̄(r)/
√

λ̄(r), ||α|| = 1.
Due to the lemma on polynomials with fixed absolute values (Lemma

3.3.5), we obtain

||q|| ≥ ||q∗|| λ̄(r)
λ∗(r)

> 1

with r > r̄, but ||q|| = 1. The obtained contradiction proves that ξ̄(r) is not
an E-optimal design on [−r, r] for sufficiently large r in the case m = 2k.

3.3.4 A boundary equation

The following lemma provides a necessary and sufficient condition for E-
optimality of the Chebyshev design in the case of symmetrical intervals.
Remember the notation λ2(A) = λmin(A−), see Section 3.3.3.

Lemma 3.3.7 For polynomial regression on an arbitrary symmetrical in-
terval [−r, r], the design ξr is E-optimal if and only if

λ2
(
M(ξ̄r)

) ≥ λ̄(r).
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Proof. Let us denote for the sake of brevity λ2(r) = λ2(M(ξ̄r)). It follows
from Theorem 3.3.5 that the condition λ2(r) > λ̄(r) is a sufficient condition
for E-optimality of the design ξ̄r.

The same arguments show that the condition λ2(r) ≥ λ̄(r) implies E-
optimality of the design ξ̄r. From the arguments at the end of the proof of
Lemma 3.3.6, it follows that under the condition λ2(r) < λ̄(r), the design
ξ̄r is not E-optimal design. Thus, the condition λ2(r) ≥ λ̄(r) is not only
sufficient but also necessary for E-optimality of the design ξ̄r.

It follows from Lemma 3.3.6 that

λ2
(
M(ξ̄r)

)
= λ̄(r) (3.39)

has at least one positive solution. This equation will be called the boundary
equation. It can be solved numerically.

In Section 3.4.4, we will point out an explicit form for this equation for
the cases m = 3, 4, and 5.

Denote by r∗ the minimal positive root of this equation. Due to Lemma
3.3.7 with r ≤ r∗, the design ξ̄r is the unique E-optimal design for poly-
nomial regression on [−r, r]. The case r > r∗ will be studied in the next
section.

3.4 Non-Chebyshev E-Optimal Designs

The present section is devoted to constructing and studying E-optimal de-
signs for the polynomial regression model on sufficiently large symmetrical
segments. In this case, as it was proved in the previous section, there ex-
ists a unique E-optimal design and this design does not coincide with the
Chebyshev one. In fact, for m = 3, 4, and 5 we will construct E-optimal
designs for all symmetrical segments. The study is based on the functional
approach as well as auxiliary results that are of some independent interest.

We will introduce a basic equation determining support points and
weights of E-optimal designs as implicitly given functions of the length
of the segment. The limit values (under some normalization) of these func-
tions will be found with the length tends to infinity. It will be also proved
that these functions are real analytic for sufficiently large r. Also, Taylor
expansions will be constructed on the basis of general formulas introduced
in Chapter 2.

3.4.1 Basic equation

Consider the polynomial regression model (fi(x) = xi−1, i = 1, . . . , m) on
a symmetrical interval X = [−r, r]. The case m = 1 is of no interest and
the case m = 2 was already studied in Theorem 3.3.3.

Let m > 2 and r∗ be a minimal positive root of the boundary equation
(3.39). Due to Lemma 3.3.6, for r ≤ r∗, there exists a unique E-optimal
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design and this design coincides with the Chebyshev design ξ̄r. For r > r∗,
the Chebyshev design is not, generally speaking, E-optimal, but an E-
optimal design is unique as well.

Let us construct an equation determining points and weights of the E-
optimal design as implicit functions of r with r > r∗. This equation has
the same form for even and odd m, but some details are different.

First, consider the case of odd m, m = 2k + 1. Set z = 1/r2. Due to
Lemma 3.3.4, an E-optimal design has the form

ξ∗ = ξ∗(z) =

⎛
⎝ − 1√

z
− t∗

2√
z

. . . − t∗
k√
z

0 t∗
k√
z

. . .
t∗
2√
z

1√
z

ν∗
1 ν∗

2 . . . ν∗
k ν∗

k+1 ν∗
k . . . ν∗

2 ν∗
1

⎞
⎠ ,

where 1 > t∗2 > · · · > t∗k > 0, 2
∑k

i=1 ν∗
i + ν∗

k+1 = 1, ν∗
i > 0, t∗i = t∗i (z), and

ν∗
i = ν∗

i (z) are some numbers.
Denote

λ∗(z) = λmin (M(ξ∗(z))) ;

λmin(M) denotes, as earlier, the minimal eigenvalue of M .
For any arbitrary design ξ, set

M1(ξ) =
∫

f(1)(t)fT
(1)(t)ξ(dt),

M2(ξ) =
∫

f(2)(t)fT
(2)(t)ξ(dt),

where f(1)(t) = (1, t2, . . . , t2k)T and f(2)(t) = (t, t3, . . . , t2k−1)T .
Due to Lemma 3.3.4, for any nonsingular design ξ the multiplicity of

the minimal eigenvalue of M1(ξ) and M2(ξ) is equal to 1.
Let p∗ = (p∗

1, . . . , p
∗
k, 1)T be an eigenvector of M1(ξ), corresponding

to its minimal eigenvalue, and q∗ = (q∗
1 , . . . , q∗

k−1, 1)T a similar vector for
M2(ξ∗). As was shown in the proof of Lemma 3.3.4 both matrices are
strictly positive. Therefore (see, e.g. , Gantmacher (1998)), the vectors p∗

and q∗ are determined uniquely, and all of their elements are not zero and
have interlacing signs:

sign(p∗
k−i) = (−1)i+1, i = 0, . . . , k − 1,

sign(q∗
k−i) = (−1)i, i = 1, . . . , k − 1,

Introduce a vector τ ,

τ = (p̃1, . . . , p̃k, q̃1, . . . , q̃k, ω1, . . . , ωk, y2, . . . , yk)T

= (zkp1, . . . , zpk,
√

zzk−1q1, . . . ,
√

zqk,

2ν1/z, . . . , 2νk/z, t22, . . . , t
2
k)T ,

where 0 < tk < · · · < t2 < 1, νi > 0,
∑k

i=1 νi < 1/2, p1, . . . , pk, and
q1, . . . , qk are some numbers.
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Let us introduce also the vector

τ∗ = τ∗(z) = (zkp∗
1, . . . , zp∗

k, α∗√zzk−1q∗
1 , . . . , α∗√zzq∗

k−1, α
∗√z,

2ν∗
1/z, . . . 2ν∗

k/z, zt∗2
2 , . . . , zt∗2

k )T ,
(3.40)

where α∗ = α(z) is a positive number.
Let

ξτ,z =
( −r −rt2 . . . −rtk 0 rtk . . . rt2 r

ν1 ν2 . . . νk νk+1 νk . . . ν2 ν1

)
, r = 1/

√
z,

where νk+1 = 1 − 2
∑k

i=1 νk, be an experimental design corresponding to a
vector τ ,

ϕ(τ, z) =
pT M1(ξτ,z)p + qT M2(ξτ,z)q

pT p + qT q
,

where p = (p1, . . . , pk, 1)T and q = (q1, . . . , qk)T .
Consider the equation

∂

∂τ
ϕ(τ, z) = 0. (3.41)

Since the function ϕ(τ, z) is obviously differentiable by τ , this equation is
well defined.

Lemma 3.4.1 With arbitrary z, 0 < z < z∗, where z∗ = 1/r∗2 and r∗

is the minimal positive root of the boundary equation (3.39), there exist
α∗(z) > 0 such that the vector τ∗(z) determined by relation (3.40) is a
solution of (3.41), and

ϕ(τ∗(z), z) = λ∗(z).

Proof. By immediate differentiation, we obtain

∂

∂pi
ϕ(τ, z) = 2

[
eT

i M1p

pT p + qT q
− ϕ(τ, z)eT

i p

pT p + qT q

]
, i = 1, . . . , k,

∂

∂qi
ϕ(τ, z) = 2

[
eT

i M2q

pT p + qT q
− ϕ(τ, z)eT

i q

pT p + qT q

]
, i = 1, . . . , k − 1,

(3.42)

where M1 = M1(ξτ,z), M2 = M2(ξτ,z), e1 = (1, 0, . . . , 0)T , . . . , eT
k+1 =

(0, . . . , 0, 1), p = (p1, . . . , pk, 1)T , and q = (q1, . . . , qk).
In addition, since p∗ and q∗ are eigenvectors, we have the relations

M1(ξτ∗(z),z)p∗ = λ∗(z)p∗,

M2(ξτ∗(z),z)q∗ = λ∗(z)q∗,

ϕ(τ∗(z), z) = λ∗(z).
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Therefore, the right-hand sides of equalities (3.42) vanishe with τ = τ∗(z)
and we obtain

∂

∂pi
ϕ(τ, z)

∣∣
τ=τ∗(z) = 0,

∂

∂qi
ϕ(τ, z)

∣∣
τ=τ∗(z) = 0,

for i = 1, 2, . . . , k.
In order to prove the equalities

∂

∂ωi
ϕ(τ, z) = 0,

∂

∂yi
ϕ(τ, z) = 0, i = 1, . . . , k, j = 2, . . . , k

with τ = τ∗(z), let us study some properties of the extremal polynomials,
defined in Theorem 3.3.1.

We will need the following auxiliary result.

Lemma 3.4.2 Consider the polynomial regression model on the interval
[−r, r] with r > r∗, where r∗ is the minimal positive root of the boundary
equation (3.39). Let m = 2k + 1 > 2. Then the extremal polynomial has
the unique representation of the form

ρ(t) = (pT f̄(y))2 + y(qT f̄(1)(y))2, y = t2, (3.43)

where f̄(y) = (1, y, . . . , yk)T and f̄(1)(y) = (1, y, . . . , yk−1)T . Moreover,
there exist positive values β and β′ such that p =

√
βp∗ and q =

√
β′q∗,

where p∗ and q∗ are defined earlier.

Proof of Lemma 3.4.2. Due to the definition of the extremal polynomial,
we have

ρ(t) = fT (t)A∗f(t),

where f(t) = (1, t, . . . , tm−1)T and A∗ is defined in Theorem 3.3.1. Due
to Theorem 3.3.4 and Lemma 3.3.1, it is a unique polynomial of degree
2(m − 1) attaining its maximal value equal to λ∗(z) in points 0, ±rt∗i ,
i = 1, . . . , k.

Therefore, ρ(t) is an even polynomial and ρ(t) = ρ̄(y) and y = t2, where
ρ̄(y) is a unique polynomial of degree m+1 attaining its maximal eigenvalue
λ∗(z) in points 0, y∗

1/z, . . . , y∗
k/z, y∗

i = t∗2
i , i = 1, . . . , k. It follows from here

that
j∑

i=1

(A∗)ij+1−i = 0, j = 2, 4, . . . , 2k. (3.44)

Denote
p̄∗ = (p∗

1, 0, p∗
2, 0, . . . , 0, p∗

k+1)
T , p∗

k+1 = 1,

p̂ = p̄∗/||p̄∗||,

q̄ = (0, q∗
1 , 0, q∗

2 , . . . , 0, q∗
k)T , q∗

k = 1,

q̂ = q̄∗/||q̄∗||.
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Note that vectors p̂ and q̂ generate an orthonormal basis in P since

M(ξτ∗(z),z)p̂ = λ∗(z)p̂,

M(ξτ∗(z),z)q̂ = λ∗(z)q̂.

Let us show that this basis is an extremal one (in the sense of Theorem
3.3.1). In fact, due to Theorem 3.3.2,

A∗ = κp(1)p
T
(1) + (1 − κ)p(2)p

T
(2),

where
p(1) = δp̂ +

√
1 − δ2q̂,

p(2) =
√

1 − δ2p̂ − δq̂

for some κ and δ, where 0 ≤ κ, δ ≤ 1.
Thus, from relations (3.44) it follows that

κ

j∑
i=1

p(1)ip(1)j+1−i + (1 − κ)
j∑

i=1

p(2)ip(2)j+1−i = 0,

j = 2, 4, . . . , 2k. A simple calculation now gives

δ
√

1 − δ2(1 − 2κ)
l∑

i=1

p∗
i q

∗
l+1−i = 0, l = 1, 2, . . . , k.

Note that due to the interlacing property of signs of {p∗
i , q

∗
i }, we have

l∑
i=1

p∗
i q

∗
l+1−i �= 0, j = 1, 2, . . . , k,

and, therefore,
δ
√

1 − δ2(1 − 2κ) = 0;

that is, either δ
√

1 − δ2 = 0 or κ = 1/2. In both cases, we receive

A∗ = κ′p̂p̂T + (1 − κ′)q̂q̂T

with κ′ = κ or κ′ = 1 − κ and this means that the vectors p̂ and q̂ generate
an extremal basis of P. Due to last formula, we have

ρ(t) = fT (t)A∗f(t)

= κ′(p̂T f(t))2 + (1 − κ′)(q̂T f(t))2.

Denote f̄(y) = (1, y, . . . , yk) and f̄(1)(y) = (1, y, . . . , yk−1) and rewrite the
extremal polynomial in the form

ρ(t) = ρ̄(y) = β
(
p∗T f̄(y)

)2
+ β′ (q∗T f̄(1)(y)

)2
y, (3.45)
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where β, β′ ≥ 0.
Thus, there exists a representation of the form (3.43), and p =

√
βp∗

and q =
√

β′q∗.
It is easy to check that such a representation is unique.
In fact, note first that β and β′ are determined uniquely. Suppose,

oppositely, that for (β1, β
′
1) �= (β, β′),

ρ(t) = ρ̄(y) = β1(p∗T f̄(y))2 + β′
1(q

∗T f̄(1)(y))2y.

Then it should be that

(β1 − β)(p∗T f̄(y))2 ≡ (β′ − β′
1)(q

∗T f̄(1)(y))2y,

which is impossible.
Note that β �= 0, otherwise ρ̄(y) has degree m − 2, which is impossible.
Suppose that β′ = 0. Then ρ(t) = const (Tm−1(t/r))2 since the Cheby-

shev polynomial of the first kind of degree m−1 is the unique polynomial of
degree m − 1 with leading coefficient 2m−2 achieving its maximal absolute
value in the interval [−1, 1] in m points (see, e.g., Rivlin (1974)). It is easy
to check that the design ξ∗(z) should coincide with ξ̄r which is impossible
due to Lemma 3.3.7 for r > r∗.

Thus, β and β′ > 0, and from (3.45) we obtain

ρ̄(y) =

(
p∗T f̄(y)

)2 + α∗2
(
q∗T f̄1(y)

)
y

p∗T p∗ + α∗2q∗T q∗

for some α∗ > 0 (α∗2 = β′/β).
Note that for 0 < z < z∗,

(||p||2 + ||q||2)ϕ(τ, z) =
k∑

i=1

[(
f̄T (yi)p

)2
+ y

(
f̄T
(1)(yi)q

)2
]

ωi

+(f̄(0)T p)2(1 − ω1 − · · · − ωk).

Therefore, with τ = τ∗(z),

∂

∂yi
ϕ(τ, z) =

(
ρ̄

(
y∗

i

z

))′
ωi = 0, i = 1, . . . , k,

∂

∂ωi
ϕ(τ, z) = ρ̄

(
y∗

i

z

)
− ρ̄(0) = 0, i = q, . . . , k.

Thus, we proved that for any z, 0 < z < z∗, there exists α∗ = α∗(z) such
that τ = τ∗(z) is a solution of the equation ∂

∂τ ϕ(τ, z) = 0.

Remark 3.4.1 Note that with m = 2k + 1, the extremal polynomial ρ̄(y)
is a nonnegative polynomial of degree m − 1 = 2k for any y ≥ 0. Also,
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for arbitrary nonnegative polynomial of degree 2k, say Q(y), there exists a
unique representation of the form

Q(y) = α1

k∏
i=1

(y − ui)2 + α2

k−1∏
i=1

(y − vi)2y, α1 > 0, α2 ≥ 0,

where u1 ≤ v1 ≤ u2 ≤ · · · ≤ vk−1 ≤ uk (see Karlin and Studden (1966,
Chap.5)). We will call such a representation the Karlin–Shapley represen-
tation. Since this representation has the form (3.43) and the representation
of such a form is unique for the extremal polynomial due to Lemma 3.4.2,
we obtain that

p∗T f̄(y) = p∗
k+1

k∏
i=1

(y − ui),

q∗T f̄(1)(y) = q∗
k

k−1∏
i=1

(y − vi);

that is, both polynomials have the maximal number of positive roots and
they are interlacing, as described above.

For m = 2k, a similar result holds. This remark will be needed in the
following section.

The equation
∂ϕ(τ, z)

∂τ
= 0

will be called the basic equation. This equation determines support points
and weights of an E-optimal design as well as the elements of an extremal
basis as implicit functions of the length of the design interval.

It proves possible to find a limit of the vector τ∗(z) with z → 0.
Denote by J(z) the Jacobi matrix of the basic equation

J(z) =
(

∂2ϕ(τ, z)
∂τi∂τj

)s

i,j=1

∣∣
τ=τ∗(z),

where s = 4k − 1 is the size of the vector τ .
For any (scalar, vector, or matrix) function Q(z) denote

Q(0) = lim
z→z(0)

Q(z),

Q(n) = lim
z→z(0)

Q(n)(z)
n!

, n = 1, 2, . . . .

Let

Un(t) =
sin((n + 1) arccos t)√

1 − t2
, t ∈ [−1, 1],

be the Chebyshev polynomial of the second kind.
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Lemma 3.4.3 With m = 2k + 1 > 2, there exists the limit of τ∗(z) for
z → z(0) = 0:

τ∗
(0) = (p̃1(0), . . . , p̃k(0), q̃1(0), . . . , q̃k(0), ω̃1(0), . . . , ω̃k(0), ỹ2(0), . . . , ỹk(0))T ,

where ỹk−i+1(0) = t2k+i, i = 1, . . . , k, and 0 < tk+1 < · · · < t2k = 1 are
positive extremal points of T2k−1(t) on [0, 1],

(1, t2, . . . , t2k)p̃(0) = (t2 − 1)U2(k−1)(t)
/

22(k−1),

p̃(0) = (p̃1(0), . . . , p̃k(0), 1)T ,

(t, t3, . . . , t2k−1)q̃(0) = T2k−1(t)
/

22(k−1),

ω(0) =
q̃1(0)

|p̃1(0)|F
−1e1, e1 = (1, 0, . . . , 0)T ,

F =
(
(−1)k−j−1

√
ỹj(0)ỹ

i−1
j(0)

)k

i,j=1
.

A proof of the analog of this lemma for m = 2k will be given in Section
3.4.3.

Consider now the case m = 2k > 2. In this case, we will use the
following notation:

f(1)(t) = (1, t2, . . . , t2(k−1))T , f(2)(t) = tf(1)(t),

M1(ξ) =
∫

f(1)(t)fT
(1)(t)ξ(dt),

M2(ξ) =
∫

f(2)(t)fT
(2)(t)ξ(dt),

τ = (p̃1, . . . , p̃k, q̃1, . . . , q̃k−1, ω̃1, . . . , ω̃k−1, ỹ2, . . . , ỹk−1, yk)T

= (zk−1√zp1, . . . ,
√

zpk, zk−1q1, . . . , zqk−1,

2ν1/z, . . . , 2νk−1/z, t22, . . . , t
2
k−1, t

2
k/z)T = (τ1, . . . , τs)T ,

s = 4k − 3, νi > 0,

k−1∑
i=1

νi < 1/2,

ξτ,z =
( −r −rt2 . . . −rtk rtk . . . rt2 r

ν1 ν2 . . . νk νk . . . ν2 ν1

)
,

νk = 1/2 −
k−1∑
i=1

νi,

ϕ(τ, z) =
pT M1(ξτ,z)p + qT M2(ξτ,z)q

pT p + qT q
,

p = (p1, . . . , pk)T , q = (q1, . . . , qk−1, 1)T .
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Denote by p∗ = (p∗
1, . . . , p

∗
k−1, 1)T and q∗ = (q∗

1 , . . . , q∗
k−1, 1)T the eigen-

vectors of M1(ξ∗(z)) and M2(ξ∗(z)), corresponding to their minimal eigen-
value, respectively, where ξ∗(z) is the unique E-optimal design.

Due to Lemma 3.3.4, this design is of the form

ξ∗(z) =
( −r −rt∗2 . . . −rt∗k, rt∗k . . . rt∗2 r

ν∗
1 ν∗

2 . . . ν∗
k ν∗

k . . . ν∗
2 ν∗

1

)
, (3.46)

where νi > 0, i = 1, . . . , k, and
∑k

i=1 ν∗
i = 1/2.

Let λ∗(z) = λmin (M(ξ∗(z))) and

τ∗(z) = (α∗zk−1√zp∗
1, . . . , α

∗z
√

zp∗
k−1, α

∗√z, zk−1q∗
1 , . . . , q∗

k−1,

2ν∗
1/z, . . . , 2ν∗

k−1/z, t∗2
2 , . . . , t∗2

k−1, t
∗2
k /z)T ,

where α∗ = α∗(z) is a positive number.
As in the case of odd m, it can be proved that the equation

∂

∂τ
ϕ(τ, z) = 0

with arbitrary z, 0 < z < z∗ possesses the solution τ = τ∗(z) with some
α∗ = α∗(z).

Let us point out the form of the limit τ∗(z) with z → 0.

Lemma 3.4.4 With m = 2k and z → z(0) = 0, there exists the limit

τ∗
(0) = lim

z→0
τ∗(z)

= (p̃1(0), . . . , p̃k(0), q̃1(0), . . . , q̃k−1(0), ω̃1(0), . . . , ω̃k−1(0),

ỹ2(0), . . . , ỹk−1(0), yk(0))T ,

where ỹi(0) = t2i , i = 2, . . . , k, yk(0) = 1, 0 = tk < . . . < t2 < 1 are
nonnegative extremal points of T2k−1(t),

k∑
i=1

p̃i(0)t
2(i−1) = T2k−2(t)/22k−3,

k∑
i=1

q̃i(0)t
2i−1 = (t2 − 1)U2k−3(t)/22k−3, q̃k(0) = 1,

ω̃(0)j = (−1)keT
j F−1

(
| p̃2(0)

p̃1(0)
|e1 + e2

)
, j = 1, . . . , k − 1,

F =
(
ỹi−1

j(0)(−1)j−1
)k

i,j=1
.
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A proof of this lemma will be given in the next section.
Let τ∗(z) be such as described above for m = 2k+1 or m = 2k with the

corresponding determination of the function ϕ(τ, z). Let us codetermine the
function τ∗(z) in z = 0 by relation τ∗(0) = τ∗

(0) and for z < 0, |z| ∈ (0, z∗)
by relation τ∗(z) = τ∗(−z).

The following theorem describes properties of functions τ∗(z) and J(z).
It is a typical result of the functional approach.

Theorem 3.4.1 Let m > 2 and the vector function τ∗(z) be such as it was
determined above. Then there exists a number ẑ, 0 < ẑ ≤ z∗ such that the
matrix J(z) is nonsingular with z ∈ (−ẑ, ẑ) and the vector function τ∗(z)
is real analytic with z ∈ (−ẑ, ẑ).

The proof will be given in Section 3.4.3.
Denote

g(τ, z) =
(

∂

∂τi
ϕ(τ, z)

)s

i=1
.

Due to Theorem 3.4.1 and Lemmas 3.4.3 and 3.4.4, we can calculate the
coefficients in the Taylor expansion

τ∗(z) =
∞∑

n=0

τ∗
(n)z

n

by general recurrent formulas from Section 2.4:

τ∗
(n+1) = − (J(1)

)−1 (g(τ∗
<n>(z), z))(n+2) , (3.47)

where n = 0, 1, . . ., and τ∗
(0) is determined in Lemmas 3.4.3 and 3.4.4,

τ∗
<n>(z) =

n∑
i=0

τ∗
(i)z

i.

As it was already pointed out in Section 2.4, these formulas can be realized
in the software package Maple and others.

Consider now the problem of exactness of these expansions. Denote by
ξ(n) = ξ(n)(z) the design

ξ(n) = ξτ∗
<n>(z),z

obtained by using n coefficients of these expansions.
Let for m = 2k + 1,

ρ̄(n)(y, z) =
((1, y, . . . , yk)p)2 + ((1, y, . . . , yk−1)q)2y

pT p + qT q
,

and for m = 2k,

ρ̄(n)(y, z) =
((1, y, . . . , yk−1)p)2 + ((1, y, . . . , yk−1)q)2y

pT p + qT q
,
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where

p = p̃<n>(z) =
n∑

i=0

p̃(i)z
i,

q = q̃<n>(z) =
n∑

i=0

q̃(i)z
i,

Denote
λ∗(z) = λmin

(
M(ξτ∗(z),z)

)
,

λ[n](z) = λmin
(
M(ξ(n)(z))

)
,

and note that λ[n](z) �= λ<n>(z), generally speaking.

Lemma 3.4.5 With m > 2, the following inequalities are satisfied:

λ[n](z) ≤ λ∗(z) ≤ max
0≤y≤1

ρ̄(n)(y, z).

This lemma is an obvious corollary of Theorem 3.3.1. Thus, we have

0 ≤ λ∗(z) − λ[n](z) ≤ max
0≤y≤1

(
ρ̄n(y, z) − λ[n](z)

)
.

3.4.2 Limiting designs

In the present section, we will prove Lemma 3.4.4 (note that Lemma 3.4.3
can be proved in a quite similar way). The following proof is based in the
representations for extremal polynomials.

Let m = 2k > 2, z = 1/r2, and

ξ∗(z) =
( −t∗1 −t∗2 . . . −t∗k t∗k . . . t∗2 t∗1

ν∗
1 ν∗

2 . . . ν∗
k ν∗

k . . . ν∗
2 ν∗

1

)
,

where t∗i = t∗i (z), ν∗
i = ν∗(z), i = 1, . . . , k, t∗1 = r = 1/

√
z, is the unique

E-optimal design for polynomial regression on the interval [−r, r].
Consider the equality

λ + γ(y − 1/z)
k∏

i=2

(y − yi)2 =
(pT f̄(y))2 + y(qT f̄(y))2

pT p + qT q
, (3.48)

where f̄(y) = (1, y, . . . , yk−1)T , 0 ≤ yk < . . . < y2 ≤ 1/z, λ ≤ 1.
Due to Lemmas 3.3.1 and 3.3.4, the left-hand side of this equality with

λ = λ∗(z), yi = t∗2
i , i = 2, . . . , k, and a positive γ > 0 coincides with

ρ̄(y) = ρ(
√

y), where ρ(t) is the extremal polynomial defined in Theorem
3.3.1. Additionally, λ∗(z) < 1 due to Lemma 3.3.1, and by Lemma 3.4.2,
the right-hand side with p =

√
α∗p∗, q = q∗ is also equal to ρ̄(y).
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Thus, equality (3.48) holds for λ = λ∗(z), yi = y∗
i , i = 2, . . . , k, and

p =
√

α∗p∗, q = q∗ for some γ > 0. Equating coefficients under y2k−1 in
both sides of the equality, we obtain the relation

γ =
q2
k

pT p + qT q
.

Without loss of generality, set qk = 1. Equating the free terms and coeffi-
cients under y2(k−1), derive

λ =
p2
1 +

∏k
i=2 y2

i /z

pT p + qT q
, (3.49)

p2
k + 2qkqk−1 = −1/z − 2

k∑
i=2

yi. (3.50)

Let us change the variable y → y/z and use the following notations

ỹi = zyi, p̃i = piz
k−i

√
z, q̃i = qiz

k−i, i = 1, . . . , k,

ỹ∗
i = zy∗

i , p̃∗
i =

√
α∗p∗

i z
k−i

√
z, q̃∗

i = q∗
i zk−i, i = 1, . . . , k,

∆ =
k∑

i=1

p̃2
i z

2(i−1) + z

k∑
i=1

q̃2
i z2(i−1).

Now, (3.48)–(3.50) assume the form

λ +
1
∆

(y − 1)
k∏

i=2

(y − ỹi)2 =
1
∆

[(
p̃T f̄(y)

)2
+ y

(
q̃T f̄(y)

)2]
, (3.51)

λ = (p̃2
1 +

k∏
i=2

ỹ2
i )/∆, (3.52)

p̃2
k + 2q̃k−1 = −1 − 2

k∑
i=2

ỹi, (3.53)

where 0 < ỹk < · · · < ỹ2 < 1.
By standard arguments, it follows that t∗i , p∗

i , q∗
i , i = 1, . . . , k, are

continuous functions of z. Since zt∗2
i ≤ 1, values ỹi = zt∗2

i tend to finite
limits; denote these limits by ỹi(0), i = 1, . . . , k. Since λ∗(z) ≤ 1, λ∗(z)
tends to a finite limit (say λ(0)).

Due to Remark 3.4.1, we have

q̃∗T f̄(y) =
k−1∏
i=1

(y − ui), 0 ≤ ui ≤ 1, i = 1, . . . , k − 1,

p̃∗T f̄(y) = p̃∗
k

k−1∏
i=1

(y − vi), 0 ≤ vi ≤ 1, i = 1, . . . , k − 1.



116 CHAPTER 3. POLYNOMIAL MODELS

Therefore, q̃∗
k = 1 and q̃∗

i tends to finite limits with z → 0. Note that p̃∗
k

tends to a finite limit due to (3.53). It follows that all p̃∗
i (i = 1, . . . , k)

tend to finite limits and ∆ → 1.
Denote the limits of p̃∗ and q̃∗ by p̃(0) and q̃(0), respectively.
Considering (3.52), we see that λ > 1 if ỹk(0) > 0. However, λ∗(z) < 1

and limλ∗(z) ≤ 1. Therefore, λ(0) = 1, ỹk(0) = 0 and we obtain by an
immediate calculation that

λ(z) = 1 + λ(1)z + H(z)z2,

where λ(1) = −(q̃1(0)/p̃1(0))2 = −2|p̃2(0)/p̃1(0)| and H(z) ≤ const < ∞ for
any z, 0 < z < z∗.

Denote

λ(z, p̃, q̃) =

(
p̃2
1 +

k∏
i=2

ỹ2
i

)/
∆.

Note that the minimum of λ(z, p̃, q̃) by all vectors p̃ and q̃ ∈ Rk such that
q̃k = 1 and (

p̃T f̄(ỹ∗
i )
)2

+ ỹ∗
i

(
q̃T f̄(ỹ∗

i )
)2

= C, i = 1, . . . , k, (3.54)

where C is a positive constant, is equal to λ∗(z). Moreover, this minimum
is achieved if and only if p̃ = p̃∗ and q̃ = q̃∗, where p̃∗ and q̃∗ satisfy (3.51)
with λ = λ∗(z) and ỹi = ỹ∗

i , i = 2, . . . , k.
In fact, multiplying both sides of (3.54) by ν∗

i /∆ and summing with
i = 1, . . . , k, we obtain

C

∆
=

pT M1(ξ∗(z))p + qT M2(ξ∗(z))q
pT p + qT q

≥ λmin (M(ξ∗(z))) = λ∗(z),

where p = (p1, . . . , pk)T , q = (q1, . . . , qk)T and pi = p̃i/zk−i+1/2, qi =
q̃i/zk−i, i = 1, 2, . . . , k. The equality holds if and only if p̃ = p̃∗ and
q = q̃∗, which follows from (3.51). Note that the pair (p∗, q∗) is determined
uniquely due to Lemma 3.4.2.

Passing to the limit in (3.51) with z → 0, we obtain that p̃(0) and q̃(0)
give the minimum of

lim
z→0

λ(z) − λ(0)
z

= λ′(0) = −2
∣∣p̃2(0)/p̃1(0)

∣∣
under the condition

ϕ2(yi) + yiψ
2(yi) = 1, i = 1, 2, . . . , k,

where yi = ỹi(0), i = 1, . . . , k,

ϕ(y) = p̃T
(0)f̄(y)/|p̃1(0)|, ψ(y) = q̃T

(0)f̄(y)/|p̃1(0)|.
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Let us rewrite the condition in the form

|ϕ(yi)| =
√

1 − yiψ2(yi), yi = ỹi(0), i = 1, . . . , k. (3.55)

By Lemma 3.3.5, the absolute value of the coefficient of polynomial ϕ(y)
under y (equal to |p̃2(0)/p̃1(0)|) will be maximal under restrictions (3.55) if

ϕ(yi) = (−1)i−l
√

1 − yiψ2(yi), i = 1, . . . , k,

and
l = 0 or 1, ψ(yi) = 0, yi = ỹi(0), i = 1, . . . , k − 1.

From the last equalities, it follows that

ψ(y) =
1

|p̃1(0) |
k−1∏
i=1

(y − ỹi(0)).

Let us introduce the polynomials

h1(t) = ϕ(t2), h2(t) =
t

|p̃1(0) |
k−1∏
i=2

(t2 − ỹi(0)).

Note that

yψ2(y) − 1
p̃2
1(0)

y2(y − 1)
k−1∏
i=2

(y − ỹi(0))2

=
1

p̃2
1(0)

y(1 − y)
k−1∏
i=2

(y − ỹi(0))2 = (1 − y)h2
2(

√
y).

(3.56)

Let us divide both sides of (3.51) by p̃2
1 and pass to the limit with z → 0.

Taking into account (3.56), we derive

1 = h2
1(t) + (1 − t2)h2

2(t).

As is known (see, e.g., Karlin and Studden (1966, Section 9.5)), this iden-
tity in the class of polynomials holds if and only if h1(t) and h2(t) are
Chebyshev polynomials of the first and the second kind, respectively, with
a sign precision.

Taking into account degrees of h1(t) and h2(t) and signs of coefficients
pk and qk, we obtain that

h1(t) = T2k−2(t), h2(t) = U2k−3(t).

From this, we obtain formulas given in the formulation of Lemma 3.4.4 for
p̃(0) and q̃(0) by simple calculations.

Additionally, since
h1(t) ≤ 1,
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ỹ2(0), . . . , ỹk−1(0) are squares of extremal points of the Chebyshev polyno-
mial T2k−2(t).

Now, let ωi(z) = 2ν∗
i (z), i = 1, . . . , k, and ω̃i(z) = ωi(z)/z, i =

1, . . . , k − 1. Since ωi(z) > 0 and
∑k

i=1 ωi(z) = 1, there exist the lim-
its ωi(0) = limz→0 ωi(z), i = 1, . . . , k. Let us find these limits. Then
we will prove the existence of the limits y(0) = limz→0 y∗

k(z) and ω̃i(0) =
limz→0 ω̃i(z), i = 1, . . . , k − 1 and find them.

Let

ξ̃ = ξ̃∗(z) =
( −t∗1(z)

√
z . . . −t∗k(z)

√
z t∗k(z)

√
z . . . t∗1(z)

√
z

ν∗
1 (z) . . . ν∗

k(z) ν∗
k(z) . . . ν∗

1 (z)

)
,

where t∗1(z)
√

z = 1.
Consider the matrices

M∗
1 (z) = M1(ξ∗(z)), M∗

2 (z) = M2(ξ∗(z)),
M̃1(z) = M1(ξ̃∗(z)), M̃2(z) = M2(ξ̃∗(z)).

A direct calculation shows that

M∗
1 = Z̃−1

1 M̃1Z̃
−1
1 , Z̃1 = diag{1, z, . . . , zk−1},

M∗
2 = Z̃−1

2 M̃2Z̃
−1
2 , Z̃2 = diag{√

z,
√

zz, . . . ,
√

zzk−1},

Denote
Z1 = Z̃2

1 , Z2 = Z̃2
2 .

Then from equalities
M∗

1 p∗ = λ∗(z)p∗,

M∗
2 q∗ = λ∗(z)q∗,

it follows, that
M̃1p̃ = λ∗(z)Z1p̃, (3.57)

M̃2q̃ = λ∗(z)Z2q̃, (3.58)

where p̃ = zk+1/2Z̃−1
1 p∗ and q̃ = zk+1/2Z̃−1

2 q∗.
Let us pass to the limit in (3.57). Then we have

M̃1(0)p̃(0) = p̃1(0)e1, e1 = (1, 0, . . . , 0)T .

Remember that

p̃T
(0)f̄(ỹi(0))/|p̃1(0)| = ϕ(ỹi(0)) = T2k−2(

√
yi(0)) = (−1)i−1.

Therefore,

p̃T
(0)f(1)(

√
yi(0)) = p̃T

(0)f̄(ỹi(0)) = (−1)i−1|p̃1(0)|. (3.59)
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By the definition of M̃1 we have

M̃1(z) =
k∑

j=1

f(1)(
√

ỹj)fT
(1)(
√

ỹj)ωj .

Using (3.59), we derive

M̃1(0)p̃(0) = Fω(0)|p̃1(0)| = |p̃1(0)|e1,

where

F =
(
ỹi−1

j(0)(−1)j−1
)k

i,j=1
.

Since ỹk(0) = 0, we have
Fek = e1

and it means that ω(0) = ek.
Now, using this limit value, we obtain that

M̃1(0) = f(1)(0)fT
(1)(0) = e1e

T
1 .

It also follows from ω(0) = ek that

M̃2(0) = f(2)(0)fT
(2)(0) = 0.

Let us divide both sides of (3.58) by z and pass to the limit with z → 0.
Taking into account that M2(0) is a zero matrix, we derive

M̃2(1)q̃(0) = q̃1(0)e1.

Using the definition of M̃2 = M̃2(z), rewrite the last equality in the form

k−1∑
i=1

f(2)(
√

ỹi(0))fT
(2)(
√

ỹi(0))ω̃i(0)q̃(0) + y∗
k(0)e1e

T
1 q̃(0) = q̃1(0)e1. (3.60)

Since

fT
(2)(

√
y)q̃(0) = |p̃1(0) |

√
yψ(y) = |p̃1(0) |

√
y

k∏
i=1

(y − ỹi(0)),

we have
fT
(2)(

√
y)q̃(0) = 0, y = ỹi(0), i = 1, . . . , k.

Inserting these values to (3.60), we obtain that

y∗
k(0)q̃1(0)e1 = q̃1(0)e1

and y∗
k(0) = 1.
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Now, let us return to equality (3.57) and divide both sides by z. Passing
to the limit on the right-hand side, we obtain the expression

p̃1(1)e1 + λ(1)p̃1(0)e1,

where λ(1) = −2|p̃2(0)/p̃1(0)|. Since this limit is finite, we conclude that
there exist finite limits of ω̃i(z) = ωi(z)/z, i = 1, . . . , k.

Using values ω(0) = ek, y∗
k(0) = 1, we find

M̃1(1) =
k−1∑
i=1

[
f̄(ỹi(0))f̄T (ỹi(0)) − f̄(ỹk(0))f̄T (ỹk(0))

]
ω̃i(0)

+e2e
T
1 + e1e

T
2 .

(3.61)

In addition, we obtain from (3.57) that

M̃1(1)p̃(0) + M̃1(0)p̃(1) = p̃1(1)e1 + λ(1)p̃1(0)e1,

and since M̃1(0)p̃(1) = e1e
T
1 p̃(1) = p̃1(1)e1, we have

M̃1(1)p̃(0) = λ(1)p̃1(0)e1. (3.62)

Denote ω̃(0) = (ω̃1(0), . . . , ω̃k−1(0),−
∑k−1

i=1 ω̃i(0))T . Then inserting
(3.62) on the left-hand side of (3.62), we find

Fω̃(0)|p1(0)| + e2p̃1(0) + e1p̃2(0) = −2
∣∣∣∣ p̃2(0)

p̃1(0)

∣∣∣∣ p̃1(0)e1.

Since sign p̃1(0) = (−1)k−1 and p̃2(0)

p̃1(0)
< 0, we have

ω̃(0) = F−1 [(−1)ke2 + (−1)k|p̃2(0)/p̃1(0)|e1
]
.

This formula completes our proof.

In order to elucidate the results obtained, let us consider the case m = 4.
In this case, k = 2 and by the above formulas we have

ỹ1(0) = 1, ỹ2(0) = 0,

h1(t) = T2(t) = 2t2 − 1, h2(t) = U1(t) = 2t,

p̃(0) = (−1/2, 1)T , q̃(0) = (−1, 1)T ,

λ(1) = −2|p̃2(0)/p̃1(0)| = −4.

The limit of (3.51) is now

1 + (y − 1)y2 = (2y − 1)2 + 4y(y − 1)2



3.4. NON-CHEBYSHEV E-OPTIMAL DESIGNS 121

and

F =
(

1 −1
ỹ1(0) −ỹ2(0)

)
=
(

1 −1
1 0

)
, F−1 =

(
0 1

−1 1

)
,

ω̃2(0) = eT
2 F−1(e2 + 2e1) = (−1, 1)

(
2
1

)
= −1.

Thus,

τ(0) = (p̃1(0), p̃2(0), q̃1(0), ω̃1(0), y2(0))T = (−1/2, 1,−1, 1, 1)T .

These results will be used in Section 3.4.4 for constructing non-Chebyshev
E-optimal designs.

3.4.3 Proof of the main theorem

In this section, we will prove Theorem 3.4.1 in the case m = 2k. A proof
for m = 2k + 1 can be constructed in a similar way.

Let m = 2k, X = [−r, r], and r = 1/
√

z, 0 < z < z∗. Note that the
extremal polynomial is positive for all sufficiently small values of z due to
Lemmas 3.4.4 and 3.4.5. Denote by ẑ the supremum of all such values.

With z ≥ z∗ the polynomial ρ(t) is the square of the Chebyshev poly-
nomial and it vanishes in its zeros. Thus, ẑ ≤ z∗.

Let us now prove that with 0 < z < ẑ the determinant of the Jacobi
matrix J(z) does not vanish.

Denote πT = (pT , qT ) and introduce the matrix Pπ:

Pπ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1 p2 . . . pk 0 0 . . . 0
0 p1 p2 . . . pk 0 . . . 0
...

...
...

. . .
...

...
. . .

...
0 . . . 0 p1 p2 . . . pk 0
0 q1 q2 . . . qk 0 . . . 0
0 0 q1 q2 . . . qk . . . 0
...

...
...

...
. . .

...
. . .

...
0 0 . . . 0 q1 q2 . . . qk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(The order of matrix Pπ is 2k × 2k.)
This matrix is the resultant matrix of polynomials pT f̄(t2) and tqT f̄(t2),

f̄(y) = (1, y, . . . , yk−1). It is known (see, e.g., Van der Warden (1967)) that
det Pπ �= 0 if and only if these polynomials have no common roots.

Denote

Z = diag{1, z2, . . . , z2(k−1), z, z3, . . . , z2k−1}.

An immediate verification shows that the function ϕ(τ, z) can be written
in the form

ϕ(τ, z) = π̃T Pπ̃c/π̃T Zπ̃,
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where

c =
k∑

i=1

f(ỹi)ωi, ωi = 2νi, π̃T = (p̃T , q̃T ), ωi = 2ν∗
i .

By immediately calculating the derivatives ∂2ϕ(τ, z)/∂τi∂τj (i, j =
1, . . . , s) at the point τ = τ∗(z), we obtain the following formulas:

J = J(z) =
2

πT Zπ

(
M̃ − λZ PπY
(PπY )T D

)
, (3.63)

where the symbol “ ” right of a matrix means that its 2k-th row and 2k-th
column are rejected,

M̃ =
(

M1(ξ̃) 0
0 M2(ξ̃)

)
,

ξ̃ =

( −1 t∗2 . . . t∗k t∗k . . . t∗2 1

ν∗
1 ν∗

2 . . . ν∗
k ν∗

k . . . ν∗
2 ν∗

1

)
,

Y = (Yν

...Yy), Yν = ((f(ỹi) − f(zyk))z)k−1
i=1 ,

Yy =
(

(f ′(ỹi)zω̃i)
k−1
i=2

... f ′(zyk)zωk

)
, ỹ1 = 1, ωk = 1 −

k−1∑
i=1

ω̃iz

D =
(

0 0
0 E

)
, λ = ϕ(τ∗(z), z),

E =
1
2
diag

{
πT Pπf”(ỹ2)ω̃2z, . . . , πT Pπf”(ỹk−1)ω̃k−1z,

πT Pπf”(zyk)ωkz2} .

f(y) = (1, y, . . . , y2k−1)T , πT = π̃T = (p̃T , q̃T ).

In this representation, vanishing terms, e.g., πT Pπf
′
(ỹi), are omitted. Set

z∗ = 1/r∗2.

Let A be the matrix -
πT Zπ

2
J – with omitted k-th column and k-

th row, and let a be the omitted column with omitted k-th element,

a∗ = (
πT Zπ

2
J)kk. Note that the matrix A is of the following form:

A =
(

G H
HT D

)
, (3.64)

where G is the matrix M̃ − λZ with omitted k-th and 2k-th columns and
k-th and 2k-th rows, H is the matrix Pπ̃Y with omitted k-th and 2k-th
rows, matrix D is the same as in (3.63) to constant precision.
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Since the multiplicity of the minimal eigenvalue of the matrix Z1M̃Z1
(Z1 = diag{1, 1/z, . . . , 1/zk−1, 1/

√
z, . . . , 1/(

√
zzk−1)}) is not more than 2,

and there are no zeros in the vector π∗, the matrix G is positive definite.
Since the Vandermonde determinant is not zero, the matrix Y is of full

rank. Since the polynomials p̂T f(x) and q̂T f(x) have no common factors
and Pπ is the resultant matrix of these polynomials, det Pπ �= 0. Therefore,
the matrix H is of full rank.

By the Frobenius formula (see, e.g., Fedorov (1972, Chap.1)),

det A = det G det(D − HT G−1H).

Since the matrix H is of full rank, HT G−1H > 0.
All of the elements of the matrix D are nonpositive and −D ≥ 0, from

which it follows that
det A > 0,

since the matrices D and HT G−1H are of order (2k − 1) × (2k − 1).
Let us demonstrate that detJ(z) �= 0 for z ∈ (0, ẑ). Multiplying the

2nd, 3rd, ..., and k-th rows of the matrix J(z) by p̃2, . . . , p̃k, respectively,
adding them to the first one, multiplied by p̃1, gives us the matrix⎛

⎜⎜⎝
0 bT

(1) bT
(2)

b(1) G H

b(2) HT D

⎞
⎟⎟⎠ ,

where bT
(1) = (0, . . . , 0) and

bT
(2) =

(
(p̃T f̄(ỹ1))2z − (p̃T f̄(ykz))2z, . . . , (p̃T f̄(ỹk−1))2z − (p̃T f̄(ykz))2z ,

(
(p̃T f̄(ỹ2))2

)′
ω̃2z, . . . ,

(
(p̃T f̄(ykz))2

)′
ωkz

)
.

Note that the vector b(2) �= 0, since, otherwise, pT f(y) would be a Cheby-
shev polynomial, which is impossible. Therefore, detJ(z)=bT A−1b �=0.

Thus, detJ(z) �= 0 with z ∈ (0, ẑ).
By a straightforward but rather tedious calculation, it can be checked

that the limit of J(z) with z → 0 exists and is equal to the zero matrix.
Also, the limiting matrix J(1) = limz→0 J(z)/z exists and det J(1) �= 0. The
last relation can be proved by arguments similar that was already used for
proving det J(z) �= 0.

Now, by the Implicit Function Theorem (see Section 1.8), τ∗(z) is a real
analytic vector function for z ∈ (−ẑ, 0)∪ (0, ẑ). Also, by the same theorem,
τ∗(z) is real analytic in a vicinity of zero since det J(1) �= 0.

In the next section, we will construct E-optimal designs for cases m =
3, 4, and 5. For m = 3 the solution proves to be available in an explicit
form. Also, for m = 4 and 5, we will construct E-optimal designs with the
help of Theorem 3.4.1.
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3.4.4 Examples

For the case m = 2, E-optimal designs were found in an explicit form for
arbitrary design intervals in Section 3.3.2. Here, we consider the case of the
symmetrical design interval for m = 3, 4, and 5. In the case of quadratic
model the (m = 3), E-optimal designs are found in an explicit form. For
the cubic model (m = 4) and the model of the fourth degree (m = 5), we
will construct E-optimal designs with the help of the functional approach.

Example 3.4.1 Quadratic model on symmetrical interval
Let

η(t, θ) = θ1 + θ2t + θ3t
2, t ∈ [−r, r].

In this case, an explicit form of E-optimal designs can be obtained by a
direct analysis of the characteristic equation and is given by the following
theorem.

Theorem 3.4.2 For the quadratic model on symmetrical intervals X =
[−r, r], an E-optimal design is unique and it is

ξ∗ =
( −r 0 r

µ 1 − 2µ µ

)
,

where

µ =

⎧⎪⎪⎨
⎪⎪⎩

1
4 + r4 for r ≤ √

2

r2 − 1
2r4 for r >

√
2.

In the first, case λ∗ = r4

4+r4 , and in the second case, λ∗ = r2−1
r2 .

Proof. From Lemma 3.3.4, it follows that an E-optimal design is unique
and is of the form

ξµ =
( −r 0 r

µ 1 − 2µ µ

)
, 0 < µ < 1/2.

Thus, the problem is reduced to maximization by µ ∈ [0, 1/2], the value

λmin (M(ξµ)) .

This value can be found by a direct calculation using the characteristic
equation. In fact, eigenvalues of the matrix

M(ξµ) =

⎛
⎝ 1 0 2µr2

0 2µr2 0
2µr2 0 2µr4

⎞
⎠

are the roots of the characteristic equation

det(M − λI) = 0,
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where I is the identity matrix.
Since

det(M(ξ∗) − λI) = (2µr2 − λ)
[
(1 − λ)(2µr4 − λ) − 4µ2r4] ,

we obtain the following expressions for the eigenvalues,

λ1 = 2µr2,

λ2,3 =
1 + 2µr4 ±√(1 + 2µr4)2 + 16µ2r4 − 8µr4

2
,

and λ3 ≤ λ2.
Let us find a stationary point of the function λ3 = λ3(µ) by the equation

(λ3(µ))
′
= 0:

2r4 − 4r4(1 + 2µr4) + 32µr4 − 8r4

2
√

(1 + 2µr4)2 + 16µ2r4 − 8µr4
= 0.

Note that the denominator is not equal to zero and the equation is
reduced to √

(1 + 2µr4) + 16µ2r4 − 8µr4 = 1 + 2µr4 + 8µ − 2.

Squaring both sides and collecting similar terms, we obtain

µ
(
(r4 + 1)µ − 1

)
= 0.

Denote by µ∗ = 1
r4+4 one of the two roots of this equation.

The root µ = 0 is not appropriate since λ3(0) = 0. In addition,
λ3(1/2) = 0 and, therefore,

sup
0<µ<1/2

λ3(µ) = max
0≤µ≤1/2

λ3(µ) = λ3(µ∗) =
r4

r4 + 4
.

This value is the minimal eigenvalue of M(ξ(µ∗)) if λ3(µ∗) ≤ λ1(µ∗);
that is, if

r4

r4 + 4
≤ 2r2

r4 + 4
.

Thus, with r ≤ √
2,

sup
0<µ<1/2

λmin (M(ξ(µ))) = λ3(µ∗) = r4 /(r4 + 4).

For r >
√

2, the value µ for an E-optimal design should satisfy the condition
λ1(µ) = λ3(µ); that is,

4µr2 = 1 + 2µr4 −
√

(1 + 2µr4)2 + 16µ2r4 − 8µr4,
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√
(1 + 2µr4)2 + 16µ2r4 − 8µr4 = 1 + 2µr4 − 4µr2.

Squaring and collecting similar terms, we have

−8µr4 = −8µr2 − 16µ2r6.

From this it follows r2 = 1 + 2µr4 and, therefore,

µ =
r2 − 1
2r4 , λ∗ = λ1,3(µ) =

r2 − 1
r2 ,

which completes the proof.

Note that in the present case, dim P = 1 with r <
√

2 and dim P = 2
with r ≥ √

2. The Chebyshev design is

ξ̄(r) =
( −r 0 r

µ∗ 1 − 2µ∗ µ∗

)
,

where

µ∗ =
1

r4 + 4
=

z2

1 + 4z2 , z = 1/r2,

and it coincides with an E-optimal design with r ≤ √
2. The value r∗ =

√
2

is the minimal positive root of the boundary equation

λ2
(
M(ξ̄(r))

)
= λ̄(r),

which assumes the form

2z

1 + 4z2 =
1

1 + 4z2 , z = 1/r2,

and reduces to
2z − 1 = 0.

This equation has, in fact, the unique solution z∗ = 1/2 and r∗ = 1/
√

z∗ =√
2.

With r >
√

2, the E-optimal design is also located in Chebyshev points,
but it is not a Chebyshev design in the sense introduced in Section 3.3.

For m > 3 it seems impossible to find non-Chebyshev E-optimal designs
explicitly and we will apply the functional approach developed above.

Example 3.4.2 Cubic model
Let m = 4;

η(t, θ) = θ1 + θ2t + θ3t
2 + θ4t

3, t ∈ [−r, r].

A direct calculation shows that the boundary equation (3.39) in this case
assumes the form

64z5 − 32z4 + 60z3 − 30z2 + 11z − 3 = 0.
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This equation has the unique positive root z∗ = z∗(4) ≈ 0.381425.
Therefore, due to Theorem 3.4.2 with r ≤ r∗(4) = 1/

√
z∗(4), the E-

optimal design coincides with the Chebyshev design and has the form

ξ∗ =
( −r −rt rt r

µ 1
2 − µ 1

2 − µ µ

)
,

where t is the unique positive root of the polynomial

(T3(t))
′
= (4t3 − 3t)

′
= 12t2 − 3,

t = 1/2, and µ can be found from (3.37) and is equal to

µ =
3 + 16z2

6(9 + 16z2)
,

λmin (M(ξ∗)) = λ̄(r) =
1

9z + 16z3 , z = 1/r2.

For r > r∗(4), an E-optimal design due to Lemma 3.3.1 has the same form.
Due to Lemma 3.4.4, the limiting vector τ(0) is equal to

τ(0) = (p̃1(0), p̃2(0), q̃1(0), ω̃1(0), y2(0))T = (−1/2, 1,−1, 1, 1)T .

Using this vector and the explicit form of matrix J̄(z), we obtain J̄(0) = 0,

J̄(1) =

⎛
⎜⎜⎜⎜⎝

4 2 0 1 1
2 1 0 1/2 −1/2
0 0 1 0 −1
1 1/2 0 0 0
1 −1/2 −1 0 0

⎞
⎟⎟⎟⎟⎠ , g(2) =

⎛
⎜⎜⎜⎜⎝

3
1/2
−2
0

−1

⎞
⎟⎟⎟⎟⎠ .

Therefore, τ(1) = −J̄−1
(1) g(2) = (1,−2, 1,−2, 1)T . Coefficients τ(n) with n =

0, 1, . . . , 9 calculated by (3.47) are given in Table 3.4.

Table 3.4: Table of coefficients (m = 4)
n 0 1 2 3 4 5 6 7 8 9
p̃1 − 1

2 1 − 1
2

5
2 − 19

4 8 9 − 239
4

3533
16 − 2645

8

p̃2 1 −2 1 −3 1
2 2 −38 167

2 − 1297
8 − 931

4

q̃1 −1 1 −2 5 −8 4 31 −147 362 −348
ω̃1 1 −2 1 0 8 −38 78 2 −579 2064
y2 1 −1 0 1 −2 6 −13 11 58 −350
λ 1 −4 8 −8 −4 24 −8 −132 404 −364
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In Table 3.4 the coefficients λ(n), n = 0, 1, . . . , 10, for the function

λ(z) = λmin
(
M(ξτ(z),z)

)
are also given.

Note that all coefficients are exact. With the help of Table 3.4, we can
construct the design

ξ(n)(z) = ξτ(n)(z),z.

From general formulas (3.46), we obtain

rt =
√

y1, µ = zω1/2.

Also from Table 3.4 we have

y1 = 1 − z + z3 − 2z4 + · · · ,

ω1 = 1 − 2z + z2 + 8z4 + · · · .

Thus, the values x and µ in the E-optimal design can be approximately
calculated. In order to check the quality of the approximation, consider the
case n = 3, r = 2, z = 1/r2 = 1/4.

In this case, we have

y1<3> (0.25) = 1 − 1
4

+
(

1
4

)3

= 0.766

ω1<3> (0.25) = 1 − 1
2

+
1
16

= 0.563

rx ≈ √
y1<3> ≈ 0.875, µ ≈ ω1<3>/8 = 0.07

ξ(3) (0.25) ≈
( −2 −0.88 0.88 2

0.07 0.43 0.43 0.07

)
.

Note that due to Lemma 3.3.5 we have

λ1 < λ(z) < λ2,

where λ1 = λ(n) and λ2 = max0≤y≤1 ρn(y). The values of λ1 and λ2 for
different n and z are given in Table 3.5.

From Table 3.5 we conclude that for r = 2, the first three coefficients
secure an acceptable efficiency of the design ξ = ξ(3):

λmin(M(ξ(3)))
λmin(M(ξτ(z),z))

=
0.37407
0.37722

≈ 0.99.

For r greater than 2, the efficiency of the design ξ(3)(z) will be even
greater, as can be seen from Table 3.5. However, numerical calculations,
omitted for the sake of brevity showed that the series constructed in a
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Table 3.5: Table of efficiency (m = 4)

z n λ1 λ2

0,01 1 0,96010 0,96117
0,01 2 0,96079 0,96081
0,01 3 0,96079 0,96079
0,15 3 0,55219 0,56539
0,15 5 0,55247 0,55302
0,15 10 0,55257 0,55257
0,25 3 0,37407 0,46476
0,25 5 0,37403 0,38293
0,25 10 0,37705 0,37744
0,25 20 0,37721 0,37726
0,25 30 0,37722 0,37722
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Figure 3.5: The dependence of
x(z) = rt for the case m = 4
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Figure 3.6: The dependence λ∗(z) for
the case m = 4

vicinity of point z = 0 converge very slowly if z is close to the critical value
z∗(4) ≈ 0.38.

The behavior of the point x(z) = rt is shown in Figure 3.5. We can
see from this figure that the function is monotonic. Note that all other
components of the vector τ(z) also have a monotonic behavior. However,
it is difficult to prove this in a strong way. The behavior of λ∗(z) is shown
in Figure 3.6.

If we need an E-optimal design for points close to r∗(4), it proves rea-
sonable to make calculations in the two stage. First, with the help of
expansions in vicinity of z = 0 we can approximate the vector τ(z) with
z = 0.2. Then we can construct the expansion at the point z = 0.2 and use
it for calculating the E-optimal design. We will demonstrate this approach
for the model of the fourth degree (m = 5) in the next example.
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Example 3.4.3 Model of fourth degree
Now let m = 5,

η(t, θ) = θ1 + θ2t + θ3t
2 + θ4t

3 + θ5t
4, t ∈ [−r, r].

The boundary equation in this case assumes the form

64z5 − 32z4 + 96z3 − 44z2 + 33z − 12 = 0.

This equation has the unique positive root

z∗ = z∗(5) ≈ 0.396787.

With r ≤ r∗(5) = 1/
√

z∗(5) due to Theorem 3.3.4, the E-optimal design
coincides with the Chebyshev design:

ξ∗ =
( −r −rt 0 rt r

ν1 ν2 ν3 ν2 ν1

)
,

where ν3 = 1 − 2ν1 − 2ν2, t = 1/
√

2,

ν1 =
4z2(1 + 2z2)

64z4 + 64z2 + 1
, ν2 =

16z2(1 + z2)
64z4 + 64z2 + 1

,

and
λmin(M(ξ∗)) = (64z4 + 64z2 + 1)−1.

Consider the case r > r∗(5). In this case, by Lemma 3.3.6, the E-
optimal design is unique and has the same form, but an explicit form for
x1, ν1, and ν2 is not available. Let us apply the functional approach.

For m = 5, the vector τ has the form

τ = (p̃1, p̃2, q̃1, q̃2, ω̃1, ω̃2, zt2)T .

Applying Lemma 3.4.3, we obtain that

τ(0) = (1/4,−5/4,−3/4, 1, 1, 8, 1/4)T ,

λ(0) = lim
z→0

λmin
(
M(ξτ(z),z)

)
= 1.

Matrix J(0) is a zero matrix and J(1) is equal to⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

9 3 0 0 −1/4 −1/4 −6
3 3/2 0 0 0 0 −3/2
0 0 2 3/2 1/4 −1/8 −2
0 0 3/2 9/8 1/4 −1/32 −3/2

−1/4 0 1/4 1/4 0 0 0
−1/4 0 −1/8 −1/32 0 0 0
−6 −3/2 −2 −3/2 0 0 −3/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Table 3.6: Coefficients for initial point z0 = 0
0 1 2 3 4

p̃1 1/4 −5/12 5/18 7/27 −146/81
p̃2 −5/4 5/6 −5/9 −26/27 532/81
q̃1 −3/4 5/4 5/24 −31/72 4717/864
q̃2 1 −5/3 −5/18 31/54 −151/24
ω̃2 8 −688/9 45632/81 −2691136/729 149801216/6561
ω̃1 1 −41/9 1888/81 −96560/729 4945072/6561
ỹ2 1/4 5/6 −5/9 −2/27 52/81
λ 1 −9 56 −320 1808

First coefficients of the Taylor expansion of the vector function τ(z) in
a vicinity of z = 0 are represented in Table 3.6. Similar coefficients for
λ(z) = ϕ(τ(z), z) are also given in the table.

From Table 3.5 we see that the coefficients for weights and for the min-
imal eigenvalue increase much faster than others. A numerical study shows
that the radius of convergency for ω̃1 = 2ν1/z and ω̃2 = 2ν2/z is approxi-
mately 0.16, whereas for other components of τ(0), it is approximately 0.35.

Note that λ, ω̃1 and ω̃2 can be expressed by the rest elements of τ .
For arbitrary m = 2k + 1, we have from (3.48) that

λ =

(∑k+1
i=1 p̃i

)2
+
(∑k

i=1 q̃i

)2

∑k+1
i=1 p̃2

i z
2i +

∑k
i=1 q̃2

i z2i
, p̃k+1 = 1,

and for k = 2, a direct calculation gives

ω̃2 =
λ(q̃1 − q̃2z

2)
ỹ2(1 − ỹ2)(q̃1 + q̃2ỹ2)

,

ω̃1 =
λ(q̃2z

2 − q̃1ỹ2)
(1 − ỹ2)(q̃1 + q̃2)

.

Thus, we can approximate p̃1, p̃2, q̃1, q̃2, and ỹ2 by the Taylor expansions
and calculate λ, ω̃1, and ω̃2 by the above formulas. This method allows one
to find support points and weights of the E-optimal design with a great
precision for z ≤ 0.3 (r ≥ 1/

√
0.3).

In order to solve the problem in the intermediate case 0.3 < z < 0.396,
we constructed re-expansion of the function τ(z) in a vicinity of point z =
0.2.

By the method described above, using 15 coefficients of the expansion
at zero point, we calculated the first column in Table 3.7. Other columns
are calculated by the recurrent formulas.

To show the efficiency of designs ξ(n)(z) obtained by the Taylor expan-
sion at z = 0.2, we calculated the bounds λ1 and λ2 for different values of
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Table 3.7: Coefficients for initial point z1 = 0.2
0 1 2 3 4 5

p̃1 0.17804 −0.30698 0.22962 −0.20355 −0.02974 0.36925
p̃2 −1.10688 0.60901 −0.43501 0.55512 −0.10179 −1.11856
q̃1 −0.48819 1.41862 1.00063 3.72679 11.81191 40.91730
q̃2 0.65139 −1.88521 −1.31832 −5.06216 −16.14959 −54.73347
ω̃2 2.21396 −9.66086 36.65304 −121.46442 374.99630 −1108.795
ω̃1 0.52635 −1.33370 2.49681 −6.18865 16.62481 −45.22451
ỹ2 0.39473 0.61899 −0.48325 0.25700 0.20932 −0.34837
λ 0.23768 −1.44590 5.21544 −15.39351 41.72046 −109.9943

z and n. The results are presented in Table 3.8. For example, consider the
case z = 0.35. With n = 2 the efficiency of design ξ(n)(z) is grater than

0.10124
0.10132

= 0.999.

Table 3.8: Table of efficiency

z n λ1 λ2

0.05 10 0.65880 0.65887
0.05 15 0.65880 0.65885
0.05 20 0.65880 0.65881
0.35 2 0.10124 0.10487
0.35 5 0.10132 0.10217
0.35 10 0.10132 0.10142
0.35 15 0.10132 0.10133
0.35 18 0.10132 0.10132
0.39 3 0.08185 0.08887
0.39 5 0.08185 0.08554
0.39 10 0.08185 0.08347
0.39 19 0.08185 0.08246
0.39679 2 0.07896 0.08649
0.39679 5 0.07897 0.08355
0.39679 10 0.07897 0.08143
0.39679 20 0.07897 0.08022

In the rest of this section, let us point out an efficient way of calculating
ξ(n)(z). A numerical verification shows that the series for p̃1, p̃2, and ỹ2
have a very quick convergency. This can also be seen immediately from
Table 3.7.

The weights for the E-optimal design and the minimal eigenvalue can
be calculated from p̃1, p̃2, and ỹ2 by the formulas

2νi = ω̃iz = λAi i = 1, 2,
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Figure 3.7: The dependence of nor-
malized support point x = x(z) for
the model of the fourth degree
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Figure 3.8: The behavior of the
minimal eigenvalue for the case
m=5

λ = 1 /(A1 + A2 + A3)

A = (A1, A2, A3)T = F−1diag{1, z2, z4}p̃,

where F =
(
p̂j , ỹ

i−1
j

)3
j,i=1

, p̂i = (1, ỹi, ỹ
2
i )p̃, p̃ = (p̃1, p̃2, 1)T , ỹ1 = 1, ỹ3 = 0.

Table 3.9: Coefficients for functions p̃1, p̃2, and ỹ2 in point z = 0.2

0 1 2 3
p̃1 0.17804 −0.307 0.230 −0.204
p̃2 −1.10688 0.609 −0.435 0.555
ỹ2 0.39473 0.619 −0.483 0.257

For the convenience of the readers we provide a simplified table of coeffi-
cients for p̃1, p̃2, and ỹ2 (see Table 3.9). Using these coefficients, the reader
can calculate an E-optimal design for any given design interval [−r, r],
r > r∗(5) = 1.5875. The behavior of the normalized support point x = x(z)
is represented in Figure 3.7. Again, we have a monotony dependence. It
is worth mentioning that the Taylor expansions provide the construction
of the figures and such a construction would be more difficult and not so
perfect by a merely numerical approach.



Chapter 4

Trigonometrical Models

Trigonometrical models can be considered as approximations of unknown
continuous functions by segments of their Fourier series. Such models have
a wide field of actual and potential applications.

In the present chapter, we consider trigonometrical regression models of
one variable on arbitrary intervals. We study D- and E-optimal designs for
this class of models with the help of the functional approach. In compari-
son with polynomial models, the main differences consist in the following.
First, support points of D-optimal designs for arbitrary intervals cannot be
obtained by the scale transformation of such points for the standard design
interval. Second, information matrices of E-optimal designs can have a
minimal eigenvalue of an arbitrary multiplicity.

4.1 Introduction

Trigonometric regression models of the form

y = β0 +
m∑

j=1

β2j−1 sin(jt) +
m∑

j=1

β2j cos(jt) + ε, t ∈ [c, d], (4.1)

−∞ < c < d < ∞, are widely used to describe periodic phenomena (see,
e.g., Mardia (1972), Graybill (1976), or Kitsos, Titterington, and Torsney
(1988)) and the problem of designing experiments for Fourier regression
models has been discussed by several authors (see, e.g., Hoel (1965), Karlin
and Studden (1966, p. 347), Fedorov (1972, p. 94), Hill (1978), Lau and
Studden (1985), Riccomagno, Schwabe, and Wynn (1997)). Most authors
concentrate on the design space [−π, π]. For the D-criterion, it was estab-
lished that optimal designs are concentrated in equidistant points and have
one and the same weights for these points. Pukelsheim (1980) and Melas
(1982) showed that these designs are also E-optimal ones.

135
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However, Hill (1978) and Kitsos, Titterington, and Torsney (1988)
pointed out that in many applications, it is impossible to take observations
on the full circle [−π, π]. We refer to Kitsos, Titterington, and Torsney
(1988) for a concrete example; they investigated a design problem in rhyth-
mometry involving circadian rhythm exhibited by peak expiratory flow,
for which the design region has to be restricted to a partial cycle of the
complete 24-hour period.

In the present chapter, we address the question of designing experi-
ments in trigonometric models, where the design space is not necessarily
the full circle but an arbitrary interval [c, d] ⊂ R. Recently, Dette and
Melas (2003) considered optimal designs for estimating individual coeffi-
cients in this model and gave a partial solution to this problem. In the
present chapter, we consider the D- and E-optimal designs.

The D-criterion is a reasonable criterion if efficient estimates of all pa-
rameters in the model are desired (see Section 1.5). D-Optimal designs are
investigated in Section 4.2∗. Some preliminary results are given in Section
4.2.1. It is demonstrated that the structure of the D-optimal design de-
pends only on the length a = (c − d)/2 of the design space and that there
only exist two types of D-optimal design (this result seems to be unknown
for the complete circle). Our main result of Section 4.2.2 proves that the
support points (and weights) of the D-optimal design are analytic func-
tions of the parameter a and that an appropriately scaled version of the
D-optimal design converges weakly as a → 0 to a nondegenerate discrete
distribution on the interval [0, 1]. Following the functional approach devel-
oped in Chapter 2, these results are applied to obtain Taylor expansions
for the support points of the D-optimal design (considered as a function
of the parameter a = (d − c)/2), which allows a complete solution of the
D-optimal design problem in the trigonometric regression model (4.1) on
the interval [c, d].

Note that it proves possible to calculate explicitly as roots of a classical
polynomial the limit of the support points of D-optimal designs normed
by the length of the design interval when this length tends to zero. The
technique is based on a differential equation for the polynomial having
roots in the support points. This equation is similar to that was introduces
by Stilties (see Karlin and Studden (1966, Chap. X)) for maximization of
Vandermonde determinants. In Section 4.2.3, a similar equation is derived
for D-optimal designs on arbitrary intervals. This allows one to derive, in
the next section, an algebraic equation for the vector of coefficients of the
polynomial with roots in the support points of D-optimal designs. The

∗In this section materials (theorems, tables, and figures) are taken from Dette, H.,
Melas, V.B., Pepelyshev, A. (2002). D-Optimal designs for trigonometric regression
models on a partial circle. Ann. Inst. Statist. Math., 54(4), 945–959. c©2002 The
Institute of Statistical Mathematics, and Dette, H., Melas, V.B., Biederman, S. (2002).
D-Optimal designs for trigonometric regression models on a partial circle - a functional-
algebraic approach. Statist. Probab. Let., 57, 389-397. c©2002 Elsevier Science B.V.
with permission of Elsevier Publisher.
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combination of the functional and the algebraic approaches allows one to
make calculations much more quickly.

Finally, some examples are given in Section 4.2.5, and in the linear and
quadratic trigonometric regression model on the interval [−a, a], D-optimal
designs are determined explicitly.

In Section 4.3, similar results are obtained for E-optimal designs†. In
Section 4.3.1, we introduce two auxiliary results. The first is the equivalence
theorem on E-optimal designs for general linear models, discussed earlier
in Section 3.2 and repeated here for the convenience of the reader. The
second result shows that E-optimal designs for the interval [c, d] can be
obtained from such results on the interval [−a, a], a = (d − c)/2, simply by
adding c + a to all of the support points. This result is similar to that for
D-optimal designs proved in Section 4.2.

As was already mentioned for the full interval [−π, π] E-optimal designs
are D-optimal and vice versa. In Section 4.3.2, we show that this result
remains true for intervals [−a, a] if and only if a ≥ π(1 − 1/(2m + 1)).
In Section 4.3.3, E-optimal designs are explicitly found for intervals [−a, a]
with a ≤ ām, where ām > π/2 is a critical value. This result is based on the
equivalence theorem and on the proposition that for a < ām, the minimal
eigenvalue of the information matrix for Chebyshev designs (introduced in
Section 3.3) is simple. Section 4.3.4 includes the full solution on the basis
of the functional approach. Here, E-optimal designs are studied for the
intervals [−a, a] with ām < a < π − 1/(2m + 1). Results of Section 4.3 are
based on Dette and Melas (2002).

In Section 4.4, we perform a numerical comparison of D- and E-optimal
designs. We prove that D-optimal designs have a high E-efficiency and
E-optimal designs have a high D-efficiency. However, an advantage of E-
optimal design is that for a ≤ ām, such designs can be found explicitly.

4.2 D-Optimal Designs

4.2.1 Preliminary results for D-optimal designs

Consider the trigonometric regression model (4.1); define β = (β0, β1, . . . ,
β2m)T as the vector of parameters and let

f(t) = (1, sin t, cos t, . . . , sin(mt), cos(mt))T = (f0(t), . . . , f2m(t))T (4.2)

be the vector of basic regression functions. An approximate design is a prob-
ability measure ξ on the design space [c, d] with finite support (see Chapter
1). The support points of the design ξ give the locations where observa-
tions are taken, whereas the weights give the corresponding proportions of

†In this section materials (theorems, tables, and figures) are taken from Dette, H.,
Melas, V.B. (2002). E-Optimal designs in Fourier regression models on a partial circle.
Math. Methods Statist., 11(3), pp. 259–296. c©2003 Allerton Press, Inc. with permission
of Allerton Press, Inc.
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total observations to be taken at these points. Due to the 2π-periodicity
of the regression functions, we restrict ourselves without loss of generality
to design spaces with length d − c ≤ 2π. For uncorrelated observations
(obtained from an approximate design), the covariance matrix of the least
squares estimator for the parameter β is approximately proportional to the
matrix

M(ξ) =
∫

f(t)fT (t)dξ(t) ∈ R
2m+1×2m+1 , (4.3)

which is called the information matrix in the design literature. An optimal
design minimizes (or maximizes) an appropriate convex (or concave) func-
tion of the information matrix and there are numerous criteria proposed in
the literature that can be used for the discrimination between competing
designs (see Section 1.5).

In this section, we are interested in D-optimal designs for the trigono-
metric regression model (4.1) on the interval [c, d], which maximize the
determinant

det M(ξ)

of the Fisher information matrix in the space of all approximate designs
on the interval [c, d]. Note that a D-optimal design minimizes the (ap-
proximate) volume of the ellipsoid of concentration for the vector β of the
unknown parameters in the model (4.1) (see Section 1.5) and that opti-
mal designs in the trigonometric regression model (4.1) for the full circle
[c, d] = [−π, π] have been determined by numerous authors (see, e.g., Karlin
and Studden (1966), Fedorov (1972), Lau and Studden (1985), Pukelsheim
(1993), or Dette and Haller (1998) among many others).

Our first preliminary result demonstrates that for the solution of the
D-optimal design problem on a partial circle, it is sufficient to consider
only symmetric design spaces. To be precise, let

η =
(

t0 . . . tn
ω0 . . . ωn

)
(4.4)

denote a design on the interval [c, d] with different support points t0 <
· · · < tn and positive weights ω0, . . . , ωn adding to 1 and define its affine
transformation onto the symmetric interval [−a, a] by

ξη =
(

t̃0 . . . t̃n
ω0 . . . ωn

)
, (4.5)

where a = (d − c)/2 and t̃i = ti − (d + c)/2, i = 1, . . . , n.

Lemma 4.2.1 Let M(η) and M(ξη) denote the information matrices in
the trigonometric regression model (4.1) of the designs η and ξη defined by
(4.4) and (4.5), respectively; then

det M(ξη) = detM(η). (4.6)



4.2. D-OPTIMAL DESIGNS 139

Proof. If the number of support points satisfies n + 1 < 2m + 1, then
both sides of (4.6) vanish and the proof is trivial. Next, consider the case
n = 2m, for which we have (see, e.g., Karlin and Studden (1966))

det M(ξη) = (detF (ξη))2
2m∏
i=0

ωi , (4.7)

where the matrix F (ξη) ∈ R
2m+1×2m+1 is defined by

F (ξη) =
(
fi(t̃j)

)j=0,...,2m

i=0,...,2m
. (4.8)

Now, it to easy to see that the vector f(t) defined by (4.2) satisfies, for any
α ∈ R,

f(t + α) = Pf(t),

where P is a (2m + 1) × (2m + 1) diagonal block matrix defined by

P =

⎛
⎜⎜⎜⎝

1
Q(α)

. . .
Q(mα)

⎞
⎟⎟⎟⎠

and Q(β) is a 2 × 2 rotation matrix given by

Q(β) =
(

cos(β) sin(β)
− sin(β) cos(β)

)
.

Obviously, we have det P = 1 and obtain from (4.7) and (4.8)

det M(ξη) = detM(η) ,

which proves the assertion of the lemma in the case n = 2m. Finally, in
the remaining case, n > 2m, the assertion follows from the Binet–Cauchy
formula and the arguments given for the case n = 2m.

From Lemma 4.2.1, it is clear that it is sufficient to determine the D-
optimal designs for symmetric intervals

[c, d] = [−a, a], 0 < a ≤ π,

and we will restrict ourselves to this case throughout this section. For fixed
a ∈ (0, π], let ξ∗

a denote a D-optimal design for the trigonometric regression
model on the interval [−a, a]. Note that, in general, the D-optimal design
for the trigonometric regression model is not necessarily unique (see, e.g.,
Fedorov (1972), who considered the case a = π). However, it is known that
the optimal information matrix M(ξ∗

a) is unique and nonsingular (see, e.g.,
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Pukelsheim (1993, p. 151)). Moreover, due to the equivalence theorem for
D-optimality (see Section 1.6), the design ξ∗

α satisfies

d(t, ξ∗
α) ≤ 0 for all t ∈ [−a, a], (4.9)

with equality at the support points, where

d(t, ξ) = fT (t)M−1(ξ)f(t) − (2m + 1). (4.10)

Let Ξ(1)
a denote the set of all designs of the form

ξ = ξ(a) =
( −tm . . . −t1 t0 t1 . . . tm

1
2m+1 . . . 1

2m+1
1

2m+1
1

2m+1 . . . 1
2m+1

)
, (4.11)

where 0 = t0 < t1 < · · · < tm = a, and define

Ξ(2) =
{

ξ | supp(ξ) ⊂ [−a, a], d(t, ξ) = 0 for all t ∈ [−a, a]
}

(4.12)

as the set of all designs on the interval [−a, a] with a vanishing directional
derivative for all t ∈ [−a, a]; then we obtain the following auxiliary result.

Lemma 4.2.2 Let ξ∗
a denote a D-optimal design on the interval [−a, a];

then
ξ∗
a ∈ Ξ(1)

a ∪ Ξ(2)
a .

Proof. Due to the equivalence theorem (4.9), any design ξ ∈ Ξ(2)
a is D-

optimal for trigonometric regression model (4.2.1) on the interval [−a, a].
Now, assume that

ξ =
(

u1 . . . un

ω1 . . . ωn

)
is D-optimal for the trigonometric regression on the interval [−a, a], where
the support points satisfy −a ≤ u1 < · · · < un ≤ a. If ξ �∈ Ξ(2)

a , then
d(t, ξ) �≡ 0, but due the equivalence theorem, we have

d(u, ξ) ≤ 0 ∀ u ∈ [−a, a],

d(ui, ξ) = 0 ∀ i = 1, . . . , n,

d

du
d(u, ξ)|u=ui = 0 ∀ i = 2, . . . , n − 1.

If ξ̃ denotes the reflection of ξ at the origin, then it is easy to see that
det M(ξ) = detM(ξ̃) and, consequently, ξ̃ is also D-optimal. Moreover, the
concavity of the D-criterion implies that the symmetric design ξ∗ = (ξ +
ξ̃)/2 is also D-optimal in the trigonometric regression (4.1) on the interval
[−a, a]. Note that there exists a permutation matrix P ∈ R

2m+1×2m+1 such
that

P M(ξ)PT =
(

M1(ξ) M2(ξ)
MT

2 (ξ) M3(ξ)

)
, (4.13)
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where

M1(ξ) =
∫ a

−a

fc(t)fT
c (t)dξ(t) ∈ R

m+1×m+1,

M2(ξ) =
∫ a

−a

fc(t)fT
s (t)dξ(t) ∈ R

m+1×m, (4.14)

M3(ξ) =
∫ a

−a

fs(t)fT
s (t)dξ(t) ∈ R

m×m,

and fc(t) = (1, cos(t), . . . , cos(mt))T and fs(t) = (sin(t), . . . , sin(mt))T .
Because the information matrix of the D-optimal design is unique (see
Pukelsheim (1993)), we obtain (note that ξ∗ is symmetric)

M2(ξ) = M2(ξ̃) = M2(ξ∗) = 0 ∈ R
m+1×m,

which implies for the directional derivative in (4.10)

g(t) = d(t, ξ) = fc
T (t)M−1

1 (ξ)fc(t) + fs
T (t)M−1

3 (ξ)fs(t) − (2m + 1)

=
2m∑
i=0

γi cos(it) (4.15)

for appropriate constants γ0, . . . , γ2m (note that the last representation fol-
lows by well-known trigonometric formulas). From ξ �∈ Ξ(2)

a , we obtain that
the polynomial g(t) is not identically zero and the equivalence theorem
shows that every support point is a zero of the function g. Moreover, the
functions {1, cos t, . . . , cos(2mt)} form a Chebyshev system on the interval
[0, a] and a Chebyshev system on the interval [−a, 0]. Consequently, g has
at most 2m + 1 roots in the interval [0, a] and at most 2m + 1 zeros in the
interval [−a, 0] (including counting of multiplicities) (see Section 1.9 and
Karlin and Studden (1966), Ch. 10). Consider the case [0, a] and substi-
tute t = arccos x, then it follows, observing the definition of the Chebyshev
polynomials of the first kind,

Ti(x) = cos(i arccos x) (4.16)

(see Rivlin (1974)), that g(arccos x) is a nonpositive polynomial of degree
2m on the interval [cos a, 1]. Consequently, if g(arccos x) has exactly 2m
roots (including counting of multiplicities), the boundary points cosa and 1
have to be roots of g(arccos x). Note that a similar argument applies to the
interval [−a, 0] and, therefore, the nonpositive function g defined in (4.15)
has at most 4m roots (including counting of multiplicities) in the interval
[−a, a]. Because the number of regression functions is 2m + 1, it therefore
follows from (4.2.1) that any D-optimal design η �∈ Ξ(2)

a has exactly 2m+1
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support points in the interval [−a, a], including the boundary points. A
standard argument shows that all weights of the D-optimal design have
to be equal i.e. (ωj = 1/(2m + 1), j = 1, . . . , 2m + 1). If ξ �∈ Ξ(1)

a , then
ξ �= ξ̃ and, consequently, ξ∗ = (ξ + ξ̃)/2 is a D-optimal design for the
trigonometric regression model (4.1) on the interval [−a, a] with more than
2m + 1 support points, which is impossible, by the above discussion. This
shows that ξ ∈ Ξ(1)

a and proves Lemma 4.2.2.

4.2.2 Analytic properties of D-optimal designs

Lemma 4.2.2 motivates the consideration of designs of the form (4.11) and
our next lemma gives an explicit representation for the determinant of the
information matrix of this type of design.

Lemma 4.2.3 Let ξ denote a design of the form (4.11) and xi = cos ti,
i = 0, . . . , m; then

det M(ξ) =
22m2

(2m + 1)2m+1

m∏
i=1

(1 − x2
i )(1 − xi)2

∏
1≤i<j≤m

(xj − xi)4. (4.17)

Proof. For any design ξ of the form (4.11), we have

det M(ξ) = detM1(ξ) det M3(ξ),

where the matrices M1(ξ), M2(ξ), and M3(ξ) are defined by (4.14). Define
the design ηξ by

ηξ =
(

x0 x1 . . . xm
1

2m+1
2

2m+1 . . . 2
2m+1

)
;

then it is straightforward to see that

M1(ξ) =
(∫ 1

−1
Ti(x)Tj(x) dηξ(x)

)m

i,j=0
,

M3(ξ) =
(∫ 1

−1
(1 − x2)Ui(x)Uj(x) dηξ(x)

)m−1

i,j=0
,

where Ti(x) is the Chebyshev polynomial of the first kind defined in (4.16)
and

Ui(x) =
sin((i + 1) arccos x)

sin(arccos x)

is the Chebyshev polynomial of the second kind (see Rivlin (1974)). Because
Ti(x) is a polynomial of degree i with leading coefficient 2i−1, it follows that
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M1(ξ) is essentially a Vandermonde determinant; that is,

det M1(ξ) = 2m(m−1) 2m

(2m + 1)m+1

(
det

(
(xi

j)
j=0,...,m
i=0,...,m

))2

=
2m2

(2m + 1)m+1

m∏
i=1

(1 − xi)2
∏

1≤i<j≤m

(xj − xi)2

(note that x0 = 1). Note that the support point x0 of ηξ has a vanishing
contribution to the matrix M3(ξ) and that the leading coefficient of Ui(x)
is 2i. Therefore, we have, by similar arguments,

det M3(ξ) =
2m2

(2m + 1)m

m∏
i=1

(1 − x2
i )

∏
1≤i<j≤m

(xj − xi)2

and a combination of these formulas yields (4.17), which proves the asser-
tion of Lemma 4.2.3.

We now study the function

φ(x, a) =
m∏

i=1

(1 − x2
i )(1 − xi)2

∏
1≤i<j≤m

(xj − xi)4 (4.18)

as a function of the length a of the design space. To this end, we note that
xm = cos(a) and introduce the sets

T = {(τ1, . . . , τm−1)T | 0 < τ < · · · < τm−1 < 1} (4.19)

X = {(x1, . . . , xm−1)T | xi =cos(aτi), i=1, . . . , m−1, (τ1, . . . , τm−1)T ∈T}.

Note that any design ξ ∈ Ξ(1)
a of the form (4.11) is uniquely determined

by a point τ = (τ1, . . . , τm−1)T ∈ T or its corresponding function x =
(x1, . . . , xm−1)T ∈ X by the transformation ti = aτi = arccos xi, i =
1, . . . , m−1 (note that t0 = 0, tm = a), and by Lemma 4.2.3 the determinant
of M(ξ) is proportional to the function φ given in (4.18). By standard
arguments, it can now be verified that for fixed a ∈ (0, π], the function φ in
(4.18) is a strictly concave function of x = (x1, . . . , xm−1)T ∈ X . Therefore
(for fixed a) the function φ(x, a) has a unique maximum in X , which will
be denoted by x∗(a) (because of its dependence on the length of the design
space). The function φ is obviously differentiable and x∗(a) can be obtained
as the unique solution of the equations

∂

∂x
φ(x, a) = 0 ∈ R

m−1. (4.20)

Moreover, for any x ∈ X , the matrix of the second partial derivatives

G(x, a) =
(

∂2

∂xi∂xj
φ(x, a)

)m−1

i,j=1
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is positive definite and, in particular, the matrix

J(a) = G(x∗(a), a)

is positive definite for all a ∈ (0, π]. It, therefore, follows from the Implicit
Function Theorem (see Section 1.8) that the function

x∗ :
{

(0, π] → X
a → x∗(a) ,

defined as the solution of (4.20), is real analytic. In other words, for any
point a0 ∈ (0, π] there exists a neighborhood U0 of a0, such that the func-
tion x∗|U0 can be expanded in a convergent Taylor series. Observing the
symmetry φ(x, a) = φ(x,−a), it therefore follows that the function

τ∗ :

⎧⎨
⎩

[−π, π]\{0} → T

a → τ∗(a) =
(

arccos x∗
1(|a|)

a
, . . . ,

arccos x∗
m−1(|a|)
a

)T (4.21)

is also real analytic. The following result shows that the function τ∗ can
be extended to a real analytic function on the full circle [−π, π].

Lemma 4.2.4 The function τ∗ defined by (4.21) can be extended to a real
analytic function on the interval [−π, π], where

τ∗(0) = lim
a→0

τ(a) = (τ∗
1 , . . . , τ∗

m−1)
T ,

τ∗
1 < · · · < τ∗

m−1, are the positive roots of the polynomial

P
(1,1/2)
m−1 (2x2 − 1) =

1
2x

P
(1,1)
2m−1(x) =

1
(2m + 1)x

P ′
2m(x)

and P
(α,β)
i (x) denotes the i-th Jacobi polynomial orthogonal with respect to

the measure (1−x)α(1+x)βdx and P2m(x) is the 2m-th Legendre polynomial
orthogonal with respect to the Lebesgue measure on the interval [−1, 1].

Proof. The assertion of Lemma 4.2.4 follows if we prove the exis-
tence of lima→0 τ∗(a) and the claimed form of its components. Let
xτ = (cos(aτ1), . . . , cos(aτm−1))T ; then the expansions sin t = t + o(t) and
cos t = 1 − t2/2 + o(t2) show that for a → 0,

φ(xτ , a) =
a2m(2m+1)

22m2

m∏
i=1

τ6
i

∏
1≤i<j≤m

(τ2
i − τ2

j )4(1 + o(a))

(τm = 1) and, consequently, the limit lima→0 τ∗(a) exists and can be ob-
tained by maximizing the function

φ̄(τ) =
m∏

i=1

τ3
i (1 − τ2

i )2
∏

1≤i<j≤m−1

(τ2
i − τ2

j )2
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over the set T defined in (4.19). Note that standard arguments show
the strict concavity of the function φ̄ and, consequently, the point τ∗ =
(τ∗

1 , . . . , τ∗
m−1)

T , where the maximum is obtained, is unique. Taking par-
tial derivatives of the logarithm of φ̄ yields the system

3
τi

+
4τi

τ2
i − 1

+
m−1∑

j=1,j �=i

4τi

τ2
i − τ2

j

= 0, i = 1, . . . , m − 1,

and substituting τ2
i = yi ∈ (0, 1) gives

3
yi

+
4

yi − 1
+

m−1∑
j=1,j �=i

4
yi − yj

= 0, i = 1 . . . m − 1 .

Similar arguments as given in Karlin and Studden (1966) or Fedorov (1972)
show that the polynomial ψ(y) =

∏m−1
i=1 (y − yi) satisfies the differential

equation

y(1 − y)ψ′′(y) + (3/2 − 7/2y)ψ′(y) + (m − 1)(m + 3/2)ψ(y) = 0. (4.22)

It is well known (see, e.g., Szegö (1975, Section 4.21)) that the unique
polynomial solution of this differential equation is given by the polynomial

P
(1/2,1)
m−1 (1 − 2y)

and the assertion of the Lemma now follows from transformation y = τ2

and the equation P
(α,β)
n (−x) = (−1)nP

(β,α)
m−1 (x) (see Szegö (1975, formula

(4.1.3))). The alternative representations of the polynomial P
(1,1/2)
m−1 (2x2 −

1) are a consequence of P
(0,0)
n (x) = Pn(x) and Theorem 4.1 in Szegö (1975).

Table 4.1 shows the polynomial P
(1,1/2)
m−1 (2y − 1) (normalized such that

the leading coefficient is 1) and the corresponding values τ∗
i =

√
yi for lower

degrees m = 2, 3, 4, 5. The following result shows that for small designs
space, that is,

a ≤ π(1 − 1/(2m + 1)),

the solution of the optimal design problem can be obtained by a Taylor
expansion of the function τ∗ in (4.21) at the point a = 0, where the i-
th component τ∗

i (0) of the vector τ∗(0) is the i-th positive root of the
polynomial P

(1,1/2)
m−1 (2x2 − 1).

Theorem 4.2.1 Consider the trigonometric regression model (4.1) with
design space [−a, a], where 0 < a ≤ π.

(i) If a > π(1 − 1/(2m + 1)), then the design ξ∗
a with equal masses at the

2m + 1 points,

t∗i = 2π
i − 1 − m

2m + 1
, i = 1, . . . , 2m + 1, (4.23)

is a D-optimal design.
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Table 4.1: Values of the components τ∗
1 (0), . . . , τ∗

m−1(0) of the vector τ∗(0)
defined in Lemma 4.3.2 and the polynomial solution of the differential equa-
tion (4.22) for various values of m

m ψ(y) and τj(0)
2 ψ(y) = y − 3/7

τ∗
1 (0) =

√
3/7 ≈ 0.6546

3 ψ(y) = y2 − 10/11y + 5/33
τ∗
1 (0) ≈ 0.4688, τ∗

2 (0) ≈ 0.8302
4 ψ(y) = y3 − 7/5y2 + 7/13y − 7/143

τ∗
1 (0) ≈ 0.3631, τ∗

2 (0) ≈ 0.6772, τ∗
3 (0) ≈ 0.8998

5 ψ(y) = y4 − 36/19y3 + 378/323y2 − 84/323y + 63/4199
τ∗
1 (0) ≈ 0.2958, τ∗

2 (0) ≈ 0.5652, τ∗
3 (0) ≈ 0.7845, τ∗

4 (0) ≈ 0.9340

(ii) If a < π(1 − 1/(2m + 1)), the D-optimal design (denoted by ξ∗
a) is

unique and is of the form( −a −aτ∗
m−1 . . . −aτ∗

1 0 aτ∗
1 . . . aτ∗

m−1 a
1

2m+1
1

2m+1 . . . 1
2m+1

1
2m+1

1
2m+1 . . . 1

2m+1
1

2m+1

)
, (4.24)

where τ∗ is a real analytic vector function on the interval [−π, π]
defined by (4.21) and Lemma 4.2.4.

Proof. Recall the definition of the set Ξ(2)
a in (4.12) and assume that the

design ξ∗ ∈ Ξ(2)
a is D-optimal for the trigonometric regression model (4.2.1)

on the interval [−a, a]. Because d(t, ξ∗) = 0 for all t ∈ [−a, a], it follows from
the Chebyshev property of the functions {1, sin t, cos t, . . . , sin mt, cos mt}
that d(t, ξ∗) also vanishes on the full circle [−π, π] (see Karlin and Studden
(1966, p. 20)). Consequently, ξ∗ is also D-optimal for the trigonometric
regression on the interval [−π, π], which implies (by the uniqueness of the
D-optimal information matrix)

M(ξ∗) = diag(1, 1/2, . . . , 1/2),
det M(ξ∗) = 2−2m.

On the other hand, we have

lim
a→0

max
ξ

det M(ξ) = 0,

and, consequently, for sufficiently small a, the D-optimal design cannot be
an element of the set Ξ(2)

a . From Lemma 4.2.2, it follows that the D-optimal
design must belong to the set Ξ(1)

a and the discussion in the first part of this
section shows that for sufficiently small a, the D-optimal design is unique
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and of the form (4.24). Now, let ξ∗
a denote the design defined by (4.24) and

a∗ = sup{a ∈ (0, π] | ξ∗
a is D-optimal}

= sup{a ∈ (0, π] | det M(ξ∗) < 2−2m} (4.25)

(note that the second equality follows by continuity and Lemma 4.2.2). It
is well known (see Fedorov (1972) or Pukelsheim (1993)) that the uniform
distribution ξu at the 2m + 1 points defined by (4.23) is D-optimal for the
trigonometric regression model on the interval [−π, π]. If â = π(1−1/(2m+
1)) denotes the largest support point of this design, it follows that ξ∗

â = ξu.
Consequently, the design ξ∗

â specified in part (i) of Theorem 4.2.1 is also
D-optimal for the trigonometric regression on the interval [−â, â] and the
D-optimality of ξ∗

â on [−π, π] shows

ξ∗
â ∈ Ξ(1)

â ∩ Ξ(2)
â ,

which implies the inequality a∗ ≤ â for the critical bound in (4.24). Now,
for any design of the form

ξ = ξ(a)
( −tm . . . −t1 t0 t1 . . . tm

1
2m+1 . . . 1

2m+1
1

2m+1
1

2m+1 . . . 1
2m+1

)
(4.26)

with 0 < t1 < · · · < tm ≤ π, it follows from Lemma 4.2.3 that

det M(ξ) = C

m∏
i=1

(1 − x2
i )(1 − xi)2

∏
1≤i<j≤m

(xj − xi)4 =: h(xξ)

with C = 22m2
/(2m + 1)2m+1, xξ = (x1, . . . , xm)T , and xi = cos ti (i =

1, . . . , m). The discussion at the beginning of this section shows that h is
strictly concave. Additionally, we have for the design ξ∗

â,

h(xξ∗
â
) = 2−2m,

and for any other design ξ of the form (4.26),

h(xξ) < 2−2m

(because otherwise a convex combination of ξ∗
â and ξa would have an infor-

mation matrix with a determinant larger than 2−2m, which is impossible).
Consequently, because ξ∗

u is of the form (4.26), it follows for the quantity
a∗ defined by (4.25) that a∗ = â.

If a ≥ â, the discussion in this proof shows that the design specified by
part (i) of Theorem 4.2.1 is D-optimal. If a < â, definition (4.25) shows
that the D-optimal design is in the set Ξ(1)

a and Lemmas 4.2.3 and 4.2.4
(with their corresponding proofs) imply that the D-optimal design for the
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trigonometric regression on the interval [−a, a] is of the form (4.24), which
completes the proof of the theorem.

Note that Theorem 4.2.1 provides a complete solution of the D-optimal
design problem. In case (i) with a ≥ π(1 − 1/(2m + 1)), a D-optimal
design for the trigonometric regression model (4.2.1) on the interval [−a, a]
is explicitly given by the uniform distribution at the support points specified
by (4.23), but is not necessarily unique. If a < π(1 − 1/(2m + 1)), the D-
optimal design is unique and specified by (4.24), where the vector τ∗(a) =
(τ∗

1 (a), . . . , τ∗
m−1(a))T can be obtained by means of a Taylor expansion at

the point a = 0,

τ∗(a) =
∞∑

i=0

τ∗
(i)a

i, (4.27)

and the vector τ∗
(0) = τ∗(0) is given in Lemma 4.2.4. It follows from general

formulas of Section 2.4 that the coefficients in the above expansion can be
calculated by the recursive relations

τ∗
(s+1) = − 1

(s + 1)!
J−1(0)

( d

da

)s+1
g(τ∗

<s>(a), a)
∣∣∣∣
a=0

,

s = 0, 1, 2, . . ., where

τ∗
<s>(a) =

s∑
i=0

τ∗
(i)a

i

denotes the Taylor polynomial of degree s ∈ {0, 1, 2, . . .},

J(0) =
(

∂2

∂τi∂τj
φ(xτ , a)

)m−1

i,j=1

∣∣∣∣∣
τ=τ∗(0)

,

and
g(τ, a) =

∂

∂τ
φ(xτ , a) ∈ R

m−1.

Note that, in general, an exact determination of the radius of convergence
for the Taylor expansion (4.27) seems to be intractable. In general, several
re-expansions might be needed to obtain the D-optimal design for any a ∈
(0, π(1 − 1/(2m + 1)). However, our numerical calculations in Section 4.2.5
indicate that the expansion at the point a = 0 always gives the D-optimal
design for the trigonometric regression model (4.1) on the interval [−a, a]
for any a ∈ (0, π(1 − 1/(2m + 1)).

4.2.3 The differential equation and the eigenvalue
problem

Note that due to formula (4.17), the support points of the D-optimal design
on the interval [−a, a], ti(a), i = 1, . . . , m, can be written in the form

ti(a) = arccos(x∗
i ),
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where x∗ = (x∗
1, . . . , x

∗
m) is the unique point of maximum of the function

φ(x, a) on the set

X = {x = (x1, . . . , xm); 0 < x1 < · · · < xm = cos(a)}.

Calculating the first partial derivatives of φ(x, a), we obtain

1
1 + xi

− 3
1 − xi

+
4

xi − 1 + α
+

m−1∑
j=1,j �=i

4
xi − xj

= 0,

i = 1, . . . , m − 1, with xi = x∗
i , where α = 1 − cos(a). Consider the

supporting polynomial

ψ(z) =
m−1∏
i=1

(z − x∗
i ) = zm−1 +

m−2∑
i=0

ψiz
i.

Applying the following well-known equality (see, for instance, Fedorov,
(1972))

m−1∑
j=1,j �=i

1
x∗

i − x∗
j

=
1
2

ψ
′′
(x∗

i )
ψ′(x∗

i )
, i = 1, . . . , m − 1,

we obtain the relations

−1 − 2z

1 − z2 +
2

z − 1 + α
+

ψ
′′
(z)

ψ′(z)
= 0

for z = x∗
1, . . . , x

∗
m−1. Multiplying the equation by the common denomina-

tor, we obtain

(1 − z2)(z − 1 + α)ψ
′′
(z) + (−4z2 + (1 − 2α)z + 3 − α)ψ

′
(z) = 0

again for z = x∗
1, . . . , x

∗
m−1.

Since on the left-hand side there is a polynomial of degree m vanishing at
the m−1 points x∗

i , i = 1, . . . , m−1, we can equate this to the polynomial
ψ multiplied by a linear factor, so that the problem turns out to be one of
solving a second-order differential equation

P (z) := (1 − z2)(z − 1 + α)ψ
′′
(z) + (−4z2 + (1 − 2α)z + 3 − α)ψ

′
(z)

−(ϑ0z + λ)ψ(z) ≡ 0, (4.28)

where ϑ0 = −(m − 1)(m + 2) is obtained by comparing coefficients of zm

and λ is an unknown real constant.
Since the solution ψ∗ of the differential equation is supposed to be a

polynomial of degree m − 1, we can rewrite P (z) in the form

P (z) = (zm, . . . , z, 1) A(λ, α) ψ, (4.29)
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where ψ = (ψm−1, . . . , ψ0)T and A = A(λ, α) is some (m + 1) × m-matrix.
Note that the first row of A consists of zeros. Let B = B(λ, α) be the
matrix obtained from A by deleting the first row with elements bi,j =
(B(λ, α))i,j , i, j = 1, . . . , m. Comparing the coefficients of the monomials
zj , j = 0, . . . , m, in (4.29) yields

bi,j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(m − j)(m − j + 3) − ϑ0, j − i = 1
(m − j)((1 − α)(m − j + 1) − 1) − λ, j − i = 0
(m − j)(m − j − α + 2), j − i = −1
(m − j)(m − j − 1)(α − 1), j − i = −2
0, otherwise.

(4.30)

Note that the matrix B is of the form B = B(λ, α) = B̃(α) − λ Im, and
λ is an eigenvalue of the matrix B̃(α). Therefore, we can rewrite (4.28) in
the form

(B̃(α) − λ Im) ψ = 0. (4.31)

For known λ, we conclude from (4.30) that the vector ψ can be calculated
by the following recursive relations

ψm−1 = 1

ψν = −
m−1∑

j=ν+1

bm−ν−1,m−j ψj / bm−ν−1,m−ν , (4.32)

where ν = m − 2, m − 3, . . . , 0.
A method to calculate the eigenvalue of interest will be described in

the following subsection. Our approach based on the algebraic equation
(4.32) will be called an algebraic approach. Note that a similar method
was suggested in Dette, Haines, Imhof (1999) and Melas (1999) for studying
(locally) D-optimal designs for rational models. Here, we will combine this
approach with the functional approach.

4.2.4 A functional-algebraic approach

Consider the function

g(λ, α) = det(B̃(α) − λ Im).

The unknown value λ in (4.28) is a function of α (λ∗(α), say), to be explic-
itly given by

g(λ, α) = 0.

Since λ is a simple eigenvalue of B̃(α) (recursive formula (4.31) shows that
the corresponding normalized eigenvector is unique), the following equation
holds:

d

dλ
g(λ, α)

∣∣∣
λ=λ∗(α)

�= 0.
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Due to the Implicit Function Theorem (see Section 1.9), λ∗(α) is a real
analytic function on the interval (0, α̂), where α̂ = 1 − cos(â) and â is
defined in (4.5). This also follows from the fact that simple eigenvalues of a
matrix are real analytic (see Lancaster (1969)). Consequently, the function
λ∗(α) can be expanded into a Taylor series on this interval. To expand
this function in a neighborhood of the origin, we must continue it to the
interval (−α̂, α̂). So our aim is to find the limit of λ∗(α) when α → 0, which
can be realized by taking the limit in (4.28). Since all of the points in the
D-optimal design tend to zero, it follows that x∗

i → 1, i = 1, . . . , m−1, and
for the supporting polynomial, ψ(z) → (1 − z)m−1. By direct calculations,
we obtain

lim
α→0

λ∗(α) = 1 − m2.

Hence, the function

λ̂(α) =

⎧⎨
⎩

λ∗(α), 0 < α < α̂
λ∗(−α), 0 > α > −α̂
1 − m2, α = 0

is real analytic on the interval (−α̂, α̂). Consider its Taylor expansion

λ̂(α) =
∞∑

i=0

λ(i) αi, λ(0) = 1 − m2, (4.33)

and let

λ<n>(α) =
n∑

i=0

λ(i) αi,

(g(λ<n>(α), α))(n) =
1
n!

∂n

∂αn
g(λ<n>(α), α)

∣∣∣
α=0

.

To determine the coefficients λ(i) in this expansion, we will use the following
recursive formulas, which are the particular case of general formulas from
Section 2.4:

λ(n+1) = −J−1(0) (g(λ<n>(α), α))(n+1) , n = 0, 1, . . . ,

J(α) =
∂

∂λ
g(λ, α).

The first values of the scaled coefficients λ̄(i) = λ(i)2i are given in Table 4.2.
Note that since the eigenvectors of a matrix are real analytic functions

(see Lancaster (1969)), the coefficients ψj = ψj(α), j = m−2, . . . , 0 are real
analytic functions on the interval (0, α̂). So the problem of determining the
components of the (normalized) eigenvector can be dealt with analogously
to that of calculating the eigenvalue. By the relations

ψ̂j (α) =

⎧⎨
⎩

ψj(α), 0 < α < α̂
ψj(−α), 0 > α > −α̂
ψj(0), α = 0,
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Table 4.2: Coefficients λ̄(i) = 2iλ(i) in the expansion (4.33) of the eigen-
value and coefficients ψ̄j(i) in the expansion (4.34) of the components of the
corresponding eigenvector (ψ̂0, . . . , ψ̂m−1).

i 0 1 2 3 4 5
m = 2 ψ̄0(i) -1 0.85714 -0.06997 -0.02856 -0.00886 -0.00133

λ̄(i) -3 -0.57143 -0.27988 -0.11424 -0.03544 -0.00533
m = 3 ψ̄0(i) 1 -1.81818 0.67618 -0.02666 -0.00204 0.00190

ψ̄1(i) -2 1.81818 -0.07012 -0.03345 -0.01963 -0.01248
λ̄(i) -8 -1.09091 -0.42074 -0.20068 -0.11779 -0.07489

m = 4 ψ̄0(i) -1 2.80000 -2.22277 0.48317 -0.00808 0.00222
ψ̄1(i) 3 -5.00000 2.29169 -0.05781 -0.01309 -0.00261
ψ̄2(i) -3 2.80000 -0.06892 -0.03375 -0.02060 -0.01400
λ̄(i) −15 -1.60000 -0.55138 -0.27001 -0.16480 -0.11199

m = 5 ψ̄0(i) 1 -3.78947 4.74901 -2.23711 0.32001 -0.00380
ψ̄1(i) -4 11.36842 -9.56600 2.36016 -0.03433 -0.00019
ψ̄2(i) 6 -11.36842 4.88488 -0.08948 -0.02490 -0.00831
ψ̄3(i) -4 3.78947 -0.06792 -0.03357 -0.02072 -0.01430
λ̄(i) −24 -2.10526 -0.67923 -0.33566 -0.20720 -0.14296

where ψj(0) = (−1)m−j−1(m − 1)! / (j !(m − j − 1)!), these functions can
be analytically expanded on the interval (−α̂, α̂). The Taylor expansions

ψ̂j(α) =
∞∑

i=0

ψ̄j(i) αi/ 2i (4.34)

can be constructed using the recursive formulas (4.30). The first coefficients
are listed in Table 4.2.

Using the values of the ψi(α) for the components of the eigenvector, the
Taylor expansions of the functions (which give the support points of the D-
optimal design), ti(a), i = 1, . . . , m−1, can be constructed as follows. Note
that these functions are real analytic because the roots of a polynomial are
real analytic functions of its coefficients.

Let us define the polynomial ρ(u, α) by the relation

ρ(u, α) = α1−m ψ(1 − αu).

Denote by ui(0), i=1, . . . , m−1, the roots of ρ(u, 0)=const P
(1,1/2)
m−1 (2u−1),

where P
(β,γ)
m−1 is the Jacobi polynomial with parameters (β, γ) of degree

m − 1. Construct expansions of the solutions ui(α) = u(α) of the equa-
tion ρ(u, α) = 0 with the initial condition u(0) = ui(0) by the functional
approach described earlier and return to the original variables ti(a) =
arccos(xi(α)) = arccos(1 − α ui(α)), α = 1 − cos(a), i = 1, . . . , m − 1.
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Proceeding as described earlier, we obtained the first coefficients of the
Taylor expansions for the support points ti(a), i = 1, . . . , m − 1, of the D-
optimal design for the trigonometric regression model (4.2.1) on the interval
[−a, a] (if a < â). Note that the present approach appears to be prefer-
able with regard to computer time and memory compared to the direct
functional approach. This is not surprising, since the algebraic-analytical
approach takes into account the special structure of the problem at hand.

4.2.5 Examples

Example 4.2.1 Our first example considers the linear trigonometric re-
gression model (m = 1) on the interval [−a, a], for which the solution is
rather obvious. If a ≥ 2π/3, the design

ξ∗
a =

( − 2π
3 0 2π

3
1
3

1
3

1
3

)

is D-optimal, whereas for a < 2π/3, the D-optimal design for the linear
trigonometric regression model on the interval [−a, a] is given by

ξ∗
a =

( −a 0 a
1
3

1
3

1
3

)
.

This follows directly from Theorem 4.2.1.

Example 4.2.2 In the quadratic regression model, the situation is more
complicated. If a ≥ 4π/5, then part (i) of Theorem 4.2.1 shows that the
design

ξ∗
a =

( − 4π
5 − 2π

5 0 2π
5

4π
5

1
5

1
5

1
5

1
5

1
5

)
is D-optimal. If a < 4π/5, the D-optimal design can be obtained by means
of a Taylor expansion, as indicated in the second part of Theorem 4.2.1.
However, in this particular case, an explicit solution is possible by a careful
inspection of the arguments given in Section 4.2.2. Part (ii) of Theorem
4.2.1 shows that the D-optimal design in the quadratic trigonometric re-
gression model is in the set Ξ(1)

a whenever a < 4π/5 and, consequently, only
one support point t∗1 = t∗1(a) has to be determined. This can be done by
a direct differentiation of the function φ(x, a) in (4.18). Note that m = 2,
x2 = cos a, and, therefore, φ(x, a) is a function of only one variable, say
x1 ∈ (−1, 1). Elementary calculus yields that the derivative of φ has zeros
at the points x1 = cos a, x2 = 1 and

x3,4 =
1
8

[
2 cos(a) − 1 ∓

√
33 + 12 cos(a) + 4 cos(a)2

]
.

It is easy to see that only one of these two points yields a solution in the
interval [cos a, 1] and, consequently, the D-optimal design for the quadratic
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Table 4.3: Coefficients in the expansion (4.35). The D-optimal design in
the trigonometric regression model (4.2.1) on the interval [−a, a] with 0 <
a < π(1 − 1/(2m + 1)) has equal masses at the points −a, −tm−1, . . . ,−t1,
0, t1, . . . , tm−1, a, where ti = aτ∗

i (a), i = 1, . . . , m − 1.

i 0 2 4 6 8 10
m = 2 τ∗

1 (i) 0.65465 -0.21977 -0.07747 0.04852 0.06118 -0.02116
m = 3 τ∗

1 (i) 0.46885 -0.19145 -0.00875 0.02584 -0.00184 -0.00283
τ∗
2 (i) 0.83022 -0.13502 -0.10286 -0.05465 -0.00161 0.03946

m = 4 τ∗
1 (i) 0.36312 -0.15556 0.00820 0.01117 -0.00368 -0.00011

τ∗
2 (i) 0.67719 -0.18093 -0.07349 0.00094 0.02393 0.01100

τ∗
3 (i) 0.89976 -0.08456 -0.07603 -0.06025 -0.03806 -0.01256

m = 5 τ∗
1 (i) 0.29576 -0.12851 0.01204 0.00501 -0.00238 0.00036

τ∗
2 (i) 0.56524 -0.18316 -0.03971 0.01585 0.01178 -0.00245

τ∗
3 (i) 0.78448 -0.14366 -0.08805 -0.03360 0.00483 0.01980

τ∗
4 (i) 0.93400 -0.05677 -0.05431 -0.04874 -0.03965 -0.02762

trigonometric regression model on the interval [−a, a] with 0 < a ≤ 4π/5 is
given by

ξ∗
a =

( −a −t∗1(a) 0 t∗1(a) a
1
5

1
5

1
5

1
5

1
5

)
,

where

t∗1(a) = arccos
(

1
8

[
2 cos(a) − 1 +

√
33 + 12 cos(a) + 4 cos(a)2

])
.

Example 4.2.3 In the general case m ≥ 3, the second part of Theorem
4.2.1 has to be applied if a ≤ π(1−1/(2m+1)) (note that in the remaining
case, a D-optimal design is explicitly given in part (i) of Theorem 4.2.1).
From Table 4.1, we obtain the values of τ∗

i (0), i = 1, . . . , m − 1 (provided
m ≤ 5), and the nontrivial support points τ∗

i (a) for 0 < a < π(1− 1/(2m+
1)) can now be calculated by means of a Taylor expansion, as indicated
at the end of Section 4.2.2. Using the functional algebraic approach, we
calculated the values of the first coefficients in the expansion

τ∗
i (a) =

∞∑
l=0

τ∗
i(l)

( a

π

)l

, i = 1, . . . , m − 1 (4.35)

for m = 2, 3, 4, 5. These coefficients are collected in Table 4.3. It can
easily be shown that τ∗

i (a) is an even function of the parameter a and,
consequently, the odd coefficients vanish and only the even coefficients are
displayed.

Consider as a concrete example the case m = 3. If a ≥ 6π/7, a D-
optimal design for the cubic trigonometric regression model on the interval
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[−a, a] is given by part (i) of Theorem 4.2.1; that is,

ξ∗
a =

( − 6π
7 − 4π

7 − 2π
7 0 2π

7
4π
7

6π
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

)
.

If 0 < a < 6π/7, the D-optimal design can be calculated from the expansion
(4.21) and Table 4.3. For example, if a = 1, we obtain that the D-optimal
design for the cubic trigonometric regression model on the interval [−1, 1]
is given by

ξ∗
a =

( −1 −0.8154 −0.4494 0 0.4494 0.8154 1
1
7

1
7

1
7

1
7

1
7

1
7

1
7

)
.

4.3 E-Optimal Designs

4.3.1 Preliminary results and E-optimal designs on
large design spaces

Consider the common regression model

y =
k∑

j=0

θjfj(x) + ε, x ∈ X , (4.36)

where the explanatory variable varies in the compact design space
X , f0, . . . , fk are continuous and linearly independent regression functions,
and observations at different points are assumed to be independent.

In the present section, we are interested in the E-optimality criterion,
which is given by

Φ(ξ) = λmin(M(ξ)) ,

where λmin(A) denotes the minimum eigenvalue of a symmetric matrix
A ∈ R

k+1×k+1. Note that maximizing Φ is equivalent to minimizing the
function

1
Φ(ξ)

= λmax(M−1(ξ)) = max
‖a‖2=1,a∈Rk+1

aT M−1(ξ)a.

The expression aT M−1(ξ)a is proportional to the variance of the least
squares estimate for the linear combination aT θ (a ∈ R

k+1) and, there-
fore, an E-optimal design minimizes the worst variance over all possible
(normalized) linear combinations.

It follows by standard arguments (see, e.g., Pukelsheim (1993)) that an
E-optimal design exists. For the convenience of the reader, we will repeat
here the equivalence theorem already formulated in Section 3.2 (Theorem
3.3.1).
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For an E-optimal design ξE , we define PξE
as the eigenspace corre-

sponding to the minimal eigenvalue λmin(M(ξE)) and

P =
⋂

ξE is E-optimal

PξE
(4.37)

as the intersection of all eigenspaces corresponding to E-optimal designs.
It can easily be verified that P �= ∅ and the following lemma gives a char-
acterization for E-optimal designs.

Lemma 4.3.1 (Equivalence Theorem) A design ξ∗ is E-optimal for
the regression model (4.36) if and only if there exists a non-negative definite
matrix A∗ ∈ R

k+1×k+1 such that trA∗ = 1 and

max
x∈X

fT (x)A∗f(x) ≤ λmin(M(ξ∗)). (4.38)

Moreover, if x∗ is a support point of ξ∗, there is equality in (4.38), that is,

fT (x∗)A∗f(x∗) = λmin(M(ξ∗)),

and the matrix A∗ can be represented as

A∗ =
s∑

i=1

αiziz
T
i ,

where z1, . . . , zs is an orthonormal basis of the set P defined in (4.37),
s = dimP, and α1, . . . , αs ≥ 0 with

∑s
i=1 αi = 1.

In the specific situation of the trigonometric regression model (4.1),
we have X = [c, d], f0(t) = 1/

√
2, f2j(t) = cos(jt) (j = 1, . . . , m), and

f2j−1(t) = sin(jt) (j = 1, . . . , m). Note that we use a slightly different
parameterization of the intercept, but most of our results are also valid
for the trigonometric regression model with f0(t) = 1. Our first result
shows that the E-optimal design in the trigonometric regression model is
essentially invariant with respect to transformations of the design space by
an additive shift.

Lemma 4.3.2 Let

η =
(

t1 . . . tn
w1 . . . wn

)
denote a design on the interval [c, d], a = (c + d)/2, and ξη be the design
obtained by the linear transformation t → t − a, that is,

ξη =
(

t1 − a . . . tn − a
w1 . . . wn

)
;

then the information matrices M(η) and M(ξη) in the trigonometric re-
gression model (4.1) have the same eigenvalues, in particular

λmin(M(η)) = λmin(M(ξη)).
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Proof. Let f(t) = (1/
√

2, sin t, cos t, . . . , sin(mt), cos(mt))T ; then we have
for any α ∈ R,

f(t + α) = P (α)f(t),

where P (α) is a (2m + 1) × (2m + 1) (block) matrix given by

P (α) =

⎛
⎜⎜⎜⎝

1√
2

Q(α)
. . .

Q(mα)

⎞
⎟⎟⎟⎠ ,

with

Q(β) =
(

cos β sin β
− sin β cos β

)
∈ R

2×2.

Because P (α) is orthogonal, the matrices M(η) and

M(ξη) =
∫ a

−a

f(t)fT (t) dξη(t) =
∫ d

c

f(t − a)fT (t − a) dη(t)

= P (−a)M(η)PT (−a)

have the same eigenvalues and the assertion of the lemma has been estab-
lished.

From the proof of Lemma 4.3.2 it follows that for any Φp-criterion in the
sense of Pukelsheim (1993), the solution of the φp-optimal design problem
for the trigonometric regression model (4.1) on the interval [c, d] can be
obtained from the solution of the corresponding problem on the interval
[−a, a] and a linear transformation. For this reason, we will restrict our
subsequent investigations on E-optimal designs to symmetric intervals of
the form [−a, a], where 0 < a ≤ π. Note that, in general, an E-optimal
design for the trigonometric regression model (4.1) on the interval [−a, a]
is not necessarily unique. For example, it follows from Lemma 4.3.1 that
for the full circle [−a, a] = [−π, π], any design with information matrix

M∗ = I2m+1 = diag
(

1
2
,
1
2
,
1
2
, . . . ,

1
2

)
∈ R

2m+1×2m+1 (4.39)

is E-optimal. In particular, any design of the form

ξ∗
n =

(
t1 . . . tn
1
n . . . 1

n

)
(4.40)

with n ≥ 2m + 1 and

tj = −π +
2j − 1

n
π , j = 1, . . . , n ,
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has information matrix M∗ (see Pukelsheim (1993)) and is therefore E-
optimal for the trigonometric regression model on the interval [−π, π]. In
the following, we will prove that the E-optimal design for the trigonometric
regression model is unique, provided that the design space is sufficiently
small.

To this end, let Ξ(1)
(a) denote the set of all designs of the form

ξ = ξ(a) =
( −tm . . . −t1 t0 t1 . . . tm

wm

2 . . . w1
2 w0

w1
2 . . . wm

2

)
,

where 0 = t0 < t1 < · · · < tm−1 < tm = a and wj > 0 (j = 0, . . . , m) such
that

∑m
j=0 wj = 1. Furthermore, define

Ξ(2)
(a) =

{
ξ | supp(ξ) ⊂ [−a, a],∃A∗ ∈ PD(2m + 1) : trA∗ = 1,

= fT (t)A∗f(t) = λmin(M(ξ)) ∀ t ∈ [−a, a]
}

, (4.41)

where PD(2m+1) denotes the set of all positive definite (2m+1)×(2m+1)
matrices. A straightforward calculation shows ξ∗

2m+1 ∈ Ξ(2)
(a), and with the

aid of Lemma 4.3.2, it is easy to see that the design ξ∗
2m+1 defined in (4.40)

is E-optimal for the trigonometric regression model on the interval [−a, a],
whenever a > ā, where

ā = ā(m) = π

(
1 − 1

2m + 1

)
(4.42)

denotes the largest support point of the design ξ∗
2m+1. The following result

shows that E-optimal designs for the trigonometric regression model on the
interval [−a, a] are either in the set Ξ(1)

(a) or in Ξ(2)
(a), depending on the sign

of the quantity a − ā.

Theorem 4.3.1 If a ∈ [ā, π], then any E-optimal design for the trigono-
metric regression model (4.1) on the interval [−a, a] is contained in the set
Ξ(2)

(a) defined in (4.41). If a ∈ (0, ā), then the E-optimal design for the
trigonometric regression model on the interval [−a, a] is unique and con-
tained in the set Ξ(1)

(a). Moreover, ξ ∈ Ξ(2)
(a) if and only if the information

matrix of ξ is of the form (4.39).

Proof. Let ξ∗ denote an E-optimal design for the trigonometric regres-
sion model on the interval [−a, a] (0 < a ≤ π), then it follows by similar
arguments as given in the proof of Lemma 4.2.2 of Section 4.2 that

ξ∗ ∈ Ξ(1)
(a) ∪ Ξ(2)

(a)

(we only have to replace the equivalence theorem for D-optimality by
Lemma 4.3.1). The same arguments show that if an E-optimal design
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for the trigonometric regression model (4.1) on the interval [−a, a] belongs
to the set Ξ(1)

(a); then it is the unique E-optimal design on [−a, a].
We now prove the last assertion of the theorem. If a > ā, then the

design ξ∗
2m+1 defined in (4.40) is E-optimal for the trigonometric regression

on the interval [−a, a] and therefore satisfies M(ξ∗
2m+1) = M∗, where M∗

is given in (4.39). Consequently, any design ξ on the interval [−a, a] with
M(ξ) = M∗ must also be E-optimal and satisfy ξ ∈ Ξ(2)

(a).

Conversely, let

ξ =
(

t1 t2 . . . tn
w1 w2 . . . wn

)
denote an arbitrary design on the interval [−a, a]; then it is easy to see that
the information matrix of ξ in the trigonometric regression model satisfies

(M(ξ))11 =
1
2
, tr(M(ξ)) = m +

1
2
. (4.43)

Now, assume additionally that ξ is E-optimal and a > ā; then the E-
optimality of the design ξ∗

2m+1 in (4.40) implies

λmin(M(ξ)) = λmin(M(ξ∗
2m+1)) = λmin(M∗) =

1
2
.

On the other hand, we have from the well-known estimates (M(ξ))ii ≥
λmin(M(ξ)) = 1

2 and the equations in (4.43) that

m +
1
2

=
2m+1∑
i=1

(M(ξ))ii ≥ 1
2
(2m + 1) = m +

1
2

,

which shows
(M(ξ))ii =

1
2

, i = 1, . . . , 2m + 1.

In the next step, let α = (M(ξ))ij = (M(ξ))ji denote the element in the
position (i, j) of the information matrix of the design ξ, where 1 ≤ i �= j ≤
2m + 1, and define

p =
1√
2
(ei − sign(α)ej),

where ei ∈ R
2m+1 denotes the i-th unit vector. Then ‖p‖2

2 = 1 and we
obtain

1
2

= λmin(M(ξ)) ≤ pT M(ξ)p

=
1
2
(1,−sign(α))

( 1
2 α
α 1

2

)(
1

−sign(α)

)
=

1
2

− |α| ≤ 1
2

,
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which implies α = (M(ξ))ij = 0, whenever 1 ≤ i �= j ≤ 2m + 1. Conse-
quently, the information matrix of any E-optimal design is diagonal (i.e.,
M(ξ) = 1

2I2m+1).
Now, let a < ā; then it follows from the results of Section 4.2 that for

any design ξ on the interval [−a, a],

det M(ξ) <

(
1
2

)2m+1

(see the proof of Theorem 4.2.1). Because any E-optimal design ξ∗ in Ξ(2)
a

satisfies det M(ξ∗) = detM∗ = 2−2m−1, there are no E-optimal designs on
the interval [−a, a], which belong to the set Ξ(2)

a (if a < ā). Consequently, by
the discussion at the beginning of the proof, the E-optimal design is unique
and an element of the set Ξ(1)

a . Finally, if a > ā, we have shown that the
information matrix of the E-optimal design for the trigonometric regression
model is unique and equal to the matrix M∗ = M(ξ∗

2m+1) = 1
2I2m+1, where

the design ξ∗
2m+1 is defined by (4.40). Because ξ∗

2m+1 ∈ Ξ(2)
a , it follows from

definition (4.41) that any E-optimal design belongs to the set Ξ(2)
a .

Note that Theorem 4.3.1 provides a solution of the E-optimal design
problem in the trigonometric regression model on the interval [−a, a] when-
ever a > ā = π(1 − 1/(2m + 1)). In this case, the solution is not necessarily
unique. However, the information matrix corresponding to E-optimal de-
signs is unique although the E-criterion (considered as a mapping on the
positive definite matrices) is not strictly concave. If a < ā, the E-optimal
design on the interval [−a, a] is unique and will be described explicitly in
the following subsection, when the parameter a is sufficiently small.

4.3.2 E-optimal designs on sufficiently small intervals

Throughout this chapter let

Tk(x) = cos(k arccos x) , k ∈ N0 ,

denote the k-th Chebyshev polynomial of the first kind (see Rivlin (1974)),
which are orthogonal with respect to the arcsine distribution; that is,

2
π

∫ 1

−1
Ti(x)Tj(x)

dx√
1 − x2

=

⎧⎨
⎩

1 if i = j ≥ 1,
2 if i = j = 0,
0 if i �= j.

(4.44)

It is well know (see Rivlin (1974)) that Tk(x) is the unique solution of the
extremal problem

min
a0,...,ak−1∈R

max
x∈[−1,1]

|2k−1xk + ak−1x
k−1 + · · · + a1x + a0| ,
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and, in particular, we have equality at the Chebyshev points si = cos(iπ/k);
that is,

Tk(si) = (−1)i, i = 0, . . . , k.

Throughout this chapter, let α = cos a ∈ [−1, 1), define

xi = xi(a) =
1 − α

2
si +

1 + α

2
, i = 0, . . . , m, (4.45)

as the extremal points of the Chebyshev polynomial of the first kind

Tm

(
2x − 1 − α

1 − α

)
=

qa0√
2

+
m∑

i=1

qaiTi(x) (4.46)

on the interval [α, 1], and define

ti = ti(a) =
1
a

arccos xi, i = 0, . . . , m. (4.47)

We will consider designs of the form

ξ̂a =
( −atm . . . −at1 t0 at1 . . . atm

ŵm

2 . . . ŵ1
2 ŵ0

ŵ1
2 . . . ŵm

2

)
(4.48)

as candidate for the E-optimal design in the trigonometric regression model
(4.1) on the interval [−a, a] (note that ξ̂a ∈ Ξ(1)

(a)). The weights in (4.48) are
given by

ŵi = ŵi(a) =
|qT

a F−1ei|∑m
j=0 |qT

a F−1ej | , i = 0, . . . , m, (4.49)

where ei ∈ R
m+1 denotes the (i + 1)-st unit vector, the vector qT

a =
(qa0, . . . , qam) ∈ R

m+1 is defined by the representation (4.46), and the
matrix F ∈ R

m+1×m+1 is given by

F =

⎛
⎜⎜⎜⎝

1√
2

1√
2

. . . 1√
2

T1(x0) T1(x1) . . . T1(xm)
...

...
. . .

...
Tm(x0) Tm(x1) . . . Tm(xm)

⎞
⎟⎟⎟⎠ . (4.50)

The following result specifies some properties of the design defined in (4.48)
and (4.49) and is the main tool for proving its E-optimality for sufficiently
small design spaces [−a, a].

Lemma 4.3.3 Let ξ̂a denote the design defined by (4.48) and (4.49); then
the following statements are correct.
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(i) If 0 < a ≤ π/2, then the weights ŵi = ŵi(a) can be represented as

ŵi = λa(−1)i 2
π

∫ 1

−1
�i(x) dx,

where the constant λa is given by

λa =
1

qT
a qa

, (4.51)

the vector qT
a = (qa0, . . . , qam) is defined in the representation (4.46),

and
�i(x) =

∏
j �=i

x − xj

xi − xj

denotes the i-th Lagrange interpolation polynomial with knots
x0, . . . , xm given by (4.45).

(ii) For all a ∈ (0, π], the quantity λa defined in (4.51) is an eigen-
value of the matrix M(ξ̂a) with corresponding eigenvector q̄a =
(qa0, 0, qa1, 0, . . . , 0, qam)T .

(iii) The support points and weights defined by (4.47) and (4.49), respec-
tively, satisfy

lim
a→0

ti(a) = cos
(
π

m − i

2m

)
, i = 0, . . . , m,

lim
a→0

ŵi(a) =

⎧⎪⎨
⎪⎩

1
m

if i = 1, . . . , m − 1

1
2m

if i = 0, m.

Proof. Let w = (w0, . . . , wm)T ∈ R
m+1
+ ;

∑m
i=0 wi = 1 and

ξa(w) =
( −atm . . . −at1 t0 at1 . . . atm

wm

2 . . . w1
2 w0

w1
2 . . . wm

2

)
be an arbitrary design with positive weights at the points ±ati (i =
0, . . . , m). It was shown in Theorems 4.1 and 4.3 of Dette and Melas (2001)
that for a ∈ (0, π/2], the optimal designs ξ(0),ξ(2),. . ., ξ(2m) for estimating
the individual coefficients β0, β2, . . . , β2m, respectively, in the trigonometric
regression model (4.1) on the interval [−a, a] are of the form

ξ(2j) = ξa(w(j)), j = 0, . . . , m,

where the weights w(j) = (w(j)0, . . . , w(j)m)T are given by

w(j)i =
B(j)i∑m

s=0 B(j)s
, i = 0, . . . , m, (4.52)
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and

B(j)i = (−1)m+i−j

∫ 1

−1
�i(x)Tj(x)

dx√
1 − x2

= (−1)m+i+jcje
T
i F−1ej , (4.53)

with c0 = π/
√

2 and cj = π/2 (j = 1, . . . , m). Note that we use a slightly
different notation for the support points ti and weights w(j)i compared to
the cited reference.

A similar argument as given in the proof of Lemma 4.3.2 of Dette and
Melas (2001) shows that the design ηξ(2j) obtained by the transformation

ηξ(cos x) =
{

ξ(x) + ξ(−x) if 0 < x ≤ a
ξ(0) if x = 0 (4.54)

is optimal for estimating the coefficient δj in the Chebyshev regression
model

y =
δ0√
2

+
m∑

j=1

δjTj(x) + ε , (4.55)

and the representation (4.46) in this chapter and Lemma 4.3.1 in the cited
reference show

q2
aj = eT

j M−1
T (ηξ(2j))ej , j = 0, . . . , m,

where MT (η) denotes the information matrix of the design η in the model
(4.55). Moreover, recalling the definition of the matrix F in (4.50), it follows
from Lemma 8.9 in Pukelsheim (1993) that

q2
aj = eT

j M−1
T (ηξ(j))ej =

( m∑
i=0

|eT
i F−1ej |

)2
=
( m∑

i=0

(−1)m+i+jeT
i F−1ej

)2

(4.56)
(j = 0, . . . , m), where the last equality is obtained by a careful analysis of
the sign pattern in the matrix F−1 observing that a ∈ (0, π/2]. Because the
sign of qaj for a ∈ (0, π/2] is (−1)m−j , we obtain

qaj =
m∑

i=0

(−1)ieT
i F−1ej , j = 0, . . . , m, (4.57)

and the second equality in (4.53) gives, for the vector qT
a = (qa0, . . . , qam),

qT
a F−1ei =

m∑
j=0

qaj(eT
j F−1ei)

=
∫ 1

−1
�i(x)

m∑
j=0

qaj

cj
Tj(x)

dx√
1 − x2

(4.58)

=
2
π

∫ 1

−1
�i(x)

dx√
1 − x2
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(i = 0, . . . , m), where we have used the representation (4.46) and the fact
that cj = π/2 (j = 1, . . . , m) and c0 = π/

√
2. Moreover, observing that

for a ∈ (0, π/2] the sign of qaj and eT
j F−1ei is (−1)m−j and (−1)m+i+j ,

respectively, we obtain that the sign of qT
a F−1ei is (−1)i. Now, the poly-

nomial in (4.46) attains the values (−1)i at the point xi (i = 0, . . . , m) and
it follows that

Tm

(2x − 1 − α

1 − α

)
=

qa0√
2

+
m∑

j=1

qajTj(x) =
m∑

j=0

(−1)j�j(x).

Combining these arguments yields

m∑
i=0

|qT
a F−1ei| =

m∑
i=0

(−1)iqT
a F−1ei

=
2
π

m∑
i=0

(−1)i

∫ 1

−1
�i(x)

dx√
1 − x2

(4.59)

=
2
π

∫ 1

−1
T 2

m

(2x − 1 − α

1 − α

) dx√
1 − x2

= qT
a qa,

where the last equation is a consequence of the representation (4.46) and
the orthogonality relations (4.44). Assertion (i) of Lemma 4.3.3 now follows
from definition (4.49) and the identity (4.58).

In order to prove the second assertion of Lemma 4.3.3, let P ∈
R

2m+1×2m+1 denote a permutation matrix such that

PM(ξ̂a)PT = M̄(ξ̂a) :=
(

Mc(ξ̂a) 0
0 Ms(ξ̂a)

)
, (4.60)

where the blocks in the matrix M̄(ξ̂a) are defined by

Mc(ξ) =
∫ a

−a

fc(t)fT
c (t) dξ(t) ∈ R

m+1×m+1 , (4.61)

Ms(ξ) =
∫ a

−a

fs(t)fT
s (t) dξ(t) ∈ R

m×m, (4.62)

and the vectors fc(t) ∈ R
m+1 and fs(t) ∈ R

m are given by

fT
c (t) = (1/

√
2, cos t, . . . , cos(mt)),

fT
s (t) = (sin t, . . . , sin(mt)),

respectively. Because the matrices M̄(ξ̂a) and M(ξ̂a) have the same eigen-
values and its corresponding eigenvectors are related by the transformation
x → Px, assertion (ii) of Lemma 4.3.3 follows, if we prove that the vector
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q̃a = Pqa = (qT
a , 0T )T ∈ R

2m+1 is an eigenvector of the matrix M̄(ξ̂a) with
corresponding eigenvalue

λa = (q̃T
a q̃a)−1 = (qT

a qa)−1.

However, this follows easily, observing that the sign of qT
a F−1ei is (−1)i for

a ∈ (0, π] and from the representation of the weights ŵi in (4.49), which
gives

Mc(ξ̂a)qa =
m∑

i=0

fc(ati)fT
c (ati)ŵiqa

=
m∑

i=0

fc(ati)
1

qT
a qa

qT
a F−1ei

=
1

qT
a qa

FF−1qa = λaqa.

Consequently, we obtain

M̄(ξ̂a)q̃a = λaq̃a,

completing the proof of the second assertion of Lemma 4.3.3.
For the proof of the remaining third part, recall that the sign of qaj and

eT
j F−1ei is (−1)m−j and (−1)m+i+j , respectively. Then (4.57) implies for

sufficiently small a,

|qaj | =
m∑

i=0

|eT
j F−1ei|,

and from the first equation in (4.58), we have

(−1)iqT
a F−1ei = (−1)i

m∑
j=0

|qaj |(−1)m−j |ejF
−1ei|(−1)m+i+j

=
m∑

j=0

|qaj ||ejF
−1ei|.

A summation of these quantities yields for the weights of the design ξ̂a

defined in (4.48),

ŵi =
|qT

a F−1ei|∑m
j=0 |qT

a F−1ei| =
m∑

j=0

w(j)i · αj(a), i = 0, . . . , m,

where

αj(a) =
|qaj |2∑m

s=0 |qas|2 , j = 0, . . . , m, (4.63)
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and the weights w(j)i are defined in (4.52), corresponding to the optimal
design

ξ(2j) = ξ(w(j)) =
( −atm . . . −at1 t0 at1 . . . atm

w(j)m

2 . . .
w(j)1

2 w(j)0
w(j)1

2 . . .
w(j)m

2

)

for estimating the individual coefficient β2j in the trigonometric regression
model (4.1) on the interval [−a, a], whenever 0 < a < π/2. Note that we
use the second representation in (4.53) and (4.56) to find this normaliza-
tion. In other words, the design ξ̂a is obtained as a convex combination of
the optimal designs for estimating the individual coefficients in the trigono-
metric regression model on the interval [−a, a] (whenever 0 < a < π/2);
that is,

ξ̂a =
m∑

j=0

αj(a)ξ(2j). (4.64)

If a → 0, the representation (4.46) implies that (α = cos a)

lim
a→0

(1 − α)mqa = f ∈ R
m+1,

where f = (f0, . . . , fm)T �= 0 denotes the vector in the expansion

22m−1(x − 1)m =
f0√
2

+
m∑

j=1

fjTj(x). (4.65)

Consequently, we obtain from (4.63) for the weights in the convex combi-
nation (4.64),

lim
a→0

αj(a) = α∗
j =

|fj |2∑m
i=0 |fi|2 , j = 0, . . . , m.

Finally, Corollary 4.2 in Dette and Melas (2001) shows that for j = 0, . . . , m
the optimal design ξ(2j) for estimating the individual coefficient β2j in the
trigonometric regression model on the interval [−a, a] converges weakly in
the following sense

lim
a→0

ξ(2j)([−a, at]) = ζ([−1, t]), t ∈ [−1, 1],

where the limiting design ζ is given by

ζ =

( −ym −ym−1 . . . −y1 y0 y1 . . . ym−1 ym

1
4m

1
2m . . . 1

2m
1

2m
1

2m . . . 1
2m

1
4m

)

with

yi = cos
(

π(m − i)
2m

)
, i = 0, . . . , m.
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Consequently, equation (4.64) shows that ξ̂α has the same weak limit, i. e.

lim
a→0

ξ̂a([−a, at]) = ζ[−1, t], t ∈ [−1, 1] ,

and assumption (iii) of Lemma 4.3.3 follows by rewriting this statement in
terms of the support points and weights of the designs ξ̂a and ζ, respectively.

Theorem 4.3.2 For sufficiently small a > 0, the design ξ̂a defined in
(4.48) and (4.49) is E-optimal for the trigonometric regression model (4.1)
on the interval [−a, a]. The minimum eigenvalue is given by λmin(M(ξ̂a)) =
λa, where

λ−1
a = qT

a qa =
2
π

∫ 1

−1
T 2

m

(
2x − 1 − α

1 − α

)
dx√

1 − x2
,

and the vector qa = (qa0, . . . , qa0)T is defined by the expansion (4.46).

Proof. Recalling the definition of the design ξ̂a in (4.48) and (4.49), we
will study the asymptotic behavior of the matrix

a4mM−1(ξ̂a)

as a → 0. To this end, let

Uk(x) =
sin((k + 1)arccosx)

sin(arccos x)
, k ≥ 0, (4.66)

denote the Chebyshev polynomial of the second kind and define

u = u(t) =
2(1 − cos t)

a2 .

Obviously, cos(kt) = Tk(1 − a2

2 u), sin(kt)/ sin t = Uk−1(1 − a2

2 u), and,
consequently, there exists an (m + 1) × (m + 1) matrix S(1) and an m × m
matrix S(2) such that the vector

f̄(t) =
(
fT

c (t), fT
s (t)

)T ∈ R
2m+1

can be represented as
f̄(t) = SAf̃(u(t)),

where

f̃(t) =
( 1√

2
, u(t), . . . , um(t),

sin t

a
,
sin t

a
u(t), . . . ,

sin t

a
um−1(t)

)T

, (4.67)
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and the matrices A and S are defined by

A = A(a) = diag

{
1,

a2

2
, . . . ,

(
a2

2

)m

, a, a
a2

2
. . . , a

(
a2

2

)m−1
}

(4.68)

and

S =
(

S(1) 0
0 S(2)

)
,

respectively, A, S ∈ R
2m+1×2m+1. It is easy to see that the matrices S(1)

and S(2) do not depend on the parameter a and are lower triangular with
nonvanishing diagonal elements. Consequently, we obtain an alternative
representation for the matrix M̄(ξ̂a) defined in (4.60):

M̄(ξ̂a) = SAM̃(ξ̂a)AST , (4.69)

where
M̃(ξ) =

∫
f̃(t)f̃T (t) dξ(t) ∈ R

2m+1×2m+1.

Now, let

f̂(t) =
( 1√

2
, t2, . . . , t2m, t, t3, . . . , t2m−1

)T

and define for any design ξ,

M̂(ξ) =
∫

f̂(t)f̂T (t) dξ(t) (4.70)

as the corresponding information matrix. From the expansions

1 − cos(at) =
(at)2

2
(1 + o(a)) and sin(at) = at(1 + o(a))

and (4.67), it is easy to see that

lim
a→0

f̃(at) = f̂(t).

Consequently, we obtain from the third part of Lemma 4.3.3 and defin-
ition (4.68) that

lim
a→0

M̃(ξ̂a) = M̂(ζ),

where ζ is the limiting design defined in (4.66). Moreover, from (4.68), we
have

lim
a→0

(
a2

2

)m

A−1(a) = diag(0, . . . , 0︸ ︷︷ ︸
m

, 1, 0, . . . , 0︸ ︷︷ ︸
m

), (4.71)

which gives, for the matrix M̄(ξ̂a) in (4.69),

lim
a→0

(
a2

2

)2m

M̄−1(ξ̂a) = (ST )−1DS−1 (4.72)
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and for the corresponding (m + 1) × (m + 1) block,

lim
a→0

(
a2

2

)2m

M−1
c (ξ̂a) = (ST

(1))
−1D(1)S

−1
(1) , (4.73)

where the matrix D ∈ R
2m+1×2m+1 is defined by

D =
(

D(1) 0
0 0

)
,

with
D(1) = ∆emeT

m ∈ R
m+1×m+1,

em = (0, . . . , 0, 1)T ∈ R
m+1,

∆ = eT
mM̂−1

∗ (ζ)em.

and M̂∗(ζ) denotes the m+1×m+1 matrix formed by the first m+1 rows
and columns of the matrix M̂(ζ) defined in (4.70). Because the matrices
D and D(1) have rank 1, the matrices on the right-hand sides of (4.71) and
(4.72) have only one nonvanishing eigenvalue. From the discussion at the
end of the proof of Lemma 4.3.3 we have

lim
a→0

(
a2

2

)m

qa = f �= 0 ∈ R
m+1,

where the vector f is defined by the expansion (4.65). Similarly, it follows
for the eigenvalue λ−1

a of M̄−1(ξ̂a) that

lim
a→0

(
a2

2

)2m

λ−1
a = lim

a→0

(
a2

2

)2m

qT
a qa = fT f �= 0.

Consequently, the continuous dependence of the eigenvalues of a matrix
from its elements (see Lancaster (1969)), formulas (4.72) and (4.73) imply
that for sufficiently small a, the matrices(

a2

2

)2m

M̄−1(ξ̂a),
(

a2

2

)2m

M−1
c (ξ̂a)

have a maximal eigenvalue of multiplicity 1, which is given by(
a2

2

)2m

λ−1
a .

In other words, the minimal eigenvalue λa of the matrix M̄(ξ̂a) has multi-
plicity 1, provided that a is close to 0.

Now, let 0 < a < ā be sufficiently small such that this property is
satisfied. By Lemma 4.3.3(ii), the vector q̄a = (qa0, 0, qa1, 0, . . . , 0, qam)T



170 CHAPTER 4. TRIGONOMETRICAL MODELS

is the eigenvector corresponding to λa and we define A∗ = λaq̄aq̄T
a . With

these notations, from (4.46) we have

max
t∈[−a,a]

fT (t)A∗f(t) = max
t∈[−a,a]

(qT
a fc(t))2

qT
a qa

= max
x∈[α,1]

Tm( 2x−1−α
1−α )

qT
a qa

=
1

qT
a qa

= λa = λmin(M̄(ξ̂a)) = λmin(M(ξ̂a))

and the optimality of the design ξ̂a follows from the Equivalence Theorem
given in Lemma 4.3.1.

Finally, the integral representation of λ−1
a follows from the orthogonal-

ity properties (4.44) of the Chebyshev polynomials and the representation
(4.46); that is,

λ−1
a = qT

a qa =
m∑

i,j=0

qaiqaj
2
π

∫ 1

−1
bjTi(x)Tj(x)

dx√
1 − x2

=
2
π

∫ 1

−1

(qa0√
2

+
m∑

i=1

qaiTi(x)
)2 dx√

1 − x2

=
2
π

∫ 1

−1
T 2

m

(
2x − 1 − a

1 − a

)
dx√

1 − x2
,

where b0 = 1/2 and bj = 1 if j ≥ 1.

The following corollary is an immediate consequence of Theorem 4.3.2
and its proof.

Corollary 4.3.1 Let

a = a(m) = sup{a > 0 | λmin(M(ξ̂a)) = λa, (4.74)

where λa is defined in (4.51). Whenever 0 < a < a, the E-optimal design
for the trigonometric regression model (4.1) on the interval [−a, a] is given
by the design ξ̂a defined in (4.48) and (4.49). Moreover,

a = min{a(1), a(2)},

where the quantities a(1) and a(2) are given by

a(1) = a(1)(m) = sup{a > 0|λmin(Mc(ξ̂a)) = λa},

(4.75)

a(2) = a(2)(m) = sup{a > 0|λmin(Ms(ξ̂a)) > λa}.

The quantities a(1) and a(2) have been calculated numerically for lower-
order trigonometric regression models and are listed in Table 4.4. Note that
these values are rather close to the upper bound ā = π(1 − 1/(2m + 1))
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obtained in Section 4.2 and, consequently, Theorem 4.3.1 and Corollary
4.3.1 cover a rather large range of the interval (0, π] for the parameter a
of the design space [−a, a]. Moreover, Table 4.4 indicates that both values
might be equal in general, and in Section 4.3.4, we will prove that a(1) = a(2)
for all m ∈ N.

Table 4.4: Bounds ā, a = min{a(1), a(2)}. The E-optimal design for the
trigonometric regression model (4.1) on the interval [−a, a] can be found
analytically whenever a ∈ (0, a] ∪ [ā, π]
for various values of m

m a(1) a(2) ā

2 0.741π 0.741π 0.8π
3 0.794π 0.794π 0.857π
4 0.827π 0.827π 0.889π
5 0.851π 0.851π 0.909π

Note Table 4.4 does not contain the case m = 1, for which a complete
analytic solution is presented in the following section. For later purposes,
we require the following auxiliary result, which is probably of independent
interest.

Lemma 4.3.4 Let 0 < a < ā = π(1 − 1/(2m + 1)) and ξ∗ denote the E-
optimal design for the trigonometric regression model (4.1) on the interval
[−a, a]. If the minimum eigenvalue of the information matrix M(ξ∗) has
multiplicity 1, then

ξ∗ = ξ̂a,

where the design ξ̂a is defined in (4.48).

Proof. From Theorem 4.3.1 we have that the E-optimal design ξ∗ is
unique and of the form

ξ∗ =

( −t∗m . . . −t∗1 t∗0 t∗1 . . . t∗m
w∗

m

2 . . .
w∗

1
2 w∗

0
w∗

1
2 . . .

w∗
m

2

)
.

Now, let

λ∗ = λmin(M(ξ∗)) = min{λmin(Mc(ξ∗)), λmin(Ms(ξ∗))}
denote the minimum eigenvalue of the matrix M(ξ∗) and consider first the
case where λ∗ = λmin(Mc(ξ∗)). Obviously, λ∗ is a simple eigenvalue of
Mc(ξ∗) and we define q = (q0, . . . , qm)T as the corresponding eigenvector.
With the notation q̄ = (q0, 0, q1, 0, . . . , 0, qm)T and A∗ = q̄q̄T /q̄T q̄, it follows
from Lemma 4.3.1 that (note the ξ∗ is E-optimal)

λ∗ = max
t∈[−a,a]

fT (t)A∗f(t) = max
t∈[−a,a]

(qT fc(t))2

qT q
.
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The polynomial
Ψ(x) = qT fc(arccos x)

attains its maximum absolute value in the interval [α, 1] at the m+1 points
x∗

i = cos t∗i (i = 0, . . . , m) and must coincide with the polynomial

∓Tm

(
2x − 1 − α

1 − α

)
,

which implies supp(ξ∗) = supp(ξ̂a), q = ∓qa and λ∗ = λa = 1/qT
a qa. From

the equation
Mc(ξ∗)qa = λaqa,

it is then easy to see that the weights w∗
i must coincide with the weights of

the design ξ̂a given in (4.49) and it follows that ξ∗ = ξ̂a.
Second, if λ∗ = λmin(Ms(ξ∗)) < λmin(Mc(ξ∗)), then a similar argument

shows that ξ∗ is concentrated at 2m points, which is impossible.

4.3.3 Example: The linear trigonometric regression
model on a partial circle

In this subsection we study the linear trigonometric regression model on
the interval [−a, a], which indicates that even this relatively simple case
is not trivial. Our next proposition specifies the E-optimal designs in the
linear trigonometric regression model. In this case, it proves that a = ā
and we will show in the following subsection that this equality only holds
in the linear case.

Proposition 4.3.1 Consider the linear trigonometric regression model
(m=1) on the interval [−a, a].

(i) If ā = 2π/3 ≤ a ≤ π, then an E-optimal design is given by

ξ∗
3 =

( −2π
3 0 2π

3

1
3

1
3

1
3

)
.

(ii) If 0 < a ≤ a = 2π/3, then the E-optimal design is unique and given
by

ξ∗
a =

( −a 0 a

µ(a)
2 1 − µ(a) µ(a)

2

)
, (4.76)

where

µ(a) =
4 + 2 cos a

4 + 2(1 + cos a)2
. (4.77)
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Proof. The first point and the statement of uniqueness in part (ii) follows
from Theorem 4.3.1, which also shows that the E-optimal design is of the
form (4.76) whenever 0 < a < ā. If a is sufficiently small, we can use
Theorem 4.3.2 and Corollary 4.3.1 and obtain from the representation of
the weights by the first part of Lemma 4.3.3 [x0 = 1, x1 = α = cos a,
qa0 = −√

2(1 + α)/(1 − α), qa1 = 2/(1 − α)]

1 − µ(a) =
{

4 + 2(1 + α)2

(1 − α)2

}−1 2
π

∫ 1

−1

x − α

1 − α

{
qa1T1(x) +

qa0√
2

} dx√
1 − x

2

= 2
1 + α + α2

4 + 2(1 + α)2
,

where we have used the orthogonality relation for the Chebyshev polyno-
mials of the first kind. The representation (4.77) now follows from a trivial
calculation; that is,

µ(a) =
4 + 2α

4 + 2(1 + α)2
. (4.78)

Note that this formula can also be obtained from the representation w0 =
qT
a F−1e0/qT

a qa, where e0 = (1, 0)T and

F =
( 1√

2
1√
2

1 α

)
.

A straightforward calculation shows that

λa =
(1 − α)2

4 + 2(1 + α)2
(4.79)

is the minimum eigenvalue of Mc(ξ̂a) and has multiplicity 1. Consequently,
the critical value a can be obtained as

a = sup
{

a ∈ (0, ā)|λmin(Mc(ξ̂a)) < λmin(Ms(ξ̂a))
}

= inf
{

a ∈ (0, ā)|λmin(Mc(ξ̂a)) = λmin(Ms(ξ̂a))
}

,

which gives the equation

λa =
(1 − α)2

4 + 2(1 + α)2
= µ(a)(1 − α2) =

4 + 2α

4 + 2(1 + α)2
(1 − α2)

=
(1 + α)(4 + 2α)

1 − α
λa,

where we have used the representation (4.78) and (4.79) for the last equal-
ities. This yields the equation 2α2 + 7α + 3 = 0, which gives

cos a = α = −1
2
, a =

2π

3
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as unique solution in the interval [−1, 1].
By Theorem 4.3.2 and Corollary 4.3.1, the E-optimal design for the

linear trigonometric regression model (m=1) on the interval [−a, a] is given
by (4.76) and (4.77) whenever a ∈ (0, a], which proves part (ii) of the
proposition.

4.3.4 E-Optimal designs on arbitrary intervals

As was shown in Section 4.3.1, we can restrict the discussion of the E-
optimal design problem to the case of symmetric intervals [−a, a], 0 < a ≤
π. For 0 < a ≤ a = a(m) and ā = ā(m) ≤ a ≤ π, we have already received
explicit solutions for the E-optimal design problem in the trigonometric re-
gression model (4.1) on the interval [−a, a]. Note that the range (a, ā) not
covered by these results is rather small (see Table 4.4) and, consequently,
explicit solutions of the E-optimal design problem are available for most
cases. Moreover, in Section 4.3.3, we have shown that in the linear trigono-
metric regression model with m = 1, we have a = ā = 2π/3 and a complete
analytic solution is available in this case.

Now, we will prove that for m ≥ 2 it follows that a < ā and elaborate
a technique for the case a < a < ā that can be used for the numerical
construction of E-optimal designs and is based on the functional approach.
The method will be illustrated for the quadratic and cubic trigonometric
regression model at the end of this subsection.

We begin with a reformulation of Lemma 4.3.1. To this end, let us
introduce the function

Ψ(x) = Ψ(x; q, p) =
(qT f(1)(x))2 + (1 − x2)(pT f(2)(x))2

qT q + pT p
, (4.80)

where q = (q0, . . . , qm)T ∈ R
m+1 is an arbitrary vector with qm = 1,

p = (p0, . . . , pm−1)T ∈ R
m is an arbitrary vector, and the functions f(1)(x)

and f(2)(x) are defined by

fT
(1)(x) =

(
1/

√
2, T1(x), . . . , Tm(x)

)
, (4.81)

fT
(2)(x) = (U0(x), . . . , Um−1(x)) . (4.82)

Due to Theorem 4.3.1, we can restrict our consideration to the case a < ā

and designs ξ ∈ Ξ(1)
a . The following result is a refinement of Lemma 4.3.1

for the model at hand.

Lemma 4.3.5 For the trigonometric regression model (4.1) on the interval
[−a, a] with 0 < a < ā, the design

ξ =

( −tm . . . −t1 t0 t1 . . . tm
wm

2 . . . w1
2 w0

w1
2 . . . wm

2

)
, (4.83)
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with t0 = 0 and tm = a is E-optimal if and only if there exist vectors
q = q(a) = (q0, . . . , qm)T ∈ R

m+1 with qm = 1 and a vector p = p(a) ∈ R
m,

such that the inequality

Ψ(x) = Ψ(x; q, p) ≤ λmin(M(ξ)) (4.84)

holds for all x ∈ [α, 1], where the function Ψ(x; q, p) is defined in (4.80).
Moreover, if a design ξ of the form (4.83) is E-optimal, then these

vectors are eigenvectors of the matrices defined by (4.61) and (4.62) corre-
sponding to the minimum eigenvalue λ = λmin(M(ξ)) of the matrix M(ξ);
that is,

Mc(ξ)q = λq, Ms(ξ)p = λp, (4.85)

and
Ψ(xi) = Ψ(cos a), i = 1, . . . , m − 1,

Ψ
′
(xi) = 0, i = 1, . . . , m − 1,

(4.86)

where xi = cos ti, i = 0, 1, . . . , m − 1.
The polynomial Ψ(x) is uniquely determined. The vectors p and q can

be chosen such that the polynomials

pT f(2)(x) and qT f(2)(x)

have interlacing roots, and under this additional condition, the vectors p
and q are also uniquely determined. If a ∈ [0, a], it follows that p = 0.

Proof. Let us prove that the inequality (4.84) is a necessary condition
for E-optimality. To this end, assume that a design ξ of the form (4.83) is
E-optimal and let A∗ be the matrix, defined in Lemma 4.3.1, such that the
inequality (4.38) is satisfied.

Consider the function

Ψ(x) = h(arc cosx),

where h(t) = fT (t)A∗f(t), t = arc cosx. Note that due to Theorem 4.3.1,
Ψ(x) �≡ const whenever 0 < a < ā. Since

sin(k arccos x) =
√

1 − x2Uk−1(x)

and
cos(k arccos x) = Tk(x),

it follows that Ψ(x) is a polynomial of degree 2m [note that Ψ(x) is not
constant, and by Lemma 4.3.1, it has 2m− 1 roots counting multiplicities].
Our polynomial is non-negative for −1 ≤ x ≤ 1 due to non-negative def-
initeness of the matrix A∗. It is known (see Karlin and Studden (1966,
Chap. 2) that such a polynomial can be represented in the form

Ψ(x) = ϕ2
1(x) + (1 − x2)ϕ2

2(x),
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where ϕ1(x) is a polynomial of degree m and ϕ2(x) is a polynomial of degree
m − 1, that is,

ϕ1(x) = C1

m∏
i=1

(x − γi), ϕ2 = C2

m−1∏
i=1

(x − δi),

and that the roots of these polynomials are interlacing, that is,

γ1 ≤ δ1 ≤ γ2 ≤ · · · ≤ δm−1 ≤ γm,

γ1 < γ2 < · · · < γm, δ1 < · · · < δm−1.

Moreover, this representation is unique. Since the polynomials T0(x),
T1(x), . . . , Tm(x) are linearly independent and the same is true for the poly-
nomials U0(x), . . . , Um−1(x), we have

ϕ1(x) = CqT f(1)(x),

ϕ2(x) = CpT f(2)(x),

where C > 0 is a constant and q = (q0, . . . , qm)T ∈ R
m+1 and p ∈ R

m

are appropriate vectors with qm = 1. Recalling that the functions
√

2fk(t),
k = 0, 1, . . . , 2m, are orthonormal with respect to measure 1

2π dt on the
interval [−π, π], we obtain

1
π

∫ π

−π

fT (t)A∗f(t) dt = trA∗ = 1,

and, therefore,

1 =
2
π

∫ 1

−1
Ψ(x)

dx√
1 − x2

=
2C

π

∫ 1

−1

[
(qT f(1)(x))2 + (pT f(2)(x))2(1 − x2)

] dx√
1 − x2

= C(qT q + pT p).

Consequently, C = 1/(qT q + pT p), and due to Lemma 4.3.1, it follows for
all t ∈ [−a, a] that

fT (t)A∗f(t) ≤ λmin(M(ξ)),

or, equivalently,

Ψ(x) = Ψ(x; q, p) =
(qT f1(x))2 + (1 − x2)(pT f(2)(x))2

qT q + pT p
≤ λ (4.87)

for all x ∈ [α, 1], where λ = λmin(M(ξ)) denotes the minimum eigenvalue of
the matrix M(ξ). Therefore, condition (4.84) follows from the E-optimality
of the design ξ. Due to Lemma 4.3.1, the left-hand side of the inequality
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(4.87) attains its maximal value λ at the support points xi = cos ti, i =
0, . . . , m (since Ψ(x) = h(t), t = arccos x) and the system of equations in
(4.86) also provides a necessary condition for E-optimality.

To prove that (4.85) is also a necessary condition for E-optimality, we
put x = cos t and integrate the left-hand side of (4.87) with respect to the
measure ξ(dt). We obtain

qT Mc(ξ)q + pT Ms(ξ)p
pT p + qT q

≤ λ, (4.88)

where the second term should be replaced by zero if p = 0. Since

min
q̃

q̃T Mc(ξ)q̃
q̃T q̃

= λmin(Mc(ξ)) ≥ λ,

(4.89)

min
p̃

p̃T Ms(ξ)p̃
p̃T p̃

= λmin(Ms(ξ)) ≥ λ ,

it follows that q is an eigenvector of the matrix Mc(ξ) corresponding to its
minimal eigenvalue λ; that is,

Mc(ξ)q = λq.

Similarly, p is either equal to 0 ∈ R
m or an eigenvector of the matrix Ms(ξ)

corresponding to its minimal eigenvalue λ. In both cases, we have the
equation

Ms(ξ)p = λp.

Finally, we prove that (4.84) is a sufficient condition for E-optimality of
the design ξ. To this end, define

A = (qqT + ppT )/(qT q + pT p);

then tr A = 1 and it follows from (4.84) that for all t ∈ [−a, a],

fT (t)Af(t) ≤ λmin(M(ξ)).

Due to Lemma 4.3.1, the design ξ is E-optimal.
Note that the polynomial Ψ(x) is uniquely determined by the conditions

(4.86) and (4.84). Moreover, we proved earlier that the vectors p and q are
uniquely determined under the additional condition of interlacing roots.

Let 0 < a < a; then λmin(Ms(ξ)) > λ, and from (4.88) and (4.89), it
follows that p = 0. In the case a = a, the equality p = 0 follows from a
continuity argument.

Lemma 4.3.5 will be used to obtain a representation for the minimal
eigenvalue of the information matrix of the E-optimal design. This rep-
resentation will be essential for the numerical construction of E-optimal
designs.
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Lemma 4.3.6 For the trigonometric regression model (4.1) with m ≥ 2,
we have for the quantities a and ā defined in (4.74) and (4.42), respectively,

a < ā.

Proof. It is evident that a ≤ ā. Suppose that a = ā; then Theorem 4.3.2
and Corollary 4.3.1 show that for a ≤ a, the design ξ̂a defined by (4.48)
and (4.49) is E-optimal. For a < ā, there exists a unique E-optimal design
by Theorem 4.3.1 and a continuity argument shows that there also exists a
unique E-optimal design in the case a = a = ā, which is of the form

ξ∗ =

( −tm . . . −t1 t0 t1 . . . tm

1
2m+1 . . . 1

2m+1
1

2m+1
1

2m+1 . . . 1
2m+1

)
,

where the support points are given by

ti =
πi

m

(
1 − 1

2m + 1

)
, i = 0, . . . , m.

Therefore, ξ∗ = ξ̂a and we obtain the equations

cos ti = cos
[πi

m

(
1 − 1

2m + 1

)]
=

1 − ᾱ

2
cos

πi

m
+

1 + ᾱ

2
, i = 0, . . . , m,

where ᾱ = cos ā and ā = π(1 − 1
2m+1 ). In order to prove that this is

impossible, we note that for 0 < a < π, 1/2 < u < 1, it follows that

cos au >
1 − cos a

2
cos πu +

1 + cos a

2
. (4.90)

This inequality can be proved observing that for a = 0 and a = π, we have

cos au − 1 − cos a

2
cos πu − 1 + cos a

2
= 0

and verifying that the derivative of the left-hand side has only one zero in
the interval (0, π) corresponding to an absolute maximum in this region.
Substituting a = ā and u = i/m in (4.90), we obtain a contradiction, which
shows that a < ā whenever m ≥ 2.

Throughout the remaining part of this subsection, we assume m≥2 (the
linear case m=1 was discussed in Section 4.3.3), a < a < ā, and define

p̃(a) = p(a) ∈ R
m,

q̃(a) = (q0(a), . . . , qm−1(a))T ∈ R
m,

x(a) = (x1(a), . . . , xm−1(a))T ∈ R
m−1,

w(a) = (w0(a), . . . , wm−1(a))T ∈ R
m,

where p(a) and q(a) = (q1(a), . . . , qm−1(a), 1)T are the vectors defined by
Lemma 4.3.5, xi(a) = cos ti(a), i = 1, . . . , m − 1, and {ti(a)}i=1,...,m−1,
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{wi(a)}i=0,...,m−1 correspond to the positive support points and weights
of the E-optimal design ξa on the interval [−a, a]. For arbitrary vectors
q̃ = (q0, . . . , qm−1)T , p̃ = (p0, . . . , pm−1)T , x = (x1, . . . , xm−1)T , and w =
(w0, . . . , wm−1)T , with α = cos a < xm−1 < · · · < x1 < 1, wi > 0, i =
0, . . . , m − 1, and

∑m−1
i=0 wi < 1 we define the vectors

Θ = (θ0, . . . , θ4m−2)T = (p̃T , q̃T , xT , wT )T ∈ R
4m−1,

and, similarly,

Θ(a) = (θ0(a), . . . , θ4m−2(a))T = (p̃T (a), q̃T (a), xT (a), wT (a))T ∈ R
4m−1

as the vector containing the support points and weights of the E-optimal
design and the components of the vectors q(a) and p(a) defined in Lemma
4.3.5. Let us introduce the function

λ(Θ, a) =
m−1∑
i=0

(qT f(1)(xi))2 + (1 − x2
i )(p

T f(2)(xi))2

qT q + pT p
wi (4.91)

+
(qT f(1)(α))2 + (1 − α2)(pT f(2)(α))

qT q + pT p
(1 − w0 − · · · − wm−1),

where x0 = 1 and the vectors q and p are given by q = (q̃T , 1)T and p = p̃.
If ξa is the E-optimal design on the interval [−a, a], then

λ(a) := λ(Θ(a), a) = λmin(M(ξa)),

and an immediate differentiation of the function λ(Θ, a) shows that the
conditions

∂

∂θi
λ(Θ, a) |Θ=Θ̄ = 0, i = 0, . . . , 4m − 2, (4.92)

coincide with conditions (4.85) and (4.86) if Θ̄ = Θ(a). Therefore, by
Lemma 4.3.5, these conditions are necessary conditions for the vector Θ(a),
which gives the support points and weights of the E-optimal design. We
will call the vector equation (4.92) the basic equation. In order to study the
Jacobi matrix of this equation, we will present a couple of auxiliary results,
which are of independent interest. To this end, denote by

η =

(
x0 . . . xm

w0 . . . wm

)

a design on the interval [α, 1] (with x0 = 1) and let

ξη =

( −tm . . . −t1 t0 t1 . . . tm
wm

2 . . . w1
2 w0

w1
2 . . . wm

2

)
(4.93)
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be the design corresponding to η by the transformation (4.54), where ti =
arc cosxi, i = 0, . . . m. Similarly, for any symmetric design ξ of the form
(4.93) on the interval [−a, a], we denote by

ηξ =

(
x0 . . . xm

w0 . . . wm

)
,

with xi = cos ti, i = 0, . . . , m, the design on the interval [α, 1] obtained by
the transformation (4.54). Finally, v = v(a) denotes the multiplicity of the
minimum eigenvalue of the matrix Mc(ξa) and u = u(a) is the multiplicity
of the minimum eigenvalue of the matrix Ms(ξa), where ξa denotes the E-
optimal design for the trigonometric regression model on the interval [−a, a]
and the matrices Mc(ξa) and Ms(ξa) have been defined in (4.61) and (4.62),
respectively.

Lemma 4.3.7 Let 0 < a ≤ π. A design ξa of the form (4.93) is an E-
optimal design for the trigonometric regression model (4.1) on the interval
[−a, a] if and only if

ξa = ξηα
,

where ηα is an E-optimal design for the Chebyshev regression model (4.55)
on the interval [α, 1] and α = cos a.

Moreover, the quantities a(1) and a(2) in (4.75) are equal, that is,

a(1) = a(2)

and the multiplicities v(a) and u(a) of the minimal eigenvalues of the ma-
trices Mc(ξa) and Ms(ξa) of the E-optimal design ξa satisfy

v(a) = u(a) + 1

whenever v(a) > 1.

Proof. Let us begin with the last assertion; denote with ξa the E-optimal
design and by q(1), . . . , q(v) the eigenvectors of the matrix Mc(ξa) corre-
sponding to its minimal eigenvalue λmin(Mc(ξa)) and define the coordinates
of q(j) by q(j)i, i = 0, . . . , m, j = 1, . . . , v. Without loss of generality, we
can choose q(1) such that q(1)m = 1, q(2) such that q(2)m = 0, q(3) such that
q(3)m = q(3)m−1 = 0, and so forth. For v ≥ 2, we introduce the polynomials

ϕ2
1(x) =

(
qT
(1)f(1)(x)

)2

qT
(1)q(1)

,

ϕ2
2(x) =

(
qT
(i)f(1)(x)

)2

qT
(i)q(i)

, i �= 1,

g(x) =
ϕ2

1(x) + ϕ2
2(x)

2
,
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where the vectors f(1)(x) and f(2)(x) have been defined in (4.81) and (4.82),
respectively. Note that the polynomial g is non-negative of degree m and∫

g(cos t)ξa(dt) = λmin(Mc(ξa)). (4.94)

As in the proof of Lemma 4.3.5, we can find appropriate vectors q ∈
R

m+1 and p ∈ R
m such that the polynomial g(x) can be represented in the

form
g(x) = ϕ̄2

1(x) + (1 − x2)ϕ̄2
2(x), (4.95)

where ϕ̄1(x) = qT f(1)(x) and ϕ̄2(x) = pT f(2)(x). Substituting x = cos t,
integrating both sides of (4.95) with respect to the measure ξa(dt) and
taking into account the identity (4.94), we obtain

λmin(Mc(ξa)) = qT Mc(ξa)q + pT Ms(ξa)p
≥ λmin(Mc(ξa))qT q + λmin(Ms(ξa))pT p. (4.96)

A further integration of the function g(cos t) with respect to the uniform
distribution dt/2π on the interval [−π, π] yields (observing the representa-
tion (4.95))

qT q + pT p = 1. (4.97)

Earlier we proved that

λmin(Ms(ξa)) ≥ λmin(Mc(ξa)),

and, consequently, (4.96) and (4.97) imply that one of the following condi-
tions holds:

(i) v = 1, p = 0, λmin(Mc(ξa)) = λmin(M(ξa)) < λmin(Ms(ξa)),

(ii) v > 1, p �= 0 is an eigenvalue of the matrix Ms(ξa), λmin(Mc(ξa)) =
λmin(Ms(ξa)).

Part (ii) is an immediate consequence of the previous discussion. For a
proof of case (i), assume that

λ = λmin(Mc(ξa)) = λmin(Ms(ξa))

and let p and q be vectors such that p �= 0 and

Mc(ξa)q = λq, Ms(ξa)p = λp .

We introduce the polynomial

g(x) = ϕ̄2
1(x) + (1 − x2)ϕ̄2(x),

where ϕ̄1(x) = qT f(1)(x) and ϕ̄2(x) = pT f(2)(x). This polynomial can be
represented in the form(

qT
1 f(1)(x)

)2
+
(
qT
2 f(1)(x)

)2
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and a similar calculation to that given in the previous discussion shows that
q1 and q2 should be eigenvectors, corresponding to λmin(Mc(ξa)). There-
fore, it follows that v ≥ 2 and this proves that part (i) is correct.

In the first case, λmin(M(ξa)) is simple. In the second case, v ≥ 2,
and for each eigenvector q(i), there exists an eigenvector p(i) of the matrix
Ms(ξa). It can be easily checked that the vectors p(i), i = 2, . . . , v, are of
the form

(p(2)0, . . . , p(2)m−1)T ,

(p(3)0, . . . , p(3)m−2, 0)T ,

...
(p(v)0, . . . , p(v)m−v+1, 0, . . . , 0)T .

Consequently, these vectors are linearly independent, which gives v(a) ≥
u(a) + 1. In a similar way, we can prove that v(a) ≤ u(a) + 1 and for the
case v(a) > 1 we obtain that

v(a) = u(a) + 1.

From (4.96) and (4.97) it also follows that v(a) > 1 in the case
λmin(Mc(ξa)) = λmin(Ms(ξa)). Recalling the definition of a(1) and a(2)
in (4.75), it thus follows that

a(1) = inf{a | v(a) > 1},

a(2) = inf{a | λmin(Mc(ξa)) = λmin(Ms(ξa))} ,

and the previous remarks yield

a(1) = a(2) = a.

In order to prove the first assertion of Lemma 4.3.7, let ξa be a symmetric
E-optimal design of the form (4.93) for the trigonometric regression model
on the interval [−a, a]; then it follows from the previous discussion that

λmin(M(ξa)) = λmin(Mc(ξa)).

From the definition of the transformation (4.54), we have

Mc(ξa) = M1(ηξa),

where
M1(η) =

∫
f(1)(x)fT

(1)(x)η(dx)

denotes the information matrix of the design η in the Chebyshev regression
model (4.55). Therefore, a design ξa is an E-optimal design for the regres-
sion function fc(t) on the interval [−a, a] if and only if the design ηξa

is an
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E-optimal design in the Chebyshev regression model (4.55) on the interval
[α, 1], where α = cos a. Now, it is easy to verify that any E-optimal design
of the form (4.93) for the regression function fc(t) on the interval [−a, a]
is also an E-optimal design for the trigonometric regression model on the
interval [−a, a] and vice versa. Thus, a design ξηα of the form (4.93) is
an E-optimal design for the trigonometric regression model on the interval
[−a, a] if and only if the corresponding design ηα is an E-optimal design
for the Chebyshev regression model (4.55) on the interval [α, 1].

Throughout this chapter we denote by τ(a) the number of common
roots of the polynomials ϕ1(x) = qT f(1)(x) and ϕ2(x) = pT f(2)(x) defined
by Lemma 4.3.5. The following result provides the basis for the implemen-
tation of the functional approach.

Theorem 4.3.3 Consider the trigonometric regression model(4.1) on the
interval [−a, a], where 0 < a ≤ π and m ≥ 2. Then a < ā and there exists
a number ν ∈ N and real quantities

a = a1 < a2 < a3 < · · · < aν = ā

such that the vector function

Θ∗ :
{

(a, ā) → R
4m−1

a → Θ(a)

is uniquely determined, real analytic on the set

ν−1⋃
j=1

(aj , aj+1), (4.98)

and satisfies the system of equations

∂

∂θi
λ(Θ, a)

∣∣∣
Θ=Θ(a)

= 0, i = 0, . . . , 4m − 2, (4.99)

where the function λ(Θ, a) is defined in (4.91).

Proof. We have already proved that the vector function Θ∗ is uniquely
determined and satisfies (4.99). It is also obviously continuous. In order to
study its analytic properties we define

G(Θ, a) =
(

∂2

∂θi∂θj
λ(Θ, a)

)4m−2

i,j=0

as the Jacobi matrix of the system (4.99) and denote by

J = J(a) = G(Θ(a), a)
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the corresponding value at the point Θ = Θ(a). A straightforward but
tedious differentiation shows that this matrix is of the form

J = h

⎛
⎜⎝

S BT
(1) BT

(2)

B(1) D 0

B(2) 0 0

⎞
⎟⎠ , (4.100)

where h = 1/(qT q + pT p), q = q(a), and p = p(a). The matrices in the
block matrix (4.100) are given by

S =

(
M(1) 0

0 M(2)

)
,

where
M(1) = Ms(ξa) − λIm.

Similarly, if A− denotes the matrix A with deleted last row and last column,
M(2) is defined by

M(2) = (Mc(ξa) − λIm+1)−,

D = diag {d11, . . . , dm−1,m−1},

where the elements of the matrix D are given by

dii =
(
(qT f(1)(x))2 + (pT f(2)(x))2(1 − x2)

)′′ ∣∣∣
x=xi(a)

, i = 1, . . . , m − 1,

and

BT
(1) =

(
BT

(1)1

...BT
(1)2

)
,

BT
(1)1 =

(
(f(1)(x)−qT f(1)(x))

′
wi

∣∣∣
x=xi(a)

)
i=1,...,m−1

,

B(1)2 =
(

(f(1)(x)(1 − x2))
′
wi

∣∣∣
x=xi(a)

)
i=1,...,m−1

,

BT
(2) =

(
BT

(2)1

...BT
(2)2

)
,

BT
(2)1 =

(
f(1)(xi) qT f(1)(xi)

)
i=0,...,m−1 ,

BT
(2)2 =

(
f(2)(xi)pT f(2)(xi)(1 − x2)

)
i=0,...,m−1 ,

where b− denotes the vector b with deleted last element. Let ã ∈ (a, ā) such
that the following condition is satisfied:

(A) There exists a neighborhood Ũ of the point ã such that for all a ∈ Ũ ,
we have

τ = τ(ã) = τ(a).
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Denote by δ1, . . . , δτ the common roots of the polynomials

ϕ1(x) = qT (a)f(1)(x),

ϕ2(x) = pT (a)f(2)(x),

by γ1, . . . , γm−τ the remaining roots of the polynomial ϕ1(x), and by
κ1, . . . , κm−1−τ the remaining roots of the polynomial ϕ2(x); that is,

ϕ1(x) =
τ∏

i=1

(x − δi)
m−τ∏
i=1

(x − γi),

ϕ2(x) = κm−τ

τ∏
i=1

(x − δi)
m−τ−1∏

i=1

(x − κi)

(recall that it was shown in the proof of Lemma 4.3.5 that ϕ1 and ϕ2 have
simple roots, which are interlacing, and note that κm−τ denotes not a root
of the polynomial ϕ2 but its leading coefficient). Define the vector

Θ̂(a) = Θ̂ = (γ1, . . . , γm−τ , κ1, . . . , κm−τ , δ1, . . . , δτ , x̃(a), w̃(a))T

= (θ̂0, . . . , θ̂4m−1−τ )T .

and note that in a neighborhood of the point ã, there exists essentially a
one-to-one correspondence between the points Θ̂(a) and Θ(a). Consider
the matrix

J̃ = HT JH, (4.101)

with

H =
(
∂θ̂i/∂θj

)4m−1−τ,4m−2

i=0,j=0
.

We will prove below that the matrix J̃ is nonsingular for any point ã satis-
fying condition (A). Because τ(a) ∈ {1, 2, . . . , m}, it therefore follows that
all points a ∈ (a, ā) except for a finite set denoted by {a1, . . . , aν} satisfy
condition (A). Therefore, the vector function

Θ+ : a → Θ̂(a)

is a real analytic vector function on the set (4.98) due to the well-known
Implicit Function Theorem (Gunning and Rossi (1965)). Because the co-
efficients of a polynomial are analytic functions of its zeros, it follows that
the vector function Θ∗ is also real analytic on the same set.

The proof of the nonsingularity of the matrix J̃ is tedious and we indi-
cate the main steps. Denote by P the eigenspace of the matrix Mc(ξa) cor-
responding to its minimal eigenvalue λmin(Mc(ξa)) and by Pτ the subspace
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of all vectors r = (r0, r1, . . . , rm)T such that the polynomial
∑m

j=0 rjx
j has

the form
τ∏

i=1

(x − δi)
m−τ∑
j=0

r̃jx
j

for some vector r̃ = (r̃0, . . . , r̃m−τ )T of size m − τ + 1. For the sake of
transparency, we introduce the notation F (x) = (1, x, . . . , xm)T and define
the following for vectors r, s ∈ R

m+1:

< r, s > =
∫ 1

−1

(
rT F (x)

) (
sT F (x)

)
ηξa

(dx) ×

×
[

2
π

∫ 1

−1

(
rT F (x)

) (
sT F (x)

) dx√
1 − x2

]−1

.

A straightforward calculation shows that the condition

∂λ(Θ̂, a)
∂γi

= 0

is equivalent to the condition

< qγi , q > = λ(Θ̂, a),

where the vector qγi
∈ Pτ is defined by

qT
γi

F (x) =
1

x − γi
qT F (x) =

d

dx
qT F (x)

∣∣∣
x=γi

for any i = 1, . . . , m − τ . This means that

qγi
∈ P , i = 1, . . . , m − τ

(note that the vectors qγ1 , . . . , qγm−τ
are linearly independent). Note that

a direct calculation gives

∂2

∂γj∂γi
λ(Θ̂, a) =

(qT
γi

M(ξa)qγi

qT
γj

qγi

− λ(Θ̂, a)
) 1

qT
γj

qγi

, j = 1, . . . , m − τ.

Since qγj
∈ P, we obtain

∂2

∂γi∂γi
λ(Θ̂, a) = 0 , i, j = 1, . . . , m − τ,

In a similar way, it follows that

pκi ∈ P(2), i = 1, . . . , m − τ,
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where P(2) is the eigenspace, corresponding to λmin(M(s)(ξa)), and by the
same arguments we obtain

∂2

∂κi∂κj
λ(Θ̂, a) = 0, i, j = 1, . . . , m − τ.

It is easy to check that for a ∈ (a, ā), it follows that τ ≥ 1. Moreover,
using the above formulas, we obtain that the matrix J̃ has the structure
indicated in Table 4.5, where A is a non-negative definite matrix and D is
the negative definite matrix, defined earlier.

Table 4.5: Structure of the matrix J̃ defined in (4.101)

1 m − τ m − 1 m − 1 m

1 0 bT

m − τ 0 V T BT
1 CT

1

m − 1 V A BT
2 CT

2

b
m − 1 B1 B2 D 0

m C1 C2 0 0

If b �= 0 and the matrices C = (C1 : C2), B2 and B1 have full rank it
follows by similar arguments as given in Section 3.2 with the help of the
Frobenius formula that det J̃ �= 0. The verification of the listed conditions
is equivalent to the verification that certain polynomials are not identically
zero. This can be done by the standard technique of counting zeros and is
left to the reader. Thus det J̃ �= 0 for any point a satisfying condition (A).

Since the vector function Θ(a) = Θ(arc cosα) is real analytic on the set
defined by (4.98), it can be expanded into a Taylor series in a neighborhood
of any point ã �= aj , j = 1, . . . , ν, a < ã < ā, and we obtain for its
components an expansion of the form

θi(a) =
∞∑

k=0

θi,k(α − α̃)k , i = 0, . . . , 4m − 2,
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where α̃ = cos ã and α = cos a. For the determination of the coefficients
{θi,k}, the general recurrent formulas introduced in Section 2.4 can be ap-
plied, provided that initial conditions θi,0, i = 0, . . . , 4m − 2 are known.
To find such initial coefficients Θ(0) = (θ0,0, . . . , θ4m−2,0)T , we solve the
equation

Q(Θ(0)) : =
4m−2∑
i=0

(
∂

∂θi
λ(Θ, ã)

∣∣∣
Θ=Θ(0)

)2

= 0

for some ã, which can be done by standard numerical algorithms. To obtain
an approximation of the function Θ(a) with a given precision, we have to
find one or several points ã1, . . . , ãk, construct the corresponding Taylor
series and verify that the calculated design is E-optimal with sufficient
precision (note that Θ(a) contains also the vectors p(a) and q(a) by Lemma
4.3.5). In the following examples, we will illustrate this approach for the
quadratic and cubic trigonometric regression model on the interval [−a, a].

Example 4.3.1 Consider the quadratic trigonometric regression model on
the interval [−a, a]

βT f(t) = β0/
√

2 + β1 cos t + β2 sin t + β3 cos 2t + β4 sin 2t.

By the discussion of Section 4.3.1, it follows that for ā = 0.8π ≤ a ≤ π,
an E-optimal design is given by( − 4π

5 − 2π
5 0 2π

5
4π
5

1
5

1
5

1
5

1
5

1
5

)
.

Similarly, Corollary 4.3.1 and Theorem 4.3.2 show that for 0 < a ≤ a ≈
0.741π, the unique E-optimal design is given by( −a −t(a) 0 t(a) a

w2
2

w1
2 w0

w1
2

w2
2

)
,

where
t(a) = arccos

(1 + cos a

2

)
and the weights w0, w1, and w2 can be found by formula (4.49). In the
intermediate case

a = 0.741π < a < 0.8π = ā,

we will construct the E-optimal design by the functional approach. Note
that due to Theorem 4.3.1, an E-optimal design is of the form( −t2 −t1 t0 t1 t2

w2
2

w1
2 w0

w1
2

w2
2

)
,
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where t0 = 0 and t2 = a. Since w0 + w1 + w2 = 1, it is enough to consider
the weights w1 and w2 and the point x1 = arc cos t1. We take ã = 0.77π ≈
(ā + a)/2. The first Taylor coefficients for the parameters

q0 = q0(arccos α),
q1 = q1(arccos α),
p0 = p0(arccos α),
p1 = p1(arccos α),

1 − x1 = 1 − xi(arccos α),
w1 = w1(arccos α),
w2 = w2(arccos α),

in the expansion

Θ(arccos α) =
∞∑

n=0

Θ(n)(α − cos ã)n

are listed in Table 4.6. The dependence of the support points and weights
of the E-optimal design in the trigonometric regression model from the
parameter a ∈ (a, ā) is illustrated in Figure 4.1. In the present case, it
follows that a1 = a < a2 = ā, and for a1 < a < a2, we have

τ(a) = 1, u(a) = 1, v(a) = 2.

It is also interesting to note that for 0 < a < a1 = a, we have

u(a) = 0, v(a) = 1,

whereas for the case ā = a2 < a < π, it follows that

u(a) = 2, v(a) = 3.

In other words, if the parameter a is increased from 0 to π, the multiplicity
of the minimum eigenvalue of the information matrix of the E-optimal
design changes from 1 to 5 by steps of size 2.

Example 4.3.2 Consider the cubic trigonometric regression model on the
interval [−a, a] (i.e., m = 3). Then, similar to the preceding example, an
E-optimal design can be found in an explicit form whenever 0 < a ≤ a ≈
0.794π and ā ≤ a ≤ π, ā = 6/7π ≈ 0.857π. In the case a > ā, the design( − 6π

7 − 4π
7 − 2π

7 0 2π
7

4π
7

6π
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

)

is E-optimal (but not necessarily unique), whereas in the case a < a, the
support points of the unique E-optimal design are given by

±a , ± arccos
(3 + cos a

4

)
, ± arccos

(1 + 3 cos a

4

)
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Table 4.6: Coefficients in the Taylor expansion (4.3.1) for the quadratic
trigonometric regression model (m = 2), where 0.741 < a/π < 4/5 = 0.8

0 1 2 3 4 5
p0 0.4771 -0.0781 -1.3312 -1.9692 1.2116 3.8592
p1 -0.4928 2.0781 -0.5175 0.0124 1.9268 -1.7913
q0 -0.3532 -2.7276 11.4353 -92.0212 896.9923 -9.90e+03
q1 -0.3794 -2.5761 15.1122 -109.6045 1.05e+03 -1.15e+04

1−x1 0.7588 -1.2582 1.5801 3.9027 0.3966 -11.1756
w1 0.1862 0.1994 0.5826 0.2185 -2.1883 -5.1277
w2 0.2289 -0.4732 -0.3163 0.5386 -0.2008 0.5346
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Figure 4.1: Support points and weights of the E-optimal design in a
quadratic trigonometric regression models on the interval [−a, a] for various
values of a

and the weights are obtained from formula (4.49). It was found numerically
that

a1 = a < a2 ≈ 0.8113π < a3 = ā = 6/7π ≈ 0.857π,

and for a ∈ (a1, a2), the first coefficients for the Taylor expansion at the
point ā1 = 0.81π are presented in Table 4.7, whereas Table 4.8 contains the
corresponding coefficients for the case a ∈ (a2, a3) (for the expansion at the
point ā2 = 0.83π). Note that the multiplicities of the minimal eigenvalues
of the matrices Ms(ξa) and Mc(ξa) are given by

u(a) = 0, v(a) = 1 if a ∈ (0, a1),
u(a) = 1, v(a) = 2 if a ∈ (a1, a2),
u(a) = 2, v(a) = 3 if a ∈ (a2, a3), (4.102)
u(a) = 3, v(a) = 4 if a ∈ (a3, π),

where a1 = a and a3 = ā.
The behavior of the optimal design points and weights is presented in

Figure 4.2. It was verified numerically that the points and weights can be
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Table 4.7: Coefficients in the Taylor expansion (4.3.1) for the cubic trigono-
metric regression model (m = 3), where 0.794 < a/π < 0.8113

0 1 2 3 4 5
p0 -0.3965 4.0928 -0.3055 -12.3495 -11.4981 761.5907
p1 0.6477 -1.8835 -3.2233 -5.1845 1.6191 811.6268
p2 -0.5608 1.6899 3.0650 3.2670 -2.9128 -928.5566
q0 0.1501 2.0088 -28.2704 430.0770 -8.39e+03 1.96e+05
q1 0.2599 4.2543 -37.1810 612.9954 -1.27e+04 2.96e+05
q2 0.2219 3.4819 -34.7987 534.1822 -1.11e+04 2.56e+05

1−x1 0.4047 -1.4247 2.2884 9.9250 15.0767 -48.0838
1−x2 1.3565 0.3121 0.7705 2.0655 2.2545 -12.2375
w1 0.0966 0.4030 1.2655 1.5036 -9.9210 -81.2046
w2 0.1397 -0.3048 1.2041 5.8567 -1.1242 -68.7337
w3 0.2164 -0.4311 -2.8260 -3.6782 21.5715 101.4223

Table 4.8: Coefficients in the Taylor expansion (4.3.1) for the cubic trigono-
metric regression model (m = 3), where 0.8113 < a/π < 6/7 = 0.857

0 1 2 3 4 5
p0 -0.0674 9.6717 12.2522 43.8534 -2.67e+03 6.11e+04
p1 0.8655 5.9768 -7.3377 1.8819 -2.75e+03 6.44e+04
p2 -0.7126 -3.5536 9.0726 -65.9985 3.11e+03 -7.76e+04
q0 0.6670 9.0433 -68.2559 962.3302 -1.87e+04 4.10e+05
q1 0.5298 5.6016 -35.9075 387.2603 -6.62e+03 1.30e+05
q2 0.0868 -0.7658 22.7645 -454.2934 9.99e+03 -2.39e+05

1−x1 0.3917 -0.3409 -1.0703 2.8779 38.4908 158.1277
1−x2 1.2958 -1.9386 1.7869 25.6580 62.2862 -124.9227
w1 0.1197 0.6556 -1.8890 -4.5152 46.8271 18.8599
w2 0.1383 0.0358 1.8823 1.6989 -29.6814 -78.2035
w3 0.1826 -1.0283 0.8572 5.4231 -35.5716 57.4784

determined with high precision. Figure 4.3 shows the extremal polynomial

(pT f(1)(x))2 + (qT f(2)(x))2

pT p + qT q

in the equivalence theorem for various values of a (note that by Lemma
4.3.5, this function has to be less than or equal to the minimum eigenvalue of
the information matrix corresponding to the E-optimal design with equality
at the support points).
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Figure 4.2: Support points and weights of the E-optimal design in a cubic
trigonometric regression models on the interval [−a, a] for various values of a
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Figure 4.3: The extremal polynomials for various values of a

4.4 Numerical Comparison of D- and E-
Optimal Designs

Let us now compare D- and E-optimal designs for trigonometrical regres-
sion models on intervals [−a, a], 0 < a ≤ π. It is interesting to know how
good E-optimal designs are in the sense of the D-criterion and how good
D-optimal designs are from the E-optimality point of view.

Formally, we will calculate the value

effD(ξ) =
(

det M(ξ)
det(M(ξD))

)1/m

for ξ = ξE and the value

effE(ξ) =
λmin(M(ξ))
λmin(M(ξE))
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for ξ = ξD, where ξE denotes an E-optimal design and ξD denotes a D-
optimal design.

We will include in the comparison some equidistant designs usually used
in practice. For brevity, a design will be called a uniform design on [−a, a]
if it is concentrates in 2k + 1 equidistant points with equal weights and
these points are −a

(
1 − 2i

2k+1

)
, i = 1, 2, . . . , 2k + 1 for a ≤ â, â = (2k +

1)π/(2k + 2). For a > â, the points of uniform designs are −a + α + 2iπ
2k+2 ,

i = 1, . . . , 2k + 1, where α is arbitrary number in [0, a − â]. The uniform
designs will be denoted ξu.

D- and E-optimal designs constructed by the methods described are
listed in Table 4.9 for k = 2, 3, 4, 5 and a = 0.2, 0.3, . . . , 1. In all cases when
the designs are not presented, they coincide with the uniform designs.

In Table 4.10, we show the efficiency of the uniform, D- and E-optimal
designs.

It can be noted that for small α, the uniform designs perform rather
poorly, especially, in the sense of E-criteria. Also, one can see from Ta-
ble 4.10 that the D-efficiency of E-optimal designs are higher than the
E-efficiency of D-optimal design. It allows one to recommend E-optimal
designs for small design intervals. One more advantage of E-optimal de-
signs for small design intervals in comparison with D-optimal designs is
that the first can be calculated explicitly by the formulas given in Section
4.3.
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Table 4.9: Optimal designs for trigonometrical model on [−a, a]

k = 2
a/π 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
t1D/a 0.646 0.634 0.618 0.596 0.569 0.536
t1E/a 0.701 0.694 0.680 0.667 0.646 0.620
w0E 0.237 0.220 0.197 0.162 0.122 0.095
w1E 0.250 0.249 0.245 0.238 0.226 0.212
w2E 0.132 0.142 0.156 0.181 0.213 0.241
k = 3
t1D/a 0.461 0.452 0.438 0.421 0.400 0.376 0.349
t2D/a 0.825 0.817 0.806 0.789 0.768 0.735 0.694
t1E/a 0.494 0.486 0.475 0.460 0.442 0.420 0.354
t2E/a 0.862 0.858 0.850 0.839 0.824 0.802 0.751
w0E 0.158 0.147 0.133 0.116 0.098 0.085 0.121
w1E 0.162 0.156 0.146 0.131 0.110 0.081 0.081
w2E 0.171 0.176 0.183 0.190 0.194 0.189 0.156
w3E 0.088 0.094 0.105 0.121 0.147 0.188 0.203
k = 4
t1D/a 0.358 0.349 0.339 0.325 0.309 0.290 0.269
t2D/a 0.671 0.660 0.646 0.628 0.603 0.573 0.536
t3D/a 0.896 0.892 0.884 0.873 0.856 0.831 0.794
t1E/a 0.378 0.371 0.361 0.349 0.334 0.316 0.296
t2E/a 0.700 0.694 0.682 0.667 0.646 0.620 0.587
t3E/a 0.922 0.918 0.913 0.906 0.896 0.879 0.854
w0E 0.118 0.111 0.100 0.087 0.071 0.051 0.034
w1E 0.121 0.114 0.106 0.094 0.080 0.065 0.061
w2E 0.125 0.124 0.122 0.117 0.107 0.088 0.061
w3E 0.129 0.136 0.144 0.156 0.168 0.178 0.165
w4E 0.066 0.070 0.078 0.090 0.110 0.144 0.196
k = 5
t1D/a 0.287 0.288 0.276 0.264 0.251 0.234 0.219 0.202
t2D/a 0.561 0.556 0.535 0.517 0.495 0.469 0.437 0.403
t3D/a 0.778 0.779 0.759 0.741 0.720 0.690 0.651 0.605
t4D/a 0.936 0.936 0.924 0.917 0.904 0.885 0.853 0.805
t1E/a 0.297 0.299 0.290 0.281 0.268 0.254 0.237 0.201
t2E/a 0.596 0.571 0.561 0.546 0.526 0.501 0.472 0.402
t3E/a 0.794 0.798 0.789 0.776 0.757 0.732 0.699 0.603
t4E/a 0.938 0.934 0.934 0.940 0.932 0.919 0.900 0.810
w0E 0.097 0.091 0.082 0.070 0.058 0.045 0.037 0.094
w1E 0.094 0.093 0.085 0.073 0.061 0.047 0.029 0.082
w2E 0.104 0.099 0.094 0.084 0.075 0.062 0.050 0.094
w3E 0.113 0.112 0.112 0.105 0.102 0.092 0.068 0.082
w4E 0.097 0.105 0.114 0.131 0.146 0.163 0.168 0.092
w5E 0.043 0.045 0.053 0.072 0.087 0.114 0.167 0.104
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Table 4.10: Comparison of optimal designs for trigonometrical model on
[−a, a]

k = 2
a/π 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
effD(ξu) 0.910 0.923 0.939 0.958 0.977 0.993 1 1 1
effD(ξE) 0.942 0.951 0.960 0.960 0.946 0.915 1 1 1
effE(ξu) 0.439 0.477 0.539 0.630 0.743 0.829 1 1 1
effE(ξD) 0.847 0.862 0.882 0.905 0.914 0.895 1 1 1
k = 3
a/π 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
effD(ξu) 0.782 0.804 0.835 0.873 0.917 0.961 0.993 1 1
effD(ξE) 0.944 0.949 0.953 0.951 0.933 0.884 0.915 1 1
effE(ξu) 0.167 0.185 0.217 0.273 0.373 0.545 0.745 1 1
effE(ξD) 0.825 0.833 0.841 0.850 0.866 0.840 0.819 1 1
k = 4
a/π 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
effD(ξu) 0.655 0.683 0.724 0.776 0.840 0.910 0.974 1 1
effD(ξE) 0.945 0.951 0.953 0.946 0.930 0.870 0.786 1 1
effE(ξu) 0.059 0.066 0.080 0.104 0.155 0.270 0.515 1 1
effE(ξD) 0.825 0.819 0.823 0.827 0.818 0.795 0.740 1 1
k = 5
a/π 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
effD(ξu) 0.543 0.574 0.619 0.681 0.760 0.890 0.945 1.000 1
effD(ξE) 0.951 0.954 0.950 0.889 0.920 0.901 0.752 0.993 1
effE(ξu) 0.019 0.023 0.028 0.044 0.060 0.117 0.303 0.947 1
effE(ξD) 0.809 0.811 0.815 0.943 0.796 0.583 0.701 0.972 1



Chapter 5

D-Optimal Designs for
Rational Models

Rational functions are often used for approximating an arbitrary continuous
function. Rational approximations are usually better than polynomial ones
since they include sufficiently fewer sets of parameters.

The present chapter is intended to construct and analyze locally D-
optimal designs for the rational model with the help of the functional ap-
proach developed in the previous chapters. Note that maximin efficient
designs can be studied in a way similar to that demonstrated in Section 2.2
for exponential models.

5.1 Introduction

The problem considered in this chapter was studied in a number of papers.
He, Studden, and Sun (1996) proved that the problem of constructing lo-
cally D-optimal designs for rational models is equivalent to that of finding
D-optimal designs for polynomial regression models with variance func-
tions that are also polynomials. The last problem was considered in Karlin,
Studden (1966), Fedorov (1972), Huang, Chang, and Wong (1995), Chang
and Lin (1997), Ortiz and Rodziquez (1998), Imhof and Studden (1998),
Cheng, Kleijnen, and Melas (2000). The connection between the problems
is discussed in Dette, Haines, and Imhof (1999). Two basic approaches
to constructing locally D-optimal designs were used: the implementation
of numerical procedures and construction of designs in a closed analytical
form.

The numerical construction proves to be easy enough since the deter-
minant of the information matrix can be represented explicitly. As for an-
alytical characterizations, they are based on the idea suggested by Stieltjes
(Karlin and Studden (1966)). Stieltjes considered the problem of max-

197
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imizing Vandermonde determinant multiplied by a weight function. He
introduced a differential equation of the second order for the polynomial
having roots in the design points. This equation proves to have a unique
solution to be one of the classical orthogonal polynomials.

This approach allows one to obtain an analytical characterization of lo-
cally D-optimal designs in some special cases. (A review of previous results
on this matter and some novel ones can be found in Dette, Haines, and
Imhof (1999)). In this chapter, we develop this approach into an algebraic
approach.

However, the main purpose of the present chapter is to apply the theory
developed in Chapter 2. It proves that an optimal design function under a
mild restriction on the parameters is uniquely determined and it is a real
analytic vector function. Thus, it can be presented by a Taylor series to be
constructed through Theorem 2.4.4.

The chapter is organized in the following way. Section 5.2 is devoted
to the description of rational models. Two basic representations are intro-
duced: rational models in the form of ratio of two polynomials and such
models as algebraic sums of simplest fractions. Section 5.3 contains the
study of the number of points in a locally D-optimal design. It proves that
under our basic assumptions, described in Section 5.2, this number coin-
cides with the number of parameters. This result is a slight modification
of Theorem 5 in He, Studden, and Sun (1996). Section 5.4 considers the
application of the functional approach to rational models. To find the zero
term in the Taylor expansion of optimal design functions, an algebraic ap-
proach mentioned earlier is developed in Section 5.5. Here, we also give
the full analytical solution of the problem for models presented as simplest
fraction or the sum of two such functions. In the last section, an example
is introduced. The Taylor expansion is built for the model in the form of
an algebraic sum of three simplest fractions. The influence of the number
of Taylor coefficients taken into account on the efficiency of the designs is
studied numerically. Some results of this chapter were published in Russian
[Melas (1999)] and were announced without proof [Melas (2001)].

5.2 Description of the Model

Let Θ1 = (θ1, . . . , θm−k)T ∈ IRm−k, Θ2 = (θm−k+1, . . . , θm)T ∈ IRk, P (x) =
P (x,Θ1), and Q(x) = Q(x,Θ2) be polynomials of one variable x ∈ IR:

P (x) =
m−k∑
j=1

θjx
j−1, Q(x) =

k∑
j=1

θj+m−kxj−1 + xk. (5.1)

Let Θ = (θ1, . . . , θm)T . Consider the function

η1(x,Θ) = P (x,Θ1)/Q(x,Θ2). (5.2)
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Let X be some interval, Ω be some given bounded subset in IRm.
Assume that the following conditions are satisfied:

(a) The fraction in the right-hand side of (5.2) is irreducible for Θ ∈ Ω.

(b) Polynomial Q(x,Θ2) does not vanish at x ∈ X, Θ ∈ Ω.

(c) m ≥ 2k.

Consider the case of X = [0, d], d < ∞. The case of arbitrary intervals
can be analyzed in a similar way.

In this chapter, we will analyze the locally D-optimal designs at points
Θ(0) ∈ Ω for regression function (5.2) as conditions (a), (b), and (c) hold.

In the following section, we will prove that a locally D-optimal design
under these conditions exists, it is unique, and it consists of m points with
equal weights. We will also derive a representation for the determinant of
the information matrix of a design concentrated at m points.

As some additional condition holds, regression function (5.2) can be
represented as an algebraic sum of the simplest fractions.

Consider the condition

(d) Multiplicity of all roots (both real and complex) of the polynomial
Q(x) = Q(x,Θ2) is equal to 1 for Θ ∈ Ω.

Let γ1 < γ2 < · · · < γt be real roots of the polynomial Q(x) and
c1 ± ib1, . . . , cp ± ibp be the complex ones (b1, . . . , bp �= 0), t + 2p = k.

It is easy to verify that for m = 2k+l the right-hand side of equality (5.2)
can be represented as

η2(x, Θ̃) =
l∑

j=1
θ̃jx

j−1 +
t∑

j=1

θ̃j+l

x−γj

+
p∑

j=1

(
θ̃j+l+t + θ̃j+l+t+px

)
/
[
(x − cj)2 + b2

j

]
,

(5.3)

where
Θ̃ = (θ̃1, . . . , θ̃m−k, γ1, . . . , γt, c1, . . . , cp, b1, . . . , bp)T ,

and we also have

θ̃j �= 0, j = l + 1, . . . , m − k for Θ ∈ Ω.

Regression functions (5.2) and (5.3) are equivalent in the following sense.

Lemma 5.2.1 Let conditions (a), (b), (c), and (d) be satisfied. Then the
determinant of the information matrix for regression function (5.3) and
any experimental design coincides with such a determinant for regression
function (5.2) with a constant precision that does not depend on the design.
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This lemma will be proved in the following section. The case of the
roots of more than multiplicity 1 can be considered in a similar way.

Let us also consider the following condition:

(e) γj < 0, j = 1, . . . , t, cj < 0, j = 1, . . . , p.

It validates some additional results.

5.3 The Number of Points

Let ξ be an arbitrary experimental design, concentrated at m points,

ξ =
(

x1 . . . xm

ω1 . . . ωm

)
. (5.4)

Without loss of generality, assume that

0 ≤ x1 < · · · < xm ≤ d.

Consider regression function (5.2).

Lemma 5.3.1 Let conditions (a) and (b) hold. Then the determinant
of the information matrix for designs of form (5.3) and regression func-
tion (5.2) assumes the form

det M(ξ,Θ) =
m∏

i=1

µi

⎛
⎝C

∏
1≤i<j≤m

(xj − xi)
/ m∏

i=1

Q2(xi)

⎞
⎠2

, (5.5)

where Q(x) = Q(x,Θ2), C = C(Θ) is independent on the design, and
C(Θ) �= 0.

Proof. Note that in this case, the basic functions assume the form

fi(x) = fi(x,Θ) =
∂

∂θi
η1(x,Θ), i = 1, . . . , m,

f1(x) =
1

Q(x)
, f2(x) =

x

Q(x)
, . . . , fm−k(x) =

xm−k−1

Q(x)
,

fm−k+1(x) = − P (x)
Q2(x)

, . . . , fm(x) = −xk−1P (x)
Q2(x)

.

Consider the determinant of the matrix

F = (fj(xi))m
i,j=1.
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Now, multiply the elements of the first line of matrix F by Q2(x1) and
represent the determinant of the matrix by Laplace’s rule through elements
of this line. Since the elements of other lines does not depend on x1, derive

Q2(x1) det F = Q(x1)R(x1) + P (x1)S(x1), (5.6)

where R(x) is a polynomial of ≤ m−k−1-st order and S(x) is a polynomial
of ≤ k − 1-st order.

Consider function (5.6) as the function of x = x1 for fixed values of
x2, . . . , xm and denote it by L(x). Then L(xi) = 0, i = 2, . . . , m, since for
x1 = xi (i = 2, . . . , m), two lines of matrix F coincides with one another.

Let us demonstrate that det F �= 0. Indeed, if det F = 0, then L(x1) =
0, so

Q(x)R(x) + P (x)S(x) ≡ 0.

Since P (x) and Q(x) do not have a common divisor, R(x) ≡ 0 and S(x) ≡ 0.
By induction, it is easy to check that this is impossible. So L(x) �≡ 0, which
means that

L(x) = const
∏

m≥i>1

(x − xi),

where const �= 0. Similarly, representing the determinant through elements
of other lines, we obtain that det F has the form

C
∏

1≤i<j≤m

(xj − xi)
/ m∏

i=1

Q2(xi),

where C = C(Θ) �= 0 and is independent of the design. Therefore

det M(ξ,Θ) = ω1 · · ·ωm det 2F,

implies formula (5.5).

The following statement holds for regression function (5.3).

Lemma 5.3.2 Let γ1 < · · · < γt, (ci, bi) �= (cj , bj) for i �= j, and θ̃i �=
0, i = l + 1, . . . , m − k. Then the determinant of the information matrix of
design (5.3) for regression function (5.2) has form (5.5), where

Q(x) =
t∏

j=1

(x − γj)
p∏

j=1

(
(x − cj)2 + b2

j

)
and C = C(Θ̃) �= 0.

This lemma can be proved similarly to the previous one.
Note that for designs of form (5.4), the statement of Lemma 5.2.1 follows

from Lemmas 5.2.1 and 5.3.1. For arbitrary designs, this statement can be
proved using the Binet–Cauchy formulas and the above lemmas.

Now, analyze the problem of the number of points of a locally D-optimal
design. The following result holds.
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Theorem 5.3.1 If conditions (a), (b), and (c) are satisfied, then a locally
D-optimal design for regression function (5.2) at any point Θ(0) ∈ Ω exists,
it is unique, and it is concentrated at m points with equal weights. If m >
2k, two points of the design coincide with the endpoints of interval X. If
m = 2k and conditions (d) and (e) are also satisfied, then the left endpoint
of the interval is one of the design points.

Proof. The existence of a locally D-optimal design follows from that
functions (5.2) and (5.3) are continuously differentiable and the interval X
is compact.

Let

ξ =
(

x1 . . . xn

ω1 . . . ωn

)
be a locally D-optimal design. Without loss of generality, assume that

0 ≤ x∗
1 < x∗

2 < · · · < x∗
n ≤ d.

Note that n ≥ m, since otherwise det M(ξ∗, Θ) = 0. Set

g(x) = fT (x)M−1(ξ∗, Θ)f(x),

where f(x) = f(x,Θ) is defined above and Θ is fixed. By the Kiefer–
Wolfowitz equivalence theorem (see Section 1.5),

g(x) ≤ m, x ∈ X, g(x∗
i ) = m, i = 1, . . . , m.

Since function g(x) is differentiable, that implies

g′(x∗
i ) = 0, i = 2, . . . , m − 1,

where if x∗
1 �= 0, then g′(x∗

1) = 0, and if x∗
n �= d, then g′(x∗

n) = 0. Function
g̃(x) = g(x) − m is represented with the sum of polynomials and fractions.
Bringing these fractions to a common denominator reveals that the function
g̃(x) has the form

g̃(x) = P̃ (x)/Q4(x),

where Q(x) =
∏k

i=1(x+θi+l+k) and P̃ (x) is a polynomial of degree ≤ 2m−2
for l > 0 and degree 2m for l = 0. Since the function g̃(x) has at least 2n−2
zeros (taking into account the multiplicity), then we have n = m, x∗

1 = 0,
and x∗

m = d for l > 0. Therefore, for l > 0, the function g̃(x) has the form

const x(x − d)
m−1∏
i=2

(x − x∗
i )

2/Q4(x).

Now, let l = 0. Since by formula (5.5), detM(ξ,Θ) decreases while in-
creasing all design points by the same value, x∗

1 = 0 and x∗
1 is a zero of

odd multiplicity of the function g̃(x). Moreover, for x → ∞ as well as for
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x → −∞ we have P̃ (x) ∼ −(mxm)2. Therefore, the function g̃(x) has a zero
at c1 < 0, zeros of at least second multiplicity at points x∗

i , i = 2, . . . , n−1,
and either zero of multiplicity ≥ 2 at x∗

n < d or one zero at c2 = d and
another at c3 > d. Since P̃ (x) is a polynomial of degree 2m, n = m and the
function g̃(x) has the form

const x(x − c1)(x − c2)(x − c3)
m−1∏
i=2

(x − x∗
i )

2/Q4(x),

where c1 < 0 and either x∗
m = c2 = d, c3 > d, or c2 = c3 = x∗

m < d. Since
the number of design points is equal to the number of parameters, all of the
points of a locally D-optimal design are of the same weight. Assume that
there exist two different optimal designs ξ1 and ξ2. Then by the Equivalence
Theorem, design (ξ1 + ξ2)/2 is optimal. However, this design includes at
least m + 1 distinct points, which contradicts the above layout.

Lemma 5.3.3 In the hypothesis of Theorem 5.3.1 for m = 2k and suffi-
ciently large d, inequality x∗

m < d is valid.

Proof. Let x1 = 0 < x2 < · · · < xm, ξ = {x1, . . . , xm, 1/m, . . . , 1/m},
and δ = min1≤i≤k θi+k. Then, by formula (5.5), for xi = xi + δ,

det M(ξ,Θ) ≤ const
1

δm

1
mmxmx2

m−1 · · ·xm−1
2

=
1

xm
w(x2, . . . , xm−1),

where w(x2, . . . , xm−1) is a bounded function (i. e., w(x2, . . . , xm−1) ≤ C1,
where C1 is a constant).

Therefore, detM(ξ,Θ) is small at large xm. Hence, x∗
m < d for suffi-

ciently large d.

5.4 Optimal Design Function

Consider regression function (5.2). Let Θ1 �= 0 be fixed and

Z(1) =
{

z ∈ IRk : fraction
P (x,Θ1)
Q(x, z)

is irreducible
}

.

Consider a locally D-optimal design for ΘT = (ΘT
1 , zT ), z ∈ Z(1). This

design exists, it is unique, and it concentrates at m points, as have been
demonstrated in Theorem 5.3.1. Let u be the number of support points
of this design on the left border of X, u = 0 or 1, m − s be the number
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of points on the right border of X, and m − s = 0 or 1. Let the values u
and m − s be constant at z ∈ Z ⊂ Z(1), xu = 0 at u = 1, and xm = d at
m − s = 1,

τ̃ = (τ̃1, . . . , τ̃s−u) = (x1+u, . . . , xs),

where 0 < x1+u < cdots < xs < d are arbitrary points. The above results
permits one to prove the following theorem.

Theorem 5.4.1 Let conditions (a), (b), and (c) from Section 5.2 be satis-
fied. Then an optimal design function for regression function (5.2) at z ∈ Z
is uniquely determined, formed by m coordinates, and it is a real analytic
vector function.

Proof. Consider the function

ϕ̃(τ̃ , z) =

⎛
⎝ ∏

1≤i<j≤m

(xj − xi)
/ m∏

i=1

Q2(xi, z)

⎞
⎠2/m

.

By Theorem 5.3.1,

C(Θ)ϕ̃(τ̃ , z) = ϕ(τ, z) = (detM(ξ, z))1/m,

where ξ = {x1, . . . , xm; 1/m, . . . , 1/m}, τ = (x1, . . . , xm), and C(Θ) �= 0
for Θ2 ∈ Z. Since for any points 0 ≤ x1 < x2 < · · · < xm ≤ d the
equality detM(ξ, z) > 0, z ∈ Z(1) obviously holds, the functions fi(x,Θ) =

∂
∂θi

η(x,Θ), i = 1, . . . , m, for Θ2 ∈ Z,Θ1 �= 0 form a Chebyshev system
on X. Using the explicit formula for the system determinant, it is easy to
verify that they form an ET-system of order m.

Let τ∗(z) be an optimal design function and τ̃∗(z) be a function, formed
by all unfixed points of the locally D-optimal design (i. e., τ̃∗

i = τ∗
i+u, i =

1, . . . , s − u). Since a locally D-optimal design is unique, τ∗(z) includes m
coordinates and both functions are uniquely determined. Thus, assump-
tions A1-A4 from Section 2.3 are satisfied. By Theorem 2.3.1 for

J(τ̃ , z) =
(

∂2

∂τ̃i∂τ̃j
ϕ̃(τ̃ , z)

)m

i,j=1
,

J(z) = J(τ̃∗(z), z),

the inequality detJ(z) �= 0 holds for z ∈ Z and all unfixed points of a
locally D-optimal design are real analytic functions at z ∈ Z. Thus, τ∗(z)
is a real analytic function at z ∈ Z.

Let us state a similar result for regression function (5.2) with p = 0.

Theorem 5.4.2 Let θ̃i �= 0, i = 1, . . . , m − k, ε > 0, p = 0, and

Z = {z ∈ IRk : zi �= zj (i �= j), zi > ε, i = 1, . . . , k},

Z = {z ∈ IRk : zi > ε, i = 1, . . . , k}.
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Then, for any ε > 0, the optimal design function for regression func-
tion (5.2) at any z = Θ2 ∈ Z exists, is uniquely determined, and consists
of m coordinates, one of which vanishes.

For any m > 2k and for m = 2k with the additional condition that d is
sufficiently large, it is a real analytic vector function at z ∈ Z. It can be
analytically extended to Z.

This theorem can be proved in a similar way as the previous one.
The following monotony theorem is also valid for regression func-

tion (5.2).

Theorem 5.4.3 Under hypothesis of Theorem 5.4.2 and with p = 0, all
the unfixed coordinates of an optimal design function decrease in a strictly
monotonous manner with respect to any of the arguments z1, . . . , zk.

Proof. By Theorem 2.4.5, it is sufficient to verify that

∂2

∂τ̃i∂zj
ϕ̃(τ̃ , z) > 0,

i = 1, . . . , s − u, j = 1, . . . , k and z ∈ Z. A direct calculation gives that the
left-hand side of this condition is equal to

1
(zj + τ̃i)2

> 0.

5.5 Algebraic Approach and Limiting
Designs

By Lemmas 5.3.1 and 5.3.2, the problem of finding a locally D-optimal
design for regression function (5.2) for X = [0, d] can be reduced to finding
the maximum of the following function:

T (x1, . . . , xm) =
h∏

i=1

xi

∏
1≤i<j≤m

(xj − xi)2,

for 0 ≤ x1 < · · · < xm ≤ d,

h(x) = Q−4(x,Θ(0)
2 ).

This problem for some other functions h(x) and, in particular, for h(x) =
x(d − x) was stated and solved by Stieltjes (see, e.g., Karlin and Studden
(1966, Chap. X). Further, let us develop a technique for finding locally
D-optimal designs based on his idea, described in Section 5.1.
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Example 5.5.1 Let k = 1 and l = 0; that is, regression function takes the
form

η(x) =
θ1

x + θ2
, θ2 > 0, θ1 �= 0.

A direct calculation demonstrates that locally D-optimal design has the
form

ξ =
(

0 θ2
1/2 1/2

)
, d > θ2

ξ =
(

0 d
1/2 1/2

)
, d ≤ θ2.

Now, let k ≥ 2. Consider the case l = 0 and d sufficiently large. Set
r = k − 1. Let ψ = (ψ0, . . . , ψs)T , where ψ0 = 1. Consider the polynomial
ψ(x) =

∑m−1
i=0 ψix

m−1−i. Let x2, . . . , xm be the roots of this polynomial.
Then

ψ(x) =
m∏

i=2

(x − xi).

It is easy to verify (see also Fedorov (1972)) that the following equality
holds:

1
2

ψ′′(xi)
ψ′(xi)

=
∑
j �=i

1
xi − xj

, i = 2, . . . , m. (5.7)

Let ψ∗(x) stand for a polynomial that vanishes at points x∗
2, . . . , x

∗
m, 0 <

x∗
2 < · · · < x∗

m, which are the points of a locally D-optimal design for
some fixed Θ(0)

2 . It has been demonstrated above (see Theorem 5.3.1) that
x∗

1 = 0 is the minimal point of such a design and function T (0, x2, . . . , xm) =
const det M(ξ,Θ),

ξ =
(

0 x1 . . . xm

1/m 1/m . . . 1/m

)
has a unique stationary point. Therefore,

∂

∂xi
T (0, x2, . . . , xm) = 0, i = 2, . . . , m

for xj = x∗
j , j = 2, . . . , m. Using the explicit form of function T , write this

equality in the following form:∑
j �=i

1
x∗

i − x∗
j

+
1
x∗

i

− 2
Q′(x∗

i )
Q(x∗

i )
= 0, i = 2, . . . , m.

Using relation (5.7) for ψ(x) = ψ∗(x), derive

1
2

ψ′′(x)
ψ′(x)

+
1
x

− 2
Q′(x)
Q(x)

= 0
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for x = x∗
i , i = 2, . . . , m. Bringing the left-hand side of the equality to the

common denominator, we have

ψ′′(x)xQ(x) + 2ψ′(x)Q(x) − 4xψ′(x)Q′(x) = 0 (5.8)

for x = x∗
i , i = 2, . . . , m, and ψ(x) = ψ∗(x). Denote z1 = θ

(0)
m−k+1, . . . , zk =

θ
(0)
m , zk+1 = 1. Then

Q(x) = Q(x,Θ2) =
k+1∑
i=1

zix
i−1.

Denote the left-hand side of equality (5.8) by R(x, z). Differentiating
R(x, z) with respect to zl, l = 1, . . . , k +1, and collecting the similar terms,
derive

(R(x, z))′
zl

= FT (x)D(l)ψ,

where F(x) = (xm+r−1, xm+r−2, . . . , 1)T and D(l) is the (m+r)×m matrix,
whose elements are defined by the following formula:

D(l)νµ =

{
0, ν − µ �= l − 1

(m − ν)(m + 1 − ν − 4l), ν − µ = l − 1,

µ = 1, . . . , m, ν = 1, . . . , m + r, l = 1, . . . , k + 1. From this, it follows that

R(x, z) = FT (x)A(z)ψ,

where

A(z) =
k∑

l=1

zlD(l) + D(k+1). (5.9)

At the same time, since R(x, z) = 0 for x = x∗
i , i = 2, . . . , m, and ψ = ψ∗,

R(x, z) =

(
k−1∑
i=0

λix
k−1−i

)
ψ∗(x), (5.10)

where λ0 = λ∗
0 = (m − 1)(m − 4k), λ1, . . . , λk−1 are some real numbers.

Represent the left-hand side of equality (5.10) as

FT (x)
k−1∑
l=0

λlE(l)ψ
∗,

where E(l) is an (m + r) × m matrix and

E(l)νµ =

{
0, ν − µ �= l − 1,

1, ν − µ = l − 1,
µ = 1, . . . , m, ν = 1, . . . , m + r.
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Thus, vector ψ∗, corresponding to polynomial ψ∗(x), solves(
A(z) −

k−1∑
l=0

λlE(l)

)
ψ = 0, (5.11)

where λ0 = λ∗
0, for some real values of λ1, . . . , λk−1.

Let, vice versa, the vector ψ solve (5.11) for λ0 = λ∗
0 and some real

values of λ1, . . . , λk−1 and let polynomial ψ(x) have the positive roots 0 <
x̃2 < · · · < x̃m. Set vi = (2x̃iQ(x̃i)ψ′(x̃i))−1, i = 2, . . . , m. It is evident
that vi �= 0. Then

∂

∂xi
T (0, x̃2, . . . , x̃m) = FT (x̃i)A(z)ψvi

= FT (x̃i)

(
k−1∑
l=0

λlE(l)

)
ψvi

=

(
k−1∑
l=0

λlx̃
k−1−l
i

)
ψ(x̃i)vi = 0,

i = 2, . . . , m. Since the stationary point of function T (0, x2, . . . , xm) is
unique, we have x̃2 = x∗

2, . . . , x̃m = x∗
m.

Consider the matrix

A(z) − λ∗
0E(0) −

k−1∑
l=1

λlE(l).

Set λ = (λ1, . . . , λk−1). Derive from formula (5.9) that the first line of this
matrix is all zeros. Reject this line and denote the matrix obtained with
B(λ) under any fixed λ. Equation (5.11) takes the form

B(λ)ψ = 0. (5.12)

Let λ be fixed. Denote the elements of matrix B(λ) by bij = (B(λ))ij ,
i = 1, . . . , m + r − 1, j = 1, . . . , m. Formula (5.9) implies that

bij = 0, j − i > 1,

bνν+1 = ν(ν + 1), ν = 1, . . . , m − 1,

from which it follows that (5.12) has no more than one solution ψ under
fixed λ. Let ψ = ψ(λ) be a solution of the equation. Then, by recursion,
we can derive

ψ0 = 1, ψν = −
ν∑

j=1

bνjψj−1/(ν + ν2), (5.13)
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ν = 1, . . . , m − 1. Moreover,

bT
(m+i−1)ψ(λ) = 0, i = 1, . . . , k − 1,

where b(m+i−1) is the (m + i − 1)-st line of matrix B(λ). Set

Qi(λ) = bT
(m+i−1)ψ(λ), i = 1, . . . , k − 1.

Here, Qi(λ) is a polynomial of no more than the m − 1-st degree of k − 1
variables λ1, . . . , λk−1.

Now, consider the system of equations

Q1(λ) = 0, . . . , Qk−1(λ) = 0 (5.14)

for any real vectors λ = (λ1, . . . , λk−1). Since (5.11) at some fixed λ (de-
note it with λ∗) has the solution ψ = ψ∗, the system of equations (5.14)
has at least one solution. Moreover, vector ψ∗ can be determined by formu-
las (5.13) and ψ∗ = ψ(λ∗). If λ̃ is a solution of the system of equations (5.14),
then, evidently, the pair (λ̃, ψ(λ̃)) solves (5.11).

Let x̃∗
m be the point of the locally optimal design for l = 0, X = [0,∞].

Consider now the case l > 0 or l = 0 and d < x̃∗
m.

Consider the equation

FT (x)A(z)ψ = ψ′′(x)Q(x)x(x − d)
+2(2x − d)ψ′(x)Q(x)
−4x(x − d)ψ′(x)Q′(x).

The explicit form of matrix A can be found in a similar way, as in the
previous case. The layout remains the same.

Denote κ = m − 1 for l = 0 and d > x̃∗
m, κ = m − 2 for l = 0, d < x̃∗

m

and for l > 0.
Because of the above arguments, the following theorem has been proven.

Theorem 5.5.1 Let conditions (a), (b), and (c) be satisfied and conditions
(d) and (e) be satisfied for m = 2k. Then (5.11) with respect to vectors λ
and ψ has the unique solution (λ̃, ψ̃), such that the polynomial ψ̃(x) has
exactly κ roots on [0, d]. Moreover, the system of equations (5.14) has the
unique solution λ, such that polynomial ψ(λ)(x) has κ roots on [0, d]. Here,
λ = λ̃, ψ(λ)(x) = ψ̃(x) = ψ∗(x), and the mentioned roots are support points
of the locally D-optimal design for regression function (5.1).

Calculating locally D-optimal design by solving (5.11) or the system of
equations (5.14) will be called the algebraic approach.

In some cases with r = 1, the algebraic approach provides finding locally
D-optimal design in an explicit form. Consider the following example.
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Example 5.5.2 Let k = 2 and l = 0. Consider the regression function of
the form

η(x,Θ) =
θ1

x + θ3
+

θ2

x + θ4
,

θ1, θ2 �= 0, θ3, θ4 > 0, x ∈ X = [0, d], and d is sufficiently large. In this case
m − 1 = 3 and r = k − 1 = 1. Set z1 = θ3, z2 = θ4, and ∆ = z1 + z2. At
first, consider z1z2 = 1. Matrix B(1) has the form⎛

⎜⎜⎜⎜⎜⎝
−λ 2 0 0

12 −2∆ − λ 6 0

0 6 −2∆ − λ 12

0 0 2 −λ

⎞
⎟⎟⎟⎟⎟⎠ ;

det B(1) = (λ2−2∆λ−24)2−36λ2, λ0 = −12. From this, it follows that ψ1 =
λ/2, ψ2 = ((λ+2∆)λ/2− 12)/6, and ψ3 = (−(λ+2∆)ψ2 − 6λ/2)/12, ψ3 =
2ψ2/λ. Derive from these equalities that ψ2 = ±λ/2 and ψ3 = ±1. Since
ψ(x) has only the positive zeros, ψ1 < 0 and ψ2 > 0; hence, λ < 0, ψ2 =
−λ/2, and λ2 + (2∆ + 6)λ − 24 = 0. Therefore,

λ∗ = −∆ − 3 −
√

(∆ + 3)2 + 24

is the unique solution of detB(1) = 0 at which all the zeros of the cor-
responding polynomial ψ(x) are positive numbers, and ψ(x) assumes the
form

x3 +
λ∗

2
x2 − λ∗

2
x − 1 = (x − 1)

(
x2 +

(
1 +

λ∗

2

)
x + 1

)
.

Therefore,

x∗
3 = 1, x∗

2,4 =
1
2

⎛
⎝−λ∗

2
− 1 ∓

√(
λ∗

2
+ 1
)2

− 4

⎞
⎠ .

For arbitrary z1 and z2, derive by the linear transformation of the model

x∗
3 =

√
z1z2, x∗

2,4 =
√

z1z2

2

⎛
⎝−λ∗

2
− 1 ∓

√(
λ∗

2
+ 1
)2

− 4

⎞
⎠ .

Locally D-optimal design has the form

ξ =
(

0 x∗
2 x∗

3 x∗
4

1/4 1/4 1/4 1/4

)
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For arbitrary k ≥ 1 and m, the solution of (5.11) with the needed
properties can be found by means of Maple software.

Deriving explicit analytic expressions for the points of a locally D-
optimal design by means of the above algebraic approach seems to be
impossible for k ≥ 3. Nevertheless, in this case the functional approach
provides expanding the design points into the Taylor series with respect to
the powers of z1, . . . , zk. In this view, an expression for the points of the
design at some specially selected point z(0) is needed.

Note that for z → zα = (α, . . . , α)T we have det M(ξ, z) → 0. However,
the vector τ̃ , composed by the design’s points that are distinct from the
ends of the interval [0, d], can be evaluated for zα = (α, . . . , α)T and its
coordinates are the limits of the locally D-optimal design for z → zα. Set
α = 1. At first, consider l = 0 and sufficiently large d. In this case, we have
the following equation for function ψ(x), which has been defined earlier:

ψ′′(x)x(x + 1) + 2ψ′(x)(x(1 − 2k) + 1)=λ0ψ(x), (5.15)
λ0 =(m − 1)(m − 2) + 2(m − 1)(1 − 2k).

Equating the coefficients to one another under the same degrees of x in the
left- and right-hand sides, derive

ψ1 =
m(m − 1)

2(m − 2k − 1)
,

ψν+1 = ψν
(m − ν)(m − ν − 1)
ν(2m − ν − 4k − 1)

, (5.16)

ν = 1, . . . , m − 2.

Thus, the following theorem is valid.

Theorem 5.5.2 For m = 2k and X = [0, d], where d is sufficiently large,
nonzero points of the locally D-optimal design for regression function (5.3)
with z → (1, . . . , 1)T converge to the zeros of the polynomial ψ(x), whose
coefficients can be calculated by formulas (5.16) for any k ≥ 1.

Demonstrate the result of Theorem 5.5.2 by applying it to the following
example.

Example 5.5.3 Let k = 3, m = 6, the regression function be of the form

η(x,Θ) =
θ1

x + θ4
+

θ2

x + θ5
+

θ3

x + θ6
,

θ1, θ2, θ3 �= 0, θ4, θ5, θ6 > 0, x ∈ X = [0, d], and d sufficiently large. Let
zi = θi+3 → 1, i = 1, 2, 3. Applying Theorem 5.5.2, one obtains

ψ(x) = x5 − 15x4 + 50x3 − 50x2 + 15x − 1 =
= (x − 1)(x4 − 14x3 + 36x2 − 14x + 1)

= (x − 1)(x2 + (−7 +
√

15)x + 1)(x2 + (−7 −
√

15)x + 1),
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from which it follows that

x∗
2 = (7 +

√
15 −

√
60 + 14

√
15)/2 ≈ 0.0927,

x∗
3 = (7 − √

15 −
√

60 − 14
√

15)/2 ≈ 0.3616,

x∗
4 = 1,

x∗
5 = (7 − √

15 +
√

60 − 14
√

15)/2 ≈ 2.765,

x∗
6 = (7 +

√
15 +

√
60 + 14

√
15)/2 ≈ 10.78.

In the following section we will use this design to find the Taylor expansion
of the optimal design’s points.

Now, consider the case that either d > 0 is arbitrary and l > 0 or that
l = 0 and d is sufficiently small. By Theorem 5.3.1, in both cases points
x∗

1 and x∗
m have the form x∗

1 = 0, x∗
m = d. Let ψ(x) =

∏m−1
i=2 (x − x∗

i ) =∑m−2
i=0 ψix

m−2−i, ψ0 = 1. Note, that for some λ ∈ IR this function satisfies

ψ′′(x)x(x − d)(x + 1) + 2ψ′(x)((2x − d) − x(x − d)2k)) =
= (λ0x + λ)ψ(x), (5.17)

λ0 = (m − 2)(m − 3) + 2(m − 2)(2 − 2k).

Let A be a m× (m− 1) matrix such that the left-hand side of the equation
is equal to

fT (x)Aψ, f(x) = (xm−1, . . . , x, 1)T .

Let
B = B(λ) = A − λ0E0 − λE1, B(1) = B−,

where “−”means rejecting the first line of a matrix; matrices E0 and E1
were introduced earlier. The following result can be verified in a manner
similar to the proof of Theorem 5.4.2.

Theorem 5.5.3 For m = 2k and sufficiently small d > 0 as well as for
m > 2k and arbitrary d > 0, there exists the unique solution of

det B(1)(λ) = 0

for λ = λ∗ ∈ IR such that the points of locally D-optimal design that are
neither 0 nor d, converge at z → (1, . . . , 1)T to the zeros of the polynomial
ψ(x), which solves (5.15) for λ = λ∗. Coefficients of this polynomial can be
evaluated by recursive formulas (5.16).

Example 5.5.4 Let us consider the regression function

η(x,Θ) =
θ1

x + θ3
+

θ2

x + θ4
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for x ∈ X = [0, d], d < (5 +
√

21)/2.
In this case,

ψ(x) = (x − x∗
2)(x − x∗

3) = x2 + ψ1x + ψ2.

Equation (5.15) takes the form

2x(x + 1)(x − d) + 2(2x + ψ1)(−2x2 + (1 + 4d)x − d)
= (λ0x + λ)(x2 + ψ1x + ψ2), λ0 = −6.

Matrix B(1) has the form⎛
⎜⎜⎝

14d + 6 − λ 2d 0

−6 2(1 + 4d) − λ 6

0 −2d −λ

⎞
⎟⎟⎠ ,

and
ψ1 = (λ − 6 − 14d)/2d, ψ2 = (6 + 14d − λ)/λ. (5.18)

Note that with d = 1,

det B(1) = (λ − 10)(λ2 − 20λ + 24)

and λ∗ = 10 + 2
√

19 is a unique solution of detB(1)(λ) = 0 such that the
corresponding polynomial ψ(x) has two roots inside the interval [0, d]. Due
to the continuity argument from this, it follows that for an arbitrary d, the
value λ∗ is the maximal positive root of detB(1)(λ) = 0, which can be write
in the form

λ3 − (22d + 8)λ2 + (112d2 + 100d + 12)λ − 12d(14d + 16) = 0.

Thus, support points of the optimal design are x∗
1 = 0, x∗

4 = d,

x∗
2,3 = −ψ1

2
∓
√

ψ2
1

4
− ψ2,

where ψ1 and ψ2 can be found by formulas (5.18) with λ = λ∗.

5.6 The Taylor Expansion

As it have been proven earlier, the matrix J = J(z) is nonsingular for any
z ∈ Z as well as for z = z(0) = (1, . . . , 1)T . Moreover, the previous section
presents a technique for solving

∂

∂τ̃
ϕ̃(τ̃ , z) = 0 (5.19)
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at point z = z(0). Therefore, Theorem 2.4.3 can be used to expand the
points of a locally D-optimal design into the Taylor series.

Consider the case k = 3,

η(x,Θ) =
θ1

x + θ4
+

θ2

x + θ5
+

θ3

x + θ6
, θ1, θ2, θ3 �= 0,

θ4 > θ5 > θ6 > 0, X = [0,∞), (θ4 + θ5 + θ6)/3 = 1.
In the previous section, we found τ(0) ≈ (0.09, 0.36, 1, 2.76, 10.78).
Let z1 = θ4 = 1 + ∆1 + ∆2, z2 = θ5 = 1 − ∆1, and z3 = θ6 = 1 − ∆2.

For arbitrary z1, z2, and z3, the design can be obtained by multiplying of
the points by (z1 + z2 + z3)/3.

Equation (5.19) in the present case assumes the form

1
xj

+
∑
i �=j

1
xj − xi

− 2
(

1
xj +1+∆1+∆2

+
1

xj + 1−∆1
+

1
xj + 1−∆2

)
= 0,

j = 2, . . . , 6. Set u = ∆1∆2 and v = ∆1 + ∆2. Rewrite the equation in the
form

1
xj

+
∑
i�=j

1
xj − xi

− 2

(
1

xj + 1 + v
+

2xj + 2 − v

x2
j + (2 − v)xj + 1 + u − v

)
= 0,

j = 2, . . . , 6. It follows from this equation that the points of the optimal
design are functions of arguments u and v and they can be expanded into
the Taylor series with respect to the powers of u and v in a vicinity of point
(0, 0):

τi(u, v) =
∞∑

s1=0

∞∑
s2=0

τi(s1,s2)u
s1vs2 , (5.20)

i = 1, . . . , 5. Applying Theorem 2.4.3, calculate the coefficients {τi(s1,s2)}.
Results of the seven steps of this algorithm are presented in Table 5.1.
Let τ<i> = τ<i>(u, v) be the segment of the series (5.20) containing

coefficients with s1 + s2 ≤ i, i = 1, 2, . . .. The efficiency of designs obtained
from τ(0), τ<i>, i = 1, . . . , 6, by adding the point x∗

1 = 0 is shown in Table
5.2. Under the efficiency, we understand the magnitude

[det M(ξτ , z)/ det M(ξ∗, z)]1/m
,

where ξ∗ is a locally optimal design,

ξτ =
(

0 τ1 . . . τm−1
1/m 1/m . . . 1/m

)
.

We see from Table 5.2 that the efficiency of design ξτ(0) proves to be
very high. This table shows how many terms in the Taylor representation
should be used to obtain optimal designs with a desirable precision.

The approach can be applied for arbitrary rational models, described in
Section 5.2.
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Table 5.1: Coefficients for the rational model, k = 3
j\i 0 1 2 3 4 5 6 7

0.0928 0.0449 -0.0155 0.0080 -0.0049 0.0033 -0.0024 0.0018
0.3616 0.1514 -0.0481 0.0254 -0.0163 0.0116 -0.0088 0.0069

0 1.0000 0.3333 -0.0955 0.0493 -0.0312 0.0220 -0.0166 0.0130
2.7654 0.6861 -0.1803 0.0900 -0.0558 0.0387 -0.0288 0.0224

10.7802 1.9661 -0.5087 0.2534 -0.1571 0.1090 -0.0811 0.0632
0 0.0540 -0.0310 0.0232 -0.0189 0.0160 -0.0139
0 0.1577 -0.0961 0.0758 -0.0648 0.0576 -0.0523

1 0 0.2864 -0.1798 0.1422 -0.1212 0.1073 -0.0972
0 0.4991 -0.3166 0.2482 -0.2096 0.1839 -0.1654
0 1.3892 -0.8869 0.6968 -0.5893 0.5180 -0.4663

-0.0449 0.0310 -0.0386 0.0417 -0.0437 0.0451
-0.1514 0.0963 -0.1239 0.1404 -0.1544 0.1670

2 -0.3333 0.1909 -0.2334 0.2622 -0.2868 0.3088
-0.6861 0.3606 -0.4130 0.4542 -0.4907 0.5238
-1.9661 1.0174 -1.1592 1.2758 -1.3804 1.4756
0 0.0310 -0.0464 0.0635 -0.0811
0 0.0961 -0.1517 0.2192 -0.2940

3 0 0.1798 -0.2844 0.4079 -0.5439
0 0.3166 -0.4964 0.7010 -0.9241
0 0.8869 -1.3936 1.9704 -2.6011

-0.0155 0.0240 -0.0515 0.0873
-0.0481 0.0763 -0.1731 0.3088

4 -0.0955 0.1479 -0.3246 0.5736
-0.1803 0.2700 -0.5658 0.9814
-0.5087 0.7601 -1.5900 2.7607
0 0.0232 -0.0566
0 0.0758 -0.1944

5 0 0.1422 -0.3637
0 0.2482 -0.6287
0 0.6968 -1.7680

-0.0080 0.0197
-0.0254 0.0652

6 -0.0493 0.1250
-0.0900 0.2232
-0.2534 0.6284
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Table 5.2: The efficiency of designs τ<i>, i = 0, . . . , 6

∆1 ∆2 0 1 2 3 4 5 6
0.1 0.2 0.99 0.99 0.99 0.99 0.99 0.99 1.00
0.0 0.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00

-0.1 0.4 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.2 0.5 0.99 1.00 1.00 1.00 1.00 1.00 1.00
0.2 0.3 1.00 0.99 1.00 1.00 1.00 1.00 1.00
0.0 0.5 0.99 0.99 1.00 1.00 1.00 1.00 1.00

-0.2 0.7 0.96 0.98 1.00 1.00 1.00 1.00 1.00
-0.3 0.8 0.92 0.96 1.00 1.00 1.00 1.00 1.00
-0.4 0.9 0.80 0.88 0.97 0.99 0.99 1.00 1.00
0.3 0.4 0.99 0.98 1.00 1.00 1.00 1.00 1.00
0.2 0.5 0.99 0.98 1.00 1.00 1.00 1.00 1.00
0.0 0.7 0.96 0.96 1.00 1.00 1.00 1.00 1.00

-0.1 0.8 0.91 0.92 0.99 0.99 1.00 1.00 1.00
-0.2 0.9 0.79 0.83 0.96 0.98 0.99 0.99 1.00
0.4 0.5 0.97 0.94 1.00 1.00 1.00 1.00 1.00
0.2 0.7 0.94 0.92 1.00 0.99 1.00 1.00 1.00
0.1 0.8 0.90 0.88 0.99 0.99 1.00 1.00 1.00
0.0 0.9 0.78 0.78 0.96 0.96 0.99 0.99 1.00
0.5 0.6 0.93 0.88 1.00 0.98 1.00 1.00 1.00
0.4 0.7 0.91 0.86 0.99 0.98 1.00 1.00 1.00
0.3 0.8 0.87 0.82 0.99 0.97 1.00 0.99 1.00
0.2 0.9 0.75 0.70 0.95 0.92 0.98 0.97 0.99
0.6 0.7 0.85 0.76 0.99 0.94 1.00 0.97 1.00
0.5 0.8 0.81 0.72 0.98 0.92 1.00 0.96 1.00
0.4 0.9 0.70 0.61 0.93 0.85 0.98 0.92 1.00
0.7 0.8 0.71 0.57 0.95 0.81 1.00 0.87 0.98
0.6 0.9 0.61 0.49 0.90 0.74 0.98 0.80 0.99
0.7 0.9 0.55 0.41 0.86 0.64 0.98 0.69 0.94
0.8 0.9 0.45 0.31 0.80 0.51 0.98 0.53 0.42



Chapter 6

D-Optimal Designs for
Exponential Models

In the present chapter, we will analyze the behavior of the locally D-optimal
designs for the regression functions of the following kind:

η(x,Θ) =
j0∑

j=1

θ0jx
j−1 +

k∑
i=1

ji∑
j=1

θijx
j−1e−θs+ix, (6.1)

where Θ = (θ1, . . . , θm)T is the vector of parameters to be estimated, θ1 =
θ01, . . . , θs = θkjk

, s =
∑k

i=0 ji, m = s + k, x ∈ X1 = [b, d], and b and d are
arbitrary real numbers such that d > b.

Let us denote the nonlinear parameters of model (6.1) by λ1 =
θs+1, . . . , λk = θs+k.

If the first sum in the right-hand side of (6.1) vanishes, set j0 = 0. If,
moreover, λi > 0, i = 1, . . . , k, consider also the set X = X2 = [b, ∞).
Without loss of generality, we can assume λ1 > λ2 > · · · > λk. Let us also
consider the particular form of function (6.1) at j0 = 0, ji = 1 :

η(x,Θ) =
k∑

i=1

θie
−θk+ix. (6.2)

To simplify notation, let us analyze mainly the regression function (6.2),
since the layout for model (6.1) is very similar.

Functions of types (6.1) and (6.2) form an important class of solutions
of linear differential equations, so they are widespread in practice.

These regression functions were analyzed in Chapter 2. It has already
been noted that a locally D-optimal design for such a function depends only
on nonlinear parameters λ1, . . . , λk. Now, we will present a more careful
formulation and a proof of some results announced in Section 2.2.

217
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In Section 6.1, the problem of the number of support points of a lo-
cally D-optimal design is considered. It is proved that in many cases, this
number coincides with the number of the parameters. For this reason,
the following investigations are performed for designs with such number of
support points.

Section 6.2 is devoted to studying optimal design functions, defined in
Section 2.3. It will be shown that under mild restrictions, these functions
are uniquely determined and are real analytical vector functions monoto-
nously depending on each parameter. Results of this section were previ-
ously obtained in Melas (1978) and presented in more detail in Ermakov
and Melas (1995, Chap. 5). However, here they are derived from the general
theory of Chapter 2 and in a slightly more general form.

In Section 6.3, the Taylor expansions are constructed for optimal design
functions for model (6.2) with k = 3. Tables of coefficients of these series
are given and the figures illustrating the behavior of the design functions
are built. The influence of the number of coefficients used for constructing
designs on their efficiency is numerically studied.

Remember that in Section 2.2, maximin efficient D-optimal designs for
the regression function (6.2) were already constructed and studied.

6.1 The Number of Support Points

The existence of a locally D-optimal design for model (6.1) at x ∈ X1 =
[ω, d] is implied by the continuity of functions ∂

∂θi
η(x, θ), i = 1, . . . , m, and

the compactness of the interval. For l0 = 0 and λk > 0, we can verify (see
below) that there exists a value d′ such that a locally D-optimal design for
X = [b, d] is independent of d at d > d′. So, the case X = X = [b, ∞) can be
reduced to X = X1 = [b, d].

Let

ξ =
(

x1 . . . xn∗

ω1 . . . ωn∗

)

be an arbitrary locally D-optimal design. For k > 2, let λ̂ = (λ̂1, . . . , λ̂k)T

be any vector such that λ̂1 > · · · > λ̂k, λ̂i+1 = (λ̂i+λ̂i+2)/2, i = 1, . . . , k−2.

Theorem 6.1.1 For regression function (6.1), the number of points n∗ of
any locally D-optimal design satisfies the inequalities

m ≤ n∗ ≤ m − 2k + k(k + 1)/2 + 1.

Moreover, if k > 2, then n∗ = m for the vectors λ, lying inside a vicinity
of a point of λ̂ type.

Proof. To simplify notation, consider the case j0 = 0, j1 = · · · = jk = 1,
and also m = 2k. The general case can be analyzed in a similar way.
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We begin the proof with a study of the corresponding D-optimal design
problem in the linear regression model

2k∑
i=1

βie
−λ̃ix, (6.3)

where 0 < λ̃1 < · · · < λ̃2k are fixed known values and β1, . . . , β2k are the
unknown parameters to be estimated. It is easy to see that for a design
with masses µ1, . . . , µn at the points x1, . . . , xn (n ≥ 2k), the information
matrix in this model is of the form

A(ξ, λ̃) =

(
n∑

s=1

e−λ̃ixse−λ̃jxsωs

)2k

i,j=1

. (6.4)

In the following, we investigate the maximum of det A(ξ, λ̃), where the
components of the vector λ̃ = (λ̃1, . . . , λ̃2k)T are defined by

λ̃2i−1 = λi, λ̃2i = λi + ∆, 0 < ∆ < mini=1,...,k−1(λi+1 − λi), i = 1, . . . , k,
(6.5)

where 0 < λ1 < · · · < λk (in the case k = 1, the value ∆ > 0 can be chosen
arbitrarily). In the following, let

ξ∗ = argmax detA(ξ, λ̃)

denote a design maximizing the determinant, where the maximum is taken
over the set of all approximate designs on X. Note that designs maximizing
this determinant exist, because the induced design space{

(e−λ̃1x, . . . , e−λ̃2kx)T | x ∈ X
}

is compact [see Pukelsheim (1993)]. By the well-known Kiefer–Wolfowitz
equivalence theorem, we have

max
x∈X

fT (x)A−1(ξ∗, λ̃)f(x) = 2k,

where fT (x) = (e−λ̃1x, . . . , e−λ̃2kx) denotes the vector of regression func-
tions in the model (6.3). It follows from Gantmacher (1998) that any minor
of the matrix (e−λ̃ixj )2k

i,j=1 with x1 > x2 > · · · > x2k and λ̃1 < λ̃2 < · · · <

λ̃2k is positive. Therefore, the Cauchy-Binet formula implies that

sign(A−1)ij = (−1)i+j , (6.6)

where we use the notation A = A(ξ∗, λ̃) for the sake of brevity.
We will need the following auxiliary result.
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Lemma 6.1.1 Consider the functions

ϕi(x) =
ti∑

j=1

αi,je
−µi,jx,

where ti are arbitrary integers, i = 0, . . . , s and {αij , µij} are some real
numbers.

Let the following conditions hold:

(i) min1≤j≤ti+1 µi+i,j > max1≤i≤ti µij , i = 0, 1, . . . , s − 1.

(ii) sign αi,j = +1, j = 1, . . . , ti, i = 0, . . . , s.

Then the function
∑s

i=0 biϕi(x), where b0, . . . , bs are arbitrary real numbers,
has at most s roots counted with their multiplicity.

Proof of Lemma 6.1.1. Denote τ = (x0, . . . , xs),

J(τ) = det (ϕi(xj))
x
i,j=0 .

Using the expansion of the determinant by a line several times, we obtain

J(τ) =
t0∑

l0=1

. . .

ts∑
ls=1

[(
s∏

i=0

αili

)
det

(
e−µjljxν

)s
j,ν=0

]
.

Due to the Chebyshev property of exponential functions (see Karlin and
Studden, 1966, Chap. 1), each term on the right-hand side is positive when-
ever x0 > x1 > · · · > xs. For fact, (

∏s
i=0 αili) > 0 due to condition (ii) and

det
(
e−µjljxν

)s
j,ν=0 > 0 due to condition (i) and the result from Gantmacher

(1998).
Thus, J(τ) > 0 for arbitrary x0 > x1 > · · · > xs. Moreover, we have

for any τ̄ = (x̄0, . . . , x̄t) with x̄0 ≥ x̄1 ≥ · · · ≥ x̄t,

lim
τ→τ̄

J(τ)/
∏
i<j

(xi − xj) > 0, (6.7)

since
lim
τ→τ̄

det
(
e−θis xj

)t
s,j=0 /

∏
i<j

(xi − xj) > 0

if θi0 < · · · < θis .
This property can easily be verified considering the number of the same

coordinates in the vector x̄.
It is known (see Karlin abd Studden (1966, Chap. 1)), that under condi-

tions J > 0 and (6.7), any generalized polynomial of the form
∑t

i=0 biϕi(t)
has at most t roots counted with their multiplicity.
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Let us represent the function

m − fT (x)A−1f(x)

in the form
s∑

i=0

biϕi(x).

Let us define

ϕ0(x) ≡ m,

ϕl−1(x) = (−1)l
∑l−1

i=1 Al−i,ie
−(λ̃i+λ̃l−i)x, l = 2, . . . , 2k,

ϕl−1(x) = (−1)l
∑4k−l+1

j=1 A2k+1−j,l−2k+j−1e
−(λ̃2k+1−j+λ̃l−2k+j−1)x,

l = 2k + 1, . . . , 4k,

where Ai,j = (A−1)ij .
Consider the cases k = 1, 2. Note that the coefficients in the functions

are positive since sign Ai,j = (−1)i+j (i.e., condition (ii) holds). Moreover,
observing the definition of λ̃ in (6.5), condition (i) can also easily be verified
for k = 1, 2.

Now, we have

m − fT (x)A−1(ξ∗, λ̃)f(x) = ϕ0(x) +
4k−1∑
i=1

(−1)iϕi(x) := g(x),

and from the Equivalence Theorem for the D-optimality criterion, it follows
that g(x) ≤ 0 for all x. This implies for the support points, say x∗

1, . . . , x
∗
n,

of a design ξ∗ maximizing det A(ξ, λ̃),

g(x∗
i ) = 0, i = 1, 2, . . . , n,

g
′
(x∗

i ) = 0, i = 2, 3, . . . , n − 1.

A careful counting of the multiplicities and an application of Lemma 6.1.1
now show 2n − 2 ≤ 4k − 1, which implies n = 2k in the case k = 1 or 2.

In the case k ≥ 3, the same arguments are applicable for any vector
λ̂ satisfying (6.5). In fact, for such λ̂ and the functions ϕi, i = 0, . . . , 4k
defined above, both conditions of Lemma 6.1.1 can be easily verified. An
argument of continuity therefore shows n∗(λ) = 2k for the number of sup-
ports of a D-optimal design for the model (6.3) with respect to any λ in a
neighborhood of the point λ̂.

For a proof of the second bound in the case k ≥ 3, we consider an
arbitrary point of the form (6.5), say λ̃ = (λ̃1, . . . , λ̃2k), and define s ≤
k(k + 1)/2 as the number of distinct values in the set

{2λ1, . . . , 2λk, λ1 + λ2, . . . , λ1 + λk, λ2 + λ3, . . . , λk−1 + λk} .
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We denote with u1 < · · · < us the distinct values from this set arranged by
increasing and introduce the functions

ϕ̃0(x) ≡ m,

ϕ̃1(x) = A11e
−u1x = A11e

−2λ1x,

ϕ̃2(x) = −2A12e
−(u1+∆)x,

ϕ̃2l−1(x) = ale
−(ul+2∆)x + cle

−ul+1x, l = 2, . . . , s,

ϕ̃2l(x) = −ble
−(ul+∆)x, l = 2, . . . , s,

ϕ̃2s+1(x) = as+1e
−(us+2∆)x.

It can be easily checked that that the coefficients al, bl and cl can be chosen
such that the representation

fT (x)A−1(ξ∗, λ̃)f(x) =
2s+1∑
i=1

ϕ̃i(x) (6.8)

is satisfied. Due to equalities signAi,j = (−1)i+j , we have al, bl, cl > 0,
l = 1, . . . , s. By the same arguments as in the previous paragraph, we
obtain for the determinant

J̃(τ) = det (ϕ̃i(xj))
2s+1
i,j=0 ,

with x0 > x1 > · · · > x2s+1, the inequality J̃(τ) > 0. Moreover, for any
vector τ̄ = (x̄0, . . . , x̄2s+1)T with components satisfying x̄0 ≥ x̄1 ≥ · · · ≥
x̃2s+1, it follows,

lim
τ→τ̄

J̃(τ)/
∏
j>i

(xi − xj) > 0.

Due to (6.8) and the Equivalence Theorem for the D-optimality criterion
we have for the generalized polynomial,

g(x) = ϕ̃0(x) −
2s+1∑
i=1

ϕ̃i(x),

g(x∗
i ) = 0, i = 1, 2, . . . , n,

g
′
(x∗

i ) = 0, i = 2, 3, . . . , n − 1.

Moreover, g has at most 2s+1 roots counted with corresponding multiplic-
ity. Consequently, 2n − 2 ≤ 2s + 1 ≤ k(k + 1) + 1, which yields

n ≤ k(k + 1)
2

+ 1 + 1/2.

This proves the assertion of the theorem for the regression model of the
form (6.3).
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To prove the assertion of the theorem for the regression model (6.2), we
consider for an arbitrary approximate design ξ the polynomial

q(x) = m − fT (x)A−1(ξ, λ̃)f(x)

= m − fT (x)LT (LA(ξ)LT )−1Lf(x),
(6.9)

where λ̃ = (λ̃1, . . . , λ̃2k) is defined by (6.5) and the 2k × 2k matrix L is
given by ⎛

⎜⎜⎜⎝
Q 0 0 . . . 0
0 Q 0 . . . 0
...

...
...

0 0 0 . . . Q

⎞
⎟⎟⎟⎠ ,

with

Q =
(

1 0
1/∆ −1/∆

)
.

Note that det L = (−1/∆)k �= 0 and that lim∆→0 fT (x)LT is equal to

lim∆→0

(
e−λ1x, e−(λ1+∆)x−e−λ1x

∆ , . . . , e−λkx, e−(λk+∆)x−e−λkx

∆

)
=
(
e−λ1x,−xe−λ1x, . . . , e−λkx,−xe−λkx

)
,

Consequently, we have for any design ξ,

lim
∆→0

LA(ξ, λ̃)LT = M(ξ, λ), (6.10)

where the matrix M(ξ, λ) is defined in Section 6.1.
If ξ∗ denotes a locally D-optimal design for the regression model (6.2)

with support points by x∗
1 < · · · < x∗

n∗ , then it follows from (6.9) and (6.10)
that

m − f̃T (x)M̃−1(ξ∗, λ)f̃(x) = lim
∆→0

m − fT (x)A−1(ξ∗, λ̃)f(x), (6.11)

where the vector f̃T (x) corresponds to the gradient in model (6.2) and is
defined by

f̃T (x) =
(
e−λ1x,−xe−λ1x, . . . , e−λkx,−xe−λkx

)
.

By the Equivalence Theorem, the polynomial on the left-hand side has roots
x∗

1, . . . , x
∗
n∗ , where x∗

2, . . . , x
∗
n∗−1 are roots of multiplicity. Consequently, we

obtain 2n∗ −1 ≤ h, where h is the number of roots of the polynomial on the
right-hand side of (6.11). By the arguments of the first part of the proof,
we have h ≤ 4k − 1 for k = 1, 2 and for k ≥ 3 in a neighborhood of points
λ satisfying (6.5). Moreover, we have h ≤ k(k + 1)/2 in general, which
completes the proof of the theorem.
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By Theorem 6.1.1, we have n∗ = m at k = 1, 2.
The same is true for k > 2, but for a subset of possible values of para-

meters λi. In addition, we performed a numerical study of locally optimal
designs for the case k = 3 and many distinct values of {λi}. It was not
found for any case when n∗ > m. All of this gives the ground to restrict
attention for designs with n = m. Therefore, in the remainder of this chap-
ter, we will study designs that are locally optimal among the designs with
n = m. These designs are called locally D-optimal designs with minimal
support. It is easy to check that in this case, all of the design points have
the 1/m weight. The behavior of the design points at changing the para-
meters will be studied by means of the basic differential equation that has
been introduced in Chapter 2.

6.2 Optimal Design Function

First, consider a regression function of form (6.2).
Let θi �= 0, i = 1, . . . , k, X = [b, ∞), and

Z = {z = (z1, . . . , zk)T ; zi �= zj (i �= j), zi > ε, i = 1, . . . , k},

Z̄ = {z = (z1, . . . , zk)T ; zi > ε, i = 1, . . . , k},

where ε is an arbitrarily small positive number.
Let ζ = {x1, . . . , xm}, xi ∈ X, i = 1, . . . , m, be an arbitrary m-points

experimental design. Without loss of generality, assume that

b ≤ x1 < · · · < xm.

Determinant of the information matrix of such a design for regression
function (6.2) has the form

θ2
1 · · · θ2

kdet2F (ζ, z),

where z = (θk+1, . . . , θ2k)T ,

F (ζ, z) =
(
e−z1xs ,−xse

−z1xs , . . . , ezkxs ,−xse
−zkxs

)m
s=1 .

Thus the problem of finding a locally D-optimal design with minimal
support transforms to

det2F (ζ, z) → supζ∈Ξ, (6.12)

where

Ξ = {ζ = {x1, . . . , xm}; b ≤ x1 < x2 < · · · < xm < ∞}.

Let ζl = {x1,l, x2,l, . . . , xm,l}, l = 1, 2, . . ., be an arbitrary sequence of
designs such that xm,l → ∞ with l → ∞. Decomposing the determinant
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of matrix F by its lowest line (only its elements depend on xm), we have
that the determinant is the sum of values, each of which tends to zero at
l → ∞. Therefore,

det F (ζl, z) → 0

for l → ∞ and any fixed z ∈ Z. Thus, the upper bound in problem (6.12)
is attained at some design. Since the exponential system of functions is a
Chebyshev one, we have

det F (ζ, z) > 0, z ∈ Z.

Moreover, increasing all of the design points by the same value ∆ > 0 leads
to decreasing the matrix F determinant by exp(−2∆

∑k
i zi). Therefore,

for any locally D-optimal design with minimal support (LDMS design) on
X = [b, ∞), we have x1 = b, and all the points of such a design have the
form

x1 = b + x̃1, . . . , xm = b + x̃m,

where {x̃1, . . . , x̃m} is the vector of support points of the LDMS design on
X = [0,∞). Thus, without loss of generality, we can assume that X = [0, d],
where d is sufficiently large, and consider only the case x1 = 0.

Thus, problem (6.12) can be reduced to

det F (ζ, z) → max
ζ

,

where the maximum is taken over all of the designs of the form

{ζ; ζ = {0, x2, . . . , xm}, 0 < x2 < · · · < xm < d}.

Introduce the design ζτ = {0, x2, . . . , xm}, corresponding to vector τ =
(τ1, . . . τm−1) = (x2, . . . , xm). Consider the function

ϕ̄(τ, z) = detF (ζτ , z)/
∏
i<j

(zi − zj)4.

Evidently, it is a real analytic function for z ∈ Z.
Expanding the elements of the matrix F in series with respect to the

powers of xjzi (j = z, . . . , m; i = 1, . . . , k) we can verify (see also Ermakov
and Melas (1995, Chap. 5)) that the function ϕ̄(τ, z) has the form

ϕ̄(τ, z) = const
∏
i<j

(xj −xi) exp

(
−z̄

m∑
2

xi

)⎛⎝1 + O

(
k∑

i=1

δi

)2⎞⎠ , (6.13)

where δi = zi − z̄, z̄ =
∑k

i=1 zi/k, and it can be extended to points z ∈ Z̄\Z
in a way to remain analytical at z ∈ Z̄.

Let ϕ(τ, z) stand for the function ϕ̄(τ, z), extended as mentioned earler.
Since the exponential functions form an ET -system, ϕ(τ, z) > 0 for z ∈ Z̄.
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Let τ∗ = τ∗(z) = (τ∗
1 , . . . , τ∗

m−1) = (x∗
2, . . . , x

∗
m) be the vector of nonzero

points of some LDMS design

V = {τ = (τ1, . . . , τm−1), 0 < τ1 < · · · < τm−1 < d} .

By the necessary extreme conditions, we have

∂

∂τ
ϕ(τ, z) = 0

for z ∈ Z, and τ = τ∗ = τ∗(z).
Let J = J(z) = J(τ∗(z), z), where

J(τ, z) =
(

∂2

∂τi∂τj
ϕ(τ, z)

)m−1

i,j=1
.

Now, we can state the following theorem.

Theorem 6.2.1 Let X = [b, ∞), θi �= 0, i = 1, . . . , k, z ∈ Z̄. Then an
optimal design function for regression function (6.2) exists, is uniquely de-
termined, and is a real analytic vector function. One of its coordinates
coincides with b as the other ones strictly decrease along each of the argu-
ments zi = θi+1, i = 1, . . . , k.

Proof. Consider the system of functions

e−z1x,−xe−z1x, . . . , e−zkx,−xe−zkx (6.14)

for zi �= zj (i �= j). At the points of coordinates of the form

z1 = · · · = zj1 = z̄1,

zj1+1 = · · · = zj2 = z̄2, · · · , zjt−1+1 = . . . = zjt
= z̄t,

redefine this system in the following way:

e−z̄1x,−xe−z̄1x, . . . , (−x)2i1−1e−z̄1x, . . . ,

e−z̄tx,−xe−z̄tx, . . . , (−x)2it−1e−z̄tx,
(6.15)

i1 = j1, i2 = j2 − j1, . . ., it = jt − jt−1. Let ζ∗ = ζ∗(z) = {x∗
1, . . . , x

∗
m} be

the maximum point of the determinant of system of functions (6.14) or
(6.15). Then x∗

1(z) = 0 and

∂

∂τ
ϕ(τ, z) = 0 (6.16)

for τ = (x∗
2, . . . , x

∗
m). It has been already demonstrated for the case of

z ∈ Z and can be verified in a similar way for z ∈ Z̄. Since systems of
functions (6.14) and (6.15) are ET -systems,

det J(τ∗(z), z) �= 0.

Let us demonstrate that (6.16) has the only solution at point z(0) =
(α, . . . , α), where α > 0.
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Lemma 6.2.1 At the points of form z(0) = (α, . . . , α), α > 0 (6.16) has
the unique solution, which has the form τ = (τ∗

1 , . . . , τ∗
m−1), τ∗

i = γi/2α,
where γ1, . . . , γm−1 are the zeros of the Laguerre polynomial of m − 1-st
order with parameter 0.

Proof. It is known (Karlin and Studden, 1966, Chap. 10.2), that point
(γ1, . . . , γm−1) is the only stationary point of the function

e−ᾱ
∑m−1

i=1 τi

∏
1≤i<j≤m−1

(τj − τi)
m−1∏
i=1

τi (6.17)

for ᾱ = 1/2, τ ∈ V, and also
∑

γi = m(m − 1). By equality (6.13) the
function ϕ(τ, z) has form (6.17) for z = z(0), α = ᾱ.

Thus, the lemma is complete for α = ᾱ = 1/2. In the case of arbitrary
α, it can be verified by the direct differentiation that (6.16) holds if and
only if τ = (γ1, . . . , γm−1)/(2α).

Since all, the conditions of Theorem 2.3.1 are satisfied, then for any
z ∈ Ẑ τ∗(z) is uniquely determined. Moreover, by the same theorem,
τ∗(z) is a real analytic vector function.

By Theorem 2.4.5, it is sufficient to verify that

∂2ϕ(τ, z)
∂τi∂zj

< 0 (6.18)

for i = 1, . . . , m − 1, j = 1, . . . , k with z = z(0) = (α, . . . , α) to check the
monotony of the coordinates of the design function τ∗(z).

The direct calculation shows that the expression at the left-hand side
of (6.18) is equal to −1 for any i = 1, . . . , m − 1, j = 1, . . . , k.

Now, consider more general regression function (6.1).
Let Θ1 = (θ1, . . . , θm−k)T ,

(θ11, . . . , θ1j1) �= (0, . . . , 0), . . . , (θk1, . . . θkjk
) �= (0, . . . , 0),

Θ2 = (θm−k+1, . . . , θm)T , z1 = θm−k+1, . . . , zk = θm,

X = [b, d],

where b < d are arbitrary real numbers.
Let Z be an arbitrary simply connected open set in Rk, such that the

number of such points of a saturated locally D-optimal design that coincide
with ω or d is fixed.

Theorem 6.2.2 Under the above conditions, an optimal design function
for regression function (6.1) exists, it is uniquely determined, and it is a
real analytic vector function. All of its coordinates that do not coincide with
b or d strictly decrease along each of the arguments z1, . . . , zk.

This theorem can be proved similarly to the previous one.
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6.3 Taylor Expansions

Coordinates of an optimal design function can be expanded into the Taylor
series with respect to the powers of parameters by means of Theorem 2.4.4.
Let the regression function have form (6.2). The write it again for the
convenience of the reader,

η(x,Θ) =
k∑

i=1

θie
−θi+kx,

θi �= 0, i = 1, . . . , k, θi+k �= θj+k (i �= j), i, j = 1, . . . , k.
Consider the case θi+k > 0, i = 1, . . . , k,X = [0,∞).
As it has been already demonstrated, there exists a unique LDMS design

(under fixed θi+k) and this design corresponds to the vector

ζ∗ = {0, x∗
2, . . . , x

∗
m}, 0 < x∗

2 < · · · < x∗
m.

Denote θ̄ =
∑k

i=1 θi+k/k. Note that multiplying all of the parameters
θi+k by some value implies dividing the design points by the same value.
Therefore, without loss of generality, we can assume

∑k
i=1 θi+k/k = 1.

Denote z1 = 1 − θk+1/θ̄, . . ., zk−1 = 1 − θ2k−1/θ̄.
The direct calculation for k = 1 demonstrates that ζ∗ = {0, 1}.
Let k ≥ 2, Z = [−1, 1]k−1,

Ψ(z) =
∏

1≤i<j≤1(θi+k − θj+k)4,

τ(z) = (x∗
2(z), . . . , x∗

m(z)), z(0) = (0, . . . , 0).

Expand the vector function τ(z) into the Taylor series in a vicinity of
z(0). Value τ(0) = τ(z(0)) can be determined by Lemma 6.1.1. The case
k = 2 was already considered in Section 2.2. Consider the case k = 3.

Example 6.3.1 Let k = 3,

η(x,Θ) = θ1e
−θ4x + θ2e

−θ5x + θ3e
−θ6x,

θi+3 �= θj+3 (i �= j), θ1, θ2, θ3 �= 0, θi+3 > 0, i = 1, 2, 3, (θ4 +θ5 +θ6)/3 = 1.
Denote z1 = 1 − θ5 and z2 = 1 − θ6.

Consider optimal design function τ(z) = (x∗
2(z), . . . , x∗

6(z)). Expand
this function into a Taylor series in a vicinity of point z(0) = (0, 0):

x∗
i+1(z) = τ̄i(z) =

∞∑
s1=0

∞∑
s2=0

τi(s1,s2)z
s1
1 zs2

2 ,

i = 1, . . . , 5. Applying Theorem 2.4.4 from Chapter 2, tabulate the coef-
ficients {τi(s1,s2)} (Table 6.1). In this table, the block numbered (s1, s2)
contains coefficient vector (τ1(s1,s2), . . . , τ5(s1,s2))

T .
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Table 6.1: Taylor coefficients for Example 6.3.1

s2\s1 0 1 2 3 4 5
0.3085 0.0000 0.0054 0.0000 0.0002 0.0000
1.0565 0.0000 0.0638 0.0000 0.0086 0.0000

0 2.3054 0.0000 0.3037 0.0000 0.0896 0.0000
4.1995 0.0000 1.0078 0.0000 0.5103 0.0000
7.1301 0.0000 2.9050 0.0000 2.2077 0.0000

0.0054 0.0027 0.0003 0.0003
0.0638 0.0232 0.0172 0.0094

1 0.3037 0.0396 0.1791 0.0147
1.0078 −0.2267 1.0206 −0.5050
2.9050 −2.2496 4.4153 −4.3407

0.0005 0.0006
0.0258 0.0188

2 0.2687 0.0293
1.5310 −1.0101
6.6230 −8.6815

The form of Table 6.1 is because τ(s1,s2) = τ(s2,s1) and Theorem 2.4.4
gives coefficients with s1 + s2 = 1, 2, . . .. Thus, in this table, results of the
first five steps of the algorithm are given.

The behavior of the saturated locally optimal design points with z1 = 0
is presented at Figure 6.1. This figure shows that the design points are
increasing functions of the parameter.

Figure 6.1: Optimal design function with z1 = 0 for Example 6.3.1

Analyze the efficiency of designs that can be obtained from τ(0),
τ<1>(z), . . ., τ<5>(z) by appending them with zero, where τ<i>(z) is a seg-
ment of the Taylor series for function τ(z), including 1 + i nonzero terms
of the expansion.
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Table 6.2: Efficiency of designs τ<n>

z1 z2 In

0 1 2 3 4 5
0.0 0.4 0.99 0.99 1.00 1.00 1.00 1.00
0.0 0.5 0.98 0.98 1.00 1.00 1.00 1.00
0.0 0.6 0.96 0.96 1.00 1.00 1.00 1.00
0.0 0.7 0.91 0.91 0.99 0.99 1.00 1.00
0.0 0.8 0.83 0.83 0.96 0.96 0.99 0.99
0.0 0.9 0.69 0.69 0.86 0.86 0.92 0.92

−0.2 0.5 0.99 0.99 1.00 1.00 1.00 1.00
−0.2 0.6 0.97 0.97 1.00 1.00 1.00 1.00
−0.2 0.7 0.93 0.93 0.99 0.99 1.00 1.00
−0.2 0.8 0.86 0.86 0.96 0.97 0.98 0.99
−0.2 0.9 0.71 0.71 0.86 0.87 0.92 0.93
−0.4 0.9 0.73 0.73 0.86 0.88 0.91 0.93

0.3 0.4 0.97 0.97 1.00 1.00 1.00 1.00
0.3 0.5 0.94 0.94 1.00 1.00 1.00 1.00
0.3 0.6 0.91 0.91 1.00 0.99 1.00 1.00
0.3 0.7 0.85 0.85 0.99 0.97 1.00 0.99
0.3 0.8 0.75 0.75 0.95 0.93 0.99 0.97
0.3 0.9 0.59 0.59 0.85 0.81 0.94 0.89

Denote

In =
[
det M(ξτ<n>(z) , Θ)/det M(ξ∗, Θ)

]1/m
,

ξτ<n> = {0, τ<n>1, . . . , τ<n>m−1; 1/m, . . . , 1/m}.

In Table 6.2, values of In, n = 0, 1, 2, 3, 4, 5, are given for different values
of z1 and z2. Table 6.2 demonstrates the high efficiency of the designs.
Similar results can be obtained for the case k > 3.

An extension of the functional approach for studying maximin efficient
D-optimal designs was already described in Section 2.2.



Chapter 7

E- and c-Optimal Designs

In this chapter, we investigate locally E- and c-optimal designs for a wide
class of nonlinear regression models. This class includes rational, logistic,
and exponential models. A method of asymptotic analysis for such models
is introduced. This method allows on to establish that if all nonlinear
parameters of the model tend to same limit, then locally E-optimal and
most of the locally c-optimal designs tend to the same limiting design,
which is em-optimal for a heteroskedastic polynomial model. Based on
this result, it is demonstrated that in many cases the locally E- and c-
optimal designs are supported at the Chebyshev points, defined in Section
1.8. These points proved to be real analytic functions of the nonlinear
parameters and these functions can be expanded into a Taylor series by the
general technique of Section 2.4. For rational models, the optimal designs
are found explicitly in many cases. It is also demonstrated that in the
models under consideration, E-optimal designs are usually more efficient
for estimating individual coefficients than D-optimal designs. Note that
Sections 7.1–7.3, 7.5 and 7.7, are based on Dette, Melas, and Pepelyshev
(2004a).

7.1 Introduction

It is the purpose of the present chapter to study locally E-optimal designs
for a class of nonlinear regression models, which can be represented in the
form

Y =
s∑

i=1

aihi(t) +
k∑

i=1

as+iϕ(t, bi) + ε . (7.1)

Here, h1, . . . , hs and ϕ are given functions, the explanatory variable t varies
in an interval I ⊂ R, ε denotes a random error with mean zero and constant
variance, and a1, . . . , as+k, b1, . . . , bk denote the unknown parameters of
the model. The consideration of this type of model was motivated by the

231
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recent work of Imhof and Studden (2001), who considered a class of rational
models of the form

Y =
s∑

i=1

ait
i−1 +

k∑
i=1

as+i

t − bi
+ ε, (7.2)

where t ∈ I, bi �= bj(i �= j), and the parameters bi �∈ I are assumed to be
known for all i = 1, . . . , k. Note that model (7.2) is in fact linear, because
Imhof and Studden (2001) assumed the bi to be known. These models are
very popular because they have appealing approximation properties (see
Petrushev and Popov (1987) for some theoretical properties or Dudzinsky
and Mykytowycz (1961), Ratkowsky (1983, p. 120) for an application of
this model). In this chapter (in contrast to the work of Imhof and Studden
(2001)), the nonlinear parameters in the model (7.1) are not assumed to be
known, but also have to be estimated from the data. Moreover, model (7.1)
considered here includes numerous other regression functions. For example,
in environmental and ecological statistics, exponential models of the form

a1e
b1t + a2e

b2t

are frequently used in toxicokinetic experiments (see, e.g., Becka and Urfer
(1996) or Becka, Bolt, and Urfer (1993)) and this corresponds to the choice
ϕ(t, x) = etx in (7.1). Another popular class of logarithmic models is ob-
tained from (7.1) by the choice ϕ(t, x) = log(t − x).

Imhof and Studden (2001) studied E-optimal designs for model (7.2)
with s = 1 under the assumption that the nonlinear parameters b1, . . . , bk

are known by the experimenter and do not have to be estimated from
the data. In particular they proved that the support of the E-optimal
design for estimating a subset of the parameters a1, . . . , a+1 is given by
the Chebyshev points corresponding to the regression functions in model
(7.2). These points are the extremal points of the function

1 +
k∑

i=1

a∗
i

x − bi
= p∗(x),

in the interval I, which has the smallest deviation from zero; that is,

supp
x∈I

|p∗(x)| = min
a2,...,ak+1

supp
x∈I

∣∣∣∣∣1 +
k∑

i=1

ai

x − bi

∣∣∣∣∣ . (7.3)

The universality of this solution is due to the fact that any subsystem of
the regression functions in model (7.2), which is obtained by deleting one of
the basis functions, forms a weak Chebyshev system on the interval I (see
Karlin and Studden (1966) and the discussion in Section 7.2). However, in
the case where the parameters b1, . . . , bk are unknown and also have to be
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estimated from the data, the locally optimal design problem for model (7.2)
is equivalent to an optimal design problem in the linear regression model

Y =
s∑

i=1

βit
i−1 +

2k∑
i=1

(
βs+2i−1

t − bi
+

βs+2i

(t − bi)2

)
+ ε, (7.4)

for which the corresponding regression function does not satisfy the weak
Chebyshev property mentioned above. Nevertheless, we will prove in this
chapter that in cases with k ≥ 2, where the quantity

max
i�=j

|bi − bj |

is sufficiently small, locally E-optimal designs and many locally c-optimal
designs for estimating linear combinations of the parameters are still sup-
ported on Chebyshev points. This substantially simplifies the construction
of locally E-optimal designs. Moreover, we show that this result does not
depend on the specific form of models (7.2) and (7.4) but can be estab-
lished for the general model (7.1) (or its equivalent linearized model). Ad-
ditionally, it can be shown numerically that in many cases, the E-optimal
design is in fact supported on the Chebyshev points for all admissible val-
ues of the parameters b1, . . . , bk (bi �= bj ; i �= j). Our approach is based
on a study of the limiting behavior of the information matrix in model
(7.1) in the case where all nonlinear parameters in model (7.1) tend to
the same limit. We show that in this case, the locally E-optimal and
many locally optimal designs for estimating linear combinations of the co-
efficients as+1, bs+1, . . . , as+k, bs+k in model (7.1) have the same limiting
design. This indicates that E-optimal designs in models of the type (7.1)
yield more precise estimates of the individual coefficients than the popular
D-optimal designs and we will illustrate this fact in several examples.

The remaining part of the chapter is organized as follows. In Section
7.2∗, we introduce the basic concepts and notation, and present some pre-
liminary results. Section 7.3 is devoted to an asymptotic analysis of model
(7.1), which is based on a linear transformation introduced in the appendix
(see Section 7.7). In Section 7.4, we will establish some analytical properties
of support points of locally E-optimal designs considered as functions of the
nonlinear parameters for model (7.1). This allows one to apply the general
technique of Section 2.4 for representing the support points by the Taylor
series. Some applications of general results of Section 7.3 to the rational
model (7.2) and its equivalent linear regression model (7.4) are presented
in Section 7.5, which extends the results of Imhof and Studden (2001) to
the case where the nonlinear parameters in model (7.2) are not known and

∗Note that in Sections 7.2, 7.3, 7.5 and 7.7 a part of materials (theorems, tables, and
figures) are taken from Dette, H., Melas, V.B., Pepelyshev, A. (2004a). Optimal designs
for a class of nonlinear regression models. Ann. Statist., 32(3), 2142–2167. c©2004
Institute of Mathematical Statistics.
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have to be estimated from the data. In Section 7.5, we also find locally c-
and E-optimal designs for particular rational models (see Examples 7.5.1 -
7.5.4). Section 7.6 introduces similar results for exponential models. This
section demonstrates also the usefulness of the functional approach in this
case.

7.2 Preliminary Results

Consider the nonlinear regression model (7.1) and define

f(t, b) = (f1(t, b), . . . , fm(t, b))T

= (h1(t), . . . , hs(t), ϕ(t, b1), ϕ′(t, b1), . . . , ϕ(t, bk), ϕ′(t, bk))T

(7.5)
as a vector of m = s + 2k regression functions, where the derivatives
of the function ϕ are taken with respect to the second argument. It is
straightforward to show that the Fisher information for the parameter
(a1, . . . , as, as+1, bs+1, . . . , as+k, bs+k)T = (β1, . . . , βm)T = β in the equiva-
lent linear regression model

Y = βT f(t, b) + ε =
∑s

i=1 βihi(t)

+
∑k

i=1(βs+2i−1ϕ(t, bi) + βs+2iϕ
′(t, bi)) + ε

(7.6)

is given by

M(ξ, b) =
∫

f(t, b)fT (t, b)ξ(dt), (7.7)

where ξ =
(

x1 . . . xn

ω1 . . . ωn

)
is an approximate experimental design.

The dependence on the parameter b will be omitted whenever it is clear
from the context. Among the numerous optimality criteria proposed in
the literature, we consider the D-, E-, and c-optimality criteria in this
chapter. A D-optimal design ξ∗

D for the regression model (7.6) maximizes
the determinant

|M(ξ, b)| (7.8)

over the set of all approximate designs on the interval I. Similarly, an E-
optimal design ξ∗

E maximizes the minimum eigenvalue

λmin(M(ξ, b)), (7.9)

whereas for a given vector c ∈ R
m, a c-optimal design minimizes the ex-

pression
cT M−(ξ, b)c, (7.10)

where the minimum is taken over the set of all designs for which the linear
combination cT β is estimable (i.e., c ∈ range(M(ξ, b)) ∀ b).
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Note that a locally optimal design problem in a nonlinear model (7.1)
corresponds to an optimal design problem in model (7.6) for the trans-
formed vector of parameters KT

a b, where the matrix Ka ∈ R
m×m is given

by

Ka = diag
(
1, . . . , 1︸ ︷︷ ︸

s

, 1,
1
a1

, 1, . . . , 1,
1
ak︸ ︷︷ ︸

2k

)
. (7.11)

For example, a locally D-optimal design in model (7.1) maximizes the de-
terminant

|K−1
a M(ξ, b)K−1

a | = |K−1
a |2|M(ξ, b)|,

does not depend on the parameters a1, . . . , ak, and coincides with the D-
optimal design in model (7.6). Similarly, the c-optimal design for model
(7.1) can be obtained from the c̄-optimal design in the model (7.6), where
the vector c̄ is given by c̄ = Kac. Finally, the locally E-optimal design
in the nonlinear regression model (7.1) maximizes λmin(K−1

a M(ξ, b)K−1
a ),

where M(ξ, b) is the information matrix in the equivalent linear regression
model (7.6). For the sake of transparency, we will mainly concentrate on
the linearized version (7.6). The corresponding results in the nonlinear
regression model (7.1) will be briefly mentioned, whenever it is necessary.

It is well known (see Studden (1968), Pukelsheim and Studden (1993),
Heiligers (1994), or Imhof and Studden (2001) among others and Sections
3.3 and 4.3 of this book) that for many linear regression models, the E-
and c-optimal designs are supported at the Chebyshev points.

For a further discussion, assume that the functions f1, . . . , fm generate
a Chebyshev system on the interval I with Chebyshev polynomial c∗T f(t)
and Chebyshev points s1, . . . , sm, define the m×m matrix F = (fi(sj))m

i,j=1,
and consider a vector of weights given by

w = (w1, . . . , wm)T =
JF−1c∗

‖c∗‖2 , (7.12)

where the matrix J is defined by J = diag{(−1), 1, . . . , (−1)m}. It is then
easy to see that

c∗

‖c∗‖2 = FJw =
m∑

j=1

f(sj)(−1)jwj ∈ ∂R, (7.13)

where
R = conv(f(I) ∪ f(−I))

denotes the Elfving set [see Elfving (1952)]. Consequently, if all weights in
(7.12) are non-negative, it follows from Elfving’s theorem that the design

ξ∗
c∗ =

(
s1 . . . sm

w1 . . . wm

)
(7.14)
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is c∗-optimal in the regression model (7.6) [see Elfving (1952)], where c∗ ∈
R

m denotes the vector of coefficients of the Chebyshev polynomial defined
in the previous paragraph. The following results relates this design to the
E-optimal design.

Lemma 7.2.1 Assume that f1, . . . , fm generate a Chebyshev system on
the interval I such that the Chebyshev points are unique. If the minimum
eigenvalue of the information matrix of an E-optimal design has multiplicity
1, then the design ξ∗

c∗ defined by (7.12) and (7.14) is E-optimal in the
regression model (7.6). Moreover, in this case, the E-optimal design is
unique.

Lemma 7.2.2 Assume that the functions f1, . . . , fm generate a Chebyshev
system on the interval I with Chebyshev polynomial c∗T f(t) and let ξ∗

c∗

denote the c∗-optimal design in the regression model (7.6) defined by (7.14).
Then c∗ is an eigenvector of the information matrix M(ξ∗

c∗ , b), and if the
corresponding eigenvalue λ = 1

‖c∗‖2 is the minimal eigenvalue, then ξ∗
c∗ is

also E-optimal in the regression model (7.6).

These lemmas are reformulations of Theorem 3.3.5, parts (a) and (c).
We now discuss the c-optimal design problem in the regression model

(7.6) for a general vector c ∈ R
m (not necessarily equal to the vector c∗ of

coefficients of the Chebyshev polynomial). Assume again that f1, . . . , fm

generate a Chebyshev system on the interval I. As a candidate for the
c-optimal design we consider the measure

ξc = ξc(b) =
(

s1 . . . sm

w1 . . . wm

)
, (7.15)

where the support points are the Chebyshev points and the weights are
already chosen such that the expression cT M−1(ξc, b)c becomes minimal;
that is,

wi =
|eT

i JF−1c|∑m
j=1 |eT

j JF−1c| , i = 1, . . . , m (7.16)

[see Pukelsheim (1993)]. The following result characterizes the optimal
designs for estimating the individual coefficients.

Lemma 7.2.3 Assume that the functions f1, . . . , fm generate a Chebyshev
system on the interval I and let ej = (0, . . . , 0, 1, 0, . . . , 0)T ∈ R

m denote
the j-th unit vector. The design ξej defined by (7.15) and (7.16) for the
vector c = ej is ej-optimal if the system

{fi | i ∈ {1, . . . , m}\{j}}

is a weak Chebyshev system on the interval I.
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Proof. If f1, . . . , fm generate a weak Chebyshev system on the interval I,
it follows from Theorem 2.1 in Studden (1968) that the design ξej defined
in (7.15) and (7.16) is ej-optimal if

εeT
i JF−1ej ≥ 0, i = 1, . . . , m,

for some ε ∈ {−1, 1}. The assertion of the lemma now follows by Cramer’s
rule.

Remark 7.2.1 It is worthwhile to mention that, in general, the sufficient
condition of Lemma 7.2.3 is not satisfied. To see this, assume that k ≥
3, that the function ϕ is continuously differentiable with respect to the
second argument, and that the functions f1(·, b), . . . , fm(·, b) defined by
(7.5) generate a Chebyshev system for any b. Define an (m − 1) × (m − 1)
matrix

Fj(x) :=
(
h1(ti), . . . , hs(ti), ϕ(ti, b1), ϕ′(ti, b1), . . . , ϕ(ti, bj−1), ϕ′(ti, bj−1),

ϕ(ti, x), ϕ(ti, bj+1), . . . , ϕ(ti, bk), ϕ′(ti, bk)
)m−1

i=1
,

where c < t1 < · · · < tm−1 < d, bi �= bj whenever i �= j and x �= bi. We
choose t1, . . . , tm−1 such that

g(x) = det Fj(x) �≡ 0

(note that the functions f1, . . . , fm form a Chebyshev system and, therefore,
this is always possible) and observe that

g(bi) = 0, i = 1, . . . , k; i �= j.

Because k ≥ 3 and g is continuously differentiable, it follows that there exist
two points, say x∗ and x∗∗, such that such that g′(x∗) < 0 and g′(x∗∗) > 0.
Consequently, there exists an x̄ such that

0 = g′(x̄) = det
(
fν(ti, bx̄)

)ν=1,...,m,ν �=s+2j−1

i=1,...,m−1
,

where the vector bx̄ is defined by bx̄ = (b1, . . . , bj−1, x̄, bj+1, . . . , bk)T . Note
that the Chebyshev property of the functions f1, . . . , fs+2j−2, fs+2j , . . . , fm

would imply that all corresponding determinants were of the same sign.
Therefore the conditions g′(x∗) < 0, g′(x∗∗) > 0 imply that there exists a
x̃ ∈ (x∗, x̄) or x̃ ∈ (x̄, x∗∗), such that the system of regression functions{

f1(t, bx̃), . . . , fs+2j−2(t, bx̃), fs+2j(t, bx̃), . . . , fm(t, bx̃)
}

=
{

h1(t), . . . , hs(t), ϕ(t, b1), ϕ′(t, b1), . . . , ϕ′(t, bj−1),

ϕ′(t, x̃), ϕ(t, bj+1), ϕ′(t, bj+1), . . . , ϕ′(t, bk)
}
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is not a weak Chebyshev system on the interval I. Finally, in the case k = 2,
if

lim
|b|→∞

ϕ(t, b) → 0,

it can be shown by a similar argument that there exists an x̃ such that the
system

{h1, (t), . . . , hs(t), ϕ(t, b1)ϕ′(t, b1)ϕ′(t, x̃)}
is not a Chebyshev system on the interval I.

7.3 Asymptotic Analysis of E- and c-Optimal
Designs

Recall the definition of the information matrix in (7.7) for model (7.6) with,
design space given by I = [c1, d1] and assume that the nonlinear parameters
vary in a compact interval, say

bi ∈ [c2, d2]; i = 1, . . . , k.

We are interested in the asymptotic properties of E- and c-optimal designs
if

bi = x + δri, i = 1, . . . , k, (7.17)

for some x ∈ [c2, d2], δ > 0, r1 < r2 < · · · < rk, and δ → 0. For this purpose,
we study for fixed ε, ∆ > 0 the set

Ωε,∆ = {b ∈ R
k
∣∣∣ bi − bj = δ(ri − rj); i, j = 1, . . . , k;

δ ≤ ε; bi ∈ [c2, d2], mini �=j |ri − rj | ≥ ∆},
(7.18)

introduce the functions

f̄i(t, x) = f̄i(t) = hi(t), i = 1, . . . , s,

f̄s+i(t, x) = f̄s+i(t) = ϕ(i−1)(t, x), i = 1, . . . , 2k,
(7.19)

and the corresponding vector of regression functions

f̄(t, x) = (f̄1(t, x), . . . , f̄s+2k(t, x))T , (7.20)

where the derivatives are taken with respect to the second argument; that
is,

ϕ(i)(t, x) =
∂i

∂iu
ϕ(t, u)

∣∣∣
u=x

, i = 0, . . . , 2k − 1.

Again, the dependency of the functions f̄i on the parameter x will be omit-
ted whenever it is clear from the context. The linear model with vector
of regression functions given by (7.20) will serve as an approximation for
model (7.6) if the parameters bi are sufficiently close to each other.
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Lemma 7.3.1 Assume that the function

ϕ : [c1, d1] × [c2, d2] → R

in model (7.1) satisfies

ϕ ∈ C0,2k−1([c1, d1] × [c2, d2])

and that for any fixed x ∈ [c2, d2], the functions f̄1, . . . , f̄s+2k defined by
(7.19) form a Chebyshev system on the interval [c1, d1]. For any ∆ > 0 and
any design on the interval [c1, d1] with at least m = s + 2k support points,
there exists an ε > 0 such that for all b ∈ Ωε,∆, the maximum eigenvalue
of the inverse information matrix M−1(ξ, b) defined in (7.20) is simple.

Proof. Recall the definition of the functions in (7.20) and let

M̄(ξ, x) =
∫ d

c

f̄(t, x)f̄T (t, x) dξ(x) (7.21)

denote the information matrix in the corresponding linear regression model.
Because of the Chebyshev property of the functions f̄1, . . . , f̄s+2k, it follows
that |M̄(ξ, x)| �= 0 (note that the design ξ has at least s+2k support points).
It will be shown in the appendix (see Theorem 7.7.1) that under condition
(7.17) with δ → 0, the asymptotic expansion

δ4k−2M−1(ξ, b) = hγ̄γ̄T + o(1) (7.22)

is valid, where the vector γ̄ = (γ̄1, . . . , γ̄s+2k)T is defined by

γ̄s+2i−1 = −∏j �=i(ri − rj)−2 ·∑j �=i
2

ri−rj
, i = 1, . . . , k,

γ̄1 = · · · = γ̄s = 0; γ̄s+2i = 0, i = 1, . . . , k,
(7.23)

and the constant h is given by

h = ((2k − 1)!)2(M̄−1(ξ, x))m,m. (7.24)

From (7.22) it follows that the maximal eigenvalue of the matrix M−1(ξ, b)
is simple if δ is sufficiently small.

For a fixed value r = (r1, . . . , rk) and fixed x ∈ R in the representation
(7.17), denote by ε = ε(x, r) the maximal value (possibly ∞) such that the
matrix M−1(ξ, b) has a simple maximal eigenvalue for all δ ≤ ε. Then the
function ε : (x, r) → ε(x, r) is continuous and the infimum

inf
{

ε(x, b)
∣∣∣x ∈ [c1, d1], min

i �=j
|ri − rj | ≥ ∆, ‖r‖2 = 1

}
is attained for some x∗ ∈ [c1, d1] and r∗, which implies

ε∗ = ε(x∗, r∗) > 0.

This means that for any b ∈ Ωε∗,∆, the multiplicity of the maximal eigen-
value of the information matrix M−1(ξ, b) is equal to 1.
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Theorem 7.3.1 Assume that the function ϕ : [c1, d1] × [c2, d2] → R satis-
fies

ϕ ∈ C0,2k−1([c1, d1] × [c2, d2])

and that the systems of functions

{f1(t, b), . . . , fm(t, b)},

{f̄1(t, x), . . . , f̄m(t, x)}

defined by (7.5) and (7.19), respectively, are Chebyshev systems on the
interval [c1, d1] (for arbitrary but fixed x, b1, . . . , bk ∈ [c2, d2] with bi �=
bj whenever i �= j). If ε is sufficiently small, then for any b ∈ Ωε,∆ the
design ξ∗

c∗ defined by (7.12) and (7.14) is the unique E-optimal design in
the regression model (7.6).

Proof. The proof is a direct consequence of Lemma 7.2.2 and Lemma
7.3.1, which shows that the multiplicity of the maximum eigenvalue of the
inverse information matrix of any design has multiplicity one, if b ∈ Ωε,∆
and ε is sufficiently small.

From Remark 7.3.1 we may expect that, in general, c-optimal designs in
the regression model (7.1) are not necessarily supported at the Chebyshev
points. Nevertheless, an analog of Lemma 3.1 is available for specific vectors
c ∈ R

m. The proof is similar the proof of Lemma 3.1 and therefore omitted
(see also the proof of Theorem 7.3.2, which uses similar arguments).

Lemma 7.3.2 Let ei = (0, . . . , 0, 1, 0, . . . , 0)T denote the i-th unit vec-
tor in R

m. Under the assumptions of Lemma 3.1 define a vector γ̃ =
(0, . . . , 0, γ1, . . . , γ2k) ∈ R

m by

γ2i =
∏

j �=i(ri − rj)−2 i = 1, . . . , k,

γ2i−1 = −γ2i

∑
j �=i

2
ri−rj

i = 1, . . . , k.
(7.25)

(i) If c ∈ R
m satisfies cT γ̃ �= 0, then for any ∆ > 0, sufficiently small

ε, and any b ∈ Ωε,∆, the design ξc(b) defined in (7.15) and (7.16) is
c-optimal in the regression model (7.6).

(ii) The assumption cT γ̃ �= 0 is, in particular, satisfied for the vector
c = es+2j−1 for any j = 1, . . . k and for the vector c = es+2j for any
j = 1, . . . , k, which satisfies, condition

∑
�=j

1
rj − r

�= 0. (7.26)

Remark 7.3.1 Note that it follows from the proof of Theorem 7.3.1 that
the assumption of compactness of the intervals is only required for the
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existence of the set Ωε,∆. In other words, if condition (7.17) is satisfied and
δ is sufficiently small, the maximum eigenvalue of the matrix M−1(ξ, b) will
have multiplicity 1 (independently of the domain of the function ϕ). The
same remark applies to the statement of Theorem 7.3.1 and Lemma 7.3.2.

Our final result of this section shows that under assumption (7.17) with
small δ, the locally E- and locally c-optimal designs for the vectors c con-
sidered in Lemma 7.3.2 are very close. To be precise, we assume that the
assumptions of Theorem 7.3.1 are valid and consider the design

ξ̄c = ξ̄c(x) =
(

s̄1 . . . s̄m

w̄1 . . . w̄m

)
, (7.27)

where s̄1, . . . , s̄m are the Chebyshev points corresponding to the system
{f̄i | i = 1, . . . , m} defined in (7.19),

w̄i =
|eT

i JF̄−1c|∑m
j=1 |eT

j JF̄−1c| , i = 1, . . . , m, (7.28)

with F̄ = (fi(s̄j))m
i,j=1 and c ∈ R

m is a fixed vector.

Theorem 7.3.2 Assume that the assumptions of Theorem 7.3.1 are satis-
fied and that for the system {f̄1, . . . , f̄m} the Chebyshev points are unique.

(i) If δ → 0, the design ξ∗
c∗(b) defined by (7.14) and (7.12) converges

weakly to the design ξ̄em(x) defined by (3.10) and (3.11) for c = em.

(ii) If c ∈ R
m satisfies cT γ̃ �= 0 for the vector γ̃ defined in (7.25) and

δ → 0, then the design ξ∗
c (b) defined by (7.15) and (7.16) converges

weakly to the design ξ̄em(x).

(iii) The assumption cT γ̃ �= 0 is, in particular, satisfied for the vector
c = es+2j−1 for any j = 1, . . . k and for the vector c = es+2j for any
j = 1, . . . , k, which satisfies condition (7.26).

Proof. It follows from Theorem 7.3.1 that the design ξ∗
c∗ = ξ∗

c∗(b) is locally
E-optimal for sufficiently small δ > 0. In other words, if δ is sufficiently
small, the design ξ∗

c∗ minimizes

max
‖c‖2=1

cT M−1(ξ, b)c

in the class of all designs. Note that the components of the vector r =
(r1, . . . , rk) are ordered, which implies

eT
s+2i−1γ̃ �= 0, i = 1, k.

Multiplying (7.32) in the appendix with δ4k−2, it then follows from Theorem
7.7.1 in the appendix that for some subsequence δk → 0,

ξ∗
c∗ → ξ̂(x),
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where the design ξ̂(x) minimizes the function

max
‖c‖2=1

(cT γ̃)2eT
mM̄−1(ξ, x)em

and the vector γ̃ is defined by (7.23). The maximum is attained for
c = γ̃/‖γ̃‖2 (independently of the design ξ) and, consequently, ξ̂(x) is em-
optimal in the linear regression model defined by the regression function
in (7.20). Now, the functions f̄1, . . . , f̄m generate a Chebyshev system and
the corresponding Chebyshev points are unique, which implies that the
em-optimal design ξ̄em

(x) is unique. Consequently, every subsequence of
designs ξ∗

c∗(b) contains a weakly convergent subsequence with limit ξ̄em
(x)

and this proves the first part of the assertion. For a proof of the second
part, we note that a c-optimal design minimizes

cT M−1(ξ, b)c

in the class of all designs on the interval I. Now, if cT γ̃ �= 0 and

eT
s+2i−1γ̃ = −

∏
j �=i

(ri − rj)−2
∑
j �=i

2
ri − rj

�= 0

for some i = 1, . . . , k, the same argument as in the previous paragraph shows
that ξ∗

c (b) converges weakly to the design, which maximizes the function

(γ̃T c)2eT
mM̄−1(ξ, x)em.

If eT
s+2i−1γ̃ = 0 for all i = 1, . . . , k, the condition cT γ̃ �= 0 implies eT

s+2iγ̃ �= 0
for some i = 1, . . . , k and the assertion follows by multiplying (7.32) in the
appendix with δ4k−4 and similar arguments. Finally, the third assertion
follows directly from the definition of the vector γ̃ in (7.23).

Remark 7.3.2 Note that Theorem 7.3.1, Lemma 7.3.2, and Theorem 7.3.2
remain valid for the locally optimal designs in the nonlinear regression
model (7.1). This follows by a careful inspection of the proofs of the previ-
ous results. For example, Theorem 7.7.1 in the appendix shows that

δ4k−2KaM−1(ξ, b)Ka = h(Kaγ̃)(Kaγ̃)T + o(1),

where the vector γ̃ is defined in Lemma 3.3 and, consequently, there exists
a set Ωε,∆ such that for all b ∈ Ωε,∆, the maximum eigenvalue of the inverse
information matrix in model (7.1) is simple. Similarly, if δ → 0 and (7.17)
is satisfied, c-optimal designs in the nonlinear regression model are given
by the design ξc̄(b) in (7.15) and (7.16) with c̄ = Kac whenever γ̃T c̄ �= 0
and all these designs converge weakly to the em-optimal design in the linear
regression model defined by the functions (7.20).
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We finally remark that Theorem 7.3.2 and Remark 7.3.2 indicate
that E-optimal designs are very efficient for estimating the parameters
as+1, b1, . . . , as+k, bk in the nonlinear regression model (7.1) and the lin-
ear model (7.6), because for small differences |bi −bj |, the E-optimal design
and the optimal design for estimating the individual coefficients are close
to the optimal design for estimating the coefficient bk. Therefore, we ex-
pect E-optimal designs to be more efficient for estimating these parameters
than D-optimal designs. We will illustrate this fact in Section 7.5, which
discusses the rational model in more detail.

7.4 Analytical Properties of Optimal Designs

As it was shown in the previous section with b ∈ Ω, where Ω is an open
set in Rk locally E- and c-optimal designs for model (7.7) are located in
the Chebyshev points of the function system f1(t, b), . . . , fm(t, b). Also,
the corresponding weight coefficients can be found by (7.12) and (7.16),
respectively. Thus, it will do to study the Chebyshev points x∗

1, . . . , x
∗
m

and coefficients of vector c∗ as functions of vector b.
We will show that under some not very restrictive additional conditions,

these functions are real analytic and can be expanded into a Taylor series by
formulas of Section 2.4. These conditions are certainly satisfied for rational
and exponential models.

We will need the following result.

Lemma 7.4.1 Let the following conditions be satisfied:

(a) Function, f1(t) = f1(t, b), . . . , fm(t) = fm(t, b) are functions of a
general form generating a Chebyshev system on the interval I with
b ∈ B, where B is an open set in Rk, and such that the Chebyshev
points are uniquely determined.

(b) Functions fi(t, b), i = 1, . . . , m, are real analytic in t with t ∈ I for
any b ∈ B.

(c) The number (say u1) of Chebyshev points coinciding with the left
bound of I and the number (say u2) of such points for the right bound
of I remains the same with b ∈ B.

(d) For any b ∈ B and for any nonzero vector c, the equation cT f ′(t) = 0,
where f(t) = f(t, b) = (f1(t, b), . . . , fm(t, b))T , has at most m−1 roots
and multiple roots are counted twice.

Then coefficients of the Chebyshev polynomial c∗T f(t, b) and the Cheby-
shev point are real analytic functions of b with b ∈ B.

Proof. Let, for certainly, I = [d1, d2], u1 = 1, u2 = 0; that is,

d1 = t∗1(b) < · · · < t∗m(b) < d2
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where t∗1(b), i = 1, . . . , m, are Chebyshev points of the function system
{f1(t, b), . . . , fn(t, b)}. All other cases can be considered in a similar way.

Denote

t = (t2, . . . , tm)T , t∗(b) = (t∗2(b), . . . , t
∗
m(b))T ,

c = (c1, . . . , cm)T ,

τ = (cT , tT , τ∗(b) = (c∗T (b), t∗T (b))T .

Due to the definition of the Chebyshev polynomial (see Section 1.8), the
equation system

cT f(ti, b) = (−1)i, i = 1, . . . , m, t1 = d1,

cT f ′(ti, b) = 0, i = 2, . . . , m,

has the solution c = c∗(b), t = t∗(b) and determine, the vector τ∗(b) as an
implicit function of b, b ∈ B.

The Jacobi matrix of this system has the form

Q = Q(τ, b) =
(

F 0
F̃ D

)
,

where
F = (fi(tj , b))

m
i,j=1 ,

F̃ = (f ′
i(tj , b))

m
i=1,j=2 ,

D = diag
{
cT f ′′(t2), . . . , cT f ′′(tm)

}
.

Assume in the following that b is any fixed vector in B.
Denote

J(b) = Q (τ∗(b), b) .

Note that
det Q = det F det D

and
det F �= 0

for any points t1 < t2 < · · · < tm due to the definition of the Chebyshev
system. Since

c∗T f ′(tmi ) = 0, i = 2, . . . , m,

due to condition (d) it follows that c∗T f ′′(t∗i ) �= 0, i = 2, . . . , m, and

det D =
m∏

i=2

c∗T f ′′(t∗i ) �= 0.

Therefore, det J(b) �= 0 for b ∈ B.
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Now, the proposition of the lemma follows from the Implicit Function
Theorem (see Section 1.8).

Taylor expansions for the vector function τ∗(b) will be constructed for
exponential models in Section 7.6. In the next section we will obtain a
characterization of the Chebyshev points as roots of some polynomials for
rational models.

7.5 Rational Models

In this section, we discuss the rational model (7.2) in more detail, where the
design space is a compact or semi-infinite interval I. In contrast to the work
of Imhof and Studden (2001), we assume that the nonlinear parameters
b1, . . . , bk �∈ I are not known by the experimenter but have to be estimated
from the data. A typical application of this model can be found in the
work of Dudzinski and Mykytowycz (1961), where this model was used
to describe the relation between the weight of the dried eye lens of the
European rabbit and the age of the animal. In the notation of Sections 7.2
and 7.3 we have f(t) = f(t, b) = (f1(t), . . . , fm(t))T with

fi(t) = fi(t, b) = ti−1, i = 1, . . . , s,

fs+2i−1(t) = fs+2i−1(t, b) = 1
t−bi

, i = 1, . . . , k,

fs+2i(t) = fs+2i(t, b) = 1
(t−bi)2

, i = 1, . . . , k,

(7.29)

and the equivalent linear regression model is given by (7.4). The corre-
sponding limiting model is determined by the regression functions f̄(t) =
f̄(t, x) = (f̄1(t, x), . . . , f̄m(t, x))T , with

f̄i(t) = ti−1 , i = 1, . . . , s,

f̄i+s(t) = f̄s+i(t, x) = 1
(t−x)i , i = 1, . . . , 2k.

(7.30)

Some properties of the functions defined by (7.29) and (7.30) are discussed
in the following lemma.

Lemma 7.5.1 Define

B = {b = (b1, . . . , bk)T ∈ R
k | bi �∈ I; bi �= bj};

then the following assertions are true;

(i) If I is a finite interval or I ⊂ [0,∞) and b ∈ B, then the system

{f1(t1, b), . . . , fm(t, b)}
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defined in (7.29) is a Chebyshev system on the interval I. If x �∈ I,
then the system

{f̄1(t, x), . . . , f̄m(t, x)}
defined by (7.30) is a Chebyshev system on the interval I.

(ii) Assume that b ∈ B and that one of the following conditions is satisfied:

(a) I ⊂ [0,∞)

(b) s = 1 or s = 0.

For any j ∈ {1, . . . , k}, the system of regression functions

{fi(t, b) | i = 1, . . . , m, i �= s + 2j}

is a Chebyshev system on the interval I.

(iii) If I is a finite interval or I ⊂ [0,∞), k ≥ 2, and j ∈ {1, . . . , k}, then
there exists a nonempty set Wj ⊂ B such that for all b ∈ Wj, the
system of functions

{fi(t, b) | i = 1, . . . , m; i �= s + 2j − 1}

is not a Chebyshev system on the interval I.

Proof. Part (iii) follows from Remark 7.2.1. Parts (i) and (ii) are proved
similarly and we restrict ourselves to the first case. For this purpose, we
introduce the functions ψ(t, b) = (ψ1(t, b̃), . . . , ψm(t, b̃))T , with

ψi(t, b̃) = ti−1, i = 1, . . . , s,

ψs+i(t, b̃) = 1
t−b̃i

, i = 1, . . . , 2k,
(7.31)

where b̃ = (b̃1, . . . , b̃2k)T is a fixed vector with pairwise different compo-
nents. With the notation

L(∆) =
(

Is 0
0 Gk(∆)

)
∈ R

m×m,

Gk(∆) =

⎛
⎜⎝ G(∆)

. . .
G(∆)

⎞
⎟⎠ ∈ R

2k×2k,

G(∆) =
(

1 0
− 1

∆
1
∆

)
∈ R

2×2

(here Is is the s × s identity matrix), it is easy to verify that

f(t, b) = L(∆)ψ(t, b̃∆) + o(1) , (7.32)
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where b̃∆ = (b1, b1 + ∆, . . . , bk, bk + ∆)T . For a fixed vector T =
(t1, . . . , tm)T ∈ R

m with ordered components t1 < · · · < tm such that
ti ∈ I (i = 1, . . . , m), define the matrices

F (T, b) = (fi(tj , b))m
i,j=1 ,

ψ(T, b̃) = (ψi(tj , b̃))m
i,j=1

then we obtain from (7.32),

det F (T, b) = lim
∆→0

1
∆k ψ(T, b̃∆)

=

∏
1≤i<j≤m(tj − ti)

∏
1≤i<j≤k(bi − bj)4∏k

i=1
∏m

j=1(tj − bi)2
,

(7.33)

where the last identity follows from the fact that ψ(T, b̃) is a Cauchy–
Vandermonde matrix, which implies

det ψ(T, b̃) =

∏
1≤i<j≤m(tj − ti)

∏
1≤i<j≤2k(b̃i − b̃j)∏2k

i=1
∏m

j=1(tj − b̃i)
.

Now for any b ∈ B the right hand side does not vanish and is of one sign
independently of T. Consequently {fi(t, b) | i = 1, . . . , m} is a Chebyshev
system on the interval I. The assertion regarding the system {f̄i(t, x) | i =
1, . . . , m} is proved similarly and therefore left to the reader.

The case k = 1 will be studied more explicitly in Examples 7.5.1 and
7.5.2. Note that the third part of Lemma 7.5.1 shows that for k ≥ 2,
the main condition in Theorem 7.5 in the paper of Imhof and Studden
(2001) is not satisfied in general for the linear regression model with the
functions given by (7.29). These authors assumed that every subsystem of
{f1, . . . , fm} that consists of m − 1 of these functions is a weak Chebyshev
system on the interval I. Because the design problem for this model is equiv-
alent to the design problem for model (7.2) (where the nonlinear parameters
are not known and have to be estimated), it follows that, in general, we
cannot expect locally E-optimal designs for the rational model to be sup-
ported at the Chebyshev points. However, the linearized regression model
(7.4) is a special case of the general model (7.6) with ϕ(t, b) = (t−b)−1 and
all results of Section 7.3 are applicable here. In particular, we obtain that
the E-optimal designs and the optimal designs for estimating the individual
coefficients as+1, b1, . . . , as+k, bk are supported at the Chebyshev points if
the nonlinear parameters b1, . . . , bk are sufficiently close (see Theorem 7.3.1,
Lemma 7.3.2, and Remark 7.3.2).

Theorem 7.5.1 Consider the rational model (7.29) on the interval [−1, 1]
with s ≥ 1 and unknown parameters a1, . . . , as−1, as, b1, . . . , as+k, bk.
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(i) If s = 1, then the Chebyshev points s1 = s1(b), . . . , sm = sm(b) for
the system of regression functions in (7.29) on the interval [−1, 1] are
given the roots of the polynomial

(1 − t2)
4k∑
i=0

diU−2k+s+i−2(t), (7.34)

where Uj(x) denotes the j-th Chebyshev polynomial of the second kind
(see Szegö (1975)), U−1(x) = 0, U−n(x) = −Un−2(x), and the factors
d0, . . . , d4k are defined as the coefficients of the polynomial

4k∑
i=0

dit
i =

k∏
i=1

(t − τi)4, (7.35)

where
2bi = τi +

1
τi

, i = 1, . . . , k.

(ii) Let ΩE ⊂ B denote the set of all b such that an E-optimal design for
the model (7.4) is given by (7.14) and (7.12); then ΩE ��= ∅.

Proof. The second part of the theorem is a direct consequence of Lemma
7.5.1 and Theorem 7.3.1, and the first part of the proposition follows by
Theorem A.2 in Imhof and Studden (2001).

Remark 7.5.1 The following notes can be useful as an addition to Theo-
rem 7.5.1:

(a) The Chebyshev points for the system (7.29) on an arbitrary finite in-
terval I ⊂ R can be obtained by rescaling the points onto the interval
[−1, 1]. The case s = 0 and I = [0,∞) will be discussed in more detail
in Examples 7.5.1 and 7.5.3.

(b) It follows from Theorem 7.3.1 that the set ΩE defined in the second
part of Theorem 7.5.1 contains the set Ωε,∆ defined in (7.18) for suffi-
ciently small ε. In other words, if the nonlinear parameters b1, . . . , bk

are sufficiently close, the locally E-optimal design will be supported
at the Chebyshev points with weights given by (7.12). Moreover, we
will demonstrate in the subsequent examples that in many cases, the
set ΩE coincides with the full set B.

(c) In applications, the Chebyshev points can be calculated numerically
with the Remez algorithm (see Studden and Tsay (1976) or De Vore
and Lorentz (1993)). In some cases, these points can be obtained
explicitly (see Examples 7.5.1 and 7.5.2).
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Remark 7.5.2 We note that a similar result is valid for c-optimal designs
in the rational regression model (7.4). For example, assume that one of the
assertions of Lemma 7.5.1 is valid and that we are interested in estimating
a linear combination cT β of the parameters in the rational model (7.4).
We obtain from Lemma 7.3.2 that if c ∈ R

m satisfies cT γ̃ �= 0, then for
sufficiently small ε and any b ∈ Ωε,∆, the design ξc(b) defined in (7.15) and
(7.16) is c-optimal. In particular, this is true for c = es+2j−1 (for all j =
1, . . . , k) and the vector c = es+2j if the index j satisfies the condition (7.26).
Note that due to the third part of Lemma 7.5.1, in the case k ≥ 2 there
exists b ∈ B such that the es+2j-optimal design is not necessarily supported
at the Chebyshev points. However, from Theorem 7.3.2, it follows that for
a vector b ∈ B satisfying (7.17), with δ → 0 and any vector c with cT γ̃ �= 0
we have for the designs ξ∗

c∗(b) and ξ∗
c (b) defined by (7.14) and (7.15),

ξ∗
c∗(b) → ξ̄em

(x),

ξ∗
c (b) → ξ̄em(x) ,

where the design ξ̄em(x) is defined in (7.27) and (7.28), respectively, and
em-optimal in the limiting model with the regression functions (7.30).

Example 7.5.1 Consider the rational model

Y =
a

t − b
+ ε, t ∈ [0,∞), (7.36)

with b < 0 (here we have k = 1, s = 0, and I = [0,∞)). The corresponding
equivalent linear regression model is given by

Y = βT f(t, b) =
β1

t − b
+

β2

(t − b)2
. (7.37)

In this case, it follows from the first part of Lemma 7.5.1 that the system
of regression functions{ 1

t − b
,

1
(t − b)2

}
= {f1(t), f2(t)}

is a Chebyshev system on the interval [0,∞) whenever b < 0. Moreover, any
subsystem (consisting of one function) is obviously a Chebyshev system on
the interval [0,∞). The Chebyshev points are the (local) extremal of the
function

g(t) = ρ
( 1

t − b
+

κ

(t − b)2
)
,

where ρ and κ are determined by the conditions

g(t) ≤ 1 ∀ t ∈ [0,∞),

g(sj) = (−1)j , j = 1, 2.
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It is easy to see that s1 = 0 and that s2 is the positive solution of the
equation g′(t) = 0, which implies

κ =
b − s2

2
.

Observing the relation g(s1) = −g(s2), by a straightforward calculation we
obtain

s2 =
√

2|b| = −
√

2b

and the condition g(s1) = g(0) = −1 implies

ρ =
−2√
2 − 1

b,

which determines the Chebyshev polynomial explicitly. Now, we consider
the design ξ∗

c (b) defined in (7.15) as a candidate for the c-optimal design
in model (7.37). The weights (for any c ∈ R

2) are obtained from (7.16),
where the matrix F is given by

F = (fi(sj))2i,j=1 =

⎛
⎜⎜⎝

1
|b|

1
(
√

2 + 1)|b|
1
b2

1
(
√

2 + 1)2b2

⎞
⎟⎟⎠ .

A straightforward calculation shows that

F−1c =
1
2

( |b|(−√
2c1 + (2 +

√
2)c2b)

−|b|(4 + 3
√

2)(−c1 + c2b)

)
,

which gives

ξ∗
c (b) =

(
0

√
2|b|

w1 w2

)
, (7.38)

where the weights are given by

ω1 = 1 − ω2 =
|b(−√

2c1 + (2 +
√

2)c2b)|
|b|{−√

2c1 + (2 +
√

2)c2b | +(4 + 3
√

2)| − c1 + c2b|}
.

It can easily be checked by Elfving’s theorem [see Elfving (1952)] or by
the equivalence theorem for c-optimality [see Pukelsheim (1993)] that this
design is in fact c-optimal in the regression model (7.37) whenever

c2

c1
�∈
[1
b
,

1
(1 +

√
2)b

]
.

In the remaining cases, the c-optimal design is a one-point design supported
at t = b − c1

c2
. In particular, by Lemma 7.2.3, the e1- and e2-optimal design
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for estimating the coefficients β1 and β2 in model (7.37) are given by

ξ∗
e1

(b) =
(

0
√

2|b|
1
4 (2 − √

2) 1
4 (2 +

√
2)

)
,

ξ∗
e2

(b) =
(

0
√

2|b|
1 − 1√

2
1√
2

)
,

(7.39)

respectively. It follows from the results of Imhof and Studden (2001) that an
E-optimal design in the regression model (7.37) is given by the c∗-optimal
design for the Chebyshev vector

c∗ = (1 +
√

2)|b|(−2, |b|(1 +
√

2))T ;

that is,

ξ∗
E =

(
0

√
2|b|

w1 w2

)
, (7.40)

where

w1 =
1
2

(2 − √
2)(6 − 4

√
2 + b2)

b2 + 12 − 8
√

2
= 1 − 1

2

√
2(2

√
2 − 2 + b2)

b2 + 12 − 8
√

2
= 1 − w2.

The corresponding information matrix is obtained by a tedious calculation,

M(ξ∗
E(b), b) =

⎛
⎜⎜⎜⎜⎝

(
√

2 − 1)(b2 + 6
√

2 − 8)
b2(b2 + 12 − 8

√
2)

2(3 − √
2)(b2 +

√
2 − 1)

b3(b2 + 12 − 8
√

2)

2(3 − √
2)(b2 +

√
2 − 1)

b3(b2 + 12 − 8
√

2)
(8

√
2 − 11)(7b2 + 16

√
2 − 20)

7b4(b2 + 12 − 8
√

2)

⎞
⎟⎟⎟⎟⎠ ,

(7.41)
and has a minimum eigenvalue

λmin(M(ξ∗
E(b), b) =

17 − 2
√

2
b2(b2 + 12 − 8

√
2)

=
1

‖c∗‖2

of multiplicity 1 with corresponding eigenvector c∗. Note that for b → −∞,
this design approximates the optimal design ξ∗

e2
(b) for estimating the indi-

vidual coefficient β2 in the rational model (7.37).
It is of some interest to compare these designs with the locally D-optimal

design. It follows from the results in He, Studden, and Sun (1996) and a
straightforward calculation that this design is given by

ξ∗
D =

(
0 |b|
1
2

1
2

)
. (7.42)

The designs are now compared by their efficiencies for estimating the coef-
ficients β1 and β2; that is,

effi(ξ) =
(

eT
i M−1(ξ, b)ei

eT
i M−1(ξ∗

ei
, b)ei

)−1

, i = 1, 2. (7.43)
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The values eT
i M−1(ξ∗

ei
, b)ei can be directly obtained from the Chebyshev

vector, which gives

eT
i M−1(ξ∗

ei
, b)ei =

{
4(1 +

√
2)2b2 if i = 1

(1 +
√

2)4b4 if i = 2.

Now, a straightforward calculation yields

effi(ξ∗
D) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4(
√

2 + 1)2

34
≈ 0.6857 if i = 1

(
√

2 + 1)4

40
≈ 0.8493 if i = 2.

for the efficiencies of the D-optimal design defined by (7.42). The corre-
sponding efficiencies of the E-optimal design in the regression model (7.37)
depend on the parameter b and are obtained by a straightforward but te-
dious inversion of the matrix M(ξ∗

E(b), b) defined in (7.41); that is,

effi(ξ∗
E(b)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

28(b4(5
√

2 − 7) + b2(34
√

2 − 48) + 396 − 280
√

2)
(9

√
2 − 11)(b2 − 8

√
2 + 12)(7b2 + 16

√
2 − 20)

if i = 1

b4(
√

2 − 1) + (6
√

2 − 8)b2 + 68 − 48
√

2
(
√

2 − 1)(b2 − 8
√

2 + 12)(b2 − 6
√

2 + 8)
if i = 2.

(7.44)
The corresponding efficiencies are depicted in Figure 7.1 for the range b ∈
[−2.5,−1]. We observe for the e1-efficiency for all b ≤ −1,

0.9061 ≈ 4(5
√

2−7)
(8

√
2−11)

= limb→−∞ eff1(ξ∗
E(b))

≤ eff1(ξ∗
E(b)) ≤ eff1(ξ∗

E(−1)) ≈ 0.9595,

and similarly for the e2-efficiency,

0.9805 ≈ eff2(ξ∗
E(−1)) ≤ eff2(ξ∗

E(b)) ≤ lim
b→−∞

eff2(ξ∗
E(b)) = 1.

This demonstrates that the E-optimal designs yield substantially more ac-
curate estimates for the individual parameters in the regression model (7.37)
than the D-optimal design.

We finally mention the results for the locally optimal design in the ratio-
nal model (7.36), which maximize or minimize the corresponding functional
for the matrix K−1

a M(ξ, b)K−1
a , where Ka = diag(1,− 1

a ). Obviously, the
locally e1-, e2-, and D-optimal designs are given by (7.39) and (7.42), re-
spectively, and coincide with the corresponding designs in the equivalent
linear regression model (7.37). On the other hand, the c-optimal design
for the rational model (7.36) is obtained from the c̄-optimal design ξ∗

c̄ (b) in
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-2.6 -2.4 -2.2 -1.8 -1.6 -1.4 -1.2

0.92

0.94

0.96

0.98

Figure 7.1: Efficiencies of the E-optimal design ξ∗(b) for estimating the in-
dividual coefficients in the regression model (7.37) for various values dotted
line: eff2(ξ∗(b)).

(7.38) for model (7.37), with c̄ = Kac = (c1,−c2/a)T . Similarly, the locally
E-optimal design for the rational model (7.36) is given by

ξ∗
E =

(
0

√
2|b|

w∗
1 w∗

2

)
,

where the weights are given by

w∗
1 =

2
√

2a2 + (4 + 3
√

2)b2

2{4(1 +
√

2)a2 + (7 + 5
√

2)b2}

= 1 − (4 + 3
√

2)(2a2 + (1 +
√

2)b2)
2{4(1 +

√
2)a2 + (7 + 5

√
2)b2} = 1 − w∗

2 .

A comparison of the efficiencies for the D- and E-optimal designs, in the
rational model (7.36) yields similar results as in the corresponding equiva-
lent linear regression model (7.37). For a broad range of parameter values
(a, b), the locally E-optimal designs in the rational model (7.36) are sub-
stantially more efficient for estimating the individual parameters than the
locally D-optimal designs.

Example 7.5.2 We now consider the rational model

Y = a1 +
a2

t − b
+ ε, t ∈ [−1, 1], (7.45)

where |b| > 1. The corresponding equivalent linear regression model is given
by

Y = β1 +
β2

t − b
+

β3

(t − b)2
+ ε, t ∈ [−1, 1], (7.46)
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and the first part of Lemma 7.5.1 shows that this system is a Chebyshev
system on the interval [−1, 1]. Moreover, the three subsystems obtained
by deleting one of the regression functions form also weak Chebyshev sys-
tems (this follows partially from Lemma 7.5.1(ii), and the remaining case
has to be checked directly). Therefore, the optimal designs for estimating
the individual coefficients and the E-optimal design are supported at the
Chebyshev points, which are given by s1 = −1, s2 = 1/b, and s3 = 1. A
similar calculation in Example 7.5.1 shows that the E-optimal design in the
equivalent linear regression model (7.46) is given by

ξ∗
E =

( −1 1
b 1

w1 w2 w3

)
,

where

w1 =
b + 1

2
· 2b7 − 2b6 + 2b5 + 2b4 − 4b3 − 2b2 + b + 2

4b8 − 4b4 − 4b2 + 5
,

w2 =
(b2 − 1)(2b6 + 2b4 − 3)

4b8 − 4b4 − 4b2 + 5
,

w3 =
b − 1

2
· 2b7 + 2b6 + 2b5 − 2b4 − 4b3 + 2b2 + b − 2

4b8 − 4b4 − 4b2 + 5
,

Here, we have used Lemma 7.2.2 and the fact that the vector of the coeffi-
cients of the Chebyshev polynomial is given by

c∗ = (2b2 − 1, 4b(b2 − 1), 2(b2 − 1)2)T .

The optimal designs for estimating the individual coefficients β1, β2, and
β3 are given by

ξ∗
e1

=

(
−1 1

b 1
b(1+b)

2(2b2−1)
b2−1
2b2−1

b(b−1)
2(2b2−1)

)
,

ξ∗
e2

=
( −1 1

b 1
1
8 (2 + 1

b ) 1
2

1
8 (2 − 1

b )

)
,

ξ∗
e3

=
( −1 1

b 1
− 1

4
1
2

1
4

)
,

respectively. We note again that for |b| → ∞, all designs are approximated
by the optimal design ξ∗

e3
for estimating the individual coefficient β3. The

corresponding efficiencies effi(ξ∗
E(b)), i = 1, 2, 3, are depicted in Figure 7.2

for the interval [2, 4] and demonstrate again that the locally E-optimal
design is highly efficient for estimating the coefficients β1, β2, and β3 in
model (7.46).

The locally D-optimal design can be obtained by similar arguments as
given in Example 7.5.1; that is,

ξ∗
D(b) =

( −1 1
b 1

1
3

1
3

1
3

)
,
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0.92

0.94

0.96

0.98

Figure 7.2: Efficiencies of the E-optimal design ξ∗(b) for estimating the
individual coefficients in the regression model (7.46) for various values of b ∈
[2, 4]. Solid line: eff1(ξ∗(b)); dotted line: eff2(ξ∗(b)), dashed line: eff3(ξ∗(b))

and the corresponding efficiencies can be calculated explicitly and are given
by

effi(ξ∗
D(b)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(2b2 − 1)2

3(3b4 − 3b2 + 2)
if i = 1

32b2

3 + 36b2 if i = 2

2
9

if i = 3.

Again, we observe that, the locally E-optimal design yield substantially
more accurate estimates of the individual parameters than D-optimal de-
signs. Finally, the locally optimal designs for the rational model (7.45) are
obtained as follows. The optimal designs for estimating the individual co-
efficients and the locally D-optimal design coincide with the corresponding
designs in the linear regression model (7.46) whereas the locally E-optimal
design puts masses

w∗
1 =

2(b2 − 1)4 + a2
2b(8b5 + 4b4 − 14b3 − 6b2 + 7b + 3)

2{4(b2 − 1)4 + a2
2(16b6 − 28b4 + 12b2 + 1} ,

w∗
2 =

(b2 − 1){2(b2 − 1)3 + a2
2(8b4 − 6b2 − 1)}

4(b2 − 1) + a2
2(16b6 − 28b4 + 12b2 + 1)

,

w∗
3 =

2(b2 − 1)4 + a2
2b2(8b5 − 4b4 − 14b2 + 6b2 + 7b − 3)

2{4(b2 − 1)4 + a2
2(16b6 − 28b4 + 12b2 + 1)}

at the points −1, 1/b, and 1, respectively.

Example 7.5.3 We now discuss optimal designs for the rational model

Y =
a1

t − b1
+

a2

t − b2
+ ε, t ∈ [0,∞), (7.47)
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where b1, b2 < 0 and |b2 − b2| > 0 (k = 2, s = 0). The corresponding
equivalent linear regression model is given by

Y =
β1

t − b1
+

β2

(t − b1)2
+

β3

t − b2
+

β4

(t − b2)2
+ ε. (7.48)

Locally D-optimal designs for model (7.47) [or, equivalently, (7.48)] have
been determined in Chapter 5, and the optimal designs for estimating the
individual coefficients can be obtained numerically from the results of this
chapter. We now compare these designs by looking at D-, E-, and ei-
efficiencies. For the sake of brevity, we restrict ourselves to model (7.48),
which corresponds to the locally optimal design problem for model (7.47),
with (a1, a2) = (1, 1). In our comparison, we will also include the E-optimal
design in the limiting model under assumption (7.17); that is,

Y =
β1

t − x
+

β2

(t − x)2
+

β3

(t − x)3
+

β4

(t − x)4
+ ε, (7.49)

where the parameter x is chosen as x = (b1 + b2)/2. Without loss of gen-
erality, we assume that x = −1, because, in the general case, the optimal
designs can be obtained by a simple scaling argument. The limiting optimal
design was obtained numerically and is given by

ξ̄E(−1) =
(

0 0.18 1.08 7.9
0.13 0.26 0.27 0.34

)
. (7.50)

¿From Theorem 7.3.1, we obtain that for sufficiently small

∆ =
∣∣∣∣b1 − b2

2

∣∣∣∣ ,
the E-optimal designs for model (7.47) is given the design ξ∗

c∗(b) defined in
(7.12) and (7.14). From Lemma 7.2.2, it follows that the design ξ∗

c∗(b) is
E-optimal whenever

λc∗ :=
c∗T M(ξ∗

E(b), b)c∗

c∗T c∗ ≤ λ(2)(M(ξ∗
E(b), b)) = λ(2),

where λmin(M(ξ∗
E(b), b)) ≤ λ(2) ≤ · · · ≤ λ(m) denote the ordered eigenval-

ues of the matrix M(ξ∗
E(b), b). The ratio λ(2)/λc∗ is exemplarily depicted

in Figure 7.3 for b1 = 1 and a broad range of b2 values, which shows that
it is always larger than 1. Other cases yield a similar picture and practi-
cally the locally E-optimal design for the rational model (7.47), and the
equivalent linear regression model (7.48) is always supported at the Cheby-
shev points and given by (7.12) and (7.14). In Tables 7.1 and 7.2, we give
the main characteristics and efficiencies for the locally E- and D-optimal
design ξ∗

E(b), ξ∗
D(b) and for the E-optimal design ξ̄∗

E( b1+b2
2 ) in the limiting

regression model (7.49). The efficiencies are calculated with respect to the
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Table 7.1: D- and E-optimal designs for linear regression model (7.48) on
the interval [0,∞), where b1 = −1 − z and b2 = −1 + z. These designs
are locally D- and E-optimal in the rational model (7.47) for the initial
parameter a1 = a2 = 1. Note that the smallest support point, of the D-
optimal design (t∗1D) and E-optimal design (t∗1E) are equal to 0 and that
the masses of the D-optimal design are equal to each other

z 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
t∗2D 0.21 0.20 0.20 0.19 0.17 0.15 0.13 0.10 0.06 0.04
t∗3D 1.00 0.98 0.95 0.92 0.87 0.80 0.71 0.60 0.44 0.31
t∗4D 4.78 4.73 4.65 4.54 4.39 4.19 3.94 3.60 3.13 2.78
t∗2E 0.18 0.17 0.17 0.16 0.15 0.13 0.11 0.09 0.05 0.03
t∗3E 1.08 1.06 1.03 0.99 0.94 0.87 0.77 0.65 0.47 0.34
t∗4E 7.85 7.77 7.65 7.46 7.21 6.88 6.45 5.88 5.05 4.43
w∗

1E 0.13 0.13 0.13 0.13 0.12 0.10 0.08 0.07 0.05 0.03
w∗

2E 0.26 0.26 0.27 0.26 0.25 0.22 0.20 0.17 0.13 0.10
w∗

3E 0.27 0.27 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
w∗

4E 0.34 0.33 0.33 0.33 0.36 0.39 0.44 0.49 0.54 0.59

Table 7.2: The efficiency of the E-optimal designs ξ∗
E in the linear regression

model (7.48) on the interval [0,∞) with b1 = −1 − z and b2 = −1 + z
and the efficiency of the E-optimal design ξ∗

E(−1) given in (7.50) in the
corresponding limiting model (7.49). The efficiencies effD(ξ), di(ξ), and
CE(ξ) are defined in (7.51), (7.52), and (7.53), respectively

z 0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
d1(ξ∗

E) 0.81 0.81 0.83 0.87 1.04 1.28 0.72 0.52 0.48
d2(ξ∗

E) 0.80 0.79 0.78 0.76 0.74 0.71 0.68 0.63 0.59
d3(ξ∗

E) 0.81 0.81 0.81 0.83 0.86 0.94 1.08 1.38 1.79
d4(ξ∗

E) 0.82 0.84 0.85 0.89 0.97 1.12 1.36 1.89 2.53
d1(ξ̄∗

E(−1)) 0.81 0.82 0.83 0.87 0.93 0.95 0.92 1.14 1.37
d2(ξ̄∗

E(−1)) 0.80 0.80 0.82 0.86 0.94 1.09 1.38 2.04 2.81
d3(ξ̄∗

E(−1)) 0.81 0.81 0.83 0.86 0.93 1.09 1.51 3.42 10.00
d4(ξ̄∗

E(−1)) 0.82 0.84 0.85 0.88 0.94 1.08 1.49 3.48 10.59
effD(ξ∗

E) 0.89 0.89 0.89 0.88 0.85 0.81 0.75 0.67 0.60
effD(ξ̄∗

E(−1)) 0.89 0.89 0.88 0.88 0.87 0.84 0.78 0.63 0.48
CE(ξ∗

E) 1.23 1.23 1.25 1.27 1.32 1.39 1.47 1.61 1.75
CE(ξ̄∗

E(−1)) 1.23 1.23 1.22 1.16 1.08 0.92 0.72 0.50 0.38

D-optimal design for various values of the nonlinear parameters b1 and b2
and are defined by

effD(ξ) =
(

det M(ξ, b)
det M(ξ∗

D, b)

)1/m

(7.51)
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di(ξ) =
eT

i M−1(ξ, b)ei

eT
i M−1(ξ∗

D, b)ei
(7.52)

(in other words, we compare the performance of the design ξ for estimating
individual coefficients with respect to the D-optimal design) and

CE(ξ) =
λmin(M(ξ, b))
λmin(M(ξ∗

D, b)
. (7.53)

Again, we observe a very good performance of the E-optimal designs.
These designs produce a reasonable D-efficiency for a moderate size of the
difference |b1 − b2|, but are in many cases substantially more efficient than
the D-optimal designs for estimating the individual coefficients. The be-
havior of the design ξ̄E in the limiting regression model (7.48) is interesting
from a practical point of view because it is very similar to the performance
of the E-optimal design for a broad range of b1 and b2 values. Consequently,
this design might be appropriate if rather unprecise prior information for
the nonlinear parameters is available. For example, if it is known (by sci-
entific background) that b1 ∈ [b1, b̄1] and b2 ∈ [b2, b̄2], the design

ξ̄E

(b1 + b̄2

2

)
might be a robust choice for practical experiments.
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Figure 7.3: The ratio λ(2)/λc∗ for the design ξ∗
E(b), where b = (−1, b2).

The designs are E-optimal if this ratio is larger or equal than 1.

Example 7.5.4 Our final example discusses the rational model (7.47) with
an additional term for the intercept:

Y = a1 +
a2

t − b1
+

a3

t − b2
+ ε, t ∈ [−1, 1], (7.54)

where |bi| > 1 (i = 1, 2) and |b2 − b2| > 0 (this corresponds to the case
k = 2, s = 1 in the general model (7.4)). The limiting model is given by

Y = β1 +
β2

t − x
+

β3

(t − x)2
+

β4

(t − x)3
+

β5

(t − x)4
+ ε. (7.55)
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The notation is essentially the same as in the previous example. Our nu-
merical study showed that the locally E-optimal design for model (7.54) is
supported at the Chebyshev points for all choices of the parameters (b1, b2)
(|bi| > 1, b1 �= b2). In Tables 7.3 and 7.4 we display the main features of
the locally E- and D-optimal designs ξ∗

E and ξ∗
D and the E-optimal design

ξ̄E

(
b1+b2

2

)
in the limiting regression model (7.55), which is given by

ξ̄E(−3) =
( −1 −0.84 −0.33 0.49 1

1
8

1
4

1
4

1
4

1
8

)
. (7.56)

The conclusions are very similar to those in Example 7.5.3. This indicates
that the observations from this example are, in some sense, representative.

7.6 Exponential Models

In the present section we will consider the models of the form

Y =
k∑

i=1

aie
−bit + ε, 0 < b1 < · · · < bk, (7.57)

where a1, . . . , ak and b1, . . . , bk are parameters to be estimated. These
models can be obtained from (7.1) by substituting s = 0 and ϕ(t, b) =
exp(−bt).

The corresponding linearized model assumes the form

Y = βT f(t, b) + ε,

where β = (β1, . . . , β2k)T is the parameter vector to be estimated,

f(t, b) = (f1(t, b), . . . , f2k(t, b))T
, b = (b1, . . . , bk)T ,

f2i−1(t, b) = exp(−bit), i = 1, . . . , k,

f2i(t, b) = t exp(−bi, t), i = 1, . . . , k.

(7.58)

The limiting model assumes the form

Y = βT f̄(t, γ) + ε,

where
f̄(t, γ) =

(
f̄1(t, γ), . . . , f̄2k(t, γ)

)T
,

f̄i(t, γ) = e−γtti−1, i = 1, . . . , 2k.
(7.59)

As was pointed out in Section 1.8, the system (7.58) with b1 < · · · <
bk and the system (7.59) with arbitrary γ are Chebyshev systems on an
arbitrary finite interval, and for the the Chebyshev points are uniquely
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Table 7.3: Locally D- and E-optimal designs for the rational regression
model (7.54) on the interval [−1, 1], where b1 = −3 − z, b2 = −3 + z, and
a3 = a2 = 1. Note that the largest and smallest support points, and of the
locally E- and D-optimal design satisfy t∗5E = t∗5D = 1 and t∗1E = t∗1D = −1,
respectively, and the masses of the locally D-optimal design are all equal.

z 0.1 0.2 0.3 0.5 1 1.5 1.9
t∗2D -0.81 -0.81 -0.81 -0.82 -0.83 -0.87 -0.95
t∗3D -0.32 -0.34 -0.34 -0.34 -0.38 -0.47 -0.70
t∗4D 0.41 0.41 0.41 0.40 0.37 0.29 0.08
t∗2E -0.84 -0.84 -0.84 -0.85 -0.86 -0.89 -0.96
t∗3E -0.33 -0.33 -0.34 -0.34 -0.38 -0.47 -0.70
t∗4E 0.49 0.49 0.49 0.48 0.45 0.38 0.17
w∗

1E 0.13 0.13 0.13 0.12 0.11 0.09 0.05
w∗

2E 0.25 0.25 0.25 0.25 0.22 0.20 0.14
w∗

3E 0.25 0.25 0.25 0.25 0.25 0.25 0.25
w∗

4E 0.25 0.25 0.25 0.25 0.28 0.30 0.36
w∗

5E 0.12 0.12 0.12 0.13 0.14 0.16 0.20

Table 7.4: The efficiency of the E-optimal designs ξ∗
E in the rational re-

gression model (7.54) on the interval [−1, 1] with b1 = −3− z, b2 = −3+ z,
and a3 = a2 = 1 and the efficiency of the E-optimal design ξ̄E(−1) given in
(7.56) in the corresponding limiting model (7.55). The efficiencies effD(ξ),
di(ξ), and CE(ξ) are defined in (7.51), (7.52), and (7.53), respectively.

z 0.1 0.2 0.3 0.5 1 1.5 1.9
d1(ξ∗

E) 0.86 0.87 0.87 0.87 0.84 0.82 0.75
d2(ξ∗

E) 0.83 0.84 0.84 0.84 0.85 0.90 1.21
d3(ξ∗

E) 0.83 0.84 0.84 0.84 0.87 0.97 1.53
d4(ξ∗

E) 0.83 0.84 0.84 0.83 0.88 0.81 0.74
d5(ξ∗

E) 0.83 0.84 0.84 0.84 0.83 0.82 0.76
d1(ξ̄∗

E(−3)) 0.86 0.88 0.88 0.89 0.96 1.31 3.62
d2(ξ̄∗

E(−3)) 0.83 0.84 0.84 0.84 0.85 1.05 5.74
d3(ξ̄∗

E(−3)) 0.83 0.84 0.84 0.84 0.84 1.01 5.72
d4(ξ̄∗

E(−3)) 0.83 0.84 0.84 0.83 1.08 1.28 3.74
d5(ξ̄∗

E(−3)) 0.83 0.84 0.84 0.84 0.88 1.21 3.94
effD(ξ∗

E) 0.93 0.93 0.93 0.93 0.93 0.91 0.83
effD(ξ̄∗

E(−3)) 0.93 0.93 0.93 0.93 0.93 0.91 0.66
CE(ξ∗

E) 1.20 1.19 1.19 1.19 1.20 1.22 1.33
CE(ξ̄∗

E(−3)) 1.20 1.19 1.19 1.19 1.14 0.82 0.26
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determined. Thus, Theorem 7.3.2 holds for the regression models (7.57) on
an arbitrary finite interval.

It is also not difficult to check (and it is left to the reader) that condition
(d) of Lemma 7.4.1 is satisfied for the function system (7.58) and, thus, this
lemma can be applied.

Let Ω be the set of values b for which the minimal eigenvalue of the
information matrix M(ξc∗) is equal to b/c∗T c∗. Due to Lemma 7.2.2, in this
case the Chebyshev design ξc∗ is the unique locally E-optimal design. Thus,
in the case b ∈ Ω for constructing locally E-optimal designs, it will do to find
Chebyshev points for the system (7.58). Also, if all coefficients determined
by (7.12) are non-negative, then for constructing c-optimal designs, it also
will do to find the Chebyshev points. Other cases appears to be more
complex and are not covered by the theory developed above. However, the
examples given below show that the theory for many models cover either
the whole set of possible values of the parameters or at least its significant
part.

The following remark is useful for understanding the behavior of optimal
designs.

Remark 7.6.1 Let Ω denote the set of all vectors b = (b1, . . . , bk)T ∈ R
k

with bi �= bj , i �= j, bi > 0, i = 1, . . . , k, such that the minimum eigenvalue
of the information matrix of the local E-optimal design (with respect to
the vector b) is simple. The following properties of local E-optimal designs
follow by standard arguments from general results on E-optimal designs
(see Dette and Studden (1993), Pukelsheim (1993), as well as Chapters 3
and 4 of the present book) and simplify the construction of local E-optimal
designs substantially.

1. For any b ∈ Ω, the local E-optimal design for the exponential regres-
sion model (7.57) (with respect to the parameter b) is unique.

2. For any b ∈ Ω, the support points of the local E-optimal design for the
exponential regression model (7.57) (with respect to the parameter b)
do not depend on the parameters a1, . . . , ak.

3. For any b ∈ Ω, the local E-optimal design for the exponential regres-
sion model (7.57) (with respect to the parameter b) has 2k support
points; moreover, the point d is always a support point of the local
E-optimal design. The support points of the E-optimal design are
the extremal points of the Chebyshev function pT f(x), where p is an
eigenvector corresponding to the minimal eigenvalue of the informa-
tion matrix M(ξ∗

E(b)).

4. For any b ∈ Ω, the weights of the local E-optimal design for the
exponential regression model (7.57) (with respect to the parameter b)
are given by

w∗ =
JF−1p

pT p
, (7.60)
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where pT = 1T
jkJF−1, J = diag(1,−1, 1, . . . , 1,−1),

F = (f(x∗
1), · · · , f(x∗

m)) ∈ IR2k×2k

and x∗
1 < . . . < x∗

2k denote the support points of the local E-optimal
design.

5. If b ∈ Ω, let x∗
1;d(b), . . . , x

∗
2k;d(b) denote the support points of the

local E-optimal design for the exponential regression model (7.57)
with design space X = [d, +∞). Then x∗

1;0(b) ≡ 0,

x∗
i;d(b) = x∗

i;0(b) + d, i = 2, . . . , 2k,

x∗
i;0(νb) = x∗

i;0(b/ν, i = 2, . . . , 2k

for any ν > 0.

Consider now a few examples.
Note that the methods for constructing locally E-optimal designs ap-

plied below can be used only in the case when the support points of the
designs are the Chebyshev points for the system (7.58).

For this reason, all designs obtained by the Taylor expansion were
checked for optimality by means of the equivalence theorem for E-criterion
(Theorem 3.3.1). In all cases considered in our numerical study, the Equiv-
alence Theorem confirmed our designs to be locally E-optimal and we did
not find cases where the multiplicity of the minimum eigenvalue of the in-
formation matrix in the exponential regression model (7.57) was larger than
1.

Example 7.6.1 Consider the exponential model E(Y (x)) = a1e
−λ1x cor-

responding to the case k = 1. In this case, the Chebyshev function
φ(x) = (1 + q∗

2x)e−λ1x minimizing

sup
x∈[0,∞)

|(1 + ax)e−λ1x|

with respect to the parameter a ∈ R and the corresponding extremal point
x∗

2 are determined by the equations φ(x∗
2) = −φ(0) and φ′(x∗

2) = 0, which
are equivalent to

e−λ1x2 − λ1x2 + 1 = 0 , p1e
−λ1x2 + λ1 = 0.

Therefore, the second point of the locally E-optimal design is given by
x∗

2 = t∗/λ1, where t∗ is the unique solution of the equation e−t = t − 1
(the other support point is 0) and the locally E-optimal design is given by
{0, x∗

2; w
∗
1 , w∗

2}, where the weights are calculated by the formula given in
Remark 7.6.1; that is,

w∗
1 =

x∗
2e

−λ1x∗
2 + λ1

x∗
2e

−λ1x∗
2 + λ1 + λ1eλ1x∗

2
, w∗

2 =
λ1e

λ1x∗
2

x∗
2e

−λ1x∗
2 + λ1 + λ1eλ1x∗

2
. (7.61)
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Example 7.6.2 For the exponential model

E(Y (x)) = a1e
−λ1x + a2e

−λ2x (7.62)

corresponding to the case k = 2, the situation is more complicated and
the solution of the locally E-optimal design problem cannot be determined
directly. In this case, we used the Taylor expansion introduced in Section
2.4 for the construction of the locally E-optimal design, where the point λ(0)
in this expansion was given by the vector λ(0) = (1.5, 0.5)T . By Remark
7.6.1(5) we can restrict ourselves to the case λ1+λ2 = 2. Locally E-optimal
designs for arbitrary values of λ1+λ2 can be easily obtained by rescaling the
support points of the locally E-optimal design found under the restriction
λ1 + λ2 = 2, whereas the weights have to be recalculated using Remark
7.6.1(4). We consider the parametrization λ1 = 1 + z, λ2 = 1 − z and
study the dependence of the optimal design on the parameter z. Because
λ1 > λ2 > 0, an admissible set of values z is the interval (0, 1). We choose
the center of this interval as the origin for the Taylor expansion. Table 7.5
contains the coefficients in the Taylor expansion for the points and weights
of the locally E-optimal design; that is,

x∗
i = xi(z) =

∞∑
j=0

xi(j)(z − 0.5)j , w∗
i = wi(z) =

∞∑
j=0

wi(j)(z − 0.5)j

(note that x∗
1 = 0 and w∗

1 = 1 − w∗
2 − w∗

3 − w∗
4).

Table 7.5: The coefficients of the Taylor expansion for the support points
and weights of the locally E-optimal designs

j 0 1 2 3 4 5 6
x2(j) 0.4151 0.0409 0.0689 0.0810 0.1258 0.1865 0.2769
x3(j) 1.8605 0.5172 0.9338 1.2577 2.1534 3.6369 6.3069
x4(j) 5.6560 4.4313 10.505 20.854 44.306 90.604 181.67
w2(j) 0.1875 0.2050 0.6893 0.3742 -1.7292 -1.2719 7.0452
w3(j) 0.2882 0.2243 -0.0827 -0.8709 -0.1155 2.7750 1.8101
w4(j) 0.4501 -0.4871 -0.9587 0.2323 2.9239 -0.2510 -12.503

The support points are depicted as a function of the parameter z in
Figure 7.4. We observe for a broad range of the interval (0, 1) only a weak
dependence of the locally E-optimal design on the parameter z. Conse-
quently, it is of some interest to investigate the robustness of the locally
E-optimal design for the parameter z = 0, which corresponds to the vector
λ = (1, 1).

This vector yields to the limiting model (7.18), and by Theorem 7.7.1
given in the appendix, the locally E-optimal designs converge weakly to
the design ξ̄∗

E := ξ̄∗
e2k

. The support points of this design can obtained from
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Figure 7.4: Support points of the locally E-optimal design ξ∗
E(λ) in the

exponential regression model (7.5), where k = 2 and b ∈ (1 + z, 1 − z)T .

the corresponding Chebyshev problem:

inf
a1,a2,a3

sup
x∈[0,∞)

|(1 + a1x + a2x
2 + a3x

3)e−x|

The solution of this problem can be found numerically using the Remez
algorithm (see Studden and Tsay (1976)); that is,

P3(x) = (x3 − 3.9855x2 + 3.15955x − 0.27701)e−x.

The extremal points of this polynomial are given by

x∗
1 = 0, x∗

2 = 0.40635, x∗
3 = 1.75198, x∗

4 = 4.82719;

the weights of design ξ̄∗
E defined in Theorem 7.7.1 are calculated using

formula (7.12); that is

w∗
1 = 0.0767, w∗

2 = 0.1650, w∗
3 = 0.2164, w∗

4 = 0.5419.

Table 7.6: Efficiencies of locally D- and E-optimal designs in the expo-
nential regression model (7.62) (λ1 = 1 + z, λ2 = 1 − z). The locally D-
and E-optimal design are denoted by ξ∗

D(λ) and ξ∗
E(λ), respectively, and

ξ̄∗
D and ξ̄∗

E denote the weak limit of the locally D- and E-optimal design as
λ → (1, 1), respectively

z 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ID(ξ̄∗

D) 1.00 1.00 1.00 0.99 0.98 0.95 0.90 0.80 0.61
ID(ξ∗

E(λ)) 0.75 0.74 0.75 0.75 0.78 0.82 0.87 0.90 0.89
ID(ξ̄∗

E) 0.74 0.74 0.76 0.77 0.78 0.79 0.78 0.72 0.58
IE(ξ̄∗

E) 1.00 1.00 0.98 0.94 0.85 0.72 0.58 0.45 0.33
IE(ξ∗

D(λ)) 0.66 0.66 0.66 0.67 0.70 0.74 0.79 0.82 0.80
IE(ξ̄∗

D) 0.65 0.64 0.62 0.59 0.56 0.52 0.47 0.41 0.33
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Table 7.7: Efficiencies (7.65) of the designs ξ̄∗
D and ξ̄∗

E [obtained as the
weak limit of the corresponding locally optimal designs as λ → (1, 1)] for
estimating the individual coefficients in the exponential regression model
(7.62) (λ1 = 1 + z, λ2 = 1 − z)

z 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
I1(ξ̄∗

E , λ) 1.00 1.00 0.98 0.93 0.84 0.69 0.53 0.40 0.27
I1(ξ̄∗

D, λ) 0.65 0.64 0.61 0.57 0.50 0.41 0.32 0.26 0.19
I2(ξ̄∗

E , λ) 0.99 0.97 0.92 0.85 0.76 0.65 0.55 0.44 0.34
I2(ξ̄∗

D, λ) 0.68 0.70 0.70 0.68 0.65 0.60 0.54 0.46 0.37
I3(ξ̄∗

E , λ) 1.00 1.00 0.98 0.93 0.85 0.73 0.56 0.38 0.20
I3(ξ̄∗

D, λ) 0.65 0.64 0.62 0.58 0.52 0.45 0.35 0.24 0.13
I4(ξ̄∗

E , λ) 1.00 0.99 0.97 0.94 0.88 0.76 0.57 0.33 0.10
I4(ξ̄∗

D, λ) 0.63 0.59 0.54 0.49 0.42 0.34 0.24 0.13 0.04

Some E-efficiencies

IE(ξ, λ) =
λmin(M(ξ))

λmin(M(ξ∗
E(λ)))

(7.63)

of the limiting design ξ̄∗
E are given in Table 7.6 and we observe that this

design yields rather high efficiencies whenever z ∈ (0, 0.6). In this table, we
also display the E-efficiencies and the locally D-optimal design ξ∗

D(λ), the
D-efficiencies

ID(ξ, λ) =
(

det M(ξ)
supη det M(η)

)1/2k

(7.64)

of the locally E-optimal design ξ∗
E(λ), and the corresponding efficiencies of

the the weak limit of the locallyD-optimal designs ξ̄∗
D. We observe that

the design ξ̄∗
D is very robust with respect to the D-optimality criterion. On

the other hand, the D-efficiencies of the E-optimal designs ξ∗
E(λ) and its

corresponding limit ξ̄∗
E are substantially higher than the E-efficiencies of

the ξ∗
D(λ) and ξ∗

D.
Finally, investigate the efficiencies

Ii(ξ, λ) =
infη eT

i M−1(η)ei

eT
i M−1(ξ)ei

, i = 1, . . . , 2k, (7.65)

of the optimal designs ξ̄∗
D and ξ̄∗

E for the estimation of the individual para-
meters. These efficiencies are shown in Table 7.7. Note that in most cases
the design ξ̄∗

E is substantially more efficient for estimating the individual
parameters than the design ξ̄∗

D. The design ξ̄∗
E can be recommended for a

large range of possible values of z.

Example 7.6.3 For the exponential model

E(Y (x)) = a1e
−λ1x + a2e

−λ2x + a3e
−λ3x (7.66)
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corresponding to the case k = 3, the locally E-optimal designs can be
calculated by similar methods. For the sake of brevity, we present only
the limiting design [obtained form the locally D- and E-optimal designs if
λ → (1, 1, 1)] and investigate the robustness with respect to the D- and
E-optimality critera. The support points of the e6-optimal designs in the
heteroscedastic polynomial regression model (7.18) (with γ = 1) can be
found as the extremal points of the Chebyshev function

P5(x) = (x5 − 11.7538x4 + 42.8513x3 − 55.6461x2 + 21.6271x− 1.1184)e−x,

which are given by

x∗
1 = 0, x∗

2 = 0.2446, x∗
3 = 1.0031,

x∗
4 = 2.3663, x∗

5 = 4.5744, x∗
6 = 8.5654.

For the weights of the limiting design ξ̄∗
E := ξ̄∗

e6
, we obtain from the results

of Section 7.3

w∗
1 = 0.0492, w∗

2 = 0.1007, w∗
3 = 0.1089,

w∗
4 = 0.1272, w∗

5 = 0.1740, w∗
6 = 0.4401.

For the investigation of the robustness properties of this design, we note by
Remark 7.6.1(5) that we can restrict ourselves to the case λ1 +λ2 +λ3 = 3.
The support points in the general case are obtained by a rescaling, and
the weights have to be recalculated using Remark 7.6.1(4). For the sake of
brevity, we do not present the locally E-optimal designs, but restrict our-
selves to some efficiency considerations. For this, we introduce the parame-
trization λ1 = 1 + u + v, λ2 = 1 − u, and λ3 = 1 − v, where the restriction
λ1 > λ2 > λ3 > 0 yields

u < v, v < 1 , u > −v/2.

In Table 7.8 we show the E-efficiency defined in (7.63) of the design ξ̄∗
E ,

which is the weak limit of the locally E-optimal design ξ∗
E(λ) as λ → (1, 1, 1)

(see Theorem 7.7.1). Two conclusions can be drawn from our numerical
results. On the one hand, we observe that the optimal design ξ̄∗

E is robust
in a neighborhood of the point (1, 1, 1). On the other hand, we see that the
locally E-optimal design ξ∗

E(λ) is also robust if the nonlinear parameters
λ1, λ2, and λ3 differ not too substantially (i.e., the “true” parameter is
contained in a moderate neighborhood of the point (1, 1, 1)). Table 7.8 also
contains the D-efficiencies of the E-optimal designs defined in (8.46) and the
E-efficiencies of the locally D-optimal design ξ∗

D(λ) and its corresponding
weak limit as λ → (1, 1, 1). Again, the D-efficiencies of the E-optimal
designs are higher than the E-efficiencies of the D-optimal designs.

Finally, compare briefly the limits of the locally E- and D-optimal de-
signs if λ → (1, 1, 1) with respect to the criterion of estimating the individ-
ual coefficients in the exponential regression model (7.66). In Table 7.9, we
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Table 7.8: Efficiencies of locally and limiting D- and E-optimal design,
with k = 3 (λ1 = 1 + u + v, λ2 = 1 − u, λ = 1 − v)

u 0 0 0 -0.2 -0.2 0.2 0.2 0.4 0.4
v 0.2 0.5 0.8 0.6 0.8 0.3 0.8 0.5 0.8

ID(ξ̄∗
D) 1.00 0.98 0.83 0.97 0.86 0.99 0.79 0.92 0.70

ID(ξ∗
E(λ)) 0.78 0.85 0.90 0.86 0.90 0.66 0.90 0.61 0.86

ID(ξ̄∗
E) 0.75 0.78 0.74 0.78 0.75 0.77 0.71 0.78 0.65

IE(ξ̄∗
E) 0.98 0.76 0.43 0.71 0.48 0.93 0.36 0.53 0.19

IE(ξ∗
D(λ)) 0.65 0.73 0.79 0.74 0.79 0.55 0.79 0.52 0.74

IE(ξ̄∗
D) 0.63 0.57 0.37 0.53 0.40 0.46 0.31 0.23 0.09

show the efficiencies of these designs for estimating the parameters in a1,
b1, a2, b2, a3, and b3 in the model (7.66). We observe that, in most cases,
the limit of the locally E-optimal designs ξ̄∗

E yields substantially larger ef-
ficiencies than the corresponding limit of the locally D-optimal design ξ̄∗

D.
Moreover, this design is robust for many values of the parameter (u, v).

Table 7.9: Efficiencies (7.65) of the designs ξ̄∗
D and ξ̄∗

E (obtained as the
weak limit of the corresponding locally optimal designs as λ → (1, 1, 1) for
estimating the individual coefficients in the exponential regression model
(7.66) (λ1 = 1 + u + v, λ2 = 1 − u, λ = 1 − v)

u 0 0 0 -0.2 -0.2 0.2 0.2 0.4 0.4 0.7
v 0.2 0.5 0.8 0.6 0.8 0.3 0.8 0.5 0.8 0.8

I1(ξ̄∗
E) 0.98 0.77 0.43 0.71 0.48 0.86 0.35 0.52 0.26 0.11

I1(ξ̄∗
D) 0.63 0.56 0.36 0.53 0.40 0.59 0.30 0.41 0.22 0.10

I2(ξ̄∗
E) 0.97 0.74 0.43 0.70 0.48 0.80 0.37 0.49 0.29 0.19

I2(ξ̄∗
D) 0.65 0.59 0.42 0.55 0.43 0.63 0.38 0.48 0.33 0.23

I3(ξ̄∗
E) 0.90 0.73 0.43 0.71 0.48 0.93 0.38 0.53 0.16 0.02

I3(ξ̄∗
D) 0.71 0.59 0.38 0.53 0.40 0.46 0.47 0.23 0.04 0.01

I4(ξ̄∗
E) 0.99 0.82 0.41 0.73 0.47 0.93 0.31 0.53 0.17 0.02

I4(ξ̄∗
D) 0.60 0.50 0.29 0.51 0.36 0.48 0.20 0.25 0.10 0.01

I5(ξ̄∗
E) 0.99 0.85 0.30 0.76 0.35 0.93 0.21 0.53 0.11 0.02

I5(ξ̄∗
D) 0.55 0.39 0.12 0.33 0.14 0.46 0.09 0.23 0.05 0.01

I6(ξ̄∗
E) 0.99 0.84 0.26 0.75 0.31 0.93 0.18 0.53 0.09 0.02

I6(ξ̄∗
D) 0.53 0.34 0.08 0.27 0.10 0.45 0.06 0.22 0.03 0.01
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7.7 Appendix: Some Auxiliary Results

Recall the notation in Sections 7.2 and 7.3

fi(t) = hi(t), t = 1, . . . , s,

fs+2i−1(t) = fs+2i−1(t, b) = ϕ(t, bi, ) i = 1, . . . , k,

fs+2i(t) = fs+2i(t, b) = ϕ′(t, bi), i = 1, . . . , k

(7.67)

f̄i(t) = hi(t), i = 1, . . . , s,

f̄s+i(t) = f̄s+i(t, x) = ϕ(i)(t, x), i = 1, . . . , 2k.
(7.68)

Let f(t, b) = (f1(t), . . . , fm(t))T and f̄(t, x) = (f̄1(t), . . . , f̄m(t))T denote
the corresponding vectors of regression functions (m = s+2k) and consider
a design ξ on the interval I with at least m support points. In this appendix,
we investigate the relation between the information matrices

M(ξ, b) =
∫

I

f(t, b)fT (t, b) dξ(t)

and
M̄(ξ, b) =

∫
I

f̄(t, x)f̄T (t, x) dξ(t)

defined by (7.7) and (7.21), respectively, if

δi = riδ = bi − x → 0, i = 1, . . . , k, (7.69)

where the components of the vector r = (r1, . . . , rk) are different and or-
dered.

Theorem 7.7.1 Assume that ϕ ∈ C0,2k−1 and ξ is an arbitrary design,
such that the matrix M̄(ξ, b) is nonsingular. If assumption (7.69) is satis-
fied, it follows that for sufficiently small δ, the matrix M(ξ, b) is invertible,
and if δ → 0,

M−1(ξ, b) = δ−4k+4T (δ)
(

M̄ (1)(ξ) M̄ (2)(ξ)F
FT M̄ (2)T

(ξ) γγT h + o(1)

)
T (δ) + o(1),

(7.70)
where the matrices T (δ) ∈ R

m×m, M̄ (1)(ξ) ∈ R
s×s, M̄ (2)(ξ) ∈ R

s×2k, and
M̄ (3)(ξ) ∈ R

2k×2k are defined by

T (δ) = diag
(
δ2k−2, . . . , δ2k−2︸ ︷︷ ︸

s

,
1
δ
, 1,

1
δ
, 1, . . . ,

1
δ
, 1︸ ︷︷ ︸

2k

)
,

(
M̄ (1) M̄ (2)(ξ)

M̄ (2)T

(ξ) M̄ (3)(ξ)

)
= M̄−1(ξ, x),
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the vector γ = (γ1, . . . , γ2k)T and h ∈ R are given by h = [(2k −
1)!]2eT

mM̄−1(ξ, x)em,

γ2i =
∏
j �=i

(ri − rj)−2, i = 1, . . . , k,

γ2i−1 = −γ2i

∑
j �=i

2
ri − rj

, i = 1, . . . , k,
(7.71)

and the matrix F ∈ R
2k×2k is defined by

F =

⎛
⎜⎝

0 . . . 0 γ1
0!

...
0 . . . 0 γ2k

(2k−1)!

⎞
⎟⎠ .

Proof. Define ψ(δ) = (1, δ, . . . , δ2k−1)T and introduce the matrices

L = (�1, . . . , �2k)T ∈ R
2k×2k, (7.72)

U = diag
(
1,

1
1!

,
1
2!

, . . . ,
1

(2k − 1)!

)
∈ R

2k×2k, (7.73)

where �2i−1 = ψ(δi) and �2i = ψ′(δi), i = 1, . . . , k). For fixed t ∈ I, we use
the Taylor expansions

ϕ(t, x + δ) =
2k−1∑
j=0

ϕ(i)(t, x)
j!

δj + o(δ2k−1)

ϕ′(t, x + δ) =
2k−1∑
j=1

ϕ(i)(t, x)
(j − 1)!

δj−1 + o(δ2k−2)

to obtain the representation

f(t, b + δr) =
(

Is 0
0 LU

)
f̄(t, x) +

(
0

f̃(t)

)
, (7.74)

where Is ∈ R
s×s denotes the identity matrix and the vector f̃ is of order

f̃(t) = (o(δ2k−1), o(δ2k−2), o(δ2k−1), . . . , o(δ2k−2))T . (7.75)

It follows from in Karlin and Studden (1966, pp. 127–129) that

det L =
∏

1≤i<j≤k

(δi − δj)4,

and, consequently, V = (v1, . . . , v2k) := L−1 exists. The equality LV = Im

implies the equations

vT
2iψ(δj) = 0, vT

2iψ
′(δj) = 0, j �= i,

vT
2iψ(δi) = 0, vT

2iψ
′(δi) = 1,
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which shows that δ1, . . . , δi−1, δi+1, . . . , δk are roots of multiplicity 2 of the
polynomial vT

2iψ(δ) and δi is a root of multiplicity 1. Because this polyno-
mial has degree 2k − 1, it follows that

vT
2iψ(δ) = (δ − δi)

∏
j �=i

( δ − δj

δj − δi

)2
, (7.76)

and a similar argument shows

vT
2i−1ψ(δ) =

δ − αi

δi − αi

∏
j �=i

( δ − δj

δi − δj

)2
, (7.77)

where the constants α1, . . . , αk are given by

αi = δi +
(∑

j �=i

2
δi − δj

)−1
, i = 1, . . . , k. (7.78)

From (7.74) and (7.75) we obtain

f(t, b + δr)fT (t, b + δr)

=
(

Is 0
0 LU

)
f̄(t, x)f̄T (t, x)

(
Is 0
0 LU

)T

+ o(δ2k−2),

and integrating the right-hand side with respect to the design ξ shows that

M(ξ, b + δr) =
(

Is 0
0 LU

)
M̄(ξ, x)

(
Is 0
0 LU

)T

+ o(δ2k−2). (7.79)

Now, define H1(δ) = diag(δ2k−1, δ2k−2, δ2k−1, . . . , δ2k−1, δ2k−2) ∈ R
2k×2k

and

H(δ) =
(

Is 0
0 H1(δ)

)
∈ R

m×m;

we obtain from (7.76) and (7.77) that

H1(δ)(L−1)T = (0 | γ) + o(1) ,

where γ = (γ1, . . . , γ2k)T is defined by (7.71) and 0 ∈ R
2k×2k−1 denotes the

matrix with all entries equal to zero. By (7.67), this implies for the inverse
of the matrix M(ξ, b + δr),

M−1(ξ, b + δr)

= H−1(δ)
{(

I 0
0 F

)
M̄−1(ξ, x)

(
I 0
0 FT

)
+ o(1)

}
H−1(δ)

= δ−4k+4T (δ)
{(

M̄ (1)(ξ) M̄ (2)(ξ)FT

FM̄ (2)T

(ξ) FM̄ (3)(ξ)FT

)
+ +o(1)

}
T (δ),
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where the matrix F is given by F = (0|γ)U−1 ∈ R
2k×2k. The assertion now

follows by a straightforward calculation that shows that

FM̄ (3)(ξ)FT = hγγT .



Chapter 8

The Monod Model

In this chapter, the estimation problem and the problem of designing exper-
iments in a nonlinear regression model, used in microbiology, are studied.
The model is called Monod model, defined implicitly by a differential equa-
tion for the regression function and it has numerous applications in micro-
bial growth kinetics, water research, pharmacokinetics, and plant physiol-
ogy. It is proved that least squares parameter estimates are asymptotically
unbiased and normally distributed. The asymptotic covariance matrix of
the least squares estimator is the basis for construction of efficient designs
of experiments.

In spite of the regression function determined only implicitly, it is es-
tablished that the matrix corresponds to the covariance matrix of a certain
explicitly given linear model. Also, the basis functions of the last gener-
ates a Chebyshev system. This allows one to apply the theory developed
in the previous chapters for studying locally D-, E-, and c-optimal designs
for the Monod model. Sensitivity of these designs to the choice of initial
values for parameters is investigated numerically and on the basis of Taylor
expansions for support points. For rather small deviations of the initial
values from the proper ones, the designs remains very efficient and proves
to be considerably better equidistant designs that usually used in practice.
If the deviations are more serious, the maximin efficient designs, defined in
Section 1.7, are recommended. Such designs are constructed numerically
for a variety of intervals for individual parameters of the model.

The chapter is based on Dette, Melas, Pepelyshev, and Strigul (2003
and 2005). Note that Section 8.5 is completely new.

8.1 Introduction

The Monod model is widely applied for modeling biodegradation rates. It
is used for describing microbial growth and substrate degradations in all
kinds of applications (e.g., batch and continuous fermentation, activated

273
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sludge wastewater treatment, pharmacokinetics, plant physiology etc. (see,
e.g.. Pirt (1975) and Holmberg (1982))). Much of the versatility of the
Monod model is due to the fact that it can describe biodegradation rates
following zero-one first-order kinetics with respect to the target substrate
concentration (see Holmberg (1982)). Roughly speaking, the model consists
of a first-order differential equation; that is,

η′(t) = µ(t)η(t), (8.1)

where the function µ is defined by

µ(t) = ϑ1
s(t)

s(t) + ϑ2
(8.2)

and the function s is given by the expression

s(t) − s0 = (η0 − η(t))/ϑ3 (8.3)

(here, s0 = s(0) and η0 = η(0) are given initial conditions). In microbiology,
a traditional notation is used for the unknown parameters of the Monod
model (see, e.g., Pirt (1975)). The parameter ϑ1 denotes the maximum
growth rate and is usually denoted by µmax or Vmax; ϑ2 is the saturation of
affinity constant and is often denoted by Ks. The parameter ϑ3 is the yield
coefficient (often denoted by Y ) and η(t) and s(t) denote the concentration
of microorganisms and the concentration of the substrate, respectively. The
explanatory variable t usually denotes the time, which varies in a compact
interval [0, T ], where the maximal time T can be of quite different size.
The minimum is several hours for optimal microbiological media, and the
maximum is 1 year or more for specialized groups of microorganisms. Due
to natural biological conditions we can assume ϑi > 0, i = 1, 2, 3, the initial
conditions s0 and η0 are usually known and positive and the explanatory
variable t varies in an interval, say [0, T ].

In a number of recent papers, the problem of parameter estimation and
the problem of designing experiments for this model was discussed in an ex-
tensive empirical study (see Vanrolleghem, Van Daele, and Dochaine (1995),
Merkel, Schwarz, Fritz, Reuss, and Krauth (1996), Ossenbruggen, Spanjers,
and Klapwik (1996)) . The results of these authors indicate that the infor-
mation quality of the experiments is highly dependent on the design, and
major improvements can be obtained by choosing the observations at ap-
propriate allocations (see Vanrolleghem, Van Daele, and Dochaine (1995)).

It it the purpose of the present chapter to provide some more theoretical
background for statistical inference in the Monod model. To be precise, we
assume that at experimental conditions t1, . . . , tn, independent observations
y1(1), . . . , y1(r1), . . . , yn(1), . . . , yn(rn) are available, which are given by

yj(i) = η(tj , θ) + εj(i), i = 1, . . . , rj , j = 1, . . . , n, (8.4)
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where η = η(·, θ) is a solution of the Monod equation defined by (8.1).
In other words, rj denotes the number of observations at time point tj
(j = 1, . . . , n), εj(i) are independent and identically distributed random
values with zero mean and constant variance σ2 > 0, and θ = (ϑ1, ϑ2, ϑ3)T

denotes the vector of parameters. Throughout this section the “true” value
for θ in model (8.1) will be denoted by θ∗ = (ϑ∗

1, ϑ
∗
2, ϑ

∗
3)

T .
In Section 8.2∗, we demonstrate that statistical inference in this model

is closely related to analysis in an equivalent linear regression model and
we establish consistency and asymptotic normality of the least squares es-
timator (LSE) θ̂ = (ϑ̂1, ϑ̂2, ϑ̂3)T , which minimizes the expression

n∑
j=1

rj∑
i=1

(yj(i) − η(tj , θ))2 . (8.5)

For a sufficiently large sample size, we show that the covariance matrix
of the LSE can be approximated by the inverse of the Fisher information
matrix

N

σ2

⎛
⎝ n∑

j=1

rj

N

∂

∂ϑi
η(tk, θ)

∣∣∣
θ=θ∗

∂

∂ϑj
η(tk, θ)

∣∣∣
θ=θ∗

⎞
⎠3

i,j=1

, (8.6)

where N =
∑n

j=1 rj denotes the total number of observations. In the sec-
ond part of Section 8.2, we will study locally optimal designs (see Section
1.7) for estimating the parameters in the nonlinear regression function ob-
tained as a solution of the Monod equation. These designs minimize an
appropriate functional of the Fisher information matrix defined in (8.6).
Although the regression function in the Monod model is only given im-
plicitly, we are able to obtain an explicit representation of the information
matrix (8.6), which can be used for the construction of locally optimal de-
signs. Exemplarily we determine optimal designs with respect to the D-,
E-, and c-optimality critera. Section 8.3 deals with the D-optimality cri-
terion. We find the best three-point designs and show that these designs
are D-optimal within the class of all designs if the design region [0, T ] is
sufficiently large and the initial value η0 is sufficiently close to 0. These
results are used for the construction of efficient designs (with respect to the
D-criterion) on arbitrary design spaces. In Section 8.4, we present some
numerical results, compare the D-optimal designs with the uniform design
(which is commonly used for this type of problem), and study the sensitiv-
ity of the locally D-optimal designs with respect to changes of the initial
values for the parameters. Locally E-optimal designs and optimal designs
for estimating the individual parameters are investigated in Section 8.5,

∗Note that in Sections 8.2–8.4 and 8.6 some materials (theorems, tables, and figures)
are taken from Dette, H., Melas, V. B., Pepelyshev, A., Strigul, N. (2003). Efficient
design of experiments in the Monod model. J. Roy. Statist. Soc., Series B, 65, 725-742.
c©2003 Royal Statistical Society.
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which also contains some numerical results. Some conclusions and recom-
mendations are given in Section 8.6, and all technical details were deferred
to an appendix in Section 8.8. Finally, it must be stressed at this point
that locally optimal designs are influenced by a preliminary “guess” for the
parameter values. Our results demonstrate that without any prior infor-
mation, locally optimal designs for the Monod model are not robust with
respect to misspecification of the initial parameters and therefore give some
arguments in favor of more robust optimality criteria (see Section 1.7). The
results of Sections 8.2–8.6 provide a first step in the construction of opti-
mal designs for the Monod model with respect to these more sophisticated
criteria. However, if certain intervals for the nonlinear parameters can be
specified based on a microbiological background, we are able to construct
locally optimal designs that are robust with respect to misspecification of
the initial parameters and allow efficient estimation of the parameters in
the Monod model. In many applications of the Monod model, the statis-
tical inference is made in two steps and some information regarding the
parameters in the model is available from the first step, which can be used
for the construction of efficient designs in the second step (see, e.g., Merkel,
Schwarz, Fritz, Reuss, and Krauth (1996)). In such cases the application of
the locally optimal designs determined in Sections 8.2–8.6 is well justified
and yields a substantial improvement with respect to the accuracy of the
parameter estimates. Moreover, such information can be used also for con-
structing maximin efficient designs defined in Section 1.7. In Section 8.7†,
we construct numerically such designs for the Monod model. These designs
are based on given intervals for values of nonlinear parameters and have
some advantages to be discussed in this section. The last section contains
the proofs of the results.

8.2 Equivalent Regression Models

The analogue (up to the constant N/σ2) of the Fisher information matrix
(8.6) is the matrix

M(ξ, θ∗) =

(
n∑

k=1

wk
∂

∂ϑi
η(tk, θ)

∣∣∣
θ=θ∗

∂

∂ϑj
η(tk, θ)

∣∣∣
θ=θ∗

)3

i,j=1

, (8.7)

where

ξ =
(

x1 . . . xn

ω1 . . . ωn
,

)
(8.8)

which is called the information matrix of the design ξ. Our first result
shows that least squares estimates based on an approximate design and

†In this section some materials are taken from Dette, H., Melas, V.B., Pepelyshev,
A., Strigul, N. (2005). Design of experiments for the Monod model – robust and efficient
designs. J. Theor. Biol. 234, 537–550. c©2005 Elsevier Ltd. with permission of Elsevier
Publisher.
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a simple rounding procedure are consistent and asymptotically normally
distributed. The proof can be found in the appendix.

Theorem 8.2.1 Let ξ denote an arbitrary design of the form (8.8) on the
interval [0, T ], n ≥ 3, and assume that rj observations are taken at the
points tj, where the values rj are obtained by rounding the values wjN to
integers such that

∑n
j=1 rj = N . If η0, s0 > 0 and

θ∗ ∈ Ω = {θ = (ϑ1, ϑ2, ϑ3)T : ϑi > 0, i = 1, 2, 3}, (8.9)

then the nonlinear LSE θ̂ of the parameter θ∗ minimizing (8.5) satisfies

√
N(θ̂ − θ∗) D=⇒ N (0, σ2M−1(ξ, θ∗)), N → ∞ .

In other words, the vector
√

N(θ̂ − θ∗) has asymptotically a normal distri-
bution with mean zero and covariance matrix σ2M−1(ξ, θ∗).

Note that Theorem 8.2.1 provides asymptotic unbiasedness and normal-
ity of the LSE θ̂ in the Monod model (8.1). Moreover, asymptotically the
covariance matrix of the vector

√
Nθ̂N is given by

σ2M−1(ξ, θ∗),

where the information matrix is defined in (8.7). Following Chernoff (1953),
we assume that θ0 is a prior guess of the “true” parameter θ∗ and call a
design ξ∗

θ0 locally D-optimal design if

det M(ξ∗
θ0 , θ0) = max

ξ
det M(ξ, θ0),

where the maximum is taken over all designs on the interval [0, T ]. The
concept of local optimality for nonlinear regression models requires two
assumptions:

• The number of observations is sufficiently large such that the asymp-
totic theory is applicable.

• If the design is optimal for prior guess θ0, then it is also efficient for
the “true” (but unknown) parameter θ∗; that is,

Iθ∗(ξ∗
θ0) =

(
det M(ξ∗

θ0 , θ∗)
det M(ξ∗

θ∗ , θ∗)

)1/m

> 1 − δ,

where m is the number of parameters (m = 3 in this case) and δ is a
small positive constant.

The quantity Iθ∗(ξ∗
θ0) is called “relative efficiency” of the design ξ∗

θ0 with
respect to the (unknown) design ξ∗

θ∗ , and I−1
θ∗ (ξ∗

θ0) represents the (relative)
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additional amount of observations that is necessary to obtain the same
accuracy with the design ξ∗

θ0 compared to the “ideal” (but unknown) design
ξ∗
θ∗ . The first assumption can be verified by simulations, and the second

assumption can be verified by a robustness study if the locally D-optimal
designs are known (see Section 8.4 for an example). If these assumptions
can be justified, the problem of searching a locally D-optimal design for the
Monod model (8.1) is equivalent to the problem of searching a D-optimal
design for the linear regression model

θT f(t) = θT ∂

∂θ
η(t, θ)

∣∣∣
θ=θ0

,

and all results from the classical linear theory can be transferred to local
optimality criteria. For example, the local D-optimality criterion guaran-
tees (asymptotically) a minimum volume of the confidence ellipsoid if the
random errors in the model (8.4) follow a normal distribution (see Karlin
and Studden (1966, Chap. X)) and the local D-optimality can be char-
acterized by the celebrated equivalence theorem of Kiefer and Wolfowitz
(1960), which shows that a design ξ∗

θ0 is locally D-optimal if and only if

fT (t)M−1(ξ∗
θ0 , θ0)f(t) ≤ m, ∀t ∈ [0, T ], (8.10)

where m is the number of parameters in the model. Moreover, the D-
efficiency of a given design with respect to a locally D-optimal design can
be evaluated by Kiefer’s inequality without an explicit construction of a
locally D-optimal design. This inequality yields for the D-efficiency,

(
det M(ξ, θ0)

maxξ det M(ξ, θ0)

)1/m

≥ e1−v/m,

where the constant v is defined by

v = max
t∈[0,T ]

fT (t)M−1(ξ, θ0)f(t)

(see Pukelsheim (1993)). Two further optimality criteria will be discussed
in Section 8,5, which have been proposed as alternative for the Monod
model (see, e.g., Vanrolleghem, Van Daete, and Dochain (1995) or Versyck,
Bernaerts, Geeraerd, and Van Impe (1999)). A design is called locally
E-optimal if it maximizes the minimum eigenvalue

λmin
(
M(ξ, θ0)

)
(8.11)

of the information matrix in the class of all (approximate) designs. An
E-optimal design minimizes the worst variance

max
pT p=1

Var(pT θ̂),



8.2. EQUIVALENT REGRESSION MODELS 279

taken over the variances of all (normalized) linear combinations of the pa-
rameter estimates pT θ̂ =

∑m
i=1 piϑ̂i for the specific value θ0. If only one

linear combination is of interest, say cT θ, the locally c-optimality criterion
might be useful, which determines a design minimizing the quantity

cT M−(ξ, θ0)c, (8.12)

where A− denotes the generalized inverse of the matrix A and the minimum
is taken over the class of all designs ξ for which the linear combination cT θ
is estimable (i.e., c ∈ range(M(ξ, θ0))) (see Pukelsheim (1993)). Note that
for the special choice of a unit vector c = ek = (0, . . . , 0, 1, 0, . . . , 0)T , the
c-optimal design minimizes the variance of the LSE for the parameter ϑk,
k = 1, . . . , m, for the specific value θ0.

Locally optimal designs have been constructed for several nonlinear re-
gression models (see Box and Lucas (1959), Melas (1978), Rasch (1990),
Ford, Torsney, and Wu (1992), Haines (1992, 1993), Sitter and Torsney
(1995), He, Studden and Sun (1996), Dette and Wong (1999) among many
others). The problem of determining optimal designs for the Monod model
under consideration is substantially more complex because the regression
function in model (8.1) is only defined implicitly and the model has two
nonlinear parameters. The main step in the solution of this design problem
consists in a derivation of an alternative representation of the information
matrix defined in (8.7). For this purpose, we introduce the notation

c = c(θ) = s0ϑ3 + η0,

b = b(θ) = ϑ2ϑ3/c,
(8.13)

Combining (8.2) and (8.3), we obtain from (8.1) the differential equation

η′(t) = ϑ1
s0ϑ3 + η0 − η(t)

s0ϑ3 + η0 − η(t) + ϑ2ϑ3
η(t) = ϑ1

c − η(t)
c(1 + b) − η(t)

η(t). (8.14)

From the initial conditions s0 > 0, η0 > 0, and ϑi > 0, i = 1, 2, 3, it follows
that

η′(0) = ϑ1
s0ϑ3

s0ϑ3 + ϑ2ϑ3
> 0,

and the following lemma describes some general properties of the regression
function η.

Lemma 8.2.1 Let η denote a nonconstant solution of the Monod equation
(8.1) and T > 0; then

η(t) > 0 , η′(t) > 0 , t ∈ [0, T ],

η0 ≤ η(t) < c , t ∈ [0, T ],

limt→∞ η(t) = c,
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Note that the function η is strictly increasing on the interval [0, T ] and
consequently, for a fixed vector θ, the inverse

t(x) = t(x, θ) = η−1(x, θ) (8.15)

exists on the interval [η0, η(T )] and satisfies t(η0) = 0. From (8.14) it follows
by a straightforward calculation

dη

dt
=

dη

dt

∣∣∣
t=η−1(u)

= ϑ1

(
1 + b

u
+

b

c − u

)−1

,

dt

du
=

dη−1

du
=

1
ϑ1

(
1 + b

u
+

b

c − u

)
,

and integrating the last formula, we obtain

t(x) =
∫ x

η0

1
ϑ1

(
1 + b

u
+

b

c − u

)
du =

1
ϑ1

(
(1 + b) ln

x

η0
+ b ln

c − x

c − η0

)
.

(8.16)
Throughout this chapter let

X = {η(t, θ0) | t ∈ [0, T ] } (8.17)

denote the induced design space; then any design ξ of the form (8.8) on the
interval [0, T ] with 0 ≤ t1 < t2 < · · · < tn ≤ T induces a design ζ on X by
the transformation

ηi = η(ti, θ0), i = 1, . . . , n. (8.18)

In the following, we will prove that the matrix M(ξ, θ0) can be represented
as a function of the points η1, . . . , ηn. Note that such a relation is obvious for
linear models (see Pukelsheim (1993, p. 3)) but, in, general not clear for the
Monod model under consideration, because the information matrix for this
model contains the partial derivatives of the regression function η evaluated
at the points ti. In order to prove this dependency, we differentiate the
identity

η(t(x, θ), θ) ≡ x , θ ∈ Ω , x ∈ [η0, c], (8.19)

with respect to the parameters ϑi (i = 1, 2, 3) and obtain

∂η(t, θ)
∂t

∂t(x, θ)
∂ϑi

+
∂η(t, θ)

∂ϑi
= 0 , i = 1, 2, 3, (8.20)

with t = t(x, θ) and x = η(t, θ). Now, observing (8.16) and (8.20), it follows
by a direct computation that for any t ≥ 0,

∂η(t, θ)
∂θ

= Kϕ(x), (8.21)
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where x = η(t, θ) and the matrix K ∈ R
3×3 is defined by

K =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 + b

ϑ1

b

ϑ1
0

− b

ϑ2
− b

ϑ2
0

− bη0

cϑ3
− bη0

cϑ3
− b

ϑ3

⎞
⎟⎟⎟⎟⎟⎟⎠ . (8.22)

Here,
ϕ(x) = (ϕ1(x), ϕ2(x), ϕ3(x))T

denotes a vector of regression functions with components

ϕ1(x) = ϕ1(x, θ) = v(x) ln
x

η0
,

ϕ2(x) = ϕ2(x, θ) = v(x) ln
c − x

c − η0
,

ϕ3(x) = ϕ3(x, θ) = v(x)
x − η0

c − x
,

(8.23)

and

v(x) = v(x, θ) =
x(c − x)

(1 + b)c − x
. (8.24)

Note that for each θ, the function η(t) = η(t, θ) is strictly increasing with
limit limt→∞ η(t) = c (see Lemma 8.2.1). Thus, it is possible to extend this
function by the definition η(∞) = c. By the above discussion, we can now
transfer the original (locally) optimal design problem for the Monod model
to a design problem for a linear model on the induced design space X . To
this end, let

ζ =
(

x1 . . . xn

w1 . . . wn

)
, η0 ≤ x1 < x2 < · · · < xn ≤ c̄ (8.25)

denote an arbitrary design on the interval [η0, c̄], where c̄ ≤ c, and define

ξζ =
(

t1 . . . tn
w1 . . . wn

)
, (8.26)

with ti = t(xi, θ
0), i = 1, . . . , n, as the corresponding design on the original

design space [0, T ] with T = t(c̄, θ0). We define

M̄(ζ) = M̄(ζ, θ0) =
n∑

j=1

wjϕ(xj)ϕ(xj)T

as the information matrix of the design ζ in the (homoscedastic) linear
regression model

βT ϕ(x) , (8.27)
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where β = (β1, β2, β3) denotes the vector of parameters. It follows from
(8.7) and (8.21) that

M(ξζ , θ
0) = KM̄(ζ, θ0)KT ,

det M(ξζ , θ
0) =

b4

(ϑ0
1ϑ

0
2ϑ

0
3)2

detM̄(ζ, θ0).
(8.28)

The following results are now obvious from these considerations.

Theorem 8.2.2 A design ξζ is a locally D-optimal design for the Monod
model (8.1) on the interval [0, T ] if and only if the induced design ζ is D-
optimal for the regression model (8.27) on the interval [η0, c̄], c̄ = η(T ),
under the standard assumptions about the measurement errors.

Theorem 8.2.3 A design ξζ is a locally E- (ek)-optimal design for the
Monod model (8.1) on the interval [0, T ] if and only if the design ζ is
E- (ek)-optimal for regression function βT Kϕ(x) on the interval [η0, c̄],
c̄ = η(T ), under the standard assumptions on the measurement errors.

Consequently, it is sufficient to construct locally D-optimal designs for
the regression model (8.27) and locally E- and ek-optimal designs for the
regression model βT Kϕ(x). The locally optimal designs for the Monod
model (8.1) are simply obtained by transforming the design η in (8.25) to
the design ξζ in (8.26). We will illustrate this method in the following
sections, discussing the different optimality criteria separately.

8.3 Locally D-Optimal Designs

Due to Theorem 8.2.2, it will be sufficient to study D-optimal designs for the
linear regression model (8.27) under the standard assumptions about mea-
surements errors. Recall the notation c = η(∞, θ0) and c̄ = η(T, θ0) ≤ c;
then it is easy to see that the definition of the vector of regression functions
ϕ in model (8.27) can be continuously extended by putting

ϕi(c) = 0, i = 1, 2

ϕ3(c) =
c − η0

b
=

s0c

ϑ2
.

In other words, the vector of regression functions in model (8.27) is well
defined on intervals [η0, c̄], where c̄ = η(T, θ0), 0 < T ≤ ∞, c̄ ≤ c. Let us
denote designs that are D-optimal in the class of all designs supported at
k support points as D-optimal k-point designs (E- and ek-optimal k-point
designs are defined similarly). It is well known (see Karlin and Studden
(1966, Chap. X)) that if the number of design points is less than the num-
ber of estimated parameters in the regression model, then the information
matrix is singular. Thus, the D-optimal design has at least three support
points. The following result determines the best three-point design for the
regression model (8.27). The proof is deferred to the appendix.
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Lemma 8.3.1 Assume that θ0 ∈ Ω and that x∗
1, x

∗
2 are determined by the

relation

Φ(x∗
1, x

∗
2, θ

0) = max
{

Φ(x1, x2, θ
0)
∣∣∣ η0 ≤ x1 < x2 ≤ c̄

}
, (8.29)

where the function Φ is defined by

Φ(x1, x2, θ
0) = det(ϕi(xj))3i,j=1, (8.30)

with x3 = c̄. The design

ζ∗
c̄ =

(
p

x∗
1 x∗

2 c̄
1/3 1/3 1/3

)
(8.31)

is a D-optimal three-point design for the regression model (8.27) on the
interval [η0, c̄] for any c̄ with η0 < c̄ ≤ c.

In general, it is not clear if there exist better designs (with respect to
the D-criterion) with more than three support points. In our numerical
study, we did not find D-optimal designs for the regression model (8.27)
with more than three support points, but a general proof of this property
for arbitrary design regions seems to be difficult. However, it is possible
to obtain theoretical results in this direction if the right endpoint c̄ of the
design space is sufficiently large and the initial condition η0 is sufficiently
small. For this purpose, we consider at first the design problem for the
regression model (8.27) on the interval [0, c]. In this case, the vector of
the regression functions can be rewritten in a more convenient form by the
substitution x → cx:

ϕ̂(x) = cv(x)
(

ln
x

η̃0
, ln

1 − x

1 − η̃0
,
x − η̃0

1 − x

)T

,

where η̃0 = η0/c. Thus, we can assume without loss of generality that
c = 1 and the D-optimal designs on the general interval [0, c] are obtained
by a rescaling from the D-optimal designs on the interval [0, 1] (calculated
for c = 1 and initial condition η̃0 = η0/c). Because D-optimal designs are
not changed under nonsingular transformations of the regression functions,
the problem is reduced to the investigation of D-optimal designs for the
regression model βT ϕ̃(x, η̃0), where the vector ϕ̃ is defined by

ϕ̃(x, η̃0) = (ϕ̃1(x), ϕ̃2(x), ϕ̃3(x))T

= v(x)
(

ln(x/η̃0)
− ln η̃0

, ln
1 − x

1 − η̃0
,
x − η̃0

1 − x

)T

.
(8.32)

A direct computation shows that for η̃0 → 0,

ϕ̃(x, η̃0) → ψ(x)

Φ̃(x1, x2, θ
0) = det(ϕ̃i(xj))3i,j=1 → Ψ(x1, x2)
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(in the last equation, we put x3 = 1), where the functions ψ and Ψ are
defined by

ψ(x) = v(x)
(

1, ln(1 − x),
x

1 − x

)T

,

Ψ(x1, x2) =
1
b
v(x1)v(x2)[ln(1 − x1) − ln(1 − x2)]

=
1
b

ln(1 − x1) − ln(1 − x2)
(1 − x1 + b)(1 − x2 + b)

x1x2(1 − x1)(1 − x2).

(8.33)

Lemma 8.3.2

(1) For any b = ϑ2ϑ3 > 0, the unique D-optimal design for the regression
model βT ψ(x) on the interval [0, 1] is given by

ζ̃ =
(

x̃1 x̃2 1
1/3 1/3 1/3

)
,

where the points x̃1 = x̃1(b) and x̃2 = x̃2(b) are determined by the
relation

Ψ(x̃1, x̃2) = max
{

Ψ(x1, x2)
∣∣∣ 0 ≤ x1 ≤ x2 ≤ 1

}
and the function Ψ is defined in (8.33).

(2) There exist positive numbers ε > 0 and δ > 0 such that for any η0 < ε
and any c̄ > c−δ, the design given in Lemma 8.3.1 by formula (8.31)
is the unique D-optimal design for the regression model (8.27) with
design region [η0, c̄]. Moreover, if η0 → 0 and c̄ → 1, we have

V T M̄−1(ζ∗
c̄ )V → M̃−1(ζ̃),

where M̃(ζ) is the information matrix of design ζ in the regression
model βT ψ(x), M̄(ζ) is the information matrix of design ζ in the
regression model βT ϕ(x), and V = diag(−1/ ln η0, 1, 1). In particular,
it follows that

eT
3 M̄−1(ζ∗

c̄ )e3 → 3b2.

The following theorem is now obtained by the combination of Lemmas
8.3.1 and 8.3.2 and Theorem 8.2.2.

Theorem 8.3.1 Consider the Monod model defined by (8.1) - (8.3) on the
interval [0, T ].

(1) For any θ0 ∈ Ω and 0 < T ≤ ∞, a locally D-optimal three-point
design is given by

ξ∗
T =

(
t∗1 t∗2 T

1/3 1/3 1/3

)
, (8.34)
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where

t∗i =
1
ϑ1

[
(1 + b) ln

(
x∗

i

η0

)
+ b ln

c − η0

c − x∗
i

]
, i = 1, 2,

and the points x∗
i are determined by the relation (8.29).

(2) The design ξ∗
T determined by (8.34) is the unique locally D-optimal

design for sufficiently large T and sufficiently small η0.

(3) For N → ∞, T → ∞, and η0 → 0 the following relation holds:

N

σ2 D(ϑ̂3) → 3ϑ−2
1 .

8.4 A Numerical Study

We begin with a numerical construction of the design ζ∗
c defined by (8.31),

which is D-optimal for the regression model (8.27) on the interval [0, c]
according to the second part of Lemma 8.3.2. The function Φ(x1, x2, θ

0)
defined in (8.30) for x3 = c is of the from

Φ(x1, x2, θ
0) = v(x1)v(x2)

[
ln

x1

η0
ln

c − x2

c − η0
− ln

x2

η0
ln

c − x1

c − η0

]
· c − η0

b
,

where the function v is defined by (8.24). The maximum of Φ on the set
{(x1, x2) | η0 ≤ x1 < x2 ≤ c} can be calculated by a standard gradient
method. Define η̃0 = η0/c: then it is again sufficient to consider only
the case c = 1 (see the discussion in Section 8.3). The designs ζ∗

c on
the interval [η0, c] can be simply obtained from the designs on the interval
[η̃0, 1] multiplying the support points with c. Table 8.1 shows locally D-
optimal three-point designs on the interval [η̃0, 1] and the diagonal elements
of the corresponding covariance matrix for various values of the parameters
b = ϑ2ϑ3 and η̃0. According to Lemma 8.3.1, these designs are locally
D-optimal among all designs with three support points. The optimality in
the class of all designs was checked by an application of Kiefer’s equivalence
theorem (see Kiefer and Wolfowitz (1960) or equation (8.10)). We observed
in all considered cases that the checking condition was satisfied and our
numerical study shows that the D-optimal three-point designs are in fact
D-optimal within the class of all approximate designs on interval [η0, c].

We will now discuss the corresponding designs for the Monod model de-
fined by the differential equation (8.1), which are related to the D-optimal
designs for the linear regression model (8.27) by the relations (8.25) and
(8.26). Because η(∞) = c, the corresponding designs for the Monod model
have a support point at T = ∞ and cannot be realized in practice. This fact
was also observed empirically by Vanrolleghem, Van Daele, and Dochain
(1995), who showed that for the commonly used optimality criteria (includ-
ing the D-, c-, and E-criterion), the optimal strategies yield to prohibitively



286 CHAPTER 8. THE MONOD MODEL

Table 8.1: Locally D-optimal three-point designs ζ∗
1 for the equivalent re-

gression model (8.27) on the interval [η̃0, 1] for various values of η̃0 and
b = ϑ2ϑ3. These designs are of the form (8.31) and determined by Lemma
8.3.1. Also shown are the diagonal elements m̄ii (i = 1, 2) of the matrix
M̄−1(ζ∗

1 ) rounded to integers. Optimal designs on the interval [η̃0c, c] can
be obtained by rescaling the design ζ∗

1 with the factor c. The value of
m̄33 = (M̄−1(ζ∗

1 ))33 is given by 3b2/(1 − η̃0)2.

b x∗
1 x∗

2 m̄11 m̄22 m̄33 x∗
1 x∗

2 m̄11 m̄22 m̄33

η̃0 = 0.2 η̃0 = 0.1
0.1 0.70 0.95 31 23 0.05 0.67 0.95 13 19 0.04

0.25 0.65 0.93 71 70 0.29 0.61 0.92 28 57 0.23
0.75 0.59 0.91 279 367 2.64 0.55 0.89 101 284 2.08

1 0.58 0.90 428 593 0.54 4.69 0.89 153 456 3.70
2 0.56 0.89 1321 2013 18.7 0.51 0.88 458 1521 14.8

η̃0 = 0.05 η̃0 = 0.01
0.1 0.65 0.94 7 17 0.03 0.62 0.94 2 15 0.03

0.25 0.59 0.92 14 50 0.21 0.56 0.91 5 43 0.19
0.75 0.52 0.89 49 244 1.87 0.49 0.88 16 205 1.72

1 0.51 0.88 74 389 3.32 0.48 0.87 24 325 3.06
2 0.48 0.87 217 1286 13.3 0.45 0.86 69 1065 12.24

long experiments. However, even if the D-optimal designs are not directly
implementable, they can be used as a basis for evaluating the efficiency of
other designs, which are used in practice. For example, consider the design

ξ̂ =
(

t∗1 t∗2 t3
1/3 1/3 1/3

)
, (8.35)

where t∗i = t∗i (θ
0), i = 1, 2, are points of the design

ξ∗
∞ =

(
t∗1 t∗2 ∞

1/3 1/3 1/3

)
on the infinite design space [0,∞], which was determined in Theorem 8.3.1.
We will now choose the point t3 such that the efficiency of the design ξ̂
with respect to the design ξ∗

∞,

I =

(
det M(ξ̂)

det M(ξ∗∞)

)1/3

=

(
det M̄(ζξ̂)

det M̄(ζξ∗∞)

)1/3

(8.36)

is equal to a given value 1 − δ (note that ζξ∗∞ = ζ∗
c ). The corresponding

values of the point t3 are represented in Table 8.2 for various values of δ,
b, and η0. From this table, we can conclude that for t3 = 2t∗2 the efficiency
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of the design ξ̂ is at least 0.98 for all considered parameter combinations.
Thus, if t∗2 < T/2, the designs

ξ∗
D =

(
t∗1 t∗2 2t∗2

1/3 1/3 1/3

)
(8.37)

are close to the locally D-optimal designs on the interval [0,∞] and they
can be realized in practice. Note that the true efficiency of these designs
on the interval [0, T ] is usually larger than 1 − δ, because our comparison
is based on a design for an infinite design space, and the locally D-optimal
design on the interval [0, T ] has always a smaller determinant than the
locally D-optimal design ξ∗

∞ on the infinite design space [0,∞]. In other
words, the designs given in (8.37) have at least D-efficiency 1 − δ for the
concrete interval [0, T ], whenever t∗2 ≤ T/2.

Table 8.2: The third support point t3 of the design ξ̂ defined in (8.35), such
that the relative D-efficiency (8.55) is at least 1 − δ. The last two columns
show the ratio k(1 − δ) = t3/t∗2.

1 − δ
b η0 t∗1 t∗2 0.9 0.95 0.98 0.99 k(0.95) k(0.99)

t3
0.25 0.1 2.5 3.4 4.2 4.4 4.7 4.9 1.3 1.4
0.5 0.1 3.0 4.4 6.0 6.5 7.1 7.4 1.5 1.7

0.75 0.1 3.5 5.4 7.8 8.5 9.3 9.9 1.6 1.8
1 0.1 4.0 6.5 9.7 10.5 11.6 12.4 1.6 1.9

1.5 0.1 5.1 8.5 13.3 14.6 16.2 17.4 1.7 2.1
2 0.1 6.1 10.5 17.0 18.7 20.8 22.5 1.8 2.1

0.25 0.2 1.7 2.5 3.4 3.6 3.9 4.0 1.4 1.6
0.25 0.05 3.3 4.2 5.1 5.3 5.6 5.8 1.2 1.4
0.25 0.01 5.2 6.2 7.1 7.3 7.6 7.8 1.2 1.2

We now compare the design ξ∗
D defined in (8.37) with the uniform design

ξu =
(

T/n 2T/n . . . T
1/n 1/n . . . 1/n

)
. (8.38)

A numerical study indicates that the information matrix of the uniform de-
sign for n ≥ 10, T > 1.5t∗2 does not depend sensitively on the parameters n
and T (these results are not displayed for the sake of brevity). Exemplarily,
we consider the case n = 10, T = 2t∗2; other situations give similar results.
A comparison of the uniform design ξu and the design ξ∗

D given in (8.37)
with respect to the D-criterion shows that the D-efficiencies,

I(ξu) =
(

det M(ξu)
det M(ξ∗

D)

) 1
3

, (8.39)



288 CHAPTER 8. THE MONOD MODEL

of the uniform design vary between 150% and 200% (see Table 8.3). This
indicates a rather poor performance of the uniform design ξu. A more
refined comparison is obtained by looking at the the asymptotic variances
of the estimators for the parameters ϑ1, ϑ2, and ϑ3. Note that the ratio of
these variances is given by

di =
(M−1(ξu))ii

(M−1(ξ∗
D))ii

, i = 1, 2, 3. (8.40)

We observe from Table 8.3 that the uniform design produces a smaller
(asymptotic) variance of the estimator for the parameter ϑ3 compared to the
design (8.37). On the other hand, the asymptotic variances obtained for the
estimators for the parameters ϑ1 and ϑ2 are substantially smaller than the
corresponding variances obtained from the uniform design (8.50). However,
in realistic situations (see Pirt (1975) and Blok (1994) and the simulations
of the following paragraph), an efficient estimation of ϑ1 and ϑ2 is more
important, because the parameter ϑ3 is usually estimated with much higher
precision than the parameters ϑ1 and ϑ2. Moreover, the loss of efficiency
using the uniform design for estimating ϑ1 and ϑ2 is substantially larger
than the loss of efficiency using the design ξ∗

D for estimating the parameter
ϑ3. Thus, if we consider estimation of the parameters ϑ1 and ϑ2 as more
important, the design ξ∗

D yields a reduction of approximately 50% of the
variance compared to the uniform design ξu (see the results in Table 8.3),
provided that the sample size N is sufficiently large. In order to investigate

Table 8.3: The efficiency of the design ξ∗
D defined in (8.37) in relation to

the uniform design ξu defined in (8.50) in the Monod model (8.1). Here,
the efficiency di defined in (8.40) (i = 1, 2, 3) corresponds to the estima-
tion of the individual parameters ϑ1, ϑ2, and ϑ3 and depends only on the
parameters η̃0 = η0/c and b. I(ξu) corresponds to the D-criterion and is
defined in (8.39).

η̃0 0.2 0.1
b 0.1 0.25 0.75 1 2 0.1 0.25 0.75 1 2
d1 2.0 2.0 2.2 2.3 2.5 1.9 2.1 2.2 2.3 2.3
d2 2.2 2.0 2.2 2.3 2.4 2.1 2.2 2.2 2.3 2.3
d3 1.0 0.7 0.6 0.6 0.6 1.2 0.8 0.6 0.6 0.6

I(ξu) 1.6 1.4 1.4 1.5 1.5 1.7 1.6 1.5 1.5 1.5
η̃0 0.05 0.01
b 0.1 0.25 0.75 1 2 0.1 0.25 0.75 1 2
d1 3.0 2.1 2.3 2.3 2.4 2.8 2.5 2.4 2.5 2.4
d2 3.4 2.2 2.2 2.3 2.4 3.0 2.6 2.4 2.5 2.4
d3 1.4 0.9 0.7 0.7 0.6 1.7 1.2 0.8 0.7 0.7

I(ξu) 2.1 1.6 1.6 1.5 1.6 2.4 2.0 1.7 1.7 1.7

how these asymptotic observations can be transferred to realistic sample
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sizes, a small simulation study was conducted. We simulated observations
according to the model (8.4) where the errors are normally distributed with
variance σ2 = 0.012 and σ2 = 0.022. The parameter θ = (ϑ1, ϑ2, ϑ3)T was
estimated by the least squares technique using the Nelder–Mead simplex
method. For the parameter θ∗ we fixed the value (0.25, 0.5, 0.25)T , which
corresponds to parameters observed in studies of microbial growth (see
Pirt (1975) or Blok (1994)). The simulation was repeated 400 times for
the sample sizes N = 20, 30, 40, 60, and the designs ξ∗

D and ξu defined in
(8.37) and (8.50), respectively. The simulated variances of the estimators
for the parameters ϑ1, ϑ2, and ϑ3 are represented in Tables 8.4 and 8.5
corresponding to the choices σ = 0.01 and σ = 0.02, respectively.

Table 8.4: Simulated and asymptotic variances of the estimates for the
parameters in the Monod model (8.1) for different sample sizes (N). The
variances are multiplied with N/σ2 (σ = 0.01) and are presented for the
uniform design ξu and the design ξ∗

D in (8.37) obtained from the D-optimal
design on an infinite design space.

N 20 30 40 60 ∞
uniform design

θ1 771 606 575 529 551
θ2 17693 13637 12336 11944 12500
θ3 2.1 2.1 2.3 2.1 2.3

optimal design
θ1 432 295 195 180 269
θ2 10101 6789 4357 4070 6055
θ3 3.3 2.9 2.9 2.6 3.0

For the sake of transparency these values are multiplied by N/σ2 (and
rounded to integers). The results confirm our asymptotic findings for re-
alistic sample sizes. The design ξ∗

D defined in (8.37) allows a substantially
more precise estimation of the parameters ϑ1 and ϑ2 compared to the de-
sign ξu. Note that the variances for the estimation of the parameter ϑ3
are substantially smaller (independent of the design) than the correspond-
ing variances of the estimators for ϑ1 and ϑ2. Finally, it is worthwhile to
mention that the asymptotic considerations of the previous paragraph are
applicable if N ≥ 30. Thus, our simulation study confirmed that the design
ξ∗
D performs much better than the uniform design ξu.

8.5 Taylor Expansions

As was shown in the previous section, designs very close to locally D-
optimal designs for model (8.1) on the interval X ∈ [0, T ] can be easily
constructed on the basis of saturated locally D-optimal designs on [0, ∞].
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Table 8.5: Simulated and asymptotic variances of the estimates for the
parameters in the Monod model (8.1) for different sample sizes (N). The
variances are multiplied with N/σ2 (σ = 0.02) and are presented for the
uniform design ξu and the design ξ∗

D in (8.37) obtained from the D-optimal
design on an infinite design space.

N 20 30 40 100 ∞
uniform design

θ1 2936 2080 1791 564 551
θ2 72541 49874 43325 13494 12500
θ3 4.0 3.8 3.7 3.6 2.3

optimal design
θ1 1056 867 798 278 269
θ2 23024 20390 14880 6359 6055
θ3 2.6 2.9 2.9 3.0 3.0

The dependence of the last designs on θ0
1 was found in the explicit form.

Let us now study the dependence of the inner points of these designs on
initial values for θ2 and θ3 on the basis of the functional approach.

In the appendix, it will be shown that the basis functions of model
(8.38) generate a Chebyshev system on [0, c] and the saturated locally D-
optimal designs for this model have one and the same type (0, 2, 1) for any
parameter values. The support points of the designs for model (8.1) are
obtained from that for model (8.38) by explicit formulas. Thus, using the
theory of Chapter 2, it is not difficult to establish the following results.

Theorem 8.5.1 The inner points of the saturated locally D-optimal design
ξ∗
∞, t∗1, and t∗2, are real analytic functions of θ0

2 and θ0
3 under the condition

θ0
1, θ

0
3 > 0. These functions are increasing for any of the parameters.

Due to Theorem 8.5.1, the functions t∗i (θ
0
2, θ

0
3), i = 1, 2, where t∗1 and t∗2

are the inner points of the design

ξ∗
∞ =

(
t∗1 t∗2 ∞

1/3 1/3 1/3

)
,

can be expanded into a Taylor series in a vicinity of any point (θ̂0
2, θ̂

0
3) by

degrees of u = θ0
2 − θ̂0

2 and v = θ0
3 − θ̂0

3.
Let us take s0 = 1, η0 = 0.03, θ̂0

1 = 1.25, θ̂0
2 = 0.5, and θ̂0

3 = 0.25. These
values are of practical importance (see Pirt (1975) or Block (1994)).

Consider the design ζ∗ = ζ∗
ξ∗∞

,

ζ∗ =
(

x∗
1 x∗

2 x
1/3 1/3 1/3

)
,
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where c = s0(θ̂0
3 + v) + η0. Due to Theorem 8.3.1, the inner points of ξ0

∞
can be expressed by x∗

1 by the formula t∗i = t(x∗
i ), where

t(x) =
[
(1 + b) ln

(
x

η0

)
− b ln

c − x

c − η0

] /
θ0
1 ,

where b = θ0
2θ

0
3/c. The design ζ∗ does not depend on θ0

1. With θ0
2 = θ̂0

2 =
0.5 and θ0

3 = θ̂0
3 = 0.25, we find numerically that

x1(0) := x∗
1(θ̂

0
2, θ̂

0
3) = 0.1618,

x2(0) := x∗
2(θ̂

0
2, θ̂

0
3) = 0.2540,

Now with the help of recurrent formulas of Section 2.4, we find the coeffi-
cients of the expansion

xi<n>(u, v) =
∑

0≤j+s≤n

xi(j,s)u
jvs,

n = 1, 2, . . ., xi<n>(u, v) → x∗
i (u + θ̂0

2, v + θ̂0
3), n → ∞, i = 1, 2. These

coefficients are given in Table 8.6. Inserting these coefficients into (8.27),

Table 8.6: Coefficients of Taylor expansions of x1 and x2 by degrees of u
and v

ui/vj 0 1 2 3 4 5
0 .16176 .52428 −.01972 .02099 −.01715 −.03217

.25403 .89405 −.00564 .00800 −.01390 .02515
1 −.03048 −.11980 −.00062 −.00467 .02332

−.01392 −.05670 −.00357 .00441 −.00598
2 .03902 .15412 .00167 .00295

.01702 .06945 .00416 −.00561
3 −.05351 −.21214 −.00320

−.02214 −.09045 −.00515
4 .07782 .30940

.03047 .12451
5 −.11876

−.04400

we obtain the Taylor coefficients for the function

q(p) =
[
det M̄

(
ξ∗(Θ̃p), Θ̃p

)]1/3
,

where p = (u, v) and Θ̃p = (θ̂0
2 + u, θ̂0

3 + v)T , given in Table 8.7.
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Table 8.7: Taylor coefficients of the function (det(M̄(ζ, Θ̄∆)))1/3 by degrees
of u and v

ui/vj 0 1 2 3
0 .00877 .07301 .16671 .04199
1 −.02737 −.22778 −.51882
2 .06634 .55166
3 −.14698

Using coefficients from Table 8.6 and expanding the function ln y, y =
x/η0, and y = (c − x)/(c − η0) into Taylor series we find the coefficients of
the expansion

ti<n>(u, v) =
∑

0≤i+j≤n

ti(i,j)u
jvs,

n = 0, 1, 2, . . ., ti<n>(u, v) → t∗i (θ̂
0
2 + u, θ̂0

3 + v), n → 0, i = 1, 2. The
coefficients are represented in Table 8.8.

Table 8.8: Taylor coefficients of the functions t1 and t2 by degrees of u and
v

ui

vj
0 1 2 3 4 5

0 11.08559 20.57254 −35.41260 80.33176 −202.83386 540.81013
16.40372 23.58760 −45.16761 113.39015 −316.69258 935.88713

1 7.14104 14.16692 −24.51964 54.62668 −132.94068
14.44336 18.39714 −38.54685 102.49576 −297.80900

2 .34779 .18102 −.50627 1.64422
−.30382 −.13480 .48552 −1.76129

3 −.53855 −.29211 .84036
.36261 .15841 −.57558

4 .85658 .47484
−.45962 −.19693

5 −1.39626
.61543

Note that the support points of the locally D-optimal designs can be
calculated on the basis of the Taylor expansions very quickly and even by
hand. It is easy to check that the value ti<n>(u, v) with n = 2 can be used
for a wide variety of the parameter values.

The obtained expansions can also be used for studying the robustness
of the locally D-optimal design with respect to the miss-specification of the
initial values.
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Let us take the design

ξ0 =
(

t1(0) t2(0) ∞
1/3 1/3 1/4

)
,

which is locally D-optimal for Θ0 = (0.25, 0.5, 0.25)T . Assume that the
proper value of the vector Θ is equal to Θ∆ = (0.25 + ∆1, 0.5 + ∆2, 0.25 +
∆3)T , and ∆ = (∆1, ∆2, ∆3)T .

Let us consider the efficiency of design ξ0 with respect to the locally
D-optimal design for different Θ∆ �= Θ0:

I∆ =
(

det M(ξ0, Θ∆

det M(ξ∗(Θ∆), Θ∆)

)
.

Using formula (8.27), we obtain

I∆ =

[
det M̄(ζζ0(Θ∆), Θ̃∆)
det M̄(ζ∗(Θ̃∆), Θ̃∆)

]1/3

,

where Θ̃∆ = (θ̂0
2 + ∆2, θ̂

0
3 + ∆3)T ,

ζξ0(Θ∆) =
(

η(t1(0), Θ∆) η(t2(0), Θ∆) c∆
1/3 1/3 1/3

)
,

and c∆ = s0(∆3 + θ̂0
3) + η0.

Table 8.9: Efficiency of the design ξ0

∆1 ∆2 ∆3 I
0 −0.1 −0.1 0.34
0 −0.1 0.1 0.98
0 0.1 −0.1 0.86
0 0.1 0.1 0.69

∆1 ∆2 ∆3 I
0.1 −0.1 −0.1 0.40
0.1 −0.1 0.1 0.20
0.1 0.1 −0.1 0.10
0.1 0.1 0.1 0.79

−0.1 −0.1 −0.1 0.69
−0.1 −0.1 0.1 0.14
−0.1 0.1 −0.1 0.45
−0.1 0.1 0.1 0.09

∆1 ∆2 ∆3 I
−0.05 0.05 0.05 0.44
−0.05 0.05 −0.05 0.76
−0.05 −0.05 −0.05 0.92
−0.05 −0.05 0.05 0.57

0.05 0.05 0.05 0.93
0.05 0.05 −0.05 0.57
0.05 −0.05 −0.05 0.28
0.05 −0.05 0.05 0.69
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Table 8.10: Efficiency of the design ξ0

∆1 ∆2 ∆3 I
0.01 −0.01 −0.01 0.954
0.01 −0.01 0.01 0.987
0.01 0.01 −0.01 0.976
0.01 0.01 0.01 0.997

−0.01 −0.01 −0.01 0.997
−0.01 −0.01 0.01 0.976
−0.01 0.01 −0.01 0.988
−0.01 0.01 0.01 0.958

∆1 ∆2 ∆3 I
−0.02 0.02 0.02 0.85
−0.02 0.02 −0.02 0.95
−0.02 −0.02 −0.02 0.99
−0.02 −0.02 0.02 0.91

0.02 0.02 0.02 0.99
0.02 0.02 −0.02 0.91
0.02 −0.02 −0.02 0.82
0.02 −0.02 0.02 0.95

Denote by I∆(n) the approximate value of I∆ obtained by the substi-
tution the design, ζ∗(Θ̃∆) by its approximation

ζ<n>(Θ̃∆) =
(

x1<m> x2<n> c∆
1/3 1/3 1/3

)
,

where xi<n> = xi<n>(u, v) and u = ∆2, v = ∆3. Note that I∆(n) is very
close to I∆ if n = 4 and ∆i ≤ 0.05, i = 2, 3.

The approximate values I∆ ≈ I∆(4) are given in Tables 8.9 and 8.10.
The results given in the tables allow one to make the following conclusions.
Under moderate deviations |θi(0) − θ̂i(0)| ≤ 0.02, i = 1, 2, 3, the locally
D-optimal design constructed for the point Θ̂ = (θ̂(0)

1 , θ̂
(0)
2 , θ̂

(0)
3 )T remains

very efficient. Under more serious deviations, the efficiency of this design
quickly decreases.

For substantial deviations, it is preferable to use the maximin efficient
designs. We will consider such designs in Section 8.7.

8.6 Locally E- and ek-Optimal Designs

In this section, we present a theoretical and numerical study of the locally
E- and ek-optimal designs in the Monod model. The optimality criteria
are defined in (8.11) and (8.12). Due to Theorem 8.2.3, it will be sufficient
to study the optimal designs for the regression model βT Kϕ(x) on the
interval [η0, c̄], where the matrix K is defined by (8.22). It will be shown
in Proposition 8.8.1 of the appendix that the functions ϕ1(x), ϕ2(x) and
ϕ3(x) defined in (8.23) generate a Chebyshev system on the interval [η0, c̄].
Then it is well known (see Karlin and Studden (1966, Chap. 1) that there
exists a function g(x),

g(x) = r1ϕ1(x) + r2ϕ2(x) + r3ϕ3(x), (8.41)
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with real coefficients r1, r2, and r3 and (unique) points x̃1, x̃2, and x̃3
satisfying η0 ≤ x̃1 < x̃2 < x̃3 ≤ c̄ such that

g(x̃i) = (−1)i+1, i = 1, 2, 3, (8.42)

and such that the inequality

|g(x)| ≤ 1. (8.43)

holds for all x ∈ [η0, c̄]. Counting the number of possible zeros of the func-
tion g′(x) shows that at least one of the points x̃i has to be a boundary
point of the interval [η0, c̄]. Since g(η0) = 0, it follows that x̃3 = c̄. The
matrix

F̃ =
(
eT

i Kϕ(x̃j)
)3
i,j=1

is nonsingular because the functions ϕ1, ϕ2, and ϕ3 generate a Chebyshev
system on the interval [ηo, c̄] and the matrix K is nonsingular. The following
lemma gives the locally ek- and E-optimal designs and will be proved in
the appendix.

Lemma 8.6.1 (1) If η0 > 0 is sufficiently small, then the design

ζE =

(
x̃1 x̃2 c̄

ω̃1 ω̃2 ω̃3

)
(8.44)

is a locally E-optimal design in the regression model βT Kϕ(x) on
the interval [η0, c̄]. Here, the support points are defined by condition
(8.42) and (8.43) and the weights ω̃i are given by

ω̃i = |Ãi|
/ 3∑

j=1

|Ãj |, (8.45)

where Ãi = eT
i F̃−1r, i = 1, 2, 3, and r = (r1, r2, r3)T denotes the

vector of coefficients of the function g defined in (8.41) – (8.43).

(2) For arbitrary c̄ ≤ c, η0 > 0, the design ζE defined by (8.44) is a locally
E-optimal design for the regression model βT Kϕ(x) on the interval
[η0, c̄] if and only if the condition

rT M̄(ζE)r = (rT (KT K)−1r)λmin(KM̄(ζE)KT )

is satisfied, where r = (r1, r2, r3)T denotes the vector of coefficients
of the function g defined in (8.41)–(8.43). In this case, the design ζE

is the unique (locally) E-optimal design.

(3) If η0 > 0 is sufficiently small, then the design

ζek
=

(
x̃1 x̃2 c̄

ω̃1(k) ω̃2(k) ω̃3(k)

)
.
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is a locally ek-optimal design in the regression model βT Kϕ(x) on
the interval [η0, c̄]. Here, the support points are defined by condition
(8.42) and (8.43) and the weights ω̃i are given by

ω̃i(k) = |Ãik|
/ 3∑

j=1

|Ãjk|, k = 1, 2, 3,

with Ãij = eT
i F̃−1ej (i, j = 1, 2, 3).

(4) For arbitrary η0 > 0, the design ζek
is a locally ek-optimal design for

the regression model βT Kϕ(x) on the interval [η0, c̄] if and only if

Ãik ≥ 0 , i = 1, 2, 3 .

In this case, the design ζek
is the unique (locally) ek-optimal design.

Note that it follows from Theorem 8.2.3 that a design ζ is locally E-
(ek-)optimal for the regression model βT Kϕ(x) on the interval [η0, c̄] if and
only if the design ξζ induced by the transformation (8.26) is locally E-
(ek)-optimal for Monod model (8.1) on the interval [0, T ], where T = t(c̄).
Therefore, if no constraints are imposed on the desired real-time operation,
the locally ek- and E-optimal designs yield designs with prohibitively long
experiments. This fact was also observed empirically for the E-criterion by
Vanrolleghem, Van Daele, and Dochain (1995).

For the numerical construction of the E-optimal design ζE , it is sufficient
to maximize the function

Q(x1, x2) = λmin(KT M̄(ζ)K)

on the set
U = {(x1, x2)T ; η0 ≤ x1 ≤ x2 ≤ c̄} ,

where ζ is defined in (8.44) and (8.45). The design ζek
can be constructed

in a similar way and the optimality can be checked by the necessary and
sufficient characterizations (2) and (4) in Lemma 8.6.1. We conclude this
section with a comparison of locally D, E-, and e2-optimal designs. The
characteristics of the locally optimal designs can be found in Table 8.11,
which shows the design (8.37) derived from the D-optimal design and the
E- and e2-optimal design

ξ∗
E =

(
t∗1E t∗2E 2t∗2D

w1 w2 w3

)

ξ∗
e2

=

(
t∗1E t∗2E 2t∗2D

m1 m2 , m3

)

on the interval [0, 2t∗2D]. Note that ξ∗
E and ξ∗

e2
have the same support points.

In all cases considered in our numerical study, the necessary and sufficient
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conditions from parts (2) and (4) of Lemma 8.6.1 were fulfilled, which leads
to the conjecture that the designs defined by (8.44) and (??) are in fact
locally E- and ek-optimal on any interval [0, T ] and for any initial condition
η0 > 0.

Table 8.11: Comparison of D-, E-, e2-optimal designs for various val-
ues of b = ϑ2ϑ3. The E- and ξ∗

e2
-optimal design have the same support

t∗1E , t∗2E , 2t∗2D but different weights w1, w2, w3 and m1, m2, m3, respectively.
The D-optimal design has equal masses at the points t∗1D, t∗2D, 2t∗2D and the
efficiencies di and d̂i are defined in (8.47), while I(ξ) is defined by (8.46).

b 0.1 0.25 0.5 0.75 1 1.5 2
t∗1D 2.92 3.29 3.95 4.62 5.30 6.67 8.04
t∗2D 3.51 4.25 5.45 6.64 7.82 10.18 12.54
t∗1E 2.65 2.94 3.47 4.03 4.59 5.73 6.88
t∗2E 3.52 4.26 5.48 6.68 7.88 10.26 12.65
w1 0.45 0.42 0.41 0.40 0.40 0.40 0.40
w2 0.35 0.36 0.37 0.37 0.37 0.37 0.37
w3 0.20 0.21 0.22 0.22 0.23 0.23 0.23
m1 0.40 0.39 0.39 0.39 0.39 0.39 0.40
m2 0.39 0.39 0.38 0.38 0.38 0.38 0.37
m3 0.21 0.22 0.23 0.23 0.23 0.23 0.23
d1 0.80 0.82 0.83 0.84 0.84 0.84 0.84
d2 0.84 0.85 0.85 0.85 0.85 0.85 0.85
d3 1.66 1.58 1.52 1.49 1.48 1.47 1.47
d̂1 0.82 0.83 0.84 0.84 0.84 0.84 0.84
d̂2 0.83 0.84 0.85 0.85 0.85 0.85 0.85
d̂3 1.60 1.50 1.47 1.46 1.46 1.46 1.46
I(ξ∗

E) 1.12 1.11 1.10 1.10 1.10 1.10 1.10
I(ξ∗

e2
) 1.11 1.10 1.10 1.10 1.10 1.10 1.10

The designs were first compared by their D-efficiencies

I(ξ) :=
(

det M(ξ)
det M(ξ∗

D)

)1/3

(8.46)

and we did not observe substantial differences with respect to this criterion
(see the last two columns in Table 8.11). For a more refined, comparison
we calculated the asymptotic efficiencies

di =
(M−1(ξ∗

E))ii

(M−1(ξ∗
D))ii

, i = 1, 2, 3,

d̂i =
(M−1(ξ∗

e2
))ii

(M−1(ξ∗
D))ii

, i = 1, 2, 3,

(8.47)
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for estimating the individual coefficients in the Monod model. We observe a
very similar behavior of the E- and e2-optimal designs, which provide more
efficient estimates for the parameters ϑ1 and ϑ2 than the design ξ∗

D derived
from the D-optimal. On the other hand, this design is more efficient for the
estimation of the parameter ϑ3. However, if improvement of accuracy in
the estimation of the parameters ϑ1 and ϑ2 is considered more important,
the E- and e2-optimal design have some advantages.

8.7 Maximin Efficient Designs

As we have seen in the previous sections locally D- E-, and c-optimal
designs for the Monod model are rather sensitive to the miss-specification
of initial values for parameters. The notion of maximin efficient designs (see
the discussion in Section 1.6) allows one to construct more robust designs
if a set (say Ω) of possible values of parameters is known. A design will be
called standardized maximin Φ-optimal (or, briefly, maximin efficient) if it
maximizes

ΨΩ(ξ) = min
θ∈Ω

Φ(M(ξ, θ))
Φ(M(ξ∗(v), θ))

, (8.48)

where ξ∗(θ) is a locally Φ-optimal design.
We will consider the case of D- and E-criteria,

ΦD(M(ξ, θ)) = (detM(ξ, θ))1/m,

ΦE(M(ξ, θ)) = λmin(M(ξ, θ)),

where m is the number of parameters in the model under consideration;
m = 3 in our case.

In this section, standardized maximin D- and E-optimal designs will be
denoted by ξ∗

D and ξ∗
E , respectively.

The most important case for the choice of the set Ω in the maximin
criterion arises if the experimenter is able to specify intervals for the location
of each parameter θi; that is,

(θ1, θ2, θ3) ∈ Ω = [z1,L, z1,U ] × [z2,L, z2,U ] × [z3,L, z3,U ], (8.49)

where 0 < zi,L ≤ zi,U < ∞ (i = 1, 2, 3). In this section, we will compare
standardized maximin Φ-optimal designs with uniform designs of the form

ξU(N),T̄ =
( 1

N T̄ . . . T̄
1
N . . . 1

N

)
, (8.50)

which are commonly applied in microbiological models. As was shown
in Dette, Melas, Pepelyshev, and Strigul (2005) with arbitrary T ≤ ∞,
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standardize maximin D- and E-optimal designs for a compact set Ω ∈
[0,∞) × [0,∞) × [0,∞) exist and are of the form(

t1 . . . tn1−1 T
ω1 . . . ωn1−1 ωn1

)
.

For constructing such designs, a numerical method introduced in the work
cited above can be used. This method will be described in the following
subsection.

8.7.1 A numerical procedure

In Section 8.7.2, we will calculate some standardized maximin efficient de-
signs numerically and demonstrate that these designs have excellent effi-
ciencies compared to locally optimal uniform designs. We will now briefly
explain the algorithm used for these calculations. The algorithm is based
on the following conjecture, which was satisfied in all examples in our nu-
merical study. In this subsection, the function Φ denotes the D-,E-, or
ei-optimality criterion (i = 1, 2, 3) defined in Section 8.2.

Conjecture 8.4.1. For any design ξ, the set

Ω0 = Ω0(ξ) =
{

θ
∣∣∣θ = arg min

θ∈Ω

Φ(M(ξ, θ))
Φ(M(ξ∗

θ , θ))

}
. (8.51)

is finite, say Ω0 = {θ(1), . . . , θ(n2)} (n2 ∈ N).

In all our considered examples, we observed that n2 ≤ 4, but a general
bound could not be established formally. Now, consider the set

Un1 =
{

(u1, . . . , u2n1) = (t1, . . . , tn1 , w1, . . . , wn1)
∣∣∣

0 ≤ t1 < · · · < tn1 ≤ T ; wi > 0,
∑n1

i=1 wi = 1
} (8.52)

and note that each element of Un1 defines a design with n1 support points;
that is,

ξu =
(

t1 . . . tn1−1 tn1

w1 . . . wn1−1 wn1

)
. (8.53)

It is proved in Dette, Melas, Pepelyshev, and Strigul (2005) that there exists
an n1 ∈ N and a u ∈ Un1 such that the standardized maximin Φ-optimal
design is given by ξ∗ = ξu. We will now describe an iterative calculation
of the standardized maximin Φ-optimal design observing that at least 3
support points are required. Thus, we set n1 = 3 and choose an arbitrary
(possibly locally Φ-optimal) starting design, say ξu0 with u0 ∈ Un1 . We put
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s = 0 and define

ū(s) =
∂

∂u
min
θ∈Ω

Φ(M(ξu, θ))
Φ(M(ξ∗

θ , θ))

∣∣∣∣∣
u=u(s)

=
∂

∂u
min

j=1,...,n2

Φ(M(ξu, θ(j)))
Φ(M(ξ∗

θ(j)
, θ(j)))

∣∣∣∣∣
u=u(s)

= min
{∑n2

j=1 hj
∂

∂u

Φ(M(ξu, θ(j)))
Φ(M(ξ∗

θ(j)
, θ(j)))

∣∣∣∣∣
u=u(s)

∣∣∣ hj ≥ 0;
n2∑

j=1

hj = 1
}

,

where we have used Conjecture 8.7.1 with Ω0 = Ω0(ξu) = {θ(1), . . . , θ(n2)}
and the formula for the derivative of the minimum. In the next step, we
calculate

u(s+1) = u(s+1)(hs) = (1 − hs)u(s) + hsū(s), (8.54)

where the weight hs maximizes the minimum Φ-efficiency,

effΦ(ξ, θ) =
Φ(M(ξ, θ))
Φ(M(ξ∗

θ , θ))
(8.55)

among all designs of the form ξu with u = u(s+1) defined by (8.54); that is,

hs = arg max
{

min
θ∈Ω

effΦ(ξu(s+1)(h), θ) | 0 ≤ h ≤ 1
}

.

Obviously, we obtain

min
θ∈Ω

effΦ(ξu(s+1) , θ) ≥ min
θ∈Ω

effΦ(ξu(s) , θ)

and in the case of equality, the design ξu(s+1) is standardized maximin Φ-
optimal in the class of designs

Ξn1 =
{
ξu | u ∈ Un1

}
. (8.56)

Otherwise, it follows by standard arguments that the sequence of designs
(ξu(j))j∈N0 contains a weakly convergent subsequence with a limit, say ξ∗

n1
,

that is a standardized maximin Φ-optimal in the class Ξn1 . Note that
in all cases considered in our study, the sequence (ξu(j))j∈N0 was weakly
convergent and it is usually not necessary to consider subsequences. We
can now use the general equivalence theorem for standardized maximin Φ-
optimality (see Dette, Haines, and Imhof (2003, Theorem 3.3)) to check
if the design ξ∗

n1
is standardized maximin Φ-optimal in the class of all

approximate designs (for the standardized maximin D-optimality criterion,
the corresponding equivalence theorem is stated in the appendix in Lemma
8.6.1. Otherwise, the procedure is continued with n1 replaced by n1 + 1
and an initial design in the class Ξn1+1 constructed as follows: We define

t∗ = arg maxt∈[0,T ] min
{∑n2

j=1 hj
∂

∂α

Φ(M((1 − α)ξ∗
n1

+ αξt, θ(j)))
Φ(M(ξ∗

θ(j)
, θ(j)))

∣∣∣∣∣
α=0+

∣∣∣ hj

≥ 0;
∑n2

j=1 hj = 1
}
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where ξt denotes the Dirac-measure at the point t and

α∗ = arg maxα∈[0,1] min
{∑n2

j=1 hj

Φ(M((1 − α)ξ∗
n1

+ αξt∗ , θ(j)))
Φ(M(ξ∗

θ(j)
, θ(j)))

∣∣∣ hj

≥ 0;
∑n2

j=1 hj = 1
}

.

The initial design ξu(0) for the calculation of the standardized maximin Φ-
optimal in the class Ξn1+1 is finally defined by the vector u(0) ∈ Un1+1,
which is given by

u(0) = (u∗
1, . . . , u

∗
n1

, t∗, (1 − α∗)w∗
1 , . . . (1 − α∗)w∗

n1
, α∗),

where u∗
1, . . . , u

∗
n1

denote the support points of the design ξ∗
n1

with corre-
sponding weights w∗

1 , . . . w∗
n1

. The first step of the procedure is now con-
tinued to obtain the standardized maximin Φ-optimal design in the class
Ξn1+1. If this design is not standardized maximin Φ-optimal in the class of
all approximated designs, the procedure is repeated, increasing the number
of support points by 1. The algorithm stops if the standardized maximin Φ-
optimality of the calculated design has been confirmed by the Equivalence
Theorem.

Note that the algorithm definitively terminates, because, as it is shown
in Dette, Melas, Pepelyshev, and Strigul (2005), any standardized max-
imin D, E-, or ei-optimal design is supported at a finite number of points.
Moreover, in our numerical study, all iterations usually stopped after a few
steps and the standardized maximin Φ-optimal could quickly be identified
using the described procedure.

8.7.2 A comparison of maximin and uniform designs

For the sake of brevity, we will restrict the calculation of standardized
maximin optimal designs to a procedure that uses the optimal designs from
the infinite design space [0,∞]. As a consequence, we only have to tabulate
designs for one design space, namely [0, ∞]. Moreover, the consideration
of an infinite design space is justified by the following observations. First,
it was demonstrated in Section 8.3 that efficient locally optimal designs on
a finite design space can easily be obtained from the designs on an infinite
design space using the following method. If

ξ∗
θ =

(
t∗1 t∗2 ∞
w∗

1 w∗
2 w∗

3

)
(8.57)

denotes a locally D-, E-, or ei-optimal design for the Monod model on
the design space [0, ∞] and the right boundary of the design space [0, T ]
satisfies T ≥ 1.5t∗2, then the design

ξ̃∗
θ =

(
t∗1 t∗2 T
w∗

1 w∗
2 w∗

3

)
(8.58)
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on the finite design space has at least a Φ-efficiency of 0.98, where the Φ-
efficiency is defined by (8.55). Similarly, it was observed in our numerical
study that if

ξ∗ =
(

t∗1 . . . t∗n−1 ∞
w∗

1 . . . w∗
n−1 w∗

n

)
(8.59)

denotes a standardized maximin D-, E-, or ei-optimal design for the Monod
model on the design space [0, ∞] and T ≥ 2t∗n−1 , then the design

ξ̃∗ =
(

t∗1 . . . t∗n−1 T
w∗

1 . . . w∗
n−1 w∗

n

)
(8.60)

has at least maximin efficiency 0.98, where the maximin efficiency is defined
by

effΨΩ(ξ) =
ΨΩ(ξ)

supη ΨΩ(η)
(8.61)

and the robust optimality criterion ΨΩ(ξ) is given by (8.48). Second, we
note that in microbiological studies, the length of the design interval [0, T ]
can often be chosen by the experimenter.

In Tables 8.12 and 8.13, we present some standardized maximin optimal
designs for various regions of the parameter space Ω, where the design in-
terval is given by [0,∞]. A typical vector of parameters observed in studies
of microbial growth by η0 = 0.03, s0 = 1, θ1 = 0.25, θ2 = 0.5, and θ3 = 0.25
(see Pirt (1975) or Blok (1994)) and for an illustration of the robustness
properties of the standardized maximin optimal designs, we took this point
as the center of the set Ω required for the definition of the standardized
optimality criteria. In Table 8.12, we display standardized maximin D-
optimal designs for the Monod model on the set [0,∞], whereas Table 8.13
contains the corresponding standardized maximin E-optimal designs. It is
interesting to note that in all cases, the standardized maximin optimal de-
signs require at least four support points. Moreover, the number of support
points is increasing with the size of the set Ω specified by the experimenter.
This observation was also made by Dette and Biedermann (2003) for the
Michaelis–Menten model. Note that the standardized maximin optimal
designs are always supported at a finite number of points and that in all
cases considered in our study, the optimal designs have at most six sup-
port points, including the right boundary point of the design space (see
also Conjecture 8.4.1). As pointed out in the previous paragraph, imple-
mentable and very efficient designs of the form (8.60) can be derived from
the standardized maximin optimal designs on the infinite designs space in
the case t∗n−1 < T . In particular, compared to the designs (8.57) on the
infinite design space [0,∞], these designs have at least an efficiency of 0.98,
provided that the point t∗n−1 satisfies 2t∗n−1 < T .

For this reason, we will now assume that the microbiological experiments
can be carried out over a sufficiently long time T such that these strategies of
design construction are applicable and compare the standardized maximin
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optimal designs with some uniform designs, which provide an alternative
design of experiment if there is only very vague prior information regarding
the unknown parameter. All of our efficiency considerations are restricted
to designs obtained from the optimal designs on an infinite design space
[0,∞] by the procedure explained by (8.59)–(8.60). The efficiencies of the
standardized maximin optimal designs on the interval [0, T ] are slightly
larger, but the additional effort of calculating these designs for any interval
[0, T ] under consideration is only justified if T < 2t∗n−1.

To be precise, we consider the problem of designing an experiment for
the Monod model with design space [0, T ] = [0, 40]. For the uniform design,
we chose the uniform distribution on 20 points in the interval [0, 40] (i.e.,
is the design ξU(20),40 defined in (8.50) for N = 20 and T̄ = 40). Note
that it can be checked numerically that for η0 = 0.03, s0 = 1, θ1 = 0.25,
θ2 = 0.5, and θ3 = 0.25, the locally D-optimal uniform design is the uniform
distribution on the interval [0, 32] and that ξU(20),40 could be considered
as an approximation to the locally D-optimal uniform design, which takes
into account that the parameters required for the construction of the locally
D-optimal uniform design have been misspecified. Moreover, we checked
numerically that for the point η0 = 0.03, s0 = 1, θ1 = 0.25, θ2 = 0.5, and
θ3 = 0.25, the uniform design ξU(20),40 is only slightly less efficient compared
to the locally D-optimal uniform design ξU(20),32. The situation for the
other criteria is similar. In Table 8.14, we compare this uniform design with
the standardized maximin D-optimal designs derived from Table 8.12 and
the procedure described by (8.59) and (8.60). The comparison is performed
by considering the ratios

CD(ξ, θ) =
(

det M(ξ, θ)
det M(ξU(20),40, θ)

) 1
3

, (8.62)

Ci(ξ, θ) =
(eT

i M−1(ξ, θ)ei)−1

(eT
i M−1(ξU(20),40, θ)ei)−1 , i = 1, 2, 3 (8.63)

CE(ξ, θ) =
λminM(ξ, θ)

λminM(ξU(20),40, θ)
(8.64)

of the corresponding optimality criteria. Note that these ratios depends
on the parameter θ and that for a given θ ∈ Ω, a larger value than 100%
indicates that the design ξ is more efficient than the uniform design ξU(20),40
with respect to the corresponding optimality criterion. For the sake of
brevity Table 8.15 contains the maximum, minimum, and averaged values
of these ratios, which are indicated by the symbols “max”, “min”, and
“average”, respectively. For example, in the column with the label CD and
“min”, the reader finds the minimum ratio

min
θ∈Ω

CD(ξ̃∗
D, θ) = min

θ∈Ω

(
det M(ξ, θ)

det M(ξU(20),40, θ)

) 1
3



306 CHAPTER 8. THE MONOD MODEL

taken over the set Ω, whereas in the column with the label CD and “average”
the corresponding integrated values with respect to the uniform distribution
can be found; that is, ∫

Ω
CD(ξ̃∗

D, θ) dθ

(recall that the design ξ̃∗
D on the interval [0, T ] is obtained from the stan-

dardized maximin D-optimal design on the infinite design space in Table
8.12 by (8.59) and (8.60)).

We observe that the standardized maximin D-optimal design is always
better than the uniform design ξU(20),40, if the D-, E-, e1-, and e2-criterion
are used for comparing competing designs, because the corresponding min-
imum values are larger than 100%. The improvement by using a stan-
dardized maximin optimal design instead of the uniform design with re-
spect to these criteria can be substantial. For example, consider the set
Ω = [0.20, 0.30] × [0.40, 0.60] × [0.20, 0.30] corresponding to a situation
where only vague prior information regarding the unknown parameters
in the Monod model is available. In this case, the minimum gain in D-
efficiency by the standardized maximin D-optimal design is approximately
17%, the maximum is 43%, and the average, we have 25% improvement
compared to the uniform design ξU(20),40. The performance of the stan-
dardized maximin D-optimal design would be even better if the parameter
space Ω could be specified more precisely. The advantages with respect to
the E-, e1-, and e2-criterion are even larger. On the other hand, the uni-
form design ξU(20),40 is more efficient for the estimation of the parameter
θ3. However, as pointed out in Section 8.3, the efficient estimation of θ1 and
θ2 is usually more important for the Monod model, because in realistic sit-
uations (see Pirt (1975) or Blok (1994)) the parameter θ3 can be estimated
with much higher precision than the parameters θ1 and θ2. The situation
for the E-optimality criterion is very similar. The standardized maximin
E-optimal design should be preferred in all cases, except if the primary goal
of the experiment is the parameter θ3 and all other parameters are not of
interest for the experimenter.

8.8 Appendix

We will begin by proving a Chebyshev property for a systems of functions,
which will be crucial for a proof of the statements in Section 8.2–8.5. Recall
that a system of functions ψ1(t), . . . , ψm(t) is called a Chebyshev system
(T -system) on an interval [α, β] if

det (ψi(tj))
m
i,j=1 > 0

for any α ≤ t1 < · · · < tm ≤ β (see Karlin and Studden (1966, Chap.1)).
The main property of a Chebyshev system is that any nontrivial linear
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combination
∑m

i=1 αiψi(t) of the functions ψ1, . . . , ψm has at most m − 1
distinct roots in the interval [α, β].

Proposition 8.8.1

a) The system of functions{
1
u

,
1

b1 − u
,

1
(b1 − u)(b2 − u)

}
is a Chebyshev system on any interval [a, b] ⊂ (0,∞] whenever b1, b2 ≥
b.

b) If a system of functions ψ1(x), . . . , ψm(x) is a Chebyshev system on
the interval [η0, b], then the system of functions∫ u

η0

ψ1(x) dx, . . . ,

∫ u

η0

ψm(x) dx

is also a Chebyshev system on any interval [a, b] ⊂ (η0, b].

Proof.

(a) Consider the determinant

J = det (ψi(uj))
3
i,j=1 , a ≤ u1 < u2 < u3 ≤ b,

where ψ1(u) = 1/u, ψ2(u) = 1/(b1 −u), and ψ3(u) = 1/[(b1 −u)(b2 −
u)]. Let us multiply the i-th row by ui(b1 − ui)(b2 − ui), i = 1, 2, 3.
By a linear transformation of the columns, the resulting determinant
can be reduced to the Vandermonde determinant

det(ui−1
j )3i,j=1 =

∏
j<i

(ui − uj) > 0.

Hence, J > 0 and the system ψ1(u), ψ2(x), ψ3(x) is a Chebyshev
system on the interval [a, b] ⊂ (0,∞].

(b) Let us suppose that assertion (b) of Proposition 8.8.1 is not true.
Then there exist real numbers α1, . . . , αm, not all equal to zero, such
that the linear combination

m∑
i=1

αi

∫ u

η0

ψi(x) dx =: q(u)

has at least m distinct zeros in the interval [a, b] ⊂ (η0, b]. Moreover,
we have q(η0) = 0, and therefore the derivative

q′(u) =
m∑

i=1

αiψi(u)

has m different roots in the interval [η0, b], which contradicts the
Chebyshev property of the system {ψi(u)}.
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8.8.1 Proof of Lemma 8.2.1

The derivative of η is positive at the point t = 0, and by continuity, it must
also be positive in a neighborhood of the origin. Moreover, the function
η̄(t) ≡ c is obviously a solution of the differential equation (8.1). By the
Implicit Function Theorem (see Gunning and Rossi (1965)), it follows that
the differential equation (8.1) cannot have two differentiable solutions that
coincide at a point. Thus, the function η should be less than c for any t > 0
and must be increasing. Consequently, there exists the limit limt→∞ η(t).
Now, (8.1) implies that the limit of the derivative of η also exists. Because
η is a bounded function, it follows from (8.14) that

limt→∞ η′(t) = 0,

limt→∞ η(t) = c,

which completes the proof of Lemma 8.2.1.

8.8.2 Proof of Theorem 8.2.1

Recall the definiton of the set Ω = {θ = (ϑ1, ϑ2, ϑ3)T : ϑi > 0, i = 1, 2, 3}
in Theorem 8.2.1; then the assertion of the theorem follows from results of
Jennrich (1969) and the following lemma.

Lemma 8.8.1 Let η(t, θ) denote the regression function determined by
(8.1)–(8.3).

(a) For any fixed vector θ ∈ Ω, there exist the derivatives

∂η

∂ϑi
(t, θ),

∂2η

∂ϑi∂ϑj
(t, θ), i, j = 1, 2, 3.

(b) For any fixed θ0 ∈ Ω, the function

g(θ) =
n∑

j=1

(η(tj , θ) − η(tj , θ0))2

with 0 ≤ t1 < · · · < tn < ∞ and n ≥ 3 attains its minimum value
(equal to zero) in the set Ω if and only if θ = θ0.

(c) For any θ0 ∈ Ω and for any design ξ with more than three support
points, it follows that

det M(ξ, θ0) �= 0.

Proof. Statement (a) is an immediate consequence of the identities (8.16)
and (8.20). Let us suppose that condition (b) is not valid. Then, as n ≥ 3,
there exist two vectors θ(1) and θ(2) such that

η(ti, θ(1)) = η(ti, θ(2)), i = 1, 2, 3. (8.65)
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Define ηi = η(ti, θ(1)) (i = 1, 2, 3) and consider the two functions

t(j)(x) = t(x, θ(j)) = η−1(x, θ(j)), j = 1, 2.

Due to (8.65), we have t(1)(ηi) = t(2)(ηi) = ti (i = 1, 2, 3), and observing
(8.16), we obtain

ti = a1(θ(j))
∫ ηi

η0

1
u

du + a2(θ(j))
∫ ηi

η0

1
a3(θ(j)) − u

du,

i = 1, 2, 3, j = 1, 2, where the constants ai(θ) are given by

a1(θ) =
1 + b

ϑ1
=

1
ϑ1

s0ϑ3 + η0 + ϑ2ϑ3

s0ϑ3 + η0
,

a2(θ) =
b

ϑ1
=

1
ϑ1

ϑ2ϑ3

s0ϑ3 + η0
,

a3(θ) = c = s0ϑ3 + η0.

It is easy to verify that the conditions ai(θ(1)) = ai(θ(2)), i = 1, 2, 3, imply
θ(1) = θ(2). Consequently, there exist two different vectors

a(j) = (a1(j), a2(j), a3(j)) = (a1(θ(j)), a2(θ(j)), a3(θ(j)))T , j = 1, 2,

such that the equations

a1(j)

∫ ηi

η0

1
u

du + a2(j)

∫ ηi

η0

1
a3(j) − u

du = ti,

are satisfied for all i = 1, 2, 3, and j = 1, 2. Subtracting the equalities for
j = 2 from the equalities for j = 1, we obtain

∆1

∫ ηi

η0

1
u

du − a2(1)

∫ ηi

η0

∆3

(a3(1) − u)(a3(2) − u)
du

+ ∆2

∫ ηi

η0

1
a3(1) − u

du = 0
(8.66)

for some constants ∆i = ai(1) − ai(2), i = 1, 2, 3. From Proposition 8.8.1, it
follows that the functions

ψ1(x) =
∫ x

η0

du

u
, ψ2(x) =

∫ x

η0

du

b1 − u
, ψ3(x) =

∫ x

η0

du

(b1 − u)(b2 − u)

form a Chebyshev system on an interval (η0, d] whenever b1, b2 ≥ d. Insert-
ing d = min{a3(1), a3(2)}, b1 = a3(1), b2 = a3(2), α1 = ∆1, α2 = −a2(1)∆3,
and α3 = ∆2, we obtain from (8.66) that

3∑
i=1

αiψi(ηj) = 0, j = 1, 2, 3,
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where the coefficients αi are not all equal to zero and we have, from Lemma
8.2.1, ηi ≤ min{a3(1), a3(2)} (i = 1, 2, 3). This equality contradicts the main
property of Chebyshev systems and the proof of assertion (b) is completed.

Finally, let us prove that assertion (c) is valid. From Proposition 8.8.1, it
follows that the functions ϕ1(x), ϕ2(x), and ϕ3(x) defined in (8.23) generate
a Chebyshev system on the interval (0,∞]. If n = 3, a direct calculation
shows shows that

M(ξ, θ0) = FT WF,

where W = diag{w1, w2, w3} and

F =
(

∂η(ti, θ0)
∂ϑj

)3

i,j=1
.

Consequently, it follows that

det M(ξ, θ0) = w1w2w3(det F )2, (8.67)

whereas due to (8.21), we have

det F = det K · det (ϕj(ηi))
3
i,j=1 �= 0,

where we used the Chebyshev property of the system {ϕi(x)}3
i=1. In the

general case n > 3, let

α = (i1, i2, i3), ξα =
(

ti1 ti2 ti3
wi1 wi2 wi3

)
, 1 ≤ i1 < i2 < i3 ≤ n

and denote by τ the set of all different multiindices α; then the Binet–
Cauchy formula shows

det M(ξ, θ0) =
∑
α∈τ

det M(ξα, θ0)

and all terms in the sum on the right-hand side are positive.

8.8.3 Proof of Lemma 8.3.1

It follows by a standard argument that the optimal weights (with respect
to the D-criterion) are equal for any design with three support points.
Consequently, it is enough to verify that

∂

∂x3
det F (x1, x2, x3) > 0

for η0 ≤ x1 < x2 < x3, where F (x1, x2, x3) = det(ϕi(xj))3i,j=1. To this end,
we introduce the notation

L(x) =
∂

∂x
det F (x1, x2, x),

G(x) = det

⎛
⎝ f1(x1) f2(x1) f3(x1)

f1(x2) f2(x2) f3(x2)
f1(x) f2(x) f3(x)

⎞
⎠,

(8.68)
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with fi(x) = ϕi(x)/v(x); then a direct computation shows that

0 ≤ det F (x1, x2, x) = v(x1)v(x2)v(x)G(x)

and

L(x) = v(x1)v(x2)v′(x)G(x) + v(x1)v(x2)v(x)G′(x) . (8.69)

Consequently, we obtain

L(x) = v(x1)v(x2)v(x)G′(x)

for x = x1, x2. Observing (8.23) and (8.68), it follows that the function
G(x) has zeros at x = η0, x1, x2. Hence, there exist points u1 and u2 with
η0 < u1 < x1 < u2 < x2 and G′(ui) = 0, i = 1, 2. Moreover, the functions
{f ′

i(x)} form a Chebyshev system on the interval [η0, c̄] and the functions
{fi(x)} have the same property on the interval (η0, c̄] by Proposition 8.8.1.
Therefore, the functions G′ and G have at most two zeros in the interval
(η0, c̄] and we obtain from G(x) > 0, G′(x) > 0 for x > x2 that both
terms on the right-hand side of (8.69) are positive for x > x2. This implies
L(x) > 0 for any x > x2 and, consequently, the largest support point of
the D-optimal three-point design must be attained at the boundary (i.e.,
x3 = c̄).

8.8.4 Proof of Lemma 8.3.2

Proof of assertion (1). Let b > 0 be an arbitrary fixed number and ζ be
an arbitrary fixed design with at least n ≥ 3 support points. Consider a
transformation of the function of the equivalence theorem for D-optimality
in the linear regression model βT ψ(x) defined by (8.33); that is,

d(x) = d(x, ζ) = d1(x) − d2(x),

where

d1(x) = d1(x, ζ) =
1

v2(x)
ψT (x)M̃−1(ζ)ψ(x) − 3b2

(1 − x)2
,

d2(x) =
3

v2(x)
− 3b2

(1 − x)2
,

and v(x) is given by (8.24) for c = 1. We define g(x) = g1(x) − g2(x), with

g1(x) = [x(1 − x)2d′
1(x)]′′′,

g2(x) = [x(1 − x)2d′
2(x)]′′′,

and introduce ⎛
⎝ A B C

B G E

C E F = M̃−1(ζ)

⎞
⎠ ,
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where M̃(ζ) is the information matrix of the design ζ in the linear regression
model βT ψ(x). Assume for a moment that F = 3b2. In this case, a direct
computation gives

(1 − x)3g1(x) = [−4Gx2 + (10G + 2E)x − 6(E + G)],

x5g2(x) = [144(1 + b)2 − 36(2 + b)(1 + b)x].
(8.70)

It is not difficult to see that all elements of the matrix M̃−1(ζ) are positive
and, in particular, G > 0 and E > 0. Moreover, for x ∈ (0, 1), we have

g2(x) > 0, g1(x) < 0.

The first of these inequalities is obvious. The second inequality will be
verified by considerating the roots x(1) and x(2) of the equation

−4Gx2 + (10G + 2E)x − 6(E + G) = 0,

which are given by

x(1),(2) =
E + 5G ± √

E2 − 14EG + G2

4G
.

Since E and G are positive, it follows that x(1), x(2) > 1 and we have from
(8.70) g1(x) < 0 for x ∈ (0, 1). Therefore, the function g(x) is strictly
negative for x ∈ (0, 1) if the condition F = 3b2 is valid.

Now, let

ζ =
(

x1 x2 . . . xn

w1 w2 . . . wn

)
, 0 ≤ x1 < · · · < xn ≤ 1,

be a D-optimal design. From the proof of Lemma 8.3.1 and the Binet–
Cauchy formula, it follows that xn = 1. Notice that for x → 0, we have
ψ(x) → (0, 0, 0)T and, consequently, the left boundary x = 0 of the design
space is not a support point of a D-optimal design (i.e., x1 > 0). By the
Equivalence Theorem for D-optimality, we have

d̃(xi) := v2(xi)d(xi) = ψT (xi)M̃−1(ζ)ψ(xi) − 3 = 0 , i = 1, . . . , n,

d̃′(xi) = 0 , i = 1, . . . , n − 1.
(8.71)

Let us assume that the design ζ contains n > 3 points. From (8.33), we
obtain

lim
x→1

v2(x)d(x) = 0

and it follows that F = 3b2. Consequently, the arguments of the previous
paragraph are applicable and we have from (8.71) that

d′(x) = 0
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for x = x1, x2, x3 and for some points x̃1 ∈ (x1, x2) and x̃2 ∈ (x1, x2). Thus,
the function d′(x) and the function x(1−x)2d′(x) have at least five roots in
the interval (0, 1). Hence, g(x), being the third derivative of the function,
x(1 − x)2d′(x) has at least 5 − 3 = 2 zeros in the interval (0, 1). However,
we proved above that this is impossible. Thus, the assumption n ≥ 4 yields
a contradiction and any D-optimal design for the regression model βT ψ(x)
on the interval [0, 1] is supported at exactly three points.

Finally, let us show that there exists a unique D-optimal design. The
existence of a D-optimal design follows from continuity of the function
ψ(x) and compactness of the interval [0, 1]. Assume that ζ(1) and ζ(2) are
two different D-optimal designs. Then it follows by a standard concavity
argument (see Fedorov (1972)) that the design ζ̃ := ζ(1)/2 + ζ(2)/2 is also
D-optimal. However, this is impossible because the design ζ̃ contains more
than three distinct points.

Proof of assertion (2). From the proof of assertion (1), it follows that
the function

v2(x)d(x)

has at most three maxima on the interval [0, 1] and assertion (2) follows by
a continuity argument.

8.8.5 Proof of Lemma 8.6.1.

We will only present a proof of assertions (1) and (2). The remaining
statements regarding the ek-optimal designs are proved similarly. Let
h(x) = Kϕ(x) and s = (KT )−1r and define

N(ζE) =
∫

h(x)hT (x) dζE(x) = KM̄(ζE)KT ; (8.72)

then it is easy to see that assumption (2) can be rewritten as

rT M̄(ζE)r = sT N(ζE)s = (sT s)λmin(N(ζE)) . (8.73)

From (8.41–(8.43), we obtain

sT h(xi) = (−1)i+1, i = 1, 2, 3, (8.74)

sT h(x) ≤ 1 ∀x (8.75)

and Elfvings theorem (Elfving (1952)) and (8.74) imply that the vector s
is an eigenvector of the matrix N(ζE) (i.e., is N(ζE)s = λs). Observing
(8.74) and (8.73), it follows that

1 = sT N(ζE)s = λ · (sT s) =
λ

λmin(N(ζE))
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and from (8.75) we obtain the inequality

hT (x)
(ssT

sT s

)
h(x) ≤ 1

sT s
= λmin(N(ζE)) ∀x.

Part (2) of Lemma 8.6.1 now follows immediately from the corresponding
equivalence theorems for E-criterion [see Pukelsheim (1993)]. The design
is unique, because the function g(x) defined in (8.41) is unique (see, e.g.,
Karlin and Studden (1966, Chap 1)).

To prove part (1) let us note that for η0 → 0 we have

ϕ̃T (x) = v(x)
(

−
ln x

η0

ln η0
, ln

c − x

c − η0
,
x − η0

c − x

)

∼ v(x)
(

1, ln
c − x

c − η0
,
x − η0

c − x

)
=: ψ̃(x)

and that any subset with two functions of{
v(x), v(x) ln

c − x

c − η0
, v(x)

x − η0

c − x

}

generates a Chebyshev system on the interval [η0, c̄]. Define

K̃ =

⎛
⎜⎜⎜⎜⎜⎝

1 + b

ϑ1
ln η0

b

ϑ1
0

− b

ϑ2
ln η0 − b

ϑ2
0

− bη0

cϑ3
ln η0 − bη0

cϑ3
− b

ϑ3

⎞
⎟⎟⎟⎟⎟⎠ .

and
M̃(ξ) :=

∫
ψ̃(x)ψ̃T (x) dξ(x) .

A straightforward but tedious calculation shows that for sufficiently small
η0, the sign pattern of the matrix

(K̃T )−1(M̃(ξ))−1K̃−1

is of the form ⎛
⎝ + − +

− + −
+ − +

⎞
⎠

and, consequently, the matrix D has a simple eigenvalue for sufficiently
small η0 (see Gantmacher (1998)). It follows from general results on E-
optimality [see Dette and Studden (1993)] that the E-optimal design for the
vector of regression functions ψ̃(x) is supported on the Chebyshev points.
Part (1) of the lemma is now obtained by a continuity argument.
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Remarks on Computer Calculation
of Taylor Coefficients

Consider the problem of calculating Taylor coefficients for optimal design
functions, defined in Section 2.1.

As, example, let us take the regression function

η(x,Θ) = θ1e
−θ3x + θ2e

−θ4x,

where θ1, θ2 �= 0, θ3, θ4 > 0, θ3 �= θ4, and x ∈ [0,∞).
Denote u = (θ3 + θ4)/2 and z = (θ3 − θ4)/2.
In Chapter 6 it was prove that a locally D-optimal design in this case

is unique and is of the form {0, x∗
2, x

∗
3, x

∗
4; 1/4, 1/4, 1/4, 1/4}, where x∗

i =
x̃i(z)/u, i = 2, 3, 4, and x̃i(z) → x̃i(0) with z → 0, where 2x̃2(0), 2x̃3(0),
and 2x̃4(0) are roots of the Laguerre polynomial of the third degree with
parameter 0.

Thus, it will do to find Taylor coefficients of the function

x∗(z) = arg max det
(

f(x1)
... . . .

...f(x4)
)

,

where

f(xi) =
(
e−(1+z)xi , xie

−(1+z)xi , e−(1−z)xi , xie
−(1−z)xi

)4

i=1

in a vicinity of point z = 0.
In the given case, the goal function has peculiarity of fourth order. The

problem can be solved with the help of the following computer program,
which realizes formulas from Theorem 2.4.4 in Maple suit.

Program

1. m := 4;
the number of points.
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2. f := (t)− > matrix(1, m, [e−(1+u)t, te−(1+u)t, e−(1−u)t, te−(1−u)t]);
matrix line of basic functions

3. p := vector(m); p[1] = 0;
vector of optimal design points.

4. M := matrix(m, m);
for i from 1 to m do
copyinto(f(p[i]), M, i, 1);
od;
detM := det(M);
calculating the information matrix M and its determinant. Variable
detM is a symbolic expression of u, p[2], p[3], p[4].

5. x[0] := matrix(m − 1, 1, [.4679111137, 1.652703644, 3.879385241]);
zero approximation.

6. g := vector(m − 1);
for i from 1 to m − 1 do
g[i] := diff(detM, p[i + 1]);
od;
calculating of the left hand side of the basic equation g(·) = 0.

7. irr := 4;
the order of peculiarity.

8. J := matrix(m − 1, m − 1);
for i from 1 to m − 1 do
for j from 1 to m − 1 do
J [i, j] := coeftayl(subs({seq(p[l + 1] = x[0][l, 1], l = 1..m −
1)},diff(g[i], p[j + 1])), u = 0, irr);
od;
od;
invJ := inverse(J);
Calculating of the matrix J(irr) and the inverse matrix.

9. MAX := 10; h := matrix(m − 1, 1);
the number of steps of the Algorithm 2.6.2

10. for c from 1 to MAX do
for i from 1 to m − 1 do
p[i + 1] := sum(′x[k][i, 1] ∗ u ∧ k′,′ k′ = 0..c − 1);
od;
for i from 1 to m − 1 do
h[i, 1] := coeftayl(g[i], u = 0, c + irr);
od;
x[c] := evalm(−invJ& ∗ h);
od;
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recursion calculating the coefficients. At the step c optimal design
points are replaced by the segment of the Taylor series. Calculating
matrix row h. The coefficients at cth step are calculated by formula
−invJ ∗ h.

11. print(x).

Let us describe the performance of the program.
Matrices J and invJ are of the form

J =

⎛
⎜⎜⎝

−.47885 .063589 .007699

.063589 −.11423 .017997

.007699 .017997 −.03157

⎞
⎟⎟⎠ ,

invJ =

⎛
⎜⎜⎝

−2.3120 −1.5116 −1.4256

−1.5116 −10.606 −6.4146

−1.4256 −6.4146 −35.678

⎞
⎟⎟⎠ .

At the first step, obtain

h =

⎛
⎜⎜⎝

0

0

0

⎞
⎟⎟⎠ , x[1] =

⎛
⎜⎜⎝

0

0

0

⎞
⎟⎟⎠ .

At the second step, obtain

h =

⎛
⎜⎜⎝

−.02456

.003633

.056620

⎞
⎟⎟⎠ , x[2] =

⎛
⎜⎜⎝

.02919

.36419

2.0066

⎞
⎟⎟⎠

and so on.

Remarks

(i) The basic equation can be given otherwise, in an immediate way.

(ii) The zero approximation for design points can be found numerically.

(iii) Performing the program can be done substantially more quickly if it
is possible to find the derivatives in block 4 analytically.

Thus, we have demonstrated that the computer realization of formulas
from Theorem 2.4.4 is rather easy.



References

Atkinson, A.C., Donev, A.N. (1992). Optimum Experimental Designs.
Clarendon Press, Oxford.

Atkinson, A.C., Demetrio, C.G.B., Zocchi, S.S. (1995). Optimum dose
levels when males and females differ in response. J. R. Statist. Soc., Ser.
C, 44, 213–226.

Baranyi, J., Roberts, T.A. (1995). Mathematics of predictive food mi-
crobiology. Int. J. Food Microbiol., 26, 199–218.

Bechenbach, F., Bellman, R. (1961). Inequalities. Springer-Verlag.
Berlin.

Becka, M., Bolt, H.M., Urfer, W. (1993) Statistical Evaluation of Toxi-
cokinetic Data. Environmetrics, 4, 311–322.

Becka, M., Urfer, W. (1996). Statistical aspects of inhalation toxicoki-
netics. Environmental Ecolog. Statist. 3, 51–64.

Beverton, R.J.H., Holt, S.J. (1957). On the Dynamics of Exploited Fish
Populations. Her Majesty’s Stationary Office. London.

Bezeau, M., Endrenyi, L. (1986). Design of experiments for the precise
estimation of dose-response parameters: The Hill equation. J. Theor. Biol.,
123(4), 415–430.

Blok, J. (1994). Classification of biodegradability by growth kinetic
parameters. Ecotoxicol. Environ. Safety, 27, 294–305.

Blok, J., Struys, J. (1996). Measurement and validation of kinetic pa-
rameter values for prediction of biodegradation rates in sewage treatment.
Ecotoxicol. Environ. Safety, 33, 217–227.

Bock, J. (1998) Bestimmung des Stichprobenumfangs. Oldenbourg,
Munchen.

Boer, E.P.J., Rasch, D., Hendrix, E.M.T. (2000). Locally optimal de-
signs in non-linear regression: A case study for the Michaelis-Menten func-
tion. Balakrishnan, N., Melas, V.B., and Ermakov, S.M.(ed.). Advances in
Stochastic Simulation Methods. Birkhauser, pp. 177–188.

Box, J.E.P. (1996). Scientific statistics, teaching, learning and the com-
puter. Proceedings in Computational Statistics – 12th Symposium Held
in Barcelona, Spain, 1996/COMPSTAT. Prat, A. (ed.). Physica-Verlag,
Heidelberg, pp. 3–10.

321



322 REFERENCES

Box, J.E.P., Draper, N.R. (1987). Empirical Model Building and Re-
sponse Surface. John Wiley & Sons, New York.

Box, G.E.P., Lucas, H.L. (1959). Designs of experiments in nonlinear
situations. Biometrika 46, 77–90.

Box, J.E.P., Wilson, K.B. (1951). On the experimental attainment of
optimum conditions, J. R. Statist. Soc. Series B, 13, 1–38; discussion,
39–45.

Chaloner, K. (1989). Optimal Bayesian experimental design for esti-
mation the turning point of a quadratic regression. Commun. of Statist.,
Theory Methods, 18. 1385–1400.

Chaloner, K., Larntz, K. (1989). Optimal Bayesian designs applied to
logistic regression experiments. J. Statist. Plan. Inference, 21, 191–208.

Chang, F-C., Heiligers, B. (1996). E-optimal designs for polynomial
regression without intercept. J. Statist. Plann. Inference, 55, 371–387.

Chang, F.-C., Lin, G.-C. (1997). D-Optimal designs for weighted poly-
nomial regression J. Stat. Plan. Inference, 62, 317–331.

Chatterjee, S.K., Mandal, N.K. (1981). Response surface designs for
estimating the optimal point. Calcutta Statist. Assoc. Bull., 30, 145–169.

Cheng, R.C.H., Kleijnen, J., Melas, V.B. (2000). Optimal design of
experiments with simulation models of nearly saturated queues J. Stat.
Plan. Inference, 86, 19–26.

Cheng, R.C.H., Melas, V.B., Pepelyshev, A.N. (2000). Optimal design
for evaluation of an extremum point. Eds. A.Atkinson, A., Bogacka, B.
Zhigljavsky A. (eds.). Optimum Design 2000. Kluwer, Boston, pp. 15–24.

Chernoff H. (1953). Locally optimal designs for estimating parameters.
Ann. Math. Statist. 24, 586–602.

Cornish-Browden, A. (1979). Fundamentals of Enzyme Kinetics. But-
terworth, London.

Cressie, N.A.C., Keightley, D.D. (1979). The underlying structure of
a direct linear plot with applications to the analysis of hormone-receptor
interactions. J. Steroid Biochem., 11, 1173–1180.

Cressie, N.A.C., Keightley, D.D. (1981). Analysing data from hormone-
receptor assays. Biometrics, 37, 235–249.

De Vore, R.A., Lorentz, G.G. (1993). Constructive Approximation.
Springer-Verlag, New York.

Dette, H. (1993). A note on E-optimal designs for weighted polynomial
regression. Ann. Statist., 21, 767–771.

Dette, H. (1996). Lower bounds for sciencies with applications. In:
Brunner, E., Denker, M. (eds.). Research Developments in Probability and
Statistics: Festschrift zum 65-ten Geburtstag von M.L. Puri, 1996. VSP,
Utrecht, The Netherlands, 111–124.

Dette, H. (1997a). Designing experiments with respect to standardized
optimality criteria. J. Roy. Statist. Soc., Series B, 59, 97–110.

Dette, H. (1997b). E-optimal designs for regression models with quan-
titative factors – a reasonable choice. Can. J. Statist., 25, 531–543.



REFERENCES 323

Dette, H., Biedermann, S. (2003). Robust and efficient designs for the
Michaelis-Menten model. J. Am. Stat. Assoc., 98, 679–686.

Dette, H., Haines, L., Imhof, L. (1999). Optimal designs for rational
models and weighted polynomial regression Ann. Statist., 27(4), 1272–
1293.

Dette, H., Haines, L., Imhof, L. (2003). Maximin and
Bayesian optimal designs for regression models. http://www.ruhr-uni-
bochum.de/mathematik3/preprint.htm

Dette, H., Haller, G. (1998). Optimal designs for the identification of
the order of a Fourier regression. Ann. Statist., 26, 1496–1521.

Dette, H., Melas, V.B. (2001). E-optimal designs in Fourier
regression models on a partial circle. http://www.ruhr-uni-
bochum.de/mathematik3/preprint.htm

Dette, H., Melas, V.B. (2002). E-Optimal designs in Fourier regression
models on a partial circle. Math. Methods Statist., 11(3), pp. 259–296.

Dette, H., Melas, V.B. (2003). Optimal designs for estimating individual
coefficients in Fourier regression models. Ann. Statist., 31(5) 1669–1692.

Dette, H., Melas, V.B., Biederman, S. (2002). D-Optimal designs for
trigonometric regression models on a partial circle - a functional-algebraic
approach. Statist. Probab. Let., 57, 389-397.

Dette, H., Melas, V.B., Pepelyshev, A. (2000). Optimal designs for
estimating individual coefficients in polynomial regression - a functional
approach. http://www.ruhr-uni-bochum.de/mathematik3/preprint.htm

Dette, H., Melas, V.B., Pepelyshev, A. (2002). D-Optimal designs for
trigonometric regression models on a partial circle. Ann. Inst. Statist.
Math., 54(4), 945–959.

Dette, H., Melas, V.B., Pepelyshev, A. (2003).Optimal designs
for a class of nonlinear regression models. http://www.ruhr-uni-
bochum.de/mathematik3/preprint.htm

Dette, H., Melas, V.B., Pepelyshev, A. (2003). Standardized maximin
E-optimal designs for the Michaelis-Menten model. Statist. Sin., 13, 1147–
1163.

Dette, H., Melas, V.B., Pepelyshev, A. (2004a). Optimal designs for a
class of nonlinear regression models.Ann. Statist., 32(3), 2142–2167.

Dette H., Melas, V.B., Pepelyshev, A.N. (2004b). Optimal designs for
estimating individual coefficients in polynomial regression — a functional
approach. J. Statist. Plan. Inference, 118, 201–219.

Dette, H., Melas, V.B., Pepelyshev, A., (2004c). Optimal
designs for 3D shape analysis with spherical harmonic descrip-
tors. Preprint, Ruhr-Universitat Bochum. http://www.ruhr-uni-
bochum.de/mathematik3/preprint.htm

Dette, H., Melas, V.B., Pepelyshev, A., Strigul, N. (2002). Effi-
cient design of experiments in the Monod model. http://www.ruhr-uni-
bochum.de/mathematik3/preprint.htm



324 REFERENCES

Dette, H., Melas, V. B., Pepelyshev, A., Strigul, N. (2003). Efficient
design of experiments in the Monod model. J. Roy. Statist. Soc., Series B,
65, 725-742.

Dette, H., Melas, V.B., Pepelyshev, A., Strigul, N. (2005). Design of
experiments for the Monod model – robust and efficient designs. J. Theor.
Biol. 234, 537–550.

Dette, H., Melas, V.B., Strigul, N. (2005). Design of experiments for mi-
crobiological models. Berger, M.P.F., Wong, W.K. (eds.) Applied Optimal
Designs. John Wiley & Sons, Chichester, pp. 137–180.

Dette, H., Melas, V.B., Wong, W.K. (2004a). Locally D-optimal
designs for exponential regression. Preprint Ruhr-Universität Bochum.
http://www.ruhr-uni- bochum.de/mathematik3/preprint.htm

Dette, H., Melas, V.B., Wong, W.K. (2004b). Optimal de-
sign for goodness-of-fit of the Michaelis–Menten enzyme kinetic func-
tion. Preprint Ruhr-Universität Bochum. http://www.ruhr-uni-
bochum.de/mathematik3/preprint.htm

Dette, H., Studden, W.J. (1993). Geometry of E-optimality. Ann.
Statist. 21, 416–433.

Dette, H., Wong W.K. (1999). E-optimal designs for the Michaelis-
Menten model. Statist. Probab. Let. 44, 405–408.

Dudzinski, M.L., Mykytowycz, R. (1961). The eye lens as an indicator
of age in the wild rabbit in Australia. CSIRO Wildl. Res., 6, 156–159.

Duggleby, R.G. (1979). Experimental designs for estimating the kinetic
parameters for enzymecatalysed reactions. J. Theor. Biol., 81, 671–684.

Dunn, G. (1988). Optimal designs for drug, neurotransmitter and hor-
mone receptor assays. Statist. Med., 7, 805–815.

Ehrenfeld, E. (1955). On the efficiency of experimental design, Ann.
Math. Statist., 26, 247–255.

Elfving, G. (1952). Optimum allocation in linear regression theory.
Ann. Math. Statist. 23, 255- -262.

Ellis, T.G., Barbeau, D.S., Smets, B.F., Grady, C.P.L. (1996). Respiro-
metric technique for determination of extant kinetic parameters describing
biodegradation. Water Environ. Res., 68, 917–926.

Ermakov, S.M., Melas, V.B. (1995). Design and Analysis of Simulation
Experiments. Kluwer Academic Publisher, London.

Ermakov, S.M. (ed.). (1983). Mathematical Theory of Experimental
Design. Nauka, Moscow (in Russian).

Fedorov, V.V. (1972). Theory of Optimal Experiments. Academic Press,
New York.

Fedorov, V.V., Hackl, P. (1997). Model-Oriented Design of Experiments.
Springer-Verlag, New York.

Fedorov, V.V., Müller, W.C. (1997). Another view on optimal design
for estimating the point of extremum in quadratic regression. Metrika, 46,
147–157.



REFERENCES 325

Ferenci, Th. (1999). ”Growth of bacterial cultures” 50 years on: to-
wards an uncertainty principle instead of constants in bacterial growth ki-
netics. Res. Microbiol., 150(7), 431–438.

Fisher, R. (1935). The Design of Experiments. Oliver Boud, London.
Ford, I., Silvey, S.D. (1980). A sequentially constructed design for esti-

mating a nonlinear parametric function. Biometrika, 67, 381-388.
Ford, I., Torsney, B., Wu, C.F.J. (1992). The use of a canonical form in

the construction of locally optimal designs for non-linear problems. J. R.
Statist. Soc., Series B, 54, 569–583.

Fu, W., Mathews, A.P. (1999). Lactic acid production from lactose by
Lactobacillus plantarum: Kinetic model and effects of pH, substrate, and
oxygen. Biochem. Eng. J., 3, 163–170.

Gantmacher, F.R. (1998). The Theory of Matrices. Chelsea, Provi-
dence. RI.

Goudar, C.T., Ellis, T.G. (2001). Explicit oxygen concentration ex-
pression for estimating extant biodegradation kinetics from respirometric
experiments. Biotechnol. Bioeng., 75, 74–81.

Graybill, F.A. (1976). Theory and Application of the Linear Model.
Wadsworth, Belmont CA.

Gunning, R.C., Rossi, H. (1965) Analitical Functions of Several Complex
Variables. Prentice-Hall, Inc., NewYork.

Haines, L.M. (1992). Optimal design for inverse quadratic polynomials.
South African Statist. J., 26, 25–41.

Haines, L. M. (1993). Optimal design for nonlinear regression models.
Commun. Statist. A, 22, 1613–1627.

Haines, L. M. (1995). A geometric approach to optimal design for one-
parameter nonlinear models. J. R. Stat. Soc., Series B, 57, 575–598.

Han, C., Chaloner, K. (2003). D- and C-Optimal designs for exponen-
tial regression models used in viral dynamics and other applications. J.
Statist. Plan. Inference, 115, 585–601.

Hay, W.W., Meznarich, H.K., DiGiacomo, J.E., Hirst, K., Zerbe, G.
(1988). Effects of insulin and glucose concentration on glucose utilization
in fetal sheep. Pediatr. Res., 23, 381–387.

Hco, G., Schmuland, B., Wiens, D.P. (2001). Restricted minimax robust
designs for misspesified regression models. Can. J. Statist., 29, 117–128.

He Z., Studden W.J., Sun D. (1996). Optimal designs for rational mod-
els. Ann. Statist., 24, 2128–2147.

Heiligers, B. (1991). E-Optimal Polynomial Regression Designs. Habil-
itationssrift, RWTH, Aahen.

Heiligers, B. (1994). E-Optimal designs in weighted polynomial regres-
sion. Ann. Statist., 22, 917–929.

Heiligers, B. (1998). E-Optimal designs in spline regression. J. Statist.
Plan. Inference, 75, 159–172.

Hill, P.D.H. (1978). A note on the equivalence of D-optimal design
measures for three rival linear models Biometrika, 65, 666–667.



326 REFERENCES

Hoel, P. (1965). Minimax design in two-dimensional regression. Ann.
Math. Statist., 36, 1097-1106.

Hoel, P.G., Levine, A., 1964. Optimal spacing and weighting in poly-
nomial prediction. Ann. Math. Statist., 35, 1553-1560.

Holmberg, A. (1982). On the practical identifiability of microbial gowth
models incorporating Michaelis-Menten type nonlinearities. Math. Biosci.
62, 23–43.

Huang, M.-N.L., Chang, F.-C., Wong, W.K. (1995). D-optimal designs
for polynomial regression without an intercept. Statist. Sin., 5, 441–458.

Imhof, L.A. (2001). Maximin designs for exponential growth models
and heteroscedastic polynomial models. Ann. Statist., 29(2), 561-576.

Imhof, L., Krafft, O., Schaefer, M. (1998). D-Optimal designs for poly-
nomial regression with weight function w(x) = x/(1 + x). Statist. Sin., 8,
1271–74.

Imhof, L., Studden, W.J. (2001). E-optimal designs for rational models.
Ann. Statist., 29(3).

Jennrich, R.I. (1969). Asymptotic properties of non-linear least squares
estimators. Ann. Math. Statist. 40, 633–643.

Johansen, S. (1984). Functional Relations, Random Coefficients and
Nonlinear Regression, with Application to Kinetic Data. Lecture Notes in
Statistics, No 22. Springer-Verlag, New York.

Karlin, S., Studden, W. (1966). Tchebysheff Systems: With Application
in Analysis and Statistics. John Wiley & Sons, New York.

Kiefer, J. (1974). General equivalence theory for optimum designs (ap-
proximate theory). Ann. Statist. 2, 849–879.

Kiefer, J. (1985). Collected Papers. Springer-Verlag, New York.
Kiefer, J., Wolfowitz, J. (1960). The equivalence of two extremum prob-

lems. Can. J. Math., 14, 363–366.
Kiefer, J.C., Wolfowitz, J. (1959). Optimum designs in regression prob-

lems. Ann. Math. Statist., 30, 271–294.
Kitsos, C.P., Titterington, D.M., Torsney, B. (1988). An optimal design

problem in rhythmometry Biometrics, 44, 657–671.
Knightes, C.D., Peters, C.A. (2000). Statistical analysis of nonlinear

parameter estimation for Monod biodegradation kinetics using bivariate
data. Biotechnol. Bioeng., 69, 160–170.

Kovrigin, A. B. (1980). Construction of E-optimal designs. Vestnik
Leningrad. Univ., 19, 120, Abstract.

Kozlov, V.P. (2000). Selected papers. St. Petersburg University Pub-
lishers, St. Petersburg (in Russian).

Lancaster, H.O. (1969). The Chi-Squared Distribution. John Wiley &
Sons, New York.

Lancaster, P. (1969). Theory of Matrices. Academic Press, New York.
Lau, T.S., Studden, W.J. (1985). Optimal designs for trigonometric

and polynomial regression. Ann. Statist., 13, 383–394.



REFERENCES 327

Lestrel, P. E. (1997). Fourier Descriptors and Their Applications in
Biology. Cambridge University Press, Cambridge.

Lopez-Fidalgo, J., Rodriguez-Diaz, J.M. (2004). Elfving method for
computing c-optimal designs in more than two dimensions. Metrika 59,
235-244.

Mardia, K. (1972). The Statistics of Directional Data. Academic Press,
New York.

McCool, J.I. (1979). Systematic and random errors in least squares
estimation for circular contours. Precision Eng., 1, 215–220.

Melas, V.B. (1978). Optimal designs for exponential regression. Math.
Operationsforsh. Statist., 9, 45–59.

Melas, V.B. (1982). A duality theorem and E-optimality. Ind. Lab.,
48, 295–296 (translated from Russian).

Melas, V.B. (1995). Non-Chebyshev E-optimal experimental designs
and decompositions of positive polynomial. I. Vestnik Petersburg Univ.,
28(2), 31–35.

Melas, V. B. (1996). A study of E–optimal designs for polynomial
regression. Proceedings in computational statistics - 12th symposium held
in Barcelona, Spain, 1996/COMPSTAT Prat, A. (ed.). Physica-Verlag,
Heidelberg, pp. 101–110.

Melas, V. B. (1998). Analytical theory of E-optimal designs for polyno-
mial regression on a segment. MODA-5 – Advances in Model-Oriented Data
Analysis and Experimental Design Atkinson, A.C., Pronzato, L., Wynn,
H.P. (eds.). Physica-Verlag, Heidelberg, pp. 51–58.

Melas, V.B. (1999). Locally Optimal Designs of Experiments. Pub-
lishers of St. Petersburg State Technical University, St. Petersburg (in
Russian).

Melas, V.B. (2000). Analytic theory of E-optimal designs for polyno-
mial regression. Advances in Stochastic Simulation Methods. Balakrishnan,
N., Melas, V.B. S. Ermakov (eds.). Birkhäuser, Boston, pp. 85–116.
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