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Chapter 1
Introduction

Abstract In this chapter, we provide an overview of several emerging statistical
challenges in recent clinical trials. These include multiple endpoints, non-inferiority
designs, and adaptive designs.

Keywords Modern adaptive designs � Group-sequential designs � Multiple end-
points � Non-inferiority designs

1.1 Emerging Statistical Issues in Clinical Trials

Clinical trials are the most reliable and well-accepted scientific methods for eval-
uating the efficacy, safety, and effectiveness of investigational medical products.
Clinical trials eliminate or reduce many biases and confounding that plague
observational studies through the use of tools such as prospective observation,
randomization, blinding, use of control groups, and the intent-to-treat
(ITT) principle, to isolate the effect of an intervention and establish cause and
effect (Mosteller 1981; Evans and Ting 2015). However, clinical trials can be
extremely expensive and resource intensive as they often require the enrollment of
large numbers of participants and the collection of massive amounts of data. The
high costs of clinical trials have contributed to stagnation in medical product
development. The costs are barriers to innovation that might offer patients rapid
access to new medical products (Food and Drug Administration, FDA 2006).

To evaluate the most appropriate interventions for future patients, clinical trials
are usually conducted to assess whether an improvement of a patient’s disease
status could be observed with the use of a new intervention, whether adverse
reactions are caused by a new intervention, and how a new intervention could
physiologically work. Despite clinical trials, considerable uncertainty regarding the
safety and effectiveness of medical products often remains. The two major causes
are the dearth of knowledge and evaluative tools for exploring pharmacological
mechanisms (either of benefit or risk) and the limited ability of clinical trials to
address more than a few questions within a single trial (FDA 2006).

© The Author(s) 2016
T. Hamasaki et al., Group-Sequential Clinical Trials with Multiple Co-Objectives,
JSS Research Series in Statistics, DOI 10.1007/978-4-431-55900-9_1
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There is demand for new approaches for developing medical products more
quickly and more cost effectively. Several statistical challenging areas have
emerged in pursuit of more effective and efficient development. These include
multiple endpoints, non-inferiority designs, adaptive designs, targeted subgroup and
enrichment designs, and multi-regional clinical trial designs. This book focuses on
two of these challenges, clinical trials with multiple endpoints and non-inferiority
clinical trials, but discusses these within the framework of group-sequential designs.

1.1.1 Multiple Co-primary Endpoints

In clinical trials, most commonly, a single outcome is selected as a primary end-
point and then used as the basis for the trial design including sample size deter-
mination, interim data monitoring, final analyses, and reporting and publication of
results. However, many recent clinical trials have utilized more than one primary
endpoint as co-primary. “Co-primary” means that a trial is designed to evaluate
whether a test intervention has an effect on all of the primary endpoints. Failure to
demonstrate an effect on any single endpoint implies that the beneficial effect to the
control intervention cannot be concluded. The rationale for this is that the use of a
single endpoint may not provide a comprehensive picture of the intervention’s
multidimensional effects.

Regulators have issued guidelines recommending multiple co-primary endpoints
in specific disease areas including acute heart failure (Committee for Medicinal
Products for Human Use, CHMP 2012a), Alzheimer’s disease (CHMP 2008; FDA
2013), diabetes mellitus (CHMP 2012b), Duchenne and Becker muscular dystrophy
(CHMP 2013a), and irritable bowel syndrome (IBS) (FDA 2012; CHMP 2013b).
For example, CHMP (2008) and FDA (2013) recommend a co-primary endpoint
approach using cognitive and functional or global endpoints to evaluate symp-
tomatic improvement of dementia associated with Alzheimer’s disease, indicating
that primary endpoints should be stipulated reflecting the cognitive and functional
components. In the design of clinical trials evaluating treatments in patients affected
by IBS, the FDA recommends the use of two co-primary endpoints for assessing
IBS signs and symptoms: (1) pain intensity and stool frequency of IBS with con-
stipation (IBS-C) and (2) pain intensity and stool consistency of IBS with diarrhea
(IBS-D) (FDA 2012). CHMP (2012a, b) also discusses the co-primary endpoint
approach for assessing IBS signs and symptoms, using global assessment of
symptoms and assessment of symptoms of abdominal discomfort/pain, but they are
slightly different from FDA’s recommendation. Offen et al. (2007) provide other
examples using multiple co-primary endpoints.

The resulting need for new approaches to the design and analysis of clinical
trials with multiple endpoints has been noted (Gong et al. 2000; Sankoh et al. 2003;
Chuang-Stein et al. 2007; Offen et al. 2007; Hung and Wang 2009; Dmitrienko
et al. 2010). Utilizing multiple endpoints may provide the opportunity for charac-
terizing the intervention’s multidimensional effects, but also creates challenges.
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Specifically controlling Type I and Type II error rates is non-trivial when the
multiple endpoints are potentially correlated. When more than one endpoint is
viewed as important in a clinical trial, a decision must be made as to whether it is
desirable to design the trial to evaluate the joint effects on all endpoints or at least
one of the endpoints. This decision defines the alternative hypothesis to be tested
and provides a framework for approaching trial design. When designing the trial to
evaluate the joint effects on all of the endpoints, no adjustment is needed to control
the Type I error rate. The hypothesis associated with each endpoint can be evalu-
ated at the same significance level that is desired for demonstrating effects on all of
the endpoints [the International Conference on Harmonisation of Technical
Requirements for Registration of Pharmaceuticals for Human Use (ICH) E9
Guideline, 1998; Committee for Proprietary Medical Products, CPMP (2002)].
However, the Type II error rate increases as the number of endpoints to be eval-
uated increases. This is referred to as “multiple co-primary endpoints” and is related
to the intersection–union problem (Offen et al. 2007; Hung and Wang 2009). In
contrast, when designing the trial to evaluate an effect on at least one of the
endpoints, an adjustment is needed to control the Type I error rate. This is referred
to as “multiple primary endpoints” or “alternative primary endpoints” and is related
to the union–intersection problem (Offen et al. 2007; Hung and Wang 2009;
Dmitrienko et al. 2010). The challenges created by multiple co-primary endpoints
are several. We discuss some of them here.

Sizing a clinical trial: There is an increasing trend toward requiring that con-
firmatory clinical trials achieve statistical significance on all of K primary endpoints
(K ≥ 2). Clearly as the number of endpoints increases, it becomes more difficult to
achieve statistical significance on all endpoints. This goal requires a sample size
adjustment often resulting in a sample size that is too large and impractical to
conduct the clinical trial.

One alternative to multiple endpoints is to define a single composite endpoint
based on the multiple endpoints. This effectively reduces the problem to a single
dimension, thus simplifying the design by avoiding the multiplicity issues associ-
ated with multiple endpoints. However, the creation and interpretation of a com-
posite endpoint can be challenging, particularly when treatment effects vary across
components with very different levels of clinical importance (Cordoba et al. 2010).

Another method for providing a more practical sample size is to consider
incorporating the correlations among the endpoints into the sample size calculation.
This has been discussed in fixed-sample designs by many authors (Xiong et al.
2005; Chuang-Stein et al. 2007; Offen et al. 2007; Senn and Bretz 2007; Hung and
Wang 2009; Li 2009; Song 2009; Kordzakhia et al. 2010; Sozu et al. 2010, 2011,
2012, 2015; Julious and Mclntyre 2012; Sugimoto et al. 2012, 2013; Hamasaki
et al. 2013). The correlations among the endpoints may be estimated using data
from external or pilot studies although such data are often limited. Inaccurate
assumptions regarding the correlations during sample size calculation may affect
decision-making in clinical trials. For example, if the correlation is overestimated,
then the calculated sample size is too small to detect the joint effect on all the
endpoints with the desired power.
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Relaxing a rejection region: The corresponding rejection region of the null
hypothesis defined as the intersection of K regions associated with the K co-primary
endpoints is considerably restricted, resulting in the conservative hypothesis testing,
especially when the number of endpoints to be evaluated is large. There is a need
for methods’ development for relaxing the rejection region. Chuang-Stein et al.
(2007) and Kordzakhia et al. (2010) discussed methods to control the Type I error
rate. Their strategy is to adjust the significance levels depending on the correlation
among the endpoints. The methods may reduce the required sample sizes but
introduces other complexities. For example, the sample size calculated to detect the
joint effect may be smaller than the sample size calculated for each individual
endpoint. The correlation is usually unknown, and assumptions regarding the
correlation may be incorrect. This calls into question of how such assumptions
regarding the correlation may affect the decision-making in clinical trials.

1.1.2 Non-inferiority

The most fundamental design is the placebo-controlled trial in which eligible study
participants are randomized to the intervention or a placebo/sham (an inert “fake”
intervention). Study participants are then followed over time, and results from the
two randomized arms are compared. If the intervention arm can be shown to be
more effective or superior than the placebo arm, then the effect of the intervention
has been demonstrated. Although the placebo-controlled trial is considered the
optimal design to scientifically evaluate the benefit–risk profile of an intervention,
the use of placebo may be unethical due to the availability of an intervention that
has been shown to have a favorable benefit–risk profile (Rothmann et al. 2011).

Non-inferiority (NI) trial designs (sometimes inaccurately referred to as
“equivalence trials”) have been developed to address this issue. In recent years, NI
trials have received a great deal of attention by regulatory authorities (CHMP 2006;
FDA 2010a) as well as in the clinical trials’ literature. The rationale for NI trials is
that in order to appropriately evaluate an intervention, a comparison with a control
group is necessary to put the results of an intervention arm into context. However,
for some medical indications, randomization to a placebo is unethical due to the
availability of a proven effective intervention. In this case, an existing effective
intervention may be selected to be an active control group (referred to as active-
controlled trials in contrast to placebo-controlled trials) with the objective to
evaluate NI of the test intervention relative to the active control (in contrast to
superiority to a placebo control).

The objective of a NI trial is different than a placebo-controlled trial. No longer
is it necessary to evaluate whether the test intervention is superior (deemed supe-
riority trials) to the control as in placebo-controlled trials. Instead, it may be
desirable to evaluate whether the test intervention is “at least as good as” or “no
worse than” (i.e., non-inferior to) the active control. Thus, it is important to
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remember that in this context “non-inferiority” does not simply mean “not inferior,”
but rather “not too inferior” (i.e., differences are smaller than a prespecified margin
(Blackwelder 2002). Ideally, the test intervention is better than the active control in
other ways (e.g., less expensive, better safety profile, better quality of life, or more
convenient or less invasive to administer such as requiring fewer pills or a shorter
treatment duration resulting in better adherence). For example, in the treatment of
HIV, researchers seek less complicated or less toxic antiretroviral regimens that can
display similar efficacy to existing regimens.

NI trials have several complexities, thus requiring careful design, monitoring,
analyses, and reporting and publication of results (Snappin 2000; Power et al. 2005;
Fleming 2008; Power 2008; Evans 2009; Hamasaki and Evans 2013; Evans and
Follmann 2015). We discuss some of the challenges here.

Constancy and assay sensitivity: Two important assumptions associated with
the design of NI trials are constancy and assay sensitivity (AS) (ICH 2000;
D’Agostino et al. 2003; FDA 2010a). In NI trials, an active control is selected
because it has been shown to be efficacious (e.g., superior to placebo) in a com-
pleted trial. The constancy assumption states that the observed effect of the active
control over placebo in the completed trial would be the same as the effect in the
current trial presuming a placebo group was included. This may not be the case if
there were differences in trial conduct (e.g., differences in treatment administration,
endpoints, or population) between the historical and current trials or if resistance to
the control intervention has developed over time (e.g., antibiotic resistance). This
assumption is not testable in a trial without a concurrent placebo group.

AS is another important assumption in the design of NI trials. The assumption of
AS states that the trial is designed in such a way that it is able to detect differences
between therapies if they indeed exist. Unless the instrument that is measuring
intervention response is sensitive enough to detect differences, the therapies will
display similar responses due to the insensitivity of the instrument, possibly
resulting in an inability to detect important differences and to erroneously conclude
NI. The endpoints that are selected, how they are measured, and the conduct and
integrity of the trial can affect AS.

Selecting a control intervention: A control intervention in a NI trial should be
considered carefully. Regulatory approval does not necessarily imply that a therapy
can be used as a control. The active control ideally will have clinical efficacy that is
(1) of substantial magnitude, (2) estimated with precision in the relevant setting in
which the NI trial is being conducted, and (3) preferably quantified in multiple
trials. Since the effect size of the active control relative to placebo is used to guide
the selection of the NI margin (described later), superiority to placebo must be
reliably established and measured. A comprehensive synthesis of the evidence that
supports the effect size of the active control (i.e., superiority to placebo) and the NI
margin should be assembled. For these reasons, the data may not support a NI
design for some indications. When selecting the active control for a NI trial, one
must consider how the efficacy of the active control was established (e.g., by
showing NI to another active control vs. by showing superiority to placebo). If the
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active control was shown to be effective via a NI trial, then one must consider the
concern for biocreep. Biocreep is the tendency for a slightly inferior therapy (but
within the margin of NI) that was shown to be efficacious via a NI trial, to be the
active control in the next generation of NI trials (D’Agostino et al. 2003). Multiple
generations of NI trials using active controls that were themselves shown to be
effective via NI trials could eventually result in the demonstration of the NI of a
therapy that is not better than placebo. NI is not transitive: If A is non-inferior to B
and B is non-inferior to C, then it does not necessarily follow that A is non-inferior
to C. For this reason, some believe that NI trials should generally include the best
available active controls.

Selecting a NI margin: The selection of the NI margin in NI trials is a complex
issue and one that has created much discussion. In general, the selection of the NI
margin is conducted in the design stage of the trial and is utilized to help determine
the sample size. Defining the NI margin in NI trials is context-dependent, and it
plays a direct role in the interpretation of the trial results.

The selection of the NI margin is partly subjective but also guided by prior data,
requiring a combination of statistical reasoning and clinical judgment.
Conceptually, one may view the NI margin as the “maximum treatment difference
that is clinically irrelevant” or the “largest efficacy difference that is acceptable to
sacrifice in order to gain the advantages of the intervention.” Selection of the NI
often requires interactions between statisticians and clinicians. Since one indirect
goal of a NI trial is to show that intervention is superior to placebo, some of the
effect of active control over placebo needs to be retained (often termed “preserving
a fraction of the effect”). Thus, the NI margin should be selected to be smaller than
the effect size of the active control over placebo. Researchers should review the
historical data that demonstrated the superiority of the active control to placebo to
aid in defining the NI margin. Researchers must also consider the within- and
across-trial variability in these estimates (i.e., the uncertainty associated with these
estimates). Ideally, the NI margin should be chosen independent of study power,
but practical limitations may arise since the selection of NI margin can dramatically
affect study power.

A natural question is whether a NI margin can be changed after trial initiation. In
general, there is little concern regarding a decrease in the NI margin. However,
increasing the NI margin can be perceived as manipulation unless appropriately
justified (i.e., based on external data that are independent of the trial).

Analyzing a NI trial: In superiority studies, an ITT-based analysis tends to be
conservative (i.e., there is a tendency to underestimate true treatment differences).
As a result, ITT-based analysis is generally considered the primary analyses in
superiority trials as this helps to protect the Type I error rate. Since the goal of NI
trials is to show NI or similarity, an underestimate of the true treatment difference
can bias toward NI, thus inflating the “false-positive” Type I error rate (i.e.,
incorrectly claiming NI). Thus, ITT-based analysis is not necessarily conservative
in NI trials. For these reasons, an ITT-based analyses and a per protocol set (PPS)-
based analyses (i.e., an analysis based on study participants that adhered to
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protocol) are often considered as co-primary analyses in NI trials (ICH 1998;
D’Agostino et al. 2003). It is important to conduct both analyses (and perhaps
additional sensitivity analyses) to assess the robustness of the trial result (CPMP
2000; Evans 2009; Evans and Follmann 2015). PPS-based analyses often result in a
larger effect size since ITT-based analysis often dilutes the estimate of the effect, but
frequently result in wider confidence intervals since it is based on fewer study
participants than ITT-based analysis.

1.1.3 Adaptive Designs

Current medical product development for pharmaceuticals and medical devices
suffers from high clinical trial costs and a high risk of the failure. Clinical trial
designs with adaptive features (adaptive designs) have the potential to streamline
clinical trials making them more efficient, i.e., offering potentially fewer required
trial to participants, shortening the duration of clinical trials, and reducing costs.
Referring to the FDA guidance on “Adaptive Design Clinical Trials for Drugs and
Biologics” (FDA 2010b) and “Adaptive Designs for Medical Device Clinical
Studies” (FDA 2015), a clinical trial design with adaptive features is defined as a
study including a prospectively planned opportunity for modification of one or
more specified aspects of the study design and hypotheses based on the analysis of
accumulated data during the study, where the analyses of the accumulating study
data are performed at prospectively planned interims within the study. Analyses can
be performed in a fully blinded manner or in an unblinded manner and can occur
with or without formal statistical hypothesis testing.

During the last several decades, there has been great interest in conducting
clinical trials with adaptive features, especially in medical product development
(Gallo et al. 2006). Considerable research and applications of such clinical trial
designs have been performed by the pharmaceutical industry and regulatory
authorities (Bauer et al. 2016). CHMP (2007), and FDA (2010b, 2015) issued the
guidance on an appropriate use of clinical trial designs for drug and biologics that
can allow for preplanned trial adaptations implemented based on accumulated data
while maintaining the trial validity. The concept of clinical trials with adaptive
features could trace back to the 1960s–1970s when adaptive randomization and a
class of designs for sequential clinical trials were introduced (Armitage et al. 1969;
Zelen 1969; Pocock 1977; Wei 1978; Wei and Durham 1978; O’Brien and Fleming
1979; Slud and Wei 1982; Lan and DeMets 1983). In these conventional and
classical group-sequential clinical trials, accumulating data are monitored periodi-
cally in a trial and the trial is terminated as soon as there has been sufficient
evidence to reach a conclusion on either of a positive result (early stopping for
efficacy) or of a negative outcome (early stopping for futility).

In recent clinical trials, there has been considerable interest in the use of modern
adaptive designs. Modern adaptive designs are often defined by characteristics such
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as sample size recalculation, enrichment and subgroup identification, and treatment
or dose selection (Bauer and Köhne 1994; Proschan and Hunsberger 1995; Fisher
1998; Cui et al. 1999; Lehmacher and Wassmer 1999; Müller and Schäfer 2001;
Tsiatis and Mehta 2003; Chen et al. 2004; Mehta et al. 2007). The use of modern
adaptive design in clinical trials can create opportunities for saving resources,
reducing risk of project failure, and improving productivity. For more details on the
recent developments in clinical trial designs with adaptive features in clinical trials,
see Bauer et al. (2016).

Clinical trial designs with adaptive features can allow for modifying the charac-
teristics of a trial based on cumulative information at an interim point of the trial. FDA
guidance on adaptive designs for drug and biologics (FDA 2010b, 2015) indicates
that the possible changes or modification in design or analyses are as follows:

• Eligibility criteria (either for subsequent study enrollment or for a subset
selection of an analytic population);

• Randomization procedure (methods and allocation ratio);
• Treatment regimens of the study groups (e.g., dose level, schedule, or duration);
• Sample size (including early termination);
• Concomitant treatment use;
• Schedule of evaluations (e.g., number of intermediate time points, timing of last

patient observation, and duration of study participation);
• Primary endpoints (e.g., type of outcome assessments, time point of assessment,

use of a unitary versus composite endpoint or the components included in a
composite endpoint);

• Selection and/or order of secondary endpoints;
• Analysis methods (e.g., covariates of final analysis, statistical methodology,

Type I error control).

These changes or modifications must be fully described and documented in both
of the protocol and of the statistical analysis plan.

Adaptive designs have the following advantages:

• Uncertainty can be reduced. This may lead to an improvement in trial design by
getting additional information from the ongoing trial.

• Better information is obtained on the intervention, resulting in a reduced
probability that the phase III dose will either be toxic or show inadequate
efficacy.

• Ethical benefits to patients through early dropping of doses that are ineffective or
harmful and earlier switching to doses that provide therapeutic benefit.

However, there are also issues that must be considered carefully including the
following:

• Appropriate rationale for adaptive designs: Why and how.
• Control of Type I error: Bias that increases the chance of a false conclusion that

a test intervention is effective.
• Adaptations well defined in advance.
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• Protocol for interim monitoring known in advance.
• Appropriate firewalls in place to maintain appropriate blinding of accumulating

study results.
• After-the-fact proof that the protocol and interim monitoring procedures were

followed (audit capability).

1.2 Organization of the Book

Many recent clinical trials for evaluating efficacy and safety of new interventions
include multiple objectives, especially in medical product development. There are
advantages of clinical trials with multiple objectives over trials with a single
objective saving time and resources and more completely characterizing the
intervention effects. However, such clinical trials require conducting a number of
statistical tests and analyses associated with multiple objectives, and then, complex
multiplicity or multiple testing problems occur (Huque et al. 2013). During the last
several years, our team has conducted research on the design and analysis of such
clinical trials, especially focusing on group-sequential designs for clinical trials with
multiple objectives. Since the early application of group-sequential designs into
clinical trials, e.g., BHAT [Beta Blocker Heart Attack Trial Research Group (1982),
which is the first large-scale multicenter trial to use the O’Brien and Fleming
method (Halperin et al. 1990)], there have been many successful stories in the use
of group-sequential designs in clinical trials (DeMets et al. 2006; Hung et al. 2015).
We have especially focused on clinical trial designs with co-objectives including
multiple co-primary endpoints and three-arm NI designs evaluating assay sensi-
tivity and NI, in a confirmatory clinical trial setting (Asakura et al. 2014, 2015a, b;
Ando et al. 2015; Hamasaki et al. 2015; Ochiai et al. 2016).

This book summarizes the results of our research in an integrated manner for the
purpose of helping statisticians involved in clinical trials understand these
methodologies. The book focuses on group-sequential designs in (i) superiority
clinical trials for comparing the effect of two interventions with multiple endpoints
and (ii) three-arm NI clinical trials for evaluating AS from the perspective of
evaluation of the control intervention relative to placebo and NI of the test inter-
vention to control intervention. For clinical trials with multiple endpoints, we focus
on a situation where the alternative hypothesis is that there are effects on all
endpoints in a group-sequential setting. We only briefly discuss trials designed with
an alternative hypothesis of an effect on at least one endpoint with a prespecified
non-ordering of endpoints.

The structure of the book is as follows: In Chap. 2, we describe the
group-sequential designs for early efficacy stopping in superiority clinical trials
comparing the effect of two interventions with two co-primary endpoints. We
discuss two situations based on the endpoint scales, i.e., (i) both endpoints are
continuous and (ii) both endpoints are binary. We derive the power and sample size
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within two decision-making frameworks. One framework is to conclude the test
intervention’s benefit relative to control when superiority is achieved for the two
endpoints at the same interim time point of the trial. The other framework is when
superiority is achieved for the two endpoints at any interim time point, not nec-
essarily simultaneously. We evaluate the behavior of the required sample size,
power, and Type I error as design parameters (standardized mean differences, the
number of planned analyses, and efficacy critical boundaries) vary. We provide an
example to illustrate the methods and discuss practical considerations when
designing efficient group-sequential designs in clinical trials with co-primary
endpoints.

In Chap. 3, we discuss sample size recalculation based on the observed inter-
vention’s effects at an interim analysis with a focus on control of the statistical error
rates. Clinical trials are designed based on assumptions often constructed based on
prior data. However, prior data may be limited or an inaccurate indication of future
data, resulting in trials that are over/underpowered. Interim analyses provide an
opportunity to evaluate the accuracy of the design assumptions and potentially
make design adjustments if the assumptions were markedly inaccurate. We consider
the sample size recalculation based on the two decision-making frameworks dis-
cussed in Chap. 2.

In Chap. 4, as an extension of the methods discussed in Chap. 2, we describe the
group-sequential designs for early efficacy or futility stopping in superiority clinical
trials comparing the effect of two interventions with two co-primary endpoints. We
describe several decision-making frameworks for evaluating efficacy or futility,
based on boundaries using group-sequential methodology. We incorporate the
correlations among the endpoints into the calculations for futility critical boundaries
and sample sizes. We provide an example to illustrate the methods.

In Chap. 5, we provide an overview of the concepts and technical fundamentals
regarding group-sequential designs for clinical trials with two primary endpoints.
There are many procedures for controlling the Type I error rate. We discuss a
common and simple procedure, i.e., the weighted Bonferroni procedure. We
evaluate the behavior of the sample size, power, and Type I error rate associated
with the procedure.

In Chap. 6, we discuss group-sequential three-arm NI clinical trial designs that
include active and placebo controls for evaluating both AS and NI. We extend two
existing approaches, the fixed margin and fraction approaches, into a
group-sequential setting with two decision-making frameworks. We provide an
example to illustrate the methods.

This aggregation of the work provides a foundation for designing randomized
trials with other design features including clinical trials with more than two inter-
ventions (dose selection clinical trials), trials with time-to-event endpoints, trials
with targeted subgroups, and multiregional clinical trials. In Chap. 7, we describe
briefly issues in designing such trials.

The book assumes that the readers have enough knowledge on group-sequential
designs with a single objective. For the fundamentals, see Whitehead (1997),
Jennison and Turnbull (2000), DeMets et al. (2006), and Proschan et al. (2006).
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Chapter 2
Interim Evaluation of Efficacy in Clinical
Trials with Two Co-primary Endpoints

Abstract We discuss group-sequential designs for early efficacy stopping in
clinical trials with two outcomes as co-primary endpoints, i.e., trials designed to
evaluate whether the test intervention is superior to the control on all primary
endpoints. We discuss two outcome scale situations: (i) when both outcomes are
continuous, and (ii) when both outcomes are binary. We derive the power and
sample size formulae within two decision-making frameworks: (A) evaluation of
superiority not necessarily simultaneously and (B) evaluation of superiority for the
two primary endpoints simultaneously. We evaluate the behaviors of sample size
and power with varying design characteristics and provide an example to illustrate
the methods.

Keywords Average sample number � Binary outcomes � Continuous outcomes �
Efficacy stopping � Lan–DeMets error-spending method � Maximum sample size �
O’Brien–Fleming-type boundary � Pocock-type boundary � Type I error � Type II
error � Intersection–union test

2.1 Introduction

In this chapter, we describe the methods for designing group-sequential clinical
trials with two outcomes as co-primary endpoints, where a trial is designed to
evaluate whether the test intervention is superior to the control on all primary
endpoints, and to be terminated early when evidence is overwhelming (early
stopping for efficacy). Group-sequential designs for multiple co-primary endpoints
are a more attractive design feature rather than the fixed-sample designs because
they offer the possibility of stopping a trial when evidence is overwhelming, thus
providing efficiency (Hung and Wang 2009) as the sample size in fixed-sample
clinical trials with multiple co-primary endpoints is often unnecessarily large and
impractical.

Recently, Asakura et al. (2014, 2015) discussed two decision-making frame-
works associated with interim evaluation of efficacy in clinical trials with two
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co-primary endpoints in a group-sequential setting. One framework is to reject the
null hypothesis if and only if statistical significance is achieved for the two end-
points simultaneously (i.e., at the same interim time-point of the trial). The other is a
generalization of this, i.e., to reject the null hypothesis if superiority is demonstrated
for the two endpoints at any interim time-point (i.e., not necessarily simultane-
ously). The former framework is independently discussed by Chang et al. (2014)
and evaluated in clinical trials with two co-primary endpoints. Hamasaki et al.
(2015) discussed more flexible decision-making frameworks, allowing the different
time-points of analyses among the endpoints. In addition, Jennison and Turnbull
(1993) and Cook and Farewell (1994) discussed the decision-making frameworks
associated with interim evaluation of efficacy and futility to monitor the efficacy and
safety responses and considered a simple method for determining the boundaries as
if the responses are not correlated (i.e., assuming zero correlations between the
responses). The methods for the interim evaluation of efficacy and futility will be
discussed in Chap. 4.

We discuss two outcome scale situations: (i) when both outcomes are continuous
(in Sect. 2.2) and (ii) when both outcomes are binary (Sect. 2.3). We derive the
power and sample size formulae within two decision-making frameworks for early
efficacy stopping: (A) evaluation of superiority not necessarily simultaneously and
(B) evaluation of superiority for the two primary endpoints simultaneously. We
evaluate the behaviors of sample size and power with varying design characteristics
and provide an example to illustrate the methods. For more than two endpoints, see
Hamasaki et al. (2015).

2.2 Continuous Outcomes

2.2.1 Notation and Statistical Setting

Consider a randomized, group-sequential clinical trial of comparing the test inter-
vention (T) with the control intervention (C). Two continuous outcomes (i.e.,
K = 2), EP1 and EP2, are to be evaluated as co-primary endpoints. Suppose that a
maximum of L analyses is planned, where the same number of planned analyses
with the same information space is selected for both endpoints. Let nl and rCnl be
the cumulative number of participants on the T and the C at the lth analysis
ðl ¼ 1; . . .;LÞ, respectively, where rC is the allocation ratio of the C to the T. Hence,
up to nL and rCnL participants are recruited and randomly assigned to the T and the
C, respectively. Then, there are nL paired outcomes ðYT1i; YT2iÞ ði ¼ 1; . . .; nLÞ for
the T and rCnL paired outcomes ðYC1j; YC2jÞ ðj ¼ 1; . . .; rCnLÞ for the C. Assume that
ðYT1i; YT2iÞ and ðYC1j; YC2jÞ are independently bivariate distributed with means
E½YTki� ¼ lTk and E½YCkj� ¼ lCk , variances var½YTki� ¼ r2Tk and var½YCkj� ¼ r2Ck, and
correlation corr½YT1i; YT2i� ¼ qT and corr[YC1j; YC2j� ¼ qC; respectively (k = 1, 2).
For simplicity, the variances are assumed to be known and common,
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i.e., r2Tk ¼ r2Ck ¼ r2k . Note that the method can be applied to the case of unknown
variances. For the fixed-sample designs, Sozu et al. (2011) discuss a method for the
unknown variance case and show that the calculated sample size is nearly equiv-
alent to that for the known variance in the setting of 80 % or 90 % power at 2.5 %
significance level for one-sided test. By analogy from the fixed-sample designs,
there may be no practical difference in the group-sequential setting and the
methodology for a known variance provides a reasonable approximation for the
unknown variances case.

Let dk ¼ lTk � lCk and Dk ¼ dk= rk denote the mean differences and stan-
dardized mean differences for the T and the C, respectively (k = 1, 2). Suppose that
positive values of dk represent the test intervention’s benefit. There is an interest in
conducting a one-sided hypothesis test at the significance level of a to evaluate
whether the T is superior to the C on both endpoints. The hypothesis for each
endpoint is tested at significance level of a: The hypotheses are H0k: dk � 0 versus
H1k: dk [ 0. For multiple co-primary endpoints, “success” can be declared if the
superiority is achieved on both endpoints. The hypotheses for co-primary endpoints
are the null hypothesis H0: H01[H02 versus the alternative hypothesis (the union
H0 of both individual nulls is tested against the intersection alternative
H1: H11\H12). This is referred to as the intersection–union test (Berger 1982).

Let ðZ1l; Z2lÞ be the statistics for testing the hypotheses at the lth analysis, given by

Zkl ¼
�YTkl � �YCkl

rk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ 1=rCÞ=nl

p ;

where �YTkl and �YCkl are the sample means given by �YTkl ¼
Pnl

i¼1 YTki=nl and
�YCkl ¼

PrCnl
j¼1 YCkj=ðrCnlÞ. For large samples, under the alternative hypothesis H1,

each Zkl is approximately normally distributed as Zkl �Nð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rCnl=ð1þ rCÞ

p
dk=rk; 12Þ.

Thus, ðZ1l; Z2lÞ is approximately bivariate normally distributed with the correlation
corr½Z1l; Z2l� ¼ ðrCqT þ qCÞ=ð1þ rCÞ ¼ qZ at the lth interim analysis. Furthermore,
the joint distribution of ðZ11; Z21; . . .; Z1l; Z2l; . . .; Z1L; Z2LÞ is 2L multivariate normal
with their correlations given by corr Z1l0 ; Z1l½ � ¼ corr Z2l0 ; Z2l½ � ¼ ffiffiffiffiffiffiffiffiffiffiffi

nl0=nl
p

; and

corr Z1l0 ; Z2l½ � ¼ corr Z1l; Z2l0½ � ¼ qZ
ffiffiffiffiffiffiffiffiffiffiffi
nl0=nl

p
, where 1� l0 � l� L and k0 � k: If the

correlation between the two endpoints is assumed be common between the two
intervention groups, i.e., qT ¼ qC ¼ q, then the correlation among test statistics
across the interim analyses is simply given by corr Z1l0 ; Z2l½ � ¼ corr Z1l; Z2l0½ � ¼
q
ffiffiffiffiffiffiffiffiffiffiffi
nl0=nl

p
as qZ ¼ q.

2.2.2 Decision-Making Frameworks and Stopping Rules

When evaluating the joint effects on both of the endpoints within the context of
group-sequential designs, there are the two decision-making frameworks associated
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with hypothesis testing. One is to reject H0 if statistical significance of T relative
to C is achieved for both endpoints at any interim analysis until the final analysis
(i.e., not necessarily simultaneously at the same interim analysis) (DF-A) (Asakura
et al. 2014), and the other is the special case of DF-A and is to reject H0 if and only
if superiority is achieved for the two endpoints simultaneously (i.e., at the same
interim analysis of the trial) (DF-B) (Asakura et al. 2014; Cheng et al. 2014). We
will discuss the two decision-making frameworks separately as the corresponding
stopping rules and power definitions are unique.

DF-A is flexible. If only the hypothesis for one endpoint is rejected at an interim
analysis, then the trial will continue but in subsequent interim analyses the
not-yet-rejected hypothesis for other endpoint is repeatedly tested until it is rejected or
the trial is completed. The stopping rule based on DF-A is formally given as follows:

At the lth analysis ðl ¼ 1; . . .; L� 1Þ
if Z1l [ cE1lðaÞ and Z2l0 [ cE2l0 ðaÞ for some 1� l0 � l, or if Z1l0 [ cE1l0 ðaÞ for
some 1� l0 � l and Z2l [ cE2lðaÞ, then reject H0 and stop the trial,
otherwise, continue the ðlþ 1Þth analysis,

at the Lth analysis

if Z1L [ cE1LðaÞ and Z2l0 [ cE2l0 ðaÞ for some 1� l0 � L, or if Z1l0 [ cE1l0 ðaÞ for
some 1� l0 � L and Z2L [ cE2LðaÞ, then reject H0 and stop the trial,
otherwise, then do not reject H0;

where cE1lðaÞ and cE2lðaÞ are the critical boundaries, which are constant and selected
separately, using any group-sequential method such as the Lan–DeMets
error-spendingmethod (Lan andDeMets 1983) to control the overall Type I error rate,
as if they were a single primary endpoint, ignoring the other co-primary endpoint.

For example, consider a group-sequential clinical trial with the five planned
analyses (L = 5). The hypothesis for the joint effect on both endpoints is tested at
2.5 % significance level. If the critical boundaries for both endpoints are commonly
determined by the O’Brien–Fleming-type boundary (OF) (O’Brien and Fleming
1979), using the Lan–DeMets error-spending method with equally spaced incre-
ments of information, then critical boundaries for each analysis are 4.8769, 3.3569,
2.6803, 2.2898, and 2.0310. Figure 2.1 illustrates the region for rejecting each H0k

(k ¼ 1; 2). For example, if we observe the test statistics Z14 = 3.5073 for EP1 and
Z24 = 2.2294 for EP2 at the fourth analysis, then H0 is not rejected as Z14 is larger
than the corresponding critical boundary of cE14ð2:5Þ ¼ 2:2898 but Z24 is not. In the
subsequent analysis, i.e., the final analysis, the hypothesis testing is repeatedly
conducted only for EP2. At the final analysis, if we observe Z25 ¼ 2:9732 for EP2,
then H0 is rejected as Z25 is larger than the corresponding critical boundary of
cE25ð2:5Þ ¼ 2:0310.
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The power for the joint effect on both endpoints, corresponding to DF-A, is

1� b ¼ Pr
[L
l¼1

A1l

( )\ [L
l¼1

A2l

( )�����H1

" #
; ð2:1Þ

where Akl ¼ Zkl [ cEkl
� �

. The power based on DF-A (2.1) can be numerically
assessed by using multivariate normal integrals. A detailed calculation is provided
in Appendix A.

DF-B is relatively simple. If only the hypothesis for one endpoint is rejected at an
interim analysis, then the trial continues and the hypotheses for both endpoints are
repeatedly tested until they are rejected simultaneously, i.e., during the same interim
analysis. The stopping rule based on DF-B is formally given as follows:

At the lth analysis ðl ¼ 1; . . .; L� 1Þ
if Z1l [ cE1lðaÞ and Z2l [ cE2lðaÞ, then reject H0 and stop the trial,
otherwise, continue to the (l + 1)th analysis,

at the Lth analysis

if Z1L [ cE1LðaÞ and Z2L [ cE2LðaÞ; then reject H0;
otherwise, do not reject H0:

Figure 2.2 illustrates the region for rejecting each Hk0 with the number of
planned analyses similarly as in Fig. 2.1. For example, if we observe the test
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Fig. 2.1 The region for rejecting H0 based on DF-A in a group-sequential clinical trial with the
five planned analyses (L = 5), where the decision-making is based on DF-A. The hypothesis for
the joint effect on both endpoints is tested at 2.5 % significance level. The critical boundaries for
both endpoints are commonly determined by the OF, using the Lan–DeMets error-spending
method with equally spaced increments of information
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statistics Z14 ¼ 3:5073 for EP1 and Z24 ¼ 2:2294 for EP2 at the fourth analysis,
then H0 is not rejected as Z14 is larger than the corresponding critical boundary of
cE14ð2:5Þ ¼ 2:2898 but Z24 is not. At the final analysis, both H01 and H02 is tested
again. If we observe Z15 ¼ 3:4946 and Z25 ¼ 2:9732; then H0 is rejected as both
Z15 and Z25 are larger than the corresponding critical boundary of cE15ð2:5Þ ¼
cE25ð2:5Þ ¼ 2:0310 simultaneously.

The power for the joint effect on both endpoints, corresponding to DF-B, is

1� b ¼ Pr
[L
l¼1

A1l \A2lf g
�����H1

" #
: ð2:2Þ

Similarly as in the power based on DF-A, the power based on DF-B can be
numerically assessed by using multivariate normal integrals. A detailed calculation
is provided in Appendix A.

To illustrate the difference in the power for the joint effect on both endpoints
between the DF-A and DF-B, Fig. 2.3 summarizes how the powers based on DF-A
and DF-B behave with correlation (qT ¼ qC ¼ q), critical boundary combinations,
and the number of planned analyses under a given sample size, in a
group-sequential clinical trial with the two or four planned analyses (L = 2 or 4),
assuming equal standardized mean differences D1 ¼ D2 ¼ 0:2: The hypothesis for
the joint effect on both endpoints is tested at 2.5 % significance level. The given
sample size (equally sized groups: rC ¼ 1) is 393 per intervention group has 80 %
power to detect a standardized mean difference for each endpoint at 2.5 % sig-
nificance level for a one-sided test. The three critical boundary combinations are
considered: OF for both endpoints (OF-OF), Pocock-type boundary (PC) (Pocock
1977) for both endpoints (PC-PC), and OF for EP1 and PC for EP2 (OF-PC).
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Fig. 2.2 The region for rejecting H0 in a group-sequential clinical trial with the five planned
analyses (L = 5), where the decision-making is based on DF-B. The hypothesis for the joint effect
on both endpoints is tested at 2.5 % significance level. The critical boundaries for both endpoints
are commonly determined by the OF, using the Lan–DeMets error-spending method, with equally
spaced increments of information
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A range of correlation between the two endpoints considered in the evaluation is
q� 0 since the correlation between the endpoints are usually non-negative as
suggested in Offen et al. (2007).

The figure shows that the powers based on both DF-A and DF-B increase as the
correlation approaches one in all of the three critical boundary combinations and the
numbers of analyses. DF-A provides a slightly higher power than DF-B. In both of
L = 2 and 4, the largest difference in the power between DF-A and DF-B is
observed in PC-PC, and the smallest in OF-OF. However, the difference between
DF-A and DF-B is smaller with higher correlation or smaller number of planned
analyses in all of the three critical boundary combinations.

The testing procedure for co-primary endpoints is conservative. For example, in
fixed-sample designs, if a zero correlation between the two endpoints is assumed
and each endpoint is tested at 2.5 % significance level for a one-sided test, then the
Type I error rate is 0.0625 % (=2.5 % × 2.5 %) (DF-A). As shown in Asakura
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Fig. 2.3 Behavior of power for detecting a joint effect on both endpoints with correlation, critical
boundary combinations, and the number of planned analyses under a given sample size, in a
group-sequential clinical trial with the two or four planned analyses (L = 2, 4), assuming equal
standardized mean differences D1 ¼ D2 ¼ 0:2; where the decision-making is based on DF-A or
DF-B. The given sample size (equally sized groups) is 393 per intervention group has 80 % power
to detect a standardized mean difference for each endpoint at 2.5 % significance level for a
one-sided test. The hypothesis for the joint effect on both endpoints is tested at 2.5 % significance
level. The critical boundary combinations are OF for both endpoints (OF-OF), and PC are for both
endpoints (PC-PC) and OF for EP1 and PC for EP2 (OF-PC)
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et al. (2014), the maximum overall Type I error rate associated with the rejection
region of the null hypothesis increases as the correlation approaches one, but it is
not larger than the prespecified significance level. Figure 2.4 summarizes how the
overall Type I error rates based on DF-A and DF-B behave with correlation
(qT ¼ qC ¼ q), critical boundary combinations, and standardized mean difference
for EP2, in a group-sequential clinical trial with the two planned analyses (L = 2)
and zero standardized mean difference for EP1, D1 ¼ 0:0: The hypothesis for the
joint effect on both endpoints is tested at 2.5 % significance level. The correlations
are ρ = 0.0, 0.3, 0.5, and 1.0. The three critical boundary combinations are con-
sidered: OF for both endpoints (OF-OF), PC for both endpoints (PC-PC), and OF
for EP1 and PC for EP2 (OF-PC). The figure shows that the Type I error rate for
both decision-making frameworks increases as the correlation approaches one, but
they are not larger than the prespecified significance level of 2.5 %, in all of the
three critical boundary combinations, and DF-B is always slightly conservative than
DF-A.

The above differences in power and the Type I error between DF-A and DF-B
can be illustrated from the following two situations where the interim analysis result
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Fig. 2.4 Behavior of Type I error rate with correlation, critical boundary combinations, and
standardized mean difference for EP2 in a group-sequential clinical trial with the two planned
analyses (L = 2), assuming zero standardized mean difference for EP1 D1 ¼ 0; where the
decision-making is based on DF-A or DF-B. The hypothesis for the joint effect on both endpoints
is tested at 2.5 % significance level. The three critical boundary combinations are OF for both
endpoints (OF-OF), PC for both endpoints (PC-PC), OF for EP1 and PC for EP2 (OF-PC)
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is inconsistent with the final analysis result even when the alternative hypothesis is
true; that is, (i) EP1 is statistically significant at the interim, but not at the final
analysis and similarly, and (ii) EP2 is statistically significant at the interim, but not
at the final analysis. Thus, DF-B fails to reject the null hypothesis in both situations
even if the alternative hypothesis is true, but DF-A is able to reject the null
hypothesis in both situations. However, the likelihood of this scenario occurring is
low and hence little practical difference in the power and sample size determina-
tions based on DF-A and DF-B. However, DF-A offers the option of stopping
measurement of an endpoint for which superiority has been demonstrated. Stopping
measurement may be desirable if the endpoint is very invasive or expensive but
may also introduce an operational challenge into the trial. For more details, see
Asakura et al. (2014) and Hamasaki et al. (2015).

2.2.3 Sample Sizes

We describe two sample size concepts, i.e., the maximum sample size (MSS) and
the average sample number (ASN) (i.e., expected sample size) based on the power
(2.1) or (2.2). The MSS is the sample size required for the final analysis to achieve
the desired power 1� b: The MSS is given by the smallest integer not less than nL
satisfying the power for a group-sequential strategy at the prespecified dk, rk , and
qT and qC with Fisher’s information time for the interim analyses, nl=nL
(l = 1, …, L).

To identify the value of nL, an easy strategy is a grid search to gradually increase
(or decrease) nL until the power under nL exceeds (or falls below) the desired
power. The grid search often requires considerable computing time, especially with
a larger number of endpoints, a larger number of planned analyses, or a small mean
difference. To reduce the computing time, the Newton–Raphson algorithm in
Sugimoto et al. (2012) or the basic linear interpolation algorithm in Hamasaki et al.
(2013) may be utilized.

The ASN is the expected sample size under hypothetical reference values and
provides information regarding the number of participants anticipated in a
group-sequential clinical trial in order to reach a decision point. The ASN per
intervention group is given by

ASN ¼
XL�1

l¼1

nlPl þ nL 1�
XL�1

l¼1

Pl

 !
;

where Pl ¼ Pl d1; d2; r1; r2; qT; qCð Þ is the stopping probability (or exit probability)
as defined by the likelihood of crossing the critical boundaries at the lth interim
analysis assuming that the true values of the intervention’s effect are ðd1; d2Þ.

Both MSS and ASN depend on the design parameters including the differences
in means, the correlation structure among the endpoints, the selected critical
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boundary based on Lan–DeMets error-spending method, the number of planned
analyses, and whether there are equally or unequally spaced increments of infor-
mation. As shown in Hamasaki et al. (2015), our experience suggests that when
considering more than two endpoints as co-primary in a group-sequential setting
with more than five analyses, calculating the multivariate normal integrals often
requires considerable computing time. A Monte Carlo simulation-based method
provides an alternative but the number of replications for simulations should be
carefully chosen to control simulation error in calculating the empirical power.

Figures 2.5 and 2.6 display how the reduction in MSS and ASN varies with the
ratio of the two standardized mean differences ðD2=D1Þ, correlation ðqT ¼ qC ¼ qÞ,
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Fig. 2.5 Behavior of reduction in MSS with standardized mean difference, correlation, and
critical boundary combination in a group-sequential clinical trial with the two planned analyses
(L = 2), where the decision-making is based on DF-A. The sample size reduction is calculated as
[MSS(ρ) – MSS(0)]/MSS(0), where MSS(ρ) is MSS calculated using ρ and MSS(0) is calculated
using zero correlation. The sample size (equally sized groups) per intervention group is calculated
to detect the joint effect on both endpoints with 80 % power at 2.5 % significance level for a
one-sided test. The four critical boundary combinations are OF for both endpoints (OF-OF), PC for
both endpoints (PC-PC), OF for EP1 and PC for EP2 (OF-PC), and PC for EP1 and OF for EP2
(PC-OF)
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and critical boundary combinations in a group-sequential clinical trial with the two
planned analyses (L = 2), where the decision-making is based on DF-A. The
reduction is calculated as [MSS(ρ) – MSS(0)]/MSS(0), where MSS(ρ) is MSS
calculated using ρ and MSS(0) is calculated using zero correlation. The sample size
per intervention group (equally sized groups: rC ¼ 1) is calculated to detect the
joint effect on both endpoints with 80 % power at 2.5 % significance level for a
one-sided test. The four critical boundary combinations are considered: OF for both
endpoints (OF-OF), PC for both endpoints (PC-PC), OF for EP1 and PC for EP2
(OF-PC), and PC for EP1 and OF for EP2 (PC-OF).
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Fig. 2.6 Behavior of reduction in ASN with standardized mean difference, correlation, and critical
boundary combination in a group-sequential clinical trial with the two planned analyses (L = 2),
where the decision-making is based on DF-A. The reduction is calculated as [MSS(ρ) – MSS(0)]/
MSS(0), where MSS(ρ) is MSS calculated using ρ and MSS(0) is calculated using zero correlation.
The sample size per intervention group (equally sized groups) is calculated to detect the joint effect
on both endpoints with 80 % power at 2.5 % significance level for a one-sided test. The four critical
boundary combinations are OF for both endpoints (OF-OF), PC for both endpoints (PC-PC), OF for
EP1 and PC for EP2 (OF-PC), and PC for EP1 and OF for EP2 (PC-OF)
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Similarly as in fixed-sample designs shown in Sozu et al. (2015), the figures
show that the absolute reduction in both MSS and ASN decreases as the correlation
approaches one in all of critical boundary combinations when D2=D1 ¼ 1:0: OF-OF
and PC-PC provide a larger reduction than OF-PC and PC-OF. When
1:0\D2=D1\1:5; they still decreases as the correlation approaches one. However,
when D2=D1 exceeds 1.5, especially larger than 1.8, the reduction does not change
considerably as the correlation varies. Thus, incorporating the correlation into the
sample size calculation may lead to a reduction in sample sizes when the stan-
dardized mean differences between the two endpoints are approximately equal.
However, it is less dramatic as it does not greatly depend on the correlation when
the standardized mean differences between the two endpoints are unequal.

2.2.4 Illustration

We provide an example to illustrate these sample size methods. Consider the
clinical trial, “Effect of Tarenflurbil on Cognitive Decline and Activities of Daily
Living in Patients With Mild Alzheimer Disease,” a multicenter, randomized,
double-blind, placebo-controlled trial in patients with mild Alzheimer’s disease
(Green et al. 2009). Co-primary endpoints were cognitive as assessed by the
Alzheimer’s Disease Assessment Scale Cognitive Subscale (ADAS-Cog: 80-point
scale) and functional ability as assessed by the Alzheimer’s Disease Cooperative
Study Activities of Daily Living (ADCS–ADL: 78-point scale). A negative change
score from baseline on the ADAS-Cog indicates improvement while a positive
change score on the ADCS–ADL indicates improvement. The original sample size
per intervention group (equally sized groups) of 800 patients provided 96 % power
to detect the joint effect on the two primary endpoints, by using a one-sided test at
2.5 % significance level, with the standardized mean differences for both endpoints
of D1 ¼ D2 ¼ 0:2: The correlation between the two endpoints was assumed to be
zero in the calculation of the sample size although the two endpoints were expected
to be correlated [for example, see Doraiswamy et al. (1997)].

Based on the selected parameters described in Green et al. (2009), i.e., L = 1 and
qT ¼ qC ¼ q ¼ 0:0; the sample size per intervention group is calculated as 804. As
shown in Table 2.2, if four interims and one final analysis are planned (i.e., L = 5)
based on DF-B, and conservatively assuming a zero correlation between the end-
points, then the MSS is 822 for OF-OF, 945 for PC-PC and 895 for OF-PC, and the
ASN is 602 for OF-OF, 548 for PC-PC, and 608 for OF-PC. If the correlation is
incorporated into the calculation when ρ = 0.3, 0.5, and 0.8, the MSS are 817, 809,
and 782 for OF-OF; 939, 929, and 898 for PC-PC; and 890, 883, and 859 for OF-PC.
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The ASN are 587, 574, and 542 for OF-OF; 525, 506, and 468 for PC-PC; and 593,
581, and 556 for OF-PC. When comparing DF-A (Table 2.1) to DF-B (Table 2.2),
there are no major differences in MSS and ASN for all of the critical boundary
combinations, although DF-A provides a slightly smaller MSS and ASN than DF-B,
for PC-PC and OF-PC. The advantage and disadvantage of the decision-making
frameworks are given in Sect. 2.5.

Figure 2.7 illustrates the probability of rejecting/not rejecting the null hypothesis
under H1 in a group-sequential clinical trial with the five planned analyses (L = 5),
assuming the correlation ρ = 0.0 or 0.8, where the decision-making is based on
DF-A. The figure shows that the method offers the possibility to stop a trial early if

Table 2.1 MSS and ASN per intervention group (equally sized groups) for detecting the joint
difference for ADAS-Cog (D1 ¼ 0:2) and ADCS–ADL (D2 ¼ 0:2), with the power of
1 – β = 96 % for detect the joint effect on both endpoints at 2.5 % significance level for
one-sided test, based on DF-A

Correlation ρ # of analyses L OF-OF PC-PC OF-PC

MSS ASN (H1) MSS ASN (H1) MSS ASN (H1)

0.0 1 804 804 804

2 807 725 881 605 847 690

3 813 645 911 570 867 647

4 817 618 927 551 878 615

5 821 601 937 540 886 600

0.3 1 799 799 799

2 801 702 875 591 841 672

3 807 632 905 550 861 633

4 812 602 921 530 873 602

5 815 586 931 519 880 586

0.5 1 791 791 791

2 793 683 867 578 833 658

3 799 619 896 534 854 622

4 804 589 912 513 865 590

5 807 572 922 502 873 574

0.8 1 764 764 764

2 767 643 839 548 809 631

3 773 589 869 500 830 599

4 777 557 884 478 841 566

5 781 542 894 466 849 550

The three critical boundary combinations are OF for both endpoints (OF-OF), PC for both
endpoints (PC-PC), and OF for EP1 and PC for EP2 (OF-PC). The ASN is calculated under H1

ðD1 ¼ D2 ¼ 0:2Þ
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evidence is overwhelming and thus offers potentially fewer patients than the
fixed-sample designs. In the OF-OF and PC-OF testing procedure combinations, it
is more difficult to reject the null hypothesis at the earliest analyses, but easier later
on. On the other hand, in the PC-PC and OF-PC testing procedure combination, it is
easier to reject the null hypothesis at the earliest analysis.

Table 2.2 MSS and ASN per intervention group (equally sized groups) for detecting the joint
difference for ADAS-Cog ðD1 ¼ 0:2Þ and ADCS–ADL ðD2 ¼ 0:2Þ, with the power of
1 – β = 96 % to detect the joint effect on both endpoints at 2.5 % significance level for
one-sided test, based on DF-B

Correlation ρ # of analyses L OF-OF PC-PC OF-PC

MSS ASN (H1) MSS ASN (H1) MSS ASN (H1)

0.0 1 804 804 804

2 807 725 885 607 854 693

3 814 646 917 574 875 653

4 819 619 934 557 887 622

5 822 602 945 548 895 608

0.3 1 799 799 799

2 802 702 880 593 849 676

3 808 632 911 553 870 639

4 813 603 928 535 882 608

5 817 587 939 525 890 593

0.5 1 791 791 791

2 794 684 871 580 841 661

3 800 620 902 537 863 628

4 805 589 919 517 875 597

5 809 574 929 506 883 581

0.8 1 764 764 764

2 767 643 841 549 818 635

3 773 589 871 501 839 604

4 778 558 887 480 851 571

5 782 542 898 468 859 556

The three critical boundary combinations are considered: OF for both endpoints (OF-OF), PC for
both endpoints (PC-PC), and OF for ADAS-Cog and PC for ADCS–ADL (OF-PC). The ASN is
calculated under H1 ðD1 ¼ D2 ¼ 0:2Þ
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2.3 Binary Outcomes

Clinical trials are often conducted with the objective of comparing a test inter-
vention with that of a standard intervention based on several binary outcomes. For
example, irritable bowel syndrome (IBS) is one of the most common gastroin-
testinal disorders and is characterized by symptoms of abdominal pain, discomfort,
and altered bowel function (Grundmann and Yoon 2010; American College of
Gastroenterology 2013). The comparison of the interventions to treat IBS is based
on the proportions of participants with adequate relief of abdominal pain and dis-
comfort, and improvements in urgency, stool frequency, and stool consistency. As
described in Chap. 1, Food and Drug Administration (FDA) recommends the use of
two endpoints for assessing IBS signs and symptoms: (1) pain intensity and
(2) stool frequency (FDA 2013). The Committee for Medicinal Products for Human
Use (CHMP) (2008) recommends the use of two endpoints for assessing IBS signs
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Fig. 2.7 The probability of rejecting/not rejecting the null hypothesis under H1 in a
group-sequential clinical trial with the five planned analyses (L = 5), where the decision-making
is based on DF-A. The MSS are calculated to detect the joint effect for both endpoints with 96 %
power at 2.5 % significance level for one-sided test, based on the assumption D1 ¼ D2 ¼ 0:2 from
the tarenflurbil study. The critical boundaries are determined using the Lan–DeMets
error-spending method with equally spaced increments of information. The three critical boundary
combinations are OF for both endpoints (OF-OF), PC for both endpoints (PC-PC), and OF for
ADAS-Cog and PC for ADCS–ADL (OF-PC)
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and symptoms: (1) global assessment of symptoms and (2) assessment of symptoms
of abdominal discomfort/pain.

In this section, we discuss group-sequential designs in clinical trials with two
binary outcomes as co-primary. Similar to the previous section, we consider a
two-arm parallel-group trial designed to evaluate whether the T is superior to the C
based on two binary endpoints.

2.3.1 Notation and Statistical Setting

Consider a randomized, group-sequential clinical trial of comparing the T with the C.
Two binary outcomes are to be evaluated as co-primary endpoints. As a measure the
effect, we consider the difference in the proportions between two interventions as it is
the most commonly used measure in many clinical trials. The risk ratio and odds ratio
are also frequently used in clinical trials to measure a risk reduction. The methods
discussed here can be straightforwardly extended to these measures. For details, see
Ando et al. (2015).

Assume that YTki and YCkj are independently binomial distributed with proba-
bilities of success pTk and pCk, i.e., YTki �Bð1; pTkÞ and YCkj �Bð1; pCkÞ; but the
observations within pairs for the two interventions are correlated with a common
correlation corr½YT1i; YT2i� ¼ qT and corr½YC1j; YC2j� ¼ qC. The range of the corre-
lations qT and qC are restricted, depending on the marginal probabilities (Prentice
1988; Le Cessie and van Houwelingen 1994). Let ðd1; d2Þ denote the differences in
proportions for the T and the C, respectively, where dk ¼ pTk � pCk ðk ¼ 1; 2Þ.
Suppose that positive values of ðd1; d2Þ represent the test intervention’s benefit. We
now have the two observed differences in proportions at the lth analysis, i.e.,
ðd̂1; d̂2Þ, where d̂kl ¼ p̂Tkl � p̂Ckl with p̂Tkl ¼ YTkl=nl and p̂Ckl ¼ YCkl=rCnl ; and
YTkl ¼

Pnl
i¼1 YT1i and YCkl ¼

PrCnl
j¼1 YCkj denote the number of success under the T

and the C. It follows that YTkl �Bðnl; pTkÞ and YCkl �BðrCnl; pCkÞ.
We are interested in conducting a hypothesis test to evaluate whether the T is

superior to the C, i.e., the null hypothesis H0: d1 � 0 or d2 � 0 versus the alternative
hypothesis H1: d1 [ 0 and d2 [ 0. Let ðZ1l; Z2lÞ be the Z-score statistics for testing
the hypotheses at the lth analysis, given by

Zkl ¼ p̂Tkl � p̂Cklffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂pkl�̂qklðrC þ 1=rCÞ=nl

p ;

where �̂pkl ¼ ðp̂Tkl þ rCp̂CklÞ=ð1þ rCÞ and �̂qkl ¼ 1� �̂pkl: For large samples, each Zkl
is approximately normally distributed [e.g., see Fleiss et al. (2003)]. Thus, the two
test statistics at lth analysis ðZ1l; Z2lÞ is approximately bivariate normally distributed
with the correlation

30 2 Interim Evaluation of Efficacy in Clinical Trials …



corr Z1l; Z2l½ � ¼ qZ ¼ rCqT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pT1qT1pT2qT2

p þ qC
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pC1qC1pC2qC2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rCpT1qT1 þ pC1qC1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rCpT2qT2 þ pC2qC2

p ;

qTk ¼ 1� pTk and qCk ¼ 1� pCk: Furthermore, the joint distribution of
ðZ11; Z21; . . .; Z1l; Z2l; . . .; Z1L; Z2LÞ is approximately 2L multivariate normal with
their correlations given by corr Z1l0 ;Z1l½ � ¼ corr Z2l0 ;Z2l½ � ¼ ffiffiffiffiffiffiffiffiffiffiffi

nl0=nl
p

and corr Z1l0 ;Z2l½ � ¼
corr Z1l; Z2l0½ � ¼ qZ

ffiffiffiffiffiffiffiffiffiffiffi
nl0=nl

p
; where 1� l0 � l� L: Similarly as discussed in Sect. 2.2,

we can calculate the power, Type I error rate, and sample sizes based on the two
decision-making frameworks associated with hypothesis testing, i.e., DF-A and
DF-B.

The method is based on the normal approximation which works well in most
situations (Asakura et al. 2015). However, it may not work well in the occurrence of
extremely small event rates or small sample sizes as the joint distribution is not fully
specified in the first- and second-order moments. In such situations, Monte Carlo
simulation-based method or more direct methods may be more appropriate although
this occurs at the expense of considerable computational resources. For more direct
methods for multiple co-primary endpoints in fixed-sample designs including
Fisher’s exact test, see Sozu et al. (2010, 2015).

2.3.2 Illustration

We provide an example to illustrate these sample size methods. Consider the
double-blind, randomized, parallel-group, placebo-controlled trial evaluating lac-
tobacilli and bifidobacteria in the prevention of antibiotic-associated diarrhea in
older people admitted to hospital (the PLACIDE study) (Allen et al. 2012, 2013).
The study was designed to demonstrate that the administration of a probiotic
comprising two strains of lactobacilli and two strains of bifidobacteria alongside
antibiotic treatment prevents antibiotic-associated diarrhea. The co-primary out-
comes were: (EP1) the occurrence of antibiotic-associated diarrhea (AAD) within
8 weeks and (EP2) the occurrence of C difficile diarrhea (CDD) within 12 weeks of
recruitment.

The original sample size per intervention group (equally sized groups) of 1239
participants provided 80 % power to detect a 50 % reduction in CDD in the pro-
biotic group compared with the placebo group, by using a two-sided Fisher’s exact
test at 5 % significance level, assuming CDD frequencies of 4 % in placebo group
and 2 % in probiotic group. Although Cochran’s condition seems to be hold for this
setting, the normal approximation method was not used for the sample size cal-
culation and the sample size was conservatively calculated. This sample size would
provide a power of more than 99 % to detect a 50 % reduction in AAD, by using a
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two-sided Fisher’s exact test at 5 % significance level, assuming AAD frequencies
of 20 % in placebo group and 10 % in probiotic group as the normal approxima-
tion. The correlation between the two outcomes was not incorporated into the
original sample size calculation.

Tables 2.3 and 2.4 display the MSS and ASN per intervention group (equally
sized groups: rC ¼ 1) based on DF-A and DF-B. The sample size was derived using
an alternative hypothesis of differences in proportions for AAD (pT1 ¼ 0:2 and
pC1 ¼ 0:4) and CDD (pT2 ¼ 0:02 and pC2 ¼ 0:04) with 80 % power at 2.5 %
significance level for one-sided test, using the normal approximation method where
q ¼ qT ¼ qC ¼ 0:0; 0:3; 0:5; and 0:8; L = 2, 3, 4, and 5. The critical boundaries are
determined by using the Lan–DeMets error-spending method, with equally spaced
increments of information. The critical boundary combinations are OF for both
endpoints (OF-OF), PC for both endpoints (PC-PC), OF for AAD and PC for CDD
(OF-PC), and PC for AAD and OF for CDD (PC-OF).

Based on the selected parameters described in Allen et al. (2012), i.e., L = 1 and
ρ = 0.0, the sample size per intervention group (equally sized groups) is calculated
as 1141. If four interims and one final analysis are planned (i.e., L = 5) based on
DF-A, and conservatively assuming a zero correlation between the endpoints, then

Table 2.3 MSS and ASN per intervention group (equally sized groups) for detecting the joint
difference for AAD (pT1 ¼ 0:2 and pC1 ¼ 0:4) and CDD (pT2 ¼ 0:02 and pC2 ¼ 0:04), with 80 %
power at 2.5 % significance level for a one-sided test, where the decision-making is based on DF-A

Correlation ρ # of
analyses L

OF-OF PC-PC OF-PC PC-OF

MSS ASN
(H1)

MSS ASN
(H1)

MSS ASN
(H1)

MSS ASN
(H1)

0.0 2 1146 1056 1282 977 1282 982 1146 1053

3 1156 991 1337 941 1337 981 1156 989

4 1164 960 1366 925 1366 972 1164 958

5 1170 943 1385 918 1385 956 1170 941

0.3 2 1146 1056 1282 977 1282 982 1146 1053

3 1156 991 1337 941 1337 981 1156 989

4 1164 960 1366 925 1366 972 1164 958

5 1170 943 1385 918 1385 956 1170 941

0.5 2 1146 1056 1282 977 1282 982 1146 1053

3 1156 991 1337 941 1337 981 1156 989

4 1164 960 1366 925 1366 972 1164 958

5 1170 943 1385 918 1385 956 1170 941

0.8 2 1146 1056 1282 977 1282 982 1146 1053

3 1156 991 1337 941 1337 981 1156 989

4 1164 960 1366 925 1366 972 1164 958

5 1170 943 1385 918 1385 956 1170 941

The critical boundaries are determined by using the Lan–DeMets error-spending method, with
equally spaced increments of information. The critical boundary combinations are OF for both
endpoints (OF-OF), PC for both endpoints (PC-PC), OF for AAD and PC for CDD (OF-PC), and
PC for AAD and OF for CDD (PC-OF). The ASN is calculated under H1 (pT1 ¼ 0:2 and pC1 ¼
0:4; and pT2 ¼ 0:02 and pC2 ¼ 0:04)
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the MSS is 1170 for OF-OF, 1387 for PC-PC, 1399 for OF-PC, and 1170 for
PC-OF, and the ASN is 944 for OF-OF, 921 for PC-PC, 976 for OF-PC, and 941
for PC-OF. On the other hand, even if the correlation is incorporated into the
calculation, the MSS and ASN do not change as the correlation varies. This means
that when one standardized difference in proportions is relatively larger than the
other, i.e., d1 [ d2 (or d1\d2) with pC1 6¼ pC2, then there is little benefit in
incorporating the correlation into sample size calculation.

When comparing DF-A (Table 2.3) to DF-B (Table 2.4), there are no major
differences in MSS and ASN for all of the testing procedure combinations, although
DF-A provides a slightly smaller MSS and ASN than DF-B: for DF-B, the MSS is
1170 for OF-OF, 1387 for PC-PC, 1399 for OF-PC, and 1170 for PC-OF, and the
ASN is 944 for OF-OF, 921 for PC-PC, 976 for OF-PC, and 941 for PC-OF when
assuming a zero correlation.

Table 2.4 MSS and ASN per intervention group (equally sized groups) for detecting the joint
difference for AAD (pT1 ¼ 0:2 and pC1 ¼ 0:4) and CDD (pT2 ¼ 0:02 and pC2 ¼ 0:04), with 80 %
at power at 2.5 % significance level for a one-sided test, where the decision-making is based on
DF-B

Correlation ρ # of
analyses L

OF-OF PC-PC OF-PC PC-OF

MSS ASN
(H1)

MSS ASN
(H1)

MSS ASN
(H1)

MSS ASN
(H1)

0.0 2 1146 1056 1282 977 1283 983 1146 1053

3 1156 991 1337 941 1346 989 1156 989

4 1164 960 1368 928 1380 989 1164 958

5 1170 944 1387 921 1399 976 1170 941

0.3 2 1146 1055 1282 977 1283 982 1146 1053

3 1156 991 1337 940 1346 985 1156 989

4 1164 959 1367 926 1380 987 1164 958

5 1170 943 1387 920 1398 973 1170 941

0.5 2 1146 1055 1282 977 1283 982 1146 1053

3 1156 991 1337 940 1346 985 1156 989

4 1164 959 1367 926 1380 987 1164 958

5 1170 943 1387 920 1398 973 1170 941

0.8 2 1146 1055 1282 977 1283 982 1146 1053

3 1156 991 1337 940 1346 985 1156 989

4 1164 959 1367 926 1380 987 1164 958

5 1170 943 1387 920 1398 973 1170 941

The critical boundaries are determined by using the Lan–DeMets error-spending method, with
equally spaced increments of information. The critical boundary combinations are OF for both
endpoints (OF-OF), PC for both endpoints (PC-PC), OF for AAD and PC for CDD (OF-PC), and
PC for AAD and OF for CDD (PC-OF). The ASN is calculated under H1 (pT1 ¼ 0:2 and pC1 ¼
0:4; and pT2 ¼ 0:02 and pC2 ¼ 0:04)
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2.4 Practical Issues

Two important decisions must be made when constructing efficient
group-sequential strategies in clinical trials with multiple co-primary endpoints. The
first decision is the choice of the critical boundary based on an error-spending
method for each endpoint. If the trial was designed to detect effects on at least one
endpoint with a prespecified ordering of endpoints, then the selection of different
boundaries for each endpoint (i.e., the OF for the primary endpoint and the PC for
the secondary endpoint) can provide a higher power than using the same critical
boundary for both endpoints (Glimm et al. 2010; Tamhane et al. 2010). However,
as shown in Asakura et al. (2014), the selection of a different critical boundary has a
minimal effect on the overall power and ASN. In both decision-making frame-
works, regardless of equal or unequal standardized mean difference among the
endpoints, the largest power is obtained from the OF for all of the endpoints, and
the lowest is the PC for all of the endpoints. Regarding the ASN, the smallest is
provided by the PC for all of the endpoints while the largest is provided by the OF.
One possible scenario for selecting a different boundary is when one endpoint is
invasive and stopping measurement of the endpoint is desirable as soon as possible,
i.e., once the superiority for the endpoint has been demonstrated.

Table 2.5 illustrates the average observation number (AON) per intervention
group (equally sized groups) for each endpoint based on the decision-making
frameworks DF-A under a given MSS in clinical trials with two co-primary end-
points, EP1 and EP2, when their standardized mean differences are D1;D2ð Þ ¼
0:2; 0:2ð Þ and 0:2; 0:3ð Þ: The AON is the expected sample size for each endpoint

Table 2.5 The AON per intervention group for each endpoint based on the decision-making
framework DF-A under a given MSS in clinical trials with two co-primary endpoints, EP1 and
EP2, when their standardized mean differences are D1;D2ð Þ ¼ 0:2; 0:2ð Þ and 0:2; 0:3ð Þ
Standardized mean
difference

Sample sizes Critical boundary combination

OF-OF PC-PC OF-PC PC-OF

(0.2, 0.2) AON (H1k) EP1 403 454 474 490

EP2 403 454 390 474

MSS 574 518 547 547

ASN (H1) 472 502 505 505

(0.2, 0.3) AON (H1k) EP1 259 298 316 243

EP2 341 368 339 373

MSS 450 403 446 408

ASN (H1) 357 385 384 380

The MSS per intervention group (equally sized groups) is calculated to detect the joint effect for
two endpoints with 80 % power at 2.5 % significance level for a one-sided test, where one interim
and one final analysis are to be performed. The critical boundaries are determined by using the
Lan–DeMets error-spending method, with equally spaced increments of information. The critical
boundary combinations are OF for both endpoints (OF-OF), PC for both endpoints (PC-PC), OF
for AAD and PC for CDD (OF-PC), and PC for AAD and OF for CDD (PC-OF). The ASN is
calculated under H1 (D1 ¼ D2 ¼ 0:2). AON is calculated under H1k with the calculated MSS
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and it is calculated under the hypothetical reference values and provides informa-
tion on the number of observations anticipated in a group-sequential clinical trial in
order to reach a decision point for each endpoint. The AON is calculated under H1k

with the calculated MSS. The MSS per intervention group (equally sized groups) is
calculated to detect the joint effect for two endpoints with 80 % power at 2.5 %
significance level for a one-sided test, where one interim and one final analysis are
to be performed. The critical boundaries are determined by the combinations of the
OF and the PC, using the Lan–DeMets error-spending method with equally spaced
increments of information; if EP1 is an invasive endpoint, then the critical boundary
combination of the PC for EP1 and the OF for EP2 provides the smallest AON for
EP1 in all of the standardized mean difference combinations.

Another practical decision is the selection of the correlations in the power eval-
uation and sample size calculation, i.e., whether the observed correlation from
external or pilot data should be utilized. As shown in Sect. 2.2.3, when the stan-
dardized mean differences for the endpoints are unequal, the advantage of incor-
porating the correlation into sample size calculation is less dramatic as the required
sample size is primarily determined by the smaller standardized mean difference and
does not greatly depend on the correlation. In this situation, the sample size equation
for multiple co-primary continuous endpoints can be simplified using the equation
for a single endpoint. When the standardized mean differences among endpoints are
approximately equal, one conservative approach is to assume that the correlations
are zero even if nonzero correlations are expected. Group-sequential designs dis-
cussed in this chapter offer the possibility of reducing the sample size compared to
fixed-sample designs even if zero correlation is assumed at the design stage.

Table 2.6 summarizes MSS and ASN per intervention group in clinical trials
with two co-primary endpoints. The MSS per intervention group (equally sized

Table 2.6 MSS and ASN per intervention group in clinical trials with two co-primary endpoints

Decision-making framework # of analyses L MSS ASN (H1)

0.0 0.3 0.5 0.8

DF-A 2 518 502 494 488 475

3 522 470 461 455 442

4 525 457 447 440 426

5 528 449 440 432 418

DF-B 2 518 502 494 488 475

3 523 471 462 455 443

4 528 459 449 442 428

5 530 451 441 434 419

The MSS per intervention group (equally sized groups) is calculated to detect the joint effect for
two endpoints (D1 ¼ D2 ¼ 0:2) with 80 % power at 2.5 % significance level for a one-sided test,
where the correlation between the two endpoints is assumed to be zero, i.e., qT ¼ qC ¼ q ¼ 0:0
and the critical boundaries are determined by OF, using the Lan–DeMets error-spending method
with equally spaced increments of information. The ASN is calculated under H1 (D1 ¼ D2 ¼ 0:2)
with ρ = 0.0, 0.3, 0.5, and 0.8
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groups) is calculated to detect the joint effect for two endpoints with 80 % power at
2.5 % significance level for a one-sided test, where the correlation between the two
endpoints is assumed to be zero, i.e., qT ¼ qC ¼ q ¼ 0:0 and the critical boundaries
are determined by the OF, using the Lan–DeMets error-spending method with
equally spaced increments of information. The ASN is calculated under H1 ðD1 ¼
D2 ¼ 0:2Þ and q ¼ 0:0; 0:3; 0:5; and 0:8: For example, when considering a clinical
trial with two co-primary endpoints, 516, 503, 490, 458 participants per interven-
tion group are required to detect a joint effect of equal standardized mean difference
D1 ¼ D2 ¼ 0:2 with 80 % power at 2.5 % significance level for a one-sided test in
a fixed-sample design, if the correlation between two endpoints is q ¼
0:0; 0:3; 0:5; and 0:8: In a group-sequential design based on DF-B, assuming zero
correlation between the two endpoints, the MSS are 518, 523, 528, and 530 cor-
responding to the number of planned analyses L = 2, 3, 4, and 5. The critical
boundaries for both endpoints are determined by OF, using the Lan–DeMets
error-spending method with equally spaced increments of information. Under these
MSS, the ASN are 488, 455, 442, and 434. The ASN are approximately equal or
smaller than the fixed-sample designs, depending on the number of planned anal-
yses. Our experience suggests that when standardized mean differences are unequal
among the endpoints, the power is not increased with higher correlations. With
unequal standardized mean differences, incorporating the correlation into the
sample size calculation at the planning stage may have less of an advantage because
the sample size is determined by the smaller standardized mean difference.

2.5 Summary

The determination of sample size and the evaluation of power are fundamental and
critical elements in the design of a clinical trial. If a sample size is too small, then
important effects may not be detected, while a sample size that is too large is
wasteful of resources and unethically puts more participants at risk than necessary.
Recently, many clinical trials are designed with more than one endpoint considered
as co-primary. As with trials involving a single primary endpoint, designing such
trials to include interim analyses (i.e., with repeated testing) may provide effi-
ciencies by detecting trends prior to planned completion of the trial. It may also be
prudent to evaluate design assumptions at the interim and potentially make design
adjustments (i.e., sample size recalculation) if design assumptions were dramati-
cally inaccurate. However, such design complexities create challenges in the
evaluation of power and the calculation of sample size during trial design.

In this chapter, we discuss group-sequential designs with two co-primary end-
points, where both endpoints are continuous or both are binary. We derive the power
and sample size methods under two decision-making frameworks: (1) designing the
trial to detect superiority for the two endpoints at any interim time-point (i.e., not
necessarily simultaneously) (DF-A) and (2) designing the trial to detect the test
intervention’s superiority for the two endpoints simultaneously (i.e., at the same
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interim time-point of the trial) (DF-B). The latter is simpler while the former is more
flexible and may be useful when the endpoint is very invasive or expensive, as it
allows for stopping the measurement of any endpoint upon which superiority has
been demonstrated. We summarize advantages and disadvantages of the two
decision-making frameworks in clinical trials with multiple co-primary endpoints in
Table 2.7. For other decision-making frameworks, see Hamasaki et al. (2015).
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Chapter 3
Sample Size Recalculation in Clinical
Trials with Two Co-primary Endpoints

Abstract Clinical trial design requires assumptions. Prior data often serve as the
basis for these assumptions. However, prior data may be limited or an inaccurate
indication of future data. This may result in trials that are over-/under-powered.
Interim analyses provide opportunities to evaluate the accuracy of the design
assumptions and potentially make design adjustments if the assumptions are
markedly inaccurate. We discuss sample size recalculation based on the observed
intervention’s effects during interim analyses with a focus on the control of sta-
tistical error rates.

Keywords Conditional power � Cui–Hung–Wang statistics � Sample size recal-
culation � Type I error

3.1 Sample Size Recalculation

Clinical trials are designed based on assumptions often constructed based on prior
data. However, prior data may be limited or an inaccurate indication of future data,
resulting in trials that are over-/under-powered. Interim analyses provide opportu-
nities to evaluate the accuracy of the design assumptions and potentially make
design adjustments (i.e., to the sample size) if the assumptions were markedly
inaccurate. For example, the tarenflurbil trial (Green et al. 2009) mentioned in
Chap. 2 failed to demonstrate a beneficial effect of tarenflurbil on both the
Alzheimer’s Disease Assessment Scale Cognitive Subscale (ADAS-Cog) and the
Alzheimer’s Disease Cooperative Study Activities of Daily Living (ADCS–ADL).
The observed treatment effects were smaller than the assumed effects.
Group-sequential designs allow for early stopping when there is sufficient statistical
evidence that the two treatments are different. However, more modern adaptive
designs may also allow for increases in the sample size if effects are smaller than
assumed. Such adjustments must be conducted carefully for several reasons.
Challenges include the following:
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• Maintaining control of statistical error rates,
• Developing a plan to make sure that treatment effects cannot be inferred via

back-calculation of a resulting change in the sample size,
• Consideration of the clinical relevance of the treatment effects, and
• Practical concerns such as an increase in cost and the challenge of accruing more

trial participants.

In this chapter, we discuss sample size recalculation based on the observed
intervention’s effects at an interim analysis with a focus on the control of statistical
error rates.

3.2 Test Statistics and Conditional Power

Using the notation defined in Chap. 2, we consider a two-arm parallel-group trial
designed to evaluate if a test intervention (T) is superior to a control (C) based on
two continuous outcomes EP1 and EP2 ðK ¼ 2Þ as co-primary endpoints. Suppose
that the groups are equally sized and a maximum of L analyses is planned, where
the same number of planned analyses with the same information space is selected
for both endpoints. Let nl be the cumulative number of participants on the T and the
C at the lth analysis ðl ¼ 1; . . .; LÞ, respectively. Hence, up to nL participants are
recruited and randomly assigned to the T and the C, respectively. Then, there are nL
paired outcomes YT1i; YT2ið Þ (i ¼ 1; . . .; nL) for the T and nL paired outcomes
ðYC1j; YC2jÞ (j ¼ 1; . . .; nL) for the C. Assume that YT1i; YT2ið Þ and YC1j; YC2j

� �
are

independently bivariate distributed with mean E YTki½ � ¼ lTk and E½YCkj� ¼ lCk,
variances var½YTki� ¼ r2Tk and var YCkj

� � ¼ r2Ck, and correlation corr½YT1i; YT2i� ¼ qT
and corr YC1j; YC2j

� � ¼ qC, respectively ðk ¼ 1; 2Þ. For simplicity, the variances are
assumed to be known and common, i.e., r2Tk ¼ r2Ck ¼ r2k .

Let dk ¼ lTk � lCk and Dk ¼ dk=rk denote the mean differences and standard-
ized mean differences for the T and the C, respectively ðk ¼ 1; 2Þ. Suppose that
positive values of dk represent the test intervention’s benefit. There is an interest in
testing H0 : H01 [ H02 versus H1 : H11 \ H12 at the α level within the context of
group-sequential designs, where H0k:dk � 0 and H1k:dk [ 0 with dk ¼ lTk � lCk.

Consider that the maximum sample size (MSS) is recalculated to n0L based on the
interim data at the Sth analysis. Suppose that n0L is subject to nR\n0L\knL, where λ
is a prespecified constant for the maximum allowable sample size. For simplicity,
assume a common correlation between the treatment groups, i.e., qT ¼ qC ¼ q.
Without loss of generality, let ð~D1; ~D2Þ and let D�

1;D
�
2

� �
be the standardized mean

differences used for planned sample size and for recalculated sample size,
respectively.

Here, we consider the Cui–Hung–Wang (CHW) statistics (Cui et al. 1999) for
sample size recalculation in group-sequential designs with two co-primary end-
points to preserve the overall Type I error rate at a prespecified significance level
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even when the sample size is increased and conventional test statistics are used.
Using the notation defined in Chap. 2, if the CHW statistics are

Z 0
km ¼

ffiffiffiffiffiffi
nS
nm

r
ZkS þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nm � nS

nm

r Pn0m
i¼nSþ 1

YTki �
Pn0m

j¼nSþ 1
YCkjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 n0
m � nS

� �q
where n0m ¼ nm � nSð Þ n0L � nS

� �
= nL � nSð Þþ nSðk ¼ 1; 2; S ¼ 1; . . .; L� 1; and

m ¼ Sþ 1; . . .; LÞ, and ZkS is the test statistic at the Sth analysis for endpoint
k ðk ¼ 1; 2Þ, which is given by

ZkS ¼ YTkS � YCkS

rk
ffiffiffiffiffiffiffiffiffiffi
2=nS

p ;

where YTkS and YCkS are the sample means at the Sth analysis given by YTkS ¼PnS
i¼1 YTki=nS and YCkS ¼

PnS
j¼1 YCkj=nS. The same critical boundaries based on any

group-sequential methods utilized for the case without sample size recalculation are
used.

The sample size is increased or decreased when the conditional power
(CP) evaluated at the Sth analysis is lower or higher than the desired power 1� b.
Under the planned MSS and a given observed value of Z1S; Z2Sð Þ based on DF-A
discussed in Chap. 2, the CP is given by

CP ¼

Pr
[L

m¼Sþ 1

Z1m [ cE1mðaÞ
� �					a1S; a2l0

" #
if Z1l � cE1lðaÞ for all l ¼ 1; . . .; S

and Z2l0 [ cE2l0 ðaÞ for some l0 ¼ 1; . . .; S;

Pr
[L

m¼Sþ 1

Z2m [ cE2mðaÞ
� �					a2S; a1l0

" #
if Z2l � cE2lðaÞ for all l ¼ 1; . . .; S

and Z1l0 [ cE1l0 ðaÞ for some l0 ¼ 1; . . .; S;

Pr
[L

m¼Sþ 1

Z1m [ cE1mðaÞ
� �( )\ [L

m¼Sþ 1

Z2m [ cE2mðaÞ
� �( )					a1S; a2S

" #
if Z1l � cE1lðaÞ and Z2l � cE2lðaÞ for all l ¼ 1; . . .; S;

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:
ð3:1Þ

where a1S; a2Sð Þ is a given observed value of Z1S; Z2Sð Þ. On the other hand, if
Z1l � cE1lðaÞ or Z2l � cE2lðaÞ for all l ¼ 1; . . .; S, then the CP for DF-B is defined by
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CP ¼ Pr
[L

m¼Sþ 1

Z1m [ cE1mðaÞ
� �\

Z2m [ cE2mðaÞ
� �n o					a1S; a2S

" #
; ð3:2Þ

The detailed calculation of the CPs based on DF-A and DF-B is provided in the
Appendix B. Since ðD1;D2Þ is unknown, it is customary to substitute ðD�

1;D
�
2Þ, the

estimated mean differences at the Sth analysis ðbD1S; bD2SÞ or the assumed mean

differences during trial planning ðeD1; eD2Þ. We consider the CP based on ðD�
1;D

�
2Þ ¼

ðbD1S; bD2SÞ; which allows the evaluation of behavior of power independent of

ðeD1; eD2Þ.
When recalculating the sample size, three options are possible: (i) only allowing

an increase in the sample size, (ii) only allowing a decrease in the sample size, and
(iii) allowing an increase or decrease in the sample size. For all of the cases, we
assign Z

0
km and n0m instead of Zkm and nm in the CPs (3.1) and (3.2). Consider the

rule for determining the recalculated sample size n0L, when the sample size may be
increased only, which is:

n0L ¼ nL; if CP� 1� b or minðbD1S; bD2SÞ� 0;
minðn00L; knLÞ; otherwise:



where n00L is the smallest integer n0Lð[ nSÞ, where the CP achieves the desired power
1� b. When the sample size may be decreased only, the recalculated sample size
n0L is given as:

n0L ¼ n00L; if CP� 1� b;
nL; otherwise:



When the sample size may be increased or decreased, the recalculated sample

size n0L is given as:

n0L ¼
n00L; if CP[ 1� b;

nL; if CP ¼ 1� b or minðbD1S; bD2SÞ� 0;
minðn00L; knLÞ; otherwise:

8<:
Incorporating the uncertainty of the estimates at the interim into the sample size

recalculation is important in practice. When planning the sample size recalculation
in clinical trials with multiple co-primary endpoints, one practical question is
whether the sample size is increased or decreased in sample size recalculation.
Referring to Asakura et al. (2014), the option of decreasing the sample size is not
good choice as the power cannot maintain the targeted power although the expected
sample size can be reduced more than the other recalculation options. For other
options, i.e., only allowing an increase in the sample size or allowing an increase or
decrease in the sample size, the targeted power is maintained.

An important decision regards the optimal timing of the sample size recalcula-
tion. The timing should also be carefully considered as the power does not reach
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desired levels if the sample size recalculation is done too early in the trial, espe-
cially when considering a decrease in the sample size. For more details, please see
Asakura et al. (2014).

3.3 Illustration

We provide an example to illustrate the sample size recalculation discussed in
Sect. 3.2. The tarenflurbil study (Green et al. 2009) is again used to illustrate the
sample size recalculation. Recall that the study was designed to evaluate whether
tarenflurbil is superior to placebo on cognitive decline and activities of daily living in
patients with mild Alzheimer’s disease. Co-primary endpoints were cognition as
assessed by ADAS-Cog (EP1) and functional ability was as assessed by ADCS–ADL
(EP2).

Table 3.1 summarized the recalculated sample size based on the five scenarios of

the observed effect ðbD1S; bD2SÞ in a group-sequential clinical trial with two analyses
(L = 2), where the decision-making for rejecting H0 is based on DF-A. The planned
MSS is calculated to detect the joint effect on both endpoints assuming the stan-

dardized mean difference ðeD1; eD2Þ ¼ 0:20; 0:20ð Þ; correlation qT ¼ qC ¼ q ¼ 0:0
and 0.80, with 80 % power at 2.5 % significance level for a one-sided test. The
critical boundaries are determined by the O’Brien–Fleming-type boundary
(OF) (O’Brien and Fleming 1979), using Lan–DeMets error-spending method (Lan
and DeMets 1983) with the information time of 0.25, 0.50, and 0.75. The sample
size is recalculated based on the three options: (a) only increasing the sample size,
(b) only decreasing the sample size, and (c) increasing or decreasing the sample
size, with a prespecified constant for the maximum allowable sample size k ¼ 1:5.
The five scenarios are as follows: (i) both standardized mean differences at the
interim are the same as those at the planning, (ii) both standardized mean differ-
ences at the interim are larger than those at the planning, (iii) standardized mean
differences at the interim are smaller than those at the planning, (iv) only the
standardized mean difference for the ADAS-Cog at the interim is larger than that at
the planning, and (v) only the standardized mean difference for the ADCS–ADL at
the interim is smaller than that at the planning.

In all of the five scenarios and the three options for sample size recalculation, the
sample sizes recalculated at the interim of 0.25 information time are larger than
those at the interim of 0.50 information time. At the interim corresponding to 0.70
information time, except for scenarios (iii) and (v), sample size recalculation is not
performed when the joint statistical significance on both endpoints has been
established. At the interim corresponding to 0.25 or 0.50 information time, if the
observed standardized mean difference for either of endpoints is larger than
assumed, Option (b) or (c) suggests decreasing the sample size, but Option
(a) suggests no change in the sample size. However, if the sample size is decreased
in such a situation, then the power is always lower than the desired power,
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especially with higher correlation (Asakura et al. 2014). Based on these results, the
timing of the sample size recalculation should be carefully considered as the power
does not reach desired levels if the sample size recalculation is carried out early in
the trial when considering a decrease in the sample size.

3.4 Application to Binary Outcomes

Consider application of the sample size calculation methods discussed in the pre-
vious section for binary outcomes. For illustration, consider the simplest situation,
i.e., the two-stage group-sequential design with one interim and final analyses.

Table 3.1 Recalculated sample size based on the five scenarios of the observed effect ðbD1S; bD2SÞ
in a group-sequential clinical trial with two analyses (L ¼ 2), where the decision-making is based
on DF-A

Timing of
recalculation:
information time

Scenario:
observed effect
at the interim

ðbD1S; bD2SÞ

q ¼ 0:0 q ¼ 0:8

Planned
MSS

(a) (b) (c) Planned
MSS

(a) (b) (c)

0.25 (i)
(ii)
(iii)
(iv)
(v)

(0.20, 0.20)
(0.25, 0.25)
(0.15, 0.15)
(0.25, 0.20)
(0.20, 0.15)

516 516
516
774
516
677

464
307
516
464
516

464
307
774
464
677

458 458
458
687
458
651

416
275
458
369
458

416
275
687
369
651

0.50 (i)
(ii)
(iii)
(iv)
(v)

(0.20, 0.20)
(0.25, 0.25)
(0.15, 0.15)
(0.25, 0.20)
(0.20, 0.15)

518 518
518
741
518
604

414
305
518
364
518

414
305
741
364
604

460 460
460
677
460
593

376
274
458
342
460

376
274
687
342
593

0.75 (i)
(ii)
(iii)
(iv)
(v)

(0.20, 0.20)
(0.25, 0.25)
(0.15, 0.15)
(0.25, 0.20)
(0.20, 0.15)

525 –

–

630
–

526

–

–

525
–

525

–

–

630
–

526

467 –

–

593
–

531

–

–

467
–

467

–

–

593
–

531

The planned MSS is calculated to detect the joint effect on both endpoints assuming the standardized

mean difference ðeD1; eD2Þ ¼ 0:20; 0:20ð Þ, and correlation qT ¼ qC ¼ q ¼ 0:0 and 0:80, with 80 %
power at 2.5 % significance level for a one-sided test. The critical boundaries are determined by the OF,
using Lan–DeMets error-spending method with the information time of 0.25, 0.50, and 0.75. The
sample size is recalculated based on the three options: (a) only increasing the sample size, (b) only
decreasing the sample size, and (c) increasing or decreasing the sample size, with a prespecified
constant for the maximum allowable sample size k ¼ 1:5. The five scenarios are as follows: (i) both
standardized mean differences at the interim are the same as those at the planning, (ii) both standardized
mean differences at the interim are larger than those at the planning, (iii) standardized mean differences
at the interim are smaller than those at the planning, (iv) only the standardized mean difference for the
ADAS-Cog (EP1) at the interim is larger than that at the planning, and (v) only the standardized mean
difference for the ADCS–ADL (EP2) at the interim is smaller than that at the planning
–: Sample size recalculation is not performed when the joint statistical significance on both endpoints
has been established
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The CHW test statistics based on independent samples at the interim and final
analyses Zk1 and Z 00

k2 are given by

Zk1 ¼
ffiffiffiffiffi
n1

p
d̂k1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�̂pk1 �̂qk1
p and Z 00

k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n002 � n1

p
d̂00k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�̂p00k2 �̂q
00
k2

q ;

where d̂00k2 ¼ ðn02 � n1Þ�1ðPn02
i¼n1 þ 1 YTki �

Pn02
j¼n1 þ 1 YCkjÞ; �̂qk1 ¼ 1� �̂pk1, and

�̂q00k2 ¼ 1� �̂p00k2. Therefore, the CHW statistics are Z 0
k2 ¼ w1Zk1 þw2Z 00

k2, where w1 ¼ffiffiffiffiffiffiffiffiffiffiffiffi
n1=n2

p
and w2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn2 � n1Þ=n2
p

.
Using these test statistics, the sample size is increased or decreased when the CP

evaluated at the Sth analysis is lower or higher than the desired power 1� b. Under
the planned MSS and a given observed value of ðZ1S; Z2SÞ based on DF-A and
DF-B, the CPs are given by the same forms given in (3.1) and (3.2). For more
details, please see Asakura et al. (2015).

The PLACIDE study (Allen et al. 2012, 2013) is again used to illustrate the
sample size recalculation. Recall that the study was a double-blind, randomized,
parallel-group placebo-controlled trial evaluating lactobacilli and bifidobacteria for
the prevention of antibiotic-associated diarrhea in older people admitted to the
hospital. The MSS based on DF-A and DF-B is 1146 per intervention group based
on an alternative hypothesis of differences for both antibiotic-associated diarrhea
(AAD) (d1 ¼ �0:10 with pC1 ¼ 0:20) and C difficile diarrhea (CDD) (d2 ¼ �0:02
with pC2 ¼ 0:04), qT ¼ qC ¼ q ¼ 0:0; 0:3; 0:5 and 0:8; with an alternative
hypothesis of differences in proportions to AAD (pT1 ¼ 0:2 and pC1 ¼ 0:4) and
CDD (pT2 ¼ 0:02 and pC2 ¼ 0:04) with 80 % power at 2.5 % significance level for
one-sided test, using the normal approximation method, where the critical bound-
aries are determined by the OF for both endpoints, using the Lan–DeMets
error-spending method with equally spaced increments of information.

When considering the same three options based on the rule for determining the
recalculated sample size n0L mentioned in Sect. 3.1, Table 3.2 displays the recal-
culated sample sizes, CPs and empirical CP (ECP)s based on DF-A and DF-B under
the five scenarios, i.e., (i) both differences in proportions at the interim are same as
those at the planning, (ii) both differences in proportions at the interim are smaller
than those at the planning, (iii) both differences in proportions at the interim are
larger than those at the planning, (iv) only the difference in proportions for the AAD
at the interim is smaller than that at the planning, and (v) only the difference in
proportions for the CDD at the interim is smaller than that at the planning. The ECP
is evaluated via Monte Carlo simulation with the 100,000 runs for each scenario.
The bivariate Bernoulli data for the Monte Carlo simulation were generated by the
method in Emrich and Piedmonte (1991). The sample size is recalculated when the
CP evaluated at the interim analysis is lower or higher than the desired power 1� b
under the three options: (a) only increasing the sample size, (b) only decreasing the
sample size, and (c) increasing or decreasing the sample size, with a prespecified
constant for the maximum allowable sample size k ¼ 1:5 and qT ¼ qC ¼ q ¼ 0:0,
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where the critical boundaries for both endpoints are determined by the OF, using
the Lan–DeMets error-spending method with equally spaced increments of
information.

In all scenarios of observed interim effects, when only allowing an increase in
the sample size, the CP (and ECP) is always higher than 80 % desired power. When
allowing an increase or a decrease in the sample size, except for scenario (iii) of
both differences in proportions at the interim are larger than those at the planning,
the CPs are always larger than 80 % power. On the other hand, when only allowing
a decrease in the sample size, the CPs are always lower than the desired power. In
this example, the sample size recalculation is supposed to be conducted at the
information time of 0.50. As discussed in the previous sections, the timing of
sample size recalculation is important. The power is much lower than desired power
if the sample size recalculation is conducted early in the trial, especially when
allowing for a decrease in the sample size.

Table 3.2 The recalculated sample sizes, CP and ECP under the five scenarios, where the
decision-making is based on DF-A and the scenarios are (i) both differences in proportions at the
interim are the same as those at the planning, (ii) both differences in proportions at the interim are
smaller than those at the planning, (iii) both differences in proportions at the interim are larger than
those at the planning, (iv) only the difference in proportions for the AAD at the interim is smaller
than that at the planning, and (v) only the difference in proportions for the CDD at the interim is
smaller than that at the planning

Scenario: observed
effect at the interim

(bd1S; bd2S)
Option Before

recalculation
After
recalculation

CP(%) ECP(%) n0L CP(%) ECP(%)

(i) (0.10, 0.02) (a) 88.2 88.8 1146 88.2 88.8

(b) 88.2 88.8 968 80.2 80.8

(c) 88.2 88.8 968 80.2 80.8

(ii) (0.05, 0.01) (a) 54.8 55.2 1719 82.8 83.3

(b) 54.8 55.2 1146 54.8 55.2

(c) 54.8 55.2 1719 82.8 83.3

(iii) (0.15, 0.025) (a) 96.3 96.2 1146 96.3 96.2

(b) 96.3 96.2 669 73.1 72.7

(c) 96.3 96.2 669 73.1 72.7

(iv) (0.05, 0.02) (a) 88.2 88.8 1146 88.2 88.8

(b) 88.2 88.8 1074 85.5 85.9

(c) 88.2 88.8 1074 85.5 85.9

(v) (0.10 0.01) (a) 54.8 55.3 1719 82.8 83.6

(b) 54.8 55.3 1146 54.8 55.3

(c) 54.8 55.3 1719 82.8 83.6

The sample size is recalculated when the CP evaluated at the interim analysis is lower or higher
than the desired power 1� b under the three options: (a) only increasing the sample size, (b) only
decreasing the sample size, and (c) increasing or decreasing the sample size, with a prespecified
constant for the maximum allowable sample size k ¼ 1:5 and qT ¼ qC ¼ q ¼ 0:0, where the
critical boundaries for both endpoints are determined by the OF, using the Lan–DeMets
error-spending method with equally spaced increments of information
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3.5 Summary

As with group-sequential trials involving a single primary endpoint, designing
group-sequential trials with co-primary endpoints can provide efficiencies by
detecting trends prior to planned completion of the trial. It may also be prudent to
evaluate design assumptions at the interim and potentially make design adjustments
(i.e., sample size recalculation) if design assumptions were dramatically inaccurate.
In this chapter, we discuss sample size recalculation based on the observed inter-
vention’s effects at an interim analysis with a focus on control of statistical error
rates.
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Chapter 4
Interim Evaluation of Efficacy or Futility
in Clinical Trials with Two Co-primary
Endpoints

Abstract We discuss group-sequential designs for early efficacy or futility stopping
in superiority clinical trials with multiple co-primary endpoints. We discuss several
decision-making frameworks for evaluating efficacy or futility based on boundaries
using group-sequential methodology. We incorporate the correlations among the
endpoints into the calculations for futility critical boundaries and evaluate the required
sample sizes as a function of design parameters including mean differences, the
number of planned analyses, and efficacy critical boundaries. We provide an example
to illustrate the methods and discuss practical considerations when designing efficient
group-sequential designs in clinical trials with co-primary endpoints.

Keywords Error-spending method � Futility � Multiple endpoints � Non-binding
boundary � Type I error � Type II error

4.1 Introduction

In this chapter, we consider group-sequential designs in clinical trials with multiple
co-primary endpoints with the decision-making frameworks for rejecting the null or
alternative hypothesis (i.e., early stopping for either efficacy or futility).

In addition to early stopping for efficacy assessment as discussed in Chap. 2,
it can be equally important to monitor the clinical trials to assess the futility,
e.g., when an intervention that is being investigated is not working. The tarenflurbil
trial (Green et al. 2009) mentioned in Chap. 2 unfortunately failed to demonstrate a
beneficial effect of tarenflurbil on both the Alzheimer’s Disease Assessment Scale
Cognitive Subscale (ADAS-Cog) and the Alzheimer’s Disease Cooperative Study
Activities of Daily Living (ADCS-ADL). The observed treatment effect estimates
were smaller than the assumed effects. In fact, the observed ADCS-ADL in the
tarenflurbil group was smaller than that for the placebo group. If the design had
included a futility assessment, the clinical trial may have been stopped based on an
interim result suggesting that the treatment was not effective and it was unlikely to
demonstrate a desirable result. This may have saved resources and time, and
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prevented patients from being exposed to an ineffective intervention unnecessarily
(Gould and Pecore 1982; Ware et al. 1985; Snapinn et al. 2006).

There are two fundamental approaches for assessing futility: based on the
conditional probability of rejecting the null hypothesis (Lan et al. 1982; Lachin
2005) and based on the critical boundaries using group-sequential methodology
(DeMets and Ware 1980, 1982; Chang et al. 1998; Whitehead and Matsushita
2003). In this chapter, we focus on the latter as we have discussed conditional
probability in Chap. 3 and develop the method as an extension of Jennison and
Turnbull (1993), and Cook and Farewell (1994), where they discussed the
decision-making frameworks associated with interim evaluation of efficacy and
futility to monitor the efficacy and safety responses, and considered a simple
method for determining the boundaries. The approach must preserve the desired
Type I and Type II error rates, a and b analogously to the single endpoint case.
When planning interim efficacy assessments in clinical trials with multiple
co-primary endpoints, the efficacy boundary is usually determined separately using
group-sequential methods [e.g., Lan–DeMets error-spending method (Lan and
DeMets 1983)] to control the Type I error, analogous to the single primary endpoint
case (Asakura et al. 2014). However, the efficacy boundary could be adjusted by
incorporating the correlations among the endpoints [Chuang-Stein et al. (2007) and
Kordzakhia et al. (2010) discussed this for fixed-sample designs]. This strategy may
provide smaller sample sizes but also introduces challenges. The sample size cal-
culated to detect the joint effect may be smaller than the sample size calculated for
each individual endpoint. Furthermore, the correlation is usually unknown and
estimates from prior studies may be incorrect. This calls into question whether or
not the significance level should be adjusted based on the unknown nuisance
parameter. On the other hand, when planning for interim futility assessment in trials
with multiple co-primary endpoints, it is unclear how adjusting the futility boundary
by incorporating the correlations may affect the decision-making for accepting the
null hypothesis although Jennison and Turnbull (1993) provide the fundamentals on
this issue. We investigate this issue by evaluating the operating characteristics in
terms of efficacy and futility boundaries, power, the Type I error, and sample sizes,
as a function of mean differences, correlation, and the number of analyses.

Using the notation defined in Chap. 2, we consider a two-arm parallel group trial
designed to evaluate whether a test intervention (T) is superior to a control (C) based
on two continuous outcomes EP1 and EP2 ðK ¼ 2Þ as co-primary endpoints.
Suppose that a maximum of L analyses are planned, where the same number of
planned analyses with the same information space is selected for both endpoints.
Let nl and rCnl be the cumulative number of participants on the T and the C at the
lth analysis ðl ¼ 1; . . .; LÞ; respectively, where rC is the allocation ratio of the C to
the T. Hence, up to nL and rCnL, participants are recruited and randomly assigned to
the T and the C, respectively. Then, there are nL paired outcomes ðYT1i; YT2iÞ ði ¼
1; . . .; nLÞ for the T and rCnL paired outcomes ðYC1j; YC2jÞ ðj ¼ 1; . . .; rCnLÞ for the C.
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Assume that ðYT1i; YT2iÞ and ðYC1j; YC2jÞ are independently bivariate-distributed
with means E½YTki� ¼ lTk and E½YCkj� ¼ lCk , variances var½YTki� ¼ r2Tk and
var½YCkj� ¼ r2Ck, and correlations corr½YT1i; YT2i� ¼ qT and corr½YC1j; YC2j� ¼ qC,
respectively ðk ¼ 1; 2Þ. For simplicity, the variances are assumed to be known and
common, i.e., r2Tk ¼ r2Ck ¼ r2k . There is an interest in testing H0: H01[H02 versus
H1: H11\H12 at the a level within the context of group-sequential designs, where
H0k : dk � 0 and H1k : dk [ 0 with dk ¼ lTk � lCk .

4.2 Decision-Making Frameworks and Stopping Rules

We describe the decision-making frameworks with associated rules for rejecting or
accepting the H0 when implementing both efficacy and futility assessments.

When assessing futility on two co-primary endpoints in a group-sequential
setting, the decision-making rule is to accept H0 if the test statistic for at least one
endpoint crosses a prespecified group-sequential-based futility critical boundary at
any interim analysis. If the trial is not stopped when at least one test statistic has
crossed the futility critical boundary, then the Type I error will be inflated analo-
gously to trials with a single primary endpoint. We only discuss the non-binding
futility critical boundary, assuming that the trial is stopped when at least one test
statistic has crossed the futility critical boundary, although the binding futility
critical boundary may be used in this situation.

When assessing efficacy, as discussed in Chap. 2, there are two options for testing
H0 (Asakura et al. 2014, 2015; Chen et al. 2014; Hamasaki et al. 2015; Ando et al.
2015). One is to reject H0 if each test statistic crosses the prespecified
group-sequential-based efficacy critical boundary at any interim analysis (i.e., not
necessarily simultaneously), but both the test statistics should cross the critical
boundary at each analysis until completion of the trial. If either of the test statistics
crosses the critical boundary at an interim analysis, then the trial continues, but
subsequent hypothesis testing is repeatedly conducted only for the previously
non-significant endpoint. The other option is a special case of the first one: reject H0

if both the test statistics cross the critical boundary at an interim analysis simulta-
neously. If either of the test statistics does not cross the critical boundary, then the
trial continues until all of the test statistics cross the critical boundary simultaneously.

By combining the two decision-making rules for efficacy assessment with the
decision-making rule for futility assessment, we consider an option that allows
selecting different numbers and timings for interim analyses for efficacy and futility
assessments. For example, three analyses for efficacy assessment (with information
times of 0.50, 0.75, and 1.0) and two analyses for futility assessment (with infor-
mation times of 0.25 and 1.0) could be conducted. This provides an opportunity for
detecting an early negative sign for either of the endpoints, but also has flexibility
for delaying efficacy analyses to improve the power.

For example, based on our recent observations in developing drugs for the
treatment of Alzheimer’s disease, it seems more difficult to detect the effect on
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functional or global endpoint [e.g., Alzheimer’s Disease Cooperative Study
Clinician’s Global Impression of Change (ADCS-CGIS), Clinician’s Interview-
Based Impression of Change, plus caregiver (CIBIC-plus)], rather than cognitive
endpoint (ADAS-cog). Functional or global endpoint generally requires a larger
sample size as the effect is smaller than the cognitive endpoint. In fact, the three
phase III confirmatory clinical trials of rivastigmine, memantine, and galantamine,
which were conducted in Japan, failed to demonstrate a significant beneficial effect
on functional or global endpoint (Pharmaceuticals and Medical Devices Agency,
PMDA 2010a, b, 2011) although the effects on functional or global endpoint were
positive compared with placebo. One possible strategy for evaluating the effect of
drugs for the treatment of Alzheimer’s disease is to assess futility only for the
cognitive endpoint at an early interim analysis and to assess the efficacy for both
cognitive and functional or global endpoints at late interim analyses if negative
signs are not detected for the cognitive endpoint during the earlier interim analyses.
If a negative sign is detected for the cognitive endpoint at the earlier interim
analysis, then the clinical trial is terminated.

Based on these concepts, we describe three decision-making frameworks with
corresponding stopping rules and power definitions.

DF-A: The first decision-making framework, DF-A, is to (i) accept H0 if the test
statistic for at least one endpoint crosses a prespecified group-sequential-based
futility critical boundary at any interim analysis and (ii) to reject H0 if each test
statistic crosses the prespecified group-sequential-based efficacy critical boundary at
any interim analysis (i.e., not necessarily simultaneously). Here, suppose that Lk
analyses are planned for efficacy or futility assessments for endpoint k, and the total
number of planned analyses L is the sum of the number of planned analyses over all
endpoints, excluding the duplications of the same information time nlk=nL ¼ Ilkð Þ ¼
nlk0=nL ¼ Ilk0

� � ðlk ¼ 1; . . .; Lk; lk0 ¼ 1; . . .; Lk0 ; 1� Lk0 ; Lk � LÞ. The stopping rule
based on DF-A is formally given as follows:

Until the lth analysis ðl ¼ 1; . . .; L� 1Þ;
if Zklk � cFklkðbÞ for at least one endpoint, for some 1� lk � l; then accept H0

and stop the trial,
if Zklk [ cEklkðaÞ for both endpoints, for some 1� lk � l; then reject H0 and
stop the trial,
otherwise, continue to the ðlþ 1Þth analysis,

at the Lth analysis,

if ZkLk � cFkLk ðbÞ for at least one endpoint, then do not reject H0,
if ZkLk [ cEkLk ðaÞ for the non-significant endpoint(s) until the ðL� 1Þth anal-
ysis, then reject H0,
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where Zklk is the test statistic for kth endpoint at the lkth analysis

Zklk ¼
YTklk � YCklk

rk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ 1=rCÞ=nlk

p ;

where YTklk and YCklk are the sample means for T and C for the lkth analysis defined
in Chap. 2. Also, cEklk ðaÞ and cFklk ðbÞ are the efficacy and futility critical boundaries,
determined using any group-sequential method, respectively. The power for
detecting the joint effect on both endpoints, corresponding to the DF-A, is

1� b ¼ Pr
\2
k¼1

Ak1 [
[Lk
lk¼2

\lk�1

l0k¼1

Bkl0k \Aklk

8<:
9=;

8<:
9=;jH1

24 35: ð4:1Þ

where Aklk ¼ Zklk [ cEklkðaÞ
n o

and Bklk ¼ cFklk ðbÞ\Zklk � cEklk ðaÞ
n o

:

As mentioned in Chap. 2, the efficacy critical boundaries cEklk ðaÞ are constant and
determined separately, using any group-sequential method to control the Type I
error rate, analogous to the single primary endpoint case. The futility critical
boundaries cFklk ðbÞ are also constant and determined for achieving the desired power
1� b and controlling the marginal Type I error rate to the prespecified level a with
cFkLðbÞ ¼ cEkLðaÞ at the final analysis, using any group-sequential method. The
efficacy and futility boundaries at the first analysis cEk1ðaÞ and cFk1ðbÞ are determined
such that:

Pr Zk1 [ cEk1ðaÞjH0
� � ¼ fk J 1ð Þ and Pr Zk1 � cFk1ðaÞjH1

� � ¼ gk J 1ð Þ;

where fk J lð Þ and gk J lð Þ are error-spending functions for endpoint k, which
describes the error rates spent until the lth analysis with the information time J l and
fkð0Þ ¼ gkð0Þ ¼ 0 and fkð1Þ ¼ a and gkð1Þ ¼ bk . At the subsequent analyses, c

E
klðaÞ

and cFklðbÞ are determined satisfying

Pr Zk1 � cEk1ðaÞ; . . .; Zkl�1 � cEkl�1ðaÞ; Zkl [ cEklðaÞjH0
� � ¼ fkðJ lÞ � fkðJ l�1Þ

and

Pr cFk1ðbÞ\Zk1 � cEk1ðaÞ; . . .; cFkl�1ðbÞ\Zkl�1 � cEkl�1ðaÞ; Zkl � cFklðbÞjH1
� �

¼ gkðJ lÞ � gkðJ l�1Þ:

For the method for calculating the efficacy and futility boundaries, see Asakura
et al. (2015).
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Figure 4.1 displays the efficacy and futility critical boundaries for the DF-A in a
group-sequential clinical trial with the four planned analyses (L = 4). The efficacy
and futility assessments are conducted for the two endpoints at the same interim
analysis. Both efficacy and futility critical boundaries are determined by the
O’Brien–Fleming-type boundary (OF) (O’Brien and Fleming 1979), using Lan–
DeMets error-spending method, for spending the Type I and II errors, with equally
spaced increments of information, where the trial is designed to detect a joint effect
on both endpoints [the standardized mean differences ðD1;D2Þ ¼ ð0:1; 0:1Þ;
ð0:1; 0:2Þ and ð0:2; 0:2Þ] with 80 % power at 2.5 % significance level for a
one-sided test, where Dk ¼ dk=rkðk ¼ 1; 2Þ.

The figure illustrates that the regions based on the efficacy and futility critical
boundaries for the two endpoints are narrower when the standardized mean
differences are larger and when the correlation is larger. When D1 ¼ D2, the
futility critical boundaries for both endpoints vary with the correlation.
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Fig. 4.1 Efficacy and futility critical boundaries with correlation and standardized mean
differences in a group-sequential clinical trial with two analyses (L = 4), where the
decision-making is based on DF-A. The trial is designed to detect a joint effect on both endpoints
with 80 % power at a 2.5 % significance level for a one-sided test. The standardized mean
differences are ðD1;D2Þ ¼ ð0:1; 0:1Þ; ð0:1; 0:2Þ and ð0:2; 0:2Þ. The efficacy and futility assess-
ments are conducted for the two endpoints at the same interim analyses. The critical boundaries are
determined by the OF, using the Lan–DeMets error-spending method with equally spaced
increments of information
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If qT ¼ qC ¼ q ¼ 0:0, then the futility critical boundaries for both endpoints are
equal to the ones individually calculated for each endpoint with the power offfiffiffiffiffiffiffiffiffiffiffi
1� b

p ¼ 89:4% and ones with 80 % power if q ¼ 1:0. When D1\D2, the futility
critical boundaries do not vary with the correlation. For example, when
ðD1;D2Þ ¼ ð0:1; 0:2Þ, the futility critical boundaries for EP1 are −0.822, 0.609,
1.401, and 2.014 for each analysis and are equal to those calculated for EP1 to
detect D1 ¼ 0:1 with 80 % power. On the other hand, for EP2, the futility critical
boundaries are �5:140;�1:504; 0:542 and 2.014 for each analysis. In this situation,
the calculated sample size per intervention group is 1782 which is equal to the one
calculated for EP1 with D1 ¼ 0:1 and 80 % power. The futility critical boundaries
for EP2 are equal to those calculated to detect D2 with the marginal power for EP2
under this sample size. The method for calculating the efficacy and futility critical
boundaries is discussed in the Appendix A3.

DF-B: The second framework, DF-B, is a special case of the DF-A. A major
difference in the decision-making rule is to reject H0 if both of the test statistics
cross the critical boundary at the same interim analysis simultaneously. The stop-
ping rule is formally given as follows:

At the lth analysis ðl ¼ 1; . . .; L� 1Þ,
if Zklk � cFklk ðbÞ for at least one endpoint, then accept H0 and stop the trial,
if Zklk [ cEklk ðaÞ for all endpoints, then reject H0 and stop the trial,
otherwise, continue to the ðlþ 1Þth analysis,

at the Lth analysis,

if ZkLk � cFkLk ðbÞ for at least one endpoint, then do not reject H0,
if ZkLk [ cEkLkðaÞ for all endpoints, then reject H0.

Therefore, the power for detecting the joint effect on both endpoints, corre-
sponding to the DF-B, is

1� b ¼ Pr
\2
k¼1

Ak1 [
[L1;...;LK

l1;...;lK¼2

\2
k¼1

\lk�1

l0k¼1

Ckl0k \Aklk

8<:
9=;

8<:
9=;jH1

24 35; ð4:2Þ

where Cklk ¼ Zklk [ cFklkðbÞ
n o

.

DF-C: DF-A and DF-B are flexible, but different timings for the interim analyses
between the efficacy and futility assessments may introduce operational challenges.
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To avoid these difficulties, one may opt for restricting when H0 is rejected or
accepted. The efficacy and futility assessments are simultaneously performed at the
same interim analysis, and if the test statistic for at least one endpoint does not cross
the prespecified futility critical boundary or if the test statistic for at least one
endpoint does not cross the prespecified efficacy critical boundary, then the trial
continues until joint significance for all endpoints is established simultaneously.
The decision-making framework is same as discussed in Jennison and Turnbull
(1993). The stopping rule for the most simplified decision-making framework is
formally given as follows:

At the lth analysis ðl ¼ 1; . . .; L� 1Þ,
if Zkl � cFklðbÞ for at least one endpoint, accept H0 and stop the trial,
if Zkl [ cEklðaÞ for both endpoints, then reject H0 and stop the trial,
otherwise, continue to the ðlþ 1Þth analysis,

at the Lth analysis,

if ZkL � cFkLðbÞ for at least one endpoint, do not reject H0,
if ZkL [ cEkLðaÞ for both endpoints, then reject H0.

The corresponding power is

1� b ¼ Pr
\2
k¼1

Ak1 [
[L
l¼2

\l�1

l0¼1

C1l0 \C2l0f g \ A1l \A2lf g
( )

jH1

" #
; ð4:3Þ

where Ckl ¼ Zkl [ cFklðbÞ
� �

and 1� l0 � l� L.
Asakura et al. (2015) investigate the operating characteristics of these

decision-making frameworks in terms of the power, overall Type I error rate, and
sample size. In general, DF-A is more powerful than DF-B and DF-C under H1 (i.e.,
DF-A requires a smaller sample size than DF-B or DF-C to establish a joint effect
on all of the endpoints). In all of the decision-making frameworks, higher corre-
lation increases the power if the standardized mean differences are equal, but does
not otherwise affect power. A larger number of planned analyses decrease the
power. Allocation of the efficacy and/or futility assessment to an interim analysis
with earlier information time increases the power. Higher correlation increases the
Type I error rate but not above the targeted significance level. A larger number of
futility assessments decrease the Type I error rate. Allocation of the futility
assessments to interim analyses with later information time decreases the Type I
error rate. For more details, see Asakura et al. (2015).
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4.3 Illustration

We illustrate the concepts with an example from the tarenflurbil study (Green et al.
2009) described in Chap. 2. Recall that the study was designed to evaluate whether
Tarenflurbil was superior to placebo on two co-primary endpoints, (i) change score
from baseline on the ADAS-cog (EP1), and (ii) change score on the ADCS-ADL
(EP2). The original design called for 800 participants per intervention group to
provide an overall power of 96 % to detect the joint between-group difference in the
two primary endpoints using a one-sided test at 2.5 % significance level, with an
alternative hypothesis of a standardized mean difference of 0.2 for both endpoints.
The correlation between the two endpoints was assumed to be zero.

We discuss the nine group-sequential designs shown in Table 4.1. Five designs
include futility and efficacy assessments for both endpoints simultaneously (si-
multaneous assessment). The last four include a futility assessment for either of the
two endpoints (i.e., EP1) only at the first interim analysis and then only efficacy
assessments for both endpoints at later interim analyses (separate assessment),
where the maximum number of planned analyses is 2, 3, or 4. Tables 4.2, 4.3 and
4.4 display the efficacy and futility critical boundaries, maximum sample size
(MSS), and average sample number (ASN) per intervention group (equally sized
groups rC ¼ 1) in the DF-A for the group-sequential designs shown in Table 4.1
(For the definition of the MSS and ASN, see Chap. 2.) The MSS was calculated

Table 4.1 Group-sequential designs for efficacy or futility assessment in the tarenflurbil study
with two co-primary endpoints, the ADAS-cog (EP1) and the ADCS-ADL (EP2)

Situation Design # Assessment Information time

1/4 1/2 3/4 1

1. Simultaneous assessment: efficacy
and futility assessments for both
endpoints at the same interim analysis
simultaneously

#1-1 Efficacy Both Both Both Both

Futility Both Both Both Both

#1-2 Efficacy Both Both Both

Futility Both Both Both

#1-3 Efficacy Both Both Both

Futility Both Both Both

#1-4 Efficacy Both Both Both

Futility Both Both Both

#1-5 Efficacy Both Both

Futility Both Both

2. Separate assessment: futility
assessment for EP1 at the first interim
analysis and then efficacy assessment
for both endpoints at later interim
analyses

#2-1 Efficacy Both Both Both

Futility EP1 Both

#2-2 Efficacy Both Both

Futility EP1 Both

#2-3 Efficacy Both Both

Futility EP1 Both

#2-4 Efficacy Both Both

Futility EP1 Both
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with an alternative hypothesis of a standardized mean difference for both
ADAS-Cog and ADCS-ADL ðD1 ¼ D2 ¼ 0:2Þ; with 96 % power at 2.5 % sig-
nificance level for a one-sided test, where qT ¼ qC ¼ q ¼ 0:0; 0:3; 0:5; 0:8 and 1:0.
The ASN is calculated under ðD1;D2Þ ¼ ð0:2; 0:2Þ; ð0:0; 0:2Þ and ð0:0; 0:0Þ. The
efficacy and futility critical boundaries are determined commonly by the OF, using
the Lan–DeMets error-spending method for the Type I and Type II errors with
equally or unequally spaced increments of information.

Table 4.2 Efficacy and futility critical boundaries for the group-sequential designs shown in
Table 4.1

Design # Assessment Correlation ρ Information time

1/4 1/2 3/4 1

#1-1 Efficacy
Futility

– 4.333 2.963 2.359 2.014

0.0 −2.459 −0.195 1.083 2.014

0.3 −2.441 −0.186 1.086 2.014

0.5 −2.412 −0.172 1.092 2.014

0.8 −2.322 −0.128 1.110 2.014

1.0 −2.044 0.009 1.165 2.014

#1-2 Efficacy
Futility

– → 2.963 2.359 2.014

0.0 → −0.194 1.083 2.014

0.3 → −0.186 1.086 2.014

0.5 → −0.172 1.092 2.014

0.8 → −0.127 1.110 2.014

1.0 → 0.010 1.165 2.014

#1-3 Efficacy
Futility

– 4.333 → 2.340 2.012

0.0 −2.460 → 1.096 2.012

0.3 −2.442 → 1.100 2.012

0.5 −2.413 → 1.106 2.012

0.8 −2.323 → 1.126 2.012

1.0 −2.048 → 1.187 2.012

#1-4 Efficacy
Futility

– 4.333 2.963 → 1.969

0.0 −2.492 −0.242 → 1.969

0.3 −2.471 −0.232 → 1.969

0.5 −2.446 −0.220 → 1.969

0.8 −2.355 −0.176 → 1.969

1.0 −2.080 −0.044 → 1.969

#1-5 Efficacy
Futility

– → 2.963 → 1.969

0.0 → −0.241 → 1.969

0.3 → −0.231 → 1.969

0.5 → −0.219 → 1.969

0.8 → −0.175 → 1.969

1.0 → −0.043 1.969

The efficacy and futility assessments are conducted for both endpoints at the same interim analysis
simultaneously, where the decision-making is based on DF-A (b ¼ 4% and a ¼ 2:5%)
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Tables 4.2 and 4.3 illustrate that the regions based on the efficacy and futility
critical boundaries for the two endpoints are narrower when the correlation is
higher. If the correlation is zero, then the futility critical boundaries for both end-
points are equal to the ones individually calculated for each endpoint with the
power of

ffiffiffiffiffiffiffiffiffiffiffi
1� b

p ¼ 89:4% and ones with 80 % power if the correlation is one.
When both futility and efficacy assessments are conducted at the same analysis

for both endpoints, Table 4.4 shows that the smallest MSS is given by Designs #1-4
or #1-5, but the largest ASN reductions under all of the standardized mean dif-
ference combinations are provided by Designs #1-1 or #1-2. When only a futility
assessment is conducted at the first interim analysis and then only efficacy

Table 4.3 Efficacy and futility critical boundaries for the group-sequential designs shown in
Table 4.1, where the decision-making is based on DF-A

Design # Assessment Correlation
ρ

Information time

1/4 1/2 3/4 1

#2-1 Efficacy
Futility

– → 2.963 2.359 2.014

0.0 −2.482 → → 2.014

0.3 −2.462 → → 2.014

0.5 −2.435 → → 2.014

0.8 −2.343 → → 2.014

1.0 −2.076 → → 2.014

#2-2 Efficacy
Futility

– → → 2.340 2.012

0.0 → −0.224 → 2.012

0.3 → −0.214 → 2.012

0.5 → −0.201 → 2.012

0.8 → −0.158 → 2.012

1.0 → −0.027 → 2.012

#2-3 Efficacy
Futility

– → → 2.340 2.012

0.0 −2.483 → → 2.012

0.3 −2.463 → → 2.012

0.5 −2.436 → → 2.012

0.8 −2.347 → → 2.012

1.0 −2.076 → → 2.012

#2-4 Efficacy
Futility

– → 2.963 → 1.969

0.0 −2.495 → → 1.969

0.3 −2.478 → → 1.969

0.5 −2.450 → → 1.969

0.8 −2.357 → → 1.969

1.0 −2.087 → → 1.969

The futility assessment is conducted for EP1 at the first interim analysis, and then efficacy
assessments are conducted for both endpoints at later interim analyses (b ¼ 4% and a ¼ 2:5%).
The efficacy and futility critical boundaries are determined commonly by the OF, using the Lan–
DeMets error-spending method for the Type I and Type II errors with equally or unequally spaced
increments of information
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Table 4.4 MSS and ASN (per intervention group) in the group-sequential clinical trials with two
co-primary endpoints, including futility and efficacy assessments for the two endpoints for the
group-sequential designs shown in Table 4.1, where the decision-making is based on DF-A

Situation Design # Correlation ρ MSS ASN (Δ1, Δ2)

(0.2, 0.2) (0.2, 0.0) (0.0, 0.0)

1. Simultaneous assessment #1-1 0.0 836 623 564 489

0.3 831 608 559 498

0.5 824 594 553 502

0.8 798 563 532 500

1.0 725 498 468 468

#1-2 0.0 836 623 565 492

0.3 831 608 561 501

0.5 824 595 555 505

0.8 798 564 533 503

1.0 725 500 472 472

#1-3 0.0 835 669 650 624

0.3 829 661 645 623

0.5 822 654 639 620

0.8 796 629 617 606

1.0 722 566 554 554

#1-4 0.0 809 725 644 546

0.3 804 703 638 559

0.5 796 684 630 564

0.8 771 644 602 562

1.0 696 564 524 524

#1-5 0.0 809 725 645 548

0.3 804 703 639 561

0.5 796 684 631 567

0.8 771 644 604 565

1.0 696 565 527 527

2. Separate assessment #2-1 0.0 817 618 811 809

0.3 812 603 806 804

0.5 804 589 797 795

0.8 777 559 769 769

1.0 701 493 689 689

#2-2 0.0 819 661 649 552

0.3 814 654 643 565

0.5 806 646 635 571

0.8 780 622 608 569

1.0 705 560 531 531

#2-3 0.0 817 660 811 809

0.3 811 653 805 803

0.5 803 645 797 794

0.8 776 620 770 767

1.0 700 557 688 688

#2-4 0.0 807 725 803 799

0.3 801 702 796 793

0.5 793 683 788 785

0.8 767 643 761 758

1.0 691 563 681 681

The efficacy and futility critical boundaries are determined commonly by the OF, using the Lan–DeMets error-spending
method for the Type I and Type II errors with equally or unequally spaced increments of information
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assessments at later interim analyses are conducted for both endpoints, the smallest
MSS is given by Designs #2-4. The largest ASN reduction under ðD1;D2Þ ¼
ð0:2; 0:2Þ is given by Design #2-1, but the largest ASN reduction under ðD1;D2Þ ¼
ð0:0; 0:2Þ and (0.0, 0.0) by #2-2.

Figure 4.2 summarizes the probability of rejecting or accepting H0 when using
Design #2-2 shown in Table 4.1, with q ¼ 0:0 and 0.8, and ðD1;D2Þ ¼
ð0:2; 0:2Þ; ð0:0; 0:2Þ and (0.0, 0.0). For ðD1;D2Þ ¼ ð0:2; 0:2Þ or (0.0, 0.2), when
q ¼ 0:0, it is difficult to reject or accept H0 at the earlier analyses, but easier later
on. On the other hand, as q goes toward one, it is easier to reject or accept H0 at the
earlier analyses. For ðD1;D2Þ ¼ ð0:0; 0:0Þ, it is easier to reject H0 at the earlier
analyses, but difficult later on.

4.4 Summary

Increasingly, clinical trials are being designed with more than one primary endpoint
to more comprehensively evaluate intervention’s multidimensional effects. As with
trials involving a single primary endpoint, designing co-primary endpoint trials to
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Fig. 4.2 The probability of rejecting or accepting H0 when using Design #2-2 shown in
Table 4.1, with qT ¼ qC ¼ q ¼ 0:0 and 0.8, and ðD1;D2Þ ¼ ð0:2; 0:2Þ; ð0:0; 0:2Þ and ð0:0; 0:0Þ.
The efficacy and futility critical boundaries are determined commonly by the OF, using the
Lan–DeMets error-spending method for the Type I and Type II errors with equally or unequally
spaced increments of information
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include interim analyses (i.e., with repeated testing) may provide resource efficiency
and minimize the number of trial participants exposed to an ineffective intervention.
However, this creates challenges in the evaluation of power and the calculation of
sample size during trial design.

We discuss group-sequential designs in clinical trials with multiple co-primary
endpoints. We evaluate decision-making frameworks for rejecting or accepting the
null hypothesis (early stopping for efficacy or futility), based on critical boundaries
using group-sequential methodology. We incorporate correlations among the end-
points into the critical boundary and sample size calculations and illustrate the
behavior of the futility critical boundary with varying mean differences and number
of planned analyses. We investigate the operating characteristics of the proposed
decision-making frameworks in terms of the power, the Type I error rate and
sample size with varying number of planned analyses, the correlations among the
endpoints, and the standardized mean differences. We provide an example illus-
trating the methods and discuss practical considerations when designing the effi-
cient group-sequential designs in clinical trials with co-primary endpoints.

These results are useful when designing an efficient clinical trial with multiple
co-primary endpoints. When conducting group-sequential efficacy and futility
assessments in these trials, there is an advantage of incorporating correlations
among the endpoints into the futility critical boundary and sample size calculations
particularly when the correlations are large and the effects on the endpoints are
similar. A larger number of planned analyses decrease the power, but increase the
reduction in ASN. Efficacy and futility assessments at earlier information times
increase the power but decrease the reduction in ASN. The power for assessing
efficacy and futility at different interim analyses time-points is larger than simul-
taneous assessment. Careful consideration is needed regarding the frequency and
timing of the futility and efficacy assessments. When only conducting futility
assessments for either of the two endpoints at the first interim analysis and then only
efficacy assessments for both endpoints at later interim analyses, power is not
greatly affected by the magnitude of the standardized mean difference.
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Chapter 5
Interim Evaluation of Efficacy in Clinical
Trials with Two Primary Endpoints

Abstract In this chapter, we provide an overview of the fundamental concepts and
technical details for group-sequential designs for clinical trials comparing two
interventions based on two primary endpoints. In this situation, there are many
procedures for controlling the Type I error rate. We discuss the simplest procedure,
i.e., the weighted Bonferroni procedure which is commonly applied in practice. We
evaluate the behavior of the sample size, power, and Type I error rate associated
with the procedure.

Keywords Average sample size � Efficacy stopping � Lan–DeMets error-spending
method �Maximum sample size � Recycled significance level � Union–intersection
test � Weighted Bonferroni procedure

5.1 Introduction

In the previous chapters, we discuss group-sequential methods in clinical trial with
two co-primary endpoints. In this chapter, we discuss group-sequential designs for
trails with two primary endpoints, i.e., where the trial is designed to evaluate
whether the intervention is superior to the control on at least one of the endpoints.

In clinical trials with two primary endpoints, adjustments must be made to
control the Type I error rate. There are many procedures for controlling the Type I
error rate [e.g., see Bretz et al. (2011), Dmitrienko et al. (2010), and Wiens and
Dmitrienko (2010)]. When the aim was to evaluate an effect on at least one end-
point (multiple primary endpoints), Tang and Geller (1999), Glimm et al. (2010),
and Tamhane et al. (2010, 2012) considered methods based on the closed testing
principle, and Kosorok et al. (2004) discussed a global alpha-spending function to
control the Type I error and a multiple decision rule to control error rates for
concluding wrong alternative hypotheses. For group-sequential designs with other
inferential goal settings, Pocock et al. (1987) and Tang et al. (1989) discussed a
method based on a generalized least squares procedure by O’Brien (1984), and
Jennison and Turnbull (1991) discuss a method based on chi-square and F test
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statistics, where the trial is designed if the test intervention has an overall effect
across the endpoints compared with the control intervention, but does not neces-
sarily evaluate the effect on any specific endpoint. For more details, see Jennison
and Turnbull (2000).

In this chapter, we discuss the weighted Bonferroni procedure which is
well-known and widely utilized in practice. When considering the weighted
Bonferroni procedure, we assume that both outcomes are equally important and an
ordering of the outcomes is not prespecified for hypothesis testing. We evaluate the
behavior of the power, Type I error rate, and the sample size associated with the
procedure.

5.2 Decision-Making Frameworks and Stopping Rules

5.2.1 Notation and Statistical Setting

Similarly to Sect. 2.2, consider a randomized, group-sequential clinical trial com-
paring the test intervention (T) with the control intervention (C). Two continuous
outcomes, EP1 and EP2, are to be evaluated as primary endpoints (i.e., K = 2).
Suppose that a maximum of L analyses is planned, where the same number of
planned analyses with the same information space is selected for both endpoints.
Suppose that the trial is designed to evaluate EP1 and EP2 as primary endpoints, i.e.
, if T is superior to C on at least one of EP1 and EP2.

Let nl and rCnl be the cumulative number of participants on the T and the C at
the lth analysis ðl ¼ 1; . . .; LÞ, respectively, where rC is the allocation ratio of the C
to the T. Hence, up to nL and rCnL participants are recruited and randomly assigned
to the T and the C, respectively. Then, there are nL paired outcomes ðYT1i; YT2iÞ ði ¼
1; . . .; nLÞ for the T and rCnL paired outcomes ðYC1j; YC2jÞ ðj ¼ 1; . . .; rCnLÞ for the
C. Assume that ðYT1i; YT2iÞ and ðYC1j;YC2jÞ are independently bivariate distributed
with mean E½YTki� ¼ lTk and E½YCkj� ¼ lCk , variances var½YTki� ¼ r2Tk and
var½YCkj� ¼ r2Ck, and correlation corr½YT1i; YT2i� ¼ qT and corr½YC1j; YC2j� ¼ qC,
respectively ðk ¼ 1; 2Þ. For simplicity, the variances are assumed to be known and
common, i.e., r2Tk ¼ r2Ck ¼ r2k , similarly as in the previous chapters.

Let dk ¼ lTk � lCk and Dk ¼ dk=rkðk ¼ 1; 2Þ denote the mean differences and
standardized mean differences for the T and the C, respectively. Suppose that
positive values of dk represent a benefit for the T. There is an interest in conducting
a hypothesis test to evaluate whether the T is superior to the C on at least one
endpoint in a group-sequential setting. The null hypothesis H0: H01\H02 versus the
alternative hypothesis H1: H11[H12 is tested at the significance level of a [union–
intersection test: Berger (1982)], where the hypotheses for each endpoint are
H0k: dk � 0 versus H1k: dk [ 0 (test the intersection H0 of both individual nulls
against the union alternative H1). This hypothesis is tested based on the test
statistics ðZ1l; Z2lÞ, which are the same statistics defined in Sect. 2.2. In contrast to
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multiple co-primary endpoints, the Type I error rate needs to be controlled ade-
quately since the Type I error rate increases as the number of endpoints to be
evaluated increases.

5.2.2 Weighted Bonferroni Procedure

The weighted Bonferroni procedure is the simplest p-value-based procedure. The
procedure distributes the overall a between the two endpoints with the positive
weight wk (>0), and each endpoint is tested at ak ¼ wka ðk ¼ 1; 2Þ, where
w1 þw2 ¼ 1. A decision-making framework associated with hypothesis testing
based on the weighted Bonferroni procedure is very simple. It is to reject H0 if
statistical significance of T relative to C is achieved for at least one endpoint at any
interim time point until the final analysis. The stopping rule is formally given as
follows:

At the lth analysis ðl ¼ 1; . . .; L� 1Þ
if Z1l [ cE1lða1Þ or Z2l [ cE2lða2Þ, then reject H0 and stop the trial,
otherwise, continue to the ðlþ 1Þ th analysis,

at the Lth analysis

if Z1L [ cE1Lða1Þ or Z2L [ cE2Lða2Þ, then reject H0,
otherwise, do not reject H0,

where cE1lða1Þ and cE2lða2Þ are the critical boundaries. Similarly as in multiple
co-primary endpoints discussed in Chap. 2, the critical boundaries are constant and
selected separately, using any group-sequential method to control the overall Type I
error rate, as if they were a single primary endpoint, without regard to the other
primary endpoint. For example, consider a group-sequential clinical trial with five
planned analyses (L = 5). The (unweighted) Bonferroni procedure is applied to
allocate α = 2.5 % between the two endpoints with equal weight ðw1 ¼ w2 ¼ 0:5Þ
and the hypothesis for each endpoint is tested at the significance level of α1 = α2 =
1.25 %. If the critical boundaries for both endpoints are determined by the
O’Brien–Fleming-type boundary (OF) (O’Brien and Fleming 1979), using the Lan–
DeMets error-spending method (Lan and DeMets 1984), with equally-spaced
increments of information, then the critical boundaries for each analysis are 5.4633,
3.7803, 3.0270, 2.5879, and 2.2959. Figure 5.1 shows the rejection region for the
null hypothesis with the number of planned analyses. For example, if the test
statistic for EP1 is larger than the critical boundary of 2.5879 at the fourth analysis
(but the test statistic for EP2 is smaller than the critical boundary), then H0 is
rejected and the trial is terminated. If the test statistics for both endpoints are smaller
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than the critical boundary, then H0 is not rejected and the subsequent hypothesis
testing is repeatedly conducted for both outcomes until superiority is demonstrated
on at least one endpoint or the trial is completed.

The corresponding power for detecting the effect on the least one endpoint is
given as follows:

1� b ¼ Pr
[L
l¼1

A1l

( )[ [L
l¼1

A2l

( )�����H1

" #
; ð5:1Þ

where Akl ¼ fZkl [ cEklðakÞg.
As described in Sect. 2.2.3, we calculate two sample sizes, i.e., the maximum

sample size (MSS) and the average sample number (ASN) (i.e., expected sample
size) based on the power (5.1). Recall that the MSS is the sample size required for
the final analysis to achieve the desired power 1� b. The ASN is the expected
sample size under hypothetical reference values and provides information regarding
the number of participants anticipated in a group-sequential clinical trial in order to
reach a decision point.

Figure 5.2 illustrates the behavior of the power for detecting the effect on at least
one outcome for varying correlations ðqT ¼ qC ¼ qÞ, weight, and critical boundary
combinations for a given sample size in a group-sequential clinical trial with L = 2,
assuming equal standardized mean differences D1 ¼ D2 ¼ 0:2. The sample size of
393 per intervention group (equally sized groups) has 80 % power to detect a
standardized mean difference for each outcome at the (unadjusted) 2.5 % signifi-
cance level for a one-sided test. The weighted Bonferroni procedure is applied to
allocate α = 2.5 % between the two endpoints with the weight wk; and the
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Fig. 5.1 The region for rejecting the null hypothesis in a group-sequential clinical trial with five
planned analyses (L = 5). The Bonferroni procedure is applied to allocate α = 2.5 % between the
two endpoints with equal weight ðw1 ¼ w2 ¼ 0:5Þ and the hypothesis for each endpoint is tested at
the significance level of α1 = α2 = 1.25 % for a one-sided test. The critical boundaries for both
endpoints are determined by the OF, using the Lan–DeMets error-spending method with equally
spaced increments of information
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hypothesis for each endpoint is tested at ak: The weights are (w1, w2) = (0.5, 0.5),
(0.4, 0.6), (0.3, 0.7), and (0.1, 0.9); the critical boundary combinations are the OF
for both endpoints (OF-OF), the Pocock-type boundary (PC) (Pocock 1977) for
both endpoints (PC-PC), OF for EP1 and PC for EP2 (OF-PC), PC for EP1 and OF
for EP2 (OF-PC).

Similarly as in fixed-sample designs shown in Senn and Bretz (2007) and Sozu
et al. (2015), the figure shows that in all of the weights and the critical boundary
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Fig. 5.2 Behavior of the power for detecting an effect on the least endpoint for varying
correlations, weight, and critical boundary combinations for a given sample size in a
group-sequential clinical trial with the two planned analyses (L = 2), assuming equal standardized
mean differences D1 ¼ D2 ¼ 0:2. The sample size of 393 per intervention group (equally sized
groups) has 80 % power to detect a standardized mean difference for each endpoint at the
(unadjusted) 2.5 % significance level for a one-sided test. The weighted Bonferroni procedure is
applied to allocate α = 2.5 % between the two endpoints with the weight wk , and the hypothesis for
each endpoint is tested at ak . The weights are (w1, w2) = (0.5, 0.5), (0.4, 0.6), (0.3, 0.7), and (0.1,
0.9); the critical boundary combinations are OF for both endpoints (OF-OF), PC for both endpoints
(PC-PC), OF for EP1 and PC for EP2 (OF-PC), and PC for EP1 and OF for EP2 (PC-OF)
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combinations, the power is higher than 80 % when the correlation is closer to zero,
but it becomes lower than 80 % as the correlation approaches one. For the weights,
the highest power is given by (w1, w2) = (0.5, 0.5) and the lowest is by (w1,
w2) = (0.1, 0.9) in all of the critical boundary combinations, except for higher
correlation. When the correlation is close to one, the highest power is given by (w1,
w2) = (0.1, 0.9) in all of the critical boundary combinations.

Under the same parameter configurations as in Figs. 5.2 and 5.3 illustrates the
behavior of the power for detecting the effect on both endpoints with varying
correlations, weight, and critical boundary combination for a given sample size in a
group-sequential clinical trial, where the weighted Bonferroni procedure is applied
and the trial is terminated when at least one hypothesis H0k is rejected. In all of the
critical boundary combinations and weights, the power increases as the correlation
approaches one, but the power is never larger than 80 %. For the weights, the
highest power is given by (w1, w2) = (0.5, 0.5) and the lowest is by (w1, w2) = (0.1,
0.9) in all of the critical boundary combinations except for PC-OF. For PC-OF, the
highest power is given by (w1, w2) = (0.3, 0.7) and the lowest power is by (w1,
w2) = (0.1, 0.9).

Implementing the weighted Bonferroni procedure is simple in practice.
However, the procedure is conservative especially when there are a large number of
endpoints and the correlation among the endpoints is high in fixed-sample designs
[e.g., see Dmitrienko et al. (2010) and Sozu et al. (2015)]. This behavior is also
observed in group-sequential designs. Figure 5.4 illustrates the behavior of Type I
error rate with varying correlations ðqT ¼ qC ¼ qÞ, weight, and critical boundary
combinations in a group-sequential clinical trial with the two planned analyses
(L = 2). The weighted Bonferroni procedure is applied to allocate α = 2.5 %
between the two endpoints with the weight wk, and the hypothesis for each endpoint
is tested at ak. The weights are (w1, w2) = (0.5, 0.5), (0.4, 0.6), (0.3, 0.7), and (0.1,
0.9); the critical boundary combinations are OF for both endpoints (OF-OF), PC for
both endpoints (PC-PC), OF for EP1 and PC for EP2 (OF-PC), and PC for EP1 and
OF for EP2 (PC-OF). The Type I error rate is below the nominal error rate when the
endpoints are positively and highly correlated. An appropriate choice of the weight
could lead to improve Type I error and an increase in the power. As Wiens and
Dmitrienko (2010) suggest, one strategy is to determine the weight corresponding
directly to the size of the mean difference to maximize the probability that at least
one hypothesis is rejected or to maintain similar power for each endpoint.

5.2.3 Weighted Bonferroni Procedure with the Reallocated
Significance Level

As shown in Fig. 5.3, the power for detecting a joint effect on both endpoints based
on the weighted Bonferroni procedure is modest, especially when the correlation
between the endpoints is small. By using the idea of reallocating the significance
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levels discussed in Bretz et al. (2009) and Burman et al. (2009), a more powerful
Bonferroni procedure can be constructed in a group-sequential clinical trial with
multiple primary endpoints (Maurer and Bretz 2013; Ye et al. 2013; Xi and
Tamhane 2015).

The concept of reallocating the significance level is simple. When considering a
clinical trial with two primary endpoints, the significance level from the rejected

0.0 0.2 0.4 0.6 0.8 1.0

Correlation

10
20

30
40

5
0

6
0

70
80

P
ow

er
 fo

r 
th

e 
e

ffe
ct

 o
n 

b
ot

h 
(%

)

0.0 0.2 0.4 0.6 0.8 1.0

Correlation

0.0 0.2 0.4 0.6 0.8 1.0

Correlation

1
0

20
30

40
50

60
70

8
0

P
ow

e
r 

fo
r 

th
e 

e
ffe

ct
 o

n 
bo

th
 (

%
)

0.0 0.2 0.4 0.6 0.8 1.0

Correlation

( )
(0.5,0.5)
(0.4,0.6)
(0.3,0.7)
(0.1,0.9)

OF-OF OF-PC

PC-PC PC-OF

Fig. 5.3 Behavior of the power for detecting an effect on both endpoints (under the sample size
when the at least one hypothesis is rejected and the trial is stopped) for varying correlations,
weight, and critical boundary combinations for a given sample size in a group-sequential clinical
trial with the two planned analyses (L = 2), assuming equal standardized mean differences
D1 ¼ D2 ¼ 0:2. The sample size of 393 per intervention group (equally sized groups) has 80 %
power to detect a standardized mean difference for each endpoint at the (unadjusted) 2.5 %
significance level for a one-sided test. The weighted Bonferroni procedure is applied to allocate
α = 2.5 % between the two endpoints with the weight wk , and the hypothesis for each endpoint is
tested at ak . The weights are (w1, w2) = (0.5, 0.5), (0.4, 0.6), (0.3, 0.7), and (0.1, 0.9); the critical
boundary combinations are OF for both endpoints (OF-OF), PC for both endpoints (PC-PC), OF
for EP1 and PC for EP2 (OF-PC), and PC for EP1 and OF for EP2 (PC-PC)
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hypothesis for one endpoint is reallocated to the not-yet-rejected hypothesis for
other endpoint. However, in a group-sequential setting, one must decide how to
reallocate the significance level to the interim analyses for the not-yet-rejected
hypothesis for other endpoint (Xi and Tamhane 2015). When applying the
Bonferroni–Holm procedure in a group-sequential clinical trial with two primary
endpoints, Ye et al. (2013) consider two methods for reallocating the significance
level: (i) reallocate the significance level from the rejected hypothesis for one
endpoint to all analyses (including the already-passed and not-yet-passed interims,
and the final analysis) for the not-yet-rejected hypothesis for the other endpoint, and
(ii) reallocate the significance level from the rejected hypothesis for one endpoint to
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Fig. 5.4 Behavior of Type I error rate with varying correlations, weight, and critical boundary
combinations in a group-sequential clinical trial with the two planned analyses (L = 2). The
Bonferroni procedure is applied to allocate α = 2.5 % between the two endpoints with the weight
wk , and the hypothesis for each endpoint is tested at ak . The weights are (w1, w2) = (0.5, 0.5), (0.4,
0.6), (0.3, 0.7), and (0.1, 0.9); the critical boundary combinations are OF for both endpoints
(OF-OF), PC for both endpoints (PC-PC), OF for EP1 and PC for EP2 (OF-PC), and PC for EP1
and OF for EP2 (PC-OF)
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the final analysis for the not-yet-rejected hypothesis for the other endpoint. There is
a loss of reallocating the significance level as the significance level is reallocated to
already-passed interims in the former method (Xi and Tamhan 2015). The latter has
no such loss in the significance level although the trial may continue to the final
analysis. Xi and Tamhane (2015) discuss methods of reallocating the significance
level from the rejected hypothesis for one endpoint to the later interims from a
specified interim. In these methods, if the full significance level for the rejected
hypothesis for one endpoint is reallocated to the not-yet-rejected hypothesis for
other endpoint, then the Type I error rate for rejecting H0 is inflated over the
prespecified significance level, depending on the correlation and standardized mean
difference (Hung et al. 2007; Glimm et al. 2009; Xi and Tamhane 2015).

Although there are several ways to reallocate the significance level, we here
consider the idea in Ye et al. (2013) where the significance level is the full sig-
nificance level from the rejected hypothesis for one endpoint and it is reallocated to
all of the analyses for other endpoint, including to already-passed interims.
However, at the subsequent analyses, the hypothesis for the other endpoint is tested
using the updated critical boundaries based on the originally allocated and reallo-
cated significance levels although the critical boundaries at already-passed interims
are not updated. So that, first we can calculate the two sets of critical boundaries:
one is based on ak and the other is based on a ¼ a1 þ a2, not necessarily calculating
how much the significance level has been already spent and updating the critical
boundaries based on the originally allocated and reallocated significance levels. For
example, consider a clinical trial with a maximum number of planned analyses
L = 5 and equally spaced increments of information, and the OF is used to reject the
null hypothesis for both endpoints EP1 and EP2 at the significance level of
α1 = α2 = 1.25 % for a one-sided test based on an unweighted Bonferroni proce-
dure. The critical boundaries for each analysis are 5.4633, 3.7803, 3.0270, 2.5879,
and 2.2959 based on αk = 1.25 %, and 4.8769, 3.3569, 2.6803, 2.2898, and 2.0310
based on α = 2.5 %, respectively. If the test statistic for EP1 is larger than the
critical boundary of 2.5879 at the fourth analysis (but the test statistic for EP2 is
smaller than the critical boundary), then the hypothesis test for EP2 is tested again
with 2.2898 at the fourth analysis and with 2.0310 at the final analysis.

Under the same parameter settings and configurations as in Figs. 5.3 and 5.5
displays the behavior of the power for detecting the effect on both endpoints with
varying correlations, weight, and critical boundary combination for a given sample
size in a group-sequential clinical trial, where the weighted Bonferroni procedure
with reallocating the significance level is applied and the trial is terminated when at
least one hypothesis H0k is rejected. Comparing Fig. 5.5 with Fig. 5.3, the power is
much improved by using the weighted Bonferroni procedure with reallocating the
significance level except for OF-OF and (w1, w2) = (0.4, 0.6) or (0.3, 0.7). In all of
the critical boundary combinations and weights, the power increases as the corre-
lation approaches one, especially in PC-PC and PC-OF, the power is larger than
80 % with large correlation. For the weights, the highest power is given by (w1,
w2) = (0.5, 0.5) and the lowest is by (w1, w2) = (0.4, 0.6) in all of the critical
boundary combinations.
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5.3 Illustration

Table 5.1 displays the MSS and ASN per intervention group in a group-sequential
clinical trial with the two planned analyses (L = 2), assuming equal standardized
mean differences ðD1 ¼ D2 ¼ 0:2Þ. The MSS is calculated to detect the effect on at
least one endpoint with 80 % power at 2.5 % significance level for a one-sided test.
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Fig. 5.5 Behavior of the power for detecting the effect on both endpoints with varying
correlations, weighting, and critical boundary combinations for a given sample size in a
group-sequential clinical trial with the two planned analyses (L = 2), assuming equal standardized
mean differences D1 ¼ D2 ¼ 0:2. The sample size of 393 per intervention group (equally sized
groups) has 80 % power to detect a standardized mean difference for each endpoint at the
(unadjusted) 2.5 % significance level for a one-sided test. In addition, the weighted Bonferroni
procedure with reallocating the significance level is applied and the trial is terminated when at least
one hypothesis Hk0 is rejected. The weights are (w1, w2) = (0.5, 0.5), (0.4, 0.6), (0.3, 0.7), and (0.1,
0.9); the critical boundary combinations are OF for both endpoints (OF-OF), PC for both endpoints
(PC-PC), OF for EP1 and PC for EP2 (OF-PC), and PC for EP1 and OF for EP2 (PC-OF)
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Table 5.1 MSS and ASN per intervention group (equally sized groups) in a group-sequential
clinical trial with L = 2, assuming equal standardized mean differences D1 ¼ D2 ¼ 0:2

Weight
ðw1;w2Þ

Critical boundary
combination

Correlation q Without reallocating With reallocating

MSS ASN ðH1Þ Power2 Power2 Power
diff

(0.50, 0.50) OF-OF 0.0 283 270 25.8 37.0 11.2

0.3 317 300 34.4 46.2 11.8

0.5 343 323 41.1 53.3 12.2

0.8 394 369 55.3 67.3 12.1

PC-PC 0.0 322 248 15.4 25.7 10.3

0.3 358 274 24.2 36.4 12.2

0.5 386 295 31.8 44.9 13.2

0.8 441 337 48.4 62.2 13.9

OF-PC 0.0 301 258 15.9 25.6 9.7

0.3 335 283 22.1 33.5 12.4

0.5 362 303 27.4 39.9 11.3

0.8 412 339 37.5 51.6 14.0

(0.75, 0.25) OF-OF 0.0 290 276 24.4 38.3 13.9

0.3 323 305 32.2 47.3 15.0

0.5 349 327 38.3 54.3 16.0

0.8 395 368 49.6 67.4 17.8

PC-PC 0.0 330 254 14.5 27.5 13.0

0.3 365 279 22.6 38.1 15.5

0.5 392 299 29.5 46.5 17.0

0.8 442 337 43.4 63.0 19.6

OF-PC 0.0 306 268 15.5 29.1 13.6

0.3 339 294 22.1 37.6 15.4

0.5 362 312 27.6 44.1 16.5

0.8 403 347 39.0 56.7 17.7

PC-OF 0.0 312 261 14.8 25.4 10.6

0.3 346 285 19.7 32.7 13.0

0.5 373 303 23.5 38.5 15.0

0.8 423 335 29.7 48.7 18.9

(0.99, 0.01) OF-OF 0.0 350 326 12.4 48.0 35.6

0.3 371 343 14.9 54.2 39.3

0.5 383 353 15.9 58.8 42.9

0.8 395 363 15.7 67.1 51.5

PC-PC 0.0 394 303 7.0 40.3 33.4

0.3 416 318 9.6 48.8 39.1

0.5 429 327 11.1 54.8 43.7

0.8 442 337 11.5 64.9 53.4

OF-PC 0.0 359 327 8.2 45.3 37.1
(continued)
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The weighted Bonferroni procedure with/without the reallocated significance level
is applied to the weights ðw1;w2Þ, and the hypothesis for each endpoint is tested at
ak ¼ wka. The weights are (w1, w2) = (0.5, 0.5), (0.75, 0.25), and (0.99, 0.01). The
critical boundary is determined by using Lan–DeMets error-spending method and
the critical boundary combinations are OF for both endpoints (OF-OF), PC for both
endpoints (PC-PC), OF for EP1 and PC for EP2 (OF-PC), and PC for EP1 and OF
for EP2 (PC-OF). The ASN is calculated under H1. The power for detecting a joint
effect on both endpoints (Power2) is calculated under the given MSS.

When applying the weighted Bonferroni procedure without the reallocated
significance level, the MSS increases with increasing correlation in all of the critical
boundary combinations and weights. The largest MSS is observed in PC-OF with
(w1, w2) = (0.99, 0.01) and qT ¼ qC ¼ q ¼ 0:8, and the smallest is in OF-OF with
(w1, w2) = (0.50, 0.50) and q ¼ 0:0. The largest reduction of 17.4 % in sample size
of ASN to MSS is observed in PC-PC with (w1, w2) = (0.99, 0.01) and q ¼ 0:0,
and the smallest of 1.2 % is observed in OF-OF with (w1, w2) = (0.50, 0.50) or
(0.75, 0.25) with q ¼ 0:0.

Using weighted Bonferroni with the reallocated significance level increases the
power for detecting the joint effect on both endpoints, compared with the option of
not using the reallocated significance level. In all of the critical boundary combi-
nations and weights, the absolute improvement increases as the correlation
approaches one. The maximum absolute improvement of 53.4 % is observed in the
case of PC-PC with (w1, w2) = (0.99, 0.01) and q ¼ 0:8, and the minimum of
9.7 % is observed in the case of OF-PC with (w1, w2) = (0.5, 0.5) and q ¼ 0:0.

Table 5.1 (continued)

Weight
ðw1;w2Þ

Critical boundary
combination

Correlation q Without reallocating With reallocating

MSS ASN ðH1Þ Power2 Power2 Power
diff

0.3 377 342 10.9 52.6 41.8

0.5 387 352 12.6 58.0 45.4

0.8 395 361 14.6 67.0 52.4

PC-OF 0.0 382 302 7.6 31.7 24.1

0.3 407 317 8.6 37.4 28.7

0.5 423 326 8.8 41.4 32.7

0.8 440 336 7.6 47.8 40.2

The MSS is calculated to detect the effect on at least one endpoint with 80 % power at 2.5 % significance
level for a one-sided test. The weighted Bonferroni procedure with/without the reallocated significance
level is applied with the weight ðw1;w2Þ, and the hypothesis for each endpoint is tested at ak ¼ wka. The
weights are (w1, w2) = (0.5, 0.5), (0.75, 0.25), and (0.99, 0.01). The critical boundary is determined by
using Lan–DeMets error-spending method and the critical boundary combinations are OF for both
endpoints (OF-OF), PC for both endpoints (PC-PC), OF for EP1 and PC for EP2 (OF-PC), PC for EP1
and OF for EP2 (PC-OF). The ASN is calculated under H1. The power for detecting a joint effect on both
endpoints (Power2) is calculated under the given MSS. Furthermore, the difference in power with vs.
without the reallocated significance level is provided (Power diff)
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5.4 Summary

We provide an overview of the concepts and technical fundamentals regarding
group-sequential designs for clinical trials comparing two interventions with two
primary endpoints. Without proper adjustments, the Type I error rate increases as
the number of primary endpoints increases. There are many procedures that can be
implemented for controlling the Type I error rate. We discuss a common procedure
and simple procedure, i.e., the weighted Bonferroni procedure. We evaluate the
behavior of the sample size, power, and Type I error rate associated with the
Bonferroni procedure.

The behaviors of power and sample size for evaluating superiority for at least
one endpoint with weighted Bonferroni procedure are very different from those for
evaluating superiority for all endpoints discussed in Chap. 2 (multiple co-primary
endpoints). The conservative sample size strategy when evaluating superiority for
co-primary endpoints is to assume zero correlations among the endpoints if the two
endpoints are known to be positively correlated. However, when evaluating supe-
riority for at least one endpoint, assuming a correlation of one between endpoints is
conservative. Thus, when considering multiple endpoints in clinical trials, it is
important to distinguish between the two objectives, i.e., whether the trial is aiming
to evaluate superiority of a test intervention relative to a control intervention on all
primary endpoints or at least one primary endpoint.
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Chapter 6
Group-Sequential Three-Arm
Non-inferiority Clinical Trials

Abstract We discuss group-sequential three-arm non-inferiority (NI) clinical tri-
als, i.e., trials that include a test intervention as well as active and placebo controls
for evaluating both assay sensitivity and NI. We extend two existing approaches,
the fixed margin and fraction approaches, to a group-sequential setting with two
decision-making frameworks. We provide an example to illustrate the methods.

Keywords Assay sensitivity � Average sample number � Constancy � Fixed
margin approach � Fraction approach � Maximum sample size � Non-inferiority �
Type I error

6.1 Introduction

Active-controlled non-inferiority (NI) trial designs are an alternative to
placebo-controlled superiority designs when a use of the placebo control is ethically
undesirable due to the availability of a proven effective medical intervention.
Active-controlled NI trial designs include an existing effective intervention such as
an effective standard of care. In contrast to superiority trials where there is interest
in evaluating whether an intervention is superior to a control (e.g., placebo), NI
trials evaluate whether an intervention is non-inferior to the control. In a NI trial, the
null hypothesis of inferiority is assumed to be true unless there are sufficient data to
reject it in favor of the alternative (NI). NI is assessed by evaluating whether
inferiority of a prespecified magnitude (called a NI margin) can be ruled out with
reasonable confidence using confidence intervals. The NI margin is carefully
selected to ensure that a NI result would (1) imply retention of the some of the effect
that the active control has historically displayed (i.e., when compared to placebo)
and (2) rule out clinically important levels of inferiority so that clinical application
would be ethical and clinically acceptable.

For example, EMERALD 1 (conducted in the USA) and EMERALD 2
(conducted in Europe) are randomized, controlled, open-label, NI clinical trials to
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evaluate the efficacy and safety of peginesatide as the maintenance treatment of
anemia in patients with chronic renal failure who were receiving hemodialysis and
previously treated with epoetin (Fishbane et al. 2013). Both trials included a 6-week
screening period, a 28-week initial dose adjustment period, an 8-week evaluation
period, and a longer-term follow-up period (≥16 additional weeks). Eligible par-
ticipants were randomly assigned, in a 2:1 ratio, to receive peginesatide once every
4 weeks or to continue to receive epoetin (epoetin alfa in the EMERALD 1 and
epoetin beta in the EMERALD 2) one to three times a week. The frequency and
route of administration of epoetin were determined based on the treatment regimen
during the screening period. The primary efficacy endpoint was the change from the
baseline hemoglobin level during the evaluation period. NI for both trials would be
established if the lower limit of the two-sided 95 % confidence interval was −1.0 g
per deciliter or higher, indicating that inferiority of greater than −1.0 could be ruled
out with reasonable confidence, compared to epoetin.

For NI clinical trials to be valid, two assumptions (constancy and assay sensi-
tivity) must be satisfied (International Conference on Harmonisation of Technical
Requirements for Registration of Pharmaceuticals for Human Use (ICH) 2000;
D’Agostino et al. 2003; Food and Drug Administration (FDA) 2010; Evans and
Follmann 2015). An active intervention which has been shown to be efficacious
(e.g., superior to placebo) in a historical trial may be considered as the active
control in a NI trial, but the most effective should be selected. The constancy
assumption states that the demonstrated effect of the active control over placebo in
the historical trial has not changed over time, i.e., would be the same as the effect in
the current trial if a placebo group was included. This may not be the case if there
were differences in trial conduct (e.g., differences in treatment administration,
endpoints, or population) between the historical and current trials. This assumption
is not testable in a trial without a concurrent placebo group.

Another important design assumption is assay sensitivity, i.e., the ability for the
trial to be able to detect differences between strategies if they truly exist. Otherwise,
NI may be concluded simply due to insensitivity of the trial to detect differences.
In NI trials, assay sensitivity (essentially making strategies appear similar) can be
reduced (intentionally or unintentionally) by diluting effects though subtle choices
about design and conduct. Many factors can affect assay sensitivity including poor
disease diagnosis, endpoint selection and timing, poor adherence, loss to follow-up,
prior therapy, inclusion of subgroups where treatment effects may be small, and use
of concomitant therapies. Furthermore, the active control nature of the most NI
trials can make clinicians and participants more likely to rate positive outcomes,
driving the results toward NI.

The methodologies for two-arm (a test intervention and an effective active
control) NI clinical trials have been well established. However, two-arm NI trials
often lack the necessary support for the assay sensitivity and constancy assump-
tions. As a result, inclusion of a third arm (placebo) into the trial has been proposed
to address these concerns (Pigeot et al. 2003; Koch and Röhmel 2004; Hauschke
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and Pigeot 2005a). Regulatory authorities often recommend a use of such a
three-arm (test intervention, active control, and placebo) NI trial design (ICH 2000;
Committee for Medicinal Products for Human Use (CHMP) 2005; FDA 2010). The
three-arm NI trial offers several scientific advantages (ICH 2000). Particularly,
these designs provide the opportunity of establishing the validity of the assay
sensitivity via a comparison of the placebo with the active control intervention
within the trial. Although the three-arm NI design provides such scientific advan-
tages, it also provides challenges: (1) there may be ethical constraints to using a
placebo and (2) there is the added complexity of evaluating two distinct objectives:
evaluation of (i) the superiority of the active control intervention to placebo (assay
sensitivity: AS) and (ii) the NI of the test intervention to the active control inter-
vention. This may result in a trial with too large and impractical of a sample size to
conduct. One approach to address this concern is the use of group-sequential
designs. The group-sequential design offers the possibility to stop a trial early when
evidence is overwhelming and thus offers efficiency (i.e., potentially fewer trial
participants and minimizing the amount of time that participants receive a placebo,
compared to fixed-sample designs).

In this chapter, we discuss group-sequential designs for three-arm NI clinical
trials. We extend two existing approaches for evaluating AS and NI into a
group-sequential setting. One approach is discussed by Koch and Röhmel (2004),
and Hida and Tango (2011a, 2013) (hereafter we call this “fixed margin approach”),
and the other is so-called fraction approach proposed by Pigeot et al. (2003). We
consider a three-arm NI trial that has two co-primary objectives: (i) to evaluate
whether the control intervention is superior to placebo (AS) and (ii) to evaluate
whether the test intervention is not less effective than the control intervention by a
prespecified NI margin (NI). Objective (ii) is relevant when the test intervention has
advantages over the control (e.g., safer, more convenience, or less costly). On the
other hand, in many NI clinical trials, especially in a regulatory setting, demon-
strating the superiority of the test intervention to placebo is desirable. However, as
Gao and Ware (2008) discuss, if the AS assumption does not hold, then there will
be uncertainty regarding whether a NI result means that they are similarly effective
or similarly ineffective. In this chapter, when there is a concern about the AS, to
make the evaluation of objective (ii) more interpretable, we evaluate a direct
comparison of the control intervention with the placebo. For related discussions,
please see Hauschke and Pigeot (2005a, b) and Stucke and Kieser (2012).

Three-arm NI clinical trials in a group-sequential setting have been discussed (Li
and Gao 2010; Schlömer and Brannath 2013), but methodologies are still needed.
Extensions of the fraction approach are discussed by Li and Gao (2010) and the
fixed margin approach by Schlömer and Brannath (2013), in a setting of two-stage
group-sequential three-arm NI clinical trials with continuous or binary outcomes.
We discuss two decision-making frameworks for the two approaches when the
primary endpoint is continuous.
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6.2 Evaluating Assay Sensitivity and Non-inferiority

6.2.1 Notation and Statistical Setting

Consider a three-arm NI group-sequential clinical trial with a maximum of
L planned analyses (L ≥ 2). Let nTl; nCl and nPl be the cumulative numbers of
participants on the test intervention (T), active control intervention (C), and placebo
(P) groups, respectively, at the lth interim analysis (l = 1, …, L). Let the allocation
ratios of the C and the P relative to the T be nTl : nCl : nPl ¼ 1 : rC : rP, where
rC(>0) and rP(>0). When the groups are equally sized, rC ¼ rP ¼ 1. Hence, up to
nTL; nCL ¼ rCnTL and nPL ¼ rPnTL, participants are recruited and randomly
assigned to the intervention groups. The sample size required for the final analysis
NL is NL ¼ nTL þ nCL þ nPL ¼ ð1þ rC þ rPÞnTL.

Assume that the group outcomes YTi, YCj, and YPm are independently distributed
with means E½YTi� ¼ lT, E½YCj� ¼ lC, and E½YPm� ¼ lP; and common variance
var½YTi� ¼ var½YCj� ¼ var½YPm� ¼ r2, respectively (i ¼ 1; . . .; nTL; j ¼ 1; . . .; nCL;
m ¼ 1; . . .; nPL), where a larger mean represents a more preferable outcome. For
simplicity, the variance r2 is assumed to be known.

6.2.2 The Fixed Margin Approach

For the fixed margin approach, the hypotheses for evaluating AS and NI, respec-
tively, are as follows:

HAS
0 :lC � lP �x versus HAS

1 :lC � lP [x; ð6:1Þ

HNI
0 :lT � lC � � x versus HNI

1 :lT � lC [ � x; ð6:2Þ

where x(>0) is a prespecified NI margin (Hida and Tango 2011a). This approach
imposes an extra condition on the hypothesis testing for the AS, that is, superiority
of the C to the P is demonstrated with a NI margin x. However, the key feature of
the approach is that the inequalities lP\lC � x\lT hold for any value of x if
both of the null hypotheses HNI

0 and HAS
0 are rejected at the significance level of a

for a one-sided test. This means that the superiority of the T relative to the P can be
indirectly demonstrated if HNI

0 and HAS
0 are rejected, without direct comparison of

the T with the P. This avoids introduction of further complexities in adjustment to
the Type I or Type II errors (Hida and Tango 2011a).

We are now interested in hypothesis testing for AS and NI based on the fixed
margin approach within a group-sequential setting. The corresponding statistics for
testing hypotheses (6.1) and (6.2) at the lth interim analysis are given by
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ZAS
l ¼

�YCl � �YPl � x

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=nCl þ 1=nPl

p and ZNI
l ¼

�YTl � �YCl þx

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=nTl þ 1=nCl

p
where �YTl, �YCl, and �YPl are the sample means in the T, the C, and the P, respectively,

at the lth interim analysis, given by �YTl ¼
PnTl

i¼1 YTi
� �

=nTl, �YCl ¼
PnCl

j¼1 YCj
� �

=nCl,

and �YPl ¼
PnPl

m¼1 YPm
� �

=nPl. Then, for large samples, ðZAS
l ; ZNI

l Þ is approximately
bivariate normally distributed with the correlation

corr ZAS
l ; ZNI

l

� � ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nTlnPl
nTl þ nClð Þ nCl þ nPlð Þ

r
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rP

1þ rCð Þ rC þ rPð Þ
r

¼ q:

The correlation is determined by the allocation ratios rC and rP (Hida and Tango
2011a). The two statistics ðZAS

l ; ZNI
l Þ are always negatively correlated and become

closer to zero as rC and rP are larger. The correlation is q ¼ �0:5 if the intervention
groups are equally sized, i.e., rC ¼ rP ¼ 1. Furthermore, the joint distribution of
ðZAS

1 ; ZNI
1 ; . . .; ZAS

l ; ZNI
l ; . . .; ZAS

L ; ZNI
L Þ is 2L multivariate normally distributed with

correlations given by corr ZAS
l0 ; ZAS

l

� � ¼ corr ZNI
l0 ; Z

NI
l

� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nTl0=nTl

p
; and

corr½ZAS
l0 ; ZNI

l � ¼ corr½ZNI
l0 ; Z

AS
l � ¼ q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nTl0=nTl

p ð1� l0 � l� LÞ since ZAS
l and ZNI

l
can be rewritten as

ZAS
l ¼

ffiffiffiffiffiffi
nTl

p �YCl � �YPl � xð Þ
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=rC þ 1=rP

p and ZNI
l ¼

ffiffiffiffiffiffi
nTl

p �YTl � �YCl þxð Þ
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=rC

p :

6.2.3 The Fraction Approach

For the fraction approach, the hypotheses for evaluating AS and NI, respectively,
are as follows:

HAS
0 :lC � lP � 0 versus HAS

1 :lC � lP [ 0; ð6:3Þ

HNI
0 :ðlT � lPÞ=ðlC � lPÞ� h versus HNI

1 :ðlT � lPÞ=ðlC � lPÞ[ h; ð6:4Þ

where h ð0\h\1Þ is prespecified and determined by h ¼ 1� x=ðlC � lPÞ as a
fraction of the difference between lC and lP, using the NI margin x (Pigeot et al.
2003). In addition, hypothesis testing is logically ordered, i.e., HAS

0 is tested first,
and then HNI

0 is tested if and only if HAS
0 is rejected at the prespecified significance

level of a. If both null hypotheses HAS
0 and HNI

0 are rejected, then lT [ lP irre-
spective of h since lT � lP [ h lC � lPð Þ[ 0. Many authors have discussed the
fraction approach in fixed-sample designs; binary outcomes are discussed by Tang
and Tang (2004) and Kieser and Friede (2007), time-to-event outcomes by Mielke
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et al. (2008) and Kombrink et al. (2013), and continuous outcomes with hetero-
geneous variances by Hasler et al. (2008).

We focus on hypothesis testing based on the fraction approach within a
group-sequential setting. Assuming lC � lP [ 0, the hypotheses (6.4) can be
rewritten as

HNI
0 : lT � hlC � 1� hð ÞlP � 0 versus HNI

1 : lT � hlC � 1� hð ÞlP [ 0:

The corresponding statistics for testing hypotheses (6.3) and (6.4) at the lth
interim analysis are given by

ZAS
l ¼

�YCl � �YPl
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=nCl þ 1=nPl

p and ZNI
l ¼

�YTl � h�YCl � ð1� hÞ�YPl
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=nTl þ h2=nCl þð1� hÞ2=nPl

q :

For large sample, ðZAS
l ; ZNI

l Þ is approximately bivariate normally distributed and
the joint distribution of ðZAS

1 ; ZNI
1 . . .; ZAS

l ; ZNI
l ; . . .; ZAS

L ; ZNI
L Þ is 2L multivariate

normally distributed with their correlations given by the same correlation structure
as the fixed margin approach. The correlations of ZAS

l and ZNI
l are given by

corr ZAS
l ; ZNI

l

� � ¼ �h=rC þð1� hÞ=rPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2=rC þð1� hÞ2=rP

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=rC þ 1=rP

p ¼ q:

The correlation is determined by the fraction h and the allocation ratios rC and rP.
When the intervention groups are equally sized, i.e., rC ¼ rP ¼ 1, it is

q ¼ ð1� 2hÞ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hþ h2

p
, and q ¼ 0 if h ¼ 0:5.

There are important differences in the two approaches (Röhmel and Pigeot 2011;
Hida and Tango 2011a, b; Stucke and Kieser 2012). Specifically, the concept of
“assay sensitivity” is different. A different conclusion is driven from the two
approaches when lC � x\lP\lC is true (Hida and Tango 2011b). The fraction
approach can reject HNI

0 , but the fixed margin approach cannot. Whether the fraction
approach can allow demonstration of NI of the T to the C is questionable under
lC � x\lP. For further discussion, please see Röhmel and Pigeot (2011), Hida
and Tango (2011b), and Stucke and Kieser (2012).

6.3 Decision-Making Frameworks and Stopping Rules

We consider two decision-making frameworks associated with hypothesis testing.
The first decision-making framework is flexible, where testing hypotheses for AS
and NI are logically ordered similarly as in the fraction approach, i.e., NI is
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evaluated only after the AS is demonstrated and a trial is terminated if HAS
0 and HNI

0
are rejected at any interim analysis (i.e., not necessarily simultaneously) (DF-A).
The other framework is relatively simple and a special case of DF-A, where a
clinical trial is terminated if and only if both HAS

0 and HNI
0 are rejected simulta-

neously at the same interim analysis (DF-B). We describe the two decision-making
frameworks, corresponding stopping rules and power definitions.

DF-A: Under DF-A, a trial stops if the AS and the NI are achieved at any interim
analysis (i.e., not necessarily simultaneously). NI is evaluated only after the AS is
demonstrated. If AS is demonstrated but NI is not, then the trial continues and
subsequent hypothesis testing is repeatedly conducted only for NI until the NI is
demonstrated. The stopping rule based on DF-A is formally given as follows:

At the lth interim analysis (l ¼ l0; . . .; L� 1),

if ZAS
l0 [ ZAS

l0 for some l0ð1� l0 � lÞ and ZNI
l [ cNIl , then reject HNI

0 and stop
the trial
otherwise, continue the trial,

at the Lth analysis,

if ZAS
l0 [ cASl0 for some l0 and ZNI

L [ cNIL , then reject HNI
0 ,

otherwise, do not reject HNI
0 .

where cASl and cNIl are the critical boundaries at the lth interim analysis, which
are constant and selected separately for AS and NI to preserve the Type I error of a
for each hypothesis, using any group-sequential method such as Lan–DeMets
error-spending method (Lan and DeMets 1983), analogously to a trial with a single
primary objective. For example, consider a three-arm NI clinical trial with a
maximum number of planned analyses L ¼ 4 and equally spaced increments of
information, and the O’Brien–Fleming-type boundary (OF) (O’Brien and Fleming
1979) is used to reject the null hypothesis for the AS and NI tests with the same
significance level of a ¼ 2:5% for a one-sided test. The boundaries for each
analysis are 4.3326, 2.9631, 2.3590, and 2.0141, respectively. If the AS test is
statistically significant at the third analysis, then the NI test is evaluated twice with
the critical boundary of 2.3590 at the third analysis and 2.0141 at the final analysis
as if the significance level for the NI test has been already spent at the first and
second analyses despite no test being conducted. Even if the AS test is statistically
significant at the third analysis, the remaining significance level of 1.5 %
(=2.5 − 1.0) is not reallocated to the hypothesis test for NI. If the remaining sig-
nificance level of 1.5 % for the AS test is reallocated to the hypothesis test for NI,
then the size of the hypothesis tests for AS and NI is at most a ¼ 4:0% (=1.5 + 2.5)
since the test is the intersection–union.
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Therefore, the overall power for rejecting the both HAS
0 and HNI

0 under HAS
1 and

HNI
1 in DF-A is

1� b ¼ Pr
[

1� l0 � l�L
ZAS
l0 [ cASl0

	 
 \ ZNI
l [ cNIl

	 
	 

HAS

1 \HNI
1

��h i
: ð6:5Þ

This power (6.5) can be evaluated using the numerical integration method in
Genz (1992) or using other methods.

When using the fixed margin approach, DF-A allows for dropping of the P if AS
is demonstrated at the interim. However, when using the fraction approach, DF-A
cannot allow this as the test statistics for the NI includes the amount of �YPl.

DF-B: Under DF-B, a trial is stopped if AS and NI are demonstrated at the same
interim analysis simultaneously. Otherwise, the trial will continue and the subse-
quent hypothesis testing is repeatedly conducted for both AS and NI until simul-
taneous significance is reached. The stopping rule based on DF-B is formally given
as follows:

At the lth interim analysis (l ¼ 1; . . .; L� 1),

if ZAS
l [ cASl and ZNI

l [ cNIl simultaneously, then reject HAS
0 and HNI

0 , and
stop the trial,
otherwise, continue the trial,

at the Lth analysis

if ZAS
L [ cASL and ZNI

L [ cNIL , then reject HAS
0 and HNI

0 ,
otherwise, do not reject HAS

0 and HNI
0 .

Similarly as in the DF-A, the critical boundaries at the lth interim analysis cASl
and cNIl are constant and selected separately for the AS and NI tests to preserve the
Type I error of a for each hypothesis, using any group-sequential method, analo-
gously to a trial with a single primary objective. Therefore, the overall power for
rejecting both HAS

0 and HNI
0 under HAS

1 and HNI
1 in DF-B is

1� b ¼ Pr
[L

l¼1
ZNI
l [ cNIl

	 
 \ ZAS
l [ cASl

	 
	 

HAS

1 \HNI
1

��h i
: ð6:6Þ

This power (6.6) can also be numerically assessed by using multivariate normal
integrals.

Based on the powers for DF-A (6.5) and DF-B (6.6) discussed above, in a
group-sequential setting, similarly we describe two sample size concepts, the
maximum sample size (MSS) and the average sample number (ASN) as in Chap. 2.
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The MSS is the sample size required for the final analysis to achieve the desired
overall power 1� b for rejecting both null hypotheses for AS and NI. The MSS is
the smallest integer not less than NL satisfying the desired power for a
group-sequential strategy at the prespecified hypothetical values of parameters lT,
lC, and lP, r

2, and x (or h) with Fisher’s information time for the interim analyses.
The ASN is the expected sample size under hypothetical reference values and
provides information regarding the number of participants anticipated in a
group-sequential clinical trial in order to reach a decision point. The definitions of
ASNs corresponding to the two decision-making frameworks for the fixed margin
and fraction approaches are given in the Appendix D.

To identify the value of nTL or NL, a simple strategy is to implement a grid search
to gradually increase (or decrease) nTL until the power under nTL exceeds (or falls
below) the desired power. The grid search often requires considerable computing
time, especially with a larger number of planned analyses, or a small standardized
mean difference. As mentioned in Chap. 2, to reduce the computing time, the
Newton–Raphson algorithm in Sugimoto et al. (2012) or the basic linear interpo-
lation algorithm in Hamasaki et al. (2013) may be utilized.

6.4 Illustration

We illustrate the concepts with an example from the Rotigotine trial (Mizuno et al.
2014). The study was designed to evaluate the superiority of transdermal rotigotine
to placebo, and NI to ropinirole, in Japanese Parkinson’s disease patients on con-
comitant levodopa therapy. The primary variable was the change in the unified
Parkinson’s disease rating scale (UPDRS) Part III (ON state) sum score from
baseline to week 16 of the treatment period [end of treatment (EOT)]. For the
sample size calculation for the trial, the change from baseline in UPDRS was
assumed to be 5.4 for the rotigotine, 5.0 for the ropinirole, and zero for placebo with
a common standard deviation of 9.0 among the groups. In addition, the NI margin
of rotigotine to ropinirole was 2.5. Based on these assumptions, the MSS and ASN
are calculated for evaluating AS and NI with 80 % power at the 2.5 % significance
level for a one-sided test, when using the fixed margin and fraction approaches
based on DF-A and DF-B with the number of planned analyses L = 2, 3, and 4. The
three allocation ratios nTl : nCl : nPl considered are (i) 1:1:1 (rC ¼ rP ¼ 1), (ii) 2:2:1
(rC ¼ 1; rP ¼ 1=2), and (iii) 2:1:1 (rC ¼ rP ¼ 1=2). The critical boundaries are
determined by using the Lan–DeMets error-spending method with equally spaced
increments of information. The four critical boundary combinations considered are
as follows: OF for both AS and NI (OF-OF), Pocock-type boundary (PC) (Pocock
1977) for both AS and NI (PC-PC), OF for AS and PC for NI (OF-PC), and PC for
AS and OF for NI (PC-OF). Furthermore, for the fixed margin approach based on
DF-A, the ASN is calculated under HAS

1 and HNI
1 in two ways: In one strategy, the

placebo group is not discontinued until NI is demonstrated even when AS is
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demonstrated at an interim analysis (ASN1), while in the other strategy the P is
discontinued when AS is demonstrated at an interim analysis (ASN2). The defi-
nitions of ASN1 and ASN2 are given in Appendix D. Tables 6.1 and 6.2 sum-
marize the calculated sample sizes.

For both the fixed margin and fraction approaches, in all of the critical boundary
combinations and allocation ratios, there is a modest difference in the MSS and
ASN between the DF-A and DF-B although DF-A provides a slightly smaller
sample size than DF-B.

For the fixed margin approach, the smallest MSS is given by OF-OF and the
largest by PC-PC in all of the allocation ratios. The smallest ASN1 is associated
with OF-OF or PC-PC and the largest with PC-OF. The largest ASN2 is provided
by PC-OF or OF-PC in all of the allocation ratios. If three interims and one final
analysis are planned (i.e., L ¼ 4) based on DF-A, then the total MSS is 732 for
OF-OF, 852 for PC-PC, and 786 for OF-PC, and 810 for PC-OF. The total ASN1 is
652 for OF-OF, 668 for PC-PC, 677 for OF-PC, and 681 for PC-OF, and the total
ASN2 is 632 for OF-OF, 633 for PC-PC, 662 for OF-PC, and 634 for PC-OF. With
DF-B, then the total MSS is 735 for OF-OF, 864 for PC-PC and 786 for OF-PC,
and 828 for PC-OF. The total ASN1 is 654 for OF-OF, 680 for PC-PC, 677 for
OF-PC, and 698 for PC-OF.

For the fraction approach, the smallest MSS is provided by OF-OF and the
largest by OF-PC or PC-PC in all of the allocation ratios. The smallest ASN1 is
consistently produced with PC-PC and the largest with OF-PC. When the number
of participants is equally sized among the groups, without any interim analysis, the
total fixed-sample size is 351. If three interims and one final analysis are planned
based on DF-A, then the total MSS is 357 for OF-OF, 420 for PC-PC and 420 for
OF-PC, and 363 for PC-OF. The total ASN1 is 304 for OF-OF, 304 for PC-PC, 326
for OF-PC, and 304 for PC-OF.

6.5 Summary

NI clinical trials recently have received a great deal of attention by regulatory
authorities (CHMP 2005; FDA 2010) and in the clinical trials’ literature [e.g.,
extensive reference found in Rothmann et al. (2011)]. NI clinical trials have
complexities requiring careful design, monitoring, analyses, and reporting. When
designing NI clinical trials, the constancy and AS are the important assumptions.
The selection of the active control for a NI trial should be done carefully, ensuring
that it has demonstrated and precisely measured superiority over placebo and that
its effect has not changed compared to the historical trials that demonstrated its
efficacy (constancy assumption). To assess these issues in regulatory medical
product development, the use of three-arm NI design that includes a test inter-
vention, an active control intervention, and a placebo has been considered as a gold
standard design, although this design may not be possible due to ethical constraints
and the impracticalities of large sample sizes required for three-arm trials.
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In this chapter, we discuss three-arm NI clinical trials and extend two existing
approaches, i.e., the fixed margin and fraction approaches, for evaluating AS and NI
to a group-sequential setting with two decision-making frameworks.

With the result discussed in Ochiai et al. (2016), the findings are summarized as
follows:

• The decision-making frameworks of DF-A and DF-B for the fixed margin and
the fraction approaches provide the possibility of stopping a trial early when
evidence is overwhelming, thus offering efficiency (e.g., an ASN potentially 4–
15 % fewer than the fixed-sample designs with equally sized groups and four
analyses).

• There are no major differences in both MSS and ASN between DF-A and DF-B
for the fixed margin and the fraction approaches, although DF-A is slightly more
powerful than DF-B. By using the DF-A for the fixed margin approach, the time
that participants are exposed to placebo can be minimized as the DF-A allows
dropping of the placebo group if AS has been demonstrated at an interim
analysis.

• For the fixed margin approach, selecting the OF-type boundary for both AS and
NI could lead to fewer participants for the MSS and the ASN compared with
other critical boundary combinations. On the other hand, for the fraction
approach, selecting the OF-type boundary for both AS and NI, or the PC-type
boundary for AS and the OF-type boundary for NI provides better efficiency
with respect to the MSS and the ASN compared with other critical boundary
combinations.

We caution that these findings are based on one set of design parameter con-
figurations except for the allocation ratio. Further investigation is required to
evaluate how the power and Type I error rate behave under other design
assumptions.
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Chapter 7
Future Developments

Abstract Chapters 1–6 focus on selected emerging statistical issues in clinical
trials. This work provides a foundation for designing randomized trials with other
design features. This includes clinical trials with more than two interventions (e.g.,
dose-selection clinical trials): trials with time-to-event endpoints and trials with
targeted subgroups and enrichment clinical trial designs. In Chap. 7, we briefly
discuss the issues in the design of these trials.

Keywords Endpoint selection � Enrichment clinical trial designs � Multiple-arm �
Subgroup analysis � Time-to-event outcomes

7.1 Introduction

This book discusses group-sequential designs in (i) superiority clinical trials for
comparing the effect of two interventions with multiple endpoints, and
(ii) three-arm non-inferiority clinical trials for evaluating assay sensitivity and
non-inferiority of a test intervention to a control intervention. Our discussion has
focused on co-primary endpoints in a group-sequential setting. We have only
briefly discussed trials with multiple primary endpoints with a prespecified
non-ordering of endpoints. For three-arm non-inferiority clinical trials, we only
discuss trials designed with a single endpoint.

However, this work provides a foundation for designing randomized trials with
other design features. These include clinical trials with more than two interventions
(e.g., dose-selection clinical trials): trials with time-to-event endpoints and trials
with targeted subgroups. In Chap. 7, we briefly discuss the issues in the design of
such trials.
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7.2 Multiple Intervention Arms

In clinical trials with multiple intervention arms, clarification of the trial objective is
paramount. Objectives may include evaluating if all interventions are superior (or
non-inferior) to a control or if at least one intervention is superior (or non-inferior)
to a control. For the latter objective, methods for group-sequential and modern
adaptive designs for multiple intervention arms have been discussed (e.g., Thall
et al. 1989; Follmann et al. 1994; Stallard and Todd 2003, 2008; König et al. 2008;
Magirr et al. 2012). Further investigation is needed for group-sequential and
adaptive designs in more complex clinical trial settings, e.g., multiple intervention
arms with multiple endpoints and targeted subpopulations.

7.3 Multiple Event-Time Outcomes

Methods for time-to-event outcomes are more complex than binary or continuous
endpoints. Considerable care is needed to design event-time trials in a
group-sequential setting. As discussed in Sugimoto et al. (2013) and Hamasaki
et al. (2013) in the fixed-sample designs, the magnitude of the association among
the time-to-event outcomes may depend on time. For example, the outcomes may
be less correlated in earlier stages but more highly correlated in later stages.

The censoring mechanism further complicates the design of these trials. For
example, coinfection/comorbidity trials may utilize primary endpoints to evaluate
multiple comorbidities; e.g., a trial evaluating therapies to treat Kaposi’s sarcoma
(KS) in HIV-infected individuals may have the time to KS progression and the time
to HIV virologic failure, as primary endpoints. Both events are non-fatal and neither
event-time is censored by the other event. In new anticancer drug trials, the most
commonly used primary endpoint is overall survival (OS) defined as the time from
randomization until death from any cause. OS often requires long follow-up periods
after disease progression leading to long and expensive studies. Therefore, in
addition to OS, as a primary endpoint, many trials evaluate the time from ran-
domization to the first of tumor progression (TTP) or progression-free survival
(PFS) which is composite of tumor progression and death. In this example, a death
event would censor TTP: Death is a competing risk for TTP but not vice versa. This
is referred to as “semi-competing risks” (Fine et al. 2001).

Lastly, when extending the methods discussed in Chaps. 2–4 to time-to-event
outcomes, as pointed out by Hung et al. (2015), a complex issue is how to allocate
the significance level to each interim analysis as the amount of information for the
endpoints may vary at a particular interim time-point of the trial.
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7.4 Endpoint Selection Designs

Typically, the primary endpoints are the outcomes which provide the most clini-
cally relevant and convincing evidence directly related to the primary objective of a
clinical trial (e.g., the variable used to compare the effect difference of two treatment
groups) [the International Conference on Harmonisation of Technical Requirements
for Registration of Pharmaceuticals for Human Use (ICH) E9 Guideline (1998)].
The primary endpoints should be carefully described in the protocol as it sets the
stage for much of the rest of the trial protocol and trial design. For example, the
sample size is determined based on the primary endpoint. Failure to prespecify
endpoints, especially in conformation clinical trials, can introduce bias into a trial
and creates opportunities for manipulation. However, due to the recent techno-
logical advances in obtaining a wide variety of measurements from participants in
the trial, new information such as identification of better markers or surrogate
outcome measures may come to light that could merit changes to endpoints during
the course of a trial (Evans 2007). While changes can allow incorporation of
up-to-date knowledge into the trial design, such changes to endpoints can also
compromise the scientific integrity of a trial.

In early-phase explanatory clinical trials, the primary objective is often to
evaluate whether a test intervention is active enough to justify later-phase trials.
There may be serval outcomes available to evaluate the multidimensional effects of
the intervention. An optimal go/no-go decision relies heavily on how to select
outcomes which can characterize the intervention’s effect appropriately. One
strategy for go/no-go decision-making with endpoint selection is to use an exten-
sion of the method using the futility critical boundary discussed in Chap. 4. The
decision-making framework is to stop measurement of an endpoint if its test statistic
has already crossed the futility critical boundary, but otherwise continue mea-
surement. If all of the statistics for the endpoints under consideration cross the
futility critical boundary, then the trial is terminated.

Alternatively, a conditional power (CP) approach related to the methods discussed
in Chap. 3 can be considered. A cutoff value is determined based on CP, and mea-
surement is stopped on an endpoint if itsCP is lower than the cutoff value, but otherwise
measurement continues. Furthermore, an extension to “predicted intervals” to a mul-
tiple endpoint setting (Evans et al. 2007; Li et al. 2009) will provide information
regarding the potential effect size estimates and associated precision with endpoint
measurement continuation, thus providing investigators with a better understanding of
the pros and cons associated with continuation of endpoint measurement.

7.5 Enrichment Designs and Subgroup Analyses

Modern genomic studies suggest that many diseases once believed to be homo-
geneous are heterogeneous. If clinical or pharmacogenomic markers can reliably
identify distinct diseases can be developed, then empirical-based medicine can be

7.4 Endpoint Selection Designs 99

http://dx.doi.org/10.1007/978-4-431-55900-9_4
http://dx.doi.org/10.1007/978-4-431-55900-9_3


transformed to “stratified medicine.” The markers may be used to select the best
therapeutic strategy for individual patients. The important and challenging task is to
identify and confirm a subgroup of patients with a positive benefit: risk balance
when treated with an intervention (Ondra et al. 2015).

When a disease is heterogeneous or the intervention can target a specific
mechanism of action related to disease subtypes, use of conventional clinical trial
design may not suffice. Conventional trials generally assume homogeneous treat-
ment effect for all participants in the trial. When markers can precisely identify
individuals with a high probability of response to an intervention, clinical trials
could focus on such individuals. Conducting a trial in subgroup patients with a
potentially high response is termed “enrichment.” Referring to Food and Drug
Administration (FDA) guidance on “Enrichment Strategies for Clinical Trials to
Support Approval of Human Drugs and Biological Products” (FDA 2012),
enrichment is defined as the prospective use of any patient characteristic to select a
study population in which detection of an intervention effect (if one is in fact
present) is more likely than it would be in an unselected population. Enrichment
design is not a new idea. For example, adaptive randomization such as the
play-the-winner rule with a goal to allocate more participants to the better treatment
in course has been around since 1969 (Zelen 1969).

Advantages of enrichment designs include: increasing the chance of success
often with a smaller sample size, directing treatment where it is likely to work best,
and avoiding harm.

There are generally two kinds of enrichment, i.e., prognostic and predictive:

Prognostic Enrichment: consists of selecting participants for a trial with personal
characteristics related to the disease. For example, a study of a lipid-lowering drug
intended to decrease the rate of heart attacks might choose a population likely to
have an increased risk of heart attacks, such as diabetics. Choosing such partici-
pants may make it more likely to observe an effect if one exists.
Predictive Enrichment: consists of applying a systematic, prespecified procedure
to identify and validate a subgroup whose participants that would significantly
benefit or avoid toxicity from the new therapy.

However, enrichment raises several challenging questions including (FDA
2012):

• How will data on the marker status of potential trial enrollees be used in trial
design?

• How much data are needed on the unselected population?
• What types of retrospective subgroup analyses are valid (e.g., what can be

reliably learned from subgroup analyses that were not prespecified in the
original trial design)?

Subgroup analysis is common in clinical trials. However, the quality and level of
evidence as well as the strength of conclusions regarding a subgroup-specific
intervention depends on many factors including the trial design and conduct, and the
reliability and predictive ability of the biomarker that defines the subgroup. Wang
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and Hung (2014) provide a list of criteria for consideration that may affect inter-
pretability of a subgroup-specific finding. If participants with and without an
enrichment characteristic are studied, then the primary result may be driven by the
result in the enriched subgroup. In some enrichment designs that recruit participants
with and without the enrichment characteristic, the trial-wise Type I error rate can be
shared between a test conducted using only the enriched subgroup and a test con-
ducted using the entire population. The Type I error allocation scheme allows for the
assessment of the intervention effect in the entire entered population when there may
be some effect in the non-enriched subgroup while also allowing assessment in the
enriched subgroup. Determining the required sample size that will provide reason-
able power to test these hypotheses while controlling the Type I error including a
prespecified order of testing or a multiple testing procedure is challenging. Statistical
methods have been discussed (e.g., Song and Chi 2007; Wang et al. 2007; Alosh and
Huque 2009; Brannath et al. 2009; Mandrekar and Sargent 2009a, b; Jenkins et al.
2011; Friede et al. 2012; Millen et al. 2012; Freidlin et al. 2013; Magnusson and
Turnbull 2013; Stallard et al. 2014; Graf et al. 2015). Recent developments in the
statistical literature regarding identification and confirmation of targeted subgroups
can be found in the Journal of Biopharmaceutiscal Statistics Special Issue,
“Subgroup Analysis in Clinical Trials” (2014). In addition, Ondra et al. (2015)
provide a systematic review on this topic.
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Appendix A
Calculation of Power and Conditional
Power in Group-Sequential Clinical Trials
with Two Co-primary Endpoints

A.1 Power

The power based on DF-A discussed in Chap. 2 can be calculated by the two L-
variate normal integrals and 2L-variate normal integral are as follows:

1� b ¼ Pr
[L
l¼1

A1l

( )
\

[L
l¼1

A2l

( )�����H1

" #

¼ 1� Pr
\L
l¼1

D1l

�����H0

" #
þ Pr

\L
l¼1

D2l

�����H0

" #
� Pr

\L
l¼1

D1l \D2lf g
�����H1

" # !
;

where Akl ¼ Zkl [ cEkl
� �

and Dkl ¼ Zkl � cEkl
� �

(k = 1, 2; l = 1, …, L).
The power based on DF-B discussed in Chap. 2 can be calculated by partitioning

the set in (2.2) into mutually exclusive subsets and taking the sum of their prob-
abilities as follows:

1� b ¼ Pr
[L
l¼1

A1l \A2lf g
�����H1

" #

¼ Pr A11 \A21 H1j½ � þ
XL
l¼2

Pr
\l�1

l0¼1

D1l0 [D2l0f g \ A1l \A2lf gf g
�����H1

" #
:

The probability of D1l0[D2l0f gðl0 ¼ 1; . . .; l� 1Þ can be written as

Pr D1l0[D2l0½ � ¼ Pr D1l0 \A2l0½ � þ Pr A1l0 \D2l0½ � þ Pr D1l0 \D2l0½ �:

Similarly, the probability of the union of D1l0 [D2l0f g can be written by the sum
of the probabilities of the unions composed of fD1l0 \A2l0 g, fA1l0 \D2l0 g, and
fD1l0 \D2l0 g. Then, the second term of the right-hand side in above the power can
be written by
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XL
l¼2

Pr
\l�1

l0¼1

D1l0 [D2l0f g \ A1l \A2lf gf g
�����H1

" #

¼
XL
l¼2

X3
hl¼1

. . .
X3
hl�1¼1

Pr
\l�1

l0¼1

~Ahl0
l0

( )
\ A1l \A2lf g

�����H1

" # !
:

The probability of ~A1
l0 is calculated by a bivariate normal integral as follows:

Pr ~A1
l0

� � ¼ Zc1l0
�1

Z1
c2l0

f2 z1l0 ; z2l0ð Þdz2l0dz1l0

where f2 z1l0 ; z2l0ð Þ is the density function of the joint distribution of Z1l0 ; Z2l0ð Þ with
the means and the covariance matrix given in Sect. 2.2. The probabilities of ~A2

l0 , ~A
3
l0

and A1l0 \A2l0f g are calculated similarly. Then, the probability of the union com-
posed of ~A1

l0 , ~A
2
l0 , ~A

3
l0 , and A1l0 \A2l0f g is calculated by a multivariate normal integral,

and the power is the sum of ð3L � 1Þ=2 multivariate normal integrals.
For illustration, we provide the case of L = 2 based on DF-B. In this case, the

power can be rewritten as

1� b ¼ Pr A1l \A2l H1j½ � þ
X3
h1¼1

Pr ~A
h1
1 \ A12 \A22f g

���H1

h i

¼
Z1
c11

Z1
c21

f2 z11; z21ð Þdz21dz11

þ
Zc11
�1

Z1
c21

Z1
c12

Z1
c22

f4 z11; z21; z12; z22ð Þdz22dz12dz21dz11

þ
Z1
c11

Zc21
�1

Z1
c12

Z1
c22

f4 z11; z21; z12; z22ð Þdz22dz12dz21dz11

þ
Zc11
�1

Zc21
�1

Z1
c12

Z1
c22

f4 z11; z21; z12; z22ð Þdz22dz12dz21dz11
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where f2 z11; z21ð Þ is the density function of the bivariate normal distribution of
Z2 ¼ Z11; Z21ð ÞT, which is given by

f2 Z2ð Þ ¼ 1

2p R2j j1=2
exp � 1

2
Z2 � l2ð ÞTR�1

2 Z2 � l2ð Þ
� �

; �1\z11; z21\1

with mean vector l2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rn1=ð1þ rÞp

d1; d2ð ÞT and correlation matrix

R2 ¼ 12 qZ
qZ 12


 �

where dk ¼ ðlTk � lCkÞ=rk and qZ ¼ ðrqT þ qCÞ=ð1þ rÞ. In addition,
f4 z11; z21; z12; z22ð Þ is the density function of the tetravariate normal distribution of
Z4 ¼ Z11; Z21; Z12; Z22ð ÞT given by

f4ðZ4Þ ¼ 1

ð2pÞ2 R4j j1=2
exp � 1

2
Z4 � l4ð ÞTR�1

4 Z4 � l4ð Þ
� �

; �1\z11; z21; z12z22\1;

with mean vector l4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=ð1þ rÞp ffiffiffiffiffi

n1
p

d1;
ffiffiffiffiffi
n1

p
d2;

ffiffiffiffiffi
n2

p
d1;

ffiffiffiffiffi
n2

p
d2

� 
T
and correla-

tion matrix

R4 ¼ R2

ffiffiffiffiffiffiffiffiffiffiffiffi
n1=n2

p
R2ffiffiffiffiffiffiffiffiffiffiffiffi

n1=n2
p

R2 R2


 �
;

where R4 is positive definite matrix under qTj j\1 and qCj j\1 and n1 6¼ n2 as
R4 ¼ R2j j2 1� n1=n2ð Þ2.

For details of the computation related to multivariate normal, please see Genz
and Bretz (2009).

A.2 Conditional Power

The conditional power (CP) based on DF-A in Chap. 3 is

CP ¼

Pr
SL

m¼Sþ 1
A1m a1S; a2l0j

� �
if Z1l � cE1l for all l ¼ 1; . . .; S and Z2l0 [ cE2l0 for some l0 ¼ 1; . . .; S

Pr
SL

m¼Sþ 1
A2m a2S; a1l0j

� �
if Z2l � cE2l for all l ¼ 1; . . .; S and Z1l0 [ cE2l0 for some l0 ¼ 1; . . .; S

Pr
SL

m¼Sþ 1
A1m

� �
\ SL

m¼Sþ 1
A2m

� �
a1S; a2Sj

� �
if Z1l � cE1l and Z2l � cE2l for all l ¼ 1; . . .; S
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>>>>>>>>>>>>>:

Appendix A: Calculation of Power and Conditional Power … 105

http://dx.doi.org/10.1007/978-4-431-55900-9_3


where Akm ¼ Zkm [ cEkm
� �

and Dkm ¼ Zkm � cEkm
� �ðk ¼ 1; 2; m ¼ Sþ 1; . . .; LÞ,

and ða1S; a2SÞ is a given observed value of Z1S; Z2Sð Þ. The conditional distribution
of Z1Sþ 1; . . .; Z1L; Z2Sþ 1; . . .; Z2L a1S; a2Sjð Þ is a multivariate normal with means

E Zkmja1S; a2S½ � ¼ ffiffiffiffiffiffiffiffiffiffi
nm=2

p
dk þ

ffiffiffiffiffiffiffiffiffiffiffiffi
nS=nm

p
akS �

ffiffiffiffiffiffiffiffiffiffi
nm=2

p
dk

� �
and covariances given

by cov Zkm; Zk0m0 a1S; a2Sj½ � ¼ ðnm0 � nSÞ= ffiffiffiffiffiffiffiffiffiffiffi
nmnm0

p
if k ¼ k0; nm0 � nSð ÞqZ=

ffiffiffiffiffiffiffiffiffiffiffi
nmnm0

p
if

k 6¼ k0, where m
0 �m ¼ Sþ 1; . . .; L: On the other hand, the CP based on DF-B is

described by

CP ¼ Pr
[L

m¼Sþ 1

A1m \A2mf g
�����a1S; a2S

" #
¼ Pr A1;Sþ 1 \A2;Sþ 1

��a1S; a2S� �

þ
XL

m¼Sþ 2

Pr
\m�1

m0¼Sþ 1

D1m0[D2m0f g \ A1m\A2mf g
�����a1S; a2S

" #
;

if Z1l � c1l or Z2l � c2l for all l ¼ 1; . . .; S. Both CP can be calculated similarly as
discussed in Appendix A.

When S ¼ L� 1, the CP based on DF-A can be rewritten as

CP ¼

Pr A1Lja1S; a2l0½ � ¼ 1� U c�1
� 


if Z1l � cE1l for all l ¼ 1; . . .; S
and Z2l0 [ cE2l0 for some l

0 ¼ 1; . . .; S
Pr A2Lja2S; a1l0½ � ¼ 1� U c�2

� 

if Z2l � cE2l for all l ¼ 1; . . .; S

and Z1l0 [ cE1l0 for some l
0 ¼ 1; . . .; S

Pr A1L \A1Lja1S; a2S½ � ¼ U2 �c�1;�c�2
��qZ� 


if Z1l � cE1l and Z2l � cE2l for all l ¼ 1; . . .; S

8>>>>>>>>>><
>>>>>>>>>>:

where Uð�Þ is the cumulative distribution function (CDF) of the standardized nor-
mal distribution and U2 �; �:qZð Þ is the CDF of the standard bivariate normal dis-
tribution with the correlation qZ , and

c�k ¼ cEkL � akS
ffiffiffiffiffiffiffiffiffiffiffiffi
nS=nL

p� �
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� nS=nL

p
� dk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nL � nS

p
=
ffiffiffi
2

p
ðk ¼ 1; 2Þ

For DF-A, the CP based on DF-B can be rewritten as

CP ¼ Pr A1L \A2Lja1S; a2S½ � ¼ U2 �c�1;�c�2
��qZ� 


:

Genz A, Bretz F (2009) Computation of multivariate normal and t probabilities.
Springer, New York
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Appendix B
Efficacy and Futility Critical Boundaries
and Sample Size Calculation
in Group-Sequential Clinical Trials
with Two Co-primary Endpoints

The efficacy and futility critical boundaries cEklk and cFklk are determined using the
error-spending method to spend the Type I and Type II error rates simultaneously.
cEklk is separately calculated for each endpoint and treated as if the endpoints are not
correlated. But cFklk is iteratively determined by incorporating the correlations among
the endpoints into the calculation with the restriction cFkLk ¼ cEkLk . Here, we describe
the iterative procedure to identify the efficacy and futility critical boundaries cEklk and
cFklk including the calculation for MSS nL. As a general case, we only describe the
procedure based on DF-A.

Step 1: Determine cEk1; . . .; c
E
kLk using any group-sequential method.

Step 2: Select the two initial values for MSS nðm�1Þ
L and nðmÞL ðm ¼ 1; 2; . . .Þ.

Step 3: Select the initial values bðj�1;mÞ
k and bðj;mÞk , where bðj;mÞk is the marginal

Type II error rate for endpoint k (j = 1,2, …).

Step 4: Calculate nL bðj;mÞk

� �
and cFk1; . . .; c

F
kLk , satisfying

bðj;mÞk1 ¼ Pr Zk1 � cFk1 H1j� �
and

bðj;mÞkl ¼ Pr
\l�1

l0¼1

cFkl0\Zkl0 � cEkl0
� �\ Zkl � cFkl

� ���H1

" #

with
PLk

l¼1 b
ðj;mÞ
kl ¼ bðj;mÞk and cFkLk ¼ cEkLk , using any group-sequential

method (k = 1, …, K; l = 2, …, Lk).
Step 5: Update the value of bk using the equation based on basic linear

interpolation

bðjþ 1;mÞ
k ¼

bðj�1;mÞ
k nLðbðj;mÞk Þ � nðmÞL

n o
� bðj;mÞk nLðbðj�1;mÞ

k Þ � nðmÞL

n o
nLðb j;mð Þ

k Þ � nLðbðj�1;mÞ
k Þ

:
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Step 6: Calculate nL bðjþ 1;mÞ
k

� �
and cFk1; . . .; c

F
kLk under current bðjþ 1;mÞ

k as with

Step 4.

Step 7: If bðjþ 1;mÞ
k � bðj;mÞk

��� ��� is within a prespecified error tolerance, then stop

iterative procedures with bðmÞk . Otherwise, go back to Step 5. Note:

Calculate bðmÞk , satisfying nL bðmÞk

� �
¼ nðmÞL , for all k.

Step 8: Calculate f nðmÞL

� �
which is the power (4.1) in Chap. 4 (DF-A) under the

current nðmÞL , using the cFk1; . . .; c
F
kLk calculated at Step 6.

Step 9: Update the value of nL, using the equation based on basic linear
interpolation

nL ¼
nðm�1Þ
L f nðmÞL

� �
� ð1� bÞ

n o
� nðmÞL f nðm�1Þ

L

� �
� ð1� bÞ

n o
f nðmÞL

� �
� f nðm�1Þ

L

� � :

Step 10: If nL is an integer, n
ðmþ 1Þ
L ¼ nL; otherwise, n

ðmþ 1Þ
L ¼ nL½ � þ 1, where nL½ �

is the greatest integer less than nL. If n
ðmþ 1Þ
L ¼ nðmÞL , stop the iterative

procedure with nðmþ 1Þ
L as the final value. Otherwise, repeat Step 3–9.

Options for the two initial values nð0ÞL and nð1ÞL include the sample sizes calculated
for detecting the smallest standardized mean differences min½D1;D2� with the
marginal power 1� b with a one-sided test at the significance level of a: Another

option is calculated by the same method but with the marginal power ð1� bÞ1=2.
This is because nL lies between these options. If all of the correlations among the
endpoints are assumed to be zero, i.e., qT ¼ qC ¼ 0, and the standardized mean
differences are equal, then the futility critical boundary can be simply determined,
using a group-sequential method with the adjusted Type II error rate of

1� ð1� bÞ1=2, analogous to the single primary endpoint case. However, if the
endpoints are assumed to be correlated perfectly, i.e., qT ¼ qC ¼ 1, and the stan-
dardized mean differences are equal, then the futility critical boundary can be given
by using a group-sequential method with the unadjusted Type II error rate of b,
analogous to the single primary endpoint case. Further numerical evaluation of the
behavior of the futility critical boundary will be found in Asakura et al. (2015).

Asakura K, Hamasaki T, Evans SR (2015) Interim evaluation of efficacy or
futility in group-sequential clinical trials with multiple co-primary endpoints.
The 2015 joint statistical meetings, Seattle, USA, August 8–13
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Appendix C
ASN Calculations in Group-Sequential
Clinical Trials Including Efficacy
and Futility Assessments

As defined in Chap. 4, the ASN is the expected sample size under hypothetical
reference values, which is given by

ASN ¼
XL�1

l¼1

nlPl d1; d2; r1;r2; qT;qCð Þ

þ nL 1�
XL�1

l¼1

nlPl d1; d2; r1; r2; qT; qCð Þ
 !

where Pl d1; d2; r1; r2; qT; qCð Þ ¼Plð Þ ¼ PE
l þPF

l , and PE
l and PF

l are the stopping
probabilities as defined the likelihood of crossing the critical boundaries at the lth
interim analysis assuming that the true values of the intervention’s effect are
d1; d2ð Þ. The ASN provides information regarding the number of participants
anticipated in a group-sequential clinical trial in order to reach a decision point. We
briefly describe each definition of the ASN corresponding to the decision-making
frameworks described in Chap. 4.

For DF-A, the stopping probabilities at the first analysis are

PE
1 ¼ Pr

\2
k¼1

Ak1

�����Ik1 ¼ I1

" #
and PF

1 ¼ Pr
[2
k¼1

Ek1

�����Ik1 ¼ I1

" #
;

and the lth analysis ðl� 2Þ,
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\2
k¼1

Ak1[
[lk
l0k¼2

\l0k�1

l00k¼1

Bkl00k
\Akl0k

8<
:

9=
;

8<
:

9=
;

8<
:

9=
;

2
4

3
5�

Xl�1

l0¼1

PE
l0
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PF
l ¼ Pr

[2
k¼1

Ek1 [
[lk
l0k¼2

[2
k¼1

\l0�1

l00k¼1

Dkl00k

8<
:

9=
;\

[2
k¼1

Ekl0k

8<
:

9=
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2
4

3
5�
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where Aklk ¼ Zklk [ cEklk

n o
, Bklk ¼ cFklk\Zklk � cEklk

n o
, Cklk ¼ Zklk [ cFklk

n o
,

Dklk ¼ Zklk � cEklk

n o
, and Eklk ¼ Zklk � cFklk

n o
, and lk is the latest analysis for end-

point k on or before the information time at the lth analysis (i.e., Ilk � Il).
Similarly for DF-B, the stopping probabilities at the first analysis are

PE
1 ¼ Pr

\2
k¼1

Ak1

�����Ik1 ¼ 1

" #
and PF

1 ¼ Pr
\2
k¼1

Ek1

�����Ik1 ¼ I1

" #
;

and at the lth analysis l� 2ð Þ,

PE
l ¼ Pr

\2
k¼1

Ak1[
[l1;l2

l01;l
0
2¼2

\2
k¼1

\l0k�1

l00k¼1

Ckl00k
\Akl0k

8<
:

9=
;

8<
:

9=
;

2
4

3
5�

Xl�1

l0¼1

PE
l0

and

PF
l ¼ Pr

[lk
l0k¼1

\l01;l02
l001 ;l

00
2¼1

[2
k¼1

Dkl00k

( )
\
[2
k¼1

Ekl0k

8<
:

9=
;

2
4

3
5�

Xl�1

l0¼1

PF
l0 :

Furthermore, for DF-C, the stopping probabilities at the first analysis are

PE
1 ¼ Pr

\2
k¼1

Ak1

" #
and PF

1 ¼ Pr
[2
k¼1

Ek1

" #
;

and at the lth analysis l� 2ð Þ,

PE
l ¼ Pr

\l�1

l0¼1

\2
k¼1

Ckl0 \
[2
k¼1

Dkl0

( )
\
\2
k¼1

Akl

" #

and

PF
l ¼ Pr

\l�1

l0¼1

\2
k¼1

Ckl0 \
[2
k¼1

Dkl0

( )
\
[2
k¼1

Ekl

" #
;

where Akl ¼ Zkl [ cEkl
� �

, Ckl ¼ Zkl [ cFkl
� �

, Dkl ¼ Zkl � cEkl
� �

, and Ekl ¼ Zkl � cFkl
� �

.
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Appendix D
ASN Calculations in Three-Arm
Group-Sequential Clinical Trials

The ASN is the expected sample size under hypothetical reference values and
provides information regarding the number of participants anticipated in a
group-sequential clinical trial in order to reach a decision point. We briefly describe
the several definitions of the ASN corresponding to the decision-making
frameworks.

When using DF-A or DF-B for the fixed margin and fraction approaches, if the P
is not terminated until NI is demonstrated even when the AS is demonstrated at an
interim analysis, then the ASN can be calculated by

ASN1 ¼
XL
l¼1

NlPl lT; lC; lP;x; r
2

� 
þ 1�
XL
l¼1

Pl lT; lC; lP;x; r
2

� 
 !
NL

¼ NL þ
XL�1

l¼1

Nl � NLð ÞPl lT; lC; lP;x; r
2� 

;

where Nl ¼ nTl þ nCl þ nPlð Þ is the cumulative number of participants at the lth
interim analysis and Pl lT; lC; lP;x; r

2ð Þ ¼Plð Þ is the stopping probability at the lth
interim analysis assuming that the true values of the intervention’s means are
lT; lC; lPð Þ. If the analysis is conducted with equally spaced increments of infor-
mation, then Nl can be rewritten as ðl=LÞNL.

The stopping probability Pl based on DF-A is given by, for l ¼ 1,

Pl ¼ Pr AAS
1 \ ANI

1

� �
and for l� 2

Pl ¼ Pr
\l�1

s¼1

BAS
s \ AAS

l \ANI
l

" #
þ Pr AAS

1 \
\l�1

s¼1

BNI
s \ANI

l

" #

þ
X

2� s\l

Pr
\s�1

m¼1

BAS
m \ AAS

s \
\l�1

n¼s

BNI
n \ ANI

l

" #
;
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where AAS
l ¼ ZAS

l [ cASl
� �

and ANI
l ¼ ZNI

l [ cNIl
� �

, BAS
l ¼ ZAS

l � cASl
� �

and
BNI
l ¼ ZNI

l � cNIl
� �

. For instance, at L ¼ 2, the stopping probabilities P1 and P2

based on DF-A are calculated by multivariate normal integrals as follows:

P1 ¼ Pr AAS
1 \ANI

1

� � ¼ Z1
cAS1

Z1
cNI1

f2 zAS1 ; zNI1
� 


dzNI1 dzAS1

and

P2 ¼ Pr BAS
1 \AAS

2 \ANI
2

� �þ Pr AAS
1 \BNI

1 \ANI
2

� �
¼ Pr BAS

1 \BNI
1 \AAS

2 \ANI
2

� �þ Pr BAS
1 \ANI

1 \AAS
2 \ANI

2

� �
þ Pr AAS

1 \BNI
1 \AAS

2 \ANI
2

� �þ Pr AAS
1 \BNI

1 \BAS
2 \ANI

2

� �

¼
ZcAS1
�1

ZcNI1
�1

Z1
cAS2

Z1
cNI2

f4 zAS1 ; zNI1 ; zAS2 ; zNI2
� 


dzNI2 dzAS2 dzNI1 dzAS1

þ
ZcAS1
�1

Z1
cNI1

Z1
cAS2

Z1
cNI2

f4 zAS1 ; zNI1 ; zAS2 ; zNI2
� 


dzNI2 dzAS2 dzNI1 dzAS1

þ
Z1
cAS1

ZcNI1
�1

Z1
cAS2

Z1
cNI2

f4 zAS1 ; zNI1 ; zAS2 ; zNI2
� 


dzNI2 dzAS2 dzNI1 dzAS1

þ
Z1
cAS1

ZcNI1
�1

ZcAS2
�1

Z1
cNI2

f4 zAS1 ; zNI1 ; zAS2 ; zNI2
� 


dzNI2 dzAS2 dzNI1 dzAS1

where flð�Þ is the probability density function of l multivariate normal distribution
under the alternative hypotheses HAS

1 and HNI
1 . On the other hand, the stopping

probability Pl based on DF-B is given by, for l ¼ 1,

Pl ¼ Pr AAS
1 \ANI

1

� �
;

and, for l� 2,

Pl ¼ Pr
\l�1

s¼1

BAS
s [BNI

s

� �\AAS
l \ANI

l

" #
:
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When using DF-A for the fixed margin approach, we have an option for
discontinuing the placebo group at the interim when the AS is demonstrated. In this
situation, the ASN can be calculated by

ASN2 ¼
XL
l¼1

Xl
s¼1

Nl � nPl � nPsð Þf gPljs lT; lC; lP;x; r
2� 
þ 1�

XL
l¼1

Pl

 !
NL

¼ NL þ
XL
l¼1

Xl
s¼1

Nl � NL � ðnPl � nPsÞf gPljs lT; lC; lP;x; r
2

� 

;

where Pljs lT; lC; lP;x; r2ð Þ ¼ Pljs is given by

Pljs ¼

Pr AAS
1 \ ANI

1

� �
; if l ¼ s ¼ 1;

Pr
Tl�1

s¼1
BAS
s \ AAS

l \ ANI
l

� �
; if l ¼ s� 2;

Pr AAS
1 \ Tk�1

s¼1
BNI
s \ ANI

l

� �
; if l[ s ¼ 1;

Pr
Ts�1

m¼1
BAS
m \ AAS

s \ Tl�1

n¼s
BNI
n \ ANI

l

� �
; if l[ s� 2:

8>>>>>>>>><
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