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Preface 

It has been a pleasure for us to  write the second edition of this 
book on multidimensional scaling. The second edition extends the 
first with recent references, a new chapter on biplots, a section on 
the Gifi system of nonlinear multivariate analysis and an extended 
version of the suite of computer programs. 

Multidimensional scaling covers a variety of techniques, with its 
main development having rested in the hands of mathematical psy- 
chologists and the journal Psychometrika having championed the 
publication of articles in the subject. Multidimensional scaling has 
now become popular and has extended into areas other than its 
traditional place in the behavioural sciences. Many statistical com- 
puter packages now include multidimensional scaling. 

The book has a review style to it which has been necessitated 
in attempting to  cover several areas, but wanting to  keep the size 
of the book of manageable proportions. The techniques covered 
have been applied to  interesting data sets, hopefully giving insight 
into the data and the application of the theories. We hope readers 
will try out some of the techniques themselves, using the suite of 
computer programs provided. These run under DOS or Windows; 
a full Windows version will be available by the end of 2000. 

Again, in this edition, we thank the many authors who have 
contributed to  the theory of multidimensional scaling - not just 
the giants of the subject, Arabie, Benzécri, Carroll, Coombs, de 
Leeuw, Gower, Greenacre, Groenen, Guttman, Harshman, Heiser, 
Hubert, Kiers, Kroonenberg, Kruskal, Meulman, Ramsay, Schöne- 
mann, Shepard, Sibson, Takane, ten Berge, Torgerson, van der 
Heijden and Young, but every one of them. For without them, 
this book would not exist. Also, we would like to  thank those who 
pointed out errors in the first edition, especially Jos ten Berge. 

Newcastle upon Tyne 
June 2000 

Trevor F. Cox 
Michael A. A. Cox 
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CHAPTER 1 

Introduction 

1.1 Introduction 

Suppose a set of n objects is under consideration and between each 
pair of objects ( r ,  s) there is a measurement S,, of the “dissimilar- 
ity” between the two objects. For example the set of objects might 
be ten bottles of whisky, each one from a different distillery. The 
dissimilarity S,, might be an integer score between zero and ten 
given to  the comparison of the r th  and sth whiskies by an expert 
judge of malt whisky. The judge would be given a tot from the 
r th  bottle and one from the sth and then score the comparison: 
0-the whiskies are so alike she cannot tell the difference, to  10-the 
whiskies are totally different. The judge is presented with all forty- 
five possible pairs of whiskies, and after a pleasant day’s work, 
provides the data analyst with a total set of dissimilarities {S,,}. 
Indeed Lapointe and Legendre (1994) understand the importance 
of a proper statistical comparison of whiskies, using data from a 
connoisseur’s guide to  malt whiskies written by Jackson (1989). In 
the same spirit, two much smaller analyses of whiskies are given in 
Chapters 6 and 9. 

A narrow definition of multidimensional scaling (often abbre- 
viated to  MDS) is the search for a low dimensional space, usu- 
ally Euclidean, in which points in the space represent the objects 
(whiskies), one point representing one object, and such that the 
distances between the points in the space, { d T S } ,  match, as well as 
possible, the original dissimilarities {S,,}. The techniques used for 
the search for the space and the associated configuration of points 
form metric and nonmetric multidimensional scaling. 

An example 
A classic way to  illustrate multidimensional scaling is to  use jour- 
ney times between a set of cities in order to reconstruct a map of 
the cities. Greenacre and Underhill (1982) use flying times between 
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Southern African airports, Mardia et  al. (1979) use road distances 
between some British cities. 

For illustration here, the journey times by road between twelve 
British cities were subjected to  multidimensional scaling, using 
classical scaling, which is described fully in Chapter 2. 
shows the configuration of points produced by the technique. There 
is a striking similarity between the positions of the points repre- 
senting the cities and the positions of the same cities seen in a 
geographical map of Great Britain, except of course the cities in 

appear to  be reflected about a line and rotated from the 
geographical map usually presented in an atlas. 

BRIG 
LOND 

NOTT 
OXFO 

EXET 

ABER 

NEWC 

9&P 
LIVE 

INVE 

Figure 1.1 A map of British cities reconstituted fromjourney time by  road. 
ABER - Aberystwyth, BRIG - Brighton, EDIN - Edinburgh, EXET - Ex- 
eter, GLAS - Glasgow, INVE - Inverness, LIVE - Liverpool, LOND - Lon- 
don, NEWC - Newcastle, NOTT - Nottingham, OXFO - Oxford, STRA - 
St rat he 1 y d e . 

Multidimensional scaling is not only about reconstructing maps, 
but can be used on a wide range of dissimilarities arising from 
various situations, as for example, the whisky tasting experiment 
or other situations as described later in the chapter. 

A wider definition of multidimensional scaling can subsume sev- 
eral techniques of multivariate data analysis. At the extreme, it 

Figure 1.1

Figure 1.1
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covers any technique which produces a graphical representation 
of objects from multivariate data. For example the dissimilarities 
obtained from the whisky comparisons could be used in a clus- 
ter analysis to  find groups of similar whiskies. This text does not 
attempt to  cover all these possibilities, as there are many books 
covering multivariate data analysis in general, for example Mardia 
e t  al. (1979), Chatfield and Collins (1980), Krzanowski (1988)and 
Krzanowski and Marriott (1994, 1995). The aim here is to give an 
account of the main topics that could be said to  constitute the 
theory of multidimensional scaling. 

Much of the theory of multidimensional scaling was developed 
in the behavioural sciences, with Psychometrika publishing many 
papers on the subject. It is a tribute to the journal that  multidi- 
mensional scaling techniques are becoming a popular method of 
data analysis, with major statistical software packages now incor- 
porating them into their repertoire. 

1.2 A look at data and models 

Several types of data lend themselves to analysis by multidimen- 
sional scaling. Behavioural scientists have adopted several terms 
relating to  data which often are not familiar to  others. 

1.2.1 Types of data 

Variables can be classified according to their “measurement scale” . 
The four scales are the nominal scale, the ordinal scale, the interval 
scale and the ratio scale. 

Nominal  scale 
Data measured on the nominal scale are classificatory, and only 
different classes are distinguishable, for example, hair colour, eye 
colour . 

Ordinal scale 
Data on the ordinal scale can be ordered, but are not quantitative 
data. For instance, whisky from bottle number 3 might be judged 
to be of better quality than that from bottle number 7. 
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Interval scale 
Quantitative data where the difference between two values is mean- 
ingful are measured on the interval scale. For example, tempera- 
ture in degrees Celsius, the difference in pulse rate before and after 
exercise. 

Ratio scale 
Data measured on the ratio scale are similar to  those on the in- 
terval scale, except that  the scale has a meaningful zero point, for 
example, weight, height , temperature recorded in degrees Kelvin. 

Multidimensional scaling is carried out on data relating objects, 
individuals, subjects or stimuli to  one another. These four terms 
will often be used interchangeably, although objects usually refers 
to inanimate things, such as bottles of whisky, individuals and 
subjects refering to  people or animals, while stimuli usually refers 
to non-tangible entities, such as the taste of a tot of whisky. 

The most common measure of the relationship of one object 
(stimulus, etc.) to another is a proximity measure. This measures 
the “closeness” of one object to  another, and can either be a “sim- 
ilarity” measure where the similarity of one object to another, sTs ,  
is measured, or a “dissimilarity” measure where the dissimilarity, 
6,,, between the two objects is measured. 

Suppose for the whisky tasting exercise, several more judges are 
brought in and each one of them compares all the pairs of whiskies. 
Then the available data are Srs, i  where T , S  refer to  the bottles of 
whisky, and i refers to the i th judge. The situation now comprises 
a set of whiskies (stimuli) and a set of judges (subjects). 

Number of modes 
Each set of objects that  underlie the data for multidimensional scal- 
ing is called a mode. Thus the dissimilarities STs,i from the whisky 
tasting above are two-mode data, one-mode being the whiskies and 
the other the judges. 

Number of ways 
Each index in the measurement between objects etc. is called a 
way. So the &,,i above are three-way data. 

Thus data for multidimensional scaling are described by their 
number of modes and number of ways. With only one whisky judge, 
the data are one-mode, two-way, which is the commonest form. 
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The entries in a two-way contingency table form two-mode, two- 
way data. An appropriate method of analysis is correspondence 
analysis described in Chapter 9. Another form of two-mode, two- 
way data is where n judges each rank m stimuli. These data can be 
subjected to unfolding analysis described in Chapter 8. The two- 
mode, three-way data obtained from the judges of whisky can be 
analysed by individual differences models of Chapter 10. Three- 
mode, three-way, or even higher-mode and -way data can be ana- 
lysed by using some of the methods described in Chapter 12. Data 
with large number of ways and modes are not very common in 
practice. 

Coombs (1964) gives a classification of types of data. This was 
updated by Carroll and Arabie (1980) who classify data and also 
classify types of multidimensional scaling analyses. In so doing, 
they have constructed a useful review of the area. Other useful 
reviews have been given by Greenacre and Underhill (1982), de 
Leeuw and Heiser (1982), Wish and Carroll (1982), Gower (1984) 
and Mead (1992). An introductory book on multidimensional scal- 
ing is Kruskal and Wish (1978). Fuller accounts of the subject are 
given by Schiffman et  al. (1981), Davidson (1983), Young (1987) 
and Borg and Groenen (1997) among others. 

This book attempts to cover the main constituents of multidi- 
mensional scaling, giving much, but not all, of the mathematical 
theory. Also included in the book is a CD-ROM enabling the reader 
to try out some of the techniques. Instructions for loading the CD- 
ROM and running the programs are given in the appendix. 

1.2.2 Multidimensional scaling models 

Some models used for multidimensional scaling are outlined before 
fuller definition and development in later chapters. The starting 
point is one-mode, two-way proximity data, and in particular, dis- 
similarity measurements. 

Suppose a set of n objects have dissimilarities {dTS} measured 
between all pairs of objects. A configuration of n points repre- 
senting the objects is sought in a p dimensional space. Each point 
represents one object, with the r th  point representing object r .  Let 
the distances, not necessarily Euclidean, between pairs of points be 
{ d T s } .  Then as stated before, the aim of multidimensional scaling 
is to  find a configuration such that the distances { d T s }  “match”, 
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as well as possible, the dissimilarities {d,,}. It is the different no- 
tions of “matching” that give rise to  the different techniques of 
multidimensional scaling. 

Classical scaling 
If the distances in the configuration space are to  be Euclidean and 

d,, = 6,, r ,  s = 1,. . . , n 

so that the dissimilarities are precisely Euclidean distances, then it 
is possible to find a configuration of points ensuring the equality in 
(1.1). Classical scaling treats dissimilarities { S,,} directly as Euc- 
lidean distances and then makes use of the spectral decomposition 
of a doubly centred matrix of dissimilarities. The technique is dis- 
cussed fully in Chapter 2. 

Metric least squares scaling 
Least squares scaling matches distances {d,,} to transformed dis- 
similarities { f(dTs)}, where f is a continuous monotonic function. 
The function f attempts to  transform the dissimilarities into dis- 
tances whereupon a configuration is found by fitting its associated 
distances by least squares to  { f ( S r s ) } .  For example, a configuration 
may be sought such that the loss function 

c, C,(d,.S - (a  + P d T d 2  
c, c, d?s 

is minimized where a and ,8 are positive constants which are to be 
found. 

Classical scaling and least squares scaling are examples of “met- 
ric scaling”, where metric refers to  the type of transformation of the 
dissimilarities and not the space in which a configuration of points 
is sought. Critchley’s intermediate method (Critchley, 1978) is * an- 
other example of metric scaling and is also described in the second 
chapter. 

Unidimensional scaling 
A special case of multidimensional scaling occurs when the con- 
figuration of points representing the objects is sought in only one 
dimension. This is unidimensional scaling. The single dimension 
produces an ordering of the objects which can be useful in an anal- 
ysis. An example of this is given in Chapter 2 where the technique 
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is used on classic data relating to the works of Plato. Unidimen- 
sional scaling can be plagued with a plethora of local minima when 
attempting to  minimise the loss function. 

Nonrne tric scaling 
If the metric nature of the transformation of the dissimilarities 
is abandoned, nonmetric multidimensional scaling is arrived at .  
The transformation f can now be arbitrary, but must obey the 
monotonicity constraint 

for all 1 I T ,  s, T ‘ ,  s‘ I n. 

Thus only the rank order of the dissimilarities has to be preserved 
by the transformation and hence the term nonmetric. Nonmetric 
multidimensional scaling is discussed in Chapter 3. 

Procrustes analysis 
Suppose multidimensional scaling has been carried out on some 
dissimilarity data using two different methods giving rise to two 
configurations of points representing the same set of objects. A 
Procrustes analysis dilates, translates, reflects and rotates one of 
the configurations of points to  match, as well as possible, the other, 
enabling a comparison of the two configurations to  be made. Pro- 
crustes analysis is covered in Chapter 5. 

Bip 1 o t s 
Biplots attempt to  plot not only a configuration of points repre- 
senting objects, but also axes within the plots that represent the 
variables upon which the dissimilarities were calculated. In the sim- 
plest case, the axes are linear, but with generalization the axes can 
be curvilinear. Chapter 7 explains the theory. 

Unfo 1 ding 
Suppose n judges of m types of whisky each rank the whiskies in 
order of their personal preference. Unfolding attempts to produce 
a configuration of points in a space with each point representing 
one of the judges, together with another configuration of points in 
the same space, these points representing the whiskies. The con- 
figurations are sought so that the rank order of the distances from 
the i th “judge” point to  the “whisky” points, matches, as well as 
possible, the original whisky rankings of the i th judge. This is to  
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be the case for all of the judges. Unfolding analysis is the subject 
of Chapter 8. 

Correspondence analysis 
Data in the form of a two-way contingency table can be analysed 
by correspondence analysis. A space is found in which row pro- 
files can be represented by points, and similarly, another space is 
also found for representing the column profiles. Distances in these 
spaces reproduce chi-square distances between row/column pro- 
files. Full discussion is given in Chapter 9. 

Indvidual differences 
Again, if m judges each compare all pairs of whiskies, then either 
m separate multidimensional scaling analyses can be carried out 
or an attempt can be made at  a combined approach. Individual 
differences models produce an overall configuration of points rep- 
resenting the whiskies in what is called the group stimulus space, 
together with a configuration of points representing the judges in a 
different space called the subject space. The position of a particular 
judge in the subject space depends on the weights needed on the 
axes of the stimulus space to transform the configuration of points 
in the group stimulus space into the configuration that would have 
been peculiar to  that judge. Individual differences models are the 
subject of Chapter 10. 

Gifi 
The Gifi system of nonlinear multivariate analysis extends various 
techniques, such as principal components analysis. It has links to  
multidimensional scaling which are explored in Chapter 11. Mul- 
tidimensional scaling based on alternating least squares scaling 
(ALSCAL) and by “majorization a complicated function” (SMA- 
COF) are also discussed in Chapter 11. 

Chapter 12 gives a brief summary of further multidimensional 
scaling models that involve data of more than 2 ways and 1 mode. 

1.3 Proximities 

Proximity literally means nearness in space, time or in some other 
way. The “nearness” of objects, individuals, stimuli needs definition 
and measurement prior to  statistical analysis. In some situations, 
this is straightforward, but in others, difficult and controversial. 

© 2001 by Chapman & Hall/CRC



Measures of proximity are of two types: similarity and dissimilar- 
ity with the obvious interpretation of measuring how similar or 
dissimilar objects are to each other. 

Let the objects under consideration comprise a set 0. The sim- 
ilarity/dissimilarity measure between two objects is then a real 
function defined on 0 x 0, giving rise to  similarity s,,, or dissimi- 
larity S,, between the r th  and sth objects. Usually S,, 2 0, s,, 2 0, 
and the dissimilarity of an object with itself is taken to be zero, 
i.e. S,, = 0. Similarities are usually scaled so that the maximum 
similarity is unity, with s,, = 1. 

Hartigan (1967) gives twelve possible proximity structures, S, 
that might need to be considered before a particular proximity 
measure is chosen. These are listed in Cormack (1971) and also 
below. 

SI  
s2 
s3 
s4 
s5 
S6 
s 7  

S8 

s 9  
SIO 

s11 

s12 

S defined on 0 x 0 is Euclidean distance, 
S defined on 0 x 0 is a metric, 
S defined on 0 x 0 is symmetric real-valued, 
S defined on 0 x 0 is real-valued, 
S is a complete ordering 5 on 0 x 0, 
S is a partial ordering 5 on 0 x 0, 
S is a tree r on 0 (a partial similarity order ( r ,  s) 5 ( T ’ ,  s’) 
whenever sup, ( r ,  s) 2 sup, (r’, s‘) , see Hartigan or 
Cormack for further details), 
S is a complete relative similarity ordering 5, on 0; for 
each T in 0, s 5, t means s is no more similar to  r 
than t is, 
S is a partial relative similarity order d T  on 0, 
S is a similarity dichotomy on 0 x 0 in which 0 x 0 is 
divided into a set of similar pairs and a set of dissimilar 
pairs, 
S is a similarity trichotomy on 0 x 0 consisting of similar 
pairs, dissimilar pairs, and the remaining pairs, 
S is a partition of 0 into sets of similar objects. 
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Structure SI  is a very strict structure with dissimilarity defined 
as Euclidean distance. Relaxing this to  the requirement of a metric 
gives S2, where it is recalled that S,, is a metric if 

S,, = 0 

S,, = S,, 

S,, 5 S,t + St, 

if and only if r = s, 

for all 1 5 r , s  5 n,  

for all 1 5 r, s, t 5 n. 

Relaxing the metric requirement to  S,, being symmetric real-valued 
or real-valued gives structures S3 and S4. Losing ratio/interval 
scales of measurement of S,, leads to the nonmetric structures S5 
to S12. Of these the highest structure, S5, has a complete ordering 
of the {S,,}. The lowest structure, S12, simply partitions 0 into 
sets of similar objects. 

Choice of proximity measure depends upon the problem at hand, 
and is often not an easy task. Sometimes similarity between two 
objects is not based on any underlying data recorded on the ob- 
jects. For example, in the whisky tasting exercise, the judge simply 
uses taste and smell sensations to produce a score between zero 
and ten. The similarity/dissimilarity measurement is totally sub- 
jective. It is extremely unlikely that the dissimilarities arrived at 
by the judge would obey proximity structure S1, since they are all 
integer-valued. The only possibility would be if the whiskies could 
be represented by integer points on a one dimensional Euclidean 
space and differences between points generated all forty-five dis- 
similarities correctly. It is even unlikely that S2 would be satisfied. 
The most likely structure is S3, or possibly S5 if actual scores were 
ignored and only the rank order of the dissimilarities taken into 
account. 

In other situations, similarities (dissimilarities) are constructed 
from a data matrix for the objects. These are then called similarity 
(dissimilarity) coefficients. Several authors, for example Cormack 
(1971), Jardine and Sibson (1971), Anderberg (1973), Sneath and 
Sokal (1973), Diday and Simon (1976), Mardia et al. (1979), Gor- 
don (1999) , Hubdek (1982), Gower (198513) , Gower and Legendre 
(1986), Digby and Kempton (1987), Jackson et al. (1989), Baulieu 
(1989), Snijders et  al. (1990) discuss various similarity and dis- 
similarity measures together with their associated problems. The 
following synthesis of the work of these authors attempts to  outline 
the main ideas behind forming dissimilarities from a data matrix. 

© 2001 by Chapman & Hall/CRC



Table 1.1 Dissimilarity measures for quantitative data 

Euclidean distance 

Weighted Euclidean 

Malialariobis dist arice 

City block metric 

Minkowski metric 

Canberra metric 

Divergence 

Bray-Curtis 

i 

Bhattacliaryya distance 

Wave-Hedges 

Angular separation 

Soergel

Correlation
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Let X = [ IC,~]  denote the data matrix obtained for n objects on p 
variables. The vector of observations for the r th  object is denoted 
by Xr7 and SO X = [x:]. 

Quant i ta t i ve  data 
gives a list of possible dissimilarity measures for quan- 

titative data that are in particular, continuous, possibly discrete, 
but not binary. 

B i n a r y  data 

Object s 

a + b  

0 c + d  
Object r 

a+c b+d p = a + b  I + c + d  

When all the variables are binary, it is usual to  construct a sim- 
ilarity coefficient and then to  transform this into a dissimilarity 
coefficient. The measure of similarity between objects r and s is 
based on the above table. The table shows the number of variables, 
a ,  out of the total p variables where both objects score “I”, the 
number of variables, b, where r scores “1” and s scores “ O ” ,  etc. 

gives a list of similarity coefficients based on the four 
counts a,  b,  c, d .  Various situations call for particular choices of co- 
efficients. In practice, more than one can be tried hoping for some 
robustness against choice. HubAlek (1982) gives the most compre- 
hensive list of similarity coefficients for binary data and groups 
them into five clusters based on an empirical evaluation using data 
on the occurrence of fungal species of the genus Chaetorniurn. 

N o m i n a l  and  ordinal data 
If, for the i th nominal variable, objects r and s share the same 
categorization, let S r S i  = 1, and 0 otherwise. A similarity measure 
is then p-’ xi s,,i. Of course, if other information is available re- 
garding the relationship of various categories for the variables, then 
s,,i can be given an appropriate value. For example, if the vari- 
able “bottle shape” has categories: standard (st); short cylindrical 

Table 1.1

Table 1.2
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Table 1.2 Similari ty  coe f i c i en t s  for binary data 

Braun, Blanque 
a 

Inax{ ( a  + b ) ,  ( a  + c ) }  
S r s  = 

2a 
2 a + b + c  Czekanowski, Smensen, Dice S r s  = 

Ham ni an 

Jaccard coefficient 

Kulczynski 

Kulcz ynski 

S,, = ~ 

b + c  

4(ad - bc) 
{ ( a  + d ) 2  + ( b  + c)2} 

Michael S r s  = 

Mount ford 

Mozley, Margalef 

Ochiai 

Phi 

Rogers, Tariinioto 

Russell, Rao 

Simple matching coefficient 

Sirripson 

Sokal, Sneath, Anderberg 

Yule 

2a 
a (b  + c )  + 2bc 

a(a + b + c + d )  
( a  + b) (a  + c )  

a 

Srs  = 

S r s  = 

Srs = 
[ ( a  + b) (a  + c ) ]  

ad - be 

[ ( a  + b) (a  + c ) ( b  + d ) ( c  + d ) ] i  
a + d  

a + 2b+ 2c + d 

a + b + c + d  
a + d  

a + b + c + d  

min{ ( a  + b ) ,  ( a  + c)} 

a + 2 ( b  + c )  

S r s  = 

S r s  = 

a 
S r s  = 

Srs = 

a 
S r s  = 

a 
S r s  = 

ad - be 
ad + be 

S r s  = ~ 
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(sh); tall cylindrical ( ta);  and square section (sq), the following 
“agreement scores” may be appropriate for bottles r and s. 

bottle r 
st sh t a  

0.5 1.0 0.3 0.0 
ta 0.5 0.3 1.0 0.0 
sq 0.0 0.0 0.0 1.0 

bottle s :L 1 1.0 0.5 0.5 0.0 

So if bottle r is “tall cylindrical” and bottle s “standard” then 
s,,i = 0.5, for example. 

If a variable is ordinal with k categories, then k - 1 indicator 
variables can be used to  represent these categories. The indicator 
variables can then be subjected to  similarity coefficients in order 
to give a value to  s,,i. For instance, if a bottle variable is “height 
of the bottle” with categories: small; standard; tall; long and thin, 
then the variable might be categorized as follows. 

Indicator variable 
category I1 I2 1 3  

small 0 0 0  
standard 1 0 0  

tall 1 1 0  
long and thin 1 1 1  

If bottle r is “standard” and bottle s is “long and thin”, then 
using the simple matching coefficient to  measure similarity for this 
variable, s,,i=0.33. For further details see Sneath and Sokal (1973) 
or Gordon (1999). 

1.3.1 Similarity/dissimilarity coef ic ien ts  for m i x e d  d a t a  

When data are of mixed type where binary, categorical, ordinal 
and quantitative variables might be measured, the similarity and 
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dissimilarity measures in cannot sensibly be ap- 
plied directly. To overcome this, Gower (1971) introduced a general 
similarity coefficient, s y s  defined as follows 

where s,,i is the similarity between the r th  and sth objects based 
on the i th variable alone, and wrSi is unity if the r th  and s th  objects 
can be compared on the i th variable and zero if they cannot. Thus 
srsi  is an average over all possible similarities srsi  for the r th  and 
sth objects. So for example, if some data are missing the overall 
coefficient is comprised of just those observations which are present 
for both the r th  and sth objects. 

Gower suggests the following values for srsi  and wrsi for binary 
variables measuring presence/absence. 

object T object s s,,i wysi 

+ + 1 1  
+ 0 1  

+ 0 1  
0 0  

For nominal variables, Gower suggests s,,i = 1 if objects r and 
s share the same categorization for variable i, s,,i = 0 otherwise. 
Of course other measures such as those described in the previous 
section can be used. 

For quantitative variables, 

S r s i  = 1 - Izri - ~ . s i l / & ,  

where Ri is the range of the observations for variable i .  

variables to  
Gower’s coefficient can be generalized using weights {wi}  for the 

srsiwrsiwi 

wrsiwi 
Srs i  = 

Further discussion, see for example Gordon (1990, 1999), can be 
found on missing values, incompatibility of units of measurement, 
conditionally present variables and the weighting of variables. Cox 
and Cox (2000) extend Gower’s general dissimilarity coefficient 
producing a flexible method for producing two sets of dissimilari- 
ties simultaneously, one for the objects and one for the variables. 

Table 1.1 and 1.2
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The method uses the idea of reciprocal averaging, a technique dis- 
cussed in Chapter 9, and so further discussion is left until then. 

Ichino and Yaguchi (1994) introduce a generalized Minkowski 
dissimilarity in the context of pattern recognition, where “features” 
are measured as opposed to  random variables. The following sum- 
marises their measure. Firstly, the usual range of type of variables 
(features) measured is increased to  include random intervals, and 
tree structures. shows a tree structure based on the 
body. Measurements are made as values at  its terminal nodes, e.g. 
( f racture,  deafness) in 

The C u r t e s i a n  j o i n ,  @, is defined as follows: 
If the variable X i  is quantitative, ordinal, or a random interval, 

then 
XTi a xSi = jminjx,i , x,ij, maxjx,i , xsijj. 

If X i  is categorical and where more than one category may be 
recorded for each object 

Body 

Figure 1 .2  A tree based on the body 

For a tree structure, let n(x,i) be the nearest parent node for 
XTi (eg.  the node “body” is the parent of ( f racture,  deafness). If 
n(x,i) = n(xSi) then 

Figure 1.2

Figure 1.2.
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but if n ( x r i )  # n ( x s i )  then 

xri @ xsi = (all terminal values branching 
f r o m  the node n(xr i  U xs i ) )  

Also, if xri = xsi then define 

For example for the tree in 

( f rac ture ,  blindness) @ ( fracture,  blindness) = ( fracture,  
blindness) 

(cancer, hepatitis) @ (bronchitis) = (cancer, hepatitis 
br one hi t i s )  

(dementia,  blindness) @ (cancer) = ( fracture,  rheumatism,  
dementia, blindness, deafness ,  cancer, hepatitis, bronchitis). 

The Cartesian mee t ,  8, is defined as 

X r i  C3 x,i = X r i  fl x,i. 

Now define q5(xri,xsi) as 

4(xr i ,  xsi)  = Ixri B xsil - Ixri 8 xsi l+ a(21xri xsil - Ixril - lxsi l) ,  

where Ixril denotes the length of the interval xri and 0 5 ai 5 0.5 
is a parameter that  adjusts the measure when xri and xsi are 
intervals. 

Now 4 is normalized by defining 

$(xri ,  xsi)  = 4(xr i ,  xsi)/lRil, 
where IRiI is the range of X i  if X i  is quantitative and is the num- 
ber of categories or terminal nodes if X i  is categorical or a tree 
structure. 

The generalized Minkowski measure is then defined as 

where wi is a weight for the i th variable. Ichino and Yaguchi (1994) 
show that 6,s is a metric. 

Figure 1.2,
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I .  3.2 Distr ibut ion of p rox imi t y  coe f i c i en t s  

In calculating the similarity between a pair of objects, it might 
be of interest to establish whether the value obtained is signifi- 
cantly different from that expected for two arbitrary objects. This 
is usually not an easy task since the underlying distribution of 
the data vector needs to  be known. If multivariate normality can 
be assumed, then some progress is possible with the dissimilarity 
measures in For example for the Mahalanobis distance, 

For similarities based on binary variables, Goodall (1967) found 
the mean and variance for the simple matching coefficient, assum- 
ing independence of the variables. For the simple matching coeffi- 
cient 

6,s - 2 ~ : .  

s,s = p - l ( a  + d)  = p- l ( I1  + 1 2  + . . . + I p ) ,  

where Ii = 1 if objects T and s agree (i.e. are both 0 or 1) on the 
i th variable. Let P T { X , ~  = l} = p i .  Then 

P 

E ( s r s )  = P-' C(i: + (1 - = P ,  
i= 1 

and after some algebra 

These results can be generalized to the case where the objects can 
come from different groups which have differing pi's. 

Moments for other coefficients which do not have a constant de- 
nominator are much more difficult to obtain. Snijders e t  al. (1990) 
give a brief review of the derivation of the moments for the Jaccard 
coefficient and the Dice coefficient. They also extend the results to  
the case where the binary variables are dependent. Approximate 
distributions can be found using these moments and hence the sig- 
nificance of an observed value of the similarity coefficient can be 
assessed. 

I .  3.3 Similari ty  of species populations 

There is a large interest in measures of diversity within popula- 
tions and similarity between populations with many papers in the 

Table 1.1.
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ecological literature, see for instance Rao (1982) and Jackson et  al. 
(1989). Various authors have investigated the distribution of some 
of these similarity coefficients. Following Heltshe (1988) consider 
two sites A and B, where the presence/absence of various species 
is recorded. Let a = the number of species found at both sites, b = 
the number of species found at  site B but not at  site A,  c = the 
number of species found at site A but not at  site B and d = the 
number of species absent from both sites. The similarity between 
the two sites can be measured by one of the similarity coefficients 
of the notation just described fitting with that for the 
2 x 2 table formed for calculating these similarity coefficients. 

Sampling of the sites is by use of quadrats which are areas of 
fixed size and shape, usually circular or rectangular, placed within 
the sampling frame sometimes at random and sometimes system- 
atically. Measurements are then made within the quadrats, for ex- 
ample, counts of individuals for each species, or in this case, the 
recording of presence/absence for each species. Let there be n1 

quadrats used in site A and 112 in site B. Several authors have 
used the jackknife estimator for measuring diversity and similarity 
between the sites (populations), see for example Farewell (1978), 
Smith et  al. (1979), Heltshe and Forrester (1983) and Heltshe 
(1988). 

Firstly, the similarity, s, between sites is calculated using the Jac- 
card coefficient say, and using the amalgamated presence/absence 
data from all the nl + n2 quadrats. Thus s = a / ( a  + b + c). Then 
the i th quadrat is removed from site A and s is recalculated with 
the reduced data. Let the value of this similarity be ~ ~ ( ~ 1 .  This pro- 
cedure is carried out for all nl quadrats for site A,  and then for all 
n2 quadrats of site B giving ~ ~ ( ~ 1 .  If a removed quadrat from site A 
does not contain a species unique to  that quadrat compared to  all 
the other quadrats for site A,  then sl ( i )  = s. On the other hand, if 
the removed quadrat has a + p species unique to  that quadrat for 
site A,  but with a of these species also present at  the other site B, 
and p species absent from B. Then sl(i) = ( a  - & ) / ( a  + b + c - p).  
Let f lap  be the frequency of quadrats for site A in this situation, 
and similarly, for and when quadrats are removed from 
site B. 

In general, the jackknife estimate of similarity is 

s” = (nl  + n2 - 1)s - (nl  - l ) ~ ,  - (112 - I ) s ~ ,  

Table 1.2,
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where Sj = n j l  xi s j ( i )  ( j  = 1 ,2 ) .  The estimated variance of s" is 

with 

e? 3 = (nj  - [ x n' s;(i) - nj' (g s j ( i 1 )  2 I  . 
i= 1 

Heltshe (1988) shows that for the Jaccard coefficient 

and 

Heltshe also gives the equivalent expressions for the simple match- 
ing coefficient. 

Lim and Khoo (1985) considered sampling properties of Gower's 
general similarity coefficient for artificial communities. These com- 
munities were simulated in a rectangular region and random species 
abundance data generated. The proportion of individuals simulated 
that belong to  species i was 8(1 - Q)i-l/(l - 8)" ( i  = 1,. . . N ) ,  
where 0 < 0 < 1. So the first species is the most abundant, followed 
by the second, the third, etc., with N species in total. Let x,i be 
the abundance of species i in the r th  simulated community. Then 
the similarity between the r th  and sth communities is measured 
by 

N 

srs = N-' x(1- Ixri - x s i l / ~ i ) ,  

i= 1 

where Ri is the range of the abundance data for the i th species. 
Lim and Khoo study bias and variability of s,, in this ecological 

setting. They show that s,, has smallest bias when the true value 
of s,, is close to  0.5 with bias increasing as the true value of s,, 
approaches zero or unity. As expected, bias reduces as the sample 
size increases. The standard error of s,, is largest when the true 
value of s,, is close to 0.6. 
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I .  3.4 Transforming from similarities t o  dissimilarities 

Often similarity coefficients have to be transformed into dissimil- 
arity coefficients. Possible transformations are 

S,, = 1 - s,, 

S,, = c - s,, for some constant c 

S,, = {2( l  - S r s ) } i .  

Choice will depend on the problem at hand. 

I .  3.5 The metric nature of dissimilarities 

Gower and Legendre (1986) discuss in detail metric and Euclidean 
properties of many dissimilarity coefficients. A summary is given 
of some of the important results they establish or report on. 

Let the dissimilarities {S,,} be placed in a matrix D, the dis- 
similarity matrix. similarly, let similarities {s,,} be placed in a 
similarity matrix S. Then D is called metric if S,, is a metric. 
Matrix D is also Euclidean if n points can be embedded in a Eu- 
clidean space such that the Euclidean distance between the r th  
and sth points is S,,, for all 1 5 r , s  5 n. 

If D is nonmetric then the matrix with elements S,, + c ( T  # s )  
is metric where c 2 maxi,j,k lS i j  + 6 i k  - S j k I .  

If D is metric then so are matrices with elements (i) S,, + c2 (ii) 
S:LA (A 2 1) (iii) S,,/(S,, + .") for any real constant c, and r # s. 

Let matrix A = [- 4d;,]. 
Then D is Euclidean if and only if the matrix ( I - l sT)A(I-s lT)  

is positive semi-definite, where I is the identity matrix, 1 is a vector 
of ones, and s is a vector such that sT1 = 1. 

If S is a positive semi-definite similarity matrix with elements 
0 5 s,, 5 1 and s,, = 1, then the dissimilarity matrix with ele- 
ments d,, = (1 - s,,) i is Euclidean. 

If D is a dissimilarity matrix, then there exists a constant h 
such that the matrix with elements (S,', + h)  3 is Euclidean, where 
h 2 -An, the smallest eigenvalue of A ,  = HAH, H being the 
centring matrix (I - llT/n). 
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If D is a dissimilarity matrix, then there exists a constant k such 
that the matrix with elements (hTs + k )  is Euclidean, where k 2 pun, 
the largest eigenvalue of 

[01 2 k ]  
where A2 = [-id,,]. 

problem which is discussed further in Chapter 2. 
These last two theorems give solutions to  the additive constant 

For binary variables, Gower and Legendre define 

a 
a + 8 ( b  + c)  

To = 
a + d  

a + d + 8 ( b  + c)  
so = 

Then for the appropriate choice of 6' similarity coefficients in 
can be obtained. Gower and Legendre show: 

For 8 2 1, 1 - So is metric; d m  is metric for 8 2 i; if 8 < 1 
then 1 - So may be nonmetric; if 8 < i then d m  may be 
nonmetric. There are similar results when So is replaced by To. 

If d- is Euclidean then so is ,/- for 4 2 8, with a 
similar result for TQ. 

For 8 2 1, d m  is Euclidean; for 8 2 i , d m  is Euclidean. 
However 1 - So and 1 - To may be non-Euclidean. 

Gower and Legendre give a table of various similarity/dissimil- 
arity coefficients and use these results to establish which coeffi- 
cients are metrics and which are also Euclidean. Further results 
can also be found in Fichet (1983), Gower (1985) and Caillez and 
Kuntz (1996) 

1.3.6 Dissimilarity of variables 

Sometimes it is not the objects that are to  be subjected to multi- 
dimensional scaling, but the variables. One possibility for defining 
dissimilarities for variables is simply to  reverse the roles of objects 
and variables and to proceed regardless, using one of the dissim- 
ilarity measures. Another possibility is to  choose a dissimilarity 
more appropriate to  variables than objects. 

The sample correlation coefficient rij is often used as the basis 
for dissimilarity among variables. For instance 6ij = 1 - rij could 

Table
1.2
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be used. This measure has its critics. A similar dissimilarity can 
be based on the angular separation of the vectors of observations 
associated with the i th and j t h  variables, 

Zegers and ten Berge (1985), Zegers (1986) and Fagot and Mazo 
(1989) consider general similarity coefficients for variables mea- 
sured on different metric scales. The argument is that the similarity 
coefficient has to  be invariant under admissible transformations of 
the variables. The scales considered are: the absolute scale where 
only the identity transformation is possible; the difference scale 
which is only invariant under additive transformations; the ratio 
scale which is only invariant under positive multiplicative trans- 
formations; and the interval scale which is invariant up to positive 
linear transformations. The variables are transformed to “uniform- 
ity” according to type: 

u,i = xri  

uri = X r i  - X i  

for the absolute scale 
for the difference scale 

- _  
1 

n - 1  
u r i  = (~ x ( x s i  - X i ) 2 )  (xr i  - Xi) for the interval scale. 

Consider a general similarity coefficient, s i j ,  based on the mean 
squared difference, 

r 

where c is a constant. This is to have maximum value unity when 
u,i = U r j  (1 5 r 5 n) .  Hence c can be determined from the 
requirement that s i j  = s j i ,  and then after some algebra 

This can be a considered alternative to  the haphazard use of the 
sample correlation coefficient. 
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1.3.7 S imi lar i t y  measures  o n  f uxxy  sets  

Fuzzy set theory has found several application areas. Klir and Fol- 
ger (1988) describe its uses in such areas as meteorology, traffic 
control, aircraft control, medicine, management , expert systems 
and pattern recognition. Manton e t  al. (1994) discuss statistical 
theory and applications of fuzzy sets. 

Without delving too deeply into fuzzy set theory, consider a uni- 
versal set X. Let A be a subset of X, and suppose its membership 
is absolutely determined. To each element x E X assign the value 
1 if x E A and the value 0 if x @ A. The set A is known as a crisp 
set. Suppose it is not now certain as to whether x belongs to  A 
or not. Then the 0/1 valued membership function for the crisp set 
can be replaced by a membership function P A ,  usually with range 
[0,1], that  gives the “degree of membership” of x to A. The set A 
then becomes a fuzzy set. 

E x a m p  1 e 
Let X = R, and p ~ ( x )  = exp(-100x2). Then A is a fuzzy set 
of numbers close to zero. The number zero has membership value 
unity. The number 0.1 has membership value 0.368. 

For the purposes here, the universal set will be a set of objects 
0. Let 0 consist of n objects, 01,. . . , on, and let there be g sets 
(groups) GI , . . . , G,. It is not known which objects belong to  which 
groups, but suppose for each group there is a membership function 
p ~ ~ ( . ) .  So p ~ ~ ( o , )  is the value of the membership for object 0, 
to be in group Gi. There have been various similarity measures 
proposed to measure the similarity between these fuzzy sets and 
also between the objects. Wang (1997) discusses some of these and 
suggests two of his own. Other references are Chen (1997), Fan 
and Xie (1999). The following are some of the similarity measures 
denoted by s(Gi,Gj) where the notation p~~ is shortened to  pi. 

s(Gi, Gj)  = maxmin(pi, p j )  
O E O  
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n n 

k = l  k = l  

n 

k=l  

These last two measures were proposed by Wang (1997). He also 
proposed the following similarity measures between elements. 

1.4 Matrix results 

A review of matrix algebra is not given here, as it is assumed that 
the reader is familiar with such. However, a brief reminder is given 
of the spectral decomposition of a symmetric matrix, the singu- 
lar value decomposition of a rectangular matrix, and the Moore- 
Penrose inverse of a matrix. For outlines of matrix algebra relevant 
to statistics, see Mardia et  al. (1979), Healy (1986) for example. 

where

and
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1.4.1 T h e  spectral decomposition 

Let A be an n x n symmetric matrix, with eigenvalues { X i }  and 
associated eigenvectors {vi}, such that v'vi = 1 (i = 1,. . . , n) .  
Then A can be written 

A 

where 
A = diag X I , .  . . 7 A,),  v = [ V l ,  . . . ,  Vn]. 

Matrix V is orthonormal, so that VVT = VTV = I. Also if A is 
nonsingular 

A" = VA"VT 

with A" = diag(XT,. . . , A;) for any integer m. If the eigenvalues 
{ X i }  are all positive then rational powers of A can be defined in a 
similar way and in particular for powers i and -;. 

1.4.2 T h e  singular value decomposition 

If A is an n x p matrix of rank T ,  then A can be written as 

A = UAVT, 

where A = diag(XI,Xa,. . . , A r ) ,  with X1 2 A2 2 . . . 2 A, 2 0, U 
is an orthonormal matrix of order n x r ,  and V an orthonormal 
matrix of order T x T ,  i.e. UTU = VTV = I. The set of values 
{ X i }  are called the singular values of A. If U and V are written in 
terms of their column vectors, U = [ul,.  . . , u,], V = [v l , .  . . , v,], 
then {ui} are the left singular vectors of A and {vi} are the right 
singular vectors. The matrix A can then be written as 

r 

i=l 

It can be shown that {A:} are the nonzero eigenvalues of the sym- 
metric matrix AAT and also of the matrix ATA. The vectors 
{ ui} are the corresponding normalized eigenvectors of AAT, and 
the vectors {vi} are the corresponding normalized eigenvectors of 
A ~ A .  
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An example 
As an example let 

A =  

Then the SVD A is 

2 1 4 ‘  
-4 3 ;:I 2 

0.394 0 5.477 
0.056 -0.980 

A =  

0.802 -0.535 -0.267 
0.436 0.218 

or equivalently 

0.393 0.196 0.787 
0.074 0.037 0.148 
0.172 0.086 0.344 
0.024 0.012 0.049 

A = 11.619 

0.079 -0.052 -0.026 
-0.156 0.104 0.052 

-0.786 0.524 0.262 

If there are no multiplicities within the singular values then the 
SVD is unique. If k of the singular values are equal, then the SVD is 
unique only up to  arbitrary rotations in the subspaces spanned by 
the corresponding left and right singular vectors. Greenacre (1984) 
gives a good review of the SVD of a matrix and its use in statistical 
applications. 

The usefulness of the SVD of a matrix is that  it can be used to  
approximate matrix A of rank T by matrix 

r*  

i= 1 

which is of rank T* < T .  The approximation is, in fact, the least 
squares approximation of A found by minimising x x ( a i j  - xij)’ = tr{(A - X)(A - XT)}, 

i j  
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for all matrices X of rank r* or less. This is a classical result orig- 
inating from Eckart and Young (1936). 

For example, with r* = 1, A above is approximated by 

4.56 2.28 9.14 

2.00 1.00 4.00 
0.28 0.14 0.57 

A 1 = [  0.86 0.42 1.71 ] 
and noting that the second and third columns of A 1  are simply 
multiples of the first column. This is, of course, expected since A1 
is of rank one. If A is viewed as a matrix representing four points 
in a three dimensional space, it is noted that only two dimensions 
are in fact needed to  represent the points since A has rank 2. A 
one dimensional space approximating to  the original configuration 
is given by A1 giving an ordering of the points as 4,2,3,1. 

Note that the singular value decomposition can be defined so 
that U is an n x n matrix, A is an n x p matrix and V is a 
p x p matrix. These matrices are the same as those just defined 
but contain extra rows/columns of zeros. 

Generalized S V D  
Suppose now weighted Euclidean distances are used in the spaces 
spanning the columns and rows of A. Then the generalized SVD 
of matrix A is given by 

A = UAV', 

where A = diag(Al,Aa,. . .,A,), with A1 2 A2 2 . .  . 2 A, 2 0, 
are the generalized singular values of A, U is an n x T matrix, 
orthonormal with respect to  f2,and V is a p x r matrix orthonormal 
with respect to @, i.e. UTf2U = VT@V = I. 

Let U = [rl, . . . , r,] and V = [cl, . . . , cp]. The approximation of 
A by a lower rank matrix AT* is given by 

r*  

i= 1 

where A,* is the matrix that minimises 

tr{ f2(A - X)@(A - X)'} 

over all matrices X of rank r* or less. 
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1.4.3 The  Moore-Penrose inverse 

Consider the matrix equation 

A X = B  

where A is an n x p matrix, X is a p x n matrix and B is an 
n x n matrix. The matrix x which minimises the sum of squares 
t r (AX - B)T(AX - B) and itself has the smallest value of t rXTX 
among all least squares solutions is given by 

x = A+B, 

where A+  is the unique p x n Moore-Penrose generalized inverse 
of A, defined by the equations 

AA’A = A 
A f A A +  = A+ 

(AA+)* = AA+ 
(A+A)* = A+A, 

A* being the conjugate transpose of A.  As only real matrices are 
used in this book ‘‘*” can be replaced by “T” the usual matrix 
transpose. For further details see Barnett (1990) for example. 
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CHAPTER 2 

Metric multidimensional scaling 

2.1 Introduction 

Suppose there are n objects with dissimilarities {&,}. Metric MDS 
attempts to  find a set of points in a cespace where each point 
represents one of the objects and the distances between points 
{dr,}  are such that 

d,, = f(&,), 
where f is a continuous parametric monotonic function. The func- 
tion f can either be the identity function or a function that at- 
tempts to  transform the dissimilarities to  a distance-like form. 

Mathematically, let the objects comprise a set 0. Let the dissim- 
ilarity, defined on 0 x 0, between objects T and s be 6,, ( r ,  s c 0). 
Let q5 be an arbitrary mapping from 0 to E,  where E is usually a 
Euclidean space, but not necessarily so, in which a set of points are 
to represent the objects. Thus let $ ( T )  = 2, (T c 0, 2, c E), and 
let X = {xr : r c 0}, the image set. Let the distance between the 
points xr, x, in X be given by drs .  The aim is to find a mapping 
q5, for which d,, is approximately equal to  f(&,) for all T ,  s c 0. 

The two main metric MDS methods, classical scaling and least 
squares scaling, will be considered in this chapter, with most em- 
phasis placed on the former. 

2.2 Classical scaling 

Classical scaling originated in the 1930s when Young and House- 
holder (1938) showed how starting with a matrix of distances be- 
tween points in a Euclidean space, coordinates for the points can be 
found such that distances are preserved. Torgerson (1952) brought 
the subject to  popularity using the technique for scaling. 
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2.2.1 Recovery of coordinates 

Chapter 1 saw an application of classical scaling where a map of 
British cities was constructed from journey times by road between 
the cities. Suppose the starting point for the procedure had been 
the actual Euclidean distances between the various cities (making 
the assumption that Great Britain is a two dimensional Euclidean 
plane). Can the original positions of the cities be found? They can, 
but only relative to  each other since any solution can be translated, 
rotated and reflected, giving rise to  another equally valid solution. 
The method for finding the original Euclidean coordinates from the 
derived Euclidean distances was first given by Schoenberg (1935) 
and Young and Householder (1938). It is as follows. 

Let the coordinates of n points in a p dimensional Euclidean 
space be given by x, ( r  = 1, . . . , n) ,  where x, = ( ~ ~ 1 , .  . . , x , ~ ) ~ .  
Then the Euclidean distance between the r th  and s th  points is 
given by 

d2 r s  = (x, - xs) (x, - xs). (2.1) 
T 

Let the inner product matrix be B, where 

From the known squared distances { d r s } ,  this inner product matrix 
B is found, and then from B the unknown coordinates. 

To find B 
Firstly, to overcome the indeterminancy of the solution due to  ar- 
bitrary translation, the centroid of the configuration of points is 
placed at  the origin. Hence 

n 

r=l 

To find B, from (2.1) 
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and hence 

- 1 "  C d:s = - 1 "  C X T X ,  + X, T x,, 

r=l r=l 

1 "  1 "  
- C d;, = XTX, + - C xFx,, 

s=l s=l  

1 " "  2 "  
- C C d:s = - C xTxr. 
n2 n 

r=l s=l r=l 

Substituting into (2.2) gives 
T 

brs = Xr xS, 

n 
r=l s= 1 r=l s=l 

where ars = -id:,, and 

S r r s  

Define matrix A as [A]rS = urs ,  and hence the inner product 
matrix B is 

B = HAH (2.5) 

where H is the centring matrix, 

H = I - np11lT, 

with 1 = (1,1,. . . , l)T, a vector of n ones. 

To recover the coordinates from B 
The inner product matrix, B, can be expressed as 

B = XXT, 

where X = [ X I , .  . . , x,IT is the n x p matrix of coordinates. The 
rank of B, r ( B ) ,  is then 

r(B) = r ( X X T )  = r ( X )  = p .  

Now B is symmetric, positive semi-definite and of rank p ,  and 
hence has p non-negative eigenvalues and n - p zero eigenvalues. 
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Matrix B is now written in terms of its spectral decomposition, 

B = VAVT,  

where A = dia,g(X1, Xa, . . . , A,), the diagonal matrix of eigenvalues 
{ X i }  of B, and V = [vl, . . . ,v,], the matrix of corresponding 
eigenvectors, normalized such that V T V ~  = 1. For convenience the 
eigenvalues of B are labelled such that XI 2 

Because of the n - p zero eigenvalues, B can now be rewritten 
2 . . . 4 A, 2 0. 

as 
B = VlAlVT,  

where 

A1 = diag(X1,. . . , A,), V1 = [v l , .  . . ,vP]. 

Hence as B = XXT, the coordinate matrix X is given by 
1 

X = VIA,", 
1 1 1 

where A: = diag(X:, . . . , A;), and thus the coordinates of the 
points have been recovered from the distances between the points. 
The arbitrary sign of the eigenvectors {vi} leads to invariance of 
the solution with respect to  reflection in the origin. 

2.2.2 Dissimilarities as Euclidean distances 

To be of practical use, a configuration of points needs to be found 
for a set of dissimilarities {dTS} rather than simply for true Euc- 
lidean distances between points { d,,}. 

Suppose dissimilarities {drs} are used instead of distances d,, to  
define matrix A, which is then doubly centred to  produce matrix B 
as just described. Then it is interesting to ask under what circum- 
stances B can give rise to  a configuration of points in Euclidean 
space, using the spectral decomposition, so that the associated dis- 
tances { d r s }  are such that dr ,  = d,, for all r ,  s. The answer is that 
if B is positive semi-definite of rank p ,  then a configuration in p 
dimensional Euclidean space can be found. Proofs are presented in 
de Leeuw and Heiser (1982) and Mardia et  al. (1979). 

Following Mardia et  al., if B is positive semi-definite of rank p ,  
then 

B = VAVT = XXT, 
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where 

A = diag(A1,. . . , A p ) ,  X = [ x , ] ~ ,  x, = Aiv,. 

Now the distance between the r th  and sth points of the configura- 
tion is given by (xr - x , ) ~ ( x ,  - x,), and hence 

T T T (x, - x,) (x, - x,) = x, x, + x, x, - 2 X 7 X S  

= b,, + b,, - 2b,, 
= a,, + ass - 2a,, 

2 = -2a,, = 6,,, 

by substituting for b,, using equation (2.4). Thus the distance be- 
tween the r th  and sth points in the Euclidean space is equal to the 
original dissimilarity S,, . 

Incidently the converse is also true that if B is formed from Euc- 
lidean distances then it is positive semi-definite. For when d:, = 
(x, - x , ) ~ ( x ,  - x,) is substituted into equation (2.4) then 

b,, = (x, - x ) T ( ~ ,  - x) 

where x = n-l C,  x,. Hence 

B = (HX)(HX)' 

which implies that B is positive semi-definite. 
The next question to  be asked is how many dimensions are re- 

quired in general for the configuration of points produced from a 
positive semi-definite matrix B of dissimilarities. It is easily shown 
that B has at  least one zero eigenvalue, since B1 = HAHl = 0. 
Thus a configuration of points in an n - 1 dimensional Euclidean 
space can always be found whose associated distances are equal to  
the dissimilarities { S,,}. 

If the dissimilarities give rise to  a matrix B which is not pos- 
itive semi-definite, a constant can be added to all the dissimilar- 
ities (except the self-dissimilarities &,) which will then make B 
positive semi-definite. Thus forming new dissimilarities, { Sk,} as 
6kS = 6,, + c(1 - S"), where c is an appropriate constant and 6" 
the Kronecker delta (6'' = 1 if r = s and zero otherwise; not to  be 
confused with S,,), will make B positive semi-definite. This is the 
additive constant problem, see for example Cailliez (1983), which 
will be explored further in Section 2.2.8. Once B has been made 
positive semi-definite, a Euclidean space can be found as before 
where distances d,, are exactly equal to  dissimilaties &,. 
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2.2.3 Classical scaling in practice 

It was shown in the previous section that a Euclidean space of, at 
most, n- 1 dimensions could be found so that distances in the space 
equalled original dissimilarities, which were perhaps modified by 
the addition of a constant. Usually matrix B used in the procedure 
will be of rank n - 1 and so the full n - 1 dimensions are needed in 
the space, and hence little has been gained in dimension reduction 
of the data. 

The configuration obtained could be rotated to  its principal axes 
in the principal components sense; i.e. the projections of the points 
in the configuration onto the first principal axis have maximum 
variation possible, the projection of the points onto the second 
principle axis have maximum variation possible, but subject to  
this second axis being orthogonal to the first axis, etc.. Then only 
the first p ,  ( p  < n - 1) axes are chosen for representing the config- 
uration. However this need not be undertaken since the procedure 
for finding X already has the points referred to  their principal axes. 
This is easily seen since in searching for the principal axes, 

= A + V ~ V ~ A +  = A ,  

and A is a diagonal matrix. 
Gower (1966) was the first to  state clearly the formulation and 

the importance of the classical scaling technique, and from this 
selection of the first p “principal coordinates” for the configura- 
tion he coined the name “principal coordinates analysis” (PCO). 
Principal coordinates analysis is now synonymous with classical 
scaling, as also is the term metric scaling. However metric scaling 
encompasses more than this one technique. 

Thus in the spectral decomposition of the matrix B, the dis- 
tances between the points in the n - 1 dimensional Euclidean space 
are given by 

n-1 

i = l  

and hence, if many of the eigenvalues are “small”, then their con- 
tribution to the squared distance d:, can be neglected. If only p 
eigenvalues are retained as being significantly large, then the p di- 
mensional Euclidean space formed for the first p eigenvalues and 
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with x, truncated to  the first p elements can be used to  represent 
the objects. Hopefully, p will be small, preferably 2 or 3, for ease 
of graphical representation. 

The selection of these first p principal coordinates is optimal in 
the following sense when { d T S }  are Euclidean. If x: is a projection 
of x, onto a p' dimensional space with p' 5 p and with associated 
distances between points {d : s } ,  then it is precisely the projection 
given by using the first p' principal coordinates that minimises 

For the non-Euclidean case, the above does not hold, but Mardia 
(1978) has given the following optimal property. For the matrix 
B = HAH a positive semi-definite matrix B* = [b,,] of rank at 
most t is sought such that x x(bTs - b:,)z = t r (B  - B*)2 (2.6) 

is a minimum. 
Let AT 2 . . . 2 A: be the eigenvalues of B* and so at  least n - t 

of these must be zero, due to the rank constraint. Then it can be 
shown that 

n 

min t r (B  - B*)2 = min x(Ak - 
k = l  

For the minimum 

A$ = max(Ak,O) k = 1,. . . , t  
= O  k = t + l  , . . .  ,n. 

So if B has t or more positive eigenvalues then the first t principal 
coordinates derived from B are used for the projection. If B has 
fewer than t positive eigenvalues then the space of dimension less 
than t defined by the positive eigenvalues of B is used. 

Hence, in practice, if it is found that B is not positive semi- 
definite (simply by noting whether there are any negative eigen- 
values) then there is a choice of procedure. Either the dissimilarites 
are modified by adding an appropriate constant, or the negative 
eigenvalues are simply ignored. If the negative eigenvalues are small 
in magnitude then little is lost. If they are large then some argue 
that classical scaling is still appropriate as an exploratory data 
technique for dimension reduction. 
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2.2.4 How m a n y  d imensions? 

As indicated previously, the eigenvalues {X i }  indicate how many 
dimensions are required for representing the dissimilarities { ST,}. 
If B is positive semi-definite then the number of non-zero eigenval- 
ues gives the number of dimensions required. If B is not positive 
semi-definite then the number of positive eigenvalues is the appro- 
priate number of dimensions. These are the maximum dimensions 
of the space required. However, to be of practical value, the num- 
ber of dimensions of the chosen space needs to  be small. Since the 
coordinates recovered by the procedure are referred to  their prin- 
cipal coordinates, then simply choosing the first p eigenvalues and 
eigenvectors of B ( p  = 2 or 3 say) will give a small dimensional 
space for the points. 

The sum of squared distances between points in the full space is 
from (2.3) 

1 n n  n n-1 x x d:s = n x x'x, = nt rB = n x Xi .  
r=l s=l r= l  r= l  

2 

A measure of the proportion of variation explained by using only 
p dimensions is 

If B is not positive semi-definite this measure is modified to  

x:==, X i  or 

Choice of p can then be assessed with this measure. 

x:==, X i  

c"-i' IX i l  x (positive eigenvalues) * 

2.2.5 A pract ica l  a lgo r i t hm for classical scaling 

Although the various steps in the algorithm for classical scaling can 
be gleaned from the text in the previous sections, it is summarised 
here. 
1. Obtain dissimilarities { S,,}. 
2. 
3. 
4. 

Find matrix A = [-iSz,]. 
Find matrix B = [ars - ar, - 
Find the eigenvalues X I ,  . . . , Xn-l  and associated eigenvectors 
v1 . . . vn-l, where the eigenvectors are normalized so that 

+ a..]. 
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V T V ~  = Xi .  If B is not positive semi-definite (some of the eigen- 
values are negative), either (i) ignore the negative values and 
proceed, or (ii) add an appropriate constant c to the dissimil- 
arities, Si, = S,, + c(1 - 6") (see Section 2.2.8) and return to  
step 2. 

5. Choose an appropriate number of dimensions p .  Possibly use 
Cy X i /  C (positive eigenvalues) for this. 

6. The coordinates of the n points in the p dimensional Euclidean 
space are given by x,i = wir ( T  = 1, . . . , n; i = 1, . . . , p ) .  

2.2.6 A grave example 

There is a fascinating paper in the very first volume of Biometrika, 
published in 1901-1902, concerning cranial measurements on an 
ancient race of people from Egypt. The paper is by Cicely Fawcett 
(1901) who was assisted by Alice Lee and others, including the 
legendary K. Pearson and G.U. Yule. The paper is sixty pages 
long and gives an insight into the problems faced by statisticians 
of the time who had no access to  modern computing facilities or 
advanced statistical met hods. 

Till that time, little statistical work had been done for, or by, 
craniologists on skull measurements, although several data sets had 
been collected. Karl Pearson had asked Professor Flinders Petrie 
to try to obtain one hundred skulls from a homogeneous race when 
he embarked on his Egyptian expedition in 1894. Professor Petrie 
managed to  get four hundred skulls, together with their skeletons, 
sent back to  University College in London. These were taken from 
cemeteries of the Naqada race in Upper Egypt, and were dated 
at  about 8000 years old. Karl Pearson was credited as the first 
person to  calculate correlations for length and breadth in skulls, 
studying modern German, modern French and the Naqada crania. 
The second study of the Naqada crania was started in 1895 by Karl 
Pearson's team, and the time taken to carry out extensive hand 
calculation of means, standard deviations, correlations, skewness, 
kurtosis, and probability density fitting, delayed publication until 

The Fawcett paper details the method of measuring the skulls, 
for which various measuring devices had been deployed, such as a 
craniometer, a goniometer and a Spengler's pointer. In all, forty- 
eight measurements and indices were taken and and were published 
at  the end of the paper. The statistical analyses used on the data 

190 1- 1902. 
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Table 2.1 The first five leading eigenvalues and eigenvec- 
tors of B giving principal coordinates of the skull data. 

Eigenvalue 
A1 = 11.47 

A2 = 4.98 

A3 = 4.56 

A4 = 2.55 

A5 = 1.73 

Eigenvector 
(-1.16, -0.19, -0.07, 0.56, 1.01, -0.49, -0.71, -0.82, 
-0.42, -0.15, 0.26, -0.30, 0.40, -1.13, 0.02, -0.88, 
0.45, 0.00, 0.11, -0.53, 0.79, -0.32, 0.37, -0.08, 
0.09, 1.00, -0.41, 0.09, 0.47, 0.00, -0.01, -0.08, 
0.60, 0.05, 0.60, 0.45, -0.23, -0.07, -0.24, 0.98) 

(0.11, -0.42, 0.21, -0.79,-0.14,-0.70, -0.26, -0.32, 
-0.03, -0.14, 0.00, 0.24, 0.14, 0.27, -0.64, 0.47, 
-0.51, -0.07, 0.36, -0.36, 0.31, 0.05, 0.28, -0.04, 
0.38, -0.40, -0.33, 0.83, -0.19, -0.12, -0.01, -0.03, 
0.26, 0.20, 0.22, 0.55, 0.16, 0.37, 0.40, 0.07) 

(-0.12, 0.15, -0.61,-0.10,-0.31,-0.07, -0.21, 0.33, 
-0.68, -0.01, 0.36, 0.56, -0.26, 0.07, -0.30, -0.16, 
-0.08, -0.02, -0.18, -0.30, -0.50, -0.69, -0.07, 0.06, 
0.65, 0.34, 0.36, -0.25, 0.64, 0.49, 0.18, 0.30, 
-0.09, -0.02, 0.26, -0.20, 0.27, 0.45, -0.05, -0.19) 

(0.16, 0.04, -0.12,-0.12, 0.24, 0.15, 0.04, 0.20, 
0.25, -0.16, -0.33, 0.39, 0.48, -0.20, -0.36, -0.07, 
0.22, 0.53, -0.18, 0.02, 0.29, -0.55, 0.35, -0.15, 
-0.32, -0.19, 0.14, 0.10, 0.09, -0.27, 0.24, -0.05, 
0.12, -0.09, 0.02, -0.15, -0.24, 0.17, -0.29, -0.44) 

(-0.03, -0.09, 0.23, 0.13, 0.07, -0.29, -0.11, 0.43, 
-0.08, -0.16, -0.04, -0.32, -0.18, 0.19, -0.37, -0.26, 
0.32, 0.12, 0.17, 0.24, -0.20,-0.14, 0.11, 0.42, 
0.15, -0.20, 0.05, 0.16, 0.06, 0.04, -0.25, -0.22, 
0.40, 0.16, -0.25,-0.10, 0.09, -0.13, -0.10, 0.01) 

would be classified as basic by modern standards, with means, 
standard deviations, correlations, etc. being compared in tables. 
Of course, no use could be made of hypothesis tests, confidence 
intervals, let alone multivariate methods such as cluster analysis, 
principal components or discriminant analysis. 

The results obtained by Karl Pearson’s team will not be gen- 
erally discussed here, since they are rather long and of interest 
mainly to craniologists. However, to  concentrate on one point, the 
team said it found it impossible to give diagrams of the forty-seven 
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variables, separated by sex. They chose twelve of these variables 
and constructed twenty-four histograms and fitted density func- 
tions, all calculated and plotted at considerable cost of time. The 
variables were: (i) greatest length, L; (ii) breadth, B; (iii) height, H; 
(iv) auricular height , OH; (v) circumference above the superciliary 
ridges, U; (vi) sagittal circumference, S; (vii) cross-circumference, 
Q; (viii) upper face height, G'H; (ix) nasal breadth, NB; (x) nasal 
height, NH; (xi) cephalic index, B/L; (xii) ratio of height to  length, 
H/L. These twelve variables will be used for an analysis for 22 male 
and 18 female skulls. For clarity only a subset of the skulls were 
chosen and those used had no missing values. 

F 

5F 

Figure 2.l(i)  Classical scaling of the skull data 

The twelve variables were standardized to  have zero mean and 
standard deviation unity. Then dissimilarities between skulls were 
calculated using Euclidean distance and subjected to  classical scal- 
ing. 

gives the five leading eigenvalues of B together with 
their associated eigenvectors. These are the first five principal co- 
ordinates. A two dimensional configuration is obtained by using 
the first two of these and is shown in where male 
and female skulls are marked M and F respectively. For clarity, 
the points for males and females are plotted separately in 

5F

7M

10F

13M

26M

32M

43F
45F

46F
52M

58F

59F
63F

64F

66M

70F

83F

85M

86M

93M

96M

97F

99M

102M

112M

120M
121F

125M

136M
137F
138M139M

140F
143M 144F

145F

146F

148M151M

152M

Table 2.1

Figure 2.1 (i)

Figures
2.1 (ii) and 2.1 (iii).
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(ii) 

125M 

l5lN8M8M 99M 96M 

143M 
152M 

136M 26M 

18 
52M 

93M 7M 
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32 M 

13M 

120M 

(iii) 

70F 

64 F 

5F 

45FF  

59 F 
146F 

97F 
46F 

137F 
1 OF 

121F 

145F 

14QF 
63 F 

58F 

83 F 

Figures 2.l(ii) arid (iii) Males  and  f e m a l e s  plotted separately 

The most striking features are that the males tend towards the 
right of the plot and the females towards the left. The males {99M, 
96M7 152M7 26M, 120M, 136M, 66M7 13M) towards the far right 
tended to have larger mean values for the twelve variables than the 
rest of the males. The three females {70F, 64F, 5F) to  the extreme 
left of the configuration have mean values much less than those for 
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the other females. Size of skull seems to be the main interpretation 
horizontally across the configuration. 

As a guide to the number of dimensions required for the con- 
figuration, the proportion of the variation (C:==, &/ Cr=l Xi)  ex- 
plained is 42%, 61%, 78%, 87% and 93% for 1, 2, 3, 4 and 5 di- 
mensional spaces respectively. A three dimensional plot would have 
been somewhat superior to the two dimensional one shown. 

Of course the classical scaling analysis is not the only analysis 
that could be done on these data. Cluster analysis, discriminant 
analysis and principal components analysis are all good candidates 
for such. A principal components analysis could have been carried 
out on the data - but the resulting configuration of skulls plotted 
on the first principal component against the second would have 
been exactly the same as that in This is because there is 
an equivalence between principal components analysis and classical 
scaling when dissimilarities for classical scaling are chosen to  be 
Euclidean distances. This is explored further in the next section. 

2.2.7 Classical scaling and principal components  

Suppose X is a data matrix of dimension n x p .  The sample co- 
variance matrix obtained from X is S = (n  - l)-'XTX, where 
it is assumed that the data have been mean corrected. Principal 
components are obtained by finding eigenvalues {pi  : i = 1,. . . , p }  
and right eigenvectors {ti : i = 1 , .  . . , p }  of S, and then the i th 
principal component is given by yi = ,$x ( i  = 1 , .  . . , p )  (see for 
example, Chatfield and Collins, 1980 or Mardia e t  al., 1979). 

Suppose, on the other hand, Euclidean distance is used on the 
data matrix X to define dissimilarities among the n individuals or 
objects. The dissimilarities will be given by 

and hence when these dissimilarities are subjected to  classical scal- 
ing, b,, = x'x, and B = XXT. 

As before, let the eigenvalues of B be X i  ( i  = 1 , .  . . , n)  with 
associated eigenvectors vi (i = 1, . . . , n) .  

It is a well known result that the eigenvalues of XXT are the 

Figure 2.1.
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same as those for XTX, together with an extra n - p zero eigen- 
values. This is easily shown. Let vi be an eigenvector of XXT 
associated with a non-zero eigenvalue, and so 

XXTVi = XiVi.  

(XTX) (XTVi) = X i  (XTVi). 

XTX& = p i t i ,  

Premultiplying by XT, 

But 

and hence pi = X i  and the eigenvectors are related by = XTvi. 
Thus there is a duality between a principal components analysis 
and PCO where dissimilarities are given by Euclidean distance. In 
fact, the coordinates obtained in p' dimensions for the n objects 
by PCO are simply the component scores for the n objects on 
the first p' principal components. Now = v'XX'vi = Xi.  
Normalizing ti, the first p' component scores are given by 

X[X,l&, AT1&,  . . . , X,'&$,/] = XIX,'XTV1, . . . , X,'XTVp/] 

= [A, + XXTVl, . . . , A; + XXTV,/] 

= [ X ? V l , .  . . , 
which are the coordinates obtained from PCO in p' dimensions. 

Optimal transformations of the variables 
So far, the PCO space containing the points representing the ob- 
jects or individuals has been a subspace of the original p dimen- 
sional space spanned by the columns of the data matrix X. It will 
now be convenient to  change notation so that X is the matrix of 
coordinates in the Euclidean space representing the objects or in- 
dividuals and Z is the data matrix. The associated spaces can now 
be different. 

Meulman (1993) considers optimal transformations of the vari- 
ables in Z .  From equation (2.6), PCO can be considered as the 
search for X such that the loss function 

tr(ZZT - X X ~ ) ~ ( Z Z ~  - X X ~ )  (2.7) 
is minimised with respect to  X (remembering that Z is mean cor- 
rected). The term (2.7) is called STRAIN. 
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Following Meulman, let X be transformed into Q = [qi], qi E r, 
where r is a set of admissable transformations, for example a set of 
spline transformations. The mean of qi is set to  be zero, lTqi = 0, 
and normalized so that qTqi = 1. 

The loss function 

STRAIN(Q; X)  = t r (QQT - XXT)'(QQT - XXT) 

is now minimised with respect to  X and with respect to Q.  Meul- 
man suggests using an alternating least squares technique where 
STRAIN(Q;X) is minimised with respect to X for fixed Q and 
then with respect to  Q for fixed X .  The minimisation process al- 
ternates between the two minimisation steps. The minimisation for 
fixed Q is straightforward and is based on the usual PCO analy- 
sis. The minimisation for fixed X is more difficult and an iterative 
majorization procedure is suggested (see Chapter 10). 

2.2.8 The additive constant problem 

In Chapter 1, various metric and Euclidean properties of dissim- 
ilarities were discussed. Here, one particular aspect is considered 
in more detail, that of the additive constant problem. There are 
two formulations of the problem. The first is simply the problem 
of finding an appropriate constant to  be added to all the dissimil- 
arities, apart from the self-dissimilarities, that  makes the matrix 
B of Section 2.2 positive semi-definite. This then implies there is a 
configuration of points in a Euclidean space where the associated 
distances are equal to  the adjusted dissimilarities. This problem 
has been referred to  for many years, Messick and Abelson (1956) 
being an early reference. 

The second formulation is more practically orientated. If dissim- 
ilarities are measured on a ratio scale, then there is a sympathy of 
the dissimilarities to  the distances in the Euclidean space used to  
represent the objects. However if the dissimilarities are measured 
in an interval scale, where there is no natural origin, then there is 
not. The additive constant problem can then be stated as the need 
to estimate the constant c such that S,, + c(1- 6") may be taken 
as ratio data, and also possibly to minimise the dimensionality of 
the Euclidean space required for representing the objects. The first 
formulation is considered here. 

The additive constant problem is easier to  solve if a constant is 
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added to  squared dissimilarities rather than dissimilarities them- 
selves. For this case 

The smallest value of c that  makes B positive semi-definite is -2A,, 
where A, is the smallest eigenvalue of B (see for example, Lingoes, 
1971). 

The solution for the case where a constant is to be added to  
S,, and not Sg,, was given by Cailliez (1983). His results are sum- 
marised below. The smallest number c* has to  be found such that 
the dissimilarities defined by 

S:, = 6,, + e(1 - 6") (2.8) 

have a Euclidean representation for all c 2 c*, that is which makes 
the matrix B positive semi-definite. Let Bo(6;,) be the doubly cen- 
tred matrix based on A = [-;6:,] for the original dissimilarities. 
Then substituting SF, for S,, in (2.8) gives 

B,(S:,) = Bo(S:,) + 2cBo(ST,) + ~ c ' H ,  

noting that Bo(S,,) is equivalent to  Bo(S,",) except that the entries 
are based on S,, and not S,",. 

It is now shown that there exists a constant c* such that the dis- 
similarities { SF,} defined in (2.8) have a Euclidean representation 
for all c 2 c*. For B,(SZ,) to  be positive semi-definite it is required 
that xTB,(S~,)x 2 0 for all x. Now 

x~B,(S:,)X = xTBo(S;,)x + ~CX~BO(S, , )X + +c'xx'Hx, 

and so for any x this gives xTB,(SZ,)x as a convex parabola. 
Therefore, to  any x there corresponds a number a(x) such that 
xTB,(S~,)x 2 0 if c 2 a(x). Because Bo(S:,) is not positive semi- 
definite, there is at least one x such that xTBo(SZ,)x < 0 and for 
which a(x) will be positive. Hence the number c* = sup,a(x) = 
a(x*) is positive and such that 

xTB,(S:,)x 2 0 for all x and all c 2 c* 

X*~B,*  (S;,)x* = 0. 

Hence {SF,} has a Euclidean representation for all c 2 c*, and also 
it can be seen that when c = c* a space of at  most n - 2 dimensions 
is needed since there are now two zero eigenvalues. 
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Cailliez goes on to  find the actual value c*. He shows that c* is 
given by the largest eigenvalue of the matrix. 

Cailliez also shows that a negative constant can be added to  the 
original dissimilarities so that 

and then a Euclidean representation of {S,",} can be found for all 
c < c'. The value of c' is the smallest eigenvalue of the matrix in 
(2.9). Going back in time, Messick and Abelson (1956) considered 
the effect of values of c in (2.8) on the resulting eigenvalues and 
eigenvectors. They suggested that for a "true" solution, there will 
be a few large eigenvalues and the rest will be zero or very close 
to zero. In practice, this will not usually be the case and they 
proposed a method which determined c by setting the mean of 
the smallest n - p eigenvalues to zero. The largest p eigenvalues 
are taken as those required to define the Euclidean space. Problems 
could arise, however, if large negative eigenvalues occurred. Cooper 
(1972) included a 'discrepancy' term, q r s ,  in the new dissimilarities, 
so that 

J:s = 6,s + c(1 - 6") + q r s ,  

and then c is found for given dimensionality by minimising G = 
C,  Cs q?,. Minimisation is done using a Fletcher-Powell routine. 

The number of dimensions required is then assessed by an index 
of goodness of fit, FIT: 

For a perfect solution, FIT = 1. To assess the dimension required, 
FIT is plotted against dimension p .  The dimension required is that 
value of p where there is no appreciable improvement in the in- 
crease of FIT with increase in p .  

Saito (1978) introduced an index of fit, P(c ) ,  defined by 

where X i  is the i th eigenvalue of B,(dz,). The constant to be added 
to the dissimilarities for given P ,  was then taken as that value 
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which maximises P(c) .  Again a gradient method is used for the 
maximisation. 

Bbnassbni (1994) considered the case of adding a constant to only 
some of the squared dissimilarities, arguing that large discrepan- 
cies can occur when a constant has to  be added to all of them. 
Suppose the n objects under consideration can be partitioned into 
two groups, GI and Ga, consisting of g1 and ga, (91 + g2 = n) 
objects respectively. For convenience label the objects so that the 
first g1 are in group GI and the last g 2  are in group G2. The dis- 
similarities within groups are assumed to  be worthy of Euclidean 
representation without any addition of a constant, but dissimilar- 
ities between group members are assumed to  be under estimated 
or over estimated by a quantity c.  The quantity c is added to  the 
between squared dissimilarities, 

&$c) = 6 2  T s  ( T , S  E G1 or T , S  E Ga) 
= 6:s + ~ ( l  - 6") (T E GI,  s E G2) 

Then Bhassbni shows that 

where A = ( g a x  - g l y ) ( g a x  - g l y ) T ,  xT = (1,. . . , 1 ,0 , .  . . , O ) ,  a 
vector of g1 ones followed by g 2  zeros, yT = (0, .  . . , 0 ,  1,. . . , l), a 
vector of g1 zeros followed by g2 ones. If there is only one negative 
eigenvalue, A,, of Bo , then the required value of c is given by 

where f ( t )  = ta - I t l (glg2n-l  - ta)1/2 and u, = (u,1,. . . , un,) T 

is the eigenvector corresponding to  A,. For a solution, some con- 
ditions on the eigenvalues and eigenvectors have to  be satisfied. 

If group membership is not initially known, Bbnasskni suggests 
looking at  all possible groupings that satisfy f(C,,,, unT) > 0 and 
choose GI, G2 which give the minimum value of c.  This particular 
grouping will be the one that makes I CTEG1 u,,I a maximum. 

If there are m negative eigenvalues of Bo initially, then Be can be 
made positive semi-definite using m successive modifications with 
different groups GI, G2 and constants c at each step. Bknasskni goes 
on to consider the case of adding a constant c to  all the squared 
dissimilarities within a group GI, but to none other. The reader is 
referred to  the paper for further details. 
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2.3 Robustness 

Sibson (1979) studied the effect of perturbing the matrix B on 
the eigenvalues and eigenvectors of B and hence on the coordinate 
matrix X. For small 6 matrix B is perturbed to B(c), where 

B(€) = B + CC + $c2D + 0 ( c 3 ) ,  

where C, D are symmetric matrices chosen for particular perturb- 
ations. The perturbation in B then causes a perturbation in the 
eigenvalues X i  and associated eigenvectors vi as follows: 

Xi(€)  = X i  + €pi + &, + 0 ( c 3 ) ,  

V,(€)  = vi + €fi + ;E2gi + O(E3) 

Sibson shows that 

~i = vT(D - 2C(B - XiI)+C)vi, 

where M+ is the matrix C XL'vTvi. 

to a matrix D(€) 
If instead of B the matrix of squared distances D is perturbed 

D(€) = D + cF + 
where F is a symmetric zero diagonal matrix, then the perturba- 
tions induced in X i  and vi are 

Xi(€) = X i  + €pi + O(E2),  

Vi(€)  = vi + €fi + 0(€", 

where 

= -+vTFv~,  fi = $(B - XiI)TF~i + ;(Xin)-'(ITFvi)1. 

Matrix F can be used to  investigate various perturbations of the 
distances { d T S } .  Random errors to  the distances can be modelled 
by assigning a distribution to  F and the effect of these on pi and 
fi can be studied. 

2.4 Metric least squares scaling 

Metric least squares scaling finds a configuration matching d,, to  
6,, by minimising a loss function, S ,  with possibly a continuous 
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monotonic transformation of dissimilarity, f ( d r s ) .  The configura- 
tion {x,i} is found in a p dimensional space but with typically 
p = 2. Sammon (1969), Spaeth and Guthery (1969), Chang and 
Lee (1973) and Bloxam (1978) are early references. Sammon (1969) 
suggested the loss function 

r < s  r < s  

where d,, is the Euclidean distance between points T and s. 
In the numerator of S, the squared difference between the dissim- 

ilarity S,,, and its representative distance drs  in the configuration, 
is weighted by 6;;. Hence smaller dissimilarities have more weight 
in the loss function than larger ones. The denominator, Cr<s ST, 

is a normalizing term making S scale free. 
and hence Now d:s = x:=l(xTi - 

Differentiating 

dS f 
S with respect to  xtk,  

The equations 

have to  be solved numerically. 

mth iteration in minimising S, then 
Sammon uses a steepest descent method, so that if xi:) is the 

where MF is Sammon's magic factor to optimize convergence and 
was chosen as 0.3 or 0.4. Chang and Lee (1973) used a heuristic 
relaxation method to  speed up the convergence to  the minimum. 
Niemann and Weiss (1979) used an optimal step size calculated at 
each iteration instead of MF. Speed of convergence is not usually a 
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problem nowadays with modern computers. The resulting configu- 
rations are sometimes referred to  as "Sammon maps". Two recent 
examples of their use are the indexing and mapping of proteins 
(Apostol and Szpankowski, 1999) and their use in neural networks 
(Lerner e t  al., 1998). 

13M 
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52M 143MM 145F 
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144F 

5F 151hh39M 58F 
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Figure 2.2 Least  squares scaling of the  skull da ta  

Least squares scaling of the  skulls 
shows the least squares scaling of the skull data from 

Section 2.2.6. The loss function used is S defined in Equation 
(2.10). The configuration obtained is in reasonable agreement with 
that obtained from classical scaling. 

Other loss functions have been considered by various authors. 
Shepard and Carroll (1966) and Calvert (1970) used 

Niemann and Weiss (1979) used S in equation (2.10) but with 
weights S,4s, with q to  be chosen, instead of 6;;. Siedlecki e t  al. 
(1988) gave a summary of some MDS techniques involved in "map- 
ping" , where they considered discriminant analysis, principal com- 
ponents analysis, least squares scaling and projection pursuit and 
used these on various data sets. Dissimilarities can be transformed 

Figure 2.2
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using a continuous monotonic transformation, f , before a configu- 
ration is found. The loss function might then be 

where { wTS} are appropriately chosen weights. 
In general, distances { d r s }  do not have to  be Euclidean. 

Least absolute residuals 
Heiser (1988) suggested minimising the absolute residual loss func- 
tion defined by 

r < s  

where w,, are weights. The absolute residual loss function will 
not be influenced by outliers so much as a squared residual loss 
function. Heiser minimises LAR by a majorization algorithm (see 
Chapter 11). 

Klein and Dubes (1989) used 

S=>:-Z 1 Id,, - &,I 
d r n  Sr s 

and minimised S using simulated annealing. The advantage of this 
method is that it seeks the global minimum of S trying to  avoid 
local minima. The annealing algorithm uses a Markov chain where 
the minimum of S corresponds to the stable state of the Markov 
chain. The Markov chain is simulated and allowed to  run until 
this stable state is found. In the process, whereas steepest descent 
methods always aim to decrease S at each step, the simulated 
annealing algorithm allows S to increase and then pass by a local 
minimum. See Klein and Dubes for further details. 

2.5 Critchley’s intermediate method 

Critchley (1978) combines the idea of allowing a transformation of 
the dissimilarities as in least squares scaling and also the minimi- 
sation of a target function, with the methods of classical scaling. 
Firstly, the dissimilarities { S,,} are transformed using a continuous 
parametric function f ( p ,  ST,) ,  where p is possibly a vector-valued 
parameter. For example 

f(L) = ys p > 0. 
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Then, as for classical scaling 

Let the spectral decomposition of B be 

B = VAVT, 

and then p is estimated by f i ,  the value which minimises the func- 
t ion 

subject to  the constraints 

a) X,(p) = 0, so that B is positive semi-definite, and 

b) x = n-l C X i  = 1, a scale constraint. 

See Critchley (1978) for further details. 

2.6 Unidimensional scaling 

When the space in which the points representing the objects or 
individuals has only one dimension, the scaling technique becomes 
that of unidimensional scaling. The loss function to be minimised 
is 

(2.11) 
r<s 

Some references are Guttman (1968), de Leeuw and Heiser (1977), 
Defays (1978), Olson (1984), Pliner (1984, 1986, 1988), Groenen 
(1993) and Hubert et  al. (1997). 

Minimising S is plagued by a large number of local minima. It 
can be shown that x is a local minimum of S if and only if 

I n  

x, = zdTss ign (x ,  - xs> ( r  = 1 , .  . . , n ) ,  (2.12) 
n 

s=l 

(Guttman, 1968; Pliner, 1984). 
Guttman (1968) devised an algorithm for finding a local mini- 

mum, not necessarily a global minimum. Let xirn) be the value of 
x, at the mth iteration of the algorithm. The algorithm is 
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When xirn) = xLrn' ( T  # s ) ,  sign(xirn) - x:"') is replaced by +1 

or +1 accordingly. The algorithm is started from several starting 
points and hopefully one of the local minima found will be a global 
minimum. 

Hubert and Arabie (1986, 1988) consider the following dynamic 
programming approach to  finding minima. Assume x1 . . . x ,  sat- 
isfy (2.12) and let the rows and columns of the dissimilarity ma- 
trix, D = [ST, ] ,  be reordered so that x1 < x2 < . . . < x,. Then 
xr = (Cs=l 6,s - C:=,.+, 6rs) /n  = t ,  say. Thus a dissimilarity ma- 
trix with its rows and columns re-ordered to  force tl < ta . . . < t ,  
can immediately give a set of coordinates = tr to  satisfy (2.12). 

Now it is easily seen that,  for fixed coordinates x1, . . . , x,, min- 
imising (2.11) is equivalent to maximising S' = Zr,s 6rslx, - xsI. 

or -1 with the corresponding sign(xs"") ( - xrrn)) ( replaced by -1 

r-1 

Now 
n r-1 

r=l s=l 

12 / r - 1  

n n  

r=l s=r+l 

n n \ 

n 

r=l 

Thus to maximise S', starting with a dissimilarity matrix D, in- 
terchanges in rows and columns of the dissimilarity matrix are 
tried (for example pairwise). If C,  xr ty  is found to  increase then 
the coordinates 21,. . . , x, are re-estimated as t l , .  . . t,. The in- 
terchange procedure is repeated and 21, . . . x ,  are updated again. 
This continues until C r x r t r  reaches its maximum of C,.t;. The 
whole process is restarted with other random orderings of rows and 
columns and hopefully a global maximum can be found. 

A linear programming approach was suggested by Simanbiraki 
(1996). Lau et al. (1998) consider a nonlinear programming ap- 
proach, as have other authors. They show that minimising S in 
(2. I I) is equivalent to  minimising 

x { ( d r s  - (xr - xs)) ' ,  ( d r s  - (xs  - x r ) ) ' } .  
r<s 
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Let wlrs ,  wars be two binary variables taking values 0 and 1. Then 
the mat hematical programming formulation is minimise 

r<s 

subject to  

Here e l r s  is the error if x, > x, and e2,, is the error if 2, < x,. 
In fact, w l r s  and ~2~~ can be considered continuous variables as 

a solution will force w l r s  and W 2 r s  to  be either zero or one, and 
hence the problem becomes a nonlinear programming problem. See 
Lau et al. (1998) for the solution. 

Hubert et al. (1997) consider minimising the loss function 

r < s  r<s 

where c is a constant. 
The problem can be viewed as fitting { Ix, -2, I }  to  the translated 

dissimilarities { S r s  + c} ,  or fitting {Ixr - x,1 - c} to the dissimi- 
larities { S,,}. Hubert et  al. also consider circular unidimensional 
scaling where points representing the objects are placed around 
the circumference of a circle. The dissimilarities are represented by 
shortest paths around the circle. 

2.6.1 A classic example 

Cox and Brandwood (1959) use discriminant analysis to help es- 
tablish the chronological order in which seven works of Plato were 
written. Of the seven works, it is known that Republic (Rep.) was 
writen first and Laws last. In between Plato wrote Critias (Crit.), 
Philebus (Phil.), Politicus (Pol.), Sophist (Soph.) and Timaeus 
(Tim.). Classical scholars have different opinions as to  the chrono- 
logical order. For each work, data are available on the distribution 
of sentence endings. The last five syllables of each sentence are 
noted individually as being either short or long, giving thirty-two 
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possible sentence endings. Cox and Brandwood use the sentence 
endings for Rep. and Luws as samples from a multinomial distri- 
bution from which to find a sample discriminant function. This 
is used to find discriminant scores for the other five works which 
are then placed in chronological order according to the scores. The 
final ordering found by this method is Rep., Tim., Soph., G-it., 
Pal., Phil., Laws. 

The same data are now analysed using unidimensional scaling. 
The sentence endings are transformed into percentage data and the 
dissimilarity between two works is measured as Euclidean distance. 
The dissimilarity matrix is 

- 0.00 12.28 10.72 12.65 11.55 8.59 8.89 - 
12.28 0.00 11.80 6.44 8.58 10.58 13.02 
10.72 11.80 0.00 11.75 11.96 9.38 9.52 
12.65 6.44 11.75 0.00 6.99 10.08 12.26 
11.55 8.58 11.96 6.99 0.00 7.72 11.23 

8.59 10.58 9.38 10.08 7.72 0.00 6.10 
_ 8.89 13.02 9.52 12.26 11.23 6.10 0.00. 

Using Guttman’s algorithm with many random starts, the final 
configuration can be seen in Unidimensional scaling 
gives the ordering Rep., G-it., Tim., Soph., Pal., Phil., Laws, with 
a loss value of 290.2. This ordering is in agreement with that of Cox 
and Brandwood but with Crit. placed before Tim. However, the 
placement of Crit. is in accord with their results, too as they show 
that Crit. could be placed anywhere from before Tim. to before 
Pol. 

Figure 2.3 Unkknenskmd scahg of seven works of Plato 

The “errors”, hTs - dys, are given in the matrix followin 
be seen that Crit. is involved with the two largest errors. 

.g. It can 

Figure 2.3.
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2.7 

0.00 -5.92 7.72 -3.35 
-5.92 0.00 -3.40 4.24 

7.72 -3.40 0.00 -1.25 
-3.35 4.24 -1.25 0.00 
-1.53 3.47 1.88 4.08 
-0.03 1.01 3.75 2.71 

3.11 0.60 6.73 2.05 

- 1.53 
3.47 
1.88 
4.08 
0.00 
3.26 
3.93 

-0.03 
1.01 
3.75 
2.71 
3.26 
0.00 
3.26 

3.11 
0.60 
6.73 
2.05 
3.93 
3.26 
0.00 

Grouped dissimilarities 

Suppose objects are divided into g groups. Then the technique of 
Analysis of Distance (AOD) developed by Gower and Krzanowski 
(1999) can be used on the dissimilarities {&,} to investigate the 
between and within group structure. Analysis of Distance is akin 
to Analysis of Variance (ANOVA). Dissimilarities, to  be viewed as 
distances, are broken down into a within sum of squares component 
and a between sum of squares component (T = W + B) .  

Following Gower and Krzanowski (1999), let the group sizes be 
nl, n2, . . . , ng. Let group membership be given by G = [gT i ] ,  where 
g,i = 1 if the r th  object belongs to  the i th group, and zero other- 
wise. Let n = (n l ,  . . . n,) and N = diag(n1,. . . , n,). Let D = [id:,] 
(= -A of Section 2.2.1) and X be the coordinate matrix of points 
representing the objects. Then placing the centroid at  the origin, 
from equation (2.5) 

-HDH = XXT. (2.13) 

The coordinates of the group means are given by X = NP1GTX 
and hence 

X X T  = N-~GTxxTGN-~.  

Substituting for XXT from equation (2.13), it can be shown that 
the group mean distances, & j ,  are given by 

where F = [ f i j ]  = NP1GTDGNp1.  
Principal coordinate analysis can be used on F for finding a 

configuration of points representing the group means. Let Y be 
the coordinate matrix for the group means, and then 

-HFH = Y Y T .  
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If group size is to  be taken into account then this equation is re- 
placed by 

-(I - g-'lnT)F(I - g-'lnT) = YYT.  

Once a configuration of points representing the group means has 
been established, then points representing the individual objects 
can be placed around the group mean points by using the technique 
of adding points to  plots devised by Gower (1968). 

Let D be partitioned into g2 submatrices, Dij ( i , j  = 1 , .  . . g ) ,  
where Dij contains the squared dissimilarities divided by two, be- 
tween each object in the i th group and each individual in the j t h  
group. Let A = [d;j]. Gower and Krzanowski go on to  establish 
the fundamental AOD identity corresponding to  that of ANOVA, 
T = W + B ,  

T = nP1ITD1 (total sum of squares) 
9 

W = x n,'lFDiili 

B = n-lnTAN 

(within sum of squares) 
i= 1 

(between sum of squares) 

where li is a vector of ni ones. In ANOVA, F-tests can 
for hypothesis testing using the fundamental identity T 

be used 
= W +  

B. This is not so for AOD as distribution theory has not been 
established. Gower and Krzanowski do propose permutational tests 
in the interim. 

2.8 Inverse scaling 

DeLeeuw and Groenen (1997) consider the problem of inverse least 
squares scaling. That is, instead of finding the coordinate matrix, 
X, of a configuration from the dissimilarities {hTs} ,  the possible 
set of dissimilarities are found for a given coordinate matrix, and 
fixed set of weights. 

For least squares scaling, consider minimising the loss function, 
S, where 

. n n  

s = f x x W T S ( ~ T S  - C J T J 2 ,  

r=l  s=l 

where d?, = (xr - x , )~ (x , .  - x,). The half is used for convenience. 
There are usually many local minima and finding the global mini- 
mum cannot be guaranteed. 
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Inverse least squares scaling starts with fixed {x,} and {w,,} 
and finds corresponding to  stationary points of S and in particular 
the local and global minima. 

Following de Leeuw and Groenen (1997) write 

d:, = tr(X'A,,X), 

where X = [x1,x2,. . .  , x , , ] ~ ,  A,, = (e ,  - e , ) ( e ,  - es )T ,  with 
e, = (0, . . . , 0,1,0,  . . . , O ) T ,  the unit vector for the r th  dimension. 

Now 
ad?, dtr(XTArsX) 
d X  d X  

= 2A,,X. - - 

Then 
dS  

~ = c c 2w,, (1 - 2) A,,X. 
d X  

r=l s=l 

Thus for a stationary point of S, 

c c w , , [ l  - ?)A,,X = 0. 
r=l s=l 

(2.14) 

Let t,, = w r s ( l  - S r s / d r s )  and so equation (2.14) can be written 
n n  

(2.15) 
r=l s=l 

and is solved for {trs}.  

centred matrix and so equation (2.15) reduces to  
Now { A r s }  are a basis for any n dimensional symmetric doubly 

T X = O  

where T has to  be a symmetric doubly centred matrix. 
Now let K be an orthonormal, column centred, matrix such that 

K T X  = 0, and let M be an arbitrary symmetric matrix. Thus T 
is found as T = KMK', and hence 

noting that the condition t r s  5 wrs must be met. 
De Leeuw and Groenen (1997) show that the set of dissimilarity 

matrices D = [S,,] which give rise to X as a stationary point is 
a closed bounded convex polyhedron. To compute possible D, let 
{Pl} be a basis for the symmetric matrices of order n - r - 1. Let 
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Ql = KPIKT and then T can be written as a weighted sum of 
the basis { Q l } ,  T = C 6'lQl.  Not every {el}  gives an admissible T 
since the condition t,, f w,, must be met. One of the examples 
given by de Leeuw and Groenen (1997) is as follows. 

Let four points form the corners of a square, with coordinate 
matrix 

The corresponding distances are 

0 1 f i  1 

D =  [./I ; p 
The matrix T is of rank 1 and so the basis {Pl} is trivially 1. 

Now 

and so 

For weights all unity (w,, = l), S,, = &,(l - t,,) and hence 

O a b a  
O a b  

where a = 1 + 6'/4, b = fi(1 - 8/4) and -4 f 6' f 4 to  satisfy 
t,, 5 1. The minimum of S will occur when 8 = 0, with S = 0, 
with other values of 6' giving rise to  other stationary points. De 
Leeuw and Groenen (1997) give further examples. 
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CHAPTER 3 

Nonmetric multidimensional 
scaling 

3.1 Introduction 

This chapter presents the underlying theory of nonmetric multidi- 
mensional scaling developed in the 1960s. The theory is given for 
two-way, one-mode data, essentially for dissimilarity data collected 
on one set of objects. 

Suppose there are n objects with dissimilarities {d,,}. The pro- 
cedure is to find a configuration of n points in a space, which is 
usually chosen to  be Euclidean, so that each object is represented 
by a point in the space. A configuration is sought so that distances 
between pairs of points {d,,} in the space match “as well as pos- 
sible” the original dissimilarities { S,,}. 

Mathematically, let the objects comprise a set 0. Let the dissim- 
ilarity, defined on 0 x 0, between objects T and s be S,, ( T ,  s E 0). 
Let # be an arbitrary mapping from 0 onto a set of points X, 
where X is a subset of the space which is being used to  represent 
the objects. Let the distance between points z,,~, in X be given 
by the real-valued function dXTZ, .  Then a disparity, 2, is defined 
on 0 x 0, which is a measure of how well the distance d4jr)4(,) 
“matches” dissimilarity STS. The aim is to  find a mapping #, for 
which db(,)d(,) is approximately equal to  d,,, and is usually found 
by means of some loss function. The points in X together with 
their associated distances will be referred to  as a configuration of 
points. 

The choice of dissimilarity measure was discussed in Chapter 1, 
and it is assumed that dissimilarities {S,,} have been calculated for 
the set of objects. The set X is often taken as R2 and d as Euclidean 
distance, although others are sometimes used, for example R3, and 
the Minkowski metric. Once these are chosen, together with the 
method for calculating disparities, the nonmetric multidimensional 
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scaling problem becomes one of finding an appropriate algorithm 
for minimising a loss function. 

A simple example 
As a trivial but illustrative example, consider the following. Sup- 
pose 0 consists of just three objects labelled { 1 ,2 ,3}  with dissim- 
ilarities given by 

611 = 622 = 633 = 0 , 6 1 2  = 4 , 6 1 3  = 1 , 6 2 3  = 3. 

Let C be a space with just two points { a , b } ,  which is used for 
representing the objects, and so X will be a subset of C. A mapping 
4 then maps each of the three objects in 0 to one of the two 
points in C. Thus there must be at least one coincident point. Let 
the distance function on C be defined as d,, = d b b  = O , d a b  = 1. 
Now suppose the disparity function is defined as follows: if the 
rank order of {dT,}  is the same as the rank order of {J,,} then 
dr, = d,,, otherwise d,, = 1 - dr, for all T ,  s. Note that the “self- 
dissimilarities” 611, &, 633 will not be used, as is usually the case. 
The loss function is taken as 

There are only eight possible mappings $: 

$1 : $i(1) = a ,  $i(2) = a ,  $i(3) = a  

$2 : $2(1)  = a ,  $,(a) = a,  $ 2 ( 3 )  = b 

4 3  $3(1) = a ,  #3(2) = b, 4 3 ( 3 )  = a 
4 4  $4(1)  = b, $,(a) = a ,  4 4 ( 3 )  = a 
$5 : $5(1)  = a ,  $,(a) = b, $ 5 ( 3 )  = b 

4 7  $7(1)  = b, 4 7 ( 2 )  = b, $ 7 ( 3 )  = a 

4 6  $ G ( l )  = b7 #G(2) = a7 4 6 ( 3 )  = b 

4 8  $8(1)  = b, $ 8 ( 2 )  = b, $ 8 ( 3 )  = b 

although only four need to  be considered since 4i = $+i. The 
rank order of the dissimilarities is 613,623,612. The possible rank 
orders of the distances under 4 3  for example are d13,d12,d23 and 
d 1 3 ,  d23,  d 1 2 ,  giving disparities 213 = 1, 2 1 2  = &3 = 0 and 2 1 3  = 
0, 2 2 3  = 2 1 2  = 1 respectively. The corresponding value of S is 0.0. 
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The eight values of S under the different mappings are 0.0, 3.0, 
0.0, 3.0, 3.0, 0.0, 3.0, and 0.0. So the mappings giving minimum 
loss are 41 and 4 3  (or 4 8  and 4 6 ) .  The mapping 41 maps all three 
objects to a ,  while $3 maps objects 1 and 3 to a and 2 to  b. In 
effect, the 4’s carry out a trivial cluster analysis of the three points, 
41 producing only one cluster, and 4 3  two clusters. 

3.1.1 R P  space and t he  Minkowski me t r i c  

Although nonmetric MDS can be carried out in abstruse spaces, 
the majority of MDS analyses are carried out with X a subset of R P ,  

and with p = 2 in particular. A configuration of points is sought 
in RP which represent the original objects, such that the distances 
between the points { d T s }  match orderwise, as well as possible, the 
original dissimilarities { S,,}. 

Let the r th  point in X have coordinates x, = ( X T 1 , .  . . , x , ~ ) ~ .  
Let the distance measure for X be the Minkowski metric, and so 

for points r and s in X, 
P 

d,s = [ 1 %  - Xsil  A l l ’ *  (A > 0). (3.1) 
i=l 

Define disparities { iTS}, viewed as a function of the distances { dTS} ,  
by 

&s = f ( d , s ) ,  

where f is a monotonic function such that 

d r s  5 &, whenever S,, < St, (Condition C1). 

Thus the disparities “preserve” the order of the original dissim- 
ilarities but allow possible ties in disparities. Ties in the dissimil- 
arities will be discussed in Section 3.2.5. 

Let the loss function be L ,  where for example 

Note the original dissimilarities { d r s }  only enter into the loss func- 
tion by defining an ordering for the disparities { Z T s } .  The loss 
function defined above is very commonly used, although there are 
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others which will be discussed later. The aim is to  find a configura- 
tion which attains minimum loss. The loss function can be written 
in terms of the coordinates {x,i} by using equation (3.1) to  re- 
place the distances { d T s } ,  and can hence be partially differentiated 
with respect to {xTi}  in order to  seek a minimum. The disparities 
{ J r s }  will usually be a very complicated non-differentiable function 
of the distances { d r s }  and hence of the coordinates {x,i}. This 
means that the loss function cannot be fully differentiated with 
respect to  the coordinates { x T i }  when searching for the minimum. 
Instead, various algorithms have been suggested that minimise L 
with respect to { x T i }  and also with respect to {&,}. 

Shepard (1962a, 1962b) was the first to  produce an algorithm 
for nonmetric MDS, although he did not use loss functions. His 
method was first to  rank and standardize the dissimilarities such 
that the minimum and maximum dissimilarities were 0 and 1 re- 
spectively. Then n points representing the objects are placed at 
the vertices of a regular simplex in Rn-l Euclidean space. Dis- 
tances { d r s }  between the n points are then calculated and ranked. 
The measure of the departure from monotonicity of the distances 
to the dissimilarities by distance d,, is given by 6,, - 6,,,,1, where 
6,,.,1 is the dissimilarity of rank equal to the rank of dTs. Shepard’s 
method then moves the points along vectors that will decrease the 
departure from monotonicity, also stretching larger distances and 
shrinking smaller distances. The points are repeatedly moved in 
this manner until adjustments become negligible - however there 
is no formulation of a proper loss function. After the last itera- 
tion, the coordinate system is rotated to principal axes and the 
first p principal axes are used to give the final configuration in p 
dimensional space. 

It was Kruskal (1964a, 1964b) who improved upon the ideas of 
Shepard and put nonmetric MDS on a sounder footing by intro- 
ducing a loss function to  be minimised. 

3.2 Kruskal’s approach 

Let the loss function ( 3 . 2 )  be relabelled as S and let 

S=&, (3.3) 

where S* = z,,,(dTs - & s ) 2 ,  and T* = x , , s d ; s .  Note that the 
summations in the loss function are taken over 1 = T < s = n since 
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6,, = 6,, for all r , s .  The loss function is minimised with respect 
to {d,,}, i.e. with respect to  { z r i } ,  the coordinates of the config- 
uration, and also with respect to {&,} using isotonic regression. 

3.2.1 Minimising S with respect t o  the disparities 

For convenience, let the dissimilarities { 6 r s }  be relabelled { S i  : i = 
1 , .  . . , N }  and assume they have been placed in numerical order 
and that there are no ties. Also, relabel the distances { d T S }  as 
{d i  : i = 1 , .  . . , N }  where di corresponds to  the dissimilarity S i .  To 
illuminate the proof that follows an example will be employed. 

Example 
Suppose there are only four objects with dissimilarities 

612 = 2.1, 613 = 3.0, 614 = 2.4, 623 = 1.7, 624 = 3.9, 634 = 3.2 

and a configuration of points representing the four objects with 
distances 

d12 = 3.3, d13 = 4.5, d14 = 5.7, d23 = 3.3, d24 = 4.3, d34 = 1.3. 

Then the ordered dissimilarities with the new notation, together 
with their associated distances, are, 

61 = 1.7, 62 = 2.1, 63 = 2.4, 64 = 3.0, 6s = 3.2, 66 = 3.9 

dl  = 3.3, d2 = 3.3, d3 = 5.7, d4 = 4.5, ds = 1.3, d6 = 4.3. 

Minimisation of S is equivalent to  minimisation of S’ = - 

& ) 2 ,  again using the new suffix notation. Let the cumulative sums 
of { d i }  be 

i 

Di = Cdj (i = l , . . . , N ) ,  
j=1 

and consider a plot of Di against i, giving points PO , P I ,  . . . , PN 
where the origin is labelled Po. shows the plot for the 
example. Note that the slope of the line joining Pi-1 and Pi is just 
di .  The greatest convex minorant of the cumulative sums is the 
graph of the supremum of all convex functions whose graphs lie 
below the graph of the cumulative sums. (Holding a piece of taut 
string at  Po and PN would give the greatest convex minorant). 
The greatest convex minorant for the example is also shown in 

Figure 3.1
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the figure. The {&} which minimises S' is given by the greatest 
convex minorant, where i& is the value of the minorant at abscissa 
i. From it is seen that some of the values di are actually 
equal to di? and obviously S' = 0 if & = d i ,  for all i .  Note that 
di = Di - Di-1 and is the slope of the line. Thus if Di < Di then 

A h  

di = 

+ cumulative sumsx greatest convex minorant 
21 r y 

3 

I I I I I 
0 1 2 3 4 5 6 

I 

Figure 3.1 Isotonic regression for the data in the example: solid line - the 
cumulative sums ( D i ) ,  dashed line ~ the greatest convex minorant. 

In order to show that this {&} does indeed minimise S',  let 
{ d ; }  be an arbitrary set of real values that satisfy condition C1. It 
simply has to be shown that 

N N 

i= 1 i=l 

Let 
i i 

05 = Zd;, Di = Zdj. 
j=1 j=1 

Abel's formula, that ELl aibi = EL;' Ai(bi - bi+i) + A N ~ N ,  

Figure 3.1,
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where Ai = C:.,, aj are partial sums, will be needed in the follow- 
ing. 

Write 
N N 

Z ( d i  - d y  = >{(di  - &) + (cii - 

i=l i=l 
N N N 

= Z ( d i  - + Z(& - d y  + 2 Z ( d ,  - &)(& - d ; ) .  
i=l i=l i= 1 

Now 
N N-1 

i= 1 i=l 

N-1 
- (Di  - D i ) ( d ;  - d:+1) + ( D N  - D N ) ( ~ N  - d k ) .  (3.4) 

i= 1 

Now DN - DN = 0 since the last point of the greatest convex 
minorant and PN are coincident. Consider (Di  - hi) (& - &+I). If 
the i th point on the greatest convex minorant is coincident with 
Pi then Di = Di and so the term is zero. On the other hand, if 
Di < Di then di = &+I and so the term is again zero. Hence, since 
Di - hi 2 0 and because of the condition C1, dff < dff+l the final 
term left in (3.4), - C z y ' ( D i  - Di)(dff - ~ ! f f + ~ ) ,  is positive. Hence 

N N N 

i= 1 i= 1 i=l 

and so 
N N 

i=l i=l 

These {G!rs} giving S', and hence S, as a minimum, is the isotonic 
regression of { d T s }  (using equal weights) with respect to  the simple 
ordering of {drs}. Barlow et  al. (1972) discuss the use of isotonic 
regression in a variety of situations and illustrate its use in the 
case of nonmetric MDS. In the MDS literature, isotonic regression 
is referred to as primary monotone least squares regression of { d r s }  

on { d r s } .  
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So for the illustrative example 

dl  = dz = 2.45, d3 = d4 = d5 = 3.83, d6 = 4.3, 

noting that 21, 2 2  are the mean of dl and d2; &, , 24, 25 are the mean 
of d3,d4 and d,; 2 6  is equal to  d6. The value of s is 0.14. 

3.2.2 A configuration with minimum stress 

With { d r s }  defined as the monotone least squares regression of 
{ d r s }  on {drs}, S is then termed the stress of the configuration; S* 
is called the raw stress. The numerator T* in the formula for stress 
is used as a normalizing factor allowing the stress to  be dimension 
free. 

A configuration is now sought that  minimises the stress S. Min- 
imisation of S is not a particularly easy task. The first step is 
to  place all the coordinates of the points in X in a vector x = 
(211,. . . , qP,. . . , x76P)T, a vector with n p  elements. The stress S is 
then regarded as a function of x, and is minimised with respect to  
x in an iterative manner. The method of steepest descent is used, 
so that if x, is the vector of coordinates after the mth iteration 

x,+1= x, - ~ 

3s dx x sl 

lax1 as ' 

where sl is the step length discussed later. 
Now 

For the Minkowski metric 
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and hence 

as given by Kruskal (196413). 
A starting configuration giving xo needs to  be chosen. One pos- 

sibility is to  generate n points according to  a Poisson process in a 
region of R P .  In its simplest form, this means simulating each in- 
dividual coordinate for each point , independently from a uniform 
distribution on [0, 11. There are several other suggested methods 
for choosing a starting configuration and these will be discussed in 
Section 3.6. 

Once xo has been chosen the method of steepest descent can then 
be employed to  find a configuration with minimum stress using the 
following algorithm, which is summarised from Kruskal (196413). 

3.2.3 Kruskal's iterative technique 

The following summarises the iterative technique used to  find a 
configuration with minimum stress. 

1. Choose an initial configuration. 
2. Normalize the configuration to have its centroid at the origin 

and unit mean square distance from the origin. This is done 
since stress is invariant to  translation, uniform dilation, and 
otherwise successive iterations of the procedure might have the 
configurations continually expanding or wandering around the 
plane. 
Find {&,} from the normalized configuration. 
Fit {&,}. It was seen that the monotonic least squares regres- 
sion of { d T s }  on {&,} partitioned {&,} into blocks in which 
the values of dTs were constant, and equal to the mean of the 
corresponding d,, values. In order to  find the appropriate par- 
tition of {&,,}, first the finest partition is used which has N 
blocks each containing a single &, using the alternative nota- 
tion. If this initial partition has dl  5 da 5 . . . 5 d ~ ,  then 
& = di and this partition is the final one. Otherwise two con- 
secutive blocks are amalgamated where Si > &+I, and then 

3. 
4. 
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di = &+I = (d i  +di+1)/2.  Blocks are continually amalgamated 
and new &'s found until the required partition is reached. 
Full details can be found in Kruskal (1964a) and Barlow et 
al. (1972). The required partition can also be found by consid- 
ering the graph of the cumulative sums, Di, and finding the 
greatest convex minorant. The slope, si ,  of Di from the ori- 
gin is D i / i .  The point with the smallest slope must be on the 
greatest convex minorant. All the points preceding this point 
are not on the minorant and their slopes can be removed from 
further consideration. The point with the next smallest slope 
is then found from those slopes remaining. This point is on the 
minorant, but the points between the preceding minorant point 
and this, are not. Their slopes are discarded. This procedure 
continues until the N t h  point is reached. Once the greatest 
convex minorant has been established it is then an easy task 
to find {&}. 
Find the gradient g. If I g I < c, where c is a preselected very 
small number, then a configuration with minimum stress has 
been found and the iterative process can stop. Note that this 
configuration could be giving a local minimum for the stress, 
and not the global minimum. 
Find the new step length sl. Kruskal recommends the ad hoe 
rule that sl is changed at  every step according to  

5. 

6. 

- 
Slpresent - Slprevious x (angle factor) 

x (relaxation factor) 

x (good luck factor) 

where 

angle factor = 4 . 0 ~ ~ ~ ~  ', 
0 = angle between the present and previous gradients, 

1.3 
relaxation factor = 

5 step ratio = min 

good luck factor = min 

1 + (5 step ratio)5 ' 
present stress 

present stress [ 1, previous stress 

stress 5 iterations ago 
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7. Find the new configuration 
d S  

d S  x,+1 = x, - s l h  
lax1 

8. Go to  step 2. 

3.2.4 Nonmetr ic  scaling of breakfast cereals 

The 1993 Statistical Graphics Exposition organized by the Amer- 
ican Statistical Association contained a data set on breakfast ce- 
reals, analyses of which by interested people could be presented 
at  the Annual Meeting of the Association. Originally, observa- 
tions on eleven variables were collected for seventy-seven different 
breakfast cereals. For clarity of graphical illustration, only those 
breakfast cereals manufactured by Kellogg are analysed here, re- 
ducing the number of cereals to twenty-three. The variables mea- 
sured were: type (hot or cold); number of calories; protein (g); fat 
(g); sodium (mg); dietry fibre (g); complex carbohydrates (g); sug- 
ars (g); display shelf (1,2,3, counting from the floor); potassium 
(mg); vitamins and minerals (0, 25, or 100, respectively indicat- 
ing none added; enriched up to  25% of the recommended daily 
amount; 100% of the recommended daily amount). Two dimen- 
sional nonmetric scaling was carried out on the Kellogg breakfast 
cereals, first measuring dissimilarity by Euclidean distance on the 
variables standardized to have zero mean and unit variance. The 
stress was 14%. Then using Gower’s general dissimilarity coeffi- 
cient, a configuration was found with a 15% stress value. 
lists the twenty-three cereals, and shows the final con- 
figuration. Connoisseurs of breakfast cereals may wish to interpret 
the configuration. One interesting feature is the spatial pattern of 
fibre content of the cereals when this is plotted for each cereal at 
its position in the configuration. shows this. Low fibre 
content is to  the lower left of the configuration, high fibre content 
to the upper right. 

Figure 3.2

Figure 3.3

Table 3.1
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Table 3.1 T h e  twenty-three breakfast cereals 

Cereal 
All Bran AllB 
All Bran with extra fibre AllF 

Cornflakes CorF 
Corn Pops CorP 
Cracklin Oat Bran Crac 
Crispix Cris 
Froot Loops Fro0 
Frosted Flakes FroF 
Frosted Mini Wheats FrMW 
Fruitful Bran FruB 
Just Right Crunch Nuggets JRCN 

Apple Jacks AppJ 

Cereal 
Just Right Fruit and Nut JRFN 
Meuslix Crispy Blend MuCB 
Nut and Honey Crunch Nut& 
Nutri Grain Almond Raisin NGAR 
Nutri Grain Wheat NutW 
Product 19 Prod 
Raisin Bran RaBr 
Raisin Squares Rais 
Rice Crispies RiKr 
Smacks Sniac 
Special K Spec 

JRFN 

N GA RMuCB 

Crac AllB 
AllF 

Prod JRCN 

NutW FruB 
Rais 

Cris 

RaBr 
Nut& FrMW 

Figure 3.2 Nonmetr ic  scaling of Kellog breakfast cereals. 

shows a plot of the dissimilarities { S T s }  against dis- 
tances { d T s }  for the configuration together with the isotonic re- 
gression of { d T s }  on { S T s } ,  i.e. the disparities. This is known as 
the Shepard diagram and is useful in assessing the fit. Note that 
the Shepard diagram is usually plotted with the axes of 

reversed in accordance with usual regression practice. Prefer- 
ence depends on how the figure is to  be viewed, either the isotonic 
regression of { dTs}  on { S,,}, or disparities plotted against { d,,}. 

Figure 3.4

Figure
3.4
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Figure 3.3 Fibre content of the cereals. 

Figure 3.4 Shepard diagram for the breakfast cereal data, 

3.2.5 STRESSl/2, monotonicity, ties and missing data 

The stress function (3.3) used by Kruskal is often referred to as 
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STRESSI. An alternative stress function is sometimes employed 
in nonmetric MDS, given by 

where d.,  is the mean of the distances {&,} over 1 5 r < s 5 n. 
This is referred to  as STRESS2. Only the normalizing factor differs 
in the two definitions of stress. 

Recall condition C1 that 

d,, 5 dt, whenever S,, < St,. 

This is referred to  as the weak monotonicity condition and the 
fitted {&,} are weakly monotone with the data. This condition 
can be replaced by condition C2 that 

d,, < d t ,  whenever S,, < St, (Condition C2). 

This is the strong monotonicity condition and the fitted {d,,} are 
strongly monotone with the data. This latter case will give larger 
stress values since more restriction is placed on the configuration. 

There are two ways that ties in the dissimilarities can be treated. 
The primary approach is: 

If S,, = St, then d,, is not necessarily equal to  dt,. 

The secondary approach is: 

If S,, = St, then d,, = dt,. 

The secondary approach is very restrictive and has been shown 
by many authors, for example Kendall (1971) and Lingoes and 
Roskam (1973), to  be less satisfactory than the primary approach. 
Kendall (1977), in an appendix to Rivett (1977), introduces a ter- 
tiary approach to ties which is a hybrid between the primary and 
secondary approaches. 

One desirable aspect of nonmetric MDS is that if some of the dis- 
similarities are missing then they are simply left out of the formula 
for stress, and the fitting algorithm proceeds without them. 

© 2001 by Chapman & Hall/CRC



3.3 The Guttman approach 

Guttman (1968) took a different approach to  Kruskal (1964a, b) 
in setting up nonmetric MDS. He defined a loss function called 
the coefficient of alienation which was basically equivalent to  the 
stress function of Kruskal, but which led to  a different algorithm 
for minimisation. His approach will only be described briefly. 

Let the rank ordered dissimilarities {JTS} be placed in a vector 
6 with elements 6, (T = 1 , .  . . , N ) .  Let the distances { d T S }  from 
a configuration be placed in a vector d in order corresponding to  
{Jr}. Let E be an N x N permutation matrix which places the 
elements of d into ascending order. Disparities are then defined by 
the rank-image d” of d, given by 

d* = Ed 

The coefficient of continuity, p, for the configuration is given by 

which has the value unity for a perfect fit. In order to  find a best 
fitting configuration, the coefficient of alienation, K ,  given by 

K = 2 / 1 - p 2  

is minimised using the method of steepest descent. 

Examp 1 e 
Suppose there are only three objects, with dissimilarities 

612 = 4, 613 = 1, 623 = 3, 

with “self-dissimilarities” zero. Let a particular configuration have 
distances between its points 

d12 = 2 ,  d13 = 4, d 2 3  = 5. 

Then in the single suffix notation, and ordering the dissimilarities, 

si : 1, 3, 4 

di : 4, 5 ,  2. 
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The permutation matrix E is 

giving d* = (2,4,  5 ) T .  
The coefficient of continuity, p is then 0.84, and the coefficient 

of alienation K is 0.54. 
Guttman’s paper is much more detailed than this simple exposi- 

tion, dealing with strong and weak monotonicity and ties in the 
data. It can be shown that minimising K is equivalent to  minimis- 
ing stress S. Guttman and Lingoes produced a series of computer 
programs for nonmetric MDS based on the Guttman approach, and 
these are included in their SSA-I (smallest space analysis) series of 
programs. 

They use two main strategies for minimisation. Their single 
phase G-L algorithm minimises 

using the method of steepest descent. For brevity the various deriv- 
atives similar to  those for the Kruskal algorithm are not written 
down here, but can be found in Lingoes and Roskam (1973), or 
Davies and Coxon (1983). Their double-phase G-L algorithm first 
minimises $* with respect to { d T s }  as its first phase, i.e. finds the 
configuration that best fits the current values {d ; s } .  The second 
phase then finds new values {d:,} which best fit the new config- 
uration. 

3.4 A further look at stress 

Several authors have studied stress in more detail. We report on 
some of their results. 

Differentiability of stress 
Because of the complicated nature of stress through the involve- 
ment of least squares monotone regression, continuity and differen- 
tiability of stress and its gradient could cause concern when seeking 
a minimum. However Kruskal (1971) shows that x ( d i  - & ) 2  has 
gradient vector with i th element 2(di - &) and that the gradient 
exists and is continuous everywhere. 

De Leeuw (1977a) noted that the Euclidean distance between 
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two points, d,, = {xi (x,i - ~ , i ) ~ } i  is not differentiable in a config- 
uration if points x, and x, are coincident. De Leeuw (1977b) shows 
that gradient algorithms can be modified to  cope with the problem. 
De Leeuw (1984) shows that when stress is minimised coincident 
points cannot occur. 

Limits for stress 
The minimum possible value of Kruskal’s stress is zero, implying 
a perfect fit. However, a zero stress value can imply that the final 
configuration is highly clustered with a few tight clusters of points. 

De Leeuw and Stoop (1984) give upper bounds for stress. Let 
STRESS1 be denoted by S ( n , p ) ,  where the number of points, n, 
and the dimension, p ,  of the configuration are fixed. They show 
that 

I +,PL 

where 

with d..  the usual mean of {d,,} over T , S .  

This result is easily seen as 

since disparities defined as d,, = d, .  for all T ,  s satisfy the mono- 
tonicity requirement, but obviously do not minimise the stress or 
raw stress over the disparities, since this is achieved by {&,}, the 
isotonic regression of {dT,} on {&,}. Dividing by C,,, d:,, taking 
square roots and minimising over the configuration { x T i }  proves 
the result. 

De Leeuw and Stoop (1984) then go on to  show that 

It is easily seen that ~ ( n , p )  5 K ( n ,  1) since in minimising 

over the p dimensional configuration {x,i}, it is always possible to  
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take the configuraton as the projection onto the single axis used 
for ~ ( n ,  1) (or any other subspace of dimension less than p ) .  

To calculate ~ ( n ,  l), assume without loss of generality C xr = 0, 
and C x: = 1. Then 

and hence minimising (3.5) is equivalent to  minimising 

which in turn is equivalent to  maximising d,. .  

seen that d.. is given by 
Reordering the points {xT} such that x1 5 x2 5 . . . 5 x,, it is 

2 ,  d. = E(2r - n - I>xr. 
n(n - 1) r=l 

Now d.. is maximised when {xr} are equally spaced along the axis. 
Let 2, = u + br. Hence 

E ( u  + br) = nu + in(n + 1 ) b  = 0, 

and 

x ( u  + br) = nu2 + n(n + I ) U ~  + +n(n + 1>(2n + I)P = 1. 

Solving gives 

12 (n  + 1) 
xr = in(+ - 1) { r  - 7}* 

Hence ~ ( n ,  1) = (%)$ after some algebra, and it is easily seen 
that ~ ( n ,  1) tends to  I/& as n tends to infinity. 

De Leeuw and Stoop also give an upper bound for ~ ( n , 2 )  and 
show 

2 cot2((7i/2n) 1 + { 7p2 1 + 
.(n,2) f .*(n,2) = f 1-- = 0.4352. 

n(n - I) 

The value of K*(n, 2) is the value of (3.5) if { x T i }  consists of n 
equally spaced points on a circle. Note that ~ ( n ,  2) is not necessar- 
ily equal to  K* (n ,  2). 
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For STRESS2 it can easily be seen from (3.5) that the upper 
limit for STRESS2 is unity. 

3.4.1 Interpretation of stress 

Since Kruskal’s 1964 papers in Psychornetrika there have been 
many investigations of stress using Monte Carlo methods. Various 
findings are reported below. 

Stenson and Knoll (1969) suggested that in order to assess di- 
mensionality and fit of the final configuration, stress values for a 
set of dissimilarity data should be compared with those obtained 
using random permutations of the first (;) integers as dissimilar- 
ities. They used n=10(10)60, p=1(1)10 in a Monte Carlo study, 
using three random permutations for each combination of n and 
p. They plotted mean stress against dimension p, for a fixed num- 
ber of objects n. They managed with only three random permuta- 
tions since the variability of stress was small. Spence and Ogilvie 
(1973) carried out a more thorough Monte Carlo study using fif- 
teen replications for each n , p  combination. De Leeuw and Stoop 
(1984) carried out a similar exercise using one hundred random 
rankings. Spence and Ogilvie’s results for mean and standard de- 
viation of stress are shown in The mean stress is useful 
since it gives a guide as to whether the stress obtained in a study is 
too large or not for a reasonably fitting final configuration. Levine 
(1978) carried out a similar exercise using Kruskal’s STRESS2 in 
place of STRESS1 . 

Klahr (1969) generated (‘2”) dissimilarities { S,,} independently 
from a uniform distribution on [0,1], choosing n as 6,7,8,10,12 and 
16, p=1(1)5, and subjected them to nonmetric MDS. This was 
done one hundred times for smaller values of n and fifty times for 
larger values, for each value of p .  The sample distribution function 
for stress was plotted, as well as a plot of mean stress. Klahr noted 
that it was often possible to  obtain a well-fitting final configuration 
of points for small values of n even when the dissimilarities were 
randomly generated in this manner. 

Figure 3.5.
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Figure 3.5 Percentage m e a n  stress and  standard deviat ion obtained f r o m  
r a n d o m  rankings. 

Spence (1970) generated configurations of points according to a 
p dimensional Poisson process within a unit hypersphere. To each 
individual coordinate an independent normally distributed random 
“error” was added. Dissimilarities were then taken as the Euclidean 
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distances between the pairs of points and these were subjected 
to nonmetric MDS. The stress values obtained in attempting to  
retrieve the original configurations were used to  compare the fre- 
quency with which the three MDS programs, TORSCA, MDSCAL 
and SSA-1 got stuck in local minimum solutions. Spence (1972) 
went on to  compare the three programs in more depth. Wagenaar 
and Padmos (1971) carried out a simulation study of stress in a 
similar manner to  that of Spence using a realization of a p dimen- 
sional Poisson process. However their dissimilarities were taken as 
the Euclidean distance between pairs of points in the configura- 
tion, together with multiplicative error, introduced by multiplying 
the distances by an independent random number generated from 
a normal distribution. They used their stress results in a method 
to assess the required dimensionality of the configuration. This 
method is explained in Section 3.5. 

Sherman (1972) used the p dimensional Poisson process to  gen- 
erate configurations, choosing n=6, 8, 10, 15, 30, p=l ,  2, 3. An in- 
dependent normal error was added to  each coordinate and dissimil- 
arities were generated using the Minkowski metric with X = 1,2,3. 
Sherman used analysis of variance to  investigate the factors most 
affecting nonmetric MDS results, and concluded with basic com- 
mon sense suggestions, such as that the hypothesized structure 
should be of low dimension, measurement errors should be min- 
imised, and various dimensions should be tried for the configura- 
tion with varying X in the Minkowski metric. 

Sibson et  al. (1981) consider more sophisticated models for pro- 
ducing dissimilarities from distances obtained from a configuration 
of points before attempting to  recover the orginal configuration us- 
ing nonmetric MDS. Their first model is based on binary data and 
the Hamming distance. Suppose there are k binary variables meas- 
ured on each of the objects. Then the Hamming distance between 
objects T and s is simply the number of variables in which the two 
objects differ, and thus is very closely related to the dissimilarity 
coefficients of Chapter 1. Consider two points T and s in a p dimen- 
sional Euclidean space together with a Poisson hyperplane process 
where random hyperplanes cut the space into two half spaces. The 
two half spaces are denoted zero and one arbitrarily. 
shows Euclidean space with p=2, and three hyperplanes, with as- 
sociated zeros and ones allocated. 

Figure 3.6
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X 

Figure 3.6 Points r and s in two dimensional Euclidean space with three 
random hype rp 1 an e s 

The binary data associated with the point T is ( O , l , l )  and that 
with point s ( l , O , l ) .  The Hamming distance is 2. In general, the 
Hamming distance is equal to  the number of hyperplanes crossed 
in going from one point to  another, and can be randomly gen- 
erated by randomly locating these hyperplanes. From 
the number of hyperplanes crossing the line between points T and 
s is two, in agreement with the data. The number of hyperplanes 
crossing the line between point T and point s follows a Poisson 
distribution with parameter equal to  Ad,, where X is the intensity 
of the process. Conditioned upon the total number of hyperplanes 
the distribution of the Hamming distance is a binomial distribu- 
tion. Thus for their first model, Sibson et  al. generate a realization 
from a p dimensional Poisson process and then split the space with 
Poisson hyperplanes. The dissimilarity between points T and s is 
then taken as the Hamming distance between these points. 

Figure 3.6,
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X 
X 

Figure 3.7 Model for  binary data and the Jaccard coeficients 

Their second model is similar to  the first model but has depen- 
dence between points removed. The dissimilarity S,, is taken as a 
random number from a Poisson distribution with parameter Ad,, . 

Sibson et d ’ s  third model generates random Jaccard coefficients. 
Each binary variable is considered to  measure presence (l), or ab- 
sence (0). A realization of a p dimensional Poisson process again 
starts off the model. Then for each variable a p dimensional hy- 
persphere is generated with radius randomly chosen from some 
distribution, and centre a point in another realization of a Poisson 
process. Inside each hypersphere, the variable assumes the value 
unity, and outside the hypersphere the value zero. For example, 

shows ten points and three variables for a two dimen- 
sional space. The point T has binary data associated with it ( O , l , l )  
and point s has ( l , O , l ) ,  and hence S,, = 1/3. If r and s were both 
to lie outside all the spheres, the dissimilarity would be unity. 

For their fourth model, points are again generated from a p di- 
mensional Poisson process, but then Dirichelet tessellations are 
found; see Green and Sibson (1978). shows a two dimen- 
sional example. Dirichelet tessellations are found for each point T ,  

a surrounding polygon where all points of the space within the 
polygon are closer to  T than any other. The Wilkinson metric for 
points T and s is then the minimum number of boundaries crossed 

Figure 3.7

Figure 3.8
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to get from one point to the other. The dissimilarity 6,, is then 
taken as this Wilkinson distance. 

Figure 3.8 Dirichelet tessellation model 

Sibson et al. (1981) use the Procrustes statistic (see Chapter 5) 
to compare recovered configurations using nonmetric MDS with 
the original configurations. They use three scaling methods: clas- 
sical MDS, Kruskal’s nonmetric MDS, and least squares scaling. 
Among their conclusions, they maintain that classical MDS com- 
pares well with nonmetric MDS for most “Euclidean-like” models, 
but not for “non-Euclidean-like” models. Least squares scaling is 
slightly superior to  nonmetric MDS for the Euclidean-like models, 
but inferior for the Jaccard coefficient model. Nonmetric MDS is 
never significantly worse than the other methods if it is given a 
reasonable starting configuration. 

The models in Sibson et  al. (1981) have been described in detail 
here, even though their investigation does not deal directly with 
stress, because they use models which generate dissimilarities of 
an interesting nature. Most other Monte Carlo investigations mun- 
danely have additive or multiplicative noise applied to  coordinates 
or distances in order to  produce dissimilarities. 

All the stress studies have shown that stress decreases with in- 
crease of dimension p ,  increases with the number of points n, and 
that there is not a simple relationship between stress, n and p .  By 
using a different model for error, Cox and Cox (1990), and Cox 
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and Cox (1992) found a simple relationship between stress, n and 
p .  Up till then, most Monte Carlo investigations started with a 
configuration of points generated according to a Poisson process. 
Cox and Cox considered configurations covering a wide range of 
spatial patterns; see for example, Ripley (1981), Diggle (1983) or 
Cressie (1991) for full discussion of spatial stochastic models. 

At one extreme was the highly regular process of a rectangular 
grid. For a pattern with less regularity, this rectangular grid had 
its points independently radially displaced by an amount (R ,  0)  
where R has a Rayleigh distribution (pdf rap’ exp(-+r2/a2))  and 
0 a uniform distribution on [0,27r]. The further the average dis- 
placement the less regular the process becomes, and in the limit the 
process tends to a Poisson process. At the other extreme, points 
were generated according to a Poisson cluster process. Here cluster 
centres are generated according to  a Poisson process and then a 
fixed number of cluster members are positioned at  radial points 
( R , O )  from the cluster centre, where R , 0  are as above. As the 
points in a cluster are moved further and further away from their 
cluster centres, the process tends towards a Poisson process again. 
Thus a very wide range of spatial patterns were considered rang- 
ing from extreme regularity on one hand, through complete spatial 
randomness (i.e. the Poisson process), to  extreme aggregation on 
the other. 

For each configuration generated, dissimilarities were defined as 
shows realizations for the three models. 

S T ,  = d T S ( 1  - k s ) ,  

where d,, is the usual Euclidean distance and { c r S }  are indepen- 
dent uniformly distributed random variables on the interval [0, I ] .  
The value of I can be considered as the noise level. Several val- 
ues of n and I were chosen. The number of dimensions, p ,  was 
chosen as only p = 2 in Cox and Cox (1990), but results were 
extended for other values of p in Cox and Cox (1992). Nonmetric 
MDS was used on the dissimilarities generated for each configura- 
tion and the stress recorded. Each model was replicated ten times 
and the average stress found. In keeping with other authors’ re- 
sults, the variability in stress for fixed n , p  and I was extremely 
small. For two dimensional initial configurations, together with a 
derived configuration also in two dimensions, the following results 
were observed. 

Figure 3.9
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Figure 3.9 Realizations of the three models considered by Cox and Cox: 
regular process; Poisson process; Poisson cluster process. 

shows average stress plotted against the “noise level” 
I for (i) a Poisson process, n = 36; (ii) a Poisson process, n = 64; 
(iii) a rectangular grid, n = 36; (iv) a regular process, n = 64, 
o2 = 0.25; (v) a Poisson cluster process, 16 clusters of size 4, 

Figure 3.10
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o2 = 0.1, and (vi) a Poisson cluster process, 4 clusters of size 16, 
o2 = 0.1. 
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Figure 3.10 Stress plotted against noise 1 for various spatial models 

The remarkable result is that with this noise model, stress is 
proportional to noise level I ( I  A 3 x stress) whatever the value of 
n and for all reasonable spatial patterns of points (i.e. ones which 
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are not comprised of a few very tight clusters). This means that if 
the model is reasonable then stress levels for different sets of dis- 
similarities can be directly compared for any differing number of 
objects and for any spatial pattern formed by the final configura- 
tion of points. For dimensions other than two, similar results were 
found by Cox and Cox (1992), but with not such a strong linear 
relationship between stress and 1. It should be noted that these 
results only hold when the dimension of the configuration derived 
by MDS is the same as that of the original configuration used to  
generate the dissimilarities. 

3.5 How many dimensions? 

For illustrative purposes, the obviously preferred number of dimen- 
sions to  be chosen for nonmetric MDS is two. Configurations in 
three dimensions can be illustrated using three dimensional plot- 
ting procedures from various statistical packages, such as SAS, 
SOLO and STATISTICA. However, a less well-fitting configuration 
in two dimensions may be preferable to  one in several dimensions 
where only projections of points can be graphically displayed. 

To choose an appropriate number of dimensions, Kruskal (1964a) 
suggests that several values of p ,  the number of dimensions, are 
tried and the stress of the final configuration plotted against p .  
Stress always decreases as p increases. Kruskal suggests that p is 
chosen where the “legendary statistical elbow” is seen in the graph. 
For the breakfast cereal data of Section 3.2.4 this was done and 
results are shown in 

The “elbow” appears to  be at  p = 4. However it has been noted 
that often there is no sharp flattening of stress in these diagrams 
and that an elbow is hard to  discern. 

Wagenaar and Padmos (1971) suggested the following method 
for choosing the appropriate number of dimensions. Dissimilarities 
are subjected to  nonmetric MDS in 1, 2, 3,... dimensions, and the 
values of stress noted in each case, say S1, S2, Ss, ... . These are 
then compared to  the stress results from Monte Carlo simulations 
where dissimilarities are generated from distances in spatial config- 
urations of points, together with random noise. The level of noise, 
01 needed in one dimension to  give stress S1 is noted. Then for 
two dimensions, Sa is compared with Sg, the “expected stress” for 
two dimensions with noise level 01. If Sz is significantly less than 
S.f then the second dimension is definitely needed. The noise level 

Figure 3.11.
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0 2 ,  needed to  produce a stress level S2 in two dimensions, is found, 
and then the “expected stress” SF, for three dimensions with this 
noise level, 0 2 .  The stress S3 for three dimensions is then com- 
pared with SF. This process continues until stress is comparable 
to the expected stress, implying that there is no gain to  be made 
in increasing the number of dimensions beyond that point. 

2 3 4  5 6 7 8  9 10 
dimension 

Figure 3.11 Stress plotted against dimension for the breakfast cereal data 

3.6 Starting configurations 

One possibility for a starting configuration for nonmetric MDS al- 
gorithms is simply to  use an arbitrary one. Points can be placed at 
the vertices of a regular p dimensional lattice for instance, or could 
be generated as a realization of a p dimensional Poisson process. 
This latter case simply requires all coordinates to  be independently 
generated from a uniform distribution on [-1,1] say, and the con- 
figuration is then normalized in the usual manner to have centroid 
at  the origin and mean squared distance of the points from the ori- 
gin, unity. It is always recommended that several different starting 
configurations are tried in order to  avoid local minimum solutions. 

If metric MDS is used on the data initially, the resulting con- 
figuration can be used as a starting configuration for nonmetric 
MDS. 

Guttman (1968) and Lingoes and Roskam (1973) suggested the 
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following for finding a starting configuration. Let matrix C be de- 
fined by [C] , ,  = cTs,  where 

S 

= 1 - p r s / N  (T # s ) ,  

where N is the total number of dissimilarities {d rs } ,  and P r s  is 
the rank of STs in the numerical ordering of {drs}. The principal 
components of C are found and the initial configuration is given by 
the eigenvectors of the first p principal components, but ignoring 
the one with constant eigenvector. 

3.7 Interesting axes in the configuration 

A simple method for finding meaningful directions or axes within 
the final configuration is to  use multiple linear regression. The 
method is explained in Kruskal and Wish (1978). An axis is found 
for a variable, ZJ, related to the objects, or even one of the ori- 
ginal variables used in defining the dissimilarities. This variable is 
taken as the dependent variable. The independent variables are the 
coordinates of the points in the final configuration. 

The regression model is then 

y = x p + € ,  

where y is the vector of observations {yi} ( i  = 1,. . . ,n) ,  X is 
the n x ( p  + 1) matrix consisting of a column of ones followed by 
the coordinates of the points in the final configuration, p is the 
parameter vector, and E the “error” vector. 

The least squares estimate of p is given by 

p = (XTX)-IxTy. 

As long as the regression has a reasonable fit, tested either by an 
analysis of variance or by the multiple correlation coefficient, then 
an axis for the variable can be defined through the origin of the 
configuration and using the direction cosines 

&/xj: ( i  = 1,. . . , p ) .  
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Figure 3.12 (i) Nonmetric MDS of the trading data, together with 
(ii) the gross domestic product per capita axis. 

Examp 1 e 
Data were taken from the New Geographical Digest (1986) on which 
countries traded with which other countries. Twenty countries were 
chosen and their main trading partners were noted. If significant 
trade occurred between country T and country s, then x,, was 
put equal to unity, and zero otherwise. From these binary data, 
dissimilarities were calculated using the Jaccard coefficient. Also 
recorded for the various countries was the gross national product 

Figure
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per capita (gnp/cap). The dissimilarities were then subjected to  
two dimensional nonmetric MDS. shows the final 
configuration, the stress for which was 11%, implying a reasonable 
fit. From the figure, Japan, the USA and the UK can be seen to  be 
separated from the bulk of the countries, while West Germany (as 
it was then) and USSR (also now changed) are also singled out. 

The variable gnp/cap was regressed on the coordinates of the 
points in the final MDS configuration giving an adjusted coefficient 
of multiple determination of 42%. Although the fit of gnp/cap is 
not particularly good, a meaningful axis arises using the regression 
coefficients to  define its direction. This is also shown in 

is the same plot but with gnp/cap 
replacing country names. There are interesting positions taken up 
by some of the countries, for example Sweden, Canada and the 
UK. The reader is invited to  delve further into the plots. 

Shown in 

Figure 3.12 (i)

Figure 3.12 (ii)
Figure

3.12 (i)
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CHAPTER 4 

Further aspects of 
rnult idirnensional scaling 

4.1 Other formulations of MDS 

Schneider (1992) formulates MDS as a continuum that has metric 
MDS at one end of the continuum and nonmetric MDS at the 
other. Let f, be the logistic function 

where p is the continuum parameter, (0 < p < GO). Schneider uses 
the loss function 

L, = [f,(d?, - d?,,,) - f,(Sp, - S,2/,/)12, 
r< s ,rl < s1 

( r , s )<( ( r ’ s ’ )  

which is minimised for given p. Here ( T ,  s )  << (r’, s’) means r < r‘ 
or if T = T’ then s < s’. 

For p = 0 the loss function to be minimised is 

Lo = [(d:, - d:/ , / )  - (S:, - &?/,/)I2, 
r< s ,r /  < s’ 

( r , s )<( ( r ’ s ’ )  

For p = 00 the loss function is 

~ c c  = X r s T / s l  

r,s,r‘,s‘ 

where 
1 if dr ,  > dr/,/ but STs < ST/,/ 
1 
0.25 

if d,, < d,!,! but S,, > ST/,1 

if d,, # d,r,/ but S,, = ST/,1 X r s T / s /  = 
0.25 if dr, = dr/,/ but ST, # S r / s /  I 0 if otherwise. 

As p + 0, Lo is essentially minimised leading to a metric MDS 
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formulation. As p + 00, L ,  is minimised leading to  a nonmetric 
formulation. A general p gives a formulation between the two. 

Trosset (1998) gives a different formulation for nonmetric scal- 

be a matrix of “disparities”. Let gTS = - ( 6 r s  - 6r. - 6.s +6,.). Tros- 
set’s formulation is to find B that minimises the loss function 

ing. Let B = [brs] where brs = -~(6,,s-S,,.-6.s+S,.). 1 Let D = [S,,] 
A A A A  

r s  

subject to  B being a symmetric positive semi-definite matrix of 
rank less than or equal to  p ,  and D the matrix of disparaties such 
that the rank order of { 8 r s }  is the same as the rank order of the 
original dissimilarities { d T S } ,  and C,  C ,  8zs 2 Cr C,  6zs.  Trosset 
suggests a gradient projection method for the minimisation. From 
B the coordinate matrix, X, for the points in the MDS configura- 
tion can be found in the usual manner. From the formulation, the 
mix of metric and nonmetric scaling can be seen. 

In Chapter 3, Kruskal’s steepest descent algorithm for minimis- 
ing STRESS was described in detail. It is the algorithm used in 
the nonmetric scaling program on the enclosed CD-ROM. The al- 
gorithm could be viewed as rather old fashioned now, as more up 
to date algorithms have been proposed by various authors. Some 
algorithms have already been referred to in Sections 2.4 and 2.6 
on least squares scaling and unidimensional scaling. This mono- 
graph is not the place to describe these algorithms fully, since a 
collection of such algorithms with their descriptions and proper- 
ties could easily form the content of a monograph in their own 
right. Takane et  al. (1977) developed an alternating least squares 
algorithm for multidimensional scaling (ALSCAL) . This algorithm 
is discussed in Chapter 11 along with SMACOF, developed by de 
Leeuw (197713). Kearsley e t  al. (1994) review some of the algorithms 
for MDS and suggest one of their own. Klock and Buhmann (1997) 
consider MDS using a deterministic annealing algorithm. 

4.2 MDS Diagnostics 

Very little work has been carried out on diagnostics for MDS con- 
figurations as to  goodness of fit, outliers, etc. To date, the two main 
diagnostics for nonmetric scaling have been the value of STRESS 
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and the Shepard diagram. For classical scaling the “amount of vari- 
ation explained”, based on eigenvalues is used, and for least squares 
scaling the value of the loss function. 

Chen (1996) and Chen and Chen (2000) discuss interactive di- 
agnostic plots for MDS. They have written a computer program 
that links the dissimilarities, distances and disparaties to the plot 
of the MDS configuration. Any point can be highlighted by the 
analyst in the configuration, which then causes all its associated 
dissimilarities, distances and disparaties to be highlighted in other 
plots, such as the Shepard plot. Colour linkage is also used, so for 
example, the dissimilarities can be mapped to a colour spectrum 
ranging from deep blue for the largest dissimilarities through to  
bright red for the smallest dissimilarities. If the point x, is chosen 
in the configuration (using the computer mouse) then this causes 
the s th  point in the configuration to adopt the appropriate colour 
in the spectrum according to  the value of &.,. The coloured points 
then indicate “goodness of fit” for the r th  point - for a good fit, 
close points should be mainly coloured red, distant points blue. 
Chen and Chen also allow for colour smearing of this plot by esti- 
mating the colour at  all points within the configuration space (not 
only those marked as representing the original objects or observa- 
tions). The colour smearing is carried out using a kernel density 
estimation approach, so that at  point x, the estimate of proximity 
(based on the r th  object) is 

where K is an appropriately chosen kernel. The point x is then 
coloured according to  the value of &(x). Thus when this is done 
for many points within the configuration space, the colours of the 
original configuration points are smeared into the “empty” space 
between them. 

A configuration where x, has a small contribution to STRESS 
(i.e. c,(6,, - &,)2 is small) will have a peak of bright red centred 
at  x, and then moving away from x,, colour smoothly descends 
the spectrum. For x, having a large contribution to stress, the plot 
will either be a twisted colour pattern, or smooth but with colours 
not as expected. By viewing these plots and the Shepard type plots 
in turn for each point in the configuration, abnormalities and other 
special features are shown up. 
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In line with regression diagnostics for regression analysis there is 
future scope for work in the diagnostic area for MDS. For iristarice, 
residuals, e,,,, can be defined: ers = Id,,, - &,I for metric MDS; 
e7., = Id,,, -d7.,I for rioririietric MDS. For the stochastic approach to  
MDS in Section 4.7, residuals are naturally defined. The residuals 
could then be arialysed globally or within observations. For the 
Tth observation the mean residual is e,,. = nP1 C,  ers. Then {er . )  
could be plotted against position in the MDS configuration. The 
mean residuals could also be plotted against each variable in the 
data matrix (if there is one) from which the dissimilarities were 
corist ruct ed. 

Outliers could be sought in terms of large residuals or mean 
residuals. Influential observations could be sought by systeriiati- 
cally leaving out (i) oiie of the dissimilarities, (ii) all dissimilarities 
associated with oiie of the observations, arid then noting the effect 
on the MDS analysis. The effect could be measured in various ways, 
for example the reduction in STRESS, or the Procrustes statistic 
(Chapter 5) when configurations are matched, oiie based on the 
full data arid oiie based on the reduced data. 

4.3 Robust MDS 

Sperice arid Lewaridowsky (1989) consider the effect of outliers in 
riiultidiriierisiorial scaling. They illustrate the potentially disastrous 
effects of outliers by using as dissimilarities the forty-five Euclidean 
distances obtained from nine points in a two diriierisiorial Euclidean 
space. One of the distances, however, is multiplied by a factor of 
ten. The resulting configuration using classical scaling has the two 
points associated with the outlying distance forced well away from 
their true positions. To overcome the effects of outliers, Sperice arid 
Lewaridowsky suggest a method of robust parameter estimation 
arid a robust index of fit, described briefly below. 

Robust yururneter. estimation 
Suppose a configuration of n points is sought in a p diriierisiorial 
Euclidean space with associated distances { d,,,) representing dis- 
similarities {&,). As usual, let the coordinates of the points in the 
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space be denoted by {x,.i). Consider the distance between the r'th 
arid sth points, 

P 

dz,  = E(x, . i  - ~ , i ) ~ .  

i=l 

Concentrating on the coordinate I C , . ~ ,  this enters into n - 1 dis- 
tances, arid n - 1 discrepancies, f ( x , . k ) ,  between dissimilarity arid 
distance, 

Obviously, fs(x,.l) = fs(x,.2) E . . . = fS (xrTL) .  
Let { x $ ~ )  be the coordinates at  the tth iteration in the search 

for the optimum configuration, arid let {di- ,)  be the associated dis- 
tances. The Newton-Raphson method for finding roots of equations 
leads to 

r', s = 1,. . . ,n)  

The corrections ,s:,~ to x:,k can be greatly influenced by outliers 
arid herice Sperice arid Lewaridowsky suggest using their median. 
Thus 

t = x:,k + Mg,k,  

where ~ g : , ~  = median,+, (,&). 
They also suggest a modification to st,ep size, giving 

where 
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The above is easily modified to incorporate transformations of dis- 
tances, dissimilarities or both. 

Care has to be taken over the starting configuration. It is sug- 
gested that a starting configuration is found by replacing the dis- 
similarities by their ranks and using classical scaling on these; the 
configuration is then suitably scaled. 

Robust index of fit 
Spence and Lewandowsky suggest TUF as an index of fit where 

6,s - d7-s TUF = median,median,+, 

which, when multiplied by 100, can be interpreted as the median 
percentage discrepancy between the dissimilarities and the fitted 
distances. 

Spence and Lewandowsky carried out simulation exercises to  
compare several MDS programs in their ability to  cope with out- 
liers. They showed that nonmetric methods were more resistant to  
outliers than metric methods, as expected, but that their method 
(TUFSCAL) was the most resistant. 

4.4 Interactive MDS 

In an experiment where a subject is presented with pairs of stim- 
uli in order to  elicit a dissimilarity/similarity measurement, the 
number of possible pairs that  have to  be judged soon becomes 
overwhelmingly large. An experimental design using just a sub- 
set of the possible pairs can be attempted. Spence and Domoney 
(1974) carried out a Monte Carlo simulation study to  show that 
up to two-thirds of the full set of dissimilarities can be discarded 
without a disastrous effect on the MDS results. 

Young and Cliff (1972) introduce an interactive classical scaling 
method, where an initial number, n l ,  of stimuli are presented for 
paired comparison. From the resulting scaled dissimilarities the 
pair of stimuli furthest apart are used to  start the definition of 
a “frame”. The frame starts in one dimension as a line passing 
through two points representing these two stimuli. The distance 
between the points represents the associated dissimilarity. The rest 
of the stimuli in the initial set are considered in turn. If the two 
dissimilarities between a particular stimulus and the two existing 
frame stimuli can be represented by the distances from the two 
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points to another collinear point, then the stimulus is in the same 
dimension as the other two. If not a new dimension is required 
for the frame. The stimulus giving the lowest “residual” distance 
is used to  define another dimension and increases the frame. This 
process is continued, looking at  distances of new stimuli to  frame 
points in terms of projections onto the frame dimensions until a 
frame of r dimensions is found. Those original stimuli of the nl not 
in the frame are set aside. 

More stimuli are added to  the ones in the frame and the process 
is repeated, updating the frame. This continues until all the stimuli 
have been considered and a final frame settled upon. Dissimilarities 
are then found between those stimuli outside the frame and those 
within it. Some of these will already have been found, however, as 
the frame was being constructed. 

Girard and Cliff (1976) carried out a Monte Carlo study to  in- 
vestigate the accuracy of the interactive scaling method by compar- 
ing results with a solution based on all the possible dissimilarities, 
and also with solutions based on subsets of the dissimilarities. They 
concluded that interactive scaling was superior to  simply using a 
subset of the dissimilarities. Interactive MDS was further developed 
by Cliff et  al. (1977) and improved by Green and Bentler (1979). 

4.5 Dynamic MDS 

Ambrosi and Hansohm (1987) describe a dynamic MDS method 
for analysing proximity data for a set of objects where dissimilar- 
ities are measured at each of T successive time periods. Let these 
dissimilarities be denoted by {d;,}, ( r ,  s = 1 , .  . . , n; t = 1 , .  . . , T ) .  
The aim is to produce a configuration of nT points in a space, 
where each object is represented T times, once for each of the time 
periods. The T points for each object are, hopefully, not too dis- 
tant from one another, and by plotting their path over time, insight 
into the changing nature of the relationship among the objects with 
respect to  time can be found. 

One possibility for coping with the T sets of dissimilarities is to  
place them into a super-dissimilarity matrix, D, 

D17] , D11 D12 . .  . 
; . . .  

DT1 DT2 * * *  DTT 
D = [ ; 
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where Dtt = [S:,], the dissimilarity matrix formed from the dissim- 
ilarities collected at the t th time period. The matrix Dtt/ = [6:$’] 
has to  be specified where Skf’ is the dissimilarity of object T at 
the t th time period with object s at  the t’th time period ( t  # t‘). 
Some information may be available from which these cross time 
period dissimilarities can be found. For example if data matrices 
were available for the objects, with one for each time period, these 
dissimilarities could be found using the observations on object T at 
time period t and those on object s at  time period t‘ to  define 6:$’ 
by the Jaccard coefficient for instance. Usually 6:t’ # 6;;‘ (T # s). 
However, the super-dissimilarity matrix will still be symmetric. If 
the dissimilarities 6:$ cannot be found, it may be that they can 
be constructed from {6ts}. One possibility is 

Another possibility is to  assume all 6::’ (t # t’) are missing. A 
third is to define 6kt’ = 0, with all 6::‘ (T # s) missing. 

Once the super-dissimilarity matrix has been constructed, it can 
be subjected to  metric or nonmetric multidimensional scaling in 
the usual manner. 

A different approach is suggested by Ambrosi and Hansohm. 
They use stress for nonmetric MDS based on the dissimilarities for 
the t th time period defined by 

where 
- x Z S .  

2 
n(n - 1) 

d =  
r<s 

The combined stress for the T time periods can be chosen as either 

or 
T 

t=l 

This overall stress is to  be minimised, but subject to  the constraint 
that ,  in the resulting configuration, the T points that represent 
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each object tend to be close to  each other. This is achieved by 
using a penalty function, for example 

T-1 TZ P 

t=l r=l i=l 

where x: = (&, . . . , x&) are the coordinates representing object 
r at the t th time period. 

A configuration is then found that minimises 

s, = s + €77, € > 0, 

where 6 is a chosen constant <<I.  
Minimising the stress S and also minimising the penalty function 

U is then a compromise which will depend on the value of c,  which 
in turn will depend on the importance placed on the requirement 
that the T points representing an object are near to  each other. 

A further restriction can be added that the T points representing 
each object lie on a straight line. This is achieved by insisting 

T t  x: = x. + a, y, ( r  = 1 , .  . . , n; t = 2,. . . , T ) ,  

where a, (note in the equation above the superscript T is trans- 
pose) gives the direction of the line for the r th  object, x. the 
starting point of the line, and y: the distance along of the point 
xk. These new parameters are estimated in the course of minimis- 
ing S,. 

An example 
Hansohm (1987) describes a computer package DMDS which car- 
ries out dynamic MDS. It also includes programs for ordinary MDS, 
and FACALS, a principal component analysis program. 

Hansohm illustrates DMDS using data collected by Schobert 
(1979) on fifteen cars, where each is described by fifteen variables. 
Data are collected yearly for the period 1970-1973. Hansohm gives 
a two dimensional configuration showing the fifteen cars at the four 
time points with the points for each car lying on a straight line. 
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The same data have been used without this restriction and the 
resulting two dimensional configuration is shown in The 
value of c was chosen as 0.001, the final penalized stress value was 
11%. The Renault 4, the VW1200, the Simca 1000 and the VW1300 
are on the left of the configuration. The Simca 1100, the Peugeot 
204 and the Escort S are on the right. The cars on the left can be 
seen to  change their positions much more drastically than those on 
the right. 

A different approach can be taken to  dynamic MDS, by simply 
carrying out an MDS analysis for each time period separately, and 
then matching the resulting configurations using a Procrustes ana- 
lysis. This was done for the car data resulting in the configuration 
given in The stresses for the four initial configurations 
were 8%, 7%, 9% and 8%. The configurations for the second, third 
and fourth time periods were matched to  that of the first. The val- 
ues of the Procrustes statistic were 0.09, 0.20 and 0.12 respectively. 
Alternatively the second configuration could have been matched to  
the first, the third to the second, and the fourth to  the third. The 
length of the trajectories are shorter for this method, but cannot 
be controlled as they can for the previous method by choice of c. 

Figure 4.1.

Figure 4.2.

Figure 4.1  Dynamic MDS for cars using DMDS
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Figure 4.2 Dynamic MDS for cars using Procrustes analysis 

4.6 Constrained MDS 

Sometimes it is desirable to  place restrictions on the configuration 
obtained from an MDS analysis, either through parameters or on 
the distances in the resulting configurations. For example, a par- 
ticular set of stimuli may fall into ten subsets, and it is required 
that all the projections of stimuli points in a subset onto a par- 
ticular axis are coincident. Bentler and Weeks (1978) describe a 
situation involving nine Munsell colours of the same red hue, but 
of differing brightness and saturation, the data coming from Tor- 
gerson (1958). The MDS configuration can be constrained so that 
the first two axes give the true brightness and saturation values for 
the nine colours. 

Another colour example is the data of Ekman (1954) consisting 
of similarities for fourteen colours. A two-dimensional MDS ana- 
lysis of the data gives the colours lying close to the circumference of 
a circle - the colour circle. Constrained MDS methods can ensure 
that the colours actually lie on the circumference. 

In order to constrain an MDS configuration, Bentler and Weeks 
(1978) use least squares scaling with the configuration in a Euc- 
lidean space and simply incorporate the required equality con- 
straints in the least squares loss function. Bloxom (1978) has the 
same approach but allows for non-orthogonal axes. Lee and Bentler 
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(1980) also constrain configurations using least squares scaling in- 
corporating Lagrange multipliers. Lee (1984) uses least squares 
scaling to allow not only for equality constraints, but also inequal- 
ity constraints. Borg and Lingoes (1980) constrain configurations 
using the following approach, which covers the metric and non- 
metric methods. 

Let {hrs} ,  { d r s }  be the usual dissimilarities and distances within 
a configuration. Let { h z }  be pseudo-dissimilarities which reflect 
the constraints required. Many of the pseudo-dissimilarities may 
be missing if they are not involved with constraints. Let {iTs} be 
disparities for {dTs} and {o',",} disparities for {d,",} where "dispar- 
ities" can be the disparities from nonmetric MDS or actual dis- 
similarities for metric MDS. This allows both cases to  be covered 
simultaneously. Then the constrained solution is found by minimis- 
ing the loss function 

L = (1 - a)Lu + a i L ~  (0 f ai f l), 

with 

r.s 

The loss functions Lu and LR can be Kruskal's STRESS or just 
a least squares loss function. The loss function L is minimised 
iteratively with at,  the value of ai at the t th iteration. By ensuring 
that limttooait = 1, a configuration with the required restrictions is 
found. Note: minimising L is not the same as minimising LR, since 
LR will contain many missing values while Lu will be complete. 
Like many other authors Borg and Lingoes use their method on 
Ekman's colour data and constrain the colours to  lie on a circle. 

Ter Braak (1992) considers constraining MDS models with re- 
gression models, so that coordinates of the configuration are re- 
gressed on external variables. He gives as an example a PCO anal- 
ysis of twenty-one colonies of butterflies where coordinates are re- 
gressed on eleven environmental variables. One further constrained 
MDS model, CANDELINC, will be covered in Chapter 12. Other 
references to constrained MDS are de Leeuw and Heiser (1980), 
Weeks and Bentler (1982), Mather (1988, 1990), Takane et al. 
(1995) and Winsberg and De Soete (1997). 
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4.6.1 Spherical MDS 

Cox and Cox (1991) show how points of a configuration from non- 
metric MDS can be forced to  lie on the surface of a sphere. In 
a sense, this is not constrained MDS since the space representing 
the objects is simply taken to  be the two-dimensional surface of a 
sphere. The advantage of using the surface of a sphere as a space 
in which to represent the objects is that  the configuration need 
not have any “edge points”, whereas in a Euclidean space, there 
always have to  be points at  the edge of the configuration. These 
could be defined as those points lying in the convex hull of the 
configuration, for instance. 

The metric methods of constrained MDS of Bloxom (1978), Ben- 
tler and Weeks (1978), Lee and Bentler (1980) and Lee (1984) can 
produce configurations of points lying on the surface of a sphere 
as particular cases. The nonmetric method of Borg and Lingoes 
(1980) can also produce points on a sphere, but is much more 
awkward than starting with the sphere’s surface as space within 
which to  work, as with Cox and Cox. 

Let the coordinates of the points in the spherical configuration 
be given by 

(l, 01~7 02,) ( r  = * * * , n)*  

Transforming to  Cartesian coordinates, these are 

(cos 81, sin O a r ,  sin 01, sin 82,, cos 01,). 

The distance between points r and s, d,,, is defined as the short- 
est arc length along the great circle which passes through the two 
points. This arc length is monotonically related to  the Euclidean 
distance between the two points (i.e. passing through the interior 
of the sphere). Since only the rank order of the dissimilarities is im- 
portant, and hence the rank order of the distances, using the more 
convenient Euclidean distance rather than the arc length makes 
very little difference to the resulting configuration. The Euclidean 
distance is 

d,, = (2 - 2 sin 02, sin 02, cos(01, - 01,) - 2 cos 02, cos 02,} i .  
Kruskal’s stress is defined in the usual manner and then minimised 
with respect to  {&,} and { O , , } .  The gradient term can be found 
in Cox and Cox (1991). 
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240 

Figure 4.3 Spherical MDS of the nations’ trading data 

The resulting configuration is not unique, since an arbitrary ro- 
tation of the points or negating one of 81 or 8 2  will preserve dis- 
tances on the sphere, and hence give another solution with mini- 
mum stress. In passing, note that d,, is invariant to the addition 
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of an arbitrary angle a to each Olr, but not to the addition of an 

arbitrary angle /? to each 0 zY. To find the mapping for an arbitrary 

rotation, first rotate about the z-axis and then the g-axis. This 
gives 

cos(&~ + Q!) sin 6 2r sin /3 + cos 0~~ COS j5). 

An example 
The trading data described in the previous chapter were subjected 

to spherical MDS. The stress for the configuration was 7%, which 
is 4% less than that for conventional MDS of the data. 

shows the results of subjecting the dissimilarities to spherical 

MDS. Six views of the sphere are given. Various clusters of coun- 

tries can just about be seen, noting, of course, that there have 
been political changes since the data were collected. The clusters 
are {Czechoslovakia, East Germany, Hungary, Poland}, {China, 

Italy}, {Japan, USA, UK}, {Argentina, Australia, Brazil, Canada, 

Egypt, France, India, New Zealand, Sweden}, {West Germany}, 

and {USSR}. 

4.7 Statistical inference for MDS 

Ramsay (1982) read a paper to the Royal Statistical Society en- 
titled “Some Statistical Approaches to Multidimensional Scaling 

Data”. The content of the paper was the culmination of research 
into the modelling of dissimilarities incorporating an error struc- 

ture which leads onto inferential procedures for multidimensional 
scaling; see Ramsay (1977, 1978a, 1978b, 1980, 1982). There fol- 

lowed an interesting discussion with protagonists for and against 
the use of inference in multidimensional scaling. For instance C. 

Chatfield said 

. ..and I suggest that this is one area of Stat3st3cs [MDS] where the 

emphasis should remain with data-analytic, exploratory techniques. 

B.W. Silverman said 

I must say that I am in agreement wit,h Dr. Chatfield in being a lit- 

tle uneasy about the use of mukidimensional scaling as a model-based 

inferential technique, rather than just an exploratory or presentational 
method. 
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On the other hand E.E. Roskam said 

For a long time, there has been a serious need for some error theory, ... 

and D.R. Cox said 

Efforts to discuss some probabilistic aspects of nietliods that are pri- 
marily descriptive are to be welcomed, ... 

Since 1982, some inferential research has been applied to multidi- 
mensional scaling, but to  date, has not made a large impact on 
the subject. A brief description of some of the inferential ideas is 
given. 

Suppose there is an underlying configuration of points in a Euc- 
lidean space that represent objects. As usual, let the Euclidean 
distances between pairs of points be {d,,}. Let the observed dis- 
similarity between objects r and s ,  conditioned on d,,, have prob- 
ability density function p(Srs1d,,). It is assumed that these con- 
ditioned observations are independent and identically distributed, 
and hence the log-likelihood is 

r s  

The distances can be written in terms of the coordinates of the 
points, d:, = (xr - x , ) ~ ( x ,  - x,), and hence the log-likelihood 
can be minimised with respect to  x, and any parameters of the 
probability density function p .  This gives the maximum likelihood 
estimates of the coordinates, x,. 

Two possible distributions for S,,ld,, are the normal and log- 
normal. For the normal distribution 

having constant coefficient of variation. There is a non-zero prob- 
ability of negative S,, with this model. For the log-normal distri- 
bution 

In&,, N N(lnd,,,a2). 

It is possible that a transformation of the dissimilarities is desirable 
before applying the error structure, such as a power law. Ramsay 
(1982) suggests a transformation based on monotone splines. How- 
ever, the overall resulting model is rather complicated, and this was 
one of the main reasons it attracted criticism from the discussants 
of Ramsay’s paper. 
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For further illustration consider the log-normal model for dissim- 
ilarities and Euclidean distance between points in the MDS space. 
The log-likelihood is 

n(n - 1) 
4 

6,s 1n(27ra2), 
1 I = - - Z l n 2  (-) - Z l n d , ,  - 

202 r < s  d r s  r < s  

The parameters to be estimated are { x T i }  and 02. Differentiating 
I with respect to  o2 gives the maximum likelihood estimate of o2 
as 

6 2  = 2 E 1 n 2  (&). 
n(n - 1) 

r<s 

Then substituting G 2  back into the log-likelihood, the log-likelihood 
becomes 

The estimates of {xr i }  have to be found by maximising I numeri- 
cally. A fast efficient algorithm is recommended, since there can be 
many parameters. Also, a good starting configuration is desirable, 
such as the coordinates in the classical scaling MDS configuration. 
It is recommended that this initial configuration is scaled by the 
factor Cyi: X i /  Cf=, X i  (from Section 2.2.4) in order to  account 
for the loss of “size” when using classical scaling. Once the coordi- 
nates {xr i }  have been estimated, these form the maximum likeli- 
hood configuration, and as with many other MDS techniques, this 
configuration can be arbitrarily translated, rotated and reflected 
to give another maximum likelihood solution. Ramsay (1991) has 
written a comprehensive program called MULTISCALE to carry 
out maximum likelihood MDS (MLMDS). The program allows 
choices of a normal or log-normal error structure; scale, power or 
spline transformations of the dissimilarities; linking with auxiliary 
variables; weighting of objects; object-specific variances. 

Examp 1 e 
Several subjects were asked to score, from zero to  twenty, the dis- 
similarities between thirteen crimes. The data for one subject are 

where

© 2001 by Chapman & Hall/CRC



Table 4.1 Dissimilarities for thirteen crimes 

Crime 1 2 3 4 5 6 7 8 9 10 11 12 
2 2  
3 15 13 
4 15 14 6 
5 15 14 3 3 
6 6 4 3 1 0 1 2  
7 4 2 14 14 15 13 
8 15 6 5 11 10 6 10 
9 15 10 1 2  2 2 12 14 7 

10 2 2 15 15 15 14 4 11 15 
11 14 12 2 11 11 6 15 11 1 2  14 
12 14 15 8 4 3 12 14 11 3 15 11 
13 9 13 6 14 9 5 10 11 7 13 7 11 

1 -Murder, 2-Manslaughter, 3-Burglary, 4-Possessing illegal drugs, 5- 
Shoplifting, 6-Drunk Driving, r-Arson, 8- Actual Bodily Harm, 9-Drunk 0 
Disorderly, 10-Rape, 1 1- Car Theft, 12- Trespassing, 13- Tax Evasion 

given in These were analysed using MULTISCALE giv- 
ing rise to the configuration in 

From the maximum likelihood configuration, it can be seen that 
Arson, Rape, Murder and Manslaughter are grouped together and 
most likely thought of as serious crimes. A group of perceived 
less serious crimes Trespass, Drunk and Disorderly, Shoplijling and 
Possession of illegal drugs occurs. Actual Bodily Harm is an iso- 
lated point. Tax Evasion, Drunk Driving, Burglary and Car Theft 
also form a group. There is a perceived East-West axis of “serious- 
ness of the crime”. 

Asymptotic confidence regions 
Since the likelihood has been used to  estimate the coordinates in 
the MDS configuration, it should be possible to  obtain the esti- 
mated asymptotic covariance matrix of the coordinate estimators, 
and hence lead to  asymptotic confidence regions for the points in 
the configuration. However, this is not a straightforward procedure. 

Figure 4.4.
Table 4.1.
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Figure 4.4 The maximum likelihood configuration for the crime data 

Suppose all the coordinate estimators are placed in a vector 
x. The asymptotic distribution of x is multivariate normal. Now 
concentrating on the r th  point, its coordinate estimators xr = 
(&I, . . . , 2,,)T are asymptotically unbiased and have marginally 
an asymptotic multivariate normal distribution. Hopefully, from 
this, an asymptotic confidence region can be formed using 

where x : , ~  is the upper 100a% point of the chi-square distribution 
on p degrees of freedom. 

The problem occurs in that the maximum likelihood configu- 
ration can be arbitrarily translated, rotated and reflected. This 
affects the covariance matrix of the coordinate estimators. For in- 
stance, suppose every maximum likelihood configuration were to  
be translated so that the first point was always placed at  the ori- 
gin, then the variation for that point would always be zero ~ it is 
always at the origin! 

Ramsay (1978a, 1982) considers this problem in detail. The ex- 
pected information matrix, E[&] is singular, and hence cannot 
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be inverted to give the asymptotic covariance matrix for x. Ram- 
say suggest s constraining the maximum likelihood configuration 
so that it is in principal axis orientation, i.e. its centroid is at the 
origin and if X is the matrix of coordinates, then XTX is diago- 
nal. To find this particular maximum likelihood configuration, the 
augmented log-likelihood Z(X) + q ( X )  is maximised where 

At the maximum, both terms in the expression for q ( X )  will have 
the value zero. The first ensures that the centroid is at  the origin 
and the second that XTX is diagonal, and hence principal axis ori- 
entation. The expected information matrix is no longer singular, 
and after negation, can be inverted to  give the asymptotic covari- 
ance matrix. 

Another possibility to  constrain the maximum likelihood config- 
uration is to  simply use the Moore-Penrose generalized inverse of 
the negated expected information matrix. It is unclear as to the ex- 
act nature of the implied constraints using this method. Abe (1998) 
suggests fixing an appropriate number of coordinates in the con- 
figuration, for example, in a two-dimensional space, the first point 
could be placed at  the origin and the second along the positive 
x-axis. This would be enough to tie down the configuration. 

Asymptotic covariance matrices for the points in the maximum 
likelihood configuration for the crime data were found using MUL- 
TISCALE. These were based on the Moore-Penrose generalized 
inverse. Replacing C by the estimated covariance matrices for the 
points gives approximate confidence regions, which will be ellip- 
soidal in shape. shows these approximate confidence 
regions. In general, the method of constraining the maximum like- 
lihood configuration will have a significant effect on the asymptotic 
covariance matrices and any subsequent confidence region calcu- 
lated for points in the configuration. 

Bell and Cox (1998) use a bootstrapping technique and Pro- 
crustes analysis (see Chapter 5) to measure variability in maxi- 
mum likelihood configurations. This is taken further in Bell and 
Cox (2000), bringing the ideas of shape analysis to bear on the 
problem. 

Figure 4.5
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Figure 4.5 Approximate confidence regions for the points in the maximum 
likelihood configuration for the crime data 

In general, once the likelihood has been formulated for multidi- 
mensional scaling, further inferences can ensue, such as the testing 
of hypotheses and the formation of confidence regions. For exam- 
ple, if ZI, is the maximum value of the log-likelihood when a k 
dimensional space is used for the configuration of points, then the 
quantity 

2(Zk - Z k - l ) ,  

has an asymptotic x2 distribution with n - k degrees of freedom, 
where n is the number of points in the configuration. This can be 
used to  assess the required number of dimensions needed. 

Takane (1978a,b) introduces a maximum likelihood method for 
nonmetric scaling. Let there be an underlying configuration of 
points representing the objects with coordinates {x, } and distances 
between points { d r s } .  For an additive error model, let there be a 
latent variable A,, so that 
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Then if &s 2 &I~!, for the observed dissimilarities &.s > &fsf 

where > represents ordering of the dissimilarities, define 

Y -1 rsr’s’ - if &.s > &.js~ 

Then 

and hence the likelihood is given by 

assuming independence of { crs}. 

Writing dTs in terms of the coordinates X~ allows the likelihood 
or log-likelihood to be maximised with respect to these, giving XT 
as the maximum likelihood configuration. 

In a similar manner Takane (1981) gives a maximum likelihood 

approach to multidimensional successive categories scaling. Suc- 

cessive categories scaling is a special case where dissimilarities are 
ordered categorical variables. So for the whisky tasting experiment 

of Chapter I, the possible categories for comparison of two whiskies 
might be: very similar; similar; neutral (neither similar nor dissim- 
ilar); dissimilar; and very dissimilar. The categories could be as- 

signed scores 0, 1, 2, 3, 4, and hence the dissimilarities { Jrs} can 
each take one of only five possible values. The dissimilarities could 
then be subjected to metric or nonmetric MDS in the usual man- 

ner. Takane suggests the following model, assuming a single set of 
dissimilarities. Again, let there be an underlying configuration of 
points representing the objects, with coordinates X~ and distances 

between points dTs, an additive error. Let there be a latent variable 
Ays as above. The successive categories are represented by a set of 
ordered intervals 

-cc = b,, 5 bl 5 . . . <bM=cm, 

where the number of possible categories is M. So the interval 
(bi_1, bi] represents the ith category. If the value of the latent vari- 

able Ars lies in the interval (big1, bi] then drs is observed as being 

in the ith category. 
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Let prsi be the probability that 6,, is observed as being in the 
i th category. Then 

Let the indicator variable Zrsi be defined as 

Zrsi =1 if 6,s falls in the i th category 

0 otherwise 

Assuming independence, the likelihood of { Z r s i }  is then given by 

r s i  

and hence the log-likelihood is 

r s i  

The log-likelihood is then maximised with respect to  the category 
boundaries { h i } ,  the coordinates {x,} and the error variance 02. 

This then gives the maximum likelihood configuration {x,}. The 
procedure can easily be generalized to  the cases of replications and 
several judges. 

Zinnes and MacKay (1983) report on a different approach for 
introducing probabilistic errors, using the Hefner model (Hefner, 
1958). Here, each stimulus (conceptually it is easier to think of 
stimuli rather than objects) is represented by a p dimensional ran- 
dom vector X, = (XT1 , .  . . , X r p ) T .  All components, X,i, of X, are 
assumed independently normally distributed with mean p, and 
variance 0;. These distributions then induce a distribution on the 
Euclidean distance (X, - X,)T(X, - X,),  and it is assumed that 
the observed dissimilarity is this Euclidean distance. Thus 

6,, = {(X, - XJT(X, - X,)}+. 

It is also assumed that the “true” distance between points T and s 
is given by 

2 
drs  = (pr  - psIT(pr - 

T where p = (p,1,. . . , pTP) , ( r  = 1 , .  . . , n) .  
Hefner (1958) has shown that Ss,/(os+o:) has a non-central chi- 

squared distribution, x ‘ ~  ( p ,  d z s / ( o :  + 0;)). From this it is possible 
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to find the distribution of JTS. Zinnes and MacKay give approxima- 
tions to  the probability density functions. For (dTs6,s)/(oz + 03) 4 
2.55 the density function can be approximated by 

where z = 6:,/(o: + a:), X = d?,/(o,2 + a:), h = 1 - $ ( p  + X ) ( p  + 
3X)/(p + 2 X y .  

For ( d , s b s ) / ( o :  + 0:) < 2.55 an approximation based on beta 
functions is used, 

k=O 

with five terms in the summation usually giving sufficient accuracy. 
Zinnes and MacKay maximise the sum of the logarithms of the 

approximating density functions, one for each dissimilarity, with 
respect to {p , }  and {oz}. The values {p,}  give the coordinates of 
the points in the configuration. 

Brady (1985) considered in detail consistency and hypothesis 
testing for nonmetric MDS. Brady’s work is very general and he 
uses his own special notation. Bennett (1987) considers influential 
observations in multidimensional scaling. Cox and Ferry (1993) use 
multidimensional scaling for discriminant analysis. Storms (1995) 
looks at  robustness of maximum likelihood scaling. 

4.8 Asymmetric dissimilarities 

Metric and nonmetric MDS methods so far described have been for 
one-mode, two-way symmetric data, where the symmetry in dis- 
similarities (similarities) S,, = 6,, is reflected in the symmetry in 
distances within the MDS configuration d,, = d,,. Some situations 
give rise to  asymmetric proximities. For example, within a school 
class, each child is asked to  score the friendship he/she feels for 
each of the other members of the class. Results are unlikely to  be 
symmetric. 

In the early days of MDS, Kruskal (1964a) suggested two ap- 
proaches that could be taken with asymmetric dissimilarities. The 
first was to average Sr, and 6,r and proceed as usual. The other 

© 2001 by Chapman & Hall/CRC



was to let the summations in STRESS extend over all r # s rather 
than r < s .  Another possibility is to represent every object twice 
with new dissimilarities Skl+r,nj+s ( i , j  = 0, l), where both T and 
n + r represent the r th  object. Let 

6L,s = S;,T = 6,s 
&+r,n+s - &+s,n+r = 6 s r  

q n + r  = &+T,T = 0 

- 

and treat dissimilarities SL,n+s and Sn+r,s ( r  # s )  as missing. 
The above methods attempt to  overcome the problem of asym- 

metric dissimilarities using techniques designed for symmetric dis- 
similarities. It is more satisfactory to  model the asymmetry. Gower 
(1977) does this in several ways. Let the dissimilarities be placed 
in matrix D .  His first method is to  use the singular value decom- 
position of D, 

D = UAVT,  

whereupon 
VUTD = VAVT 

DVUT = UAUT 

are both symmetric and the orthogonal matrix A = UTV can be 
regarded as a measure of symmetry, since if D is symmetric, A = I. 

His second method is as follows. Define matrix A as [A]Ts = 
- Centre its rows and columns as for classical scaling. Express 
A as 

A = UAU-I,  

where A is the diagonal matrix of eigenvalues of A, some of which 
could be complex. Matrix U consists of the left eigenvectors of A, 
and matrix U-' the right eigenvectors. Use UA;, (U-')TA; to  
plot two configurations of points. If A was symmetric the config- 
urations would coincide. 

The third method works on the rows and columns of D expressed 
in terms of the upper and lower triangular matrices of D, D = 
(L\U).  The rows and columns are permuted so that 

is a maximum. Then make U and L symmetric and subject both 
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to an MDS analysis. The results can be regarded as the worst 
situation for the asymmetry of D. This approach was further in- 
vestigated by Rodgers and Thompson (1992). 

Gower's fourth method is simply to use multidimensional un- 
folding or correspondence analysis on D. See Chapters 8 and 9. 

Gower's fifth method considers the best rank 1 and rank 2 ma- 
trices that,  when added to  D, make it the most symmetric. Ten 
Berge (1997) investigated this idea further and showed that re- 
sults depend upon how departures from symmetry are measured, 
whether by the squared distance between a matrix and its trans- 
pose, IID - DTIIz = C(S,, - 6s,)2, or from the squared distance 
between D and its symmetric part, [ID - (D + DT)/2112. These 
quantities look the same, but differences will occur when a ma- 
trix of low rank, H, is added to  D to bring it closer to  sym- 
metry, i.e. the quantities will be ll(D - H) - (DT - HT)I12 and 
ll(D - H) - (D + DT)/211z respectively. 

The matrix D can be expressed as the sum of asymmetric matrix 
A and a skew-symmetric matrix B, so that D = A+B,  where A = 
+(D + D'), and B = +(D - D'). Gower (1977) and Constantine 
and Gower (1978) suggest analysing A using techniques designed 
for symmetric matrices, e.g. classical scaling, and to  decompose B 
into a sum of rank 2 skew-symmetric matrices 

where {As}  are the ordered eigenvalues of BBT with associated 
eigenvalues {ui, vi}, noting that the eigenvalues occur in pairs and 
ui, vi are two eigenvalues for A:. 

To approximate B use the first eigenvalue only and then 

B = Al(u1vT - vlu?). 

If points representing the objects are plotted at  (u~ , ,Q, ) ,  then 
[B],, is approximately given by twice the area of the triangle 
formed by the origin and the points T and s. 

Weeks and Bentler (1982) suggested that the symmetric and 
skew-symmetric parts of D could be modelled by 

6,s = ad,, + p + c, - c, + C T S ,  

where d,, is Euclidean distance; a,  p are parameters; c,, c, repres- 
ent the skew-symmetric component; and c,, an error component. 
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Constraints are placed to make the model identifiable, and then 
the various parameters, components and coordinates are estimated 
using least squares. 

Zielman and Heiser (1993) develop the slide-vector model for 
asymmetry which was first suggested by Kruskal. The dissimilari- 
ties {&,} are modelled by the quantities 

P 

i= 1 

where X = [x,i] is the usual coordinate matrix of points repre- 
senting the objects, and z = (XI, .  . . z ~ ) ~  is the slide-vector which 
distorts the Euclidean distances between points to  model the asym- 
metry. Clearly d,, # d,, unless Z = 0. Letting ysi = x,i - x,i, 
d,, = {cf=, (x,i - y,i)’}; which links the slide-vector model to  
the unfolding models of Chapter 8. 

Two other MDS models for asymmetric dissimilarities are DEDI- 
COM and GIPSCAL which are described in Chapter 12. Other pa- 
pers on modelling asymmetric dissimilarities are Levin and Brown 
(1979), DeSarbo e t  al. (1987) and Gower and Zielman (1998). 

Example  
Okada and Imaizumi (1997) analyse some occupational mobility 
data using a two-mode7 three-way asymmetric model, described 
in Chapter 12. Data are available for several years, “years” be- 
ing one of the modes. The data concern the occupations of sons 
compared with the occupations of their fathers. Occupations are 
divided into the eight categories: I -  Professional,  2- N o n m a n u a l  
large enterprises,  3- N o n m a n u a l  small  enterprises,  4- N o n m a n u a l  
self-employed, 5- Manua l  large enterprises,  6- Manua l  small  enter-  
prises ,  7- Manua l  self-employed, 8- F a r m  occupations. Here only 
data for the year 1985 are analysed. The data to  be used are in 
the form of a two-way table, X, where the [XI,, is the percentage 
of sons of the fathers in occupation group T who have occupations 
in occupation group s. These data were transformed to matrix D 
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where dr 

D =  

- 
- Ixv - xrs I ,  

0.0 25.3 19.5 40.1 40.5 38.1 43.1 43.8 
10.9 0.0 9.5 21.7 18.1 22.8 26.4 29.0 
26.5 17.4 0.0 28.1 26.3 13.9 30.1 34.6 
19.5 21.9 13.3 0.0 24.3 25.4 26.7 32.1 
13.2 17.6 16.1 29.9 0.0 20.0 26.5 31.9 
20.6 15.4 7.5 24.0 10.9 0.0 19.6 26.1 
25.5 20.1 19.4 23.5 21.3 12.7 0.0 30.3 

1.7 2.3 0.9 3.4 3.9 10.7 2.6 0.0 

The symmetric matrix +(D + DT) can be analysed using one of 
the techniques for symmetric matrices. shows the con- 
figuration obtained by nonmetric scaling. The STRESS value was 
9%. 

i 

6 
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5 

2 

i 
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3 

Figure 4.6 Nonmetr ic  scaling of the symmetr ic  occupational mobility data 

The manual occupations (5, 6, 7) form a group. The professional 
occupations (1) are distanced from the other groups. Self-employed 
(4) also stands out. The nonmanual occupations (2,3)  are together. 
The farm occupations (8) are in the centre. The sons of these fa- 
thers tend to  leave the farming industry for other occupations. 

The skew-symmetric matrix $ (D - DT) can be decomposed into 
four rank two canonical matrices according to equation (4.2). 

shows a plot for the first canonical matrix, i.e. a plot of the 

Figure 4.6

Fig-
ure 4.7
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points (uli,  u2i) together with the origin (+). The area of the trian- 
gle formed by the origin and the r th  and s th  points approximates 
the ( r ,  s) th  entry in the skew-symmetric matrix. The occupations 
that feature highly in the skew-symmetry are the professions (l), 
the nonmanual small enterprises (3), and the farm occupations (8). 

8 

1 

3 

5 4  7 
* 6  

+ 

Figure 4.7 S k e w - s y m m e t r i c  analysis  of the  occupational mobil i ty  data 
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CHAPTER 5 

Procrustes analysis 

5.1 Introduction 

It is often necessary to compare one configuration of points in a 
Euclidean space with another where there is a one-to-one mapping 
from one set of points to the other. For instance, the configuration 
of points obtained from an MDS analysis on a set of objects might 
need to  be compared with a configuration obtained from a differ- 
ent analysis, or perhaps with an underlying configuration, such as 
physical location. 

The technique of matching one configuration to another and 
producing a measure of the match is called Procrustes analysis. 
This particular technique is probably the only statistical method 
to be named after a villain. Any traveller on the road from Eleusis 
to Athens in ancient Greece was in for a surprise if he accepted 
the kind hospitality and a bed for the night from a man named 
Damastes, who lived by the roadside. If his guests did not fit the 
bed, Damastes would either stretch them on a rack to make them 
fit if they were too short, or chop off their extremities if they 
were too long. Damastes earned the nickname Procrustes mean- 
ing “stretcher”. Procrustes eventually experienced the same fate 
as that of his guests at  the hands of Theseus ~ all this, of course, 
according to Greek mythology. 

Procrustes analysis seeks the isotropic dilation and the rigid 
translation, reflection and rotation needed to  best match one con- 
figuration to the other. Solutions to  the problem of finding these 
motions have been given by Green (1952), Schonemann (1966), 
Schonemann and Carroll (1970). Sibson (1978) gives a short re- 
view of Procrustes analysis and sets out the solution. Hurley and 
Cattell (1962) were the first to use the term “Procrustes analysis”. 

Procrustes analysis has been used in many practical situations. 
For example, Richman and Vermette (1993) use it to discriminate 
dominant source regions of fine sulphur in the U.S.A. Pastor et 
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al. (1996) use Procrustes analysis on the sensory profiles of peach 
nectars. Sinesio and Moneta (1996) use it similarly on the sensory 
evaluation of walnut fruit. Gower and Dijksterhuis (1994) and de 
Jong et al. (1998) use Procrustes analysis in the study of coffee. 
Faller et  al. (1998) use it for the classification of corn-soy breakfast 
cereals. An important use of Procrustes analysis is in the statistical 
analysis of shape, where configurations of points formed by “land- 
marks7, placed on objects in order to  define them, are translated 
and rotated to  match each other. The reader is referred to  Dry- 
den and Mardia (1998) for an introduction to  this area. See also 
Kendall (1984), Goodall (1991), Dryden et  al. (1997) and Kendall 
et  al. (1999). 

5.2 Procrustes analysis 

Suppose a configuration of n points in a q dimensional Euclidean 
space, with coordinates given by the n x q matrix X, needs to  
be optimally matched to  another configuration of n points in a 
p ( p  4 q )  dimensional Euclidean space with coordinate matrix 
Y. It is assumed that the r th  point in the first configuration is 
in a one-to-one correspondence with the r th  point in the second 
configuration. The points in the two configurations could be repre- 
senting objects, cities, stimuli, etc. Firstly, p - q columns of zeros 
are placed at  the end of matrix X so that both configurations are 
placed in p dimensional space. The sum of the squared distances 
between the points in the Y space and the corresponding points 
in the X space is given by 

n 

R2 = Z ( Y P  - X,)T(y, - x,) 
r= l  

where X = [ X I , .  . . ,x,,IT, Y = [yl , .  . . ,ynIT, and x, and yr are 
the coordinate vectors of the r th  point in the two spaces. 

Let the points in the X space be dilated, translated, rotated, 
reflected to  new coordinates xk, where 

x’, = pATxr + b. 

The matrix A is orthogonal, giving a rotation and possibly a re- 
flection, vector b is a rigid translation vector and p is the dilation. 
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The motions are sought that  minimize the new sum of squared 
distances between points, 

n 

R2 = x ( Y r  - pATxr - b)T(yr - pATxr - b). (5.1) 
r=l 

O p t  im a1 t rans  1 a t  i o n 
Let xo, y o  be the centroids of the two configurations, 

Measuring x, and yr relative to  these centroids in (5.1) gives 

> T  
R2 = x ( y r  - YO) - pAT(xr - XO) + y o  - pATxo - b 

(Yr - YO) - pAT(x, - xo) + y o  - pATxo - b 

r=l " (  
( 

On expanding 
n /  \ T  

R2 = C ((Y. - YO) - pAT(xr - xo)) 
r = l  

Since the last term in (5.2) is non-negative, and b only occurs in 
this term, in order that R2 be a minimum, 

b = y o  - pATxo. 

Hence 

x', = PAT(Xr - xo) + Yo, 

which implies the centroid in the X' space is coincident with the 
centroid in the Y space. The most convenient way of ensuring this 
is initially to  translate the configurations in the X space and Y 
space so that they both have their centroids at  the origin. 
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O p t  im a1 dilation 
Now assuming xo = yo = 0, then 

n 

r=3 
n n n 

r=l r= l  r=3 

= t r (YYT)  + p2tr(XXT) - 2ptr(XAYT). (5.3) 

Differentiating with respect to  p gives p ,  the value of p giving 
P as a minimum, 

p = t r (XAYT)/ t r (XXT),  

= t r  (AY TX)  / t r  ( XXT) . 

The rotation matrix, A ,  is still unknown and needs to be considered 
next. 

O p t  im a1 rot  a t  a o n 
Ten Berge (1977) derives the optimal rotation matrix with an ele- 
gant proof not, requiring matrix differentiation of R2. The deriva- 
tion is repeated in Sibson (1978).The following is based on their 
work. For the alternative approach, using matrix differentiation, 
see for example ten Berge (1977) and Mardia e t  al. (1979). 

The value of R2 in (5.3) will be a minimum if t r (XAYT) = 
t r (AYTX) is a maximum. Let C = Y T X ,  and let C have the 
singular value decomposition 

C = UAVT: 

where U and V are orthonormal matrices and A is a diagonal 
matrix of singular values. Then 

t r (AC) = tr(AUAV') = t r (VTAUA).  

Now V, A and U are all orthonormal matrices; and hence so is 
VTAU.  Since A is diagonal and an orthogonal matrix cannot have 
any element greater than unity, 

t r (AC) = t r (VTAUA) 5 tr(A).  

Thus R2 is minimised when t r (AC)  = tr(A),  implying 

VTAUA = A. (5.4) 
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Equation (5.4) has solution A = VUT, giving the optimal rotation 
matrix as the product of the orthonormal matrices in the SVD of 
Y'X. 

The solution can be taken further. Pre-multiplying and post- 
multiplying (5.4) by V and VT respectively, 

AUAV' = VAVT.  

Hence 

AC = V A V ~  = ( V A ~ V ~ ) ;  = ( V A U U ~ A V ~ ) ~  

= (C'C)+. 

(C'C)$C-1 = (XTYYTX)+(YTx) - l ,  

Thus the optimal rotation matrix is given by 

if YTX is nonsingular, and by a solution of 

AC = (CTC)a 

otherwise. Note that the solution no longer requires the SVD of 
Y'X, which was only needed in the proof of (5.4). 

Returning to  the optimal dilation, it is now seen that 

p = t r (XTYYTX) + / t r (XTX).  

Assessing the match of the two configurations can be done using 
the minimised value of R" which is 

R2 = t r (YYT) - {tr(XTYYTX)$}'/tr(XTX). 

The value of R2 can now be scaled, for example, by dividing by 
t r (YTY) to  give 

R2 = 1 - {tr(X'YYTX)+}2/{tr(XTX)tr(YTY)}. 

This is known as the Procrustes statistic. 

5.2.1 Procrustes analysis in practice 

Summarizing the steps in a Procrustes analysis where configuration 
Y is to  be matched to  configuration X: 
1. Subtract the mean vectors for the configurations from each 

of the respective points in order to have the centroids at  the 
origin. 
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2. 

3. 

4. 

Find the rotation matrix A = (XTYYTX)h(YTX)-l  and 
rotate the X configuration to  XA.  
Scale the X configuration by multiplying each coordinate by 
p, where p = t r (XTYYTX) +/tr(X'X). 
Calculate the minimised and scaled value of 

R~ = 1 - {tr(XTYYTX) )2/{tr(XTX>tr(YTY>).  

An example 
shows the two dimensional classical scaling configura- 

tion of the breakfast cereal data analysed in Section 3.2.4. Again, 
Euclidean distance has been used to generate the dissimilarities 
after scaling each variable to  have range [0, 11. The first two eigen- 
values of B are 5.487 and 4.205 and give an adequacy measure of 
54% when compared with the sum of all the eigenvalues. 

Smas 

Figure 5.l(i) Classical scaling of the breakfast cereals 

shows the nonmetric MDS configuration, noting 
that this is different to  that of Chapter 3 where a different scal- 
ing of the variables was used. The STRESS this time was 14%. 

shows the nonmetric MDS configuration matched to  
the classical scaling configuration using Procrustes analysis. The 
Procrustes statistic had the value 0.102. 

Figure 5.1(i)

Figure 5.1(ii)

Figure 5.1(iii)
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spec 

Figure 5.l(ii) Nonmetr ic  scaling of the breakfast cereals 

~ i i  F 

Figure 5.l(iii) T h e  nonmetr ic  MDS configuration matched t o  the classical 
scaling configuration using Procrustes analysis 

5.2.2 The projection ease 

Gower (1994) considers the case p > q. The matrix A is required 
so that 

r2  = t r (Y - XA)(Y - XA)T 

is minimised as before, but A is now a p x q projection matrix. 
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Green and Gower (1979) and Gower (1994) propose the following 
algorithm for the solution. See also Gower and Hand (1996). 
1. Add p - q columns of zeros to Y. 
2. Match X to Y in the usual Procrustes manner, giving a p x p 

rotation matrix A*. Rotate X to  XA". 
3. Replace the final p - q columns of Y by the final p - q columns 

of XA*. Calculate the value of R2. 
4. Stop if the value of R2 has reached a minimum. Otherwise, 

return to step 2 using the current Y and X. 
The matrix A is then given by the first q columns of A*. 

5.3 Historic maps 

The construction of maps centuries ago was clearly not an easy 
task, where only crude measuring instruments could be used, in 
contrast to the satellite positioning available today. John Speed's 
County Atlas, the Theatre of the Empire of Great Britain, was first 
engraved and printed in Amsterdam by Jodous Hondius in 1611- 
1612. A copy of his map of Worcestershire appears in Bricker et al. 
(1976). Twenty towns and villages were chosen from the map and 
the coordinates were found for each by measuring from the lower 
left-hand corner of the map. The corresponding places were also 

Eike%g 
Kemp 

&ad 
Edki + 

'Pto Beck 

Tewk 

Figure 5.2(i) Location of villages and towns from Speed's map: Alvechurch, 
Arrow, Astle y ,  Beckford, Bengeworth, Cradle y ,  Droitwich, Eckington, Eve- 
sham, Hallow, Hanbury, Inkberrow, Kempsey, Kidderminster, Martley, 
Studley, Tewkesbury, Upper Snodsbury, Upton, Worcester. 
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ALe 

Hall+ lntkb 
Mart 

Woce U&n 

K e l p  
d a d  

+ &  
U;to Ecki 

Beck 
Tewk 

Figure 5.2(ii) The  locations of the villages and towns f rom Ordnance Sur- 
vey maps 

found on the Landranger Series of Ordnance Survey Maps (num- 
bers 150, 139, 138) and their coordinates noted. Since the area cov- 
ered was relatively small, any projection from the earth’s sphere 
onto a two dimensional plane was ignored. Historic buildings like 
churches were taken as the point locations of the towns and vil- 
lages. A Procrustes analysis for the two configurations of places 
should give some insight into the accuracy of the early map. 

shows the locations of the various villages and towns 
from Speed’s map. shows the same places according 
to Ordnance Survey maps. The configuration of points in Speed’s 
map was subjected to Procrustes analysis, giving rise to  the ro- 
tated, dilated and translated set of points in The 
points did not have to  move very far as indicated by the value of the 
Procrustes statistic, 0.004, indicating that Speed’s map was fairly 
accurate. The root mean squared distance between corresponding 
points was equivalent to  a distance of about 8 miles; a possible 
measure of the accuracy of the early map. 

Figure 5.2 (ii)

Figure 5.2 (iii).

Fig-
ure 5.2 (i)
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Figure 5.2(iii) Speed’s m a p  aj?er Procrustes  analysis  to m a t c h  it to the  
Ordnance Survey  m a p  

5.4 Some generalizations 

Once the configurations of points have been translated to  have cen- 
troids at  the origin, the “Procrustes analysis” or the “Procrustes 
rotation” described in the previous section can be simply described 
as the rotation of a matrix X so that it matches matrix Y as best 
as possible. This was achieved by essentially minimising 

R2 = t r (Y  - XA)T(Y - XA).  

The technique can be described as the unweighted orthogonal Pro- 
crustes rotation. Some generalizations of the method are briefly 
explained. 

5.4.1 Weighted Procrustes rotation 

Suppose the contribution to  R2 by point r is to be weighted by 
an amount wz (T = 1,. . . , n) .  Then the rotation A is sought that 
minimises 

R2 = t r (Y  - X A ) T W i ( Y  - XA) ,  (5.5) 
where W, = diag(w1, . . . , wn). 

Now R2 can be rewritten as 

R2 = t r ( W n Y  - WnXA)T(W,Y - W,XA),  
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and hence the solution for the unweighted case can be used, but 
using W n X  and WnY instead of X and Y .  Lissitz et  al. (1976) is 
an early reference to  the problem. See also Gower (1984). 

If, instead of weighting the points in the configuration, the di- 
mensions are weighted in matrix Y, then the appropriate quantity 
to minimise is now 

R2 = t r (Y - XA)Wg(Y - XA)', 

where W, = diag(w1 , . . . , up). This case is much more difficult to  
solve since X and Y cannot simply be replaced by X W, and Y W, . 
Lissitz et  al. (1976) show that R2 can be minimised if the condition 
AA' = I, is replaced by AW:AT = I, but, as noted by Gower 
(1984) and Koschat and Swayne (1991), this may be convenient 
mathematically, but does not solve the original problem. 

Mooijaart and Commandeur (1990) and Koschat and Swayne 
(1991) give a solution to the problem. Following the latter, suppose 
the column vectors in X are pairwise orthogonal and each of length 
p, so that X'X = PI. Then 

R2 = t r (Y  - XA)W:(Y - XA)' 

= tr(YW:YT) - 2tr(W:YTXA) + p"tr(Wg), 

and hence, minimisation of R2 is equivalent to  the maximisation 

tr(W:YTXA) = tr(XAW;YT) 

and can be achieved in the same manner as the unweighted case 
with Y' replaced by WZY'. This result can now be used for 
general X as follows. 

Enlarge X and Y to (n  + p )  x p matrices 

x*=  [Za] 2 y,*= [T1] 
with X, chosen so that X*TX* = p21 for some p. Thus X, is 
chosen so that 

XzXa = p21 - X'X. 

Koschat and Swayne (1991) suggest using p = 1.1 times the largest 
eigenvalue of XTX,  and chosing Xa as the Cholesky decomposi- 
tion of p21 - XTX. The matrix Y1 is arbitrary, and is used as a 
starting point, although careful choice might be desirable. Koschat 
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and Swayne's algorithm for finding an A which minimises R2 is as 
follows : 
1. Set the starting matrices X*,Y,". 
2. For i = 1 , 2 , .  . ., find Hi, the orthogonal rotation that min- 

imises 
R2 = tr(Y$ - X*Hi)W;(Y: - X * H I ) ~ ,  

using results for the unweighted case, since X*TX* = p21. Stop 
if convergence has been achieved. 
Compute the updated Y* matrix 3. 

4. Go to  step 2. 

Koschat and Swayne show that the values of R2 form a non- 
increasing sequence, and hence, converge, and also that Hi con- 
verges if there are only finitely many extrema or saddle points for 
R" 

Chu and Trendafilov (1998) give an alternative algorithm based 
on a matrix differential equation aproach. They also allow for a 
more general W,. Briefly the algorithm is as follows. 

Let the function F ( Z )  be defined as 

1 
2 

F ( Z )  = -tr(YW, - XZW,)(YW, - XZW,)T. 

The gradient VF(Z) is given by 

VF(Z) = XT(YW, - XZW,)W,T. 

The function F is minimised with respect to Z ,  but with Z con- 
strained to  be orthogonal. Then the required matrix A is the Z 
giving rise to  the minimum. 

Moving along the gradient V F ( Z )  as in gradient descent algo- 
rithms for finding minima, would violate the condition that Z has 
to be orthogonal. To overcome this, VF(Z) is projected onto the 
tangent space of the topology for all p x p orthogonal matrices. 
Let this projection be g(Z) and so the algorithm moves Z along 
this projection towards the solution. Chu and Trendafilov show the 
projection is given by 

1 
2 

g(Z) = -Z(ZTXT(XZ - Y)WZ - WZ(XZ - Y)TXZ) 
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Chu and Trendafilov numerically compare their algorithm with 
that of Koschat and Swayne. They show that the two algorithms 
behave similarly in the proportion of global minima they find, 
as opposed to  local minima, but concede that their algorithm is 
slower. However, they have brought a powerful numerical analysis 
method to  bear in the multivariate data analysis arena, and further 
developments in this area should ensue. 

5.4.2 Generalized Procrustes analpsis 

Instead of two configurations to  be matched, suppose there are m 
configurations that need to be matched simultaneously. Procrustes 
analysis can be modified to allow for this, and is termed generalized 
Procrustes analysis. Let the configurations be given by matrices Xi 
(i = 1 , .  . . , m) (assuming centroids are at  the origin), and let Ai 
be the orthogonal rotation applied to the ith configuration. Then 

R2 = tr(XiAi - XjAj)T(XiAi  - X j A j )  
i < j  

needs to  be minimised. 
Kristof and Wingersky (1971) and Gower (1975) give a method 

for solving this generalized Procrustes problem. Firstly, the config- 
urations Xi are centred at the origin, and scaled uniformly so that 
EL, tr(XiXT) = m. The configurations Xi are rotated in turn 
to Y, the mean matrix, Y = m-' C X i ,  using the usual two con- 
figuration Procrustes rotation. The mean matrix is then updated 
after every rotation. The iterations will converge to  a minimum 
for R2. If scaling of the matrices is required, a further step in the 
algorithm is needed. Ten Berge (1977) considered the algorithm of 
Kristof and Wingersky in detail and suggested a modification to  
Gower's method, arguing that better results are obtained if Xi is 
not rotated to the current mean matrix Y, but to  the mean matrix, 
Y ( i ) ,  of the remaining rn - 1 matrices. He also suggested a differ- 
ent method for updating the scaling factor. Ten Berge and Bekker 
(1993) give more evidence as to  why their scaling procedure should 
be used rather than that of Gower. 

Peay (1988) gives a good summary of the problem and suggests a 
method for rotating configurations which maximises the matching 
among subspaces of the configurations, the essentials of which had 
been given by ten Berge and Knol (1984). 

Ten Berge e t  al. (1993) consider the case of missing data in 

© 2001 by Chapman & Hall/CRC



the matrices Xi. For instance, they argue that it would not be 
uncommon for data to  be missing in “Free Choice Profiling”, where 
Xi a matrix of scores for n objects on p idiosyncratic concepts 
obtained from judge i .  These matrices are to be rotated to maximal 
agreement. It is conceivable that certain columns of data could be 
missing, certain rows could be missing, or single elements could be 
missing. 

Missing columns can be replaced by columns of zeros. For miss- 
ing rows Commandeur (1991) minimises the loss function R2 , given 
by 

m 

R2 = t r (Mi(XiAi - Y)TMi(XiAi - Y))  
i=l 

where Mi is a diagonal n x n matrix with j t h  diagonal element 
equal to  unity if the data in row j is present and zero if it is missing. 
The centroid matrix Y is Y = (xi  Mi)-’ xi MiXiAi. 

Ten Berge et  al. (1993) consider missing data in arbitrary places 
in the matrices. They minimise the usual R2 not only over orthogo- 
nal rotations (and translations, dilations), but also over parameters 
that replace the missing values. This is shown to give the same re- 
sults for the missing rows case of Commandeur. Accordingly, the 
parameter values giving rise to  the minimum R2 are estimates of 
the missing values. The reader is referred to  the papers for further 
details. 

Verboon and Gabriel (1995) consider the case of generalized Pro- 
crustes analysis with weights that  are not fixed, but are estimated. 
The intention is to  have a Procrustes procedure which is resistant 
to outliers. This is an extension to  the case of only two configura- 
tions given earlier by Verboon and Heiser (1992). The loss function 
to be minimised is 

m n ~  

i=’ r=l j=1 

where Wi = [wTj,i] is the weight matrix for the i th configuration 
Xi = [XI, . . . , x , , ] ~ ,  Y = [ g T j ]  is the centroid matrix m-l xi XiAi, 
Ai = [al, . . . , aplT. 

The weights are chosen as some decreasing function of the Eu- 
clidean distances between the points in the configurations, Xi and 
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the corresponding point in the centroid matrix. For the r th  point 
in the i th configuration the distance is 

Then the resistant weight function could be chosen as the Huber 
function 

wrj,i = 1 if dr,i < c 

where c is a tuning constant. Other functions are possible. See 
Verboon and Gabriel for further details. 

5.4.3 The coeficient of congruence 

Tucker (1951) introduced the coefficient of congruence between two 
vectors x and y as 

F(x,  Y) = X T Y / { ( X T X ) ( Y T Y ) P .  

The maximum value of r is unity when x = Xy, X a positive 
constant. Instead of using R2, the sum of the distances between 
corresponding points in the two configurations, Brokken (1983) 
has suggested using the sum of the coefficients of congruence, g, 
between the corresponding points. This can be written as 

g(A) = tr{ [diag(ATXTXA)]-i ATXTY [diag(YTY)]-i}. 

Now g(A) has to  be minimised with respect to A with the con- 
straint AAT - I = 0. Using the matrix @ of Lagrange multipliers, 
consider minimising 

h(A,  0) = g(A) + tr[@(AAT - I)]. 

After some algebra, Brokken shows that 

3h = (0 + O T ) A  + XTY*(diag(ATXTXA))-i  
d A  

- XTX Adiag (AT X T Y  * ) (diag (AT XTX A)  ) - 4 , 
where Y* = Y[diag(YTY)]-i .  
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Using these first partial derivatives, and possibly the more com- 
plicated second partial derivatives, h, and hence g, can be min- 
imised numerically using an appropriate algorithm. 

Kiers and Groenen (1996) offer a majorization algorithm (see 
Chapter 10) to  maximise congruence. Theirs is easier to program 
and is guaranteed to converge from every starting point, unlike 
that of Brokken. 

Using Tucker's coefficients of congruence in the matching of ma- 
trices is useful in factor analysis (see for example Mardia et  ul. 
(1979), Chapter 9), where factor loadings given by matrices X and 
Y are to  be compared. Also useful in factor analysis is the use of 
oblique rotations of factor matrices. This gives rise to the oblique 
Procrustes problem. 

5.4.4 Oblique Procrustes problem 

The oblique Procrustes problem is to  find a non-orthogonal rota- 
tion matrix A such that 

R2 = t r (Y  - XA)T(Y - XA) 

is a minimum and subject only to  diag(A'A) = I. 
Browne (1967) gave a numerical solution using Lagrange mul- 

tipliers. No constraints are imposed between columns of A ,  and 
hence each column can be considered separately. Let y be a col- 
umn of Y .  A vector a has to  be found such that 

(Y - XaIT (Y - x a >  
is a minimum subject to  aTa = 1. 

Let 
g = (y - XalT(y - Xa) - p(a'a - I), 

where p is a Lagrange multiplier. Differentiating with respect to  a 
and setting equal to 0 gives 

XTXa - pa = x T y .  (5.6) 

This equation can be simplified by using the spectral decomposi- 
tion of XTX (= UAUT say). 

Equation (5.6) becomes 

UAUTa - pa = XTy. 
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Pre-multiply by UT7 let UTa = b and UTXTy = w, then 

Ab - pb = W .  (5.7) 

Now aTa = 1, and hence the equation now to be solved can be 
written 

wi bi = p7 

xi - p 

and hence the roots of x(p) = 0 

xb: = 1, 

are required, where 
2 w; 

giving the stationary points of R2. 
Browne goes on to show that the minimum value of R2 corres- 

ponds to  the smallest real root of x(p). He uses the Newton- 
Raphson method to solve for the roots. 

Cramer (1974) pointed out that if XTy is orthogonal to the 
eigenvector corresponding to  the smallest eigenvalue A, then there 
may be a solution to  (5.7) which is not a solution of x(p) = 0. Ten 
Berge and Nevels (1977) give a general solution to the problem 
which covers this case noted by Cramer, and also takes care of the 
case where X is not of full rank. They derived a general algorithm 
for the solution. The reader is referred to  their paper for further 
details. 

Korth and Tucker (1976) consider the maximum congruence ap- 
proach for finding A. The congruence coefficient for column i of X 
and Y is 

where Ai and Yi are the i th columns of A and Y respectively. It 
is easy to  show that gi is maximised when Ai = (XTX)-lYi, and 
hence the regression type solution 

A = (XTX)-'XTY. 

5.4.5 Perturbation analysis 

Sibson (1979) investigated the distribution of R2 when a config- 
uration matrix X is perturbed with random errors added to its 
elements, X + cZ, and then matched back to  the original X. 
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Let X T X  have eigenvalues A1 > . . . > A, > 0 and correspond- 
ing eigenvectors v1, .  . . , vn. Sibson shows that if dilation is not 
included 

n-1 \ 

Thus it can be shown that if the elements of Z are independent 
N(0,l) random variables, then approximately 

If dilation of a configuration is included the term 

(trXTZ)2 
t rXTX 

-2 

has to  be included in (5.8) and approximately 

Langron and Collins (1985) extend the work of Sibson to  the gener- 
alized case of several configuration matrices. They consider the two 
configuration situations with errors in both configuration matrices 
and show 

approximately for the cases of no dilation allowed and dilation al- 
lowed respectively. They generalize this to  the situation of m con- 
figurations. They also show how an ANOVA can be carried out to  
investigate the significance of the different parts of the Procrustes 
analysis, translation, rotation/reflection and dilation. The reader 
is referred to  their paper for further details. 

Soderkvist (1993) considers the perturbation problem of Pro- 
crustes matching (but not allowing reflections) X + A X  to Y + AY 
where AX and AY are perturbation matrices. Let A be the Pro- 
crustes rotation matrix that optimally rotates X to  Y .  Soderkvist 
investigates how the Procrustes rotation matrix A + AA that op- 
timally rotates X + A X  to Y + AY depends on A X  and AY. 
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CHAPTER 6 

Monkeys, whisky and other 
applications 

6.1 Introduction 

Metric and nonmetric multidimensional scaling is currently being 
used for data analysis in a multitude of disciplines. Some rela- 
tively recent examples are: biometries - Lawson and Ogg (1989), 
counselling psychology ~ Fitzgerald and Hubert (1987), ecology ~ 

Tong (1989), ergonomics ~ Coury (1987), forestry ~ Smith and Iles 
(1988), lexicography ~ Tijssen and Van Raan (1989), marketing ~ 

Buyukkurt and Buyukkurt (1990), tourism ~ Fenton and Pearce 
(1988), and brain connectivity - Goodhill et  al. (1995) and Young 
e t  al. (1995). 

In this chapter, five applications of multidimensional scaling are 
reported. The examples come from the areas of animal behaviour, 
defence, food science and biological cybernetics. 

6.2 Monkeys 

Corradino (1990) used MDS to study the proximity structure in a 
colony of Japanese monkeys. Observations were made on a social 
group of 14 Japanese monkeys over a period of a year. The fourteen 
monkeys are named and described in 

Proximity relations every 60 seconds were observed. If two mon- 
keys were within 1.5m of each other, and were tolerating each 
other, then they were said to be “close”. Dissimilarities were cal- 
culated for each pair of monkeys based on the amount of time the 
pair were in proximity to  one another. The dissimilarities were then 
subjected to nonmetric MDS, proximities in the breeding season 
and non-breeding season being treated separately. 

Table 6.1.
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BETI 
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DlVO ORSE 
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ELET 
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O L G A G i ~ ~  
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Figure 6.1 Two dimensional configurations obtained from nonmetric MDS 
of the monkey data: (i) non-breeding season; (ii) breeding season; (iii) 
breeding season mathched to the non-breeding season using Procrustes 
analysis 
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Table 6.1 T h e  colony of Japanese monkeys .  

Monkey age/sex Monkey age/sex 

Alfa (ALFA) Adult male Olga (OLGA) Adult female 
Fraricesca (FRAN) Adult fernale Orsetta (ORSE) Inf/juv female 
Fell0 (FELL) Inf/juv male Rossella (ROSS) Adult female 
Pancia (PANC) Adult female Divo (DIVO) Subadult male 
Isa (ISA) Adult female Cisto (CIST) Subadult male 
Gilda (GILD) Adolescent female Elettra (ELET) Adult female 
Betirio (BETI) Subadult male Eva (EVA) Inf/juv female 

shows the two dimensional configuration for the 
non-breeding season, and for the breeding season. 
The two configurations have been aligned using Procrustes ana- 
lysis in The stress was 25% for the non-breeding 
season and 25% for the breeding season. These values are very 
high, indicating a poor fit. The latter value agrees with that of 
Corradino, but not the first. Although the stress is high, some in- 
terpretation can be placed on the configurations. Firstly, the three 
infant/juveniles (FELL, ORSE, EVA) maintain their relative posi- 
tions in the configurations for the non-breeding and breeding sea- 
sons and are towards the edges of the configurations. The males 
(BETI, DIVO, CIST, ALFA) become closer to  each other in the 
breeding season than in the non-breeding season. Likewise the fe- 
males (GILD, ROSS, OLGA, PANC, ISA, FRAN, ELET) “move 
away” from the males in the breeding season. 

6.3 Whisky 

In the spirit of Lapointe and Legendre (1994) properties of the nose 
and taste of nineteen whiskies were analysed using nonmetric mul- 
tidimensional scaling. The whiskies chosen came from distilleries 
established before 1820. The data were gleaned from the descrip- 
tions given about the whiskies in Milroy (1998). gives 
the presence/absence of eleven nose characteristics, “1” indicating 
presence and blank otherwise. is a similar table for the 
taste char act erist ics. 

The data in the two tables were combined and dissimilarities 
between all pairs of whiskies were found using the Jaccard coeffi- 
cient. These dissimilarities were then subjected to  nonmetric MDS 

Figure 6.1 (ii)

Figure 6.1 (iii).

Figure 6.1 (i)

Table 6.2

Table 6.3
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Table 6.2 Nose characteristics of nineteen whiskies. 

Cliaract eristics 
Whisky 1 2  3 4 5 6 7 8 9 10 11 1 2  

Glenburgie 
Strat liisla 
Balblair 
Clyrielisli 
Royal Brackla 
Teaninich 
Glen Garioch 
Glent urret 
Obari 
Bladnoch 
Littlernill 
Ardbeg 
Bowrnore 
Lagavulin 
Laphroaig 
Highland Park 
Isle of Jura 
Toberriiory 
Bushmills 

1 1  
1 

1 

1 
1 

1 
1 

1 

1 

I 

1 1  
1 

1 1 1  
1 1  
1 1  

1 1 1 
1 1 

1 1 
1 1  

1 1 
1 1  
1 1  1 
1 1  1 

1 1 
1 1 

1 1 
1 1  1 

Key: (1)-fruit, (2)-floral, (3)-light, (4)-delicate, (5)-fragrant, (6)-sweetness, 
(7)-snioke, (8)-peaty, (9)-aromatic, (lO)-Inedicinal, (Il)-sherry, (12)-tart 

with resulting STRESS of 15%. shows the MDS config- 
uration. The whiskies can be grouped into the following regions of 
Scotland and these are reflected in the MDS configuration. 
Speyside: Glenburgie, Strathisla 
Northern Highlands: Balblair, Clynelish, Royal Brackla, Teaninich 
Eastern Highlands: Glen Garioch 
Southern Highlands: Glenturret 
Western Highlands: Oban 
The Lowlands: Bladnoch, Littlemill 
Islay: Ardbeg, Bowmore, Lagavulin, Laphroaig 
The Islands: Highland Park, Isle of Jura, Tobermory 
Northern Ireland Bushmills 

This last whisky is obviously not from Scotland. It is interesting 

Figure 6.2
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Table 6.3 Taste characteristics of nineteen whiskies. 

Characteristics 
Whisky 1 2  3 4 5 6 7 8 9 10 11 12 13 14 

Glenburgie 
Strat liisla 
Balblair 
Clyrielish 
Royal Brackla 
Teaninich 
Glen Garioch 
Glent urret 
Obari 
Bladnoch 
Littlernill 
Ardbeg 
Bowrnore 
Lagavulin 
Laphroaig 
Highland Park 
Isle of Jura 
Toberrriory 
Bushmills 

1 1 
1 

1 

I 

1 
1 

1 
1 

1 
1 

1 

1 1  
1 1  

1 1  1 1  
1 

1 

1 
1 

1 
1 1 

1 
1 

1 1 
1 1  

1 1 
1 

1 1  
1 

Key: (1)-delicate, (2)-fruit, (3)-floral, (4)-light, (5)-medium bodied, (6)- 
full bodied, (7)-dry, (8)-sherry, (9)-smooth, (lO)-peaty, (Il)-snioke, (12)- 
sweetness, (lS)-lingering, (14)-full 

to see that in the MDS configuration, it is in with The Islands 
group of Scotch whisky. 
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Figure 6.2 N o n m e t r i c  MDS of the  whisky data 

6.4 Aeroplanes 

Polzella and Reid (1989) used nonmetric MDS on performance 
data from simulated air combat maneuvering, collected by Kelly 
et  al. (1979). Data were collected for experienced and novice pi- 
lot s. The variables measured included aircraft system variables, 
engagement outcomes and events, air combat performance vari- 
ables, and automatically recorded aircraft variables, e.g. position, 
altitude. Polzella and Reid used the correlation matrix for thirteen 
variables measuring pilot performance as similarities for nonmetric 
scaling, using the SPSS program ALSCAL to perform the analysis. 

shows their two dimensional output for expert pi- 
lots, and for novice pilots. Stress for the two cases 
was 6% and 8% respectively. 

Their conclusions were that the cluster of variables on the left 
of are all energy related, indicating that the expert 
“pilots’ performance” was characterized by frequent throttle ac- 
tivity. The cluster of variables on the right are related to  air com- 
bat maneuverability, indicating that mission success was associated 
primarily with offensive and defensive maneuverability. The con- 
figuration for the novice pilots is markedly different from that for 
the expert pilots. “Gun kill” was isolated from the other variables, 

Figure 6.3 (i)

Figure 6.3 (i)

Figure 6.3 (ii)
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Figure 6.3 MDS configurations for pilots: ( i )  experienced pilots; ( i i)  novice 
pilots; (iii) the configuration for novice pilots aligned with that for the 
expert pilots using Procrustes analysis. 

indicating mission success was not related to  efficient energy man- 
agement or skillful flying. The variable “fuel flow” being close to  
the variables “out of view” and “altitude rate” suggests defensive 
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action for novice pilots requires excessive fuel consumption com- 
pared to  the expert pilots. Also with “offense”, “gun range” and 
“roll rate” within a cluster of energy related variables, novice pilots 
made more use of throttle activity for offensive flying than did the 
expert pilots. 

A Procrustes analysis was not carried out by Polzella and Reid 
in order to  allign the two configurations. When this is done, the 
Procrustes statistic has the value 0.88, indicating a substantial dif- 
ference in the configurations. shows the resulting ro- 
tated, reflected, dilated configuration for the novice pilots matched 
to that of the expert pilots. 

6.5 Yoghurts 

Poste and Patterson (1988) carried out metric and nonmetric MDS 
analyses on yoghurt s. Twelve commercially available yoghurt s (four 
firm, eight Swiss style) were evaluated by ten judges on nine vari- 
ables. Strawberry yoghurts were presented in pairs to  the panelists, 
who were asked to  evaluate how similar the two samples were on a 
15 cm descriptive line scale. Panelists were asked about the follow- 
ing attributes: colour, amount of fruit present, flavour, sweetness, 
acidity, lumpiness, graininess, set viscosity, aftertaste. Numerical 
scores were obtained from the scales, which were then used to com- 
pute a correlation matrix for the nine attributes. Metric and non- 
metric scaling were used. Unfortunately, their results give the stress 
in two dimensions as 31% and in three dimensions as 22%. From 

of Chapter 3 it can be seen that for twelve points the 
mean stress for a random ranking of dissimilarities is about 22% for 
two dimensions and about 12% for three dimensions. A mistake is 
indicated somewhere in their analysis. Also, the configuration they 
obtained has ten points forming a circle with two points enclosed 
within the circle. All the points are straining to be as far away from 
each other as possible, but subject to  the normalizing constraint. 
This could have happened if similarities were accidently used as 
dissimilarities. 

Figure 6.3 (iii)

Figure 3.5
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Figure 6.4 Nonmetric MDS configuration for  yoghurts. Swiss style: A,  B, 
C, E, F, H, I, L . F i r m : D ,  G, J , K .  

Included in the paper are mean scores for the nine variables 
for each of the yoghurts. Measuring dissimilarity by Euclidean 
distance, a configuration of points representing the yoghurts was 
found using nonmetric scaling. The stress was 9% which is rather 
high for only twelve points. The configuration is shown in 

The firm yoghurts, D, G, J, K,  are towards the right of the 
configuration. The Swiss style yoghurts can be “imaginatively” or- 
dered by projecting the points representing them onto a line at 
45” to  the configuration. The order is A,  I, H, B, E, L, F, C. This 
agrees well with the configuration obtained by Poste and Patterson 
when they used metric scaling on the data. 

6.6 Bees 

Bees have been used in many experiments designed to  study their 
colour vision. Bees’ colour perception is investigated by analysing 
frequency data of the choice made between various colours when 
they search for food. For example, a bee can first be trained to  
the colour green by always supplying it with food from a green 
container. Later, the bee has to  seek food having a choice of blue 
and green containers to visit, but where the food is only placed in 
the green container. The bee has to  search for food several times 

Figure
6.4.
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and the frequency with which it visits a green container first is 
recorded. 

Backhaus et al. (1987) report on an experiment where multi- 
dimensional scaling was used on colour similarity data for bees. 
Firstly, each bee was trained to  one of twelve colour stimuli by re- 
warding it with food. Then each bee was tested by giving it a choice 
of colour in its search for food. Some bees were given a choice of 
two colours, others a choice of all twelve colours. Multiple choice 
data were converted to  dual choice data as follows. 

Let i f ,  be the frequency with which bees trained to colour stimu- 
lus t mistakenly choose colour stimulus r .  Then t p r s  = t f , / ( t f ,  + 
t f ,)  is the proportion of times colour stimulus r was judged more 
similar to  the training colour t than colour stimulus s was so 
judged. As dual choice proportions obtained from the multiple 
choice tests were not significantly different from those for dual 
choice tests, the multiple choice data were included in the MDS 
analysis. 

Define tzr ,  by tz,, = @-'(t&,), the inverse of the standard 
normal distribution function, for which the approximation can be 
made 

The dissimilarities between the colours { S,,} are assumed to satisfy 

t z r s  = Jtr - J t s .  

Let ST, = h,, + c, where c is an unknown additive constant. Then 
h,, can be estimated by 

h,s = i(7'h.s + .zr. + sz,. + .z.s). 

Backhaus et al. subjected the derived dissimilarities to  metric and 
nonmetric scaling in a thorough investigation. The Minkowski met- 
ric was used with various values of the exponent A. The city block 
metric (A = 1) and the dominance metric (A + 00) gave the small- 
est stress values. Euclidean distance (A = 2) gave the highest stress 
values. This was true for two, three and four dimensinal solutions. 
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Figure 6.5 Two dimensional MDS configuration for colour stimuli for  bees. 

shows their two dimensional solution using the city 
block metric. The twelve colour stimuli are: 1. aluminium + foil, 
2. grey, 3. BVI, 4. BV2, 5. BV3, 6. BV3 + foil, 7. BV3 + double 
foil, 8. BG18, 9. GR4, 10. GR4 + foil, 11. GR4 + double foil, 12. 
VG6. The stimuli 3 to  12 are varying shades of blue-green with 
or without foils which decreased reflection. In the configuration, 
the aluminium and grey stimuli are well to  the left, the more blue 
than green stimuli are towards the top right, and the more green 
than blue are towards the bottom right. From all their analyses, 
Backhaus et  al. conclude that bees main perceptual parameters 
are hue (blue/green) and saturation (UV/blue-greenness), and that 
brightness is ignored by bees. 

Figure 6.5
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CHAPTER 7 

Biplots 

7.1 Introduction 

Biplots are plots in two or more dimensions which illustrate ob- 
servations (individuals, objects) and variables of a data matrix 
simultaneously. Thus “bi” of biplot refers to the two modes (obser- 
vations, variables) and not to  the dimension of the display space. 
Biplots were introduced by Gabriel (1971) and subsequently de- 
veloped by Gabriel (1981), Bradu and Gabriel (1978), Gabriel and 
Zamir (1979) and more latterly by Gower and Harding (1988), 
Gower (1990, 1992). This chapter follows the authoritative mono- 
graph on biplots by Gower and Hand (1996). 

Biplots can be constructed for a variety of MDS techniques where 
data involves variables and not just dissimilarities. Both continu- 
ous and categorical variables can be included. In each case, the aim 
is to  find a space in which points representing objects are plotted, 
and upon which a “framework” is overlaid representing the vari- 
ables. For continuous variables, the framework is a set of axes, each 
axis representing one of the variables. The axes do not need to be 
linear. A categorical variable can be represented by a simplex of 
points in the space with one point for each category. The original 
and most popular biplots are those based on principal components 
analysis, where objects are represented by points in a sub-space 
of the original space spanned by the variables of the data matrix. 
The original variables are represented by vectors plotted in this 
subspace. From this beginning, the concept of a biplot can be ex- 
tended to a variety of other situations, for example to  nonmetric 
scaling, correspondence analysis, multiple correspondence analysis 
and biadditive models. 

7.2 The classic biplot 

The classic biplot represents the rows and columns of a matrix 
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Table 7.1 Scores by Roger de Piles for Renaissance Painters  

Del Sarto 
Del Piornbo 
Da Udine 
Giulio Romano 
Da Vinci 
Michelangelo 
Fr. Peririi 
Perino del Vaga 
Perugino 
Raphael 

Conipositiori 
1 2  
8 

10 
15 
15 
8 
0 

15 
4 

17 

Drawing 
16 
13 
8 

16 
16 
17 
15 
16 
1 2  
18 

Colour 
9 

16 
16 
4 
4 
4 
8 
7 

10 
12 

Expression 
8 
7 
3 

14 
14 
8 
0 
6 
4 

18 

as vectors in a two dimensional space. Let data be collected for p 
variables on n objects and placed in an n x p  data matrix X. Let the 
SVD of X be given by X = UAVT. Now let X be approximated 
using the first two singular values and corresponding right and left 
singular vect ors, 

where a is a chosen constant with 0 5 a 5 1. Different choices of 
a give rise to different biplots. 

The n x 2 matrix UaAa consists of n row vectors representing 
the rows of the matrix X. The p x 2 matrix (VaA1-a)T consists 
of p column vectors representing the columns of X. A biplot is a 
plot of these two sets of vectors. Biplots are usually plotted in two 
dimensions for ease of display, and hence only the first two singular 
values and their associated vectors are used in the approximation of 
X. However, biplots can be constructed in three or more dimensions 
by using more singular values in the approximation. 

7.2.1 An example 

shows the scores on a scale zero to  twenty for ten Ren- 
aissance painters for composition, drawing, colour and expression. 
These scores are a subset of those made by Roger de Piles in the 
seventeenth century on fifty-six painters and which have been used 
to illustrate statistical analyses by various authors; see, for exam- 
ple, Davenport and Studdert-Kennedy (1972) and Jolliffe (1986). 

Table 7.1
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These scores were mean corrected and placed in matrix X. The 
SVD of X is given by the matrices 

U =  

0.05 -0.01 
-0.19 -0.41 
-0.31 -0.54 

0.36 0.18 
0.36 0.18 
0.01 0.43 

-0.51 0.39 
0.09 0.07 

-0.34 0.06 
0.47 -0.35 

r23.41 0 0 
0 13.94 0 

0 0 0 4.66 

= [ 0.65 -0.37 -0.31 
0.22 0.83 0.29 

I 0 
0 7.34 0 1 

0.64 0.25 -0.25 
-0.33 0.33 -0.87 

0.09 
-0.32 

0.42 
0.09 
0.09 

-0.10 
-0.24 

0.60 
-0.14 
-0.49 

0.33 
0.12 

-0.32 
-0.37 
-0.37 
-0.00 

0.21 
0.53 

-0.36 
0.23 

-0.12 
-0.59 
-0.41 

First a is chosen as unity. Then U2A2 gives the coordinates for the 
painters and VT gives the coordinates for the four descriptions of 
the painters. The biplot for the painters and their descriptions are 
shown in The “primary” axis refers to the first singular 
vectors and the “secondary” axis to the second singular vectors. 
Let the i th row of U2 be uai, the j t h  row of V be v2j and the 
i th diagonal element of A be Xi .  Then xij E (~2iXi>~(v, j ) .  Hence 
xij is given approximately by the inner product of the two vectors 
u2iXi and v2j. This quantity can be gleaned from the biplot as the 
product of the projection of u& onto vaj and the length of v2j. 

Or alternatively, as the product of the projection of v2j onto u2iXi 

and the length of u2jXi. For clarity in the plot, the lengths of the 
vectors (v2j) have been scaled by a factor of 10. 

From the biplot, it can be seen that the vectors representing 
composition and expression are linked, as are those for drawing 
and colour to  some extent. But note that the positive and nega- 
tive directions for drawing and colour are opposite to  each other. 
Also, composition is nearly orthogonal to  drawing, as is expression 

Figure 7.1.
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to colour. Now looking at  the positions of the painters in the bi- 
plot, Fr. Penni can be seen to score very low in expression and 
composition, in contrast to  Raphael at  the other end of the axes. 
Da Udine scores high in colour and low in drawing, in contrast to  
Michelangelo. Da Vinci and Guilio Romano score exactly the same 
on all four variables. 

CqLO- 

-10 1 D&d / 
COLO+ 

I 

-15 -10 -kl d 5 1 0  15 20 
Primary axis 

Fig. 7.1 Biplo t  for Renaissance  pain ters  and  the ir  descript ions (a = 1) 

To assess the 
X, the residual 
residual matrix 

“goodness of fit” of a biplot as a representation of 
at  each point is measured as xij - Xiu2ivaj. The 
R is given by 

R = UAVT - UzAzVT 

Hence the sum of squared residuals is t r (RTR)  = Cy==, A: giving 
a measure of the goodness of fit as 

Of course, if the dimension of the biplot is more than two, then 
this formula is adjusted accordingly. For the biplot of the painters, 
the goodness of fit is 76%. 

shows the biplot for Now CI: is chosen to  be zero. Figure 7.2
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the painters and their descriptions for this case. This choice of a 
places more emphasis on variables than individuals and is some- 
times called a JTK plot. The interpretation is basically the same 
as for the previous case. The lengths of the vectors for the variables 
are approximately equal to  their standard deviations. 

5 -  

4 -  

3 -  

2 -  

1 -  

0 -  
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8 
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E X P V  

- 

- 

- 

- 

- 

l l l l l  
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COLO+ 

l l l l l l l l l l l l l  
- 3 - 2 - 1  0 1 2  3 4 5 6 7 8 9 

Primary axis 

Fig. 7.2 Bip lo t  for Renaissance  pain ters  and  the ir  descript ions (a = 0 )  

7.2.2 Prancapal componen t  baplots 

Let X be mean corrected. The sample covariance matrix S is given 
by (n - 1)s = XTX = VAUTUAVT = VA2VT. This gives the 
spectral decomposition of S with eigenvalues of (n - 1)s being 
the squares of the singular values of X. The eigenvector matrix V 
gives the principal components (PCs) and is identical to  the V in 
the SVD of X. The component scores are given by XV = UA. 
If only the first two PCs are used, or equivalently (n - 1)s is 
approximated by V,A,VT, a PC biplot is constructed by plotting 
the component scores UA and the PC coefficients, V. Thus the 
biplot of the data matrix with a chosen to  be unity, is equivalent 
to the PC biplot. Also, as PCA (principal components analysis) is 
equivalent to PCO (principal coordinates analysis) when Euclidean 
distance is used to  measure dissimilarity, the distances between the 
points representing the observations in the biplot approximate the 
equivalent Euclidean distances between the original observations. 
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For example, the Euclidean distance between Da Vinci and Michel- 
angelo based on the original scores is 9.27 and the corresponding 
distance in the biplot is 9.00. 

cn 
X 
.- 

2 
U 

8 
cn 

Primary axis 

Fig. 7.3 Principal  component  biplot for  Renaissance  pain ters  and  the ir  
descript ions (a = 0 )  

The column vectors of V are the principal component coeffi- 
cients. Matrix V represents the rotation of the original coordinate 
axes (variables) to the principal component axes, i.e. X V  = UA, 
and V T  represents the inverse rotation of the principal component 
axes to  the original axes, i.e. (UA)VT = X. The biplot shows 
this rotation, but projected onto the first two dimensions. If the 
plot could be in the full p dimensions, these axes would appear or- 
thogonal. These vectors (axes) only indicate direction, and not any 
particular length. Gower and Hand (1996) encourage the analyst to  
treat these “variable” vectors as true axes and draw them through 
the entire biplot, together with appropriate scale marks. The axis 
for the i th variable in the original space can be defined by the lo- 
cus of points mapped out by the vector v = (0 , .  . . , 0, ?, 0 . .  . , 0) 
as y varies. The vector has zeros for every element except the ith. 
Let the unit vector in the direction of the i th axis be ei, and so 
v = yei. This axis is projected onto the biplot as yeiV2. Markers 
are placed on the axis at  the points given by y = 0, f l ,  f 2 , .  . ., or 
for some other suitable graduations. 
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shows the principal component biplot for the Ren- 
aissance painters together with the four axes for composition, draw- 
ing, colour and expression and is marked accordingly. These axes 
can be used for interpolation. For example, a painter with scores 
given by (18, 13, 17, 17) and mean corrected to  (7.6, -1.7, 8, 8.8) is 
placed at  the vector sum of the vectors (7.6, 0, 0, 0), (0, -1.7, 0, 0),  
(0, 0, 8, 0) and (0, 0, 0, 8.8) in the biplot. This painter is indicated 
by Tztz and is in fact Titian, who was not a Renaissance painter. 

It is possible to  use these axes, but with different markers for 
prediction, i.e. the prediction of composition, drawing, colour and 
expression for a painter represented by a particular point in the 
biplot. These prediction marks are given by yeiVa/eiVaV:eT. 
See Gower and Hand for further details. 

7.3 Another approach 

The distance between points in the biplots so far considered is 
Euclidean. Gower and Harding (1988) extended the early work 
on biplots by allowing different distance measures between points. 
This gives rise to  non-linear biplots. 

Consider the data matrix X as a set of points in a p dimensional 
space, R,, each variable being represented by a Cartesian axis. A 
two dimensional (or other low number of dimensions) space, S, 
is sought so that points in S represent the original set of points. 
This is essentially the MDS problem and several methods of find- 
ing such a space have already been discussed, for example, least 
squares scaling and nonmetric scaling. Indeed, as another example, 
in the previous section PCA refers X to its principal axes and then 
S is a subspace of R,, which is spanned by the first two principal 
components. A plot of the points in this two dimensional subspace 
is the plot of the component scores for the first two principal com- 
ponents, and this constitutes the points in the PCA biplot. 

The aim now is to define axes within S ,  each one representing one 
of the original variables. Suppose from X dissimilarities {6Ts }  are 
constructed and from these an MDS configuration and biplot are 
sought. Following Gower and Hand (1996) two cases are considered, 
where (i) { J T S }  are embeddable in a Euclidean space and (ii) where 
they are not. 

Figure  7.3
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{ J T S )  ernbeddable 
From X the matrix of dissimilarities, D, is calculated. From the re- 
sults of classical scaling (Chapter a) ,  the Euclidean space in which 
to embed the objects is n - 1 dimensional with the coordinates of 
the points representing the objects given by Y = VA;, where 

1 
2 

A = [--ST,] 

B = HAH 

VAVT = B. 

Now consider the representation of the i th variable in this Eu- 
clidean space. The axis for the i th variable in the original space of 
X is the locus of yei = (0 , .  . . , 0 ,  y, 0 , .  . . , O ) T .  This yei is termed 
a pseudosample for the i th variable. Consider this pseudosample 
as the (n  + 1)th object added to  the n original objects. The point 
yei has coordinates 

1 
n 

y(y) = A-'YT(d,+l - -D1) 

where dn+l = (d;,n+l , . . . , di,n+l)T and d,,,+l is the distance from 
the new point to  the r th  original point (Gower, 1968; Gower and 
Hand, 1996, p252). 

In fact, as there are now n + 1 points to  consider overall, an 
extra dimension is needed to accommodate the extra point in the 
Euclidean space. The original points will have coordinate value 
zero in this extra dimension, while the new point will have value 

Now as y varies, a locus in the Euclidean space will be mapped 
out; label this and as it will usually be non-linear, it is termed 
a trajectory rather than an axis. Markers can be placed on the 
trajectory by marking the points corresponding to  specific values 
of y such as y = 0, fl, f 2 , .  . .. This procedure is carried out for 
each variable. The set of trajectories {t i} forms the framework 
representing the variables. 

So far, the space within which we are working is high dimen- 
sional; n - 1 (or n if the extra dimension is included). The next 
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step is to consider how the trajectories impact on S, the low di- 
mensional MDS space in which the configuration of points repre- 
senting the objects has already been found. The simplest method 
is to embed S in the n dimensional Euclidean space using Pro- 
crustes analysis. This is the projection Procrustes problem where 
llZ - XPII is minimised giving P as an n x 2 projection matrix. 
This projection matrix can then be used to  project { p i }  onto S. 

An example 
For comparison with the case of linear biplot axes, the same Ren- 
aissance painter data are used. The distance between painters is 
measured by 

and the method of MDS is chosen to  be classical scaling. 

I Frpe 

DR-++,,,( E&R 

DZIP COLO 

Fig. 7.4 Non- l inear  biplot of Renaissance  pain ters  

shows the configuration of the painters together with 
the trajectories of the four variables. These trajectories are highly 
non-linear, but their similarity to the linear axes can be seen. They 
tend to follow roughly the directions of the linear axes, although the 
trajectory in the positive direction for drawing bends dramatically 
towards those of expression and composition. The configuration of 
the painters is similar to  that in the linear biplots. 

Figure  7.4
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{Jrs} not ernbeddable 
The n - 1 dimensional Euclidean space in which {Jrs} is embed- 
ded is no longer available. However, the idea of a pseudosample, 
yei can be still be used. The chosen procedure for finding S and 
the configuration of points therein can be extended to include the 
pseudosample. Suppose the coordinates of the point in S that is 
to represent yei is zy. The loss function used in finding S can be 
used for the loss for zy. For example, in nonmetric MDS the loss 
(STRESS) is 

where 
n n 

r=l r=l  

and d,,,+l is the distance from the r th  point in the configuration 
to the new point zy,  and {dT,n+l}  is the monotone least squares 
regression of {dr,n+l}  on {dT,n+l}.  This loss function is then min- 
imised to find the optimal point for defining the trajectory at  this 
particular y. Varying y traces out the trajectory for the i th vari- 
able. This procedure is repeated for all the variables. 

7.4 Categorical variables 

So far, variables have been assumed to be continuous. Gower (1992) 
introduced generalized biplots so that categorical variables could 
be incorporated. This is done by the use of pseudosamples applied 
to each variable in turn. 

Let the observation on the i th variable be replaced by the value y 
for all the n observations. These are considered as n pseudosamples 
for the i th variable, 

xT (7) ( x T 1  7 * * * 7 x T i - l  7 77 x T i + l  7 * * * , x T , p )  ( r  = 1 , .  . A). 

For continuous variables, y can take any value in a range of values. 
For categorical variables, y can only take one of the possible cate- 
gory levels. These pseudosamples are superimposed as points onto 
the space containing the configuration representing the original ob- 
servations (objects). The centroid of these points, as y varies, leads 
to the “axis” representing the i th variable. 
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To be more explicit, consider the following example. Suppose 
Gower’s general dissimilarity coefficient has been used to mea- 
sure dissimilarity between the observations (objects) (Gower, 1971) 
where the data may consist of a mixture of continuous and categor- 
ical variables. Suppose further, a configuration of points in S which 
represents the original observations has been found by nonmetric 
scaling. Then as in the previous section, dissimilarities between 
each of the original observations and the r th  pseudosample are 
found, again using Gower’s general dissimilarity coefficient and for 
a particular value of y. These are used to  find a point in S rep- 
resenting the r th  pseudosample by minimising s(~,(?)) .  This is 
repeated for all n pseudosamples and then the centroid of these 
n points is found. The process is repeated for various values of y. 
As y varies, a trajectory will emerge in S for a continuous vari- 
able, and give rise to  a set of points for a categorical variable. For 
the latter, these are called category-level-points. The procedure is 
carried out in turn for all the variables, leading to  a framework 
representing the variables. 

If the dissimilarity measure used was embeddable in Euclidean 
space, then the same procedure is essentially carried out, but is eas- 
ier to  implement because of available algebraic results. The reader 
is referred to Gower (1992) or Gower and Hand (1996, Chapter 7) 
for further details. 
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CHAPTER 8 

Unfolding 

8.1 Introduction 

Models for “unfolding” can be categorized into unidimensional or 
multidimensional models, and also metric or nonmetric models. 
Coombs (1950) first introduced unfolding as the following unidi- 
mensional nonmetric model. Suppose n judges consider a set of m 
objects (stimuli) and individually rank them. Coombs suggested 
that the judges and objects could be represented by points on a 
straight line (scale), where for each judge, the rank order of the 
distances from his point to  the points representing the m objects 
is the same as his original rank ordering of the objects. For exam- 
ple, suppose there are two judges (1, 2) and five essays (A, B, C, 
D, E) to  be judged and ranked in order to  allocate prizes. Suppose 
the judges rank the essays as follows 

1st 2nd 3rd 4th 5th 
Judge 1 B C A E D 
Judge 2 A B C E D 

Then the seven points in (top line) represent the judges 
and the five essays. It can be seen that the distances from judge 1 
to the five essays have the same ranking as his original ranking of 
the essays. Similarly for judge 2. The term “unfolding” was coined 
since, for each judge, the line can be folded together at the judge’s 
point and his original rankings are observed. These unfoldings can 
be seen in for the two judges. Alternatively, looking at 
the situation in reverse, the judges’ rankings when placed on a line 
can be “unfolded” to  obtain the “common” ordering of the objects. 

Figure  8.1

Figure  8.1
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D E  C 1 B  2 A  

I I 

I I 
B A 

I 
A 

( I  

I B  C E D  

Figure 8.1 Five  essays (A, B, C, D, E)  ranked by two judges  ( I ,  2), to- 
gether with their unfoldings. 

This unidimensional model can be extended to  p dimensions sim- 
ply by placing the rn + n points for judges and objects in a p di- 
mensional space and then using distances, Euclidean or otherwise, 
in this p dimensional space to  determine the rankings for the in- 
dividual judges. For the “folding” of the space, Coombs used the 
simile of picking up a handkerchief ( p  dimensional) at a judge’s 
point, and letting the ends fall together to  determine the rankings 
for that judge. The metric unfolding model is very similar to the 
nonmetric model, but dissimilarities replace the rankings by the 
judges, and distances from a judge’s point in the folding space to  
the objects are to  match the original dissimilarities. Of course, the 
matching of distances to  dissimilarities or ranks to  ranks can never 
be guaranteed, and so compromises have to be made. 

8.2 Nonmet ric unidimensional unfolding 

Coombs (1950, 1964) introduced the J scale and I scale. The line 
upon which points are placed for the n judges or individuals to- 
gether with the m stimuli is called the J scale. Each individual’s 
preference ordering is called an I scale. Consider just four stimuli 
A, B, C and D. shows these on a J scale. Figure  8.2
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Table 8.1 Preference orderings for the J scale. 

I I1 
A 

Interval : I1 I2 I3 I 4  I5 I6 I7 
Ordering: ABCD BACD BCAD CBAD CBDA CDBA DCBA 

I2 I I 3  I4 I I5 I6 I7 I 

B C D 

Figure 8.2 Four stimuli (A, B, C, D )  placed o n  a J scale together with 
intervals f o r  I scales. 

Also shown are all the midpoints between pairs of stimuli where, 
for instance, AB denotes the midpoint between A and B. The 
J scale can be seen to  be split into seven intervals. Any judge 
represented by a point in a particular interval will have the same 
I scale as any other judge in that interval. For example, a point in 
interval 1 5  has the preference ordering CBDA. gives the 
preference ordering for the seven intervals. 

Of course, not all preference orderings can be accommodated. 
For instance, DABC in this example is impossible to  achieve. For a 
given J scale it is easy to  generate the possible I scales. However, 
the more challenging task is to  generate the J scale from a set of 
I scales. 

When a J scale is folded to produce an I scale, the I scale must 
end with either of the two end stimuli of the J scale. Hence the end 
stimuli for the J scale will be known by simply looking at  the end 
stimuli for all the I scales. There will be only two I scales starting 
and ending with the two end points of J ,  and these two I scales 
will be mirror images of each other. There will be no other I scales 
which are mirror images of each other. The rank order of the J 
scale can be taken as the rank order of either of the mirror image 
I scales. Next, the order of the midpoints as in needs 
to be determined. This is done by determining the order of the I 
scales. Note that in as the intervals are read from left 
to right, an adjacent pair of stimuli are interchanged at each step. 

Figure  8.2

Table  8.1

Table  8.1,
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For example, the first interval corresponds to  the ordering ABCD, 
whereupon interchanging A and B gives the ordering BACD of the 
second interval. Then interchanging A and C gives the third, etc. 
The interchanging of a pair of stimuli corresponds to the crossing of 
the midpoint of that pair. Hence for given preference orderings, to  
order the midpoints, the I scales are ordered accordingly, starting 
with one of the mirror image I scales and ending with the other. 
In practice, further geometrical considerations have to be taken 
into account. The reader is referred to  Coombs (1964) for further 
details, and also for details of applications of the technique to sets 
of psychological data. 

The main problem with this unfolding technique is that ,  for a 
given set of I scales, it is unlikely that a single J scale can be 
found. Hettmansperger and Thomas (1973) attempt to  overcome 
this problem by using a probability model. For a given number of 
stimuli, the probabilities of the various possible I scales for a given 
J scale are taken to  be constant, i.e. P(I i lJ j )  = c. Then P(I i )  = 
C j  P(I i lJ j )P(J j )  = P ( J j )  is used to  form the likelihood for 
a sample of N I scales. From the likelihood, the various P ( J j )  are 
estimated. 

Zinnes and Griggs (1974) use a probabilistic model for met- 
ric unfolding. Firstly, consider the univariate case. They assume 
that each individual, T ,  is placed independently on a point X, on 
the J scale, where X ,  - N(pr ,o : ) .  The j t h  stimulus is placed 
independently at  the point %, where % - N(&, v;). Then the 
probability that individual T prefers stimulus i to  stimulus j is 
pij  = Pr(lX, - Y,l < IX, - % I ) .  For the case 02 = v: = for all 
i ,  Zinnes and Griggs show that 

where 

with similar results under different assumptions regarding the vari- 
ances. Data collected from individuals are then used to  find max- 
imum likelihood estimates of { p i }  and {p,} in order to draw up 
a J scale. The data for an individual can be in the form of pref- 
erence data for pairs, or can be extracted in this form from the 
individual's preference ranking. 
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8.3 Nonmet ric multidimensional unfolding 

Bennett and Hays (1960) and Hays and Bennett (1961) generalized 
Coombs’ unidimensional unfolding model to  several dimensions. 
Their work is also reported in Coombs (1964). Great detail is not 
gone into here, since the theory is similar to that for the unidimen- 
sional case, except that the geometrical structure is much more 
complicated. Some of their results are summarised below. 

Figure 8.3 Isotonic regions for four stimuli in a two dimensional space 

Consider points representing individuals and stimuli placed in a 
space of p dimensions. The locus of points, equidistant from stimuli 
A and B, is a hyperplane, H(A,  B )  of dimension p - 1. Similarly, 
the locus of points equidistant from m stimuli (assuming none of 
the stimuli are coplanar) is a hyperplane, H ( A ,  B ,  ...) of dimension 
p - m + 1. The hyperplane H ( A ,  B )  splits the space into two half 
spaces, where an individual placed in one half space prefers A to  
B, and if placed in the other, prefers B to A. Bennett and Hays 
call these half spaces or zones, the isotonic regions AB and BA, 
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indicating the preferred orderings. The space can be divided up into 
isotonic regions by the hyperplanes defined by each pair of stimuli. 

shows the case for p = 2 and n = 4. The hyperplanes 
are straight lines. The isotonic regions are labelled according to the 
preferred order for the points in a particular isotonic region. For 
example, all points in the shaded isotonic region have the preferred 
ordering D, C, A, B. 

As in the unidimensional case, certain preferred orderings cannot 
occur. This will happen when there are more than p+2 stimuli in a 
p dimensional space. Again, it is a relatively easy task to divide a p 
dimensional space, with stimuli in fixed positions ( J  scale), into the 
various isotonic regions, although for high dimensional space, the 
lack of a graphical illustration will detract from the interpretation. 
The more difficult task is to  construct a configuration of points in 
p dimensions, representing the stimuli from a set of experimentally 
obtained I scales. 

Bennett and Hays tackle the problem of determining the required 
dimension of the space in three ways. It is, of course, always possi- 
ble to  place the points in a space of n - 1 dimensions to  recover all 
possible rankings of the n stimuli. However, to be useful, a space 
of a much lower dimension is required. Their first method for de- 
termining dimension is based on the bounding of isotonic regions 
and can only be used for p = 1 or 2. Their second method is based 
on the number of isotonic regions that can be generated from m 
stimuli in p dimensions, c ( m , p )  say. They give the recurrence re- 
lat ion 

c(rn ,p)  = c(rn - 1 , p )  + (m - l ) c ( m  - 1 , p  - 1 )  

and a corresponding table of values of c ( rn ,p )  for m = l ( l ) 2 0 ,  
p = 1(1)5 .  It is not surprising that c ( m , p )  is much less than the 
total number of possible rankings, m!, for reasonably large m and 
small dimension p .  For example, for m = 9 ,  p = 3, m! = 362880 
and c ( m , p )  = 5119. From experimental data, the total number of 
rankings of the rn stimuli by the individuals is obtained and then 
dimensionality is assessed by comparing this with values of c (m,  p )  . 

Bennett and Hays’ third method for determining dimension is 
based on the result that  the minimum dimension of the space in 
which a complete solution may be realized must be one less than 
the number of elements in the largest transposition group of stimuli 
present in the experimental data. The reader is referred to the 
papers by Bennett and Hayes for further details. 

Figure  8.3
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McElwain and Keats (1961) considered the case of four stimuli in 
two dimensions in detail. They looked at  the I scales generated by 
all possible geometric configurations of stimuli, and then were able 
to characterize a set of I scales to  determine the type of geometrical 
configuration required. For more than four stimuli or more than 
two dimensions, this would appear to  be an impossible task. 

Davidson (1972, 1973) gives further geometric results for non- 
metric multidimensional unfolding. He derives necessary and suf- 
ficient conditions for a configuration of points representing stimuli 
to give rise to a particular set of I scales. Also he gives the neces- 
sary and sufficient geometric constraints that  determine the subset 
of pairs of orders and opposites of the stimuli, contained in the 
particular set of I scales. 

Zinnes and Griggs (1974) and MacKay and Zinnes (1995) extend 
the unidimensional probabilistic model of Zinnes and Griggs pre- 
viously discussed, to the multidimensional case, so that now X, = 
( X r l , .  . . , X T P )  and Yi = (XI,.. . , X P )  have multivariate normal 
distributions, X, N N P ( p , , C , ) ,  Yi N NP(ti,Vi), with p, = 

V i k l .  

be the Euclidean distance in the 
p dimensional space containing the points, from individual r to  
stimulus i and let d,ik = (X,k - Y , k ) .  Define D,i = (d,i l ,  . . . , 
which has a multivariate normal distribution, NP(pr  - t i ,  C, +Vi). 
Then the squared distance dpi can be expressed as the quadratic 
form, d:i = DzD,i = &(D,i) say. 

Now let C,i = C, + Vi and express C,i in terms of its spec- 
tral decomposition, but dropping some of the subscripts for con- 
venience, and so C,i = UAUT where A is the diagonal matrix of 
eigenvalues of C,i and U is the matrix of eigenvectors. Also ex- 
press C,i in terms of the lower triangular matrix L, C,i = LLT. 
Define E,i = UTL-'D,i and then the canonical form for &(DTi) 
is 

T ( P ~ I ,  * * , ~ , p )  , t i  = ( t i1  , * * , t i p ) T ,  [C,]~Z = O r k l  and [v i ]~  = 

Let dpi = C I = I ( X r k  - 

P 

k = l  

where { E k }  are the elements of E,i. Now { E k }  are independent 
with E(E,i) = VTLP1 (p,  - ( i )  and var(E,i) = I. Thus d:i can be 
expressed as the weighted sum of one degree of freedom noncentral 
chi-square variables. 
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Next is needed 

Pr(d:i < d: j )  = P~(R:,~ < 1) 

where RZij = d?i /d : j .  Combine D,i and D,j into a single vector 
random variable, DT = (DZ, DG.). Define the p x p matrices A 
and B by 

Then 
D ~ A D  R2. .  = ~ 

rzJ  DTBD 
and Pr(Rzij < 1) is determined from the distribution of the ratio 
of these two quadratic forms. 

Independent sampling for individuals implies 

var(D) = 
C r  + V j  O I  ' 

but this has an indeterminancy, namely C, + Vi = (C, + C )  + 
(Vi - C )  where C is arbitrary. 

A dependent sampling model overcomes this indeterminancy 
with 

var(D) = 

The cumulative distribution function of the ratio of the quadratic 
forms is given by 

The quadratic form DT(A - B?)D can be put into canonical form 
and then F(?) can be estimated by one of several methods, e.g. 
inverting the characteristic function. The density function can then 
be obtained by numerically differentiating F(?) , whence the value 
of the log-likelihood can be found. This is then maximised in order 
to find the maximum likelihood estimates of p,, ti, C, and Vi. 
These are then plotted to  give the unfolding. See Zinnes and Griggs 
(1974) and MacKay and Zinnes (1995) for further details. 

For another slant on stochastic unfolding, see DeSarbo et  al. 
(1996) where an unfolding approach is used to  represent phased 
decision outcomes. 
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8.4 Metric multidimensional unfolding 

The case of metric unidimensional unfolding will be subsumed in 
the multidimensional case. Coombs and Kao (1960) and Coombs 
(1964) started to look at  a metric method for unfolding by us- 
ing a principal components analysis on the correlation matrix ob- 
tained from the correlations between pairs of I scales. Ross and 
Cliff (1964) took the method further. Schonemann (1970) found 
an algebraic solution for metric unfolding. 

As before, let there be n individuals or judges, and suppose the 
r th  individual produces dissimilarities { S,i} for m stimuli. Suppose 
m + n points are placed in a p dimensional Euclidean space where 
each individual and each stimulus is represented by one of the 
points. Let the coordinates of the points representing the indi- 
viduals be x, ( r  = 1,. . . , n)  and the coordinates of the points rep- 
resenting the stimuli be yi (i = I , .  . . ’ m). Let the distance between 
the points representing the r th  individual and the i th stimulus be 
d,,. The metric unfolding problem is to  find a configuration such 
that the distances {d,i} best represent the dissimilarities {S,i}. 

Schonemann (1970) gave an algorithm to find {x,}, {yi} from 
the distances {&}. Gold (1973) clarified Schonemann’s work; the 
following is a brief summary. 

Let X = [ X I , .  . . x , , ] ~ ,  Y = [yl, . . . , y J T .  Let the matrix of 
squared distances between the points representing the individuals 
and the points representing the objects be D(X,Y).  Hence 

[D(X,Y)l,i = (xr - Yi)T(X,  - Y i ) .  

Let the matrix of squared dissimilarities be D = [S,”,]. The metric 
unfolding problem is to find (X, Y) such that D(X, Y) = D. 

The matrices D and D(X,Y) are now doubly centred to  give 
C = HDH, and C(X,Y) = HD(X,Y)H, where H is the cent- 
ring matrix. 

Then the unfolding problem can be rewritten as 

C(X,Y) = c (8.1) 

D(X,Y),, = D,. ( T  = 1 , .  . . ,n)  (8.2) 

D(X,Y).i  = D,i (i = 1,. . . ,m) .  (8.3) 
The matrices (X,Y) satisfying these equations are called an un- 
folding. Schonemann’s algorithm requires two steps. Step 1 is to  
find those unfoldings (X,Y) which satisfy (8.1), Step 2 is then to  
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find which unfoldings of Step 1 satisfy (8.2) and (8.3). For further 
details see Schonemann (1970) and Gold (1973). 

A more useful approach is the introduction of a loss function 
as in Greenacre and Browne (1986). They proposed an efficient 
alternating least squares algorithm for metric unfolding. It is the 
one used in this book to analyse example data and the program 
for it is included on the accompanying CD-ROM. A brief descrip- 
tion is given. The algorithm uses squared Euclidean distances {G$} 
to approximate to  the squared dissimilarities {S : j } .  This leads to  
a simplification over the use of non-squared distances and dissimi- 
larities. Using the previous notation, the model which incorporates 
residuals is 

gi = dSi + €T i ,  

or 

S;i = (xr - y y ( X ,  - yi) + %. 

An unfolding (X, Y) is then found that minimises 

r i  

where [RITi = c,i.  

Following Greenacre and Browne, let 
n m  

r=l i=l 

where [D(2)]r i  = c Y ; ~ .  
Then 

and equating to  0 gives 
m m 

i= 1 i= 1 

This can be written as 
m m 

i= 1 i= 1 
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Combining these equations gives 

RY = diag(RJT)X (8.5) 
where J is an n x m matrix of ones, and diag(M) is the diagonal 
matrix formed from the diagonal of a matrix M. Similarly, 

RTX = diag(R'J)Y. (8.6) 
Equations (8.5) and (8.6) need to  be solved numerically to find an 
unfolding (X, Y) giving the minimum sum of squared residuals. 

Greenacre and Browne use an alternating least squares proce- 
dure to minimise (8.4). Their iterative scheme first holds Y fixed 
and minimises (8.4) with respect to  X, and then holds X fixed 
and minimises (8.4) with respect to  Y .  Convergence is guaranteed 
but can be very slow. A brief description of the derivation of the 
algorithm is given. 

Consider Y fixed, and write f ( X ,  Y) as C:=, f,, where 
m 

i= 1 

Minimising f ( X , Y )  with respect to X for fixed Y can be done by 
minimising each f, with respect to x, separately. 

Differentiating f, with respect to  x, and setting equal to  0, gives 
m 

(8.7) T T C(d:i - XTX, - yi yi + 2x, yi>(xr - yi) = 0. 
i=l  

Greenacre and Browne introduce notation similar to  

dp) = [6:, , . . . , 6,",]' 
h = [yT T T  

1 Y1, * * * ,YmYml 

w, = YT[dF) - h] 

c, = lT[d?) - h], 

and then (8.7) can be written as 
(c, - rnxTx, - 21 T Yx,)x, = w, - Y'l(XTX,) + 2YTYx,. 

They argue that,  although Y is fixed, the origin and orientation 
can be chosen. So the choice is made to  place the centroid of Y 
at the origin and to  refer Y to  its principal axes. Thus YT1 = 0 
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and YTY = Dx, where Dx is a diagonal matrix of nonnegative 
numbers, A1 2 A2 2 . . . 2 A,. Obviously if Y is not in principal 
axes form, it can be made so by a principal coordinates analysis 
(PCO) as in Chapter 2. Equation (8.7) becomes 

and hence 
W r  /c 

X r k  = ( k  = 1,. . . , p ) .  
c, - mxTx - 2Ak 

A variable, #r7  is introduced, where 

Hence (8.8) becomes 

(8.10) 

Substituting (8.10) back into (8.9) gives 
W '1 

The function g ( $ r )  can then be used to find the required stationary 
points. If 4: is a stationary point of g($,), then substituting 4: into 
(8.10) gives the stationary point x;";. Greenacre and Browne show 
that the smallest root of g ( $ r )  = 0 is actually the required root 
to give the global minimum of f r .  (In a footnote to  their paper 
they attribute the proof of this result to  Alexander Shapiro.) Thus 
the minimisation problem for this stage has been reduced to  one 
of finding the smallest root of the equation g($T)  = 0. This has to  
be done for each x,. 

The second stage of the procedure is carried out in a similar 
manner to the first stage, except that X is fixed this time. Iterations 
between the two stages are carried out until convergence is reached. 

A starting value for Y needs to  be chosen. Greenacre and Browne 
suggest using the algorithm of Schonemann (1970) for this. The 
matrix -$D(2) formed from dp), is doubly centred to give 

c = - ~ H D ( ~ ) H .  
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The singular value decomposition of C is found, C = UD,V’, 
where D, = diag(a1,. . . , ap) .  The starting value for Y is then 
taken as Yo = [alvl, . . . , apvp]. 

8.4.1 T h e  rating of nations 

Wish e t  al. (1972) report on a study of the ways that people 
perceive nations. Students were asked to judge the similarity be- 
tween pairs of nations. They were each given only a subset of all 
the possible pairs of nations to judge, since there were 21 nations 
and hence 210 possible pairs in total. The nations are given in 

The students were then asked to  score each nation on 18 
variables on a scale 1 to 9. These variables are given in 

Given in the report are the mean scores of the nations for each 
of the variables. Wish e t  al. concentrate on using dissimilarities in 
an individual differences model (INDSCAL) which is described in 
Chapter 9. Here the mean scores for the nations are subjected to  
unfolding analysis in a two dimensional space, the nations being 
treated as “individuals” and the variables as “stimuli”. The mean 
scores were converted to  “distances” using the transformation (9 - 
mean score) +. shows the resulting configuration, which 
shows some interesting features. The nations split into various 
groups {UK, USA, Japan, West Germany}, {Greece, Mexico, Ethi- 
opia, Spain}, {Congo, Brazil, Poland, India, Cuba, Indonesia, Yu- 
goslavia, South Africa}, {France, Israel}, {USSR}, and {China}. 
The 18 variables form a horseshoe. A possible ordering is approx- 
imately the same as their numerical order. Indeed, looking at  the 
list of variables, a scale can be envisaged starting from the second 
variable. The first few variables relate to  individuals, the middle to  
the nation viewed as a population, and the last of the variables to  
the nation seen as a non-human entity. It is interesting to  note the 
positions of the various nations, realizing of course that the world 
has progressed since the data were collected in 1968. 

Figure  8.4

Table  8.3.

Ta-
ble  8.2.
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Table 8.2 The 21 nations. 

Nation 

Brazil 
China 

Cuba 

UK 
Ethiopia 
France 
Greece 
India 
Indonesia 

Congo 

Egypt 

Nation 

Israel ( W  
Japan (JAP) 
Mexico (MEX) 
Poland (POL) 

Spain (SPA) 
USA (USA) 

USSR (USSR) 
South Africa (SA) 

West Germany (WG) 
Yugoslavia (YUG) 

Table 8.3 The variables scored for the na- 
tions. 

Variable 

1 Aligned with USA 
2 Individualistic 
3 Peaceful 
4 Many rights 
5 I like 
6 Good 
7 Similarity to  ideal 
8 Can change status 
9 Stable 

Variable 

10 Population satisfied 
11 Internally united 
1 2  Cultural influence 
13 Educated population 
14 Rich 
15 Industrialized 
16 Powerful 
17 Progressing 
18 Large 
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Figure 8.4(i) Unfolding analysis of the rating of nations, 

magnifies the region occupied by the countries. 

Figure 8.4(ii)
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CHAPTER 9 

Correspondence analysis 

9.1 Introduction 

Correspondence analysis represents the rows and columns of a data 
matrix as points in a space of low dimension, and is particularly 
suited to  two-way contingency tables. The method has been dis- 
covered and rediscovered several times over the last sixty years, 
and has gone under several different names. Now the most widely 
accepted name for this particular technique is correspondence anal- 
ysis, but it is also referred to  as “reciprocal averaging” and “dual 
scaling”. Nishisato (1980) and Greenacre (1984) give brief histor- 
ical accounts of the development. They trace the origins of the 
method back to  Richardson and Kuder (1933), Hirschfeld (1935), 
Horst (1935), Fisher (1940) and Guttman (1941). Gower and Hand 
(1996) give a good summary of correspondence analysis in their 
monograph on biplots. 

Much of correspondence analysis was developed in France in the 
1960s by Benzkcri. Benzbcri originally called the technique “ana- 
lyse factorielle des correspondances” but later shortened this to  
“analyse des correspondances” , and hence the English translation. 
Because correspondence analysis can be related to several other 
statistical procedures, such as canonical correlation analysis, prin- 
cipal components analysis, dual scaling, etc., there are potentially 
hundreds of references to  the subject. Here the method is sim- 
ply viewed as a metric multidimensional scaling method on the 
rows and columns of a contingency table or data matrix with non- 
negative entries. 

9.2 Analysis of two- way contingency tables 

Suppose data have been collected in the form of an T x s contingency 
table. Correspondence analysis finds two vector spaces, one for the 
rows and one for the columns of the contingency table. These vector 
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Table 9.1 Mal ignan t  m e l a n o m a  data 

Site of tuniour 
Head, neck Trunk Extremities 

Histological type (11) (t) (4 
Hutchison’s 

riielariotic freckle (H) 22 2 10 
Superficial 

spreading riielarioriia (S) 16 54 115 
Nodular (N) 19 33 73 

Interminate (I) 11 17 28 

spaces give rise to  a graphical display of the data. The theory 
developed will be illustrated by the following example. 

E x a m p l e  
Roberts e t  al. (1981) carried out a study of malignant melanoma, 
a dangerous type of skin cancer, recording the site of the tumour, 
and also its histological type, for four hundred patients. Results are 
shown in These data could be analysed by various more 
common categorical data methods such as the fitting of log-linear 
models, see for example Dobson (1983). 

These data will be placed in a 4 x 3 matrix X and subjected to  
correspondence analysis. However, first the SVD of X is found for 
comparison with results from correspondence analysis. The matrix 
X can be viewed as a coordinate matrix of four histological types 
(rows) in three dimensional space with each dimension given by a 
tumour site (columns). Alternatively, it can be viewed as a coordi- 
nate matrix for three tumour sites in four dimensional space with 
each dimension given by a histological type. Euclidean distance 
could be used to  measure distance between histological types, with 
for example, the distance between (H) and (S) being 116.9. Simi- 
larly, for distances between tumour sites, with the distance between 
(h) and (t) being 45.6. 

Table 9.1.
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Following Section 1.4.2, the SVD of X is given by 

0 0.087 0.906 0.221 156.369 
0 22.140 1 ] 

0.175 0.418 0.891 

0.818 -0.292 [ 0 0 4.083 
= [ 0.526 0.215 

0.217 0.219 -0.951 

0.982 -0.144 -0.125 , 1 -0.075 -0.897 0.436 

or equivalently by 

0.015 0.036 0.078 
0.143 0.342 0.729 

0.038 0.091 0.194 

+ 22.140 

+ 4.083 

1 
1 

0.889 -0.130 -0.114 
-0.287 0.042 0.037 

0.211 -0.031 -0.027 
0.215 -0.031 -0.027 

-0.014 -0.167 0.081 * 

-0.017 -0.198 0.096 
-0.008 -0.098 0.048 

0.072 0.853 -0.414 

H I N S 

h t e 

Figure 9.1 The SVD of the tumour data approximated in one dimension. 
First space - histological type,  second space - site of tumour. 

Since the first singular value is seven times as large as the sec- 
ond, a one dimensional space could be used to  represent the tumour 
type and also for the site. From the first left singular vector, the 
coordinates in this one dimensional space for histological types (H, 
S, N, I) are given by (13.6, 127.9, 82.3, 33.9)T. Similarly, the co- 
ordinates for tumour sites (h, t ,  e) are obtained from the first right 
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singular vector, as (27.4, 65.4, 139.3)T. shows plots of 
the points. In the first space, the ordering H, I, N, S for the type 
of tumour can be seen, and in the second space, the ordering h, 
t ,  e for the site of the tumour. The distances between histological 
types in this one dimensional space approximate those in the orig- 
inal three dimensional space, and similarly for the one dimensional 
space of tumour sites. For instance, the distance between (H) and 
(S) is now 114.3 and the distance between (h) and (t) is now 38.0. 

9.2.1 Distances between rows (columns) in a contingency table 

The above use of Euclidean distance to  measure distance between 
rows of a contingency table or the distance between columns will 
usually not be appropriate. The distances will be greatly affected 
by marginal totals in the contingency table which, in turn, will 
depend on the sampling methods being used to collect the data. A 
more common distance measure used is the X2-distance. 

Firstly, the matrix X is normalized so that xi x j  xij = 1, i.e. 
each element of X is divided by the total sum of all the elements. 
The i th row profile of matrix X is the i th row of X standardized so 
the row sum is unity. Let ri be the i th row sum of X .  The matrix 
of row profiles is given by D;'X where D, = diag(r1, . . . , rn ) .  

Similarly, the j t h  column profile of X is defined as the stan- 
dardized j t h  column of X. Let the j t h  column sum be cj and 
then the matrix of column profiles is given by D;lX, where D, = 
diag(c1 , . . . , c p ) .  

Distances between rows in X are based on the row profiles, the 
distance between the i th and i'th rows being given by 

This weighted Euclidean distance is called X2-distance. 

as 
The X2-distance between columns j and j '  is similarly defined 

Note that distance is not defined between a row and a column. 

Figure 9.1
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For the cancer data, the matrix of X2-distances between rows is 

0 1.498 1.323 1.223 
1.498 0 0.175 0.313 
1.323 0.175 0 0.173 ' 

1.223 0.313 0.173 0 I 
1 0 1.122 1.047 

1.122 0 0.132 . 
1.047 0.132 0 

[ 
The matrix of X2-distances between columns is 

9.3 The theory of correspondence analysis 

Having introduced the idea of x'-distance between rows and be- 
tween columns of a contingency table X the theory of correspon- 
dence analysis is explored in the style of Greenacre (1984). Two 
vector spaces are found, one representing the rows of matrix X and 
one representing its columns, and in such a way that the rows and 
columns are similarly treated. The row and column profiles are 
represented in vector spaces which are based on the generalized 
SVD of X. 

Let the generalized SVD of X be given by 

x = AD~B', (9.2) 

where 
A ~ D ; ~ A  = B~D;'B = I. (9.3) 

The matrix A is an orthonormal basis for the columns of X, nor- 
malized with respect to  D;', which allows for the differing row 
profile weights { ~ i } .  Similarly B is an orthonormal basis for the 
rows of X, normalized with respect to  D;', allowing for t8he col- 
umn profile weights { c j } .  

Using equation (9.2) the row profiles can then be expressed as 

and equation (9.3) can be written as 

(D;~A)'D,(D;~A) = B ~ D ; ~ B  = I. 

Letting u = DF'A, 

D;~X = U D ~ B ~ ,  WD,U = B'DF'B = I. (9.4) 
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Equation (9.4) shows the rows of X can be represented as points in 
the UDx space, with B the rotation matrix which transforms the 
points in this space to the row profiles. The X'-distances between 
row profiles are equal to  the Euclidean distances between points 
representing the rows in the UDx space. To see this, consider the 
following. 

Let ei be a vector of zeros, except for the i th element which 
has the value unity. Then, in general, if Y is an n x p matrix of 
coordinates, eTY is the row vector of coordinates for the i th point. 
From equation (9.2) the X2-distance between the i th and i'th 
row profiles can be written as 

= ((e: - eT)D,'XD,') ((eT - eT)D,'XD,')T 

= (er - e:)D,'XD;'XTD,'(ei - ei,) 

= (er - e:)(UDx)BTD,lB(UDx)T(ei - ei!) 

= (e: - eT)(UDx)(UDx)'(ei - ei!). 

The last term is the Euclidean distance between the i th and i'th 
points in the UDx space. 

In like manner, the column profiles can be expressed as 

DLIXT = DLIBDxAT, 

with 
A ~ D F ' A  = (D;'B)~D,(D;~B) = I, 

and letting V = D;'B, 

DL1XT = VDxAT, ATDFIA = VTD,V = I. (9.5) 
Equation (9.5) shows the columns can be represented as points 
in the VDx space, with A the necessary rotation matrix to  the 
column profiles. Again, Euclidean distances between points in the 
VDx space are equal to the x'-distances between column profiles. 

For a low dimensional representation of the row and column 
profiles, the generalized SVD allows the first k columns of UDx 
and the first k columns of VDx to be taken as approximating 
spaces. 
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9.3.1 T h e  cancer example 

The normalized data matrix X and the other relevant matrices are: 
0.055 0.005 0.025 
0.040 0.135 0.288 
0.048 0.083 0.183 
0.028 0.043 0.070 

D, = diag[0.085, 0.463, 0.314, 0.1411 
D, = diagJ0.171, 0.266, 0.5661 

r0.647 0.059 0.2941 
0.086 0.292 0.622 
0.152 0.264 0.584 DLIX = 

L0.196 0.304 0.500l 
0.324 0.235 0.279 0.162' 

DLIXT = 0.019 0.509 0.311 0.160 [ 0.044 0.509 0.323 0.124 

The generalized SVD of X is given by 

X =  

-0.085 0.269 -0.050 
0.463 -0.255 -0.166 
0.313 -0.036 -0.131 

-0.140 0.021 0.346 
0.170 0.265 0.565 
0.374 -0.153 -0.222 
0.029 0.414 -0.443 

1 3.167 -0.591 
1 -0.550 -0.358 
1 -0.116 -0.418 u =  [ 
1 0.153 2.474 

1 2.203 0.172 
1 -0.576 1.563 
1 -0.393 -0.785 

1.276 -0.023 
1 -0.222 -0.017 
1 -0.047 -0.020 UDx = 

0.062 0.1161 
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11 0.888 

11 -0.158 -0.0371 
VDx = 1 -0.232 . 

There is always a singular value of unity with associated eigen- 
vector 1. This is easily seen since DFIX1 = 1, DFIXT1 = 1, 
noting the 1 vectors have differing lengths. From Section 1.4.2 the 
singular values in Dx are given by the square roots of the non-zero 
eigenvalues of 

(D; 3 XD; 3) (D; 3 XD; 3 )T  = D; 3 XDL~XTD; 3. (9.6) 
These eigenvalues are the same as those of D;'XD;'XT. So 

DFIXDLIXT1 = DFIX1 = 1. 

Hence unity is an eigenvalue and also a singular value and 1 will 
be the corresponding singular vector of U. A similar argument also 
shows that 1 is the corresponding singular vector for V. 

The singular value of unity and its associated singular vector 
1 give rise to  the so called trivial dimension and can be omitted 
from calculations by removal from row and column profile matri- 
ces. Thus the matrices submitted to  correspondence analysis are 
D;'X - lcT and D;'XT - l rT ,  where r and c are vectors of row 
and column sums. 

uses the singular vec- 
tors of UDx to  plot points representing the histological type of 
tumour, and the singular vectors of VDx for points representing 
the site of the tumours. One dimensional spaces for type of tu- 
mour and site of tumour can easily be gleaned from the figure by 
simply ignoring the second axis. Since the first singular value is 
nearly nine times as large as the second, one dimensional spaces 
adequately represent the types and sites of tumour. 

The figure shows that Hutchinson's melanotic freckle stands well 
away from the other types of tumour, and the head and neck away 
from the other two sites. The row profile matrix confirms that this 
should be so with 65% of Hutchinson's melanotic freckle occurring 
on the head and neck, while the other three tumour types each 
have over 50% of their occurrences at  the extremities. 

Ignoring the trivial dimension, Figure 9.2
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I 

N H 

(ii) 

h 
e 

Figure 9.2 Correspondence analysis  of the  cancer data.  
F i r s t  space, 9.2(i)- histological type,  second space, 9.2(ii)- site of t u m o u r .  

The column profiles show that the head and neck is a common 
site for all four types of tumour, while the trunk and the extremities 
rarely have Hutchinson's melanotic freckle and with 50% of their 
occurrences being superficial spreading melanoma. 

The distances between row points in the UDx space can be found 
and are equal to  the X'-distances already calculated in Section 9.2. 
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If a one dimensional space is used to  represent the row points the 
distances between points in this space are 

0 1.498 1.323 1.214 
1.498 0 0.175 0.284 
1.323 0.175 0 0.109 * 

1.214 0.284 0.109 0 1 
Similarly, the distances between column points in a one dimen- 
sional space are 

0 1.120 1.046 
1.120 0 0.074 . 1 [ 1.046 0.074 0 

The largest discrepancies between these distances and those from 
Section 9.2 are for (S) and (N), for (S) and (I) and for (t) and (e). 

These results from correspondence analysis can be compared 
with those using the SVD of X. For tumour type, the same or- 
dering in one dimension is obtained, although the direction of the 
axis has been reversed non-consequentially. However, the results 
for the site of tumour are very different for those from the SVD 
analysis. 

A single plot  
Since the UDx and the VDx spaces have arisen from the singular 
value decomposition of X and share the same singular values, it 
is possible to plot the points representing the rows and the points 
representing the columns of X together, and to transform from the 
UDx space to  the VDx space and vice versa. Consider (UDx) 
multiplied by BTD;'B (= I). 

(UDx) = (UDx)(BTDF1B) = (UDx)BTV = (D,'X)V 

= (D;~x) (vD~)D;~ .  

and similarly 
(VDx) = (D,'X)(UDx)D;'. 

The relationships between UDx and VDx in these equations are 
known as the transition formulae. 

shows the rows and columns of the cancer matrix 
plotted together. It must be remembered that distances between 
columns and rows are not defined, but from the plot it can be seen 

Figure 9.3

© 2001 by Chapman & Hall/CRC



that row points tend to  be closer to  those column points for 
the row profile values are highest, and vice versa. 

N 

I 

h H 

which 

Figure 9.3 Combined  space for correspondence analysis  of the  cancer data 

9.3.2 Inertia 

A measure of the dispersion of the points representing the rows is 
given by the "total inertia" , a term taken from its physical counter- 
part. The total inertia is the weighted sum of X2-distances of row 
points to  their centroid. Let r = ( T I , .  . . , rn)T be the vector of row 
sums and let c = ( e l , .  . . , c ~ ) ~  be the vector of column sums. The 
row point centroid is given by rTDF1X/rTl. Now rT1 = 1 and 
rTDT = lT and hence the row centroid is given by l T X  = c. Sim- 
ilarly, the column centroid is given by X1 = r. The total inertia, 
I ,  is defined by 

I = C ri(ri - c ) ~ D , '  (ri - c).  

To see the connection of I with the usual X 2  quantity calculated 
for a contingency table under the assumption of independent rows 
and columns, consider 

i 

i j  n 
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where xi+ and x+j are row and column sums using the more tra- 
ditional notation for contingency tables here. 

This can be written 

= Eri(ri - c)'D,'(ri - c) = I ,  
i 

transferring back to  the other notation, and hence the connection. 
Interchanging rows and columns gives the total inertia for the 

column points as 

c c j ( c j  - r)TD;l(cj - r), 
3 

and by symmetry of X2 is equal to  the total inertia for the row 
points. 

Now I can be written as 

I = tr(D,(D,lx - 1cT)DL1(D,'X - l ~ ~ ) ~ ) ,  

where D;lX - l c T  is the matrix of row profiles with the trivial 
dimension removed. Replace D;'X - l c T  by D;'X assuming this 
trivial dimension has been removed, then 

I = tr(D,(D,'X)D,'(D:'X)') 

= t r (  (ADxB')D,' (BDxA')D,') 

= tr(AD?ATDF1) = tr(D?ATD,'A) 

= t r (D?) .  

Hence the total inertia is equal to  the sum of the squared singu- 
lar values. The required dimension of the row and column profile 
spaces can be judged by the contribution to  the total inertia by 
the various dimensions. Thus, if I% dimensional spaces are chosen 
the contribution to  total inertia is 

k n 

1 1 

where n is the total number of non-unit singular values. For the 
cancer example, the total inertia was 0.1645 and the first dimension 
contributed 98.6% of this. 
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9.4 Reciprocal averaging 

Reciprocal averaging, like dual scaling, is essentially the same as 
correspondence analysis, although Greenacre (1984) maintains that 
there are differences, especially in the geometric framework of the 
various models. The term reciprocal averaging was first used by 
Hill (1973, 1974) and has since become very popular with plant 
ecologists. It is within this area that the theory can be well illus- 
t rat ed. 

Suppose n different species of plants are investigated at  p dif- 
ferent sites, and to  fix ideas, suppose the sites are chosen for 
their varying exposure to extreme weather conditions, while the 
species of plant are chosen for their various levels of hardiness. Let 
X = [xi j] ,  where xij is the response of species i at site j. For ex- 
ample the ecologist may simply be interested in presencelabsence 
(xij  = 1/0) of the i th species at the j t h  site. 

Let ui be a hardiness score for the i th species. Let uj be an 
exposure score for the j t h  site. It is assumed that the exposure 
score at the j t h  site is proportional to  the mean hardiness score of 
the species at that site. Thus 

i i 

Correspondingly, it is assumed that the hardiness score of species 
i is proportional to  the mean exposure score of the sites occupied 
by that species. Thus 

j j 

Reciprocal averaging then solves the two equations 

pui = 

puj = 

where r i  = C j  xi j ,  ej 

9.4.1 Algorithm for solution 

A trivial solution is p = 1, ui = 1, ( i  = 1 , .  . . , n ) ,  uj = 1, ( j  = 
1 , .  . . , p )  (cf. the trivial dimension of the theory of correspondence 
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analysis, with singular value unity, and singular vectors 1). This 
trivial solution is removed from the data by transforming to  xij - 

~ i c j / x . ,  , and then solving equations (9.7) and (9.8) iteratively. 
Hill (1973) gives an algorithm for the solution. Choose an initial 

set of exposure scores placed in a vector vo. The scores are scaled 
so that the smallest is zero and the largest unity, say. Let p = 1 
and calculate hardiness scores u1 from (9.7). Use these in (9.8) 
to obtain updated exposure scores v1 which are then scaled again 
to have minimum zero and maximum unity. This process is con- 
tinued until convergence. The value of p is calculated as the factor 
required for the scaling of the final scores. The value of p and 
the two sets of scores give rise to  a first axis. This first axis can 
be “subtracted” from the incidence matrix, and then the whole 
procedure repeated to find a second axis, and so forth. However, 
since reciprocal averaging is related to  correspondence analysis, 
the axes are more easily found as eigenvalues and eigenvectors of 
various matrices, as discussed below. 

9.4.2 An example: t he  M u n s i n g e n  data 
Hodson’s Munsingen data have been a popular candidate for re- 

ciprocal averaging. The contents of various ancient graves at La 
T h e  cemetery at  Miinsingen-Rain in Switzerland were recorded. 
From this, an incidence matrix, X, is formed where each row rep- 
resents a grave and each column an artefact - pottery, jewellery, 
etc. Then [X],j = 1 if the i th grave contains an example of the j t h  
artefact, and zero otherwise. Kendall (1971) gives the data and an 
analysis. 

shows a plot of the grave scores and the artefact 
scores recovered as the first two axes from reciprocal averaging. The 
grave scores form a “horseshoe” , as do the artefacts, a phenomenon 
discussed by Kendall. It is possible that taking the graves and 
artefacts in order around their horseshoes will give an age ordering 
to the graves and artefacts. 

Figure 9.4
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Figure 9.4 Reciprocal averaging of the  Mi ins ingen  data. 
Upper ~ graves, lower ~ artefacts  

9.4.3 The whisky data 

Data on the nose and taste of nineteen whiskies were subjected 
to nonmetric MDS in Chapter 6. Here, the same data are subjected 

figure, 9.4 (i) figure, 9.4 (ii)
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to reciprocal averaging. Let [X], j  = 1 if the i th whisky has the j t h  
nose/t aste property. 

CI n 
Gbur & ra 

lJur 

Figure 9.5 Reciprocal averaging of whisky  data 

shows the whiskies plotted on the first two axes from 
reciprocal averaging. shows similar plots for the nose 
and taste characteristics, noting that these have been plotted sep- 
arately for clarity. Groupings of the whiskies according to region 
(see page 144) can be seen in the first plot. The Speyside pair are 
at  the bottom left of the main cluster of whiskies. The Islay group 
are at the top left of the cluster. There is a tight group of North- 
ern Highland whiskies (Balblair, Royal Brackla, Teaninich together 
with the Oban). The Isle of Jura is a singleton. The Irish Bushmills 
is close to the Islay group. 

The nose characteristics have sherry, smoke and medicinal at  one 
end of the cluster of characteristics and fragrance at  the other end. 
Tart stands well apart from the other characteristics. Similarly, the 
taste characteristics have full bodied, sherry and peaty at one end 
and delicate and light at the other. Floral is the characteristic that 
stands apart. The outlying points of Isle of Jura, tart and floral 
can be explained by the fact that  the Isle of Jura whisky is the 
only one to  have these as characteristics. 

Figure 9.5
Figure 9.6
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Figure 9.6 Reciprocal averaging of whisky data. Upper 
characteristics, lower  ~ taste characteristics 

- nose 

9.4.4 T h e  correspondence analysis connection 

If all the dimensions found by reciprocal averaging are considered 

figure, 9.6 (ii)
figure, 9.6 (i)
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simultaneously, then the method is seen to  be equivalent to  corres- 
pondence analysis. Equations (9.7) and (9.8) can be written as 

pu=DL1 Xv 

pv = DLIXTu, 

where D, = diag(Cj  ~ j ) ,  and D, = diag(C, x i j ) .  Then 
1 1 1 1  

pD7u = (D;"XD;")D:v, (9.9) 

pD,"v = (D;2XD,2)TD%~. (9.10) 
1 1 1 1 

Substituting equation (9.10) into equation (9.9) gives 

P ~ ( D '  U) = (D; + XD; + ) (D; + XD; + )TD? u. 

Hence p2 is an eigenvalue of 

(D;ixD;i)(D;ixD;i)~ = ,;ixD;lX~D;i, 

and has an associated eigenvector ( D ~ u ) .  But these are just the 
square of the singular value and the associated singular vector in 
(9.6). Likewise, substituting equation (9.9) into equation (9.10) 
gives p2 as an eigenvalue of D;'XTD;'XD;', and associated 
eigenvector (D? v).  Thus reciprocal averaging finds, in turn, all 
the singular values and singular vectors associated with correspon- 
dence analysis. 

1 

1 

9.4.5 Two-way weighted dissimilarity coeficients 

Cox and Cox (2000) use reciprocal averaging ideas to  construct 
two sets of weighted dissimilarity coefficients from an n x p data 
matrix, X. One set gives the dissimilarities between objects (rows) 
and one set the dissimilarities between variables (columns). The 
method extends Gower's general dissimilarity coefficient (Gower, 
1971). 

Let the dissimilarities for pairs of objects be {S,,} and the dis- 
similarities for pairs of variables be {~ i j} .  As in Section 1.3.1 let the 
unweighted dissimilarity between the r th  and sth objects, as mea- 
sured by the i variable, be ~ , , i .  Let the unweighted dissimilarity 
between the i th and j t h  variables as measured by the r th  object 
be ,&jr. Let the weight for the dissimilarity measure, S,,, for the 
i th variable be a, and the weight for the dissimilarity measure, c i j  
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for the r th  object be b,. Let the weighted dissimilarities be given 
by 

6,s = x aiarsi  

i 

and 

r 

The weight ai is chosen to be proportional to the sum of those 
dissimilarities which involve the i th variable, raised to  a power yn, 

ai ( 7 ci i )  Y a .  

Similarly, the weight br is chosen to  be proportional to the sum of 
those dissimilarities which involve the r th  object, raised to  a power 
Yb 2 

The choice of Y~ and Yb dictate the intention of the weights. For 
instance, if ya > 0, then if variable i is in general similar to the 
other variables, then the dissimilarities it is involved with will be 
small and ai will be a small weight. On the other hand, if variable 
i is, in general, different from the other variables, the larger dis- 
similarities it generates will give rise to  a larger weight. For yn < 0 
the opposite occurs for size of weights. For ya = 0 all weights are 
equal essentially leading to Gower's original dissimilarities. A sim- 
ilar situation regarding weights applies to  the objects also. Cox 
and Cox discuss various situations where the choice of and Yb 

is pertinent. 
The two proportionalities above lead to  the equations 

S s i  i 

where A,, X b  are constants, ari = cs a,,i and piT = cj pijT. 

The weights { a i }  and {b,} can be arbitrarily scaled with the 
chosen scaling being C a: = C b: = 1. Equations (9.11) and (9.12) 
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are solved iteratively. Equations (9.11) and (9.12) illustrate the 
reciprocal averaging nature of the two sets of dissimilarities. 

Special case, Y~ = Y b  = 1 
For the case 
written as 

= Yb = 1, equations (9.11) and (9.12) can be 

X,a = Bb 
Xbb = Aa 

(9.13) 
(9.14) 

where a = (CAI,. . . , a p ) T ,  b = ( b l , .  . . , l ~ . , ) ~ ,  the n x p matrix A is 
given by [A],i = ~ , i  and the p x n matrix B by [B]i, = pi,. 

Let X = X,Xb and pre-multiplying by A in equation (9.13) and 
post-multiplying by B in equation (9.14) gives 

Xb = ABb, 
Xa = BAa. 

Thus X is an eigenvalue of both AB and BA. The eigenvectors of 
BA and AB are a and b respectively. The matrices BA and AB 
are non-negative matrices, and so by the Peron-Frobenius theorem, 
there is always a positive eigenvalue X with non-negative eigen- 
vectors a and b. The weights a and b are found by solving these 
matrix equations. Cox and Cox (2000) discuss the choice of dissim- 
ilarity measures in various settings and illustrate the use of these 
reciprocal sets of disimilarities on three data sets using nonmetric 
multidimensional scaling. 

9.5 Multiple correspondence analysis 

Correspondence analysis is eminently suited to analysing two-way 
contingency tables - correspondence analysis needs all the elements 
of the data matrix X to  be non-negative. Correspondence analysis 
can also be used on three-way or higher-way contingency tables. 
This is achieved by using indicator variables to  convert the multi- 
way table into a two-way table. Suppose for a k-way table the 
number of categories for the i th way is c i .  An indicator variable is 
assigned to  each category of each way of the table, giving J = C: ci 
indicator variables in total. Each individual count out of the total 
count of n, then forms a row of an n x J table with the J indicator 
variables forming the columns. Each row of the new table will have 
k values of unity and J - k of zero. An indicator variable has value 
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unity if the individual count is in the corresponding category of 
the original table. For example, the cancer data, although already 
a two-way table, can be put in this new form, giving a 400 x 7 
table. Let the indicator variables be assigned: I1 = H ,  I2 = S, 
13 = N ,  I4 = I ,  Is = h, I6 = t ,  and IT = e. The first 22 rows of 
the table would be identical and equal to  (1 ,0 ,0 ,0 ,1 ,0 ,0) .  Then 
follows 2 rows of (1 ,0 ,0 ,0 ,0 ,1 ,0) ,  etc., the table ending with 28 
rows of ( O , O ,  O , l , O ,  0 , l ) .  

e 
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Figure 9.7 Correspondence analysis of the cancer data represented b y  an 
indicator matrix. 

shows the correspondence analysis output for the can- 
cer data using the indicator matrix. It can be seen that the posi- 
tions of the four tumour types and three sites occupy similar po- 
sitions to  those from their previous analysis, noting however that 
this time the two axes have not been scaled by their respective 
singular values. 

The eigenvalues of the two methods, i.e. the first using the usual 
correspondence analysis technique, and the second making use of 
an indicator matrix, are related by 

where p is an eigenvalue based on the original data matrix, and P I  

an eigenvalue based on the indicator matrix. See Greenacre (1984) 
for further details. 

Figure 9.7
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Table 9.2 In fant  losses in relation t o  birth order and 
problem children. P - problem, C - controls. 

Numbers of 
mothers with 

Losses 
None 

Birth order 
2 3-4 5+ 

P C P C P C 

20 10 26 16 27 14 
82 54 41 30 22 23 

For a I%-way contingency table, the indicator matrix can be writ- 
ten Z = [Z, ,  . . . , Z,] where Zi is an n x ci matrix containing the 
ci indicator variables for the i th way of the table. The matrix 
B = Z T Z  is called the Burt matrix and contains the submatrices 
Z’Zj, the two-way contingency tables based on the i th and j t h  
variables. Thus 

: 1  ZTZ, ZTZ, . . .  ZTZ, 
zTz1 zrz., . . .  ZTZk 

B =  I .  . 

l z i z ,  ziz, ..: ZFZ, * I  
The submatrices ZTZi on the diagonal are simply diagonal matri- 
ces of column sums. 

9.5.1 A three-way example 

The three-way data in are taken from Plackett (1981) and 
relate infant losses (eg.  stillbirths) for mothers to  birth order and 
to whether there is a problem child in the family. A Burt matrix 
was found from the data which was then subjected to multiple cor- 
respondence analysis. Results are shown in Plackett ’s 
analysis indicated that only birth order affects the infant losses. 
This is confirmed in since the “problem/control axis” 
is nearly perpendicular to  the “losses/none axis” with no pair of 
points being close. The “birth order axis” 2/3-4/5+ is more aligned 
with the losses/none axis indicating a relationship between these 
two, although this relationship would have appeared stronger if the 
“5+” had been closer to “losses”. 

Figure 9.8

Figure 9.8.

Table 9.2
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Figure 9.8 Correspondence analysis of the three-way infant loss data 

For a comprehensive introduction to  correspondence analysis, 
see Benzkcri (1992). Some more recent articles on the subject are 
Tenenhaus and Young (1985) , Greenacre and Hastie (1987), Choul- 
akian (1988), Greenacre (1988), de Leeuw and van der Heijden 
(1988) , Gower (1990). For correspondence analysis linked to log- 
linear models, see van der Heijden and de Leeuw (1985), van der 
Heijden and Worsley (1988), van der Heijden et al. (1989) and 
van der Heijden and Meijerink (1989). Bknasskni (1993) consid- 
ers some perturbational aspects in correspondence analysis. Gilula 
and Ritov (1990), Pack and Jolliffe (1992) and Krzanowski (1993) 
consider some inferential aspects of correspondence analysis. 
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CHAPTER 10 

Individual differences models 

10.1 Introduction 

Data analysed so far have generally been two-way, one- or two- 
mode data. This chapter investigates models for three-way, two- 
mode data, in particular for dissimilarities Jrs,i where the suffices 
r and s refer to one set of objects and i to  another. For exam- 
ple, N judges might each be asked their opinions on n objects or 
stimuli, from which N separate dissimilarity matrices are derived. 
The ( r ,  s) th  element of the i th dissimilarity matrix would be Srs , i .  
Another example might be the production of a dissimilarity matrix 
each year for schools in a certain region, based on exam results. 
Then r and s refer to the r th  and sth schools, and i is a time 
index. Individual differences modelling attempts to analyse such 
data taking into account the two different modes. For convenience, 
the suffix i will refer to “individuals” rather than any other objects, 
such as points in time. The whisky tasting experiment discussed in 
Chapter 1 is another example with a dissimilarity matrix produced 
for each of the N judges. 

There were two basic approaches in the early work in this area. 
The first was to  average over individuals, the second to  compare 
results individual by individual. For example, metric or nonmetric 
MDS could be used on the dissimilarity matrix obtained by av- 
eraging dissimilarities over i, or alternatively by carrying out an 
analysis for each individual and then attempting a comparison. 

10.2 The Tucker-Messick model 

Tucker and Messick (1963) addressed the problems with the two 
early approaches to  individual differences scaling, namely that av- 
eraging over individuals loses much information regarding the in- 
dividual responses, and that comparing several different scalings 
can be a very difficult task. Tucker and Messick (see also Cliff, 
1968) suggested placing the dissimilarities {S,,,i} into a matrix, 
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X, with rows given by all the in(. - 1) possible stimulus-pairs 
and columns given by the N individuals. Essentially, the singular 
valued decomposition (SVD) of X is then found, 

X = UAVT 

and then the p dimensional least squares approximation to  X, 

X, = U,A,V,T. 

The matrix U, gives the principal coordinates in a space for the 
pairs of stimuli, the matrix A,VT gives the principal coordinates 
in a space for the individuals. 

10.3 INDSCAL 

Carroll and Chang (1970) proposed a metric model comprising 
two spaces: a group stimulus space and a subjects (or individu- 
als) space, both of chosen dimension p .  Points in the group stim- 
ulus space represent the objects or stimuli, and form an “underly- 
ing” configuration. The individuals are represented as points in 
the subjects space. The coordinates of each individual are the 
weights required to give the weighted Euclidean distances between 
the points in the stimulus space, the values that best represent 
the corresponding dissimilarities for that individual. Hence the 
acronym INDSCAL - INdividual Differences SCALing. 

Let the points in the group stimulus space be given by xrt ( r  = 
1,. . . , n; t = 1,. . . , p ) .  Let the points in the individuals space have 
coordinates wit (i = 1,. . . , N ;  t = 1,. . . , p ) .  Then the weighted 
Euclidean distance between stimuli r and s, for the i th individual 
is 

The individual weights {wit}  and stimuli coordinates { x r t }  are 
then sought that best match {dT8 , i }  to { 6 r s , i } .  

10.3.1 The algorithm for solution 

As with metric scaling of Chapter 2, dissimilarities { S r s , i }  are con- 
verted to distance estimates {dT8 , i }  and then {wit}, { x T t }  are found 
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by least squares. The distances associated with each individual are 
doubly centred giving matrices Bi, where 

P 

t=l 
N N  1 1 

n n n 

N N 

= - f ( d:s,i - - x d:s,i - I x d:s,i + x x d:s, i)  
r=l s=l r=l s=l 

= H A i H ,  

and [Ailrs = urs,i = -kdFs,i. Least squares estimates of {wit} and 
{x,t} are then found by minimising 

/ P \ 2  

(10.1) 
t=l / 

Carroll and Chang's algorithm uses a recursive least squares ap- 
proach. Firstly, superscripts L and R (Left and Right) are placed 
on x,t and xst respectively in equation (10.1) to  distinguish two es- 
timates of the coordinates of the points in the group stimulus space, 
which converge to  a common estimate. Thus equation (10.1) is 

/ P \ 2  

t=l / 

The quantity S is firstly minimised with respect to  {wit} for fixed 
{xFt}, { x z } .  This is easily achieved if {xFtxz}  forms an n2 x p 
matrix G, where [G],t = xFtxz ,  with a = n ( r  - 1) + s ,  and {bTs , i }  
forms the N x n 2  matrix F where [F]i, = brs,i. Let the N x p  matrix 
W be given by [W]it = wit. Then the least squares estimate of W 
is given by 

w = F G ( G ~ G ) - ~  

Next, a least squares estimate of { x f t }  is found for fixed {wit}, 
{xz}. Let G now be the N n  x p  matrix [G],t = wi tx z ,  where now 
a = n(i - 1) + s. Let F be the n x N n  matrix [Flap = b,,,i where 
a = r ,  p = n(i - 1) + s .  Let X L  be the n x p matrix [X"],., = x f t .  
Then the least squares estimate of X L  for fixed {wit},  {xz} is 

x L  = F G ( G ~ G ) - ~  

This last step is now repeated interchanging { x f t }  and { x z }  to  
find the least squares estimate X R  of {xz} for fixed {wit}, {xFt}. 
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The process is repeated until convergence of X L  and X R .  Carroll 
and Chang point out that X L ,  XR converge only up to a diagonal 
transformation, 

xL = XRC 

where C is a p x p diagonal matrix of non-zero entries. This is 
because zH1 witx,tx,t can be replaced by z:==, ( w ~ ~ / ~ ~ ) x ~ ~ ( x , ~ c ~ )  
in equation ( l O . l ) ,  and hence the minimum sum of squares is not 
affected by {c t } .  To overcome this, the final step in the procedure 
is to  set X L  equal to X R  and compute W for a last time. 

Notice one property of the INDSCAL model, that the dimensions 
of the resulting spaces are unique. Configurations cannot be trans- 
lated or rotated. This implies that  the dimensions may possibly be 
interpreted. 

Normalization 
Carroll and Chang address two normalization questions. The first 
is the weighting of the contributions to the analysis by the different 
individuals. Unless there are specific reasons to  do so, they suggest 
that individuals are weighted equally, which is achieved by normal- 
izing each individual’s sum of squared scalar products, C,,, b?s,i. 
Secondly, the final solution for the stimulus space needs to  be nor- 
malized since S in equation (10.1) is invariant to dilation of the 
configuration of points in the stimulus space with a corresponding 
shrinking in the subject space. Normalization can be carried out 
by setting the variance of the projections of the points on each axis 
equal to unity. 

10.3.2 Identifying groundwater populations 

One of the data sets (number 17) in Andrews and Herzberg (1985), 
concerns the estimation of the uranium reserves in the United 
States of America. These data will be subjected to analysis by IND- 
SCAL. The data consist of twelve measurements made on ground- 
water samples taken at  various sites. The variables are: 

uranium (U); arsenic (AS); boron (B); barium (BA); molybdenum 
(MO); selenium (SE); vanadium (V); sulphate (S04);  total alkalin- 
ity (T-AK); bircarbonate (BC); conductivity (CT) and pH (PH). 
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Each groundwater sample was initially classified as coming from 
one of five rock formations: 

Orgallala Formation (TPO); Quartermaster Group (POQ); White- 
horse and Cloud Chief Group (PGWC); El Reno Group and 
Formation (PGEB); and Dockum Formation (TRD). 

MO 

PH 
T-AK 
BC 

BA 

(ii) 

TRD 

TPO 

PoQPGWC 

PGEB 

Blaire 

Figure 10.1 INDSCAL analysis  of groundwater  samples ,  ( i)  group s t i m u -  
lus space, (ii) subject space 
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For each of the five classes, the sample correlation matrix was 
used to  give dissimilarities between the variables, using the trans- 
formation &, = (1 - p,,) +. One variable (SE) was left out of the 
analysis since, for most samples, it was barely measurable. The 
five sets of dissimilarities {hyS,i} were then subjected to  analysis 
by INDSCAL using a two dimensional group stimulus space and 
subject space. 

shows the group stimulus space for the eleven 
remaining variables. Interesting groupings are { sulphate (SO4) and 
conductivity (CT)}, {total alkalinity (T-AK), bicarbonate (BC), 
and barium (BA) }, and {arsenic (AS), vanadium (V), uranium 
(U), boron (B), molybdenum (MO), and pH (PH)}. 

shows the subject space, where two groups can 
be clearly seen, {Ogallala Formation (TPO) and Dockum Forma- 
tion (TRD)} and {Quartermaster Group (POQ), Whitehorse and 
Cloud Chief Group (PGWC) and El Reno Group and Blaire For- 
mation (PGEB)}. The first group tends to  shrink the group stimu- 
lus space along the first dimension and stretch it along the second. 
The second group does the opposite. 

10.3.3 Extended INDSCAL models  

MacCallum (1976a) carried out a Monte Carlo investigation of 
INDSCAL, where, for the i th individual, the angle between the 
axes in the group stimulus space was changed from 90” to B i ,  rep- 
resenting an error term. See also, MacCallum (1977a,b, 1979). He 
concluded that INDSCAL was susceptible to the assumption that 
individuals perceive the dimensions of the group stimulus space 
to be orthogonal. IDIOSCAL, a generalization of INDSCAL, can 
overcome this problem. 

Winsberg and Carroll (1989a,b) extend the INDSCAL model to  

)” 
P 

drs,i = x W i t ( x r t  - xst)’ + u i ( s ,  + s s )  , { t=l 

where sy is the “specificity” of the r th  stimulus and ui is the 
propensity of the i th individual towards specificities. The speci- 
ficity for a stimulus can be thought of as a dimension solely for 
that stimulus. They use a maximum likelihood approach to  fit the 
model. 

Winsberg and De Soete (1993) adapt INDSCAL and assume 

Figure 10.1(i)

Figure 10.1(ii)
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the N individuals each belong to  a latent class or subpopulation. 
The probability that an individual belongs to latent class 1 is pl 

(1 f 1 f L )  . For those individuals in latent class 1 ,  their dissimilar- 
ities {dTS,i} are assumed to  follow a common multivariate normal 
distribution. The coordinates of the points in the group stimulus 
space and the weights in the subject space are then found by max- 
imum likelihood. They call their model CLASCAL. 

10.4 IDIOSCAL 

Carroll and Chang (1972) generalized their INDSCAL model to  the 
IDIOSCAL model (Individual DIfferences in Orientation SCAL- 
ing). They used the weighted Euclidean distance between stimuli 
r and s, for individual i 

- XSt)Wtt/,i(XTt’ - Xst‘ 
t=l t’=l 

Here W i  is a symmetric positive definite or semi-definite matrix 
of weights, [ W i ] t t /  = wtt/,i .  

It is easily seen that 

and 
Bi = X W i X T .  

The IDIOSCAL model thus allows the group stimulus space to be 
manipulated to a further degree by individuals than the INDSCAL 
model, with various rotations and dilations of axes being allowed. 
Carroll and Wish (1974) give a good account of models which arise 
from IDIOSCAL using a suitable choice of W i .  A summary of these 
models is given. 

INDSCAL 
When W i  is restricted to being a diagonal matrix, IDIOSCAL 
reduces to  INDSCAL. 

Carroll-Chang decomposition of W i  
The spectral decomposition of W i  is used as an aid to  interpreta- 
tion. Thus 

W i  = UiAiUT, 
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where UiUT = I, A = diag(&), ( j  = 1,. . . , p ) ,  and 

Bi = XUiAiU’XT 

which gives the interpretation of the i th individual’s configuration 
as an orthogonal rotation, Ui, of the group stimulus space, followed 
by a rescaling of the axes by At:. Unfortunately, the orthogonal 
transformation is not unique, since for any orthogonal matrix V, 

1 

(U,A~+V)(U~A;V)T = (u~A~u,)  = w,. 

Tucker-Harshman decomposition of Wi 
Tucker (1972) and Harshman (1972) suggested the decomposition 

Wi = DiRiDi, 

where Di is a diagonal matrix, and Ri is a symmetric matrix with 
diagonal elements all equal to unity. The matrix Ri can be inter- 
preted as a “correlation” matrix and Di as a diagonal matrix of 
“standard deviations”. If Ri = R (i = 1,. . . , N )  then the model 
reduces to  Harshman’s PARAFAC-2 model. 

Tucker’s 3-mode scaling 
Tucker (1972) suggested a model for individual differences based 
on three-mode factor analysis (Tucker, 1966). See also MacCallum 
(1976a7b). The model is the IDIOSCAL model with the weight 
matrix, Wi decomposed by a set of p x p “core” matrices, {Gm}. 

Let the subjects space have p‘ dimensions possibly different from 
p .  Let the coordinates for the individuals in this space be given by 
the matrix Z = [xrm]. Then the weight matrix is modelled by 

P’ 

m=l 

If all the G, matrices were diagonal then an INDSCAL type so- 
lution would follow. MacCallum (1976b) develops a technique to  
transform { G,} to be diagonal as “nearly as possible”. 

10.5 PINDIS 

The PINDIS model (Procrustean INdividual DIfferences Scaling) 
was developed along the lines of the older methods of individual 
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differences scaling where scaling for each individual is carried out 
separately and then an overall comparison made. The model was 
developed after INDSCAL, but has not proved so popular. Relevant 
references are Borg (1977), Lingoes and Borg (1976, 1977, 1978). 

PINDIS assumes that a scaling has been carried out for each 
individual by some method producing a configuration matrix Xi 
in each case. The actual scaling method is immaterial as far as 
PINDIS is concerned. The configurations Xi are then compared 
using Procrustes analysis. First, a centroid configuration, Z,  is es- 
tablished in a similar manner to that suggested by Gower (1975) 
(see Chapter 5) and then a hierarchy of translation, rotation and 
dilation models are applied to the configurations Xi ,  to transform 
them individually, as best as possible, to the centroid configuration. 
The Procrustes statistic is used as an indication of the appropriate 
type of translation, rotation and dilation. The centroid configura- 
tion then represents the group stimulus space and the rotations 
etc. for the individuals represent the subjects space. 

Firstly, all the N configurations Xi are centred at  the origin and 
then dilated to have mean squared distance to the origin equal to  
unity, i.e. tr(XTXi) = 1. The X2 configuration is rotated to  the 
X I  configuration giving the first estimate of Z as $(XI  +X2). Next 
X3 is rotated to  Z and then a weighted average of Z and X3 gives 
the next estimate of Z.  This process is repeated until all the Xi 
configurations have been used. 

Next the N configurations are each rotated to Z and a goodness 
of fit index calculated as 

1 
N 

h = - E(1- R?(Xi,  Z ) )$ ,  
i 

where R(Xt ,Z)2  is the Procrustes statistic when Xi is rotated to  
Z.  

The average of the newly rotated Xi configurations gives the 
next updated estimate of the centroid Z ,  and the goodness of fit 
index is recalculated. This procedure is repeated until h converges. 
The resulting Z is the centroid configuration. 

The procedure so far has given the basic model. The centroid 
configuration Z is the group stimulus space, and the Procrustes 
rigid rotations Ri (rigid but with the possibility of a reflection) 
needed to  rotate the individual configurations Xi to  the centroid Z 
from the subject space. The rigidity of the rotations is now relaxed 
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and various models tried. The hierarchy of models is as follows, 
starting with the basic model. 

1. Basic model: Rigid rotations only. The quantity 

Rl (Ri ,  Z) = c t r (XiRi  - Z)T(XiRi  - Z) 
i 

is minimised over the set of matrices XI ,  . . . , XN.  

space are weighted. The quantity to be minimised is 
2. Dimension weighting: The dimensions of the group stimulus 

Ra(Ri, Z) = x t r (XiRi  - ZSW)T(XiRi  - ZSW)  
i 

where S T S  = I, and W is a diagonal matrix. Here, the centroid 
configuration Z is allowed to be rotated by S before weights are 
applied to the axes. 

3. Idiosyncratic dimension weighting: The weighting of dimen- 
sions of the group stimulus space can be different for each indi- 
vidual. The quantity 

R3(Ri, Z) = c t r (XiRi  - ZSWi)T(XiRi  - ZSWi) 
i 

is minimised over XI, . . . , XN. 
4. Vector weighting: Each stimulus in the group stimulus space 

is allowed to  be moved along the line through the origin to the 
stimulus before rotation occurs. The quantity to  be minimised is 

Rq(Ri, Z) = c t r (XiRi  - ViZ)T(XiRi  - ViZ).  
i 

5. Vector weighting, individual origins: This is the same as model 
4, except that the origin of Z for each individual can be moved to  
an advantageous position. The quantity to  be minimised is 

Rg(Ri, Z) = x t r ( X i R i  - Vi(Z - ltT))T(XiRi - Vi(Z - 1tT)) 

where ti is the translation vector for the centroid for the i th indi- 
vidual. 

6. Double weighting: This allows both dimensional and vector 
weighting. The quantity 

i 

Rg(Ri, Z) = t r (XiRi  - Vi(Z - ltT)Wi)T 
i 

x (XiRi - Vi(Z - 1tT)Wi) 
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is minimised over XI . . . XN. 

The models form a hierarchy with the first model always provid- 
ing the poorest fit and the last model the best. Choice of model is 
made by assessing the improvement in fit made by going from one 
model to another in the hierarchy. Langeheine (1982) evaluated the 
measures of fit for the various models. 
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CHAPTER 11 

ALSCAL, SMACOF and Gifi 

In this chapter, three significant developments in multidimensional 
scaling are discussed. Firstly, ALSCAL and SMACOF, both of 
which are alternatives to  the previously discussed gradient methods 
of the minimisation of stress. The third is the relationship to  mul- 
tidimensional scaling, of the Gifi system of nonlinear multivariate 
analysis together with a generalization. 

11.1 ALSCAL 

Takane, Young and de Leeuw (1977) developed ALSCAL (Altern- 
ating Least squares SCALing) along with other uses of the alter- 
nating least squares technique (see Young, de Leeuw and Takane 
(1976), and de Leeuw, Young and Takane (1976)). The attraction 
of ALSCAL is that it can analyse data that are: (i) nominal, or- 
dinal, interval, or ratio; (ii) complete or have missing observations; 
(iii) symmetric or asymmetric; (iv) conditional or unconditional; 
(v) replicated or unreplicated; (vi) continuous or discrete - a Pan- 
dora’s box! 

An outline to  the theory of ALSCAL is given, following Takane 
et al. (1977). 

11.1.1 The theory 

As for INDSCAL of Chapter 10, assume dissimilarity data {dTS,i} 
which can be any of the types (i)-(vi) above. The scaling problem 
can be stated as the search for a mapping 4’ of the dissimilarities 
{&s , i } ,  giving rise to  a set of disparities { i T S , i } ,  

where {i:s,i} are least squares estimates of {dzs , i }  obtained by 
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minimising the loss function called SSTRESS and denoted by SS, 
where 

r s i  

Note that SSTRESS differs from STRESS in that it uses squared 
distances and disparities. This is done for algorithmic convenience. 

The mapping # has to  take into account the restrictions that 
occur in the particular model and type of data. There are three 
types of restriction: process restrictions, level restrictions and con- 
dit ionality restrict ions. 

Process restrictions 
One process restriction is used for discrete data, another for con- 
tinuous data. For discrete data, observations within a particular 
category should be represented by the same real number under the 
mapping #. Following Takane et al., let N represent membership 
of the same category. So for discrete data 

4 6 r s , i  N d r / s l , i l  + d,s,i = dr l s l , i / .  

Continuous data have to  be discretized, so as to make the data 
categorical: for example, an observation of 3.7 could be considered 
to be in the category of all those values in the interval [3.65, 3.75).  
The continuous restriction is then represented by 

# d r s , i  N S T / s / , i '  * 1 f drs, i ,  dr /s l , i l  f U ,  

where [ I ,  u) is a real interval. 

Level constraints 
Different constraints on 4 are needed for the type of data being 
analysed. For nominal data, no constraint is necessary once the 
process restraint has been taken into consideration. For ordinal 
data, the obvious constraint on # is 

# : 6 r s , i  4 d r / s j , i  * drs,i I d T / s / , i / .  

For quantitative data, dTS,i is linearly related to dTs, i ,  so that 

# 1 d,s,i = a0 + a1&-s,i, 

with a0 = 0 for ratio data. Linearity can possibly be replaced by a 
polynomial relationship. 
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Conditionality constraints 
Different experimental situations give rise to  different conditions 
on the dissimilarities. If measurements made by different individu- 
als are all comparable giving the unconditional case, then no con- 
straints on q5 are needed. If observations by different individuals 
are not comparable, then matrix conditionality is imposed where 
all dissimilarities within the matrix of dissimilarities for an individ- 
ual are comparable, but not between matrices. This implies that q5 
is composed of N mappings { $ i } ,  one for each individual. Similarly, 
row conditionality gives rise to  mappings { # T i } .  Here dissimilarities 
along a row of a matrix are comparable, but not between rows. For 
example, N judges may score the taste of p different whiskies. 

11.1.2 Minimising SSTRESS 

SSTRESS in (11.1) is minimised using an alternating least squares 
algorithm. Each iteration of the algorithm has two phases: an opti- 
mal scaling phase and a model estimation phase. Writing SSTRESS 
as SS(X, W, h), where X is the matrix of coordinates, W is the 
matrix of weights, and D represents the disparities {dTs, i } ,  then 
the optimal scaling phase finds the least squares disparities D for 
fixed X and W, which is followed by the model estimation phase 
which calculates new coordinates X and weights W for fixed D. 

The optimal scaling phase 
Firstly, the distances { dTs, i }  are calculated from current coordinate 
and weight matrices X, W. Then disparities { d r s , i }  are calculated. 
Conveniently, if all the disparities are placed in a vector d, and 
similarly the distances placed in vector d, then 

d = Ed, 

where E = Z(ZTZ)-lZT, with Z depending on the type of trans- 
formation q5. 

For ratio and interval data Z is a vector of squared dissimilarities 
{dFs,i} (placed conveniently into the vector). This can easily be 
seen by replacing d:s,i in the SSTRESS equation (11.1) by ~ + b b % , , ~  
and finding the least squares estimates of a and b. 

For ordinal and nominal level data, Z is a matrix of dummy 
variables indicating which distances must be tied to satisfy the 
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measurement conditions. For example, with dissimilarities and dis- 
tances given by 

J2 - 1.2 J2 - 1.7 6: = 2.4 62 = 3.2 6; = 3.6 1 -  2 -  

z =  

-1 0 0 
0 1 0  
0 1 0  
0 0 1  

-0  0 1 

and 

Z ( Z T Z ) - ' Z T =  

-1 0 0 0 0 -  
0 ; ; o o  
0 ; ; 0 0 . 
o o o + +  

- 0  0 0 ; ;- 

Mode 1 es t im at i o n p h as e 
The model estimation phase finds the least squares estimates of 
the weight matrix, W, for the current disparity values {dTs , i }  and 
coordinates X of the points in the group stimulus space. Then the 
least squares estimates of X are found for the current disparity 
values and weights W. 

For the first minimisation let the +n(n- 1) quantities (x,t - ~ , t ) ~  
make up the t th column ( t  = 1,. . . , p )  of a matrix Y .  A similar 
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+n(n - 1) x p matrix D* is composed of the disparities {S,"s,i}. 
Then SSTRESS can be written 

SS = tr(D* - WY')T(D* - WY') 

and hence 
W = D*Y(Y'Y)-' 

There can be a problem with negative estimated weights. Takane 
et  al. show how these can be appropriately adjusted. 

For the second minimisation the SSTRESS in (11.1) now has to  
be minimised with respect to the coordinates X. Setting partial 
derivatives equal to zero gives rise to  a series of cubic equations 
which can be solved using Newton-Raphson, possibly modified. 
The reader is referred to  Takane et al. for further details. 

In summary, the ALSCAL algorithm is as follows: 
1. Find an initial configuration X and weights W .  
2. Optimal scaling phase: calculate D ,  D* and normalize. 
3. Terminate if SSTRESS has converged. 
4. Model estimation phase: minimise SS(WIX, D*) over W; then 

minimise SS(X1 W, D*) over X. 
5. Go to  step 2. 

Details of further points relating to ALSCAL and reports on 
some Monte Carlo testing of the technique can be found in Mac- 
Callum (1977a, 1977b, 1978), MacCallum and Cornelius I11 (1977), 
Young and Null (1978), Young et  al. (1978), Verhelst (1981) and 
ten Berge (1983). 

To reiterate, the attraction of ALSCAL is that it is very ver- 
satile and can perform metric scaling, nonmetric scaling, multidi- 
mensional unfolding, individual differences scaling and other tech- 
niques. ALSCAL is available in the statistical computer packages 
SAS and SPSS. 

11.2 SMACOF 

As an alternative to  the alternating least squares method for min- 
imising SSTRESS, a method based on the majorization algorithm 
was initially proposed by de Leeuw (1977b). The method was then 
further refined and explored by de Leeuw and Heiser (1977, 1980), 
de Leeuw (1988) , Heiser (1991), de Leeuw (1992) and Groenen 
(1993), and now has the acronym SMACOF, which stands for 
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Scaling by MAjorizing a Complicated Function. Before describ- 
ing SMACOF, the majorizing algorithm is briefly described. The 
following relies heavily on Groenen (1993). 

11.2. I The majorixation algorithm 

The majorization algorithm attempts to minimise a complicated 
function, f ( x ) ,  by use of a more manageable auxiliary function 
g(x,y).  The auxiliary function has to be chosen such that for each 
x in the domain of f 

f ( 4  f g(z,y), 

for a particular y in the domain of g ,  and also so that 

So for graphs of f and g ,  the function g is always above the func- 
tion f ,  and g touches f at the point x = y.  The function g is 
then a majorizing function of f .  This leads to  an iterative scheme 
to minimise f .  First, an initial value xo is used to  start the min- 
imisation. This then defines the appropriate majorizing function 
g(x,xo). This is minimised with its minimum at x1 say. This value 
of x then defines the majorizing function g(x ,x l ) .  This, in turn, 
is minimised with minimum at x2. The process is repeated until 
convergence. 

An example 
As an example of the majorizing algorithm, consider minimising 
the function, f ,  where 

f [-1.5,2.0] + R 

f : x 6 + 3x + lox2 - 2x4. 

A graph of this function can be seen in 
line. 

A majorizing function, g ,  is chosen as 

as the solid 

g : 6 + 3x + lox2 - 8xy2 + 6y4.  

Figure 11.1
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Figure 11.1 Minimising the function f (2) = 6 + 3z + lox2 - 2z4 using the 
majorixing function g(z, y) = 6 + 3z + lox2 - 8zy3 + 6y4. Solid line, f ;  
short dashed line, g(z,  1.4); long dashed line, g(z,  0.948). 

The starting value for the algorithm is set at xo = 1.4, giving 

g(x, 1.4) = 29.0496 - 18.9522 + lOz", 

a graph of which is shown in as the short dashed line. 
The mimimum of this quadratic function is easily found as x = 
0.948. Hence x1 = 0.948. The next iteration gives 

g ( x ,  0.948) = 10.8460 - 3 . 7 9 4 2 ~  + lox2. 

The graph of this function is shown as the long dashed line in 
The minimum of this function gives x2 , and the process 

continues until convergence at the minimum of f. 

For metric MDS, consider the loss function which will be called 
stress as 

r<s 

where, as usual, {wrs} are weights, {dTs} are dissimilarities and 

Figure 11.1

Figure 11.1.
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{ d r s }  are Euclidean distances calculated from coordinates X .  Fol- 
lowing Groenen (1993) 

r<s r < s  r<s 

= q; + q2(X) - 2p(X). 

The stress S is now written in matrix form. Firstly, 

r < s  

where 

Next 

= t r (XTB(X)X) ,  

where 
[B(X)]rs = wrsSrs/drs(X) if drs(X) + 0, 

= O if drs(X) = 0. 

Then write stress as 

S (X)  = qg + t r (XTVX) - 2tr(XTB(X)X). 

A majorizing function, T ,  for stress S is given by 

T ( X ,  Y) = 7; + t r (XTVX) - 2tr(XTB(Y)Y).  

To show that T does majorize S, 

a(T - S) = P W  - /3(X,Y>7 
where 

p(X, Y) = t r (XTB(Y)Y) .  
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by the Cauchy-Schwarz inequality, and hence p ( X )  2 P ( X , Y ) .  
Also as T ( X , X )  = S ( X ) ,  T majorizes S .  

To minimise T ,  

~ = 2 V X  - 2B(Y)Y = 0. 
d T  
dY 

(11.3) 

Now V has rank n - 1 since its row sums are all zero, and so the 
Moore-Penrose inverse is used to solve equation (11.3) , giving 

X = V+B(Y)Y, 

which is known as the Guttman transform as it appears in Guttman 
(1968). 

Thus, using the majorizing method for finding minimum stress 
simply has the Guttman transform as its updating equation. The 
algorithm gives rise to  a non-decreasing sequence of stress values, 
which converge linearly (de Leeuw, 1988). One advantage of the 
majorizing method over gradient methods is that  the sequence of 
stress values is always non-increasing. However, it shares the same 
problem of not necessarily finding the global minimum, but can 
get stuck at a local minimum. 

11.2.2 The majorixing method for nonmetric MDS 

For nonmetric MDS, the dissimilarities {dTS} are replaced by dis- 
parities {iTs} in the loss function (11.2), and as with ALSCAL, 
there are two minimisations to be carried out. In one, the loss 
function or stress is minimised with respect to  the distances { d T s } ,  
and in the other, it is minimised with respect to  the disparities 
{JTs} .  The first minimisation can be by the majorizing algorithm, 
the second by isotonic regression as discussed in Chapter 3. 
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11.2.3 Tunnelling for a global minimum 

Groenen (1993) reviews methods for searching for global minima, 
and describes in detail the tunnelling method. Picturesquely, sup- 
pose you are at  the lowest point of a valley in a mountainous region 
with only ascent possible in all directions. There is no direction in 
which you can descend, however you wish to be at a lower height 
above sea level. To overcome your predicament, you dig horizontal 
tunnels in various directions through the surrounding mountains 
until from one tunnel you reach the other side of the mountain and 
descent is again possible. See also Groenen and Heiser (1996). 

The tunnelling method for stress first involves finding a config- 
uration X* which has local minimum stress. Then the tunnel is 
"dug" by finding other configurations with the same stress. The 
tunnelling function is defined as 

1, c C,,(dTS(X) - d T S ( X * Y  

1 .(X) = {S(X) - S(X*)>"X 1 + 
where X is the pole strength parameter to  be fixed, with 0 < X < 1. 

The zero points of T ( X )  then give configurations which have the 
same stress as that for X*. The reader is referred to  Groenen for 
details of how these zero points can be found. Once a new config- 
uration is found the stress can then possibly be reduced further 
and hopefully a global minimum eventually reached. 

De Leeuw (1977b) shows how the majorization method can be 
extended to  general Minkowski spaces. Heiser (1991) shows how the 
method can be adapted to  allow for some of the pseudo-distances 
being negative. The pseudo-distances are the quantities obtained 
from transformation of the dissimilarities. For example, linear re- 
gression used on dissimilarities making them more distance-like 
could produce some negative pseudo-distances. Taking the method 
further, de Leeuw and Heiser (1980) show how the majorization 
method can be generalized to individual differences scaling. 

Groenen et al. (1995) extend the majorization algorithm for 
least squares scaling so it can be used with Minkowski distances, 
d,, = [xi I x , ~  - X , ~ I ~ ] ~ / ~ ,  for 1 5 p 5 2. For p outside this range 
algorithms based on the majorization approach are developed. 

11.3 Gifi 

Albert Gifi is the nom de plume of members, past and present, 
of the Department of Data Theory at  the University of Leiden 
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who devised a system of nonlinear multivariate analysis that  ex- 
tends various techniques, such as principal components analysis 
and canonical correlation analysis. Their work is recorded in the 
book, Gifi (1990). It is not the purpose of this monograph to  at- 
tempt coverage of all multivariate analysis techniques, but it is 
instructive to attempt a short summary of the Gifi system and 
its links with multidimensional scaling. The related distance ap- 
proach to  nonlinear multivariate analysis developed by Meulman 
(1986) which extends the Gifi system will also be briefly described. 
A summary of these two approaches is also given by Krzanowski 
and Marriott (1994). 

11.3.1 Homogene i t y  

Underlying the Gifi system is the idea of homogeneity of variables 
and its maximisation. Let data be collected for n objects on rn vari- 
ables, 21,. . . ,Z,. Let vector zi (i = 1 , .  . . ,m)  contain the n ob- 
servations made on the variable Zi. Then two variables, Zi and Zj 
are homogenous if zi and zj are equal after any allowable transfor- 
mations. Allowable transformations might be normalizing to  unit 
length, or scaling by a constant. Let the transformed observations 
be denoted by ti(zi). 

Suppose the transformed zi is compared with an arbitrary ob- 
servation vector x. Then if x ti(zi), then zi is said to  be ho- 
mogeneous to  x. Otherwise the loss in homogeneity is defined as 
(x - ti(~i))~(x - ti(zi)). The overall loss in homogeneity is 

02(X, t) = rr- l  E ( x  - ti(Zi))yX - ti(Zi)). 
i 

The aim is to  maximise homogeneity by minimising 02(x, t) with 
respect to  x and the allowable transformations. To avoid trivial 
solutions, a normalizing condition usually has to be introduced. 

Examples  
A simple example is the case where tranformations of zi are not 
allowed. Then 

0"x) = rn-1 X ( x  - Zi) T (x - Zi). 

i 
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Differentiating with respect to  x and equating to  0 shows the min- 
imum loss of homogeneity occurs when x = m-' xi zi = Z,  and 
with minimum value rn-l Ci(Z - ~ i ) ~ .  

Now suppose the allowable transformation is that zi can be 
scaled by a factor ai. Assume also that zi has been mean corrected. 
The loss of homogeneity is now 

where a = ( a l ,  . . . , a,,)T and xTx = c, a chosen constant to  pre- 
vent the trivial solution x = a = 0. 

The loss function is now minimised with respect to  x and a. This 
can be achieved using an alternating least squares algorithm where 
one step minimises 02(x, a) with respect to  x for fixed a and the 
other minimises 02(x, a) with respect to  a for fixed x. In effect, the 
procedure is equivalent to  finding the first principal component in 
a principal components analysis (PCA). 

To increase dimensionality, let the allowable transformations be 
multidimensional, so that z i  is transformed to a matrix of scores 
Ti(zi). Let X be an arbitrary observation matrix. The loss of ho- 
mogeneity is now 

2(x, T) = C t r (X  - T ~ ( Z ~ ) ) ~ ( X  - ~ ~ ( z ~ ) )  
i 

which is minimised with respect to  X and the allowable trans- 
formations Ti. Gifi (1990) gives a table of variations of the loss 
functions together with their descriptions. The table is repeated 
here as 

From the table, it can be seen how the choice of o2 leads to  
nonlinear principal components analysis through the choice of the 
nonlinear function q5i. The last two entries in the table require 
further explanation. 

HOMALS 
The acronym HOMALS stands for HOMogeneity analysis by Al- 
ternating Least Squares and is essentially multiple correspondence 
analysis. The matrix Zi is the indicator matrix of variable Zi (see 
Chapter 9) and Yi is an n x q matrix of coefficients. 

Table 11.1.
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Table 11.1 The table of loss functions in Gzfi (1990) 

Loss function Description 

a”x) = m--1 Xi(. - Z i ) T ( X  - Z i )  

2 ( x ,  a) = m-’ xi(. - u ~ z ~ ) ~ ( x  - ajzi) 

a2(X, A) = m-l Xi tr(X - ziaT)T(X - ziaT) 

a2(x, a, $) = m-’ X i ( x  - a i $ i ( ~ i ) ) ~ ( x  - ai$i(zi)) Nonlinear PCA 

a2(x, 4 )  = C,(X - 4i(zi))T(x - 4 i ( Z i ) )  Nonlinear PCA: 

2 ( x ,  y) = m-’ C i ( x  - ~ i y i ) ~ ( x  - ziyi) 

a2(X,Y) = m-’ xi t r (X - ZiYi)T(X - ZiYi) 

Just averaging 

Linear PCA 

Linear PCA: 
multiple solutions 

wts. incorporated 
HOMALS: 
single solution 
HOMALS: 
multiple solutions 

The loss function 

a ” ~ ,  Y )  = m-’ x t r (X - z ~ Y ~ > ~ ( x  - z i ~ i )  (11.3) 

is minimised with respect to  X and Y using an alternating least 
squares algorithm. In order to  avoid the trivial solution, the condi- 
tion XTX = nI is imposed, and also 1X = 0. Details can be found 
in Gifi (1990) and also Michailidis and de Leeuw (1998). 

i 

For fixed X, o2 (X, Y) is minimised by 

~i = ( z T z ~ ) ~ z T x  ( i  = 1,. . . , m). 

For fixed Y ,  o2 (X, Y) is minimised by 

x = ,-I x ZiYi. 
i 

However, X now has to  be column centred and orthonormalized so 
that the two contraints are met. 

Gifi (1990) and Michailidis and de Leeuw (1998) show how homo- 
geneity analysis based on the loss function in (11.1) can be viewed 
as an eigenvalue and singular value decomposition problem. They 
also show it is also equivalent to  correspondence analysis and hence 
can be viewed as a multidimensional scaling technique using “dis- 
imilarities” as chi-square distances measured between row profiles. 

© 2001 by Chapman & Hall/CRC



The loss function in 11.1 is used extensively by Gifi (1990) to  form 
a non-linear system of multivariate analysis. 

Meulman (1986) extends the ideas of the Gifi system and re- 
lates several multivariate analysis techniques to  multidimensional 
scaling. Essentially, data collected for m variables for a set of n 
objects can be viewed as n points in an m-dimensional “obser- 
vational” space. A space of low dimension, p ,  is sought in which 
to represent these objects - the “representation” space. (This, of 
course, is not introducing a new idea in this book, as much of mul- 
tidimensional scaling has this notion.) If a particular multivariate 
analysis technique, for instance canonical correlation analysis, can 
be formulated in such a manner that “distances” based on the data 
are defined between the objects, which are then used to  find a con- 
figuration of points to  represent the objects in representation space, 
then the technique is equivalent to  a multidimensional scaling tech- 
nique. The overall approach is more general than simply using the 
data to  form Euclidean distances between objects directly, for ex- 
ample, and then using them as dissimilarities in classical scaling 
or nonmetric scaling. The essential difference is that  the approach 
allows optimal transformations of the data. 

Meulman (1986) uses the three types of loss function, STRIFE, 
STRAIN and STRESS. As before, X is the n x p matrix of co- 
ordinates representing the objects in representation space. Let A 
be the “rotation” matrix of PCA. Let Q be the matrix of data 
after it has been transformed, for instance by scaling the columns 
of X by varying amounts or a transformation based on splines. 
As a starting point, consider the formulation of PCA. This can be 
formulated as the minimisation of the loss function STRIFE, 

STRIFE(X, A) = tr(Z - XAT)’(Z - XAT),  

with respect to  X and A with the constraints X T X  = I and A T A  
is diagonal. 

Now PCA can be generalized to allow transformation of the data 
Z to  Q and so now the loss function is 

STRIFE(Q, X ,  A) = t r (Q - XAT)’(Q - XAT),  

and minimisation is with respect to X ,  A and the allowable trans- 
formations of Z .  

Now let A be a distance operator that places Euclidean dis- 
tances, S(x,, x,) = {(x, - z , )~ (z , .  - x,)}~/~ (possibly viewed as 
dissimilarities), between objects T and s in a matrix denoted by 
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A(Z).  Let Az(Z) denote a corresponding matrix of squared Eu- 
clidean distances between the objects. Similarly, let D denote a 
distance operator for the points in the representation space, with 
D(X)  a matrix of distances between points and D2(X)  a matrix 
of squared distances. PCA using squared distances in place of un- 
squared distances can be formulated as the minimisation of the 
STRAIN loss function, 

STRAIN(X) = tr{H(A2(Z) - D2(X))TH(A2(Z)  - D2(X))TH},  

where H is the centring matrix. (See also ALSCAL) STRAIN is 
minimised over X. Again, let the data be transformed to Q with 
a class of allowable transformations and then the STRAIN loss 
function becomes 

STRAIN(Q, X)  = 

tr{H(A2(Q) - D2(X))TH(A2(Q)  - D2(X))TH}, 

which is minimised with respect to X and Q.  
Now suppose dissimilarities are formed generally from the orig- 

inal data Z, for example, using the Jaccard coefficient. Let A*(Z) 
be the matrix of these dissimilarities. The third loss function is 
STRESS 

STRESS(X) = tr(A*(Z) - D(X))'(A*(Z) - D(X)) .  

The three loss functions, STRIFE, STRAIN and STRESS, can 
be modified to allow for groups of variables simply by summing 
over the groups. These are used for canonical coordinates analysis 
(the extension of canonical correlation analysis to more than two 
groups) and other multivariate techniques. 

Meulman (1992) extends the use of the STRESS loss function 
for multivariate analysis techniques viewed from the distance ap- 
proach. Suppose there are M groups of variables giving rise to data 
matrices ZJ (1 5 J 5 M ) .  These can be transformed to QJ with 
an allowable class of transformations. Additionally, these can be 
transformed again by the matrices AJ  to QJAJ.  The STRESS 
loss function is now 
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Meulman uses this loss function for several multivariate analysis 
techniques where choices of QJ and AJ allow modifications and 
generalizations of these techniques. See also Meulman (1996) and 
Commandeur et al. (1999) for further details. 
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CHAPTER 12 

Further m-mode, n-way models 

This chapter gives brief descriptions of some more MDS models 
appropriate for data of various numbers of modes and ways. 

12.1 CANDECOMP, PARAFAC and CANDELINC 

CANDECOMP (CANonical DECOMposition) is a generalization 
of Carroll and Chang’s (1970) INDSCAL model. The INDSCAL 
model, which is two-mode, three-way, is written as 

P 

brs,i = x w i t x r t x s t .  
t=l 

This can be generalized to the three-way CANDECOMP model for 
three-mode7 three-way data, 

(12.1) 

An example of three-mode, three-way data is where N judges of 
whisky, each rank m liquor qualities for each of n bottles of whisky. 
The model is fitted to  data using a similar algorithm to the IND- 
SCAL model. The least squares loss function for the three-way 
model can be written as 

N 

S = x llZi - XDiYTl12, (12.2) 
i= 1 

where Zi is the n x m matrix [Zi],, = X T s i ,  X is the n x p mat- 
rix giving coordinates for the second mode of the data (bottles of 
whisky), Y is the m x p matrix giving coordinates for the third 
mode of the data (qualities), and Di is a diagonal matrix for the 
first mode (judges). 

The model (12.2) now corresponds to Harshman’s (1970) PARA- 
FAC-1 (PARAllel profiles FACtor analysis) model. In Chapter 10 
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the PARAFAC-2 model was seen as a special case of IDIOSCAL. 
An alternating least squares algorithm for PARAFAC-2 is given by 
Kiers (1993). See also ten Berge and Kiers (1996) and Harshman 
and Lundy (1996). 

CANDECOMP can be used for data of more than three modes 
with equation (1 2.1) being generalized further to 

t=l 

The CANDECOMP model can be fitted with an iterative algo- 
rithm similar to that discussed for INDSCAL in Chapter 10; viz 
at  each step S is minimised with respect to  Di (i = 1 , .  . . , N )  for 
fixed X and Y ,  then minimised with respect to  X for fixed {Di} 
and Y and then minimised with respect to Y for fixed {Di} and 
X. For further details, see Carroll and Chang (1970), and Harsh- 
man and Lundy (1984a,b). For an efficient algorithm for fitting 
the three-mode model, see Kiers and Krijnen (1991). Kruskal et 
al. (1989) and Lundy e t  al. (1989) report on degeneracies that can 
occur with the CANDECOMP model. 

Several authors have discussed problems with using the CAN- 
DECOMP algorithm for INDSCAL since, for INDSCAL, X and 
Y have to  be equivalent in the sense that they have to  have equal 
columns up to scalar multiplication (see ten Berge and Kiers, 1991). 
Although in practice, the algorithm tends to work satisfactorily, 
ten Berge et  al. (1988) used a particular data set to  show that 
X and Y might not be equivalent. Also, ten Berge et  al. (1993) 
show that negative weights can occur during the execution of the 
CANDECOMP algorithm, but explain how to overcome this. 

Kruskal et al. (1989), Harshman and Lundy (198413) and others 
consider the preprocessing of data before using CANDECOMP, for 
instance the removal of means or scaling rows/columns to speci- 
fied values. ten Berge (1989) gives a summary of some of the prob- 
lems of preprocessing and considers the use of the Deming-Stephan 
(1940) iterative method of resealing the rows/columns to  particular 
values. See also ten Berge and Kiers (1989). 

For further references, see Rocci and ten Berge (1994) who con- 
sider the rank of symmetric 3-way arrays, Harshman and Lundy 
(1996) who give a generalization of the CANDECOMP model, and 
ten Berge and Kiers (1996) who give some uniqueness results for 
PARAFAC-2. 
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Carroll et al. (1980) introduced CANDELINC (CANonical DE- 
composition with LINear Constraints) which is the CANDECOMP 
model, but incorporating constraints. The model is 

P 

t=l 

as before, but with the constraints 

where Di are known design matrices and Ti are matrices of un- 
known parameters. The design matrices, for example, can be used 
when dissimilarities are collected in an experiment according to  
some experimental design. 

12.2 DEDICOM and GIPSCAL 

DEDICOM (DEcomposition into DIrectional COMponents) is a 
model devised by Harshman (1978) for analysing asymmetric data 
matrices. A one-mode two-way asymmetric n x n data matrix is 
decomposed as 

x = A R A ~  + N, 

where A is an n x p matrix of weights ( p  < n) ,  R is a p x p 
matrix representing asymmetric relationships among the p dimen- 
sions, and N is an error matrix. The model can be fitted by using an 
alternating least squares algorithm; see Kiers (1989) and Kiers et  
al. (1990). See Kiers (1993) for three-way DEDICOM and Takane 
and Kiers (1997) for latent class DEDICOM. 

A problem with DEDICOM is that  a convenient graphical repre- 
sentation of the results is not possible. Chino (1978, 1990) proposed 
the GIPSCAL model (Generalized Inner Product SCALing) which 
modelled the symmetric and skew-symmetric parts of X simultane- 
ously and lent itself to  graphical representation. Kiers and Takane 
(1994) generalized GIPSCAL to the model 

X = AAT + ARAT + c l l T  + E, 

where A is an n x p matrix of coordinates of points representing 
the objects, c is a constant, E the error matrix and R is a block 

diagonal matrix with 2 x 2 blocks 

p is odd then a zero element is placed in the last position of the 
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diagonal.) The model can be fitted by an alternating least squares 
algorithm: see Kiers and Takane (1994) for further details. 

12.3 The Tucker models 

Kroonenberg (1983) relates models in the previous section to the 
Tucker (1966) models, under the name of three-mode principal 
components analysis. See also Kroonenberg (1992, 1994). A brief 
summary is given. 

In Section 2.2.7, the connection between standard principal com- 
ponents analysis and classical scaling was discussed. The link be- 
tween principal components analysis and the singular value de- 
composition of the data matrix forms the basis of the extension 
of principal components to  three-way data. The sample covariance 
n x p matrix obtained from the mean-corrected data matrix, X, is 
(n- 1)s = XTX.  Let the eigenvectors of X T X  be vi ( i  = 1 , .  . . , p ) ,  
and placed in matrix V .  The component scores and component 
loadings are then given respectively by X V  and V .  

However from Section 1.4.2 V is one of the orthonormal matrices 
in the singular value decomposition of X, 

X = UAVT. 

Thus the component scores are given by 

XV = UAVTV = UA. 

Hence principal components analysis is equivalent to  the singular 
value decomposition of the data matrix, 

X = UAVT 
= (UA)VT 
= component scores x component loadings, (12.3) 

and hence is an MDS technique since the component scores from 
the first few principal components are used to  represent the objects 
or stimuli. 

Write the singular value decomposition of X in (12.3) as 
4 4  

n = l  b=l  

where X is of rank q.  This gives the form of the generalization to  
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three- or higher-mode data. The generalization to  give three-mode 
principal components analysis is 

I J K  

i=l j=1 k = l  

(T = 1 , .  . . , R ; s  = 1 , .  . . , S ; t  = 1 , .  . . , T ) ,  

where there has been a change in some of the notation. 
The number of elements in the three modes are R, S and T 

respectively. The R x K matrix U, where [U],i = uTi, contains 
the I “components” for the first mode, and similarly for matrices 
V and W for the second and third modes. These matrices are 
orthonormal, UTU = I, VTV = I ,  WTW = I. The three-way 
I x J x K matrix [A],,,  = X i j k  is the “core matrix” containing the 
relationships between various components. 

The Tucker-1 model is standard principal components analysis 
on the three modes, using one pair of modes at  a time. Equation 
(12.4) gives the Tucker-3 model where all three modes are equi- 
valent in status, each having an orthonormal matrix of principal 
components, i.e. U, V, W respectively. The Tucker-2 model has 
W equal to  the identity matrix, and so 

I J  

i=l j=1 

giving the third mode special status, e.g. for judges ranking at- 
tributes on several objects. 

A small number of components is desirable for each mode. The 
models are fitted using a least squares loss function. For the Tucker- 
3 model 

R S T  

r=l s=l t=l  

is minimised where 
I J K  

i=l j=1 k=l 

to give the estimated component matrices U, V, W and the core 
matrix A.  Kroonenberg (1983) discusses algorithms for fitting the 
Tucker models; see also Kroonenberg and de Leeuw (1980), and 
ten Berge et al. (1987) for an alternating least squares approach. 
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12.3.1 Relataonship to other models 

If the core matrix A is chosen as the three-way identity matrix 
then the Tucker-3 model becomes 

I 

z r s t  = C U r i v s i W t i ,  
i= 1 

which is equivalent to the PARAFAC-1 model, or the three-mode 
CANDECOMP model. 

Let A be a three-way identity matrix and also let U = V. Then 
the Tucker-3 model becomes 

I 

z rs t  = C U r i U s i W t i ,  
i= 1 

which is the INDSCAL model. 

In the Tucker-2 model let U = V, then 
I J  

zrst = x x U r i V s j X i j t ,  
i=l j=1 

which is the IDIOSCAL model. The PARAFAC-2 model can then 
be obtained by making the off-diagonal elements of A equal. 

12.4 One-mode, n-way models 

Cox et al. (1992) consider a one-mode, n-way model. The model 
is best illustrated for the three-way case, where data are in the 
form of “three-way dissimilarities”. Three-way dissimilarities { S r s t }  
are generalized from two-way dissimilarities, so that Srst  measures 
“how far apart” or “how dissimilar” the objects T ,  s and t are when 
considered as a triple. The requirement for Srst is that  it is a real 
function such that 

Srs t  2 0 (T Z s Z t )  
Srst  = Sr(s , t , r )  (for all permutations T ( T ,  s ,  t )  of T ,  s ,  t , T # s # t ) .  

Dissimilarities Srst  are only defined when T ,  s ,  t are distinct. 
A configuration, X, of points in a Euclidean space is sought that 

represents the objects, and a real-valued function, d , s t ( x r ,  x,, xt) 
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constructed so that it satisfies the same conditions as the three-way 
dissimilarities. Possible functions are: 
1.  drst  = max(d,,, d,t, d , t ) ,  where d,, is the Euclidean distance 

between the points T and s. 
2. drst = d r t ,  dst ) * 
3. drst = (d; ,  + d;t + d z t )  4. 

For Euclidean distance between two points with coordinates x, 
and x,, 

d:s = x, T xr + xTxs - 2xTxs. 

If this is generalized to  three points, 

This function is symmetric in T ,  s ,  t .  For invariance under rotation, 
translation and reflection, it is easily shown that a + b must equal 
zero. Choose a = 2 and b = -2, then 

This function is the one chosen to represent the three-way dissim- 
ilarit ies. 

Stress is defined as 

and can be fitted using a Kruskal type algorithm. Gradient terms 
can be found in Cox e t  al. (1992). The fitting of this three-way 
model is denoted as MDS3. The extension to more than three ways, 
MDSn, is straightforward. 

Cox et al. argue the case for three-way scaling by calculating dis- 
similarities based on the Jaccard coefficient, s r s ,  for the following 
data matrix consisting of seven binary variables recorded for four 
individuals. 

0 1 1 0 1 0 0 '  

1 0 0 1 1 0 0  
0 0 0 0 1 1 1  

1 0 1 0 0 0 0  1 x =  [ 
Define 6,, = 1 - s,,, and then 612 = 613 = 614 = 623 = 624 = 634 = 
:, giving no discriminatory information about the four individuals. 

Define the three-way Jaccard coefficient, sTSt ,  as the number of 
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variables in which individuals r ,  s and t each score “1” divided by 
the number of variables in which at  least one of them scores “1”. 
Let Srst  = 1 - s rs t .  For the above data, 5123 = 5, 6124 = 5134 = 
6234 = 1.0, showing that the individuals 1, 2 and 3 are in a group 
separated from individual 4. Cox et  al. investigate one-mode, n-way 
scaling further on artificially constructed data, before applying it 
to some voting data from the 18th century in Great Britain. 

I 8 n X 9 I 

I 14 i n  IL 
2 

5 7  

4 

2 

3 5 7  

4 1  

6 15 9 

Figure 12 .1  MDS2 - MDS7 for  the 1768 election data from Maidstone, 
Kent.  
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Prior to  the Ballot Act of 1872, electors had their votes recorded. 
They often had to  vote for two, three or even more canditates. The 
data used were the votes cast on the 20th of June 1768 in the town 
of Maidstone in the county of Kent. There were fifteen candidates 
competing for seven available seats. The electors could vote for 
up to  seven candidates. The seven-way dissimilarity for a partic- 
ular group of seven candidates was defined as the proportion of 
electors voting for the group subtracted from unity. MDS7 was 
then applied using a two dimensional space for the configuration. 
Results are shown in The data can also be used 
to find 2, 3, ... ,6-way dissimilarities where, for instance, the dis- 
similarity among three particular candidates is the proportion of 
electors who voted for all three candidates among their seven votes 
subtracted from unity. show the config- 
urations for MDS2 to MDS6 respectively. The stresses for the six 
configurations were 6%, 4%, 4%, 3%, a%, and 1% respectively. 
The six configurations in Figure 12.1 are similar to each other. 
MDS2 (standard nonmetric MDS) splits the candidates into two 
groups { 1,2 ,3 ,4 ,5 ,6 ,7}  and {9,10,11,12,13,14,15} together with 
a singleton ( 8 ) .  However MDS2 does not reveal all the informa- 
tion about the voting behaviour of the electors. MDS3 gives a very 
similar comfiguration to MDS2. MDS4-MDS7 show candidates 6 
and 10 moving progressively closer to  candidate 8. 

A close look at the raw data shows that electors tended to  
vote for one of the two groups of candidates {1,2,3,4,5,6 ,7},  
{9,10,11,12,13,14,15}, with candidate 8 noticeably not belong- 
ing to  either of these groups. Several voters who voted mainly for 
the first group of candidates, often included candidate 10 for one 
of their votes. Similarly candidate 6 was often chosen by voters of 
the second group who wished for a wider choice. 

Joly and Le Calve (1995) and Heiser and Bennani (1997) take 
the idea of three-way dissimilarities and distances further. Follow- 
ing the latter, they use the terms triadic dissimilarities and dis- 
tances for these, and dyadic dissimilarities and distances for the 
usual two-way dissimilarities and distances between pairs of ob- 
jects. Heiser and Bennani give the following properties that triadic 

Figure 12.1(vi).

Figures 12.1 (i)  to 12.1 (v)
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dissimilarities should satisfy: 

drst 2 0 
drst = & ( r , s , t )  

(for all permutations of T ( T ,  s ,  t )  of T ,  s ,  t )  
Srrr = 0 

d,,, = d,,, 

and by symmetry d,,, = d,Sr7 etc. The dyadic dissimilarities be- 
tween objects T and s are measured by the quantities d,,, = d,,. 
They also define triadic similarities s,,t. 

Triadic distances are defined by d T S t ,  and a metric structure is 
considered where { d r s t }  satisfy the four properties for {S,,t} above, 
but in addition drst  = 0 only if T = s = t ,  and the triangle inequal- 
ity for dyadic distances is replaced by the tetrahedral inequality 

2drst f drtu + dstu + drsu.  

Let d,, = id,,,. Heiser and Bennani prove the following results: 

Also if d,,, f drst  then 

If drst is a triadic distance function, then so is d r s t / ( c  + d,,t), for 
c a positive constant. 

Heiser and Bennani go on to consider triadic distances defined 
on dyadic distances, for example the Minkowski-p model where 
drst  = (dFs + d:t + d f t ) ' /P ,  and also on binary presence-absence 
variables. They use various MDS representations of triadic dissim- 
ilarities and illustrate the methods on data relating to: the unpro- 
ductivity of teams of three individuals, the free sorting of kinship 
terms, a sensory experiment where undergraduates had to  associate 
a colour with a taste and a sound. 

Pan and Harris (1991) consider a one-mode, n-way model. Let 
s,,t be a three-way similarity. Again a Euclidean space is sought 
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in which points represent the objects. Let the coordinates be x,. 
Then the configuration is found such that 

P 

i=l 

is maximised, where 

1 (1'9 (r7 s7 t )  x i  = -- c S,st 
r+s+t C U X l i  ' 

d:(r, s ,  t )  = (x,i - + (x,i - xti)' + (xsi, - xti) ' ,  

and X is constrained so that the centroid of the configuration is at  
the origin. 

The problem can be written as the search for X that maxiniises 

P xTHx~ 
A=>:-, 

XTXi 
i= 1 

subject to XT1 = 0, where 

= hrs = x ( ~ r s t  + Ss t r  + ~ t r s )  ( T  # S )  

t ,r+s+t 

= - x h,t (T = s ) .  
t , r # s # t  

Pan and Harris use their model on some geological data from the 
Walker Lake quadrangle which includes parts of California and 
Nevada. Samples of stream sediments were analysed and elements 
measured (Fe, Mg, etc.). Similarity between triples of elements was 
measured by a generalization of the sample correlation coefficient. 
Interesting results occurred. One justification for using triples of 
elements rather than standard MDS for pairs, was that it was im- 
portant to identify those elements which are closely associated with 
gold and silver together. 

One-mode, three-way data are uncommon, possibly because of a 
previous lack of an instrument for analysis. Further work is needed 
in this area to assess the impact of these newer triadic methods. 

12.5 Two-mode, three-way asymmetric scaling 

Okada and Imaizumi (1997) propose a model for multidimensional 
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scaling of asymmetric two-mode, three-way dissimilarities. For il- 
lustration, they use Japanese mobility data among eight occupa- 
tional categories for the years 1955, 1965, 1975 and 1985. For each 
of these years there is an eight by eight table where the ( r ,  s) th  ele- 
ment is the number of sons whose occupations are in occupational 
category s and whose fathers’ occupations are in occupational cat- 
egory T .  Thus the data are two-mode, three-way, occupational cat- 
egory x occupational category x year. (To keep to  the notions of 
INDSCAL the “years” will be thought of as subjects or individuals 
and the “occupational categories” will be thought of as stimuli.) 

Let the three-way asymmetric dissimilarities be denoted by Srs , i .  
Then a group stimulus space is found where each stimulus is rep- 
resented by a point and a hypersphere centred at  the point. Each 
individual has a symmetry weight representing individual differ- 
ences in symmetric dissimilarity relationships. These are applied to  
the distances between points in the group stimulus space as with 
INDSCAL. Each individual also has a set of asymmetry weights 
that are applied to the radii of the hyperspheres in the directions 
of the various axes, distorting the hypersphere into a hyperellipse. 

Let the coordinates of the point representing the r th  stimulus be 
xrt ( r  = 1,. . . , n; t = 1,. . . , p ) ,  and let the hypersphere associated 
with this point have radius r,. Let the symmetry weight for the 
i th individual be wi and the set of asymmetry weights be uit.Then 
the distance between the r th  and sth stimuli for the i th individual 
is d,,,i = wid,,. The asymmetry weight uit stretches or shrinks the 
radius of the hypersphere for stimulus r to  uitr, in the direction 
of the t th axis. 

Let mrs , i  be the distance along the line from the point on the 
circumference of the r th  ellipsoid closest to  the sth ellipsoid to the 
point on the circumference of the sth ellipsoid furthest from the 
r th  ellipsoid, 

mrs, i  = drs,i  - vrs, i r r  + v s r , i r s  

2 112 where v r s , i  = d r s , i / ( x t ( x r t  - xst)2/uit) * 

Okada and Imaizumi now use a nonmetric approach involving 
STRESS to fit {S,,,i} to  {mTS,i}. The asymmetric dissimilarities 
S,,,i and S,,,i are represented by the differing distances m,,,i and 
msr,i. The amount by which mrs,i and msr,i differ will depend on 
the asymmetric weights {uit} reflecting the difference between 6 r s , i  

and Ss,,i. 
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12.6 Three-way unfolding 

DeSarbo and Carroll (1985) have devised a three-way metric un- 
folding model. It is a generalization of the unfolding model of Sec- 
tion 8.4. Let there be N judges and suppose the i th judge pro- 
duces dissimilarities {S i r t }  for the r th  stimulus on the t th occasion 
( r  = 1,. . . , n; t = 1,. . . , T ) .  A common Euclidean space is found 
in which to  place judges and stimuli as in the unfolding models of 
Chapter 8, together with a weight space for occasions. The weights 
in this space are applied to  the common space to  adjust for the par- 
ticular occasions, in accordance with the ideas of INDSCAL. The 
three-way dissimilarities 
Euclidean distances, dKt 

are modelled by the three-way squared 
as 

P 

m=l  

where {yim} are the coordinates for the judges, {xrm}  are the 
coordinates for the stimuli, { w t m }  are the weights representing the 
occasions, a t  is a constant for occasion t ,  and {c i r t }  are “errors”. 

The loss function to be minimised is 

i r t  

where { Y i r t }  are weights defined by the analyst to  weight d i r t  dif- 
ferentially. DeSarbo and Carroll give a weighted least squares al- 
gorithm for fitting the model and demonstrate its use on several 
data sets. The reader is referred to their paper for further details. 
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APPENDIX 

Computer programs for 
mult idimensional scaling 

A. l  Computer programs 

Early computer programs for nonmetric MDS were Kruskal’s MD- 
SCAL, Guttman and Lingoes’ smallest space analysis program 
SSA, and Young and Torgerson’s TORSCA. The program MD- 
SCAL was later developed into KYST by Kruskal, Young and 
Seery. SSA was developed into MINISSA by Guttman, Lingoes 
and Roskam. Young also developed another program, POLYCON. 

Carroll and Chang introduced INDSCAL for individuals scaling, 
and later with Pruzansky, SINDSCAL. Later came Takane, Young 
and de Leeuw’s ALSCAL, their alternating least squares program. 
Ramsay introduced MULTISCALE, a program for his maximum 
likelihood approach. SMACOF was developed by Heiser and de 
Leeuw. In 1981, the MDS(X) series of programs was commercially 
launched, and included the following: 
1. 
2. 
3. 
4. 
5. 

6. 
7. 

8. 
9. 

CANDECOMP - CANonical DECOMPosition; 
HICLUS ~ HIerarchical CLUStering; 
INDSCAL-S ~ INdividual Differences SCALing; 
MDPREF ~ MultiDimensional PREFerence scaling; 
MINICPA ~ Michigan-Israel-Nijmegen Integrated series, Con- 
ditional Proximity Analysis; 
MINIRSA ~ MINImum Rectangular Smallest space Analysis; 
MINISSA ~ Michigan-Israel-Nijmegen Integrated Smallest 
Space Analysis; 
MRSCAL - MetRic SCALing; 
MVNDS - Maximum Variance Non-Dimensional Scaling; 

10. PARAMAP ~ PARAmetric MAPping; 
11. PINDIS ~ Procrustean INdividual DIfferences Scaling; 
12. PREFMAP ~ PREFerence MAPping; 
13. PROFIT - PROperty FITting; 
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14. TRIOSCAL ~ TRIadic similarities Ordinal SCALing; 
15. UNICON - UNIdimensional CONjoint measurement. 

The package is available from: Program Library Unit, University 
of Edinburgh, 18 Buccleuch Place, Edinburgh, EH8 9LN, UK. It is 
now somewhat dated in its presentation. 

More commonplace statistical packages which offer MDS are 
SPSS and SAS, both of which have an alternating least squares 
option, ALSCAL. NAG also produces subroutines which carry out 
MDS. More limited are SYSTAT, STATISTICA and SOLO which 
will carry out nonmetric MDS on a PC. Schiffman et  al. (1981) dis- 
cuss fully programs for MDS and the results obtained when they 
are used on various data sets. They also give addresses from where 
the programs can be obtained. More recently, Borg and Groenen 
(1997) have given a good summary of computer programs for MDS, 
together with examples of their use. They cover ALSCAL, KYST, 
SYSTAT, SAS, STATISTICA, MULTISCALE, MINISSA, FSSA 
and PROXSCAL. 

A.2 The accompanying CD-ROM ** 

The accompanying CD-ROM contains programs which run under 
DOS to carry out some of the multidimensional scaling techniques 
which have been described in the text. The programs can be run 
individually, or more conveniently, from a menu program provided. 
The aim is to give the reader some “hands on” experience of using 
the various techniques. However, the condition of its use is that the 
authors and publisher do not assume any liability for consequences 
from the use of the CD-ROM. A Windows version will be available 
at  the end of 2000. 

Minimum system requirements 
Windows 95, 98 or NT 4.0 
Minimum ~ 640 x 480 256 colour display 
Recommended ~ 800x600 16-bit or higher colour display 
12 megabytes of free disk space 
Minimum 16 megabytes of RAM 
Recommended ~ 32 megabytes of RAM 
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A.2.1 Installation instructions 

Windows Users 
1. Place the CD in the CD-ROM drive. 
2. Select Run from the Start Menu. 
3. Type “command” for Windows 95/98 or “cmd” for Windows 
NT.  Click O.K. 
4. Type d:\ and hit enter (where d:\ is the CD-ROM drive letter). 
5. At the d:\ prompt (again, where d:\ is the drive letter of your 
CD-ROM) type install c mds (where c is the destination drive, 
and mds the directory where the application will be installed). Hit 
enter . 
6. Follow the prompt: type mds then hit enter 
To install an icon for the menu on your desktop, follow these in- 
structions: 
7. Open Windows Explorer (start + programs). 
8. Open the MDS folder. 
9. Right-click on the menu.exe. 
10. Select Create Shortcut from the menu. 
11. Drag the “Shortcut to menu” to  the desktop. 
If desired: 
12. Rename the icon on the desktop by right-clicking on it and 
choosing Rename. 
Once the installation is complete, you may run the program by 
double-clicking on the newly created icon on the desktop. 

DOS Users 
1. Place the CD in the CD-ROM drive. 
2. Create a DOS window (by typing “command” from the start 
+ run in Windows 95/98, or “crnd” in Windows NT) .  Click O.K. 
3 .  At the prompt type d:\ (where d:\ is the drive letter of your 

4. Install the application by typing install c mds (where c is the 
destination drive, and mds the directory where the application will 
be installed. 
5. Run the application by typing mds. 

CD-ROM). 
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A.2.2 Data and output 

By default, all data to  be analysed and output generated will be 
located in the directory c:\mds\data. However, this default loca- 
tion for the data can be changed using the menu program. For 
instance, the user may wish to  place data and ouput for each 
“project” undertaken in a separate directory, e.g. c:\mds\project 1, 
c:\mds\project2, etc. To change the directory, use the menu pro- 
gram (see below), type 1001, and then type the name of the new 
directory where data and output are to  be located. (Note the di- 
rectory must already exist, having been created from Windows or 
otherwise.) To return to using the default directory, use the menu 
again and type in the default directory. 

Data provided 
The data files provided are of five types: 
(i) those that end .VEC (e.g. KELLOG.VEC) ~ these contain an 
n x p data matrix, i.e. data for n objects measured on p variables. 
The data are to  be viewed as p vectors of length n. 
(ii) those that end .DIS (e.g. UK-TRAVE.DIS) - these contain 
dissimilarity data { S,,}. 
(iii) those that end .MAT (e.g. CANCER.MAT) ~ these contain 
two-way data in the form of a matrix. The data could be a contin- 
gency table, for instance. 
(iv) those that end .IND (e.g. BIRTH.IND) -these are for indicator 
matrices. 
(v) those that end .DEG ~ these contain coordinates of points on 
a sphere. 
For the user to input his/her own data, see below. 

A.2.3 To run the menu 

There are three ways to run the menu program: 
(i) create a DOS window, change directory to  c:\mds\data, and 
type mds. (Note: mds can be typed from any directory.) 
(ii) run mds from Windows (e.g. for Windows 95 and 98 click start, 
click run, type mds, click OK) 
(iii) double click on the mds icon (if created) 
In all three cases, a menu will appear in a DOS window. It has 
three columns of numbers and descriptions. Each number refers 
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to a program. The first column of programs (nos. 10-23) manipu- 
late data ready for MDS analysis. The second column of programs 
(nos. 100-110) carry out the MDS analyses. The third column of 
programs (nos. 1000-1008) are for plotting and menus and to stop. 
To run a program, simply type the program number. 
To obtain a description of a program, type the program number 
followed by ,D (e.g. 22,D). 

A.2.4 Program descriptions 

Data manipulation programs 
10 DAT2TRAN - transposes a matrix or vector, switching rows 
and columns 
11 DAT2UNF ~ converts a matrix of dissimilarities ready for the 
unfolding program 
12 HISTORY - this program is used on the historical voting data 
of Chapter 12 to  produce dissimilarities ready for input into MD- 
SCAL-2/3 
13 IND2CON ~ transforms an indicator matrix into a contingency 
table 
14 MAT2DISS - converts a binary data matrix into dissimilarity 
data 
15 MDS-INPU ~ allows the user to  input dissimilarities data (one 
at  a time) 
16 RAN-DATS ~ selects a subset of the data at random for analysis 
17 RAN-VECG - generates random data for existing objects in a 
file 
18 RAND-CAT ~ generates random categorical data for existing 
objects in a file (see Cox and Cox, 1998) 
19 RECAVDIS ~ generates general two-way dissimilarity data ac- 
cording to  Cox and Cox (2000) (see page 193) 
20 VEC-JOIN - combines two sets of vectors into a single set: 
useful for plotting two configurations simultaneously 
21 VEC2CSV ~ converts vector output files into comma separated 
values suitable for importing into a spread sheet. 
22 VEC2DISS - generates dissimilarity data from data vectors 
23 VEC2GOWE ~ generates Gower’s general dissimilarities from 
a data matrix 
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MDS techniques 
100 BIPLOT - Biplots (does not plot the biplot) 
101 CLSCAL - Classical scaling 
102 INDSCAL ~ Individual Differences Scaling, INDSCAL 
103 LEAST-SQ ~ Least squares scaling 
104 MDSCAL-T ~ Spherical MDS 
105 MDSCAL-2 - Nonmetric scaling 
106 MDSCAL-3 - Nonmetric scaling (one-mode, three-way) 
107 PROCRUST ~ Procrustes analysis 
108 RECIPEIG ~ Reciprocal averaging 
109 UNFOLDIN ~ Unfolding 
110 UNI-SCAL - Unidimensional scaling 

Plotting and menus 
1000 LINEAR ~ Linear biplots (plots the biplot) 
1001 MENU - The menu program 
1002 MENU-DAT - A menu of the data sets 
1003 MOVIE-MD ~ Nonmetric MDS plotting the configuration at 
each step 
1004 NONLIN ~ Non-linear biplots 
1005 SHEP-PLO - Shepard plot for nonrrietric MDS 
1006 THETA-PL - Three dimensional plotting program for spher- 
ical MDS 
1007 VEC-PLOT ~ Two dimensional plot of the first two columns 
in a file 
1008 EXIT - (or use return key) 

A.3 The data provided 

Various data sets are in the directory c:\mds\data. Typing 1002 
in the MDS menu will give a menu for the data  sets. Each data  
set is given a number and typing this number produces a short 
decription of the data. Note that the data menu cannot be used to  
select files for anlysis. 

The data sets 
UK-TRAVE.DIS (Chapter 1) 

SKULLS.VEC, PLATO.VEC (Chapter 2) 

KELLOG.VEC (Chapter 3, Chapter 5) 

WORLD-TR.MAT (Chapter 3, Chapter 4) 
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WORLD-TR.DEG (Chapter 4) 

HANS -70. DAT HANS -71. DAT HANS -72. DAT HANS -73. DAT 
(Chapter 4) 

ORD-SURV.VEC SPEED.VEC (Chapter 5) 

MONK-84.DIS MONK-85.DIS (Chapter 6) 

WHISKY.MAT (Chapter 6, Chapter 9) 

AIR-EXPE.VEC AIR-NOVI.VEC (Chapter 6) 

YOGHURT.VEC (Chapter 6) 

SCORES.VEC (Chapter 7) 

NATIONS.VEC (Chapter 8) 

CANCER.MAT (Chapter 9) 

MUNSINGE.MAT (Chapter 9) 

BIRTH.IND (Chapter 9) 

PGEB.VEC PGWC.VEC POQ.VEC TPO.VEC TRD.VEC 
(Chapter 10) 

MAID STONE. 68 (Chapter 12) 

Figures in the text 
Some of the configurations in the text can be reproduced using the 
following programs and data sets. 

CLSCAL UK-TRAVE.DIS 
VEC-PLOT 
VEC2DISS SKULLS.VEC 
CLSCAL 
VEC-PLOT 
VEC2DISS SKULLS.VEC 
LEAST-SQ 
VEC-PLOT 
VEC2GOWE KELLOG.VEC 

and MDSCAL-2 
VEC-PLOT 
SHEP-PLO 

Figure 1.1

Figure 2.1

Figure 2.2

Figure 3.2

Figure 3.4
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MAT2DISS WORLD-TR.MAT 
MDSCAL-2 
VEC-PLOT 
VEC2DISS HANS-70.VEC 
MDSCAL-2 HANS-71.VEC 
PROCRUST HANS-72.VEC 

HANS-73.VEC 
MAT2DISS WORLD-TR.MAT 
MDSCAL-T WORLD-TR.DEG 
THETA-PL 
PROCRUST ORD-SURV.VEC 
VEC-PLOT SPEED.VEC 
MDSCAL-2 MONK-84.DIS 
PROCRUST MONK-85.DIS 
VEC-PLOT 
MAT2DISS WHISKY.MAT 
MDSCAL-2 
VEC-PLOT 
PROCRUST AIR-EXPE.VEC 
VEC-PLOT AIR-NOVI.VEC 
VEC-DISS YOGHURT.VEC 
MDSCAL-2 
VEC-PLOT 
LINEAR SCORES.VEC 

NONLIN SCORES.VEC 
DAT2UNF NATIONS.VEC 
UNFOLDIN 
VEC-JOIN 
VEC-PLOT 
RECIPEIG CANCER.MAT 
VEC-PLOT 
RECIPEIG MUNSINGE.MAT 
VEC-PLOT 
RECIPEIG WHISKY .MAT 
VEC-PLOT 

Figure 8.3

Figure 9.2

Figure 9.4

Figure 9.5

Figure 7.4
7.2,  7.3
Figure 7.1

Figure 6.4

Figure 6.3

Figure 6.2

Figure 6.1

Figure 5.2(ii)

Figure 4.3

Figure 4.2

Figure 3.12
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IND2CON CANCER.DAT 
RECIPEIG 
VEC-PLOT 
IND2CON BIRTH.IND 
RECIPEIG 
VEC-PLOT 
VEC2DISS PGEB.DAT 
INDSCAL POQ.DAT 
VEC-PLOT PGWC.DAT 

TPO.DAT 
TRD.DAT 

HISTORY MAIDSTONE.68 
MDSCAL-2 
VEC-PLOT 
HIST MAIDSTONE.68 
MDSCAL-3 
VEC-PLOT 

A.4 To manipulate and analyse data 

This section gives some examples of how the various programs 
are invoked. It is suggested that users follow these examples for 
practice before attempting analysis of their own data. The return 
key is symbolized as t). 

E x a m p l e  1: Classical scaling of t h e  skull data 
From the menu type 22 e (to construct dissimilarities from the 
raw data) 
Now type: 
a1 t) 
1 e  

n t )  
Y +  
skulls.vec t) 

a2 e 

101 t) 
a2 t) 

e 

t) 

(file name for a record of the session) 
(choose Euclidean distance as a measure of 
dissimilarity) 
(choose not to  transpose rows and columns) 
(standardize columns) 
(input raw data from the file) 
(no more data required) 
(file for output of dissimilarities) 
(continue, back to  the menu) 
(choose classical scaling from the menu) 
(input the dissimilarities) 

Figure 12.1 (ii)

Figure 12.1 (i)

Figure 10.1

Figure 9.8

Figure 9.7
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a3 t. 
(Eigenvalues are displayed) 
Y e  
a4 t) 

(file to  record the output) 

(to save coordinates for plotting) 
(file for saving the coordinates; the program 
suggests the user enters a file name ending 
in .VEC, to  show the type of file, but this is not 
necessary.) 
(to continue, return to  the menu) 
(choose the plotting program) 

(do not wish to  reset the axes) 
(to plot the configuration on the screen) 
(to return from the plot) 

(to return to the menu) 

t) 

1007 t) 
a4 t. (input the coordinates) 
n t .  
t) 

t) 

s t )  (stop the plotting program) 
t. 

Hint: to  delete the files that have been created in this analysis either 
do this in Windows (e.g. from Windows Explorer), or if using DOS 
directly, exit the menu program (or use another DOS window) 
change directory to  c:\mds\data (cd command) if not already in 
this directory and delete the files (delete a?). 

Example 2: Nonmetric MDS of the Kellog data 
From the menu type 23 t) (to construct dissimilarities based on 
Gower 's general dissimilarity coefficient) 
Now type: 
kellog.vec t. 
b l  t. 
b2 t) 
ord t) 

Y *  

105 t) 
b2 t) 
b3 t) 

2 t .  
200 t) 
b4 t) 
b5 t) 

t. 

t. 

(input the raw data) 
(file name for a record of the session) 
(file to  store the dissimilarities) 
(several times; the program checks whether 
the data are categorical or ordinal) 
(to standardize variables) 
(return back to the menu) 
(choose nonmetric mds from the menu) 
(input the dissimilarities) 
(file to  record the output) 
(choose a random starting configuration) 
(choose a 2-dimensional solution) 
(choose 200 iterations of the algorithm) 
(file for saving the coordinates) 
(file to  save Shepard plot) 
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e 
1007 t) 
b4 t) 
n t )  
e 
e 
s t )  
1005 t) 
b5 t) 
e 

(to continue, return to  the menu) 
(choose the plotting program) 
(input the coordinates) 
(do not wish to  reset the axes) 
(to plot the configuration on the screen) 
(to return from the plot) 
(stop the plotting program) 
(to draw the Shepard plot) 
(to input plot file) 
(to return to the menu) 

E x a m p l e  3: Least  squares scaling and  Procrustes  analysis of t h e  
Kellog data 
It is assumed that the dissimilarities have been constructed as in 
Example 2. 
From the menu type 103 e (to choose Least-Squares Scaling from 
the menu) 
Now type: 
b2 t) (input the dissimilarities) 
c2 e 
t) 

2 t )  (choose a 2-dimensional solution) 
200 t) 
c4 t) 
e 

107 t) 
c3 t) 
b4 e 
c4 e (mobile configuration) 
c5 t) (modified configuration) 
t) (to return to the menu) 
(plot configurations as required) 

(file name to record the session) 
(choose a random starting configuration) 

(choose 200 iterations of the algorithm) 
(file for saving the coordinates) 
(to continue, return to  the menu) 
(plot the configuration as in Example 2) 
(choose Procrustes analysis from the menu) 
(file to  record the session) 
(target configuration from Example 2) 

E x a m p l e  4: Individual  dif ferences scaling of groundwater  samples  
22 t) (to generate dissimilarities) 
d l  t) 
10 t) (choose correlations) 
Y e  (transpose rows and columns) 

(note there is a maximum of 15 stimuli allowed) 
Y e  (standardize columns) 

(file to  record the session) 
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pgeb.vec e 
pgwc.vec t) 
poq.vec t) 
tpo.vec t) 
trd.vec e 
e (to terminate input) 
d2 t) (file to  save dissimilarities) 
t) (return to  menu) 
102 t) (choose INDSCAL from the menu) 
d2 e (input the dissimilarities) 
d3 e (file to  record the session) 
-1 t) (use default tolerance) 
-1 t) (use default number of cycles) 
2 t )  (number of dimensions) 
e (no starting vector) 
e (no starting vector) 
t) (no starting vector) 
Y +  (save results) 
d4 t) (individuals space) 
d5 e (group stimulus space) 
t) (return to  menu) 

(now plot configurations) 

(enter raw data, 5 files in total) 

E x a m p l e  5: Biplot  of t he  Rena i s sance  pa in te r s  
From the menu type 1000 e (to choose Linear Biplot) 
Then type 
scores.vec t) (input the data) 
e l  t) 
Y e  (to standardize the columns) 
1.0 e 
n t )  

t) (to end plot) 
e (return to  the menu) 

(file to  record the session) 

(choose principal components biplot) 
(do not reset axes for plotting) 

t) (to plot) 

E x a m p l e  6: Reciprocal Averaging of t he  M u n s i n g e n  data 
From the menu type 108 t) (to choose Reciprocal Averaging) 
Then type 
munsinge.mat e (input the data) 
f l  e 
Y e  

(file to  record the session) 
(to save the vector for objects) 
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f2 e (file for results) 
Y e  
f3 e (file for results) 
e (return to  the menu) 

(now use plot-vec as in previous examples for f2 and f3) 

(to save the vector for attributes) 

A.5 Inputting user data 

The user may analyse his/her own data contained in a pre-prepared 
file. The menu does allow input of dissimilarity data directly, but 
not general data. Data has to  be placed in files according to  the 
following formats. 

A.5.1 Data format 

Vectors need to be in the following (FORTRAN) format: 

FORMAT 
Heading A80 
I,J,K,ALPHA 313,G12.5 
ACR,COL,X 
(for i=l , .  . . ,I) 

where: I is number of individuals; J is number of dimensions for 
the solution; K is number of cycles performed in the analysis; AL- 
PHA is final gradient calculated; ACR is an identifier (acronym) 
for individual i; COL is a descriptor (colour) for individual i; X is 
the vector position of individual i in J dimensions. 
Note that,  apart from ACR and COL, the data may be entered as 
comma separated values. 

2A4,25G12.5 or comma separated values 

Note: this structure is designed for use with multidimensional scal- 
ing. However, it is adopted for all the programs. In general, the 
parameters K and ALPHA may be omitted. 

Dissimilarities need to be in the following FORMAT: 

FORMAT 
Heading A80 
I I3 
dij G16.9 
(for i=2 , .. . ,I; 

j = 1 , .. . ,i- 1) 
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ACR,COL 2A4 
(for i= I,. . . ,I) 

where: I is the number of individuals; dij is the dissimilarity be- 
tween individuals i and j (assign missing values a negative dissim- 
ilarity); ACR is an identifier (acronym) for individual i; COL is a 
descriptor (colour) for individual i. 

Note that the dissimilarities are input by rows. Since the matrix 
is symmetric, only the lower triangle is required. In general, the 
parameters ACR and COL may be omitted. If required, successive 
integers will be adopted to  label the points. 

In general, if a dissimilarity is missing, simply assign it a negative 
value. 

Dissimilarities for Individual Differences Scaling 

The format closely follows that of the dissimilarity data files. 

FORMAT 
Heading A80 
I, J 213 
dij k G16.9 
(for i= l  ,.. . ,I; 

j=2, ... , J; 
k=l , .  .., j-1) 

ACR,COL 2A4 
(for i= 1 , .. . ,I) 
ACR1,COLI 2A4 
(for j = 1,. . . , J) 

where: I is the number of individuals; J is the number of dissim- 
ilarity matrices; dijk is the dissimilarity for individual i between 
objects j and k; ACR is an identifier (acronym) for individual i; 
COL is a descriptor (colour) for individual i; ACRl is an identifier 
(acronym) for object j ;  COLl is a descriptor (colour) for object j. 

Note that the dissimilarities are input by rows. Since the matrix is 
symmetric, only the lower triangle is required. Missing dissimilari- 
ties are unacceptable for this technique. In general, the parameters 
ACR, COL and ARC1, COLl may be omitted. If required, succes- 
sive integers will be adopted to  label the points. 

© 2001 by Chapman & Hall/CRC



Contingency tables 

The following is for contingency tables or data matrices with inte- 
ger values. 

FORMAT 
Heading A80 
I, J 213 
A 
(for i= 1 , .. . ,I) 
ACR,COL 2A4 
(for i= 1 , .. . ,I) 
ACR1,COLI 2A4 
(for j = 1,. . . , J) 

where: I is the number of individuals (rows); J is the number of at- 
tributes (columns); A is the J dimensional row vector of attributes 
for individual i; ACR is an identifier (acronym) for individual i; 
COL is a descriptor (colour) for individual i; ACRl is an identi- 
fier (acronym) for attribute j ;  COLl is a descriptor (colour) for 
attribute j .  

8013 or comma separated values 

In general, the parameters ACR, COL and ARC1, COLl may be 
omitted. If required, successive integers will be adopted to label 
the points. 

Indicator Matrix 

This “indicator matrix” stores the values in a contingency table 
in compact form for use in multiple correspondence analysis. For 
example, from page 138, the 28 rows of (0, 0, 0, 1, 0, 0, 1) would 
have a single line entry in the matrix as 28 4 3. 

Heading A80 
Frequency, Levels 
(for i= 1 , .. . ,I) 
ACR,COL 2A4 
(for i= 1 , .. . ,I) 

where: I is the number of levels; ACR is an identifier (acronym) 
for individual i; COL is a descriptor (colour) for individual i. 

In general, the parameters ACR and COL may be omitted. If re- 
quired, successive integers will be adopted to label the points. 

1113 or comma separated values 
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A.6 Error messages 

All file allocations and parameters specific to the programs are set 
interactively at  run time. In particular, a file containing a record 
of the run is compiled. Appropriate data files, as described above, 
are prepared in advance. 
Any errors associated with the run, which typically arise if too large 
a data set is considered, will be reported on the screen. In addition, 
stopping codes are produced; a value of 0 (STOP 0) is associated 
with a successful run. The other stopping codes are summarised 
below. 

BIPLOT 

1 - no file containing a data matrix provided 
2 - no file to record the output provided 
3 - no file to record the final X configuration provided 
4 - no file to record the final Y configuration provided 
5 - increased array bounds required for the matrix provided 
6 - increased array bounds required for working space 
7 - increased array bounds required for the sort subroutine 
8 - an eigenvalue is less than zero 

CLSCAL 

1 - no file of dissimilarities provided 
2 - no file to record the output provided 
3 - no file to record the final configuration provided 
4 - too many individuals required 
5 - a missing value was encountered in the dissimilarity list 
6 - increased array bounds required for the sort subroutine 

DAT2TRAN 

1 - no file containing an information matrix is provided 
2 - too many individuals required 
3 - too many attributes required 
4 - no file to record the transposed matrix provided 

DAT2UNF 

1 - no file to record the output provided 
2 - no file containing a contingency table provided 
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3 - increased array bounds required for the data provided 
4 - a missing value is unsuitable for unfolding 
5 - no file to record the final configuration provided 

HISTORY 

1 - no data file provided 
2 - too many candidates - array overload 
3 - too many pairings of candidates - array overload 
4 - too many triples of candidates - array overload 

IND2CON 

1 - no file to record the output provided 
2 - no file containing a data matrix provided 
3 - too much data (too many rows) input 
4 - too much data (too many columns) input 
5 - no file to record the final configuration provided 

INDSCAL 

1 - no file of dissimilarities provided 
2 - no file to record the output provided 
3 - no file to record the final configuration provided 
4 - no file to record the attribute weights provided 
5 - too few individuals provided 
6 - too many individuals required 
7 - too many attributes required 
8 - a missing value was encountered in the dissimilarity list 

LEAST-SQ 

1 - no file of dissimilarities provided 
2 - no file to  record the output provided 
3 - too many cycles required 
4 - no file to  record the final configuration provided 
5 - too many individuals required 
6 - the solution is required in too many dimensions 

LINEAR 

1 - no file containing a data matrix provided 
2 - no file to  record the output provided 
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3 - a graphics adaptor is needed to  run this program 
4 - increased array bounds required for the matrix provided 
5 - increased array bounds required for working space 
6 - increased array bounds required for the sort subroutine 
7 - an eigenvalue is less than zero 

MAT2DISS 

1 - insufficient storage for local variables 
2 - no file containing a data matrix provided 
3 - no file to record the output provided 
4 - no file to record the individual dissimilarities provided 
5 - no file to record the attribute dissimilarities provided 
6 - too many individuals required 
7 - too many attributes required 
8 - a non-binary variable was encountered 

MDSCAL-2 

1 - no file of dissimilarities provided 
2 - no file to  record the output provided 
3 - too many cycles required 
4 - no file to  record the final configuration provided 
5 - no file to  record the results for a Shepard plot 
6 - too many individuals required 
7 - too high a dimensional solution required 
8 - increased array bounds required for the sort subroutine 

MDSCAL-3 

1 - no file of dissimilarities provided 
2 - no file to  record the output provided 
3 - too many cycles required 
4 - no file to  record the final configuration provided 
5 - no file to  record the results for a Shepard plot 
6 - too many individuals required 
7 - too high a dimensional solution required 
8 - increased array bounds required for the sort subroutine 

MDSCAL-T 

1 - no file of dissimilarities provided 
2 - no file to  record the output provided 
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3 - too many cycles required 
4 - no file to record the final configuration provided 
5 - no file to record the results for a Shepard plot 
6 - too many individuals required 
7 - increased array bounds required for the sort subroutine 

MDS-INPU 

1 - no file to  record the output provided 
2 - no file to  record the dissimilarities provided 

MENU 

1 - no appropriate data file provided 

MENU-DAT 

1 - too many file names provided 
2 - selected item too high 
3 - no appropriate data file provided 

MOVIE-MD 

1 - no file of dissimilarities provided 
2 - no file to  record the output provided 
3 - too many cycles required 
4 - no file to  record the final configuration provided 
5 - no file to  record the results for a Shepard plot 
6 - too many individuals required 
7 - too high a dimensional solution required 
8 - increased array bounds required for the sort subroutine 
9 - a graphics adaptor is needed to  run this program 

NONLIN 

1 - no file containing a data matrix provided 
2 - no file to  record the output provided 
3 - a graphics adaptor is needed to  run this program 
4 - increased array bounds required for the matrix provided 
5 - increased array bounds required for working space 
6 - increased array bounds required for the sort subroutine 
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PRO CRUST 

1 - no file to record the output provided 
2 - no file containing a target configuration provided 
3 - no file containing a mobile configuration provided 
4 - no file to record the final configuration provided 
5 - too many individuals in the target configuration 
6 - too high a dimension in the target configuration 
7 - too many individuals in the mobile configuration 
8 - too high a dimension in the mobile configuration 
9 - the vectors have no points in common 
10 - the input vectors are only one dimensional 
11 - negative eigenvalues generated 
12 - increased array bounds required for the sort subroutine 
13 - Gram-Schmidt orthogonalisation has failed 

RAND-CAT 

1 - no file containing a data vector provided 
2 - no file to  record the output provided 
3 - failed to generate partitioning planes 
4 - no file to  record the final configuration provided 
5 - too many individuals required 

RAN-DATS 

1 - no file containing a data vector or matrix provided 
2 - too many individuals required - vector input 
3 - too many attributes required - vector input 
4 - no file to  record the final configuration provided 
5 - too many individuals required - matrix input 
6 - too many attributes required - matrix input 
7 - no file to  record the selected subset is provided 

RAN-VECG 

1 - no file containing vector or dissimilarity data provided 
2 - no file to  record the final configuration provided 
3 - insufficient acronyms provided 

RECAVDIS 

1 - no file containing an information matrix is provided 

© 2001 by Chapman & Hall/CRC



2 - no file to record the output provided 
3 - exponentiation error - numerical overflow 
4 - data type not recognized 
5 - no file of dissimilarities provided 
6 - no appropriate eigenvalues located 
7 - increased array bounds required for the matrix provided 
8 - increased array bounds required for working space 
9 negative dissimilarity generated 
10 conflict when combining two categories 
11 increased array bounds required for the sort subroutine 

RECIPEIG 

1 - no file containing an information matrix is provided 
2 - no file to record the output provided 
3 - no file to record the final individual configuration provided 
4 - no file to record the final attributes configuration provided 
5 - increased array bounds required for the matrix provided 
6 - increased array bounds required for working space 
7 - the data contains an excess of missing values 
8 - increased array bounds required for the sort subroutine 

SHEP-PLO 

1 - no file containing a configuration provided 
2 - a graphics adaptor is needed to  run this program 

THETA-PL 

1 - no file containing a configuration provided 
2 - no file to  record the output provided 
3 - all transformations are zero 
4 - a graphics adaptor is needed to  run this program 
5 - too many data points required 

UNFOLDIN 

1 - no file of dissimilarities provided 
2 - no file to  record the output provided 
3 - no file to  record the final X configuration provided 
4 - no file to  record the final Y configuration provided 
5 - insufficient space for the X dimension 
6 - insufficient space for the Y dimension 
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7 - insufficient space for the dimensions required 
8 - increased array bounds required for the sort subroutine 
9 - a null vector has been generated 

UNI-SCAL 

1 - no file of dissimilarities provided 
2 - no file to  record the output provided 
3 - no file to  record the final configuration provided 
4 - too many individuals required 
5 - increased array bounds required for the sort subroutine 

VEC2CSV 

1 - no file containing a vector file provided 
2 - no file provided to  record the output vector 

VEC2DISS 

1 - no file to  record the output provided 
2 - too many files required 
3 - too many rows required 
4 - too many columns required 
5 - no file to  record the dissimilarities provided 
6 - negative dissimilarity generated 

VEC2GOWE 

1 - no file containing a data vector provided 
2 - no file to  record the output provided 
3 - no file to  record the dissimilarities provided 
4 - data type not recognized 
5 - increased array bounds required for the matrix provided 
6 - increased array bounds required for working space 

VECJOIN 

1 - no file containing a first vector provided 
2 - no file containing a second vector provided 
3 - no file to  record the combined vector is provided 
4 - increased array bounds required for the vector provided 
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VEC-PLOT 

1 - no file containing a configuration provided 
2 - a graphics adaptor is needed to  run this program 
3 - too much data input 
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