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Preface

This book studies and applies flexible models for survival data. Many de-
velopments in survival analysis are centered around the important Cox
regression model, which we also study. A key issue in this book, however,
is extensions of the Cox model and alternative models with most of them
having the specific aim of dealing with time-varying effects of covariates in
regression analysis. One model that receives special attention is the addi-
tive hazards model suggested by Aalen that is particularly well suited for
dealing with time-varying covariate effects as well as simple to implement
and use.

Survival data analysis has been a very active research field for several
decades now. An important contribution that stimulated the entire field
was the counting process formulation given by Aalen (1975) in his Berkeley
Ph.D. thesis. Since then a large number of fine text books have been writ-
ten on survival analysis and counting processes, with some key references
being Andersen et al. (1993), Fleming & Harrington (1991), Kalbfleisch &
Prentice (2002), Lawless (1982). Of these classics, Andersen et al. (1993)
and Fleming & Harrington (1991) place a strong emphasis on the counting
process formulation that is becoming more and more standard and is the
one we also use in this monograph. More recently, there have been a large
number of other fine text books intended for different audiences, a quick
look in a library data base gives around 25 titles published from 1992 to
2002. Our monograph is primarily aimed at the biostatistical community
with biomedical application as the motivating factor. Other excellent texts
for the same audience are, for example, Klein & Moeschberger (1997) and
Therneau & Grambsch (2000). We follow the same direction as Therneau
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& Grambsch (2000) and try to combine a rather detailed description of the
theory with an applied side that shows the use of the discussed models for
practical data. This should make it possible for both theoretical as well as
applied statisticians to see how the models we consider can be used and
work. The practical use of models is a key issue in biomedical statistics
where the data at hand often are motivating the model building and in-
ferential procedures, but the practical use of the models should also help
facilitate the basic understanding of the models in the counting process
framework.

The practical aspects of survival analysis are illustrated with a set of
worked examples where we use the R program. The standard models are
implemented in the survival package in R written by Terry Therneau that
contains a broad range of functions needed for survival analysis. The flexible
regression models considered in this monograph have been implemented in
an R package timereg whose manual is given in Appendix C. Throughout
the presentation of the considered models we give worked examples with
the R code needed to produce all output and figures shown in the book,
and the reader should therefore be able to reproduce all our output and
try out essentially all considered models.

The monograph contains 11 chapters, and 10 of these chapters deal with
the analysis of counting process data. The last chapter is on longitudinal
data and presents a link between the counting process data and longitudinal
data that is called marked point process data in the stochastic processes
world. It turns out that the models from both fields are strongly related.

We use a special note-environment for additional details and supplemen-
tary material. These notes may be skipped without loss of understanding
of the key issues. Proofs are also set in a special environment indicating
that these may also be skipped. We hope that this will help the less math-
ematically inclined reader in maneuvering through the book.

We have intended to include many of the mathematical details needed
to get a complete understanding of the theory developed. However, after
Chapter 5, the level of detail decreases as many of the arguments thereafter
will be as in the preceding material. A simple clean presentation has here
been our main goal.

We have included a set of exercises at the end of each chapter. Some of
these give additional important failure time results. Others are meant to
provide the reader with practice and insight into the suggested methods.
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1
Introduction

The intention with this chapter is to introduce the reader to the most
important issues dealt with in this monograph. As mentioned in the Preface
we aim at highly flexible models for survival data with special focus on
time-varying covariate effects having a statistical regression setup in mind.
This chapter should give some intuition into the main ideas underlying
the suggested methodology, and also a flavor of the use of the developed
R-functions implementing the models that we study.

1.1 Survival data

Survival analysis or failure time data analysis means the statistical anal-
ysis of data, where the response of interest is the time T ∗ from a well-
defined time origin to the occurrence of some given event (end-point). In
biomedicine the key example is the time from randomization to a given
treatment for some patients until death occurs leading to the observation
of survival times for these patients. In behavioral studies in agricultural sci-
ence, one often observes the time from when a domestic animal has received
some stimulus until it responds with a given type of action. Returning to the
survival data, the objective may be to compare different treatment effects
on the survival time possibly correcting for information available on each
patient such as age and disease progression indicators. This leaves us with
a statistical regression analysis problem. Standard methods will, however,
often be inappropriate because survival times are frequently incompletely
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FIGURE 1.1: Ten patients from the PBC study on follow-up time scale (left
panel) and on age scale (right panel)

observed with the most common example being right censoring. The sur-
vival time T ∗ is said to be right censored if it is only known that T ∗ is larger
than an observed right censoring value. This may be because the patient
is still alive at the point in time where the study is closed and the data
are to be analyzed, or because the subject is lost for follow-up due to other
reasons. If T ∗ is the time to death from a given cause, then death from
another cause may also be regarded as a censored observation (competing
risks). Other types of incompleteness can also occur, which are described
in a general framework in Chapter 3. Below is a study used repeatedly in
this book.

Example 1.1.1 (PBC data)

The PBC dataset described in Fleming & Harrington (1991) originates from
a Mayo Clinic trial in primary biliary cirrhosis (PBC) of the liver and was
conducted between 1974 and 1984. A total of 418 patients are included in
the dataset and were followed until death or censoring. In addition to time
at risk and censoring indicator, 17 covariates are recorded for this study.
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These include a treatment variable, patient age, sex and clinical, biochemi-
cal and histologic measurements made at the time of randomization to one
of the two treatments. For a detailed description of all the covariates, see
Fleming & Harrington (1991). Below is a printout for the first 10 patient of
the dataset giving the information on the time to death (in days), whether
the recorded time is censored or not, and information on five explanatory
variables that are found to be important by Fleming & Harrington (1991).

> library(survival)

> data(pbc)

> attach(pbc)

> cbind(time,status,age,edema,alb,bili,protime)[1:10,]

time status age edema alb bili protime

[1,] 400 1 58.7652 1 2.60 14.5 12.2

[2,] 4500 0 56.4463 0 4.14 1.1 10.6

[3,] 1012 1 70.0726 1 3.48 1.4 12.0

[4,] 1925 1 54.7406 1 2.54 1.8 10.3

[5,] 1504 0 38.1054 0 3.53 3.4 10.9

[6,] 2503 1 66.2587 0 3.98 0.8 11.0

[7,] 1832 0 55.5346 0 4.09 1.0 9.7

[8,] 2466 1 53.0568 0 4.00 0.3 11.0

[9,] 2400 1 42.5079 0 3.08 3.2 11.0

[10,] 51 1 70.5599 1 2.74 12.6 11.5

The first patient has a lifetime (from time of randomization of treatment)
of 400 days. For the second patient, which is a censored case, we only know
that the lifetime is beyond 4500 (days), and so on.

We use a slightly modified version of these data where all ties are ran-
domly broken in the remainder of the book. We also center all contin-
uous covariates around their respective averages such that for example
log(Bilirubin) is a centered version of log(Bilirubin).

Figure 1.1 shows the survival times on two different time-scales. Figure
1.1 left panel is on follow-up time-scale, which is the time-scale of interest
in this study since we wish to study the lifetimes after inclusion in the
study, where a specific treatment is given. Age is of course an important
factor when studying the lifetimes and should therefore be corrected for
in a subsequent analysis of the importance of potential risk factors. The
starting point for all observations on the follow-up time-scale is zero, and
those censored later on are indicated with an open ball, whereas those that
are observed to die during the study are marked with a filled ball.

Figure 1.1 right panel shows the similar survival times on the age time-
scale. If age was used as the time-scale for the analysis, the data would have
delayed entry because the patient entered the study at different ages and
are alive at inclusion, and this must be dealt with in a subsequent analysis.
Otherwise there is a risk that long lifetimes will be over-represented (long
lifetimes have a higher probability of being sampled), which is referred to
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as length-bias. Working on the age time-scale, such data are also called
left-truncated since the subjects are sampled subject to being alive. �

One goal of an analysis of right-censored survival data could be to esti-
mate regression parameters that relate to the mortality and examine vari-
ous hypotheses about the impact of various risk factors. It is not clear at
first sight how to incorporate the censored observations into such a sta-
tistical analysis. Basing the statistical analysis on only the complete data
may give biased results, so the censored observations need to be taken
into account. It turns out that handling of censoring and other types of
incomplete survival data is surprisingly easy when basing the analysis on
models for the so-called intensity function (given that censoring fulfills a
certain condition). The intensity function is closely related to the hazard
function. Suppose that the distribution of the lifetime T ∗ has density f and
let S(t) = P (T ∗ > t) denote the survival function. The hazard function is
defined as

α(t) =
f(t)
S(t)

= lim
h↓0

1
h

P (t ≤ T ∗ < t + h |T ∗ ≥ t),

which may be interpreted as the instantaneous failure rate among those at
risk. The survival function may be calculated from the hazard function by

S(t) = exp(−
∫ t

0

α(s) ds). (1.1)

The density, survival and hazard function provide alternative but equivalent
characterizations of the distribution of T ∗.

To illustrate how easy it is to estimate the hazard function even when
data are observed subject to right censoring consider the simplest possible
case where the hazard originates from an exponential waiting time distri-
bution, which we return to in Example 3.2.4.

Example 1.1.2 (Exponential distribution)

If the survival time T ∗ has constant hazard function α(t) = α, then T ∗ is
exponentially distributed with mean 1/α, see (1.1). Assume we observe in
the time interval [0, τ ] and that the observation is right-censored at time
U = u∧ τ . We here consider U as fixed to avoid a more detailed discussion
of the censoring mechanisms at this stage. We then observe T = T ∗ ∧ U
and ∆ = I(T ∗ ≤ U).

Based on n i.i.d. replicates from this model, the likelihood function may
be written as

n∏
i=1

α∆i exp(−
∫ Ti

0

α ds) = α∆· exp(−T·α),
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where ∆· =
∑

i ∆i is the total number of observed deaths and T· =
∑

i Ti

is the total risk time. The maximum likelihood estimator for the mortality
rate α is thus

α̂ =
∆·
T· .

Hence, right censoring is no problem when we estimate the intensity; we
should just relate the number of observed occurrences to the total amount
of risk time. �

If the focus is on the cumulative hazard function (
∫ t

0
α(s)ds) or the

survival function, then these can be estimated non-parametrically using
the Nelson-Aalen estimator and the Kaplan-Meier estimator, respectively.
These classical procedures are described in Chapter 4.

It turns out that a convenient representation of the data is by the count-
ing process

N(t) = I(T ∗ ≤ t),

which is zero until t passes T ∗, where it jumps to unity. A counting process
has a (unique) compensator Λ(t) so that

M(t) = N(t) − Λ(t)

is a martingale, which can be thought of as an error process. The intensity
process λ(t) is defined by

Λ(t) =
∫ t

0

λ(s) ds,

and it turns out that λ(t) = Y (t)α(t), where

Y (t) = I(t ≤ T ∗)

is called the at-risk process; it is one as long as the individual is at risk
meaning that T ∗ has yet not occurred. The intensity process of N(t) and
the hazard function are hence closely linked with the latter being the de-
terministic (model) part of the former. By this representation of the data
we have

N(t) = Λ(t) + M(t),

which can be thought of as

observation = model + error,

and indeed there is a central limit theorem for martingales, which facilitates
asymptotic description of the behavior of specific estimators and test statis-
tics. The above representation of data is further convenient when we only
observe incomplete data. Suppose for example that T ∗ is right-censored by
U so the observed data are

(T, ∆),
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where T = T ∗ ∧U denotes the minimum of the true lifetime and censoring
time and ∆ = I(T ∗ ≤ U) is an indicator telling us whether we observe
T ∗ or U . That is, we observe the smallest value of the lifetime and the
censoring time, and which of the two that has the smallest value. It turns
out (under independent censoring, Chapter 3) that the intensity process of
the observed counting process

N(t) = I(T ≤ t, ∆ = 1),

which jumps only if the lifetime is observed, is

λ(t) = I(t ≤ T )α(t),

so I(t ≤ T ∗) is replaced by the observed at risk indicator I(t ≤ T ). The
multiplicative structure of the intensity is thus preserved with the deter-
ministic part still being the hazard function. The at risk indicator Y (t) is
as mentioned changed to I(t ≤ T ) so the subject is at risk (for observing
the specific event of interest) as long as the event or censoring has not yet
occurred. The multiplicative structure of the intensity for right-censored
(and more generally filtered) data is a key observation since martingale
methods can then still be applied.

In many studies, as for example the PBC study, the main interest will be
to evaluate different explanatory variables effect on the lifetimes taking into
account that some of the lifetimes are censored (or otherwise incomplete).
Suppose we observe n i.i.d. (Ti, ∆i, Xi), where Ti is the right-censored life-
time, ∆i is the indicator telling us whether Ti is un-censored or censored,
and Xi is a (vector) of explanatory variables. As argued above it is conve-
nient to build a regression model using the (conditional) hazard function as
target function. A very popular model is the proportional hazards model
(Chapter 6) of Cox (1972):

αi(t) = α0(t) exp(XT
i β),

where β denotes the unknown regression parameters and α0(t) is the base-
line hazard function (the hazard function for an individual with X = 0)
that is left unspecified. The model is thus semiparametric. The regression
parameters can be estimated as the zero solution to the Cox score function

U(β) =
n∑

i=1

(Xi − E(β, Ti))∆i,

where

E(β, t) =
∑n

i=1 Yi(t)Xi exp(XT
i β)∑n

i=1 Yi(t) exp(XT
i β)

with Yi(t) = I(t ≤ Ti), i = 1, . . . , n. The Cox score function can also be
written as U(β,∞), where

U(β, t) =
n∑

i=1

∫ t

0

(Xi − E(β, s))dNi(s),
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which, evaluated at the true regression parameter β0, is a martingale! One
can show (under some regularity conditions) that the estimator β̂ is asymp-
totically normal around the true value β0 using the martingale central limit
theorem. The theory of counting processes and martingales is described in
Chapter 2.

The nonparametric element, α0(t), of the Cox model makes the model
flexible since no specific distribution is assumed for the baseline group (de-
fined by X = 0). Owing to this, the easy interpretation of the regression
parameters as (log)-relative risks:

α(t, X1 = 1, X2)
α(t, X1 = 0, X2)

= exp(β1), (1.2)

where X1 is one-dimensional and X = (X1, X
T
2 )T , and the availability of

software to perform estimation and inference in the model, the Cox model
has had tremendous success in applied work. In some applications, however,
the relative risks may not take the simple form (1.2) and there is therefore
a need for alternative models. A typical deviation from the Cox model is
that the covariate effects change with time. In a randomized trial that aims
to evaluate the effect of a new treatment, it may take some time before it
has an effect, or the treatment may have an effect initially, which is then
weakened with time. More generally, some risk factors will have a strong
prognostic effect right after being recorded but will gradually loose their
predictive power. We illustrate this by considering the TRACE study.

Example 1.1.3 (The TRACE study of AMI)

The TRACE study group, see Jensen et al. (1997), studied the prognostic
importance of various risk factors on mortality for approximately 6600 pa-
tients with acute myocardial infarction (AMI). The TRACE data included
in the timereg package is a random sample of 2000 of these patients.

The recorded risk factors are age, sex (female=1), clinical heart failure
(chf) (present=1), ventricular fibrillation (vf) (present=1), and diabetes
(present=1). It is well known that patients with vf present are at a much
higher risk of dying soon after being admitted.

To illustrate this point we fitted a standard Cox regression model with the
factors vf and sex, and compared the survival predictions with those based
on a completely non-parametric modeling (four Kaplan-Meier curves). These
estimates are shown in Figure 1.2 (a). We note that the constant relative
risk characterization is not consistent with the data. The Cox model gives
a poor fit to the data for subjects with the vf condition. The difference in
survival between males and females is captured well by the Cox model. Fig-
ure 1.2 (b) shows similar predictions based on the additive hazards model
with time-varying effects of vf and sex (explained below). These predictions
much better describe the mortality pattern since the model captures that
the effect of vf changes with time.
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FIGURE 1.2: (a) Survival predictions based on Cox regression model com-
pared with non-parametric (Kaplan-Meier) estimates (step functions) for
four groups based on status of vf and sex. Full line (without vf, male),
broken line (without vf, female), dotted line (with vf, female), and broken-
dotted (with vf, male). (b) Survival predictions based on additive hazards
model with time-varying effects compared with non-parametric (Kaplan-
Meier) estimates for four groups. Full line (without vf, male), broken line
(without vf, female), dotted line (with vf, female), and broken-dotted (with
vf, male).

The additive hazards model assumes that the hazard for a subject can
be written in the form

α(t) = β0(t) + X1β1(t) + X2β2(t),

where X1 and X2 are indicators of the presence of vf and sex, respectively.
Figure 1.3 shows estimates with 95% pointwise confidence intervals of the
cumulative regression functions of the model:∫ t

0

βj(s)ds, j = 0, 1, 2.
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FIGURE 1.3: Effects of vf and sex (female=1) based on time-varying addi-
tive hazard model with 95% pointwise confidence intervals.

The regression function estimates are thus the slopes of the cumulative
estimates, and note that, for this model, these can be interpreted as leading
to excess risk of dying. It is relatively easy to see from the figure that vf has
a strong effect initially and that its effect vanishes after approximately 3
months with the cumulative regression function estimate being essentially
constant. Females are seen to have a constant lower risk than males. �

The TRACE study demonstrates the need for survival models that are
flexible enough to deal with time-varying dynamics of covariate effects. One
obvious extension of the Cox model that can accommodate this is

αi(t) = α0(t) exp(XT
i β(t)), (1.3)

where the regression coefficients β(t) are allowed to depend on time. A
natural question to ask then is whether in fact all these coefficients need to
depend on time or whether a treatment effect, for example, is reasonably
well described by the relative-risk measure. This leads to the submodel

αi(t) = α0(t) exp(XT
i β(t) + Ziγ), (1.4)
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where some of the covariates (X) have time-varying effect and others (Z)
have constant effect. Estimation and inference for these extended Cox mod-
els, (1.3) and (1.4), are described in detail in Chapter 6. These multiplica-
tive models are very useful but there are also other models that are simple
to use and may be well suited to deal with time-varying effects.

A model class with an alternative structure is Aalen’s additive hazard
regression models, where it is assumed that

αi(t) = XT
i β(t),

that is the effect of the covariates acts on an absolute scale rather than
on a relative scale. The effect of the covariates is also allowed to change
with time. This particular aspect is very easy to handle for this model
because it fits nicely into the linear model structure of the counting process
representation of the data:

N(t) = Λ(t) + M(t).

Suppose we have n i.i.d. observations from the Aalen model and let N(t) =
(N1(t), . . . , Nn(t))T , M(t) = (M1(t), . . . , Mn(t))T , and X(t) the n × p-
matrix with ith row

Yi(t)(Xi1(t), . . . , Xip(t))

consisting of the at-risk indicator multiplied onto the p observed covariates
for the ith subject. Writing the model in differential form

dN(t) = X(t)dB(t) + dM(t),

where

B(t) =
∫ t

0

β(s) ds

is the cumulative coefficients, immediately suggests that a reasonable (un-
weighted) estimator of B(t) is

B̂(t) =
∫ t

0

(X(s)T X(s))−1X(s)T dN(s)

since the error term, dM(t), indeed has zero mean. The estimator in the
last display looks complicated but is in fact nothing but a sum. It also turns
out (asymptotically) that

n1/2(B̂(t) − B(t)) = n1/2

∫ t

0

(X(s)T X(s))−1X(s)T dM(s),

which is a martingale, and therefore large sample results may be derived
using again the central limit theorem for martingales. As for the extended
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FIGURE 1.4: PBC data. Aalen-model with intercept, age centered around
its mean and edema (present). Estimated cumulative regression functions
with 95% pointwise confidence intervals (full lines) and 95% uniform con-
fidence bands (broken lines).

Cox model, it is of interest to investigate whether in fact we have time-
varying effect of a given covariate, X1, say. That is, we wish to investigate
the hypothesis

H0 : β1(t) = γ1,

This is indeed possible using again martingale calculus. Let us see how it
works for the PBC data.

Example 1.1.4 (PBC data)

For ease of interpretation lets consider only the effect of age and edema on
survival. The Aalen model may be fitted in R using the package timereg
in the following manner. Before fitting the model, age is centered around
its mean and edema is scored 1 for edema present and 0 otherwise. The
function aalen fits the model, where below we restrict attention to the
first 8 years after start of the study. We see from Figure 1.4 that the re-
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gression coefficient associated with edema seems to change with time (the
cumulative does not seem to be a straight line) whereas the one associ-
ated with age appears to be constant with time. The curves along with the
shown estimates are 95% pointwise confidence limits (inner curves) and
95% uniform Hall-Wellner bands (outer curves). The Hall-Wellner band is
introduced in Chapter 2. The intercept curve corresponds to the cumulative
hazard function for a subject with average age (in the sample) and without
edema.

> data(pbc); attach(pbc)

> Age<-age-mean(age); Edema<-edema

> fit<-aalen(Surv(time/365,status)~Age+Edema,pbc,max.time=8)

Nonparametric Additive Risk Model

Simulations start N= 1000

> plot(fit,hw.ci=2);

> summary(fit)

Additive Aalen Model

Test for nonparametric terms

Test for non-significant effects

sup| hat B(t)/SD(t) | p-value H_0: B(t)=0

(Intercept) 9.32 0.000

Age 3.19 0.027

Edema 4.78 0.000

Test for time invariant effects

sup| B(t) - (t/tau)B(tau)| p-value H_0: B(t)=b t

(Intercept) 0.06840 0.120

Age 0.00237 0.943

Edema 0.56700 0.000

int (B(t)-(t/tau)B(tau))^2dt p-value H_0: B(t)=b t

(Intercept) 1.44e-02 0.052

Age 1.34e-05 0.794

Edema 1.32e+00 0.000

Based on the depicted curves it would seem natural to estimate the effect of
age by a constant, and we therefore start by testing whether the effect of age
is constant. This test (and the test for the other effects) is obtained using
the summary function on the fitted object called fit, and we see indeed that
there is no reason to believe that the effect of age should change with time
while the same hypothesis concerning the effect of edema is clearly rejected.
Actually two types of tests are performed: a supremum and an integrated
squared test. It is described in Chapter 5 how these are constructed and
what their properties are. It is thus natural to go on with the simplified
model assuming constant effect of age. This model is fitted below and stored
in the object fit.semi and we see that constant effect of age is estimated
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as 0.0018 with an estimated standard error of 0.000584, giving a clearly
significant Wald test. The hypothesis of constant effect of edema is again
clearly rejected. This test is now performed in the simplified model where
the effect of age is set to be time-invariant.

> fit.semi<-aalen(Surv(time/365,status)~const(Age)+Edema,pbc,

+ max.time=8)

Semiparametric Additive Risk Model

Simulations start N= 1000

> summary(fit.semi)

Additive Aalen Model

Test for nonparametric terms

Test for non-significant effects

sup| hat B(t)/SD(t) | p-value H_0: B(t)=0

(Intercept) 13.5 0

Edema 4.7 0

Test for time invariant effects

sup| B(t) - (t/tau)B(tau)| p-value H_0: B(t)=b t

(Intercept) 0.0667 0.001

Edema 0.5610 0.000

int (B(t)-(t/tau)B(tau))^2dt p-value H_0: B(t)=b t

(Intercept) 0.014 0.001

Edema 1.260 0.000

Parametric terms :

Coef. SE Robust SE z P-val

const(Age) 0.00178 0.000584 0.000582 3.05 0.00226

�

The additive Aalen model and its semiparametric version along with
goodness-of-fit and inference tools are described in Chapter 5.

Although the extended Cox model and the additive Aalen model are very
flexible (they are first-order Taylor expansions, around the zero covariate,
of fully nonparametric log-hazard and hazard functions, respectively), there
will sometimes be a need for other models. In Chapter 7 we consider com-
binations of multiplicative and additive hazard models. These models can
also be fitted in R using the timereg package.

Accelerated failure time and transformation models are described briefly
in Chapter 8. These are regression models that are developed from another
perspective than when one focuses on the hazard function, but they do
of course have a hazard function representation. They may represent good
alternatives to both the Cox and Aalen models, and will lead to other useful
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summary measures. These models are difficult, however, to extend to deal
with time-varying effects.

Chapter 9 contains a brief and selective description of clustered survival
data, again with special emphasis on how to deal with time-varying effects
and how the time-varying dynamic regression models discussed in the previ-
ous chapters can be implemented for this type of data. Finally, for survival
data, we have included a brief discussion in Chapter 10 on competing risks
models, again with special emphasis on models that are able to deal with
time-varying covariate effects.

1.2 Longitudinal data

The final chapter is on longitudinal data, which is somewhat different com-
pared to the rest of the material of this book. It is included, however, to
show that many of the same techniques used for survival analysis may in
fact also be applied to longitudinal data analysis. Longitudinal data for a
given subject (the ith) can be represented as

(T k
i , Zk

i , Xi(t))

where T k
i is the time-point for the kth measurement Zk

i of the longitudinal
response variable, and Xi(t) is a possibly time-dependent covariate vector
(q × 1) associated with the ith subject. We study time-varying additive
models where the conditional mean mi(t) at time t of the response variable
given what is observed so far is

mi(t) = β0(t) + β1(t)Xi1(t) + · · · + βq(t)Xiq(t), (1.5)

where β0(t), . . . , βq(t) are unspecified time-dependent regression functions.
For this model and a corresponding marginal model, we will show how
one can estimate the cumulative regression coefficient functions B(t) =∫ t

0
β(s)ds. It turns out that∑

k

Zk
i I(T k

i ≤ t) =
∫ t

0

α(s)Yi(s)XT
i (s) dB(s) + martingale, (1.6)

where
XT

i (t) = (1, Xi1(t), . . . , Xiq(t))

and with α(t) the conditional measurement intensity. We see that (1.6) has
the same structure as what was obtained for survival models, especially
the Aalen additive model. Indeed, a natural estimator of B(t) is easily
constructed from the above representation, and large-sample properties and
inference may be studied using martingale calculus again. The left-hand
side of (1.6) is called a marked point process integral, which is introduced
in Chapter 2. Let us close this section with an application showing the use
of the techniques developed for longitudinal data.
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FIGURE 1.5: Estimated cumulative coefficients functions for the baseline
CD4 percentage and the effects of smoking, age and previous response.
Curves are shown along with 95% pointwise confidence limits and 95%
Hall-Wellner bands

Example 1.2.1 (CD4 data)

The AIDS dataset described in Huang et al. (2002) is a subset from the Mul-
ticenter AIDS Cohort Study. The data include the repeated measurements
of CD4 cell counts and percentages of 283 homosexual men who became
HIV-positive between 1984 and 1991. Details about the design, methods
and medical implications of the study can be found in Kaslow et al. (1987).
All individuals were scheduled to have their measurements made at semi-
annual visits, but, because many individuals missed some of their scheduled
visits and the HIV infections happened randomly during the study, there
are unequal numbers of repeated measurements and different measurement
times per individual. We consider the model

mi(t) = β0(t) + β1(t)Xi1 + β2(t)Xi2 + β3(t)Xi3(t),

where X1 is smoking, X2 is age at HIV-infection and X3(t) is the at-time-t
previous measured response. Both X2 and X3 were centered around their
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respective averages. The model (1.5) can be fitted in timereg using the
function dynreg as illustrated below.

> age.c<-age-mean(age)

> cd4.prev.c<-cd4.prev-mean(cd4.prev)

> indi<-rep(1,length(cd4$lt))

> fit.cd4<-dynreg(cd4~smoke+age.c+cd4.prev.c,data=cd4,

+ Surv(lt,rt,indi)~+1,start.time=0,max.time=5.5,id=cd4$id,

+ n.sim=500,bandwidth=0.15,meansub=1)

> plot(fit.cd4,hw.ci=2)

The above plot command gives the estimated cumulative regression ef-
fects associated with the included covariates along with 95% pointwise con-
fidence limits and 95% uniform Hall-Wellner bands, Figure 1.5. Judging
from the figure, it seems that the effect of all the included covariates is
constant. This can be pursued with statistical tests as also illustrated be-
fore with the Aalen additive model for survival data. This is described in
Chapter 11. �



2
Probabilistic background

2.1 Preliminaries

Event time data, where one is interested in the time to a specific event
occurs, are conveniently studied by the use of certain stochastic processes.
The data itself may be described as a so-called counting process, which
is simply a random function of time t, N(t). It is zero at time zero and
constant over time except that it jumps at each point in time where an
event occurs, the jumps being of size 1.

Figure 2.1 shows two counting processes. Figure 2.1 (a) shows a counting
process for survival data where one event is observed at time 7 at the time
of death for a patient. Figure 2.1 (b) illustrates the counting process for
recurrent events data where an event is observed multiple times, such as
the times of dental cavities, with events at times 3, 4 and 7.

Why is this useful one could ask. Obviously, it is just a mathematical
framework to represent timings of events, but a nice and useful theory has
been developed for counting processes. A counting process N(t) can be
decomposed into a model part and a random noise part

N(t) = Λ(t) + M(t),

referred to as the compensator Λ(t) and the martingale M(t) of the counting
process. These two parts are also functions of time and stochastic. The
strength of this representation is that a central limit theorem is available for
martingales. This in turn makes it possible to derive large sample properties
of estimators for rather general nonparametric and semiparametric models
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FIGURE 2.1: (a) Counting process for survival data with event time at time
7. (b) Counting process for recurrent events data, with event times at 3,4
and 7.

for such data. One chief example of this is the famous Cox model, which we
return to in Section 6.1. To read more about counting processes and their
theory we refer to Brémaud (1981), Jacobsen (1982), Fleming & Harrington
(1991) and Andersen et al. (1993).

When assumptions are weakened, sometimes the decomposition will not
result in an error term that is a martingale but only a zero-mean stochastic
process, and in this case asymptotic properties can be developed using
empirical process theory; see, for example, van der Vaart & Wellner (1996).

We shall also demonstrate that similar flexible models for longitudinal
data may be studied fruitfully by the use of martingale methods. The key
to this is that longitudinal data may be represented by a so-called marked
point process, a generalization of a counting process. A marked point pro-
cess is a mathematical construction to represent timing of events and their
corresponding marks, and this is precisely the structure of longitudinal data
where responses (marks) are collected over time. As for counting processes,
a theory has been developed that decomposes a marked point process into
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a model part (compensator) and a random noise part (martingale). As a
consequence of this, the analysis of longitudinal data therefore has many
parallels with counting process data, and martingale methods may be in-
voked when studying large sample properties of concrete estimators. Some
key references for additional reading about marked point processes are Bré-
maud (1981) and Last & Brandt (1995).

Before giving the definitions and properties of counting processes, marked
point processes and martingales, we need to introduce some concepts from
general stochastic process theory.

Behind all theory to be developed is a measurable space (Ω,F , P ), where
F is a σ-field and P is probability measure defined on F . A stochastic
process is a family of random variables indexed by time (X(t) : t ≥ 0). The
mapping t → X(t, ω), for ω ∈ Ω, is called a sample path. The stochastic
process X induces a family of increasing sub-σ-fields by

FX
t = σ{X(s) : 0 ≤ s ≤ t}

called the internal history of X . Often when formulating models we will
condition on events that occurred prior in time. We could for example, at
time t, condition on the history generated by the process X up to time
t. In many applications, however, we will need to condition on further
information than that generated by only one stochastic process. To this end
we therefore define more generally a history (Ft; t ≥ 0) as a family of sub-σ-
fields such that, for all s ≤ t, Fs ⊂ Ft, which means A ∈ Fs implies A ∈ Ft.
A history is also called a filtration. Sometimes information (filtrations) are
combined and for two filtrations F1

t and F2
t we let F1

t ∨ F2
t denote the

smallest filtration that contains both F1
t and F2

t . A stochastic process X is
adapted to a filtration Ft if, for every t ≥ 0, X(t) is Ft-measurable, and in
this case FX

t ⊂ Ft. We shall often be dealing with stochastic processes with
sample paths that, for almost all ω, are right-continuous and with left-hand
limits. Such processes are called cadlag (continu à droite, limité à gauche).
For a function f we define the right-hand limit f(t+) = lims→t,s>tf(s)
and the left-hand limit f(t−) = lims→t,s<tf(s).

A nonnegative random variable T is called a stopping time with respect
to Ft if (T ≤ t) ∈ Ft, for all t ≥ 0. For a stochastic process X and a
stopping time T , the stopped process XT is defined by X(t) = X(t ∧ T ),
where a ∧ b denotes the minimum of a and b. A localizing sequence is a
sequence of stopping times Tn that is nondecreasing and satisfies Tn → ∞
as n → ∞. A property of a stochastic process X is said to hold locally if
there exists a localizing sequence (Tn) such that, for each n, the stopped
process XTn has the property.
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2.2 Martingales

Martingales play an important role in the statistical applications to be
presented in this monograph. Often we shall see that estimating functions
(evaluated at true parameter values) and the difference between estima-
tors and true values are (up to a lower-order term) martingales. Owing
to the existence of the celebrated central limit theorem for martingales of
Rebolledo (1980), there is an elegant and simple approach to derive a com-
plete asymptotic description of the suggested estimators. In the following
we give the definition of a martingale.

A martingale with respect to a filtration Ft is a right-continuous stochas-
tic process M with left-hand limits that, in addition to some technical
conditions:

(i) M is adapted to Ft, and (ii) E|M(t)| < ∞ for all t,

possesses the key martingale property

(iii) E(M(t) | Fs) = M(s) for all s ≤ t, (2.1)

thus stating that the mean of M(t) given information up to time s is M(s)
or, equivalently,

E(dM(t) | Ft−) = 0 for all t > 0, (2.2)

where Ft− is the smallest σ-algebra containing all Fs, s < t and dM(t) =
M((t+ dt)−)−M(t−). A martingale thus has zero-mean increments given
the past, and without conditioning. Condition (ii) above is referred to as
M being integrable. A martingale may be thought of as an error process in
the following sense.

Ĺ Since E(M(t)) = E(M(0)), a martingale has constant mean as a
function of time, and if the martingale is zero at time zero (as will be
the case in our applications), the mean will be zero. Such a martingale
is also called a zero-mean martingale.

Ĺ Martingales have uncorrelated increments, that is, for a martingale
M it holds that

Cov(M(t) − M(s), M(v) − M(u)) = 0 (2.3)

for all 0 ≤ s ≤ t ≤ u ≤ v.

If M satisfies
E(M(t) | Fs) ≥ M(s) for all s ≤ t, (2.4)

instead of condition (2.1), then M is a submartingale. A martingale is called
square integrable if supt E(M(t)2) < ∞. A local martingale M is a process
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such that there exist a localizing sequence of stopping times (Tn) such that,
for each n, MTn is a martingale. If, in addition, MTn is a square integrable
martingale, then M is said to be a local square integrable martingale.

To be able to formulate the crucial Doob-Meyer decomposition we need
to introduce the notion of a predictable process. Loosely speaking, a pre-
dictable process is a process whose value at any time t is known just before
t. Here is one characterization: a process X is predictable if and only if
X(T ) is FT−-measurable for all stopping times T . The principal class of a
predictable processes is the class of Ft-adapted left-continuous processes.

Let X be a cadlag adapted process. Then A is said to be the compensator
of X if A is a predictable, cadlag and finite variation process such that X−A
is a local zero-mean martingale. If a compensator exists, it is unique. A
process A is said to be of finite variation if for all t > 0 (P -a.s.)∫ t

0

|dA(s)| = sup
D

K∑
i=1

|A(ti) − A(ti−1)| < ∞,

where D ranges over all subdivisions of [0, t]: 0 = t0 < t1 < · · · < tK = t.
One version of the Doob-Meyer decomposition as formulated in Andersen

et al. (1993) is as follows.

Theorem 2.2.1 The cadlag adapted process X has a compensator if and
only if X is the difference of two local submartingales.

An important simple consequence of the theorem is that, if the cadlag
adapted process X is a local submartingale, then it has a compensator since
the constant process 0 is a local submartingale.

Let M and M̃ be local square integrable martingales. By Jensen’s in-
equality, M2 is a local submartingale since

E(M2(t) | Fs) ≥ (E(M(t) | Fs))2 = M2(s)

and hence, by the Doob-Meyer decomposition, it has a compensator. This
compensator is denoted by 〈M, M〉, or more compactly 〈M〉, and is termed
the predictable variation process of M . By noting that MM̃ = 1

4 (M+M̃)2−
1
4 (M − M̃)2, it is similarly derived that MM̃ has a compensator, written
〈M, M̃〉, and termed the predictable covariation process of M and M̃ .

The predictable covariation process is symmetric and bilinear like an
ordinary covariance. If 〈M, M̃〉 = 0, then M and M̃ are said to be orthog-
onal. The predictable covariation process is used to identify asymptotic
covariances in the statistical applications to follow later on. This is partly
explained by the relationship

Cov(M(s), M̃(t)) = E(〈M, M̃〉)(t), s ≤ t. (2.5)

Estimation of the asymptotic covariances on the other hand may be carried
out by use of the quadratic covariation process. This process is defined even
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when M and M̃ are just local martingales. When M and M̃ further are
of finite variation (as will be the case in our applications), the quadratic
covariation process of M and M̃ , denoted by [M, M̃ ], has the explicit form

[M, M̃ ](t) =
∑
s≤t

∆M(s)∆M̃(s). (2.6)

In the case where M̃ = M , (2.6) is written [M ](t) and called the quadratic
variation process of M . The two processes [M ] and [M, M̃ ] are also called
the optional variation process and optional covariation process, respec-
tively.

For the process [M ], it holds that M2 − [M ] is a local martingale as
was also the case with 〈M〉. An important distinction between the two
processes, however, is that [M ] may not be predictable; in our applications
it will never be! In the applications, the predictable variation process 〈M〉
will be determined by the model characteristics of the particular model
studied while the quadratic variation process [M ] may be computed from
the data at hand and therefore qualifies as a potential estimator.

Another useful characterization of [M ] is the following. When [M ] is
locally integrable, then M will be locally square integrable and 〈M〉 will
be the compensator of [M ]! Similarly, 〈M, M̃〉 will be the compensator of
[M, M̃ ]. This observation together with (2.6) enable us to compute both
the quadratic and predictable covariation process.

In the statistical applications, stochastic integrals will come natural into
play. Since we shall be dealing only with stochastic integrals where we inte-
grate with respect to a finite variation process, all the considered stochastic
integrals are ordinary pathwise Lebesgue-Stieltjes integrals, see Fleming &
Harrington (1991) (Appendix A) for definitions. Of special interest are the
integrals where we integrate with respect to a martingale. Such process
integrals have nice properties as stated in the following.

Theorem 2.2.2 Let M and M̃ be finite variation local square integrable
martingales, and let H and K be locally bounded predictable processes.
Then

∫
H dM and

∫
K dM̃ are local square integrable martingales, and

the quadratic and predictable covariation processes are[ ∫
H dM,

∫
K dM̃

]
=
∫

HK d[M, M̃ ],〈 ∫
H dM,

∫
K dM̃

〉
=
∫

HK d〈M, M̃〉.

The quadratic and predictable variation processes of, for example,
∫

H dM
are seen to be[ ∫

H dM
]

=
∫

H2 d[M ],
〈 ∫

H dM
〉

=
∫

H2 d〈M〉.
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The matrix versions of the above formulae for the quadratic and predictable
covariation processes read

[ ∫
H dM,

∫
K dM̃

]
=
∫

H d[M, M̃ ]KT , (2.7)〈 ∫
H dM,

∫
K dM̃

〉
=
∫

H d〈M, M̃〉KT , (2.8)

where M and M̃ are two vectors, and H and K are two matrices with
dimensions such that the expressions make sense. In this case [M, M̃ ] and
〈M, M̃〉 should be calculated componentwise.

2.3 Counting processes

Before giving the definition of a counting process we first describe one key
example where counting processes have shown their usefulness.

Example 2.3.1 (Right-censored survival data)

Let T ∗ and C be two nonnegative, independent random variables. The
random variable T ∗ denotes the time to the occurrence of some specific
event. It could be time to death of an individual, time to blindness for a
diabetic retinopathy patient or time to pregnancy for a couple. In many
such studies the exact time T ∗ may never be observed because it may be
censored at time C, that is, one only observes the minimum T = T ∗ ∧C of
T ∗ and C, and whether it is the event or the censoring that has occurred,
recorded by the indicator variable ∆ = I(T ∗ ≤ C). One simple type of
censoring that is often encountered is that a study is closed at some point
in time before all subjects have experienced the event of interest. In the
counting process formulation the observed data (T, ∆) are replaced with
the pair (N(t), Y (t)) of functions of time t, where N(t) = I(T ≤ t, ∆ = 1)
is the counting process jumping at time T ∗ if T ∗ ≤ C (Figure 2.2), and
Y (t) = I(t ≤ T ) is the so-called at risk indicator being one at time t if
neither the event nor the censoring has happened before time t. Assume that
T ∗ has density f and let S(t) = P (T ∗ > t) denote the survival function. A
key concept in survival analysis is the hazard function

α(t) =
f(t)
S(t)

= lim
h↓0

1
h

P (t ≤ T ∗ < t + h |T ∗ ≥ t), (2.9)

which may also be interpreted as the instantaneous failure rate. �

The formal definition of a counting process is as follows. A counting
process {N(t)} is stochastic process that is adapted to a filtration (Ft),
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FIGURE 2.2: The counting process N(t) = I(T ≤ t, ∆ = 1) with T ∗ = 5
and C > T ∗ (upper left panel) and corresponding at risk process (upper
right panel). The counting process N(t) = I(T ≤ t, ∆ = 1) with T ∗ > C
and C = 2 (lower left panel) and corresponding at risk process (lower right
panel).

cadlag, with N(0) = 0 and N(t) < ∞ a.s., and whose paths are piecewise
constant with jumps of size 1.

A counting process N is a local submartingale and therefore has com-
pensator, Λ, say. The process Λ is nondecreasing and predictable, zero at
time zero, and such that

M = N − Λ

is a local martingale with respect to Ft. In fact, M is a local square inte-
grable martingale (Exercise 2.5). It also holds that

EN(t) = EΛ(t),

and further, if EΛ(t) < ∞, that M is a martingale (Exercise 2.6).
We shall only deal with the so-called absolute continuous case, where the

above compensator has the special form

Λ(t) =
∫ t

0

λ(s) ds,

where the intensity process λ(t) is a predictable process. The counting
process N is then said to have intensity process λ.
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By (2.6) is seen that the quadratic variation process of M is

[M ] = N,

and, since it is locally integrable, the predictable variation process of M is

〈M〉 = Λ

by the uniqueness of the compensator.
A multivariate counting process

N = (N1, . . . Nk)

is a vector of counting processes such that no two components jump simul-
taneously. It follows that

〈Mj , Mj′〉 = [Mj, Mj′ ] = 0, j �= j′,

where the Mj ’s are the associated counting process martingales.

Example 2.3.2 (Continuation of Example 2.3.1)

Let the history be given by

Ft = σ{I(T ≤ s, ∆ = 0), I(T ≤ s, ∆ = 1) : s ≤ t}.

As noted above, the counting process N(t) has a compensator Λ(t). It turns
out that the compensator is

Λ(t) =
∫ t

0

Y (s)α(s) ds, (2.10)

and hence that N(t) has intensity process

λ(t) = Y (t)α(t).

This may be shown rigorously, see for example Fleming & Harrington
(1991). A heuristic proof of the martingale condition is as follows. Since
(2.10) is clearly Ft-adapted and left-continuous, it is predictable. By the
independence of T ∗ and C, dN(t) is a Bernoulli variable with conditional
probability Y (t)α(t) dt of being one given Ft−, see also Exercise 2.7. Thus,

E(dN(t) | Ft−) = Y (t)α(t) dt = dΛ(t) = E(dΛ(t) | Ft−),

which justify the martingale condition (2.2) for M = N − Λ. �

Let us see how the decomposition of a counting process into its compen-
sator and martingale parts may be used to construct estimators.



26 2. Probabilistic background

Example 2.3.3 (The Nelson-Aalen estimator)

Let (T ∗
i , Ci), i = 1, . . . , n, be n i.i.d. replicates from the model described in

Example 2.3.2. Put Ni(t) = I(Ti ≤ t, ∆i = 1) and Yi(t) = I(t ≤ Ti) with
Ti = T ∗

i ∧ Ci and ∆i = I(T ∗
i ≤ Ci). Let F i

t be defined similarly as Ft in
Example 2.3.1 and 2.3.2 and let Ft =

∨
i F i

t . Let further

N·(t) =
n∑

i=1

Ni(t), Y·(t) =
n∑

i=1

Yi(t).

The counting process N·(t) is seen to have compensator

Λ(t) =
∫ t

0

Y·(s)α(s) ds,

and, hence,
M·(t) = N·(t) − Λ(t)

is a local square integrable martingale with respect to Ft. In the last display,
M·(t) =

∑n
i=1 Mi(t) with Mi(t) = Ni(t) − Λi(t), i = 1, . . . , n.

Now, decomposing the counting process into its compensator and a mar-
tingale term gives

N·(t) =
∫ t

0

Y·(s)α(s) ds + M·(t)

and since dM·(t) is a zero-mean process, this motivates the estimating
equation

Y·(t)dA(t) = dN·(t),
where A(t) =

∫ t

0
α(s) ds. This leads to the Nelson-Aalen estimator

Â(t) =
∫ t

0

J(s)
Y·(s)dN·(s) (2.11)

of the integrated hazard function A(t), where J(t) = I(Y·(t) > 0), and
where we use the convention that 0/0 = 0. Notice that the Nelson-Aalen
estimator is nothing but a simple sum:

Â(t) =
∑
Ti≤t

∆i

Y·(Ti)
.

One may decompose Â(t) as

Â(t) =
∫ t

0

J(s)dA(s) +
∫ t

0

J(s)
Y·(s)dM·(s).
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By Theorem 2.2.2, it is seen that the second term on the right-hand side
of the above decomposition is a local square integrable martingale. Thus,
Â(t) is an unbiased estimator of∫ t

0

α(s)P (Y·(s) > 0) ds,

which already indicates that the Nelson-Aalen estimator will have sound
large-sample properties (under appropriate conditions). One consequence
of this is that E(Â(t)) ≤ A(t), and that the estimator will be close to
unbiased if there are subjects at risk at all times with high probability.

As we shall see later on, a lot more than (asymptotical) unbiasedness
can be said by use of the central limit theorem for martingales.

The Nelson-Aalen estimator may be formulated in the more general con-
text of multiplicative intensity models where, for a counting process N(t),
it is assumed that the intensity process λ(t) has a multiplicative structure

λ(t) = Y (t)α(t),

where α(t) is a nonnegative deterministic function (being locally integrable)
while Y (t) is a locally bounded predictable process. The extension thus
allows Y (t) to be something else than an at risk indicator and is useful to
deal with a number of different situations. The Nelson-Aalen estimator is
then

Â(t) =
∫ t

0

J(s)
Y (s)

dN(s),

where J(t) = I(Y (t) > 0). The estimator Â(t) was introduced for counting
process models by Aalen (1975, 1978b) and it generalizes the estimator
proposed by Nelson (1969, 1972). �

The concept of a filtration Ft may seem rather technical. It is important,
however, as it corresponds to what information we are given, which in
turn is used when specifying models. Sometimes we may be interested in
conditioning on more information than that carried by Ft. This additional
information may give rise to a new filtration, Gt say, such that Ft ⊆ Gt,
for all t. Assume that the counting process N(t) is adapted to both Ft and
Gt, and that N(t) has intensity λ(t) with respect to Gt. The intensity with
respect to the smaller filtration Ft is then

λ̃(t) = E(λ(t) | Ft−), (2.12)

which will generally be different from λ(t) as we condition on less informa-
tion. The above result is the so-called innovation theorem.

The following two examples of counting process models, illustrates how
the innovation theorem can be used to adjust models to the amount of
available information.
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Example 2.3.4 (Clustered survival data)

Consider the situation where we are interested in studying the time to the
occurrence of some event. Suppose in addition that there is some cluster
structure in the data. An example could be the time to onset of blindness in
patients with diabetic retinopathy, see Lin (1994). Patients were followed
over several years and the pair of waiting times to blindness in the left and
right eyes, respectively, were observed. In such a study one should expect
some correlation between the waiting times within clusters. One approach
to model such data is to use a random effects model, where the random
effect accounts for possible (positive) correlation within the clusters. For
ease of notation we describe the model in the situation where there is no
censoring. Let Tik denote the ith waiting time in the kth cluster, and put
Nik(t) = I(Tik ≤ t), Yik(t) = I(t ≤ Tik), i = 1, . . . , n, k = 1, . . . , K.
Assume that Tk = (Tik, . . . , Tnk), k = 1, . . . , K are i.i.d. random variables
such that Tik and Tjk (i �= j) are independent given the random effect Zk.
Let F ik

t be the internal history of Nik, Fk
t =

∨
i F ik

t and Ft =
∨

k Fk
t .

The Clayton-Oakes model (Clayton (1978); Oakes (1982)) is obtained by
assuming that Nik(t) has intensity

λik(t) = Yik(t)Zkα(t)

with respect to the enlarged filtration Gt, where

Gt =
∨
k

Gk
t ; Gk

t = Fk
t ∨ σ(Zk);

and by assuming that the Zk’s are i.i.d. gamma distributed with expectation
1 and variance η−1. The random effect Zk is also referred to as a frailty
variable, see Chapter 9. Besides carrying the information generated by the
counting processes, Gt also holds the information generated by the random
effects. The filtration Gt is not fully observed due to the unobserved random
effects. The observed filtration is Ft, and we now find the Ft-intensities
using the innovation theorem. One may show that

E(Zk | Ft−) =
η + N·k(t−)

η +
∫ t

0 Y·k(s)α(s) ds
,

where N·k(t) =
∑n

i=1 Nik(t) and Y·k(t) =
∑n

i=1 Yik(t), k = 1 . . . , K. The
Ft-intensity is hence

λ̃ik(t) = Yik(t)
(

η + N·k(t−)

η +
∫ t

0
Y·k(s)α(s) ds

)
α(t).

Estimation of A(t) =
∫ t

0
α(s) ds in this context may be carried out by

use of the EM-algorithm, which was originally suggested by Gill (1985)
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and further developed by Klein (1992) and Nielsen et al. (1992), see also
Andersen et al. (1993).

The above approach could be called conditional in the sense that the
intensity of Nik(t) is modeled conditional on Zk. An alternative approach
that avoids joint modeling of data is the so-called marginal approach where
the intensity of Nik(t) is only specified with respect to the marginal filtra-
tion F ik

t . It is assumed that Nik(t) has F ik
t -intensity

Yik(t)α(t), (2.13)

whereas it is not assumed that the Ft-intensity is governed by (2.13) be-
cause that would correspond to assuming independence between subjects
within each cluster, which obviously would be wrong with data like those
mentioned in the beginning of this example. Estimation of A(t) using the
marginal approach is done by the usual Nelson-Aalen estimator ignoring
the cluster structure of the data. Standard error estimates, however, should
be computed differently. We return to clustered survival data in Chapter
9.

�
Example 2.3.5 (The additive hazards model and filtrations)

Consider the survival of a subject with covariates X = (X1, ..., Xp, Xp+1)
and assume that the corresponding counting process of the subject, N(t),
has intensity on the additive hazards form

λp+1(t) = Y (t)

⎛⎝p+1∑
j=1

Xjαj(t)

⎞⎠
with respect to the history FN

t ∨σ(p+1), where FN
t is the internal history

of N and σ(i) = σ(X1, ..., Xi) for i = 1, ..., p + 1 the σ-fields generated
by different sets of the covariates, In the above display, Y (t) is an at risk
indicator and αj(t), j = 1, ..., p + 1, are locally integrable deterministic
unknown functions.

If only the p first covariates are known, or used, in the model the intensity
changes, by the innovation theorem, to

λp(t) = E(λp+1(t)|FN
t ∨ σ(p))

=
p∑

i=1

Y (t)Xjαj(t) + Y (t)αp+1(t)E(Xp+1|Y (t) = 1, X1, ..., Xp).

The last conditional mean of Xp+1 given that the subject is at risk (has
survived), and the observed covariates can be computed (under regularity
conditions) to be minus the derivative of log(f(t)), where

f(t) = E(exp(−
∫ t

0

αp+1(s)dsXp+1)|X1, ..., Xp)
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is the conditional Laplace transform of Xp+1 evaluated at
∫

αp+1. Under
certain assumptions, such as independence between the covariates, it is seen
that the additive structure of the intensity is preserved, see Exercise 5.1.
This example was given by Aalen (1989) �

2.4 Marked point processes

Later on we shall describe how nonparametric and semiparametric models
for regression data and longitudinal data may be analyzed fruitfully by the
use of martingale calculus. A key notion in this treatment is a generaliza-
tion of counting processes, or point processes, to marked point processes,
which will be introduced in the following. To a large extent we follow the
exposition of marked point processes given by Brémaud (1981), see also the
recent Last & Brandt (1995).

The idea is that instead of just recording the time points Tk at which
specific events occur (as for the counting processes) we also observe an ad-
ditional variable Zk (the response variable in the longitudinal data setting)
at each time point Tk. To make things precise we fix a measurable space
(E, E), called the mark space, and assume that

(i) (Zk, k ≥ 1) is a sequence of random variables in E,

(ii) the sequence (Tk, k ≥ 1) constitutes a counting process

N(t) =
∑

k

I(Tk ≤ t).

The double sequence (Tk, Zk) is called a marked point process with (Zk)
being the marks. To each A ∈ E is associated a counting process

Nt(A) =
∑

k

I(Tk ≤ t)I(Zk ∈ A),

that counts the number of jumps before time t with marks in A. The marked
point process is also identified with its associated counting measure defined
by

p((0, t] × A) = Nt(A), t > 0, A ∈ E .

A marked point process counting measure thus accumulates information
over time about the jump times and marks just as in the simpler counting
process situation where there are no marks. Just as for counting processes it
is also useful to consider integrals with respect to the marked point process.
A marked point process integral has the following simple interpretation:∫ t

0

∫
E

H(s, z)p(ds × dz) =
∑

k

H(Tk, Zk)I(Tk ≤ t).
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The internal history of the marked point process is defined by

Fp
t = σ(Ns(A) : 0 ≤ s ≤ t, A ∈ E),

and we let Ft be any history of p, that is, Fp
t ⊂ Ft. If, for each A ∈ E ,

Nt(A) has intensity λt(A) (predictable with respect to Ft), we then say
that p(dt× dz) admits the intensity kernel λt(dz). We let λt = λt(E) and
assume that λt is locally integrable. A probability measure on (E, E) is then
defined by

Ft(dz) =
λt(dz)

λt
.

The pair (λt, Ft(dz)) is called the local characteristics of p(dt× dz). If the
history Ft has the special form Ft = F0 ∨ Fp

t , we have the following

FTk
(A) = P (Zk ∈ A | FTk−) on {Tk < ∞},

where
FTk− = σ(Tj , Zj ; 1 ≤ k − 1; Tk)

is the history generated by the occurrence times and marks obtained before
time Tk, and by Tk itself. The important above characterization of the
second term of the local characteristics as the distribution of the current
mark given past history and the time of the current mark is proved in
Brémaud (1981).

Let Ft be a history of p(dt× dz) and let P̃(Ft) be the history generated
by the mappings

H(t, z) = C(t)1A(z),

where C is a Ft-predictable process and 1A(z) is the indicator of z being
in A, A ∈ E . Any mapping H : (0,∞) × Ω × E → R, which is P̃(Ft)-
measurable is called an Ft-predictable process indexed by E. Let p have
intensity kernel λt(dz) and let H be a Ft-predictable process indexed by
E. We shall now consider the measure

q(dt × dz) = p(dt × dz) − λt(dz)dt (2.14)

obtained by compensating the marked point process measure by its inten-
sity kernel. One may show, for all t ≥ 0, that

M(t) =
∫ t

0

∫
E

H(s, z)q(ds × dz) (2.15)

is a locally square integrable martingale (with respect to Ft) if and only if∫ t

0

∫
E

H2(s, z)λs(dz)ds < ∞ P − a.s.
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We now turn to the computation of the quadratic variation and predictable
variation process of M given by (2.15). Since (2.15) is of finite variation,
the optional variation process is

[M ](t) =
∑
s≤t

∆M(s)2 =
∫ t

0

∫
E

H2(s, z)p(ds × dz).

The predictable variation process 〈M〉 is the compensator of [M ], and by
the uniqueness of the compensator, we hence have

〈M〉(t) =
∫ t

0

∫
E

H2(s, z)λs(dz)ds.

Let p1(dt × dz) and p2(dt × dz) be two marked point processes with
intensity kernels λt(dz) and µt(dz), respectively. Let Hj , j = 1, 2, be Ft-
predictable processes indexed by E where Ft ⊃ Fp1

t ∨ Fp2
t , and assume

that∫ t

0

∫
E

H2
1 (s, z)λs(dz)ds < ∞,

∫ t

0

∫
E

H2
2 (s, z)µs(dz)ds < ∞ P − a.s.

Write Mj(t) =
∫ t

0

∫
E

Hj(s, z)qj(ds × dz), j = 1, 2. Assume that the two
induced counting process, N1(t) and N2(t), have no jumps in common.
Proceeding as above one may then derive that [M1, M2] = 0 and hence
〈M1, M2〉 = 0. Also,

[
∫ t

0

∫
E

H1q1(ds × dz),
∫ t

0

∫
E

H2q1(ds × dz)] =
∫ t

0

∫
E

H1H2p1(ds × dz),

and

〈
∫ t

0

∫
E

H1q1(ds × dz),
∫ t

0

∫
E

H2q1(ds × dz)〉 =
∫ t

0

∫
E

H1H2λs(dz)ds,

where the dependence of the integrands on s and z has been suppressed.
The following example illustrates how i.i.d. regression data may be put

into the marked point process framework. Note how the techniques in the
example closely parallel the similar development of the Nelson-Aalen esti-
mator in the counting process setup.

Example 2.4.1 (Regression data)

Consider a sample (Ti, Zi), i = 1, . . . , n, of n i.i.d. regression data with Zi

being the (one-dimensional) response and Ti the (one-dimensional) regres-
sor. Let

E(Zi |Ti = t) = φ(t)
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and assume that Ti has an absolute continuous distribution on [0,∞) with
hazard function α(t). For simplicity we further assume for the moment
that this distribution is known, that is, the hazard function is assumed to
be known. Assume also that

∫ t

0
α(s)φ(s) ds < ∞ for all t. Each (Ti, Zi)

constitutes a marked point process pi and with∫ t

0

∫
E

zpi(ds × dz) = ZiI(Ti ≤ t),

we have the decomposition∫ t

0

∫
E

zpi(ds × dz) =
∫ t

0

Yi(s)α(s)φ(s) ds +
∫ t

0

∫
E

zqi(ds × dz),

where the second term on the right-hand side of this display is a martingale
with respect to the internal filtration Fpi

t . Writing the above equation in
differential form and summing over all subjects gives

n∑
i=1

∫
E

zpi(dt × dz) = Y·(t)α(t) dΦ(t) +
n∑

i=1

∫
E

zqi(dt × dz), (2.16)

where Y·(t) =
∑n

i=1 Yi(t) and Φ(t) =
∫ t

0 φ(s) ds. Assume that inft α(t) > 0.
Since α is known, (2.16) suggests the following estimator of Φ(t):

Φ̂(t) =
n∑

i=1

∫ t

0

∫
E

z

Y·(s)α(s)
pi(ds × dz)

=
n∑

i=1

Zi

Y·(Ti)α(Ti)
I(Ti ≤ t). (2.17)

For this estimator we have

Φ̂(t) =
∫ t

0

J(s)dΦ(s) + M(t),

where J(t) = I(Y·(t) > 0) and

M(t) =
n∑

i=1

∫ t

0

∫
E

J(s)z
Y·(s)α(s)

qi(ds × dz),

which is seen to be a martingale with respect to the filtration spanned by
all the Fpi

t ’s. This implies that

E(Φ̂(t)) =
∫ t

0

P (Y·(t) > 0)dΦ(s)

just as in the Nelson-Aalen estimator case. The estimator will thus be close
to unbiased if there is a high probability that subjects are at risk at all
times. If φ(t) is positive, then E(Φ̂(t)) ≤ Φ(t). �
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2.5 Large-sample results

As mentioned earlier, one of the strengths of representing the data as either
a counting process or a marked point process is that we get martingales
into play and that a central limit theorem for martingales is available.
This theorem will be the main tool when we derive asymptotic results for
concrete estimators. The theorem is stated below.

We shall consider a sequence of R
k-valued local square integrable mar-

tingales (M (n)(t) : t ∈ T ) with either

T = [0,∞) or T = [0, τ ]

with τ < ∞. For ε > 0, we let M
(n)
ε be the R

k-valued local square integrable
martingale where M

(n)
εl contains all the jumps of M

(n)
l larger in absolute

value than ε, l = 1, . . . k, i.e.,

M
(n)
εl (t) =

∑
s≤t

∆M
(n)
l (s)I(|∆M

(n)
l (s)| > ε), l = 1, . . . , k.

Note, that for counting process martingales of the form

M̃(t) =
∫ t

0

H(s)dM(s)

with M(t) = N(t) − Λ(t) then

M̃εj(t) =
∑

l

∫ t

0

Hjl(s)I(|Hjl(s)| > ε)dMl(s).

A Gaussian martingale is an R
k-valued martingale U such that U(0) = 0

and the distribution of any finite family (U(t1), . . . , U(tj)) is Gaussian.
Write V (t) for the variance-covariance matrix of U(t). It follows that

(i) 〈U〉(t) = V (t) for t ≥ 0;

(ii) V (t) − V (s) is positive semidefinite for s ≤ t;

(iii) U(t) − U(s) is independent of (U(r); r ≤ s) for s ≤ t.

A stochastic process U with the only requirement that is has continuous
sample paths and normal distributed finite dimensional distributions is said
to be a Gaussian process.

We may then state one form of the martingale central limit theorem.

Theorem 2.5.1 (CLT for martingales). Let (M (n)(t) : t ∈ T ) be a se-
quence of R

k-valued local square integrable martingales. Assume that

〈M (n)〉(t) P→ V (t) for all t ∈ T as n → ∞, (2.18)

〈M (n)
εl 〉(t) P→ 0 for all t ∈ T , l and ε > 0 as n → ∞. (2.19)
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Then
M (n) D→ U in (D(T ))k as n → ∞, (2.20)

where U is a Gaussian martingale with covariance function V . Moreover,
〈M (n)〉 and [M (n)] converge uniformly on compact subsets of T , in proba-
bility, to V .

The theorem is due to Rebolledo (1980). The result (2.20) says that we
have weak convergence of the process M (n) to U on the space (D(T ))k

that consists of cadlag functions on T into R
k and is endowed with the

Skorokhod topology, see e.g. Fleming & Harrington (1991) for definitions.
The condition (2.19) states that the jumps of M (n) should become neg-

ligible as n → ∞ (see (2.25)), which makes sense if M (n) shall converge
towards a process with continuous sample paths. Condition (2.18) says that
the (predictable) variation process of M (n) becomes deterministic and ap-
proaches the variance function of the limit process as n → ∞, which also
makes sense in light of (2.5).

To illustrate the use of the martingale central limit theorem, we consider
the Nelson-Aalen estimator (Example 2.3.3), and the i.i.d. regression set-up
(Example 2.4.1).

Example 2.5.1 (The Nelson-Aalen estimator)

Consider the situation with n possibly right-censored survival times as de-
scribed in Example 2.3.3. It was seen there that the Nelson-Aalen estimator
of the cumulative hazard function A(t) =

∫ t

0
α(s) ds takes the form

Â(t) =
∫ t

0

J(s)
Y·(s)dN·(s),

where J(t) = I(Y·(t) > 0),

N·(t) =
n∑

i=1

Ni(t), Y·(t) =
n∑

i=1

Yi(t),

with Ni(t) = I(Ti ≤ t, ∆i = 1) and Yi(t) = I(t ≤ Ti), i = 1, . . . , n, the
basic counting processes and the at risk indicators, respectively. With

A∗(t) =
∫ t

0

J(s)dA(s),

it was also seen that

Â(t) − A∗(t) =
∫ t

0

J(s)
Y·(s)dM·(s)
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is a local square integrable martingale. Recall that M·(t) =
∑n

i=1 Mi(t)
with Mi(t) = Ni(t) −

∫ t

0
Yi(s)α(s) ds. By writing

n1/2(Â(t) − A(t)) = n1/2
(
(A∗(t) − A(t)) + (Â(t) − A∗(t))

)
= n1/2

∫ t

0

(J(s) − 1)α(s) ds + n1/2

∫ t

0

J(s)
Y·(s)dM·(s),

(2.21)

we see that under regularity conditions the asymptotic distribution of the
Nelson-Aalen estimator on [0, t], t ∈ T is a Gaussian martingale if it can be
shown that the second term in (2.21) converges to a Gaussian martingale
and that the first term in (2.21) converges to zero uniformly in probability.

We assume that
∫ t

0 α(s) ds < ∞ for all t ∈ T , and that there exists a
function y(s) such that

sup
s∈[0,t]

|n−1Y·(s) − y(s)| P→ 0; inf
s∈[0,t]

y(s) > 0. (2.22)

It may now be shown that (Exercise 2.8)

sup
s∈[0,t]

|n1/2

∫ s

0

(J(u) − 1)α(u) du| P→ 0,

and we may hence concentrate on the martingale term

M(s) = n1/2(Â(s) − A∗(s).

We see that, for s ≤ t,

〈M〉(s) =
∫ s

0

J(u)
n−1Y·(u)

α(u) du
P→
∫ s

0

α(u)
y(u)

du

and

〈Mε〉(s) =
∫ s

0

J(u)
n−1Y·(u)

α(u)I
(

n1/2 J(u)
Y·(u)

> ε

)
du

P→ 0

(Exercise 2.8). Thus,

n1/2(Â(s) − A(s)) D→ U(s)

in D[0, t], t ∈ T , where U is a Gaussian martingale with variance function

V (s) =
∫ s

0

α(u)
y(u)

du.

Moreover, a uniformly consistent estimator of the variance function is given
by the quadratic variation process

[M ](s) = n

∫ s

0

J(u)
(Y·(u))2

dN·(u).
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In the case of simple random censorship, that is, the Ci’s are i.i.d. with
distribution function FC , say, (2.22) is fulfilled provided that FC(t−) < 1,
which says that the censoring must not be too heavy. In this case, y(s) =
(1−FT∗(s))(1−FC(s)), where FT∗ denotes the distribution function of the
survival times. �

Example 2.5.2 (Regression data)

Consider the i.i.d. regression setup of Example 2.4.1 where we observe i.i.d.
regression data where

Zi = φ(Ti) + ei

and the residual terms e1, . . . , en are independent with zero mean such that
E(Zi|Ti = t) = φ(t). As noted there an estimator of Φ(t) =

∫ t

0 φ(s)ds was
given by

Φ̂(t) =
n∑

i=1

∫ t

0

∫
E

z

Y·(s)α(s)
pi(ds × dz),

which may be rewritten as

Φ̂(t) =
∫ t

0

J(s)dΦ(s) + M(t),

where J(t) = I(Y·(t) > 0) and

M(t) =
n∑

i=1

∫ t

0

∫
E

J(s)z
Y·(s)α(s)

qi(ds × dz),

the latter being a martingale with respect to the filtration spanned by all
the Fpi

t ’s. By imposing appropriate conditions we may show that

n1/2(Φ̂(t) − Φ(t)) = n1/2M(t) + op(1),

uniformly in t, and the asymptotic distribution of Φ̂(t) may hence be de-
rived by use of the martingale central limit theorem. We have, for all s ≤ t,

〈n1/2M〉(s) =
∫ s

0

J(u)ψ(u)
n−1Y·(u)α(u)

du
P→
∫ s

0

ψ(u)
y(u)α(u)

du,

where
ψ(s) = E(Z2

i |Ti = s)

and y(s) is the limit in probability of n−1Y·(t) assuming that inft∈T y(t) >
0. Assume also that ψ(t) < ∞ for all t. The martingale containing the
jumps of absolute size larger than ε is

(n1/2M)ε(s) = n1/2
n∑

i=1

∫ s

0

∫
E

J(u)|z|
Y·(u)α(u)

I

(
n1/2 J(u)|z|

Y·(u)α(u)
> ε

)
qi(du×dz)
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and hence

〈Mε〉(s) =
∫ s

0

J(u)
n−1Y·(u)α(u)

E(Z2I

(
n1/2 J(u)|Z|

Y·(u)α(u)
> ε

)
|T = u) du

P→ 0,

Exercise 2.11. Thus,

n1/2(Φ̂(s) − Φ(s)) D→ U(s)

in D[0, t], t > 0, where U is a Gaussian martingale with variance function

V (s) =
∫ s

0

ψ(u)
y(u)α(u)

du.

A uniformly consistent estimator of the variance function is given by the
quadratic variation process

[n1/2M ](s) = n

n∑
i=1

∫ s

0

∫
E

J(u)z2

(Y·(u)α(u))2
pi(du × dz)

= n

n∑
i=1

J(Ti)Z2
i

(Y·(Ti)α(Ti))2
I(Ti ≤ s).

�

Once we have established convergence of our estimator as in the previ-
ous two examples, we can use their large-sample properties for hypothesis
testing and construction of confidence bands and intervals. Consider, for
example, the estimator Φ̂(t) in the previous example that converged to-
wards a Gaussian martingale U(t). Suppose that the limit process U(t) is
R-valued and has variance process V (t). Then a (1−α) pointwise confidence
interval for Φ(t) =

∫ t

0
φ(s)ds, for fixed t, is[

Φ̂(t) − cα/2Σ̂(t)1/2, Φ̂(t) + cα/2Σ̂(t)1/2
]

where nΣ̂(t) is an (uniformly consistent) estimator of V (t), like the one
based on the quadratic variation process, and cα/2 is the (1−α/2)-quantile
of the standard normal distribution. Since we often will be interested in the
behavior of φ(t), or, Φ(t), as function of t, inferences based on confidence
bands may be more informative than pointwise confidence limits. One type
of such confidence bands are the so-called Hall-Wellner bands (Hall & Well-
ner, 1980). These bands are uniform for some interval of interest that we
here denote as [0, τ ]. Since

U(t)V (τ)1/2[V (τ) + V (t)]−1

is distributed as

B0

(
V (t)

V (τ) + V (t)

)
,
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where B0 is the standard Brownian bridge (see Exercise 2.2), it follows that
approximate 100(1− α)% confidence bands for Φ(t) are given by[

Φ̂(t) − dαΣ̂(τ)1/2

(
1 +

Σ̂(t)
Σ̂(τ)

)
, Φ̂(t) + dαΣ̂(τ)1/2

(
1 +

Σ̂(t)
Σ̂(τ)

)]
,

where dα is the (1 − α)-quantile in the distribution of

sup
t∈[0,1/2]

|B0(t)|,

see also Exercise 2.3. Tables of dα may be found in Schumacher (1984);
here we list some of the most used ones: d0.01 = 1.55, d0.05 = 1.27 and
d0.1 = 1.13. Likewise, the hypothesis

H0 : φ(t) = φ0(t) for all t

may be tested by use of a Kolmogorov-Smirnov test that rejects at level α
if

sup
t≤τ

|(Φ̂(t) − Φ0(t))Σ̂(τ)1/2[Σ̂(τ) + Σ̂(t)]−1| ≥ dα, (2.23)

where Φ0(t) =
∫ t

0 φ0(u) du. The Cramér-von Mises test rejects at level α if

∫ τ

0

(
(Φ̂(t) − Φ0(t))/Σ̂1/2(τ)

1 + Γ̂(t)

)2

d

(
Γ̂(t)

1 + Γ̂(t)

)
≥ eα (2.24)

where eα is the (1-α)-quantile in the distribution of
∫ 1/2

0
B0(u)2 du and

Γ̂(t) = Σ̂(t)/Σ̂(τ). For reference: e0.01 = 0.42, e0.05 = 0.25 and e0.1 = 0.19;
a detailed table of eα may be found in Schumacher (1984).

Example 2.5.3

We here present a small simulation study to illustrate the use of confidence
bands and the performance of the Kolmogorov-Smirnov and Cramér-von
Mises tests. We generated data from the model described in Example 2.4.1
with T being exponential with mean one. The response variable is normal
distributed with mean φ(t) and standard deviation 1/3. The true regression
function is φ(t) = 1/(1 + t) resulting in the cumulative regression function
Φ(t) = log (1 + t). The sample size was first set to n = 100 and we then
generated 500 datasets. Figure 2.3 (a) shows the true Φ(t) (thick full line),
a randomly chosen estimate (thin dotted line) and the average of the 500
estimators (thick dotted line), which is almost indistinguishable from the
true Φ(t). A slight bias is seen towards the end of the shown interval,
which has upper limit equal to 4.6 corresponding to the 99%-quantile of the
exponential distribution with mean one. According to the derived formulae
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FIGURE 2.3: (a) True cumulative regression function Φ(t) (thick full line);
average of 500 estimates of the cumulative regression function (thick dotted
line); a typical estimator of the cumulative regression function (thin dotted
line). (b) True cumulative regression function (thick full line) together with
95% pointwise confidence limits (thick dotted lines) and 95% Hall-Wellner
confidence bands (thick full lines); and 40 randomly chosen estimates of
the cumulative regression function (thin dotted lines).

this bias is due to the probability of being at risk towards the end of the
interval deviating slightly from 1. We notice that the estimator Φ̂(t), which
is given by (2.17), is a step function (like the Nelson-Aalen estimator) with
jumps at the observed values of t. Figure 2.3 (b) shows the true Φ(t) (thick
full line), 40 randomly chosen estimates (thin dotted lines), 95% pointwise
confidence limits (thick dotted lines) and 95% Hall-Wellner bands (thick
full lines) with τ = 3, which corresponds to 95% quantile of the considered
exponential distribution. We see that the estimators are contained within
the confidence bands with the exception of one or two estimators.

We also look at the performance of the Kolmogorov-Smirnov test and
the Cramér-von Mises test under the null. We generated data as described
above with sample size n = 100, 400 and computed the rejection probabil-
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ities for the two tests at level α = 1%, 5%, 10%. These are shown in Table
2.1, where each entry is based on 10000 repetitions.

n Test statistic α = 1% α = 5% α = 10%

100 KS 0.9 3.3 6.8

CM 1.0 5.1 10.2

400 KS 0.8 3.9 8.1

CM 0.9 4.9 10.6

TABLE 2.1: Rejection probabilities for the Kolmogorov-Smirnov test (KS)
and the Cramér-von Mises test (CM) computed at levels α = 1%, 5%, 10%

It is seen from Table 2.1 that the Cramér-von Mises test has the correct level
already at sample size n = 100. The Kolmogorov-Smirnov test is somewhat
conservative for n = 100 but approaches the correct level for n = 400. �

A useful result is the so-called Lenglart’s inequality, see Andersen et al.
(1993), which, in the special case of a local square integrable martingale
M , says that

P (sup
[0,τ ]

|M | > η) ≤ δ

η2
+ P (〈M〉(τ) > δ) (2.25)

for any η > 0 and δ > 0. Hence sup[0,τ ] |M | P→ 0 if 〈M〉(τ) P→ 0. A typical
application of (2.25) is the following. Suppose that Hn is a sequence locally
bounded predictable stochastic processes such that

sup
[0,τ ]

|Hn| P→ 0,

and that Mn is a sequence of local square integrable martingales such that
〈Mn〉(t) = Op(1). We then have

sup
[0,τ ]

|
∫ t

0

HndMn| P→ 0, (2.26)

since
〈
∫

HndMn〉(τ) P→ 0.

In some applications, however, we may not have that the Hn’s are pre-
dictable. A useful result, due to Spiekerman & Lin (1998), says that (2.26)
is still true provided that ∫ τ

0

|dHn(t)| = Op(1),
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that is, Hn is of bounded variation. The result can be further relaxed by
noticing that the proof of Spiekerman & Lin (1998) remains valid if Mn

is some process that converges in distribution to some zero-mean process
with continuous limits M . This extended version does not require any mar-
tingales, and is used in a couple of places in the proofs and is referred to
as the Lemma by Spiekerman & Lin (1998); see also Lin et al. (2000) and
Lin & Ying (2001).

Often we wish to conclude that∫ t

0

X(n)(s) ds
p→
∫ t

0

f(s) ds as n → ∞, (2.27)

where we know that X(n)(t) p→f(t) for almost all t ∈ [0, τ ] and
∫ τ

0
|f(t)| dt <

∞. A result by Gill (1983) says that (2.27) holds uniformly in t if, for all
δ > 0, there exists a kδ with

∫ τ

0
kδ(t) dt < ∞ such that

lim
n→∞

inf P (|X(n)(s)| ≤ kδ(s) for all s) ≥ 1 − δ. (2.28)

We refer to (2.28) as Gill’s condition.
A related dominated convergence theorem says that with 0 ≤ Xn(s) ≤

Yn(s) for s ∈ [0, τ ] and with ν a measure such that

Yn(s) p→Y (s), Xn(s) p→Y (s)

for ν almost all s and∫
Yn(s)dν

p→
∫

Y (s)dν < ∞ (a.e)

then ∫
Xn(s)dν

p→
∫

X(s)dν.

The delta-method and its equivalent functional version are very useful for
deriving the asymptotic distribution in the case where a function (func-
tional) is applied to a random-vector (process) that converges in distribu-
tion.

The simple version states that if the p-dimensional random vector’s Xn,
X and fixed µ satisfy that

n1/2(Xn − µ) D→ X,

then if f is differentiable (f : R
p → R

q) at µ with derivative ḟ(µ) (a p × q
matrix function), it follows that

n1/2(f(Xn) − f(µ)) D→ ḟ(µ)X.

This can be extended to functional spaces by the concept of Hadamard
differentiability (Andersen et al., 1993). Consider the functional spaces B =
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D[0, τ ]p and B′ = D[0, τ ]q and let f : B → B′ with derivative ḟ(µ) at µ (a
continuous linear map, ḟ(µ) : B → B′) such that

an(f(µ + a−1
n hn) − f(µ)) → ḟ(µ) · h

for all real sequences an → ∞ and all convergent sequences hn → h in
B. The mapping f is then said to be Hadamard differentiable at µ. If Xn

and X are processes in B, µ is a fixed point in B and f is Hadamard
differentiable at µ, it then follows that

n1/2(f(Xn) − f(µ)) D→ ḟ(µ) · X.

The functional delta theorem can obviously be defined for all Banach spaces
and one typical application is one where the p-dimensional process Bn and
the q-dimensional vector θn jointly converge such that

n1/2(Bn − b, θn − µ) D→ (X1, X2)

and then
n1/2(f(Bn, θn) − f(b, µ)) D→ḟ(b, µ) · (X1, X2)

for differentiable f .
We close this section by briefly mentioning the conditional multiplier cen-

tral limit theorem. Suppose that X1, · · · , Xn are i.i.d. real-valued random
variables and G1, · · · , Gn are independent standard normals independent
of X1, · · · , Xn. Then if

n−1/2
n∑

i=1

Xi
D→ U

it follows from the conditional multiplier central limit theorem that also

n−1/2
n∑

i=1

GiXi
D→ U,

under suitably conditions (van der Vaart & Wellner, 1996) given almost
every sequence of X1, · · · , Xn.

One practical use of this is that when Xi are the residuals from some
regression model then it will often also be true that

n−1/2
n∑

i=1

GiX̂i
D→ U,

where X̂i are estimated based on the data, and this result can also be ex-
panded to functional cases where for example Xi is a residual process on
D[0, τ ]. We will use this approach to approximate the asymptotic distribu-
tion for many estimators as suggested in the counting process situation by
Lin et al. (1993).
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2.6 Exercises

2.1 (Poisson process) A Poisson process N(t) with intensity λ(t) is a
counting process with

Ĺ independent increments and such that

Ĺ N(t)−N(s) follows a Poisson distribution with parameter
∫ t

s λ(u) du
for all 0 ≤ s ≤ t.

(a) Find the compensator Λ of N and put M = N − Λ. Show by a
direct calculation that E(M(t) | Fs) = M(s), where Ft is the internal
history N . Is M a local square integrable martingale?

(b) Find the compensator of M2.

2.2 (Brownian motion and Brownian bridge) The Brownian motion or
the Wiener process is the Gaussian process B such that EB(t) = 0 and
Cov(B(s), B(t)) = s ∧ t for s, t ≥ 0.

(a) Show that B has independent increments. Show that B is a martin-
gale and find the compensator of B2.

The Brownian bridge (tied down Wiener process) B0(t) with t ∈ [0, 1] is the
Gaussian process such that EB0(t) = 0 and Cov(B0(s), B0(t)) = s(1 − t)
for 0 ≤ s ≤ t ≤ 1.

(b) Show that the processes B0(t) and B(t) − tB(1) have the same dis-
tribution on [0, 1].

(c) Show that the processes B(t) and (1 + t)B0(t/(1 + t)) have the same
distribution on [0,∞).

2.3 (Hall-Wellner bands) Consider the time interval [0, τ ]. Let U(t) be a
Gaussian martingale with covariance process V (t), t ∈ [0, τ ]. Show that

U(t)V (τ)1/2[V (τ) + V (t)]−1

has the same distribution as

B0

(
V (t)

V (τ) + V (t)

)
,

where B0 is the standard Brownian bridge.
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2.4 Let M1 and M2 be the martingales associated with the components
of the multivariate counting process N = (N1, N2) with continuous com-
pensators. Show that

〈M1, M2〉 = [M1, M2] = 0.

2.5 Let M = N − Λ be the counting process local martingale. It may be
shown that Λ is locally bounded Meyer (1976), Theorem IV.12.

(a) Show that N is a local submartingale with localizing sequence

Tn = n ∧ sup{t : N(t) < n}.

(b) Show that M is a local square integrable martingale using the below
cited optional stopping theorem.

Theorem. Let M be a Ft-martingale and let T be an Ft-stopping
time. Then (M(t ∧ T ) : t ≥ 0) is a martingale.

2.6 Let M = N − Λ be the counting process local martingale.

(a) Show that EN(t) = EΛ(t) (hint: use the monotone convergence the-
orem).

(b) If EΛ(t) < ∞, then show that M is a martingale by verifying the
martingale conditions.

(c) If supt EΛ(t) < ∞, then show that M is a square integrable martin-
gale.

2.7 Let N(t) = (N1(t), . . . , Nk(t)), t ∈ [0, τ ], be a multivariate counting
process with respect to Ft. It holds that the intensity

λ(t) = (λ1(t), . . . , λk(t))

of N(t) is given (heuristically) as

λh(t) = P (dNh(t) = 1 | Ft−), (2.29)

where dNh(t) = Nh((t+dt)−)−Nh(t−) is the change in Nh over the small
time interval [t, t + dt).

(a) Let T ∗ be a lifetime with hazard α(t) and define N(t) = I(T ∗ ≤ t).
Use the above (2.29) to show that the intensity of N(t) with respect
to the history σ{N(s) : s ≤ t} is

λ(t) = I(t ≤ T ∗)α(t).
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(b) Let T ∗ be a lifetime with hazard α(t) that may be right-censored at
time C. We assume that T ∗ and C are independent. Let T = T ∗∧C,
∆ = I(T ∗ ≤ C) and N(t) = I(T ≤ t, ∆ = 1). Use the above (2.29) to
show that the intensity of N(t) with respect to the history

σ{I(T ≤ s, ∆ = 0), I(T ≤ s, ∆ = 1) : s ≤ t}

is
λ(t) = I(t ≤ T )α(t).

2.8 Let M(s) and Mε(s) denote the martingales introduced in Example
2.5.1.

(a) Verify the expressions for 〈M〉(s), [M ](s) and 〈Mε〉(s) given in that
example and show that they converge in probability as n → ∞ veri-
fying Gill’s condition (2.28).

(b) From the same example, show that:

sup
s∈[0,t]

|n1/2

∫ s

0

(J(u) − 1)α(u) du| P→ 0.

2.9 (Asymptotic results for the Nelson-Aalen estimator) Let N (n)(t) be
a counting process satisfying the multiplicative intensity structure λ(t) =
Y (n)(t)α(t) with α(t) being locally integrable. The Nelson-Aalen estimator
of
∫ t

0 α(s) ds is

Â(n)(t) =
∫

1
Y (n)(s)

dN (n)(s).

Define A∗(t) =
∫ t

0 J (n)(s)α(s) ds where J (n)(t) = I(Y (n)(t) > 0).

(a) Show that A(n)(t) − A∗(t) is a local square integrable martingale.

(b) Show that, as n → ∞

sup
s≤t

|Â(n)(t) − A(t)| P→ 0

provided that∫ t

0

J (n)(s)
Y (n)(s)

α(s) ds
P→ 0 and

∫ t

0

(1 − J (n)(s))α(s) ds
P→ 0,

as n → ∞.
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(c) Show that the two conditions given in (b) are satisfied provided that

inf
s≤t

Y (n)(t) P→ ∞, as n → ∞.

Define σ2(s) =
∫ s

0
α(u)
y(u) du, where y is a non-negative function so that α/y

is integrable over [0, t].

(d) Let n → ∞. If, for all ε > 0,

n

∫ s

0

J (n)(u)
Y (n)(u)

α(u)I(
∣∣∣∣n1/2 J (n)(u)

Y (n)(u)

∣∣∣∣ > ε) du
P→ 0,

n1/2

∫ s

0

(1−J (n)(u))α(u) du
P→ 0 and n

∫ s

0

J (n)(u)
Y (n)(u)

α(u) du
P→ σ2(s)

for all s ≤ t, then show that

n1/2(Â(n) − A) D→ U

on D[0, t], where U is a Gaussian martingale with variance function
σ2.

2.10 (Right-censoring by the same stochastic variable) Let T ∗
1 , . . . , T ∗

n be
n i.i.d. positive stochastic variables with hazard function α(t). The observed
data consist of (Ti, ∆i)i=1,...n, where Ti = T ∗

i ∧ U , ∆i = I(Ti = T ∗
i ). Here,

U is a positive stochastic variable with hazard function µ(t), and assumed
independent of the T ∗

i ’s. Define

N·(t) =
n∑

i=1

Ni(t), Y·(t) =
n∑

i=1

Yi(t)

with Ni(t) = I(Ti ≤ t, ∆i = 1) and Yi(t) = I(t ≤ Ti), i = 1, . . . , n.

(a) Show that Â(t) − A∗(t) is a martingale, where

Â(t) =
∫ t

0

1
Y·(s)dN·(s), A∗(t) =

∫ t

0

J(s)α(s) ds.

(b) Show that
sup
s≤t

|Â(s) − A∗(s)| P→ 0

if P (Ti ≤ t) > 0.

(c) Is it also true that Â(t) − A(t) P→ 0?
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2.11 Consider again Example 2.5.2.

(a) Verify the expressions for (n1/2M)ε(s) and 〈Mε〉(s).

(b) Show that 〈Mε〉(s) P→ 0 using Gill’s condition and that

lim
n→∞

∫
An

XdP = 0,

where X is a random variable with E|X | < ∞, An is measurable and
An ↘ ∅.

2.12 (Simulations from Example 2.5.3) Consider the simulations in Ex-
ample 2.5.3. Work out the asymptotic bias for the simulations as a function
of time and compare with Figure 2.3.

2.13 (Counting process with discrete compensator) Let N be a counting
process with compensator Λ that may have jumps. Put M = N − Λ.

(a) Show by a direct calculation that

[M ](t) = N(t) − 2
∫ t

0

∆Λ(s)dN(s) +
∫ t

0

∆Λ(s)dΛ(s),

where ∆Λ(t) denotes the jumps of Λ(t).

(b) Show that

〈M〉(t) = Λ(t) −
∫ t

0

∆Λ(s)dΛ(s).



3
Estimation for filtered counting
process data

One particularly important aspect of counting process data is that the
processes will often be observed subject to certain restrictions. For both
recurrent events data and failure time data, these restrictions are most often
that the failure times are observed subject to right-censoring and/or left
truncation. These concepts will be explained in detail in this chapter, and
we also briefly mention other types of observation schemes that generally
lead to more complicated analysis. Right-censoring and left-truncation in
the form that we consider here do not constitute much difficulty in terms
of the analysis when the object of interest is the intensity. The key to this
is that, when the right-censoring and left-truncation are unrelated to the
counting process of interest, the intensity is unaffected for subjects at risk.

We start our discussion by introducing various observation schemes in-
cluding right-censoring and left-truncation and give conditions under which
these do not constitute any problems. Following this we take a look at the
likelihood function for counting process data to see how maximum likeli-
hood estimation may be carried out. Finally, we discuss how estimating
equations may be established for counting process data.

3.1 Filtered counting process data

For failure time data one of the most common types of incompleteness is
right-censoring, meaning that for some of the failure times we only know
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that they exceed some upper limit, referred to as the censoring time, which
may be different for the individual censored failure times.

Example 3.1.1 (Melanoma data)

For the melanoma data the interest lies in studying the effect of various
prognostic risk factors on time to death of malignant melanoma after re-
moval of tumor. The study was closed at the end of 1977 and the number
of deaths caused by malignant melanoma in the considered period was 57.
The rest of the 205 patients study did not experience the event of interest
in the study period but were right-censored mostly because they were still
alive at the end of 1977. Data from two patients are shown below.

days status sex age year thick ulc
204 1 1 28 1971 4.84 1
35 2 1 41 1977 1.34 0

The first of these two patients, a 28 year old man, was enrolled in 1971
and died (status=1) from the disease 204 days after removal of tumor.
The second, a 41 year old man, was enrolled in 1977 and was still alive
(status=2) when the study closed 35 days after his operation. Actually,
a few patients were censored because they died of something not related
to the disease of interest. Formally speaking, the correct framework for
considering this type of data is the competing risks model; see Chapter 10.

�

The ultimate goal of an analysis of right-censored counting process data,
and as a special case survival data, is to estimate the parameters that de-
scribe the intensity and perhaps also to examine various hypotheses. It is
not clear at first how to incorporate the censored observations into the
statistical analysis. Obviously basing the statistical analysis on only the
complete data can give biased results, so the censored observations need to
be taken into account. It turns out that handling of censoring and other
types of incomplete failure time data is easy when basing the analysis on
models for the intensity, at least if the censoring, and more generally fil-
tering, is so-called independent. Below we introduce the concept of filtered
counting processes and give the definition of independent filtering, that is
the class of filters that do not change the intensities for subjects at risk at
any point in time. This includes as a special case the definition of indepen-
dent right-censoring, a concept for which there exist various definitions in
the literature. Our treatment restricts attention to the case of independent
counting processes, although all the concepts can be defined more generally.

Consider a multivariate counting process N∗(t) = (N∗
1 (t), . . . , N∗

n(t))
adapted to the filtration (F∗

t ) and defined on a probability space (Ω,F , P ).
We assume that the counting processes N∗

i (t) are independent such that
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the information accumulated over time

F∗
t = ∨n

i=1F i∗
t

is made up of independent pieces of information F i∗
t for the subjects.

The basic model is that N∗
i has F i∗

t -compensator Λ∗
i , where

Λ∗
i (t, θ) =

∫ t

0

λ∗
i (s, θ) ds (3.1)

with θ being some parameter of interest. Note that the filtration (F i∗
t ) may

carry information about covariates, which may be reflected in the compen-
sator (3.1). As argued above, N∗ will typically not be fully observable, but
only an incomplete version will be available. The observable part of N∗

i (t)
may often be expressed as

Ni(t) =
∫ t

0

Ci(s) dN∗
i (s),

where Ci(t) denotes the ith so-called filtering process

Ci(t) = I(t ∈ Ai).

We require, for simplicity, that the filtering processes are independent
across subjects. The principal example of filtering is right-censoring, where
Ai = [0, Ui] with Ui some random censoring time, that is,

Ci(t) = I(t ≤ Ui). (3.2)

In this case, N∗
i (t) is observed only up to the censoring time Ui, and is

unknown thereafter.
The filtration F∗

t contains the information on which we want to build
our model. Unfortunately we cannot observe F∗

t fully due to various kinds
of incompleteness as, for example, right-censoring. What we do observe is
recorded by the observed filtration denoted by Ft. The objective is now
to find the observed intensity, that is, the intensity λi(t) of Ni(t) with
respect to the observed filtration Ft, and making requirements such that
the parameters of the intensity of interest can still be estimated consistently.
We define independent filtering as the situation where the intensity of the
filtered counting process is equivalent to the intensity of the underlying
counting process that is not fully observed, or phrased more explicitly, that
λ∗(t) = λ(t) when C(t) = 1. Our definition is very general and encompasses
the cases of primary interest, namely right-censoring and left-truncation as
well as repeated combinations of these.

Definition 3.1.1 (Independent filtering) Let N∗ be a multivariate
counting process with compensator Λ∗ with respect to a filtration F∗

t , and
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let C be a filtering process. The filtering of N∗ leading to the observed
N =

∫
CdN∗ generated by C is said to be independent if the compensator

of N with respect to the observed filtration Ft is
∫ t

0 C(s)λ∗(s)ds. �

The above definition implicitly assumes that C(t)λ∗(t) is predictable with
respect to the observed filtration. Note that the expression “the observed
compensator”refers to the probability measure with respect to which things
are considered (observed); we denote this measure by PO. The condition of
independent filtering, for the individual processes, can also be written as

Ci(t)P (dN∗
i (t) = 1 | F∗

t−) = PO(dNi(t) = 1 | Ft−). (3.3)

The condition states that the probability of a jump for the unobserved
counting processes given full information and the observed counting pro-
cesses are equivalent and thus are unaltered by the filtering, that is, those
subjects at risk and under observation are representative for the entire
sample had there been no filtering.

Example 3.1.2 (Left-truncation)

In the case of left-truncated survival data we observe the lifetime T ∗ (as-
suming no censoring) and the truncation variable V only if T ∗ > V , and
then have PO(·) = P (· |T ∗ > V ). Assume that T ∗ has hazard α(t) and let
N∗(t) = I(T ∗ ≤ t) and C(t) = I(V < t). The observed counting process is
thus

N(t) =
∫ t

0

C(s)dN∗(s) = I(V < T ∗ ≤ t).

Define
Ft = σ(V, N(s) : V ≤ s ≤ V + t),

which corresponds to the observed filtration given that T ∗ > V . It may be
shown, assuming for example that T ∗ and V are independent, that N(t)
has compensator Λ(t) =

∫ t

0
C(s)I(s ≤ T ∗)α(s) ds with respect to Ft and

computed under PO, the filtering thus being independent. See Exercise 3.5
for further results. �

Independent right-censoring is defined as independent filtering, where the
filtering processes are of the form

Ci(t) = I(t ≤ Ui)

with Ui, i = 1, ..., n, positive random variables.
To check in specific situations whether a given type of filtering is in-

dependent, one needs to compute the intensity of N with respect to the
observed filtration Ft. A useful tool is the innovation theorem, which may
be thought of as a projection of an intensity from one filtration to another



3.1 Filtered counting process data 53

contained within the first one. Since Ft ⊆ F∗
t does not hold, we cannot

project from F∗
t . We therefore define an enlarged history G∗

t = ∨n
i=1Gi∗

t

containing both the relevant information F∗
t and the filtering processes.

We also make the requirement that the filtering processes are predictable
with respect to G∗

t . In the case of right-censoring one may take

G∗
t = F∗

t ∨ σ(C(s+); 0 ≤ s ≤ t) (3.4)

with C(t) = (C1(t), . . . , Cn(t)) given by (3.2) since these processes are left-
continuous. In most cases we will then have that Ft ⊆ G∗

t , but, if this is
not the case, we redefine G∗

t so that it also holds the information carried
by Ft. The relations between the different filtrations are thus

F∗
t ⊆ G∗

t ⊇ Ft,

but neither Ft ⊆ F∗
t nor F∗

t ⊆ Ft hold. This construction ties in with the
definition of independent right-censoring given by Andersen et al. (1993)
(ABGK) cited below. One may try to generalize the ABGK definition to fil-
tering in an obvious way, but as we shall see later this may lead to undesired
classifications.

ABGK definition of independent right-censoring: Let N∗ be a mul-
tivariate counting process with compensator Λ∗ with respect to a filtration
F∗

t , and let C be a right-censoring process predictable with respect to a
filtration G∗

t ⊇ F∗
t . The right-censoring of N∗ leading to the observed N

generated by C is said to be independent if the compensator of N∗ with
respect to the enlarged filtration G∗

t is also Λ∗.

The ABGK condition for independent right-censoring can also be written
as

P (dN∗
i (t) = 1 | F∗

t−) = P (dN∗
i (t) = 1 | G∗

t−), (3.5)

saying that the probability of a jump in the next small time interval is
unaltered by the extra information about the filtering processes in the case
where we have full information available about the counting processes. This
definition refers solely to the underlying unobserved counting processes,
and requires that the filtering process does not carry any extra information
about the timing of the jumps of the counting process of interest. We give
some examples below to illustrate the use of the definition in terms of its
consequences for the observed processes. The ABGK definition is rather
indirect as it does not directly say anything about the intensity of the
observed counting process. Of course something has been said as one can
use the innovation theorem to compute the observed intensity. Below, in
Proposition 3.1.1, we show that, if Ci(t)λ∗

i (t) is predictable with respect to
Ft, then the ABGK condition implies independent filtering as defined in
Definition 3.1.1.
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Proposition 3.1.1 If Ci(t)λ∗
i (t) is predictable with respect to the observed

history Ft, then the ABGK definition of independent right-censoring im-
plies independent filtering.

Proof. We have the decomposition

N∗
i (t) = Λ∗

i (t) + M∗
i (t),

where M∗
i (t) is a local square integrable martingale with respect to G∗

t

(ABGK condition), and therefore

Ni(t) =

Z t

0

Ci(s)λ
∗
i (s) ds +

Z t

0

Ci(s) dM∗
i (s)

=

Z t

0

λi(s) ds + Mi(t),

where Mi(t) =
R t

0
Ci(s) dM∗

i (s) is a local square integrable martingale
with respect to G∗

t since Ci(t) is G∗
t -predictable and bounded. From this,

it is seen that Ni(t) has the intensity process Ci(t)λ
∗
i (t) with respect to

G∗
t , and therefore also with respect to Ft by the innovation theorem (2.12)

since Ci(t)λ
∗
i (t) is assumed predictable with respect to Ft. �

Filtering processes that are independent of the underlying counting pro-
cesses may not lead to independent filtering as seen in the following ex-
ample. If the ABGK definition is generalized to general filtering (replace
right-censoring by filtering in their definition), this may lead to an unde-
sired classification as in the below example.

Example 3.1.3 (Dependence on the past)

Consider a counting process N∗(t) with intensity λ∗(t) = max(N∗(t−), 5).
We filter the process by the indicator C(t) = I(t ≥ V ) where V is a stochas-
tic variable independent of N∗. Owing to the assumed independence, this
type of filtering is independent according to the ABGK definition (gener-
alized to filtering). However, whether or not it is classified as independent
filtering according to Definition 3.1.1 depends on the observed filtration.
Consider two types of possible recorded information

Ft = σ(V, N∗(s) − N∗(V ), N∗(V ); V ≤ s ≤ V + t), (3.6)
Ft = σ(V, N∗(s) − N∗(V ); V ≤ s ≤ V + t). (3.7)

the difference being that in (3.6) we observe N∗(V ) while this is not
recorded by (3.7). The intensity of the observed counting process N(t) =∫ t

0
C(s)dN∗(s) can be computed using the innovation theorem:

λ(t) = E(C(t)λ∗(t)|Ft−),
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and is equal to C(t)λ∗(t) if (3.6) is the actually recorded information. If,
however, (3.7) is the recorded information, so we do not observe N∗(V ),
then the observed intensity differs from C(t)λ∗(t) and we do not have inde-
pendent filtering in that case! So when the intensity depends on the past of
the counting process (or possibly covariates), this type of filtering may lead
to an observed intensity different from the one of the underlying counting
processes N∗. We also refer the reader to the discussion in Andersen et al.
(1993), p. 163. �

We now consider the special case of right-censored survival data in the
following example.

Example 3.1.4 (Right-censored survival data)

Let T ∗ denote the survival time of interest and put N∗(t) = I(T ∗ ≤ t).
Assume that the distribution of T ∗ is absolutely continuous with hazard
function αθ(t). As we have seen earlier the counting process N∗ then sat-
isfies the Aalen multiplicative intensity model

λ∗(t, θ) = αθ(t)Y ∗(t)

with respect to F∗
t = FN∗

t , where Y ∗(t) = I(t ≤ T ∗) is the at risk indicator.
Let U denote the censoring time, which is assumed independent of the
failure time. If the filtration F∗

t also contains information about covariates,
then one may relax the above independence assumption to a conditional
independence assumption given the covariates. We only observe the failure
time T ∗ if it exceeds the corresponding censoring time U , and information
about this. We thus observe

T = T ∗ ∧ U and ∆ = I(T ≤ U).

The independent censoring condition of ABGK (3.5) then reads

P (t ≤ T ∗ < t + dt |T ∗ ≥ t) = P (t ≤ T ∗ < t + dt |T ∗ ≥ t, U ≥ t) (3.8)

and is equivalent to (3.3), which is seen to hold due to the assumed in-
dependence. By the way, condition (3.8) is often taken as the definition
of independent right-censoring; see, for example, Fleming & Harrington
(1991) p. 27. The observed filtration under the considered filtering is given
by

Ft = σ((N(s), Y (s+)); 0 ≤ s ≤ t),

Y (t) = C(t)Y ∗(t) and C(t) = I(t ≤ U). Since we have independent filter-
ing, the observed counting process N(t) has intensity process

λ(t, θ) = αθ(t)Y (t) (3.9)
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with respect to Ft. It is seen from (3.9) that the multiplicative intensity
structure is preserved and the deterministic part is unchanged. The only
difference is that the at risk indicator Y ∗(t) = I(t ≤ T ) is replaced by the
observed at risk indicator Y (t) = C(t)Y ∗(t) = I(t ≤ T ∧ C). Therefore, as
we shall see in the subsequent section, to do maximum likelihood estimation
for right-censored survival data, assuming that the right-censoring does not
carry information about the parameters of interest, one should simply use
the observed intensity in the computations. �

The right-censoring may depend on covariates as long as the condition
is satisfied conditional on these covariates. We give the details for this in
the case of independent survival data for simplicity.

Example 3.1.5 (Right-censoring depending on covariates)

A somewhat surprising result is that censoring depending on covariate val-
ues is independent as long as the covariate(s) influencing the censoring is
included in the statistical model. That is, we use a filtration also carrying
the information generated by the covariate(s). In the melanoma example,
it would for instance be independent censoring to censor each year the
oldest patient still at risk as long as we include age in our model, as was
also pointed out in Andersen et al. (1993). We now give a formal proof
assuming for ease of notation that the covariate is one-dimensional. As-
sume we have n independent subjects and let Xi denote a one-dimensional
bounded covariate (age at entry) for the ith subject, i = 1, . . . , n. Fur-
ther, let N∗(t) = (N∗

1 (t), . . . , N∗
n(t)) where N∗

i (t) = I(T ∗
i ≤ t), and let

FN∗
t = σ(N∗(s); 0 ≤ s ≤ t) and Fx = σ((X1, . . . , Xn)). We assume that

N∗ has F∗
t = (FN∗

t ∨ Fx)-compensator Λ∗, where

Λ∗
i (t) =

∫ t

0

λ∗
i (s, θ) ds

with
λ∗

i (t, θ) = Y ∗
i (t)αθ

i (t, Xi), Y ∗
i (t) = I(t ≤ Ti).

Define Ui = min{j ∈ N : Yi(j)(Xi + j) = maxk(Yk(j)(Xk + j))}, where
Yi(t) = I(t ≤ Ti ∧ Ui), that is, the ith patient is censored the first year
he or she is the oldest among those still at risk. Let G∗

t = F∗
t ∨ Fu

t where
Fu

t = σ(C(s+); 0 ≤ s ≤ t), C(t) = (C1(t), . . . , Cn(t)) with Ci(t) = I(t ≤
Ui). Since the censoring is deterministic when we have conditioned on
(X1, . . . , Xn) there is no extra randomness in G∗

t compared with F∗
t and

therefore the compensator of N∗
i (t) with respect to G∗

t is also Λ∗
i (t). Since

Ci(t)λ∗
i (t, θ) = Yi(t)αθ

i (t, Xi) is predictable with respect to the observed fil-
tration, it follows that the filtering induced by this type of right-censoring
is independent. Note, using the innovation theorem, that the intensity with
respect to FN∗

t (omit conditioning on the covariate) is:

E(λ∗
i (t, θ) | FN∗

t ) = Y ∗
i (t)E(αθ

i (t, Xi) |Ti > t) = Y ∗
i (t)α(t),
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say. The intensity of Ni(t) with respect to the observed filtration F̃t that
does not hold information about the covariate is

E(Ci(t)λ∗
i (t, θ) | F̃t) = Yi(t)E(αθ

i (t, Xi) |Ti > t, Ui > t) (3.10)

using that the censoring fulfills the ABGK-condition of independent cen-
soring when we do condition on the covariate. Since the censoring carries
information about the covariates, (3.10) differs from Yi(t)α(t), and the cen-
soring is therefore dependent if we do not include the covariate in the model!

�

Example 3.1.6 (Simple and progressive type I censoring)

Simple type I censoring where all Ui are equal to a deterministic fixed
time point u0 is independent since no extra randomness is introduced by the
censoring, leaving the compensator unchanged. Progressive type I censoring
refers to a situation often encountered in clinical studies where patients are
enrolled over (calendar) time with separate entry times Wi. At entry a
treatment is applied and the life time Ti since entry is then of interest.
Suppose the study is closed at time t0 such that we only observe, for each
subject, Ti ∧ Ui, I(Ti ≤ Ui) with Ui = t0 − Wi. This is called progressive
type I censoring. If we include the entry times in the filtration, then this
censoring is deterministic and therefore independent. If the entry times are
not included in the filtration but have an impact on the failure times, this
censoring is dependent. �

Example 3.1.7 (Missing covariates. Complete case analysis)

We consider n independent subjects and let Xi(t) = (Xi1(t), . . . , Xip(t)),
i = 1, . . . , n, denote a p-vector of bounded covariates for the ith subject.
The covariate processes are assumed to be right-continuous and we put
Fx

t = σ((X1(s), . . . , Xn(s)); 0 ≤ s ≤ t). Let N∗(t) = (N∗
1 (t), . . . , N∗

n(t))
denote a multivariate counting process where N∗

i (t) = I(T ∗
i ≤ t). Assume

that N∗ has (FN∗
t ∨ Fx

t )-compensator Λ∗, where

Λ∗
i (t, θ) =

∫ t

0

λ∗
i (s, θ) ds

with
λ∗

i (t, θ) = Y ∗
i (t)αθ

i (t, Xi(t−)), Y ∗
i (t) = I(t ≤ Ti).

Suppose that some of the covariates may be missing from a certain point
in time and onwards, and that the individual is withdrawn from the study
if that happens, that is, the individual is censored at that point in time.
One may ask whether or not this “complete case analysis” leads to inde-
pendent censoring. The answer is that the generation of missing values in
the covariates is allowed to depend on the past and present but not on the
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future. The result is formulated below in the case where we assume that
no additional censoring takes place, but can also be obtained in the case
where we also have ordinary independent right-censoring.

Let
Hij(t) = I(Xij(t) is available), j = 1, . . . , p,

and
Hi0(t) = I(Hij(t) = 1 for all j = 1, . . . , p).

Define right-censoring times Ui caused by the incomplete covariate mea-
surements by

Ui = inf{t ≥ 0 : Hi0(t) = 0 and Yi(t) = 1},

with the convention inf{∅} = ∞. The probability of missing some compo-
nents of Xi (say X∗

i ) is allowed to depend on X∗
i , so-called non-ignorable

non-response (NINR); see Little & Rubin (1987). Let

Cu(t) = (Cu
1 (t), . . . , Cu

n(t))

denote the filtering process defined by Cu
i (t) = I(t ≤ Ui), and let

Fu
t = σ(Cu(s+); 0 ≤ s ≤ t).

It may be shown (Martinussen, 1997) that the right-censoring caused by
Cu is independent if the following conditional independence condition is
fulfilled:

∀B ∈ Fu
t : P (B | FN∗

∞ ∨ Fx
∞) = P (B | FN∗

t ∨ Fx
t ) a.s. (3.11)

on Di
t = (Ti ≥ t), i = 1, . . . , n. The intuition behind (3.11) is that the

generation of missing values in the covariates is allowed to depend on the
past and present but not on the future as mentioned earlier.

If the covariate is time-independent and one-dimensional we have

Ui =
{

0 if Xi is missing
+∞ otherwise

and the censoring corresponding to the complete case analysis is hence
independent if

P (Ui = 0 |Ti, Xi) = p(Xi; φ),

for some parameter φ. Therefore, despite that Xi may be missing NINR,
the parameters describing the relationship between the failure time and the
covariate are estimated consistently when the probability of having missing
covariate information only depends on the covariates themselves. An un-
derlying assumption is of course that it is possible to estimate consistently
in a complete data analysis (full covariate information), that is, the model
should be correctly specified in the first place. �
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FIGURE 3.1: Left-truncation: Subject 1, 3 and 4 are at risk from time V = 4
and onwards. Subject 2 and 5 are never included in the sample since only
individuals with event times larger than V are included. Left-censoring:
Subject 1, 3 and 4 are at risk from time V = 4 and onwards. For individual
2 and 5 it is only known that the event time is smaller than V .

The second most important type of incomplete information for counting
processes data, and failure time data in particular, is left-truncation. A
failure time T ∗ is said to be left-truncated by the (possibly random) V if
we only observe T ∗ conditionally on T ∗ > V , see Figure 3.1. If time to
miscarriage is to be studied and a sample of pregnant women is recruited
at a certain point in time (the period that they have been pregnant may
vary from woman to woman) and followed on in time, then we have a
sample of left-truncated waiting times as it is known for these women that
the time to miscarriage (if it ever happens) is beyond the period they have
been pregnant at the sampling date. We define left-truncation for counting
process data similarly, but for the concept to be of value and leading to
independent filtering one needs to condition on past performance of the
counting process. This simplifies for the failure time data case with time-
invariant covariates, where the past information about the counting process
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reduces to information about the subject being still at risk, whereas in the
general counting process case one needs to condition on all relevant parts
of the history to obtain independent filtering.

We define left-truncation as filtering with respect to the observed prob-
ability measure that is conditional on past information and with filtering
processes on the form

Ci(t) = I(t > Vi),

where Vi are random variables for i = 1, ..., n. The requirement for inde-
pendent filtering in this case reads

Ci(t)λ∗
i (t) = PO(dNi(t) = 1|F i

t ).

Owing to the repeated conditioning argument, this condition will be true if
the observed filtration contains the relevant information about λ∗

i (t) from
the truncation time and up to time t.

Example 3.1.8 (Left-truncated survival data)

Recall that N∗(t) = (N∗
1 (t), . . . , N∗

n(t)) is adapted to the filtration (F∗
t )

and where we in the failure time data setting can define N∗(t) from i.i.d.
failure times T ∗

1 , . . . , T ∗
n such that N∗

i (t) = I(T ∗
i ≤ t). The basic model is

that N∗ has (F∗
t )-compensator Λ∗ with respect to a probability measure

P where

Λ∗(t, θ) =
∫ t

0

λ∗
i (s, θ) ds

with θ being some parameter. In addition to the survival times we are
also given i.i.d. truncation times V1, . . . , Vn such that T ∗

i > Vi. The most
important difference from the right-censoring case is that events are seen
conditional on the truncation event.

We start by noting that the observed counting processes can be written
as

Ni(t) =
∫ t

0

Ci(s) dN∗
i (s),

where Ci(t) = I(t ≥ Vi).
Independent filtering is somewhat more complicated in this setting be-

cause the relevant probability measure is conditional on the event A =
∩i=1,...,n(T ∗

i > Vi). To check for independent filtering we therefore have to
validate that

Ci(t)P (t ≤ T ∗
i < t + dt | F∗

t−) = PO(t ≤ T ∗
i < t + dt | Ft−), (3.12)

or that

Ci(t)P (t ≤ T ∗
i < t + dt |T ∗

i ≥ t) = P (t ≤ T ∗
i < t + dt |T ∗

i ≥ t, T ∗
i ≥ Vi, Vi).

(3.13)
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Condition (3.13) simply states that being included in the study after time
Vi should contain no information about the intensity at any point in time
where the subject is at risk.

There is an equivalent condition in the case of general counting process
data, but it is important to point out that the conditioning should include
all relevant information from the past of the observed counting processes
in addition to the truncation variable for the left-truncation to lead to
independent filtering. Therefore one would typically need to condition on
the behavior of the process prior to it being included in the study, and this
would often constitute a practical problem.

In the case of i.i.d. survival data that we consider here, however, things
simplify because the only relevant information about the past is contained
in the fact that the subject is at risk, and the independent filtering condi-
tion (Definition 3.1.1) is fulfilled even though an unconditional probability
measure is used when the at risk indicator is defined as

Yi(t) = Ci(t)Y ∗
i (t) = I(Ti ≥ t, t ≥ Vi).

Using the observed intensity for inference it is seen that the individuals
are at risk from their (individual) truncation time and onwards. This is
referred to as delayed entry . �

Right-censoring and left-truncation will often be combined in survival
studies. This corresponds to a filtering process on the form Ci(t) = I(Vi ≤
t ≤ Ui) and where the intensity is observed subject to the information
contained in F i∗

Vi
.

Example 3.1.9 (Left-censoring and current status data)

Left-censoring occurs when observation of the primary outcome (e.g. time
to failure) is prevented by some lower limit Vi for the ith unit, see Figure 3.1.
The filtering processes in this situation are also given by Ci(t) = I(t > Vi),
i = 1, . . . , n. Left-censoring is frequently encountered in bioassays due to
inherent limit of detection of the response of interest; see, for example,
Lynn (2001) for an example of left-censored plasma HIV RNA data. If the
filtering induced by the left-censoring is independent and the basic model is
an Aalen multiplicative model, then the observed ith intensity is Yi(t)αθ

i (t)
with Yi(t) = I(Vi < t ≤ T ∗

i ), and inference based on the observed intensity
will be valid, but clearly not efficient as the left-censored units are not used
at all in the analysis. If the left-censored units are not used in the analysis,
then one should use the left-truncated version of the complete observa-
tions induced by the observed at risk indicators; otherwise one introduces
a length-bias as higher observations are selected for analysis (by excluding
the low ones). Usually, for such data, more traditional parametric likelihood
based analyses are applied using all available information.
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An observation scheme more often encountered in survival analysis is
the so-called current status data. Such data arise when the only knowledge
about the failure time is whether the failure occurs before or after a (ran-
dom) monitoring time. For instance, in carcinogenicity experiments, where
one is interested in time to tumor onset, one only knows at the time where
the animal is sacrificed whether or not tumor is present. Current status
data are examined in Exercises 3.10 and 6.9. �

One aspect of interest in AIDS studies is the time from infection (HIV)
to outbreak of clinical AIDS. When following prospectively a cohort of
infected individuals, the problem arises that the time at first infection of
the individuals is unknown as they were all infected prior to the start of
follow-up. This is a so-called prevalent cohort (Brookmeyer & Gail, 1987),
and here it is not possible to apply the delayed entry technique since the
time origin is unknown.

3.2 Likelihood constructions

Consider a counting process N∗ adapted to a filtration (F∗
t ) leading to the

intensity λ∗(t). Denote the ith jump time of N∗(t) by τ∗
i and let τ∗

i be
infinity if N(t) does not make i jumps. For convenience we let τ∗

0 = 0. The
compensator Λ∗(t) =

∫ t

0
λ∗(s) ds makes M∗ = N∗−Λ∗ into a (local square

integrable) martingale. We think of the intensity as being on a parametric
form such that λ∗(t) = λ∗(t, θ), but do not make the notation explicit.

The likelihood function for a counting process observed up to time t is
given as

L(θ, t) =

⎧⎨⎩∏
τ∗

i ≤t

λ∗(τ∗
i )

⎫⎬⎭ exp
(
−
∫ t

0

λ∗(s)ds

)

=

⎧⎨⎩∏
τ∗

i ≤t

exp(−
∫ τ∗

i

τ∗
i−1

λ∗(s)ds)λ∗(τ∗
i )

⎫⎬⎭ exp

(
−
∫ t

τ∗
N∗(t)

λ∗(s)ds

)
.

(3.14)

Equation (3.14) gives the intuition behind the likelihood function; each
term contributes the probability of experiencing no events between [τ∗

i−1, τ
∗
i [

and then experiencing an event at time τ∗
i all conditional on the past of the

process, and with the last term specifying the probability of experiencing
no events from the last jump time to the end of the observation period
conditional on the past of the counting process. The likelihood function is
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proportional to

L(θ, t) =

⎧⎨⎩∏
τ∗

i ≤t

dΛ∗(τ∗
i )

⎫⎬⎭ exp
(
−
∫ t

0

dΛ∗(s)
)

=
∏
s≤t

{dΛ∗(s)}∆N∗(s) exp
(
−
∫ t

0

dΛ∗(s)
)

, (3.15)

where ∆N∗(t) = N∗(t) − N∗(t−). We shall see later that (3.15) is a con-
venient form of the likelihood to work with.

For a multivariate counting process N∗ = (N∗
1 , . . . , N∗

k ) with intensity
process λ∗ = (λ∗

1, . . . , λ
∗
k), the likelihood function reads

L(θ, t) =
∏
h

∏
s≤t

{λ∗
h(s)}∆N∗

h(s) exp(−
∫ t

0

λ∗· (s) ds),

where λ∗· (s) =
∑

h λ∗
h(s). The log-likelihood function up to time t for a

multivariate counting process can be written elegantly as

l(θ, t) = log(L(θ, t))

=
∑

h

[∫ t

0

log(λ∗
h(s)) dN∗

h(s) −
∫ t

0

λ∗
h(s) ds

]
,

thus implying that the score process has the form (assuming that the deriva-
tive may be taken under the integral sign)

U(θ, t) =
∂

∂θ
l(θ, t)

=
∑

h

[∫ t

0

∂

∂θ
log(λ∗

h(s)) dN∗
h(s) −

∫ t

0

∂

∂θ
λ∗

h(s) ds

]
.

The score evaluated in the true parameter value, θ0, can then under weak
regularity conditions be written as

U(θ0, t) =
∑

h

∫ t

0

∂

∂θ
log(λ∗

h(s)) dM∗
h(s),

thus being a martingale if ∂
∂θ log(λ∗

h(t)), h = 1, . . . , k, are locally bounded
and predictable. In the above display,

M∗
h(s) = N∗

h(s) −
∫ s

0

λ∗
h(u, θ0) du.

Given i.i.d. observations of counting processes N∗
i (t), i = 1, ..., n, the

maximum likelihood estimate θ̂ is computed by solving

Un(θ, t) =
n∑

i=1

∫
∂

∂θ
log(λ∗

i (s)) dN∗
i (s) −

∫
∂

∂θ
λ∗

i (s) ds = 0.



64 3. Estimation for filtered counting process data

Under regularity conditions, n1/2(θ̂ − θ0) is asymptotically normal with
variance

I−1(θ0, t), (3.16)

where the j, k-element of the information matrix I is given as the mean of
the second derivative of minus the log-likelihood evaluated at the true θ0,
that is the j, k-element is

Ij,k(θ, t) = E(− ∂2

∂θj∂θk
ln(θ, t)),

evaluated at θ0. The information matrix may be estimated consistently by
the observed information I(θ̂, t) with elements

Ij,k(θ, t) = −n−1
n∑

i=1

∫ t

0

∂2

∂θj∂θk
log(λ∗

i (s)) dN∗
i (s) +

∫ t

0

∂2

∂θj∂θk
λ∗

i (s) ds,

evaluated in θ̂, or by the optional variation process with elements

[Un(θ, ·)](t) =
n∑

i=1

∫ t

0

(
∂

∂θ
log(λ∗

i (s)))
⊗2 dN∗

i (s)

also evaluated in θ̂. Recall that for a p× 1 vector a, a⊗2 = aaT . Additional
details can be found in Borgan (1984).

As mentioned in the previous subsection one usually only observes an
incomplete version of the underlying counting process N∗ due to filtering
with the prime example being right-censoring. If the filtering is independent
(see Definition 3.1.1), then it is still possible to apply likelihood techniques
for inference using expression (3.15) with λ∗ replaced by λ = Cλ∗:

L(θ, t) =
∏
τi≤t

{λ(τi)} exp(−
∫ t

0

λ(s)ds) (3.17)

corresponding to that we observe N , and where the τi’s denote the jump
times of the observed counting process. The observed information will of-
ten, however, be larger than that generated by the filtered counting process
and, in that case, the expression (3.17) is referred to as a partial likelihood.
For example, in the case of right-censored failure times, the full likelihood
also contains terms adhering to the censoring variables, and (3.17) will in
that case only be the part corresponding to the right-censored failure times
(Exercise 3.6). If the partial likelihood is equivalent to the full likelihood,
meaning that the omitted part does not depend on the parameters of in-
terest, then the filtering is said to be noninformative. If we also have infor-
mation on covariates, then the considered likelihood function is conditional
on the covariates.

The following example develops the partial likelihood for right-censored
survival data.



3.2 Likelihood constructions 65

Example 3.2.1 (Partial likelihood for right-censored survival data)

Consider a survival time T ∗, a right-censoring variable U and let ∆ =
I(T ≤ U) be the censoring indicator and define T = T ∗ ∧ U . Denote the
hazard function of the survival time by α(t). If the filtering induced by
the right-censoring is independent, then the partial likelihood (3.17) of the
filtered counting process is

L(θ,∞) = α(T )∆ exp(−
∫ T

0

α(s)ds).

�

The following example considers left-truncated survival data.

Example 3.2.2 (Partial likelihood for left-truncated survival data)

Consider a survival time T ∗ with hazard function α(t) and a left-truncation
variable V , such that we only observe T ∗ conditionally on T ∗ > V . In the
case of independent filtering the partial likelihood related to the survival
time conditional on being observed is given as (ignoring the dt-term)

P (T ∗ ∈ [t, t + dt]|T ∗ > V ) =
α(t) exp(−

∫ t

0
α(s)ds)

exp(−
∫ V

0 α(s)ds)

= α(t) exp(−
∫ t

V

α(s)ds),

which is equivalent to the expression (3.17) for the filtered counting process.
�

Almost all survival data will be right-censored so left-truncation is typi-
cally not present alone. The partial likelihood in the case of right-censored
and left-truncated survival data is considered in the next example.

Example 3.2.3 (Left-truncated and right-censored survival data)

Consider a survival time T ∗ with hazard function α(t), a left-truncation
variable V , and a right-censoring variable U . We observe T = T ∗ ∧ U and
the censoring indicator ∆ = I(T ∗ ≤ U) conditionally on T ∗ > V .

If this filtering induced by the censoring and truncation is independent,
then the partial likelihood of the filtered counting process is

α(T )∆ exp(−
∫ T

V

α(s)ds).

�
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Example 3.2.4 (Exponential distribution)

If the survival time T ∗ has constant hazard λ, then T ∗ is exponential
distributed with mean 1/λ. Assume we observe in the time interval [0, τ ] and
that we have independent right-censoring by U = U∗∧τ with U∗ a positive
random variable. The observed counting process N(t) =

∫ t

0
Y (s)dN∗(s)

then has intensity Y (t)λ, where Y (t) = I(t ≤ U ∧T ∗) and N∗(t) = I(T ∗ ≤
t). The score function is

U(λ) =
∫ τ

0

1
λ

dN(t) −
∫ τ

0

Y (t)dt =
∆
λ

− T,

where T = T ∗ ∧ U and ∆ = I(T = T ∗), and

I(λ) =
∆
λ2

.

With n i.i.d. observations from this model, the maximum likelihood esti-
mator of λ is therefore

λ̂ =
∆·
T· ,

which is the ratio of number of events (occurrences) ∆· =
∑n

i=1 ∆i and the
total at risk time (exposure) T· =

∑n
i=1 Ti. The standard error is estimated

consistently by
(∆·)1/2

T· .

�

The following example deals with the case where the intensity is piecewise
constant. It thus generalizes the results of the previous example and gives
important intuition about intensity estimation.

Example 3.2.5 (Piecewise constant intensities)

Consider a filtered counting process N(t) adapted to a filtration (Ft) lead-
ing to the intensity λ(t). Let a0 = 0, a1, ..., aL = τ be an increasing sequence
of numbers such that the sets Al = [al−1, al], l = 1, .., L partition the inter-
val [0, τ ]. We assume that the intensity is piecewise constant and is defined
by

λ(t) = Y (t)
L∑

l=1

λlI(t ∈ Al),

where Y (t) is an at risk indicator, and we now wish to estimate the positive
parameters λl, l = 1, .., L. For left-truncated (with truncation time V ) and
right-censored (with censoring time U) survival data with survival time T ∗

the at risk indicator equals Y (t) = I(V ≤ t ≤ U)I(T ∗ ≥ t).
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We assume that n i.i.d. counting processes are observed over the obser-
vation period [0, τ ], and denote the ordered jump-times of the ith counting
process by τij , j = 1, ..., Ni(τ). Let θ = (λ1, . . . , λL). The likelihood func-
tion is

L(θ, τ) =
∏

i

{
∏

τij≤τ

λ(τij)} exp(−
∫ τ

0

λi(s)ds)

=
L∏

l=1

λOl

l exp(−λlEl),

where

Ol =
∑

i

∫ al

al−1

dNi(s) =
∑
i,j

I(τij ∈ [al−1, al]),

El =
∑

i

∫ al

al−1

Yi(s)ds.

In the above display, Ol is the number of events (occurrences) and El is the
total at risk time (exposure) in the interval [al−1, al]. The log-likelihood
and the lth component of the score function equals

l(θ, τ) =
L∑

l=1

{Ol log(λl) − λlEl},

Ul(θ, τ) = Ol
1
λl

− El,

respectively. The maximum likelihood estimate is thus

λ̂l =
Ol

El
,

which is the occurrence/exposure rate for the lth interval. The derivative
of the score equals

diag(−Ol

λ2
l

)

and the inverse of the observed information can thus be estimated by

diag(
λ̂2

l

Ol
) = diag(

Ol

E2
l

).

The asymptotic variance of n1/2(λ̂l − λl) is therefore estimated by Ol/E2
l .

Note that λ̂1, . . . , λ̂L are asymptotically independent.
It is standard procedure to consider the log-transform of the rates as a

means of improving the normal approximation to the small sample distri-
bution of the estimates. With µl = log(λl),

n1/2(µ̂l − µl)
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is asymptotically normal with zero-mean and a variance that is estimated
consistently by

1
Ol

using here for example the delta-method, see Section 2.5. �

Example 3.2.6 (Weibull distribution)

Consider the setup from Example 3.2.4, but so that T ∗ follows a Weibull
distribution yielding the hazard function

α∗(t) = λγ(λt)γ−1

with λ, γ > 0. The exponential distribution is obtained by taking γ = 1.
The score equations (based on one observation) for the two parameters are

γ

λ
(∆ − (λT )γ) = 0; ∆(

1
γ

+ log(λT )) − (λT )γ log(λT ) = 0.

that needs to be solved iteratively. Note that∫ t

0

α∗(s) ds = (λt)γ

so that the log-cumulative hazard function is linear in log(t). If a (p-
dimensional) covariate, X , is present, one may use the Weibull regression
model that has hazard function

λγ(λt)γ−1 exp(XT β), (3.18)

where the β denotes the regression parameters. An individual with the zero
covariate thus has the baseline-hazard function on the Weibull form. The
hazard (3.18) may be written as a so-called proportional hazards model

λ0(t) exp(XT β),

where λ0(t) is an arbitrary unspecified baseline hazard. For proportional
hazards, the covariates act multiplicatively on the baseline hazard. Propor-
tional hazards models are described in much detail in Chapter 6. Another
type of model is the accelerated failure time model, where the hazard has
the form

λ0(exp(XT φ)t) exp(XT φ)

using φ to denote the regression parameters. For this model the covariates
act multiplicatively on time so that their effect is to accelerate or decelerate
time to failure relative to λ0(t). We return to this model in Chapter 8. By
writing (3.18) as

λγγ
(
exp{XT (β/γ)}t

)γ−1
exp{XT (β/γ)},
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FIGURE 3.2: Melanoma data. Straight line estimates of log Nelson-Aalen
curves for males and females based on Weibull regression model.

the Weibull model is also an accelerated failure time model with φ = β/γ,
see also Exercise 3.7.

Let us fit the Weibull regression model to the melanoma data using sex
as explanatory variable. This may be done in R using the function survreg.

> fit.Wei<-survreg(Surv(days,status==1)~sex,data=melanoma)

> fit.Wei

Call:

survreg(formula = Surv(days, status == 1) ~ sex)

Coefficients:

(Intercept) sex

9.1156248 -0.6103966

Scale= 0.9116392

Loglik(model)= -564 Loglik(intercept only)= -567.2

Chisq= 6.29 on 1 degrees of freedom, p= 0.012

n= 205
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The estimates reported by R are those estimating the parameters in (3.24)
(Exercise 3.7) so β̂ = 0.6104/0.9116, γ̂ = 1/0.9116, and λ̂ = exp(−9.1156).
Figure 3.2 displays the log of the Nelson-Aalen estimators (computed for
each sex) and plotted against log time. The straight line estimates are
obtained using the above estimates from the Weibull regression. It seems
that the Weibull regression model gives a reasonable fit to the melanoma
data when we only include sex as explanatory variable �

3.3 Estimating equations

In some cases, it turns out that the likelihood score equations may be
hard to use if not impossible. Therefore, rather than basing estimation
on the likelihood, one may instead establish various estimating equations
based on the observed counting processes. Let Ni(t) be a (possible filtered)
counting process adapted to a filtrationF i

t leading to the intensity λi(t), i =
1, . . . , n, such that the counting processes are independent and identically
distributed. As in the previous sections we think of the intensity as being
on a parametric form such that λi(t) = λi(t, θ).

To estimate θ one may compare the counting process Ni(t) with its com-
pensator Λi(t) =

∫ t

0
λi(s, θ) ds keeping in mind that the difference between

the two is a (local square integrable) martingale with zero-mean. Formally
one may consider the estimating equation

U(θ, t) =
n∑

i=1

∫ t

0

Wi(s, θ)Di(s, θ)(dNi(s) − λi(s) ds) = 0, (3.19)

where

Di(t, θ) =
∂

∂θ
λi(t, θ)

and Wi(t, θ) is some weight function. Because of the martingale property,
this estimating equation will have mean zero when evaluated in the true
parameter, θ0. Note also that the estimating equation having zero-mean
only requires that Wi(t, θ) and Di(t, θ) are predictable and locally bounded
processes.

The estimating equation (3.19) looks a lot like the score function that
was equal to

n∑
i=1

∫ t

0

∂

∂θ
log(λi(s)) (dNi(s) − λi(s) ds),

and the two are equivalent when Wi(t, θ) = 1/λi(t, θ).
Under regularity conditions it follows that the solution to U(θ, t) = 0, θ̃,

is asymptotically normal such that n1/2(θ̃ − θ0) converges in distribution
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towards a multivariate normal distribution with zero-mean and variance
given by

I−1(t, θ0)V (t, θ0)I−1(t, θ0), (3.20)

where

I(t, θ0) = E(−
∫ t

0

Wi(s, θ0)D⊗2
i (s, θ0)ds) (3.21)

is the mean of −∂U(θ, t)/∂θ evaluated in θ0 and

V (t, θ0) = E(
∫ t

0

W 2
i (s, θ0)D⊗2

i (s, θ0)λi(s) ds) (3.22)

is the variance of U(θ0, t). Note that the formula simplifies when Wi(t) =
1/λi(t) (the maximum likelihood case) where I(t, θ0) and V (t, θ0) are equal.

The above quantities defining the variance may be estimated by plugging
in the estimated θ and using the i.i.d. structure. The mean of the deriva-
tive of the estimating equation is estimated consistently by the observed
information

Î(θ̃) = −n−1
n∑

i=1

∫ t

0

Wi(s, θ̃)D⊗2
i (s, θ̃) ds.

The variance of the score can be estimated consistently by the observed
second moment

n∑
i=1

∫ t

0

W 2
i (s, θ̃)D⊗2

i (s, θ̃)λi(s, θ̃) ds,

or by the optional variation process with elements

n∑
i=1

∫ t

0

W 2
i (s, θ̃)D⊗2

i (s, θ̃) dNi(s),

or by a robust estimator

n∑
i=1

{
∫ t

0

Wi(s, θ̃)Di(s, θ̃)(dNi(s) − λi(s, θ̃)) ds}⊗2.

The structure of these estimating equations are very useful and used
for essentially all models considered in Chapters 5, 6 and 7 on regression
models for survival data. None of these models are purely parametric but
luckily it turns out that the estimating equations can be extended to deal
with both nonparametric and semiparametric models. A general treatment
of estimation and inference in semiparametric models is given by Bickel
et al. (1993).
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We here consider the basic principles in developing a score function that
may be used for semiparametric intensity models and focus on the par-
ticular situation where the nonparametric terms are unspecified functions
of time. To give a simple exposition we focus on the situation where the
intensity is additive. Based on this special case we develop some impor-
tant heuristics that lead to useful efficient score equations for all models
considered in this monograph.

Consider the additive hazard model suggested by Aalen (1980), where

λi(t) = Yi(t)XT
i (t)β(t), (3.23)

where Xi(t) = (Xi1(t), ..., Xip(t)) is a p-dimensional predictable covariate,
Yi(t) is the at risk indicator, and β(t) = (β1(t), ..., βp(t))T is a p-dimensional
regression coefficient function of locally integrable functions. We deal with
this in detail in Chapter 5. To estimate the infinite-dimensional parameters
of this model, one considers all parametric sub-models of the form β(t) =
β0(t)+ηb(t), where η is one-dimensional parameter and b is a given p-vector
of functions, and look for an estimator that makes all scores with respect
to η equal to 0, see Sasieni (1992b) and Greenwood & Wefelmeyer (1990).
The estimating equation then reads

U(η, t) =
n∑

i=1

∫ t

0

Wi(s, η)Di(s, η)(dNi(s) − λi(s) ds),

where

Di(t, η) = Yi(t)XT
i (t)b(t)

and where we ignore the precise choice of Wi(t, η) for now and set it to 1.
As noted earlier Wi(t, η) = 1/λi(t) makes the estimates equivalent to the
maximum-likelihood estimates. Then the score equation reads

U(η, t) =
n∑

i=1

∫ t

0

Yi(s)XT
i (s)b(s)(dNi(s) − Yi(s)XT

i (s)β(s)ds)

and should equal zero for all choices of b(t) (within a class of suitably
regular functions). For the estimating function to equal zero for all choices
of b(t) it follows that the increments must equal zero, that is

n∑
i=1

Yi(t)XT
i (t)(dNi(t) − Yi(t)XT

i (t)β(t)dt) = 0.

With B(t) =
∫ t

0 β(s)ds, we solve the score equation to obtain

dB̂(t) = (
n∑

i=1

Yi(t)XT
i (t)Xi(t))−1

n∑
i=1

Yi(t)XT
i (t)dNi(t),
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or

B̂(t) =
∫ t

0

(
n∑

i=1

Yi(s)XT
i (s)Xi(s))−1

n∑
i=1

Yi(s)XT
i (s)dNi(s).

It is relatively straightforward to develop the large sample properties of
this estimator, see Section 5.1.
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3.4 Exercises

3.1 (Continuation of Example 3.1.4)

(a) Show that the independent censoring condition of ABGK (3.5) re-
duces to (3.8) in the case of right-censored survival data as described
in the example.

(b) Assume that T ∗ and U are conditionally independent given an ex-
planatory variable X , and that the distribution of T ∗ and U depends
on X . Show that the right-censoring induced by U is independent.

(c) Assume that T ∗ and U are conditionally independent given X , but
that we never observe X . So N∗(t) has intensity λ∗(t) with respect
to F∗

t = FN∗
t . Is the filtering of N∗(t) generated by U independent?

3.2 Let T̃1, . . . , T̃n be i.i.d. finite lifetimes with hazard function α(t).
Assume that T̃i is right-censored at time Ui, where

U1 = ∞, Ui = Ui−1 ∧ T̃i−1, i ≥ 2.

We thus observe Ti = T̃i ∧ Ui and ∆i = I(T̃i ≤ Ui), i = 1, . . . , n.

(a) Show that this censoring is independent.

Let T̃(1) = T̃1 ∧ · · · ∧ T̃n.

(b) Compute the Nelson-Aalen estimator Â(t) for estimation of A(t) =∫ t

0
α(s) ds on the set where T̃(1) = T̃1.

(c) Show that T̃n is observed if and only if T̃n = T̃(1).

(d) Can the situation arise where all T̃1, . . . , T̃n are observed?

(e) Show that T1 ∧ · · ·Tn = T̃(1) and that Â(t) always jumps at T̃(1).

(f) Compute the jump size of Â(t) at T̃(1).

3.3 (Progressive type II censoring) Let T ∗ be a lifetime and X a covari-
ate vector such that the hazard of T ∗, conditional on X , is α(t; X). Let
(T ∗

1 , X1), . . . , (T ∗
n , Xn) be n independent copies of (T ∗, X) and let r1, . . . , rn

be some given integers such that r1 + · · · rm + m = n. We consider the life-
times T ∗

1 , . . . , T ∗
n as the failure times of n units. The progressively type II

censored sample is obtained in the following way. Let T(1) denote the first
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failure time. At time T(1) we remove (censor) at random r1 units. We de-
note the second observed failure time by T(2), and at that point in time we
remove at random r2 surviving units. This process continues until, at the
time T(m) of the mth observed failure the remaining surviving units are
removed. Let Ii denote the set of numbers of the units censored at time
T(i) and the number of the unit failing at time T(i), i = 1, . . . , m.

(a) Argue that the observed filtration is

Ft = σ{(T(i), Ii) : i ≤ m and T(i) ≤ t}, t ≥ 0.

Let Ti = T(k) if i ∈ Ik and put ∆i = 1 if Ti is an observed failure time, and
∆i = 0 otherwise. Let Ni(t) = I(Ti ≤ t, ∆i = 1), i = 1, . . . , n.

(b) Show that Ni(t) has intensity

λi(t; X) = I(t ≤ Ti)α(t; X)

with respect to Ft, that is, the censoring is independent.

3.4 (Failure intensity depending on censoring value) Let T ∗ be a failure
time and put N∗(t) = I(T ∗ ≤ t). Suppose that the filtering of N∗(t) is
induced by C(t) = I(t ≤ U), where U is a positive stochastic variable with
density f . As usual we let T = T ∗ ∧ U denote the observed waiting time.
Assume that

E(dN∗(t) | G∗
t−) = I(t ≤ T ∗)(C(t)α1(t)dt + D(t)h(U)α2(t)dt),

where G∗
t is defined by (3.4), α1(t) and α2(t) are to deterministic functions

D(t) = 1 − C(t), and h is some function.

(a) Compute the intensity of N∗ with respect to F∗
t . Is the censoring

independent according to the ABGK definition?

(b) Compute the intensity of N with respect to Ft. Is the censoring in-
dependent according to Definition 3.1.1?

(c) Is the classification of the considered censoring depending on which
definition that is used?

3.5 (Left-truncated survival time) Let the survival time T ∗ be left-truncated
by the random V and consider the setup described in Example 3.1.2.

(a) Show that this filtering is independent if the conditional density (as-
sumed to exist) of (T ∗, V ) given T ∗ > V may be written as f(t∗)g(v)
for t∗ > v.
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Assume from now on that T ∗ and V are independent or that the condition
in (a) holds.

(b) Let Ft = σ(I(V ≤ s), I(V < T ≤ s) : s ≤ t). Show that N(t) has
compensator Λ(t) with respect to Ft when computed under PO.

(c) Let
Ft = σ(V, I(V < T ≤ s), I(T > V ) : V ≤ s ≤ V + t).

Show that N(t) has compensator Λ(t) with respect to Ft when com-
puted under P or PO.

3.6 (Right-censoring: full likelihood function) Let (Ti, ∆i), i = 1, . . . , n,
be independent replicates of (T, ∆) described in Example 3.1.4, and assume
the distribution of U is absolute continuous with hazard function µ(t).
Define

N(t) =
n∑

i=1

I(Ti ≤ t, ∆i = 1) and Y (t) =
n∑

i=1

I(t ≤ Ti).

(a) Show that the likelihood function based on observing (Ti, ∆i), i =
1, . . . , n, can be written as∏

i

{
αθ(Ti)∆ie−

R Ti
0 αθ(t) dt

}∏
i

{
µ(Ti)1−∆ie−

R Ti
0 µ(t) dt

}
.

(b) Show that the expression in (a) is proportional to the partial likeli-
hood (3.17) defined from N .

(c) Assume that µ(t) = βαθ(t) (Koziol-Green model). Show that the
censoring is now informative, but that the estimator, θ̂, obtained by
maximizing the partial likelihood defined from N is still consistent.
Derive its asymptotical distribution.

(d) Show, under the assumption of (c), that ∆ is ancillary for θ.

3.7 (Weibull regression model) Let T ∗ have hazard given by (3.18).

(a) With Y = log(T ∗), show that

Y = α + β̃T X + σW, (3.24)

where α = − log(λ), σ = γ−1, β̃ = −σβ, and W has the extreme
value distribution:

P (W > w) = exp(− exp(w)).
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(b) Based on the Weibull regression fit, estimate the survivor function
P (T ∗ > t) for the melanoma data for males and females, and give
the associated 95% pointwise confidence intervals.

(c) Make the plots of the estimated survivor functions and their confi-
dence intervals.

3.8 (Gompertz distribution) Let T ∗ be a survival time with hazard func-
tion

λ(t) = µνt (3.25)

with µ, ν > 0. This distribution is called the Gompertz distribution. For
ν < 1, the hazard is decreasing with t and it does not integrate to ∞, that
is, there is positive probability of not experiences the event under study.

(a) If Y has a log Weibull distribution truncated at zero, then show that
Y has a Gompertz distribution.

(b) Derive the score equations for (µ, ν) based on n i.i.d. right-censored
(independent censoring variables) survival times that follow the Gom-
pertz distribution, and give a consistent estimate of the asymptotic
variance of the maximum likelihood estimator.

(c) Fit the Gompertz distribution to the melanoma data considering only
the females.

The hazard function (3.25) may be extended to

λ(t) = λ + µνt;

the associated distribution is called the Gompertz-Makeham distribution.

(d) Fit now the Gompertz-Makeham distribution to the melanoma data
still considering only the females. Is there an improved fit?

3.9 (Missing covariates) Assume that X1 and X2 are two covariates that
take the values {0, 1} and have joint distribution given by P (X1 = 0|X2 =
0) = 2/3, P (X1 = 0|X2 = 1) = 1/3 and P (X2 = 1) = 1/2. Let λ(t) be a
locally integrable non-negative function, and assume that the survival time
T given X1 and X2 has hazard function

λ(t) exp(0.1X1 + 0.3X2).

(a) Assume that only X1 is observed. What is the hazard function of T
given X1? Similarly for X2.
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(b) Assume that λ(t) = λ and that i.i.d. survival data are obtained from
the above generic model. Find the maximum likelihood estimator of
λ and specify its asymptotic distribution.

(c) Assume now that a right-censoring variable C is also present and that
C given X1 has hazard function λ exp(0.1X1). Assuming that only X1

is observed at time 0 specify how one should estimate the parameter
of the survival model.

(d) As in (c) but now assume that only X2 is observed.

3.10 (Current status data with constant hazards) Let T ∗ denote a fail-
ure time with hazard function

α(t) = θ,

where θ is an unknown parameter. Let C denote a random monitoring
time independent of T ∗ and with hazard function µ(t). The observed data
consist of (C,∆ = I(C ≤ T ∗)). Such data are called current status data
since at the monitoring time C it is only known whether or not the event
of interest (with waiting time T ∗) has occurred.

(a) Derive the intensity functions of the counting processes

N1(t) = ∆I(C ≤ t), N2(t) = (1 − ∆)I(C ≤ t)

[hint: Use the heuristic formula for the intensity given in Exercise
2.7].

Let (Ci, ∆i), i = 1, . . . , n, be n independent replicates of (C, ∆ = I(C ≤
T )).

(b) Derive the likelihood function Lt for estimation of θ when we observe
over the interval [0, t].

Let Ut(θ) denote the score function. Let further Nj·(t) =
∑

i Nji(t), where
Nji(t) is the ith realization of the above generic Nj(t), j = 1, 2, correspond-
ing to observing the ith subject.

(c) Show that

Ut(θ) =
∫ t

0

se−θs

1 − e−θs
dN2·(s) −

∫ t

0

sN1·(s),

and that this is a martingale (considered as a process in t).

(d) Compute the predictable variation process 〈Ut(θ)〉.
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(e) Derive under suitable conditions the asymptotic distribution of the
maximum likelihood estimator θ̂ of θ, and give a consistent estimator
of the asymptotic variance.



4
Nonparametric procedures for survival
data

In this chapter we give a brief outline of the most important fully non-
parametric tools for the analysis of survival data. The non-parametric tech-
niques have established themselves as important tools of survival analysis
due to their simplicity and the fact that their properties are well studied
and understood.

4.1 The Kaplan-Meier estimator

When studying the lifetimes of a population, one often has data that are
incomplete, typically in form of a right-censored versions of the survival
times. It turns out that even though one does not fully observe the survival
times, one can still estimate the distribution of the survival times as well
as the cumulative hazard function.

We here describe the Nelson-Aalen and Kaplan-Meier estimator in the
situation of right-censored survival data. Let T ∗ be a survival time with
survival distribution S(t) = P (T ∗ > t) and hazard function α(t) and let
C be a right-censoring time that leads to independent censoring. We thus
observe T = T ∗∧C and the censoring indicator ∆ = I(T ∗ ≤ C). Denote the
n independent observation form this generic model by (Ti, ∆i), i = 1, . . . , n.

In the one-sample case it is often of interest to estimate the survivor
function

S(t) = P (T ∗
i > t),
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or the cumulative hazard function

A(t) =
∫ t

0

α(s)ds,

which both may be viewed as infinite dimensional parameters when nothing
is assumed about the distribution of the survival time (except that a hazard
function exists). Note that S(t) = exp(−A(t)) =

∏
s≤t(1 − dA(s)), see

Andersen et al. (1993) p. 256, and these two quantities therefore contain
the same information on different scales.

Without censoring one might compute the mean and standard deviation
to characterize the survival (possibly log-transformed), but with censoring
present one aims at estimating the entire survival distribution. In that case
it will typically be difficult to summarize the results by computing means
and standard deviations, but various percentiles can often be estimated
from the data.

Put Ni(t) = I(Ti ≤ t, ∆i = 1), Yi(t) = I(t ≤ Ti), and

N(t) =
n∑

i=1

Ni(t), Y (t) =
n∑

i=1

Yi(t), M(t) = N(t) −
∫ t

0

Y (s)α(s) ds,

where the latter is a local square integrable martingale.
The Nelson-Aalen estimator (Aalen, 1975, 1978b; Nelson, 1969, 1972) is

an estimator of the cumulative hazard function A

Â(t) =
∫ t

0

J(s)
Y (s)

dN(s), (4.1)

where J(s) = I(Y (s) > 0) and with the convention that 0/0=0. The
Nelson-Aalen estimator is an unbiased estimator of (the stochastic)

A∗(t) =
∫ t

0

J(s)dA(s),

and it follows directly that

n̂1/2(A(t) − A∗(t)) = n1/2

∫ t

0

J(s)
Y (s)

dM(s)

is a local square integrable martingale. It turns out, under regularity con-
ditions, that n1/2(Â − A) converges in distribution towards a Gaussian
martingale on [0, τ [. The variance of n1/2(Â −A) is estimated consistently
by the optional variation estimator

n

∫ t

0

J(s)
Y 2(s)

dN(s),

see Example 2.3.3 for additional details.
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The Kaplan-Meier estimator (Kaplan & Meier, 1958) of S is

Ŝ(t) =
∏
s≤t

(
1 − ∆Â(s)

)
=
∏
s≤t

(
1 − ∆N(s)

Y (s)

)
, (4.2)

where Â(t) denotes the Nelson-Aalen estimator. The estimator can be inter-
preted as a product of successive conditional probabilities. Let τ1, . . . , τN(t)

be the jump times of N in [0, t]. The factor(
1 − 1

Y (τk)

)
may be interpreted as the conditional probability of surviving the interval
(τk, τk+1] given surviving [0, τk]. Also, since

S(t) = 1 −
∫ t

0

S(s−)dA(s),

a natural estimator is one that solves this equation with A replaced by
the Nelson-Aalen estimator. The solution to this equation is exactly the
Kaplan-Meier estimator. Finally, the Kaplan-Meier estimator may also be
derived as a nonparametric maximum likelihood estimator, see Johansen
(1978).

The asymptotic properties of the Kaplan-Meier estimator may be inferred
very elegantly from the properties of the Nelson-Aalen estimator by use of
product integration (Andersen et al., 1993). A more traditional approach
is based on the following relation

Ŝ(t)
S∗(t)

− 1 = −
∫ t

0

Ŝ(s−)J(s)
S∗(s)Y (s)

dM(s) (4.3)

for t ∈ [0, τ), where S∗(t) = exp (−A∗(t)) with A∗(t) =
∫ t

0 J(s)α(s) ds.
Equation (4.3) may be established by noting that both sides of (4.3) are
right-continuous in t, zero for t = 0 and that they have the same increments
(Jacobsen, 1982). Based on (4.3) one may then show, under appropriate
conditions, that Ŝ is uniformly consistent on compact intervals and, for
each t ∈ [0, τ), that n1/2(Ŝ−S) converges in distribution towards −S ·U on
D[0, t], where U is a Gaussian martingale. The variance of Ŝ(t) is estimated
consistently by

Σ̃(t) = Ŝ(t)2
∫ t

0

Y −2(s)dN(s),

which is naturally arrived at by calculating the quadratic variation of the
martingale term on the right-hand side of (4.3). An alternative consistent
estimator of the variance is

Σ̂(t) = Ŝ(t)2
∫ t

0

{Y (s)(Y (s) − N(s))}−1
dN(s),
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which is the so-called Greenwood’s formula (Greenwood, 1926), see also
Exercise 4.4. It seems from the literature that Σ̂(t) should be preferred to
Σ̃(t) in practice, see Andersen et al. (1993) and Therneau & Grambsch
(2000).

The asymptotic results may be used to construct pointwise confidence
intervals as well as confidence bands. The standard 100(1−α)% pointwise
confidence interval is[

Ŝ(t) − cα/2Σ̂(t)1/2, Ŝ(t) + cα/2Σ̂(t)1/2
]
,

where cα/2 is the (1 − α/2)-quantile of the standard normal distribution.
In practice, however, it is better to use various transformations to improve
the approximation to the asymptotic distribution. The default in R is the
log-transform that gives the 100(1 −α)% pointwise confidence interval[

Ŝ(t) exp {−cα/2
Σ̂(t)1/2

Ŝ(t)
}, Ŝ(t) exp {cα/2

Σ̂(t)1/2

Ŝ(t)
}
]

. (4.4)

In some situations it may be preferable to use other transformations such
as cloglog or logit that transforms ]0, 1[ to R.

The Kaplan-Meier curve may be used to estimate quantiles of the un-
derlying lifetime distribution, and the lower and upper confidence interval
curves (4.4) can be used to construct confidence intervals, see Exercise 4.2.

Example 4.1.1 (Melanoma data.)

The data concern survival with malignant melanoma (cancer of the skin)
and was collected by K. T. Drzewiecki and reproduced in Andersen et al.
(1993). In the period 1962-77, 205 patients had their tumor removed and
were followed until the end of 1977. The time variable is time since operation
and the number of deaths in the considered period was 57. The Kaplan-
Meier estimator for this data sample may be obtained in R by use of the
function survfit.

> library(survival); library(timereg)

> data(melanoma)

> attach(melanoma)

> fit.all<-survfit(Surv(days,status==1))

The Kaplan-Meier curve along with 95% confidence limits is obtained by
> plot(fit.all)

resulting in Figure 4.1. The censored observations are marked on the curve
but can be omitted by

> plot(fit.all,mark.time=F)

Kaplan-Meier curves for groups of subjects are obtained by
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FIGURE 4.1: Melanoma data. Kaplan-Meier curve along with 95% pointwise
confidence limits.

> fit.sex<-survfit(Surv(days,status==1)~sex)

> plot(fit.sex,mark.time=F)

which results in Figure 4.2 showing the curves for males and females. �

One may use the Kaplan-Meier estimator with associated 95% pointwise
confidence interval to estimate specific quantiles of the underlying survival
distribution. The Kaplan-Meier estimator Ŝ(t) with associated 95% point-
wise confidence interval for the melanoma data is depicted in Figure 4.3. Let
ŜL(t) and ŜU (t) denote the curves corresponding to the lower and upper
limit of the confidence interval. As an illustration consider the 80% quan-
tile, t0.8, of S(t) for the melanoma data. This quantile can be estimated
by

t̂0.8 = inf
t
{t ≥ 0 : Ŝ(t) ≤ 0.8} (4.5)

with associated 95% confidence interval

[inf
t
{t ≥ 0 : ŜL(t) ≤ 0.8}, inf

t
{t ≥ 0 : ŜU (t) ≤ 0.8}] (4.6)

as illustrated on Figure 4.3.
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FIGURE 4.2: Melanoma data. Kaplan-Meier curves for males (lower curve)
and females (upper curve).

4.2 Hypothesis testing

4.2.1 Comparisons of groups of survival data

Suppose we have a categorical explanatory variable (or several), giving rise
to a grouping of the subjects into K groups. The objective is to investigate
the effect of this variable on the survival, that is, to compare survival be-
tween groups. This may be done nonparametrically, for example by use of
the so-called log-rank test, which is one of the tests described below.

The nonparametric tests may be derived very elegantly from the counting
process setup as follows. The hazard function for a subject in the kth group,
k = 1 . . . , K, is denoted αk(t), and we want to construct tests for the
hypothesis

H0 : α1 = . . . = αK .

To do this we assume that independent survival data from the K groups
are available such that Nik for i = 1, . . . , nk represent independent survival
data (possibly filtered by independent filtering) with intensity given by



4.2 Hypothesis testing 87

0 1000 2000 3000 4000 5000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

FIGURE 4.3: Melanoma data. Kaplan-Meier estimator with 95% pointwise
confidence interval. Estimate of the 80% quantile with 95% confidence in-
terval.

Yikαk with at risk indicators Yik. The total group of patients n =
∑

k nk

are assumed independent.
Within each group one can then estimate the cumulative hazard function,

and a test may now be constructed by comparing the group specific Nelson-
Aalen estimators to the Nelson-Aalen estimator computed under H0 using
all groups. To be specific, the kth group specific Nelson-Aalen estimator is

Âk(t) =
∫ t

0

1
Yk(s)

dNk(s), (4.7)

where

Yk(t) =
nk∑
i=1

Yik(t), Nk(t) =
nk∑
i=1

Nik(t),

denote the number of subjects at risk at time t in group k, and the sum of
the individual counting processes within group k, respectively. The Nelson-
Aalen estimator, under the null, of A(t) =

∫ t

0 α(s) ds, where α denotes the
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common hazard function, is

Â(t) =
∫ t

0

1
Y.(s)

dN.(s),

where Y.(t) =
∑

k Yk(t), N.(t) =
∑

k Nk(t). Let

Ãk(t) =
∫ t

0

Jk(s)dÂ(s),

where Jk(t) = I(Yk(t) > 0). The key to derive the test statistics is that

Âk(t) − Ãk(t) =
(∫ t

0

Jk(s)
Yk(s)

Yk(s)α(s) ds −
∫ t

0

Jk(s)
Y.(s)

Y.(s)α(s) ds

)
+
(∫ t

0

Jk(s)
Yk(s)

dMk(s) −
∫ t

0

Jk(s)
Y.(s)

dM.(s)
)

=
K∑

j=1

∫ t

0

Jk(s)
(

δjk

Yk(s)
− 1

Y.(s)

)
dMj(s)

is a (local) square integrable martingale under the hypothesis, and therefore
should fluctuate around zero if the hypothesis is true. In the above display,
δjk means I(j = k). Let

Rk = Rk(τ) =
∫ τ

0

wk(t)d(Âk − Ãk)(t),

where wk(t) is some (predictable) weight function to reflect specific aspects
of the data. We here restrict attention to the case

wk(t) = Yk(t)w(t),

where w(t) is a predictable weight function. With this choice of weight
function we find that

Rk =
∫ τ

0

w(t)[dNk(t) − Yk(t)
Y.(t)

dN.(t)].

Note the constraint
K∑

k=1

Rk = 0,

which is also satisfied on the incremental level:
∑

k dRk(t) = 0.
With R = (R1, . . . , RK−1)T then n1/2R is [under some mild regularity

conditions, see Andersen et al. (1993)] asymptotically normally distributed
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around zero with some covariance matrix Σ with elements Σkl being the
limit in probability of

n

〈∫ ·
0

wk(t)d(Âk − Ãk)(t),
∫ ·

0

wl(t)d(Âl − Ãl)(t)

〉
(τ)

=n

∫ τ

0

wk(t)wl(t)Jk(t)Jl(t)
1

Yk(t)Y.(t)

(
δkl −

Yk(t)
Y.(t)

)
Y.(t)α(t) dt,

which may be estimated consistently by

Σ̂kl = n

∫ τ

0

wk(t)wl(t)Jk(t)Jl(t)
1

Yk(t)Y.(t)

(
δkl −

Yk(t)
Y.(t)

)
dN.(t). (4.8)

If the hypothesis is true, then

Q = nRT Σ̂−1R (4.9)

is asymptotically χ2-distributed with K − 1 degrees of freedom. The RK is
not included in the above construction of the test since Σ̂ would then be
singular.

One may now construct various tests by choosing different weight func-
tions. The log-rank test is obtained by choosing wk(t) = Yk(t)I(Y.(t) > 0).
For this particular choice of weight function we may write the Rk’s as

Rk = Ok − Ek,

where Ok = Nk(τ) is the observed number of failures in group k and

Ek =
∫ τ

0

Yk(t)dÂ(t)

is referred to as the expected number of failures under the hypothesis.
This is a little imprecise since Ek is stochastic (and can hence not be an
expected number) but the terminology is used since, under the hypothesis,
E(Rk) = 0, and therefore E(Ek) = E(Ok).

Example 4.2.1 (Melanoma data.)

We illustrate the nonparametric tests by use of the melanoma dataset. We
here focus on the covariate: sex of the patient (coded 0 for female and 1
for male). The log-rank test for testing the hypothesis of no difference of
the two groups with respect to survival may be obtained in R by use of the
function survdiff.

> library(survival)

> library(timereg)

> data(melanoma)
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> attach(melanoma)

> survdiff(Surv(days,status==1)~sex)

Call:

survdiff(formula = Surv(days, status == 1) ~ sex)

N Observed Expected (O-E)^2/E (O-E)^2/V

sex=0 126 28 37.1 2.25 6.47

sex=1 79 29 19.9 4.21 6.47

Chisq= 6.5 on 1 degrees of freedom, p= 0.011

We see that too many males die than expected if the hypothesis of no
difference should be true, and the hypothesis is rejected with a p-value
of 0.011. The survdiff function actually implements the S-ρ family of
Harrington & Fleming (1982) (see (4.10) below) with the default of ρ =
0 giving the log-rank test. The Peto & Peto modification of the Gehan-
Wilcoxon test is obtained by putting ρ = 1.

> survdiff(Surv(days,status==1)~sex,rho=1)

Call:

survdiff(formula = Surv(days, status == 1) ~ sex, rho = 1)

N Observed Expected (O-E)^2/E (O-E)^2/V

sex=0 126 23.4 31.6 2.14 7.09

sex=1 79 25.2 17.0 3.98 7.09

Chisq= 7.1 on 1 degrees of freedom, p= 0.00776

�

The log-rank test is the most powerful test against the alternative of pro-
portional hazards meaning that the hazard functions at any given time of
an individual in one group is proportional to the hazard function at that
time to the hazard function of an individual in the other group(s). This
alternative is equivalent to the Cox model assumption, which we return
to in detail in Chapter 6. Actually, the log-rank test may be derived as a
model based (score)-test under the assumption of proportional hazards, see
Exercise 6.1.

Other tests may be better to detect other alternatives. Harrington &
Fleming (1982) introduced a class of tests by letting

wk(t) = Yk(t)Ŝ(t−)ρI(Y.(t) > 0), (4.10)

where Ŝ(t) is the Kaplan-Meier estimator, see Section 4.1, computed under
the hypothesis and ρ is a fixed number between zero and one. Taking ρ = 0
gives the log-rank test and ρ = 1 gives the so-called Peto & Peto modifica-
tion of the Gehan-Wilcoxon test. This class of tests is implemented in R,
see the above example.
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The log-rank test and the entire family of S-ρ tests are well suited for
detecting differences that are consistent over the considered time-range,
and will be efficient against particular alternatives. Sometimes, however
one would like an omnibus test that will detect any type of departure from
the null hypothesis of equal intensities across the groupings.

In the two-sample case the Kolmogorov-Smirnov test may also be used.
We briefly outline how it may be implemented, and how it differs from
the log-rank test. We consider the two sample-situation, and thus wish to
investigate the hypothesis

H0 : α1 = α2.

The log-rank test consider the asymptotic distribution of∫ τ

0

J1(s)J2(s)
(

Y2(s)
Y.(s)

dN1(s) −
Y1(s)
Y.(s)

dN2(s)
)

,

where J(s) = max(J1(s), J2(s)). If one, however, wishes to compare the
two intensities without using any prior knowledge on where to look for
differences, it seems natural to compare the two Nelson-Aalen estimates

∆(t) =
∫ t

0

J1(s)J2(s)
(

1
Y1(s)

dN1(s) −
1

Y2(s)
dN2(s)

)
.

To obtain the log-rank test one should weight these differences with w̃(t) =
Y1(s)Y2(s)/Y.(t). An omnibus test may be constructed by considering a
statistic like

sup
t∈[0,τ ]

|∆(t)|
σ(t)

where σ2(t) is an estimator of the variance of ∆(t). Another omnibus test
could be constructed by inspecting the uniform Hall-Wellner band, see
Chapter 5.

Example 4.2.2 (A Kolmogorov-Smirnov Two Sample Test.)

As in the previous example we consider the melanoma dataset, and wish
to test if there is a significant difference in survival depending on sex.

The Kolmogorov-Smirnov test outlined above can be computed by using
the additive hazard regression function aalen() that we describe in further
detail in Chapter 5. The syntax for computing the Kolmogorov-Smirnov
test-statistic and plotting the Nelson-Aalen estimates is as follows.

> data(melanoma)

> fit<-aalen(Surv(days/365,status==1) ~ 1 + factor(sex),

+ melanoma)

Nonparametric Additive Risk Model

Simulations start N= 1000
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FIGURE 4.4: Nelson-Aalen estimates with 95% confidence intervals (full
lines), and 95% Hall-Wellner confidence bands (broken lines). Intercept
gives the estimate for females, and factor(sex)1 gives the difference in the
estimates for males and females.

> summary(fit)

Additive Aalen Model

Test for nonparametric terms

Test for non-significant effects

sup| hat B(t)/SD(t) | p-value H_0: B(t)=0

(Intercept) 4.87 0.00

factor(sex)1 2.67 0.07

Test for time invariant effects

sup| B(t) - (t/tau)B(tau)| p-value H_0: B(t)=b t

(Intercept) 0.0416 0.741

factor(sex)1 0.1090 0.422

int (B(t)-(t/tau)B(tau))^2dt p-value H_0: B(t)=b t

(Intercept) 0.00245 0.841

factor(sex)1 0.03280 0.249
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> plot(fit,xlab="Time (years)",hw.ci=2)

The Kolmogorov-Smirnov test results in a p-value of 0.07, and a non-
significant difference at the 5 % level.

Figure 4.4 shows the Nelson-Aalen estimate for females (the intercept
in the model) and the difference between the Nelson-Aalen estimates for
males and females (the effect of sex). Note, that the difference between
the two Nelson-Aalen estimates is essentially a straight line with positive
slope, thus indicating that the hazard function for males is consistently
higher than that for females. The full lines give the estimate with 95%
pointwise confidence intervals, and the broken lines give the 95% Hall-
Wellner confidence band. The confidence band suggest that the difference is
borderline significant, with zero just escaping the confidence region around
time 8. Thus giving a different conclusion than the Kolmogorov-Smirnov
test.

The difference between the Nelson-Aalen estimates suggests that males
have an excess hazard that is constant over time. Looking a bit ahead,
formal tests for this are given in the output as “Tests for time invariant
effects” thus resulting in p-values of either 0.42 or 0.25, depending on which
of the two test-statistics that are applied. �

4.2.2 Stratified tests

Above we saw how various nonparametric tests could be applied to com-
pare the survival of some K groups of subjects. Often it is an explanatory
variable that gives rise to the groups being compared and we are then in-
vestigating the effect of this explanatory variable on the survival. It is often
of interest to control for other potentially important factors when compar-
ing differences across the primary variable. This may also be done in a
nonparametric fashion and is termed a stratified analyses.

Suppose we have L strata, which may be formed from the other factor(s)
that we want to control for. The hazard function for a subject in the kth
group, k = 1 . . . , K, in the lth stratum, l = 1 . . . , L, is denoted αkl(t), and
we want to construct tests for the hypothesis

H0 : α1l = . . . = αKl (4.11)

for all l = 1 . . . , L. This is done by comparing the group specific Nelson-
Aalen estimators in each stratum to the Nelson-Aalen estimator computed
under H0. Let

Rkl =
∫ τ

0

wkl(t)d(Âkl − Ãkl)(t),

where wkl(t) is a weight function, and

Âkl(t) =
∫ t

0

1
Ykl(s)

dNkl(s), Ãkl(t) =
∫ t

0

Jkl(s)
Y.l(s)

dN.l(s),
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with Jkl(t) = I(Ykl(t) > 0), Y.l(t) =
∑

k Ykl(t), N.l(t) =
∑

k Nkl(t), and
with Ykl(t) and Nkl(t) being the number at risk at time t in group k in
stratum l, and the sum of the counting processes of group k and stratum
l, respectively.

Put Rl = (R1l, . . . , RK−1,l)T and let Σ̂l denote the estimate of the vari-
ance of Rl. A test of H0 for l fixed, that is, within the lth stratum could
be carried out using

RT
l Σ̂−1

l Rl,

which is asymptotically χ2-distributed with K−1 degrees of freedom under
the hypothesis of equal hazard functions in the lth stratum. We want,
however, to combine the information across strata. This may of course be
done in several ways, but it is common practice to base the test on the sum
of the Rl’s. Hence, let R =

∑
l Rl and Σ̂ =

∑
l Σ̂l. A class of (stratified)

test statistics of (4.11) is then given by

RT Σ̂R, (4.12)

which is also asymptotically χ2-distributed with K − 1 degrees of free-
dom under the hypothesis and given some mild regularity conditions, see
Andersen et al. (1993). The stratified log-rank test is obtained by taking
wkl(t) = Ykl(t)I(Y.l(t) > 0).

Example 4.2.3 (Melanoma data. Continuation of Example 4.2.1.)

We saw in Example 4.2.1 that there seemed to be a significant different
survival between males and females in the melanoma dataset. Let us in-
vestigate this more closely. The variable ulc indicates (0 for absent, and
1 for present) whether the tumor was ulcerated, and it is well known that
this is an important factor. It may hence be a good idea to control for this
variable before comparing the survival of the two sexes. The commands

> fit.sex.ulc<-survfit(Surv(days,status==1)~sex+ulc)

> plot(fit.sex.ulc)

give the Kaplan-Meier plots for the four combinations of sex and ulceration
shown in Figure 4.5. There still seems to be a difference between the survival
of the two sexes. A formal test of this is given for example by the stratified
log-rank test, which may be obtained as follows.

> survdiff(Surv(days,status==1)~sex+strata(ulc))

Call:

survdiff(formula = Surv(days, status == 1) ~ sex + strata(ulc))

N Observed Expected (O-E)^2/E (O-E)^2/V

sex=0 126 28 34.7 1.28 3.31

sex=1 79 29 22.3 1.99 3.31

Chisq= 3.3 on 1 degrees of freedom, p= 0.0687
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FIGURE 4.5: Melanoma data. Kaplan-Meier curves for female and males
without ulceration (full curve and dotted curve), and for females and males
with ulceration (broken curve and broken-dotted curve).

We see that the evidence of a difference is not as convincing now where we
have controlled for ulceration, the test statistic now being 3.3 compared
with 6.5 obtained in the analysis where we did not stratify. �

By taking the sum of the Rl’s as in the above test statistic it is obvious
that this test will only have good power against alternatives where the
deviations from the hypothesis go in the same direction in all strata, see
Exercise 4.7 for a test that avoids this.

4.3 Exercises

4.1 (Smoothing of the Nelson-Aalen estimator) Consider the multivari-
ate counting process N = (N1, . . .Nn)T , where Ni(t) has intensity λi(t) =



96 4. Nonparametric procedures for survival data

Yi(t)α(t). The Nelson-Aalen estimator of A(t) =
∫ t

0
α(s) ds is

Â(t) =
∫ t

0

1
Y·(s)dN·(s),

where N·(t) =
∑n

i=1 Ni(t), Y·(t) =
∑n

i=1 Yi(t).
We shall now consider estimation of α(t) by kernel smoothing of Â(t).

Let K(t) be a kernel function that is a bounded function vanishing outside
[−1, 1], and let bn denote the bandwidth that is a positive parameter. The
kernel estimator of α(t) is

α̂(t) = b−1
n

∫
K(

t − s

bn
)dÂ(s).

This estimator was proposed and studied by Ramlau-Hansen (1983a,b).

(a) Find the compensator of α̂(t) and compute Eα̂(t).

(b) Let 0 < t1 < t2 < t. Assume that K is of bounded variation and that
α is continuous on [0, t]. Let bn → 0 and assume that

inf
s∈[0,t]

b2
nY·(s) P→ ∞

as n → ∞. Show that

sup
s∈[t1,t2]

|α̂(s) − α(s)| P→ 0.

(c) Let α be continuous at t and let y be a function, positive and contin-
uous at t, so that

sup
s∈[t−ε,t+ε]

|n−1Y·(s) − y(s)| P→ 0,

for an ε > 0. Show, as n → ∞, bn → 0, and nbn → ∞, that

n1/2b1/2
n (α̂(t) − α̃(t)) D→ N(0, τ2(t)),

where

α̃(t) = b−1
n

∫
K(

t − s

bn
)dA(s), τ2(t) =

α(t)
y(t)

∫ 1

−1

K2(s) ds.

We shall now assume that α is twice continuously differentiable on [t1 −
c, t2 + c] for t1 < t2, c > 0, and that∫ 1

−1

K(t) dt = 1,

∫ 1

−1

tK(t) dt = 0, k2 =
∫ 1

−1

t2K(t) dt > 0.
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(d) Show that the bias of the estimator is

Eα̂(t) − α(t) =
1
2
b2
nα′′(t)k2 + o(b2

n) + o(n−1),

t ∈ [t1 − c, t2 + c].

We shall now consider the problem of picking an optimal bandwidth. As
criteria we use the mean integrated squared error

MISE(α̂) = E
∫ t2

t1

(α̂(t) − α(t))2 dt.

Modulo a lower order term one may decompose MISE(α̂) as

MISE(α̂) =
∫ t2

t1

(α̃(t) − α(t))2 dt +
∫ t2

t1

E[(α̂(t) − α̃(t))2] dt,

which may be interpreted as the sum of a squared bias term and variance
term.

(e) Show under appropriate conditions that∫ t2

t1

(α̃(t) − α(t))2 dt =
1
4
b4
nk2

2

∫ t2

t1

α′′(t)2 dt + o(b4
n)

and∫ t2

t1

E[(α̂(t)−α̃(t))2] dt = (nbn)−1

∫ 1

−1

K(t)2 dt

∫ t2

t1

α(t)
y(t)

dt+o((nbn)−1),

where y(t) is the limit in probability of n−1Y·(t).
It follows that the bias and the variance terms are balanced for (nbn)−1 ∼
b4
n, which implies an optimal choice of bandwidth is equal to bn ∼ n−1/5.

(f) Minimize (ignoring lower order terms) the expression of MISE(α̂)
with respect to bn to obtain the optimal bandwidth

bn,opt = k
−2/5
2

(∫ 1

−1

K(t)2 dt

∫ t2

t1

α(t)
y(t)

dt

)1/5(∫ t2

t1

α′′(t)2 dt

)−1/5

n−1/5.

One may aim at estimating bn,opt using a twice differentiable kernel func-
tion to estimate the term ∫ t2

t1

α′′(t)2 dt.

The term ∫ t2

t1

α(t)
y(t)

dt

is easily estimated by ∫ t2

t1

1
n−1Y·(t)dÂ(t).
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(g) Another way of estimating MISE goes as follows. Verify that

MISE = E
∫ t2

t1

α̂(t)2 dt − 2E
∫ t2

t1

α̂(t)α(t) dt +
∫ t2

t1

α(t)2 dt,

where the latter term does not depend on the bandwidth and thus
can be ignored. The first term is easy to estimate from α̂(t). Show
that the second term is estimated approximately unbiased by the
cross-validation estimate

−2
∑
j 	=k

b−1
n K(

τj − τk

bn
)

1
Y·(τj)

1
Y·(τk)

,

where the sum is taken over j, k so that j �= k and t1 ≤ τj ≤ t2
denotes the jump times in the specified interval.

(h) Compute α̂(t) for the females and males of the Melanoma dataset
using the Epanechnikov kernel

K(x) = 0.75(1− x2)I(−1 ≤ x ≤ 1).

Consider only the time-interval from 1 to 6 years.

4.2 (Estimation of quantiles)

(a) Show that the estimator (4.5) is consistent and derive the asymptotic
distribution of n1/2(t̂0.8 − t0.8) (use the delta-theorem).

(b) Show that (4.6) is an asymptotic 95% confidence interval for t0.8.

4.3 (Kaplan-Meier as NPMLE) Consider n i.i.d. survival times Ti with
right-censoring times Ci such that we observe Xi = Ti∧Ci and δi = I(Ti ≤
Ci), for simplicity we let the survival times be ordered such that X1, ...., Xd

are the d ordered death times, the remaining censored survival times are
denoted Xd+1, ...., Xn. We assume that the underlying survival time has
continuous survival function GT (·), with GT (0) = 1.

Let D be the set of functions that have jumps at the observed death times
and that can be identified with a vector of probability masses p = (p1, ..., pd)
that are located at the ordered death times (such that

∑
pi ≤ 1, pj ≥ 0).

The survival function related to the probability masses are given

G(t) = 1 −
d∑

i=1

I(Xi ≤ t)pi.
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Denote G(Xi) = P (U > Xi) = Gi.
The nonparametric maximum likelihood estimator for the survivor func-

tion G ∈ D is given as

L(G, X1, ..., Xn, δ1, ..., δn) =
d∏

i=1

pi

n∏
i=d+1

G(Xi).

(a) Show that L is maximized for the product-limit estimator.

(b) Show that the maximizer of the above likelihood cannot be made
larger by including monotonic decreasing survivor functions.

(c) Rather than maximizing the likelihood directly one may apply the
EM-algorithm. Assume that full data consist of all survival times
being fully observed, and work out the E and M step of the EM
algorithm.

(d) Returning to (a) reparameterize the problem by considering the dis-
crete hazard rather than pi such that

λi =
pi

Gi−1

and maximize the likelihood.

(e) Write down the EM-algorithm for the hazard parameterization.

4.4 (Greenwood’s formula) Consider the counting processes: Ni, i = 1, . . . , n,
so that Ni(t) has compensator

Λi(t) =
∫ t

0

Yi(s)dA(s),

where A may have jumps. The Nelson-Aalen estimator of A(t) is

Â(t) =
∫ t

0

1
Y (s)

dN(s),

where N(t) =
∑n

i=1 Ni(t), Y (t) =
∑n

i=1 Yi(t). Put A∗(t) =
∫

J(s)dA(s),
where J(t) = I(Y (t) > 0).

(a) Show that

〈Â − A∗〉(t) =
∫ t

0

J(s)
Y (s)

(1 − ∆A(s))dA(s) (4.13)
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where ∆A denotes the jumps of A, see Exercise 2.13, and that (4.13)
is estimated consistently by∫ t

0

J(s)(Y (s) − ∆N(s))
1

Y (s)3
dN(s),

which gives an alternative estimator of the variance of the Nelson-
Aalen estimator.

Let S(t) = exp(−A(t)), S∗(t) = exp(−A∗(t)), and

Ŝ(t) =
∏
s≤t

(
1 − ∆N(s)

Y (s)

)
.

denotes the Kaplan-Meier estimator of S(t).

(b) Use (4.3) to show that〈
Ŝ

S∗ − 1

〉
(t) =

∫ t

0

(
Ŝ(s−)
S∗(s)

)2
J(s)
Y (s)

(1 − ∆A(s))dA(s),

and use this, and the fact that

Ŝ(t) =
(

1 − ∆N(t)
Y (t)

)
Ŝ(t−),

to arrive at the Greenwood estimator of the variance of the Kaplan-
Meier estimator.

4.5 (K-sample test) The test-statistic given in (4.9) could be denoted
by QK to stress that it is constructed based on R1, . . . RK−1 hence not
using RK . Now make the same construction leaving out Rj and denote the
corresponding test statistic Qj, j = 1, . . . , K − 1.

(a) Show that Q1 = · · · = QK .

4.6 (Hypothesis testing) Consider the set-up in Section 4.2.1.

(a) Compute the optional variation process for (R1, ...., RK−1) and com-
pare with the variance estimator given by Σ̂ given by (4.8).

(b) Verify that for the log-rank Rk = Ok − Ek, where Ok = Nk(τ) and
that E(Ek) = E(Ok).
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(c) We focused only on the special weight-function wk(t) = Yk(t)w(t),
where w is a weight function. Consider now the general case where wk

are arbitrary weight-functions and derive the asymptotic distribution
of (R1, . . . , RK) that need not be singular.

(d) Consider the PBC data in R (survival-package) and compute the
log-rank and the Kolmogorov-Smirnov test to evaluate the effect of
edema on survival. Also, make Kaplan-Meier plots and estimate the
cumulative hazard function for the two groups.

4.7 By taking sum of the Rl’s in the test statistic (4.12) it is obvious that
this test will only have good power against alternatives where deviations
from the hypothesis go in the same direction in all strata. A test that
does not require this is one based on for example the absolute values |Rl|,
l = 1, . . . , L, and such a test statistic could be(

L∑
l=1

|Rl|
)T ( L∑

l=1

Σ̂l

)−1( L∑
l=1

|Rl|
)

. (4.14)

(a) Do the stratified log-rank test for testing effect of x2 based on the
following dataset, where time holds the right-censored waiting times
and status is the indicator of whether time is a true event (status
equal to one).

n<-400

x1<-rbinom(n,1,0.5)

x2<-rbinom(n,1,0.5)

hazard<-1+0*x1-0.2*x2+0.4*x1*x2

time.star<-rexp(n,1/hazard)

Cen<-rexp(n,0.25)

time<-apply(cbind(time.star,Cen),1,’min’)

status<-as.numeric(time.star<=Cen)

(b) Perform the test (4.14) on the same dataset. Here you need to simu-
late the asymptotic distribution of the test statistic.



5
Additive Hazards Models

The additive hazards model, or the additive Aalen model, was introduced
by Aalen (1980). It is a very flexible nonparametric model, which has esti-
mators on explicit form. The model is simple to implement and its proper-
ties are well understood. It seems, however, to be somewhat overlooked in
practice, probably due to the fact that the model only contains nonpara-
metric terms, and that the handling of these terms for inferential purposes
is not fully developed.

The additive Aalen model assumes that the intensity for the counting
process N(t) conditionally on a p-dimensional covariate,

X(t) = (X1(t), ..., Xp(t))T

is of the form

λ(t) = Y (t)XT (t)β(t) (5.1)
= Y (t)(X1(t)β1(t) + ... + Xp(t)βp(t)),

where β(t) = (β1(t), ..., βp(t))T is a p-dimensional regression coefficient.
In principle Y (t) may be any locally bounded predictable process but we
think of it as the at risk indicator. The theory that follows may likewise
be developed in a general counting process setup, but we think of it in a
survival analysis setting, that is, Y (t) is the at risk indicator and XT (t)β(t)
is a conditional hazard function. We see from (5.1) that the effect of the
covariates may thus change with time as the regression coefficient is allowed
to depend on time. The additive Aalen model is very flexible and can be
seen as a first order Taylor series expansion of a general intensity around
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the zero covariate: for a general hazard function α(t, X(t)) depending on
X(t) we have

α(t, X(t)) = α(t, 0) + XT (t)α
′
(t, X∗(t))

for X∗(t) on the line segment between 0 and X(t).
It turns out that the cumulative regression coefficient

B(t) =
∫ t

0

β(s)ds

is easy to estimate and that the estimator converges at the usual n1/2-rate.
We will aim at this parameter instead of the regression coefficient itself.

The full flexibility of the additive Aalen model being completely non-
parametric is sometimes superfluous, and this can make it more difficult
than really necessary to report findings for a data set. Also when data are
limited one can only hope to extract major contours of the data. Some
regression coefficients may for example be approximately constant with
time. In practice it will indeed often be of interest to test if a treatment
effect is time-varying or constant with time. A very useful sub-model of
the additive hazards model (5.1) is the semiparametric additive hazards
model, suggested by McKeague & Sasieni (1994) and denoted as the ad-
ditive semiparametric risk model. It assumes that the intensity is on the
form

λ(t) = Y (t)(XT (t)β(t) + ZT (t)γ), (5.2)

where (X(t), Z(t)) is a (p + q)-dimensional covariate, Y (t) is the at risk
indicator, β(t) is a p-dimensional time-varying regression coefficient and γ
a q-dimensional time-invariant coefficient. Hence the effect of some of the
covariates may change with time while the effect of others is assumed to be
constant. This model also leads to estimators on explicit form, which are
easy to compute.

The semiparametric additive hazards model is needed to investigate if the
time-varying regression coefficients of the semiparametric model (5.2) are
in fact significantly varying with time. To perform a test of the hypothesis
H0 : βp(t) ≡ γq+1, one needs to compare the two semiparametric models

λ(t) = Y (t)(XT (t)β(t) + ZT (t)γ)

and

λ̃(t) = Y (t)(X1(t)β1(t) + ... + Xp−1(t)βp−1(t) + Xp(t)γq+1 + ZT (t)γ).

The following example illustrates how the methodology developed later in
this chapter may be used in practice. Details concerning the estimators and
inferential procedures follow. We apply the aalen-function (timereg) that
can fit the models (5.1) and (5.2).
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FIGURE 5.1: PBC-data. Estimated cumulative regression functions with
95% pointwise confidence intervals based on Aalen’s additive model.

Example 5.0.1 (PBC-data, continuation of Example 1.1.1)

We wish to examine the predictive effect on survival of the covariates: age
(years), albumin (g/dl), bilirubin (mg/dl), edema (present/not present),
and prothrombin time (seconds). We consider the additive hazards model
framework and start by fitting Aalen’s additive hazards model where all
components of the model have nonparametric time-varying effects. We fit
the model with age, edema, bilirubin, log(albumin) and log(protime) using
the timereg library. All covariates are centered around their averages in
the version of the PBC data that we use.

> library(survival)

> library(timereg)

> fit<-aalen(Surv(time/365,status)~Age+Edema+Bilirubin+

+ logAlbumin+logProtime,pbc,max.time=8)

Nonparametric Additive Risk Model

Simulations start N= 1000

> summary(fit)

Additive Aalen Model
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Test for nonparametric terms

Test for non-significant effects

sup| hat B(t)/SD(t) | p-value H_0: B(t)=0

(Intercept) 8.85 0.000

Age 3.35 0.022

Edema 3.89 0.002

Bilirubin 5.64 0.000

logAlbumin 3.77 0.008

logProtime 3.12 0.029

Test for time invariant effects

sup| B(t) - (t/tau)B(tau)| p-value H_0: B(t)=b t

(Intercept) 0.13000 0.139

Age 0.00297 0.829

Edema 0.47000 0.005

Bilirubin 0.03430 0.369

logAlbumin 0.29200 0.883

logProtime 0.96200 0.002

int (B(t)-(t/tau)B(tau))^2dt p-value H_0: B(t)=b t

(Intercept) 5.72e-02 0.037

Age 1.86e-05 0.665

Edema 8.73e-01 0.000

Bilirubin 1.85e-03 0.420

logAlbumin 7.92e-02 0.963

logProtime 3.10e+00 0.001

> plot(fit,xlab="Time (years)");

The output contains a number of summary statistics. First we see, using
a supremum test, that all covariate effects are significant. Figure 5.1 de-
picts the estimated cumulative regression coefficients with 95% pointwise
confidence intervals. It appears from these that the effect of at least age
and log(albumin) is constant with time as the estimated cumulatives are
approximately straight lines. Below, this is studied further.

We now start to simplify the model by a number of successive tests
with the purpose of reducing the number of nonparametric components.
First, we note that the log(albumin) does not seem to have a time-varying
effect (p=0.88, using the supremum test), which, as mentioned above, is
consistent with the cumulative estimate being approximately a straight
line in Figure 5.1. Fitting the model with the effect of log(albumin) being
constant (output not shown) we find that the effect of age is also constant
(p=0.86). The model where both log(albumin) and age have constant effects
shows that the effect of bilirubin also can be described as being constant
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(p=0.56). The reduced semiparametric model is then fitted resulting in the
below output.

> fit.semi<-aalen( Surv(time/365,status)~const(Age)+Edema+

+ const(Bilirubin)+const(logAlbumin)+logProtime,pbc,

+ max.time=8)

Semiparametric Additive Risk Model

Simulations start N= 1000

> summary(fit.semi)

Additive Aalen Model

Test for nonparametric terms

Test for non-significant effects

sup| hat B(t)/SD(t) | p-value H_0: B(t)=0

(Intercept) 21.80 0.000

Edema 3.28 0.011

logProtime 2.80 0.057

Test for time invariant effects

sup| B(t) - (t/tau)B(tau)| p-value H_0: B(t)=b t

(Intercept) 0.101 0.001

Edema 0.439 0.000

logProtime 0.937 0.001

int (B(t)-(t/tau)B(tau))^2dt p-value H_0: B(t)=b t

(Intercept) 0.0419 0.001

Edema 0.7890 0.000

logProtime 2.5200 0.002

Parametric terms :

Coef. SE Robust SE z P-val

const(Age) 0.00201 0.000579 0.00060 3.47 5.16e-04

const(Bilirubin) 0.02070 0.003870 0.00328 5.34 9.24e-08

const(logAlbumin) -0.22800 0.069200 0.06170 -3.29 9.89e-04

> plot(fit.semi,score=T,xlab="Time (years)",ylab="Test Process")

The fit of the semiparametric model shows that edema and log(protime)
have effects that are significantly time-varying (p<0.001 and p=0.001, us-
ing the supremum test-statistic). The impact of the remaining covariates
is characterized by their constant effects. Increasing age by one year, for
example, leads to an estimated increased intensity of 0.002 (0.00058). �
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5.1 Additive hazards models

We now give the estimators associated with the Aalen additive model and
describe their asymptotic properties. The model was originally suggested
by Aalen (1980) and further studied in Aalen (1989, 1993). Asymptotic
properties were given by McKeague (1988) and Huffer & McKeague (1991).

The model states that the intensity for the counting process N(t), t ∈
[0, τ ], τ < ∞, of a subject with a p-dimensional predictable bounded co-
variate, X(t) = (X1(t), ..., Xp(t))T , and at risk indicator, Y (t), is of the
form

λ(t) = Y (t)XT (t)β(t), (5.3)

where β(t) = (β1(t), ..., βp(t))T is a p-dimensional locally integrable regres-
sion coefficient (

∫ t

0 |βj(s)|ds < ∞ for j = 1, ..., p). One may relax the as-
sumption about the covariates being bounded to only require that they are
locally bounded, but as this seems to of very little importance in practice
it will not be pursued here.

It turns out that it is very easy to estimate the cumulative regression
coefficients

B(t) =
∫ t

0

β(s)ds

of the additive Aalen model. Let

(Ni(t), Yi(t), Xi(t)), i = 1, . . . , n,

be independent replicates of the above model, that is, the intensity λi(t)
for the ith counting process Ni(t) is on the form (5.3). Define

N(t) = (N1(t), .., Nn(t))T , λ(t) = (λ1(t), ..., λn(t))T ,

the n-dimensional counting process of all subjects and its intensity. We also
organize the covariates into a design matrix of dimension n × p:

X(t) = (Y1(t)X1(t), ..., Yn(t)Xn(t))T .

Further denote the n-dimensional cumulative intensities as Λ(t) =
∫ t

0 λ(s)ds
such that M(t) = N(t)−Λ(t) is a n-dimensional martingale. We thus have
that

dN(t) = λ(t)dt + dM(t)
= X(t)β(t)dt + dM(t), (5.4)

and since the increments of the martingale are uncorrelated and have zero
mean, this equation suggests that the increments of β(t)dt, which we write
suggestively as dB(t), can be estimated by simple multiple linear regres-
sion techniques. To solve the multiple linear regression problem define the
generalized inverse of X(t) as the p × n matrix

X−(t) = (XT (t)W (t)X(t))−1XT (t)W (t), (5.5)



5.1 Additive hazards models 109

where W(t) is a predictable n × n diagonal weight matrix. We make the
convention that X−(t) is zero when the inverse does not exist, and let J(t)
be one when the inverse exists and zero otherwise. The generalized inverse
satisfies the relation

X−(t)X(t) = J(t)Ip,

where Ip is the p× p identity matrix. Equation (5.4) leads to the estimator

dB̂(t) = X−(t)dN(t),

which can be written in integral form as

B̂(t) =
∫ t

0

X−(s)dN(s). (5.6)

Note, that

B̂(t) =
∫ t

0

J(s)dB(s) +
∫ t

0

X−(s)dM(s),

which implies that, if the rank of X(t) is full for all t (asymptotically at
least), then B̂(t) is essentially an unbiased estimator of B(t), since the mean
of the martingale

∫ t

0 X−(s)dM(s) is zero. But more can be said since, given
some regularity conditions, the root-n difference between the estimator and
true cumulative regression function converges in distribution to a Gaussian
martingale, see the below Theorem 5.1.1.

Define for j, k, l = 1 . . . p, t ∈ [0, τ ],

R2jk(t) =
n∑

i=1

Yi(t)Wi(t)Xij(t)Xik(t),

R3jkl(t) =
n∑

i=1

Yi(t)W 2
i (t)Xij(t)Xik(t)Xil(t).

The matrix R2(t) = XT (t)W (t)X(t) has elements R2jk(t), j, k = 1 . . . p.
The regularity conditions needed are formulated below.

Condition 5.1

(a) supt∈[0,τ ] E(Yi(t)W 2
i (t)Xij(t)Xik(t)Xil(t)) < ∞ for all j, k, l = 1, .., p;

(b) r2(t) = E(Yi(t)Wi(t)X⊗2
i (t)) is non-singular for all t ∈ [0, τ ].

�

Given that Condition 5.1 is fulfilled we have the following results, which
follow using functional forms of the strong law of large numbers (Andersen
& Gill, 1982).
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Lemma 5.1.1 If Condition 5.1 holds, then there exist continuous func-
tions r2jk(t) and r3jkl(t) such that as n → ∞

sup
t∈[0,τ ]

|n−1R2jk(t) − r2jk(t)| P→ 0,

sup
t∈[0,τ ]

|n−1R3jkl(t) − r3jkl(t)| P→ 0,

for j, k, l = 1 . . . p.

We can now give the asymptotic result concerning the estimator of the
cumulative regression coefficients.

Theorem 5.1.1 If Condition 5.1 holds, then, as n → ∞,

n1/2(B̂ − B) D→U (5.7)

on D[0, τ ]p, where U is a Gaussian martingale with covariance function

Φ(t) =
∫ t

0

φ(s)ds (5.8)

with
φ(t) = r−1

2 (t)E
[
Yi(t)W 2

i (t)X⊗2
i (t)XT

i (t)β(t)
]
r−1
2 (t). (5.9)

Proof. The key to the proof is the following decomposition

n1/2(B̂(t) − B(t)) = M̃(t) + Z1(t) + Z2(t),

where

M̃(t) = n−1/2

Z t

0

J(s)(r2(s))
−1XT (s)W (s)dM(s),

Z1(t) = n−1/2

Z t

0

J(s)
˘
(n−1R2(s))

−1 − r−1
2 (s))

¯
XT (s)W (s)dM(s),

Z2(t) = n1/2

Z t

0

(J(s) − 1)β(s) ds.

We want to show, as n → ∞, that Z1(t) and Z2(t) converge uniformly to
zero in probability and that M̃(t) converges in distribution to a Gaussian
martingale with the postulated covariance function. The latter is estab-
lished using the martingale central limit theorem, see Theorem 2.5.1. We
deal with these three terms separately below.

Since (1 − J(t)) ≤ 1 − J with J = I(n−1R2(t) invertible for all t ∈ [0, τ ])
we have

sup
t

|Z2(t)| ≤ n1/2I(Kn)

Z τ

0

|β(t)| dt, (5.10)
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where

Kn = (∃t : n−1R2(t) is singular) ⊆ (sup
t

||n−1R2(t) − r2(t)|| ≥ ε) = Ln

for some ε > 0. The right-hand side of (5.10) therefore converges to zero
in probability since β(t) is assumed locally integrable, P (Ln) → 0, and

n1/2I(Kn)
P→ 0 when I(Kn)

P→ 0.

The jth component of Z1(t) is a square integrable martingale and may be
written as

Z1j(t) = n−1/2
nX

i=1

Z t

0

J(s)Vji(s)dMi(s),

where

Vji(t) =

pX
l=1

˘
(n−1R2(t))

−1 − r−1
2 (t)

¯
jl

Yi(t)Xil(t)Wi(t).

Using the inequality of Cauchy-Schwarz we get

〈Z1j〉(τ ) = n−1
nX

i=1

Z τ

0

J(t)V 2
ji(t)λi(t) dt ≤

Z τ

0

Gj(t) dt,

where

Gj(t) =

pX
k,l=1

J
˘
(n−1R2)

−1 − r−1
2

¯2

jl
×
 

n−1
nX

i=1

YiX
2
ilXikW 2

i

!
βk,

and where we have suppressed dependency on time in the expression on
the right-hand side of the latter equality. Since inversion of a matrix is a

continuous operation we have for all t that Gj(t)
P→ 0 as n → ∞. Since

the random functions in Gj(t) converges in probability towards continuous
functions, we also have that Z τ

0

Gj(t) dt
P→ 0

as n → ∞ using Gill’s lemma (2.27). It then follows, as n → ∞, that

sup
t

|Z1j(t)| P→ 0

by use of Lenglart’s inequality (2.25).

The process M̃(t) is local square integrable martingale with predictable
variation process

〈M̃〉(t) = n−1

Z t

0

J(s)r−1
2 (s)

 
nX

i=1

Yi(s)Wi(s)
2Xi(s)

⊗2XT
i (s)β(s)

!
r−1
2 (s) ds

that converges in probability to Φ(t) uniformly in t as n
P→ ∞ using

similar arguments as above. The process containing all the jumps larger
in absolute value than ε of the jth component of M̃j(t) is

M̃jε(t) =
nX

i=1

Z t

0

n−1/2Ṽji(s)I(|n−1/2Ṽji(s)| > ε)dMi(s),
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where

Ṽji(t) =

pX
l=1

(r2(t))
−1
jl Yi(t)Wi(t)Xil(t).

Since

|n−1/2Ṽji(t)| ≤ p · sup
t,j,l

| (r2(t))
−1
jl |n−1/2 sup

t,i,l
|Yi(t)Wi(t)Xil(t)| ≡ H

P→ 0,

as n → ∞, we have

〈M̃jε〉(t) ≤ n−1
nX

i=1

Z t

0

Ṽ 2
ji(s)λi(s) dsI(H > ε)

P→ 0

as n → ∞, which completes the proof. �

The cumulative regression coefficients, B(t), are, as we have just seen, easy
to estimate nonparametrically and with the uniform asymptotic description
given in Theorem 5.1.1 they furthermore provide an excellent basis for
doing inference. In Section 5.2 we give a detailed description of how this
theorem may be used for testing hypothesis such as H0 : βj(t) ≡ 0, that
one of the components is non-significant, or H0 : βj(t) ≡ γ, that one of the
components is constant with time.

The variance of the estimator (5.6) is easily estimated. Since, under Con-
dition 5.1,

n1/2(B̂(t) − B(t)) = n1/2

∫ t

0

X−(s)dM(s) + op(1), (5.11)

and a uniformly consistent estimator of the variance function is therefore
given by optional variation process of the martingale in the latter display:

Φ̂(t) = n

∫ t

0

X−(s)diag(dN(s))(X−(s))T , (5.12)

or by the empirical version of the asymptotic variance (5.8),

Φ̃(t) = n

∫ t

0

R−1
2 (s)XT (s)W (s)diag(XT

i (s)dB̂(s))W (s)X(s)R−1
2 (s).

(5.13)

That the latter estimator of the variance is uniformly consistent follows
using Lenglart’s inequality (2.25). The optional variation process (5.12)
estimator is slightly simpler to implement than (5.13) and is the one imple-
mented in the aalen-function. In Section 5.6 we give yet another variance
estimator, which is also simple to compute and in addition possesses some
robustness properties.

A pointwise (1 − α) confidence interval for B(t) can be constructed as

B̂j(t) ± n−1/2cα/2 · Φ̂1/2
jj (t),
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FIGURE 5.2: PBC-data. Estimated cumulative regression function along
with 95% pointwise confidence intervals based on the optional variation
standard errors.

where Φ̂jj(t) is the jth diagonal element of Φ̂(t) and cα/2 is the (1−α/2)-
quantile of the standard normal distribution. In the next section we show
how to construct confidence bands, and how to perform inference about
the regression coefficients.

Example 5.1.1 (PBC-data)

Reconsider the PBC data from Example 5.0.1. The estimated cumulative
effect of edema is depicted in Figure 5.2. The optional variation standard
errors are used to give the shown 95%-pointwise confidence intervals.

> plot(fit,xlab="Time (years)",specific.comps=3)

These intervals are useful for doing inference at fixed (and preplanned)
time-points. They are not well suited for inferential purposes about the
shape of the entire curve, however. A simple test for significance of edema
could for example be based on the cumulative estimate at time 8, and then
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the effect edema is deemed non-significant. If we, on the other hand, test
the effect at time 2, then we conclude that it has a significant effect. This is
obviously due to the changing behavior of the effect of edema with an initial
excess risk that vanishes around time 2 to just before time 6 and then in
the final part of the interval suggests a negative excess risk corresponding
to a protective effect. We shall address these questions in more detail later.

�

We motivated the estimator B̂(t) by the least squares arguments, which
goes back to the original paper Aalen (1980), but it turns out that the
estimator can also be thought of as an approximate maximum likelihood
estimator. The (partial) log-likelihood function can be written as

n∑
i=1

{∫
log(λi(t))dNi(t) −

∫
λi(t)dt

}

=
n∑

i=1

{∫
log(Yi(t)XT

i (t)β(t))dNi(t) −
∫

Yi(t)XT
i (t)β(t)dt

}
.

Taking derivative with respect to β(t) (heuristically) leads to the score
equation

XT (t)diag(Yi(t)/λi(t))(dN(t) − X(t)dB(t)) = 0.

Solving with respect to dB(t) while assuming that λi(t) is known leads to

dB̃(t) = (XT (t)W (t)X(t))−1XT (t)W (t)dN(t),

with W (t) = diag(Yi(t)/λi(t)). This equation can be written on integral
form as

B̃(t) =
∫ t

0

(XT (s)W (s)X(s))−1XT (s)W (s)dN(s). (5.14)

A formal derivation of the score for the infinite dimensional parame-
ter β(t) was carried out by Greenwood & Wefelmeyer (1991) and Sasieni
(1992b), see also the description at the end of Chapter 3.

The estimator (5.14) is not a real estimator since it depends on the
unknown parameter β(t). One solution is to plug in estimates based on the
unweighted estimator:

(i) First, obtain initial estimates, β̂(t), of β(t) by smoothing (5.6) with
W (t) = I, see (5.15) below.

(ii) Secondly, use the weighted least squares estimator with weights Ŵ (t) =
diag(Yi(t)/λ̂i(t)), where λ̂i(t) = Yi(t)XT

i (t)β̂(t).
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Huffer & McKeague (1991) and McKeague (1988) showed that with a uni-
formly consistent estimator of β(t) the asymptotic properties stated in
Theorem 5.1.1 are still valid, and that the properties of the estimator are
equivalent to those for known weights. This is true even for non-predictable
estimates of the subject specific intensities, but then many technical prob-
lems are encountered, and it is therefore often assumed that a predictable
smoothing based estimator of β(t) is used.

To estimate the optimal weights λi(t) smoothing techniques must be
applied. A simple estimator of β(t) is

β̂(t) =
∫ τ

0

1
b
K(

t − u

b
)dB̂(u) (5.15)

where b ∈]0,∞[ and K is a bounded kernel function with compact support
[−1, 1] satisfying that

∫
K(u)du = 1 and

∫
uK(u)du = 0, see Exercise 4.1

for more details on kernel smoothing. An often applied kernel function is
the Epanechikov kernel

K(x) =
3
4
(1 − x2)I(−1 ≤ x ≤ 1).

Standard considerations can be applied to decide on the degree of smooth-
ing, see e.g. Simonoff (1996) and references therein. The simple kernel esti-
mator (5.15) can be improved by an estimator that avoids edge problems,
such as for example the local linear estimator, see Fan & Gijbels (1996).

Greenwood & Wefelmeyer (1991) and Sasieni (1992b) showed that the
estimator with weight matrix W (t) = diag(Yi(t)/XT

i (t)β(t)) is efficient,
and since the estimator with consistently estimated weights has the same
asymptotic properties this estimator is efficient as well. It is important to
realize, however, that the result about efficiency is an asymptotic result. It
is our experience that in practice the unweighted estimator, W (t) = I, does
as well as the maximum likelihood estimator. This is also supported by sim-
ulations in (Huffer & McKeague, 1991) showing that the efficiently weighted
estimator does not improve on the unweighted least squares estimator un-
less one has a very large dataset. Obviously, one appealing property of the
unweighted estimator is that one does not need to bother about choosing
some smoothing parameter. The smoothing needed in the maximum likeli-
hood estimator can in fact be quite a nuisance to carry out in practice. One
problem often encountered is that some of the estimated intensities, λ̂i(t),
may become negative or very close to zero. The former is unacceptable and
the latter may result in an unreliable estimator of B(t). Such problems are
hard to tackle in a satisfying way and are often dealt with in an ad hoc
manner.
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5.2 Inference for additive hazards models

In this section we present some approaches for conducting inference in the
additive hazards model. The material here may be viewed as a special case
of the later Section 5.4 on inference for the semiparametric additive haz-
ards model, but since all formulas are considerably simpler for the additive
hazards model this section will provide a good introduction to some of the
main ideas without the notation getting to heavy.

Various hypotheses about the regression coefficients may be of interest
and it is often possible to construct a sensible test-statistic based on the es-
timated cumulative regression coefficients to investigate a given hypothesis.
Although one at first sight might find it unappealing to work with the cumu-
lative regression coefficients rather than the regression coefficients directly,
the cumulative coefficients are much better suited for inferential purposes.
The uniform asymptotic description of order n1/2 leads to a simpler theory
than is possible for procedures based directly on β̂(t). One problem with
inferential procedures based on β̂(t) is that the asymptotic distribution of
β̂(t) will have a bias part and variance part. Although a uniform confi-
dence band can be constructed for β̂(t), along the lines of for example Fan
& Zhang (2000b), one drawback is that β̂(t) converges at a slower rate than
B̂(t).

In the following we consider the two hypotheses

H01 : βp(t) ≡ 0,

H02 : βp(t) ≡ γ,

where we, without loss of generality, formulate the hypothesis for the pth re-
gression coefficient function. Both these hypotheses are about the functional
behavior of the regression coefficient function and the stated equalities are
for the entire considered time range [0, τ ]. Obviously, these hypotheses may
also be of relevance for multiple regression coefficients simultaneously and
even though we only cover the one-dimensional case, all the procedures can
be generalized to a multivariate setting.

The hypotheses above can be translated directly into hypotheses about
the cumulative regression coefficients:

H01 : Bp(t) ≡ 0
H02 : Bp(t) ≡ γt.

The hypothesis H01 differs from H02 since the null hypothesis H02 involve
semiparametric models. The null of H02 is exactly the semiparametric risk
model, which we describe in detail in Section 5.3. When evaluating H02 in
this section, however, we will do so without fitting the model under the
null, that is by considering only the properties of the process B̂p(t).

We start by considering the hypothesis H01, which, as already indicated,
can be evaluated by the Hall-Wellner confidence band given in (5.16) below.
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Alternatively, one may consider a maximal deviation test statistic such as

T̃1S = sup
t∈[0,τ ]

|B̂p(t)|

or modified versions of it that take the variability of B̂p(t) into account;
we illustrate this in Example 5.2.1. If Bp(t) is expected to be monotone,
then one may simply use B̂p(τ) to test the null hypothesis, but this test
statistic will obviously have low power if Bp(τ) = 0 but so that H01 is not
true. On the other hand the test statistic, T̃1S , will have low power if βp(t)
differs only substantially from 0 towards the end of the time period [0, τ ],
and then a test statistic like

sup
s,t∈[0,τ ]

|B̂p(s) − B̂p(t)|

should be better at detecting departures of βp(t) from the null hypothesis.
The latter test statistic and T̃1S are easy to compute but approximate

quantiles are more difficult to obtain. Under the additive Aalen model and
Condition 5.1 we established that U (n) = n1/2(B̂ − B) converges in distri-
bution towards a Gaussian martingale U with variance function Φ(t). Since
the mappings that map (U (n)(t) : t ∈ [0, τ ]) into the suggested test statistics
are continuous (see Exercise 5.7), it follows that the test statistic n1/2T̃1S ,
e.g., has a limiting distribution that is equivalent to supt∈[0,τ ] |Up(t)|, where
Up denotes the pth component of U , and we can therefore obtain approxi-
mate asymptotic quantiles by using the asymptotic distribution U with an
estimate of the variance function Φ̂(t). This distribution must then be simu-
lated based on Φ̂(t). Alternatively, one can transform the process to obtain
a known limit distribution. The Hall-Wellner band is based on the fact that
for the Gaussian martingale, Up(t), with covariance function Φpp(t),

Up(t)
Φpp(τ)1/2

Φpp(τ) + Φpp(t)

has the same distribution as

B0

(
Φpp(t)

Φpp(τ) + Φpp(t)

)
where B0 is the Brownian bridge. This leads to the Hall-Wellner band

B̂p(t) ± n−1/2dα · Φ̂pp(τ)1/2

(
1 +

Φ̂pp(t)
Φ̂pp(τ)

)
, t ∈ [0, τ ], (5.16)

where Φ̂pp is the pth diagonal element of Φ̂ and dα is the the upper α-
quantile of supt∈[0,1/2] |B0(t)|.



118 5. Additive Hazards Models

The confidence band may be used for testing hypotheses such as H01 by
observing whether or not the zero function is contained within the band.
Note, however, that the hypothesis that the regression coefficient is time
invariant, H02, cannot be evaluated by looking at the band, because the
uncertainty of not knowing γ is not reflected.

Before we move on to discuss how to test the hypothesis H02, we first
present a general resampling approach, which can be used to evaluate the
variability of various test statistics. Considering the martingale term in
(5.11) and using the i.i.d. structure we may write it as

n−1/2
n∑

i=1

εi(t), (5.17)

where

εi(t) =
∫ t

0

(n−1X(s)T X(s))−1Xi(s)dMi(s), (5.18)

and

Mi(t) = Ni(t) −
∫ t

0

Yi(s)Xi(s)T dB(s).

For simplicity we have used the un-weighted version of the estimator. When
n is large, (5.17) is essentially equivalent to a sum of the independent and
identically distributed martingales

ε̃i(t) =
∫ t

0

[
E(Yi(s)X⊗2

i (s))
]−1

Xi(s)dMi(s). (5.19)

The variance of n1/2(B̂(t)−B(t)) may therefore be estimated consistently
by

Ψ̂(t) = n−1
n∑

i=1

ε̂⊗2
i (t),

where

ε̂i(t) =
∫ t

0

(n−1XT (s)X(s))−1Xi(s)dM̂i(s), (5.20)

with

M̂i(t) = Ni(t) −
∫ t

0

Yi(s)Xi(s)T dB̂(s).

The above representation of n1/2(B̂(t)−B(t)) as a sum of i.i.d. terms may
also be used to simulate its limit distribution.

Theorem 5.2.1 Let G1, ..., Gn be independent and standard normally dis-
tributed. Under Condition 5.1 and with the additional assumption that
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Yi(t)Xi(t) are uniformly bounded with bounded variation, it follows that
n1/2(B̂(t) − B(t)) has the same limit distribution as

∆1(t) = n−1/2
n∑

i=1

ε̂i(t)Gi

conditional on the data (Ni(·), Yi(·), Xi(·)) i = 1, . . . , n. Further, Ψ̂(t) is a
consistent estimator of the asymptotic variance of n1/2(B̂(t) − B(t)).

Proof. We start by showing that the i.i.d. representation leads to the
same asymptotic distribution. The process n1/2(B̂(t)−B(t)) is asymptot-
ically equivalent to

n−1/2
nX

i=1

εi(t)

where only an op(1) term due to lack of invertibility has been removed,
see Theorem 5.1.1, and where εi was defined in (5.18). We now show that
the i.i.d. representation has the same asymptotic distribution by showing
that

n−1/2
nX

i=1

(ε̃i(t) − εi(t)) = op(1)

where ε̃i is defined in (5.19) and op(1) is uniformly in t ∈ [0, τ ]. This
difference is equivalent to

n−1/2
nX

i=1

Z t

0

δ(s)Xi(s)dMi(s) =

Z t

0

δ(s)dM̃(s)

with
δ(t) = [E(Yi(t)X

⊗2
i (t))]−1 − n(XT X)−1(t)

and with

M̃(t) = n−1/2
nX

i=1

Z t

0

Xi(s)dMi(s).

It is a consequence of the central limit theorem for random processes that
M̃ converges in distribution towards a zero mean continuous Gaussian
process, or by the martingale central limit theorem due to its uniformly
bounded second moments. That the random process converges in the non-
martingale case can be shown by using the central limit theorem for all
finite dimensional distributions and establishing tightness. It follows by
the assumptions that δ is bounded in variation and that it converges uni-
formly to zero in probability, therefore applying the Lemma by Spieker-
man & Lin (1998) given in Chapter 2 it follows that

R t

0
δdM̃ converges

uniformly to zero. For more on this detail see also Lin et al. (2000). Note,
that the key-assumptions are the convergence to zero in probability of the
bounded variation process δ and the convergence in distribution of M̃ . A
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consequence is that the asymptotic variance of n1/2(B̂ − B) is given by
E(ε̃⊗2

i ). Note also that the asymptotic covariance function of n1/2(B̂−B)
is E(ε̃i(s)ε̃

T
i (t)).

We now consider ∆1(t) conditional on the data and proceed as Lin et al.
(2000) where additional details can be found. First, its conditional mean
is 0 and its variance equals Ψ̂(t). It therfore suffices to show that Ψ̂(s, t)
converges to Ψ(s, t) almost surely (that the finite dimensional distributions
converge), and that ∆1(t) is tight.

We know that

Ψ̃(s, t) = n−1
nX

i=1

ε̃i(s)ε̃
T
i (t),

converges to Ψ(s, t) uniformly when the second moments are uniformly
bounded because of the central limit theorem. We consider the one di-
mensional case for notational simplicity and show that Ψ̂(t) converges to
Ψ(t)

n−1
nX

i=1

{(ε̂i − εi) + (εi − ε̃)}2 (t) (5.21)

converges uniformly to zero. Then it follows that

Ψ̃(t) − Ψ̂(t)

converges uniformly to zero since

Ψ̂(t) = Ψ̃(t) + n−1
nX

i=1

{(ε̂i − ε̃i)}2 (t) + 2n−1
nX

i=1

ε̃i(t) {(ε̂i − ε̃i)} (t)

by use of Cauchy-Schwarz on the last term and (5.21). This follows by
showing that

n−1
nX

i=1

(ε̂i − εi)
2(t)

and

n−1
nX

i=1

(εi − ε̃i)
2(t)

both converges uniformly to zero almost surely for almost all sequences of
the data.

An alternative proof using modern empirical process theory is to use the
conditional multiplier central limit theorem (see van der Vaart & Wellner
(1996), Theorem 2.9.6) to see that

n−1/2
nX

i=1

ε̃i(t)Gi (5.22)

has the same asymptotic distribution as n1/2(B̂−B) both conditional and
unconditional on the data. Then the result follows after showing that ∆1

(with the estimated residuals) has the same asymptotic distribution as
(5.22) for almost all sequences of the data.

�
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FIGURE 5.3: PBC-data. Estimated cumulative regression functions with
95% confidence intervals (solid lines). Hall-Wellner bands (broken lines)
and simulation based bands (dotted lines).

This resampling approach for the additive Aalen model was suggested in
Scheike (2002).

A uniform confidence band and a test for H01 : Bp(t) ≡ 0 may now be
constructed based on replicates of ∆1(t) by repeatedly generating normal
variates {G(k)

i }i=1,...,n while holding the observed data fixed. Using the test
statistic T̃1S , one can approximate its distribution by sampling of ∆1(t), t ∈
[0, τ ], using the empirical distribution of

sup
t∈[0,τ ]

|∆1k,p(t)|

where ∆1k,p(t) denotes the kth resample of the pth component. Alterna-
tively, a variance weighted test statistic is

T1s = F1s(n1/2(B̂p(t) − Bp(t)), Ψ̂pp(t))

= sup
t∈[0,τ ]

|n
1/2B̂p(t)

Ψ̂1/2
pp (t)

|
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where Ψ̂pp(t) is the pth diagonal element of Ψ̂(t), and now F1s(∆1(t), Ψ̂pp(t))
will have the same asymptotic distribution as T1s.

Example 5.2.1 (PBC-data. Example 5.0.1 continued)

The estimate of the cumulative regression coefficients related to edema is
depicted in Figure 5.3 along with 95% confidence bands. The Hall-Wellner
band is shown with broken lines and the band based on T1s (obtained by
the above resampling technique) is shown with dotted lines. The pointwise
confidence intervals are given for comparison (solid lines). The two types
of bands are obtained as follows:

> plot(fit,xlab="Time (years)",hw.ci=2,sim.ci=3,specific.comps=3)

Note that the shape of the two confidence bands differ considerably. The
Hall-Wellner band being wide initially and narrower later in contrast to
the simulation based band. Both bands show that the effect of edema is
significant having the zero-function outside the bands. The p-value associ-
ated with the resampling based approach is the one reported in the output
shown in Example 5.0.1. �

To test H02 : βp(t) ≡ γ, we consider the following simple test statistics

T2s = F2s(n1/2(B̂p − Bp)) = n1/2 sup
t∈[0,τ ]

|B̂p(t) − B̂p(τ)
t

τ
|,

and

T2I = n

∫ τ

0

(B̂p(t) − B̂p(τ)
t

τ
)2dt,

the idea being that B̂p(τ)/τ is an estimate of the underlying constant under
the null hypothesis. The basic test process in this context is

n1/2(B̂p(t) − B̂p(τ)
t

τ
)

for t ∈ [0, τ ], that under the null should have the same asymptotic distri-
bution as the resampled processes

∆1(t) − ∆1(τ)
t

τ
.

By fitting the model under the null hypothesis, as is done in Section 5.4,
one could also use

n1/2 sup
t∈[0,τ ]

|B̂p(t) − γ̂t|,
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or

n

∫ τ

0

(B̂p(t) − γ̂t)2dt.

We here consider only the test statistics, T2s and T2I , which only involves
B̂p(t).

One potential drawback of the above test statistics is that they depend
on the considered time-interval and a test for constant effect over [0, τ ] may
be accepted even though one finds that the null hypothesis is rejected on
a smaller time-interval [0, τ1] with τ1 < τ .

The test statistic T2s, for example, has an asymptotic distribution that
can be derived directly as a consequence of the asymptotic distribution
of n1/2(B̂ − B) in Theorem 5.1.1. The quantiles of this distribution are,
however, difficult to obtain, and must be simulated based on one of the
estimators of the variance function such as Φ̂, Φ̃ or Ψ̂. This may be circum-
vented using the Khamaladze transformation of the test statistic yielding
an asymptotic distribution with quantiles that can be found in standard
tables. Further details are given in the below note.

The resampling approach motivated by Theorem 5.2.1 is conceptually
simpler to carry out as the asymptotic distribution of F2s(n1/2(B̂p − Bp))
according to the theorem can be approximated by F2s(∆1).

Note. Khmaladzes transformation.
Suppose we are interested in testing the hypothesis H02 : βp(t) = γ. As-
sume that the hypothesis is true and define

V̂p(t) = n1/2(B̂p(t) − B̂p(τ )
t

τ
)

= n1/2
“
B̂p(t) − Bp(t)

”
− n1/2

“
B̂p(τ ) − Bp(τ )

” t

τ
.

By Theorem 5.1.1 it follows that V̂p(t) converges in distribution towards
a Gaussian process Vp(t) that may be decomposed as

Vp(t) = Up(t) − Up(τ )
t

τ
,

where Up is a Gaussian martingale as described in Theorem 5.1.1. The
process Vp is not a martingale, however, but it may transformed to one
using the so-called Khmaladzes transformation, see Appendix A for more
details. The martingale property of Vp is destroyed by the second compo-
nent on the right-hand side of the latter display. The idea of Khmaladzes
transformation is to project the process into the orthogonal space spanned
by that component hence removing it. In this situation it reads (Appendix
A)

V ∗
p (t) = Vp(t)−

Z t

0

dΦpp(s)φ
−1
p (s)

jZ τ

s

φ−1
p (u)dΦpp(u)φ−1

p (u)

ff−1

×
Z τ

s

φ−1
p (u)dVp(u),
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where Φp(t) is the variance of Up(t) and φp(t) is the pth component of
φ(t) given in (5.9). An empirical version is

V̂ ∗
p (t, τ ) = V̂p(t)−

Z t

0

dΦ̂pp(s)φ̂−1
p (s)

jZ τ

s

φ̂−1
p (u)dΦ̂pp(u)φ̂−1

p (u)

ff−1

×
Z τ

s

φ̂−1
p (u)dV̂p(u), (5.23)

where Φ̂(t) is the optional variation estimator, and φ̂(t) is obtained by
inserting empirical quantities in the expression of φ(t), see (5.9). To do
this, one needs to estimate β(t) for example by smoothing of B̂(t). The
basic message is now that the limit distribution of V̂ ∗

p (t, τ ) is the same
as Up(t). Some technical difficulties arise, however, when trying to show
convergence on the whole of [0, τ ]. What may be shown easily is that
V̂ ∗

p (t, τ2) converges weakly in D([0, τ1]), τ1 < τ2 < τ , to the Gaussian
martingale Up(t). Based on this result one may then construct various
tests such as the Kolmogorov-Smirnov test and the Cramér-von Mises
test.

The Kolmogorov-Smirnov test rejects at level α if

sup
t≤τ1

˛̨
V̂ ∗

p (t, τ2)/(nΦ̂pp)1/2
˛̨ ≥ fα, (5.24)

where fα is the (1-α)-quantile in the distribution of sup0≤x≤1 |B(x)| with

B the standard Brownian motion and Φ̂pp = Φ̂pp(τ1). Specific values of
fα are f0.01 = 2.81, f0.05 = 2.24 and f0.1 = 1.96 (Schumacher, 1984).

The Cramér-von Mises test rejects at level α ifZ τ1

0

„
V̂ ∗

p (t, τ2)/(nΦ̂pp)1/2

1 + Γ̂(t)

«2

d

„
Γ̂(t)

1 + Γ̂(t)

«
≥ eα (5.25)

where eα is the (1-α)-quantile in the distribution of
R 1/2

0
B0(u)2 du with

B0 the standard Brownian bridge and Γ̂(t) = Φ̂pp(t)/Φ̂pp. Specific values
of eα were given in Chapter 2.

Example 5.2.2 (PBC data. Example 5.0.1 continued)

Considering the estimates depicted in Figure 5.1 it is not clear based on
the pointwise confidence intervals shown there which of the components
that have time-varying effects. The uniform bands depicted in Figure 5.3
are also inappropriate to test for constant effects because the bands do not
reflect the uncertainty of the estimate of the constant effect such as T2S and
T2I that we consider in the following. The table of statistics and p-values
for testing for time invariant effects obtained in Example 5.0.1 are

Test for time invariant effects

sup| B(t) - (t/tau)B(tau)| p-value H_0: B(t)=b t

(Intercept) 0.13000 0.139
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FIGURE 5.4: Test processes for testing constant effects with 50 simulated
processes under the null. Processes shown for edema and log(albumin).

Age 0.00297 0.829

Edema 0.47000 0.005

Bilirubin 0.03430 0.369

logAlbumin 0.29200 0.883

logProtime 0.96200 0.002

int (B(t)-(t/tau)B(tau))^2dt p-value H_0: B(t)=b t

(Intercept) 5.72e-02 0.037

Age 1.86e-05 0.665

Edema 8.73e-01 0.000

Bilirubin 1.85e-03 0.420

logAlbumin 7.92e-02 0.963

logProtime 3.10e+00 0.001

Call:

aalen(Surv(time/365, status) ~ Age + Edema + Bilirubin + logAlbumin +

logProtime, pbc, max.time = 8)
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Both T2S and T2I lead to very similar p-values, and it is seen that the
intercept, edema and log(protime) do have effects that vary with time. We
plot the processes used for computing the test-statistics T2S and T2I with
50 random realizations under the null of constant effects for edema and
log(albumin) (Figure 5.4).

> plot(fit,xlab="Time (years)",ylab="Test process",score=T,

+ specific.comps=3)

> plot(fit,xlab="Time (years)",ylab="Test process",score=T,

+ specific.comps=5)

The two plots of the test-statistic processes indicate that edema has a time-
varying effect, and that log(albumin) has a performance consistent with the
null of time-invariant effect. As seen above the simulation based p-values
were 0.005 for edema and 0.88 for log(albumin) thus clearly rejecting the
hypothesis of constant effect of edema. �

5.3 Semiparametric additive hazards models

The additive Aalen model (5.3) is very flexible with all regression coef-
ficients being time-varying. In many practical settings, however, it is of
interest to investigate if the risk associated with some of the covariates is
constant with time, that is, if some of the regression coefficients do not
depend on time. This is of practical relevance in a number of settings when
there is a desire to look more closely at the time-dynamics of covariates ef-
fects, such as for example treatment effects in medical studies. Also, when
data is limited it is sometimes necessary, as well as sensible, to limit the
degrees of freedom of the considered model to avoid too much variance,
thus making a variance-bias trade-off to get more precise information.

McKeague & Sasieni (1994) considered the semiparametric additive in-
tensity model

λi(t) = Yi(t){XT
i (t)β(t) + ZT

i (t)γ}, (5.26)

where Yi(t) is the at risk indicator, Xi(t) and Zi(t) are predictable locally
bounded covariate vectors of dimensions p and q, respectively, β(t) is a p-
dimensional locally integrable function and γ is a q-dimensional regression
vector. Lin & Ying (1994) considered the special case of this model where
p = 1 and

λi(t) = Yi(t){β(t) + ZT
i (t)γ}, (5.27)

which parallels the proportional hazards model of Cox (1972), see Section
6.1. The added generality of the general semiparametric risk model (5.26)
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by McKeague & Sasieni (1994) is, however, at no extra cost in terms of
added complexity in estimation. From a practical point of view it is prefer-
able with a more elaborate model that can describe time-dynamics of co-
variate effects when needed, rather than forcing all covariate effects to have
constant effects. Much of the literature on semiparametric additive hazards
models, that we also term semiparametric additive hazards models, have
focused on the simple version (5.27) of the model apparently being unaware
of the important parallel development for the general version (5.26) of the
model. McKeague & Sasieni (1994) derived explicit formulas for approxi-
mate maximum likelihood estimators of the cumulative B(t) =

∫ t

0
β(s) ds

and γ for model (5.26). The estimators may be motivated by least squares
reasoning or as solutions to approximate score equations similarly to what
was done for the general additive Aalen model in the previous section.

As for the additive Aalen model we organize the design vectors into
matrices

X(t) = (Y1(t)X1(t), ..., Yn(t)Xn(t))T

and
Z(t) = (Y1(t)Z1(t), ..., Yn(t)Zn(t))T .

The martingale decomposition of the counting process is

dN(t) = λ(t)dt + dM(t)
= X(t)dB(t) + Z(t)γdt + dM(t), (5.28)

which suggests, since the martingale increments are uncorrelated with zero-
mean, that dB(t) and γ can be estimated from the least squares equations

XT (t)W (t)(dN(t) − λ(t)dt) = 0, (5.29)∫
ZT (t)W (t)(dN(t) − λ(t)dt) = 0, (5.30)

where W (t) is a diagonal weight matrix. These equations can be solved
successively as follows. Solving (5.29) for fixed γ gives

dB̂(t) = X−(t) {dN(t) − Z(t)γdt} . (5.31)

Plugging this solution into (5.30) and solving for γ as well as integrating
we get

γ̂ =
{∫ τ

0

ZT (t)H(t)Z(t)dt

}−1 ∫ τ

0

ZT (t)H(t)dN(t), (5.32)

where
H(t) = W (t)(I − X(t)X−(t)),

and with the convention that H(t) is zero when the matrix inverse does not
exist. The matrix X−(t) is the generalized inverse of X(t) defined in (5.5).
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Note that the matrix H(t) projects onto the orthogonal space spanned by
the columns of X(t). By using (5.31) with γ̂ inserted in place of γ we get
the following estimator of B(t):

B̂(t) =
∫ t

0

X−(s)(dN(s) − Z(s)γ̂ds). (5.33)

The asymptotic properties of the estimators B̂(t) and γ̂ are given in the be-
low theorem. Before giving the results we need some regularity conditions.

Condition 5.2 With X̃i = (Xi, Zi) and l = p + q

(a) supt∈[0,τ ] E(Wi(t)Yi(t)X̃ij(t)X̃ik(t)X̃im(t)) < ∞ for all j, k, m = 1, .., l;

(b) r2(t) = E(Yi(t)Wi(t)(X̃i)⊗2(t)) is non-singular for all t ∈ [0, τ ].

�

Theorem 5.3.1 If Condition 5.2 holds, then, as n → ∞,

n1/2(γ̂ − γ) D→ V, (5.34)

where V is a zero-mean normal with variance Σ, and

n1/2(B̂ − B)(t) D→ U(t) as n → ∞ (5.35)

in D[0, τ ]p, where U(t) is a zero-mean Gaussian process with variance Φ(t).

Proof. The key to the proof is the following decomposition:

n1/2(γ̂ − γ) =

j
n−1

Z τ

0

ZT HZdt

ff−1

n−1/2

Z τ

0

ZT HdM + op(1) (5.36)

where the op(1) term is due to the possible non-invertibility of the involved
matrices. This term is handled in the same way as in Theorem 5.1.1. To
show that n1/2(γ̂ − γ) is asymptotically normal with the suggested co-
variance matrix, it therefore suffices to use the martingale central limit
theorem and to show that the matrix n−1

R τ

0
ZT HZdt converges in prob-

ability, the latter being a simple consequence of the i.i.d. assumption and
Condition 5.2.

Similarly, it follows that

n1/2(B̂(t) − B(t)) = n1/2

Z t

0

X−dM −
Z t

0

X−Zds n1/2(γ̂ − γ) + op(1).

(5.37)
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The second term that arises from the asymptotic distribution of n1/2(γ̂−γ)
can be written as a martingale using the above (5.36). It is a simple con-
sequence of the i.i.d. assumption and Condition 5.2 that

R t

0
X−Zds con-

verges uniformly in probability towards a deterministic matrix function,
that we may denote by p(t). We can use the martingale central limit the-
orem to deal with the martingale (n1/2

R t

0
X−dM, n−1/2

R t

0
ZT HdM). It

is now a simple application of the continuous mapping theorem to get the
asymptotic distribution of n1/2(B̂−B). If the weights Wi(t) = Yi(t)/λi(t),
i = 1, . . . , n, are used, then

〈n−1/2

Z ·
0

ZT HdM, n1/2

Z ·
0

X−dM〉(t) = 0

so in that case the covariance between the two leading terms in the above
(5.37) is equal to zero. �

Note that the asymptotic distribution of n1/2(B̂ − B) is not a Gaussian
martingale due to the term γ̂ in (5.33). This has consequences for the
construction of confidence bands. The asymptotic variance of the estimators
(5.32) and (5.33) are easily derived from martingale decompositions of the
estimators. First note that

n1/2(γ̂ − γ) = C−1
1 M1(τ) + op(1), (5.38)

where

C1 = n−1

∫ τ

0

ZT (t)H(t)Z(t)dt, M1(t) = n−1/2

∫ t

0

ZT (s)H(s)dM(s).

(5.39)

Similarly, it follows that

n1/2(B̂(t) − B(t)) =n1/2

∫ t

0

X−(s)dM(s)

−
∫ t

0

X−(s)Z(s)ds n1/2 (γ̂ − γ) + op(1)

=M2(t) − P (t)C−1
1 M1(τ) + op(1),

where

P (t) =
∫ t

0

X−(s)Z(s)ds, M2(t) = n1/2

∫ t

0

X−(s)dM(s). (5.40)

The variances in Theorem 5.3.1 are estimated consistently, under the as-
sumptions of the theorem for example by the optional variation processes.
There exist theoretical expressions for the variances similarly to the expres-
sion for Aalen’s additive model (5.8) but since the expressions are of little
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practical use we omit them. The optional variation estimators for Σ and Φ
have the form

Σ̂ =C−1
1 [M1] (τ)C−1

1 , (5.41)

Φ̂(t) = [M2] (t) + P (t)C−1
1 [M1] (τ)C−1

1 PT (t)

− [M2, M1] (t)C−1
1 PT (t) − P (t)C−1

1 [M1, M2] (t). (5.42)

The optional variation processes and optional covariation processes are
computed as

[M1] (t) = n−1

∫ t

0

ZT (s)H(s)diag(dN(s))H(s)Z(s),

[M2] (t) = n

∫ t

0

X−(s)diag(dN(s))X−(s),

[M1, M2] (t) =
∫ t

0

ZT (s)H(s)diag(dN(s))(X−(s))T .

The predictable variation estimator is obtained by replacing diag(dN(t))
by diag(XT

i (t)dB̂(t) + ZT
i (t)γ̂dt) in the above expressions. This expression

is more difficult to compute because it involves Lebesgue integration, and
the optional variation estimator is therefore preferred in practice.

Example 5.3.1 (PBC-data.)

In Example 5.0.1 we considered the semiparametric additive hazards model
with log(albumin), age and bilirubin having constant effects. The estimates
and their standard errors were

Parametric terms :

Coef. SE Robust SE z P-val

const(Age) 0.00201 0.000579 0.00060 3.47 5.16e-04

const(Bilirubin) 0.02070 0.003870 0.00328 5.34 9.24e-08

const(logAlbumin) -0.22800 0.069200 0.06170 -3.29 9.89e-04

Call:

aalen(Surv(time/365, status) ~ const(Age) + Edema +

const(Bilirubin) + const(logAlbumin) + logProtime, pbc,

max.time = 8)

This gives a simple summary of these effects, while the model still allows
the needed complexity for the remaining two effects that are shown in
Figure 5.5 together with the estimated cumulative baseline. The shown
95% pointwise confidence intervals (full lines) are based on the optional
variation formula just given, and the 95% confidence bands (broken lines)
are based on a resampling technique described in Section 5.6. The plots are
obtained by
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FIGURE 5.5: PBC-data. Estimated cumulative regression coefficients in the
semiparametric additive hazards model with 95% pointwise confidence in-
tervals (solid lines) and 95% confidence band (broken lines).

> plot(fit.semi,sim.ci=2,xlab="Time (years)")

Compare with the appropriate plots given in Figure 5.1 and note that
both the estimates and the standard errors are almost equivalent. Given
that the straight line approximations fit so well one might have expected
a gain in efficiency for the nonparametric components, but these appear
to be estimated just as well in the full model with all components being
nonparametric for this particular dataset, see also Exercise 5.8. �

We motivated the estimator by least squares arguments similarly to what
was done for the Aalen additive model in Section 5.1, but the original
work by McKeague & Sasieni (1994) derived the estimator as an approx-
imate maximum likelihood estimator. The log-likelihood function of the
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i.i.d. counting processes can be written as

n∑
i=1

(∫
log(XT

i (t)β(t) + ZT
i (t)γ)dNi(t) −

∫
Yi(t)(XT

i (t)β(t) + ZT
i (t)γ)dt

)
.

Taking derivatives with respect to β(t) and γ leads to the score equations

X(t)diag(Yi(t)/λi(t))(dN(t) − X(t)dB(t) − Z(t)γdt) = 0,∫
Z(t)diag(Yi(t)/λi(t))(dN(t) − X(t)dB(t) − Z(t)γdt) = 0.

These are on the same form as the least squares score equations (5.29) and
(5.30) if the λi(t)’s in the above displays are assumed known. McKeague
& Sasieni (1994) showed that with these weights and even with consistent
estimates of the weights these estimators are asymptotically efficient. Effi-
cient estimates can thus be constructed by a two-step procedure similarly
to what was done for the simple additive hazards model. For practical use
we recommend, however, using the unweighted estimators, that is, to take
W (t) = I in the expressions (5.32) and (5.33).

The estimator of γ was derived by integrating the score equation (5.30)
before solving it. An alternative estimator γ̃ may be constructed by solving
for the increments γdt and then cumulate these increments. This alterna-
tive estimator has certain robustness properties as shown in the following
examples. The alternative estimator is

γ̃ =
1
τ

∫ τ

0

{
ZT (t)H(t)Z(t)

}−1
ZT (t)H(t)dN(t), (5.43)

and then an alternative estimator of B(t) is given by

B̃(t) =
∫ t

0

X−(s)(dN(s) − Z(s)γ̃ds). (5.44)

These estimators have the same asymptotic properties as γ̂ and B̂(t)
and are thus also efficient, see Exercise 5.12, when efficiently weighted. The
matrix inverse in (5.43) may make γ̃ numerically more unstable than γ̂, but
there are also some advantages of the alternative estimators as illustrated
in the following two examples.

Example 5.3.2 (The alternative semiparametric estimator)

One advantage of the alternative estimator is that it results in something
sensible even if it is not specified correctly which of the effects that are
time-varying. To realize this consider the additive hazards model on Aalen
form, where

λi(t) = XT
i (t)α(t) + ZT

i (t)β(t).



5.3 Semiparametric additive hazards models 133

Then one can estimate the cumulatives of α and β by the least-squares
Aalen estimator (5.6). The estimator for the B(t) =

∫ t

0 β(s)ds component
of the model can be written as

B̂(t) =
∫ t

0

{ZT (s)H(s)Z(s)}−1ZT (s)H(s)dN(s)

with H = (I − XX−), see Exercise 5.12. Therefore γ̃, that is τ−1B̂(τ),
makes sense even if β(t) is not constant over the considered time interval.

�

A similar point to the one just made in the previous example can be
formulated as a robustness property in the case of a misspecification of
which of the effects that are time-varying.

Example 5.3.3 (Misspecified additive models)

In models with time-varying effects, such as the semiparametric additive
hazards model, the primary interest may be on one covariate while it is
still important to correct for another. We here consider two covariates and
wish to investigate what consequences it has if the model is misspecified in
terms of which of the covariates that has time-varying effect. Assume that
the true hazard is on the form

λ̃(t) = Z(t)β0(t) + X(t)γ0.

We assume that the nonparametric effect β0(t) is non-constant. We shall
now take a closer look at the consequences of working with the incorrectly
specified model

λ(t) = X(t)β(t) + Z(t)γ.

We start by estimating the parameters of the misspecified model, by using
the usual un-weighted estimates of γ and B, (5.32) and (5.33), respectively,

γ̂ = C−1
1

∫ τ

0

ZT (t)H(t)dN(t),

B̂(t) =
∫ t

0

X−(s)(dN(s) − Z(s)γ̂ds),

where H(t) = (I − X(t)X−(t)). The martingale decomposition under the
true model gives

γ̂ =n−1/2C−1
1 M1(τ) + n−1C−1

1

∫ τ

0

ZT (t)H(t)Z(t)β0(t)dt,

B̂(t) =M3(t, τ) + γ0t

+
∫ t

0

X−(s)Z(s)β0(s)ds − n−1P (t)C−1
1

∫ t

0

ZT (s)H(s)Z(s)β0(s)ds,
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where

M3(t, τ) =
∫ t

0

X−(s)dM(s) + n−1/2P (t)C−1
1 M1(τ).

We see that γ̂, apart from the martingale term, is a weighted average of
β0(t), so, when β0(t) is non-constant with time, γ̂ is not an unbiased (or
even consistent) estimator of

∫ τ

0 β0(t)dt. The nonparametric estimate B̂(t)
will not be a consistent estimator of γ0t unless∫ t

0

X−(s)Z(s)β0(s)ds = n−1P (t)C−1
1

∫ t

0

ZT (s)H(s)Z(s)β0(s)ds,

and this will typically not be the case when β0(t) is non-constant. Note,
however, that if X−(t)Z(t) are small for all t ∈ [0, τ ], indicating that X(t)
and Z(t) are almost uncorrelated for all t then the two integrals will both be
close to zero. Also, if β0(t) does not vary to much then the two expressions
will be close to each other.

If we instead use the alternative estimator (5.43) of γ, we get that

γ̃ =τ−1

∫ τ

0

{ZT (t)H(t)Z(t)}−1ZT (t)H(t)dM(t) + τ−1

∫ τ

0

β0(t)dt

B̃(t) =γ0t + n−1/2M2(t)

− τ−1P (t)
∫ τ

0

{
ZT (t)H(t)Z(t)

}−1
ZT (t)H(t)dM(t)

+
∫ t

0

X−(s)Z(s)β0(s)ds − P (t)τ−1

∫ t

0

β0(s)ds.

Therefore γ̃ is an unbiased (assuming that the involved inverses exist) esti-
mator of τ−1

∫ τ

0
β0(t)dt even though the applied model is misspecified. The

nonparametric estimate B̃(t) will still not be a consistent estimator of γ0t
unless ∫ t

0

X−(s)Z(s)β0(s)ds = P (t)τ−1

∫ t

0

β0(s)ds.

If X−(t)Z(t) is small for all t ∈ [0, τ ], or if β0(t) does not vary too much,
then the two expressions in the later display will be close to each other.

Consider the simple case with time-fixed covariates Xi(t) = Yi(t)Xi and
Zi(t) = Yi(t)Zi with the at risk indicator Yi(t) absorbed into the design.
Even if Xi and Zi are independent, then Xi(t) and Zi(t) will be correlated
(if γ �= 0 and β �= 0) for those subjects at risk at a particular point in time.
This is due to the correlation induced by the subjects being at risk.

We conclude that it is important to carefully investigate if each of the
effects of the covariates are time-varying before reducing to the semipara-
metric model. A simple strategy is to start with the flexible model that
allows all effects to be time-varying and then investigate if some of the ef-
fects are well described by constants and then successively simplifying the
model as appropriate. �
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5.4 Inference for the semiparametric hazards model

The semiparametric additive hazards model is easy to fit when it has been
decided if covariate effects are time-varying or constant with time. In Sec-
tion 5.2 we showed how to test if a covariate effect was significant and to
test if a covariate had a time-invariant effect using the full Aalen additive
model as starting point. The test for time-invariance was limited to con-
sidering just one covariate, and even though we could have constructed a
multidimensional version of the test, it is often natural and preferable with
successive test for time-varying effects that is testing one component at a
time using the reduced model as the starting point for the next analysis
and test. In this section we show how to perform such successive test for
deciding if effects are time invariant or not. This question is of great prac-
tical importance in many settings as already illustrated in the introductory
Example 5.0.1.

Within the semiparametric model

λi(t) = Yi(t){XT
i (t)β(t) + ZT

i (t)γ}

we shall focus on the two hypothesis

H01 : βp(t) ≡ 0 or equivalently Bp(t) ≡ 0;

H02 : βp(t) ≡ γq+1 or equivalently Bp(t) ≡ γq+1t;

where we, without loss of generality, consider only the last nonparametric
component of the model. Note, however, that the effect of the Z-covariates
is now constant in contrast to what was assumed in Section 5.2.

Considering H01 we may apply Theorem 5.3.1 directly to obtain a con-
fidence band for Bp(t). The asymptotic distribution of n1/2(B̂p(t)−Bp(t))
is a Gaussian process, but is does not have independent increments, and
therefore the standard Hall-Wellner band can not be applied directly. One
could apply the Khmaladze transformation to obtain a well described limit
distribution. We use, however, a resampling approach that is easier to im-
plement in practice (Scheike, 2002).

The resampling approach is based on the following decomposition into
i.i.d. residuals. First, note that

n1/2(γ̂ − γ) = C−1
1 n−1/2

n∑
i=1

ε2i + op(1),

where C1 was given in (5.39) and

ε2i =
∫ τ

0

{
Zi(t) − (Z(t)T X(t))(X(t)T X(t))−1Xi(t)

}
dMi(t),
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using the un-weighted version of γ̂. The basic martingales (residuals) are
given by

Mi(t) = Ni(t) −
∫ t

0

Yi(s)(XT
i (s)dB(s) + ZT

i (s)γds).

The sum of the residuals is asymptotically equivalent to a sum of i.i.d.
terms

ε̃2i =
∫ τ

0

{
Zi(t) − E(Yi(t)Zi(t)XT

i (t))E(Yi(t)Xi(t)XT
i (t))−1Xi(t)

}
dMi(t),

where we use that the limit of for example n−1ZT (t)X(t) is given by
E(Yi(t)Zi(t)XT

i (t)).
This implies for example that the variance of n1/2(γ̂−γ) can be estimated

consistently by

C−1
1 (n−1

n∑
i=1

ε̂⊗2
2i )C−1

1 , (5.45)

where ε̂2i is estimated using

M̂i(t) = Ni(t) −
∫ t

0

Yi(s)(XT
i (s)dB̂(s) + ZT

i (s)γ̂ds)

in the expression for ε2i. Further, and more interestingly, we can also make
an i.i.d. decomposition of the nonparametric estimator. Note that

n1/2(B̂(t) − B(t)) = n−1/2
n∑

i=1

ε3i(t) + op(1),

where

ε3i(t) = ε4i(t) − P (t)C−1
1 ε2i,

ε4i(t) =
∫ t

0

(
n−1XT (s)X(s)

)−1
Xi(s)dMi(s),

with C1 and P (t) defined in (5.39) and (5.40), respectively. The asymptoti-
cally equivalent i.i.d. decomposition is obtained by a modification similarly
to what was applied to go from ε2i to ε̃2i. This suggests that the variance
of n1/2(B̂(t) − B(t)) can be estimated by the robust variance estimator

Ψ̂(t) = n−1
n∑

i=1

ε̂⊗2
3i (t), (5.46)

again substituting M̂i in the expressions for ε3i and ε4i. In Section 5.6
we discuss which robustness properties the estimator Ψ̂(t) possesses. The
following theorem justifies the resampling approach utilized later in this
section.
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Theorem 5.4.1 Under the conditions of Theorem 5.3.1 and with G1, ..., Gn

independent standard normals, it follows that

∆2 = C−1
1 n−1/2

n∑
i=1

ε̂2iGi,

∆3(·) = n−1/2
n∑

i=1

ε̂3i(·)Gi,

has the same asymptotic distribution as n1/2(γ̂−γ, B̂−B). Further, (5.45)
and (5.46) are consistent estimators of the variance of n1/2(γ̂ − γ) and
n1/2(B̂ − B), respectively.

Proof. Follows along the lines of the equivalent theorem for the additive
Aalen model, Theorem 5.2.1. �

Example 5.4.1 (PBC-data.)

Consider the semiparametric model, as in Example 5.0.1, where age, biliru-
bin and log(albumin) have constant effect. The remaining two covariates,
edema and log(protime), have time-varying effect. In Figure 5.6 we depict
95% confidence intervals for the cumulative coefficients based on the robust
standard errors (broken lines) and those based on the optional variation
process (solid lines). For this dataset the two types of confidence intervals
are almost equivalent.

> for (i in 1:3) {

+ plot(fit.semi,xlab="Time (years)",specific.comps=i,

+ robust=2,pointwise.ci=0)

+ plot(fit.semi,xlab="Time (years)",specific.comps=i,

pointwise.ci=1,add.to.plot=T) }

�

The resampling theorem may be used to construct a confidence band for
the pth component of B. We use the following simple functional

T1S = F1S(n1/2(B̂p − Bp), Ψ̂pp) = sup
t∈[0,τ ]

|n
1/2B̂p(t)
Ψ̂pp(t)

|,

where Ψ̂pp(t) is the pth diagonal element of Ψ̂(t). To approximate the
quantiles one may make simulations based on the limiting distribution of
n1/2(B̂p(t)−Bp(t)) or by using the above resampling theorem that implies
that F1S(∆3, Ψ̂pp) has the same asymptotic distribution as T1S .
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FIGURE 5.6: PBC-data. Estimated cumulative regression coefficients in
semiparametric additive hazards model with 95% confidence intervals based
on robust (broken lines) and optional variation (solid lines) variance esti-
mates.

The key point of this section is to construct a formal procedure for testing
the hypothesis

H02 : βp(t) ≡ γq+1.

A simple test, based on B̂p only, is to compute

T2S = F2S(n1/2(B̂p − Bp)) = n1/2 sup
t∈[0,τ ]

|B̂p(t) − B̂p(τ)
t

τ
|.

The asymptotic properties of this test statistic may be simulated as a direct
consequence of Theorem 5.4.1, by computing F2S(∆3). An alternative to
this test statistic is

T2I = F2I(n1/2(B̂p − Bp)) = n

∫ τ

0

(B̂p(t) − B̂p(τ)
t

τ
)2dt,
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that under the null equals F2I(n1/2(B̂p −Bp)). The test-process associated
with these two test statistics is

B̂p(t) − B̂p(τ)
t

τ
,

which will carry much information about the type of deviation from the
null hypothesis.

A more complicated test statistic is based on both B̂p(·) and γ̂q+1, where
B̂p(·) is obtained in the full model and γ̂q+1 is computed under the null-
hypothesis, see Martinussen & Scheike (1999) and Scheike (2002) for similar
ideas in a regression set-up. To distinguish the design under the model with
freely varying βp(t) and under the semiparametric null, we let the designs
under the null be denoted X̃(t) and Z̃(t), and use a similar notation for
other quantities defined under the null.

Two functionals to test the null are

n1/2 sup
t∈[0,τ ]

|B̂p(t) − γ̂q+1t|

and
n

∫ τ

0

(B̂p(t) − γ̂q+1t)2dt.

One may also consider test statistics where the variance is taken into ac-
count. To approximate the quantiles of these test statistics make an i.i.d.
representation and note that n1/2(B̂p(t)− γ̂q+1t) is asymptotically equiva-
lent to a Gaussian process that can be approximated by

n−1/2
n∑

i=1

ε5i(t),

where

ε5i(t) = ε4i(t) − tP̃ (t)C̃−1
1 ε̃2i,

and where the last term is computed under the null. Further, similarly
to Theorem 5.3.1, it can be shown that the asymptotic distribution of
n1/2(B̂p(t) − γ̂q+1t) (and n−1/2

∑
i ε5i(t)) is the same as the asymptotic

distribution of

∆4(t) = n−1/2
n∑

i=1

ε̂5i(t)Gi,

where G1, ..., Gn are independent standard normals. Therefore the quantiles
of the two test-statistics may be obtained from random samples of ∆4(·).

The suggested test statistics are easy to modify in the current framework.
For example the test statistic

n1/2 sup
s,t∈[0,τ ]

|(B̂p(t) − B̂p(s)) − γ̂q+1(t − s)|

may be better to detect local departures from the null around s.
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FIGURE 5.7: Test processes for time-varying effects with 50 random pro-
cesses under the null.

Example 5.4.2 (PBC-data.)

This example illustrates the use of the test statistics T2s and T2I . Consider
the semiparametric model, as in Example 5.0.1, where log(albumin), age
and bilirubin have constant parametric effects. The computed test statistics
are given in the below output with p-values being approximated based on
1000 replications.

> fit.semi<-aalen( Surv(time/365,status)~const(Age)+Edema+

+ const(Bilirubin)+const(logAlbumin)+logProtime,pbc,

+ max.time=8)

Semiparametric Additive Risk Model

Simulations start N= 1000

> summary(fit.semi)

Additive Aalen Model

Test for nonparametric terms

Test for non-significant effects
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sup| hat B(t)/SD(t) | p-value H_0: B(t)=0

(Intercept) 21.80 0.000

Edema 3.28 0.011

logProtime 2.80 0.057

Test for time invariant effects

sup| B(t) - (t/tau)B(tau)| p-value H_0: B(t)=b t

(Intercept) 0.101 0.001

Edema 0.439 0.000

logProtime 0.937 0.001

int (B(t)-(t/tau)B(tau))^2dt p-value H_0: B(t)=b t

(Intercept) 0.0419 0.001

Edema 0.7890 0.000

logProtime 2.5200 0.002

Parametric terms :

Coef. SE Robust SE z P-val

const(Age) 0.00201 0.000579 0.00060 3.47 5.16e-04

const(Bilirubin) 0.02070 0.003870 0.00328 5.34 9.24e-08

const(logAlbumin) -0.22800 0.069200 0.06170 -3.29 9.89e-04

> plot(fit.semi,score=T,xlab="Time (years)",ylab="Test Process")

The observed test-processes may be used to learn where the departure from
the null is present. Figure 5.7 shows the underlying process along with 50
resampled processes. The behavior of the observed test-process for edema
indicates, just as the estimate of the effect of edema, that the effect of
edema is much higher initially. Note, that the figures are consistent with
the computed supremum test-statistic.

Sometimes the observed test-process will deviate from the behavior under
the null without it being reflected in the test-statistics considered here. The
supremum test-statistic will tend to be large at places with large variation,
and sometimes one should rather look for departures between the observed
test-process and the null at places with small variation. One way of remedy-
ing this is to use a modified version of the test-statistics that takes the vari-
ance into account. These are computed using the option weighted.test=1
as shown below.

> fit.semi.w<-aalen( Surv(time/365,status)~const(Age)+Edema+

+ const(Bilirubin)+const(logAlbumin)+logProtime,pbc,

+ max.time=8,weighted.test=2)

Semiparametric Additive Risk Model

Simulations start N= 1000

> summary(fit.semi.w)

Additive Aalen Model

Test for nonparametric terms
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FIGURE 5.8: Weighted test-processes for time-varying effects with 50 ran-
dom processes under the null.

Test for non-significant effects

sup| hat B(t)/SD(t) | p-value H_0: B(t)=0

(Intercept) 21.80 0.000

Edema 3.28 0.015

logProtime 2.80 0.044

Test for time invariant effects

sup| B(t) - (t/tau)B(tau)| p-value H_0: B(t)=b t

(Intercept) 13.30 0.000

Edema 5.21 0.000

logProtime 3.42 0.006

int (B(t)-(t/tau)B(tau))^2dt p-value H_0: B(t)=b t

(Intercept) 396 0.000

Edema 115 0.000

logProtime 57 0.002

Parametric terms :

Coef. SE Robust SE z P-val

const(Age) 0.00201 0.000579 0.00060 3.47 5.16e-04



5.4 Inference for the semiparametric hazards model 143

const(Bilirubin) 0.02070 0.003870 0.00328 5.34 9.24e-08

const(logAlbumin) -0.22800 0.069200 0.06170 -3.29 9.89e-04

> plot(fit.semi.w,score=T,xlab="Time (years)",ylab="Test process");

The weighted version of the observed test-processes are shown in Fig-
ure 5.8. They result have a behavior quite similar to the unweighted case
for this dataset as is evident from comparing Figure 5.7 and Figure 5.8. The
weighted test-statistics shows a somewhat erratic behavior at the start and
end of the time-interval. This is due to the fact that the test-statistic that is
almost zero is divided with a standard error that is also almost zero. This
can be remedied by not considering the edge area’s, in the above exam-
ple weighted.test=2 thus ignoring the first and last two jump times edge
points. Note, however, that the weighted supremum test-statistic may lead
to different conclusions, because the different summary statistics reflect
different types of departures from the null. �

Example 5.4.3 (Time-varying U-shaped risk function)

In this example we consider another type of hypothesis:

H03 : βp(t) ≡ θβp−1(t);

supposing that the ratio between two of the regression functions is constant.
This is of interest to investigate if one encounters a so-called U-shaped
relationship between mortality and certain risk factors such as body mass
index (BMI, weight in kilograms divided by square of height in meters) with
low and high BMI being unfavorable. It then becomes an issue whether the
nadir, which is the value of the covariate associated with the lowest risk,
remains stable by advancing time during which the risk factor may change
at the individual level.

The Aalen model is well suited to investigate such questions since the
influence of each covariate in the model can vary separately with time
thus allowing a possible nadir (related to a given covariate) to vary with
time. To be specific: If Xip(t) is set to X2

ip−1(t), the nadir of the quadratic
relationship between the covariate Xip−1(t) and the intensity λi(t, Xi(t))
is

−βp−1(t)
2βp(t)

,

and since we are interested in investigating a possible time-dependency of
such a nadir, the null-hypothesis H03 : βp(t) ≡ γβp−1(t). is of interest.
Below we address estimation of γ and testing of the hypothesis of constant
nadir, see Martinussen & Sørensen (1998) for further details. The following
notation will be used: for a (p× l)-matrix A, Ai denotes the (1× l)-matrix
consisting of the ith row in A, Ãi denotes the (i × l)-matrix consisting of
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the first i rows in A, and Ãij denotes the (1 × j)-matrix consisting of the
first j elements in the ith row of A. Solving the parametric score equation
(differentiate the log-likelihood function with respect to γ) yields

γ =
(∫ τ

0

Ỹp(t)
T
W (t)Ỹp(t) dBp−1(t)

)−1

×
(∫ τ

0

Ỹp(t)
T
W (t) dN(t) −

∫ τ

0

Ỹp(t)
T
W (t)Ỹp−1(t)dB̃p−1(t)

)
.

(5.47)

Here,

Ỹp(t) = (Y1p(t), . . . , Ynp)T , Ỹp−1(t) = (Ỹ T
1p−1(t), . . . , Ỹ

T
np−1(t))

T ,

B̃p−1(t) =
∫ t

0

β̃p−1 ds, and W (t) = βp−1(t)diag(1/λi(t)).

The expression given by (5.47) cannot be used as an estimate of γ since
it depends on the unknown regression functions. However, replacing the
weight matrix W (t) by the identity matrix In, Bp−1(t) and B̃p−1(t) by
the estimates under the unconstraint Aalen additive model leads to the
following unweighted least squares estimator

γ̂ =
(∫ τ

0

Ỹp(t)
T
Ỹp(t) dB̂p−1(t)

)−1 ∫ τ

0

J(t)Ỹp(t)
T
H(t) dN(t), (5.48)

where H(t) = (In − Ỹp−1(t)(Y −(t))˜p−1). To test the null-hypothesis one
may consider the maximal deviation test statistic:

TS = sup
t∈[0,τ ]

∣∣∣B̂p(t) − γ̂B̂p−1(t)
∣∣∣ .

Under the null-hypothesis we have that

n1/2(B̂p(t) − γ̂B̂p−1(t)) =n1/2(B̂p(t) − γB̂p−1(t)) − B̂p−1(t)n1/2(γ̂ − γ)

=M̃1(t) − B̂p−1(t)
(

n−1

∫ τ

0

Ỹ T
p Ỹp dB̂p−1

)−1

M̃2(τ),

where

M̃1(t) = n1/2

∫ t

0

γ∗Y − dM,

M̃2(t) = n−1/2

∫ t

0

Ỹ T
p H(In − γỸp(Y −)p−1) dM
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FIGURE 5.9: Time-dependent nadir of risk with 95% pointwise confidence
limits. The straight line estimate is given by γ̂. Adapted from Martinussen
& Sørensen (1998).

with M(t) = (M1(t), . . . , Mn(t))T , Mi(t) = Ni(t) −
∫ t

0
λi ds the basic mar-

tingales, and γ∗ the (1 × p)-vector (0, . . . , 0,−γ, 1)
In Martinussen & Sørensen (1998) this method was applied to data from

the Copenhagen City Heart Study. The dataset that were analyzed con-
sisted of 8443 women. The time scale is age and failures beyond age 85
were excluded, that is, τ = 85. The following covariates are considered:
Xi1=1, Xi2=ex-smoker (1 if yes, 0 otherwise), Xi3=smoker (1 if yes, 0 oth-
erwise), Xi4 = log (BMI) − constant and Xi5 = X2

i4 the quadratic term
defining the U-shape of interest. The applied model is thus

λi(t, Xi(t)) =Yi(t){β1(t) + β2(t)Xi2(t) + β3(t)Xi3(t)

+ β4(t)Xi4(t) + β5(t)X2
i4(t)}.
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The estimated cumulative regression functions were smoothed using the
Epanechnikov kernel with bandwidth 15 years to get estimates of the re-
gression functions. In Figure 5.9 we have used these estimates to obtain a
plot of the evolution of the nadir related to BMI (recall that the nadir at
time t is −β4(t)/2β5(t)). The included pointwise confidence limits are based
on the confidence limits for the regression functions. Since the estimates of
the regression functions are biased, see Exercise 4.1, these limits should be
interpreted with some caution.

From Figure 5.9, it seems that the nadir could be constant within the in-
terval where the estimate is well determined. Using (5.48), a time-invariant
nadir is estimated to a body mass index at 26.2 kg/m2, which seems ac-
ceptable judging from Figure 5.9. The distribution of the teststatistic TS

were simulated and it was found that the null-hypothesis is acceptable with
a p-value of 0.24. It therefore seems reasonable to conclude that an age-
independent nadir is in agreement with the data, and is estimated to be
26.2 kg/m2. �

5.5 Estimating the survival function

We now show how to estimate subject specific survival using the semi-
parametric additive survival model. Note, that the Aalen additive hazards
model is a special case of this taking q = 0 in the semiparametric model.
Assume that a subject with covariates X0 and Z0, that do not depend on
time, have additive hazard function

λ0(t) = XT
0 β(t) + ZT

0 γ.

The survival probability is given as

S0(t) = S0(B, γ, t) = exp(−XT
0 B(t) − ZT

0 tγ)

that obviously can be estimated by

Ŝ0(t) = S0(B̂, γ̂, t) = exp(−XT
0 B̂(t) − ZT

0 tγ̂).

It is a consequence of Theorem 5.3.1 and the functional delta method that
the continuous functional n1/2(Ŝ0−S0) has an asymptotic distribution that
is easy to derive (see Exercise 5.13). It can be shown, under Condition 5.2,
that n1/2(Ŝ0−S0) converges towards a zero-mean Gaussian process U with
variance function Q on [0, τ ] (see Exercise 5.13). A Taylor series expansion
yields (up to op(1)) that

n1/2(S0(B̂, γ̂, t) − S0(B, γ, t)) =

− S0(B, γ, t)
{
XT

0 n1/2(B̂(t) − B(t)) + tZT
0 n1/2(γ̂ − γ)

}
. (5.49)
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The last expression on the right hand side of (5.49) can be written as

XT
0 {M2(t) − P (t)C−1

1 M1(τ)} + tZT
0 C−1

1 M1(τ),

see (5.39) and (5.40). Based on this martingale decomposition we may give
a optional variation process estimator of its variance, see Exercise 5.13,
which we here denote by Υ̂(t) without deriving an explicit formula. The
variance function Q can then be estimated consistently by

Q̃(t) = Ŝ2
0(t)Υ̂(t).

This will lead to pointwise (1 − α)-confidence intervals of the form

Ŝ0(t) ± n−1/2cα/2Q̃
1/2(t).

where cα/2 is the (1 − α/2)-quantile of the standard normal distribution.
The above method to construct confidence intervals is in principle straight-
forward. Below, however, we outline a resampling approach that is simpler
to implement and also will lead to a confidence band.

With the notation from Section 5.4 we derived in Theorem 5.4.1 that
n1/2(γ̂ − γ) and n1/2(B̂ − B) are asymptotically equivalent to

∆2 = n−1/2
n∑

i=1

ε̂2,iGi,

∆3(t) = n−1/2
n∑

i=1

ε̂3,i(t)Gi,

where G1, ..., Gn are independent and standard normally distributed. There-
fore, applying the functional delta method to these asymptotically equiv-
alent resampling processes will lead to an equivalent limit distribution,
which may be used to construct a confidence band. We now make an i.i.d.
representation of the term

XT
0 n1/2(B̂ − B)(t) + tZT

0 n1/2(γ̂ − γ)

from (5.49). Define

ε5,i(t) = XT
0 ε3,i(t) + tZT

0 ε2,i.

It follows that that n1/2(Ŝ0 − S0)(t) has the same asymptotic distribution
as

∆S(t) = −S0(t)n−1/2
n∑

i=1

ε̂5,i(t)Gi. (5.50)

It also follows that

Q̂(t) = Ŝ2
0(t)n−1

n∑
i=1

ε̂25,i(t),



148 5. Additive Hazards Models

0 2 4 6 8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time (years)

S
u

rv
iv

a
l

FIGURE 5.10: PBC-data. Survival prediction with 95% pointwise confidence
intervals (solid lines) and 95% confidence band (broken lines).

is a consistent estimator of the variance of n1/2(Ŝ0 − S0), and an approxi-
mate (1 − α)-confidence band is on the form

Ŝ0(t) ± Cαn−1/2Q̂1/2(t),

where Cα is the (1 − α)-quantile of

sup
t∈[0,τ ]

| ∆k
S(t)

Q̂1/2(t)
|

with ∆k
S(t) the kth resampled process, k = 1, . . . , K.

Example 5.5.1 (Survival prediction for PBC-data)

Consider the PBC-data using the semiparametric additive hazards model
with edema and log(protime) having timevarying effect and with age, biliru-
bin, and log(albumin) having constant effect.



5.6 Additive rate models 149

We first fit the model to get the i.i.d. representation, and then compute
the approximate constant to construct a 95% confidence band based on
resampling.

> fit<-aalen(Surv(time/365,status)~const(Age)+Edema

+ +const(Bilirubin)+const(logAlbumin)+logProtime,max.time=8,

+ pbc,resample.iid=1)

Semiparametric Additive Risk Model

Simulations start N= 1000

> # fit$B.iid and fit$gamma.iid contains i.i.d. representation

> x0<-c(1,0,0); z0<-c(0,0,0);

> delta<-matrix(0,144,418);

> for (i in 1:418) {delta[,i]<-x0 %*% t(fit$B.iid[[i]])+

+ fit$cum[,1]*sum(z0*fit$gamma.iid[i,]);}

> S0<-S0.add<-exp(- x0 %*% t(fit$cum[,-1]))

> se<-apply(delta^2,1,sum)^.5

> ### pointwise confidence intervals

> plot(fit$cum[,1],S0,type="s",ylim=c(0,1),xlab="Time (years)",

+ ylab="Survival")

> lines(fit$cum[,1],S0-1.96*S0*se,type="s");

> lines(fit$cum[,1],S0+1.96*S0*se,type="s")

> ### uniform confidence bands

> mpt<-c()

> for (i in 1:418) {

+ g<-rnorm(418); pt<-abs(delta %*% g)/se; mpt<-c(mpt,max(pt[-1])); }

> Cband<-percen(mpt,0.95);

> lines(fit$cum[,1],S0-Cband*S0*se,lty=2,type="s");

> lines(fit$cum[,1],S0+Cband*S0*se,lty=2,type="s")

The 95% uniform band shown in Figure 5.10 is as expected wider than the
95% pointwise confidence interval. The estimated survival function is for a
subject without presence of edema and with average values for all the other
covariates. �

5.6 Additive rate models

The additive Aalen model (5.3) or the semiparametric version (5.26) of it
are models for the intensity of the observed counting processes. The inten-
sity gives the instantaneous risk of an event given the history. Considering
the Aalen model, as we set it up, as an example, the intensity is equivalent
to

λ(t)dt = E[dN(t)|σ(N(s), X(s), Y (s), s ∈ [0, t[)],

with dN(t) = N((t + dt)−)−N(t−). The intensity should therefore reflect
the dependence on the past of N(t), Y (t) and X(t). If, for example, the
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covariate process exhibit a path that indicates a particularly high risk, this
should be reflected in the expression for the intensity. In applications it may
be a difficult task to understand the subject matter well enough to correctly
specify the intensity, although it may be possible to construct a sufficiently
good approximation. The consequences of working with the intensity are
reflected in the formulas for the variances of the suggested estimators. If
the intensity is misspecified, these variance estimates will be biased. This
section describes a framework for remedying this problem by constructing
models for the rate of the counting process instead. The rate function at
time t given the at risk indicator and selected covariates of interest, X(t),
is assumed to be on the Aalen additive form

E(λ(t)|Y (t), X(t)) = Y (t)X(t)T β(t), (5.51)

where the important distinction is that the p-dimensional X(t) does not
necessarily reflect the entire history but is only known to give an unbiased
linear prediction of the rate in the sense of (5.51). The model may be stated
in alternative fashion as giving the instantaneous probability of an event
given the at risk indicator and the selected covariates, such that

E(dN(t)|Y (t), X(t)) = Y (t)X(t)T β(t)dt.

Note that the model may be used for both survival and recurrent events
data. It is important to stress that the traditional analysis, which is based
on the assumption that the specified model is the intensity, rely on stronger
assumptions than the rate model.

The semiparametric version of the rate function is

E(λ(t)|Y (t), X(t), Z(t)) = Y (t)(X(t)T β(t) + Z(t)T γ). (5.52)

The key message of this section is that the usual estimators given in Sec-
tions 5.1 and 5.3 are valid also in the rate context, but that the martingale
based standard error estimates, for example the optional variation esti-
mators, may be biased and therefore should be applied with caution. The
inferential procedures based on the resampling approach, however, contin-
ues to be valid. Note, that in the case of survival data with fixed covarites
the rate and the intensity will be the same. In Scheike (2002) a simulation
study indicated that the martingale standard errors typically perform quite
well even when the considered model is in fact a rate model. Since the ro-
bust standard errors are just as easy to compute, however, we recommend
them for general use.

We summarize the results for the semiparametric rate model (5.52) in
the following two theorems.

Theorem 5.6.1 If Condition 5.2 holds and the rate model is on the semi-
parametric risk form (5.52), then, as n → ∞,

n1/2(γ̂ − γ) D→ V, (5.53)
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where V is a zero-mean normal with variance Σ, and

n1/2(B̂ − B)(t) D→ U(t) (5.54)

in D[0, τ ]p, where U(t) is a zero-mean Gaussian process with variance Ψ.
Further, Ψ̂(t) given in (5.46) is a uniformly consistent estimator of Ψ(t).

Just as in the intensity case we can approximate the asymptotic distri-
butions in the above theorem by resampling of the residuals and we can
estimate the variance of the estimators consistently by the squared residual
estimators.

Theorem 5.6.2 Under the conditions of Theorem 5.6.1 and with G1, ..., Gn

independent standard normals, it follows that

∆2 = n−1/2
n∑

i=1

ε̂2iGi,

∆3(·) = n−1/2
n∑

i=1

ε̂3i(·)Gi,

distributed, has the same limit distribution as n1/2(γ̂ − γ, B̂ −B). Further,
(5.45) and (5.46) are consistent estimators of the variance of n1/2(γ̂ − γ)
and n1/2(B̂ − B), respectively.

Note that the terms

Mi(t) = Ni(t) −
∫ t

0

Yi(s)(XT
i (s)dB(s) + ZT

i (s)γds), i = 1, . . . , n,

are no longer martingales but that

M̂i(t) = Ni(t) −
∫ t

0

Yi(s)(XT
i (s)dB̂(s) + ZT

i (s)γ̂ds), i = 1, . . . , n,

used in the above variance estimators still make sense in the rate context.

5.7 Goodness-of-fit procedures

Although the additive Aalen model is very flexible, it is still important to
check that the model provides an adequate fit to the data. The true model
may for instance not be additive, the effect of some covariates may not be
linear on the scale where they are included and various interactions may
have been overlooked. We consider only how to access the goodness-of-fit
of the additive Aalen hazards model because the semiparametric additive
hazards model is considered a submodel of this model. To evaluate the fit of
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the model we consider various martingale residuals and then check if their
behavior is consistent with what should be expected under the model.

We start by considering the underlying martingale residuals

M(t) = (M1(t), ..., Mn(t))T

with

Mi(t) = Ni(t) −
∫ t

0

Yi(s)Xi(s)T dB(s).

The martingale residuals are estimated by

M̂(t) = N(t) −
∫ t

0

X(s)dB̂(s)

= N(t) −
∫ t

0

X(s)X−(s)dN(s) =
∫ t

0

G(s)dN(s),

where G(t) = I−X(t)X−(t) and considering only the time-range where the
design has full rank. Under the additive Aalen model the residual vector is
an exact martingale

M̂(t) =
∫ t

0

G(s)dM(s),

because G(t)X(t) = 0. The particular structure of the residuals implies
that

XT (t)dM̂(t) = XT (t)G(t)dM(t) = 0.

In the case with covariates that are constant with time, thus leading to
X(t) = diag(Yi(t))X(0), it follows that

XT (0)dM̂(t) = XT (0)G(t)dM(t) = XT (t)G(t)dM(t) = 0.

One special implication of this (for models with an intercept term) is that
n∑

i=1

Yi(t)dM̂i(t) = 0,

that is, the estimated martingale increments are zero when summed over
the subjects at risk.

To validate the model fit one possibility is to sum the residuals depending
on the level of the covariates (Aalen, 1993). Define therefore an n × m
matrix,

K(t) = (KT
1 (t), . . . , KT

n (t))T ,

possibly depending on time. A K-cumulative residual process is then de-
fined as

MK(t) =
∫ t

0

KT (s)dM̂(s) =
∫ t

0

KT (s)G(s)dM(s).
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A typical choice of K is to let it be a factor with levels defined by the
quartiles of the considered covariates, as we do in the below Example 5.7.1.
The variance of MK(t) can be estimated by the optional variation process

[MK ] (t) =
∫ t

0

KT (s)G(s)diag(dN(s))G(s)K(s).

We give an alternative robust variance estimator in (5.55) below.
Plotting the observed cumulative residual process MK(t) with 95% point-

wise confidence intervals or 95% Hall-Wellner confidence band will give an
indication of whether or not the observed residuals are consistent with the
model. When a large number of residuals are computed it is convenient with
a p-value to help summarize how serious a departure from the null that is
seen. We therefore suggest to compute the test-statistics sup |MK(t)|, and
approximate its distribution under the model by resampling. Resampling
can also be used to construct confidence bands, the key is to establish an
i.i.d. representation of the cumulative residual process. To do this simply
note that

MK(t) =
n∑

i=1

∫ t

0

(
Ki(s)T − K(s)T X(s)(X(s)T X(s))−1Xi(s)

)
dMi(s),

The asymptotic distribution of MK(t) is equivalent to the asymptotic dis-
tribution of

n∑
i=1

Gi

∫ t

0

(
Ki(s)T − K(s)T X(s)(X(s)T X(s))−1Xi(s)

)
dM̂i(s)

where G1, ..., Gn are independent standard normals.
To estimate the variance of MK(t) a simple estimator based on the i.i.d.

decomposition is given by
n∑

i=1

[∫ t

0

(
KT

i (s) − K(s)T X(s)(X(s)T X(s))−1Xi(s)
)
dM̂i(s)

]⊗2

. (5.55)

It may be shown that the resampling approximation has the same asymp-
totic limit as n−1/2MK(t) and that the variance estimator is consistent.

One may also consider the following test statistics to evaluate the per-
formance of the cumulative residuals:

sup
t∈[0,τ ]

|MK,j(t)|,
∫ τ

0

(MK,j(t))2dt,

for j = 1, ..., m, where MK,j denotes the jth component of the vector MK .

Example 5.7.1 (PBC-data)

We consider the additive hazards model with the covariates edema, biliru-
bin, log(protime), age and log(albumin). To evaluate the fit we transformed
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FIGURE 5.11: Observed cumulative residuals for quartiles of bilirubin with
95% confidence intervals (solid lines) and 95% Hall-Wellner confidence
bands (broken lines).

all continuous covariates into factors with 4 levels defined by the quartiles,
and computed the cumulative martingale residuals. We only show the result
for bilirubin. The covariate log(albumin) indicated some minor problems
with the fit, and we quantify this further in the below Example 5.7.2. All
other covariates did not give any indication of a poor fit.

> fit<-aalen(Surv(time/365,status)~Age+Edema+Bilirubin+

+ logAlbumin+logProtime,max.time=8,pbc,residuals=1,n.sim=0)

Nonparametric Additive Risk Model

> X<-model.matrix(~-1+cut(Bilirubin,quantile(Bilirubin),

+ include.lowest=T),pbc)

> colnames(X)<-c("1. quartile","2. quartile","3. quartile","4. quartile");

> resids<-cum.residuals(fit,pbc,X,n.sim=1000)

Cumulative martingale residuals for Right censored survival times

> plot(resids,hw.ci=2)

> summary(resids)

Test for cumulative MG-residuals
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Grouped Residuals consistent with model

sup| hat B(t) | p-value H_0: B(t)=0

1. quartile 4.334 0.582

2. quartile 5.175 0.365

3. quartile 3.471 0.873

4. quartile 6.273 0.172

int ( B(t) )^2 dt p-value H_0: B(t)=0

1. quartile 40.070 0.544

2. quartile 58.986 0.392

3. quartile 21.707 0.826

4. quartile 111.898 0.182

The cumulative residuals with confidence intervals and bands, Figure
5.11, clearly indicate that the fit is acceptable for all levels of bilirubin.

For the PBC data example it is well established that when fitting a Cox
model one should use log-bilirubin to get an acceptable fit of the propor-
tional model. This is in contrast to the conclusion for the additive model,
and to show that the use of log-bilirubin leads to a poor fit for the additive
hazards model we computed the cumulative residuals for this model for the
quartiles of bilirubin.

> nfit<-aalen(Surv(time/365,status)~Age+Edema+logBilirubin

+ +logAlbumin+logProtime,max.time=8,pbc,residuals=1,n.sim=0)

Nonparametric Additive Risk Model

> X<-model.matrix(~-1+cut(Bilirubin,quantile(Bilirubin),

+ include.lowest=T),pbc)

> colnames(X)<-c("1. quartile","2. quartile","3. quartile",

+ "4. quartile");

> resids<-cum.residuals(nfit,pbc,X,n.sim=1000)

Cumulative martingale residuals for Right censored survival times

> plot(resids,score=1)

> summary(resids)

Test for cumulative MG-residuals

Grouped Residuals consistent with model

sup| hat B(t) | p-value H_0: B(t)=0

1. quartile 13.045 0.002

2. quartile 9.980 0.050

3. quartile 13.888 0.022

4. quartile 8.885 0.007

int ( B(t) )^2 dt p-value H_0: B(t)=0

1. quartile 666.869 0.002

2. quartile 268.896 0.063

3. quartile 659.609 0.032
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FIGURE 5.12: PBC-data. Observed cumulative residuals for quartiles of
bilirubin and 50 random realizations under the model using log(bilirubin)
in the model.

4. quartile 255.224 0.014

Figure 5.12 shows the cumulative test processes with 50 random simula-
tions under the null, which is summarized into p-values in the output. All
quartiles indicating that there are severe problems with the fit. This sug-
gests that the effect of bilirubin is not additive when it is log-transformed.

�

These K-cumulative residual plots are useful, but it is somewhat incon-
venient that one needs to group the continuous covariates. An alternative
procedure similar in spirit but avoiding this grouping was suggested by Lin
et al. (1993) in the context of the Cox model, see Section 6.2. We adopt it
here in the case of the additive Aalen model.

Considering the first continuous covariate of the model we show how
one can construct a cumulative residual process that will carry information
about the fit of the model as a function of the level of the covariate. We
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start by considering a cumulative residual process

Mc(t, z) =
∫ t

0

KT
z (s)dM̂(s) =

∫ t

0

KT
z (s)G(s)dM(s).

where Kz(t) is an 1×n matrix with elements I(Xi1(t) ≤ z) for i = 1, . . . , n
focusing here on the fit with regard to the first covariate X1. Integrating
over the entire time span we get a process only in z:

Mc(z) =
∫ τ

0

KT
z (t)dM̂(t) =

∫ τ

0

KT
z (t)G(t)dM(t). (5.56)

This process has a decomposition similarly to MK developed above, and
resampling may thus be used to validate the fit of the model. One may also
consider the process as a function of both z, t, and a resampling scheme
to approximate its asymptotic distribution is also possible in this case. A
different version, but very similar in spirit, was given by McKeague & Utikal
(1990a) and McKeague & Utikal (1990b) who considered double cumulative
processes as a general mean for doing goodness-of-fit for structured models.

Example 5.7.2 (PBC-data, Example 5.7.1 continued)

We again consider the additive risk model with the covariates edema, biliru-
bin, log(protime), age and log(albumin). The following commands compute
the cumulative residuals (5.56) versus the covariates (with more than two
levels).

> resids<-cum.residuals(fit,pbc,cum.resid=1)

Cumulative martingale residuals for Right censored survival times

Simulations start N= 500

> plot(resids,score=2);

> summary(resids)

Test for cumulative MG-residuals

Residual versus covariates consistent with model

sup| hat B(t) | p-value H_0: B(t)=0

Age 5.730 0.796

Bilirubin 10.250 0.170

logAlbumin 7.838 0.356

logProtime 4.603 0.890

The output suggests that all covariates lead to a performance that is con-
sistent with the model. Figure 5.13 shows the cumulative residuals with 50
resampled processes under the model. Age, log(bilirubin) and log(protime)
show observed cumulative processes that behave as they should under the
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FIGURE 5.13: Observed cumulative residuals versus continuous covariates
and 50 random realizations under the model.

null, but log(albumin) shows a performance that is not completely consis-
tent with the performance expected under the model. Note that the devia-
tion from the null is not dramatic and that the supremum test-statistic is
insignificant.

We finally show the similar plots for an additive hazards model with
log-bilirubin.

> resids<-cum.residuals(nfit,pbc,cum.resid=1)

Cumulative martingale residuals for Right censored survival times

Simulations start N= 500

> plot(resids,score=2);

> summary(resids)

Test for cumulative MG-residuals

Residual versus covariates consistent with model

sup| hat B(t) | p-value H_0: B(t)=0

Age 5.154 0.914

logBilirubin 12.588 0.004
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FIGURE 5.14: Observed cumulative residuals versus continuous covariates
and 50 random realizations under the model.

logAlbumin 8.485 0.248

logProtime 4.387 0.936

The output and Figure 5.14 clearly show that there are problems with
the fit of the model indicated by the extreme behavior of the residuals
cumulated versus log(bilirubin). �

5.8 Example

In this section we show a worked example of how to use the semiparametric
additive hazards model to predict the survival of patients with myocardial
infarction based on the TRACE data (Jensen et al., 1997).

Example 5.8.1 (TRACE Data)

The TRACE study group, see Jensen et al. (1997), studied the prognos-
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FIGURE 5.15: TRACE-data. Estimated cumulative coefficients along with
95% confidence intervals

tic importance of various risk factors on mortality for approximately 6600
patients with myocardial infarction. The TRACE data included in the
timereg package is a random sample of 1877 of these patients. In this
example we consider 1000 of these patients and this is the tTRACE data
set used below.

The risk factors that we consider are age, sex (male=1), clinical heart
failure (CHF) (present=1), ventricular fibrillation (VF) (present=1), and
diabetes (present=1). Some risk factors were expected to have strongly
timevarying effects, in particular, ventricular fibrillation. The effect of dia-
betes was also expected to decay with time. The considered time scale was
time since prognosis, and the total number of deaths in an 7 year period
after prognosis was 958, and of these, 115 took place within the two first
months. We start by fitting an additive hazards regression model with age
centered around its mean

> age.c<-tTRACE$age-mean(tTRACE$age)

> fit.trace<-aalen(Surv(time,status==9)~diabetes+chf+vf+sex+age.c,

+ tTRACE,max.time=7,residuals=1)
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Nonparametric Additive Risk Model

Simulations start N= 1000

> plot(fit.trace)

> summary(fit.trace)

Additive Aalen Model

Test for nonparametric terms

Test for non-significant effects

sup| hat B(t)/SD(t) | p-value H_0: B(t)=0

(Intercept) 6.15 0.000

diabetes 4.09 0.000

chf 7.72 0.000

vf 4.79 0.000

sex 2.11 0.427

age.c 11.10 0.000

Test for time invariant effects

sup| B(t) - (t/tau)B(tau)| p-value H_0: B(t)=b t

(Intercept) 0.05040 0.598

diabetes 0.14300 0.483

chf 0.13000 0.003

vf 0.46200 0.000

sex 0.05530 0.703

age.c 0.00742 0.001

int (B(t)-(t/tau)B(tau))^2dt p-value H_0: B(t)=b t

(Intercept) 0.003520 0.613

diabetes 0.023600 0.598

chf 0.049400 0.003

vf 0.499000 0.000

sex 0.003500 0.749

age.c 0.000142 0.001

Figure 5.15 and the output clearly show that VF has a strongly time-
varying effect. The effect of VF is highly predictive initially (the first 3
months approximately) and then its predictive effect disappears. Thus, if
this serious condition is survived, then the prognosis is similar to other
subjects without the prognosis. It seems also that the effect of age and
CHF varies with time whereas the effect of diabetes and sex result in a
constant increase in the hazard. One may therefore consider a model with
the effects of these latter two covariates being summarized by constant
excess risk parameters.

Before considering the semiparametric submodels we do some goodness-
of-fit analysis of the model and here for illustration purposes focus on how
age should be included in the model. We therefore make the cumulative
residual plot versus age.
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FIGURE 5.16: Cumulative residuals versus age with 50 random realizations
under the model for age (left panel) and exp(age.c/10) (right panel).

This reveals that the effect of age is not well-described by the model; the
corresponding cumulative residual plot is given in Figure 5.16 left panel.
When age enters the model on exponential scale (exp(age.c/10), (cumula-
tive residual plot is shown in Figure 5.16 right panel), the Aalen model with
all covariates having time-varying effects seems to give an adequate fit to
the data. One can then go on testing successively whether the effect of the
covariates can be described as being constant with time. This is acceptable
for the covariates diabetes, sex and exp(age.c/10). The results from this
model is reported below.

> age.c<-tTRACE$age-mean(tTRACE$age)

> fit.trace.semi<-aalen(Surv(time,status==9)~const(diabetes)+chf

+ +vf+const(sex)+const(I(exp(age.c/10))),tTRACE,

+ max.time=7,resample.iid=1)

Semiparametric Additive Risk Model

Simulations start N= 1000

> summary(fit.trace.semi)

Additive Aalen Model
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FIGURE 5.17: Survival function estimates for two females without diabetes
with VF (thick solid line) and without VF (thin lines). Subject without
VF condition is shown with 95% confidence intervals (solid lines) and with
95% confidence band (broken lines).

Test for nonparametric terms

Test for non-significant effects

sup| hat B(t)/SD(t) | p-value H_0: B(t)=0

(Intercept) 5.30 0.000

chf 5.78 0.000

vf 4.60 0.001

Test for time invariant effects

sup| B(t) - (t/tau)B(tau)| p-value H_0: B(t)=b t

(Intercept) 0.032 0.195

chf 0.155 0.000

vf 0.447 0.000

int (B(t)-(t/tau)B(tau))^2dt p-value H_0: B(t)=b t

(Intercept) 0.00237 0.132

chf 0.07580 0.000
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vf 0.46300 0.000

Parametric terms :

Coef. SE Robust SE z P-val

const(diabetes) 0.1200 0.02970 0.04140 4.02 5.82e-05

const(sex) 0.0301 0.01270 0.01880 2.36 1.81e-02

const(I(exp(age.c/10))) 0.0619 0.00744 0.00995 8.32 0.00e+00

Finally, we compute estimates of the survival function for two females with
the chf conditions, with average age, without diabetes and with (solid thick
line) and without the vf condition (solid thin line), respectively. These
survival function estimates are depicted in Figure 5.17 where it is seen that
VF is indeed a serious condition with a marked impact on survival. The R
output shows how to compute the survival estimates and make the uniform
confidence band.

> age.c<-tTRACE$age-mean(tTRACE$age);

> fit<-aalen(Surv(time,status==9)~const(I(exp(age.c/10)))+vf+chf

+ +const(sex)+const(diabetes),tTRACE,max.time=7,n.sim=0,resample.iid=1)

Semiparametric Additive Risk Model

> # fit$B.iid and fit$gamma.iid contains i.i.d. representation

> x0<-c(0,0,1); z0<-c(1,0,0);

> delta<-matrix(0,length(fit$cum[,1]),500);

> for (i in 1:500) {delta[,i]<-x0%*%t(fit$B.iid[[i]])+

+ fit$cum[,1]*sum(z0*fit$gamma.iid[i,]);}

> S0<-exp(- x0 %*% t(fit$cum[,-1])- fit$cum[,1]*sum(z0*fit$gamma))

> se<-apply(delta^2,1,sum)^.5

> ### pointwise confidence intervals

> plot(fit$cum[,1],S0,type="l",ylim=c(0,1),xlab="Time (years)",

+ ylab="Survival")

> lines(fit$cum[,1],S0-1.96*S0*se,type="s")

> lines(fit$cum[,1],S0+1.96*S0*se,type="s")

> x0.VF<-c(1,1,1);

> S0.VF<-exp(- x0.VF %*% t(fit$cum[,-1])- fit$cum[,1]*sum(z0*fit$gamma))

> lines(fit$cum[,1],S0.VF,lwd=2)

> ### uniform confidence band

> mpt<-c()

> for (i in 1:500) {

+ g<-rnorm(500); pt<-abs(delta %*% g)/c(se);mpt<-c(mpt,max(pt[-1])); }

> Cband<-percen(mpt,0.95);

> lines(fit$cum[,1],S0-Cband*S0*se,lty=2,type="s");

> lines(fit$cum[,1],S0+Cband*S0*se,lty=2,type="s")

�
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5.9 Exercises

5.1 (Aalen, 1989) Let N(t) = I(T ≤ t) have intensity according to
Aalen’s additive model:

λ(p)(t) = Y (t)(α0(t) + α1(t)X1 + · · · + αp(t)Xp),

where X1, . . . , Xp denote time-invariant covariates.

(a) Assume that Xp is independent of the other covariates. Show that
the intensity of N with respect to the filtration spanned by N and
the covariates X1, . . . , Xp−1 is

λ(p−1)(t) = Y (t)(α0(t)−f ′
p(Ap(t))αp(t)+α1(t)X1+· · ·+αp−1(t)Xp−1),

where fp denotes the logarithm of the Laplace transform of Xp (as-
sumed to exist), Ap(t) =

∫ t

0 αp(s) ds and Y (t) = I(t ≤ T ).

(b) Assume now that (X1, . . . , Xp) have a multivariate normal distribu-
tion. Show that λ(p−1)(t) is still an additive intensity.

Consider now the situation where we only condition on one covariate, Z,
and assume that the intensity is λ(t) = Y (t)(α0(t)+α(t)Z). The covariate Z
is, however, not observed as we only observe X = Z +e (error in covariate).

(c) Assume that Z and e are independent and normally distributed with
mean µ and 0, and variances σ2

Z and σ2
e , respectively. Show that the

conditional intensity given X is

Y (t)(α0(t) + (1 − ρ)α(t)(µ − σ2
ZA(t)) + ρα(t)X),

where A(t) =
∫ t

0
α(s) ds and ρ = σ2

Z/(σ2
Z + σ2

e).

5.2 In this exercise, we shall consider the estimator in Aalen’s additive
model when p = 1, that is we consider the model

λi(t) = β1(t)Yi(t).

(a) For this model, write out the matrix X(t), and compute X−(t) taking
W (t) = I.

(b) Compute the (unweighted) estimator for B1(t) =
∫ t

0 β1(s) ds. Does it
hold generally that this estimator, B̂1(t), is always the same as the
Nelson-Aalen estimator?
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(c) Determine

X−(t) = (X(t)T W (t)X(t))−1X(t)T W (t),

where Wi(t) = I(Yi(t) > 0)/λi(t). Comment on the estimator B̂1(t)
that is obtained now. Note by the way that Wi(t) is set to Wi(t) =
Yi(t)/λi(t) in Chapter 5, which is the same as above in the case where
Yi(t) is an at risk indicator.

5.3 (Melanoma-data) In this exercise, we wish to apply the additive
Aalen model to the melanoma data. We consider the effect of sex, ulceration
and log(thickness).

(a) Consider first only the covariate sex using the Aalen additive model
with unweighted generalized inverse of X(t). The covariate sex (Xi) is
coded as 1 if the ith individual is a male and 0 otherwise. Show that
the estimators obtained in this situation, B̂1(t) and B̂1(t) + B̂2(t),
are the Nelson-Aalen estimators for the female and male groups, re-
spectively. Now fit the Aalen additive model in this situation using
the aalen-function. What is the conclusion regarding the effect of sex
based on this analyis?

(b) Include now also the covariates ulceration and log(thickness) into the
analysis. Specify the Aalen additive model in this situation, and fit it
to the data.

(c) Simplify the model as appropriate focusing first on time-varying ef-
fects of the covariates. Specify a final model. Has your conclusion
regarding the effect of sex changed?

5.4 (Melanoma data. Excess and relative mortality) In this exercise we
shall compare the mortality of the melanoma patients to the population
mortality. The population mortality µi(t) (taking into account age and
sex) obtained from life tables published by the Danish Central Bureau of
Statistics (Table A.2 in Andersen et al. (1993), p. 714). The melanoma data
and the associated population mortality are given in the dataset mela.pop
in the timereg-package. Let αi(t) be the hazard rate t years after operation
for the ith patient. The models for relative mortality

αi(t) = α(t)µi(t) (5.57)

and for excess mortality

αi(t) = γ(t) + µi(t) (5.58)
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with µi(t) the population mortality are both contained in the model

αi(t) = γ(t) + α(t)µi(t), (5.59)

as noted by Andersen & Væth (1989).

(a) Argue that the model (5.59) is an example of Aalen’s additive hazards
model.

(b) The Table A.2 in Andersen et al. (1993) gives, as described above,
the population mortality µi(t) taking into account age and sex. Think
about how the data set mela.pop is prepared so that the model (5.59)
can be fitted using the aalen-function from timereg using the id-
option. Explain the first 10 lines in the data set mela.pop.

(c) Use the model (5.59) to investigate (using the data in mela.pop)
whether the models (5.57) and (5.58) provide a sufficient description
to the melanoma data [simplify first to an appropriate semiparametric
version of the additive Aalen model].

(d) Formulate and investigate the hypothesis that the mortality for the
melanoma patients are identical to the general Danish population.

5.5 (Aalen, 1993) Consider n i.i.d.

(Ni(t), Yi(t), Xi)

with Xi = (Xi1, . . . , Xip) so that Ni(t) has intensity

λi(t) = Yi(t)(β0(t) + β1(t)Xi1 + · · · + βp(t)Xip).

(a) Show that the vector of martingale residuals processes

Mres(t) = N(t) −
∫ t

0

X(s)dB̂(s),

where X(t) is the design matrix and B̂(t) denotes the usual least
squares estimator of B(t) =

∫ t

0
β(s) ds, is a (vector) martingale.

(b) Show that
X(0)T Mres(τ) = 0,

meaning that there are no linear trends in the martingale residuals
with respect to the covariates.
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5.6 (Tests in Aalen’s additive hazards model) Consider n i.i.d.

(Ni(t), Yi(t), Xi)

with Xi = (Xi1, . . . , Xip) so that Ni(t) has intensity

λi(t) = Yi(t)(β0(t) + β1(t)Xi1 + · · · + βp(t)Xip),

that is, Aalen’s additive intensity model is assumed.

(a) Show that the unweighted least squares estimator of B(t) may be
written as

B̂(t) =
∫

(XY (t)T G(t)XY (t))−1XY (t)T G(t)dN(t),

where XY (t) is the n × p-matrix with ith row Yi(t)(Xi1, . . . , Xip),
and G(t) = I − 1(t)1−(t) with 1(t) = (Y1(t), . . . , Yn(t))T assuming in
these expressions that the inverses exist.

Tests of the hypothesis

H0 : βj(t) = 0 for all t

and for j ∈ J ⊆ {1, . . . , p} with |J | = q(≤ p) may be based on

Zj(t) =
∫ t

0

Lj(s)dB̂j(s),

where Lj(t) denotes a (predictable) weight process. One choice of weight
function is to take Lj(t) equal to the reciprocal of the (j + 1)th diagonal
element of (X(t)T X(t))−1, where X(t) denotes the usual design matrix of
the Aalen model.

(b) Derive, under H0, the asymptotic distribution of

T (t) = Z(t)T Σ̂(t)−1Z(t),

where Z(t) = (Z1, . . . Zp(t))T ,

Σ̂(t) =
∫ t

0

diag(L(s))d[B̂](s)diag(L(s))

with diag(L(t)) the diagonal matrix with jth diagonal element equal
to Lj(t).

Consider now the situation where we have three treatments and want to
judge their effects on survival. We then have p = 2 and the covariates are
indicator variables of two of the three treatments. A somewhat unpleasant
property is that the value of the above test depends on which group is taken
as the baseline if the applied weight functions vary with groups.
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(c) Show by a direct calculation that the value of the test statistic T (t)
depends on which group is taken as the baseline group in the case
where the weight functions vary with groups (as for example the
weight function described above).

We finally consider the situation where one wishes to test that a factor
leads to constant excess risk for all groups.

(d) Make precise suggestions for what hypotheses that may be of interest.

(e) Suggest a test-statistic that can evaluate the hypotheses, and think
about alternative parameterizations and the consequences thereof.

5.7 (Tests for H01 and H02) Consider n i.i.d. (Ni(t), Yi(t), Xi) with Xi =
(Xi1, . . . , Xip) so that Ni(t) has intensity

λi(t) = Yi(t)(β0(t) + β1(t)Xi1 + · · · + βp(t)Xip),

that is, Aalen’s additive intensity model is assumed. Let B̂ denote the Aalen
estimator of the cumulative regression functions for the Aalen additive
intensity model.

(a) Consider the two test statistics for H01:

sup
t∈[0,τ ]

|B̂(t)| sup
s,t∈[0,τ ]

|B̂(s) − B̂(t)|.

Derive the asymptotic distribution of the two test-statistics under
H01 (use the continuous mapping theorem).

(b) Answer the same question for two test statistics for H02:

sup
t∈[0,τ ]

|B̂(t) − B̂(τ)/τ | sup
s,t∈[0,τ ]

|(B̂(s) − B̂(t)) − (s − t)B̂(τ)/τ |.

5.8 (An alternative estimator for the semiparametric model) Consider n
i.i.d. (Ni(t), Yi(t), Xi, Zi) so that Ni(t) has intensity

λi(t) = XT
i (t)β(t) + ZT

i (t)γ,

on the semiparametric risk form. One may consider the joint covariate
vector X̃i = (Xi, Zi) and fit the larger model

λi(t) = Yi(t)X̃T
i (t)α(t).

Then A(t) =
∫ t

0 α(s)ds may be estimated by Â the Aalen estimator of the
cumulative regression functions. We denote the coefficients related to X by
A1 and the coefficients related to Z by A2, such that A = (A1, A2), and
Â = (Â1, Â2).
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(a) To estimate γ of the semiparametric model one may use

γ̃w =
∫ τ

0

w(t)dÂ2(s),

where w(t) denote a weight matrix. Derive the asymptotic distribu-
tion of γ̃, and find the optimal weights.

(b) Show that γ̃w for the right choice of w may be efficient.

(c) Which estimator would you expect to be superior. Do a small simula-
tion study that compares the performance of the unweighted γ̂ (5.32)
and the un-weighted γw.

5.9 (K-cumulative residual processes) Consider n i.i.d. (Ni(t), Yi(t), Xi)
so that Ni(t) has intensity

λi(t) = XT
i (t)β(t).

Define, a n × m-matrix, K(t). The K-cumulative residual process is then
defined as

MK(t) =
∫ t

0

KT (s)dM̂(s) =
∫ t

0

KT (s)G(s)dM(s).

(a) Derive the asymptotic distribution of MK and provide a consistent
estimator of its variance under Condition 5.1.

(b) Show that the resampling version given in Section 5.7 has the same
asymptotic distribution as MK and that the (5.55) is a consistent
estimator of its variance.

5.10 (Constant additive regression effects (Lin & Ying, 1994)) Consider
the multivariate counting process N = (N1, . . .Nn)T so that Ni(t) has
intensity

λi(t) = Yi(t)(α0(t) + βT Zi)

where the covariates Zi, i = 1, . . . , n (p-vectors) are contained in the given
filtration, Yi(t) is the usual at risk indicator, α0(t) is locally integrable
baseline intensity and β denotes a p-vector of regression parameters. Let
Mi(t) = Ni(t) − Λi(t), i = 1, . . . , n, where Λi(t) =

∫ t

0
λi(s) ds. Define

also N·(t) =
∑n

i=1 Ni(t), Y·(t) =
∑n

i=1 Yi(t), og A0(t) =
∫ t

0
α0(s) ds. The

processes are observed in the interval [0, τ ] with τ < ∞.
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(a) Suppose first that β is known. Explain why a natural estimator of
A0(t) is

Â0(t, β) =
∫ t

0

1
Y·(s)

dN·(s) −
n∑

i=1

∫ t

0

Yi(s)
Y·(s)

βT Zi(s) ds, (5.60)

where Yi(t)/Y·(t) is defined as 0 if Y·(t) = 0.

By mimicking the Cox-partial score function the following estimating func-
tion for estimation of β is obtained:

U(β) =
n∑

i=1

∫ τ

0

Zi(t) (dNi(t) − Yi(t) dÂ0(t, β) − Yi(t)βT Zi(t) dt),

in the case where β again is supposed unknown.

(b) Show that the above estimating function can be written

U(β) =
n∑

i=1

∫ τ

0

(Zi(t) − Z(t))(dNi(t) − Yi(t)βT Zi(t) dt),

where

Z(t) =
n∑

i=1

Yi(t)Zi(t)/
n∑

i=1

Yi(t).

(c) The value of β that satisfies U(β) = 0 is denoted β̂. Show that

β̂ =
( n∑

i=1

∫ τ

0

Yi(t)(Zi(t)−Z(t))⊗2 dt
)−1( n∑

i=1

∫ τ

0

(Zi(t)−Z(t)) dNi(t)
)
,

(5.61)
when

∑n
i=1

∫ τ

0
Yi(t)(Zi(t) − Z(t))⊗2 dt is assumed to be regular.

(d) Show that U(β) can be written as U(β) = M̃(τ), where

M̃(t) =
n∑

i=1

∫ t

0

(Zi(s) − Z(s)) dMi(s),

and that M̃(t) is a (local) square integrable martingale and find its
predictable variation process.

(e) Show, under suitable conditions, that n− 1
2 U(β) converges in distri-

bution towards a p-dimensional normal distribution for n → ∞, and
identify the mean and variance. Show that the variance is estimated
consistently by

B =
1
n

n∑
i=1

∫ τ

0

(Zi(t) − Z(t))⊗2 dNi(t).
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(f) Show that

n1/2(β̂ − β) =
( 1
n

n∑
i=1

∫ τ

0

Yi(t)(Zi(t) − Z(t))⊗2 dt
)−1(

n− 1
2 U(β)

)
,

and, under suitable conditions, that this stochastic variable converges
in distribution towards a p-dimensional normal for n → ∞. Identify
the mean and variance of the limit distribution, and show that the
variance is estimated consistently by A−1BA−1, where

A =
1
n

n∑
i=1

∫ τ

0

Yi(t)(Zi(t) − Z(t))⊗2 dt.

The above estimator (5.61) corresponds to (5.32) with W (t) = I.

5.11 (Additive hazard breakpoint model, Chen et al. (2002)) Let T be
a failure time, U the latent treatment effectiveness lag time, and Z =
(WT , RT )T a p-vector of covariates. Assume that the conditional hazard
function for the failure time T given Z and U is

λ(t |Z, U) = λ0(t) + γT R + I(U ≤ t)βT W,

where θ = (βT , γT )T is a p-vector of regression parameters and λ0(t) is an
unknown baseline hazard function. The above hazard function is λ0(t) +
γT R before U and λ0(t)+ γT R +βT W after, and β therefore characterizes
the full effect of W (treatment) after the individual (unobserved) lag time.

(a) Show that the observed hazard function has the form

λ(t |Z) = λ0(t) + γT R + βT WH(t),

so the additive hazard structure is preserved. In the above display

H(t) =

∫ t

0 exp (−βT W (t − u)) dG(u)∫ t

0 exp (−βT W (t − u)) dG(u) + 1 − G(u)

with G denoting the distribution function of U .

Suppose G is known.

(b) Derive estimating equations for estimation of (γ, β).

5.12 (Semiparametric model)

(a) Work out expressions for the theoretical values of the variance for
(5.32) and (5.33).
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(b) Construct an estimator of the covariance between (5.32) and (5.33),
and show it is consistent.

(c) Derive the asymptotic distribution of the alternative estimators for
the semiparametric model given by (5.43) and (5.44).

(d) Validate that the estimator B̂(t) from Example 5.3.2 is equivalent to
the least squares estimator for the model

λi(t) = (Xi(t), Zi(t))T (α(t), η(t)).

5.13 (Estimating the survival function) Assume that we observe n i.i.d.
subjects in the time period from [0, τ ] that are assumed to originate as
outcomes from the semiparametric risk model. We start by computing the
usual un-weighted estimates B̂ and γ̂. Consider a subject with covariates
X0 and Z0 that for simplicity do not depend on time.

(a) Show that the mapping

S0(B, γ, t) = exp(−XT
0 B(t) − tZT

0 γ)

is a continuously differentiable mapping and that the functional delta
method can be applied to derive the asymptotic distribution of S0.

(b) Show that the resampling scheme is on the form given in equation
(5.50) leads to the same asymptotic distribution and the squared
residual process is a consistent estimator of the variance of S0.

(c) Give an explicit formulae for the optional variation based estimator
of the variance of Ŝ0 − S0.



6
Multiplicative hazards models

In the previous chapter we studied hazards models where the effect of
covariates were modeled on an additive scale. In some cases it may be
more appropriate with models where the effect of covariates are modeled
on a multiplicative scale. The multiplicative hazards models encompass
the famous proportional hazards model, or the Cox model as it is also
called. The Cox model was introduced by Cox (1972) in the context of
survival data, and Andersen & Gill (1982) extended it to the counting
process framework and gave elegant martingale proofs for the asymptotic
properties of the associated estimators, which we return to later in this
chapter. Others that have contributed to establishing asymptotic results
for the model are Tsiatis (1981) and Næs (1982).

The Cox model assumes that the intensity is of the form

λ(t) = Y (t)λ0(t) exp(XT (t)β) (6.1)

where X(t) = (X1(t), ..., Xp(t)) is a p-dimensional bounded predictable
covariate vector and Y (t) is the at risk indicator. In principle Y (t) may be
any locally bounded predictable process but we think of it as the at risk
indicator. The parameters of the model are the p-dimensional regression
parameter β and the nonparametric baseline intensity function λ0(t) that
is assumed to be locally integrable:

∫ τ

0
λ0(t) dt < ∞ with τ denoting the

timepoint where the study is stopped. The intensity λ(t) for an individual
with covariate vector equal to zero is λ0(t), which explains why it is called
the baseline intensity. It is important to realize that no structure is imposed
on λ0(t), which gives the model a great deal of flexibility. In a survival study
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it means that no assumption is made on the distribution of the lifetimes of
the baseline population (those with zero covariate values).

A key assumption in (6.1) is that the relative risks are constant with
time. Consider for a moment the special case where p = 1 and X1 is time-
invariant, for example a treatment indicator. The relative risk is the ratio

λ(t, X1 + 1)
λ(t, X1)

= exp(β1), (6.2)

which is seen not to depend on time because only the baseline intensity
reflects dependence on time. If there is more than one covariate in the
model, we get the same type of result if we compare two individuals with
the same covariate vector except that they differ on X1 (with the value 1)
as above.

Example 6.0.1 (PBC-data. Continuation of Example 1.1.1)

Let us consider the PBC data again and use the Cox model with the co-
variates identified in Fleming & Harrington (1991) as being important:
age, edema, log(bilirubin), log(albumin) and log(protime). The Cox model
is easily fitted in R using the function coxph:

> fit.pbc<-coxph(Surv(time/365,status)~Age+Edema+logBilirubin

+ +logAlbumin+logProtime,pbc);

> fit.pbc

Call:

coxph(formula = Surv(time/365, status) ~ Age + Edema +

logBilirubin + logAlbumin + logProtime, data = pbc)

coef exp(coef) se(coef) z p

Age 0.0383 1.0390 0.00768 4.98 6.2e-07

Edema 0.6599 1.9345 0.20588 3.21 1.4e-03

logBilirubin 0.8971 2.4525 0.08269 10.85 0.0e+00

logAlbumin -2.4574 0.0857 0.65733 -3.74 1.9e-04

logProtime 2.3489 10.4736 0.77408 3.03 2.4e-03

Likelihood ratio test=234 on 5 df, p=0 n= 418

The estimated regression coefficients (the β̂’s) are given in the first column
of the output from coxph and the estimated relative risks in the second
column. The covariate edema is binary with the value 1 for an individual
with presence of edema (swelling). Thus, comparing two individuals that
have the same covariate values except on edema gives an estimated effect
of edema (controlled for the other covariates) in terms of the relative risk
that is estimated to 1.979. So, keeping the value of the other covariates
fixed, presence of edema almost doubles the risk (relying for the moment
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on the assumption that the Cox model gives a satisfactory fit to the data).
This result is significant according to the associated p-value (we return to
how this value is computed in a moment). Similar interpretation can be
given for the other covariates. Age is given in months, so increasing age by
one month gives an estimated relative risk of 1.037 (still keeping everything
else fixed), and so on. �

The assumption that the relative risks are constant with time may be
reasonable in some settings but fails in others. The Cox model may thus
not reflect all important aspects of the data and may even give misleading
summaries. It is therefore important to have good diagnostic tools to check
the adequacy of the model in specific applications; we return to goodness-of
fit tools later in this chapter. The fit of the model, however, is typically not
examined that carefully in practice. The PBC data are one example of data
that are not well described by the Cox model in its simplest form because
of the strongly time-varying effect of some of the covariates, see Example
6.0.2 below.

A natural extension of the Cox model to accommodate time-varying co-
variate effects is

λ(t) = Y (t)λ0(t) exp(XT (t)β(t)), (6.3)

where β(t) = (β1(t), ..., βp(t)) is a p-dimensional time-varying regression
coefficient that satisfies certain smoothness conditions. This model has been
studied by a number of authors, e.g., Zucker & Karr (1990), Murphy & Sen
(1991), Grambsch & Therneau (1994), and more recently by Pons (2000),
Martinussen et al. (2002), Cai & Sun (2003) and Winnett & Sasieni (2003).

The extended version (6.3) of the Cox model is very flexible and can
be derived as a first order Taylor series expansion of the log of a general
conditional intensity given covariates. The flexibility of model (6.3) may
in some situations not be needed for all covariates, however. Therefore we
also consider the important semiparametric version of the model:

λ(t) = Y (t)λ0(t) exp(XT (t)β(t) + ZT (t)γ), (6.4)

where (X(t), Z(t)) is a (p+ q)-dimensional covariate and the parameters of
the model are the nonparametric p-dimensional β(t) and the q-dimensional
regression parameter γ. This model was studied in Martinussen et al. (2002)
and Scheike & Martinussen (2004). The semiparametric model (6.4) is as
easy to fit as (6.3) and has the ability to summarize covariate effects as
much as the data or subject matter suggests. For small to medium sized
data the fully nonparametric version of the extended Cox model (6.3) with
all covariate effects being time-varying may further be difficult to fit, and
the semiparametric model can then give a more reasonable compromise
between model complexity and size of the data.

Further, as we also described for the additive hazards model in Chap-
ter 5, the semiparametric model is crucial when inferential procedures are
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developed. We shall consider procedures for testing if covariate effects in
the semiparametric model are time-varying or time invariant, such as the
hypothesis

H0 : βp(t) = γq+1.

Investigating this hypothesis amounts to comparing the fit of the two semi-
parametric models

λ(t) = Y (t)λ0(t) exp(XT (t)β(t) + ZT (t)γ)

and

λ̃(t) = Y (t)λ0(t) exp(X1(t)β1(t)+...+Xp−1(t)βp−1(t)+Xp(t)γq+1+ZT (t)γ).

It turns out, as for the additive hazards model, that the cumulative regres-
sion function

B(t) =
∫ t

0

β(s) ds

is easy to estimate and well suited for inference. With such inferential pro-
cedures to compare the above two semiparametric models we can do suc-
cessive testing of time-varying effects. For a given dataset we may start
with the model where all effects are allowed to be time-varying. Using that
model we may then investigate for each of the covariates whether their ef-
fects could be time-invariant. If this is acceptable for at least one of them,
we go on with the reduced model where this covariate has time-invariant
effect while the others are still allowed to have time-varying effects. Using
the simplified model, the question about time-invariance is then investi-
gated again for the remaining variables with possible time-varying effects,
and so on until further simplification of the model is unacceptable. We illus-
trate this procedure using the PBC data in the following example using the
timecox-function that can be used for fitting the models (6.3) and (6.4).

Example 6.0.2 (PBC data)

Consider the PBC data. We restrict attention to the first 8 years days
of the study. The reader might compare with Example 5.0.1 where we
considered the Aalen additive hazards model for these data. We consider
the covariates: age, edema, log(albumin), log(bilirubin) and log(protime).
First we fit the flexible model with all covariates having nonparametric
time-varying effects.

> fit<-timecox(Surv(time/365,status)~Age+Edema+logBilirubin

+ +logAlbumin+logProtime,pbc,max.time=8);

Nonparametric Multiplicative Hazard Model

Simulations start N= 1000

> plot(fit,ylab="Cumulative coefficients",xlab="Time (years)");

> summary(fit)
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FIGURE 6.1: Estimated cumulative regression functions with 95% pointwise
confidence intervals.

Multiplicative Hazard Model

Test for nonparametric terms

Test for non-significant effects

sup| hat B(t)/SD(t) | p-value H_0: B(t)=0

(Intercept) 43.40 0.000

Age 4.52 0.000

Edema 4.32 0.001

logBilirubin 10.40 0.000

logAlbumin 5.15 0.000

logProtime 6.24 0.000

Test for time invariant effects

sup| B(t) - (t/tau)B(tau)| p-value H_0: B(t)=b t

(Intercept) 2.0700 0.000

Age 0.0353 0.940

Edema 5.4000 0.000

logBilirubin 0.7170 0.559

logAlbumin 3.4200 0.851
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logProtime 12.7000 0.004

int (B(t)-(t/tau)B(tau))^2dt p-value H_0: B(t)=b t

(Intercept) 1.79e+01 0.000

Age 1.29e-03 0.976

Edema 7.41e+01 0.000

logBilirubin 9.16e-01 0.478

logAlbumin 1.12e+01 0.943

logProtime 5.28e+02 0.000

The output contains information about the nonparametric effects and Fig-
ure 6.1 displays the estimated cumulative regression coefficients with 95%
pointwise confidence intervals. Later in this chapter we return to how these
are actually computed.

The cumulative estimates with the pointwise confidence intervals clearly
indicate that all effects are significant, and this is also reflected by the
supremum test for significant effects in the output. The p-value for the
significance of edema, for example, is p=0.001.

The tests for time-invariant effects shows that some of the effects are
well described by constant effects. Two tests are computed and we here
focus on the supremum test and return later to a discussion of the inte-
grated squared difference test. The supremum test for time invariant effects
shows that age (p=0.940), and log(albumin) (p=0.851) are well described
by constant multiplicative effects. We therefore consider the model where
log(albumin) has constant effect (output not shown) and for this model it
is found that age (p=0.98) and log(bilirubin) (p=0.29) have a constant ef-
fect. Now considering the model with age and log(albumin) having constant
effects and testing for constant effect of log(bilirubin) gives the p-value of
0.303. We therefore fit the model where age, log(albumin) and log(bilirubin)
have constant effects while the other effects are allowed to be time-varying.

> fit.semi<-timecox(Surv(time/365,status)~const(Age)+Edema

+ +const(logBilirubin)+const(logAlbumin)+logProtime,

+ pbc,max.time=8)

Semiparametric Multiplicative Risk Model

Simulations start N= 1000

> summary(fit.semi)

Multiplicative Hazard Model

Test for nonparametric terms

Test for non-significant effects

sup| hat B(t)/SD(t) | p-value H_0: B(t)=0

(Intercept) 32.10 0

Edema 4.58 0

logProtime 5.50 0

Test for time invariant effects
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sup| B(t) - (t/tau)B(tau)| p-value H_0: B(t)=b t

(Intercept) 2.08 0.000

Edema 5.09 0.000

logProtime 12.40 0.006

int (B(t)-(t/tau)B(tau))^2dt p-value H_0: B(t)=b t

(Intercept) 19.4 0.000

Edema 72.8 0.000

logProtime 508.0 0.001

Parametric terms :

Coef. SE Robust SE z P-val

const(Age) 0.0377 0.00931 0.00921 4.05 5.2e-05

const(logBilirubin) 0.8210 0.09840 0.08200 8.34 0.0e+00

const(logAlbumin) -2.4500 0.67300 0.60600 -3.64 2.7e-04

The fit of the semiparametric model, which has been validated by suc-
cessive testing, shows that edema and log(protime) have effects that are
significantly time-varying (p<0.001 and p=0.006) and that the effects are
significant (p<0.001 and p<0.001).

The constant log-relative risk of age, log(bilirubin) and log(albumin)
are estimated to (with estimated se’s in parenthesis) 0.038 (0.009), 0.821
(0.098) and -2.450 (0.673), respectively. Note that these effects fits well
with the slopes of the cumulative coefficients in Figure 6.1. Compare also
with the output from the Cox regression analysis given in Example 6.0.1.

�

6.1 The Cox model

The Cox regression model is by far the most used regression model for
counting process data, and has been studied in an enormous number of
papers. It assumes that the intensity is of the form

λ(t) = Y (t)λ0(t) exp(XT (t)β), (6.5)

where X(t) = (X1(t), ..., Xp(t)) is a p-dimensional bounded predictable
covariate and Y (t) is an at risk indicator. The parameters of the model are
the p-dimensional regression parameter β and the nonparametric locally
integrable baseline hazard function λ0(t). A key assumption is as mentioned
earlier that the relative risks are constant with time, see (6.2).

In the following we show how to estimate the log-relative risk param-
eter β and the cumulative baseline hazard function Λ0(t) =

∫ t

0
λ0(s)ds,

and describe the asymptotic properties of these estimators based on i.i.d.
replicates from the Cox model. Assume thus that n independent copies
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(Ni(t), Yi(t), Xi(t)), i = 1, . . . , n, are being observed in some time interval
[0, τ ], τ < ∞, and that each Ni(t) has intensity on the Cox form (6.5).

The regression parameter β is estimated as the maximizer to Cox’s partial
likelihood function (Cox, 1972, 1975)

L(β) =
∏

t

∏
i

(
exp (XT

i (t)β)
S0(t, β)

)∆Ni(t)

, (6.6)

where

S0(t, β) =
n∑

i=1

Yi(t) exp(XT
i (t)β).

Define the first and second order partial derivative of S0(t, β) with respect
to β:

S1(t, β) =
n∑

i=1

Yi(t) exp(XT
i (t)β)Xi(t),

S2(t, β) =
n∑

i=1

Yi(t) exp(XT
i (t)β)Xi(t)⊗2.

The estimator β̂ is thus found as the solution to the score equation U(β̂) =
0, where

U(β) =
n∑

i=1

∫ τ

0

(Xi(t) − E(t, β))dNi(t) (6.7)

with

E(t, β) =
S1(t, β)
S0(t, β)

.

There are several ways of arriving at (6.6) and (6.7) as natural estimation
functions, some of which we describe below.

An appealing interpretation of (6.6) is that it can be seen as profile
likelihood function where the cumulative baseline hazard function has been
profiled out. If the value of β is fixed then a natural estimator of Λ0(t) is
the Nelson-Aalen type estimator

Λ̂0(t, β) =
∫ t

0

1
S0(s, β)

dN·(s), (6.8)

where N·(t) =
∑

i Ni(t). The estimator (6.8) can be interpreted as the
maximizer, for fixed value of β, of the likelihood function∏

t

∏
i

(
(dΛ0(t) exp (Xi(t)β))∆Ni(t)

)
exp (−

∫ τ

0

S0(t, β)dΛ0(t)) (6.9)

with respect to the jumps ∆Λ0(t). Replacing dΛ0(t) in (6.9) with dΛ̂0(t, β)
gives Cox’s partial likelihood function (6.6).
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The score function (6.7), which is the derivative of log L(β) with respect
to β, may also be obtained from a least squares principle. Let

N(t) = (N1(t), .., Nn(t))T

denote the multivariate counting process with intensity

λ(t) = (λ1(t), ..., λn(t))T ,

and organize the covariates into a design matrix of dimension n × p:

X(t) = (Y1(t)X1(t), ..., Yn(t)Xn(t))T .

Further denote the n-dimensional cumulative intensities as Λ(t) =
∫ t

0
λ(s)ds

such that M(t) = N(t) − Λ(t) is a n-dimensional (local square integrable)
martingale. The martingale decomposition of dN(t) then reads

dN(t) = λ(t)dt + dM(t) = diag(exp(XT
i (t)β))Y (t)dΛ0(t) + dM(t), (6.10)

where
Y (t) = (Y1(t), ..., Yn(t))T

is the at-risk vector. Since the increments of the martingale are uncorrelated
and have mean 0, equation (6.10) suggests that estimation of λ0(t)dt and
β can be done by considering the least squares score equations∫

XT diag(λi)W1{dN − diag(exp(XT
i β))Y dΛ0} = 0, (6.11)

Y T diag(exp(XT
i β))W2{dN − diag(exp(XT

i β))Y dΛ0} = 0, (6.12)

where W1(t) and W2(t) are diagonal weight matrices, and where we have
suppressed the dependency on time in the display. It may be shown that the
optimal choice of W1(t) and W2(t) is diag(Yi(t)/λi(t)). The least squares
score equations (6.11) and (6.12) can be solved successively as follows.
Solving (6.12) for fixed β gives

Λ̃0(t) =
∫ t

0

Y −(s)dN(s), (6.13)

where Y −(t) is the generalized inverse

Y −(t) = (Y T (t)diag(exp(XT
i (t)β))Y (t))−1Y T (t)

of Y (t). Observe that (6.13) is equal to (6.8). We make the convention
that Y −(t) is 0 when the inverse does not exist. Inserting this solution into
(6.11) and solving for β gives∫

XT (t)(dN(t) − diag(exp(XT
i (t)β))Y (t)Y −(t)dN(t)) = 0, (6.14)
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which is nothing but U(β) = 0.
Given β̂, as the solution to U(β) = 0, we estimate Λ0(t) from (6.8) by

the Breslow estimator

Λ̂0(t) = Λ̂0(t, β̂) =
∫ t

0

1

S0(s, β̂)
dN·(s). (6.15)

Before we describe the asymptotic properties of these estimators we need
some conditions taken from Andersen & Gill (1982). Let minus the deriva-
tive of the score with respect to β be denoted by I(β) = I(τ, β), where

I(t, β) =
n∑

i=1

∫ t

0

(
S2(s, β)
S0(s, β)

− E(s, β)⊗2

)
dNi(s)

=
∫ t

0

V (s, β)dN·(s) (6.16)

with

V (t, β) =
S2(t, β)
S0(t, β)

− E(t, β)⊗2. (6.17)

We use the notation β0 to denote true value of β defining the Cox model
(6.5).

Condition 6.1 There exists a neighborhood B of β0 so that

(a) E
[
supt∈[0,τ ],β∈B Yi(t)|Xij(t)Xik(t)| exp(XT

i (t)β)
]

< ∞ for all j, k =
1, .., p;

(b) P (Yi(t) = 1 for all t ∈ [0, τ ]) > 0;

(c) The limit in probability of n−1
∫ τ

0
V (t, β0)S0(t, β0)dΛ0(t) is positive

definite and is denoted Σ.

�

These conditions are sufficient to show that β̂ is a consistent estimator, see
Andersen & Gill (1982) and Andersen et al. (1993). The asymptotic prop-
erties of β̂ needed to do inference about β0 is given in the below theorem.

Theorem 6.1.1 If Condition 6.1 holds, then, as n → ∞,

n−1/2U(β0)
D→ N(0, Σ),

n1/2(β̂ − β0)
D→ N(0, Σ−1),

and Σ is estimated consistently by n−1I(β̂).
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Proof. The key to the proof is that the score evaluated in the true point
β0 is a (local square integrable) martingale (evaluated in τ ):

U(β0) =
nX

i=1

Z τ

0

(Xi(t) − E(t, β0))dMi(t) (6.18)

since the compensator of U(β0) given by (6.7) is

nX
i=1

Z τ

0

(Xi(t) − S1(t, β0)

S0(t, β0)
)Yi(t) exp(XT

i (t))dΛ0(t) = 0.

The predictable variation process of n−1/2U(β0) is

〈n−1/2U(β0)〉 = n−1
nX

i=1

Z τ

0

(Xi(t) − E(t, β0))
⊗2Yi(t) exp(XT

i (t)β0)dΛ0(t)

= n−1

Z τ

0

V (t, β0)S0(t, β0)dΛ0(t)
P→ Σ.

The Lindeberg condition of the martingale CLT may also be seen to
be fulfilled so it follows that U(β0) converges in distribution to a nor-
mal variate with zero-mean and variance Σ. Furthermore, n−1〈U(β0)〉 is
the compensator of n−1I(β0) so, by Lenglart’s inequality, it follows that
the difference between these two converges to zero in probability. Also,
n−1I(β̂) − n−1I(β0) converges to zero in probability and n−1I(β̂) is thus
a consistent estimator of Σ.

A Taylor series expansion of the score gives

n1/2(β̂ − β0) = (n−1I(β∗))−1n−1/2U(β0),

where β∗ is on the line segment between β0 and β̂. Consistency of β̂ and
the results above give that n1/2(β̂−β0) converges to the postulated normal
distribution. �

By Theorem 6.1.1 it follows directly that the Wald test statistic

(β̂ − β0)T I(β̂)(β̂ − β0)

for test of the hypothesis H0 : β = β0 is asymptotically χ2 with p degrees
of freedom. It also holds true, using standard arguments from asymptotic
theory, that the likelihood ratio statistic

−2 log

(
L(β0)
L(β̂)

)
and the score test statistic

U(β0)T I(β0)−1U(β0)

both are asymptotically χ2 with p degrees of freedom under the null.
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Note. The above test statistics can be used to investigate H0 : β = β0

that is called a simple hypothesis. In practice one is rarely interested in
testing all parameters equal to a fixed value, but rather testing some of
the parameters equal to a fixed value leaving the remaining parameters
unrestricted. The above test statistics can easily be accommodated to such
a situation, which is a special case of so-called differentiable hypotheses.
This is summarized below and may be shown using arguments from stan-
dard asymptotic theory for maximum likelihood estimation.

Let φ be a mapping from an open subset of R
q, q < p, into the domain

of β so that φ is three times continuous differentiable and the p × q-
matrix Dγφ(γ) has full rank q. Write φ(γ̂) as φ̂. Under the (differentiable)
hypothesis

H0 : β = φ(γ)

one may show that the likelihood ratio test statistic

−2 log

 
L(φ̂)

L(β̂)

!
,

the Wald test statistic

(β̂ − φ̂)T I(φ̂)(β̂ − φ̂),

and the score test statistic

U(φ̂)I(φ̂)−1U(φ̂)

are asymptotically equivalent and asymptotically χ2-distributed with p−q
degrees of freedom.

Example 6.1.1 (Continuation of Example 6.0.1)

Consider again the output from the Cox regression analysis in Example
6.0.1:

> fit.pbc<-coxph(Surv(time/365,status)~Age+Edema+logBilirubin

+logAlbumin+logProtime,pbc);

> fit.pbc

coef exp(coef) se(coef) z p

Age 0.0362 1.037 0.00806 4.49 7.0e-06

Edema 0.6828 1.979 0.21483 3.18 1.5e-03

logBilirubin 0.8643 2.373 0.08493 10.18 0.0e+00

logAlbumin -2.4641 0.085 0.67562 -3.65 2.7e-04

logProtime 2.6637 14.349 0.85476 3.12 1.8e-03

Likelihood ratio test=215 on 5 df, p=0 n= 418

The test made for effect of the individual covariates is the Wald-test (z2 is
the Wald test statistic). The likelihood ratio test for testing overall effect of



6.1 The Cox model 187

the covariates is also given. Compare with Example 6.0.2 to find that the
effect of the covariates that were well described there as having constant ef-
fects are almost equivalent to those of the standard Cox regression analysis
shown above. The linear approximations based on the above estimated co-
efficients to the cumulative coefficients curves associated with edema and
log(protime), given in Figure 6.1, are seen to be poor, however. The ef-
fect of these two covariates on survival, based on the above Cox-regression
analysis, is therefore hard to interpret. �

Using martingale calculus again, one may also derive the asymptotic behav-
ior of the Breslow-estimator. This is summarized in the following theorem.

Theorem 6.1.2 If Condition 6.1 holds, then, as n → ∞,

n1/2(Λ̂0(t, β̂) − Λ0(t))
D→ U(t)

where U(t) is a Gaussian process with zero-mean and covariance function
Φ(t) that is estimated consistently by

n

(∫ t

0

S0(s, β̂)−2dN·(s)

+
∫ t

0

E(s, β̂)T dΛ̂0(s, β̂)(n−1I(β̂))−1

∫ t

0

E(s, β̂)dΛ̂0(s, β̂)
)

.

Proof. A detailed proof can be found in Andersen et al. (1993) but
the following sketch makes it clear how the proof proceeds. Define J(t) =
I(S0(t, β̂) > 0). Since

Λ̂0(t, β̂) =

Z t

0

J(s)

S0(s, β̂)
dN·(s)

=

Z t

0

J(s)

S0(s, β̂)
S0(s, β0)dΛ0(s) +

Z t

0

J(s)

S0(s, β̂)
dM·(s)

and

S0(t, β̂) − S0(t, β0) = S1(t, β
∗)T (β̂ − β0)

with β∗ on the line segment between β0 and β̂, one obtains

n1/2(Λ̂0(t, β̂) − Λ0(t)) = −
Z t

0

J(s)E(s, β0)
T dΛ0(s)n

1/2(β̂ − β0)

+ n−1/2

Z t

0

J(s)

n−1S0(s, β0)
dM·(s) + ε(t), (6.19)

where ε(t) converges to zero in probability uniformly in t. Also

n1/2(β̂−β0) = (n−1I(β0))
−1n−1/2U(β0)+ε̃ = (n−1I(β0))

−1n−1/2M̃(τ )+ε̃,
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where ε̃
P→ 0, and

M̃(t) =
nX

i=1

Z t

0

(Xi(s) − E(s, β0))dMi(s).

Finally note that

〈M̃ ,

Z ·
0

J(s)

S0(s, β0)
dM·(s)〉(t)

=
nX

i=1

Z t

0

J(s)
(Xi(s) − E(s, β0))

S0(s, β0)
Yi(s) exp(Xi(s)

T β)dΛ0(s) = 0

so that the covariance between the two leading terms on the right hand
side of (6.19) is zero. �

It is clear from (6.19) that the limit distribution of n1/2(Λ̂0(t, β̂) − Λ0(t))
cannot be a Gaussian martingale due to the term (β̂−β0) destroying the in-
dependent increments requirement. The estimator of the variance function
may be used to construct pointwise confidence intervals but not to construct
confidence bands as for example the Hall-Wellner band. Such a band may,
however, be constructed using an i.i.d. decomposition of n1/2(Λ̂0(t, β̂) −
Λ0(t)), see Chapter 7.1 for a treatment of this in a more general setting.
These band and confidence intervals may be computed using the cox-aalen
function, see Appendix C, as illustrated in the below example. One may
also approximate the joint asymptotic distribution of(

n1/2(β̂ − β), n1/2(Λ̂0(·, β̂) − Λ0(·)
)

,

which is of importance when we for instance want to construct confidence
band accompanying survival predictions

ŜX0(·) = exp(−
∫ ·

0

exp(X0(t)T β̂)dΛ̂0(t, β̂))

for an individual with covariate vector X0, see again Chapter 7.1 for a
treatment of this in a more general setting.

Example 6.1.2 (Estimated cumulative baseline function for PBC-data)

Consider again the PBC-data. We want to apply the Cox model to this
dataset and further to show the estimated cumulative baseline function
along with 95% confidence intervals and simulation based 95% confidence
band. Recall that the baseline function λ0(t) is the hazard function for an
individual with zero covariate values. Before applying the Cox model it
may therefore be sensible to center the continuous covariates around their
average value to obtain a λ0(t) that is the hazard function for an individual
with average covariate values (for the continuous variates).
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FIGURE 6.2: Estimated cumulative baseline hazard function along with
95% pointwise confidence intervals (full lines) and 95% simulation based
confidence bands (broken lines)

> fit<-cox.aalen(Surv(time/365,status)~prop(Age)+prop(Edema)+

+ prop(logBilirubin)+prop(logAlbumin)+prop(logProtime),

+ pbc,n.sim=1000,max.time=8);

Cox-Aalen Survival Model

Simulations start N= 1000

> plot(fit,sim.ci=2,robust=0,xlab="Time (years)",

+ ylab="Cumulative baseline function")

The cox.aalen function is described in further detail later in Chapter 7.1
and can fit the Cox regression model as a special case. The shown estimated
cumulative hazard function, see Figure 6.2, estimates Λ0(t) =

∫ t

0
λ0(s) ds

with λ0(t) the hazard function for an individual with no swelling (edema=0)
and with average values for the other applied covariates. �

The asymptotic results for the estimators of the parameters of the Cox
model derived above are the basis for inference. These results are asymp-
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totic but seem to work very well also in small samples as reported in the
literature where a huge amount of real datasets have been analyzed using
the Cox model. Many simulation studies have also been made to investigate
the performance of the estimators and their properties, and in general these
results are very reassuring. The maximization of the partial likelihood func-
tion (6.6) may, however, break down in some situations. This was studied
by Jacobsen (1989) who gave a necessary and sufficient condition ensuring
that (6.6) attains its maximal value at a unique point β̂. This is summarized
in the following note.

Note. Let t1, . . . , tK denote the jumps of
P

i Ni(t) on [0, τ ], Rj is the
risk set at time tj (includes the individual that is going to fail at tj) and
kj is the individual that fails at tj , j = 1, . . . , K. The partial likelihood
function (6.6) attains its maximal value at a unique point β̂ if and only if
there is no θ ∈ R

p, θ �= 0, such that for all j, k ∈ Rj \ kj :

pX
l=1

θlXkl(tj) ≥
pX

l=1

θlXkj l(tj). (6.20)

In words, at each failure time the individual that fails must not be extreme
in the risk group as described by (6.20), that is, there must be no linear
combination of the p covariates such that the value of the linear combina-
tion for the failing individual exceeds or equals the value for all other at
risk at that time. For the pbc-data it would be impossible to maximize the
partial likelihood if the failing subject at each failure time has an extreme
linear combination of the covariates used in the model. For example, at
each failure time the failing subject must not have the largest value of
protime among those at risk, or the sum of log(protime) and log(albumin)
(using the log-transform of these covariates in the model), and so on.

As mentioned earlier the assumption that the relative risks are constant
with time may not hold in practice. There are various ways of circumventing
this assumption, but most of them somewhat ad hoc. Below we describe
two of the most commonly applied approaches.

Ĺ If the proportional hazards assumption is questionable for a given
categorical covariate, X1, one may extend the model to the so-called
stratified Cox model:

λ(t) = Y (t)λ0k(t) exp(β2X2(t) + · · · + βpXp(t)), (6.21)

when X1 = k with k = 1, . . . , K denoting the K possible values of X1.
The baseline intensity function λ0 is thus replaced by K baseline in-
tensity functions λ01, . . . , λ0K , one for each strata defined by X1. The
baseline functions may reflect various nonproportional developments
of the relative risks with time. If the specific covariate is continuous,
this method is not really satisfying since one needs to construct the
strata (more or less arbitrarily).
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Ĺ A typical violation of the model in practice is time-dependent ef-
fects of the covariates. This phenomenon can actually, to a certain
degree, be modeled within the Cox model by use of time-dependent
covariates. Suppose for a moment that X1 is the only covariate in
the model, that it is continuous, and that it is suspected to have a
time-dependent effect. Suppose further that the relative risk changes
at some specific points in time as for example after one year and two
years. A possible model is then the Cox model with the covariates
X1, X2(t) = X1I(1 ≤ t) and X3(t) = X1I(2 ≤ t). Hence

β1X1 + β2X2(t) + β3X3(t) =

⎧⎨⎩ β1X1 t < 1
(β1 + β2)X1 1 ≤ t < 2
(β1 + β2 + β3)X1 2 ≤ t

so β2 gives the change in the interval from 1 to 2, and β3 gives the
additional change in the last interval. This approach may of course be
extended to include other covariates, and may in some applications
capture what is going on. The down side is that the cut points (here
1 and 2) will not be known a priori but need to be chosen in an ad
hoc manner.

We now consider the situation where regression effects are estimated
using Cox’s maximum partial likelihood estimator but the underlying true
model may not be the Cox model.

Example 6.1.3 (Misspecified proportional hazards model)

Consider the situation where some true intensity regression model holds
for a particular dataset and the Cox model is fitted to the data. If the
true model is not the Cox model, then what does the maximum partial
likelihood estimator converge to? This was investigated by Struthers &
Kalbfleisch (1986). Let (N1, . . . , Nn) be n i.i.d. counting processes obtained
from right-censored life-times. Suppose that the intensity with respect to
the observed filtration is

Yi(t)α(t, Xi), (6.22)

where the covariates Xi, i = 1, . . . , n, are time-invariant and contained in
the given filtration and Yi(t) is the usual at risk indicator. Assume for sim-
plicity that Xi is one-dimensional, i = 1, . . . , n. Note that (6.22) needs not
be of the Cox-form. Under some standard regularity conditions, Struthers
& Kalbfleisch (1986) showed that Cox’s maximum partial likelihood esti-
mator β̂ is a consistent estimator of β∗, where β∗ is the solution to the
equation h(β) = 0 with

h(β) =
∫ τ

0

(
s1(t)
s0(t)

− s1(t, β)
s0(t, β)

)
s0(t) dt, (6.23)
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where sj(t) = E(Sj(t)), sj(t, β) = E(Sj(t, β)) with

Sj(t) = n−1
n∑

i=1

Xj
i Yi(t)α(t, Xi), Sj(t, β) = n−1

n∑
i=1

Xj
i Yi(t) exp(Xiβ),

j = 0, 1. Lin & Wei (1989) further showed that n1/2(β̂ − β∗) is asymptoti-
cally normal and gave a consistent estimator of variance-covariance matrix,
see Exercise 6.7.

Note that β∗ will depend on the censoring pattern due to the term s0(t)
in (6.23). This led Xu & O’Quigley (2000) to consider an alternative to the
Cox score equation:

Ũ(β) =
n∑

i=1

∫ τ

0

W (t)(Xi − E(t, β)) dNi(t),

where W (t) = Ŝ(t−)/
∑

i Yi(t) with Ŝ(t−) the left-continuous version of the
Kaplan-Meier estimator of the marginal survivor function. If the censoring
is independent of the life-times and covariates, then the solution to Ũ(β) =
0 will converge to a quantity β̃ that does not depend on the censoring
pattern. If the true model is

α(t, Xi) = α0(t) exp (Xiβ(t))

and the limit in probability of (6.17) evaluated in β = β(t) is denoted by
v(t, β(t)), then β̃ is approximately equal to∫ τ

0 v(t, β(t))β(t) dF (t)∫ τ

0 v(t, β(t)) dF (t)
,

which may be interpreted as an weighted average of β(t) over [0, τ ]. In
the above display F (t) = 1 − S(t). Although this approach is appealing
it is usually preferable to make as few assumptions as possible about the
distribution of the censoring times. Also it may seem more satisfactory to
take the model with time-dependent regression coefficients as a starting
point and then try to simplify the model as appropriate, see Section 6.6.

Lin (1991) also considered a weighted Cox-score function

Uw(β) =
n∑

i=1

∫ τ

0

W (t)(Xi − E(t, β)) dNi(t),

where W (t) is some predictable weight function. Assume that W (t) con-
verges uniformly in probability to a non-negative bounded function w(t).
Similarly to above one may show that the solution, β̂w, to Uw(β) = 0 con-
verges in probability to a quantity βw that solves the equation hw(β) = 0
with

hw(β) =
∫ τ

0

w(t)
(

s1(t)
s0(t)

− s1(t, β)
s0(t, β)

)
s0(t) dt.
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Lin (1991) then derived a test based on the asymptotic distribution of
n1/2(β̂w − β̂) that is consistent against any model misspecification of the
Cox model under which hw(β∗) �= 0, see Exercise 6.8. �

The nonparametric element, λ0(t), of the Cox model makes the model
quite flexible and for many applications it may be a sensible model to use.
In fact in applied biomedical work there seems to be just this regression
model for survival data, and the biomedical researchers are so used to the
model and how to interpret its parameters that they will settle for nothing
else. This is somewhat unfortunate if the Cox model does not fit the data
since the summaries obtained from the model can then be misleading. In
any case it is pertinent to investigate whether the model gives an acceptable
fit to the data (as it is for any model). This is the topic of the next section
where some diagnostic tools are discussed.

6.2 Goodness-of-fit procedures for the Cox model

The Cox regression model

λ(t) = Y (t)λ0(t) exp(XT (t)β)

can fail in various ways. The functional form of the individual covariates
may be misspecified, the link function, exp, may be misspecified meaning
that the relationship between the intensity function and the linear predic-
tor XT (t)β may not be log-linear, and the regression coefficients may not
be constant with time (the proportional hazards assumption). In practice
one often encounters covariate effects, such as treatment effects, that are
weakened with time.

We focus on the proportional hazards assumption that has been the study
of much work. One of the simplest procedures to examine if the proportional
hazards assumption is violated is to make plots of the estimated cumulative
baseline hazards in the stratified model (6.21). Consider again the stratified
model where the stratification is based on X1(t):

λ(t) = Y (t)λ0k(t) exp(β2X2(t) + · · · + βpXp(t)),

when X1(t) = k with k = 1, . . . , K denoting the K possible strata. If
the Cox model is correct, then the estimated cumulative baselines Λ̂0k(t)
of the stratified Cox model should be approximately proportional. One
usually make the plots (t, log(Λ̂0k(t))), k = 1, . . . , K, noting that these
curves should be approximately parallel. These plots may be quite difficult
to use in practice, however, since it is unclear how large deviations from
the null (parallel curves) are acceptable. An improvement to this procedure
is instead to plot the differences between these curves because these can
fairly easy be provided with confidence intervals as illustrated in the next
example.
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FIGURE 6.3: Estimated log-cumulative hazards difference along with 95%
pointwise confidence intervals. The straight lines (dashed lines) are based
on the Cox model.

Example 6.2.1 (Proportional hazards assumption for the PBC-data)

We wish to check the proportional hazards assumption for the PBC-data
using the plots

(t, log(Λ̂0k(t)) − log(Λ̂01(t))), k = 2, . . . , K, (6.24)

based on the stratified Cox model. Under the model these curves should be
approximately constant and equal to the estimated coefficients under the
model. Confidence intervals may be obtained using the cox.aalen function
and some additional calculations. We focus on the covariates edema and
albumin to illustrate the technique. The latter covariate is continuous and
is therefore grouped using here four groups based on the quartiles of the
covariate. The cox.aalen function gives the estimated variance covariance-
matrix for Λ̂0k(t), k = 1, . . . , K as follows:

> fit1<-cox.aalen(Surv(time,status)~-1+prop(Age)+factor(Edema)

+prop(logProtime)+prop(logAlbumin)+prop(logBilirubin),
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covariance=1)

focusing here on edema and where we have centered the other covariates.
One may then apply the delta-method (see Chapter 2) to obtain 95% con-
fidence intervals for the curves (6.24) as shown in Figure 6.3 along with the
straight line estimates based on the Cox model. The plot for edema indi-
cates that the proportional hazards assumption may not hold for edema.
The plots for the grouped version of albumin are also shown, and for this
covariate there seems to be no indication of lacking fit of the Cox model
if we include albumin as a categorical variable in the model based on the
quartiles of the variate. �

Checking this property for all covariates will give some insight into whether
the proportional hazards assumption is violated. Considering the perfor-
mance of this procedure in the model defined by the extended Cox model
with time-varying coefficients

λ(t) = Y (t)λ0(t) exp(XT (t)β(t)) (6.25)

it is apparent that the procedure will do quite well in the one-dimensional
case where the stratified baselines can be used to approximate the shape of
β(t). With more than one covariate in the model, however, it is unclear how
the individual plots will reflect the departure from the null. There are two
other obvious drawbacks with this approach. First, if a covariate is contin-
uous, then one needs to define some strata (more or less arbitrarily) based
on the covariate values, but it is a different model that one really wishes
to check, namely the one where the covariate is included as a continuous
variate. Secondly, the model is checked one covariate at a time assuming
that the model is okay for all the other covariates, which might obviously
not be the case. If none of these plots indicate departure from the null,
however, then this of course suggests that one may have some confidence
in the model.

We now describe a class of tests that are often performed in practice along
with the graphical procedure just discussed. We are looking for deviations
from the Cox model of the type (6.25). Write, for the moment, the time-
varying regression coefficients as

βj(t) = βj + θjgj(t), (6.26)

where gj(t) is considered as known and assumed to be predictable. Exam-
ples are gj(t) = log(t), gj(t) = N·(t−) but we return to that in a moment.
The interest is in testing the hypothesis H0 : θ = 0 with θ = (θ1, . . . , θp).
Note that, when the gj ’s are known functions (predictable), then the model
with coefficients (6.26) is still a Cox model and the asymptotic results de-
veloped in the previous section may be invoked to test the hypothesis H0.
It turns out indeed that the score test statistic gives many of the suggested
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goodness of fit tests in the literature when the gj ’s are chosen appropri-
ately as pointed out by Therneau & Grambsch (2000). If we denote the
score function by U = (UT

1 , UT
2 )T (suppressing the dependency on (β, θ)),

where the first component is the derivative of partial likelihood with re-
spect to β, and the second component is the derivative with respect to θ.
Similarly let (Ikl)k,l=1,2 denote the empirical information matrix written
as a block matrix reflecting that we have two parameter vectors in play.
Denote the inverse of the empirical information matrix by (Ikl)k,l=1,2. The
score test statistic may thus be written

(UT
1 , UT

2 )
(

I11 I12

I21 I22

)(
U1

U2

)
,

which reduces to

T (G) = UT
2 (β̂, 0)I22(β̂, 0)U2(β̂, 0)

when evaluated in (β̂, 0), where β̂ denotes the maximum partial likelihood
estimator under the null and G(t) is the vector of gj ’s. The score test T (G)
is asymptotically χ2 with p degrees of freedom under the null. Different
choices of G(t) lead to most of the suggested test-statistics for proportion-
ality of the Cox regression model, see Therneau & Grambsch (2000) for
more details. Instead of computing the above score test one could of course
also use the likelihood ratio or the Wald test.

One typical application of this type of testing is to let gj(t) = log(t) (Cox,
1972) for j = 1, . . . , p. If this is done multivariately, and all components
have departures from proportionality of this type, the test will give a good
idea about the lacking fit of the Cox model. It is a standard procedure to
consider the covariates one at a time, and then test for departures of g(t)
type (log for example), thus assuming that only θp, say, differs from 0 and
then testing H0 : θp = 0. This leads to an asymptotically χ2 with 1 degree
of freedom if the null is true.

Example 6.2.2 (Continuation of Example 1.1.1)

Consider again the PBC data. To test if there is a departure from propor-
tionality given by the log-function we fit the model

> cox<-coxph(Surv(time/365,status)~Age+Edema+logBilirubin

+ +logAlbumin+logProtime,data=pbc);

> time.test<- cox.zph(cox,transform="log")

> print(time.test)

rho chisq p

Age 0.00147 2.92e-04 0.986372

Edema -0.24982 9.46e+00 0.002103

logBilirubin 0.07891 8.44e-01 0.358245

logAlbumin 0.02139 7.87e-02 0.779066
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logProtime -0.24983 6.93e+00 0.008472

GLOBAL NA 2.35e+01 0.000266

The combined GLOBAL test, which is an approximation to the above T (G)
with the gj’s chosen as the log-function, suggests strongly that there is de-
parture from the standard Cox form with p < 0.001. The individual covari-
ate tests point to that it is edema and log(protime) that have departure
from constant effects. These findings are in line with the results obtained
from the successive type of testing done in Example 6.0.2. �

The tests against specific deviations from the Cox model using prespec-
ified gj-functions may give an indication of a possible lack fit of the Cox
model, but it is important to realize that the individual tests associated
with each covariate in the model are only valid if the Cox model is true
for all the other covariates. One should therefore be cautious with these
procedures. Scheike & Martinussen (2004) showed that the test for individ-
ual components can be far from the nominal level when other components
do not have proportional effects. For many applications the sample size
will be small and the degree of non-proportionality will not be dramatic
and the individual testing of components may therefore do quite well. An-
other problem with this testing procedure is that one has to specify the
gj-functions so one needs to have a clear idea about the type of departure
from proportionality to look for, which we believe is seldom the case in
practice. Different gj’s may result in different conclusions.

Lin et al. (1993) and Wei (1984) suggested an important class of test
statistics based on cumulative residuals. These test statistics can be de-
signed to investigate different departures from the model including mis-
specification of the link function and the functional form of the covariates.
The martingales under the Cox regression model can be written as

Mi(t) = Ni(t) −
∫ t

0

Yi(s) exp(XT
i (s)β)λ0(s)ds

= Ni(t) −
∫ t

0

Yi(s) exp(XT
i (s)β)dΛ0(s)

and these can be estimated using the estimates from the Cox model, see
Section 6.1, leading to

M̂i(t) = Ni(t) −
∫ t

0

Yi(s) exp(XT
i (s)β̂)dΛ̂0(s)

= Ni(t) −
∫ t

0

Yi(s) exp(XT
i (s)β̂)

1

S0(s, β̂)
dN·(s).

The idea is now to look at different functionals of these estimated residuals
and see if they behave as they should under the model. Note for example
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that the score function, evaluated in the estimate β̂, and seen as a function
of time, can be written as

U(β̂, t) =
n∑

i=1

∫ t

0

Xi(s)dM̂i(s).

A closer analysis of the score process evaluated at β̂ shows that n−1/2U(β̂, t)
is asymptotically equivalent to the process

n−1/2
(
M1(t) − I(t, β̂)I−1(τ, β̂)M1(τ)

)
, (6.27)

where

M1(t) =
n∑

i=1

M1i(t) =
n∑

i=1

∫ t

0

(Xi(s) − e(s, β0))dMi(s)

with e(t, β0) the limit in probability of E(t, β0). The asymptotic distribution
of (6.27) may be evaluated using a resampling procedure. The distribution
of the process n−1/2M1(t) (t ∈ [0, τ ]) is asymptotically equivalent to

n−1/2
n∑

i=1

∫ t

0

(Xi(s) − E(s, β̂))dNi(s)Gi

where G1, ..., Gn are independent standard normals. The key reasoning is
that the Mi’s are i.i.d. with variance E(Ni) and therefore can be approxi-
mated by GiNi. Alternatively to this resampling approach one may also, as
in Lin et al. (2000), establish that n−1/2M1(t) is asymptotically equivalent
to

n−1/2
n∑

i=1

∫ t

0

(Xi(s) − E(s, β̂))dM̂i(s)Gi.

The last martingale residual resampling approach has certain desirable ro-
bustness properties, see Section 6.8. With the ability to assess the behavior
of the observed score process under the null, the Cox model, one can pro-
ceed to suggest some appropriate test statistics like

sup
t∈[0,τ ]

|Uj(β̂, t)| or (6.28)

sup
t∈[δ,τ−δ]

| Uj(β̂, t)

v̂ar(Uj(β̂, t))
|, j = 1 . . . , p, (6.29)

where δ is a small positive number to avoid numerical problems at the edges,
and v̂ar(U(β̂, t)) is a consistent estimator of the variance of the observed
score process such as

n∑
i=1

(
M̂1i(t) − I(t, β̂)I−1(τ, β̂)M̂1i(τ)

)⊗2

,
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FIGURE 6.4: Score processes (unweighted) with 50 simulated processes un-
der the model.

where

M̂1i(t) =
∫ t

0

(Xi(s) − E(s, β̂))dM̂i(s).

Note that these test statistics are easily modified and evaluated by the
resampling approach.

Example 6.2.3 (Continuation of Example 1.1.1)

The Lin, Wei, and Ying score process test for proportionality, (6.28), has
the advantage that no specific functional form needs to be specified when
looking for lack of fit of the model for a specific covariate. The test can be
computed as follows using the cox.aalen function. The shown output is
slightly edited.

> fit.cox<-cox.aalen(Surv(time/365,status)~prop(Age)+prop(Edema)

+ +prop(logBilirubin)+prop(logAlbumin)+prop(logProtime),

+ weighted.test=0,pbc);

Cox-Aalen Survival Model
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Simulations start N= 500

> summary(fit.cox)

Cox-Aalen Model

Proportional Cox terms :

Coef. SE Robust SE D2log(L)^-1 P-val

prop(Age) 0.0383 0.00701 0.00926 0.00768 4.88e-08

prop(Edema) 0.6600 0.20000 0.24500 0.20600 9.54e-04

prop(logBilirubin) 0.8970 0.07590 0.08820 0.08270 0.00e+00

prop(logAlbumin) -2.4600 0.67900 0.64100 0.65700 2.98e-04

prop(logProtime) 2.3500 0.64300 0.94700 0.77400 2.59e-04

Test for Proportionality

sup| hat U(t) | p-value H_0

prop(Age) 108.00 0.350

prop(Edema) 10.90 0.002

prop(logBilirubin) 12.50 0.170

prop(logAlbumin) 1.48 0.324

prop(logProtime) 2.29 0.004

The output differs slightly from the results from the standard coxph func-
tion because the ties are handled differently. To plot the score processes,
see Figure 6.4, just do as follows.

> plot(fit.cox,score=T,xlab="Time (years)")

When the score processes are evaluated under the null using the unweighted
supremum test-statistic we see that there is lacking fit of the Cox model
with respect to edema and log(protime). Also for log(albumin) the model
shows lacking fit towards the end of the time-period, see Figure 6.4, but this
is not reflected in the unweighted supremum test statistic. We also compute
the weighted version of the supremum test statistics taking the variance of
score processes into account (6.29), see Figure 6.5. The following output is
edited just focusing on the weighted score process.

> fit.cox.w<-cox.aalen(Surv(time/365,status)~prop(Age)+prop(Edema)

+ +prop(logBilirubin)+prop(logAlbumin)+prop(logProtime),

+ pbc,weighted.test=1)

Cox-Aalen Survival Model

Simulations start N= 500

> summary(fit.cox.w)

Cox-Aalen Model

Proportional Cox terms :

Coef. SE Robust SE D2log(L)^-1 P-val

prop(Age) 0.0383 0.00701 0.00926 0.00768 4.88e-08

prop(Edema) 0.6600 0.20000 0.24500 0.20600 9.54e-04
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FIGURE 6.5: Score processes (weighted) with 50 simulated processes under
the model.

prop(logBilirubin) 0.8970 0.07590 0.08820 0.08270 0.00e+00

prop(logAlbumin) -2.4600 0.67900 0.64100 0.65700 2.98e-04

prop(logProtime) 2.3500 0.64300 0.94700 0.77400 2.59e-04

Test for Proportionality

sup| hat U(t) | p-value H_0

prop(Age) 1.82 0.732

prop(Edema) 9.42 0.000

prop(logBilirubin) 3.08 0.060

prop(logAlbumin) 2.27 0.380

prop(logProtime) 3.94 0.002

> plot(fit.cox.w,score=T,xlab="Time (years)",ylab="Test process")

These tests lead in this case to similar conclusions as the unweighted test
statistics. �
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The supremum tests outlined above are appealing in that no arbitrary
grouping of (continuous) covariates or specific deviations from proportion-
ality are needed. The tests do, however, suffer the drawback that the model
is assumed to be correct with respect to all the other covariates when the
proportionality assumption is investigated for a specific covariate. One may
therefore overlook important features of the data as well as not being able
to pin point exactly where a possible lack of proportionality is present.

Lin et al. (1993) also suggested to consider the two-dimensional cumula-
tive residual process

Mc(t, z) =
∫ t

0

KT
z (s)dM̂(s)

where Kz(t) is an n×1 matrix with elements I(Xi1(t) ≤ z) for i = 1, . . . , n
focusing here on the first continuous covariate X1, say. Thus cumulating
residuals versus both time and the covariate values. The cumulative residual
process Mc is useful to study possible misspecification of the functional form
of covariates and the interaction with time. To summarize things further
one may integrate over the entire time span to get a process only in z:

Mc(z) =
∫ τ

0

KT
z (t)dM̂(t), (6.30)

which can be plotted against z. The cumulative residual processes may
also be decomposed into a sum of i.i.d. components making resampling
possible to approximate their asymptotic distributions. We illustrate the
use of Mc(z) in the following example.

Example 6.2.4 (PBC-data: cumulative residuals)

We shall see that the cumulative residuals do reveal information about
misspecification of the functional form of the covariates. To make this point
for the PBC data we compare the fit of the models, where it is assumed
that either bilirubin or log(bilirubin) leads to constant relative risk. First
consider the model with log(bilirubin):

> fit<-cox.aalen(Surv(time/365,status)~prop(Age)+prop(Edema)

+ +prop(logBilirubin)+prop(logAlbumin)+prop(logProtime)

+ ,max.time=8,pbc,residuals=1,n.sim=0)

Cox-Aalen Survival Model

> resids<-cum.residuals(fit,pbc,cum.resid=1);

Cumulative martingale residuals for Right censored survival times

Simulations start N= 500

> summary(resids)

Test for cumulative MG-residuals

Residual versus covariates consistent with model
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FIGURE 6.6: PBC-data. Observed cumulative residuals versus continuous
covariates with 50 random realizations under the model.

sup| hat B(t) | p-value H_0: B(t)=0

prop(Age) 6.857 0.694

prop(logBilirubin) 9.030 0.172

prop(logAlbumin) 7.998 0.450

prop(logProtime) 5.525 0.814

> plot(resids,score=2)

We know that there is lacking fit for the model with respect to edema and
log(protime) but the summary statistics and Figure 6.6 suggest that the
functional representation of the covariates seems to be sensible enough.

Consider now the model where we use bilirubin on its original scale as a
covariate in the model:

> fit<-cox.aalen(Surv(time/365,status)~prop(Age)+prop(Edema)

+ +prop(Bilirubin)+prop(logAlbumin)+prop(logProtime),

+ max.time=8,pbc,residuals=1,n.sim=0)
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FIGURE 6.7: PBC-data. Observed cumulative residuals versus continuous
covariates with 50 random realizations under the model.

Cox-Aalen Survival Model

> resids<-cum.residuals(fit,pbc,cum.resid=1);

Cumulative martingale residuals for Right censored survival times

Simulations start N= 500

> summary(resids)

Test for cumulative MG-residuals

Residual versus covariates consistent with model

sup| hat B(t) | p-value H_0: B(t)=0

prop(Age) 6.139 0.788

prop(Bilirubin) 27.530 0.000

prop(logAlbumin) 6.045 0.830

prop(logProtime) 7.983 0.356

> plot(resids,score=2)



6.3 Extended Cox model with time-varying regression effects 205

The summary statistics and Figure 6.7 clearly suggest that bilirubin should
not be included in the model on its original scale. �

In Section 6.6 we suggest a model based approach for successive testing
of timevarying effects based on the semiparametric model (6.4).

6.3 Extended Cox model with time-varying
regression effects

The Cox model is far the most used model in applications. As stressed
in the two previous sections it relies on some assumptions that should be
checked in each application. Taking another perspective one may extend
the Cox model relaxing some of the assumptions. Ideally one can hope for
inferential tools that can be used to investigate whether the more general
model can be simplified, eventually perhaps to the Cox model. There are
many ways to extend the Cox model. One extension that seems natural,
however, is the model where the relative risk parameters are allowed to
depend on time so that the effect of a treatment, say, can change with
time. We study the Cox model with time-varying regression coefficients in
this section and we shall see indeed (Section 6.6) that inferential tools can
be developed, which allow for investigating whether the Cox model is an
acceptable submodel to use in specific applications.

The Cox model with time-varying regression coefficients is a very flexible
model, and it will give a good first order approximation to most hazards
models. The model assumes that the intensity has the form

λ(t) = Y (t)λ0(t) exp(XT (t)β(t)), (6.31)

where Y (t) is the at risk process and X(t) a p-dimensional predictable
bounded covariate vector. The baseline λ0(t) function still gives the in-
tensity for an individual with covariates equal to zero. The regression co-
efficients of the Cox model have been replaced by a vector β(t) of time-
dependent regression functions.

Most work on this model (see references in the beginning of this chapter)
aims directly at estimating β(t) utilizing smoothness assumptions. Large
sample properties for these estimators have been derived but due to pres-
ence of bias in the estimation it has been difficult to develop inferential
tools such as confidence bands. This problem has, however, been overcome
in the recent paper by Tian et al. (2005) who used a resampling method to
construct confidence bands. This procedure seems to work but one should
still keep in mind that estimators of β(t) converge at a slower rate than
the usual n1/2-rate, which inevitably will lead to less powerful inference.
Murphy & Sen (1991) studied a histogram sieve estimator of β(t) and then
integrated this estimator to obtain an estimator of the cumulative time-
varying effects, B(t) =

∫ t

0 β(s)ds. Practically, the histogram sieve estimator
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may be difficult to use since one needs to choose a suitable number of time
segments and endpoints, see Murphy (1993) for an example. In this sec-
tion, we focus also on the cumulative regression coefficients because these
quantities can be estimated at the usual n1/2-rate. Since most hypotheses
about the regression coefficients, such as time-invariance, can be directly
transferred to hypotheses concerning the cumulatives it is in most cases no
limitation to work with the cumulatives. A further benefit, when working
with the cumulatives, is that martingale calculus may be invoked to estab-
lish large sample properties of the suggested estimators. One may establish
convergence over the entire time span in contrast to pointwise convergence
so that for example uniform confidence bands may be easily constructed.

We shall assume that λ0(t) > 0 and rewrite the model as

λ(t) = Y (t) exp(XT (t)β(t)), (6.32)

where the baseline has been absorbed into the design vector. We prefer to
work with this parameterization because it leads to simpler formulas, but
return to a discussion of how to deal with the more standard parameteri-
zation (6.31) later in this section.

Assume that n independent copies (Ni(t), Yi(t), Xi(t)), i = 1, . . . , n, are
being observed in some time interval [0, τ ], τ < ∞, and that each Ni(t) has
intensity (6.32). Let

N(t) = (N1(t), .., Nn(t))T

denote the multivariate counting process with intensity

λ(t) = (λ1(t), ..., λn(t))T ,

and organize the covariates into a design matrix of dimension n × p:

X(t) = (Y1(t)X1(t), ..., Yn(t)Xn(t))T .

Further denote the n-dimensional cumulative intensity as Λ(t) =
∫ t

0
λ(s)ds

such that M(t) = N(t) − Λ(t) is a n-dimensional (square integrable) mar-
tingale.

We base the estimation on the log-likelihood function

n∑
i=1

{∫ τ

0

Xi(t)T β(t) dNi(t) −
∫ τ

0

Yi(t) exp(Xi(t)T β(t)) dt

}
.

Taking the derivative with respect to β(t) leads to the score equation (writ-
ten on differential form)

X(t)T (dN(t) − λ(t)dt) = 0. (6.33)

Equation (6.33) will be the starting point for our estimation procedure
although it has no solution as it is written here, because the first term
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represents a pure jump process while the second is absolutely continuous.
We use it, however, to construct an iteration procedure based on an initial
estimate, β̃. For this we need the second derivative of the log-likelihood
function

−
{

n∑
i=1

Yi(t)eXi(t)
T β̃(t)Xi(t)Xi(t)T

}
dt = −Ã(t) dt,

where Ã = Aβ̃ with
Aβ(t) = XT (t)W (t)X(t)

and W (t) = diag(λi(t)). A Taylor series expansion of (6.33) gives the iter-
ation step

β̃new(t) = β̃(t) + Ã(t)−1X(t)T
(
dN(t) − λ̃(t) dt

)
, (6.34)

where λ̃ is λ evaluated with β = β̃. The iteration steps will not lead to
a solution, as already pointed out, and we need to bring in some smooth-
ness assumptions to obtain a solution. We integrate the linearized equation
(6.34) to estimate the cumulative regression coefficients instead. This leads
to the iteration step B̃(k+1) = g(B̃(k)) where

g(B̃)(t) =
∫ t

0

β̃(s) ds +
∫ t

0

Ã(s)−1X(s)T dN(s)

−
∫ t

0

Ã(s)−1X(s)T λ̃(s) ds, (6.35)

and introduce smoothness of the underlying regression coefficients through
the estimation of β(t). For simplicity, β̃(t) is taken to be a simple kernel
estimator of β(t), that is,

β̃(t) =
∫

b−1K

(
s − t

b

)
dB̃(s),

with b the bandwidth parameter and K a uniformly continuous kernel with
support [−1, 1] satisfying∫

K(s) ds = 1,

∫
sK(s) ds = 0.

The iteration scheme may be summarized as follows:

Ĺ Start with an initial β̃(0)(t);

Ĺ Use the iteration step (6.35) to obtain B̃(1)(t);

Ĺ Smooth B̃(1)(t) to obtain β̃(1)(t) and apply (6.35) again. Iterate until
convergence.
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The properties of the obtained estimator are described in the following
theorem. The norm ‖C‖ of a matrix C is here defined as maxi,j |Cij |. Let
A(t) = Aβ0(t) with β0(t) the true regression function.

Condition 6.2

(a) The regression function β(t) is three times continuously differentiable;

(b) The bandwidth b is of order n−α, where 1/8 < α < 1/4;

(c) Convergence of n−1A(t):

sup
t∈[0,τ ]

‖n−1A(t) − a(t)‖ p→ 0,

where a is non-singular with continuous components.

�

Theorem 6.3.1 Assume Condition 6.2. Then, with a probability tending
to 1 as n → ∞, (6.35) has a solution g(B̂) = B̂ such that ‖B̂ − B‖ =
Op(n−1/2). Furthermore,

n1/2(B̂ − B) D→ U as n → ∞

in D[0, τ ]p, where U is a zero-mean Gaussian martingale with variance
function

Φ(t) =
∫ t

0

a−1(u) du. (6.36)

Proof. In this proof we focus on only establishing the asymptotic nor-
mality result. That (6.35) has a solution g(B̂) = B̂ such that ‖B̂ − B‖ =
Op(n

−1/2) is shown in Martinussen et al. (2002) using the fix point theo-
rem.

We can decompose the counting process as

dN(t) = λ(t) dt + dM(t), (6.37)

where M is a (local square integrable) vector martingale. By use of the
martingale central limit theorem and Condition 6.2 (a), it may be seen
that

n1/2

Z ·
0

A(s)−1X(s)T dM(s)
D→ U as n → ∞, (6.38)

where U is a zero-mean Gaussian martingale with covariance function
given by (6.36). The latter point follows since the predictable variation
process of the martingale in (6.38) is

n

fiZ t

0

A(s)−1X(s)T dM(s)

fl
= n

Z t

0

A(s)−1X(s)T W (s)X(s)A(s)−1 ds

=

Z t

0

(n−1A(s))−1 ds,
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which converges in probability to the expression (6.36). The asymptotic
distribution of B̂ is obtained from equation (6.35) starting from B̂. Since
g(B̂) = B̂, we have

B̂(t) − B(t) =

Z t

0

Â(s)−1X(s)T dM(s)

+

Z t

0

Â(s)−1
n

A∗(s) − Â(s)
on

β̂(s) − β(s)
o

ds

=

Z t

0

Â(s)−1X(s)T dM(s) + O(‖β − β̂‖2),

where Â(t) = Aβ̂(t), A∗(t) = Aβ∗(t) and with β∗(t) on the line segment

between β̂ and β(t). If

(i) n1/2

Z t

0

(Â(s)−1 − A(s)−1)X(s)T dM(s) = op(1),

such that Â can be replaced by the predictable A, and

(ii) n1/2O(‖β − β̂‖2) = op(1),

then the proof follows from (6.38).

To show (ii), it suffices to choose b such that

‖β̂ − β‖ = op(n
−1/4). (6.39)

To this end we split the error of β̂−β into a bias part and a random part,

β̂(t) − β(t) =

Z
b−1K

„
u − t

b

«
d(B̂(u) − B(u)) + β(t) − β(t),

where

β(t) =

Z
b−1K

„
u − t

b

«
dB(u)

denote the smoothed derivative of B(t). Hence

‖β̂ − β‖ ≤ O(b−1‖B̂ − B‖) + O(b2)

and (6.39) is seen to be met with

b = n−α, 1/8 < α < 1/4,

which is Condition 6.2 (b).

To show that (i) is valid, we Taylor expand the matrix function A(t)−1.
For ease of notation we consider only the one-dimensional case. Let

C(t) = X(t)T diag(Xi1(t))W (t)X(t).
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We then obtain for the leading term of (i):Z
A(t)−1C(t)b−1

Z
K

„
u − t

b

«
d(B̂ − B)(u)A(t)−1X(t)T dM(t)

=

Z
A(t)−1C(t)b−2

Z
Kd

„
u − t

b

«
(B̂ − B)(u) duA(t)−1X(t)T dM(t)

=b−2

Z Z
A(t)−1C(t)Kd

„
u − t

b

«
A(t)−1X(t)T dM(t)(B̂ − B)(u) du

≤‖B̂ − B‖b−2

‚‚‚‚Z ˛̨̨̨Z A(t)−1C(t)A(t)−1Kd

„
u − t

b

«
X(t)T dM(t)

˛̨̨̨
du

‚‚‚‚ ,

where Kd is the derivative of K. Since β̂ is a smoothed version of B̂ the
above change of integrals effectively smoothes the martingale rather than
B̂ and the martingale central limit theorem applies. By use of Lenglart’s
inequality it is seen that (i) holds, and the proof is complete. �

Winnett & Sasieni (2003) studied a related procedure that estimates β(t)
and establishes a stronger consistency than the one given by the above
theorem. It also follows that with a probability tending to one that the
solution is unique within a ball of radius O(n−δ) from B where 2α < δ <
1/2, 1/8 < α < 1/4.

It is worth pointing out that, if a consistent starting point is given, then
it suffices with one iteration step to obtain efficiency. That the estimator
is in fact efficient follows by comparing the estimator’s variance with the
information bound for this model, see Sasieni (1992b).

Consistent estimates of the variance function Φ(t) are provided either by

n

∫ t

0

Â(s)−1 ds,

where Â(t) = Aβ̂(t), or by the optional variation process

n

∫ t

0

Â(s)−1X(s)T diag (dN(s))X(s)Â(s)−1

with the latter referring to the martingale decomposition

n1/2(B̂(t) − B(t)) = n1/2

∫ t

0

Â(s)−1X(s)T dM(s) + op(1).

Example 6.3.1 (PBC-data. Example 6.0.2 continued.)

The optional variation standard errors are used to give 95% pointwise con-
fidence intervals in Figure 6.8 obtained by the command.
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FIGURE 6.8: PBC-data. Estimated cumulative regression function with 95%
pointwise confidence intervals for edema.

> fit<-timecox(Surv(time/365,status)~Age+Edema+logBilirubin

+ +logAlbumin+logProtime,pbc,max.time=8)

> plot(fit,xlab="Time (years)",ylab="Cumulative coefficients",

+ specific.comps=3)

Even though the pointwise confidence intervals are useful in evaluating
the cumulative effect at specific timepoints, they are not well suited for
inferential purposes about the shape of the entire curve. A simple test
for significance of edema could for example be based on the cumulative
estimate at time 6, and then edema is deemed non-significant. If we, on the
other hand, test the effect at time 2, we conclude that it is significant. This
is obviously due to the changing behavior of the effect of edema. Later we
construct confidence bands. �

In the note below the asymptotic properties for the estimators within the
standard parameterization (6.31) are sketched.
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Note. We now give some details to indicate how similar asymptotics is
obtained with the standard parameterization (6.31). Write thus the model
as

λi(t) = λ0(t)Yi(t) exp(Xi(t)
T β(t)) = λ0(t)φi(t), (6.40)

where φi(t, β) = Yi(t) exp(Xi(t)
T β(t)). The score equations for β(t) and

dΛ0(t) are

XT (t)
“
dN(t) − diag(exp(XT

i (t)β(t)))Y (t)dΛ0(t)
”

= 0, (6.41)

Y T (t)
“
dN(t) − diag(exp(XT

i (t)β(t)))Y (t)dΛ0(t)
”

= 0, (6.42)

and solving these successively, as for the Cox model (see Section 6.1), we
get

Λ̃0(t) =

Z t

0

1

S0(s, β(s))
dN·(s), (6.43)

where

S0(t, β(t)) =

nX
i=1

Yi(t) exp(XT
i (t)β(t)).

With this solution inserted into (6.41) and solving for β(t) we obtain

XT (t)(dN(t) − diag(exp(XT
i (t)β(t)))Y (t)(S0(t, β(t))−1dN·(t)) = 0.

(6.44)

With an initial estimator (λ̃0(t), β̃(t)) and φ̃i(t) = φi(t, β̃) we get the
updating step for the cumulated parameter vector:

g(B̃)(t) =

Z t

0

β̃(s)ds +

Z t

0

Γ̃(s)−1 1

λ̃0(s)
{X(s) − X̄(s)}T dN(s), (6.45)

where

Γ̃(t) = (X(t) − X̄(t))T diag(φ̃i(t))(X(t) − X̄(t)),

and X̄(t) is the matrix with rows

nX
i=1

φ̃i(t)Xi(t)
T /S0(β̃(t), t).

The asymptotic variance of the estimator may be estimated consistently
by Z ·

0

{λ̂0(t)Γ̂(t)}−1 dt,

where the quantities in the last display are those based on the final estima-
tor (at convergence). See Scheike & Martinussen (2004) for more details
on this approach.
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Grambsch & Therneau (1994) considered the scaled Schoenfeld residuals
(Schoenfeld, 1982) based on estimates from the Cox model to learn about
the behavior of β(t). With

E(t, β) = S1(t, β)/S0(t, β); V (t, β) =
S2(t, β)
S0(t, β)

−
{

S1(t, β)
S0(t, β)

}⊗2

,

the scaled Schoenfeld residual is defined as

r∗k = V −1(tk, β̂)rk(β̂),

where
rk(β) = X(k)(tk) − E(tk, β)

with X(k) the covariate vector of the subject with an event at time tk

and β̂ denoting the usual maximum partial likelihood estimator under the
Cox model. Using a Taylor-series expansion, Grambsch & Therneau (1994)
noted that direct smoothing of the scaled Schoenfeld residuals added onto
β̂, r∗k + β̂, gives a way of estimating β(t). Their estimator may be seen
as a one-step estimator based on the initial time-constant estimator β̂, the
maximum partial likelihood estimator. Since β̂ is not a consistent estimator
of the time-varying regression function β(t) it is not possible to show that
such a one-step procedure will give a consistent estimator. The procedure
may do well in practice, however, if the regression functions do not vary
too dramatically. Winnett & Sasieni (2001) considered variations of how to
smooth the residuals.

6.4 Inference for the extended Cox model

Considering the general version of the extended Cox model (6.31) with
time-varying regression coefficients, we shall present various approaches
for making inference about the regression coefficients of the model. We
have already presented some goodness of fit procedures for the standard
Cox model, but now focus more specifically on how to carry out inference
about the time-varying regression coefficients of the extended Cox model.
Although some of the methods are related, the hypotheses considered in this
section are more specific and precise as they relate to a specific model. The
earlier goodness of fit procedures in reality all considered the hypothesis
that all the time-varying regression coefficient are constant H0 : β(t) ≡
β. In contrast to this we now wish to consider the regression coefficients
individually and investigate the two hypotheses

H01 : βp(t) ≡ 0;
H02 : βp(t) ≡ βp;
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focusing on the pth regression coefficient without loss of generality. It is
important to notice that the other regression coefficients are allowed to
vary with time. The main reason for developing the efficient estimates and
deriving the asymptotics for the cumulatives is that evaluating the two
above hypotheses is easy in this framework. Testing the significance of the
regression coefficients will equivalently lead to construction of confidence
bands. Simultaneous Hall-Wellner (1−α) confidence bands over the period
from [0, τ ] are given by

B̂p(t) ± n−1/2dα Φ̂pp(τ)1/2

(
1 +

Φ̂pp(t)
Φ̂pp(τ)

)
,

where Φ̂pp(t) is the pth diagonal element of Φ̂(t) and dα is the (1 − α)-
quantile of supt∈[0,1/2] |B0(t)| with B0(t) the standard Brownian bridge.
This is a simple consequence of the asymptotic properties of the cumulative
regression coefficients.

An alternative to the Hall-Wellner band may be constructed using resam-
pling, which is based on obtaining an i.i.d. representation of the estimator.
We start by observing that

n1/2(B̂(t) − B(t)) = n−1/2
n∑

i=1

Qi(t) + op(1), (6.46)

where

Qi(t) =
∫ t

0

(n−1XT (s)W (s)X(s))−1Xi(s)dMi(s)

and

Mi(t) = Ni(t) −
∫ t

0

Yi(s) exp(XT
i (s)β(s))ds

are the basic martingales (Scheike, 2004). The leading term of the right-
hand side of (6.46) is, for large n, essentially a sum of independent and
identically distributed zero-mean random variables and its covariance may
be estimated by

Φ̂(t) = n−1
n∑

i=1

Q̂⊗2
i (t),

where

Q̂i(t) =
∫ t

0

(n−1XT (s)Ŵ (s)X(s))−1Xi(s)dM̂i(s),
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with M̂i(t) obtained by insertion of estimates into Mi(t). If (G1, ..., Gn) are
independent and standard normally distributed, then it can be shown that

∆1(t) = n−1/2
n∑

i=1

Q̂i(t)Gi

has the same limit distribution as n1/2(B̂(t)−B(t)). Let the jth component
of the kth realization of ∆1(t) be denoted as ∆k

1,j(t).
To test the hypothesis, H02 : βp(t) = βp, one may then use a simple

test statistic depending on n1/2(B̂(t) − B(t)) and then approximate its
distribution by the resampling approach sketched above. A simple test is
based on computing the test statistic

n1/2 sup
t∈[0,τ ]

|B̂p(t) −
B̂p(τ)

τ
t|. (6.47)

To approximate percentiles for the observed test statistic under the null,
compute

sup
t∈[0,τ ]

|∆k
1,p(t) −

∆k
1,p(τ)
τ

t|

for a large number of realizations k = 1, . . . , K.
Similarly, construction of simultaneous confidence bands and a test for

H0: βp(·) = 0, or equivalently H0: Bp(·) = 0, can be based on the maximal
deviation test statistic

T1S = sup
t∈[0,τ ]

|n
1/2B̂p(t)

Φ̂1/2
pp (t)

|. (6.48)

Percentiles can be approximated from realizations of ∆1(t)

sup
t∈[0,τ ]

|
∆k

1,p(t)

Φ̂1/2
pp (t)

|. (6.49)

Example 6.4.1 (PBC data. Example 6.0.2 continued)

The estimate of the cumulative regression coefficient for log(bilirubin) can
be provided with 95% confidence bands. Figure 6.9 gives the Hall-Wellner
band as well as the band based on T1S obtained by the above resampling
technique.

> plot(fit,xlab="Time (years)",ylab="Cumulative coefficients",

+ sim.ci=2,hw.ci=3,specific.comps=4)



216 6. Multiplicative hazards models

0 2 4 6 8

0
2

4
6

8

Time (years)

C
u
m

u
la

ti
v
e
 c

o
e
ff
ic

ie
n
ts

logBilirubin

FIGURE 6.9: PBC-data. Estimated cumulative regression function with 95%
confidence bands for log(bilirubin). Hall-Wellner band (dotted curves) and
simulation based band (broken curves).

Note that the shape of the two confidence bands differ considerably. The
Hall-Wellner band being wide initially and narrower later in contrast to
the simulation based band. Both bands show, however, that the effect
of log(bilirubin) is significant having the constant function 0 outside the
bands. The p-values for the simulation based approach for the significance
of the individual effects are those reported in the output shown in Exam-
ple 6.0.2. It is not clear based on Figure 6.9 if the cumulative coefficient is
consistent with a constant multiplicative effect or if the corresponding re-
gression coefficient is significantly time-varying. The cumulative coefficient
is somewhat flat initially, then steeper in its increase and finally flatten-
ing out. The uniform bands depicted in Figure 6.9 cannot be used to test
the hypothesis of constant effect because it does not reflect the combined
uncertainty about the possible constant effect. To test this hypothesis one
may use the Kolmogorov-Smirnov test (6.47) or a Cramér-von Mises type
test. First consider the table of test statistics and p-values.

Test for time invariant effects
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FIGURE 6.10: Test process with 50 simulated processes under the null.

sup| B(t) - (t/tau)B(tau)| p-value H_0: B(t)=b t

(Intercept) 2.0700 0.000

Age 0.0353 0.940

Edema 5.4000 0.000

logBilirubin 0.7170 0.559

logAlbumin 3.4200 0.851

logProtime 12.7000 0.004

int (B(t)-(t/tau)B(tau))^2dt p-value H_0: B(t)=b t

(Intercept) 1.79e+01 0.000

Age 1.29e-03 0.976

Edema 7.41e+01 0.000

logBilirubin 9.16e-01 0.478

logAlbumin 1.12e+01 0.943

logProtime 5.28e+02 0.000

Call:

timecox(Surv(time/365, status) ~ Age + Edema + logBilirubin +

logAlbumin + logProtime, pbc, max.time = 8)
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We see that both the Kolmogorov-Smirnov test and the Cramér-von Mises
test lead to very similar p-values, and we see that in the considered model
the intercept, edema and log(protime) do have effects that vary significantly
with time. A plot of the test process

B̂p(t) −
B̂p(τ)

τ
t

associated with log(bilirubin) along with 50 resampled processes under the
model are shown in Figure 6.10. The p-value of the Kolmogorov-Smirnov
test is p = 0.55 so we cannot reject the hypothesis of time-invariance. The
figure indicates, however, that the observed score process has a somewhat
deviating behavior initially, but the supremum test-statistic reflects the be-
havior around the time-point 6 where there is a lot of variation. This could
be investigated further using a variance weighted version of the test statis-
tic, which may be done in timecox using the option weighted.test=1; in
this case it does not change our conclusion about the effect of the covariate.

�

6.5 A semiparametric multiplicative hazards model

In the previous section we focused on how to investigate whether a specific
regression effect is changing with time allowing the other regression coef-
ficients to depend on time. If time-invariance is accepted, then one may
want to test the same hypothesis for the remaining variables in the already
simplified model. It is therefore of interest to consider the semiparametric
model

λi(t) = Yi(t) exp(XT
i (t)β(t) + ZT

i (t)γ) (6.50)

where Xi(t), Zi(t) are predictable bounded covariate vectors of dimension
p and q, respectively. The effect of the covariates Xi1(t), . . . , Xip(t) is thus
allowed to vary with time while the effect of the covariates Zi1(t), . . . , Ziq(t)
is time-invariant. Define matrices

X(t) = (X1(t), ..., Xn(t))T

and
Z(t) = (Z1(t), ..., Zn(t))T .

In the following we show how to estimate the unknown quantities and
derive the large sample properties of the estimators. To ease notation we
show explicit dependence of time in the following only when we wish to
emphasize it. For fixed γ the score equation for β(t) is

XT{dN − λdt} = 0.
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Now, a Taylor expansion around an initial set of estimates (β̃, γ̃) gives

(β − β̃)dt = (XT DX)−1XT{dN − λ̃ dt − DZ(γ − γ̃) dt} (6.51)

where D = Λ̃(t) = diag(λ̃i). The score equation for γ after a Taylor expan-
sion is

ZT {dN − λ̃ dt − DX(β − β̃)dt − DZ(γ − γ̃) dt} = 0. (6.52)

Inserting (6.51) into (6.52) and solving for γ gives the updating step for γ

gγ(γ̃) = γ̃ +
(∫ τ

0

ZT GDZdt

)−1 ∫ τ

0

ZT G(dN − λ̃ dt), (6.53)

where
G(t) = I − DX(XT DX)−1XT .

Inserting (6.53) into (6.51) gives the updating step for B:

gB(B̃)(t) =
∫ t

0

β̃(s) ds+
∫ t

0

(XT DX)−1XT{dN−λ̃ ds−DZ(gγ(γ̃)−γ̃) ds}.
(6.54)

Before giving the asymptotic results for the semiparametric model we need
some definitions. Let

C1(t) = (n−1

∫ t

0

ZT GDZ ds)−1, C2(t) =
∫ t

0

(XT DX)−1XT DZ ds

with limits in probability c1(t), c2(t) respectively, that both exist due to
the i.i.d. assumptions combined with existing moments that are uniformly
bounded.

Theorem 6.5.1 Under assumptions similar to those for Theorem 6.3.1
equations (6.53) and (6.54) have n1/2-consistent solutions

(gγ(γ̂) = γ̂, gB(B̂) = B̂)

with a probability tending to 1 as n → ∞. Furthermore,

n1/2(γ̂ − γ) D→ V as n → ∞,

where V is a zero-mean normal with variance Σ, and

n1/2(B̂ − B) D→ U as n → ∞

in D[0, τ ]p, where U is a zero-mean Gaussian process with variance Φ(·).



220 6. Multiplicative hazards models

Proof. We focus only on the distributional properties of the estimators
(γ̂, B̂). Rewriting the expressions for the estimators and using a Taylor-
series expansion, we get (suppressing lower order terms)

n1/2(γ̂ − γ) = (n−1

Z τ

0

ZT GDZ dt)−1n−1/2

Z τ

0

ZT G dM = C1(τ )M1(τ ),

where

M1(t) = n−1/2

Z t

0

ZT G dM,

and

n1/2(B̂(t) − B(t)) =n1/2

Z t

0

(XT DX)−1XT dM

− n1/2

Z t

0

(XT DX)−1XT DZ ds(γ̂ − γ)

=M2(t) − C2(t)C1(τ )M1(τ ),

where

M2(t) = n1/2

Z t

0

(XT DX)−1XT dM.

Now, proceeding as in Theorem 6.3.1, it follows that the non-predictable
integrands can be replaced by predictable integrands. Therefore, the mar-
tingale central limit theorem implies that

(M1, M2)
T D→ U = (U1, U2) as n → ∞

in D[0, τ ](p+q), where U is a zero-mean Gaussian martingale. Thus n1/2(γ̂−
γ) converges in distribution towards a zero-mean normal V with a variance
given as the limit in probability of

C1(τ )〈M1〉(τ )C1(τ )T = (n−1

Z τ

0

ZT GDZdt)−1 = C1(τ ),

and

n1/2(B̂(t) − B(t))
D→ U2(t) − c2(t)c1(τ )U1(τ ),

where the covariance function of the right-hand side of (6.5) is given as
the limit in probability of

〈M2(t) − C2(t)C1(τ )M1(τ )〉

=

Z t

0

(XT DX)−1 ds + C2(t)C1(τ )C2(t)
T + op(1)

since 〈M2, M1〉(t) converges in probability to zero. �

The suggested estimator, γ̂, for γ is efficient, as its variance attains the
variance bound calculated from the efficient influence operator given in
Sasieni (1992a).
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The variances in Theorem 6.5.1 can be estimated by optional variation
estimators by noticing that the following martingale decompositions (as in
the proof),

n1/2(γ̂ − γ) = (n−1

∫ τ

0

ZT GDZ dt)−1n−1/2

∫ τ

0

ZT GdM + op(1)

and

n1/2(B̂(t) − B(t)) =n1/2

∫ t

0

(XT DX)−1XT dM

− n1/2

∫ t

0

(XT DX)−1XT DZ ds(γ̂ − γ) + op(1).

The variance of V is estimated consistently by the (estimated) optional
variation process

Σ̂ = C1(τ)n−1

∫ τ

0

ZT Gdiag(dN)GZC1(τ)

that is asymptotically equivalent to C1(τ), and similarly the variance of
n1/2(B̂(t)−B(t)), Φ(t), is estimated consistently by the optional variation
estimator

Φ̂(t) = n

∫ t

0

(XT DX)−1XT diag(dN)X(XT DX)−1 + C2(t)Σ̂CT
2 (t)

that is asymptotically equivalent to

n

∫ t

0

(XT DX)−1ds + C2(t)Σ̂CT
2 (t).

Example 6.5.1 (PBC data. Example 6.0.2 continued )

In Example 6.0.2 we found that the PBC data were well described by
the semiparametric model with constant effects of log(albumin), age and
log(bilirubin), and with edema and log(protime) having time-varying ef-
fects. The estimates of the parametric terms and their standard errors were
found to be

Parametric terms :

Coef. SE Robust SE z P-val

const(Age) 0.0377 0.00931 0.00921 4.05 5.2e-05

const(logBilirubin) 0.8210 0.09840 0.08200 8.34 0.0e+00

const(logAlbumin) -2.4500 0.67300 0.60600 -3.64 2.7e-04

Call:
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FIGURE 6.11: PBC-data. Estimated cumulative regression coefficients in
semiparametric multiplicative risk model along with 95 % confidence inter-
vals.

timecox(Surv(time/365, status) ~ const(Age) + Edema +

const(logBilirubin) + const(logAlbumin) + logProtime, pbc,

max.time = 8)

> plot(fit.semi,xlab="Time (years)",ylab="Cumulative coefficient")

This gives a much simpler summary of these effects, while the model still
allows the needed complexity for the remaining two effects that are shown in
Figure 6.11 with 95 % pointwise confidence intervals based on the optional
variation formula just given. �

Above we dealt with a particular parameterization of the semiparametric
multiplicative intensity model given by (6.50). This parameterization did
not specifically include a baseline, although it may be done through a con-
stant among the covariates. In all applications a baseline will be present,
and an alternative parameterization, which is standard in the multiplicative
setting, is to write this baseline as an explicit nonparametric component of
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the model

λi(t) = Yi(t)λ0(t) exp{Xi(t)T β(t) + Zi(t)T γ}, (6.55)

where Xi(t) and Zi(t) are of dimension p and q, and λ0 is a baseline inten-
sity function. In the following note we give the similar derivations for this
parameterization.

Note. The standard parameterization for semiparametric model.

Establishing the partial likelihood based on the Breslow estimator, first
yields the Breslow estimator for Λ0(t) =

R t

0
λ0(s)ds for fixed γ and β

Λ̃0(t) =

Z t

0

S0(s)
−1dN.(s).

Now, inserting this estimator in the likelihood to obtain a partial likeli-
hood that is Taylor expanded to yield a Newton-Raphson algorithm for
estimating γ and β(t), we obtain the updating equations

{βr+1(t) − βr(t)}S−1
0r dN.(t)

= Γ−1
r X̃T

r

ˆ
dN(t) − DZ̃r{γr+1 − γr}S−1

0r dN.(t)
˜

and

Z̃T
r

ˆ
dN(t) − {DX̃r(βr+1(t) − βr(t)) − DrZ̃r(γr+1 − γr)}S−1

0r dN.(t)
˜

= 0

where X̃r = X − X̄r, Dr = diag{φir}, φir = exp(XT
i βr(t) + ZT

i γr),
Γr = X̃T

r DX̃r, X̄r = Sx
1 (t)/Sj

0r, and

Sx
kr(t) = Sk{βr , γr, t} =

nX
i=1

Yi exp {XT
i βr(t) + ZT

i γr}X⊗k
i

for k = 0, 1, and we define the quantities based on Z similarly. We omitted
the time argument from the above equations unless we explicitly wish to
emphasize it.

If we solve these equations successively, we obtain

γr+1 − γr =

„Z τ

0

Z̃T
r GrDrZ̃r

1

Sr
0

dN.

«−1 Z τ

0

Z̃T
r GrdN (6.56)

where
Gr = {I − DrX̃r(X̃

T
r DrX̃r)

−1X̃T
r }.

Using this updated version, γr+1, we obtain as in the non-parametric case

Br+1(t) =

Z t

0

βr(t)dt +

Z t

0

Γ−1
r λ−1

0r X̃T
r

ˆ
dN − DrZ̃r{γr+1 − γr}S−1

0r dN.
˜
.

(6.57)

The updating step yields an efficient estimator. Iterating yields an estima-
tor of γ and the cumulative regression coefficients. Under weak regularity
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conditions and with undersmoothing, γ∞ − γ is asymptotically normal
with a variance that is estimated consistently by

Cγ(τ ) =

„Z τ

0

Z̃(t)T G(t)D(t)Z̃(t)
1

S0(t)
dN.(t)

«−1

.

Based on B∞(t) we may smooth to obtain an estimator of β(s) and the
cumulative intensity B∞(t). It also follows that B∞(t) − R t

0
β(s)ds con-

verges towards a Gaussian process with a covariance that is estimated
consistently byZ t

0

Γ∞(s)−1λ∞
0 (s)−1ds + C1(t)Cγ(τ )C1(t)

T

where C1(t) =
R t

0
Γ∞(s)−1λ∞

0 (s)−1X̃(s)T D(s)Z̃(s)ds.

The estimation procedure that only involves simple matrix algebra can be
written as

Step 1 Start the algorithm with initial estimates of βr(t) and γr. Compute
the Breslow estimator and smooth to obtain λr

0(t).

Step 2 Use equation (6.56) to obtain γr+1(t).

Step 3 Use γr+1(t) and equation (6.57) to obtain Br+1(t).

Step 4 Smooth Br+1(t) to obtain an estimate of βr+1(t) and return to Step
1.

6.6 Inference for the semiparametric multiplicative
model

In this section we outline a test for whether or not an effect of a covariate
is time-varying. We consider the semiparametric regression model

λi(t) = Yi(t) exp(XT
i (t)β(t) + ZT

i (t)γ)

and wish to test the hypothesis H0 : βp(t) ≡ βp versus the alternative that
βp(t) is varying with time. A test for H0 may be based on the following
test process

n1/2(B̂p(t) − β̂pt) (6.58)

where B̂p(t) is the estimator of Bp(t) obtained before simplifying the model,
while β̂p is computed under the null hypothesis. It may be shown that
(6.58), under the null hypothesis, converges towards a zero-mean Gaus-
sian process. One may then perform a maximal deviation test based on
(6.58). The limiting distribution of (6.58) is, however, complicated and the
distribution of the maximal deviation test statistic needs to be simulated.
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Alternatively, one may use the suggestion by Khmaladze (1981), see Ap-
pendix A.

The estimators of the semiparametric model has an i.i.d. representation
that may be used for constructing a resampling approach as well as robust
standard errors. It may be established that n1/2(γ̂ − γ) is asymptotically
equivalent to

C1(τ)n−1/2
n∑

i=1

ε2i,

where

ε2i =
∫ τ

0

(
Zi − (ZT DX)(XT DX)−1Xi

)
dMi.

A consistent estimator of the variance of n1/2(γ̂ − γ) is

Σ̂ = n−1
n∑

i=1

ε̂⊗2
2i , (6.59)

where ε̂2i is defined from ε2i by replacing the unknown quantities with their
estimates. One may also show that n1/2(B̂(t) − B(t)) is asymptotically
equivalent to the

n−1/2
n∑

i=1

ε3i(t),

where

ε3i(t) = ε4i(t) − C2(t)C1(τ)ε2i,

ε4i(t) =
∫ t

0

(n−1XT DX)−1XidMi.

It can be shown that the variance of n1/2(B̂(t)−B(t)) is estimated consis-
tently by

Φ̂(t) = n−1
n∑

i=1

ε̂3i(t)⊗2. (6.60)

To make uniform confidence bands and tests one can further show that, if
G1, ..., Gn are independent and standard normally distributed, then

∆3(t) = n−1/2
n∑

i=1

ε̂3i(t)Gi

has the same limit distribution as n1/2(B̂(t) − B(t)). The construction of
uniform confidence bands for B(t) and tests for significance of the non-
parametric effects may then be based on replications of ∆3(t).
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A simple test of the hypothesis of time-invariance, based on B̂p(·) only,
is to compute

F3(B̂p(·)) = n1/2 sup
t∈[0,τ ]

|B̂p(t) − B̂p(τ)
t

τ
|.

The asymptotic properties of this test may be resampled similar to what
was done for the Aalen additive model, Chapter 5. We summarize the above
results in the below theorem.

Theorem 6.6.1 Under the conditions of Theorem 6.5.1 and with G1, ..., Gn

independent and standard normally distributed, it follows that

∆2 = C1(τ)n−1/2
n∑

i=1

ε̂2iGi,

∆3(·) = n−1/2
n∑

i=1

ε̂3i(·)Gi,

has the same limit distribution as n1/2(γ̂ − γ, B̂(·)−B(·)). Further, (6.59)
and (6.60) are consistent estimators of the variance of n1/2(γ̂ − γ) and
n1/2(B̂(·) − B(·)), respectively.

6.7 Estimating the survival function

In Section 7.1.4 we show how to estimate the survival function for an ex-
tended version of the Cox model. We here briefly outline how to estimate
the survival function for a subject where it is assumed that the hazard is
modeled by the semiparametric proportional hazards model

λ0(t) = exp(XT
0 β(t) + ZT

0 γ)

where X0 and Z0 are two fixed covariates.
The survival function is then given as

S0(t) = S0(β, γ, t) = exp(−
∫ t

0

exp(XT
0 β(s) + ZT

0 γ)ds)

that obviously can be estimated by

Ŝ0(t) = S0(β̂, γ̂, t) = exp(−
∫ t

0

exp(XT
0 β̂(s) + ZT

0 γ̂)ds).

Note that the above integral is easier to compute in the case of the stan-
dard parameterization with a baseline function where one does not need to
compute a Lebesgue integral.
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We now describe how one can construct confidence intervals and a con-
fidence band for the survival function. Using a Taylor series expansion we
can approximate the log-survival estimator as follows

n1/2(log(S0(B̂, γ̂, t)) − log(S0(B, γ, t))) = −
∫ t

0

exp(XT
0 β(s) + ZT

0 γ){
XT

0 d
{
n1/2(B̂(s) − B(s))

}
+ ZT

0 n1/2(γ̂ − γ)ds
}

+ op(1).

Based on this expansion into the cumulative regression coefficients and
the regression coefficients one may now establish a resampling approach to
construct an approximate confidence band similarly to what was done for
the additive hazards model in Section 5.5.

6.8 Multiplicative rate models

The multiplicative models considered in the previous sections have been
specified as intensity models. As noted in Section 5.6 the intensity is equiv-
alent to

λ(t)dt = E[dN(t)|σ(N(s), X(s), Y (s), s ∈ [0, t[)],

with dN(t) = N(t + dt) − N(t). The intensity therefore needs to reflect
the dependence on the past of N(t), Y (t) and X(t). For recurrent events
data it may be an ambitious task to do this modeling. Looking at things
in a larger perspective it turns out that even though the model is not the
correct intensity an analysis using robust standard errors will still lead to
interpretable results if the model is perceived as a model for the rate func-
tion. Lin et al. (2000) gave the theory for the Cox rate model building on
earlier work by Pepe & Cai (1993), see also Lawless & Nadeau (1995). The
results for the rate models are also closely related to the results for mis-
specified proportional models, see Struthers & Kalbfleisch (1986), Solomon
(1984) and in particular Lin & Wei (1989) where robust standard errors
were suggested in this context.

We consider the semiparametric model described in Section 6.5. The rate
function is thus assumed to be

E(λi(t) |Yi(t), Xi(t), Zi(t)) = Yi(t) exp(Xi(t)T β(t) + Zi(t)T γ) (6.61)

where Xi(t) and Zi(t) are of dimension p and q, and Yi(t) is the at risk
indicator.

The parameters of the rate model are estimated just as in the intensity
context, and when the robust standard errors are used, then the variance
estimates given in Section 6.6 are also valid in the rate context and the
resampling approach can be applied. To be more specific, the results given
in Theorem 6.5.1 and Theorem 6.6.1 still hold, but with γ and B now
referring to the rate model (6.61).
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6.9 Goodness-of-fit procedures

The extended Cox model (6.31) is very flexible. It is, however, still necessary
to investigate the fit of the model. The true model may not be multiplicative
and various interactions may have been overlooked. In this section we show
how martingale residual techniques may be used to validate the fit of the
model. We start by considering

Mi(t) = Ni(t) −
∫ t

0

Yi(s) exp(Xi(s)T β(s)) ds, i = 1, . . . , n,

and wish to see if estimates thereof have a behavior consistent with the
model, where the Mi(t)’s are zero-mean martingales (or zero-mean pro-
cesses in the rate context). The martingales on vector form are estimated
by

M̂(t) = N(t) −
∫ t

0

λ̂(s)ds

= M(t) +
∫ t

0

(λ(s) − λ̂(s))ds

= M(t) −
∫ t

0

W̃ (β(s), s)X(s)(β̂(s) − β(s))ds + R(t),

where W̃ (β, t) = diag(Yi(t) exp(Xi(t)T β(t))), and where the remainder
term R(t) is asymptotically negligible. The last integral can be written
as∫ t

0

W (β, s)X(s)d(B̂(s) − B(s)) =
∫ t

0

W (β, s)X(s)A−1(s)XT (s)dM(s)

+ op(n−1/2)

using the martingale representation for n1/2(B̂(t) − B(t)). Combining the
two expression we get that

M̂(t) = M̃(t) + op(n−1/2),

where

M̃(t) =
∫ t

0

G(s)dM(s)

with
G(t) = I − W (β, t)X(t)A−1(t)XT (t).

Note that this structure resembles that for the residuals of the additive
hazards model, see Section 5.7. The structure implies that

XT (t)dM̃(t) = 0,
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and for models containing an intercept, a special case of this reads

n∑
i=1

Yi(s)dM̃i(t) = 0.

The M̂(t) residuals only have this property asymptotically:∫ t

0

XT (s)dM̂(s) = op(n−1/2).

The residuals M̃(t) may be used as building blocks in goodness-of-fit pro-
cedures. This parallels the development for the additive intensity model,
Section 5.7.

One use of the residuals is to sum them depending on the level of the
covariates (Aalen, 1993). Define therefore a m×n matrix possibly depend-
ing on time: K(t). A typical choice of K(t) is to let it reflect the quartiles
of one of the continuous covariates in the model. The cumulative residual
process is then defined by

MK(t) =
∫ t

0

KT (s)dM̃(s) =
∫ t

0

KT (s)G(s)dM(s).

The variance of MK(t) can be estimated by the optional variation process

[MK ] (t) =
∫ t

0

KT (s)G(s)diag(dN(s))K(s)G(s).

An alternative variance estimator, implemented in timereg, is the robust
variance estimator based on an i.i.d. representation of the cumulative resid-
ual processes, similarly to what was done for the additive intensity model.

Now, plotting the observed cumulative residual process MK(t) with 95%
pointwise confidence intervals will give an indication of whether or not the
observed residuals are consistent with the model. When a large number of
residuals are computed, it is convenient with a p-value to help summarize
how serious a departure from the null that is seen. One may therefore
compute the supremum of MK(t) and approximate the quantiles of its
limit distribution, under the model, by resampling. Resampling can also
be used to construct confidence bands, as we have indicated in previous
chapters.

Example 6.9.1 (PBC-data, Example 6.0.2 continued)

We only show the results for log(bilirubin). Similar results can be obtained
for the other covariates.
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FIGURE 6.12: PBC-data. Observed cumulative residuals with 95% confi-
dence bands (dotted lines) and 95% pointwise confidence intervals (full
lines).

> fit<-timecox(Surv(time/365,status)~Age+Edema+logBilirubin

+ +logAlbumin+logProtime,max.time=8,pbc,residuals=1,n.sim=0)

Nonparametric Multiplicative Hazard Model

> X<-model.matrix(~-1+cut(Bilirubin,quantile(Bilirubin),

+ include.lowest=T),pbc)

> colnames(X)<-c("1. quartile","2. quartile","3. quartile",

+ "4. quartile");

> resids<-cum.residuals(fit,pbc,X,n.sim=1000);

Cumulative martingale residuals for Right censored survival times

> plot(resids,sim.ci=2)

> summary(resids)

Test for cumulative MG-residuals

Grouped Residuals consistent with model

sup| hat B(t) | p-value H_0: B(t)=0

1. quartile 3.229 0.747
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FIGURE 6.13: Observed cumulative residuals with 50 random realizations
under the model.

2. quartile 4.773 0.355

3. quartile 5.181 0.635

4. quartile 2.598 0.772

int ( B(t) )^2 dt p-value H_0: B(t)=0

1. quartile 21.567 0.713

2. quartile 45.562 0.384

3. quartile 67.562 0.556

4. quartile 13.534 0.710

The cumulated residuals with 95% confidence intervals and bands, Figure
6.12, show that the effect of log(bilirubin) seems to be well described by
the model also supported by the above reported tests. �

These plots are very useful, but it is somewhat inconvenient that one needs
to group the continuous covariates. An alternative procedure avoiding this
grouping was suggested, as previously mentioned, by Lin et al. (1993) for
the Cox model, see Section 6.2. The idea is to cumulate the residuals over
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the covariate space as well as over time thus considering the double cumu-
lative processes

Mc(t, z) =
∫ t

0

KT
z (s)dM̃(s)

=
∫ t

0

KT
z (s)G(s)dM(s),

where Kz(t) is an n × 1 vector with elements

I(Xi1(t) ≤ z) for i = 1, .., n

focusing here on the first (continuous) covariate denoted X1. Integrating
over the entire time span we get a process in only z

Mc(z) = Mc(τ, z). (6.62)

This process can also be written as a sum of i. i. d. components and resam-
pling may thus be used again.

Example 6.9.2 (PBC-data, Example 6.9.1 continued)

We plot the cumulated processes for each of the continuous covariates

> fit<-timecox(Surv(time/365,status)~Age+Edema+logBilirubin

+ +logAlbumin+logProtime,max.time=8,pbc,residuals=1,n.sim=0)

Nonparametric Multiplicative Hazard Model

> resids<-cum.residuals(fit,pbc,cum.resid=1)

Cumulative martingale residuals for Right censored survival times

Simulations start N= 500

> plot(resids,score=2);

> summary(resids)

Test for cumulative MG-residuals

Residual versus covariates consistent with model

sup| hat B(t) | p-value H_0: B(t)=0

Age 6.556 0.714

logBilirubin 8.875 0.280

logAlbumin 8.049 0.364

logProtime 5.369 0.818

The output suggests that all cumulated residuals are consistent with the
model. Figure 6.13 shows the observed test-process (6.62) with 50 random
processes under the model. Note that the summary provided by the p-
values might overlook some aspects of the behavior for the log(bilirubin)-
covariate. Let us redo the analysis but now with bilirubin included on its
original scale.



6.9 Goodness-of-fit procedures 233

−20 −10 0 10 20

−
1
0

−
5

0
5

1
0

Age

C
u

m
u

la
ti
v
e

 r
e

s
id

u
a

ls

Age

0 5 10 15 20 25

−
2
0

−
1
0

0
1
0

2
0

Bilirubin

C
u

m
u

la
ti
v
e

 r
e

s
id

u
a
ls

Bilirubin

−0.6 −0.4 −0.2 0.0 0.2

−
1
0

−
5

0
5

1
0

logAlbumin

C
u

m
u

la
ti
v
e

 r
e

s
id

u
a

ls

logAlbumin

−0.1 0.0 0.1 0.2 0.3 0.4 0.5

−
1
0

−
5

0
5

1
0

logProtime

C
u

m
u

la
ti
v
e

 r
e

s
id

u
a

ls
logProtime

FIGURE 6.14: Cumulative residuals with 50 random realizations under the
model.

> fit<-timecox(Surv(time/365,status)~Age+Edema+Bilirubin+logAlbumin

+ +logProtime,max.time=8,pbc,residuals=1,n.sim=0)

Nonparametric Multiplicative Hazard Model

> resids<-cum.residuals(fit,pbc,cum.resid=1)

Cumulative martingale residuals for Right censored survival times

Simulations start N= 500

> plot(resids,score=2);

> summary(resids)

Test for cumulative MG-residuals

Residual versus covariates consistent with model

sup| hat B(t) | p-value H_0: B(t)=0

Age 6.111 0.686

Bilirubin 24.902 0.000

logAlbumin 6.683 0.602

logProtime 7.136 0.470
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The output suggests that the model gives a poor fit with respect to effect
of the covariate bilirubin. This is supported by Figure 6.14, which gives the
cumulated residuals with 50 resampled processes under the model. The
behavior of cumulated residual process corresponding to bilirubin is clearly
inconsistent with the model. It is thus better to use the extended Cox model
with bilirubin included on log-scale. �

6.10 Examples

Below we apply the extended Cox model to the lung cancer data presented
in Ying et al. (1995).

Example 6.10.1 (Lung cancer data)

The lung cancer dataset consists of 121 patients with small cell lung cancer.
The patients were randomly assigned to one of two treatments: cisplatin
followed by etoposide (0); etoposide followed by cisplatin (1). By the end
of the study, 47 of the 62 patients on treatment 1 and 51 of the 59 patients
on treatment 2 had died. For illustration we fit the extended Cox-model
allowing for time-varying effect of the two covariates using the data up to
3 years after beginning of the study. The age variable was centered around
its mean before running timecox.

> fit<-timecox(Surv(times/365,status==1)~trt+age.c,

+ start.time=0,max.time=3,residuals=1, bandwidth=0.3,n.sim=2000)

Nonparametric Multiplicative Hazard Model

Simulations starts N= 2000

> resids<-cum.residuals(fit,cum.resid=1)

Cumulative martingale residuals for Right censored survival times

Simulations starts N= 500

> plot(resids)

> summary(resids)

Test for cumulative MG-residuals

Residual versus covariates consistent with model

sup| hat B(t) | p-value H_0: B(t)=0

age.c 5.215 0.412

The cumulated residuals plotted against the ordered values of age, Figure
6.15, do not appear to be extreme, which is also supported by the above
reported supremum test. The fit of the model, see the following output,
suggest that there is a time-varying effect (p<0.001) of the treatment while
the age effect seems to be constant (p=0.79), see also Figure 6.16. It appears
that the risk is higher in treatment group 1 compared to group 0 (keeping
age fixed) in the first year or so with no difference thereafter. We can then
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FIGURE 6.15: Lung cancer data. Cumulated residuals with 50 random re-
alizations under the model.

fit the semiparametric model with constant effect of age, which corresponds
to the stratified Cox model. We see from the below output that the age
effect is borderline significant with an estimated given by a relative risk of
exp(0.021)=1.02 (age is age at entry in years).

> summary(fit)

Multiplicative Hazard Model

Test for nonparametric terms

Test for non-significant effects

sup| hat B(t)/SD(t) | p-value H_0: B(t)=0

(Intercept) 19.30 0.0000

trt 5.59 0.0000

age.c 3.63 0.0055

Test for time invariant effects

sup| B(t) - (t/tau)B(tau)| p-value H_0: B(t)=b t

(Intercept) 0.8660 0.0005

trt 1.6200 0.0000
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FIGURE 6.16: Lung cancer data. Estimates of cumulative regression coeffi-
cients with 95% pointwise confidence intervals (solid lines) and Hall-Wellner
confidence band (broken lines).

age.c 0.0274 0.7910

> fit.semi<-timecox(Surv(times/365,status==1)~trt+const(age.c),

+ start.time=0,max.time=3,residuals=1, bandwidth=0.3,n.sim=2000)

Semiparametric Multiplicative Risk Model

Simulations starts N= 2000

> summary(fit.semi)

Multiplicative Hazard Model

Test for nonparametric terms

Test for non-significant effects

sup| hat B(t)/SD(t) | p-value H_0: B(t)=0

(Intercept) 19.8 0

trt 5.8 0

Test for time invariant effects

sup| B(t) - (t/tau)B(tau)| p-value H_0: B(t)=b t

(Intercept) 0.874 0

trt 1.600 0
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FIGURE 6.17: Melanoma data. Estimates of cumulative regression coeffi-
cients with 95% pointwise confidence intervals (solid lines) and Hall-Wellner
confidence band (broken lines).

Parametric terms :

Coef. SE Robust SE z P-val

const(age.c) 0.0206 0.0121 0.0102 1.702 0.0888 �

To further illustrate the use of the extended Cox model we also consider
the Melanoma data.

Example 6.10.2 (Melanoma Data)

The data were introduced in Example 3.1.1. Let us fit the extended Cox
model to the melanoma data allowing for time-varying effects of sex, ulcer-
ation and thickness. The latter covariate was log-transformed and centered
around its mean, which seems to be appropriate judging from the below
supremum-test with a p-value of 0.21.

> fit<-timecox(Surv(days/365,status==1)~ulc+lthick.c+sex,

residuals=1, bandwidth=0.35,n.sim=2000)
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> resids<-cum.residuals(fit,cum.resid=1)

> plot(fit,hw.ci=2)

> summary(resids)

Test for cumulative MG-residuals

Residual versus covariates consistent with model

sup| hat B(t) | p-value H_0: B(t)=0

lthick.c 5.816 0.212

Call:

cum.residuals(fit, cum.resid = 1)

> summary(fit)

Multiplicative Hazard Model

Test for time invariant effects

sup| B(t) - (t/tau)B(tau)| p-value H_0: B(t)=b t

(Intercept) 4.61 0.099

ulc 3.52 0.191

lthick.c 1.44 0.049

sex 3.53 0.146

The test for time-varying effects suggest that the effect of log(thickness)
might be time-varying while it is acceptable to assume constant effect of
ulceration and sex, see also Figure 6.17. We therefore proceed with the
semiparametric model assuming first constant effect of sex, and then of
both sex and ulceration:

> fit.semi1<-timecox(Surv(days/365,status==1)~ulc+lthick.c+

const(sex),bandwidth=0.35,n.sim=2000)

> summary(fit.semi1)

Multiplicative Hazard Model

Test for time invariant effects

sup| B(t) - (t/tau)B(tau)| p-value H_0: B(t)=b t

(Intercept) 2.83 0.0715

ulc 3.13 0.2230

lthick.c 1.70 0.0105

Parametric terms :

Coef. SE Robust SE z P-val

const(sex) 0.37 0.273 0.252 1.355 0.175

> fit.semi2<-timecox(Surv(days/365,status==1)~const(ulc)+

lthick.c+const(sex),bandwidth=0.35,n.sim=2000)

Semiparametric Multiplicative Risk Model

Simulations starts N= 2000

> summary(fit.semi2)

Multiplicative Hazard Model
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Test for time invariant effects

sup| B(t) - (t/tau)B(tau)| p-value H_0: B(t)=b t

(Intercept) 1.46 0.286

lthick.c 1.76 0.001

Parametric terms :

Coef. SE Robust SE z P-val

const(ulc) 0.980 0.339 0.292 2.890 0.004

const(sex) 0.395 0.270 0.252 1.462 0.144

From these analyses it seems that there is no significant effect of sex while
there is a significant higher risk for patients with ulceration with an esti-
mated relative risk of exp(0.98)=2.66. The effect of log(thickness) is time-
varying and we see from Figure 6.17 that the effect of this variable di-
minishes with time. The conclusion about the effect of ulceration depends
rather heavily on the considered time span. If we instead consider the sur-
vival within the first 6 years, then running a similar analysis as the one
above suggests that the effect of ulceration is time-varying:

> fit.semi<-timecox(Surv(days/365,status==1)~ulc+lthick.c+

const(sex),max.time=6,bandwidth=0.35,n.sim=2000)

Semiparametric Multiplicative Risk Model

Simulations starts N= 2000

> summary(fit.semi)

Test for time invariant effects

sup| B(t) - (t/tau)B(tau)| p-value H_0: B(t)=b t

(Intercept) 5.15 0.0000

ulc 4.36 0.0010

lthick.c 1.17 0.0805

Parametric terms :

Coef. SE Robust SE z P-val

const(sex) 0.388 0.292 0.278 1.328 0.184

This logical paradox is a consequence of the simple test for time-varying
effects that is used here. First, the supremum test will depend on the consid-
ered time range. Secondly, the rough approximation of the constant effect
in the semiparametric model by simply using B̂(τ)/τ is sensitive to the
erratic behavior of B̂(t) in low-information areas. �
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6.11 Exercises

6.1 (Equivalence between score test in Cox model and log-rank test)
Consider the situation where we have K groups of right-censored lifetimes
with independent censoring. Assume that the conditional hazard function
for the ith subject is

α0(t) exp (
K∑

j=2

βjXij),

where Xij is the indicator of subject i belonging to group j.

(a) What does α0(t) describe? Compute the relative risk for two individ-
uals belonging to group 1 and group j, respectively.

(b) Show that the score test of the hypothesis H0 : βj = 0 is the same
as the logrank-test.

The logrank-test is thus an optimal test in the case where the Cox model
is the underlying true model.

6.2 (Cox’s partial likelihood as a marginal likelihood) Let (Ti, Xi), i =
1, . . . , n be n i.i.d. random variables so that lifetime Ti has conditional haz-
ard function α0(t) exp (βXi) given Xi that is assumed to be a scalar. Let
T(k), k = 1, . . . , n, denote the ordered values of T1, . . . , Tn, and let Jk be
the item failing at time T(k). In the following things are to be calculated
conditional on the covariates so we may think of them as being determin-
istic.

(a) Show that there is a 1-1 correspondence between

(T1, . . . , Tn) and (T(1), . . . , T(n), J1, . . . , Jn).

In the following we shall thus use the likelihood function L(α0, β) corre-
sponding to observing (T(1), . . . , T(n), J1, . . . , Jn). Let

ξk = (T(1), . . . , T(k), J1, . . . , Jk).

(b) Show that

L(α0, β) =
n∏

k=1

f
(k)
ξk−1

(T(k))π
(k)
ξk−1,T(k)

(J(k)),

where f
(k)
ξk−1

(t) is the conditional density of T(k) given ξk−1 and

π
(k)
ξk−1,T(k)

(i) = P (Jk = i | ξk−1, T(k)).
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(c) Compute
n∏

k=1

π
(k)
ξk−1,T(k)

(J(k)), (6.63)

and note that it gives the Cox partial likelihood function.

(d) Show that (6.63) furthermore reduces to the likelihood for observing
J1, . . . , Jn, so that in this case (time-invariant covariates) the Cox
partial likelihood is therefore a marginal likelihood.

6.3 Let T1 and T2 be independent lifetimes with hazard functions

α(t), θα(t),

respectively, where θ > 0, α(t) ≥ 0, t ≥ 0 and A(t) =
∫ t

0 α(s) ds < ∞ for all
t. Let C1 and C2 be independent censoring variables inducing independent
censoring, and let Nj(t) = I(Tj ∧ Cj ≤ t, ∆ = 1) with ∆ = I(Tj ≤ Cj),
j = 1, 2. Assume we observe in [0, τ ] with τ a deterministic point.

(a) Specify the intensities of Nj(t), j = 1, 2.

Assume now that we have n independent copies from the above generic
model giving rise to Nji(t), j = 1, 2, i = 1, . . . , n. Let θ̃τ be the solution to

θ = Ñ2(τ)/
∫ τ

0

Ỹ2(t)
Ỹ1(t) + θỸ2(t)

d(Ñ1(t) + Ñ2(t))

where Ñj(t) =
∑

i Nji(t), Ỹj(t) =
∑

i Yji(t), Yji(t) = I(t ≤ Tji ∧ Cji),
j = 1, 2.

(b) Show, for n tending to infinity, that n1/2(θ̃τ − θ) converges in dis-
tribution towards a zero-mean normal distribution and specify the
variance

(c) Let β = log (θ) and put θ̂ = exp (β̂), where β̂ is the maximum partial
likelihood estimator. Compare the asymptotic variance of n1/2(θ̂− θ)
with that obtained in (c). Is θ̂ different from θ̃τ?

6.4 (One-parameter extension of the Cox-model) Let

(Ti, Ci, Xi), i = 1, . . . , n,

be a random sample from the joint distribution of the random variables
(T, C, X). Assume that C is independent of (T, X), and that the conditional
distribution of T given X has hazard function

α(t) = α0(t)
exp (βT X)

(1 + exp (βT X))γ
(6.64)
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where the covariate X and its associated regression parameter are assumed
to be p-dimensional and γ is an unknown scalar.

(a) Suggest a Cox-score type estimating function for estimation of the
unknown the unknown θ = (β, γ). We denote the resulting estimator
by θ̂.

(b) Derive the limit distribution of n1/2(θ̂−θ) (assuming appropriate con-
ditions), and give an estimator of the asymptotic variance-covariance
matrix.

(c) Apply the model (6.64) to the melanoma-data with the covariates
sex, log(thick) and ulc. Test the hypotheses H0 : γ = 0 and H0 :
γ = 1.

6.5 (Conditional covariate distribution, Xu and O’Quigley (2000)) Let

(Ti, Ci, Xi), i = 1, . . . , n,

be a random sample from the joint distribution of the random variables
(T, C, X). Assume that C is independent of (T, X), and that the conditional
distribution of T given X has hazard function

α(t) = α0(t) exp (βX),

where X is assumed to be a one-dimensional continuous covariate with
density g(x). Let

πi(β, t) = Yi(t) exp (βXi)/
∑

j

Yj(t) exp (βXj),

where Yi(t) = I(t ≤ Ti ∧ Ci) is the usual at risk indicator function.

(a) Show that the conditional distribution function of X given T = t is
consistently estimated by

P̂ (X ≤ z |T = t) =
∑

j:Xj≤z

πj(β̂, t),

where β̂ denotes the maximum partial likelihood estimator of β.

(b) Based on (a) derive an estimator of

P (T > t |X ∈ H),

where H denotes some subset.
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(c) Compute the estimator derived in (b) in the case where H = {x}.

6.6 (Arjas plot for GOF of Cox model, Arjas (1988)) We shall consider
the so-called Arjas plot for goodness-of-fit of the Cox model. For simplicity
we consider a two-sample situation. Let Ni(t), i = 1, . . . , n, be counting
processes so that Ni(t) has intensity λi(t) = Yi(t)α0(t) exp (βXi) where
Xi ∈ {0, 1}. Let

N (j)(t) =
∑

i

I(Zi = j)Ni(t), Y (j)(t) =
∑

i

I(Zi = j)Yi(t), j = 0, 1,

and N(t) = N (0)(t) + N (1)(t). The Arjas plot in this situation is to plot∫ T j
(m)

0

Y (j)(t) exp (β̂I(j = 1))

Y (0)(t) + Y (1)(t) exp (β̂)
dN(t) (6.65)

versus m, where T j
(m), m = 1, . . . , N (j)(τ), are the ordered jump times in

stratum j, j = 0, 1.

(a) Argue that the Arjas plot should be approximately straight lines with
unit slopes.

Consider now the situation where λi(t) = Yi(t)αXi(t) so that the Cox
model may no longer be in force. Here α0(t) and α1(t) are two non-negative
unspecified functions. The maximum partial likelihood estimator will in this
situation converge in probability to β∗, see Exercise 6.7. Let

E(j)(t) =
Y (j)(t) exp (β∗I(j = 1))

Y (0)(t) + Y (1)(t) exp (β∗)
dN(t), j = 0, 1.

(b) Show that

EN (1)(t) = E
∫ t

0

Y (1)(s)α1(s) ds

and

EE(1)(t) = E
∫ t

0

Y (1)(s)α1(s)f1(s) ds,

where

f1(t) =
Y (0)(t)(α0(t)/α1(t)) + Y (1)(t)
Y (0)(t) exp (−β∗) + Y (1)(t)

.

Assume that α0(t)/α1(t) is increasing in t.

(c) Argue that the Arjas plot for j = 1 will tend to be convex and concave
for j = 0.
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6.7 (Misspecified Cox-model, Lin and Wei (1989)) Consider n i.i.d.

(Ni(t), Yi(t), Xi)

so that Ni(t) has intensity

λi(t) = Yi(t)α(t, Xi),

where the covariates Xi, i = 1, . . . , n, (p-vectors) are contained in the given
filtration and Yi(t) is the usual at risk indicator. The Ni(t) and Yi(t) are
constructed from lifetime data with right censoring: Ni(t) = I(Ti ∧ Ui ≤
t, ∆i = 1), Yi(t) = I(t ≤ Ti ∧ Ui) with ∆i = I(Ti ≤ Ui).

It is not assumed that the intensity is of the Cox-form. Let β̂ denote the
usual Cox partial likelihood estimator under the Cox-model. Struthers &
Kalbfleisch (1986) showed that β̂ is a consistent estimator of β∗ where β∗

is the solution to the equation h(β) = 0 with

h(β) =
∫ τ

0

(
s1(t) −

s1(t, β)
s0(t, β)

s0(t)
)

dt,

where sj(t) = E(Sj(t)), sj(t, β) = E(Sj(t, β)) with

Sj(t) = n−1
∑

i

Xj
i Yi(t)α(t, Xi), Sj(t, β) = n−1

∑
i

Xj
i Yi(t) exp(Xiβ),

j = 0, 1.

(a) Show under appropriate conditions that n1/2(β̂ − β∗) is asymptoti-
cally normal with zero-mean and give a consistent estimator of the
covariance matrix.

(b) If the first component of the covariate vector is independent of the
other covariates, then show that the Wald-test based on β̂1 using
the estimator of the covariance matrix derived in (a) is valid for the
hypothesis H0 : β1 = 0. (Assume for simplicity that there are no
censored observations.)

6.8 (Misspecified Cox-model, Lin (1991)) Consider n i.i.d.

(Ni(t), Yi(t), Xi)

so that Ni(t) has intensity

λi(t) = Yi(t)α(t, Xi),
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where the covariates Xi, i = 1, . . . , n (p-vectors) are contained in the given
filtration and Yi(t) is the usual at risk indicator. Consider the following
weighted version of the Cox-score

Uw(β) =
∑

i

∫ τ

0

W (t)(Xi − E(β, t)) dNi(t),

where W (t) is some predictable weight function assumed to converge uni-
formly in probability to a non-negative bounded function w(t). Let β̂w

denote the solution to Uw(β) = 0.

(a) Show under appropriate conditions that β̂w converges in probability
to a quantity βw that solves the equation hw(β) = 0 with

hw(β) =
∫ τ

0

w(t)
(

s1(t) −
s1(t, β)
s0(t, β)

s0(t)
)

dt

using the same notation as in Exercise 6.7.

(b) Let β̂ denote the usual Cox-estimator. If the Cox-model holds, then
show that n1/2(β̂w − β̂) is asymptotically normal with zero mean and
derive a consistent estimator Dw of the covariance matrix.

The test statistic
n(β̂w − β̂)D−1

w (β̂w − β̂)

is asymptotically χ2 if the Cox-model holds and may therefore be used as
a goodness-of-fit test.

(c) Show that the above test is consistent against any model misspecifi-
cation under which βw �= β∗ or hw(β∗) �= 0, where β∗ is the limit in
probability of β̂.

Suppose that Xi, i = 1, . . . , n, are scalars.

(d) If w(t) is monotone, then show that the above test is consistent
against the alternative

λi(t) = Yi(t)α0(t) exp (β(t)Xi)

of time-varying effect of the covariate.

6.9 (Current status data with additive hazards) Let T denote a failure
time with hazard function

α(t) = α0(t) + θT X(t)
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where X(t) is a p-vector of predictable covariates, and α0(t) and θ are the
parameters of interest. Let C denote a random monitoring time with hazard
function µ(t). The observed data consist of (C,∆ = I(C ≤ T ), Xi(·)). Such
data are called current status data since at the monitoring time C it is
only known whether or not the event of interest (with waiting time T ) has
occurred.

(a) Derive the intensity function of the counting process

N(t) = ∆I(C ≤ t),

which jumps by unity whenever the subject is monitored at time t
and found failure-free.

(b) Let (Ci, ∆i, Xi(·)), i = 1, . . . , n, be n independent replicates of (C, ∆ =
I(C ≤ T ), X(·)). Suggest an estimating equation for estimation of the
regression parameter θ.

The estimation procedure in (b) is not efficient. Given below is an efficient
procedure. Define the following two counting processes,

N1i(t) = ∆iI(Ci ≤ t), N2i(t) = (1 − ∆i)I(Ci ≤ t).

The process N1i jumps by unity when subject i is monitored and failure-
free while N2i jumps by unity when subject i is monitored and failure has
occurred. Furthermore, let Ni(t) = N1i(t) + N2i(t). The empirical version
of the efficient score for θ gives us the score function of interest, namely

U(θ, A) =
n∑

i=1

∫ (
Xi −

S1

S0

)( pi

1 − pi
dN2i − dN1i

)
, (6.66)

where
Sj(t) =

∑
i

pi

1 − pi
YiX

⊗j
i , pi(t, A, θ) = e−A(t)−θXi

and A(t) =
∫ t

0 α0(s) ds. The estimator θ̂ is defined as the solution to the
estimated empirical efficient score equation

U(θ, Â) = 0, (6.67)

where Â is an estimator of A.

(c) Show that (6.66) is a martingale, and that this also true for U(θ0, Â),
if Â is a predictable estimator of A.

(d) Derive, under appropriate conditions, the large sample results for θ̂
and give a consistent estimator of the asymptotic variance.
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Estimation of θ based on N1i(t), i = 1, . . . , n was considered by Lin et al.
(1998a) while Martinussen & Scheike (2002a) studied estimation of θ based
on (N1i(t), N2i(t)), i = 1, . . . , n.

6.10 (Covariance for semiparametric multiplicative model) Assume that
i.i.d. subject that all have intensity on the semiparametric multiplicative
hazard form

λi(t) = Yi(t) exp(Xi(t)T β(t) + Zi(t)T γ)

where Xi(t) and Zi(t) are predictable covariate vectors of dimension (p+q)
is being observed on [0, τ ].

In Theorem 6.5.1 we gave the asymptotic description of the the esti-
mators of γ and B(t) =

∫ t

0 β(s)ds. Work out the covariance between the
estimators and give a variance estimator based on the underlying optional
variation processes.

6.11 (Confidence bands for GOF of Cox’s regression model)

(a) Reproduce the output for the ”Graphical GOF for Cox’s regression
model” in Example 6.2.1 and outline the theoretical arguments using
the delta-theorem.

To get the covariance matrix for the stratified baseline use the covari-
ance=1 option in the cox.aalen program.

(b) One can also construct confidence bands, outline how this can be
done using the i.i.d decomposition of Λ̂j −Λj(t). To implement it you
can see how the resample processes are used in Example 5.5.1.



7
Multiplicative-Additive hazards
models

The additive and multiplicative intensity models considered in the two pre-
vious chapters postulate different relationships between the hazard and co-
variates, and sometimes it will not be clear which of the models that should
be preferred in a specific application. The models may often be used to com-
plement each other and to provide different summary measures. In some
cases, however, covariate effects are best modeled as multiplicative or as
additive, and one might then be in a situation where it is best to combine
the additive and multiplicative models. The additive and multiplicative
intensity models may be combined in various ways to achieve flexible and
useful models. We shall here consider two types of models that are based on
either adding or multiplying the Cox model and the additive Aalen model.
This leads to two somewhat different models, but both being quite flexible
and useful. When the basic models are added, it leads to the proportional
excess hazard models, where the additive part can be thought of as model-
ing the baseline mortality while the multiplicative part describes the excess
risk due to different exposure levels. Multiplying the two models leads to a
model that we term the Cox-Aalen model. For this model some covariate
effects are believed to result in multiplicative effects, whereas other effects
are better described as additive.

Lin & Ying (1995) considered the following additive-multiplicative inten-
sity model

λ(t) = Y (t)
[
g(XT (t)α) + λ0(t)h(ZT (t)β)

]
,

where Y (t) is the at risk indicator, (X(t), Z(t)) is a q + p dimensional
covariate vector, (α, β) is a q+p dimensional vector of regression coefficients



250 7. Multiplicative-Additive hazards models

and λ0(t) is a unspecified baseline hazard. Both h and g are assumed known.
This gives a quite flexible framework, but one problem with this model is
that only the baseline is time-varying and therefore data with time-varying
effects will often not be well described. If additional time-varying effects are
included in the model, then it will get added flexibility. It turns out that
it is relatively simple to extend the model to deal with time-varying effects
such as in the flexible additive-multiplicative intensity model, Martinussen
& Scheike (2002b), where the intensity is on the form

λ(t) = Y (t)
[
XT (t)α(t) + ρ(t)λ0(t) exp {ZT (t)β}

]
, (7.1)

where both Y (t) and ρ(t) are at risk (excess risk) indicators, α(·) is a q-
vector of time-varying regression functions, λ0(t) is the baseline hazard
of the excess risk term, and β is a p-dimensional vector of relative risk
regression coefficients. The at risk indicator ρ(t) may be set to Y (t) as in
the Lin and Ying model above, but sometimes one will have a baseline
group where there is no excess risk. The model is an extension of the Lin
and Ying model when g(x) = x and h(x) = exp(x) and the model is a sum
of the additive Aalen model and the Cox model. Sasieni (1996) considered
the special case of this model where XT (t)α(t) is replaced by a known
function of X(t). Zahl (2003) illustrated the use of model (7.1) with breast
and colon cancer data.

A different way of combining additive and multiplicative models is given
by the Cox-Aalen model, Scheike & Zhang (2002), where the intensity is
on the form

λ(t) = Y (t)
[
XT (t)α(t)

]
exp(ZT (t)β). (7.2)

The Cox-Aalen model allows a flexible (additive) description of covariate
effects of X(t) while allowing other covariate effects to act multiplicatively
on the intensity. An alternative way of thinking of this model is to consider
it as an approximation to the general stratified hazard model

α(t, X(t)) exp(ZT (t)β)

suggested by Dabrowska (1997). Compared to the Dabrowska model some
structure is introduced to make the estimation easier and to help facilitate
the interpretation of the covariate effects.

We start this chapter with studying the Cox-Aalen model (7.2) including
prediction of survival accompanied by confidence bands. This material is
useful as it generalizes results for the Aalen additive model, the Cox model
and also the stratified Cox model. We then turn to the proportional excess
model (7.1). Both models may be fitted in R using the timereg-package as
illustrated in the examples in this chapter.
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7.1 The Cox-Aalen hazards model

Dabrowska (1997) studied the so-called smoothed Cox regression model,
where the intensity is of the form

λ(t) = Y (t)α(t, X) exp (ZT β), (7.3)

and where the baseline hazard α(t, X) gives the background intensity for a
subject with baseline characteristics X . The second term of the model gives
the relative risk of covariates Z. Based on i.i.d. observations, Dabrowska
studied the properties of the solution, β̂S , to the smoothed partial likelihood
score equation

n∑
i=1

∫ τ

0

{
Zi −

S1(Xi, s, β)
S0(Xi, s, β)

}
dNi(s) = 0,

where

Sk(x, s, β) =
n∑

i=1

K(b, x − Xj)Yj(s) exp(ZT
i β)Z⊗k

i ,

K is a symmetric positive kernel with support [−1, 1], b > 0 is a bandwidth
and K(b, s) = K(s/b). The estimator of the integrated baseline is

Â(x, t) =
n∑

i=1

∫ t

0

K(b, x − Xi)
S0(x, s, β̂)

dNi(s).

In the absence of covariates this is the estimator suggested by Beran (1981).
If the covariate X vary according to a density and the bandwidth is suitably
chosen, Dabrowska showed that the estimator β̂S is efficient and asymptot-
ically normal. The smoothed Cox regression model has not received much
attention in practical work although it may be attractive in some situations
to avoid specific modeling of the effect of the covariate X . One drawback
of the approach is that one needs to choose the smoothing parameter b and
that it is difficult to summarize the effect of X . The approach must further
be modified if X contains categorical covariates.

A model that also aims at flexible modeling of a covariate dependent
baseline and includes other effects as multiplicative effects is the model
(7.3) with α(t, X) replaced by an Aalen additive function X(t)T α(t) that
is:

λ(t) = Y (t)
{
X(t)T α(t)

}
exp(Z(t)T β), (7.4)

see Scheike & Zhang (2002, 2003) who termed (7.4) as the Cox-Aalen model
as it is a mix of these two models. This added regression structure makes
estimation and interpretation of covariate effects on the baseline consider-
ably easier at the expense of less flexibility. For many practical purposes
this will result in a reasonable compromise between bias and variance. A
further practical advantage is that categorical covariates can be handled in
the baseline without any special attention.



252 7. Multiplicative-Additive hazards models

7.1.1 Model and estimation

Assume that we have n i.i.d. observations (Ni, Xi, Zi, Yi) for i = 1, .., n,
such that the ith counting process, Ni(t), has intensity of the Cox-Aalen
form

λi(t) = Yi(t)
{
Xi(t)T α(t)

}
exp(Zi(t)T β), (7.5)

where Yi(t) is an at risk indicator, Xi(t) and Zi(t) are predictable bounded
covariate vectors of dimensions q and p, respectively, α(t) is a q-dimensional
locally integrable function and β is a p-dimensional regression vector. Let

N = (N1, . . . , Nn)T , M = (M1, . . . , Mn)T ,

where Mi(t) = Ni(t) − Λi(t) with Λi(t) =
∫ t

0
λi(s)ds, and define matrices

(n × q)

Y (β, t) = (Y1(t) exp(Z1(t)T β)X1(t), . . . , Yn(t) exp(Zn(t)T β)Xn(t))T

and (n × p)
Z(t) = (Z1(t), . . . , Zn(t))T .

The log-likelihood function is

l(β) =
n∑

i=1

∫ τ

0

log
(
Yi(t)Xi(t)T dA(t) exp(Zi(t)T β)

)
dNi(t)

−
n∑

i=1

∫ τ

0

Yi(t) exp(Zi(t)T β)Xi(t)T dA(t),

where A(t) =
∫ t

0 α(s) ds. The log-likelihood function leads to the score
equations for β and dA(t)∫

Z(t)T {dN − Y (β, t)dA(t)} = 0,

Y (β, t)T W (t) {dN − Y (β, t)dA(t)} = 0,

where W (t) = diag(wi(t)) with

wi(t) =
Yi(t)
λi(t)

=
Yi(t) exp(−Zi(t)T β)

Xi(t)T α(t)
,

for i = 1, ..., n. For known β this leads to the estimator of the cumulative
intensity

Â(β, t) =
∫ t

0

Y −(β, s)dN(s),

where
Y −(β, t) = (Y (β, t)T W (t)Y (β, t))−1Y (β, t)T W (t)
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is a weighted generalized inverse of Y (β, t) with the convention that Y −(β, t)
is 0 when the above inverse does not exist. Inserting this estimator into the
score equation for β gives U(β) = 0 with

U(β) = U(β, τ) =
∫ τ

0

ZT (t)G(β, t)dN(t), (7.6)

where
G(β, t) = I − Y (β, t)Y −(β, t)

is the projection onto the orthogonal space spanned by the columns of
Y (β, t). When we consider the Cox regression model, where

Yi(t)Xi(t)T α(t) = Yi(t)α0(t),

then the score function (7.6) reduces to the Cox’s partial likelihood score,
and then α0(t) cancels out, and is thus not needed for estimation of β.

Let β0 denote the true value of β. Simple calculations show that the
compensator of U(β0, t) is zero so that

U(β0, t) =
∫ t

0

ZT (s)G(β0, s)dM(s)

is a square integrable martingale. The martingale property of the score
function does not depend on the specific choice of the weight matrix W (t)
(apart from it being predictable). We can therefore consider the estimating
equation U(β) = 0 for all choices of W (t).

To be able to compute the estimator we need, at least initially, weights
that do not depend on the unknown baseline intensities. We use weights of
the form

wi(t) = Yi(t)hi(t) exp(−Zi(t)T β),

where hi(t) i = 1, ..., n are known functions that do not depend on β.
A particularly simple choice of the weights that we use as our primary
estimator in the remainder is to choose hi(t) ≡ 1 for all i. Define β̂ as the
solution to the score equation

U(β, τ) = 0,

and estimate A(t) by

Â(β̂, t). (7.7)

These estimates may now be used to obtain estimates of the maximum
likelihood weights. The estimators with the maximum likelihood weights are
efficient. Further, since the estimators with estimated maximum likelihood
weights have the same properties as the estimators with known weights
these estimators are also efficient. For practical purposes, however, it seems
sufficient to use the simple initial estimator.
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Note. The efficiently weighted score equation is an empirical version of the
efficient score for the semi-parametric model (Sasieni, 1992b). Suppressing
the dependence of time the score for the parametric component can be
written as

l̇β =

Z
ZT dM

and similarly the non-parametric components, α, gives a score that when
evaluated at b(t) equals

l̇αb =

Z
bT Y T WdM.

The efficient score l∗β for β is of the formZ
(ZT − (b∗)T Y T W )dM

for some b∗ such that l∗β is orthogonal to l̇αb. This gives that

b∗ = E((Y T WY )−1Y T Z)

and by insertion we get

l∗β =

Z
(ZT − E((Y T WY )−1Y T Z)T Y T W )dM.

Now, notice that (7.6) is an empirical version of the efficient score equation.

The derivative of U(β, τ) with respect to β is calculated using matrix deriva-
tive rules as in MacRae (1974), see Appendix B. Calculating the derivative
of Y −(β, t) with respect to βj we get

∂

∂βj
Y −(β, t) = −Y −(β, t)diag(Zij(t))Y (β, t)Y −(β, t),

a p× n matrix. Note that the particular form of the weight matrix is used
actively in the computations of the derivative. The derivative of minus
U(β, t) is computed to be

I(β, t) = − ∂

∂β
U(β, t)

=
∫ τ

0

ZT (t)diag(Y (β, t)Y −(β, t)dN(t))Z(t)

−
∫ τ

0

ZT (t)Y (β, t)Y −(β, t)diag(Y (β, t)Y −(β, t)dN(t))Z(t).
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7.1.2 Inference and large sample properties

The properties of the suggested estimators are simple to derive using the
underlying martingales, and the results may also be extended to the rate
function case where the robust standard error estimates are needed.

A Taylor series expansion around the true value of the parameter β0

yields
U(β̂, τ) − U(β0, τ) = −I(β�, τ)(β̂ − β0),

where β� lies on the line segment between β̂ and β0. This implies that

(β̂ − β0) = −I(β�, τ)−1U(β0, τ)

if I(β�, τ) is invertible. Therefore to show that n1/2(β̂ − β0) converges in
distribution it suffices to show that

n−1I(β�, τ) P→ I(τ)

and that
n−1/2U(β0, τ) D→ W (τ),

where I(τ) is non-singular and W (t) is a Gaussian martingale. The conver-
gence of the score process follows from the martingale central limit theorem.

The optional variation process of the martingale U(β0, ·) (and evaluated
at τ) is given as

[U(β0)] (τ) =
∫ τ

0

ZT (t)G(β0, t)diag(dN(t))G(β0, t)Z(t)

and may be used as an estimator of its variance with β0 replaced by β̂. We
denote this expression as

[
U(β̂)

]
(τ).

Theorem 7.1.1 Under regularity conditions it follows that n1/2(β̂ − β0)
converges towards a normal distributed variable with zero-mean and a vari-
ance that is estimated consistently by

Σ̂ = nI−1(β̂, τ)[U(β̂)](τ)I−1(β̂, τ).

For the maximum likelihood weights the variance simplifies since both
I−1(β̂, τ) and [U(β̂)](τ) estimate the variance of (β̂ − β0).

For fixed β we let the compensator of Â(β, t) be denoted A�(β, t). Now,
expanding the estimator around β0 we get that

Â(β̂, t)−A(t) = (Â(β̂, t)−Â(β0, t))+(Â(β0, t)−A�(β0, t))+(A�(β0, t)−A(t)).

The second term on the right-hand side is a martingale and equals

MA(t) =
∫ t

0

Y −(β0, s)dM(s),
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and the third term represents the bias from the Aalen estimator due to
non-invertibility and is asymptotically negligible. Taylor expanding the first
term we obtain

Â(β̂, t) − Â(β0, t) = (β̂ − β0)T

∫ t

0

∂

∂β
Y −(β0, s)dN(s) + R(t),

where the remainder term R(t) is asymptotically negligible. Therefore to
derive asymptotic properties of n1/2(Â(β̂, t)−A(t)), it suffices to show that

H(β, t) =
∫ t

0

∂

∂β
Y −(β, s)dN(s) (7.8)

=
∫ t

0

Y −(β, s)diag(Y (β, s)Y −(β, s)dN(s))Z(s)

converges uniformly in probability, that the martingale terms converges
jointly in distribution and that the bias term n1/2(A�(β0, t) − A(t)) con-
verges uniformly to zero in probability.

Theorem 7.1.2 Under regularity conditions, it follows that n1/2(Â(β̂, t)−
A(t)) converges in distribution towards a Gaussian process with variance
function Φ(t) that is estimated consistently by

Φ̂(t) = n

(
1
n

H(β̂, t)T Σ̂H(β̂, t) + [MA](t) + C(t)
)

,

where

C(t) = H(β̂, t)T I−1(β̂, τ)[U, MA](t) + [MA, U ](t)I−1(β̂, τ)H(β̂, t).

The stratified Cox-model is a special case of the Cox-Aalen model, although
the estimating equations differ slightly.

The optional variation covariance process, [U, MA](t), is estimated con-
sistently by ∫ t

0

(
ZT (s)G(β̂, s)

)
diag(dN(s))

(
Y −(β̂, s)

)T

,

and similarly, [MA](t) is estimated consistently by∫ t

0

(
Y −(β̂, s)

)
diag(dN(s))

(
Y −(β̂, s)

)T

.

For the maximum likelihood weights, the covariance term, C(t), between
the two martingales vanishes asymptotically.

When the model is a rate model rather than an intensity model, the esti-
mation is carried out as above but one has to compute robust variance esti-
mators in this case. These derivations are based on an i.i.d. representation
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that we also developed for the additive hazards model and the proportional
hazards model.

The martingales have increments that can be written as

dMi(t) = dNi(t) − Yi(t) exp(Zi(t)T β0)Xi(t)T dA(t)

and estimated by dM̂i(t) obtained by plugging in the estimates of β0 and
A(t).

The score process evaluated at β0 can be written as (ignoring lower order
terms)

U(β0, t) =
n∑

i=1

ε1i(t), (7.9)

where

ε1i(t)=
∫ t

0

(
Zi(s) − ZT (s)Y (β0, s)(Y T (β0, s)W (s)Y (β0, s))−1Xi(s)T

)
dMi(s).

It can be shown that the variance of the limit distribution of n1/2(β̂ − β0)
may be estimated consistently by

Σ̃ = nI−1(β̂, τ)

{
n∑

i=1

ε̂⊗2
1i (τ)

}
I−1(β̂, τ).

Similarly, n1/2(Â(t) − A(t)) is asymptotically equivalent to

n1/2
n∑

i=1

ε2i(t), (7.10)

where

ε2i(t) =ε3i(t) + HT (β0, t)I(β0, t)−1ε1i(t),

ε3i(t) =
∫ t

0

(
Y T (β0, s)W (s)Y (β0, s)

)−1
Xi(s)dMi(s),

and where H(β, t) was defined in (7.8). Estimates of εji(t) for j = 1, 2, 3 are
obtained by plugging in the estimates of dMi(t) and β0, and are denoted
ε̂ji(t).

To do inference about the nonparametric components of the model it
is very useful that a resampling scheme can approximate the asymptotic
distribution of n1/2(Â(β̂, t) − A(t)). First, its variance can be estimated
consistently by

Ψ̂(t) = n
n∑

i=1

ε̂⊗2
2i (t).
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For G1, ..., Gn i.i.d. standard normals it follows that the asymptotic distri-
bution of

n1/2
n∑

i=1

ε̂2i(t)Gi

is equivalent to the asymptotic distribution of n1/2(Â(β̂, t) − A(t)).
This construction may thus be used to implement tests for time-varying

effects in the additive part of the model. First, to test if covariate j that
is included in the additive part of the model is significant or time-varying,
we suggest the two test statistics

F1(Âj(·)) = sup
t∈[0,τ ]

|Âj(t)|

and

F2(Âj(·)) = sup
t∈[0,τ ]

|Âj(t) −
Âj(τ)

τ
t|.

Example 7.1.1 (PBC-data, Cox-Aalen Model)

We consider the PBC data described in Example 1.1.1. We learned from
earlier examples, such as Example 6.0.2 and Example 6.2.3, that the effects
of edema and protime were not well described by constant proportional
effects. We therefore fit a model where these effects are included in the
flexible additive part of the Cox-Aalen model, and all other effects are
included in the multiplicative part of the model. It is important to recall
that the baseline refers to a population where the multiplicative covariates
all are zero, and we therefore first center all continuous covariates around
their respective averages. The Cox-Aalen model can be fitted using the
cox.aalen-function as illustrated below.

> fit<-cox.aalen(Surv(time/365,status)~prop(Age)+Edema+

+ prop(logBilirubin)+prop(logAlbumin)+logProtime,

+ max.time=8,pbc)

Cox-Aalen Survival Model

Simulations start N= 500

> summary(fit)

Cox-Aalen Model

Test for Aalen terms

Test for non-significant effects

sup| hat B(t)/SD(t) | p-value H_0: B(t)=0

(Intercept) 8.45 0.00

Edema 2.65 0.10

logProtime 3.44 0.01

Test for time-invariant effects

sup| B(t) - (t/tau)B(tau)| p-value H_0: B(t)=b t

(Intercept) 0.132 0.016
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FIGURE 7.1: PBC-data. Estimated cumulative regression functions for ad-
ditive part of Cox-Aalen model with 95% robust pointwise confidence inter-
vals (solid lines) and 95% simulation based confidence band (broken lines).

Edema 0.269 0.004

logProtime 0.821 0.022

Proportional Cox terms :

Coef. SE Robust SE D2log(L)^-1 P-val

prop(Age) 0.0355 0.00747 0.00953 0.00827 2.08e-06

prop(logBilirubin) 0.8000 0.07760 0.08720 0.08660 0.00e+00

prop(logAlbumin) -2.4600 0.67600 0.64800 0.67500 2.73e-04

Test for Proportionality

sup| hat U(t) | p-value H_0

prop(Age) 75.700 0.678

prop(logBilirubin) 17.300 0.014

prop(logAlbumin) 0.524 0.998

> plot(fit,robust=2,sim.ci=3)



260 7. Multiplicative-Additive hazards models

Figure 7.1 shows the estimated cumulative functions for the three additive
components of the model with 95% pointwise confidence intervals (broken
lines) and 95% confidence band (dotted lines). It is of interest to compare
with the similar figure for the semiparametric additive model given in Fig-
ure 5.6. The estimates of the Cox-Aalen model differ from the estimates
of the additive semiparametric model, and the difference is that we now
model age, log(bilirubin), and log(albumin) by multiplicative effects.

To state the practical consequences of these two different models we con-
sider log(albumin). The additive model states that the risk is lowered −0.23
(0.070) for each unit that log(albumin) is higher, and the multiplicative
model suggests that the relative risk of log(albumin) is 0.09 (exp(−2.46)),
i.e., that the intensity is reduced by 91% for each unit log(albumin) in-
creases. This statement refers to a baseline that varies with edema and
the level of log(protime), and this is part of the reason for the different
time-varying effects of edema and log(protime). Considering the effect of
edema the additive model claims that this effect is independent of the level
of albumin whereas the multiplicative models suggests that the effect of
edema varies considerably with the level of albumin. We shall later demon-
strate that the Cox-Aalen model considered here does not fit the data fully
satisfactory. �

7.1.3 Goodness-of-fit procedures

In this section we shall examine if the data are consistent with a specific
Cox-Aalen model:

λi(t) = Yi(t)
{
Xi(t)T α(t)

}
exp(Zi(t)T β).

The key is to estimate the underlying martingales

Mi(t) = Ni(t) −
∫ t

0

Yi(s) exp(Zi(s)T β0)Xi(s)T dA(s)

and see if the their behavior is consistent with that under the model. The
martingale vector is estimated by

M̂(t) = N(t) −
∫ t

0

Y (β̂, s)Y −(β̂, s)dN(s) =
∫ t

0

G(β̂, s)dN(s),

where G(β̂, t) = I − Y (β̂, t)Y −(β̂, t). Under the Cox and the Aalen model
these residuals reduces to the ones considered by Lin et al. (1993) and Aalen
(1993), respectively.
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Under the Cox-Aalen model the residuals will be asymptotically equiva-
lent to a zero-mean process since

M̂(t) =
∫ t

0

G(β0, s)dM(s)

+
∫ t

0

{
Y (β0, s)Y −(β0, s) − Y (β̂, s)Y −(β̂, s)

}
dN(s),

where the second term can be written as

−
∫ t

0

G(β�, s)diag
{
Y (β�, s)Y −(β�, s)dN(s)

}
Z(s)(β̂ − β0)

= −
∫ t

0

G(β∗, s)diag
{
Y (β�, s)Y −(β�, s)dN(s)

}
Z(s)I−1(β��, τ)U(β0, τ)

with β� and β�� on the line segment between β̂ and β0 and interpreted com-
ponentwise. The estimated martingale residuals can thus be approximated
by ∫ t

0

G(β0, s)dM(s) + B(β0, t)
∫ τ

0

ZT (t)G(β0, t)dM(t)

where B(β0, t) is a n × q matrix. The last term in the preceding display
implies that the estimated martingale residuals do not have independent
increments. The variance is, however, easy to estimate.

The behavior of the residuals may be investigated in various ways. One
may for example sum the residuals depending on the level of the covariates.
Define therefore a n × m matrix possibly depending on time

K(t) = (K1(t), . . . , Kn(t))T .

A cumulative residual process is then defined by

n−1/2MK(t) =
∫ t

0

KT (s)dM̂(s),

which is asymptotically equivalent to

n−1/2

∫ t

0

KT (s)G(β0, s)dM(s) − BK(β0, t)U(β0, τ),

where

BK(β0, t)=
∫ t

0

KT (s)G(β0, s)diag
{
Y (β0, s)Y −(β0, s)dN(s)

}
Z(s)I−1(β0, τ).
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The variance of MK(t) can be estimated by the optional variation process

[MK ] (t) =
∫ t

0

KT (s)G(β̂, s)diag(dN(s))K(s)G(β̂, s)

+ BK(β̂, t)
[
U(β̂)

]
(τ)BT

K(β̂, t)

−
∫ t

0

KT (t)G(β0, s)diag(dN(s))G(β0, s)Z(s)BT
K(β̂, t)

− BK(β̂, t)
∫ t

0

ZT (t)G(β0, s)diag(dN(s))G(β0, s)K(s).

The robust variance estimator that is based on an i.i.d. representation of
the cumulative residual processes is derived using the i.i.d. representation
of n1/2(β̂−β0). It follows that n−1/2MK(t) is asymptotically equivalent to

n−1/2
n∑

i=1

∫ t

0

{Ki(s) − KT (s)Y (β0, s)
{
Y T (β0, s)W (s)Y (β0, s)

}−1

× Xi(s)}dMi(s) − n−1/2BK(β0, t)
n∑

i=1

ε1i,

which may be used for resampling. Plotting the observed cumulative resid-
ual process MK(t) with 95% pointwise confidence intervals will give an
indication of whether or not the observed residuals are consistent with the
model. One may also compute

sup
t∈[0,τ ]

|MKj(t)|, j = 1, . . . , m,

and approximate its distribution under the model by resampling. Resam-
pling can also be used to construct confidence bands, as we have indicated
in previous chapters.

Example 7.1.2 (PBC-data, Example 7.1.1 continued)

Consider a Cox-Aalen model where the additive part of the model con-
tains the covariates edema, log(bilirubin), log(protime) and the covariates
with multiplicative effects are age and log(albumin). To evaluate the fit
we grouped all continuous covariates in 4 quartile groups and computed
the cumulative martingale residuals for these groups. All variables except
log(bilirubin) indicated that the model fitted well. For log(bilirubin) the
following supremum test statistics and plots were constructed.

> fit<-cox.aalen(Surv(time/365,status)~prop(Age)+Edema+

+ logBilirubin+prop(logAlbumin)+logProtime,max.time=8,pbc,

+ residuals=1,n.sim=0)

Cox-Aalen Survival Model
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FIGURE 7.2: Observed cumulative martingale residuals for quartiles of
bilirubin and 50 random realizations based on model with log(bilirubin).

> resids<-cum.residuals(fit,pbc,X,n.sim=1000)

Cumulative martingale residuals for Right censored survival times

> plot(resids,score=T)

> summary(resids)

Test for cumulative MG-residuals

Grouped Residuals consistent with model

sup| hat B(t) | p-value H_0: B(t)=0

1. quartile 12.204 0.003

2. quartile 9.196 0.068

3. quartile 13.222 0.035

4. quartile 8.486 0.013

int ( B(t) )^2 dt p-value H_0: B(t)=0

1. quartile 594.576 0.003

2. quartile 236.869 0.069

3. quartile 594.046 0.036

4. quartile 231.068 0.020
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FIGURE 7.3: Observed cumulative martingale residuals for quartiles of
bilirubin and 50 random realizations based on model with untransformed
version of bilirubin.

The test statistics indicate that there are problems with the fit of the model
with respect to log(bilirubin). Figure 7.2 shows the test processes along with
50 random simulations under the model. For low levels of log(bilirubin), for
example, the cumulative residual process is too large, thus indicating that
the data suggest a higher risk than expected by the model. One may try to
remedy this by using, for example, the untransformed version of bilirubin.
This was also how bilirubin was used in the additive hazards model.

> fit<-cox.aalen(Surv(time/365,status)~prop(Age)+Edema+

+ Bilirubin+prop(logAlbumin)+logProtime,max.time=8,

+ pbc,residuals=1,n.sim=0)

Cox-Aalen Survival Model

> X<-model.matrix(~-1+

+ cut(Bilirubin,quantile(Bilirubin),include.lowest=T),pbc)

> colnames(X)<-c("1. quartile","2. quartile","3. quartile",

+ "4. quartile");



7.1 The Cox-Aalen hazards model 265

> resids<-cum.residuals(fit,pbc,X,n.sim=1000)

Cumulative martingale residuals for Right censored survival times

> plot(resids,score=T)

> summary(resids)

Test for cumulative MG-residuals

Grouped Residuals consistent with model

sup| hat B(t) | p-value H_0: B(t)=0

1. quartile 6.276 0.249

2. quartile 5.193 0.364

3. quartile 4.592 0.641

4. quartile 6.926 0.141

int ( B(t) )^2 dt p-value H_0: B(t)=0

1. quartile 93.677 0.277

2. quartile 67.437 0.340

3. quartile 40.302 0.633

4. quartile 144.889 0.155

The output and Figure 7.3 suggest that the untransformed version of biliru-
bin leads to an acceptable fit. Note, that the model now slightly overesti-
mates the risk for the low levels of bilirubin. �

To evaluate the goodness of fit of the covariates included in the multipli-
cative part of the model we consider the cumulative score processes. The
observed normed score process is given as n−1/2U(β̂, t) and its asymptotic
distribution is equivalent to the asymptotic distribution of

n−1/2
n∑

i=1

(
ε̂1i(t) + I(β̂, t)I−1(β̂, τ)ε̂1i(τ)

)
Gi

where G1, ..., Gn are independent standard normals. A test for the propor-
tionality of the jth covariate of the proportional part of the model may be
constructed by considering

sup
t∈[0,τ ]

|Uj(β̂, t)|, j = 1, . . . , p.

Example 7.1.3 (PBC-data, Example 7.1.1 continued)

In Example 7.1.1 we considered the Cox-Aalen model with edema and
log(protime) in the additive part of the model and with log(bilirubin),
log(albumin) and age in the multiplicative part. Part of the output con-
tained information about the score processes of the relative risk parameters
of the model and these can be plotted by the command:
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FIGURE 7.4: PBC-data. Score processes for multiplicative part of Cox-
Aalen model with 50 random realizations under the model.

> plot(fit,score=T,xlab="Time (years)")

Figure 7.4 indicates that log(bilirubin) does not fit particularly well when
included in the multiplicative part of the model, and the p-value in the
output (0.01) also suggests that the fit is not completely satisfactory.

�

7.1.4 Estimating the survival function

After fitting a model and learning about covariates effects one will often
summarize the consequences of various covariate combinations by comput-
ing the estimated survival function. Below we describe how to estimate the
survival function and supply it with pointwise confidence intervals and a
confidence band.

Assume that a subject with covariates X0 and Z0, that do not depend
on time for simplicity, have hazard function

λ0(t) = (XT
0 α(t)) exp(ZT

0 β).
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The survival probability is then given as

S0(t) = S0(A, β, t) = exp(−XT
0 A(t) exp(ZT

0 β))

that can be estimated consistently by

Ŝ0(t) = S0(Â, β̂, t) = exp(−XT
0 Â(t) exp(ZT

0 β̂)).

It is a consequence of the asymptotic properties of n1/2(Â−A, β̂ − β) and
the functional delta method applied to the continuous functional S0 defined
above that n1/2(Ŝ0 − S0) converges towards a zero-mean Gaussian process
V with variance function Q. A Taylor series expansion yields that (ignoring
lower order terms)

n1/2(S0(Â, β̂, t) − S0(A, β, t)) = −S0(A, β, t)

n1/2
{

exp(ZT
0 β)XT

0 (Â(t) − A(t)) + XT
0 A(t) exp(ZT

0 β)ZT
0 (β̂ − β)

}
.

(7.11)

There exists a martingale decomposition that leads to an optional variation
based estimator of the variance of Ŝ0(t) − S0(t), but we here omit this
formula and instead specify an i.i.d. decomposition that can be used to
estimate the variance and to construct a confidence band.

We derived in the previous section that n1/2(β̂ − β, Â − A) was asymp-
totically equivalent to the processes

∆1 = n1/2I(β0, τ)−1
n∑

i=1

ε̂1iGi,

∆2(t) = n1/2
n∑

i=1

ε̂2i(t)Gi,

where G1, ..., Gn are independent standard normals. Therefore applying the
functional delta method to these asymptotically equivalent processes leads
to a resampling version of the survival function estimator. The term

n1/2 exp(ZT
0 β)XT

0 (Â(t) − A(t)) + n1/2XT
0 A(t) exp(ZT

0 β)ZT
0 (β̂ − β)

is asymptotically equivalent to

n1/2
n∑

i=1

ε4i(t),

where

ε4i(t) = exp(ZT
0 β)XT

0 ε2i(t) + XT
0 A(t) exp(ZT

0 β)ZT
0 I(β0, τ)−1ε1i.
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Define

ε̂4i(t) = exp(ZT
0 β̂)XT

0 ε̂2i(t) + XT
0 Â(t) exp(ZT

0 β̂)ZT
0 I(β0, τ)−1ε̂1i.

It can be derived that under regularity conditions n1/2(Ŝ0 − S0) has the
same asymptotic distribution as

∆S(t) = S0(t)n1/2
n∑

i=1

ε̂4i(t)Gi, (7.12)

and it also follows that

Q̂(t) = nŜ2
0(t)

n∑
i=1

ε̂24i(t),

is a consistent estimator of the variance of n1/2(Ŝ0 − S0). Therefore an
approximate (1 − α) confidence band is on the form

Ŝ0(t) ± n−1/2CαQ̂1/2(t),

where Cα is the (1 − α)-quantile of

sup
t∈[0,τ ]

| ∆k
S(t)

Q̂1/2(t)
|

for ∆k
S(t) is the kth resampled process for k = 1, . . . , K.

Example 7.1.4 (Survival estimation for PBC data)

We fitted a Cox-Aalen model to the PBC data with edema, log(protime)
and bilirubin in the additive part of the model and with age and log(albumin)
as parametric relative risk terms. We start by obtaining the estimated and
an i.i.d. representation, and then compute the approximate constant that
yields an 95% confidence band based on resampling as described above.
We estimate the survival function for a subject with or without edema and
with average levels of all continuous covariates.

> fit<-cox.aalen(Surv(time/365,status)~prop(Age)+Edema+

+ Bilirubin+prop(logAlbumin)+logProtime,max.time=8,pbc,

+ n.sim=0,resample.iid=1)

Cox-Aalen Survival Model

> # fit$B.iid and fit$gamma.iid contains i.i.d. representation

> x0<-c(1,0,0,0); z0<-c(0,0);

> RR<-exp(sum(z0 * fit$gamma))

> delta<-matrix(0,144,418);

> for (i in 1:418) {delta[,i]<-RR * (x0 %*% t(fit$B.iid[[i]]))+

+ RR * (x0 %*% t(fit$cum[,-1])) * sum(z0*fit$gamma.iid[i,]);}
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FIGURE 7.5: Survival estimates for specific covariates with 95% pointwise
confidence intervals (solid lines), 95% confidence band (broken lines), Cox
regression estimate (thick line). Subject without edema (a) and with edema
(b) and average level of the other continuous covariates as described in text.

> S0<-c(exp(- RR*(x0 %*% t(fit$cum[,-1]))))

> se<-apply(delta^2,1,sum)^.5

> ### pointwise confidence intervals

> plot(fit$cum[,1],S0,type="s",ylim=c(0,1),xlab="Time (years)",

+ ylab="Survival"); title(main="(a)")

> lines(fit$cum[,1],S0-1.96*S0*se,type="s");

> lines(fit$cum[,1],S0+1.96*S0*se,type="s")

> ### uniform confidence bands

> mpt<-c()

> for (i in 1:500) {

+ g<-rnorm(418); pt<-abs(delta %*% g)/se; mpt<-c(mpt,max(pt[-1]));}

> Cband<-percen(mpt,0.95);

> lines(fit$cum[,1],S0-Cband*S0*se,lty=2,type="s");

> lines(fit$cum[,1],S0+Cband*S0*se,lty=2,type="s")

> # Cox regression estimate

> coxfit<-cox.aalen(Surv(time/365,status)~prop(Age)+prop(Edema)+
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+ prop(Bilirubin)+prop(logAlbumin)+prop(logProtime),max.time=8,

+ pbc,n.sim=0)

Cox-Aalen Survival Model

> cox.surv<-list(time=coxfit$cum[,1],surv=exp(-coxfit$cum[,2]))

> lines(cox.surv$time,cox.surv$surv,type="s",lwd=2,lty=2)

The Cox estimate of the survival function is not particularly close to the
estimate based on the Cox-Aalen model. For a subject without edema the
Cox estimate works initially but is off for long term survival, (Figure 7.5
(a)), and in contrast is off initially for subjects with edema but ends up
alright for long term survival (Figure 7.5 (b)). �

7.1.5 Example

Below we show a worked example of how to use the Cox-Aalen model based
on the TRACE data (Jensen et al., 1997). See Example 5.8.1 for a brief
introduction to the TRACE data.

Example 7.1.5 (TRACE Data)

We learned from Example 5.8.1 based on the additive model that the
covariate vf had a strongly time-varying additive effect, chf and age seemed
also to have time-varying effects, but the remaining effects were reasonably
well summarized by constant excess risk. In the additive model, age had to
enter the model on exponential scale.

In this example we use the entire data set with all 1877 survival times. To
start we fit a stratified Cox model where the baseline is allowed to depend
on the status of vf. For this model we find that there are problems with the
proportionality of the model with regard to chf indicating that the model fit
is not satisfactory. Figure 7.6 (a) shows the score function for the stratified
Cox model for the chf covariate, and the output gives a p-value for chf at
around 0.01.

We also fitted the Cox-Aalen model with vf and chf in the additive part
of the model and for this model the score functions did not indicate any
dramatic lacking fit. Figure 7.6 (b) shows the diabetes component of the
score function that showed the worst behavior, see also the below reported
tests for proportionality.

> age.m<-TRACE$age-mean(TRACE$age)

> fit<-cox.aalen(Surv(time,status==9)~prop(diabetes)+chf

+ +vf+prop(sex)+prop(age.m),TRACE,max.time=7)

Cox-Aalen Survival Model

Simulations start N= 500

> summary(fit)

Cox-Aalen Model
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FIGURE 7.6: Score function for selected components with 50 random real-
izations under the model: (a) for stratified Cox model based on vf; (b) for
Cox-Aalen model with both vf and chf in additive part.

Test for Aalen terms

Test for non-significant effects

sup| hat B(t)/SD(t) | p-value H_0: B(t)=0

(Intercept) 11.90 0

chf 8.69 0

vf 6.05 0

Test for time-invariant effects

sup| B(t) - (t/tau)B(tau)| p-value H_0: B(t)=b t

(Intercept) 0.0308 0.068

chf 0.0966 0.000

vf 0.3690 0.000

Proportional Cox terms :

Coef. SE Robust SE D2log(L)^-1 z P-val

prop(diabetes) 0.5400 0.09550 0.08640 0.09460 5.65 1.61e-08

prop(sex) 0.1760 0.07170 0.07150 0.07130 2.45 1.44e-02

prop(age.m) 0.0583 0.00397 0.00384 0.00375 14.70 0.00e+00
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FIGURE 7.7: Estimated cumulative regression functions with 95% pointwise
confidence intervals.

Test for Proportionality

sup| hat U(t) | p-value H_0

prop(diabetes) 12.90 0.090

prop(sex) 7.73 0.918

prop(age.m) 156.00 0.908

> plot(fit)

The additive effects of vf and chf both reveal that their effects are strongly
time-varying with a much stronger initial effect that wears off for both
conditions, and for vf in particular where it vanishes after approximately
2 months, see Figure 7.7. The model fit gives relative risk parameters that
are pretty consistent with those of the standard Cox regression model,
but as we shall show below the survival estimates differ considerably from
those obtained from a Cox regression model where the baseline is stratified
depending on vf.
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FIGURE 7.8: Survival predictions for Cox-Aalen model (thin lines) with
vf and chf in additive part and Cox model (thick lines) with vf stratified
baseline. Females with average age, without diabetes and with or without
both chf and vf. (a) is without vf and (b) is with vf.

For comparison we compare the fit of the model with that of a stan-
dard Cox regression model. The survival estimates are for a female without
diabetes and with average age, and for four different combinations of vf
and chf. Figure 7.8 (a) shows the computed survival for subject without vf
condition, and here the Cox model fits rather well for both subjects with
and without the chf condition, respectively. Similarly, Figure 7.8 (b) gives
predicted survival for subject with vf condition, and here the Cox model
fits only well for subjects with chf condition. �

7.2 Proportional excess hazards model

Sasieni (1996) studied the so-called proportional excess hazards model
where the intensity is

λ(t) = Y (t)
{
α(t, X) + λ0(t) exp (ZT β0)

}
, (7.13)
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where the off-set α(t, X) is the background rate of mortality in a control
population (defined by X) and is assumed to be known. The second term
of the model, which is described by the Cox model, is the excess risk for
an “exposed” individual with covariates Z. Sasieni (1996) derived efficient
estimators for the unknown parameters β0 and Λ0(t) =

∫ t

0
λ0(s) ds. In some

situations, however, the background mortality may not be known. A typical
example of this is dose-response trials with animals. Martinussen & Scheike
(2002b) considered such a dataset concerning mortality of ticks. The ticks
were treated with different doses of the entomopathogenic fungus Metarhiz-
ium anispliae. Besides zero dose, the doses 107, 108 and 109 (spores/ml)
were applied. For such a dataset, the background mortality needs to be
estimated from the study population itself. This is possible if we assume
that the intensity for the ith individual is

λi(t) = Yi(t)XT
i (t)α(t) + ρi(t)λ0(t) exp {ZT

i (t)β0}, (7.14)

where Xi(t) and Zi(t) are covariates of dimensions q and p, respectively. The
unknown parameters of (7.14) are β0 and ψ(t) = (α(t), λ0(t)) where ψ(t)
is allowed to depend on time. Note that the known background mortality
rate α(t, X) of (7.13) is replaced by an Aalen additive model term. In the
dose-response example, Yi(t) is the general at-risk indicator while ρi(t) is
zero for the group of ticks which did not receive the dose and one otherwise
if the tick is at risk at time t. For the sake of generality, however, we only
assume that Yi(t) and ρi(t) are locally bounded predictable processes. Zahl
(2003) have used the model to describe mortality in various cancer studies.

7.2.1 Model and score equations

Assume that we have n i.i.d. observations (Ni, Yi, ρi, Xi, Zi) for i = 1, ..., n
observed over some time-interval [0, τ ] such that the ith counting process,
Ni(t), has intensity (7.14). Let

N = (N1, . . . , Nn)T M = (M1, . . . , Mn)T ,

where Mi(t) = Ni(t)−Λi(t) with Λi(t) =
∫ t

0 λi dt. We suppress the depen-
dence of time unless we explicitly whish to emphasize it. Further, let

X = (Y1X1, . . . , YnXn)T , Z = (ρ1Z1, . . . , ρnZn)T

and φi = φi(β) = ρi exp (ZT
i β), φ = φ(β) = (φ1, ..., φn)T , Φ = Φ(β) =

diag(φi), W = diag(wi), V = diag(vi), w = (w1, . . . , wn)T and v =
(v1, . . . , vn)T , where wi = 1/λi and vi = λ0wi. When λi(t) = 0, we put
wi = 0.

The score equations for the unknown parameters are given by∫
ZT ΦV

{
dN − X̃dΨ(t)

}
= 0, (7.15)

X̃T W (dN(t) − dΨ(t)) = 0, (7.16)
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where X̃ = (X, φ), Ψ(t) =
∫ t

0
ψ(s) ds, and with ψ(t) = (α(t), λ0(t))T . The

score equations are simply the derivatives of the likelihood with respect to
β and dψ(t). Solving the score equation (7.16) for dΨ(t) for known β gives

Ψ̂(t, β) =
∫ t

0

(X̃T WX̃)−1X̃T W dN(s). (7.17)

Insert now (7.17) into the score for β and obtain∫ τ

0

ZT ΦV {I − X̃(X̃T WX̃)−1X̃T W}dN = 0. (7.18)

One could then solve (7.18) to obtain β̂ and then insert this into (7.17) to
obtain Ψ̂(t) = Ψ̂(t, β̂). These estimators are of course not real estimators
as they depend on W and V , which in turn depend on the true intensity. It
turns out that these estimators are efficient and that this also holds when
W and V are replaced by uniformly consistent estimates.

Note. The weighted score equations (7.18) form an empirical version of
the efficient score for the semiparametric model (Sasieni, 1992b; Bickel
et al., 1993). The score for the parametric component can be written as

l̇β =

Z
ZT ΦV dM,

and similarly the nonparametric component, ψ, gives a score which when
evaluated at b(t) equals

l̇ψb =

Z
bT X̃T WdM.

The efficient score l∗β for β is of the formZ
{ZT ΦV − (b∗)T X̃W}dM

for some b∗ such that l∗β is orthogonal to l̇ψb. This gives that

(b∗)T = E{(X̃T WX̃)−1X̃T V ΦZ}.

Note that (7.18) is an empirical version of the efficient score equation sinceZ τ

0

ZT ΦV {I − X̃(X̃T WX̃)−1X̃T W}dN

=

Z τ

0

ZT ΦV {I − X̃(X̃T WX̃)−1X̃T W}dM.

We here suggest using unweighted estimators where the efficient weight-
matrices, W and V , are set equal to I. But before doing so, let us take a
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closer look at the above estimators to see the resemblance with the usual
Cox and Aalen estimators. Let

H = I − X(XT WGX)−1XT WG, G = I − φ(φT Wφ)−1φT W.

Using the fact that

GH = I − X̃(X̃T WX̃)−1X̃T W, (7.19)

we may rewrite the two components of (7.17) as a weighted Aalen estimator
for the additive components

Â(t, β) =
∫ t

0

{XT WGX}−1XT WGdN(s), (7.20)

and a Breslow-type estimator for the cumulative baseline

Λ̂0(t, β) =
∫ t

0

∑n
i=1 wiφidÑi(s)∑n

i=1 wiφi exp (ZT
i β)

, (7.21)

where Ñ = HN . The score equation for β may be rewritten as

U(β) =
n∑

i=1

∫ {
Zi −

∑
j wjφjZj exp (ZT

j β)∑
j wjφj exp (ZT

j β)

}
viφi dÑi(t) = 0. (7.22)

The resemblance of (7.21) and (7.22) to the usual Breslow estimator and
Cox-score equation is clear. Instead of using the response N(t) directly,
however, it is transformed to the residual space spanned by the design of
the additive components. In the case where

λi(t) = Yi(t)λ0(t) exp {Zi(t)T β0},

that is the Cox model, equation (7.21) reduces to the Breslow estimator and
equation (7.22) gives the Cox score function when the weights, wi = wi(β0),
are considered as functionals of β rather than fixed at β0.

The score equations can be solved when (WX, Wφ(β), V Φ(β)Z) has full
rank, so that even when X = Z the model may be identifiable. This seems
like an appealing approach to make goodness-of-fit procedures for Cox’s
regression model but in practice the model is hard to identify when X = Z.

7.2.2 Estimation and inference

Now let us turn to the unweighted estimators, which may be computed
directly from the data. They are obtained first by solving (7.18) with V =
W = I. Denote this solution by β̃. The estimator of Ψ is next obtained
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from (7.17) using β̃ and setting W = I. Denote this estimator by Ψ̃(t), so
Ψ̃(t) = Ψ̂(t | β̃, W = I). Setting V = W = I in (7.18) gives

Ũ(β) =
∫

ZT Φ(I − X̃(X̃T X̃)−1X̃T ) dN(t)

=
∫

ZT ΦH̃ dN(t) =
∫

ZT ΦG1H1 dN(t), (7.23)

where

H̃ = (I − X̃(X̃T X̃)−1X̃T ), H1 = I − X(XT G1X)−1XT G1,

G1 = I − φ(φT φ)−1φT .

Above, we have used the result that G1H1 = H̃ . Define H̃1, G̃1 and Φ̃ as
H1, G1 and Φ, with φ replaced by φ̃ = φ(β̃).

Before stating the asymptotic results for β̃ we specify the derivate of the
score. The derivative of Ũ with respect to β is given by

Ĩ(β) =
∫

ZT (ΦHT
1

dG1

dβ
){H1dN(t) ⊗ Iq}

−
∫

ZT dΦ
dβ

G1{H1dN(t) ⊗ Iq},

where

dG1

dβ
= −

{(
1

φT φ

dφ

dβ
− φ

(φT φ)2
dφT φ

dβ

)
(φT ⊗ Iq) +

φ

φT φ

dφT

dβ

}
.

This is a consequence of the matrix derivative rules given in Appendix B.
Define

D̃(β̃) =
∫

ZT Φ̃G̃1H̃1diag{dN(t)}H̃T
1 G̃T

1 Φ̃Z.

Theorem 7.2.1 Under regularity conditions, it follows that n
1
2 (β̃ − β0)

converges in distribution to a zero-mean normal with covariance matrix that
is consistently estimated by the sandwich estimator

nĨ(β̃)−1D̃(β̃)Ĩ(β̃)−1.

Proof. We have

Ũ(β0) =

Z
ZT ΦG1(β0)H1(β0) dN(t)

=

Z
ZT ΦG1(β0)H1(β0){XdA(t) + φ(β0)dΛ0(t) + dM(t)}

=

Z
ZT ΦG1(β0)H1(β0)dM(t)
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since H1(β0)X = 0, H1(β0)φ(β0) = φ(β0) and G1(β0)φ(β0) = 0. The
proposed estimating equation therefore has mean zero for the true value
of the parameter. By use of Lenglart’s inequality it may be seen that Ĩ(β0)
converges in probability toZ

ZT ΦG1H1ΦZ dΛ0,

which is a negative semidefinite matrix. Consistency now follows by stan-
dard arguments.

The proof of asymptotic normality follows from a Taylor series expansion
of Ũ(·) around β0 and evaluated at β̃:

n1/2(β̃ − β0) = {n−1Ĩ(β̃∗)}−1n−1/2

Z t

0

ZT ΦG1H1 dM(s),

for some β∗ on the line segment between β̃ and β0. �

To give the asymptotic properties of the estimator for the nonparametric
components of the model Ψ̃(t) we define

C1(t) =
∫ t

0

(X̃T (β̃)X̃(β̃))−1X̃T (β̃)Φ̃ZdΛ̃0(s),

where Λ̃0(t) is the appropriate component of Ψ̃(t).
Define

M1(t) ={n−1Ĩ(β0)}−1

× n−1/2

∫ t

0

ZT

(
I − X̃(β0)

{
X̃T (β0)X̃(β0)

}−1

X̃T (β0)
)

dM(s),

M2(t) =n
1
2

∫ t

0

{
X̃T (β0)X̃(β0)

}−1

X̃T (β0) dM(s).

In the following theorem we let [M2](t) denote the optional variation pro-
cess evaluated in β̂, and similarly for the other estimated quadratic (co)-
variation processes.

Theorem 7.2.2 Under regularity conditions, n
1
2 {Ψ̃(t) − Ψ(t)} converges

in distribution to a zero-mean Gaussian process with a covariance function
that is estimated consistently by

[M2](t) − {[M2, M1](t)C1(t)T + C1(t)[M1, M2](t)} + C1(t)[M1](τ)C1(t)T .

Proof. Since φ(β0) = φ(β̃)+Φ∗Z(β̃−β0), where Φ∗ = diag{φ(β∗)} and
β∗ is on the line segment between β̃ and β, it follows that

n
1
2 {Ψ̃(t) − Ψ(t)} =C∗

1 (t)n
1
2 (β̃ − β0)

+ n
1
2

Z t

0

n
X̃(β0)

T X̃(β0)
o−1

X̃(β0)
T dM(s)

=C∗
1 (t)M1(τ ) + M2(t) + op(1),
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where

C∗
1 (t) =

Z t

0

n
X̃(β0)

T X̃(β0)
o−1

X̃(β0)
TΦ∗Zλ0(s) ds.

As n → ∞ C∗
1 (t) converges in probability for each t. By the martingale

central limit theorem, it may furthermore be shown that (M1, M2) con-
verges in distribution to a Gaussian martingale U = (U1, U2) with mean
zero, and the result follows. �

Again it is convenient to have an i.i.d. representation of the above limit
distributions to, for example, construct confidence bands. The score process
evaluated at β0 and viewed as process in t, Ũ(β̃0, t), can be written as

n−1/2Ũ(β0) = n−1/2
n∑

i=1

ε1i(t) + op(1),

where

ε1i(t) =
∫ t

0

{
ρiZi − E[ρ1Z1X̃

T
1 (β0)]E[Y1X̃1(β0)XT

1 (β0)T ]−1Xi(β0)
}

dMi.

(7.24)
It can be shown that the variance of the limit distribution of n1/2(β̃ − β0)
may be estimated consistently by the (robust) estimator

nĨ(β̃)
−1

{
n∑

i=1

ε̂⊗2
1i (τ)

}
Ĩ(β̃)

−1
,

where ε̂1i(t) is given by (7.24) with insertion of estimates

dM̂(t) = dN(t) − X̃(t, β̃)dΨ̃(t).

Also, n1/2(Ψ̃(t) − Ψ(t)) is asymptotically equivalent to

n1/2
n∑

i=1

ε2i(t), (7.25)

where

ε2i(t) =ε3i(t) + n−1c1(t)I(β0)
−1

ε1i(t),

ε3i(t) =n−1

∫ t

0

{
(E[Y1X̃1(β0)XT

1 (β0)T ])−1Xi(β0)
}

dMi,

with c1(t) and I(β0) the limits in probability of C1(t) and n−1Ĩ(β0), re-
spectively. Estimates of εji(t), denoted ε̂ji(t), for j = 1, 2, 3 are obtained by
replacement of the limits (in probability) by their empirical counterparts
and by plugging in the estimates of dMi(t) and β0. One consequence of this
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i.i.d. representation is that a consistent estimate of the variance (function)
Υ(t) of n1/2(Ψ̃(β̃, t) − Ψ(t)) is given by Υ̂(t), where

Υ̂(t) = n−1
n∑

i=1

ε̂⊗2
2i (t).

To do inference about the nonparametric components of the model it
is very useful that a resampling scheme can approximate the asymptotic
distribution of n1/2(Ψ̃(β̃, t) − Ψ(t)). For G1, ..., Gn i.i.d. standard normals
it can be shown that the asymptotic distribution of n1/2(Ψ̃(β̃, t)−Ψ(t)) is
equivalent to the asymptotic distribution of

n−1/2
n∑

i=1

ε̂2i(t)Gi.

This may be used to construct Hall-Wellner type confidence bands by re-
sampling of the distribution

sup
t≤τ

∣∣∣∣∣n1/2(Ψ̃k(β̃, t) − Ψk(t))
Υ−1/2

kk (τ)
1 + Υkk(t)/Υkk(τ)

∣∣∣∣∣
giving the (approximate) (1 − α)-quantile dα. The approximate (1 − α)
Hall-Wellner confidence band for Ψ(t) is given by

Ψ̃k(β̃, t) ± dαn−1/2Υ̂1/2
kk (τ)

(
1 +

Υ̂kk(t)
Υ̂kk(τ)

)
.

7.2.3 Efficient estimation

One may construct efficient estimators β̂ and Ψ̂(t) on the basis of the
unweighted estimators β̃ and Ψ̃(t). This may be done as follows.

(i) Obtain β̃ and Ψ̃ as outlined above.

(ii) Use a predictable kernel smoother to estimate ψ and obtain estimates
of the efficient weights V̂ and Ŵ .

(iii) Obtain the efficient estimates using (7.17) and (7.18) with V̂ and Ŵ
in place of V and W .

In the following we derive the large sample properties of these estimators.
Using similar arguments as McKeague & Sasieni (1994), it turns out that
the asymptotic properties of β̂ and Ψ̂(t) is unaffected by a replacement of
(V̂ , Ŵ ) with (V, W ). We may hence derive the asymptotic properties of β̂
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and Ψ̂(t) using fixed weights. Let Φ̂, Ĝ and Ĥ be defined as Φ, G and H

with β replaced by β̂, and let

I(β) =
dU(β)

dβ
.

By applying the matrix derivative rules to U(β) we find that

I(β) =
∫ [

ZT dΦ
dβ

{V GHdN(t) ⊗ Iq} + ZT ΦHT V
dG

dβ
{HdN(t) ⊗ Iq}

]
,

where

dG

dβ
= −

[
1

φT Wφ

dφ

dβ
− φ

(φT Wφ)2
{dφT

dβ
(Wφ ⊗ Iq) + φT W

dφ

dβ
}
]
(φT W ⊗ Iq)

− φ

φT Wφ

dφT

dβ
(W ⊗ Iq).

Using (7.19), we have that

U(β0) =
∫

ZT ΦV GH dM(t).

Theorem 7.2.3 Under regularity conditions, n
1
2 (β̂−β0) converges in dis-

tribution to a zero-mean normal with a covariance matrix which is the limit
in probability of (

n−1

∫
ZT ΦV GHΦZλ0 dt

)−1

and which is consistently estimated by

nI(β̂)−1

or by the optional variation

n

∫
ZT Φ̂V ĜĤdiag(dN)(V ĜĤ)T Φ̂Z.

Proof. By use of Lenglart’s inequality, it may be seen that n−1I(β0)
has the same limit in probability asZ

n−1λ0Z
T ΦHT W

dG

dβ
[H{XdA(t) + φ(β0)λ0 dt} ⊗ Iq] . (7.26)

After some matrix algebra it may be seen that (7.26) reduces to

n−1

Z
ZT ΦV GHΦZλ0 dt.
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We also have thatfiZ
ZT ΦV GH dM(t)

fl
=

Z
ZT ΦV GHW−1(WGH)T ΦZλ0 dt

=

Z
ZT ΦV GHΦZλ0 dt

since (WGH)T = WGH and (GH)2 = GH . The asymptotic variance is
therefore given as the limit in probability of

{n−1I(β̂)}−1

fi
n−1/2

Z
ZT ΦV GH dM(t)

fl
{n−1I(β̂)}−1

=

„
n−1

Z
ZT ΦV GHΦZλ0 dt

«−1

.

�

The asymptotic properties of the nonparametric component of the model
is given in the following theorem. Define

C2(t) =
∫ t

0

(X̃T (β̂)Ŵ X̃(β̂))−1X̃T (β̂)Ŵ Φ̂ZdΛ̂0(s),

where Λ̂0(t) is the appropriate component of Ψ̂(t). Define

M3(t) = {n−1I(β)}−1n−1/2

∫
ZT ΦV GH dM(t),

M4(t) = n
1
2

∫ t

0

(X̃(β0)T WX̃(β0)T )−1X̃(β0)T W dM(s).

Theorem 7.2.4 Under regularity conditions, n
1
2 {Ψ̂(t) − Ψ(t)} converges

in distribution to a zero-mean Gaussian process with covariance function
that is estimated consistently by

[M4](t) − C2(t)[M3](τ)C2(t)T .

Proof. Since φ(β0) = φ(β̃)+Φ∗Z(β̃−β0), where Φ∗ = diag{φ(β∗)} and
β∗ is on the line segment between β̃ and β, it follows that

n
1
2 {Ψ̃(t) − Ψ(t)} =C∗

1 (t)n
1
2 (β̃ − β0)

+ n
1
2

Z t

0

n
X̃(β0)

T X̃(β0)
o−1

X̃(β0)
T dM(s)

=C∗
1 (t)M1(τ ) + M2(t) + op(1),

where

C∗
1 (t) =

Z t

0

n
X̃(β0)

T X̃(β0)
o−1

X̃(β0)
TΦ∗Zλ0(s) ds.
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As n → ∞ C∗
1 (t) converges in probability for each t. By the martingale

central limit theorem, it may furthermore be shown that (M1, M2) con-
verges in distribution to a Gaussian martingale U = (U1, U2) with mean
zero, and the result follows. �

It may be shown that the weighted estimator (β̂, Ψ̂(t)) is efficient. In
practice, however, we recommend to use the simple and unweighted esti-
mators. They seem to be very stable numerically and the loss in efficiency
is often very modest. In contrast, it is not always a trivial task to obtain
the efficient weights in practice.

7.2.4 Goodness-of-fit procedures

Goodness-of-fit procedures may be developed along the same lines as for
the Cox-Aalen model in the previous section. Specifically one may use a
cumulative martingale residual process

MK(t) =
∫ t

0

KT (t)dM̂(s),

where

M̂(t) = N(t) −
∫ t

0

X̃(β̃, t)dΨ̃(t).

The score function evaluated at β̃ and viewed as a process in t:

Ũ(β̃, t) =
∫ t

0

ZT Φ(β̃)H̃(β̃)dN(t)

may also be used to evaluate the fit of the model. By a Taylor expansion
it may be written as

Ũ(β̃, t) =
∫ t

0

ZT Φ(β0)H̃(β0)dM(t)

− Ĩ(β̃, t)Ĩ(β̃, τ)−1

∫ τ

0

ZT Φ(β0)H̃(β0)dM(t),

where Ĩ(β, t) is the derivative of Ũ(β, t) with respect to β. The asymptotic
distribution of the process Ũ(β̃, t) may be resampled by

n∑
i=1

ε̂1i(t)Gi − Ĩ(β̃, t)Ĩ(β̃, τ)−1
n∑

i=1

ε̂1i(τ)Gi,

where G1, . . . , Gn are independent standard normals. This enables us to
obtain percentiles from the distribution of, for example,

sup
t≤τ

|U(β̃, t)|.
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FIGURE 7.9: Lung cancer data: Score process along with 50 simulated pro-
cess under the model (7.27).

7.2.5 Examples

We first give an illustration where the model (7.14) is used as a general
flexible additive-multiplicative model.

Example 7.2.1 (Lung cancer data)

We apply the model to the lung cancer data presented in Ying et al. (1995)
that we also analyzed by use of the multiplicative hazards model in Example
6.10.1. This dataset consists of 121 patients with small cell lung cancer.
The patients were randomly assigned to one of two treatments: cisplatin
followed by etoposide (0); etoposide followed by cisplatin (1).

By the end of the study, 47 of the 62 patients on treatment 1 and 51 of
the 59 patients on treatment 2 had died. Lin & Ying (1995) noticed that a
Cox-model

λi(t) = Yi(t)λ0(t) exp (β1Xi1 + β2Xi2),
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FIGURE 7.10: Lung cancer data. Estimates of A0(t) (left panel) and Λ0(t)
(right panel) with 95% pointwise confidence intervals (full lines) and Hall-
Wellner confidence bands (broken lines).

where Xi1 is 1 if the patient was on treatment 2 and zero otherwise, and
Xi2 is the age of the patient at study entry, did not fit the data very well
with respect to treatment.

They proceeded with the following additive-multiplicative model

λi(t) = Yi(t)(β1Xi1 + λ0(t) exp (β2Xi2)),

and found that β̂1=5.2e-04 (2.6e-04) and β̂2 = 0.035(0.0174). They also
indicated, however, that there might be a time-varying effect of the treat-
ment covariate, so it may be more appropriate to apply the more general
model

λi(t) = Yi(t)(α(t)Xi1 + λ0(t) exp (βXi2)), (7.27)

which is seen to be of the form (7.14) with ρi = 1 for all subjects. We
fitted this latter model with Xi2 centered around its mean so that the
“excess” hazard rate λ0(t), in this example, corresponds to the hazard rate
for an averaged aged patient in treatment group 1. The model is fitted
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using the function prop.excess. As illustrated below, one may plot the
score process (adhering to the proportional part of the model) along with
50 resampled processes under the model, and also estimated cumulatives
with for example Hall-Wellner bands.

> age.c<-age-mean(age)

> excess<-1+numeric(n)

> fit<-prop.excess(Surv(times,status==1)~-1+trt+cox(age.c),

excess=excess,n.sim=2000)

Proportional Excess Survival Model

Simulations start N= 2000

> plot(fit,score=T)

> plot(fit,hw.ci=2)

> summary(fit)

Proportional Excess Survival Model

Test for non-significant effects

Test for Aalen terms, H_0: B(t)=0

KS-test pval CM-test pval

trt 0.033 0.004

Excess baseline 0.000 0.000

Proportional terms :

coef se(coef) z p

cox(age.c) 0.0469 0.0288 1.63 0.103

Call: prop.excess(Surv(times, status == 1) ~ -1 + trt +

cox(age.c),excess = excess, n.sim = 2000)

The score process does not seem extreme in this case as seen in Figure
7.9. The associated Kolmogorov-Smirnov type test based on 2000 simu-
lated processes gives a p-value of 0.74. The unweighted estimates of the
cumulatives, A(t) and Λ0(t), are depicted in Figure 7.10, and we see there
is an indication of a time-varying effect of the treatment: treatment 1 seems
initially to be superior to treatment 2, but a maximal deviation test would
not be able to reject the hypothesis of a constant effect. The Kolmogorov-
Smirnov test for the hypothesis of no difference between the two treatments
gives a p-value of 0.033. �

As mentioned earlier, the model (7.14) may be applied in situations where
it is speculated that a certain group of subjects has an excess mortality
when compared to a control group. Let us illustrate this with use of the
malignant melanoma dataset.

Example 7.2.2 (Survival with malignant melanoma)

We consider the three covariates sex, ulceration and the logarithm of tumor



7.2 Proportional excess hazards model 287

Sex (Si) Ulceration (Ui) log(thickness) (LTi)

β̃(SEE) −0.09 (0.47) −1.46 (0.82) 0.21 (0.51)

β̃(SEE) −1.44 (0.81) 0.21 (0.53)

β̃(SEE) −1.67 (0.79)

TABLE 7.1: Estimates of β and standard error estimates (SEE) based on
model (7.28).

thickness. We hence define LTi to be the logarithm of tumor thickness for
patient i,

Si =

{
1 if patient i is a man
0 if patient i is a woman

and

Ui =

{
1 if ulceration is not present in the tumor of patient i

0 otherwise.

We shall here treat patients with a tumor thickness below a certain cut-
point as the “exposed” group. By use of the results in Jespersen (1986),
Andersen et al. (1993) found that an optimal breakpoint for the covari-
ate thickness, based on the Cox-model, is 2.1 mm. As an illustration, we
consider the group with a possible excess risk as the one consisting of pa-
tients with tumor thickness above 2.1 mm. The dataset was first analyzed
using the model

λi(t) = Yi(t){α0(t) + α1(t)Si + α2(t)Ui

+ ρiλ0(t) exp (β0Si + β1Ui + β2LTi)}, (7.28)

where ρi is equal to 1 if the patients tumor thickness is above 2.1 mm, and
0 otherwise:

> excess<-0+1*(thick>=210)

> lt<-log(thick)

> ulc0<-(-1)*(ulc-1)

> status[status!=1]<-0

> fit<-prop.excess(Surv(days,status==1)~sex+ulc0+

cox(sex)+cox(ulc0)+cox(lt),excess=excess,n.sim=2000)

Proportional Excess Survival Model

Simulations start N= 2000

> summary(fit)

Proportional Excess Survival Model
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Test for non-significant effects

Test for Aalen terms, H_0: B(t)=0

KS-test pval CM-test pval

(Intercept) 0.187 0.498

sex 0.514 0.574

ulc0 0.735 0.893

Excess baseline 0.799 0.772

Proportional terms:

coef se(coef) z p

cox(sex) -0.0877 0.465 -0.189 0.8500

cox(ulc0) -1.4600 0.822 -1.780 0.0751

cox(lt) 0.2070 0.514 0.403 0.6870

The score processes may be plotted as in the previous example, and these
give no indication of a poor fit. Based on the estimates of the parametric
components given in Table 7.1, it seems reasonable to simplify the model
to

λi(t) = Yi(t){α0(t) + α1(t)Si + α2(t)Ui + ρiλ0(t) exp (βUi)}.

The p-values, based on a Kolmogorov-Smirnov test, for testing the non-
parametric components, αj(t), j = 0, 1, 2, equal to zero are 0.095, 0.475,
and 0.71. Reducing the model first by setting α2(t) equal to zero and then
also α1(t) gives us a model with only significant effects:

> fit<-prop.excess(Surv(days,status==1)~ cox(ulc0),excess=excess,

n.sim=2000)

Proportional Excess Survival Model

Simulations start N= 2000

> plot(fit,hw.ci=2)

null device

1

> summary(fit)

Proportional Excess Survival Model

Test for non-significant effects

Test for Aalen terms, H_0: B(t)=0

KS-test pval CM-test pval

(Intercept) 0.002 0.04

Excess baseline 0.000 0.00

Proportional terms :

coef se(coef) z p

cox(ulc0) -1.67 0.794 -2.11 0.0352
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FIGURE 7.11: Melanoma data. Estimates of A0(t) (left panel) and Λ0(t)
(right panel) with 95% pointwise confidence intervals (full lines) and Hall-
Wellner confidence bands (broken lines).

corresponding to

λi(t) = Yi(t){α0(t) + ρiλ0(t) exp (βUi)}. (7.29)

In this model, β̃ = −1.67(0.79), and the unweighted estimates of the cu-
mulatives, A(t) and Λ0(t), are displayed in Figure 7.11 together with 95%
pointwise confidence intervals (full lines) and Hall-Wellner confidence bands
(broken lines). The mortality for patients with a small tumor is described
by α0(t) while λ0(t) describes the excess risk for a patient with tumor
thickness above 2.1 mm. in the stratum defined by presence of ulceration.
Both of these are clearly significant different from zero. The excess risk is
reduced by a factor exp (−1.67) for patients without ulceration. �
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7.3 Exercises

7.1 (Blocked Cox-Aalen) Let N(t) = I(T ≤ t) have intensity on the
Cox-Aalen form:

λ(t) = Y (t)(XT (t)α(t)) exp(ZT (t)β)

and assume that n i.i.d. replicas of the model are observed over the time-
interval [0, τ ]. Some effects are multiplicative and they can thus be inter-
preted as effect modifiers. The model assumes the effect of X1 and X2,
say, is modified in the same way by Z. One extension of the model allows
different effect modification

λ(t) = Y (t)

(
K∑

k=1

XT
k (t)αk(t)) exp(ZT (t)γk)

)
where X = (X1, X2, ..., XK) is grouped into K blocks.

(a) By redefining the covariate Z the model can be written as

λ(t) = Y (t)

(
K∑

k=1

(XT
k (t)αk(t) exp(ZT

k (t)γ̃)

)
.

Specify this construction in detail.

(b) Derive a score equation for γ = (γ1, .., γK) or γ̃ in the alternative
parametrization.

(c) Make the basic derivations to obtain the asymptotic properties.

7.2 (Cox-Aalen model: Alternative weights) Let N(t) = I(T ≤ t) have
intensity on the Cox-Aalen form:

λ(t) = Y (t)(XT (t)α(t)) exp(ZT (t)β)

and assume that n i.i.d. replicas of the model is observed over the time-
interval [0, τ ].

(a) Validate that the second derivative I is on the specified form when
wi(t) = exp(−ZT

i β).

(b) Compute the score and second derivative in the case where wi(t) = 1.

(c) The optimal weights are

wi(t) = exp(−ZT
i β)/(XT

i α(t)).

Do a simulation study to learn about the finite sample performance
when 1) α is known in the weights; 2) the weights are estimated based
on and initial estimator and compare with the suggested weights.
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(d) Show that the second derivative converges in probability to a negative
definite matrix.

(e) Validate that the optional variation of the score process for β and the
second derivative have the same asymptotic limit in the case with
optimal weights.

7.3 (Veterans data) Consider the Veterans data available in the survival
package in R, see Therneau & Grambsch (2000) for more details.

(a) Analyze the data using the Cox-Aalen model. Focus on the variables
celltype, karno and age.

(b) Is treatment significant or time-varying?

(c) Does a Cox regression model provide a reasonable fit?

(d) Does the Cox-Aalen model provide a reasonable fit?

7.4 (Proportional excess model: alternative weights) Let N(t) = I(T ≤
t) have intensity on the proportional excess form:

λ(t) = Y (t)(XT (t)α(t) + ρ(t)λ0(t) exp(XT (t)β))

and assume that n i.i.d. replicas of the model is observed over the time-
interval [0, τ ].

(a) The optimal weights are

wi(t) = 1/λi(t).

Do a simulation study to learn about the finite sample performance
when 1) α is known in the weights; 2) the weights are estimated based
on and initial estimator and compare with the suggested weights.

(b) Show that the second derivative converges in probability to a negative
definite matrix when the optimal weights are used.

(c) Validate that the optional variation of the score process for β and the
second derivative have the same asymptotic limit in the case with
optimal weights.

(d) Validate equation (7.19).
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7.5 (Estimating the survival function) Assume that n i.i.d. replications
from the proportional excess model is observed over the time-interval [0, τ ].

(a) Suggest an estimator of the survival function, and derive an optional
variation estimator of the variance for n1/2(Ŝ0(t) − S0(t)).

(b) Make an i.i.d. decomposition formula for n1/2(Ŝ0(t)−S0(t)), and give
the recipe for making a 95 % confidence band.

7.6 (Data example) Consider the TRACE data of the timereg package.
It may be sensible to work with a smaller sample of this data, for example
the first 500 patients. Mortality due to ventricular fibrillation (vf) may be
considered as excess risk, and it may relevant to modify this excess risk
for gender. Suggest a proportional excess risk model that can be used to
describe the excess risk due to vf.



8
Accelerated failure time and
transformation models

In the past chapters we have presented various additive and multiplicative
hazards models. These models are well suited for regression modeling of
survival data, are simple to fit, and can deal with time-varying regression
coefficients as well as time-dependent covariates. These models, however,
are not the only important models in survival analysis, and in this section
we give a brief review of the accelerated failure time models and transfor-
mation models.

To focus ideas, let T be a survival time and Z a covariate vector that
does not depend on time. The accelerated failure time model assumes that

log(T ) = −ZT β + ε

where β is a set of regression parameters and ε is a residual term with
un-specified distribution. Note that the parameter appears to be quite easy
to interpret because they directly refer to the level of log(T ), but with cen-
sored observations, however, one should be very cautious to interpret them
as standard linear regression effects that refers to the mean of log(T ). The
model is not quite as easy to fit as the regression models in the previous sec-
tions (with censored observations!), and the asymptotics of the estimators
is also more difficult to get at, although there recently has been some good
advances in making the model more practically applicable. Some impor-
tant key references are Miller (1976), Buckley & James (1979), Koul et al.
(1981), Lai & Ying (1991a), Prentice (1978), Ritov (1990), Tsiatis (1990),
Lai & Ying (1991b), Wei et al. (1990); Ying (1993). See also Bagdonavicius
& Nikulin (2001) and Kalbfleisch & Prentice (2002) for a summary of these
techniques.
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Another class of models are the transformation models:

h(T ) = −ZT β + ε

where the transformation h is now an unspecified monotone transformation
while ε is a known error distribution. Special cases are the Cox regression
model when ε has an extreme value distribution with distribution function
F (t) = exp(− exp(t)) and the proportional odds model when ε is a stan-
dard logistic distribution. Some authors have dealt with this model quite
generally by inverse probability weighting techniques (Cheng et al., 1995,
1997; Fine et al., 1998; Cai et al., 2000). A drawback of the inverse prob-
ability weighting technique is that the censoring distribution needs to be
estimated. Alternatively, as we shall do here, one may consider an estimat-
ing equations approach, as in for example Bagdonavicius & Nikulin (1999)
and the recent Chen et al. (2002). For a detailed treatment see the book
Bagdonavicius & Nikulin (2001). The transformation model has some ad-
vantages, and has proved its relevance in the two special cases mentioned
above, but for other choices of ε the regression coefficients are more difficult
to interpret because they refer to the scale given by the unknown h.

8.1 The accelerated failure time model

The accelerated failure time (AFT) model simply makes a linear regression
for the log-transformed event time, log(T ), given a p-dimensional covariate
Z = (Z1, ..., Zp) such that

log(T ) = −ZT β + ε (8.1)

where β = (β1, ..., βp) is a p-dimensional regression parameter, and ε is
unspecified. This specification leads to the hazard function for T given Z:

λ(t) = λ0(t exp(ZT β)) exp(ZT β), (8.2)

where λ0(t) is the hazard associated with the unspecified error distribution
exp(ε). We see that the covariates acts multiplicatively on time so that
their effect is to accelerate or decelerate time to failure relative to λ0(t).
Note that when there are censorings present one should be very careful
interpreting β as in the standard linear regression case where β gives the
effect of Z on the mean of log(T ). Let C be the censoring time for T , and put
T̃ = T ∧ C and ∆ = I(T ≤ C). We now consider (8.2) as our basic model
for the intensity of the counting process N(t) = I(T̃ ≤ t)∆ constructed
by observing the possibly right-censored event time. The intensity is thus
assumed to be Y (t)λ(t) with Y (t) = I(t ≤ T̃ ) being the at risk indicator.

Assume that n i.i.d. counting processes are being observed subject to
this generic hazard model. We thus consider N(t) = (N1(t), .., Nn(t)) the n-
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dimensional counting process of all subjects. Define also the time-transform-
ed counting process

N∗(t) = (N1(t exp(−ZT
1 β)), .., Nn(t exp(−ZT

n β)))

with associated at risk process Y ∗
i (t, β) = Yi(t exp(−ZT

i β)), i = 1, . . . , n.
The time-transformation for each counting process is useful because the
intensity of Ni(t exp(−ZT

i β)) is

λ∗
i (t) = Y ∗

i (t)λ0(t),

which immediately suggest that Λ0(t) =
∫ t

0 λ0(s)ds should be estimated by
the Breslow-type estimator

Λ̂0(t, β) =
∫ t

0

1
S∗

0 (s, β)
dN∗· (s) (8.3)

where dN∗· (t) =
∑n

i=1 dN∗
i (t), and

S∗
0 (t, β) =

n∑
i=1

Y ∗
i (t, β)

if β were known. Let us now turn to estimation of β. The efficient score
function for β is

n∑
i=1

∫ ∞

0

∂

∂β
(λi(t, β))λ−1

i (t, β) (dNi(t) − Yi(t)λi(t)dt) (8.4)

=
n∑

i=1

∫ ∞

0

(
λ

′
0(t exp(ZT

i β))t exp(ZT
i β)

λ0(t exp(ZT
i β))

+ 1

)
Zi(dNi(t) − Yi(t)λi(t)dt)

=
n∑

i=1

∫ ∞

0

(
λ′

0(u)u
λ0(u)

+ 1
)

Zi(dN∗
i (u) − Y ∗

i (u, β)dΛ0(u)),

and inserting dΛ̂0(u, β) for dΛ0(u) gives

UW (β) =
n∑

i=1

∫ ∞

0

W (u)Zi

(
dN∗

i (u) − Y ∗
i (u, β)

S∗
0 (u, β)

dN∗· (u)
)

=
n∑

i=1

∫ ∞

0

W (u) (Zi − E∗(u, β)) dN∗
i (u), (8.5)

where

S∗
1 (u, β) =

n∑
i=1

Y ∗
i (u, β)Zi, E∗(u, β) =

S∗
1 (u, β)

S∗
0 (u, β)

,
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and

W (u) =
(

λ′
0(u)u
λ0(u)

+ 1
)

(8.6)

is the efficient weight function. The score function can also be written on
the (log)-transformed time scale

UW̃ (β) =
n∑

i=1

∫ ∞

−∞
W̃ (t)

(
Zi − E∗(et, β)

)
dN∗

i (et)

=
n∑

i=1

∫ ∞

−∞
W̃ (t)

(
Zi − Ẽ(t − ZT

i β, β)
)

dÑi(t − ZT
i β), (8.7)

where Ñi(t) = I(log(T̃i) ≤ t)∆i, Ỹi(t) = I(t ≤ log(T̃i)),

Ẽ(t, β) =
n∑

i=1

ZiỸi(t)/
n∑

i=1

Ỹi(t), W̃ (t) =
λ′

0ε(t)
λ0ε(t)

,

with λ0ε(t) the hazard function for ε.
We cannot use (8.5) directly for estimation purposes since the weight

function W (u) involves the unknown baseline hazard function λ0(u) and
its derivative λ′

0(u). These can be estimated and inserted into (8.5) but it
is not recommendable since it is hard to get reliable estimates of especially
λ′

0(t). A way around this is to take (8.5) and replacing the weight func-
tion W (u) with one that can be computed as for example W (u) = 1 or
W (u) = n−1S∗

0 (u, β) referred to as the log-rank and Gehan weight func-
tions, respectively.

Note. The classical way of arriving at (8.7) with W̃ just being any weight
function is as follows (Tsiatis, 1990). If we want to test the hypothesis,
β = 0, then a class of linear rank tests can be written as

nX
i=1

Z ∞

0

W (t)(Zi − Ẽ(t))dÑi(t)

with W being some weight function. Generalizing this test statistic to test
the hypothesis β = β0 is done by replacing log(T̃i) with log(T̃i) + ZT

i β0,
which leads to (8.7). So it is natural to choose the estimator of β0 as the
β that minimizes (8.7).

A practical complication is that the score function UW (β) is a step func-
tion of β so UW (β) = 0 may not have a solution. The score function may
furthermore not be component-wise monotone in β. It is actually mono-
tone in each component of β if the Gehan-weight is chosen (Fygenson &
Ritov, 1994). The estimator β̂ is usually chosen as the one which minimizes
||UW (β)||.
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It has been established under regularity conditions that n1/2(β̂ − β)
is asymptotically zero-mean normal with covariance matrix A−1

W BW A−1
W ,

where AW and BW are the limits in probability of

1
n

n∑
i=1

∫ ∞

0

W (u) (Zi − E∗(u, β))⊗2

(
λ′

0(u)u
λ0(u)

+ 1
)

dN∗
i (u),

1
n

n∑
i=1

∫ ∞

0

W (u)2 (Zi − E∗(u, β))⊗2 dN∗
i (u)

respectively (Tsiatis, 1990; Ying, 1993). It is seen that AW and BW coincide
in the case where W (u) is taken as the efficient weight function (8.6). The
asymptotic covariance matrix depends on λ

′
0, which is difficult to estimate.

One may, however, apply a resampling technique avoiding estimation of λ
′
0,

see Lin et al. (1998b) and Jin et al. (2003)
Chen & Jewell (2001) considered the interesting variant of (8.2):

λ(t) = λ0(t exp(ZT β1)) exp(ZT β2), (8.8)

which contains both the proportional hazards model (β1 = 0), the accel-
erated failure time model (β1 = β2), and for β2 = 0 what is called the
accelerated hazards model (Chen & Wang, 2000). Chen & Jewell (2001)
suggested estimating equations for estimation of β = (β1, β2) and showed
for the resulting estimator, β̂, that n1/2(β̂−β) is asymptotically zero-mean
normal with a covariance that also involves the unknown baseline haz-
ard (and its derivative). They also suggested an alternative resampling ap-
proach for estimating the covariance matrix (attributed to Eugene Huang)
without having to estimate the baseline hazard function or its derivative.
With these tools at hand one may then investigate whether it is appropriate
to simplify (8.8) to either the Cox-model or the AFT-model.

Note. There exists other ways of estimating the regression parameters β
of the AFT-model, which build more on classical linear regression models
estimation (Buckley & James, 1979). Starting with (8.1), let V = log(T ),
U = log(C) and Ṽ = V ∧ U , and write model (8.1) as

V = −β0 − ZT β + ε

assuming that ε is independent of Z = (Z1, . . . , Zp)T and has zero mean. If
V was not right-censored, then it is of course an easy task to estimate the
regression parameters. The idea is therefore to replace V with a quantity
that has the same mean as V , and which can be computed based on the
right-censored sample. With

V ∗ = V ∆ + (1 − ∆)E(V |V > U, Z),

and ∆ = I(V ≤ U), then E(V ∗ |Z) = E(V |Z). Still, V ∗ is not observable
but it can be estimated as follows. Since

E(V |V > U, Z) = −ZT β +

R∞
U+ZT β

vdF (v)

1 − F (U + ZT β)
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with F the distribution of V + ZT β, one can construct the so-called syn-
thetic data points:

V̂ ∗
i (β) = Vi∆i + (1 − ∆i)

0@−ZT
i β +

R∞
Ui+ZT

i β
vdF̂ (v)

1 − F̂ (Ui + ZT
i β)

1A ,

where F̂ is the Kaplan-Meier estimator based on (Ṽi + ZT
i β, ∆i), i =

1, . . . , n. One may then estimate the parameters from the normal equations
leading to the following estimating equation for the regression parameter
vector β:

nX
i=1

(V̂ ∗
i (β) + ZT

i β)(Zi − Z) = 0, (8.9)

where Z = n−1
P

i Zi. Equation (8.9) needs to be solved iteratively if
it has a solution. The large sample properties of the resulting estimator
were studied by Ritov (1990). Equation (8.9) can also be written as, with
S(v) = v,

US(β) =
nX

i=1

0@∆iS(Ui + ZT
i β) + (1 − ∆i)

R∞
Ui+ZT

i
β

S(v)dF̂ (v)

1 − F̂ (Ui + ZT
i β)

1A (Zi − Z)

= 0, (8.10)

that may derived from a likelihood principle; the efficient choice of S(v)

being S(v) = f
′
(v)/f(v) with f(v) = F

′
(v) the density function. Ritov

(1990) also established an asymptotic equivalence between the two classes
of estimators given by (8.7) and (8.10). He showed that for any S(·) in
(8.10) there exist a W̃ (·) so that UW̃ (β) = US(β), and vice versa. Explicit
expressions of the relations between S(·) and W̃ (·) was also given by Ritov
(1990).

8.2 The semiparametric transformation model

The transformation model also makes a linear regression for the event time,
T , on a scale given by the unknown strictly increasing function h given a
p-dimensional covariate Z = (Z1, ..., Zp) such that

h(T ) = −ZT β + ε, (8.11)

where β = (β1, ..., βp) is a p-dimensional regression parameter, and the
residual ε has a known distribution with distribution function Fε, say. If
S(t|Z) denotes the conditional survival function of T given Z then we may
also write model (8.11) as

S−1
ε (SZ(t)) = h(t) + ZT β,
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where Sε(t) = 1 − Fε(x). The hazard function for T given Z is

λ(t) = λ(t, Z) = { ∂

∂t
h(t)}λε(ZT β + h(t)),

where λε(t) is the hazard function associated with ε.
In the following we prefer to reparameterize the model and write it as

G(T ) = exp(−ZT β) exp(ε) (8.12)

where G = exp(h) is a strictly increasing positive function such that G(0) =
0 and limt→∞ G(t) = ∞. Let g(t) = G

′
(t) denote the derivative of G(t).

The hazard of T given Z can now be written as

λ(t) = g(t) exp(ZT β)λ0(exp(ZT β)G(t)), (8.13)

where λ0(t) is the hazard associated with exp(ε).
When ε has the extreme value distribution then exp(ε) is standard ex-

ponentially distributed (λ0(t) = 1), and the hazard function (8.13) is then
the Cox regression model with cumulative baseline hazard function G(t).

In the case of the standard logistic distribution as the error distribution,
F (x) = exp(x)/(1 + exp(x)), we see that

logit(1 − SZ(t)) = log(G(t)) + ZT β (8.14)

and the model is therefore in this situation referred to as the proportional
odds model. The survival function and hazard function (8.13) are

S(t) = S(t|Z) =
1

1 + G(t) exp(ZT β)
; λ(t) =

g(t)
exp(−ZT β) + G(t)

.

The relative risk for two individual with covariates Z1 and Z2, respectively,
is

RR(t) =
λ(t, Z2)
λ(t, Z1)

=
exp(−ZT

1 β) + G(t)
exp(−ZT

2 β) + G(t)

with RR(0) = exp((Z2−Z1)T β) and limt→∞ RR(t) = 1 so the model results
in what is referred to as converging hazards. This is an appealing property
of the model, as converging hazards are encountered in many practical
settings.

We now take (8.13) as our basic model for the intensity of the associ-
ated counting process. Assume that n i.i.d. counting processes, represent-
ing survival times with independent censoring, are being observed subject
to this generic hazard model. We thus consider N(t) = (N1(t), .., Nn(t))
the n-dimensional counting process of all subjects with intensity λ(t) =
(Y1(t)λ1(t), ..., Yn(t)λn(t)), where Yi(t), i = 1, . . . , n, are the at-risk indica-
tors. We use Mi(t), i = 1, . . . , n, to denote the associated counting process
martingales.
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The martingale decomposition of dN·(t) reads

dN·(t) = S0(t, β, G)dG(t) + dM·(t),
where

S0(t, β, G) =
n∑

i=1

Yi(t) exp(ZT
i β)λ0(exp(ZT

i β)G(t−))

writing G(t−) to stress the needed predictability of the intensities. Based
on this decomposition it seems natural to estimate G(t) by the following
Breslow-type estimator (keeping β fixed)

G̃(t, β) =
∫ t

0

1
S0(s, β, G̃)

dN·(s). (8.15)

Equation (8.15) gives a recursive way of computing G̃(t, β) starting with
G̃(0, β) = 0.

Estimation of β may be based on the (partial) likelihood function
n∏

i=1

∏
t≥0

[
Yi(t) exp(ZT

i β)dG(t)λ0(exp(ZT
i β)G(t−))

]∆Ni(t)

× exp
{
−
∫ ∞

0

Yi(t) exp(ZT
i β)λ0(exp(ZT

i β)G(t−))dG(t)
}

.

The idea is now to replace dG(t) with dG̃(t, β) and G(t) with G̃(t, β), which
leads to

n∏
i=1

∏
t≥0

{
Yi(t) exp(ZT

i β)dG̃(t, β)λ0(exp(ZT
i β)G(t−))

}∆Ni(t)

,

where we have dropped terms not depending on β. The derivative with
respect to β of the log of this (pseudo) profile-likelihood is

Ũ(β) =
n∑

i=1

∫ ∞

0

{
ẇi(t, β, G̃)
wi(t, β, G̃)

− S1(t, β, G̃)
S0(t, β, G̃)

}
dNi(t), (8.16)

where

wi(t, β, G̃) = exp(ZT
i β)λ0(exp(ZT

i β)G̃(t−, β)),

ẇi(t, β, G̃) =
∂

∂β
wi(t, β, G̃) and S1(t, β, G̃) =

∂

∂β
S0(t, β, G̃).

When computing the derivative of wi with respect to β one should remem-
ber that G̃ is also a function of β. When λ0(t) = 1, (8.16) reduces to the
usual Cox score function, and for the proportional odds model one obtains

n∑
i=1

∫ ∞

0

{
Zi exp(−ZT

i β) − ∂
∂β G̃(t−, β)

exp(−ZT
i β) + G̃(t−, β)

− S1(t, β, G̃)
S0(t, β, G̃)

}
dNi(t) = 0.
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We denote minus the derivative of Ũ(β) (8.16) with respect to β by

I(β) = I(τ, β) = − ∂

∂β
Ũ(β).

Let β̂ be the root of Ũ(β) = 0 and use β0 and G0 for the true values of
β and G. The estimator β̂ is called the modified partial likelihood estima-
tor. One may show (under some regularity conditions) that n1/2(β̂ − β0)
is asymptotically zero-mean normal with covariance matrix that is consis-
tently estimated by

{n−1I}−1(β̂)Σ̂{n−1I}−1(β̂), (8.17)

where an expression for Σ̂ is given below in (8.18). Further, to estimate
G0(t) one may use the estimator Ĝ(t) = G̃(β̂, t). It can also be shown that
n1/2(Ĝ(t)−G0(t)) converges to a Gaussian process with a variance that can
be estimated by formula (8.19) below. Further, to get a uniform confidence
band one may resample the residuals. In the below note, some of the basic
steps in the derivation of the asymptotic properties of these estimators are
given, following Bagdonavicius & Nikulin (1999).

Note. Asymptotic properties for the modified partial likelihood estima-
tors. Let s0(t, β0) and s1(t, β0) denote the limits in probability of the quan-
tities n−1S0(t, β0) and n−1S1(t, β0), respectively. We start by making the
observation that (up to op(1))

n1/2(G̃(t, β0) − G0(t)) =n−1/2

Z t

0

1

n−1S0(s, β0, G̃)
dM·(s)

+ n1/2

Z t

0

S0(s, β0, G0) − S0(s, β0, G̃)

S0(s, β0, G̃)
dG0(s).

Note that the first term, by the martingale CLT, can be shown to converge
to a Gaussian martingale process V (t) with variance σ2(t) =

R t

0
s−1
0 (t)dG0.

The difference in the last integral of the above display can be Taylor
expanded (up to op(1))

n−1/2(S0(t, β0, G̃) − S0(t, β0, G0)) = n−1S∗
0 (t, β0)

n1/2(G̃(t−, β0) − G0(t−)),

where we define

S∗
j (t, β0) =

nX
i=1

Yi(t)

j
ẇi(t, β0, G̃)

wi(t, β0, G̃)

ffj

exp(2ZT
i β0)λ̇0(exp(ZT

i β0)G0(t−))

for j = 1, 2 with λ̇0(t) = ∂
∂t

λ0(t). Define also the limit in probability of
S∗

0 (t, β0)/S0(t, β0) by e∗(t, β0) = s∗0(t, β0)/s0(t, β0), where s∗0(t, β0) is the
limit in probability of n−1S∗

0 (t, β0).
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This implies that n1/2(G̃(t, β0) − G0(t)) converges in distribution to a
process W (t) that satisfies the integral equation

W (t) = −
Z t

0

e∗(u, β0)W (u)dG0(u) + V (t),

which is solved for

W (t) = k(t, β0)

Z t

0

k−1(u, β0)dV (u),

where k(t, β0) = exp(− R t

0
e∗(u, β0)dG0(u)).

After this preliminary observation we turn to the modified partial likeli-
hood score Ũ(β). The score evaluated at the true point may be decomposed
as

Ũ(β0) =

nX
i=1

Z ∞

0

j
ẇi(t, β0, G̃)

wi(t, β0, G̃)
− S1(t, β0, G̃)

S0(t, β0, G̃)

ff
dMi(t)

+

nX
i=1

Z ∞

0

ẇi(t, β0, G̃)

wi(t, β0, G̃)
Yi(t)

n
wi(t, β0, G0) − wi(t, β0, G̃)

o
dG0(t)

+

Z ∞

0

S1(t, β, G̃)

S0(t, β0, G̃)

n
S0(t, β0, G̃) − S0(t, β0, G0)

o
dG0(t).

By a Taylor expansion it may be shown that (up to op(1))

n1/2
“
wi(t, β0, G̃) − wi(t, β0, G0)

”
=

exp(2ZT
i β0)λ̇0(exp(ZT

i β0)G0(t−))W (t).

Define e(t, β) = s1(t, β)/s0(t, β),

l(t, β) =
s1(t, β)s∗0(t, β) − s0(t, β)s∗1(t, β)

s0(t, β)
,

q(t, β) = e(t, β) − 1

k(t, β)s0(t, β)

Z ∞

t

l(s, β)k(s, β)dG0(s).

Then we can write the normed score as (up to an op(1) term):

n−1/2Ũ(β0) =

Z ∞

0

l(t, β0)W (t)dG0(t)

+ n−1/2
nX

i=1

Z ∞

0

j
ẇi(t, β0, G0)

wi(t, β0, G0)
− e(t, β0)

ff
dMi(t)

=n−1/2
nX

i=1

Z ∞

0

j
ẇi(t, β0, G0)

wi(t, β0, G0)
− q(t, β0)

ff
dMi(t).

This is a sum of i.i.d. terms (or a martingale) and therefore converges to
a normal distribution with variance that is consistently estimated by the
robust estimator

Σ̂ = n−1
nX

i=1

"Z ∞

0

(
ẇi(t, β̂, G̃)

wi(t, β̂, G̃)
− q̂(t, β̂)

)
dM̂i(t)

#⊗2

(8.18)
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or by the optional variation process

n−1
nX

i=1

Z ∞

0

(
ẇi(t, β̂, G̃)

wi(t, β̂, G̃)
− q̂(t, β̂)

)⊗2

dNi(t),

where q̂(t, β̂) is obtained by replacing unknown quantities by their empir-
ical counterparts. We therefore get that (up to an op(1) term)

n1/2(β̂ − β0) = {n−1I(β̂)}−1n−1/2Ũ(β0),

and a consistent estimator of the variance of n1/2(β̂ − β0) is given by
(8.17).

Finally, we consider the asymptotic distribution of Ĝ(t) = G̃(t, β̂). It can
can be derived that (up to an op(1) term)

n1/2
“
Ĝ(t) − G0(t)

”
= −

Z t

0

S1(t, β0, G̃)

S0(t, β0, G̃)
dG0(s)n

1/2(β̂ − β0)

+ k(t, β0)n
−1/2

nX
i=1

Z t

0

Yi(s)k
−1(s, β0)

1

s0(s, β0)
dMi(s)

=n1/2
nX

i=1

Hi(t, β0),

where

Hi(t, β) = − P (t, β0)I
−1(β0)

Z ∞

0

Yi(t)

»
ẇi(t, β0, G0)

wi(t, β0, G0)
− q(t, β0)

–
dMi(t)

+ n−1k(t, β0)

Z t

0

Yi(s)k
−1(s, β0)

1

s0(s, β0)
dMi(s)

with P (t, β0) =
R t

0
s1(t, β0)/s0(t, β0)dG0. Let Ĥi denote the estimator of

Hi by plugging in the estimates of the unknown quantities. The variance
of Ĝ(t) − G0(t) may therefore be estimated by

nX
i=1

Ĥ⊗2
i (t, β̂) (8.19)

or by the estimated optional variation. The entire process has an asymp-
totic distribution that can be obtained by resampling of the residuals

nX
i=1

Ĥi(t, β̂)Di,

where Di are independent standard normals.

Note also that the goodness-of-fit of the model may be evaluated by com-
paring the observed score process versus resampled versions under the
model.
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Our experience with the modified partial likelihood method is that it
performs well in practice. One should note, however, that it does not corre-
spond to the nonparametric maximum likelihood estimator (NPMLE), see
Slud & Vonta (2004) and Murphy et al. (1997) for details on the NPMLE for
the proportional odds model. The NPMLE is more difficult to implement
as no explicit expressions are available.

Yet another procedure is to substitute dG̃(t, β) for dG(t) in the efficient
score function for β. The efficient score function for β (assuming that G is
known) is

n∑
i=1

∫ ∞

0

∂

∂β
(λi(t, β))λ−1

i (t, β) (dNi(t) − Yi(t)λi(t)dt)

=
n∑

i=1

∫ ∞

0

v̇i(t, β, G)
vi(t, β, G)

(dNi(t) − Yi(t)vi(t, β, G)dG(t)) , (8.20)

where

vi(t, β, G) = exp(ZT
i β)λ0(exp(ZT

i β)G(t−)) and

v̇i(t, β, G) =
∂

∂β
vi(t, β, G).

Now, inserting G̃(t, β) into (8.20) leads to the estimating function for β:

Ǔ(β) =
n∑

i=1

∫ ∞

0

v̇i(t, β, G̃)
vi(t, β, G̃)

(
dNi(t) − Yi(t)vi(t, β, G̃)dG̃(t, β)

)
=

n∑
i=1

∫ ∞

0

{
v̇i(t, β, G̃)
vi(t, β, G̃)

− S̃1(t, β, G̃)
S0(t, β, G̃)

}
dNi(t), (8.21)

where
S̃1(t, β, G) =

∂

∂β
S0(t, β, G).

We see that (8.16) and (8.21) look very similar, the difference being that the
derivatives in (8.21) are computed with G(t) fixed, and then G̃ is inserted
into these derivatives. Let β̌ denote the solution to Ǔ(β) = 0 and let Ǐ(β)
be the derivative of Ǔ(β) with respect to β (which we note in passing is
not symmetric). Following the above sketch of proof one may show that
n1/2(β̌ − β0) is asymptotically zero-mean normal with covariance matrix
that is consistently estimated by

Ǐ−1(β̌)Γ̌Ǐ−1(β̌),

where Γ̌ is a consistent estimator of the asymptotic variance of Ǔ(β0).

We end this section by fitting the proportional odds model to the PBC-
data.
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FIGURE 8.1: Estimated survival for proportional odds survival model along
with 95% pointwise confidence intervals for subject with average value of
all covariates and without edema.

Example 8.2.1 (The PBC data)

We consider the PBC data described in Example 1.1.1, and again wish
to study the predictive effect on survival of the following covariates: age,
log(albumin), log(bilirubin), edema, log(protime). The proportional odds
model (8.14) may be fitted in the timereg package using the prop.odds-
function. The continuous covariates are first centered around their means
before fitting the model.

> fit<-prop.odds(Surv(time/365,status)~Age+Edema+logBilirubin

+ +logAlbumin+logProtime,pbc,max.time=8)

Proportional odds model

Simulations start N= 500

> summary(fit)

Proportional Odds model

Test for baseline
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Test for non-significant effects

sup| hat B(t)/SD(t) | p-value H_0: B(t)=0

Baseline 6.74 0

Test for time-invariant effects

sup| B(t) - (t/tau)B(tau)| p-value H_0: B(t)=b t

Baseline 0.18 0.01

Covariate effects

Coef. SE Robust SE D2log(L)^-1 z P-val

Age 0.0512 0.0116 0.0124 0.0118 4.41 1.04e-05

Edema 1.2800 0.3570 0.3960 0.3390 3.59 3.31e-04

logBilirubin 1.1200 0.1250 0.1280 0.1250 8.99 0.00e+00

logAlbumin -2.9500 0.9320 0.9160 0.9250 -3.17 1.53e-03

logProtime 3.9400 1.2600 1.4900 1.3000 3.12 1.78e-03

Test for Goodness-of-fit

sup| hat U(t) | p-value H_0

Age 41.100 0.936

Edema 5.030 0.026

logBilirubin 13.900 0.008

logAlbumin 0.647 0.802

logProtime 1.140 0.038

> S<-1/(1+fit$cum[,2]);

> Su<-1/(1+fit$cum[,2]+1.96*fit$robvar.cum[,2]^.5)

> Sn<-1/(1+fit$cum[,2]-1.96*fit$robvar.cum[,2]^.5)

> plot(fit$cum[,1],S,type="s",ylim=c(0,1),ylab="Survival",

+ xlab="Time (years)")

> lines(fit$cum[,1],Su,lty=2,type="s")

> lines(fit$cum[,1],Sn,lty=2,type="s")

The proportional odds effects of the covariates are all significant. We
note that the coefficients are somewhat similar to the results of the Cox-
model that in this context is equivalent to a cloglog model for the survival,
compared to the logit transformation used for the proportional odds model.
Patients with edema present, for example, will have an exp(1.28) = 3.60
increased odds compared to patients without edema (keeping everything
else fixed).

Figure 8.1 shows the estimated survival functions with 95% pointwise ro-
bust confidence intervals for a subject with average values for all covariates
and without edema.

The goodness of fit of the proportional odds model is evaluated by con-
sidering the score processes Ũ(β̂, t) and inspecting their behavior with what
should be expected under the model. The above summary and Figure 8.2
(containing the observed score processes and 50 random realizations un-
der the model) suggest that the model does not give a good description
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FIGURE 8.2: Score processes, Ũ(t), along with 50 resampled processes under
the model.

for edema, log(bilirubin) and log(protime). The plot is obtained by the
command

> plot(fit,score=1)

One way of extending the model is to let the covariates (or some of
them) have time-varying effects, which we have studied in detail for the
Aalen additive hazards model and the Cox-model. Similar techniques have
not yet been developed for the proportional odds model. Recall that the
hazard function for the semiparametric proportional odds model is

λ(t) =
g(t)

exp(−ZT β) + G(t)
.

One way of extending this model is to allow β to depend on time. We here
make an approximation of this by instead letting Z change over time and



308 8. Accelerated failure time and transformation models

consider the model

λ(t) =
g(t)

exp(−Z(t)T β) + G(t)
.

We here consider the case where edema was allowed to change its effect at
time 2 years and again at 4 years (coded with 3 dummy variables Edema02,
Edema24, and Edema4).

Covariate effects

Coef. SE Robust SE D2log(L)^-1 z P-val

Age 0.049 0.012 0.012 0.012 4.083 0.000

Edema02 1.770 0.400 0.409 0.388 2.775 0.006

Edema24 0.415 0.635 0.643 0.622 0.654 0.513

Edema4 -1.338 0.982 1.045 0.941 -1.362 0.173

logBilirubin 1.103 0.123 0.128 0.125 8.967 0.000

logAlbumin -3.101 0.938 0.911 0.916 -3.305 0.001

logProtime 4.590 1.387 1.513 1.361 3.564 0.000

Test for Goodness-of-fit

sup| hat U(t) | p-value H_0

Age 54.776 0.728

Edema02 2.130 0.450

Edema24 0.824 0.816

Edema4 1.046 0.120

logBilirubin 14.574 0.010

logAlbumin 0.449 0.978

logProtime 0.875 0.120

We see that presence of edema has a significant effect in an initial phase
(first two years) while it seems to be insignificant thereafter. Note also that
the model now seems to give a better fit to the data, at least with respect
to edema. �
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8.3 Exercises

8.1 Consider the accelerated failure time model

log(T ) = −ZT β + ε.

(a) Show that T has hazard function

λ(t) = λ0(t exp(ZT β)) exp(ZT β),

where λ0(t) is the hazard associated with exp(ε).

(b) Show that (
λ′

0(u)u
λ0(u)

+ 1
)

=
λ′

0ε(log(u))
λ0ε(log(u))

,

where λ0ε(t) is the hazard function for ε.

(c) Verify the second equality of (8.4).

(d) Show that UW (β) = UW̃ (β).

8.2 (Estimating function with Gehan-weight, Jin et al. (2003))

(a) Show that UW (β) given by (8.5) and with W (t) = G(t) = n−1S∗
0 (t, β),

the Gehan-weight, can be written as

UG(β) = n−1
n∑

i=1

n∑
j=1

∆i(Zi − Zj)I(ei(β) ≤ ej(β)),

where ei(β) = log(T̃i) + ZT
i β and ∆iI(Ti ≤ Ci).

(b) Show that UG(β) is the gradient of

LG(β) = n−1
n∑

i=1

n∑
j=1

∆i(ei(β) − ej(β))−,

where a− = |a|I(a < 0), and that LG(β) is a convex function.

8.3 (Extended accelerated failure time model, Chen & Jewell (2001)) Con-
sider the model (8.8)

λ(t) = λ0(t exp(ZT β1)) exp(ZT β2),

and suppose we have n i.i.d. right-censored observations (T̃i, ∆i, Zi) from
this model. Let Ni(t) = I(T̃i ≤ t)∆i and Y (t) = I(t ≤ T̃ ).
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(a) Argue that a natural estimator of Λ0(t) =
∫ t

0
λ0(s) ds is

Λ̂0(t, β) =
∫ t

0

∑n
i=1 dNi(u exp(−β1Zi))∑n

i=1 Yi(u exp(−β1Zi) exp{(β2 − β1)Zi}
. (8.22)

(b) Use (8.4) to derive the efficient estimating equations for (β1, β2):

n∑
i=1

∫ ∞

0

W (t, Zi, β)dMi(t) = 0, (8.23)

where

Mi(t) =Ni(t exp(−β1Zi))

−
∫ t

0

Yi(t exp(−β1Zi)) exp{(β2 − β1)Zi}dΛ0(t),

W (t, Z, β) = (Z, (λ′
0(t)/λ0(t))Z)T .

(c) Use (8.22) to rewrite (8.23) in a form like (8.5).

8.4 (Log-logistic proportional odds model) Consider the proportional odds
model (8.13) so that the baseline survival function (that is all covariate val-
ues equal to zero) is assumed to have the structure

(1 + exp(θ)tγ)−1,

and suppose that the covariate Z is an indicator variable (two groups). We
wish to apply this model to a dataset concerning breast cancer reported in
Collett (2003). Two groups of women are being compared: women with tu-
mors which were negatively or positively stained with HPA. Positive stain-
ing corresponds to a tumor with the potential for metastasis. The data can
be found at Dave Collett’s homepage: www.personal.rdg.ac.uk.

(a) The appropriateness of the model may be judged by plotting the esti-
mated log-odds (using the Kaplan-Meier estimates) against log(time).
Verify this and make the plot for the breast cancer data.

(b) Estimate the parameters of the model for the breast cancer data, and
report the estimated odds-ratio along with a 95%-confidence interval
comparing the two groups of women (hint: the model may be fitted
using the survreg-function in R). Add the straight lines estimates to
the plot in (a).

(c) Compare with fit provided by (8.13) without assuming a particu-
lar structure of the baseline survival function (use the prop.odds-
function).
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8.5 (Testing the proportional odds model (Dauxois & Kirmani, 2003))
We shall consider a test for the proportional odds model with Z being an
indicator variable. Let Fj(t), j = 1, 2 be the two distribution functions of
the lifetimes of the two groups, and let φj(t) = (1 − Fj(t))/Fj(t). Under
the proportional odds model we have φ2(t) = θφ1(t), which is our null
hypothesis. Let

ψjk =
∫ τ2

τ1

kj(t)φk(t) dt, j = 1, 2; k = 1, 2,

where τ1 and τ2 are some pre-specified timepoints, and k1 and k2 are two
positive functions such that the ration k1/k2 is an increasing function. Let
further

γ(k1, k2) = ψ11ψ22 − ψ12ψ21.

(a) Show that γ(k1, k2) = ψ11ψ22 −ψ12ψ21 = 0 if and only if the propor-
tional odds model holds.

Let T̃ij , i = 1, . . . , nj be independent lifetimes with distribution functions
Fj(t), j = 1, 2. The lifetime T̃ij is censored by Uij that are assumed to be
i.i.d. and independent of the lifetimes. Put as usual Tij = T̃ij ∧ Uij . Let
φ̂j(t) be the estimator of φj(t) based on the group specific Kaplan-Meier
estimators, and let

K1(t) =
(n1 + n2)

n1n2

Y1(t)Y2(t)
Y1(t) + Y2(t)

, K2(t) =
Y1(t)Y2(t)
n1 + n2

where Yj(t) =
∑

i Yij(t) with Yij(t) = I(t ≤ Tij). Let kj be the limits in
probability of Kj . Finally put

Γ(K1, K2) = ψ̂11ψ̂22 − ψ̂12ψ̂21,

where

ψ̂kj =
∫ m2∧τ2

m1∨τ1

Kj(t)φ̂k(t) dt

with m1 the largest of the smallest observed lifetimes of the two groups,
and m2 is the smallest of the largest observed lifetimes of the two groups.

(b) Show, under the null and under appropriate conditions, that

(n1 + n2)1/2(Γ(K1, K2) − γ(k1, k2))

converges in distribution to a zero mean normal variate U , and derive
an expression for σ2 = Var(U) (hint: Use (4.3) in Chapter 4). Suggest
an estimator of σ2.

(c) Apply the test to the breast cancer data in Exercise (8.4) to investi-
gate whether the proportional odds model is appropriate.
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Clustered failure time data

In many failure time studies there is a natural clustering of study subjects
such that failure times within the same cluster may be correlated. An exam-
ple is the time to onset of blindness in patients with diabetic retinopathy.
Patients were followed over several years and the pair of waiting times to
blindness in the left and right eyes, respectively, were observed. In such a
study one should expect some correlation between the waiting times within
the patients. Here the clustering is due to the patients. The primary inter-
est in this study was to evaluate whether laser treatment could delay onset
to blindness. For this purpose one eye of each patient was randomly chosen
for laser treatment while the other acted as a control. A second example
is given by twin studies. The Danish twin study is analyzed in Hougaard
(2000), and here one aim is to study the genetic effect on mortality. This is
done by comparing the strength of dependency between the time to death
for monozygotic and dizygotic twins, so in this case the focus is on the
potential clustering in the data.

For correlated failure time data several issues arise. How should the clus-
ter effect (if present) be modeled? What is the purpose of the study? It may
be to compare treatments or to estimate the correlation within clusters, or
both! In classical linear models a cluster factor is usually modeled as a
random effect. Because of the linear structure of these models, the mean of
the response variable is unaltered by adding a random effect. Random ef-
fects models also exist for failure time data, where they are denoted frailty
models. In these models the random effect (the frailty variable) is typi-
cally multiplied on to the intensity function. A convenient mathematical
choice of frailty distribution is the gamma distribution, but others exists.
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In frailty models, covariate effects are typically specified conditionally on
the value of the frailty variable, and one could therefore term them con-
ditional models. One should note that the observed intensity will typically
be different from the conditional intensity. Thus, a conditional Cox model
is for instance only preserved with respect to the observed history in the
special case where the multiplicative frailty variable has a positive stable
distribution. Frailty models may be used to model different cluster struc-
tures and will lead to estimates of subject specific regression effects, that
is a comparison of the failure times within clusters. They can also provide
estimates of random effect parameters describing the correlation between
failure times from the same cluster. Frailty models have received a lot of
attention in the nineties and are described in detail in Hougaard (2000).

If interest centers on comparing the failure times of individuals across
clusters it is simpler and more direct to apply so-called marginal models,
where the covariate effects are specified unconditionally. In fact, for these
models, the cluster structure is often ignored when estimating the covari-
ate effects and is only used to derive valid estimates of standard errors
to ensure correct inference. This approach is closely linked to the GEE
methodology (Liang & Zeger, 1986) and has mostly been considered in the
context of proportional (marginal) hazards models. Lee et al. (1992) consid-
ered the marginal Cox model and Wei et al. (1989) the marginal stratified
Cox model. A detailed asymptotic analysis for these models formulated in
a general setting were given by Spiekerman & Lin (1998). Marginal mod-
els may be used to estimate marginal regression effects and but also the
correlation within clusters. We return to this in Section 9.1.2.

In this chapter we focus almost solely on marginal models and outline how
the dynamic models we have considered so far can be extended to a cluster
setting. We show how the dynamic additive regression models can be most
of the models models presented The marginal models are further easy to use
in practice because existing software only needs simple modifications to do
correct estimation and inference. Frailty models are only briefly discussed
at the end of this chapter; we refer to Hougaard (2000) for a thorough
account.

9.1 Marginal regression models for clustered failure
time data

The marginal regression models approach for clustered failure time data is
well suited for the situation where one aims at estimating regression effects
on the population level, and only have to deal with correlation to get correct
estimates of the standard errors for the regression effects. In Section 9.1.2
we extend the marginal model approach to also provide estimates of the
correlation within clusters.
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9.1.1 Working independence assumption

In what follows we describe the so-called working independence assump-
tion approach for marginal proportional hazards models for right-censored
survival data. For k = 1, . . . , K, i = 1, . . . , n, let T̃ik and Cik be the failure
and censoring times for the ith individual in the kth cluster and let Xik(t)
be a p-vector of covariates. Put

T̃k = (T̃1k, . . . , T̃nk), Ck = (C1k, . . . , Cnk), Xk(t) = (X1k(t), . . . , Xnk(t)).

We assume that (T̃k, Ck, Xk(·)), k = 1, . . . , K are independent and identi-
cally distributed variables and these variables follow the model described
in the following. The right-censored failure time is denoted Tik = T̃ik ∧Cik

and as usual we let Yik(t) = 1(Tik ≥ t) and Nik(t) = 1(Tik ≤ t, Tik = T̃ik)
denote the individual at risk process and counting process, respectively. A
marginal model is a model for the intensity of Nik(t) with respect to the
marginal filtration

F ik
t = σ{Nik(s), Yik(s), Xik(s) : 0 ≤ s ≤ t}, (9.1)

which records information generated by observing the ikth individual only.
Such a model could for instance be the Cox model:

λFik

ik (t) = Yik(t)λ0(t) exp (XT
ik(t)β). (9.2)

It is important to note that (9.2) is not the intensity with respect to the
observed filtration

Ft =
∨
k

Fk
t , (9.3)

where

Fk
t = σ{Nik(s), Yik(s), Xik(s) : i = 1, · · ·n, 0 ≤ s ≤ t}

is the information generated by observing all the individuals in the kth
cluster. This limits the scope of martingale calculus. It is, however, still
possible to estimate and perform inference about the regression parameter
β.

In the following, inference and estimation for (9.2) is reviewed. Had there
been independence between subjects within clusters then, to estimate β,
we should use the usual Cox-score,

U(β) =
K∑

k=1

n∑
i=1

∫ τ

0

(
Xik(t) − E1(t, β)

)
dNik(t),

where τ denotes end of observation period, and

E1(t, β) =
S1

1(t, β)
S1

0(t, β)
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with

S1
j (t, β) =

K∑
k=1

n∑
i=1

Yik(t)Xj
ik(t) exp (XT

ik(t)β),

for j = 0, 1. In the case of independence U(β0), where β0 denotes the
true parameter, is a martingale and asymptotics may be derived using the
central limit theorem for martingales as described in Section 6.1. The so-
called working independence estimator of β0 is β̂I that solves U(β̂I) = 0.
This will lead to a consistent estimator of β0, but U(β0) is no longer a mar-
tingale and minus the derivative of U(β), denoted as I(β), cannot be used
as tool to estimate the standard errors. However, valid estimated standard
errors are easily derived exploiting the independence across clusters by es-
tablishing and i.i.d. representation for clusters. Under standard regularity
assumptions one may write

U(β0) = U(τ, β0) =
K∑

k=1

n∑
i=1

∫ τ

0

(
Xik(t) − e1(t, β0)

)
dM1

ik(t) + op(K1/2)

=
K∑

k=1

ε1k + op(K1/2), (9.4)

where

ε1k = ε1k(τ) =
n∑

i=1

∫ τ

0

(
Xik(t) − e1(t, β0)

)
dM1

ik(t),

e1(t, β0) is the limit in probability of E1(t, β0), and

M1
ik(t) = Nik(t) −

∫ t

0

λFik

ik (s) ds

denotes the marginal martingales. The above (9.4) gives the required sum
of n i.i.d. random vectors with zero mean. It follows from the multivariate
central limit theorem that K−1/2U(β0) is asymptotical normal with zero-
mean and covariance matrix B = E(ε1kεT

1k). By a Taylor series expansion
one further gets

K1/2(β̂I − β0) =
(
K−1I(β∗)

)−1
K−1/2U(β0),

where β∗ is on the line segment between β̂I and β0. Since K−1I(β∗) con-
verges in probability towards a matrix A, say, K1/2(β̂I − β0) is asymp-
totically normal with zero-mean and covariance matrix A−1BA−1. The
covariance matrix is estimated consistently by Â−1B̂Â−1, where

Â = K−1I(β̂I), B̂ = K−1
K∑

k=1

ε̂1k ε̂T
1k,
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with

ε̂1k =
n∑

i=1

∫ τ

0

(Xik(t) − E1(t, β̂I))dM̂1
ik(t),

that is based on the subject specific residuals

M̂1
ik(t) = Nik(t) −

∫ t

0

Yik(t) exp (β̂T
I Xik(t))dΛ̂0I(t, β̂I).

In the latter display

Λ̂0I(t, β) =
∫ t

0

1
S1

0(s, β)
dN··(s)

denotes the usual (independence) Breslow estimator of the cumulative haz-
ard function Λ0(t) =

∫ t

0 λ0(s)ds. One may furthermore show that

K1/2(Λ̂0I(t, β̂I) − Λ0(t))

converges in distribution to a zero-mean Gaussian process with covariance
function E(Φk(t)2), where

Φk(t) =
∫ t

0

dM1
·k(s, β0, Λ0)
s1
0(s, β0)

−
( ∫ t

0

e1(s, β0)dΛ0(s)
)T

A−1ε1k (9.5)

with s1
0(t, β0) being the limit in probability of K−1S1

0(t, β0). The covariance
function is consistently estimated by

K−1
K∑

k=1

Φ̂k(t)Φ̂k(t)T ,

where

Φ̂k(t) =
∫ t

0

dM̂1
·k(s, β̂I , Λ̂0I)
1
K S1

0(s, β̂I)
−
( ∫ t

0

E1(s, β̂I)dΛ̂0I(s)
)T

Â−1ε̂1k. (9.6)

Example 9.1.1 (Diabetic retinopathy data)

The purpose of the Diabetic Retinopathy Study was to assess the efficacy of
laser photocoagulation treatment in delaying onset of blindness in patients
with diabetic retinopathy. In the following we use the subset of 197 patients
defined in Huster et al. (1989). One eye of each patient was randomly se-
lected for treatment while the other eye was observed without treatment.
The patients were then followed over several years for observation of blind-
ness in the left and right eyes. Besides the treatment variable we also use
the explanatory variable adult indicating if age at diagnosis of diabetes is
above 20 years.
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> fit<-coxph(Surv(time,status)~adult*trt+cluster(id),

data=diabetes)

> fit

Call:

coxph(formula = Surv(time, status) ~ adult * trt + cluster(id),

data = diabetes)

coef exp(coef) se(coef) robust se z p

adult 0.341 1.407 0.199 0.196 1.74 0.0810

trt -0.425 0.654 0.218 0.185 -2.30 0.0220

adult:trt -0.846 0.429 0.351 0.304 -2.79 0.0053

The marginal Cox model analysis is easily carried out in R using coxph with
the cluster option. In the present example id is the variable keeping track
of the patients. The estimated coefficients and the se(coef) are the same
as those obtained if we had run coxph without the cluster option that is
assuming independence. The reported so-called robust standard errors are
the proper standard errors derived above taking into account that obser-
vations within clusters (patients) cannot be taken as independent. Notice
that the robust standard errors are smaller in this case than the naive es-
timates, which is to be expected due to the design of the study with one
treated and one un-treated eye for each patient. The treatment appears to
be effective with a more pronounced effect for adult onset diabetes than for
juvenile diabetes. �

We can do goodness-of-fit testing for the marginal Cox-regression as out-
lined in the previous chapters, see for example Section 6.2. Let us de-
scribe how this proceed focusing on the score process, which among other
goodness-of-fit tools were also considered by Spiekerman & Lin (1996). The
idea is, just as for the regular Cox model, to derive the asymptotic distri-
bution of the process

K−1/2U(t, β̂I),

and see whether the it behaves as it should under the assumed model. In
the following example we also consider other cumulative sums of residuals
that are aimed at validating whether the functional form of the covariates
is misspecified and if there are different time-interaction with the level of
the covariates.

A Taylor series expansion of U(t, β̂I) around β0 gives

K−1/2U(t, β̂I) = K−1/2U(t, β0) − (K−1I(t, β∗))K1/2(β̂I − β0),

where I(t, β) is the derivative U(t, β) with respect to β, and β∗ is on the
line segment between β̂I and β0. The right-hand side of the last display can
be decomposed into i.i.d. terms,

K−1/2U(t, β̂I) = K−1/2
K∑

k=1

ε̂2k(t) + op(1),
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where
ε2k(t) = ε1k(t) − I(t, β)I(τ, β)−1ε1k(τ)

and ε̂2k(t) is obtained from ε2k(t) by replacing e1(t, β) with E1(t, β) in the
expression for ε1k(t) and also inserting the working independence estimators
for β and Λ0(t). One may also show that the limit distribution W (t) of
K−1/2U(t, β̂I) may be approximated by generating i.i.d. copies of

Ŵ (t) = K−1/2
K∑

k=1

ε̂2k(t)Gk,

where G1, . . . , GK are independent standard normals. Therefore, we can
make a graphical inspection to evaluate if the observed patterns of the co-
ordinate processes of K−1/2U(t, β̂I) are consistent with the behavior under
the assumed model. We may further approximate the p-value of e.g. the
supremum test for the jth coordinate

sup
t≤τ

|K−1/2Uj(t, β̂I)| (9.7)

by generating a suitable number of supt≤τ |Ŵj(t)| to see whether (9.7) is
extreme in this distribution.

Example 9.1.2 (Diabetic retinopathy data, continued)

We now check the goodness-of-fit of the marginal Cox model for the Dia-
betic retinopathy data considered in Example 9.1.1. First we fit the model
using the cox.aalen function specifying the cluster structure by setting
the cluster variable.

> adult.treat<-(diabetes$adult==2)*(diabetes$treat)

> fit<-cox.aalen(Surv(time,status) ~prop(adult)+prop(treat)

+ +prop(adult.treat),diabetes,cluster=diabetes$id,residuals=1)

Cox-Aalen Survival Model

Simulations start N= 500

> summary(fit)

Cox-Aalen Model

Test for Aalen terms

Test for non-significant effects

sup| hat B(t)/SD(t) | p-value H_0: B(t)=0

(Intercept) 3.2 0.012

Test for time-invariant effects

sup| B(t) - (t/tau)B(tau)| p-value H_0: B(t)=b t

(Intercept) 0.089 0.066

Proportional Cox terms :

Coef. SE Robust SE D2log(L)^-1 z P-val
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FIGURE 9.1: Diabetic retinopathy data. Cumulative residuals with 50 sim-
ulated processes under the model.

prop(adult) 0.341 0.199 0.196 0.199 1.71 0.0866

prop(treat) -0.425 0.217 0.185 0.218 -1.96 0.0505

prop(adult.treat) -0.846 0.350 0.304 0.351 -2.42 0.0156

Test for Proportionality

sup| hat U(t) | p-value H_0

prop(adult) 4.15 0.696

prop(treat) 3.80 0.694

prop(adult.treat) 2.45 0.684

> plot(fit,score=2)

The output concerning the regression effect differs slightly with the one
from the coxph function, which is due to different handling of ties. The
output from the cox.aalen function contains the score processes and these
are plotted with 50 simulated processes under the model, see Figure 9.1.
This indicates that the effects of the covariates are not time-varying and
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FIGURE 9.2: CGD-data. Cumulative residuals with 50 simulated processes
under the model.

that the model seems to fit well, which is also supported by the above
reported tests. �

We also illustrate that the residuals in the clustered case may be accu-
mulated versus the continuous covariates to validate the functional form of
the covariates.

Example 9.1.3 (CGD-data)

The CGD data are multiple infection data given in Fleming & Harrington
(1991). CGD is a disorder characterized by recurrent pyogenic infections.
The study was conducted to evaluate a treatment with gamma interferon.
Data were collected between 1988 and 1989 and comprised of 128 patients,
63 of these patients received treatment and 65 were placebo treated. In the
treatment group 14 patients had more than one event and in the placebo
group 30 patients had more than one event. We restrict attention to the
first 300 days of follow-up time. and start by considering a simple Cox
model with age and treatment as explanatory variables.
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> age.m<-cgd2$age-mean(cgd2$age)

> fit<-cox.aalen(Surv(time,status) ~prop(age.m)+prop(treat),

+ cgd2,cluster=cgd2$id,residuals=1,max.time=300)

Cox-Aalen Survival Model

Simulations start N= 500

> summary(fit)

Cox-Aalen Model

Test for Aalen terms

Test for non-significant effects

sup| hat B(t)/SD(t) | p-value H_0: B(t)=0

(Intercept) 4.98 0

Test for time-invariant effects

sup| B(t) - (t/tau)B(tau)| p-value H_0: B(t)=b t

(Intercept) 0.0275 0.062

Proportional Cox terms :

Coef. SE Robust SE D2log(L)^-1 z P-val

prop(age.m) -0.0337 0.0139 0.0169 0.0143 -2.42 1.53e-02

prop(treat) -1.1900 0.2910 0.3400 0.2890 -4.10 4.05e-05

Test for Proportionality

sup| hat U(t) | p-value H_0

prop(age.m) 34.50 0.880

prop(treat) 3.04 0.336

> resid.fit<-cum.residuals(fit,cgd2,cum.resid=1)

> plot(resid.fit,score=2)

The score processes along with 50 simulated processes under the model
are shown in Figure 9.2 upper panel. These indicate that the effects of
the covariates are not time-varying and that the model seems to fit rea-
sonably well. Treatment appears, however, to have an effect that is not
completely consistent with the proportional hazard assumption, the effect
being stronger in the beginning and the end of the period; we describe this
in further detail below. Figure 9.2 lower panel shows the residuals cumu-
lated over time and plotted versus the covariate age indicating that the
functional representation of age appears to be consistent with the model.
The treatment effect, although not significant by the supremum test statis-
tic, shows some time-varying nature. We therefore also fit a stratified pro-
portional hazards model that is a Cox-Aalen survival model.

> fit<-cox.aalen(Surv(time,status) ~prop(age.m)+treat,cgd2,

+ cluster=cgd2$id,residuals=1,max.time=300)

Cox-Aalen Survival Model

Simulations start N= 500

> summary(fit)
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FIGURE 9.3: CGD-data. Cumulative baseline for placebo and cumulative
effect of treatment with 95 % pointwise confidence intervals.

Cox-Aalen Model

Test for Aalen terms

Test for non-significant effects

sup| hat B(t)/SD(t) | p-value H_0: B(t)=0

(Intercept) 5.03 0.000

treat 3.37 0.006

Test for time-invariant effects

sup| B(t) - (t/tau)B(tau)| p-value H_0: B(t)=b t

(Intercept) 0.0347 0.030

treat 0.0326 0.058

Proportional Cox terms :

Coef. SE Robust SE D2log(L)^-1 z P-val

prop(age.m) -0.0338 0.0138 0.0168 0.0142 -2.45 0.0145

Test for Proportionality

sup| hat U(t) | p-value H_0

prop(age.m) 32.6 0.892
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Figure 9.3 shows the cumulative baseline function for a placebo treated
patient and the effect of treatment. The latter suggests a somewhat more
pronounced effect of treatment in the first and last part of the time-period
being borderline significant (on the additive scale). Note, however, that this
test for constant additive effect (constant excess risk) is not equivalent to
the test for constant multiplicative effect. �

We finish this section by looking at the marginal additive intensity model.
Instead of the Cox model we assume the Aalen additive model for the
marginal intensities,

λFik

ik (t) = Yik(t)XT
ik(t)β(t), (9.8)

where β(t) is a p-vector of unknown regression functions. A possible inter-
cept term is absorbed into the covariate vector. Let

Nk(t) = (N1k(t), . . . , Nnk(t))T

and let X̃k(t) be the n × p-matrix with ith row

(Yik(t)Xik1(t), . . . , Yik(t)Xikp(t)).

Define also

Mk(t) = Nk(t) −
∫ t

0

X̃k(s)dB(s),

where B(t) =
∫ t

0 β(s) ds denotes the cumulative coefficients. The ith com-
ponent of Mk(t), Mik(t) is a (local square integrable) martingale with re-
spect to F ik

t , but Mk(t) is not a martingale with respect to the observed
filtration. The (unweighted) working independence estimator of B(t) is

B̂(t) =
K∑

k=1

∫ t

0

[
K∑

k=1

X̃T
k (s)X̃k(s)]−1X̃T

k (s)dNk(s)

assuming that the inverses exists. We have that (except for lower order
terms)

K1/2(B̂(t) − B(t)) = K−1/2
K∑

k=1

∫ t

0

[K−1
K∑

k=1

X̃T
k (s)X̃k(s)]−1X̃T

k (s)dMk(s)

= K−1/2
K∑

k=1

εk(t) (9.9)
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FIGURE 9.4: Diabetes-data. Cumulative regression estimators along with
95% confidence intervals (full lines) and uniform bands (broken lines).

which is essentially a sum of i.i.d. components (replace K−1
∑K

k=1 X̃T
k (t)X̃k(t)

by its limit in probability). One may also show that (9.9) has the same limit
distribution as

K−1/2
K∑

k=1

ε̂k(t)Gk, (9.10)

where

ε̂k(t) = K−1/2
K∑

k=1

∫ t

0

[K−1
K∑

k=1

X̃T
k (s)X̃k(s)]−1X̃T

k (s)dM̂k(s)

with

M̂k(t) = Nk(t) −
∫ t

0

X̃k(s)dB̂(s)

and G1, . . .GK are independent standard normals. The asymptotic covari-
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ance matrix of K1/2(B̂(t) − B(t)) is estimated consistently by

K−1
K∑

k=1

ε̂⊗2
k (t)

and the representation (9.10) may be used to construct uniform confidence
bands. One may derive similar results for the semiparametric version of
the marginal additive intensity model, see Exercise 9.1 for a special case.
The marginal additive model may be fitted using the cluster-option in the
aalen-function. Consider the Diabetic Retinopathy data as an illustration.

Example 9.1.4 (Diabetic retinopathy data. Additive model.)

We wish to fit the marginal additive model to this data using the covariates
treatment and the variable adult and the interaction between these two.
This model poses no restrictions on the marginal intensities.

> adult.treat<-(diabetes$adult==2)*(diabetes$treat)

> fit<-aalen(Surv(time,status) ~adult+treat+adult.treat,

diabetes,cluster=diabetes$id)

> plot(fit)

> summary(fit)

Additive Aalen Model

Test for nonparametric terms

Test for non-significant effects

sup| hat B(t)/SD(t) | p-value H_0: B(t)=0

(Intercept) 2.09 0.387

adult 1.86 0.534

treat 2.49 0.180

adult.treat 2.99 0.057

Test for time invariant effects

sup| B(t) - (t/tau)B(tau)| p-value H_0: B(t)=b t

(Intercept) 0.187 0.791

adult 0.144 0.765

treat 0.101 0.553

adult.treat 0.154 0.809

int (B(t)-(t/tau)B(tau))^2dt p-value H_0: B(t)=b t

(Intercept) 0.5970 0.669

adult 0.1610 0.904

treat 0.0849 0.713

adult.treat 0.4330 0.658

We see from Figure 9.4 and from the output that all effects seem to be
time-invariant, and that the interaction term is borderline significant. If we
fit the model with the effect of the interaction term being constant, we get
the following estimate with estimated standard errors:
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Parametric terms :

Coef. SE Robust SE z P-val

const(adult.treat) -0.00942 0.00392 0.0034 -2.403 0.0162

giving a p-value of 0.0162. �

9.1.2 Two-stage estimation of correlation

The marginal analysis described in the previous section gives correct infer-
ences, provided of course that the assumed marginal model holds, and will
in many cases provide a good starting point when one is dealing with clus-
tered failure time data and is interested in estimating regression effects (on
the population level). Sometimes, however, there is also interest in quantify-
ing the correlation structure present in data, which may also be exploited
to give a more efficient analysis. Some methods have been suggested to
improve on efficiency for the marginal proportional hazards model. Cai &
Prentice (1997) suggested an approach similar to the GEE-methodology,
that is, they introduce weights into the standard Cox partial score function.
Their approach only assumes the marginal Cox model, which is appealing,
but the efficiency gain appears to be modest as is also concluded by Cai
& Prentice (1995). More importantly perhaps is that the marginal Cox-
analysis only provides estimates and inference for the regression parameters
(and the cumulative baseline hazard function). Thus if the potential cor-
relation present in data is of interest then one needs another methodology.
Frailty models, which we return to in Section 9.2, is one such option. As
mentioned previously, these models specify regression effects conditionally
on random effects. In this section we continue to model regression effects
on the marginals, however, and then either estimate the correlation in a
two-step procedure or build a model that contains correlation as well as
marginal regression parameters.

One approach to this is the so-called copula models (Genest & MacKay,
1986) that for the failure times within a cluster (T̃1, . . . , T̃n), say, assume
that the joint survival function is given by

P (T̃1 > t1, . . . , T̃n > tn) = Cθ(S1(t1), . . . , Sn(tn)),

where Sj , j = 1, . . . , n, denotes the marginal survivor functions that may
be specified conditionally on covariates. The copula Cθ is a n dimensional
survival function with uniform margins and θ is a parameter (possibly a
vector). The vector (T̃1, . . . , T̃n) is said to come from the Cθ copula. Differ-
ent Cθ’s give different joint distribution but the marginals are unaltered.
A special class of copulas is the Archimedean copula model family, where
the copulas are on the form

Cθ(u1, . . . , un) = φθ(φ−1
θ (u1) + · · · + φ−1

θ (un))
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for some non-negative convex decreasing function φθ with φθ(0) = 1. Multi-
plicative random effects models, as for instance the Clayton-Oakes model
(Clayton, 1978; Oakes, 1982), constitute an important subclass of copula
models, see Exercise 9.2. Estimation in copula models is usually carried
out using a two-stage method. The marginal parameters are first estimated
using the working independence estimators. In the second stage these es-
timators are plugged into the likelihood for the dependence parameter(s).
Genest & MacKay (1995) and Shih & Louis (1995) used this approach in
the situation without covariates and Glidden (2000) generalized the ap-
proach to the Clayton-Oakes model with covariates while Andersen (2005)
considered general copula models with covariates.

Below we describe the two-stage method for the Clayton-Oakes model
with marginal hazards on Cox form. We use the notation introduced in
Section 9.1.1. In addition we assume the presence of some (unobserved)
random effects Vk, k = 1, . . . , K in such a way that (T̃k, Ck, Xk(·), Vk), k =
1, · · · , K are i.i.d. variables. Censoring, conditional on Vk and covariates,
is assumed to be independent and noninformative on Vk. We also assume
that T̃ik, i = 1, · · · , n, are independent variables given Vk, X1(·), · · · , Xn(·),
and that Vk is a Gamma distributed variate with mean 1 and variance θ−1.
Let Tik = T̃ik ∧ Cik, Yik(t) = 1(Tik ≥ t) and Nik(t) = 1(Tik ≤ t, Tik =
T̃ik) denote the observed failure time, the individual at risk process and
the counting process for the ikth individual, respectively. The model is
specified by making the assumption that the intensity with respect to the
(unobserved) filtration

Ht =
∨
k

Hk
t , (9.11)

where

Hk
t = σ{Nik(s), Yik(s), Xik(s), Vk : i = 1, · · ·n, 0 ≤ s ≤ t},

is
λH

ik(t) = Vkλ∗
ik(t, θ, λ0(·)), (9.12)

referred to as the Clayton-Oakes model, and so that the marginal intensities
are on Cox form

λFik

ik (t) = Yik(t)λ0(t) exp (XT
ik(t)β), (9.13)

where F ik refers to the marginal filtration, see (9.1). One may then show
that the conditional intensity function λ∗

ik is

λ∗
ik(t, θ, λ0(·)) = Yik(t)λ0(t) exp(XT

ik(t)β)

exp(θ−1

∫ t

0

exp(XT
ik(s)βT )λ0(s)ds),
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see Exercise 9.3. It is of interest to find the intensities with respect to the
observed filtration Ft given in (9.3). It can be shown, see Exercise 9.3, that
these are

λF
ik(t) = Yik(t)λ0(t) exp(XT

ik(t)β)fik(t), (9.14)

where

fik(t) =
(θ + N·k(t−)

θ

)(exp(θ−1
∫ t

0
λ0(s) exp(XT

ik(s)β)ds)
fk(t)

)
,

fk(t) = 1 +
n∑

j=1

(exp(θ−1

∫ t−

0

Yjk(s)λ0(s) exp(XT
jk(s)β)ds) − 1).

The principle in the two-stage method is to estimate the marginal param-
eters using the working independence estimators β̂I and Λ̂0I(t), and then
maximize the observed likelihood with respect to the correlation parame-
ter θ replacing β and Λ0 by their working independence estimators. The
observed (partial) log-likelihood function is

K∑
k=1

∫ τ

0

log(1 +
N·k(t−)

θ
)dN·k(t) +

K∑
k=1

n∑
i=1

∫ τ

0

log(Yik(t) · λ̃ik(t))dNik(t)

−
K∑

k=1

[
θ + N·k(τ)

]
log(1 + θ−1

n∑
i=1

∫ τ

0

Yik(t) · λ̃ik(t)dt), (9.15)

where

λ̃ik(t) = λ0(t)eXT
ik(t)β exp(θ−1

∫ t−

0

eXT
ik(s)βλ0(s)ds).

Removing terms not depending on θ in (9.15) gives

1
K

( K∑
k=1

∫ τ

0

log(1 + θ−1N·k(t−))dN·k(t) +
K∑

k=1

n∑
i=1

θ−1Nik(τ)Hik

−
K∑

k=1

(θ + N·k(τ)) log(Rk(θ))
)
, (9.16)

where

Hik =
∫ τ

0

Yik(t)eXT
ik(t)βdΛ0(t), Rk(θ) = 1 +

n∑
i=1

(exp(θ−1Hik) − 1).

Now, by replacing Hik with

Ĥik =
∫ τ

0

Yik(t) exp(XT
ik(t)β̂I)dΛ̂0I(t)
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in (9.16), we obtain the pseudo log likelihood for θ, and maximizing this
function in θ gives the two-stage estimator of θ. Under some regularity
conditions, Glidden (2000) showed consistency and asymptotic normality
of this estimator. The two-stage approach is appealing since it has certain
robustness properties due to the fact that the components are fitted in two
stages. If, however, one has confidence in the model there might be some
efficiency gain by fitting the model in one-step based on maximizing the
observed likelihood jointly with respect to all parameters (β, Λ0, θ) and this
is what we do in the next section.

9.1.3 One-stage estimation of correlation

With a particular choice of the underlying frailty distribution we here out-
line how to estimate all parameters jointly using this structure more ac-
tively, based on an approximation to the true observed likelihood func-
tion (Pipper & Martinussen, 2003) for the Clayton-Oakes model with the
marginals described by the Cox model as specified by (9.12) and (9.13). The
method is quite similar to the modified partial likelihood method applied
for the transformation models considered in Chapter 8. Similar methodol-
ogy can also be used for the marginal additive hazards model, see Pipper
& Martinussen (2004).

The observed intensities (9.14) look at first sight rather complicated due
to the fik-term. However, the similarity of the structure to the Cox model
can be exploited as we shall see below. Let Mik(t) denote the counting
process martingale with respect to the observed filtration, that is,

Mik(t) = Nik(t) − Λik(t),

Λik(t) =
∫ t

0

Yik(s) exp(XT
ik(s)β)fik(s) dΛ0(s).

Further, let

Sr(t) =
n∑

i=1

K∑
k=1

Yik(t)(D(β,θ)Wik(t))⊗r exp(XT
ik(t)β)fik(t),

E(t) =
S1(t)
S0(t)

, V (t) =
S2(t)
S0(t)

− (E(t))⊗2.

The limits in probability of these quantities are denoted by lower case letters
and assumed to exist. Here D(β,θ) denotes differentiation with respect to
(β, θ), and

Wik(t) = XT
ik(t)β + log(fik(t)).

The equation
dN··(t) = dM··(t) + S0(t)dΛ0(t)
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suggests the following Nelson-Aalen type moment estimator of dΛ0(t):

dΛ̃0(t) =
1

S0(t)
dN··(t). (9.17)

Inserting this into the likelihood function gives

L(β, θ, Λ0) =
(∏

t≤τ

(∏
i,k

(dΛ̃0(t) exp(XT
ik(t)β)fik(t))Nik(t)

))
× exp(−

∫ τ

0

S0(t, β, θ, Λ0)dΛ̃0(t))

∝
∏
t≤τ

(∏
i,k

(exp(XT
ik(t)β)fik(t, β, θ, Λ0)

S0(t)
)Nik(t)

)
.

Now differentiating log(L(β, θ, Λ0)) with respect to (β, θ) gives

U(β, θ, Λ0) =
∑
i,k

∫ τ

0

Rik(t)dNik(t), (9.18)

where Rik(t) = D(β,θ)Wik(t)−E(t). Note that U evaluated at the true point
(β0, θ0) is a zero-mean martingale with respect to the observed filtration.
The above estimating function can not be used directly for estimation of
(β, θ), however, since it depends on the unknown Λ0. One may proceed by
either inserting the Breslow estimator (9.17) or the the Breslow estimator
under the working independence assumption, Λ̂0I . The former will give an
approach and asymptotics very similar to the modified partial likelihood
method used for the transformation models described in Chapter 8. We
here focus on the results when using Λ̂0I . Replacing Λ0 by Λ̂0I in (9.18)
the following estimating function for (β, θ) is obtained:

U(β, θ, Λ̂0I) =
n∑

i=1

K∑
k=1

∫ τ

0

{
D(β,θ)Wik(t, β, θ, Λ̂0I)−E(t, β, θ, Λ̂0I)

}
dNik(t).

(9.19)
The parameter θ represents the degree of dependence with θ → ∞ giving
independence. It is easily seen that the first (vector)-component of (9.19)
converges to the usual Cox-score when θ → ∞, and one should hence
expect the suggested procedure to have similar properties as the usual
independence procedure when there is a small degree of dependence.

One may show that there exists a unique consistent solution (with prob-
ability tending to one) (β̂, θ̂) to the estimating equations (9.19) (Pipper &
Martinussen, 2003). Moreover, the below asymptotic result holds. Define
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first the following quantities:

g(t, s) =E
( 1

K

n∑
i=1

K∑
k=1

(
D(β,θ)Wik(t) − e(t)

)
×

gik(t, s)Yik(t) exp(XT
ik(t)β)

)
,

gik(t, s) =θ−1fik(t)
(

exp(XT
ik(s)β)

−
∑n

j=1 φjk(s) exp(θ−1
∫ t−
0 φjk(s)dΛ0(s))

fk(t)

)
,

Φk =
n∑

i=1

∫ τ

0

(
(D(β,θ)Wik(t, β0, θ0, Λ0) − e(t, β0, θ0, Λ0)

)
dMik(t, β0, θ0, Λ0)

−
∫ τ

0

∫ t−

0

g(t, s, β0, θ0, Λ0)dΦk(s)dΛ0(t),

where φjk(t) = Yjk(t) exp(XT
jk(t)β) and Φk(t) is defined by (9.5). Finally

let I be the limit in probability of −K−1(Dβ,θU̇(β̂, θ̂, Λ̂0I).

Proposition 9.1.1 The normed score K−1/2U(β0, θ0, Λ̂0I) converges in
distribution to a normal distribution with zero-mean and covariance matrix
D = E(ΦkΦT

k ). Furthermore, the random vector

K1/2
(
(β̂, θ̂) − (β0, θ0)

)
converges in distribution to a normal vector with zero-mean and covariance
matrix I−1DI−1.

Proof. Straightforward calculations give

K−1/2U(τ, β0, θ0, Λ̂0I) = K−1/2
X
i,k

Z τ

0

Rik(t, β0, θ0, Λ̂0I)dMik(t, β0, θ0, Λ0)

− K−1/2
X
i,k

Z τ

0

D(β,θ)Wik(t, β0, θ0, Λ̂0I)
` S0(t, β0, θ0, Λ0)

S0(t, β0, θ0, Λ̂0I)
fik(t, β0, θ0, Λ̂0I)

− fik(t, β0, θ0, Λ0)
´× Yik(t) exp(XT

ik(t)β0)dΛ0(t).

The first term on the right-hand side of the above expression may be
written as

K−1/2
X
i,k

Z τ

0

`
D(β,θ)Wik(t, β0, θ0, Λ0)

− e(t, β0, θ0, Λ0)
´
Mik(dt, β0, θ0, Λ0) + oP (1).
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Taylor expanding around Λ0 gives that the second term on the right-hand
side in the expression for K−1/2U(τ, β0, θ0, Λ̂0I) can be written as

−
Z τ

0

Z t−

0

g(t, s, β0, θ0, Λ0)dK1/2(Λ̂0I − Λ0)(s)dΛ0(t) + oP (1).

Spiekerman & Lin (1998) show that

K1/2(Λ̂0I(t) − Λ0(t)) = K−1/2
KX

k=1

Φk(t) + oP (1),

uniformly in t ≤ τ , where Φk(t), k = 1, · · · , K, are i.i.d. variables given by
(9.5). Using this we conclude that

K−1/2U(τ, β0, θ0, Λ̂0I) = K−1/2
KX

k=1

Φk + oP (1).

The Φk, k = 1, · · · , K, are i.i.d. zero-mean variables with well defined
variance, and hence the central limit theorem gives us the first part of
the theorem. The second part follows by Taylor expanding U(β̂, θ̂, Λ̂0I)
around (β0, θ0) and then using standard arguments. �

The covariance matrix may be estimated consistently by

Î−1D̂Î−1,

where

Î = Î(τ) =
1
K

∫ τ

0

V̂ (t)dN··(t), D̂ =
1
K

K∑
k=1

Φ̂⊗2
k

with V̂ (t) = V (t, β̂, θ̂, Λ̂0I) and

Φ̂k = Φ̂k(τ) =
n∑

i=1

∫ τ

0

R̂ik(t)dMik(t, β̂, θ̂, Λ̂0I)−

∫ τ

0

∫ t−

0

( 1
K

n∑
i=1

K∑
k=1

R̂ik(t)ĝik(t, s)Yik(t) exp(XT
ik(t)β̂)

)
dΦ̂k(s)dΛ̂0I(t).

In the above display, Φ̂k(t) is given by (9.6), R̂ik(t) and ĝik(t, s) are given
by Rik(t) and gik(t) with unknown parameters replaced by their estimates.

Example 9.1.5 (Diabetic retinopathy data)

Using the marginal proportional hazards model we found a significant in-
teraction between treatment and age of onset of diabetes. Rerunning the
marginal Cox analysis on the 83 patients with adult diabetes gives an esti-
mated treatment effect of −1.29 with 95% confidence interval (−1.78,−0.80)
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based on the robust standard errors. Using the above model, specified by
(9.12) and (9.13), on the same subset of data gives the treatment effect
β̂ = −1.25 with 95% confidence interval (−1.73,−0.77), which is seen to be
slightly narrower than the confidence interval based on the working inde-
pendence model. An additional benefit of the random effects model is that
we also get an estimate of the dependence within clusters (patients). One
way of summarizing the dependence is by Kendall’s τ that, for the applied
Gamma model, is equal to 1/(1 + 2θ) with τ = 0 and τ = 1 correspond-
ing to independence and maximal dependence, respectively. By use of θ̂
we get the point estimate 0.32 of Kendall’s τ with 95%-confidence interval
(0.15,0.62). �

The adequacy of the model, specified by (9.12) and (9.13), may be
checked partly by investigating the assumed marginal Cox model as out-
lined for instance in Section 9.1.1. One may also check the assumed observed
model directly for example by the test statistic

sup
t≤τ

|K−1/2U(t, β̂0, θ̂0, Λ̂0I)|.

Its distribution may approximated by resampling of supt≤τ |Ŵ (t)|, where

Ŵ (t) = K−1/2
K∑

k=1

[
Φ̂(t) − Î(t)Î(τ)−1Φ̂(τ)

]
Gk,

with G1, . . . , GK independent standard normals.

9.2 Frailty models

In this section we briefly describe the traditional frailty model for clustered
failure time data. It is sometimes also termed the shared frailty model
referring to the cluster specific random effects shared by the individuals
within clusters, see below. The notation is as in the previous section where

(T̃k, Ck, Xk(·), Vk),

k = 1, · · · , K are assumed to be i.i.d. variables. Censoring, conditional on
Vk and covariates, is assumed to be independent and noninformative on
Vk. Again T̃ik, i = 1, · · · , n, are assumed to be independent variables given
Vk, X1(·), · · · , Xn(·). Let also Tik = T̃ik ∧ Cik, Yik(t) = 1(Tik ≥ t) and
Nik(t) = 1(Tik ≤ t, Tik = T̃ik). The frailty variable Vk is often assumed
to be gamma distributed with mean one and variance θ−1 resulting in
the Clayton-Oakes model, but several other suggested distributions exist.
The gamma frailty model induces high late dependence while the positive
stable model (assuming positive stable distributed frailties) induces high
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early dependence, see Hougaard (2000) for a detailed description of these
two models and several others. Which model to use in practice should of
course be guided by the data at hand.

The shared frailty model is specified solely with respect to the (unob-
served) filtration Ht =

∨
k Hk

t , where

Hk
t = σ{Nik(s), Yik(s), Xik(s), Vk : i = 1, · · ·n, 0 ≤ s ≤ t},

and often it is assumed to be a proportional hazards model

λH
ik(t) = Yik(t)Vkλ0(t) exp(XT

ik(t)β). (9.20)

Notice the difference between this model and the model given by (9.12) and
(9.13). In the latter case the Cox model is used for the marginals whereas,
in (9.20), it is used conditionally on the frailty variable.

Estimation in model (9.20), assuming gamma frailties, is elegantly car-
ried out by use of the EM-algorithm (Dempster et al., 1977) regarding the
frailties as unobserved variables corresponding to a Cox-regression analysis
in each M-step. Large sample properties of these maximum likelihood esti-
mates are difficult to get at, but has recently been derived by Parner (1998).
Martinussen & Pipper (2005) studied a modified likelihood approach for the
positive stable frailty model and gave large sample results.

Example 9.2.1 (Diabetic retinopathy data)

We here fit the shared frailty model with gamma distributed frailties to the
Diabetic Retinopathy data.

> fit<-coxph(Surv(time,status)~adult*trt+frailty(id),

data=diabetes)

> fit

Call:

coxph(formula = Surv(time, status) ~ adult * trt + frailty(id),

data = diabetes)

coef se(coef) se2 Chisq DF p

adult 0.397 0.259 0.205 2.35 1.0 0.1300

trt -0.506 0.225 0.221 5.03 1.0 0.0250

frailty(id) 122.54 88.6 0.0098

adult:trt -0.985 0.362 0.355 7.41 1.0 0.0065

Iterations: 6 outer, 25 Newton-Raphson

Variance of random effect= 0.926 I-likelihood = -847

The model can be fitted in R using coxphwith the frailty option. However,
the se’s for the regression parameters in the printout are obtained assuming
that θ is fixed rather than a parameter to be estimated, and should hence
be interpreted with caution. �
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The interpretation of the regression parameters β as log relative risks is
conditionally on the unobserved random effect. These parameters may be
of interest when one wants to compare treatments within clusters. The
unconditional model is generally not a proportional hazards model. It may
be instructive to derive the relationship between conditional hazard and
the marginal hazard assuming multiplicative frailty effect. To be explicit,
assume that the marginal and conditional intensities are

λFik

ik (t) = λik(t), λH
ik(t) = Vkλ∗

ik(t),

where we assume that λ∗
ik(t) is predictable with respect to the marginal

filtration. One may show that the relationship between the above two in-
tensities is

λik(t) = Yik(t)(−λ∗
ik(t))(D log φθ)(

∫ t−

0

λ∗
ik(s) ds),

λ∗
ik(t) = Yik(t)(−λik(t)) exp (−

∫ t

0

λik(s) ds)(Dφ−1
θ )(exp (−

∫ t

0

λik(s) ds)),

see Exercise 9.3.

Example 9.2.2 (Conditional proportional hazards model)

In this example we wish to investigate the marginal intensity under a condi-
tional proportional intensity model. For ease of notation we drop subscripts
referring to individuals and clusters. Assume that λ∗(t) (dropping here sub-
script ik) is a proportional hazards intensity: Y (t)λ0(t) exp (XT β). Let us
compute the marginal intensities under different frailty distributions. Con-
sider first the gamma model, that is, V is gamma distributed with mean
1 and variance θ−1. The Laplace transform is φθ(t) = (1 + θt)−1/θ giving
rise to the marginal intensity

Y (t)λ0(t) exp (XT β)
1

1 + θΛ∗(t)

with Λ∗(t) =
∫ t

0 λ∗(s) ds. If the covariate-vector is one-dimensional then
the relative risk in the unconditional model is

exp (β)
(

1 + θΛ0(t)
1 + exp (β)θΛ0(t)

)
, (9.21)

where Λ0(t) =
∫ t

0 λ0(s) ds. The relative risk based on the unconditional
model is seen to depend on time and hence the proportional hazards as-
sumption of the Cox model is no longer in play. It is equal to exp (β) at
time t = 0 and tends to 1 as time increases giving what converging haz-
ards as was also the case for the proportional odds model in Chapter 8,
see also Exercise 9.6. If we instead use the positive stable model, that is,
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assume that V follows a positive stable distribution with Laplace transform
φθ(t) = exp (−tθ), 0 < θ ≤ 1, then the marginal intensity is

Y (t)θλ0(t)Λ0(t)θ−1 exp (θXT β),

so here we still have a Cox model with the regression parameter attenuated
by the amount θ.

We see for both the gamma and positive stable model that the regression
effect is attenuated in terms of a smaller relative risk assuming without loss
of generality that β > 0. One might ask whether this holds true in general.
This is actually so. Assume that V is a positive stochastic variable with
Laplace transform φθ(t), that the covariate is one-dimensional, and that
β > 0. The relative risk in the marginal model is

exp (β)
(D log φθ)(exp ((X + 1)β)Λ0(t))

(D log φθ)(exp (Xβ)Λ0(t))
= exp (β)k(t),

and we see that k(t) ≤ 1 if and only if (D log φθ)(exp ((X + 1)β)Λ0(t)) ≤
(D log φθ)(exp (Xβ)Λ0(t)). The latter inequality holds if log (φθ) is convex,
which is the case since

D2 log (φθ)(t) = E(V 2h(t, V )) − E(V h(t, V ))2 ≥ 0

with h(t, V ) = exp (−tV )/E(exp (−tV )). �

Above, the relationship between the conditional and marginal intensities
was given. One may also establish the relationships between these and the
intensity with respect to the observed filtration containing Ft. One gets
for instance that the relationship between the marginal intensity and the
observed intensity is

λF
ik = λFik

ik (t)fik(t), (9.22)

where

fik(t) = − exp(−
∫ t

0

λFik

ik (s) ds)(Dφ−1
θ )(exp(−

∫ t

0

λFik

ik (s) ds))E(Vk | Ft−)

with

E(Vk | Ft−) = −
(DN·k(t−)+1φθ)(

∑
i φ−1

θ (
∫ t

0
λFik

ik (s) ds))

(DNik(t−)φθ)(
∑

i φ−1
θ (
∫ t

0
λFik

ik (s) ds))
.

If one wishes to build the model based on the marginal intensities (e.g.
a proportional intensity model), then (9.22) gives the observed intensity,
which opens the route for doing likelihood inference.



338 9. Clustered failure time data

9.3 Exercises

9.1 (Marginal additive intensity model) Let the situation be as in Sec-
tion 9.1.1, but where the marginal intensities are assumed to be

λFik

ik (t) = Yik(t)(β(t) + γT Xik(t)), (9.23)

where β(t) is a (local integrable) scalar function of time and γ is p-vector
of unknown regression coefficients. Let B(t) =

∫ t

0
β(s) ds.

(a) Verify that the (unweighed) working independence estimator of γ is

γ̂ = [
K∑

k=1

n∑
i=1

∫ τ

0

Yik(t){Xik(t) − X(t)}⊗2 dt]−1

× [
K∑

k=1

n∑
i=1

∫ τ

0

{Xik(t) − X(t)}dNik(t)],

which is the solution to U(γ) = 0 with

U(γ) =
K∑

k=1

n∑
i=1

∫ τ

0

{Xik(t) − X(t)}{dNik(t) − Yik(t)γT Xik(t)dt}.

In the above displays,

X(t) =
∑K

k=1

∑n
i=1 Yik(t)Xik(t)∑K

k=1

∑n
i=1 Yik(t)

.

The (unweighted) estimator of B(t) is

B̂(t, γ̂) =
K∑

k=1

n∑
i=1

∫ t

0

1∑K
k=1

∑n
i=1 Yik(s)

dNik(s) − γ̂T

∫ t

0

X(s) ds.

(b) Derive the asymptotic distribution (K tending to infinity) of

K1/2(γ̂ − γ)

and give a consistent estimator of the asymptotic variance-covariance
matrix.

(c) Give an i.i.d. representation of

K1/2(B(t, γ̂) − B(t) (9.24)

that may be used for resampling to approximate the limit distribution
of (9.24).
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9.2 (Multiplicative random effects hazards models as a copula) Let V de-
note a non-negative random variate with Laplace transform φ(v). Assume
that the failure times T̃1, . . . , T̃n are conditional independent given V with
conditional hazards

V λj(t), j = 1, . . . , n.

(a) Show that the joint survival function and the marginal survivor func-
tions are related as follows:

P (T̃1 > t1, . . . , T̃n > tn) = φ(φ−1(S1(t1)) + · · · + φ−1(Sn(tn))),

where S1, . . . , Sn denote the marginal survivor functions.

The Clayton-Oakes model (Clayton, 1978; Oakes, 1982) is such a multipli-
cative random effects model with V gamma distributed with mean 1 and
variance θ−1.

(b) Show that the corresponding copula for this model is

Cθ(u1, . . . , un) =
(
u
−1/θ
1 · · · + u−1/θ

n − (n − 1)
)−θ

, θ > 0.

9.3 (Relationship between marginal, observed and conditional intensities)
Let

Tik = T̃ik ∧ Cik, Yik(t) = 1(Tik ≥ t) and Nik(t) = 1(Tik ≤ t, Tik = T̃ik)

denote the observed failure time, the individual at risk process and the
counting process for the ith individual in the kth cluster, i = 1, . . . , n and
k = 1, . . . , K. Assume the presence of some (unobserved) random effects
Vk, k = 1, . . . , K in such a way that

(T̃k, Ck, Xk(·), Vk), k = 1, · · · , K,

are i.i.d. variables, where

T̃k = (T̃1k, . . . , T̃nk), Ck = (C1k, . . . , Cnk), Xk(t) = (X1k(t), . . . , Xnk(t))

with Xik(·) denoting the ikth covariate process. Censoring, conditional on
Vk and covariates, is assumed to be independent and noninformative on Vk,
the distribution of the latter having density pθ and Laplace transform φθ.
Assume also that failure times T̃ik, i = 1, · · · , n, are independent variables
given Vk, X1(·), · · · , Xn(·).
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We shall now study the relationship between the marginal, observed and
conditional intensity of Nik(t). Assume that Nik(t) has intensity

λH
ik(t) = Vkλ∗

ik(t),

with respect to the conditional (unobserved) filtration (9.11) so that λ∗
ik(t)

is predictable with respect to the marginal filtration F ik
t , see (9.1). Denote

the marginal intensity of Nik(t) by

λFik

ik (t) = λik(t)

where F ik refers to the marginal filtration.

(a) Show that likelihood based on the Ht−-filtration is

pθ(Vk)
∏
s<t

(Vkλ∗
ik(s))∆Nik(s) exp (−Vk

∫ t−

0

λ∗
ik(s) ds)

giving that

E(Vk | F ik
t−) = −

(DNik(t−)+1φθ)(
∫ t−
0 λ∗

ik(s) ds)

(DNik(t−)φθ)(
∫ t−
0 λ∗

ik(s) ds)
,

which reduces to −(D log φθ)(
∫ t−
0 λ∗

ik(s) ds) when Yik(t) = 1 where
Djg means the jth derivative of the function g.

(b) Derive the relationships

λik(t) =Yik(t)(−λ∗
ik(t))(D log φθ)(

∫ t−

0

λ∗
ik(s) ds),

λ∗
ik(t) =Yik(t)(−λik(t)) exp (−

∫ t

0

λik(s) ds)

× (Dφ−1
θ )(exp (−

∫ t

0

λik(s) ds)).

We shall now also consider the intensity of Nik(t) with respect to the ob-
served filtration Ft, see (9.3).

(c) Show that observed intensity is related to the marginal intensity as

λF
ik = λFik

ik (t)fik(t),

where

fik(t) = − exp(−
∫ t

0

λFik

ik (s) ds)

× (Dφ−1
θ )(exp(−

∫ t

0

λFik

ik (s) ds))E(Vk | Ft−)
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with

E(Vk | Ft−) = −
(DN·k(t−)+1φθ)(

∑
i φ−1

θ (
∫ t

0
λFik

ik (s) ds))

(DNik(t−)φθ)(
∑

i φ−1
θ (
∫ t

0
λFik

ik (s) ds))
.

9.4 (Two-stage method) Verify the expressions (9.15) and (9.16).

9.5 (Two-stage estimation in copula models, Andersen (2005)) We shall
consider the two-stage method for copula models. To simplify notation
we consider the case where n = 2, that is two subjects in each cluster.
Let (T̃1k, T̃2k) and (C1k, C2k) denote the paired failure times and cen-
soring times for pair k = 1, . . . , K. We observe Tik = T̃ik ∧ Cik and
∆ik = I(Tik = T̃ik). Let Xik covariate vector for ikth subject and assume
that (T̃1k, T̃2k) and (C1k, C2k) are conditionally independent given the co-
variates. Let S(t1k, t2k) be the joint survival function for pair k, which is
specified via the marginal survival function through the copula Cθ.

(a) Show that the partial log-likelihood function can be written as

K∑
k=1

∆1k∆2k log{ ∂2

∂T1k∂T2k
S(T1k, T1k)}

+∆1k(1 − ∆2k) log{ −∂

∂T1k
S(T1k, T1k)}

+(1 − ∆1k)∆2k log{ −∂

∂T2k
S(T1k, T1k)}

+(1 − ∆1k)(1 − ∆2k) log{S(T1k, T1k)}.

Consider now the situation where the marginal hazards are specified using
the Cox model,

αik(t) = λ0(t) exp(XT
ikβ).

We estimate the β and Λ0(t) =
∫ t

0
λ0(s) ds using the working independence

estimators of Section 9.1.1 (first stage). Let Uθ denote the derivative with
respect to θ of the partial log-likelihood function. At the second stage we
estimate θ as the solution to

Uθ(θ, β̂, Λ̂0I) = 0.

(b) Write K−1/2Uθ(θ, β̂i, Λ̂0I) as

K∑
k=1

Φk + op(1),

where Φ1, . . . ,ΦK are i.i.d. terms (hint: use a Taylor expansion and
the corresponding representation of the working independence esti-
mators).
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(c) Under appropriate conditions, derive the asymptotic distribution of

K1/2(θ̂ − θ)

as K tends to infinity. Give also the asymptotic variance and an
estimator thereof.

9.6 (Converging hazards) Let N(t) = I(T̃ ∧ C ≤ t, T̃ ≤ C) and let X
denote a covariate vector. Consider the situation described in the beginning
of Example 9.2.2, where N(t) has conditional intensity

V Y (t)λ0(t) exp (XT β)

given V , that is gamma distributed with mean one and variance θ−1. As
usual Y (t) = I(t ≤ T̃ ∧ C) denotes the at risk indicator.

(a) Verify that the marginal intensity is

Y (t)
λ0(t) exp (XT β)

1 + θ exp (XT β)Λ0(t)
= Y (t)αX(t), (9.25)

which is a hazard from the Burr distribution.

The hazard αX(t) converges with time, but to zero rather than to an arbi-
trary baseline hazard. This led Barker & Henderson (2004) to suggest the
following class of hazard models. Partition X into X1 and X2, and suppose
that

αX(t) =
exp (XT

1 β1 + XT
2 β2) exp(γΛ0(t))

1 + exp (XT
2 β2)(exp(γΛ0(t)) − 1)

λ0(t), (9.26)

where γ is an unknown scalar parameter.

(b) Observe the following points.

• At baseline, X1 = X2 = 0, αX(t) = λ0(t);
• If γ = 0, then the model reduces to the Cox model with co-

variates (X1, X2); if β1 = 0 then the model reduces to the Burr
model with covariate X2;

• As t tends to infinity, αX(t) converges to exp (XT
1 β1)λ0(t), rather

than zero.

Suppose now that we have n i.i.d. observations from the generic model
given by (9.26).

(c) Use a modified likelihood approach similar to the one applied for
the proportional odds model in Chapter 8 to construct an estimating
equation for φ = (γ, β1, β2),

U(φ) = 0,

and an estimator of Λ0(t), Λ̂0(t, φ̂), where φ̂ satisfies U(φ̂) = 0.
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(d) Derive, under suitable conditions, the asymptotic properties of the
estimators defined in (c).

9.7 (Checking the gamma assumption, Glidden (1999)) Consider the
Clayton-Oakes described in Section 9.1.2 so that

λH
ik(t) = Yik(t)Vkλ∗(t)

where λ∗(t) is deterministic function, Vk is gamma distributed with mean
one and variance θ−1, and so that

λFik

ik (t) = Yik(t)λ0(t)

with λ0(t) being a deterministic function.

(a) Show that the conditional mean of Vk given the observed filtration
Ft− is

ψk(t) = E(Vk | Ft−) =
1 + θ−1N·k

Rk(t, θ)
,

where

Rk(t, θ) = 1 +
n∑

i=1

θ−1

∫ t

0

Yik(s)λ∗(s) ds.

Express Rk(t, θ) as a function of Λ0(t) =
∫ t

0
λ0(s) ds: Rk(t, θ, Λ0).

Under the assumed model ψ1(t), . . . , ψK(t) are i.i.d. with mean one. Let

Wn(t) = K−1/2
K∑

k=1

(ψk(t) − 1).

(b) Show that Wn(t) may rewritten as

Wn(t) = K−1/2
K∑

k=1

∫ t

0

Hk(s) dMk(s),

where

Hk(t) =
θ−1

Rk(t, θ, Λ0)
, Mk(t) = N·k −

n∑
i=1

∫ t

0

ψk(s−)Yik(s)λ∗(s) ds,

and conclude that Wn(t) is a Ft-martingale.

(c) Suggest estimators θ̂ and Λ̂0(t) for θ and Λ0(t), respectively.
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(d) Use the estimators constructed in (c) to estimate Wn(t) by Ŵn(t),
say. Is Ŵn(t) a Ft-martingale?

A resampling technique can be developed to approximate the limit distri-
bution of Ŵn(t), which then can be used to study whether the observed
Ŵn(t) is extreme in this distribution. One may for example construct a
supremum test.

9.8 (EM-algorithm for gamma frailty model) Consider the setup of Sec-
tion 9.2. Devise the E- and M-step of the EM-algorithm for the model
(9.20) where it is assumed that Vk is gamma distributed with mean one
and variance θ−1.

9.9 (Discrete time survival data) Time to pregnancy that is preferably
counted in the number of menstrual cycles it takes for a couple to achieve
pregnancy (TTP) should be analyzed by discrete time survival models, as
in Scheike & Jensen (1997) and Scheike et al. (1999).

The basic set-up is as follows. Ti is a discrete time TTP that is modeled
by the discrete time hazard probability

λi(t) = P (Ti = t|Ti ≥ t) = h−1(Xi(t)T β) (9.27)

where h is a link function and Xi(t) = Xit are possibly time-dependent
covariates for subject i. Assume that we observed n independent survival
times from this model, with possible right censoring. We shall here consider
the cloglog link h(t) = log(− log(t)) and the special case where

β = (γ1, ..., γm, α1, ...., αq)

where m, q > 0 , and
XT

itβ = γt + XT
i α.

Then the probability function and the survival probability are given by
the following expressions:

P (Ti = t) = λi(t)
t−1∏
j=1

(1 − λi(j)) (9.28)

= λi(t) exp(−
t−1∑
j=1

exp(XT
ijβ))

= exp(−Fi(t − 1)) − exp(−Fi(t)),

where

Fi(t) =
t∑

j=1

exp(XT
ijβ),

with the definition Fi(0) = 0, and it follows that

P (Ti ≥ t) = exp(−Fi(t − 1)).
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(a) Write down the likelihood for right-censored survival data from this
model. How can maximization be implemented on the computer, by
for example Fisher scoring.

(b) Now assume that given an unobserved random effect Ri, the condi-
tional hazard for Ti is

λi(t|Ri) = 1 − exp
(
− exp(Ri + XT

itβ)
)
. (9.29)

Assume that Ui = exp(Ri) is gamma distributed with mean 1 and
variance ν, and work out the marginal probabilities for Ti, and the
marginal hazard probability. Note, that the frailty variance can be
identified in the presence of covariates.

(c) Now, assume that two TTP’s are given to each i (couple), Ti1 and
Ti2, and are observed in succession and that given Ri the TTP’s are
independent with hazard given by (9.29). Work out the hazard rate
for Ti2 given either Ti1 or Ti1 > Ci1 and use this to write down the
likelihood for Ti1 and Ti2 with possible right-censoring.

(d) Modify the above to deal with left truncation.

(e) Now, assume that Ti1 and Ti2 have marginal models, i.e., models for
the observed (population) hazards, given by

cloglog(λp
i (t)) = XT

iptβ , p = 1, 2. (9.30)

To model the association we assume that underlying these marginal
models is a frailty model such that given Ri the waiting times are
given by the hazards

cloglog(λp
i (t)) = αip(t) + Ri , p = 1, 2, (9.31)

where Ui = exp(Ri) is gamma distributed with mean 1 and variance
ν.

Work out an expression for αip(t) such that the marginal models are
given by (9.30).

(f) Discuss the difference between the two frailty models described above.
How is the frailty variance identified in the models?



10
Competing Risks Model

The competing risks models is concerned with failure time data, where
each subject may experience one of K different types of failures. Mathe-
matically speaking it is a special case of the marked point process setup, but
this observation does not add much to the understanding of the underlying
problems and practical matters that need to be resolved when dealing with
competing risks data. Competing risks data are encountered, for example,
when medical studies are designed to learn about the effect of various treat-
ments aimed at a particular disease. For the melanoma data the primary
interest was on the effect of the treatment (removal of the tumor) on the
mortality from malignant melanoma. Some of the patients died of causes
not related to the disease, however.

In the following we introduce some notation to construct models for com-
peting risks data. Let T denote the failure time and ε a stochastic variable
that registers the type of death, ε ∈ {1, ..., K}. One way of describing a
model for competing risks data is to specify the intensities for the counting
processes Nk(t) = I(T ≤ t, ε = k), k = 1, ..., K, registering the failures of
type k. This is done via the so-called cause specific hazard functions:

αk(t) = lim
∆t→0

P (t ≤ T < t + ∆t, ε = 1 |T ≥ t)
∆t

, k = 1, . . . , K.

With Y (t) denoting the at risk indicator, allowing for right censoring and
left-truncation, we assume that

λk(t) = Y (t)αk(t), k = 1, ..., K,
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FIGURE 10.1: Competing risks model. Each subject may die from k different
causes

are the intensities associated with the K-dimensional counting process N =
(N1, ..., NK)T and define its compensator

Λ(t) = (
∫ t

0

λ1(s)ds, ...,

∫ t

0

λK(s)ds)T ,

such that M(t) = N(t) − Λ(t) becomes a K-dimensional (local square
integrable) martingale. A competing risks model can thus be described by
specifying all the cause specific hazards. The model can be visualized as
shown in Figure 10.1, where a subject can move from the “alive” state to
death of one of the K different causes.

Based on the cause specific hazards various consequences of the model
can be computed. One such summary statistic is the cumulative incidence
function, or cumulative incidence probability, for cause k = 1, .., K, defined
as the probability of dying of cause k before time t

Pk(t) = P (T ≤ t, ε = k) =
∫ t

0

αk(s)S(s−)ds, (10.1)
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where S(t) = P (T > t) is the survival function. The survival function is
expressed in terms of the hazards as

S(t) = exp(−
∫ t

0

α·(s)ds)

with the total hazard

α·(t) =
K∑

k=1

αk(t).

As is clear from (10.1), the cumulative incidence function for cause 1, say,
depends on the other cause specific hazard functions, which may speak for
another approach, see Section 10.3.

In this chapter we shall focus on different approaches for estimating the
cumulative incidence probability. One approach is based on estimating the
cause specific hazards and then either use the above formula to estimate
Pk or the product limit estimator (Aalen, 1978a; Aalen & Johansen, 1978;
Fleming, 1978b,a; Andersen et al., 1993). Alternatively one may estimate
the cumulative incidence probability directly by the subdistribution ap-
proach (Pepe, 1991; Gray, 1988; Fine & Gray, 1999; Scheike & Zhang,
2004).

Example 10.0.1 (Melanoma data.)

For the Melanoma data the interest lies in studying the effect of various
factors on time to death of malignant melanoma after removal of tumor.
The study was closed end of 1977, the number of deaths caused by ma-
lignant melanoma in the considered period being 57, 14 died from other
causes and the remaining 134 patients were censored at the closure of the
study since they were still alive at that point in time. We now estimate
the cumulative incidence function based on the techniques described in the
next section. The estimates can be obtained using the cmprsk R-library of
Robert Gray.

> data(melanom);attach(melanom)

> status.i<-status;status.i[status==2]<-0

> status.i[status==3]<-1;status.i[status==1]<-2

>

> fit<-cuminc(days/365,status.i)

> plot(fit$"1 2"$time,fit$"1 2"$est,ylim=c(0,1),

+ xlim=c(0,8),xlab="Time (years)",

+ ylab="Probability",type="s")

> se<-fit$"1 2"$var^.5; up<-fit$"1 2"$est+1.96*se;

> low<-fit$"1 2"$est-1.96*se

> lines(fit$"1 2"$time,up,type="s");

> lines(fit$"1 2"$time,low,type="s");
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FIGURE 10.2: Melanoma data. Cumulative incidence probability function
along with 95% pointwise confidence intervals for cause 1 (malignant
melanoma, full lines) and 1 − S1(t) (see text, broken line).

Inspection of Figure 10.2 suggest that the probability of dying of malignant
melanoma before 8 years after surgery is 0.22; in contrast the number 1 −
S1(t) (dotted line) that is 0.24 when evaluated at 8 years. Here

S1(t) =
∏
s≤t

(
1 − ∆Â1(s)

)
,

is the Kaplan-Meier where all deaths with respect to other causes are con-
sidered as censorings. This number is often computed and used in the cause
specific hazards setting but has no simple interpretation as a probability
except for very special cases. Note that S1(t) is a consistent estimator of
exp(−A1(t)). Therefore 1 − S1(t) will only equal the probability of dying
of cause 1 before time t∫ t

0

α1(s) exp(−A1(s) − A−1(s))ds

when A−1(t) =
∑K

k=2 Ak(t) equals 0, see also Exercise 10.1.
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For the melanoma data S1 and P1 only differ marginally because the
cause specific hazard related to the other causes is quite small. �

10.1 Product limit estimator

We start this section by considering a simple direct estimator of the cumu-
lative incidence probability in the case where there are no covariates. We
wish to estimate the cumulative incidence curve for cause 1 that can be
written as

P1(t) =
∫ t

0

α1(s)S(s−)ds =
∫ t

0

S(s−)dA1(s) =
∫ t

0

exp(−A·(s−))dA1(s),

where

Ak(t) =
∫ t

0

αk(s) ds, k = 1, . . . , K,

and

A·(t) =
K∑

k=1

Ak(t).

An estimate of P1(t) is then obtained by estimating the cause specific cu-
mulative baselines by their respective Nelson-Aalen estimators, and the
survival function S(t) by the Kaplan-Meier estimator.

To look more closely at the properties of the simple estimator sug-
gested above we assume that n i.i.d. K dimensional counting processes
(Ni1, ..., NiK) with at risk indicators Yi(t) are being observed from the
competing risks model. Focusing on the cumulative incidence function for
cause 1 we denote

Ni,−1(t) =
K∑

k=2

Nik(t), N·1(t) =
n∑

i=1

Ni1(t),

N·(t) = N·−1(t) + N·1(t),
and the total number of subjects at risk at time t by

Y·(t) =
n∑

i=1

Yi(t).

We have the decomposition

dNik(t) = Yi(t)dAk(t) + dMik(t),

where the Mik(t)’s are martingales with respect to the observed filtration,
which immediately suggest that the cumulative intensities can be estimated
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by the Nelson-Aalen estimator

Âk(t) =
∫ t

0

J(s)
Y·(s)dN·k(s),

where J(t) = I(Y·(t) > 0) with the convention that 0/0 = 0. These estima-
tors may also be derived as maximum likelihood estimators, see Exercise
10.2.

Let Ŝ(t) be the Kaplan-Meier estimator:

Ŝ(t) =
∏
s≤t

(
1 − ∆N·(s)

Y·(s)
)

,

where ∆f(t) = f(t) − f(t−) for a function f . This leads to the estimator
of P1(t):

P̂1(t) =
∫ t

0

Ŝ(s−)dÂ1(s).

To get the asymptotic variance of n1/2(P̂1(t) − P1(t)) one may apply the
functional delta-method by noting that P̂1(t) is asymptotically equivalent
to

H(Â1, Â2) =
∫ t

0

∏
u∈)0,s]

{
1 − d

(
Â1(u) + Â2(u)

)}
dÂ1(s), (10.2)

considering here the case with only two causes of death. See Andersen
et al. (1993) for more details about the functional H and its derivative on
the relevant functional space. It can be derived that n1/2(P̂1(t) − P1(t)) is
asymptotically equivalent to a Gaussian martingale with zero mean and a
variance that is consistently estimated by

n(
∫ t

0

Ŝ2(s−)
{
P̂1(t) − P̂1(s)

}2 J(s)
Y 2· (s)

dN·(s)

+
∫ t

0

Ŝ2(t−)
{
1 − 2

[
P̂1(t) − P̂1(s)

]} J(s)
Y 2· (s)

dN·1(s)). (10.3)

Alternatively, one may derive the asymptotic properties of the estimator
by recognizing it as an Aalen-Johansen product limit estimator. The prod-
uct integration estimator, or the product limit estimator, and the elegant
theory for such structures can be used to estimate transition probabilities
for any multi-state model, but we here only consider the competing risk
model. The transition probabilities in the competing risk model can be
written on matrix form P (s, t) = (Pi,j(s, t) for i, j ∈ {0, 1, ..., K}, where
Pi,j(s, t) denotes the probability of moving from state i at time s to state j
at time t. In the competing risks model P0,i(0, t) for i = 0, 1, ..., K are the
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cumulative incidence probabilities and P0,0(0, t) is simply the probability
of surviving beyond time t, S(t). Similarly as above we define Pi = P0,i for
i = 1, ..., K.

Below follows some general formulas for how one can compute the tran-
sition probabilities for a multi-state model. These are then specialized to
the competing risks model when specifying the underlying Nelson-Aalen
estimates. The transition probability matrix can be written as

P (0, t) =
∏

s∈)0,t]

(I + dA(s)) ,

where A is the matrix of cumulative intensities with A0,k =
∫ t

0
αk(s)ds, k =

1, ..., K, and Ak,k = −
∑

j 	=k Ak,j for k = 0, 1, ..., K; and all other cumu-
latives are zero. Define also the equivalent transitions intensities α0,k(s) =
αk(s) for k = 1, ..., K, and minus the intensity out of state k αk,k(s) =
−
∑

j 	=k αk,j(s) for k = 0, 1, ..., K, and let all other transitions intensities
by zero.

This suggests, with an estimator Â of A, that we can estimate P (0, t) by

P̂ (0, t) =
∏

s∈[0,t]

(
I + dÂ(s)

)
, (10.4)

which is referred to as the product-limit estimator of P (0, t). To estimate
A we use the Nelson-Aalen estimator. By looking at the estimators more
closely it follows that the two estimators (10.2) and (the relevant part
of) (10.4) are equivalent. Therefore the variance for (10.2) follows from the
general expression for the product integration estimator that we give below.

Define A∗
j,k(t) =

∫ t

0 J(s)αj,k(s)ds, organize these in the matrix A∗, and
define

P ∗(0, t) =
∏

s∈[0,t]

(I + dA∗(s)) .

Then it follows from the properties of product integration, see Gill & Jo-
hansen (1990), that

P̂ (0, t) − P ∗(0, t) =
∫ t

0

P̂ (0, s−)d
(
Â − A∗

)
(s)P̂ ∗(s, t),

which is a product of matrices integrated over time. This equation implies
that

P̂ (0, t)P ∗(0, t)−1 − I =
∫ t

0

P̂ (0, s−)d
(
Â − A∗

)
(s)P̂ ∗(0, s)−1,

and since Â − A∗ is a martingale the asymptotic properties follows from
the martingale central limit theorem, similarly to the derivations for the
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Kaplan-Meier estimator. One obvious consequence is that the estimator is
unbiased in the sense that

E(P̂ (0, t)P ∗(0, t)−1) = I.

For a general multi-state model the (co)variance of the matrix valued
estimates in P̂ becomes a K2 × K2 matrix, and to calculate each of the
covariate terms one must keep track of the appropriate terms if for example
the optional variation estimator is used. Let cov(P̂ (0, t)) be the covariance
of the K2 × 1 vector with the columns of P̂ stacked on top of each other.
Then a consistent estimator of cov(P̂ (0, t)) is∫ t

0

P̂T (s, t) ⊗ P̂ (0, s)d[Â − A∗](s)P̂ (s, t) ⊗ P̂T (0, s).

Reading the formula for the special terms we have interest in for the com-
peting risks model we find that the covariance between P0,i − P ∗

0,i and
P0,j − P ∗

0,j for i, j = 0, ..., K can be estimated by

K∑
l=1

∫ t

0

P̂ 2
0,0(0, s)(δlj − P̂0,j(s, t))(δlr − P̂0,r(s, t))

J(s)
Y 2· (s)

dN·l(s)

using δuv = I(u = v), thus leading to the variance estimates∫ t

0

{
P̂0,0(0, s)P̂0,j(s, t)

}2 J(s)
Y 2· (s)

dN·(s)

+
∫ t

0

P̂ 2
0,0(s)

{
1 − 2P̂0,j(s, t)

} J(s)
Y 2· (s)

dN·,j(s)

for j = 1, ..., K.
Let us consider the situation where the cause-specific hazards depend on

covariates so that for example the hazard for cause k for subject i given
covariates relevant for cause k, X̃ik (of dimension p), is on Cox form

αk(t) = α0k(t) exp(X̃T
ikβk).

In the latter display βk are the relative risk regression coefficients related to
cause k, α0k(t) is the baseline function for cause k, and X̃ik denotes a cause
specific version of the covariates, which gives a great deal of flexibility. This
model can be written with a common set of relative risk parameters if the
covariates are stacked. With the appropriate choice of Xik we can write the
model as

αk(t) = α0k(t) exp(XT
ikβ).

In the case where all causes depend on the same covariates in the same
functional form, X̃ik = Xi, and the relative risk parameters are different
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FIGURE 10.3: Mouse Leukemia data. Cumulative incidence probabil-
ity along with 95% pointwise confidence intervals for thymic leukemia
data without covariates (full lines) and with covariates (MHC=1,
Sex=2,Color=1, Antibody=50,Virus=8000) (broken lines).

then Xik = (I(k = 1)XT
i , ..., I(k = K)XT

i )T is a covariate vector of dimen-
sion Kp and β = (βT

1 , ..., βT
K)T is the regression coefficient vector with βk

the p dimensional regression effect for cause k.
One may now estimate the relative risk parameters and the cumulative

baseline functions for all cause specific hazards and combine these as above
to estimate the cumulative incidence function by for example the product
limit estimator. This is simply a matter of noting that the cumulative
hazard for cause k given covariates X is estimated by

Â0k(t) exp(XT
k β̂),

where Xk is the stacked version of the X covariate that reflects the cause
specific version of the covariates and then the product limit estimator
may be applied to estimate the cumulative incidence function given Xk:
P1(t|Xk). We illustrate these estimators in the following example.
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Example 10.1.1 (Mouse Leukemia data)

Consider the mouse leukemia data given in Kalbfleisch & Prentice (2002)
where the effect of various genetic and viral factors on the development of
leukemia is studied. The data comprise 204 mice and the covariates that
we consider here are MHC phenotype (1 and 2), Sex (1=male, 2=female),
Coat color (1 and 2), antibody level in percent (Antibody) and virus level
(Virus). The different causes of death were thymic leukemia (1), nonthymic
leukemia (2), nonleukemia and no other tumors (3), unknown (4), other
tumors (5), and accidental death (6). We here consider just the thymic
leukemia as the cause of death of interest and group all other causes into
one group (2). We used a SAS-macro developed by Rosthøj et al. (2004)
to compute the cumulative incidence curves.

First we show the simple product limit estimator with 95% confidence
intervals (full lines) in Figure 10.3. For comparison we also computed a
covariate based cumulative incidence probability function correcting for all
covariates. The product limit estimator based on different Cox regression
models for the cause of interest and other causes are shown with 95%
pointwise confidence intervals (broken lines) in Figure 10.3 and computed
for a MHC=1, Sex=2, color=1, antibody=50 and virus=8000.

Figure 10.3 clearly illustrates that the predictions of the probability of
dying of thymic leukemia is much lower for a subject with the specified
covariates than the overall probability. It is hard, however, to precisely
summarize the importance of covariate effects apart from computing the
cumulative incidence probability for various combinations of the covariates.
We address how to summarize covariate effects in the two coming sections.

�

Note, that any regression model may in principle be applied to model the
cause specific hazards and many models have been used: Shen & Cheng
(1999) studied the predicted cumulative incidence function based on a pro-
portional hazards model; Cheng et al. (1998) considered the semiparametric
additive risk model; Scheike & Zhang (2003) used the Cox-Aalen survival
model. We consider the Cox-Aalen model in further detail in the next sec-
tion.

10.2 Cause specific hazards modeling

In this section we show how to estimate the cumulative incidence function
based on cause specific hazards modeling, and how to derive the asymptotic
properties of the estimators. We use the Cox-Aalen model because the ob-
tained formulas generalize both those obtained based on the Cox regression
model and those based on the Aalen additive hazards model. We also show
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how to get uniform confidence band for the cumulative incidence function
based on a resampling technique.

Assume that we have underlying covariates X̃ . The cause specific hazards
for the kth cause is modeled as

λk(t|Xk, Zk) =
[
XT

k α(t)
]
exp(ZT

k β).

with α(t) = (α1(t), ..., αp(t)) and β = (β1, ..., βp) and where we have a cause
specific version of the covariates, as at the end of the previous section,
such that Xk and Zk are of dimension p and q, respectively. Note that
one possible submodel allows all cause specific hazards to have different
regression effects and the same partitioning of the covariates into X with
additive effects and Z with multiplicative effects such that λk(t|X, Z) =[
XT αk(t)

]
exp(ZT βk).

Let
(Ni1(t), . . . NiK), i = 1, . . . , n,

be n independent counting processes of dimension K with intensities

λik(t) = Yi(t)λk(t|Xik, Zik),

where Yi(t) is 0 or 1 indicating whether the individual is at risk at time t.
Let Λik(t) =

∫ t

0 λik(s)ds so that Mik(t) = Nik(t) − Λik(t) are martingales.
Let further

Nk(t) = (N1k(t), . . . , Nnk(t))T

be a n-dimensional counting process, with compensator

Λk(t) = (Λ1k(t), . . . ,Λnk(t))T

and with
Mk(t) = (M1k(t), . . . , Mnk(t))T

the n-dimensional martingale for the k specific cause. Let N(t) be the n ·K
dimensional counting process defined as

N(t) = (NT
1 (t), ..., NT

K(t))T ,

and define its compensator and the resulting martingale similarly. Organize
the cause specific covariates into matrices Xk(t) (with rows Yi(t)Xik) and
Zk(t) (with rows Yi(t)Zik) and stack these into matrices X(t) (of dimension
nK × p) and Z(t) (of dimension nK × q). Define the generalized inverse

Y −(t) = Y −(β, t) =
[
XT (t)diag {exp(Z(t)β)}X(t)

]−1
XT (t)

where exp(b) = (exp(b1), . . . exp(br))T for a r × 1-vector b. We estimate β
as the solution to the score equation (see Section 7.1 for details)

U(β, τ) =
∫ τ

0

[
ZT (t) − ZT (t)Y (β, t)Y −(β, t)

]
dN(u) = 0,
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and estimate A(t) =
∫ t

0

α(u)du by

Â(t) =
∫ t

0

Y −(β̂, u)dN(u).

The derivative of minus the score function is given by

I(β, τ) =
∫ τ

0

ZT (t)diag(Y (β, t)Y −(β, t)dN(t))Z(t)

−
∫ τ

0

ZT (t)Y (β, t)Y −(β, t)diag
{
Y (β, t)Y −(β, t)dN(t)

}
Z(t).

To predict the cumulative incidence function for a subject with covariates
(x, z) we define

Λ(t|x, z) =
K∑

k=1

Λk(t|xk, zk) =
K∑

k=1

∫ t

0

λk(s|xk, zk)ds

S(t|x, z) = P (T > t|x, z) = exp {−Λ(t|x, z)} .

Then the conditional cumulative incidence function for the kth cause is
defined as

Pk(t|x, z) = P (T ≤ t, ε = k|x, z) =
∫ t

0

S(s|x, z)λk(s|xk, zk)ds,

where ε represents the type of failure.
We estimate the cumulative incidence function by plugging in the esti-

mates of the cause specific Cox-Aalen models:

Λ̂(t|xk, zk) =
K∑

k=1

Λ̂k(t|xk, zk) =
K∑

k=1

∫ t

0

exp(zT
k β̂)xT

k dÂ(s)

Ŝ(t|x, z) = exp(−Λ̂(t|x, z))

giving

P̂k(t|x, z) =
∫ t

0

Ŝ(s − |x, z)dΛ̂k(s|xk, zk), (10.5)

where Ŝ(t − |x, z) is the left-continuous version of Ŝ(t|x, z). The estimator
(10.5) is a functional of Â and β̂ and the asymptotic properties can there-
fore be derived from those of the underlying model. In the below note we
give some of the main derivations that lead to a relatively simple estima-
tor of the variance given in (10.6). As we have seen, cause specific hazards
modeling and estimation can be employed to estimate the cumulative inci-
dence function of interest P1(t|x, z), say. It is important to notice, however,
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that we need to model and perform estimation also for the other cause spe-
cific hazards λk(t), k = 2, . . . , K, that may be of no interest. If the target
for the analysis is the cumulative incidence function, then the subdistribu-
tion approach described in the next section is more direct and it does not
need modeling for the other causes. The downside of the subdistribution
approach is that modeling of the censoring distribution is required.

Note. Large sample properties, see also Exercise 10.6.

The basic properties of the parameters of the Cox-Aalen can be found in
Section 7.1 but we here briefly summarize these (up to op(n

−1/2)) in this
slightly different set-up. It follows that

n1/2(β̂ − β0) = n1/2I−1(β0, τ )

nX
i=1

W1i(τ ) + op(1),

n1/2( bA(β̂, t) − A(t)) = n1/2
nX

i=1

W2i(t) + op(1),

where

W1i(τ ) =
KX

k=1

Z τ

0

(Zik(s)

− ZT (s)Y (β0, s)
h
XT (t)diag {exp(Z(s)β)}X(t)

i−1

Xik(s)T )dMik(s),

and

W2i(t) =W3i(t) − H(β0, t)I(β0, τ )−1W1i(τ ),

W3i(t) =

KX
k=1

Z t

0

h
XT (s)diag {exp(Z(s)β)}X(s)

i−1

Xik(s)dMik(s),

and with

H(β, t) =

Z t

0

Y −(β, s)diag(Y (β, s)Y −(β, s)dN(s))Z(s).

Further (up to op(1)),

n1/2(bS(t|x, z) − S(t|x, z)) = −S(t|x, z)n1/2

(
KX

k=1

bΛk(t|x, z) − Λk(t|x, z)

)

= −S(t|x, z)n1/2
nX

i=1

(
KX

k=1

W4i(t|x, z, k)

)
,

since n1/2(Λ̂k(t|x, z) − Λk(t|x, z)) is asymptotically equivalent to

n1/2
X

i

W4i(t|x, z, k)
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with

W4i(t|x, z, k) = exp{ZT
k β0}XT

k A(t)ZT
k I−1(β0, τ )W1i(τ )

− exp{ZT
k β0}XT

k H(β0, t)I−1(β0, τ )W1i(τ ) + exp{ZT
k β0}XT

k W3i(t),

by a Taylor series expansion of Λk(t) = exp(ZT
k β)XT

k B(t).

Now, considering the cumulative incidence function using partial integra-
tion we can write bPk(t|x, z) − Pk(t|x, z) (up to op(n

−1/2) asZ t

0

bS(u|x, z)d
nbΛk(u|x, z)Λk(u|x, z)

o
+

Z t

0

nbS(u|x, z) − S(u|x, z)
o

dΛk(u|x, z)

=

Z t

0

0@1 −
X
l�=k

Pl(u|x, z)

1A dfMk,Λ(u|x, z) − Pk(t|x, z)

Z t

0

KX
l=1

dfMl,Λ(u|x, z)

+

Z t

0

Pk(u|x, z)
X
l�=k

dfMl,Λ(u|x, z),

where fMk,Λ(u|x, z) = bΛk(t|x, z)−Λk(t|x, z) was decomposed into the form
M(t)+B(t)M(τ ) above. One can therefore give an optional variation based

estimator of the variance of bPk(t|x, z) − Pk(t|x, z) (see Scheike & Zhang
(2003)), but we here for simplicity give an estimator based on the i.i.d.
representation.

Note that n1/2
“ bPk(t|x, z) − Pk(t|x, z)

”
is asymptotically equivalent to

n1/2
nX

i=1

Wk,5i(t|x, z),

where

Wk,5i(t|x, z) =

Z t

0

0@1 −
X
l�=k

Pl(u|x, z)

1A dWk,4i(u|x, z)

− Pk(t|x, z)
KX

l=1

Wl,4i(t|x, z) +

Z t

0

Pk(u|x, z)
X
l�=k

dWl,4i(u|x, z).

Define its estimate cWk,5i(t|x, z) by plugging in estimates of the unknown
quantities.

Then the variance of n1/2
“ bPk(t|x, z) − Pk(t|x, z)

”
can be consistently es-

timated by

bσ2
Pk

(t|x, z) = n

nX
i=1

“cWk,5i(t|x, z)
”2

. (10.6)
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Again, the confidence band for the predicted cumulative incidence function
Pk(t|x, z) can be constructed using the resampling approach based on

nX
i=1

GiŴk,5i(t|x, z)

where G1, ..., Gn are i.i.d. standard normals.

10.3 Subdistribution approach

The aim of the subdistribution approach is to express the effects of covari-
ates directly on the cumulative incidence function

P1(t|X) = P (T ≤ t, ε = 1|X),

here focusing on cause 1. This is done via the subdistribution hazard function
λ�

1(t|X) that is the function so that

P1(t|X) = 1 − exp(−
∫ t

0

λ�
1(s|X) ds).

Equivalently,

λ�
1(t; |X) = − d

dt
(log{1 − P1(t|X)})

= lim
∆t→0

P (t ≤ T < t + ∆t, ε = 1 | (T ≥ t) ∪ (T ≤ t, ε �= 1), X)
∆t

.

One may also think of λ�
1(t|X) as the hazard function of

T � = T × I(ε = 1) + ∞× I(ε �= 1),

which has distribution function equal to P1(t|X), t < ∞, and a point mass
at t = ∞. This is seen by noticing that

P (T � > t|X) = P (T > t|X) + P2(t|X) + ... + PK(t|X) = 1 − P1(t|X).

Subdistribution hazards was originally considered by Gray (1988), see also
Pepe (1991). Fine & Gray (1999) gave estimators and large sample prop-
erties in the case, where the Cox model is assumed for the subdistribution
hazard corresponding to cause 1.

We assume that the subdistribution hazard is on the Cox-Aalen form

λ�
1(t|x, z) =

[
XT α(t)

]
exp(ZT β),

where we have partitioned the covariates into X and Z. We then cover both
the additive and multiplicative models.
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If there is no censoring of the survival time, then N1(t) = I(T ≤ t, ε = 1)
has compensator ∫ t

0

Y (s)λ�
1(s|x, z) ds

with respect to the filtration

σ(N1(s), X, Z; s ≤ t),

where Y (t) = 1−N1(t−), see Exercise 10.4. Note that Y (t) = 1 as long as
the subject has not failed due to cause 1 before time t; that is, the subject
stays “at risk” even if it has failed from a cause different from 1. The un-
known parameters of the Cox-Aalen model for the subdistribution hazards
may thus (in the case of no censoring) be estimated as outlined in Section
7.1 with the appropriate at risk indicators as outlined above. In the case
of censoring, one can apply the inverse probability censoring weighting, see
for example Horvitz & Thompson (1952) and Robins & Rotnitzky (1992).
This technique is based on estimating the probability of being censored for
each subject and then correcting the score equation by inverse weighting
with these probabilities.

We assume for simplicity that the censoring variable C is independent of
both the survival time T and the covariates X, Z, but the below formulas
may be extended by modeling of the censoring distribution given X, Z. Let

Ni1(t) = I(Ti ≤ t, εi = 1), Yi(t) = 1 − Ni1(t−), Gc(t) = P (C ≥ t),

and let Ĝc be the Kaplan-Meier estimator of Gc. Note that Ni(t) and Yi(t)
typically will not be fully observed when there is censoring, and that the
at risk indicator is 1 as long as no type 1 event has occurred. We assume
that we observe n i.i.d. subjects from this generic model. Further define

ri(t) = I(Ci ≥ Ti ∧ t),

that is one when the subject is un-censored. Note that if ri(t) = 1, then
Ni(t) and Yi(t) are computable up to time t, and if ri(t) = 0, then individ-
uals are observed up to time Ci; thus Ni(t) and Yi(t) are not observable.
However, ri(t)Ni(t) and ri(t)Yi(t) are always computable.

Define a time-dependent weight function

wi(t) = ri(t)Ĝc(t)/Ĝc(Ti ∧ t)

and define the (n × p)-matrix Yw(β, t) with ith row

wi(t)Yi(t) exp
{
Zi(t)T β

}
Xi(t)

for i = 1, ....n. Let

Z(t) = (Z1(t), . . . , Zn(t))T
, X(t) = (X1(t), . . . , Xn(t))T

,
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and
Y −

w (β, t) =
(
Yw(β, t)T WA(t)Yw(β, t)

)−1
Yw(β, t)T WA(t),

be a weighted generalized inverse of Yw(β, t). The weight matrix WA(t) is
a n × n-matrix with diagonal elements

wA
i (t) = w−1

i (t)Yi(t) exp{−Zi(t)T β}.

With the convention that 0/0 = 0 such that the effect of wA
i (t) is that it

cancels out wi(t) exp(Zi(t)T β}.
We estimate β̂ as the solution to the estimating equation U(β̂, τ) = 0,

where

U(β, τ) =
∫ τ

0

(
Z(t)T − Z(t)T Yw(β, t)Y −

w (β, t)
)
diag(wi(t))dN(t),

=
n∑

i=1

∫ τ

0

V w
i (β, t)wi(t)dNi(t)

with τ the end of study time and

V w
i (β, t) = Zi(t) − Z(t)T Yw(β, t)

(
Yw(β, t)T WA(t)Yw(β, t)

)−1
Xi(t).

The derivative of minus the score function is given as

I(β, t) = − ∂

∂β
U(β, t)

=
∫ t

0

ZT (u)diag
(
Yw(β, u)Y −

w (β, u)dNw(t)
)
Z(u)

−
∫ t

0

ZT (u)Yw(β, u)Y −
w (β, u)diag

(
Yw(β, u)Y −

w (β, u)dNw(u)
)
Z(u),

where Nw(t) = diag(wi(t))N(t).
It can be shown that n1/2(β̂ − β0) is asymptotically normal with an

asymptotic variance that is consistently estimated by

Σ̂ = n
(
I(β̂, τ)

)−1
(

n∑
i=1

Ŵ⊗2
5i

)(
I(β̂, τ)

)−1

,

where Ŵ5i is given by the below (10.8). We estimate A(t) =
∫ t

0
α(s)ds by

Â(β̂, t) =
∫ t

0

Y −
w (β̂, s)dNw(s).

Similarly, it can be shown that n1/2
(
Â(β̂, t) − A(t)

)
converges in distri-

bution towards a Gaussian process with variance that may be estimated
consistently by

Φ̂(t) = n

n∑
i=1

Ŵ⊗2
6i (t),
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where Ŵ6i(t) is given below by (10.9). The i.i.d. decomposition leading to
the above variance estimators is more complicated than the one for the
standard Cox-Aalen model because of the estimated weights that give an
additional variance term.

The cumulative incidence function P1(t|X, Z) may then be estimated by

P̂1(t|X, Z) = 1 − exp
{
−
∫ t

0

exp{ZT β̂}XT dÂ(β̂, s)
}

,

and it may be shown that n1/2
(
P̂1(t|X, Z) − P1(t|X, Z)

)
converges to-

wards a Gaussian process with a variance that can be consistently estimated
by

σ̂2
P1

(t|X, Z) = n

n∑
i=1

Ŵ7i(t|X, Z)2,

where W7i is defined in (10.12) below. To construct confidence bands one
may also use a resampling approach.

Example 10.3.1 (Mouse Leukemia data, continued)

Consider again the mouse leukemia data described in Example 10.1.1, where
the effect of various genetic and viral factors on the development of leukemia
is studied. We consider thymic leukemia as the cause of death of interest
and group all other causes into one group. The subdistribution method
is implemented using the Cox-model in the R-package cmprsk. As an il-
lustration we model the subdistribution hazard for thymic leukemia using
the Cox model with the covariates Sex (S) (1:female; 0: male), Antibody
(A) (1: ≥0.5; 0: <0.5) and Virus (V ) (1: <10000; 0:≥ 10000). That is the
cumulative incidence function is assumed to be

P (t|S, A, V ) = 1 − exp{−Λ0(t) exp(βSS + βAA + βV V )}.

> antibody<-1*(leukdat$antib>=0.5)

> Sex<-leukdat$sex-1

> virusd<-1*(leukdat$virus<10000)

> status1<-leukdat$J

> status1[leukdat$delta==2]<-0

> cov<-as.matrix(cbind(Sex,antibody,virusd))

> fitsub<-crr(leukdat$time/365, status1,cov)

29 cases omitted due to missing values

> print(fitsub)

convergence: TRUE

coefficients:

[1] 0.09931 -0.45530 -2.34000

standard errors:

[1] 0.2931 0.2977 0.4167

two-sided p-values:
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FIGURE 10.4: Mouse Leukemia data. Predicted incidence probability func-
tions based on Cox model for subdistribution hazards (see text).

[1] 7.3e-01 1.3e-01 2.0e-08

> P.thymic <- predict(fitsub,rbind(c(1,1,1),c(1,1,0),c(1,0,1),

+ c(1,0,0),c(0,1,1),c(0,1,0),c(0,0,1),c(0,0,0)))

> plot(P.thymic,lty=1,ylab=’Probability’,xlab=’Time(years)’)

From this analysis it appears that Virus (dichotomized) is the only impor-
tant predictor with the above reported p-value. The estimated coefficients
with estimated standard errors are β̂S = 0.099(0.293), β̂A = −0.455(0.298),
and β̂V = −2.340(0.417). From Figure 10.4 it is seen that the predicted cu-
mulative incidence functions fall in four groups (reflecting the unimportance
of the covariate Sex); the upper two groups being those with Virus above
10000. The upper two curves has Virus above 10000 and Antibody below
0.5. �

Note. Subdistribution: large sample properties.

We here give a sketch of how to derive the large sample properties. Many
of the considered processes are not martingales and some results must be
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based on empirical process theory. Martingale asymptotics can neverthe-
less be invoked in various places. Additional details can be found in Fine
& Gray (1999) who studied the Cox model and Scheike & Zhang (2004)
who used the Cox-Aalen model.

A Taylor expansion yields

n1/2
“
β̂ − β0

”
≈ `n−1I(β0, τ )

´−1
“
n−1/2U(β0, τ )

”
with ≈ (here and in the sequel of this note) indicating that lower order
terms are asymptotically negligible. Let M1

i (t, β0) = Ni(t) − Hi(t, β0),
where Λi(t, β0) =

R t

0
Yi(s) exp(ZT

i β0)X
T
i (s)dA(s) and A(t) =

R t

0
α(s)ds.

Denote ewi(t) = ri(t)Gc(t)/Gc(Ti ∧ t). We then have

n−1/2U(β0, τ )

=n−1/2
nX

i=1

Z τ

0

V w
i (β0, t)wi(t)dM1

i (t, β0)

≈n−1/2
nX

i=1

Z τ

0

V w
i (β0, t) ewi(t)dM1

i (t, β0) (10.7)

+ n−1/2
nX

i=1

Z τ

0

( bGc(t)bGc(Ti ∧ t)
− Gc(t)

Gc(Ti ∧ t)

)
V w

i (β0, t)ri(t)dM1
i (t, β0).

Let also Ui = Ti ∧Ci. Note that all Gc(Ti ∧ t) in the above expression can
be replaced with Gc(Ui ∧ t) because of ri(t). Let ΛC(t) be the cumulative
hazard function of censoring distribution, define the censoring indicator
∆i = I(Ti ≤ Ci) and let NC

i (t) = I(Ui ≤ t, ∆i = 0) so that

MC
i (t) = NC

i (t) −
Z t

0

I(Ui ≥ s)dΛC(s).

Then we havebGc(t)bGc(Ui ∧ t)
− Gc(t)

Gc(Ui ∧ t)
≈ −Gc(t)I(Ui < t)

Gc(Ui ∧ t)

nX
j=1

Z t

Ui

dMC
j (s)P

k I(Uk ≥ s)
.

The second term of (10.7) can be approximated by

−n−1/2
nX

i=1

Z τ

0

Gc(t)I(Ui < t)

Gc(Ui ∧ t)

×
X

j

Z t

Ui

dMC
j (s)P

k I(Uk ≥ s)
V w

i (β0, t)ri(t)dM1
i (t, β0)

≈ n−1/2
nX

i=1

Z τ

0

q(t)

π(t)
dMC

i (t),

where

q(t) = − lim
p

n−1
nX

i=1

Z τ

0

V w
i (β0, s)wi(s)I(s ≥> t)I(Ui < s)dM1

i (s, β0)I(t > Ui),

π(t) = lim
p

n−1
nX

i=1

I(Ui ≥ t),
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where limp is the limit in probability as n tends to infinity. Define also

π̂(t) = n−1
nX

i=1

I(Ui ≥ t)

cM1
i (t, β0) = Ni(t) −

Z t

0

Yi(s) exp
n

ZT
i (s)β̂

o
XT

i (s)d bA(β̂, s),

bA(bβ, t) =

Z t

0

Y −
w (bβ, s)dNw(s),

cMC
i (t) = NC

i (t) −
Z t

0

I(Ui ≥ s)dbΛC(s),

bΛC(t) =

nX
i=1

Z t

0

Yi(t)

π̂(t)
dNC

i (t),

and where bq is obtained by using cM1
i and β̂ in q.

It can be shown that n−1/2U(β0, τ ) converges in distribution to a normal
random variable with zero mean and a variance that can be estimated by

n−1
nX

i=1

cW⊗2
5i = n−1

nX
i=1

“bηi + bψi

”⊗2

, (10.8)

where

bηi =

Z τ

0

V w
i (β̂, t)wi(t)dcM1

i (t, β̂) and bψi =

Z τ

0

bq(t)bπ(t)
dcMC

i (t).

The asymptotic variance of n1/2
“
β̂ − β0

”
can be estimated by

bΣ = n
“
I(β̂, τ )

”−1
 

nX
i=1

cW⊗2
5i

!“
I(β̂, τ )

”−1

.

Consider

n1/2
“ bA(β̂, t) − A(t)

”
=n1/2

„Z t

0

Y −
w (β0, s)dNw(s) −

Z t

0

α(s)ds

«
+ n1/2

Z t

0

“
Y −

w (β̂, s) − Y −
w (β0, s)

”
dNw(s).

The second term on the right-hand side of the above equality is asymp-
totically equivalent to

n1/2

„Z t

0

„
∂

∂β
Y −

w (β0, s)

«
dNw(s)

«T “
β̂ − β0

”
=n1/2

nX
i=1

Pw(bβ, t)I−1(bβ, τ )cW5i,

where

Pw(β, t) = −
Z t

0

Y −
w (β, s)diag

`
Yw(β, s)Y −

w (β, s)dNw(s)
´
Z(s),
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and the first term is approximated by

n1/2
nX

i=1

Z t

0

“
Y T

w (β0, s)WA(s)Yw(β0, s)
”−1

Xi(s)wi(s)dM1
i (s, β0)

=n1/2
nX

i=1

Z t

0

“
Y T

w (β0, s)WA(s)Yw(β0, s)
”−1

Xi(s) ewi(s)dM1
i (s, β0)

+ n1/2
nX

i=1

Z t

0

( bGc(s)bGc(Ui ∧ s)
− Gc(s)

Gc(Ui ∧ s)

)

×
“
Y T

w (β0, s)WA(s)Yw(β0, s)
”−1

Xi(s)ri(s)dM1
i (s, β0).

The term involving the censoring weights may be approximated as before:

n1/2
nX

i=1

Z τ

0

Gc(t)I(Ui < t)

Gc(t ∧ Ui)

X
j

Z t

Ui

dMC
j (u)

π(u)
×

“
Y T

w (β0, t)WA(t)Yw(β0, t)
”−1

Xi(t)ri(t)dM1
i (t, β0)

= n1/2
nX

i=1

Z τ

0

qA(t)

π(t)
dMC

i (t),

where

qA(t) = − lim
p

n−1
nX

i=1

Z τ

0

„
Y T

w (β0, s)WA(s)Yw(β0, s)

«−1

× Xi(s)wi(s)I(s ≥ t)I(Ui < s)dM1
i (s, β0)I(t > Ui).

Denote

cW6i(t) = Pw(bβ, t)I−1(β̂, τ )cW5i +cWAi(t), (10.9)

with

cWAi(t) =

Z t

0

bqA(s)bπ(s)
dcMC

i (s)

+

Z t

0

“
Y T

w (β̂, s)WA(s)Yw(β̂, s)
”−1

Xi(s)wi(s)dcM1
i (s, β̂),

(10.10)

and with WAi(t) defined similarly. Then n1/2
“ bA(β̂, t) − A(t)

”
converges

in distribution towards a Gaussian process with variance that is estimated
consistently by

Φ̂(t) = n
nX

i=1

cW⊗2
6i (t).
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Finally, n1/2( bP1(t|X, Z) − P1(t|X, Z)) is asymptotically equivalent to

(1 − P1(t|X, Z))

jZ t

0

exp(ZT β0)X
T dA(s)−

Z t

0

exp(ZT β̂)XT d bA(β̂, s)

ff
= (1 − P1(t|X, Z))

jZ t

0

exp(ZT β0)X
T d
“ bA(β0, s) − dA(s)

”ff
+(1 − P1(t|X, Z))jZ t

0

exp(ZT β̂)XT d bA(β̂, s) −
Z t

0

exp

j
ZT β0

ff
XT d bA(β0, s)

ff
(10.11)

≈ n1/2
nX

i=1

W7i(t|X, Z),

where

W7i(t|X, Z) = (1 − P1(t|X, Z)) exp(β0
T Z)

×
n

XT WAi(t) +
h
(XT A(t))ZT + XT P (β0, t)I−1(β0, τ )

i
W5i

o
. (10.12)

and with cW7i(t|X, Z) defined by replacing all unknowns with their esti-
mates in (10.12).
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10.4 Exercises

10.1 Consider a competing risks situation with cause specific hazards
λk(t), k = 1, . . . , K without any covariate information. Define

G̃k(t) =
∏
s≤t

(
1 − ∆N·k(s)

Y·(s)
)

,

which could be thought of as a cause specific Kaplan-Meier estimator. Show,
however, that it will generally not be a valid estimator of 1 − Pk(t).

10.2 (Cause specific hazard modeling) Consider a competing risks model
with two causes of death. The model can be described by the two cause
specific hazards λ1(t) and λ2(t). Assume that n i.i.d. subjects are observed
subject to independent right-censoring. Let Λj(t) =

∫ t

0 λj(s)ds for j = 1, 2.

(a) When estimating λ1 we may treat deaths with respect to cause “2”
as independent right censorings even though the causes are not inde-
pendent.

(b) Construct the likelihood function for estimating λ1 and λ2 and sug-
gest an estimator for Λ1(t) and Λ2(t).

10.3 (Cause specific hazard modeling, Kalbfleisch & Prentice (2002))
Consider a competing risks model with two causes of death. Assume that
n i.i.d. subjects are observed subject to independent right-censoring such
that

λji(t) = λ0(t) exp(γj + XT
i βj),

j = 1, 2, where Xi denotes a p-vector of covariates for the ith subject, βj is
a p-vector of unknown coefficients, and γ1 and γ2 are scalars with γ1 = 0.

(a) Derive estimating equations for the parametric components of this
model.

(b) Argue that standard software (e.g. coxph) can be used to analyze this
model. How should data be organized?

10.4 (Cause specific and subdistribution hazards) Consider a competing
risks model with two causes of death and in a situation with no censoring.
Let Nk(t) = I(T ≤ t, ε = k) and Yk(t) = 1 − Nk(t−), k = 1, 2. Let λ1(t)
and λ∗

1(t) be defined by

λ1(t) = lim
∆t→0

P (t ≤ T < t + ∆t, ε = 1 |T ≥ t)/∆t,

P (T > t, ε = 1) = exp(−
∫ t

0

λ∗
1(s) ds),
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that is, the cause specific hazard function and the subdistribution hazard
(for cause 1), respectively.

(a) Show that N1(t) has intensity I(t ≤ T )λ1(t) with respect to Ft, where

Ft = σ(N1(s), N2(s) : s ≤ t).

(b) Show that N1(t) has intensity Y1(t)λ∗
1(t) with respect to F∗

t , where

F∗
t = σ(N1(s) : s ≤ t).

10.5 (Cause specific and subdistribution hazards) Consider a competing
risks model with two causes of death. Let

λj(t) = λ0j(t) exp(XT βj), (10.13)

j = 1, 2, where X denotes a p-vector of covariates for the considered subject,
βj is a p-vector of unknown coefficients and λ0j(t) denotes the baseline
function j.

(a) Assume that the cause specific hazards has the structure (10.13) for
j = 1, 2. Derive the subdistribution hazard functions.

(b) Assume that the subdistribution hazards has the structure (10.13)
for j = 1, 2. Derive the cause specific hazard functions.

10.6 (Cause specific hazards: Asymptotics) Consider a competing risks
model with two causes of death with the set-up in Section 10.2.

(a) If the martingale asymptotics is applied, the standard errors have a
form that is equivalent to nK i.i.d. subjects, although the K causes
are not independent. Derive an expression for the optional variation
estimator of the standard error for both β̂ and the cumulative inci-
dence function.

(b) Validate that the i.i.d. representation standard errors have the given
form and compare to those given in (a).

(c) Consider the melanoma data, write a program that fits 2 cause specific
hazards (melanoma and other) with common regression coefficients
for age, ulceration and log(thickness). How does one get the martin-
gale standard errors and the robust standard errors based on the i.i.d.
representation?
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10.7 (Subdistribution hazard) Consider the Cox-Aalen subdistribution
hazards model set-up in Section 10.2.

(a) Show that the weighted score equation for the subdistribution hazard
is not on the same form as a weighted version of the score equations
for the standard Cox-Aalen model.

(b) The weights
ri(t)

Gc(Ti ∧ t)
are justified by having mean 1. We use the weights

wi(t) = ri(t)
Gc(t)

Gc(Ti ∧ t)
.

How can these by justified? What are the optimal weights if Gc is
known?

10.8 (Binomial Regression (Scheike & Zhang, 2005)) We assume as in
the previous section, for simplicity, that the censoring variable C is in-
dependent of both the survival time T and the covariates X, Z, but the
formula may be extended by modeling of the censoring distribution given
X, Z. Let Ni(t) = I(Ti ≤ t, εi = 1), Yi(t) = 1 − Ni(t−), Gc(t) = P (C ≥ t)
and Ĝc be the Kaplan-Meier estimator of Gc. Note that Ni(t) and Yi(t)
typically will not be fully observed because of possible censorings. Let also
ri(t) = I(Ci ≥ Ti∧ t) be the indicator that is one if a subject is uncensored
an 0 otherwise. The subdistribution approach can roughly speaking be de-
scribed as direct modeling of ri(t)dNi(t), what we do now is to model the
0/1 response ri(t)Ni(t) directly.

We shall consider time-varying regression models for the cumulative in-
cidence probability for cause 1 (P1(t|X))

h(1 − P1(t|X)) = −XT η(t), (10.14)

where h is some known link function, X = (1, x1, . . . , xp)T and η(t) then
give the effects of X on the cumulative incidence curve.

(a) Assume that a underlying subdistribution hazard is additive, what
model (10.14) does this lead to. Similarly when the subdistribution
is on Cox form.

(b) First assume that all subjects are uncensored. How would you esti-
mate η(t)? Give an estimating equation.

(c) Now, assume that the censoring distribution is known. Compute the
mean of Ni(t)ri(t)/Gc(Ti) conditional on Xi. Use this to suggest an
estimating equation for estimation of η(t).
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(d) Based on previous questions, suggest an estimating equation based
on observed data, and justify that it will lead to sensible estimates.

(e) Given that it can be established that n1/2(η̂(t) − η(t)) converges to-
wards a Gaussian process with a variance that can be estimated by
Ψ̂(t), construct a 95 % pointwise confidence interval for P1(t, X).

(f) Now consider the partially semiparametric model

log(1 − P1(t|data, X, Z)) = −
(
XT η(t) + g(γ, Z, t)

)
,

where X = (1, x1, . . . , xp) is a (p+1)×1 vector, g is a known function
which is differentiable with respect to γ, Z is a q1 × 1 vector and γ is
a q2×1 vector. How would you estimate the parameters of this model
based on estimating equations as above?



11
Marked point process models

In biomedical research one often encounters responses and covariates col-
lected over time for independent subjects. These types of data are called
longitudinal data. When evaluating the effect of growth-hormones on hu-
man growth for example, the typical design consists of following a group
of patients with different treatment regimes over time. In this case the re-
sponse is their height or growth velocity and the purpose of the study may
be to describe the treatment effect possibly corrected for other potentially
important factors.

Longitudinal data can be described as a marked point process. This is
simply a matter of considering the triplets consisting of the responses, the
observation times and covariates as a collection of timings and marks (re-
sponses and covariates). In this chapter we shall look at models that de-
scribe the relationship between a set of covariates and the response. This
section is intended as a brief illustration of how models similar to those
presented earlier can be formulated as models for the mean of the response
in a longitudinal data setting. We shall consider the time-varying additive
models where the mean of the responses at time t given covariates can be
written as

XT
β (t)β(t) + XT

γ (t)γ,

where Xβ(t) is a p-dimensional time-dependent covariate, β(t) is a p-dimen-
sional regression coefficient function of locally integrable functions, Xγ(t)
is a q-dimensional time-dependent covariate vector and γ is q-dimensional
vector of regression coefficients that does not depend on time. Some covari-
ate effects are thus time-varying and others are assumed to be constant. For
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this model we will show how one can estimate the cumulative regression
coefficient functions B(t) =

∫
β(s)ds and the regression coefficients γ us-

ing techniques very similar to those applied for the Aalen additive hazards
model studied in Chapter 5.

The model where γ = 0 has been receiving a lot of attention recently, and
some key references include Hastie & Tibshirani (1993), Brumback & Rice
(1998), Fan & Zhang (1999, 2000b,a), Wu et al. (1998), and Hoover et al.
(1998). These papers take a more classical smoothing based approach for
estimating the time-varying regression coefficients in contrast to our direct
estimation of the cumulative regression coefficients.

Example 11.0.1 (CD4-data)

The AIDS dataset described, for example, in Huang et al. (2002), is a subset
from the Multicenter AIDS Cohort Study. The data include the repeated
measurements of CD4 cell counts and percentages of 283 homosexual men
who became HIV-positive between 1984 and 1991. Details about the design,
methods and medical implications of the study can be found in Kaslow et al.
(1987). All individuals were scheduled to have their measurements made
at semi-annual visits, but, because many individuals missed some of their
scheduled visits and the HIV infections happened randomly during the
study, there are unequal numbers of repeated measurements and different
measurement times per individual.

These data have previously been analyzed by Fan & Zhang (2000a),
Wu & Chiang (2000) and Huang et al. (2002) who all considered varying-
coefficient models. Their analysis aimed at describing the trend of the mean
CD4 percentage depletion over time, and to evaluate the effects of cigarette
smoking, pre-HIV infection CD4 percentage and age at infection on mean
CD4 percentage after the infection. The model they considered was

E(Z(t) |X1, X2, X3) = β0(t) + β1(t)X1 + β2(t)X2 + β3(t)X3,

where X1 is 1 or 0 if the individual ever or never smoked cigarettes, respec-
tively, after the HIV-infection; X2 is the centered age at HIV-infection and
X3 is the centered pre-infection CD4 percentage. �

We now describe how the longitudinal data may be considered as a
marked point process. The longitudinal data for the ith subject, i = 1, . . . , n,
is denoted by

(T k
i , Zk

i , Xi(t)) (11.1)

where T k
i is the time-point for the kth measurement Zk

i of the longitudinal
response variable, and Xi(t) is a time-dependent piecewise constant or de-
terministic (given past information) covariate (q × 1) associated with the
ith subject. The covariates can reflect internal information such as the time
since the previous measurement and the previous level of response as well
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as external information in terms of other covariate information such as sex
and treatment. We assume that we observe n independent subjects over
the time-period [0, τ ] from the generic model described below.

The (T k
i , Zk

i ) constitutes a marked point process, T k
i being the kth jump

time and Zk
i the associated mark. The marks (Zk

i ) take their values in the
measurable space (E, E) referred to as the mark space. In the longitudinal
data setting the mark space is equivalent to � with the Borel σ-field.

To each Ai ∈ E there is associated a point process

Ni(t)(Ai) =
∑
k≥1

1(Zk
i ∈Ai)1(T k

i ≤t),

with Ni(t) = Ni(t)(E), i = 1, . . . , n, denoting the basic point processes. The
marked point processes can also be identified by their respective induced
counting measure pi(ds × dzi) defined by

pi((0, t] × Ai) = Ni(t)(Ai), Ai ∈ E .

We consider a history Ft = F1
t ∨ · · · ∨ Fn

t such that

F i
t ⊃ Fpi

t , t ≥ 0,

where Fpi

t is the history generated by the ith marked point process. The
pi(ds × dzi) admits the (P,Ft)-intensity kernel λi

t(dzi) = λi(t)Φi
t(dzi), i =

1, . . . , n, that is, λi(t)Φi
t(Ai) is the intensity of the point process Ni(t)(Ai),

Ai ∈ E . The history

σ{T l
i , Z

l
i , 1 ≤ l ≤ k − 1; T k

i ; (Xi(t) : t ≤ T k
i )} (11.2)

of all observations up to and including T k
i is denoted by F i

T k
i −. An impor-

tant relation is
Φi

T k
i
(Ai) = P (Zk

i ∈ Ai | F i
T k

i −),

that is, Φi
t is the conditional mark distribution given the past up to and

including the time-point where the mark is obtained.
The key point of marked point process theory here is that cumulating

the responses (and more generally predictable functions of the response)
over time gives rise to a martingale decomposition, where the compensator
involves the conditional distribution of the responses given the accrued
information up to that point in time. To be more specific, let Hi be a
Ft-predictable process (determined by the past), see Section 2.4, then the
marked point process integral∫ t

0

∫
E

Hi(s, zi)pi(ds × dzi),
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which is nothing but the sum∑
k

Hi(T k
i , Zk

i )I(T k
i ≤ t),

may be decomposed as∫ t

0

λi(s)
(∫

E

Hi(s, zi)Φi
s(dzi)

)
ds +

∫ t

0

∫
E

Hi(s, zi)qi(ds × dzi),

where qi(dt×dzi) = pi(dt×dzi)−λi(t)Φi
t(dzi)dt is a martingale. We assume

that the intensity λi(t) can be written as Yi(t)αi(t) where Yi(t) is an indica-
tor variable keeping track of whether or not subject i is still at study at time
t, and αi(t) is a deterministic function given the accrued information up
to time t−. This assumption formally restricts the model to measurement
times that are varying continuously in time. Although the methodology
may be extended to deal with a mix of fixed measurement times and ran-
domly varying measurement times we here consider only the case where
the measurement times come from an absolute continuous distribution or
at least where it is reasonably such a model as an approximation.

Example 11.0.2 (Two sample situation)

Assume for the moment that we have only one measurement per subject and
that they are naturally divided into two groups. Denote data by (Zij , Tij)
where index j = 1, 2 identifies group, and i = 1, ..., nj are the subjects
within groups, and n = n1 + n2 are the total number of subjects. Let

E(Zij |Tij = t) =
∫

E

zijΦ
ij
t (dzij) = βj(t),

be the mean value of the response in the jth group at time t. Assume
further that there is no difference between the groups with respect to how
measurements are sampled over time, and let α(t) denote the sampling
hazard. We here initially assume that the sampling hazard is equivalent
for the two groups and below return to the situation where the sampling
hazard depends on group status and more generally covariates. Suppose we
want to test the hypothesis

H0 : β1(t) = β2(t) for all t.

Let Bjα(t) =
∫ t

0
βj(s)α(s) ds and Bα(t) =

∫ t

0
β(s)α(s) ds, where β(t)

denotes the common value of β1(t) and β2(t) under the hypothesis. Let
further

Y·j(t) =
nj∑
i=1

I(t ≤ Tij)
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and
Y··(t) = Y·1(t) + Y·2(t).

We have the decomposition∑
i

∫
E

zijpij(dt × dzij) = α(t)Y·j(t)dBj(t) +
∑

i

∫
E

zijqij(dt × dzij),

and under H0∑
i,j

∫
E

zijpij(dt × dzij) = α(t)Y··(t)dB(t) +
∑
i,j

∫
E

zijqij(dt × dzij)

leading to the estimators

B̂jα(t) =
∑

i

∫ t

0

∫
E

zij

Y·j(s)pij(dt × dzij) =
∑

i

Zij

Y·j(Tij)
I(Tij ≤ t),

B̂α(t) =
∑
i,j

∫ t

0

∫
E

zij

Y··(s)pij(dt × dzij) =
∑
i,j

Zij

Y··(Tij)
I(Tij ≤ t).

Let B̃1α(t) =
∫ t

0 J(s)dB̂α(s), J(t) = I(Y·1(t) > 0). We may now construct
test statistics based on

R(t) =
∫ t

0

w(s) d(B̂1α − B̃1α)(s),

which, under H0, has compensator∫ t

0

w(s)J(s)α(s)dB(s) −
∫ t

0

w(s)J(s)α(s)dB(s) = 0.

In the above two displays, w(t) denotes a weight function. Thus, under H0,

R(t) =
∫ t

0

w(s) d(B̂1α − B̃1α)(s)

=
∑

i

∫ t

0

∫
E

w(s)J(s)
zi1

Y·1(s)qi1(dt × dzi1)

−
∑
i,j

∫ t

0

∫
E

w(s)J(s)
zij

Y··(s)qij(dt × dzij)

=M(t),

which (properly normed) converges to a Gaussian martingale. The asymp-
totic variance may be estimated consistently by the quadratic variation
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process

[M ](t) =
∑

i

w2(Ti1)J(Ti1)(Zi1)2
(

1
Y·1(Ti1)

− 1
Y··(Ti1)

)2

I(Ti1 ≤ t)

−
∑

i

w2(Ti2)J(Ti2)(Zi2)2
1

Y 2··(Ti2)
I(Ti2 ≤ t).

A natural test statistic is
R2(τ)/[M ](τ)

which, under H0, is asymptotically χ2(1). One may also perform a supre-
mum test that rejects at level α by

sup
t≤τ

|R(t)[M ](τ)1/2([M ](τ) + [M ](t))−1| ≥ dα,

where dα is the (1 − α)-quantile in the distribution of

sup
t∈[0,1/2]

|B0(t)|,

see Chapter 2 for selected values of dα. If the sampling intensities are ex-
pected to be different between groups then this should be reflected in the
above test statistic. We return to this in Examples 11.1.3 and 11.4.1. �

11.1 Nonparametric additive model for
longitudinal data

Consider the situation where several covariates are present, denoted by
Xi(t) (q-dimensional) for the ith subject. In the following we develop mod-
els for the conditional mean

mi(t) =
∫

E

ziΦi
t(dzi)

of the longitudinal response given the accrued information. Throughout it
is assumed that the variance function σ2(t) =

∫
E

(zi − mi(t))2Φi
t(dzi) is

independent of i. Most of the considered estimators does not utilize this
assumption about the variance of the responses, so results are valid even
with more flexible models for the variance of the responses.

Our focus is on models that allow for time-dependent effects of the co-
variates. To enhance estimation and inference some structure on the models
is needed and we impose the additive structure:

mi(t) = β0(t) + β1(t)Xi1(t) + · · · + βq(t)Xiq(t), (11.3)
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where β0(t), . . . , βq(t) are unspecified locally integrable time-dependent re-
gression functions. The above additive model will often give a good fit to
data since it is a first order Taylor expansion of a general conditional mean
function around the zero-covariate, but we note that other models may also
be relevant, see e.g. Cheng & Wei (2000).

The above conditional mean model may also be written as

E{Zi(T k
i )|F i

T k
i −} = β0(T k

i ) + β1(T k
i )Xi1(T k

i ) + · · · + βq(T k
i )Xiq(T k

i ),

where the history we condition on, see (11.2), contains the accrued infor-
mation about the particular subject up to and including time-point T k

i .
Notice the resemblance of model (11.3) with the Aalen additive model de-
scribed in Chapter 5. The nice feature of these two models is that the effect
of the explanatory variables are allowed to change with time hence accom-
modating, for example, for a situation where a time-dependent treatment
effect is suspected. As is the case for the Aalen additive hazards model
it turns out that it is easy to estimate the cumulative regression functions
B(t) =

∫ t

0
β(s)ds, where β(t) = (β1(t), ..., βq(t))T . We shall see in a moment

that these appear very naturally in the compensator for a certain marked
point process constructed by cumulating the responses over time. To begin
with we assume a covariate independent sampling hazard α(t). Cumulating
the responses for the ith subject gives the following decomposition∑

k

Zk
i I(T k

i ≤ t) =
∫ t

0

∫
E

zi pi(ds × dzi)

=
∫ t

0

α(s)Yi(s)mi(s) ds +
∫ t

0

∫
E

zi qi(ds × dzi)

=
∫ t

0

α(s)Yi(s)XT
i (s) dB(s) +

∫ t

0

∫
E

zi qi(ds × dzi),

where
XT

i (t) = (1, Xi1(t), . . . , Xiq(t))

for i = 1, . . . , n. Collecting these n equations in one vector equation, we
obtain∫ t

0

∫
E

D(z) p(ds × dz) =
∫ t

0

α(s)Y (s) dB(s) +
∫ t

0

∫
E

D(z) q(ds × dz)

(11.4)
where z = (z1, . . . , zn), D(z) = diag(z),

p(dt × dz) = (p1(dt × dz1), . . . , pn(dt × dzn))T ,

q(dt × dz) = (q1(dt × dz1), . . . , qn(dt × dzn))T ,

and Y (t) = (Yij(t)) is the n × (q + 1)-matrix with ith row, i = 1, . . . , n,
given by Yi(t)XT

i (t).
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Writing (11.4) on differential form∫
E

D(z) p(dt × dz) = α(t)Y (t) dB(t) +
∫

E

D(z) q(dt × dz),

where E(
∫

E
D(z) q(dt × dz)) = 0, motivates least squares estimators for

B(t) on the form

B̂(t) =
∫ t

0

∫
E

J(s)
α̂(s)

Y −(s)D(z) p(ds × dz) (11.5)

where α̂(t) is an estimate of α(t), Y −(t) is a predictable generalized inverse
of Y (t). One choice of generalized inverse is

Y −(t) = (Y (t)T Y (t))−1Y (t)T .

Using (11.5) we need to specify an estimate of α(t). For simplicity we
suggest to use a kernel smoothing estimate, that is, we let

α̂(t) =
1
bn

∫
K(

t − s

bn
) dÂ(s),

where Â(t) =
∫ t

0
1

Y·(s) dN·(s), Y·(t) =
∑

i Yi(t), N·(t) =
∑

i Ni(t), K is
a bounded kernel function with support [−1, 1], and bn is the bandwidth.
The properties of the estimator (11.5) are stated below.

Theorem 11.1.1 Assume that α(t) is continuous differentiable and bounded
away from zero on [0, τ ], α̂(t) is uniformly consistent and bn → 0, n1/2b2

n →
0. Then, under regularity conditions,

n1/2(B̂ − B) D→ U as n → ∞

in D[0, τ ]q+1, where U is a zero-mean Gaussian martingale with variance
function Φ(t).

Proof. Let B∗(t) =
R t

0
J(s)β(s) ds. Under the regularity conditions

stated in Martinussen & Scheike (2000) it may be seen that n1/2(B̂ − B)
and n1/2(B̂ − B∗) have the same limiting distribution. Now,

n1/2(B̂ − B∗)(t) =∆(t) (11.6)

+ n1/2

Z t

0

J(s)

α̂(s)
β(s) d(Â(s) − Ã(s)),

with

∆(t) = n1/2

Z t

0

J(s)

α̂(s)
Y −(s) dM(z)(s) − n1/2

Z t

0

J(s)

α̂(s)
β(s) d(Â(s) − A(s))
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and where Â(t) =
R t

0
1

Y·(s) dN·(s) and Ã(t) =
R t

0
α̂(s) ds. Interchanging

integration order in
R t

0
α̂(s) ds and using a Taylor expansion, it can be

seen that

sup
t∈[0,τ ]

(Â(t) − Ã(t)) = Op(b2
n).

Hence, the last term on the right-hand side of (11.6) converges uniformly
to zero in probability. We may write ∆(t) as

∆(t) = n1/2

Z t

0

Z
E

J(s)

α̂(s)
Y −(s)(D(z)− 1

Y·(s)Y (s)β(s)a)q(ds× dz) (11.7)

where q(ds × dz) = (q1(ds × dz1), . . . , qn(ds × dzn))T and a is the 1 × n-
vector (1, . . . , 1). We may replace α̂(t) by α(t) in ∆(t) and still obtain the
same limiting distribution, this is a consequence of for example Lenglart’s
inequality when we use a predictable version of α̂, otherwise the analy-
sis becomes more complicated. The jth component of ∆(t) may then be
written as

∆j(t) =

nX
i=1

Z t

0

Z
E

n−1/2 J(s)

α(s)
(Vji(s)zi − βj(s)

n−1Y·(s) )qi(ds × dzi)

=

nX
i=1

Mi(Hij)(t),

where

Hij(t, zi) = n−1/2 J(s)

α(s)
(Vji(s)zi − βj(s)

n−1Y·(s) )

with Vji(t) =
Pp

l=0(n
−1R(2)(t))−1

jl Yil(t) and with R(2)(t) = Y T (t)Y (t).
To identify the asymptotic variance, we compute the predictable variation
process of ∆(t) (suppressing the dependency of time in the integrands)

〈∆j , ∆k〉(t) =

pX
l,m=0

Z t

0

J

α
(n−1R(2))−1

jl (n−1R(2))−1
km(n−1

nX
i=1

YilYim

× (

pX
f,g=0

YifYigβfβg + σ2)) ds −
Z t

0

Jβjβk

αn−1Y· ds,

which converges in probability. We will now turn to the Lindeberg con-
dition in the martingale central limit theorem. The process containing all
the jumps of ∆j(t) larger in absolute value than ε is given by

∆jε(t) =
nX

i=1

Z t

0

Z
E

1

n1/2

1

α(s)
(Vji(s)zi − βj(s)

n−1Y·(s) )

× I(n−1/2 1

α(s)
|Vji(s)zi − βj(s)

n−1Y·(s) | > ε)qi(ds × dzi).
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The predictable variation process for ∆jε(t) is

〈∆jε〉(t) =
nX

i=1

Z t

0

Z
E

1

n

Yi(s)

α(s)
(Vji(s)zi − βj(s)

n−1Y·(s) )2

× I(n−1/2 1

α(s)
|Vji(s)zi − βj(s)

n−1Y·(s) | > ε)Φi
s(dzi) ds

and we have to show that 〈∆jε〉(t) p→ 0 as n → ∞.

By applying the elementary inequality

(a − b)2I(|a − b| > ε) ≤ 4a2I(|a| > ε/2) + 4b2I(|b| > ε/2)

twice, it may be seen that

〈Xjε〉(t) ≤(c1G
(n)
1 )216

Z t

0

1

α(s)
(
1

n

nX
i=1

V 2
ji(s))

16

ε2
η(s) ds

+ 16

Z t

0

1

α(s)
(
1

n

nX
i=1

V 2
ji(s)m

2
i (s))I(c2G

(n)
2 > ε/4) ds

+ 4

Z t

0

β2
j (s)

α(s)n−1Y·(s)I(n−1/2 1

α(s)
| βj(s)

n−1Y·(s) | > ε/2) ds

where c1 and c2 are (finite) constants. Again, under regularity conditions,

it may be seen that 〈∆jε〉(t) p→ 0 as n → ∞, and this completes the
proof. �

The variance-covariance matrix of the limit distribution of n1/2(B̂ − B)
may be estimated consistently by the quadratic variation process

Φ̂(t) = [∆](t),

∆(t) is the main martingale term of n1/2(B̂ − B), see (11.7) above.
We now consider a worked example that illustrates the use of the esti-

mators.

Example 11.1.1 (CD4-data)

Consider the data introduced in Example 11.0.1 on post-infection CD4
percentage. To begin with we consider the conditional mean model

mi(t) = β0(t) + β1(t)Xi1 + β2(t)Xi2 + β3(t)Xi3(t),

where X1 is smoking, X2 is age at HIV-infection and X3(t) is the at time t
previous measured response. Both X2 and X3 were centered around their
respective averages. The above model may be fitted using the function
dynreg of timereg as shown below.
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FIGURE 11.1: CD4-data. Estimated cumulative coefficients functions for
the baseline CD4 percentage and the effects of smoking, age and previous
response. Curves are shown along with 95% pointwise confidence limits and
95% Hall-Wellner bands

> age.c<-age-mean(age)

> cd4.prev.c<-cd4.prev-mean(cd4.prev)

> indi<-rep(1,length(cd4$lt))

> fit.cd4<-dynreg(cd4~smoke+age.c+cd4.prev.c,data=cd4,

+ Surv(lt,rt,indi)~+1,start.time=0,max.time=5.5,id=cd4$id,

+ n.sim=500,bandwidth=0.15,meansub=1)

> plot(fit.cd4,hw.ci=2)

The plot command gives the estimated cumulatives along with 95% point-
wise confidence intervals and the 95% Hall-Wellner band. �

An important technical requirement to obtain the above asymptotic re-
sult is that we have to undersmooth when estimating α(t). The optimal
bandwidth bn,opt (for a kernel smoother) is is of order n−1/5 such that it
balances the effect of the“squared bias term”and the“variance term”of the
mean integrated squared error term in an optimal way. We have, however,
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to require that n1/2b2
n → 0 and therefore that bn converges faster to zero

than bn,opt.

Example 11.1.2 (Smoothing and choice of bandwidth)

Consider the standard i.i.d. regression data set-up consisting of i.i.d. sam-
ples from the model

Zi = m(Ti) + εi

where εi are zero mean with variance σ2 and Ti is non-negative positive
with density f(s). The Nadarya-Watson estimator of m is given as

m̂(x) =
∑

i ZiKb(x − Ti)∑
i Kb(x − Ti)

,

where Kb(t) = b−1K(t/b). Define H(x) =
∫ x

0
m(t)dt and Ĥ(x) =

∫ x

0
m̂(t)dt.

Scheike & Zhang (1998) showed that if the bandwidth b satisfies that
n1/2b2 → 0 it follows that n1/2(Ĥ(x) − H(x)) converges to a Gaussian
martingale with variance function Φ(x) =

∫ x

0
σ2(s)/f(s)ds.

To estimate m(x) (for twice continuously differentiable m) the asymp-
totically optimal bandwidth is

b(x) = (V (x)/(4L2(x)))1/5n−1/5,

where the bias is

L(x) = dK(m′′(x)f(x) + 2m′(x)f ′(x))/(2f(x))

and the variance is
V (x) = cKσ2(x)/f(x),

see, e.g., Härdle (1990) or Simonoff (1996) for more details on plug-in band-
width selection.

In an unpublished report Scheike & Zhang derived the optimal choice of
bandwidth for estimation of cumulative regression coefficients. Based on a
higher order asymptotic expansion it follows that the optimal bandwidth
for estimating H(x) is given as

bH(x) =
(

VH(x)
4L2

H(x)

)1/5

n−2/5

with
LH(x) =

∫ s

0

L(s)ds, VH(x) = cK

∫ x

0

σ2(s)/f2(s)ds.

Harboe & Scheike (2001) assumed that the mean of the longitudinal
response at time t were on the time-varying regression form m(t, X) =
XT (t)β(t) and then estimated β(t) by local linear regression techniques
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as in Wu et al. (1998). These estimates were then combined to estimate
B̂S(t) =

∫ T

0
β̂(s)ds, and a uniform asymptotic description of the estimates

of the cumulatives was derived. Optimal bandwidth choice for estimating
cumulative time-varying regression coefficients models based on higher or-
der asymptotics should therefore also be possible and should have similar
structure to those given in the simple nonparametric regression case. �

In the one-sample situation, that is without any covariates, we get the
that the asymptotic variance of n1/2(B̂(t) − B(t)) is∫ t

0

σ2(s)
α(s)y(s)

ds,

where y(t) is the limit in probability of n−1Y·(t), just as in the for the
nonparametric regression set-up we considered in the previous example.

Considering one component of the cumulative regression functions, Bj(t),
say, one may now wish to test if this component is equal to zero. This is
done easily through the above Theorem 11.1.1. Let Φ̂jj(t) denote element
(j, j) of Φ̂(t). A simple test statistic that is useful if Bj is monotone is

n1/2 B̂j(τ)

Φ̂1/2
jj (τ)

,

which is asymptotically standard normal under the null.
Alternatively, when the studied regression functions are not consistently

positive or negative one may use a maximal deviation test statistic of the
process

ξj(t) = B̂j(t)(Φ̂jj(τ))1/2(Φ̂jj(t) + Φ̂jj(τ))−1,

which converges to a time-changed Brownian bridge. Therefore

sup
t∈[0,τ ]

|ξj(t)|

converges to the supremum of the limit distribution.
We now return to the two sample situation in a situation where the

sampling intensities may depend on group status. In the following section
that extends the models to semiparametric regression models we extend
this even further to allow the sampling intensities to depend on covariates.

Example 11.1.3 (Two sample situation (Continued))

Consider the two sample situation described in Example 11.0.2 but now
with the complication that the sampling intensities are different in the two
groups. Denote them by αj(t), j = 1, 2. We still want to investigate the
null

H0 : β1(t) = β2(t) for all t.
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The decomposition∑
i

∫
E

zijpij(dt × dzij) = αj(t)Y·j(t)dBj(t) +
∑

i

∫
E

zijqij(dt × dzij),

and under H0∑
i,j

∫
E

zijpij(dt × dzij) = (α1(t)Y·1(t) + α2(t)Y·2(t))dB(t)

+
∑
i,j

∫
E

zijqij(dt × dzij).

lead to the estimators

B̂j(t) =
∑

i

∫ t

0

∫
E

zij

α̂j(s)Y·j(s)pij(dt × dzij),

B̃(t) =
∑
i,j

∫ t

0

∫
E

zij

(α̂1(s)Y·1(s) + α̂2(s)Y·2(s))pij(dt × dzij),

where α̂j(t), j = 1, 2, are obtained by smoothing the Nelson-Aalen estima-
tors ∫ t

0

1
Y·j(s)dN·j(t),

where Nij(t) = I(Tij ≤ t). One may now construct test statistics based on

R(t) =
∫ t

0

w(s) d(B̂1 − B̃1)(s),

where w(t) denotes a weight function, and B̃1(t) =
∫ t

0 J(s)dB̃(s) with
J(t) = I(Y·1(t) > 0). We may write

B̂1(t) =
∫ t

0

J(s) dB(s) +
∑

i

∫ t

0

∫
E

(zi1 − β(s))
α̂1(s)Y·1(s) qi1(ds × dzi1) + Op(b2)

and

B̃1(t) =
∫ t

0

J(s) dB(s)

+
∑
i,j

∫ t

0

∫
E

(zij − β(s))
(α̂1(s)Y·1(s) + α̂2(s)Y·2(s))qij(ds × dzij) + Op(b2).

If we choose the bandwidth parameter such that n1/2b2 converges to zero
then we may use the above decompositions to show that R(t) (properly
normed) converges to a Gaussian martingale. �
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11.2 Semiparametric additive model for
longitudinal data

The time-varying coefficient model described in the previous section pro-
vides a nice graphical summary of the time-dynamics of the covariates and
further allow for inference about the covariate effects. It is often of inter-
est, however, to consider semiparametric submodels. A relevant hypothesis
about the effect of a given covariate, for example, is whether in fact its effect
on the response changes with time or whether it is constant. In any case
it is always desirable to try to simplify models to obtain the most precise
description of the covariates effects on the response. A natural submodel
to consider is therefore

mi(t) = XT
βi(t)β

T (t) + XT
γi(t)γ (11.8)

where β(t) = (β1(t), . . . , βq(t))T are unspecified locally integrable time-
dependent regression functions and γ = (γ1, . . . , γp)T are unknown param-
eters. The covariate Xi(t) is thus grouped into two subsets, Xβi(t), whose
effects are allowed to vary with time and Xγi(t) whose effects are constant.

In some situations it may further not be reasonable to assume that the
sampling intensity for the ith subject Yi(t)α(t) is independent of covariates.
Here one should keep in mind that the intensity is the conditional mean
of the increment of the counting process Ni(t) that counts the number of
measurements given what has been observed so far for that subject. The
observed history for some subjects can imply that they are more eligible
to being measured. In such situations it may be more appropriate to let
the measurement intensity depend on covariates. We start by leaving the
intensity totally unspecified and later add some regression structure for the
sampling intensities.

The approach is as in the previous sections, that is, we decompose a
certain marked point process into its compensator and its martingale. The
measurement intensities will show up in the compensator and somehow this
should be accounted for when estimating the unknown quantities defining
model (11.8).

The ith marked point process
∑

k Zk
i I(T k

i ≤ t) gives rise to the following
decomposition∫ t

0

∫
E

zi pi(ds × dzi) =
∫ t

0

λi(s)mi(s) ds +
∫ t

0

∫
E

zi qi(ds × dzi),

and again collecting these n equations into one vector equation and writing
it in differential form gives∫

E

D(z) p(dt × dz) =Λ(t)Yβ(t) dB(t) + Λ(t)Yγ(t)γ dt

+
∫

E

D(z) q(dt × dz) (11.9)
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where Λ(t) = diag(λi(t)), Yβ(t) = (Y1(t)Xβ1(t), . . . , Yn(t)Xβn(t))T , and
Yγ(t) are defined similarly. Define also Yλβ(t) = Λ(t)Yβ(t), and similarly
with Yλβ(t).

Suppose for a moment that the intensities λi(t), i = 1, . . . , n, are known.
If we further assume that γ is known then an obvious estimator of B(t)
based on (11.9) is

B̂(γ)(t) =
∫ t

0

∫
E

Y −
λβ(s)D(z) p(ds × dz) −

∫ t

0

Y −
λβ(s)Yλγ(s)γ ds,

where
Y −

λβ(t) = (Y T
β (t)Λ(t)Yβ(t))−1Y T

β (t).

To obtain an estimator of γ we apply equation (11.9) with dB(t) replaced
by dB̂(γ)(t) resulting in

γ̃ =
(∫ τ

0

Y T
γ (t)H(t)Λ(t)Yγ(t)dt

)−1 ∫ τ

0

∫
E

Y T
γ (t)H(t)D(z) p(dt × dz),

(11.10)
where

H(t) = I − Yλβ(t)Y −
λβ(t).

Note that the estimator of γ may be modified to avoid Lebesgue integration
as ∫ τ

0

Y T
γ (t)H(t)Λ(t)Yγ(t)dt ≈

∫ τ

0

Y T
γ (t)H(t)diag(dN(t))Yγ(t). (11.11)

Note also that that H(t) is a projection on the orthogonal space spanned
by the columns of Yλβ(t), and therefore∫

E

H(t)D(z) p(dt × dz) = H(t)Λ(t)Yγ(t)dtγ +
∫

E

H(t)D(z) q(dt × dz),

which shows that difference between γ̃ and the true γ is a martingale. Once
we have obtained the estimate of γ using (11.10) we may then estimate B(t)
by B̂(γ̃)(t).

One problem remains, however, since the above estimators depend on
the individual sampling intensities, which are unknowns. One option is to
build a sufficiently flexible model for the intensities. Note that such a model
can be validated separately without involving the longitudinal measure-
ments using the techniques described in the earlier chapters. Martinussen
& Scheike (2001) applied the Aalen additive model while Lin & Ying (2001)
used the Cox-model. One may also take a fully nonparametric approach as
suggested by Sun & Wu (2005). To illustrate how the latter approach works
note that Λ(t) may be seen as a weight matrix in the above estimators. For
example, in the expression for γ̃, we may rewrite

Y T
γ (t)H(t)Λ(t)Yγ(t)
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as
Y T

γ (t)Λ(t)Yγ(t) − Y T
γ (t)(Y T

β (t)Λ(t)Yβ(t))−1Y T
β (t)Λ(t)Yγ(t).

Terms involving Λ(t), such as Y T
γ (t)Λ(t)Yγ(t), may then be replaced by

kernel estimators as follows:

Y T
γ (t)Λ(t)Yγ(t) =

∑
i

λi(t)Xγi(t)XT
γi(t)

≈
∑

i

1
b

∫
K(

t − s

b
)Xγi(s)XT

γi(s)λi(s) ds

≈
∑

i

1
b

∫
K(

t − s

b
)Xγi(s)XT

γi(s)dNi(s),

where K denotes a kernel and b a bandwidth. This approach is clearly ap-
pealing because it avoids any modeling of the sampling intensities that in
this context are nuisance parameters. On the other hand it is our experi-
ence that often very simple models will be able to describe the sampling
intensities, and the inferred estimators of (B(t), γ) may have better small
sample properties borrowing strength from the model for the intensities. It
remains of course important to validate the intensity model.

Smoothing of the underlying sampling intensities can be avoided at a
price, as we indicate in the following example.

Example 11.2.1 (Testing and Estimation without smoothing)

Consider the simple nonparametric regression model with i.i.d. samples
from the two sample model

Zi,j = mj(Ti,j) + εi,j j = 1, 2

where εi,j are zero mean residuals with variance σ2
j and Ti,k is positive

with density fj(s). As earlier we let nj for j = 1, 2 denote the number of
observations within each group. Let the ordered design points within each
sample and their corresponding response values be denoted (T(i,j), Z(i,j))
(T(i,j) < T(i+1,j)).

A Priestley-Chao type estimator of Bj(x) =
∫ x

0
mj(s)ds (Priestley &

Chao, 1972) is given by

B̂j(t) =
n∑

i=1

Z(i,j)(T(i,j) − T(i−1,j))I(T(i,j) < t) + Z(i+1,j)(t − T(i,j))

for k = 1, 2. Let also n = n1 + n2.
It can be derived (Scheike, 2000) that n

1/2
j (B̂j(t) − Bj(t)) converge to

a Gaussian martingale process with variance function 2
∫ x

0
σ2

j (s)/fj(s)ds.
When the design points are fixed the factor two disappears. The price for
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not doing smoothing is therefore that the variance is twice as big. Sun & Wu
(2003) extended this to the longitudinal data setting and gave a detailed
proof. �

In the following we outline the large sample properties of the estimators
(11.10) and B̂(γ̃, t) assuming that the measurement intensities may be de-
scribed by Aalen’s additive intensity model. The Aalen additive hazards
model assumes that

λi(t) = Yi(t)XT
αi(t)α(t),

where Yi(t) is the at risk indicator, α(t) = (α1(t), . . . , αu(t))T is a vector
of unspecified locally integrable time-dependent regression functions and
Xαi(t) are covariates. As mentioned earlier this model will often provide
a good fit to data since it is a first order Taylor expansion of the true
intensity.

As mentioned earlier, the estimator of γ may be modified avoiding Lebesgue
integration leading to

γ̂ =
(∫ τ

0

Y T
γ (s)Ĥ(s)diag(Yα(s)Y −

α (s)p(ds × dz))Yγ(s)
)−1

×
∫ τ

0

∫
E

Y T
γ (s)Ĥ(s)D(z) p(ds × dz)

using that Ŷλγ(t) = diag(Yα(t)α̂(t))Yγ(t) where for these expressions f̂(t) =
f(α̂, t) for a function f of α, and α̂ is the estimate of α based on Aalen’s
model.

The asymptotic distributions of the estimators may now be derived under
the regularity conditions stated Martinussen & Scheike (2001). Under these
conditions it may be shown that

n1/2(γ̂ − γ) = n1/2C1

∫ τ

0

∫
E

H1(t, z) q(dt × dz) + Op(n1/2b2),

where

C1 =
(∫ τ

0

∫
E

Y T
γ (t)Ĥ(t)diag(Yα(t)Y −

α (t)p(dt × dz))Yγ(t)
)−1

and

H1(t, z) = Y T
γ (t)Ĥ(t)

(
D(z) − diag (Yβ(t)β(t) + Yγ(t)γ) Yα(t)Y −

α (t)
)
.

Define an estimate Ĥ1(t, z) of H1(t, z) by replacing β(t) and γ by their esti-
mates. The variance of the above martingale may be estimated consistently
by

nCT
1

∫ τ

0

∫
E

Ĥ2(s, z)T p(ds × dz)Ĥ2(s, z)C1.
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The non-parametric components in the semi-parametric model are asymp-
totically jointly Gaussian

n1/2(B̂(γ̂)(t) − B(t)) =n1/2

∫ t

0

∫
E

H2(s, z)q(ds × dz)

−
∫ t

0

Ŷ −
λβ(s)Ŷλγ(s) ds n1/2(γ̂ − γ) + n1/2Op(b2),

where

H2(t, z) = Ŷ −
λβ(t){D(z) − diag(Yβ(t)β(t) + Yγ(t)γ)Yα(t)Y −

α (t)}.

Again undersmoothing (b = o(n−1/4)) is necessary to get the remainder
term to disappear asymptotically. Thus implying that n1/2(B̂(t) − B(t))
is a Gaussian process (asymptotically) with covariance function that is
estimated consistently by (suppressing the dependency on (z, t) in the in-
tegrands)∫ t

0

∫
E

ĤT
3 p(ds × dz)Ĥ3 + C2(t)T

(∫ τ

0

∫
E

ĤT
2 p(dt × dz)Ĥ2

)
C2(t)

− C2(t)
(∫ t

0

∫
E

ĤT
3 p(ds × dz)Ĥ2

)
−
(∫ t

0

∫
E

ĤT
2 p(ds × dz)Ĥ3

)
C2(t)T ,

where C2(t) = n
∫ t

0
Ŷ −

λβ(s)Ŷλγ(s) dsC1.

11.3 Efficient estimation

In the previous section, estimators of the parameters defining the condi-
tional mean of the longitudinal response were developed based on cumu-
lating the response variables over time. Doing so, the unknown parameters
appeared in the compensator, and, based on that, natural estimators were
developed. In this section we discuss how to obtain more efficient estima-
tors.

Assume that the conditional mean of the response is

mi(t) = XT
i (t)β(t)

and that the measurement intensity is

λi(t) = Yi(t)Xαi(t)T α(t).

The estimator suggested in the previous section of B(t) =
∫ t

0 β(s) ds is

B̂(t) =
∫ t

0

∫
E

Ŷ −
λβ(s)D(z) p(ds × dz).
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This estimator has good properties after the responses have been subtracted
their overall mean, but the estimator is not location-shift invariant. There-
fore when the mean of the response is large, one can improve the perfor-
mance of the estimator by subtracting a quantity from D(z) (the responses).
Denote this quantity as f(t) an n×n matrix. To obtain a zero mean process
B̂ − B, f must satisfy that f(t)Yα(t)α(t) = 0. A natural choice is

f(t) = D(E(t))(I − Yα(t)Y −
α (t)) (11.12)

where E(t) = Yβ(t)β(t). Lin & Ying (2001) subtracted fLY (t) defined as
f(t) above where D(E(t)) is replaced by D(Ȳ (t)), and where Ȳ (t) is the
mean of the responses closest in time to t for all subjects. We will proceed
with (11.12) but before proposing the estimator, we give some arguments
on how the generalized inverse should be chosen. The differential of the
marked point process may (asymptotically) be decomposed as∫

E

Λ̂−1(t)(D(z) − f(t)) p(dt × dz)

≈ Yβ(t) dB(t) +
∫

E

Λ̂−1(t)(D(z) − D(E(t))) q(dt × dz), (11.13)

where q(dt × dz) are the basic marked point process martingales. The last
term on the right-hand side of (11.13) may be thought of as the error term
so an optimal strategy will be to weight with the inverse of the variance
of this term when computing the estimator. The variance is given by the
predictable variation, which is

Λ̂−1(t)Λ(t)D(σ2(t))Λ̂−1(t),

where σ2(t) = (σ2
1(t), ..., σ2

n(t)) is the variance of the responses. This ex-
pression for the variance depends only on the sampling intensities and the
variance of the responses. If f is replaced with another function there will
be a bias component additional to the variance of the responses.

Supposing variance homogeneity leads to the estimator

B̂∗(t) =
∫ t

0

∫
E

Ŷ −
λβ(s)(D(z) − f(s)) p(ds × dz), (11.14)

where Ŷ −
λβ(t) = (Y T

β (t)Λ̂(t)Yβ(t))−1Y T
β (t). If there is different variances

across subjects this should be reflected accordingly in the above estimator,
but will not be pursued here. The above estimator has a variance that only
depends on the design and the residual variation of the responses. The esti-
mator is, however, still only asymptotically location-shift invariant. To get
an location-shift invariant estimator we use the asymptotically equivalent
estimator to (11.14):

B̂(t) =
∫ t

0

∫
E

Ŷ −
λβ(s)(D(z) − D(Ẽ(t))) p(ds × dz) +

∫ t

0

β̃(s)ds, (11.15)
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where Ẽ(t) = Yβ(t)β̃(t) and β̃(t) is an initial estimator of β(t). This esti-
mator will typically have better small sample properties than (11.14).

For normally distributed errors one may show that (11.15) is in fact
asymptotically efficient. The derivations of this is outlined in the following
note.

Note. Normally distributed errors
The estimator (11.15) may be derived from the efficient score approach
(Bickel et al., 1993) in the case of normally distributed errors. Assume
that the covariates Xi are time independent and that Zi |Xi, Ti = t ∼
N(Ei(t), σ

2(t)) with Ei(t) = XT
βiβ(t). Let ∂β

∂η
(t) = b(t). The normed score

operator for β is

l̇η(b) = n−1
X

i

Z τ

0

Z
E

„
z − XT

βiβ(t)

σ2(t)

«
XT

βib(t)pi(dt × dz).

Given an initial consistent estimator, β̃(t), of β(t) we obtain

l̇η(b) =n−1
X

i

Z τ

0

Z
E

bT (t)Xβi

„
z − XT

βiβ̃(t)

σ2(t)

«
pi(dt × dz)

− n−1
X

i

Z τ

0

σ−2(t)bT (t)XβiX
T
βiYi(t)λi(t)dB(t)

+ n−1
X

i

Z τ

0

σ−2(t)bT (t)XβiX
T
βiβ̃(t)Yi(t)λi(t) dt + Q

where

Q = n−1
X

i

Z τ

0

Z
E

σ−2(t)bT (t)XβiX
T
βi(β̃(t) − β(t))qi(dt × dz).

If either β̃ is assumed predictable or of bounded variation it follows by
Lenglart’s inequality or by Lemma 1 of Spiekerman & Lin (1998) (see
Chapter 2) that Q converges to zero in probability. Set l̇η(b) = 0 and solve
for B̂(t), ignoring the lower order term Q, gives

Z τ

0

bT (t)
X

i

σ−2(t)XβiX
T
βiYi(t)λi(t)dB̂(t)

=

Z τ

0

bT (t)

Z
E

X
i

Xβi

„
z − XT

βiβ̃(t)

σ2(t)

«
pi(dt × dz) (11.16)

+

Z τ

0

bT (t)
X

i

σ−2(t)XβiX
T
βiYi(t)λi(t)β̃(t) dt.
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Substituting

B̂(t) =

Z t

0

„X
i

XβiX
T
βiYi(s)λi(s)

«−1„Z
E

X
i

Xβi(z − XT
βiβ̃(s))pi(ds × dz)

+
X

i

XβiX
T
βiYi(s)λi(s)β̃(s) ds

«
=

Z t

0

Z
E

`
Y T

β ΛYβ

´−1
Y T

β (D(z) − D(Ẽ))p(ds× dz) +

Z t

0

β̃(s) ds

into (11.16) gives a solution for any function b which is equivalent to
(11.15) when estimates replace the intensity. We now also compute the
information bound for B.

The score operator for β for the generic model is

l̇η(b) =

Z τ

0

Z
E

`z − XT β(t)

σ2(t)

´
XT b(t)p(dt× dz)

=

Z τ

0

Z
E

`z − XT β(t)

σ2(t)

´
XT b(t)q(dt× dz)

where we have dropped the subscript β from the design X. The score
operator, K, is composed of the two operators K = LR:

La =

Z τ

0

Z
E

`z − XT β(t)

σ2(t)

´
a(t, X)q(dt × dz)

and Rb = XT b. We need to find the efficient influence operator K(KT K)−1.
Since

〈a,LT Lb〉 = 〈La, Lb〉 = E(

Z
a(T, X)b(T, X)Y (t)λ(t)σ−2(t) dt)

= E(

Z
a(T, X)b(T, X)σ−2(t) dN(t))

= E(a(T,X)b(T, X)σ−2(T )) = 〈a, bσ−2〉,

we have LT L = σ−2I , and hence K(KT K)−1 = σ2LR(RT R)−1. Also,
since

〈Rb, c〉 = E(XT b(T )c(T, X))

= E(bT (T )E(Xc(T,X) |T )) = 〈b, E(Xc(T, X) |T )〉,

the adjoint operator RT is given by RT c(T ) = E(Xc(T, X) |T ). Therefore

RT Rb(t) = E(XXT b(t) |T = t) = E(XXT |T = t)b(t),

which implies

(RT R)−1b(t) = [E(XXT |T = t)]−1b(t).

We have now calculated the efficient influence operator K(KT K)−1 and
it only remains to evaluate the operator at the gradient of B. Proceeding
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as Sasieni (1992b), it is seen that efficient influence operator should be
evaluated at the scalar function h(·) = 1[0,t](·)/fT (·) where fT denotes
the marginal density function of T . The efficient covariance function is
thus given by

〈K(KT K)−1h〉 = 〈h, σ2(·)(RT R)−1h〉

=

Z t

0

(σ2(s)/fT (s))[E(XXT | T = s)]−1 ds

=

Z t

0

σ2(s)[E(λ(s)XXT Y (s))]−1 ds (11.17)

since E(XXT | T = t)fT (t) = E(λ(t)XXT Y (t)).

For the semiparametric model

mi(t) = XT
βi(t)β(t) + XT

γi(t)γ

the improved estimators are also one-step type estimators. Let (β̃(t), γ̃)
denote the preliminary estimators. The parametric part of the model is
estimated by

γ̂ = C1

∫ τ

0

∫
E

Ŷ T
λγ(s)G(s)Λ̂−1(s)(D(z)−D(Ẽ(s))) p(ds× dz)+ γ̃, (11.18)

where

G(t) = I − Yβ(t)Y −
β (t)), Y −

β (t) = (Y T
β (t)Λ̂(t)Yβ(t))−1Y T

β (t),

and Ẽ(t) = XT
βi(t)β̃(t) + Xγi(t)γ̃ and

C1 =
(∫ τ

0

Ŷ T
γ (s)D(Yα(s)Y −

α (s)dN(s))G(s)Yγ (s)
)−1

. (11.19)

The nonparametric component of the model is estimated as

B̂(γ̂)(t) =
∫ t

0

∫
E

Y −
β (s)Λ̂−1(s)(D(z) − D(Ẽ(s)) p(ds × dz)

+
∫ t

0

β̃(s)ds + C2(t)(γ̂ − γ̃).

11.4 Marginal models

One key assumption in the above derivation of estimators and for the sug-
gested estimators of their variances in particular was that certain martin-
gales appeared. The martingale structure appeared because the considered
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mean models where conditional on the entire past available at that point
in time. Such an approach may be inappropriate in some situations. For
example consider a two sample situation with longitudinal measurements
on each subject (more than one measurement per subject). If the primary
interest is to compare the profiles of two samples, then the conditional
mean of a response (at time t) given the available history is of little use in
this respect as it will most likely involve previous observed responses. In
this situation one should condition on only a part of the history namely the
information to which sample the individual belongs to (Pepe & Couper,
1997). Consider therefore the following marginal model:

E(Z(t) |Xβ(t), Xγ(t) Y (t) = 1) = XT
β (t)β + XT

γ (t)γ, (11.20)

where we only condition on the covariate values at time t and that the
subject is at study. A similar approach is taken with respect to the mea-
surement intensity. Aalen’s additive model is assumed for the conditional
mean of the true intensity given covariates at time t. Letting the intensity
of the sampling times for a subject be denoted φ(t), we assume

λ(t) = E(φ(t)|Y (t), Xβ(t)) = Y (t)XT
α (t)α(t)

with α(t) = (α1(t), . . . , αu(t))T

The primary message of this section is that we compute estimators as if
we have conditioned on the entire history but inference needs to be carried
out differently as we can no longer appeal to martingale calculus.

A key property when developing the estimators in the previous section is
that the compensator of the considered marked point processes is a prod-
uct of a term only involving the measurement intensities and a term only
involving the parameters of interest. This structure arises naturally when
conditioning on the whole past. To ensure a similar structure now where
we only condition on a part of the history we need the following conditional
independence assumption

E(mi(t)ψi(t)|Xβi(t), Yi(t)) =E(mi(t)|Xβi(t), Yi(t))× (11.21)
E(ψi(t)|Xβi(t), Yi(t)).

With this assumption

E(
∫ t

0

Y −
λβ(s)(D(z) − f(s)) p(ds × dz)) = E(

∫ t

0

Y −
λβ(s)Ψ(s)m(s)ds)

= E(
∫ t

0

J(s)β(s)ds),

where J(s) is one when the inverses can be calculated and zero otherwise.
When the level of the response and the sampling intensities are correlated
the marginal models will not result in the same product as Φ(t)m(t). The
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consequence of assumption (11.21) is that when there is some interaction
between the sampling times and the responses this interaction must be
included among the considered covariates Xβ . In other words the partly
conditional mean model must be sufficiently large to make the sampling
times and the responses conditionally independent.

Under regularity conditions and the above assumption (11.21) it may be
shown that n1/2(γ̂ − γ) is asymptotically normal with a covariance matrix
that is estimated consistently by

n
n∑

i=1

ε1,i(τ, γ̂)⊗2

where

ε1,i(t, γ) =
∫ τ

0

∫
E

Yi(s)λ̂i(s)(Xγi(s) − (Ŷλγ(s)T Ŷλβ(s))(Ŷλβ(s)T Ŷλβ(s))−1

× Xβi(s))(z − Ei(s))pi(ds × dz) (11.22)

with Ei(t) = XT
βi(t)β(t) + XT

γi(t)γ.
The asymptotic distribution of n1/2(B̂(t)−B(t)) is asymptotically equiv-

alent to

n1/2
n∑

i=1

ε2,i(t, γ, B)

where

ε2,i(t, γ, B) =ε3,i(t, γ, B) − C2(t)C−1
1 ε1,i(τ, γ),

ε3,i(t, γ, B) =
∫ τ

0

∫
E

(Ŷλβ(s)T Ŷλβ(s))−1Yi(s)Xβi(s)λ̂−1
i (s)

× (z − Ei(s))pi(ds × dz).

Therefore, under regularity conditions, it follows that n1/2(B̂(t) − B(t))
is a zero mean Gaussian process with a covariance function, that can be
estimated consistently by

n
∑

i

ε⊗2
2,i (s, γ̂, B̂)

The asymptotic distribution of n1/2(B̂(t)−B(t)) is further equivalent to

n1/2
n∑

i=1

ε3,i(t, γ̂, B̂)Gi

where Gi are independent standard normals. This may be used to imple-
ment tests and make uniform confidence bands.
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Example 11.4.1 (Two sample situation (Continued))

Consider the two sample situation described in Example 11.0.2 and 11.1.3 in
the situation where the sampling intensities are different in the two groups,
and now also where there are more than one measurement per subject.
Since the interest centers on comparing the longitudinal profiles of the two
groups the conditional approach taken in the two earlier examples is not
appropriate here as the conditional mean of a response given the history
should most likely involve earlier obtained responses.

In this example we hence have that βj(t) and αj(t), j = 1, 2, are the
marginal mean functions and rate functions, respectively, but the estima-
tors are as described in Example 11.1.3. Recall that the number of subjects
in each group are given as n1 and n2, respectively and that n = n1 + n2

such that nj/n → pj for j = 1, 2. We still want to base tests on

R(t) =
∫ t

0

w(s) d(B̂1 − B̃1)(s),

where

B̂1(t) =
∑

i

∫ t

0

∫
E

zi1

α̂1(s)Y·1(s)pi1(dt × dzi1),

B̃1(t) =
∑
i,j

∫ t

0

∫
E

J(s)zij

(α̂1(s)Y·1(s) + α̂2(s)Y·2(s))pij(dt × dzij),

see Example 11.1.3 for further explanations. The asymptotic distribution
hinted at in that example (based on martingale calculus) is, however, no
longer appropriate.

To obtain the limit distribution we need essentially an i.i.d. decomposi-
tion of the involved processes. The independence across subjects will then
give us an estimator of the variance-covariance matrix. Write first

n1/2(B̂1(t) −
∫ t

0

J(s)dB(s)) = n−1/2

∑
i

∫ t

0

1
α̂1(s)n−1Y·1(s)

(∫
E

zi1pi1(dt × dzi1) − α̂1(s)Yi1(s)J(s)dB(s)
)

.

One may show that limit distribution of the quantity in the latter display is
unaltered by replacing α̂1(t) and n−1Y·1(t) by α1(t) and y1(t), respectively,
where y1(t) denotes the limit in probability of n−1Y·1(t). Doing so we then
have the wanted i.i.d. decomposition. Similarly, n1/2(B̃1(t)−

∫ t

0 J(s)dB(s))
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may be decomposed as

n−1/2
∑

i

∫ t

0

1

f̂(s)

(∫
E

zi1pi1(dt × dzi1) − α̂1(s)Yi1(s)J(s)dB(s)
)

+n−1/2
∑

i

∫ t

0

1
f̂(s)

(∫
E

zi2pi2(dt × dzi2) − α̂2(s)Yi2(s)J(s)dB(s)
)

,

where f̂(t) = α̂1(t)n−1Y·1(t)+ α̂2(t)n−1Y·2(t). Again we may replace α̂j(t)
and n−1Y·j(t) by αj(t) and yj(t), j = 1, 2. We therefore have the following
i.i.d. decomposition

n1/2(B̂1(t) − B̃1(t)) =
∑
i,j

Qij(t), (11.23)

where Qij(t) = Qij(t, α1, α2, y1, y2, dB∗) with B∗(t) =
∫ t

0 J(s)dB(s). The
variance-covariance matrix of the right-hand side of (11.23) may therefore
be estimated by ∑

i,j

Q̂⊗2
ij (t),

where Q̂ij(t) = Qij(t, α̂1, α̂2, n
−1Y·1, n−1Y·2, dB̃). �

Example 11.4.2 (CD4-data)

Consider the data introduced in Example 11.0.1 on post-infection CD4
percentage. We consider the marginal model

mi(t) = β0(t) + β1(t)Xi1 + β2(t)Xi2 + β3(t)Xi3,

where X1 is smoking, X2 is age at HIV-infection, X3 is the pre-HIV infec-
tion CD4 percentage. Both X2 and X3 were centered around their respec-
tive averages. Before analyzing the above marginal mean model we take a
look at the sampling rates, considering the model

λi(t) = β̃0(t) + β̃1(t)Xi1 + β̃2(t)Xi2 + β̃3(t)Xi3,

which is analyzed in R as follows (running 2000 simulations to get variance
estimates).

> age.c<-age-mean(age)

> precd4.c<-precd4-mean(precd4)

> rate.fit<-aalen(Surv(lt,rt,indi)~smoke+age.c+precd4.c,data=cd4,

start.time=0,max.time=5.5,id=cd4$id,n.sim=2000)

> plot(rate.fit,sim.ci=2)
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FIGURE 11.2: CD4-data. Estimated cumulative rate coefficients functions
for the baseline CD4 percentage and the effects of smoking, age and pre-
HIV infection CD4 percentage. Curves are shown along with 95% pointwise
confidence limits and a 95% simulation bazsed band

It is seen from Figure 11.2 that there is little indication of any covariate
dependency of the rate function, and we proceed with the ordinary Aalen
multiplicative model. We turn to the marginal mean model using the Aalen
multiplicative model for the rates.

> mfit.cd4<-dynreg(cd4~smoke+age.c+precd4.c,data=cd4,

+ Surv(lt,rt,indi)~+1,start.time=0,max.time=5.5,

id=cd4$id,n.sim=2000,bandwidth=0.2)

Nonparametric Additive Model

Simulations starts N= 2000

> summary(fit.cd4)

> plot(mfit.cd4)

Test for time invariant effects:

sup| B(t) - (t/tau)B(tau)| p-value H_0: B(t)=b t

(Intercept) 9.610 0.0000

smoke 4.920 0.0510
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FIGURE 11.3: CD4-data. Estimated cumulative coefficients functions for
the baseline CD4 percentage and the effects of smoking, age and pre-HIV
infection CD4 percentage. Curves are shown along with 95% pointwise con-
fidence limits

age.c 0.335 0.0615

precd4.c 0.195 0.2640

Figure 11.3 and the above tests for time-invariance indicate that it seems
appropriate to consider the following semi-parametric model

mi(t) = β0(t) + β1(t)Xi1 + β2(t)Xi2 + γ2Xi3,

with constant effect of pre-HIV infection CD4 percentage.

> mfit1.cd4<-dynreg(cd4~smoke+age.c+const(precd4.c),data=cd4,

Surv(lt,rt,indi)~+1,start.time=0,max.time=5.5,

id=cd4$id,n.sim=2000,bandwidth=0.2)

> summary(mfit1.cd4)

Test for time invariant effects:

sup| B(t) - (t/tau)B(tau)| p-value H_0: B(t)=b t

(Intercept) 9.45 0.0000

smoke 5.08 0.0285
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age.c 0.40 0.0170

Parametric terms : const(precd4.c)

Coef. SE Robust SE z P-val

const(precd4.c) 0.363 0.0305 0.0654 1.190 0.234

This suggest that there is a significant indication of the effect of smoking
and age being time-varying while there is significant constant effect of pre-
HIV infection CD4 percentage with point estimate 0.363 (0.065). There
appear to be no effect of smoking the first three years or so and then those
who ever smoked seem to have a higher CD4 cell percentage, see Figure
11.3. The age effect generally decreases and is more pronounced as time
proceeds. �

To give a further illustration of the methodology we now consider the
CSL-data.

Example 11.4.3 (CSL-data)

The CSL1 study were conducted by the Copenhagen Study Group for Liver
Diseases (Schlichting et al., 1983). This was a randomized clinical trial
where the patients were given either prednisone or placebo. During the pe-
riod 1962-69, 532 patients with histologically verified liver cirrhosis were
included in the trial. In 488 patients the initial biopsy could later be re-
evaluated, and we consider only data for these patients. The patients were
followed from the date of entry into the trial to death or the closing date of
the study, 1 September, 1974. A number of clinical and biochemical vari-
ables were registered during the study period. As an illustration, we focus
on the variable prothrombin index, which is a measurement of coagulation
factors II+VII+X produced by the liver. The range of the prothrombin
index in the present dataset is from 6 to 176, where a prothrombin in-
dex above 70% is “normal”. The number of measurements of prothrombin
index for the subjects varies from 1 to 18. The time period that we con-
sider here is the first three years after treatment, which include 70% of the
measurements.

It was planned to take measurements at entry, three, six and twelve
months after start of treatment and thereafter once a year. Nevertheless,
the observed measurement-times cover the whole period. We start by con-
sidering a marginal nonparametric model for the current prothrombin in-
dex, including sex, age, treatment and a baseline prothrombin index as
covariates. Before running the marginal mean model we consider the rate
function using the covariates listed above.

rate.fit<-aalen(Surv(lt,rt,indi)~treat+prot.base+sex+age,data=csl,

start.time=0, max.time=3,n.sim=2000)

> summary(rate.fit)

Additive Aalen Model
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Test for nonparametric terms

Test for non-significant effects

sup| hat B(t)/SD(t) | p-value H_0: B(t)=0

(Intercept) 22.90 0.000

treat 1.73 0.848

prot.base 4.73 0.000

sex 1.41 0.970

age 3.48 0.021

Test for time invariant effects

sup| B(t) - (t/tau)B(tau)| p-value H_0: B(t)=b t

(Intercept) 1.62000 0.000

treat 0.23000 0.220

prot.base 0.00546 0.115

sex 0.11600 0.963

age 0.00875 0.562

All effects appear to be constant or insignificant. One may in fact reduce
the model to include only age and the baseline prothrombin measurement
giving the below output, which shows that the effect of these two is signif-
icant.

rate.fit<-aalen(Surv(lt,rt,indi)~const(prot.base)+const(age),

data=csl,start.time=0, max.time=3,n.sim=2000)

> summary(rate.fit)

Parametric terms :

Coef. SE Robust SE z P-val

const(prot.base) -0.00528 0.00196 0.00106 -26.938 0.000

const(age) 0.00873 0.00441 0.00226 1.979 0.048

We then proceed with the marginal mean model with the rate depending
on age and prot.base:

> mfit.csl<-dynreg(prot~treat+prot.base+sex+age,data=csl,

Surv(lt,rt,indi)~const(prot.base)+const(age),

start.time=0,max.time=3,id=csl$id,

bandwidth=0.2,meansub=1,n.sim=2000)

> plot(mfit.csl)

> summary(mfit.csl)

Dynamic Additive Regression Model

Test for time invariant effects:

sup| B(t) - (t/tau)B(tau)| p-value H_0: B(t)=b t

(Intercept) 7.350 0.2630

treat 8.420 0.0015

prot.base 0.123 0.1090

sex 2.540 0.8750

age 0.211 0.6000
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FIGURE 11.4: CSL-data. Estimated cumulative regression functions along
with 95% pointwise confidence intervals.

As seen from the above output and Figure 11.4 it seems as the effect
of treatment is time-arying while the effect of the remaining covariates is
constant.

> mfit2.csl<-dynreg(prot~treat+const(prot.base)+const(sex)+

const(age),data=csl,Surv(lt,rt,indi)~

const(prot.base)+const(age),start.time=0,

max.time=3,id=csl$id,bandwidth=0.2,meansub=1,

n.sim=2000)

> plot(mfit2.csl)

> summary(mfit2.csl)

Dynamic Additive Regression Model

Nonparametric terms : (Intercept) treat

Test for nonparametric terms

Test for non-significant effects:

sup| hat B(t)/SD(t) | p-value H_0: B(t)=0

(Intercept) 21.80 0

treat 8.19 0
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FIGURE 11.5: CSL-data. Estimated cumulative regression functions along
with 95% pointwise confidence intervals.

Test for time invariant effects:

sup| B(t) - (t/tau)B(tau)| p-value H_0: B(t)=b t

(Intercept) 9.85 0e+00

treat 10.10 5e-04

Parametric terms : const(prot.base) const(sex) const(age)

Coef. SE Robust SE z P-val

const(prot.base) 0.5880 0.0286 0.0418 20.559 0.000

const(sex) -4.7100 1.2100 1.7100 -3.897 0.000

const(age) -0.0525 0.0605 0.0853 -0.867 0.386

We conclude that there is significant effect of sex, the baseline prothrombin
index and treatment. The men have a lower prothrombin index, the point
estimate is −4.71 with standard error 1.71. The effect on the prothrombin
index of treatment clearly changes with time. In the two first years or so
there seems to be a beneficial effect of prednisone. The effect then levels off
and there is even an indication of an adverse effect of prednisone thereafter,
see Figure 11.5 �
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11.5 Exercises

11.1 (Regression data. Goodness-of-fit.) Consider a sample (Xi, Zi), i =
1, . . . , n, of n i.i.d. regression data with Zi being the (one-dimensional)
response and Xi the (one-dimensional) regressor. Let

E(Zi |Xi = x) = φ(x)

and assume that Xi has an absolute continuous distribution on [0,∞) with
hazard function α(x). Assume also that

∫ x

0
α(v)φ(v) dv < ∞ for all x.

(a) Write ZiI(Xi ≤ x) as a marked point process integral and give its
compensator.

(b) Suggest an estimator of A(x) =
∫ x

0
α(v) dv and of α(x). The latter

we denote by α̂(x).

(c) Argue that a sensible estimator of Φ(x) =
∫ x

0
φ(v) dv is

Φ̂(x) =
n∑

i=1

ZiI(Xi ≤ x)
α̂(Xi)Y·(Xi)

,

where Y·(x) =
∑n

i=1 Yi(x) with Yi(x) = I(x ≤ Xi).

We shall now consider the parametric model

φ(x, θ) = g(x)T θ,

where g(x) = (g1(x), . . . , gp(x))T is a vector of known functions of x and θ
is a p-vector of unknown parameters.

(d) Give the compensator of
∑n

i=1 g(Xi)ZiI(Xi ≤ x). Argue that this
leads naturally to the estimator

θ̂ =
(∫ ∞

0

Y·(x)g(x)g(x)T dÂ(x)
)−1 n∑

i=1

∫ ∞

0

∫
E

g(xi)zipi(dxi × dzi),

and that this estimator is nothing but the usual least squares estima-
tor (

n∑
i=1

g(Xi)g(Xi)T )

)−1 n∑
i=1

g(Xi)Zi.

As

M(x) =
n∑

i=1

ZiI(Xi ≤ x) −
∫ x

0

Y·(v)g(u)T dA(u)θ

is a martingale it seems natural to base a goodness-of-fit test for fit of the
assumed parametric model on the process

Mres(x) =
n∑

i=1

ZiI(Xi ≤ x) −
∫ x

0

Y·(v)g(u)T dÂ(u)θ̂.



11.5 Exercises 409

(e) Find (under appropriate conditions) the asymptotic distribution of
the process n−1/2Mres(x) assuming that the above parametric model
holds. Is the limit process a Gaussian martingale?

(f) Try to use the Khmaladze transformation (see Appendix A) on the
above goodness-of-fit process so that the obtained limit process is a
Gaussian martingale.

11.2 (Simple marked point process) Consider a marked point-process
with induced counting process N(t) with intensity λ(t) and with marks
distribution given by

Zk = m(θ0, θ1, Tk) + εk,

where m(θ0, θ1, Tk) = θ0 + θ1Tk, Tk denotes the kth jump time and εk is a
standard normal.

(a) What is the compensator of the marked point process?

(b) What is the compensator of the derived marked point process∫ t

0

∫
E

(z − m(θ0, θ1, s))2p(dz × ds)?

(c) Now assume that n i.i.d. subjects from the above generic model is
being observed. Estimate the parameters by least squares and sketch
a proof for asymptotic normality and consistency of the estimators.



Appendix A
Khmaladze’s transformation

In the sequel we review, based on Martinussen & Skovgaard (2002), how
certain processes may be transformed to Gaussian martingales. The tech-
nique is originally developed in Khmaladze (1981), where strict proofs are
given. Let us first consider the prototype example of a (time-transformed)
Brownian bridge before we turn to the general formulation. Let B(t) =
H(t) − βt, where H(t) is a Gaussian martingale on [0, 1] with variance
function varH(t) =

∫ t

0 a(s)−1 ds. The quantity β may be stochastic such as
β = H(1)−H(0) corresponding to the Brownian bridge case. We seek a lin-
ear transformation of the process B to a Gaussian martingale. Furthermore
we can make the term βt vanish by this transformation. The transformation
to the new process B̃ is given as

B̃(t) = B(t) −
∫ t

0

(∫ 1

s

a(u) du

)−1 ∫ 1

s

a(u) dB(u) ds, (A.1)

which is a Gaussian martingale with the same variance function as H . The
idea behind this result of Khmaladze is described below. But first a direct
calculation shows that H̃ = B̃ (with H̃(t) defined by (A.1) replacing B with
H), or in other words that the term βt is killed by the transformation. Thus,
in particular, the distribution of B̃ is not affected by β being stochastic,
even if it depends on the entire process. More generally let H(t) and B(t)
be p-vector processes on [0, τ ] so that that B(t) = H(t) + g(t)β, where
H(t) is a Gaussian martingale, g(t) is a (known) p× q-matrix and β is a q-
vector that should be thought of as being random so that B is not Gaussian
martingale. Let the variance function H be varH(t) =

∫ t

0 a(s)−1 ds, which
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is now a p × p-matrix. Then

H̃(t) = H(t)−
∫ t

0

a−1(s)a(s)g′(s)
(∫ τ

s

g′(u)T a(u)a−1(u)a(u)g′(u) du

)−1

×
∫ τ

s

g′(u)T a(u) dH(u) ds

= H(t)−
∫ t

0

g′(s)
(∫ τ

s

g′(u)T a(u)g′(u) du

)−1

×
∫ τ

s

g′(u)T a(u) dH(u) ds

is again a Gaussian martingale with the same variance function, and it is
directly verified that H̃(t) = B̃(t) for all t, so that any component g(t)β
is killed by conversion from the process B(t) to B̃(t). We hence also have
that

B̃(t) = B(t)−
∫ t

0

g′(s)
(∫ τ

s

g′(u)T a(u)g′(u) du

)−1

×
∫ τ

s

g′(u)T a(u) dB(u) ds, (A.2)

is a Gaussian martingale with the same variance function as H(t). The
transformation of B to B̃ given by (A.2) is what we usually call Khmaladze’s
transformation.

The two key steps in the derivation of the result are a projection fol-
lowed by a Doob-Meyer decomposition. First the projection, PL onto the
subspace, L, spanned by the columns of g(t) is

(PLH)(t) = g(t)
(∫ τ

0

g′(s)T a(s)g′(s) ds

)−1 ∫ τ

0

g′(s)T a(s) dH(s),

where the inverse variance is used as inner product in the definition of the
projection. Application of the orthogonal projection I − PL to B(t) kills
the term g(t)β and hence gives the same result as when applied to H(t).

Next we need to adjust (I − PL)H(t) by subtraction of its compensator
given the σ-algebra spanned by the original σ-algebra defining the martin-
gale, Ft say, and PLH . This is done by calculating the martingale increment
by subtraction of the conditional expectation,

dH̃(t) = dH(t) − cov (dH(t), Z(t)) var(Z(t))−1Z(t),

where
Z(t) =

∫ τ

t

g′(s)T a(s) dH(s)

is a non-singular representation of the extra information contained in PLH
relative to the σ-algebra Ft. Note that when we subtract the compensator
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we should in principle start from the process (I − PL)H(t) but the term
PLH(t) disappears because it is predictable. The expression for H̃ follows
directly by calculation of the covariance and variance above.

That the covariance function for H̃ is the same as that for H may be
seen by the following calculation. First write

cov{H̃(t1), H̃(t2)} =
∫ t1

0

∫ t2

0

cov{dH̃(t1), dH̃(t2)} ds2 ds1.

For s1 < s2 we rewrite the integrand as

cov{dH̃(s1), dH̃(s2)} =cov{dH(s1), dH(s2)} − cov{dH(s1), b(s2)Z(s2)}
− cov{b(s1)Z(s1), dH̃(s2)},

where b(s) equals the non-random regression coefficient

cov{dg(s), Z(s)}var{Z(s)}−1.

Using the fact that H has independent increments we see that the second
term on the right vanishes because Z(s2) is a linear function of increments
of H over the interval (s2, τ) which is disjoint from (s1, s1 + ds1). To see
that also the third term vanishes note that Z(s1) = Z(s2) + U where U is
a function of increments over the interval (s1, s2). By construction dH̃(s2)
is independent of the “past” and orthogonalized on Z(s2) thus completing
the argument, which applies similarly to s2 < s1.



Appendix B
Matrix derivatives

In the following we give some convenient formulae for matrix differentiation.
The results are taken from MacRae (1974) where additional results and
details can be found.

Consider a m×n-matrix Y , which is a function of the p×q-matrix X . The
derivative of matrix Y with respect to X is defined to be an mp×nq-matrix
of partial derivatives

dY/dX = Y ⊗ dX,

where ⊗ denotes the Kronecher product. Hence

dY/dX =

⎛⎜⎝ dy11/dX · · · dy1n/dX
...

. . .
...

dym1/dX · · · dymn/dX

⎞⎟⎠ .

The following results can then be shown.

Theorem B.0.1 Let Y and Z be matrix functions of X, and let the product
Y Z be defined. Then

d(Y Z)/dX = (dY/dX)(Z ⊗ Iq) + (Y ⊗ Ip)(dZ/dX). (Product rule)

Theorem B.0.2 Let Y be a nonsingular matrix function of X. Then

d(Y −1)/dX = −(Y −1 ⊗ Ip)(dY/dX)(Y −1 ⊗ Iq). (Inverse rule)



Appendix C
The Timereg survival package for R

This chapter contains a brief description of how to obtain the programs
used for the analyses in the book. All programs are available as an add-on-
package for the statistical software R. The package is available under the
general public license (GPL).

The package is available from the Timereg page

http:\\biostat.ku.dk\~ts\timereg.html

where versions for Linux (Unix) and Windows are available.
After downloading the package and following the instructions given on

the homepage you should get a library to use within R.
We here give a few extra details in the Linux case. If you do not have

super-user permissions you might set up your own local library by the
commands

R CMD INSTALL timereg --library localdir

and then inside R write

> .libPaths("localdir")
> library(timereg)
This is timereg 0.1-2
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Manual pages from Timereg package

aalen Fit additive hazards model

Description

Fits both the additive hazards model of Aalen and the semi-parametric
additive hazards model of McKeague and Sasieni. Estimates are un-
weighted. Time dependent variables and counting process data (multi-
ple events per subject) are possible.

Resampling is used for computing p-values for tests of time-varying
effects.

The modeling formula uses the standard survival modeling given in the
survival package.

Usage

aalen(formula,data=sys.parent(),start.time=0,max.time=0,
robust=1,id=NULL,clusters=NULL,residuals=0,n.sim=1000,
weighted.test=0,covariance=0,resample.iid=0)

Arguments

formula a formula object with the response on the left of a ‘~’
operator, and the independent terms on the right as
regressors. The response must be a survival object as
returned by the ‘Surv’ function.

data a data.frame with the variables.

start.time start of observation period where estimates are com-
puted.

max.time end of observation period where estimates are com-
puted. Estimates thus computed from
[start.time, max.time]

robust to compute robust variances and construct processes
for resampling. May be set to 0 to save memory.

id For time-varying covariates the variable must asso-
ciate each record with the id of a subject.

clusters cluster variable for computation of robust variances.

n.sim number of simulations in resampling.

0Reproduced with permission from the documentation files in the Timereg package
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weighted.test to compute a variance weighted version of the test-
processes used for testing time-varying effects.

residuals to returns residuals that can be used for model vali-
dation in the function cum.residuals

covariance to compute covariance estimates for nonparametric
terms rather than just the variances.

resample.iid to return i.i.d. representation for nonparametric and
parametric terms.

Details

The data for a subject is presented as multiple rows or “observations”,
each of which applies to an interval of observation (start, stop]. For
counting process data with the )start,stop] notation is used the ’id’
variable is needed to identify the records for each subject. The program
assumes that there are no ties, and if such are present random noise is
added to break the ties.

Value

returns an object of type ”aalen”. With the following arguments:

cum cumulative time-varying regression coefficient esti-
mates are computed within the estimation interval.

var.cum the martingale based pointwise variance estimates for
cumulatives.

robvar.cum robust pointwise variances estimates for cumulatives.

gamma estimate of parametric components of model.

var.gamma variance for gamma.

robvar.gamma robust variance for gamma.

residuals list with residuals.

obs.testBeq0 observed absolute value of supremum of cumulative
components scaled with the variance.

pval.testBeq0 p-value for covariate effects based on supremum test.

sim.testBeq0 resampled supremum values.

obs.testBeqC observed absolute value of supremum of difference
between observed cumulative process and estimate
under null of constant effect.

pval.testBeqC p-value based on resampling.

sim.testBeqC resampled supremum values.
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obs.testBeqC.is

observed integrated squared differences between ob-
served cumulative and estimate under null of con-
stant effect.

pval.testBeqC.is

p-value based on resampling.
sim.testBeqC.is

resampled supremum values.
conf.band resampling based constant to construct robust 95%

uniform confidence bands.
test.procBeqC observed test-process of difference between observed

cumulative process and estimate under null of con-
stant effect over time.

sim.test.procBeqC

list of 50 random realizations of test-processes under
null based on resampling.

covariance covariances for nonparametric terms of model.
B.iid Resample processes for nonparametric terms of model.
gamma.iid Resample processes for parametric terms of model.

Author(s)

Thomas Scheike

References

Martinussen and Scheike, Dynamic Regression Models for Survival
Data, Springer (2006).

Examples

library(survival)

data(sTRACE)

# Fits Aalen model

out<-aalen(Surv(time,status==9)~age+sex+diabetes+chf+vf,

sTRACE,max.time=7,n.sim=500)

summary(out)

par(mfrow=c(2,3))

plot(out)

# Fits semi-parametric additive hazards model

out<-aalen(Surv(time,status==9)~const(age)+const(sex)+const(diabetes)+chf

+vf,sTRACE,max.time=7,n.sim=500)

summary(out)

par(mfrow=c(2,3))

plot(out)
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cd4 The multicenter AIDS cohort study

Description

Format

This data frame contains the following columns:

obs a numeric vector. Number of observations.

id a numeric vector. Id of subject.

visit a numeric vector. Timings of the visits in years.

smoke a numeric vector code. 0: non-smoker, 1: smoker.

age a numeric vector. Age of the patient at the start of the trial.

cd4 a numeric vector. CD4 percentage at the current visit.

cd4.prev a numeric vector. CD4 level at the preceding visit.

precd4 a numeric vector. Post-infection CD4 percentage.

lt a numeric vector. Gives the starting time for the time-intervals.

rt a numeric vector. Gives the stopping time for the time-interval.

Source

MACS Public Use Data Set Release PO4 (1984-1991). See reference.

References

Kaslow et al. (1987), The multicenter AIDS cohort study: rational,
organization and selected characteristics of the participants. Am. J.
Epidemiology 126, 310–318.

Examples

data(cd4)

names(cd4)
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const Identifies parametric terms of model

Description

Specifies which of the regressors that have constant effect.

Author(s)

Thomas Scheike

cox Identifies proportional excess terms of model

Description

Specifies which of the regressors that lead to proportional excess hazard

Author(s)

Thomas Scheike

cox.aalen Fit Cox-Aalen survival model

Description

Fits an Cox-Aalen survival model. Time dependent variables and count-
ing process data (multiple events per subject) are possible.

Resampling is used for computing p-values for tests of time-varying
effects. Test for proportionality is considered by considering the score
processes for the proportional effects of model.

The modeling formula uses the standard survival modeling given in the
survival package.

Usage

cox.aalen(formula=formula(data),data=sys.parent(),beta=0,
Nit=10,detail=0,start.time=0,max.time=0,id=NULL,
clusters=NULL,n.sim=500,residuals=0,robust=1,
weighted.test=0,covariance=0,resample.iid=0,weights=NULL)
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Arguments

formula a formula object with the response on the left of a ‘~’
operator, and the independent terms on the right as
regressors. The response must be a survival object as
returned by the ‘Surv’ function.

data a data.frame with the variables.

start.time start of observation period where estimates are com-
puted.

max.time end of observation period where estimates are com-
puted. Estimates thus computed from
[start.time, max.time]

robust to compute robust variances and construct processes
for resampling. May be set to 0 to save memory.

id For time-varying covariates the variable must asso-
ciate each record with the id of a subject.

clusters cluster variable for computation of robust variances.

n.sim number of simulations in resampling.

weighted.test to compute a variance weighted version of the test-
processes used for testing time-varying effects.

residuals to returns residuals that can be used for model vali-
dation in the function cum.residuals

covariance to compute covariance estimates for nonparametric
terms rather than just the variances.

resample.iid to return i.i.d. representation for nonparametric and
parametric terms.

beta starting value for relative risk estimates

Nit number of iterations for Newton-Raphson algorithm.

detail if 0 no details is printed during iterations, if 1 details
are given.

weights weights for weighted analysis.

Details

The data for a subject is presented as multiple rows or “observations”,
each of which applies to an interval of observation (start, stop]. For
counting process data with the )start,stop] notation is used the ’id’
variable is needed to identify the records for each subject. The program
assumes that there are no ties, and if such are present random noise is
added to break the ties.
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Value

returns an object of type ”cox.aalen”. With the following arguments:

cum cumulative time-varying regression coefficient esti-
mates are computed within the estimation interval.

var.cum the martingale based pointwise variance estimates.

robvar.cum robust pointwise variances estimates.

gamma estimate of parametric components of model.

var.gamma variance for gamma.

robvar.gamma robust variance for gamma.

residuals list with residuals.

obs.testBeq0 observed absolute value of supremum of cumulative
components scaled with the variance.

pval.testBeq0 p-value for covariate effects based on supremum test.

sim.testBeq0 resampled supremum values.

obs.testBeqC observed absolute value of supremum of difference
between observed cumulative process and estimate
under null of constant effect.

pval.testBeqC p-value based on resampling.

sim.testBeqC resampled supremum values.
obs.testBeqC.is

observed integrated squared differences between ob-
served cumulative and estimate under null of con-
stant effect.

pval.testBeqC.is

p-value based on resampling.
sim.testBeqC.is

resampled supremum values.

conf.band resampling based constant to construct robust 95%
uniform confidence bands.

test.procBeqC observed test-process of difference between observed
cumulative process and estimate under null of con-
stant effect over time.

sim.test.procBeqC
list of 50 random realizations of test-processes under
null based on resampling.

covariance covariances for nonparametric terms of model.

B.iid Resample processes for nonparametric terms of model.

gamma.iid Resample processes for parametric terms of model.
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loglike approximate log-likelihood for model, similar to Cox’s
partial likelihood.

D2linv inverse of the derivative of the score function.

score value of score for final estimates.

test.procProp observed score process for proportional part of model.

pval.Prop p-value based on resampling.

sim.supProp re-sampled absolute supremum values.

sim.test.procProp

list of 50 random realizations of test-processes for
proportionality under the model based on resampling.

Author(s)

Thomas Scheike

References

Martinussen and Scheike, Dynamic Regression Models for Survival
Data, Springer (2006).

Examples

library(survival)

data(sTRACE)

# Fits Cox model

out<-cox.aalen(Surv(time,status==9)~prop(age)+prop(sex)+

prop(vf)+prop(chf)+prop(diabetes),sTRACE,max.time=7,n.sim=500)

# makes Lin, Wei, Ying test for proportionality

summary(out)

par(mfrow=c(2,3))

plot(out,score=1)

# Fits Cox-Aalen model

out<-cox.aalen(Surv(time,status==9)~prop(age)+prop(sex)+

vf+chf+prop(diabetes),sTRACE,max.time=7,n.sim=500)

# plots the additive part of the model. To obtain more sensible

# plots center covariates in proportional part of model

summary(out)

par(mfrow=c(2,3))

plot(out)
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csl CSL liver cirrhosis data

Description

Format

This data frame contains the following columns:

id a numeric vector. Id of subject.

time a numeric vector. Time of measurement.

prot a numeric vector. Prothrombin level at measurement time.

dc a numeric vector code. 0: censored observation, 1: died at eventT.

eventT a numeric vector. Time of event (death).

treat a numeric vector code. 0: active treatment of prednisone, 1:
placebo treatment.

sex a numeric vector code. 0: female, 1: male.

age a numeric vector. Age of subject at inclusion time subtracted 60.

prot.base a numeric vector. Prothrombin base level before entering
the study.

prot.prev a numeric vector. Level of prothrombin at previous mea-
surement time.

lt a numeric vector. Gives the starting time for the time-intervals.

rt a numeric vector. Gives the stopping time for the time-intervals.

Source

P.K. Andersen

References

Schlichting, P., Christensen, E., Andersen, P., Fauerholds, L., Juhl, E.,
Poulsen, H. and Tygstrup, N. (1983), The Copenhagen Study Group
for Liver Diseases, Hepatology 3, 889–895

Examples

data(csl)

names(csl)
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cum.residuals Model validation based on cumulative residuals

Description

Computes cumulative residuals and approximative p-values based on
resampling techniques.

Usage

cum.residuals(object,data=sys.parent(),modelmatrix=0,
cum.resid=0,n.sim=500,weighted.test=1,start.design=1)

Arguments

object an object of class ’aalen’, ’timecox’, ’cox.aalen’ where
the residuals are returned (’residuals=1’)

data data frame based on which residuals are computed.

modelmatrix specifies a grouping of the data that is used for cu-
mulating residuals. Must have same size as data and
be ordered in the same way.

n.sim number of simulations in resampling.

weighted.test to compute a variance weighted version of the test-
processes used for testing constant effects of covari-
ates.

cum.resid to compute residuals versus each of the continuous
covariates in the model.

start.design if ’1’ the groupings specified in modelmatrix changes
over time, i.e. in the case with time-dependent co-
variates.

Value

returns an object of type ”cum.residuals”with the following arguments:

cum cumulative residuals versus time for the groups spec-
ified by modelmatrix.

var.cum the martingale based pointwise variance estimates.

robvar.cum robust pointwise variances estimates of cumulatives.

obs.testBeq0 observed absolute value of supremum of cumulative
components scaled with the variance.

pval.testBeq0 p-value covariate effects based on supremum test.

sim.testBeq0 resampled supremum value.
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conf.band resampling based constant to construct robust 95%
uniform confidence bands for cumulative residuals.

obs.test absolute value of supremum of observed test-process.

pval.test p-value for supremum test statistic.

sim.test resampled absolute value of supremum cumulative
residuals.

proc.cumz observed cumulative residuals versus all continuous
covariates of model.

sim.test.proccumz

list of 50 random realizations of test-processes under
model for all continuous covariates.

Author(s)

Thomas Scheike

References

Martinussen and Scheike, Dynamic Regression Models for Survival
Data, Springer (2006).

Examples

library(survival)

data(sTRACE)

# Fits Aalen model and returns residuals

fit<-aalen(Surv(time,status==9)~age+sex+diabetes+chf+vf,

sTRACE,max.time=7,n.sim=0,residuals=1)

# constructs and simulates cumulative residuals versus age groups

fit.mg<-cum.residuals(fit,sTRACE,

model.matrix(~-1+factor(cut(age,4)),sTRACE))

par(mfrow=c(1,4))

# cumulative residuals with confidence intervals

plot(fit.mg);

# cumulative residuals versus processes under model

plot(fit.mg,score=1);

summary(fit.mg)

# cumulative residuals vs. covariates Lin, Wei, Ying style

fit.mg<-cum.residuals(fit,sTRACE,cum.resid=1)

par(mfrow=c(2,4))

plot(fit.mg,score=2)

summary(fit.mg)
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dynreg Fit time-varying regression model

Description

Fits time-varying regression model with partly parametric components.
Time-dependent variables for longitudinal data. The model assumes
that the mean of the observed responses given covariates is a linear
time-varying regression model :

E(Zij |Xij(t)) = βT (t)X1
ij(t) + γT X2

ij(t)

where Zij is the j’th measurement at time t for the i’th subject with
covariates X1

ij and X2
ij . Resampling is used for computing p-values for

tests of time-varying effects.

Usage

dynreg(formula,data=sys.parent(),aalenmod,bandwidth=0.5,
id=NULL,bhat=NULL,start.time=0,max.time=0,n.sim=500,
residuals=0,meansub=1,weighted.test=0)

Arguments

formula a formula object with the response on the left of a ‘~’
operator, and the independent terms on the right as
regressors.

data a data.frame with the variables.

start.time start of observation period where estimates are com-
puted.

max.time end of observation period where estimates are com-
puted. Estimates thus computed from
[start.time, max.time]

id For time-varying covariates the variable must asso-
ciate each record with the id of a subject.

n.sim number of simulations in resampling.

weighted.test to compute a variance weighted version of the test-
processes used for testing time-varying effects.

residuals to returns residuals that can be used for model vali-
dation in the function ’cum.residuals’.

aalenmod Aalen model for measurement times. Specified as a
survival model (see aalen function).
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bandwidth bandwidth for local iterations. Default is 50% of the
range of the considered observation period.

bhat initial value for estimates. If NULL local linear esti-
mate is computed.

meansub if ’1’ then the mean of the responses is subtracted
before the estimation is carried out.

Details

The data for a subject is presented as multiple rows or “observations”,
each of which applies to an interval of observation (start, stop]. For
counting process data with the )start,stop] notation is used the ’id’
variable is needed to identify the records for each subject. The program
assumes that there are no ties, and if such are present random noise is
added to break the ties.

Value

returns an object of type ”dynreg”. With the following arguments:

cum the cumulative regression coefficients. This is the effi-
cient estimator based on an initial smoother obtained
by local linear regression :

B̂(t) =
∫ t

0

β̃(s)ds+

∫ t

0

X−(Diag(z)− Diag(XT (s)β̃(s)))dp(ds × dz),

where β̃(t) is an initial estimate either provided or
computed by local linear regression. To plot this es-
timate use type=”eff.smooth”in the plot() command.

var.cum the martingale based pointwise variance estimates.
robvar.cum robust pointwise variances estimates.
gamma estimate of semi-parametric components of model.
var.gamma variance for gamma.
robvar.gamma robust variance for gamma.
cum0 simple estimate of cumulative regression coefficients

that does not use use an initial smoothing based es-
timate

B̂0(t) =
∫ t

0

X−Diag(z)dp(ds× dz).

To plot this estimate use type=”0.mpp” in the plot()
command.
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var.cum0 the martingale based pointwise variance estimates of
cum0.

cum.ms estimate of cumulative regression coefficients based
on initial smoother (but robust to this estimator).

B̂ms(t) =
∫ t

0

X−(Diag(z)− f(s))dp(ds × dz),

where f is chosen as the matrix

f(s) = Diag(XT (s)β̃(s))(I − Xα(s)X−
α (s)),

where Xα is the design for the sampling intensities.
This is also an efficient estimator when the initial
estimator is consistent for β(t) and then asymptoti-
cally equivalent to cum, but small sample properties
appear inferior. Its variance is estimated by var.cum.
To plot this estimate use type=”ms.mpp”in the plot()
command.

cum.ly estimator where local averages are subtracted. Spe-
cial case of cum.ms.
To plot this estimate use type=”ly.mpp” in plot.

var.cum.ly the martingale based pointwise variance estimates.

gamma0 estimate of parametric component of model.

var.gamma0 estimate of variance of parametric component of model.

gamma.ly estimate of parametric components of model.

var.gamma.ly estimate of variance of parametric component of model.

gamma.ms estimate of variance of parametric component of model.

var.gamma.ms estimate of variance of parametric component of model.

residuals list of residuals.

obs.testBeq0 observed absolute value of supremum of cumulative
components scaled with the variance.

pval.testBeq0 p-value for covariate effects based on supremum test.

sim.testBeq0 resampled supremum values.

obs.testBeqC observed absolute value of supremum of difference
between observed cumulative process and estimate
under null of constant effect.

pval.testBeqC p-value based on resampling.

sim.testBeqC resampled supremum values.
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obs.testBeqC.is

observed integrated squared differences between ob-
served cumulative and estimate under null of con-
stant effect.

pval.testBeqC.is

p-value based on resampling.
sim.testBeqC.is

resampled supremum values.

conf.band resampling based constant to construct robust 95%
uniform confidence bands.

test.procBeqC observed test-process of difference between observed
cumulative process and estimate under null of con-
stant effect.

sim.test.procBeqC

list of 50 random realizations of test-processes under
null based on resampling.

covariance covariances for nonparametric terms of model.

Author(s)

Thomas Scheike

References

Martinussen and Scheike, Dynamic Regression Models for Survival
Data, Springer (2006).

Examples

library(survival)

data(csl)

indi.m<-rep(1,length(csl$lt))

# Fits time-varying regression model on time-range from 0 to 3 years.

out<-dynreg(prot~treat+prot.prev+sex+age,csl,

Surv(lt,rt,indi.m)~+1,start.time=0,max.time=3,id=csl$id,

n.sim=500,bandwidth=0.3,meansub=0)

summary(out)

par(mfrow=c(2,3))

plot(out)

# Fits time-varying semi-parametric regression model.

outS<-dynreg(prot~treat+const(prot.prev)+const(sex)+const(age),csl,

Surv(lt,rt,indi.m)~+1,start.time=0,max.time=3,id=csl$id,

n.sim=500,bandwidth=0.3,meansub=0)

summary(outS)
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melanoma The Melanoma Survival Data

Description

The melanoma data frame has 205 rows and 7 columns. It contains data
relating to survival of patients after operation for malignant melanoma
collected at Odense University Hospital by K.T. Drzewiecki.

Format

This data frame contains the following columns:

no a numeric vector. Patient code.

status a numeric vector code. Survival status. 1: dead from melanoma,
2: alive, 3: dead from other cause.

days a numeric vector. Survival time.

ulc a numeric vector code. Ulceration, 1: present, 0: absent.

thick a numeric vector. Tumor thickness (1/100 mm).

sex a numeric vector code. 0: female, 1: male.

Source

Andersen, P.K., Borgan Ø., Gill R.D., Keiding N. (1993), Statistical
Models Based on Counting Processes, Springer-Verlag.

Drzewiecki, K.T., Ladefoged, C., and Christensen, H.E. (1980), Biopsy
and prognosis for cutaneous malignant melanoma in clinical stage I.
Scand. J. Plast. Reconstru. Surg. 14, 141-144.

Examples

data(melanoma)

names(melanoma)
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mela.pop Melanoma data and Danish population mortality
by age and sex

Description

Melanoma data with Danish population mortality rates by age and sex.

Format

This data frame contains the following columns:

id a numeric vector. Gives patient id.

sex a numeric vector. Gives sex of patient.

start a numeric vector. Gives the starting time for the time-interval
for which the covariate rate is representative.

stop a numeric vector. Gives the stopping time for the time-interval
for which the covariate rate is representative.

status a numeric vector code. Survival status. 1: dead from melanoma,
0: alive or dead from other cause.

age a numeric vector. Gives the age of the patient at removal of tumor.

rate a numeric vector. Gives the population mortality for the given
sex and age. Based on Table A.2 in Andersen et al. (1993).

Source

Andersen, P.K., Borgan Ø, Gill R.D., Keiding N. (1993), Statistical
Models Based on Counting Processes, Springer-Verlag.

Examples

data(mela.pop)

names(mela.pop)
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plot.aalen Plots estimates and test-processes

Description

This function plots the non-parametric cumulative estimates for the
additive risk model or the test-processes for the hypothesis of time-
varying effects with re-sampled processes under the null.

Usage

plot.aalen(object,pointwise.ci=1,hw.ci=0,sim.ci=0,robust=0,
specific.comps=FALSE,level=0.05, start.time=0,stop.time=0,
add.to.plot=FALSE,mains=TRUE,xlab="Time",
ylab="Cumulative coefficients",score=FALSE)

Arguments

object the output from the ”aalen” function.

pointwise.ci if >1 pointwise confidence intervals are plotted with
lty=pointwise.ci

hw.ci if >1 Hall-Wellner confidence bands are plotted with
lty=hw.ci. Only 0.95 % bands can be constructed.

sim.ci if >1 simulation based confidence bands are plotted
with lty=sim.ci. These confidence bands are robust
to non-martingale behaviour.

robust robust standard errors are used to estimate standard
error of estimate, otherwise martingale based stan-
dard errors are used.

specific.comps

all components of the model is plotted by default, but
a list of components may be specified, for example
first and third ”c(1,3)”.

level gives the significance level.

start.time start of observation period where estimates are plot-
ted.

stop.time end of period where estimates are plotted. Estimates
thus plotted from [start.time, max.time].

add.to.plot to add to an already existing plot.

mains add names of covariates as titles to plots.

xlab label for x-axis.
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ylab label for y-axis.

score to plot test processes for test of time-varying effects
along with 50 random realization under the null-hypo-
thesis.

Author(s)

Thomas Scheike

References

Martinussen and Scheike

Examples

library(survival)

data(sTRACE)

# Fits Aalen model

out<-aalen(Surv(time,status==9)~age+sex+diabetes+chf+vf,

sTRACE,max.time=7,n.sim=500)

par(mfrow=c(2,3))

# plots estimates

plot(out)

# plots tests-processes for time-varying effects

plot(out,score=TRUE)

plot.cum.residuals

Plots cumulative residuals

Description

This function plots the output from the cumulative residuals function
”cum.residuals”. The cumulative residuals are compared with the per-
formance of similar processes under the model.

Usage

plot.cum.residuals(object,pointwise.ci=1,hw.ci=0,sim.ci=0,
robust=1, specific.comps=FALSE,level=0.05,start.time=0,
stop.time=0,add.to.plot=FALSE,mains=TRUE,xlab="Time",
ylab ="Cumulative Residuals",ylim=NULL,score=0)

Arguments

object the output from the ”cum.residuals” function.

pointwise.ci if >1 pointwise confidence intervals are plotted with
lty=pointwise.ci
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hw.ci if >1 Hall-Wellner confidence bands are plotted with
lty=hw.ci. Only 95% bands can be constructed.

sim.ci if >1 simulation based confidence bands are plotted
with lty=sim.ci. These confidence bands are robust
to non-martingale behaviour.

robust if ”1” robust standard errors are used to estimate
standard error of estimate, otherwise martingale based
estimate are used.

specific.comps

all components of the model is plotted by default, but
a list of components may be specified, for example
first and third ”c(1,3)”.

level gives the significance level. Default is 0.05.

start.time start of observation period where estimates are plot-
ted. Default is 0.

stop.time end of period where estimates are plotted. Estimates
thus plotted from [start.time, max.time].

add.to.plot to add to an already existing plot. Default is ”FALSE”.

mains add names of covariates as titles to plots.

xlab label for x-axis. Default is ”Time”.

ylab label for y-axis. Default is ”Cumulative Residuals”.

ylim limits for y-axis.

score if ’0’ plots related to modelmatrix are specified, thus
resulting in grouped residuals, if ’1’ plots for mod-
elmatrix but with random realizations under model,
if ’2’ plots residuals versus continuous covariates of
model with random realizations under the model.

Author(s)

Thomas Scheike

References

Martinussen and Scheike, Dynamic Regression Models for Survival
Data, Springer (2006).

Examples

library(survival)

data(sTRACE)

# Fits Aalen model and returns residuals

out<-aalen(Surv(time,status==9)~age+sex+diabetes+chf+vf,

sTRACE,max.time=7,n.sim=0,residuals=1)
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# constructs and simulates cumulative residuals versus age groups

out.mg<-cum.residuals(out,sTRACE,

model.matrix(~-1+factor(cut(age,4)),sTRACE))

par(mfrow=c(1,4))

# cumulative residuals with pointwise confidence intervals

plot(out.mg);

# cumulative residuals versus processes under model

plot(out.mg,score=1);

# cumulative residuals against covariates Lin, Wei, Ying style

out.mg<-cum.residuals(out,sTRACE,cum.resid=1)

par(mfrow=c(2,4))

plot(out.mg,score=2)

plot.dynreg Plots estimates and test-processes

Description

This function plots the non-parametric cumulative estimates for the
additive risk model or the test-processes for the hypothesis of constant
effects with re-sampled processes under the null.

Usage

plot.dynreg(object,type="eff.smooth",pointwise.ci=1,hw.ci=0,
sim.ci=0,robust=0, specific.comps=FALSE,level=0.05,
start.time=0,stop.time=0,add.to.plot=FALSE,mains=TRUE,
xlab="Time",ylab="Cumulative coefficients",score=FALSE)

Arguments

object the output from the ”dynreg” function.

type the estimator plotted. Choices ”eff.smooth”, ”ms.mpp”,
”0.mpp” and ”ly.mpp”. See the dynreg function for
more on this.

pointwise.ci if >1 pointwise confidence intervals are plotted with
lty=pointwise.ci

hw.ci if >1 Hall-Wellner confidence bands are plotted with
lty=hw.ci. Only 0.95 % bands can be constructed.

sim.ci if >1 simulation based confidence bands are plotted
with lty=sim.ci. These confidence bands are robust
to non-martingale behavior.
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robust robust standard errors are used to estimate standard
error of estimate, otherwise martingale based esti-
mate are used.

specific.comps

all components of the model is plotted by default, but
a list of components may be specified, for example
first and third ”c(1,3)”.

level gives the significance level.

start.time start of observation period where estimates are plot-
ted.

stop.time end of period where estimates are plotted. Estimates
thus plotted from [start.time, max.time].

add.to.plot to add to an already existing plot.

mains add names of covariates as titles to plots.

xlab label for x-axis.

ylab label for y-axis.

score to plot test processes for test of time-varying effects
along with 50 random realization under the null-hypo-
thesis.

Author(s)

Thomas Scheike

References

Martinussen and Scheike, Dynamic Regression Models for Survival
Data, Springer (2006).

Examples

library(survival)

data(csl)

indi.m<-rep(1,length(csl$lt))

# Fits time-varying regression model on time-range from 0 to 3 years.

out<-dynreg(prot~treat+prot.prev+sex+age,csl,

Surv(lt,rt,indi.m)~+1,start.time=0,max.time=3,id=csl$id,

n.sim=500,bandwidth=0.3,meansub=0)

par(mfrow=c(2,3))

# plots estimates

plot(out)

# plots tests-processes for time-varying effects

plot(out,score=TRUE)
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print.aalen Prints call

Description

Prints call for object. Lists nonparametric and parametric terms of
model

Usage

print.aalen(object)

Arguments

object an aalen object

Author(s)

Thomas Scheike

prop Identifies the multiplicative terms in Cox-Aalen
model and proportional excess risk model

Description

Specifies which of the regressors that belong to the multiplicative part
of the Cox-Aalen model or the proportional excess risk model.

Usage

see cox.aalen or prop.excess

Author(s)

Thomas Scheike
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prop.excess Fits Proportional excess hazards model

Description

Fits proportional excess hazards model.

The models are written using the survival modeling given in the sur-
vival package.

Usage

prop.excess(formula=formula(data),data=sys.parent(),
excess=1,tol=0.0001,max.time=0,n.sim=1000,alpha=1,frac=1)

Arguments

formula a formula object, with the response on the left of a ‘~’
operator, and the terms on the right. The response
must be a survival object as returned by the ‘Surv’
function.

data a data.frame with the variables.

excess specifies for which of the subjects the excess term is
present. Default is that the term is present for all
subjects.

tol tolerance for numerical procedure.

max.time stopping considered time-period if different from 0.
Estimates thus computed from [0,max.time]
if max.time>0.

n.sim number of simulations in re-sampling.

alpha tuning parameter in Newton-Raphson procedure. Value
smaller than one may give more stable convergence.

frac number between 0 and 1. Is used in supremum test
where observed jump times t1, ..., tk is replaced by
t1, ..., tl with l=round(frac*k).

Details

The program assumes that there are no ties, and if such are present
random noise is added to break the ties.
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Value

Returns an object of type ”prop.excess”. With the following arguments:

cum estimated cumulative regression functions. First col-
umn contains the jump times, then follows the es-
timated components of additive part of model and
finally the excess cumulative baseline.

var.cum robust pointwise variance estimates for estimated cu-
mulatives.

gamma estimate of parametric components of model.

var.gamma robust variance estimate for gamma.

pval p-value of Kolmogorov-Smirnov test (variance weigh-
ted) for excess baseline and Aalen terms, H: B(t)=0.

pval.HW p-value of supremum test (corresponding to Hall-Well-
ner band) for excess baseline and Aalen terms, H:
B(t)=0. Reported in summary.

pval.CM p-value of Cramer von Mises test for excess baseline
and Aalen terms, H: B(t)=0.

quant 95 percent quantile in distribution of resampled Kol-
mogorov-Smirnov test statistics for excess baseline
and Aalen terms. Used to construct 95 percent sim-
ulation band.

quant95HW 95 percent quantile in distribution of resampled supre-
mum test statistics corresponding to Hall-Wellner band
for excess baseline and Aalen terms. Used to con-
struct 95 percent Hall-Wellner band.

simScoreProp observed scoreprocess and 50 resampled scoreprocesses
(under model). List with 51 elements.

Author(s)

Torben Martinussen

References

Martinussen and Scheike, Dynamic Regression Models for Survival
Data, Springer (2006).

Examples

library(survival)

data(melanoma)

attach(melanoma)

lt<-log(thick) # log-thickness
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excess<-(thick>=210) # excess risk for thick tumors

# Fits Proportional Excess hazards model

fit<-prop.excess(Surv(days/365,status==1)~sex+ulc+cox(sex)+cox(ulc)

+cox(lt),excess=excess,n.sim=2000)

summary(fit)

par(mfrow=c(2,3))

plot(fit)

prop.odds Fit Semiparametric Proportional 0dds Model

Description

Fits a semiparametric proportional odds model:

logit(1 − SZ(t)) = log(G(t)) + βT Z

where G(t) is increasing but otherwise unspecified. Model is fitted by
maximizing the modified partial likelihood. A goodness-of-fit test by
considering the score functions is also computed by resampling meth-
ods.

The modeling formula uses the standard survival modeling given in the
survival package.

Usage

prop.odds(formula,data=sys.parent(),beta=0,Nit=10,
detail=0,start.time=0,max.time=0,id=NULL,n.sim=500,
weighted.test=0,profile=1,sym=0)

Arguments

formula a formula object, with the response on the left of a ’ ’
operator, and the terms on the right. The response
must be a survival object as returned by the ‘Surv’
function.

data a data.frame with the variables.

start.time start of observation period where estimates are com-
puted.

max.time end of observation period where estimates are com-
puted. Estimates thus computed from
[start.time, max.time]. This is very useful to obtain
stable estimates, especially for the baseline.

id For time-varying covariates the variable must asso-
ciate each record with the id of a subject.
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n.sim number of simulations in resampling.

weighted.test to compute a variance weighted version of the test-
processes used for testing time-varying effects.

beta starting value for relative risk estimates

Nit number of iterations for Newton-Raphson algorithm.

detail if 0 no details is printed during iterations, if 1 details
are given.

profile if profile is 1 then modified partial likelihood is used,
profile=0 fits by simple estimating equation. The mod-
ified partial likelihood is recommended.

sym to use symmetrized second derivative in the case of
the estimating equation approach (profile=0). This
may improve the numerical performance.

Details

The data for a subject is presented as multiple rows or “observations”,
each of which applies to an interval of observation (start, stop]. The
program essentially assumes no ties, and if such are present a little
random noise is added to break the ties.

Value

returns an object of type ’cox.aalen’. With the following arguments:

cum cumulative time-varying regression coefficient esti-
mates are computed within the estimation interval.

var.cum the martingale based pointwise variance estimates.

robvar.cum robust pointwise variances estimates.

gamma estimate of proportional odds parameters of model.

var.gamma variance for gamma.

robvar.gamma robust variance for gamma.

residuals list with residuals.

obs.testBeq0 observed absolute value of supremum of cumulative
components scaled with the variance.

pval.testBeq0 p-value for covariate effects based on supremum test.

sim.testBeq0 resampled supremum values.

obs.testBeqC observed absolute value of supremum of difference
between observed cumulative process and estimate
under null of constant effect.

pval.testBeqC p-value based on resampling.
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sim.testBeqC resampled supremum values.
obs.testBeqC.is

observed integrated squared differences between ob-
served cumulative and estimate under null of con-
stant effect.

pval.testBeqC.is

p-value based on resampling.
sim.testBeqC.is

resampled supremum values.

conf.band resampling based constant to construct robust 95%
uniform confidence bands.

test.procBeqC observed test-process of difference between observed
cumulative process and estimate under null of con-
stant effect over time.

loglike modified partial likelihood, pseudo profile likelihood
for regression parameters.

D2linv inverse of the derivative of the score function.

score value of score for final estimates.

test.procProp observed score process for proportional odds regres-
sion effects.

pval.Prop p-value based on resampling.

sim.supProp re-sampled supremum values.
sim.test.procProp

list of 50 random realizations of test-processes for
constant proportional odds under the model based
on resampling.

Author(s)

Thomas Scheike

References

Martinussen and Scheike, Dynamic Regression Models for Survival
Data, Springer (2006).

Examples

library(survival)

data(sTRACE)

# Fits Proportional odds model

out<-prop.odds(Surv(time,status==9)~age+diabetes+chf+vf+sex,

sTRACE,max.time=7,n.sim=500)



446 Appendix C. The Timereg survival package for R

summary(out)

par(mfrow=c(2,3))

plot(out,sim.ci=2)

plot(out,score=1)

summary.aalen Prints summary statistics

Description

Computes p-values for test of significance for nonparametric terms of
model, p-values for test of constant effects based on both supremum
and integrated squared difference.

Returns parameter estimates and their standard errors.

Usage

summary.aalen(aalen.object,digits=3)

Arguments

aalen.object an aalen object.

digits number of digits in printouts.

Author(s)

Thomas Scheike

Examples

library(survival)

data(sTRACE)

# Fits Aalen model

out<-aalen(Surv(time,status==9)~age+sex+diabetes+chf+vf,

sTRACE,max.time=7,n.sim=500)

summary(out)
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summary.cum.residuals

Prints summary statistics for goodness-of-fit
tests based on cumulative residuals

Description

Computes p-values for extreme behaviour relative to the model of var-
ious cumulative residual processes.

Usage

summary.cum.residuals(cum.residuals.object,digits=3

Arguments
cum.resids.object

an cum.residuals object.

digits number of digits in printouts.

Author(s)

Thomas Scheike

Examples

library(survival)

data(sTRACE)

# Fits Aalen model and returns residuals

out<-aalen(Surv(time,status==9)~age+sex+diabetes+chf+vf,

sTRACE,max.time=7,n.sim=0,residuals=1)

# constructs and simulates cumulative residuals versus age groups

# and versus covariates of model

out.mg<-cum.residuals(out,sTRACE,

modelmatrix=model.matrix(~-1+factor(cut(age,4)),sTRACE),cum.resid=1)

summary(out.mg)

timecox Fit Cox model with partly time-varying effects.

Description

Fits proportional hazards model with some effects time-varying and
some effects constant. Time dependent variables and counting process
data (multiple events per subject) are possible.
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Resampling is used for computing p-values for tests of time-varying
effects.

The modeling formula uses the standard survival modeling given in the
survival package.

Usage

timecox(formula=formula(data),data=sys.parent(),
start.time=0,max.time=0,id=NULL,clusters=NULL,n.sim=1000,
residuals=0,robust=1,Nit=20,bandwidth=0.5,method="basic",
weighted.test=0,degree=1,covariance=0)

Arguments

formula a formula object with the response on the left of a ‘~’
operator, and the independent terms on the right as
regressors. The response must be a survival object as
returned by the ‘Surv’ function.

data a data.frame with the variables.

start.time start of observation period where estimates are com-
puted.

max.time end of observation period where estimates are com-
puted. Estimates thus computed from
[start.time, max.time]

robust to compute robust variances and construct processes
for resampling. May be set to 0 to save memory.

id For time-varying covariates the variable must asso-
ciate each record with the id of a subject.

clusters cluster variable for computation of robust variances.

n.sim number of simulations in resampling.

weighted.test to compute a variance weighted version of the test-
processes used for testing time-varying effects.

residuals to returns residuals that can be used for model vali-
dation in the function cum.residuals

covariance to compute covariance estimates for nonparametric
terms rather than just the variances.

Nit number of iterations for score equations.

bandwidth bandwidth for local iterations. Default is 50 % of the
range of the considered observation period.

method Method for estimation. This refers to different para-
metrizations of the baseline of the model. Options
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are ”basic” where the baseline is written as λ0(t) =
exp(α0(t)) or the ”breslow”version where the baseline
is parametrised as λ0(t).

degree gives the degree of the local linear smoothing, that is
local smoothing. Possible values are 1 or 2.

Details

The data for a subject is presented as multiple rows or “observations”,
each of which applies to an interval of observation (start, stop]. When
counting process data with the )start,stop] notation is used the ’id’
variable is needed to identify the records for each subject. The program
assumes that there are no ties, and if such are present random noise is
added to break the ties.

Value

Returns an object of type ”timecox”. With the following arguments:

cum cumulative time-varying regression coefficient esti-
mates are computed within the estimation interval.

var.cum the martingale based pointwise variance estimates.

robvar.cum robust pointwise variances estimates.

gamma estimate of parametric components of model.

var.gamma variance for gamma.

robvar.gamma robust variance for gamma.

residuals list with residuals.

obs.testBeq0 observed absolute value of supremum of cumulative
components scaled with the variance.

pval.testBeq0 p-value for covariate effects based on supremum test.

sim.testBeq0 resampled supremum values.

obs.testBeqC observed absolute value of supremum of difference
between observed cumulative process and estimate
under null of constant effect.

pval.testBeqC p-value based on resampling.

sim.testBeqC resampled supremum values.
obs.testBeqC.is

observed integrated squared differences between ob-
served cumulative and estimate under null of con-
stant effect.

pval.testBeqC.is

p-value based on resampling.
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sim.testBeqC.is

resampled supremum values.

conf.band resampling based constant to construct robust 95%
uniform confidence bands.

test.procBeqC observed test-process of difference between observed
cumulative process and estimate under null of con-
stant effect over time.

sim.test.procBeqC

list of 50 random realizations of test-processes under
null based on resampling.

schoenfeld.residuals

Schoenfeld residuals are returned for ”breslow”para-
metrization.

Author(s)

Thomas Scheike

References

Martinussen and Scheike, Dynamic Regression Models for Survival
Data, Springer (2006).

Examples

library(survival)

data(sTRACE)

# Fits time-varying Cox model

out<-timecox(Surv(time/365,status==9)~age+sex+diabetes+chf+vf,

sTRACE,max.time=7,n.sim=500)

summary(out)

par(mfrow=c(2,3))

plot(out)

par(mfrow=c(2,3))

plot(out,score=TRUE)

# Fits semi-parametric time-varying Cox model

out<-timecox(Surv(time/365,status==9)~const(age)+const(sex)+

const(diabetes)+chf+vf,sTRACE,max.time=7,n.sim=500)

summary(out)

par(mfrow=c(2,3))

plot(out)
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TRACE The TRACE study group of myocardial infarc-
tion

Description

The TRACE data frame contains 1877 patients and is a subset of a
data set consisting of approximately 6000 patients. It contains data
relating survival of patients after myocardial infarction to various risk
factors.

sTRACE is a subsample consisting of 300 patients.

tTRACE is a subsample consisting of 1000 patients.

Format

This data frame contains the following columns:

id a numeric vector. Patient code.

status a numeric vector code. Survival status. 9: dead from myocardial
infarction, 0: alive, 7: dead from other causes.

time a numeric vector. Survival time in years.

chf a numeric vector code. Clinical heart pump failure, 1: present, 0:
absent.

diabetes a numeric vector code. Diabetes, 1: present, 0: absent.

vf a numeric vector code. Ventricular fibrillation, 1: present, 0: absent.

wmi a numeric vector. Measure of heart pumping effect based on ul-
trasound measurements where 2 is normal and 0 is worst.

sex a numeric vector code. 1: female, 0: male.

age a numeric vector code. Age of patient.

Source

The TRACE study group.

Jensen, G.V., Torp-Pedersen, C., Hildebrandt, P., Kober, L., F. E.
Nielsen, Melchior, T., Joen, T. and P. K. Andersen (1997), Does in-
hospital ventricular fibrillation affect prognosis after myocardial infarc-
tion?, European Heart Journal 18, 919–924.

Examples

data(TRACE)

names(TRACE)
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additive rate model, 149
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current status data, 62
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discrete time survival model, 344
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estimation
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maximum likelihood, 62

examples
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additive hazards model, 105
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left-censoring, 61
left-truncation, 59
noninformative, 64
progressive type I censoring,

57
right-censoring, 49
simple type I censoring, 57

filtration, 19
finite variation process, 21
frailty model, 334

attenuation, 337
functional delta-method, 42
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Cox model, 193
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Greenwood’s formula, 84

hazard function, 23
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definition of, 19
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inference
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Khmaladze’s transformation, 123,

412
Kolmogorov-Smirnov test, 39
Kolmogorov-Smirnov, two sample,

91

left-censoring, 61
left-truncation, 59
Lenglart’s inequality, 41
local characteristics, 31
local martingale, 20
local square integrable martingale,

21
locally integrable, 108
log-rank test, 89

stratified log-rank test, 94
longitudinal data, 375

marginal mean models for longi-
tudinal data, 397

marginal models for survival data,
314

marked point process
definition of, 30
intensity kernel, 31
local characteristics, 31

martingale
central limit theorem for mar-

tingales, 34
definition of, 20
Gaussian martingale, 34
local martingale, 20
local square integrable mar-

tingale, 21
optional covariation process,

22
optional variation process, 22
orthogonal, 21

predictable covariation pro-
cess, 21

predictable variation process,
21

quadratic covariation process,
22

quadratic variation process,
22

square integrable, 20
misspecified models

additive hazards models, 133
Cox model, 191

multiplicative Aalen model, 27
multiplicative hazards model, 175,

205
goodness-of-fit, 228
inference, 213
Lung cancer data, 234
Melanoma data, 237
multiplicative rate model, 227
relative risk, 176
semiparametric version, 177,

218
survival function estimation,

226
test for time-varying effects,

213
multiplicative rate model, 227
multivariate counting process, 25

Nelson-Aalen estimator, 82

occurrence/exposure rate, 66
optional covariation process, 22
optional variation process, 22
orthogonal martingales, 21

partial likelihood, 64
predictable covariation process, 21
predictable process, 21
predictable variation process, 21
product integration estimator, 351
product limit estimator, 351
proportional excess model, 273

cumulative residuals, 283



470 Index

goodness-of-fit, 283
Lung cancer data, 284
survival function estimation,

292
proportional hazards model, see

Cox model
proportional odds model, 298

converging hazards, 299
goodness-of-fit, 306

quadratic covariation process, 22
quadratic variation process, 22

relative risk, 176
resampling inference

additive hazards model, 118
additive rate model, 151
Cox-Aalen model, 258
semiparametric additive haz-

ards model, 136
semiparametric additive rate

model, 151
semiparametric multiplicative

hazards model, 224, 226
semiparametric risk model, 136

right-censoring, 49

smoothed Cox regression model,
251

stochastic process, 19
stopping time, 19
stratified Cox model, 190
stratified log-rank test, see log-

rank test
stratified tests, 93
subdistribution hazard function,

361
submartingale, 20
survival function

additive hazards model, 146
Cox-Aalen model, 266
multiplicative hazards model,

226
proportional excess model, 292
semiparametric additive haz-

ards model, 146

test for time-varying effects
additive hazards model, 116,

135
multiplicative hazards model,

213
TRACE data

additive hazards model, 159
Cox-Aalen model, 270
introduction, 7

transformation model, 293, 298
efficient score, 304
modified partial likelihood, 300
nonparametric maximum like-

lihood, 304

Weibull distribution, 68
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