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Preface

This book is a monograph on practical aspects of probabilistic networks (a.k.a.
probabilistic graphical models) and is intended to provide a comprehensive guide
for practitioners who wish to understand, construct, and analyze decision support
systems based on probabilistic networks, including a number of different variants of
Bayesian networks and influence diagrams. This book consists of three parts:

• Part I: Fundamentals of probabilistic networks, including Chaps. 1–5, covering
a brief introduction to probabilistic graphical models, the basic graph-theoretic
terminology, the basic (Bayesian) probability theory, the key concepts of (con-
ditional) dependence and independence, the different varieties of probabilistic
networks, and the methods for making inference in these kinds of models. This
part can be skipped by readers with fundamental knowledge about probabilistic
networks.

• Part II: Model construction, including Chaps. 6–8, covering methods and tech-
niques for elicitation of model structure and parameters, a large number of
useful techniques and tricks to solve commonly recurring modeling problems,
and methods for constructing probabilistic networks automatically from data,
possibly through fusion of data and expert knowledge. Chapters 6 and 7 offer
concrete advice and techniques on issues related to model construction, and
Chap. 8 explains the theory and methods behind learning of Bayesian networks
from data.

• Part III: Model analysis, including Chaps. 9–11, covering conflict analysis for
detecting conflicting pieces of evidence (observations) or evidence that conflicts
with the model, sensitivity analysis of a model with respect to both variations
of evidence and model parameters, and value of information analysis. This part
explains the theory and methods underlying the three different kinds of analyses.

Probabilistic networks have become an increasingly popular paradigm for prob-
abilistic inference, addressing such tasks as diagnosis, prediction, decision making,
classification, and data mining. From its infancy in the mid-1980s till today there has
been a rapid development of algorithms for construction, inference, learning, and
analysis of probabilistic networks, and since the turn of the millennium there has
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viii Preface

been a steep increase in the number of new applications of probabilistic networks.
Its popularity stems from a number of factors:

• The graphical-based language for probabilistic networks is a powerful tool for
expressing causal interactions while at the same time expressing dependence and
independence relations among entities of a problem domain. Being graphical
and compact the language furthermore provides an excellent intuitive means of
communicating ideas among knowledge engineers and problem-domain experts.

• Although inference in complex probabilistic networks can be quite demanding
(or even intractable), inference can often be performed efficiently in models of
hundreds or even thousands of variables.

• Inference in probabilistic networks is based on a well-established theoretical
foundation of probability calculus and decision theory and hence provides
mathematically coherent methods for deriving conclusions under uncertainty
where multiple sources of information and complex interaction patterns are
involved.

• There exist efficient algorithms for learning and adaptation of probabilistic
networks from data and it is possible to fuse data and expert knowledge.

• Probabilistic networks are “white boxes” in the sense that the model components
(variables, links, probability and utility parameters) are open to interpretation,
which makes it possible to perform a whole range of different analyses of the
networks (e.g., conflict analysis, (in)dependence analyses, sensitivity analysis,
and value of information analysis).

• There exist a number of powerful software tools that make it easy to construct
and make inference in probabilistic networks.

As mentioned above, this book takes a practical point of departure and is intended
primarily for those who wish to construct and analyze probabilistic networks with-
out necessarily having a deep understanding neither of their underlying theory and
methods nor of alternative paradigms supporting belief updating under uncertainty.
Hence, the scope of this book is narrow, focusing almost exclusively on issues
relevant for understanding, constructing, and analyzing the different variants of
Bayesian networks and influence diagrams. Other methods for inference and support
for decision making under uncertainty, therefore, get limited attention.

The intended audience of this book is practitioners as well as students of artificial
intelligence, however, with a primary focus on the former. The theory behind
probabilistic networks is explained to quite some depth, enabling the dedicated
practitioner as well as the student to gain a solid theoretical understanding to a
level sufficient to further develop and implement methods for model construction,
inference, and analysis. Therefore, to support this understanding, exercises have
been included in all chapters (except Chap. 1) for the reader to check his/her
level of understanding. Answers to selected exercises and more can be found at
hugin.com/developer/publications/bnid.

For a quick overview, the different kinds of probabilistic network models
considered in this book can be characterized very briefly as follows:
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• Discrete Bayesian networks represent factorizations of joint probability distribu-
tions over finite sets of discrete random variables. The variables are represented
by the nodes of the network, and the links of the network represent the
properties of (conditional) dependences and independences among the variables.
A set of local probability distributions conditional on the configuration of the
conditioning (parent) variables is specified for each variable.

• Conditional linear Gaussian (CLG) Bayesian networks represent factorizations
of joint probability distributions over finite sets of random variables where some
are discrete and some continuous. Each continuous variable is assumed to follow
a linear Gaussian distribution conditional on the configuration of its discrete
parent variables.

• Discrete influence diagrams are (discrete) Bayesian networks augmented with
(discrete) decision variables and (discrete) utility functions. An influence dia-
gram is capable of computing expected utilities of various decision options given
the information known at the time of the decision.

• Conditional linear-quadratic Gaussian (CLQG) influence diagrams combine
CLG Bayesian networks, discrete influence diagrams, and quadratic utility
functions into a single framework supporting decision making under uncertainty
with both continuous and discrete variables.

• Limited-memory influence diagrams (LIMIDs) relax two fundamental assump-
tions of influence diagrams: the no-forgetting assumption implying perfect recall
of past observations and decisions and the assumption of a total order on the
decisions. LIMIDs allow us to model more types of decision problems than the
ordinary influence diagrams.

• Object-oriented probabilistic networks are hierarchically specified probabilistic
networks (i.e., one of the above), allowing the knowledge engineer (model
builder) to work on different levels of abstraction, as well as exploiting the
usual concepts of encapsulation and inheritance known from object-oriented
programming paradigms.

The book provides numerous examples, hopefully helping the reader to gain a
good understanding of the various concepts, some of which are known to be hard to
understand at a first encounter.

Even though probabilistic networks provide an intuitive language for con-
structing knowledge-based models for probabilistic inference, knowledge engineers
can often benefit from a deeper understanding of the principles underlying these
models. For example, knowing the rules for reading statements of dependence and
independence encoded in the structure of a network may prove very valuable in
evaluating whether the network correctly models the dependence and independence
properties of the target problem. This, in turn, may be crucial to achieving, for
example, correct posterior probability distributions from the model. Also, having
a basic understanding of the relations between the structure of a network and the
complexity of inference may prove useful in the model construction phase, avoiding
structures that are likely to result in problems of poor performance of the final
decision support system.



x Preface

We present such basic concepts, principles, and methods underlying probabilistic
models that practitioners need to acquaint themselves with.

In Chap. 1, we provide a bit of background and contextual introduction to
Bayesian networks and influence diagrams. To give the reader a first understanding
of probabilistic networks, we present a very simple Bayesian network and show how
it can be augmented with explicit representation of decision options and a utility
function, turning it into an influence diagram. Also, we discuss briefly the notions
of causality, construction of probabilistic networks, and applicability (i.e., when to
use probabilistic networks).

In Chap. 2, we describe the fundamental concepts of the graphical language
used to construct probabilistic networks as well as the rules for reading statements
of (conditional) dependence and independence encoded in network structures. We
present two equivalent criteria for reading these statements, namely Pearl’s d-
separation criterion (Pearl 1988) and the criterion of directed Markov property by
Lauritzen, Dawid, Larsen & Leimer (1990a).

In Chap. 3, we present the uncertainty calculus used in probabilistic networks
to represent the numerical counterpart of the graphical structure, namely classical
(Bayesian) probability calculus. We shall see how a basic axiom of probability
calculus leads to recursive factorizations of joint probability distributions into
products of conditional probability distributions and how such factorizations along
with local statements of conditional independence can be expressed naturally in
graphical terms.

In Chap. 4, we see how putting the basic notions of Chaps. 2 and 3 together we
get the notion of discrete Bayesian networks. Also, we present a range of derived
types of network models, including conditional Gaussian models where discrete
and continuous variables coexist, influence diagrams that are Bayesian networks
augmented with decision variables and utility functions, limited-memory influence
diagrams that allow the knowledge engineer to reduce model complexity through
assumptions about limited memory of past events, object-oriented models that allow
the knowledge engineer to construct hierarchical models consisting of reusable
submodels, and dynamic Bayesian networks that provide a framework for modeling
phenomena evolving over time.

In Chap. 5, we explain the principles underlying inference in these different kinds
of probabilistic networks.

In Chap. 6, we discuss the art of constructing a probabilistic network and
the characteristics of problem domains that can be successfully modeled by
probabilistic networks. The different phases of model construction are discussed,
including design (how to identify the right set of variables, how to elicit the
structure of a probabilistic network, and how to verify a network structure),
implementation (elicitation of probability and utility parameters), test, and analysis
(i.e., troubleshooting the model).

In Chap. 7, we present a large number of techniques and tricks for solving
commonly occurring modeling problems in probabilistic networks. The set of tech-
niques and tricks includes various structure-related techniques (parent divorcing,
temporal transformation of causal relations, modeling of structural and functional
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uncertainty, modeling of undirected dependence relations, bidirectional relations,
and naive Bayes models), probability distribution-related techniques (modeling of
measurement error, (different) expert opinions, node absorption, value set by inter-
vention, independence of causal influence, and mixture of Gaussian distributions),
and decision-related techniques (modeling of test decisions, missing informational
links, missing observations, hypothesis of highest probability, and constraints on
decisions).

In Chap. 8, we describe how probabilistic networks can be constructed automat-
ically from data or from a combination of data and problem domain expertise. The
underlying theory of structure learning is explained, and different constraint-based
learning algorithms, search and score-based algortihms, and structure restricted al-
gorithms are presented. The expectation-maximization (EM) algorithm is described
for learning the values of probability parameters from data as well as from data and
problem domain expertise (penalized EM). Finally, we describe how the values of
the probability parameters of a probabilistic network can be learned sequentially
(adaptation).

In Chap. 9, we describe a method for performing conflict analysis in a proba-
bilistic network, which aims at detecting pieces of evidence that might be in conflict
with one another (i.e., pointing in different directions with respect to output from
the network) or in conflict with the network model. Also, the topics of tracing and
resolution of conflicts are discussed.

In Chap. 10, we describe how to analyze the sensitivity of the output of a
probabilistic network (e.g., diagnosis and classification) to changes in the values of
observed variables (evidence) as well as probability parameters. Also, we describe
how parameters can be adjusted to make a probabilistic network produce required
posterior probabilities.

Finally, in Chap. 11, we describe methods for performing value-of-information
analysis in Bayesian networks and influence diagrams.

Compared to the first edition, this second edition of the book contains additional
material: Sections 6.3.3 and 6.3.4 elaborate on model construction, Section 8.3
describes search and score-based structure learning, Section 8.4 presents a worked
example on structure learning, Section 10.3 describes two-way parameter sensitivity
analysis, Section 10.4 describes parameter tuning, and an appendix provides a quick
reference to model construction with lists of recommendations and pitfalls for the
model builder. Finally, lists of examples, figures, and tables have been added.

Uffe B. Kjærulff
Anders L. Madsen
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Chapter 1
Introduction

The desire to have computers perform intellectually challenging tasks has existed
ever since the invention of the general-purpose computer that could be programmed
to execute an arbitrary set of manipulations on numbers and symbols. Solving an
intellectually challenging task can be characterized as a process of deriving con-
clusions (new pieces of knowledge) by manipulating a (large) body of knowledge,
typically including definitions of entities (objects, concepts, events, phenomena,
etc.), relations among them, and observations of states (values) of some of the
entities.

As a prototypical example of a decision problem, imagine a physician who is
consulted by a patient complaining about stomach pain. The physician then conducts
an interview of the patient and possibly makes some investigations to localize
the origin of the pain, to find other symptoms of the disorder, etc. Based on her
knowledge about pathophysiological cause–effect mechanisms involving stomach
pain as well as on the information revealed from the patient’s medical records, from
the interview, from the symptoms observed, etc., the physician makes a diagnosis
and a treatment plan.

By formulating the physician’s knowledge in an appropriate formal (computer)
language for which there exist methods for making inferences to manipulate pieces
of knowledge formulated in this language, the reasoning conducted by the physician
can be automated and carried out by a computer. Probabilistic network is an example
of such a language that has gained a lot of popularity over the last couple of decades.

This chapter provides brief accounts on the context of probabilistic networks,
what they are, and when to use them.

1.1 Expert Systems

A system that is able to perform tasks that are supposed to be intellectually demand-
ing is often said to exhibit artificial intelligence (AI) or to be an expert system if
the system’s problem-solving ability is restricted to a particular area of expertise.

U.B. Kjærulff and A.L. Madsen, Bayesian Networks and Influence Diagrams: A Guide
to Construction and Analysis, ISS 22, DOI 10.1007/978-1-4614-5104-4 1,
© Springer Science+Business Media New York 2013
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4 1 Introduction

Many definitions of artificial intelligence have been proposed. In this book, we
shall consider techniques that enable us to construct devices and services that are
able to:

• Perform probabilistic inference to support belief updating and decision making
under uncertainty

• Acquire knowledge from data/experience
• Solve problems efficiently and respond to new situations

We shall refrain from discussing whether or not this makes the devices or services
exhibit AI and leave this decision to the reader.

In any case, a probabilistic network is always constructed to solve a particular
problem within a given problem domain (area of expertise). Therefore, the label
“expert system” can often be attached to systems that perform reasoning and
decision making by means of probabilistic networks.

The motivation for constructing an expert system is typically to automate some
recurring task involving belief updating and decision making under uncertainty,
possibly involving extraction of information/knowledge from data.

Several other expert system paradigms have been suggested. This book is not
intended to provide accounts on such competing paradigms, but for the sake of
historical context of probabilistic networks, we shall briefly mention some of the
important and well-known alternatives to probabilistic networks.

1.1.1 Representation of Uncertainty

Randomness and uncertain judgment is inherent in most real-world decision
problems. We therefore need a method (paradigm) that supports representation of
quantitative measures of uncertain statements as well as evidence about states of
“the world” and a method for combining the statements and the evidence in such a
way that consistent posterior probabilities and expected utilities can be provided to
support belief updating and decision making under uncertainty.

Probability theory is the prevailing method for dealing with uncertainty, and it
is the one in focus in this book. However, other methods have been proposed, as
some researchers find probability theory inappropriate for presenting some forms of
quantitative uncertainty. Probability theory deals with uncertainty of well-defined
occurrences; that is, the source of ambiguity is occurrence. Situations involving
ambiguously and/or vaguely defined occurrences might be better represented by
other methods. Let us very briefly mention the two most prominent alternative
methods for dealing with uncertainty. Readers interested in more detailed accounts
are referred to the literature.

Dempster and Shafer (Dempster 1968, Shafer 1976) developed belief theory to be
able to assign measures of uncertainty to sets of events without necessarily having to
assign or assess uncertainty for single events. For example, if you receive a message
that your golf partner is free for a match of golf “next Sunday,” you might be willing
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to assign a measure of uncertainty to the pair of (mutually exclusive) events that you
and your partner will be playing this Sunday or Sunday next week, but unwilling to
assign measures to the two individual possibilities. Rather than focusing on events,
belief theory focuses on evidence (on sets of events).1

Fuzzy methods (Zadeh 1965, Zadeh & Kacprzyk 1992) address situations
where the ambiguity lies in the nature of events rather than in their occurrence.
Typical examples of ambiguous concepts include everyday concepts like beauty,
intelligence, size, and speed. For example, both the statement “Paul is tall” (S ) and
the statement “Paul is not tall” (¬S ) might be plausible, and we therefore wish to
assign some degree of plausibility to S∧¬S , which is in contrast with ordinary logic
where S ∧ ¬S is always false. Expert systems based on fuzzy logic have achieved
some popularity, maybe especially so in applications involving control loops (fuzzy
control).

1.1.2 Normative Expert Systems

The objective in some early attempts to construct expert systems was to create a
model of the decision making performed by some (human) expert and let a system
containing such a model perform tasks that previously needed human expertise.
Today, a more realistic approach is normally taken where a model of the problem
domain is created rather than a model of the expert such that systems containing
such a model support experts in performing their tasks rather than substituting them.

Systems containing models of problem domains that use classical probability
calculus and decision theory as their basis for supporting belief updating and
decision making under uncertainty are often referred to as normative expert systems,
as their behavior is governed by a set of fundamental rules (or axioms).

In some sense, Bayesian networks can be seen as an extension of one of the
earliest methods for knowledge representation and manipulation, namely, logical
rules. Let us therefore dwell a little on rule-based systems.

1.2 Rule-Based Systems

One of the earliest methods for knowledge representation and manipulation was
logical rules of the form

R1: if s1 then s2,

where statement s2 (the consequence) can be concluded with certainty whenever
statement s1 (the condition) is observed to hold. If another rule states that

R2: if s2 then s3,

1Adapted from example by Bender (1996).
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then s3 can be concluded through forward chaining involving rules R1 and R2 once
s1 is known to hold.

Notice that such rules are asymmetric in the sense that the condition and con-
sequence statements are not interchangeable; observing the consequence statement
does not allow us to conclude that the condition statement holds.

1.2.1 Causality

Assume that the occurrence of some event c is known to cause the effect e and
that the relationship between c and e is known to be deterministic (logical). Then,
obviously, observing c, we can conclude e. Observing e, on the other hand, does not
make us able to conclude c, unless c is known to be the only cause of e. Thus, in
formulating the causal relationship between c and e as a rule, we would obviously
want to formulate it as “if c then e” rather than “if e then c.”

From this insight, we conclude that rules like R1 and R2 express causal
relationships, where s1, say, plays the role of the cause and s2 the role of the effect,
the only possible exception being if s1, as an effect, only can be caused by s2.

A rule-based system, like any other knowledge representation scheme, represents
a certain part of the world (the problem domain) only up to some precision. This
implies that certain (causal) mechanisms might be ignored as being unimportant for
the precision (or level of detail) at which conclusions need to be drawn. For example,
in a medical expert system, a disorder causing some symptom, s, might be ignored
if it only appears in, say, less than one out of a million cases. If ignoring such a rare
explanation for s leaves only one possible cause (disorder), say d , for the symptom,
it might at a first consideration seem reasonable to state a rule like “if s then d .”

Violating the “causal direction” in formulating rules is, however, not advisable.
For example, in a medical expert system, consider the causal chain

Smoking→ Bronchitis→ Dyspnoea,

denoting the concatenation of rules

R3: if Smoking then Bronchitis,

and

R4: if Bronchitis then Dyspnoea,

Here Bronchitis is a disorder, Dyspnoea (a medical term for shortness of breath) a
symptom of Bronchitis, and Smoking a cause of Bronchitis, sometimes referred to as
a piece of background information. Assume that instead of R4, we formulated the
rule

R 0
4: if Dyspnoea then Bronchitis,
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which would make Smoking and Dyspnoea be competing explanations for
Bronchitis. Then upon observing that the patient smokes, we would be able to
conclude only that the patient might suffer from bronchitis, but would not be able to
conclude anything about the patient’s breathing characteristics. In effect, rules R3
and R 0

4 collectively express independence between Smoking and Dyspnoea, which
is obviously wrong.

1.2.2 Uncertainty in Rule-Based Systems

As clearly demonstrated by rules R3 and R4, crisp logic is inappropriate for
representing the nature of the causal relations among Smoking, Bronchitis, and
Dyspnoea. Only a certain proportion of the smoking patients entering a chest clinic
suffer from bronchitis. Similarly, dyspnoea appears as a symptom only for some
of the patients suffering from bronchitis. In terms of having uncertainty associated
with the (cause–effect) rules, these examples are by no means exceptional. The vast
majority of cause–effect mechanisms of interest in our attempts to model parts of
the world in expert (or AI) systems are uncertain.

In order to make up for this fact, a method for rule-based systems with uncer-
tainty was developed in the 1970s by the team behind the medical expert system
MYCIN (Shortliffe & Buchanan 1975). Associated with each rule in MYCIN is a
numerical value in the interval Œ−1;C1� called a certainty factor (CF).

This factor indicates the strength of the conclusion of the rule whenever its
condition is satisfied. In particular, given the evidence available,

CF D
⎧

⎨

⎩

C1 when the conclusion is certainly true
−1 when the conclusion is certainly false
0 when no information about the conclusion can be derived

Certainty factors are, however, nothing but an ad hoc device for dealing with
uncertainty. Heckerman (1986) proved that certainty factors cannot be defined
consistently if the domains of the variables have more than two elements. More
precisely, certain factors can be proved to be consistent only for binary variables,
where the rules induce a singly connected tree in which there is exactly one variable
with no parents.2

2The variables in the condition of a rule are often referred to as the “parents” of the consequence
variable, which is often referred to as the “child” variable. For example, variables temperature and
humidity in rule “if temperature D high and humidity D high then comfort D low” are parents of
comfort. A parent–child relation is depicted by two nodes in a graph (or tree) interconnected by a
directed link from the parent to the child.



8 1 Introduction

C1 C2

E1 E2

Fig. 1.1 Graphical
representation of rules “if C1
then E1” and “if C1 and C2
then E2”

1.2.3 Explaining Away

Consider the small rule-based system depicted in Fig. 1.1, where C1 can cause E1
and E2 and C2 can cause E2. The CF method provides a formula for combining
evidence from E1 and E2 and applying it to C1. Unfortunately, however, the
CF method provides no mechanism for applying E1 to C2, which is needed to
implement the “explaining-away” mechanism, where evidence on E1 makes C1
more probable, in turn, making the competing explanation C2 for E2 less probable.

1.3 Bayesian Networks

Having realized that rule-based systems with certainty factors have serious limita-
tions as a method for knowledge representation and support for reasoning under
uncertainty, researchers turned their attention towards a probabilistic interpretation
of certainty factors, leading to the definition of Bayesian networks (Kim &
Pearl 1983, Pearl 1988). A Bayesian network can be described briefly as an
acyclic directed graph (DAG) which defines a factorization of a joint probability
distribution over the variables that are represented by the nodes of the DAG, where
the factorization is given by the directed links of the DAG. More precisely, for a
DAG, G D .V;E/, where V denotes a set of nodes (or vertices) and E a set of
directed links (or edges) between pairs of the nodes, a joint probability distribution,
P.XV /, over the set of (typically discrete) variables XV indexed by V can be
factorized as

P.XV / D
Y

v2V
P.Xv |Xpa.v//; (1.1)

where Xpa.v/ denotes the (preferably small) set of parent variables of variable Xv

for each node v 2 V . The factorization in (1.1) expresses a set of independence
assumptions, which are represented by the DAG in terms of pairs of nodes that are
not directly connected to one another by a directed link. It is the existence of such
independence assumptions and the small set of parents for each node that makes it
possible to specify the conditional probabilities and to perform inference efficiently
in a Bayesian network.



1.3 Bayesian Networks 9

Each conditional probability distribution, P.Xv |Xpa.v//, represents a set of
“rules,” where each “rule” (conditional probability) takes the form

R5: if Xpa.v/ D xpa.v/ then Xv D xv with probability z,

where xv and xpa.v/ denote, respectively, a value assigned toXv and a vector of values
assigned to the parent variables of Xv. For example, if one of five possible values
can be assigned to Xv and it has four parents each of which can be assigned one of
three possible values, then P.Xv |Xpa.v// represents a collection of 5 � 34 D 405

rules of the kind shown in rule R5.
Actually, the notion of rules is only implicitly apparent in Bayesian networks.

The explicit notion is that of conditional probability distributions, P.Xv |Xpa.v//,
where, rather than as in rule R5, each term is formulated as a conditional probability
(parameter) of the form

P.Xv D xv |Xpa.v/ D xpa.v// D z

or even simpler as

P.xv |xpa.v// D z:

1.3.1 Inference in Bayesian Networks

Contrary to rule-based systems with certainty factors, inference in Bayesian
networks is always consistent, and the ability to handle the explaining-away problem
is embedded naturally in the way in which inference is performed in Bayesian net-
works. However, in general, it is an NP-hard task to solve the inference problem in
Bayesian networks (Cooper 1990); even approximate inference is NP-hard (Dagum
& Luby 1993). Fortunately, efficient inference algorithms have been developed such
that inference in Bayesian networks can be done in fractions of a second even
for large networks containing hundreds or even thousands of variables (Lauritzen
& Spiegelhalter 1988, Jensen, Lauritzen & Olesen 1990). Efficiency of inference,
however, is highly dependent on the structure of the DAG, so networks with a
relatively small number of variables sometimes resist exact inference, in which case
approximate methods must be applied.

As Bayesian networks most often represent causal statements of the kind
X → Y , where X is a cause of Y and where Y often takes the role of an observable
effect of X , which typically cannot be observed itself, we need to derive the
posterior probability distribution P.X |Y D y/ given the observation Y D y using
the prior distribution P.X/ and the conditional probability distribution P.Y |X/

specified in the model. Reverend Thomas Bayes (1702–1761) provided the famous
Bayes’ rule for performing this calculation:

P.X |Y D y/ D P.Y D y |X/P.X/

P.Y D y/
;
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where P.Y D y/ D P
x P.Y D y |X D x/P.X D x/. This rule (or theorem)

plays a central role in statistical inference because the probability of a cause can
be inferred when its effect has been observed. Olmsted (1983) and Shachter (1986)
developed a method for inference in Bayesian networks, which involved multiple
applications of Bayes’ rule. Lauritzen & Spiegelhalter (1988) and Jensen et al.
(1990) developed inference methods for Bayesian networks based on message
passing in a tree structure (junction tree) derived from the structure of the Bayesian
network. The latter approach is the prevailing inference method used in modern
software packages for inference in probabilistic networks.

1.3.2 Construction of Bayesian Networks

As described above, a Bayesian network can be described in terms of a qualitative
component, consisting of a DAG, and a quantitative component, consisting of a
joint probability distribution that factorizes into a set of conditional probability
distributions governed by the structure of the DAG.

The construction of a Bayesian network thus runs in two phases. First, given
the problem at hand, one identifies the relevant variables and the (causal) relations
among them. The resulting DAG specifies a set of dependence and independence
assumptions that will be enforced on the joint probability distribution, which is
next to be specified in terms of a set of conditional probability distributions,
P.Xv |Xpa.v//, one for each “family,” {v} [ pa.v/, of the DAG.

A Bayesian network can be constructed manually, (semi-)automatically from
data, or through a combination of a manual and a data-driven process, where partial
knowledge about structure, as well as parameters (i.e., conditional probabilities),
blends with statistical information extracted from databases of cases (i.e., previous
joint observations of values of the variables).

Manual construction of a Bayesian network can be a labor-intensive task,
requiring a great deal of skill and creativity as well as close communication
with problem-domain experts. Extensive guidance on how to manually construct
a probabilistic network is the core of this book. This includes methods and hints on
how to elicit the network structure (with emphasis on the importance of maintaining
a causal perspective), methods for eliciting and specifying the parameter values
of the network, and numerous tricks that can be applied for solving prototypical
modeling problems.

Once constructed (be it manually or automatically), the parameters of a Bayesian
network may be continuously updated as new information arrives. Thus, a model for
which rough guesses on the parameter values are provided initially will gradually
improve itself as it gets presented with more and more cases.
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1.3.3 An Example

As a simple example, let us consider a problem concerning reasoning about starting
problems for a car. Assume for simplicity that we only consider two competing
causes for starting problems, namely, no fuel and dirty spark plugs. Also assume
that, apart from starting problems, the only observation we can make is reading
the fuel gauge. Now, if the car will not start and the fuel gauge reads “empty,” then
we conclude that “no fuel” is probably the cause of the problem, and we strongly
reduce our suspicion that dirty spark plugs might be causing the problem.

Let us see how to automate that reasoning process in a Bayesian network. First,
we identify four variables and the possible values (states) that they may attain
(in this case, no more than two states for each variable is necessary). The variables
and their possible states are shown in Table 1.1.

Figure 1.2 shows the structure of the Bayesian network for this simple problem,
where Fuel‹ and Spark plugs have causal influences on Start‹ and Fuel‹ has a causal
influence on Fuel gauge.

A (conditional) probability table needs to be specified for each variable. Assume
that when knowing nothing about the states of the other variables, we would expect
that there is fuel on the car (i.e., Fuel‹ D yes) in 999 out of 1; 000 cases. Therefore,
respecting the order of states in Table 1.1, we specify the probability distribution for
Fuel‹ as

P.Fuel‹/ D .0:001; 0:999/.

Similarly, expecting that the spark plugs are clean in 95 out of 100 cases, we specify

P.Spark plugs/ D .0:05; 0:95/.

For Fuel gauge, we need to specify two conditional probability distributions, one
for each possible state of Fuel‹. For Start‹, we need to specify four conditional
probability distributions, one for each combination of possible states of Fuel‹

Table 1.1 The four variables
and their possible states for
the “car would not start”
problem

Variable Possible states

Start‹ {no; yes}

Spark plugs {dirty; clean}
Fuel‹ {no; yes}
Fuel gauge {empty; not empty}

Fuel gauge Start‹

Fuel‹ Spark plugs

Fig. 1.2 Bayesian network
for the “car would not start”
problem
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Table 1.2 Conditional
probability distributions for
Fuel gauge given Fuel‹,
P.Fuel gauge |Fuel‹/

Fuel‹
Fuel gauge no yes

empty 0:995 0:001

not empty 0:005 0:999

Table 1.3 Conditional
probability distributions for
Start‹ given Fuel‹ and
Spark plugs,
P.Start‹ |Fuel‹;Spark plugs/

Start‹
Fuel‹ Spark plugs no yes

no dirty 1 0

no clean 1 0

yes dirty 0:1 0:9

yes clean 0:01 0:99

and Spark plugs. These probability distributions appear in the conditional proba-
bility tables shown in Tables 1.2 and 1.3, respectively, where we expect the fuel
gauge to read empty with probability 0:995 if there is no fuel, the car to start
with probability 0:99 when there is fuel on the car and the spark plugs are clean,
etc. In Table 1.3, the probability of 0:01 for Start‹ D no when Fuel‹ D yes and
Spark plugs D clean captures other causes not explicitly considered in our simple
model.

From the probabilities specified, we can compute that

P.Start‹ D no/ D 0:016,

that is, we expect the car to start in 984 out of 1;000 cases (or with probability
0:984). Now, if we fix the value of Start‹ to no, then, using Bayes’ rule, we get

P.Fuel‹ D no |Start‹ D no/ D 0:065

and
P.Spark plugs D dirty |Start‹ D no/ D 0:326.

Thus, our best guess is that dirty spark plugs are causing the problem, although the
probability of dirty spark plugs might not be high enough and the probability of “no
fuel” not low enough to settle with the conclusion that dirty spark plugs are causing
our problem. Making the observation that Fuel gauge D empty and repeating the
computations, we find that

P.Fuel‹ D no |Start‹ D no; Fuel gauge D empty/ D 0:986

and

P.Spark plugs D dirty |Start‹ D no; Fuel gauge D empty/ D 0:054.

The observation Fuel gauge D Empty thus makes us strongly believe that “no
fuel” is the cause of the problem, as we see a dramatic increase in the probability
of Fuel‹ D no and a (somewhat less dramatic) decrease in the probability of
Spark plugs D dirty. The decrease in the probability of Spark plugs D dirty
illustrates the explaining-away effect.
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1.4 Bayesian Decision Problems

Most often, the outputs of interest of a Bayesian network are the posterior
probabilities of the variables representing the problem that we wish to reason about
(e.g., possible diagnoses). These probabilities are often combined with costs and
benefits (utilities) of performing one or more actions to solve the problem. That is,
from the posterior probabilities and the utilities, we compute expected utilities for
each possible decision option (e.g., different treatment alternatives). The decision
option with the highest expected utility should then be selected. Based on a number
of studies, Tversky & Kahneman (1981) have shown that people usually do not
make decisions that maximize their expected utility, so supporting human decisions
by recommendations from decision support systems can often improve the quality
of decisions.

A Bayesian network can be augmented with decision variables, representing
decision options, and utility functions, representing preferences, that may depend on
both random (or chance) variables and decision variables. Networks so augmented
are called influence diagrams and can be used to compute expected utilities for the
various decision options given the observations (and decisions) made.

Assume that we wish to augment our Bayesian network in Fig. 1.2 with a
decision variable, say Action, with states {no action; add fuel; clean spark plugs}
and a utility function, say U , that depends on the states of chance variables Fuel‹
and Spark plugs and on our decision variable. Figure 1.3 shows the structure of the
augmented network, where the links from Fuel gauge and Start‹ to Action indicate
that the states of Fuel gauge and Start‹ are known prior to making the decision on
which action to perform. Table 1.4 shows our utility function, where we assign a
utility value of 1 to combinations of states of Action, Fuel‹, and Spark plugs where
the action is supposed to solve a problem; otherwise, we assign a value of 0 to the
utility function.

With the evidence that Start‹ D no and Fuel gauge D empty, we find that

EU.Action/ D .0:009; 0:986; 0:054/;

Fuel gauge Start‹

Fuel‹ Spark plugs

U

Action

Fig. 1.3 Influence diagram
for the “car would not start”
problem
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Table 1.4 Utility function for the “car would not start” decision problem

Action
Fuel‹ Spark plugs no action add fuel clean spark plugs

no dirty 0 1 1

no clean 0 1 0

yes dirty 0 0 1

yes clean 1 0 0

that is, the expected utilities (EU) of decision options no action, add fuel, and
clean spark plugs are 0:009, 0:986, and 0:054, respectively. Since EU.add fuel/
is greater than both EU.no action/ and EU.clean spark plugs/, we select decision
option add fuel.

Note that, coincidentally, P.Fuel‹ D no/ D EU.add fuel/ because of the way
in which we have defined the utility function. In general, the domain of a utility
function is the set of real numbers. If one defines the utility values on, say, a
monetary scale, the expected utilities of one’s decision options can be interpreted
directly as expected gains or losses on the chosen scale, say dollars.

1.5 When to Use Probabilistic Nets

There are many good reasons to choose probabilistic networks as the framework for
supporting belief updating and decision problems under uncertainty. As indicated
above, these include (among others):

• Coherent and mathematically sound handling of uncertainty
• Normative decision making
• Automated construction and adaptation of models based on data
• Intuitive and compact representation of cause–effect relations and (conditional)

dependence and independence relations
• Efficient solution of queries given evidence

There are, however, some requirements to the nature of the problem that should be
fulfilled for probabilistic networks to be an appropriate choice of method. Here, we
shall just briefly mention some key requirements:

• The variables and events (i.e., possible values of the variables) of the problem
domain must be well-defined.

• Knowledge should be available about the (causal) relations among the vari-
ables, the conditional probabilities quantifying the relations, and the utilities
(preferences) associated with the various decision options.

• Uncertainty should be associated with at least some of the relations among the
variables.

• The problem at hand should most probably contain an element of decision
making involving a desire to maximize the expected utility of a decision.
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Data are often available in the form of joint observations of a subset of the
variables pertaining to the problem domain. Each set of joint observations pertains
to a particular instance (case) of the problem domain. For example, data can be
extracted from a database of customers, where a lot of features (e.g., gender, age,
marital status, and income) are recorded for each customer (case), and analyzed
statistically to derive both structure and parameters of a probabilistic network. Such
automatically generated models can reveal a lot of information about dependence
and independence relations (and sometimes even causal mechanisms) among the
variables and thus provide new knowledge about the problem domain. Sometimes,
however, the available data do not originate from variables with clearly understood
semantics, or the patterns of interactions among variables are complex. In such
cases, a neural network model might be better suited, where the model consists of a
function that attempts to match each input case with a desired output by iteratively
tweaking a large number of coefficients (weights) until convergence (i.e., until the
distance between the desired and the actual outputs is sufficiently small).

1.6 Concluding Remarks

In this brief introduction, we have only touched superficially upon a few key
characteristics of probabilistic networks. These and many more will be presented
in much greater detail in the chapters to come.

Careful introductions to the fundamental concepts, theories, and methods under-
lying probabilistic networks as well as definitions of Bayesian networks, influence
diagrams, and their variants are provided in the remaining chapters of Part I, that
is, Chaps. 2–5. These chapters can be skipped if you already know enough about
the basics of probabilistic networks and wish to dive directly into Part II covering
topics on model elicitation, modeling techniques, and learning models from data or
Part III covering topics on model analysis.



Chapter 2
Networks

Probabilistic networks are graphical models of (causal) interactions among a set of
variables, where the variables are represented as vertices (nodes) of a graph and
the interactions (direct dependences) as directed edges (links or arcs) between the
vertices. Any pair of unconnected vertices of such a graph indicates (conditional)
independence between the variables represented by these vertices under particular
circumstances that can easily be read from the graph. Hence, probabilistic networks
capture a set of (conditional) dependence and independence properties associated
with the variables represented in the network.

Graphs have proven themselves an intuitive language for representing such
dependence and independence statements and thus provide an excellent language
for communicating and discussing dependence and independence relations among
problem-domain variables. A large and important class of assumptions about
dependence and independence relations expressed in factorized representations of
joint probability distributions can be represented compactly in a class of graphs
known as acyclic, directed graphs (DAGs).

Chain graphs are a generalization of DAGs capable of representing a broader
class of dependence and independence assumptions (Frydenberg 1989, Wermuth
& Lauritzen 1990). The added expressive power comes, however, with the cost
of a significant increase in the semantic complexity, making specification of joint
probability factors much less intuitive. Thus, despite their expressive power, chain
graph models have gained little popularity as practical models for decision support
systems, and we shall therefore focus exclusively on models that factorize according
to DAGs.

As indicated above, probabilistic network is a class of probabilistic models
that have gotten their name from the fact that the joint probability distributions
represented by these models can be naturally described in graphical terms, where the
vertices of a graph (or network) represent variables over which a joint probability
distribution is defined and the presence and absence of edges represent dependence
and independence properties among the variables.

U.B. Kjærulff and A.L. Madsen, Bayesian Networks and Influence Diagrams: A Guide
to Construction and Analysis, ISS 22, DOI 10.1007/978-1-4614-5104-4 2,
© Springer Science+Business Media New York 2013
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Probabilistic networks can be seen as compact representations of “fuzzy” cause–
effect rules that, contrary to ordinary (logical) rule-based systems, is capable of
performing deductive and abductive reasoning as well as intercausal reasoning.
Deductive reasoning (sometimes referred to as causal reasoning) follows the
direction of the causal links between variables of a model; for example, knowing
that a patient suffers from angina, we can conclude (with high probability) the
patient has fever and a sore throat. Abductive reasoning (sometimes referred to as
diagnostic reasoning) goes against the direction of the causal links; for example,
observing that a patient has a sore throat provides supporting evidence for angina
being the correct diagnosis.

The property, however, that sets inference in probabilistic networks apart from
other automatic reasoning paradigms is its ability to make intercausal reasoning:
Getting evidence that supports solely a single hypothesis (or a subset of hypotheses)
automatically leads to decreasing belief in the unsupported, competing hypotheses.
This property is often referred to as the explaining away effect. For example, there
are a large number of possible causes that a car will not start, one being lack
of fuel. Observing that the fuel gauge indicates no fuel provides strong evidence
that lack of fuel is the cause of the problem, while the beliefs in other possible
causes decrease substantially (i.e., they are explained away by the observation;
see Sect. 1.3.3 on page 11). The ability of probabilistic networks to automatically
perform such intercausal inference is a key contribution to their reasoning power.

Often the graphical aspect of a probabilistic network is referred to as its
qualitative aspect and the probabilistic, numerical part as its quantitative aspect.
This chapter is devoted to the qualitative aspect of probabilistic networks. In
Sect. 2.1, we introduce some basic graph notation that will be used throughout
the book. Section 2.2 discusses the notion of variables, which is the key entity of
probabilistic networks. Another key concept is that of “evidence,” which we shall
touch upon in Sect. 2.3. Maintaining a causal perspective in the model, construction
process can prove valuable, as mentioned briefly in Sect. 2.4. Sections 2.5 and
2.6 are devoted to an in-depth treatment on the principles and rules for flow of
information in DAGs. We carefully explain the properties of the three basic types of
connections in a DAG (i.e., serial, diverging, and converging connections) through
examples and show how these combine directly into the d-separation criterion
and how they support intercausal (explaining away) reasoning. We also present
an alternative to the d-separation criterion known as the directed global Markov
criterion, which in many cases proves to be a more efficient method for reading off
dependence and independence statements of a DAG.

2.1 Graphs

A graph is a pair G D .V;E/, where V is a finite set of distinct vertices and E �
V � V is a set of edges. An ordered pair .u; v/ 2 E denotes a directed edge from
vertex u to vertex v, and u is said to be a parent of v and v a child of u. The set of
parents and children of a vertex v shall be denoted by pa.v/ and ch.v/, respectively.
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Fig. 2.1 (a) An acyclic,
directed graph (DAG). (b)
Moralized graph

As we shall see later, depending on what they represent, vertices are displayed as
labeled circles, ovals, or polygons, directed edges as arrows, and undirected edges
as lines. Figure 2.1a shows a graph with eight vertices and eight edges (all directed),
where, for example, the vertex labeled E has two parents labeled T and L. The
labels of the vertices are referring to (1) the names of the vertices, (2) the names
of the variables represented by the vertices, or (3) descriptive labels associated with
the variables represented by the vertices.1

We often use the intuitive notation u
G
→ v to denote .u; v/ 2 E (or just u → v

if G is understood). If .u; v/ 2 E and .v; u/ 2 E, the edge between u and v is an
undirected edge denoted by {u; v} 2 E or u G v (or just u v). We shall use the
notation u ∼ v to denote that u → v, v → u, or u v. Vertices u and v are said to

be connected in G if u
G
∼ v. If u → v and w → v, then these edges are said to meet

head-to-head at v.
If E does not contain undirected edges, then G is a directed graph, and if E does

not contain directed edges, then it is an undirected graph. As mentioned above, we
shall not deal with mixed cases of both directed and undirected edges.

A path hv1; : : : ; vni is a sequence of distinct vertices such that vi ∼ viC1 for
each i D 1; : : : ; n− 1; the length of the path is n− 1. The path is a directed path if
vi → viC1 for each i D 1; : : : ; n−1; vi is then an ancestor of vj and vj a descendant
of vi for each j > i . The set of ancestors and descendants of v are denoted an.v/ and
de.v/, respectively. The set nd.v/ D V \ de.v/[ {v} are called the non-descendants
of v. The ancestral set An.U / � V of a set U � V of a graph G D .V;E/ is the set
of vertices U [S

u2U an.u/.
A path hv1; : : : ; vni from v1 to vn of an undirected graph, G D .V;E/, is

blocked by a set S � V if {v2; : : : ; vn−1} \ S ¤ ;. There is a similar concept for
paths of acyclic, directed graphs (see below), but the definition is somewhat more
complicated (see Proposition 2.4 on page 33).

1See Sect. 2.2 for the naming conventions used for vertices and variables.
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A graph G D .V;E/ is connected if for any pair {u; v} � V , there is a path
hu; : : : ; vi in G. A connected graph G D .V;E/ is a tree if for any pair {u; v} � V ,
there is a unique path hu; : : : ; vi in G.

A cycle is a path, hv1; : : : ; vni, of length greater than two with the exception that
v1 D vn; a directed cycle is defined in the obvious way. A directed graph with no
directed cycles is called an acyclic, directed graph or simply a DAG; see Fig. 2.1a
for an example. The undirected graph obtained from a DAG, G, by replacing all its
directed edges with undirected ones is known as the skeleton of G.

Let G D .V;E/ be a DAG. The undirected graph, Gm D .V;Em/, where

Em D {{u; v} | u and v are connected or have a common child in G} ;

is called the moral graph of G. That is, Gm is obtained from G by first adding
undirected edges between pairs of unconnected vertices that share a common child
and then replacing all directed edges with undirected edges; see Fig. 2.1b for an
example.

The set of vertices connected to a vertex v 2 V in the moral graph of a DAG
G D .V;E/ (i.e., the set of vertices pa.v/ [ ch.v/ [ S

u2ch.v/ pa.u/) is denoted the
Markov blanket of v.

2.2 Graphical Models

On a structural (or qualitative) level, probabilistic network models are graphs with
the vertices representing variables and utility functions and the edges representing
different kinds of relations among the variables and utility functions.

2.2.1 Variables

A chance variable represents an exhaustive set of mutually exclusive events,
referred to as the domain of the variable. These events are also often called states,
levels, values, choices, options, etc. The domain of a variable can be discrete or
continuous; discrete domains are always finite.

Example 2.1 (Sample Variable Domains). Some sample variable domains can be

{false; true}
{red; green; blue}
{1; 3; 5; 7}

{−1:7; 0; 2:32; 5}
{< 0; 0− 5;> 5}
�−∞I∞Œ
{�−∞I 0Œ; Œ0I 5Œ; Œ5I 10Œ}
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The penultimate domain in the above list represents a domain for a continuous
variable; the remaining ones represent domains for discrete variables. �

Throughout this book, we shall use capital letters (possibly indexed) to denote
variables or sets of variables and lowercase letters (possibly indexed) to denote
particular values of variables. Thus, X D x may either denote the fact that
variableX attains the value x or the fact that the set of variablesX D .X1; : : : ; Xn/

attains the (vector) of values x D .x1; : : : ; xn/. By dom.X/ D .x1; : : : ; x||X ||/, we
shall denote the domain of X , where ||X || D |dom.X/| is the number of possible
distinct values of X . If X D .X1; : : : ; Xn/, then dom.X/ is the Cartesian product
(or product space) over the domains of the variables in X . Formally,

dom.X/ D dom.X1/ � � � � � dom.Xn/;

and thus, ||X || D Q
i ||Xi ||. For two (sets of) variablesX and Y , we shall write either

dom.X [ Y / or dom.X; Y / to denote dom.X/ � dom.Y /. If z 2 dom.Z/, then by
zX , we shall denote the projection of z to dom.X/, where X \Z ¤ ;.

Example 2.2 (Cartesian Product and Projecting Variable Domains). Assume that
dom.X/ D .false; true/ and dom.Y / D .red; green; blue/. Then dom.X; Y / D
..false; red/; .false; green/; .false; blue/; .true; red/; .true; green/; .true; blue/}. For
z D .true; blue/, we get zX D true and zY D blue. �

Chance Variables and Decision Variables

There are basically two categories of variables, namely, variables representing
random events and variables representing choices under the control of some,
typically human, agent. Consequently, the first category of variables is often referred
to as chance variables (or random variables) and the second category as decision
variables. Note that a random variable can depend functionally on other variables
in which case it is sometimes referred to as a deterministic (random) variable.
Sometimes, it is important to distinguish between truly random variables and
deterministic variables, but unless this distinction is important, we shall treat them
uniformly and refer to them simply as “random variables,” or just “variables.”

The problem of identifying those entities of a domain that qualify as variables is
not necessarily trivial. Also, identifying the “right” set of variables can be nontrivial.
These questions, however, will not be further touched upon in this chapter but will
be discussed in detail in Chap. 6.

2.2.2 Vertices Vs. Variables

The notions of variables and vertices (or nodes) are often used interchangeably
for models containing no decision variables and utility functions (e.g., Bayesian
networks). For models that contain decision variables and utility Functions, it is
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Table 2.1 The taxonomy for
variables/vertices

Category Kind Subtype

Chance Discrete Labeled
Decision Continuous Boolean
Utility Numbered

Interval

Note that the subtype dimension only applies for
discrete chance and decision variables

convenient to distinguish between variables and vertices, as a vertex does not
necessarily represent a variable. In this book, we shall therefore maintain that
distinction.

As indicated above, we shall use lowercase letters like u; v;w (or sometimes
˛; ˇ; � , etc.) to denote vertices and uppercase letters like U; V;W to denote sets of
vertices. Vertex names will sometimes be used in the subscripts of variable names
to identify the variables corresponding to vertices. For example, if v is a vertex
representing a variable, then we denote that variable by Xv. If v represents a utility
function, then Xpa.v/ denotes the domain of the function, which is a set of chance
and/or decision variables.

2.2.3 Taxonomy of Vertices/Variables

For convenience, we shall use the following terminology for classifying variables
and/or vertices of probabilistic networks.

First, as discussed above, there are three main classes of vertices in probabilistic
networks, namely, vertices representing chance variables, vertices representing de-
cision variables, and vertices representing utility functions. We define the category
of a vertex to represent this dimension of the taxonomy.

Second, chance and decision variables as well as utility functions can be discrete
or continuous. This dimension of the taxonomy will be characterized by the kind of
the variable or vertex.

Finally, for discrete chance and decision variables, we shall distinguish between
labeled, Boolean, numbered, and interval variables. For example, referring to
Example 2.1 on page 20, the first domain is the domain of a Boolean variable, the
second and the fifth are domains of labeled variables, the third and the fourth are
domains of numbered variables, and the last is the domain of an interval variable.
This dimension of the taxonomy is referred to by the subtype of discrete variables
and is useful for providing mathematical expressions of specifications of conditional
probability tables and utility tables, as discussed in Chap. 6.

Table 2.1 summarizes the variable/vertex taxonomy.
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Table 2.2 Vertex symbols Category Kind Symbol

Chance Discrete
Continuous

Decision Discrete
Continuous

Utility Discrete
Continuous

Table 2.3 Notation used for vertices, variables, and utility functions

S; U; V;W Sets of vertices
V Set of vertices of a model
V� The subset of V that represent discrete variables
V� The subset of V that represent continuous variables
u; v;w; : : : Vertices
˛; ˇ; �; : : : Vertices

X; Yi ; Zk Variables or sets of variables
XW Subset of variables corresponding to set of vertices W
X The set of variables of a model; note that X D XV
XW Subset of X, where W � V

Xu; X˛ Variables corresponding to vertices u and ˛, respectively
x; yi ; zk Configurations/states of (sets of) variables
xY Projection of configuration x to dom.Y /, X \ Y ¤ ;
XC The set of chance variables of a model
XD The set of decision variables of a model
X� The subset of discrete variables of X
X� The subset of continuous variables of X

U The set of utility functions of a model
VU The subset of V representing utility functions
u.X/ Utility function u 2 U with the set of variables X as domain

2.2.4 Vertex Symbols

Throughout this book, we shall be using ovals to indicate discrete chance variables,
rectangles to indicate discrete decision variables, and diamonds to indicate discrete
utility functions. Continuous variables and utility functions are indicated with
double borders. See Table 2.2 for an overview.

2.2.5 Summary of Notation

Table 2.3 summarizes the notation used for vertices (upper part), variables (middle
part), and utility functions (lower part).
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(b)Fig. 2.2 (a) Hard evidence
on X . (b) Soft (or hard)
evidence on X

2.3 Evidence

A key inference task with a probabilistic network is computation of posterior
probabilities of the form P.x |"/, where, in general, " is evidence (i.e., information)
received from external sources in the form of a likelihood distribution over the states
of a set of variables, X , of the network, also often called an evidence function
(or potential2) for X . An evidence function, EX , for a set, X , of variables is a
function EX W dom.X/→ R

C.

Example 2.3 (Evidence Function). If dom.X/ D .x1; x2; x3/, then EX D .1; 0; 0/

is an evidence function indicating that X D x1 with certainty. If EX D .1; 2; 0/,
then with certainty X ¤ x3 and X D x2 is twice as likely as X D x1. �

An evidence function that assigns a zero probability to all but one state is often
said to provide hard evidence; otherwise, it is said to provide soft evidence.3 We
shall often leave out the “hard” or “soft” qualifier and simply talk about evidence if
the distinction is immaterial. Hard evidence on a variableX is also often referred to
as instantiation of X , or we say that X has been observed.

We shall attach the label " to vertices representing variables with hard evidence
and the label " to vertices representing variables with either soft or hard evidence.
For example, hard evidence on variable X (like EX D .1; 0; 0/ in Example 2.3)
is indicated as shown in Fig. 2.2a, and soft evidence (like EX D .1; 2; 0/ in
Example 2.3) is indicated as shown in Fig. 2.2b.

2.4 Causality

Causality plays an important role in the process of constructing probabilistic
network models. There are a number of reasons why proper modeling of causal
relations is important or helpful, although, in a Bayesian network model, it is not
strictly necessary to have the directed links of the model follow a causal interpre-
tation. In models with explicit representation of decisions (influence diagrams), the
directed links into chance variables must represent causal relations. We shall only

2See Sect. 3.3 on page 46.
3In the literature, soft evidence is often called virtual evidence.



2.5 Flow of Information in Causal Networks 25

briefly touch upon the issue of causality and stress a few important points about
causal modeling. The reader is referred to Pearl’s work for an in-depth treatment of
the subject (Pearl 2000).

A variable X is said to be a direct cause of Y if setting the value of X by force,
the value of Y may change and there is no other variable Z that is a direct cause of
Y such that X is a direct cause of Z; see Pearl (2000) for details.

As an example, consider the variables Flu and Fever. Common sense tells us that
flu is a cause of fever, not the other way around. This fact can be verified from
the thought experiment of forcefully setting the states of Flu and Fever: Killing
fever with an aspirin or by taking a cold shower will have no effect on the state of
Flu, whereas eliminating a flu would make the body temperature go back to normal
(assuming flu is the only effective cause of fever).

To correctly represent the dependence and independence relations that exist
among a set of variables of a problem domain, it is useful to have the causal relations
among the variables represented in terms of directed links from causes to effects.
That is, if X is a direct cause of Y , we should make sure to add a directed link
from X to Y . If done the other way around (i.e., Y → X ), we may end up with a
model that does not properly represent the dependence and independence relations
of the problem domain. In subsequent sections, we shall see several examples of the
importance of respecting the causal relations in this sense.

That said, however, in a Bayesian network, one does not have to construct
a model where the links can be interpreted as causal relations; it just makes
the model much more intuitive, eases the process of getting the dependence and
independence relations right, and significantly eases the process of eliciting the
conditional probabilities of the model. In Sect. 2.5.5 on page 31, we shall briefly
return to the issue of the importance of correctly modeling the causal relationships
in probabilistic networks.

2.5 Flow of Information in Causal Networks

As mentioned above, the DAG of a probabilistic network model is a graphical rep-
resentation of the dependence and independence properties of the joint probability
distribution of the model. In this section, we shall see how to read these properties
from a DAG. In doing this, it is convenient to consider each possible basic kind of
connection that can exist in a DAG.

To illustrate the different kinds of connections, consider the example in Fig. 2.3
on the following page, which shows the structure of a probabilistic network for the
following small fictitious example, where each variable has two possible states, no
and yes.

Example 2.4 (Burglary or Earthquake (Pearl 1988)). Mr. Holmes is working in his
office when he receives a phone call from his neighbor Dr. Watson, who tells him
that Holmes’ burglar alarm has gone off. Convinced that a burglar has broken into
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• W : Phone call from Watson
• A: Burglary alarm
• B: Burglary
• R: Radio news
• E: Earthquake

Fig. 2.3 Structure of a probabilistic network model for the “Burglary or Earthquake” story of
Example 2.4 on the previous page.

his house, Holmes rushes to his car and heads for home. On his way, he listens to
the radio, and in the news, it is reported that there has been a small earthquake in
the area. Knowing that earthquakes have a tendency to make burglar alarms go off,
he returns to his work. �

Notice that all of the links in the network of Fig. 2.3 are causal: Burglary
or earthquake can cause the alarm to go off, earthquake can cause a report on
earthquake in the radio news, and the alarm can cause Dr. Watson to call Mr.
Holmes.

We see three different kinds of connections in the network of Fig. 2.3:

• Two serial connectionsB → A→ W and E → A→ W

• One diverging connection A← E → R

• One converging connection B → A← E

In the following subsections, we discuss each of these three possible kinds of
connections in terms of their ability to transmit information given evidence and
given no evidence on the middle variable, and we shall see that it is the converging
connection that provides the ability of probabilistic networks to perform intercausal
reasoning (explaining away).

2.5.1 Serial Connections

Let us consider the serial connection (causal chain) depicted in Fig. 2.4 on the facing
page, referring to Example 2.4 on the previous page.

We need to consider two cases, namely, with and without hard evidence (see
Sect. 2.3 on page 24) on the middle variable (Alarm).

First, assume we do not have definite knowledge about the state of Alarm. Then
evidence about Burglary will make us update our belief about the state of Alarm,
which in turn will make us update our belief about the state of Watson calls. The
opposite is also true: If we receive information about the state of Watson calls, that
will influence our belief about the state of Alarm, which in turn will influence our
belief about Burglary.
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Burglary Alarm Watson calls

Fig. 2.4 Serial connection (causal chain) with no hard evidence on Alarm. Evidence on Burglary
will affect our belief about the state of Watson calls and vice versa

Burglary Alarm
"

Watson calls

Fig. 2.5 Serial connection (causal chain) with hard evidence on Alarm. Evidence on Burglary will
have no affect on our belief about the state of Watson calls and vice versa

So, in conclusion, as long as we do not know the state of Alarm for sure,
information about either Burglary or Watson calls will influence our belief on the
state of the other variable. This is illustrated in Fig. 2.4 by the two dashed arrows,
signifying that evidence may be transmitted through a serial connection as long as
we do not have definite knowledge about the state of the middle variable.

Now, assume we do have definite knowledge about the state of Alarm (see
Fig. 2.5). Then a change in our belief about the state of Burglary (Watson calls)
given a change in our belief about Watson calls (Burglary) can only happen through
a change in our belief on Alarm which then in turn will make us change our belief
about Burglary (Watson calls). But, since our belief on the state of Alarm cannot
be changed, as we have observed its state with certainty, any information about the
state of Watson calls (Burglary) will not make us change our belief about Burglary
(Watson calls).

In conclusion, when the state of the middle variable of a serial connection is
known for sure (i.e., we have hard evidence on it), then transmission of evidence
between the other two variables cannot take place through this connection. This is
illustrated in Fig. 2.5 by the two dashed arrows ending at the observed variable,
indicating that transmission of evidence is blocked.

The general rule for transmission of evidence in serial connections can thus be
stated as follows:

Proposition 2.1 (Serial Connection). Information may be transmitted through
a serial connectionX → Y → Z unless the state of Y is known.
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Alarm Earthquake Radio news

Fig. 2.6 Diverging connection with no evidence on Earthquake. Evidence on Alarm will affect our
belief about the state of Radio news and vice versa

Alarm Earthquake
"

Radio news

Fig. 2.7 Diverging connection with hard evidence on Earthquake. Evidence on Alarm will not
affect our belief about the state of Radio news and vice versa

2.5.2 Diverging Connections

Consider the diverging connection depicted in Fig. 2.6, referring to Example 2.4 on
page 25.

Again, we consider the cases with and without hard evidence on the middle
variable (Earthquake).

First, assume we do not know the state of Earthquake for sure. Then receiving
information about Alarm will of course influence our belief about Earthquake, as
earthquake is a possible explanation for alarm. The updated belief about the state
of Earthquake will in turn make us update our belief about the state of Radio news.
The opposite case (i.e., receiving information about Radio news) will, of course,
lead to a similar conclusion. So, we get a result that is similar to the result for
serial connections, namely, that evidence can be transmitted through a diverging
connection if we do not have definite knowledge about the state of the middle
variable. This result is illustrated in Fig. 2.6.

Next, assume the state of Earthquake is known for sure (i.e., we have received
hard evidence on that variable). Now, if information is received about the state of
either Alarm or Radio news, then this information is not going to change our belief
about the state of Earthquake, and consequently, we are not going to update our
belief about the other, yet unobserved, variable. Again, this result is similar to the
case for serial connections and is illustrated in Fig. 2.7.

The general rule for transmission of evidence in diverging connections can be
stated as follows:

Proposition 2.2 (Diverging Connection). Information may be transmitted through
a diverging connectionX ← Y → Z unless the state of Y is known.
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Burglary Alarm Earthquake

Fig. 2.8 Converging connection with no evidence on Alarm or any of its descendants. Information
about Burglary will not affect our belief about the state of Earthquake and vice versa

Burglary Alarm
"

Earthquake

Fig. 2.9 Converging connection with (possibly soft) evidence on Alarm or any of its descendants.
Information about Burglary will affect our belief about the state of Earthquake and vice versa

2.5.3 Converging Connections

Consider the converging connection depicted in Fig. 2.8, referring to Example 2.4
on page 25.

First, if no evidence is available about the state of Alarm, then information about
the state of Burglary will not provide any derived information about the state of
Earthquake. In other words, burglary is not an indicator of earthquake and vice
versa (again, of course, assuming correctness of the model). Thus, contrary to serial
and diverging connections, a converging connection will not transmit information if
no evidence is available for the middle variable. This fact is illustrated in Fig. 2.8.

Second, if evidence is available on Alarm, then information about the state of
Burglary will provide an explanation for the evidence that was received about the
state of Alarm and thus either confirm or disconfirm Earthquake as the cause of the
evidence received for Alarm. The opposite, of course, also holds true. Again, con-
trary to serial and diverging connections, converging connections allow transmission
of information whenever evidence about the middle variable is available. This fact
is illustrated in Fig. 2.9.

The rule illustrated in Fig. 2.8 tells us that if nothing is known about a common
effect of two (or more) causes, then the causes are independent; that is, receiving
information about one of them will have no impact on the belief about the
other(s). However, as soon as some evidence is available on a common effect, the
causes become dependent. If, for example, Mr. Holmes receives a phone call from
Dr. Watson, telling him that his burglar alarm has gone off, burglary and earthquake
become competing explanations for this effect, and receiving information about
the possible state of one of them obviously either confirms or disconfirms the other
one as the cause of the (possible) alarm. Note that even if the information received
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Alarm Radio

Burglary Earthquake
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Fig. 2.10 Flow of
information in the “Burglary
or Earthquake” network with
evidence on Alarm

from Dr. Watson might not be totally reliable (amounting to receiving soft evidence
on Alarm), Burglary and Earthquake still become dependent.

The general rule for transmission of evidence in converging connections can then
be stated as follows:

Proposition 2.3 (Converging Connection). Information may only be trans-
mitted through a converging connection X → Y ← Z if evidence on Y or one of
its descendants is available.

2.5.4 Intercausal Inference (Explaining Away)

Before we conclude this section by discussing the importance of correct modeling
of causality, let us dwell a bit on what we have learned so far concerning flow of
information in DAGs.

Example 2.5 (The Power of DAGs). Consider the “Burglary or Earthquake” model
in Example 2.4 on page 25 and assume that the burglar alarm goes off (i.e., we have
evidence on variable Alarm); see Fig. 2.10.

Using Propositions 2.1 and 2.2, we find that information flows to all the
remaining variables of the network, indicated by the dashed arrows in Fig. 2.10.
The information flowing opposite the direction of the causal links (indicated by
the dashed arrows pointing upwards) represent abductive (or diagnostic) reasoning,
whereas information flowing in the direction of the causal links (indicated by the
dashed arrows pointing downwards) represent deductive (or causal) reasoning.

Now, assume that we receive an additional piece of evidence, namely, a radio
report on a recent earthquake, which provides strong evidence that the earthquake
is responsible for the burglar alarm. Thus, we have now also evidence on variable
Radio; see Fig. 2.11 on the facing page.
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Fig. 2.11 Flow of
information in the “Burglary
or Earthquake” network with
additional evidence on Radio
after evidence on Alarm

Using Propositions 2.2 and 2.3, we find that information flows to variables
Earthquake and Burglary, indicated by the dashed arrows in Fig. 2.11. The (hard)
evidence on variable Alarm prevents information from flowing down to vari-
able Watson.

The property of converging connections, X → Y ← Z, that information about
the state of X (Z) provides an explanation for an observed effect on Y , and hence
confirms or disconfirms Z (X ) as the cause of the effect, is often referred to as the
explaining-away effect or as intercausal inference.

The flow of information from Radio to Burglary is an example of the explaining-
away effect. The bidirected dashed arrow in Fig. 2.11 indicates the intercausal
inference taking place between Earthquake and Burglary, in this case explaining
away burglary as the cause of the alarm. �

As shown by the example, representing causal interactions between domain
variables by way of a DAG provides a compact yet powerful means of performing
deductive, abductive, and intercausal reasoning.

The ability to perform intercausal inference is unique for graphical models
and is one of the key differences between automatic reasoning systems based on
probabilistic networks and systems based on, for example, production rules. In a
rule-based system, we would need dedicated rules for taking care of intercausal
reasoning.

2.5.5 The Importance of Correct Modeling of Causality

It is a common modeling mistake to let arrows point from effect to cause, leading to
faulty statements of (conditional) dependence and independence and, consequently,
faulty inference. For example, in the “Burglary or Earthquake” example on page 25
one might put a directed link from W (Watson calls) to A (Alarm) because the
fact that Dr. Watson makes a phone call to Mr. Holmes “points to” the fact that
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• W : Watson calls
• A: Alarm
• B: Burglary
• R: Radio news
• E: Earthquake

Fig. 2.12 Wrong model for the “Burglary or Earthquake” story of Example 2.4 on page 25,
where the links are directed from effects to causes, leading to faulty statements of (conditional)
dependence and independence

Mr. Holmes’ alarm has gone off. Experience shows that this kind of reasoning is
common when people are building their first probabilistic networks and is probably
due to a mental flow of information model, where evidence acts as the “input” and
the derived conclusions as the “output.”

Using this faulty modeling approach, the “Burglary or Earthquake” model in
Fig. 2.3 on page 26 would have all its links reversed (see Fig. 2.12). Using
Proposition 2.2 on page 28 on the model in Fig. 2.12, we find that B and E are
dependent when nothing is known about A, and, using Proposition 2.3 on page 30,
we find thatA andR are dependent whenever evidence aboutE is available. Neither
of these conclusions are, of course, true and will make the model make wrong
inferences.

Having the causal relations among domain variables be mapped to directed links
X → Y , where X is a cause of Y , is thus (at least) helpful, if not crucial, to having
the model correctly represent the dependence and independence properties of the
problem domain.

Another reason why respecting a causal modeling approach is important stems
from the potential difficulties in specifying the conditional probability of X D x

given that Y D y when Y → X does not reflect a causal relationship. For example,
it might be difficult for Mr. Holmes to specify the probability that a burglar has
broken into his house given that he knows the alarm has gone off, as the alarm might
have gone off for other reasons. Thus, specifying the probability that the alarm goes
off given its possible causes might be easier and more natural, providing a sort of
complete description of a local phenomenon. We shall leave the discussion of this
important issue for now and resume in Chaps. 4 and 6.

2.6 Two Equivalent Irrelevance Criteria

Propositions 2.1–2.3 comprise the components needed to formulate a general rule
for reading off the statements of relevance and irrelevance relations for two (sets of)
variables, possibly given a third variable (or set of variables). This general rule is
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known as the d-separation criterion (where d stands for directional) and is due to
Pearl (1988).

In Chap. 3, we show that for any joint probability distribution that factorizes
according to a DAG, G (see Chap. 3 for a definition), independence statements
involving variablesXu and Xv (again, see Chap. 3 for a definition) are equivalent to
similar statements about d-separation of vertices u and v in G.

Thus, the d-separation criterion may be used to answer queries of the kind “are
X and Y independent givenZ” (in a probabilistic sense) or, more generally, queries
of the kind “is information about X irrelevant for our belief about the state of Y
given information aboutZ,” whereX and Y are individual variables andZ is either
the empty set of variables or an individual variable.

The d-separation criterion may also be used with sets of variables, although this
may be cumbersome. On the other hand, answering such queries is efficient using
the directed global Markov criterion (Lauritzen, Dawid, Larsen & Leimer 1990b),
which is a criterion that is equivalent to the d-separation criterion.

As statements of (conditional) d-separation play a key role in probabilistic
networks, some shorthand notation is convenient. We shall use the standard notation
u ?G v to denote that vertices u and v are d-separated in DAG G, or simply u ? v if
G is obvious from the context. By u ? v |w, we denote the statement that u and v are
d-separated given (hard) evidence on w. By U ? V , we denote the fact that u ? v
for each u 2 U and each v 2 V . If vertices u and v are not d-separated, we shall
often say that they are d-connected. We shall use 6? to denote d-connection.

Example 2.6 (Burglary or Earthquake, page 25). Some of the d-separation/
d-connection properties observed in the “Burglary or Earthquake” example are:

(1) Burglary ? Earthquake
(2) Burglary 6? Earthquake | Alarm
(3) Burglary ? Radio report
(4) Burglary ? Watson calls | Alarm

�

Also, notice that d-separation and d-connection depend on the information
available; that is, it depends on what you know (and do not know). Also, note that d-
separation and d-connection relations are always symmetric; that is, u ? v � v ? u.

2.6.1 d-Separation Criterion

Propositions 2.1–2.3 can be summarized into a rule known as d-separation (Pearl
1988):

Proposition 2.4 (d-Separation). A path � D hu; : : : ; vi in a DAG, G D .V;E/, is
said to be blocked by S � V if � contains a vertex w such that either

• w 2 S and the edges of � do not meet head-to-head at w, or
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A B

(1) C and G are d-connected

(2) C and E are d-separated

(3) C and E are d-connected given evidence on G

(4) A and G are d-separated given evidence on D and E

(5) A and G are d-connected given evidence on D

Fig. 2.13 Sample DAG with a few sample dependence (d-connected) and independence (d-
separated) statements

• w 62 S , de.w/ \ S D ;, and the edges of � meet head-to-head at w.

For three disjoint subsets A;B; S of V , A and B are said to be d-separated if all
paths between A and B are blocked by S .

Proposition 2.4 on the previous page says, for example, that two vertices u and
v are d-separated if for each path between u and v, there is a vertex w such that the
edges of the path meet head-to-head at w.

Example 2.7 (d-Separation). We may use Proposition 2.4 to determine if, for
example, variables C and G are d-separated in the DAG in Fig. 2.13; that is, are C
and G independent when no evidence about any of the variables is available? First,
we find that there is a diverging connection C ← A→ D allowing transmission of
information from C to D via A. Second, there is a serial connection A → D → G

allowing transmission of information from A to G via D. So, information can thus
be transmitted from C toG via A andD, meaning that C andG are not d-separated
(i.e., they are d-connected).
C andE , on the other hand, are d-separated since each path fromC toE contains

a converging connection, and since no evidence is available, each such connection
will not allow transmission of information. Given evidence on one or more of the
variables in the set {D;F;G;H }, C and E will, however, become d-connected. For
example, evidence on H will allow the converging connection D → G ← E to
transmit information from D to E via G, as H is a child of G. Then information
may be transmitted from C to E via the diverging connection C ← A → D and
the converging connectionD → G ← E. �



2.6 Two Equivalent Irrelevance Criteria 35
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(b): G

(c): GAn.A[B[S/ (d):
�
GAn.A[B[S/
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Fig. 2.14 (a) A DAG, G. (b) G with subsets A, B , and S indicated, where the variables in S are
assumed to be observed. (c) The subgraph induced by the ancestral set of A [ B [ S . (d) The
moral graph of the DAG of part (c)

2.6.2 Directed Global Markov Criterion

The directed global Markov criterion (Lauritzen et al. 1990b) provides a criterion
that is equivalent to that of the d-separation criterion but which in some cases may
prove more efficient in terms of requiring less inspections of possible paths between
the involved vertices of the graphs.

Proposition 2.5 (Directed Global Markov Criterion). Let G D .V;E/ be a DAG
and A;B; S be disjoint sets of V . Then each pair of vertices .˛ 2 A;ˇ 2 B/ are
d-separated by S whenever each path from ˛ to ˇ is blocked by vertices in S in the
graph �

GAn.A[B[S/
�m

.

Although the criterion might look somewhat complicated at a first glance, it is
actually quite easy to apply. The criterion says that A ?G B |S if all paths from A

to B passes at least one vertex in S in the moral graph of the sub-DAG induced by
the ancestral set of A[ B [ S .

Example 2.8 (Directed Global Markov Criterion). Let us consider the DAG, G D
.V;E/, in Fig. 2.14a, and let the subsets A;B; S � V be given as shown in
Fig. 2.14b. That is, we ask if A ?G B |S . Using Proposition 2.5, we first remove
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each vertex not belonging to the ancestral set An.A [ B [ S/. This gives us the
DAG in Fig. 2.14c. Second, we moralize the resulting sub-DAG, which gives us the
undirected graph in Fig. 2.14d. Then, to answer the query, we consult this graph to
see if there is a path from a vertex in A to a vertex in B that do not contain a vertex
in S . Since this is indeed the case, we conclude that A 6?G B |S . �

2.7 Summary

In this chapter, we first defined some key concepts used to describe the qualitative
part (i.e., the graphical structure) of probabilistic networks that are given by DAGs.
We defined the notion of the moral graph of a DAG, which plays an important role in
understanding the independence properties represented by a DAG and in generating
a junction tree for making inference in a probabilistic network (cf. Chap. 5).

We introduced the taxonomy of variables and vertices (the nodes of the DAG
of a probabilistic network that represent the chance and decision variables and the
utility functions of the network) and discussed the notions of product spaces over
the domains of variables and projections down to smaller-dimensional spaces, which
play a crucial role in inference processes (in Chap. 3, we shall see how the operation
of projection is defined for probability functions). Also, the notion of evidence was
briefly touched upon, including the distinction between hard and soft evidence.

To understand the notion of (conditional) independence in probabilistic networks,
we discussed the three fundamental constructs (serial, diverging, and converging
connections) in terms of which any path X ∼ Y ∼ Z of a DAG can be described.
When the directed links of a DAG can be interpreted as causal links, the three
fundamental constructs have clear relevance properties, which can be described
collectively by means of the d-separation criterion that can be used to determine if
information about one set of variables is relevant to another set of variables, possibly
given information about the states of a third set of variables (i.e., can information
flow from the first set to the second set given the third set). An equivalent criterion
(the directed, global Markov criterion), which uses the notion of moral graphs, was
also presented.

In Chap. 3, we shall see that if a joint probability distribution factorizes according
to the structure of a DAG, then the DAG is a graphical representation of the
independence properties of the distribution. We briefly discussed the importance
of having the directed edges of a DAG of a probabilistic network represent causal
relations (i.e., the directed links should point from cause to effect). Otherwise,
problems might arise both in terms of getting the right (conditional) independence
properties of the network and in terms of ease of specification of the conditional
probabilities (parameters) of the network. This important issue will be further
discussed in Chaps. 4 and 6.
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Exercises

Exercise 2.1. For the discrete variablesX , Y , andZ assume that dom.X/ D .0; 1/,
dom.Y / D .good; bad/, and dom.Z/ D .low; average; high/.

(a) What is ||.X; Y;Z/||?
(b) Specify dom.X; Y D good; Z/.
(c) Let w D .1; good; high/. Specify w{X;Z} and wY .
(d) Specify evidence functions for Z that indicate:

(i) Z D low with certainty
(ii) Z ¤ low and Z D high is three times as likely as Z ¤ average

Exercise 2.2. Direct the links below such that the parent nodes represent the causes
and the child nodes represent the effects.

(a) Flu Fever
(b) State of battery Age of battery
(c) Living standard Education
(d) Age Number of children
(e) Occupation Education
(f) Fake die Number of 6s

Exercise 2.3. Consider the DAG in Fig. 2.13 on page 34. Use the d-separation
criterion to test which of the following statements are true.

(a) A ? B

(b) A ? B |C

(c) A ? B | {C;D}

(d) B 6? F

(e) B ? F |E

(f) B ? F | {D;E}

(g) F ? G

(h) F ? G |E

(i) F ? G | {A;E}

Exercise 2.4. Draw the graphs
�
GAn.A[B[S/

�m
with G given by the DAG in

Fig. 2.13 on page 34 and A;B; S given in Exercise 2.3(a)–(i) and verify your
answers in Exercise 2.3 using the directed global Markov criterion.



Chapter 3
Probabilities

As mentioned in Chap. 2, probabilistic networks have a qualitative aspect and a
corresponding quantitative aspect, where the qualitative aspect is given by a graph-
ical structure in the form of a DAG that represents the (conditional) dependence
and independence properties of a joint probability distribution defined over a set of
variables that are indexed by the vertices of the DAG.

The fact that the structure of a probabilistic network can be characterized as
a DAG derives from basic axioms of probability calculus leading to recursive
factorization of a joint probability distribution into a product of lower-dimensional
conditional probability distributions. First, any joint probability distribution can be
decomposed (or factorized) into a product of conditional distributions of different
dimensionality, where the dimensionality of the largest distribution is identical to
the dimensionality of the joint distribution.1 This gives rise to a densely connected
DAG. Second, statements of local conditional independences manifest themselves
as reductions of dimensionalities of some of the conditional probability distribu-
tions. Most often, these independence statements give rise to dramatic reductions of
complexity of the DAG such that the resulting DAG appears to be quite sparse.

In fact, a joint probability distribution, P , can be decomposed recursively in
this fashion if and only if there is a DAG that correctly represents the (conditional)
dependence and independence properties of P . This means that a set of conditional
probability distributions specified according to a DAG, G D .V;E/, (i.e., a
distribution P.A |pa.A// for each A 2 V ) define a joint probability distribution.

Therefore, a probabilistic network model can be specified either through direct
specification of a joint probability distribution or through a DAG (typically)
expressing cause–effect relations and a set of corresponding conditional probability
distributions. Obviously, a model is almost always specified in the latter fashion.

1The dimensionality of a function is defined as the number of variables over which the function is
defined.

U.B. Kjærulff and A.L. Madsen, Bayesian Networks and Influence Diagrams: A Guide
to Construction and Analysis, ISS 22, DOI 10.1007/978-1-4614-5104-4 3,
© Springer Science+Business Media New York 2013
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This chapter presents some basic axioms of probability calculus from which
the famous Bayes’ rule follows as well as the chain rule for decomposing a joint
probability distribution into a product of conditional distributions. We shall also
present the fundamental operations needed to perform inference in probabilistic
networks.

3.1 Basics

This section introduces some axioms of probability theory and the fundamental
concept of conditional probability, which provides the basis for probability calculus
in discrete Bayesian networks.

3.1.1 Events

The language of probability consists of statements (propositions) about probabilities
of events. The probability of an event a is denotedP.a/. An event can be considered
as an outcome of an experiment (e.g., a coin flip), a particular observation of a value
of a variable (or set of variables), an assignment of a value to a variable (or set of
variables), etc. As a probabilistic network define a probability distribution over a
set of variables, V , in our context, an event is a configuration, x 2 dom.X/, (i.e., a
vector of values) of a subset of variables X � V . dom.X/ is sometimes called an
event space.

Example 3.1 (Burglary or Earthquake, page 25). Assume we observe W D yes
and R D yes. This evidence is given by the event " D .W D yes; R D yes/ 2
dom.W / � dom.R/, where dom.W / � dom.R/ is the event space. The probability
P."/ denotes the probability of this event, namely, the probability that both W D
yes and R D yes have been observed. �

Let S denote an event space and let A;B � S . Even though A and B are subsets
of S (i.e., subsets of events), we might sometimes refer to them simply as events.
Elementary events are denoted by lowercase letters; for example, a 2 A � S . By
¬A, we denote S \ A.

3.1.2 Axioms

The following three axioms, known as Kolmogorov’s axioms or the axioms of
probability, provide the basis for (Bayesian) probability calculus.

Axiom 3.1. P.A/ 2 R∧ P.A/ � 0 for any event A � S .
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Axiom 3.2. P.S/ D 1.

Axiom 3.3. For any two mutually exclusive events A and B , the probability that
either A or B occur is

P.A or B/ � P.A [ B/ D P.A/C P.B/.

In general, if events A1; : : : ; An are pairwise mutually exclusive, then

P

 
n[

i

Ai

!
D P.A1/C � � � C P.An/ D

nX

i

P.Ai /.

Axiom 3.1 simply says that a probability is a nonnegative real number.
Axiom 3.2 says that the probability that some elementary event in the event space

will occur is 1. For example, the probability that the flip of a coin will result in either
heads or tails is P.{heads; tails}/ D 1 (assuming that {heads; tails} is an exhaustive
set of possible states of a coin).

Axiom 3.3 says that if two events cannot co-occur (i.e., they are mutually
exclusive), then the probability that either one of them occurs equals the sum of
the probabilities of their individual occurrences.

Example 3.2 (Probability of Mutually Exclusive Events). Consider the events “The
roll of the die yields a 1” and “The roll of the die yields a 6.” Obviously, these events
are mutually exclusive, and the probability that one of them is true equals the sum
of the probabilities that the first event is true and that the second event is true. Thus,
intuitively, Axiom 3.3 makes sense. �

Note that if a set of events, {a1; : : : ; an}, is an exhaustive set of outcomes of some
experiment (e.g., rolling a die), then

P
i P.ai / D 1.

Some consequences of the axioms are that P.¬A/ D 1−P.A/ and that P.A/ �
P.B/ ifA � B . The latter is called the monotonicity property, from which it follows
that P.A/ � 1 for allA � S . In the general case withA andB not necessarily being
mutually exclusive, it furthermore follows that P.A[B/ D P.A/CP.B/−P.A\
B/. For proofs, see, for example, Grinstead & Snell (1997).

3.1.3 Conditional Probability

The basic concept in the Bayesian treatment of uncertainty is that of conditional
probability: Given event B , the conditional probability of event A is x, written as

P.A |B/ D x.

This means that if B has occurred and everything else known is irrelevant for A,
then the probability that A occurs is x.
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Example 3.3 (Burglary or Earthquake, page 25). Let us assume that the alarm
sounds in eight of every ten cases when there is an earthquake but no burglary.
This fact would then be expressed as the conditional probability P.A D yes |B D
no; E D yes/ D 0:8. �

Definition 3.1 (Fundamental Rule). For any two events A and B , the probability
that both A and B occur is

P.A and B/ � P.A;B/ D P.B |A/P.A/ D P.A |B/P.B/.

P.A;B/ is called the joint probability of the events A and B .

Definition 3.1 says that the probability of the co-occurrence of two events, A
and B , can be computed as the product of the probability of event A (B) occurring
conditional on the fact that event B (A) has already occurred and the probability of
event B (A) occurring.

Example 3.4 (Balls in An Urn). Assume we have an urn with 2 red, 3 green, and 5
blue balls. The probabilities of picking a red, a green, or a blue ball are

P.red/ D 2

10
D 0:2, P.green/ D 3

10
D 0:3, P.blue/ D 5

10
D 0:5.

By Axiom 3.3 on the previous page, we get the probability of picking either a green
or a blue ball:

P.green or blue/ D P.green/C P.blue/ D 0:8.

Similarly, the probability of picking either a red, a green, or a blue is 1. Without
replacement, the color of the second ball depends on the color of the first ball. If we
first pick a red ball (and keep it), then the probabilities of picking a red, a green, or
a blue ball as the next one are, respectively,

P.2nd-is-red |1st-was-red/ D 2− 1

10− 1
D 1

9
,

P.2nd-is-green |1st-was-red/ D 3

10− 1
D 3

9
,

P.2nd-is-blue |1st-was-red/ D 5

10− 1
D 5

9
.

By Definition 3.1, we get the probability that the 1st ball is red and the 2nd is red:

P.1st-was-red; 2nd-is-red/ D P.2nd-is-red |1st-was-red/P.1st-was-red/

D 1

9
� 1
5

D 1

45
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Similarly, the probabilities that the 1st ball is red and the 2nd is green/blue are

P.1st-was-red; 2nd-is-green/ D P.2nd-is-green |1st-was-red/P.1st-was-red/

D 1

3
� 1
5

D 1

15
,

P.1st-was-red; 2nd-is-blue/ D P.2nd-is-blue |1st-was-red/P.1st-was-red/

D 5

9
� 1
5

D 1

9
,

respectively. �

3.2 Probability Distributions for Variables

Discrete probabilistic networks are defined over a (finite) set of variables, each of
which represents a finite set of exhaustive and mutually exclusive states (or events);
see Sect. 2.2 on page 20. Thus, (conditional) probability distributions for variables
(i.e., over exhaustive sets of mutually exclusive events) play a very central role in
probabilistic networks.

If X is a (random) variable with domain dom.X/ D .x1; : : : ; x||X ||/, then P.X/
denotes a probability distribution (i.e., a vector of probabilities summing to 1),
where

P.X/ D �
P.X D x1/; : : : ; P.X D x||X ||/

�
.

If no confusion is possible, we shall often use P.x/ as short for P.X D x/,
P.y/ as short for P.Y D y/, etc. If the probability distribution for a variable Y
is given conditional on a variable (or set of variables) X , then we shall use the
notation P.Y |X/. That is, for each possible value (state), x 2 dom.X/, we have a
probability distribution P.Y |X D x/; again, if no confusion is possible, we shall
often write P.Y |x/.

Example 3.5 (Balls in An Urn, page 42). Let X1 represent the following exhaustive
set of mutually exclusive events:

dom.X1/ D .“1st ball is red,”“1st ball is green,”“1st ball is blue”/.

If we defineX1 to denote the random variable “The color of the 1st ball drawn from
the urn,” then we may define dom.X1/ D .red; green; blue/. Similarly, if we define
X2 to denote the random variable “The color of the 2nd ball drawn from the urn,”
then dom.X2/ D dom.X1/. From Example 3.4 on the preceding page, we get

P.X1/ D
�
2

10
;
3

10
;
5

10

�
,
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P.X2 |X1 D red/ D
�
1

9
;
3

9
;
5

9

�
.

P.X2 |X1/ can be described in terms of a table of three (conditional) distributions:

P.X2 |X1/ D

X1 D red X1 D green X1 D blue

X2 D red
1

9

2

9

2

9

X2 D green
3

9

2

9

3

9

X2 D blue
5

9

5

9

4

9

Note that the probabilities in each column sum to 1. �

3.2.1 Rule of Total Probability

Let P.X; Y / be a joint probability distribution for two variables X and Y with
dom.X/ D .x1; : : : ; xm/ and dom.Y / D .y1; : : : ; yn/. Using the fact that
dom.X/ and dom.Y / are exhaustive sets of mutually exclusive states of X and Y ,
respectively, Axiom 3.3 on page 41 gives us the rule of total probability:

8i W P.xi / D P.xi ; y1/C � � � C P.xi ; yn/ D
nX

jD1
P.xi ; yj /. (3.1)

Using (3.1), we can calculate P.X/ from P.X; Y /:

P.X/ D
0

@
nX

jD1
P.x1; yj /; : : : ;

nX

jD1
P.xm; yj /

1

A .

In a more compact notation, we may write P.X/ as

P.X/ D
nX

jD1
P.X; yj /,

or even shorter as

P.X/ D
X

Y

P.X; Y /; (3.2)
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denoting the fact that we sum over all indices of Y . We shall henceforth refer to the
operation in (3.2) as marginalization or projection.2 Also, we sometimes refer to
this operation as “marginalizing out Y ” of P.X; Y /.

Example 3.6 (Balls in An Urn, page 42). Using Definition 3.1 on page 42 for each
combination of states of X1 and X2 of Example 3.5 on page 43, we can compute

P.X1 D red; X2 D red/ D P.X1 D red/P.X2 D red |X1 D red/

D 2

10
� 1
9

D 1

45
,

etc. That is, we get P.X1;X2/ by combining P.X1/ and P.X2 |X1/:

P.X1;X2/ D

X1 D red X1 D green X1 D blue

X2 D red
1

45

1

15

1

9

X2 D green
1

15

1

15

1

6

X2 D blue
1

9

1

6

2

9

(Note that the numbers in the table sum to 1.) Now, through marginalization, we get

P.X2/ D P.X1 D red; X2/C P.X1 D green; X2/C P.X1 D blue; X2/

D

0

BBBBBB@

1

45
1

15
1

9

1

CCCCCCA
C

0

BBBBBB@

1

15
1

15
1

6

1

CCCCCCA
C

0

BBBBBB@

1

9
1

6
2

9

1

CCCCCCA
D

0

BBBBBB@

1

5
3

10
1

2

1

CCCCCCA
.

That is, the probabilities of getting a red, a green, and a blue ball in the second draw
are, respectively, 0:2, 0:3, and 0:5, given that we know nothing about the color of
the first ball. That is, P.X2/ D P.X1/ D .0:2; 0:3; 0:5/, whereas, for example,
P.X2 |X1 D red/ D .0:1111; 0:3333; 0:5556/; that is, once the color of the first ball
is known, our belief about the color of the second changes. �

2See Sect. 3.3.3 on page 50 for more on marginalization.
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X

Y1 Yn
Fig. 3.1 Graphical
representation of
P.X |Y1; : : : ; Yn/

3.2.2 Graphical Representation

The conditional probability distributions of probabilistic networks are of the form

P.X |Y /,

where X is a single variable and Y is a (possibly empty) set of variables. X and
Y are sometimes called the head and the tail, respectively, of P.X |Y /. If Y D ;
(i.e., the empty set), P.X |Y / is often called a marginal probability distribution and
is then written as P.X/. This relation between X and Y D {Y1; : : : ; Yn} can be
represented graphically as the DAG illustrated in Fig. 3.1, where the child vertex is
labeled X and the parent vertices are labeled Y1, Y2, etc.

Example 3.7 (Burglary or Earthquake, page 25). Consider variables B (Burglary),
E (Earthquake), and A (Alarm), where B andE are possible causes of A. A natural
way of specifying the probabilistic relations between these three variables would
be through a conditional probability distribution for A given B and E. Thus, for
each combination of outcomes (states) of B andE, we need to specify a probability
distribution over the states of A:

P.A |B;E/ D
B D no B D yes

A E D no E D yes E D no E D yes

no 0:99 0:1 0:1 0:01

yes 0:01 0:9 0:9 0:99

This conditional probability table expresses the probability (whether obtained as an
objective frequency or a subjective belief) of an alarm if either a burglary or an
earthquake has taken place (but not both) to be 0:9. �

3.3 Probability Potentials

In working with probabilistic networks, the notion of “potentials” often appears to
be convenient. Formally, a probability potential is a nonnegative function defined
over the product space over the domains of a set of variables. We shall use Greek
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letters (�,  , etc.) to denote potentials and sometimes use subscripts to identify
their domain (e.g., �X denotes a potential defined on dom.X/) or to indicate that a
potential �X is a marginal potential of �.3

3.3.1 Normalization

A (probability) potential, �X defined on dom.X/, is turned into a probability
distribution, P.X/, through the operation known as normalization. We shall use
the notation �.�X/ to denote normalization of �X , where �.�X/ is defined as

�.�X/
4D �XP

X �X
(3.3)

Hence, P.X/ D �.�X/. The conditional probability distribution P.Y |X/ can be
obtained from the joint distribution P.X; Y / through conditional normalization
with respect to X :

�X.P.X; Y //
4D P.X; Y /P

Y P.X; Y /
D P.Y |X/.

In general,

�X 0.P.X//
4D P.X/P

X\X 0 P.X/
D P.X \X 0 |X 0/, (3.4)

where X 0 is a subset of the set of variablesX . In particular,

�.P.X// D �;.P.X// D P.X/,

whenever P.X/ is a probability distribution over X . This also holds true for
conditional distributions:

�Y .P.X |Y // D P.X |Y /,

since
X

X

P.X |Y / D 1Y ; (3.5)

3Note that the two interpretations are consistent. See Sect. 3.3.3 on page 50 for details on
marginalization.
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where 1Y denotes a vector of 1s over dom.Y /. A uniform potential, for example,
1Y , is called a vacuous potential. Intuitively, a vacuous potential can be thought of
as a non-informative (or superfluous) potential.

We shall be using the notion of potentials extensively in Chaps. 4 and 5, but for
now, we will just give a couple of simple examples illustrating the usefulness of this
notion.

Example 3.8 (Normalization). Let P.A;B/ D P.A/P.B |A/ be a factorization of
the joint distribution for the Boolean variables A and B and assume that P.A/ and
P.B |A/ are given by the potentials � and  , respectively, where

� D .1; 2/ and  D
B A D false A D true

false 5 7

true 3 1

Then

P.A/ D �.�/ D
�
1

3
;
2

3

�

and

P.B |A/ D �A. / D  P
B  

D
B A D false A D true

false 5
8

7
8

true 3
8

1
8

Coincidentally, because the normalization vector
P

B  D .8; 8/ is uniform, we
get4

P.A;B/ D �.� �  / D
B A D false A D true

false 5
24

14
24

true 3
24

2
24

In general, with a nonuniform vector (or matrix) of normalization constants
P

B  

in �A. / D  =
P

B  , we have P.A;B/ ¤ �.� �  /. If, for example, had  
instead been defined as

 D
B A D false A D true

false 5 7

true 3 2

4See Sect. 3.3.3 for a definition of combination of potentials.
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we would have
P

B  D .8; 9/ and

P.A;B/ D
B A D false A D true

false 5
24

14
27

true 3
24

4
27

whereas

�.� �  / D
B A D false A D true

false 5
26

14
26

true 3
26

4
26

�

3.3.2 Evidence Potentials

As indicated in Sect. 2.3 on page 24, evidence functions are actually potentials.
To compute the joint posterior distribution resulting from incorporating a set of
observations in the form of evidence functions, we simply extend the set of proba-
bility function constituents (possibly in the form of potentials) with corresponding
evidence potentials, multiply, and normalize the product.

Before any evidence has been taken into account, the probability distribution
P.X 0/ for a subset X 0 � X of variables is referred to as the prior probability
distribution for X 0. The conditional probability distribution P.X 0 |"/, where "
denotes evidence, is referred to as the posterior probability distribution for X 0
given ". Given an evidence potential EE on a subset E � X \X 0 (expressing "), the
posterior conditional distribution is obtained as

P.X 0 |"/ D �.P.X 0; "//,

where
P.X 0; "/ D

X

X\X 0

P.X/ � EE .

We define P.X/�EE to have dimensionality |X \E |. Thus, multiplication of P.X/
with EE gives rise to a dimensionality decrease by |E |.

Example 3.9 (Example 3.8, cont.). Assume that we observe B D true, represented
by the evidence potential EB D .0; 1/. Then the posterior marginal distribution,
P.A |"/, is given by

P.A |"/ D �.� �  � EB/ D

�

�
.1; 2/ �

�
5 7

3 1

�
�
�
0

1

��
D �.3; 2/ D

�
3

5
;
2

5

�
,
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where the two-dimensional potential � �  on A and B reduces to the one-
dimensional potential .3; 2/ on A when multiplied by the evidence potential EB .

�

3.3.3 Potential Calculus

To perform inference in probabilistic networks, we only need a few simple opera-
tions, namely, multiplication (combination), division, addition, and marginalization
(projection). These are all defined very straightforwardly as follows.

Let � and  be potentials defined on dom.X/ and dom.Y /, respectively, and let
z 2 dom.X [ Y / be an arbitrary element (configuration).

We then define � �  as

.� �  /.z/ 4D �.zX/ .zY /, (3.6)

where zX and zY are projections of z onto dom.X/ and dom.Y /, respectively.5

Addition is defined analogously. We need to take special care to avoid division by
zero, but otherwise, division is defined in the obvious way:

.�= /.z/
4D
⎧

⎨

⎩

0 if �.zX/ D 0

�.zX/= .zY / if  .zY / ¤ 0

undefined otherwise.
(3.7)

As we shall see later, for all relevant operations involved in inference in probabilistic
networks,�.zX/ D 0 implies .zY / D 0 upon division of � by , and thus, defining
0=0 D 0, the division operator is always defined.

Let X 0 � X and let � be a potential defined on dom.X/. Then �X 0 D P
X\X 0 �

denotes the marginalization (or projection) of � to dom.X 0/ and is defined as

�X 0.x 0/ 4D
X

z2dom.X\X 0/

�.z:x 0/, (3.8)

where z:x 0 is the element in dom.X/ for which .z:x 0/X\X 0 D z and .z:x 0/X 0 D x 0.
In other words, if, say,X D .X1; : : : ; Xn/ andX 0 D .Xk; : : : ; Xn/, 1 < k < n, then
z D .x1; : : : ; xk−1/ and x 0 D .xk; : : : ; xn/ are the projections of z:x 0 D .x1; : : : ; xn/

onto dom.X \X 0/ and dom.X 0/, respectively.

Example 3.10 (Combination and Marginalization). Let X D {A;B} and Y D
{B;C;D}, where A;B;C;D are all binary variables with dom.A/ D .a1; a2/, etc.
Let �X and �Y be potentials defined over dom.X/ and dom.Y /, respectively, where

5As defined in Sect. 2.2 on page 20.
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�X D
a1 a2

b1 0:1 0:9

b2 0:4 0:6

and �Y D
c1 c2

d1 d2 d1 d2

b1 0:11 0:14 0:06 0:09

b2 0:23 0:07 0:18 0:12

From (3.6), we get  D �X � �Y to be

 D
c1 c2

d1 d2 d1 d2

b1 .0:011; 0:099/ .0:014; 0:126/ .0:006; 0:054/ .0:009; 0:081/

b2 .0:092; 0:138/ .0:028; 0:042/ .0:072; 0:108/ .0:048; 0:072/

where .�X � �Y /.a1; b1; c1; d1/ D �X.a1; b1/�Y .b1; c1; d1/ D 0:1 � 0:11 D 0:011,
.�X � �Y /.a2; b1; c1; d1/ D �X.a2; b1/�Y .b1; c1; d1/ D 0:9 � 0:11 D 0:099, etc.

Now, if Z D {A;D}, then from (3.8), we get the marginal of  with respect to
Z to be

 Z D
d1 d2

a1 0:011C 0:092C 0:006C 0:072 0:014C 0:028C 0:009C 0:048

a2 0:099C 0:138C 0:054C 0:108 0:126C 0:042C 0:081C 0:072

D
d1 d2

a1 0:181 0:099

a2 0:399 0:321

where, for example,  Z.a1; d1/ D  ..b1; c1/:.a1; d1// C  ..b2; c1/:.a1; d1// C
 ..b1; c2/:.a1; d1// C  ..b2; c2/:.a1; d1// D 0:011 C 0:092 C 0:006 C 0:072 D
0:181. Note that  (and hence also  Z) is a probability distribution (i.e.,P

x  .x/ D 1), since �X is a conditional probability distribution for A given B
and �Y is a joint probability distribution for {B;C;D}. �

Distributive Law

Let � and  be potentials defined on dom.X/ D .x1; : : : ; xm/ and dom.Y / D
.y1; : : : ; yn/. Assume that we wish to compute the marginal potential

.� �  /X 0[Y 0 D
X

X\X 0

X

Y \Y 0

.� �  /,

where X 0 � X and Y 0 � Y such that X \ X 0 \ Y D ; and Y \ Y 0 \ X D ; (i.e.,
the two subsets of variables to be marginalized out, namely,X \X 0 and Y \ Y 0, do
not intersect with the sets of variables on which  and �, respectively, are defined).
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Using the distributive law, we then get

X

X\X 0

X

Y \Y 0

.� �  / D
X

x2dom.X\X 0/

X

y2dom.Y \Y 0/

�.x/ .y/

D �.x1/ .y1/C � � � C �.x1/ .yn/C � � � C
�.xm/ .y1/C � � � C �.xm/ .yn/

D �.x1/ Œ .y1/C � � � C  .yn/�C � � � C
�.xm/ Œ .y1/C � � � C  .yn/�

D
X

x2dom.X\X 0/

�.x/
X

y2dom.Y \Y 0/

 .y/

D
X

X\X 0

�
X

Y \Y 0

 , (3.9)

where
P

X �
P

Y  is short for
P

X.� � .PY  //. Thus, if we wish to compute the
marginal distribution .� �  /X 0[Y 0 , where X \ X 0 \ Y D ; and Y \ Y 0 \ X D
;, then using the distributive law may help significantly in terms of reducing the
computational complexity.

Example 3.11 (Distributive Law). Let �,  , and 	 be potentials defined on dom
.A;B; C /, dom.B; D/, and dom.C;D;E/, respectively, and let EE be an evi-
dence potential defined on dom.E/, where the variables A; : : : ; E are all binary.
Assume that we wish to compute P.A |"/, where " denotes the evidence provided
through EE . A brute-force approach would be simply to combine all potentials,
marginalize out variables B; : : : ; E, and normalize

P.A |"/ D �

 
X

B

X

C

X

D

X

E

.� �  � 	 � EE/

!
.

Combining potentials 	 and EE requires 8 multiplications. Next, combining  and
	 �EE requires 16multiplications, and, finally, combining � and �	 �EE requires
32 multiplications. Marginalizing out E, D, C , and B , respectively, requires 16, 8,
4, and 2 additions.

Alternatively, we could take advantage of the distributive law to compute the
same thing:

P.A |"/ D �

 
X

B

X

C

�
X

D

 
X

E

.	 � EE/

!
.

First, combining 	 and EE requires 8 multiplications. Then, marginalizing out E
requires 4 additions. Multiplying the resulting potential by  requires 8 multiplica-
tions, and marginalizing outD requires 4 additions. Next, multiplying the resulting
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potential by � requires 8 multiplications, and finally, marginalizing out C and B
requires 4 and 2 additions, respectively.

Summing up the number of arithmetic operations used in the two computations,
we find that the brute-force approach takes 56 multiplications and 30 additions,
whereas the one exploiting the distributive law takes only 24 multiplications and 14
additions, less than half of what the brute-force approach requires. (On top of these
numbers, we should also count the number of operations needed to normalize the
final marginal, but that is the same in both cases.)

Note that the ordering .B; C;D;E/ is just one out of 4Š D 24 different sequences
in which we might marginalize out these four variables, and to each ordering is
associated a certain number of arithmetic operations required to compute P.A |"/.

�

The single most important key to efficient inference in probabilistic networks is
the ability to take advantage of the distributive law (i.e., to find optimal (or near
optimal) sequences in which the variables are marginalized out). We shall return to
this issue in Chap. 5.

3.3.4 Barren Variables

If a variable,X , of a probabilistic network is never observed,P.X/ is of no interest,
and the same holds true for each of X ’s descendants (if any), then X is called
a barren variable (Shachter 1986), as it provides no information relevant for the
inference process. In fact, a barren variable provides “information” in the form of a
vacuous potential (cf. (3.5)) and may hence be removed from the network.

Example 3.12 (Barren Variables). ConsiderP.X; Y;Z/ D P.X/P.Y |X/P.Z |Y /

as a model over the variables X , Y , and Z. Following the discussion in Sect. 3.2.2
on page 46, this model can be represented graphically as indicated in Fig. 3.2a. Let
EY and EZ be evidence potentials for Y andZ, respectively, but where EZ is always
vacuous. Then the posterior probability distribution for X can be calculated as

P.X |"/ D �

 
P.X/

X

Y

P.Y |X/ � EY
X

Z

P.Z |Y / � EZ

!

D �

 
P.X/

X

Y

P.Y |X/ � EY
X

Z

P.Z |Y /

!

D �

 
P.X/

X

Y

P.Y |X/ � EY � 1Y
!

D �

 
P.X/

X

Y

P.Y |X/ � EY

!
,
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Z

Y

X

(a)

Y

X

(b)

Fig. 3.2 (a) Model for
P.X; Y;Z/. (b) Equivalent
model when Z is barren

where
P

Z P.Z |Y / D 1Y follows from (3.5) and " denotes the evidence. If neither
P.Z/ nor P.Z |"/ are of any interest, then Z is barren, and the term P.Z |Y / can
be neglected in the inference process, and the model can be simplified to the one
shown in Fig. 3.2b. �

We shall return to the issue of barren variables in more detail in Sect. 5.1.1.

3.4 Fundamental Rule and Bayes’ Rule

Generalizing Definition 3.1 on page 42 to arbitrary (random) variablesX and Y , we
get the fundamental rule of probability calculus:

P.X; Y / D P.X |Y /P.Y / D P.Y |X/P.X/: (3.10)

Bayes’ rule follows immediately from (3.10):

P.Y |X/ D P.X |Y /P.Y /

P.X/
. (3.11)

Using Definition 3.1 on page 42 and the rule of total probability, (3.11) can be
rewritten as

P.Y |X/ D P.X |Y /P.Y /

P.X |Y D y1/P.Y D y1/C � � � C P.X |Y D y||Y ||/P.Y D y||Y ||/
.

That is, the denominator in (3.11) can be derived from the numerator in (3.11).
Since, furthermore, the denominator is obviously the same for all states of Y , we
often write Bayes’ rule as

P.Y |X/ / P.X |Y /P.Y /, (3.12)

read as “P.Y |X/ is proportional to P.X |Y /P.Y /.” Note that the proportionality
factor P.X/−1 is in fact a vector of proportionality constants, one for each state
of X , determined in a normalization operation.
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Division by zero in (3.11) is not a problem if we define 0=0 D 0 as in (3.7), since
for

P.xi / D
X

j

P.xi |yj /P.yj /

to be zero at least one of P.xi |yj / and P.yj /must be zero for each j , and if this is
the case, then both the numerator term, P.xi |yj /P.yj /, and the denominator term,
P.xi /, of (3.11) will be zero.

Example 3.13 (Burglary or Earthquake, page 25). Given P.E/ D .0:01; 0:99/,
P.B/ D .0:1; 0:9/, and the conditional probability table (CPT) for P.A |B;E/

from Example 3.7 on page 46, we can use Bayes’ rule to compute P.B |A/, the
conditional probability distribution for burglary (B) given alarm (A):

P.B |A/ /
X

E

P.A |B;E/P.B/P.E/ D P.A;B/:

First, we compute the joint distribution for A, B , and E:

P.A;B;E/ D P.A |B;E/P.B/P.E/

D
B D no B D yes

A E D no E D yes E D no E D yes

no 0:88209 0:0009 0:0099 0:00001

yes 0:00891 0:0081 0:0891 0:00099

Next, we marginalize out E of P.A;B;E/ to obtain

P.A;B/ D
X

E

P.A;B;E/ D
A B D no B D yes

no 0:88299 0:00991

yes 0:00991 0:09009

Finally, we normalize P.A;B/ with respect to A, and get

P.B |A/ D �A.P.A;B// D
B A D no A D yes

no 0:9889 0:1588

yes 0:0111 0:8412

�

3.4.1 Interpretation of Bayes’ Rule

Since Bayes’ rule is so central to inference in Bayesian probability calculus, let us
dwell a little on how Bayes’ rule can be used and understood. Assume that we have
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B

A

P.A;B/ D P.A/P.B |A/

(a)

B

A

P.A;B/ D P.B/P.A |B/

(b)

Fig. 3.3 Two equivalent models that can be obtained from each other through arc reversal

two (possibly, sets of) variables X and Y , a model P.X; Y / given in the factorized
form P.X |Y /P.Y /, and that we observe X D x. We would then typically want to
compute P.Y |x/.

The prior distribution, P.Y /, expresses our initial belief about Y , and the
posterior distribution, P.Y |x/, expresses our revised belief about Y in light of the
observation X D x. Bayes’ rule tells us how to obtain the posterior distribution by
multiplying the prior P.Y / by the ratio P.x |Y /=P.x/, known as the normalized
likelihood of Y given x. Again, since P.x/ is a constant for each y 2 dom.Y /, we
get

P.Y |x/ / P.Y /P.x |Y /.

The quantity P.x |Y /
4D L.Y |x/ is called the likelihood of Y given x. Hence, we

have
P.Y |x/ / P.Y /L.Y |x/. (3.13)

In general,
posterior / prior � likelihood.

In a machine learning context, Bayes’ rule plays an important role. For example,
consider a prior distribution, P.M/, for a random variable M , expressing a set
of possible models. For any value d of another variable D, expressing data, the
quantity P.d |M/—considered as a function of M—is the likelihood function for
M given data d . The posterior distribution forM given the data is then

P.M |d/ / P.M/P.d |M/,

which provides a set of goodness-of-fit measures for models M (i.e., we obtain a
conditional probability P.m |d/ for each m 2 dom.M/).

3.4.1.1 Arc Reversal

Application of Bayes’ rule can also be given a graphical interpretation. Consider,
for example, two variablesA and B and a model P.A;B/ D P.A/P.B |A/. Again,
following the discussion in Sect. 3.2.2 on page 46, this model can be represented
graphically as indicated in Fig. 3.3a. Applying Bayes’ rule on this model
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Z

Y

X

(a)

Z

Y

X

(b)

Z

X

(c)

Z

X

(d)

Fig. 3.4 (a) Model for P.X; Y;Z/. (b) Equivalent model obtained by reversing Y → Z. (c)
Equivalent model provided Y is barren. (d) Equivalent model obtained by reversing X → Z

P.A |B/ D P.A/P.B |A/P
A P.A/P.B |A/

D P.A;B/

P.B/
;

we obtain an equivalent model shown in Fig. 3.3b. Thus, one way of interpreting the
application of Bayes’ rule is through so-called arc reversal. As the typical inference
task in probabilistic networks can be described as computing P.X |"/, inference in
probabilistic networks can be thought of as (repetitive) application of Bayes’ rule or,
in other words, as a sequence of arc reversals. Olmsted (1983) and Shachter (1990)
have exploited this view of inference in an arc reversal algorithm for inference in
probabilistic networks.

Example 3.14 (Arc Reversal). Consider the model in Fig. 3.4a, and assume that
we wish to calculate the posterior marginal distribution for X given evidence, EZ ,
onZ. Using Shachter’s arc reversal procedure (Shachter 1990) (not described in this
book), we may proceed as follows:

P.X |"/ D �

 
X

Y

X

Z

P.X/P.Y |X/P.Z |Y /EZ

!

D �

 
X

Y

X

Z

P.X/P.Y;Z |X/EZ

!
(3.14)

D �

 
X

Y

X

Z

P.X/
P.Y;Z |X/P
Y P.Y;Z |X/

X

Y

P.Y;Z |X/EZ

!
(3.15)

D �

 
X

Y

X

Z

P.X/P.Y |X;Z/P.Z |X/EZ

!
(3.16)
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D �

 
X

Z

P.X/P.Z |X/EZ
X

Y

P.Y |X;Z/

!
(3.17)

D �

 
X

Z

P.X/P.Z |X/EZ

!
(3.18)

D �

 
X

Z

P.X/P.Z |X/P
X P.X/P.Z |X/

X

X

P.X/P.Z |X/EZ

!
(3.19)

D �

 
X

Z

P.X |Z/P.Z/EZ

!
, (3.20)

where we combine P.Y |X/ and P.Z |Y / into P.Y;Z |X/ (3.14), use Bayes’ rule
to reverse Y → Z (3.15), which induces a new edge X → Z (3.16), use the
distributive law (3.17), eliminate barren variable Y (3.18), and finally use Bayes’
rule to reverse X → Z (3.19). Now, if EZ represent hard evidence (i.e., Z D z),
(3.20) reduces to

P.X |"/ D P.X |Z D z/,

that is, a simple lookup. �
We shall return to the arc reversal approach in more detail in Sect. 5.1.1 on

page 116.

3.5 Bayes’ Factor

To calculate the relative support provided by an observation, Y D y, for two
competing hypotheses, H0 W X D x0 and H1 W X D x1, the notion of Bayes’
factor is useful:

B D posterior odds

prior odds
D P.x0 |y/=P.x1 |y/

P.x0/=P.x1/
D P.y |x0/

P.y |x1/
D L.x0 |y/

L.x1 |y/
; (3.21)

that is, the ratio of the likelihoods of the two hypotheses given the observation.
Bayes’ factor is also known as the Bayesian likelihood ratio.

From (3.21), we see that

B > 1 if the observation provides more support for H0 than forH1,
B < 1 if the observation provides less support forH0 than for H1, and
B D 1 if the observation does not provide useful information for differentiating

between H0 and H1.
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Example 3.15 (Balls in An Urn, page 42). Let hypothesesH0 andH1 be given as

H0 W The second ball drawn will be green:X2 D green

H1 W The second ball drawn will be blue: X2 D blue,

and assume we observe that the first ball drawn is blue (i.e.,X1 D blue). Now, using
the numbers calculated in Example 3.5 on page 43, we get the Bayes’ factor

B D P.X2 D green |X1 D blue/=P.X2 D blue |X1 D blue/

P.X2 D green/=P.X2 D blue/
D

3
9
= 4
9

3
10
= 5
10

D 5

4
.

That is, since the posterior odds (3=4) is greater than the prior odds (3=5),
the observation provides more support for H0 than for H1. Still, however, the
probability that H1 is going to be true is greater than the probability that H0 is
going to be true, as P.H0 |X1 D blue/ D 3=9 and P.H1 |X1 D blue/ D 4=9. �

3.6 Independence

A variable X is independent of another variable Y with respect to a probability
distribution P if

P.x |y/ D P.x/, 8x 2 dom.X/, 8y 2 dom.Y /. (3.22)

Using standard notation, we express this property symbolically as X ??P Y or
simply as X ?? Y when P is obvious from the context. Symmetry of independence
(i.e., X ?? Y � Y ?? X ) can be verified from Bayes’ rule:

P.x |y/ D P.x/ D P.y |x/P.x/

P.y/
⇔ P.y |x/ D P.y/.

The statement X ?? Y is often referred to as marginal independence between X
and Y .

A variable X is conditionally independent of Y given Z (with respect to a
probability distribution P ) if

P.x |y; z/ D P.x |z/, 8x 2 dom.X/, 8y 2 dom.Y /, 8z 2 dom.Z/. (3.23)

The conditional independence statement expressed in (3.23) is indicated as X ??
Y |Z in the standard notation. With a slight misuse of notation, we shall also express
this as P.X |Y;Z/ D P.X |Z/.6

6The misuse is concerned with differences in dimensionalities of P.X |Y;Z/ and P.X |Z/.
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Example 3.16 (Conditional Independence). Consider the Burglary or Earthquake
example from page 25. With P.R |E/ given as

P.R |E/ D
R E D no E D yes

no 0:999 0:01

yes 0:001 0:99

and

P.A;E;R/ D
X

B

P.A |B;E/P.B/P.E/P.R |E/

D
X

B

P.A;B;E/P.R |E/

D P.A;E/P.R |E/,

(see Example 3.13 on page 55), using the fundamental rule, we get

P.A |E;R/ D P.A;E;R/P
A P.A;E;R/

D P.A;E/P.R |E/P
A P.A;E/P.R |E/

D
R D no R D yes

A E D no E D yes E D no E D yes

no 0:901 0:091 0:901 0:091

yes 0:099 0:909 0:099 0:909

and

P.A |E/ D
P

R P.A;E/P.R |E/P
A;R P.A;E/P.R |E/

D
A E D no E D yes

no 0:901 0:091

yes 0:099 0:909

Obviously, P.A |E;R/ D P.A |E/. Thus, we conclude that A ??P R |E. �

3.6.1 Independence and DAGs

Let P be a probability distribution over a set of variables V and let G D .V;E/ be a
DAG. Then G is said to be an independency map (or I-map) of P ifXA ??P XB |XS
whenever A ?G B |S for subsets A;B; S of V . In other words, if for each pair of

unconnected variables u; v 2 V in G (i.e., u
G

6∼ v) it holds true that there is a set
S � V such that Xu ??P Xv |XS , then G is a representation of the independence
properties of P . For brevity, we shall then say that “G is an I-map of P .”

Note that a DAG that is an I-map of P does not necessarily represent all
independence properties of P . In fact, the complete graph is an I-map of any
distribution.
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X Y

Z

(a)

X Y

Z

(b)

X Y

Z

(c)

Fig. 3.5 Graphical
representations of
X ??P Y |Z, representing,
respectively, (3.24)–(3.26)

Definition 3.2 (I-map and D-map (Pearl 1988)). Let P be a probability distribu-
tion over a set of variables XV , where G D .V;E/ is a DAG over the vertices that
indexes these variables. As defined by Pearl:

G is a D-map of P if A ?G B |S ⇐H XA ??P XB |XS .
G is an I-map of P if A ?G B |S H⇒ XA ??P XB |XS .

If G is both a D-map (or dependency map) and an I-map of P , then G is said to be a
perfect map of P .

If G is an I-map of P , then P is said to be Markov with respect to G, and if G is a
D-map of P , then P is said to be faithful to G (Chickering & Meek 2003). We shall
return to the issue of DAG faithfulness in Sect. 8.1.

Example 3.17 (Independence and DAGs). Let X , Y , and Z be three variables for
which X ??P Y |Z. Following the ordering .X; Y;Z/ and using the fundamental
rule (3.10) twice yields

P.X; Y;Z/ D P.X |Y;Z/P.Y |Z/P.Z/.

Since X ??P Y |Z, this can be simplified to

P.X; Y;Z/ D P.X |Z/P.Y |Z/P.Z/. (3.24)

Similarly, following the orderings .X;Z; Y / and .Y;Z;X/, we get, respectively,

P.X; Y;Z/ D P.X |Z/P.Z |Y /P.Y / (3.25)

and
P.X; Y;Z/ D P.Y |Z/P.Z |X/P.X/. (3.26)

Equations (3.24)–(3.26) have graphical representations as shown in Fig. 3.5a–c,
respectively (see Sect. 3.2.2 on page 46). �

Only a subset of the independence properties that can exist in a probability
distribution can be represented by a DAG. That is, the DAG language is not rich
enough to simultaneously capture all sets of independence statements.

Example 3.18 (No D-maps). Consider the following set of independence state-
ments for a probability distribution P :
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˛ ˇ

� ı

(a)

˛ ˇ

� ı

(b)

˛ ˇ

� ı

(c)

Fig. 3.6 (a) Preliminary skeleton for the independence statements of Example 3.18. (b) DAG
representing CID1 and CID3. (c) DAG representing CID1 and CID2

CID1 W X˛ ??P Xˇ

CID2 W X˛ ??P Xı | {Xˇ;X� }

CID3 W Xˇ ??P X� | {X˛;Xı}.

From these statements, we can conclude that a DAG, G, over {˛; ˇ; �; ı} must
include edges between each pair of vertices except .˛; ˇ/, .˛; ı/, and .ˇ; �/, as
at least one independence statement has been specified for each of the variable
pairs {X˛;Xˇ}, {X˛;Xı}, and {Xˇ;X� }, respectively. A preliminary skeleton of the
possible DAGs therefore appears as shown in Fig. 3.6a.

Recalling the d-separation criterion or the directed global Markov criterion (see
Sect. 2.6 on page 32), we see that for CID1 to hold true, there must be a converging
connection at � or ı. However, a converging connection at, for example, � implies
˛ ?G ı, making G not being an I-map of P . To remedy that, we will have to include
an edge between ˛ and ı. Now, to ensure ˛ ?G ˇ, the edges ˛ ı and ˇ ı must
meet head-to-head at ı (i.e., must converge at ı). The resulting DAG in Fig. 3.6b is
an I-map of P but not a D-map as CID2 is not represented. Similarly, the DAG in
Fig. 3.6c represents CID1 and CID2 but not CID3.

Each DAG in Fig. 3.6b, c is an I-map of P , but neither of them are D-maps of P ,
as they both fail to represent all three independence statements. �

3.7 Chain Rule

For a probability distribution, P.X/, over a set of variables X D {X1; : : : ; Xn},
we can use the fundamental rule repetitively to decompose it into a product of
conditional probability distributions:

P.X/ D P.X1 |X2; : : : ; Xn/P.X2; : : : ; Xn/

D P.X1 |X2; : : : ; Xn/P.X2 |X3; : : : ; Xn/ � � �P.Xn−1 |Pn/P.Xn/
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ı

ˇ �

˛

(a)

ı

ˇ �

˛

(b)

Fig. 3.7 (a) DAG corresponding to (3.28). (b) DAG corresponding to (3.29)

D
nY

iD1
P.Xi |XiC1; : : : ; Xn/. (3.27)

Notice that the actual conditional distributions that comprise the factors of the
decomposition are determined by the order in which we select the head variables of
the conditional distributions. Thus, there are n factorial different factorizations of
P.X/, and to each factorization corresponds a unique DAG, but all of these DAGs
are equivalent in terms of dependence and independence properties, as they are all
complete graphs, and hence represent no independence statements.7

Example 3.19 (Chain Decomposition and DAGs). Let V D {˛; ˇ; �; ı}. Then
P.XV / factorizes as

P.XV / D P.X˛;Xˇ;X� ;Xı/ D P.X˛ |Xˇ;X� ;Xı/P.Xˇ;X�;Xı/

D P.X˛ |Xˇ;X� ;Xı/P.Xˇ |X�;Xı/P.X� ;Xı/

D P.X˛ |Xˇ;X� ;Xı/P.Xˇ |X�;Xı/P.X� |Xı/P.Xı/ (3.28)

D P.Xˇ |X˛;X� ;Xı/P.Xı |X˛;X�/P.X� |X˛/P.X˛/ (3.29)

D � � �
The DAGs corresponding to (3.28) and (3.29) appear in Fig. 3.7a, b, respectively.

�
Assume that DAG G is a perfect map of P and that the order in which we select

the head variables of the conditional distributions respect a topological ordering
.Xv1 ; : : : ; Xvn/

8 with respect to G: pa.vi / � {v1; : : : ; vi−1} for all i D 1; : : : ; n (i.e.,
the parents of each variable are selected before the variable itself). That is, the tail
variables always include the parents.

7See (8.1) for the number of possible DAGs on n vertices.
8For notational convenience, we assume (without loss of generality) that v1; : : : ; vn is a topological
ordering.
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ı

ˇ �

˛

Fig. 3.8 A perfect map of a
distribution P ; see
Example 3.20

It follows easily from the d-separation criterion or the directed Markov criterion
(Sect. 2.6) that for any vertex v of a DAG, G, v ?G nd.v/ |pa.v/.9 Since G is
a perfect map of P , it follows that Xv ??P Xnd.v/ |Xpa.v/. Therefore, each term
P.Xvi |Xv1 ; : : : ; Xvi / can be reduced to P.Xvi |Xpa.vi //. The product in (3.27) then
simplifies to the chain rule:

P.XV / D
nY

iD1
P.Xvi |Xpa.vi //. (3.30)

Example 3.20 (Example 3.19, cont.). Assume that the complete set of indepen-
dence properties thatP satisfies comprises {Xˇ ??P X� |X˛;X˛ ??P Xı | {Xˇ;X� }}.
Then the DAG in Fig. 3.8 is a perfect map of P . From the chain rule, we can
therefore write the joint distribution as

P.XV / D P.X˛/P.Xˇ |X˛/P.X� |X˛/P.Xı |Xˇ;X�/,

where the tail variables are exactly the set of parents for each head variable. �

3.8 Summary

Bayesian probability calculus is based on a few very simple and intuitive axioms
that express ground statements of probability about the occurrence of a single
event, the occurrence of mutually exclusive events, and the co-occurrence of events.
Being defined, basically, as exhaustive lists of mutually exclusive events, (discrete)
variables hence provide an excellent concept on which to base a calculus of
distributions of probabilities. For example, we saw how the axiom on mutually
exclusive events implies the rule of total probability, which is the basis for
computing a (lower-dimensional) marginal probability distribution through projec-
tion from a (higher-dimensional) distribution. Together with the straightforward
operations of multiplication (combination), division, and addition, the projection

9This result is probably easiest to acknowledge from the directed Markov criterion: The graph
.GAn.{v}[nd.v/[pa.v///

m obviously excludes all descendants of v forcing all paths to v to go
through pa.v/.
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(or marginalization) operation provide a complete set of operations for probabilistic
inference.

As a matter of convenience, the notion of probability potentials was introduced
as a generalization of probability distributions in the sense that the elements of
a probability potential do not necessarily sum to 1. Probability distributions are
restored through the operation of normalization, where the normalization constant
expresses the reciprocal value of the probability of the evidence.

The fundamental trick in making efficient probabilistic inference with a joint
probability distribution over a (possibly large) collection of discrete random vari-
ables lies in the ability to exploit the (conditional) independence properties of the
distribution. The extent to which these properties allow a factorization of the dis-
tribution into lower-dimensional distributions (i.e., distributions defined on subsets
of the variables) determines how efficiently inference can be performed. Basically,
this gain in efficiency is realized through the exploitation of the distributive law,
which implies interleaving of the operations of combination and marginalization.
Allowing a marginalization operation (dimensionality decrease) to be performed
before a combination operation (dimensionality increase) reduces the total amount
of arithmetic operations needed.

The ability to perform abductive reasoning in probabilistic inference (e.g., to
compute P.X |Y D y/ given P.Y |X/ and P.X/) follows from Bayes’ rule,
which in turn follows from the fundamental rule of probability calculus that is
a generalization of the axiom on the co-occurrence of events. An often-used
interpretation of Bayes’ rule states that the posterior probability of an event given
some observation, say P.X D x |Y D y/ (i.e., our belief about the probability
of the occurrence of the event X D x after the event Y D y has been observed),
is proportional to the prior probability of the event, P.X D x/ (i.e., our belief
about the probability of the occurrence of the event X D x before observing
Y D y), times the likelihood of the event given the observation, defined as
L.X D x |Y D y/ D P.Y D y |X D x/.

We saw how to establish the important connection between the notion of d-
separation (and the equivalent directed, global Markov property) defined on a DAG,
G D .V;E/, as discussed in Chap. 2, and the independence properties of a joint
probability distribution, P , defined over variables represented by V , where the
directed edges, E , lead from nodes representing tail variables to nodes representing
head variables of conditional probability distributions constituting a factorization
of P . In fact, with G so defined, there is a one-to-one correspondence between the
statements of d-separation in G and the (conditional) independence statements of
P (i.e., G is a perfect map of P ). This correspondence between d-separation and
(conditional) independence is expressed in the chain rule on page 64.10

10Special cases in which variables are independent only for particular values of some other vari-
able(s) might exist. Such context-specific independence properties obviously cannot be captured by
a DAG. Thus, the one-to-one correspondence should be understood with respect to independence
statements on the “level of variables.”
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On the basis of the fundamental concepts introduced in Chaps. 2 and 3, we shall
see in Chaps. 4 and 5, respectively, how different kinds of probabilistic networks
can be defined and how inference in these can be performed.

Exercises

Exercise 3.1. Assume that a non-red ball is removed from the urn in Example 3.4
on page 42. What is then the probability of picking a blue ball from the urn?

Exercise 3.2. Assume that smoking (S D true) causes lung cancer (L D true) in
one out every ten cases and that nonsmokers (S D false) get lung cancer in one out
of 500 cases.

(a) Specify the probability table for P.L |S/.
(b) Assuming that smoking is the only cause of lung cancer, what is then the

frequency of lung cancer in a population, where one third of the population
are smokers?

Exercise 3.3. Suppose we have the simple model X → Y and are given P.X/,
P.Y |X/, and evidence Y D y.

(a) Indicate a minimal-cost procedure for computing P.X |Y D y/.
(b) Use the procedure to compute P.S |L D true/ in Exercise 3.2.

Exercise 3.4. Normally, John arrives on time at his office. If, however, the roads are
icy, there is a chance that he will be late. Let I D icy denote the event that the roads
are icy, and let L D late denote the event that John is late. Assume that our prior
knowledge about road conditions (i.e., without knowing when John arrives) is given
by P.I / D P.I D icy; I D ¬icy/ D .0:01; 0:99/. Also, assume our experience
tells us that P.L D late | icy/ D 0:9 and P.L D late |¬icy/ D 0:2.

(a) What is the likelihood for icy roads given that John arrives late?
(b) What is the probability of icy roads given that John arrives late?

Exercise 3.5. Assume that the complete list of conditional independence state-
ments satisfied by a probability distribution P.A;B;C;D;E/ is given by:

A ?? D | {B;C } B ?? C |A D ?? E |C

A ?? D | {B;C;E} B ?? C | {A;E} D ?? E | {B;C }

A ?? E |C B ?? E |A D ?? E | {A;C }

A ?? E | {B;C } B ?? E |C D ?? E | {A;B;C }

A ?? E | {C;D} B ?? E | {A;C }

A ?? E | {B;C;D} B ?? E | {C;D}

B ?? E | {A;C;D}
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(a) Draw a DAG fulfilling the assumptions.
(b) How many DAGs fulfill the assumptions?
(c) Make factorizations of P corresponding to the DAGs.

Exercise 3.6. Let W � U , and let � � �U be a potential defined on dom.U /,
where U D {A;B;C;D}, W D {A;C }, and all four variables are binary, where
dom.A/ D .a1; a2/; dom.B/ D .b1; b2/, etc. Let �U be given by the following
table:

c1 c1 c2 c2

d1 d2 d1 d2

a1 b1 0:0957 0:0672 0:0341 0:0513

a1 b2 0:1021 0:0162 0:0634 0:1287

a2 b1 0:0174 0:1297 0:0040 0:1089

a2 b2 0:0624 0:0776 0:0307 0:0107

(a) Compute �W .
(b) Indicate the table for the evidence function ED (defined on dom.D/), represent-

ing the evidence “D is in state d1.”
(c) Compute �U � ED .
(d) Compute the normalization constant, 
, in P.U |e/ D 
 � �U � ED .



Chapter 4
Probabilistic Networks

In this chapter we introduce probabilistic networks for belief update and decision
making under uncertainty.

Many real-life situations can be modeled as a domain of entities represented
as random variables in a probabilistic network. A probabilistic network is a clever
graphical representation of dependence and independence relations between random
variables. A domain of random variables can, for instance, form the basis of
a decision support system to help decision makers identify the most beneficial
decision in a given situation.

A probabilistic network represents and processes probabilistic knowledge. The
representational components of a probabilistic network are a qualitative and a
quantitative component. The qualitative component encodes a set of (conditional)
dependence and independence statements among a set of random variables, in-
formational precedence, and preference relations. The statements of (conditional)
dependence and independence, information precedence, and preference relations
are visually encoded using a graphical language. The quantitative component, on
the other hand, specifies the strengths of dependence relations using probability
theory and preference relations using utility theory.

The graphical representation of a probabilistic network describes knowledge of
a problem domain in a precise manner. The graphical representation is intuitive
and easy to comprehend, making it an ideal tool for communication of domain
knowledge between experts, users, and systems. For these reasons, the formalism
of probabilistic networks is becoming an increasingly popular knowledge represen-
tation for belief update and decision making under uncertainty.

Since a probabilistic network consists of two components, it is customary to
consider its construction as a two-phase process: the construction of the qualitative
component and subsequently the construction of the quantitative component. The
qualitative component defines the structure of the quantitative component. As
the first step, the qualitative structure of the model is constructed using a graphical
language. This step consists of identifying variables and relations between variables.
As the second step, the parameters of the quantitative part as defined by the
qualitative part are assessed.

U.B. Kjærulff and A.L. Madsen, Bayesian Networks and Influence Diagrams: A Guide
to Construction and Analysis, ISS 22, DOI 10.1007/978-1-4614-5104-4 4,
© Springer Science+Business Media New York 2013
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In this book, we consider the subclass of probabilistic networks known as
Bayesian networks and influence diagrams. Bayesian networks and influence
diagrams are ideal knowledge representations for use in many situations in-
volving belief update and decision making under uncertainty. These models are
often characterized as normative expert systems as they provide model-based
domain descriptions, where the model is reflecting properties of the problem domain
(rather than the domain expert) and probability calculus is used as the calculus for
uncertainty.

A Bayesian network model representation of a problem domain can be used
as the basis for performing inference and analysis about the domain. Decision
options and utilities associated with these options can be incorporated explicitly
into the model, in which case the model becomes an influence diagram, capable of
computing expected utilities of all decision options given the information known at
the time of decision. Bayesian networks and influence diagrams are applicable for a
large range of domain areas with inherent uncertainty.

Section 4.1 considers Bayesian networks as probabilistic models for belief
update. We consider Bayesian network models containing discrete variables only
and models containing a mixture of continuous and discrete variables. Section 4.2
considers influence diagrams as probabilistic networks for decision making under
uncertainty. The influence diagram is a Bayesian network augmented with decision
variables, informational precedence relations, and preference relations. We consider
influence diagram models containing discrete variables only and models contain-
ing a mixture of continuous and discrete variables. In Sect. 4.3 object-oriented
probabilistic networks are considered. An object-oriented probabilistic network is
a flexible framework for building hierarchical knowledge representations using the
notions of classes and instances. In Sect. 4.4 dynamic probabilistic networks are
considered. A dynamic probabilistic network is a method for representing dynamic
systems that are changing over time.

4.1 Belief Update

A probabilistic interaction model between a set of random variables may be
represented as a joint probability distribution. Considering the case where random
variables are discrete, it is obvious that the size of the joint probability distribution
will grow exponentially with the number of variables as the joint distribution must
contain one probability for each configuration of the random variables. Therefore,
we need a more compact representation for reasoning about the state of large and
complex systems involving a large number of variables.

To facilitate an efficient representation of a large and complex domain with many
random variables, the framework of Bayesian networks uses a graphical representa-
tion to encode dependence and independence relations among the random variables.
The dependence and independence relations induce a compact representation of the
joint probability distribution.
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4.1.1 Discrete Bayesian Networks

A (discrete) Bayesian network, N D .X;G;P/, over variables, X, consists of a
DAG G D .V;E/ and a set of conditional probability distributions P. Each node v
inG corresponds one-to-one with a discrete random variableXv 2 X with a finite set
of mutually exclusive states. The directed linksE � V �V of G specify assumptions
of conditional dependence and independence between random variables according
to the d-separation criterion (see Proposition 2.4 on page 33).

There is a conditional probability distribution, P.Xv |Xpa.v// 2 P, for each
variable Xv 2 X. The set of variables represented by the parents, pa.v/, of v 2 V

in G D .V;E/ is sometimes called the conditioning variables of Xv — the
conditioned variable.

Definition 4.1 (Jensen 2001). A (discrete) Bayesian network N D .X;G;P/

consists of:

• A DAG G D .V;E/ with nodes V D {v1; : : : ; vn} and directed links E
• A set of discrete random variables, X, represented by the nodes of G
• A set of conditional probability distributions, P, containing one distribution,
P.Xv |Xpa.v//, for each random variable Xv 2 X

A Bayesian network encodes a joint probability distribution over a set of
random variables, X, of a problem domain. The set of conditional probability
distributions, P, specifies a multiplicative factorization of the joint probability
distribution over X as represented by the chain rule of Bayesian networks (see
Sect. 3.7 on page 62):

P.X/ D
Y

v2V
P.Xv |Xpa.v//. (4.1)

Even though the joint probability distribution specified by a Bayesian network
is defined in terms of conditional independence, a Bayesian network is most often
constructed using the notion of cause–effect relations, see Sect. 2.4. In practice,
cause–effect relations between entities of a problem domain can be represented in a
Bayesian network using a graph of nodes representing random variables and links
representing cause–effect relations between the entities. Usually, the construction
of a Bayesian network (or any probabilistic network for that matter) proceeds
according to an iterative procedure where the set of nodes and their states and the
set of links are updated iteratively as the model becomes more and more refined.
In Chaps. 6 and 7, we consider in detail the art of building efficient probabilistic
network representations of a problem domain.

To solve a Bayesian network N D .X;G;P/ is to compute all posterior marginals
given a set of evidence ", that is, P.X |"/ for allX 2 X. If the evidence set is empty,
that is, " D ;, then the task is to compute all prior marginals, that is, P.X/ for
all X 2 X.

Example 4.1 (Apple Jack (Madsen, Nielsen & Jensen 1998)). Let us consider the
small orchard belonging to Jack Fletcher (also called Apple Jack). One day, Apple
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Sick Dry

Loses

Fig. 4.1 The Apple Jack
network

Jack discovers that his finest apple tree is losing its leaves. Apple Jack wants to
know why this is happening. He knows that if the tree is dry (for instance, caused
by a drought), there is no mystery as it is common for trees to lose their leaves during
a drought. On the other hand, the loss of leaves can be an indication of a disease.

The qualitative knowledge about the cause–effect relations of this situation
can be modeled by the DAG G shown in Fig. 4.1. The graph consists of three
nodes: Sick, Dry, and Loses that represent variables of the same names. Each
variable may be in one of two states: no and yes, that is, dom.Dry/ D dom.Loses/ D
dom.Sick/ D .no; yes/. The variable Sick tells us that the apple tree is sick by
being in state yes. Otherwise, it will be in state no. The variables Dry and Loses
tell us whether or not the tree is dry and whether or not the tree is losing its leaves,
respectively.

The graph, G, shown in Fig. 4.1 models the cause–effect relations between
variables Sick and Loses as well as between Dry and Loses. This is represented
by the two (causal) links .Sick; Loses/ and .Dry; Loses/. In this way, Sick and Dry
are common causes of the effect Loses.

Let us return to the discussion of causality considered previously in Sect. 2.4.
When there is a causal dependence relation going from a variable A to another
variable B , we expect that when A is in a certain state, this has an impact on the
state of B . One should be careful when modeling causal dependence relations in a
Bayesian network. Sometimes it is not quite obvious in which direction a link should
point. In the Apple Jack example, we say that there is a causal impact from Sick
on Loses, because when a tree is sick, this might cause the tree to lose its leaves.
Why can we not say that when the tree loses its leaves, it might be sick and turn the
link in the other direction? The reason is that it is the sickness that causes the tree to
lose its leaves and not the lost leaves that causes the sickness.

Figure 4.1 shows the graphical representation of the Bayesian network model.
This is referred to as the qualitative representation. To have a complete Bayesian
network, we need to specify the quantitative representation. Recall that each variable
has two states, no and yes.

The quantitative representation of a Bayesian network is the set of condi-
tional probability distributions, P, defined by the structure of G. Table 4.1 shows
the conditional probability distribution of Loses given Sick and Dry, that is,
P.Loses |Dry;Sick/. For variables Sick and Dry, we assume that
P.S/ D .0:9; 0:1/ and P.D/ D .0:9; 0:1/ (we use D as short for Dry, S as short
for Sick, and L as short for Loses).
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Table 4.1 The conditional
probability
distribution P.L |D;S/

L

D S no yes

no no 0:98 0:02

no yes 0:1 0:9

yes no 0:15 0:85

yes yes 0:05 0:95

Note that all distributions specify the probability of a variable being in a specific
state depending on the configuration of its parent variables, but since Sick and Dry
do not have any parent variables, their distributions are marginal distributions.

The model may be used to compute all prior marginals and the posterior
distribution of each nonevidence variable given evidence in the form of observations
on a subset of the variables in the model. The priors for D and S equal the
specified marginal distributions, that is, P.D/ D P.S/ D .0:9; 0:1/, while the prior
distribution for L is computed through combination of the distributions specified
for the three variables, followed by marginalization, where variables D and S are
marginalized out. This yields P.L/ D .0:82; 0:18/ (see Example 3.10 on page 50
for details on combination and marginalization). Following a similar procedure, the
posteriors of D and S given L D yes can be computed to be P.D |L D yes/ D
.0:53; 0:47/ and P.S |L D yes/ D .0:51; 0:49/. Thus, according to the model, the
tree being sick is the most likely cause of the loss of leaves. �

The specification of a conditional probability distribution P.Xv |Xpa.v// can be
a labor-intensive knowledge acquisition task as the number of parameters grows
exponentially with the size of dom.Xfa.v//, where fa.v/ D pa.v/ [ {v}. Different
techniques can be used to simplify the knowledge acquisition task, assumptions can
be made, or the parameters can be estimated from data.

The complexity of a Bayesian network is defined in terms of the family fa.v/

with the largest state space size kXfa.v/k 4D |dom.Xfa.v//|. As the state space size
of a family of variables grows exponentially with the size of the family, we seek
to reduce the size of the parent sets to a minimum. Another useful measure of the
complexity of a Bayesian network is the number of cycles and the length of cycles
in its graph.

Definition 4.2. A Bayesian network N D .X;G;P/ is minimal if and only if for
every variable Xv 2 X and for every parent Y 2 Xpa.v/, Xv is not independent of Y
given Xpa.v/ \ {Y }.

Definition 4.2 says that the parent set Xpa.v/ of Xv should be limited to the set of
variables with a direct impact on Xv.

Example 4.2 (Chest Clinic (Lauritzen & Spiegelhalter 1988)). A physician at a
chest clinic wants to diagnose her patients with respect to three diseases based
on observations of symptoms and possible causes of the diseases. The fictitious
qualitative medical knowledge is the following.
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Asia Smoker

Tuberculosis Cancer Bronchitis

Tub or cancer

X ray Dyspnoea

Fig. 4.2 A graph specifying the independence and dependence relations of the Asia example

The physician is trying to diagnose a patient who may be suffering from one
or more of tuberculosis, lung cancer, or bronchitis. Shortness of breath (dyspnoea)
may be due to tuberculosis, lung cancer, bronchitis, none of them, or more than one
of them. A recent visit to Asia increases the chances of tuberculosis, while smoking
is known to be a risk factor for both lung cancer and bronchitis. The results of a
single chest X-ray do not discriminate between lung cancer and tuberculosis, as
neither does the presence nor absence of dyspnoea.

From the description of the situation, it is clear that there are three possible
diseases to consider (lung cancer, tuberculosis, and bronchitis). The three diseases
produce three variables Tuberculosis .T /, Cancer .L/, and Bronchitis .B/ with
states no and yes. These variables are the targets of the reasoning and may, for this
reason, be referred to as hypothesis variables.The diseases may be manifested in two
symptoms (results of the X-ray and shortness of breath). The two symptoms produce
two variables X ray .X/, and Dyspnoea .D/ with states no and yes. In addition,
there are two causes or risk factors (smoking and a visit to Asia) to consider. The
two risk factors produce variables Asia .A/ and Smoker .S/ with states no and yes.

An acyclic, directed graph, G, encoding the above medical qualitative knowledge
is shown in Fig. 4.2, where the variable Tub or cancer .E/ is a mediating variable
(modeling trick, see Sect. 6.2.2 on page 152) specifying whether or not the patient
has tuberculosis or lung cancer (or both).

Using the structure of G, we may perform an analysis of dependence and
independence properties between variables in order to ensure that the qualitative
structure encodes the domain knowledge correctly. This analysis would be based on
an application of the d-separation criterion.

Figure 4.2 only presents the qualitative structure G (and the variables) of N D
.X;G;P/. In order to have a fully specified Bayesian network, it is necessary to
specify the quantitative part, P, too.

The quantitative domain knowledge is specified in the following set of (condi-
tional) probability distributions P.A/ D .0:99; 0:01/, P.S/ D .0:5; 0:5/, and the
remaining conditional probability distributions, except P.E |L; T /, are shown in
Tables 4.2 and 4.3.
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Table 4.2 The conditional probability distributions P.L |S/, P.B |S/, P.T |A/,
and P.X |E/

P.L |S/ S D no S D yes P.B |S/ S D no S D yes
L D no 0:99 0:9 B D no 0:7 0:4

L D yes 0:01 0:1 B D yes 0:3 0:6

P.T |A/ A D no A D yes P.X |E/ E D no E D yes

T D no 0:99 0:95 X D no 0:95 0:02

T D yes 0:01 0:05 X D yes 0:05 0:98

Table 4.3 The conditional
probability
distribution P.D |B;E/

B D no B D yes

E D no E D yes E D no E D yes

D D no 0:9 0:3 0:2 0:1

D D yes 0:3 0:7 0:8 0:9

Table 4.4 Posterior distributions of the disease variables given various evidence scenarios

" P.B D yes |"/ P.L D yes |"/ P.T D yes |"/

; 0:45 0:055 0:01

{S D yes} 0:6 0:1 0:01

{S D yes; D D yes} 0:88 0:15 0:015

{S D yes; D D yes; X D yes} 0:71 0:72 0:08

The conditional probability table of the random variable E can be generated
from a mathematical expression. From our domain knowledge of the diagnosis
problem, we know that E represents the disjunction of L and T . That is, E
represents whether or not the patient has tuberculosis or lung cancer. From this,
we can express E as E D T ∨ L. This produces the conditional probability
P.E D yes |L D l; T D t/ D 1 whenever l or t is yes and 0 otherwise.

We will, in a later section, consider in more detail how to build mathematical ex-
pressions for the generation of conditional probability distributions (see Sect. 6.5.3
on page 180).

Using the Bayesian network model just developed, we may compute the posterior
probability of the three diseases given various subsets of evidence on the causes and
symptoms as shown in Table 4.4. �

4.1.2 Conditional Linear Gaussian Bayesian Networks

Up until now, we have considered Bayesian networks over discrete random variables
only. However, there are many reasons for extending our considerations to include
continuous variables. In this section we will consider Bayesian networks consisting
of both continuous and discrete variables. For reasons to become clear later, we
restrict our attention to the case of conditional linear Gaussian (also known as
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normal) distributions and the case of conditional linear Gaussian Bayesian networks.
We refer to a conditional linear Gaussian Bayesian network as a CLG Bayesian
network.

A CLG Bayesian network N D .X;G;P;F/ consists of an acyclic, directed
graph G D .V;E/, a set of conditional probability distributions P, and a set of
density functions F. There will be one conditional probability distribution for each
discrete random variable X of X and one density function for each continuous
random variable Y of X.

A CLG Bayesian network specifies a distribution over a mixture of discrete and
continuous variables (Lauritzen 1992b, Lauritzen & Jensen 2001). The variables, X,
are partitioned into the set of continuous variables, X� , and the set of discrete vari-
ables, X�. Each node of G represents either a discrete random variable with a finite
set of mutually exclusive and exhaustive states or a continuous random variable
with a conditional linear Gaussian distribution conditional on the configuration of
its discrete parent variables. This implies an important constraint on the structure
of G, namely, that a discrete random variable Xv may only have discrete parents,
that is, Xpa.v/ � X� for any Xv 2 X�.

Any Gaussian distribution function can be specified by its mean and variance
parameter. As mentioned above, we consider the case where a continuous random
variable can have a single Gaussian distribution function for each configuration of
its discrete parent variables. If a continuous variable has one or more continuous
variables as parents, the mean may depend linearly on the state of the continuous
parent variables. Continuous parent variables of discrete variables are disallowed.

A random variable,X , has a continuous distribution if there exists a nonnegative
function p, defined on the real line, such that for any interval J ,

P.X 2 J / D
∫

J

p.x/dx,

where the function p is the probability density function of X (DeGroot 1986). The
probability density function of a Gaussian (or normal)- distributed variable, X ,
with a mean value, 
, and a positive variance, �2, is (i.e.,X ∼ N.
; �2/ or L.X/ D
N.
; �2/)

p.xI
; �2/ D N.
; �2/ D 1p
.2��2/

exp

�
−
.x − 
/2

2�2

�
,

where x 2 R.1

A continuous random variable,X , has a conditional linear Gaussian distribution
(or CLG distribution), conditional on the configuration of the parent variables .Z �
X� ; I � X�/ if

L.X |Z D z; I D i/ D N.A.i/C B.i/T z; C.i//, (4.2)

1L.X/ should be read as “the law of X .”
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X1 X2

X3

Fig. 4.3 CLG Bayesian
network with X1 discrete
and X2 and X3 continuous

where A is a table of mean values (one value for each configuration i of the discrete
parent variables I ), B is a table of regression coefficient vectors (one vector for
each configuration i of I with one regression coefficient for each continuous parent
variable), and C is a table of variances (one for each configuration i of I ). Notice
that the mean value A.i/ C B.i/T z of X depends linearly on the values of the
continuous parent variables Z, while the variance is independent of Z. We allow
for the situation where the variance is zero such that deterministic relations between
continuous variables can be represented.

The quantitative part of a CLG Bayesian network consists of a conditional
probability distribution for each X 2 X� and a conditional Gaussian distribution
for each X 2 X� . For each X 2 X� with discrete parents, I , and continuous
parents, Z, we need to specify a one-dimensional Gaussian probability distribution
for each configuration i of I as shown in (4.2).

Definition 4.3. A CLG Bayesian network N D .X;G;P;F/ consists of:

• A DAG G D .V;E/ with nodes V and directed links E
• A set of random variables, X, represented by the nodes of G
• A set of conditional probability distributions, P, containing one distribution,
P.Xv |Xpa.v//, for each discrete random variable Xv

• A set of conditional linear Gaussian probability density functions, F, containing
one density function, p.Yv |Xpa.v//, for each continuous random variable Yv

The joint distribution over all the variables in a CLG Bayesian network has the
form P.X� D i/ � N|X� |.
.i/; �

2.i//, where Nk.
; �
2/ denotes a k-dimensional

Gaussian distribution. The chain rule of CLG Bayesian networks is

P.X� D i/ � N|X� |.
.i/; �
2.i// D

Y

v2V�
P.iv | ipa.v// �

Y

w2V�
p.yw |Xpa.w//,

for each configuration i of X�.
Recall from Table 2.2 that in the graphical representation of a CLG Bayesian

network, continuous variables are represented by double ovals.

Example 4.3 (CLG Bayesian Network). Figure 4.3 shows an example of the qual-
itative specification of a CLG Bayesian network, N, with three variables, that is,
X D {X1;X2;X3}, where X� D {X1} and X� D {X2;X3}. Hence, N consists of
a continuous random variable X3 having one discrete random variable X1 (binary
with states false and true) and one continuous random variable X2 as parents.
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Housing

MaritalStatus

WillToPay

Profession Employment

CreditLimit Income

Loss

Fig. 4.4 CLG Bayesian network for credit account management

To complete the model, we need to specify the relevant conditional probability
distribution and density functions. The quantitative specification could, for instance,
consist of the following conditional linear Gaussian distribution functions for X3:

L.X3 | false; x2/ D N.−5C .−2 � x2/; 1:1/
L.X3 | true; x2/ D N.5C .2 � x2/; 1:2/.

The quantitative specification is completed by letting X2 have a standard normal
distribution (i.e., X2 ∼ N.0; 1/) and P.X1/ D .0:75; 0:25/.

The qualitative and quantitative specifications complete the specification of N.
The joint distribution induced by N is

P.X1 D false/ � p.X2;X3/ D 0:75 � N

��
0

−5

�
;

�
1 10

10 5:1

��
,

P.X1 D true/ � p.X2;X3/ D 0:25 � N

��
0

5

�
;

�
1 10

10 5:2

��
.

�
Determining the joint distribution induced by N requires a series of nontrivial

computations. We refer the reader to the next chapter for a brief treatment of
inference in CLG Bayesian networks. A detailed treatment of these computations
is beyond the scope of this book.

Example 4.4 (Adapted from Lauritzen (1992a)). Consider a banker monitoring
her clients in order to limit future loss from each client account. The task of
the banker is to identify clients who may have problems repaying their loans by
predicting potential future loss originating from each individual customer based on
demographic information and credit limit.

Figure 4.4 shows a simple CLG Bayesian network model for this scenario.
Loss is a linear function of variables Income (I ) given variable WillToPay (W ).



4.2 Decision Making Under Uncertainty 79

CreditLimit (C ) is a linear function of Income given Housing (H ) and Marital Status
(M ). In addition MaritalStatus is also a causal factor of Housing and WillToPay,
while Profession and Employment are causal factors of Income.

With the model, the banker may enter observations on each client and compute
an expected loss for that client. The model may be extended to include various
risk indicators and controls in order to facilitate a scenario-based analysis on each
client. �

The reason for restricting our attention to the case of conditional linear Gaussian
distributions is that only for this case is exact probabilistic inference feasible by
local computations. For most other cases, it is necessary to resort to approximate
algorithms.

4.2 Decision Making Under Uncertainty

The framework of influence diagrams (Howard & Matheson 1981) is an effective
modeling framework for representation and analysis of (Bayesian) decision making
under uncertainty. Influence diagrams provide a natural representation for capturing
the semantics of decision making with a minimum of clutter and confusion for the
decision maker (Shachter & Peot 1992). Solving a decision problem amounts to
(1) determining an (optimal) strategy that maximizes the expected utility for the
decision maker and (2) computing the expected utility of adhering to this strategy.

An influence diagram is a type of causal model that differs from a Bayesian
network. A Bayesian network is a probabilistic network for belief update, whereas
an influence diagram is a probabilistic network for reasoning about decision making
under uncertainty. An influence diagram is a graphical representation of a decision
problem involving a sequence of interleaved decisions and observations. Similar to
Bayesian networks, an influence diagram is a compact and intuitive probabilistic
knowledge representation (a probabilistic network). It consists of a graphical rep-
resentation describing dependence relations between entities of a problem domain,
points in time where decisions are to be made, and a precedence ordering specifying
the order on decisions and observations. It also consists of a quantification of the
strengths of the dependence relations and the preferences of the decision maker. As
such, an influence diagram can be considered as a Bayesian network augmented
with decision variables, utility functions specifying the preferences of the decision
maker, and a precedence ordering.

As decision makers we are interested in making the best possible decisions
given our model of the problem domain. Therefore, we associate utilities with state
configurations of the network. These utilities are represented by utility functions
(also known as value functions ). Each utility function associates a utility value with
each configuration of its domain variables. The objective of decision analysis is to
identify the decision options that produce the highest expected utility.
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By making decisions, we influence the probabilities of the configurations of
the network. To identify the decision option with the highest expected utility, we
compute the expected utility of each decision alternative. If A is a decision variable
with options a1; : : : ; am, H is a hypothesis with states h1; : : : ; hn, and " is a set
of observations in the form of evidence, then we can compute the utility of each
outcome of the hypothesis and the expected utility of each action. The utility of an
outcome .ai ; hj / is U.ai ; hj / whereU.�/ is our utility function. The expected utility
of performing action ai is

EU.ai / D
X

j

U.ai ; hj /P.hj |"/,

where P.�/ represents our belief inH given ". The utility function U.�/ encodes the
preferences of the decision maker on a numerical scale.

We shall choose the alternative with the highest expected utility; this is known
as the (maximum) expected utility principle. Choosing the action, which maximizes
the expected utility, amounts to selecting an option a� such that

a� D arg max
a2A EU.a/.

There is an important difference between observations and actions. An observa-
tion of an event is passive in the sense that we assume that an observation does not
affect the state of the world, whereas the decision on an action is active in the sense
that an action enforces a certain event. The event enforced by a decision may or may
not be included in the model depending on whether or not the event is relevant for the
reasoning. If the event enforced by an action A is represented in our model, then A
is referred to as an intervening action, otherwise it is referred to as a nonintervening
action.

4.2.1 Discrete Influence Diagrams

An (discrete) influence diagram N D .X;G;P;U/ is a four-tuple consisting of
a set, X, of discrete random variables and discrete decision variables, an acyclic,
directed graph G, a set of conditional probability distributions P, and a set of utility
functions U. The acyclic, directed graph, G D .V;E/, contains nodes representing
random variables, decision variables, and utility functions (also known as value or
utility nodes).

Each decision variable,D, represents a specific point in time under the model of
the problem domain where the decision maker has to make a decision. The decision
options or alternatives are the states .d1; : : : ; dn/ of D where n D kDk. The use-
fulness of each decision option is measured by the local utility functions associated
with D or one of its descendants in G. Each local utility function u.Xpa.v// 2 U,
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where v 2 VU is a utility node, represents an additive contribution to the total
utility function u.X/ in N. Thus, the total utility function is the sum of all the utility
functions in the influence diagram, that is, u.X/ D P

v2VU u.Xpa.v//.

Definition 4.4. A (discrete) influence diagram N D .X;G;P;U/ consists of:

• A DAG G D .V;E/ with nodes, V , and directed links, E, encoding dependence
relations and information precedence including a total order on decisions

• A set of discrete random variables, XC , and discrete decision variables, XD, such
that X D XC [ XD represented by nodes of G

• A set of conditional probability distributions, P, containing one distribution,
P.Xv |Xpa.v//, for each discrete random variable Xv

• A set of utility functions, U, containing one utility function, u.Xpa.v//, for each
node v in the subset VU 	 V of utility nodes

An influence diagram supports the representation and solution of sequential
decision problems with multiple local utility functions under the no-forgetting
assumption (Howard & Matheson 1981), that is, perfect recall is assumed of all
observations and decisions made in the past.

An influence diagram, N D .X;G;P;U/, should be constructed such that one
can determine exactly which variables are known prior to making each decision.
If the state of a variable Xv 2 XC will be known at the time of making a
decision Dw 2 XD , this will (probably) have an impact on the choice of alternative
at D. An observation on Xv made prior to decision Dw is represented in N by
making v a parent of w in G. If v is a parent of w in G D .V;E/ (i.e., .v;w/ 2 E,
implying Xv 2 Xpa.w/), then it is assumed that Xv is observed prior to making the
decision represented by Dw. The link .v;w/ is then referred to as an informational
link.

In an (perfect recall) influence diagram, there must also be a total order on the
decision variables XD D {D1; : : : ;Dn} � X. This is referred to as the regularity
constraint. That is, there can be only one sequence in which the decisions are
made. We add informational links to specify a total order .D1; : : : ;Dn/ on XD D
{D1; : : : ;Dn}. There need only be a directed path from one decision variable to the
next one in the decision sequence in order to enforce a total order on the decisions.

In short, a link, .w; v/, into a node representing a random variable, Xv, denotes
a possible probabilistic dependence relation of Xv on Yw, while a link from a node
representing a variable, X , into a node representing a decision variable,D, denotes
that the state of X is known when decision D is to be made. A link, .w; v/, into
a node representing a local utility function, u, denotes functional dependence of u
on Xv 2 X.

The chain rule of influence diagrams is

EU.X/ D
Y

Xv2XC

P.Xv |Xpa.v//
X

w2VU
u.Xpa.w//.

An influence diagram is a compact representation of a joint expected utility function.
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Oil

Seismic

Test

DrillU1

U2

Fig. 4.5 The oil wildcatter
network

Table 4.5 The conditional
probability distribu-
tionP.Seismic |Oil; Test D yes/

Seismic

Oil diffuse open closed

dry 0:6 0:3 0:1

wet 0:3 0:4 0:3

soaking 0:1 0:4 0:5

In the graphical representation of an influence diagram, utility functions are
represented by rhombuses (diamond-shaped nodes), whereas decision variables are
represented as rectangles, see Table 2.2.

Example 4.5 (Oil Wildcatter (Raiffa 1968)). Consider the fictitious example of an
oil wildcatter about to decide whether or not to drill for oil at a specific site.

The situation of the oil wildcatter is the following. The oil wildcatter must decide
either to drill or not to drill. He is uncertain whether the hole will be dry, wet,
or soaking with oil. The wildcatter could take seismic soundings that will help
determine the geological structure of the site. The soundings will give a closed
reflection pattern (indication of much oil), an open pattern (indication of some oil),
or a diffuse pattern (almost no hope of oil).

The qualitative domain knowledge extracted from the above description can be
formulated as the DAG shown in Fig. 4.5. The state spaces of the variables are as
follows dom.Drill/ D .no; yes/, dom.Oil/ D .dry;wet; soaking/, dom.Seismic/ D
.closed; open; diffuse/, and dom.Test/ D .no; yes/.

Figure 4.5 shows how the qualitative knowledge of the example can be compactly
specified in the structure of an influence diagram N D .X;G;P;U/.

The quantitative probabilistic knowledge as defined by the structure of G consists
ofP.Oil/ andP.Seismic |Oil; Test/, while the quantitative utility knowledge consists
of U1.Test/ and U2.Drill;Oil/.

The cost of testing is 10k, whereas the cost of drilling is 70k. The utility
of drilling is 0k, 120k, and 270k for a dry, wet, and soaking hole, respectively.
Hence, U1.Test/ D .0;−10/ and U2.Drill D yes;Oil/ D .−70; 50; 200/. The test
result Seismic depends on the amount of oil represented by variable Oil as specified
in Table 4.5. The prior belief of the oil wildcatter on the amount of oil at the site
is P.Oil/ D .0:5; 0:3; 0:2/.
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This produces a completely specified influence diagram representation of the
oil wildcatter decision problem. The decision strategy of the oil wildcatter will be
considered in Example 4.7 on the following page. �

As a consequence of the total order on decisions and the set of informational
links, the set of discrete random variables and decision variables is subjected to a
partial ordering. The random variables are partitioned into disjoint information sets
I0; : : : ; In (i.e., Ii \ Ij D ; for i 6D j ) relative to the decision variables specifying
the precedence order. The information set Ii is the set of variables observed after
decision Di and before decision DiC1. The partition induces a partial ordering, 
,
on the variables X. The set of variables observed between decisions Di and DiC1
precedesDiC1 and succeedsDi in the ordering

I0 
 D1 
 I1 
 � � � 
 Dn 
 In,

where I0 is the set of discrete random variables observed before the first decision, Ii
is the set of discrete random variables observed after making decisionDi and before
making decisionDiC1, for all i D 1; : : : ; n− 1, and In is the set of discrete random
variables never observed or observed after the last decision Dn has been made.
If the influence diagram is not constructed or used according to this constraint, the
computed expected utilities will (of course) not be correct.

Example 4.6 (Partial Order of Information Set). The total order on decisions and
the informational links of Example 4.5 on the preceding page induce the following
partial order:

{} 
 Test 
 {Seismic} 
 Drill 
 {Oil}.

This partial order turns out to be a total order. In general, this is not the case.
The total order specifies the flow of information in the decision problem. No
observations are made prior to the decision on whether or not to Test. After testing
and before deciding on whether or not to Drill, the oil wildcatter will make an
observation on Seismic, that is, the test result is available before the Drill decision.
After drilling Oil is observed. �

To solve an influence diagram N D .X;G;P;U/ with decision variables, XD ,
is to identify an optimal strategy, O�, over XD maximizing the expected utility for
the decision maker and to compute the (maximum) expected utility EU. O�/ of O�.
A strategy, �, is an ordered set of decision policies� D .ı1; : : : ; ın/ including one
decision policy for each decision D 2 XD. An optimal strategy O� D . Oı1; : : : ; Oın/,
maximizes the expected utility over all possible strategies, that is, it satisfies

EU. O�/ � EU.�/,

for all strategies �.
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The decision history of Di , denoted H.Di /, is the set of previous decisions and
their parent variables

H.Di / D
i−1[

jD1
.{Dj } [ Xpa.vj // D {D1; : : : ;Di−1} [

i−2[

jD0
Ij ,

where vj denotes the node that representsDj .
The decision past of Dj , denoted I.Di /, is the set of its parent variables and the

decision history H.Di /

I.Di / D Xpa.vi / [ H.Di /

D Xpa.vi / [
i−1[

jD1
.{Dj } [Xpa.vj //

D {D1; : : : ;Di−1} [
i−1[

jD1
Ij .

Hence, I.Di / \H.Di / D Ii−1 are the variables observed betweenDi−1 andDi .
The decision future of Di , denoted F.Di / is the set of its descendant variables

F.Di / D Ii [
0

@
n[

jDiC1
.{Dj } [ Xpa.vj //

1

A

D {DiC1; : : : ;Dn} [
n[

jDi
Ij .

A policy ıi is a mapping from the information set I.Di / of Di to the state
space dom.Di / of Di such that ıi W I.Di / → dom.Di /. A policy for decision D
specifies the (optimal) action for the decision maker for all possible observations
made prior to making decisionD.

It is only necessary to consider ıi as a function from relevant observations
on I.Di / to dom.Di /, that is, observations with an unblocked path to a utility
descendant of Di . Relevance of an observation with respect to a decision is defined
in Sect. 4.2.3 on page 93.

Example 4.7 (Oil Wildcatter Strategy). After solving the influence diagram, we
obtain an optimal strategy O� D { OıTest; OıDrill}. Hence, the optimal strategy O� (we show
how to identify the optimal strategy for this example in Example 5.11 on page 129)
consists of a policy OıTest for Test and a policy OıDrill for Drill given Test and Seismic

OıTest D yes
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OıDrill.Seismic; Test/ D

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

yes Seismic D closed; Test D no

yes Seismic D open; Test D no

yes Seismic D diffuse; Test D no

yes Seismic D closed; Test D yes

yes Seismic D open; Test D yes

no Seismic D diffuse; Test D yes

The policy for Test says that we should always test, while the policy for Drill says
that we should drill except when the test produces a diffuse pattern indicating almost
no hope of oil. �

An intervening decisionD of an influence diagram is a decision that may impact
the state or value of another variable X represented in the model. In order for D
to potentially impact the value of X , X must be a descendant of D in G. This
can be realized by considering the d-separation criterion (consider the information
blocking properties of the converging connection) and the set of evidence available
when making the decision D. Consider, for instance, the influence diagram shown
in Fig. 4.5. The decision Test is an intervening decision as it impacts the value
of Seismic. It cannot, however, impact the value of Oil as Oil is a non-descendant
of Test, and we have no down-stream evidence when making the decision on Test.
Since decision D may only have a potential impact on its descendants, the
usefulness of D can only be measured by the utility descendants of D.

A total ordering on the decision variables is usually assumed. This assumption
can, however, be relaxed. Nielsen & Jensen (1999) describe when decision problems
with only a partial ordering on the decision variables are well defined. In addition,
the limited memory influence diagram (Lauritzen & Nilsson 2001), see Sect. 4.2.3,
and the unconstrained influence diagram (Vomlelová & Jensen 2002) support the
use of unordered decision variables.

Example 4.8 (Apple Jack). We consider once again the problems of Apple Jack
from Example 4.1 on page 71. A Bayesian network for reasoning about the causes
of the apple tree losing its leaves was shown in Fig. 4.1 on page 72.

We continue the example by assuming that Apple Jack wants to decide whether
or not to invest resources in giving the tree some treatment against a possible
disease. Since this involves a decision through time, we have to extend the Bayesian
network to capture the impact of the treatment on the development of the disease.
We first add three variables similar to those already in the network. The new
variables Sick�, Dry�, and Loses� correspond to the original variables, except that
they represent the situation at the time of harvest, that is, after the treatment decision.
These variables have been added in Fig. 4.6.

The additional variables have the same states as the original variables: Sick�,
Dry�, and Loses� all have states no and yes. In the extended model, we expect
a causal influence from the original Sick variable on the Sick� variable and from
the original Dry variable on the Dry� variable. The reason is the following. If, for
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Sick

Loses

dry

Sick�

Loses�

dry�
Fig. 4.6 We model the
system at two different points
in time (before and after a
decision) by replicating the
structure

Sick

Loses

Ddry

Sick�

Loses�

Dry�

Treat

Fig. 4.7 Addition of a
decision variable for
treatment to the Bayesian
network in Fig. 4.6

example, we expect the tree to be sick now, then this is also likely to be the case
in the future and especially at the time of harvest. Of course, the strength of the
influence depends on how far out in the future we look. Perhaps one could also have
a causal influence from Loses on Loses�, but we have chosen not to model such a
possible dependence relation in this model.

Apple Jack may try to heal the tree with a treatment to get rid of the possible
disease. If he expects that the loss of leaves is caused by drought, he might save
his money and just wait for rain. The action of giving the tree a treatment is now
added as a decision variable to the Bayesian network, which will then no longer be
a Bayesian network. Instead, it becomes the influence diagram shown in Fig. 4.7.

The treat decision variable has the states no and yes. There is a causal
link .Treat;Sick�/ from the decision Treat to Sick� as we expect the treatment to
have a causal impact on the future health of the tree. There is an informational link
from Loses to Treat as we expect Apple Jack to observe whether or not the apple
tree is losing its leaves prior to making the decision on treatment.

We need to specify the utility functions enabling us to compute the expected
utility of the decision options. This is done by adding utility functions to the
influence diagram. Each utility function will represent a term of an additively
decomposing utility function, and each term will contribute to the total utility. The
utility functions are shown in Fig. 4.8.

The utility functionC specifies the cost of the treatment, while utility functionH
specifies the reward of the harvest. The latter depends on the state of Sick�,
indicating that the production of apples depends on the health of the tree.
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Sick

Loses

Dry

Sick�

Loses�

Dry�

Treat C

H

Fig. 4.8 A complete
qualitative representation of
the influence diagram used
for decision making in Apple
Jack’s orchard

Table 4.6 The conditional
probability distribution
P.Sick� |Treat;Sick/

Sick�

Treat Sick no yes

no no 0:98 0:02

no yes 0:01 0:99

yes no 0:99 0:01

yes yes 0:8 0:2

Table 4.7 The conditional
probability distribution
P.Dry� |Dry/

Dry�

Dry no yes

no 0:95 0:05

yes 0:4 0:6

Table 4.8 The conditional
probability distribu-
tion P.Loses� |Dry�;Sick�/

Loses�

Dry� Sick� no yes

no no 0:98 0:02

no yes 0:1 0:9

yes no 0:15 0:85

yes yes 0:05 0:95

Figure 4.8 shows the complete qualitative representation of the influence dia-
gram N D .X;G;P;U/. To complete the quantitative representation as well, we
need to specify the conditional probability distributions, P, and utility functions, U,
of N. Recall that a decision variable does not have any distribution. The appropriate
probability distributions are specified in Tables 4.6–4.8.

If we have a healthy tree (Sick� is in state no), then Apple Jack will get an income
of e 200, while if the tree is sick (Sick� is in state yes), his income is only e 30, that
is,H.Sick�/ D .200; 30/. To treat the tree, he has to spende 80, that is, C.Treat/ D
.0;−80/.

Since Dry� and Loses� are not relevant for the decision on whether or not to treat
and since we do not care about their distribution, we remove them from our model
producing the final model shown in Fig. 4.9. Variables Dry� and Loses� are in fact
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Sick
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Dry

Sick�
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H

Fig. 4.9 A simplified
influence diagram for the
decision problem of Apple
Jack

barren variables, see Sect. 3.3.4 on page 53. In an influence diagram, a variable is
a barren variable when none of its descendants are utility nodes, and none of its
descendants are ever observed.

The purpose of our influence diagram is to be able to determine the optimal
strategy for Apple Jack. After solving N, we obtain the following policy (ıTreat W
Loses→ dom.Treat/) for Treat:

ıTreat.Loses/ D
{

no Loses D no

yes Loses D yes

Hence, we should only treat the tree when it loses its leaves. In Sect. 5.2, we describe
how to solve an influence diagram. �

Notice that since a policy is a mapping from all possible observations to decision
options, it is sufficient to solve an influence diagram once. Hence, the computed
strategy can be used by the decision maker each time she or he is faced with the
decision problem.

Implications of Perfect Recall

As mentioned above, when using influence diagrams to represent decision problems,
we assume perfect recall. This assumption states that at the time of any decision, the
decision maker remembers all past decisions and all previously known information
(as enforced by the informational links). This implies that a decision variable and all
of its parent variables are informational parents of all subsequent decision variables.
Due to this assumption, it is not necessary to include no-forgetting links in the DAG
of the influence diagram as they—if missing—will implicitly be assumed present.

Example 4.9 (Jensen, Jensen & Dittmer (1994)). Let N be the influence diagram in
Fig. 4.10 on the facing page. This influence diagram represents a decision problem
involving four decisions D1, D2, D3, andD4 in that order.

From the structure of N, the following partial ordering on the random and
decision variables can be read:

{B} 
 D1 
 {E;F } 
 D2 
 {} 
 D3 
 {G} 
 D4 
 {A;C;D;H; I; J;K;L}.
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Fig. 4.10 An influence diagram representing the sequence of decisions D1;D2;D3;D4

This partial ordering specifies the flow of information in the decision problem
represented by N. Thus, the initial (relevant) information available to the decision
maker is an observation of B . After making a decision on D1, the decision maker
observes E and F . After the observations of E and F , a decision on D2 is made,
and so on.

Notice that no-forgetting links have been left out, for example, there are no links
from B to D2, D3, or D4. These links are included in Fig. 4.11. The difference in
complexity of reading the graph is apparent.

As this example shows, a rather informative analysis can be performed by reading
only the structure of the graph of N. �

4.2.2 Conditional LQG Influence Diagrams

Conditional linear–quadratic Gaussian influence diagrams combine conditional lin-
ear Gaussian Bayesian networks, discrete influence diagrams, and quadratic utility
functions into a single framework supporting decision making under uncertainty
with both continuous and discrete variables (Madsen & Jensen 2005).

Definition 4.5. A CLQG influence diagram N D .X;G;P;F;U/ consists of:

• A DAG G D .V;E/ with nodes, V , and directed links, E, encoding dependence
relations and information precedence including a total order on decisions
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Fig. 4.11 The influence diagram of Fig. 4.10 with no-forgetting links

• A set of random variables, XC , and decision variables, XD, such that X D XC [
XD represented by nodes of G

• A set of conditional probability distributions, P, containing one distribution,
P.Xv |Xpa.v//, for each discrete random variable Xv

• A set of conditional linear Gaussian probability density functions, F, containing
one density function, p.Yw |Xpa.w//, for each continuous random variable Yw

• A set of linear–quadratic utility functions, U, containing one utility func-
tion, u.Xpa.v//, for each node v in the subset VU 	 V of utility nodes

We refer to a conditional linear–quadratic Gaussian influence diagram as a
CLQG influence diagram. The chain rule of CLQG influence diagrams is

EU.X� D i;X� / D P.X� D i/ � N|X� |

�

.i/; �2.i/

� �
X

z2VU
u.Xpa.z//

D
Y

v2V�
P.iv | ipa.v// �

Y

w2V�
p.yw |Xpa.w// �

X

z2VU
u.Xpa.z//

for each configuration i of X�.
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Play Guess Sex Height

U

Fig. 4.12 A CLQG influence
diagram for a simple guessing
game

Recall that in the graphical representation of a CLQG influence diagram,
continuous utility functions are represented by double rhombuses and continuous
decision variables as double rectangles, see Table 2.2 on page 23 for an overview of
vertex symbols.

A CLQG influence diagram is a compact representation of a joint expected
utility function over continuous and discrete variables, where continuous variables
are assumed to follow a linear Gaussian distribution conditional on a subset of
discrete variables, while utility functions are assumed to be linear–quadratic in
the continuous variables (and constant in the discrete). This may seem a severe
assumption which could be limiting to the usefulness of the CLQG influence
diagram. The assumption seems to indicate that all local utility functions specified in
a CLQG influence diagram should be linear–quadratic in the continuous variables.
This is not the case, however, as the following examples show. We will consider the
assumption in more detail in Sect. 5.2 on solving decision models.

Example 4.10 (Guessing Game (Madsen & Jensen 2005)). Figure 4.12 illustrates
a CLQG influence diagram, N, representation of a simple guessing game with two
decisions.

The first decision, represented by the discrete decision variable Play with
states reward and Play, is to either accept an immediate reward or to play a game
where you will receive a payoff determined by how good you are at guessing the
height of a person, represented by the continuous random variable Height, based
on knowledge about the sex of the person, represented by the discrete random
variable Sex with states female and male. The second decision, represented by the
real-valued decision variable Guess, is your guess on the height of the person given
knowledge about the sex of the person.

The payoff is a constant (higher than the reward) minus the distance of your guess
from the true height of the person measured as height minus guess squared.

To quantify N, we need to specify a prior probability distribution for Sex, a
conditional Gaussian distribution for Height and a utility function over Play, Guess,
and Height. Assume the prior distribution on Sex is P.Sex/ D .0:5; 0:5/, whereas
the distribution for Height is

L.Height | female/ D N.170; 400/

L.Height |male/ D N.180; 100/.
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U3
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Fig. 4.13 A revised version
of the oil wildcatter problem

We assume the average height of a female to be 170 cm with a standard deviation
of 20 cm and average height of a male to be 180 cm with a standard deviation
of 10 cm. The utility function over Play;Guess; andHeight is

u.play; d2; h/ D 150− .h− d2/
2

u.reward; d2; h/ D 100.

We assume the immediate reward is 100. After solving N, we obtain an optimal
strategy� D {ıPlay; ıGuess}

ıPlay D play

ıGuess.play; female/ D 170

ıGuess.play;male/ D 180:

The optimal strategy is to guess that the height of a female person is 170 cm and the
height of a male person is 180 cm.

In this example the policy for Guess reduces to a constant for each configuration
of its parent variables. In the general case, the policy for a continuous decision
variable is a multilinear function in its continuous parent variables given the discrete
parent variables. �

As another example of a CLQG influence diagram, consider a revised extension
of the oil wildcatter problem of Raiffa (1968) (Example 4.5 on page 82). The revised
Oil Wildcatter problem, which is further revised here, is due to Cobb & Shenoy
(2004).

Example 4.11 (Oil Wildcatter (Madsen & Jensen 2005)). The network of the
revised version of the Oil Wildcatter problem is shown in Fig. 4.13. First, the
decision maker makes a decision on whether or not to perform a test Test of the
geological structure of the site under consideration. When performed, this test
will produce a test result, Seismic depending on the amount of oil Oil. Next, a
decision Drill on whether or not to drill is made. There is a cost Cost associated with
drilling, while the revenue is a function of oil volume Volume and oil price Price.
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We assume the continuous random variables (i.e., cost of drilling, oil price, and
oil volume) to follow (conditional) Gaussian distributions. The utility function can
be stated in thousands of euros as U1.Test D yes/ D −10, U2.Cost D c;Drill D
yes/ D −c, U3.Volume D v;Price D p;Drill D yes/ D v � p, and zero for the no
drill and no test situations.

If the hole is dry, then no oil is extracted: L.Volume |Oil D dry/ D N.0; 0/. If
the hole is wet, then some oil is extracted: L.Volume |Oil D wet/ D N.6; 1/. If the
hole is soaking with oil, then a lot of oil is extracted: L.Volume |Oil D soaking/ D
N.13:5; 4/. The unit is a thousand barrels. The cost of drilling follows a Gaussian
distribution L.Cost |Drill D yes/ D N.70; 100/. We assume that the price of
oil Price also follows a Gaussian distribution L.Price/ D N.20; 4/.

Notice that the continuous utility functionsU2 and U3 are not linear–quadratic in
their continuous domain variables. �

4.2.3 Limited Memory Influence Diagrams

The framework of influence diagrams offers compact and intuitive models for
reasoning about decision making under uncertainty. Two of the fundamental as-
sumptions of the influence diagram representation are the no-forgetting assumption
implying perfect recall of the past and the assumption of a total order on the
decisions. The limited memory influence diagram framework (LIMID) (Lauritzen
& Nilsson 2001) relaxes both of these fundamental assumptions.

Relaxing the no-forgetting and the total order (on decisions) assumptions largely
increases the class of multistage decision problems that can be modeled. LIMIDs
allow us to model more types of decision problems than the ordinary influence
diagrams.

The graphical difference between the LIMID representation and the ordinary
influence diagram representation is that the latter representation (as presented in
this book) assumes some informational links to be implicitly present in the graph.
This assumption is not made in the LIMID representation. For this reason, it is
necessary to explicitly represent all information available to the decision maker at
each decision.

The definition of a limited memory influence diagram is as follows.

Definition 4.6. A LIMID N D .X;G;P;U/ consists of:

• A DAG G D .V;E/ with nodes V and directed links E encoding dependence
relations and information precedence.

• A set of random variables, XC , and discrete decision variables, XD, such
that X D XC [ XD represented by nodes of G.

• A set of conditional probability distributions, P, containing one distribution,
P.Xv |Xpa.v//, for each discrete random variable Xv.

• A set of utility functions, U, containing one utility function, u.Xpa.v//, for each
node v in the subset VU 	 V of utility nodes.
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Fig. 4.14 A LIMID
representation of a decision
scenario with two unordered
decisions

Using the LIMID representation, it is possible to model multistage decision
problems with unordered sequences of decisions and decision problems in which
perfect recall cannot be assumed or may not be appropriate. This makes the LIMID
framework a good candidate for modeling large and complex domains using an
appropriate assumption of forgetfulness of the decision maker. Notice that all
decision problems that can be represented as an ordinary influence diagram can
also be represented as a LIMID.

Example 4.12 (LIMID). Figure 4.14 shows an example of a LIMID representa-
tion N D .X;G;P;U/ of a decision scenario with two unordered decisions. Prior
to decision Di , observations on the values of A and C are made, while prior to
decisionDj , an observation on the value of E is made. Notice that the observations
on A and C made prior to decision Di are not available at decision Dj and vice
versa for the observation on E. �

Example 4.13 (Breeding Pigs (Lauritzen & Nilsson 2001)). A farmer is growing
pigs for a period of four months and subsequently selling them. During this period,
the pigs may or may not develop a certain disease. If a pig has the disease at the
time, it must be sold for slaughtering; its expected market price is e 40. If it is
disease free, its expected market price as a breeding animal is e 135.

Once a month, a veterinarian inspects each pig and makes a test for presence of
the disease. If a pig is ill, the test will indicate this with probability 0:80, and if the
pig is healthy, the test will indicate this with probability 0:90. At each monthly visit,
the doctor may or may not treat a pig for the disease by injecting a certain drug. The
cost of an injection is e 13.

A pig has the disease in the first month with probability 0:10. A healthy pig
develops the disease in the following month with probability 0:20 without injection,
whereas a healthy and treated pig develops the disease with probability 0:10, so the
injection has some preventive effect. An untreated pig that is unhealthy will remain
so in the following month with probability 0:90, whereas the similar probability
is 0:50 for an unhealthy pig that is treated. Thus, spontaneous cure is possible, but
treatment is beneficial on average.
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C1 C2 C3

D1 D2 D3

R1 R2 R3

H1 H2 H3 H4

P

Fig. 4.15 Three
test-and-treat cycles are
performed prior to selling a
pig

The qualitative structure of the LIMID representation of this decision problem
is shown in Fig. 4.15. Notice that we make the assumption that the test result Ri
is only available for decision Di . This implies that the test result is not taken into
account for future decisions as it is either forgotten or ignored. �

The above example could be modeled as a standard influence diagram (assuming
perfect recall), but if more test-and-treat cycles must be performed, the state space
size of the past renders decision making intractable. Therefore, it is appropriate to
make the decision on whether or not to treat based on the current test result (and
not considering past test results and possible treatments)—in this case, individual
records for the pigs need not be kept. In short, the example illustrates a situation
where instead of keeping track of all past observations and decisions, some of these
are deliberately ignored (in order to maintain tractability of the task of computing
policies).

4.3 Object-Oriented Probabilistic Networks

As large and complex systems are often composed of collections of identical
or similar components, models of such systems will naturally contain repetitive
patterns. A complex system will typically be composed of a large number of
similar or even identical components. This composition of the system should be
reflected in models of the system to support model construction, maintenance, and
reconfiguration. For instance, a diagnosis model for diagnosing car start problems
could reflect the natural decomposition of a car into its engine, electrical system,
fuel system, etc.

To support this approach to model development, the framework of object-
oriented probabilistic networks has been developed, see, for example, (Koller &
Pfeffer 1997, Laskey & Mahoney 1997, Neil, Fenton & Nielsen 2000). Object-
orientation may be defined in the following way
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C1
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M
C1 C2

C3

Fig. 4.16 M is an instance of
a network class CM within
another network class CN

object-orientation = objects + inheritance,

where objects are instances of classes and inheritance defines a relationship between
classes. Thus, we need to introduce the notion of objects and classes. In this section,
we introduce the notion of object-oriented probabilistic networks (OOPNs).

The basic OOPN mechanisms described below support a type of object-oriented
specification of probabilistic networks, which makes it simple to reuse models, to
encapsulate submodels (providing a means for hierarchical model specification),
and to perform model construction in a top-down fashion, a bottom-up fashion, or a
mixture of the two (allowing repeated changes of level of abstraction).

An object-oriented modeling paradigm provides support for working with
different levels of abstraction in constructing network models. Repeated changes of
focus are partly due to the fact that humans naturally think about systems in terms
of hierarchies of abstractions and partly due to lack of ability to mentally capture
all details of a complex system simultaneously. Specifying a model in a hierarchical
fashion often makes the model less cluttered and thus provides a better means of
communicating ideas among knowledge engineers, domain experts, and users.

In the OOPN paradigm we present, an instance or object has a set of variables
and related functions (i.e., probability distributions, probability densities, utility
functions, and precedence constraints). This implies that in addition to the usual
types of nodes, the graph of an OOPN model may contain nodes representing
instances of other networks encapsulated in the model. A node that does not
represent an instance of a network class is said to represent a basic variable.

An instance represents an instantiation of a network class within another network
class. A network class is a blueprint for an instance. As such, a network class is a
named and self-contained description of a probabilistic network, characterized by
its name, interface, and hidden part. As instances can be nested, an object-oriented
network can be viewed as a hierarchical description of a problem domain. In this
way, an instance M is the instantiation (or realization) of a network class CM within
another network class CN, see Fig. 4.16.

An instance connects to other variables via some of its (basic) variables. These
variables are known as its interface variables. As we wish to support information
hiding, the interface variables usually only constitute a subset of the variables in the
network class.
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Let us be more precise. A network class C is a DAG over three pairwise disjoint
sets of nodes I.C /, H.C /, and O.C /, where I.C / are the input nodes, H.C / are
the hidden nodes, and O.C / are the output nodes of C . The set I.C /[O.C / is the
interface of C . Interface nodes may represent either decision or random variables,
whereas hidden nodes may be instances of network classes, decision variables,
random variables, and utility functions.

Definition 4.7. An OOPN network class C D .N; I;O/ consists of:

• A probabilistic network N over variables X with DAG G

• A set of basic variables I � X specified as input variables and a set of basic
variables O � X specified as output variables such that I \ O D ; and H D
X \ .I [ O/
In the graphical representation of an OOPN instances are represented as rect-

angles with arc-shaped corners, whereas input variables are represented as dashed
ovals, and output variables are represented as bold ovals. If the interface variables
of a network instance are not shown, then the instance is collapsed. Otherwise, it is
expanded.

Since an OOPN implements information hiding through encapsulation, we need
to be clear on scope rules. First, we define the notations of simple and qualified
names. If X is a variable of a network instance N, then X is the simple name of the
variable, whereas N:X is the qualified name (also known as the long name) of the
variable. The scope S.X/ of a variable X (i.e., a basic variable or an instance) is
defined as the part of a model in which the declaration ofX can be referred to by its
simple name.

The (internal) scope S.C / of a network class C is the set of variables and
instances which can be referred to by their simple names inside C . For instance,
the internal scope of the network CN in Fig. 4.16 on the facing page is S.CN/ D
{C1; C3; C2;M}. The scope of an instance M of a network class CM, that is,
class.M/ D CM, is defined in a similar manner.

The interface variables I.C / [ O.C / of C are used to enlarge the visibility
of basic variables in the instantiations of C . The visibility of a variable X can be
enlarged by specifying it as either an input or an output variable of its class.

An input variable X of an instance M is a placeholder for a variable (the parent
of X ) in the encapsulating class of M. Therefore, an input variable has at most
one parent. An output variable X of an instance M, on the other hand, enlarges the
visibility of X to include the encapsulating network class of M.

Notice that the scope of a variable is distinct from visibility of the variable.
In Fig. 4.16, the scope of output variable C3 is M, whereas its visibility is enlarged
to include N by defining it as an output variable of M.

An input variable I of an instance M of network class C is bound if it has a
parent X in the network class encapsulating M. Each input random variable I of a
class C is assigned a default prior probability distribution P.I /, which becomes the
probability distribution of the variable I in all instances of C where I is an unbound
input variable. A link into a node representing an input variable may be referred to
as a binding link.
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Let M be an instance of network class C . Each input variable I 2 I.C / has
no parent in C , no children outside C , and the corresponding variable of M has at
most one parent in the encapsulating class of M. Each output variable O 2 O.C /
may only have parents in I.C / [ H.C /. The children and parents of H 2 H.C /
are subsets of the variables of C .

Example 4.14 (Object-Oriented Probabilistic Network). Figure 4.16 shows an
instance M of a network class CM instantiated within another network class CN.
Network class CN has input variable C1, hidden variables C3 and M, and output
variable C2. The network class CM has input variables C1 and C2, output vari-
able C3, and unknown hidden variables. The input variable C1 of instance M is
bound to C1 of CN , whereas C2 is unbound.

Since C1 2 I.CN/ is bound to C1 2 I.M/, the visibility of C1 2 I.CN/ is
extended to include the internal scope of M. Hence, when we refer to C1 2 I.CM/

inside CM, we are in fact referring to C1 2 I.CN/ as C1 2 I.CM/ in instance M
is a placeholder for C1 2 I.CN/ (i.e., you may think of C1 2 I.CM/ as the formal
parameter of CM and C1 2 I.CN/ as the actual parameter of M). �

Since an input variable I 2 I.M/ of an instance M is a placeholder for a
variable Y in the internal scope of the encapsulating instance of M, type checking
becomes important when the variable Y is bound to I . The variable I enlarges
the visibility of Y to include the internal scope of M, and it should therefore be
equivalent to Y . We define two variables Y and X to be equivalent as follows:

Definition 4.8. Two variablesX and Y are equivalent if and only if they are of the
same kind, category, and subtype with the same state labels in the case of discrete
variables.

This approach to type checking is referred as strong type checking.
If a model contains a lot of repetitive structure, its construction may be tiresome,

and the resulting model may even be rather cluttered. Both issues are solved when
using object-oriented models. Another key feature of object-oriented models is
modularity. Modularity allows knowledge engineers to work on different parts of the
model independently once an appropriate interface has been defined. The following
example will illustrate this point.

Example 4.15 (Apple Jack’s Garden). Let us assume that Apple Jack from
Example 4.1 on page 71 has a garden of three apple trees (including his finest apple
tree). He may want to reason about the sickness of each tree given observations on
whether or not some of the trees in the garden are losing their leaves.

Figure 4.17 shows the apple tree network class. The prior of each tree being sick
will be the same, while the dryness of a tree is caused by a drought. The drought
is an input variable of the apple tree network class. If there is a drought, this will
impact the dryness of all trees. The prior on drought is P.Drought/ D .0:9; 0:1/,
while the conditional distribution of Dry conditional on Drought is shown in
Table 4.9.
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Fig. 4.17 The apple tree
network class

Table 4.9 The conditional
probability
distribution P.Drought |Dry/

Dry

Drought no yes

no 0:85 0:15

yes 0:35 0:65

Drought

Tree1 Tree2

Tree3

Drought

Fig. 4.18 The apple garden
network consisting of three
instantiations of the apple tree
network

Figure 4.18 shows the network class of the apple garden. The input vari-
able Drought of each of the instances of the apple tree network class is bound to
the Drought variable in the apple garden network class. This enlarges the visibility
of the Drought variable (in the apple garden network class) to the internal scope
defined by each instance.

The two instances Tree1 and Tree2 are collapsed (i.e., not showing the interface
variables), while the instance Tree3 is expanded (i.e., not collapsed) illustrating the
interface of the network class.

The Drought variable could be an input variable of the apple garden network class
as well as it is determined by other complex factors. For the sake of simplicity of
the example, we have made it a hidden variable of the apple garden network class.

�

As mentioned above, a default prior distribution P.X/ is assigned to each input
variable X 2 I.C / of the class C D .N;O; I/. Assigning a default potential to
each input variableX implies that any network class is a valid probabilistic network
model.
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4.3.1 Chain Rule

It should be clear from the above discussion that each OOPN encodes either a
probability distribution or an expected utility function. For simplicity, we will
discuss only the chain rule for object-oriented (discrete) Bayesian networks. The
chain rule of an object-oriented Bayesian network reflects the hierarchical structure
of the model.

An instance M of network class C encapsulates a conditional probability
distribution over its random variables given its unbound input nodes. For further
simplicity, let C D .N; I;O/ be a network class over basic discrete random
variables only (i.e., no instances, no decisions, and no utilities) with N D .X;G;P/

where X 2 X is the only input variable, that is, X 2 I and |I | D 1. Since X
has a default prior distribution, N is a valid model representing the joint probability
distribution

P.X/ D P.X/
Y

Yv 6DX
P.Yv |Xpa.v//.

In general, an instance M is a representation of the conditional probability
distribution P.O |I 0/ where I 0 � I is the subset of bound input variables of M

P.O |I 0/ D
Y

X2I\I0

P.X/
Y

Yv 62I
P.Yv |Xpa.v//.

4.3.2 Unfolded OOPNs

An object-oriented network N has an equivalent flat or unfolded network model
representation M. The unfolded network model of an object-oriented network N is
obtained by recursively unfolding the instance nodes of N. The unfolded network
representation of a network class is important as it is the structure used for inference.

The joint distribution of an object-oriented Bayesian network model is equivalent
to the joint distribution of its unfolded network model

P.X/ D
Y

Xv2XM

P.Xv |Xpa.v//,

where M D .X;G;P/ is the unfolded network.

4.3.3 Instance Trees

An object-oriented model is a hierarchical model representation. The instance tree T
of an object-oriented model N is a tree over the set of instances of classes in N. Two



4.3 Object-Oriented Probabilistic Networks 101

v

Fig. 4.19 An instance tree

nodes vi and vj in T (with vi closer to the root of T than vj ) are connected by an
undirected link if and only if the instance represented by vi contains the instance
represented by vj . The root of an instance tree is the top-level network class not
instantiated in any other network class within the model. Notice that an instance
tree is unique.

In addition to the notion of default potentials, there is the notion of the default
instance. Let C be a network class with instance tree T . Each non-root node v of T
represents an instance of a class Cv, whereas the root node r of T represents an
instance of the unique class Cr , which has not been instantiated in any class. This
instance is referred to as the default instance of Cr .

Example 4.16 (Instance Tree). Figure 4.19 shows the instance tree of a network
class N where the root is the default instance of N.

Each node v of T represents an instance M, and the children of v in T represent
instances in M. �

4.3.4 Inheritance

Another important concept of the OOPN framework is inheritance. For simplicity,
we define inheritance as the ability of an instance to take its interface definition from
another instance. Let C1 be a network class with input variables I.C1/ and output
variables O.C1/, that is, C1 D .N1; I1;O1/. A network class C2 D .N2; I2;O2/

may be specified as a subclass of C1 if and only if I1 � I2 and O1 � O2. Hence,
subclasses may enlarge the interface.

Inheritance is not to the knowledge of the authors implemented in any widely
available software supporting OOPN.
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4.4 Dynamic Models

The graph of a probabilistic network is restricted to be a finite acyclic directed graph,
see Sect. 2.1. This seems to imply that probabilistic networks as such do not support
models with feedback loops or models of dynamic systems changing over time. This
is not the case. A common approach to representing and solving dynamic models or
models with feedback loops is to unroll the dynamic model for the desired number of
time steps and treat the resulting network as a static network. Similarly, a feedback
loop can be unrolled and represented using a desired number of time steps. The
unrolled static network is then solved using a standard algorithm applying evidence
at the appropriate time steps.

As an example of a dynamic model, consider the problem of monitoring the state
of a dynamic process over a specific period of time. Assume the network of Fig. 4.20
is an appropriate model of the causal relations between variables representing the
system at any point in time. The structure of this network is static in the sense
that it represents the state of the system at a certain point in time. In the process
of monitoring the state of the system over a specific period of time, we will make
observations on a subset of the variables in the network and make inference about
the remaining unobserved variables. In addition to reasoning about the current state
of the system, we may want to reason about the state of the system at previous
and future points in time. For this usage, the network in Fig. 4.20 is inadequate.
Furthermore, the state of the system at the current point in time will impact the state
of the system in the future and be impacted by the state of the system in the past.

What is needed is a time-sliced model covering the period of time over which the
system should be monitored. Figure 4.21 indicates a time-sliced model constructed
based on the static network shown in Fig. 4.20. Each time-slice consists of the
structure shown in Fig. 4.20, while the development of the system is specified by
links between variables of different time-slices.

The temporal links of a time-slice ti are the set of links from variables of time-
slice ti−1 into variables of time-slice ti . The temporal links of time-slice ti define the
conditional distribution of the variables of time-slice ti given the variables of time-

X1 X2

X3

X4Fig. 4.20 The structure of a
static network model
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Fig. 4.21 The structure of a dynamic model with n time-slices

slice ti−1. The temporal links connect variables of adjacent time-slices. For instance,
the temporal links of time-slice t2 in Fig. 4.21 is the set {.X1

1 ; X
2
1 /; .X

1
3 ; X

2
3 /}.

The interface of a time-slice is the set of variables with parents in the previous
time-slice. For instance, the interface of time-slice t2 in Fig. 4.21 is the set {X2

1 ;X
2
3 }.

Three additional concepts are often used in relation to dynamic models. Let i be
the current time step, then smoothing is the process of querying about the state of
the system at a previous time step j < i given evidence about the system at time i ,
filtering is the process of querying about the state of the system at the current time
step, and prediction is the process of querying about the state of the system at a
future time step j > i .

A dynamic Bayesian network is stationary when the transition probability
distributions are invariant between time steps. A dynamic Bayesian network is first-
order Markovian when the variables at time step i C 1 are d-separated from the
variables at time step i − 1 given the variables at time step i . When a system is
stationary and Markovian, the state of the system at time i C 1 only depends on
its state at time i , and the probabilistic dependence relations are the same for all i .
The Markovian property implies that arcs between time-slices only go from one
time-slice to the subsequent time-slice.

A dynamic Bayesian network is referred to as either a dynamic Bayesian network
(DBN) or a time-sliced Bayesian network (TBN). See Kjærulff (1995) for more
details on dynamic Bayesian networks.

Example 4.17 (Apple Jack’s Finest Tree). Consider the Apple Jack network in
Fig. 4.1 of Example 4.1 on page 71. The network is used for reasoning about
the cause of Apple Jack’s finest apple tree losing its leaves. The network is static
and models the dependence relations between two diseases and a symptom at four
specific points in time where Apple Jack is observing his tree.
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Fig. 4.22 A model with four time-slices

Consider the case where Apple Jack is monitoring the development of the disease
over a period of time by observing the tree each day in the morning. In this case, the
level of dryness of the tree on a specific day will depend on the level of dryness on
the previous day and impact the level of dryness on the next day, similarly for the
level of sickness. The levels of dryness and sickness on the next day are independent
of the levels of dryness and sickness on the previous day given the levels of dryness
and sickness on the current day. This can be captured by a dynamic model.

Figure 4.22 shows a dynamic model with four time-slices. Each time step
models the state of the apple tree at a specific point in time (the dashed lines
illustrate the separation of the model into time-slices). The conditional probability
distributions P.Dryi |Dryi−1/ and P.Sicki |Sicki−1/ are the transition probability
distributions. The interface between time-slices i − 1 and i consists of Dryi and
Sicki .

Assume that it is the second day when Apple Jack is observing his tree. The
observations on Loses of the first and second day are entered as evidence on
the corresponding variables. Filtering is the task of computing the probability of the
tree being sick on the second day, smoothing is the task of computing the probability
of sickness on the first day, and prediction is the task of computing the probability
of the tree being sick on the third or fourth day. �

Dynamic models are not restricted to be Bayesian networks. Influence diagrams
and LIMIDs can also be represented as dynamic models.

4.4.1 Time-Sliced Networks Represented as OOPNs

Time-sliced networks are often represented using object-oriented networks as the
following example illustrates.

Example 4.18 (Breeding Pigs). Example 4.13 shows a LIMID representation of a
decision problem related to breeding pigs, see Fig. 4.15 on page 95. The decision
problem is in fact modeled as a time-sliced model where the structure of each time-
slice representing a test-and-treat cycle is shown in Fig. 4.23.
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Fig. 4.23 The test-and-treat
cycle of the breeding pigs
network in Fig. 4.15

Cycle1 Cycle2 Cycle3 C4

Fig. 4.24 The breeding pigs network as a time-sliced OOPN

Three instances of the network class in Fig. 4.23 are constructed to create the
network in Fig. 4.24. The use of object-oriented modeling has simplified the network
construction.

The network in Fig. 4.24 is equivalent to the network in Fig. 4.15 on page 95. �

Kjærulff (1995) has described a computational system for dynamic time-sliced
Bayesian networks. The system implemented is referred to as dHugin. Boyen
& Koller (1998) have described an approximate inference algorithm for solving
dynamic Bayesian networks with bounds on the approximation error.

4.5 Summary

In this chapter we have introduced probabilistic networks for belief update and de-
cision making under uncertainty. A probabilistic network represents and processes
probabilistic knowledge. The qualitative component of a probabilistic network
encodes a set of (conditional) dependence and independence statements among
a set of random variables, informational precedence, and preference relations.
The quantitative component specifies the strengths of dependence relations using
probability theory and preference relations using utility theory.

We have introduced discrete Bayesian network models and CLG Bayesian
network models for belief update. A discrete Bayesian network supports the use
of discrete random variables, whereas a CLG Bayesian network supports the use
of a mixture of continuous and discrete random variables. The continuous variables
are constrained to be conditional linear Gaussian variables. This chapter contains a
number of examples that illustrate the use of Bayesian networks for belief update.
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Discrete influence diagrams, CLQG influence diagrams, and limited memory
influence diagrams were introduced as models for belief update and decision making
under uncertainty. An influence diagram is a Bayesian network augmented with
decision variables, informational precedence relations, and preference relations.
A discrete influence diagram supports the use of discrete random and decision
variables with an additively decomposing utility function. A CLQG influence
diagram supports the use of a mixture of continuous and discrete variables. The
continuous random variables are constrained to be conditional linear Gaussian
variables, while the utility function is constrained to be linear–quadratic. A limited
memory influence diagram is an extension of the discrete influence diagram where
the assumptions of no-forgetting and regularity (i.e., a total order on the decisions)
are relaxed. This allows us to model a large set of decision problems that cannot
be modeled using the traditional influence diagram representation. This chapter
contains a number of examples that illustrate the use of influence diagrams for
decision making under uncertainty.

Finally, we have introduced OOPNs. The basic OOPN mechanisms introduced
support a type of object-oriented specification of probabilistic networks, which
makes it simple to reuse models, to encapsulate submodels, and to perform model
construction at different levels of abstraction. This chapter contains a number of
examples that illustrate the use of the basic OOPN mechanisms in the model
development process. OOPNs are well suited for constructing time-sliced networks.
Time-sliced networks are used to represent dynamic models.

In Chap. 5, we discuss techniques for solving probabilistic networks.

Exercises

Exercise 4.1. Peter and Eric are chefs at Restaurant Bayes. Peter works 6 days
a week, while Eric works one day a week. In 90% of the cases, Peter’s food is
high quality, while Eric’s food is high quality in 50% of the cases. One evening
Restaurant Bayes serves an awful meal.

Is it fair to conclude that Eric prepared the food that evening?

Exercise 4.2. One in a thousand people has a prevalence for a particular heart
disease. There is a test to detect this disease. The test is 100% accurate for people
who have the disease and is 95% accurate for those who do not (this means that 5%
of people who do not have the disease will be wrongly diagnosed as having it).

(1) If a randomly selected person tests positive, what is the probability that the
person actually has the heart disease?

Exercise 4.3. Assume a math class is offered once every semester, while an AI
class is offered twice. The number of students taking a class depends on the subject.
On average, 120 students take AI (�2 D 500), while 180 students take math (�2 D
1; 000). Assume that on average 25% pass the AI exam (�2 D 400) while 50% pass
the math exam (�2 D 500).
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(a) What is the average number of students passing either a math or AI exam?
(b) What is the average number of students passing a math exam?
(c) What is the average number of students taking a math class when 80 students

pass the exam?

Exercise 4.4. Frank goes to the doctor because he believes that he has got the flu.
At this particular time of the year, the doctor estimates that one out of 1; 000 people
suffers from the flu. The first thing the doctor checks is whether Frank appears to
have the standard symptoms of the flu; if Frank suffers from the flu, then he will
exhibit these symptoms with probability 0:9, but if he does not have the flu, he
may still have these symptoms with probability 0:05. After checking whether or not
Frank has the symptoms, the doctor can decide to have a test performed which may
reveal more information about whether or not Frank suffers from the flu; the cost of
performing the test is e 40. The test can either give a positive or a negative result,
and the frequency of false-positives and false-negatives is 0:05 and 0:1, respectively.
After observing the test result (if any), the doctor can decide to administer a drug
that with probability 0:6 may shorten the sickness period if Frank suffers from the
flu (if he has not got the flu, then the drug has no effect). The cost of administering
the drug is e 100, and if the sickness period is shortened, the doctor estimates that
this is worth e 1; 000.

(a) Construct an influence diagram for the doctor from the description above.
(b) Specify the probability distributions and the utility functions for the influence

diagram.

Exercise 4.5. Assume that Frank is thinking about buying a used car for e 20; 000,
and the market price for similar cars with no defects is e 23; 000. The car may,
however, have defects which can be repaired at the cost of e 5; 000; the probability
that the car has defects is 0:3. Frank has the option of asking a mechanic to perform
(exactly) one out of two different tests on the car. Test1 has three possible outcomes,
namely, no defects, defects, and inconclusive. For Test2 there are only two possible
outcomes (no defects and defects). If Frank chooses to have a test performed on the
car, the mechanic will report the result back to Frank who then decides whether or
not to buy the car; the cost of Test1 is e 300, and the cost of Test2 is e 1; 000.

(a) Construct an influence diagram for Frank’s decision problem.
(b) Calculate the expected utility and the optimal strategy for the influence

diagram; calculate the required probabilities from the joint probability table (over
the variables Test1, Test2, and StateOfCar) specified below.

Test1
no defects defects inconclusive

Test2
no defects .0:448; 0:00375/ .0:028; 0:05625/ .0:084; 0:015/

defects .0:112; 0:01125/ .0:007; 0:16875/ .0:021; 0:045/

Exercise 4.6. An environmental agency visits a site where a chemical production
facility has previously been situated. Based on the agency’s knowledge about the
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facility, they estimate that there is a 0:6 risk that chemicals from the facility have
contaminated the soil. If the soil is contaminated (and nothing is done about it),
all people in the surrounding area will have to undergo a medical examination
due to the possible exposure; there are 1; 000 people in the area, and the cost of
examining/treating one person is $100. To avoid exposure, the agency can decide
to remove the top layer of the soil which, in case the ground is contaminated, will
completely remove the risk of exposure; the cost of removing the soil is $30; 000.
Before making the decision of whether or not to remove the top layer of soil, the
agency can perform a test which will give a positive result (with probability 0:9) if
the ground is contaminated; if the ground is not contaminated, the test will give a
positive result with probability 0:01. The cost of performing the test is $1; 000.

(a) Construct an influence diagram for the environmental agency from the descrip-
tion above.

(b) Specify the probability distributions and the utility functions for the influence
diagram.

Exercise 4.7. A company has observed that one of their software systems is
unstable, and they have identified a component which they suspect is the cause of
the instability. The company estimates that the prior probability for the component
being faulty is 0:01, and if the component is faulty, then it causes the system
to become unstable with probability 0:99; if the component is not faulty, then
the system may still be unstable (due to some other unspecified element) with
probability 0:001.

To try to solve the problem, the company must first decide whether to patch the
component at a cost e 10; 000 : if the component is faulty, then the patch will solve
the fault with probability 0:95 (there may be several things wrong, not all of which
may be covered by the patch), but if the component is not faulty, then the patch
will have no effect. The company also knows that in the near future the vendor of
the component will make another patch available at the cost of e 20; 000; the two
patches focus on different parts of the component. This new patch will solve the
problem with probability 0:99, and (as for the first patch) if the component is not
faulty, then the patch will have no effect. Thus, after deciding on the first patch, the
company observes whether or not the patch solved the problem (i.e., is the system
still unstable?) and it then has to decide on the second patch. The company estimates
that (after the final decision has been made) the value of having a fully functioning
component is worth e 100; 000.

(a) Construct an influence diagram for the company from the description above.
(b) Specify the probability distributions and the utility functions for the influence

diagram.

Exercise 4.8. Consider a stud farm with ten horses where Cecily has unknown mare
and sire, John has mare Irene and sire Henry, Henry has mare Dorothy and sire
Fred, Irene has mare Gwenn and sire Eric, Gwenn has mare Ann and unknown sire,
Eric has mare Cecily and sire Brian, Fred has mare Ann and unknown sire, Brian
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Cecily Ann Brian

Eric Gwenn Fred Dorothy

Irene Henry

John

Fig. 4.25 The stud farm
pedigree

has unknown mare and sire, Dorothy has mare Ann and sire Brian, and Ann has
unknown mare and sire, see Fig. 4.25.

A sick horse has genotype aa, a carrier of the disease has genotype aA, and a
noncarrier has genotype AA. P.aa; aA;AA/ D .0:04; 0:32; 0:64/.

(a) Construct an object-oriented network representation of the stud farm problem.
(b) What is the probability of each horse being sick/a carrier/a noncarrier once we

learn that John is sick?



Chapter 5
Solving Probabilistic Networks

We build knowledge bases in order to formulate our knowledge about a certain
problem domain in a structured way. The purpose of the knowledge base is
to support our reasoning about events and decisions in a domain with inherent
uncertainty. The fundamental idea of solving a probabilistic network is to exploit the
structure of the knowledge base to reason efficiently about the events and decisions
of the domain taking the inherent uncertainty into account.

An expert system consists of a knowledge base and an inference engine. The
inference engine is used to solve queries against the knowledge base. In the case of
probabilistic networks, we have a clear distinction between the knowledge base and
the inference engine. The knowledge base is the Bayesian network or influence
diagram, whereas the inference engine consists of a set of generic methods that
applies the knowledge formulated in the knowledge base on task-specific data sets,
known as evidence, to compute solutions to queries against the knowledge base. The
knowledge base alone is of limited use if it cannot be applied to update our belief
about the state of the world or to identify (optimal) decisions in the light of new
knowledge.

As we saw in the previous chapter, the knowledge bases we consider are
probabilistic networks. A probabilistic network may be an efficient representation of
a joint probability distribution or a joint expected utility function. In the former case
the model is a Bayesian network, while in the latter case it is an influence diagram.

In this chapter we consider the process of solving probabilistic networks. As
the exact nature of solving a query against a probabilistic network depends on the
type of model, the solution process of Bayesian networks and influence diagrams is
considered separately in the following sections.

Section 5.1 considers probabilistic inference in Bayesian networks as the task
of computing posterior beliefs in the light of evidence. A number of different
approaches to inference are considered. We consider variable elimination, query-
based inference, arc reversal, and message passing in junction trees. The inference
process in discrete Bayesian networks is treated in detail, while the inference
process in CLG Bayesian networks and CLQG influence diagrams is outlined.

U.B. Kjærulff and A.L. Madsen, Bayesian Networks and Influence Diagrams: A Guide
to Construction and Analysis, ISS 22, DOI 10.1007/978-1-4614-5104-4 5,
© Springer Science+Business Media New York 2013
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In Sect. 5.2, we consider the task of solving decision models. Solving a decision
model amounts to computing (maximum) expected utilities. We derive a generic
method for solving influence diagrams and LIMIDs.

Parts of this chapter have appeared in Madsen, Jensen, Kjærulff & Lang (2005).

5.1 Probabilistic Inference

We build Bayesian network models in order to support efficient belief update in
a given domain. Belief update is the task of computing our updated beliefs in
(unobserved) events given observations on other events, that is, evidence.

5.1.1 Inference in Discrete Bayesian Networks

One particular type of probabilistic inference task in Bayesian networks is the task
of computing the posterior marginal of an unobserved variable Y given a (possibly
empty) set of evidence ", that is, P.Y |"/. Let N D .X;G;P/ be a Bayesian network
over the set of discrete random variables X D {X1; : : : ; Xn}, and assume that " D ;.
Exploiting the chain rule for Bayesian networks [see, e.g., (4.1) on page 71], for
variable Y 2 X, we may compute

P.Y / D
X

X2X\{Y }

P.X/

D
X

X2X\{Y }

Y

Xv2X
P.Xv |Xpa.v//: (5.1)

This is the prior marginal distributionP.Y / of Y . The prior marginal of all variables
may be computed by repetition for each variable.

Example 5.1 (Prior Probability (Apple Jack)). Given the example of Apple Jack
(Example 4.1 on page 71), we may consider the task of computing the prior marginal
distribution P.L/ over the events that the tree does lose its leaves and that the tree
does not lose its leaves. The distribution P.L/ may be computed as

P.L/ D
X

S

X

D

P.S/P.L |S;D/P.D/:

Using the quantification of the model specified as part of Example 4.1, we arrive
at the prior distribution P.L/ D .0:82; 0:18/. Hence, a priori, there is an 18%
probability that the tree will lose its leaves. �
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The above approach does not incorporate evidence into the inference task.
In addition, it is a very inefficient approach for nontrivial Bayesian networks because
the joint distributionP.X/ overX is constructed as an intermediate step and because
a lot of calculations are repeated.

As we will see, it is possible to develop a more efficient approach to probabilistic
inference by exploiting the independence relations induced by the structure of the
DAG and the evidence and by minimizing the repetition of calculations. Having said
that, let us turn to the general case of computing the posterior marginal P.X |"/ of
a variable, X , given evidence ".

Let " D {"1; : : : ; "m} be a nonempty set of evidence over variables X."/. For
a (non-observed) variable Xvj 2 X of N, the task is to compute the posterior
probability distribution P.Xvj |"/. This can be done by exploiting the chain rule
factorization of the joint probability distribution induced by N:

P.Xvj |"/ D �.P." |Xvj /P.Xvj //

D P." |Xvj /P.Xvj /

P."/
D P.Xvj ; "/

P."/

/ P.Xvj ; "/

D
X

Y2X\{Xvj }

P.X; "/

D
X

Y2X\{Xvj }

Y

Xvi 2X
P.Xvi |Xpa.vi //E"

D
X

Y2X\{Xvj }

Y

Xvi 2X
P.Xvi |Xpa.vi //

Y

X2X."/
EX

for each Xvj 62 X."/, where EX is the evidence function for X 2 X."/ and vi is the
node representingXvi . Notice that

L.Xvj |"/ D P." |Xvj / D
X

Y2X\{Xvj }

Y

i 6Dj
P.Xvi |Xpa.vi //

Y

X2X."/
EX (5.2)

is the likelihood function ofXvj given ". SinceP.Xvj /may be obtained by inference
over the empty set of evidence, we can—using Bayes’ rule—compute

P.Xvj |"/ / L.Xvj |"/P.Xvj /:

The proportionality factor is the normalization constant ˛ D �.P.X; "// D P."/,
which is easily computed from P.X; "/ by summation over X as ˛ D �.P.X; "// DP

X P.X; "/; see 3.3 on page 47.
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Example 5.2 (Posterior Probability (Apple Jack)). One evening when Apple Jack
is taking his usual after-dinner walk in the garden, he observes his finest apple tree
to be losing its leaves. Given that he knows that this may be an indication of the tree
being sick, he starts wondering whether or not the tree is sick.

Apple Jack is interested in the probability of the tree being sick given the
observation on the tree losing its leaves

P.S |"/ D P.S; "/

P."/

D
P

S

P
D P.S/P.L |S;D/P.D/EL

P."/

/ .0:0927; 0:0905/;

where EL D .0; 1/ is the evidence function reflecting the tree losing its leaves.
The normalization constant is ˛ D P."/ D P.S D no |"/ C P.S D yes |"/ D
0:0927 C 0:0905 D 0:1832. This produces the posterior distribution P.S |"/ D
.0:506; 0:494/ over the tree losing its leaves. Hence, there is an increased probability
that the tree is sick when it has been observed to lose its leaves. The prior distribution
on the tree being sick is P.S/ D .0:9; 0:1/. �

In general, probabilistic inference is an NP-hard task (Cooper 1990). Even
approximate probabilistic inference is NP-hard (Dagum & Luby 1993). For certain
classes of Bayesian network models, the complexity of probabilistic inference is
polynomial or even linear in the number of variables in the network. The complexity
is polynomial when the graph of the Bayesian network is a poly-tree (Kim &
Pearl 1983, Pearl 1988) (a directed graph G is called a poly-tree, if its underlying
undirected graph is singly connected), while it is linear when the graph of the
Bayesian network is a tree.

The most critical problem related to the efficiency of the inference process
is that of finding the optimal order in which to perform the computations. The
inference task is, in principle, solved by performing a sequence of multiplications
and additions.

Query-Based Inference

One approach to inference is to consider the inference task as the task of computing
the posterior distribution of a set of variables. This is referred to as query-based
inference. We define the notion of a query,Q, against a Bayesian network model N
as follows.

Definition 5.1 (Query). Let N D .X;G;P/ be a Bayesian network model. A
query Q is a three-tuple Q D .N;T; "/ where T � X is the target set and " is
the evidence set.
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The solution of a query, Q, is the posterior distribution over the target, that is,
P.T |"/. A variable X is a target variable if X 2 T. Notice that computing all
posterior marginals of a Bayesian network N D .X;G;P/ corresponds to solving |X|

queries, that is, Q D .N; {X }; "/ for each X 2 X.
Prior to solving the query Q, the graph G of N may be pruned to include only

variables relevant for the query. One class of variables which may be pruned from
the graph without any computation is the class of barren variables; see Sect. 3.3.4
on page 53 for an example. Here, we give a formal definition of a barren variable.

Definition 5.2 (Barren Variable). Let N D .X;G;P/ be a Bayesian network and
letQ D .N;T � X; "/ be a query against N. A variableX is a barren variable with
respect to Q, if X 62 T, X 62 ", and all descendants, if any, de.X/, of X are barren.

When a variable X is classified as a barren variable, it is always relative to a
target and given a set of evidence. A barren variable does not add any information
to the inference process. It is computationally irrelevant to Q.

Once all barren variables with respect to Q have been pruned from the graph G,
the inference task can be solved by variable elimination as described in the previous
section.

In addition to the concept of a barren variable, there is the concept of a nuisance
variable.

Definition 5.3 (Nuisance Variable). Let N D .X;G;P/ be a Bayesian network
and let Q D .N;T � X; "/ be a query against N. A non-barren variable X is a
nuisance variable with respect to Q, if X 62 T, X 62 ", and X is not on a path
between any pair of variables Y 2 T and Z 2 ".

Notice that a nuisance variable is computationally relevant for a queryQ, but it is
not on a path between any pair of evidence and query variables. Given a query and a
set of evidence variables, the contribution from a nuisance variable does not depend
on the observed values of the evidence variables. Hence, if a query is to be solved
with respect to multiple instantiations over the evidence variables, then the nuisance
variables (and barren variables) may be eliminated in a preprocessing step to obtain
the relevant network (Lin & Druzdzel 1997). The relevant network consists of target
variables, evidence variables, and variables on paths between target and evidence
variables only.

Example 5.3 (Barren Variables and Nuisance Variables). Let us return to the chest
clinic example (Example 4.2 on page 73) and consider the task of computing the
probability of each disease given the observations that the patient is a smoker and
has a positive X-ray result. That is, we need to compute P.Y |"/ for Y 2 {T;L;B}

and " D {S D yes; X D yes}.
The variables {A; T } are nuisance variables with respect to posteriors for B

and L. The variable D is a barren variable with respect to the posteriors for B , T ,
and L, whereas B is a barren variable with respect to the posteriors for T and L.
Figure 5.1 shows the relevant networks for (a) computing P.T |"/ and P.L |"/ and
for (b) computing P.B |"/. �
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Fig. 5.1 The relevant networks for computing (a) P.T |"/ and P.L |"/ and (b) P.B |"/

The approach to inference outlined above may be referred to as a direct approach.
Arc reversal is a specific type of direct approach to inference (Olmsted 1983,
Shachter 1986).

Arc Reversal

In Sect. 3.4.1.1 on page 56, we illustrated how application of Bayes’ rule can be
given a graphical interpretation as arc reversal. We mentioned that Olmsted (1983)
and Shachter (1986) have exploited this view of inference in their arc reversal
algorithms for inference in probabilistic networks. Here, we consider the process
in more detail.

Let G be the DAG of a Bayesian networkN D .X;G;P/ and assume a queryQ D
.N; {Z};;/ against N. The inference task is to compute P.Z/ by eliminating all
variables X \ {Z}.

The inference process on G has a natural graphical interpretation as a sequence
of arc reversals and barren variable eliminations. The fundamental idea is to adjust
the structure of G such that all variables except Z are pruned as barren variables
while maintaining the underlying properties of the joint probability distributions
over the remaining variables. The structure of G is adjusted through a sequence of
arc reversal operations.

Assume Xw is the next variable to be eliminated as a barren variable. Let Xw

have parents Xpa.w/ D Xi [ Xj and Xv have parents Xpa.v/ D {Xw} [ Xj [ Xk
where Xi \ Xj D Xi \ Xk D Xj \ Xk D ; such that Xi D Xpa.w/ \ Xpa.v/

are the parents specific for Xw, Xj D Xpa.w/ \ Xpa.v/ are the common parents,
and Xk D Xpa.v/ \Xfa.w/ are the parents specific for Xv.

The reversal of arc .w; v/ proceeds by setting Xpa.w/ D Xi [ Xj [ Xk [ {Xv}

andXpa.v/ D Xi [Xj [Xk as well as performing the computations specified below;
see Fig. 5.2 for a graphical representation
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Fig. 5.2 An illustration of reversal of the arc .w; v/
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Fig. 5.3 Computing P.L/ by arc reversal

P.Xv |Xi ;Xj ;Xk/ D
X

Xw

P.Xw |Xi ;Xj /P.Xv |Xw; Xj ;Xk/ (5.3)

P.Xw |Xv; Xi ; Xj ;Xk/ D P.Xw |Xi;Xj /P.Xv |Xw; Xj ;Xk/

P.Xv |Xi;Xj ;Xk/
: (5.4)

The operation of reversing an arc changes the structure of G without changing
the underlying joint probability distribution over X induced by N.

Once the arc .w; v/ has been reversed, the variableXw is a barren variable relative
to the other variables (given the empty set of evidence) and can be pruned from G

without further computations.
The basic idea of the inference process known as arc reversal is to perform a

sequence of arc reversals and barren variable eliminations on the DAG G until a
desired marginal or conditional is obtained. In this process a valid Bayesian network
structure is maintained throughout the inference process.

Example 5.4 (Arc Reversal). We may compute the prior probability distributionP.L/
in the Apple Jack example (see Example 4.1 on page 71) using a sequence of arc
reversals and barren variable eliminations as indicated in Fig. 5.3.

Notice that the arc reversal method does not have worse complexity than variable
elimination. �

Arc reversal is not a local computation algorithm in the sense that when reversing
an arc .w; v/, it is necessary to test for existence of a directed path from w to v not
containing .w; v/. If such a path exists, then the arc .w; v/ cannot be reversed until
one or more other arcs have been reversed as reversing .w; v/would otherwise create
a directed path.
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Graphical Representation of Inference

We may define the task of solving a Bayesian network model N D .X;G;P/ as the
problem of computing the posterior marginal P.X |"/ given a set of evidence " for
all variablesX 2 X.

When defining the task of probabilistic inference as the task of computing
the posterior marginals P.X |"/ for all X given evidence ", the most common
approach is to use a secondary computational structure. Performing inference in
a secondary computational structure aims at reusing calculations solving all queries
simultaneously.

From (5.1) on page 112, we should notice the direct correspondence between
the acyclic, directed graph G and the factorization of the joint probability distribu-
tion P.X/ over X. The domain of each factor in the factorization corresponds to
a node and its parents. The head of the factor is the child node, whereas the tail
consists of the parents. Furthermore, if we drop the distinction between head and
tail, we see that the domain of each factor corresponds to a clique (a clique is a
maximal complete subgraph) of Gm—the moralization of G. This is exploited to
build a secondary structure for performing inference.

Assume we are in the process of computing P.Xi /. Let Y be the first random
variable to eliminate. The elimination process proceeds by local computation in
order to maintain efficiency (i.e., we exploit the distributive law to maintain the
factorization of the joint probability distribution—see Sect. 3.3.3 on page 51). The
set of probability potentials P can be divided into two disjoint subsets with respect
to Y . Let PY � P be the subset of probability potentials including Y in the domain

PY D {P 2 P|Y 2 dom.P /};

where dom.P / denotes the domain of P (i.e., the set of variables over which it
is defined). Then P \ PY is the set of probability potentials not including Y in
their domain. Let �Y be the probability potential obtained by eliminating Y (by
summation) from the combination of all probability potentials in PY . Using �Y
as well as a generalized version of the distributive law, we may rewrite 5.1 on
page 112 as

P.Xi / D
X

X2X\{Xi }

Y

Xv2X
P.Xv |Xpa.v//

D
X

X2X\{Xi }

Y

�2P\PY

�
Y

�02PY
�0

D
X

X2X\{Xi ;Y }

Y

�2P\PY

�
X

Y

Y

�02PY
�0

D
X

X2X\{Xi ;Y }

�Y
Y

�2P\PY

�: (5.5)
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Fig. 5.4 A graphical illustration of the process of eliminating Y from �.X1; X2; Y / and X1
from �.X1; X2; X3; X4/, where the ovals represent the domain of a potential before elimination
and rectangles represent the domain of a potential after elimination
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Fig. 5.5 The Burglary or
Earthquake network

Equation 5.5 on the preceding page specifies a decomposition of the joint
probability distribution over X \ {Y }. The decomposition has the form of (5.1). The
decomposition is the product over the elements of P\PY [{�Y }. In addition, we have
performed the elimination over Y by local computations only involving potentials
of which Y is a domain variable. We say that the set

P \ PY [ {�Y }

is a reduction of P where Y has been eliminated. The elimination of the next variable
may proceed in the same manner on P \ PY [ {�Y }. The order in which variables
are eliminated is the elimination order. An example of this process may be depicted
graphically as shown in Fig. 5.4 where we assume dom.�Y / D .X1;X2/. The arrows
in the figure are used to illustrate the flow of computations.

The elimination of Y from �.X1;X2; Y / creates a potential over �.X1;X2/
which is included in the elimination of the next variableX1 to be eliminated. In this
way the process continues until the desired marginals are obtained. Let us consider
an even more concrete example.

Example 5.5 (Burglary or Earthquake, page 25). Consider the Bayesian network
in Fig. 2.3 on page 26, which is repeated in Fig. 5.5.

The prior marginal on A may be computed by elimination of {B;E;R;W } as
follows:

P.A/ D
X

E

P.E/
X

B

P.B/P.A |B;E/
X

R

P.R |E/
X

W

P.W |A/: (5.6)
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A A AE AE ABE

A AW
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Fig. 5.6 A graphical illustration of the process of computing P.A/ in (5.6), where the ovals
represent the domain of a potential before elimination and rectangles represent the domain of a
potential after elimination

W W AW A AE

AE ABE

E ER

Fig. 5.7 A graphical illustration of the process of computing P.W / in (5.7), where the ovals
represent the domain of a potential before elimination and rectangles represent the domain of a
potential after elimination

Figure 5.6 shows a graphical representation of the computations and potentials
created the during process of computing P.A/.

Similarly, the prior marginal distribution over W may be computed by elimina-
tion of {A;B;E;R} as follows:

P.W / D
X

A

P.W |A/
X

E

P.E/
X

B

P.B/P.A |B;E/
X

R

P.R |E/: (5.7)

Figure 5.7 shows a graphical representation of the computations and potentials
created during the process of computing of P.W /.

Notice the similarity between the potentials created in the process of comput-
ing P.A/ and P.W /. There is a significant overlap between the potentials created
and therefore the calculations performed. This is no coincidence. �

Junction Trees

The task of probabilistic inference may be solved efficiently by local procedures
operating on a secondary computational structure known as the junction tree
(also known as a join tree and a Markov tree) representation of a Bayesian
network (Jensen & Jensen 1994, Jensen et al. 1994).
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Fig. 5.8 A junction tree
representation T for the chest
clinic network

The junction tree representation is efficient when solving the inference task for
multiple sets of different evidence and target variables. A junction tree represen-
tation T of a Bayesian network N D .X;G;P/ is a pair T D .C; S/ where C is
the set of cliques and S is the set of separators. The cliques C are the nodes of T,
whereas the separators S annotate the links of the tree. Each clique C 2 C represents
a maximal complete subset of pairwise connected variables of X, that is, C � X,
of an undirected graph.1 The link between two neighboring cliques Ci and Cj is
annotated with the intersection S D Ci \ Cj , where S 2 S.

Example 5.6 (Chest Clinic). Figure 4.2 on page 74 shows the DAG G of the chest
clinic network N D .X;G;P/; see Example 4.2 on page 73.

Figure 5.8 shows a junction tree representation T D .C; S/ of the chest clinic
network. The junction tree consists of cliques

C D {{A; T }; {B;D;E}; {B;E;L}; {B;L; S }; {E;L; T }; {E;X }
}

and separators
S D {{B;E}; {B;L}; {E}; {E;L}; {T }

}

:

The structure of T is determined from the structure of G. �

The process of creating a junction tree representation of a DAG is beyond the
scope of this book. Instead, we refer the interested reader to the literature; see, for
example, Cowell, Dawid, Lauritzen & Spiegelhalter (1999).

The junction tree serves as an excellent control structure for organizing the com-
putations performed during probabilistic inference. Messages are passed between
cliques of the junction tree in two sweeps such that a single message is passed
between each pair of neighboring cliques in each sweep. This process is referred to
as a propagation of information.

1The undirected graph is constructed from the moral graph Gm of G by adding undirected edges
until the graph is triangulated. A graph is triangulated if every cycle of length greater than three
has a chord.
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R � � � Ci S Cj

C 0

C 00

S 0

S 00

Fig. 5.9 When Cj has absorbed information from its other neighbors, Ci can absorb from Cj

Once the junction tree T D .C; S/ has been constructed, a probability potential is
associated with each clique C 2 C and each separator S 2 S between two adjacent
cliques Ci and Cj where S D Ci \ Cj ; see Fig. 5.9.

Inference involves the following steps:

1. Each item of evidence must be incorporated into the junction tree potentials. For
each item of evidence, an evidence function is multiplied onto an appropriate
clique potential.

2. Some clique R 2 C of T is selected. This clique is referred to as the root of the
propagation.

3. Then messages are passed toward the selected root. The messages are passed
through the separators of the junction tree (i.e., along the links of the tree).
These messages cause the potentials of the receiving cliques and separators to
be updated. This phase is known as COLLECTINFORMATION.

4. Now messages are passed in the opposite direction (i.e., from the root toward the
leaves of the junction tree). This phase is known as DISTRIBUTEINFORMATION.

5. At this point, the junction tree is said to be in equilibrium: the probabilityP.X |"/

can be computed from any clique or separator containing X—the result will be
independent of the chosen clique or separator.

Prior to the initial round of message passing, for each variable Xv 2 X, we
assign the conditional probability distribution P.Xv |Xpa.v// to a clique C such
that Xfa.v/ � C . Once all conditional probability distributions have been assigned
to cliques, the distributions assigned to each clique are combined to form the initial
clique potential.

Example 5.7 (Association of CPTs to Cliques). Consider again the junction tree of
the chest clinic network shown in Fig. 5.8. Each conditional probability distribu-
tion P 2 P is associated with a clique of T such that dom.P /�C for C2C. Notice
that the association of distributions with cliques is unique in this example. �

The basic inference algorithm is as follows. Each separator holds a single
potential over the separator variables, which initially is a unity potential. During
propagation of information, the separator and clique potentials are updated. Con-
sider two adjacent cliques Ci and Cj as shown in Fig. 5.9. When a message is
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Fig. 5.10 A junction tree
representation T of the
Bayesian network depicted in
Fig. 5.5 on page 119

passed from Cj to Ci either during COLLECTINFORMATION or DISTRIBUTEIN-
FORMATION, Ci absorbs information from Cj . Absorption of information involves
performing the following calculations:

1. Calculate the updated separator potential:

��
S D

X

Cj \S

�Cj :

2. Update the clique potential of Ci :

�Ci WD �Ci
��
S

�S
:

3. Associate the updated potential with the separator:

�S D ��
S :

After a full round of message passing, the potential associated with any clique
(separator) is the joint probability distribution (up to the same normalization
constant) of the variables in the clique (separator) and the evidence. This algorithm
is known as the HUGIN algorithm. Details on the inference process can be found
in the literature (Lauritzen & Spiegelhalter 1988, Andersen, Olesen, Jensen &
Jensen 1989, Jensen et al. 1990, Dawid 1992, Jensen et al. 1994, Lauritzen &
Jensen 2001).

Example 5.8 (Cluster Trees Vs. Junction Trees). Figure 5.10 shows a junction tree
representation T D .C; S/ of the Bayesian network depicted in Fig. 5.5 on page 119
with cliques:

C D {{A;B;E}; {E;R}; {A;W }}

and separators:
S D {{E}; {A}}:

Notice the similarity between Fig. 5.10 and Figs. 5.6 and 5.7. The nodes
of Figs. 5.6 and 5.7 are clusters (i.e., subsets of variables), whereas the nodes of
Fig. 5.10 are cliques (i.e., maximal subsets of pairwise connected variables) of
undirected graphs.
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Fig. 5.11 The undirected
graph corresponding to
Figs. 5.6, 5.7, and 5.10
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Fig. 5.12 Message passing
in T

The undirected graph corresponding to a junction tree is obtained by adding
undirected edges between each pair of variables contained in the same clique or
cluster. Figure 5.11 is the undirected graph corresponding to Figs. 5.6, 5.7, and 5.10.

Figure 5.12 shows how messages are passed over T relative to the root ABE.
Underlying any approach to inference is the junction tree representation, al-

though its presence may be implicit. Figure 5.6 shows the cluster tree representation
underlying the computation of P.A/, whereas Fig. 5.7 shows the cluster tree
representation underlying the computation of P.W /. Figures 5.6 and 5.7 are not
junction trees, but cluster trees. The cliques of a junction tree are maximal complete
subsets of pairwise connected variables, whereas clusters are not necessarily
maximal. �

The quality of the junction tree T D .C; S/ determines the efficiency of inference.
A common score or criterion to use when considering the optimality of a junction
tree is the maximum state space size over all cliques in T, that is, maxC2C kCk.
Another similar score is the sum over all cliques in T, that is,

P
C2C kCk.

If the maximum state space size of a clique C is very large, for example,
kCk D 1;000;000;000, then exact inference may become intractable on standard
desktop computers. A very large state space size of a clique may be due to a poor
triangulation of the underlying DAG of the Bayesian network, for instance. Thus,
the first option should be to search for a better triangulation reducing (significantly)
the state space size of the largest clique. If the triangulation, on the other hand, is
known to be optimal (or near optimal), then options to change the structure of the
graph should be considered, for instance, using the modeling techniques described
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in Chap. 7. An alternative to changing the structure is to use approximate algorithms
for performing inference in the model.

All types of probabilistic networks considered in this book may be solved
by message passing in a junction tree representation. However, we will restrict
ourselves from a detailed treatment of this topic for all models presented as it is
beyond the scope of this book.

The approach to inference outlined above may be referred to as an indirect
approach.

5.1.2 Inference in CLG Bayesian Networks

Let N D .X;G;P;F/ be a CLG Bayesian network with continuous random
variables, X� , and discrete random variables, X�, such that X D X� [X�. To solve
the probabilistic inference task on N is to compute the marginal for each X 2 X.
Since N is a CLG Bayesian network, the task of performing inference becomes
more subtle than in the case of a pure discrete Bayesian network.

The prior distribution, P.X/, of a discrete variable X 2 X� is equal to the
distribution of X in the discrete network N0 D .X�;P/ obtained by removing all
continuous variables from the model (all continuous variables are barren variables
with respect to the joint over the discrete variables). The prior density of a
continuous variable Y , on the other hand, will, in general, be a mixture of Gaussian
distributions where the mixing factors are joint probabilities over configurations of
discrete variables I � X�. For each configuration i of I with nonzero probability,
that is, p.i/ > 0, the joint distribution of I and X has the form

P.I D i/ � N.
.i/; �2.i//:

This implies that the marginal of X 2 X� is

L.X/ D
X

i WP.IDi />0
P.i/ � N.
.i/; �2.i//:

For each configuration i of I with P.i/ D 0, the mean 
.i/ and variance �2.i/
may be random numbers. Hence, the marginal density function for a continuous
variable X 2 X� is, in general, a mixture of Gaussian distributions

f .x/ D
nX

iD0
˛ifi .x/;

where each component fi is a one-dimensional Gaussian density function in X
and each coefficient ˛i is the probability of a configuration of discrete variables.
This implies that the marginal density function of X 2 X� is not necessarily a
CLG distribution with the indicated mean 
 and variance �2. That is, the result
of a marginalization of a CLG distribution over continuous variables is a CLG
distribution, whereas the result of a marginalization of a CLG distribution over
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discrete variables, in general, is not. The marginalization is performed using the
operations defined by Lauritzen & Jensen (2001). The result of the first type of
marginal is referred to as a strong marginal, whereas the latter is referred to as
a weak marginal. The marginal is strong as we compute the mean 
 and the
variance �2, and we know the distribution is a CLG distribution; whereas in the
case of a weak marginal, only 
 and � are computed; the exact density is usually
not computed as part of belief update. It is computed separately.

Probabilistic inference is the task of updating our belief about the state of the
world in light of evidence. Evidence on discrete variables, be it hard or soft evidence,
is treated as in the case of discrete Bayesian networks. Evidence on a continuous
variable, on the other hand, is restricted to be hard evidence, that is, instantiations.

In the general case where evidence " is available, the marginal for a discrete
variableX 2 X� is a probability distribution P.X |"/ conditional on the evidence ",
whereas the marginal for a continuous variableX 2 X� is a density function f .x |"/
conditional on " with a mean 
 and a variance �2.

Example 5.9 (Density Function). Example 4.3 on page 77 shows an example of
a simple CLG Bayesian network. Computing the prior probability density in X3
amounts to eliminating the variablesX1 andX2. With the quantification specified in
Example 4.3, this produces the following mixture:

L.X3/ D 0:75 � N .−5; 5:1/C 0:25 � N .5; 5:2/

with mean 
 D −2:5 and variance �2 D 23:88. Notice that the density forX3 is not
the density for the Gaussian distribution with mean 
 D −2:5 and variance �2 D
23:88. The density function is shown in Fig. 5.13 on the next page.

The prior probability density for X2 and the prior probability distribution for X1
are trivial to compute as {X2;X3} are barren with respect to the prior for X1 and
similarly {X1;X3} are barren with respect to the prior for X2. �

The above examples illustrates that the class of CLG distributions is not
closed under the operation of discrete variable elimination. The marginal distribu-
tion N.
; �2/may, however, be used as an approximation of the true marginal. This
marginal is the closest non-mixture to the true marginal in terms of the Kullback–
Leibler distance (Lauritzen 1996).

Example 5.10 (Density Function vs. Weak Marginal). Again, let us consider the
CLG Bayesian network N from Example 4.3 on page 77. Figure 5.13 on the
next page shows the density function for X3. Figure 5.14 shows both the density
function f .X3/ and the weak marginal g.X3/ for X3. It is obvious that the weak
marginal is only an approximation of the exact density function. �

Since the CLG distribution is not closed under the operation of discrete variable
elimination and since the operation of discrete variable elimination is not defined
when continuous variables are in the domain of the potential to be marginalized, it
is required that continuous variables are eliminated before discrete variables. For
this reason, when marginalizing over both continuous and discrete variables,
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Fig. 5.13 The density function for X3
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Fig. 5.14 The density function f .X3/ for X3 and its weak marginal g.X3/

we first marginalize over the continuous variables and then over the discrete
variables (Lauritzen 1992b).

This implies that the (exact) solution method for inference in CLG Bayesian
networks induces the partial order X� 
 X� on the elimination order. Hence,
the continuous variables X� should be eliminated before the discrete variables X�.
A variable elimination order, which is restricted to induce a certain (partial) order, is
referred to as a strong elimination order. Hence, we use a strong elimination order to
solve a CLG Bayesian network by variable elimination. For this reason, inference
in a CLG Bayesian network may be more resource intensive than inference in a
corresponding Bayesian network with the same structure, but consisting only of
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continuous random variables. Notice that due to independence relations induced by
the structure of G D .V;E/ of a CLG Bayesian network and the structure of the
evidence ", it may in some situations be possible to eliminate discrete variables
before continuous variables.

In the special case where the ancestors of v 2 V are all representing continuous
variables (i.e., an.v/ � V� ) for Xv 2 X, the posterior marginal for Xv is a
strong marginal. Otherwise, it is a weak marginal. If the posterior for Xv is a weak
marginal, the density function of Xv is an unknown mixture of Gaussians, which
needs to be computed as part of probabilistic inference.

The normalization constant ˛ computed as part of probabilistic inference is
proportional to the density at the observed values of the continuous variables.
The proportionality constant is P.".�/ |".� //, where ".�/ is the evidence on
discrete variables and ".� / is the evidence on continuous variables. In general, ˛ is
scale dependent and does not make much sense. For instance, the value of ˛ will be
dependent on whether height is measured in meters or centimeters. If " only contains
discrete variables, then ˛ is the probability of ".

The presence of both continuous and discrete variables makes the operations
required for performing probabilistic inference in CLG Bayesian networks more
complicated than those required for performing probabilistic inference in discrete
Bayesian networks. For a detailed treatment on inference in CLG Bayesian net-
works, see, for example, Lauritzen (1992b) and Lauritzen & Jensen (2001).

5.2 Solving Decision Models

We build decision models in order to support efficient belief update and decision
making under uncertainty in a given problem domain. Belief update is the task of
computing our updated beliefs in (unobserved) events given observations on other
events, whereas decision making under uncertainty is the task of identifying the
(optimal) decision strategy for the decision-maker-given observations.

The construction of influence diagrams and limited memory influence diagrams,
as well as the notion of expected utility, is described in detail in Sect. 4.2.

5.2.1 Solving Discrete Influence Diagrams

Inference in an (perfect recall) influence diagram N D .X;G;P;U/ is to determine
an optimal strategy O� D { Oı1; : : : ; Oın} for the decision maker and compute the
expected utility of adhering to O�.

The influence diagram is a compact representation of a joint expected utility
function due to the chain rule

EU.X/ D
Y

Xv2XC

P.Xv |Xpa.v//
X

w2VU
u.Xpa.w//:

Applying the
P

-max-
P

-rule (Jensen 1996) on the joint expected utility function,
we may solve N by eliminating variables in the reverse order of the information
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precedence order 
. That is, the precedence relation 
 induces a partial order on the
elimination of variables in X. This implies that we use a strong variable elimination
order to solve an influence diagram by variable elimination.

Starting with the last decision Dn, the
P

-max-
P

-rule says that we should
average over the unknown random variables In, maximize over the decision Dn,
average over the random variables In−1 known to the decision maker at Dn (but
not known to the analyst), maximize over Dn−1, and so on. The principle is to
average over the unknown random variables, maximize over the decision variable,
and finally average over the observed random variables.

The intuition behind the application of the
P

-max-
P

-rule in reverse order of
decisions is as follows. When we consider the last decision Dn, its past is fully
observed, and the only unobserved variables are the variables never observed or
observed after Dn, that is, In. Hence, after averaging over In, we can select a
maximizing argument of the utility function u.I.Dn/;Dn/ for each configuration
of I.Dn/ as an optimal decision atDn. Notice that we select a maximizing argument
for each configuration of the past. In principle, this eliminates In and Dn from the
decision problem, and we may considerDn−1 as the last decision. This implies that
when we solve forDn−1, we assume the decision maker to act optimally forDn.

Notice that the variables are observed at the time of decision, but not (necessarily)
at the time of analysis. Whether a random variable is known or unknown is defined
from the point of view of the decision maker, and not the analyst. In this way we
may solve N by computing the expected utility EU. O�/ of the optimal strategy� as

EU. O�/ D
X

I0

max
D1

X

I1

max
D2

� � �
X

In−1

max
Dn

X

In

EU.X/

D
X

I0

max
D1

X

I1

max
D2

� � �
X

In−1

max
Dn

Y

Xv2XC

P.Xv |Xpa.v//
X

Uw2XU

u.Xpa.w//: (5.8)

As part of the process, prior to the elimination of each decisionD, we record the
maximizing arguments of D over the utility potential  .D; I.D// from which D
is eliminated for each configuration of I.D/. From  .D; I.D//, we define the
(probabilistic) policy function ı.D | I.D// forD as

ı.d | I.D/ D i/ D
{

1 if d D arg maxd 0  .d 0; i /;
0 otherwise;

where we assume the maximizing argument arg maxd 0  .d 0; i / to be unique. If it is
not unique, then any maximizing argument may be chosen.2

Example 5.11 (Oil Wildcatter). To solve the decision problem of the oil wildcatter
of Example 4.5 on page 82 is to identify the optimal decision policies for the

2As we shall see in Sect. 5.2.4, the policy function need not be deterministic.
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Table 5.1 The joint expected
utility function EU.D; S; T /

D S T

no cl no 0

yes cl no 7

no op no 0

yes op no 7

no di no 0

yes di no 7

no cl yes −2:4

yes cl yes 18:6

no op yes −3:5

yes op yes 8

no di yes −4:1

yes di yes −16:6

Table 5.2 The expected
utility function EU.T /

T

no 21

yes 22:5

test and drill decisions. From the joint expected utility function, EU.X/, over
variables X of N D .X;G;P;U/, we may compute the expected utility, EU. O�/,
of the optimal strategy, O� D

{ OıD.S; T /; OıT ./
}

, and in the process determine the

optimal strategy as

EU. O�/ D max
T

X

S

max
D

X

O

P.O/P.S |O;T /.U1.T /C U2.D;O//:

Table 5.1 shows the expected utility function over D, S , T from which the
decision policy OıD.S; T / is identified as the maximizing argument of D for each
configuration of S and T . The oil wildcatter should drill for oil unless he performed
the test and obtained a diffuse pattern.

Table 5.2 shows the expected utility function over T from which the decision
policy OıT ./ is identified as the maximizing argument of T . Hence, the test should
always be performed.

The decision policies OıT ./ and OıD.S; T / are already known from Example 4.7
on page 84. The expected utility for the decision problem is 22:5. �

Solving an influence diagram by performing the variable eliminations according
to (5.8) will be highly inefficient even for simple influence diagrams. Instead, we
will—as in the case of Bayesian networks—apply a generalized version of the
distributive law to increase computational efficiency.

For notational convenience, the generalized marginalization operator

∑

was
introduced by Jensen et al. (1994). The marginalization operator works differently
for marginalization of random variables and decision variables:
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∑

X

� ,
X

X

� and

∑

D

� , max
D
�;

where X is a random variable while D is a decision variable. We will use the
generalized marginalization operator to explain the process of solving an influence
diagram; see Madsen & Jensen (1999) for details.

Using a generalized version of the distributive law, the solution of an influence
diagram may proceed as follows. Let Y be the first random variable to eliminate.
The set of utility potentials U can be divided into two disjoint subsets with respect
to Y . Let UY � U be the subset of utility potentials including Y in the domain

UY D {u 2 U|Y 2 dom.u/}:

Then U \ UY is the set of utility potentials not including Y in the domain.
Similarly, let PY � P be the subset of probability distributions including Y in the
domain

PY D {P 2 P|Y 2 dom.P /}:

Then P \ PY is the set of probability potentials not including Y in the domain.
The elimination process proceeds by local computation in order to maintain
efficiency (i.e., we exploit the distributive law to maintain the factorization of the
joint expected utility function). Let �Y be the probability potential obtained by
eliminating Y from the combination of all probability potentials in PY and let  Y
be the utility potential obtained by eliminating Y from the combination of all
probability and utility potentials in PY [ UY such that

�Y D

∑

Y

Y

�2PY
�;

 Y D

∑

Y

�Y
X

 2UY

 : (5.9)

The two potentials �Y and  Y will be used to enforce the factorization of the
joint expected utility function over X \ {Y }. The factorization may be achieved by
rewriting (5.8) using �Y and  Y as well as applying the distributive law

EU. O�/ D

∑

X2X

� Y

�2P
�
X

 2U
 
	

D

∑

X2X

�� Y

�2P\PY

�
Y

�02PY
�0
�� X

 2U\UY

 C
X

 02UY

 0
��

D

∑

X2X\{Y }

�� Y

�2P\PY

�

�

∑

Y

� Y

�02PY
�0
�� X

 2U\UY

 C
X

 02UY

 0
��
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D

∑

X2X\{Y }

�� Y

�2P\PY

�

��� X

 2U\UY

 

�
�Y C  Y

��
(5.10)

D

∑

X2X\{Y }

�� Y

�2P\PY

�

�
�Y

� X

 2U\UY

 C  Y

�Y

��
: (5.11)

Equation (5.11) specifies a decomposition of the joint expected utility function
over X \ {Y }, and decomposition has the form of (5.8). The decomposition is the
product of the summation over the elements of U \ UY [ {

 Y
�Y

} and the product over
the elements of P\PY [ {�Y }. In addition, we have performed the elimination of Y
by local computations only involving potentials with Y as a domain variable. We
say that the sets

P \ PY [ {�Y } and U \ UY [
{

 Y

�Y

}

are a value preserving reduction of P and U where Y has been eliminated. The
elimination of the next variable may proceed in the same manner on U\UY [{ Y

�Y

}

and P \ PY [ {�Y }.
The division operation in (5.11) is introduced because the combination of

probability potentials and utility potentials is nonassociative. Thus, either the
division should be performed or the probability potentials have to be distributed
over the terms of the utility function as in (5.10).

Example 5.12 (Oil Wildcatter). Utilizing the local computation approach explained
above, we may solve the oil wildcatter problem as follows:

EU. O�/ D max
T

X

S

max
D

X

O

P.O/P.S |O;T /.C.T /C U.D;O//

D max
T
.C.T /C

X

S

P.S/max
D

X

O

P.O/P.S |O; T /

P.S/
U.D;O//:

The division byP.S/ is necessary in order to obtain the correct conditional expected
utility for D. This division does not effect the policy.

The benefit of the local computation approach is more profound on large and
more complex influence diagrams. �

5.2.2 Solving CLQG Influence Diagrams

Inference in a CLQG influence diagram N D .X;G;P;F;U/ is similar to inference
in a discrete influence diagram. The task is to determine an optimal strategy, O� D
{ Oı1; : : : ; Oın}, for the decision maker and compute the expected utility of adhering
to O�.
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U1

U2

Budget

Units CostPrice

Fig. 5.15 Optimization of
price given marketing budget
size

The influence diagram is a compact representation of a joint expected utility
function due to the chain rule

EU.X� D i;X� / D
Y

v2V�
P.iv | ipa.v// �

Y

w2V�
p.yw |Xpa.w// �

X

z2VU
u.Xpa.z//:

The solution process for CLQG influence diagrams follows the same approach as
the solution process for discrete influence diagrams. The solution process proceeds
by applying an extension of the

P
-max-

P
-rule (Madsen & Jensen 2005).The

extension is that we need to eliminate the continuous random variables X� by
integration as opposed to summation. We refer the interested reader to the literature
for details on the solution process (Kenley 1986, Shachter & Kenley 1989, Poland
1994, Madsen & Jensen 2005).

The optimal strategy O� D { Oı1; : : : ; Oın} will consist of decision policies for
both discrete and continuous decision variables. The decision policy for a discrete
decision variable Di 2 X� \ XD is a mapping from the configuration of its
past I.Di / to dom.Di /, whereas the decision policy for a continuous decision
variableDj 2 X� \XD is a multilinear function in its continuous past I.Di /\X�
conditional on its discrete past I.Di /\ X�.

Example 5.13 (Marketing Budget (Madsen & Jensen 2005)). Consider a company
manager has to decide on a unit price, Price, to charge for a certain item he/she wants
to sell. The number of items sold, Units, is a function of the price and marketing
budget, Budget, whereas the cost of production, Cost, is a function of the number
of items sold. This scenario can be modeled using the CLQG influence diagram
shown in Fig. 5.15. Prior to making the decision on price, he/she will be allocated a
marketing budget.

The decision problem may be quantified as follows where the unit of utility is
thousands of euros. The distributions of items sold and production cost are

L.Units |Budget D b;Price D p/ D N.20C 0:2 � b − 0:1 � p; 25/
L.Cost |Units D u/ D N.400C 10 � u; 2500/

The distribution of marketing budget is

L.Budget/ D N.100; 400/:
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Fig. 5.16 Expected utility as a function of price and marketing budget

The cost function is

U2.Cost D c/ D −c

and the revenue function is

U1.Price D p;Units D u/ D u � p:

Figure 5.16 shows the expected utility function as a function of M and P . The
optimal decision policy ıP .m/ for P is a linear function in M : ıP .m/ D 105Cm.

�

5.2.3 Relevance Reasoning

As mentioned in the previous section, a policy ı for D is a mapping from past
observations and decisions to the possible decision options at D. When modeling
a large and complex decision problem involving a sequence of decisions, the past
observations and decisions of a decision may involve a large set of variables. At
the same time, it may be that only a small subset of these are essential for the
decision. Informally speaking, an observation (or decision) is essential (also known
as requisite) for a decision, if the outcome of the observation may impact the choice
of decision option.

Assume we are able to identify and remove non-requisite parents of each
decision. This makes a policy for decision D a function from the requisite
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past RP.D/ to the decision options such that ı W RP.D/ → dom.D/. It is not a
trivial task to determine the requisite past of a decision D, that is, the variables
observed prior to D, whose values have an impact on the choice of decision option
forD (Shachter 1998, Lauritzen & Nilsson 2001, Nielsen 2001).

Definition 5.4 (Requisite Observation). Let N D .X;G D .V;E/;P;U/ be
an influence diagram. The observation on variable Yv 2 I.Di / is requisite for
decision Di in N if and only if v 6?G VU \ de.vi / | .VI.Di / \ {v}/, where vi is the
node representingDi .

The solution algorithm will identify some of the non-requisite parents for each
decision, but there is no guarantee that all non-requisite parents will be identified
and ignored. The implicit identification of non-requisite parents is due to conditional
independence properties of the graph.

Similar to the concept of a requisite observation is the concept of a relevant
variable. The set of variables relevant for a decision, D, is the set of variables
observed and the set of decisions made after decision D, which may impact the
expected utility ofD.

Definition 5.5 (Relevant Variable). Let N D .X;G D .V;E/;P;U/ be an
influence diagram. A variable Yv 2 F.Di / is relevant for decision Di if and only
if v 6?G VU \ de.vi / | .VI.Di / \ {v}/, where vi is the node representingDi .

Using the concepts of relevant variables and requisite observations, it is possible
to decompose the structure of an influence diagram N D .X;G D .V;E/;P;U/

into a submodels consisting only of requisite parents and relevant variables for each
decision in N.

Example 5.14 (Decomposition of Influence Diagrams (Nielsen 2001)). Let us con-
sider the influence diagram shown in Fig. 4.10 on page 89. Traversing the decision
variables in reverse order, we may for each decision variable construct the submodel
consisting of relevant variables and requisite parents only.

We consider the decisions in reverse order starting with D4. The reasoning
proceeds by searching for non-requisite parents ofD4. By inspection of the diagram,
it becomes clear that G blocks the flow of information from observations made
prior to D4 to the only utility descendant U3 of D4. Hence, all other parents are
non-requisite. Similarly, we identify the set of relevant variables. Figure 5.17 on the
following page shows the DAG induced by the subset of requisite observations and
relevant variables for D4.

Similarly, Figs. 5.18 and 5.19 show the DAGs induced by the subsets of requisite
observations and relevant variables for D3 and D2, respectively.

The DAG induced by the subset of requisite observations and relevant variables
forD1 is equal to the DAG shown in Fig. 4.10 on page 89. �

Decomposing an influence diagram into its submodels of requisite observations
and relevant variables for each decision is very useful for model validation.
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by the subset of requisite
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5.2.4 Solving LIMIDs

The LIMID representation relaxes the two fundamental assumptions of the influence
diagram representation. The assumptions are the total order on decisions and
the perfect recall of past decisions and observations. These two assumptions are
fundamental to the solution algorithm for influence diagrams described above. Due
to the relaxation of these two assumptions, the solution process of LIMIDs becomes
more complex than the solution process of influence diagrams.
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Let N D .X;G;P;U/ be a LIMID representation of a decision problem. The
Single Policy Updating (SPU) algorithm is an iterative procedure for identifying
(locally) optimal decision policies for the decisions of N. The basic idea is to start
an iterative process from some initial strategy where the policy at each decision is
updated while keeping the remaining policies fixed until convergence. The starting
point can be the uniform strategy where all options are equally likely to be chosen
by the decision maker.

As mentioned in Chap. 4, a decision policy ıDi is a mapping from the decision
past of Di to the state space dom.Di / of Di such that ıDi W I.Di / → dom.Di /.
This implies that we may use the probabilistic policy function ı0

i .Di | I.Di //

of ıDi .I.Di// introduced in Sect. 5.2.1

ı0
i .di | I.Di/ D j / D

{

1 if di D ıDi .j /;

0 otherwise:

This encoding will play a central role in the process of solving a LIMID.
Let N D .X;G;P;U/ be a LIMID model with chance and decision variables XC

and XD, respectively. A strategy � D {ıD W D 2 XD} for N induces a joint
probability distribution P�.X/ over X as it specifies a probability distribution for
each decision variable:

P�.X/ D
Y

Xv2XC

P.Xv |Xpa.v//
Y

Di2XD

ı0
i : (5.12)

The aim of solving N is to identify a strategy,�, maximizing the expected utility

EU.�/ D
X

X2X
P�.X/U.X/ D

Y

Xv2XC

P.Xv |Xpa.v//
Y

Di2XD

ı0
i

X

u2U
u:

The SPU algorithm starts with some initial strategy and iteratively updates a
single policy until convergence has occurred. Convergence has occurred when
no single policy modification can increase the expected utility of the strategy.
As mentioned above, a common initial strategy is the uniform strategy � D
{ı1

0
; : : : ; ın

0
} consisting of uniform policies ı1

0
; : : : ; ın

0
where ı0

i .d / D 1
kDik for

each d 2 dom.Di / and each Di 2 XD .
Assume� is the current strategy andDi is the next decision to be considered for

a policy update, then SPU proceeds by performing the following steps:

Retract Retract the policy ı0
i from � to obtain �−i D � \ {ı0

i } (i.e., �−i is a
strategy for all decisions exceptDi ).

Update Identify a new policy Oı0
i forDi by computing

Oı0
i D arg max

ı0

i

EU.�−i [ {ı0
i }/:

Replace Set � D �−i [ { Oı0
i }.
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SPU may consider the decisions in an arbitrary order. However, if the graph G

specifies a partial order on a subset of decisionsDi1 
 � � � 
 Dij 
 � � � 
 Dim , then
these decisions are processed in reverse order, cf. the solution process of ordinary
influence diagrams.

Example 5.15 (Solving LIMID: Breeding Pigs). To solve the breeding pigs deci-
sion problem of Example 4.13 on page 94 is to identify a strategy consisting of one
policy for each decision on whether or not to treat each pig for the disease. Using the
SPU algorithm described above, we may solve the decision problem by iteratively
updating each single policy until convergence has occurred.

The uniform strategy will serve as the initial strategy. Hence, we assign a uniform
policy ıi to each decisionDi . As there is a total temporal order on the decisions, we
consider them in reverse temporal order.

The SPU algorithm updates the policy of each decision iteratively until con-
vergence. Once convergence has occurred, we have obtained the strategy � D
{ıD1; ıD2 ; ıD3 }, where

ıD1.R1/ D
{

no R1 D unhealthy

no R1 D healthy

ıD2.R2/ D
{

yes R2 D unhealthy

no R2 D healthy

ıD3.R3/ D
{

yes R3 D unhealthy

no R3 D healthy

For R2 and R3, the strategy is to treat a pig when the test indicates that the pig
is unhealthy. For R1, no treatment should be performed. Notice that each policy is
only a function of the most recent test result. This implies that previous results and
decisions are ignored. �

Probability of Future Decisions

Equation (5.12) specifies a factorization of the joint probability distribution P�
over X encoded by a strategy�. This factorization may be interpreted as a Bayesian
network model. With this interpretation, we are able to compute the probability of
future events under the assumption that the decision maker adheres to the strategy�.
This property also holds for ordinary influence diagrams.

Example 5.16 (Probability of Future Decisions). In Example 5.15, we identified a
strategy � D {ıD1; ıD2; ıD3 } for the breeding pigs problem. Having identified a
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strategy, the farmer may be interested in knowing the probability of a pig being
healthy when it is sold for slaughtering. This probability may be computed using
(5.12).

The probability of a pig being healthy under strategy � is P�.H4 D true/ D
67:58, whereas the probability of a pig being healthy under the uniform strategy �
is P�.H4 D true/ D 70:55. The uniform strategy has a lower expected utility
though. �

Minimal LIMIDs

LIMIDs relax the assumption of perfect recall of the decision maker. This implies
that the structure of a LIMID defines what information is available to the decision
maker at each decision. In addition to specifying what information is available to
the decision maker, we may perform an analysis of which information is relevant to
each decision.

It is not always obvious which informational links to include in a LIMID with
graph G D .V;E/. Sometimes a link .v;w/ 2 E from Xv 2 XC to Dw 2 XD may
be removed from the graph G without affecting the policies and the expected utility
of the computed policies. When this is the case, we say that the link .v;w/ (and the
parentXv given by the link) is non-requisite forDw.

Removing all non-requisite informational links from a LIMID N D .X;G D
.V;E/;P;U/ produces the minimal reduction Nmin D .X;G D .V;E�/;P;U/
of N.Any LIMID N has a unique minimal reduction Nmin obtained by iterative
removal of informational links from non-requisite parents into decisions.

Since removing a non-requisite parent X from decision Di may make another
previously requisite parent Y 2 Xpa.vi / a non-requisite parent, it is necessary to
iteratively process the parent set of each decision until no non-requisite parents are
identified. If N is an ordinary influence diagram, it is sufficient to perform a single
pass over the decisions starting with the last decision first. The reason is that we
have a total order on the decisions and all decisions are extremal (see Definition 5.6
below).

Optimal Strategies

In order to characterize the conditions under which SPU is guaranteed to find an
optimal solution, we need to define the notion of an extremal decision.

Definition 5.6 (Extremal Decision). Let N D .X;G;P;U/ be a LIMID. A
decision variableDi is extremal if and only if

.VU \ de.Di // ?G

[

j 6Di
fa.Dj / | fa.Di /:
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That is, a decision variable is extremal if all other decisions and their parents are
d-separated from the utility descendants of Di given the family of Di .

A LIMID is soluble if all decisions are extremal. If Di is extremal in N, then it
has an optimal policy. If all policies in � are optimal, then � is an optimal strategy.

Example 5.17 (Unsoluble LIMID: Breeding Pigs). The breeding pigs network in
Fig. 4.15 on page 95 is not soluble as all decisions are non-extremal. This implies
that the local optimal strategy identified is not necessarily a globally optimal
strategy.

Similarly, Fig. 4.14 of Example 4.12 on page 94 shows an example of a non-
soluble LIMID N D .X;G D .V;E/;P;U/. On the other hand, the LIMID N D
.X;G D .V;E \ {.Di ;D/}/;P;U/ is soluble as bothDi and Dj are extremal. �

Notice that since any ordinary influence diagram may be represented as a limited
memory influence diagram, the SPU solution process may be used to solve influence
diagrams; see, for example, Madsen & Nilsson (2001). Any ordinary influence
diagram is a special case of a limited memory influence diagram. The LIMID
representation of an ordinary influence diagram will produce an optimal strategy.

See Lauritzen & Nilsson (2001) for more details on the solution process.

5.3 Solving OOPNs

For the purpose of inference, an object-oriented model is unfolded. The unfolded
network is subsequently transformed into the computational structure used for
inference. This implies that to solve an object-oriented model is equivalent to
solving its unfolded network. Hence, from the point of view of inference, there
is no difference between an object-oriented network and a flat network.

5.4 Summary

In this chapter we have considered the process of solving probabilistic networks. As
the exact nature of solving a query against a probabilistic network depends on the
type of model, the solution processes of Bayesian networks and influence diagrams
have been considered separately.

We build Bayesian network models in order to support efficient belief update
in a given domain. Belief update is the task of computing our updated beliefs in
(unobserved) events given observations on other events, that is, evidence.

We have considered the task of computing the posterior marginal of each
unobserved variable, Y , given a (possibly empty) set of evidence ", that is, P.Y |"/.
We have focused on the solution process that computes the posterior marginal for
all unobserved variables using a two-phase message passing process on a junction
tree structure.



Exercises 141

We build decision models in order to support efficient belief update and decision
making under uncertainty in a given problem domain. Belief update is the task of
computing our updated beliefs in (unobserved) events given observations on other
events, whereas decision making under uncertainty is the task of identifying the
(optimal) decision strategy for the decision maker given observations.

We have derived a method for solving influence diagrams by variable elimina-
tion. In the process of eliminating variables, we are able to identify the decision
policy for each decision. The resulting set of policies is the optimal strategy for the
influence diagram.

The LIMID representation relaxes the two fundamental assumptions of the
influence diagram representation. The assumptions are the total order on decisions
and the perfect recall of past decisions and observations. These two assumptions are
fundamental to the solution algorithm for influence diagrams described above. Due
to the relaxation of these two assumptions, the solution process of LIMIDs becomes
more complex than the solution process of influence diagrams.

We have described how the single policy updating algorithm iteratively identifies
a set of locally optimal decision policies. A decision policy is globally optimal when
the decision is extremal.

Finally, an OOPN is solved by solving its equivalent unfolded network.

Exercises

Exercise 5.1. You are confronted with three doors, A, B, and C. Behind exactly
one of the doors, there is a big prize. The money is yours if you choose the correct
door. After you have made your first choice of door but still not opened it, an official
opens another one with nothing behind it, and you are allowed to alter your choice.

(a) Construct a model for reasoning about the location of the prize.
(b) Compute by hand the probability distribution over the location of the prize given

you select door A and the official opens door B.

Exercise 5.2. Consider the Asia network shown in Fig. 5.20 (see Example 4.2 on
page 73 for more details).

(a) Determine the set of barren variables for queries:

Q1 D .N; {Bronchitis}; {}/,
Q2 D .N; {Bronchitis}; {Dyspnoea D yes}/,
Q3 D .N; {Bronchitis}; {Dyspnoea D no;X ray D yes}/,

where Qi D .N;T; "/ with N denoting the model, T the target, and " the
evidence set.

(b) Determine the set of nuisance variables for the same queries.

Exercise 5.3. Consider again the Asia network shown in Fig. 5.20.
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Asia Smoker

Tuberculosis Cancer Bronchitis

Tub or cancer

X ray Dyspnoea

Fig. 5.20 A graph
specifying the
independence and
dependence relations
of the Asia example

(a) Identify the domain of potentials created by the elimination sequence � D
.Tub or cancer;Asia;Smoker;Bronchitis;Cancer;X ray;Dyspnoea; Tub-
erculosis/.

(b) Construct a junction tree representation using the elimination order � .
(c) Compare the answer to (a) with Fig. 5.8 on page 121.

Exercise 5.4. Consider the influence diagram in Fig. 4.10 on page 89.

(a) Which variables are relevant for each decision node?
(b) Which observed variables are requisite for each decision node?
(c) Identify the partial order of the chance nodes relative to the decision nodes.
(d) Identify the domains of each decision policy.

Exercise 5.5. Interpret the graph in Fig. 4.10 on page 89 as a LIMID.

(a) Identify the domains of decision policies and compare the results with the
policies identified in Exercise 5.4(d).

(b) Are any of the decision nodes extreme?

Exercise 5.6. Consider the decision problem in Exercise 5.1.

(a) Calculate the EU for the first choice/decision.
(b) Explain the results of your calculations.
(c) Construct an influence diagram for this problem, and check if the results are

consistent with your calculations.
(d) What is the optimal policy?
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Chapter 6
Eliciting the Model

This chapter, focusing on fundamental issues of manual construction of probabilistic
networks, and Chap. 7, focusing on techniques and tricks to attack commonly
recurring modeling problems, jointly comprise the complete account on manual
model construction offered in this book.

A probabilistic network can be constructed manually, (semi-)automatically from
data, or through a combination of a manual and a data-driven process. In this chapter
we will focus exclusively on the manual approach. See Chap. 8 for approaches
involving data.

Faced with a new problem, one first has to figure out whether or not probabilistic
networks are the right choice of “tool” for solving the problem. Depending on
the nature of the problem, probabilistic networks might or might not be a natural
choice of modeling methodology. In Sect. 6.1, we consider criteria to be fulfilled for
probabilistic networks to be a suitable modeling methodology.

A probabilistic network consists of two components: structure and parameters
[i.e., conditional probabilities and utilities (statements of preference)]. The structure
of a probabilistic network is often referred to as the qualitative part of the
network, whereas the parameters are often referred to as its quantitative part. As
the parameters of a model are determined by its structure, the model elicitation
process always proceeds in two consecutive stages: First, the variables and the
causal, functional or informational relations among the variables are identified,
providing the qualitative part of the model. Second, once the model structure has
been determined through an iterative process involving testing of variables and
conditional independences, and verification of the directionality of the links, the
values of the parameters are elicited.

Manual construction of probabilistic networks can be a labor-intensive task,
requiring close communication with problem-domain experts. Two key problems
need to be addressed in the process of establishing the model structure: identification
of the relevant variables and identification of the links between the variables.

The notion of variables (be they discrete chance or decision variables or
continuous chance or decision variables) plays a key role in probabilistic networks.

U.B. Kjærulff and A.L. Madsen, Bayesian Networks and Influence Diagrams: A Guide
to Construction and Analysis, ISS 22, DOI 10.1007/978-1-4614-5104-4 6,
© Springer Science+Business Media New York 2013
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At a first glance, it might seem like a relatively simple task to identify the variables
of a probabilistic network, but experience shows that in some cases, it can be a
difficult task. In Sect. 6.2, we carefully introduce the notion of variables, discuss
the various types of variables and their roles, and provide a test that each variable
should be able to pass.

In Sect. 6.3, we discuss the process of eliciting the structure of a probabilistic
network for a problem domain, discussing both a basic approach, utilizing variable
classification and typical causal relations among these, and a more elaborate
approach based on identification of archetypical semantical substructures.

Although the use of structured approaches to elicitation of model structure might
drastically reduce the risk of misplacing and/or reversing links, model verification
ought to be performed before elicitation of model parameters is initiated. In
Sect. 6.4, we discuss the importance of inspecting the model structure to verify
that the dependence and independence properties encoded in the structure are
reasonable.

Having the structure of the probabilistic network in place, the parameters
[conditional probabilities and the utilities (if any)] of the network are identified.
Quite often, this is the most labor-intensive task, as the number of parameters can
be counted in hundreds or even thousands, possibly each requiring consultation of a
domain expert. In Sect. 6.5, we consider ways in which the elicitation of the numbers
(parameters) can be eased.

In Sect. 6.6 we make some concluding remarks about the art of constructing
probabilistic networks by hand and point out the importance of being aware of
the limitations of models and the conditions and assumptions under which they are
supposed to work. We also stress that an object-oriented approach, which facilitates
a modular model construction approach, should preferably be used for large models
or models with repetitive structures (e.g., dynamic models). Finally, we point out
that manual model construction is an iterative process that can be quite labor
intensive.

6.1 When to Use Probabilistic Networks

Following up on the discussion in Sect. 1.5, let us discuss in greater detail the
prerequisites to be fulfilled for probabilistic networks to be a suitable framework for
modeling problem domain knowledge and supporting belief updating and decision
making under uncertainty.

A probabilistic network is a compact and intuitive representation of causal
relations among entities of a problem domain, where these entities are represented
as discrete variables over either finite sets of mutually exclusive and exhaustive sets
of possible values or as continuous variables defined over a space ranging from
minus infinity to plus infinity.

There are many good reasons to choose probabilistic networks as the mod-
eling framework, including the coherent and mathematically sound handling of
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uncertainty and normative decision making; the automated construction and
adaptation of models based on data; the intuitive and compact representation of
cause–effect relations and (conditional) dependence and independence relations; the
efficient solution of queries given evidence; and the ability to support a whole range
of analyses of the results produced, including conflict analysis, sensitivity analysis
(with respect to both parameters and evidence), and value of information analysis.
There are, however, some requirements to the nature of the problem that have to be
fulfilled for probabilistic networks to be the right choice of paradigm for solving the
problem.

6.1.1 Characteristics of Probabilistic Networks

To understand the power as well as the limitations of the framework of probabilistic
networks, let us briefly discuss the main characteristics of probabilistic networks.
Probabilistic networks are normative, meaning that they provide answers to queries
that are mathematically coherent and in agreement with a set of fundamental
principles (axioms) of probability calculus and decision theory. There are four
ground characteristics that constitute the foundation of (normative) probabilistic
models:

• Graphical representation of causal relations among domain entities (variables).
The notion of causality is central in probabilistic networks, meaning that a
directed link from one variable to another (usually) signifies a causal relation
among the two. For example, in the chest clinic model (see Example 4.2 on
page 73), the directed link from Smoker to Bronchitis indicates that Smoker is
a (possible) cause of Bronchitis.

• Strengths of probabilistic relations are represented by (conditional) probabilities.
Causal relations among variables are seldomly deterministic in the sense that if
the cause is present, then the effect can be concluded by certainty. For example,
P.Bronchitis D yes |Smoker D yes/ D 0:6 indicates that among smokers
entering the chest clinic, 60% suffer from bronchitis.

• Preferences are represented as utilities on a numerical scale. All sorts of
preferences that are relevant in a decision scenario must be expressed on a
numerical scale. In a medical scenario, for example, some relevant factors might
be medicine expenses and patient comfort.

• Recommendations are based on the principle of maximal expected utility. As
the reasoning performed by a probabilistic network is normative, the outcome
(e.g., most likely diagnosis or suggested decision) is guaranteed to provide a
recommended course of action that maximizes the expected utility to the extent
that the model is a “true” representation of problem domain.

In addition, it is important to realize the fact that real-world problem domains
exist in an open world, whereas any model is based on a closed-world assumption,
that is, that it is valid only in a particular context and thus only works correctly under
certain assumptions and conditions.
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6.1.2 Some Criteria for Using Probabilistic Networks

Given the characteristics of probabilistic networks, there are obviously some
problems that can be modeled nicely with probabilistic networks and others that
cannot.

For probabilistic networks to be a good choice of modeling paradigm, there
should normally be an element of uncertainty associated with the problem definition,
implying a desire to maximize some sort of expected utility.

There are a few problem domains where probabilistic networks might not be
the ideal choice of modeling paradigm. For example, some problems concerning
pattern recognition (e.g., recognition of fingerprints), where there are no well-
understood mechanisms underlying the layout of the pattern, probabilistic networks
most probably would not be the ideal choice. Also, if the cause–effect relations
change over time (i.e., there is no fixed structure of the corresponding probabilistic
network), other modeling paradigms might be considered.

So, we might set up the following criteria to be met for probabilistic networks to
potentially be a good candidate technology for solving the problem at hand:

• Well-defined variables. The variables and events (i.e., possible values of the
variables) of the problem domain need to be well defined. For example, in many
medical problems, the set of relevant factors (e.g., headache, fever, fatigue, and
abdominal pain) are well defined. On the other hand, the variables that determine
whether or not a person likes a painting may not be well defined.

• Highly structured problem domain with identifiable cause–effect relations. Well-
established and detailed knowledge should be available concerning structure
(variables and (causal) links), conditional probabilities, and utilities (preferences).
In general, the structure needs to be static (i.e., not changing over time), although
re-estimation of structure (often through the usage of learning tools; see Chap. 8)
can be performed. The values of the probability parameters of a probabilistic
network might be drifting, in which case, adaptation techniques can be used to
update the parameter values (see Chap. 8).

• Uncertainty associated with the cause–effect relations. If all cause–effect rela-
tions are deterministic (i.e., all conditional probabilities either take the value
0 or the value 1), more efficient technologies probably exist. In almost all
real-world problem domains, there are, however, various kinds of uncertainty
associated with cause–effect mechanisms, be it incomplete knowledge about
the mechanisms, noisy observations (measurement error), or abstraction of
information (e.g., discretization of real-valued observations).

• Repetitive problem solving. Often, for the (sometimes large) effort invested in
constructing a probabilistic network to pay off, the problem solved should be
of repetitive nature. A physician diagnosing respiratory diseases, an Internet
company profiling its customers, and a bank deciding to grant loans to its
customers are all examples of problems that need to be solved over and over
again, where the involved variables and causal mechanisms are invariant over
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time, and only the values observed for (some of) the variables differ. Although
the repetitiveness criterion is characteristic of many real-world decision problems
for which model-based decision support is well suited in terms of payoff of
investment, there are important exceptions. Non-repetitive decision problems
with high stakes comprise an important exception to this criterion. Examples
include decisions on whether or not to establish an offshore oil rig, build a
highway bridge, launch a Mars exploration mission, go to war, etc.

• Maximization of expected utility. For the probabilistic network framework to be
a natural choice, the problem at hand should most probably involve an element
of maximization of an expected utility, typically, to support decision making.

6.2 Identifying the Variables of a Model

The set of variables of a probabilistic network comprises the cornerstone of the
model. Basically, there are two kinds of variables in probabilistic networks, namely,
chance and decision variables. Chance variables model events of the problem
domain, which are not under control of the decision maker, whereas decision
variables represent precisely the decisions taken by the decision maker.

Variables can be discrete or continuous. Discrete variables take values from a
finite set of possible values, whereas continuous variables take values from the set
of real numbers. We refer the reader to Sect. 4.1.2 for details regarding networks
with continuous variables.

6.2.1 Well-Defined Variables

A discrete chance variable of a probabilistic network must represent an exhaustive
set of mutually exclusive events. That is, all possible values of the variable must be
represented in its state space (exhaustiveness), and no pair of values from the set
must exclude each other (mutual exclusiveness).

Example 6.1 (Set of States of a Variable). Let us consider the following sets of
events:

1. {heads; tails},
2. {1; 2; 3}, and
3. {black or white; black;white}.

Assume that the first set is meant to describe the set of possible outcomes of a flip
with a coin. Thus, assuming that the coin cannot end up in an upright position,
the set constitutes an exhaustive set of mutually exclusive events describing the
outcomes and is thus a positive example of a set of possible states of a variable of a
probabilistic network.
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Assume that the second set is meant to describe the outcomes of a roll with an
ordinary die. The events of the set are mutually exclusive, but being non-exhaustive,
the second set is a negative example of a set of possible states of a variable of a
probabilistic network.

Assume that the third set is meant to describe the colors of the keys of a piano.
The set of events is exhaustive, but not mutually exclusive, and is thus another
negative example of a set of possible states of a variable of a probabilistic network.
�

In addition to representing an exhaustive set of mutually exclusive events, a
variable of a probabilistic network typically must represent a unique set of events.
This means that, usually, a state of a variable should not be mutually exclusive with
a state of a single other variable. In other words, the state of a variable should not
be given deterministically by the state of a single other variable. If there are states
of two variables, say A and B , that are mutually exclusive, it most probably means
that the two variables should be merged into one variable having {A;B} as part of its
set of states. We shall refer to a test of a variable for fulfillment of this uniqueness
property as the uniqueness test.

Although we usually require variables to pass the uniqueness test, we do allow
(the state of) a variable to be deterministically given by the states of two (or
more) other variables. Consider, for example, the chest clinic example (see Exam-
ple 4.2), where Tub or Cancer depends deterministically on variables Tuberculosis
and Cancer through a logical OR relation. Constraint variables (see Chap. 7) also
depend deterministically on its parent variables. Such “artificial” variables can be
handy in many modeling situations, for example, reducing the number of conditional
probabilities needed to be specified or enforcing constraints on the combinations of
states among a subset of the variables.

Example 6.2 (Variables of a Probabilistic Network). Consider some candidate
variables of a probabilistic network:

1. High temperature
2. Low temperature
3. Error occurred
4. No error

all having state space {no; yes}. Assume that the variables pairwise refer to the state
of the same phenomenon (e.g., temperature of cooling water of a power plant and
state of operation of a particular device of the plant, respectively). Then there are
obviously states of variables High temperature and Low temperature that are mutu-
ally exclusive (i.e., High temperature D no implies that Low temperature D yes
and vice versa). Obviously, the same problem pertains to variables error occurred
and no error.

New variables, say Temperature and Error, with sets of states {high; low} and
{error occured; no error}, respectively, should be defined, and the variables listed
above should be eliminated. �
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Finally, a candidate variable of a problem domain needs to be clearly defined
so that everyone involved in the construction or application of the model (i.e.,
knowledge engineers, domain experts, and decision makers) knows the exact se-
mantics of each variable of the model. For example, the variable It will rain tomorrow
might not be clearly defined, as there could be open questions regarding the location
of the rain, the amount of rain, the time of observation of rain, etc.

To test if a candidate variable, say V , is indeed a proper and useful variable of
the problem domain, it should be able to pass the clarity test:

1. The state space of V must consist of an exhaustive set of mutually exclusive
values that V can take.

2. Usually, V should represent a unique set of events (i.e., there should be no other
candidate variable of the problem domain a state of which is mutually exclusive
with a state of V ). If this principle is violated, the model most probably should
include one or more “constraint” variables (see Sect. 7.1.4) to enforce mutual
exclusivity.

3. V should be clearly defined, leaving no doubts about its semantics. In general, a
variable is well defined if a clairvoyant can answer questions about the variable
without asking further clarifying questions.

Identifying the variables of a problem domain is not always an easy task and
requires some practicing. Defining variables corresponding to the (physical) objects
of a problem domain is a common mistake made by most novices. Instead of
focusing on objects of the problem domain, one needs to focus on the problem
(possible diagnoses, classifications, predictions, decisions, etc., to be made) and the
relevant pieces of information for solving the problem.

Example 6.3 (Clarity Test: Doors). Consider the task of constructing a probabilistic
network for the following decision problem (cf. Exercise 5.1 on page 141):

You are confronted with three doors, A, B, and C. Behind exactly one of the doors there
is a big prize. The prize is yours if you choose the correct door. After you have made your
first choice of door but still not opened it, an official opens another one with nothing behind
it, and you are allowed to alter your choice. Now, the question is: Should you alter your
choice?

A small probabilistic network can be constructed for solving the problem and which
provides exact odds of winning given the two options. By experience, though,
most novices construct models with one variable for each door, instead of variables
modeling the information available and the problem to be solved.

By defining a variable for each door (with each variable having state space
{Prize;No prize}, say), one violates the principle that variables should represent
unique sets of events (unless constraint variables are included) and thus do not pass
the clarity test.

Instead, one needs to take a different perspective, focusing on the problem and
the available information:

1. Problem: Where is the prize? This gives rise to a variable, Prize location, with
state space {A;B;C}, corresponding to doors A, B, and C, respectively.
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2. Information 1: Which door did you choose originally? This gives rise to a
variable, say First choice, with state space {A;B;C}.

3. Information 2: Which door were opened by the host? This gives rise to a variable,
say Host choice, with state space {A;B;C}.

These variables pass the clarity test. �

6.2.2 Types of Variables

In the process of identifying the variables, it can be useful to distinguish between
different types of variables:

• Problem variables: These are the variables of interest, that is, those for which
we want to compute their posterior probability given observations of values for
information variables (see next item). Usually, the values of problem variables
cannot be observed; otherwise, there would not be any point in constructing a
probabilistic network in the first place. Problem variables (also sometimes called
hypothesis variables) relate to diagnoses, classifications, predictions, decisions,
etc., to be made.

• Information variables: These are the variables for which observations may be
available and which can provide information relevant for solving the problem.
Two subcategories of information variables can be distinguished:

– Background information: Background information for solving a problem
(represented by one or more problem variables) is information that was
available before the occurrence of the problem and that has a causal influence
on problem variables and symptom variables (see next item) and is thus
usually among the “root” variables of a probabilistic network. For example, in
a medical setting, relevant background information could include patient age,
smoking habits, blood type, gender, etc.

– Symptom information: Symptom information, on the other hand, can be
observed as a consequence of the presence of the problem and hence will
be available after the occurrence of the problem. In other words, problem
variables have causal influences on its symptoms. Hence, symptom variables
are usually descendants of background and problem variables. Again, in a
medical setting, relevant symptom information could include various out-
comes of clinical tests and patient interviews, for example, blood pressure,
fever, headache, and weight.

• Mediating variables: These are unobservable variables for which posterior
probabilities are not of immediate interest but which play important roles for
achieving correct conditional independence and dependence properties and/or
efficient inference. Mediating variables often have problem and background
variables as parents and symptom variables as children.
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Table 6.1 Typical causal dependence relations for different variable classes

Type Causally influenced by

Background variables None
Problem variables Background variables
Mediating variables Background and problem variables
Symptom variables Background, problem, and mediating variables

Table 6.1 summarizes the typical causal dependence relations for the four
different variable classes.

In Example 6.3, there are one problem variable (Prize location) and two informa-
tion variables (First choice and Host choice), where First choice represents a piece
of background information, as it was available before the problem occurred, and
Host choice represents a piece of symptom information that became available only
after the occurrence of the problem and as a consequence of it.

Example 6.4 (Classification). Assume that we wish to construct a probabilistic
network for classifying scientific papers into the two classes of:

(1) Books referring to real-world applications of Bayesian networks
(2) Other books

We identify a problem variable, say Class, with two states, say bn appl books and
other books. Assume that the classification is going to be based on detection of
keywords, where keywords like “Bayesian network,” “Bayes net,” “application,”
“industrial,” “decision support,” etc., found in a book might indicate reference to
real-world applications of Bayesian networks. Then we might define an information
(symptom) variable for each keyword (or phrase). Each information variable could
be binary, for example, Boolean, with states 0 (“false”) and 1 (“true”) indicating if
the keyword is absent or present, respectively, in a particular book. In a more refined
version, each information variable could represent the number of occurrences
of the associated keyword, in which case the variable needs several states, say
{Œ0I 1Œ; Œ1I 5Œ; Œ5I 15Œ; Œ15I∞Œ}. �

Example 6.5 provides a simple example in which the need for a mediating variable
is crucial for achieving correct dependence and independence properties of a model
(and, consequently, to get reliable answers from the model).

Example 6.5 (Insemination (Jensen 2001)). Six weeks after insemination of a cow,
two tests can be performed to investigate the pregnancy state of the cow: blood
test and urine test. We identify pregnancy state as the problem variable (PS) and
the results of the blood and urine tests as information (symptom) variables (BT and
UT, respectively), where PS has states {pregnant; not pregnant} and variables (BT
and UT have states {positive; negative}). As the state of pregnancy has a causal
influence on the outcome of the tests, we identify an initial model as shown in
Fig. 6.1. Using d-separation, we find that this model assumes BT and UT to be
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PS

BT UT

Fig. 6.1 A model for
determining pregnancy state

PS

HS

BT UT

Fig. 6.2 A refined model for
determining the pregnancy
state, reflecting the fact that
both tests are indications of
the hormonal state, which in
turn is an indication of
pregnancy state

independent given information about the state of PS (i.e., P.PS D pregnant/ D 0

or P.PS D pregnant/ D 1). Assume now that a domain expert (e.g., a veterinarian)
informs us that this independence statement is false, that is, the expert expects the
outcome of one of the tests to be informative about the outcome of the other test even
if the pregnancy state of the cow is known for sure. As there are no natural causal
mechanisms linking BT and UT that could counter for the dependence between these
two variables, we need to solve the problem by introducing a fourth (mediating)
variable (HS) describing the hormonal state of the cow, which determines the
outcomes of both tests (i.e., HS has a causal influence on BT and UT). The resulting
model is shown in Fig. 6.2, where BT and UT are dependent (as they should be) even
if the state of pregnancy is known. �

6.3 Eliciting the Structure

We shall consider two structured ways of eliciting the model structure. A basic
approach relies on the natural causal ordering that exists among the four categories
of variables that were discussed in Sect. 6.2.2. A more refined approach has been
developed by Neil et al. (2000) where model fragments are identified by recognizing
archetypical relations (known as idioms) among groups of variables.

6.3.1 A Basic Approach

Given an initial set of variables identified for a given problem domain, the next
step in the model construction process concerns the identification and verification
of (causal) links of the model. As discussed in Sect. 2.4, maintaining a causal
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Background variables

Problem variables

Mediating variables

Symptom variables

Fig. 6.3 Typical overall causal structure of a probabilistic network

perspective in the model construction process may prove valuable in terms of
correctly representing the dependence and independence relations as well as in
terms of ease of elicitation of the conditional probabilities of the model. Notice that
maintaining a causal perspective is crucial when constructing influence diagrams
(see Chap. 4).

As discussed in Sect. 6.2.2, there are four categories of variables of a probabilistic
network: (1) background (information) variables, (2) problem variables, (3) medi-
ating variables, and (4) symptom (information) variables. Also, as discussed above,
background variables have a causal influence on problem variables and symptom
variables, and problem variables have a causal influence on symptom variables.
Mediating variables, if present, are most often causally influenced by problem
variables and background variables, and they causally influence symptom variables.
This gives us a typical overall causal structure of a probabilistic network as shown
in Fig. 6.3.

Notice that the structure of the chest clinic example on page 73 fits nicely
with this overall structure of a probabilistic network, where Asia and Smoker are
background variables; Tuberculosis, Cancer, and Bronchitis are problem variables;
Tub or cancer is a mediating variable; and X ray and Dyspnoea are symptom
variables.

Example 6.6 (Doors, cont.). For the problem of Example 6.3 on page 151, we
identified First choice as a background variable, Prize location as a problem variable,
and Host choice as a symptom variable. Obviously, First choice has no influence
on Prize location (i.e., no cheating by the host). Also, clearly, the choice of the
host depends on your initial choice (First choice) as well as on the host’s private
information about the location of the prize (Prize location). Thus, following the
overall structure in Fig. 6.3, we arrive at a structure for the problem as shown in
Fig. 6.4. �
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First choice

Prize location

Host choice

Fig. 6.4 Causal structure for
the prize problem

Class

Bayesian network Bayes net Application . . .

Fig. 6.5 Structure of the model for the classification problem of Example 6.4

Example 6.7 (Classification, cont.). In Example 6.4 on page 153, we have one
problem variable Class and a number of symptom variables, Bayesian network,
Bayes net, Application, Industrial, Decision support, etc. According to the overall
structure in Fig. 6.3, we get a network structure as shown in Fig. 6.5. �

6.3.2 Idioms

Neil et al. (2000) have developed an approach to elicitation of model structure,
which is based on describing the semantics and syntax of five commonly occurring
substructures (called idioms), representing different modes of uncertain reasoning.
These five idioms are believed to cover the vast majority, if not all, substructures
that can occur in a Bayesian network. Each idiom can be considered an archetypical
set of relations among a set of variables. Thus, the use of idioms encourages the
knowledge engineer to think in terms of semantical relations among a (small) group
of variables rather than in terms of nodes and links. The modeling paradigm is thus
moved to a higher level of abstraction, leaving details about which links to include
and their directionality to be handled automatically through the predefined structures
of the idioms.

The five idioms are:

1. Definitional/synthesis: Models the combination of variables into a single vari-
able, including deterministic or uncertain definition/function of a variable in
terms of other variables.

2. Cause–consequence: Models cause–effect mechanisms (causal processes).
3. Measurement: Models the uncertainty associated with an observation or mea-

surement.
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Experience Effort Coverage

Quality

Fig. 6.6 Sample instantiation
of the definitional/synthesis
idiom (Neil et al. 2000)

Difficulty Supplier

Failures

Fig. 6.7 Sample instantiation
of the cause–consequence
idiom (Neil et al. 2000)

4. Induction: Models inductive reasoning based on observations from similar
entities to infer something about an unobserved entity.

5. Reconciliation: Models the reconciliation of results from competing statements
that arise from different sources of information.

Let us consider some examples on the use of the idioms, all taken from
the problem domain of risk assessment in software development processes (Neil
et al. 2000).

Example 6.8 (Definitional/Synthesis Idiom (Neil et al. 2000)). The quality of soft-
ware testing is defined in terms of the experience of the tester, the effort put into the
testing process, and the coverage of the test (i.e., how many modules of the software
system is tested). A submodel implementing this definition of testing quality as an
instance of the definitional/synthesis idiom is shown in Fig. 6.6. �

Example 6.9 (Cause–Consequence Idiom (Neil et al. 2000)). Supplier quality and
problem difficulty have causal impacts on the number of failures in a software
product. The three variables, Difficulty, Supplier, and Failures, comprise a submodel
implemented as a join of two instantiations of the cause–consequence idiom, as
illustrated in Fig. 6.7. �

One might argue that in Example 6.8, Experience, Effort, and Coverage are all
causes of Quality, and hence, these four variables comprise a submodel imple-
mented as a join of three instantiations of the cause–consequence idiom. Also, in
Example 6.9, one might argue that variable Failures is defined in terms of (or is
a synthesis of) variables Difficulty and Supplier and hence should give rise to a
submodel implemented as an instance of the definitional/synthesis idiom. Which
of the two idioms is chosen, however, is immaterial, and depends on how the model
constructor perceives the relations among the variables.
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Inserted defects Accuracy

Detected defects

Fig. 6.8 Sample instantiation
of the measurement
idiom (Neil et al. 2000)

Comp 1 Comp 2 Competence

Hist Comp SimilarityFig. 6.9 Sample instantiation
of the induction idiom (Neil
et al. 2000)

Example 6.10 (Measurement Idiom (Neil et al. 2000)). The number of defects in a
software system can only be estimated up to a certain accuracy. Still, however, the
true number of defects is the important variable in assessing the risk of employing
the system. Hence, based on the observed number of defects (Detected defects),
we need to estimate the true number (Inserted defects). In doing that, we need to
know the accuracy of the testing procedure applied. This is a classical example of
an instantiation of the measurement idiom, as illustrated in Fig. 6.8. �

Example 6.11 (Induction Idiom (Neil et al. 2000)). Assume that information is
available on the competence of a software testing organization on two previous
occasions, where the organization tested noncritical software products. Given this
information and a measure on the similarity of these previous software products
with a safety-critical software product, we wish to estimate the competence of
the organization in testing the safety-critical product. In other words, we wish to
induce the competence from previous competencies on similar tasks. This induction
problem is implemented as an instantiation of the induction idiom, as illustrated in
Fig. 6.9. �

Example 6.12 (Reconciliation Idiom (Neil et al. 2000)). Statements on fault tol-
erance of a software system can be derived either through a cause–consequence
relation, where the quality of the software development process has a causal
influence on the fault tolerance of the system or through a definitional relation
involving the contributions of various fault tolerance strategies such as error
checking and error recovery mechanisms. Thus, if two such competing submodels
provide statements about fault tolerance, we need to reconcile the two statements.
Figure 6.10 shows how this problem can be solved through an instantiation of
the reconciliation idiom, where Reconciliation is a binary variable with states on
and off that forces P.Fault tol 1 |"/ and P.Fault tol 2 |"/ to be identical whenever
Reconciliation D on, that is,
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Process quality Err checking Err recovery

Fault tol 1 Fault tol 2

Reconciliation

Fig. 6.10 Sample instantiation of the reconciliation idiom (Neil et al. 2000)

P.R D on |F1; F2/ D
{

1 whenever F1 D F2
0 otherwise;

where F1, F2, and R are abbreviations for, respectively, Fault tol 1, Fault tol 2, and
Reconciliation. Assume that dom.F1/ D dom.F2/ D .low; high/ and that before
reconciliation has taken place (i.e., R has not been instantiated), we have

P.F1 D high |"/ D 0:7

P.F2 D high |"/ D 0:8:

Using Bayes’ rule (3.11), we then get

P.F1 D high |R D on; "/

D P.F1 D high; R D on |"/

P.R D on |"/

D P.R D on |F1 D high; F2 D high/P.F1 D high |"/P.F2 D high |"/

P.R D on |"/

CP.R D on |F1 D high; F2 D low/P.F1 D high |"/P.F2 D low |"/

P.R D on |"/

D 1 � P.F1 D high |"/P.F2 D high |"/C 0 � P.F1 D high |"/P.F2 D low |"/P
F1;F2

P.R D on |F1; F2/P.F1 |"/P.F2 |"/

D P.F1 D high |"/P.F2 D high |"/

P.F1 D high |"/P.F2 D high |"/C P.F1 D low |"/P.F2 D low |"/
:
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(Note that with the last expression being symmetrical in F1 and F2, we get (as
expected) P.F1 D high |R D no; "/ D P.F2 D high |R D no; "/.) Now, with
P.F1 D high |"/ D 0:7 and P.F2 D high |"/ D 0:8, we get

P.F1 D high |R D no; "/ D P.F2 D high |R D no; "/ D 0:903:

That is, the reconciliation model reinforces both statements whenever the statements
support each other, that is, if P.F1 D high |"/ > 1

2
and P.F2 D high |"/ > 1

2
, then

P.Fi D high |R D no; "/ > max{P.F1 D high |"/; P.F2 D high |"/}

for i D 1; 2. Similarly, with the above sample values for P.F1 D high |"/ and
P.F2 D high |"/,

P.Fi D low |R D no; "/ < min{P.F1 D low |"/; P.F2 D low |"/}

for i D 1; 2. �

Some remarks concerning the feasibility of the reconciliation idiom are in order.
As shown in Example 6.12 on page 158, the model reinforces statements supporting
each other. That is, the posterior probability (i.e., after reconciliation) of a statement
is greater (less) than the prior probability of the statement if the prior probability
of each of the contributing statements is greater (less) than 1

2
. In applications like

the one sketched in Example 6.12, this might make perfect sense, as two different
sources of information form the bases of the two statements about fault tolerance,
that is, one is based on an assessment of process quality and another on the extent
to which errors have been checked for and the ability of the system to recover from
errors. Thus, whenever two such independent statements about the fault tolerance
of a system both point in the same direction, there is reason to believe that the
combined statement is stronger than each individual statement.

Care should be taken, however, not to apply the reconciliation model in cases
where the contributing/competing statements are based on the same source of in-
formation. Consider, for example, the statements from two, otherwise independent,
astronomers about the risk of an asteroid hitting the Earth. If each of them states
that the risk of collision is 10%, it would definitely be a mistake to conclude
that the risk then would be only 1:2%, which would be the result of applying the
reconciliation model in this case! In Sect. 7.2.2, we shall present a model for dealing
with competing statements that are based on the same source of information.

The basic structures of the idioms are illustrated in Fig. 6.11. Notice that these
basic structures can be combined into more complex structures. For example, par-
ents in a definitional/synthesis idiom can be a child in another definitional/synthesis
idiom etc., breaking down a definitional/synthesis idiom with many parents into
a hierarchy through a parent divorcing process (see Chap. 7). Also, basic cause–
consequence idioms are typically combined into more complex structures where
causes have common effects and effects have common causes.



6.3 Eliciting the Structure 161

Definitional/synthesis Cause–consequence

Measurement Reconciliation

Induction

Term1 Term2 � � � Termn

Synthesis

Cause

Consequence

True value Accuracy
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Statement1 Statement2

Reconciliation

Pop parameter Context diff

Attribute1 Attribute2 � � � Attributen

Fig. 6.11 The five basic kinds of idioms defined by Neil et al. (2000)

Also notice that depending on whether or not a root variable of an idiom is a root
variable of the overall model structure, it may be categorized as either a background
variable, a problem variable, or a mediating variable. Similarly, a non-root variable
of an idiom may be a problem variable, a mediating variable, or a symptom variable
of the overall model. For example, in the induction idiom of Fig. 6.9 on page 158,
variables Hist comp and Similarity could typically be characterized as background
variables, Comp 1 and Comp 2 as symptom variables, and Competence as a problem
variable.

Probably the most frequent idiom used is the cause–consequence idiom. Thus,
in determining the “right” idiom to use, it might be advisable to start considering
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Fig. 6.12 Choosing the right idiom (Neil et al. 2000)

whether the relations among the subset of variables under consideration are best
described using one or more cause–consequence relations. Also, the measurement,
induction, and reconciliation idioms all deal with assessments of some sort.
Therefore, another relevant question to ask is whether the relations among the
variables under consideration describe some sort of assessment. As a guide to
choosing the right idiom, one might consult the flowchart in Fig. 6.12.
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6.3.3 An Example: Extended Chest Clinic Model

To get a better understanding of the structure elicitation process, let us consider a
larger, more realistic version of the chest clinic problem introduced in Example 4.2
on page 73. Although this extended version of the model is closer to a realistic,
useful model, it still is only a layman’s rough interpretation of medical texts.
However, whether or not the model is correct is irrelevant to the points discussed
in this section.

We wish to construct a model for diagnosing four diseases related to the
respiratory system: bronchitis, lung cancer, pneumonia, and tuberculosis. The
diagnostic task can be formulated as computing posterior probabilities for these
four diseases given observations about a particular patient.

Problem Variables

Therefore, our problem variables are variables whose posterior probabilities provide
information about which of the four diseases the patient suffers from. As the
diseases can coexist (i.e., they are not mutually exclusive), we need one problem
variable per disease.

Since each problem variable is supposed to express presence (possibly in various
forms or degrees) or absence of the disease it represents, the variable can assume
a limited number of (mutually exclusive) discrete states. To decide on the set of
possible states, we need to closely define our problem:

Bronchitis is an inflammation in the bronchi that can be classified as either acute
or chronic. Since we need to be able to distinguish between the two for treatment
purposes, the problem variable Bronchitis then has three possible states: No,
Acute, and Chronic.

Lung cancer is characterized by uncontrolled cell growth in lung tissue. The
disease can be categorized in terms of three main types: small cell lung carcinoma
(SCLC), non-small cell lung carcinoma (NSCLC), and other (less common) lung
cancers. Again, the distinction between the different types is important because
of different treatment regimes. The problem variable Lung cancer then has four
possible states: no, sclc, nsclc, and other.

Pneumonia is an inflammation in the lungs, which can be classified in several
ways. In our model, we shall restrict the problem variable Pneumonia to be
Boolean, as we shall assume that pneumonia in any case is treated using a broad-
spectrum antibiotic.

Tuberculosis is an infectious disease, which usually attacks the lungs but can also
attack other parts of the body. We shall assume that tuberculosis can be classified
as primary pulmonary tuberculosis (initial infection form), tuberculosis pleuritis
(variant of the former, where the disease is located between the lungs and the
abdomen), miliary tuberculosis (the disease has spread to other parts of the body),
and reactivated tuberculosis (return of a previous outbreak of the disease). Thus,
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we shall define a problem variable Tuberculosis, which can assume one of the
following states: no, primary, pleuritis, miliary, and reactivated.

Having the problem variables defined, we next need to identify the information
variables, that is, the background (information) variables, describing risk factors
(causes) of the diseases, and the symptom (information) variables. A variable
qualifies as a relevant information variable for the model if a value observed for
the variable provides information about a patient that can potentially influence the
diagnosis. That is, the value can affect the posterior probability distributions of the
problem variables.

Background Variables

To identify background variables, let us consider the risk factors (causes) of the
diseases:

Bronchitis: We distinguish between acute and chronic forms of the disease:

Acute bronchitis is most often caused by viruses but can also be caused
by bacteria. As other inflammatory diseases, bronchitis is more likely to
hit people with weak immune systems, such as old people and people
suffering from HIV and other diseases weakening the immune system. The
inflammation can be caused by irritation of the airways by tobacco smoke or
other forms of polluted or dusty air. The disease often occurs during the course
of a common cold or influenza. Lung cancer can cause repeated outbreak of
bronchitis.

Chronic bronchitis is most commonly caused by long-term smoking, but also
long-term inhalation of dust and fume can cause chronic bronchitis.

Lung cancer is most often caused by carcinogens of tobacco smoke that lead
to cumulative changes in the DNA of the lung tissue. Long-term exposure to
air polluted by asbestos, radon, or chemicals are other potential causes of lung
cancer.

Pneumonia is most often caused by viruses and bacteria and is frequently seen
in conjunction with a preceding common cold or influenza. Again, as for other
inflammatory diseases, people with weak immune system are more likely to
acquire pneumonia. Exposure to polluted air (including tobacco smoke) can also
cause pneumonia. Lung cancer can cause repeated outbreak of pneumonia.

Tuberculosis, being an infectious disease spread through the air when people who
have the disease cough, sneeze, or spit, is acquired by health-care workers, people
who live (or have lived) in countries or regions with high intensity of tuberculosis,
people exposed to crowded living conditions, or people of low socioeconomic
status who abuse alcohol (typically homeless). Weak immune system is another
risk factor of tuberculosis.

Remembering that background variables represent information that was available
before occurrence of the problem and that they causally influence the problem, the
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Fig. 6.13 Structure of potential causes of bronchitis

immediate background variables identified for the Bronchitis problem variable are
then the following:

• Acute bronchitis: As the disease is caused by viruses or bacteria, it would seem
natural to define background variables directly representing these causes. First,
however, to detect viruses and bacteria, costly and time-consuming laboratory
tests must be conducted, which are not cost-effective enough for a relatively mild
disease like bronchitis. Second, even if presence of viruses or bacteria was to be
detected indirectly through observations of some other immediately observable
background variables, we would not be better off, as the causal mechanisms
linking these other variables to the viruses and bacteria variables are not well
known. Therefore, we shall exclude background variables representing viruses
and bacteria altogether and instead rely on immediately observable background
variables.

Weak immune system appears to be an important piece of background
information, although it is observable only indirectly through the observable
background variables Elderly, HIV, and ODWIS (i.e., “other diseases weakening
the immune system”). We could choose to model these three variables as direct
causes of Bronchitis, but since they all cause bronchitis only indirectly by
weakening the immune system, we choose to introduce Weak immune system
as an intermediate background variable (see Fig. 6.13). Apart from matching
better with our conceptual understanding of the causal mechanisms underlying
the relationship between Elderly, HIV, and ODWIS on the one side and Bronchitis
on the other, we also obtain a model in which the specification of the quantitative
knowledge, specifically the conditional probability table of Bronchitis given its
parents (i.e., causes), is significantly less complicated (cf. Occam’s razor; see
page 184).
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From the above description of risk factors, we get that Cold or flu must
be another background variables of Bronchitis. Although common cold and
influenza are two separate conditions, in terms of causing bronchitis, we assume
that they are indistinguishable and hence can be modeled in a single (Boolean)
variable that assumes the value true if either one of the conditions are present.

As unclean air (whether caused by smoking or other forms of polluted or dusty
air) in the patients living or working environment can cause acute bronchitis,
we introduce background variables Airborne particles and Smoking severity. See
below for a more elaborate description of these variables.

Although the problem variable Lung cancer can cause repeated outbreak of
acute bronchitis, we do not consider it an (observable) background variable of
bronchitis per se; rather, there is an internal structure in the group of problem
variables, with Lung cancer being a potential cause of Bronchitis.

Similarly, as we have just seen, there might be an internal structure in the
group of background variables. Later, we shall see that this might also be the
case in the group of symptom variables.

• Chronic bronchitis: From the description of the risk factors of chronic bronchitis,
we infer that the extent to which the patient smokes and has been smoking (i.e.,
smoking history) provides an important piece of background information. Thus,
Smoking severity, introduced above, (obviously) depends on whether or not the
patient is still smoking. We shall further assume that it depends on how many
years the patient has been smoking and on the age at which the smoking started.
Hence, we introduce the three causal variables Smoking, Smoking years, and
Started Smoking of Smoking severity.

Being another possible cause of chronic bronchitis, long-term exposure to
dust, fume, or polluted air should be modeled through background variables
Dusty working environment (assuming that the exposure has been induced by
the patient’s working environment) and Air pollution. For simplicity, we shall
assume that Air pollution and Dusty working environment can be synthesized
into an intermediate background variable Airborne particles (introduced above),
which will hence be a cause of both acute and chronic bronchitis and which,
as Smoking severity, will not be directly observed. (Consequently, we do not
distinguish between short-term and long-term exposure to airborne particles,
which (of course) is an approximation that could lead to model inaccuracies.)

Figure 6.13 shows the resulting causal structure of Bronchitis and its risk factors
(background variables), where the immediately observable “root causes” are shown
as white ovals, the indirectly observable intermediate causes are shown as gray
ovals, and the unobservable problem variables as black ovals.

NB: Some of the background variables (e.g., Smoking, Smoking years, and
Started smoking) obviously are not marginally independent (e.g., knowing that the
patient started smoking at the age of 16 has a significant influence on the probability
of the patient currently being a smoker). Thus, there ought to be links between
some of the background variables to model such direct dependences. However,
we shall ignore such dependences for all background variables, partly to simplify
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the exposition and partly because they are unimportant, since the values of all
background variables are supposed to be known for any given patient prior to
making diagnostic inference.

Continuing along the same lines, we identify the immediate background variables
for the Lung cancer problem variable as follows:

• Lung cancer: The above description of the risk factors tells us that Lung cancer
and Bronchitis share Smoking severity as a risk factor.

In addition, Lung cancer can be caused by airborne carcinogenic substances,
including asbestos, chemicals (typically related to working conditions), and
radon. Hence, we define the background variables Asbestos, Work chemicals,
and Radon, representing exposure (possibly in various degrees) to asbestos,
chemicals in the working environment, and the radioactive gas radon.

Assuming that public polluted air, represented by the background variable
Air pollution discussed above, can cause lung cancer, this variable will also be a
shared as background variable for Bronchitis and Lung cancer. Analogous to the
above discussion in the case of factors contributing to a weak immune system, the
four variables Asbestos, Work chemicals, Radon, and Air pollution all contribute
as risk factors of Lung cancer by releasing carcinogenic substances to air inhaled
by the patient. In other words, there is a joint causal mechanism involved which
can be described as inhalation of air containing carcinogenic substances. Thus,
we introduce an intermediate background variable Carcinogenic air which joins
the contributions from the four root-cause variables.

The resulting structure of Lung cancer and Bronchitis and their potential causes
are shown in Fig. 6.14.

We observe that the causes of Pneumonia are a subset of the causes of Bronchitis,
so the structure of the causes of Pneumonia is a substructure of the one shown in
Fig. 6.13.

Continuing in the same fashion with Tuberculosis, we arrive at the structure
shown in Fig. 6.15.

There are, however, a couple of aspects of the structure in Fig. 6.15 that are worth
dwelling a bit on.

Although it is not a root cause, the variable Homeless is indeed immediately
observable (indicated by the white coloring of the oval). Conditional independence
rules (e.g., d-separation analysis) readily tell us that information about the states of
variables Alcohol Aause and Low socioeconomic status is irrelevant once the state
of Homeless is observed. Thus, other than communicating the causal relationships
between the three variables, there is no reason to include Alcohol abuse and
Low socioeconomic status in the model.

Another interesting aspect of the structure in Fig. 6.15 is the complex of
intermediate background variables Exposed to TB, Bad living conditions, and TB
environment which collectively reduce the maximum number of parent variables
to two in the part of the model containing these variables and their ancestors. In
the alternative model (see Fig. 6.16) without these three intermediate background
variables, we would have the root causes of the complex be parents of the
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Fig. 6.14 Structure of potential causes of bronchitis and lung cancer

Fig. 6.15 Structure of potential causes of tuberculosis

problem variable. Assuming that |dom.Tuberculosis/| D 5 (as discussed above),
|dom.TB environment/| D 3 (say, low, medium, or high), and that all other variables
in our complex are Boolean, the size of the conditional probability table for
Tuberculosis given its parent variables is going to be 5 � 3 � 2 � 2 D 60 in our
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Fig. 6.16 Alternative structure of potential causes of tuberculosis

original model and 5 � 26 D 320 in our alternative model, assuming that variables
Previous TB outbreak and Weak immune system are both Boolean. Counting in also
the conditional probability tables of the three intermediate background variables, we
arrive at a total of 60 C 8 C 8 C 12 D 88 numbers in the conditional probability
tables of Tuberculosis and the three intermediate background variables.

So our three intermediate background variables play a very important role, not
only in interpreting and communicating how the root causes affect the problem
variable but also in significantly reducing the task of eliciting the probability
parameters of the model.

It should be emphasized, however, that this trick of “divorcing” the parents of
Tuberculosis is not universally applicable. Some requirements must be fulfilled
for applying this trick without reducing the expressiveness of the model. We shall
discuss these requirements in Sect. 7.1.1 on page 192.

Symptom Variables

To identify variables representing symptoms of the four diseases, let us consider the
various effects that can be observed when a patient suffers from one or more of the
diseases:

Bronchitis: As before, we distinguish between acute and chronic forms of the
disease:

Acute bronchitis most often causes coughing (with or without production of
sputum), shortness of breath, and wheezing. Other symptoms occasionally
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seen include chest pain, fever, sore throat, nasal congestion, and aching
muscles.

Chronic bronchitis can be characterized by the presence of a productive cough
that lasts for 3 months or more, and it causes shortness of breath and wheezing.
Chest pains may also occasionally be observed.

Lung cancer potentially causes a variety of symptoms, including shortness of
breath, chest pain, persistent fatigue, poor appetite, weight loss, hoarseness,
wheezing, coughing, a new coughing pattern, worsening cough, blood in sputum,
and repeated outbreak of bronchitis and/or pneumonia. Indications of lung cancer
can also be found by performing a chest X-ray or a CT scan.

Pneumonia is often associated with a productive cough, high fever, shortness of
breath, and chest pain. The disease produces a distinct pattern on a chest X-ray.

Tuberculosis causes chest pain, night sweats, fever, persistent fatigue, poor ap-
petite, weight loss, and a productive, prolonged cough. Diagnosis relies (among
other things) on chest X-rays and sputum examination. Chest X-rays can be used
to distinguish between pulmonary tuberculosis and miliary (i.e., disseminated)
tuberculosis.

Considering the symptoms of (acute and chronic) bronchitis, we observe a need
to distinguish between “cough” and “old cough” (i.e., a cough that has lasted for
at least 3 months), as the latter is characteristic of the chronic form of bronchitis.
We could assume that “old cough” is a specific variant of coughing, and hence
model all patterns of coughing in a single variable with “old cough” being one
of several mutually exclusive variants (i.e., states) of coughing. However, for
at least two reasons, we choose to model “old cough” as a separate (Boolean)
variable. First, a cough can be dry, productive, productive with blood, etc., irre-
spective of the cough being “old” or not. Thus, the state space of the variable
representing coughing would span the Cartesian product of, say, {old;¬old} and
{dry; productive .sputum/; productive .sputum and blood/; : : :}. Second, coughing is
a symptom shared by all four diseases, but “old cough” is relevant only for (chronic)
bronchitis.

The variables Coughing and Old cough are clearly related. For example, if
Old cough is observed to be true, we would clearly expect P.Coughing D no/ D
0. This cannot necessarily be guaranteed by a diverging connection through the
problem variables, since the observation that the patient suffers from an old cough
might not be sufficient for diagnosing chronic bronchitis with certainty, and hence,
P.Coughing D no/ > 0. Therefore, we need a direct connection between Coughing
and Old cough. Since an old cough is defined as a cough that has lasted for a
certain amount of time, we make the connection Coughing → Old cough (cf.
the definitional/synthesis idiom) and specify P.Old cough D true |Bronchitis D
�;Coughing D no/ D 0, that is, no matter the state of Bronchitis, whenever
Coughing D no, P.Old cough D true/ D 0 (and vice versa).

Apart from this (causal) relationship between “cough” and “old cough,” assume
that the symptoms of bronchitis and pneumonia are conditionally independent given
bronchitis and pneumonia (i.e., given that we know whether or not a patient suffers
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Fig. 6.17 Structure of potential symptoms of bronchitis and pneumonia

from bronchitis and pneumonia, observing one or more of their symptoms does not
make us change our belief about the states of the yet unobserved symptoms).

Then we can model the causal relations between the problem variables Bronchitis
and Pneumonia and their symptom variables as shown in Fig. 6.17.

Lung cancer has a number of symptoms in common with bronchitis and
pneumonia, including shortness of breath, coughing, and chest pain. Moreover, lung
cancer and pneumonia share findings from chest X-rays as symptoms.

Considering coughing, worsening of an existing cough and the appearance of
a new coughing pattern are characteristic of lung cancer. Thus, in addition to the
symptom variables Coughing and Old cough, we need two other symptom variables,
Worsening cough and New cough, both being causally linked to Coughing and
Lung cancer via directed links from the latter to the former (i.e., Worsening cough
and New cough are linked to Coughing in the same way as Old cough, viz., by links
emanating from Coughing).

The fact that lung cancer can cause repeated outbreak of bronchitis and pneumo-
nia means that bronchitis and pneumonia are potential symptoms of lung cancer.
To model this fact, we add causal links from Lung cancer to Bronchitis and
Pneumonia. This is not enough, however. The model must be able to accommodate
the pieces of information that a patient might have repeatedly suffered from
bronchitis and/or pneumonia. Thus, we add variables Repeated Bronchitis and
Repeated pneumonia with sets of parent variables {Bronchitis; Lung cancer} and
{Pneumonia; Lung cancer}, respectively.

The structure of the submodel covering Bronchitis and Pneumonia and their
symptom variables augmented with Lung cancer and the symptoms that Lung
Cancer shares with Bronchitis and Pneumonia are shown in Fig. 6.18.

Continuing along similar lines to model the remaining symptoms of lung cancer
and those of tuberculosis, we arrive at the complete structure shown in Fig. 6.19.
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Fig. 6.18 Structure of potential symptoms shared by bronchitis, pneumonia, and lung cancer

Fig. 6.19 Complete structure of the extended chest clinic model



6.3 Eliciting the Structure 173

Notice the intermediate symptom variable Blockage or inflammation, which plays
the same role as variable HS in Example 6.5 on page 153 because hoarseness and
wheezing are both symptoms of a blockage or an inflammation in the lungs caused
by the lung cancer. Thus, without this intermediate variable, the (ground) symptom
variables Hoarseness and Wheezing would be direct symptoms of Lung cancer and
hence conditionally independent whenever the state of Lung cancer is known. This
would be incorrect, as Hoarseness and Wheezing are conditionally independent
only if the state of their true common cause, namely, Blockage or inflammation, is
known. The gray coloring of the node in Fig. 6.19 on the facing page representing
Blockage or inflammation indicates the (maybe not quite true) assumption that a
blockage or an inflammation can be observed only indirectly through observation
of Hoarseness and Wheezing.

Conclusion

This completes the (first iteration of) elicitation of a structure of the extended chest
clinic model. The next phase of the model elicitation process consists of defining the
domains of the variables not already determined as part of the structure elicitation
process.

In general, we wish variable domains to be as small as possible to minimize the
complexity of eliciting the probability parameters of the model and to minimize
the complexity of inference. On the other hand, the number of states needs to
be big enough to achieve sufficient expressive power to adequately represent
the relationships between the domain variables and thereby give the model the
necessary reasoning power and precision.

As a simple example, let us consider the task of defining the domain of variable
Smoking severity, which is a potential cause of Bronchitis (in its chronic form) and
Lung cancer. Assuming that lung cancer can be caused by even small doses of
tobacco smoke and that chronic bronchitis only occurs in cases where the patient
has been smoking intensely for many years, we can assume that Smoking severity
needs to have states none, mild, medium, and heavy. To keep the presentation of
the elicitation process for the extended chest clinic example as simple as possible,
we have deliberately avoided discussing how the idioms approach could have been
used. However, one of the exercises of this chapter addresses this issue.

6.3.4 The Generic Structure of Probabilistic Networks

From the elicitation of the structure of the extended chest clinic model, we have
experienced that the typical overall structure of a probabilistic network shown in
Fig. 6.3 on page 155 can be elaborated a bit, as mediating variables can appear also
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Background variables

Root causes

Intermediate causes

Problem variables

Mediating variables

Symptom variables

Intermediate symptoms

Ground symptoms

Fig. 6.20 Typical expanded overall causal structure of a probabilistic network

as intermediate causes and intermediate symptoms. Figure 6.20 shows an elaborated
(or expanded) version of the typical overall causal structure of a probabilistic
network.

A directed link between two dotted areas in Fig. 6.20 indicates that a directed
link from anyone of the two node categories in the “source area” to anyone of the
two node categories in the “destination area.”

6.4 Model Verification

Proper use of idioms or identification and categorization of variables as background
variables, problem variables, symptom variables, and mediating variables and
adhering to the overall causal structure in Fig. 6.3 reduces the typical error of letting
links (arrows) point from symptom variables to problem variables. If, however, a
model contains links that point from effects to causes, inspection of the dependence
and independence properties represented by the model will often reveal a problem
caused by the reversed links.

Example 6.13 (Model Verification). Consider the following three Boolean variables
(i.e., having state space {false; true}):
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Two PCs Card copied

Fraud

(a)

Two PCs Card copied

Fraud

(b)

Fig. 6.21 Two competing models for Example 6.13

• Two PCs: Two or more PCs have been bought within a few days using the same
credit card.

• Card copied: The credit card has been used at almost the same time at different
locations.

• Fraud: The credit card has been subject to fraud.

Now, the question is if model A in Fig. 6.21a is correct or model B in Fig. 6.21b is
correct. Experience shows that most novices tend to prefer model A, probably
based on the notion that “input” leads to “output” (i.e., observations imply a
hypothesis). That is, given the two pieces of information that the credit card has
been used to buy two or more PCs within a few days and that the card has been
used almost at the same time at different locations (the input), we can conclude that
the card has been subject to fraud (the output). According to model A, however,
information about Two PCs (Card copied) does not provide us with any information
about Card copied (Two PCs) when no information is available about Fraud. This is
obviously incorrect, as one piece of evidence confirming (or disconfirming) fraud
would obviously make us believe more (or less) in observing the other symptom of
fraud. Based on model A, we would thus get wrong posterior probabilities. Notice
also that model A does not have the typical causal structure as displayed in Fig. 6.3,
as we identify Fraud as the problem variable and Two PCs and Card copied as
information (symptom) variables.

Model B, on the other hand, rightfully tells us that:

• Two PCs and Card copied are dependent when we have no hard evidence on
Fraud: Observing Two PCs (Card copied) will increase our belief that we will
also observe Card copied (Two PCs).

• Two PCs and Card copied are independent when the state of Fraud is known:
If we know that we are considering a case of fraud, then observing Two PCs
(Card copied) will not change our belief about whether or not we are going to
observe Card copied (Two PCs).

As this example shows, close inspection of the dependence and independence
relations of a model may reveal links pointing in the wrong direction. However,
adherence to the overall causal structure of Fig. 6.3 would eliminate the possibility
of arriving at model A.
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Using the idiom approach to structure elicitation in this case, one would have to
decide whether to use the definitional/synthesis idiom or the cause–consequence
idiom (the measurement, reconciliation, and induction idioms would be readily
rejected). The definitional/synthesis idiom would make Fraud be defined in terms
of Card copied and Two PCs, which would be awkward. For one thing, such a
definition would be open-ended, as there are an unlimited number of ways in
which a credit card can be abused. Another, more convincing, argument why the
definitional/synthesis idiom is the wrong choice is that it violates the overall causal
structure of Fig. 6.3. �

Despite its simplicity, Example 6.13 shows that it might be beneficial to combine
the idiom approach and the basic approach to structure elicitation. In other words,
keeping in mind the overall causal structure of Fig. 6.3 might be helpful when a
choice of idiom has to be made.

As illustrated in Example 6.5 on page 153, model verification may reveal a
need to introduce additional (mediating) variables. The mediating variable, HS, of
Fig. 6.2 is a common cause of variables BT and UT. Identification of such common
causes most often requires a close collaboration between a problem-domain expert
and a knowledge engineer, as the domain expert often lacks the ability to read the
dependence and independence properties displayed by a network structure and the
knowledge engineer lacks insight into the causal mechanisms among the variables
of problem domain. As illustrated in the pregnancy example, failure to identify
such hidden common causes (i.e., causes for which we have neither any immediate
interest in their probability distributions nor any (easy) way of observing their states)
may lead to models that provide wrong answers. In the case of the pregnancy
model, exclusion of the variable HS would make the model exaggerate the influence
from BT and UT when both are observed, as they are both indicative of the same
phenomenon, namely, a possible change in the hormonal state of the cow.

6.5 Eliciting the Numbers

Once the structure of the probabilistic network has been established—probably
through an iterative process involving model verification and model revisions,
including identification of new variables; deletion and redefinition of existing
variables; and addition, deletion, and reversal of links—the next and usually the
most difficult phase of constructing a probabilistic network concerns the elicitation
of the quantitative information, including (conditional) probability distributions and
utilities (jointly referred to as the “numbers” or the “parameters”).

Due to the (most often) quite demanding effort involved in eliciting the numbers,
it is important to carefully verify the structure of the model before proceeding to the
quantitative part of the model construction. Otherwise, one runs the risk of having to
reject or alter already elicited numbers, as the kind of numbers required is dictated
by the model structure. Also, eliciting conditional probabilities with causal links



6.5 Eliciting the Numbers 177

reversed may be difficult and prone to errors. In practice, however, minor model
structure adjustments are often made during the number elicitation process (e.g., to
reduce the number of parameters).

The quantitative information of a probabilistic network (often referred to as the
parameters of the model) is represented as real numbers in conditional probability
tables (CPTs) and utility tables (UTs). CPTs represent (conditional) probability
distributions with domains spanning the interval Œ0I 1�, whereas UTs represent utility
functions with domains spanning �−∞I∞Œ.

The parameters of a probabilistic network can be retrieved from databases,
elicited from (subjective) domain expert knowledge (e.g., from literature or inter-
views of domain experts), or established through a mathematical model (e.g., based
on assumptions that a given probabilistic distribution can be approximated through
a mixture of normal distributions). In this section, we shall focus only on the latter
two approaches; see Chap. 8 for learning probability parameters from data.

6.5.1 Eliciting Subjective Conditional Probabilities

Part of the reason why elicitation of values of probability parameters can be rather
demanding is that human reasoning is seldomly based on probabilities. In other
words, a domain expert might find it awkward to express her/his domain-specific
knowledge in terms of conditional probabilities and utility values. Thus, different
indirect ways of eliciting the quantitative knowledge may be used.

The fact that small differences in the values of probability (or utility) parameters
often make no difference in the recommendations provided by a model allows
for parameter elicitation methods based on qualitative approaches. A qualitative
approach often makes the domain expert more comfortable specifying her/his
knowledge about strengths of causal relations and relative preferences associated
with decision problems. An example of a qualitative approach for assessing subjec-
tive probabilities includes the usage of a so-called probability wheel. A probability
wheel is a circle subdivided into n pie wedges, where n equals the number of
possible states of the variable for which a (conditional) probability distribution is
requested. The domain expert then estimates a probability for a particular state
by sizing the corresponding pie wedge to match her/his best assessment of that
probability.

Example 6.14 (Probability Wheel). A climate researcher asked to provide an esti-
mate of the increase in the average global temperature over the next 100 years might
use a probability wheel as shown in Fig. 6.22, working with a granularity of< 2 ıC,
2–5 ıC, and > 5 ıC. �

Another example of a qualitative approach is the use of verbal statements
like “very unlikely” or “almost certain” that are then mapped to probabilities
(see Fig. 6.23) (Renooij & Witteman 1999, van der Gaag, Renooij, Witteman &
Taal 2002). The use of such a limited set of verbal statements often makes it quite a
lot easier for the domain expert to provide assessments of (conditional) probabilities.
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< 2ıC2–5ıC

> 5ıC

0:22
0:33

0:44

Fig. 6.22 Probability wheel with three pie wedges corresponding to three states of a variable
representing the increase in the average global temperature over the next 100 years. The relative
area occupied by a particular pie wedge represents the (conditional) probability for the associated
state (indicated by the numbers next to the pie wedges)

0 Impossible
0:05 Very unlikely
0:1 Unlikely

0:2 Not probable

0:5 Fifty-fifty

0:8 Probable

0:9 Very probable
0:95 Almost certain
1 CertainFig. 6.23 Mapping of verbal

statements of probability to
probabilities

The reason why the scale in Fig. 6.23 is more fine-grained close to 0 and 1 is that
small and large probabilities usually have greater influence on the outcome than
those closer to 0:5.

A simple gamble-based approach can be used for assessing the value of a prob-
ability parameter. Assume that a domain expert is asked to assess the conditional
probability that X D x when Y D y, that is, P.X D x |Y D y/. An indirect way
of making the expert assess this quantity would be to ask the expert to choose an
n, where 0 � n � 100, such that he/she finds the following two gambles equally
attractive:
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1. If X attains the value x when Y D y, you receive $10.
2. If you draw a red ball from an urn with n red balls and 100− n white balls, you

receive $10.

If all balls are red, he/she prefers Gamble 2, and if all balls are white, he/she prefers
Gamble 1. The n for which he/she finds the two gambles equally attractive is her/his
estimate of 100 � P.X D x |Y D y/, that is, P.X D x |Y D y/ D n=100. To
reduce the parameter elicitation burden, it is advisable to perform the elicitation of
probability parameters in a two-step process:

1. Quickly provide rough initial parameter estimates.
2. Perform sensitivity analysis (see Chap. 10) to identify parameter assessments

that need to be made with care, as small variations can have a large impact on the
posterior probability of problem variables given evidence.

The second step should probably be repeated, as the careful assessment of the
critical parameters might reveal new critical parameters, etc.

See, for example, Renooij (2001) for a more in-depth discussion of the issues
related to elicitation of probabilities for probabilistic networks.

6.5.2 Eliciting Subjective Utilities

Similar to the gamble-based approach for eliciting subjective conditional probabili-
ties, we define a gamble-based approach for eliciting subjective utilities.

Assume that we have the ordering .a1; : : : ; an/ of outcomes to which we need to
assign subjective utilities, where the outcomes are ordered from worst to best. We
first assign a utility of 0 to the worst outcome and a utility of 1 to the best outcome.
So,

U.a1/ D 0

U.an/ D 1:

Then we consider gambles (or lotteries) Lp in which we get the best outcome (an)
with probability p and the worst outcome (a1) with probability 1−p. The utility of
an outcome ai (i D 2; : : : ; n − 1) is then defined to be the expected utility of Lp
for which we are indifferent between playing the gamble and getting the outcome
ai for sure. Thus,

U.ai / D EU.Lp/

D p � U.an/C .1− p/ � U.a1/
D p:

In other words, the probability, p, for which we are indifferent between the gamble
and getting ai for sure is our utility for ai .
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6.5.3 Specifying CPTs and UTs Through Expressions

Probability distributions and utility functions in probabilistic networks often follow
(at least approximately) certain functional or distributional forms. In such cases,
the CPTs/UTs can be described compactly through mathematical expressions.
Apart from ease of specification, specification through expressions also makes
maintenance and reuse much easier.

An expression may be built using standard statistical distributions (e.g., normal,
binomial, beta, gamma), arithmetic operators, standard mathematical functions
(e.g., logarithmic, exponential, trigonometric, and hyperbolic functions), logical
operators (e.g., and, or, if-then-else), and relations (e.g., less than, equals).

The different operators used in an expression have different return types and
different type requirements for arguments. Thus, in order to provide a rich language
for specifying expressions, it is convenient to have a classification of the discrete
chance and decision variables into different groups:

• Labeled variables have state spaces of arbitrary qualitative descriptors provided
in the form of character strings. Labeled variables can be used in equality
comparisons and to express deterministic relationships. For example, a labeled
variable C1 with states state 1 and state 2 can appear in an expression like
if.C1 D state 1;Distribution.0:2;0:8/;Distribution .0:4; 0:6// for
P.C2 |C1/, where C2 is another discrete chance variable with two possible states
and where if.p; a; b/ is read as if predicate p is true, then a else b.

• Boolean variables represent the truth values “false” and “true” (in that order) and
can be used in logical operators. For example, for a Boolean variable, B0, being
the logical OR of its (Boolean) parents, B1, B2, and B3, P.B0 |B1;B2; B3/ can
be specified simply as or.B1;B2;B3/.

• Numbered variables represent increasing sequences of numbers (integers or
reals) and can be used in arithmetic operators, mathematical functions, etc. For
example, a numbered variable with state space {1; 2; 3; 4; 5; 6} can represent the
outcome of the roll of a die.

• Interval variables represent disjoint intervals on the real line and can be used
in the same way as numbered variables. In addition, they can be used when
specifying the intervals over which a continuous quantity is to be discretized. For
example, an interval variable with state space {Œ0I 2Œ; Œ2I 5Œ; Œ5I 10Œ} may represent
the increase in the average global temperature over the next 100 years (cf.
Example 6.14 on page 177).

Table 6.2 shows some examples of possible states of the various subtypes of
discrete chance variables.

Based on the semantics of discrete chance nodes provided by the above subtyp-
ing, an algorithm for automatic generation of CPTs and UTs can be implemented.
The functionality of such a table generator will be dependent on the subtypes of
the variables involved. Table 6.3 shows how the functionality of a table generator
algorithm might be dependent on variable subtypes.
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Table 6.2 Examples of
possible states of the various
subtypes of discrete chance
variables

Subtype Sample states

Labeled red, blue, low
Boolean false, true

Numbered −∞; : : : ;−2:2;−1:5; 0; 1; 2; 3; : : : ;∞

Interval �−∞I−10Œ; Œ−10I−5Œ; Œ−5I−1Œ

Table 6.3 The functionality of a table generator algorithm is dependent on the
subtype of the involved variables

Operation Labeled Boolean Numbered Interval Utility

If-then-else + + + + +
Arithmetic operators + + +
Boolean operators +
Boolean comparison +
Boolean distributions +
Continuous distributions +
Discrete distributions +
Custom distribution +

Example 6.15 (Number of People (HUGIN 2006)). Assume that in some appli-
cation, we have probability distributions over the number of males and females,
where the distributions are defined over intervals Œ0I 100Œ, Œ100I 500Œ, Œ500I 1000Œ
and that we wish to compute the distribution over the total number of individuals
given the two former distributions. (Note that this is an obvious sample usage
of the definitional/synthesis idiom presented in Sect. 6.3.2 on page 157.) It is a
simple but tedious task to specify P.NI |NM;NF /, where NI , NM , and NF stand
for the number of individuals, the number of males, and the number of females,
respectively. A much more expedient way of specifying this conditional probability
distribution would be to let NM and NF be interpreted as interval variables with
states Œ0I 100Œ, Œ100I 500Œ, and Œ500I 1000Œ and to let NI be interpreted as an interval
variable with states Œ0I 200Œ, Œ200I 1000Œ, and Œ1000I 2000Œ, for example, and then
define P.NI |NM;NF / through the simple expression NI D NM C NF . The
alternative would require specification (including computation) of 27 probability
parameters; see Table 6.4. �

Example 6.16 (Fair or Fake Die (HUGIN 2006)). Consider the problem of com-
puting the probabilities of getting n sixes in n rolls with a fair die and a fake die,
respectively. A random variable, X , denoting the number of sixes obtained in n
rolls with a fair die is binomially distributed with parameters .n; 1=6/. Thus, the
probability of getting k sixes in n rolls with a fair die is Pfair.X D k/, where Pfair is
a Binomial.n; 1=6/. Assuming that for a fake die the probability of six pips facing
up is 1=5, the probability of getting k sixes in n rolls with a fake die isPfake.X D k/,
where Pfake is a Binomial.n; 1=5/.

A model of this problem is shown in Fig. 6.24, where #6 0s depends on #rolls
and Fake die‹. Now, if we let #rolls be interpreted as a numbered variable with
state space {1; 2; 3; 4; 5}, let Fake die‹ be interpreted as a Boolean variable, and
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Table 6.4 The CPT for P.NI |NM;NF / in Example 6.15 generated from
the expression NI D NM CNF

NI

NF NM Œ0I 200Œ Œ200I 1000Œ Œ1;000I 2;000Œ
Œ0I 100Œ Œ0I 100Œ 1 0 0

Œ0I 100Œ Œ100I 500Œ 0:1248 0:8752 0

Œ0I 100Œ Œ500I 1000Œ 0 0:8960 0:1040

Œ100I 500Œ Œ0I 100Œ 0:1248 0:8752 0

Œ100I 500Œ Œ100I 500Œ 0 1 0

Œ100I 500Œ Œ500I 1000Œ 0 0:4 0:6

Œ500I 1000Œ Œ0I 100Œ 0 0:8960 0:1040

Œ500I 1000Œ Œ100I 500Œ 0 0:4 0:6

Œ500I 1000Œ Œ500I 1000Œ 0 0 1

#rolls Fake die‹

#60s

Fig. 6.24 A model for the
fake die problem

Table 6.5 The CPT for P.#60s |#rolls; Fake die‹/ in the fake die problem of Example
6.16 generated from the expression Binomial.#rolls;if.Fake die‹; 1=5; 1=6//

#60s

Fake die‹ #rolls 0 1 2 3 4 5

false 1 0:8333 0:1666 0 0 0 0

false 2 0:6944 0:2777 0:0277 0 0 0

false 3 0:5787 0:3472 0:0694 0:0046 0 0

false 4 0:4822 0:3858 0:1157 0:0154 0:0007 0

false 5 0:4018 0:4018 0:1607 0:0321 0:0032 0:0001

true 1 0:8 0:2 0 0 0 0

true 2 0:6400 0:3200 0:0400 0 0 0

true 3 0:5120 0:3840 0:0960 0:0080 0 0

true 4 0:4096 0:4096 0:1536 0:0256 0:0016 0

true 5 0:3276 0:4096 0:2048 0:0512 0:0064 0:0003

let #6 0s be interpreted as a numbered variable with state space {0; 1; 2; 3; 4; 5}, then
P.#6 0s |#rolls; Fake die‹/ can be specified elegantly using the expression

P.#6 0s |#rolls; Fake die‹/ D Binomial.#rolls;if.Fake die‹; 1=5; 1=6//:

Filling in the probabilities by hand would require computation of 60 values of the
binomial function with different parameters; see Table 6.5. �

Example 6.17 (Discretizing a Variable (HUGIN 2006)). Assume that P.C1 |C2/
can be approximated by a normal distribution with mean given by C2 and with
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Table 6.6 The CPT for P.C1 |C2/ in the discretization problem of Example 6.17
generated from the expression Normal.C2; 1/

C1

C2 � −∞I−5Œ Œ−5I−2Œ Œ−2I 0Œ Œ0I 2Œ Œ2I 5Œ Œ5I∞Œ

Œ−5I−1Œ 0:0996 0:6297 0:2499 0:0207 9:4E−5 3:8E−11

Œ−1I 0Œ 7:1E−6 0:0748 0:6096 0:3075 0:0081 5:3E−8

Œ0I 1Œ 5:3E−8 0:0081 0:3075 0:6096 0:0748 7:1E−6

Œ1I 5Œ 3:8E−11 9:4E−5 0:0207 0:2499 0:6297 0:0996

variance 1, where C2 is an interval variable with states Œ−5I−1Œ, Œ−1I 0Œ, Œ0I 1Œ,
Œ1I 5Œ. If the discretization of C1 given by the intervals �−∞I−5Œ, Œ−5I−2Œ, Œ−2I 0Œ,
Œ0I 2Œ, Œ2I 5Œ, Œ5;∞Œ is found to be suitable, then we can specify P.C1 |C2/ simply as
Normal.C2; 1/. The probability distribution P.C1 |C2 D c2/ (i.e., the conditional
distribution for C1 given that the value of C2 belongs to interval c2) is generated by
computing a large number of probability distributions forC2, each distribution being
obtained by instantiating C1 to a value in the interval, c2, under consideration. The
average of these distributions (based on, e.g., the midpoints of 25 subintervals) is
used as P.C1 |C2 D c2/. Hence, for expressions involving several interval variables
as parents, the generation of the CPT may be computationally intensive. Table 6.6
shows P.C1 |C2/. �

6.6 Concluding Remarks

In this chapter we have tried to convey a set of good practices, routines, and hints
that can be helpful for novices wanting to construct a probabilistic network model
for a problem domain.

When constructing a model (probabilistic or not), it is crucial to realize that
real-world problem domains are usually embedded in a complex reality involving
interaction with numerous different aspects of the real world in a way that can never
be fully captured in a model. Also, the internal causal mechanisms of a problem
domain can almost always only be approximately described in a model. Thus, it is
important to bear in mind that all models are wrong, but that some might be useful.

Based on this insight, it is important to clearly state the context of the model as
well as the assumptions and conditions under which it is supposed to work. Real-
world problem domains exist in an open world, whereas models for the problem
domains are based on a (most often, erroneous) closed-world assumption.

The construction of a probabilistic network typically runs through four main
phases:

Design of the network structure, covering identification of variables and (causal)
relations among the variables. In addition, verification of the network structure is
an essential activity of the design phase, where the dependence and independence
relations represented in the model are stated and verified.
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Implementation of the network, covering the process of populating the CPTs and
UTs with (conditional) probabilities and utilities. This phase is often the most
labor intensive of the four phases.

Test of the network to check if it provides sensible outputs to a carefully
selected set of inputs. In a medical setting, for example, testing may amount to
entering patient data and comparing network recommendations (e.g., diagnoses
or treatment plans) with recommendations provided by medical experts. If the
test phase does not reveal any flaws of the network, construction of the network
is considered successfully completed.

Analysis of the network is performed to pinpoint problematic aspects of the
network revealed in the test phase. Various tools may be brought into play,
including conflict analysis (see Chap. 9), sensitivity analyses (see Chap. 10), and
value of information analysis (see Chap. 11).

In the design phase, it is crucial to clearly define the problem that is going to
be addressed by the model and to pay close attention to this problem definition
when identifying the variables of the model. It is strongly recommended to keep the
number of variables and (causal) relations among them to a minimum; only those
variables and relations that are thought to have significant influences on the problem
variable(s) should be included.

In his writings, William of Occam (or Ockham) (1284–1347) stressed the
Aristotelian principle that entities must not be multiplied beyond what is necessary.
This principle became known as Occam’s razor or the law of parsimony; a problem
should be stated in its basic and simplest terms. In science, the simplest theory that
fits the facts of a problem is the one that should be selected. This rule is interpreted
to mean that the simplest of two or more competing theories is preferable and that
an explanation for unknown phenomena should first be attempted in terms of what
is already known.1

One argument why one should go for simpler rather than complex solutions to
a problem lies in the fact that simpler solutions impose less assumptions about the
problem (e.g., about dependences and independences) and hence postulate fewer
hypothetical solutions. The underlying idea is thus that simpler solutions are more
likely to be “correct.”

A key design principle applied in the construction of virtually any complex
system is the principle of a modular top-down design in which the level of
abstraction changes from the more abstract to the more concrete. To support a
modular design approach, clear descriptions of the interface mechanisms of the
modules must be provided. Also, given clear interface descriptions, cooperation
among sub-teams, reuse modules (submodels), and support for bottom-up design are
made possible. There are several reasons why an object-oriented modeling approach
(see Sect. 4.3), which facilitates exactly a modular model construction approach that

1This paragraph is taken from http://www.2think.org/occams razor.shtml.

http://www.2think.org/occams_razor.shtml
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allows for both top-down and bottom-up design, is recommended for constructing
large models:

• Large and complex systems are often composed of collections of identical or
similar components. Therefore, models of such systems will naturally contain
repetitive submodels. Object orientation allows such components to be instanti-
ated from a generic class. Both construction and maintenance become a whole
lot easier in this way: Each component is generated simply through instantiation,
and changes that apply to all instances should be made only in the class from
which the components have been instantiated.

• Many complex real-world systems (e.g., mechanical and biological systems)
are naturally described in terms of hierarchies of components (i.e., the system
consists of components, which consist of subcomponents, etc.). Thus, often
an object-oriented probabilistic network (OOPN) more naturally describes the
structure of the system modeled.

• Object-oriented model construction supports both top-down and bottom-up
modes of construction, which are often used, respectively, to maintain a good
overview of the model by abstracting away irrelevant details and to focus
on subcomponents with a well-defined interfaces to their surroundings. Thus,
the OOPN framework provides support for working with different levels of
abstraction in the model constructing process.

• Object-oriented model construction provides a natural means to reuse of existing
submodels. That is, the methodology provides a means to maintain a library of
submodels that can be instantiated in many different OOPNs.

• Specifying a model in a hierarchical fashion often makes the model less cluttered
and thus provides a better means of communicating ideas among knowledge
engineers, domain experts, and users.

• The composition of a model by a number of components with well-defined
interfaces supports a collaborative model construction process, where different
model constructors work on different parts of the model.

Finally, it is important to realize that construction of a probabilistic network is
an iterative process in the sense that if model testing reveals flaws of the model,
another cycle through the model construction phases mentioned above is necessary.
In most practical model construction projects, many iterations are needed before a
workable model is found. This iterative or spiral process, which is well known from
almost all areas of engineering, is illustrated in Fig. 6.25.

6.7 Summary

Manual construction of a probabilistic network for a complex decision or diagnosis
problem is usually a demanding task, involving different sources of expertise that
provide model engineering skills as well as deep understanding of the problem
domain. The model elicitation process requires careful problem definition, careful
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Fig. 6.25 Model
development is an activity
that iteratively passes through
design, implementation, test,
and analysis phases until
model tests no longer uncover
undesired behavior of the
model

identification of the relevant variables and dependences/independences among the
variables, and elicitation of many (conditional) probabilities and utilities.

However, appealing a probabilistic network might seem in terms of compactness
of representation and in terms of serving as an intuitive means for communication
of problem-domain characteristics, there exist problems for which probabilistic
networks are not the ideal tool to use. In Sect. 6.1, we discussed some characteristics
of probabilistic networks and some criteria for using them. Briefly, and most impor-
tantly, the variables of the problem domain should be well defined, causal relations
among the variables should be identifiable, uncertainty should be associated with
the causal relations, and the problem should contain an element of decision making
with a desire to maximize the expected utility of a decision.

In Sect. 6.2, we discussed how to identify the right set of variables of a
probabilistic network and what it takes for a variable to be well defined. A simple
taxonomy of variables was introduced, which includes three basic types of variables
and their causal relations. Problem variables (or hypothesis variables) represent
the diagnoses, classifications, predictions, decisions, etc., to be made. Information
variables represent the available information (evidence) that can provide infor-
mation relevant for solving the problem. Finally, mediating variables represent
unobservable entities of the problem domain for which posterior probabilities are
of no immediate interest but which play an important role for achieving the right
dependence and independence properties of the network or for making efficient
inference.

In Sect. 6.3, we first described a basic approach to structure elicitation, showing
how the variable taxonomy can be used in the attempt to elicit the model structure.
Next, we described how the notion of idioms can be helpful in identifying fractions
of a network structure, depending on the nature of the semantic relations that exist
among a small set of variables. Five idioms, thought to cover the vast majority of
commonly occurring semantic relationships, were presented. The five idioms can
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be thought of as five archetypical modes of uncertain reasoning, and thus, using the
idioms approach to elicitation of model structure, one is encouraged to think at a
higher level of abstraction, leaving behind details about which links to include and
their directionality.

Although the basic approach to structure elicitation can be quite feasible for some
problems, for most (large) real-world problems, the use of idioms is preferable, as
the idioms approach splits the problem into smaller and more manageable chunks.

In Sect. 6.4, we briefly touched upon the issue of model verification, an important
activity immediately following the structure elicitation effort. In the model verifica-
tion process, one checks if the dependence and independence statements imposed
by the structure are consistent with the knowledge of problem-domain experts.

In Sect. 6.5, we presented some techniques that might be considered in the
attempt to elicit the (subjective) values of the parameters (i.e., (conditional)
probabilities and utilities) dictated by the structure of the model. Also, we presented
a lower-level taxonomy for variables, distinguishing among them in terms of their
types of domains. Knowledge about the types of domains of variables allows
for automatic generation of CPTs and UTs through a language of mathematical
operations, including if-then-else statements, arithmetic and Boolean operations,
and a variety of discrete and continuous distributions. The ability to define CPTs
and UTs in terms of compact mathematical expressions might greatly reduce the
burden of eliciting the numbers (parameter values) of a probabilistic network.

We concluded the discussion on model elicitation in Sect. 6.6 by pointing out
some typical main phases of the model construction process, and how these phases
are repeated iteratively until model tests no longer uncover undesired behavior of
the model. Also, we pointed to the fact that the best models are usually constructed
through deliberate use of the law of parsimony (or Occam’s razor). Finally, we
touched upon the potential benefits of applying an objected-oriented modeling
approach, which facilitates modular model construction with the freedom to use
a top-down or a bottom-up approach. The use of an object-oriented approach is
especially beneficial for construction of large models.

Exercises

Exercise 6.1. There are three condemned prisoners A, B, and C. The governor has
announced that one of the three, chosen at random, has been pardoned, but does
not say which. Prisoner A, realizing that he only has a 1=3 chance of having been
pardoned, reasons with the warden as follows: “Please tell me the name of one
of the other prisoners B or C who will be executed. I already know that at least
one of them will be executed so you will not be divulging any information.” The
warden then asks how he should choose between B or C in case both are to be
executed. “In that case,” A tells him, “simply flip a coin (when I’m not around)
to choose randomly between the two.” The warden agrees and later tells A that B
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will be executed. On hearing this news, A smiles and thinks to himself, “Now my
chances of having been pardoned have increased from 1=3 to 1=2.”

(a) Identify the variables of a Bayesian network model of the reasoning made by
prisoner A.

(b) Specify the domains of the variables.
(c) Are your variables well defined? Why or why not?
(d) Characterize the variables in terms of the taxonomy presented in Sect. 6.2.2

on page 152 and specify the causal links of your model using the prototypical
causal structure shown in Fig. 6.3.

(e) Specify the (conditional) probabilities of your model and check if your model
agrees with the conclusion drawn by prisoner A.

Exercise 6.2. In Exercise 6.1, consider the suggestion to define three variables A,
B , and C to represent the three prisoners. Are these variables well defined? If so,
why? If not, why not?

Exercise 6.3. In the morning, when Mr. Holmes leaves his house, he realizes that
his grass is wet. He wonders whether it has rained during the night or whether he
has forgotten to turn off his sprinkler. He looks at the grass of his neighbors, Dr.
Watson and Mrs. Gibbon. Both lawns are dry, and he concludes that he must have
forgotten to turn off his sprinkler.

(a) Identify the relevant variables a probabilistic network representing Mr. Holmes’
reasoning problem. Also, identify the domains of the variables.

(b) Characterize the variables in terms of the taxonomy presented in Sect. 6.2.2
on page 152 and specify the causal links of your model using the prototypical
causal structure shown in Fig. 6.3.

(c) If you were to construct the model using the idioms approach, which idiom(s)
would you use?

(d) Verify that your model is consistent with the following dependence and
independence statements:

1. Information about the states of the lawns (i.e., wet or dry) is independent if
we know that it has rained; otherwise, they are dependent.

2. Information about the state of rain and information about the state of
Holmes’ sprinkler are dependent if the state of Holmes’ lawn is known;
otherwise, they are independent.

Exercise 6.4. Consider the inference problem in Example 2.4 on page 25, which is
stated as follows:

Mr Holmes is working in his office when he receives a phone call from his neighbor Dr.
Watson, who tells him that Holmes’ burglar alarm has gone off. Convinced that a burglar
has broken into his house, Holmes rushes to his car and heads for home. On his way, he
listens to the radio, and in the news, it is reported that there has been a small earthquake in
the area. Knowing that earthquakes have a tendency to turn burglar alarms on, he returns to
his work.
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B E

A R

W

• W : Phone call from Watson
• A: Burglary alarm
• B: Burglary
• R: Radio news
• E: Earthquake

Fig. 6.26 Structure of a Bayesian network for the “burglary or earthquake” inference problem

The structure of a Bayesian network for this inference problem is shown in
Fig. 6.26:

(a) Classify the variables in Fig. 6.26 according to the taxonomy in Sect. 6.2.2 on
page 152.

(b) Verify that the structure in Fig. 6.26 is consistent with the prototypical causal
structure shown in Fig. 6.3 on page 155.

Exercise 6.5. Consider the structure of the extended chest clinic model in Fig. 6.19
on page 172:

(a) Which kinds of idioms could have been applied in eliciting the structure?
(b) Give examples of substructures of the structure that could have been derived

using the kinds of idioms suggested in part (a).

Exercise 6.6. Consider the task of providing your subjective probabilities of who
is going to win the next World Cup in soccer:

(a) Provide your probability that Brazil wins.
(b) Consider the following gambles:

1. If Brazil wins, you receive $10.
2. If you draw a red ball from an urn with n red balls and 100− n white balls,

you receive $10.

For which value of n are the two gambles equally attractive to you?
(c) Compare your original subjective probability that Brazil wins with n=100

from (b).



Chapter 7
Modeling Techniques

In this chapter we introduce a set of modeling methods and techniques for
simplifying the specification of a probabilistic network.

The construction of a probabilistic network may be a labor-intensive task to
perform. The construction involves a sequence of steps such as identifying variables,
identifying states of variables, encoding dependence and independence relations as
an acyclic, directed graph, and eliciting (conditional) probabilities and utilities as
required by the structure of the acyclic, directed graph.

There are many reasons for considering the utilization of modeling techniques in
the model development process. Modeling techniques may be applied in order, for
instance, to simplify knowledge elicitation and model specification, capture certain
properties of the problem domain that are not easily captured by an acyclic, directed
graph, to reduce model complexity and improve efficiency of inference in the model,
and so on.

Section 7.1 considers modeling techniques for adjusting the structure of a prob-
abilistic network. This includes, in particular, modeling techniques that captures
certain structural properties of the problem domain that help reduce the complexity
of a model. Section 7.2 considers modeling techniques for the specification of
conditional probability distributions. This includes modeling techniques for cap-
turing uncertain information and for reducing the number of parameters to specify.
Finally, Sect. 7.3 considers modeling techniques for influence diagram models. This
includes modeling techniques of capturing properties of a problem domain that
seemingly do not fulfill the underlying assumptions of influence diagrams.

7.1 Structure-Related Techniques

In this section we consider modeling techniques related to the structure of a proba-
bilistic network. In particular, we consider parent divorcing, temporal
transformation, the representation of structural and functional uncertainty, undi-
rected dependence links, bidirectional relations, and the naive Bayes model.

U.B. Kjærulff and A.L. Madsen, Bayesian Networks and Influence Diagrams: A Guide
to Construction and Analysis, ISS 22, DOI 10.1007/978-1-4614-5104-4 7,
© Springer Science+Business Media New York 2013
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X1 X2 X3

Y

(a)

X1 X2 X3

I

Y

(b)

Fig. 7.1 (a) X1, X2, and X3 are direct parents of Y . (b) X3 is a direct parent of Y , while the
combined influence of X1 and X2 is mediated through I

7.1.1 Parent Divorcing

The modeling techniques referred to as parent divorcing (Olesen, Kjærulff, Jensen,
Jensen, Falck, Andreassen & Andersen 1989) is a commonly used modeling
technique for reducing the complexity of a model by adjusting the structure of
the graph of a probabilistic network. The technique of parent divorcing can be
applied to reduce the complexity of specifying and representing the direct impact of
a relatively large number of variablesX1; : : : ; Xn, referred to as the cause variables,
on a single variable Y , referred to as the effect variable.

The basic idea of parent divorcing is to introduce layers of intermediate variables
between the effect variable Y and its direct causes X1; : : : ; Xn such that each
intermediate variable I captures the impact of its parents on the child variable. The
parents of I may consists of a subset of intermediate variables and cause variables.

Figure 7.1a illustrates a model structure where the variable Y has three direct par-
ent causesX1;X2;X3. Parent divorcing applied to Y and its direct causesX1;X2;X3
amounts to introducing a mediating variable I between Y and a subset of its
parents X1;X2;X3. Let the subset of parents be X1 and X2 such that Y after parent
divorcing has parentsX3 and I while X1 and X2 are parents of I . The result of this
process is as illustrated in Fig. 7.1b. Notice that X1 and X2 are divorced from the
remaining parents of Y .

The following example illustrates how the use of parent divorcing may reduce
the size of a conditional probability distribution significantly by exploiting structure
within conditional probability distributions.

Example 7.1 (Parent Divorcing). Consider Fig. 7.1 and assume Y is defined as
the disjunction (denoted ∨) of its three parents X1, X2, and X3. This implies that
the conditional probability distribution P.Y |X1;X2;X3/ is defined as shown in
Table 7.1.
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Table 7.1 The conditional
probability
distribution P.Y |X1;X2; X3/

Y

X1 X2 X3 false true

false false false 1 0

false false true 0 1

false true false 0 1

false true true 0 1

true false false 0 1

true false true 0 1

true true false 0 1

true true true 0 1

X1 X2 X3

X1 ∨X2

Y

Fig. 7.2 Parent divorcing
applied to the distribution for
Y D X1 ∨ X3 ∨X3

Table 7.2 The conditional
probability
distribution P.X1 ∨
X2 |X1;X2/

X1 ∨X2

X1 X2 false true

false false 1 0

false true 0 1

true false 0 1

true true 0 1

By inspection of Table 7.1, it is clear that the conditional probability distri-
bution P.Y |X1;X2;X3/ has a lot of structure. This structure can be exploited
to reduce the size of the largest conditional probability distribution using parent
divorcing.

The structure in Fig. 7.1a defines Y as Y D X1 ∨X2 ∨X3 disregarding the fact
that disjunction (∨) is a binary operator. On the other hand, the structure shown in
Fig. 7.2 defines Y as Y D .X1 ∨ X2/ ∨ X3 by introducing a mediating variable
Table 7.2 (the distribution P.Y |X1 ∨X2;X3/ is equivalent).

Thus, instead of having one distribution of size 16 we have two tables of
size 8. The reduction in size of the largest conditional probability table may seem
insignificant. However, if there is a large number of parents, the reduction is
significant. The reduction may make an otherwise intractable task tractable. �

The fundamental idea of parent divorcing is that through the utilization of
mediating variables, it may be possible to divorce subsets of parents of the effect
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Table 7.3 The conditional
probability distribu-
tion P.Y |X1; : : : ; Xm/

Y

X1 X2 X3 � � � Xm y1 � � � yn

x1 x2 x3 � � � xm z1 � � � zn
:
:
:

:
:
:

x1 x0

2 x3 � � � xm z0

1 � � � z0

n

:
:
:

:
:
:

x0

1 x2 x3 � � � xm z0

1 � � � z0

n

:
:
:

:
:
:

x0

1 x0

2 x3 � � � xm z1 � � � zn

X1 X2 X3 � � � Xm

I

Y

Fig. 7.3 Parent divorcing in
general

variable in order to limit the size of parent sets. Parent divorcing is almost only used
when the relation among parent variables can be expressed as a chain of associative
binary operations such as ∨;∧;min;max;C;−; : : :.

In general, the underlying assumption of parent divorcing is that the configura-
tions of .X1;X2/, that is, pairs of instantiations ofX1 andX2, can be partitioned into
sets i1; : : : ; im such that different configurations .x1; x2/; .x0

1; x
0
2/ 2 ii if and only if

for all y:

P.y |x1; x2; x3; : : : ; xn/ D P.y |x0
1; x

0
2; x3; : : : ; xn/:

Table 7.3 shows how the conditional distribution P.Y |X1; : : : ; Xm/may support
the use of parent divorcing. For different configurations of X1 and X2, the child
variable Y has the same distribution, for example, for configurations .x1; x2/
and .x0

1; x
0
2/, the distribution of Y is z1; : : : ; zn.

An intermediate variable I may be introduced in order to exploit of the structure
of P.Y |X1; : : : ; Xm/. Figure 7.3 illustrates how the intermediate variable I is
introduced as a parent of Y and a child of X1 and X2.

The conditional probability distribution of the intermediate variable I is often
a deterministic function in configurations of its parents. Table 7.4 shows the
conditional probability distribution P.I |X1;X2/.

Since I replaces X1 and X2 as parents of Y , the conditional probability
distribution of Y changes. Table 7.5 shows the conditional probability distribu-
tion P.Y |I;X3; : : : ; Xm/.
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Table 7.4 The conditional
probability
distribution P.I |X1;X2/

I

X1 X2 i1 i2

x1 x2 1 0

x1 x0

2 0 1

x0

1 x2 0 1

x0

1 x0

2 1 0

Table 7.5 The conditional
probability distribu-
tion P.Y |I; X3; : : : ; Xm/

Y

I X3 � � � Xm y1 � � � yn

i1 x3 � � � xm z1 � � � zn
:
:
:

:
:
:

i2 x3 � � � xm z0

1 � � � z0

n

The above property is captured by introducing a mediating variable I as parent
of Y with X1 and X2 as parents. Parent divorcing is particularly useful in situations
where the state space size of the intermediate variable is (significantly) smaller
than the combined state space of its parents. Example 7.1 on page 192 shows one
situation where parent divorcing improves the efficiency of a model. That is, parent
divorcing is (representationally) efficient if ||I || < ||X1|| � ||X2||, that is, if the number
of subsets is less than the combined state space size of X1 and X2.

Parent divorcing may be considered as a relevant modeling technique when spec-
ifying P.Y |X1; : : : ; Xn/ is a significant or even intractable knowledge acquisition
task or when the size of n makes probabilistic inference intractable.

Notice that parent divorcing can always be applied to a variable and its parents.
If the intermediate variable I in Fig. 7.1b has one state for each configuration of its
parents, then the conditional probability distribution P.Y |X3; I / can be considered
as equivalent to P.Y |X1;X2;X3/. In this case, nothing has been gained from
applying parent divorcing with respect to reducing the complexity of the model or
improving efficiency of the model.

How to Implement This Technique

The parent divorcing modeling technique is implemented as follows:

1. Let XW 	 pa.Y / be the subset of parents of Y to be divorced from pa.Y / \ XW .
2. Create an intermediate node I as a common child of XW and a new parent of Y

replacing XW as parents of Y .
3. Let I have one state for each subset of XW mapping to the same distribution

on Y .
4. Define the distribution of I given XW such that each subset of XW mapping to

the same distribution on Y maps to the same state of I .
5. Repeat the above steps for each subset XW 	 pa.Y / to be divorced from

pa.Y / \ XW .
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X1

X2 X3 X4

Y1 Y2 Y

Fig. 7.4 Modeling a
temporal order of the impacts
of X1; : : : ; X4 on Y

7.1.2 Temporal Transformation

In this section we focus on applying the temporal transformation to adjust the
network structure to capture structure within a conditional probability distribution
of an effect variable Y given a set of causes X1; : : : ; Xn expressing a temporal (or
causal) order on the impact of the cause variables on the effect variable Y . Instead
of combining causes pairwise as in parent divorcing, the influence of causes on the
effect variable is taken into account one cause at a time in their causal or temporal
order.

The method of temporal transformation is best illustrated by an example.
Figure 7.4 shows the result of applying the temporal order method on the conditional
probability distribution of a variable Y given cause variables X1, X2, X3, and X4.
Notice the temporal order on the causal impacts of the cause variables on the effect
variable. The intermediate variables Y1 and Y2 have the same state spaces as Y .

The variables in Fig. 7.4 may represent causesX1,X2, andX3 of a disease Y and
a medicamentX4 for curing the disease. The causes X1, X2, and X3 add to the level
of the disease Y independently, while the medicament cures the disease no matter
the level of the disease. In this example, it is important that X4 is the last variable in
the temporal order of the causes. The example could be extended such that X1, X2,
and X3 represent different risk factors of the disease that have a temporal order.

The temporal transformation method was introduced by Heckerman (1993)
and refined by Heckerman & Breese (1994). A temporal order of the causal
impacts of X1; : : : ; Xn on Y is not necessary for applying the method of temporal
transformation. In addition to representing a temporal order of causal influence, the
temporal transformation method can be used as an alternative to parent divorcing.
The parent divorcing method described in the previous section also captures internal
structure of a conditional probability distribution of an effect variable given a set of
cause variables. The parent divorcing method often constructs a (balanced) binary
tree combining causes pairwise recursively, while the temporal transformation
method constructs an unbalanced binary tree as illustrated in Fig. 7.4.

The temporal transformation was introduced by Heckerman (1993) as a method
for representing causal independence between a set of cause variables X1; : : : ; Xn
with a common effect E. The model structure in Fig. 7.1a on page 192 does not
capture the property that cause variables X1; : : : ; Xn impact the effect variable E
independently. Temporal transformation can be used to implement independence of
causal influence as defined in Sect. 7.2.5.
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A B X1 X2

Y

? ?

a

A B S

P X1 X2

Y

b

Fig. 7.5 (a) Should A or B be the parent of Y ? (b) Modeling structure and functionality
uncertainty

How to Implement This Technique

The temporal transformation modeling technique is implemented as follows.

1. Let .X1; : : : ; Xn/ be an ordering of the parents pa.Y / of Y .
2. For i D 2; : : : ; n − 1 create an intermediate node Yi with the same state space

as Y as a child of Xi and a parent of YiC1 where Yn D Y .
3. Add X1 as a parent of Y2.
4. Define the distribution of Yi for i D 2; : : : ; n such that it captures the combined

impact of its parents on Y .

7.1.3 Structural and Functional Uncertainty

When modeling certain domains as a probabilistic network, it may be difficult
or even seem impossible to specify the set of independence and dependence
assumptions using a DAG. It may seem impossible to specify a static DAG for a
problem domain where dependence relations change or are uncertain in the sense
that they are not known at the time of model development. Similarly, it may be that
the functional dependence relation between a variable and (a subset of) its parents
is uncertain.

Figure 7.5a shows an example where A and B may both be considered as parent
of Y . However, due to the nature of the problem domain, only one of the two
is parent of Y at any given time. This is an example of what we term structure
uncertainty. Figure 7.5b shows how this behavior may be represented as a DAG
where S is a selector variable specifying P as taking on the value of A or B .
The nodes A, B , and P are assumed to have the same domain, that is,

dom.A/ D dom.B/ D dom.P / D .z1; : : : ; zn/:
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Table 7.6 The conditional
probability distribution
P.P |A;B; S/

P

S A B z1 z2 � � � zn
A z1 z1 1 0 � � � 0

A z1 z2 1 0 � � � 0
:
:
:

:
:
:

A z2 z1 0 1 � � � 0

A z2 z2 0 1 � � � 0
:
:
:

:
:
:

B z1 z1 1 0 � � � 0

B z1 z2 0 1 � � � 0
:
:
:

:
:
:

B z2 z1 1 0 � � � 0

B z2 z2 0 1 � � � 0
:
:
:

:
:
:

The prior distribution P.S D A/ D 1 − P.S D B/ specifies the prior
belief in A being the true parent of Y . Table 7.6 shows the conditional probability
distribution P.P |A;B; S/. We can define P.P |A;B; S/ compactly through

P D
{

A if S D A

B if S D B

The following example illustrates how structure uncertainty between a vari-
able Ann and two causes George and Henry may be represented.

Example 7.2 (Paternity). In addition to maintaining his orchard, Jack Fletcher
breeds horses. Assume Jack—by mistake—placed a group of mares with two
stallions (instead of a single stallion) for breeding. After some time, the foal Ann
is born. It is clear that the sire of Ann is one the stallions. The question is which one.

The two stallions are Henry and George. Soon after birth, it is discovered that Ann
is suffering from a disease caused by a certain genotype aa.

This implies that one of the stallions is a carrier of the gene making its offspring
unsuitable for breeding. A carrier of the disease has genotype aA, while a pure horse
has genotype AA. A stallion with the disease or carrying the disease should not be
used in future breeding. For this reason, it is important to determine the paternity
of Ann. The graph shown in Fig. 7.6 captures the properties of the problem. Each
variable (except S ) species the genotype of a horse where Sire denotes the true
father of Ann.

The selector variable S specifies either Henry or George as the true father,
and its domain is dom.S/ D .Henry;George/. Thus, the conditional probability
distribution P.Sire |George;Henry; S/ is defined as

Sire D
{

Henry if S D Henry

George if S D George
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George Henry S

Sire Mare

Ann

Fig. 7.6 Either George
or Henry is the true sire
of Ann

Table 7.7 The conditional
probability distribution
P.Sire |Henry;George; S/

Sire

S Henry George aa AA aA

Henry aa aa 1 0 0

Henry aa AA 1 0 0

Henry aa aA 1 0 0
:
:
:

:
:
:

George aa aa 1 0 0

George aa AA 0 1 0

George aa aA 0 0 1
:
:
:

:
:
:

F X1 X2

Y

Fig. 7.7 Either
Y D X1 ∨ X2
or Y D X1 ∧X2

This construction can be generalized for more complex pedigrees with multiple
generations and offspring of the stallion. Table 7.7 shows the conditional probability
distributionP.Sire |Henry;George; S/where aa, aA, andAA are the three different
genotypes. �

The situation where a variable Y is a function of a subset of its parents such that
the state of Y is either one or another (known) function of its parents is termed
functional uncertainty. Functional uncertainty is similar to structure uncertainty.
The following example illustrates how functional uncertainty between a variable Y
and two causes X1 an X2 may be represented.

Example 7.3 (Functional Uncertainty). Consider two Boolean variablesX1 andX2.
Assume we know that there is a direct impact of configurations of X1 and X2 on
the Boolean variable Y . Assume further that we know that either Y D X1 ∨ X2
or Y D X1∧X2 and that the first case is known to appear twice as frequently as the
other.

This situation can be captured by a simplified version of the structure shown in
Fig. 7.5b as illustrated in Fig. 7.7.
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Table 7.8 The conditional
probability distribution
P.Y |F;X1; X2/

Y

F X1 X2 false true

∨ false false 1 0

∨ false true 0 1

∨ true false 0 1

∨ true true 0 1

∧ false false 1 0

∧ false true 1 0

∧ true false 1 0

∧ true true 0 1

Sex

Height

Fig. 7.8 Functional
uncertainty on the height of a
person

The state space of F is dom.F / D .∨;∧/ such that P.F / D .2=3; 1=3/. The
conditional probability distribution of Y is defined as

Y D

⎧

⎪
⎪
⎨

⎪
⎪
⎩

true if X1 ∨X2 and F D ∨

true if X1 ∧X2 and F D ∧

false otherwise.

This structure captures the uncertainty related to the impact of X1 and X2 on Y .
Table 7.8 shows the resulting conditional probability distribution P.Y |F;X1;X2/.

�
Example 7.4 (Functional Uncertainty: Guessing Game). In Example 4.10, we have
implicitly used the functional uncertainty modeling technique. In the example, we
assumed that the average height of a male person is greater than the average height
of a female person. If the sex of a person is unknown to us when we want to reason
about the height of the person, the situation is modeled using a simple variant of
functional uncertainty as illustrated in Fig. 7.8.

The example may be extended by assuming there is a correlation between height
and weight as illustrated in Fig. 7.9.

For each configuration of Sex, we define a linear function between weight and
height. �
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SexWeight

Height

Fig. 7.9 Functional
uncertainty on the height of a
person

How to Implement This Technique

The functional uncertainty modeling technique is implemented as follows.

1. Let Y be a random variable with parents pa.Y / D {X1; : : : ; Xn} such that Y is a
function of pa.Y /.

2. Assume the functional dependence relation between Y and pa.Y / is uncertain
such that the alternatives and their relative frequencies are known.

3. Create a discrete random variable F with one state for each possible functional
dependence relation between Y and pa.Y /.

4. Define the prior probability distribution P.F / such that it encodes the relative
frequency of the possible functional dependence relations.

The structure uncertainty modeling technique is implemented similarly to the way
functional uncertainty is implemented.

7.1.4 Undirected Dependence Relations

The DAG structure of a probabilistic network specifies a set of dependence and
independence relations between variables. These dependence and independence
relations are specified using directed links between pairs of variables only. When
capturing a set of dependence relations between variables using a DAG, it is
not unusual to encounter the problem of how (most efficiently) to represent a
dependence relation which by nature is undirected.

Let X1, X2, and X3 be discrete variables with the same set of states. Assume
configurations where all variables are in the same state are illegal. This is a typical
example of an undirected dependence relation over a set of variables. This type of
undirected relation is referred to as a constraint.

A constraint over a subset of variables may be enforced by introducing an
auxiliary variable referred to as the constraint variable with an appropriate number
of states as a child of the variables to be constrained. Often the constraint variable is
Boolean, but it may have more than two states. Configurations of the parent variables
are mapped to states of the child, and the constraint is enforced using evidence
on the constraint variable. For instance, assume that we want to enforce a prior



202 7 Modeling Techniques

X1

X2

X3

a

X1 X2 X3

C
"

b

Fig. 7.10 (a) A functional relation f .X1; X2; X3/ is to be enforced. (b) A constraint over X1, X2,
and X3 is enforced by instantiating C to on

joint probability potential f .X1;X2;X3/ over variables X1, X2, and X3. The joint
probability can be enforced using a Boolean constraint node C with a conditional
probability distribution defined as

P.C D on |X1;X2;X3/ D f .X1;X2;X3/; (7.1)

P.C D off |X1;X2;X3/ D 1− f .X1;X2;X3/: (7.2)

The constraint is enforced by instantiating C to on.
Figure 7.10 illustrates how constraints over configurations of variables X1, X2,

and X3 are enforced by introducing an auxiliary variable C with two states. One
state reflects legal configurations of variables X1, X2, and X3, while the other
state reflects illegal configurations of variables X1, X2, and X3. In the example,
all configurations where the three variables are not in the same state are legal, while
the remaining configurations where all variables are in the same state are illegal.
The constraint is enforced by instantiating the variable C to the state corresponding
to legal configurations.

The following example illustrates the application of the modeling technique
described above to an everyday problem.

Example 7.5 (Washing Socks (Jensen 1996)). Two pairs of socks have been washed
in the washing machine. The washing has been rather hard on the colors and patterns
of the socks. One pair of socks is the pair of socks usually worn to play golf,
while the other is the pair of socks usually worn during long airplane trips. The
airplane socks help to improve blood circulation, while the golf socks have improved
respiration. For this reason, it is important to pair the socks correctly.

The airplane socks are blue, while the golf socks are black. The patterns of two
pairs of socks are also similar (at least after the washing).

A model for distinguishing the socks of different types has to capture the
undirected relation over the four socks. The relation enforces the fact that there
are exactly two airplane socks and two golf socks.

The model has four variables S1; : : : ; S4. Each Si represents a sock and has
domain dom.Si / D .airplane; golf/. The undirected relation R.S1; : : : ; S4/ is a
constraint over configurations of the S1; : : : ; S4. Figure 7.11 illustrates the model
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S1 S2 S3 S4

C

Fig. 7.11 The constraint
over S1; : : : ; S4 is enforced
by instantiating C to on

Table 7.9 The conditional
probability distribution
P.C |S1; : : : ; S4/

C

S1 S2 S3 S4 off on

airplane airplane airplane airplane 1 0

airplane airplane airplane golf 1 0

airplane airplane golf airplane 1 0

airplane airplane golf golf 0 1

airplane golf airplane airplane 1 0

airplane golf airplane golf 0 1

airplane golf golf airplane 0 1

airplane golf golf golf 1 0

golf airplane airplane airplane 1 0

golf airplane airplane golf 0 1

golf airplane golf airplane 0 1

golf airplane golf golf 1 0

golf golf airplane airplane 0 1

golf golf airplane golf 1 0

golf golf golf airplane 1 0

golf golf golf golf 1 0

structure, while Table 7.9 shows the conditional probability distribution P.C |S1;

: : : ; S4/. The conditional probability distribution P.C |S1; : : : ; S4/ may be
defined as

P.C D on |s1; s2; s3; s4/ D
{

1 if |{si D airplane}| D 2

0 otherwise.

The constraint is enforced by instantiating C to on. �

In the description above we have focused on binary constraint variables. In
the general case the constraint variable may have more than two states. In this
case multiple states of the constraint variable specifying legal configurations
can be enforced using likelihood evidence assigning the value zero to all states
specifying illegal configurations and one to all states specifying legal configurations.

Notice that enforcing a constraint may change the marginal distribution on parent
variables. One approach to avoid this is described by Fenton, Neil & Lagnado
(2011).



204 7 Modeling Techniques
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X1 X2

Y

bFig. 7.12 (a) How should the
bidirectional correlation
between X1 and X2 be
captured? (b) A mediating
variable Y between X1 and
X2 captures the bidirectional
relation

How to Implement This Technique

The undirected directions modeling technique is implemented as follows:

1. Let {X1; : : : ; Xn} be the set of variables over which the prior joint probability
distribution f .X1; : : : ; Xn/ is to be enforced.

2. Create a binary constraint node C with states off and on.
3. Add each X 2 {X1; : : : ; Xn} as a parent of C .
4. Define the conditional probability distribution P.C |X1; : : : ; Xn/ as specified in

(7.1) and (7.2).
5. Instantiate C to state on enforcing the constraint.

7.1.5 Bidirectional Relations

Section 7.1.4 describes how an undirected dependence relation over a subset
of variables can be enforced using a constraint variable. The introduction of a
constraint variable is necessary in order to represent the undirected relation as a
DAG. In this section we consider the similar problem of representing what seems
to be a bidirectional relation between a pair of variables. That is, when a pair of
variables is dependent, it is not always evident which direction the connecting link
should have.

Figure 7.12a illustrates the situation where a pair of variables X1 and X2 should
be connected by a link as there seems to be a direct dependence relation betweenX1
and X2, but it is not possible to identify the direction of the link. Should the link be
directed from X1 to X2 or vice versa? An insufficient set of variables for capturing
the dependence and independence properties of a problem domain as a DAG is
a common cause of this type of difficulty in identifying the direction of a link.
Figure 7.12b illustrates how a mediating variable Y may be used to capture the
bidirectional relation. The mediating variable Y is introduced as a common cause
of X1 and X2.

The following example illustrates how an insufficient set of variables for
capturing the dependence properties of the problem domain can imply difficulties
in determining the direction of links.
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Fig. 7.13 (a) How should the bidirectional correlation between BT and UT be captured? (b) The
bidirectional correlation between BT and UT is captured by the mediating variable HS

Example 7.6 (Insemination (Jensen 1996)). Consider the task of monitoring
the pregnancy state of a cow (also considered in Example 6.5 on page 153).
Assume we have the options to perform a blood test and a urine test to determine
the pregnancy state of the cow. Both the blood test and the urine test are indicators
for the pregnancy state of the cow. Furthermore, we argue that there is a dependence
relation between the results of the two tests (if either is positive (negative), we would
expect the other test to be positive (negative) as well).

We know there is a correlation between blood test and urine test, but we cannot
identify one test as a cause of the other test. This is indicated in Fig. 7.13a where Pr
specifies the pregnancy state of the cow, while BT and UT specify the results of the
blood and urine tests, respectively. We assume the blood test is not independent of
the urine test given the pregnancy state of the cow.

Looking deeper into the properties of the problem domain, we identify some
additional structure that alleviates the problem of a bidirectional relation between BT
and UT. The two tests do not identify the pregnancy state of the cow directly. Instead
the two tests identify the hormonal state of the cow. The resulting structure is shown
in Fig. 7.13b where HS represents the hormonal state of the cow.

Notice that the structure shown in Fig. 7.13b correctly captures the conditional
dependency of BT and UT given Pr. �

How to Implement This Technique

The bidirectional relations modeling technique is implemented as follows.

1. Let X1 and X2 be a pair of variables which seems to have a bidirectional
interaction.

2. Create a mediating variable Y such that it is the intermediate variable in a serial
connection with X1 and X2.

3. The identification of the states of Y and the probability distribution of Y is
domain dependent.
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I1 � � � In

C
Fig. 7.14 The structure of
the naive Bayes model

7.1.6 Naive Bayes Model

Restricted probabilistic graphical models are used or considered when low model
complexity and high computational power are required. Low model complexity and
high computational power are often required in classification-related problems. In
a classification problem, the task is to assign a class label to an instance based on
observations on properties of the instance.

The naive Bayes model is one of the simplest restricted probabilistic graphical
models; see Friedman, Geiger & Goldszmidt (1997) who cite Duda & Hart (1973)
and Langley, Iba & Thompson (1992). The naive Bayes model is a popular model
due to its high representational and computational simplicity while maintaining an
impressive performance on classification tasks.

Since the naive Bayes model is most commonly used for classification problems,
we will describe the model from this point of view. We consider the task of
classifying a set of instances into a predefined set of classes based on observations
on properties of the instances. Let C be the class variable with one state for each
possible class and let I D {I1; : : : ; In} be the set of variables (also known as
attributes, indicators, and features) where each variable represents a property that
we can possibly observe and have decided to include in our model.

The structure of the naive Bayes model is the reason for the simplicity and
efficiency of the model. The structure of the naive Bayes model is illustrated in
Fig. 7.14 where the class variable C is the only parent of each attribute and no
other structure is present in the graph. The naive Bayes model assumes conditional
pairwise independence of the attributes given the class. This is a rather strong but
often useful assumption.

The set of (conditional) probability distributions induced by the naive Bayes
model consists of the prior distribution P.C / on the class variable and the
conditional probability distribution P.Ii |C/ on the attribute Ii given the class for
all i D 1; : : : ; n. The naive Bayes model induces a joint probability distribution over
the class and attributes as

P.X/ D P.C; I1; : : : ; In/ D P.C /

nY

iD1
P.Ii |C/:

Notice that this implies that the representational complexity of the model is linear
in the number of attributes.
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Fig. 7.15 A naive Bayes
model for classifying
mushrooms

Probabilistic inference in a naive Bayes model consists of computing the
conditional probability distribution P.C |"/ where " consists of observations on a
subset of the attributes of the instance to be classified. For any set of observations
" D {i1; : : : ; im}, we may calculate the likelihood of the class as

L.C |"/ D P." |C/ D
Y

i2"
P.i |C/:

The posterior of the class is computed from the product of the prior and the
likelihood by normalization P.C |"/ D ˛L.C |"/P.C /, where ˛ D P."/−1 D
.
P

C L.C |"/P.C //−1, or expressed via Bayes’ rule as

P.C |"/ D �.P." |C/P.C // D P." |C/P.C /

P."/
:

Despite its simplicity and strong assumption of pairwise independence of the
attributes given the class, the naive Bayes model has in practice been shown to have
excellent performance on (many) classification tasks. This makes the naive Bayes
model popular. The following example illustrates the most common application of
the naive Bayes model.

Example 7.7 (Classification of Mushrooms). Consider the task of classifying a
mushroom as either edible or poisonous based on observations on the shape, color,
and odor of the mushroom. This is a classic classification problem. We make
observations on the mushroom to identify it as either edible or poisonous.

Figure 7.15 shows a naive Bayes model for this classification task. The model
has class variable Class and feature variables Color, Odor, and Shape. The class
variable is the direct parent of each feature variable, and no other structure is present.

The class variable has states dom.Class/ D .Edible; poisonous/, while the
feature variables have states dom.Odor/ D .none; almond; spicy/, dom.shape/ D
.flat; bell; convex/, and dom.Color/ D .brown;white; black/.

The prior distribution on Class specifies the frequency of edible and poisonous
mushrooms, while the conditional distribution of each feature variable specifies
the distribution of the feature given the mushroom class. Table 7.10 shows the
distribution P.Odor |Class/. The distribution of each of the other feature variables
is similar.
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Table 7.10 The conditional
probability
distribution P.Odor |C/

Odor

C none almond spicy

edible 0:902 0:0979 0:0001

poisonous 0:173 0:001 0:826

Each time a mushroom is picked up, the features of the mushroom are observed
and entered into the model as evidence. After inference, the model returns the
probability that the mushroom is edible. �

There exist other classes of restricted probabilistic graphical models than the
naive Bayes model. For instance, the tree-augmented naive Bayes model (Friedman
et al. 1997) appears as a natural extension of the naive Bayes model, while the
hierarchical naive Bayes model (Zhang 2004) is another extension of the naive
Bayes model.

In Sect. 8.3.4, the task for learning structure restricted probabilistic graphical
models such as the naive Bayes model and the tree-augmented naive Bayes model
are described in detail.

How to Implement This Technique

The naive Bayes modeling technique is implemented as follows:

1. Let C be the class variable with one state for each possible class.
2. Let I D {I1; : : : ; In} be the set of feature variables.
3. Let C have no parents and let it be the only parent of each feature variable Ii . In

this way, C becomes the intermediate variable in a serial connection with each
pair of feature variables.

4. Define the prior probability distribution P.C / such that it encodes the relative
frequency of each class.

5. For each Ii 2 I, define the conditional probability distributionP.Ii |C/ such that
it encodes the relative frequency of each state of the feature given each state of
the class variable.

If data are available, then it may be an advantage to estimate the prior and
conditional probability distributions P.C / and P.I1 |C/; : : : ; P.In |C/ from data.

7.2 Probability Distribution-Related Techniques

In this section we consider modeling techniques related to the specification of
probability distributions of a probabilistic network. In particular we consider mea-
surement error, expert opinions, node absorption, setting a value by intervention,
independence of causal influence, and mixture of Gaussian distributions.
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Accuracy Value

Observed

Fig. 7.16 The observed value of a phenomenon is a function of the accuracy of the measurement
and the actual value of the measured phenomenon

Quality Temperature

Obs Temperature

Fig. 7.17 The measured
temperature is a function of
the quality of the
thermometer and the actual
temperature

7.2.1 Measurement Uncertainty

Probabilistic networks are well-suited models for reflecting properties of problem
domains with some kind of uncertainty. The sources of uncertainty may be many
and diverse. In this section we consider a modeling technique for representing
uncertainty related to measurements. Measurements and observations on the state
of the problem domain such as, for instance, sensor readings and noisy observations
are subject to uncertainty. In some situations it may be important to capture and
represent the uncertainty explicitly in a probabilistic model.

Figure 7.16 illustrates a modeling technique that captures measurement uncer-
tainty. The variable Value represents the actual value of the phenomenon being
measured, the variables Observed and Accuracy represent the observed value of
the phenomenon and the accuracy with which observations are made, respectively.

Example 7.8 (Explicit Representation of Uncertainty). Assume we would like to
measure the temperature in a room. The true temperature is unknown, but we may
use a thermometer to get an estimate of the temperature in the room. Assume we
have two different thermometers to choose from: one thermometer of low quality
and another thermometer of high quality. The high-quality thermometer offers more
accurate estimates of the temperature.

Figure 7.17 shows the structure of a model with variables Obs Temperature,
Quality, and Temperature. Assume that the three variables have domains
dom.Obs Temperature/ D .low;medium; high/, dom.Quality/ D .low; high/, and
dom.Temperature/ D .low;medium; high/. Table 7.11 shows the conditional proba-
bility distribution P.Obs Temperature |Quality; Temperature/.

Notice how the distribution over Obs Temperature depends on the quality of the
thermometer used to measure the temperature. This reflects the accuracy of each
thermometer. �
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Table 7.11 The conditional
probability distribution
P.Obs Temperature |
Quality; Temperature/

Obs Temperature

Quality Temperature low medium high

low low 0:6 0:3 0:1

low medium 0:2 0:6 0:2

low high 0:1 0:3 0:6

high low 0:9 0:1 0

high medium 0:05 0:9 0:05

high high 0 0:1 0:9

Sock

Color

Obs Color

Pattern

Obs Pattern

Fig. 7.18 The observations
on color and pattern are
imperfect

Table 7.12 The conditional
probability distribu-
tion P.Obs Color |Color/

Obs Color

Color blue black

blue 0:9 0:1

black 0:05 0:95

An explicit representation of the accuracy with which observations are made is
not always necessary.

Example 7.9 (Implicit Representation of Uncertainty). Example 7.5 on page 202
illustrates how to enforce the fact that there are two socks of each type (airplane and
golf). To classify the four socks, we make observations on the color and pattern of
each sock. Color and pattern are indicator variables for the type of sock.

The observations on color and pattern are imperfect due to the washing.
Figure 7.18 shows the model structure for classifying a single sock based on
(imperfect) observations on color and pattern.

The conditional probability distribution P.Obs Color |Color/ is shown in
Table 7.12. Notice that blue is observed as black in 10% of the cases and black
is observed as blue in 5% of the cases. �

The measure uncertainty modeling technique is closely related to the measure-
ment idiom, see Sect. 6.3.2 on page 156.
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How to Implement This Technique

The measurement uncertainty modeling technique is implemented as follows.

1. Let variable Value represent the actual value of the phenomenon being measured.
2. Create variables Observed and Accuracy representing the observed value of the

phenomenon and the accuracy with which observations are made, respectively.
3. Let Value and Accuracy be the parents of Observed.
4. Let Observed have one state for each possible observation of Value.
5. Let Accuracy have one state for each possible level of accuracy of the observation

on Value.
6. Define the prior probability distribution P.Accuracy/ such that it encodes the

relative frequency of each possible level of accuracy.
7. Define the conditional probability distribution P.Observation |Accuracy;

Value/ such that it encodes the relative frequency of each possible observation
given the level of accuracy and the actual value.

7.2.2 Expert Opinions

The specification of the parameters of a probabilistic network is often based
on knowledge elicitation from problem domain experts. Typically, a knowledge
engineer interviews one or more experts in order to assess the values of model pa-
rameters. In some cases, when the elicitation of parameters is based on assessments
from a group of experts, it is advantageous that any differences in the assessed values
are represented explicitly in the model. This is, for instance, useful when the group
of experts are distributed physically and when the model is developed iteratively.

A conditioning (or auxiliary) variable can select among the opinions of different
experts expressed in the probability assessments of a single variable. The condition-
ing variable is a parent of the variable of interest and has one state corresponding
to each expert. The prior distribution of the auxiliary value will assign a weight to
the experts represented in the auxiliary variable. Different auxiliary variables need
not have the same set of states. The following example illustrates the modeling
technique on a simple example.

Example 7.10 (Expert Opinions: Chest Clinic). Consider the quantification of the
chest clinic example (Example 4.2 on page 73). Assume the model is constructed
by elicitation of knowledge from two experts Bill and John. Consider the elicitation
of conditional probability distribution P.Bronchitis |Smoker/, and assume that Bill
and John have different opinions on this distribution.

To reflect the different opinions of the experts, we construct the model structure
shown in Fig. 7.19 where dom.Experts/ D .Bill; John/ representing the two experts.

Table 7.13 shows the distribution P.Bronchitis |Smoker;Experts/. The distribu-
tion encodes the different opinions of the experts on the conditional probability
distribution, whereas the prior distribution P.Experts/ encodes the reliability of the
experts.
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Bronchitis

Smoker Experts
Fig. 7.19 The variable
Experts has one state for each
expert

Table 7.13 The specification
of the conditional probability
distribution
P.Bronchitis |Smoker;Experts/

Bronchitis

Experts Smoker false true

bill false 0:7 0:3

bill true 0:4 0:6

john false 0:8 0:2

john true 0:3 0:7

Asia Smoker

Tuberculosis Cancer Bronchitis

Tub or cancer

X ray Dyspnoea

Experts1 Experts2

Fig. 7.20 A graph specifying the independence and dependence relations of the Asia example

The model captures the opinions of experts Bill and John using the Experts
variable to condition the conditional probability distribution they have different
opinions on.

One expert node is introduced for each conditional probability distribution
elicited from domain expert knowledge. Figure 7.20 illustrates how two groups
of experts have been consulted to elicit the conditional probability distributions
of Bronchitis and Cancer. By introducing multiple expert nodes, we assume the
elicitation of different conditional probability distributions to be independent. �

The model in Example 7.10 has an explicit representation of the opinions of the
two experts. In some situations, it is desirable not to have an explicit representation
of expert opinions in the model. This can be achieved by eliminating the variables
representing different experts from the model. This is described in Sect. 7.2.3.

How to Implement This Technique

The expert opinions modeling technique is implemented as follows:

1. Let P.X |pa.X// be the conditional probability distribution assessed from a
group of experts (one instance of P.X |pa.X// is assessed from each expert).

2. Create a discrete random variable Experts with one state for each expert.
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3. Let Experts be a parent of X .
4. Define the prior probability distribution P.Experts/ such that it encodes the

reliability of the experts.
5. Define the conditional probability distribution P.X |pa.X/;Experts/ such that

for each state of Experts it encodes the assessment of P.X |pa.X// given by the
corresponding expert.

7.2.3 Node Absorption

Node absorption is the process of eliminating a variable from a model by arc
reversals and barren variable eliminations. Recall that in Sect. 3.4.1.1 on page 56,
we illustrated the application of Bayes’ rule as an arc reversal operation, while in
Sect. 5.1.1 on page 116, we considered repeated applications of arc reversal as an
inference process.

The node absorption method may also be a useful tool in the model development
process. Node absorption may be used to eliminate variables from a model which
for one reason or another should not be included in the final model. If efficiency
of probabilistic inference in a probabilistic network is of high priority, it may
be worthwhile to eliminate variables that are neither observed nor the target of
inference. In Sect. 5.1.1, we denoted a variable that is neither an evidence variable
nor a target variable as a nuisance variable.

Example 7.11 (Node Absorption: Expert Opinions). Consider Example 7.10 on
page 211 where P.Bronchitis |Smoker/ has been elicited from the two experts Bill
and John. From the example, we know that Bill and John disagree slightly on the
strength of the dependence relation between Bronchitis and Smoker. This is captured
by the graph of Fig. 7.19.

For different reasons (e.g., political), we would like to eliminate the intermediate
variable Experts from the model while maintaining the underlying dependence
relations between the remaining variables. This can be achieved using node
absorption.

Since Experts has Bronchitis as its only child, a single arc reversal operation is
sufficient to absorb Experts. Once the arc .Experts;Bronchitis/ is reversed, Experts
is barren and can therefore be removed from the graph without changing the
dependence relations between the remaining variables in the graph.

If we assume that we have equal trust in the two experts, then Table 7.14
shows the conditional probability distribution P.Bronchitis |Smoker/ after absorb-
ing Experts from the distribution shown in Table 7.13.

The prior distribution P.Experts/ can be interpreted as specifying our relative
trust in the two experts. In the example, we have used a uniform distribution. �

The order in which arcs are reversed may be constrained by the structure of
the graph. That is, the sequence of arc reversals should be performed such that
all intermediate graphs are acyclic. In addition, the order in which variables are
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Table 7.14 The conditional probability
distribution P.Bronchitis |Smoker/ after
absorbing Experts from the distribution
shown in Table 7.13

Bronchitis

Smoker false true

false 0:75 0:25

true 0:35 0:65

absorbed and arcs are reversed may impact the size of the parent sets in the resulting
graph.

How to Implement This Technique

The node absorption modeling technique is implemented as follows:

1. Let X be the variable to be eliminated by node absorption.
2. Let ch.X/ be the direct successors of X , that is, the children of X .
3. For each Y 2 ch.X/ reverse the link .X; Y / according to the arc reversal

operation. Traverse ch.X/ in topological order.
4. Eliminated X as a barren variable, that is, simply remove X and incoming links

from the model.

Node absorption may be implemented as a single step operation in probabilistic
network editor software.

7.2.4 Set Value by Intervention

An important distinction should be made between a passive observation of the state
of a variable and an active action forcing a variable to be in a certain state. A passive
observation of a variable impacts the beliefs of the ancestors of the variable, whereas
an active action enforcing a certain state on a variable does not under the assumption
of a causal ordering (see Sect. 4.2 on decision making under uncertainty). We
refer to this type of active action as an intervention. When we make a passive
observation on a variable, this produces a likelihood on the parents of the variable.
This should not be the case when the value of a variable is set by intervention. The
instantiation of a decision variable in an influence diagram is an example of this
type of intervention.

In some situations it is undesirable to model active actions forcing a variable to
be in a certain state as a decision in an influence diagram. Instead of modeling the
situation using decision variables, a simple modeling technique may be used. The
modeling technique is illustrated in Fig. 7.21.
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I

A B C

Fig. 7.21 Modeling the
option of setting a value of B
by intervention

Table 7.15 (a) The
conditional probability
distribution P.B |A/. (b) The
conditional probability
distribution P.B | I; A/

a
B

A false true

false 0:9 0:1

true 0:2 0:8

b

B

I A false true

no intervention false 0:9 0:1

no intervention true 0:2 0:8

false false 1 0

false true 1 0

true false 0 1

true true 0 1

In Fig. 7.21, we illustrate a situation where the value of the random variable B
may be set by intervention. The causal properties of the example are such that
the variable A has a causal impact on B which in turn has a causal impact
on C . The variable I captures the property that the state of variable B may
be set by intervention. Assuming Table 7.15(a) shows the conditional probability
distribution P.B |A/, then Table 7.15(b) shows the distribution P.B |A; I /.

This construction of P.B |I; A/ implies that C ?? A |I D i where i 6D
no intervention, that is, setting I to a value different from no intervention makes A
and C independent. Thus, if we enforce a certain state on B by selecting a state of I
(different from no intervention), then observing C subsequently will not change the
belief in A. In general, the conditional probability distribution P.B | I; A/ may be
defined as

P.B D b |A; I D i/ D

⎧

⎪
⎪
⎨

⎪
⎪
⎩

P.b |A/ if i D no intervention

1 if b D i

0 otherwise

(7.3)

where dom.I / D dom.B/ [ {no intervention}.
It is important to notice that when the state of B is observed, the observation is

enforced by setting the state of B , whereas if the state of B is set by intervention,
then I is instantiated to the corresponding state. When B is not observed, I is in the
state no intervention.
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Flu Fever Sleepy

Aspirin

Fig. 7.22 Taking an aspirin forces the fever to a certain level. Subsequent observations on Sleepy
should not change our belief in Flu

Example 7.12 (Set Value by Intervention). Figure 7.22 depicts a simple model for
reasoning about a common medical situation. The model captures the direct causal
influence of flu on fever and the direct causal impact of fever on sleepiness. These
events are represented by the variables Flu, Fever, and Sleepy, respectively.

In addition to the aforementioned variables, the model has the variable Aspirin.
This variable represents the event that the patient takes an aspirin to reduce fever
to a certain level. Once an aspirin has been taken, an observation on Sleepy will
be uninformative with respect to Flu. This behavior may be enforced as described
above. �

How to Implement This Technique

The set value by intervention modeling technique is implemented as follows.

1. Let X be the random variable that may be set by intervention.
2. Create a random variable I with dom.I / D dom.B/[ {no intervention}.
3. Let I be a parent of X .
4. Define the prior probability distribution P.I / such that it encodes the relative

frequency of setting each state of X and no intervention.
(5) Define the conditional probability distribution P.X |pa.X/; I / according

to (7.3).

7.2.5 Independence of Causal Influence

In this section we consider how a special kind of structure within a conditional
probability distribution may be exploited to reduce the complexity of knowledge
elicitation from exponential in the number of parents to linear in the number of
parents. The property we consider is known as independence of causal influence
(Heckerman 1993).

In an independence of causal influence model, the parent variables of a common
child variable interact independently on the child. With a slight abuse of terms,
the parents are sometimes said to be causally independent. All variables in
an independence of causal influence model are assumed to be discrete random
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C1 C2 C3

E

Fig. 7.23 The causal
influence of Ci on E is
independent of the causal
influence of Cj on E (for
i 6D j )

C1 C2 C3

E1 E2 E3

E

C1 C2 C3

E1 E2 E3

E 0 E 00 E

Fig. 7.24 Two model structures for capturing independence of causal influence

variables. The common child variable is denotedE, and it is referred to as the effect
variable. The parent variables are denoted C1; : : : ; Cn, and they are referred to as
cause variables or causes, see Fig. 7.23.

The cause variables C1; : : : ; Cn may cause an abnormality modeled as the effect
variableE to be present at a certain level. The states of the effect variableE specify
different levels of the abnormality. The states ofE are ordered in the sense that they
represent different levels of abnormality and such that a designated state indicates
that the abnormality is absent. Similarly, each of the causes have an absence state
corresponding to no impact on the effect variable. The principle of an independence
of causal influence model is that the causal impact of each cause is independent of
the causal impact of all other causes.

In this section we consider the Boolean independence of causal influence model
known as the Noisy-OR model (Pearl 1988). The Noisy-OR model is a commonly
used example of a model for local conditional probability distributions that depends
on fewer parameters than the total number of combinations of fa.E/ (Laskey 1993).

In the Noisy-OR model, the effect variable E and the variables C1; : : : ; Cn are
Boolean variables (i.e., binary discrete random variables with states false and true).
The designated state is false. The causal impact of each cause Ci is independent
of the causal impact of any other cause Cj for i 6D j . Figure 7.24 illustrates
two different ways in which this independence may be modeled explicitly. Each
variable Ei has the same state space as E, and it captures the contribution from
cause Ci to the value of E. Each variableEi is referred to as a contribution variable
and P.Ei |Ci/ captures the causal impact of Ci on E. In the left part of the figure,
the total impact on the effect variable is the disjunction of all causes, whereas in
the right part of the figure, the temporal transformation modeling technique has



218 7 Modeling Techniques

C1 C2

E1 E2

E

q1 q2

Fig. 7.25 One inhibitor
probability for each parent Ci
of the effect E

been applied such the total impact is determined based on a pairwise combination
of causes. The conditional probability distribution P.E |E1; : : : ; En/ is defined as
disjunction and so are P.E 00 |E 0; E2/ and P.E |E 00; E3/. The effect variableE is in
state true when at least one contribution variable is in state true.

The causal impact of a cause Ci is the probability P.E D yes |Ci D yes/
whereas P.E D yes |Ci D no/ D 0. We denote P.E D yes |Ci D yes/ D 1 − qi
where qi is referred to as the inhibitor probability, see Fig. 7.25.

In some domains there may be a need to have a leak probability 1 − q0
representing the probability of E D true when all causes C1; : : : ; Cn are absent
where q0 is known as the default inhibitor. A leak probability may be implemented
by introducing as a separate Boolean cause variable C0 instantiated to state true.
The leak variable C0 represents the set of causes not modeled explicitly in the
network. In this way, the leak variable can be used to enforce the closed-world
assumption. The leak probability is assigned as the probability that the effect will
occur in the absence of any of the causes C1; : : : ; Cn that are explicitly represented
in the network (Pradhan, Provan, Middleton & Henrion 1994).

Let us consider how the reduction from exponential to linear in the number
of parents is achieved. We may consider the conditional probability distribu-
tion P.Xi |pa.Xi // as parameterized over a vector i of parameters �ijk with one
component for each possible value of Xi and combination of pa.Xi / such that

P.xijk |�ij ;i / D �ijkP
k �ijk

;

where �ij is the j th configuration of pa.Xi/. The above formula is an unrestricted
local conditional probability distribution. The distribution depends on |Xfa.Xi /|

parameters.
In an independence of causal influence model, the conditional probability

distribution P.Xi |pa.Xi// can be specified using a parameter vectori that grows
in size only linearly in the number of parents, |pa.Xi /|, rather than linearly in the
number of configurations of the parents, |Xpa.Xi /|; that is, exponential in |pa.Xi/|.

For the Noisy-OR model, it is straightforward to determine the conditional
probability distribution P.E |pa.E/;E/ given a specific parameter vector E for
the model. In that case P.E |C1; : : : ; Cn/ can be specified as
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Angina Cold

SoreThroat

Fig. 7.26 Sore throat may be
caused by both angina and
cold

P.E D true |C1 D c1; : : : ; Cn D cn;E/ D 1− �0
Y

CiDtrue

�i ;

where �0 is the default inhibitor, �i is the inhibitor forCi , andE D {�0; �1; : : : ; �n}.
From this, it follows that

P.E D false |C1 D c1; : : : ; Cn D cn;E/ D �0
Y

CiDtrue

�i :

The following example illustrates how independence of causal influence may be
exploited to simplify the knowledge elicitation process.

Example 7.13 (Noisy-OR: Sore Throat). A physician wants to diagnose her patients
with respect to diseases causing a sore throat. For simplicity of the example, we
assume the physician is mainly interested in modeling the causal effect of cold and
angina on sore throat. In addition to cold and angina, there are other potential causes
of a sore throat. These other causes are not to be represented explicitly in the model
though.

Thus, initially the model consists of three variables: SoreThroat, Angina, and
Cold. All variables are Boolean with states false and true. Figure 7.26 shows the
structure of the model.

The synergy between Angina and Cold with respect to their combined effect
on SoreThroat is assumed to be minimal. Thus, we may use the Noisy-OR model
to specify and represent the conditional probability distribution of SoreThroat given
Angina and Cold where all other implicit causes of sore throat are captured by the
background event.

First, assume the inhibitor probabilities are qAngina D 0:1 and qCold D 0:2,
while the default inhibitor is one (i.e., there are no other causes of sore throat).
The combined impact of Angina and Cold on SoreThroat is computed as

P.SoreThroat D false |Angina D false;Cold D false; E/ D 1;

P.SoreThroat D false |Angina D false;Cold D true; E/ D 0:2;

P.SoreThroat D false |Angina D true;Cold D false; E/ D 0:1;

P.SoreThroat D false |Angina D true;Cold D true; E/ D 0:1 � 0:2:
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Table 7.16 The conditional
probability distribu-
tionP.SoreThroat |Angina;Cold/
with a zero background event
probability

SoreThroat

Angina Cold false true

false false 1 0

false true 0:2 0:8

true false 0:1 0:9

true true 0:02 0:98

Table 7.17 The conditional
probability distribu-
tionP.SoreThroat |Angina;Cold/
with a nonzero background
event probability

SoreThroat

Angina Cold false true

false false 0:95 0:05

false true 0:19 0:81

true false 0:095 0:905

true true 0:019 0:981

Table 7.16 shows the distribution P.SoreThroat |Angina;Cold/.
Next, assume the background inhibitor is 0:95 (i.e., the probability that sore

throat is caused by the background event (other causes not represented in the model)
is 0:05 such that q0 D 0:95). The combined impact of Angina, Cold, and the
background event on SoreThroat given is computed as

P.SoreThroat D false |Angina D false;Cold D false; E/ D 0:95;

P.SoreThroat D false |Angina D false;Cold D true; E/ D 0:95 � 0:2;
P.SoreThroat D false |Angina D true;Cold D false; E/ D 0:95 � 0:1;
P.SoreThroat D false |Angina D true;Cold D true; E/ D 0:95 � 0:1 � 0:2:

Table 7.17 shows the distribution P.SoreThroat |Angina;Cold/.
By exploiting the independence of causal influence between Cold and Angina, the

number of parameters to elicit has decreased from four to two. This may seem to
be an insignificant reduction. However, if we consider the case where ten different
causes of SoreThroat are to be represented explicitly in the model, then the number
of parameters to elicit is reduced from 1;024 to 10. �

The benefit of independence of causal influence becomes even more apparent
when the effect has a large number of causes as the number of parameters grows
linearly with the number of causes. The advantage of independence of causal
influence is an exponential decrease in the number of parameters to elicit. The
disadvantage of independence of causal influence is that any synergy between
causes (with respect to their combined impact on the effect variable) is ignored.

Using independence of causal influence in conjunction with parent divorcing may
reduce the complexity of inference exponentially.

Srinivas (1993) discusses a generalization of the Noisy-OR model to nonbinary
variables. Pradhan et al. (1994) and Diez (1993) have considered in detail the Noisy-
MAX model as a generalization of the Noisy-OR model to the case in which each
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variable is allowed to have a finite discrete state space. In the Noisy-MAX model,
the max operator specifies the combination of the cause variables. In the Noisy-
MAX model, the probability distribution of the effect variable E given its parent
causes can be expressed as

P.E |C1; : : : ; Cn/ D
X

max.E1;:::;En/

nY

iD1
P.Ei |Ci/:

One prerequisite for using the Noisy-MAX model is that the variable state spaces are
ordered as, for example, .absent;mild;moderate; severe/. In addition, each cause
variable must have a distinguished (or absent) state designating an influence of the
cause on the effect variable.

How to Implement This Technique

The independence of causal influence modeling technique is implemented as
follows:

1. Let {C1; : : : ; Cn} be the set of causes of effect variable E.
2. Assume the impact of C1; : : : ; Cn on E can be modeled as a Noisy-OR model.

Hence, C1; : : : ; Cn and E are Boolean variables.
3. Create one Boolean contribution variable Ei for each Ci 2 {C1; : : : ; Cn}.
4. Let each Ei be a child of Ci and a parent of E.
5. For each Ci , define the conditional probability distribution P.Ei |Ci/ such

that P.Ei D true |Ci D true/ is the probability of E D true given Ci D true
and Cj D false for i 6D j and P.Ei D false |Ci D false/ D 1.

6. Define the conditional probability distribution P.E |E1; : : : ; En/ as disjunction
(i.e., or).

Once the independence of causal influence modeling technique has been applied,
it may be an advantage to use the parent divorcing modeling technique (see
Sect. 7.1.1) to reduce the number of parents of the effect variable.

7.2.6 Mixture of Gaussian Distributions

When modeling problem domains with continuous entities, a decision on how to
represent the continuous entities in a network has to be made. One option is to
represent a continuous entity as a discrete variable with states representing intervals
for the continuous entity. For instance, we may choose to represent temperature as
a discrete variable with three states: low, medium, and high. In other cases, we may
choose to approximate the distribution of a continuous entity using the conditional
linear Gaussian distribution.
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Fig. 7.27 Approximation of
a continuous distribution
using the MoGs modeling
technique

A third option is presented in this section. The third option is to approximate
the continuous distribution of a variable using a mixture of Gaussian distributions
(MoGs). This option is interesting as it is well known that mixtures of Gaussian
distributions can approximate any probability distribution; see Shenoy (2006) who
cites Titterington, Smith & Makov (1995).

An MoGs is a sum of Gaussian distributions where each component is weighted
by a number between zero and one such that the sum of the weights is one, that is,
the weights are probabilities. Assume X is a continuous variable with a probability
distribution that can be approximated using the MoGs:

f .x/ D
nX

iD1
pi � N.˛i ; �i /; (7.4)

where ˛i ; �i 2 R and 0 � pi � 1 such that
P

i pi D 1 are the mean, variance, and
weight of the i ’th component in the mixture.

To approximate the probability distribution on X using (7.4), a selector vari-
able S with n states is introduced as a parent of X . The variable X becomes a
continuous variable with a conditional linear Gaussian distribution, see Sect. 4.1.2.
Each state si of S corresponds to one component pi � N.˛i ; �i / in the mixture. The
prior distribution on S is P.S D si / D pi while X |si ∼ N.˛i ; �i /. Figure 7.27
illustrates the use of the MoGs modeling technique on the distribution for X .

Using MoGs, the network becomes either a CLG Bayesian network or a CLQG
influence diagram.

Example 7.14 (Mixture of Gaussian Distributions). A Gamma.2; 2/ distribution
can, for instance, be approximated using a two-component mixture of MoGs such as

f .x/ D 0:609 � N.4:57; 2:37/C 0:391 � N.1:93; 1:12/: (7.5)

Figure 7.28 shows the result of approximating the Gamma.2; 2/ distribution with
the above two-component mixture of Gaussian distributions.

The two-component approximation in (7.5) produces a reasonable fit to the
Gamma.2; 2/ distribution. Whether or not the fit is of sufficient quality depends
on the problem domain and application. �

The MoGs modeling technique introduces a discrete random variable with one
state for each component in the mixture. Approximating continuous distributions
using the MoGs modeling technique is not necessarily simple and may produce
networks where belief updating is computationally intensive.
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Fig. 7.28 A two-component mixture approximation of the Gamma.2; 2/ distribution

How to Implement This Technique

The mixture of Gaussian distributions modeling technique is implemented as
follows:

1. Let X be the variable of the probability distribution to approximate.
2. Assume the probability distribution of X can be approximated using the MoGs

f .x/ D
nX

iD1
pi � N.˛i ; �i /:

3. Create a discrete variable S with n states.
4. Let S be the parent of X in the network with P.S D si / D pi .
5. For each state, si of S set X |si ∼ N.˛i ; �i /.

The process of identifying the number of components as well as the parameteri-
zation and weight of each component is not trivial.

In this section we have considered the case of approximating the prior distribu-
tion of a continuous variable with no parents. Shenoy (2006) presents a methodology
for belief updating in hybrid Bayesian networks (i.e., Bayesian networks with both
continuous and discrete variables and with no restrictions on the model structure)
based on approximating distributions using MoGs. Shenoy (2006) gives examples
on how to approximate different types of distributions using MoGs. This includes
approximating the distribution of a discrete child of a continuous variable. Poland
(1994) has presented an algorithm for identifying MoGs using the EM algorithm
(see Sect. 8.5.1).
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7.3 Decision-Related Techniques

In this section we consider modeling techniques related to the specification of a
decision problem as an influence diagram. In particular, we consider how to model
test decisions, how to exploit missing informational links, how to model variables
which may or may not be observed prior to a decision, how to force a decision
variable to be in a state corresponding to a hypothesis of maximum probability, and
how to enforce constraints on decision options.

7.3.1 Test Decisions

As part of a decision problem, a decision maker may be faced with the option
to perform some kind of test. Performing the test produces a test result which is
modeled as a random variable with states corresponding to the possible test results
in an influence diagram. In addition to the random variable representing the test
result, the influence diagram has a decision variable with states representing whether
or not the test is performed. If the test is performed, then the result of the test
(usually) becomes available to the decision maker. If the test, on the other hand,
is not performed, then no test result becomes available. The influence diagram may
also have a utility function associated with the test specifying the cost of the test.
Solving the influence diagram will produce a policy for when to perform the test.

The random variable representing the test result may be an informational parent
of another decision variable in the influence diagram. If the test result variable is an
informational parent of another decision in the influence diagram, then the variable
must be observed prior to this decision. This, however, contradicts the fact that the
test result is available only when the test is performed. In this section, we consider
two examples that illustrate different approaches to alleviating this contradiction.

Example 7.15 (Oil Wildcatter (Raiffa 1968)). Example 4.5 on page 82 considers an
oil wildcatter about to decide whether or not to drill for oil at a specific site. Prior
to her decision on whether or not to drill for oil, the oil wildcatter has the option to
take seismic soundings to better understand the geological structure of the site. The
structure of the oil wildcatter model (Fig. 4.5 on page 82) is repeated in Fig. 7.29
for convenience.

Oil

Seismic

Test

DrillU1

U2

Fig. 7.29 The test result is
only available after a test is
performed
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Table 7.18 The conditional
probability distribution
P.Seismic |Test;Oil/

Seismic

Test Oil closed open diffuse

no dry 0:1 0:3 0:6

no wet 0:3 0:4 0:3

no soaking 0:5 0:4 0:1

yes dry 1=3 1=3 1=3

yes wet 1=3 1=3 1=3

yes soaking 1=3 1=3 1=3

Table 7.19 The conditional
probability distribution
P.Seismic |Test;Oil/
where Seismic has a no result
state

Seismic

Test Oil closed open diffuse no result

no dry 0:1 0:3 0:6 0

no wet 0:3 0:4 0:3 0

no soaking 0:5 0:4 0:1 0

yes dry 0 0 0 1

yes wet 0 0 0 1

yes soaking 0 0 0 1

There are two informational links in the graph of Fig. 7.29. The link .Test;Drill/
from Test to Drill and the link .Seismic;Drill/ from Seismic to Drill are both
informational links. The former link specifies whether or not the oil wildcatter
decided to take seismic soundings prior to the drill decision. On the other hand,
the latter link specifies that the value of Seismic is also known when making the
drill decision. This cannot, however, be the case when the test is not performed.

We consider two alternative options to correct this problem. Both options
consider the specification of the conditional probability distribution P.Seismic |
Oil; Test/.

One option is to specifyP.Seismic |Oil; Test D no/ as a uniform distribution. The
corresponding distribution is shown in Table 7.18. If the oil wildcatter decides not
to perform the test, then any observation on Seismic will not affect the belief in Oil
(the likelihood potential over Oil induced by the observation on Seismic assigns
equal likelihood to all states of Oil due to the uniform distribution).

The other option is to introduce an additional no result state in Seismic. The
distribution P.Seismic |Oil; Test D no/ is specified such that not performing the
test instantiates Seismic to no result. The corresponding distribution is shown in
Table 7.19. If the oil wildcatter decides not to perform the test, then Seismic is
instantiated to no result.

The latter option is semantically more clear than the former option in the sense
that it is easily understood that Seismic should be instantiated to no result when the
test is not performed. On the other hand, the latter option increases the complexity
of the model by introducing the additional no result state in the Seismic variable. �

Example 7.16 (Aspirin (Jensen 1996)). Example 7.12 on page 216 describes a
simple model for reasoning about the effect of flu on fever and the effect of fever on
sleepiness. Here we consider this example as a decision problem where the decision
maker has to decide on whether or not to take an aspirin.
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Flu Fever Sleepy

A

T

Fig. 7.30 Prior to deciding
on whether or not to take an
aspirin, we may measure the
temperature

Flu Fever Fever� Sleepy

ATempT

Fig. 7.31 The test for
temperature is modeled as a
decision value with a random
variable as a child specifying
the result of the test

The level of fever may be reduced by taking an aspirin. This is represented by the
decision variable A. Notice that decision variable A is an intervening decision and
recall from the discussion on causality in Sect. 2.4 the important difference between
setting the state of a variable, that is, selecting an option for a decision variable,
and observing the state of a variable. Prior to taking an aspirin, there is the option
to measure temperature. This option is indicated using the triangular-shaped node
with label T in Fig. 7.30.

The test option indicated in Fig. 7.30 by the triangular-shaped node may be
represented using three nodes as indicated in Fig. 7.31. The three nodes represent
decision variable T and random variables Temp and Fever�. The decision variable T
represents whether or not the temperature is measured. The random variable Temp
specifies the temperature measured, and the random variable Fever� represents the
level of fever after taking an aspirin, while the random variable Fever represents the
level of fever prior to taking an aspirin. �

How to Implement This Technique

The test decisions modeling technique is implemented as follows:

1. Let P be a discrete random variable representing the phenomenon that may be
measured by a test.

2. Create a decision variable T with two states no test and test corresponding to not
performing and performing the test, respectively.

3. Create a discrete random variable R representing the result of the test as a child
of T and P .

4. Let R have one state for each possible test result and the state no result
representing the event that the test is not performed, that is, T D no test.
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5. Define the conditional probability distribution P.R |P; T / such that P.R D
no result |P; T D no test/ D 1 and P.R |P; T D test/ encodes the probability
of each possible test result given the actual value of phenomenonP .

Instead of using the state no result to specify no test result, a uniform distribution
may be used. Furthermore, the modeling technique may be used in combination
with the measurement uncertainty modeling technique described in Sect. 7.2.1.

7.3.2 Missing Informational Links

Informational links of an influence diagram define the points at which information is
assumed to become available to the decision maker. An informational link .X;D/
from a random variable X to a decision variable D specifies that the value of X
is known to the decision maker when the decision corresponding to decision
variableD is made. The informational links of an influence diagram induce a partial
order over the random variables relative to the decision variables. The partial order
over random variables is important for the solution of an influence diagram. In
essence, the partial order over random variables induces a constraint on the order in
which variables may be eliminated when solving the decision model; see Sect. 5.2
for details on solving decision models. Thus, correct specification of informational
links is imperative.

When the influence diagram has only a single decision, then informational links
can be ignored if the influence diagram is solved for each set of evidence. That is,
the influence diagram is solved prior to making the decision each time the influence
diagram is used. This implies that the optimal strategy is only implicitly available to
the decision maker as the optimal decision is determined for each evidence scenario
prior to making the decision. This can be particularly useful if the optimal policy
for the decision has a large state space.

Example 7.17 (Missing Informational Links). In Example 7.6 on page 205, we
considered the task of monitoring the pregnancy state of a cow. Assume that in
addition to the blood and urine tests, we have the option to make a scanning of
the cow. A scanning of the cow will produce a more accurate estimation of the
pregnancy of the cow. The option to scan the cow introduces the variable Sc with
states false and true as a child of Pr.

The pregnancy state of the cow is estimated 6 weeks after the initial insemination
of the cow. Based on the observations and the probability distribution of the
pregnancy state of the cow, we need to make a decision on whether or not to repeat
the insemination of the cow or to wait for another 6 weeks before estimating the
pregnancy state of the cow. This decision introduces the decision variable D with
states Wait and repeat.

The cost of repeating the insemination is 65 no matter the pregnancy state of the
cow. If the cow is pregnant, and we wait, it will cost us nothing, but if the cow is
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Table 7.20 The utility
function U.Pr;D/

Pr D

false wait −95

false repeat −65

true wait 0

true repeat −65

BT UT

HS

Pr

Sc

D

U

(a)

BT UT

HS

Pr

Sc

D

U

(b)

Fig. 7.32 (a) Informational links are unnecessary in influence diagrams with a single decision.
(b) Informational links only clutter up the graph

not pregnant, and we wait, it will cost us another 30 units plus the eventual repeated
insemination (that makes a total of 95 for waiting). A blood test has the cost 1 and a
urine test has the cost 2. This defines a utility function over variables Pr and D, see
Table 7.20.

Figure 7.32a shows the resulting structure of the model. Notice that there are no
informational links in the structure.

Since the structure in Fig. 7.32a does not contain any informational links, it does
not properly reflect the test options available prior to deciding on whether or not to
repeat the insemination.

To capture the three test options, we may introduce an additional no test state in
each of the test result variables (BT, UT, and Sc). This would produce the structure
shown in Fig. 7.32b.

Alternatively, we may use the fact that the decision problem contains a single
decision variable. This allows us to leave out informational links and instantiate the
random variables observed prior to the decision as the observations are made. This
leaves us with Fig. 7.32a instead of the more cluttered Fig. 7.32b. �

When informational links are included in the influence diagram, the solution
will identify a decision policy specifying an optimal decision option for each
configuration of the parents of the decision. Thus, the influence diagram is solved
once and off-line in the sense that the influence diagram is solved before the decision
maker has to make a decision and before any observations are made. On the other
hand, it is necessary to resolve the influence diagram each time the decision maker
has to make the decision when informational links are not included in the network.
The solution process identifies an optimal decision option for the specific set of
observations made prior to the decision. The influence diagram is solved on-line in
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Fig. 7.33 (a) In some situations X is observed prior to D, while in others it is not. (b) By
introducing an additional variable, we capture the situation where an observation on X may or
may not be available

the sense that the influence diagram is solved when the decision maker has to make
the decision and after observations have been made. Solving the influence diagram
on-line is often a significantly simpler task than solving it off-line and may be the
only option when the influence diagram is complex.

How to Implement This Technique

The missing informational links modeling technique is implemented as follows.

1. Let D be the decision under consideration.
2. Assume observations " have been made prior to making decision D where

pa.D/ � X."/.
3. Insert " as evidence and solve the influence diagram.
4. The expected utility associated with each state d of D is EU.d |"/, that is, the

expected utility of decision option d given observations ".

The above steps should be repeated each time observations are made prior to
deciding onD.

7.3.3 Missing Observations

The structure of an influence diagram induces a partial order on the random variables
of the model relative to the decision variables of the model. The partial order
is induced by the informational links of the graph of the influence diagram. An
informational link .X;D/ from a node representing a random variable X to a node
representing a decision variable D specifies that the value of X is observed when
decision D is to be made. That is, the value of X is always observed prior to
decisionD.

Figure 7.33a illustrates a typical dilemma a knowledge engineer may be faced
with when representing a decision problem as an influence diagram. In some
situations, the random variable X is observed prior to the decision represented
as D, and in other situations, it is not observed prior to making decision D. In this
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Fig. 7.34 The observation
on Seismic is missing when
the test is not performed

ObsSeismic Drill

Fig. 7.35 This graph captures the situation where the result of seismic soundings may not be
available

section we describe a modeling technique for solving the dilemma where a random
variable X may or may not be observed prior to a decision D. This is a typical
and frequently occurring situation when considering decision problems with sensor
readings or other similar types of observations, which may, for some reason, be
missing or lost.

Figure 7.33b illustrates the solution to the dilemma. An auxiliary variable O
is introduced as a child of X and a parent of D. The random variable O has the
state space ofX extended with one additional state, for example, named none. Each
state o 2 dom.O/ corresponding to state x 2 dom.X/ represents an observation
of X to the state x, while the additional state none represents the event that X is
not observed. The conditional probability distribution P.O |X/ is constructed such
that P.O D o |X D x/ D p and P.O D none |X D x/ D 1 − p where p
specifies the probability that the observation on X is made when X is in state x.
The following example illustrates the use of this modeling technique.

Example 7.18 (Missing Observations: Oil Wildcatter). In Example 4.5 on page 82,
the oil wildcatter has the option to take seismic soundings prior to the drill decision.
In this example we will assume that the oil wildcatter is not in full control of the
test option. This implies that the test event should be modeled as a random variable.
Figure 7.34 shows the resulting structure.

The dashed link from Seismic to Drill indicates that Seismic is only observed
when the test is performed. This property can be captured by the approach described
above. Figure 7.35 shows the structure which captures the situation where the result
of seismic soundings may not be available.

The conditional probability distribution of Obs is shown in Table 7.21. The
variable Obs has one state for each state of Seismic and one additional state none
representing the event that no result is available. The table specifies the probability
that the result of seismic soundings is available to be 0:9.

The variable Obs is always observed. Either it instantiates Seismic to the state
representing the seismic soundings result or it carries no information on the test
result. �
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Table 7.21 The conditional
probability
distribution P.Obs |Seismic/

Obs

Seismic closed open diffuse none

closed 0:9 0 0 0:1

open 0 0:9 0 0:1

diffuse 0 0 0:9 0:1

H

U

D
Fig. 7.36 Decision D selects
a hypothesis of maximum
probability

How to Implement This Technique

The missing observations modeling technique is implemented as follows:

1. Let X be the discrete random variable that may or may not be observed prior to
decision D.

2. Create a discrete random variable O with state space dom.O/ D dom.X/ [
{none} representing the observation on X when it is observed and none when it
is not.

3. Let X be the parent of O and let O be a parent of D.
4. Define the prior probability distribution P.O |X/ such that P.O D o |X D
x/ D p and P.O D none |X D x/ D 1 − p where p specifies the probability
that the observation on X is made when X is in state x.

5. Instantiate O to the state of X when X is observed and instantiate O to the
state none when X is not observed.

7.3.4 Hypothesis of Highest Probability

An influence diagram is useful for solving problems of decision making under
uncertainty. The variables of an influence diagram consist of a mixture of random
variables and decision variables. The random variables are used for representing
uncertainty, while the decision variables represent entities under the full control of
the decision maker. The state of a random variable may be observable or hidden,
while the state of a decision variable is under the full control of the decision maker.

As indicated above there is a fundamental difference between random variables
and decision variables. Situations exist, however, where it is useful to have the
decision maker select a decision option corresponding to the state of a random
variable. In a medical diagnosis situation, for instance, it may be necessary to
have the model suggest the most likely diagnosis as the disease with the maximum
probability where the presence or absence of diseases are modeled as random
variables. Figure 7.36 illustrates a simple modeling technique for representing this
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Fig. 7.37 Decision D selects
a hypothesis of maximum
probability

situation. Let D be the discrete decision variable under the full control of the
decision maker and let H be the hypothesis variable such that D and H have the
same (or equivalent) state spaces, that is, dom.D/ D dom.H/. The goal is to assign
the maximum expected utility to the decision option d of D corresponding to the
hypothesis h of H with maximum probability. This is achieved by adding a utility
function U with domain dom.U / D {D;H }, assigning utilities to configurations
of H andD as

U.h; d/ D
{

1 if h D d

0 otherwise.

That is, all configurations where the decision variable D and the hypothesis
variable H are in the same state are assigned the value one, while all remaining
configurations are assigned the value zero. In effect, each state of D has expected
utility corresponding to (a linear transformation of) the probability of the hypothesis.
Since influence diagrams are solved by selecting the decision option with maximum
expected utility, the optimal decision policy for D will select a hypothesis with
maximum probability.

In the general case, each hypothesis h may be a configuration over a set of
variables such that the utility function has more than one hypothesis variable as
parent. Figure 7.37 illustrates this situation.

Example 7.19 (Hypothesis of Highest Probability). In the chest clinic example
(Example 4.2 on page 73) a physician is diagnosing her patients with respect to
lung cancer, tuberculosis, and bronchitis based on observations of symptoms and
possible causes of the diseases.

Assume the physician would like to select the single diagnosis with highest prob-
ability. Figure 7.38 shows the structure of a model where the decision variable D
selects the disease hypothesis with highest probability. The decision variableD has
states Bronchitis, cancer, and tuberculosis.

The utility function U.T;L;B;D/ encodes the behavior of the model, and it is
specified as

U.T;L;B;D/ D

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

1 if B D yes; L D no; T D no and D D bronchitis

1 if B D no; L D yes; T D no and D D cancer

1 if B D no; L D no; T D yes and D D tuberculosis

0 otherwise.
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X ray Dyspnoea U D

Fig. 7.38 Selecting a disease hypothesis with highest probability

This model will enforce the expected utility function over D to assign the
hypothesis with the highest probability with the maximum expected utility. �

How to Implement This Technique

The hypothesis of highest probability modeling technique is implemented as
follows:

1. Let H be the random variable for which the hypothesis (i.e., state) of highest
probability is to be selected.

2. Create a decision variable D with the same state space as H , that is, such
that dom.D/ D dom.H/.

3. Create a utility function U with D and H as its parents.
4. Define the utility function U.H;D/ such that

U.h; d/ D
{

1 if h D d

0 otherwise;

where h and d are states of H and D, respectively.

7.3.5 Constraints on Decisions

One of the underlying assumptions of representing and solving a decision making
problem with uncertainty using influence diagrams is that the decision maker is in
full control of her decision options. It is, however, common that a decision making
problem is subject to certain constraints on the decision (and random) variables. We
consider the situation where certain configurations of decision variables are illegal
in the sense that such configurations should never be optimal.



234 7 Modeling Techniques

U

D1 D2

Fig. 7.39 A constraint on
configurations of
decisions D1 and D2

Table 7.22 The utility table
U.D1;D2/

D1 D2

don0 t sell don0 t sell −100

don0 t sell sell −100

sell don0 t sell −100

sell sell 0

The basic idea of the approach considered here is to assign an infinitely large
negative value to configurations of decision options that are illegal. Since influence
diagrams are solved by maximizing the expected utility, decision options with
infinitely large negative expected utilities will not be chosen.

It is, however, not possible to specify that a configuration of variables has
infinitely large negative expected utility. Instead of using an infinitely large negative
value, we may use zero (or a very large negative value). This implies that it may
be necessary to make a linear utility transformation to avoid zero expected utilities
for any configuration which is not illegal. This transformation of the utility function
will preserve the optimal policy.

Example 7.20 (Constraints on Decisions). Assume that two decisions D1 and D2

specify two different points in time where the decision maker can choose to sell an
old car that needs repair. If both decisions are to keep the car (i.e., don’t sell), then
a repair cost is induced. If the car is sold at decision D1, then it is not an option to
sell the car at decisionD2.

This implies that options available for the decision maker at decision D2 are
constrained by the decision made at decisionD1. This property can be encoded as a
constraint overD1 andD2 as illustrated in Fig. 7.39 with utility functionU.D1;D2/

as specified in Table 7.22.
In order to avoid problems related to decision options having zero expected utility

due to illegal events, a linear transformation of the utility function can be made. In
the example, we may add a constant greater than the numerical value of the cost of
repairing the car to all utilities. This will force all utilities to be positive and zero
expected utility to be assigned to illegal configurations only. �

In the example we assume thatD1 andD2 are temporally ordered in the enclosing
model, that is, decision D1 is made prior to decision D2. This assumption has no
impact on the model.
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How to Implement This Technique

The constraints on decisions modeling technique is implemented as follows.

1. Let {D1; : : : ;Dn} be the set of decisions to be constrained.
2. Create a utility node U .
3. Add each D 2 {D1; : : : ;Dn} as a parent of U .
4. Define the utility function U.D1; : : : ;Dn/ such that all illegal configurations

of {D1; : : : ;Dn} are assigned a large negative value.

If a linear transformation of the utility function is required, this should be
performed subsequently.

7.4 Summary

In this chapter we have introduced modeling methods and techniques for adjusting
the structure of a probabilistic network, for the specification of conditional proba-
bility distributions, and for influence diagram models.

The construction of a probabilistic network may be a labor-intensive task to
perform. A sequence of steps related to knowledge acquisition and representation is
performed in the process of constructing a probabilistic network. The steps include
identifying variables, identifying states of variables, identifying and encoding
dependence and independence relations among variables as an acyclic, directed
graph, and eliciting the quantification of the model as required by the structure.

In Chap. 8 we discuss methods for data-driven modeling.

Exercises

Exercise 7.1. Assume that the causal influences of Angina, Cold, and Flu on
SoreThroat can be assumed to be independent. Furthermore, assume that there is
a background event that can cause the throat to be sore.

The probability of a sore throat being caused by other causes is 0:05, whereas the
inhibitor probabilities for Angina, Cold, and Flu are 0:3, 0:4, and 0:25, respectively.
The prior probabilities for Angina, Cold, and Flu are 0:4, 0:1, and 0:25, respectively.

(a) Construct a Bayesian network model representing the causal impact on Sore
Throat.

(b) Compute the prior probability of SoreThroat.
(c) Apply the parent divorcing modeling technique to simplify the model.



236 7 Modeling Techniques

Table 7.23 The utility func-
tion U.Surgery;Appendicitis/

¬surgery surgery

¬appendicitis 5 −5

appendicitis −10 10

Exercise 7.2. Consider the Asia network in Fig. 7.20 on page 212.

(a) Perform a sequence of node absorption operations to remove the variables
Experts1 and Experts2.

(b) Assume bronchitis can be cured by taking a certain type of medicine. Extend
the network accordingly.

Exercise 7.3. Consider the naive Bayes network for classifying mushrooms in
Fig. 7.15 on page 207. Assume no odor is perfectly observed, whereas almond
is mistakenly observed as spicy in 10% of the cases, while spicy is mistakenly
observed as almond in 5% of the cases. Extend the network accordingly.

Exercise 7.4. Consider the Asia network in Fig. 4.2 on page 74, see Example 4.2
on page 73.

(a) Perform a node absorption operation to remove the variable Tub or cancer.
(b) Apply the parent divorcing technique on the resulting network.

Exercise 7.5. Assume appendicitis may cause fever, pain, or both. If a patient has
appendicitis, then the patient will have an increased white blood cells count. When
a patient potentially has appendicitis, the physician may choose to carry out surgery
right away or wait for a blood test result. Fever and pain are observed.

The prevalence of appendicitis is 0:15. The true positive rates are 0:98, 0:95, and
0:99 for fever, pain, and white cells count, respectively. The true negative rates are
0:5, 0:4, and 0:95 for fever, pain, and white cells count, respectively. The utilities of
operating are shown in Table 7.23.

(a) Build a model for the diagnosis problem.
(b) Compute the expected utility of the scenario where the physician does not wait

for the blood test result.
(c) Compute the expected utility of the scenario where the physician waits for the

blood test result.
(d) Prior to deciding on whether or not to carry out surgery, the physician has the

option to carry out a test for the white blood cell count.
Extend the model to include a representation of the test decision.



Chapter 8
Data-Driven Modeling

In this chapter we introduce data-driven modeling as the task of inducing a Bayesian
network by fusion of (observed) data and domain expert knowledge.

The data-driven modeling is illustrated in Fig. 8.1. The assumption is that some
underlying process has generated a database of observed cases as well as domain
expert experience and knowledge. The task of data-driven modeling is to fuse these
information sources in order to induce a representative model of the underlying
process. If the model is a good approximation of the underlying process, then it can
be used to answer questions about properties of the underlying process.

In this book we consider the use of Bayesian networks to model the underlying
process. The process of inducing a Bayesian network from a database of cases
and expert knowledge consists of two main steps. The first step is to induce the
structure of the model, that is, the DAG, while the second step is to estimate the
parameters of the model as defined by the structure. In this chapter we consider only
discrete Bayesian networks. Thus, the task of data-driven modeling is to construct
a Bayesian network N D .X;G;P/ from the available information sources. In
general, the problem of inducing the structure of a Bayesian network is NP-complete
(Chickering 1996). Thus, heuristic methods are appropriate.

Section 8.1 gives some background on data-driven modeling and presents a
set of assumptions underlying the presented approach to data-driven modeling.
Sections 8.2 and 8.3 consider two different approaches to structure learning of
Bayesian networks. In Sect. 8.2, a number of different constraint-based algorithms
for structure learning are considered. We consider the PC, PC�, and NPC algo-
rithms. In Sect. 8.3, a number of different search and score-based algorithms for
structure learning are considered. This includes algorithms for learning structure
restricted models from data. Section 8.4 provides a complete example on structure
learning using (some of) the algorithms described in this chapter. In Sect. 8.5,
we consider the expectation–maximization algorithm for parameter estimation. In
addition to the two main steps of data-driven modeling, there is the step of sequential
parameter learning. Structure learning and parameter estimation are performed
during the model construction phase, whereas sequential parameter learning is

U.B. Kjærulff and A.L. Madsen, Bayesian Networks and Influence Diagrams: A Guide
to Construction and Analysis, ISS 22, DOI 10.1007/978-1-4614-5104-4 8,
© Springer Science+Business Media New York 2013
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Underlying process

Database of cases

Experience & knowledge

Induced model

Fig. 8.1 We assume the underlying process generates a database of cases as well as experience
and knowledge that can be fused for learning a model of the process

performed during model usage. In Sect. 8.6, we consider sequential parameter
learning, which is the task of adjusting parameters of the model as the model is
used, that is, as new cases occur.

Parts of this chapter have appeared in Madsen et al. (2005).

8.1 The Task and Basic Assumptions

Data-driven modeling is the task of identifying a Bayesian network model from a
source of data. We assume the underlying process follows a probability distribu-
tion P0 (referred to as the underlying probability distribution of the process). That
is, we assume the data source can be adequately represented by sampling from P0.
The goal of data-driven modeling is to identify a model representation of P0.

To simplify the task, the probability distribution P0 is assumed to be a DAG-
faithful probability distribution with underlying DAG G0. That is, we assume the
distribution P0 can be represented as a Bayesian network (if P0 is not DAG-faithful,
a Bayesian network may still be an excellent approximation).

The faithfulness assumption (also known as the stability assumption) says that
the distribution P induced by N D .X;G;P/ satisfies no independence relations
beyond those implied by the structure of G (Spirtes, Glymour & Scheines 2000,
Pearl 2000). A Bayesian network is faithful if and only if for every d-connection
there is a corresponding conditional dependence, that is,

X 6?G Y | ⇒ X 6??p Y |Z:

We assume the underlying probability distribution P0 to be DAG-faithful with
DAG G0.

The database of cases generated by the underlying and unknown process (i.e.,
the data source for learning) is denoted D D {c1; : : : ; cN }, where N is the number
of cases in the database. We assume D consists of independent and identically
distributed data cases drawn at random from the probability distribution P0, that is,
we assume cases are drawn at random and independently from the same probability
distribution P0.
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Table 8.1 A database of
cases

X1 X2 : : : Xn

c1 blue yes : : : low
c2 green no : : : low

c3 red N=A : : : high
: : : : : : : : : : : : : : :

cN red no : : : high

Each case ci D {xi1; : : : ; x
i
n} in D specifies an assignment of a value xij to each

variableXj 2 X. Some values in D may be missing, but missing values are assumed
to be missing at random (MAR) or missing completely at random (MCAR), that is,
the missing data mechanism is uninformative and can be ignored (Cowell et al.
1999). A variable never observed is called a hidden or a latent variable.

Example 8.1 (Data Cases). Table 8.1 shows a database ofN cases DD{c1; : : : ; cN }

over n variables XD{X1; : : : ; Xn}.
In case c2, for instance, variableX2 is observed to have value no, that is, x22 D no,

while its value is missing in case c3 (missing values are indicated using N=A). �
We consider learning a Bayesian network as the task of identifying a DAG

structure G and a set of conditional probability distributions P with parameters 
on the basis of D D {c1; : : : ; cN } and possibly some domain expert background
knowledge.

Applying Occam’s Razor (the law of parsimony), see Sect. 6.6, to the problem
of learning the structure of a Bayesian network from a database of cases suggests
that the simplest model of a set of competing models is preferable. Why should
we adhere to the Occam’s Razor principle, that is, adhere to one specific selection
bias? One argument is that we want models that generalize correctly with respect to
subsequent data and it is unlikely that we by coincidence will find a simple model
which fits the data as well as a very complex model.

Learning the structure of a sparse graph is computationally less involved than
learning the structure of a dense graph where the number of edges is used as a
measure of the density of the graph. Inducing a graph from a sample of cases that
requires the induced graph to be dense is computationally more expensive than
inducing a graph from a sample of cases that requires the induced graph to be sparse.
In addition, domains that require the induced graph to be dense may be difficult to
represent as a Bayesian network as inducing the graph is computationally expensive,
representing a dense graph requires a lot of storage, and inference in dense graphs
may be intractable.

The size of the space of possible DAGs grows super-exponentially with the
number of vertices in the graph. Robinson (1977) gives the following recursive
formula for calculating the number f .n/ of DAGs on n vertices:

f .n/ D
nX

iD1
.−1/iC1

 
n

i

!
2i.n−i /f .n − i/: (8.1)



240 8 Data-Driven Modeling

Table 8.2 The number of
possible DAGs for values of n
from one to ten as calculated
using f .n/

Number of vertices (n) Number of possible DAGs (f .n/)

1 1

2 3

3 25

4 543

5 29;281

6 3;781;503

7 1;138;779;265

8 783;702;329;343

9 1;213;442;454;842;881

10 4;175;098;976;430;598;143

Table 8.2 shows the number of possible DAGs for values of n from one to
ten (OEIS 2010). For example, f .10/ � 4:2 � 1018.

8.1.1 Basic Assumptions

Under the following conditions, the structure learning algorithm considered will dis-
cover a DAG structure equivalent to the DAG structure ofP0 (Spirtes et al. 2000):

• The independence relationships have a perfect representation as a DAG. This is
the DAG faithfulness assumption.

• The database consists of a set of independent and identically distributed cases.
• The database of cases is infinitely large.
• No hidden (latent) variables are involved.
• In the case of structure learning, data is complete.
• In the case of constraint-based learning algorithms, the statistical tests have

no error.

Even though the basic assumptions may not in practice be satisfied for a specific
database of cases or it may not be known if a database of cases satisfies the
basic assumptions, the structure learning algorithms considered in this chapter
can be applied to construct a knowledge representation of the data. A common
approach to handle missing values in structure learning, for instance, is to ignore
the missing values.

8.1.2 Equivalent Models

Two DAGs representing the same set of conditional dependence and independence
relations (CDIRs) are equivalent in the sense that they can capture the same set of
probability distributions. That is, two modelsM1 andM2 are statistically equivalent
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Fig. 8.2 Three equivalent DAGs

if and only if they contain the same set of variables and joint samples over them
provide no statistical grounds for preferring one over the other.

The equivalence class of a DAG G is the set of DAGs with the same set
of d-separation relations as G. A PDAG—an acyclic, partially directed graph,
that is, an acyclic graph with some edges undirected (also known as a pattern
or essential graph)—can be used to represent the equivalence class of a set of
DAG structures, that is, a maximal set of DAGs with the same set of d-separation
relations (Pearl 2000).

Any two models M1 and M2 over the same set of variables, whose graphs G1
and G2, respectively, have the same skeleton GS (i.e., undirected graph obtained
by replacing directed edges with undirected edges) and the same v-structures
are equivalent. That is, two DAGs G1 and G2 are equivalent if they have the
same skeleton and the same set of uncovered colliders (i.e., X → Y ← Z-
structures where X and Z are not connected by a link, which are also known as
v-structures) (Pearl 2000).

Example 8.2 (Equivalent Models). The models A → B → C and A ← B ← C

and A← B → C are equivalent, as they share the skeleton A−B −C and have no
v-structures.

Hence, based on observational data alone, we cannot distinguish A → B → C

and A ← B ← C and A ← B → C . These models can, however, be distinguished
from A→ B ← C . �

An equivalence class is a maximal set of DAGs with the same set of indepen-
dence properties.

Example 8.3 (Equivalence Class). The three DAGs in Fig. 8.2 all represent the
same set of conditional independence and dependence relations.

Figure 8.3 shows the equivalence class of the three equivalent DAGs of Fig. 8.2.
�

If structure is identified from data, then two DAGs Gi and Gj from the same
equivalence class cannot be distinguished. Based on observational data alone, we
can at most hope to identify a PDAG representing the equivalence class of the
generating distribution P0.
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A

B C

D

Fig. 8.3 The equivalence
class of the DAGs in Fig. 8.2

Structure learning from data is the task of inducing the structure, that is, the
graph, of a Bayesian network from data. There exist different classes of algorithms
for learning the structure of a Bayesian network such as constraint-based algorithms
and search and score-based algorithms as well as combinations of the two. In the
next section, we consider structure learning algorithms based on the constraint-
based approach (Wermuth & Lauritzen 1983, Verma & Pearl 1992, Spirtes et al.
2000).

8.2 Constraint-Based Structure Learning

In the constraint-based approach, the DAG G of a Bayesian network N D .X;G;P/

is considered as an encoding of a set of CDIRs MG, which can be read off G using
the d-separation criterion (Lauritzen et al. 1990b, Geiger, Verma & Pearl 1990).
Structure learning is then the task of identifying a DAG structure that (best) encodes
a set of CDIRs. The set of CDIRs may, for instance, be derived from the data source
by statistical tests. Based on observational data D alone, we can at most hope
to identify an equivalence class of graphs encoding the CDIRs of the generating
distribution P0.

A constraint-based structure learning algorithm proceeds by determining the
validity of independence relations of the form I.X; Y |SXY / (i.e., X is independent
of Y given subset SXY where X; Y 2 X and SXY � X). The structure learning
algorithm will work with any information source able to provide such information.
We will consider the case where the validity of independence relations is determined
by statistical hypothesis tests of independence based on a database of cases.

8.2.1 Statistical Hypothesis Tests

A set of CDIRs may be generated by statistical tests on the database of cases. In
each test, the hypothesis tested is that of independence between a pair of variables.

Let X and Y be a pair of variables for which we would like to determine
dependence by statistical hypothesis testing. First, we test for marginal indepen-
dence, and subsequently we test for conditional independence given subsets of
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other variables. In the case of marginal independence testing between X and Y ,
the hypothesisH0 (and alternative hypothesisH1) to be tested is

H0 W P.X; Y / D P.X/P.Y /; that is, X ??P Y

H1 W P.X; Y / 6D P.X/P.Y /:

Hence, the null hypothesis H0 is X ??P Y , while the alternative hypothesis H1

is X 6??P Y .
In order to test the hypothesis, we may use the likelihood G2 test statistic.

Under the null hypothesis H0, the likelihood G2 test statistic has an asymptotic �2

distribution with the appropriate degrees of freedom denoted df. The likelihood G2

test statistic is computed as

G2 D 2
X

x;y

Nxy log

�
Nxy

Exy

�
;

where Exy D NxNy
N

and Nxy specifies the number of cases in D where X D x

and Y D y.
In the case of conditional independence testing between X and Y given a

subset SXY , the hypothesisH0 (and alternative hypothesisH1)to be tested is

H0 W P.X; Y |SXY / D P.X |SXY /P.Y |SXY /; that is, X ??P Y |SXY

H1 W P.X; Y |SXY / 6D P.X |SXY /P.Y |SXY /:

The null hypothesis H0 is X ??P Y |SXY , while the alternative hypothesis H1

isX 6??P Y |SXY . In the case of conditional independence testing, the likelihoodG2

test statistic is computed as

G2 D 2
X

x;y;z

Nxyz log

�
Nxyz

Exyz

�
;

where Exyz D NxzNyz

Nz
and z is a configuration of SXY .

If the test statistic G2 is sufficiently small, that is, G2 < c, then the null
hypothesis H0 is not rejected. Since the value of c is unknown, the probability
distribution of G2 under H0 and a significance level ˛ are used. The significance
level ˛ is the probability of rejecting a true hypothesis and is typically set to 0:05
(or 0:01 or 0:001). Not rejecting a hypothesis does not imply that data support
independence. A hypothesis is not rejected when there is no evidence in the data
against the hypothesis.

Under the null hypothesisH0 (i.e., (conditional) independence of X and Y ), the
likelihood G2 test statistic has, as mentioned above, an asymptotic �2 distribution
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Fig. 8.4 The �2 density function for different degrees of freedom

with an appropriate number of degrees of freedom denoted df. The value of df is
defined as

df D .||X ||− 1/.||Y ||− 1/
Y

Z2SXY
||Z||;

where ||X ||, ||Y ||, and ||Z|| are the number of distinct values of X , Y , and Z,
respectively, in D.

If the tail probability of the �2 distribution at G2 is less than ˛, then H0 is
rejected. Otherwise, it is not rejected. Thus, the hypothesis H0 is rejected in favor
of the alternative hypothesis H1 when P�2.df/.x � G2/ < ˛, see Fig. 8.4 for an
illustration.

In the figure f .x; 5/ and f .x; 10/ are �2 density functions with five and ten
degrees of freedom, respectively. The solid line specifies the density function with
ten degrees of freedom, while G2 specifies the value of the likelihood G2 test
statistic. The tail of the distribution P�2.df /.x � G2/ is the area indicated in the
figure and is often referred to as the p-value. If the tail is less than the significance
level, then the independence hypothesis is rejected. It is clear from the figure that it
is important to use the correct value of df when considering the tail probability of
the distribution.

Example 8.4 (Statistical Test). Consider the statistical test for (marginal) indepen-
dence between a pair of variablesX and Y with states n and y given the contingency
table shown in Table 8.3.

The hypothesis to be tested is H0 W X ??P Y under the distribution induced by
the contingency table. Computing the test statistic G2 proceeds as
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Table 8.3 Contingency table
for testing marginal
independence of X and Y

Y

X n y

n 12 1 13

y 84 3 87

96 4 100

G2 D 2
X

x;y

Nxy log

�
Nxy

Exy

�

D 2

 
12 log

 
12
13�96
100

!
C 1 log

 
1
13�4
100

!
C 84 log

 
84
87�96
100

!
C

3 log

 
3
87�4
100

!!

D 0:2194:

Since G2 ∼ �2.1/ under H0, we obtain a p-value of 0:64 (i.e., PH0.X �
G2/ D 0:64). At a significance level ˛ D 0:01, we cannot reject the hypothesisH0.
Hence, X and Y are assumed to be independent. �

The value of df is computed as the sum of .||X || − 1/.||Y || − 1/ over all
configurations of SXY correcting for marginal zero counts (i.e.,Nx D 0 orNy D 0).
The value of ||X || (or ||Y ||) is decreased by one for each marginal count equal to
zero. This means that the degrees of freedom are reduced when a variable is never
observed to be in a specific state.

It is common to perform tests X ?? Y |SXY for |SXY | D 0; 1; 2; 3 as the tests
become unreliable (for finite data sets) when the size of SXY exceeds three as the
number of counts Nxyz become too small.

If we reject H0 when it is true, we incur a Type I error. On the other hand, if
we do not reject H0 when it is false, we incur a Type II error. In the constraint-
based approach to structure learning, the relative frequency of Type I and Type II
errors can (to some extent) be controlled by varying the significance level used in
the statistical tests for conditional independence. The lower the significance level,
the lower the probability of incurring a Type I error.

8.2.2 Structure Constraints

Prior to the testing phase, background knowledge of domain experts in the form of
constraints on the structure of the DAG can be specified. It is possible to specify the
presence and absence of edges, the orientation of edges, and a combination.
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If the background knowledge is assumed to be consistent with the underlying
DAG G0 of the generating distribution P0, then it is not necessary to test the
validity of the background knowledge. Hence, specifying background knowledge
may reduce the number of statistical tests. Unfortunately, this may, in practice,
produce unwanted behavior of the edge-orientation algorithm (as described later).
This means that background knowledge should often be used with caution.

Domain expert knowledge can be used to guide and speed up the structure
learning process. If the database of cases contains a large number variables, then the
space of possible DAG structures is huge (as indicated in Table 8.2). In this case,
the use of domain expert knowledge to define a set of constraints on the network
structure may increase the time efficiency significantly. Domain expert knowledge
may also be used in combination with structure restricted algorithms and the edge-
orientation algorithm.

8.2.3 PC Algorithm

The PC algorithm (Spirtes & Glymour 1991, Spirtes et al. 2000) (which is similar
to the IC algorithm (Verma & Pearl 1992, Pearl 2000)) is a constraint-based
algorithm for learning the structure of a Bayesian network. The main steps of the
PC algorithm are:

(1) Test for (conditional) independence between each pair of variables represented
in D to derive MD, the set of CDIRs

(2) Identify the skeleton of the graph induced by MD

(3) Identify colliders
(4) Identify derived directions

The PC algorithm produces a PDAG representing an equivalence class. Each
step of the PC algorithm is described in the following sections where the task is to
identify a graph G representing the independence model of the underlying process
generating the database of cases.

Step 1: Test for (Conditional) Independence

We try to determine the validity of the conditional independence statement X ??
Y |SXY by a statistical hypothesis test as explained in Sect. 8.2.1.

The independence hypothesis is tested for conditioning sets SXY of cardinal-
ity 0; 1; 2; 3 in that order. If the hypothesisX ?? Y |SXY cannot be rejected based on
some preselected significance level ˛, then the search for an independence relation
between X and Y is terminated.

Example 8.5 (Independence Tests). Assume D is a database of cases generated
from the Burglary or Earthquake network in Fig. 5.5 on page 119. If the sample is
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Fig. 8.5 Skeleton
representing the CDIRs MD

of (8.2) and (8.3)

sufficiently large, the conditional independence tests will generate the set MD D
M 6?? [ M?? of CDIRs where

M?? D {B ?? E;B ?? R;B ?? W |A;A ?? R |E;E ?? W |A;

R ?? W |A} (8.2)

M 6?? D {B 6?? A;B 6?? A | {E}; B 6?? A | {R}; B 6?? A | {W }; B 6?? A | {E;R};

B 6?? A | {E;W }; B 6?? A | {R;W }; B 6?? A | {E;R;W }; A 6?? E; : : : ;

A 6?? W; : : : ; E 6?? R; : : :}: (8.3)

We will continue this example in the following subsections describing the steps
of the PC algorithm. �

Step 2: Identify the Skeleton

The skeleton of an acyclic, directed, or partially directed graph G is the undirected
graph G0 obtained from G by removing the direction on all directed edges. The
skeleton of the graph induced from MD is constructed from the conditional
dependence and independence statements of MD generated by the statistical test
in Step (1) of the PC algorithm.

For each pair of variables X and Y where no independence statements X ??
Y |SXY exist, the undirected edge {X; Y } is created in the skeleton.

Example 8.6 (Example 8.5, cont.). From MD, the skeleton of G is generated. The
skeleton of G generated from MD is shown in Fig. 8.5.

Comparing the skeleton of Fig. 8.5 with the skeleton of the graph of Fig. 5.5 on
page 119, we see a perfect match.

In addition, it is obvious that the graph of Fig. 8.5 is a more intuitive and
compact representation of the dependence and independence model than that of
(8.2) and (8.3). �
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Fig. 8.6 Colliders identified
from MD and the skeleton of
Fig. 8.5

X Y Z ⇒ X Y Z

Fig. 8.7 Rule R1 for identifying derived directions

Step 3: Identify Colliders

Once the skeleton has been identified, colliders in the skeleton are identified. Based
on the skeleton, we search for subsets of variables {X; Y;Z} such that X and Y are
neighbors,Z and Y are neighbors, while X and Z are not neighbors. For each such
subset, a collider X → Y ← Z is created when Y 62 SXZ for any SXZ satisfying
X ?? Z |SXZ in MD. This is referred to as rule R0.

Example 8.7 (Example 8.6, cont.). From the skeleton GS D .VS ;ES/ (see Fig. 8.5)
and MD (see (8.2) and (8.3)), a single collider B → A ← E is identified, see
Fig. 8.6. This collider is identified as {B;A}; {E;A} 2 ES , {B;E} 62 ES , and A 62
SBE for any B ?? E |SBE .

Notice that the collider B → A ← W is not identified as A 2 SBW
for B ?? W |SBW where SBW D {A}. A similar argument holds for the potential
collider E → A← W . �

Step 4: Identify Derived Directions

After identifying the skeleton and the colliders of G, derived directions are identified.
The direction of an edge is said to be derived when it is a logical consequence of
(the lack of) previous actions (i.e., since the edge was not directed in a previous step
and it should have been in order to have a certain direction, then the edge must be
directed in the opposite direction).

Starting with any PDAG including all valid colliders, a maximally directed
PDAG can be obtained following four necessary and sufficient rules (Verma &
Pearl 1992, Meek 1995). That is, by repeated application of these four rules, all
edges common to the equivalence class of G are identified. The four rules R1 to R4
are illustrated in Figs. 8.7–8.10.
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X Y Z ⇒ X Y Z

Fig. 8.8 Rule R2 for
identifying derived directions

V X Z

Y

⇒

V X Z

Y

Fig. 8.9 Rule R3 for
identifying derived directions

VX

Z

Y

⇒ VX

Z

Y

Fig. 8.10 Rule R4 for
identifying derived directions.
(The dashed line between X
and V indicates that X and V
are adjacent, i.e., connected
by an edge.)

Rules R1 to R4 direct edges under the assumption that G is a valid DAG, that is,
they ensure that no directed cycle is created in the graph and no additional colliders
are created.

Rule R1 as illustrated in Fig. 8.7 follows from the fact that the collider X →
Y ← Z was not identified as a valid collider. Since the edge between Y and Z is
not part of the aforementioned collider, it must be directed from Y to Z.

Rule R2 as illustrated in Fig. 8.8 follows from the fact that directing the edge
between X and Z from Z to X will induce a directed cycle in the graph. Thus, the
edge must be directed from X to Z.

Rule R3 as illustrated in Fig. 8.9 follows from the fact that directing the edge
between X and Y from Y to X will inevitable produce an additional collider V →
X ← Z or a directed cycle. Hence, the edge must be directed from X to Y .

Rule R4 as illustrated in Fig. 8.10 follows from the fact that directing the edge
between X and Y from Y to X will inevitable produce an additional collider Y →
X ← Z or a directed cycle. Hence, the edge must be directed from X to Y . The
dashed lines used to illustrate the fourth rule indicate that X and V are connected
by an edge (either directed or not).

The fourth rule is not necessary if the orientation of the initial PDAG is limited to
containing colliders only. The initial PDAG may contain non-colliders when expert
knowledge on edge directions is included in the graph.

Example 8.8 (Example 8.7, cont.). As neither the collider B → A ← W nor the
colliderE → A← W were identified as a collider of G, the edge betweenA andW
must be directed from A to W . This is an application of rule R1.
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Fig. 8.11 Derived directions
identified from the skeleton
and the colliders identified in
Example 8.7

Figure 8.11 shows the equivalence class of MD. The equivalence class contains
two DAGs differing only with respect to the orientation of the edge between E
and R. �

The four rules R1 to R4 are necessary and sufficient for achieving maximal
orientation (up to equivalence) of the PDAG returned by the PC algorithm.

We use these four rules repeatedly until no edge can be given an orientation.
Notice that the result of closing edge directions under rules R1 to R4 is not
necessarily a DAG. If the graph is not a DAG, then expert knowledge may be
appropriate in order to direct an edge. Once an edge has been directed by use of
expert knowledge, derived directions should be identified. This process may be
repeated until a DAG structure is obtained. Experience shows that most edges are
directed using R1 and that R3 is only rarely used.

Since the goal of structure learning is to induce a DAG structure over the
variables in the data, a decision has to be made on how to handle directed cycles and
additional colliders induced by rules R1 to R4. In a practical implementation of the
algorithm as part of a tool, we suggest to give the user a warning and to enforce the
constraint that the induced graph must be acyclic with the possible implication that
edges may be reversed after the application of a rule in order to enforce acyclicity.

Example 8.9 (Example 8.8, cont.). There are two possible completions of the
PDAG shown in Fig. 8.11 into a DAG. Either the edge betweenE and R is directed
from E to R or vice versa. The two DAGs induce the same set of CDIRs.

Since, based on observational data alone, we cannot determine the direction of
the edge between E and R, the direction can either be selected at random or we can
exploit expert knowledge, if available. From our knowledge of the problem domain
and the underlying process, we may argue that if there is an edge betweenE andR,
then it should be directed from E to R. An earthquake may cause a report on the
radio reporting the earthquake. A report on the radio definitely cannot cause an
earthquake. Figure 8.12 shows the result.

Once the edge betweenE andR has been given a direction, the resulting graph is
a DAG. This completes the structure learning process. The next step in the learning
process is to determine or estimate the parameters of the model in order to obtain a
fully specified Bayesian network. �
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B E

A R

W

Fig. 8.12 The result of
structure learning

8.2.4 PC� Algorithm

To speed up the structure learning process, various heuristic improvements of the
straightforward incremental testing scheme have been developed (Spirtes et al.
2000).

One of the main improvements is to identify the conditioning set SXY using
an undirected graph specifying pairs of variables that have been identified as
(conditional) independent, given previous test results. Thus, an undirected graph
describing the current set of neighbors of each variable is maintained.

This neighbor graph may be updated each time an independence statement
is identified (or after the completion of the sequence of tests performed for a
fixed cardinality of the conditioning set), that is, each independence test not
rejecting the hypothesis. Hence, the conditional independence of X and Y is
only tested conditional on subsets of the neighbors of X and Y in the undirected
graph. This can significantly reduce the number of independence tests performed.
With the improvement described above, the algorithm is referred to as the PC�
algorithm (Spirtes et al. 2000).

Similarly, the order in which we try out the possible conditioning sets of a fixed
cardinality may be selected according to how likely they are to cause independence
for the edge under consideration. For instance, the heuristic rule that the variables of
the conditioning set should be strongly correlated with both endpoints of the edge
being tested may be used.

Due to the nature of the testing scheme, the conditioning set SXY for an identified
independence relation X ?? Y |SXY is minimal in the sense that no proper subset
of SXY makes X and Y independent. This is an important property that is exploited
by the NPC algorithm.

8.2.5 NPC Algorithm

The NPC algorithm (Steck & Tresp 1999) is an extension of the PC algorithm. The
additional feature of the NPC algorithm over the PC algorithm is the introduction
of the notion of a necessary path condition (Steck & Tresp 1999) for the absence of
an edge.
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Fig. 8.13 The necessary path
condition says that in order
for X ?? Y | {Z1; : : : ; Zn} to
be valid, there should for each
Zi ; i D 1; : : : ; n exist a path
between X and Zi not
crossing Y and vice versa

Necessary Path Condition

Informally, the necessary path condition for the absence of an edge says that in order
for two variablesX and Y to be independent (in a DAG faithful data set) conditional
on a minimal set SXY , there must exist a path between X and every Z 2 SXY (not
crossing Y ) and between Y and every Z 2 SXY (not crossing X ), see Fig. 8.13.
Otherwise, the inclusion of each Z in SXY is unexplained. Thus, in order for an
independence relation to be valid, a number of edges (or paths) are required to be
present in the graph. This is the necessary path condition.

The necessary path condition introduces the concept of an ambiguous edge. An
edge {X; Y } is ambiguous if the absence of {X; Y } depends on the presence of an
edge {X 0; Y 0} and vice versa. In that case, {X; Y } and {X 0; Y 0} are said to be inter-
dependent. An ambiguous edge indicates inconsistency in the set of independence
relations derived by the statistical tests. A maximal set of interdependent ambiguous
edges is denoted an ambiguous region. The necessary path condition is probably
better explained by the following example.

Example 8.10 (Necessary Path Condition). Assume we are given the set of
independence relations M?? over {Tub or cancer; Tuberculosis;Cancer;X ray} from
the Asia example (Example 4.2 on page 73) where

M?? D
{

X ray ?? Tub or cancer | {Cancer; Tuberculosis};

X ray ?? Tuberculosis |Tub or cancer;

X ray ?? Cancer |Tub or cancer

}

: (8.4)

The set M?? specifies the independence relations induced by the quantification
of the model (i.e., by the conditional probability distributions on the variables of the
model given their parents). The CDIR

X ray ?? Tub or cancer | {Cancer; Tuberculosis}
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{L;X }

{E;X}

{T;X }

{E;L} {E; T }

Fig. 8.14 The condition
graph over M??

follows from the fact that Tub or cancer is a deterministic function of the variables
Tuberculosis and Cancer. That is, whenever the states of Tuberculosis and Cancer
are given, the state of Tub or cancer is known and hence independent of the state
of X ray. Assume further that the collider

Tuberculosis→ Tub or cancer← Cancer

is known to be present, see, for example, Fig. 8.16.
The set M?? consists of three independence statements, which are inconsistent

(in the rest of this section we useE as short for Tub or cancer,L as short for Cancer,
and T as short for Tuberculosis). The absence of the edge betweenE andX depends
on the presence of the edges {E;L}, {E; T }, {X;L}, and {X; T } according to the
necessary path condition. Contrary to this, the absence of the edge betweenX and T
depends on the presence of the edges {E;X } and {E; T }. Similarly, the absence of
the edge betweenX and L depends on the presence of the edges {E;X } and {E;L}.
�

The interdependencies between edges induced by the set of conditional inde-
pendence statements M?? may be displayed as a directed graph GM??

D .V;E/,
where each vertex v 2 V corresponds to an edge {X; Y } in G and each directed
edge .u; v/ 2 E specifies that the absence of v in G depends on the presence of u
in G. The graph GM??

is referred to as the condition graph.

Example 8.11 (Condition Graph). Figure 8.14 shows the condition graph over
M?? in (8.4). Notice that vertices {L;X } and {E;X } as well as {T;X } and {E;X }

are connected by two directed edges.
The condition graph shows how the absence of each edge depends on the

presence of other edges. �

When a vertex v in GM??
does not have a parent, it means that the absence of

the edge represented by v does not depend on the presence of any other edges.
Hence, the independence statement related to the absence of the edge represented
by v satisfies the necessary path condition.

The set of ambiguous regions can be identified as the strongly connected
components of GM??

, where a strongly connected component is a maximal subgraph
in which every vertex is connected to every other vertex by a directed path.
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{L;X }

{E;X}

{T;X }

Fig. 8.15 The strongly
connected component of the
condition graph in Fig. 8.14

Tuberculosis.T/ Cancer.L/

Tub or cancer.E/

X ray.X/

Fig. 8.16 Ambiguous edges in the skeleton due to the deterministic relation
between Cancer, Tuberculosis, and Tub or cancer

T L

E

E

T L

E

E

Fig. 8.17 The two possible
resolutions of the ambiguous
region

Example 8.12 (Strongly Connected Component). The strongly connected compo-
nent of the condition graph of Fig. 8.14 is shown in Fig. 8.15. The component
consists of vertices {L;X }, {E;X }, and {T;X }. This set of vertices represents an
ambiguous region over the corresponding edges.

The graph of Fig. 8.16 illustrates an alternative graphical representation of the
ambiguous region consisting of three edges. The graph does not, however, illustrate
how the absence of an edge depends on the presence of another set of edges.

The two possible resolutions of the ambiguous region are shown in Fig. 8.17. The
ambiguous region may be resolved by including either edge {E;X } or edges {L;X }

and {T;X } in the graph. The minimal resolution is {E;X }. �
An ambiguous region is resolved by including a minimal number of ambiguous

edges in order to satisfy a maximal number of independence relations. In a
graphical representation, ambiguous regions should, for instance, have different
colors as they consist of independent sets of ambiguous edges. A resolution of an
ambiguous region is a minimal set of edges which will remove all ambiguous edges.
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Asia.A/ Smoker.S/

Tuberculosis.T/ Cancer.L/ Bronchitis.B/

Tub or cancer.E/

X ray.X/ Dyspnoea.D/

Fig. 8.18 Skeleton representing the CDIRs MD generated from D by the PC algorithm

Asia.A/ Smoker.S/

Tuberculosis.T/ Cancer.L/ Bronchitis.B/

Tub or cancer.E/

X ray.X/ Dyspnoea.D/

Fig. 8.19 Skeleton representing the CDIRs MD generated from D by the NPC algorithm after
selecting minimal resolutions

A resolution is to include some of the ambiguous edges in the graph in order to be
able to make as many independence relations as possible fulfill the necessary path
condition.

Example 8.13 (Skeleton (PC Algorithm)). Figure 8.18 shows the skeleton of the
graph identified by the PC algorithm based on a (sufficiently large) sample D

generated from the Asia network (Fig. 4.2 on page 74).
Comparing the skeleton of Fig. 8.18 with the skeleton of the acyclic, di-

rected graph of Fig. 4.2, we notice that three edges seem to be missing in
Fig. 8.18. These are the edges {Asia; Tuberculosis}, {X ray; Tub or cancer}, and
{Dyspnoea; Tub or cancer}. The edge {Asia; Tuberculosis} is too weak not to be
rejected by the hypothesis test, whereas the edges {X ray; Tub or cancer} and
{Dyspnoea; Tub or cancer} are absent due to the (deterministic) relation between
Tub or cancer, Tuberculosis, and Cancer as explained in Example 8.10.

Figure 8.19 shows the skeleton of the graph identified by the NPC algorithm
based on the same data set D. The edge {Asia; Tuberculosis} is missing for the
reasons explained above, whereas the (deterministic) relation between Tuber or
cancer, Tuberculosis, and Cancer has induced two ambiguous regions; one
ambiguous region with ambiguous edges {Cancer;X ray}, {Tuber or cancer; X ray},
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and {Tuberculosis;X ray} and another ambiguous region with ambiguous edges
{Cancer;Dyspnoea}, {Tuber or cancer;Dyspnoea}, and {Tuberculosis;Dyspnoea}.

The ambiguous regions can be resolved by selecting the minimal resolution in
each region. �

In the above presentation we have assumed that at most a single conditional
independence statement is generated for each pair of variables. If multiple condi-
tional independence statements are generated, it is necessary to introduce a more
complicated graphical notion where it is possible to represent the fact that an edge
may depend on different subsets of edges (one subset of edges corresponding to
each independence statement).

In order to increase reliability and stability of the NPC algorithm, multiple
independence statements may be generated for each pair of variables. This can, for
instance, be achieved by completing the iteration step for a fixed cardinality of the
conditioning set even if an independence statement is found.

If one of the independence relations satisfies the necessary path condition, then
the independence hypothesis is not rejected. Otherwise, an ambiguous edge is
created.

The PC and NPC structure learning algorithms can be considered as extensions
of the WL (Wermuth & Lauritzen 1983) and SGS (Spirtes et al. 2000) algorithms.

8.3 Search and Score-Based Structure Learning

Search and score-based algorithms are a different approach to learning structure.
It is an optimization-based search approach requiring a scoring function and a search
strategy. In this section, we consider structure learning algorithms based on the
search and score-based approach (Cooper & Herskovits 1992, Heckerman 1998,
Chickering 2002).

In the search and score-based approach, each DAG G D .V;E/ of a Bayesian
network N D .X;G;P/ has a score that is computed from the data D using a score
function s.G W D/. Structure learning is then the task of identifying a DAG structure
that has an optimal score. The score is a selection criterion that measures goodness
of the model as a representation of the data D. The task is solved by searching
through the space of possible structures computing a score for each candidate and
selecting the structure with the highest score of all structures visited in the search.

8.3.1 Space of Structures

In search and score-based learning, the structure search space can, for instance,
be the space of DAGs or the space of equivalence classes. Here, we consider only the
space of DAGs as the structure search space. This means that we search through the
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set of all possible DAGs over the observed variables X in the complete data D, that
is, we assume no hidden variables.

One method to identifying a DAG structure with an optimal quality score is to
use brute-force search where we systematically generate each candidate structure
and compute the score of the structure, that is, an exhaustive search in the space
of structures. An optimal scoring DAG is selected as a structure with the highest
score computed. This approach is, however, infeasible in practice as the number of
possible DAGs grows super-exponentially with the number of vertices in the graph
as illustrated in Table 8.2. Even for DAGs with as few as ten vertices, an exhaustive
search would be infeasible as the number of DAGs is approximately 4:2 � 1018.

As a result of the super-exponential growth in the number of possible DAGs, we
need to use a different method for navigating the space of possible DAGs structures,
that is, a transition function between neighboring network structures.

8.3.2 Search Procedures

There are a number of different search procedures that can be used to navigate in the
space of structures. An exhaustive search is one (infeasible) option. Another option
is to use a local search strategy based on greedy hill climbing where we in each
step select as the next candidate the neighboring structure of the current candidate
with the highest score. Given a candidate DAG structure G D .V;E/, the search
procedure makes incremental changes to G aimed at improving the quality of the
structure as determined by the quality score. Each modification to G changes the
score of the structure.

The incremental changes considered are to add a directed edge, to reverse a
directed edge, or to delete a directed edge under the constraint that the structure
remains a DAG. This means that the operator is not allowed to make the structure
cyclic, that is, after performing the operation, the structure should remain a DAG.

Figure 8.20 illustrates the three operations of incremental change considered
where (a) is the current candidate G, (b) is the candidate obtained by adding the
edge .X1;X4/ to G, (c) is the candidate obtained by removing the edge .X1;X2/
from G and (d) is the candidate obtained by reversing the edge .X1;X2/ in G.

The search procedure for navigating the space of DAG structures can be
described as a hill climbing algorithm:

(1) Start with an initial structure G.
(2) Repeat.

(a) Generate a set G of candidate structures from G using the search operators
for modifying a structure.

(b) Compute the score of each candidate structure in G.
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(d) Reverse edge

Fig. 8.20 Three operations of incremental change

(c) Select G� 2 G with highest score.
(d) Use G� as the candidate G in the next iteration.

Until the score cannot be improved.
(3) Return G.

The search procedure moves between neighboring candidate structures using
the score function to select the next structure. As described above, the search
moves deterministically in the search space by greedily selecting the highest scoring
neighbor to the current candidate where the neighborhood is defined with respect to
the incremental change operators, that is, adding, removing, or reversing an edge.
The greedy search procedure can move to neighbors stochastically, and it can be
restarted several times with different initial structures in an attempt to improve the
quality score and avoid local maxima of the score function.

The search procedure may be invoked with different initial structures, for
example, a DAG with no edges, a DAG constructed from domain knowledge, a
random DAG, or a Chow–Liu tree (see Sect. 8.3.4). A variety of different heuristics
can be applied to the search space in addition to the greedy hill climbing heuristic.
This includes randomized walks with multiple restarts.

8.3.3 Score Functions

The objective in the search and score-based approach to structure learning is to
identify the network structure with the highest quality score as a representation of
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Table 8.4 A set of
values .xi ; yi / for variables
X and Y

X Y

1 38

2 52

3 140

4 150

data D. Let s.G W D/ be the score function where G is the DAG and D is data.
The score function s.G W D/ is a measure of the quality or goodness of G as a
representation of D. The task is to find a structure G with the optimal score.

There are a number of possible candidates to choose from when selecting the
score function to be used by the search procedure, see, for example, Darwiche
(2009). One option would be to use the likelihood function. In this case, the score
function s.G W D/ is based on the best guess of the associated conditional probability
distributions given the structure G and the data D. That is, to compute the score, we
need to estimate the parameters of the conditional probability distributions defined
by G. This is done by maximum likelihood estimation as described below.

The log-likelihood function l.G W D/ of data D D {c1; : : : ; cN } given structure G
is computed as

l.G W D/ D
NX

lD1
logP.cl / D

NX

lD1

|V |X

iD1
logP.Xi D xli |pa.Xi/ D xlpa.Xi /; c

l /;

where .xli ; x
l
pa.Xi /

/ are the values of .Xi ; pa.Xi // in the l th case cl of D. The log-
likelihood l.G W D/ of the data D given structure G is the sum of the contributions
from each variable for each case. Notice that the log-likelihood function l.G W D/
grows linearly with N .

The log-likelihood function l.G W D/ is, however, not an appropriate score
function to use as it often leads to overfitting the model to the data D. Overfitting
refers to the use of a representation that is too complex, that is, has too many
parameters compared to the available data. The result of data overfitting will be
a complete DAG as adding a parent always increases the log-likelihood score.

To cope with overfitting, we use a score function that takes the complexity of the
representation into account. The more complex the structure, the higher the gain in
model quality as measured by the log-likelihood l.G W D/ is required. This means a
trade-off between model quality and complexity.

Example 8.14 (Overfitting). A classical example for illustrating the problem of
overfitting a model to a data set is that of finding a polynomial that fits perfectly
a set of value pairs .x1; y1/; .x2; y2/; : : : ; .xn; yn/ (Darwiche 2009).

Assume we are given the set of value pairs shown in Table 8.4. The data suggests
a positive linear relationship between X and Y where values of X close to zero
produce values of Y close to zero. Figure 8.21 shows a plot of the data .x; y/, a
linear function fl .x/, and a polynomial fp.x/ of degree three fitted to the data.

The plot suggests that the relationship between X and Y is linear, that is, y D
˛ � x C ˇ. The fit between the linear function and the data is not perfect in the
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Fig. 8.21 Four data points and a linear function and a three-degree polynomial fitted to the data
to illustrate overfitting

sense that the line does not pass through each data point. We can, on the other
hand, achieve a perfect fit by using a polynomial of degree three. A polynomial of
degree three will guarantee a perfect fit to the data, but it will also overfit the data as
illustrated in Fig. 8.21. The problem is that the model does not generalize the data
very well. For instance, for values of x close to zero, fp.x/ goes to infinity.

In this example, we could use Occam’s Razor (the law of parsimony) to select
the simple model (a linear function) based on the argument that it is unlikely that
we by coincidence have found a simple model that fits the data (almost) as good as
a more complex model. �

The Jeffreys–Schwarz criterion, also called the Bayesian Information Criterion
(BIC), is an example of a score function that penalizes the log-likelihood score
with a term defined by the structure of the network. The BIC score is computed
as l.G W D/ − �

2
logN , where � is the number of free parameters in the network

(also known as degrees of freedom) and N is the number of cases in the database.
The first term measures how well the parameterized model predicts the data, while
the second term penalizes complexity of the model. Notice that the second term
grows logarithmically with N , while the first term grows linearly with N . This
means that the complexity penalty decreases as the size of the database increases.
The log-likelihood term will dominate the penalty score when the size grows
sufficiently large.

The Akaike’s Information Criterion (AIC) is another example of a function
score that penalizes the log-likelihood score with a term defined by the structure of
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the network. The AIC score is computed as l.G W D/− �. Notice that the BIC score
penalizes model complexity more than the AIC score. In the following paragraphs,
we will use BIC as the score function.

We may say that a function is decomposable if it decomposes into the combi-
nation of a set of simpler functions, for example, a function may decompose into
the sum over a set of simpler functions. A decomposable score function leads to
a significant gain in the computational efficiency over a non-decomposable score
function as it enables us to compute the score s.G W D/ of G given D as a function
of local scores s.X |pa.X/ W D/, that is,

s.G W D/ D
X

X2X
s.X |pa.Xi/ W D/:

When the scoring function decomposes according to the structure of the DAG, we
can maximize the contribution to the score of each variable independently under the
assumption of parameter independence, that is, the parameters for each variable are
assumed to be independent of the parameters of other variables.

The BIC score is an example of a decomposable score. This simplifies the
calculation of the score of a neighbor of the current candidate DAG for which the
score is known. If the change operation (i.e., add or reverse) for an edge .X; Y / is
valid, then it is necessary only to consider the families ofX and Y . For instance, for
addition of edge .X; Y /, we can compute the difference as

�.X; Y / D s.Y |pa.Y /[ {X } W D/− s.Y |pa.Y / W D/:
This reduces the number of calculations significantly. The BIC score BIC.G|D/ of
structure G given complete data D is computed as

BIC.G|D/ D l.G W D/− �

2
logN

D
NX

lD1

|V |X

iD1
logP.Xi D xli |pa.Xi / D xlpa.Xi /; c

l /−
�

2
logN

D
X

i

X

k

X

j

Nijk log
Nijk

Nik
−
�

2
logN

where Nijk is the number of cases in D where Xi D xk and pa.Xi/ is in
configuration j and Nik=Nijk is the maximum likelihood estimate for P.Xi D
xk |pa.Xi/ D j;D/. The number of free parameters � is defined as

� D
X

X2V
�.Xi/ D

X

X2V
.||X ||− 1/

Y

Y2pa.X/

||Y ||:

The BIC decomposes into one term for each variable. The local family BIC
score is

BIC.fa.Xi/ |D/ D
X

k

X

j

Nijk log
Nijk

Nik
−
�.Xi/

2
logN:
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Table 8.5 Joint probability
distributions over X , Y ,
and Z

X Y Z P.x; y; z/

x0 y0 z0 0:02

x0 y0 z1 0:005

x0 y1 z0 0:0075

x0 y1 z1 0:0675

x1 y0 z0 0:576

x1 y0 z1 0:144

x1 y1 z0 0:018

x1 y1 z1 0:162

Table 8.6 Data D over X , Y , and Z

cl X Y Z PG1 .c
l / PG2 .c

l / PG3 .c
l /

c1 x0 y0 z0 0:02 0:0155 0:02

c2 x0 y1 z0 0:075 0:0466 0:075

c3 x1 y0 z1 0:144 0:2725 0:144

c4 x1 y1 z1 0:162 0:0681 0:162

c5 x1 y0 z0 0:576 0:4478 0:576

c6 x0 y1 z1 0:0675 0:0284 0:0675

X

Y

Z

(a) G1

X

Y

Z

(b) G2

X

Y

Z

(c) G3

Fig. 8.22 Three different network structures for encoding the joint probability distribution in
Table 8.5

If data is incomplete, then the calculation of the log-likelihood is considerably
more complicated, and it is necessary to perform parameter estimation, for instance,
using the expectation–maximization (EM) algorithm (Lauritzen 1995). Parameter
estimation using the EM algorithm is described in Sect. 8.5.

Example 8.15 (Log-Likelihood vs. BIC). LetX , Y , andZ be three binary variables
with state spaces {x0; x1}, {y0; y1}, and {z0; z1}, respectively. Assume we know the
underlying probability distribution over X , Y , and Z and that we can use this
probability distribution to identify a parameterization of possible DAG structure
representations of a sample overX , Y , and Z. Table 8.5 shows the joint probability
distribution over X , Y , and Z. The aim then is to identify the DAG structure that
best represents a small random sample D of six cases over X , Y , and Z shown in
Table 8.6.

Figure 8.22 shows three different DAG structures G1, G2, and G3 over X , Y ,
and Z. We want to evaluate how well each of these structures (when quantified
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Table 8.7 The conditional probability distributions P.Y |X/

and P.Z |Y /

P.Y |X/ X D x0 X D x1 P.Z |Y / Y D y0 Y D y1

Y D y0 0:25 0:8 Z D z0 0:8 0:1

Y D y1 0:75 0:2 Z D z1 0:2 0:9

Table 8.8 The conditional
probability
distribution P.Z |X; Y /

Z

X Y z0 z1
x0 y0 0:8 0:2

x0 y1 0:1 0:9

x1 y0 0:8 0:2

x1 y1 0:1 0:9

using the joint probability distribution in Table 8.5) represents the sample D.
From the distribution in Table 8.5, the content of the conditional probability
distributionsP.X/, P.Y |X/, P.Z |Y /, P.Z/, and P.Z |X; Y / associated with G1,
G2, and G3 can be computed to be P.X/ D .0:1; 0:9/, P.Z/ D .0:6215; 0:3785/

and as shown in Tables 8.7 and 8.8.
We want to evaluate the quality of G1, G2 and G3 as representations of D using

log-likelihood and BIC as the quality scores. For candidate G1, we compute the
log-likelihood score sl .G1 W D/ and BIC score s.G1 W D/ as

sl .G1 W D/ D
6X

iD1
logPG1 .c

i /

D log.0:02/C log.0:075/C log.0:144/C log.0:162/

C log.0:576/C log.0:0675/ D −13:51;

s.G1 W D/ D sl .G1 W D/ − 5

2
log.6/ D −13:51− 4:48 D −17:99:

For candidate G2, we compute scores

sl .G2 W D/ D −15:59;

s.G2 W D/ D sl .G2 W D/− 4

2
log.6/ D −15:59− 3:58 D −19:17:

For candidate G3, we compute scores

sl .G3 W D/ D sl .G1 W D/ D −13:51;

s.G3 W D/ D sl .G1 W D/ − 7

2
log.6/ D −13:51− 6:27 D −19:78:
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Fig. 8.23 Five different neighbors of the DAG in Fig. 8.22b

Table 8.9 BIC scores for
neighbors of G in Fig. 8.22b

Gi BIC.Gi W D/
G1 (Fig. 8.22a) −17:99

G2 (Fig. 8.23a) −19:17

G3 (Fig. 8.23b) −19:23

G4 (Fig. 8.23c) −21:19

G5 (Fig. 8.23d) −21:19

G6 (Fig. 8.23e) −20:05

Thus, s.G1 W D/ > s.G2 W D/ > s.G3 W D/. Therefore, the best structure
(of the ones considered) to represent D based on the BIC score is G1. Based
on the log-likelihood, score structures G1 and G3 are equally good, but G3 has a
higher complexity penalty than G1 caused by the (unnecessary) edge .X;Z/. The
edge .X;Z/ is unnecessary as X is independent of Z given Y which is clear from
Table 8.8. �
Example 8.16 (Hill Climbing). Assume the graph in Fig. 8.22b is the current
candidate structure G in the hill climbing algorithm described above. The BIC score
was computed as s.G W D/ D −19:16 in Example 8.15.

In the second step of the hill climbing algorithm, the setG of candidate structures
is generated using the incremental change operators of adding, reversing, and
deleting a single edge in the current candidate. Figure 8.22a shows the candidate
obtained by adding the edge .Y;Z/ to G, while Fig. 8.23 shows the remaining
neighbors of G obtained by adding, deleting, or reversing a single edge.

The greedy hill climbing algorithm selects as the next candidate structure the
DAG with the highest score. The scores of neighboring DAGs are shown in
Table 8.9.

Recall from Example 8.15 that BIC.G W D/ D −19:17. This means that the
only neighbor with a strictly higher score is G1. Notice that G4 and G5 have the
same score as they are equivalent models. The remaining neighbors have lower BIC
scores than G. Hence, G1 is selected as the candidate in the next iteration of the hill
climbing algorithm. �
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8.3.4 Learning Structure Restricted Models

The complexity of a Bayesian network learned from data may become infeasible
due to too large conditional probability distributions caused by high density of the
learned graph or by high complexity of the junction tree representation used for
belief update. Some score functions such as BIC aim at reducing the complexity
of the model by including a model complexity penalty. This may be insufficient
in some cases, for example, when building probabilistic graphical models for
classification involving a large number of variables or when data are sparse. As
an alternative, it may be useful to consider learning probabilistic graphical models
with restricted structure. In this section, we consider three simple approximations of
a joint probability distribution, namely, naive Bayes models, Chow–Liu trees, and
tree-augmented naive Bayes models.

Naive Bayes Model

The naive Bayes model introduced in Sect. 7.1.6 is one of the simplest restricted
probabilistic graphical models there is. As mentioned in the aforementioned section,
the naive Bayes model is popular due to its high representational and computational
simplicity while maintaining an impressive performance on classification tasks.
The structure of the naive Bayes model is fixed with one variable R defined as
root (or target variable) and the remaining variables X 2 X \ {R} defined as
children of R. The children of R are referred to as feature variables. In this way the
naive Bayes model encodes conditional independence between each pair of feature
variables X; Y 2 X \ {R} given R and therefore ignores any correlation between X
and Y when R is known.

Learning a naive Bayes model N D .X;G;P/ from data D is simple. Let R 2 X

be the selected root variable. Construct the DAG G of N such that there is one
edge from R to each feature variable X 2 X and define the conditional probability
distributions of P as the frequencies in D in the case of complete data or estimate
the distributions using the EM algorithm (see Sect. 8.5.1) in case of incomplete data.

Example 8.17 (Naive Bayes Model). Assume we need to construct a naive Bayes
model for classifying patients as suffering or not suffering from lung cancer,
represented by the variable L with states no and yes. To perform the classification,
we have four indicator variables (or attributes) where A represents whether or not
the patient has recently been to Asia, D represents whether or not the patient has
dyspnoea,S represents whether or not the patient smokes, andX represents whether
or not the patient has a positive X-ray. The structure of the corresponding naive
Bayes model is shown in Fig. 8.24.

To complete the model specification, we need to quantify the links in the
graph, that is, the conditional probability distribution of each attribute given the
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A D S X

L
Fig. 8.24 A naive Bayes
model for classifying patients

Table 8.10 Contingency
table for L and A

A

L yes no

yes 3 510 513
no 81 9,406 9,487

84 9,916 10,000

Table 8.11 The conditional
probability
distribution P.A |L/

A

L yes no

yes 3=513 510=513

no 81=9;487 9;406=9;487

class variable L. We assume a complete database of cases is available. Let D D
{c1; : : : ; cN } be the complete database with N D 10; 000. Each case is assumed to
contain a value for the class variable L and each attribute.

The data frequencies for L are NLDyes D 513 and NLDno D 9; 487 with N D
NLDyes CNLDno. This produces the prior probability distribution

P.L/ D
�

513

10;000
;
9;487

10;000

�
D .0:0513; 0:9487/:

Let Table 8.10 be the contingency table computed from D for the pair A and L.
From Table 8.10, we can compute the conditional probability distribution P.A |L/

as specified in Table 8.11.
The remaining conditional probability distributions of the model can be com-

puted in the same way using contingency tables computed from D. �
Example 7.7 on page 207 describes another example of a naive Bayes model.

Chow–Liu Trees

A Chow–Liu tree is the best possible tree-shaped Bayesian network approxima-
tion N D .X;G;P/ to a probability distribution P.X/ such that all edges are
directed away from the root of the tree. The quality of the approximation is measured
using the Kullback–Leibler distance between the true distribution P.X/ and the
distribution defined by the Chow–Liu tree represented as N. When we learn from
data, the true distribution is defined by the frequencies of the observations.
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Table 8.12 Contingency
table for D and S

D

S yes no

yes 2;744 2;295 5;039

no 1;539 3;422 4;961

4;283 5;717 10;000

Chow & Liu (1968) showed that the optimum tree can be found as the maximum-
weight spanning tree over all variables, where the weight of each edge is defined as
the mutual information I.X; Y / between the variables X and Y connected by the
edge. A Chow–Liu tree can be constructed as follows:

(1) Calculate the mutual information I.X; Y / (a measure of marginal dependence)

I.X; Y / D
X

X

P.X/
X

Y

P.Y |X/ log
P.Y;X/

P.Y /P.X/

for each pair X and Y in X.
(2) Build a maximal-weight spanning tree G for the complete I-weighted graph.
(3) Direct edges by selecting a root R 2 X and direct edges away from R.

In the second step, the complete I-weighted graph is a complete graph where the
edge between any pair X and Y is annotated with the mutual information I.X; Y /.

The result of the procedure above is a maximum-weight spanning tree G with
rootR. To complete the process, conditional probability distributions defined by the
structure of G should be estimated, in our case, from data D.

The maximal-weight spanning tree can be constructed efficiently using Prim’s
greedy algorithm. Prim’s algorithm constructs the spanning tree by greedily adding
vertices to the tree. It starts with a tree over one vertex and at each step greedily
selects the next edge to include as an edge with maximal weight such that it connects
a node in the current tree to a node not in the current tree. The initial vertex can be
chosen arbitrarily, and the algorithm terminates when all vertices are connected in
a tree structure. A node is selected as root at random, and edges are directed away
from the root.

When constructing a Chow–Liu tree from data, the probability distributions P

involved in the calculation of the mutual information I.X; Y / are computed as
frequencies in the data D. In order to complete the specification of N D .X;G;P/,
the conditional probability distributions P are estimated from D.

Example 8.18 (Chow–Liu Tree). Assume we are interested in determining the
maximal-weight spanning tree over the attributes listed in Example 8.17 in order
to better understand the dependence relations between the four attributes. That is,
we want to construct a Chow–Liu tree over the four variables A, D, S , and X .

The first step of the algorithm is to compute the mutual information I.X; Y / for
each pair of variables. Let us consider the computation of I.D; S/. The contingency
table for D and S are shown in Table 8.12.
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Table 8.13 Mutual
information I.X; Y / for each
pair

A D S

D 0:0001

S 0:0 0:0283

X 0:0 0:3628 0:0089

A D

S

X
Fig. 8.25 A maximal-weight
spanning tree

From Table 8.12, the mutual information I.D; S/ is computed as

I.D; S/ D
X

D;S

P.D; S/ log
P.D; S/

P.D/P.S/

D 3;422

10;000
� log

3;422=10;000

5;717=10;000 � 4;961=10;000

C 2;295

10;000
� log

2;295=10;000

5;717=10;000 � 5;039=10;000

C 1;539

10;000
� log

1;539=10;000

4;283=10;000 � 4;961=10;000

C 2;744

10;000
� log

2;744=10;000

4;283=10;000 � 5;039=10;000
D 0:0283:

The mutual information I.X; Y / for each pair of variables is shown in Table 8.13.
The algorithm needs to select three edges to construct a maximal-weight spanning
tree. The first two edges selected are {X;D} and {S;D} as they are the two
highest scoring edges. The pair with the third highest mutual information score
is {S;X }. However, selecting this edge would cause a cycle in the graph. Instead, the
edge {A;D} is selected. A maximal-weight spanning tree has now been constructed.

To complete the model construction, we need to select a root vertex and direct
edges away from it. Assume we select (at random)S as root. The resulting maximal-
weight spanning tree is shown in Fig. 8.25.

The conditional probability distributions of the model can be determined as
frequency counts as illustrated in Example 8.17. �

Notice that the mutual information I.X; Y / is related to the likelihood test
statistic G2 used for constraint-based structure learning considered in Sect. 8.2. The
relation is I.X; Y / D G2

X;Y

ı
.2N / where N is the number of cases in the database.
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Tree-Augmented Naive Bayes

The simplicity and strong independence assumptions of the naive Bayes model may
not be desirable in all cases. In this section, we consider the tree-augmented naive
Bayes model as an alternative to the naive Bayes model that supports conditional
dependence relations between feature variables.

The tree-augmented naive Bayes model is a naive Bayes model augmented with
a spanning tree over the feature variables. The algorithm for constructing a tree-
augmented naive Bayes considered here is based on the Chow–Liu algorithm. We
may refer to the learned probabilistic graphical model as a conditional Chow–Liu
tree. A conditional Chow–Liu tree can be constructed as follows:

(1) Let R 2 X be the root vertex.
(2) Calculate the conditional mutual information I.X; Y |R/ (a measure of

conditional marginal dependence)

I.X; Y |R/ D
X

R

P.R/
X

X

P.X |R/
X

Y

P.Y |X;R/ log
P.Y;X |R/

P.Y |R/P.X |R/

for each pair X; Y 2 X \ {R}.
(3) Build a maximal-weight spanning tree T for the complete I-weighted graph

over X \ {R}.
(4) Direct edges in T by selecting a root in X \ {R} and direct edges away from it.
(5) Construct the graph corresponding to a Naive Bayes model over X with R as

root and add the edges of T to it.

In the third step, the complete I-weighted graph is a complete graph where
the edge between any pair X and Y is annotated with the mutual informa-
tion I.X; Y |R/.

The tree-augmented naive Bayes model is useful for solving classification tasks
where a specific variable of the model is the target of the reasoning. The target
variable is used to construct a conditional Chow–Liu tree (i.e., a Chow–Liu tree
overall variables except the selected target) with the target as root. Notice that all
feature variables except one have two parents in the graph, that is, the root and one
other feature variable.

When constructing a conditional Chow–Liu tree from data, the probability
distributions P involved in the calculation of the conditional mutual informa-
tion I.X; Y |R/ are computed as frequencies in the data D. In order to complete
the specification of N D .X;G;P/, the conditional probability distributions P are
estimated from D.

Example 8.19 (Tree-Augmented Naive Bayes). Continuing Example 8.17, assume
we want to construct a tree-augmented naive Bayes model for classifying patients as
suffering or not suffering from lung cancer (L) based on observations on smoking
(S ), recent visit to Asia (A), dyspnoea (D), and a X-ray result (X ). That is, we want
to construct a tree-augmented naive Bayes model over the set of five variables X D
{A;D;L; S;X } with L as the target vertex of the tree.
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Table 8.14 Data frequencies
for D, L, and S

L D S

yes yes yes 393

yes yes no 24

yes no yes 85

yes no no 11

no yes yes 2;351

no yes no 1;515

no no yes 2;210

no no no 3;411

10;000

The first step of the algorithm is to compute the conditional mutual informa-
tion I.X; Y |L/ for each pair of variables conditional on target L. Let us consider
the computation of I.D; S |L/. The data frequencies for L, D, and S are shown in
Table 8.14.

From Table 8.14, the conditional mutual information I.D; S |L/ is computed as

I.D; S |L/ D
X

L;D;S

P.L;D; S/ log
P.D; S |L/

P.D |L/P.S |L/

D 3;411

10;000
� log

3;411=9;487

5;621=9;487 � 4;926=9;487

C 2;210

10;000
� log

2;210=9;487

5;621=9;487 � 4;561=9;487

C 1;515

10;000
� log

1;515=9;487

3;866=9;487 � 4;926=9;487

C 2;351

10;000
� log

2;351=9;487

3;866=9;487 � 4;561=9;487

C 11

10;000
� log

11=513

96=513 � 35=513

C 85

10;000
� log

85=513

96=513 � 478=513

C 24

10;000
� log

24=513

417=513 � 35=513

C 393

10;000
� log

393=513

417=513 � 478=513
D 0:0259:

Notice that the conditional mutual information I.D; S |L/ is slightly lower than
the mutual information I.D; S/ computed in Example 8.18.
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Table 8.15 Conditional
mutual information
I.X; Y |L/ for each pair

A D S

D 0:0002

S 0:0004 0:0259

X 0:0002 0:449 0:0015

A D

S

X

L
Fig. 8.26 A tree-augmented
naive Bayes model

The conditional mutual information I.X; Y |L/ for each pair of variables is
shown in Table 8.15. The algorithm needs to select three edges to construct a
maximal-weight spanning tree over X\ {L}. The first two edges selected are {X;D}

and {S;D} as they are the two highest scoring edges. The pair with the third highest
conditional mutual information score is {S;X }. However, selecting this edge would
cause a cycle in the graph. Instead, the edge {A; S } is selected. A maximal-weight
spanning tree T has now been constructed over X \ {L}.

To complete the model construction, we need to select a root vertex and direct
edges away from it in the maximal-weight spanning tree T . Assume we select
(at random) S as root. The resulting tree-augmented naive Bayes model is shown in
Fig. 8.26.

The conditional probability distributions of the model can be determined as
frequency counts as illustrated in Example 8.17.

Notice the difference in structure over X \ {L} between Figs. 8.26 and 8.25.
By conditioning on L, the pairwise mutual information scores change, and the two
structures are not identical. �

8.4 Worked Example on Structure Learning

This section provides a worked example on learning the structure of a (discrete)
Bayesian network from a database of cases. The example illustrates the use of
different algorithms and discusses the difference between the algorithms.

For the example, a (sufficiently large) database of cases D is generated from
the Asia network (Fig. 4.2 on page 74) by sampling. We assume the sample D D
{c1; : : : ; cN } is a complete database with N D 10; 000, that is, there are no missing
values in the data. Notice that the sample D satisfies the basic assumptions of
Sect. 8.1.1 related to the data.

If D would have contained missing values, then the learning algorithms would
have ignored the (parts of the) cases where values would have been missing. Since
the database is complete, the parameters of each learned Bayesian network can
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Asia.A/ Smoker.S/

Tuberculosis.T/ Cancer.L/ Bronchitis.B/

Tub or cancer.E/

X ray.X/ Dyspnoea.D/

Fig. 8.27 The PDAG produced by the PC algorithm

be determined using maximum likelihood estimation. Had D been incomplete,
the parameter estimation could have been performed using the EM algorithm (see
Sect. 8.5.1).

In the example, we assume the goal is to construct an efficient Bayesian network
knowledge representation of D. For each learned Bayesian network N D .X;G;P/,
the quality of the model as a representation of D is assessed using different score
functions on the form s.G W D/.

For ease of presentation, we use abbreviations to represent the variables.
Each variable in the data is represented by the first letter, for example, vari-
able Tuberculosis is represented by letter T , except variables Tub or cancer and Cancer
that are represented by letters E and L, respectively.

In the example, we assume no prior knowledge on the structure, that is, no
constraints are placed on the structure learning algorithms, and no prior knowledge
on the parameter values.

8.4.1 PC Algorithm

When using the constraint-based PC algorithm for learning the structure of a
Bayesian network, see Sect. 8.2.3, we need to decide on a significance level ˛ to
use in the statistical tests. A significance level ˛ D 0:05 is not uncommon and will
be used in this example.

The PC algorithm performs a sequence of statistical tests for pairwise
(conditional) independence. Based on the test results, a skeleton is identified, see
Fig. 8.27 (and ignore the direction of edges).

The skeleton produced by the statistical tests has a subset set of variables {T;L;E}

such that T and E are neighbors, L and E are neighbors, while T and L are not
neighbors. For this subset, the collider T → E ← L is created as E 62 SLT D ;
for any SLT , where SLT is a conditioning set for conditional independence between
L and T , satisfying T ?? L |SLT as T and L are assumed marginally independent
based on the test results, see Sect. 8.2.3 for a description of rule R0 for identifying
colliders. The resulting PDAG is shown in Fig. 8.27.
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Asia.A/ Smoker.S/

Tuberculosis.T/ Cancer.L/ Bronchitis.B/

Tub or cancer.E/

X ray.X/ Dyspnoea.D/

Fig. 8.28 The DAG GPC produced using the PC algorithm

The direction of undirected edges {{S;L}; {S;B}; {B;D}} can either be set at
random under the constraint that no new v-structures are created in the process or
set based on domain expert knowledge.

Based on experience and knowledge of the problem domain, we may argue
that the undirected edge {S;B} should be directed as .S; B/ and the undirected
edge {S;L} should be directed as .S;L/.

Once the undirected edge {S;B} is directed as .S; B/, the undirected edge {D;B}
is directed as .B;D/ using rule R1, see Sect. 8.2.3 on page 248 for a description of
the four rules identifying derived directions.

The resulting DAG GPC is shown in Fig. 8.28. Since data is complete, the
parameters of the conditional probability distributions defined by the DAG GPC
can be determined using maximum likelihood estimation. Using the score functions
defined in Sect. 8.3.3, the model quality is computed as sl l .GPC W D/ D −24; 034:3,
sAIC .GPC W D/ D −24; 098:8, and sBIC .GPC W D/ D −24; 048:3.

The PC algorithm can be characterized as aggressive as it does not perform fur-
ther tests for a pair of variables when a single conditional independence hypothesis
has not been rejected. The algorithm focuses on not rejecting the independence
assumption as soon as possible, that is, the aim is to find an independence hypothesis
that is not rejected by the statistical tests as soon as possible in order to reduce the
connectivity of the graph. Since the results are used to guide the tests, the resulting
skeleton may be sensitive to errors in the tests for pairwise independence. This
means that the PC algorithm is usually fast in producing sparsely connected DAGs,
that is, DAGs with few edges.

8.4.2 NPC Algorithm

When using the constraint-based NPC algorithm for learning the structure of a
Bayesian network, see Sect. 8.2.5, we need to decide on a significance level ˛ to
use in the statistical tests. A significance level ˛ D 0:05 is not uncommon and will
be used in this example.
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Asia.A/ Smoker.S/

Tuberculosis.T/ Cancer.L/ Bronchitis.B/

Tub or cancer.E/

X ray.X/ Dyspnoea.D/

Fig. 8.29 The PDAG produced by the NPC algorithm after resolving ambiguous regions

Asia.A/ Smoker.S/

Tuberculosis.T/ Cancer.L/ Bronchitis.B/

Tub or cancer.E/

X ray.X/ Dyspnoea.D/

Fig. 8.30 The DAG GNPC produced using the NPC algorithm

As the PC algorithm, the NPC algorithm performs a sequence of statistical tests
for pairwise (conditional) independence. The necessary path condition ensures that
(some) inconsistencies in the test results are presented to the user as ambiguous
regions.

Based on the test results, a skeleton is identified, see Fig. 8.29 (and ignore the
direction of edges), where ambiguous regions have been resolved as explained in
Example 8.13.

Once the ambiguous regions have been resolved by including edges {E;D}

and {E;X }, the collider with edges .E;D/ and .B;D/ is created and rule R1 is
applied to direct {E;X } as .E;X/, respectively.

The undirected edges {{S;L}; {S;B}} are directed at random under the constraint
that no new colliders are created in the process or by using domain expert
knowledge.

The resulting DAG GNPC is shown in Fig. 8.30. Since data is complete, the
parameters of the conditional probability distributions defined by GNPC can be
determined using maximum likelihood estimation. Using the score functions defined
in Sect. 8.3.3, the model quality is computed as sl l .GNPC W D/ D −22;309:4,
sAIC .GNPC W D/ D −22;326:4, and sBIC .GNPC W D/ D −22;387:7.
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Asia.A/ Smoker.S/

Tuberculosis.T/ Cancer.L/ Bronchitis.B/

Tub or cancer.E/

X ray.X/ Dyspnoea.D/

Fig. 8.31 The DAG GGSS produced using the greedy search and score-based algorithm

The NPC algorithm is less efficient than the PC algorithm as a larger number of
conditional independence tests are performed. On the other hand, the NPC algorithm
is more robust. The necessary path condition ensures that some inconsistencies in
the test results can be reported to the user. The user has the option to make decisions
on the edges to include in the skeleton in order to resolve ambiguous regions.

8.4.3 Search and Score-Based Algorithm

When using the greedy search and score algorithm (GSS) for learning the structure
of a Bayesian network, see Sect. 8.3, we need to decide on a score function to use
in the search procedure for the optimal structure and an upper limit on the number
of parents in the resulting DAG. In the example, we use the BIC score and no upper
limit on the number of parents.

The search procedure is started from an initial structure. In the example, we start
the search from the empty graph, but other graphs can be used, for instance, a Chow–
Liu tree may be a possible candidate for an initial structure.

The GSS algorithm performs a sequence of local greedy hill climbing operations
to improve the quality score. At each step, the next neighboring candidate with the
highest score is selected. The incremental changes considered are to add a directed
edge, to reverse a directed edge, or to delete a directed edge under the constraint that
the structure remains a DAG.

The resulting DAG GGSS produced by the GSS algorithm is shown in Fig. 8.31.
Notice that GGSS is equivalent to the true DAG G0 except for the edge {A; T }.

Since data are complete, the parameters of the conditional probability distri-
butions defined by the DAG GGSS can be determined using maximum likelihood
estimation. Using the score functions defined in Sect. 8.3.3, the model quality is
computed as sl l .GGSS W D/ D −22; 309:4, sAIC .GGSS W D/ D −22; 326:4, and
sBIC .GGSS W D/ D −22; 387:7.
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Asia.A/

Smoker.S/

Tuberculosis.T/ Cancer.L/ Bronchitis.B/

Tub or cancer.E/

X ray.X/ Dyspnoea.D/

Fig. 8.32 The DAG GCL produced using the Chow–Liu algorithm

In practice, the GSS algorithm is often slower than the PC and NPC algorithms
and more sensitive to missing values in the data. It is possible to launch the GSS
algorithm with an initial structure to guide the search procedure. The initial structure
could be a Chow–Liu tree.

8.4.4 Chow–Liu Tree

The Chow–Liu algorithm is in principle a search and score-based algorithm
for learning the structure of a Bayesian network as described in Sect. 8.3.4. It
determines the best possible tree-shaped Bayesian network approximation N D
.X;G;P/ to a probability distribution P.X/ such that all edges are directed away
from the root of the tree where in the case of learning from data D, the probability
distribution P.X/ is defined by the frequencies of the observations in D.

When using the Chow–Liu algorithm to learn the structure of a Bayesian
network, we need to select a root variable. In the example, we will use variable S as
root. This means that edges are directed away from S .

The Chow–Liu algorithm determines the skeleton of the DAG as a maximal-
weight spanning tree G for the complete I-weighted graph, that is, each edge between
any pairX and Y is annotated with the mutual information I.X; Y / computed using
frequency distributions of D. Once the skeleton of the DAG has been identified,
edges are directed away from the selected root S . The resulting DAG GCL is shown
in Fig. 8.32. Notice that the skeleton is missing the edge {E;D} as this would create
a cycle in the graph and that the edge {T;A} is replaced by the edge {A;D}.

Since data is complete, the parameters of the conditional probability distributions
defined by the DAG GCL can be determined using maximum likelihood estimation.
Using the score functions defined in Sect. 8.3.3, the model quality is computed as
sl l .GCL W D/ D −22;830:9, sAIC .GCL W D/ D −22;845:9, and sBIC .GCL W D/ D
−22900.

The Chow–Liu algorithm is based on computing the mutual information score
I.X; Y / between each pair of variables X and Y . This operation can be performed
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Table 8.16 Different model quality scores for the five DAGs considered
in the example

Graph (G) sl l .G;D/ �.G/ sAIC .G;D/ sBIC .G;D/

GPC −24;034:3 14 −24;048:3 −24;098:8

GCL −22;830:9 15 −22;845:9 −22;900

G0 −22;318:5 18 −22;338:5 −22;401:4

GNPC −22;309:4 17 −22;326:4 −22;387:7

GGSS −22;309:4 17 −22;326:4 −22;387:7

fast compared to the operations performed by other structure learning algorithms.
Using the Chow–Liu algorithm, it is efficient to create a maximum-weight spanning
tree of the variables represented in the data D. A maximum-weight spanning tree
could, for instance, be used as the initial starting point for the GSS structure learning
algorithm.

8.4.5 Comparison

The above subsections have illustrated how four different structure learning
algorithms can be applied to induce a Bayesian network from data D. It is clear
from the descriptions above that there are differences in the DAGs produced by
the algorithms. The PC and Chow–Liu algorithms produce the most sparse graphs,
while the NPC and GSS algorithms produce DAGs that are equivalent to the
underlying DAG G0 of the Bayesian network from which D is sampled except for
the missing edge {A; T }.

Table 8.16 compares the log-likelihood (ll), degrees of freedom (�), and AIC and
BIC scores produced by the DAG candidates produced by the four different structure
learning algorithms and G0 the underlying DAG structure used to generate the data.
The rows are organized in increasing order from the top.

Notice that GSS and GNPC are equivalent. Therefore, the scores for the two DAGs
are the identical. In practice, the NPC and the search and score-based algorithms will
sometimes produce different results. This is due to the data not satisfying the basic
assumptions described in Sect. 8.1.1.

The structure produced by the NPC and GSS algorithms has only slightly larger
scores than the underlying DAG G0 (the difference originates from sampling noise
due to the weak dependence relation between A and T specified on the edge .A; T /
in G0 and not in GNPC and GNPC ). In practice, the underlying DAG G0 will not
be known. In fact, the goal of structure learning is to uncover a DAG equivalent to
DAG G0.

Notice that the quality scores are relatively robust with respect to different DAG
structures, and since logN

2
> 1, the BIC score is greater than the AIC score for each

candidate DAG structure.
In the example, D is assumed to have no missing values. If values are missing in

the data, these data values are usually ignored in the structure learning algorithms
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described here, but other approaches to handling missing values in structure learning
do exist (e.g., completion of data or using the structure EM algorithm (Friedman
1998)).

Cowell (2001) describes the conditions under which conditional independence
and scoring methods lead to identical selection of Bayesian network models.
He argues that under the conditions of a given vertex ordering and complete data, the
distinction between conditional independence tests and searching the model space
using a score metric is largely a myth. In practice, however, the algorithms may
produce different results, and using both to find the best structure is advised.

8.5 Batch Parameter Learning

Parameter estimation in a Bayesian network N D .X;G;P/ is the task of estimating
the values of parameters  corresponding to DAG structure G and distributions P
from a database of cases D D {c1; : : : ; cN }.

Let N D .X;G;P/ be a Bayesian network with parameters  D {i }

where i D {ij } and ij D {�ijk} such that �ijk D P.Xi D k |pa.Xi / D j /

for each i; j; k. Batch parameter learning from data is to estimate the value of �ijk
from D.

When each case ci 2 D is complete, maximum likelihood parameter estimation
is simple (a case ci is complete when ci assigns a value to each variable Xi 2 X).
The basic idea of parameter learning is illustrated in the following example.

Example 8.20 (Maximum Likelihood Estimate). Table 8.3 on page 245 shows the
contingency table for testing marginal independence of X and Y in Example 8.4.
From this example, we may determine a maximum likelihood estimate OP.X D
y |Y D y/ of the conditional probability of X D y given Y D y as follows:

OP .X D y |Y D y/ D
OP.X D y; Y D y/

OP .Y D y/

D
n.XDy;YDy/

N

n.YDy/
N

D n.X D y; Y D y/

n.Y D y/
:

From Table 8.3, we have n.X D y/ D 87 and n.X D y; Y D y/ D 3. Estimating
the conditional probability parameter O�YDy |XDy D OP .Y D y |X D y/ proceeds as

OP .Y D y |X D y/ D n.Y D y;X D y/

n.X D y/
D 3

87
D 0:034:

The remaining parameters of P.Y |X/ are estimated in a similar way. �
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8.5.1 Expectation–Maximization Algorithm

Parameter estimation in the case of missing values may be performed using the
expectation–maximization (EM) algorithm (Lauritzen 1995). The EM algorithm is
well suited for calculating maximum likelihood (ML) and maximum a posterior
(MAP), that is, an estimate incorporating prior knowledge on the parameters,
estimates in the case of missing data. The EM algorithm proceeds by iterating two
steps: the expectation step (E-step) and the maximization step (M-step).

Let N D .X;G;P/ be a Bayesian network for which we would like to estimate the
parameters of P from a database of cases D. The estimation of the parameters
from D proceeds, as mentioned above, by iterating the E-step and the M-step. Given
an initial assignment to the parameters , the E-step is to compute the expected
data frequencies under , while the subsequent M-step is to maximize the log-
likelihood of the parameters under the expected data frequencies. These two steps
are alternated iteratively until a stopping criterion is satisfied.

In the case of missing data, the log-likelihood function of the parameters is
a linear function in the sufficient marginals (Lauritzen 1995). The log-likelihood
function l./ of the parameters given the data D D {c1; : : : ; cN } and DAG G is

l./ D
NX

lD1
logP.cl |/

D
NX

lD1

|V |X

iD1
logP.Xi D xli |pa.Xi/ D xlpa.Xi /; i ; c

l /

D
|V |X

iD1
l.i /;

where l.i / D PN
lD1 logP.Xi D xli |pa.Xi/ D xlpa.Xi /

; i ; c
l / assuming the

parameters i to be independent and .xli ; x
l
pa.Xi /

/ are the values of .Xi ; pa.Xi //

in the l th (possibly incomplete) case cl of D.
For Bayesian networks, the E-step of the EM algorithm is to compute expected

counts (expected data frequencies for a complete database), where expectation is
taken with respect to the joint distribution over V under the current parameter
values  and observed data D:

E.Nijk/ D
NX

lD1
P.Xi D k; pa.Xi/ D j |cl ; i ; G/;

where Nijk is the count for .Xi ; pa.Xi // D .k; j / and cl is the l th case of D.
Next, the M-step computes new estimates ��

ijk of �ijk interpreting the expected data
frequencies as actual data frequencies from a complete database of cases:



280 8 Data-Driven Modeling

��
ijk D E.Nijk/

P||Xi ||

kD1 E.Nijk/
:

The E-step and M-step are iterated until convergence of l./ (or until a limit on
the number of iterations is reached).

We say convergence is achieved when the difference between the log-likelihoods
of two consecutive iterations is less than or equal to a log-likelihood threshold, ı,
times the numerical value of the log-likelihood, that is,

li ./ − liC1./ � ı|liC1./|

where li ./ is the log-likelihood of  after the i th iteration and liC1./ is the
log-likelihood of  after the .i C 1/st iteration.

Alternatively, an upper limit on the number of iterations can be specified in order
to ensure that the procedure terminates.

Example 8.21 (Toss of a Coin). Consider the task of predicting the toss of a coin.
Having no additional knowledge of the coin, we would assume it to be fair. Hence,
we assume heads and tails to be equally likely as the result of tossing the coin.
LetX be a discrete random variable with two states tails and heads representing the
outcome of a toss of the coin.

If we have observed the result of ten tosses of the coin, we can use this data to
predict the result of a subsequent toss of the coin. Assume we make the following
sequence of observations on previous tosses of the coin:

tails; tails; heads; tails; heads; tails; ; tails; tails; heads;

where the observation on the outcome of the seventh throw is missing, that is, we
know the coin was tossed, but for some (random and uninformative) reason, we
do not have access to the result. From this sequence of observations, we want to
estimate the distribution of X .

Since we have no extra knowledge about the coin, we assume a uniform prior
distribution on X . Hence, the initial parameter assignment is set to P.X/ D
.0:5; 0:5/, that is,  D {�tails D 0:5; �heads D 0:5}.

The estimated distribution after running the EM algorithm with the data and pa-
rameter setting described above is P.X/ D .0:74992; 0:25008/with an experience
count ˛ D 10. This distribution is the result of five iterations of the EM algorithm
with ı D 0:0001 and

l1./ D −5:54518

l2./ D −4:548

l3./ D −4:50078

l4./ D −4:49877

l5./ D −4:49868:
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The parameter estimation is completed after five iterations of the EM algorithm as
described above.

Taking the observations on the coin into account, we predict tails to be approxi-
mately three times as likely as heads. �

In the EM algorithm, the log-likelihood function l./ of the model given data
is used as a quality measure to compare different parameterizations of the same
network structure. When the increase in quality of the parameterization between
subsequent iteration steps is below a threshold, the EM algorithm terminates. The
log-likelihood function is well suited for this purpose. However, the log-likelihood
quality measure does not take network complexity into account. Thus, the log-
likelihood measure is not well suited for model selection due to overfitting from
using a too-complex network structure. The log-likelihood measure will take its
maximum value for a complete graph.

Instead of using log-likelihood for model selection, the AIC or BIC score may
be used. The scores are described in Sect. 8.3.3.

8.5.2 Penalized EM Algorithm

When both data and domain expert knowledge are available, both of these two
sources of knowledge should be taken into consideration by the parameter estima-
tion algorithm. This can be achieved using the penalized EM algorithm to achieve a
MAP estimate.

Domain expert knowledge on the parameters of a conditional probability dis-
tribution is specified in the form of a Dirichlet probability distribution and an
experience table. For each variable Xi , the distribution P.Xi |pa.Xi// D {P.Xi D
k |pa.Xi/ D j /} and the experience counts ˛i1; : : : ; ˛im, where m D kpa.Xi /k,
associated with Xi are used to specify the prior expert knowledge associated
with P.Xi |pa.Xi//. The size of the experience count ˛ij indicates the weight of
the domain expert knowledge compared to the size of the observed data set D. The
experience count may be considered as a case count for virtual cases. For instance, if
˛ij D N , then D, and the expert knowledge carry the same weight in the estimation.
The experience table over a variableXi and its parent variables pa.Xi/ indicates the
experience related to the child distribution for each possible configuration of pa.Xi /.

In the case of expert knowledge, the E-step does not change, whereas the M-step
becomes

��
ijk D ˛ijk C E.Nijk/

||Xi ||P
kD1

�
˛ijk C E.Nijk/

�
;

where ˛ijk D P.Xi D k |pa.Xi/ D j /˛ij is the initial count for .Xi ; pa.Xi// D
.k; j /. Thus, the M-step is changed to take the expert knowledge into account.
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X Y

a b

X Y

Fig. 8.33 Two equivalent
DAGs over X and Y

Table 8.17 Data frequencies
for estimating the
distributions of X and Y

X

Y x0 x1

y0 0 2 2

y1 4 2 6

y2 6 3 9

10 7 17

Example 8.22 (Penalized EM: Coin Tossing). Consider again the problem of
predicting the result of a coin toss. Assume we have reason to believe that the coin is
not fair. Instead of assuming a uniform prior distribution on the parameters, we will
assume a nonuniform prior onX , for example, we assume the parameter assignment
is P.X/ D .0:75; 0:25/ with an experience count of ˛ D 5. This will serve as the
initial parameter assignment.

The estimated distribution is P.X/ D .0:75; 0:25/ with an experience count
˛ D 15. This distribution is the result of only two iterations of the EM algorithm
with ı D 0:0001 and

l1./ D l2./ D −4:49868:

The parameter estimation is completed after only two iterations of the EM algorithm
as described above.

Taking the observations on the coin and the additional knowledge of the coin into
account, we predict tails to be three times as likely as heads. �

The penalized EM algorithm is useful for combining expert domain knowledge
and data in parameter estimation. It is, however, important to be careful when using
the penalized EM algorithm as illustrated by the following example.

Example 8.23 (Penalized EM: Experience Counts). Assume we need to estimate
the conditional probability distributions of a network with two dependent vari-
ables X and Y , where ||X D 2|| and ||Y || D 3. To model the dependency between
variables X and Y , we have either the network in Fig. 8.33a or the network in
Fig. 8.33b.

From the point of view of modeling the joint probability distribution over
variables X and Y , the choice of network does not matter as the two models are
equivalent. Assume the complete database of cases to be used in the parameter
estimation has data frequencies as shown in Table 8.17. The database consists of 17
complete cases, that is, no missing values. Notice that the configuration .x0; y0/
does not appear in the database.

The probability of the configuration .x0; y0/ will be zero in both networks if the
EM algorithm is used for the estimation. The penalized EM algorithm may be used
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Table 8.18 Joint probability
distributions over X and Y

X Y

x0 y0 0:0177 0:0216 0:0093

x0 y1 0:2298 0:2262 0:2315

x0 y2 0:3359 0:3370 0:3426

x1 y0 0:1215 0:1080 0:1204

x1 y1 0:1215 0:1257 0:1204

x1 y2 0:1736 0:1815 0:1759

to avoid zero probabilities in the joint probability distribution. The trick is to assign
a positive probability distribution to the initial parameter values and a nonzero value
to the experience counts. The values of the experience counts should be chosen with
care, though.

Assume we decide to assign a uniform probability distribution to the param-
eters,for example, P.X/ D .1=2; 1=2/, P.Y |X D x0/ D .1=3; 1=3; 1=3/, and
P.Y |X D x1/ D .1=3; 1=3; 1=3/ for the network in Fig. 8.33a. To avoid a zero
probability for the configuration .x0; y0/, we assign experience counts as ˛X D 1,
˛Y 0 D 1 and ˛Y1 D 1. The resulting joint probability distribution over X and Y is
shown in the second column of Table 8.18.

If we use the same approach on the network in Fig. 8.33b, then the resulting joint
probability distribution over X and Y is shown in the third column of Table 8.18.

It is clear from Table 8.18 that the approach taken does not produce the
same results for two equivalent models given complete data and a uniform prior.
The problem is the value assigned to the experience counts.

Instead of assigning the value 1 to all experience counts, we assign the
value 1=||pa.X/|| to each parent configuration of X and value 1=||pa.Y /|| to each
parent configuration of Y . This approach will ensure that the two equivalent
networks in Fig. 8.33 represent the same joint probability distribution overX and Y
after EM learning. With this approach, the result is the same for both models, and it
is shown in the last column of Table 8.18. �

8.6 Sequential Parameter Learning

Sequential parameter learning or parameter adaptation is the task of sequentially
updating the parameters of the conditional probability distributions of a Bayesian
network when the structure and an initial specification of the conditional probability
distributions are given in advance. We consider a Bayesian approach to sequential
parameter learning (Spiegelhalter & Lauritzen 1990, Cowell et al. 1999).

In sequential learning, experience is extended to include both quantitative expert
knowledge and past cases (e.g. from EM learning). Thus, the result of EM learning
may be considered as input for sequential learning.

Let Xi be a variable with n states. Then, the prior belief in the parameter
vector ij D .�ij1; : : : ; �ijn/, that is, the conditional probability distribution
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Fig. 8.34 Retrieval and
dissemination of experience

of Xi given its parents pa.Xi / D j , is specified as an n-dimensional Dirich-
let distribution D.˛ij1; : : : ; ˛ijn/. This distribution is represented using a single
experience count ˛ij D 1=||pa.Xi /|| (equivalent sample size)and the initial distri-
bution P.Xi |pa.Xi / D j /. The experience count ˛ijk for a particular state k of Xi
given pa.Xi/ D j is ˛ijk D ˛ij P.Xi D k |pa.Xi / D j /. This setting is similar to
the setting of the EM algorithm.

Parameter adaptation proceeds by updating the experience associated with the
parameters and subsequently updating the parameters to reflect the new experience.
The process of updating the experience associated with a distribution is referred to
as retrieval of experience. Dissemination of experience is the process of calculating
prior conditional probability distributions for the variables in the Bayesian network
given the experience, and it proceeds by setting each parameter equal to the mean of
the corresponding updated Dirichlet distribution, that is, ��

ijk , as shown below. See
Fig. 8.34 for a graphical representation of dissemination and retrieval of experience.

After a complete observation .Xi ; pa.Xi// D .k; j /, the posterior belief in the
distribution is updated as ˛�

ijk D ˛ijk C 1 and ˛�
ij l D ˛ijl for l 6D k. After an

incomplete observation, the resulting weighted sum of Dirichlet distributions over
the parameters is approximated with a single Dirichlet distribution with the same
means and sum of variances as the mixture. The approximation is used in order to
avoid the combinatorial explosion, which would otherwise occur when subsequent
incomplete observations are made. For each i; j; k, the updated value ��

ijk of each
parameter �ijk is

��
ijk D ˛ijk C P.Xi D k; pa.Xi / D j | "/C �ijk.1− P.pa.Xi/ D j |"//

˛ij C 1
:

The updated equivalent sample size ˛�
ij is a function of the means and the sum

of variances, see, for example, Cowell et al. (1999) for details on computing the
updated ˛�

ij . Notice that P.Xi D k; pa.Xi/ D j | "/ and P.pa.Xi / D j |"/ are
readily available after a propagation of evidence.

In order to reduce the influence of past and possibly outdated information, an
optional feature of fading is provided. Fading proceeds by reducing the experience
count before the retrieval of experience takes place. The experience count ˛ij is
faded by a factor of 0 < �ij � 1 typically close to one according to pij D
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Table 8.19 Experience counts for B , L, and S before and after adaptation

˛S ˛L|SDno ˛L|SDyes ˛B |SDno ˛B |SDyes

Before 10;000 4;970:88 5;029:12 4;970:88 5;029:12

After 9;001 4;472:71 5;029:12 4;473:73 5;029:12

P.pa.Xi / D j / such that ˛�
ij D ˛ij ..1 − pij / C �ij pij /. Notice that experience

counts corresponding to parent configurations, which are inconsistent with the
evidence, are unchanged. The fading factors of a variable Xi are specified in a
separate table including one fading factor for each configuration of pa.Xi/.

Example 8.24 (Sequential Parameter Learning). Consider again the Asia example
(Example 4.2 on page 73). Assume we have evidence " D {S D no; A D yes;D D
yes} on a patient, that is, a nonsmoking patient with dyspnoea who has recently
been to Asia. The evidence is entered and propagated followed by an adaptation of
parameters. Table 8.19 shows the experience counts for L, B , and S before (i.e.,
after EM learning using 10; 000 randomly generated cases) and after the adaptation
with fading factor of � D 0:999 for each distribution.

Note that since S is an observed variable without parents, the experience
count ˛S for P.S/ will converge to 1

�
D 1;001 if S D no is observed multiple

times. �

Sequential updating may be applied to the parameters of conditional probability
distributions in mixed Bayesian networks and in influence diagrams when all
decisions have been instantiated.

8.7 Summary

In this chapter, we have considered data-driven modeling as the process of inducing
a Bayesian network from data and domain expert knowledge. We have considered
this as a two-step learning process where the first step is to induce the structure of the
graph of the Bayesian network, whereas the second step is to estimate the parameters
of the conditional probability distributions induced by the graphical structure of the
Bayesian network.

We have considered both a constraint-based and a search and score-based
approach to learning the structure of a Bayesian network from data. For the
constraint-based approach, we have described in some detail the steps of the PC
algorithm. The PC algorithm is based on performing a sequence of statistical
hypothesis tests for (conditional) independence. Based on the set of CDIRs derived
by the test, the skeleton, the colliders, and derived directions of the graph are
identified. For the search and score-based approach, we have described in some
detail the steps of a hill climbing algorithm using the BIC score to measure the
goodness of a candidate structure. We have also in detail described search and
score-based approaches for learning structure restricted models such as the naive
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Bayes models, Chow–Liu trees, and tree-augmented naive Bayes models. The naive
Bayes and the tree-augmented Naive Bayes models, in particular, have shown high
performance on classification tasks.

Since the result of the PC algorithm (i.e., the PDAG) is rather sensitive to errors
in the CDIRs, the notion of a necessary path condition for the absence of an edge
in the skeleton of the induced graph is introduced. The necessary path condition
produces the NPC algorithm, which has also been described in some detail.

The graph resulting from structure learning defines the set of conditional
probability distributions of the Bayesian network. The parameters of this set of
distributions may be set manually, but more often the parameters of the distributions
will be estimated from the same database of cases as used by the structure learning
algorithm. We have described the EM algorithm and the penalized EM algorithm
for estimating the parameters of a conditional probability distribution from data.

Finally, we have described a Bayesian approach for adaptation of parameters as
the model is used.

In the next part of this book, we consider different methods for analyzing
probabilistic networks. This includes methods for conflict analysis, sensitivity
analysis, and value of information analysis.

Exercises

Exercise 8.1. Let variables A, C , F , S , and T represent angina, cold, fever, spots
in throat, and sore throat, respectively. Assume that the following set of conditional
pairwise independence statements have resulted from performing statistical inde-
pendence tests on this set of variables:

M?? D
{

A ?? C | {}; C ?? S | {}; F ?? S | {A}; T ?? S | {A}; T ?? F | {A;C }

}

:

For each independence statement X ?? Y |SXY , the conditioning set SXY is
minimal.

(a) Identify the skeleton of the graph of the network.
(b) Identify colliders.
(c) Identify derived directions.
(d) Identify remaining undirected edges according to your interpretation of the

problem domain.

Exercise 8.2. Generate 10;000 sample cases from the Asia network shown in
Fig. 8.35 (see Example 4.2 on page 73 for more details).

The Asia network consists of the three hypothesis variables Bronchitis, Cancer,
and Tuberculosis. The risk factors are Smoking and a recent visit to Asia, while the
symptoms of the network are X ray and Dyspnoea. The risk factors and symptoms
are the possible observations a physician can make on a patient.
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Asia.A/ Smoker.S/

Tuberculosis.T/ Cancer.L/ Bronchitis.B/

Tub or cancer.E/

X ray.X/ Dyspnoea.D/

Fig. 8.35 A graph specifying the independence and dependence relations of the Asia example

Cold Angina

Fever SoreThroat SeeSpots

Fig. 8.36 The angina
network

Table 8.20 Data frequencies
for the class variable

Class n

edible 5;333

poisonous 4;667

(a) Use a software package for learning the equivalence class of DAGs representing
the data generated. Specify expert knowledge on the structure of the DAG as
constraints.

(b) Resolve ambiguous regions.
(c) Complete orientation of the DAG.
(d) Specify expert knowledge on the distributions of the model and estimate the

parameters from the data generated.

Exercise 8.3. Consider the network in Fig. 8.36. Assume tat the variables are all
binary and that the network is the result of learning from a complete database
with 1; 000 cases and let l./ D −964.

(a) Compute the AIC score.
(b) Compute the BIC score.
(c) Compare the AIC and BIC scores. Explain the difference.

Exercise 8.4. Assume we plan to pick up mushrooms to prepare for a nice dinner.
In the process, we want to classify each mushroom as either edible or poisonous.
We want to construct a network for classifying each mushroom based on a database
of mushrooms. Assume Tables 8.20–8.23 specify the data frequencies of a database
we found on the Internet.
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Table 8.21 Data frequencies
for the class variable
and Population

Class

Population edible poisonous

abundant 587 0

clustered 389 75

numerous 480 0

scattered 1;173 420

several 1;440 3;384

solitary 1;264 788

Table 8.22 Data frequencies
for the class variable
and Cap Shape

Class
Cap Shape edible poisonous

bell 478 56

conical 0 5

convex 2;453 2;034

flat 2;098 1;853

knobbed 267 719

sunken 37 0

Table 8.23 Data frequencies
for the class variable
and Odor

Class
Odor edible poisonous

almond 475 0

anise 475 0

creosote 0 229

fishy 0 685

foul 0 2;567

musty 0 57

none 4;383 141

pungent 0 303

spicy 0 685

Table 8.24 Data frequencies for A, D, S , and X

A D no A D yes D D no D D yes S D no S D yes

D D no 5;675 42

D D yes 4;241 42

S D no 4;921 40 3;422 1;539

S D yes 4;995 44 2;295 2;744

X D no 8;825 74 5;311 3;588 4;621 4;278

X D yes 1;091 10 406 695 340 761

Exercise 8.5. Construct a maximal-weight spanning tree using the data in
Table 8.24.

(a) Construct a Naive Bayes model for classifying mushrooms based on the data in
Tables 8.20–8.23.

(b) What is the probability of a mushroom with no odor being edible?
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Chapter 9
Conflict Analysis

It is difficult or even impossible to construct models covering all aspects of
(complex) problem domains of interest. A model is therefore most often an
approximation of a problem domain that is designed to be applied according to the
assumptions as determined by the background condition or context of the model. If
a model is used under circumstances not consistent with the background condition,
the results will in general be unreliable. The evidence need not be inconsistent with
the model in order for the results to be unreliable. It may be that evidence is simply
in conflict with the model. This implies that the model in relation to the evidence
may be weak, and therefore the results may be unreliable.

Evidence-driven conflict analysis is used to detect possible conflicts in the
evidence or between the evidence and the model. If a possible conflict is detected,
we should alert the user that the model given the evidence may be weak or even
misleading. In this way, conflict analysis can also be used for model revision.

Hypothesis-driven conflict analysis is used to identify findings acting in favor of
or against a hypothesis. If the evidence set consists of a large number of findings,
it may be crucial to identify which individual findings act in favor of or against a
hypothesis.

In this chapter we use the Asia example to illustrate the concepts of evidence and
hypothesis-driven conflict analysis in Bayesian networks.

Example 9.1 (Conflict Analysis). As an example, we apply conflict analysis to the
Asia example shown in Fig. 9.1 (see Example 4.2 on page 73 for more details).

Assume we see a smoking patient with no shortness of breath and a negative
X-ray result, that is, the initial set of evidence is " D {Dyspnoea D no;Smoker D
yes;X ray D no}. In the remainder of this section, we write " D {"D; "S ; "X } for
short.

From our knowledge about the problem domain and the assumptions of the
model, we would say that the findings are in conflict. The patient visited the chest
clinic, but she does not have any of the symptoms even though she is a smoker.
A propagation of the evidence produces posterior probability distributions over the

U.B. Kjærulff and A.L. Madsen, Bayesian Networks and Influence Diagrams: A Guide
to Construction and Analysis, ISS 22, DOI 10.1007/978-1-4614-5104-4 9,
© Springer Science+Business Media New York 2013
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Asia.A/ Smoker.S/

Tuberculosis.T/ Cancer.L/ Bronchitis.B/

Tub or cancer.E/

X ray.X/ Dyspnoea.D/

Fig. 9.1 A graph specifying the independence and dependence relations of the Asia example

diseases P.B D yes |"/ D 0:25, P.L D yes |"/ D 0:089, and P.T D yes |"/ D
0:009. This does not disclose a possible conflict, but only indicates that the most
likely disease the patient is suffering from is bronchitis. Using the model only, we
cannot distinguish between flawed evidence, a case not covered by the model, or a
rare case. �

In Sect. 9.1, we describe evidence-driven conflict analysis. A conflict measure
designed to be efficient to compute and to give indications of possible conflicts in
evidence is introduced. Possible conflicts should be detected and traced or explained
as rare cases that the model may not cover well. In Sect. 9.2, we describe hypothesis-
driven conflict analysis. A cost-of-omission measure is introduced. This measure is
useful for relating the impact of findings on a hypothesis variable. In addition, we
describe how to investigate the impact of a finding on the probability of a hypothesis.

9.1 Evidence-Driven Conflict Analysis

The objective in evidence-driven conflict analysis is to detect possible conflicts in a
set of evidence. As a tool for detecting possible conflicts, we want a conflict measure
which is easy to calculate and which gives a reliable indication of a possible conflict.

9.1.1 Conflict Measure

In order to detect a possible conflict, we need to compare the results obtained from
our best model with the results obtained from an alternative model. This model is
referred to as a straw model. A straw model is a simple and computationally efficient
model used as an alternative model in the detection of possible conflicts.

In the design of the conflict measure, we make the assumption that for the nor-
mally (according to the model) behaving evidence, it is the case thatP."i |"j />P."i /
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where "i and "j are two pieces of evidence. Based on this assumption and
since P."i ; "j / D P."i |"j /P."j /, the conflict measure is designed to indicate a
possible conflict when the joint probability of the evidence is less than the product
of the probabilities of the individual pieces of evidence given the model. We thus
assume that there is a possible conflict between two pieces of evidence "i and "j , if

P."i /P."j /

P."i ; "j /
> 1⇔ log

P."i /P."j /

P."i ; "j /
> 0;

that is, "i and "j are negatively correlated. Thus, we define the conflict measure as

conf."/ D log
P."i /P."j /

p."/
;

where " D {"i ; "j }. Notice that we are comparing the joint probability of the
evidence with a model where the observed variables are independent (the straw
model).

The main assumption is that pieces of evidence are positively correlated such
that P."/ >

Qn
iD1 P."i /. With this assumption, the general conflict measure is

defined as

conf."/ D conf.{"1; : : : ; "n}/ D log

Qn
iD1 P."i /
p."/

:

This implies that a positive value of the conflict measure conf."/ indicates a possible
conflict. Notice that the conflict measure is easy to calculate once the evidence "
has been propagated in a junction tree representation of the model. The marginal
probabilities P."i / are available once the junction tree has been initialized, and the
probability of the evidence P."/ is available as a by-product of message passing,
see Sect. 5.1 for details on propagation of evidence.

Another way to look at the definition of the conflict measure is the following. In
the general case, two pieces of evidence "i and "j are either:

• Positively correlated, that is, P."i |"j / > P."i /
• Negatively correlated, that is, P."i |"j / < P."i /
• Independent, that is, P."i |"j / D P."i /

Given these three options, we choose to assume that two pieces of evidence "i and "j
are positively correlated.

Example 9.2 (Conflict Detection). Returning to Example 9.1, the evidence is
" D {"D; "S ; "X }. We compute the conflict measure to be

conf."/ D conf.{D D no; S D yes; X D no}/

D log
P.D D no/P.S D yes/P.X D no/

P."/
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D log
0:56 � 0:5 � 0:89

0:2
D 0:22

> 0:

Thus, conf."/ indicates a possible conflict in ". �

9.1.2 Tracing Conflicts

Once a possible conflict has been detected, the origin of the conflict should be
determined such that it can be presented to the analyst or user. Tracing the source
of a conflict amounts to computing the conflict measure conf."0/ for (all) subsets
"0 � ".

Tracing the conflict to all subsets of the evidence is a computationally complex
problem as the number of subsets increases exponentially with the size of the
evidence set. It is not always possible or meaningful to assume monotonicity with
respect to conflict in subsets, that is, no subset "00 � "0 with conf."00/ > 0 exists
for "0 with conf."0/ � 0. That is, the monotonicity assumption states that if "0 is not
in conflict, then no subset of "0 is in conflict.

Example 9.3 (Conflict Traced). In Example 9.2, a possible conflict was identified,
but not traced, that is, located. That is, after the conflict measure has been found
to indicate a possible conflict, the source of the conflict should be traced. This is
achieved by computing the conflict measure for different subsets "0 of ".

With three pieces of evidence, there are three pairs of evidence to consider.
The pair "DS D {"D; "S } has conflict measure

conf."D; "S / D log
P.D D no/P.S D yes/

P.D D no; S D yes/

D log
0:56 � 0:5
0:22

D 0:24;

the pair "DX D {"D; "X } has conflict measure

conf."D; "X/ D log
P.D D no/P.X D no/

P.D D no; X D no/

D log
0:56 � 0:89
0:52

D −0:04;

and the pair "SX D {"S ; "X } has conflict measure

conf."S ; "X/ D log
P.S D yes/P.X D no/

P.S D yes; X D no/

D log
0:5 � 0:89
0:47

D −0:06:
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The (partial) conflicts show that there is a conflict in the pair "DS D {"D; "S } while
there are no conflicts in the pairs "DX D {"D; "X } and "SX D {"S; "X }. Hence,
the source of the global conflict in conf."/ can be traced to the partial conflict
between "D and "S . The finding that the patient is a smoker is in conflict with the
finding that the patient is not suffering from dyspnoea (under the assumptions of
the model). �

Let "i and "j be a partitioning of the evidence " into two disjoint subsets such
that " D "i ["j is the evidence under consideration. The global conflict conf."/ can
be computed from local conf.{"i ; "j }/ and partial conflicts conf."i / and conf."j /

conf."/ D conf.{"i ; "j }/C conf."i /C conf."j /:

This property holds in general, and it may be used as a tool for tracing conflicts.

Example 9.4 (Partial Conflicts). In the example, we have three subsets with par-
tial conflicts computed in Example 9.3 conf."D; "S/ D 0:24, conf."DX/ D
conf.{"D; "X }/ D −0:04, and conf."DS/ D conf.{"S; "X }/ D −0:06. The local
conflict between {"D; "S } and "X is

conf.{"D; "S }; "X/ D log
P.D D no; S D yes/P.X D no/

P."/

D log
0:22 � 0:89

0:2
D −0:02:

The global conflict can be computed from local and partial conflicts as

conf.{"D; "S ; "X }/ D conf.{"D; "S }/C conf.{{"D; "S }; "X }/

D 0:24C .−0:02/ D 0:22:

We notice that the finding "X reduces the global conflict slightly. �

9.1.3 Conflict Resolution

Typical evidence from a rare case may indicate a possible conflict (a rare case is
identified as a finding or set of evidence with low (prior) probability). Let " D
{"1; : : : ; "n} be findings for which the conflict measure indicates a possible conflict,
that is, conf."/ > 0. Also, let h be a hypothesis which could explain the findings
(i.e., conf." [ {h}/ � 0). That is, if we also know the hypothesis h to be true, then
we will not expect a conflict. We compute

conf." [ {h}/ D conf."/C log
P.h/

P.h |"/
:

If conf."/ � log P.h |"/

P.h/
, then h can explain away the conflict where P.h |"/

P.h/
is the

normalized likelihood.
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Table 9.1 The
log-normalized likelihood of
each possible instantiation of
each variable in Example 9.1

Hypothesis P.h/ P.h |"/ log P.h|"/

P.h/

Asia D no 0:99 0:99 0

Asia D yes 0:01 0:01 0

Bronchitis D no 0:55 0:75 0:31

Bronchitis D yes 0:45 0:25 −0:59

Cancer D no 0:545 0:1 1:7

Cancer D yes 0:455 0:9 0:68

Tuberculosis D no 0:99 0:999 0:01

Tuberculosis D yes 0:01 0:001 −2:3

Tub or cancer D no 0:995 0:9999 0:005

Tub or cancer D yes 0:005 0:0001 −3:9

Example 9.5 (Conflict Resolution). Table 9.1 shows the log-normalized likelihood
of each possible instantiation of each variable in Example 9.1. From this table, it is
clear that there are five possible explanations of the conflict (some of which have a
low log-normalized likelihood).

For instance, the posterior probability of the patient not having bronchitis
is P.B D no |"/ D 0:75 while the prior probability is P.B D no/ D 0:55. We
compute the logarithm of the normalized likelihood

log
P.h |"/

P.h/
D log

0:75

0:55
D 0:31:

From this, we compute the conflict measure under the hypothesis of the patient not
having bronchitis

conf." [ {h}/ D conf."/C log
P.h/

P.h |"/

D 0:22− 0:31 < 0:

Thus, the conflict may be explained away as the rare case where the patient
is not suffering from bronchitis given the symptoms and risk factors (similarly
for Cancer). In general, if the normalized likelihood is greater than the conflict,
then we may have a rare case. �

The above method for detecting conflicts may fail. This will happen if the
assumption of positively correlated pieces of evidence does not hold. The above
approach can be combined with other methods such as those reported in Kim &
Valtorta (1995) and Laskey (1991). These methods are based on using a more
complex straw model for the comparison (i.e., evidence variables are not assumed
independent) and a different measure to detect conflicts. The advantage of the above
approach is that it is computationally efficient.

The above method for detecting conflicts was introduced by Andersen et al.
(1989), and the method is described in Jensen (1996) and Jensen (2001).
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9.2 Hypothesis-Driven Conflict Analysis

In hypothesis-driven conflict analysis, the impact of a finding on the probability of
a hypothesis is investigated. In order to be able to relate the impacts of different
findings on the probability of the hypothesis given evidence, a measure is needed.
This will allow us to identify pieces of evidence that conflict with the impact of the
entire set of evidence.

9.2.1 Cost-of-Omission Measure

The main purpose of hypothesis-driven conflict analysis is to identify pieces of
evidence with an impact on the evidence that conflicts with the impact of the
entire set of evidence. In order to perform this investigation, a measure providing
a numerical value specifying the cost of omitting a single piece of evidence is
required. Suermondt (1992) defines the cost-of-omission c.P.X |"/; P.X |" \ {"i }//

of "i as

c.P.X |"/; P.X |" \ {"i }// D
X

x2dom.X/

P.x |"/ log
P.x |"/

P.x |" \ {"i }/
: (9.1)

The above equation is undefined for values P.x |"/ D 0 and P.x |" \ {"i }/ D 0. For
these two cases, we define cost-of-omission to be 0 and infinity, respectively.

9.2.2 Evidence with Conflict Impact

Let H be a hypothesis variable with states dom.H/ D .h1; : : : ; hn/ and let " D
{"1; : : : ; "m} be the set of evidence. The impact of a finding "i 2 " on a
hypothesis h 2 dom.H/ is determined by computing and comparing the prior
probability of the hypothesis P.h/, the posterior probability of the hypothesis
given all evidence P.h |"/, and the posterior probability of the hypothesis given all
evidence except the finding under consideration P.h |" \ "i /. By comparing these
three probabilities, we can identify findings that have a conflicting impact on the
probability of the hypothesis compared with the impact of the entire set of evidence.

Example 9.6 (Evidence with Conflict Impact). In the Asia example, we assume
evidence " D {Dyspnoea D no;Smoker D yes;X ray D no} D {"D; "S ; "X }.
Assume further that B D Bronchitis is the hypothesis variable under consideration.

Figure 9.2 shows the impact of the finding "S on the hypothesis B D no
while Fig. 9.3 shows the impact of the finding "S on the hypothesis B D yes.
From Fig. 9.2, it is clear that the finding "S acts against the hypothesis B D no.
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Impact of evidence

Fig. 9.2 The impact of finding "S on the hypothesis h W B D no
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P.h |"/P.h |" \ "S /P.h/

Impact of evidence

Fig. 9.3 The impact of finding "S on the hypothesis h W B D yes

The probability of the hypothesis is higher when the finding "S is excluded than
when it is included. The posterior is higher than the prior. This implies that the
combined effect of the evidence acts in favor of the hypothesis.

Similarly, from Fig. 9.3, it is clear that the finding "S acts in favor of the
hypothesisB D yes. The probability of the hypothesis is higher when the finding "S
is included than when it is excluded, but not as high as the prior though. The
posterior is lower than the prior. This implies that the combined effect of the
evidence acts against the hypothesis.

The numbers in the two graphs are pairwise complementary since B is binary.�

When considering the impact of findings given a large set of evidence, it may
be an advantage to use a cost-of-omission threshold to focus on findings with a
cost-of-omission greater than the threshold.

Example 9.7 (Example 9.6, cont.). In Example 9.6 the cost-of-omission of find-
ing "S is 0:03, that is,

c.P.B |"/; P.B |" \ {"S }// D 0:03:

�
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Further information on hypothesis-driven conflict analysis can be found in Suer-
mondt (1992).

9.3 Summary

In this chapter we have considered evidence and hypothesis-driven conflict analysis
in Bayesian networks.

The objective of evidence-driven conflict analysis is to detect possible conflicts
in the evidence. To support this analysis, we have defined a conflict measure that is
simple to compute. The conflict measure is computed based on an alternative and
much simpler model (the straw model). The conflict measure is defined such that a
positive value is an indication that a conflict may be present in the evidence. Once
a possible conflict is detected, we try to trace and resolve the conflict. We say that
a hypothesis may resolve the conflict if the log of the normalized likelihood of the
hypothesis is greater than the conflict. Furthermore, a positive conflict measure may
originate from a rare case.

The objective of hypothesis-driven conflict analysis is to investigate the impact
of a single piece of evidence on the probability of a hypothesis compared with the
impact of all the evidence. To support this investigation, we have defined a cost-of-
omission measure. The cost-of-omission measure is used to measure the difference
between including and excluding the selected piece of evidence on the probability
of the hypothesis given evidence. In hypothesis-driven conflict analysis, we relate
the prior probability of the hypothesis to the probability of the hypothesis given the
entire set of evidence and the probability of the hypothesis given the entire set of
evidence except the selected piece of evidence. This enables us to determine whether
or not a single piece of evidence conflicts with the remaining set of evidence with
respect to the probability of the hypothesis.

In Chap. 10, we consider sensitivity analysis. Evidence sensitivity analysis is
to determine the sensitivity of the posterior probability of a hypothesis relative
to observations made. Parameter sensitivity is to determine the sensitivity of the
posterior probability of a hypothesis relative to parameters of the model.

Exercises

Exercise 9.1. From Example 2.4 on page 25, we know that Dr Watson makes
frequent calls to Mr. Holmes regarding the burglar alarm; however, till now the
cause of activation of the alarm has been small earthquakes or a big truck passing
by near the house. Every time Mr. Holmes rushes home just to find that everything
is in order; so now Mr. Holmes is installing a seismometer in his house with a direct
line to his office. In this exercise, we assume P.B/ D P.E/ D .0:1; 0:9/.
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S

Fig. 9.4 Mr. Holmes installs
a seismometer with a direct
line to his office

Table 9.2 The conditional probability distributions P.W |A/ and P.S |B;E/

S

W A D no A D yes B E no some large

no 0:99 0:65 no no 0:97 0:02 0:01

yes 0:01 0:35 no yes 0:01 0:97 0:02

yes no 0:01 0:02 0:97

yes yes 0 0:03 0:97

Table 9.3 The conditional
probability distribution
P.A |B;E; F /

A

E B F no yes

no no no 0:99 0:01

no no yes 0:01 0:99

no yes no 0:01 0:99

no yes yes 0 1

yes no no 0:01 0:99

yes no yes 0 1

yes yes no 0 1

yes yes yes 0 1

The revised model in Fig. 9.4 captures the situation where Mr. Holmes has
installed a seismometer in his house with a direct line to the office. Assume S
has states reflecting no, some, and large vibrations in the house. The conditional
probability distributions P.W |A/ and P.S |B;E/ are shown in Table 9.2.

(a) One afternoon, Dr. Watson calls again and announces that Mr. Holmes’ alarm
has gone off. Mr. Holmes checks the seismometer; it is in state no.

Are the two observations in conflict?
(b) Mr. Holmes looks out his window. It rains heavily. When it rains heavily, a

flood is likely to occur. Extend the model in Fig. 9.4 to capture these events
when the prior of rain is 0:01 and rain causes a flood in one out of ten cases.
The conditional probability table P.A |B;E; F / where F represents flood is
shown in Table 9.3.

Are the observations in conflict in this model and what is the value of the
conflict measure?

(c) Is there a potential explanation of the value of the conflict measure?
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(d) What is the partial conflict of each subset of the observations and what
conclusion can be derived from the partial conflicts?

Exercise 9.2. Consider again the model with a seismometer of Mr. Holmes in
Exercise 9.1.

(a) Perform hypothesis-driven conflict analyses with respect to both Burglar D yes
and Earthquake D yes.

(b) What is the cost-of-omission for "R with respect to Burglar and Earthquake?



Chapter 10
Sensitivity Analysis

We construct probabilistic networks to support and solve problems of belief update
and decision making under uncertainty. In problems of belief update the posterior
probability of a single hypothesis variable is sometimes of interest. When the
evidence set consists of a large number of findings or even when it consists of only a
small number of findings questions concerning the impact of subsets of the evidence
on the hypothesis or a competing hypothesis emerge.

Evidence sensitivity analysis may, for instance, give answers to questions like
what are the minimum and maximum beliefs produced by observing a variable?,
which evidence acts in favor of or against a hypothesis?, which evidence discrimi-
nates one hypothesis from an alternative hypothesis?, and what if a certain observed
variable had been observed to a value different from the actual value? Knowing
the answers to these and similar questions may help to explain and understand the
conclusions reached by the model as a result of probabilistic inference. It will also
help to understand the impact of subsets of the evidence on a certain hypothesis and
alternative hypotheses.

Evidence sensitivity analysis is not the only possible kind of sensitivity analysis
that can be performed on a probabilistic network. Parameter sensitivity analysis
is another type of sensitivity analysis that is supported by probabilistic networks.
We focus on parameter sensitivity analysis in discrete Bayesian networks. The
parameters considered in parameter sensitivity analysis are the entries of the
conditional probability distributions specified in the Bayesian network. The analysis
is performed relative to a hypothesis and a given set of evidence. It has been shown
that there is a (surprisingly) simple correlation between the probability of a set of
evidence and an entry of a conditional probability distribution. The probability of
the evidence is a linear function of the parameter. This knowledge can be exploited
to determine the functional relation between the probability of a hypothesis given a
subset of evidence and a parameter of a conditional probability distribution.

Parameter sensitivity analysis is particularly useful for identifying parameters
of a probabilistic network that have a large or small impact on the probability of
a hypothesis given evidence. When knowledge elicitation resources are limited,

U.B. Kjærulff and A.L. Madsen, Bayesian Networks and Influence Diagrams: A Guide
to Construction and Analysis, ISS 22, DOI 10.1007/978-1-4614-5104-4 10,
© Springer Science+Business Media New York 2013
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parameter sensitivity analysis is a useful tool for identifying and focusing resources
on the parameters that are most influential on the posterior probability of a
hypothesis given evidence. That is, parameter sensitivity analysis can be used in an
attempt to focus knowledge elicitation resources in the model construction process.

In Sect. 10.1, we introduce evidence sensitivity analysis. A distance measure
designed to measure the impact of evidence on the probability of a hypothesis
is introduced. In the following subsections, we consider identifying minimum
and maximum beliefs in a hypothesis given various subsets of the evidence, the
impact of different evidence subsets on a hypothesis, how subsets of the evidence
discriminates between a pair of competing hypotheses, what-if analysis, and the
impact of findings on a hypothesis variable. In Sect. 10.2 (one-way), parameter
sensitivity analysis is introduced, and in Sect. 10.3, two-way parameter sensitivity
analysis is considered while Sect. 10.4 introduces parameter tuning.

10.1 Evidence Sensitivity Analysis

Evidence sensitivity analysis (SE analysis) is the analysis of how sensitive the
results of a belief update (propagation of evidence) is to variations in the set of
evidence (observations, likelihood, etc.).

Consider the situation where a decision maker has to make a decision based
on the probability distribution of a hypothesis variable. It could, for instance, be a
physician deciding on a treatment of a patient given the probability distribution of a
disease variable. Prior to deciding on a treatment, the physician may have the option
to investigate the impact of the collected information on the posterior distribution
of the hypothesis variable, that is, given a set of findings and a hypothesis, which
sets of findings are in favor of, against, or irrelevant for the hypothesis, which
sets of findings discriminate the hypothesis from an alternative hypothesis, what
if a variable had been observed to a different value than the one observed, etc.
These questions can be answered by SE analysis. Given a Bayesian network model
and a hypothesis variable, the task is to determine how sensitive the belief in the
hypothesis variable is to variations in the evidence. We consider one-step look-ahead
hypothesis-driven SE analysis on discrete random variables.

Example 10.1 (Evidence Sensitivity Analysis). As an example, we consider SE
analysis on the Asia example shown in Fig. 10.1 (see Example 4.2 on page 74
for more details). The hypothesis variable is Bronchitis (B), and the initial set of
evidence is " D {"S ; "D} D {S D no;D D yes}. That is, we are considering whether
or not the patient is suffering from bronchitis after observing that the patient does
not smoke (Smoker D no) and has shortness of breath (Dyspnoea D yes).

This example is used in the following sections to illustrate concepts of SE
analysis. �
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Asia.A/ Smoker.S/

Tuberculosis.T/ Cancer.L/ Bronchitis.B/

Tub or cancer.E/

X ray.X/ Dyspnoea.D/

Fig. 10.1 A graph specifying the independence and dependence relations of the Asia example

10.1.1 Distance and Cost-of-Omission Measures

The main purpose of hypothesis-driven SE analysis is to investigate how changes
in the set of evidence impact the probability of a hypothesis. In order to perform
this investigation, two distance measures are required. Each distance measure will
provide a numerical value specifying the distance between either two probabilities
or two probability distributions.

Let X be a hypothesis variable with state space dom.X/ D .x1; : : : ; xn/ and
let " D {"1; : : : ; "m} be a set of evidence (findings). We let "Y 2 " denote the finding
on variable Y 2 X."/.

The distance d.p; q/ between two probabilities p and q is defined, for p 6D 0, as

d.p; q/ D
ˇ̌
ˇ̌ q
p
− 1

ˇ̌
ˇ̌ :

This measure is, for instance, useful for measuring the distance between the
probability P.x |"/ of hypothesis x given evidence " and the probability P.x |" \
{"i }/ of hypothesis x given evidence " \ {"i }, that is, the set of evidence where "i is
excluded from ".

A pair of probabilities p and q are said to be almost equal when their
distance d.p; q/ is below a predefined threshold ı, that is, d.p; q/ < ı.

The cost-of-omission c.P.X |"/; P.X |" \ {"i }// of "i was defined in Sect. 9.2.1
on page 297 as

c.P.X |"/; P.X |" \ {"i }// D
X

x2dom.X/

P.x |"/ log

�
P.x |"/

P.x |" \ {"i }/

�
:

Notice the difference between the distance measure and the cost-of-omission
measure. The distance measure evaluates the distance between probability values
whereas the cost-of-omission measure evaluates the distance between two posterior
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Table 10.1 Sensitivity of the posterior probability distribution of the hypothe-
sis variable B to findings on A

b mina P.B D b |"; a/ P.B D b |"/ maxa P.B D b |"; a/

no 0:228 0:228 0:236

yes 0:764 0:772 0:772

probability distributions relative to omitting a certain finding "i from the evidence ".
The cost-of-omission measure is a special case of the more general cross entropy
distance (or Kullback–Leibler distance) measure between a probability distribu-
tion P and an approximation P 0 of P :

DKL.P;P
0/ D

X

x2dom.X/

P.x/ log

�
P.x/

P 0.x/

�
:

The cost-of-omission measure is, for instance, useful for measuring the distance
between the posterior probability distribution P.X |"/ of hypothesis variable X
given evidence " and the posterior probability distribution P.X |" \ {"i }/ of
hypothesis variableX given evidence " \ {"i }, that is, the set of evidence where "i is
excluded from ".

In the following sections, the distance measures defined above are used to
introduce different concepts related to SE analysis.

10.1.2 Identify Minimum and Maximum Beliefs

As part of performing SE analysis, we may be interested in knowing the minimum
and maximum values of the posterior belief for each possible state x 2 dom.X/ of
the hypothesis variable X given all possible observations on a given variable Y 62
X."/, that is, what are the minimum and maximum values ofP.x |"; y/ as a function
of y 2 dom.Y /.

The minimum miny2dom.Y / P.x |"; y/ and maximum maxy2dom.Y / P.x |"; y/

values of the posterior belief are determined by entering and propagating each
state y of the information variable Y . This analysis requires one belief update for
each state of variable Y .

This analysis identifies the range of the posterior belief in a hypothesis as a
function of possible observations on an unobserved variable. This may help to
determine the impact of a possible observation on the probability of the hypothesis.

Example 10.2 (Example 10.1, cont.). Table 10.1 shows the sensitivity of the
posterior probability distribution P.B |"; a/ of the hypothesis variable B relative
to instantiations of the unobserved variable Asia (A).

For each state b 2 dom.B/ of B , the minimum posterior belief mina P.B D
b |"; a/, the current belief P.B D b |"/, and the maximum posterior belief
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Table 10.2 Normalized
likelihood of hypothesis hB
given all subsets of the
evidence "

"0 NL

"S "X "D 1:256

"S "X − 0:667

"S − "D 1:675

"S − − 0:667

− "X "D 1:515

− "X − 1:125

− − "D 1:853

− − − 1

mina P.B D b |"; a/ are shown. From the table, it is clear that an observation on A
would produce insignificant variations in the posterior belief in any state of B . �

10.1.3 Impact of Evidence Subsets

Investigation of the impact of different subsets of the evidence " on each state x 2
dom.X/ of the hypothesis variable X is a useful part of SE analysis. Investigating
the impact of different subsets of the evidence on states of the hypothesis may help
to determine subsets of the evidence acting in favor of or against each possible
hypothesis.

The impact of a subset of the evidence "0 � " on a state x of the hypothesis
variable X is determined by computing the normalized likelihood NL of the
hypothesis x given evidence "0, that is,

NL D P."0 |x/
P."0/

D P."0; x/=P.x/
P."0/

D P.x |"0/P."0/=P.x/
P."0/

D P.x |"0/
P.x/

;

where we assume P."0/ > 0 and P.x/ > 0. This fraction is computed by entering
and propagating "0. Therefore, this analysis requires one belief update for each
subset "0 of the evidence ".

Each normalized likelihood is a measure of the impact of a subset of evidence on
the hypothesis. By comparing the normalized likelihoods of different subsets of the
evidence, we compare the impacts of the subsets of evidence on the hypothesis.

Example 10.3 (Example 10.2, cont.). Assume that we observe the patient to have
a positive X-ray result X D yes, such that the set of evidence is " D {"S ; "D; "X } D
{S D no;D D yes; X D yes}. Table 10.2 shows the normalized likelihood of the
hypothesis hB W B D yes given the evidence " D {"S ; "D; "X }.

From Table 10.2, it is clear that the finding "D on D acts in favor of the
hypothesis hB . On the other hand, the evidence "S acts slightly against the
hypothesis hB while "X is irrelevant, against, and in favor of hB depending on the
remaining evidence. �
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Table 10.3 Discrimination
between hypothesis hB and
the alternative hypothesis hL

"0 B

"S "X "D 0:281

"S "X − 0:258

"S − "D 3:869

"S − − 3:667

− "X "D 0:134

− "X − 0:127

− − "D 0:992

− − − 1

10.1.4 Discrimination of Competing Hypotheses

A central question considered by SE analysis is how different subsets of the
evidence discriminate between competing hypotheses. The challenge is to compare
the impact of subsets of the evidence on competing hypotheses.

We consider the discrimination between two different hypotheses represented as
states of two different variables. Thus, let X be the hypothesis variable of interest
and let Y be an alternative hypothesis variable where X 6D Y .

In Sect. 3.5, we describe how the discrimination of a pair of competing
hypotheses x 2 dom.X/ and y 2 dom.Y / may be based on the calculation of
Bayes’ factor B (or Bayesian likelihood ratio)for all subsets "0 � " of a set of
evidence ":

B D posterior odds ratio

prior odds ratio
D P.x |"0/=P.y |"0/

P.x/=P.y/
D P."0 |x/
P."0 |y/

D L.x |"0/
L.y |"0/

; (10.1)

where we assume P.x/ > 0, P.y/ > 0, and P."0/ > 0. Bayes’ factor is the ratio of
the likelihoods of hypothesis x and y given the evidence "0.

From (10.1), we see that:

B > 1 if the evidence "0 provides more support for x than for y.
B < 1 if the evidence "0 provides less support for x than for y.
B D 1 if the evidence "0 does not provide useful information for differentiating
between x and y.

This analysis requires one belief update for each subset "0 � ".

Example 10.4 (Example 10.3, cont.). Assume that hL W Cancer D yes is an
alternative hypothesis to the hypothesis hB . Table 10.3 shows Bayes’ factor for the
hypothesis hB and the alternative hypothesis hL.

From Table 10.3, it is clear that subsets {"S } and {"S ; "D} act in favor of the
hypothesis hB when compared with the alternative hypothesis hL. On the other
hand, the remaining subsets act slightly against the hypothesis hB when compared
with the alternative hypothesis hL. �
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Table 10.4 What-if analysis
on findings Y y0

P.B D yes |" \
{"Y }; y

0/

D no 0:092

D yes 0:565

S no 0:565

S yes 0:714

X no 0:774

X yes 0:565

10.1.5 What-If Analysis

In what-if analysis, the type of question considered is the following. What if the
finding on a discrete random variable Y 2 X."/ had been the observation Y D y0
instead of Y D y (represented by the finding "Y 2 ", where " is the set of evidence)?
We consider a hypothesis-driven approach to what-if SE analysis.

Hypothesis-driven what-if analysis is performed by computing the posterior
probability distribution P.X |" \ {"Y }; y

0/ of the hypothesis variable X for each
possible state y0 6D y of the observed variable Y .

The posterior probability distribution P.X |" \ {"Y }; y
0/ specifies the impact

of each possible instantiation of Y on the posterior distribution of the hypothesis
variable X . The analysis requires one belief update for each y0 2 dom.Y /. Notice
that "Y need not be an instantiation of Y , that is, "Y may be soft evidence.

Example 10.5 (Example 10.4, cont.). For each finding variable Y , we may consider
the impact of each possible observation Y D y. Table 10.4 shows the posterior
belief in the hypothesis B D yes given the evidence where the finding y is
substituted with each possible state y0 2 dom.Y /.

From Table 10.4, it is clear that changing the observation on D from yes to no
has a significant impact of the posterior belief in the hypothesis B D yes. On the
other hand, the posterior belief in the hypothesisB D yes has a lower sensitivity to
observations on S and X .

Since each finding (i.e., "S , "X , or "D) is an instantiation, one row for each
observed variable Y corresponds to the posterior belief in the hypothesis B D yes.
That is, P.B D yes |"/ D 0:565 is represented three times in the table. �

10.1.6 Impact of Findings

Let X D x be the hypothesis of interest where X is the hypothesis variable and
let " be the entire set of evidence. The impact of each finding "Y 2 " on the
probability of x is determined by computing and comparing the prior probability
of the hypothesis, P.x/, the posterior probability of the hypothesis given the entire
set of evidence, P.x |"/, and the posterior probability of the hypothesis given the
entire set of evidence except the finding "Y , P.x |" \ {"Y }/.
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Table 10.5 Findings impact
analysis

"Y P.B D yes/ P.B D yes |" \ {"Y }/ P.B D yes |"/

"S 0:45 0:682 0:565

"X 0:45 0:754 0:565

"D 0:45 0:3 0:565

To relate the impact of individual findings on the probability of the hypothesis,
we define the notions of an important finding, a redundant finding, and an irrelevant
finding:

• A finding "Y 2 " is important when the difference between the probability q D
P.x |" \ {"Y }/ of the hypothesis given the entire set of evidence except "Y and
the probability p D P.x |"/ of the hypothesis given the entire set of evidence is
too large; that is, the probabilities p and q are not almost equal (d.p; q/ � ı).

• A finding "Y 2 " is redundant when q D P.x |" \ {"Y }/ is almost equal to p D
P.x |"/; that is, d.p; q/ < ı.

• A finding "Y 2 " is irrelevant when q D P.x |"0 \ {"Y }/ is almost equal to p D
P.x |"0/ for all subsets "0; that is, d.p; q/ < ı for all subsets "0. That is, the
finding "Y is redundant for all subsets of the evidence.

The term almost equal is defined based on the distance measure introduced in
Sect. 10.1.1. Similarly, a sufficient set of evidence is defined as:

• A subset of evidence "0 � ", for example, the entire set of evidence " except
a certain finding "Y , is sufficient when q D P.x |"0/ is almost equal to p D
P.x |"/; that is, d.p; q/ < ı.

The impact of each finding "Y may be considered for each state or a certain state
of the hypothesis variableX . Sufficiency ıs and importance ıi thresholds should be
specified by the user.

Example 10.6 (Example 10.5, cont.). We may be interested in considering the
impact of each finding "Y 2 " on the probability of the hypothesis B D yes by
comparing P.B D yes/, P.B D yes |"/, and P.B D yes |" \ {"Y }/. Table 10.5
shows the prior belief in the hypothesis B D yes, the posterior belief given all
evidence P.B D yes |"/, and the posterior belief given all evidence except a single
finding P.B D yes |" \ {"Y }/.

From Table 10.5, we make the following observations:

• The finding "S is important. At sufficiency threshold ıs D 0:02, the finding "S is
redundant, and "\ {"S } is sufficient. At cost-of-omission threshold ıo D 0:03, the
evidence "S would not be included in the analysis.

• The finding "X is important.
• The finding "D is important.

The subset "0 D {"S ; "X ; "D} D " is, of course, also sufficient. The analysis is
performed using threshold values ıo D 0:0001, ıs D 0:02, and ıi D 0:05.

Table 10.6 shows the cost-of-omission c.P.B |"/; P.B |" \ {"Y }// and the
distance d.P.B D yes |"/; P.B D yes |" \ {"Y }// for each finding "Y . �
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Table 10.6 Cost-of-
omission and distance in
posterior beliefs of the
hypothesis for each finding

"Y

c.P.B |"/; P.B |"\

{"Y }//

d.P.B D yes |"/; P.B D
yes |" \ {"Y }//

"S 0:03 0:171

"X 0:085 0:25

"D 0:151 0:884

10.2 Parameter Sensitivity Analysis

Parameter sensitivity analysis (SP analysis) is the analysis of how sensitive the
results of a belief update (propagation of evidence) is to variations in the value of a
parameter of the model. The parameters of a model are the entries of the conditional
probability distributions.

Consider the situation where company management allocates resources to
research and development projects based on an estimation of projects’ successes.
The success of a project depends on the ability of the project management to obtain
certain environmental permissions from the authorities. This and other properties of
the domain are modeled as a Bayesian network. As part of the model construction,
the knowledge engineers (and the management of the company) would like to
assess how sensitive the conclusion of the model (i.e., the probability of project
success) is to the prior probability of a specific environmental permission being
obtained. Parameter sensitivity analysis is designed to answer such questions. Given
a Bayesian network model, a hypothesis, and a set of evidence, the task is to
determine the sensitivity of the posterior belief in the hypothesis to variations in
the value of an assessed parameter.

We consider scenario-based SP analysis on discrete random variables with
respect to changes in a single parameter value where a scenario S is defined as a
vector consisting of a hypothesis variable H , a state of the hypothesis variable h,
and a set of evidence ", that is, S D .H; h; "/.

Example 10.7 (Parameter Sensitivity Analysis). Apple Jack, see Example 4.1 on
page 71, is interested in computing the probability of his finest apple tree being
sick. His hypothesis is that the tree is sick, that is, the hypothesis is Sick D yes. The
evidence available to support the reasoning of Apple Jack is that the tree is losing its
leaves. Thus, the scenario under consideration is S D .Sick; yes; {Loses D yes}/.
Given the Bayesian network shown in Fig. 4.1 on page 72 and the conditional
probability distributions P.Sick/ D .0:95; 0:05/, P.dry/ D .0:9; 0:1/, and
P.Loses |Sick;Dry/ as specified in Table 4.1 on page 73, the posterior distribution
of the hypothesis given the observation, P.Sick D yes |"/, is 31:62%.

How sensitive is this posterior probability to small variations in the quantification
of the model? For instance, how would the posterior probability of the hypothesis
change if the prior probability of Dry D yes decreases from 0:1 to 0:075? Setting the
prior probability of Dry D yes to 0:075, the posterior distribution of the hypothesis
given the observation, P.Sick D yes |"/, is 36:64%.
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This shows that the posterior probability of the hypothesis Sick D yes (and other
events) changes when the prior on Dry D yes is changed to 0:075 (from 0:1).
The posterior probability of Sick D yes increases from 31:52% to 36:64%. This
seems intuitive as the prior of one cause decreases and the posterior of another cause
increases given the observed effect. However, what if the prior had been changed to a
different value? Is it necessary to compute the posterior probability of the hypothesis
for all possible values of P.Dry D yes/, that is, the parameter we are investigating?

The aforementioned questions may be answered more efficiently using parameter
sensitivity analysis. �

10.2.1 Sensitivity Function

Parameter sensitivity analysis is based on the observation that the probability
of the evidence is a linear function of any single parameter in the model, that
is, any entry of any conditional probability distribution (Castillo, Gutiérrez &
Hadi 1997, Coupé & van der Gaag 1998). That is, y D P."/ as a function of a
conditional probability t D P.X D x |pa.X/ D z/ has the simple form y D ˛ �tCˇ
where ˛; ˇ 2 R. This implies that the conditional probability of a hypothesish given
evidence " as a function of a parameter t has the form

f .t/ D P.h |"/.t/ D P.h; "/.t/

P."/.t/
D ˛ � t C ˇ

� � t C ı
;

where ˛; ˇ; �; ı 2 R. Hence, the posterior probability P.h |"/ is a quotient of two
linear functions of the parameter t .

The function f .t/ is known as the sensitivity function. The coefficients of the
sensitivity function are determined separately for its numerator and denominator
functions. The coefficients of a linear function can be determined from two values
of the function for two different values of the parameter. We can compute the
value of the function for two different values of the parameter by propagating the
evidence twice (once for each of the two parameter values). When determining
the coefficients of the sensitivity function, we use proportional scaling to change
the remaining related parameters such that they keep the original proportion. This
implies that when we change the parameter value for t , the remaining probability
values for the corresponding parent configuration (i.e., P.X D x0 |pa.X/ D z/
for all x 6D x0) are scaled proportionally (Chan & Darwiche 2002a). We need
to scale the values such that the values sum to one; that is,

P
x P.x |pa.X//D1.

Assume P.X |pa.X/ D z/ D .p1; : : : ; pn/ is the initial assessment of the
probability ofX given pa.X/ D z andpi is the parameter value under consideration.
Proportional scaling on pj for j 6D i when changing pi to pi� amounts to
computing

p�
j D pj .1− p

�
i /P

j 6Di pj
;

where .p�
1 ; : : : ; p

�
n / is the updated probability of X given pa.X/ D z.
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We assume that each parameter can be varied independently of other parameters
and that each parameter is non-extreme, that is, it can be varied in an open interval
around its initial assessment.

Example 10.8 (Proportional Scaling). Assume that the variable Dry has three
states, no, dry, and Very dry, with a prior distribution P.Dry/ D .0:9; 0:08; 0:02/.
Let S D .Dry; no; {Loses D yes}/ be the scenario under consideration. If we want
to investigate the impact of adjusting the parameter P.Dry D no/ D 0:9 to 0:875,
then it is necessary to adjust the values of the other two parameters such that all
three adjusted parameters sum to one. This is achieved by proportional scaling such
that the adjusted prior distribution becomes

P.Dry/ D
�
0:875;

0:08 � .1− 0:875/
0:08C 0:02

;
0:02 � .1− 0:875/
0:08C 0:02

�

D .0:875; 0:1; 0:025/:

When a variable has only two states, a change in the value of one parameter must
induce a similar (but opposite) change in the other parameter. �

Example 10.9 (Sensitivity Function). Let S D .Sick; yes; " D {Loses D yes}/
be the scenario under consideration. Hence, the hypothesis under investigation
is Sick D yes while the parameter in focus is t D P.Dry D yes/. The sensitivity
function f .t/ where t is the parameter for P.Dry D yes/ is

f .t/ D P.Sick D yes |Loses D yes/

D P.Sick D yes; Loses D yes/

P.Loses D yes/

D ˛ � t C ˇ

� � t C ı

D 0:0025 � t C 0:045

0:791 � t C 0:064

The coefficients of denominator and numerator functions are determined separately.
Both functions are linear in the parameter t . Thus, the coefficients of each function
can be determined by propagating evidence for two different parameter values. For
instance, the coefficients � and ı of the denominator can be determined as

� D P.Loses D yes/.t1/− P.Loses D yes/.t0/

t1 − t0
D 0:2222− 0:1431

0:2− 0:1
D 0:791

ı D P.Loses D yes/.t0/− � � t0 D 0:1431− 0:791 � 0:1 D 0:064;

where t0 D 0:1 and t1 D 0:2 are two different values of the parameter t .
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Fig. 10.2 The graph of the sensitivity function f .t/ D P.Sick D yes |Loses D yes/ as a function
of t D P.Dry D yes/

The graph of the sensitivity function f .t/ for all possible values of t , that is,
values of t between zero and one, is plotted in Fig. 10.2.

Figure 10.2 shows that the minimum value of the probability of the hypothesis
is 0:0556 for t D 1 while the maximum value of the probability of the hypothesis
is 0:7031 for t D 0. Thus, no matter what value of t is specified P.Sick D yes |"/ is
between 0:0556 and 0:7031. In addition, it is clear from Fig. 10.2 that the posterior
probability of the hypothesis is more sensitive to small variations in the parameter
value when the initial parameter value is in the range from 0 to, say, 0:25 than when
the initial parameter is in the range from 0:25 to 1. �

Performing two full propagations of the evidence for each parameter value
may be inefficient if the number of parameters is large. Jensen (2001) describes
a modeling technique for computing the coefficients of the linear function based on
introducing an auxiliary variable (for each parameter inspected). By introducing an
auxiliary variable, it is possible to reduce the number of messages to be passed in the
junction tree representation. Kjærulff & van der Gaag (2000) describe an approach
for making sensitivity analysis computationally efficient while Madsen (2005)
describes a propagation method that makes it possible to compute the coefficients
for all parameters from a single propagation in a junction tree representation.

10.2.2 Sensitivity Value

The partial derivative f 0.t/ D @P.h |"/=@t of the sensitivity function f .t/ with
respect to t expresses how much P.h |"/.t/ changes as a function of t given small
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variations in the initial assessment. The partial derivative f 0.t/ of the sensitivity
function on t is

f 0.t/ D ˛ � ı − ˇ � �
.� � t C ı/2

:

The partial derivative reflects how the posterior probability of the hypothesis h
changes with changes in the parameter t under evidence scenario ". Wang, Rish
& Ma (2002) define parameter sensitivity S.t |h; "/ as f 0.t/ D @P.h |"/=@t .
The sensitivity value of a parameter is defined as |S.t |h; "/|, that is, the absolute
value of the derivative of the sensitivity function at the initial assessment of the
parameter (Laskey 1993). The sign of S.t |h; "/ indicates whether the probability of
the hypothesis is increasing or decreasing in t .

The sensitivity value can be used as a guide to identify parameter assessments
where small variations in the value may have the largest impact on the posterior
probability of the hypothesis given the evidence. In general, a parameter is of interest
when the sensitivity value is greater than zero. Parameter sensitivity analysis enables
us to identify the most important parameter assessments in the Bayesian network.
Let t 0 and t 00 be two parameters. If t 0 has a higher sensitivity value than t 00, then t 0
will intuitively induce a larger change on the probability of interest than t 00 given
the same variation in the parameter assessments.

When considering sensitivity analysis with respect to multiple evidence sets,
we may choose to weigh the parameter sensitivity with the probability of the
evidence, that is, P."/ �S.t |h; "/ as different evidence scenarios may have different
probabilities. Parameter importance defines the importance of a parameter across
multiple evidence scenarios " and multiple hypotheses h. Wang et al. (2002) define
parameter importance I.t/ as

I.t/ D 1

mn

X

h;"

S.t |h; "/ D 1

mn

X

h;"

@P.h |"/

@t
;

where m is the number of hypotheses and n is the number of evidence scenarios.
The importance value of a parameter is defined as |I.t0/|, that is, the absolute value
of the parameter importance function at the initial assessment of the parameter.

Example 10.10 (Sensitivity Value). Let S D .Dry; yes; {Loses D yes}/ be the
scenario under consideration. The initial value of the parameter of interest t D
P.Dry D yes/ is t0 D 0:1. This implies that the sensitivity value of the parameter t
is f 0.t0/ D 17.

On the other hand, the conditional probabilityP.Loses D yes |Dry D yes;Sick D
yes/ has sensitivity function

f .t/ D 0:005 � t C 0:13835

0:005 � t C 0:0405
:

The initial parameter assessment is t0 D 0:95, and the sensitivity value is 0:24. �



316 10 Sensitivity Analysis

10.2.3 Admissible Deviation

Parameter sensitivity values may be used to focus the knowledge elicitation
resources in the model construction process. The sensitivity function, its derivative,
and the sensitivity value are not sufficient tools for analyzing how the change in a
parameter t may change the most likely state of a hypothesis variableH .

We extend the basic sensitivity analysis method with the calculation of an interval
within which the parameter under investigation can be varied without changing the
most likely value of the hypothesis variable of interest. Let H be the hypothesis
variable of interest, " the evidence scenario under consideration, and t the parameter
under investigation with initial assessment t0. The admissible deviation of t from t0
is a pair of real numbers .r; s/ such that t can be varied from max.0; t0 − r/

to min.1; t0Cs/without changing the most likely state ofH , that is, arg maxP.h |"/
is unchanged by the deviation of t from t0. The values of .r; s/ should be the largest
such numbers for which the property is satisfied (van der Gaag & Renooij 2001).
The admissible deviation interval is Œmin.0; t0 − r/I max.1; t0 C s/�. Notice that the
interval specifying the admissible deviation is in general not symmetric around the
value t0, that is, in general r is not equal to s.

Some parameters may take any value without changing the most likely state
of H . This implies that the value of the parameter can be varied over the entire
range Œ0I 1� without changing the most likely state of the hypothesis. In this case the
admissible deviation interval is specified as .∞;∞/.

Example 10.11 (Admissible Deviation). Assume that Apple Jack is interested in
determining whether or not his apple tree is sick. The hypothesis variable of interest
is Sick, the evidence scenario is Loses D yes, and the parameter under investigation
is t D P.Dry D yes/. How much can the parameter t be varied without inducing
a change in the most likely state of Sick? Apple Jack wants to know the admissible
deviation of t .

The sensitivity function f .t) for Sick D no is

f .t/ D 0:7885 � t C 0:019

0:791 � t C 0:064
:

The sensitivity functions for Sick D no and Sick D yes are shown in Fig. 10.3.
For t D 0:033, we have P.Sick D yes |"/ D P.Sick D no |"/ D 0:5. Since

the hypothesis variable Sick is binary, the two states have equal probability when
they both have probability 0:5. Assuming that t0 D 0:1, the admissible deviation
of t is the pair .−0:0967;∞/, that is, the value of the parameter t can be varied
from 0:033 D 0:1 − 0:0967 to 1 without changing the hypothesis with highest
probability. �
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Fig. 10.3 The graph of the sensitivity functions for Sick D yes and Sick D no

10.3 Two-Way Parameter Sensitivity Analysis

In Sect. 10.2, we considered one-way parameter sensitivity analysis, that is, how
sensitive the results of a belief update are to variations in the value of a single
parameter of the model. In this section, we consider the case of two-way parameter
sensitivity analysis where the values of two parameters of the model are varied
jointly.

Two-way parameter sensitivity analysis is considered under the same assump-
tions as the one-way parameter sensitivity analysis considered in Sect. 10.2.

10.3.1 Sensitivity Function

As mentioned in Sect. 10.2, one-way parameter sensitivity analysis is based on the
observation that the probability of the evidence is a linear function of any single
parameter in the model, that is, any entry of any conditional probability distribution.
In the case of two-way parameter sensitivity analysis, the probability of the evidence
is a multilinear function of any two parameters in the model, i.e., any two entries
of any one or two conditional probability distributions. That is, y D P."/ as a
function of two conditional probabilities t1 D P.X1 D x1 |pa.X1/ D z1/ and t2 D
P.X2 D x2 |pa.X2/ D z2/ has the slightly more complex form of a multilinear
function y D ˛ � t1 � t2 C ˇ � t1 C � � t2 C ı where ˛; ˇ; �; ı 2 R. This implies that
the conditional probability of a hypothesis h given evidence " as a function of two
parameters t1 and t2 has the form
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f .t1; t2/ D P.h |"/.t1; t2/ D P.h; "/.t1; t2/

P."/.t1; t2/

D ˛1 � t1 � t2 C ˇ1 � t1 C �1 � t2 C ı1

˛2 � t1 � t2 C ˇ2 � t1 C �2 � t2 C ı2
;

where ˛1; ˛2; ˇ1; ˇ2; �1; �2; ı1; ı2 2 R. Hence, the posterior probability P.h |"/ is a
quotient of two multilinear functions of the parameters t1 and t2.

If the parameters t1 and t2 are independent, then y D ˛ � t1 � t2 Cˇ � t1 C � � t2 C ı

simplifies to y D ˇ � t1 C � � t2 C ı as ˛ D 0. This is, for instance, the case for two
parameters in the same conditional probability distribution for two different parent
configurations. In this case, the sensitivity function simplifies to

f .t1; t2/ D ˇ1 � t1 C �1 � t2 C ı1

ˇ2 � t1 C �2 � t2 C ı2
;

where ˇ1; ˇ2; �1; �2; ı1; ı2 2 R. Hence, the posterior probability P.h |"/ is a
quotient of two multilinear functions of the parameters t1 and t2.

Example 10.12 (Two-Way Sensitivity Analysis). As mentioned in Sect. 10.2, Apple
Jack, see Example 4.1 on page 71, is interested in computing the probability of
his finest apple tree being sick. His hypothesis is that the tree is sick, that is, the
hypothesis is Sick D yes. The evidence available to support the reasoning of Apple
Jack is that the tree is losing its leaves. Thus, the scenario under consideration
is S D .Sick; yes; {Loses D yes}/. Given the Bayesian network shown in Fig. 4.1
on page 72 and the conditional probability distributions P.Sick/ D .0:95; 0:05/,
P.Dry/ D .0:9; 0:1/, and P.Loses |Sick;Dry/ as specified in Table 4.1 on page 73,
the posterior distribution of the hypothesis given the observation, P.Sick D yes |"/,
is 31:62%.

In Sect. 10.2, we considered how sensitive this posterior probability is to small
variations in a single parameter of the model. The sensitivity function f .t/ for
parameter t D P.Dry D yes/ was computed as

f .t/ D 0:0025 � t C 0:045

0:791 � t C 0:064
:

Here we consider how sensitive this posterior probability is to small variations in a
pair of parameters of the model. Let t1 D P.Dry D yes/ and t2 D P.Loses D
yes |Dry D yes;Sick D yes/ be the two parameters in focus. The sensitivity
function f .t1; t2/ is computed as

f .t1; t2/ D 0:05 � t1 � t2 − 0:045 � t1 C 0 � t2 C 0:045

0:05 � t1 � t2 C 0:7435 � t1 C 0 � t2 C 0:064
:

For each multilinear function, the coefficients can be calculated by entering and
propagating two different (non-extreme) values for each parameter (resulting in
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Fig. 10.4 The graph of the sensitivity function f .t1; t2/ D P.Sick D yes |Loses D yes/ as a
function of t1 D P.Dry D yes/ and t2 D P.Loses D yes |Dry D yes;Sick D yes/, where
t0 D .t10 D 0:1; t20 D 0:95/ are the initial values of the two parameters in focus

four propagations) and solving the resulting four linear equations. That is, these
calculations are performed for both the numerator and the denominator.

The graph of the sensitivity function f .t1; t2/ for all possible values of t1 and t2,
that is, values of t1 and t2 between zero and one, is plotted in Fig. 10.4.

Figure 10.4 shows that the minimum value of the probability of the hypothesis
is 0 for t1 D 1 and t2 D 0 while the maximum value of the probability of the
hypothesis is 0:7031 for t1 D 0 and t2 D 1 (t2 can take any value for t1 D 0).
Thus, no matter what values of t1 and t2 are specified P.Sick D yes |"/ is between
0 and 0:7031. In addition, it is clear from Fig. 10.4 that the posterior probability
of the hypothesis is sensitive to small variations in the initial parameter values of t1
and t2. Given the initial parameter assessments, the posterior probability seems most
sensitive to variations in t1. �

Notice that the parameters under consideration must not be 0 or 1 because the
method used to compute the constants in the sensitivity function will fail in these
cases.

In principle, it is possible to perform an n-way sensitivity parameter analysis
on any n parameters of the model. The computations involved in determining
the coefficients of the sensitivity function become more and more complex as n
increases. For practical purposes, it is recommended to consider one-way or at most
two-way parameter sensitivity analysis only.
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10.4 Parameter Tuning

In some cases, we may want to tune the parameters of a Bayesian network model
by imposing constraints on the posterior probabilities computed. For instance, it
may be that we would like to impose a constraint of the posterior probability of a
hypothesis under a specific evidence scenario. This can be achieved using properties
of parameter sensitivity analysis. Here we consider how the results related to one-
way parameter sensitivity analysis can be used to tune the parameters of a Bayesian
network model. Major parts of this section are taken from Jensen (2010).

Recall the equation for the sensitivity function in the case of one-way parameter
sensitivity analysis

f .t/ D P.h |"/.t/ D ˛ � t C ˇ

� � t C ı
:

The sensitivity function describes how the posterior probability P.h |"/.t/ of the
hypothesis h given " changes as a function of the parameter t . Using this function,
we can compute the values of t that satisfy a given constraint on the posterior
probability. Chan & Darwiche (2002b) consider three different types of constraints

P.h |"/ � � .Simple/

P.h1 |"/− P.h2 |"/ � � .Difference/

P.h1 |"/=P.h2 |"/ � � .Ratio/

where � is a constant and P.h1 |"/ and P.h2 |"/ are posterior probabilities for
different hypotheses h1 and h2 given the same evidence ". The hypotheses h1 and h2
may or may not be states of the same variable. Hence, we assume two sensitivity
functions fh1.t/ and fh2.t/ such that

fh1.t/ D ˛1 � t C ˇ1

� � t C ı

fh2 .t/ D ˛2 � t C ˇ2

� � t C ı
:

Since the evidence scenario is the same, the denominators of fh1.t/ and fh2.t/ are
identical. For the Simple constraint P.h |"/ � � , we can write

P.h |"/ D ˛ � t C ˇ

� � t C ı
� �

” .˛ − � � �/ � t � −ˇ C ı � �:
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This means that

t � −ˇ C ı � �
˛ − � � � ; if ˛ − � � � > 0;

t � −ˇ C ı � �
˛ − � � � ; if ˛ − � � � < 0:

That is, if the value of ˛ − � � � is positive, then a lower bound for t is obtained
whereas an upper bound is obtained if the value is negative. For the Difference
constraint P.h1 |"/− P.h2 |"/ � � , we can write

P.h1 |"/− P.h2 |"/ D ˛1 � t C ˇ1

� � t C ı
−
˛2 � t C ˇ2

� � t C ı
� �

” .˛1 − ˛2 − � � �/ � t � −ˇ1 C ˇ2 C � � �:

This means that

t � −ˇ1 C ˇ2 C � � �
˛1 − ˛2 − �

; if ˛1 − ˛2 − � � � > 0;

t � −ˇ1 C ˇ2 C � � �
˛1 − ˛2 − �

; if ˛1 − ˛2 − � � � < 0:

That is, if the value of ˛1 − ˛2 − � � � is positive, then a lower bound for t is
obtained whereas an upper bound is obtained if the value is negative. For the Ratio
constraint P.h1 |"/=P.h2 |"/ � � , we can write

P.h1 |"/=P.h2 |"/ D ˛1 � t C ˇ1

� � t C ı
=
˛2 � t C ˇ2

� � t C ı
� �

” .˛1 − ˛2 � �/ � t � −ˇ1 C ˇ2 � �:

This means that

t � −ˇ1 C ˇ2 � �
˛1 − ˛2 � � ; if ˛1 − ˛2 � � > 0;

t � −ˇ1 C ˇ2 � �
˛1 − ˛2 � � ; if ˛1 − ˛2 � � < 0:

That is, if the value of ˛1 − ˛2 � � is positive, then a lower bound for t is obtained
whereas an upper bound is obtained if the value is negative.

In each case we assume that the parameter t under consideration has an impact
on both h1 and h2. If this is not the case, then the equations above will simplify
accordingly. The equations can be used to find the parameter value of t that satisfy
the chosen constraint. The next example illustrates how the equations for the Simple
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Table 10.7 Parameter values
that satisfy the
constraint P.Sick D
yes |"/ � 0:35

Parameter Current value Suggested value

P.Dry D no/ 0:9 � 0:9177

P.Dry D yes/ 0:1 � 0:0823

P.Sick D no/ 0:95 � 0:9422

P.Sick D yes/ 0:05 � 0:0578

constraint can be used to adjust the value of a parameter of the model in order to
satisfy the constraint.

Example 10.13 (Parameter Tuning). Consider again Apple Jack from Example 4.1
on page 71, and assume as in Example 10.12 that the scenario under consideration
is S D .Sick; yes; {Loses D yes}/. Apple Jack is interested in computing the
probability of his finest apple tree being sick. His hypothesis is that the tree is
sick, that is, the hypothesis is Sick D yes. Given the initial parameterization
of the Bayesian network, the posterior distribution of the hypothesis given the
observation,P.Sick D yes |"/, is 0:3162. Assume we want to adjust the model such
that P.Sick D yes |"/ � 0:35. The question is how can we adjust the parameters of
the model such that this constraint is satisfied.

Let t be the parameter under consideration for adjustment in order to satisfy
the constraint. In Example 10.9, the sensitivity function f .t/ for parameter t D
P.Dry D yes/ was computed as

f .t/ D 0:0025 � t C 0:045

0:791 � t C 0:064
:

Using the equation above, we can compute the value for each parameter where the
constraint is satisfied. For the parameter t D P.Dry D yes/, we may compute

f .t/ D 0:0025 � t C 0:045

0:791 � t C 0:064
� 0:35

” .0:0025− 0:791 � 0:35/ � t � −0:045C 0:064 � 0:35
” t � 0:0823:

Hence, if t � 0:0823, then the constraint is satisfied. A similar computation can be
performed for each of the other parameters that can be adjusted.

Table 10.7 shows examples of parameter values that satisfy the constraint
P.Sick D yes |"/ � 0:35. Which parameter to adjust will depend on the
circumstances, but in the example, it is clear that the adjustment producing
the smallest absolute change in a parameter value is to change the prior on
P.Sick/. �
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10.5 Summary

In this chapter we have considered evidence and parameter sensitivity analysis in
Bayesian networks.

The objective of evidence sensitivity analysis is to investigate how sensitive the
result of a belief update is to variations in the set of evidence. To support this
analysis, we have defined two distance measures designed to provide a numerical
value specifying the distance between either two probabilities or two probability
distributions. Based on the distance measures, we have described five different types
of evidence sensitivity analysis: identifying minimum and maximum beliefs, impact
of evidence subsets, discrimination of competing hypotheses, what-if analysis, and
impact of findings. We described how parameter sensitivity analysis can be used for
parameter tuning and how to perform two-way parameter sensitivity analysis.

The objective of parameter sensitivity analysis is to investigate how sensitive the
result of a belief update is to variations in a parameter of the model. It has been
shown that there is a simple functional relation between the probability of a set of
evidence and an entry of a conditional probability table, that is, a parameter. The
probability of the evidence is a simple linear function of the parameter. This insight
may be used to perform parameter sensitivity analysis on the posterior probability
of a hypothesis given a set of evidence. Parameter sensitivity values may be used to
focus the knowledge elicitation resources in the model construction process.

In Chap. 11, we consider value of information analysis. Value of information
analysis is to compute the value of potential new observations.

Exercises

Exercise 10.1. In the morning when Mr. Holmes leaves his house, he realizes that
his grass is wet. He wonders whether it has rained during the night or whether
he has forgotten to turn off his sprinkler. He looks at the grass of his neighbors,
Dr. Watson and Mrs. Gibbon. Both lawns are dry, and he concludes that he must have
forgotten to turn off his sprinkler. (This problem was also discussed in Exercise 6.3
on page 188.)

The structure of a network for modeling the above scenario is shown in Fig. 10.5.
The prior probabilities are P.Rain D no/ D P.Sprinkler D no/ D 0:9 while the

conditional probability distributions are shown in Tables 10.8–10.10.
The hypothesis under consideration is Sprinkler D yes.

(a) Identify the set of evidence.
(b) What is the impact of subsets of the evidence on the hypothesis?
(c) What subsets of the evidence discriminate the hypothesis from the alternative

hypothesis Rain D yes?
(d) How does the posterior distribution of the hypothesis change with changes in

the observed state for each evidence variable?
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Rain Sprinkler

Gibbon0s lawn Watson0s lawn Holmes0 lawn

Fig. 10.5 The wet grass network

Table 10.8 The conditional
probability distribution
P.Holmes0 lawn |Rain;Sprinkler/

Holmes0 lawn

Rain Sprinkler dry wet

no no 1 0

no yes 0:1 0:9

yes no 0:01 0:99

yes yes 0 1

Table 10.9 The conditional
probability distribution
P.Gibbon0s lawn |Rain/

Gibbon0s lawn

Rain dry wet

no 0:9 0:1

yes 0:01 0:99

Table 10.10 The conditional
probability distribution
P.Watson0s lawn |Rain/

Watson0s lawn

Rain dry wet

no 0:9 0:1

yes 0:01 0:99

(e) What is the impact of each individual piece of evidence on the posterior
distribution of the hypothesis?

Exercise 10.2. Consider the Asia network shown in Fig. 10.6 (see Example 4.2 on
page 73 for more details).

The Asia network consists of the three hypothesis variables Bronchitis, Cancer,
and Tuberculosis. The risk factors are Smoking and a recent visit to Asia while the
symptoms of the network are X ray and Dyspnoea. The risk factors and symptoms
are the possible observations a physician can make on a patient.

Assume the physician is diagnosing a smoking patient with dyspnea who has
recently been to Asia. The hypothesis under consideration is Bronchitis D yes.

(a) Identify the set of evidence.
(b) What is the impact of subsets of the evidence on the hypothesis?
(c) What subsets of the evidence discriminate the hypothesis from the alternative

hypothesis Cancer D yes?
(d) How does the posterior distribution of the hypothesis change with changes in

the observed state for each evidence variable?
(e) What is the impact of each individual piece of evidence on the posterior

distribution of the hypothesis?
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Asia Smoker

Tuberculosis Cancer Bronchitis

Tub or cancer

X ray Dyspnoea

Fig. 10.6 A graph specifying the independence and dependence relations of the Asia example

Exercise 10.3. One in a thousand people has a prevalence for a particular heart
disease. There is a test to detect this disease. The test is 100% accurate for people
who have the disease and is 95% accurate for those who do not (this means that 5%
of people who do not have the disease will be wrongly diagnosed as having it).

(a) If a randomly selected person tests positive, what is the probability that the
person actually has the heart disease?

(b) Compute the sensitivity function f .t/ D P.Heart Disease D yes |Test D
yes/.t/ where t D P.Heart Disease D yes/.

(c) Compute the sensitivity value for t0 D 0:001.
(d) Identify the admissible deviation of t .

Exercise 10.4. Let us consider parameter sensitivity analysis in the wet grass
network (cf. Exercise 10.1).

(a) Compute the sensitivity function f .t/ D P.Sprinkler D yes |Holmes 0 lawn D
wet;Watson 0s lawn D dry/.t/ where t D P.Rain D yes/.

(b) Compute the sensitivity value for t0 D 0:2.
(c) Compute the sensitivity function f .t/ D P.Rain D yes |Holmes 0 lawn D

wet;Watson 0s lawn D dry/.t/ where t D P.Rain D yes/.
(d) Identify the admissible deviation of t when the hypothesis is Sprinkler D yes

and the alternative hypothesis is Rain D yes.



Chapter 11
Value of Information Analysis

Probabilistic networks are constructed to support belief update and decision making
under uncertainty. A common solution to a belief update problem is the posterior
probability distribution over a hypothesis variable given a set of evidence. Similarly,
the solution to a decision-making problem is an optimal decision given a set of
evidence. When faced with a belief update or decision-making problem, we may
have the option to consult additional information sources for further information
that may improve the solution. Value of information analysis is a tool for analyzing
the potential usefulness of additional information before the information source is
consulted.

We consider a greedy hypothesis-driven approach to value of information (VOI)
analysis. At any time, at most one additional information source may be consulted
in the search for additional information. In the case of a belief update problem, we
assume that the posterior probability distribution of a certain hypothesis variable is
of interest and that a set of evidence is available. The task of value of information
analysis is to determine the value of information from different information sources,
that is, the value of making additional observations before accepting the posterior
distribution of the hypothesis as the solution to belief update. On the other hand,
in the case of a decision-making problem, we assume that we are about to make
a certain decision based on a set of observations on its relevant past. Again, the
task of value of information analysis is to consider the value of information from
different information sources, that is, the value of making additional observations
before making a decision based on the current expected utility function over the
decision options available.

In Sect. 11.1, we describe value of information analysis in Bayesian networks.
The value of information analysis in Bayesian networks is based on an informa-
tion theoretic approach using concepts such as entropy, mutual information, and
information gain. Entropy and mutual information are introduced as information
measures specifying the information gain by observing a variable. These informa-
tion measures are easy to compute using probabilistic inference. In Sect. 11.2, we
describe value of information analysis in influence diagrams where the change in
expected utility is used as the information measure. In both sections, we consider

U.B. Kjærulff and A.L. Madsen, Bayesian Networks and Influence Diagrams: A Guide
to Construction and Analysis, ISS 22, DOI 10.1007/978-1-4614-5104-4 11,
© Springer Science+Business Media New York 2013
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a greedy hypothesis-driven approach to value of information analysis where we
assume at most a single information source may be consulted in a quest for
additional information.

11.1 VOI Analysis in Bayesian Networks

Consider the situation where a decision maker has to make a decision based on the
probability distribution of a hypothesis variable. It could, for instance, be a physician
deciding on a treatment of a patient given the probability distribution of a disease
variable. For instance, if the probability of the patient suffering from the disease
is above a certain threshold, then the patient should be treated immediately. Prior
to deciding on a treatment, the physician may have the option to gather additional
information about the patient such as performing a test or asking a certain question.
Given a range of options, what option should the physician choose next? That is,
which of the given options will (on average) produce the most information? These
questions can be answered by a value of information analysis.

Given a Bayesian network model and a hypothesis variable, the task is to identify
the variable which is most informative with respect to the hypothesis variable.
Hence, we consider a greedy hypothesis-driven value of information analysis in
Bayesian networks.

11.1.1 Entropy and Mutual Information

The main reason for acquiring additional information is to decrease the uncertainty
about the hypothesis under consideration. The selection of the variable to observe
next (e.g., the question to ask next) can be based on the notion of entropy. Entropy is
a measure of how much the probability mass is scattered over the states of a variable
(the degree of chaos in the distribution of the variable), see Cover & Thomas (1991).
As such, entropy is a measure of randomness. The more random a variable is, the
higher its entropy will be.

Let X be a discrete random variable with n states x1; : : : ; xn and probability
distribution P.X/; then the entropy of X is defined as

H.X/ D −EP.X/ŒlogP.X/�

D −
X

X

P.X/ logP.X/

� 0:

The maximum entropy, log.n/, is achieved when the probability distribution,
P.X/, is uniform while the minimum entropy, 0, is achieved when all the probability
mass is located on a single state. Thus, H.X/ 2 Œ0; log.n/�.
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Since entropy can be used as a measure of the uncertainty in the distribution of
a variable, we can determine how the entropy of a variable changes as observations
are made. In particular, we can identify the most informative observation.

If Y is a random variable, then the entropy of X given an observation on Y is

H.X |Y / D −EP.X;Y /ŒlogP.X |Y /�

D −
X

Y

P.Y /
X

X

P.X |Y / logP.X |Y /

D H.X/− I.X; Y /;

where I.X; Y / is the mutual information (also known as cross entropy )ofX and Y .
The conditional entropy H.X |Y / is a measure of the uncertainty of X given
an observation on Y , while the mutual information I.X; Y / is a measure of the
information shared by X and Y (i.e., the reduction in entropy from observing Y ).
IfX is the variable of interest, then I.X; Y / is a measure of the value of observing Y .
The mutual information is computed as

I.X; Y / D H.X/−H.X |Y /

D H.Y /−H.Y |X/

D
X

Y

P.Y /
X

X

P.X |Y / log
P.X; Y /

P.X/P.Y /
:

In principle, I.X; Y / is a measure of the distance between P.X/P.Y / and
P.X; Y /. The conditional mutual information given a set of evidence " is computed
by conditioning the probability distributions on the available evidence ":

I.X; Y |"/ D
X

Y

P.Y |"/
X

X

P.X |Y; "/ log
P.X; Y |"/

P.X |"/P.Y |"/
:

We compute I.X; Y |"/ for each possible observation Y . The next variable to
observe is the variable Y that has the highest nonzero mutual information with X
(i.e., I.X; Y |"/), if any.

The probabilities needed for the computation of mutual information are readily
computed by message passing in a junction tree representation of the model.

11.1.2 Hypothesis-Driven Value of Information Analysis

Value of information analysis is the task of estimating the value of additional
information. When considering hypothesis-driven value of information analysis in
Bayesian networks, we need to define a value function in order to determine the
value of an information scenario. Entropy can be used as a value function.



330 11 Value of Information Analysis

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Entropy for the binary case

H.T /

Fig. 11.1 The entropy of T

In a hypothesis-driven value of information analysis, the value of an information
scenario is defined in terms of the probability distribution of the hypothesis variable.
If T is the hypothesis variable and entropy is used as the value function, then the
value function is defined as

V.T / D −H.T / D
X

T

P.T / log.P.T //:

The reason for using the negation of the entropy is best illustrated using an
example. Consider a binary hypothesis variable T with states false and true. Hence,
the distribution of T is fully specified by a single parameter p; that is, P.T D
false; T D true/ D .p; 1− p/. Figure 11.1 illustrates the entropy as a function of p
while Fig. 11.2 illustrates the negation of the entropy as a function of p.

As can be seen from Fig. 11.1, the entropy takes on its maximum value for the
uniform distribution and its minimum value for the extreme cases (p D 0 and pD1).
Since the value function should take on its maximum value at the extreme cases and
the minimum value in the uniform case, the negation of the entropy is used as the
value function as illustrated in Fig. 11.2.

The value of the information scenario after observing a variableX is

V.T |X/ D −.H.T /− I.X; T //:

Thus, greedy hypothesis-driven value of information analysis in Bayesian net-
works amounts to computing the value of the initial information scenario V.T / and
the value of information scenarios where a variableX is observed, that is, V.T |X/.
The task is to identify the variable that increases the value of information the most.
The most informative variable to observe is the variable with the highest mutual
information with the hypothesis variable.
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Fig. 11.2 The negation of the entropy of T

Asia.A/ Smoker.S/

Tuberculosis.T/ Cancer.L/ Bronchitis.B/

Tub or cancer.E/

X ray.X/ Dyspnoea.D/

Fig. 11.3 A graph specifying the independence and dependence relations of the Asia example

Example 11.1 (VOI Analysis in a Bayesian Network). As an example we consider a
greedy hypothesis-driven value of information analysis on the Asia example shown
in Fig. 11.3. The hypothesis variable is Bronchitis (B), and the initial set of evidence
is " D ;. That is, we are considering whether or not the patient is suffering from
bronchitis.

Given the network of Fig. 11.3, the hypothesis variable Bronchitis, and the initial
set of evidence " D {"D} D {D D yes}, we want to determine the most valuable
observation. We may compute the value of the initial information scenario as

V.Bronchitis/ D −H.Bronchitis/

D −
X

x2{no;yes}

P.Bronchitis D x/ logP.Bronchitis D x/

D −0:69;
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Table 11.1 Mutual
information
between Bronchitis and other
variables given no
observations

Variable name (X) I.Bronchitis; X/

Dyspnoea 0:25

Smoker 0:05

X ray 0:0008

Asia 0

Table 11.2 Mutual
information
between Bronchitis and other
variables
given Dyspnoea D yes

Variable name (X) I.Bronchitis; X/

X ray 0:014

Smoker 0:0129

Asia 0:0002

where

P.Bronchitis D yes/ D 1− P.Bronchitis D no/

D 0:45I

that is, P.Bronchitis/ D .yes; no/ D .0:55; 0:45/.
To identify the most informative observation, we compute the mutual information

between the hypothesis variable and each of the other variables in the model.
Table 11.1 specifies the mutual information between Bronchitis and each of the other
(unobserved) variables.

Notice that one of the variables has a mutual information measure of value
zero. A mutual information measure of zero specifies that the two variables are
independent (this can be easily verified applying d-separation).

From Table 11.1, it is clear that the most informative variable is Dyspnoea. Thus,
we choose to observe this variable. Assume we observe the patient to suffer from
dyspnoea; that is, Dyspnoea D yes. The value of the new information scenario can
be computed as described above:

V.Bronchitis |Dyspnoea D yes/ D −H.Bronchitis |Dyspnoea D yes/

D −0:45;

where P.Bronchitis |Dyspnoea D yes/ D .yes; no/ D .0:834; 0:166/. Once
the Dyspnoea variable has been observed to be in state yes, we may be satisfied
with the certainty in the hypothesis or we may search for the next observation to
make.

Table 11.2 shows the mutual information between Bronchitis and each of the
remaining unobserved variables when Dyspnoea is observed to be in state yes. The
variable with the highest mutual information score is X ray.

If the variable with the highest mutual information score is unobservable, then
we proceed to the variable with the second highest score. Notice that the mutual
information scores change as observations are made. Often both the score and the
order of the variables will change with observations.
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Variables with a score of zero should not be observed as they will not add any
information to the analysis. Notice that additional information cannot decrease the
value of an information scenario. �

11.2 VOI Analysis in Influence Diagrams

The value of information is a core element of decision analysis. We perform decision
analysis using influence diagram representations of decision problems. The structure
of an influence diagram N D .X;G;P;U/ specifies a partial order on observations
relative to the order of decisions

I0 
 D1 
 I1 
 � � � 
 Dn 
 In:

Value of information analysis in influence diagrams considers the impact of
changing the partial order of observations relative to decisions.

Assume Dj is the next decision to be made and let " be the set of observations
and decisions made up to decision Dj . Initially, the basis for making decision Dj

is the expected utility function EU.Dj |"/ over the options encoded by Dj .
Let Xi 2 Ik where k � j such that Xj 62 F.Dj / be a discrete random variable

with n states x1; : : : ; xn; that is,Xi is a variable observed afterDj or never observed
such that Xi is not a descendant of Dj . Assume Xi D x is observed prior to
making decision Dj . The revised basis for making decision Dj is the expected
utility function EU.Dj |"; x/. Prior to observing the state of Xi , the probability
distribution of Xi is P.Xi |"/. Thus, we can compute the expected utility of the
optimal decision atDj after Xi is observed EUO.Xi ;Dj |"/ to be

EUO.Xi ;Dj |"/ D
X

Xi

P.Xi |"/max
Dj

EU.Dj |";Xi/:

This value should be compared with the expected utility maxDj EU.Dj |"/ of the
optimal decision atDj without the observation onXi . The value VOI.Xi ;Dj |"/ of
observingXi before decisionDj is

VOI.Xi ;Dj |"/ D EUO.Xi ;Dj |"/− max
Dj

EU.Dj |"/:

Example 11.2 (VOI Analysis in Influence Diagrams). Appendicitis may cause
fever, pain, or both. If a patient has appendicitis, then the patient will have an
increased count of white blood cells in addition to fever and pain. Assume that
fever and pain are observed.

When a patient potentially has appendicitis, the physician may choose to operate
right away or wait for the result of a blood test. The question considered is whether
or not the result of the blood test provides sufficient value.
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Appendicitis

FeverPainWhite Blood Cells

Operate

U

Fig. 11.4 A graph representing the appendicitis example

Table 11.3 The conditional probability distribution P.Fever |
Appendicitis/

Appendicitis D no Appendicitis D yes

Fever D no 0:5 0:02

Fever D yes 0:5 0:98

Table 11.4 The conditional
probability distribu-
tion P.Pain |Appendicitis/

Appendicitis D no Appendicitis D yes

Pain D no 0:4 0:05

Pain D yes 0:6 0:95

Table 11.5 The conditional probability distribution P.White Blood Cells |
Appendicitis/

Appendicitis D no Appendicitis D yes

White Blood Cells D no 0:95 0:01

White Blood Cells D yes 0:05 0:99

Table 11.6 The utility func-
tion U.Appendicitis;Operate/

Appendicitis Operate

no now 5

no wait −5

yes now −10

yes wait 10

Figure 11.4 shows a graphical representation of the decision problem where we
assume fever and pain are observed while the blood test result is not (yet) observed.

To compute the value of information on White Blood Cells, the model has to be
quantified. Let P.Appendicitis D no;Appendicitis D yes/ D .0:85; 0:15/ and the
remaining conditional probability distributions be given as specified in Tables 11.3–
11.5. Table 11.6 shows the utility function U.Appendicitis; Operate/.
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Assume that the physician observes the patient to suffer from pain and fever;
that is, " D {Fever D yes;Pain D yes}. With the above quantification we compute
the expected utility function over Operate to be EU.Operate |Fever D yes;Pain D
yes/ D .0:31;−0:31/. We compute the expected utility of the optimal decision
at Operate after White Blood Cells is observed to be

EUO.White Blood Cells;Operate |"/

D
X

White Blood Cells

P.White Blood Cells |"/

max
Operate

EU.Operate |";White Blood Cells/

D 6:375:

The value of observing White Blood Cells before decision Operate is

VOI.White Blood Cells;Operate |"/

D EUO.White Blood Cells;Operate |"/− max
Operate

EU.Operate |"/

D 6:375− 0:31 D 6:065:

Thus, the physician should wait for the result of the blood test. �

Instead of considering which observation to make next, if any, at a decision
in the middle of the decision process, we may consider how the expected utility
of the optimal strategy O� changes as the partial order of observations is altered.
Let EU. O�/ be the expected utility of the original formulation of the decision
problem N and let EU. O��/ be the expected utility of the revised formulation of
the decision problem N� where a variable X 2 Ij in N and X 2 Ik in N� such
that j > k and X 62 F.Dk−1/. The value of observing X before decision k − 1

instead of before decision j − 1 is EU. O��/ − EU. O�/.
Example 11.3 (Reconsidering the Decision Problem in Example 11.2). Let us
compute the expected utility EU. O�/ of the optimal strategy O� for the information
scenario where White Blood Cells is not observed before making any observation to
be (where we use the first letter of each variable name to shorten the presentation)

EU. O�/ D
X

P

X

F

max
O

X

W

X

A

P.A/P.F |A/P.P |A/P.W |A/U.O;A/

D 2:99:

Similarly, we compute the expected utility EU�. O��/ of the optimal strategy O�� for
the information scenario where White Blood Cells is observed to be
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EU�. O��/ D
X

W

X

P

X

F

max
O

X

A

P.A/P.F |A/P.P |A/P.W |A/U.O;A/

D 5:45:

Based on the above analysis, the physician should wait for the result of the blood
test. The value of observing White Blood Cells prior to the decision is

VOI.White Blood Cells;Operate |"/ D EU�. O��/− EU. O�/
D 5:45− 2:99

D 2:46;

where " is the set of observations on Fever and Pain. �

11.3 Summary

In this chapter we have considered value of information analysis in Bayesian
networks and influence diagrams in two separate sections. In both cases, we
have described a greedy approach to value of information analysis, that is, value
of information analysis performed under the assumption that we may at most
consult one additional information source in the search for further information
before accepting the posterior distribution of the hypothesis variable or making the
decision. In order to perform value of information analysis in Bayesian networks,
we have defined entropy and mutual information as information measures. Entropy
is a measure of how much the probability mass is scattered over the states of the
hypothesis variable. In the evaluation of possible information sources, we identify
the possible observation that reduces the entropy of the hypothesis variable the most.
This will be the variable with the highest mutual information with the hypothesis
variable.

In the case of value of information analysis in influence diagrams, expected
utility is used as the information measure. In the evaluation of possible information
sources, we identify the possible observation that increases the expected utility of
the decision the most. This variable is identified by computing the expected utility of
the decision given that the variable is observed prior to the decision. This expected
utility is computed for each possible observation and compared with the expected
utility of the decision given no additional information.



Exercises 337

Exercises

Exercise 11.1. Consider the Asia network shown in Fig. 11.5 (see Example 4.2 on
page 73 for more details).

The Asia network consists of the three hypothesis variables Bronchitis, Cancer,
and Tuberculosis. The risk factors are Smoking and a recent visit to Asia while the
symptoms of the network are X ray and Dyspnoea. The risk factors and symptoms
are the possible observations a physician can make on a patient.

(a) What is the entropy of the prior distribution on each of the diseases?
(b) What is the most informative observation with respect to each of the diseases?
(c) What is the most informative observation with respect to each of the diseases if

the patient is a smoker suffering from dyspnoea?

Exercise 11.2. A used car salesman offers all potential customers a test performed
on the car they are interested in buying. The test should reveal whether the car has
either no defects or one (or more) defect; the prior probability that a car has one or
more defects is 0:3. There are two possible tests: Test1 has three possible outcomes,
namely, no defects, defects, and inconclusive. If the car does not have any defects,
then the probabilities for these test results are 0:8, 0:05, and 0:15, respectively.
On the other hand, if the car has defects, then the probabilities for the test results
are 0:05, 0:75, and 0:2. For Test2, there are only two possible outcomes (no defects
and defects). If the car does not have any defects, then the probabilities for the test
results are 0:8 and 0:2, respectively, and if the car has defects, then the probabilities
are 0:25 and 0:75.

(a) Construct a Bayesian network (both structure and probabilities) representing
the relations between the two tests and the state of the car.

(b) Calculate the probabilities P.StateOfCar |Test1/ and P.Test1/.
(c) Perform a value of information analysis on both Test1 and Test2 with respect to

StateOfCar.

Asia Smoker

Tuberculosis Cancer Bronchitis

Tub or cancer

X ray Dyspnoea

Fig. 11.5 A graph specifying the independence and dependence relations of the Asia example
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A B

C

T

D1

D2U1 U2

Fig. 11.6 An influence diagram with two decisions

Exercise 11.3. Assume we are given the influence diagram in Fig. 11.6.

P.A |D1/ d11 d12

a1 0:3 0:6

a2 0:7 0:4

P.B |A/ a1 a2

b1 0:1 0:8

b2 0:9 0:2

P.T |A;B/ a1 a2

b1 .0; 1/ .0:2; 0:8/

b2 .0:6; 0:4/ .0:8; 0:2/

P.C |B;D2/ b1 b2

d21 .0:9; 0:1/ .0:5; 0:5/

d22 .0:5; 0:5/ .0:9; 0:1/

U1.A;D2/ a1 a2

d21 10 0

d22 0 −6

U2.C / D .20; 0/

(a) Compute the solution to this decision problem (i.e., compute the strategy
maximizing the expected utility).

(b) Describe the impact of the information on variable T .
(c) Repeat parts (a) and (b) when P.A |D1 D d12/ D .0:4; 0:6/ and U2.C / D

.20; 100/.
(d) Assume the informational link between T andD2 is not present in the influence

diagram. Compute VOI.T / whenD1 D d12 for both quantifications.

Exercise 11.4. Assume that Frank wakes up one morning feeling ill. Frank thinks
that he may have caught the flu, and he now has to decide whether to go to the
pharmacy to buy some medicine (at the cost of e 150). If Frank has the flu, then the
medicine will relieve his discomfort during the sickness period; if he does not have
the flu, then the medicine will have no effect. Assuming that Frank does not suffer
from the discomfort caused by a flu, then he can take some additional overtime work
which will be worth e 2000.

Before Frank decides to go to the pharmacy, he can try to get more information
by buying a thermometer (at a cost of e 10.) and test whether he has a fever; the
thermometer is very precise and will indicate a fever if and only if Frank actually
has a fever.
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Table 11.7 The joint
probability
distribution P.Fever; Flu/

Flu

no yes

Fever no 0:89298 0:00095

yes 0:09702 0:00905

(a) Perform a myopic value of information analysis for the decision problem
above and calculate the expected profit of performing the test (i.e., buying
the thermometer at a cost of e 10 and taking the temperature). Calculate the
required probabilities from the joint probability table (over the variables Flu
and Fever) specified in Table 11.7.
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In this quick reference, we have listed those modeling methods, recommendations,
and tricks that appear in Chaps. 6 and 7. For each item, we give reference to the
page in the book, where the item is described in greater detail, as well as listing
some associated “dos” and “don’ts.”

Identifying the Variables (page 149). There are two kinds of variables: Chance
variables model events of the problem domain, which are not under control of
the decision maker. Decision variables represent decisions taken by the decision
maker. Variables can be discrete or continuous. Discrete variables take values
from a finite set of possible values. Continuous variables (page 75) take values
from the set of real numbers. For discrete variables:

Do:

• Make sure that the variables are well defined (page 149) such that it
can pass the clarity test (page 151); that is, each variable consists of an
exhaustive and mutually exclusive set of states, can pass the uniqueness
test, and each state is semantically absolutely clear.

• Categorize the variables as problem variables, background information
variables, symptom variables or mediating variables (page 152).

Don’t:

• Define states of a variable that are not mutually exclusive.
• Define a set of states that is not complete (i.e., the set does not exhaustively

define the space of possible values of the variable).
• (Normally) define a state of a variable that is mutually exclusive with a

state of a single other variable.
• Define a state of a variable that is not semantically absolutely clear.

Identifying the Links (page 154). It is the links of a probabilistic network that
determine the factorization of the joint probability distribution defined over the
variables represented in the network; that is, they determine the conditional

U.B. Kjærulff and A.L. Madsen, Bayesian Networks and Influence Diagrams: A Guide
to Construction and Analysis, ISS 22, DOI 10.1007/978-1-4614-5104-4,
© Springer Science+Business Media New York 2013
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independence properties of the network and hence the complexity of inference.
Thus, if the links give rise to independence properties that only approximately
or not at all match reality, erroneous inferences can be made, or if there are
independences among the domain variables that are not represented in the model,
inference may become unnecessarily complex or even intractable.
Therefore, identifying a “correct” set of links is important for obtaining a good
balance between correctness and speed of the inference process.

Do:

• Make sure links are directed from cause to effect, for example, from a
background variable to a problem variable or from a problem variable to a
symptom variable (see Figs. 6.3 and 6.20).

• If the relations among a (sub)set of variables can be appropriately charac-
terized through one of the five idioms on page 156, use the appropriate
idiom to define the links between the variables. See the flow chart on
page 162 for a guide on how to select the right idiom.

• Try to keep the number of parents of each (discrete) variable as low as
possible. If the number of parents of a variable exceeds two, consider using
parent divorcing, temporal transformation, or an independence of causal
influence model to reduce the burden of eliciting the conditional probability
distributions and (potentially) the complexity of inference (see below).

• If the relation between a pair of variables is not naturally described using
a directed link, consider using the trick described below to specify an
undirected dependence relation.

Don’t:

• Add a directed link from effect to cause, for example, from a symptom
variable to a problem variable. This is a typical error, probably resulting
from thinking in terms of “input” and “output” (i.e., from observation
to “consequence”). Not only does adding a link opposite the causal
direction typically lead to erroneous inference and wrong (conditional)
independence assumptions, but it also makes elicitation of conditional
probabilities awkward.

• Generally, a variable shouldn’t have many parent variables. As mentioned
above, this can make the inference and the burden of eliciting the condi-
tional probability distributions unnecessarily heavy.

• Add a direct edge .X; Y / between two variablesX and Y whenX has only
an indirect impact on Y , for example, there is a third variable Z such that
X → Z → Y .

Eliciting the numbers (page 176). The task of eliciting the (conditional) prob-
abilities of a probabilistic network can be quite huge and may involve several
domain experts. Therefore, as the structure of the network dictates the factor-
ization of the joint probability distribution of the model and hence the structure
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and the domain of each factor [i.e., (conditional) probability distribution] to be
specified, care must be taken to ensure that the network structure (i.e., variables
and links) is as correct as possible.

Do:

• Make sure the structure of the network has been carefully verified before
elicitation of (conditional) probabilities commences.

• Consider making assumptions to allow use of, for example, parent divorc-
ing, independence of causal influence, or Noisy-OR to ease the elicitation
process.

• Consider using a qualitative approach to assess subjective Probabilities,
for example, the probability wheel (Section page 178) or verbal statements
(page 178).

• Consider using indirect assessment of a subjective probability (i.e., pa-
rameter value) or a subjective utility value through a simple gamble-based
approach (Sect. 6.5.1, page 177 and Sect. 6.5.2, page 179, respectively).

• Consider performing elicitation of (conditional) probabilities in a three-
step process, where only rough estimates of the probabilities are provided
in the first step. In the second step, perform sensitivity analysis (see
Chap. 10) to identify probabilities that need to be specified with care. Then,
in the third step, provide more precise estimates of those probabilities.
Probably, the second and the third steps need to be repeated a number of
times, as the careful assessment of the critical probabilities in the third step
might reveal new critical probabilities in the reiterated second step.

• Use algorithmic/mathematical expressions to specify (conditional) proba-
bility tables (CPTs) and utility tables (UTs) whenever possible, as this may
greatly simplify the elicitation task (Sect. 6.5.3, page 180).

Don’t:

• Start eliciting probabilities and utilities before the structure of the model
has been properly verified.

• Elicit conditional probabilities of a variable with many parents, unless
parent divorcing, temporal transformation, or independence of causal
influence model are not applicable.

• Elicit parameter values [i.e., (conditional) probabilities or utilities] manu-
ally if the CPT or UT can be specified using an algorithmic/mathematical
expression. Specification as well as maintenance becomes much easier if
the table has been specified via an expression.

Parent divorcing (page 192). An effect (e.g., a symptom) can have many causes.
In a probabilistic network representation, this can be modeled with a node, say
v, (representing the effect) with one parent node for each cause. As the number
of entries in the CPT representing P.Xv |Xpa.v// grows exponentially with the
number of parents, one should try to exploit or make assumptions about indepen-
dences that allow a factorization ofP.Xv |Xpa.v// so as to minimize the parameter
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elicitation effort. Such independences are represented in a probabilistic network
by introducing additional (mediating) variables representing contributions to the
effect from a subset of the cause variables. The process of introducing such
mediating variables is called parent divorcing.

Do:

• Whenever a node has more than two parents, consider using parent
divorcing to reduce the number of parents per node to two, potentially by
recursive application of the technique.

• Be sure not to violate crucial dependences among the parent variables.
• If parent divorcing does not apply, consider using some other technique like

temporal transformation or independence of causal influence (see below).

Don’t:

• Assume that parent divorcing is a universally applicable trick to reduce the
size of the CPTs of a probabilistic network.

• Let the number of states of an added mediating variable be greater than or
equal to the product of the number of states of its parent variables.

Temporal Transformation (page 196). Instead of combining causes pairwise as
in parent divorcing, the influence of causes on the effect variable is taken into
account one cause at a time in their causal or temporal order.
Temporal transformation can be used to implement independence of causal
influence (see below).

Do:

• Consider using this technique if the impacts from a number of cause
variables act cumulatively on a common effect variable.

• Make sure that the “temporal” ordering of the cause variables is respected.
• Make sure the states of the effect variable are ordered and represent dif-

ferent levels of abnormality and that there is a designated state indicating
absence of abnormality.

• Similarly, make sure that each of the causes has a state corresponding to
“no impact” on the effect variable.

Don’t:

• Make a cause variable representing the impact of an act seeking to
eliminate the effect appear before the end of the “temporal” ordering, that
is, the variable must appear as the last in the ordering.

Structural and Functional Uncertainty (page 197). If it is difficult or impossi-
ble to specify a set of independence and dependence assumptions, maybe because
they change or are unknown, a trick can be applied to model this structural un-
certainty. Similarly, uncertain functional dependence relation between a variable
and (a subset of) its parents can be modeled structurally.
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Do:

• Consider using this technique if you are uncertain if one or the other of two
variables should be parent of a third variable (e.g., in paternity models).

• Consider using this technique if the functional relationship that governs
the conditional probability distribution of a variable given its parents can
assume different forms depending on circumstances.

Don’t:

• Assume the two competing parent variables in structural uncertainty mod-
eling to have different domains or even states that are ordered differently.

Undirected dependence relations (page 201). When capturing a set of depen-
dence relations between variables using a DAG, it is not unusual to encounter the
problem of how to (most efficiently) represent a dependence relation which by
nature is undirected.

Do:

• Use this technique to implement constraints among variables, for example,
a value of one variable prohibits another variable from assuming a certain
value.

Don’t:

• Generally, use this technique to implement joint probability distributions.

Bidirectional Relations (page 204). A problem similar to implementing undi-
rected dependence relations is the problem of representing bidirectional relations,
that is, when a pair of variables, sayXu andXv, are dependent and it is not evident
which direction the link between them should have.

Do:

• If neither u → v nor u ← v is obvious, consider adding a common cause
variable, say Xw, such that w→ u and w→ v.

• If u and v already have a common parent, say w, and Xu 6?? Xv |Xw, then
consider introducing a new common cause, sayXz, such thatXu ?? Xv |Xz,
and let w be a parent of z (see Example 7.6 on page 205).

Don’t:

• Implement a bidirectional relation using the undirected dependence rela-
tions technique (see above).

Naive Bayes Model (page 206). A naive Bayes model is characterized by a
structure where all variables but one are children (attribute variables) of a single
class variable and the attribute variables are conditionally independent given the
class variable. This makes the model construction very easy and the inference
very efficient. The model is popular for solving classification problems.
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Do:

• Consider using the naive Bayes model if you are faced with a classification
problem or (equivalently) a diagnostic problem with a single variable
representing a set of mutually exclusive diagnoses with symptoms that are
conditionally independent given the diagnosis.

Don’t:

• Use the naive Bayes model if two or more problems (e.g., classes in a
classification problem or diagnoses in a diagnostic problem) can coexist
(i.e., are not mutually exclusive).

• Use the naive Bayes model if the attribute variables (e.g., features in a
classification problem or symptoms in a diagnostic problem) are (strongly)
conditionally dependent given the class or diagnosis variable.

• Use the naive Bayes model if the probability model is supposed to be
accurate, as the joint probability distribution of the naive Bayes model
tends to sometimes not be well calibrated.

Measurement Uncertainty (page 209). The value observed for variables in a
probabilistic network is often subject to uncertainty, for example, because of
noise or inaccuracies of sensors. Then an extra node should be added to
the network, representing the actual observed value. In addition, it should be
considered to add a node representing the source of the uncertainty.

Do:

• Consider using this technique if the observed value of some observable
variable is subject to uncertainty.

• If known, consider explicitly modeling the source of the uncertainty by
adding a variable representing the uncertainty mechanism (e.g., known
accuracy specifications of a sensor).

Don’t:

• Use explicit representation of measurement/observation accuracy if the
measurement uncertainty can be naturally encoded in the conditional
probability distribution of the observation given the true value.

Expert opinions (page 211). Domain experts might sometimes disagree on the
values of the probability parameters (i.e., the (conditional) probabilities) of a
model. Such disagreement may profitably be represented explicitly in the model
structure.

Do:

• If experts disagree on the (conditional) probability distribution of some
variable, add an extra variable with states representing the disagreeing
experts, and let the variable be a parent of the variable for which there
is disagreement on its (conditional) probability distribution.
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• Encode the relative trust in the experts in the probability distribution of the
new variable.

Don’t:

• Let one “experts” node be parent of many CPTs. Use separate “experts”
nodes, that is, one for each relevant CPT.

• Leave “experts” nodes in the final model. That is, avoid explicit distribu-
tions on experts; instead, use node absorption to eliminate “experts” nodes
(see below).

Node Absorption (page 213). An unobserved variable with no children has no
impact on the probability distributions of the other variables in the network.
Hence, such (barren) variables can simply be removed from the network. An
unobserved variable with children can be turned into a barren variable through
arc reversal(s) and subsequently removed. Such an operation is called node
absorption and can be useful for removing nuisance variables.

Do:

• Use this technique to remove nuisance variables (Definition 5.3, page 115),
for example, intermediate auxiliary variables like “experts” nodes, to
improve efficiency of inference.

Don’t:

• Absorb a node unless there is no chance it will be observed and its presence
in the model is unimportant to understand the model and capture the
(conditional) independence properties of the model.

Set Value by Intervention (page 214). An important distinction should be made
between a passive observation of the state of a variable and an active action
forcing a variable to be in a certain state. Under the assumption of a causal
ordering (see Sect. 4.2), a passive observation of a variable impacts the beliefs of
the ancestors of the variable, whereas an active action enforcing a certain state
on a variable does not. We refer to this type of active action as intervention.

Do:

• Use this technique if you wish to model an active action forcing a variable
to be in a certain state.

Don’t:

• Use this technique if the assumption of a causal ordering is not fulfilled.

Independence of causal influence (page 216). Parent variables interacting inde-
pendently on a common child variable (called the effect variable) are said to
exhibit independence of causal influence. This can be modeled structurally in
such a way that the complexity of eliciting the probability parameters reduces
from exponential to linear in the number of parents.
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Do:

• See temporal transformation above.
• If the variables involved are Boolean, consider using the noisy-OR model.

Don’t:

• Use on variables with states that cannot be ordered.
• Use when there is high synergy among causes.

Mixture of Gaussian Distributions (page 221). An arbitrary continuous distri-
bution of a variable can be approximated by a mixture of Gaussian distributions.

Do:

• Add a discrete parent variable of the continuous variable, let the number of
states of the discrete variable determine the number of components of the
mixture distribution, and let the probabilities of the states of the discrete
variable determine the weights of the individual components.

Don’t:

• Overdo it. Mixtures of Gaussian distributions are expensive in terms of
complexity of inference.

• Use a mixture of Gaussian distributions if a discrete/interval variable is
sufficient.

• Use mixture of Gaussian distributions if the variable is supposed to have
child variables.

Test Decisions (page 224). A decision maker may be faced with the option to
perform a test. This option is represented by a binary decision variable with states
representing whether or not the test is performed. If the test is not performed,
the random variable representing the test outcome will remain unobserved, and
hence, the informational link to a subsequent decision variable will be violated,
unless special modeling tricks are employed.

Do:

• Use this technique if you are faced with the problem of modeling a test
decision (i.e., a decision that determines whether or not the value of a
particular random variable (potentially) becomes known, where this value
has an impact on subsequent decisions).

• Consider introducing a utility function associated with the test decision if
there is a cost associated with performing the test.

Don’t:

• Consider a test decision as any other decision.

Missing Informational Links (page 227). Correct specification of informational
links in influence diagrams is crucial for making correct inferences (i.e., solution
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of the decision problem). However, if the decision problem involves only a single
decision, informational links can be avoided provided the influence diagram
is solved (i.e., propagation of evidence is performed) each time new evidence
becomes available. Using this kind of “on-line” solution (as opposed to “off-
line” solution, where the decision policy specifies an optimal decision once and
for all for each configuration of the parents of the decision) may substantially
increase the efficiency of inference. Moreover, the influence diagram may appear
less cluttered.

Do:

• Consider using this trick if your influence diagram includes only a single
decision variable.

• If informational links are excluded, solve the decision problem (i.e.,
propagate evidence) after entering the evidence

Don’t:

• Avoid informational links if your influence diagram contains more than one
decision variable.

• Rely on the decision policy after entering evidence if the influence diagram
contains no informational link.

Missing Observations (page 229). An informational link .X;D/ from a random
variableX to a decision variableD of an influence diagram signifies that a value
of X is observed before decision D is made. Sometimes, however, the value of
X may be unavailable, in which case .X;D/ should be absent. This modeling
dilemma can be solved by introducing an auxiliary variable between X andD.

Do:

• Use this technique if an observation of a random variable of an influence
diagram may be missing.

Don’t:

• Use this technique unless you have to.
• Use this technique if there is only a single decision variable.

Hypothesis of highest probability (page 231). In some decision scenarios, it
can be useful to define a decision variable that represents a decision to select
a decision option corresponding to the state of a random variable with highest
probability (e.g., in medical diagnosis).

Do:

• Consider using this technique if a decision variable is supposed to represent
a decision option to select a state of a random variable or a set of random
variables with highest probability.
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• If there is only one decision variable, consider leaving out informational
links (see missing informational links above).

Don’t:

• Possibly, use this technique if the influence diagram already contains one
or more decision variables, and the addition of the new decision variable
either makes solution of the decision problem very complex or makes the
model very cluttered.

Constraints on Decisions (page 233). There may be constraints on the configu-
rations of two or more decision variables, that is, not all combinations of decision
options across the variables make sense or are legal. In such cases, a random
variable must be included, which contains the space of acceptable combinations.

Do:

• If an influence diagram contains decision variables where not all combina-
tions of decision options are legal, introduce a constraining binary random
variable as a child of the decision variables.

Don’t:

• Use this technique unless you have to — use large negative utility instead.
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6?G d-connected in graph G

S Separator set
E Evidence function (potential)
" Evidence
E" Evidence function for X."/
� Normalization operator
∼ Connected
→ Connected by directed edge
← Connected by directed edge

Connected by undirected edge
G
∼ Connected in graph G
G
→ Connected by directed edge in graph G
G Connected by undirected edge in graph G

6∼ Not connected
G

6∼ Not connected in graph G

hu; : : : ; vi Path from u to v
dom Domain (of variable or set of variables)
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370 List of Symbols

| “given” (e.g., “a |b” means “a given b”)
pa Parents of
fa Family of
ch Children of
an Ancestors of
An Ancestral set of
de Descendants of
nd Non-descendants of
true Boolean value “true”
false Boolean value “false”
I Past
EU Expected utility
MEU Maximum expected utility
N Normal (Gaussian) distribution
Nk k-dimensional Normal distribution
L Law of (e.g., L.X/ D N.
; �2/, also denotedX ∼ N.
; �2/)
R The set of all real numbers
S Scope
I Input variables
H Private (hidden) variables
O Output variables
P Public variables (input + output)
X."/ Evidence variables (i.e., subset of X for which their values are known)
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Index

Symbols
P

-max-
P

-rule, see influence diagram

A
∼ , 19
||P||, 21
→ , see edge, directed
G
→ , see edge, directed
G , see edge, undirected

, see edge, undirected
abductive reasoning, see reasoning, abductive
acyclic directed graph, see graph, acyclic

directed
acyclic, partially directed graph, 241
admissible deviation, 316
AIC, see Akaike’s Information Criterion
Akaike’s Information Criterion, 260, 281
almost equal, 310
alternative hypothesis, 243
ambiguous edge, 252
ambiguous region, 252
An, see ancestral set
an, see ancestor
ancestor, 19
ancestral set, 19
Appendicitis, 333, 335
Apple Jack, 71, 85
arc, see edge
arc reversal, 56, 116
Asia, 73, 291, 297, 304, 331
auxiliary variable, 211, 230
axioms, see probability axioms

B
barren variable, see variable, barren
Bayes’ factor, 58, 308
Bayes’ rule, 54

interpretation of, 55
Bayesian Information Criterion, 260, 281
Bayesian likelihood ratio, 308
Bayesian network

conditional LG, 75–80
direct inference approach, 116
discrete, 71–75
indirect inference approach, 125
query, 114
query based inference, 114

belief theory, 4
BIC, see Bayesian Information Criterion
BIC score

family, 261
Burglary or Earthquake, 25, 30

C
case

complete, 278
category, see variable, category
causal network, 25–32

converging connection in, 29–30
diverging connection in, 28
flow of information in, 25–32
serial connection in, 26–27
types of connections in, 26

causal reasoning, see reasoning, causal
causality, 6, 24–25, 72, 226

modeling, 31
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causally independent, 216
cause variables, 192, 196, 217
causes, 217
certainty factor, 7
ch, see child
chain graph, see graph, chain
chain rule, 8, 62

Bayesian networks, 64, 71
CLG Bayesian networks, 77
CLQG influence diagrams, 90
influence diagrams, 81
object-oriented Bayesian network models,

100
Chest Clinic, see Asia

junction tree, 121
child, 18
chord, 121
Chow-Liu tree, 266
CLG Bayesian network, see Bayesian network,

conditional LG
CLG distribution, see conditional linear

Gaussian distribution
clique, 118
CLQG influence diagram, see influence

diagram, conditional LQG, 90
collider, 241
combination, see probability potential,

combination
conditional independence, see independence
conditional independence and dependence

relations, 240
conditional linear Gaussian distribution,

76
conditional linear–quadratic Gaussian

influence diagram, see influence
diagram, conditional LQG

conditional probability, see probability,
conditional

conflict analysis, 291
cost-of-omission measure, 292
local conflict, 295
partial conflict, 295
positively correlated assumption, 293
rare case, 295

conflict measure, 292
conflict meausre

straw model, 292
constraint, 201
constraint variable, 151, 201
contribution variable, 217
converging connection, see causal network,

converging connection in

cost of omission, 297, 305
threshold, 298

cycle, 20
directed, 20

D
d-connection, 33
D-map, 61
d-separation, 33, 64
DAG, see graph, acyclic directed
DAG faithfulness assumption, 61, 240
DAG-faithful, 238
data overfitting, 259
de, see descendant
decision

full control, 233
decision future, 84
decision history, 84
decision past, 84
decision variable, 80

informational parents, 88
decision variables

partial order, 83
total order, 85

deductive reasoning, see reasoning, deductive
default inhibitor, 218, 219
default prior probability distribution, 97
degrees of freedom, 243–245, 260, 261
dependency map, 61
descendant, 19
df, see degrees of freedom
dHugin, 105
diagnostic reasoning, see reasoning, diagnostic
directed acyclic graph, see graph, acyclic

directed
directed cycle, see cycle, directed
directed global Markov criterion, 33, 35
directed global Markov property, 64
directed graph, see graph, directed
Dirichlet probability distribution, 281
dissemination of experience, 284
distance measure, 304
distinguished state, 221
distributive law, see probability calculus,

distributive law of
diverging connection, see causal network,

diverging connection in
division, see probability potential, division

by zero, 50, 55
dom, see variable, domain
dynamic Bayesian network, 103
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E
edge, 18

derived direction, 248
directed, 18
undirected, 19

effect variable, 192, 196, 217
elicitation of numbers, see parameters,

elicitation of
elicitation of structure, see structure, elicitation

of
elimination order, 119

strong, 127, 129
EM algorithm

MAP, 279, 281
ML, 279
penalized, 281

entropy, 328
conditional, 329
conditional mutual information, 329
cross, 329
mutual information, 329

equivalence class, 242
equivalent sample size, 284
equivalent variables, see variable, equivalence
essential graph, 241
EU

expected utility, 129
EUO, 333
event, 40
event space, 40
evidence, 24

cost of omission, 297
hard, 24
impact, 297
likelihood, see evidence, soft
potential, 49
soft, 24
sufficient, 310
virtual, see evidence, soft

expected utility, 80
experience count, 281, 284
experience table, 281
expert system, 3, 111

normative, 5
explaining away, 8, 31
explaining-away, 18
expressions, see parameter, elicitation of

F
factorization

recursive, see probability distribution,
recursive factorization of

faithfulness, see DAG faithfulness assumption
faithfulness assumption, 238
feature variables, 265
filtering, 103
finding

important, 310
irrelevant, 310
redundant, 310

flat network, 100
functional uncertainty, 199
fundamental rule, 42, 54
fuzzy logic, 5

G
gamble-based approach, see parameter,

elicitation of
generalized marginalization operator, 130
global conflict, 295
goodness, 256, 259
graph

acyclic directed, 20
chain, 17
condition, 253
connected, 20
directed, 19
equivalence class, 241
instances, 96
moral, 20
moralization, 118
skeleton, 20, 241, 247
strongly connected component, 253
undirected, 19

H
head, 118
head-to-head, 19
HUGIN algorithm, 123
Hypothesis driven conflict analysis, 291
hypothesis variables, 74

I
I-map, 61
IC algorithm, 246
idioms, 156
independence, 59

conditional, 59
represented in DAGs, 60

independence of causal influence, 216
independency map, 61
inference engine, 111
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influence diagram, 70, 79P
-max-

P
-rule, 128

conditional LQG, 89–93
discrete, 80–89
information sets, 83
limited memory, 93–95

minimal reduction, 139
soluble, 140

linear-quadratic CGP
-max-

P
-rule, 133

maximum expected utility, 83
no-forgetting links, 88
policy, 84
policy function, 129
strategy, 83

optimal, 83
information measures, 327
informational link, see link, informational,

227, 229
inheritance, 101
inhibitor probability, 218
initial assessment, 313
instance, 96
intercausal reasoning, see explaining away
interface, 103
interface variables, 96
intermediate variables, 192
intervening action, 80
intervening decision, 85
intervention, 214

J
joint probability distribution, see probability

distribution, joint
junction tree, 120, 121

COLLECTINFORMATION, 122
DISTRIBUTEINFORMATION, 122
propagation, 121
root, 122

K
kind, see variable, kind
Kullback-Leibler, 266

L
law of parsimony, 184
leak probability, 218
likelihood evidence, see evidence, soft
LIMID, see influence diagram, limited memory

link, see edge
informational, 81

local conflict, 295

M
marginalization, 45, 50

generalized operator, 130
Markov blanket, 20
Markov criterion, see directed global Markov

criterion
Markovian, 103
maximum expected utility principle, 80
measurement uncertainty, 209
mediating variable, 192, 193, 195, 204
minimal conditioning set, 251
minimal reduction, see influence diagram,

limited memory, minimal reduction
missing data mechanism, 239
Mixture of Gaussian distributions, 222
model verification, 174
modeling technique

parent divorcing, 169, 192
monotonicity, 294
moral graph, see graph, moral
multivariate Gaussian distribution, 76
mutually exclusive states, 71, 76

N
nd, see non-descendants
necessary path condition, 251, 252
network class, 96

default instance, 101
internal scope, 97

neural network, 15
no-forgetting, 81
node absorption, 213
Noisy-MAX, 220
Noisy-OR, 217
non-descendants, 19
non-intervening action, 80
normalization, see probability potential,

normalization of
normalization constant, 113
normalized likelihood, 56, 295, 307
normative expert system, 70
nuisance variable, see variable, nuisance, 213

O
object, 96
Object-oriented probabilistic graphical model,

70
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object-oriented probabilistic network, 95–101
instance tree, 100
object-orientation

classes, 96
definition, 95
inheritance, 96
objects, 96

observation
essential, 134
requisite, 134

Occam’s Razor, 184
Oil Wildcatter, 92
OOBN, see object-oriented probabilistic

network
overfitting, 259, 281

P
pa, see parent
parameters

elicitation of, 176
parent, 18
parent divorcing, 192
partial conflict, 295
partial order, 227
path, 19

blocked in DAG, 33
blocked in undirected graph, 19
directed, 19

pattern, 241
PC algorithm, 246
PDAG, 241
perfect map, 61
perfect recall, see no-forgetting
poly-tree, 114
posterior probability distribution, see

probability distribution, posterior
potential calculus, 50
prediction, 103
Prim’s algorithm, 267
Probabilistic graphical model

qualitative component, 69
quantitative component, 69
two-phase construction process, 69

probabilistic network
characteristics, 147
when to use, 146

probability
conditional, 41

probability axioms, 40
probability calculus, 50

chain rule of, 62
distributive law of, 51
fundamental rule of, 42, 54

probability distribution
decomposition, 39
for variables, 43
graphical representation of conditional, 46
joint, 39, 44
marginal, 46
posterior, 49
recursive factorization of, 39

probability of future decisions, 138
probability potential, 46

combination, 50
division, 50
marginalization, see marginalization
normalization of, 47, 49
vacuous, 48

process
underlying distribution, 238

projection, see marginalization
propagation, see junction tree, propagation
proportional scaling, 312

R
reasoning

abductive, 18, 30
causal, 18
deductive, 18, 30
diagnostic, 18
inter-causal, see explaining away

recursive factorization, see probability
distribution, recursive factorization
of

regularity constraint, 81
relevant network, 115
relevant variable, 135
retrieval of experience, 284
rule of total probability, 44
rule-based system, 5

S
score function

decomposable, 261
selector variable, 197
sensitivity function, 312
sensitivity value, 315
serial connection, see causal network, serial

connection in
Single Policy Updating, 137
skeleton, see graph, skeleton
smoothing, 103
soluble, see influence diagram, limited

memory, soluble
Sore Throat, 219
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sparse DAG, 273
SPU, see Single Policy Updating
stability assumption, 238
straw model, 292
structure

elicitation of, 154
uncertainty, 197
verification, see model verification

structure learning
greedy hill climbing, 257, 275

subclass, 101
subtype, see variable, subtype

T
tail, 118
temporal links, 102
temporal order, 196
test decision, 224
time-sliced Bayesian network, 103
topological ordering, 63
tree, 20
Tree-augmented Naive Bayes model, 269
Type I error, 245
Type II error, 245

U
undirected dependence relation, 201
undirected graph, see graph, undirected
unfolded network, 100
utility function, 79

V
v-structure, see collider
v-structures

equivalent, 241
vacuous potential, see probability potential,

vacuous
value function, see utility function, 329
value nodes, 80
value of information, 327
variable, 20–23

barren, 53, 88, 115
basic, 96
binding link, 97
bound, 97
category, 22
chance, 21
conditioned, 71
conditioning, 71
decision, 21
decision future, 84
decision history, 84
decision past, 84
designated state, 217
deterministic, 21
domain, 21
elimination, 115, 119
equivalence, 98
extremal decision, 139
hidden,latent, 239
identification of, 149
kind, 22
no impact state, 217
nuisance, 115
policy, 84
qualified name, 97
random, 21
scope, 97
set by intervention, 215
simple name, 97
strong marginal, 126
strong type checking, 98
subtype, 22, 180
synergy, 220
target, 115
taxonomy, 22
type, 152
vs. vertex, 21
weak marginal, 126
well-defined, 149

vertex
symbols, 23
vs. variable, 21

virtual cases, 281
virtual evidence, see evidence, soft
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