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Preface

More than ever is there a strong drive to search for and evaluate potential
surrogate markers and surrogate endpoints for randomized clinical trials. A
successful surrogate endpoint is able to reduce follow-up trial time and/or
to reduce the number of patients needed to establish a certain treatment ef-
fect. From a statistical perspective, Prentice’s framework (1989), amplified
by Freedman, Graubard, and Schatzkin (1992), was instrumental to start
the debate as to how statistical validation or, more modestly formulated,
statistical evaluation, of a potential surrogate endpoint could be under-
taken. Much debate ensued, also in the light of the historic “accidents”
with surrogates not carefully evaluated, and it is fair to say the surrogate
marker debate has since been laden with a certain amount of skepticism.

Connected to his involvement in clinical trial methodology, Marc Buyse
has always had a strong interest in the surrogate marker validation debate.
In April 1994, Marc and Geert met at a Drug Information Association
meeting in Bruges, at the time where Marc was thinking about the relative
effect as a measure to supplement the proportion explained. One thing led
to another and soon an LUC-based research team was formed, headed by
the three of us, that, over the years, has encompassed fifteen members from
various research institutes. The team has investigated a number of aspects
of surrogate marker validation. A move was soon made from the so-called
single-trial framework to a meta-analytic or hierarchical one, in line with
ideas developed by Michael Hughes and Michael Daniels, and also by Mitch
Gail and his co-workers. A lot of subsequent activity focused on finding ap-
propriate hierarchical statistical models for various types of surrogate and
true outcomes. Formulating such models is not always straightforward, let
alone fitting them, and consequently the need arose to explore simplified
modeling and fitting strategies, and the Bayesian framework was considered
as a potential alternative. Also, as different models incorporate different as-
sociation parameters, the need arose to try and unify the surrogate marker
evaluation measures.

While doing this, an eye had to be kept on several important application
areas, such as oncology, HIV, and mental health. Even though there is a
common basis for surrogate marker validation across these areas, a good
number of aspects are area specific. For example, it is fair to say that the
speed of the developments in HIV is tremendous, compared to other thera-
peutic areas. In mental health, the delineation between true and surrogate
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endpoints is not as clear as it would be in other areas. Finally, because
surrogate marker evaluation takes place, to a large extent, in the develop-
ment of medicinal product arena, the perspectives of the pharmaceutical
industry and the regulatory authorities have to be taken into account in a
proper fashion.

This text hopes to give an accessible synthetic account of the developments
just sketched, giving proper credit to historical developments, providing a
balance between statistical considerations of a modeling and computation
nature, scientific considerations coming from the various therapeutic areas,
and the positions taken by the pharmaceutical industry and the regulatory
authorities. As in any scientific debate, different people approach surrogate
marker evaluation with various degrees of comfort. We hope the current
text does proper justice to all views, not just the editors’ views.

Although a variety of authors have contributed to this book, we have chosen
a strongly edited form to achieve a smooth flow. As far as possible, a com-
mon set of notations has been used by all authors. Ample cross-references
between chapters are provided. The book should be suitable either to read
a selected number of chapters or the integral text.

Tomasz Burzykowski (LUC, Diepenbeek)

Geert Molenberghs (LUC, Diepenbeek)

Marc Buyse (IDDI, Brussels, and LUC, Diepenbeek)
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Introduction

Geert Molenberghs, Marc Buyse, and
Tomasz Burzykowski

1.1 The Concept of a Surrogate Endpoint

One of the most important factors influencing the duration and complexity
of the process of developing new treatments is the choice of the endpoint,
which will be used to assess the efficacy of the treatment. Two main cri-
teria to select the endpoint are its sensitivity to detect treatment effects
and its clinical relevance to goals of the study (Fleming 1996). The rele-
vance depends on, for example, whether evidence for biological activity of
a drug is sought (as in Phase II trials) or whether a definitive evaluation
of clinical benefit to patients has to be made (as in Phase III trials). For
instance, in life-threatening diseases, such as cardiovascular diseases or can-
cer, the endpoint relevant for definitive evaluation of a treatment typically
is survival.

It often appears, however, that the most sensitive and relevant clinical end-
point, which will be called the “true” endpoint throughout this text, might
be difficult to use in a clinical trial. This can happen if the measurement
of the true endpoint:

• is costly (for example, to diagnose “cachexia,” a condition associated
with malnutrition and involving loss of muscle and fat tissue, expen-
sive equipment measuring content of nitrogen, potassium, and water
in patient’s body is required);

• is difficult (for example, involving compound measures such as typi-
cally is the case in quality of life or pain assessment);

• requires a long follow-up time (for example, survival in early-stage
cancers);

• requires a large sample size due to a low incidence of the event (for
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example, short-term mortality in patients with suspected acute my-
ocardial infarction).

In such cases, use of the true endpoint increases the complexity and/or the
duration of research. To overcome these problems, a seemingly attractive
solution is to replace the true endpoint by another one, which is measured
earlier, more conveniently, or more frequently. Such “replacement” end-
points are termed “surrogate” endpoints (Ellenberg and Hamilton 1989).

Note that several related but somewhat distinct terms are in use, such as
surrogate endpoint, surrogate marker, or biomarker. Surrogate endpoint has
the connotation of replacement of the true endpoint in a clinical study by
another one. A marker on the other hand is an outcome, a measurement, or
a set of measurements that is indicative for a variable or a general concept.
For example, a number of blood, urine, and other measurements can be
used to detect environmental stress in living organisms. Although there
are common aspects in the evaluation of surrogate endpoints and markers,
the contexts are different. In this book, we will largely focus on surrogate
endpoints, with a lot of emphasis on randomized clinical trials.

1.2 Why Is There Reservation Toward the Use of
Surrogate Endpoints?

Because of the possible benefits for the duration of a clinical trial, surrogate
endpoints have been used in medical research for a long time (Ellenberg
and Hamilton 1989, Fleming and DeMets 1996). Table 1.1 presents several
examples. The use of the surrogate endpoints presented in Table 1.1 was
based on an established association between them on the one hand and
the corresponding true endpoints on the other hand. However, the mere
existence of an association between a candidate surrogate endpoint and
the true endpoint is not sufficient for using the former as a surrogate. As
Fleming and DeMets (1996) put it, “a correlate does not make a surro-
gate.” What is required is that the effect of the treatment on the surrogate
endpoint reliably predicts the effect on the true endpoint. Unfortunately,
partly due to the lack of appropriate methodology, this condition was not
checked in the early attempts to use surrogates. Consequently, for most
of the surrogates mentioned in Table 1.1, it was found that their use, at
least in some applications, led to erroneous, or even harmful, conclusions.
A review of several such examples is given by Fleming and DeMets (1996).
Probably the best known case is the approval by the Food and Drug Admin-
istration (FDA) in the United States of the use of three drugs: encainide,
flecainide, and moricizine. The drugs were approved based on the fact that
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TABLE 1.1. Examples of surrogate endpoints used in medical research.

Disease Endpoints

Surrogate True

Early stage cancer Time to progression Survival time

Advanced cancer Tumor response Survival time

Osteoporosis Bone mineral density Bone fracture

Ophthalmology (glaucoma) Intraocular pressure Long-term visual acuity

Chronic granulomatous dis-
ease

Superoxide production Serious infection

Ability to kill bacteria Serious infection

Cardiovascular disease Ejection fraction Myocardial infarction

Blood pressure Stroke, survival time

Arrythmias Survival time

HIV infection CD4 counts; viral load Development of AIDS,

survival time

they were shown to effectively suppress arrythmias. It was believed that, be-
cause arrythmia is associated with an almost fourfold increase in the rate
of cardiac-complication-related death, the drugs would reduce the death
rate. However, a clinical trial conducted after the drugs had been approved
by the FDA and introduced into clinical practice showed that in fact the
death rate among patients treated with encainide and flecainide was more
than twice the one among patients treated with placebo (The Cardiac Ar-
rhythmia Suppression Trial (CAST) Investigators 1989). An increase of the
risk was also detected for moricizine.

This and other examples of unsuccessful replacement of true endpoints led
to the scepticism about usefulness of surrogate endpoints. Consequently,
negative opinions about the use of surrogates in the evaluation of treat-
ment efficacy have been voiced (Fleming 1996, Fleming and DeMets 1996,
DeGruttola et al. 1997).

1.3 Why the Use of Surrogate Endpoints Is Still
Being Considered?

It will be clear from the previous section that the very mention of surro-
gate endpoints has always been very controversial. However, not all early
applications were failures. For example, the dramatic surge of the AIDS
epidemic, the impressive therapeutic results obtained early on with zidovu-
dine, and the pressure for an accelerated evaluation of new therapies have
all led to, first, the use of CD4 blood count and then, with the advent
of highly active antiretroviral therapy (HAART), viral load as endpoints
that replaced time to clinical events and overall survival (DeGruttola et al.
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1995), in spite of some concerns about their limitations as surrogates for
clinically relevant endpoints (Lagakos and Hoth 1992).

Generally, before a new drug can be accepted for the use in clinical practice,
its efficacy and safety needs to be rigorously assessed in a series of clini-
cal trials. This process of testing a new therapy can (and, in fact, does)
take many years. At the same time, the number of candidate biomarkers
and ultimately the number of surrogate endpoints based upon them is in-
creasing dramatically. Indeed, an increasing number of new drugs have a
well-defined mechanism of action at the molecular level, allowing drug de-
velopers to measure the effect of these drugs on the relevant biomarkers
(Ferentz 2002). There is also increasing public pressure for new, promising
drugs to be approved for marketing as rapidly as possible, and such ap-
proval will have to be based on biomarkers rather than on some long-term
clinical endpoint (Lesko and Atkinson 2001). The pressure can become es-
pecially high in a situation where rapidly increasing incidence of a disease
can become a serious threat to public health. As an illustration of this
trend toward early decision-making, recently proposed clinical trial designs
use treatment effects on a surrogate endpoint to screen for treatments that
show insufficient promise to have a sizeable impact on survival (Royston,
Parmar, and Qian 2003). Last but not least, if the approval process is
shortened, there will be a corresponding need for earlier detection of safety
signals that could point to toxic problems with new drugs. It is a safe bet,
therefore, that the evaluation of tomorrow’s drugs will be based primarily
on biomarkers, rather than on the longer-term, harder clinical endpoints
that have dominated the development of new drugs until now.

In conclusion, because surrogate endpoints can shorten the duration of
the process, their use does constitute an attractive option. Thus, although
many would like to avoid surrogate endpoints altogether, sometimes sur-
rogates will be the only reasonable alternative, especially when the true
endpoint is rare and/or distant in time.

Another reason to shorten the duration of the process of testing new thera-
pies may be related to new discoveries in medicine and biology, which create
a possibility for development of many potentially effective treatments for
a particular disease. In such a situation, a need to cope with a large num-
ber of new promising treatments that should be quickly evaluated with
respect to their efficacy might appear. As a matter of fact, this can already
be observed happening in oncology, as the increased knowledge about the
genetic mechanisms operating in cancer cells led to the proposal of qualita-
tively new approaches to treat cancer. An example is found in the use of a
genetically modified virus that selectively attacks p53-deficient cells, spar-
ing normal cells (Heise et al. 1997). It is known that for several cancers,
mutations of the p53 gene are quite common. For instance, in head and
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neck tumors they are detected in 45-70% of the cases (Khuri et al. 2000),
whereas in pancreatic tumors, this is about 60% of the cases (Barton et al.
1991). Consequently, in these cancers the injection of the virus in the tumor
might result in the eradication of the cancer cells without affecting normal
cells. In fact, clinical trials investigating the efficacy of such a treatment
have already been started, showing promising results (Von Hoff et al. 1998,
Khuri et al. 2000, Lamont et al. 2000, Nemunaitis et al. 2001). With the
results of the human genome mapping now available (International Human
Genome Sequencing Consortium 2001, Venter et al. 2001), development of
even a larger spectrum of treatments aimed at disease mechanisms present
at the gene level might be expected.

From a practical point of view, shortening the duration of a clinical trial
also limits possible problems with non-compliance and missing data, which
are more likely in longer studies, and therefore increases effectiveness and
reliability of the research.

Finally, an important area of potential application of surrogate endpoints
is the assessment of safety of new treatments. Duration and sample size of
clinical trials aimed at development of new drugs are usually insufficient to
detect rare or late adverse effects of the treatment (Dunn and Mann 1999,
Jones 2001). The use of surrogate endpoints (for toxicity-related clinical
endpoints) might allow one to obtain information about such effects even
during the clinical testing phase.

All of these reasons apply to the current state of research on novel treat-
ments. Despite the failed past attempts, it is therefore difficult to abandon
the idea of using surrogate endpoints altogether.

1.4 Validation of Surrogate Endpoints

Nevertheless, the failed past attempts to use surrogate endpoints do make
it clear that, before deciding on the use of a candidate surrogate endpoint,
it is of the utmost importance to investigate its validity. (The term va-
lidity is used here in a broad sense, and not in the narrow, well-defined
psychometric sense, even though there is a relationship between both, see
also Chapter 16.) Consequently, formal methods allowing for validation are
required. Such methods have become the subject of intensive research over
the past decades. In this volume, the results of this research, as well as
some novel concepts and techniques, will be presented.
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Setting the Scene

Geert Molenberghs, Marc Buyse, and
Tomasz Burzykowski

2.1 Historical Perspective

Often, the most clinically relevant endpoint, that is, the “true” endpoint,
is difficult to use in a clinical trial. In cancer trials, for instance, survival
is still regarded as the ultimate endpoint of interest, but it may lack sen-
sitivity to true therapeutic advances, it may be confounded by competing
risks and second-line treatments, and it is observed late, which results in
long delays before new drugs can be approved. In such cases, a seemingly
attractive solution is to replace the true endpoint by another one, which
might be measured earlier, more conveniently, or more frequently. As stated
in Chapter 1, such “replacement” endpoints are termed “surrogate” end-
points.

Before a surrogate can replace a true endpoint, it should be validated or
evaluated. Merely establishing a correlation between both endpoints is not
sufficient (Baker and Kramer 2003). Several formal methods for this pur-
pose have already been proposed (Prentice 1989, Freedman, Graubard, and
Schatzkin 1992, Daniels and Hughes 1997, Buyse and Molenberghs 1998,
Buyse et al. 2000a, Gail et al. 2000). With the statistical methods available,
it ought to be possible to conduct a formal investigation on the quality of
various endpoints used as surrogates in clinical practice. Such an investiga-
tion can shed light on the feasibility of the use of these endpoints and guide
the regulatory agencies, for example, in the choice of the endpoints that
can be used for accelerated approval of investigational drugs. Of course, as
stated earlier, a quantitative evaluation is important but is by no means
the only component in the decision process leading to the replacement of
the true endpoint by the surrogate one. Several parties are involved, in-
cluding the regulatory agencies (Section 2.2) and the industry developing
a medicinal product.
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2.2 A Regulatory Agencies Perspective

The need to develop new drugs and treatments as quickly as possible has
become acute nowadays. Regulatory agencies from around the globe, in
particular in the United States, in Europe, and in Japan, have reacted to
this challenge through various provisions and policies.

In the United States, there are mechanisms available for accelerated ap-
proval based on surrogate endpoints, in order to reduce the time to re-
view an application for indications with no known effective therapy and for
providing access to patients for unapproved drugs. Accelerated approval
(sometimes referred to as “conditional approval” or “Subpart H”) refers to
an acceleration of the overall development plan by allowing submission of
an application, and if approved, marketing of a drug on the basis of surro-
gate endpoints while further studies demonstrating direct patient benefit
are underway. Accelerated approval is limited to diseases where no effec-
tive therapies exist and is based on a surrogate endpoint likely to predict
clinical benefit.

The recent recommendation of the Food and Drug Administration (FDA)
for accelerated approval of investigational cancer treatments states that

“FDA believes that for many cancer therapies it is appropri-
ate to utilize objective evidence of tumor shrinkage as a basis
for approval, allowing additional evidence of increased survival
and/or improved quality of life associated with that therapy to
be demonstrated later”

(Food and Drug Administration 1996). This marks a departure from the
traditional requirements for new cancer treatments to show survival or
disease-free survival benefits prior to being granted market approval (Flem-
ing et al. 1994, Cocchetto and Jones 1998). If the achievement of a complete
remission has indeed a major impact on prognosis in hematological ma-
lignancies (Armitage 1993, The International Non-Hodgkin’s Lymphoma
Prognostic Factors Project 1993, Kantarjian et al. 1995), the relationship
between tumor response and survival duration is far less clear in solid tu-
mors, even though the shrinkage of metastatic measurable masses has long
been the cornerstone of the development of cytotoxic therapies (Oye and
Shapiro 1984). In the United States, response rate has been used as a surro-
gate for patient benefit for accelerated approval and as a component of full
approval for some hormonal and biological products. Among them are do-
cetaxel for second-line metastatic breast cancer, irinotecan for second-line
metastatic colorectal cancer, capecitabine for refractory metastatic breast
cancer, liposomal cytarabine for lymphomatous meningitis, and temozolo-
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mide for second-line anaplastic astrocytoma. Two drugs received acceler-
ated approval for supplemental indications: liposomal doxorubicin for re-
fractory ovarian cancer and celecoxib for polyp reduction in familial ade-
nomatous polyposis.

In the European Union, there is a different “accelerated approval” mecha-
nism. The European legislation allows for granting a marketing authoriza-
tion under “exceptional circumstances” where comprehensive data cannot
be provided at the time of submission (e.g., because of the rarity of the
disease) and provided that the applicant agrees to a further program of
studies that will be the basis for post-authorizations review of the ben-
efit/risk profile of the drug. Although this primarily refers to situations
where randomized clinical trials are lacking, it applies equally well to ab-
sence of data on a particular endpoint. According to the European Agency
for the Evaluation of Medicinal Products (EMEA) guideline for the eval-
uation of anticancer agents, the choice of endpoints should be guided by
the clinical relevance of the endpoint and should take into account method-
ological considerations. Possible endpoints for phase III trials in oncology
include progression-free survival, overall survival, response rate (and dura-
tion), and symptom control/quality of life. The guideline also states that if
objective response rate is used as the primary endpoint, compelling justifi-
cations are needed and normally additional supportive evidence of efficacy
in terms of, for example, symptom control is necessary (Committee for Pro-
prietary Medicinal Products 2001). Thus, where justified, the use of surro-
gate endpoints in oncology is possible although it may require confirmation
of efficacy in the post-authorization phase, e.g., by confirming an effect on
the true endpoint or in confirmatory trials. The initial EMEA experience
with antineoplastic and endocrine therapy agents has shown that in the
majority of cases, approval was indeed obtained based on a surrogate end-
point such as objective response rate. This was the case, e.g., for docetaxel
in second-line (monotherapy) metastatic breast cancer, liposomal doxoru-
bicin in AIDS-Kaposi sarcoma, and paclitaxel in second-line AIDS-Kaposi
sarcoma. Topotecan was approved in second-line metastatic ovarian cancer
based on response rate and progression-free survival, and temozolomide was
approved in recurrent glioblastoma and recurrent anaplastic astrocytoma
based on progression-free survival. Thus, the European system is coming
close to an accelerated approval system like in the United States perhaps
with more flexibility.

The situation is somewhat different in Japan. Objective response rate has
played there the central role for oncology drug approvals where cytotoxic
drugs can be approved based on tumor shrinkage in phase II studies, as
defined in the guideline issued in 1991. The initial approval of a drug is
considered to be conditional on a subsequent re-examination of the safety
and efficacy of the drug at something like four to ten years after marketing
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authorization. At least two independent randomized trials with survival as
an endpoint need to be conducted in a post-marketing setting and results
need to be made available at the time of re-examination.

At the international level, the International Conference on Harmonization
(ICH) Guidelines on Statistical Principles for Clinical Trials state that

“In practice, the strength of the evidence for surrogacy de-
pends upon (i) the biological plausibility of the relationship, (ii)
the demonstration in epidemiological studies of the prognostic
value of the surrogate for the clinical outcome and (iii) evidence
from clinical trials that treatment effects on the surrogate cor-
respond to effects on the clinical outcome”

(ICH Guidelines 1998). As such, it is close in spirit to the procedures pro-
posed by the U.S., European, and Japanese regulatory authorities.

A detailed regulatory perspective is provided in Chapter 3.

2.3 Main Issues

Taking into account the arguments developed in the Introduction and ear-
lier in this chapter, it is difficult to abandon the idea of using surrogate
endpoints altogether, in spite of the failed attempts, described in the In-
troduction. However, it has also been stated, and this is in line with the
regulatory authorities’ policies, that there is a need for formal evaluation
as an important component of the decision whether or not a surrogate
endpoint can be used. Prentice (1989) formulated a definition of surrogate
endpoints, as well as operational criteria for validating a surrogate end-
point. Freedman, Graubard, and Schatzkin (1992) introduced the concept
of proportion explained , which was meant to indicate the proportion of the
treatment effect mediated by the surrogate. Buyse and Molenberghs (1998)
decomposed the proportion explained further into the relative effect and
adjusted association, and argued in favor of using these quantities instead.
The aforementioned proposals, reviewed in Chapter 5, were formulated un-
der the assumption that the validation of a surrogate is based on data from
a single randomized clinical trial.

This leads to problems with untestable assumptions and too low statistical
power. To overcome these problems, the combination of information from
several groups of patients (multi-center trials or meta-analyses) was sug-
gested by Albert et al. (1998). It was subsequently implemented by Daniels
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TABLE 2.1. Examples of possible surrogate endpoints in various diseases (Abbre-
viations: AIDS = acquired immune deficiency syndrome; ARMD = age-related
macular degeneration; HIV = human immunodeficiency virus).

Disease Surrogate Type Final Type

endpoint endpoint

Resectable solid
tumor

Time to
recurrence

Censored Survival Censored

Advanced cancer Tumor response Binary Time to
progression

Censored

Osteoporosis Bone mineral
density

Longitudinal Fracture Binary

Cardiovascular
disease

Ejection fraction Continuous Myocardial
infraction

Binary

Hypertension Blood pressure Longitudinal Coronary heart
disease

Binary

Arrhythmia Arrhythmic
episodes

Longitudinal Survival Censored

ARMD 6-month visual
acuity

Continuous 24-month visual
acuity

Continuous

Glaucoma Intraoccular
pressure

Continuous Vision loss Censored

Depression Biomarkers Multivariate Depression scale Continuous

HIV infection CD4 counts +
viral load

Multivariate Progression to
AIDS

Censored

and Hughes (1997), Buyse et al. (2000a) and Gail et al. (2000), among oth-
ers. The meta-analytic framework is introduced in Chapter 7.

Statistically speaking, the surrogate endpoint and the clinical endpoint
are realizations of random variables. As will be clear from the formalisms
developed in Chapter 7, interest needs to focus on the joint distribution of
these variables. The easiest situation is where both are Gaussian random
variables. This is, however, seldom the case, because the surrogate endpoint
and/or the clinical endpoint are often realizations of non-Gaussian random
variables. Table 2.1 shows a number of settings that can occur in practice.
Thus, grouped by type of endpoint, one can encounter:

• Binary (dichotomous): biomarker value below or above a certain
threshold (e.g., CD4+ counts over 500/mm3) or clinical “success”
(e.g., tumor shrinkage).

• Categorical (polychotomous): biomarker value falling in successive,
ordered classes (e.g., cholesterol levels <200 mg/dl, 200–299 mg/dl,
300+ mg/dl) or clinical response (e.g., complete response, partial
response, stable disease, progressive disease).

• Continuous (Gaussian): biomarker (e.g., log-PSA level) or clinical
measurement (e.g., diastolic blood pressure).
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• Censored continuous: time to biomarker below or above a certain
threshold (e.g., time to undetectable viral load) or time to clinical
event (e.g., time to cardiovascular death).

• Longitudinal or repeated measures: biomarker (e.g., CD4+ counts
over time) or clinical outcome (e.g., blood pressure over time).

• Multivariate longitudinal: several biomarkers (e.g., CD4+ and viral
load over time) or several clinical measurements (e.g., dimensions of
quality of life over time).

The models used to validate a surrogate for a clinical endpoint will depend
on the type of variables observed in the problem at hand. Chapters following
Chapter 7 are dedicated to a variety of settings.
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Regulatory Aspects in Using
Surrogate Markers in Clinical
Trials

Aloka Chakravarty

3.1 Introduction and Motivation

Surrogate marker plays an important role in the regulatory decision pro-
cesses in drug approval. The possibility of reduced sample size or trial
duration when a distal clinical endpoint is replaced by a more proximal
one hold real benefit in terms of reaching the intended patient population
faster, cheaper, and safer as well as a better characterization of the efficacy
profile. In situations where endpoint measurements have competing risks
or are invasive in nature, certain latitude in measurement error can be
accepted by deliberately choosing an alternate endpoint in compensation
for a better quality of life or for ease of measurement.

3.1.1 Definitions and Their Regulatory Ramifications

Over the years, many authors have given various definitions for a surrogate
marker. Some of the operational ramifications of these definitions will be
examined in their relationship to drug development.

Wittes, Lakatos, and Probstfield (1989) defined surrogate endpoint sim-
ply as “an endpoint measured in lieu of some so-called ‘true’ endpoint.”
While it provides the core, this definition does not provide any operational
motivation. Ellenberg and Hamilton (1989) provides this basis by stating:
“investigators use surrogate endpoints when the endpoint of interest is too
difficult and/or expensive to measure routinely and when they can define
some other, more readily measurable endpoint, which is sufficiently well
correlated with the first to justify its use as a substitute.” This paved the
way to a statistical definition of a surrogate endpoint by Prentice (1989):



14 Aloka Chakravarty

“a response variable for which a test of null hypothesis of no relationship
to the treatment groups under comparison is also a valid test of the cor-
responding null hypothesis based on the true endpoint.” This definition,
also known as the Prentice Criteria, is often very hard to verify in real-life
clinical trials. An operating definition given by Temple (1999) states: “a
laboratory or physical sign that is used in therapeutic trials as a substitute
for a clinically meaningful endpoint that is a direct measure of how a pa-
tient feels, functions, or survives and that is expected to predict the effect
of the therapy.” This definition has been used as the operational definition
of surrogate endpoints in a regulatory setting.

International Conference on Harmonization (ICH) document E8 states: “a
validated surrogate endpoint is an endpoint which allows prediction of
a clinically important outcome but in itself does not measure a clinical
benefit. When appropriate, surrogate outcomes may be used as primary
endpoints.” It further states that the “methods used to make the mea-
surements of the endpoints, both subjective and objective, should meet
accepted standards for accuracy, precision, reproducibility, reliability, va-
lidity and responsiveness (sensitivity to change over time),” thus providing
a valid premise to use it in multinational trials.

A well-validated surrogate will predict the clinical benefit of an interven-
tion both quantitatively and qualitatively with consistent results in several
settings. According to Temple (1999), a surrogate endpoint is a laboratory
measurement or physical sign used in therapeutic trials as a substitute for
a clinically meaningful endpoint that is expected to predict the effect of
the therapy. The U.S. Food and Drug Administration (FDA) is able to
rely on validated surrogates for accelerated approval of drugs that provide
meaningful benefit over existing therapies for serious or life-threatening
illnesses (e.g., acquired immunodeficiency syndrome). In these cases, the
surrogates should be reasonably likely to predict clinical benefit based on
epidemiological, therapeutic, pathophysiologic, or other scientific evidence.
However, in general, trials examining surrogate endpoints, even where the
endpoint is well correlated with a clinical outcome, surrogates will be un-
able to evaluate clinically relevant effects of the drug not related to the
surrogate, whether these are beneficial or adverse.

3.1.2 Support for Surrogates

Next, we examine what are the motivations for using a surrogate endpoint.
The motivation to use a surrogate can be judged by its biological plausibil-
ity, its expected success in clinical trials, and its risk-benefit ratio or public
health considerations. We summarize these issues in Table 3.1.
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TABLE 3.1. Support for surrogates.

Factor Favors surrogates Does not favor surrogates

Biological
plausibility

Epidemiological evidence
extensive and consistent

Inconsistent epidemiology

Quantitative epidemiological
relationship

No quantitative epidemiologi-
cal relationship

Credible animal model shows
drug response

No animal model

Well-understood disease
pathogenesis

Pathogenesis not clear

Drug mechanism of action
well-understood

Novel actions not previously
studied

Surrogate relatively late in the
biological path

Surrogate remote from clinical
outcome

Success in clinical
trials

Effect of surrogate has predicted
outcome with other drugs of
same pharmacological class

A negative outcome without
clear explanation

Effect on surrogate had
predicted outcome in several
classes

Inconsistent results across
classes

Risk-benefit,
public health
considerations

Serious or life-threatening
illness and no alternate therapy

Disease not life-threatening
and alternate therapy with dif-
ferent pharmacological action
known to affect outcome

Large safety database Little known about safety

Short term use Long-term use

Difficulty in studying clinical
endpoint (rare, delayed)

Easy to study clinical endpoint

Long-delayed, small effect in
healthy people

Thus, a surrogate to be useful has to have unequivocal biological plausi-
bility, be expected to perform consistently in a clinical trial, and possess
superior public health benefits.

3.1.3 Criteria for Surrogate Markers To Be Used in Drug
Development

In epidemiological studies, a useful surrogate marker is a causal factor for
the disease of interest, not merely a correlated factor. As Fleming (1996)
stated, “a correlate does not a surrogate make.” The higher the level of
explanatory evidence the surrogate is able to carry, the better it is to ex-
plain the disease process. Table 3.2 summarizes the relationships surrogate
endpoints (SEP) can have with the “true” clinical endpoints (CE).

Then, sensitivity (SE) of the surrogate endpoint for the clinical endpoint
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TABLE 3.2. Relationship of surrogate endpoints with the clinical endpoints.

T good T poor Total

S good a b a + b

S poor c d c + d

Total a + c b + d N

a = number of patients where both S and T provide good disease characterization.

b = number of patients where S is good but T provide poor disease characterization.

c = number of patients where S is poor but T provide good disease characterization.

d = number of patients where both S and T provide poor disease characterization.

is defined by

SE =
a

a + c
. (3.1)

Specificity (SP ) of the surrogate endpoint for the clinical endpoint is de-
fined by

SP =
d

b + d
. (3.2)

For the surrogate to be useful, both sensitivity and specificity have to be
numerically close to 1.

The relative risk (RR) is defined as

RR =
a(c + d)
c(a + b)

(3.3)

and the attributable proportion (AP ) as

AP =
SE

1 − 1
RR

. (3.4)

For a surrogate marker to be a successful one, AP has to be numerically
close to 1. Schatzkin, Freedman, and colleagues proposed strategies for de-
termining whether a biomarker is a valid surrogate for a disease of interest,
for instance whether human papillomavirus infection is a valid surrogate
for cervival dysplasia. The attributable proportion is a useful measure of
association between the surrogate endpoint and the clinical endpoint, but
establishing the causality of the relationship between the surrogate and the
clinical endpoint require data from either observational studies or, prefer-
ably, intervention studies. Intervention studies would focus on the triplet
intervention / biomarker / disease in much the same way as a clinical trial
would focus on the triplet treatment / surrogate endpoint / clinical end-
point.
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3.1.4 Surrogate Markers and Biomarkers

Definitions and Differences

Biological marker or biomarker, as more commonly known, refers to a vari-
ety of physiologic, pathologic, or anatomic measurements that are thought
to relate to some aspect of normal or pathological biologic processes (Tem-
ple 1995, Lesko and Atkinson 2001). These biomarkers include measure-
ments that suggest the etiology of, the susceptibility to, or the progress of
disease; measurements related to the mechanism of response to treatments;
and actual clinical responses to therapeutic interventions. Biomarkers differ
in their closeness to the intended therapeutic response or clinical benefit
endpoints, classified as follows:

1. biomarkers thought to be valid surrogates for clinical benefit (e.g.,
blood pressure, cholesterol, viral load);

2. biomarkers thought to reflect the pathologic process and be at least
candidate surrogates (e.g., brain appearance in Alzheimer’s disease,
brain infarct size, various radiographic/isotopic function tests);

3. biomarkers reflecting drug action but of uncertain relation to clini-
cal outcome (e.g., inhibition of ADP-dependent platelet aggregation,
ACE inhibition);

4. biomarkers that are still more remote from the clinical benefit end-
point (e.g., degree of binding to a receptor or inhibition of an agonist).

From a regulatory perspective, a biomarker is not considered an acceptable
surrogate endpoint for a determination of efficacy of a new drug unless it
has been empirically shown to function, as a valid indicator of clinical
benefit (i.e., a valid surrogate). Theoretical justification alone does not
meet the evidentiary standards for market access. Many biomarkers will
never undergo the rigorous statistical evaluation that would establish their
value as a surrogate endpoint to determine efficacy or safety, but they can
still have use in earlier drug development process. Changes in biomarkers
typically exhibit a time course that is different from changes in clinical
endpoints and often are more directly related to the time course of plasma
drug concentrations, possibly with a measurable delay. For this reason,
exposure-response relationships based on biomarkers may help establish
the dose range for clinical trials intended to establish efficacy that will
then be studied more formally, indicate how soon dose titration should
occur, examine potential pharmaco-dynamic interactions, and give insight
into potential adverse effects.
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TABLE 3.3. Biomarkers as surrogate endpoints – possible relationships.

Type of relationship Value of biomarker Example

Unreliable interaction be-
tween biomarker and the
treatment intervention

Biomarker is of no value
as a surrogate endpoint

Prostate-specific antigen
(PSA) is a useful bio-
marker for prostate can-
cer detection but unreli-
able as an indicator of
treatment response

The full effect of the
intervention is observed
through the biomarker
assessment

Biomarker is an ideal sur-
rogate endpoint

None known at present

Intervention affects the
endpoint and the bio-
marker independently;
only a proportion of the
treatment effect is cap-
tured by the surrogate
endpoint

Biomarker has value as
a surrogate endpoint but
explains only a part of the
treatment effect

Most established surro-
gate endpoints (e.g., de-
velopment of opportunis-
tic infections with HIV
anti-viral and mortality)

Intervention affects favor-
ably on the biomarker but
unfavorably on the well-
state and disease

Biomarker is of little
practical use as a sur-
rogate endpoint but
may have utility in
exploratory studies

Suppression of ventricu-
lar ectopy as a biomarker
of fatal arrhythmia fol-
lowing myocardial infarc-
tions (CAST trial)

Relationship Between Biomarkers and Surrogate Markers

While all surrogate markers are biomarkers, it is likely that only a few single
biomarkers will qualify as surrogate endpoints in therapeutic intervention
trials, or as surrogate markers in natural history or epidemiological studies.
For ease of reference, we use the terms surrogate “markers” and surrogate
“endpoints” interchangeably, although we acknowledge that some surro-
gate endpoints (such as patient self-assessment scales) are not biomarkers.
For the concept of a surrogate endpoint to be useful, one must specify
the clinical endpoint, class of intervention, and population in which the
substitution of the biomarker for a clinical endpoint is considered reason-
able. Table 3.3 summarizes the various possible relationships that can exist
between a surrogate marker and a biomarker.

Figure 3.1 gives a schematic description of the conceptual model for surro-
gate endpoints and biomarkers.

It shows that only a small proportion of biomarkers will be useful to be
considered as a surrogate endpoint, which will then have to be subjected
to a rigorous set of risk-benefit considerations to eventually arrive as an
instrument of global intervention assessment.
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FIGURE 3.1. A conceptual model between surrogate endpoints and biomarkers.

3.2 Surrogate Markers in Regulatory Setting

The U.S. Food and Drug Administration has supported the use of surrogate
markers when clinically appropriate to bring therapeutic agents through
the approval process faster and in a more efficient way. If a surrogate end-
point can be measured more easily or efficiently or with higher precision,
then it translates into faster treatment access for the patients. If a sur-
rogate endpoint is less affected by other treatment modalities, then the
precision of the trial can also be expected to increase. The FDA has re-
sponded to faster approval of promising through various specific regulatory
mechanisms, which we will discuss now.

3.2.1 Fast Track Program – A Program for Accelerated
Approval

Fast Track programs at the U.S. Food and Drug Administration are de-
signed to facilitate the development and expedite the review of new drugs
that meet two criteria: (1) are intended to treat serious or life-threatening
conditions and (2) demonstrate the potential to address unmet medical
needs for the condition. Whether a condition is serious or not is a matter
of judgment, but is generally based on its impact on such factors such as
survival, day-to-day functioning, or the likelihood that the disease if left
untreated would progress from a less severe condition to a more serious one.
When focusing on morbidity, consideration is given to its persistence or re-
currence if it is not irreversible (57 Federal Register 13234 dated April 15,
1992). Whether a therapeutic agent is intended to treat a serious condition
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FIGURE 3.2. Schema to determine Fast Track designation of a product.

is determined by the following criteria: (1) a therapy directed at serious
symptoms or serious manifestations of the condition; (2) a diagnostic eval-
uated for the impact on a serious aspect of the condition; (3) a preventive
intended to prevent a serious aspect; (4) a product that could ameliorate
serious side effects of other treatments. Now let us discuss the second crite-
ria. For an agent to demonstrate potential to address unmet medical needs,
the following conditions have to be considered: (1) there is no existing ther-
apy for the condition; (2) the new therapy is better; (3) the new therapy is
for the patients intolerant or unresponsive to existing therapy; (4) the new
therapy is less toxic, but preserves similar benefit; (5) the new therapy im-
proves compliance which is shown to improve effects on serious conditions.
Details on the designation, development and application review of a fast
track therapy can be found at http://www.fda.gov/cder/guidance.

Figure 3.2 summarizes the criteria in a schematic format.

Fast Track emphasizes the critical nature of close early communication
between the FDA and the sponsor. It highlights the procedures such as pre-
trial (before Investigational New Drug (IND) is initiated) and End-of-Phase
I meetings as methods to improve the efficiency of pre-clinical and clinical
development. It focuses on efforts by the FDA and the sponsor to reach
early agreement on the design and analysis of the major clinical efficacy
studies that will be needed to support approval. The requests for Fast
Track are expected to be resolved within a designated 60-day period from
the initial request. As of June 30, 2002, 151 applications for Fast Track have
been submitted. As seen from Table 3.4, there has been a marked increase
in fast track designation requests in recent years and most requests have
been acted upon within the 60-day period.
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TABLE 3.4. Responses to request for Fast Track designation.

Fast track requests Granted Denied Pending Total (%)

Submissions 1998–2002

Within goal of 60 days 96 30 4 130 (79.3%)

Overdue (>60 days) 13 12 9 34 (20.7%)

Submissions in fiscal year 2004

Within goal of 60 days 12 7 7 26 (96.0%)

Overdue (>60 days) 1 0 0 1 (4.0%)

NOTE: These figures are for sponsor requests for ’Fast Track’ designation

for a specific drug product and indication, which is not necessarily the same

as a product being granted Approval under Subpart H. Report updated

through April 28, 2004.

3.2.2 Subpart H and Its Relevance to Surrogate Markers

So far, from the discussion of the process, it is indicatead that Fast Track
can be considered irrespective of whether surrogate endpoints were used
or not. For drug development programs specifically utilizing surrogate end-
points, a special regulatory mechanism called Subpart H (refers to the
specific code of regulations governing it) is available. Under Subpart H,
approval may be based on a surrogate endpoint or on an effect on a clinical
endpoint other than survival or irreversible morbidity (“Surrogate”) [21
Code of Federal Register (CFR) 314.510 and 21 CFR 601.41], or a prod-
uct may be approved with restrictions to assure safe use (“Restricted”) [21
CFR 314.520]. Note that Subpart H applications are usually candidates for
Fast Track also, but not necessarily so.

The FDA may grant marketing approval for a new drug product on the
basis of

“. . . adequate and well-controlled clinical trials establishing
that the drug product has an effect on a surrogate endpoint
that is reasonably likely, based on epidemiological, therapeutic,
pathophysiologic, or other evidence, to predict clinical benefit
or on the basis of an effect on a clinical endpoint other than sur-
vival or irreversible morbidity. Approval under this section will
be subject to the requirement that the applicant study the drug
further, to verify and describe its clinical benefit, where there
is uncertainty as to the relation of the surrogate endpoint to
clinical benefit, or of the observed clinical benefit to ultimate
outcome. Post-marketing studies would usually be studies al-
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ready underway. When required to be conducted, such studies
must also be adequate and well controlled. The applicant shall
carry out any such studies with due diligence.”

Tables 3.5–3.7 summarize New Drug Applications (NDAs) that have been
approved under Subpart H regulations.

Tables 3.8 and 3.9 summarize already approved drugs that were considered
for a different disease indication using surrogate markers. These applica-
tions are known in regulatory parlance as NDA Supplements.

Fast Track policies are primarily designed to expedite drug development
during the IND stage, whereas Approval Under Subpart H allows for mar-
keting approval of an NDA based on an effect on a surrogate endpoint along
with well-controlled post-marketing studies.

A post-approval study will not necessarily be required in the exact popu-
lation for which approval was granted. For example, where a product was
approved to treat patients with refractory malignancy, additional informa-
tion from that population may not, for example, be as useful as randomized
controlled trials in a previously untreated population. In many instances,
additional studies would be already under way at the time the accelerated
approval is granted. If such studies are adequate and well controlled (either
utilizing proper historical controls or randomization), they may fulfill the
accelerated approval requirements for post-approval studies. All required
post-approval studies should be carried out with due diligence. Failure to
do so would constitute grounds to withdraw approval of the product appli-
cation (21 CFR 314.530(a) or 21 CFR 601.43(a)). FDA may also withdraw
approval of the application if studies fail to demonstrate clinical benefit
based on the traditional long-term endpoint.

Next, three therapeutic areas where surrogate markers have been used will
be discussed – in anti-viral, anti-cancer, and cardiovascular drug products.
It is not meant to be an exhaustive treatise; there are several other thera-
peutic classes where use of surrogate markers is being considered or done.
However, the experience is most established in these three areas.
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3.3 Use of Surrogate Markers in Anti-viral Drug
Products

Surrogate markers have been widely used in anti-viral drug therapies. It is
one of the first areas that surrogates were used, as a response to the AIDS
epidemic and the thrust to bring potential therapies to the market within
the earliest time frame.

Various biological markers have been considered during early drug develop-
ment processes in anti-HIV therapies. They included CD4 count, p24 and
ICD p24 antigen level, β2-microglobulin, neopterin, HIV-1 RNA, HIV-1
DNA among a few. The cumulative evidence base suggests that both CD4
count and HIV-1 RNA provide important prognostic factor for AIDS. Some
surrogate markers such as β2-microglobulin and neopterin have proved to
be of limited use in a clinical trial.

It has been indicated that the natural history of HIV-1 infection can be
characterized by increased HIV-1 RNA level leading to CD4 count depletion
which in turn leads to AIDS and eventually death. Following the initial
HIV-1 infection, there is a latency period of up to 7 years where little virus
is detected in the blood but there is still virus particles being produced
on a daily basis. It was thought that if virus replication can be completely
blocked by potent anti-retroviral drug combinations, it would take between
two and three years of treatment to completely eradicate the virus from
the infected host.

HIV-1 RNA as a surrogate endpoint has several unique properties. First,
HIV-1 RNA is a marker of the severity of the disease – the higher it is,
the more severe the infection. Second, it has been shown repeatedly that
AIDS-defining illness is much less frequent when HIV-1 RNA is below a
certain threshold, e.g., 5000 copies/ml. Third, HIV-1 RNA is usually high
at the time of initial HIV-1 infection, and often increases near the time of an
AIDS-defining illness such as an opportunistic infection. Following the 1997
NIH workshop and the subsequent publication of two guidance documents
by the Department of Health and Human Services, the consensus was to
monitor HIV-1 viral load and CD4 count of HIV-infected patients on a
routine basis to make treatment decisions.

In August 1999, FDA issued a draft Guidance for Industry discussing
Clinical Considerations for Accelerated and Traditional Approval of Anti-
Retroviral Drugs Using Plasma HIV RNA (http://www.fda.gov/cder/
guidance/index.htm). Although accelerated approvals are routinely based
on changes in endpoints such as CD4 cell counts and plasma HIV RNA
levels, clinical endpoint trials assessing effects on mortality and/or disease
progression had been a requirement for traditional approvals prior to July
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1997. With the availability of potent anti-retroviral drug regimens and sen-
sitive assays for assessing plasma HIV RNA, the standards of clinical prac-
tice evolved to a paradigm emphasizing maximal and durable HIV RNA
suppression.

To evaluate feasibility of using HIV-1 RNA as a study endpoint, a collabo-
rative group of pharmaceutical, academic and government scientists inves-
tigated relationships between treatment-induced changes in HIV-1 RNA
and clinical endpoints from ongoing and completed anti-retroviral trials.
In several analyses of multiple trials involving more than 5000 patients, a
clear association was seen between initial decreases in plasma HIV-1 RNA
within first 24 weeks, and a reduction in the risk of clinical progression
and death. This relationship was observed across a range of patient charac-
teristics including pretreatment CD4 counts and HIV-1 RNA levels, prior
drug experience, and treatment regimen. Based on these data, it was pro-
posed that the accelerated approvals could be based on studies that show
a drug’s contribution toward shorter-term reductions in HIV-1 RNA (e.g.,
24 weeks), whereas traditional approvals could be based on trials that show
a drug’s contribution toward durability of HIV-1 RNA suppression (e.g.,
at least 48 weeks). In addition, the changes in CD4 cell counts need to be
consistent with observed HIV-1 RNA changes (Hughes et al. 2000).

According to the 1999 Guidance, studies in a broad range of patient popu-
lations (gender, age, and race) and a range of pre-treatment characteristics
(e.g., advanced and early disease, heavily pre-treated and treatment näıve)
are recommended to characterize the activity of the drug in at least two
adequate and well-controlled trials with a minimum of 24 weeks duration to
support accelerated approval. In combination therapies, analyses at some
earlier time points (e.g., 16 weeks) have proven to be less discriminatory.
Every attempt is to be made to design randomized, blinded, controlled tri-
als that provide all study patients with treatment regimens according to
a standard clinical practice. If the studies are designed as superiority tri-
als, add-on or substitution comparisons can be included, where the regimen
with the experimental drug should show superiority to the control regimen.
If equivalence trials using substitution comparisons are to be designed, it
is important that the contribution of the substituted drug to the regimen’s
overall activity be previously characterized in the population of interest.

Historically, zidovudine (ZDV) was approved in 1987 based on 17 weeks sur-
vival. The next product, didanosine (ddI) was approved in 1991 based on
surrogate endpoint of CD4 counts with a limited indication in patients re-
fractory to AZT failures. It was not until 1992 that the accelerated approval
mechanism was used in the approval of dideoxycytidine (ddC). Since then
many other HIV drugs have been approved under this regulation. For ap-
provals prior to 1995, the accelerated approval was based on either change
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FIGURE 3.3. Endpoints used in approval of anti-HIV drug products.

in CD4 count or time-averaged change in CD4 count (DAVG). Between
1995–1998, HIV-1 RNA load was gradually being more frequently used.
The metric used for HIV-1 RNA included change from baseline, DAVG or
the percentage of patients below a certain threshold. After 1998, most of the
accelerated approvals have been based on the criteria of having HIV-1 RNA
<400 and/or 50 copies/ml. The endpoints used in traditional approvals of
anti-HIV agents were primarily based on disease progression (DP) prior to
1997. From 1997 onwards, the traditional approvals are mostly based on
HIV-1 RNA, either as percentage of patients having less than 400 copies/ml
or the time to virologic failure.

According to Gilbert et al. (2001), the selection of primary endpoints for
AIDS trials is complicated by the long clinical course of the disease, the
frequent onset of anti-viral drug resistance, and the limitations in data for
validating surrogate endpoints. However, increasing the objectivity of the
selection process in the future requires expansion of available information
for the elucidation of the complex relationship between various surrogate
endpoints and clinical endpoints. Only through vigilant collection of clin-
ical outcomes data (e.g., through routine collection of death event data
from national death records) and data from long-term studies that moni-
tor virologic, immunologic, and clinical information throughout sequences
of regimens can this goal be achieved.

Figure 3.3 summarizes the endpoints traditionally used in accelerated and
traditional approval of anti-HIV drugs. The endpoints on the left axis refer
to the surrogate endpoints used for accelerated approval; endpoints on the
right axis refer to the clinical endpoints used for traditional approval. The
horizontal axis gives the approval timelines.
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TABLE 3.10. Crixivan. Basis for accelerated approval (CD4 count: comparison
of MK-containing arms to ZDV).

Statistic Crixivan (MK) vs. zidovudine (ZDV) MK+ZDV vs. ZDV

Study 028

Difference 66 69

p-value <0.0001 <0.0001

95% CI 42-89 45-93

Study 033

Difference 62 47

p-value <0.0001 <0.0001

95% CI 40-84 25-69

Next, we discuss two examples of therapeutic agents that have undergone
the accelerated approval and eventually went through the traditional ap-
proval.

3.3.1 Crixivan: A Case Study

Crixivan (indinavir sulfate), also referred to as MK-639 or simply MK or
IDV, was submitted in 1996 for accelerated approval based upon change
from baseline in CD4 cell counts. Change from baseline of HIV-1 RNA was
also considered as a secondary endpoint.

Two Phase III studies (Study 028 and 033) were examined for this review,
(see Table 3.10), and the regulatory decision was based on the interim
analyses of the surrogate markers. Study 028 was a double-blind study in
224 patients with no prior nucleoside analogue experience. The patients
were randomized to receive one of the three treatment regimens — the
test drug (MK)+Zidovudine (ZDV)+ddI, MK monotherapy or ZDV+ddI.
The comparisons of each arm containing MK versus the control arm were
conducted using ANOVA adjusting for center and CD4 strata at baseline.

Study 033 was performed in 266 subjects with prior ZDV experience and
was randomized to one of the three regimens — MK+ZDV+lamivudine
(also known as 3TC), MK monotherapy and ZDV+3TC. Analysis plans
were similar to Study 028.

Two short term (24-week) Phase II studies were also examined in order
to provide preliminary efficacy information regarding triple combination
therapy. It was seen that the results were convincing enough to warrant
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accelerated approval.

Crixivan was submitted for traditional approval following completion of the
pivotal trials (see Table 3.11). The clinical endpoint was defined as the first
occurrence of death from any cause or the diagnosis of AIDS as predefined
in the protocol. The comparisons were to be based on time-to-first failure
methods, including Kaplan-Meier, log-rank test and Cox proportional haz-
ards regression models. Study 033, later conducted as AIDS Cooperative
Trial Group (ACTG) 320, used the area under the response-time curve for
each patient divided by the time from randomization to the last available
evaluation of the patient minus the baseline value (AUCMB). The ACTG
Data and Safety Monitoring Board (DSMB) monitored the course and con-
duct of this study. One interim look was planned after 250 events or one
year, and the Peto and Pike stopping boundary was used. The trial was to
be considered for early stopping if the nominal p-value <0.001. The trial
was indeed stopped early by DSMB after 1156 patients were enrolled.

When considered in the light of the results of Trial 028 and the patterns seen
over time in ACTG 320, it appeared that the failure to reach the traditional
0.05 level is the result of the premature discontinuation of ACTG 320.
The achieved significance level was still felt to be sufficient to support the
results of study 028 that Crixivan is associated with a reduction in rate of
progression or death due to HIV.

3.3.2 Viramune: A Case Study

Accelerated Approval

Viramune (nevirapine, or NVP) belongs to a new class of anti-retroviral
agents called non-nucleoside reverse transcriptase inhibitor (NNRTI). The
accelerated approval of this drug was sought in patients with advanced
HIV-1 infection whose current anti-retroviral therapy is no longer deemed
adequate. Three studies, two in nucleoside experienced population and one
in nucleoside naive population, were submitted under accelerated approval
to support the claim that the addition of nevirapine to one or more nucle-
oside drugs provides an improvement in surrogate markers for HIV disease
(see Table 3.12). For each study, the surrogate endpoints were CD4 cell
count and HIV-1 RNA level in an eight-week window of time at the end of
the studies.

Study 1037 was a randomized, double blind, placebo-controlled study com-
paring ZDV/NVP to NVP monotherapy in 60 patients with prior ZDV
experience for 3–24 months and CD4 cell counts between 200 and 500.
Subjects were followed for 28 weeks with scheduled visit every 2 weeks in
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TABLE 3.11. Crixivan. Basis for traditional approval (time to first clinical event
analysis – treatment comparison).

Stratified log-rank test

Treatment (two-sided p-value) for Stratification

Study comparison time to first clinical event factor

Study 028 MK+ZDV vs ZDV 0.0001 Site and CD4

MK vs ZDV 0.0001

MK+ZDV vs MK 0.22

ACTG 320 MK+3TC+ZDV vs 0.0021* CD4

3TC+ZDV

* From randomization-based test, required 0.001 to achieve 5% level.

the beginning and every 4 weeks after the fourth week.

Study 1031 (ACTG 241) was a randomized, double blind, placebo-controlled
study in 400 patients comparing ZDV/ddI/NVP to ZDV/NVP with simi-
lar schedule as Study 1037. Eight of the 16 participating centers, with 200
patients, were to be included in a virology substudy, in which HIV-1 RNA
were to be collected in addition. The subjects were to be followed for 48
weeks on CD4 count.

Study 1046 was an international randomized, double blind placebo-
controlled trial in 120 patients comparing ZDV/ddI/NVP to ZDV/NVP
and ZDV/ddI with same dosing regimen for 52 weeks after the start of
therapy.

The studies were analyzed using ANOVA models with baseline CD4 strata
and center as covariates.

It is seen that addition of nevirapine to one or nucleosides has been shown
to produce an increase in CD4 cell counts and a small decrease in HIV-1
RNA levels. The lack of significance in Study 1046 may be attributed to
the much smaller sample size (50/arm versus 200/arm).

Traditional Approval

For traditional approval, the sponsor submitted five randomized, controlled
clinical trials. Study 1090, the Atlantic trial, and another trial with the
acronym INCAS, were planned pivotal trials: trials ACTG 193a and ACTG
241 were provided as supportive evidence.

Trial 1090 was a placebo-controlled study designed to compare efficacy of
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TABLE 3.12. Viramune. Basis for accelerated approval.
Endpoint Metric N Treatment Control p-value

Study 1031 Z/D/N* Z/D
CD4 Mean change week 20-28 328 26 -5 .001

Mean change week 40-48 328 6 -16 .002
AUCMB week 28 392 23 6 .001
AUCMB week 48 392 20 0 .001

RNA Mean change week 20-28 155 -.27 -.08 .137
Mean change week 40-48 149 -.14 .11 .024
AUCMB week 28 188 -.57 -.27 .001
AUCMB week 48 188 -.43 -.17 .003

Study 1037 Z/N Z
CD4 Mean change week 12-16 55 53 -31 .001

Mean change week 20-28 55 14 -31 .009
AUCMB week 16 60 44 -11 .001
AUCMB week 28 60 22 -24 .001

RNA Mean change week 12-16 55 .03 .01 .525
Mean change week 20-28 55 .16 .12 .590
AUCMB week 16 60 -.38 -.01 .001
AUCMB week 28 60 -.16 .04 .001

Study 1046 Z/D/N Z/D Z/N p-values
ZDN-ZD ZD-ZN ZDN-ZN

CD4 Mean change week 12-16 117 95 44 .44 .08 .01
Mean change week 20-28 113 78 22 .18 .05 .001
AUCMB week 16 72 62 57 .58 .77 .39
AUCMB week 28 87 67 47 .23 .28 .02

RNA Mean change week 12-16 -1.76 -1.55 -.56 .35 .001 .001
Mean change week 20-28 -1.72 -1.43 -.55 .14 .001 .001
AUCMB week 16 -1.61 -1.44 -.99 .24 .002 .001
AUCMB week 28 -1.63 -1.41 -.85 .15 .001 .001

* Z = ZDV; D = ddI; N = NVP.

NVP when used in combination with 3TC and other anti-retroviral ther-
apies in NNRTI näıve patients with CD4 counts ≤200 cells/mm3. The
primary efficacy endpoint was time to clinical disease progression, subse-
quently changed to time to virologic failure as defined as increase in HIV-1
RNA above limit of quantitation (BLQ). The planned primary analysis,
a stratified Fisher’s exact test on percentage of subjects without virologic
failure at Week 48, stratified by prior anti-retroviral therapy, HIV disease
status, baseline CD4 count, and baseline HIV-1 RNA found nevirapine to
be superior to placebo with a p-value <0.001.

The INCAS trial was designed to compare one triple-drug regimen, indi-
cated by NVP+ddI+ZDV, to two dual-drug regimens (ddI+ZDV, NVP+
ZDV). The primary endpoint was percent BLQ by 48 weeks in HIV-1
infected anti-retroviral naive patients with CD4 cell counts of 200–600
cells/mm3 without AIDS-defining illness or active invasive infection or ma-
lignancy. The primary analysis found adding nevirapine to ddI+ZDV back-
ground gave a significant increase in sustained viral suppression from 19%
to 45% (log-rank p-value <0.001). It was also found that ddI+ZDV was
statistically significantly superior to NVP+ZDV (log-rank p-value <0.001),
indicating that nevirapine should not be used with only one NNTI.
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The Atlantic trial was designed to compare efficacy of three different triple–
drug regimens comparing NVP with indinavir (IDV) and NNTI 3TC when
used in conjunction with ddI and stavudine (also known as d4T). The
primary efficacy endpoint is percent BLQ at 48 weeks. This trial was
conducted in asymptomatic NNTI naive patients with CD4 counts >200
cells/mm3 and HIV-1 RNA ≥500 copies/ml. The primary analysis used
95% two-sided confidence intervals for the difference in success rates, us-
ing normal approximation to the binomial. The trial was felt to have too
small sample size and the confidence intervals were too wide to support a
firm conclusion that nevirapine is no less than 10% worse than indinavir
or lamivudine (3TC).

Unlike the previous case study, this example highlights a regulatory decision
that was less straightforward. However, it was flexible enough to keep the
totality of the drug experience in order to meet the demand for newer
treatment regimens faster.

3.4 Use of Surrogate Markers in Anti-cancer Drug
Products

Traditionally, therapies for cancer patients have been approved on the basis
of objective response to the agent (tumor shrinkage) together with direct
evidence that the therapy produces measurable clinical benefit. Typical ap-
proval endpoints have been included, such as response rate together with
increased patient survival, decreased recurrence rate, increased disease-free
interval, and/or improved quality of life. It has been assumed that durable,
complete clinical response (complete disappearance of detectable tumor)
is a valid surrogate for such clinical benefit, but it is only infrequently
achieved. Much more commonly, partial tumor shrinkages are induced, and
evidence has accumulated that such responses are often directly linked to
longer or better patient survival. In fact, for some new agents, the FDA be-
gan to rely on a reasonable high rate of verifiable objective partial response
to the therapy as a basis for approval of agents to treat refractory malignan-
cies without requiring evidence of improved survival or quality of life even
prior to 1996. Subsequently, additional trials have been conducted to con-
firm or expand the product’s indication. Although the predictive value of
partial responses may still be a matter of discussion and study for all types
of cancer patients, the FDA had concluded that for patients with refractory
malignant diseases or for those who have no adequate alternative, clear ev-
idence of anti-tumor activity is a reasonable basis for approving the drug.
In these cases, studies confirming a clinical benefit may be appropriately
completed after approval.
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In March 1996, U.S. President Bill Clinton and Vice President Al Gore
issued a National Performance Review as a part of reinventing the govern-
ment initiative. This document discussed accelerating approval as well as
expanding access to anti-cancer agents. In the introduction, it stated “The
Food and Drug Administration has demonstrated a longstanding commit-
ment to the prompt consideration and, when appropriate, early approval of
new therapies for cancer patients.” To speed up the entire process further,
the FDA is adopting a uniform policy that will permit accelerated approval
of a significant number of new cancer therapeutics. In the past, the FDA
has approved cancer therapies on the basis of an agent’s ability to pro-
duce an effect on the well-established and long-recognized criteria such as
survival, improved quality of life, and relief of symptoms, as well as objec-
tive disease regression. When partial response of disease (measurable but
incomplete tumor shrinkage) has been noted in patients who have exten-
sive or metastatic cancer, it is often correlated with other approval criteria.
Because of this experience, it is believed that for many cancer therapies
it is appropriate to utilize objective evidence of tumor shrinkage as a ba-
sis for approval, allowing additional evidence of increased survival and/or
improved quality of life associated with that therapy to be demonstrated
later. By utilizing objective response as a surrogate endpoint in clinical
trials, the FDA will decrease the total time needed for marketing approval
in many situations.

Although the accelerated approval provisions have been applicable to pro-
mising treatments for cancer patients who do not benefit from or cannot
tolerate available therapy, this approval mechanism had not been frequently
utilized prior to 1996, largely because general agreement on reasonable
surrogate endpoints had been lacking.

Under the 1996 initiative, the FDA substantially expanded the use of ac-
celerated approval process based upon verified and recognized demonstra-
tion of objective tumor shrinkage. For approval, potential effectiveness of
the treatment should outweigh its toxicities and post-approval studies will
usually be required to further define the utility of the new agent for the ap-
proved and/or other indications, either alone or in combination with other
agents. The FDA can also apply accelerated approval provisions to certain
products intended to remove a serious or life-threatening toxicity of cancer
treatment based on post-approval studies that demonstrate that surrogate
measures correspond to clinical benefit and/or effect of therapy on survival.

The greater utilization of the accelerated approval provisions for cancer
treatment not only has an important impact on the original applications
but also on supplemental application for secondary indications. The actual
use of cancer agents may be far broader than the approved indications.
Because of the nature of cancer therapy, the approved label does not nec-
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essarily convey all the medical conditions for which the agent is used or may
be useful. Nonetheless, the FDA-approved label should accurately convey
as many as agent’s uses as are properly supported by data.

The greater utilization of the accelerated approval provisions for cancer
treatment not only has an important impact on the original applications
but also on supplemental application for secondary indications. The actual
use of cancer agents may be far broader than the approved indications,
and because of the nature of cancer therapy, the approved label does not
necessarily convey all the medical conditions for which the agent is used
and may be useful. Nonetheless, the FDA-approved label should accurately
convey as many as agent’s uses as are properly supported by data.

The type and quantity of clinical data that is required will vary depend-
ing on the cancer indication under study, the availability and acceptabil-
ity of other therapies, and the specific observations in the studies. Ac-
cording to the Guidance to the Industry document dated December 1998
(http://www.fda.gov/cder/guidance/index.htm), there is flexibility re-
garding the data requirements. In the refractory cancer setting, for example,
where therapies with meaningful benefit are unavailable, non-randomized
studies showing that a new treatment provides a significant objective re-
sponse rate with tolerable treatment toxicity may be adequate to sup-
port approval under the accelerated approval regulations. In this setting,
objective response rates are considered a surrogate endpoint reasonably
likely to predict a clinical benefit. Evidence to confirm that clinical benefit
can be obtained after approval. In those cases where durable complete re-
sponses can be attained, non-randomized studies showing a significant rate
of durable complete responses can be persuasive evidence of effectiveness.

During 1992–2002, 15 NDAs involving 13 drugs have been submitted to the
Division of Oncologic Drug Products in Center for Drug Evaluation and
Research (CDER). Of them, 10 were based on single-arm phase II studies
and used objective response as a surrogate endpoint. Only 5 were based on
randomized trials. The details are given in Tables 3.13 and 3.14.

This brings up several important trial design issues about optimal accrual of
patients in the trials and the extent to which the changing circumstances
can impede the conduct of planned studies. Consider the following case
study where this scenario has been brought to bear.

3.4.1 Doxil: A Case Study

Doxil (doxorubicin HCl liposome injection) was approved under the ac-
celerated approval mechanism for “the treatment of metastatic carcinoma
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TABLE 3.13. Single-arm trials with no concurrent comparator in the Division of
Oncologic Drug Products.

Drug Year Indication Sample
size

Trial details

Liposomal doxoru-
bicin (Doxil)

1995 Kaposi’s sarcoma second
line

383 77 of 383 identi-
fied refractory

Amifostine (Ethyol) 1996 To decrease cisplatin toxi-
city in NSCLC

100 Two trials, 50 pa-
tients each

Docetaxel (Taxotere) 1996 Breast cancer second line 483 6 US trials total
309; 3 Japanese
trials 174

Irinotecan (Camp-
tosar)

1996 Colon cancer 132 Single-arm trial

Capecitabine
(Xeloda)

1998 Breast cancer refractory 162 Single trial in pa-
tients in stage IV
disease

Liposomal doxoru-
bicin (Doxil)

1999 Ovarian cancer refractory 145 3 studies

Temozolomide
(Temodar)

1999 Anaplastic astrocytoma
refractory

162

Gemtuzumab ozo-
gomycin (Mylotarg)

2000 AML 142 3 studies

Imatinib mesylate
(Gleevec)

2001 CML in BC, AC, or CP af-
ter interferon failure

1027 3 studies

Imatinib mesylate
(Gleevec)

2001 GIST 147 Single 2-arm
study

of the ovary in patients with disease that is refractory to both paclitaxel
and platinum-based chemotherapy regimens. Refractory disease is defined
as disease that has progressed while on treatment, or within 6 months
of completing treatment.” In November 1998, the drug was assigned an
orphan drug designation, given that no drug has been approved for the
treatment of ovarian cancer refractory to platinum compounds and pacli-
taxel. In December 1998, a supplemental NDA was submitted for the above
indication containing data from three Phase II non-comparative studies in
relapse or refractory ovarian cancer. The primary analysis was based on
the surrogate endpoint of response rate on 176 patients. This application
also submitted data from an interim analysis of an ongoing Phase III study
(Study 30–49) comparing Doxil with Topotecan. The accelerated approval
was granted in June 1999. The traditional approval was to be based on the
timely completion and final results of Study 30–49.

Study 30–49 (performed May 1997–March 1999) was designed to show
safety and efficacy in patients with relapsed ovarian cancer following failure
with platinum based chemotherapy in 474 patients. The study was stratified
by platinum sensitivity and bulky disease and designed to show superiority
of Doxil to Topotecan in either time to progression (TTP) or survival, with
a supporting trend demonstrated for the other endpoint. The secondary
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TABLE 3.14. Approvals based on randomized trials in the Division of Oncologic
Drug Products.

Drug Indication Year Endpoint

Dexrazoxane
(Zinecard)

Reduction of doxoru-
bicin cardiomyopathy

1995 LVEF, Cardiac heart
failure

Liposomal cytarabine
(Depocyte)

Lymphomatous
meningitis

1999 Cytologic response

Celecoxib (Celebrex) Reduction of adeno-
matous polyps

1999 Number of polyps

Oxaliplatin (Eloxatin) Second-line colorectal
cancer

2002 Objective response,
Time to progression

Anastrozole (Arimid-
ex)

Adjuvant post-
menopausal ER+

2002 Disease-free survival

outcomes were objective response rate (ORR), response duration, survival
and safety. If Study 30–49 did not demonstrate the clinical benefit of Doxil,
the sponsor would have to perform another study to show clinical benefit
of the drug in ovarian cancer.

In June 2000, the sponsor informed the FDA that the planned treat-
ment analysis for Study 30–49 did not demonstrate superiority in TTP,
but showed significant survival advantage of Doxil over Topotecan in the
platinum-sensitive group, with approximately 50% of the patients still alive.
However, in the platinum-refractory subset, the patient population for
which it is to be indicated, the results were marginally in favor of the
control (hazard ratio = 1.01 [0.78, 1.31]) (Gordon 2003). This made regu-
latory decision significantly harder, and accelerated approval was granted
after recommendation from a panel of external experts in an Oncology Ad-
visory Committee (ODAC) meeting. Results presented at the ODAC are
summarized in Table 3.15 (Hamburger 2003). Based on this scenario, it
was agreed that a final survival analysis is to be performed on Study 30–
49 when a 90% of the patients (planned size is 474) died or were lost to
follow up. The final survival result of Study 30–49 is currently undergoing
regulatory review.

A second protocol to prove clinical benefit was required. This Phase IV
protocol (SO200), initiated in 2000 and currently enrolling, was an open-
label inter-group study between Doxil and carboplatin versus carboplatin
in 900 platinum-sensitive patients with recurrent epithelial ovarian carci-
noma after failure of initial, platinum-based chemotherapy, to be performed
jointly with an oncology group, SWOG. The primary endpoint is overall
survival and the secondary endpoints are progression-free survival (PFS),
confirmed complete response (CR), time to failure (TTF), and toxicity. It
is currently enrolling patients.

This experience brings forth some of the challenges surrounding Phase IV
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TABLE 3.15. Doxil. Median time to progression (TTP) and overall survival (OS)
time in weeks at the end of planned treatment.

Population Doxil (N) Topotecan (N) p-value

TTP

All patients 18.4 (239) 18.3 (235) 0.632

Platinum-sensitive 29.9 (109) 26.7 (111) 0.387

Platinum-refractory 9.1 (130) 14.3 (124) 0.941

OS

All patients 58.7 (239) 56.7 (235) 0.964

Platinum-sensitive 110.7 (109) 84.7 (111) 0.027

Platinum-refractory 34.6 (130) 41.4 (124) 0.126

commitment trials in oncology, highlighted by the case study.

• The times to complete the Phase IV commitments are often longer
than anticipated. In the Doxil case study, after the end of the planned
treatment analysis, the primary endpoint was modified to become
overall survival. Time to reach 90% event endpoint in Study 30–49
took more than 3.5 years.

• Multiple parties are often involved in finalization and implementa-
tion of the Phase IV trials. In the Doxil experience, the transfer and
clinical responsibilities had to be coordinated between the sponsor,
SWOG, other cooperative groups, National Cancer Institute (NCI),
and with the FDA.

• The competition for accrual among other ongoing trials is often so
fierce that it impedes the progress of the trial.

• After the accelerated approval, a drug can be prescribed to patients
with that indication outside of a clinical study, making it harder to
accrue patients needed for completion of Phase IV commitment.

3.5 Use of Surrogate Markers in Cardiovascular
Drug Products

The use of surrogate markers in cardiovascular drug products has received
mixed response – a rising enthusiasm for providing efficacious drugs at the
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earliest possible time along with experiences tempered with some unex-
pected results in some products.

Surrogates can be early or late in the causal chain – cholesterol (a bio-
chemical variable), blood pressure (a pathophysiologic variable), coronary
vessel diameter (a morphological variable), or left ventricular hypertrophy
(a morphological variable). However, some are closer to certain clinical
events such as myocardial infarction and heart failure. Some surrogates are
not etiologic but are thought to reflect activity of an underlying process
that leads to an adverse event.

The risk of reliance on a surrogate is that the pathway connecting surrogate
endpoint to the clinical endpoint may not be clear. It is widely accepted that
elevated blood pressure is a direct cause of stroke, heart failure, and renal
failure and accelerated coronary disease and that reducing blood pressure
reduces morbidity and mortality. However, before the controlled outcome
studies of hypertensive drugs were performed in 1960s, there was an ac-
tive debate that blood pressure was an “adaptive” response to the vascular
disease and that lowering it would be harmful (Freis 1990). Recent data
on the benefits of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) re-
ductase inhibitors may have partially settled the role of surrogate markers
in cholesterol-lowering drugs, but the real value of other surrogate mark-
ers in cholesterol-lowering drugs may not be as clear. The safety database
needed to characterize adequately the risk-benefit ratio is often not exten-
sive enough in accelerated approval submissions, leading to the common
phrase “there is no surrogate for safety” (Temple 1999).

Distinguishing concern about the validity of the surrogate from the more
general question of safety is important because it affects the kind of data
that can be used to assess the benefits and risks of treatment. If there
is doubt about the surrogate itself, only an outcome study in the spe-
cific disease can determine the value of the drug. But if the validity of
the surrogate is accepted, studies in a variety of settings may be perti-
nent to assessment of safety. For example, a drug lowering blood pressure
may be about as certain to provide clinical benefit, as would be an anti-
anginal drug. However, the safety profile of the drug has to be established,
probably from a moderate study in hypertension or angina or from another
population more vulnerable to cardiovascular toxicity or from pharmacolog-
ically related agents in either population. The absence of outcome studies
in certain anti-hypertensives (calcium channel blockers and angiotensin-
converting enzyme (ACE) inhibitors) has been cited by critics of the use
of surrogates. Table 3.16 summarizes the surrogate endpoints used in car-
diovascular drugs.
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TABLE 3.16. Surrogate endpoints used in the Division of Cardiovascular Drug
Products.

Condition Approval endpoint Postmarketing
outcome
studies

Hypertension Change in blood pressure No

Hyperlipidemia: initial ap-
proval

Change in blood lipid level Yes1

Hyperlipidemia: clinical
benefit

Survival, rate of myocardial infarc-
tion

No2

Hyperglycemia Change in blood sugar levels, glyco-
sylated hemoglobin

No

Heart failure: symptoms Exercise, symptoms, together with
evidence (except for ACE inhibitors)
that there is no adverse effect on sur-
vival

No

Heart failure: long-term ben-
efit

Survival, hospitalization No2

Angina, effort Exercise, symptoms No

Angina, vasospastic Angina rate No

Silent ischemia Outcome (acute myocardial infarc-
tion, survival)

No2

Ventricular arrhytmia:
symptoms

Symptoms, with evidence of no harm No2

Ventricular arrhytmia: life-
threatening

Symptoms, with evidence of no
harm; survival

No2

Atrial arrhytmia Symptoms, delayed recurrence, evi-
dence of no adverse effect on survival

No2

Acute coronary syndrome,
postangioplasty/coronary
artery bypass graft

Outcome (death, acute myocardial
infarction, urgent intervention)

No2

Acute myocardial infarction
(thrombolysis)

Survival No2

Orthostatic hypotension Decreased orthostatic blood pressure Yes3

1 By Agreement, the sponsors voluntarily agreed to conduct post-marketing studies.
2 Studied pre-marketing.
3 Required under the FDA Accelerated Approval Rule.

3.5.1 Anti-hypertensive Drugs

Effect of blood pressure is the basis for approval of new hypertensive drugs.
The most persuasive support for the surrogate endpoint of blood pressure is
experience from numerous long-term outcome studies showing a clear effect
on stroke and at least favorable trends on cardiovascular events and sur-
vival rates. In addition, substantial epidemiological evidence indicates that
blood pressure is continuously related to the risk of stroke and coronary
heart disease. Few active drugs have shown any other factor to modulate
directly hypertensive benefit, but direct comparisons of high-dose diuretics
and beta-blockers showed no real difference (Collins et al. 1990), even for
cardiovascular events for which they are expected to be superior due to
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post-infarction benefit and lack of hypokalemic effects. Although the FDA
emphasized the importance of such comparisons in the past, comparative
studies have not been required of individual sponsors. If ongoing large tri-
als demonstrate differences in outcome with drugs approved using same
surrogate procedures, that policy will change (Temple 1999).

3.5.2 Anti-platelet Drugs

Currently, platelet aggregation inhibitors or anticoagulants in various set-
tings (post-infarctions or stroke, peripheral vascular disease, acute coronary
syndrome, post-angioplasty or post-bypass) are studied using clinical end-
points (death, new infarction, and urgent procedural intervention). As yet,
although various anti-platelet treatments have a long and growing record
of success in preventing adverse outcomes, there is no effect on a platelet
aggregation or coagulation surrogate endpoint that has been convincingly
shown to correspond to a clinical benefit and to define the risk of bleeding.

3.5.3 Drugs for Heart Failure

Increased mortality with two classes of inotropic agents and an inotropic
vasodilator drug clearly indicates that hemodynamic or symptomatic ben-
efit in heart failure does not predict improved survival. Therefore, for a
drug to be approved for heart failure symptom improvement, evidence of
a symptomatic benefit needs to be supported by showing that there is no
adverse mortality effect. Long before the adverse outcome effects studies
of inotropes were observed (Packer et al. 1993), the FDA concluded that
“there should be reasonable assurance that survival in high-risk patients
is not impaired; the controlled trials thus need to be of sufficient size to
detect a substantial increase in mortality” (Temple 1987). This conclusion
was based in part on early suggestions of rapid deterioration in open studies
of inotropes and in part on the known adverse effects of digoxin.

3.5.4 Drugs for Angina and Silent Ischemia

Anti-anginal drugs are approved based on improvement in exercise toler-
ance or reduction in symptoms of angina; no current treatments have been
shown to improve outcome. Safety of anti-anginal drugs is well supported
by studies of calcium channel blockers and beta-blockers in post-infarction
settings. Silent ischemia, like symptomatic ischemia, predicts an increased
rate of death and myocardial infarction, and it has been proposed that a
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reduced rate of silent episodes should be a basis for approval. As of now, the
FDA has not accepted this suggestion (Temple 1990) concluding instead
that the drugs for this indication need to show an effect on a clinical end-
point, such as survival or rate of new infarction. It did not seem reasonable
that the drugs known only to affect ischemia would provide benefit, when
the same drugs used to treat symptomatic angina has not been able to show
improved outcome. It also seemed at least possible that ischemia stimulated
growth of collateral vessel, which could improve outcome (Temple 1988).

3.5.5 Ventricular Arrhythmias

The most controversial example of an erroneous surrogate is the stunning
results of the Cardiac Arrhythmia Suppression Trial (CAST). Details of this
trial will be discussed in Section 3.5.6. It definitely established that effective
suppression of ventricular premature beats (VPB) does not decrease mor-
tality, despite the well-established association between elevated VPB rates
and early arrhythmic death. But although the markedly adverse outcome
was certainly unexpected, labeling for encainide and flecainide before the
CAST study specifically pointed out the absence of known survival benefit
from VPB suppression, the lack of information on safety and effective-
ness in the post-infarction state, and the drug’s ability to cause worsened
arrhythmias. The indicated uses for both drugs were limited to patients
with documented life-threatening arrhythmias and symptomatic patients
with non-sustained ventricular and frequent VPBs. Since the CAST re-
sults were reported, approval of drugs for ventricular arrhythmias that are
not immediately life-threatening has required showing improved survival
benefits and no adverse effect on survival in case of symptomatic claim. At
the present time, no drugs have been able to meet this standard.

3.5.6 The CAST Experience: A Case Study in Ventricular
Arrhythmia

The occurrence of ventricular premature depolarizations in survivors of my-
ocardial infarction is a risk factor for subsequent sudden death, but whether
anti-arrhythmic therapy reduces risk is not clear. CAST was undertaken to
evaluate the effect of anti-arrhythmic therapy, such as encainide, flecainide
or moricizine, in patients with asymptomatic or mildly symptomatic ven-
tricular arrhythmia after myocardial infarctions.

The purpose of the study was to test the hypothesis that suppression of ven-
tricular ectopy after a myocardial infarction reduces the incidence of sudden
death. The design of the study was multicenter, randomized, placebo con-
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trolled with a preliminary, open-label titration to ensure that all patients
would respond to at least one of the drugs. The primary endpoint was death
or cardiac arrest with resuscitation, either of which due to arrhythmia.

The results of this study were unexpected. The flecainide and encainide
arms of this trial were stopped early, after a mean follow up of 10 months.
Of 89 deaths or cardiac arrests total, 63 patients were on active drugs
versus 26 on placebo (p = 0.0001) and of death or cardiac arrest due to
arrhythmia, 43 patients were on active drugs versus 16 on placebo (p =
0.0004). The conclusions were that the results indicate that encainide or
flecainide, when used to prevent ventricular arrhytmias post-myocardial
infarction, are detrimental to survival. The study continued limited to the
arms of moricizine versus placebo.

After the flecainide and encainide arms of the CAST I were discontinued,
a continuation of the CAST I, the CAST II used moricizine to determine if
suppressing asymptomatic or mildly symptomatic ventricular ectopy post-
myocardial infarction (MI) reduces the incidence of sudden death from
ventricular arrhythmias. There were 1325 patients with EF greater than or
equal to 40%, who were within 4 to 90 days of having an MI, and who had
greater than or equal to 6 repetitive ventricular complexes. The CAST II
was a multicenter, randomized, placebo-controlled study in which patients
received placebo or up to 900 mg/day of moricizine as necessary to suppress
arrhythmias. The primary endpoint was sudden death. There was a 14-day
exposure phase and a 2-year long-term evaluation phase.

This study was terminated early because in the 14-day exposure period,
there was excess mortality in the moricizine arm (17 deaths in 665 pa-
tients) as opposed to the no therapy or placebo group (3 deaths in 660
patients). A less than 8% chance of finding a survival benefit was found
if the study was completed. It was concluded that the use of moricizine
to suppress asymptomatic or mildly symptomatic ventricular premature
depolarizations post-MI is ineffective and increases mortality.

These experiences point to an interesting fact that surrogate markers may
not always be useful and have to be validated extensively before being used
as a regulatory tool.

3.6 Statistical Issues Related to Accelerated
Approval

The accelerated approval process is an important tool for therapeutic agents
in serious or life-threatening diseases where no existing therapies are ex-
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pected to be of help. For example, in oncology, survival and improvement
in patient-reported symptoms are considered clinical endpoints while ob-
jective response rate and time to progression are considered meaningful
surrogate markers. There are several unique situations for drugs submitted
under accelerated approval process. It is to be noted that none of them have
been used in a regulatory setting so far, so implications of these methods
on the drug development procedure are not ascertained.

• Because placebo is considered unethical in most clinical settings ap-
propriate for accelerated approval, the trials are usually conducted in
single-arm Phase II studies, sometimes not even in randomized trials.

• The accelerated approval is based on a very small sample size, making
regulatory decisions about benefit-risk ratio very hard to characterize.

• The safety databases for such approvals are minuscule, posing serious
consideration about the safe use of the drug in a widespread clinical
setting.

• After accelerated approval, it is often not possible to perform the
Phase IV commitments in the original population, and clinical expe-
riences bridging the original population and the enriched population
can be hard.

Some specific statistical issues have arisen in the accelerated approval
process. Because the accelerated approval is based on a limited database
of patients in which the drug has shown a positive finding, there are two
stages in which the regulatory decision has to be taken and hence two points
where a Type I error (α) has to be controlled. There has been some dis-
cussion (Sridhara et al. 2001) that instead of considering the two approval
processes as independent events, the more appropriate paradigm would be
to distribute the α over both events.

If we consider these series of events in clinical trial terms, the accelerated
approval can be treated as a decision based on an interim analysis on a
pre-specified surrogate endpoint. The full or traditional approval can then
be granted based on the clinical endpoint at the conclusion of Phase IV
commitments, which can be treated to be the final analysis. Under this
situation, there are several possible scenarios after accelerated approval is
granted based on a surrogate endpoint:

1. The drug development continues as planned and full approval is
granted based on the Phase IV commitments.

2. Based on the Phase IV commitments, the new drug does not demon-
strate significant effect with respect to the desired final clinical out-
come. This can happen if:
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FIGURE 3.4. Schema showing two-stage approval method.

• the study conducted for the accelerated approval was a false
positive study;

• the surrogate marker used in the accelerated approval study is
not predictive of the clinical endpoint;

• the assumptions and/or the design of the accelerated and final
approval studies were not appropriate;

• the final clinical risk/benefit ratio is markedly different than
what was originally anticipated, e.g., unexpected negative mor-
tality effect.

Under any of the scenarios discussed, the studies have to be designed with
sufficient power to detect overall significant difference with respect to the
clinical endpoint at the end of the studies. The studies also have to have
sufficient assay sensitivity to detect significant difference with respect to
the pre-specified surrogate endpoint at the interim analysis stage for the
accelerated endpoint.

There have been some methodologies proposed recently for the two-stage
design (see Figure 3.4). Two of them will be discussed briefly in the dis-
cussion, primarily from a theoretical standpoint.

The first method by Shih et al. (2003) proposes a two-stage design with
clinical endpoint T and surrogate endpoint S. At the end of the first stage,
both S and T are evaluated according to the flowchart in Figure 3.5. At the
end of the first stage, the data may support early termination of the trial
for clinical benefit based on T or may support accelerated approval based
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FIGURE 3.5. Two-stage approval method proposed by Shi et al. (2003).

on the surrogate S. If neither is true, then the trial continues to the second
stage. At the end of the second stage, T is evaluated for clinical benefit.
This is summarized in Figure 3.5. The “final approval” Type I error rate
(αF ) for the clinical endpoint is given by

αF = αF1 + αF2, (3.5)

where

αF1 = P (|ZT1| > cT1 | H0T ),

αF2 = P (|ZT1| < cT1, |ZT2| > cT2 | H0T ).

H0T is the null hypothesis for T , and ZT1 and ZT2 are normally distributed
test-statistics based on the data available for T at the first and second
stages, respectively. If αF1 = 0.001, then cT1 = 3.29. If the correlation
ρ(ZT1, ZT2) =

√
0.5, then to maintain αF = 0.05 or 0.04, cT2 needs to be

equal to 1.962 or 2.06, respectively.

The authors raise a question as to what false positive rate, or Type I
error, for the surrogate endpoint should we control for. The “accelerated
approval” Type I error rate (αA) is given by

αA = P (|ZT1| < cT1 and |ZS | > cS | H0S , H0T ), (3.6)

where H0S is the null hypothesis for S and ZS is a normally distributed
test-statistic based on the data available for S at the first stage. Some of
the choices can be:

• control αF at the 0.05 level;
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FIGURE 3.6. Two-stage approval method proposed by Yang et al. (2002) and
Shridhara et al. (2002).

• control αF at the 0.05 level and αA at the 0.01 level;

• control αF + αA at the 0.05 level;

• any other appropriate choice.

The second proposed method, due to Yang et al. (2002) and Sridhara et al.
(2002), analogously considers a two-stage design with clinical endpoint T
and surrogate endpoint S. At the end of the first stage, both S and T are
evaluated according to the flowchart in Figure 3.6. However, unlike Shih’s
method, there is an additional condition to be satisfied before concluding
that the interim data supports accelerated approval. The Type I error rate
for the overall clinical endpoint is given again by (3.5) with

αF1 = P (ZT1 > cT1|H0T ),
αF2 = P (ZT1 < cT1, ZT2 > cT2|H0T ).

But, in addition, it is proposed that the following probability,

P (cT1,α∗ < ZT1 < cT1 and ZS > cS and ZT2 < cT2 | H0T ), (3.7)

should be controlled at some level γ. The last equation is the joint proba-
bility of a positive surrogate outcome and a nominally positive (α∗) clinical
benefit at interim, and a non-significant final clinical benefit outcome. If
this probability is less than a certain level, say, γ = 0.30, then the in-
terim positive results on the surrogate endpoint and a nominally positive
(α∗) clinical outcome provide a reasonable level of evidence to support the
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TABLE 3.17. Probability of a study to support accelarated approval under an
alternative of 80% power to detect a clinical benefit and 90% power for surrogate
endpoints. The probabilities are calculated based on the O’Brien-Fleming version
of the Lan-DeMets spending function.

Information fraction Corr(ZS , ZT ) Level of γ

(t) (ρ) 0.10 0.20 0.30

1/4 0.1 0.4627 0.5885 0.6618

0.5 0.4850 0.6082 0.6778

0.9 0.5087 0.6307 0.6967

1/3 0.1 0.5190 0.6293 0.6887

0.5 0.5428 0.6478 0.7023

0.9 0.5696 0.6713 0.7205

drug’s accelerated approval (in the absence of other supportive informa-
tion). With cT1 and cT2 specified by some spending function, and if we
also specify γ, then we can solve for α∗, and thus, cT1,α∗ . An example is
shown in Table 3.17.

The criterion provides some level of assurance of a clinical benefit in the
event that the confirmatory trial may not materialize due to patient cross-
over, changing standards of care, other available new treatments, etc. The
method does require that at the end of the first stage, there should be at
least a certain fraction of the expected total events to have occurred.

As a consequence, the submission of evidence based on the surrogate end-
point for an accelerated approval will be slightly delayed until the desired
fraction of the expected total events has been achieved. This represents
a compromise between the real possibility that the post-marketing trials
already underway, or yet to be conducted, to confirm the positive finding
on the surrogate endpoint may never materialize.

3.7 Surrogate Markers at Other Phases of Drug
Development

At earlier stages of drug development, both positive (efficacy) and nega-
tive (safety) effects of a drug can be characterized using a variety of mea-
surements or response endpoints. These effects include clearly clinically
pertinent effects (clinical benefit or toxicity), effects on a well-established
surrogate (such as blood pressure or QT interval in cardiovascular dis-
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ease), or effects on a more remote biomarker (such as ACE inhibition or
bradykinin levels in cardiovascular disease). All of these measurements can
be expected to show exposure-response relationships that can guide ther-
apy, suggest dose/dose intervals, or suggest further study. In many cases,
multiple response endpoints are more informative than single endpoints for
establishing exposure-response relationships. Methods to combine attribut-
able proportions or relative effects of two or more surrogate markers for the
same true clinical endpoint have to be developed. Specifically, less clinically
persuasive endpoints (biomarkers, surrogates) can help in choosing doses
for the larger and more difficult clinical endpoint trials and can suggest
areas of special concern.

In addition, surrogate endpoints can be used to link with external sources
of information on the disease or on other treatments. They can be used to
integrate the data across all phases to build an evidence base, including
validation. This database can be analyzed and mined for the relationship
of surrogate endpoints to the disease states, other markers, and patient
covariates.

Surrogate marker methodology can play a significant role in drug safety and
risk assessment area. The databases can be mined for the signs of potential
toxicities. For example, certain liver enzyme tests (ALT, AST, bilirubin)
can be considered as surrogate markers for hepatic toxicity. This will enable
early detection of potential problems later in the drug development process.

Finally, surrogate markers play an important role in drug development in
identifying faster and more focused pathways to bringing a promising drug
to patients. However, care needs to be taken in ensuring that the markers
are pre-specified, equivocally validated, and predictive of the final clinical
benefit to the patients.
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Notation and Motivating
Studies

Geert Molenberghs, Marc Buyse, and
Tomasz Burzykowski

In this chapter, we introduce a basic set of notation to be used through-
out the book, as well as datasets that will serve as running examples, to
illustrate the methods proposed in subsequent chapters.

4.1 Notation

We adopt the following notation: T and S are random variables that denote
the true and surrogate endpoints, respectively, and Z is a binary indicator
variable for treatment. In general, we will consider settings corresponding to
a multi-center trial or a meta-analysis of trials. Thus, the (T, S, Z) notation
will be supplemented using indices i = 1, . . . , N for the ith center or trial,
and j = 1, . . . , ni, to denote the jth subject enrolled in the ith center or
trial.

4.2 Key Datasets

Data from randomized clinical trials in different therapeutic areas will be
used as running examples throughout many of the chapters.

4.2.1 Ophthalmology: Age-related Macular Degeneration Trial

This example concerns a clinical trial for patients with age-related mac-
ular degeneration, a condition in which patients progressively lose vision
(Pharmacological Therapy for Macular Degeneration Study Group 1997).
Overall, 190 patients from 42 centers participated in the trial. Patients’



54 Geert Molenberghs, Marc Buyse, and Tomasz Burzykowski

V A L I D
A T I O N
O F S U R

R O G A T

E M A R K

E R S I N

R A N D O

M I Z E D

E X P E R

I M E N T

FIGURE 4.1. Representation of a vision chart.

visual acuity was assessed using standardized vision charts (see Figure 4.1)
displaying lines of five letters of decreasing size, which patients had to read
from top (largest letters) to bottom (smallest letters). The visual acuity
was measured by the total number of letters correctly read. In this exam-
ple, the binary indicator for treatment (Z) is set to 0 for placebo and to 1
for interferon-α. The surrogate endpoint S is the change in the visual acu-
ity at 6 months after starting treatment, while the true endpoint T is the
change in the visual acuity at 1 year. Various forms (binary, continuous)
of the endpoints will be considered. When treated as continuous variables,
the endpoints will be assumed to follow a normal distribution. For this
case, Figure 4.2 presents the scatterplot of the two endpoints for all pa-
tients included in the trial. Overall, there was no statistically significant
effect for either the true endpoint (difference of means for Z = 1 vs. Z = 0
equal to −2.88, p = 0.218 for the Student’s t-test) or the surrogate (−1.90,
p = 0.314).

In the analyses, the centers in which the patients were treated will be
considered as the units of analysis. Six out of 42 centers participating in the
trial enrolled patients only to one of the two treatment arms. These centers
were excluded from considerations. A total of 36 centers were thus available
for analysis, with a number of individual patients per center ranging from
2 to 18 (183 patients overall).
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FIGURE 4.2. Age-related macular degeneration trial. Observed values of the sur-
rogate versus true endpoint (Pharmacological Therapy for Macular Degeneration
Study Group 1997). Points in the right plot are marked by the treatment group
indicator Z. The straight line contains predictions from a simple linear regression
model.

4.2.2 Advanced Ovarian Cancer: A Meta-analysis of Four
Clinical Trials

These data were used in a meta-analysis of four randomized multi-center
trials in advanced ovarian cancer (Ovarian Cancer Meta-Analysis Project
1991). Individual patient data are available in these four trials for the com-
parison of two treatment modalities: cyclophosphamide plus cisplatin (CP)
versus cyclophosphamide plus adriamycin plus cisplatin (CAP). The bi-
nary indicator for treatment (Z) will be set to 0 for CP and to 1 for CAP.
The surrogate endpoint S will be progression-free survival time, defined
as the time (in years) from randomization to clinical progression of the
disease or death, while the true endpoint T will be survival time, defined
as the time (in years) from randomization to death from any cause. The
full results of this meta-analysis were published with a minimum follow-
up of 5 years in all trials (Ovarian Cancer Meta-Analysis Project 1991).
The dataset was subsequently updated to include a minimum follow-up of
10 years in all trials (Ovarian Cancer Meta-Analysis Project 1998). After
such long follow-up, most patients have had a disease progression or have
died (980 of 1194 patients, i.e., 81.8%). In the majority of cases, death was
clearly related to the disease (850 out of 952 deaths, i.e., 89.2%).

Figure 4.3 presents survival and progression-free survival curves by treat-
ment group collapsed over trials. Overall, there was a statistically signif-
icant effect in favor of CAP for both survival (relative risk, RR = 0.84,
p = 0.008 for log-rank test stratified by trial) and progression-free survival
(RR = 0.81, p = 0.001).

The ovarian cancer dataset contains four trials. In the two larger trials
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FIGURE 4.3. Advanced ovarian cancer. Overall survival and progression-free sur-
vival curves for the meta-analysis (Ovarian Cancer Meta-Analysis Project 1998).

of the Gynecologic Oncology Group (GOG, with 412 patients) and the
Gruppo Interegionale Cooperativo Oncologico Ginecologia (GICOG, with
383 patients), information is also available on the centers in which the pa-
tients had been treated. For the two smaller trials of the Danish Ovarian
Cancer Group (DACOVA, with 274 patients) and the Gruppo Oncologico
Nord-Ovest (GONO, with 125 patients), the information is not available.
According to the clinical investigators, the close collaboration of the mem-
bers of the corresponding research groups allows to consider the patients
treated in these trials as a homogenous group. In the analyses, center will
be used as the unit of analysis for the two larger trials, and the trial as the
unit of analysis for the two smaller trials. Two centers enrolled only one
patient each and were excluded from consideration. A total of 50 “units”
are thus available for analysis, with a number of individual patients per
unit ranging from 2 to 274.

4.2.3 Corfu Study in Advanced Colorectal Cancer: Two
Clinical Trials

These data come from two randomized multicenter trials in advanced col-
orectal cancer (Corfu-A Study Group 1995, Greco et al. 1996). In one trial,
treatment with 5FU plus interferon (5FU/IFN) was compared to treatment
with 5FU plus folinic acid (5FU/LV) (Corfu-A Study Group 1995). In the
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FIGURE 4.4. Corfu study in advanced colorectal cancer. Overall survival and
progression-free survival curves for both randomized clinical trials (Corfu-A Study
Group 1995, Greco et al. 1996).

other trial, treatment with 5FU/IFN was compared to treatment with 5FU
alone (Greco et al. 1996). The binary indicator for treatment Z will be set
to 0 for 5FU/IFN and to 1 for 5FU/LV or 5FU alone. The surrogate end-
point S will be progression-free survival time, defined as the time (in years)
from randomization to clinical progression of the disease or death, while
the true endpoint T will be survival time, defined as the time (in years)
from randomization to death from any cause. Most patients in the two tri-
als have had a disease progression or have died (694 of 736 patients, i.e.,
94.3%). Figure 4.4 presents survival and progression-free survival curves
by treatment group collapsed over trials. Overall, there was no statistically
significant effect of Z either for survival (RR = 1.00, p = 0.976 for log-rank
test stratified by trial) or progression-free survival (RR = 1.02, p = 0.785).

Similar to the previous example, center will be considered as the unit of
analysis. However, in 8 centers there were no patients accrued to one of the
treatment arms. These 8 centers were therefore excluded from the analyses.
As a result, a total of 68 “units” were thus available for analysis, with a
number of individual patients per unit ranging from 2 to 38 (642 patients
overall).
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4.2.4 Four Meta-analyses of 28 Clinical Trials in Advanced
Colorectal Cancer

We will use data from 28 advanced colorectal cancer trials (Advanced Col-
orectal Cancer Meta-Analysis Project 1992 and 1994, Meta-Analysis Group
In Cancer 1996 and 1998). The individual patient data were collected by
the Meta-Analysis Group In Cancer between 1990 and 1996 to obtain an
overall quantitative assessment of the value of several experimental treat-
ments in advanced colorectal cancer. In the four meta-analyses, the com-
parison was between an experimental treatment and a control treatment.
The control treatments, referred to hereafter as “FU bolus,” were sim-
ilar across the 4 meta-analyses and consisted of fluoropyrimidines (5FU
or FUDR) given as a bolus intravenous injection. The experimental treat-
ments, referred to hereunder as “experimental FU,” differed across the four
meta-analyses and consisted, respectively, of 5FU modulated by leucovorin
(Advanced Colorectal Cancer Meta-Analysis Project 1992), of 5FU modu-
lated by methotrexate (Advanced Colorectal Cancer Meta-Analysis Project
1994), of 5FU given in continuous infusion (Meta-Analysis Group In Cancer
1998), and of hepatic arterial infusion of FUDR for patients with metastasis
confined to the liver (Meta-Analysis Group In Cancer 1996). As noted by
Daniels and Hughes (1997), the use of an “experimental” treatment that
varies among the trials can be defended on the grounds of generalizability of
the results of the validation process to future clinical trials and treatments.
The “experimental” treatments in our example might be considered as rep-
resentatives of “the modifications of the standard fluoropyrimidine-based
regimen” in advanced colorectal cancer.

Several of the 28 trials were multi-armed. In total, 33 randomized compar-
isons were considered in the four meta-analyses. Individual-patient data
were available for 27 of the comparisons (in 24 studies). From now on, we
will refer to each of the comparison as a separate “trial.” The total size in
the trials ranged from 15 to 382 patients.

The true endpoint T will be survival time, defined as the time (in years)
from randomization to death from any cause. Most patients included in the
dataset have died (3591 out of 4010 patients, i.e., 89.5%). The surrogate
endpoint S will be tumor response. We will define S either as a binary
variable indicating complete/partial response, or as a categorical variable
with four categories (complete response, partial response, stable disease,
progression) (World Health Organization 1979). The binary indicator for
treatment (Z) will be set to 0 for FU bolus and to 1 for experimental FU.

Figure 4.5 shows survival curves by treatment within tumor response cate-
gories. There is no statistically significant difference between experimental
FU and bolus FU in any tumor response category (complete response:
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FIGURE 4.5. Meta-analyses in advanced colorectal cancer. Overall survival curves
by tumor response for the four meta-analyses (Advanced Colorectal Cancer
Meta-Analysis Project 1992, 1994, Meta-Analysis Group In Cancer 1996, 1998).

p = 0.544; partial response: p = 0.791; stable disease: p = 0.525; progres-
sive disease: p = 0.059 for the log-rank test stratified by trial; three patients
with unknown response treated as “progressions”), which suggests that the
overall survival benefit in favor of experimental FU (RR = 0.91, p = 0.010
for log-rank test stratified by trial) is due to the higher tumor response rate
obtained with experimental FU as compared to bolus FU. The four meta-
analyses showed that the 10%–15% response rate achievable with FU bolus
could be increased to over 20% with any of the experimental treatments.
Regardless of treatment, though, survival benefits remained modest and
naturally doubts were raised as to the usefulness of response as a surrogate
for survival.

4.2.5 Advanced Prostate Cancer: Two Clinical Trials

These data come from two open-label clinical trials in which patients with
advanced prostate cancer were randomized either to oral liarozole, an ex-
perimental retinoic acid metabolism-blocking agent developed by Janssen
Research Foundation, or to an antiandrogenic drug: cyproterone acetate
(CPA) in the first trial (Debruyne et al. 1998) and flutamide in the second.
The two trials accrued 312 and 284 patients, respectively. All patients were
in relapse after first-line endocrine therapy.
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The primary endpoint in each trial was survival time after randomization.
Assessments were undertaken before the start of treatment and repeated
at 2 weeks, monthly for six months and every three months thereafter,
until patients show clinical progression or develop a serious adverse event.
All patients were then followed up until death. The assessments included
measurement of prostate-specific antigen (PSA) level. PSA is a glycoprotein
that is found almost exclusively in normal and neoplastic prostate cells.
Serum PSA usually rise in men who have prostate cancer, but also with
some infections of the prostate or non-malignant diseases such as benign
prostatic hyperplasia. As a consequence, changes in PSA often antedate
changes in bone scan, and they have been used as a response indicator
in patients with androgen-independent prostate cancer (Kelly et al. 1993,
Sridhara et al. 1995, Smith et al. 1998). It is therefore of interest to study
more formally to which extent a sequence of PSA measurements can be a
valuable surrogate for a patient’s survival.

Figure 4.6 shows plots of the individual log-transformed PSA profiles. To
avoid overly cluttered plots, profiles were shadowed, and 30 randomly cho-
sen subjects are depicted using darker lines. As can be seen from these
plots, the length of the individual sequences of PSA measurements is highly
variable across patients, with only a few individuals having very long se-
quences. Figure 4.7 displays PSA and survival summaries for each trial. The
(log-transformed) PSA data were smoothed using the LOESS technique
(Cleveland 1979); the survival curves were obtained using the Kaplan-Meier
estimator (Kaplan and Meier 1958). Notice the scatter of points in the left-
hand plots: most of the subjects had their PSA measurements taken within
the first few months after treatment randomization.

In the analyses, country will be used as a grouping unit within each trial in
order to have a sufficient number of patients in each unit. This will allow
to define 19 groups containing between 3 and 69 patients per group.

4.2.6 Meta-analysis of Five Clinical Trials in Schizophrenia

The data come from a meta-analysis of five double-blind randomized clini-
cal trials, comparing the effects of risperidone to conventional antipsychotic
agents for the treatment of chronic schizophrenia. Schizophrenia has long
been recognized as a heterogeneous disorder with patients suffering from
both “negative” and “positive” symptoms. Negative symptoms are char-
acterized by deficits in cognitive, affective and social functions such as
for example poverty of speech, apathy and emotional withdrawal. Positive
symptoms entail more florid symptoms such as delusions, hallucinations,
and disorganized thinking, which are superimposed on the mental status
(Kay, Fiszbein, and Opler 1987).
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FIGURE 4.6. Advanced prostate cancer. Individual log-transformed PSA profiles
for the liarozole trials (30 randomly chosen subjects are plotted using darker
lines).

Several measures can be considered to assess a patient’s global condition.
The Clinician’s Global Impression (CGI) is generally accepted as a subjec-
tive clinical measure of change. Here the CGI overall change versus baseline
will be considered. This is a 7-grade scale used by the treating physician to
characterize how well a subject has improved since baseline. Other useful
and sufficiently sensitive assessment scales are the Positive and Negative
Syndrome Scale (PANSS) (Kay, Opler, and Lindenmayer 1988) and the
Brief Psychiatric Rating Scale (BPRS) (Overall and Gorham 1962). The
PANSS consists of 30 items that provide an operationalized, drug-sensitive
instrument, which is highly useful for both typological and dimensional as-
sessment of schizophrenia (Kay, Fiszbein, and Opler 1987). The BPRS is a
19-item scale, essentially derived from the PANSS. Note that both PANSS
and CGI are well established scales in psychiatric clinical trials and related
research.

Because the package insert in most countries recommends that risperidone
is most effective at doses ranging from 4 to 6 mg/day, only patients that
received either these doses of risperidone or an active control (haloperi-
dol, levomepromazine, perphenazine, zuclopenthixol) are included in the
dataset. Depending on the trial, treatment was administered for a dura-
tion of 4 to 8 weeks. For example, in the international trials (INT-2 by
Peuskens and the Risperidone Study Group 1995, INT-3 by Chounard,
Jones and Remington 1993 and Marder and Meibach 1994, and INT-7 by
Hoyberg et al. 1993) patients received treatment for 8 weeks; in the study
FRA-3 by Blin, Azorin, and Bouhours (1996) patients received treatment
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FIGURE 4.7. Advanced prostate cancer. Longitudinal and event time summaries
for the liarozole trials (left: smoothed PSA profiles; right: survival curves).

TABLE 4.1. Meta-analysis in Schizophrenia. Number of patients per country.

Country Id 1 2 3 4 5 6 7 8 9 10
No. patients 31 29 26 44 44 9 37 32 68 49
Country Id 11 12 13 14 15 16 17 18 19 20
No. patients 43 21 25 39 36 17 33 69 30 128

for 4 weeks, while in the study FIN-1 by Huttunen et al. (1995) patients
were treated over a period of 6 weeks. The sample sizes were 453, 176, 74,
49, and 71, respectively. Measurements were taken at weeks 1, 2, 3, 4, 6,
and 8. Our attention will be restricted to the last observed scores during
treatment.

Table 4.1 shows the distribution of the number of patients over the 20
country units.

Pooled data from the five trials are presented in Table 4.2. The table shows
the binary indicator of global improvement relative to baseline, as mea-
sured by CGI (i.e., a CGI score equal to 1 (=“very much improved”), 2
(=“much improved”) or 3 (=“minimally improved”)), and the binary in-
dicator of a 20% or higher reduction in PANSS score versus baseline. The
latter corresponds to a commonly accepted criterion for defining a clinical
response (Kay et al. 1988). One can observe a strong relationship between
both binary indicators (odds ratio, OR = 31.5, χ2 = 261.4, p < 0.0001).
Note that patients were rated by the same treating physicians on both
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TABLE 4.2. Meta-analysis in Schizophrenia. Pooled data.

Treatment PANSS CGI-improvement

response 0 1

Active control 0 151 (72%) 58 (28%)

1 15 ( 6%) 220 (94%)

Risperidone 0 91 (71%) 37 (29%)

1 20 ( 9%) 213 (91%)

scales, thereby bringing some possible contamination bias.

The data contain five trials. In all trials, information is available on the
countries where patients were treated, and on the investigators that treated
the patients. Depending on the analysis, this information will be used to
define groups of patients that will become the units of analysis.

The choice of the unit is an important issue and it is not free of controversy.
It can depend on practical considerations, such as the information available
in the data set at hand and also on experts’ considerations about the most
suitable unit for a specific problem. In general, the choice of the unit should
be made considering different aspects like physician’s opinion, statistical
ideas, information available in the data, and so on. Ideally, both the number
of units and the number of patients per unit should be sufficiently large
to avoid numerical problems (Buyse et al. 2000a). For the specific context
of schizophrenia, Molenberghs et al. (2002) reported a particular instance
where choice of units (investigator versus main investigator) has a mild
impact only. These authors also compare results from two different trials. Of
course, this is only evidence from a particular, though important, example.
Cortiñas et al. (2004) study a three-level hierarchy (e.g., country, trial,
and patient) and the impact on the assessment of surrogacy when either
all three levels are used for analysis or when one of the levels is ignored
instead.

4.2.7 An Equivalence Trial in Schizophrenia

These data come from an international equivalence trial (INT-10) on schi-
zophrenic patients, described by Nair and the Risperidone Study Group
(1998). The trial included 206 schizophrenic patients. All patients received
an equal daily amount of risperidone during 8 weeks, but 103 patients were
randomized to a one-time daily intake (O.D.), while the remaining 103
patients were randomized to receive risperidone twice a day (B.I.D.). Like
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TABLE 4.3. Equivalence Trial in Schizophrenia. Summary statistics.

PANSS CGI

Mean Median Mean Median

Treatment (s.d.) (range) (s.d.) (range)

One-time daily −27.55 (31.18) −27 (177) 2.94 (1.42) 3 (6)

Twice a day −26.49 (26.79) −23 (163) 2.90 (1.25) 3 (5)

TABLE 4.4. Lipid Research Clinics Coronary Primary Prevention Trial. Definite
CHD mortality or myocardial infarction according to cholesterol level at 1 year
and randomized treatment group (P = Placebo, T = treatment, cholestyramine).

At risk∗ Events Events

(N) (N) (%)

Cholesterol (mg/dl) P T P T P T

<180 7 106 0 9 0.0 8.5

[180; 230) 91 675 8 34 8.8 5.0

[230; 280) 1069 742 78 54 7.3 7.3

[280; 330) 636 304 64 23 10.1 7.6

≥330 115 61 18 10 15.7 16.4

Total 1918 1888 168 130 8.8 6.9

∗ Adjusted for person-years follow-up.

in the previous example, the endpoints of interest will be CGI, PANSS, and
BPRS. Similarly, the investigator will be considered as the unit of analysis.
A total of 34 units will thus be available for analysis with the number of
patients per unit ranging from 2 to 15.

Table 4.3 contains some summary statistics for this trial. There are no
strong differences when comparing both arms, which is to be expected as
we are dealing with an equivalence trial. Because the response is in terms
of change versus baseline, negative mean and median values for the PANSS
score are in line with expectation. There are no strong differences between
both groups, which is not surprising given the equivalence-trial status of
the study. The CGI score exhibits a larger difference between mean and
median values, pointing to the likely skew nature of the outcome.
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4.2.8 A Clinical Trial in Cardiovascular Disease

These data come from the Lipid Research Clinics Coronary Primary Pre-
vention Trial (Lipid Research Clinics Program 1984, Freedman, Graubard,
and Schatzkin 1992). The trial investigated the effect of the drug cholestyra-
mine (Z) on serum cholesterol levels at one year (S) and on cardiovascular
events defined as either death from coronary heart disease or occurrence of
a myocardial infarction (T ). Here, the true endpoint is binary (cardiovas-
cular event or not), while the surrogate endpoint has been categorized into
5 ordered levels (<180, [180;230), [230;280), [280;330), ≥330 mg/dl). Hence
the surrogate can be considered as an ordinal variable or as a continuous
variable (due to the non-availability of individual-patient data, the surro-
gate will be treated as grouped continuous data). The data are presented
in Table 4.4.

4.2.9 Acute Migraine: A Meta-analysis of 10 Clinical Trials

This is a meta-analysis of 10 early phase (dose-escalating and dose- ranging)
trials assessing the efficacy of several therapies for the treatment of acute
migraine crises. Each trial was placebo-controlled and aimed at evaluating
one of three experimental treatments. Two trials also had an active control
(Sumatriptan) as comparator. Overall, 801 patients were available in this
meta-analysis. These were recruited by 38 different centers, with between
1 and 86 patients enrolled per center.

Severity of headache and migraine-related symptoms was measured prior
to and at several occasions after dose administration. Severity was rated
on a four-grade intensity scale (0 = no, 1 = mild, 2 = moderate, 3 =
severe). Clinically relevant endpoints for efficacy include pain-free (pain
score = 0) and pain relief (pain score ≤1) two hours post-dose. A question
one might ask is to which extent symptoms typically associated with mi-
graine episodes, including nausea, vomiting, increased sensitivity to light
(photophobia) and sound (phonophobia), are related to the severity of the
migraine. Clearly, this question is not peculiar to surrogate endpoint eval-
uation, but we will see in Chapter 10 that the tools provided in this book
may be helpful to better assess the relationship between migraine-related
symptoms and migraine severity.
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5.1 Introduction

Several authors have argued that if a biomarker is to serve as a surro-
gate for a clinical endpoint, there should be a causal relationship between
them (Lagakos and Hoth 1992, Fleming and DeMets 1996). If there were a
causal pathway from the surrogate marker to the clinical endpoint, then any
change in the marker (e.g., as a result of treatment) would translate into a
corresponding change in the clinical endpoint. Causality, unfortunately, is
generally extremely difficult to test for, and it ought to be understood that
the statistical criteria, developed to validate a surrogate marker, provide
indirect evidence only about the causality of the relationship between the
marker and the endpoint.

A first source of evidence is provided by the association, at the level of
the individual patient, between the marker and the clinical endpoint. One
would expect a good surrogate marker to have a strong association with the
clinical endpoint at the individual level, reflecting some biological pathway
from the biomarker to the clinical endpoint. In that case, the biomarker
could be a plausible surrogate on biological grounds, as the clinical endpoint
would be largely determined by the biomarker regardless of any treatment
effect. This reasoning, although intuitively appealing, has however been
shown to be potentially misleading, for a good correlate is not automatically
a good surrogate (Fleming and DeMets 1996). Another source of evidence
is needed to quantify the association, at the level of a trial, between the
effects of a treatment on the marker and on the clinical endpoint. The
distinction between these two levels of evidence has become essential, but
has sometimes been missed in attempts to validate surrogate markers in
the past (Jacobson et al. 1991).

Thus, before a surrogate can replace a true endpoint, it should be validated
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or, more modestly or more realistically, evaluated. Several formal methods
for this purpose have been proposed (Prentice 1989, Freedman, Graubard,
and Schatzkin 1992, Daniels and Hughes 1997, Buyse and Molenberghs
1998, Begg and Leung 2000, Buyse et al. 2000a, Gail et al. 2000). With the
statistical methods available, it ought to be possible to conduct a formal
investigation on the quality of various endpoints used as surrogates in clin-
ical practice. Such an investigation can shed light on the feasibility of the
use of these endpoints and guide the regulatory agencies, e.g., in the choice
of the endpoints that can be used for accelerated approval of investigational
drugs. It should be kept in mind that a quantitative evaluation is important
but is by no means the only component in the decision process leading to
the replacement of the true endpoint by the surrogate one. Several parties
are involved, including the regulatory agencies (Chapter 2, Section 2.2) and
the industry developing a medicinal product.

5.2 Prentice’s Definition and Criteria

In his landmark paper, Prentice (1989) formulated a definition of surrogate
endpoints, as well as a set of operational criteria for validating a surrogate
endpoint.

5.2.1 Definition

Prentice proposed to define a surrogate endpoint as “a response variable
for which a test of the null hypothesis of no relationship to the treat-
ment groups under comparison is also a valid test of the corresponding
null hypothesis based on the true endpoint” (Prentice 1989). Symbolically,
Prentice’s definition can be written

f(S|Z) = f(S) ⇔ f(T |Z) = f(T ) (5.1)

where f(X) denotes the probability distribution of random variable X and
f(X|Z) denotes the probability distribution of X conditional on the value of
Z. Note that this definition involves the triplet (T, S, Z), hence the endpoint
S is a surrogate for T only with respect to the effect of some specific
treatment Z, except if S were a perfect surrogate for T , i.e., if S and T
were the same endpoint up to a deterministic transformation (S ≡ T ). The
endpoints T and S can be discrete or continuous, possibly censored, random
variables. Prentice (1989) focuses on the case in which T is a time-to-failure
endpoint.
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As such, this definition is of limited value because a direct verification
of a triplet (T, S, Z) poses a number of questions regarding availability
of data on the triplet, repetition of experiments, etc. Even if many experi-
ments were available, the equivalence of the statistical tests implied in (5.1)
might not be true in all of them because of chance fluctuations and/or lack
of statistical power. Operational criteria are therefore needed to check if
definition (5.1) is fulfilled.

5.2.2 Prentice’s Criteria

Prentice (1989) proposed four operational criteria to check if a triplet
(T, S, Z) fulfills the definition. Symbolically, they can be written as fol-
lows:

f(S|Z) �= f(S), (5.2)

f(T |Z) �= f(T ), (5.3)

f(T |S) �= f(T ), (5.4)

f(T |S, Z) = f(T |S). (5.5)

In essence, these criteria require that

• treatment has a significant impact on the surrogate endpoint,

• treatment has a significant impact on the true endpoint,

• the surrogate endpoint has a significant impact on the true endpoint,

• the full effect of treatment upon the true endpoint is captured by the
surrogate.

Note that (5.2)–(5.4) are formulated in terms of inequality (rejection a null
hypothesis), while (5.5) is in terms of an equality (equivalence setting). We
will return to this point later in this chapter.

5.2.3 Example

The use of Prentice’s criteria for the validation of a surrogate endpoint will
be illustrated using the data from the age-related macular degeneration
trial described in Chapter 4, Section 4.2.1. Recall that in this example, the
binary indicator for treatment for patient j (Zj) is set to 0 for placebo and
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to 1 for interferon-α. The surrogate endpoint Sj is the change in visual
acuity (which we assume to be normally distributed) at 6 months after
starting treatment, while the final endpoint Tj is the change in visual acuity
at one year. The first two Prentice’s criteria (5.2) and (5.3) can be verified
by way of tests of significance of parameters α and β in the following model:

Sj = µS + αZj + εSj , (5.6)
Tj = µT + βZj + εTj , (5.7)

where the error terms have a joint zero-mean normal distribution with
variance-covariance matrix

Σ =

(
σSS σST

σT T

)
. (5.8)

The third criterion (5.4) can be verified using the test for the parameter γ
in the model describing the relationship between S and T :

Tj = µ + γSj + εj . (5.9)

Finally, the fourth criterion (5.5), sometimes called “the” Prentice’s crite-
rion, is verified through the conditional distribution of the true endpoint,
given treatment and surrogate endpoint, derived from (5.6)–(5.7):

Tj = µ̃T + βSZj + γZSj + ε̃Tj , (5.10)

where

βS = β − σT Sσ−1
SS α, (5.11)

γZ = σT Sσ−1
SS , (5.12)

and the variance of ε̃T is given by

σT T − σ2
T Sσ−1

SS . (5.13)

The criterion, at face value, requires that all treatment effect on T is cap-
tured by S. In terms of model (5.10) it means that βS ≡ 0.

For the age-related macular degeneration data we get α = −1.90 (s.e. 1.87,
p = 0.312), β = −2.88 (s.e. 2.32, p = 0.216), γ = 0.92 (s.e. 0.06, p < 0.001),
and βS = −1.13 (s.e. 1.57, p = 0.529). Of the three first coefficients, only
γ is statistically significant (here and in what follows we assume the con-
ventional 0.05 level of significance), and therefore the validation procedure
has to stop inconclusively. Note, however, that the lack of statistical sig-
nificance of α and β could merely be due to the insufficient number of
observations available in this trial. Also note that α and β are negative,
indicating a negative effect of interferon-α upon visual acuity.
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5.2.4 Theoretical Foundations of Prentice’s Criteria

The first two criteria (5.2) and (5.3) verify departures from the null hy-
potheses implicit in (5.1). Strictly speaking, they are not criteria because
having both f(T |Z) = f(T ) and f(S|Z) = f(S) is consistent with the de-
finition (5.1). However, in such a case, the validation would practically be
impossible because one may fail to detect differences due to lack of power.
Thus, in practice, the validation requires Z to have an effect on both T and
S. Several authors have pointed out that requiring Z to have a statistically
significant effect on T may be excessively stringent, for in that case from
the limited perspective of significance testing there would no longer be a
need to establish the surrogacy of S (Fleming et al. 1994).

Buyse and Molenberghs (1998) reproduce the arguments that establish the
sufficiency of conditions (5.5) and (5.4) for binary responses. Consider first
the condition required for (⇒) to hold in (5.1). By definition, we have

f(T |Z) =
∫

f(T, S|Z) dS =
∫

f(T |S, Z)f(S|Z) dS. (5.14)

From (5.1) we have f(S|Z) = f(S), and consequently

f(T |Z) =
∫

f(T |S, Z)f(S) dS. (5.15)

If (5.5) holds, then (5.15) can be written

f(T |Z) =
∫

f(T |S)f(S) dS =
∫

f(T, S) dS = f(T )

and (⇒) holds in (5.1).

Consider now the condition required for (⇐) to hold in equation (5.1). If
condition (5.5) holds, then (5.14) can be rewritten as follows:

f(T |Z) =
∫

f(T |S, Z)f(S|Z) dS

=
∫

f(T |S)f(S|Z) dS. (5.16)

Similarly,

f(T ) =
∫

f(T |S)f(S) dS. (5.17)

Because f(T |Z) = f(T ), by subtraction of (5.17) from (5.16),∫
f(T |S)[f(S|Z) − f(S)] dS = 0. (5.18)
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For a binary surrogate endpoint S(0, 1), expression (5.18) reduces to

[f(T |S = 0) − f(T |S = 1)][f(S = 1|Z) − f(S = 1)] = 0.

Hence, a sufficient condition for (⇐) to hold in (5.1) is that f(T |S = 0) �=
f(T |S = 1), or (5.4).

It is also easy to show that condition (5.4) is always necessary for (5.1), and
that condition (5.5) is necessary for binary endpoints but not in general
(Buyse et al. 2000a). Indeed, assuming that f(S|Z) = f(S), we have (5.15)
and (5.17). But if (5.5) does not hold, then (5.15) and (5.17) are in general
not equal to one another, in which case the definition (5.1) is violated. It
is possible to construct examples where f(T |Z) = f(T ), in which case the
definition still holds despite the fact that (5.5) does not hold. Hence, (5.5)
is not a necessary condition, except for binary endpoints.

Next, assume (5.5) holds but (5.4) does not. Then,

f(T |Z) =
∫

f(T |S)f(S|Z) dS =
∫

f(T )f(S|Z) dS = f(T ),

and hence f(T |Z) = f(T ) regardless of the relationship between S and Z.
The simplest example is the situation where T is independent of the pair
(S, Z). Thus, (5.4) is necessary to avoid situations where one null hypothesis
is true while the other one is not. However, criteria (5.2) and (5.3) already
imply that both null hypotheses must be rejected, and therefore criterion
(5.4) is of no additional value. In fact, criterion (5.4) indicates that the sur-
rogate endpoint has prognostic relevance for the final endpoint, a condition
which will obviously be fulfilled by any sensible surrogate endpoint.

Conditions (5.2)–(5.5) are informative and will tend to be fulfilled for valid
surrogate endpoints, but they should not be regarded as strict criteria.
They are necessary and sufficient to establish the validity of binary surro-
gate endpoints, but not of more complex surrogate endpoints. The simplest
counterexample is found by considering a multi-categorical surrogate end-
point, as illustrated in Table 5.1.

A reflection on Prentice’s criteria can be found in Berger (2004). Despite the
reservations mentioned above, criterion (5.5) offers an interesting concept
of surrogacy by requiring that the treatment is irrelevant for predicting
the true outcome, given the surrogate. In the next section, we discuss how
Freedman, Graubard, and Schatzkin (1992) used this concept in estimation
rather than in testing.
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TABLE 5.1. Relationship between T , S, and Z in an artificial set of data for which
f(T |S) �= f(T ), f(S|Z) �= f(S), and f(T |S, Z) = f(T |S), yet f(T |Z) = f(T ).
Cell counts represent numbers of patients.

S, surrogate T , true Z, treatment

endpoint endpoint

Z = 0 Z = 1

S = 0 T = 0 40 120

T = 1 10 30

S = 1 T = 0 150 50

T = 1 150 50

S = 2 T = 0 30 50

T = 1 120 200

5.3 Proportion of Treatment Effect Explained by a
Surrogate

Freedman, Graubard, and Schatzkin (1992) argued that criterion (5.5)
raises a conceptual difficulty in that it requires the statistical test for treat-
ment effect on the true endpoint to be non-significant after adjustment for
the surrogate. Hence, criterion (5.5) might be useful to reject a poor surro-
gate endpoint (when the statistical test for treatment effect upon the true
endpoint remains statistically significant after adjustment for the surro-
gate), but it is inadequate to validate a good surrogate endpoint, for failing
to reject the null hypothesis may be due merely to insufficient power. Note
that this observation justifies the use of large numbers of observations for
the validation of surrogate endpoints. Even if lack of power were not an is-
sue, the statistical significance of the adjusted and unadjusted tests do not
adequately quantify the impact of the surrogate on the analysis of the true
endpoint. Because it cannot be proven that the effect of treatment upon
the true endpoint is fully captured by the surrogate, Freedman, Graubard,
and Schatzkin (1992) proposed to focus attention on the proportion of the
treatment effect explained by the surrogate. A good surrogate is one which
explains a large proportion of that effect. Schatzkin et al. (1990), in their
discussion of the validation of intermediate endpoints in cancer, observe
that a valid surrogate endpoint for screening purposes is one for which the
“attributable proportion” (the proportion of cases with the disease that
can be attributed to the intermediate endpoint) is close to one. Freedman’s
criterion is similar in spirit, but concentrates on the proportion of the treat-
ment effect that can be explained by the surrogate. Let PE(T, S, Z) stand
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for the proportion of the effect of Z on T which can be explained by S, or
simply proportion explained . An estimate of PE(T, S, Z) is as follows:

PE(T, S, Z) =
β − βS

β
= 1 − βS

β
, (5.19)

where β and βS are the estimates of the effect of Z on T , respectively,
without and with adjustment for S. For example, for normally distributed
endpoints, β can be obtained from model (5.9), while βS can be derived
from model (5.10).

PE being the ratio of two parameters, its confidence limits can be calcu-
lated using Fieller’s theorem or the delta method. Using Fieller’s theorem,
which is generally preferable (Herson 1975), the (1−α)% confidence limits
of PE(T, S, Z) are given by

1 − A ±√
A2 − BC

B
, (5.20)

where

A = ββS − Z2
αCov(β, βS),

B = β2 − Z2
αVar(β),

C = β2
S − Z2

αVar(βS),

and Zα is the 100(1 − α/2) percentile of the normal distribution (or, if n
were not large enough, of the Student’s t distribution with n− 1 degrees of
freedom). The variances of the parameter estimates, Var(β) and Var(βS)
are easily obtained by fitting the unadjusted and adjusted models (5.9) and
(5.10), respectively. To determine the covariance between β and βs, the
suggestion of Freedman, Graubard, and Schatzkin (1992) can be followed.

5.3.1 Example

For the age-related macular degeneration data we get β = −2.88 (s.e. 2.32)
and βS = −1.13 (s.e. 1.57). Freedman’s proportion explained is calculated
as PE = 0.61 (95% delta-method-based confidence limits [−0.19, 1.41]). As
we can see, the confidence limits are wide and cover the entire [0, 1] interval
to which, in principle, a proportion should be limited. This illustrates the
remarks about the precision of estimating PE made earlier.
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5.3.2 Properties of the Proportion of Treatment Effect
Explained by a Surrogate

Freedman, Graubard, and Schatzkin (1992) observe that if the treatment
effect upon the true endpoint is small, and if in addition the number of
observations is not large (as is the case in most randomized clinical trials),
the confidence interval of PE will be wide, so there will be substantial
uncertainty about the proportion of the effect that is truly mediated by
the surrogate. This observation justifies the use of large randomized trials,
or a meta-analysis of many related trials, to validate surrogate endpoints.
Even when large numbers of observations are available, however, the de-
nominator of the proportion explained (the effect of treatment upon the
true endpoint) will be estimated with little precision, for otherwise the need
for a surrogate endpoint would no longer exist. Therefore, the proportion
explained will generally be too poorly estimated to be of much practical
value. This conclusion has been recently supported by the results obtained
by Freedman (2001). He reported that, to achieve 80% power for a test
of the hypothesis that the surrogate explains more than 50% of treatment
effect, the ratio β/SE(β̂) should equal 5 or more. As noted by Freedman
(2001), this requirement makes the use of PE practically infeasible.

Another complication arises when (5.10) is not the correct conditional
model, and an interaction term between Z and S needs to be included,
as in the following model:

T = µ̌T + β̌SZ + ρ̌ZS + δZS + ε̌T . (5.21)

With this model, PE ceases to have a single interpretation and the val-
idation process would have to stop (Freedman, Graubard, and Schatzkin
1992).

The poor properties of PE result from a fundamental problem with its
definition. In the next section, the problem is explored in more detail by
investigating the relationship between PE and other quantities of interest.
We will return to issues, common to all single-trial validation efforts, in
Section 5.5.

5.4 Relative Effect and Adjusted Association

For a surrogate endpoint to be useful in practice, the investigators must be
able to predict the effect of treatment upon the true endpoint based on the
observed effect of treatment upon the surrogate. Thus, we need to relate the
magnitude of the treatment effects upon the true and surrogate endpoints
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(Boissel et al. 1992). A new treatment could then be tested through its
effect on the surrogate endpoint and declared efficacious if its predicted
effect on the true endpoint were sufficiently large to be of clinical interest
(Ellenberg 1991).

Following this reasoning, Buyse and Molenberghs (1998) suggested to calcu-
late another quantity for the validation of a surrogate endpoint: the relative
effect (RE), which is the ratio of the effects of treatment upon the final
and the surrogate endpoint. Using (5.6)–(5.8), RE is formally defined as
follows:

RE(T, S, Z) =
β

α
. (5.22)

Intuitively, RE is the slope of a regression line between β and α, which has
been suggested by other authors (A’Hern et al. 1988). If the multiplicative
relation (5.22) could be assumed, and if RE were known exactly, it could
be used to predict the effect of Z on T based on an observed effect of Z
on S. In practice, RE will have to be estimated, and the precision of the
estimation will be relevant for the precision of the prediction.

RE associates the effects of Z on T and on S averaged over all subjects.
RE will be equal to 1 if the effects of Z on T and on S are of identical
magnitude. In such a case, Buyse and Molenberghs (1998) proposed to call
a surrogate “perfect at the population level.” In practice, RE will tend be
less than 1 if the true endpoint is more difficult to affect than the surrogate
endpoint.

Similarly to PE, RE is a ratio of two parameters. Its confidence limits can
thus be calculated using Fieller’s theorem or the delta method (Buyse and
Molenberghs 1998).

Buyse and Molenberghs (1998) argued further that it might be of interest
to also derive the association between S and T after adjustment for the
treatment Z, which they termed the adjusted association and denoted by
ρZ . For normally distributed endpoints, the adjusted association is defined
as follows:

ρZ =
σST√

σSSσT T

, (5.23)

where σST , σSS and σT T are the elements of matrix Σ given in (5.8). It
follows that, if ρZ = 1, there is a deterministic relationship between S and
Z. In such a case, one could call the surrogate “perfect at the individual
level,” as the knowledge of S and Z would allow for an exact prediction of
the value of T for an individual subject. In practice, however, perfection
is beyond reach and it is then important to judge, for a given situation,
whether the correlation is considered high enough for the surrogate to be
trustworthy.
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5.4.1 Example

For the age-related macular degeneration trial, the relative effect is RE =
1.51 (the delta-method-based 95% C.I.: [−0.46, 3.49]), while the adjusted
association ρZ = 0.74 (95% C.I.: [0.68, 0.81]). The adjusted association is
determined rather precisely, but the confidence limits of RE are too wide
to convey any useful information.

5.4.2 Properties of Relative Effect and Adjusted
Association and Further Problems

For normally distributed endpoints, a very interesting, simple relationship
can be derived between PE, RE, and ρZ. Following Molenberghs et al.
(2002), define λ2 = σT T σ−1

SS . It follows that λρZ = σST σ−1
SS and, from (5.11),

βS = β − ρZλα. As a result, using definition (5.19) of PE, we obtain

PE = λρZ

α

β
= λρZ

1
RE

. (5.24)

Essentially the same result was developed by Buyse and Molenberghs (1998)
and Begg and Leung (2000) for standardized normally distributed end-
points S and T .

The relationship (5.24) indicates that PE amalgamates three sources of
information:

• the adjusted association ρZ, which is a measure of association between
the surrogate and the true endpoints at the individual level;

• the RE, which expresses the relationship between the treatment ef-
fects on the surrogate and the true endpoint at the trial level;

• the variance ratio λ2, which is a nuisance parameter, not to be viewed
as a useful validation measure.

In particular, it is clear that, depending on a particular combination of
values of ρZ, RE, and λ2, any value of PE on the real line can be obtained
(Molenberghs et al. 2002; see also Section 5.5). Hence, as it has been already
mentioned and in spite of its relative popularity (Li, Meredith, and Hoseyni
2001, Wang and Taylor 2002, and Chen, Wang, and Snapinn 2003), PE
cannot be treated as a proportion, which complicates its interpretation.
On the other hand, interpretation of RE is not restricted to any particular
range of values.
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Based on the decomposition (5.24), Buyse and Molenberghs (1998) sug-
gested to replace PE by the pair (RE, ρZ). The two measures allow to
get more insight into the properties of a surrogate than PE. The relative
effect RE is a useful quantity to predict the effect of treatment upon the
true endpoint, having observed the effect of treatment upon the surrogate
endpoint. If RE is estimated precisely, then the predicted effect upon the
true endpoint will in turn be precise enough to be useful.

Additionally, one would expect a good surrogate to have strong association
with the true endpoint within individuals, hopefully reflecting some biolog-
ical pathway from the surrogate endpoint to the true endpoint (Buyse and
Molenberghs 1998). Such an association could be captured by ρZ. A large
value would provide indirect evidence that the surrogate is plausible on bi-
ological grounds, as the true endpoint would then be largely determined by
the surrogate endpoint regardless of any treatment effect. Of course, such
evidence should ideally be supplemented with genuine biological evidence
and further work in this area is needed (Albert et al. 1997).

In practice, the use of RE and ρZ to validate surrogate endpoints is also
complicated by a few problems. As noted by Buyse and Molenberghs (1998),
the confidence intervals for RE can be wide. This difficulty can be over-
come by sufficiently large sample sizes, though. More importantly, however,
in order to use the estimate of RE for predicting the treatment effect on
T for a new trial (given the effect on S), it is necessary to assume that
the relationship between the treatment effects on the surrogate and the
true endpoints is multiplicative (Buyse and Molenberghs 1998, Buyse et
al. 2000a, Molenberghs et al. 2002). This assumption may be untenable in
practice, and it cannot be checked using data from a single trial. To verify
the assumption Buyse and Molenberghs (1998) suggested the use of data
from multiple randomized trials.

The use of meta-analytic data in the validation of surrogate endpoints to
increase the accuracy of the validation process (for example, to reduce
Type II error in testing the Prentice’s criteria, or to increase the precision
of the estimation of PE or RE) was also postulated by other authors
(Freedman, Graubard, and Schatzkin 1992, Lin, Fleming, and DeGruttola
1997, Albert et al. 1997). Moreover, it was suggested by Albert et al. (1997)
and Daniels and Hughes (1997) from the point of view of getting more
insight through the modeling of the relationship between the surrogate
and the true endpoints. It appears that, while the concept of PE is difficult
to generalize to a meta-analytic setting (Molenberghs et al. 2002), such a
generalization can easily be formulated for RE and ρZ and it was proposed
by Buyse et al. (2000a). This is the basis of the meta-analytic approach to
the validation of surrogate endpoints, which will be discussed in Chapter 7
and subsequent chapters.
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5.5 Further Problems with Single-trial Validation
Measures

Let us discuss some further problems with the single-trial validation mea-
sures PE, RE, and adjusted association.

Expression (5.24) allows us to make several useful observations. It is clear
from (5.24) that the PE is not a proportion. Indeed, each of λ and RE can
take values over the entire real line.

The fact that the PE is ill defined, except in trivial cases, and the rela-
tionship between the three measures introduced above, will be studied by
means of three thought experiments. The first two experiments concentrate
on “perfect” conditions, while the last one focuses on general conditions.

Thought Experiment 1. The PE is obviously equal to one in simple
situations of perfect surrogacy, for instance if T is linearly related to S
(T = aS + b), for then (5.6) and (5.7) can be rewritten as

Sj = µS + αZj + εSj , (5.25)
Tj = b + aµS + aαZj + aεSj , (5.26)

and obviously ρZ = 1, λ = a and RE = a. Other simple situations are
discussed by Day and Duffy (1996).

However, it is possible to construct examples where PE can be chosen to
take any arbitrary (positive) value, depending on the values of ρZ, λ, and
RE. To this end we conduct two further thought experiments.

Thought Experiment 2. Assume ρZ = 1 and RE = 1, and suppose fur-
ther that we could reduce (increase) the variance of the surrogate endpoint
while keeping all other quantities unaffected, say by improving (deteriorat-
ing) the precision of its measurement. Then, (5.6)–(5.7) would become

Sj = µS + αZj + εSj , (5.27)
Tj = µS + αZj + λεSj . (5.28)

λ is arbitrary and hence so is PE, despite the fact that (5.27)–(5.28) de-
scribe a very desirable situation. The key behind this somewhat artificial
and counterintuitive thought experiment is that the systematic components
are kept constant, the random error terms are in perfect correlation. Then,
knowledge about the surrogate endpoint enables exact prediction of the
true endpoint: E[Tj |Zj , Sj ] = Tj .

Now, we would like to call the situation described by (5.27)–(5.28) “per-
fect,” even though PE may not be equal to one, nor βS equal to zero.
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This casts doubts on the fourth Prentice criterion, which states that the
full effect of treatment should be captured by the surrogate, even though
this criterion has much intuitive appeal. In the above example, the true
endpoint, conditionally on treatment and surrogate endpoint, is

Tj = µ̃T + α(1 − λ)Zj + λSj , (5.29)

which shows that the true endpoint does depend on treatment, although
the residual, unexplained, variability in the true endpoint has been elim-
inated. In other words, in this perfect situation (at the individual level),
(5.13) vanishes, which is equivalent to stating that ρZ = 1. This suggests to
focus on the adjusted association, rather than on the adjusted treatment
effect upon the true endpoint. Note that perfection in this context has no
implication for the surrogate across trials. To study the latter very impor-
tant quality it is necessary to turn to RE or even to a multi-trial setting
(Chapter 7, Section 7.2).

Thought Experiment 3. We will now switch to general conditions and
consider two transformations of the surrogate endpoint:

S
(1)
j = φSj + ψ = (φµS + ψ) + φαZj + φεSj , (5.30)

S
(2)
j = µS + αZj + φεSj . (5.31)

It is important to realize that the second transformation is counterfactual.
It cannot be conducted through a simple transformation of a dataset vari-
able, but should rather be viewed as an experiment conducted in a parallel
world. It might refer to a situation in a sequence of trials where at some
point the measurement precision changes due to a change in instrument.

Transformation (5.30) operates on the fixed and random parts of the surro-
gate endpoint alike, whereas transformation (5.31) operates on the random
part only. The second transformation is similar to one in the second thought
experiment, except that we now consider the general rather than the perfect
situation. It is easy to show that the following relationships hold between
the validation measures:

RE(1) = RE/φ, ρ
(1)
Z = ρZ, λ(1) = λ/φ, PE(1) = PE,

RE(2) = RE, ρ
(2)
Z = ρZ, λ(2) = λ/φ, PE(2) = PE/φ,

with obvious notation. Thus, for transformation (5.30) there is no impact
on the PE, but under (5.31), PE is rescaled with an arbitrary amount.

There are also problems with the RE. Indeed, although the adjusted asso-
ciation expresses agreement between both endpoints at the individual level,
the trialist will want to know how the trial-specific treatment effect on T
can be predicted from the treatment effect on S. RE serves this purpose,
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but it is typically based on information from only one trial. It might not
be constant for all trials testing the therapeutic question under consider-
ation. The constancy of RE implies that the relation between α and β is
linear through the origin. This assumption may be untenable in practice,
and it cannot be verified from a single trial. Therefore, it will prove useful
to adopt an alternative definition of surrogacy based on a meta-analysis of
several trials.

Another motivation for a multi-trial approach is the issue of measurement
error. It can be misleading to assume the surrogate is measured without er-
ror, whereas in practice appreciable measurement error occurs in a number
of frequently used surrogates (tumor size, CD4 count, . . . ).

5.6 Discussion

The classical approach to surrogate marker validation, based on Prentice’s
criteria and measures derived there from, such as the proportion explained
and the relative effect, is surrounded with difficulties when applied at face
value. Rather, the value of the Prentice-Freedman framework lies in the fact
that it started a whole area of research in quantitative evaluation of surro-
gate endpoints. Freedman, Graubard, and Schatzkin (1992) have brought
parameter estimation as an important supplement to the hypothesis testing
based proposal of Prentice (1989).

The PE attempts to capture the concept that the treatment effect on the
true endpoint is fully explained by the surrogate. In doing so, it focuses on
the conditional regression coefficient of the treatment indicator (βS) and
requires that βS = 0, or equivalently that PE = 1. Unfortunately, this ap-
proach fails because it does not appropriately distinguish between different
sources of variability. PE is in fact an amalgamation of three quantities:
the trial-level relative effect, the individual-level adjusted association, and
a nuisance factor related to the ratio of variances of the true and surrogate
endpoints. This conceptual difficulty is more worrisome than the confidence
interval of PE which, as pointed out by many authors, tends to be too wide
to be useful, unless trial sizes are very large or the treatment effect on the
true endpoint is very strong (Freedman, Graubard, and Schatzkin 1992).

It seems more meaningful to view the problem from a hierarchical (or, mul-
tilevel, or, meta-analytic) point of view. At the individual level, one might
focus on the residual variability of the conditional regression of T on S and
Z, which is captured by the individual-level adjusted association between
the surrogate and true endpoints. If that residual variability vanishes, then
knowledge of the surrogate endpoint and treatment indicator allows one to
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predict the true endpoint without error, which we consider to be a perfect
situation (at the individual level).

At the trial level, one might focus on the prediction of the effect of treat-
ment on the true endpoint given its effect on the surrogate endpoint. The
quantity aiming at the prediction is RE, the effect of treatment on the true
endpoint relative to that on the surrogate endpoint. When only one trial is
available, however, an estimate of RE is based on the strong assumption
that the relationship between the treatment effects on the surrogate and
true endpoints is multiplicative, an assumption that may be too strong to
hold and is unverifiable. Again, this difficulty is more fundamental than the
limited precision of RE that will typically be obtained in trials of small or
moderate size (Buyse and Molenberghs 1998).

A meta-analytic framework is developed in Chapter 7 and subsequent chap-
ters.



6

Validation Using Single-trial
Data: Mixed Binary and
Continuous Outcomes

Helena Geys

6.1 Introduction

Chapter 5 describes the RE and adjusted association, two measures intro-
duced by Buyse and Molenberghs (1998) to assess the quality of a surrogate
with single-trial data. They considered the case where both endpoints are
of the same data type and suggested a bivariate logistic model for binary
endpoints and a bivariate normal model for continuous outcomes.

This chapter describes how the proposals of RE and adjusted association
(Buyse and Molenberghs 1998) can be extended to cases where the sur-
rogate and the true endpoints are of a different data type (Molenberghs,
Geys, and Buyse 2001). First, the theory for binary endpoints is extended
to the case of ordinal endpoints, using the Dale model (Dale 1986). Next,
the case of mixed binary-continuous endpoints is handled, for which two
modeling strategies are proposed. Indeed, the joint distribution of a mixed
continuous–discrete outcome vector can always be expressed as the prod-
uct of the marginal distribution of one of the responses and the conditional
distribution of the remaining response given the former response. One can
choose either the continuous or the discrete outcome for the marginal model
(Olkin and Tate 1961, Cox 1972b, Little and Schluchter 1985, Zeger and
Liang 1991, Catalano and Ryan 1992, Cox and Wermuth 1992Fitzmau-
rice and Laird 1995). The main problem with such approaches is that no
easy expressions for the association between both endpoints are obtained.
Therefore, Molenberghs, Geys, and Buyse (2001) opted for a more symmet-
ric treatment of the two outcome variables. They treated the case where
the surrogate is binary and the true endpoint is continuous. The reverse
case is entirely similar.
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6.2 Ordinal Endpoints

6.2.1 The Dale Model

Dale (1986) considered a model for bivariate ordinal outcomes. Suppose
that Sj and Tj are ordinal random variables observed on N subjects, with
levels 0, 1, . . . , rS and 0, 1, . . . , rT , respectively, and assume the following
model:

ηjkT 1 = ln
(

P (Tj > kT |Zj)
P (Tj ≤ kT |Zj)

)
= µZT (kT ) + βZj , (6.1)

ηjkS2 = ln
(

P (Sj > kS |Zj)
P (Sj ≤ kS |Zj)

)
= µZS(kS) + αZj , (6.2)

ηjkT kS3 = lnψjkSkT

= ln
(

P (Sj ≤ kS , Tj ≤ kT |Zj)P (Sj > kS , Tj > kT |Zj)
P (Sj ≤ kS , Tj > kT |Zj)P (Sj > kS , Tj ≤ kT |Zj)

)
= µSTZ + δZj , (6.3)

(j = 1, . . . , N ; kS = 0, . . . , rS − 1; kT = 0, . . . , rT − 1). The proportional
odds logistic regression models (6.1) and (6.2) generalize ordinary logistic
regression. In Section 6.2.2, it will be illustrated that the treatment effects
β and α can vary with the levels of (kT , kS). The function ψjkT kS

is called
the “global odds ratio” at cutpoint (kS , kT ). It may be interpreted as the
ratio of the odds of the conditional events {Sj ≤ kS |Tj ≤ kT , Zj} versus
{Sj ≤ kS |Tj > kT , Zj}. One of the interesting features of this model is that
the interpretation of the parameters is invariant if one collapses Sj or Tj

over adjacent categories. The relative effect, defined by (5.22), is RE = β/α
(Molenberghs, Geys, and Buyse 2001).

Maximum likelihood estimates for the parameter vector ν = (µ, β, α, ρ)T

are found by solving the score equations

U(ν) =
N∑

j=1

XT
j DT

j V −1
j Ej = 0, (6.4)

where Xj is a design matrix reflecting the right hand sides of (6.1)–(6.3),

Dj =
(

∂ηj

∂πj

)−1

,

Vj is the joint covariance matrix of the binary indicators Sj = kS , Tj = kT ,
(kS = 0, . . . , rS − 1; kT = 0, . . . , rT − 1), and πj is a vector of cell proba-
bilities to be defined in the sequel. Finally, Ej is the vector of differences
between observed and expected values of these indicators. The expected
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values follow directly from πjkT kS
= P (Sj = kS , Tj = kT |Zj). All quanti-

ties needed to evaluate U(ν) are determined from ν. Indeed, ν determines
ηj ,

πjkT + =
exp(ηjkT 1)

1 + exp(ηjkT 1)
,

πj+kS
=

exp(ηjkS2)
1 + exp(ηjkS2)

,

and

πjkT kS
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1+(πjkT ++πj+kS
)ψ�

jkSkT
−C(πjkT +,πj+kS

,ψ�
jkT kS

)

2ψ�
jkT kS

if ψ�
jkT kS

�= 0,

πjkT +πj+kS
if ψ�

jkT kS
= 0,

(6.5)

where ψ�
jkT kS

= ψjkT kS
− 1 and

C(q1, q2, ψ
�) =

√
[1 + (q1 + q2)ψ�]2 − 4(ψ� + 1)ψ�q1q2. (6.6)

Expression (6.5) was studied by Plackett (1965) and Mardia (1970). To
estimate the covariance matrix of ν, one calculates the matrix of second
derivatives of the log-likelihood, i.e., the derivative of U(ν) and replaces
ν by its maximum likelihood estimate ν̂. The standard error of RE, and
hence a 95% confidence interval, is calculated by applying the delta method
to the covariance matrix. Details can be found in Molenberghs and Lesaffre
(1994, 1995).

Should one want to determine PE, as defined in (5.19), we need to supple-
ment logistic regression (6.1) with

ln
(

P (Tj > kT |Zj , Sj)
P (Tj ≤ kT |Zj , Sj)

)
= µZT |S(kT ) + βSZj + γ̃ZSj , (6.7)

(kT = 0, . . . , rT − 1). The method of Freedman, Graubard, and Schatzkin
(1992) to determine the confidence interval for PE is also applicable to the
ordinal case. Model (6.7) includes only the linear trend of the ordinal vari-
able S. If this is thought inappropriate, Sj can be included as a qualitative
variable (then involving rS nuisance parameters).

The adjusted association is given by (6.3), with ηjkT kS3 = lnψjkSkT
. In or-

der to be useful, a constant association needs to be assumed, i.e., ηjkT kS3 =
µSTZ .
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6.2.2 Application: A Cardiovascular Disease Trial

In this section data are analyzed from a cardiovascular disease trial, de-
scribed in Section 4.2.8.

Using the data in Table 4.4, we find, in accordance with Freedman, Graub-
ard, and Schatzkin (1992), β = 0.26 (standard error, s.e. 0.12, p = 0.0318),
βS = 0.13 (s.e. 0.13, p = 0.3283), and α = 1.55 (s.e. 0.067, p < 0.0001).
The estimate of PE is 0.50 (95% confidence interval, C.I., [0.07, 5.91]) and
thus, if we wanted to interpret the PE, cholesterol levels would explain
half of the effect of cholestyramine on cardiovascular events. However, the
confidence limits of PE are very wide. The estimate of RE is 0.17 (95%
C.I. [0.02, 0.33]). RE can here be interpreted as follows: the reduction in
the odds of a cardiovascular event under cholestyramine is about one sixth
of the reduction in the odds of a shift to a lower class of cholesterol with
that treatment. Should this value sustain over a class of treatments, then
confidence could be put in cholesterol as a surrogate marker, and the benefit
of a future treatment on cardiovascular events could be predicted based on
its effect on cholesterol levels. This observation points, once more, to the
need of a meta-analytic validation framework (Chapter 7). The adjusted
log odds ratio is 0.41 (95% C.I. [0.19, 0.63]). The corresponding odds ratio is
1.50. This implies a weak but significant association between the surrogate
and the true endpoint after correcting for treatment.

The Dale model used to calculate the RE shows severe lack of fit, with
a Pearson’s χ2 statistic equal to 222.9 on 10 degrees of freedom. The two
potential causes for model misspecification are that (1) the association
function ηkT kS3 depends on the level of S, i.e., the global odds ratio depends
on the point at which the ordinal surrogate endpoint is dichotomized; or
(2) the proportional odds assumption for the marginal logistic regression
of S on Z is not valid. Changing the constant global odds ratio to an odds
ratio function yields a χ2 value of 212.6 on 6 degrees of freedom, hardly
a better fit than with a constant global odds ratio. Most of the lack of
fit is therefore due to a departure from the proportional odds assumption.
Indeed, a model with 4 treatment indicators for the regression of Z on
S, 1 indicator for Z on T (as T is binary), and a single constant odds
ratio, yields χ2 = 11.09 on 7 degrees of freedom, a very acceptable fit. Four
relative effects are estimated with this model, as the relationship between
S and Z is now expressed by 4 treatment indicators, as shown in Table 6.1.

The increase of RE with cholesterol level implies that a drug that is ac-
tive at the highest levels of cholesterol can be expected to have a larger
impact on cardiovascular events than one that is equally active at lower
levels. This implies that RE becomes a cutoff dependent conversion factor,
thereby reducing its simplicity (but not its relevance). A direct test for the
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TABLE 6.1. Cardiovascular Trial. Estimates of the treatment effect on the surro-
gate (α) and of the relative effects (RE, with 95% confidence limits) in a model
with 4 treatment indicators for the regression of treatment (cholestyramine) on
the surrogate endpoint (cholesterol levels) and one indicator for the regression of
treatment on the true endpoint (cardiovascular events) (Lipid Research Clinics
Program 1984).

Indicator α RE 95% C.I.

<180/≥180 2.79 0.09 [0.01; 0.19]

<230/≥230 2.57 0.10 [0.01; 0.19]

<280/≥280 0.99 0.26 [0.02; 0.51]

<330/≥330 0.65 0.40 [0.04; 1.01]

heterogeneity in the RE is provided by 222.9− 11.09 = 211.8 on 3 degrees
of freedom, overwhelmingly significant evidence.

6.3 Mixed Continuous and Binary Endpoints

We now turn attention to the situation where one of the outcomes, the
surrogate say, is of a binary type. It is convenient to assume that S̃j be
a latent variable of which Sj is the dichotomized version. Section 6.3.1
describes a bivariate normal model for S̃j and Tj , resulting in a probit-linear
model for Sj and Tj . Section 6.3.2 presents an alternative formulation based
on the bivariate Plackett (1965) density and resulting in a Plackett-Dale
model.

6.3.1 A Probit Formulation

In this formulation, the following model is assumed (Molenberghs, Geys,
and Buyse 2001):

Tj = µT + βZj + εTj , (6.8)

S̃j = µS + αZj + εSj , (6.9)

where µS and µT are fixed intercepts and α and β are the fixed effects of
the treatment Z on the surrogate and true endpoints, respectively. Further,
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εSj and εTj are correlated error terms, assumed to satisfy:(
εTj

εSj

)
∼ N

⎡⎣( 0
0

)
,

⎛⎝ σ2 ρσ√
1−ρ2

ρσ√
1−ρ2

1
1−ρ2

⎞⎠⎤⎦ . (6.10)

Model (6.8)–(6.9) specifies a bivariate normal density. The variance of S̃j is
chosen for reasons that will be made clear in the sequel. From this model,
it is easily seen that the density of Tj is univariate normal with regression
given in (6.8) and variance σ2, implying that the parameters µT , β, and σ2

can be determined using linear regression software with response Tj and
single covariate Zj . Similarly, the conditional density of S̃j , given Zj and
Tj is

S̃j |Tj , Zj ∼ N (λ0 + λZZj + λT Tj ; 1) , (6.11)

where

λ0 = µS − ρ

σ
√

1 − ρ2
µT , (6.12)

λZ = α − ρ

σ
√

1 − ρ2
β, (6.13)

λT =
ρ

σ
√

1 − ρ2
. (6.14)

The density in (6.11) has unit variance, motivating the earlier choice for
the covariance matrix of Tj and S̃j . The corresponding probability

P (Sj = 1|Tj , Zj) = Φ1(λ0 + λZZj + λT Tj), (6.15)

where Φ1 is the standard normal cumulative density function. Note that
(6.15) implicitly defines the cutoff value for the dichotomized version. The
λ parameters can be found by fitting model (6.15) to Sj with covariates
Zj and Tj . This can be done with standard logistic regression software if it
allows to specify the probit rather than the logit link. Given the parameters
from the linear regression on Tj (µT , β, and σ2) and the probit regression
on Sj (λ0, λZ , and λT ), the parameters from the linear regression on S̃j

can now be obtained from (6.12)–(6.14):

µS = λ0 + λT µT , (6.16)
α = λZ + λT β, (6.17)

ρ2 =
λ2

T σ2

1 + λ2
T σ2

. (6.18)

An asymptotic covariance matrix for the parameters involved can easily
be derived by means of the delta method. More explicitly, the asymptotic
covariance matrix of the parameters (µT , β) can be found from standard
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linear regression output. The variance of σ2 equals 2σ4/N . The asymptotic
covariance of (λ0, λZ , λT ) follows from (probit) regression output. These
three statements yield the covariance matrix of the six parameters upon
noting that it is block-diagonal. In order to derive the asymptotic covariance
of (µS , α, ρ) it suffices to calculate the derivatives of (6.16)–(6.18) with
respect to the six original parameters and apply the delta method. They
are:

∂(µS , α, ρ)
∂(µT , β, σ2, λ0, λZ , λT )

=

⎛⎜⎝ λT 0 0 1 0 µT

0 λT 0 0 1 β

0 0 h1 0 0 h2

⎞⎟⎠ ,

where

h1 =
1
2ρ

λ2
T

(1 + λ2
T σ2)2

,

h2 =
1
2ρ

2λT σ2

(1 + λ2
T σ2)2

.

In addition, a program needs to be developed that performs the joint esti-
mation directly by maximizing the likelihood based on contributions (6.8)
and (6.15).

The adjusted association is given by ρ. The relative effect, RE = β/α, can
be determined directly from the output. Determining confidence intervals
using the parameter estimates and their covariance matrix is completely
analogous to the route taken in Buyse and Molenberghs (1998).

6.3.2 A Plackett-Dale Formulation

Assume that the cumulative distributions of Sj and Tj are given by FSj

and FTj
. The joint cumulative distribution of both these quantities has

been studied by Plackett (1965) and is given by:

FTj ,Sj
=

⎧⎪⎨⎪⎩
1 + (FTj

+ FSj
)ψ�

j − C(FTj
, FSj

, ψ�
j )

2ψ�
j

if ψ�
j �= 0,

FTj
FSj

if ψ�
j = 0,

where ψ�
j and C are defined similarly to (6.3) and (6.6). Based upon this

distribution function, a bivariate Plackett “density” function Gj(t, s) can
be derived for mixed continuous-binary outcomes (Molenberghs, Geys, and
Buyse 2001). Suppose the success probability for Sj is denoted by πj , then
Gj(t, s) can be defined by specifying Gj(t, 0) and Gj(t, 1) such that they
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sum to fTj
(t). If Gj(t, 0) is defined as ∂FTj ,Sj

(t, 0)/∂t, then this leads to
specifying Gj by:

Gj(t, 0) =

⎧⎪⎨⎪⎩
fTj

(t)

2

(
1 − 1+FTj

(t)ψ�
j −FSj

(s)(ψ�
j +1)

C(FTj
,1−πj ,ψ�

j )

)
if ψ�

j �= 0,

fTj
(t)(1 − πj) if ψ�

j = 0,

and
Gj(t, 1) = fTj

(t) − Gj(t, 0).

In this formulation, it is assumed that Tj ∼ N(µj , σ
2), with µj = µT +βZj

and logit(πj) = µS + αZj with similar notation as in the probit case. The
global odds ratio is assumed to be constant. Let

θj =

⎛⎜⎜⎜⎝
µj

σ2

πj

ψ

⎞⎟⎟⎟⎠ and ηj =

⎛⎜⎜⎜⎝
µj

ln(σ2)
logit(πj)

ln(ψ)

⎞⎟⎟⎟⎠ ,

then estimates of the regression parameters ν = (µ, β, α, lnσ2, lnψ) are
easily obtained by solving the estimating equations U(ν) = 0, using a
Newton-Raphson iteration scheme, where U(ν) is given by:

N∑
j=1

(
∂ηj

∂ν

)T (∂ηj

∂θj

)−T (
∂

∂θj
lnGj(Tj , Sj)

)
.

Note that the adjusted association is given by ψ in this case, and the relative
effect RE = β/α can be readily determined.

6.3.3 Application: A Cardiovascular Disease Trial

In addition to the analyses presented in Section 6.2.2, cholesterol levels
could also be considered as a continuous variable in order to estimate RE
and the adjusted correlation ρ. This is achieved taking the mid-points
155(50)355 for each category. Molenberghs, Geys, and Buyse (2001) an-
alyze these data with the probit model of Section 6.3.1, where the surro-
gate is now continuous and the true endpoint is dichotomous. They find
β = 0.13 (s.e. 0.06, p = 0.0281) and α = 32.05 (s.e. 1.30, p < 0.0001).
The adjusted correlation is estimated with great precision, ρ = 0.10 (95%
C.I. [0.05, 0.16]). As in Section 6.2.2, it indicates a significant but very
small correlation between both endpoints, thus casting some doubts on the
individual-level validity of cholesterol levels as a surogate for cardiovascu-
lar events. The relative effect is estimated to be RE = 0.0041 (95% C.I.
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TABLE 6.2. Age-related Macular Degeneration Trial. Mean (standard error) of
visual acuity at baseline, at 6 months, and at 1 year according to randomized
treatment group (Buyse and Molenberghs 1998).

Time point Placebo Treatment Total

Baseline 55.3 (1.4) 54.6 (1.3) 55.0 (1.0)

6 months 49.3 (1.8) 45.5 (1.8) 47.5 (1.3)

1 year 44.4 (1.8) 39.1 (1.9) 42.0 (1.3)

[0.0004, 0.0078]). The precision of RE is satisfactory owing to the large
sample size (N = 3806). Precision of RE is however a necessary but not
a sufficient condition for establishing the validity of a surrogate endpoint;
indeed one would still need to verify that RE is relatively constant over a
class of similar trials (or treatments).

6.3.4 Application: Age-related Macular Degeneration

In this section, the data from the age-related macular degeneration trial
described in Section 4.2.1 of Chapter 4 are used. First, dichotomized visual
acuity at 6 months is used as the surrogate and (continuous) visual acuity
at 12 months as the true endpoint. Table 6.2 shows the visual acuity (mean
and standard error) by treatment group at baseline, at 6 months, and at 1
year. Dichotomization is achieved by setting a binary variable to 1 if visual
acuity at 6 months is larger than the value at baseline and to 0 otherwise.

Let us first present the results of the probit model as it was presented in
Molenberghs, Geys, and Buyse (2001). The parameter estimates for the
true endpoint are µT = 11.04 (s.e. 1.57), β = 4.12 (s.e. 2.32, p = 0.0758),
and σ = 15.95 (s.e. 0.82). The parameter estimates for the surrogate end-
point are µS = 0.64 (s.e. 0.20) and α = 0.39 (s.e. 0.28, p = 0.1637),
and the correlation is ρ = 0.74 (s.e. 0.05). Note that the parameter esti-
mates for the true endpoint coincide with those in Buyse and Molenberghs
(1998), who employed a bivariate normal model for the case where both
outcomes are continuous. The relative effect is estimated to be RE = 10.44
(95% C.I. [−1.77, 22.65]) and the adjusted correlation ρ = 0.74 (95% C.I.
[0.64, 0.84]). Although care has to be taken with the RE as both numer-
ator and denominator are non-significant (leading to a Fieller confidence
interval equal to the whole real line), the adjusted correlation is estimated
very precisely, and there is clearly a strong correlation between both end-
points. Buyse and Molenberghs (1998) found an adjusted correlation of 0.74
(95% C.I. [0.68, 0.81]) which agrees remarkably well with our results. The
slightly wider standard error results from the loss of information through
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dichotomizing the surrogate endpoint.

Molenberghs, Geys, and Buyse (2001) next analyzed the same data using
the Plackett-Dale model. The parameter estimates for the true endpoint
are µT = 10.89 (s.e. 1.56), β = 4.02 (s.e. 2.32, p = 0.0831), and σ = 16.04
(s.e. 0.81). These results are relatively close to the ones obtained with the
probit model, as in both cases a linear regression of T on Z is assumed.
The binary regression of S on T and Z contains additional information
about the true endpoint parameters as well, which is why the results are
not exactly equal. The values for the surrogate endpoint are µS = 0.74
(s.e. 0.19) and α = 0.45 (s.e. 0.30, p = 0.1336) and the log odds ratio
ln ψ = 2.85 (s.e. 0.37) with corresponding odds ratio 17.29. The relative
effect is estimated to be RE = 8.92 (95% C.I. [−0.41, 18.25]), in close
agreement with the above estimate. Although the adjusted association is
relatively large, providing good auxiliary support for surrogacy, the RE is
estimated with low precision, indicating that the sample size is too small
to conclude on the quality of the surrogate.

Finally, Molenberghs, Geys, and Buyse (2001) considered the more inter-
esting situation of (continuous) visual acuity at 6 months as a surrogate
for the binary indicator for loss of at least 3 lines of vision lost at one year.
With the probit model, the regression coefficients (standard errors) for the
true endpoint are µT = −0.36 (s.e. 0.21), β = 0.60 (s.e. 0.30, p = 0.0475).
The values for the surrogate endpoint are µS = 5.53 (s.e. 1.26), α = 2.83
(s.e. 1.87, p = 0.1287), and σ = 12.80 (s.e. 0.66). The correlation is ρ = 0.81
(s.e. 0.04). The relative effect is estimated to be RE = 4.75 (95% C.I.
[−5.11, 14.61]). With the Plackett-Dale model, the regression coefficients
(standard errors) for the true endpoint are µT = −0.36 (s.e. 0.19), β = 0.58
(s.e. 0.28, p = 0.0365), and σ = 12.90 (s.e. 0.65). The values for the surro-
gate endpoint are µS = 5.89 (s.e. 1.24) and α = 2.72 (s.e. 1.84, p = 0.1403)
and the log odds ratio lnψ = 2.83 (s.e. 0.29) with corresponding odds
ratio 16.93. The relative effect is estimated to be RE = 4.67 (95% C.I.
[−5.00, 14.35]). Qualitatively, the same conclusions are reached as to the
surrogacy of the continuous measurement at 6 months for a dichotomized
true endpoint.

6.4 Discussion

In this chapter, we have presented an extension of the approach proposed
in Buyse and Molenberghs (1998) for the evaluation of surrogate endpoints
when the surrogate and the true endpoints are either ordinal or of a different
data type.
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When the endpoints are of a mixed continuous and discrete nature, a latent
variable approach is a natural extension of the likelihood-based approach.
Such an approach discretizes one latent response variable and assumes the
other one is measured directly. In this chapter, two approaches were pre-
sented, one based on a probit–linear model, the other on a Plackett–Dale
model. Regarding the adjusted association, one uses either the Pearson
correlation coefficient or the log odds ratio, depending on whether a probit
or a Plackett-Dale formulation is used. The examples show that the two
approaches yield very comparable results, so that in practice one approach
can be regarded as a sensitivity analysis for the other. It is interesting to
note that, in the examples considered, the discretization of a continuous
endpoint into either a binary or an ordinal variable does not lead to a great
loss of information for the purposes of evaluating surrogate endpoints. Of
course, this need not be the case in general. The reliability of the analyses
is primarily driven by the number of observations, rather than by the data
type of the endpoints considered.

The two examples used in this chapter underscore one of the greatest prac-
tical difficulties of surrogate evaluation, i.e., the need for very large datasets
from randomized experiments. The confidence limits of the relative effect
will be wide unless the number of observations is large. In the macular
degeneration example, for instance, with only 190 patients, the confidence
limits of RE are too wide to be useful. In contrast, the confidence limits of
the adjusted association will generally be narrow enough to be of practical
interest even with small numbers of observations. This is because the sur-
rogate endpoint and the true endpoint are generally strongly correlated (at
the individual level). For the evaluation to be complete, however, a strong
association between the surrogate and the true endpoint is not sufficient.
It is very important that (1) the relative effect be estimated with good
precision to permit the reliable prediction of a treatment effect on the true
endpoint based on the observation of the treatment effect on the surro-
gate endpoint and (2) that the relative effect RE remains constant across
a meaningful class of trials. Thus, both precision and homogeneity in the
RE are required for reliable prediction. This naturally points us to the
use of several trials or, at least, several units for analysis. A meta-analytic
framework to accommodate for this will be presented in the next chapter
and studied further in subsequent chapters.
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A Meta-analytic Validation
Framework for Continuous
Outcomes

Geert Molenberghs, Marc Buyse, and
Tomasz Burzykowski

7.1 Introduction

In this chapter, we discuss the foundations of the meta-analytic approach
to the validation of surrogate endpoints. We focus on surrogate and true
endpoints that are assumed to be jointly normally distributed. Subsequent
chapters are devoted to non-normal settings.

A meta-analytic approach was called for by several authors, e.g., Albert et
al. (1998). A first formal proposal, using a Bayesian approach, was given
by Daniels and Hughes (1997). Buyse et al. (2000a) extended these ideas
using the theory of linear mixed-effects models. Gail et al. (2000) extended
it further using generalized estimating equations methodology. In what
follows, we describe the approach as proposed by Buyse et al. (2000a).

We assume to have data from N trials at our disposition, in the ith of
which ni subjects are enrolled. Tij and Sij are random variables denoting
the true and surrogate endpoints, respectively, for the jth subject in the
ith trial or ith center, while Zij is an indicator variable for treatment.

7.2 A Meta-analytic Approach

The approach is based on a hierarchical, two-stage model. Two distinct
modeling strategies can be followed, based on a two-stage fixed-effects rep-
resentation on the one hand and random effects on the other hand. Com-
putational issues will be discussed in Section 7.4.
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Let us describe the two-stage model first. The first stage is based upon a
fixed-effects model:

Sij = µSi + αiZij + εSij , (7.1)
Tij = µT i + βiZij + εT ij , (7.2)

where µSi and µT i are trial-specific intercepts, αi and βi are trial-specific
effects of treatment Z on the endpoints in trial i, and εSi and εT i are
correlated error terms, assumed to be mean-zero normally distributed with
covariance matrix

Σ =

(
σSS σST

σT T

)
. (7.3)

At the second stage, we assume⎛⎜⎜⎜⎝
µSi

µT i

αi

βi

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
µS

µT

α

β

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
mSi

mT i

ai

bi

⎞⎟⎟⎟⎠ , (7.4)

where the second term on the right-hand side of (7.4) is assumed to follow
a zero-mean normal distribution with dispersion matrix

D =

⎛⎜⎜⎜⎝
dSS dST dSa dSb

dT T dTa dTb

daa dab

dbb

⎞⎟⎟⎟⎠ . (7.5)

Next, the random-effects representation is based upon combining both
steps:

Sij = µS + mSi + αZij + aiZij + εSij , (7.6)
Tij = µT + mT i + βZij + biZij + εTij , (7.7)

where now µS and µT are fixed intercepts, α and β are the fixed effects of
treatment Z on the endpoints, mSi and mTi are random intercepts, and
ai and bi are the random effects of treatment Z on the endpoints in trial
i. The vector of random effects (mSi, mTi, ai, bi) is assumed to be mean-
zero normally distributed with covariance matrix (7.5). The error terms
εSij and εT ij follow the same assumptions as in fixed-effects model (7.1)–
(7.2), with covariance matrix (7.3). Section 7.4 provides SAS code to fit
the random-effects model.

A lot of debate has been devoted to the relative merits of fixed versus
random effects, especially in the context of meta-analysis (Thompson and
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Pocock 1991, Fleiss 1993, Thompson 1993, Senn 1998). Although the un-
derlying models rest on different assumptions about the nature of the ex-
periments being analyzed, the two approaches yield discrepant results only
in pathological situations, or in very small samples where a fixed-effects
analysis can yield artificially precise results if the experimental units truly
constitute a random sample from a larger population. In our setting, both
approaches are very similar, and the two-stage procedure can be used to
introduce random effects (Laird and Ware 1982, Verbeke and Molenberghs
2000). As the data analysis in Section 7.5 will illustrate, the choice between
random and fixed effects can also be guided by pragmatic arguments. This
issue will be discussed further in Section 7.4.

7.2.1 Trial-level Surrogacy

The key motivation for validating a surrogate endpoint is to be able to
predict the effect of treatment on the true endpoint based on the observed
effect of treatment on the surrogate endpoint. It is essential, therefore, to
explore the quality of the prediction of the treatment effect on the true
endpoint in trial i by (a) information obtained in the validation process
based on trials i = 1, . . . , N and (b) the estimate of the effect of Z on S
in a new trial i = 0. Fitting either the fixed-effects model (7.1)–(7.2) or
the mixed-effects model (7.6)–(7.7) to data from a meta-analysis provides
estimates for the parameters and the variance components. Suppose then
the new trial i = 0 is considered for which data are available on the sur-
rogate endpoint but not on the true endpoint. We then fit the following
linear model to the surrogate outcomes S0j :

S0j = µS0 + α0Z0j + εS0j . (7.8)

Estimates for mS0 and a0 are

m̂S0 = µ̂S0 − µ̂S,

â0 = α̂0 − α̂.

We are interested in the estimated effect of Z on T , given the effect of Z on
S. To this end, observe that (β + b0|mS0, a0) follows a normal distribution
with mean and variance:

E(β + b0|mS0, a0)

= β +

(
dSb

dab

)T (
dSS dSa

dSa daa

)−1(
µS0 − µS

α0 − α

)
, (7.9)

Var(β + b0|mS0, a0)
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= dbb −
(

dSb

dab

)T (
dSS dSa

dSa daa

)−1(
dSb

dab

)
. (7.10)

This suggests to call a surrogate “perfect at the trial level” if the conditional
variance (7.10) is equal to zero. Of course, in practice, perfection will not
be reached, and a pragmatic approach is to select a surrogate for which
the coefficient of determination, to be introduced next, is sufficiently high.
A measure to assess the quality of the surrogate at the trial level is the
coefficient of determination

R2
trial(f) = R2

bi|mSi,ai
=

(
dSb

dab

)T (
dSS dSa

dSa daa

)−1(
dSb

dab

)
dbb

. (7.11)

Coefficient (7.11) is unitless and ranges in the unit interval if the cor-
responding variance-covariance matrix is positive definite, two desirable
features for its interpretation.

Intuition can be gained by considering the special case where the prediction
of b0 can be done independently of the random intercept mS0. Expressions
(7.9) and (7.10) then reduce to

E(β + b0|a0) = β +
dab

daa
(α0 − α),

Var(β + b0|a0) = dbb − d2
ab

daa

with corresponding

R2
trial(r) = R2

bi|ai
=

d2
ab

daadbb
. (7.12)

Now, R2
trial(r) = 1 if the trial level treatment effects are simply multiples of

each other. We will refer to this simplified version as the reduced random-
effects model, whereas the original expression (7.11) will be said to derive
from the full random-effects model.

Coefficient (7.12) results, in particular, if the matrix D, given by (7.5),
assumes the following structure:

D0 =

⎛⎜⎜⎜⎝
dSS dST 0 0

dT T 0 0
daa dab

dbb

⎞⎟⎟⎟⎠ (7.13)

or if the linear mixed-effects model (7.6)–(7.7) does not contain the random
intercepts mSi and mT i at all. Note that in the latter case the fitting of the
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linear mixed-effects model might be somewhat easier. On the other hand,
the structure of the model based on the matrix D0 is slightly more general,
as it still allows for a heterogeneity in the intercepts. We will come back to
this issue in the next chapters.

In both cases, (7.12) might be computed using a simplified two-stage rep-
resentation of (7.6)–(7.7), where the second-stage model is reduced to:(

αi

βi

)
=

(
α

β

)
+

(
ai

bi

)
, (7.14)

with (ai, bi)T following a zero-mean normal distribution with dispersion
matrix

Dr =

(
daa dab

dbb

)
. (7.15)

Additionally, if the linear mixed-effects model (7.6)–(7.7) does not contain
the random intercepts mSi and mSi, the first-stage model can be simplified
to

Sij = µS + αiZij + εSij , (7.16)
Tij = µT + βiZij + εT ij . (7.17)

In what follows we will refer to the mixed-effects model without the random
intercepts as the reduced mixed-effects model and assume it implies the use
of the simplified coefficient of determination (7.12). The original expression
(7.11) will be said to derive from the full mixed-effects model. Similarly,
we will refer to model (7.1)–(7.2), with the second-stage model (7.4), as
the full fixed-effects model, while model (7.16)–(7.17), with the simplified
second-stage model (7.14), will be termed the reduced fixed-effects model.

Similar to the logic in (7.9) and (7.10), the conditional model for βi given
µSi and αi can be written:

βi = θ0 + θaαi + θmµSi + εi, (7.18)

where expressions for the coefficient (θ0, θa, θm) follow from (7.4) and (7.5).
In case the surrogate is perfect at the trial level (R2

trial = 1), the error term in
(7.18) vanishes and the linear relationship becomes deterministic, implying
that βi equals the systematic component of (7.18).

In more detail, the prediction interval for treatment effect β + b0 in the
new trial is constructed as follows. Denote f = E(β + b0|mS0, a0) = β +
D1D

−1
2 D3 where D1, D2, and D3 refer to the corresponding matrices in

(7.9). Let fd be the derivate of f w.r.t. the parameter vector

(β, µS, α, dSb, dab, dSS, dSa, daa, µS0, α0)T .
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The components of fd are

∂f

∂β
= 1,

∂f

∂µS0
= − ∂f

∂µS

= D1D
−1
2

(
1
0

)
,

∂f

∂α0
= −∂f

∂α
= D1D

−1
2

(
0
1

)
,

∂f

∂dSb
=

(
1
0

)T

D−1
2 D3,

∂f

∂dab
=

(
0
1

)T

D−1
2 D3,

∂f

∂dSS

= −D1D
−1
2

(
1 0
0 0

)
D−1

2 D3,

∂f

∂dSa
= −D1D

−1
2

(
0 1
1 0

)
D−1

2 D3,

∂f

∂daa
= −D1D

−1
2

(
0 0
0 1

)
D−1

2 D3.

Denoting the asymptotic covariance matrix of the estimated parameter
vector by V , the asymptotic variance of f is given by fT

d V fd, producing a
confidence interval in the usual way. For a prediction interval, the variance
to be used is fT

d V fd + Var(β + b0|mS0, a0).

There is a close connection between the prediction approach followed here
and empirical Bayes estimation (Verbeke and Molenberghs 2000). To see
this, consider a similar but non-identical approach where all data are an-
alyzed together. This means that a meta-analysis is performed of the sur-
rogate data on trials i = 0, . . . , N and of the true endpoint data on trials
i = 1, . . . , N . The estimate of b0 will be based only on the surrogate data,
as the true endpoint is unknown for trial i = 0, and on the parameter es-
timates. The expression for the empirical Bayes estimate of b0 is identical
to (7.9), but the numerical value will be slightly different, as the para-
meters of the linear mixed model are determined on a larger set of data.
For example, with the MIXED procedure in SAS, obtaining the empirical
Bayes estimate of b0 is immediate, but its conditional variance requires
some additional computation (Littell et al. 1996).
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7.2.2 Individual-level Surrogacy

To validate a surrogate endpoint, Buyse and Molenberghs (1998) suggested
to consider the association between the surrogate and the final endpoints
after adjustment for the treatment effect. To this end, we need to construct
the conditional distribution of T , given S and Z. From (7.1)–(7.2) we derive

Tij |Zij , Sij ∼ N
{
µT i − σT Sσ−1

SS µSi + (βi − σT Sσ−1
SS αi)Zij

+ σT Sσ−1
SS Sij ; σT T − σ2

T Sσ−1
SS

}
. (7.19)

Similarly, the random-effects model (7.6)–(7.7) yields

Tij |Zij , Sij ∼ N
{
µT + mTi − σT Sσ−1

SS (µS + mSi)

+ [β + bi − σT Sσ−1
SS (α + ai)]Zij

+σT Sσ−1
SS Sij ; σT T − σ2

T Sσ−1
SS

}
, (7.20)

where conditioning is also on the random effects. The association between
both endpoints after adjustment for the treatment effect is in both (7.19)
and (7.20) captured by

R2
indiv = R2

εT i|εSi
=

σ2
ST

σSSσT T

, (7.21)

the squared correlation between S and T after adjustment for both the trial
effects and the treatment effect. Note that RεT i|εSi

generalizes the adjusted
association ρZ, discussed in Chapter 5, Section 5.4, to the case of several
trials.

7.2.3 A New Approach to Surrogate Evaluation

The development in Section 7.2.1 and Section 7.2.2 suggests to term a sur-
rogate “trial-level valid” if R2

trial(f) (or R2
trial(r)) is sufficiently close to one, and

to call it “individual-level valid” if R2
indiv is sufficiently close to one. Finally,

a surrogate is termed “valid” if it is both trial-level and individual-level
valid. In order to replace the words “valid” with “perfect,” the correspond-
ing R-squared values are required to equal one.

To be useful in practice, a valid surrogate must be able to predict the effect
of treatment upon the true endpoint with sufficient precision to distinguish
safely between effects that are clinically worthwhile and effects that are
not. This requires both that the estimate of β + b0 be sufficiently large and
that the prediction interval of this quantity be sufficiently narrow.
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It should be noted that the validation criteria proposed here do not require
the treatment to have a significant effect on either endpoint. In particu-
lar, it is possible to have α ≡ 0 and yet have a perfect surrogate. Indeed,
even though the treatment may not have any effect on the surrogate end-
point as a whole, the fluctuations around zero in individual trials (or other
experimental units) can be very strongly predictive of the effect on the
true endpoint. However, such a situation is unlikely to occur since the het-
erogeneity between the trials is generally small compared to that between
individual patients.

7.3 Single-trial Measures versus Multi-trial
Measures

If data are available on a single trial (or, more generally, on a single experi-
mental unit), the above developments are only partially possible. Although
the individual-level reasoning, producing ρZ as in (7.21), carries over by
virtue of the within-trial replication, the trial-level reasoning breaks down
and one cannot go beyond the relative effect (RE) as suggested in Buyse
and Molenberghs (1998). Recall that the RE is defined as the ratio of the
effects of Z on S and T , respectively, as expressed in (5.22). The confidence
limits of RE can be used to assess the uncertainty about the value of β
predicted from that of α, but in contrast to the above developments, no
prediction interval can be calculated for β.

It has been argued in Chapter 5 that, although the concept behind the
fourth Prentice criterion has intuitive appeal, it is not captured by the
PE. It has been also argued that RE is based on too strong assumptions
to be useful. Having introduced measures of surrogacy at the trial-level and
at the individual-level, it is now possible to explore these issues further.

The proportion explained (5.24), derived for the single-trial case, can now
be calculated for each trial within the meta-analysis:

PEi = λρZ

1
REi

, (7.22)

where REi = βi/αi.

Let us now examine how the PEi behaves relative to the R2 measures. To
make the point clearly, it is useful to concentrate on a “perfect” surrogate,
i.e., one for which R2

trial = 1 and R2
indiv = ρ2

Z = 1.

Perfect Surrogate at the Trial Level. Let us first assume that the sur-
rogate is perfect at the trial level, i.e., R2

trial = 1. Then the relationship
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between αi and βi, expressed by (7.18), is deterministic, and (7.22)
becomes

PEi = ρZλ
αi

θ0 + θaαi + θmµSi
. (7.23)

Thus, even if the important condition R2
trial = 1 is satisfied, and one

can predict the treatment effect on the true endpoint without error
from the treatment effect on the surrogate endpoint, PEi cannot be
constant across trials, and consequently would not be equal to unity
in all of them. Note that also REi is not constant across trial. The
reason is that for REi to be constant the relationship between αi and
βi must be multiplicative.

Perfect Surrogate at the Individual Level. Let us now make the ad-
ditional assumption that the surrogate is also perfect at the individual
level, i.e., ρZ = 1.

In this case, (7.23) becomes

PEi = λ
αi

θ0 + θaαi + θmµSi
(7.24)

and the property of non-constant PEi and REi persists, again due
to the linear but non-multiplicative relationship between αi and βi.

Constant Relative Effect. Let us make the final assumption that a sim-
ple multiplicative relationship holds between αi and βi, i.e., θ0 =
θm = 0 and hence REi = θa. Thus,

PE = PEi =
λ

θa
. (7.25)

Now, REi is constant and so is PEi, but the latter is still a function
of two quantities:

• the multiplicative factor θa linking the treatment effects in each
trial and

• the multiplicative factor λ linking the two error terms in each
patient.

Clearly, under the three assumptions made above, the surrogate and true
endpoints are identical, up to scaling factors that translate the treatment
effects within a trial and the subject-specific deviations within each patient.
Yet, depending on the values of θa and λ, the PE can assume any positive
real value.
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7.4 Computational Issues

In this section, we investigate convergence properties of the random-effects
approach as proposed in Section 7.2. The need for such an investigation
arises from the observation that in many practical instances, convergence of
the Newton-Raphson algorithm yielding (restricted) maximum likelihood
solutions could hardly be achieved. Therefore, it is worth knowing what
features of the problem at hand may be of influence in easing convergence
of the algorithm, as this may be an additional factor to decide between a
two-stage or a random-effects model. These ideas are then taken further in
Section 7.4.2, where a number of simplifying model fitting approaches are
proposed.

7.4.1 Initial Simulation Study

Buyse et al. (2000a) explored the following factors: number of trials, size
of the between-trial variability (compared to residual variability), number
of patients per trial, normality assumption, and strength of the correlation
between random treatment effects. Because only the first two factors were
found significantly to affect convergence of the algorithm, only those are
discussed in the remainder of this paragraph.

Table 7.1 shows the number of runs for which convergence could be achieved
within 20 iterations. In each case, 500 runs were performed, assuming the
following model:

Sij = 45 + mSi + (3 + ai)Zij + εSij ,

Tij = 50 + mT i + (5 + bi)Zij + εT ij ,

where (mSi, mTi, ai, bi) ∼ N(0, D) with

D = σ2

⎛⎜⎝
1 0.8 0 0

1 0 0
1 0.9

1

⎞⎟⎠ ,

and (εSij , εTij) ∼ N(0, Σ) with

Σ = 3
(

1 0.8
1

)
.

The number of trials was fixed to either 10, 20, or 50, each trial involving
10 subjects randomly assigned to treatment groups. The σ2 parameter was
set to 0.1 or 1.
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TABLE 7.1. Number of runs for which convergence was achieved within 20 iter-
ations.

Number of trials

σ2 50 20 10

1 500 (100%) 498 (100%) 412 (82%)

0.1 491 (98%) 417 (83%) 218 (44%)

NOTE: Total number of runs: 500; percentages are given in parentheses.

From Table 7.1, we see that when the between-trial variability is large (σ2 =
1), no convergence problems occur, except when the number of trials gets
very small. When the between-trial variability gets smaller, convergence
problems do arise and worsen as the number of trials decreases.

These simulation results indicate that there should be enough variability
at the trial level, and a sufficient number of trials, to obtain convergence
of the Newton-Raphson algorithm for fitting mixed-effects models. When
these requirements are not fulfilled, one must rely on simpler fixed-effects
models, or mixed-effects models with random treatment effects but no ran-
dom intercepts.

We describe now how to use the SAS statistical software package to fit the
random-effects model proposed in Section 7.2. Notice that other packages
such as MLwiN are also particularly well-suited for fitting this type of
multivariate multilevel models and could therefore be utilized instead.

The SAS code to fit model (7.6)–(7.7) may be written as follows:

proc mixed data=dataset covtest;
class endpoint subject trial;
model outcome = endpoint endpoint*treat / Solution noint;
random endpoint endpoint*treat / subject=trial type=un;
repeated endpoint / subject=subject(trial) type=un;
run;

The above syntax presumes that there are two records per subject in the
input data set, one corresponding to the surrogate endpoint and the other
to the true endpoint. The variable ENDPOINT is an indicator for the kind of
endpoint (coded −1 for surrogate and 1 for true endpoint) and the variable
OUTCOME contains measurements obtained from each endpoint. The variable
TREAT is also assumed to be −1/1 coded. This is better than a 0/1 coding,
as otherwise the group with code 0 is assumed to have a smaller total
variance than the other one, as the contribution coming from the random-
effects variance is multiplied with zero and hence annihilated. The −1/1
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coding, on the other hand, leads to equal variances in both groups.

The RANDOM statement defines the covariance matrix D in (7.5) of ran-
dom effects at the trial level, while the REPEATED statement builds up
the residual covariance matrix Σ in (7.3). Note that the nesting notation in
the ‘subject=’ option is necessary for SAS to recognize the nested structure
of the data (subjects are clustered within trials). Acknowledgment of the
hierarchical nature of the data enables SAS to build a block-diagonal co-
variance matrix, with diagonal blocks corresponding to the different trials,
which speeds up computations considerably.

7.4.2 Simplified Modeling Strategies

Fitting random-effects model (7.6)–(7.7) can be a surprisingly difficult task
in a number of situations. This is particularly true when the number of
trials or the number of patients per trial is small. Also, situations with
extreme correlations pose problems. It is therefore imperative to explore
approximate strategies with better computational properties. Buyse et al.
(2000a) studied one alternative approach in the sense that they replaced the
random effects by their fixed-effect counterparts. Such a two-stage approach
is very similar in spirit to the original proposal of Laird and Ware (1982).
Tibaldi et al. (2003) embedded this ad-hoc strategy in a more formally
developed system of model simplifications. We will describe it here.

In more detail, Tibaldi et al. (2003) considered three dimensions along
which simplifications can be made:

Trial dimension: whether the trial-specific effects are treated as either
random or fixed. A full random-effects is then distinguished from a
two-stage approach.

Endpoint dimension: whether the surrogate and true endpoints are mod-
eled as a bivariate outcome or two univariate ones. In the latter case
the correlation between both endpoints is not incorporated into the
modeling strategy, rendering the study of the individual-level surro-
gacy more involved. However, usually the trial-level surrogacy is of
most interest, in which case the investigation of the individual-level
surrogacy may be considered of secondary importance.

Measurement error dimension: whenever the full random-effects model
is abandoned, one is confronted with measurement error, as the treat-
ment effects in the various trials are estimated with error. The mag-
nitude of this error is likely to depend on several characteristics, such
as trial size, which will vary across trials. Tibaldi et al. (2003) consid-
ered three ways to account for measurement error: unadjusted (i.e.,
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FIGURE 7.1. Graphical representation of the different modelling approaches.

no correction at all), adjustment by trial size, and an approach based
on the results developed by van Houwelingen, Arends, and Stijnen
(2002) and explained in the sequel.

The combination of these three dimensions are graphically represented in
Figure 7.1 and gives rise to twelve strategies. However, some do not have
to be considered. For example, when one chooses for a bivariate (endpoint
dimension) random-effects (trial dimension) approach, measurement error
is automatically accounted for, whence explicit corrections are no longer
needed. In the special case when sample size is constant across trials, further
simplifications arise (see Section 7.4.3).

We will now discuss each of the three simplifying dimensions in turn.

The Trial Dimension

As stated before, the parameters of the full random-effects model (7.6)–
(7.7) can be estimated by maximum likelihood or restricted maximum
likelihood, using standard linear mixed model software such as the SAS
procedure MIXED.

In case the trial-level parameters are treated as fixed, exactly as Buyse et
al. (2000a), one can rewrite the model as

Sij = µSi + αiZij + εSij , (7.26)
Tij = µT i + βiZij + εT ij , (7.27)

where µSi
, µT i

, αi, and βi are trial-specific intercepts and treatment effects.
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The assumption about the error terms depends on the choice made on the
endpoint dimension. Indeed, when the univariate approach is opted for,
both errors are assumed independent. Otherwise, a bivariate unstructured
covariance matrix is considered.

At the second stage, a regression model is fitted to the treatment effects,
estimated at the first stage, for example:

β̂i = λ0 + λ1µ̂Si
+ λ2α̂i + εi. (7.28)

This model can then be employed to assess trial-level surrogacy, using the
R2

trial(f) associated with this regression. This is not calculated as in (7.11),
but is merely the classical coefficient of determination found by regressing
β̂i on µ̂Si

and α̂i.

In case the trial-specific intercept from surrogate model (7.26) is not used,
λ1 would be dropped and an R2

trial(r) is obtained, similar in spirit to (7.12).

The Measurement Error Dimension

Recall that this dimension is irrelevant when the full random-effects model
is assumed but is crucial when a fixed-effects approach is selected on the
trial dimension and/or when a univariate model is chosen on the endpoint
dimension.

Tibaldi et al. (2003) allowed for three possible choices. First, a simple linear
model can be assumed to determine the relationship between βi, αi, and
µSi

, whereby the errors in (7.28) are assumed to be zero-mean normally
distributed with constant variance σ2.

Clearly, this approach ignores the fact that the estimated treatment effects
αi and βi will typically come from trials with large variations in size. One
way to address this issue is by weighing the contributions according to
trial size, resulting in a weighted linear regression. Such an approach may
account for some but not all of the heterogeneity in information content
between trial-specific contributions. A nice way to overcome this can be
obtained using the results developed by van Houwelingen, Arends, and
Stijnen (2002).

To this end, one can introduce models for the estimated trial-specific treat-
ment effects (µ̂Si , α̂i, β̂i)T , given the true trial-specific treatment effects
(µSi , αi, βi)T : ⎛⎜⎝ µ̂Si

α̂i

β̂i

⎞⎟⎠ ∼ N

⎡⎢⎣
⎛⎜⎝ µSi

αi

βi

⎞⎟⎠ , Ωi

⎤⎥⎦ . (7.29)
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Here, Ωi is the variance-covariance matrix of the estimated treatment ef-
fects. In case both treatment-effect estimates are assumed to be indepen-
dent (which would result from a univariate choice on the endpoint dimen-
sion), Ωi would be taken to be diagonal, even though this may be unreal-
istic.

Further, a normal model for the true trial-specific treatment effects around
the true overall treatment effects is assumed:⎛⎜⎝ µSi

αi

βi

⎞⎟⎠ ∼ N

⎡⎢⎣
⎛⎜⎝ µS

α

β

⎞⎟⎠ , Σ

⎤⎥⎦ . (7.30)

The resulting marginal model, combining (7.29) and (7.30), is:⎛⎜⎝ µ̂Si

α̂i

β̂i

⎞⎟⎠ ∼ N

⎡⎢⎣
⎛⎜⎝ µS

α

β

⎞⎟⎠ , Σ + Ωi

⎤⎥⎦ . (7.31)

Maximum likelihood estimation for this model can be quite easily carried
out by using mixed model software, provided the values for Ωi can be input
and held fixed, as is the case in the SAS procedure MIXED. An example
program is provided by Tibaldi et al. (2003).

Endpoint Dimension

It seems natural to assume both endpoints to be correlated. However, this
assumption will almost always complicate modelling and corresponding pa-
rameter estimation. In addition, the bivariate nature of the outcome is re-
lated for the better part with individual-level surrogacy, whereas our main
goal is trial-level surrogacy. This suggests an additional simplification, i.e.,
by considering separate, independent models for each of the endpoints. It
then remains to be seen inhowfar such a simplification hampers estimation
of trial-level surrogacy.

One needs to make a distinction between two cases, according to the cor-
responding choice on the trial dimension. In the random-effects approach,
this simplification would lead to a pair of univariate hierarchical models,
one for each endpoint. In the fixed-effects approach, one would fit a separate
linear regression model per endpoint and per trial. It is easy to show that
the parameter estimates as well as the estimated variances are identical to
the ones obtained from fitting a fixed-effects bivariate model to each trial
separately. This follows from standard multivariate normal theory (Johnson
and Wichern 1992).
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TABLE 7.2. Means of the estimated trial-level surrogacy and 95% simula-
tion-based confidence intervals for R2 = 0.90. Column numbers refer to the
columns of Table 7.6.

Variance 10

No. Sub 1, 2, 7, 8 3 4, 5

50 0.898 (0.894;0.902) 0.895 (0.890;0.900) 0.898 (0.895;0.902)

60 0.900 (0.897;0.904) 0.899 (0.896;0.903) 0.901 (0.897;0.904)

70 0.898 (0.894;0.902) 0.896 (0.892;0.901) 0.898 (0.894;0.902)

80 0.899 (0.895;0.903) 0.898 (0.894;0.902) 0.899 (0.895;0.903)

90 0.900 (0.896;0.903) 0.899 (0.895;0.902) 0.900 (0.896;0.903)

100 0.901 (0.898;0.905) 0.901 (0.897;0.904) 0.901 (0.898;0.905)

No. Sub 6 9 10–12

50 0.894 (0.890;0.898) 0.898 (0.894;0.902) 0.896 (0.892;0.900)

60 0.897 (0.893;0.900) 0.900 (0.896;0.903) 0.897 (0.894;0.901)

70 0.894 (0.890;0.899) 0.897 (0.893;0.902) 0.895 (0.891;0.900)

80 0.895 (0.891;0.899) 0.898 (0.894;0.902) 0.896 (0.892;0.900)

90 0.896 (0.892;0.899) 0.899 (0.896;0.903) 0.897 (0.893;0.901)

100 0.897 (0.894;0.901) 0.901 (0.897;0.904) 0.898 (0.895;0.902)

7.4.3 Additional Simulation Study

Tibaldi et al. (2003) studied performance of the various approaches prsented
in the previous section, in terms of estimation (point and interval) of R2

trial(f),
and in terms of convergence through a simulation study. To make their
results comparable with those from Buyse et al. (2000a), the same config-
uration setting was adopted.

In more detail, model (7.6)–(7.7) is considered with (mSi , mT i , ai, bi) ∼
N(0, D), µS = 50, µT = 45, mSi = 5, mT i = 3,

D = σ2

⎛⎜⎜⎜⎝
1 0.8 0 0

0.8 1 0 0
0 0 1 ρ

0 0 ρ 1

⎞⎟⎟⎟⎠ , (7.32)

with ρ2 = 0.5 or ρ2 = 0.9, and (εSij
, εT ij

) ∼ N(0, Σ) with

Σ = 3

(
1 0.8

0.8 1

)
.

The parameter σ2 was chosen to be either 3 or 10. Five hundred runs
were completed for every setting, consisting of 25 trials each. The true R2,
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TABLE 7.3. Means of the estimated trial-level surrogacy and 95% simula-
tion-based confidence intervals for R2 = 0.90. Column numbers refer to the
columns of Table 7.6.

Variance 3

No. Sub 1, 2, 7, 8 3 4, 5

50 0.893 (0.889;0.897) 0.889 (0.885;0.894) 0.894 (0.890;0.898)

60 0.896 (0.893;0.900) 0.893 (0.889;0.897) 0.897 (0.893;0.901)

70 0.894 (0.890;0.898) 0.890 (0.886;0.895) 0.894 (0.890;0.898)

80 0.895 (0.891;0.899) 0.892 (0.888;0.896) 0.896 (0.892;0.900)

90 0.897 (0.893;0.900) 0.894 (0.890;0.898) 0.897 (0.894;0.901)

100 0.898 (0.895;0.902) 0.896 (0.892;0.899) 0.899 (0.895;0.902)

No. Sub 6 9 10–12

50 0.892 (0.888;0.896) 0.892 (0.888;0.896) 0.896 (0.891;0.900)

60 0.896 (0.892;0.899) 0.895 (0.892;0.899) 0.897 (0.893;0.901)

70 0.891 (0.887;0.896) 0.893 (0.889;0.897) 0.895 (0.890;0.899)

80 0.894 (0.890;0.898) 0.895 (0.891;0.899) 0.896 (0.892;0.900)

90 0.893 (0.889;0.897) 0.896 (0.893;0.900) 0.897 (0.893;0.901)

100 0.895 (0.891;0.899) 0.898 (0.894;0.901) 0.898 (0.894;0.902)

following from (7.11) and (7.32) is set equal to either 0.5 or 0.9. Results are
presented in Tables 7.2–7.5. In all settings, convergence was 100%, which
is slightly different from the analysis of the examples.

The approach based on the results by van Houwelingen, Arends, and Stijnen
(2002) exhibits a small amount of bias. In case R2 = 0.9 and σ2 = 3, there is
a hint of underestimation in column 3, 6, and somehow also 9. The situation
is more dramatic in the case of R2 = 0.5, where indeed we observe now
overestimation in all but one columns, the exception being the full model
(columns 10–12).

7.5 Case Studies

We apply the hierarchical methods introduced here to three of the case
studies introduced in Chapter 4: the age-related macular degeneration
study (Section 4.2.1) and the studies in advanced colorectal (Section 4.2.3)
and advanced ovarian (Section 4.2.2) cancer. To all three, the full hierar-
chical method as well as the simplified methods will be applied. Summary
results are provided in Table 7.6.
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TABLE 7.4. Means of the estimated trial-level surrogacy and 95% simula-
tion-based confidence intervals for R2 = 0.50. Column numbers refer to the
columns of Table 7.6.

Variance 10

No. Sub 1, 2, 7, 8 3 4, 5

50 0.527 (0.515;0.539) 0.526 (0.514;0.538) 0.528 (0.516;0.540)

60 0.532 (0.520;0.544) 0.531 (0.519;0.543) 0.533 (0.521;0.544)

70 0.525 (0.513;0.538) 0.524 (0.512;0.537) 0.526 (0.513;0.538)

80 0.522 (0.509;0.536) 0.522 (0.509;0.535) 0.523 (0.510;0.536)

90 0.524 (0.512;0.535) 0.523 (0.511;0.535) 0.524 (0.512;0.536)

100 0.526 (0.514;0.538) 0.525 (0.513;0.538) 0.527 (0.514;0.539)

No. Sub 6 9 10–12

50 0.523 (0.511;0.535) 0.526 (0.514;0.538) 0.498 (0.485;0.510)

60 0.529 (0.517;0.540) 0.531 (0.519;0.543) 0.502 (0.490;0.515)

70 0.522 (0.509;0.535) 0.525 (0.512;0.537) 0.500 (0.487;0.513)

80 0.520 (0.506;0.533) 0.522 (0.509;0.535) 0.498 (0.484;0.511)

90 0.520 (0.509;0.532) 0.523 (0.511;0.535) 0.501 (0.488;0.513)

100 0.523 (0.510;0.535) 0.525 (0.513;0.538) 0.503 (0.490;0.516)

7.5.1 Age-related Macular Degeneration Study (ARMD)

In this section, the data from the age-related macular degeneration trial,
described in Section 4.2.1, are used. The data come from a single multi-
center trial. Therefore, it is natural to consider the center in which the
patients were treated as the unit of analysis. A total of 36 centers were
thus available for analysis, with a number of individual patients per center
ranging from 2 to 18.

Figure 7.2(a) shows a plot of the raw data (true endpoint versus surrogate
endpoint for all individual patients).

Buyse et al. (2000a) experienced problems in fitting the full random-effects
models, irrespective of whether standard statistical software or user devel-
oped alternatives were used. Therefore, they entertained a (unweighted)
fixed-effects approach instead. This produced a moderate trial-level surro-
gacy: R2

trial(f) = 0.692 (standard error, s.e., 0.087). The standard error was
calculated by means of a straightforward application of the delta method.
Let us now compare their result to the ones obtained by Tibaldi et al.
(2003) from the approaches described in Section 7.4.2.

As mentioned earlier, for the fixed-effects approaches, univariate and bivari-
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TABLE 7.5. Means of the estimated trial-level surrogacy and 95% simula-
tion-based confidence intervals for R2 = 0.50. Column numbers refer to the
columns of Table 7.6.

Variance 3

No. Sub 1, 2, 7, 8 3 4, 5

50 0.539 (0.527;0.551) 0.535 (0.523;0.547) 0.542 (0.530;0.554)

60 0.542 (0.531;0.554) 0.539 (0.527;0.551) 0.545 (0.534;0.557)

70 0.533 (0.521;0.546) 0.530 (0.518;0.543) 0.535 (0.522;0.547)

80 0.531 (0.517;0.544) 0.529 (0.516;0.542) 0.533 (0.519;0.546)

90 0.531 (0.519;0.542) 0.529 (0.517;0.540) 0.532 (0.520;0.544)

100 0.531 (0.519;0.544) 0.530 (0.518;0.542) 0.534 (0.521;0.546)

No. Sub 6 9 10–12

50 0.534 (0.522;0.546) 0.538 (0.526;0.550) 0.496 (0.483;0.510)

60 0.538 (0.526;0.550) 0.542 (0.530;0.553) 0.501 (0.488;0.514)

70 0.528 (0.516;0.541) 0.532 (0.520;0.545) 0.497 (0.484;0.511)

80 0.527 (0.514;0.540) 0.530 (0.517;0.543) 0.497 (0.483;0.511)

90 0.527 (0.515;0.538) 0.530 (0.518;0.542) 0.500 (0.487;0.512)

100 0.528 (0.516;0.541) 0.531 (0.519;0.543) 0.502 (0.489;0.515)

ate results values are equal. Of course, the univariate approach prohibits
the assessment of individual-level surrogacy but, as mentioned earlier, in
many trials the main interest is on trial-level surrogacy.

For the R2
trial(f), the approach based on the van Houwelingen, Arends, and

Stijnen (2002) results is more difficult to fit in the sense that the random-
effects values cannot be obtained.

The reduced-model values are generally higher than the full-model values,
suggesting that the trial-specific intercept terms for the surrogate model
does convey information and, if possible, full models should be used. Within
the reduced-model approach, the van Houwelingen, Arends, and Stijnen
univariate random-effects approach yields a low value. This is in line with
intuition, as it corrects for measurement error present in the estimated
treatment effects. Simulations will have to weigh costs and benefits from
this approach. In general computational terms, a choice for univariate mod-
els and/or fixed-effects approaches is less expensive.

Figure 7.2(b) shows a plot of the treatment effects on the true endpoint by
the treatment effects on the surrogate endpoint. These effects are moder-
ately correlated. Figure 7.2(c) shows that the correlation of the measure-
ments at 6 months and at 1 year is indeed rather poor at the individual
level. Therefore, even with the limited data available, it is clear that the
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TABLE 7.6. Results of the trial-level surrogacy analysis for the ARMD, ad-
vanced colorectal, and advanced ovarian studies. R2

trial (a − symbol indicates
non-convergence). Unw’d: Unweighted; W’d: Weighted; vH’n: the van Houwelin-
gen, Arends, and Stijnen method.

Full model

Univariate approach

Fixed effects Random effects

Unw’d W’d vH’n Unw’d W’d vH’n

Study 1 2 3 4 5 6

ARMD 0.692 0.693 0.689 0.664 0.801 -

Colorectal 0.473 0.488 0.466 - - -

Ovarian 0.939 0.917 0.937 0.911 0.905 -

Bivariate approach

Fixed effects Random effects

Unw’d W’d vH’n

Study 7 8 9 10–12

ARMD 0.692 0.693 0.698 -

Colorectal 0.473 0.488 0.472 -

Ovarian 0.939 0.917 0.938 -

Reduced model

Univariate approach

Fixed effects Random effects

Study Unw’d W’d vH’n Unw’d W’d vH’n

ARMD 0.776 0.758 0.775 0.659 0.786 0.623

Colorectal 0.527 0.497 0.596 - - -

Ovarian 0.928 0.909 0.925 0.911 0.905 0.900

Bivariate approach

Fixed effects Random effects

Study Unw’d We’d vH’n

ARMD 0.776 0.758 0.719 -

Colorectal 0.527 0.497 0.471 -

Ovarian 0.928 0.909 0.938 0.951

assessment of visual acuity at 6 months is not a good surrogate for the
same assessment at 1 year.

7.5.2 Advanced Colorectal Cancer

We consider data from two randomized multicenter trials in colorectal can-
cer, introduced in Section 4.2.3. In this example, we will use Zij = 0 to
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FIGURE 7.2. Age-related macular degeneration trial. (a) True endpoint (change
in visual acuity at 1 year) versus surrogate endpoint (change in visual acuity at
6 months) for all individual patients, raw data (top left). (b) Treatment effects
on the true endpoint versus treatment effects on the surrogate endpoint in all
centers. The size of each point is proportional to the number of patients in the
corresponding center (top right). (c) True endpoint versus surrogate endpoint for
all individual patients, after correction for treatment effect (bottom left).

denote 5FU plus interferon and for 5FU alone. The final endpoint Tij will be
survival time in years. The surrogate endpoint Sij will be progression-free
survival time, i.e., the years between the randomization to clinical progres-
sion of the disease or death. For the purposes of the analysis, censoring is
ignored and the logarithms of the two times are considered as continuous,
normally distributed endpoints. In agreement with previous analyses, only
centers with at least 3 patients on each treatment arm are considered. The
data include 48 centers, with a total sample size of 642 patients.

Using the bivariate unweighted fixed-effects approach model proposed by
Buyse et al. (2000a) we obtain R2

trial(f) = 0.473 (s.e. 0.108), which is, of
course, too low to be useful.

Results of fitting the various approaches, obtained by Tibaldi et al. (2003)
and reported in Table 7.6, largely confirm the results from the ARMD
study in terms of ease of convergence for the univariate and/or fixed-effects
approaches. All coefficients are relatively close to each other, although the
reduced versions tend to be a bit higher than the full versions.
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7.5.3 Advanced Ovarian Cancer

In this section, the meta-analytic approach is illustrated using the data
from the meta-analysis of four clinical trials in advanced ovarian cancer,
described in Section 4.2.2 of Chapter 4. The results were reported by Buyse
et al. (2000a). Recall that the surrogate endpoint S is progression-free
survival time, while the true endpoint T is survival time. For the purposes
of the analysis in this chapter, censoring is ignored and the logarithms of
the two times are considered as continuous, normally distributed endpoints.
All analyses have been performed with and without the two smaller trials.
Excluding the two smaller trials has very little impact on the estimates of
interest, and therefore the results reported are those obtained with all four
trials. Two-stage fixed-effects models (7.1)–(7.2) could be fitted, as well
as a reduced version of the mixed-effects model (7.6)–(7.7), with random
treatment effects but no random intercepts. Point estimates for the two
types of model are in close agreement, although standard errors are smaller
by roughly 35% in the random-effects model. Figure 7.3 shows a plot of
the treatment effects on the true endpoint (logarithm of survival) by the
treatment effects on the surrogate endpoint (logarithm of progression-free
survival time). These effects are highly correlated. Similarly to the random-
effects situation, we refer to the models with and without the intercept used
for determining R2 as the reduced and full fixed-effects models. The reduced
fixed-effects model provides R2

trial(r) = 0.939 (s.e. 0.017). When the sample
sizes of the experimental units are used to weigh the pairs (ai, bi), then
R2

trial(r) = 0.916 (s.e. 0.023). The full fixed-effects model yields R2
trial(f) =

0.940 (s.e. 0.017). In the reduced random-effects model, R2
trial(r) = 0.951

(s.e. 0.098).

Predictions of the effect of treatment on log(survival), based on the ob-
served effect of treatment on log(progression-free survival time) are of in-
terest. Table 7.7 reports prediction intervals for several experimental units:
six centers taken at random from the two large trials, and the two small
trials in which center is unknown. Note that none of the predictions is
significantly different from zero. The predicted values for β + b0 agree rea-
sonably well with the effects estimated from the data. The ratio β̂0/α̂0

ranges from 0.69 to 0.73.

At the individual level, R2
indiv = 0.886 (s.e. 0.006) in the fixed-effects model,

and R2
indiv = 0.888 (s.e. 0.006) in the reduced random-effects model. The

square roots of these quantities are respectively 0.941 and 0.942.

Thus, we conclude that progression-free survival time can be used as a sur-
rogate for survival in advanced ovarian cancer. The effect of treatment can
be observed earlier if time to progression is used instead of survival, and it
is also more pronounced as shown by the overall Kaplan-Meier estimates of
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FIGURE 7.3. Advanced ovarian cancer. Treatment effects on the true endpoint
(logarithm of survival time) versus effects on the surrogate endpoint (logarithm
of progression-free survival time) for all units of analysis.

Figure 4.3 (Chapter 4). Hence, a trial that used time to progression would
require less follow-up time and less patients to establish the statistical sig-
nificance of a truly superior treatment than a trial that used survival (Chen
et al. 1998).

The difference between the various approaches, as fitted by Tibaldi et al.
(2003) and reported in Table 7.6, is even smaller than in the other two case
studies. Further, the relative computational complexity, suggested by the
other case studies, is confirmed here as well.

7.6 Discussion

The approach described in this chapter provides a quantitative assessment
of the value of a surrogate, as well as predictions of the expected effect of
treatment upon the true endpoint (Boissel et al. 1992, Chen et al. 1998).
It evaluates the “validity” of a surrogate in terms of coefficients of deter-
mination, which are intuitively appealing quantities in the unit interval.
Such an approach is more informative than a mere dichotomization of sur-
rogate endpoints as being “valid” or “invalid.” Moreover, the validation
procedure no longer requires statistical tests to be statistically significant:
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TABLE 7.7. Predictions for the Advanced Ovarian Cancer data.

Unit No. No. α̂0(s.e.) E(β + b0|a0) β̂0 (s.e.)
pts. trials (s.e.)

Center 6 17 2 -0.58 (0.33) -0.45 (0.29) -0.56 (0.32)
4 -0.45 (0.29)

Center 8 10 2 0.67 (0.76) 0.49 (0.57) 0.76 (0.39)
4 0.47 (0.56)

Center 37 12 2 1.02 (0.61) 0.76 (0.54) 1.04 (0.70)
4 0.73 (0.53)

Center 49 40 2 0.54 (0.34) 0.39 (0.26) 0.28 (0.28)
4 0.37 (0.25)

Center 55 31 2 1.08 (0.56) 0.80 (0.44) 0.79 (0.45)
4 0.77 (0.44)

Center BB 21 2 -1.05 (0.55) -0.80 (0.46) -0.79 (0.51)
4 -0.79 (0.46)

DACOVA 274 2 0.25 (0.15) 0.17 (0.13) 0.14 (0.14)
GONO 125 2 0.15 (0.25) 0.10 (0.20) 0.03 (0.22)

NOTE: The number of patients is reported for each unit, as well as which sample

is used for the estimation (only 2 trials or all 4). α̂0 and β̂0 are values estimated

from the data; E(β + b0|a0) is the predicted effect of treatment on survival (β0),

given its effect upon time to progression(α̂0). The DACOVA and GONO trials are

the two smaller studies, for which predictions are based on parameter estimates

from the centers in the two larger studies.

for instance, an endpoint with a low individual-level coefficient of determi-
nation (R2

indiv 
 1) is unlikely to be a good surrogate (even if R2
trial(f) = 1),

a conclusion that may be reached with a limited number of observations.

The need for validated surrogate endpoints is as acute as ever, particularly
in diseases where an accelerated approval process is deemed necessary (Coc-
chetto and Jones 1998, Weihrauch and Demol 1998). Some surrogate end-
points or combinations of endpoints, such as viral load measures combined
with CD4+ lymphocyte counts, have in fact already replaced assessment
of clinical outcomes in AIDS clinical trials (O’Brien et al. 1996, Mellors
et al. 1997). The approach presented in this chapter offers a better under-
standing of the worth of a surrogate endpoint, provided that large enough
sets of data from multiple randomized experiments are available to esti-
mate the required parameters (Daniels and Hughes 1997). Large numbers
of observations are needed for the estimates to be sufficiently precise, while
multiple studies are needed to distinguish individual-level from trial-level
associations between the endpoints and effects of interest. However, it has
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to be emphasized that, even if the results of a surrogate evaluation seem
encouraging based on several trials, applying these results to a new trial
requires a certain amount of extrapolation that may or may not be deemed
acceptable. In particular, when a new treatment is under investigation, is
it reasonable to assume that the quantitative relationship between its ef-
fects on the surrogate and true endpoints will be the same as with other
treatments? The leap of faith involved in making that assumption rests
primarily on biological considerations, although the type of statistical in-
formation presented above may provide essential supporting evidence. This
and similar reservations lead to the following perspective.

However, while we like to underscore the integrity of such a meta-analytic
framework, important questions remain open. First, the hierarchical frame-
work is computationally more involved, and requires the number of trials
and the number of patients per trials to be sufficiently large. In Section 7.4,
we have considered a number of simplified approaches, where a fully hi-
erarchical analysis is replaced by a two-stage approach and/or the two
endpoints are analyzed separately. The latter is convenient when only the
trial-level is of interest. Second, in several of the analyzed examples, by
way of poor man’s choice, “center” or “investigator” was used as sub-unit,
rather than trial. Cortiñas et al. (2004) have investigated the impact of
either ignoring or shifting between hierarchical levels. They have found
that, the choice of the unit can be important if there are large differences
in the magnitude of the variability in treatment effects at different lev-
els. These results are reported in Chapter 8. Thus, it is of great interest,
both to the public and to the scientific community, that data be shared
to undertake the widest possible meta-analytic evaluations, rather than
being considered the sole propriety of pharmaceutical companies. Third,
the use of complex hierarchical models implies that different surrogacy
measures are proposed for different types of outcomes, especially at the
individual level. Indeed, while R2 measures are used throughout at the
trial level, individual-level measures include R2, the odds ratio, Kendall’s
τ , etc. Alonso et al. (2004a) initiated the investigation to unify the vari-
ous approaches (see Section 14.5.3). Fourth, the models considered so far
reflect practice within later phase clinical trials, in the sense that, apart
from treatment assignment, no other explanatory information is used. It
is conceivable, especially in earlier phase trials and in preclinical research,
that more elaborate models be used, incorporating explanatory (baseline)
covariates, (molecular) biological, pharmacokinetic, or pharmacodynamic
information. Fifth, Gail et al. (2000) have indicated that not properly ac-
counting for measurement error may paint too optimistic a picture about
surrogacy. It remains to be explored, theoretically and empirically, how
useful surrogate markers are when all sources of measurement error are
taken into account. Sixth, and linked to the previous issue, is the question
how a properly evaluated surrogate endpoint could be used when designing
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a new trial. For example, one may want to determine the sample size to
allow prediction of a significant effect on the true endpoint, without actu-
ally measuring it. Seventh, a properly evaluated surrogate endpoints will
rarely be universally valid. The difficult question remains as to how broad
the class of drugs is within which it can be used.

7.7 Extensions

In Section 7.2 we focused on the methodologically appealing case of nor-
mally distributed endpoints. In practice, situations abound where are the
surrogate endpoint, or the true endpoint, or both, are of a non-Gaussian
type. Indeed, binary, time-to-event, and longitudinal endpoints abound.
Whereas the linear mixed model (Verbeke and Molenberghs 2000) provides
a unified and flexible framework to analyze Gaussian multivariate and/or
repeated measurements, similar tools for non-normal outcomes are unfor-
tunately less well developed. In all non-Gaussian settings, one typically has
to make a choice between marginal models on the one hand, where each
outcome is modeled directly, without conditioning on other outcomes or on
unobserved latent variables, and random-effects models on the other hand,
where a vector of repeated measures is modeled, conditional upon one or a
few unobserved random effects. For example, with binary outcomes, there
are both marginal models such as generalized estimating equations (Liang
and Zeger 1986) or full likelihood approaches (Fitzmaurice and Laird 1993,
Lang and Agresti 1994, Molenberghs and Lesaffre 1994, Glonek and Mc-
Cullagh 1995) and random-effects models (Stiratelli, Laird, and Ware 1984,
Zeger, Liang, and Albert 1988, Breslow and Clayton 1993, Wolfinger and
O’Connell 1993, Lee and Nelder 1996). Reviews are given in Diggle et al.
(2002), Fahrmeir and Tutz (2002), and Molenberghs and Verbeke (2004).
Similar choices need to be made with time-to-event outcomes, where mar-
ginal models are often based on the use of copulas, and random-effects
models are based on so-called frailties (Genest and McKay 1986, Shih and
Louis 1995a, Joe 1997, Nelsen 1999). Of course, specific attention needs to
be given to those situations where the surrogate and the true endpoints are
of a different type of outcome. Subsequent chapters will consider main situa-
tions in turn. In particular, two binary endpoints are treated in Chapter 10,
while two time-to-event endpoints are discussed in Chapter 11. The com-
bination of categorical surrogates with time-to-event endpoints is treated
in Chapter 12. A longitudinal surrogate, combined with a survival true
endpoint is the subject of Chapter 13, and the situation where both are
longitudinal is the topic of Chapter 14.
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The Choice of Units

José Cortiñas Abrahantes, Tomasz
Burzykowski, and Geert Molenberghs

8.1 Introduction

In the previous chapter, we have introduced a hierarchical modeling frame-
work to evaluate surrogate markers. As a general paradigm, trial was taken
as the level of replication. However, in several of the examples, the unit of
choice was center. This effectively implies extension of the framework to
a three-level model, with patients nested within centers, and then centers
within trials. Thus, it is important to assess the impact of omitting one of
the levels in such a three-way hierarchy. An extended meta-analytic setting,
to be used in this chapter, is introduced in Section 8.2. The different ana-
lytic approaches are presented in Section 8.3. A simulation study is reported
in Section 8.4. With the results of the simulation study in mind, the data
from a clinical study in schizophrenia, introduced in Section 4.2.6, are an-
alyzed in Section 8.5. Note that the case study is based on a meta-analysis
containing only five trials. This is insufficient to apply the meta-analytic
methods. In all of the trials, information is also available on the investiga-
tors that treated the patients. Thus, we can also use investigator as the unit
of analysis. For this case a total of 138 units are available for analysis, with
the number of patients per unit ranging from 2 to 30. The true endpoint
is Clinician’s Global Impression (CGI), and as a surrogate measure, we
consider the Positive and Negative Syndrome Scale (PANSS). Clearly, the
majority of units consists of less than 5 patients. Alternatively, one could
also consider the main investigator as unit of analysis. For 4 out of the 5
trials, only one main investigator was used, leading to extremely large in-
vestigator sites. This leads to a total number of 29 units with the number of
patients per unit ranging from 4 to 450, 4 of which represent trials. Another
possibility is to consider the countries where patients were treated, which
fortunately is also available. Hence, we can also use country within trial as
the unit of analysis. In this case a total of 19 units are available, with the
number of patients per unit ranging from 9 to 128. The comparison of the
three different choices will be used as an empirical assessment as to the im-
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portance the choice of unit can have on the results. In addition, data from
the international equivalence trial on schizophrenic patients, introduced in
Section 4.2.7, are analyzed. The trial included 206 schizophrenic patients.
All patients received an equal daily amount of risperidone during 8 weeks,
but 103 patients were randomized to a one-time daily intake (O.D.), while
the remaining 103 patients were randomized to receive risperidone twice
a day (B.I.D.). The surrogate and true endpoints are again PANSS and
CGI, respectively. We will consider the investigator as the unit of analysis.
This leads to a total of 34 units available for analysis with the number of
patients per unit ranging from 2 to 15.

8.2 Model Description and Setting

In this section, we will introduce a three-level model for normally distrib-
uted endpoints. This model will allow us to consider the fully general case
of a three-way hierarchy (e.g., patients within centers and centers within
trials), as well as sub-cases that are of a two-level type. The emphasis will
be on the surrogate marker situation, where such a model is needed for both
the surrogate as well as the true endpoint. At the same time, the impact
of misspecification by modeling the data as if they arose from a two-way
structure, even though they were generated under a three-way model, can
be assessed. In addition, the impact of considering the sub-unit effects as
fixed, even though they are generated using a random-effects model, is
studied.

Let Tijk and Sijk be random variables denoting the true and the surrogate
endpoints for subject k = 1, . . . nij in center j = 1, . . . Ni within trial
i = 1, . . .M . Further, let Zijk denote a binary treatment indicator. The
full three-way random-effects model can then be written as

{
Sijk = µS + mSi

+ mSij
+ (α + ai + aij)Zijk + εSijk

,

Tijk = µT + mT i
+ mT ij

+ (β + bi + bij)Zijk + εT ijk
,

(8.1)

where µS and µT are fixed intercepts, mSi and mT i are random inter-
cepts for trial i, and mSij

and mT ij
are random intercepts for center j in

trial i. The parameters α and β are fixed treatment effects, ai and bi are
random treatment effects associated with trial, and aij and bij are ran-
dom treatment effects related to center. The individual-specific error terms
are εSijk

and εT ijk
. The vector of random effects associated with trial,

(mSi
, mT i

, ai, bi)T , is assumed to be zero-mean normally distributed with
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covariance matrix

D =

⎛⎜⎜⎝
dSS dST dSa dSb

dST dT T dTa dTb

dSa dTa daa dab

dSb dSa dab dbb

⎞⎟⎟⎠ . (8.2)

The vector of random effects associated with center, (mSij , mT ij , aij , bij)T ,
is also assumed to be zero-mean normally distributed with covariance ma-
trix

D′ =

⎛⎜⎜⎝
d′SS d′ST d′Sa d′

Sb

d′ST d′T T d′Ta d′
Tb

d′Sa d′Ta d′aa d′ab

d′
Sb d′Sa d′ab d′bb

⎞⎟⎟⎠ . (8.3)

Finally, the individual-level error terms (εSijk
, εT ijk

)T are also zero-mean
normally distributed with variance-covariance matrix

Σ =
(

σSS σST

σST σT T

)
. (8.4)

Parameter estimation can be based on, for example, maximum likelihood
or restricted maximum likelihood (Verbeke and Molenberghs 2000).

Clearly, (8.1) is not free from modeling assumptions. For example, one
might want to entertain fixed effects rather than random effects. This will
be considered in Section 8.3, where the second strategy would then be
very appropriate. Indeed, fitting a random-effects model in such a case
might lead to incorrectly attributing components of variability. Further,
the joint normality of (8.1) implies that the regression of Tijk on Sijk is
linear, whereas in reality a nonlinear association might apply. In practice,
therefore, one may want to carefully assess the fit of the model. For the
purpose of this chapter, model (8.1) is considered a versatile paradigm.

We will now shortly describe the use of these models in surrogate end-
point validation, expanding the methodology presented in Chapter 7. The
next step considered in the methodology proposed by Buyse et al. (2000a)
focused on prediction. Precisely, assuming one considers a new trial, for
which data are available on the surrogate endpoint but not on the true
endpoint, the goal is to predict the outcome on the true endpoint. Using
two-level model (7.6)–(7.7) with trial- and individual-level random effects,
and considering the implied conditional distribution of the treatment effect
on the true endpoint given the treatment effect on the surrogate, Buyse et
al. (2000a) proposed to assess the quality of the surrogate at the trial level



124 José Cortiñas Abrahantes, Tomasz Burzykowski, and Geert Molenberghs

by the coefficient of determination (see also equation (7.11))

R2
trial(f) = R2

bi|mSi,ai
=

(
dSb

dab

)T (
dSS dSa

dSa daa

)−1(
dSb

dab

)
dbb

(8.5)

or by its “reduced” variant (see equation (7.12))

R2
trial(r) = R2

bi|ai
=

d2
ab

daadbb
. (8.6)

Similarly, to measure individual-level surrogacy, Buyse et al. (2000a) pro-
posed to use the coefficient of determination given by (see also equation
(7.21))

R2
indiv =

σ2
ST

σSSσT T

, (8.7)

where σST , σSS and σT T are components of variance-covariance matrix (8.4).

In our three-level context, the same procedure can be followed for the center
level and R2

center(f) and R2
center(r) can be computed a way similar to (8.5) and

(8.6) using matrix (8.3), providing us with an assessment of the center-level
surrogacy.

8.3 Modeling Strategies

Tibaldi et al. (2003) showed that, in the two-level hierarchy, fitting random-
effects model (8.1) can be replaced by simplified computational methods.
In the remainder of this chapter, simplified methods will be used to face
the computational challenges. In particular, we consider three strategies:

Strategy I: Two-level Only. This pertains to the case where, in spite
of the three-level data generating mechanism, we consider either the
trial level or center level for analysis and for validation, but not both.
The trial and center-specific effects are treated as fixed.

Strategy II: Three Levels, Fixed Effects. A model in which the full
three-level structure of the data is included. Both the trial-specific
and the center-specific effects are treated as fixed.

Strategy III: Three Levels, Random Effects. A model in which the
full three-level structure of the data is included. Both the trial-specific
and center-specific effects are treated as random.

We will now discuss each of these three strategies in turn.
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8.3.1 Strategy I: Two-level Only

As stated before, the parameters of the full random-effects model (8.1) can
be estimated by maximum likelihood or restricted maximum likelihood,
using standard linear mixed model software such as the SAS procedure
MIXED (Verbeke and Molenberghs 2000).

Trial Level Only

In case we only consider the trial level for the validation process, exactly
as Tibaldi et al. (2003), we can rewrite and simplify the model as{

Sijk = µSi
+ αiZijk + εSijk

,

Tijk = µT i
+ βiZijk + εT ijk

,
(8.8)

where µSi , µT i , αi, and βi are trial-specific intercepts and treatment ef-
fects. In addition, the univariate approach is opted for and hence errors
(εSijk

,εT ijk
) in (8.8) are assumed independent, rather than correlated. Ti-

baldi et al. (2003) showed that this approach is computationally advan-
tageous, while resulting in little or no loss of efficiency when emphasis is
on the trial-level surrogacy. Of course, if one is interested in individual-
level surrogacy as well, the correlation between the outcomes needs to be
accounted for. At the second stage, a regression model is fitted to the treat-
ment effects, estimated at the first stage. For example,

β̂i = λ0 + λ1µ̂Si + λ2α̂i + εi. (8.9)

As Tibaldi et al. (2003) stated, this model can then be employed to as-
sess the trial-level surrogacy, using the R2

trial(f) associated with the model.
The coefficient is not calculated as in (8.5), but it merely is the classical
coefficient of determination found by regressing β̂i on µ̂Si

and α̂i.

If trial-specific intercept from the surrogate model (8.8) is not used, λ1 is
dropped from (8.9) and an R2

trial(r) is obtained, similar in spirit to (8.6).

Center Level Only

In case we only consider the center level for the validation process, and
analogous to the previous case, the model can be rewritten as:{

Sijk = µSij + αijZijk + εSijk
,

Tijk = µT ij + βijZijk + εT ijk
,

(8.10)



126 José Cortiñas Abrahantes, Tomasz Burzykowski, and Geert Molenberghs

where now µSij
, µT ij

, αij , and βij are center-specific intercepts and treat-
ment effects. As in the previous case, the models are fitted separately and
the errors are assumed to be independent. At the second stage, a regression
model similar to (8.9) is fitted to the treatment effects, obtained from the
estimation at the first stage:

β̂ij = λ′
0 + λ′

1µ̂Sij + λ′
2α̂ij + εij . (8.11)

The model can be used to assess the center-level surrogacy, using the
R2

center(f) associated with this regression. In case that center-specific inter-
cept from surrogate model is not used, a reduced R2

center(r) is obtained.

8.3.2 Strategy II: Three Levels, Fixed Effects

We now include both trial as well as center effects in the first-stage model,
but they are considered to be fixed rather than random. The model then
reads: {

Sijk = µSi + µSij + (αi + αij)Zijk + εSijk
,

Tijk = µT i
+ µT ij

+ (βi + βij)Zijk + εT ijk
,

(8.12)

where both errors (εSijk
,εT ijk

) are to be dependent.

At the second stage, an appropriate set of regressions is fitted to the treat-
ment effects, estimated at the first stage:

β̂i = λ0 + λ1µ̂Si
+ λ2α̂i + εi, (8.13)

β̂ij = λ′
0 + λ′

1µ̂Sij
+ λ′

2α̂ij + εij . (8.14)

Model (8.13) is used, when the trial-level association is of interest. Model
(8.14) is used, when the focus is on the association at the center level. Both
regressions produce an R2 measure of surrogacy.

8.3.3 Strategy III: Three Levels, Random Effects

Buyse et al. (2000a) assumed the availability of individual-patient data and
formulated a two-stage model, with the joint distribution [T, S|Z] specified
at the first stage and the joint distribution of the treatment effects [β, α]
specified at the second stage. Shkedy et al. (2003) employed this method-
ology and developed a Bayesian approach under the assumption that indi-
vidual data are available (Browne et al. 2002, Liao 2002). We will extend
their methodology for model (8.1).
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Generally, consider linear predictors for T and S:⎧⎪⎪⎪⎨⎪⎪⎪⎩
E(Sijk|mSi

, mSij
, ai, aij)

= µS + mSi + mSij + (α + ai + aij)Zijk,

E(Tijk|mT i
, mT ij

, bi, bij)
= µT + mT i

+ mT ij
+ (β + bi + bij)Zijk.

(8.15)

The coefficients mSi
, mT i

, ai, bi, mSij
, mT ij

, aij , bij have a similar meaning
as those in model (8.1). Further, the vector of random effects associated to
trial, (mSi , mT i , ai, bi)T , is assumed to be zero-mean normally distributed
with covariance matrix (8.2), while the vector of random effects associ-
ated to center, (mSij

, mT ij
, aij , bij)T , is assumed to be zero-mean normally

distributed with covariance matrix (8.3).

Shkedy et al. (2003) proposed to combine (8.15) and (8.2)–(8.3), defining a
hierarchical Bayesian model (see also Chapter 15). Thus, at the first stage
of the hierarchical model, we specify the following joint distribution of Tijk

and Sijk:(
Sijk

Tijk

)
∼ N

{[
µS + mSi + mSij + (α + ai + aij)Zijk

µT + mT i + mT ij + (β + bi + bij)Zijk

]
, Σ
}

, (8.16)

where Σ is given by (8.4).

At the second stage of the model the priors for the “fixed” effects are
specified:

µS ∼ N(0, θ2
µS

),

µT ∼ N(0, θ2
µT

),

α ∼ N(0, τ2
α),

β ∼ N(0, τ2
α).

(8.17)

For the precision parameters in (8.17) (flat) hyperprior models can be spec-
ified using Gamma distributions, e.g., θ−2

µS
∼ gamma(0.001, 0.001), etc. As

the hyperprior distribution for the covariance matrices D, D′ and Σ, a
Wishart distribution is assumed:

D−1 ∼ Wishart(RD),

D′−1 ∼ Wishart(RD′), (8.18)

Σ−1 ∼ Wishart(RΣ).

To assess the trial-level surrogacy, the coefficient of determination defined
by (8.5) will be used. The center-level surrogacy can be assessed using the
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coefficient of determination computed from (8.5) with matrix D′, given in
(8.3), in place of matrix D. Finally, to measure individual-level surrogacy,
the coefficient of determination given in (8.7) can be used.

To avoid computational problems, Buyse et al. (2000a) proposed a reduced
model in which the linear predictors of S and T do not include trial and
center specific intercepts. In the hierarchical model, the likelihood at the
first stage of the model can be specified by omitting the trial-specific ran-
dom intercepts from (8.16). This leads to the specification:(

Sij

Tij

)
∼ N

{[
µS + (α + ai + aij)Zijk

µT + (β + bi + bij)Zijk

]
, Σ
}

. (8.19)

At the second stage of the model, the prior distribution of the random
effects, (ai, bi)T , is assumed to be bivariate normal with mean 0 and co-
variance matrix Dr. Note that the covariance matrix Dr is the 2× 2 lower
right submatrix in (8.2) and is assumed to follow a Wishart distribution,
D−1

r ∼ Wishart(RDr
). Other prior and hyperprior models remain the same

as in the full model. For the reduced model, the coefficient of determination,
measuring the trial-level surrogacy, reduces to (8.6). Similar considerations
can be made for (aij , bij)T , which is assumed normal with zero mean and
covariance matrix D′

r, which is the 2 × 2 right bottom sub matrix of D′

defined in (8.3).

8.4 A Simulation Study

We assess the performance of the various strategies in terms of both point
estimation, as well as precision, of R2

trial(r) and of R2
center(r), by means of a

simulation study. A setting, similar to the one used in Chapter 7 is adopted.

8.4.1 Simulation Settings

Generating Mechanism I

Under Mechanism I, data are generated using model (8.1) with

(mSi
, mT i

, ai, bi) ∼ N(0, D)

and
(mSij

, mT ij
, aij , bij) ∼ N(0, D′),
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where

D = σ2
T

⎛⎜⎜⎝
1 0.8 0 0

0.8 1 0 0
0 0 1 ρT

0 0 ρT 1

⎞⎟⎟⎠ ,

(8.20)

D′ = σ2
C

⎛⎜⎜⎝
1 0.8 0 0

0.8 1 0 0
0 0 1 ρC

0 0 ρC 1

⎞⎟⎟⎠ ,

and µS = 50, µT = 45, α = 5, β = 3.

Further, the true R2, following from (8.5) and (8.20), is set equal to either
0.5 or 0.9 at the trial or at the center level. Thus, for both ρ2

T and ρ2
C ,

the values of 0.5 or 0.9 are considered. Parameters σ2
T and σ2

C are assigned
values of 0.1 or 10. Regarding the individual-level variability, (εSij , εT ij ) ∼
N(0, Σ) with

Σ = σ2

(
1 0.8

0.8 1

)
.

The parameter σ2 equals either 0.1 or 3.

For every choice of values for ρT , ρC , σ2
T , σ2

C and σ2, simulated datasets
were obtained assuming 5, 10, 20, or 100 trials, with 10 or 100 centers per
trial and with 10 or 100 subjects per center. In total, 250 datasets were
simulated for each setting.

Generating Mechanisms II and III

Further, a simulation was performed in which, instead of considering model
(8.1) to generate the data, we used a model in which we have random effects
associated to either trial or to center, but not to both of them.

The first of these, termed Mechanism II and where only trial-level random
effects are considered, is given by:{

Sijk = µS + mSi
+ (α + ai)Zijk + εSijk

,

Tijk = µT + mT i
+ (β + bi)Zijk + εT ijk

.
(8.21)

Alternatively, when only random-effects at the center level are present
(Mechanism III), (8.1) simplifies to:{

Sijk = µS + mSij + (α + aij)Zijk + εSijk
,

Tijk = µT + mT ij + (β + bij)Zijk + εT ijk
.

(8.22)
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The random vectors associated to trial and center were considered, as in
Mechanism I, to follow mean-zero normal distributions: (mSi

, mT i
, ai, bi) ∼

N(0, D), (mSij , mT ij , aij , bij) ∼ N(0, D′).

A setting of simulation parameters similar to the one used for Mechanism
I was considered, i.e., 5, 10, 20, or 100 trials, with 10 or 100 centers and
10 or 100 subjects per center; σ2

T and σ2
C equal to 10 or 0.1; σ2 = 3 or 0.1;

ρ2
T = 0.5 or 0.9 and ρ2

C = 0.5 or 0.9.

8.4.2 Simulation Results, Equal Trial- and Center-level
Association

Generating Mechanism I

The results of the simulations for Mechanism I, assuming ρ2
T = ρ2

C = 0.5
or 0.9, σ2

T = σ2
C = 10, and σ2 = 3 for 5, 10 or 20 trials with 10 centers per

trial and 10 subjects per center are shown in Figure 8.1. Results for other
settings of the parameters are similar.

Figure 8.1 shows the results obtained when Strategies I and II were used.
In particular, the use of Strategy I means that the association at the trial
level was evaluated using a model without the center level (see (8.8) in
Section 8.3.1), whereas the association at the center level was assessed
using a model without the trial level (see (8.10) in Section 8.3.1).

Figure 8.1 indicates that both strategies give comparable results. One can
observe that Strategy II has larger bias in the estimation than Strategy I.
It is important to point out that when ρ2

T = ρ2
C = 0.5, both methods tend

to overestimate the strength of the association, whereas if ρ2
T = ρ2

C = 0.9,
the strategies underestimate it.

Generating Mechanisms II and III

When only one level of association is present in the data generating mech-
anism, we can try to estimate the effects at this particular level using
Strategy I, with either the correct or the incorrect level included in the
model. That is, if Mechanism II was used, which involved only the trial-
level association, we could try to capture this association using center as
the unit of analysis. A similar approach could be used for Mechanism III,
but in this case the center-level association could be evaluated using trial
as the unit of analysis. This would correspond to realistic situations where
our interest lies at another level than at which data are available from. For
example, the first scenario (Mechanism II with center as the unit of analy-
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FIGURE 8.1. Simulation study. The estimation of R2 and its precision for
R2

trial(r) = R2
center(r) and σ2

T = σ2
C = 10. Data were generated using Mechanism

I. Left column: Strategy I (two-level only); right column: Strategy II (three-levels,
fixed effects). Top row: estimation of R2 = 0.5; bottom row: estimation of
R2 = 0.9.

sis) is of practical interest when there are too few trials available and, to
assess the trial-level surrogacy, data for centers is used instead. The results
for 5, 10 or 20 trials with 10 centers per trial and 10 subjects per center
and ρ2

T = ρ2
C = 0.5 or 0.9, σ2

T = σ2
C = 10, σ2 = 3 are shown in Figure 8.2.

Results for other settings of the parameters are similar.

From Figure 8.2, it can be seen that when the data were generated using
Mechanism II (graphs on the left-hand side of Figure 8.2), the strategies
proposed in Section 8.3.1 using either equation (8.9) and (8.11) led to
very similar results. That is, the estimated strength of the (trial-level) as-
sociation was similar irrespectively of whether trial (correctly) or center
(incorrectly) was used as the unit of analysis. On the other hand, when
Mechanism III was used to generate the data (graphs on the right-hand
side of Figure 8.2), the method based on equation (8.11), in which center
was (correctly) used as the unit of analysis, performed much better than
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FIGURE 8.2. Simulation study. The estimation of R2 and its precision for Strat-
egy I (two-level only) when R2

trial(r) = R2
center(r) and σ2

T = σ2
C = 10. Left column:

Generating Mechanism II; Right column: Generation Mechanism III. Top row:
estimation of R2 = 0.5; bottom row: estimation of R2 = 0.9.

the method based on equation (8.9), in which trial was (incorrectly) used
as the unit of analysis. To be precise, for the analysis based on centers the
estimates were closer to the true parameter. It can be also noted that, as
it has been observed in the case of Mechanism I (see Figure 8.1), when ρ2

T

and ρ2
C were equal to 0.5, Strategy I tended to overestimate the strength of

the association, whereas when ρ2
T and ρ2

C were equal to 0.9, it was generally
underestimated.

In addition, Strategy II was also applied to the simulated datasets. In this
case, first three-level fixed-effects model (8.12) was fitted to the data, and
then models (8.13) and (8.14) were used to compute the determination
coefficients assessing the strength of association at the trial and center
level, respectively. The results for 5, 10 or 20 trials with 10 centers per
trial and 10 subjects per center and ρ2

T = ρ2
C = 0.5 or ρ2

T = ρ2
C = 0.9,

σ2
T = σ2

C = 10, σ2 = 3 are shown in Figure 8.3. Results for other settings
of the parameters are similar.
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FIGURE 8.3. Simulation study. The estimation of R2 and its precision for Strat-
egy II (three-levels, fixed effects) when R2

trial(r) = R2
center(r) and σ2

T = σ2
C = 10.

Left column: Generating Mechanism II; Right column: Generating Mechanism
III. Top row: estimation of R2 = 0.5; bottom row: estimation of R2 = 0.9.

From Figure 8.3 it is clear that, when Mechanism II was used, Strategy
II with model (8.13) at the second stage (based on trial-specific estimates)
was giving satisfactory results in terms of the bias of the estimation. On
the other hand, for model (8.14), based on center-specific estimates, the
results were poor. Figure 8.3 also shows that when Mechanism III was
used to generate the data, Strategy II gave similar results in terms of bias
irrespectively of the model used at the second stage.

8.4.3 Simulation Results, Unequal Trial- and Center-level
Association

The results of simulations presented in Section 8.4.2 allow to conclude
that both Strategy I and Strategy II performed reasonably well when the
association at the trial and at the center levels were equal. In this section,
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TABLE 8.1. Simulation study. Results for Strategies I and II for σ2
T = σ2

C = 10,
with 10 patients per center and 10 centers per trial. Mean estimates of ρ2

T and
ρ2

C with model-based and empirical standard errors (in parentheses).

ρ2
T ρ2

C No. trials Trial as unit∗ Center as unit∗∗

Strategy I

0.5 0.9 5 0.521(0.309,0.317) 0.706(0.158,0.169)
0.5 0.9 10 0.528(0.220,0.226) 0.700(0.116,0.121)
0.5 0.9 20 0.540(0.147,0.151) 0.698(0.077,0.079)

0.9 0.5 5 0.830(0.179,0.186) 0.655(0.113,0.118)
0.9 0.5 10 0.851(0.098,0.099) 0.676(0.085,0.088)
0.9 0.5 20 0.856(0.064,0.065) 0.681(0.059,0.058)

Strategy II

0.5 0.9 5 0.623(0.296,0.301) 0.891(0.050,0.054)
0.5 0.9 10 0.676(0.182,0.183) 0.900(0.034,0.040)
0.5 0.9 20 0.681(0.122,0.121) 0.898(0.025,0.027)

0.9 0.5 5 0.663(0.268,0.273) 0.511(0.139,0.145)
0.9 0.5 10 0.685(0.190,0.196) 0.527(0.119,0.122)
0.9 0.5 20 0.686(0.123,0.124) 0.518(0.092,0.093)

∗ Gives estimates of ρ2
T .

∗∗ Gives estimates of ρ2
C .

we present the case in which the associations at both levels differ.

Performance of Strategies I and II

To study further the performance of Strategies I and II, we simulated data
using Mechanism I, with ρ2

T �= ρ2
C . In particular, we considered ρ2

T = 0.5
with ρ2

C = 0.9 and ρ2
T = 0.9 with ρ2

C = 0.5. The values for the other
parameters were similar to those used for the simulations presented in Sec-
tion 8.4.2. The results for 5, 10 or 20 trials with 10 centers per trial and 10
subjects per center and σ2

T = σ2
C = 10 and σ2 = 3 are shown in Table 8.1.

In terms of bias, the results from Table 8.1 are reasonable for the estimation
of the trial-level association when Strategy I was applied (i.e., using trial
as the unit of analysis at both stages) and of the center-level association
when Strategy II was applied (i.e., a three-level fixed-effects model at the
first stage with center-specific effects analyzed at the second stage).

The above conclusions were drawn for the case when σ2
T = σ2

C = 10. It
is also of interest to study what would happen if σ2

C were much smaller
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TABLE 8.2. Simulation study. Results for Strategies I and II for σ2
T = 10 and

σ2
C = 0.1 and 10 patients per center and 10 centers per trial. Mean estimates of

ρ2
T and ρ2

C with model-based and empirical standard errors (in parentheses).

ρ2
T ρ2

C No. trials Trial as unit∗ Center as unit∗∗

Strategy I

0.5 0.9 5 0.535(0.305,0.315) 0.537(0.294,0.312)
0.5 0.9 10 0.504(0.228,0.235) 0.516(0.220,0.231)
0.5 0.9 20 0.507(0.151,0.157) 0.519(0.145,0.153)

0.9 0.5 5 0.894(0.122,0.131) 0.880(0.123,0.134)
0.9 0.5 10 0.891(0.094,0.102) 0.884(0.087,0.092)
0.9 0.5 20 0.897(0.043,0.047) 0.890(0.042,0.046)

Strategy II

0.5 0.9 5 0.526(0.312,0.320) 0.819(0.075,0.079)
0.5 0.9 10 0.508(0.231,0.238) 0.822(0.060,0.062)
0.5 0.9 20 0.513(0.156,0.161) 0.822(0.044,0.045)

0.9 0.5 5 0.870(0.151,0.154) 0.722(0.109,0.111)
0.9 0.5 10 0.882(0.088,0.090) 0.730(0.087,0.089)
0.9 0.5 20 0.888(0.048,0.047) 0.731(0.068,0.070)

∗ Gives estimates of ρ2
T .

∗∗ Gives estimates of ρ2
C .

than σ2
T . From a practical point of view this situation is desirable, since

a large variance for the center level means existence of a strong center-
specific treatment effect, what makes difficult to draw general conclusions.
Table 8.2 presents results for Strategies I and II for the case of σ2

T = 10
and σ2

C = 0.1.

Table 8.2 indicates that, when the variability at the center level was much
smaller than at the trial level, the estimates obtained using either Strategy
I or Strategy II for the trial-level association were close to the true value of
the parameter of interest. On the other hand, for the center-level associa-
tion, reasonable results were obtained only for Strategy II when ρ2

C = 0.9.
For other cases using center as the unit of the analysis, either at both stages
(Strategy I) or only at the second one (Strategy II), produced results that,
on average, were close to the value of the coefficient of determination related
to the trial-level association.



136 José Cortiñas Abrahantes, Tomasz Burzykowski, and Geert Molenberghs

Insights in the Performance of Strategy I

The bad performance of Strategy I, especially for the center level, can be
explained by the fact that ignoring a level can lead to overestimation of
the variability at the levels surrounding the level being ignored. To this
aim, we will use the results obtained by Hutchison and Healy (2001). For
example, consider the following model:

Sijk = µS + mSi
+ mSij

+ (α + αi + αij)Zijk + εSijk
.

This model is similar to model (8.1), but contains only three random effects:
random intercepts mSi and mSij associated to trial and center, respectively,
and the random error εSijk

. Assume that the data are balanced (Ni ≡ N ,
nij ≡ n) and the variances of the random effects corresponding to the trial,
center and individual level are equal to σ2

T , σ2
C and σ2, respectively. It can

be then shown that the two variance components of the model in which
the center level is ignored are:

σ̃2
T = σ2

T +
n − 1

N · n − 1
· σ2

C ≈ σ2
T +

1
N

· σ2
C , (8.23)

σ̃2 = σ2 +
n · (N − 1)
N · n − 1

· σ2
C ≈ σ2 +

N − 1
N

· σ2
C . (8.24)

Thus, they can be seen as the true variance, plus a certain fraction of
the variance of the random effect associated to the level that has been ig-
nored. For this particular case not much variability is added to the variance
corresponding to the level above the one ignored (trial), as most of the in-
formation is sent to the level below. This is the reason why in Tables 8.1
and 8.2 the trial-level association is generally well estimated when Strategy
I is used. On the other hand, if the trial level is ignored, the center-level
variance becomes

σ̃2
C = σ2

C +
N · (M − 1)
M · N − 1

· σ2
T ≈ σ2

C +
M − 1

M
· σ2

T . (8.25)

The individual-level variability remains unchanged. Thus, most of the vari-
ability contained in the trial level is sent to the center level, which affects
the estimation of the association at the center level. This is the reason why
in Tables 8.1 and 8.2 the center-level association is poorly estimated when
Strategy I is used.

Performance of Strategy II in a Large Dataset

To explore further the behavior of Strategy II observed in Tables 8.1 and
8.2, an additional simulation study was conducted. Table 8.3 shows results
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TABLE 8.3. Simulation study. Results for Strategy II for different values of vari-
ance components associated to trial and center random effects, with 100 subjects
per center, 100 centers per trial, and 100 trials. Mean estimates of ρ2

T and ρ2
C

with model-based and empirical standard errors (in parentheses).

σ2
T σ2

C σ2 ρ2
T ρ2

C Trial as unit∗ Center as unit∗∗

10 10 3 0.5 0.9 0.685(0.030,0.033) 0.900(0.004,0.009)

10 10 3 0.9 0.5 0.684(0.031,0.035) 0.501(0.014,0.021)

10 10 0.1 0.5 0.9 0.685(0.030,0.033) 0.900(0.004,0.009)

10 10 0.1 0.9 0.5 0.683(0.031,0.035) 0.499(0.014,0.020)

10 0.1 3 0.5 0.9 0.508(0.028,0.030) 0.877(0.010,0.012)

10 0.1 3 0.9 0.5 0.896(0.010,0.013) 0.565(0.024,0.027)

10 0.1 0.1 0.5 0.9 0.506(0.028,0.031) 0.899(0.005,0.007)

10 0.1 0.1 0.9 0.5 0.896(0.010,0.013) 0.503(0.015,0.017)

0.1 0.1 0.1 0.5 0.9 0.686(0.030,0.032) 0.899(0.005,0.008)

0.1 0.1 0.1 0.9 0.5 0.684(0.031,0.033) 0.503(0.015,0.0017)

∗ Gives estimates of ρ2
T .

∗∗ Gives estimates of ρ2
C .

for several different combinations of the values of parameters σ2
T , σ2

C , σ2,
ρ2

T , and ρ2
C , for 100 trials with 100 centers per trial and 100 subjects per

center. The idea is to investigate the behavior of the strategy in a large
dataset.

Results presented in Table 8.3 indicate that, the center-level association
was in general estimated reasonably well. It is worth noting that the bias,
observed in Table 8.2 for the combination of ρ2

T = 0.9 and ρ2
C = 0.5, was

greatly reduced when σ2 = 3, and essentially disappeared when σ2 = 0.1.
This suggests that, for Strategy II, the bias in the estimation of the center-
level surrogacy may be negligible as long as the variability at the level of
center is at least as large as the variability at the lower (individual) level.

On the other hand, from Table 8.3, one can see that, when the variability
at the trial and center level was of the same magnitude, the trial-level
association was poorly estimated, even though the sizes of the units were
large. The bias generally disappeared when the variability at the center
level became much smaller than that at the level of trial. This suggest
that, as for the center-level association, bias in the assessment of the trial-
level association for Strategy II may be negligible as long as the variability
at the lower (center) level is smaller.



138 José Cortiñas Abrahantes, Tomasz Burzykowski, and Geert Molenberghs

Comparison of Strategies II and III

Finally, we attempted to compare Strategy II with Strategy III. Because
using a maximum-likelihood approach to implement Strategy III was nu-
merically too complex, we considered the use of a Bayesian approach. Un-
fortunately, performing an extensive simulation using the latter approach
turned out to be too time-consuming. Therefore, the simulation study was
limited to the random generation of only one dataset for different para-
meter settings, and the comparison of the results obtained for Strategy II
and Strategy III to the true values of the parameters used for simulations.
The results are shown in Table 8.4. By comparing the estimates of the co-
efficients of determination to their actual values (i.e., the values computed
from the actual, simulated random effects) in Table 8.4 we can observe
that, when the variability at the center and trial level was of the same
magnitude, Strategy II did not estimate the trial-level association well, in
contrary to Strategy III. Even when the variability at the center level was
smaller than that at the level of trial, estimates obtained for Strategy III
were closer to the actual values than the estimates produced by Strategy
II. One can conclude, admittedly based on the anecdotal evidence obtained
by generating a single dataset under each setting, that Strategy III gives
better results, which is reasonable if we take into account that the other two
strategies are ignoring levels and are using fixed effects as representation
of random effects.

8.5 Analysis of Schizophrenia Trials

In the first psychiatric study, several options were studied considering the
units available. The first row in Table 8.5 shows the results obtained when
Strategy I was applied. That is, the coefficient of determination associated
to a particular level (indicated in the header of the column) was estimated
using a (two-stage) model including only this level and individual variabil-
ity. We observe that, in general, there is relatively little difference between
the estimates obtained.

Strategy II, using a fixed-effects model with all three levels included at the
first stage, was fitted as well. In this model the estimate of the magnitude
of the association at the highest level (country) is close to that obtained
using Strategy I. For the other two levels more substantial differences can
be observed.

Finally, a random-effects (Strategy III) analysis, based on the Bayesian
approach, was performed. The results are shown in the last row of Table 8.5.
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TABLE 8.4. Simulation study. Results for Strategy II and Strategy III for a
simulated sets of data with 10 subjects per center and 10 centers per trial and
σT = 10 (Mean = posterior mean; StDev = posterior standard deviation; Median
= posterior median).

No. Actual Strategy Strategy III

σC trials ρ2
T ρ2

C R2 value II Mean StDev Median

10 5 0.5 0.9 Trial 0.750 0.840 0.653 0.2420 0.7127

10 5 0.5 0.9 Center 0.927 0.914 0.934 0.0210 0.9381

10 5 0.9 0.5 Trial 0.916 0.822 0.917 0.0856 0.9430

10 5 0.9 0.5 Center 0.443 0.539 0.497 0.1079 0.5012

10 10 0.5 0.9 Trial 0.263 0.501 0.260 0.2128 0.2234

10 10 0.5 0.9 Center 0.930 0.951 0.929 0.0154 0.9311

10 10 0.9 0.5 Trial 0.872 0.725 0.826 0.1207 0.8572

10 10 0.9 0.5 Center 0.431 0.454 0.399 0.0837 0.3999

10 20 0.5 0.9 Trial 0.358 0.719 0.425 0.1697 0.4329

10 20 0.5 0.9 Center 0.912 0.938 0.901 0.0153 0.9018

10 20 0.9 0.5 Trial 0.915 0.747 0.894 0.0667 0.9109

10 20 0.9 0.5 Center 0.502 0.557 0.524 0.0532 0.5250

0.1 5 0.5 0.9 Trial 0.777 0.760 0.777 0.1871 0.8355

0.1 5 0.5 0.9 Center 0.914 0.810 0.907 0.1112 0.9482

0.1 5 0.9 0.5 Trial 0.941 0.948 0.960 0.0504 0.9751

0.1 5 0.9 0.5 Center 0.533 0.635 0.534 0.1889 0.5572

0.1 10 0.5 0.9 Trial 0.444 0.421 0.447 0.2169 0.4628

0.1 10 0.5 0.9 Center 0.932 0.760 0.892 0.1082 0.9265

0.1 10 0.9 0.5 Trial 0.795 0.776 0.792 0.1276 0.8217

0.1 10 0.9 0.5 Center 0.488 0.551 0.494 0.1513 0.5054

0.1 20 0.5 0.9 Trial 0.292 0.288 0.311 0.1652 0.3063

0.1 20 0.5 0.9 Center 0.915 0.819 0.951 0.0468 0.9668

0.1 20 0.9 0.5 Trial 0.950 0.933 0.952 0.0250 0.9574

0.1 20 0.9 0.5 Center 0.466 0.691 0.465 0.1325 0.4698

One can see that the estimates of the magnitude of the association for the
two highest levels (main investigator and country) are lower than those
obtained for the two other strategies. As for Strategy I, there is relatively
little difference in the estimates obtained for different levels.

Let us turn attention to the second psychiatric case study, where data
from an equivalence trial are used. The result for the investigator level
(R2 = 0.70, bootstrap-based 95% confidence interval [0.44, 0.96]), obtained
using Strategy I, is within the range of the estimates observed for the first
study (see Table 8.5). This observation supports the claim that might have
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TABLE 8.5. R2 values (with 95 % confidence/credible intervals) at different levels
for the first psychiatric study, using different modeling strategies.

Unit of analysis

Investigator Main investigator Country

(138 units) (29 units) (19 units)

Strategy I 0.56 [0.43, 0.68]† 0.69 [0.41, 0.86]† 0.62 [0.25, 0.88]†

Strategy II 0.42 [0.30, 0.55]† 0.77 [0.49, 0.89]† 0.56 [0.15, 0.86]†

Strategy III 0.52 [0.24, 0.74]†† 0.66 [0.31, 0.88]†† 0.51 [0.11, 0.83]††

† Bootstrap confidence interval.
†† Credible set.

been able to quantify reasonably accurately the surrogacy of PANSS for
CGI in the context of certain compounds for schizophrenia. Of course, the
R2 values are not terribly high, so that a mere replacement of CGI by
PANSS may be questionable.

8.6 Concluding Remarks

In this chapter, we have investigated several strategies to deal with hierar-
chical linear models. We have been interested primarily in the estimation
of the strength of the association between random effects at different lev-
els. This interest has been motivated in the context of validating surrogate
markers.

Three different strategies have been considered: (1) applying fixed-effects
models with only the trial level or the center level used in the validation
process (Strategy I); (2) including both levels in a fixed-effects model at
the first stage (Strategy II); and (3) including both levels in a random-
effects model at the first stage (Strategy III). The strategies differ in the
complexity of the models. Consequently, they also differ in the ease of their
practical implementation.

In general terms, the results indicate that the performance of the strategies
depends on the sample sizes, as well as on the magnitude of variability
present at different levels. The latter dependency, especially for Strategy
I, can be explained using theoretical results on the effect of ignoring levels
when fitting multi-level models presented in a recent article by Hutchison
and Healy (2001).

In particular, from the simulations conducted we could conclude that, when
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data were generated according to a model with random effects present at
both levels, and when the strength of association between the random ef-
fects was the same at both levels, all the strategies produced reasonable
results. When the association was different, Strategy I, with trials as the
units of analysis, produced satisfactory estimates of the trial-level associ-
ation. On the other hand, using centers as the units of analysis resulted
in biased estimates of the center-level association. The estimates were, in
fact, close to the true value of the measure of the strength of the trial-
level association, when the variability of center-specific random effects was
smaller than the variability of trial-specific effects. This observation gives
some justification to the use of, e.g., centers instead of trials as the units
of analysis in practical applications of the meta-analytic approach to the
validation of surrogate endpoints.

On the other hand, to obtain plausible estimates of the strength of the
association at a particular level for Strategy II, the variability at the level
below the one of interest had to be smaller.

A limited investigation of the performance of Strategy III suggested that it
was able to identify correctly different sources of variability and association.
The estimates obtained under Strategy III were closer to the actual values
than, e.g., those for Strategy II. In view of the structure of the model used in
Strategy III, these conclusions were not surprising. However, an important
problem associated with the practical use of this strategy is its numerical
complexity. From this point of view, a possibility to use, e.g., Strategy I
might be very advantageous.
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Extensions of the
Meta-analytic Approach to
Surrogate Endpoints

Mitch Gail

9.1 Introduction

Whether an endpoint S is a good surrogate for a true clinical endpoint
T depends on the intended use of the surrogate. Our primary goal is to
use a surrogate in a clinical trial to estimate the trial-level effect of a new
treatment on T without having to measure T . Another possible use of a
surrogate is to predict the outcome T on an individual patient.

For clinical management of an individual patient, it would be valuable if
S could be used to predict that individual’s outcome T reliably, regardless
of what treatment, Z, or other covariates, X, might be present. This as-
sumption that T be conditionally independent of Z (and X) given S is the
essential component in Prentice’s (1989) criteria that define a good surro-
gate for hypothesis testing. This assumption holds if S is on the sole causal
pathway leading to T , and all factors that influence T do so only through
their effects on S. Although this strong assumption and ancillary conditions
guarantee the validity of hypothesis tests for no treatment effect, they do
not insure that S can predict T well at the individual level. Instead, Buyse,
Molenberghs, Burzykowski, Renard, and Geys (2000a), which we abbrevi-
ate BMBRG, propose the within individual squared correlation, R2

indiv, of
T on S as a measure of the adequacy of S for predicting an individual’s
outcome (see also Chapter 7).

If S could be shown to satisfy the conditional independence assumption
and to have a high R2

indiv, one would have powerful evidence for a causal
biological role for S and its close biological connection to T . Moreover, one
could hope not only to test for treatment effects on T based on those on S,
but also to estimate treatment effects on T from those on S. For example,
suppose one wishes to estimate δ = E(T |Z = 1) − E(T |Z = 2) where
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Z = 1 corresponds to an experimental treatment and Z = 2 to a control or
standard treatment, possibly a placebo. We assume Z = 1 or 2 is assigned
at random with equal probability. Suppose a previous study on control
subjects has been done that yields an estimate of the density f(T |S, Z =
1, X) that equals f(T |S) by the conditional independence assumption. In
the new study population

δ =
∫

tf(t|s)h(s|Z = 1, x)dG(x)dt −
∫

tf(t|s)h(s|Z = 2, x)dG(x)dt,

where h(s|z, x) is the conditional density of S given Z and X, and G(x)
is the distribution function of X. Because f(t|s) is assumed known from
previous studies on (T, S) and because h(s|Z = 2, x) and h(s|Z = 1, x) are
estimable from the current study using the surrogate endpoint only, one
can calculate the effect of the treatment Z on T in this new study without
measuring the true clinical endpoint T .

All this depends on the strong conditional independence assumption T �Z,
X given S, however. It is impossible to verify this assumption empirically,
because one would need to examine an infinite number of treatments and
covariates. Even for a single study and treatment comparison, there is lim-
ited ability to rule out a dependence of T on Z given S with regression
methods, leading Freedman, Graubard, and Schatzkin (1992) and Lin et
al. (1997) to explore the related criterion of percentage of the treatment
effect explained (see Chapter 5 for a discussion of this criterion and al-
lied concepts). But without conditional independence, some other basis is
needed to attain the central goal of estimating the magnitude of the treat-
ment effect on T in a new trial from data on S only.

The meta-analytic approach to evaluating surrogate markers, introduced by
Daniels and Hughes (1997) and BMBRG, leads to an empirical assessment
of how well a surrogate can be used to estimate trial-level treatment effects
on T . The basic idea is that one can use information from previous similar
studies in which both T and S are measured in treated (Z = 1) and control
(Z = 2) groups to learn how well the treatment effect on T is predicted by
outcomes S in the treated and control groups. In a trial of a new treatment
similar to those in the previous studies, one measures only the effects of Z
on S and uses data from the previous studies and from the results on S in
the new study to estimate the effects of Z on T .

In order to carry out this program, one needs to posit a superpopulation of
similar trials from which the new trial and the previous trials are drawn.
For example, Daniels and Hughes (1999) studied various retroviral thera-
pies against HIV/AIDS. In some applications it may be unclear whether
the new trial with its new experimental treatment is similar enough to pre-
vious studies and their treatments to regard it as a sample from the same
superpopulation of trials. Even if there is agreement on the class of similar
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trials, a serious practical limitation may be the small number of previous
trials with data on T and S. One relies on superpopulation parameters,
which reflect trial to trial variation, in order to infer trial-level treatment
effects on T from those on S. Having too few previous trials limits the pre-
cision with which superpopulation parameters can be estimated and hence
the precision of meta-analytic inference (Gail, Pfeiffer, van Houwelingen,
and Carroll 2000, which we abbreviate GPHC).

A second meta-analytic issue concerns the degree to which models describe
the joint distribution of T and S at the individual level. Chapters 7 and
10–14 in this book present such detailed models. GPHC describe a mar-
ginal approach in which the distributions of S given Z, and T given Z, are
modeled separately. They argue that this approach allows great flexibility
for describing trial-level treatment effects and avoids having to specify the
joint distribution of T and S given Z, which may be poorly understood. The
marginal approach also captures most of the available information about
trial-level treatment effects. Tibaldi et al. (2003) show that estimates of the
proportion of variability in the estimated trial-level treatment effect that
is explained by the surrogate, R2

trial, is almost identical for marginal (“uni-
variate”) and bivariate linear models, as discussed further in Section 9.3.

In Section 9.2 we illustrate these concepts for normal models for S and T , in
Section 9.3 we discuss the flexibility of the marginal model approach, and in
Section 9.4 we recount some potential practical and theoretical limitations
of the meta-analytic approach.

9.2 The Normal Model

Many of the previous ideas are illustrated by the normal model. Let Tzij

denote the true clinical response of patient j (j = 1, 2, . . .) in trial i on
treatment Z = z (z = 1 or 2) and define Szij similarly for the surrogate.
Here j ranges from 1 to ni for Z = 1 and from 1 to mi for Z = 2. Given
θi = (θ1Tj

, θ1Sj
, θ2Tj

, θ2Sj
)T , the vector (T1ij , S1ij , T2ij , S2ij)T , is normally

distributed with mean θi and variance-covariance matrix Σi, which is block
diagonal with non-zero components Σ11i and Σ22i, corresponding respec-
tively to (T1ij , S1ij)T and (T2ij , S2ij)T , which are independent. The θi come
from a normal superpopulation with mean µ and variance φ. This model
is very similar to that of BMBRG except that it allows for Σ11i �= Σ22i,
whereas BMBRG require Σ11i = Σ22i.

A series of N “previous” trials permits one to estimate the parameters of
the superpopulation, µ and φ. Within the ith such trial, the mean is esti-
mated as θ̂i = (T1i, S1i, T2i, S2i)T , where, for example, T1i = n−1

i

∑
j T1ij .
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The quantities Σ11i and Σ22i are estimated from the within-trial empirical
variance-covariance matrices of (T1ij , S1ij)T and (T2ij , S2ij)T , respectively.
Because θi is normally distributed with mean µ and variance-covariance
matrix φ + Σi, various methods such a maximum likelihood, REML or
empirical Bayes can be used to estimate µ and φ.

Now suppose we consider a new trial (i = 0) drawn from the superpopu-
lation and only get to observe (S10j , S20j), which have within trial compo-
nents of variance σ220 from Σ11i and σ440 from Σ22i. We seek to estimate
θ0 and especially the components that correspond to the unmeasured clin-
ical outcomes T . Let θT0 = (θ1T0, θ2T0)T be the means of T10j and T20j ,
respectively, and let θS0 = (θ1S0, θ2S0)T be the means of S10j and S20j ,
respectively. Because (θT

T0, θ̂
T
S0)

T is multivariate normal, the conditional
mean and variance of θT0 can be expressed in terms of θ̂S0 and parameters
ψ = (µ, φ, σ220, σ440). Indeed, letting D and W be known matrices defined
so that θT0 = Dθ0 and θS0 = Wθ0 (see Section 2 of GPHC for details),

E(θT0 | θ̂S0) = Dµ + DφWT [W (φ + Σ0)WT ]−1(θ̂S0 − Wµ) (9.1)

and

Cov(θT0 | θ̂S0) = DφDT − DφDT [W (φ + Σ0)WT ]−1WφDT , (9.2)

where (9.1) and (9.2) only depend on the elements σ220 and σ440 of Σ0.
The variances σ220 and σ440 can be estimated from the empirical variances
of S10j and S20j , respectively, and µ and φ can be estimated from the
previous trials. Assuming the elements of ψ are known, one knows the
distribution of the means of the unmeasured true clinical outcomes θT0 from
the conditional normal distribution defined by (9.1) and (9.2). In particular,
for R = (1,−1), one can calculate the distribution of the treatment effect
δ0 ≡ Rθ0 ≡ θ1T0−θ2T0, which is normal with mean M(ψ) ≡ RE(θT0 | θ̂S0)
and variance V (ψ) ≡ R cov(θT0 | θ̂S0)RT , which can be calculated easily
from (9.1) and (9.2).

If no measurements on the surrogate were available in the new study, but
if the parameters of the superpopulation were known without error from
many similar previous studies, one could still estimate the new treatment
effect as µ1T − µ2T , with variance RDφDT RT . The proportion by which
this variance is reduced by measuring the surrogate in the new study is,
from equation (9.2),

R2
trial =

RDφWT [W (φ + Σ0)WT ]−1WφDT RT

RDφDT RT
. (9.3)

If σ220 and σ440 are negligible, so that Σ0 is omitted from (9.3), this de-
finition of R2

trial reduces to that given by BMBRG. BMBRG propounded
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the version of R2
trial (with Σ0 = 0) as a measure of the adequacy of the

surrogate S at the trial level.

The difference δ0 = θ1T0−θ2T0 is a natural measure of treatment effect, but
the distribution of an arbitrary treatment effect function δ0 = δ(θ1T0, θ2T0)
can be obtained analytically or by simulating from the conditional normal
distribution of θT0 given ψ and θ̂S0. An estimate of δ0 might be δ̂0 =
δ[E(θ1T0|ψ, θ̂S0), E(θ2T0|ψ, θ̂S0)], and confidence intervals could be based
on the quantiles of the distribution of δ0 given ψ and θ̂S0.

9.2.1 Precision of Estimates of δ0 Based on the
Meta-analytic Approach

Using the surrogate to estimate the true treatment effect δ0 can lead to
severe loss of precision compared to measuring T directly. Even if a large
number of previous trials have been conducted so that µ and φ are known
without error, and even if the sample size in the new trial on the surrogate
tends to infinity, so that σ220 = σ440 = 0, there is irreducible variability
in θ̂0 that reflects trial-to-trial variation in θi in the superpopulation, as
quantified by φ. For example, with δ0 = RθT0 defined as above, the variance
of θ̂0 is

RDφDT RT − RDφWT (WφWT )−1WφDT RT ,

which is strictly positive unless θ1Ti and θ2Ti are linearly dependent on θ1Si

and θ2Si. In contrast, measuring true endpoints T will yield an estimate of
δ0 with variance tending to zero.

A realistic assessment of the variability of θ̂0 also needs to acknowledge un-
certainty in µ̂ and φ̂, the estimates of superpopulation parameters. GPHC
considered a 95% confidence interval on δ0 = θ1T0 − θ2T0. A näıve 95%
confidence interval that assumes known ψ = (µ, φ, σ220, σ440) is M(ψ) ±
1.96V 1/2(ψ) with M and V as defined previously. For N = 5, 10, 25, 50
and 100 previous trials, this näıve confidence interval had coverage 0.64,
0.61, 0.82, 0.90 and 0.92 respectively. Thus, with a small number of previ-
ous trials, confidence intervals that assume ψ is known without error have
subnominal size and can be seriously misleading. GPHC provide bootstrap
procedures that give confidence intervals with nominal coverage. These in-
tervals ranged from 4% to 293% longer than the näıve confidence interval,
however, as the number of previous trials decreased from N = 100 to N = 5.

To illustrate further the loss in precision from the meta-analytic approach,
GPHC discussed a comparison of pravastatin (Z = 1) with placebo (Z = 2)
on a true clinical outcome (T ), namely change in coronary artery diameter
over a two-year period, and on a surrogate (S), change in total choles-
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terol. The example was favorable to the meta-analytic approach because,
rather than take different trials of similar agents (“statins”) from the lit-
erature, GPHC chose 10 centers from a single trial, the REGRESS Trial
(Jukema et al. 1995) as the “previous” studies, and one remaining center
as the “new” study. Because all centers were using the same protocol and
studying the exact same agent, there was probably less “between-trial”
variability, captured in φ, than would be expected in a real meta-analysis
based on different trials with different agents. Using the clinical endpoint
T , the “new study” indicated a favorable treatment effect on decreases in
coronary diameter of θ̂1T0 − θ̂2T0 = 0.0381mm with 95% confidence inter-
val [−0.0138, 0.0900]. Based on the surrogate data only in the “new study”,
GPHC estimated the true treatment effect as 0.0402 with näıve confidence
interval [−0.0552, 0.1355] and with bootstrap confidence interval that takes
variation of ψ into account: [−0.1346, 0.2149]. Thus, there is a huge loss in
precision from relying on S to estimate treatment effects on T .

9.3 Flexibility of the Marginal Approach

In Section 9.2, we made no mention of the ability of the surrogate to pre-
dict individual outcomes, which can be assessed in each trial by examin-
ing correlations between T and S in Σ11i and Σ22i. The quantities Σ11i

and Σ22i, however, only influence estimates of trial-level treatment effects
through their impact on estimating µ and φ in the superpopulation model
and through σ220 and σ440. Especially if all the component trials are large,
Σ11i, Σ22i, σ220, and σ440 have little influence on superpopulation parame-
ters, and inference on trial-level effects is unrelated to how well S predicts
T at the individual level. Because the main interest is in estimating ef-
fects on T at the trial level, and in order to avoid specification of the joint
distribution of T and S, GPHC adopted a marginal approach to modeling.

Suppose θzTi represents some feature(s) of the marginal distribution of T
in treatment group z in trial i, such as the mean, and define θzSi similarly
for features of the marginal distribution of S. Assume that the components
of θi = (θ1Tj

, θ1Sj , θ2Tj , θ2Sj)T satisfy separate estimating equations
ni∑

j=1

U1Tij(θ1Ti) = 0,
ni∑

j=1

U1Sij(θ1si) = 0,

mi∑
j=1

U2Tij(θ2Ti) = 0,
mi∑
j=1

U2Sij(θ2Si) = 0.

We assume that U1Tij is functionally independent of θ1Si, θ2Ti, and θ2si,
and that other estimating equations likewise depend only on the parame-
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ters shown in their arguments. As in GPHC, it is possible to estimate
within experiment variance-covariance matrices Σi, namely the conditional
covariance of θ̂i given θi, from the empirical covariances of terms like U1Tij

and U1Sij . Moreover, if θi is drawn from a normal N(µ, φ) superpopula-
tion, the methods in Section 9.2 can be applied to obtain inference on
δ0 = δ(θ1T0, θ2T0).

The marginal approach is very flexible. For example, if T and S are di-
chotomous with values 1 or 0, we might choose θzSi to be the logarithms
of the marginal odds that T = 1 on treatment z in trial i and θzSi to be
marginal odds that S = 1. Inference on the log odds ratio, δ0 = θ1T0−θ2T0

follows directly from (9.1) and (9.2) with allowance for uncertainty in ψ.
The risk difference

δ0 = exp(δ1T0)/[1 + exp(δ1T0)] − exp(θ2T0)/[1 + exp(θ2T0)]

is non-linear in θ1T0 and θ2T0, and inference can be based on simulations
from the conditional distribution of θT0 given θ̂S0, with allowance for un-
certainty in ψ, as in GPHC.

Marginal models can also be used for survival data. For example, Tzij

might have a Weibull distribution, P (Tzij ≤ y) = 1 − exp(−λ2Tiy
αzT i).

Likewise, Szij might have a Weibull distribution with parameters λzSi

and αzSi. The alternative parameters θzTi = (ln(λzTi), αzTi)T and θzSi =
(ln(λzSi), αzSi)T might plausibly conform to the multivariate normal dis-
tribution. The distribution of the difference in median survival in groups
with Z = 1 and Z = 2, δ0 = [ln(2)/λ1T0]α1T0 − [ln(2)/λ2T0]α

2T0
, can be

estimated by simulations from the conditional distribution of θT0 given θ̂S0

and ψ̂, with bootstrap methods used to account for variability in ψ̂, as in
GPHC. Similar methods can be used for piecewise exponential models, as
in GPHC. A subtlety arises if S can censor T or T can censor S and the
censoring is informative. Then it may be necessary to posit a joint distrib-
ution for (T, S), rather than work simply with the marginal distributions,
in order to account for informative censoring.

The marginal-level approach can be used for many other types of endpoints
(GPHC).

The trial-level correlation R2
trial in equation (9.3) does not depend on within

individual correlations, namely correlations between T and S calculable
from Σ11i and Σ22i. It is not surprising, therefore, that marginal models
yield almost identical estimates of R2

trial as do corresponding bivariate mod-
els for T and S (Tibaldi et al. 2003, who use the term “univariate” model,
instead of marginal model). This is also an indication that marginal models
capture most if not all of the surrogate information for predicting treat-
ment effects on T at the trial level. The quantity R2

trial does not account
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for uncertainty in ψ̂. As pointed out by GPHC, a more realistic measure
would be 1 minus the ratio of the variance of δ̂0 based on θ̂S0 and ψ̂, with
bootstrap calculations to account for uncertainty in ψ̂, to the variance of δ̂0

based only on µ̂1T and µ̂2T , again with bootstrap calculations to account
for variability in µ̂1T and µ̂2T . Typically, this assessment of the value of
the surrogate will be less optimistic than that provided by R2

trial.

9.4 Discussion

The meta-analytic approach provides an empirical alternative to having to
make the strong assumption that T is independent of Z and X given S
in order to estimate effects of a new intervention on T from its effects on
S. Marginal models that allow one to estimate features of the marginal
distributions of T and S in treated and control groups capture most of
the available surrogate information on trial-level effects on T , without the
need for elaborate bivariate models. Bivariate models may be needed in the
presence of informative censoring, however. The ability of the surrogate to
predict intervention effects in a new study depends primarily on how tightly
summary parameters of the marginal distribution of T are related to such
summary parameters for S in a series of studies of interventions similar to
the new intervention.

There is a serious price to be paid in loss of precision from the meta-analytic
approach. Even with a large number of previous trials to estimate super-
population parameters and with a large new experiment on the surrogate,
the precision of the estimated treatment effect on T in the new study will
typically be much less than from a new study with measurements on T
itself. This loss of precision is inherent in the irreducible between-study
variation, characterized by φ. The loss of precision is compounded when
there are 10 or fewer previous studies, because an imprecise estimate of
the parameters degrades the precision of estimated treatment effects on T
considerably.

Apart from precision, several other limitations of the meta-analytic ap-
proach should be mentioned (see GPHC):

1. there may be disagreement as to which studies are similar enough to
be used in the meta-analysis;

2. published data may not include estimates of Σ11i and Σ22i, requiring
the use of unverified assumptions to estimate φ;

3. the normal superpopulation model may not be applicable, even after
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transformation of the parameters θ, and more complex methods may
be required for non-normal superpopulations models;

4. stopping the new study early on the basis of surrogate information
may restrict the ability of the study to detect unanticipated toxicities
of the new treatment; and

5. comprehensive evaluation of a new treatment may require examining
several clinical endpoints, so that T becomes a vector. In this case,
the use of surrogates becomes more complex and less appealing.

Further methodological research and experience with the method will be
needed to determine the extent to which meta-analysis can assist in the
evaluation and use of surrogate endpoints.
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Meta-analytic Validation with
Binary Outcomes

Didier Renard and Helena Geys

10.1 Introduction

In this chapter, a meta-analytic formulation for binary outcomes is pre-
sented. Unlike for continuous outcomes, where the multivariate normal
distribution and the linear mixed model provide natural paradigms for
model development, there is no such unambiguous model choice for bi-
nary outcomes. One typically distinguishes between marginal, conditional,
and random-effects models. Which family is to be preferred principally de-
pends on the research question(s) to be answered. In conditionally specified
models, the probability of a positive response for one outcome is modeled
conditionally on other outcomes for the same unit, whereas marginal mod-
els relate the covariates directly to the marginal probabilities. Models for
non-normal repeated measures pose non-trivial computational challenges.
In this chapter, a particular choice will be made based on a random-effects
formulation, to cope with the hierarchical structure of the meta-analytic
data, combined with a probit formulation for the pair of surrogate and true
endpoints.

10.2 Model Formulation

In order to extend the methodology described in Chapter 7, we adopt a
latent variable perspective. That is, we posit the existence of a pair of la-
tent variables (S̃ij , T̃ij) that are continuously distributed and related to the
actual response through a certain threshold. In the context of i.i.d. binary
data, this approach motivates a wide class of models, of which the stan-
dard logistic and probit regression models are special cases (Cox and Snell
1989). Precisely, we assume that an observed binary response is obtained
by dichotomizing an unobserved continuous variable based on the chosen
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threshold, which can be taken to be 0 without loss of generality. In other
words, it is assumed that a success Sij = 1 and Tij = 1, respectively, is
recorded if S̃ij > 0 and T̃ij > 0, respectively, and a failure Sij = 0 and
Tij = 0, respectively, otherwise.

With the additional assumption that (S̃ij , T̃ij) is normally distributed with
mean 0 and covariance matrix Σ, we can consider the following random-
effects model for the latent variables:

S̃ij = µS + mSi + (α + ai)Zij + ε̃Sij , (10.1)

T̃ij = µT + mTi + (β + bi)Zij + ε̃T ij . (10.2)

The above model is similar to (7.6)–(7.7) and the resulting model for the
observed binary outcomes is

Φ−1[P (Sij = 1|mSi, ai, mTi, bi)] = µS + mSi + (α + ai)Zij , (10.3)
Φ−1[P (Tij = 1|mSi, ai, mTi, bi)] = µT + mTi + (β + bi)Zij , (10.4)

where Φ(.) denotes the standard normal cumulative distribution function.

It is well-known that not all parameters are identifiable in model (10.1)–
(10.2). Thus, variance parameters σSS and σT T can be fixed, arbitrarily and
without loss of generality, to 1 and we can write

Σ =
(

1 ρST

ρST 1

)
. (10.5)

Using the above identifiability constraints, model (10.3)–(10.4) takes the
form of a multilevel probit model and can be regarded either as a bivariate
two-level model or a three-level model for binary response data (Goldstein
1995). It also belongs to the class of so-called generalized linear mixed
models (Breslow and Clayton 1993).

The above model formulation allows us to consider coefficients of deter-
mination defined in Chapter 7 without any further modification although,
formally, their interpretation is bound by the postulated latent variables
generating the observed binary responses. The coefficient R2

trial(f) is calcu-
lated using expression (7.11) and R2

indiv is equal to ρ2
ST .

10.3 Parameter Estimation

Two estimation methods are widely used within the family of general-
ized linear mixed models (GLMMs): maximum (marginal) likelihood (ML)
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and penalized quasi-likelihood (PQL). Likelihood estimation proceeds by
maximizing the marginal likelihood obtained after integrating out random
effects. If θ denotes the vector of all parameters, the contribution of the
ith trial to the likelihood, conditionally on bi = (mSi , ai, mT i , bi)T , is

Li(θ | bi) =
ni∏

j=1

P (Sij , Tij | bi). (10.6)

ML estimators are obtained by maximizing the integrated likelihood, with
ith contribution given by

Li(θ) =
∫

Li(θ | bi)φ(bi; D)dbi, (10.7)

where φ(bi; D) denotes the joint density function of the normal distribution
with mean 0 and covariance matrix D.

Unfortunately, (10.7) is intractable and necessitates the use of numerical
integration techniques, such as Gauss-Hermite quadrature or Monte Carlo
methods. In our context of (meta-analytic) surrogate endpoint validation,
this approach will likely demand a great deal of computational resources.

A number of researchers have attempted to circumvent the computational
burden caused by the need for numerical integration in the likelihood and
have suggested to use approximations. Breslow and Clayton (1993), for
instance, exploit the penalized quasi-likelihood (PQL) method by apply-
ing Laplace’s integral approximation. They also consider marginal quasi-
likelihood (MQL), a name they give to a procedure previously proposed
by Goldstein (1991). PQL and MQL can be viewed as iterative procedures
that entail fitting of linear multilevel models based on a first-order Tay-
lor expansion of the mean function about the current estimated fixed part
predictor (MQL) or the current predicted value (PQL).

As shown by Rodŕıguez and Goldman (1995), the PQL and MQL proce-
dures can be seriously biased. These authors’ simulations reveal that both
fixed effects and variance components may suffer from substantial, if not
severe, attenuation bias with binary response data. Goldstein and Rasbash
(1996) showed that including second-order terms in the PQL expansion
(PQL2) considerably reduces biases described by Rodŕıguez and Goldman.

Although PQL is computationally efficient, our personal experience led us
to believe that attenuation bias may be more severe in models more com-
plex than those evaluated by Goldstein and Rasbash (1996), and that the
algorithm tends to be numerically unstable, the problem being aggravated
with the use of PQL2 and/or with more complex models such as (10.3)–
(10.4). Because we have direct interest in variance-covariance parameters,
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another approach to parameter estimation would be preferable, while bear-
ing in mind that computational burden should be kept as low as possible.

A procedure that may fulfill such requirements is maximum pairwise likeli-
hood (MPL). Pairwise likelihood (PL) is a special example of what is called
pseudo-likelihood, first proposed by Besag (1975) and also termed compos-
ite likelihood by Lindsay (1988). The motivation behind pseudo-likelihood
estimation is to replace the likelihood by a function that is easier to evalu-
ate, and hence to maximize. Such a function is a product of conditional or
marginal densities. Thus, the main feature of a pseudo-likelihood function
is that it is composed of (pieces of) likelihoods and this can be exploited
to prove general results about the consistency and asymptotic normality of
pseudo-likelihood estimators.

As the name suggests, with PL we aim to replace the likelihood contribution
Li by the product of all possible pairwise probabilities. More formally, if we
let Y i denote the vector (Si1, . . . , Sini

, Ti1, . . . , Tini
), then the contribution

of the ith trial to the PL can be written

PLi =
2ni∏
j=1

∏
k>j

P (Yij , Yik). (10.8)

The terms in (10.8) reflect different types of association, as illustrated in
Figure 10.1:

(i) the association between the surrogate and true endpoints measured
on the same individual;

(ii) the association between the surrogate endpoints measured on two
distinct individuals;

(iii) the association between the true endpoints measured on two distinct
individuals;

(iv) the association between the surrogate and true endpoints measured
on two distinct individuals.

We emphasize that the bivariate probabilities in (10.8) are marginal, not
conditional. These probabilities can easily be expressed in terms of univari-
ate and bivariate probits. For example, the probability that both S and T
yield a positive outcome for subject j in trial i can be written as:

P [Sij = 1, Tij = 1] = P [S̃ij > 0, T̃ij > 0]

= Φ2

(
µS+αZij√
var(S̃ij)

,
µT +βZij√
var(T̃ij)

; ρij

)
.
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indiv. j indiv. k
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Tij (iii)� � Tik

FIGURE 10.1. Association structure between the surrogate and true endpoints for
two distinct individuals j and k in trial i.

In this expression, var(S̃ij), var(T̃ij) and ρij are obtained by selecting the
appropriate 2 × 2 submatrix of the (marginal) covariance matrix Vi =
ZiDZT

i +Ri, where Zi is a suitable design matrix and Ri is a block-diagonal
matrix with blocks equal to Σ.

Estimates of the parameters θ can be obtained by maximizing the log PL
function

p� =
N∑

i=1

p�i =
N∑

i=1

log PLi. (10.9)

Under standard regularity conditions, PL estimators are consistent and
asymptotically normally distributed. The asymptotic covariance matrix of
the PL estimator θ̃ can be approximated by the “sandwich estimator”
J−1KJ−1, where

J =
N∑

i=1

∂2p�i(θ̃)
∂θ∂θT

(10.10)

and

K =
N∑

i=1

∂p�i(θ̃)
∂θ

∂p�i(θ̃)
∂θT

. (10.11)

Alternatively, an estimator of

E

[
∂2 log PL

∂θ∂θT

]
,
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which does not require evaluation of second-order derivatives is given by

J =
N∑

i=1

2ni∑
j=1

∑
k>j

∂�ijk(θ̃)
∂θ

∂�ijk(θ̃)
∂θT

. (10.12)

Instead of maximizing (10.9), it might be preferable to maximize the func-
tion

p�∗ =
N∑

i=1

p�∗i =
N∑

i=1

1
2ni − 1

p�i. (10.13)

Weighting corrects for the fact that each response occurs (2ni−1) times in
PLi. Renard, Molenberghs, and Geys (2003) compared the weighted and
unweighted estimators in a simple random-intercept model and found that
the weighted estimator seems to perform slightly better under moderate
and strong dependence.

Renard et al. (2002) conducted a simulation study to investigate the per-
formance of the MPL estimator with model (10.3)–(10.4). The goal was to
evaluate the impact of such factors as number of trials and trial size on
R2

trial(f) and R2
indiv and to examine convergence issues. The results of these

simulations showed that both quantities tend to be biased in small samples
but, as expected, bias in R2

indiv can be eliminated by increasing overall sam-
ple size (i.e., trial size and/or number of trials), whereas bias in R2

trial(f) can
be reduced by increasing replication at the trial level. Convergence prob-
lems were observed more frequently when the sample size is small and the
magnitude of ρST increases. For comparison purposes, the PQL procedure,
as implemented in the SAS macro GLIMMIX (Wolfinger and O’Connell
1993), was also utilized to analyze some simulated data sets. The propor-
tion of cases where the algorithm failed to converge was dramatically high
(>50%).

To conclude, we briefly comment on the implementation of the algorithm.
To remove constraints on the matrix D, which should be positive-definite,
and thereby improve convergence properties of the algorithm, a Cholesky
decomposition D�T D� = D was used and the log PL function maximized
with respect to the elements of the Cholesky factor. To constrain the
residual correlation parameter ρST to lie in the interval [−1, 1], Fisher’s
z-transformation

ηST = log
(

1 + ρST

1 − ρST

)
.

was employed. The algorithm was implemented in SAS IML (SAS Institute
Inc. 1995) and maximization of the log PL function performed using the
NLPDD (Double-Dogleg) optimization routine. This optimization proce-
dure requires only function and gradient calls, which are much faster to
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TABLE 10.1. Acute migraine data. S = photophobia, T = absence of pain relief.

T

Z S 0 1

Active treatment 0 304 (78)† 87 (22)
1 7 (3) 203 (97)

Placebo 0 81 (68) 38 (32)
1 1 (1) 80 (99)

† Frequency (row percentage).

compute than the Hessian. Upon convergence of the algorithm, estimates
of the standard errors of θ̃ can be obtained as indicated above, with J
estimated using (10.10) or (10.12). In the former case, the final Hessian
matrix was computed using numerical second-order derivatives by forward
difference approximations.

10.4 Acute Migraine: A Meta-analysis of Ten
Clinical Trials

To illustrate the methodology, we use the data described in Section 4.2.9.
Recall that the data come from ten early phase clinical trials evaluating the
efficacy of several migraine-abortive therapies. Grouping units considered
in this analysis are centers.

Our motivation here is to investigate the relationship between migraine-
associated symptoms and migraine severity assessed at 2 hours. Our “true”
endpoint is taken to be absence of pain relief (= 1 if score ≥2) while our
surrogate endpoint is either photophobia, phonophobia, or nausea (= 1 if
score ≥2). Pooled data from the ten trials are presented in Table 10.1 for
photophobia. As can be seen, there is a strong relationship between S and
T . Table 10.2 shows MPL parameter estimates and their standard errors
obtained after fitting model (10.3)–(10.4) to these data.

Table 10.3 shows R2 measures for each of the three migraine-associated
symptoms versus absence of pain relief. For photophobia, there is a very
strong association, both at the individual and at the trial (center) level.
Figure 10.2 depicts (naively) the relationship between treatment effects
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TABLE 10.2. Acute migraine data. MPL estimates: S = photophobia, T = ab-
sence of pain relief.

Mean structure Covariance structure

Parameter Estimate s.e. Parameter Estimate s.e.

µS -0.335 0.101 dSS 0.095 0.087
α -0.085 0.053 dST 0.091 0.077
µT 0.091 0.115 dTT 0.097 0.077
β -0.145 0.060 dSa 0.018 0.012

dTa 0.026 0.017
daa 0.041 0.015
dSb 0.034 0.018
dTb 0.047 0.028
dab 0.048 0.021
dbb 0.060 0.036
ρST 0.931 0.102

TABLE 10.3. Acute migraine data. R2 measures.

Photophobia Phonophobia Nausea

R2
indiv 0.87 (0.19) 0.72 (0.20) 0.56 (0.19)

R2
trial 0.96 (0.13) 0.95 (0.08) 0.79 (0.03)

on S (photophobia) and T (absence of pain relief). Circles represented on
this plot were obtained by fitting a probit regression model for each center
separately, with size of the circle being proportional to size of the center.
Table 10.3 shows that photophobia also exhibits a rather strong association
at the trial level with reduced association at the individual level. Finally,
the association at both levels is lower for nausea symptoms, especially at the
individual level. From this analysis it seems that photophobia symptoms
are most closely related to severity of the migraine.

10.5 Concluding Remarks

Extension of the methodology discussed in Chapter 7 to the case of two
binary endpoints was based on a latent variable approach that allows us to
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FIGURE 10.2. Acute migraine data. Estimated treatment effects: S = photopho-
bia, T = absence of pain relief.

carry over measures of surrogacy R2
trial and R2

indiv in a natural way, under
the assumption that the latent variables are normally distributed. This, in
turn, dictates the use of a joint probit model for the surrogate and true
endpoints.

The major difficulty rests in parameter estimation since, on the one hand,
a direct likelihood approach would be computationally demanding and,
on the other hand, standard approximate methods such as PQL may not
be satisfactory because interest focuses on the random components of the
model. Use of the MPL procedure is therefore attractive as it provides a
net balance between computational burden and bias. Obviously, computa-
tional ease comes at a price, namely, some loss of efficiency compared to
a full likelihood approach. Renard, Molenberghs, and Geys (2003) found a
generally moderate (less than 20%) loss of efficiency relative to ML when
the procedure was tested in simple models.

It is well-known that GLMMs are challenging models to fit and can pose
numerous estimation problems. From our personal experience, it is not so
uncommon for the PQL algorithm to exhibit numerical instability and fail
to converge. The problem is even worse with PQL2 and/or more compli-
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cated models such as (10.3)–(10.4). MPL, however, tends to be more ro-
bust against convergence problems (Renard, Molenberghs, and Geys 2003),
which gives an added advantage to this procedure.

Numerical problems should nevertheless be expected to occur frequently
in the kind of applications sought here. In particular, such factors as the
number of trials, between-trial variability, and trial size can be critical for
improving convergence properties of the algorithm, just as they are for
normally distributed endpoints. Also, with binary outcomes the two-stage
approach does not always provide a valuable alternative to fitting model
(10.3)–(10.4) because estimates cannot be obtained in small units where
only positive or negative responses are recorded.

Finally, this methodology can easily be extended to deal with ordinal end-
points by extending the threshold model. An extension to mixed situations,
where one endpoint is continuous and the other discrete, is also feasible.
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Validation in the Case of Two
Failure-time Endpoints

Tomasz Burzykowski and José Cortiñas
Abrahantes

11.1 Introduction

In this chapter, we consider the case where both the surrogate and the true
endpoints are failure-time variables. Such a setting is commonly encoun-
tered, for instance, in oncology, where time-to-progression or progression-
free survival time are frequently used, for practical purposes, as a surrogate
for survival time (Ellenberg and Hamilton 1989, Fleming 1994, Lohrisch
and Piccart 2000). The validation of surrogates in this setting is compli-
cated by several factors, like the presence of censoring and competing risks,
or the absence of a unifying framework such as the multivariate normal
distribution. The latter is common to, for example, the binary case (see
Chapter 10). For all of these reasons, several authors attempted to develop
methods for the assessment of the validity of surrogates aimed particularly
at this setting. For instance, Chen et al. (1998) proposed an approach based
on a stochastic model for survival and disease-free survival developed by
Lagakos (1976). They used the model to develop a method allowing to ver-
ify the validity of Prentice’s definition (Prentice 1989; see also Chapter 5
of this volume). They applied the method to assess the validity of disease-
free survival as a surrogate for survival in adjuvant colorectal cancer trials.
On the other hand, Burzykowski et al. (2001) developed a method based
on an extension of the meta-analytic proposed by Buyse et al. (2000a). In
view of the drawbacks of the approaches derived from Prentice’s definition
(see Chapter 5), as compared to the meta-analytic approach (summarized
in Chapter 7), we will focus in this chapter on the methods based on the
latter approach.
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11.2 Meta-analytic Approach: The Two-stage
Model

To extend the approach proposed by Buyse et al. (2000a) to the case where
both the surrogate and the true endpoint are failure-time random variables,
Burzykowski et al. (2001) proposed to replace the first-stage model (7.1)–
(7.2) by a copula model (Genest and McKay 1986, Shih and Louis 1995a,
Joe 1997, Nelsen 1999). More specifically, they assumed that the joint sur-
vival function of (Sij , Tij) can be written as:

F (s, t) = P (Sij ≥ s, Tij ≥ t) = Cθ{FSij(s), FTij(t)}, s, t ≥ 0, (11.1)

where FSij and FTij denote marginal survival functions and Cθ is a copula,
i.e., a bivariate distribution function on [0, 1]2 with uniform margins. An
excellent review of the theory of copulas is given by Nelsen (1999).

An attractive feature of model (11.1) is that the margins do not depend on
the choice of the copula function. In principle, in model (11.1) any copula
function can be used. For simplicity, Burzykowski et al. (2001) considered
primarily one-parameter families; hence the use of a single parameter θ in
(11.1). In practical applications, they considered the following three copula
functions:

The Clayton copula Its intensive use in research and applications fol-
lowed the paper by Clayton (1978), where it was proposed in the
context of proportional frailty models. The copula function has got
the following form:

Cθ(u, v) = (u1−θ + v1−θ − 1)
1

1−θ , θ > 1. (11.2)

It implies a positive association when θ > 1; the strength of the asso-
ciation decreases with decreasing θ and reaches independence when
θ → 1.

The Hougaard copula It was first discussed by Gumbel (1960). How-
ever, it has been a focus of interest following a paper by Hougaard
(1986). The copula function is given by

Cθ(u, v) = exp[−{(− lnu)
1
θ + (− ln v)

1
θ }θ], 0 < θ < 1. (11.3)

It induces positive association among the failure-times; the strength
of the association decreases with increasing θ and reaches indepen-
dence when θ → 1.

The Plackett copula It is closely related to the Plackett family of bi-
variate distributions (Plackett 1965). The copula function is defined
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as follows:

Cθ(u, v) =

⎧⎨⎩
1 + (u + v)(θ − 1) − Hθ(u, v)

2(θ − 1)
if θ �= 1

uv otherwise
(11.4)

where

Hθ(u, v) =
√

[1 + (θ − 1)(u + v)]2 + 4θ(1 − θ)uv (11.5)

and θ ∈ [0, +∞]. Parameter θ has an interesting interpretation as the
constant global cross-ratio (Dale 1986). A value of θ = 1 corresponds
to independence.

To model the effect of treatment on the marginal distributions of Sij and
Tij in (11.1), Burzykowski et al. (2001) proposed to use the proportional
hazards model:

FSij(s) = exp
{
−
∫ s

0

λSi(x) exp(αiZij)dx

}
, (11.6)

FTij(t) = exp
{
−
∫ t

0

λTi(x) exp(βiZij)dx

}
, (11.7)

where λSi and λT i are trial-specific marginal baseline hazard functions and
αi and βi are trial-specific effects of treatment Z on the endpoints in trial
i. The hazard functions can be specified parametrically or can be left un-
specified as in the classical model proposed by Cox (1972a). When the
hazard functions are specified, estimates of the parameters for the joint
model (11.1) and (11.6)–(11.7) can be obtained using the maximum likeli-
hood method. Alternatively, the two-stage parametric procedure proposed
by Shih and Louis (1995a) can be used, in which parameters of the mar-
ginal survival functions FSij and FTij are estimated first (assuming inde-
pendence), and then θ is estimated conditional on the estimated values of
the marginal parameters. When the hazard functions are left unspecified,
a two-stage semi-parametric procedure of Shih and Louis (1995a), similar
to the parametric version just described, can be applied.

At the second stage, Burzykowski et al. (2001) proposed to use the model:(
αi

βi

)
=
(

α

β

)
+
(

ai

bi

)
, (11.8)

where the second term on the right hand side of (11.8) is assumed to follow
a zero-mean normal distribution with dispersion matrix

D =
(

daa dab

dab dbb

)
. (11.9)



166 Tomasz Burzykowski and José Cortiñas Abrahantes

In principle, in a fully parametric setting, parameters related to the baseline
hazards λSi could be used as well.

Note that the first-stage model (11.1) with the marginal proportional haz-
ard models (11.6)–(11.7) and the second-stage model (11.8) can be seen as
an analogue of the fixed-effects model, given by (7.1)–(7.2) and (7.14) in
Chapter 7. Recall that the latter model was developed based on a linear
mixed-effects model including random intercepts independent of random
treatment effects.

In view of using model (11.8) at the second stage of the two-stage ap-
proach, the quality of surrogate S at the trial level is assessed based on the
coefficient of determination

R2
trial(r) =

d2
ab

daadbb
. (11.10)

To assess the quality of the surrogate at the individual level, according to
the approach proposed by Buyse et al. (2000a), a measure of association
between Sij and Tij , calculated while adjusting the marginal distributions
of the two endpoints for both the trial and treatment effects, is needed.
For the case of two normally distributed endpoints, the natural measure
was the correlation coefficient R2

indiv (see equation (7.21), Chapter 7). It is
important to note that in that case the coefficient remains constant after
specifying trial-specific intercepts and treatment effects in (7.1)–(7.2).

For the case of the two failure-time endpoints the situation is different.
First, non-linear association between the endpoints is more likely. Second,
the correlation between Sij and Tij depends on the shape of the marginal
baseline hazard functions. It follows that if the general form of (11.6)–
(11.7) is assumed, there will be a separate correlation coefficient for each
trial. Consequently, the correlation is not a good candidate for the required
measure of the association between Sij and Tij . Instead, Burzykowski et
al. (2001) proposed to use Kendall’s τ (Wang and Wells 2000b), as it de-
pends only on the copula function Cθ and is independent of the marginal
distributions of Sij and Tij (Schweizer and Wolff 1981):

τ = 4
∫ 1

0

∫ 1

0

Cθ(u, v)Cθ(du, dv) − 1. (11.11)

It describes the strength of the association between the two endpoints re-
maining after adjustment, through the marginal models (11.6)–(11.7), for
trial- and treatment effects.
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11.2.1 Bias in the Estimation of Measures of Surrogacy

Under model (11.8)–(11.9), R2
trial(r) given by (11.10) might be estimated by

the square of the correlation coefficient between treatment effects αi and
βi. As such, the square of the sample correlation coefficient is a biased esti-
mator of the coefficient of determination (Lucke 1984). To reduce the bias,
several adjusted estimators have been proposed (Fisher 1924, Wherry 1931,
Olkin and Pratt 1958, Kendall and Stuart 1973, Lucke 1984). The adjusted
estimators are successful in reducing the bias present in the squared sample
correlation coefficient, but none of them has got uniformly minimum mean
square error (MSE). Because all of them can yield negative estimates of the
coefficient of determination, it has been proposed to use truncated versions
of the estimators by taking the maximum of their value and zero.

A more fundamental issue, however, is related to the fact that, in practice,
only estimates α̂i and β̂i, obtained from the first-stage copula model, are
available. It is known that in general ignoring the measurement error when
fitting regression models may lead to bias in the estimated coefficients of
the models (Fuller 1987, Carroll, Ruppert, and Stefanski 1995). As noted
by Burzykowski et al. (2001), irrespective of the choice of the estimator,
the resulting estimate of R2

trial(r), obtained by treating the estimates α̂i and
β̂i as equal to the true, unobserved treatment effects, might therefore be
biased. To see this more formally, assume that the estimated treatment
effects α̂i and β̂i follow the model:(

α̂i

β̂i

)
=
(

αi

βi

)
+
(

εai

εbi

)
(11.12)

where the estimation errors εai and εbi are normally distributed with mean
zero and covariance matrix:

Ωi =
(

σaa,i σab,i

σab,i σbb,i

)
, (11.13)

and (αi, βi)T follows model (11.8) with the dispersion matrix D given by
(11.9). Consequently, (α̂i, β̂i)T follows a normal distribution with mean
(α, β)T and dispersion matrix D + Ωi.

For the sake of illustration, let us assume for the time being that Ωi = Ω
(this assumption will be relaxed in what follows), with

Ω =
(

σaa σab

σab σbb

)
,

and denote by ρ the correlation based on Ω. The correlation between α̂i
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and β̂i can then be written as:

Corr(α̂i, β̂i) =
Corr(αi, βi)√

(1 + κa)(1 + κb)
+

ρ√
(1 + κ−1

a )(1 + κ−1
b )

, (11.14)

where κa = σaa/daa and κb = σbb/dbb denote the reliability ratios for α̂i and
β̂i. From (11.14) it follows that in the presence of independent estimation
errors R2

trial(r) will be underestimated, whereas for ρ �= 0, R2
trial(r) may be

either under- or overestimated.

Additional insight might be gained under the assumption that κa = κb = κ.
Then, (11.14) can be written as:

Corr(α̂i, β̂i) = Corr(αi, βi) +
κ

1 + κ
[ρ − Corr(αi, βi)] . (11.15)

It follows that if ρ > Corr(αi, βi), then the coefficient Corr(α̂i, β̂i) will over-
estimate Corr(αi, βi). And conversely, if ρ < Corr(αi, βi), then Corr(α̂i, β̂i)
will underestimate Corr(αi, βi).

The aforementioned results were given by Burzykowski et al. (2001). It
is worth mentioning that similar observations were made by Schaalje and
Butts (1993). In fact, (11.14) is equivalent to their equation (2.10).

To adjust bias in the estimation of R2
trial(r) for the measurement error in

α̂i and β̂i, Burzykowski et al. (2001) considered an approach based on
developments by van Houwelingen, Arends, and Stijnen (2002) (see also
Section 7.4.2). More specifically, the dispersion matrix D, defined by (11.8),
can be obtained by fitting the model resulting from (11.12)–(11.13) and
(11.8)–(11.9) to the estimated pairs (α̂i, β̂i). To fit the model, the covariance
matrices Ωi, defined by (11.13), might be assumed known and equal to their
estimates obtained from the bivariate copula model (11.1). An estimate
R̂2

trial(r) of R2
trial(r) can then be obtained from the resulting estimate D̂ of D

by means of the formula (11.10).

Alternatively, one might use the methods developed for the measurement
error models with an error in the equation and unequal error variances
(Fuller 1987). We will briefly summarize them here. Assume that the true
unobserved trial-specific treatment effects follow the simple linear regres-
sion model

βi = γ0 + γ1αi + εi, (11.16)

where γ0 and γ1 are constant coefficients and εi is a random variable with
mean 0 and variance σ. We will use γ to denote the vector (γ0, γ1)T . Let
the observed estimates α̂i and β̂i follow model (11.12); the normality as-
sumption is not crucial here. We will also assume that εi is independent of
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(εai, εbi). It follows that

Var(βi|αi) = σ, (11.17)
Var(βi) = γ2

1daa + σ, (11.18)

Var(β̂i|α̂i) = σ + σaa,i − 2γiσab,i + γ2
1σbb,i, (11.19)

Var(α̂i) = daa + σaa,i, (11.20)

where daa is an element of matrix D given in (11.9), while σaa,i, σab,i and
σbb,i are elements of matrix Ωi given in (11.13). Using (11.17) and (11.18),
the formula (11.10) can be re-written as

R2
trial(r) =

γ2
1daa

γ2
1daa + σ

. (11.21)

From (11.19) it follows that, given an estimate of γ, γ̃ say, and maximum
likelihood estimates Ω̂i of matrices Ωi, we can estimate σ by

σ̃ =
1

N − 2

N∑
i=1

(
β̂i − γ̃0 − γ̃1α̂i

)2

−
N∑

i=1

(
σ̂bb,i − 2γ̃1σ̂ab,i + γ̃2

1 σ̂aa,i

)
. (11.22)

On the other hand, equation (11.20) suggests that daa can be estimated by

d̃aa = Saa −
N∑

i=1

σ̂aa,i

N
, (11.23)

where

Saa =
1

N − 1

N∑
i=1

⎛⎝α̂i −
N∑

j=1

α̂j

N

⎞⎠2

is the sample variance of the estimates α̂i.

The estimators γ̃1, d̃aa and σ̃ can in turn be plugged in the formula (11.21)
to obtain an estimator of trial-level R2 adjusted for the measurement er-
rors Ωi.

One should note that none of the estimators given by (11.22) and (11.23)
is guaranteed to be positive. If a negative estimate is obtained for one of
them, the formula (11.21) produces an estimate of R2 outside the [0,1]
range. In such case the estimate has to be taken as non-defined.
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Fuller (1987) suggests several possible estimators of γ. The unweighted
method-of-moments-based estimator can be written as (Buonaccorsi 1995)

γ̃1 =
Sab −

∑N
i=1 σ̂ab,i/N

Saa −∑N
i=1 σ̂aa,i/N

, (11.24)

γ̃0 =
N∑

i=1

β̂i

N
− γ̃1

N∑
i=1

α̂i

N
, (11.25)

where

Sab =
1

N − 1

N∑
i=1

⎡⎣⎛⎝β̂i −
N∑

j=1

β̂j

N

⎞⎠⎛⎝α̂i −
N∑

j=1

α̂j

N

⎞⎠⎤⎦
is the sample covariance of the estimates α̂i and β̂i. The estimator given by
(11.24) and (11.25) can be modified to guarantee the existence of its finite
mean and variance in small samples. Moreover, it can be used to construct
a (weighted) generalized least squares (GLS) estimator. Fuller (1987) sug-
gests that in almost all practical situations the weighted estimator should
have a smaller variance than the unweighted one. Also, the weighted esti-
mator can be adjusted to guarantee its finite moments in small samples.
For all the estimators of γ, two asymptotic variance-covariance matrices
can be considered, depending on whether the normality of random errors
can be assumed or not (Fuller 1987, Section 3.1.2).

The estimator of R2
trial(r) based on formula (11.21) is easier to compute

than the one based on the maximum likelihood estimate of the dispersion
matrix D, D̂ say, obtained by fitting the model defined by (11.12)–(11.13)
and (11.8)–(11.9) to the estimated pairs (α̂i, β̂i). In particular, the former
estimator can be obtained in one step, while the latter requires an iterative
procedure, for which convergence is not guaranteed. On the other hand,
if the iterative procedure converges, it provides an estimate of the asymp-
totic variance-covariance of D̂, which allows to compute the variance of the
estimate of R2

trial(r). Computation of the variance of the estimator based
on the formula (11.21) would require resorting to bootstrap or simulation
methods, as no analytical formula for it can be given.

The above methodology can easily be extended to the case where the second
stage model (11.12) includes additional parameters, other than αi, of the
marginal model (11.6) for the surrogate endpoint.

11.2.2 Prediction of Treatment Effect on the True Endpoint

Assume we are interested in predicting treatment effect on a true endpoint
based on treatment effect on a surrogate in a new trial i = 0. Burzykowski
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et al. (2001) argue that the prediction for β0, under model (11.8)–(11.9),
could be based on the simple linear regression model (11.16). It is important
to recall that, in practice, only estimated treatment effects α̂i and β̂i will
be available. One should therefore consider using the methods appropriate
for the prediction when both the dependent and independent variables in a
simple linear regression model are subject to measurement error. It follows
that, in principle, three strategies for computing the prediction might be
followed (Buonaccorsi 1995):

1. Regress β̂i on α̂i for i = 1, . . . , N in the meta-analytic data, and carry
out the prediction for i = 0 as if there were no measurement error.

2. Regress β̂i on α̂i for i = 1, . . . , N and, recognizing the measurement
error in β̂i, obtain a corrected estimate of the residual variance σ (see
(11.16)) for purposes of computing the precision of the prediction.

3. Regress β̂i on α̂i for i = 1, . . . , N adjusting for the measurement error
in both β̂i and α̂i, and obtain estimates of γ0, γ1, and σ, defined in
(11.16), for purposes of computing the prediction and its precision.

The first two options would require that α̂0 is a random selection from the
same distribution that generated α̂i for i = 1, . . . , N (Fuller 1987, p.75;
Buonaccorsi 1995). Although in particular situations this condition may
be fulfilled, it will usually not be the case, as different trials included in
the analysis will differ with respect to sample size. Moreover, Schaalje and
Butts (1993) note that, although ignoring the measurement error does not
necessarily have to lead to predicted values much different from those that
would be obtained if the measurement error were accounted for, it is likely
to lead to substantially different estimates of the prediction variance. These
authors therefore state that “the most compelling reason for not ignoring
correlated measurement errors may be to obtain appropriate standard er-
rors of prediction and prediction intervals.”

In general, therefore, one should apply the third strategy and, following
Buonaccorsi (1995), predict β0 using

β̂0 = γ̃0 + γ̃1α̂0, (11.26)

where γ̃0 and γ̃1 are estimates of γ0 and γ1 from model (11.16), obtained
using (11.24) or one of its modifications (Fuller 1987), while α̂0 is obtained
from the marginal proportional hazard model (11.6) fitted to the data on
the surrogate in the new trial. Assuming negligible bias in γ̂0, γ̂1, the vari-
ance of the prediction error can be written (Buonaccorsi 1995) as

Var(β̂0 − β0) = σ + Var(γ̃0) + 2αCov(γ̃0, γ̃1)

+(α2 + daa)Var(γ̃1) + E(γ̃2
1σaa,0), (11.27)
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where σ is the residual variance defined in (11.16), α and daa are the mean
and variance of α0 specified in (11.8)–(11.9), and σaa,i is the measurement
error associated with α̂0 in (11.13). To estimate (11.27), one might use

V̂ar(β̂0 − β0) = σ̃ + V̂ar(γ̃0) + 2α̂0Ĉov(γ̃0, γ̃1)

+(α̂2
0 − σ̂aa,0)V̂ar(γ̃1) + γ̃2

1 σ̂aa,0, (11.28)

with σ̃ defined by (11.22) and σ̂aa,0 obtained from the marginal propor-
tional hazards model (11.6) (Buonaccorsi 1995).

Note that the variance in (11.27) consists of five different contributions.
The first one is related to the error in equation (11.16); the second, third
and fourth are associated with the uncertainty about γ; and the fifth results
from the error due to the estimation of treatment effect on the surrogate
in the new trial. It is worth noting that, if prediction without adjusting for
measurement error in treatment effects were considered, the fifth contribu-
tion to (11.27) would be equal to zero. The first one (residual variability),
on the other hand, would in general be larger, as the variability in observed
treatment effects due to the measurement error would not be removed. This
suggests that, if the measurement (estimation) error for treatment effect
on the surrogate in the new trial is small, the prediction based on (11.26)
can be less variable than the one resulting from the use of an estimate of
γ obtained without adjusting for the estimation of treatment effects.

Following Buonaccorsi (1995), it should be mentioned that some caution
is needed in constructing the prediction intervals for β0 using (11.26) and
(11.28). Naively, one might treat β̂0 as a normally distributed random vari-
able with variance (11.28). However, the properties of the estimator of
the variance (11.28) are not yet established and it is therefore not clear if
the normality assumption is justified. As suggested by Buonaccorsi (1995),
more research is needed in this area.

11.3 Analysis of Case Studies

Burzykowski et al. (2001) applied the proposed two-stage approach to two
case studies, described in Sections 4.2.2 and 4.2.3. To construct the bivari-
ate model at the first stage, the baseline hazard functions in (11.6)–(11.7)
were assumed to arise from a Weibull distribution. For both datasets the
Clayton, Hougaard, and Plackett models were considered, with copula func-
tions given by (11.2), (11.3) and (11.4)–(11.5), respectively.

In principle, one might also consider a version of (11.6)–(11.7) with common
(across centers/trials) baseline hazard functions. In fact, Burzykowski et
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al. (2001) did consider this option. One might regard it as a construction
similar to the reduced fixed-effects model, given by (7.16)–(7.17) and (7.14),
presented in Chapter 7. Recall that the latter model was developed based
on a linear mixed-effects model including only random treatment effects.

However, the common baseline-hazards model should be treated with cau-
tion, as in this case treatment effects become nonorthogonal across the
trials and their values (and the association) depend on the coding of the
treatment covariate (Burzykowski 2001). In principle, therefore, the use of
this model is not recommended.

Maximum likelihood parameter estimates for the copula models were ob-
tained using the Newton-Raphson procedure with numerical second order
derivatives implemented in SAS-IML 6.12 as routine NLPNRR (SAS In-
stitute Inc. 1995). Standard errors of the parameters were calculated using
the inverse of the observed matrix of second derivatives. The standard error
of τ̂ was computed from the variance of θ̂ using the delta method. Thus,
for the Clayton model:

Var(τ̂) ≈ 4 · Var(θ̂)

(θ̂ + 1)4
,

as for this model τ = (θ − 1)/(θ + 1). On the other hand, for the Hougaard
model τ = 1 − θ, so

Var(τ̂) = Var(θ̂).

For the Plackett copula there is no closed-form expression linking τ and θ.
Thus, in this case, τ̂ and its variance were computed directly from (11.11)
using numerical integration, according to the 9-interior-points rule for bidi-
mensional integrals on a square based (see Section 25.4.62 in Abramowitz
and Stegun 1972). For a square of size h2 the rule gives the approximation
error of h6. To apply the method, the [0, 1] × [0, 1] unit square was subdi-
vided into squares of size 0.012. The variance of τ̂ was computed from the
variance of θ̂ using the delta method, with derivatives w.r.t. θ computed
under the integral sign.

At the second stage, model (11.8)–(11.9) was used. Effectively, it implied
ignoring the information about the parameters related to the marginal
Weibull model for S in modeling the relationship between αi and βi.

11.3.1 Advanced Ovarian Cancer: Four Clinical Trials

These data were described in Section 4.2.2. Center was used as the unit of
analysis. Thus, the term “trial-specific” should be understood as meaning
“center-specific” when results of the analysis of the case studies throughout



174 Tomasz Burzykowski and José Cortiñas Abrahantes

TABLE 11.1. Advanced ovarian cancer. Results of the trial- and individual-level
surrogacy analysis.

Model Individual-level Trial-level R2
trial(r)

τ Unadjusted F

Clayton 0.87 [0.86, 0.88] 0.87 [0.80, 0.95] 0.94

Hougaard 0.85 [0.84, 0.86] 0.88 [0.81, 0.95] 0.83

Plackett 0.87 [0.86, 0.87] 0.87 [0.78, 0.95] 0.77

NOTE: F, adjusted estimates of R2
trial(r) obtained by using the estimator of γ

given by (11.24)–(11.25) (Fuller 1987); 95% confidence intervals in brackets (not

available for F).

this chapter. The analysis was restricted to centers with at least 3 patients
on each treatment arm. This constraint was adopted to ensure estimability
of the joint copula models, as they require the estimation of six marginal
parameters related to the marginal distributions of T and S for each trial
i. In general, the minimum for the estimability of the marginal parameters
would require at least three patients per center, with at least one observed
failure and at least one patient in each treatment group. As a result, data
for 39 centers (including the two smaller trials) were used, with a total
sample size of 1153 patients.

Table 11.1 presents the results of the analysis. For all models two values
of R2

trial(r) are given, both unadjusted and adjusted. The former was not
adjusted for the measurement error in α̂i and β̂i and obtained by calculat-
ing the correlation coefficient for pairs (α̂i, β̂i). The adjusted estimate was
computed using the method based on the developments by Fuller (1987),
as described in Section 11.2.1. The alternative adjusted estimates, result-
ing form the approach based on the results developed by van Houwelin-
gen, Arends, and Stijnen (2002), could not be obtained due to convergence
problems. The problems are due to the magnitude of the measurement er-
ror present in the estimates of treatment effects. For example, when the
estimated error is simply halved, the alternative adjusted estimates can be
computed.

Figure 11.1 shows a plot of the treatment effects on the true endpoint
(survival) by the treatment effects on the surrogate endpoint (progression-
free survival), corresponding to the three models considered in the analysis.
The effects are strongly correlated. The results shown in Table 11.1 confirm
this conclusion. The unadjusted estimates suggest values of R2

trial(r) around
0.90. The estimates of R2

trial(r) adjusted for the measurement error using the
approach by Fuller (1987) show somewhat more variability, ranging from
0.77 to 0.94.
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FIGURE 11.1. Advanced ovarian cancer. Treatment effects on the true end-
point (survival time) versus treatment effects on the surrogate endpoint (pro-
gression-free survival time) for all units of analysis. The size of each point is
proportional to the number of patients in the corresponding unit. The straight
lines are predictions from a (weighted by sample size) simple linear regression
model.

It may be of interest to compare these results to those obtained by Buyse
et al. (2000a) (see also Chapter 7, Section 7.5.3) by ignoring censoring and
assuming normal distribution for the logarithm of both endpoints. These
results were based on data for 1192 patients included into the meta-analysis
(excluding two individuals lost to follow up after randomization). In the
analysis of the trial-level surrogacy, unadjusted R2

trial(r) = 0.94 (standard
error 0.02). This value is somewhat higher than the unadjusted estimates
presented in Table 11.1. The values of Kendall’s τ shown in Table 11.1 are
close to 0.85 for all the models.

Although interpretation of the value of the coefficients of determination
and Kendall’s τ is subjective, based on the unadjusted estimates presented
in Table 11.1, Burzykowski et al. (2001) found it plausible to conclude that
progression-free survival might be a valid surrogate for survival in advanced
ovarian cancer for treatments of the type used in the trials analyzed. The
effect of treatment can be observed earlier if progression-free survival is
used instead of survival, although in this particular example the difference
is small. A trial that records progression-free survival might require less
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follow-up time and, possibly, less patients to conclude to the statistical
significance of a truly superior treatment than a trial that used survival
(Chen et al. 1998).

Predictions of the effect of treatment on survival time, based on the ob-
served effect of treatment on progression-free survival time are obviously
of interest. Table 11.2 reports the predicted treatment effects for several
centers selected randomly from the two large trials, as well as from the two
small trials (DACOVA and GONO), for which center is unknown. For illus-
trative purposes, for each unit two predictions were calculated: one based
on (11.8)–(11.9) without adjusting for measurement error in estimates of
treatment effects, as in Burzykowski et al. (2001), and one with an adjust-
ment (see Section 11.2.2). Variance of the predicted values adjusted for the
measurement error was estimated by formula (11.28), using the “robust”
estimate of variance-covariance matrix of γ̂0 and γ̂1 (Fuller 1987). In each
case, the data for the unit for which the prediction was computed were
excluded from fitting the model.

For each of the three copulas considered, the predicted values of β + b0 for
a particular unit are quite close, irrespective of whether the measurement
error in estimated treatment effects was adjusted for or not. The predicted
values obtained using the Plackett model are located between those pre-
dicted under the Clayton and Hougaard models. For the Hougaard and
Plackett copulas the values obtained with the adjustment for measurement
error are a bit more shrunken toward 0 than the values obtained without
the adjustment. For the Clayton copula the converse can be observed. The
predicted values, at least for the Hougaard and Plackett copulas, agree rea-
sonably well with the effects estimated from the data, although in certain
cases (for Center 8, for instance) they differ by approximately 50%.

As the differences between point estimates and predictions are expected,
the prediction error is obviously of interest. From Table 11.2 it can be seen
that ignoring the measurement error in treatment effects leads, at least
for the smaller centers, to substantially underestimated standard errors of
the predicted values. However, for DACOVA and GONO trials, the reverse
can be observed. The reason for this difference lies in the magnitude of
the standard error of the estimate of α0, as suggested at the end of Sec-
tion 11.2.2. For the smaller centers, the standard error is much larger and
it becomes the dominant contribution to the variance (11.27) of the pre-
diction adjusted for the measurement error. On the other hand, for the
DACOVA and GONO trials the standard error is much smaller and, com-
bined with residual variability σ, which is smaller than the one obtained
for a simple linear regression based on observed pairs (β̂i,α̂i), results in the
smaller prediction variance.



11. Validation in the Case of Two Failure-time Endpoints 177

TABLE 11.2. Advanced ovarian cancer. Predictions of treatment effect on survival
based on the estimated effect on progression-free survival.

Unit N α̂0 Ê(β + b0|a0) β̂ + b0
Clayton Hougaard Plackett

Center 6 17 1.40 (0.64) 1.59 (0.38) 1.26 (0.35) 1.38 (0.34) 1.14 (0.74)

1.73 (0.82) 1.15 (0.61) 1.35 (0.71)

Center 8 10 -1.00 (0.93) -1.04 (0.35) -0.85 (0.27) -0.90 (0.28) -1.43 (1.06)

-1.10 (1.07) -0.80 (0.78) -0.84 (0.84)

Center 37 12 -0.82 (0.68) -0.89 (0.38) -0.73 (0.34) -0.77 (0.35) -0.55 (0.78)

-0.96 (0.84) -0.69 (0.62) -0.73 (0.67)

Center 49 40 -1.14 (0.46) -1.23 (0.38) -1.02 (0.35) -1.07 (0.35) -1.06 (0.48)

-1.32 (0.60) -0.95 (0.47) -1.01 (0.52)

Center 55 31 -1.13 (0.47) -1.22 (0.38) -1.01 (0.35) -1.06 (0.35) -1.13 (0.49)

-1.31 (0.61) -0.95 (0.48) -1.00 (0.53)

Center 102 21 1.24 (0.64) 1.38 (0.39) 1.12 (0.35) 1.18 (0.35) 0.92 (0.78)

1.48 (0.80) 1.01 (0.61) 1.10 (0.67)

GONO 125 -0.24 (0.20) -0.24 (0.38) -0.21 (0.34) -0.21 (0.34) -0.16 (0.23)

-0.25 (0.31) -0.20 (0.31) -0.20 (0.33)

DACOVA 274 -0.26 (0.13) -0.27 (0.38) -0.23 (0.34) -0.24 (0.34) -0.21 (0.14)

-0.28 (0.26) -0.23 (0.28) -0.23 (0.31)

NOTE: N is the number of patients per unit. α̂0 and ̂β + b0 are treatment ef-

fects on progression-free survival and survival, respectively, estimated from the

data; Ê(β + b0|a0) is the predicted effect of treatment on survival, given its effect

upon progression-free survival (for each center, first line: simple regression; sec-

ond line: regression corrected for measurement error). Standard errors are given

in parenthesis.

11.3.2 Advanced Colorectal Cancer: Two Clinical Trials

These data were described in Section 4.2.3. Center was used as the unit
of analysis. Similar to the advanced ovarian cancer study presented in the
previous section, in the analysis of the advanced colorectal cancer data only
centers with at least 3 patients on each treatment arm were considered. As
a result, data for 48 centers were used, with the sample size amounting
to 642 patients. For comparability purposes, the common marginal hazard
functions version of (11.6)–(11.7) was applied to the same dataset.

Table 11.3 shows results obtained for the analysis. Figure 11.2 presents
a plot of the treatment effects on the true endpoint (survival time) by
the treatment effects on the surrogate endpoint (progression-free survival
time), corresponding to the models considered in the analysis. The picture
is very much different from that obtained for the ovarian cancer study.
For all models, the association of the trial-specific treatment effects is low.
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TABLE 11.3. Corfu study in advanced colorectal cancer. Results of the trial- and
individual-level surrogacy analysis.

Model Individual-level Trial-level R2
trial(r)

τ Unadjusted F

Clayton 0.603 [0.589, 0.617] 0.46 [0.25, 0.68] 0.54

Hougaard 0.632 [0.597, 0.667] 0.53 [0.34, 0.72] 0.64

Plackett 0.662 [0.652, 0.671] 0.43 [0.21, 0.65] 0.37

NOTE: F, adjusted estimates of R2
trial(r) obtained by using the estimator of γ

given by (11.24)–(11.25) (Fuller 1987); 95% confidence intervals in brackets (not

available for F).

The unadjusted estimates of R2
trial(r) lie around 0.45. Again, due to the

convergence problems, the estimates adjusted for the measurement error
using the approach of van Houwelingen, Arends, and Stijnen (2002) could
not be obtained. The estimates adjusted for the measurement error using
the approach by Fuller (1987) range from 0.37 to 0.64.

An interesting question is whether accounting for known important prog-
nostic factors in the marginal models (11.6)–(11.7) might change the results
of the analysis presented in Table 11.3. For the patients in the advanced
colorectal dataset, additional information about their performance status
(PS) at baseline was available. PS is an important prognostic factor in can-
cer. It measures the overall ability of a patient to perform daily self-care
and work activities. It is a categorical variable with the categories ranging
from 0 to 4, indicating the increasing level of restrictions experienced in this
ability. In the advanced colorectal dataset, 27.2% of patients had PS= 0
(“no restrictions”), 57.6% had PS= 1 (“restricted, but ambulatory and able
to carry out light work”) and 15.1% had PS= 2 (“ambulatory and capable
of all self-care but unable to carry out any work; up and about more than
50% of waking hours”). To investigate whether taking into account the in-
formation about PS would change the results of the analysis, all models
from Table 11.3 were re-fitted with PS included as a continuous covariate
in the marginal models (11.6)–(11.7). Results are shown in Table 11.4. The
estimated values of Kendall’s τ are very close to their counterparts in Ta-
ble 11.3. The estimates of R2

trial(r) are slightly increased, as compared to
their values from Table 11.3. A truly remarkable change can be seen for
the one adjusted for the measurement error using the approach of Fuller
(1987) for the Plackett copula, which increased from 0.64 to 0.80. Over-
all, however, the estimates presented in Table 11.4 do not offer convincing
evidence for an increased individual- or trial-level association.

To summarize, the results suggest that progression-free survival time is
neither trial-level nor individual-level valid. It should probably not be used
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FIGURE 11.2. Corfu study in advanced colorectal cancer. Treatment effects on the
true endpoint (survival time) versus treatment effects on the surrogate endpoint
(progression-free survival time) for all units of analysis. The size of each point
is proportional to the number of patients in the corresponding unit. The straight
lines are predictions from a simple linear regression model, that has been weighted
by sample size.

as a surrogate for survival in colorectal cancer for treatments of the type
used in the trials analyzed.

The marked difference between this example in colorectal cancer and the
previous one in ovarian cancer underscores the difficulty of making general
claims about surrogate endpoints. In both examples, the average time be-
tween progression and death is about six months (see Figures 4.3 and 4.4),
yet in colorectal cancer progression-free survival is not nearly as good a sur-
rogate for survival as in ovarian cancer. This may be due to the fact that in
advanced colorectal cancer, progression occurs early (median time to pro-
gression of about 6 months) and is often followed by aggressive second-line
therapies that may themselves have an impact on survival. In the pres-
ence of effective second-line therapies, progression-free survival might be
expected to be a poor surrogate for survival because of the “dilution” of
the effect of first-line therapy upon the final endpoint (Prentice 1989). The
examples analyzed illustrate that generally the validity of a particular end-
point as a surrogate may depend both on the treatment and the disease
under consideration.
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TABLE 11.4. Corfu study in advanced colorectal cancer. Results of the trial-
and individual-level surrogacy analysis adjusting for the information about per-
formance status.

Model Individual-level Trial-level R2
trial(r)

τ Unadjusted F

Clayton 0.612 [0.569, 0.654] 0.52 [0.33, 0.72] 0.66

Hougaard 0.631 [0.596, 0.665] 0.62 [0.46, 0.79] 0.80

Plackett 0.662 [0.653, 0.671] 0.52 [0.32, 0.72] 0.39

NOTE: F, adjusted estimates of R2
trial(r) obtained by using the estimator of γ

given by (11.24)–(11.25) (Fuller 1987); 95% confidence intervals in brackets (not

available for F).

11.4 The Choice of the First-stage Copula Model

As Burzykowski et al. (2001) suggested, the first-stage model (11.1) can be
based on any copula function. In particular cases the choice of the copula
can be motivated by previous experience. However, in most cases a data-
driven choice will be necessary. In this section, we will discuss and illustrate
several possible approaches.

Akaike’s (1978) information criterion (AIC) and Schwarz’s (1978) Bayesian
criterion (SBC) are useful for comparing non-nested models with different
numbers of parameters; the model with the largest value of AIC or SBC
is considered best. They are both defined as log(L)− h(q), where log(L) is
the log of the likelihood for a particular model and h(n, q) is a function of
the sample size n and the number of the parameters q in the model. For
AIC, h(n, q) ≡ q, while for SBC, h(n, q) ≡ q ln(n)/2.

Table 11.5 presents numbers of parameters q, log-likelihoods, and AIC val-
ues for the models considered in the analysis of advanced ovarian and col-
orectal cancer studies. For the advanced ovarian cancer data, the largest
value of the criterion is observed for the model based on the Plackett cop-
ula. For the advanced colorectal data the largest value is observed for the
Hougaard copula.

A method providing a check on whether a model provides adequate descrip-
tion of data at hand is to fit a larger model, for which the model of interest is
a special case. The family of copulas generated by the two-parameter Power
Variance Function (PVF) distributions includes the Clayton and Hougaard
copulas as special cases (Hougaard 2000). Consequently, the model using
the copula generated by a PVF distribution can be used to construct a like-
lihood ratio test of the hypothesis that the simpler Clayton or Hougaard
copula models, which only use a single parameter to describe the associ-
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TABLE 11.5. Advanced ovarian cancer and Corfu study in advanced colorectal
cancer. Likelihood-based characteristics for the copula models.

Model Ovarian cancer Colorectal cancer

q ln(L) AIC χ2 q ln(L) AIC χ2

Plackett 235 -2760.8 -2995.8 - 289 -501.8 -790.8 -

Clayton 235 -2966.2 -3201.2 280.8 289 -549.1 -838.1 135.4

Hougaard 235 -2825.9 -3060.9 0.2 289 -481.4 -770.4 0

PVF 236 -2825.8 -3061.8 - 290 -481.4 -771.4 -

NOTE: q: number of parameters in the model; χ2: likelihood-ratio test relative to

the PVF model.

ation structure, are providing acceptable fit. Unfortunately, this method
cannot be used for the Plackett model.

To illustrate the method, the model using a PVF copula was fitted to both
advanced ovarian and colorectal cancer datasets. The number of parameters
in the model, log-likelihood, and AIC are presented in Table 11.5. The table
includes also the values of the likelihood-ratio test statistics comparing
the fit of the Clayton and Hougaard models with that obtained using the
PVF copula. Note that the parameters for the Clayton and the Hougaard
copulas lie on the boundary of the parameter space for the PVF copula.
By analogy to the linear mixed models case (Stram and Lee 1994, 1995,
Verbeke and Molenberghs 2000, 2003), one should be careful in using χ2

1

as the asymptotic distribution of the likelihood-ratio test statistic in this
situation.

With due caution, however, it can be concluded that the large values of the
likelihood-ratio test statistic presented in Table 11.5 indicate that, in both
datasets, the fit of the PVF model was much better as compared to the
Clayton model. On the other hand, the difference for the Hougaard model
was much smaller. In both datasets, the difference in fit between the model
based on the Hougaard copula and the PVF model was negligible.

The choice of the copula model could also be guided by an assessment of
the overall goodness-of-fit. For the Clayton copula, several methods for such
an assessment are available. Shih and Louis (1995a) proposed a graphical
method based on the plot of the estimated Pearson’s correlation coeffi-
cient for martingale residuals based on a copula model. Shih and Louis
(1995b) proposed another graphical method based on the plot of the av-
erage of cluster-specific posterior expectations of the frailty distribution
versus time. Shih (1998) developed an overall test based on estimators of
Kendall’s τ . Glidden (1999) proposed a method based on a weighted sum
of the cluster-specific posterior expectations of the frailty.

Under the assumption that an uncensored sample of bivariate failure-times
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is available, Genest and Rivest (1993) developed a method of checking
goodness-of-fit applicable to any one-parameter bivariate Archimedean fam-
ily of copulas (see, e.g., Nelsen 1999). This family includes the Clayton
and the Hougaard copulas as special cases. Their approach was based
on the non-parametric estimation of a function that uniquely defines the
Archimedean copula. Recently, Wang and Wells (2000a) have extended the
ideas of Genest and Rivest to the case of a censored sample of bivariate
failure-time observations. Burzykowski (2001) applied the approach pro-
posed by Wang and Wells (2000a) to assess the fit of the Clayton and
Hougaard copulas to the advanced ovarian and colorectal cancer datasets.
Separate analyses were performed for each treatment arm within each
dataset. The results indicated that, for the advanced ovarian cancer data,
neither the Clayton nor the Hougaard copula provided a reasonable fit.
This conclusion corresponds to the result obtained using the AIC (see Ta-
ble 11.5), that suggested the choice of the Plackett copula. For the advanced
colorectal cancer data, the Wang and Wells (2000a) approach indicated
that the Hougaard copula offered a reasonable description of the data.
This conclusion is also in accordance with the one obtained using AIC (see
Table 11.5).

Recently, for a broad class of copulas, Andersen et al. (2004) have proposed
a class of tests of the hypothesis that the copula is in parametric family,
with unspecified association parameter, based on bivariate right censored
data. Also Durrleman, Nikeghbali, and Roncalli (2004) have developed pro-
cedures for the selection of an “optimal” copula, using the empirical copula
and copula approximations. These methods could be applied to choose the
appropriate copula function for model (11.1).

11.5 A Simulation Study

In this section, results of simulations investigating small-sample proper-
ties of the two-stage model based on the copula approach, proposed by
Burzykowski et al. (2001), are briefly reported. In these simulations, the
bias and variability for different estimators of individual-level and trial-level
association were investigated. Also, numerical properties (convergence) of
algorithms used for the computation of the estimators were evaluated. A
full description of the simulations was reported by Burzykowski (2001).
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11.5.1 Parameter Settings

In the simulation study, data for N independent randomized clinical tri-
als (N = 10, 20) with n (n = 50, 100, 200) patients each were generated.
Combinations of the assumed values of N and n implied total sample sizes
of 500, 1000, 2000, and 4000, corresponding to the sizes encountered in
meta-analyses in oncology. Within each trial a 1:1 randomization to one of
two treatments was assumed. For each of the N trials, pairs of (possibly
censored) failure-times Sij and Tij for n patients were generated. The times
were assumed to have the joint survival function defined by the Clayton
copula (see equation (11.2)). Parameter θ of the copula was assumed to
equal 3 and 9, resulting in Kendall’s τ of 0.5 and 0.9, respectively, for the
association between Sij and Tij . Marginally, Sij and Tij were assumed to
be exponentially distributed. Conditionally on Zij , the marginal survivor
functions FSij

and FTij
for Sij and Tij , respectively, were defined as

FSij
(sij) = exp {−sijλS exp[a0,i + (α + a1,i)Zij ]} , (11.29)

FTij
(tij) = exp {−tijλT exp[b0,i + (β + b1,i)Zij ]} , (11.30)

where λS and λT were fixed baseline hazards, α and β were fixed treatment
effects, and trial-specific random effects (a0,i, b0,i, a1,i, a1,i) followed a zero-
mean normal distribution with the variance-covariance matrix

D = σ

⎛⎜⎜⎝
1 ρ 0 0

1 0 0
1 ρ

1

⎞⎟⎟⎠ . (11.31)

Three censoring schemes were considered:

No censoring: In this case, no censoring was applied.

Homogeneous: Independent homogenous censoring of Sij and Tij (Houg-
aard 2000). This censoring scheme corresponds to the most typical
situation in randomized clinical trials, where the end of follow-up
terminates simultaneously observation of all patient’s characteristics.

Time-to-progression (TTP): On top of the independent homogeneous
censoring, Tij-dependent censoring of Sij was applied. As a result,
the observed value of Sij could not be higher then the observed value
of Tij . In oncology, this set-up corresponds to Sij being, for example,
time-to-progression and Tij being survival time.

The parameters for the independent homogeneous censoring were set so
that around 50% (30%) or 67% (50%) censored observations on T (S) were
generated.
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The simulations were performed using SAS Version 6.12. The following
values of the fixed parameters were used:

λT = 0.69 (median Tij = 1) and λS = 1.39 (median Sij = 0.54), corre-
sponding to the situation when the information about the surrogate
can be obtained earlier than about the true endpoint;

(α, β) = (0,0), i.e., no treatment effect on S and T , or (−0.4,−0.4), i.e., a
33% reduction in the failure rate for S and T ;

σ = 0.1 and 0.2; these values implied that in 95% of simulated trials, the
baseline hazards and treatment effects would vary, as compared to
the mean values, by factors ranging between 82%–122% (for σ = 0.1)
and 67%–149% (for σ = 0.2);

ρ =
√

0.5 and
√

0.9, resulting in trial-level R2 of 0.5 and 0.9, respectively.

For each resulting combination of the parameter values, 500 independent
samples were generated. In each sample, maximum likelihood estimates of
the parameters were obtained, assuming the fixed-effects representation of
(11.29)–(11.30):

FSij
(sij) = exp[−sijλSi exp(αiZij)], (11.32)

FTij
(tij) = exp[−tijλTi exp(βiZij)]. (11.33)

The estimates of Kendall’s τ and their standard errors were computed
from the estimates of the copula parameter θ using the relationship τ =
(θ − 1)/(θ + 1). To estimate R2

trial(r), trial-specific treatment effects αi and
βi, defined in (11.32)–(11.33), were assumed to follow the simple linear
regression model

βi = γ0 + γ1αi + εi, (11.34)

with εi distributed according to a zero-mean normal distribution with vari-
ance σ0. In particular, two strategies of estimating R2

trial(r) were used. In the
first one, the estimation error present in the estimates of treatment effects
αi and βi was ignored. The resulting “unadjusted” estimator, the square
of the sample correlation coefficient, Runadj say, of the estimated treatment
effects, will be denoted by R2

unadj. In the second strategy, the estimation
error was adjusted for, using the methods described in Section 11.2.1. In
particular, three different “adjusted” estimates were considered: one based
on the developments by van Houwelingen, Arends, and Stijnen (2000) and
two based on Fuller’s unweighted estimator of the coefficients of the regres-
sion line (11.34), without and with the adjustment for finite moments (see
equation (11.24) and the related discussion in Section 11.2.1).
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It should be noted that the marginal models (11.29)–(11.30) imply the
following regression equation for the trial-specific treatment effects αi and
βi from the fixed-effects representation (11.32)–(11.33):

E(βi|αi) = (β − ρα) + ραi. (11.35)

If α = β, the intercept (in parentheses) at the right hand of (11.35) equals
β(1−ρ). It follows that for ρ �= 1 and α = β �= 0 it is different from 0 and the
regression line does not pass through the origin. Clearly, this is the case for
the chosen values of α = β = −0.4. Admittedly, this choice is not the most
preferable from the surrogate endpoint validation point of view, as a zero
intercept would be expected for a “good” surrogate endpoint S (Daniels and
Hughes 1997). It did assure the comparability of the simulated percentages
of censored observations with the zero-treatment-effect situation, though,
and was therefore deemed sufficient for the purpose of assessment of the
influence of the treatment effect on the estimation of individual- and trial-
level measures of association.

11.5.2 Summary Conclusions

The results for the “homogeneous” and “TTP” censoring schemes were
quite similar. Moreover, the presence of treatment effect did not substan-
tially influence the bias in the estimation of the individual- and trial-level
association. No major problems with the convergence of the algorithm fit-
ting the bivariate Clayton copula model were observed. Non-convergence,
if any, was observed exclusively for τ = 0.9. The percentage of samples for
which non-convergence occurred never exceeded 1.4% (7 cases out of 500).

For the individual-level association, as measured by Kendall’s τ , the simula-
tions suggest a small positive bias for both censoring schemes. The was bias
below 1% for τ = 0.9, while for τ = 0.5 it was generally below 4%. Though
relatively small, the bias was statistically significantly different from zero.
It is worth mentioning that a similar finding was reported by Shih and
Louis (1995a), who observed a small positive bias for their estimator of
θ. From a practical point of view, estimates of the parameters describ-
ing the strength of the individual-level association, obtained by using the
two-stage approach to validate surrogate endpoints, might be considered
as upper-bounds for the true values of the parameters.

For τ = 0.5, under both censoring schemes, the mean “model-based” stan-
dard error of τ (the mean, over the simulated samples, of the estimates
of standard error obtained from the model) was approximately 50% larger
than the “empirical” error (standard error based on the estimates of τ
obtained for the simulated samples). For τ = 0.9, both mean errors were
approximately equal.
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In general, for the unadjusted estimator of the trial-level R2, the simulations
showed a positive bias under no censoring (except of the case of τ = 0.5 and
R2 = 0.9) and a negative bias under censoring (except for the case of τ =
0.9 and R2 = 0.5). The changes of the sign of the bias could be explained
by the amount of the correlation of measurement errors in the estimated
treatment effects for the surrogate and true endpoints (Burzykowski 2001).
Results similar to those observed under no censoring, for the case of two
normally distributed endpoints, were noted by Tibaldi et al. (2003).

For n = 200, with τ = 0.9 or no censoring, the absolute bias of R2
unadj

was below 10%, irrespectively of the censoring and other parameters. For
τ = 0.5, when censoring was present, the bias was substantial (around 25–
30%) even with n = 200. As the bias generally decreased with increasing
n, it might be conjectured that it should be possible to reduce the bias
further with a higher sample size n. It should be noted, though, that even
in the cases when the bias was relatively small, it was usually statistically
significantly different from zero.

In practice, one might expect surrogate endpoints to exhibit substantial
association with true endpoints at individual level. It follows that, with a
sample size of 100–200 patients per trial, the use of R2

unadj to estimate the
strength of the trial-level association might yield reasonable results. The
estimated value of Kendall’s τ can be used as an indicator of the possible
magnitude of the bias in the estimation.

A seemingly attractive alternative to R2
unadj is the use of the adjusted esti-

mators, which take into account the error associated with the estimation
of trial-specific treatment effects. The simulations indicated, though, that
the use of the estimators can be very much complicated by the problems
with obtaining admissible estimates. The limitation seemed somewhat less
severe for the estimators based on Fuller’s unweighted estimator of the co-
efficients of the regression line (11.34) than for the estimator based on the
developments by van Houwelingen, Arends, and Stijnen (2000). Neverthe-
less, when the use of the adjusted estimators would be most advantageous,
that is, for τ = 0.5, non-convergence rates for all the estimators, for the con-
sidered configurations of the simulation parameters, were generally high.
This effectively precludes their use in practice.

In the simulations, both the bias in the estimation of the trial-level R2

and the non-convergence rates for the adjusted estimators of R2 decreased
with increasing variability of the trial-specific random treatment effects σ,
increasing number of trials N and increasing number of patients per trial
n. This indicates that they both depend on the observed amount of het-
erogeneity in trial-specific treatment effects (which is related to σ and N)
and on the amount of the error associated with the estimation of the ef-
fects (which is related to n and the censoring). It may be concluded that,
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from the point of view of the assessment of the trial-level surrogacy, it is
important to have data from a large number of large sample-size trials, ex-
hibiting substantial variability in their treatment effects. Interestingly, the
last requirement distinguishes the meta-analytic approach to the validation
of surrogate endpoints from “ordinary” meta-analyses, where heterogene-
ity is considered rather a disadvantage from the inferential point of view
(Thompson 1994).

11.6 Alternatives to the Two-stage Modeling

The method proposed by Burzykowski et al. (2001) allows to extend the
approach of validation of surrogate endpoints developed by Buyse et al.
(2000a) to the important case of two failure-time endpoints. An important
issue related to the assessment of the estimated values of R2

trial(r) is the
possibility of bias induced by using the two-stage model and estimation of
treatment effects. To account for the bias, two methods of estimating the
coefficient of determination can considered (see Section 11.2.1): one based
on the model proposed by van Houwelingen, Arends, and Stijnen (2000),
and one based on the measurement error modelling developed by Fuller
(1987). However, the use of the methods is complicated by problems with
non-convergence of their numerical algorithms.

An optimal solution to the bias problem would be the use of a full mixed-
effects model with random intercepts and random treatment effects. Such a
model might replace the two-stage model (11.1)–(11.8) and allow for a full
generalization of the method proposed by Buyse et al. (2000a). To this aim,
one could consider a model in which the hazard functions for the surrogate
and true endpoints for individual j in trial i would be assumed to take the
following form:

λSij(sij) = λ0S(sij) expmSi
+(αi+ai)Zij+εij , (11.36)

λTij(tij) = λ0T (tij) expmT i
+(βi+bi)Zij+εij , (11.37)

where λS(s) and λT (t) are the baseline hazard functions for S and T ,
respectively, αi and βi are trial-specific fixed effects of treatment Zij ,
(mSi, mT i, ai, bi)T is a vector of trial-specific random effects, assumed to
be mean-zero normally distributed, and εij are individual random effects,
also assumed to be mean-zero normally distributed. Alternatively, model
(11.36)–(11.37) can be written as

log λSij(sij) = log λ0S(sij) + mSi + (αi + ai)Zij + εij , (11.38)

log λT ij(tij) = log λ0T (tij) + mT i
+ (βi + bi)Zij + εij . (11.39)
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In this form, it can be seen as a linear mixed-effects model on the log-hazard
scale, with a similar structure as model (7.6)–(7.7), originally proposed by
Buyse et al. (2000a) for the case of normally distributed surrogate and true
endpoints. Note that the role of the random effects εij is to induce asso-
ciation at the individual level. It is not absolutely necessary that they are
normally distributed; any other mean-zero distribution (e.g., log-gamma)
might be used.

Model (11.36)–(11.37) is an example of a multivariate frailty model. Mul-
tivariate frailty models are a topic of intensive research. The key problem
related to their use is the difficulty in fitting them, especially in the semi-
parametric proportional hazard setting. Within the frequentist framework,
a few successful implementations were formulated using REML estimation
(McGilchrist and Aisbett 1991, McGilchrist 1993), the Laplace approxima-
tion to the marginal likelihood function (Ripatti and Palmgren 2000), and
EM algorithm with either Gibbs sampling (Vaida and Xu 2000, Ripatti,
Larsen, and Palmgren 2002) or the Laplace approximation (Cortiñas and
Burzykowski 2004) applied in the expectation step. The computational
complexity of all the estimating approaches is high, though. In partic-
ular, none of them can effectively deal with model (11.36)–(11.37) with
individual-level random effects.

Alternatively, the use of the estimation approach developed for the multi-
level modeling by Goldstein (1995), could be considered. The methodology
can be adapted to the multivariate failure-time setting. An advantage would
be the availability of the software (MLwiN). Unfortunately, the estimation
methods are also not straightforward and can produce biased results in the
presence of censoring (Yang et al. 1999). In fact, all attempts to use this
methodology in the examples considered in this chapter failed.

It is worth pointing out that, although the structure of model (11.36)–
(11.37) offers a natural way to assess the validity of a surrogate at the
trial-level, it is much less suitable for the evaluation of the individual-level
validity. In fact, when the model is used in a semi-parametric setting (with
unspecified baseline hazards), no individual-level measure of association
between the surrogate and true endpoints can be constructed. Thus, from
a practical point of view, one would use model (11.36)–(11.37) to assess
only the trial-level validity of a surrogate.

However, if one is willing to resign from the assessment of the individual-
level validity of a surrogate, use of other, simpler modelling approaches
become possible. For instance, marginal models fitted using generalized
estimating equations might be considered (Wei, Lin, and Weissfeld 1992,
Gail et al. 2000). An interesting question is whether the use of marginal
models (e.g., Cox models with fixed trial-specific treatment effects), fitted
separately for each endpoint (i.e., not adjusting for the association between
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the surrogate and true endpoints at the individual level), might be also a
plausible strategy. Simulation results obtained for the case of normally
distributed endpoints indicate that such a strategy might actually work
(Tibaldi et al. 2003). The question was investigated by Cortiñas (2004). In
the next section we will shortly summarize results of his research.

11.7 Simplified Modeling Strategies

Just as discussed for the Gaussian case in Section 8.3, Cortiñas (2004)
considered the following three modelling strategies, in which the individual
level association is ignored.

Marginal Models with Fixed Effects (MFE). A Cox proportional
hazards model was fitted separately for each trial and also for each
endpoint:

λSij(sij) = λSi(sij)eαiZij , (11.40)

λT ij(tij) = λTi(tij)eβiZij , (11.41)

where αi, and βi are trial-specific treatment effects. At the second
stage the determination coefficient R2

trial(r) was computed from the
regression of β̂i on α̂i.

A Stratified PH Model with Random Treatment Effects (SRTE).
In this model, stratified baseline hazards were used to account for the
between-trial variability in baseline hazards, and trial-specific random
treatment effects were assumed:

λSij(sij) = λSi(sij)e(α+ai)Zij , (11.42)

λT ij(tij) = λTi(tij)e(β+bi)Zij , (11.43)

where α and β are fixed treatment effects, while ai and bi are trial-
specific random effects assumed to be zero-mean normally distributed
with variance-covariance matrix(

daa dab

dab dbb

)
. (11.44)

The trial-level validity of surrogate S was evaluated using the square
of the correlation coefficient based on the estimated covariance matrix
(11.44).
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TABLE 11.6. The mean relative bias (in %) for the estimates of R2
trial(r) for the

copula approach proposed by Burzykowski et al. (2001) and the simplified strate-
gies under no treatment effect (α = β = 0), for various number of trials N and
patients per trial n. In parentheses: the mean model-based and empirical (first
and second number, respectively) standard error.

N ni Copula MFE SRTE RITE

τ = 0.5, ρ2 = R2
trial(r) = 0.5

No censoring

10 50 -0.2(0.225;0.228) -0.5(0.236;0.220) -3.4(0.226;0.219) 0.6(0.230;0.218)

100 1.4(0.224;0.226) -7.6(0.241;0.223) -1.5(0.212;0.209) -1.5(0.218;0.214)

200 1.7(0.225;0.220) -9.7(0.240;0.226) -0.3(0.211;0.210) -0.3(0.214;0.210)

20 50 5.5(0.154;0.164) -1.0(0.161;0.166) -2.7(0.169;0.156) -1.7(0.162;0.157)

100 2.6(0.158;0.156) -8.7(0.165;0.169) -0.6(0.151;0.145) -0.6(0.149;0.146)

200 0.9(0.158;0.168) -12.5(0.167;0.170) -0.3(0.141;0.135) -0.2(0.137;0.134)

Homogeneous censoring 50%/30% (T/S)

10 50 -12.6(0.228;0.233) -4.7(0.235;0.235) -4.9(0.247;0.239) -4.3(0.256;0.243)

100 -7.2(0.228;0.235) -4.1(0.239;0.227) -3.3(0.229;0.222) -2.1(0.228;0.221)

200 -1.9(0.228;0.225) -10.4(0.240;0.222) -4.1(0.229;0.223) -2.6(0.225;0.221)

20 50 -19.1(0.167;0.167) -4.6(0.164;0.161) -5.7(0.161;0.154) -3.7(0.164;0.157)

100 -9.7(0.163;0.169) -6.0(0.164;0.166) -2.9(0.154;0.148) -1.8(0.151;0.147)

200 -5.4(0.163;0.162) -12.1(0.167;0.163) -2.5(0.147;0.142) -1.7(0.144;0.141)

τ = 0.9, R2
trial(r) = ρ2 = 0.9

No censoring

10 50 0.7(0.065;0.065) -1.8(0.094;0.085) 2.1(0.091;0.076) -1.3(0.076;0.064)

100 -0.7(0.073;0.082) -1.7(0.092;0.079) -0.7(0.078;0.068) -0.7(0.074;0.067)

200 -0.2(0.071;0.068) -4.1(0.105;0.086) -0.6(0.069;0.065) -0.2(0.073;0.069)

20 50 1.0(0.042;0.045) -1.1(0.054;0.054) -0.4(0.056;0.043) -0.2(0.049;0.044)

100 0.3(0.045;0.044) -1.4(0.055;0.049) -0.7(0.046;0.037) -0.6(0.043;0.039)

200 -0.2(0.046;0.049) -3.4(0.063;0.060) -0.2(0.041;0.039) -0.1(0.042;0.039)

Homogeneous censoring 50%/30% (T/S)

10 50 -3.1(0.086;0.096) -10.2(0.139;0.128) -8.5(0.123;0.106) -7.9(0.113;0.101)

100 -1.4(0.077;0.079) -9.3(0.135;0.120) -8.6(0.116;0.108) -7.6(0.111;0.104)

200 -1.1(0.075;0.086) -10.5(0.140;0.139) -8.4(0.140;0.134) -7.3(0.137;0.133)

20 50 -2.8(0.054;0.089) -9.6(0.085;0.086) -8.8(0.083;0.069) -6.8(0.076;0.068)

100 -1.0(0.049;0.053) -9.1(0.084;0.083) -7.8(0.078;0.070) -6.4(0.073;0.068)

200 -1.0(0.049;0.050) -8.9(0.083;0.080) -7.3(0.080;0.075) -6.1(0.079;0.075)

Random Intercepts and Treatment Effects (RITE). In this model,
trial-specific random intercepts and treatment effects were specified:

λSij(sij) = λSi(sij)emSi
+αZij+aiZij , (11.45)

λTij(tij) = λT i(tij)emT i
+βZij+biZij , (11.46)

where (mSi
, mT i

, ai, bi)T is a vector of random effects, assumed to be
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TABLE 11.7. The mean relative bias (in %) for the estimates of R2
trial(r) for the

copula approach proposed by Burzykowski et al. (2001) and the simplified strate-
gies under no treatment effect (α = β = 0), for various number of trials N and
patients per trial n. In parentheses: the mean model-based and empirical (first
and second number, respectively) standard error.

N ni Copula MFE SRTE RITE

τ = 0.5, ρ2 = R2
trial(r) = 0.9

No censoring

10 50 -8.5(0.114;0.119) -30.7(0.211;0.201) -30.9(0.187;0.179) -28.1(0.181;0.171)

100 -4.8(0.096;0.094) -27.5(0.201;0.186) -25.4(0.173;0.159) -23.3(0.168;0.159)

200 -3.7(0.088;0.105) -24.4(0.191;0.186) -17.6(0.122;0.121) -15.2(0.126;0.119)

20 50 -8.0(0.074;0.078) -30.3(0.140;0.143) -31.5(0.135;0.125) -31.1(0.131;0.125)

100 -4.8(0.063;0.065) -27.3(0.133;0.135) -23.2(0.113;0.105) -21.7(0.106;0.103)

200 -2.6(0.055;0.057) -24.5(0.128;0.120) -16.1(0.076;0.071) -14.4(0.074;0.069)

Homogeneous censoring 50%/30% (T/S)

10 50 -32.7(0.202;0.206) -36.9(0.224;0.217) -36.6(0.215;0.200) -34.5(0.213;0.202)

100 -20.8(0.166;0.173) -31.1(0.213;0.199) -31.0(0.187;0.178) -30.7(0.184;0.175)

200 -12.2(0.131;0.140) -28.3(0.203;0.191) -27.3(0.167;0.158) -25.5(0.162;0.154)

20 50 -33.4(0.141;0.151) -36.2(0.151;0.148) -36.4(0.148;0.135) -34.2(0.140;0.134)

100 -20.0(0.111;0.107) -31.0(0.141;0.140) -30.4(0.122;0.115) -29.0(0.119;0.114)

200 -12.4(0.089;0.092) -28.3(0.136;0.124) -26.3(0.099;0.093) -24.6(0.098;0.092)

τ = 0.9, ρ2 = R2
trial(r) = 0.5

No censoring

10 50 16.2(0.211;0.209) 71.7(0.110;0.096) 72.8(0.086;0.079) 71.2(0.084;0.071)

100 6.9(0.225;0.217) 66.7(0.123;0.108) 72.5(0.107;0.089) 71.0(0.096;0.087)

200 3.9(0.224;0.217) 55.7(0.153;0.125) 60.6(0.091;0.087) 59.4(0.095;0.091)

20 50 10.2(0.150;0.161) 73.0(0.064;0.061) 75.4(0.055;0.047) 73.5(0.055;0.049)

100 5.3(0.156;0.155) 67.9(0.074;0.068) 68.9(0.059;0.049) 67.8(0.053;0.050)

200 0.8(0.159;0.153) 57.0(0.095;0.089) 57.1(0.058;0.055) 56.7(0.060;0.057)

Homogeneous censoring 50%/30% (T/S)

10 50 16.6(0.209;0.215) 60.8(0.141;0.127) 58.3(0.123;0.106) 55.8(0.116;0.101)

100 10.5(0.215;0.220) 61.5(0.139;0.125) 57.5(0.126;0.111) 55.2(0.115;0.108)

200 5.1(0.220;0.225) 56.8(0.150;0.146) 48.9(0.149;0.140) 47.3(0.145;0.139)

20 50 16.1(0.147;0.138) 61.7(0.087;0.084) 60.2(0.081;0.069) 58.4(0.075;0.068)

100 10.1(0.151;0.156) 61.5(0.088;0.090) 53.6(0.080;0.071) 50.2(0.077;0.071)

200 4.6(0.156;0.159) 59.9(0.090;0.088) 49.1(0.085;0.079) 44.9(0.084;0.079)

zero-mean normally distributed with variance-covariance matrix

D =

⎛⎜⎜⎝
dSS dST dSa dSb

dST dT T dTa dTb

dSa dTa daa dab

dSb dSa dab dbb

⎞⎟⎟⎠ . (11.47)

The association at the trial-level was evaluated using the determina-
tion coefficient R2

trial(r) computed using the estimated components of
matrix (11.47).
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The models were fitted using SAS PHREG procedure for MFE approach
and the EM algorithm with the Laplace approximation at the E-step (Cor-
tiñas and Burzykowski 2004) for the SRTE and RITE approaches. The
performance of the simplified strategies was compared with the copula ap-
proach developed by Burzykowski et al. (2001) in a simulation study. The
simulations were conducted using a similar configuration of the parameters
as in Burzykowski (2001) (see Section 11.5.1).

The results of the simulations indicated that the presence of a treatment
effect did not have much influence on the relative bias of the estimation of
R2

trial(r) for any of the simplified strategies. Tables 11.6 and 11.7 show the
simulation results, assuming no treatment effect, for various combinations
the number of trials N , number of patients per trial n, individual-level τ
and R2

trial(r) = ρ2 = 0.5. None and moderate (50% censored observations for
T , 30% for S) censoring schemes are presented. Note that for the copula
approach, the results are based on 500 datasets, while for the simplified
strategies they are based on 250 datasets.

A few general conclusions can be drawn. Under censoring, the absolute
relative bias is slightly higher as compare to no censoring. For MFE, model-
based estimates of the standard error of R2

trial(r) overestimate the empirical
standard errors. The other approaches yield comparable model-based and
empirical standard errors of the estimates of R2

trial(r).

For τ = 0.5 and ρ2 = 0.5 (see Table 11.6), RITE approach yields the small-
est absolute relative bias, followed by SRTE approach, whereas the largest
bias is observed for MFE approach. Interestingly, for the latter the bias
seems to increase with the size of the trial. It can also be noted that the
estimators obtained for RITE and SRTE approaches show a similar em-
pirical variability, with the method proposed by Burzykowski et al. (2001)
and MFE approach expressing a larger variability. For the other settings
of (τ, ρ2), the smallest absolute relative bias is observed in general for the
copula approach proposed by Burzykowski et al. (2001), while the MFE
approach yields estimates with the largest absolute value of relative bias.
It is worth noting that the three simplified strategies produce substantially
biased estimates of R2

trial(r) when the association at the individual level
(measured by τ ) and the association at the trial level (measured by ρ2)
are different (see Table 11.7). In these cases, the copula approach is giving
markedly better results. It is interesting to note that for a fixed value of τ ,
only moderate changes in the magnitude of the variability of the estimates
produced by the simplified strategies are observed for different values of ρ2.
This suggests that, when the individual-level association is ignored in the
fitting process, the value of τ determines the magnitude of the variability
of the estimates.
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From the evaluation of the relative bias one can conclude that the use of the
simplified strategies does not yield reasonable results. This is in contrast
to the case of normally distributed data considered in Section 7.4.2. There
may be several reasons for that. For instance, Cortiñas (2004) found that
ignoring the individual-level association in the simplified models leads to
severe bias in the estimated cumulative baseline hazard functions. This
bias can result in distorted estimates of the mean structure parameters
and, consequently, in biased estimation of the trial-level association. It may
be especially relevant for the MFE approach since, in this method, the
strength of the trial-level association is estimated from the estimates of
the fixed treatment effects. Also, as reported by Cortiñas et al. (2004; see
also Chapter 8) ignoring a level when fitting a hierarchical model results
affects the estimates of the strength of the association at the higher level.
Similar effects can be present in the estimates obtained for STRE and
RITE approaches. More investigation is needed to arrive at a more precise
explanation of the differences in the relative bias observed in Tables 11.6
and 11.7.

11.8 Discussion

As discussed earlier, from a practical point of view, it is unrealistic to expect
perfect surrogacy. Consequently, an application of the method developed
by Buyse et al. (2000a) requires the specification of a threshold allowing
for an assessment of the proximity to 1 of the value of association measures
such as Kendall’s τ or the coefficients of determination R2

trial(r) and R2
indiv.

On purely theoretical grounds, however, it is difficult to propose such a
threshold. Any other choice is necessarily subjective. Preferably, it should
be guided by practical experience in using the definition of validity of a
surrogate proposed by Buyse et al. (2000a). For obvious reasons, such an
experience thus far is very limited. Taking the above into account, observed
values of R2

trial(r) around 0.9 have been judged as “sufficiently close to 1,”
while those around 0.5 as “not close to 1.”

One might argue whether the estimates and intervals for R2
trial(r) presented

in Table 11.1 constitute enough evidence to consider progression-free sur-
vival a valid surrogate for survival in advanced ovarian cancer. However,
even if it is judged insufficient, from Table 11.3 it is clear that for advanced
colorectal cancer there is even less evidence. This possibility of assessment
of strength of evidence for validity of a surrogate can be seen as an advan-
tage of the method proposed by Buyse et al. (2000a).

The method proposed by Burzykowski et al. (2001) allows to extend the
approach of validation of surrogate endpoints developed by Buyse et al.
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(2000a) to the case of two failure-time endpoints. It is worth noting that
the proposed method can be also used in the case of an uncensored con-
tinuous surrogate with an arbitrary marginal distribution (for example,
normal). The only necessary adjustment to the developments presented in
Section 11.2 would be the choice of the marginal model corresponding to
(11.6).

A practical issue related to the use of the copula approach is the need for a
relatively complex numerical implementation, for which no standard soft-
ware exists. From this point of view, the possibility of using a simplified
modelling strategy (e.g., marginal Cox models) would be an attractive so-
lution. Unfortunately, the preliminary results obtained by Cortiñas (2004)
suggest that, in contrast to the findings of Tibaldi et al. (2003), this may
not be a valid option. This topic requires certainly more research.

An important limitation of the copula models and, in fact, of all the models
mentioned in this chapter, is that the two endpoints are treated symmetri-
cally. In general, this need not be the case, as is clear from the examples an-
alyzed: progression-free survival time cannot be longer than survival time.
Obviously, this calls for caution in interpreting the results on the validity of
progression-free survival as a surrogate for survival time presented in this
chapter. Note, however, that the results presented in Section 11.4 suggest
that, at least for the advanced colorectal cancer example, the Hougaard
copula might provide a reasonable description of the data. To overcome
the problem, it would be of interest to develop an approach allowing for
a non-symmetrical treatment of the endpoints, for example using a con-
ditional survival type model (Arnold 1995). Alternatively, the method of
estimation of copula models when one of the failure-time variables might
be censored by the other, recently proposed by Wang (2003), might be
considered. As the method was developed in a one-sample setting, it would
need an extension allowing for adjustment for covariates, though.
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An Ordinal Surrogate for a
Survival True Endpoint

Tomasz Burzykowski

12.1 Introduction

In this chapter, we consider the case where the surrogate is an ordinal
or binary variable, whereas the true endpoint is a failure time. As the
basic paradigm, we will consider the use of the shrinkage of tumor mass,
also called a “tumor response,” as a surrogate for survival time in cancer
research.

The most meaningful and the most objectively measured endpoint used to
evaluate new cancer treatments is overall survival time. However, it does
require a long observation time and as such may not be optimal for a fast
assessment of therapeutic advances. The Food and Drug Administration
(FDA) has stated in its recommendations for accelerated approval of inves-
tigational cancer treatments, that “for many cancer therapies it is appropri-
ate to utilize objective evidence of tumor shrinkage as a basis for approval,
allowing additional evidence of increased survival and/or improved quality
of life associated with that therapy to be demonstrated later” (Food and
Drug Administration 1996). As a matter of fact, tumor response has long
been the cornerstone of the development of cytotoxic therapies for solid
tumors, even though the effect of a tumor response upon the patient’s sur-
vival has often been questioned (Anderson, Cain, and Gelber 1983, Oye
and Shapiro 1984, Ellenberg and Hamilton 1989, Buyse and Piedbois 1996,
Lohrisch and Piccart 2000).

Due to the widespread use of tumor response to evaluate new cancer treat-
ments, the question about the validity of the use of tumor response as a
surrogate for survival did attract some attention. In the attempts to ad-
dress the issue, different statistical approaches were used. For instance,
A’Hern, Ebbs, and Baum (1988) analyzed summary data for 50 published
chemotherapy trials in advanced breast cancer. They used a weighted lin-
ear regression model to investigate the association between the odds ratio,
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that summarized the difference in response rates in pairs of arms within the
same study, and its corresponding ratio of median survival times. Torri et
al. (1992) pointed out to several limitations of the model used by A’Hern,
Ebbs, and Baum (1988) and proposed to use an “errors in variables” model,
aiming at the evaluation of the association between the odds of tumor re-
sponse and the median survival. They applied the model to summary data
from 26 published randomized clinical trials in chemotherapy-treated pa-
tients with advanced ovarian cancer. Chen et al. (2000) used a Bayesian
model to investigate the relationship between response rates and the me-
dian survival observed in Phase II studies with the median survival observed
in subsequent Phase III studies. They applied the method to summary data
for nine pairs of Phase II-Phase III studies in extensive-stage small-cell lung
cancer.

It is interesting to note that all the aforementioned attempts to address
the issue of the validity of tumor response as a surrogate for survival in
cancer clinical trials used meta-analytic data. Unfortunately, they all suf-
fered from various drawbacks. For instance, they all used summary data
from published studies. Consequently, they were subject to publication bias.
More importantly, however, they did not explicitly focus on the precision of
the prediction of the treatment effect on the true endpoint (survival) from
the effect on the surrogate (tumor response). As argued in Chapters 7 and
9, the precision of the prediction is the key issue in the assessment of the
validity of a surrogate endpoint.

In this chapter, therefore, we will describe an approach that addresses
this key issue. In particular, we will review an extension of the meta-
analytic approach of Buyse et al. (2000a) (see also Chapter 7) developed
by Burzykowski, Molenberghs, and Buyse (2004). This extension builds
upon the developments by Molenberghs, Geys, and Buyse (2001) and uses
the copula models described in Chapter 11. It has been used to study the
validity of tumor response as a surrogate for survival in assessing the ben-
efits of various treatment regimens for advanced colorectal cancer (Buyse
et al. 2000b, Burzykowski, Molenberghs, and Buyse 2004). For this pur-
pose, the data from four meta-analyses of advanced colorectal cancer trials
(Section 4.2.4) were used.

12.2 A Meta-analytic Approach: The Two-stage
Model

Assume that the true endpoint T is a failure-time random variable and
the surrogate S is a categorical variable with K ordered categories, i.e., an



12. An Ordinal Surrogate for a Survival True Endpoint 197

ordinal variable (Agresti 1990). For each of j = 1, . . . , ni patients from trial
i (i = 1, . . . , N) we thus have quadruplets (Xij , ∆ij , Sij , Zij), where Xij is
a possibly censored version of survival time Tij and ∆ij is the censoring
indicator assuming value of 1 for observed failures and 0 otherwise.

To extend the approach proposed by Buyse et al. (2000a) to the afore-
mentioned setting, Burzykowski, Molenberghs, and Buyse (2004) proposed
to replace the first-stage model (7.1)–(7.2) by a bivariate copula model
(Genest and McKay 1986, Shih and Louis 1995a, Joe 1997, Nelsen 1999)
for the true endpoint Tij and a latent continuous variable S̃ij underlying
the surrogate endpoint Sij . Specifically, to model Sij they proposed the
proportional odds model:

logit{P (Sij ≤ k | Zij)} = γik + αiZij . (12.1)

The model be interpreted as assuming a logistic distribution for the latent
variable S̃ij . The value of the marginal cumulative distribution function of
S̃ij , given Zij = z, will be denoted by FS̃ij

(s; z). Note that, in the case
of a binary surrogate Sij , model (12.1) is equivalent to logistic regression
model.

It is worth noting that estimation of model (12.1) requires that in each trial
all response levels are observed. In practice, it often happens that in some
trials not all levels are observed. To adapt model (12.1) for such a case, it
can be rewritten as follows:

logit{P (Sij ≤ k | Zij)} = η0
k + ηi + ηik + αiZij , (12.2)

where, for identifiability purposes, one might specify that, for example,

η1 = η11 = . . . = η1,K−1 = 0.

If, for a particular trial, i0 say, not all levels of S are observed, one might
use model (12.2) with the terms ηi01, . . . , ηi0,K−1 constrained to 0. As a
special case, the following model might be considered:

logit{P (Sij ≤ k | Zij)} = η0
k + ηi + αiZij . (12.3)

The model assumes a fixed set of cutpoints η0
1 , . . . , η0

K−1, but allows for
trial-specific shifts ηi of the set.

To model the effect of treatment Zij on the marginal distribution of Tij ,
Burzykowski, Molenberghs, and Buyse (2004) proposed to use the propor-
tional hazard model:

λij(t | Zij) = λi(t) exp(βiZij), (12.4)

where βi are trial-specific effects of treatment Z and λi(t) is a trial-specific
baseline hazard function. The marginal cumulative distribution function of
Tij , following model (12.4) with Zij = z, will be denoted by FTij

(t; z).
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To specify fully a bivariate model corresponding to (7.1)–(7.2), it is assumed
that the joint cumulative distribution of Tij and S̃ij , given Zij = z, is
generated by a one-parameter copula function Cθ:

FTij ,S̃ij
(t, s; z) = Cθ[FTij

(t; z), FS̃ij
(s; z), θ]. (12.5)

Cθ is a distribution function on [0, 1]2 with θ ∈ IR1 (Genest and McKay
1986, Shih and Louis 1995a, Nelsen 1999), describing the association be-
tween S̃ij and Tij . An attractive feature of model (12.5) is that the marginal
models (the proportional odds and proportional hazards models in our par-
ticular case) and the association model can be selected without constraining
each other.

Using the joint distribution function (12.5), with proportional hazard model
(12.4) and proportional odds model (12.1) (or a suitable modification) as
marginal models, it is possible to construct the likelihood function for the
observed data (Xij = xij , ∆ij = δij , Sij = sij , Zij = zij). Namely, the
bivariate density gij(t, k; z) for Tij and Sij , given Zij = z, can be specified
by taking

gij(t, k; z) =
∂FTij ,S̃ij

(t, γik; z)

∂t
−

∂FTij ,S̃ij
(t, γi(k−1); z)

∂t
.

Consequently, one can define

Gij(t, k; z) ≡ P (Tij ≥ t, Sij = k | Zij = z)
= [FS̃ij

(γik; z) − FS̃ij
(γi(k−1); z)]

−[FTij ,S̃ij
(t, γik; z) − FTij ,S̃ij

(t, γi(k−1); z)].

As a result, for the observed data (Xij = xij , ∆ij = δij , Sij = sij , Zij =
zij), the log-likelihood can be expressed as:∑

i,j

[δij log gij(xij , sij ; zij) + (1 − δij) log Gij(xij , sij ; zij)]. (12.6)

At the first stage, Burzykowski, Molenberghs, and Buyse (2004) proposed
to use the likelihood function to obtain an estimate of θ and estimates
of trial-specific treatment effects αi and βi on the surrogate and the true
endpoint, respectively. At the second stage, they suggested to use the trial-
level model: ⎛⎝ ηi

αi

βi

⎞⎠ =

⎛⎝ η
α
β

⎞⎠+

⎛⎝ ei

ai

bi

⎞⎠ , (12.7)

with ηi obtained from models (12.2) or (12.3). The second term on the right-
hand side of (12.7) is assumed to follow a zero-mean normal distribution
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with dispersion matrix

D =

⎛⎝ dee dea deb

daa dab

dbb

⎞⎠ .

The quality of surrogate S at the trial level can be assessed based on the
coefficient of determination:

R2
trial(α, η) =

(
deb

dab

)T (
dee dea

dea daa

)−1(
deb

dab

)
dbb

. (12.8)

The index “trial(α, η)” in R2
trial(α, η) indicates that the coefficient pertains

to the distribution of βi conditional on the set of trial-specific parameters
including αi and ηi.

In principle, if the unrestricted marginal model (12.1) is used at the first
stage, one might consider taking into account the information about the
cutpoints γi1, . . ., γi(K−1). A simple solution would be to replace ηi in (12.7)
with vector (γi1, . . . , γi(K−1))T . From a formal point of view, however, in
this case the assumption of normality would have to be modified to reflect
the ordering of γij ’s.

Alternatively, if the information in the cutpoints can be ignored, the use of
a simple linear regression model could be considered:(

αi

βi

)
=
(

α
β

)
+
(

ai

bi

)
(12.9)

with dispersion matrix

Dα =
(

daa dab

dbb

)
. (12.10)

In that case coefficient of determination R2
trial(α, η) reduces to

R2
trial(α) =

d2
ab

daadbb
, (12.11)

the square of the correlation between αi and βi. It can be noted here that,
using (12.8) and (12.11), one can write

R2
trial(α, η) =

R2
trial(α)

1 − Corr2(ηi, αi)
(12.12)

+Corr(ηi, βi)
Corr(ηi, βi) − 2Corr(αi, βi)Corr(ηi, αi)

1 − Corr2(ηi, αi)
.
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It follows that, formally, R2
trial(α, η) = R2

trial(α) if

Corr(ηi, αi) = Corr(ηi, βi) = 0.

To use R2
trial(α) and model (12.9) instead of R2

trial(α, η) and (12.7), one would
thus require that treatment effects on true and surrogate endpoints should
be uncorrelated with the baseline distribution (for Z = 0) of S. The use
of R2

trial(α) might give different results than the use of R2
trial(α, η), e.g., in the

presence of treatment/surrogate interaction.

To assess the quality at the individual level, a measure of association be-
tween Sij and Tij is needed. A natural candidate is θ, as its value modifies
the form of the copula function and, consequently, influences the strength
of the association between S̃ij and Tij . A drawback of θ is that, for dif-
ferent copula functions, it may assume values from different domains. To
overcome this difficulty, the use of Kendall’s τ or Spearman’s ρ may be
considered (Burzykowski et al. 2001; see also Section 11.2). Both measures
are transformations of θ and can be interpreted similarly to a correlation
coefficient, irrespective of the copula function (Nelsen 1999). Alternatively,
it may be possible to choose a copula such that θ has got a meaningful
interpretation. This option will be discussed next.

In principle, different copula functions can be used for the bivariate distri-
bution (12.5). Burzykowski, Molenberghs, and Buyse (2004) proposed to
use the bivariate Plackett copula (Plackett 1965, Mardia 1970, Dale 1986,
Nelsen 1999). This particular choice was motivated by the fact that, for the
Plackett copula, the association parameter θ takes the form of a (constant)
global odds ratio. Specifically, in the current setting (for k = 1, . . . , K − 1
and t > 0):

θ =
P (Tij > t, Sij > k) P (Tij ≤ t, Sij ≤ k)
P (Tij > t, Sij ≤ k) P (Tij ≤ t, Sij > k)

=
P (Tij > t | Sij > k)
P (Tij ≤ t | Sij > k)

{
P (Tij > t | Sij ≤ k)
P (Tij ≤ t | Sij ≤ k)

}−1

. (12.13)

Thus, θ is naturally interpreted as the (constant) ratio of the odds for sur-
viving beyond time t given response higher than k to the odds of surviving
beyond time t given response at most k. For a binary surrogate, it is just the
odds ratio for responders versus non-responders (assuming k = 2 indicates
response).
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12.3 Analysis of Case Study

The two-stage approach described in the previous section was applied to the
advanced colorectal cancer data, introduced in Section 4.2.4 and analyzed
before (Buyse et al. 2000c, Burzykowski, Molenberghs, and Buyse 2004).
Four-category tumor response is considered as a potential surrogate for
survival time. It is contrasted with a binary version.

12.3.1 Descriptive Analysis

The data came from the four meta-analyses of 28 advanced colorectal cancer
trials introduced in Section 4.2.4. Several of the 28 trials were multi-armed.
In total, 33 randomized comparisons were considered in the four meta-
analyses. Individual-patient data were available for 27 of the comparisons
(in 24 studies). From now on, we will refer to each of the comparison as a
separate “trial.”

Table 12.1 presents summary data for the trials included in the analysis.
In particular, for each trial and each treatment arm the table contains the
median survival time (in months) and the distribution of the four tumor
response categories: complete response (CR), partial response (PR), stable
disease (SD), and progressive disease (PD) (World Health Organization
1979). Also, the observed percentage for the binary response (CR+PR) is
given. The first column of Table 12.1 contains the labels used to identify
the trials in the papers by the Advanced Colorectal Cancer Meta-Analysis
Project (1992, 1994) and Meta-Analysis Group In Cancer (1996, 1998)
describing the four meta-analyses; we refer to these papers for additional
details regarding the original publications of results of the trials.

From Table 12.1 it can be seen that the trials varied quite considerably in
sample size. The total size ranged from 15 (“City of Hope, HAI versus ST”)
to 382 (“GITSG”) patients. The last two rows of the table indicate that,
overall, CR was rarely observed. Nevertheless, CR and PR were observed
more frequently for experimental FU (3.2% and 19.2%, respectively) than
for FU bolus (2.1% and 9.6%, respectively). Consequently, the response
rate, i.e., the combined percentage of CR and PR, was higher for exper-
imental FU (22.4% versus 11.7% for FU bolus). This conclusion applies
also to all but three (“NCOG”, “GOIRC”, “RPCI, 5FU+M”) individual
trials. Similarly, the median survival time was slightly longer for experi-
mental FU (9.8 months) than for FU bolus (8.9 months). This pattern can
be consistently seen for all but eight individual trials.

Table 12.2 presents estimates of odds for binary response (CR+PR versus
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TABLE 12.1. Meta-analyses in advanced colorectal cancer. Summary data for 27
analyzed trials.

Trial Treatment N Tumor response (%) Median
CR PR SD PD (CR+PR) survival

Advanced Colorectal Cancer Meta-Analysis Project (1992)

GITSG 5FU+L 269 1.5 20.1 0.0 78.4 21.6 11.3
ST 113 0.0 10.6 0.0 89.4 10.6 10.7

NCOG 5FU+L 107 5.6 12.1 62.6 19.6 17.7 10.5
ST 55 9.1 9.1 65.4 16.4 18.2 11.4

GOIRC 5FU+L 91 3.3 9.9 36.3 50.5 13.2 12.4
ST 90 6.7 8.9 31.1 53.3 15.6 14.5

GISCAD 5FU+L 91 5.5 15.4 31.9 47.2 19.9 13.0
ST 89 3.4 6.7 31.5 58.4 10.1 13.0

Genova 5FU+L 75 6.7 14.7 36.0 42.7 21.4 11.0
ST 73 2.7 5.5 52.0 39.7 8.2 11.0

Toronto 5FU+L 66 0.0 31.8 0.0 68.2 31.8 12.0
ST 64 0.0 6.2 0.0 93.7 6.2 9.6

City of Hope 5FU+L 39 2.6 35.9 35.9 25.6 38.7 14.2
ST 40 0.0 12.5 47.5 40.0 12.5 12.7

RPCI 5FU+L 30 3.3 36.7 23.3 36.7 40.2 11.0
ST 23 0.0 8.7 4.3 87.0 8.7 11.1

Bologna 5FU+L 34 0.0 26.5 32.3 41.2 26.5 10.1
ST 30 0.0 3.3 56.7 40.0 3.3 7.5

Advanced Colorectal Cancer Meta-Analysis Project (1994)

EORTC 5FU+M 152 2.6 15.1 38.2 44.1 17.7 12.1
ST 154 2.6 9.1 31.2 57.1 11.7 8.9

RPCI 5FU+M 23 0.0 4.3 13.0 82.6 4.3 10.3
ST 23 0.0 8.7 4.3 87.0 8.7 11.1

NGTAG 5FU+M+L 122 2.5 13.9 39.3 44.3 16.4 8.1
ST 127 0.0 2.4 43.4 54.3 2.4 6.0

AIO 5FU+M+L 86 4.6 18.6 33.7 43.0 23.2 10.7
ST 78 2.6 14.1 46.1 37.2 16.7 13.7

NCOG 5FU+M+L 103 5.8 12.6 65.0 16.5 18.4 12.3
ST 55 9.1 9.1 65.4 16.4 18.2 11.4

GOCS 5FU+M+L 64 1.6 25.0 32.8 40.6 26.6 11.9
ST 61 0.0 11.5 22.9 65.6 11.5 8.9

Mar del Plata 5FU+M+L 28 3.6 14.3 7.1 75.0 17.9 0.7
ST 33 0.0 0.0 57.6 42.4 0.0 1.0

Spain 5FU+M+L 26 3.8 19.2 53.8 23.1 23.0 13.2
ST 33 3.0 12.1 51.5 33.3 15.1 8.6

Meta-Analysis Group In Cancer (1996)

MSKCC HAI 43 0.0 48.8 37.2 13.9 48.8 18.3
ST 48 0.0 16.7 33.3 50.0 16.7 14.5

NCCTG HAI 39 2.6 38.5 33.3 25.6 41.1 12.8
ST 35 0.0 17.1 57.1 25.7 17.1 11.0

NCI HAI 32 3.1 37.5 3.1 56.2 40.6 16.9
ST 32 3.1 12.5 0.0 84.4 15.6 11.6

City of Hope HAI 9 0.0 77.8 0.0 22.2 77.8 22.9
ST 6 0.0 50.0 0.0 50.0 50.0 23.0

Meta-Analysis Group In Cancer (1998)

SWOG CII 174 2.9 10.3 19.5 67.2 13.2 15.0
ST 182 2.7 9.9 30.2 57.1 12.6 13.9

ECOG CII 162 4.9 22.8 8.6 63.6 27.7 13.0
ST 162 3.1 14.2 5.6 77.2 17.3 10.5

NCIC CII 95 1.0 10.5 36.8 51.6 11.5 10.1
ST 90 1.1 5.6 32.2 61.1 6.7 9.3

France CII 77 3.9 22.1 41.6 32.5 26.0 8.5
ST 78 0.0 12.8 39.7 47.4 12.8 9.8

MAOP CII 88 4.5 25.0 69.3 1.1 29.5 10.6
ST 85 0.0 9.4 89.4 1.2 9.4 11.2

Jerusalem CII 11 0.0 9.1 18.2 72.7 9.1 8.6
ST 15 0.0 6.7 60.0 33.3 6.7 12.0

Total EX 2136 3.2 19.2 29.9 47.7 22.4 9.8
ST 1874 2.1 9.6 34.1 54.2 11.7 8.9

NOTE: ST - control treatment (bolus 5FU/FUDR); EX - experimental treatment

(M - methotrexate; L - leucovorin; HAI - FUDR by hepatic arterial infusion;

CII - 5FU by continuous intravenous infusion). N - sample size. Median survival

time (in months) estimated from the Kaplan-Meier survival curve.
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TABLE 12.2. Meta-analyses in advanced colorectal cancer. Summary results for
binary tumor response and survival for 27 analyzed trials.

Trial Odds ratio [95% C.I.] Hazard ratio [95% C.I.]

Advanced Colorectal Cancer Meta-Analysis Project (1992)

GITSG 2.31 [1.19, 4.50] 0.88 [0.70, 1.12]

NCOG 0.97 [0.42, 2.26] 1.22 [0.86, 1.72]

GOIRC 0.82 [0.36, 1.90] 1.23 [0.88, 1.72]

GISCAD 2.34 [1.00, 5.51] 1.09 [0.76, 1.56]

Genova 3.03 [1.11, 8.24] 0.90 [0.65, 1.25]

Toronto 7.00 [2.24, 21.82] 0.78 [0.54, 1.13]

City of Hope 4.37 [1.40, 13.65] 0.78 [0.50, 1.23]

RPCI 7.00 [1.38, 35.51] 1.13 [0.65, 1.98]

Bologna 10.44 [1.23, 88.21] 0.74 [0.43, 1.28]

Advanced Colorectal Cancer Meta-Analysis Project (1994)

EORTC 1.63 [0.86, 3.11] 0.79 [0.62, 1.02]

RPCI 0.48 [0.04, 5.66] 1.28 [0.71, 2.30]

NGTAG 8.10 [2.34, 28.05] 0.76 [0.59, 0.98]

AIO 1.51 [0.70, 3.30] 1.03 [0.75, 1.40]

NCOG 1.02 [0.44, 2.37] 0.89 [0.63, 1.26]

GOCS 2.79 [1.06, 7.31] 0.78 [0.54, 1.12]

Mar del Plata 15.68 [0.83, 297.4]∗ 0.98 [0.58, 1.67]

Spain 1.68 [0.45, 6.28] 1.17 [0.62, 2.24]

Meta-Analysis Group In Cancer (1996)

MSKCC 4.77 [1.81, 12.54] 0.77 [0.51, 1.17]

NCCTG 3.36 [1.13, 9.96] 0.95 [0.60, 1.50]

NCI 3.69 [1.13, 12.10] 0.81 [0.46, 1.40]

City of Hope 3.50 [0.37, 32.97] 0.91 [0.31, 2.66]

Meta-Analysis Group In Cancer (1998)

SWOG 1.05 [0.57, 1.96] 0.93 [0.75, 1.15]

ECOG 1.84 [1.08, 3.14] 0.89 [0.71, 1.12]

NCIC 1.83 [0.65, 5.18] 0.80 [0.59, 1.07]

France 2.39 [1.03, 5.51] 0.86 [0.62, 1.19]

MAOP 4.04 [1.71, 9.54] 0.83 [0.58, 1.20]

Jerusalem 1.40 [0.08, 25.14] 1.29 [0.57, 2.91]

Overall 2.19 [1.84, 2.61] 0.90 [0.84, 0.96]

NOTE: Observed odds ratios for response for experimental FU versus 5FU bolus, with 95%

confidence intervals (C.I.) based on the Mantel-Haenszel test (∗ - using Gart’s (1966) logit

estimate with 0.5 correction for zero cells). Hazard ratios for experimental FU versus 5FU

bolus estimated using a proportional hazard model, with 95% confidence intervals based on

Wald’s test. Overall odds ratio estimated using trial-adjusted Mantel-Haenszel estimator.

Overall hazard ratio estimated using a trial-stratified proportional hazard model.
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SD+PD) and relative mortality hazard for experimental FU versus FU
bolus. Overall, the odds were approximately double for the experimental
treatment, with a simultaneous 10% reduction of the risk of death.

Figure 4.5 in Chapter 4 shows survival curves by treatment within tumor
response categories. As it has been mentioned in Section 4.2.4 of Chapter 4,
there is no statistically significant difference between experimental FU and
bolus FU in any tumor response category, which confirms that the overall
survival benefit in favor of experimental FU is due to the higher tumor
response rates obtained with experimental FU as compared to bolus FU.
This observation suggests that tumor response might be a valid surrogate
for survival according to Prentice’s definition (1989).

In what follows, the true endpoint T is survival time, defined as the time
from randomization to death from any cause. In the analyzed set of data,
most patients have died (3591 out of 4010 patients, i.e., 89.5%). The sur-
rogate endpoint S is tumor response, defined either as a binary variable
with S = 2 for CR or PR and S = 1 for SD or PD, or as a categorical
variable with S = 4, 3, 2, 1 for CR, PR, SD and PD, respectively. The
binary indicator for treatment (Z) is set to 0 for FU bolus and to 1 for
experimental FU.

12.3.2 Analysis of Four-category Tumor Response

The bivariate model (12.5) was defined using the Plackett copula. For
survival, proportional hazards model (12.4) was used, with Weibull trial-
specific baseline hazard functions. tumor response was modeled using a
constrained version of proportional odds model (12.2). More specifically,
for those trials, for which not all levels of tumor response were observed
(see Table 12.1), all coefficients ηik were constrained to zero.

Under these assumptions, the likelihood function for the observed data.
given in equation (12.6), is fully specified. Maximum likelihood parameter
estimates can be obtained using the Newton-Raphson algorithm. In the ex-
ample analyzed, the algorithm with numerical second order derivatives, as
implemented in SAS-IML 6.12 (and higher versions) in the form of a stan-
dard routine NLPNRR (SAS Institute Inc. 1995), was used (Burzykowski,
Molenberghs, and Buyse 2004).

It should be noted that θ, as defined by (12.13), involves comparison of
survival times of patients classified according to tumor response. It is well
known that such a comparison is likely to be length-biased, because re-
sponse to treatment is not observed instantaneously. As a result, patients
who enjoy long survival times are more likely to be responders than non-
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FIGURE 12.1. Meta-analyses in advanced colorectal cancer. Estimated individ-
ual-level association parameter (θ), with 95% confidence interval limits, by land-
mark time.

responders, and therefore the survival of responders is likely to be biased
upwards compared to that of non-responders.

There are several methods that can be used to correct for length bias in such
a comparison. One of them is a landmark analysis (Anderson et al. 1983).
In a landmark analysis, only patients alive at an arbitrary, pre-specified,
landmark time are considered, and their response status is assessed at the
landmark time. In this way, response is no longer time-dependent, and no
bias affects the comparison of responders and non-responders.

To use any of the methods correcting for length bias, information on the
time to response has to be available for individual patients. As no such
information was available in the advanced colorectal cancer data analyzed,
Burzykowski, Molenberghs, and Buyse (2004) used an approximate solu-
tion, which consisted of excluding patients dying before the landmark time
and assuming that all recorded responses had occurred before the land-
mark. By way of a sensitivity analysis, they conducted the analysis based
on the bivariate model (12.1)–(12.5) for landmark times ranging from 0 (no
correction) to 6 months. Of highest interest, however, is the range between
3 and 6 months. This is because tumor response is usually assessed 3 to
6 months after the beginning of chemotherapy. In fact, this was the case
for most of the trials analyzed, for which information on the response as-
sessment scheme could be obtained from the original publication of results.

Figure 12.1 shows a plot of estimates of θ for different landmark times up to
12 months for the four-category tumor response. Here, the zero value corre-
sponds to the analysis without any correction for length bias. As expected,
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the estimates decrease, approaching a value of 2 around 10–12 months.
The dependence of θ on the landmark time clearly illustrates the need for
length-bias correction. It should be underscored that this need is not due
to the particular choice of the method of analysis, but rather to the na-
ture of the endpoints considered. In fact, a correction for length-bias would
most likely have to be considered in any analysis of the validity of tumor
response as a surrogate for survival.

Importantly, lower 95% confidence limits for θ at all landmark times in
Figure 12.1 are greater than 1.7. It might therefore be concluded that length
bias, if any, does not induce an association, but rather affects the magnitude
of an existing one. Moreover, as already mentioned, the landmark times
between 3 and 6 months are of the most interest. For these time points,
estimates of θ remain between 3 and 4.6, with lower 95% C.I. limits above
2.5. They indicate that the odds for surviving beyond time t for, e.g.,
responders (partial or complete) were at least 2.5 times higher than the
odds for non-responders (patients with a stable or progressive disease). This
suggests that, even after taking into account possible length bias, there
remains a considerable association between tumor response and survival
time at the level of individual.

The upper part of Table 12.3 (“without adjustment for PS”) presents es-
timates of θ, R2

trial(α, η) and R2
trial(α) for the analysis with no adjustment for

length bias (landmark 0) and for landmark times between 3 and 6 months.
The estimates of R2

trial(α, η) and R2
trial(α) were obtained using models (12.7)

and (12.9), respectively. The 95% confidence intervals for R2
trial(α, η) and

R2
trial(α) were obtained by finding such values of these parameters, for which

the corresponding estimates were equal to 2.5% and 97.5% quantiles of the
cumulative distribution function of R2 (Fisher 1928, Algina 1999). The
distribution function was computed using the algorithm proposed by Ding
(1996).

The estimates of R2
trial(α, η) presented in the upper part of Table 12.3 are

only slightly higher than those of R2
trial(α). Thus, one might conclude that

not much would be gained in the precision of the prediction if instead of
the model (12.9), the more complex model (12.7) were used to predict the
treatment effect on survival.

Overall, the estimates are low and do not exceed 20%. The weak association
between the estimated trial-specific treatment effects for survival and tumor
response can be observed in Figure 12.2, which presents the plot of the
effects for the analysis using the landmark time of 3 months. The size of each
point is proportional to the number of patients in the corresponding trial.
The straight line presents predictions from model (12.9). The estimated
slope of the regression line is equal to 0.12 (standard error 0.06). (Note
that, according to the parameterization used in model (12.1)–(12.5), βi > 0
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TABLE 12.3. Meta-analyses in advanced colorectal cancer. Four-category tumor
response: individual-level association (θ) and trial-level association (R2), for dif-
ferent landmark times (in months).

Individual-level Trial-level

Time θ R2
trial(α, η) R2

trial(α) HAS F

Without adjustment for PS

0 6.78 [6.01, 7.55] 0.16 [0, 0.42] 0.16 [0, 0.42] � �

3 4.59 [4.04, 5.15] 0.15 [0, 0.41] 0.15 [0, 0.41] 0.59 [−0.16, 1.35] 0.54

4 4.07 [3.56, 4.57] 0.10 [0, 0.34] 0.10 [0, 0.34] 0.53 [−0.34, 1.40] 0.35

5 3.56 [3.10, 4.03] 0.06 [0, 0.28] 0.05 [0, 0.26] 0.36 [−0.69, 1.41] 0.10

6 3.09 [2.67, 3.51] 0.08 [0, 0.31] 0.06 [0, 0.28] 0.44 [−0.44, 1.33] 0.08

With adjustment for PS

0 6.50 [5.75, 7.25] 0.22 [0, 0.49] 0.20 [0, 0.49] 0.19 [−0.49, 0.87] 0.40

3 4.52 [3.96, 5.07] 0.16 [0, 0.42] 0.16 [0, 0.45] 0.39 [−0.22, 1.01] 0.32

4 4.00 [3.49, 4.51] 0.11 [0, 0.35] 0.11 [0, 0.39] 0.34 [−0.30, 0.99] 0.21

5 3.50 [3.04, 3.96] 0.07 [0, 0.29] 0.06 [0, 0.32] 0.17 [−0.41, 0.77] 0.06

6 3.03 [2.62, 3.45] 0.08 [0, 0.31] 0.06 [0, 0.33] 0.27 [−0.35, 0.90] 0.06

NOTE: HAS, adjusted estimates of R2
trial(α) based on the approach by van

Houwelingen, Arends, and Stijnen (2002) (see Chapter 11, Section 11.2.1); F,

adjusted estimates of R2
trial(α) using the adjusted weighted estimator of γ given by

(11.24)–(11.25). In the cases marked by 	, the estimates could not be obtained

due to numerical problems. 95% confidence intervals in brackets (not available

for F).

and αi > 0 indicate increases in the hazard of death and in the odds
of non-response, respectively, for the experimental treatment.) The line
passes very close to the origin. In fact, the estimated intercept is equal to
-0.02 (standard error 0.06) and is not significantly different from zero. This
suggests a simple multiplicative association between treatment effects for
survival and tumor response. Daniels and Hughes (1997) consider this as
one of the conditions for a good surrogate. Buyse and Molenberghs (1998)
require it for prediction based on relative effect RE estimated from a single
trial.

Based on the estimates of R2
trial(α, η) and R2

trial(α) from the upper part of
Table 12.3, Burzykowski, Molenberghs, and Buyse (2004) suggested that
four-category tumor response is a weak surrogate for survival at the trial
level, in that it does not permit to reliably predict treatment effects on sur-
vival. On the other hand, by considering the estimates of θ, they concluded
in favor of a strong association between tumor response and survival time
for individual patients, after adjusting for treatment effects.

However, as argued in Section 11.2.1, the estimates of R2
trial(α, η) and R2

trial(α)

presented in Table 12.3, are likely biased, as they ignore the error due to
the use of the estimated treatment effects. Therefore, the last two columns
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FIGURE 12.2. Meta-analyses in advanced colorectal cancer. Estimated
trial-specific treatment effects on survival versus treatment effects on four-category
tumor response.

of Table 12.3 (marked as “HAS” and “F”) contain the estimates of R2
trial(α)

adjusted for the estimation error using the approach of van Houwelingen,
Arends, and Stijnen (2002) and using the measurement error models de-
veloped by Fuller (1987). The confidence intervals for HAS estimates were
obtained as HAS±2SE, where SE was the standard error computed by the
delta method from the standard errors of the variance components involved
in R2

trial(α) (see equation (12.11)).

One can see that the estimates adjusted for the estimation error are higher
then their unadjusted counterparts. Therefore, they seem to suggest a
stronger association. Unfortunately, they are not very informative, as their
precision is very low, what can be seen from the wide confidence intervals
for HAS estimates.

Also here, as was done in Chapter 11 (page 178), one might wonder whether
taking into account information about prognostic factors would influence
the estimates of trial-level R2 shown in the upper part of Table 12.3. The
data collected for the patients included in the four meta-analyses of ad-
vanced colorectal cancer trials contained information about performance
status (PS) at randomization. Overall, 41.3% of patients had PS= 0, 43.5%
had PS= 1 and 13.7% had PS= 2 (1.5% had missing information on PS). To
investigate the extent to which taking into account the information about
PS would change the estimates shown in the upper part of Table 12.3, the
two-stage analysis was repeated with PS included as a continuous covari-
ate in the marginal models (12.2) and (12.4). The patients with missing
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FIGURE 12.3. Meta-analyses in advanced colorectal cancer. Estimated (stepped
curves) and predicted (straight curves) cumulative hazard functions by treatment
group.

PS status were excluded from the analysis. The results are shown in the
lower part of Table 12.3. The 95% confidence intervals for R2

trial(α) were
computed in the same way as those in Table 12.3. It can be seen that, as
compared to the upper part of Table 12.3, the individual-level association
remains essentially unchanged. The unadjusted trial-level estimates of R2

increase only slightly. The adjusted estimates (HAS and F) are higher, but
again they are not very informative. Altogether, the results from Table 12.3
indicate no substantial increase of the individual or trial-level association
after adjusting for PS.

An important issue is the suitability of the assumed form of the model.
Burzykowski, Molenberghs, and Buyse (2004) conducted a limited investi-
gation of the issue. For instance, Figure 12.3 shows logarithms of Nelson-
Aalen (Nelson 1972, Aalen 1978) estimates of cumulative hazard for the
experimental and control treatment groups with predictions based on sim-
ple linear regression model. The plots look reasonably linear, justifying the
choice of the Weibull distribution for survival.

Additionally, the assumed bivariate Plackett copula model was fitted us-
ing a separate association parameter θ for each trial. The analysis was
performed for the landmark time of 3 months. It led to the log-likelihood
of −6759.15. The log-likelihood for the model corresponding to the first
line in the second row in Table 12.3 was equal to −6781.86. The result-
ing difference in deviances is -2(-22.71)=45.42 on 26 degrees of freedom.
It suggests (p = 0.010) that there might be somewhat more variability in
individual-level association between the trials than allowed in the model
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used to obtain the results presented in Table 12.3.

A separate issue is the verification of the assumed form of the copula func-
tion. To this end, some method allowing for a comparison of the goodness-
of-fit of models based on different copula functions, including the Plackett
copula, would be needed. At present, however, no such method is known.

12.3.3 Analysis of Binary Tumor Response

In clinical practice, tumor response is very often used as a binary variable,
with patients with complete or partial response considered responders and
patients with stable or progressive disease considered non-responders. It
is therefore of interest to investigate validity of binary tumor response as
a surrogate for survival. The methodology developed can be applied in
this case as well. Table 12.4 presents the corresponding estimates of θ and
R2

trial(α) by landmark time for the analysis without and with the adjust-
ment for PS, obtained by Burzykowski, Molenberghs, and Buyse (2004).
The 95% confidence intervals for R2

trial(α) were computed in the same way
as those in Table 12.3. Note that, for binary response, proportional odds
models (12.1)–(12.3) are equivalent to a logistic regression model. In the
computations, model (12.2) was used. In one of the smallest trials, “Mar
del Plata” (see Table 12.1), no tumor responses in the control arm were ob-
served at all. This precluded the estimation of the trial-specific treatment
effect on the surrogate. Therefore, this trial was removed from the analysis
presented in Table 12.4.

The estimates of R2
trial(α, η) and R2

trial(α) presented in Table 12.4 do not exceed
50%, irrespectively of the landmark time and the adjustment for the infor-
mation about PS. They suggest that no more than 50% of the variability
in treatment effect on survival could be explained through treatment effect
on binary tumor response. The weak association between the estimated
trial-specific treatment effects for survival and binary tumor response can
be observed in Figure 12.4, which presents the plot of the effects for the
analysis with the landmark time set to 3 months and without adjustment
for PS. The estimated intercept and slope of the straight line, containing
the predictions from model (12.9), are equal to, respectively, 0.10 (standard
error 0.06) and 0.22 (standard error 0.05). It follows that, similar to the
case of four-category response, a simple multiplicative association between
treatment effects for survival and binary tumor response can be inferred.

Based on these results Burzykowski, Molenberghs, and Buyse (2004) con-
cluded that, though somewhat better than four-category response, binary
tumor response would also be a poor surrogate for survival at the trial
level. On the other hand, they suggested that the estimates of θ presented
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TABLE 12.4. Meta-analyses in advanced colorectal cancer. Binary tumor re-
sponse: individual-level association (θ) and trial-level associations (R2

trial(α, η) and
R2

trial(α)), for different landmark times (in months).

Individual-level Trial-level

Time θ R2
trial(α, η) R2

trial(α)

Without adjustment for PS

0 4.91 [4.16, 5.67] 0.46 [0.12, 0.69] 0.44 [0.13, 0.69]

3 3.62 [3.07, 4.17] 0.47 [0.13, 0.70] 0.44 [0.13, 0.69]

4 3.29 [2.78, 3.80] 0.41 [0.08, 0.65] 0.37 [0.08, 0.64]

5 3.01 [2.54, 3.48] 0.36 [0.04, 0.61] 0.32 [0.05, 0.60]

6 2.71 [2.28, 3.14] 0.31 [0.02, 0.58] 0.29 [0.03, 0.57]

With adjustment for PS

0 4.78 [4.04, 5.53] 0.47 [0.13, 0.70] 0.46 [0.15, 0.71]

3 3.57 [3.02, 4.13] 0.49 [0.15, 0.71] 0.46 [0.15, 0.71]

4 3.25 [2.74, 3.76] 0.44 [0.10, 0.67] 0.41 [0.11, 0.67]

5 2.97 [2.50, 3.45] 0.39 [0.06, 0.64] 0.35 [0.07, 0.63]

6 2.68 [2.25, 3.12] 0.35 [0.04, 0.61] 0.32 [0.05, 0.60]

NOTE: 95% confidence intervals in square brackets.

in Table 12.4 would indicate a considerable association between binary tu-
mor response and survival time for individual patients, after adjusting for
treatment effects.

As was the case in Table 12.3, one could argue that the estimates of
R2

trial(α, η) and R2
trial(α) presented in Table 12.4 are likely to biased due to

ignoring the error associated with the estimation of treatment effects. Un-
fortunately, the computation of the adjusted estimates of R2

trial(α) for the
binary tumor response does not yield any meaningful results. More specif-
ically, no valid estimates are obtained for any of the cases showed in Ta-
ble 12.4 using the adjustment based on the measurement error models de-
veloped by Fuller (1987). On the other hand, the adjusted estimator based
on the approach of van Houwelingen, Arends, and Stijnen (2002) yields
valid point estimates only for the PS-adjusted analysis for landmark times
of 5 and 6 months. However, the obtained values (0.93 and 0.96, respec-
tively) are estimated too imprecisely (standard error of 0.51 and 0.52, re-
spectively) to be meaningful. Thus, the conclusions drawn by Burzykowski,
Molenberghs, and Buyse (2004) based on the unadjusted estimates cannot
be verified using the adjusted estimates.

The problems with computing the adjusted estimates for Table 12.4 are
most likely due to the larger estimation error of treatment effects on the
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FIGURE 12.4. Meta-analyses in advanced colorectal cancer. Estimated
trial-specific treatment effects on survival versus treatment effects on binary tu-
mor response.

binary tumor response, as compared to the four-category response. For
instance, in the case of the analysis for the landmark time of 3 months
without the adjustment for PS, the estimated standard error for the trial-
specific treatment effect on the binary response was on average higher by
48% (range: −3% to 152%) than the error for the four-category response.
At the same time, the standard error of the trial-specific treatment effect
on survival was basically the same in both analyses: the mean relative dif-
ference was 1% (range: −1% to 3%). The higher precision of the estimation
of the treatment effects on the four-category tumor response can be at-
tributed to the higher amount of the information provided in that case by
the data (four-categories versus two for the binary response).

To provide evidence that the assumed parametric form, applied within the
bivariate Plackett copula model, was appropriate, Burzykowski, Buyse, and
Molenberghs (2004) fitted a model separately for each treatment arm in
each trial, adjusting for length-bias by using landmark time of 3 months.
Each model used four parameters: one for association (θ), one for the in-
tercept in the marginal logistic regression for tumor response, and two for
the Weibull model for survival. This led to a log-likelihood of −4973.0. The
log-likelihood for the model corresponding to the second line in the first
part of Table 12.4 was equal to −5019.0. Consequently, the difference in
deviances was −2×−46.0 = 92.0 on 208−131 = 77 degrees of freedom, and
it was not significant (p = 0.117). The use of the reduced model (assuming
a common copula parameter for all trials) to obtain the results presented
in Table 12.4 thus seemed justified.
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It is worth noting here that the results of the “Mar del Plata” trial, which
was excluded from the analysis, indicated a large effect of the experimental
treatment on the surrogate with virtually no effect on the true endpoint.
Figure 12.4 allows to infer that adding a point corresponding to the raw
treatment estimates for the excluded trial (based on the odds ratio and
hazard ratio from Table 12.1) might rather decrease, than increase, the
value of R2

trial(α) presented in the first row of Table 12.4. The bias resulting
from the exclusion of the data of the “Mar del Plata” trial from the analy-
sis, if any, is thus most likely positive. Consequently, the weak association
observed at the trial level for the binary response model might, in fact, be
overestimated.

To investigate the effect of the “Mar del Plata” trial on the results in the
analysis of binary tumor response, Burzykowski, Molenberghs, and Buyse
(2004) proposed including the trial into the analysis (unadjusted for length
bias and PS), with an assumed fixed value of treatment effect on tumor
response. The following values of the effect, in terms of the logarithm of
the odds ratio of response in favor of the “experimental” treatment, were
considered: −6, −3, −1, 0, 1, 3, and 6. Note that the value of 3 is close to
the logarithm (2.75) of the crude estimate of the odds ratio (15.68) pre-
sented in Table 12.1 for “Mar del Plata” trial. As a result, the following
estimates of R2

trial(α) were obtained: 0.28, 0.38, 0.44, 0.45, 0.44, 0.36, and
0.20, respectively. The observed differences between the coefficients of de-
termination were entirely due to the changes in treatment estimates for the
“Mar del Plata” trial: the estimates for the remaining trials essentially did
not change. These results indicated that the exclusion of the trial from the
analysis presented in Table 12.4 led to an overestimation of the trial-level
R2, as conjectured in the previous paragraph.

The increase in the strength of the trial-level association for binary tumor
response, observed at least for the unadjusted estimates, might raise a ques-
tion whether using a different dichotomization of the response categories
might yield even a bigger increase. To verify this possibility, Burzykowski,
Molenberghs, and Buyse (2004) performed two additional analyses (with-
out adjusting for length bias or PS). In the first analysis, tumor response
was defined as complete response, with partial response, stable disease or
progressive disease regarded a failure (CR versus PR+SD+PD; it should be
noted that, due to a small number of complete responses, the analysis was
based on 12 trials only). In the second analysis, the response was defined
as complete response, partial response or stable disease, with progressive
disease treated as a failure (CR+PR+SD versus PD). Table 12.5 presents
the results of the analyses, along with the corresponding result from Ta-
ble 12.4 for the conventional dichotomization (complete or partial response
versus stable or progressive disease). It can be seen that the estimates of
R2

trial(α) for the two alternative dichotomizations are much lower than the
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TABLE 12.5. Meta-analyses in advanced colorectal cancer. Tumor response, dif-
ferent definitions: individual-level (θ) and trial-level (R2

trial(α)) associations.

Response θ R2
trial(α)

Four-category 6.78 [6.01, 7.55] 0.16 [0.00, 0.42]
Binary:
CR versus PR+SD+PD 7.59 [4.71, 10.5] 0.08 [0.00, 0.51]
CR+PR versus SD+PD 4.91 [4.16, 5.67] 0.44 [0.13, 0.69]
CR+PR+SD versus PD 8.32 [7.17, 9.47] 0.04 [0.00, 0.28]

NOTE: 95% confidence intervals in square brackets.

estimate obtained for the conventional binary tumor response.

Table 12.5 also includes the corresponding result from Table 12.3 for the
original, four-category, response. The strength of the trial-level associa-
tion for the conventionally defined binary tumor response (CR+PR versus
SD+PD) is remarkably higher than the strength for the other two binary
responses or for the four-category response. This is an interesting obser-
vation from a practical (clinical) point of view. It is not straightforward
to explain this difference. A possible reason might be that, for example,
the categorizations other than CR+PR versus SD+PD, are clinically more
difficult to establish and lead to more complicated models, than can be
described by proportional odds. This might also be the reason why for
the four-category response some inadequacies of the constant-association
model were observed, while for the conventional binary response the model
seemed satisfactory.

It is worth adding that for none of the cases presented in Table 12.5, an
estimate of R2

trial(α) adjusted for the error in estimation of trial-specific
treatment effects could be computed.

12.4 Discussion

The method of validation for ordinal endpoints to be surrogates for failure-
time true endpoints, proposed by Burzykowski, Molenberghs, and Buyse
(2004) and summarized in this chapter, assumes the use of meta-analytic
data. In this respect, it is consistent with the approaches developed by
other authors in earlier attempts to validate tumor response as a surrogate
for survival in cancer clinical trials (A’Hern, Ebbs, and Baum 1988, Torri et
al. 1992, Chen et al. 2000). On the other hand, by building on the method-
ology developed by Buyse et al. (2000a), unlike in the other approaches, it
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focuses on the quality of the prediction of the treatment effect at the trial
level, which, as argued earlier in this volume (Chapter 7), is central to the
problem of surrogate marker validation.

By using copulas, the proposed approach allows for a wide range of possible
models that can be formulated. For instance, it is possible to choose various
association structures through the choice of various forms of copula func-
tions. Moreover, the chosen copula can be combined with various models
for the marginal distributions for the categorical/binary and survival vari-
ables, including (semi-parametric) proportional hazards and proportional
odds models. In principle, the choice of a copula might be guided by ad-
equacy of fit of the bivariate model (12.5) to the data at hand. Though
methods for assessing the fit of such models in the setting considered in this
chapter are not available yet, a possible solution might be, e.g., an adap-
tation of the method of checking goodness-of-fit of Archimedean copulas
to bivariate survival data, proposed recently by Wang and Wells (2000a).
This is an important topic for future research.

The analyses performed by Buyse et al. (2000b) and Burzykowski, Molen-
berghs, and Buyse (2004), as summarized and amended in the previous
section, illustrate several issues, interesting both from a point of view of
the validation of tumor response as a surrogate for survival in cancer clini-
cal trials, as well as from a general point of view of the use of the proposed
approach.

In the analyses, a subjective assessment was required as to what values of
R2 or θ are “high” enough for the candidate surrogate to be deemed accept-
able. On purely theoretical grounds, it is difficult to propose a threshold.
Any other choice is necessarily subjective. Preferably, it should be guided
by practical experience in using the definition of validity of a surrogate
proposed by Buyse et al. (2000a). For obvious reasons, such an experience
thus far is very limited. Taking the above into account, observed values of
R2

trial(r) below 0.5 have been judged as “not close to 1.” Such subjectivity
will be less of an issue if several endpoints are evaluated simultaneously as
candidate surrogates for the same true endpoint.

An important problem, due to the nature of the endpoints considered (tu-
mor response and survival), is an adjustment of the analysis for length
bias. To this aim, Buyse et al. (2000b) and Burzykowski, Molenberghs,
and Buyse (2004) used a form of a landmark analysis. They found that
the strength of the individual-level and trial-level association depended
on the landmark time; irrespectively of the landmark time, however, the
individual-level association remained substantial, while the trial-level as-
sociation was low. The dependence clearly points to the need for the ad-
justment for length bias. This need is a feature related to the question
asked (about the association between tumor response and survival) and
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will appear irrespective of the method of the analysis.

The difference between the unadjusted and adjusted (HAS and F) estimates
of the trial-level coefficient of determination, presented in Table 12.4, clearly
points to the need to account in the analysis for the error in the estimation
of treatment effects. The higher values observed for the adjusted estimates
suggest that the conclusions regarding limited trial-level validity of tumor
response as a surrogate for survival in advanced colorectal trial, drawn
by Buyse et al. (2000b) and Burzykowski, Molenberghs, and Buyse (2004)
based on the unadjusted estimates, may need to be treated with caution.
Unfortunately, due to the low precision of the former estimates, a more
definitive statement regarding the validity of tumor response cannot be
reached.

The low precision of the adjusted estimates may look surprising, especially
as a relatively large, meta-analytic set of data was used. It is worth men-
tioning here, however, that the response rate, especially for the “standard”
arms, was low (see Table 12.1). Thus, although the overall sample size (4010
patients) may look respectable, the effective sample (especially for the bi-
nary response) is much lower. The low response rate also implies a large
estimation error for trials with a small sample size. Treatment estimates
for such trials are very “noisy” and may therefore cause problems with
estimating the variability of the (unobserved) trial-specific random effects.
From Table 12.1 one can observe that quite a few trials included in the
analyzed data had a low sample size (e.g., 11 had less than 100 patients).

In this respect it is worth noting here that the meta-analytic approach to
the validation of surrogate endpoints, as any meta-analysis, simply uses the
data from previously organized clinical trials. One might expect that the
trials will be powered for true endpoint. Of course, the resulting sample
sizes, and the treatment estimation errors, will vary, reflecting different
assumptions made at the trials’ design stage. Thus, the problem with the
presence of small trials may in practice occur quite commonly. Moreover,
the sizes may appear to be too low from a point of view of the information
provided for a surrogate endpoint. The case study analyzed illustrates this
point very well.

The need to account for the error in the estimation of treatment effects
is due to the two-stage modelling proposed by Burzykowski, Molenberghs,
and Buyse (2004). This need might disappear if, for example, a genuine
mixed-effects model could be formulated, which would allow for the simul-
taneous estimation of the fixed effects, the individual-level association and
the parameters of the distribution of the random trial-specific treatment
effects. At this moment, however, no such model is available.

Finally, it should be pointed out that if one is less interested in the indivi-
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dual-level surrogacy, simpler modeling approaches become possible. For in-
stance, marginal models fitted using generalized estimating equations might
be considered (Gail et al. 2000; see also Chapter 9).



13

A Combination of Longitudinal
and Survival Endpoints

Didier Renard

13.1 Introduction

Interest in methods for joint modeling of longitudinal and survival time
data has developed considerably in recent years (see, e.g., Pawitan and Self
1993, DeGruttola and Tu 1994, Taylor, Cumberland, and Sy 1994, Faucett
and Thomas 1996, Lavalley and De Gruttola 1996, Hogan and Laird 1997a,
1997b, Wulfsohn and Tsiatis 1997, Henderson, Diggle, and Dobson 2000,
Xu and Zeger 2001b). This problem frequently occurs in biomedical and
public health studies where participants are followed over time. In such
studies, measurements on a number of outcomes are obtained at different
occasions throughout the study and times to key clinical events are recorded
as well.

In randomized clinical trials, the main question is often whether the treat-
ment under study has a beneficial effect on the time to some clinical out-
come, the endpoint of primary interest. When the time elapsed between
randomization and this event is long or the event is rare, it may be desir-
able to find a substitute for the clinical endpoint that is less distant in time
or more frequently observed. This can result in shorter trial duration and
make a potentially useful treatment available earlier to a wider range of pa-
tients. For example, in AIDS research, the number of CD4 T-lymphocytes
and RNA viral load have been used as surrogate endpoints for time to
disease progression or death (Brookmeyer and Gail 1994).

A number of researchers have used joint modeling methods to exploit longi-
tudinal markers as surrogates for survival. Tsiatis, DeGruttola, and Wulf-
sohn (1995), for instance, propose a model for the relationship of survival
to longitudinal data measured with error and, using Prentice criteria, ex-
amine whether CD4 counts may serve as a useful surrogate marker for
survival in patients with AIDS. Xu and Zeger (2001a) investigate the issue
of evaluating multiple surrogate endpoints and discuss a joint latent model



220 Didier Renard

for a time to clinical event and for repeated measures over time on mul-
tiple biomarkers that are potential surrogates. In addition, they propose
two complementary measures to assess the relative benefit of using multi-
ple surrogates as opposed to a single one. Another aspect of the problem,
discussed by Henderson, Diggle, and Dobson (2002), is the identification
of longitudinal markers for survival. These authors focus on the use of
longitudinal marker trajectories as individual-level surrogates for survival.
They derive a score test of association between the longitudinal marker and
survival outcome and propose a measure to judge marker effectiveness in
helping predict survival.

In this chapter, we extend the methodology developed in Chapter 7 for a
combination of longitudinal and survival endpoints, as discussed by Renard
et al. (2002). Technically, a joint model for longitudinal measurements and
event time data is required, and we adopt the formulation of Henderson,
Diggle, and Dobson (2000) here. Their approach assumes standard models
for the longitudinal and survival time data and postulates a latent bivariate
Gaussian process inducing stochastic dependence between the measurement
and event processes. The joint model is presented in the next section, which
also shows how the surrogacy measures R2

trial(f) and R2
indiv can be carried over

within this modeling framework. In Section 13.3, we apply the methodology
to a set of two randomized clinical trials in advanced prostate cancer where
we seek to evaluate the usefulness of prostate-specific antigen (PSA) level
as a surrogate for survival.

13.2 Joint Modeling Approach

13.2.1 Model and Notation

We first describe the approach of Henderson, Diggle, and Dobson (2000)
for joint modeling of longitudinal measurements and event time data. We
follow their notation and consider a set of N grouping units (trial, center,
etc.) where subjects within the ith unit are being followed for some time
τi. The jth subject in unit i provides a set of measurements {yijk : k =
1, . . . , nij} at times {tijk : k = 1, . . . , nij}, together with the realization of
a counting process {Nij(u) : 0 ≤ u ≤ τi} for the time-to-event endpoint
and a zero-one process {Hij(u) : 0 ≤ u ≤ τi} indicating whether a subject
is at risk of experiencing an event at time u.

A central feature of the model is to postulate an unobserved (latent) zero-
mean bivariate Gaussian process, Wij(t) = {W1ij(t), W2ij(t)}, to describe
the association between the longitudinal measurement and event processes.



13. A Combination of Longitudinal and Survival Endpoints 221

The measurement and intensity models are linked as follows:

1. The sequence of measurements {yijk : k = 1, . . . , nij} of a subject is
modeled using a standard linear mixed model, possibly allowing for
a serially correlated component:

Yijk = µij(tijk) + W1ij(tijk) + εijk, (13.1)

where µij(tijk) describes the mean response profile and

εijk ∼ N(0, σ2
e)

is a sequence of mutually independent measurement errors. We will
let αi denote the vector of parameters for the trial-specific treatment
effects used in modeling the mean response profile. Examples will be
given in what follows.

2. The event intensity process is modeled using a semi-parametric model

λij(t) = Hij(t)λ0(t) exp{βiZij + W2ij(t)}, (13.2)

where the form of λ0(t) is left unspecified. The parameters βi repre-
sent trial-specific treatment effects on the hazard function.

The specification of W1ij and W2ij can take different forms. For example,
suppressing the indices for notational simplicity, we can assume

W1(t) = U1 + U2t,

with (U1, U2) being normally distributed with mean zero and covariance
matrix G, to specify a model with random intercept and random slope for
the longitudinal marker. For W2(t) we can include distinct effects for the
initial value (U1), the slope (U2), and the current value (U1 + U2t) of W1,
that is,

W2(t) = γ1U1 + γ2U2 + γ3(U1 + U2t).

Inclusion of a frailty component, orthogonal to the measurement process,
is also possible.

Following Henderson, Diggle, and Dobson (2000), the preferred method of
estimation for the above model is the EM algorithm. The procedure involves
iterating between the following two steps until convergence is achieved:

1. E-step: determine expected values, conditional on the observed data, of
all functionals of the random effects h(U) appearing in the complete
data log-likelihood using current parameter estimates;
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2. M-step: maximize the complete data log-likelihood with each function
h(U) replaced by its corresponding expectation.

When a serially correlated component is included in the process W1(t),
the authors suggest using a modification of the procedure which combines
simplex and EM algorithms. However, this complicates somewhat the esti-
mation procedure, and we restrict attention to models with random effects
only in what follows.

13.2.2 Measures of Surrogacy

We now examine how surrogacy measures introduced in Chapter 7 can
be carried over within the modeling framework described in the previous
section.

The coefficient R2
trial(f) (or R2

trial(r)) can be derived from its definition given
in Chapter 7. Unlike model (7.6)–(7.7), which solely involves treatment ef-
fects, the longitudinal component will require, in general, a more complex
specification to represent time evolution of the marker. For practical pur-
poses, we will assume that the mean trajectory of the marker within each
treatment group can be specified parsimoniously, as a low-order polyno-
mial or a continuous piecewise linear function of time, for example. For the
sake of illustration, suppose that the trajectory of the marker over time is
quadratic; then µij(tijk) can be written

µij(tijk) = µ0i + µ1itijk + µ2it
2
ijk + α0iZij + α1iZijtijk + α2iZijt

2
ijk.

Evaluation of R2
trial(f) and R2

trial(r) at the second stage, after fitting model
(13.1)–(13.2), is straightforward. For example, R2

trial(r) can be calculated as
the coefficient of determination from the regression model

β̂i = λ0 + λ1α̂0i + λ2α̂1i + λ3α̂2i + εi,

where the hat notation refers to estimated values.

At the individual level, it is natural to consider the association between
W1 and W2. Stated otherwise, R2

indiv will not refer to the direct association
between the two endpoints but rather to the association between the two
latent processes governing the longitudinal and event processes. This asso-
ciation is no longer summarized by a single number, however. It is now a
time-dependent measure since the association between the marker and the
event process can be defined relative to any time over the course of measure-
ment of the marker. In fact, this can be extended even to the association
between W1 at some time t1 and W2, taken at a later time t2 ≥ t1, which
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defines a surface describing the association between the latent processes.
This feature can be important in selecting an optimal time at which the
marker should be evaluated, either to enhance clinical judgment or even
further, to predict the event time of interest.

To illustrate the derivation of R2
indiv(t), we continue with our previous

example where it was assumed that W1(t) = U1 + U2t and W2(t) =
γ1U1 + γ2U2 + γ3(U1 + U2t). The correlation between W1(t) and W2(t),
at any fixed time t, can easily be calculated since W1(t) and W2(t) have a
joint normal distribution. Thus, if (U1, U2) ∼ N(0, G), we have:

var[W1(t)] = G11 + 2G12t + G22t
2,

var[W2(t)] = (γ2
1 + 2γ1γ3)G11 + 2(γ1γ2 + γ1γ3t + γ2γ3)G12

+(γ2
2 + 2γ2γ3t)G22 + γ2

3var[W1(t)],

cov[W1(t), W2(t)] = γ1G11 + (γ2 + γ1t)G12 + γ2G22t + γ3var[W1(t)],

from which the (squared) correlation between W1(t) and W2(t) can be eval-
uated by plugging in estimates for γ1, γ2, G11, G12, and G22. This function,
that will be termed “model-based,” is entirely based on the assumptions
made in our model. A more heuristic estimate, which we will refer to as
“empirical,” could be derived along the same lines of development, except
that sample estimators based on the expected U values obtained at the
final step of the EM algorithm are substituted for the elements of G. Thus,
G11 is replaced by v̂ar{Û1i}, G22 by v̂ar{Û2i} and G12 by ĉov{Û1i, Û2i}.
It should be stressed that the “empirical” curve still depends heavily on
the model specification. Thus, if we assume that W2(t) = γW1(t), R2

indiv

will be identically equal to one. As one departs from this basic model and
further terms are added, a finer characterization of the curve is allowed in
its admissible forms. We consequently recommend including a sufficiently
large number of association parameters {γk} in the model to avoid undue
constraints on R2

indiv.

13.3 Application to Advanced Prostate Cancer
Data

We consider the data set introduced in Section 4.2.5. The goal is to inves-
tigate whether PSA level may serve as a suitable surrogate for survival in
patients with advanced prostate cancer.

We will utilize pooled data and refer to control (CPA/flutamide) and ex-



224 Didier Renard

perimental (liarozole) arms. In this analysis, we will use country as the
grouping unit within each trial in order to have a sufficient number of pa-
tients in each unit. This yields a number of 19 units comprising between 3
and 69 patients. Two of these units were excluded from the analysis, how-
ever: in one of them (n = 3), subjects were accrued in only one treatment
arm and no events were observed in the second (n = 8).

Figure 13.1 displays summaries of the data in terms of the basic enti-
ties connected through model (13.1)–(13.2). Smoothed PSA profiles were
obtained using LOESS while smoothed estimates of the hazard rates were
obtained following the method of Ramlau-Hansen (1983) with an Epanech-
nikov kernel function. The PSA profiles depicted in Figure 13.1 are rather
flat, but this picture does not tell the entire story. In such cancer trials
many patients are taken off study upon clinical progression or do not sur-
vive throughout the study period and this results in longitudinal sequences
of largely varying length. To investigate this effect of “dropout,” we grouped
the data according to visits as planned in the protocol and we plotted the
mean profiles for each dropout pattern. This is shown in Figure 13.2, where
late-dropout patterns are not included because of the scarcity of data after
1.5 years. We can notice that patients who progressed early tend to have a
higher initial PSA value and do not exhibit an early decline in their PSA
level. The mean curved PSA profiles for subjects who progressed belatedly
can be contrasted with the relatively flat curves displayed in Figure 13.1.

The first step in the analysis is to specify a parsimonious model that cap-
tures the evolution of the marker over time. A simplistic attempt could
involve second-order polynomials, as suggested by patterns in Figure 13.2.
We include random effects for each term (that is, intercept, t and t2). To
refine this initial choice, we can employ fractional polynomials (Royston
and Altman 1994). A fractional polynomial is a linear combination of real-
valued powers of X, where X represents some covariate (time in this case).
More formally, a fractional polynomial φ(X; β, p) of degree m can be de-
fined as the function

β0 +
m∑

j=1

βjX
(pj),

where the βj are regression parameters and p = (p1, . . . , pm) is a real-valued
vector of powers with p1 < . . . < pm (this definition can be extended to
handle equalities among power values). The notation X(p) denotes the Box-
Tidwell power transformation

X(p) =
{

Xp, p �= 0,
lnX, p = 0.

By definition, fractional polynomials extend the family of classical polyno-
mials. A great advantage of fractional polynomials over standard polyno-
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FIGURE 13.1. Advanced prostate cancer study. Longitudinal and event time sum-
maries for the combined liarozole trials. Top panel: smoothed PSA profiles; bottom
panel: smoothed estimates of the hazard rates.

mials is their providing a wide range of functional forms and their behavior
near the extreme values is often more reasonable. Fractional polynomials
are therefore useful for parsimonious parametric modeling.

Another advantage of fractional polynomials is that they are straight-
forward to fit. To determine the “best” value of m and p, Royston and
Altman (1994) propose restricting the power terms to a small predefined
set of integer and non-integer values. More precisely, they suggest using
P = {−2,−1,−0.5, 0, 0.5, 1, 2, . . . ,max(3, m)}, and to select the power val-
ues associated to the model with the highest likelihood. As with conven-
tional polynomials, the degree m of the fractional polynomial is selected
either informally on a priori grounds or by increasing m until no notice-
able improvement in model fit can be detected. Arguably, in many practical
situation, m = 2 or m = 3 would be sufficient.

With longitudinal data, model specification involves modeling of both the
mean and the covariance structures, and different strategies can be en-
visaged to incorporate fractional polynomials in the model. For example, a
fixed covariance structure can be chosen for all fitted models, and the value
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FIGURE 13.2. Advanced prostate cancer study. Mean PSA profiles per “dropout”
patterns (the black diamonds represent the mean PSA level of those patients who
only have a baseline measurement).

of p that provides the best model fit is then selected. An alternative is to
update both the mean and the covariance structures for each fitted model.
Thus, if the mean model assumes the form α0 +α1t

p1 +α2t
p2 , we may want

to include (subject-specific) random effects to obtain a random-coefficient
model α0j + α1jt

p1 + α2jt
p2 .

We follow the latter strategy here, with specific curves for each treatment
group. The result of fitting a fractional polynomial of degree 2 gives p =
(0.5, 1) for the prostate cancer data. Comparison of this model with the
original (quadratic) model yields a large rise in likelihood.

The joint model we are going to fit is the following:

Sijk = µ0i + µ1itijk + µ2i

√
tijk + (α0i + α1itijk + α2i

√
tijk)Zij

+U0j + U1jtijk + U2j

√
tijk + εijk (13.3)

and

λij(t) = λ0(t) exp[βiZij + γ0U0j + γ1U1j
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+γ2U2j + γ3(U0j + U1jt + U2j

√
t)]. (13.4)

We can now evaluate trial- and individual-level surrogacy. With the rel-
atively small number of units available, we focus on R2

trial(r) rather than
on R2

trial(f). The coefficient of determination in the regression of {β̂i} on
α̂i = {α̂0i, α̂1i, α̂2i} yields a value of 0.517. This mid-range value is prob-
ably too low to permit reliable prediction of treatment effects on survival,
having observed the effect of treatment on the marker. Confidence limits
on R2

trial(r) can be obtained from the cumulative distribution function of
R2 based on the assumption that the αi’s and βi’s are normally distrib-
uted (Ding 1996, Algina 1999). In our example, the 95% confidence interval
for R2

trial(r) is [0.013, 0.748], thus showing that trial-level association is esti-
mated rather imprecisely. This might be explained by the restricted number
of grouping units and the mid-range value of R2

trial(r) (the confidence interval
being more narrow for more extreme values of R2

trial(r)).

Note that dependence between the marker and survival endpoint is a com-
plicating assumption within our methodology. If interest centers on trial-
level surrogacy alone, a naive approach would be to assume independence
between the two outcomes, which greatly simplifies computations, as the
two models can then be fitted separately. Tibaldi et al. (2003) explore this
issue in the case of normally distributed endpoints and conclude that sim-
plified computational methods perform quite well (see Section 7.4.2 for an
account on this). Obviously, as one departs from the multivariate Gaussian
framework, it is not at all clear whether such a simplistic approach works
effectively well. Section 11.7 discussed simplified strategies when both the
surrogate as well as the true endpoint are of a time-to-event type. For
comparative purposes, we calculated R2

trial(r) by separately fitting models
(13.3) and (13.4) with γ0 = γ1 = γ2 = γ3 = 0. This results in a value
of R2

trial(r) = 0.291, with 95% confidence interval [0, 0.576], which is much
lower than the one found above (although confidence limits should not be
overlooked).

Figure 13.3a shows the model-based and empirical curves R2
indiv(t) for model

(13.3)–(13.4). Both curves agree fairly well over the time range considered.
They start from a relatively low level (∼ 0.3), then raise sharply until a
value of about 0.9 at year 1 and stabilize at that level thereafter. Although
the interpretation of this plot holds, strictly speaking, at the level of the
latent processes W1 and W2, this would suggest that, initially, PSA level
bears relatively little information on a patient’s future survival but as in-
formation on the marker is gathered over time (mostly within the first year
of treatment), it achieves better predictive capability, with no further gain
subsequently. The plot in the right panel (Figure 13.3b) shows the model-
based and empirical curves for the original model (quadratic time evolution
for the marker). In comparison with Figure 13.3a, the curves are similar
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FIGURE 13.3. Advanced prostate cancer study. Plots of the model-based and em-
pirical R2

indiv(t) curves. Left panel: final model (t and
√

t). Right panel: quadratic
model.

until year 1, but then a dip can be observed. Also, both curves do not co-
incide very well. It is not clear whether this is caused by the inferior fit of
the model, or by constraints imposed by the model itself, but this calls for
caution when interpreting such plots. We do believe that they might shed
some light on the basic intricacies between the marker and the survival
endpoint under study, but they should not be over-interpreted as they may
be strongly model-dependent.

As to the clinical interpretation of the above analysis, we have seen that
PSA level and survival seem, as expected, strongly related, at least when a
sufficiently large amount of information has been gathered on the marker.
While bearing in mind that R2

trial(r) was estimated with rather large un-
certainty, the value that was found stands mid-range in the unit interval
and would prevent us from formulating any firm conclusion, had it been
estimated more precisely. This points to an issue, not of the methodology,
but rather of the biological nature of the marker. We may tentatively say,
however, that PSA level has some value as a surrogate marker for survival,
for the class of treatments considered in the two trials at least, but probably
is not a very good one.
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13.4 Discussion

A limiting feature of the modeling approach presented in Section 13.2 is
the computational burden inherent to such complex models. This issue is
exacerbated by the typical size of the meta-analytic data sets required for
the validation exercise.

Another problem is associated with the use of the EM algorithm to fit
the model, as it fails to provide precision estimates for the parameters.
To obtain standard errors, Henderson, Diggle, and Dobson (2000) used a
Monte-Carlo method by refitting the model to a number of simulated data
sets generated using parameter values taken from the original analysis.
Clearly, this procedure may be overly time-consuming here but it could
help provide uncertainty measures around the R2

indiv(t) curve. Precision
estimates would also be required if one wishes to correct for measurement
error introduced by the fact that estimates of the αi’s and the βi’s are
effectively employed when estimating R2

trial(r).
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Repeated Measures and
Surrogate Endpoint Validation

Ariel Alonso Abad, Helena Geys, and Tony
Vangeneugden

14.1 Introduction

In many practical applications, repeated measurements are encountered on
either or both endpoints. In the previous chapters, the focus was on one
or both of the endpoints to be of a univariate type. Going to a fully mul-
tivariate framework presents new challenges. The R2 measures introduced
in Chapter 7 are no longer applicable. In Chapter 7, the meta-analytic
methodology has been based on the simplest cross-sectional case in which
both the surrogate and the true endpoint are continuous and normally dis-
tributed. Subsequently, different variations to the theme were implemented
for binary responses (Chapter 10), times to event (Chapter 11), and for
the combination of a survival and a longitudinal endpoint (Chapter 13).
In the cross-sectional cases, one assumes that only one potential surro-
gate is available and that treatment effect on both responses is a constant
and hence can be characterized by a single parameter. These assumptions
can fail when a patient is measured repeatedly over time. Extending the
methodology to this setting opens some new conceptual problems.

In this chapter, we consider the setting where both the surrogate and the
true endpoint are longitudinal. In such a situation, an additional chal-
lenge is to summarize surrogacy by means of simple measures. Technically,
to this aim, a joint model for multivariate repeated measurements is re-
quired. Useful references on this topic include Galecki (1994), Sy, Taylor,
and Cumberland (1997), and Jorgensen et al. (1999). In analogy to the
cross-sectional setting considered by Buyse et al. (2000a), we will base the
calculation of surrogacy measures on a two-stage approach rather than a
full random-effects approach, which would take into account both the re-
peated measures as the multi-trial nature of the data, in order to reduce
numerical complexity. Technically, we need (1) a model for bivariate lon-
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gitudinal outcomes and (2) new measures that let us evaluate surrogacy
when longitudinal data are available. Here, we will introduce a joint model
for bivariate longitudinal outcomes along the ideas of Galecki (1994). An
advantage of this approach is that it can be implemented easily within
commonly available software programs.

14.2 The Model

Suppose we have data from i = 1, . . . , N trials in the ith of which j =
1, . . . , ni subjects are enrolled. Assume further that ξijk is the time cor-
responding to the kth occasion (k = 1, . . . , pi) when subject j in trial i
was measured. Let Tijk and Sijk denote the associated true and surrogate
endpoints, respectively, and let Zij be a binary indicator variable for treat-
ment. Following the ideas of Galecki (1994), a specific joint model at the
first stage for both responses can then be written as{

Tijk = µT i + βiZij + gTij
(ξijk) + εT ijk

,

Sijk = µSi
+ αiZij + gSij

(ξijk) + εSijk
,

(14.1)

where µSi
and µT i

are trial-specific intercepts, αi, βi are trial-specific effects
of treatment Zij on the two endpoints, and gTij

and gSij
are trial and

subject specific time functions. Note that even though in practice Tij and
Sij are frequently measured at the same time points, model (14.1) would
let us approach situations in which this condition does not hold.

In the case of univariate longitudinal endpoints, one can consider different
types of covariance structures for T and S, including compound symmetry,
auto-regressive, banded, factor-analytic, spatial, unstructured, etc. Here,
however, we have repeated measurements on two outcome variables, the
surrogate and the true endpoint. A possible joint covariance structure can
then be based on the Kronecker product of (1) an unstructured variance-
covariance matrix for the type of outcome and (2) a suitable covariance
structure for the repeated measurements on an outcome. Note that, while
in the setting defined in Chapter 7 the error variance-covariance matrix
could be assumed constant over all trials (even though this was extended
in Chapter 9), this assumption is no longer plausible in most practical longi-
tudinal settings. That is because measurements could be taken at different
time points within different trials, the number of measurements could be
different in each trial, etc. Therefore, we should allow for different covari-
ance structures over the different trials. To this aim, define the random
vectors

ε̃T ij
= (εT ij1 , . . . , εT ijpi

),
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ε̃Sij
= (εSij1 , . . . , εSijpi

),

and assume that they are jointly mean-zero multivariate normally distrib-
uted with variance-covariance matrix

Σi =
(

σTTi σTSi

σTSi σSSi

)
⊗ Ri. (14.2)

In the aforementioned formulation, Ri reflects a general correlation matrix
for the repeated measurements of the responses. A frequent choice in prac-
tice would be the first-order auto-regressive structure (in case measures are
equally spaced; otherwise, a spatial-type structure may be better)

Ri =

⎛⎜⎝ 1 ρi . . . ρpi

i
...

...
...

...
ρpi

i ρpi−1
i . . . 1

⎞⎟⎠ (14.3)

where pi denotes the number of designed time points in trial i. It should
be noted that if we only have one measurement per subject, time will
disappear as a covariate on the right-hand side of (14.1) and Ri = 1. If it is
also assumed that Σi = Σ, then our model reduces to the model proposed
by Buyse et al. (2000a) and presented in Chapter 7.

As we will argue in what follows, the above model is, of course, not free from
assumptions. It is therefore important to check the model assumptions in
each specific example. However, the measures of surrogacy we will propose,
also hold for other, more general covariance structures than the one defined
in (14.2).

If treatment effect can be assumed constant over time, then the R2
trial mea-

sured proposed by Buyse et al. (2000a) could still be useful to evaluate
surrogacy at the trial level. However, at the individual level, R2

indiv is no
longer applicable and new concepts are needed.

14.3 Variance Reduction Factor

In general, the error vectors ε̃Tij
and ε̃Sij

follow a multivariate normal
distribution with variance-covariance matrix

Σi =
(

ΣTTi ΣTSi

ΣT
TSi ΣSSi

)
,

where ΣTTi and ΣSSi are the variance-covariance matrices associated with
the residual vectors ε̃Tij

and ε̃Sij
, respectively, and ΣTSi contains the co-

variances between the elements of ε̃Tij
and the elements of ε̃Sij

. Hence, we



234 Ariel Alonso Abad, Helena Geys, and Tony Vangeneugden

allow for a different covariance structure in each clinical trial, thus leaving
the possibility to tackle very general problems for which the assumption
of homogeneous covariance structures over trials would be overly restric-
tive. Note that, under model (14.1), ΣTTi = σTTiRi, ΣSSi = σSSiRi, and
ΣTSi = σTSiRi.

To validate a surrogate endpoint at the individual level in a univariate set-
ting, Buyse et al. (2000a) suggested to look at the correlation between the
surrogate and the true endpoint after adjustment for trial and treatment
effects. Using multivariate ideas, Alonso et al. (2003) proposed the Vari-
ance Reduction Factor (V RF ) to evaluate surrogacy at the individual level
when repeated measurements are present. Essentially, they summarized the
variability of the repeated measurements on the true endpoint by taking
the sum, over all trials, of traces of the trial-specific variance-covariance
matrices for the measurements. In a similar way, they summarized the con-
ditional variability of the true-endpoint measurements, given the surrogate,
by the sum of traces of the trial-specific conditional variance-covariance
matrices. As a result, they quantified the relative reduction in the true
endpoint variance after adjustment by the surrogate by

V RFindiv =

∑
i

[tr(ΣTTi) − tr(Σ(T |S)i)]∑
i

tr(ΣTTi)
, (14.4)

where Σ(T |S)i = ΣTTi−ΣTSiΣ−1
SSiΣ

T
TSi denotes the conditional trial-specific

variance-covariance matrix of ε̃Tij
given ε̃Sij

. Intuitively, expression (14.4)
quantifies how much of the total variability of the repeated measurements
on the true endpoint is explained by adjusting for the treatment effects and
the repeated measurements on the surrogate endpoint. In that respect, ex-
pression (14.4) fits into the general definition of the “proportion of variation
of a dependent variable, Y , explained by a vector of covariates X” (PVE)
in general regression models

PV E =

∑
i

[D(Yi) − D(Yi|Xi)]∑
i

D(Yi)
,

where D(Yi) denotes a measure of distance of Yi from a central location
parameter of the estimated marginal distribution of Y , and D(Yi|Xi) de-
notes the same measure using the distribution of Y conditional on a given
model and on the covariate vector for the ith observation (Schemper and
Stare 1996).

One can further show that
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1. V RFindiv ranges between zero and one;

2. V RFindiv equals zero if and only if the error terms of the true and
surrogate endpoints are independent within each trial;

3. V RFindiv equals one if and only if there exists a deterministic rela-
tionship between the error terms for the true and surrogate endpoints
within each trial;

4. V RFindiv reduces to R2
indiv, defined by Buyse et al. (2000a) when the

endpoints are measured only once.

If model (14.1) is considered, then V RFindiv can be rewritten in terms
of the trial-specific squared correlations ρ2

TSi = σTSi/(σTTiσSSi) between
surrogate and true endpoints at each time point:

V RFindiv =
∑

i

(
piσTTi∑
i piσTTi

)
ρ2

TSi. (14.5)

The latter expression yields an appealing interpretation of V RF . Indeed,
V RF is just a sum of different trial contributions, where each contribution
is the product of the squared correlation between the surrogate and the
true endpoint at each time point in that trial with the proportion of the
total true endpoint variance that is accounted for by that trial.

As mentioned before, as soon as the treatment effect cannot be assumed
constant over time, the trial-level measure of surrogacy defined by Buyse et
al. (2000a) becomes inapplicable as well and other approaches are needed.
In this case the treatment effect at the ith trial cannot be characterized by
the scalars βi and αi, but by the pi dimensional vectors β̃i and α̃i (Verbyla
1999).

To overcome this difficulty, we can then define the variance reduction factor
at the trial level (V RFtrial). Suppose that(

β̃i, α̃i

)
∼ N

[(
βi, αi

)
, Di

]
,

with

Di =
(

Dββi Dβαi

DT
βαi Dααi

)
.

Here, (βi, αi) is the 2pi-dimensional mean treatment effect vector for the
ith trial. Note that a trial-specific variance-covariance matrix Di is assumed
as, for reasons explained earlier, it would be unrealistic to assume the same
covariance structure across all the trials. Under these assumptions we can
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define, similarly to the individual level and with straightforward notations,
V RFtrial as

V RFtrial =

∑
i

[
tr(Dββi) − tr(D(β|α)i)

]
∑

i

tr(Dββi)
. (14.6)

The properties of V RFindiv stated earlier can now be easily extended to
V RFtrial. Moreover, in case of a single observation it can be shown that
V RFtrial becomes equivalent to R2

trial defined by Buyse et al. (2000a). The
scope of the methodology presented above is not limited to the longitudinal
framework. There are other settings in which the use of these tools can
be appealing. For example, a lot of work on surrogate endpoint validation
assumes only one potential surrogate is being evaluated. However, it is easy
to conceive of situations where a treatment can affect a medical condition
in a very complex way, thereby simultaneously acting on different factors.
In such a case, it would make sense to presume that the prediction of the
treatment effect on the true endpoint can be substantially improved by
using information about the treatment effect on an entire set of possibly
relevant variables at the same time.

To investigate this idea in more detail, let us assume that two potential
surrogate endpoints are available. Following the development of the two-
stage model proposed of Buyse et al. (2000a) (see also Chapter 7), we can
postulate the following multivariate regression model at the first stage:⎧⎪⎪⎨⎪⎪⎩

Tij = µT i
+ βiZij + εT ij

,

S1ij = µS1i + α1iZij + εS1ij ,

S2ij = µS2i + α2iZij + εS2ij ,

(14.7)

where
(
εTij

, εS1ij
, εS2ij

) ∼ N (0, Σ) . At the second stage we will, by way of
illustration, assume that (βi, α1i, α2i) ∼ N [(β, α1, α2) , D] with

D =

⎛⎝ 2σ + ϑ σ σ
σ σ 0
σ 0 σ

⎞⎠ .

If we now apply the methodology described in Chapter 7 for each surrogate
separately, it is easy to show that

R2
1,trial = R2

2,trial =
σ

2σ + ϑ
,

where R2
�,trial (� = 1, 2) is the coefficient of determination corresponding to

the use of surrogate S�. On the other hand, when both of the surrogates
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are considered jointly, we obtain

V RFtrial =
2σ

2σ + ϑ
.

This leads us to a very interesting point about the new concept. Focus-
ing on the population level, note that Var(βi|α1i, α2i) = ϑ and hence it is
clear that, for small values of ϑ, there is an almost deterministic relation-
ship between βi and (α1i, α2i). This will imply that we should be able to
predict the treatment effect on the true endpoint with a high precision if
the treatment effects on both surrogates S1 and S2 are known. However,
these surrogates would poorly predict the treatment effect on the true end-
point if they were considered independently, as can be concluded from the
expressions

lim
ϑ→0

R2
1,trial(ϑ) = lim

ϑ→0
R2

2,trial(ϑ) = 0.5.

On the other hand, V RFtrial clearly reflects that, in this setting, a very
accurate prediction for the true endpoint treatment effect can be obtained
if both endpoints are used jointly:

lim
ϑ→0

V RFtrial(ϑ) = 1.

This extreme situation is less likely to occur in practice, if only because we
then have to account for measurement error due to finite sampling (Gail
et al. 2000). Nevertheless, the previous example does illustrate that a lot
might be gained if more than a single surrogate is used. In principle, any
number of potential surrogates could be studied and even several endpoints
and several surrogates could be analyzed together, in a multivariate fashion.

14.4 Validation from a Canonical Correlation
Perspective

The original idea of Buyse et al. (2000a) of using a squared correlation
coefficient (R2

indiv) to summarize surrogacy at the individual level leads us
to the concept of canonical correlations as a possible building block for
multivariate extensions.

In this section, we will show that V RF can be incorporated into a much
more general framework that allows interpretation in terms of the canonical
correlations of the error vectors.

Assume that in trial i the repeated measurements for S and T are taken
at pi time points for every patient. Thus, vectors Tij and Sij for patient
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j can be seen as realizations of pi-variate random variables T i and Si,
respectively. Denoting by ε̃T i

and ε̃Si
the residual random errors corre-

sponding to T i and Si, respectively, it is obvious that in trial i there will
be k = 1, . . . , pi squared canonical correlations ρ2

ki for (ε̃T i , ε̃Si), such that
ρ2
1i ≥ ρ2

2i ≥ . . . ≥ ρ2
pii

and ρ2
ki is the eigenvalue of

MCCi = Σ−1/2
TTi ΣTSiΣ−1

SSiΣ
T
TSiΣ

−1/2
TTi . (14.8)

If we further define ρ2
vi = (ρ2

1i, ρ
2
2i, . . . , ρ

2
pii) to be the vector of the squared

canonical correlations for trial i, then it can be seen very easily that

1. ρ2
vi ranges between zero and one for all i in the sense that each of its

components does;

2. ρ2
vi = 0 for all i if and only if the error terms for the true and surrogate

endpoints are independent within each trial;

3. ρ2
vi = 1 for all i if and only if there exists a deterministic relationship

between the error terms for the true and surrogate endpoints within
each trial;

4. ρ2
vi are all equal and reduce to R2

indiv when both endpoints are mea-
sured only once.

Even though all of these properties would support the idea of using ρ2
vi as a

summary measure to evaluate surrogacy at the individual level, a closer look
reveals some problems. For instance, for N clinical trials we would have to
analyze a set of N canonical correlation vectors ρ2

v1, ρ
2
v2, . . . , ρ

2
vN to study

surrogacy at the individual level. It is not evident how such an analysis
should be carried out and it seems clear that a practical interpretation
could be difficult in the absence of a single measure. An extra problem
could come from the fact that in general all ρ2

vi could have a different
dimension.

As a possible way out of these problems, we could use a function of ρ2
vi

which, while preserving the properties mentioned before, would summarize
the information in just a single, yet meaningful, measure. In general, such
a function θ = g(x1, x2, . . . , xp), should satisfy

1. θ : [0, 1]p → [0, 1];

2. θ = g(x1, x2, . . . , xp) = 0 ⇔ (x1, x2, . . . , xp) = 0;

3. θ = g(x1, x2, . . . , xp) = 1 ⇔ (x1, x2, . . . , xp) = 1;

4. θ = g(x, x, . . . , x) = x.
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If we restrict ourselves to the narrower subclass of linear functions

θ = g(x1, x2, . . . , xp) =
∑

aixi,

then it is not difficult to prove that points the four properties above are
equivalent to ai > 0 for all i and

∑
ai = 1.

Assuming that we dispose of data from several trials, we can now define the
following family of parameters to study surrogacy at the individual level

Θ =

{
θ : θ =

∑
i

∑
k

αikρ2
ki, αik > 0 ∀(i, k),

∑
i

∑
k

αik = 1

}
,

where i = 1, . . . , N denotes the trial and k = 1, . . . , pi denotes the designed
time points for the trial.

This definition opens some new important questions. A whole family of
parameters can now be used to evaluate surrogacy at the individual level.
However, it is not clear at this point if there is any relationship between
this family and the concepts introduced previously, like the V RFindiv and
the R2

indiv. This issue will be investigated in the next section.

14.4.1 Relationship Between V RF , θ, and R2
indiv

At the beginning of this chapter, the V RF was introduced by formula (14.4)
to summarize the relationship between both endpoints at the individual
level in a multivariate framework. Upon rewriting the matrix MCCi, given
by (14.8), as MCCi = PT

i ΛρiPi, where Pi is an orthogonal matrix and
Λρi is the diagonal matrix of the squared canonical correlations, it can be
shown that

VRFindiv =
∑

i

∑
k

α∗
ikρ2

ki, (14.9)

where

α∗
ik =

(PT
i ΣTTiPi)kk∑
i

tr(ΣTTi)
.

Here, (PT
i ΣTTiPi)kk denotes the kth element of the diagonal of matrix

PT
i ΣTTiPi. It appears that all coefficients α∗

ik are positive and sum to 1.
Therefore, V RF is an element of Θ.

This new formulation of V RF , using coefficients α∗
ik, is difficult to interpret.

In order to obtain a better insight into these coefficients let us denote the
canonical variable associated with ε̃T i as Ũi. From canonical correlation
analysis it is known that Ũi = AT

i ε̃T i
, where Ai = Σ−1/2

TTi Pi, and that
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variance-covariance matrix for the canonical variable and the original one
is given by Cov(ε̃T i

, Ũi) = (AT
i )−1. It follows that

PT
i ΣTTiPi = Cov(ε̃T i , Ũi)T cov(ε̃T i , Ũi)

and, finally,

α∗
ik =

∑
l

Cov(ε̃T il, uik)2∑
i

tr(ΣTTi)
.

Taking into account that tr(ΣTTi) =
∑

k

∑
l Cov(ε̃T il, uik)2, then∑

l Cov(ε̃T il, uik)2 can be interpreted as the part of the total variance of
ε̃T i

that is accounted for by the kth canonical variable in the ith trial.
Summing over all trials we get∑

i

tr(ΣTTi) =
∑

i

∑
k

∑
l

Cov(ε̃T ik, uil)2,

what can be seen as the total variability of the true endpoint over all trials.
Thus, α∗

ik can be interpreted as the proportion of the total variability that
can be explained by the kth canonical variable for the true endpoint in the
ith trial.

Upon noting that ρ2
ki can also be obtained as the eigenvalue of

Σ−1
TTiΣTSiΣ−1

SSiΣ
T
TSi,

under model (14.1) we have that

Σ−1
TTiΣTSiΣ−1

SSiΣ
T
TSi = ρ2

TSiI,

where I denotes the identity matrix. Thus, the eigenvalues are equal to
ρ2

TSi and the family Θ can be rewritten as

Θg =

{
θ : θ =

∑
i

αiρ
2
TSi, αi > 0 ∀i,

∑
i

αi = 1

}
.

Formula (14.5) shows that the V RF for the covariance structure (14.2) is
a special member of this family with αi = piσTTi/

∑
i piσTTi. Thus, the re-

sults developed above prove that (14.9) is a generalization of formula (14.5)
obtained for the special case in which the covariance structure of the error
terms can be modeled by (14.2).

In addition, one easily sees that not only the V RF , as explained before, but
in fact all members of Θ, reduce to R2

indiv in the cross-sectional setting. This
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result, together with the four property-preserving requirements mentioned
previously, ensures that the members of Θ can be used to assess individual-
level surrogacy.

Given that Θ can be seen as a family of measures to study individual-
level surrogacy, Alonso et al. (2004b), using either theoretical arguments or
appropriate simulation studies, evaluated the operational characteristics of
some of members of the family that one might want to consider in practice,
including V RF . As a result, they suggested that a very plausible choice in
practical situations could be θp defined as

θp =
∑

i

1
Npi

tr
[(

ΣTTi − Σ(T |S)i

)
Σ−1

TTi

]
. (14.10)

Note that, structurally, both V RF and θp are similar, the difference being
the reversal of the order of summing the trace and calculating the ratio.
Moreover, θp has the appealing property of coinciding with Pillai’s trace
statistic, well-known from classical multivariate analysis. In spite of this
strong structural similarity, these parameters have fundamental differences.
First, the V RF is not symmetric in S and T . Second, it is only invariant
with respect to linear orthogonal transformations. In contrast, θp is both
symmetric and invariant with respect to the broader class of linear bijective
transformations. Based on all of these considerations, Alonso et al. (2004b)
suggested that θp seems to be the preferable choice in the analysis of real
problems.

14.5 R2
Λ and the Likelihood Reduction Factor: A

Unifying
Approach Based on Prentice’s Criteria

One serious drawback of the measures introduced in the previous sections
is that they strongly rely on the normality assumption. Their extension to
non-normal settings seems to be difficult. In the current section, we will
consider an alternative methodology that offers some practical and con-
ceptual advantages and allows a straightforward extension to non-normal
settings.

14.5.1 The Measure R2
Λ

We propose a new parameter, called R2
Λ, to evaluate surrogacy at the in-

dividual level when both responses are measured over time, or when, in
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general, multivariate or repeated measures are available:

R2
Λ =

1
N

∑
i

(1 − Λi), (14.11)

where

Λi =
|Σi|

|ΣTTi| · |ΣSSi| . (14.12)

First, let us note that R2
Λ is defined, based on Wilks’ Lambda statistic

used in multivariate analysis. It involves the determinants of the variance-
covariance matrices. Therefore, all the elements of the covariance structure
are used when calculating (14.11). This is in contrast to (14.4) and (14.10),
which only use the information in the diagonal of the matrices describ-
ing the association between both endpoints, what makes them likely less
informative.

It is possible to show that

1. R2
Λ is symmetric and invariant with respect to linear bijective trans-

formations;

2. R2
Λ ranges between zero and one;

3. R2
Λ = 0 if and only if (ε̃T i , ε̃Si) are independent for all i;

4. R2
Λ = 1 if and only if for all i there exist ai, bi such that aT

i ε̃T i = bT
i ε̃Si

with probability one;

5. R2
Λ = R2

ind in the cross-sectional case.

These properties are essentially the same as those satisfied by V RF , θp,
and all of the members of the Θ family. However, the fourth property
makes an important difference between the new proposal and the previous
ones. Whereas the elements of Θ take the value 1 only when there is a
deterministic relationship between both endpoints, R2

Λ = 1 whenever there
is a deterministic relationship between two linear combinations of both
endpoints. This allows us to detect strong associations in situations where
V RF or θp would fail to do so.

Here again, using canonical correlation ideas, it is possible to define an
entire family of parameters to study surrogacy at the individual level, so
that R2

Λ is just a special member of this family:

ΘΛ =

{
θΛ : θΛ = 1 −

N∑
i=1

αi

pi∏
k=1

(1 − ρ2
ik), αi > 0 ∀i,

∑
i

αi = 1

}
.
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14.5.2 Relationship Between R2
Λ and θP

It might be worthwhile to make a connection between the parameters de-
fined previously (VRFindiv, θp) and R2

Λ.

Let us first consider the special case defined by model (14.2). Under this
model, the variance-covariance matrix of the error vectors is “decomposed”
into two basic components, describing the association between sequences
of repeated measurements (Σi) and within the sequences (Ri). These two
components are then put together using the Kronecker product. It is easy to
show that under this assumption (separability for the covariance structure)

θP =
1
N

∑
i

ρ2
TSi,

R2
Λ = 1 − 1

N

∑
i

(1 − ρ2
TSi)

pi ,

where ρ2
TSi = σTSi/σTTiσSSi.

Taking into account that

(1 − ρ2
TSi)

pi = (1 − ρ2
TSi) + (1 − ρ2

TSi){(1 − ρ2
TSi)

pi−1 − 1},
we obtain

R2
Λ = θP +

1
N

∑
i

(1 − ρ2
TSi){1 − (1 − ρ2

TSi)
pi−1}. (14.13)

Formula (14.13) clearly shows that θP can be seen as an approximation to
R2

Λ when the second part of the sum on the right-hand side of the equation
is negligible.

Moreover, as

1
N

∑
i

(1 − ρ2
TSi){1 − (1 − ρ2

TSi)
pi−1} ≥ 0,

we have
θP ≤ R2

Λ. (14.14)

The equality in (14.14) is obtained for the following, special cases:

1. pi = 1 for all i, which is just the cross-sectional setting, when both
proposals reduce to R2

ind;

2. ρ2
TSi = 0 for all i, in which case (ε̃T i

, ε̃Si
) are independent and R2

Λ =
θp = 0;
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3. ρ2
TSi = 1 for all i, what implies a deterministic relationship between

ε̃T i
and ε̃Si

and, as a consequence, R2
Λ = θp = 1.

If we now consider a completely general framework, where the separability
assumption does not necessarily hold, then it is easy to see that for all θΛ

in ΘΛ we have

θΛ =
N∑

i=1

pi∑
h=1

αi

pi
ρ2

ih +
N∑

i=1

pi∑
k=1

αi

pi
(1 − ρ2

ik)

⎛⎝1 −
∏
h �=k

(1 − ρ2
ih)

⎞⎠

= θ +
N∑

i=1

pi∑
k=1

αi

pi
(1 − ρ2

ik)

⎛⎝1 −
∏
h �=k

(1 − ρ2
ih)

⎞⎠ . (14.15)

Expression (14.15) allows to conclude that any θΛ in ΘΛ can be approxi-
mated by a θ in Θ, as long as the last term in the sum at the right-hand
side of (14.15) is negligible.

It can be noted that, as

N∑
i=1

pi∑
k=1

αi

pi
(1 − ρ2

ik)

⎛⎝1 −
∏
h �=k

(1 − ρ2
ih)

⎞⎠ ≥ 0,

(14.15) indicates that for all θΛ in ΘΛ there exists θ in Θ such, that

θ ≤ θΛ. (14.16)

Thus, we can conclude that (14.14) holds in general, and not only under
the separability assumption implied by (14.2).

14.5.3 The Likelihood Reduction Factor

Buyse et al. (2000a) considered the case of normally distributed surrogate
and true endpoints and proposed assessing the validity of the surrogate at
the individual level using the coefficient of determination R2

indiv, which is
the square of the correlation between the surrogate and the true endpoints
after adjusting for treatment and trial effects (see Chapter 7). In earlier
work, different measures of the association between the surrogate and the
true endpoint were used in different settings. For instance, when both end-
points of a failure time type, Burzykowski et al. (2001) use Kendall’s τ (see
also Chapter 11). On the other hand, when the true endpoint is a failure
time and the surrogate is a longitudinal sequence, Renard et al. (2002) pro-
pose to use R2

indiv(t) = Corr[W1(t), W2(t)]2, where [W1(t), W2(t)] is a latent
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bivariate Gaussian process (see Chapter 13). Note that, in the latter case,
the value of the coefficient depends on time. Other proposals have been
suggested in other settings.

All of these examples clearly show one of the main limitations of the meta-
analytic approach so far: different settings require different definitions for
the surrogacy measures. In some of these settings, it has even been proposed
to estimate the association between both endpoints at a latent level, which
could be clinically less relevant or, at least, difficult to interpret.

It is possible, however, to develop a more general procedure, which allows
to evaluate surrogacy at the individual level in very general settings. By
way of illustration, let us consider the two following two generalized linear
models for trial i:

gT {E(Tij)} = µT i
+ βiZij , (14.17)

gT |S{E(Tij|Sij)} = γ0i + γ1iZij + γ2iSij , (14.18)

where gT and gT |S are two link functions, linking the expected values E(Tij)
and E(Tij|Sij), respectively, to the linear predictors. In general, other more
complex settings could be analyzed in a very similar way using the method-
ology that will be described below. It is also possible to consider models
that assume non-linear relationships between S and E(T |S), such as, for
instance,

gT |S{E(Tij |Sij)} = γ0i + γ1iZij + f(Sij).

If we further consider the log-likelihood ratio test statistic, G2
i say, to com-

pare (14.17) and (14.18) for trial i, then one could quantify the association
between both endpoints at the individual level using the Likelihood Reduc-
tion Factor (LRF ) defined as

LRF = 1 − 1
N

∑
i

exp
(
−G2

i

ni

)
. (14.19)

Following ideas in Kent et al. (1983), one can think of (14.19) as a sample
estimate of a general measure of association between both endpoints based
on the information gain about the true endpoint, by using the surrogate.
It is also possible to show that

1. LRF is always between 0 and 1;

2. LRF = 0 if the surrogate and the true endpoints are independent in
each trial;
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3. if, for continuous outcomes, LRF → 1, then there is degeneracy
present in the true joint distribution of S and T in each trial, which
often implies a deterministic relationship between both variables;

4. when both endpoints are longitudinal, LRF becomes R2
Λ defined in

(14.11);

5. for two univariate normally distributed endpoints, LRF reduces to
R2

indiv.

It is worth noting that (14.18) is the model corresponding to the fourth
criterion (5.10), proposed by Prentice (1989). The criterion thus comes
back to play a key role in the unifying procedure quantifying the individual-
level surrogacy using LRF . One of the most appealing characteristics of
this procedure is that we can avoid the fitting of complicated joint models
for the surrogate and the true endpoints. Models like (14.17) and (14.18)
can usually be fitted using standard commercial software. This formulation
also allows to generalize both the Prentice (1989) and Buyse et al. (2000a)
methodologies, bridging the gap between both paradigms.

14.6 Analysis of Case Studies

In this section, we apply the proposed definitions to two case studies. The
first one is the meta-analysis of five double-blind randomized clinical trials,
comparing the effects of risperidone to conventional antipsychotic agents
for the treatment of chronic schizophrenia (Section 4.2.6). The second one
is the clinical trial for patients with age-related macular degeneration (Sec-
tion 4.2.1).

14.6.1 Study in Schizophrenia

The meta-analysis contains five trials. This is insufficient to apply the meta-
analytic methods described in previous chapters, in line with findings re-
ported in Buyse et al. (2000a), where it is shown that a sufficient amount
of replication at all levels is necessary to identify all of the variance compo-
nents, preferably with a decent amount of precision (see also Chapter 8).
Fortunately, in all the trials information is also available on the countries
where patients were treated. Hence, we can use country within trial as a
unit of analysis. A total of 20 units are thus available for analysis, with
the number of patients ranging from 9 to 128. The number of patients per
country is tabulated in Table 14.1. We consider Clinician’s Global Impres-
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TABLE 14.1. Meta-analysis in schizophrenia. Number of patients and measure-
ments per country-unit.

Country Id 1 2 3 4 5 6 7 8 9 10
No. patients 31 29 26 44 44 9 37 32 68 49
Country Id 11 12 13 14 15 16 17 18 19 20
No. patients 43 21 25 39 36 17 33 69 30 128

sion scale (CGI) as our primary measure (true endpoint), while we treat
PANSS as a surrogate (see Section 4.2.6 for a short description of these
scales). Admittedly, this is not a standard situation for surrogate valida-
tion due to the lack of a clear “gold standard.” Our analysis does allow
us to address some very important issues. At the trial level, it will allow
a flexible assessment of a common question among practitioners, i.e., how
a treatment effect on PANSS can be translated into a treatment effect on
CGI, which is easier to interpret clinically. On the other hand, at the indi-
vidual level it will allow us to estimate the accuracy with which CGI could
be estimated or predicted from PANSS.

For most patients, measurements of CGI and PANSS at six different oc-
casions were available. In units 9 and 10, only five measurements were
collected.

In our analysis, rather than using the original observations, we use lin-
early transformed outcomes with a non-linear transformation of time (ξ)
to stabilize the variances:

T = −3.63495 + 0.8538 × CGI,
S = −3.5675 + 0.04484 × PANSS,

ξnew = e−ξ/4.

From graphical inspection (not shown), it follows that the transformed
data have approximately a stable variance and normal distribution.

We applied the two-stage approach, introduced in Chapter 7, to these data.
Model (14.1), with a linear trend over time, gTij

(ξ) = γTij
ξ and gSij

(ξ) =
γSij

ξ, turned out to be the best choice after a model selection procedure
where the most complex model considered was a random spline approach
(Verbyla et al. 1999, Alonso et al. 2004c). Figure 14.1 shows the estimated
variances of T (σ̂TTi) and S (σ̂SSi), correlation coefficients for the T–S
correlation, as well as the correlation parameter ρi, corresponding to the
correlation matrix (14.3), separately for each unit. The figure shows that
the assumption of a constant covariance structure over all trials is not
plausible, justifying the use of a more general paradigm.



248 Ariel Alonso Abad, Helena Geys, and Tony Vangeneugden

Trial

T
ra

ns
fo

rm
ed

 C
G

I V
ar

ia
nc

e

5 10 15 20

0.
0

0.
5

1.
0

1.
5

2.
0

Trial

T
ra

ns
fo

rm
ed

 P
an

ss
 V

ar
ia

nc
e

5 10 15 20

0.
0

0.
5

1.
0

1.
5

2.
0

Trial

C
or

re
la

tio
n 

T
ra

ns
fo

rm
ed

 (
P

an
ss

, C
G

I)

5 10 15 20

0.
0

0.
5

1.
0

1.
5

Trial

R
ho

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FIGURE 14.1. Meta-analysis in schizophrenia. Variance-covariance parameters
per trial.

If we want to study the relationship between T and S, it is clear that R2
indiv

measure proposed by Buyse et al. (2000a) is no longer applicable due to
the longitudinal nature of the data, while the corresponding measure at
the trial level still is. The results are reported in Table 14.2.

Clearly, the association at the trial level is very strong. At the individual
level, several observations can be made. First, the association at the indi-
vidual level is much weaker than at the trial level: both V RF and θp suggest
that about 35–36% of the variability in one outcome is explained by the
other. However, a much stronger association is indicated by the estimated
value of R2

Λ = 0.85, in agreement with inequalities (14.14)–(14.16). This
discrepancy might point to the potential of a nearly deterministic relation-
ship between two linear combinations of both endpoints, which could not
be captured by neither V RF nor θp. It is worth stressing the importance
of this possibility: the low values of V RF and θp suggest that an accurate
prediction of CGI given PANSS at each time point is not possible, but
the large value of R2

Λ implies that it might be possible to construct linear
summary statistics of the measurements for the two endpoints that could
be highly correlated. On the scale defined by these linear transformations,
PANSS might have a high predictive value for CGI. Second, a less desir-
able side effect of the V RF definition is its asymmetry. As indicated earlier,
while the difference between V RF (S, T ) and V RF (T, S) is not dramatic
in this case, it cannot be excluded that more worrying differences might
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TABLE 14.2. Meta-analysis in schizophrenia. Trial-level and individual-level val-
idation measures.

Parameter Estimate 95% C.I.

Trial-level measures

R2
trial(T, S) 0.866 [0.668, 0.942]

R2
trial(S, T ) 0.820 [0.611, 0.920]

Individual-level measures
V RF (T, S) 0.363 [0.335, 0.391]
V RF (S, T ) 0.365 [0.336, 0.394]
θp 0.349 [0.324, 0.375]
LRF = R2

Λ 0.85 [0.81, 0.88]

be seen in different sets of data. In contrast, θp and R2
Λ are symmetric

and therefore more appealing in a situation like the current one, where one
could argue that both endpoints are actually in a symmetric relationship
to one other. Indeed, there is no consensus as to whether either CGI or
PANSS should be considered the gold standard. Thus, in this setting, the
use of a symmetric measure to assess the individual-level surrogacy would
be recommended (see also Chapter 16).

Figure 14.2 displays a graphical summary of the previous analysis. The
upper-left panel shows the association between estimates of treatment ef-
fects γTij

and γSij
at the trial level, with the different sizes of the points

accounting for the different sample sizes of the units. It is clear from this
picture that a reliable prediction of the treatment effect on CGI, given the
treatment effect on PANSS, seems to be possible. The other panels show
the behavior of V RF , θp and R2

Λ per unit, as well as their overall values.
The similarities between V RF and θp panels are noticeable, but this is not
surprising, since they are both special members of the same family Θ.

14.6.2 Age-related Macular Degeneration Trial

We now illustrate the use of the LRF in the analysis of the ARMD data set
(Section 4.2.1). In this study, the true endpoint (visual acuity at 1 year, T ),
as well as the surrogate (visual acuity at 6 months, S) are binary outcomes.
To obtain an estimate for LRF , the following three models need to be fitted
separately to the data:

logit(πT
ij) = µT i + βiZij , (14.20)

logit(πT |S
ij ) = µS

T i
+ βS

i Zij + γijvis6ij , (14.21)

logit(πS
ij) = µSi

+ αiZij . (14.22)
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FIGURE 14.2. Meta-analysis in schizophrenia. Summary of the meta-analytic
approach.

In (14.20)–(14.22), we use the notation πT
ij = E(Tij), π

T |S
ij = E(Tij |Sij),

and πS
ij = E(Sij).

At the trial level, surrogacy can be evaluated by computing the coefficient
of determination R2

trial using the estimated values of (µSi
, αi, βi), obtained

from models (14.20)–(14.22). At the individual level, however, R2
indiv can no

longer be used but fortunately LRF can be used instead. Assuming that the
association between both variables is constant across trials, (14.20)–(14.21)
can be used to compute LRF as

LRF = 1 − exp
(
−G2

n

)
,

where G2 is the log-likelihood ratio statistic to compare models (14.20) and
(14.21), and n =

∑
ni is the total number of patients.

Note that, as pointed out by Kent et al. (1983), if the true endpoint has
a fixed discrete distribution and if the conditional distribution of the true
endpoint given the surrogate is modeled by a family of discrete distrib-
utions, then the conditional information gain and hence LRF is bounded
above by a number strictly less than one. This motivates reporting the value
of LRF adj = LRF/max(LRF ), which can always reach one and hence is
more meaningful. Table 14.3 shows the results of the analysis for both the
trial and individual levels.
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TABLE 14.3. Age-related macular degeneration trial. Validation measures for the
binary-binary case.

Parameter Estimate 95% C.I.

R2
Trial 0.384 [0.149, 0.614]

LRF 0.265 [0.221, 0.370]
LRF adj 0.495 [0.325, 0.604]

All of the estimated values are too low to make visual acuity at 6 months a
reliable surrogate for visual acuity at 12 months. At the trial level, R2

trial =
0.38 clearly showing that an accurate prediction of treatment effect at one
year based on the treatment effect observed at 6 months does not seem to be
possible. At the individual level, LRFadj also provides evidence of a weak
association. These results are similar to those reported by Molenberghs,
Geys, and Buyse (2001) and presented in Chapter 6, who used a joint
bivariate probit model based on latent variables. They reported a lower
association at the trial level (R2

trial = 0.22) and a stronger relationship at the
individual level (R2

indiv = 0.64). Nevertheless, these coefficients describe the
association at an unobservable latent scale, rendering their interpretation
more awkward than in the proposal made in this chapter.

14.7 Discussion

In this chapter, we have approached the problem of surrogate endpoint val-
idation using repeated measurements. This is a setting frequently occurring
in practice; a setting also where the R2 measures originally proposed by
Buyse et al. (2000a) are no longer applicable. We have proposed several
alternative measures, from which R2

trial and R2
indiv result as special cases.

Moreover, we have introduced a new measure, the likelihood reduction
factor, which, unlike R2

indiv, applies to a wide variety of settings (normal,
binary, categorical, survival, and longitudinal outcomes) and reduces to
R2

indiv for normally distributed endpoints. It can also be linked to both the
Prentice (1989) and Buyse et al. (2000a) validation methods, bridging the
gap between the two approaches. It is also worth noting that R2

Λ, which
corresponds to LRF in the longitudinal setting, has the ability to detect
stronger associations between both endpoints, which might go unnoticed
when other, more conventional, methods are applied.

Finally, and in spite of the appeal of these methodological developments,
we would like to emphasize that surrogate endpoint validation should never
be done purely on statistical grounds, as important clinical and biological
considerations should be factored into the decision.
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Bayesian Evaluation of
Surrogate Endpoints

Ziv Shkedy and Franz Torres Barbosa

15.1 Introduction

In randomized clinical trials, the main interest lies in assessing the effect of
treatment (Z) on the primary (“true”) endpoint (T ). However, as outlined
in Chapters 2 and 5, there are cases where the use of the endpoint may be
difficult due to, for example, high measurement costs or a long observation
time. This happens, for example, when the primary endpoint is time to
event. In these cases, one might benefit from using a “surrogate” endpoint
(S) that would allow to determine the treatment effect quicker or in a less
expensive way.

In his landmark paper, Prentice (1989) proposed a formal definition of a
surrogate endpoint and suggested operational criteria for its validation in
the case of a single trial and single surrogate. (See also Chapters 5 and 19.)
According to the definition, a surrogate endpoint is a random variable for
which a test for the null hypothesis of no treatment effect is also a valid
test for the corresponding null hypothesis for the true endpoint. In view of
some limitations of Prentice’s criteria, Freedman, Graubard, and Schatzkin
(1992) proposed to use the proportion of treatment effect explained by the
surrogate endpoint as a measure of the validity of a potential surrogate.
Several authors have pointed towards drawbacks of the measure. For in-
stance, De Gruttola et al. (1997) and Buyse and Molenberghs (1998) have
shown that the proportion of treatment effect explained by the surrogate
is not truly a proportion, as it is not restricted to the [0, 1] interval. As an
alternative, Buyse and Molenberghs (1998) proposed to replace the propor-
tion of treatment effect explained by the surrogate by two measures closely
related to it: the relative effect and the adjusted association. The first one,
defined at the population level, is the ratio of the overall treatment effect
on the true endpoint over that on the surrogate endpoint. The second one
is the individual-level association between both endpoints, after accounting
for the effect of treatment.
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In this chapter, we focus on the meta-analytic approach, that is, the situa-
tion when a potential surrogate is evaluated using data from multiple, say
N , trials. We further assume that the distribution of the true and surrogate
endpoint come from the exponential family and that true treatment effects
on the endpoints are given by

g[E(Sij |Zij = 1)] − g[E(Sij |Zij = 0)] = αi,

g[E(Tij |Zij = 1)] − g[E(Tij |Zij = 0)] = βi,
(15.1)

where g(·) denotes an appropriate link function, i indexes trials, and j
indexes patients within trials. Within the meta-analytic or hierarchical ap-
proach, the first goal is to establish the association between βi and αi, to
assess the quality of the surrogate at the trial level. To this aim, the preci-
sion of the prediction of the treatment effect on the true endpoint βi from
the effect on the surrogate αi should be assessed. This can be achieved by
formulating a model for the joint distribution of treatment effects [αi, βi]
(where [·] is shorthand for the corresponding distribution), or a model of
the conditional distribution [βi|αi]. Note that a joint model [αi, βi] imposes
a conditional model for [βi|αi]. The second goal is to assess the quality of
the surrogate at the individual level, i.e., the precision of the prediction of
the true endpoint from the surrogate for an individual patient. This can be
evaluated from the strength of the association between the two endpoints
in the joint distribution of Sij and Tij given Zij , [Tij , Sij |Zij ].

The evaluation of a surrogate endpoint within the meta-analytic setting
has been discussed, among others, by Daniels and Hughes (1997), Buyse et
al. (2000a), and Gail et al. (2000). (See also Chapters 7 and 9.) All of these
authors considered a multiple-trial setting with normally distributed true
and surrogate endpoints and proposed a two-stage model for the evaluation
of the potential surrogate. Daniels and Hughes (1997) only used summary
data from the trials. They formulated a hierarchical Bayesian model for
the estimated treatment effects (α̂i, β̂i), in which the joint distribution of
the estimated effects was specified at the first stage and the conditional
distribution of [βi|αi] was specified at the second stage. Buyse et al. (2000a)
assumed the availability of individual patient data and formulated a two-
stage model, with the joint distribution [Tij , Sij |Zij ] specified at the first
stage and the joint distribution of the treatment effects [βi, αi] specified at
the second stage. A simplified version of the two-stage model was proposed
by Tibaldi et al. (2003), who used a bivariate approach within the meta-
analytic framework to evaluate surrogacy from the conditional distribution
[β̂i|α̂i]. Simplified strategies are discussed in Section 7.4.2 and, for survival
type endpoints, in Section 11.7. The advantage of the model proposed by
Daniels and Hughes (1997) is that one does not need to specify the joint
distribution of Tij and Sij . However, the price for this advantage is that the
quality of the individual-level surrogacy cannot be assessed, a possibility
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retained in the approach developed by Buyse et al. (2000a).

In this chapter, we consider the Bayesian approach under the assumption
that individual data are available. In Section 15.2, we discuss two bivari-
ate approaches for meta-analytic data proposed by McIntosh (1996) and
van Houwelingen, Arends, and Stijnen (2002). We then make a link (Sec-
tion 15.3) between these and the model proposed by Daniels and Hughes
(1997, see also Chapter 17) for the evaluation of surrogate endpoints. More-
over, we review the two-stage model proposed by Buyse et al. (2000a). In
Section 15.4, we formulate a fully Bayesian hierarchical model for the sur-
rogate endpoints validation corresponding to the model of Buyse et al.
(2000a). Results of an application of the model to two case studies are
presented in Section 15.5. Section 15.6 is devoted to a simulation study, in
which the performance of the hierarchical Bayesian model is evaluated (see
also Shkedy et al. 2003).

15.2 Bivariate Models for Meta-analytic Data

Consider a clinical trial in which treatment effects were estimated for the
surrogate and the true endpoints. Let Sij be the surrogate measurement
of the jth subject, j = 1, . . . , ni, in trial i, i = 1, . . . , N . We denote the
measurement for the true endpoint by Tij . For simplicity, we assume that
subjects were randomized into two treatment groups. Let Zij be an indi-
cator variable which takes the value of 1 if the subject was randomized
to the treatment group and 0 otherwise. Finally, we denote by α̂i and β̂i

the maximum likelihood (ML) estimates of the treatment effects for the
surrogate and the true endpoints, respectively, in trial i.

In this section, we review a two-stage bivariate model for the treatment
effects proposed by McIntosh (1996). As a special case of McIntosh’s mod-
eling strategy, we also discuss the bivariate approach to the analysis of
meta-analytic data proposed by van Houwelingen, Arends, and Stijnen
(2002). The latter was developed for the case where individual data are
not available.

15.2.1 The Two-stage Model of McIntosh (1996)

In the context of the multivariate approach within the meta-analytic frame-
work, McIntosh (1996) discusses a bivariate model for the measurement
error of a bivariate vector of maximum-likelihood estimates of the trial-
specific treatment effects. Specifically, he assumes that the estimated treat-
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ment effects follow a bivariate normal distribution, i.e., that the measure-
ment error model is given by(

α̂i

β̂i

)
∼ N

[(
ai

bi

)
, Ωi

]
, i = 1, . . .N, (15.2)

where

Ωi =
(

σ2
ai

ρiσ
2
ai

σ2
bi

ρiσa2
i
σ2

bi
σ2

bi

)
.

Here, ai and bi are the true trial-specific treatment effects and Ωi is the
variance-covariance matrix of the maximum likelihood estimates. This ma-
trix accounts for the within-trial variability and the possible correlation
between α̂i and β̂i. McIntosh (1996) further assumes a structural model for
the true treatment effects in which bi linearly depends on ai,{

bi ∼ N [b + βb(ai − a), τ2
b ],

ai ∼ N(a, τ2
a ).

(15.3)

Note that (15.3) implies a bivariate distribution for ai and bi and that the
structural model can be rewritten as(

ai

bi

)
∼ N

[(
a
b

)
, D

]
, (15.4)

with variance-covariance matrix given by

D =
(

τ2
a βbτ

2
a

βbτ
2
a τ2

b + β2
b τ2

a

)
.

Combining the measurement error model (15.2) with the structural model
(15.4), results in the marginal distribution of α̂i and β̂i(

α̂i

β̂i

)
∼ N

[(
a
b

)
, D + Ωi

]
. (15.5)

15.2.2 The Model of van Houwelingen, Arends, and Stijnen
(2002)

A modification of (15.2) was given in van Houwelingen, Arends, and Stij-
nen (2002), who assumed the same measurement error model but with a
diagonal variance-covariance matrix Ωi. It was further assumed that the
true trial-specific treatment effects, (ai, bi), were normally distributed with
unstructured variance-covariance matrix. Hence, the structural model is(

ai

bi

)
∼ N

[(
a
b

)
, D

]
, with D =

(
daa dab

dab dbb

)
. (15.6)
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The two variance-covariance matrices D and Ωi cannot be estimated sepa-
rately. In practice, van Houwelingen, Arends, and Stijnen (2002) assumed
Ωi to be known, replaced it by an estimate Ω̂i, and kept it fixed during the
estimation process. The primary interest is placed on the covariance ma-
trix D since, as discussed in van Houwelingen, Arends, and Stijnen (2002,
p. 601), it determines the bivariate relationship between the true treatment
effects ai and bi. Note that, in contrast to the variance-covariance matrix
in (15.2), the matrix in the structural model (15.6) is kept unstructured.
That is because the conditional distribution of [bi|ai] is not formulated in
advance. But the distribution can easily be derived from (15.6). For exam-
ple, the slope of the regression line of bi on ai is equal to dab/daa, while the
residual variance equals dbb − d2

ab/daa. The residual variance is minimized
when dbb = d2

ab/daa, i.e., when R2 = d2
ab/daadbb is equal to 1.

15.3 Models for the Validation of Surrogate
Endpoints Using Meta-analytic Data

In this section, we describe two models proposed for the validation of sur-
rogate endpoints using data from multiple randomized trials. The first is
the hierarchical Bayesian model of Daniels and Hughes (1997). The second
is the two-stage model of Buyse et al. (2000a). The model of Daniels and
Hughes (1997) was developed for the case where individual data are not
available. Therefore, it focuses on the joint distribution of the maximum
likelihood estimates for the treatment effects α̂i and β̂i. The model formu-
lated by Buyse et al. (2000a) assumes that individual data are available
and focuses on the joint distributions of [Tij , Sij |Zij ] and [αi, βi].

15.3.1 The Hierarchical Bayesian Model of Daniels and
Hughes (1997)

Daniels and Hughes (1997) developed a meta-analytic approach for the
evaluation of surrogate endpoints. They focus on the distribution of the
maximum likelihood estimates for the trial-specific treatment effects for
the surrogate and true endpoints. The estimates are assumed to be corre-
lated, and the same measurement error model as in (15.2) is postulated.
A simple linear association between the true treatment effects is assumed
and modeled by means of the conditional distribution of [bi|ai]:

bi ∼ N(θ + γai, τ
2
b ) i = 1, 2, . . . , N. (15.7)
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In contrast with MacIntosh (1996), the true treatment effect on the surro-
gate ai is assumed to be a fixed effect. Under this assumption, the marginal
model in (15.5) can be rewritten as(

α̂i

β̂i

)
∼ N

[(
ai

θ + γai

)
,

(
σ2

ai
ρiσ

2
ai

σ2
bi

ρiσ
2
ai

σ2
bi

σ2
bi

+ τ2
b

)]
. (15.8)

Note that the above model, with the additional assumption that ai is a
normally distributed random, rather than fixed, effect is identical to the
model of McIntosh (1996).

It is also worth noting here that Daniels and Hughes (1997) and van
Houwelingen, Arends, and Stijnen (2002) approach the same problem from
opposite directions. van Houwelingen, Arends, and Stijnen (2002) spec-
ify the joint distribution of [ai, bi], and hence the marginal distribution of
[α̂i, β̂i]), and derive the conditional distribution [bi|ai] from it. Daniels and
Hughes (1997), on the other hand, explicitly specify the conditional distri-
bution [bi|ai] and derive from it the marginal distribution of [α̂i, β̂i]. The
two approaches treat the variance-covariance matrix Ωi, which represents
the within-trial variablity, in a similar way. Because neither approach uses
individual data for the estimation of D (van Houwelingen, Arends, and
Stijnen 2002) or τb (Daniels and Hughes 1997), the matrix Ωi is kept fixed
during the estimation procedure.

In the approach of Daniels and Hughes (1997), the trial-level surrogacy
is evaluated using the posterior means of the parameters in (15.7). In the
hierarchical model discussed above, γ measures the association between the
surrogate and the true endpoints. Indeed, γ = 0 implies that S cannot be
surrogate to T . Furthermore, the case that γ �= 0 and τ2

b = 0 implies a
deterministic relationship between the treatment effects, i.e., given ai, γ,
and θ, we can predict bi in a perfect fashion. In this case, one can call S a
“perfect surrogate” for T at the trial level. Moreover, if θ = 0, γ �= 0, and
τ2
b = 0, the surrogate endpoint fulfills the definition of Prentice (1992): no

treatment effect on the surrogate endpoint implies no treatment effect on
the true endpoint.

15.3.2 The Two-stage Model of Buyse et al. (2000a)

The Full Model

Buyse et al. (2000a) proposed a two-stage model in which the linear pre-
dictors of the true and the surrogate endpoints are given by{

E(Sij |Zij) = µSi + αiZij ,

E(Tij |Zij) = µTi + βiZij .
(15.9)
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Here, αi and βi are trial-specific fixed treatment effects, µSi
and µTi are

trial-specific fixed intercepts. Model (15.9) is termed a “full fixed-effects”
model. It is further assumed that the two endpoints are normally distrib-
uted, (

Sij

Tij

)
∼ N

[(
µSi

+ αiZij

µTi
+ βiZij

)
, Σ
]

, (15.10)

where Σ is given by

Σ =
(

σ
SS

σ
ST

σ
ST

σ
T T

)
. (15.11)

At the second stage of the model, it is assumed that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

µSi = µS + mSi
,

µTi = µT + mTi
,

αi = α + ai,

βi = β + bi,

(15.12)

where (mSi
, mTi

, ai, bi) is a normally distributed random vector with mean
zero and variance-covariance matrix D given by

D =

⎛⎜⎜⎝
d

SS
d

ST
d

Sa
d

Sb

d
ST

d
T T

d
T a

d
T b

d
Sa

d
T a

d
aa

d
ab

d
Sb

d
T b

d
ab

d
bb

⎞⎟⎟⎠ . (15.13)

Combining (15.10) and (15.13) leads to a linear mixed-effects model(
Sij

Tij

)
∼ N

[(
µS + mSi + (α + ai)Zij

µT + mTi + (β + bi)Zij

)
, Σ
]

. (15.14)

Let us present the key elements of surrogate marker validation, based on
this model, in agreement with the meta-analytic developments for normally
distributed endpoints, as detailed in Section 7.2. In order to assess the
trial level surrogacy, Buyse et al. (2000a) proposed to use the coefficient of
determination defined as:

R2
trial(f) =

(
d

Sb

d
ab

)T (
d

SS
d

Sa

d
Sa

d
aa

)−1(
d

Sb

d
ab

)
d

bb

. (15.15)

Similarly, to measure the individual level surrogacy, they proposed to use
the coefficient of determination given by

R2
indiv =

σ2
ST

σSS σT T

. (15.16)
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Indeed, R2
trial(f) = 1 and R2

indiv = 1 indicate perfect surrogacy at trial and
individual level, respectively, in the sense that perfect prediction is possible
at both levels. In practical setting, one should adopt a more pragmatic
attitude and merely look for R2 values that are sufficiently high.

The Reduced Model

Buyse et al. (2000a) also proposed a reduced model in which the linear
predictors for the expected values of Sij and Tij do not include trial-specific
intercepts (see also Section 7.2). In the hierarchical model, the likelihood
at the first stage of the model can be specified by omitting the trial specific
random intercepts from (15.10). This leads to(

Sij

Tij

)
∼ N

[(
µS + (α + ai)Zij

µT + (β + bi)Zij

)
, Σ
]

. (15.17)

At the second stage of the model, the distribution of the trial-specific ran-
dom treatment effects (ai, bi) is assumed to be bivariate normal with mean
zero and variance-covariance matrix D(

ai

bi

)
∼ N

[(
0
0

)
, D

]
, D =

(
daa dab

dab dbb

)
. (15.18)

Note that model (15.18) is identical to the second-stage model (15.6), with
a = b = 0, presented by van Houwelingen, Arends, and Stijnen (2002).

For the reduced model, the coefficient of determination (15.15), measuring
the trial level surrogacy, reduces to

R2
trial(r) =

d2
ab

daadbb
. (15.19)

Note that if the full model is used and D is a block diagonal matrix, i.e.,
the random intercepts are uncorrelated with the random treatment effects,

D =

⎛⎜⎜⎝
dSS dST 0 0
d

ST
d

T T
0 0

0 0 daa d
ab

0 0 d
ab

d
bb

⎞⎟⎟⎠ .

In this case, one can also use (15.19) to evaluate trial-level surrogacy, as
the bivariate relationship between ai and bi is not influenced by the trial-
specific random intercepts. Of course, this is under the assumption that
the simplified model is deemed plausible.
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15.4 A Hierarchical Bayesian Model for the
Validation of Surrogate Endpoints

We now define a hierarchical Bayesian model for the validation of surro-
gate endpoints using individual data from multiple randomized trials. First,
we will consider a construction based on the full model presented in Sec-
tion 15.3.2. At the first level of the hierarchical Bayesian model, we specify
the likelihood as in (15.14). At the second level of the hierarchical model,
the priors for the “fixed” effects are specified:

µS ∼ N(0, θ2
µS

),

µT ∼ N(0, θ2
µT

),

α ∼ N(0, τ2
α),

β ∼ N(0, τ2
β).

(15.20)

For the precision parameters in (15.20) (flat) hyperprior models are spec-
ified using Gamma distributions (e.g., θ−2

µS
∼ gamma(0.001, 0.001), etc.).

Similar to the model proposed by Daniels and Hughes (1997), we need to
specify a prior distribution to model the association between the treatment
effects of the two endpoints. Note that, while Daniels and Hughes (1997)
based their model on [bi|ai], Buyse et al. (2000a) used the joint distribution
of the random effects (mSi, mTi, ai, bi) in order to evaluate the trial-level
surrogacy. This is done by using (15.13) as a prior distribution for the
random effects. As the hyperprior distribution for the variance-covariance
matrices in (15.13) and (15.10), a Wishart distribution is assumed:

D−1 ∼ Wishart(RD) and Σ−1 ∼ Wishart(RΣ). (15.21)

The trial-level and individual-level surrogacy are assessed using the poste-
rior means for the coefficients of determination (15.15) and (15.16), respec-
tively.

The construction of the hierarchical model corresponding to the reduced
model presented in Section 15.3.2 is similar to the one presented above. At
the first level of the hierarchical Bayesian model, we specify the likelihood
as in (15.17). At the second level of the model, the priors for the “fixed”
effects are specified in the same way as in (15.20) and (15.21). The trial-
level and individual-level surrogacy is assessed using the posterior means
for the coefficients of determination (15.19) and (15.16), respectively.
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TABLE 15.1. Age-related macular degeneration trial. Posterior means (standard
errors) for components of D. For the full model, only the variance components
needed for the calculation of R2

trial are reported.

Full model Reduced model

daa 46.18 (24.05) 38.03 (20.96)
dab 55.67 (30.71) 45.27 (27.30)
dbb 94.29 (46.96) 76.10 (41.62)
dSS 18.79 (10.84) –
dSa -17.32 (13.31) –
dSb -19.70 (17.41) –

FIGURE 15.1. Age-related macular degeneration trial. Maximum likelihood es-
timates for the center-specific treatment effects from the full fixed-effects model
(left panel) and posterior means for the random treatment effects (right panel).

15.5 Analysis of Case Studies

In this section, we use the full Bayesian hierarchical model described in the
previous section to re-analyze the data discussed in Buyse et al. (2000a) and
analyzed in various previous chapters. Precisely, we consider the age-related
macular degeneration study (Section 4.2.1) and a meta-analysis of trials
in advanced ovarian cancer (Section 4.2.2). All models were fitted using
Markov Chain Monte Carlo (MCMC) methods implemented in WINBUGS
1.3 (Gilks et al. 1996, Gelman et al. 1996).
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TABLE 15.2. Age-related macular degeneration trial. R2
trial and R2

indiv (standard
errors). The full fixed-effects model corresponds to (15.9), whereas the reduced
fixed-effects model corresponds to (15.17) without trial-specific intercepts. The
results for the fixed-effects models were obtained by Buyse et al. (2000a).

Model Trial level Individual level
R2

trial R2
indiv

Full (Fixed) 0.692 (0.085) 0.483 (0.053)
Full (Bayesian) 0.739 (0.154) 0.521 (0.054)
Reduced (Fixed) 0.776 (0.066) 0.508 (0.052)
Reduced (Bayesian) 0.771 (0.138) 0.536 (0.051)

FIGURE 15.2. Age-related macular degeneration trial. Density estimate for the
posterior distribution of R2

trial (left panel) and R2
indiv (right panel).

15.5.1 Age-related Macular Degeneration (ARMD) Trial

The data are described in Section 4.2.1. They come from a multicenter trial
in which patients were randomized into two treatment groups: placebo and
interferon α. The surrogate endpoint is the visual acuity at 6 months and
the true endpoint is the visual acuity at 12 months. Patients were treated
in 36 centers, which are considered the units of the analysis, with sample
sizes ranging between 2 to 18 patients. Figure 15.1 (left-hand panel) shows
the ML estimates for the trial specific treatment effects obtained from the
full fixed-effects model in (15.9). The straight line is obtained by regressing
β̂i on α̂i. The observed variance-covariance matrix for α̂i and β̂i is(

149.63 175.53
175.53 300.77

)
.
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FIGURE 15.3. Advanced ovarian cancer. Maximum likelihood estimates for the
center-specific treatment effects (left panel) and posterior means for the cen-
ter-specific random treatment effects (right panel).

Although this variance-covariance matrix reflects the two sources of vari-
ability in (15.5), we use it as the mean of the prior distribution of D. We
apply model (15.10)–(15.21) to analyze the data. All reported posterior
means and credible intervals are based on 10,000 MCMC iterations follow-
ing a burn-in period of 1000 iterations.

The right-hand panel in Figure 15.1 shows the posterior means for the
trial specific (random) treatment effects. The correlation between ai and
bi is modeled with the variance-covariance matrix of the prior distribu-
tion specified in (15.10). Note that the variability of the posterior mean is
smaller than the variablity among the maximum likelihood estimates. This
is reflected in the posterior mean for D obtained from the reduced model:

D̄ =
(

38.03 45.27
45.27 76.10

)
.

Posterior means (and standard error) for the elements of the matrix D in
the full model are reported in Table 15.1.

Buyse et al. (2000a) used the two-stage full fixed-effects model to obtain
R2

trial = 0.692 (standard error, s.e., 0.087) and R2
indiv = 0.483 (s.e. 0.053).

The posterior means and credible intervals for both individual- and trial-
level surrogacy measures, resulting from the hierarchical Bayesian models,
are reported in Table 15.2. For the full model, the posterior mean for R2

trial =
0.739 (s.e. 0.154), whereas the mean for R2

indiv = 0.521 (s.e. 0.054). Both
values are comparable to those obtained by Buyse et al. (2000a) using
the full fixed-effects model. Figure 15.2 shows the density estimate of the
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FIGURE 15.4. Advanced ovarian cancer. Density estimate for the posterior dis-
tribution of daa, dab and dbb. Reduced model: long dashed line, full model: solid
line.

FIGURE 15.5. Advanced ovarian cancer. Density estimate for the posterior dis-
tribution of R2

trial(f) (left panel) and R2
indiv (right panel).

posterior distribution for both R2
trial (left-hand panel) and R2

indiv (right-hand
panel). Both surrogacy measures increase when the reduced model (15.17)
is used in order to evaluate surrogacy. This is reflected in the right shift of
the posterior distributions for R2

trial and R2
indiv (solid lines) in Figure 15.2.
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TABLE 15.3. Advanced ovarian cancer. R2
trial and R2

indiv (standard errors). The
full fixed-effects model corresponds to (15.9), whereas the reduced fixed-effects
model corresponds to (15.17) without trial-specific intercepts. The results for the
fixed-effects model were obtained by Buyse et al. (2000a).

Model Trial level Individual level
R2

trial R2
indiv

Full (Fixed) 0.940 (0.017) 0.886 (0.0006)
Full (Bayesian) 0.937 (0.039) 0.885 (0.0006)
Reduced (Fixed) 0.928 (0.020) 0.888 (0.0006)
Reduced (Bayesian) 0.917 (0.054) 0.885 (0.0006)

FIGURE 15.6. 95% confidence and credible intervals for R2
trial and R2

indiv. F denotes
the full model and R denotes the reduced model. (a) Advanced ovarian cancer; (b)
age-related macular degeneration trial.

15.5.2 Advanced Ovarian Cancer

We consider the data from four randomized multicenter trials in advanced
ovarian cancer, described in Section 4.2.2. The data have previously been
analyzed by Buyse et al. (2000a) and in various earlier chapters of this
book. The true endpoint is defined as the logarithm of survival time in
years, and the surrogate endpoint is taken as the logarithm of progression-
free survival time in years. We use center as the unit of analysis given that
the number of trials is insufficient to apply meta-analytic methods. A total
of 50 centers are available for the analysis, with the number of patients
varying from 2 to 274 per center.

Figure 15.3 (left-hand panel) shows the maximum likelihood estimates for
the center-specific treatment effects. Analogous to the previous example,



15. Bayesian Evaluation of Surrogate Endpoints 267

TABLE 15.4. Simulation results. Mean estimates for the trial- and individual-level
validity of a surrogate.

R2
trial(r)

0.65 0.7 0.75 0.80 0.85 0.9

R̄2
trial Mean 0.726 0.757 0.787 0.808 0.837 0.866

Lower quartile 0.515 0.543 0.674 0.619 0.674 0.699
Upper quartile 0.871 0.904 0.946 0.932 0.946 0.962
Relative bias (%) 11.78 8.08 4.93 1.09 -1.50 -3.69

R̄2
indiv Mean 0.764 0.765 0.763 0.770 0.766 0.770

Lower quartile 0.652 0.652 0.628 0.656 0.658 0.656
Upper quartile 0.849 0.849 0.857 0.849 0.854 0.849
Relative bias (%) -4.45 -4.62 -4.62 -3.78 -4.21 -3.78

the observed variance-covariance matrix between α̂i and β̂i,

(
0.98 0.86
0.86 0.81

)
,

is used as the mean of the prior distribution for (ai, bi). The right-hand
panel in Figure 15.3 shows the posterior means of ai and bi and reveals,
similar to the previous example, a reduction in variability of the poste-
rior mean compared to the variability among the maximum likelihood esti-
mates. Figure 15.4 shows the density estimate for the posterior distribution
of daa, dab, and dbb.

Table 15.3 presents the posterior means and the maximum likelihood esti-
mates for R2

trial and R2
indiv obtained from the hierarchical Bayesian models

and from the two-stage fixed-effects models. Figure 15.5 shows the density
estimate for the posterior distributions. For the full model, the posterior
mean for R2

trial = 0.937 (s.e. 0.039) and for R2
indiv = 0.885 (s.e. 0.0006).

The results from the full fixed-effects model are comparable, R2
trial = 0.940

(s.e. 0.017) and R2
indiv = 0.885 (s.e. 0.0006). For the reduced hierarchical

model, the posterior mean for R2
trial = 0.917 (s.e. 0.054) can be compared

to R2
trial = 0.928 (s.e. 0.020) obtained from the fixed-effects model. At the

individual level, the standard error associated with R2
indiv is the same for the

Bayesian and fixed-effects models. However, at the trial level, the variabil-
ity of R2

trial is higher in the Bayesian models. This is reflected in the width
of the confidence intervals (for the fixed-effects models) and the credible
intervals (for the Bayesian models) as shown in Figure 15.6.
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15.6 Simulation Study

We studied the performance of the hierarchical Bayesian model, in terms
of estimation (point and interval) of both R2

indiv and R2
trial(r). Data were

generated according to (15.14) with µS = 10, µT = 20, αi = 10, and
βi = 5. For the joint distribution of the trial-specific random effects it was
assumed that (mSi

, mT i
, ai, bi) ∼ N(0, D),

D = σ2

⎛⎜⎜⎝
1 0.8 0 0

0.8 1 0 0
0 0 1 ρ
0 0 ρ 1

⎞⎟⎟⎠ , (15.22)

with R2
trial(r) = ρ2 equal to either 0.65, 0.7, 0.75, 0.8, 0.85, or 0.9. It was

further assumed that (εSij
, εT ij

) ∼ N(0, Σ) with

Σ =
(

1 0.8
0.8 1

)
.

The parameter σ2 was chosen to equal 15. Each simulated dataset con-
sisted of 50 trials with 50 patients within each trial. One hundred datasets
were generated for each setting, and the hierarchical Bayesian model was
fitted using WINBUGS 1.4. The MCMC simulation for each one of the
simulated datsets consisted of 100,000 iterations. The first 10,000 itera-
tions were considered “burn-in” and discarded. Hence, posterior means for
both R2

indiv and R2
trial(r) were calculated based on the last 90,000 iteration

of each MCMC run. For each simulation setting, the mean of the posterior
means was calculated by R̄2 =

∑100
i=1 R̄2

i , where R̄2
i is the posterior mean

in the ith simulation. The relative bias was calculated by(
R̄2

R2
− 1
)
× 100.

Results are presented in Table 15.4. For R2
indiv, regardless of the value of

R2
trial(r), the model underestimated the true value with relative bias ranging

between −3.33% and −4.45%. For R2
trial(r), the model overestimated the true

value for lower values of R2
trial(r) and underestimated it for higher values of

R2
trial(r). Figure 15.7 (panel (a)) shows that the relative bias decreased from

11.77% for R2
trial(r) = 0.65 to −3.69% for R2

trial(r) = 0.9. Note that the relative
bias changed in almost a linear fashion as R2

trial(r) increased. The absolute
relative bias (panel (b) in Figure 15.7) was minimized for R2

trial(r) = 0.8,
which was also the true value of R2

indiv.
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FIGURE 15.7. Simulations Results. (a) Relative bias; (b) absolute bias.

15.7 Discussion

The meta-analytic approach in surrogate marker validation built upon the
initial concepts of Prentice (1989), Freedman, Graubard, and Schatzkin
(1992), and Buyse and Molenberghs (1998). Within the meta-analytic frame-
work, the evaluation of the trial-level validity of a surrogate requires spec-
ification of the joint or the conditional distribution for the true treatment
effects. All models discussed in this chapter used the bivariate relation-
ships between the latent true (random) treatment effects to evaluate the
trial-level validity. The advantage of the approach proposed by Daniels and
Hughes (1997) is that it does not require specification of the joint distribu-
tion of S and T . The trial-level validity of a surrogate is assessed using the
variance of the conditional distribution. However, in the case of two nor-
mally distributed endpoints, one can specify a two-stage model in which
the joint distribution of S and T is assumed at the first stage and the joint
distribution of the true trial-specific treatment effects is specified at the
second stage of the model. We have shown that the individual-level valid-
ity of a surrogate can be evaluated using the posterior distribution of the
variance-covariance matrix specified at the first stage of the model. Simi-
lar to Daniels and Hughes (1997), the trial-level validity can be evaluated
using the bivariate relation of the true trial-specific treatment effects, i.e.,
from the posterior distribution of variance-covariance matrix D specified at
the second stage of the model. By using the two-stage model we can avoid
the need for fixing the variance-covariance matrix Σ, which represents the
within trial variablity.

In the cases studies analyzed, the density estimate for the posterior dis-
tribution of R2

trial(r) was skewed to the left, whereas the density estimate
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for R2
indiv revealed a symmetric distribution. We have shown that, for both

examples, the posterior means for both R2
indiv and R2

trial(r) were comparable
with the maximum likelihood estimates reported in Buyse et al. (2000a).
However, for the trial-level validity, the 95% credible intervals were wider
from the 95% confidence intervals. This pattern was observed for both the
advanced ovarian cancer and the ARMD trials, though the trials differ in
the number of observations per unit.

The simulation study in Section 15.6 reveals a clear pattern of over and
under estimation of R2

trial(r). The fact that the estimation bias of R2
trial(r)

changed in a linear fashion as the value of R2
trial got away form R2

indiv sug-
gests that a bias correction factor should be added to the posterior mean
of R2

trial(r). This is a topic for future investigation.
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Surrogate Marker Validation in
Mental Health

Tony Vangeneugden, Ariel Alonso Abad,
Helena Geys, and Annouschka Laenen

16.1 Introduction

In this chapter, we describe how the framework for surrogate marker valida-
tion in clinical trials can easily be adapted and used to assess the so-called
criterion validity of psychiatric symptom scales. This concept will be de-
scribed further in this cahpter (see also Laenen et al. 2004).

One feature of the psychiatric health sciences literature, devoted to measur-
ing subjective states, is the daunting area of available scales (Steiner and
Norman 1995). The development of scales to assess subjective attributes is
not easy and subject to many controversial debates. One particular draw-
back, of course, lies in the fact that the filling-in of a scale may vary from
one person to another. Because of the subjective nature of many of these
scales, one may encounter scales that are not adequate to assess a particular
concept. Therefore, whenever a mental health measurement scale is devel-
oped, translated, or used in a new population, its psychometric properties
have to be assessed. Two important properties are reliability and validity .

Reliability consists in determining the extent to which the measurement is
free from random error. This can be performed through analyzing internal
consistency and reproducibility of the questionnaire. Internal consistency
is the extent to which individual items are consistent with each other and
reflect a single underlying construct. Essentially, internal consistency repre-
sents the average of the correlations among all the items in the instrument.
Several measures that are often used to provide proof of internal consistency
are: Cronbach’s alpha coefficient (Cronbach 1951), Kuder and Richardson
(1953), and factor analysis. Intra-observer or test-retest reliability is the
degree to which a measure yields stable scores at different points in time
for patients who are assumed not to have changed clinical status on the do-
mains being assessed. The calculation of intraclass correlation coefficients
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(Fleiss and Cohen 1973, Deyo, Dierh, and Patrick 1991) is one of the most
commonly used methods. For interviewer-administered questionnaires, the
inter-observer reliability is the degree to which a measurement yields sta-
ble scores when administered by different interviewers, rating the same
patients. The calculation of interclass correlation coefficients is also one of
the most commonly used methods. In classical test theory, the outcome of
a test is frequently modeled as

X = τ + ε, (16.1)

where X represents an observation or measurement, τ is the true score,
and ε the corresponding measurement error. It is further assumed that
the measurement errors are mutually uncorrelated as well as with the true
scores, and under this assumption they obtain

Var(X) = Var(τ ) + Var(ε). (16.2)

The reliability of a measuring instrument is defined as the ratio of the true
score variance to the observed score variance, i.e.,

R =
Var(τ )

Var(τ ) + Var(ε)
. (16.3)

For interviewer-administered questionnaires, the inter-observer reliability is
the degree to which a measurement yields stable scores when administered
by different interviewers, rating the same patients. Also here the interclass
correlation coefficient is commonly used.

The validity of a questionnaire is defined as the degree to which the ques-
tionnaire measures what it purports to measure. This can be performed
through the analysis of content , construct , and criterion validity. Content
validity can be defined as the extent to which the instrument assesses all
the relevant or important content or domains. Also the term face validity is
used to indicate whether the instrument appears to be assessing the desired
qualities at face. This form of validity consists of a judgment by experts
in the field. Construct validity refers to a wide range of approaches which
are used when what we are trying to measure is a “hypothetical construct”
(e.g., anxiety, irritable bowel syndrome, . . .) rather than something that
can readily be observed. The most commonly used methods to explore
construct validity are extreme groups (apply instrument for example to
cases and non-cases), convergent and discriminant validity testing (corre-
late with other measures of this construct and not correlate with dissimilar
or unrelated constructs), and multitrait-multimethod matrix (Campbell
and Fisk 1959). Criterion validity can be divided into two types: concur-
rent validity and predictive validity . With concurrent validity we correlate
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the measurement with a criterion measure (gold standard), both of which
are given at the same time. In predictive validity, similar as with surrogate
markers, the criterion will not be available until some time in the future.
The most commonly used method to assess the validity is by calculation of
the Pearson correlation coefficient.

In spite of the utmost importance of these psychometric concepts, the sta-
tistical methods used to study them have mainly been based on elementary
tools. The most commonly used method to assess validity is by calcula-
tion of the Pearson correlation coefficient. On the other hand, even though
very frequently psychiatric patients are followed for a long period of time,
the traditional approach to validity is often limited to the simpler cross-
sectional case.

The idea is to provide a new way of investigating criterion validity of psychi-
atric symptom scales, using the theme of the book: criteria applied in sur-
rogate marker validation for clinical trials, not only for the cross-sectional
setting, but also making use of the longitudinal developments in Chapter 14.
In particular, we will show how the meta-analytic approach of Buyse et al.
(2000a), presented in Chapter 7, can be used to investigate the concurrent
validity of two psychiatric rating scales. In cases where a gold standard
scale can be assigned, we can almost directly apply their methodology for
the validation of surrogate markers with the standard scale playing the role
of true endpoint. In many mental health studies and psychiatric trials, how-
ever, a more “symmetric” situation is encountered where different scales
are measured in conjunction without knowing their relationships. In such
cases, one will need to “symmetrize” the validation techniques. Although
our data setting does not allow us to investigate the predictive validity,
the methods proposed here could be applied to “validate” one scale versus
another in that sense as well using clinical trial data.

The case studies will, obviously, be the equivalence trial in schizophrenic
patients (Section 4.2.7 and the meta-analysis of clinical trials compar-
ing antipsychotic agents for the treatment of chronic schizophrenia (Sec-
tion 4.2.6). A brief overview of the mental health area, in particular schizo-
phrenia, is given in Section 16.2. Section 16.3 gives a brief discussion of
how the different criteria to validate surrogate endpoints in randomized
clinical trials (described in Chapters 5 and 7) could be adapted and used
to investigate the criterion validity of psychiatric measurement scales. The
drawbacks of some of these approaches will be pointed out. In Section 16.4,
we apply the different methods to the data. We will show how some of these
methods can usefully be applied to investigate the criterion validity of two
rating scales, whereas others may lead to misleading or inconclusive results.
The multi-trial approach of Buyse et al. (2000a) will turn out to be really
superior.
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16.2 Mental Health

When compared with all other diseases (such as cancer, HIV, or heart
disease), mental illness ranks first in terms of causing disability in the
United States, Canada, and Western Europe, according to a study by the
World Health Organization (WHO 2001). This groundbreaking study found
that mental illness (including depression, bipolar disorder, and schizophre-
nia) accounts for 25% of all disability across major industrialized countries
(http://www.who.int).

However, actions from governments are not always proportional to the mag-
nitude of the problem. Forty percent of countries have no mental health
policies, and 25% have no legislation in the field of mental health. Many
large countries, including China, Iran, Nigeria, Thailand, and Turkey, have
no specific legislation for mental health, though some are in the process of
developing legislation. Of the countries reporting, about one-third spend
less than 1% of their federal health budget on mental health-related activ-
ities. Community care facilities have yet to be developed in about half of
the countries in the African, Eastern Mediterranean, and Southeast Asia
regions. In other regions, these facilities are absent in at least one-third of
the countries. Of the total number of psychiatric beds in the world, about
65% are still in mental hospitals.

Among all the psychiatric disorders, schizophrenia is one of the most dis-
abling and emotionally devastating illnesses. In a recent 14-country study
on disability associated with physical and mental conditions, active psy-
chosis was ranked the third most disabling condition, higher than para-
plegia and blindness, by the general population. The economic cost of
schizophrenia to society is also high. It has been estimated that, in 1991,
the cost of schizophrenia to the United States was US$ 19 billion in direct
expenditure and US$ 46 billion in lost productivity (http://www.who.int).

A substantial number of individuals with schizophrenia attempt suicide
at some time during the course of their illness. Recent studies showed that
30% of patients diagnosed with this disorder had attempted suicide at least
once during their lifetime. About 10% of persons with schizophrenia die by
suicide. Globally, schizophrenic illness reduces an affected individual’s lifes-
pan by an average of 10 years. Frequently, schizophrenic patients show lack
of interest and initiative in daily activities and work, social incompetence,
and inability to take interest in pleasurable activities. These can cause
continued disability and poor quality of life (http://www.who.int).

The study and evaluation of these symptoms play a key role in the di-
agnosis and treatment of schizophrenic patients and, as a result, several
measures have been developed to assess a patient’s global condition. When



16. Surrogate Marker Validation in Mental Health 275

psychiatric health measurements are either developed or used in a new
population, of course, their reliability and validity must be investigated.

16.2.1 Mental Health and Schizophrenia

The impact of psychiatric disorders on public health is not fully known,
but as early as the 1980s studies began to show that it was greater than
first believed. Lee Robins, a psychiatric epidemiologist at Columbia Uni-
versity, first reported the following findings in 1984: At any given time, 15
to 23 percent of the U.S. population has a diagnosable mental disorder.
At some point in their lives, between 28 and 38 percent of people will de-
velop a mental disorder. Ten to 20 percent of people will have an episode
of clinical depression, and 10 to 15 percent will experience unmanageable
anxiety. Severe personality disorders will affect 5 to 10 percent and each
year at least 30,000 people will commit suicide. An additional 3,000 to
15,000 deaths per year can be attributed to other causes stemming from
suicide attempts. The economic impact of these diseases is huge: the United
States loses more than US $185 billion each year due to invalidity or tem-
porary disability related to mental illnesses, and the annual cost of men-
tal health treatments ranges between US $20 billion and US $50 billion
(http://biosun1.harvard.edu/ lobrien/psych.html).

More recent investigations carried out by the World Health Organization
confirm these preliminary findings (http://www.who.int). These studies
show that mental and behavioral disorders are common, affecting more than
25% of all people at some time during their lives. They are also universal,
affecting people of all countries and societies, individuals at all ages, women
and men, the rich and the poor, from urban and rural environments. They
have an economic impact on societies and on the quality of life of individuals
and families. Mental and behavioral disorders are present at any point in
time in about 10% of the adult population. Around 20% of all patients seen
by primary health care professionals have one or more mental disorders.
One in four families is likely to have at least one member with a behavioral
or mental disorder. These families not only provide physical and emotional
support, but also bear the negative impact of stigma and discrimination. It
was estimated that, in 1990, mental and neurological disorders accounted
for 10% of the total DALYs (disability-adjusted life years) lost due to all
diseases and injuries. This was 12% in 2000. By 2020, it is projected that
the burden of these disorders will have increased to 15%. Factors associated
with the prevalence, onset, and course of mental and behavioral disorders
include poverty, sex, age, conflicts and disasters, major physical diseases,
and the family and social environment.

A few studies in Europe have estimated expenditure on mental disorders



276 Vangeneugden, Alonso Abad, Geys, and Laenen

as a proportion of all health service costs. In The Netherlands, this was
23.2% and in the United Kingdom, for in-patient expenditure only, the
proportion equaled 22%. Though scientific estimates are not available for
other regions of the world, it is likely that the costs of mental disorders as
a proportion of the overall economy are generally high. Although estimates
of direct costs may be low in countries where there is low availability and
coverage of mental health care, these estimates are spurious. Indirect costs
arising from productivity loss account for a larger proportion of overall
costs than direct costs. Furthermore, low treatment costs (because of lack
of treatment) may actually increase the indirect costs by increasing the
duration of untreated disorders and associated disability. All of these es-
timates of economic evaluations are most likely underestimates, since lost
opportunity costs to individuals and families are not taken into account
(http://www.who.int).

Mental diseases have also affected relevant figures of our history, sciences,
and arts. Abraham Lincoln, the revered 16th president of the United States,
suffered from severe, incapacitating, and occasionally suicidal depressions.
Lincoln’s major depressions are well-documented in his own writings and in
reports from contemporaries. Virginia Woolf, the British novelist who wrote
To The Lighthouse and Orlando, experienced manic depressive disorder as
did the German musician Ludwig von Beethoven and the Dutch painter
Vincent Van Gogh. Leo Tolstoy, author of War and Peace, revealed the
extent of his own mental illness in My Confession and a recent Nobel
Laureate in Economics, the mathematician John Forbes Nash Jr., has a
lifetime history of schizophrenia.

Schizophrenia, a disease of the brain, is one of the most disabling and
emotionally devastating illnesses known to man. But because it has been
misunderstood for so long, it has received relatively little attention, and
its victims have been undeservingly stigmatized. In 1911, Eugen Bleuler
first used the word “schizophrenia.” The term schizophrenia comes from
the Greek words “schizo” (=split) and “phrenia” (=mind) and therefore

schizophrenia = split + mind.

However, schizophrenia is not seen nowadays as a split personality, a rare
and very different disorder. Like cancer and diabetes, schizophrenia has a
biological basis; it is not caused by bad parenting or personal weakness.
Schizophrenia is, in fact, a relatively common disease: it affects 1 in 100
people worldwide, irrespective of races, culture, and social class. Although
there is no known cure for schizophrenia, it is a very treatable disease. Most
of those afflicted by schizophrenia respond to drug therapy, and many are
able to lead productive and fulfilling lives.
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Schizophrenia is characterized by a constellation of distinctive and pre-
dictable symptoms. The symptoms that are most commonly associated
with the disease are called positive symptoms, denoting the presence of
grossly abnormal behavior. These include thought disorder, delusions, and
hallucinations. Thought disorder is the diminished ability to think clearly
and logically. Often it is manifested by disconnected and nonsensical lan-
guage that renders the person with schizophrenia incapable of participat-
ing in conversation, contributing to his alienation from his family, friends,
and society. Delusions are common among individuals with schizophrenia.
An affected person may believe that he or she is being conspired against
(called “paranoid delusion”). “Broadcasting” describes a type of delusion
in which the individual with this illness believes that his thoughts can be
heard by others. Hallucinations can be heard, seen, or even felt; most often
they take the form of voices heard only by the afflicted person. Such voices
may describe the person’s actions, warn him of danger, or tell him what
to do. At times the individual may hear several voices carrying on a con-
versation. Less obvious than the “positive symptoms” but equally serious
are the deficit or “negative symptoms” that represent the absence of nor-
mal behavior. These include flat or blunted affect (i.e., lack of emotional
expression), apathy, and social withdrawal.

Although schizophrenia can affect anyone at any point in life, the dis-
ease has a very strong genetic component. The probability of developing
schizophrenia as the offspring of two parents, neither of whom has the dis-
ease, is 1 percent. The probability of developing schizophrenia being the
offspring of one parent with the disease is approximately 13 percent. The
probability of developing schizophrenia as the offspring of both parents
with the disease is approximately 35 percent. Three-quarters of persons
with schizophrenia develop the disease between 16 and 25 years of age.
Onset is uncommon after age 30, and rare after age 40. In the 16–25 year
old age group, schizophrenia affects more men than women. In the 25–30
year old group, the incidence is higher in women than in men.

16.3 Surrogate Endpoint Validation Criteria

Chapter 5 gave a general overview of the history of surrogate marker val-
idation measures, and Chapter 7 sketched the meta-analytic framework of
Buyse et al. (2000a). In this section, we summarize the main arguments,
but now focusing on the assessment of concurrent validity for mental health
symptom scales. A key difference is that the natural asymmetry that exists
between the surrogate (S) and true endpoints (T ) will often have to be re-
placed by a more symmetric treatment of two endpoints (scales), i.e., S1 and
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S2. Let us first introduce notation particular to this chapter. Throughout,
we assume that S1 and S2 are random variables that represent two scales
for which we want to assess the criterion validity. Traditional approaches
investigate the concurrent validity by correlating one measurement scale
(S2) with the other assumed to be a gold standard (S1). In many cases, an
ordinary Pearson’s correlation coefficient is used. Here, we propose to assess
the criterion validity based on criteria similar to the ones used in surrogate
marker validation in randomized clinical trials. Although the criteria could
equally well be applied to investigate the predictive validity (where one of
the two criteria will not be available until some time in the future), this
is beyond the scope of the data analyses presented in this chapter. Fur-
ther, we assume that Z is an indicator variable for treatment. We restrict
attention to a binary treatment indicator (Z = 0 or 1).

16.3.1 Prentice’s Criteria

Prentice’s criteria (Prentice 1989) have been presented in Section 5.2.2.
They can be applied to our setting, treating the gold standard scale S1 as
the true endpoint. Consequently, criteria (5.2) and (5.3) measure departures
from the null hypothesis of no treatment effect on S2 and S1, respectively,
implicit in Prentice’s definition of a surrogate endpoint. Criterion (5.4)
implies that S2 has prognostic value for the gold standard. Criterion (5.5)
requires S2 to capture fully the effect of treatment on S1, that is: there is
no effect of treatment on one scale after correction for the other scale. Of
course, this last condition is so restrictive that it rarely holds in practice
and it is hard to verify since it would formally require equivalence testing.

Although in many practical applications one of the symptom scales may
be regarded as “the standard,” this is not always evident with psychiatric
diagnostic tools. In that case, we may have to add two extra criteria:

f(S2|S1) �= f(S2), (16.4)

f(S2|S1) = f(S2|S1, Z). (16.5)

Further, in an equivalence trial designed to demonstrate the equivalence
of a new treatment with a standard therapy, the first two Prentice criteria
are bound not to be fulfilled. Yet, from a clinical perspective there is no
reason why the symptom scales used as responses in such a trial cannot be
validated. This will be illustrated further in this chapter.
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16.3.2 Freedman’s Proportion Explained

Freedman, Graubard, and Schatzkin (1992) supplemented Prentice’s crite-
ria with their proportion explained , given by (5.19). In the current context,
it can be interpreted as the proportion of the treatment effect on one scale
that is explained by the other. Let PE(S1, S2, Z) stand for the propor-
tion of the effect of Z on S1, which can be explained by S2. An estimate
of PE(S1, S2, Z) can be obtained from (5.19). Note that this quantity is
subject to the same asymmetry as criteria (5.4)–(5.5) and (16.4)–(16.5).
Therefore, one might also have to look at PE(S2, S1, Z) whenever there
is no clear standard among the two instruments considered. Prentice’s cri-
terion (5.5) requires that S2 fully captures the effect of treatment on S1,
what leads to PE(S1, S2, Z) = 1.

It was believed that an instrument for which PE < 1 explains only part
of the treatment effect on the other instrument. Hence, following the ideas
of Freedman, Graubard, and Schatzkin (1992), one could suggest that the
criterion validity of two instruments is assessed when the PE is close to
unity. In cases where it is not clear which scale can serve as “the standard,”
both PE(S1, S2, Z) and PE(S2, S1, Z) should be close to unity. However,
this reasoning is not valid. Several conceptual difficulties surrounding the
PE have been outlined in the literature (Lin, Fleming, and De Gruttola
1997, Buyse and Molenberghs 1998, Flandre and Saidi 1999, Buyse et al.
2000a, 2000b, Molenberghs et al. 2002) and presented in Sections 5.3.2 and
5.4.2. In particular, a fundamental problem with PE is that it is not a
proportion: it can be estimated to be anywhere on the real line, which
makes its interpretation problematic.

16.3.3 Relative Effect and Adjusted Association

Buyse and Molenberghs (1998) suggested to replace the PE by two related
quantities: the relative effect (RE), which is the ratio of the treatment ef-
fects upon the two instruments, and the treatment-adjusted association,
ρZ , which is the subject-specific association, adjusted for treatment (Sec-
tion 5.4). From (5.22), one can see that in our setting two versions of RE
can be formally written: RE(S1, S2) and RE(S2, S1), depending on which
scale is treated as the “true” endpoint. Note that RE is anti-symmetric in
the sense that RE(S1, S2) = 1/RE(S2, S1), whereas the adjusted associa-
tion (5.23) is fully symmetric.
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16.3.4 Hierarchical Approach

Buyse et al. (2000a) adopted an alternative approach to the validation of
surrogate endpoints based on a meta-analysis of several trials (Chapter 7).
We will show that this setting is very much fit for the validation of psychi-
atric symptom scales.

The approach of Buyse et al. (2000a) is based on the two-stage model (7.1)–
(7.5) or its random-effects representation (7.6)–(7.7). The models can be
naturally applied to the case of two measurement scales considered in this
chapter. In particular, the first-stage model (7.1)–(7.2) can be re-written
as

S1ij = µS1i
+ βiZij + εS1ij

, (16.6)

S2ij = µS2i
+ αiZij + εS2ij

, (16.7)

where αi and βi are trial-specific effects of treatment Z on the endpoints
in a trial, µS1i

and µS2i
are trial-specific intercepts, and εS1i

and εS2i
are

correlated error terms, assumed to be mean-zero normally distributed with
covariance matrix

Σ =
(

σS1S1 σS1S2

σS1S2 σS2S2

)
.

At the second stage, it can be assumed that⎛⎜⎜⎝
µS1i

µS2i

βi

αi

⎞⎟⎟⎠ =

⎛⎜⎜⎝
µS1

µS2

β
α

⎞⎟⎟⎠+

⎛⎜⎜⎝
mS1i

mS2i

bi

ai

⎞⎟⎟⎠ , (16.8)

where the second term on the right-hand side of (16.8) follows a zero-mean
normal distribution with dispersion matrix

D =

⎛⎜⎜⎝
dS1S1 dS1S2 dS1b dS1a

dS2S1 dS2S2 dS2b dS2a

dbS1 dbS2 dbb dba

daS1 daS2 dab daa

⎞⎟⎟⎠ .

The setting described above naturally lends itself to the validation of two
scales at both the trial level as well as the individual level.

To investigate the trial-level concurrent and/or predictive validity of two
psychiatric scales, it is of interest to investigate how a change in treatment
effect on one measurement scale can be translated into the other psychiatric
measurement instrument. Therefore, it is essential to explore the quality
of the prediction of the treatment effect on S1 in trial i by (a) information
obtained in the validation process based on trials i = 1, . . . , N , and (b) the
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estimate of the effect of Z on S2 in a new trial i = 0. Whenever there is no
clear standard but simply relations are studied, as is often the case with
psychometric instruments, the reverse prediction (on S2 based on the effect
on S1) is also important.

To this end, the developments presented in Section 7.2.1 can be used. It
follows that, to assess the validity of S2 with respect to S1, the following
coefficient of determination can be used:

R2
trial(f) = R2

bi|mS2i,ai

=
1

dbb

(
dS2b

dab

)T (
dS2S2 dS2a

dS2a daa

)−1(
dS2b

dab

)
. (16.9)

Again, when none of the two scales can be assumed to be a standard, we
may also have to look at the second coefficient of determination:

R2
trial(f) = R2

ai|mS1i,bi

=
1

daa

(
dS1a

dab

)T (
dS1S1 dS1b

dS1b dbb

)−1(
dS1a

dab

)
. (16.10)

These coefficients are unitless and range in the unit interval, two desirable
features for interpretation. Whenever these quantities are sufficiently close
to 1, we can say that one scale is a good surrogate for the other at trial
level.

An attractive special case of (16.9) applies when the prediction of the treat-
ment effect can be done independently of the trial-specific random intercept
mS0. In this case, in agreement with (7.12), the following, simplified coef-
ficient of determination results:

R2
trial(r) = R2

bi|ai
=

d2
ab

daadbb
, (16.11)

which is now symmetric in the two scales. Clearly, this is a very attractive
property when validating two psychometric scales for which in many cases
no gold standard can be assigned. In contrast to previous approaches, only
one quantity suffices to assess the validity.

To validate two scales at the individual level, following the developments
by Buyse et al. (2000a), one can consider using the squared correlation
between the two instruments after adjustment for both the trial effects as
well as the treatment effect:

R2
indiv = R2

εS1i
|εS2i

=
σ2

S1S2

σS1S1σS2S2

. (16.12)
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16.3.5 Variance Reduction Factor and Likelihood Reduction
Factor

Just as we discussed symmetries and asymmetries in the single-trial mea-
sures case as well as for the original meta-analytic framework sketched, one
may want to investigate the longitudinal setting, too, as, in mental health
studies and psychiatric trials, data are often collected repeatedly over time.

In Chapter 14, several particular measures were introduced, members of
a wide family of validation measures. Specific instances were the variance
reduction factor (VRF), the canonical correlation based measure θp, and
the likelihood reduction factor (LRF). On page 241, it is stated that the
variance reduction factor is not symmetric in S1 and S2 and hence it differs
depending on the “directionality” chosen. In contrast, θp is symmetric. This
issue is discussed in some detail on page 248. In addition, the measure
R2

Λ, introduced in Section 14.5.1, is symmetric in both endpoints. A nice
overview of the symmetries and asymmetries in both the traditional meta-
analytic coefficient of determination based measures,, supplemented with
those in the newly proposed measures of Chapter 14, is given in Table 14.2.

16.4 Analysis of Case Studies

In the analysis of the case studies, our interest will focus on the extent to
which the Positive and Negative Syndrome Scale (PANSS) and the Brief
Psychiatric Rating Scale (BPRS) scales are related with each other and
with Clinician’s Global Impression (CGI). We will show that for this pur-
pose, we can use analogous techniques as when validating a surrogate end-
point from meta-analytic data.

16.4.1 A Meta-analysis of Trials in Schizophrenic Subjects

In this section, we will apply the methods of Section 16.3 to the data from
a meta-analysis of five clinical trials in schizophrenic patients, described in
Section 4.2.6. Evidently, there is no natural “true endpoint” associated with
such data. Nevertheless, we will show how these methods can be used to in-
vestigate the criterion validity between the three scales of interest: PANSS,
BPRS, and CGI. We will successively consider the relationships between (i)
PANSS and BPRS, (ii) PANSS and CGI, and (iii) BPRS and CGI. Within
each of these comparisons, missing values (if any) were deleted first. The
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TABLE 16.1. Meta-analysis in schizophrenia. Prentice’s criteria for the compar-
ison of PANSS versus BPRS.

Effect tested Criterion Estimate p-value
(standard error)

Z on S1 (5.2) −4.63 (1.65) 0.005
Z on S2 (5.3) −2.43 (0.95) 0.011
S2 on S1 (5.4) 1.66 (0.01) 0.000
Z on S1 adjusted for S2 (5.5) −0.57 (0.46) 0.217
S1 on S2 (16.4) 0.55 (0.01) 0.000
Z on S2 adjusted for S2 (16.5) 0.13 (0.27) 0.641

binary indicator for treatment (Zij) will be set to 0 for the conventional
antipsychotic agents and to 1 for risperidone.

The meta-analysis contains only five trials. This is insufficient to apply
the meta-analytic methods of Buyse et al. (2000a). Fortunately, in all of
the trials information is also available on the investigators that treated the
patients. Hence, we can also use investigator as the unit of analysis. A total
of 138 units are thus available for analysis, with the number of patients per
unit ranging from 2 to 30.

Relationship Between PANSS and BPRS

The relationship between PANSS and BPRS was studied first. Because
the BPRS is essentially constructed from the PANSS by selecting 18 of its
30 items, there is a natural link between these two scales, but it remains
difficult to assign one of the two endpoints as the “true endpoint.” With
our notation we assume that PANSS plays the role of S1 and BPRS plays
the role of S2. Figure 16.1(a) shows a scatterplot of BPRS versus PANSS.
Clearly, both scales are highly correlated. The Pearson’s correlation coeffi-
cient equals ρ = 0.96.

Let us now apply the different validation methods, described in Section 16.3.
Starting with the Prentice criteria, all of them are fulfilled: the treatment
is prognostic for both PANSS and BPRS, BPRS is prognostic for PANSS
and vice-versa, and there is no effect of treatment on either scale after
correction for the other scale. A summary of these results is shown in Ta-
ble 16.1. However, one has to keep the conceptual difficulties with this
formalism in mind. In addition, the lack of symmetry of this approach is
a further drawback. Next, we calculated Freedman’s proportion explained
as PE(S1, S2) = 0.875 with 95% confidence interval, C.I., [0.65, 1.05].
Because of the symmetry in the endpoints, we also needed to calculate
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FIGURE 16.1. Meta-analysis in schizophrenia. (a) Scatter plot of PANSS versus
BPRS (top left); (b) treatment effects on PANSS by treatment effects on BPRS
(top right). The size of each point is proportional to the number of patients exam-
ined by the corresponding investigator. (c) Plot of the residuals of PANSS versus
BPRS (bottom left).

PE(S2, S1) = 1.052 (95% C.I. [0.87, 1.41]). Note that, with this approach
we might not only find a value of PE that is larger than 1, but in ad-
dition the confidence intervals tend to be rather wide. The relative effect
and adjusted association were respectively calculated as RE(S1, S2) = 1.90
(95% C.I. [0.70, 5.77]), RE(S2, S1) = 1/RE(S1, S2) = 0.53 (95% C.I. [0.17,
1.43]), and ρZ = 0.96 (95% C.I. [0.95, 0.97]). The confidence intervals
around the REs may be too large to convey any useful information. In
contrast, the adjusted association is very close to one and estimated with
high precision. This implies that, after accounting for treatment, a very
large part of the variability of BPRS can be explained by PANSS (and vice
versa) at the individual level. In addition, one can observe the closeness with
the Pearson’s correlation coefficient ρ, which is traditionally calculated to
investigate the concurrent validity between two psychometric rating scales.

Let us now consider the multi-trial approach of Buyse et al. (2000a).
Throughout, the sample sizes of the units were used to weight the obser-
vations in the calculation of the R2 values. Figure 16.1(b) shows a plot of
the treatment effects on the PANSS versus the treatment effects on BPRS
for the different units. These seem to be highly correlated. Indeed, using
the multi-trial method, we found high conclusive values for the coefficients
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TABLE 16.2. Meta-analysis in schizophrenia. Prentice’s criteria for the compar-
ison of PANSS versus CGI.

Effect tested Criterion Estimate p-value
(standard error)

Z on S1 (5.2) −0.24 (0.103) 0.016
Z on S2 (5.3) −4.46 (1.656) 0.007
S2 on S1 (5.4) 0.04 (0.001) 0.000
Z on S1 adjusted for S2 (5.5) -0.04 (0.071) 0.513
S1 on S2 (16.4) 11.66 (0.402) 0.000
Z on S2 adjusted for S2 (16.5) −1.59 (1.152) 0.167

of determination at the trial and individual level. Becuase no clear “true
endpoint” could be assigned, we calculated both R2

bi|ai,mS2
= 0.91 (95%

C.I. [0.86, 0.94]) and R2
ai|bi,mS1

= 0.91 (95% C.I. [0.86, 0.94]). However,
calculating the estimate (16.11) based on the reduced model, we found
R2

bi|ai
= 0.92 (95% C.I. [0.91, 0.93]), which is very close to the previous

values but has the advantage of being symmetric in both scales. Its value
indicates that not much would be gained in the precision of the prediction if
instead of the full model the reduced model were used to predict the treat-
ment effect. The individual coefficient of determination was calculated as
R2

indiv = 0.92 (95% C.I. [0.91, 0.93]). Note that this quantity is symmetric
in both scales. Graphically this correlation is represented by the residual
plot shown in Figure 16.1(c).

Relationship Between PANSS and CGI

As pointed out before, there is no natural true endpoint associated with this
kind of data. Therefore, we will study the symmetric relationship between
PANSS (S2) and CGI (S1), i.e., we will let each of the endpoints play the
role of “true” endpoint. This way, we will be able to study the impact of
changing the role of surrogate and true endpoints on the scales.

Again, the Prentice criteria were fulfilled as can be seen from the summary
presented in Table 16.2: the treatment is prognostic for both PANSS and
CGI, PANSS is prognostic for CGI (and vice versa), and there is no effect
of treatment on either scale after correcting for the other scale.

However, as pointed out by Buyse and Molenberghs (1998) and Buyse et
al. (2000a), one has to be very careful in interpreting these results, as
Prentice’s criteria are surrounded with a number of conceptual difficulties,
possibly leading to wrong conclusions. The point estimates for Freedman’s
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FIGURE 16.2. Meta-analysis in schizophrenia. (a) Scatter plot of CGI versus
PANSS (top left); (b) treatment effects on CGI by treatment effects on PANSS
(top right). The size of each point is proportional to the number of patients ex-
amined by the corresponding investigator. (c) Plot of the residuals of CGI versus
PANSS (bottom left).

proportions explained were estimated as PE(S1, S2) = 0.81 (95% C.I. [0.46,
1.67] and PE(S2, S1) = 0.64 (95% C.I. [0.31, 1.12]). Clearly the confidence
intervals are too wide to be informative. In addition, the upper bounds
again exceed 1, which is hard to justify for a proportion. The estimated
values for the relative effect were RE(S1, S2) = 0.055 (95% C.I. [0.01,
0.16]) and RE(S2, S1) = 18.07 (95% C.I. [6.24, 61.93]).

The treatment-adjusted association had an estimated value of ρZ = 0.72
(95% C.I. [0.69, 0.75]). Although the point estimate for ρZ is smaller than
in the previous case, which is not so surprising given the nature of the
data, it is still estimated with high precision (in contrast to the RE mea-
sures). The meta-analytic approach yielded R2

bi|mSi
,ai

= 0.56 (95% C.I.
[0.43, 0.68]), R2

ai|mTi
,bi

= 0.56 (95% C.I. [0.43, 0.68]) at the trial level and
R2

indiv = 0.51 (95% C.I. [0.47, 0.55]) at the individual level. Clearly, these
quantities were estimated with sufficient precision, at the same time indi-
cating that the agreement between PANSS and CGI, is smaller than would
have been anticipated from the classical validation approaches such as the
Prentice criteria and the proportion explained. The individual level correla-
tion between the two endpoints is relatively strong with a value of 0.71 (95%
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TABLE 16.3. Meta-analysis in schizophrenia. Frequency table of the number of
units with a given number of patients.

No. patients No. units No. patients No. units
per unit with n patients per unit with n patients

n n

2 29 10 2
3 18 11 4
4 23 12 2
5 16 13 3
6 9 15 1
7 12 18 1
8 10 21 1
9 6 30 1

C.I. [0.68, 0.74]). This agrees closely with the treatment-adjusted associa-
tion parameter ρZ and even the Pearson’s correlation coefficient ρ = 0.73.

Figures 16.2(a) and (b) show a scatterplot of CGI versus PANSS and a plot
of the treatment effects on CGI by the treatment effects on PANSS, the
latter being a graphical representation of Rtrial. The Rindiv is graphically
represented by the residual plot in Figure 16.2(c). Clearly, these effects
are less correlated than in the previous section. In addition we calculated
the R2 measure at the trial level for the “reduced” model. This yielded
R2

bi|ai
= R2

ai|bi
= 0.56 (95% C.I. [0.43, 0.67]) which coincides with the

trial-level values obtained from the “full” model. Apart from the attractive
feature that this quantity is symmetric in both scales, the result again
indicates that not much would be gained in the precision of the treatment
prediction if instead of the full model, the reduced model were used.

In the above meta-analytic analyses, we used the investigator as the unit
of analysis. As pointed out at the beginning of Section 16.4.1, this leads
to a total of 138 units with the number of patients per unit ranging from
2 to 30. Table 16.3 shows the frequency table of the number of units with
a given number of patients. Clearly, the majority of units consists of less
than 5 patients.

Alternatively, one could also consider the main investigator as unit of analy-
sis. For 4 out of the 5 trials, only one main investigator was used, leading
to extremely large investigator sites. This led to a total number of 29 units
with the number of patients per unit ranging from 4 to 450, 4 of which
represent trials. When redoing the meta-analytic approach for this setting,
we found similar results as before (we now consider the reduced model
only); the trial-level and individual-level association measures are respec-
tively given by R2

trial(r) = 0.58 (95% C.I. [0.45, 0.71]) and R2
indiv(r) = 0.52
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TABLE 16.4. Meta-analysis in schizophrenia. Predictions for the treatment effects
on CGI based on the observed treatment effects on PANSS. Estimates (standard
errors) are shown.

Unit No. patients α̂0 E(β + b0|a0) ̂β + b0

1 8 14.00 (16.35) 0.53 (0.63) 0.50 (1.26)
2 6 −43.33 (29.02) −1.99 (0.63) −2.33 (1.25)
3 9 −13.50 (12.75) −0.75 (0.60) 0.30 (1.18)
4 4 7.50 (35.28) 0.08 (0.58) 1.50 (1.80)
5 9 −7.60 ( 7.65) −0.45 (0.63) −0.40 (0.99)
6 8 −42.00 (18.93) −1.88 (0.63) −2.50 (1.04)
7 7 −39.58 (18.71) −2.07 (0.61) −1.00 (1.18)
8 6 −13.33 (13.79) −0.69 (0.62) −1.33 (1.56)
9 6 −7.33 (23.35) −0.44 (0.63) −0.33 (1.33)
10 4 −2.00 (18.06) −0.18 (0.63) −0.50 (1.80)
11 68 −4.84 ( 4.46) −0.32 (0.63) −0.47 (0.36)
12 8 −14.25 (30.53) −0.72 (0.62) −1.50 (0.89
13 7 −6.33 (11.24) −0.37 (0.63) −0.83 (0.95)
14 4 −36.5 (14.77) −1.96 (0.58) −0.50 (0.50)
15 5 −13.00 (26.93) −0.66 (0.61) −1.66 (1.72)
16 8 −22.75 (10.45) −1.13 (0.63) −1.25 (0.63)
17 8 −9.00 (10.93) −0.52 (0.63) −0.50 (0.65)
18 450 −3.57 ( 2.13) −0.28 (0.63) −0.15 (0.13)
19 7 −23.5 (12.02) −1.16 (0.63) −1.25 (0.74)
20 5 −5.33 (13.52) −0.33 (0.63) −0.83 (0.57)
21 70 2.75 ( 5.79) −0.00 (0.63) 0.21 (0.38)
22 7 −7.50 (16.13) −0.46 (0.63) −0.25 (1.40)
23 7 −20.66 (15.39) −1.00 (0.62) −1.83 (1.06)
24 9 −4.00 (11.06) −0.31 (0.63) 0.05 (0.93)
25 5 −7.83 (11.16) −0.43 (0.61) −1.33 (0.86)
26 45 −20.15 ( 9.68) −1.01 (0.63) −1.18 (0.50)
27 9 1.14 (19.19) −0.06 (0.63) 0.00 (0.95)
28 5 −10.50 (10.96) −0.63 (0.59) 0.66 (0.86)
29 8 −3.25 (10.71) −0.24 (0.63) −0.49 (0.79)

(95% C.I. [0.48, 0.56]). Although the point estimates of these R2 values are
similar to the ones found in the previous setting, the confidence interval
for R2

trial is much wider, probably due to the smaller number of trials.

Based on the results of the above meta-analytic method, we are able to
predict for example the treatment effect on the CGI response based on the
observed treatment effect on PANSS (or vice versa). The details hereof have
been described in Section 7.2.1. Table 16.4 reports prediction intervals for
the 29 units together with the number of patients per unit. In this table, α̂0

and ̂β + b0 are values estimated from the data; E(β + b0) is the predicted
treatment effect on CGI, given its effect on PANSS. Clearly, in all cases, the
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FIGURE 16.3. Meta-analysis in schizophrenia. Effect changes on one outcome by
the effect changes on another outcome.

predicted values for β + b0 agree reasonably well with the effects estimated
from the data.

Figure 16.3 indicates how effect changes on one outcome can be trans-
lated into effect changes on another outcome. Translating effect changes
of PANSS or BPRS to the CGI scale is more or less similar. But, as ex-
pected, the translation of an effect change on BPRS to PANSS is much
more precise.

Relationship Between BPRS and CGI

When studying the relationship between CGI (S1) and BPRS (S2), we
found similar results to the ones obtained above for PANSS and CGI. This
is not so surprising given the strong relationship found between BPRS and
PANSS. Because results for the full and reduced models almost coincide,
we only present the values for the reduced model here.

Again, the Prentice criteria were fulfilled as can be seen from the sum-
mary presented in Table 16.5: Freedman’s proportion explained was esti-
mated as PE(S1, S2) = 0.72 with a wide 95% confidence interval of [0.37,
1.49] and PE(S2, S1) = 0.09 (95% C.I. [0.33, 1.34]). The estimated value
for the relative effect RE(S1, S2) was 0.10 (95% C.I. [0.03, 0.34]) and the
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TABLE 16.5. Meta-analysis in schizophrenia. Prentice’s criteria for the compar-
ison of BPRS versus CGI.

Effect tested Criterion Estimate p-value
(standard error)

Z on S1 (5.2) −0.24 (0.103) 0.016
Z on S2 (5.3) −2.35 (0.954) 0.013
S2 on S1 (5.4) 0.07 (0.002) 0.000
Z on S1 adjusted for S2 (5.5) −0.06 (0.072) 0.363
S1 on S2 (16.4) 6.62 (0.235) 0.000
Z on S2 adjusted for S2 (16.5) −0.73 (0.673) 0.279

TABLE 16.6. Equivalence trial in schizophrenia. Prentice’s criteria for the com-
parison of PANSS versus BPRS.

Effect tested Criterion Estimate p-value
(standard error)

Z on S1 (5.2) 1.06 (4.050) 0.792
Z on S2 (5.3) −0.33 (2.398) 0.887
S2 on S1 (5.4) 1.65 (0.024) 0.000
Z on S1 adjusted for S2 (5.5) 1.62 (0.834) 0.052

treatment-adjusted association had an estimated value of ρZ = 0.71 (95%
C.I. [0.68, 0.73]). Using the meta-analytic approach we find a value of 0.59
for R2

trial (95% C.I. [0.46, 0.73]) and R2
indiv = 0.49 (95% C.I. [0.44, 0.53]).

Figure 16.4(a)–(c), as before, shows the scatterplot of CGI versus BPRS,
the treatment effects on CGI by the treatment effects on BPRS and a
residual plot, respectively.

16.4.2 An Equivalence Trial in Schizophrenic Patients

The data have been described in Section 4.2.7. They come from an inter-
national equivalence trial (INT-10) on schizophrenic patients, described by
Nair (1998) and the Risperidone Study Group. Like in the previous study,
interest lies in determining the extent to which CGI, PANSS, and BPRS
are related with each other. Because we only had information available on
a single trial with one main investigator, we chose to use investigator as the
unit of analysis in the multi-trial approach. A total of 34 units were thus
available for analysis with the number of patients per unit ranging from 2
to 15.
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FIGURE 16.4. Meta-analysis in schizophrenia. (a) Scatter plot of CGI versus
BPRS (top left); (b) treatment effects on CGI by treatment effects on BPRS (top
right). The size of each point is proportional to the number of patients examined
by the corresponding investigator. (c) Plot of the residuals of CGI versus BPRS
(bottom left).

In the current section, we illustrate on the basis of these data how the
classical approaches can hide the possible “agreement” of variables in an
equivalence study and how they can produce misleading or even wrong
results. Like in the previous section, we will subsequently consider the rela-
tionships between (i) PANSS and BPRS and (ii) PANSS and CGI. Results
about the BPRS versus CGI agreement are not shown, as they are very
similar to the results obtained for PANSS and CGI.

PANSS versus BPRS

For the sake of illustration, we let PANSS play the role of “true” endpoint.
The Prentice criteria now utterly failed to show the high agreement between
both scales. Results are summarized in Table 16.6. By definition of an
equivalence trial, the first two criteria are bound to be unfulfilled.

As usual, Freedman’s proportion explained cannot give a conclusive answer,
being estimated at PE = −0.525 with an infinite 95% confidence interval.
Apart from the confidence interval, which is too wide to be of any practical
use, the PE is even negative, which can hardly be justified for a propor-
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tion and makes it hard to interpret. The relative effect was estimated at
RE = −3.14 with an unbounded confidence interval as well, which makes
it inconclusive. However, the adjusted association equals ρZ = 0.97 with
95% confidence interval [0.97, 0.98], giving evidence of a high individual
level association corrected for treatment. The meta-analytic approach pro-
duced values, R2

trial(r) = 0.96 (95% C.I. [0.82, 1.09]) at the trial level, and
R2

indiv(r) = 0.94 (95% C.I. [0.92, 0.95]) at the individual level. Both give
conclusive results, which are in agreement with the ones found for PANSS
and BPRS in Section 16.4.1. This “robust” behavior clearly confirms the
superiority of the meta-analytic approach. Thus, we have illustrated the
meta-analytic approach is the only that is able to use data from equiva-
lence trials for validation. All other approaches give inconclusive results,
with the Prentice criteria being even utterly useless by definition.

PANSS versus CGI

Let us now investigate the agreement between PANSS and CGI with CGI
playing the role of “true” or “standard” endpoint. A summary of the Pren-
tice criteria is found in Table 16.7. As could have been anticipated, the
first two criteria are again not fulfilled. Freedman’s proportion explained
takes a negative value of PE = −0.94 with an infinite confidence inter-
val. The relative effect estimate was estimated at RE = −0.03 with also
an infinite confidence interval. The adjusted association was estimated as
ρZ = 0.74 (95% C.I. [0.69, 0.79]), which closely corresponds to the value ob-
tained for PANSS and CGI in Section 16.4.1. The meta-analytic approach
yielded values, R2

trial(r) = 0.70 (95% C.I. [0.44, 0.96]) at the trial level, and
R2

indiv(r) = 0.55 (95% C.I. [0.47, 0.62]) at the individual level. This illustrates
again that the multi-trial approach is the only one that seems to give con-
clusive results, which are consistent with the ones found in Section 16.4.1.

16.5 Discussion

In this chapter, we have shown how a well-known psychometric property
such as the criterion validity can be assessed using surrogate marker valida-
tion methodology. Although psychiatric studies, such as the ones presented
here, differ from clinical trials by the fact that no true endpoint can be
assigned, we show that the developed methodology can equally well be
applied on softer endpoints.

Traditional psychometric techniques that try to assess the criterion validity
are often limited to the calculation of a simple Pearson’s correlation coeffi-
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TABLE 16.7. Equivalence trial in schizophrenia. Prentice’s criteria for the com-
parison of PANSS versus CGI.

Effect tested Criterion Estimate p-value
(standard error)

Z on S1 (5.2) −0.03 (1.186) 0.835
Z on S2 (5.3) 1.06 (4.050) 0.792
S2 on S1 (5.4) 0.03 (0.002) 0.000
Z on S1 adjusted for S2 (5.5) −0.07 (0.124) 0.544

cient. In contrast, the multi-trial approach described in this paper allows us
to relate or predict a treatment effect on one scale with a treatment effect
on the other scale. Further, one is able to distinguish between trial-level
and individual-level agreement, which the classical techniques do not. In
addition, treatment effects on aggregate scores can be translated to effects
on more understandable measures.
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The Evaluation of Surrogate
Endpoints in Practice:
Experience in HIV

Michael D. Hughes

17.1 Introduction and Background

As for many life-threatening diseases, there has been intense interest in
evaluating rapidly the effects of new treatments on the progression of hu-
man immunodeficiency virus (HIV) infection. In this chapter, we describe
some of the work that was undertaken to evaluate potential surrogate end-
points for use in HIV clinical trials and which contributed to policies for
anti-HIV drug approval, for example the United States Food and Drug Ad-
ministration’s (FDA’s) “Guidance for Industry: Antiretroviral Drugs Using
Plasma HIV RNA Measurements—Clinical Considerations for Accelerated
and Traditional Approval” (2002). (See also Chapter 3.)

Early clinical trials of anti-HIV treatments focused on the effects on pro-
gression to the acquired immunodeficiency syndrome (AIDS) or to death.
However, the progression of HIV infection is typically characterized by a
period of asymptomatic infection that may last many years, followed by the
development of more minor symptoms of immunodeficiency prior to the on-
set of AIDS or death. Early in the epidemic, it became clear that this course
of clinical disease progression was associated with a decline in the count of
CD4+ T-lymphocytes (referred to as CD4 cells forthwith) from levels that
are typically greater than 1000 cells/µl prior to HIV infection, with the
onset of AIDS usually occurring at levels below 200 cells/µl. The CD4 cell
is instrumental in the HIV life cycle because replication of the virus occurs
within the cell. Early anti-HIV treatments produced, however, only modest
improvements in CD4 cell count. Typically, these involved mean changes
of only 50 to 100 cells/µl during the first weeks and months of treatment,
followed by declines. Furthermore, there is considerable measurement error
and within-subject biological variation in CD4 cell count. For example, a
doubling or halving in two successive counts taken a few days apart on the
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same patient is not unusual. Thus, from the perspectives of both drug reg-
ulation and patient management, there was considerable debate about the
value of changes in CD4 cell count as a surrogate for longer-term disease
progression.

In the mid-1990s, the technology to quantify the amount of viral RNA
became available. This was usually measured in an HIV-infected subject’s
plasma. Worldwide, the most common type of HIV is type 1, and the viral
load is referred to as HIV-1 RNA, measured in copies per milliliter of plasma
(copies/ml) or log10 copies/ml. Using plasma specimens stored in natural
history studies of HIV-infected subjects, it was quickly established that the
HIV-1 RNA level was strongly predictive of disease progression.

About the same time as the development of assays to measure HIV-1 RNA
levels, drug development began to focus on the use of combination anti-
HIV treatment, which typically included drugs from two different classes
of drugs. Usually, these combinations involved two nucleoside reverse tran-
scriptase inhibitors (NRTIs) and either a non-nucleoside reverse transcrip-
tase inhibitor (NNRTI) or a protease inhibitor (PI), often described as
highly active antiretroviral therapy (HAART). In individual patients, the
magnitude of the acute suppression of HIV-1 RNA following initiation of
these combination therapies was often larger than the changes that might
be explainable by measurement error or within-subject biological varia-
tion. In clinical trials, it was also quickly established that these changes
in HIV-1 RNA were accompanied by larger and more sustained increases
in CD4 cell count and more substantial reductions in the risk of progres-
sion to AIDS or death compared with single or two-drug NRTI treatment.
Hence, based on reasonable biological arguments, strong opinions devel-
oped that treatment-mediated suppression of HIV-1 RNA was associated
with improved immunologic status and hence reduced risk of progression
to AIDS or death. Furthermore, the sensitivity of assays to measure HIV-1
RNA levels provided physicians and patients with a readily available tool
for monitoring the antiviral effects of treatments over time including both
the initial suppression and any subsequent rebound (for example, due to
the development of viral resistance to the drugs being taken). This also
made it very difficult to conduct randomized clinical trials to evaluate the
effects of a specific combination of drugs using the traditional endpoint of
progression to AIDS or death because many patients changed treatments
quickly after seeing poor initial HIV-1 RNA response or subsequent loss of
response.

Thus in the mid-1990s, there was substantial interest in the pharmaceutical
industry as well as in drug regulatory agencies and academia to evaluate
formally the value of HIV-1 RNA and CD4 cell count as surrogate markers
for use as endpoints in clinical trials and as a basis for patient manage-
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ment. This interest led to broadly based collaborations including the HIV
Surrogate Marker Collaborative Group. This group was a somewhat in-
formal collaboration primarily involving statisticians and clinicians from
pharmaceutical companies and government-funded cooperative clinical tri-
als groups. As well as undertaking a formal meta-analysis of clinical trials
to evaluate treatment-mediated changes in HIV-1 RNA and CD4 cell count
as surrogate endpoints, it also provided a forum for the development and
discussion of other relevant research and for interactions on the surrogacy
issue with regulatory agencies. Much of the work presented in this chapter
benefited from this collaboration and so this chapter is in many respects a
tribute to its success.

17.2 Framework for Evaluating Surrogacy

The framework for evaluating surrogacy was largely based on issues and
a meta-analysis approach discussed by Hughes, DeGruttola, and Welles
(1995), and built upon Temple’s definition (1995): “A surrogate endpoint
of a clinical trial is a laboratory measurement or physical sign used as a
substitute for a clinically meaningful endpoint that measures directly how
a patient feels, functions, or survives. Changes induced by a therapy on
a surrogate endpoint are expected to reflect changes in a clinically mean-
ingful endpoint.” The framework can be defined in terms of the following
hierarchy with three levels:

• Evaluate whether HIV-1 RNA and CD4 cell count are separately and
jointly predictors of HIV-related disease progression in the absence
of treatment.

• Evaluate whether changes in HIV-1 RNA and CD4 cell count fol-
lowing initiation of anti-HIV treatment initiation are separately and
jointly predictors of HIV-related disease progression.

• Evaluate whether differences between randomized treatments in
changes in HIV-1 RNA and CD4 cell count following initiation of
anti-HIV treatment predict differences between the same randomized
treatments in HIV-related disease progression.

The first two levels of the hierarchy concern whether marker levels and
treatment-mediated changes are prognostic markers and should be seen as
necessary but not sufficient conditions for establishing the markers as po-
tential surrogate endpoints. In essence, the first requirement reflects the
first condition of Prentice (1989; see Section 5.2). The first two levels also
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relate broadly to the concept of individual-level surrogacy subsequently
proposed by Buyse and Molenberghs (1998; see Section 5.4) inasmuch this
concept concerns the prognostic value of markers in the presence of treat-
ment, while the third level relates to their concept of trial-level surrogacy
(see Section 7.2.1).

17.3 Defining the True Endpoint

Temple defined a surrogate endpoint of a clinical trial as a laboratory mea-
surement or physical sign used as a substitute for a clinically meaning-
ful endpoint that measures directly how a patient feels, functions or sur-
vives (Temple 1995). Thus, a key issue that needs to be considered in any
evaluation of a potential surrogate endpoint concerns the definition of the
clinically meaningful endpoint. In the requirements listed in the previous
section, this concerns the definition of “HIV-related disease progression.”
Arguably the most relevant and objectively defined endpoint of HIV-related
disease is death. This is particularly so given that HIV infection is most
prevalent in younger adults and so there is minimal risk of non-HIV-related
competing causes of death among HIV-infected subjects. However, except
in very late-stage HIV infection, HIV clinical trials tended to use a com-
posite endpoint of progression to the first AIDS-defining event or death,
whichever occurred first. The definition of AIDS typically used comprised
the set of events defined in 1987 by the U.S. Centers for Disease Control
and Prevention (CDC) for disease surveillance purposes (Centers for Dis-
ease Control 1987). In some ways, this endpoint was itself being used as
a surrogate for death allowing trials to be smaller and shorter in duration
than if death was used as the primary endpoint.

Although this set of events is reasonably well-defined, there are important
issues that need recognition and that could impact the evaluation of a
potential surrogate endpoint. First, the clinical significance of the events
included in the definition is highly varied. For example, Neaton et al. (1994)
ranked AIDS-defining events in terms of their prognostic value for death.
Some AIDS-defining events, for example herpes simplex infection and cryp-
tosporidiosis, showed no clear association with death, whereas other events,
for example lymphoma and progressive multifocal leukoencephalopathy,
showed very high relative risks (8 and 18, respectively). Second, different
clinical trials used different definitions as to what constituted an endpoint,
for example according to whether a subject had or had not experienced an
AIDS-defining event prior to randomization. Some trials considered any
event, whereas other trials only considered an event that was different
from any that a patient had previously experienced. Some trials allowed
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recurrences of certain events (typically those such as Pneumocytis carinii
pneumonia that could be treated), whereas other trials categorized events
as severe or less severe and, for patients who had previously experienced
an AIDS-defining event, only considered events as endpoints if a patient
advanced from a previous less severe event to a severe event or death, or
from a previous severe event to death. Third, as with most diagnoses, there
are gradations of evidence ranging from presumptive diagnoses based on
largely subjective evidence to reasonably definitive diagnoses based upon
a combination of evidence including, for example, the ability to culture a
causative organism. Related to this, it is notable that in practice patients
may not be worked up for a definitive diagnosis not only when the event
is considered less severe but also when it is considered more severe, for
example when a patient chooses to remove himself or herself from hospital
to hospice care. Fourth, over time, the availability and use of prophylaxes
and treatments for AIDS-defining events may change, affecting not only
the incidence of AIDS and death but also the relative importance of the
various AIDS events in the AIDS/death endpoint. Fifth, it is notable that
a subsequent definition of AIDS by the CDC actually incorporated a CD4
cell count below 200 cells/µl as an AIDS-defining event. Naturally, CD4
cell count will be a better surrogate for progression to AIDS if the defini-
tion of AIDS is dominated by CD4 cell count (because most AIDS-defining
clinical events occur at counts below 200 cells/µl). These points serve to
highlight the fact that evaluation of a potential surrogate endpoint needs
careful consideration not only of the definition of the potential surrogate
itself but also of the so-called “clinically meaningful endpoint.” Needless to
say, the quality of the surrogate may be somewhat dependent on the choice
of the clinically meaningful endpoint.

17.4 Defining the Potential Surrogate Endpoints

Careful definition of the potential surrogate endpoints is also important.
With laboratory measurements such as HIV-1 RNA and CD4 cell count,
considerations such as standardization of specimen type, specimen han-
dling and storage, the specific assay or technology used, and the quality
control programs in place across multiple laboratories might affect the lev-
els and precision of results (e.g., absolute values of HIV-1 RNA can differ
by two-fold or more between assays though the relative changes between
measurement times tend not to be different). Other factors may also be
important. For example, there is considerable diurnal variation in CD4
cell count so standardizing the timing of measurements particularly within
individual patients at successive visits can be important for reducing vari-
ability. Standardizing the timing of measurements across clinical trials is
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an important part of defining a potential surrogate endpoint.

17.5 Prognostic Value of HIV-1 RNA and CD4
Cell Count

Evaluating the prognostic value of a potential surrogate endpoint may not
be straightforward if the technique for measuring the surrogate, as with the
assay for measuring HIV-1 RNA levels, becomes available after treatments
for delaying disease progression are available. In the HIV setting, it was
possible to go back to observational studies that were initiated in the 1980s
and measure levels in stored serum or plasma specimens. However, it is
interesting to note that the measurement of CD4 cell counts needs to be
done rapidly after obtaining a blood specimen and so the same could not
have been done if it was CD4 cell count that was discovered as a potential
surrogate endpoint in the 1990s. The association between depletion of CD4
cells and the development of AIDS was actually identified very soon after
AIDS was originally identified in the early 1980s, and hence CD4 cell counts
were measured in real time in these observational studies.

The pivotal study that established the prognostic value of HIV-1 RNA lev-
els used data from the U.S. Multicenter AIDS Cohort Study, a prospective
observational study (Mellors et al. 1996, Mellors et al. 1997). This study
included 1604 homosexual men who were enrolled in the mid-1980s, and
had a study visit at which they were free of AIDS, had a CD4 cell count and
had a stored plasma specimen available for measurement of HIV-1 RNA.
Table 17.1 shows a recent summary of results from this study showing the
joint prognostic value of both HIV-1 RNA and CD4 cell count (DHHS
Panel on Clinical Practices for Treatment of HIV Infection, 2004). The
risk of progression to AIDS/death clearly increases with HIV-1 RNA level
within each of the three categories of CD4 cell count shown. There is also a
clear trend of increasing risk of progression with increasing CD4 cell count
within each category of HIV-1 RNA level. For both markers, the trends
are evident when considering risk over both the shorter-term (over 3 years)
and the longer-term (over 9 years). Formal statistical analysis showed that
both markers were jointly predictive.

Current recommendations about when to initiate anti-HIV treatment are
largely based upon balancing the risks of progression to AIDS or death
summarized in Table 17.1 and the potential benefits of treatment (DHHS
Panel on Clinical Practices for Treatment of HIV Infection 2004). These rec-
ommendations suggest initiation of treatment for all HIV-infected subjects
with symptomatic disease (AIDS or other severe symptoms) or asymp-
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TABLE 17.1. Risk for progression to AIDS/death in the multicenter AIDS Cohort
Study by baseline CD4 cell count and HIV-1 RNA.

HIV-1 RNA (copies/ml) Percentage progressing
n 3 years 6 years 9 years

CD4 ≤ 200 cells/µl

≤500 0 - - -
501 − 3, 000 3 - - -
3, 001 − 10, 000 7 14.3 28.6 64.3
10, 001 − 30, 000 20 50.0 75.0 90.0
>30,000 70 85.5 97.9 100.0

CD4 201 − 350 cells/µl

≤500 3 - - -
501 − 3, 000 27 0 20.0 32.2
3, 001 − 10, 000 44 6.9 44.4 66.2
10, 001 − 30, 000 53 36.4 72.2 84.5
>30,000 104 64.4 89.3 92.9

CD4 > 350 cells/µl

≤500 119 1.7 5.5 12.7
501 − 3, 000 227 2.2 16.4 30.0
3, 001 − 10, 000 342 6.8 30.1 53.5
10, 001 − 30, 000 323 14.8 51.2 73.5
>30,000 262 39.6 71.8 85.0

NOTE: No estimates were available in categories with very small numbers of sub-

jects. Source: DHSS Panel on Clinical Practices for Treatment of HIV Infection

(2004).

tomatic subjects with a CD4 cell count of less than 200 cells/µl, with a
recommendation to offer treatment when CD4 cell counts are between 200
and 350 cells/µl. However, elevated HIV-1 RNA levels only play a role in
the guidelines when CD4 cell counts are greater than 350 cells/µl. Thus
the treatment guidelines for initiation of therapy place a greater emphasis
on CD4 cell counts than HIV-1 RNA levels, reflecting the fact that CD4
cell count is the more important predictor of imminent risk of progression
to AIDS.

17.6 Prognostic Value of Changes in HIV-1 RNA
and CD4 Cell Count

Establishing that the improvements in a marker that occur after initiating
treatment are predictive of improvements in the true endpoint should be
considered an important necessary condition for a good surrogate endpoint,
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though it is not sufficient. To understand the latter caveat, it is possible
that a treatment would have the intended improvement in marker levels and
hence also on the clinical endpoint via the intended mechanism of action yet
have unintended adverse effects on the true endpoint via other mechanisms
of action that would reduce or outweigh the intended benefit. Alternatively,
it is possible that a treatment could alter marker levels with no or minimal
effect on the clinical endpoint. In the HIV setting, the latter concern is
sometimes voiced for immune based therapies. As an example, IL2 has been
shown to improve substantially CD4 cell counts in HIV-infected patients,
but it is still a matter of debate whether this has any effect on progression
to AIDS or death. Biologically, this might reflect increases in CD4 cells
that have no or limited functionality against the virus. This is currently
being evaluated in two major large randomized trials, which are powered
to using clinical events as the primary endpoints.

It is also possible that an association would be observed because it is the
patients with a better prognosis in terms of the clinical endpoint who show
the greater improvements in marker levels. This latter point was illustrated
for short-term changes in CD4 cell count among HIV-infected patients re-
ceiving placebo: those showing a defined CD4 cell count response had a
lower rate of progression to AIDS/death than those who did not show a
CD4 cell count response (Hughes et al. 1995).

Two meta-analyses evaluated the prognostic value of changes in HIV-1
RNA and CD4 cell count following initiation of a new anti-HIV treatment.
The treatments ranged from NRTI monotherapy through to early HAART
regimens. The first meta-analysis was a pooled analysis of data from seven
trials undertaken by the AIDS Clinical Trials Group including 1000 subjects
who had measurements of change in HIV-1 RNA and CD4 cell count at
24 weeks after starting the new treatment and had no evidence of clinical
disease progression during those 24 weeks (Marschner et al. 1998). Of these
1000 patients, 120 subsequently experienced clinical progression after week
24.

The major focus of this meta-analysis was on evaluating the prognostic
value of changes in HIV-1 RNA following treatment initiation. The study
established that each 10-fold reduction in HIV-1 RNA (i.e., each 1 log10

copies/ml reduction) from baseline to week 24 was associated with a 72%
reduction in the risk of progression after adjusting for baseline HIV-1 RNA
level. Furthermore, the association between the adjusted log relative risk of
progression and the change in log10 HIV-1 RNA level was strikingly linear.
The latter result suggested proportionately larger reductions in risk asso-
ciated with greater treatment-mediated antiviral effects. This association
was also shown to be very similar across categories of baseline HIV-1 RNA
level.
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Marschner et al. (1998) also evaluated the joint prognostic value of changes
in HIV-1 RNA and CD4 cell count. This was complicated by a significant
interaction between changes in the two markers. This interaction was char-
acterized in different ways but the general conclusion was that patients
who showed an improvement in either or both markers had similar risks of
progression during up to about 3 years of follow-up, and these patients had
better outcomes than patients who showed no change or a deterioration in
both markers.

The second meta-analysis was undertaken by the HIV Surrogate Marker
Collaborative Group (HSMCG 2000). It included data from 13,045 patients
from all 16 randomized trials that compared NRTI-based therapies and
which, by September 1997, (a) had completed follow-up of patients with at
least one subject progressing to AIDS or death, and (b) had HIV-1 RNA
data measured in some or all patients at baseline and at 24 weeks of follow-
up. CD4 cell counts were measured in all patients in all of the trials. A total
of 3369 subjects (26%) developed AIDS or died, and 3146 (93%) subjects
had measurements of both markers at week 24. The fact that a marker
may only be measured in a subset of patients may be a common issue
when marker measurement involves new and hence often costly technology.
In the description of results that follows, wherever possible, all available
data were incorporated in analyses. Obviously, there may be concern about
potential selection bias when only subsets of patients are evaluated for an
outcome. However, in general, the selection of subjects was determined by
factors that might not be expected to be related to outcome (including
not being related to the treatment to which a patient was randomized)
or involved designs such as a case-cohort design where analysis could take
account of the design. However, similar results were obtained when the
analysis was restricted to subjects with data on both markers and on the
clinical endpoint though with the expected loss of precision.

Decreases in HIV-1 RNA and increases in CD4 count between baseline and
week 24 were highly significant predictors of reduced risk of progression to
AIDS or death in multivariate analysis that adjusted for baseline marker
levels (which were also highly significant). As in the pooled analysis of
Marschner et al. (1998), approximately linear associations were identified
between the log relative risk of progression to AIDS or death and changes
in log10 HIV-1 RNA and log10 CD4 cell count (Figure 17.1). However, in
contrast to the study of Marschner et al. (1998), no interaction between
changes in HIV-1 RNA and CD4 cell count was found: patients showing
improvements from baseline in both markers experienced a lower rate of
progression than patients who showed an improvement in one marker but
not the other, while patients who showed deteriorations in both markers
had the worst outcome (Figure 17.2).
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FIGURE 17.1. Associations between the reduction in hazard of progression to
AIDS or death and change in log10 HIV-1 RNA and relative change in CD4 cell
count at 24 weeks after starting study treatment. [Source: HIV Surrogate Marker
Collaborative Group (2000)].

For a marker to be a good surrogate endpoint, a defined change in the
marker following the initiation of treatment should be associated with sim-
ilar (ideally the same) changes in the clinical endpoint irrespective of the
treatment being used or the population being treated. This would then
mean that the interpretation of a particular magnitude of change in a
marker for patient/treatment management decision-making would be sim-
ilar for all treatments and in all patient populations. Conversely, if the
associations are not similar across treatments, then this would mean the
marker would be less appealing as a surrogate endpoint for evaluating fu-
ture treatments because there would be greater uncertainty about the likely
associated effect on the clinical endpoint. This issue was evaluated in the
HSMCG meta-analysis by quantifying the reduction in risk of progression
to AIDS/death associated with changes in each of HIV-1 RNA and CD4
cell count for each treatment arm in the trials included in the meta-analysis
(HMSCG 2000). Figure 17.3 summarizes the results including pooled es-
timates from standard fixed- and random-effects models. Note that the
smaller confidence intervals for associations with CD4 cell count than with
HIV-1 RNA primarily reflect the fact that all subjects had CD4 cell count
measurements, whereas typically only subgroups of subjects had HIV-1
RNA measurements.

A key finding is that almost all of the associations reflect concordance
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FIGURE 17.2. Association between the risk of progression to AIDS or death by
whether a patient showed improvement in both, one of, or neither HIV-1 RNA and
CD4 cell count at 24 weeks after starting study treatment. [Source: HIV Surrogate
Marker Collaborative Group (2000)].

between beneficial effects on each of the markers and beneficial effects on
risk of progression to AIDS/death; the two or three associations in each
plot to the right of the vertical line (indicating discordance) are typically
estimated with considerable imprecision and so are not incompatible with
a true concordant association. In addition, with the caveat that tests of
heterogeneity often lack power, there was no significant evidence that the
associations varied between study populations and treatments. In addition,
the average associations were very similar from both fixed- and random-
effects models. Specifically, from the fixed effects model, on average, each
1 log10 copies/ml reduction in HIV-1 RNA was associated with a 49%
reduction in risk of progression to AIDS/death, and each 33% increase in
CD4 cell count was associated with a 21% reduction in risk of progression.

A third study, reported by employees of the U.S. Food and Drug Admin-
istration, focused just on the prognostic value of changes in HIV-1 RNA
for progression to AIDS/death (Murray et al. 1999). This study presented
results from selected groups of studies undertaken by different pharmaceu-
tical companies or by the AIDS Clinical Trials Group. A potential limi-
tation is that the analysis methods varied across the different groups of
studies. However, the general conclusions from the results were similar to
those obtained by Marschner et al. (1998) and the HSMCG (2000). A key
additional result showed an association of lower risk of disease progression
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FIGURE 17.3. Reduction in risk of progression to AIDS/death associated with (a)
each 1 log10 copies/ml decrease in HIV-1 RNA and (b) each 33% increase in CD4
cell count at 24 weeks after starting study treatment for each treatment arm in the
trials included in the meta-analysis of the HIV Surrogate Marker Collaborative
Group.

with increasing duration of virologic response (defined as the duration of
suppression of HIV-1 RNA by greater than 0.5 log10 copies/ml below pre-
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treatment level) during the first 24 weeks of treatment. Thus sustained
virologic suppression was important for improved prognosis.

Biologically, it might be expected that short-term changes in HIV-1 RNA,
and hence reductions in the amount of circulating virus in an infected per-
son, might be associated with longer-term improvements in CD4 cell count
as one measure of improved immunological status. Such an association has
been found. For example, results from one clinical trial showed that each
additional reduction of 1 log10 copies/ml in HIV-1 RNA level from baseline
to week 8 after initiating a new antiretroviral treatment was significantly
associated with an additional increase of 30 cells/µl in mean CD4 cell count
from baseline to week 48 (Hughes et al. 1997). This was after adjustment
for baseline HIV-1 RNA and CD4 cell count as well as the change in CD4
count from baseline to week 8. Although this observation does not directly
concern the surrogacy question, it does provide supporting information for
an underlying mechanistic model by which treatment-mediated suppression
of HIV-1 RNA is associated with subsequent improvements in immunologi-
cal status and hence also reductions in risk of progression to AIDS or death.

17.7 Association of Differences Between
Randomized Treatments in Their Effects on
Markers and Progression to AIDS or

Death

17.7.1 Regression Approach

As part of the meta-analysis conducted by the HSMCG, the regression
approach of Daniels and Hughes (1997) was used to evaluate the strength
of the association of differences between a pair of randomized treatments
in the rate of progression to AIDS/death and the corresponding differences
between the treatments in the marker changes. The underlying model used
is conceptually the same as that subsequently used by Buyse et al. (2000a;
see also Chapter 7) to describe trial-level surrogacy. Consider trials i =
1, · · · , N which, for simplicity, each involve a randomized comparison of
two treatments. Let θi denote the true treatment difference on the clinical
endpoint (e.g., the log hazard ratio for progression to AIDS/death) and γi

denote the true difference on the marker change (e.g., change in log10 HIV-
1 RNA or log10 CD4 cell count from baseline to week 24). From each trial,
estimates θ̂i and γ̂i are obtained. It is assumed that the size of each study is
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sufficiently large such that, within the ith trial, the following model holds:(
θ̂i

γ̂i

)
∼ N

[(
θi

γi

)
,

(
σ2

i ρiσiδi

ρiσiδi δ2
i

)]
, (17.1)

where σ2
i and δ2

i are variances that reflect sampling variation, and ρi is the
correlation between the estimated treatment differences conditional upon
the true differences. This model is easily extended to handle the correlation
between estimators when there are multiple treatment arms in any partic-
ular trial (see Daniels and Hughes (1997) for details). This was the case in
the HSMCG meta-analysis: five, nine, and two trials randomized patients
among two, three, and four treatments, respectively.

A simple linear model is assumed to describe the association between θi

and γi across the N clinical trials:

θi|γi ∼ N(α + βγi, τ
2). (17.2)

In this model, β measures the association between the treatment differ-
ences on the marker and on the clinical endpoint so that β = 0 corresponds
to the situation in which the marker is not in fact a surrogate endpoint
since knowledge about the difference in marker values between randomized
treatments, γi, is not predictive of the corresponding difference in the clin-
ical endpoint, θi. In addition, if β �= 0, then τ2 = 0 would imply that θi

could be predicted perfectly given γi. For imperfect surrogate endpoints,
the closer τ2 is to zero, the better the surrogate. It is also useful to have
α = 0. Although this is not strictly necessary in order that the difference
in marker levels might provide a good prediction of the corresponding dif-
ference in the clinical endpoint, it seems desirable that a zero difference
between randomized treatments for the marker should be associated with
a zero difference in the clinical endpoint. This would also then be consistent
with the spirit of Prentice’s requirement that a test of the null hypothesis
of no difference between treatments in the surrogate endpoint should be a
valid test of the null hypothesis of no difference between treatments in the
clinical endpoint.

Daniels and Hughes (1997) proposed an empirical Bayes approach to model
fitting by proceeding as if σ2

i , δ2
i and ρi are known and replacing them by

their estimates. To avoid the need to specify a joint model within a trial
for the marker and the clinical endpoint, they proposed estimating ρi using
a bootstrap technique. This requires data from each individual patient to
be available for the meta-analysis, as was the case for the HSMCG meta-
analysis. This bootstrap approach has the advantage that the evaluation of
trial-level surrogacy is not affected by any misspecification in a model for
the prognostic value of the marker for the clinical endpoint at the within-
trial patient level but has the disadvantage that some loss of efficiency
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may arise, though this is likely to be minimal in many practical situations
(Gail et al. 2000). However, use of the estimates for the variances and
correlation rather than the true values does mean that the precision of any
trial-level association may be over-estimated particularly if the number of
trials included in the meta-analysis is small. Gail et al. (2000) suggested
a bootstrap approach to help overcome this (see Chapter 9). Alternatively
a joint model for time-to-event data and marker data might be used (see
Chapters 11, 12, and 13).

For the parameters α and β, Daniels and Hughes (1997) proposed us-
ing mutually independent “non-informative” prior distributions, specifi-
cally normal distributions with very large variances. If the parameters γi,
i = 1, · · · , N , are considered as fixed effects, then similar mutually in-
dependent “non-informative” prior distributions could be used for these
nuisance parameters. Alternatively, they could be considered as random ef-
fects arising from, for example, a normal distribution N(µ, κ2) with a “non-
informative” normal prior distribution placed upon the mean, µ. This re-
quires careful thought as there may not be a strong rationale for the choice
of distribution for such random effects. For example, a normal distribu-
tion may be more plausible if all trials are comparing active treatments
from the same drug class. However, if some trials compare active drugs to
placebo while other trials compare active drugs from the same class, then
a bimodal distribution for the random effects might be more appropriate.
Empirical justification of the choice of distribution may be difficult if the
meta-analysis includes only a limited number of trials.

The choice of prior distribution, π(τ2), for the variance, τ2, is less straight-
forward. Daniels and Hughes (1997) proposed three possibilities:

• DuMouchel prior: π(τ2) = σc

(σc+τ)2
1
2τ where σ2

c is the harmonic mean
of the within-study variances of the treatment difference on the clin-
ical outcome, σ2

i (DuMouchel 1994).

• Shrinkage prior: π(τ2) = σ2
c

(σ2
c+τ2)2 (Strawderman 1971).

• Flat prior: π(τ2) = dτ2 (Berger 1995).

The DuMouchel and shrinkage priors permit the possibility that τ2 = 0.
Provided that β �= 0, this would indicate that the marker was a perfect sur-
rogate endpoint. The flat prior does not allow for this possibility. In general,
the DuMouchel prior tends to give a posterior distribution for τ2 which is
closer to zero compared with that for the flat prior, and the shrinkage prior
is intermediate. As an alternative, a gamma prior distribution with very
large variance might be used for the precision, τ−2 (Spiegelhalter et al.
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1996). As noted above, the parameters γi, i = 1, · · · , N , might also be con-
sidered as normally distributed random effects. In this case, similar types
of prior distributions might be used for the variance, κ2, or precision, κ−2

of that distribution.

In practice, because the number of trials in a meta-analysis might be quite
small, the difficulty in defining “non-informative” prior distributions for
variance parameters means that the analysis should be repeated for a range
of reasonable prior distributions and the sensitivity of the conclusions to
the choice of prior evaluated. In the following presentation of results from
the HSMCG meta-analysis, the γi’s were considered to be random effects
from a N(µ, κ2) distribution. This was confirmed to be reasonable by visual
inspection of a normal plot based on the fact that γ̂i ∼ N(µ, σ2

i + κ2) and
hence that γ̂i−µ√

(σ2
i
+κ2)

∼ N(0, 1). The prior distributions for α, β, and µ

were independent N(0, δ2) distributions with δ2 taken to be very large,
specifically 108, and the prior distributions for the precisions, τ−2 and
κ−2, were taken as independent Γ(0.001, 0.001). Although the choice of
reasonable alternative prior distributions for the variances does affect the
numerical values of the results presented, the conclusions that are drawn
were not significantly impacted.

17.7.2 Results from the Meta-analysis

The first analysis that was conducted considered as potential surrogate
endpoints the change from baseline to week 24 in either log10 HIV-1 RNA
or log10 CD4 cell count. The clinical endpoint was the hazard of progres-
sion to the first AIDS-defining event or to death, whichever occurred first,
within two years of randomization. The choices of week 24 and two years,
respectively, were made on the basis that these time periods were typical
of practice at the time for marker-based endpoints (in phase II trials) and
clinical endpoints (in phase III trials).

Figure 17.4 summarizes the data for the meta-analysis. Panels A and B
show the associations between differences in randomized comparisons in
the rate of progression to AIDS/death (expressed as a hazard ratio on a
log scale) versus the corresponding differences in the change from baseline
to week 24 in log10 HIV-1 RNA and log10 CD4 cell count, respectively.
Each circle in each plot represents an individual randomized comparison
with the size of the circles being in proportion to the precision in estimating
the log hazard of progression to AIDS/death so that larger circles indicate
comparisons with greater precision. It is clear that most comparisons show,
qualitatively, concordance between results for each marker and results for
progression to AIDS/death. Specifically, for differences in change in log10
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FIGURE 17.4. Association between log hazard ratio for progression to AIDS or
death for randomized comparisons of treatments and the corresponding differences
in (a) change in log10 HIV-1 RNA or (b) change in log10 CD4 cell count at 24
weeks after starting study treatment, in the meta-analysis of the HIV Surrogate
Marker Collaborative Group. Each circle represents a randomized comparison,
and the size of the circle is in proportion to the precision in estimating the log
hazard ratio.

HIV-1 RNA, most points are in the lower left quadrant, indicating that
within these randomized comparisons the treatment that showed greater
suppression of HIV-1 RNA also showed greater reduction in the hazard
of progression to AIDS/death. There was only one comparison in the up-
per right quadrant reflecting qualitative concordance but with the control
treatment superior to the experimental treatment for both outcome mea-
sures. This reflects the reasonable success in HIV research in developing
new treatments that are generally better than previous options.

However, five comparisons did show qualitative discordance between the



312 Michael D. Hughes

estimated differences in effect for change in HIV-1 RNA and risk progres-
sion to AIDS/death. For four of these five comparisons, the discordance
could reflect sampling variation because there was no significant difference
between randomized treatments for either outcome measure. For the fifth
comparison (a point in the lower right quadrant), however, the discordance
reflects a situation in which there was a small (non-significant) difference
in change in HIV-1 RNA between randomized treatments with the esti-
mate favoring the control treatment, but a significant difference in risk
of progression to AIDS/death favoring the test treatment. Hence, use of
change in HIV-1 RNA in this trial would have led to a potentially incorrect
conclusion versus comparing treatments based upon the clinical endpoint.

For changes in CD4 cell count, recognizing that increases in CD4 cell count
are beneficial and hence qualitative concordance is reflected by points be-
ing in the upper left or lower right quadrants, there was a slightly better
predominance for qualitative concordance. However, as for change in HIV-
1 RNA, there was one comparison that showed discordance whereby there
was a non-significant difference favoring the control treatment for change
in CD4 cell count but a significant difference favoring the test treatment
for risk of progression to AIDS/death. The notable discordant results for
change in HIV-1 RNA and change in CD4 cell count were not, however, for
the same comparison.

Focusing on the trial-level component of the regression model, θi|γi ∼
N(α + βγi, τ

2), for changes in HIV-1 RNA, the median (2.5th, 97.5th per-
centile) of the posterior distribution for α and β were −0.12 (−0.34, 0.08)
and 0.28 (−0.16, 0.70). Clearly, there is not strong statistical evidence for a
non-zero trend. Furthermore, the median of the posterior distribution for τ
was 0.16 compared with a value of 0.18 for the model with no marker effects
(i.e., setting β = 0). In contrast, for changes in CD4 cell count, the medians
of the posterior distributions for α and β were 0.04 (−0.16, 0.29) and −4.1
(−7.3, −1.6), showing significant evidence of a trend. The closeness of the
median of the posterior distribution for α to zero suggests that a lack of
a difference in a randomized comparison in mean change in log10 CD4 cell
count was associated with a lack of a difference in the risk of progression
to AIDS/death. Also, the median of the posterior distribution for τ was
0.08, which, when compared with the value of 0.18 obtained from the model
with no marker effects, suggests that much more of the heterogeneity in log
hazard ratios for progression to AIDS/death is explained by differences in
mean change in log10 CD4 cell count than by differences in mean change
in log10 HIV-1 RNA. Referring back to Figure 17.4, these results are con-
sistent with the visual impression of a stronger trend in the association for
changes in CD4 cell count than for changes in HIV-1 RNA. Furthermore,
although there was only one notable qualitatively discordant comparison
in both of panels A and B in Figure 17.4, the smaller median estimate for
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τ for differences in change in CD4 cell count versus differences in change
in HIV-1 RNA is compatible with the impression of stronger quantitative
concordance in panel B than in panel A.

Biologically, it might be expected that a measure of sustained suppression
of HIV-1 RNA might be a better surrogate endpoint than simply evaluating
the change in HIV-1 RNA between baseline and some subsequent time. This
is because sustained suppression might allow for greater improvement in the
immune system and hence lower risk of progression to AIDS/death. Trials
in the meta-analysis typically also measured the markers at 8 weeks after
randomization. Hence it is possible to evaluate whether incorporating the
8-week measurement into the definition of a potential surrogate endpoint
provides an improvement in predicting differences in the clinical endpoint
versus just measuring the change from baseline to week 24. One simple
metric for the two markers that was widely considered in trials was the so-
called “area under the curve minus baseline” (AUCMB). In the context of
having the baseline, week 8 and week 24 measurements, this is the area un-
der the curve over time obtained by joining the baseline, week 8, and week
24 measurements and then subtracting off the baseline level. Dividing this
area by the time between baseline and week 24 then gives a time-averaged
AUCMB for log10 HIV-1 RNA over the first 24 weeks after starting study
treatment. Using this time-averaged AUCMB for log10 HIV-1 RNA in the
regression model instead of the simple changes in log10 HIV-1 RNA did
provide a modest improvement in the model. Specifically, the median value
of the posterior distribution for β was 0.28 and the 95% probability in-
terval given by the (2.5th, 97.5th) percentiles was (−0.16, 0.70) and so
almost excluded zero suggesting stronger statistical evidence for a trend.
However, there was very little difference in heterogeneity in the log haz-
ard ratio across trials explained by the time-averaged AUCMB versus the
simple change. In contrast, there was no evidence that differences between
treatments in the time-averaged AUCMB for log10 CD4 count was a better
predictor for differences in the log hazard of progression to AIDS/death.

The regression-based approach can also be extended to a multivariate (mul-
tiple regression) model to evaluate whether differences in each of the two
markers are jointly predictive of differences between randomized treatments
in the log hazard of progression to AIDS/death. Table 17.2 shows the results
from a univariate (simple regression) model that includes the difference in
change in time-averaged AUCMB for log10 HIV-1 RNA from baseline to
week 24 (model 1), as well as from a univariate model that includes the
difference in change in log10 CD4 cell count (model 2), and from a mul-
tivariate model that includes differences in both time-averaged AUCMB
for HIV-1 RNA and change in CD4 count (model 3) as covariates. The
most notable aspect of the multivariate model is that the median of the
posterior distribution for the parameter βRNA is very close to zero (par-
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TABLE 17.2. Univariate and multivariate models for predicting the log hazard
Ratio for progression to AIDS/death.

Model 1 Model 2 Model 3
Par. Med. 95% PI Med. 95% PI Med. 95% PI

α −0.12 (−0.34, 0.08) 0.04 (−0.16, 0.29) 0.04 (−0.20, 0.31)
βRNA 0.28 (−0.16, 0.70) — 0.07 (−0.49, 0.59)
βCD4 — −4.2 (−7.3, −1.6) −3.9 (−7.7, −0.5)
τ 0.16 (0.04, 0.31) 0.08 (0.02, 0.23) 0.08 (0.02, 0.25)

NOTE: Values presented are median (Med.) and 95% probability interval (PI) =

(2.5th, 97.5th percentiles) of the posterior distribution.

Model 1: Difference in HIV-1 RNA AUCMB.

Model 2: Difference in change in CD4 count.

Model 3: Difference in HIV-1 RNA AUCMB & change in CD4 count.

ticularly when compared to its value in the univariate model). In contrast,
the 95% probability interval for βCD4 excludes zero, confirming a strong
association between differences in change in log10 CD4 count even after ad-
justment for differences in log10 HIV-1 RNA. Thus, the evidence from this
meta-analysis favors change in CD4 count as a surrogate endpoint for pro-
gression to AIDS/death and suggests that differences in change in HIV-1
RNA provide little additional predictive value.

Biologically, the results of the multivariate model seem quite reasonable in
that CD4 count is a measure of immunological status that is more proxi-
mal to AIDS/death than HIV-1 RNA in the sense that the clinical events
that define AIDS are events that are associated with more severe immuno-
suppression. This general conclusion persisted in sensitivity analyses that
dropped in turn either each trial or each group of randomized comparisons
that included a specific treatment to evaluate whether any particular trial
or treatment was overly influential in the modeling. In addition, this type
of sensitivity analysis allows a comparison of what was observed for a par-
ticular dropped trial or group of comparisons with what is predicted based
on a model with that trial or group of comparisons omitted (see Daniels
and Hughes (1997) for details). None of these comparisons revealed any
differences between the observed and predicted outcomes beyond that ex-
plainable by random variation.

The regression models can also be used to provide information about the
magnitude of difference between randomized treatments in a marker that
is necessary before there is reasonable evidence that there would be an as-
sociated difference in progression to AIDS/death as measured by the log
hazard ratio of progression. Specifically, given a future study j with an
observed marker difference γ̂j with variance σ̂2

j , then using the past expe-
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rience encapsulated in the regression model, the posterior distribution for
the log hazard ratio for progression θj |γ̂j , σ̂

2
j , α, β, τ2 can be obtained (see

Daniels and Hughes (1997) for details). To illustrate the basic idea here,
consider the situation in which the true difference, γj , is known. Table 17.3
shows the predictions for various values of γj when expressed as relative
differences between treatments in CD4 cell count. The wide probability in-
tervals show that there is considerable uncertainty in the predictions even
though these are based on knowing the true relative difference in change
in CD4 cell count. This reflects the variability about the regression line
captured by the non-zero τ and captures the uncertainty inherent in using
change in CD4 cell count as a surrogate endpoint. In a randomized compar-
ison, the test treatment would need, in truth, to increase CD4 cell count
between baseline and 24 weeks by about 15% more on average than the
control treatment in order for the probability interval to exclude a hazard
ratio of one and hence provide reasonable certainty of a corresponding re-
duction in risk of progression to AIDS/death for the test treatment versus
the control treatment. This relative difference corresponds to an absolute
increase of about 33 cells/µl more for a subject with the median CD4 cell
count in the dataset of 220 cells/µl, and agrees well with an earlier meta-
analysis which evaluated change in CD4 cell count as a surrogate endpoint
(Hughes et al. 1998). Even then, knowing the true relative effect on CD4
cell count leaves uncertainty about whether the test treatment might have
a very minimal effect on progression to AIDS/death (i.e., a hazard ratio
close to 1.0) or a quite substantial effect (i.e., a hazard ratio of about 0.67
corresponding to a one-third reduction in the risk of progression). These
probability intervals are, however, conservative because they are based on
a meta-analysis model that was fitted using estimated variances (e.g., σ̂2

i )
as if they were the true variances. Furthermore, the probability intervals
would also be wider in the real situation in which the difference in change
in CD4 cell count is estimated within a trial, versus using the true value
as in Table 17.3.

A second meta-analysis of HIV randomized clinical trials further evaluated
CD4 count and HIV-1 RNA level as potential surrogate endpoints (Hill et
al. 1998). This meta-analysis included some of the same trials as in the
meta-analysis described above but also included clinical trials that evalu-
ated combination antiretroviral regimens that included two newer classes of
drugs, non-nucleoside reverse transcriptase inhibitors (NNRTIs) and pro-
tease inhibitors (PIs). This meta-analysis was restricted to trials in which at
least 10 patients per treatment arm showed progression to AIDS or death,
over each trial’s duration of follow-up, and for which data were collected on
both markers. This meta-analysis focused on marker changes from baseline
to 16 weeks.

One notable difference between this meta-analysis and the one conducted
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TABLE 17.3. Predicted hazard ratios for progression to AIDS/death for given
true relative differences in CD4 count.

% increase in CD4 count: Predicted hazard ratio for AIDS/death
Test vs. control treatment Median (95% PI)

0% 1.04 (0.78, 1.42)
10% 0.88 (0.69, 1.12)
20% 0.75 (0.60, 0.93)
30% 0.65 (0.49, 0.83)
40% 0.57 (0.41, 0.78)
50% 0.51 (0.34, 0.72)

NOTE: Values presented are median and 95% probability interval (PI) =

(2.5th, 97.5th percentiles) of the posterior distribution for the hazard ratio.

by the HSMCG is that this one used summary data from publications or
other public sources rather than individual patient data. In part, this re-
flected a desire to address the surrogacy question quickly in the face of
mounting difficulties in conducting trials with clinical endpoints and diffi-
culties in accessing individual patient data from all trials owing to issues
of confidentiality. This necessitates using some approximations to provide
standardized estimates of differences in treatment effect on clinical progres-
sion and each of the markers which might weaken any association.

The meta-analysis used the regression-based approach proposed by Daniels
and Hughes (1997). However, model fitting was undertaken using standard
methods for weighted linear regression. Each randomized comparison in the
meta-analysis was weighted by the reciprocal of the sum of the variances
of the estimated differences in treatment effect on HIV-1 RNA, CD4 cell
count and the clinical endpoint. Conceptually, this gives greater weight to
randomized comparisons that provide more precise estimates for treatment
effects on all three outcomes. However, as far as we know, the validity
of this system of weighting has not been evaluated and hence whether it
appropriately deals with the two statistical issues in the modeling of (a)
different variances for the outcome variable (i.e., for the log hazard ratio
for progression to AIDS/death) for which weighted analysis is an accepted
methodology and (b) imprecision in the covariates (the difference in mean
changes in each of the markers) is unknown.

One other methodological issue is worth commenting on. This concerns the
fact that the assays for measuring HIV-1 RNA may not be able to detect
RNA at low levels, and they also have defined ranges of reliable quantifi-
cation. One trial in the meta-analysis had a high proportion of subjects
with HIV-1 RNA levels below the lower limit of quantification, reflecting
the potency of newer drugs and combination therapies. Although statistical
methods for censored data can be used to estimate treatment effects taking
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FIGURE 17.5. Association between the hazard ratio for progression to
AIDS/death and the difference in mean change in HIV-1 RNA or CD4 cell count
from baseline to week 16 in the meta-analysis of Hill et al. (1998).

account of the range of quantification, when a large proportion are below
the lower limit (e.g., over one-half), it is difficult to validate assumptions
necessary to estimate mean changes. A change in the metric of measuring
a marker may circumvent the problem.

Figure 17.5 summarizes the associations between the hazard ratio for pro-
gression to AIDS/death and the difference in mean change in HIV-1 RNA
or CD4 count from baseline to week 16. The general impression about pos-
sible associations in this figure is similar to that seen in Figure 17.4 for
the meta-analysis of randomized comparisons only involving NRTIs. Note
though that differences in change in CD4 cell count were measured on an
absolute scale in this meta-analysis, whereas they were measured on a log
scale or, equivalently, as relative differences in the meta-analysis described
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earlier. However, using the weighted regression analysis, both associations,
and not just the association with the difference in change in CD4 count,
were statistically significant in this meta-analysis (Hill et al. 1998). This
might reflect greater power in this meta-analysis to detect associations be-
cause of the inclusion of trials of other drug classes and, particularly, a
larger number of subjects progressing to AIDS/death. The power may also
be increased by greater heterogeneity in the magnitudes of differences in
effect between pairs of randomized treatments. In this respect, it is no-
table that one randomized comparison is a clear outlying observation in
the association between the hazard ratio for clinical progression and differ-
ences in mean change in HIV-1 RNA. This comparison would obviously be
influential in regression analysis. It is interesting to note that this compar-
ison does not provide a clear outlying observation in the association with
difference in mean change in CD4 cell count—suggesting some disconnect
between the two markers. It is also possible that the significant association
for changes in HIV-1 RNA in this analysis might reflect use of changes to
week 16 rather than week 24, though Hill et al. (1998) state that similar
results were obtained when changes to week 24 were considered. Alterna-
tively, it is possible that there is a stronger association between effects on
clinical progression and HIV-1 RNA for drugs from the NNRTI and PI
classes than for drugs from the NRTI) class. This was not evaluated by Hill
et al. (1998), though the power to show differences according to drug class
is likely to be limited due to the relatively small number of trials involving
NNRTIs) (three trials) or PIs (four trials).

17.8 Discussion

The validation of potential surrogate endpoints for use in HIV clinical trials
highlights some of the practical problems that might be encountered as
well as the need to balance empirical evaluation with an understanding
of disease processes and mechanisms of action (and failure) of treatments.
From a quantitative perspective, the preceding summary might suggest
that change in CD4 cell count might be a more reliable surrogate endpoint
than some measure of change in HIV-1 RNA, though there is undoubtedly a
substantial body of evidence that treatment-mediated suppression of HIV-
1 RNA is associated with increases in CD4 cell count and reductions in risk
of progression to AIDS and death.

The FDA Guidance for Industry (2002) advocates use of HIV-1 RNA level
in plasma as the primary basis for assessing efficacy of new antiretrovi-
ral drugs for accelerated and traditional approval. Supportive analyses for
CD4 cell count and clinical endpoints are also required, particularly for
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traditional approval. The guidance accepts changes in HIV-1 RNA during
the first 24 weeks of treatment for accelerated approval but requires longer-
term effects (over 48 weeks) to be established for traditional approval. With
the advent of very potent antiretroviral treatments, the proportion of sub-
jects with HIV-1 RNA levels below the limit of quantification of an assay
is the preferred endpoint though quantitative changes (including changes
averaged over time along the lines of the time-averaged AUCMB) may
be acceptable in certain circumstances, for example when extensive prior
treatment may mean that few patients are suppressed below the limit of
quantification of the assay used.

The focus on HIV-1 RNA level as the primary basis for assessing efficacy
in this guidance document likely reflects a number of factors. First, for
an infectious disease, it is obviously attractive to focus on effects on the
specific pathogen causing the disease. A caveat here is that the level of
HIV-1 RNA in plasma is only one measure of a subject’s viral load and it
may be that viral load in other body compartments other than in plasma,
or other attributes of the virus such as its infectiousness or fitness, may
also be important. Second, treatment-mediated changes in HIV-1 RNA
are highly predictive of reduction in risk of progression to AIDS/death
as indicated in Figures 17.1 and 17.3. Furthermore, combinations of anti-
retroviral drugs produce very substantial reductions in HIV-1 RNA that,
if sustained, would indicate corresponding very substantial reductions in
risk of progression. Such reductions were seen in randomized trials that
compared, for example, PI-containing three-drug antiretroviral therapy to
two-drug NRTI therapy and in disease surveillance where dramatic declines
in HIV-related mortality have been seen since highly active combination
antiretroviral therapy has become available. In this respect, the availability
of very potent anti-HIV therapy is very important—it may be very diffi-
cult to identify a reasonable surrogate endpoint for diseases for which the
effects of therapy are very limited. Third, the fact that CD4 cell counts typ-
ically increase as HIV-1 RNA levels are reduced provides a mechanism for
understanding how reductions in HIV-1 RNA lead to reductions in risk of
progression to AIDS/death. Of note, these improvements in CD4 cell count
reflect improvements in immunological status as studies have shown that
prophylaxis against AIDS-defining opportunistic infections such as Pneu-
mocytis carinii pneumonia can be safely removed when increases in CD4
cell count have been achieved on antiretroviral therapy. Fourth, the meta-
analyses of randomized comparisons (Figures 17.4 and 17.5) do show that
there have been very few instances in which there has been a qualitative dis-
cordance between the difference between a pair of treatments in progression
to AIDS/death and the corresponding difference in change in HIV-1 RNA.
Fifth, there are practical issues concerning the conduct of randomized tri-
als using other endpoints. The substantial efficacy of antiretroviral drug
combinations means that clinical endpoints such as AIDS-defining events
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or deaths will be very rare and so randomized trials would need to be large
and long. Also, the assays to quantify HIV-1 RNA are very sensitive so
that treatment-mediated suppression (and subsequent loss of suppression
due, for example, to the development of viral resistance to a drug) can be
monitored within individual patients. Hence patients and physicians make
substantial use of changes in HIV-1 RNA in deciding when to change treat-
ments. These changes in treatment further make it almost impossible to
compare reliably the rates of progression to clinical endpoints between spe-
cific drug regimens, and also complicate the interpretation of comparisons
of other intermediate outcomes such as changes in CD4 cell count.

Despite these factors, the meta-analyses that evaluated the association
of differences between randomized treatments in risks of progression to
AIDS/death and the corresponding differences in change in HIV-1 RNA
(Figures 17.4 and 17.5) do show that there is a lot of variability in this
association. At a simple level, this means that a small (large) difference
between treatments in short-term change in HIV-1 RNA may not necessar-
ily indicate a small (large) difference in the rate of progression to clinical
events. Thus, a ranking of treatments based upon their magnitudes of ef-
fect on HIV-1 RNA may differ somewhat from a ranking based upon their
effects on progression to AIDS/death. However, both from a biological per-
spective and from data from observational studies, there is evidence that
sustained suppression of HIV-1 RNA is important for reducing risk of pro-
gression to AIDS/death. This captures the spirit of the result from the
HSMCG meta-analysis that the time-averaged AUCMB might be a better
surrogate than the simple change in HIV-1 RNA albeit over an extended
time frame. Furthermore, it reflects concerns that a relatively small num-
ber of mutations in the virus, sometimes just one, can appear rapidly after
treatment initiation and lead to substantial resistance to a drug and hence
loss of suppression of HIV-1 RNA. This is reflected in the FDA guidance
through the more stringent requirements for traditional versus accelerated
approval when using HIV-1 RNA level as the primary basis for evaluat-
ing antiretroviral drugs by requiring evaluation of longer-term virologic
outcome and consistency of evidence from supporting immunological and
clinical outcomes. Currently, applications for drug approvals often also need
extensive evaluation of the development of drug resistance further reflecting
understanding of how treatments fail.

Having made the step to approve antiretroviral drugs primarily on the basis
of effects on HIV-1 RNA, it is useful to reflect on some of the consequences
of this. Obviously, the major one is that the effects on clinical outcomes
that directly affect the quality and length of lives of HIV-infected people
of specific drugs or drug combinations are not likely to be well-understood.
A second important consequence is that it will not be known (short of a
major disaster) how well HIV-1 RNA performs as a surrogate endpoint
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for newer types of antiretroviral drugs. For example, some newer drugs af-
fect HIV-1 RNA levels by inhibiting entry of the virus into the CD4 cell.
This contrasts with the classes of drugs (NRTIs, NNRTIs, and PIs) that
were more formally evaluated in the meta-analyses described in this chap-
ter which inhibit replication of the virus after entry into the CD4 cell. It
is important to note though that drugs that do not target the virus, for
example immune-based therapies, still typically need more extensive eval-
uation likely including their effects on progression to AIDS/death. This
requires long-term trials involving follow-up of large numbers of patients
(in the thousands) over several years particularly as these therapies will
almost inevitably need to be evaluated when added to potent antiretrovi-
ral therapy. A third consequence concerns the fact that the various studies
that contributed to the evaluation of HIV-1 RNA as a surrogate endpoint
were primarily undertaken in resource-rich countries where subtype B of
the virus is prevalent. However, the HIV epidemic is predominantly in sub-
Saharan Africa and other more resource-limited countries where the most
prevalent viral subtypes are A, C, and D, and co-infections (e.g., tubercu-
losis and malaria) are common. How much these factors might affect the
value of HIV-1 RNA as a surrogate endpoint is unclear.

HIV infection is now more of a chronic disease. There is considerable inter-
est in understanding the potential benefits of treatment very close to pri-
mary infection and of the secondary effects of candidate vaccines used for
the prevention of transmission of HIV on disease progression among those
subjects who become infected despite being vaccinated. These interests
require identification of surrogate endpoints that might be reliable early
in the course of HIV infection and hence temporally distant from major
morbidity and mortality. Ultimately, this is likely to require new validation
techniques for use in observational studies, possibly including the linkage of
follow-up in sequential shorter-term randomized trials involving the same
or different cohorts of patients. This challenge is not unique to HIV but
is highly relevant to many long-term chronic diseases. The validation of
potential surrogate endpoints will, however, be more difficult for diseases
in which these endpoints are less sensitive and for which treatments only
have limited effects.
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An Alternative Measure for
Meta-analytic Surrogate
Endpoint Validation

Tomasz Burzykowski and Marc Buyse

18.1 Introduction

When considering the meta-analytic approach to the validation of surrogate
endpoints (Chapter 7), Gail et al. (2000) noted that, unless the trial-level
R2 = 1, the variance of the prediction of treatment effect on the true end-
point in a new trial cannot be reduced to 0, even in the absence of any
estimation error in the trial. On the other hand, if the effect is estimated
directly from data on the true endpoint, this estimation error can theoret-
ically be made arbitrarily close to 0 by increasing the trial’s sample size.
Gail et al. (2000) considered this as an argument against the use of sur-
rogate endpoints and their validation within the meta-analytic framework
(see also Chapter 9). It should be noted, however, that the idea of using a
surrogate endpoint is based on the assumption that the information about
the surrogate can be obtained earlier than about the true endpoint. The
loss of efficiency in predicting treatment effect on true endpoint, as op-
posed to estimating it, might be treated as the price to pay for the time
gain arising from the use of the surrogate endpoint.

To study further the issue raised by Gail et al. (2000), it would be impor-
tant to quantify this loss of efficiency and assess whether in a particular
application it does not render the use of a surrogate infeasible. In this
chapter, a new concept, the so-called a surrogate threshold effect (STE), is
proposed for this purpose. One of its interesting features, apart from pro-
viding information relevant to the practical use of a surrogate endpoint, is
its natural interpretation from a clinical point of view. This might facilitate
communication between the statisticians and clinicians regarding results of
a validation of a surrogate endpoint.
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18.2 The Use of the Trial-level Validation Measures

The essential features of the meta-analytic approach to the validation of
surrogate endpoints, proposed by Buyse et al. (2000a) for the case of nor-
mally distributed endpoints, were described in Section 7.2. Let us briefly
recall that the approach is based on the linear mixed-effects model

Sij = µS + mSi + αZij + aiZij + εSij , (18.1)

Tij = µT + mT i + βZij + biZij + εTij , (18.2)

where µS and µT are fixed intercepts, α and β are the fixed effects of
treatment Z on the endpoints, mSi and mTi are random intercepts, and ai

and bi are the random effects of treatment Z on the endpoints in trial i
(i = 1, . . . , N). The vector of random effects (mSi, mTi, ai, bi) is assumed
to be mean-zero normally distributed with variance-covariance matrix

D =

⎛⎜⎜⎝
dSS dST dSa dSb

dT T dTa dTb

daa dab

dbb

⎞⎟⎟⎠ . (18.3)

The error terms εSi and εT i are assumed to be mean-zero normally distrib-
uted with variance-covariance matrix

Σ =
(

σSS σST

σT T

)
. (18.4)

By considering the conditional variance of treatment effect β + b0 on the
true endpoint in a new trial, given the random intercept mS0 and treatment
effect a0 on the surrogate, Buyse et al. (2000a) proposed to measure the
quality of the surrogate at the trial level by the coefficient of determination
R2

trial(f) given by (7.11). It is worth noting that R2
trial(f) measures the relative

reduction in the variability of the prediction assuming the knowledge of all
the parameters of the mixed effects model (18.1)–(18.2) and of the random
effects mS0 and a0. In practice, these parameters and the random effects
have to be estimated. By fitting the mixed-effects model (18.1)–(18.2) to
data from a meta-analysis, estimates for the fixed-effects parameters and
variance components are obtained. We will use

ϑ ≡ (β, µS, α, dSb, dab, dSS, dSa, daa)T , (18.5)

to denote the fixed-effects parameters and variance components, with ϑ̂
denoting the corresponding estimates.

Fitting the linear model

S0j = µS0 + α0Z0j + εS0j (18.6)
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to data on the surrogate endpoint from the new trial provides estimates for
mS0 and a0:

m̂S0 = µ̂S0 − µ̂S,

â0 = α̂0 − α̂.

Formally, expressing the conditional mean E(β + b0|mS0, a0) as E(β +
b0|µS0, α0, ϑ), we can write

E(β + b0|µS0, α0, ϑ) = E[E(β + b0|µ̂S0, α̂0, ϑ̂)],

with the outer expectation taken with respect to the conditional distrib-
ution of (µ̂S0, α̂0, ϑ̂) given (µS0, α0, ϑ). It follows that the prediction for
β + b0 can obtained by replacing the parameter involved in the conditional
mean E(β + b0|mS0, a0) with the corresponding estimates. Moreover, using
the iterated variance formula, we can write:

Var(β + b0|µS0, α0, ϑ) = Var[E(β + b0|µ̂S0, α̂0, ϑ̂)]

+E[Var(β + b0|µ̂S0, α̂0, ϑ̂)]. (18.7)

Let fd,0 and fd,1 be the derivatives of E(β + b0|µS0, α0, ϑ) with respect to
(µS0, α0)T and ϑ, respectively. Denoting the asymptotic variance-covariance
matrices of (µ̂S0, α̂0)T and ϑ̂ by V0 and V1, respectively, and using the delta
method, it follows that

Var(β + b0|µS0, α0, ϑ) ≈ fd,0V0f
T
d,0 + fd,1V1f

T
d,1 + (1 − R2

trial(f))dbb. (18.8)

The third term on the right-hand side of the formula (18.8) indicates the
variability of the prediction if µS0, α0 and ϑ were known. The first two
terms describe the contribution to the variability due to the use of the
estimates of these parameters.

One can now consider three scenarios:

Estimation error in both the meta-analysis and the new trial.
If the parameters of models (18.1)–(18.2) and (18.6) have to be esti-
mated, as it happens in practice, the prediction variance is given by
(18.8). From the equation it is clear that in practice, the reduction of
the variability of the estimation of β +b0, related to the use of the in-
formation on mS0 and a0, will always be smaller than that indicated
by R2

trial(f). The latter coefficient can thus be thought of as measur-
ing the “potential” validity of a surrogate endpoint at the trial-level,
assuming precise knowledge (or infinite numbers of trials and sam-
ple sizes per trial available for the estimation) of the parameters of
models (18.1)–(18.2) and (18.6).
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Estimation error only in the meta-analysis. This scenario is possi-
ble only theoretically, as it would require an infinite sample size in
the new trial. But it can provide information of practical interest
since, with an infinite sample size, the parameters of the single-trial
regression model (18.6) would be known. Consequently, the first term
on the right hand-side of (18.8), fd,0V0f

T
d,0, would vanish and (18.8)

would reduce to

Var(β + b0|µS0, α0, ϑ) ≈ fd,1V1f
T
d,1 + (1 − R2

trial(f))dbb. (18.9)

Expression (18.9) can thus be interpreted as indicating the minimum
variance of the predicton of β + b0, achieveable in the actual applica-
tion of the surrogate endpoint. In applications, the size of the meta-
analytic data providing an estimate of ϑ will necessarily be finite and
fixed. Consequently, the first term on the right-hand side of (18.9)
will always be present. Note that based on this observation Gail et
al. (2000) conclude that the use of surrogates validated through the
meta-analytic approach will always be less efficient than the direct
use of the true endpoint.

No estimation error. If the parameters of the mixed-effects model (18.1)–
(18.2) and the single-trial regression model (18.6) were known, the
prediction variance for β +b0 would contain only the last term on the
right hand side of (18.8). Thus, the variance would be reduced to

Var(β + b0|µS0, α0, ϑ) = (1 − R2
trial(f))dbb, (18.10)

which is equivalent to (7.10). This situation is, of course, only of
theoretical relevance, as it would require infinite numbers of trials
and sample sizes per trial available for the estimation in the meta-
analysis and in the new trial.

Based on the scenarios considered above, one can argue that in a particular
application the size of the minimum variance (18.9) is of importance. The
reason is that (18.9) is associated with the minimum width of the prediction
interval for β + b0 that might be approached in a particular application
by letting the sample size for the new trial increase toward infinity. This
minimum width will be responsible for the loss of efficiency related to the
use of the surrogate, pointed out by Gail et al. (2000). (See also Chapter 9.)
It would thus be important to quantify the loss of efficiency, as it may be
counter-balanced by a shortening of trial duration. To this aim, one might
consider, for example, using the ratio of (18.9) to dbb, the unconditional
variance of β + b0. However, in what follows we will consider another way
of expressing this information, which should be more meaningful clinically.
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18.3 Surrogate Threshold Effect

18.3.1 Normally Distributed Endpoints

We will first focus on the case where the surrogate and true endpoints are
jointly normally distributed.

Assume that the prediction of β + b0 can be made independently of µS0.
Under this assumption, the conditional mean and variance of β + b0 can be
respectively written as

E(β + b0|α0, ϑ) = β +
dab

daa
(α0 − α) , (18.11)

Var(β + b0|α0, ϑ) = dbb − d2
ab

daa
= dbb

(
1 − R2

trial(r)

)
. (18.12)

If ϑ were known and α0 could be observed without measurement error
(i.e., assuming an infinite sample size for the new trial), the prediction of
β + b0 could be based on (18.11), and the prediction variance would equal
(18.12). If an estimate ϑ̂ were to be used (as will usually happen in practice),
the prediction variance (18.9), which corrects for the estimation, should be
applied. Upon defining x = (1,−dab/daa)T and using the fact that in linear
mixed-effects models the maximum-likelihood estimates of the covariance
parameters are asymptotically independent of the fixed effects parameters
(Pinheiro and Bates 1995), (18.9) can be expressed approximately as

Var(β+b0|α0, ϑ) ≈ xT

[
Vµ +

(
α0 − α

daa

)2

VD

]
x+(1−R2

trial(r))dbb, (18.13)

where Vµ and VD are the asymptotic variance-covariance matrices of (β̂, α̂)T

and (d̂ab, d̂aa)T , respectively.

Let us assume, without loss of generality, that dab > 0 and that positive
values of αi indicate a beneficial treatment effect in trial i. Consider the
(1-γ)100% prediction interval for β + b0:

E(β + b0|α0, ϑ) ± z1− γ
2

√
Var(β + b0|α0, ϑ), (18.14)

where z1−γ/2 is the (1− γ/2) quantile of the standard normal distribution.
Depending on the assumptions, the interval (18.14) can be constructed
using the variances (18.12) or (18.13).

The limits of the interval (18.14) are functions of α0. Define the “lower
prediction limit function” of the argument α0 as

l(α0) ≡ E(β + b0|α0, ϑ) − z1− γ
2

√
Var(β + b0|α0, ϑ). (18.15)
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Similarly, we can define the “upper prediction limit function”:

u(α0) ≡ E(β + b0|α0, ϑ) + z1− γ
2

√
Var(β + b0|α0, ϑ). (18.16)

One might compute a value of α0 such that

l(α0) = 0. (18.17)

We will call this value the surrogate threshold effect (STE). Its magnitude
depends on the variance of the prediction. The larger the variance, the
larger the (absolute) value of STE. A large, from a clinical point of view,
value of STE would point to the need of observing a large treatment effect
on the surrogate endpoint in order to conclude a non-zero effect on the
true endpoint. In such case, the use of the surrogate would not be reason-
able, even if the surrogate were valid (with R2

trial(r) close to 1). STE can
thus provide additional important information about the usefulness of the
surrogate in a particular application.

Note that, depending on whether the variance (18.12) or (18.13) is used in
(18.15), one might get two versions of STE. The version obtained with the
use of the variance (18.12) will be denoted by STE∞,∞. Explicitly:

STE∞,∞ = α − daa

dab

{
β + z1− γ

2

√
dbb(1 − R2

trial(r))
}

. (18.18)

The infinity signs used in the notation for STE∞,∞ indicate that (18.18)
assumes the knowledge both of ϑ as well as of α0, achieveable only with
an infinite number of infinite-sample-size trials in the meta-analytic data
and an infinite sample size for the new trial. In practice, STE∞,∞ will be
computed using estimates of the parameters involved in (18.18). A large
value of STE∞,∞ would point to the need of observing a large treatment
effect on the surrogate endpoint even if there were no estimation error
present.

If the variance (18.13) is used to define l(α0), we will denote the STE by
STEN,∞, with N indicating the need for the estimation of ϑ.

To further simplify formulas, let us re-write (18.13) as

Var(β + b0|α0, ϑ) ≡ B

(
α0 − α

daa

)2

+ A, (18.19)

with
B ≡ xT VDx,

and
A ≡ xT Vµx + (1 − R2

trial(r))dbb.
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TABLE 18.1. Values of the surrogate threshold effect STEN,∞, based on the lower
or upper prediction limits, for different configurations of parameters.

d2
ab − Bz2

1−γ/2 β ∆ βBz1−γ/2 STEN,∞
+dab

√
∆ l(α0) u(α0)

= 0 = 0 � � None None
< 0 � � None ν0

> 0 � � ν0 None
< 0 � < 0 � None None

� > 0 < 0 None min(ν1, ν2)
� > 0 > 0 min(ν1, ν2) None

> 0 � � < 0 ν1 ν2

� � > 0 ν2 ν1

NOTE: 	 indicates that the value of the parameter is irrelevant.

Formula (18.19) indicates that, if (18.13) is used in (18.15), then l(α0) is
the difference between values of a positive-slope linear function and either a
concave parabole-shaped function (if B > 0) or a fixed number (if B = 0).
It follows that (18.17) might have two, one or no solutions.

The roots of (18.17) can be obtained by solving the quadratic equation

(d2
ab − z2

1− γ
2
B)ν2 + 2βdabν + β2 − z2

1− γ
2
A = 0, (18.20)

where ν = (α0 − α)/daa. In fact, (18.20) defines simultaneously the roots
for both the lower and upper limits functions given by (18.15) and (18.16),
respectively.

The number of solutions of (18.20) depends on the configuration of the pa-
rameters of l(α0). Table 18.1 summarizes the conditions leading to different
numbers of solutions of l(α0) = 0. For completness, solutions of u(α0) = 0
are displayed in the table as well. Note that ∆ ≡ β2 −A(z2

1− γ
2
B − d2

ab)/B.
If there is a single solution, it is given by

ν0 =
Az2

1− γ
2
− β2

2βdab
.

If there are two solutions, they are given by

ν1 =
βdab − z1− γ

2

√
Bβ2 − A(Bz2

1− γ
2
− d2

ab)

Bz2
1− γ

2
− d2

ab
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and

ν2 =
βdab + z1− γ

2

√
Bβ2 − A(Bz2

1− γ
2
− d2

ab)

Bz2
1− γ

2
− d2

ab

.

In practice, STEN,∞ will be computed using ν0, ν1, or ν2 with Vµ, VD, and
ϑ replaced by their estimates obtained from fitting the mixed-effects model
(18.1)–(18.2) to the meta-analytic data.

The conditions listed in Table 18.1 are derived by considering possible forms
of the quadratic equation (18.20) (Burzykowski 2001). Some insight can be
offered. For instance, under the assumption that dab > 0, the condition
d2

ab − z2
1−γ/2B > 0 is equivalent to dab − z1−γ/2

√
B > 0, which can be

further re-written as

daa

⎡⎣ dab

daa
− z1− γ

2

√√√√Var

(
d̂ab

d̂aa

)⎤⎦ > 0. (18.21)

If daa, dab and their variance-covariance matrix are replaced by estimates,
condition (18.21) can be interpreted as the requirement that the estimate
of the slope of the regression line (18.11) should be statistically signifi-
cantly different from 0. This is a well-known condition in the discrimination
problem (constructing confidence limits for the value of a covariate given
the value of the dependent variable) for a simple linear regression model
(Miller 1981, p. 118) and in the construction of confidence intervals based
on Fieller’s theorem (Fieller 1954).

18.3.2 Other Distributions

The development of STE and its estimation, presented in the previous
section, was done under the mixed-effects model (18.1)–(18.2), applicable
when both S and T are normally distributed. As illustrated in Chapter 7,
however, due to numerical problems, the use of the two-stage representation
of the model might need to be considered. The two-stage approach would
also be chosen if S and/or T were not normally distributed, as proposed,
e.g., in Chapters 11 and 12. In this section we will describe how STE can
be estimated when this approach is used.

First, let us briefly recall the basic idea of the the two-stage modeling
strategy. At the first stage, a joint model for S and T is fitted to the meta-
analytic data. This model provides estimates β̂i and α̂i of the trial-specific
treatment effects βi ≡ β + bi and αi ≡ α+ai. At the second stage, a model
is fitted to β̂i and α̂i, allowing for estimation of the parameter vector ϑ.
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Now, the estimate of ϑ and its variance-covariance matrix could be used
to compute the prediction variances (18.13) and (18.13) and, upon solving
equation (18.20), to estimate STE∞,∞ and STEN,∞, respectively. An im-
portant issue in this respect, however, is to adjust the estimation of ϑ for
the estimation error present in β̂i and α̂i. Note that such an adjustment is
done automatically if the mixed-effects model (18.1)–(18.2) can be used.

One possible way to adjust the estimation of ϑ for the error in β̂i and
α̂i would be to use the approach based on the results developed by van
Houwelingen, Arends, and Stijnen (2002). It has been summarized, for ex-
ample, in Section 11.2.1. Due to practical problems with implementing the
approach (see, for example, Section 11.5.2), however, we will consider an
alternative solution.

More specifically, following (18.11) we can assume that the trial-specific
treatment effects βi and αi follow the simple linear regression model

βi = γ0 + γ1αi + εi, (18.22)

with εi being a random variable with mean 0 and variance σ. Clearly, from
(18.11) and (18.12), the following relationships hold:

γ0 = β − αdab/daa,

γ1 = dab/daa,

σ = dbb(1 − R2
trial(r)). (18.23)

The parameters of model (18.22) can be estimated from the regression of
β̂i on α̂i. To account for the estimation error in α̂i and β̂i, the parameters
γ1 and γ0 can be estimated using (11.24) and (11.25), respectively, or one
of its modifications proposed by Fuller (1987, see also Section 11.2.2). The
residual variance σ can be computed from (11.22).

Using estimates γ̃1, γ̃0, and σ̃ of γ1, γ0, and σ, and given an estimate α̂0 of
treatment effect on S in the new trial, β0 ≡ β + b0 can be predicted using

β̂0 = γ̃0 + γ̃1α̂0. (18.24)

Following the arguments presented in Section 11.2.2 and using (11.27), one
can calculate the variance of the prediction error by

Var(β̂0 − β0) = E[γ̃2
1Var(α̂0)] + Var(γ̃0)

+2αCov(γ̃0, γ̃1) + (α2 + daa)Var(γ̃1) + σ.(18.25)

The first term on the right-hand side of (18.25) corresponds to the first term
on the right-hand side of (18.8) and accounts for the estimation of α0. The
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last term on the right-hand side of (18.25) corresponds to the last term on
the right-hand side of (18.8) and accounts for the residual variability after
accounting for the information provided by α0. The remaining terms on the
right-hand side of (18.25) correspond to the middle term on the right-hand
side of (18.8) and account for the estimation of parameters ϑ.

The first term on the right-hand side of (18.25) vanishes if the new trial is
large. Consequently, STEN,∞ can be obtained as the solution to (18.17),
with E(β + b0|α0, ϑ) and Var(β + b0|α0, ϑ) in l(α0) replaced, respectively,
by γ0 + γ1α0 and

Var(β̂0 − β0) = σ + Var(γ̃0) + 2αCov(γ̃0, γ̃1) + (α2 + daa)Var(γ̃1). (18.26)

This expression can be seen as corresponding to (18.9) and (18.13). Note
that l(α0) is again a difference between a linear and a parabola-shaped
function. Thus, the considerations regarding the number of solutions of
(18.17) apply in this case as well.

STE∞,∞, on the other hand, results if Var(β + b0|α0, ϑ) is replaced by the
residual variance σ. Note that, in view of (18.23), σ corresponds to (18.10)
and (18.12).

Clearly, some caution may be needed in the interpretation of STEN,∞ or
STE∞,∞ computed in such a way, since, as already noted in Section 11.2.2,
the normality of the distribution of β̂0 obtained from (18.24) might be
questionable.

For practical purposes, as an estimator of (18.25) one might use

V̂ar(β̂0 − β0) = γ̃2
1V̂ar(α̂0) + V̂ar(γ̃0) + 2α̂0Ĉov(γ̃0, γ̃1)

+
[
α̂2

0 − V̂ar(α̂0)
]
V̂ar(γ̃1) + σ̃,

with σ̃ defined by (11.22), and V̂ar(α̂0) obtained from the model for S in
the new trial. The variance-covariance matrix of the estimators γ̃0 and γ̃1

can be estimated either assuming normality or using a robust estimator
(Fuller 1987). For (18.26) one might use

V̂ar(β̂0 − β0) = V̂ar(γ̃0) + 2α̂0Ĉov(γ̃0, γ̃1) + α̂2
0V̂ar(γ̃1) + σ̃. (18.27)

18.4 Analysis of Case Studies

To illustrate the potential use of STE, it will be applied to two case stud-
ies. In what follows, the 95% confidence level for constructed prediction
intervals is assumed.
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FIGURE 18.1. Corfu study in advanced colorectal cancer. Predictions (solid lines)
with 95% prediction limits leading to STE∞,∞ (short dashes) and STEN,∞ (long
dashes), based on the Hougaard model. Left plot with the correction for the estima-
tion error in treatment effect estimates; right plot without the correction. Circles
(proportional to center sample size) indicate the estimated treatment effects.

18.4.1 Advanced Colorectal Cancer

First, the data for two clinical trials in advanced colorectal cancer will be
considered (Section 4.2.3). Recall that survival time is considered as true
endpoint, whereas progression-free survival time is regarded as surrogate.
The validity of progression-free survival as a surrogate was investigated in
Section 11.3.2, using center as the unit of analysis. The analysis used data
for 48 centers with at least 3 patients on each treatment arm (642 patients
in total).

We will use the results obtained in Section 11.3.1, for the Hougaard copula
with center-specific baseline hazards. Mean treatment effects on T and
S were equal to −0.003 and −0.021, respectively. Their variances were
equal to 0.737 and 1.149, respectively. In the analysis unadjusted for the
measurement error in the observed treatment effects an estimate of trial
level R2 of 0.53 (95% confidence interval [0.34,0.72]) was found. A point
estimate adjusted for the measurement error was equal to 0.64.

Figure 18.1 presents the prediction limits computed using model (18.22)
fitted to the estimated treatment effects with and without the adjustment
for the estimation error in treatment effects. From now on these models will
be referred to as the “corrected” and “uncorrected,” respectively. For the
corrected model, the prediction limits defining STE∞,∞ and STEN,∞ were
computed using, respectively, σ̃ as in(11.22) and (18.27) as the estimates of
the prediction variance. The variance-covariance matrix of the estimators
γ̃0 and γ̃1 was obtained using a robust estimator (Fuller 1987).

The prediction limits for the uncorrected model were computed using the



334 Tomasz Burzykowski and Marc Buyse

well-known formulas for a simple linear regression model (Neter, Wasser-
man, and Kutner 1983). More specifically, for STE∞,∞ the limits were
obtained using the mean residual sum of squares for the regression of β̂i on
α̂i as the estimate of the prediction variance σ:

σ̂ =
N∑

i=1

(β̂i − γ̂0 − γ̂1α̂i)2

N − 2
,

whereas for STEN,∞ the prediction variance was estimated by

Var(β̂0|α̂0) = σ̂

{
1
N

+
(α̂0 − ᾱ)2∑N
i=1(α̂i − ᾱ)2

}
+ σ̂, (18.28)

where ᾱ =
∑N

i=1 α̂i/N and σ̂ is the mean residual sum of squares. Note
that (18.28) corresponds to (18.9), (18.13), and (18.26), with the second
term (σ̂) on the right-hand side of (18.28) reflecting the residual variability
after accounting for the information provided by α0 and the first term
accounting for the estimation of parameters γ0 and γ1 (which correspond
to ϑ).

The plots in Figure 18.1 allow for several conclusions. First, the width of
the prediction interval underlying STE∞,∞ and based on the estimated
residual variance σ, is much smaller for the corrected model. This is due
to the difference in the estimates of the variance. As expected, the model
corrected for the measurement error yielded a smaller estimate (σ̃ = 0.08)
than the uncorrected model (σ̂ = 0.35). Second, the plots in Figure 18.1
illustrate that the use of the prediction variance (18.9), adjusted for the
estimation of the parameters γ0 and γ1, “penalizes” for the predictions
outside the range of treatment effects observed in the meta-analytic data
much more in the corrected model than in the uncorrected model. In fact,
the width of the prediction interval for the uncorrected model almost does
not change as α0 is moved away from the observed mean.

These differences are reflected in the estimates of STE. In the corrected
analysis the following estimates of the parameters of model (18.22) were
obtained: γ̃0 = 0.006 (standard error, s.e., 0.09), γ̃1 = 0.43 (s.e. 0.19). As
a result, STE∞,∞ was found to be equal to −1.28. For STEN,∞, the value
of −3.11 was obtained. Note that STE∞,∞ and STEN,∞ were computed
from the upper prediction limit u(α0), defined in (18.16), since negative
values of treatment effect, pointing to a reduction of the risk of failure,
were considered beneficial.

In the uncorrected analysis, γ0 and γ1 were estimated to equal 0.01 (s.e.
0.08) and γ̂1 = 0.53 (s.e. 0.08), respectively. These estimates led to STE∞,∞ =
−2.01 and STEN,∞ = −2.11. For the corrected model, STE∞,∞ was thus
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markedly smaller than for the uncorrected model; the reverse could be ob-
served for STEN,∞. Irrespective of the model, though, the values of STE
were very large, even for STE∞,∞. They were much smaller than treatment
effects on the surrogate observed in the meta-analysis, what can be observed
in Figure 18.1. This clearly illustrates poor validity of the surrogate.

18.4.2 Advanced Ovarian Cancer

We will now consider the data for the meta-analysis of four clinical trials
in advanced ovarian cancer cancer (Section 4.2.2). Also in this example
survival time is considered the true endpoint, whereas progression-free sur-
vival time is regarded the surrogate. The data have been analyzed using the
two-stage approach based on copula models in Section 11.3.1. The analysis
used data for 39 centers (including the two smaller trials) with at least 3
patients on each treatment arm (1153 patients in total).

We will use the results obtained in Section 11.3.1, for the Hougaard copula
with center-specific baseline hazards. Mean treatment effects on T and S
were equal to −0.18 and −0.20, respectively. Their variances were equal
to 0.93 and 1.02, respectively. In the analysis unadjusted for the measure-
ment error an estimate of trial level R2 of 0.88 (95% confidence interval
[0.81,0.95]) was found. A point estimate adjusted for the measurement error
was equal to 0.83.

As in the previous example, we will consider two analyses: corrected and
uncorrected for the measurement error in the estimated treatment effects.
Figure 18.2 presents the corresponding prediction limits.

The plots in Figure 18.2 exhibit similar features to those observed for the
advanced colorectal cancer data in Figure 18.1. Again, due to the difference
in estimates of σ, the width of the prediction intervals based on the resid-
ual variance is smaller for the corrected model than for the uncorrected.
The difference is much smaller now, though. The curvature of the predic-
tion limits corresponding to the prediction variance (18.9) is again more
remarkable for the corrected model. Within the range shown, however, it
does not deviate very much from the prediction limits based on σ.

For the corrected model γ̃0 = −0.06, (s.e. 0.06), γ̃1 = 0.83 (s.e. 0.10),
and σ̃ = 0.06 were obtained. The estimates led to STE∞,∞ = −0.59 and
STEN,∞ = −0.61. In the uncorrected analysis γ0, γ1, and σ were estimated
to equal 0.007 (s.e. 0.05), γ̂1 = 0.90 (s.e. 0.05), and 0.11, respectively. These
estimates yielded STE∞,∞ = −0.74 and STEN,∞ = −0.75.

The values of STE are much closer to the treatment effects on the surrogate
endpoint observed in the meta-analysis (as can be seen in Figure 18.2) than
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FIGURE 18.2. Advanced ovarian cancer. Predictions (solid lines) with 95% pre-
diction limits leading to STE∞,∞ (short dashes) and STEN,∞ (long dashes), based
on the Hougaard model. Left plot with the correction for the estimation error in
treatment effect estimates; right plot without the correction. Circles (proportional
to center sample size) indicate the estimated treatment effects.

in the previous example. Consequently, they suggest a better validity of the
surrogate.

18.5 An Extension of the Concept of a Surrogate
Threshold

Effect

Assume that the surrogate endpoint S has been validated using a meta-
analytic dataset. One might consider using the computed value of STEN,∞
to assess the results of the ongoing trials. To this aim, for example, the lower
limit of a confidence interval based on the available estimate of treatment
effect on S in a trial might be compared to STEN,∞, and, if it were larger,
a significant treatment effect on the true endpoint T might be predicted.
It should be noted, though, that the prediction interval (18.14), based on
the variance (18.13), provides the (1− γ)100% confidence of the prediction
only for a single, fixed value of α0. In order to use it repeatedly, one would
require an interval warranting the required confidence for a whole family of
values of α0. To address this issue, the concept of simultaneous tolerance
intervals might be used (Miller 1981).

We will consider the two-stage representation of the mixed-effects model
(18.1)–(18.2). Moreover, we will assume that the prediction of β0 could be
based on model (18.22) without the need for adjusting for the error in the
estimates of treatment effects βi and αi. This would require, for example,
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that the error associated with the estimation of the treatment effects had
(at least approximately) the same distribution across all N trials included
in the meta-analysis (see Section 11.2.2).

A (1 − δ, 1 − ξ) tolerance interval for β0 is an interval that with probabil-
ity (at least) 1 − δ contains the true (1 − ξ)100% confidence interval for
β0, corresponding to a particular value of α̂0. Methods for constructing
such intervals for a linear regression model were proposed, for example, by
Wallis (1951), Lieberman and Miller (1963), Wilson (1967), and Limam
and Thomas (1988). A family of tolerance intervals, which contain the true
(1 − ξ)100% confidence interval for β0 with probability (at least) 1− δ for
all α̂0 and ξ, is called simultaneous tolerance intervals (Miller 1981). We
will use the term “simultaneous (1 − δ)-tolerance intervals.”

Lieberman and Miller (1963) proposed a simple method to construct simul-
taneous (1 − δ)-tolerance intervals based on the Working-Hotelling (1929)
confidence band for the regression line and the Bonferroni inequality. Us-
ing the approach of Lieberman and Miller one can find (Burzykowski 2001)
that, with probability 1− δ and for all values of α̂0 and ξ, the (1− ξ)100%
confidence interval for β0 is contained in

γ̂0 + γ̂1α̂0 ±
√

σ̂

⎡⎣(2F
1−δ/2
2,N−2

) 1
2

{
1
N

+
(α̂0 − ᾱ)2∑N
i=1(αi − ᾱ)2

} 1
2

+z1−ξ/2

(
N − 2

χ
δ/2
N−2

) 1
2
⎤⎦ , (18.29)

where F
1−δ/2
2,N−2 is the (1 − δ/2) quantile of the F distribution with 2 and N−2

degrees of freedom and χ
δ/2
N−2 is the δ/2 quantile of the χ2 distribution with

N − 2 degrees of freedom.

By determining the value of α̂0, for which the lower limit of the inter-
val specified by (18.29) would equal zero, one could define a new version of
STEN,∞, STEδ

N,∞ say. From the definition of the simultaneous tolerance in-
terval (18.29), it follows that the interval (STEδ

N,∞, +∞) would contain all
values of treatment effect α0, for which, with (1−δ)100% confidence, a sta-
tistically significant (at an arbitrarily chosen significance level ξ), non-zero
treatment effect on the true endpoint might be predicted. Thus, STEδ

N,∞
might be used repeatedly to assess results of new clinical trials (even with
varying ξ).

The prediction limits specified in (18.29) are valid for all α̂0 and ξ. This
is due to the use of the Working-Hotelling band. Usually, however, the
limits would be needed for a restricted region of possible values of α̂0 (for
example, an interval). In such a case, one might consider replacing the
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FIGURE 18.3. Corfu study in advanced colorectal cancer. Simultaneous 0.95-tol-
erance intervals. Vertical dashed line indicates STE0.05

N,∞. Long dashes - predicted
values; long/short dashes - simultaneous 0.95-tolerance intervals.

Working-Hotelling band by the band proposed by Uusipaikka (1983), which
is applicable for arbitrary finite unions of intervals or points. A consequence
of the replacement would be a reduction of the width of the simultaneous
tolerance intervals (18.29).

18.5.1 Application to the Advanced Ovarian Cancer Data

We will illustrate STEδ
N,∞ on the data from the meta-analysis of four

advanced ovarian cancer trials, considered in Section 18.4.2. Figure 18.3
presents the limits of the simultaneous 0.95-tolerance intervals (18.29). Us-
ing the upper limit of the interval, STE0.05

N,∞ can be computed to equal
−1.19. Clearly, this value is much larger than the value of −0.75, obtained
for STEN,∞ in Section 18.4.2. But, unlike STEN,∞, STE0.05

N,∞ can be used
as a reference for all values of α0.

18.6 Discussion

The criterion of the trial-level validity of a surrogate, as proposed by Buyse
et al. (2000a), measures the relative reduction in the variability of the pre-
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diction of treatment effect on the true endpoint achieved by conditioning on
the effect on the surrogate. The criterion, the coefficient of determination
R2, was developed assuming the knowledge of all parameters of the under-
lying models. In practice, these parameters have to be estimated. Due to
the estimation, the reduction of the variability of the prediction will always
be smaller than the one indicated by R2. From a practical point of view, it
is of interest to quantify this “actual” reduction.

In this chapter, a new concept, the so-called surrogate threshold effect
(STE), has been proposed to this end. It is defined as the minimum value
of treatment effect on the surrogate endpoint, for which the predicted effect
on the true endpoint would be significantly different from 0. In particular,
STE can be computed with and without taking into account the estima-
tion of the parameters of the models underlying the approach developed
by Buyse et al. (2000a).

STE∞,∞ and STEN,∞ can be used to address the concern about the useful-
ness of the meta-analytic approach to the validation of surrogate endpoints,
expressed by Gail et al. (2000). They noted that, even for a valid surrogate,
the variance of the prediction of treatment effect on the true endpoint can-
not be reduced to 0, even in the absence of any estimation error. STEN,∞
can be used to quantify this loss of efficiency and assess whether in a par-
ticular application it does not render the use of a surrogate infeasible.

An interesting feature of a surrogate threshold effect, apart from provid-
ing information relevant to the practical use of a surrogate endpoint, is its
natural interpretation from a clinical point of view. It can be expressed in
terms of treatment effect necessary to be observed to predict a significant
treatment effect on the true endpoint. Its use might facilitate communica-
tion between the statisticians and clinicians regarding results of a validation
of a surrogate endpoint.

The concept of a surrogate threshold effect, if deemed useful, will require
further research. For instance, the assumptions (normality, sample size
etc.), under which it can yield reliable results, should be investigated. Also,
the accuracy of the estimation of STE∞,∞ and STEN,∞ would need to be
checked.

The use of STEδ
N,∞ to assess repeatedly results of many clinical trials might

be an interesting problem. It would require the extension of the concept of
simultaneous tolerance intervals to measurement-error and general linear
mixed effects models. Also, the use of STEδ

N,∞ to compute a sample size
for a new trial aimed at using the surrogate endpoint might be of interest.
Thus far, methods for such calculations have not been considered in the
literature. To compute the sample size, one might consider requiring that
the lower (or upper) confidence limit for the estimated treatment effect
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under the alternative was greater (smaller) than STEδ
N,∞. An investigation

of operational characteristics of such a procedure would require a careful
evaluation.
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Discussion: Surrogate Endpoint
Definition and Evaluation

Ross L. Prentice

19.1 Introduction

It is now some years since a formal definition of a surrogate endpoint in
a clinical trial was proposed (Prentice 1989). Subsequently, alternate pro-
posals have been made, and much has been written on methods for eval-
uating whether or not a biomarker or short-term endpoint can serve as a
replacement for a corresponding longer-term clinical endpoint (e.g., disease
occurrence, or recurrence). In fact, this volume is concerned primarily with
statistical methods for this type of replacement, under various scenarios
concerning the nature of the true and potential surrogate response. In this
discussion chapter, I return to the issue of surrogate endpoint definition
and add some perspective on the corresponding evaluation process and on
related evaluation methods.

19.2 Surrogate Endpoint Definition

In my 1989 paper, I defined a surrogate for a true endpoint as “a re-
sponse variable for which a test of the null hypothesis of no relationship
to the treatment groups under comparison is also a valid test of the cor-
responding null hypothesis based on the true endpoint.” This definition
was motivated by a desire for the surrogate “to have potential to yield
unambiguous information about differential treatment effects on the true
endpoint.” To obtain insight into the corresponding implications for the
relationships among the true and surrogate endpoints and the treatments
or interventions of interest, the definition was recast in more “operational”
terms for the important special case of a time-to-response true endpoint
T , a potential surrogate endpoint process {S(t); t > 0}, and a vector of p
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treatment indicators x (for p+1 treatments to be compared). It was noted
that the definition could alternatively be written

λT {t; S(t), x} ≡ λT {t; S(t)}, (19.1)

λT {t, S(t)} �≡ λT (t), (19.2)

and E[λT{t; S(t)}|x, F (t)] �≡ E[λT{t; S(t)}|F (t)], (19.3)

where λT denotes the hazard rate for T , F (t) denotes the failure and cen-
soring history on T prior to (follow-up) time t, and ≡ denotes equality at
all pertinent t > 0. The main point in expressing the definition in terms of
(19.1)–(19.3) was to elucidate how very restrictive the conditions are under
which, say, departure from the null hypothesis concerning treatment effect
on S necessarily implies departure from the corresponding null hypothesis
concerning treatment effect on T . Condition (19.1), in particular, leads one
to think in terms of treatment effect pathways to a true endpoint event,
and essentially requires that there are no pathways that bypass the surro-
gate, and that, otherwise, the treatment effect is fully “explained” by the
preceding surrogate history.

Note that (19.1)–(19.3) are criteria for defining when S can serve as a sur-
rogate for S in the evaluation of treatment effects x. The issue of evaluating
whether a certain biomarker, or short-term clinical outcome can reasonably
serve as a replacement for a true endpoint T , is quite another matter. Also
note that some authors have written that (19.1)–(19.3) only ensure equality
of null hypothesis tests based on S and T if S is binary. These authors have
evidently overlooked criterion (19.3), which is necessary to avoid patholog-
ical relationships for (non-binary) S in which (19.1) and (19.2) hold, but
the dependence of the hazard rate (19.2) on S does not effect the marginal
hazard for T (averaged over S) at any value of t.

Casting this surrogate endpoint definition in the “operational” terms (19.1)–
(19.3) implies that one would not expect ever to be in a position where
(19.1)–(19.3) could be asserted with confidence based on data, while si-
multaneously not being in a position to assess treatment effects directly
on T . Rather, in order to argue that S is a suitable replacement for T for
evaluating the effect of x on T , one would typically need to rely heavily
on biological and mechanistic considerations (e.g., Prentice 1989, p.439),
while examining the consistency of available data with (19.1)–(19.3). In
this sense the terminology “validation of a surrogate endpoint” should be
avoided in favor of the more descriptive “evaluation of a surrogate end-
point” in considering this process (e.g., Biomarkers Definitions Working
Group 2001).
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19.3 Surrogate Endpoint Evaluation

Suppose now that one wishes to decide whether a particular S is a good
candidate as surrogate for a true endpoint T , in a preliminary assessment
of the effects of x on T . If the effects of x on T are of substantial clinical or
public health importance, the overall research agenda should provide for an
eventual direct assessment of these effects whenever practical, whereas in
other circumstances there may not be an ability to go beyond an assessment
of treatment effects on biomarkers or other shorter-term effects.

One can break this question into two components, according to whether one
wishes to evaluate S as a potential surrogate for T in relation to treatment
x using data from a single study of T and S in relation to x in a specific
population, or whether one tries to “borrow strength” from studies of the
same treatments in other populations, or from treatments of the same type
or class as x in the same or other populations.

Suppose first that a study of T and S in relation to x is ongoing. Typically,
if the study does not provide very precise information on the relationship
between T and x it will also not provide precise information on the extent
of any departures from (19.1)–(19.3), and hence an argument of surrogacy
for S in this treatment evaluation must rely heavily on theoretical consid-
erations (e.g., biological or mechanistic). Nevertheless, statistical modeling
and estimation may provide useful empirical insights into the consistency
of the data with (19.1)–(19.3). Evidence in support of (19.2) may be forth-
coming from a Cox regression analysis of λT on a suitable time-dependent
covariate, Z(t), defined as a function of the preceding history {S(u), u < t}.
For example, for a categorical modeled covariate a corresponding score test
(time-dependent log-rank test) may provide a suitable assessment of (19.2),
and application of this model separately in each treatment group, in con-
junction with the empirical distribution of Z(t), given x, F (t), may provide
evidence in support of (19.3). Empirical support for (19.1) will, however,
typically be limited for reasons previously mentioned. For example, a Cox
regression analysis of λT on the potential surrogate and x may fail to pro-
vide evidence of departure from (19.1), but in situations where the use of
a surrogate endpoint is of interest it will typically not be possible to rule
out moderate departures from (19.1) based on data from this single study.
Note that some authors (Freedman, Graubard, and Schatzkin 1992) sug-
gest a comparison of estimates of the coefficient of x in a Cox model for
λT (t, x) to the corresponding coefficient in λT {t; S(t), x} as a measure of
the extent to which the potential surrogate is able to explain, or mediate,
any association between T and x. Although this percentage of treatment
effect explained (PTE) notion is intuitively appealing, a surrogate endpoint
in a specific study is likely to be entertained only when the relationship be-
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tween T and x is uncertain and imprecisely estimated, leading to plausible
values for the denominator of PTE that include zero and to some technical
difficulties. The alternative of just examining the estimated coefficient of
x in a Cox regression of λT {t; S(t), x} is more straightforward but, again,
moderate departures from (19.1) will typically not be able to be ruled out
in settings of interest.

Note that if one is willing to assume that (19.1) to (19.3) are satisfied, then
the relationship between T and z is given by

λT (t; x) =
∫

λT {t; S(t)}pr{S(t); x, F (t)}.

Hence, for example, a Cox model

λT {t; S(t)} = λ0T (t)eZ(t)α

for a binary Z(t) in conjunction with a binary response model for Z(t)
given {x, F (t)} with parameter β induces a model

λT (t; x) = λ0(t)
∑

jε{0,1}
ejαp{Z(t) = j; x, β},

providing a framework for a quantitative estimation of the relationship
between T and x.

Now suppose that one decides to bring in external data sources to assist
in the assessment of S as a potential surrogate for T in relation to x. For
example, x may have already been studied in relation to T and S in other
populations. Some assumption concerning a similar form of the distribu-
tion of (T, S) given x is, of course, necessary, in order to draw strength
from these external data sets concerning this distribution in the setting
under study. For example, to examine the extent of departure from (19.1),
if any, with greater precision one could apply a Cox model on each perti-
nent external population, while allowing the baseline hazard rate to vary
among populations. In this context one could consider whether there is ev-
idence of heterogeneity in the dependence of λ{t; S(t), x} on x and, if not,
assume common treatment parameters, which may now be able to be esti-
mated with some precision, depending on the extent of the external data.
If analyses of this type do not provide evidence against (19.1) or against
(19.1) to (19.3) more generally, then one gains assurance that provisional
inference on the relationship between T and x in the current study can be
gleaned from the relationship between T and S and between S and x. Also,
the emerging data would then suggest that the effects of x on T are largely
mediated by S, and this insight may have crucial clinical or public health
implications.
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The approach alluded to in the preceding paragraph could also be enter-
tained by bringing in data on other treatments that are thought to have
similar modes of action and similar benefits and risks, that have been stud-
ied in the same population or other pertinent populations. Now statistical
considerations will be required to define a suitable class of treatments, and
a pertinent set of external populations. If one or more of the other treat-
ments provides evidence against (19.1), for example, subject matter exper-
tise will be needed to advise on whether or not such departure from (19.1)
reflects disease pathways that are likely unimportant for the treatments
under current test in the population of interest.

As mentioned previously, condition (19.1) is quite restrictive, and to be
plausible it may be necessary to define a high-dimensional surrogate process
S, having elements that measure various biological processes that may be
affected by x and that have some corresponding implication for treatment
effect on T . Hence there is a need for multivariate response statistical pro-
cedures for the analysis of S in relation to x, that include parameters that
lead to a meaningful interpretation of induced effects of x on T .

Given the stringency of (19.1) it may often happen that evidence against
(19.1) emerges, particularly if S is of low dimension, and other pertinent
sources having substantial data on (T, S, x) are available. One then has
evidence that this S does not fully mediate any relationship between x
and T , but it may still be possible that information on the relationship
between S and x can provide a useful prediction about the corresponding
relationship between T and x, for the treatment and population of interest.
In fact, this type of prediction is the principal theme of this volume.

19.4 Treatment Effect Prediction

The idea here is that because the relationship between T and x in a study
population is the goal, then one may be able to use the correlation between
estimates of parameters that characterize the dependencies T and x and S
on x in other pertinent populations or treatments, in conjunction with S
on x in the present context, to make a useful prediction about the relation-
ship of T on x in this present context. Note that such prediction in itself
would not provide insight into the ability of S to mediate, or explain, any
relationship between T and x.

To pursue this idea, one needs to specify models to characterize the effects of
x on T and on S. For example, Chapter 11 focuses a univariate failure time
S as a surrogate for a univariate failure time T and specifies proportional
hazards models for each treatment effect while requiring the regression
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coefficients (log-hazard ratios) for studies in the various populations to
have a simple additive random effects form. A semi-parametric model for
(T, S) given x, such as that due to Clayton (1978), is then assumed, thereby
allowing the correlation between treatment effect parameters for T and S
to be calculated, and prediction of the treatment effect parameter for T on
x in the current population to be made. Although this seems an appealing
strategy for an interim assessment of the effects of x on T , there are some
important related issues. First, use of the magnitude of the correlation
between treatment effect parameters for T and S as a basis for defining a
surrogate endpoint does not seem advisable. Certainly, if this correlation
is one, and statistical modeling assumptions are justified, then having S is
tantamount to having T for treatment effect assessment. More generally,
however, what cutpoint criterion would be reasonable to assert that S is,
or is not, a suitable surrogate for T in the evaluation of x?

A high correlation (e.g., 0.9) may exclude potential surrogates that fully
mediate the treatment effect on T . Suppose that T = S + U where U is
unrelated to S and x. For example, S may be time from randomization to
disease recurrence in a cancer clinical trial, while U is the additional time to
cancer-related death. The correlation between treatment effect parameters
for T and S may be low if U is influential and of variable distribution among
populations, but treatment effect evaluation on T can very effectively be
made based on S. Similarly, if a relatively low correlation is used as a
surrogate endpoint criterion it may happen that S would be accepted as a
suitable surrogate for T in relation to x even though S does not reflect one
or more of the important pathways whereby x affects T , and the relative
importance among such pathways may vary among populations or among
treatments in the same general class.

Second, use of the correlation between treatment effect parameters for pre-
diction may be sensitive to model specification and may require consid-
erable care to ensure that modeling assumptions are not inappropriately
influential in the prediction. Consider again proportional hazards models
for the marginal distributions of failure time variables T and S, given x.
Chapter 11 describes the use of certain copula models for the estimation
of this correlation. These copula models make the strong assumption that
the joint distribution of T and S is governed by a single parameter θ. For
example, the Clayton model presented is characterized by a constant “cross
ratio”

λT (t; S = s, x)
λT (t; S > s, x)

= 1 + θ for all (t, s).

It is evident, setting S(t) = 0 if S ≤ s and S(t) = 1 if S > s, that this
modeling assumption places substantial restriction on λT {t|S(t); x} that
appears in (19.1). Even if the form of the Clayton model is consistent with
the datasets being analyzed, it seems fundamental to allow θ to depend
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on x, to avoid an assumption that the nature of the relationship between
T and S is unaffected by treatment. (Similarly in the context of simple
normal models for continuous T and S it seems basic to allow the corre-
lation between T and S to depend on x.) In a typical application where
data on (T, S, x) from external studies, and data on (S, x) from the current
study would be considered for a preliminary assessment of the relation-
ship between T and x in the current study, S will be a strong risk factor
for T , but a fundamental question will be does the treatment alter the
relationship? For example, in a clinical trial in which I work, one might
consider low-density lipoprotein (LDL) cholesterol measures in relation to
postmenopausal hormone therapy (HT) as basis for predicting the effects
of HT on coronary heart disease (CHD) incidence. However, one should
allow the LDL and CHD relationship to differ between women randomized
to intervention and control groups.

Also, it seems prudent to estimate marginal hazard ratio parameters in
a manner that is insensitive to strong modeling assumptions, like those
attending the Clayton or Hougaard. This can be done, for example, by ap-
plying standard partial likelihood methods for estimating these marginal
distribution parameters in a two-stage procedure rather than, say, apply-
ing a fully parametric model, where marginal treatment affect parameter
estimates may be affected by the copula model assumption.

Actually, this type of copula model assumption may be quite unnecessary
for these prediction purposes. For example, a concordance measure that
generalizes Kendall’s τ to a finite follow-up region for T and S can be
specified and estimated non-parametrically (e.g., Fan, Hsu, and Prentice
2000). Such non-parametric estimates, with allowance for dependence on
x and on dataset, may provide an avenue to a fairly robust provisional
assessment of the effects of T on x, when T and S are failure time variates.
Of course the value of such assessment depends on the relevance of the
external datasets being analyzed, the adequacy of the proportional hazards
modeling assumptions for the marginal distribution, and the suitability of
a simple normal additive random effects model for the log-hazard ratio
treatment parameters.

19.5 Discussion

Two rather complementary approaches to the preliminary assessment of
the relationship between an endpoint T and a treatment indicator vector x
have been described. In one of these a corresponding variable, or process,
S, is defined that is thought to adhere approximately to the strong surro-
gate endpoint criteria (19.1)–(19.3), and an interim test of the hypothesis
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of no dependence between T and x is based on a corresponding test of
the hypothesis of no dependence between S and x, and (19.1), along with
estimates of the distribution of S given x and used for a quantitative as-
sessment of the relationship between T and x. Other relevant datasets may
be used to help assess the appropriateness of (19.1)–(19.3), or as an aid to
model building for a quantitative assessment.

The second approach, which may be considered whether or not criteria
(19.1)–(19.3) are thought to be approximately true, relies fundamentally
on the existence of other datasets having substantial information on the
joint distribution of (T, S) given x, and enough other datasets that the
variation in treatment parameter estimates for T on x and for S on x can
be characterized and estimated. Assuming the current study can be viewed
as an additional study in this series, estimates the joint distribution of
treatment effect parameters from the other studies, and an estimate of
the treatment effect parameter for S given x in the current study, may
lead to a useful estimate of the treatment effect parameter in the current
study. Given uncertainty that is likely to surround interim inferences based
on either of these approaches, it may be interesting to consider both in
settings where related assumptions are plausible.
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The Promise and Peril of
Surrogate Endpoints in Cancer
Research

Arthur Schatzkin, Mitch Gail, and Laurence
Freedman

20.1 Introduction

Cancer is one of humanity’s leading causes of morbidity and mortality. Nev-
ertheless, in the general population, even the most common malignancies
have a low probability of occurrence over a restricted time interval. For
example, the age-adjusted annual incidence rate of breast cancer among
women in the United States is about 100 per 100,000, or 0.1%; the annual
colorectal cancer incidence rate among men and women combined is around
50 per 100,000, or only 0.05%. And these are among the most frequently
occurring malignancies.

The medical research implications of this relative infrequency of cancer oc-
currence are straightforward: controlled intervention studies or prospective
observational epidemiologic investigations that use incident cancer as an
endpoint must be large, lengthy, and, therefore, costly. Such studies must
yield many hundreds of cancers to have adequate statistical power to de-
tect a meaningful treatment effect or exposure association. The ongoing
Women’s Health Initiative, for example, requires several tens of thousands
of participants to be followed over nearly a decade to observe sufficient num-
bers of cancers to detect reasonable reductions in the incidence of breast
and colorectal malignancies (Women’s Health Initiative Study Group 1998).
Studies with surrogate endpoints, biomarkers of preclinical carcinogenesis,
are attractive because such studies are potentially smaller, shorter, and
considerably less expensive than their counterparts with cancer endpoints.
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20.2 When Are Surrogates Appropriate?

Despite their potential to reduce the size, duration, and cost of studies,
surrogate endpoints may not be acceptable because the quality of evidence
they provide on treatment effects or exposure associations is lower than
that obtained by studying the effects of treatment or exposure on a true
cancer endpoint. For some types of studies, the quality of evidence pro-
vided by surrogates might be sufficient, whereas for others only the cancer
endpoints will do. For example, true clinical endpoints, such as time to
cancer recurrence or time to death, might be indispensable in randomized
phase III clinical trials designed to estimate the clinical effects of a new
cancer treatment. Such trials must provide the highest standards of evi-
dence regarding treatment efficacy. Phase II trials, on the other hand, are
preliminary studies designed to determine whether an agent warrants fur-
ther study in phase III trials, so the use of a surrogate endpoint, such as
whether a tumor shrinks following treatment, might be acceptable. The
consequences of a false negative result might be to curtail testing of a
potentially valuable treatment; a false positive result would not lead to
widespread use of the agent, however, but only to phase III testing, where,
presumably, the agent would be found to have no beneficial clinical effect.
Likewise, in epidemiologic investigations of, for example, the relationship
of dietary factors to colorectal or breast cancer, surrogate endpoints such
as cell proliferation indices or blood hormone concentrations might provide
valuable exploratory information in the evaluation of a new hypothesis,
whereas more rigorous testing of that dietary hypothesis might require the
use of frank cancer endpoints.

20.3 Identifying Surrogate Endpoints for Cancer

To define a surrogate endpoint (S), it is necessary first to define the true
clinical endpoint (T ). In most observational epidemiologic studies, T is the
occurrence of new (“incident”) cancer, usually specified as the age or time
of cancer diagnosis. In therapeutic clinical trials, T is usually taken as the
time from treatment to either cancer recurrence or death. Other clinically
meaningful measures that influence how a patient feels or functions can
also be used as primary endpoints (DeGruttola et al. 2004). Any measure-
ment other than T is a potential surrogate measurement. In a preamble to
a proposed accelerated approval rule for drugs, the Food and Drug Admin-
istration defined a surrogate as follows: “A surrogate endpoint, or ‘marker’,
is a laboratory measurement or physical sign that is used in therapeutic
trials as a substitute for a clinically meaningful endpoint that is a direct
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measure of how a patient feels, functions, or survives and is expected to
predict the effect of the therapy” (Federal Register 1992).

There are a host of biological phenomena, potential biomarkers of preclin-
ical carcinogenesis, that could potentially serve as cancer surrogates. With
the explosion in molecular and cell biology, this list is growing:

Alterations in the characteristics of tissues. “Pre-neoplastic” or frankly
neoplastic changes are obvious candidates for surrogate endpoints.
Examples include cervical (Mitchell et al. 1994), prostatic (Bostwick
1999), and endometrial (Mutter 2000) intraepithelial neoplasia; col-
orectal adenomatous polyps (Schatzkin et al. 1994); bronchial meta-
plasia (a possible pre-neoplastic state for lung cancer) (Misset et al.
1986); and dysplastic changes in the esophagus (Dawsey et al. 1998).

Histological changes detected by imaging. Examples include mammographic
parenchymal patterns as a surrogate for breast carcinogenesis (Saftlas
et al. 1989), and ovarian ultrasound abnormalities in ovarian cancer
(Karlan 1995).

Cellular phenomena. Surrogates in this category include several assays of
epithelial cell proliferation, including tritiated thymidine or bromod-
eoxyuridine incorporation into DNA, proliferating cell nuclear anti-
gen (PCNA), and Ki67 (Baron et al. 1995b). Measures of apoptosis
(Bedi et al. 1995) have recently been proposed as potential surrogate
endpoints, as well as the ratio of proliferation to apoptosis. In AIDS
research, CD4 cell counts and HIV viral load have been used as surro-
gates for critical AIDS endpoints (Tsiatis, DeGruttola, and Wulfsohn
1995, Ruiz et al. 1996).

Molecular markers. A plethora of potential molecular surrogates have been
suggested. Examples include specific somatic mutations in cancer-
related genes (such as RAS or TP53), DNA hypo- and hyper-methyl-
ation of specific genes, and gene expression products (including those
measured in microarrays) (Fearon 1992, Counts and Goodman 1995,
Brown and Botstein 1999). Chemical-DNA adducts can be considered
not only as indicators of exposure (which they might well be) but
also as markers of a “downstream” integrated metabolic process, one
occurring temporally and developmentally closer to the malignant
outcome than the exposure itself (Groopman et al. 1994).

Infection and inflammation. Infectious processes have been implicated in a
number of cancers, and these infections could be viewed as surrogate
endpoints. Examples include infections with human papillomavirus
(HPV) in cervical carcinogenesis (Schiffman 1992), Helicobacter py-
lori in gastric cancer (Muñoz 1994), and HTLV1 in adult T-cell
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leukemia (Blattner 1989). Inflammatory cells and cytokines, which
contribute to tumor growth, progression, and immunosuppression,
could serve as surrogate markers (Balkwill and Mantovani 2001).

Bioactive substances in blood and tissue. Examples here include blood and
tissue estrogens or androgens, oxidation products, and anti-oxidants
(again, in both blood and specific tissues), tissue- or cell-type-specific
antigens (such as prostate-specific antigen, PSA), and growth factors.
For this category of potential surrogates, the marker, blood estrogen
levels (Dorgan et al. 1996), for example, may not be found directly
in the target tissue, but may still properly be considered a potential
surrogate endpoint, in this case, for breast cancer.

Cancer prognostic factors. Potential surrogate endpoints in cancer treat-
ment studies include time to cancer recurrence (when the true end-
point is survival) and initial tumor shrinkage (instead of true endpoint
like time to tumor recurrence or survival).

20.4 Validating Surrogate Markers

Once we have found a potential surrogate, how do we determine whether
it is a good surrogate marker for the true endpoint? A potential use of the
surrogate, S, in assessing the effect of the exposure or intervention, E, on
T is through a hypothesis test of an association between S and E. For S
to be valid for hypothesis testing, the condition “S is not associated with
E” (the “null hypothesis”) must imply that “T is not associated with E,”
and vice versa (Prentice 1989). Later we discuss three conditions that are
required to establish this criterion: first, S must influence T ; second, E
must influence S; and third, S “mediates” the effect of E on T (that is,
in statistical terms, T is unrelated to E conditional on S). If S is valid for
hypothesis testing, we know that if we reject the null hypothesis that S
is associated with E (i.e., we accept that S is associated with E), we can
conclude that T is also probably associated with E.

Although validity of hypothesis testing based on S is desirable, it would be
even more useful if we could predict the magnitude of the effect of E on
T from data on the magnitude of the effect of E on S. Recent proposals
for such prediction are based on analyzing a series of studies of treatments
in a similar class of treatments (Daniels and Hughes 1997, Buyse et al.
2000a, Gail et al. 2000), and “trial-level validity” gives an indication of
how reliably one can predict the magnitude of the effect of E on T .

Suppose in each study we have sufficient information to allow us to estimate
the effect of an exposure, E on a surrogate endpoint, S and the effect of
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FIGURE 20.1. Pairs of treatment effects for seven different hypothetical trials.

E on the frank endpoint, T . We might call these two estimated treatment
effects or exposure associations β̂S and β̂T obtained by regressing S on E
and T on E, respectively. In Figure 20.1, pairs (β̂S,β̂T ) are plotted for seven
different hypothetical clinical trials of various cancer treatments focused on
the same molecular pathway, each compared with placebo. If the squared
correlation, R2, among these trial-level pairs was high, we would conclude
that the effects of E on S are highly predictive of the effects of E on T , and
we would say that S is “trial-level valid” (Bostwick 1999, Mutter 2000) if
R2 was near 1.0. An analysis of such a series of studies with high R2 gives
us some empirical evidence that if we wish to study a new agent in this
same class of agents, we can combine data on the effect of the new agent
E on S with the data from previous studies, as represented in the figure,
to predict what the effect of E is on T . There are, however, a number of
limitations to relying on this strategy (Schatzkin et al. 1994), including
potentially serious loss of precision in estimates of the effect of E on T for
the new agent and uncertainty about whether the new agent really belongs
to the same class of agents depicted in Figure 20.1.

We now turn to some examples that give insight into these criteria for
validating a surrogate marker.

20.5 The Logic of Cancer Surrogacy

Suppose, in Figure 20.2a, E1 represents an “exposure” to some environmen-
tal or host factor, anything from a chemopreventive agent to a deleterious
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FIGURE 20.2. Hypothetical.

risk factor. According to this idealized model, a change in E1 necessarily
alters the surrogate endpoint (S), which in turn modifies the true endpoint,
the likelihood of incident cancer (T ). As we discuss in the next section, a
causal pathway such as that depicted in Figure 20.2a implies that S is valid
for hypothesis testing for the particular factor E1, but, without further as-
sumptions, does not necessarily imply that S will be valid for hypothesis
tests for another exposure, E2, nor that the magnitudes of the effects of
E1 on S can reliably predict the magnitudes of the effects of E1 on T for a
series of exposures (trial-level validity, as described in the previous section).

The scenario in Figure 20.2a rarely occurs. Far more realistic are situations
reflected in Figure 20.2b. Here, E1 modulates carcinogenesis through two
alternative pathways, one through S, the other through another marker
M2. To the extent that E1 operates through the alternative M2 pathway,
which means that S is not a necessary component of carcinogenesis, we can-
not be assured that S is a valid surrogate for hypothesis testing in studies
of E1. The reason for this lack of certainty is that E1 might influence
M2 in a way that offsets its effect on S, the final effect on cancer sim-
ply being unknown. If E1, for example, were to increase M2-positivity, E1
could actually end up increasing cancer incidence, while at the same time
reducing S-positivity and giving at least a superficial impression of being
anti-carcinogenic. An example from cardiovascular disease is instructive.
High-dose diuretics lower blood pressure but have little effect on cardiovas-
cular disease mortality in hypertensive patients, possibly because diuretics
cause hypokalemia, which increases risk of sudden death (Temple 1999).
The relationships in Figure 20.2b also make trial-level validity less likely
than in Figure 20.2a, because the magnitude of the effects of E on T are
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FIGURE 20.3. Hypothetical setting.

less likely to be predictable from the effects of E on S in a series of such
studies.

20.6 Can Surrogate Validity Be Extrapolated from
One Exposure to Another?

Another important question is whether a surrogate that is valid for one
intervention (or exposure) is valid for another. Figure 20.3a reprises Fig-
ure 20.2a but adds another exposure, E2. Exposure here can refer to an
intervention agent or a risk factor. Both E1 and E2 operate through a
single surrogate on the path to cancer. In this scenario, the surrogate is a
necessary component of the cancer pathway. E2 must operate through the
surrogate. The surrogate is valid for studies of E2 as well as those of E1.

In Figure 20.3b, E2 enters into the more complex scenario depicted in
Figure 20.2b. The existence of a non-trivial alternative pathway (through
M2) means that the validity of the surrogate S may be exposure depen-
dent. Even if E1 works primarily through the surrogate and affects M2
minimally, suggesting that the surrogate is reasonably valid for E1-cancer
studies, it cannot be assumed that the E2 − M2 cancer pathway plays a
similarly minor role in carcinogenesis.

For example, a given agent, E1, might influence colorectal carcinogenesis
largely through its influence on cell proliferation. Cell proliferation in this
scenario is a likely valid surrogate for colorectal cancer. A second agent,
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E2, might have a minimal effect on cell proliferation but could increase
apoptosis sufficiently to decrease cancer incidence. Focusing only on cell
proliferation would give a falsely pessimistic impression of the efficacy of
the second agent. The validity of a surrogate must therefore be established
for every intervention.

An approach to this problem is to consider studies of a “class” of bio-
logically comparable intervention agents. If, for example, a meta-analysis
shows that the effect of these agents on the surrogate predicts their effect
on the true endpoint, we can be reasonably confident in inferring a treat-
ment effect on the true endpoint from the effect of a new member of that
class on the surrogate endpoint, as discussed above (Bostwick 1999, Mutter
2000, Schatzkin et al. 1994).

20.7 Epithelial Hyperproliferation: A Case Study

How can we apply this logic to potential surrogates? Cell proliferation as-
says have been touted as potential surrogates for cancer in light of the dys-
regulation of cell growth that characterizes malignancy (Wargovich 1996).
But are they valid surrogates? Figure 20.4 depicts causal events potentially
involved in the relationship between hyperproliferation and the neoplastic
process in the colorectum. If we focus just on the upper portion of this
diagram, we see a single pathway going from normal epithelium to hyper-
proliferative epithelium to neoplasia/cancer. It is this pathway that implic-
itly underlies using hyperproliferation as a surrogate for cancer in testing
whether there is an association between an exposure and cancer.

But hyperproliferation may not be necessary by itself for colorectal car-
cinogenesis. There may be an alternative pathway to neoplasia/cancer that
bypasses hyperproliferation. The problem is that the effect of an interven-
tion agent (E1) on this alternative pathway is unknown and may in fact
counterbalance the effect through the hyperproliferation pathway. Two sce-
narios here are revealing:

1. The agent (E1) reduces proliferation, but at the same time reduces
apoptosis, and therefore has no effect on colorectal cancer;

2. The agent has no effect on proliferation but does increase apoptosis,
thereby reducing colorectal cancer incidence.

In both cases, a hyperproliferation assay gives the wrong answer about an
intervention’s effect on colorectal cancer; by definition, hyperproliferation
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FIGURE 20.4. Causal events potentially involved in the relationship between hy-
perproliferation and the neoplastic process in the colorectum.

would not be a valid surrogate for testing for an association between E1
and cancer.

It is important to emphasize that the proliferation marker does not neces-
sarily give the wrong answer about the agent’s effect on cancer; the prolifer-
ation data might, in fact, be giving us the right answer. The problem is the
uncertainty that flows from the existence of several alternative pathways
to cancer.

20.8 Evaluating Potential Surrogate Endpoints

Given this uncertainty, how can we evaluate the validity of a potential
surrogate marker? The answer is to integrate it into observational epidemi-
ologic studies or clinical trials that have cancer (or a preneoplastic lesion,
such as adenomatous polyps; see below) as an endpoint. This integration
can elucidate the causal structure underlying the relationships among in-
terventions (or exposures), potential surrogate endpoints, and cancer. In
other words, the validation study should include data on T , S, and E for
each individual and, if one wishes to demonstrate consistent ability to pre-
dict the magnitude of the effect of E on T from data on the effect of E on
S (trial-level validity), there should be a series of such studies.

To determine whether the surrogate is valid for hypothesis testing, we need
to investigate three questions:
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1. Is the potential surrogate associated with cancer incidence (i.e., is S
associated with T )?

2. Is the exposure or treatment associated with the potential surrogate
(is E related to S)?

3. Does the potential surrogate endpoint “mediate” the relationship be-
tween exposure or treatment and cancer? That is, conditional on an
individual’s value of S, is there an absence of association between T
and E, as in Figure 20.2a?

Standard epidemiologic measures such as relative risk and attributable pro-
portion can be used in addressing these questions (Rothman and Greenland
1998).

20.8.1 Is the Surrogate Associated with Cancer?

As indicated above, for a marker to be a reasonable surrogate for a given
cancer, it must be associated with that cancer. Ecologic studies can provide
useful, if indirect, information on this connection. Studies are considered
to be “ecologic,” or aggregate, when individual-level information is not
used; instead, an average marker value is obtained for a sample of individ-
uals selected from specific populations (e.g., Seventh Day Adventists versus
non-Adventists), which is then related to the overall risk of cancer in those
populations. Several studies, for example, have compared mean prolifera-
tion indices in groups at varying risk of cancer (Lipkin et al. 1984). In such
studies, however, one cannot be certain that those who are marker-positive
are the ones with increased incidence of cancer.

This “ecologic” problem is obviated by moving to individual-level observa-
tional epidemiologic studies, whether case-control or cohort. Such studies
give individual-level information on T , S, and E and they are important
tools for examining the relationship between a putative surrogate and can-
cer. Blood estrogen levels have been shown in several studies to be directly
associated with breast cancer, a relationship that had to be established
before estrogens could be considered a surrogate for breast malignancy
(Toniolo et al. 1995, Hankinson et al. 1998). Human papillomavirus (HPV)
infection, a potential surrogate for cervical cancer, has been shown to be
highly associated with risk of severe cervical neoplasia (Schiffman et al.
1993). Observational studies can also be incorporated into clinical trial de-
sign. For example, in the Polyp Prevention Trial (Schatzkin et al. 2000), a
dietary intervention study with adenomatous polyp formation as the pri-
mary endpoint, investigators are currently examining the relationship be-
tween colorectal epithelial-cell proliferation measures and subsequent ade-
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noma recurrence. The adenoma or CIN endpoints described here are only
neoplastic cancer precursors; we have, for purposes of discussion, considered
these as proxies for cancer, even though, as we discuss below, the validity
of these precursor endpoints is not ironclad.

The attributable proportion (AP), an epidemiologic parameter that mea-
sures the extent to which T is determined by S, can be useful in deter-
mining the importance of alternative pathways and thereby evaluating the
relationship between S and T . In the simple linear causal model of Fig-
ure 20.2a, the estimated AP for the surrogate is 1.0, excluding random
error. When at least one pathway exists that is alternative to the pathway
containing the surrogate, as in Figure 20.2b, then the AP for the surrogate
is <1.0. A relatively high AP that was still less than 1.0, would suggest
that the alternative (“M2”) pathway plays a small role in tumorigenesis.
An AP substantially lower than 1.0 for the surrogate implies that one or
more alternative pathways is indeed operative, or that S is measured with
a substantial degree of error (see Section 20.10).

20.8.2 Is E Associated with S?

Assuming that we are dealing with an intervention (exposure), E, that has
an established relationship with T , for a potential surrogate marker to be
valid, there must also be some relationship between E and the marker. Eco-
logic studies can provide indirect information on this question. For example,
the mean colorectal epithelial cell proliferation index could be measured in
populations with different average consumption of dietary fat. Individual-
level studies, however, can provide more convincing evidence.

In a clinical trial, we need to see that the intervention changes the marker,
which can be addressed in relatively small studies. Several studies, for ex-
ample, have examined the effect of dietary change or supplementation on
colorectal epithelial cell proliferation (Holt et al. 1998); others have in-
vestigated the effect of dietary fat modification (Prentice et al. 1990) or
alcohol consumption (Reichman et al. 1993), both possible etiologic factors
in breast cancer, on blood or urine estrogen levels. One illustrative case is
that no relationship was found between calcium carbonate supplementa-
tion and epithelial cell proliferation measured one year later (Baron et al.
1995a), even though calcium did reduce overall adenoma recurrence (Baron
et al. 1999). This suggests that proliferation measures are problematic sur-
rogates for colorectal neoplasia/cancer in studies with calcium supplements
as the main intervention/exposure.

We can also examine this question in case-control or cohort studies, in
which we evaluate the association between an exposure and the potential
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surrogate. Schiffman et al. (1993), for example, in investigating the etiology
of cervical cancer, showed a strong association between reproductive risk
factors, particularly number of sexual partners, and HPV infection, a po-
tential surrogate for cervical neoplasia. In a recent meta-analysis of cohort
studies, body mass index was shown to be directly associated with blood
estrogen levels (Endogeneous Hormones and Breast Cancer Collaborative
Group 2003).

20.8.3 Does S Mediate the Link Between E and T?

Once we have determined (1) whether a potential surrogate is highly asso-
ciated with cancer and (2) whether a surrogate is indeed linked to a given
intervention or exposure, it is still necessary to determine whether (3) the
effect of E on T is “mediated” by S in order to establish the validity of S
for hypothesis testing. In statistical terms, mediation by S means that E
and T are unrelated (“conditionally independent”) once marker status is
taken into account. One way to test for this condition is to stratify the data
on levels of the surrogate marker and determine if there is an association
between E and T within strata. If no such association is present, then there
is evidence of mediation. An analogous approach is to include the surro-
gate marker S and the exposure E as independent variables in a multiple
regression model that has T as the dependent variable. If the regression co-
efficient for E is 0, this constitutes evidence for mediation. The statistical
aspects of mediation analysis are an area of current research (Freedman,
Graubard, and Schatzkin 1992, Buyse and Molenberghs 1998).

We can obtain concrete data on mediation by integrating an assay for the
surrogate into either clinical trials or observational epidemiologic studies,
collecting information on both the intervention or exposure and the cancer
(or severe neoplasia). As an example, investigators have used a case-control
study to look at the extent to which HPV infection mediates the association
between number of sexual partners and dysplasia (Schiffman and Schatzkin
1994). As Table 20.1 shows, the number of sexual partners was strongly and
directly associated with cervical dysplasia risk. When the presence or ab-
sence of HPV infection was included as a covariate in a statistical regression
model that related dysplasia to the number of sexual partners, the relative
risk for number of sexual partners dropped dramatically. This suggests that
most of the association between number of partners and cervical dysplasia
is mediated through HPV infection (Franco 1991).

The same analytical strategy can be used to assess the extent of surro-
gate mediation in other study designs. For example, in the meta-analysis
discussed above (Endogeneous Hormones and Breast Cancer Collaborative
Group 2003), a direct association between BMI and breast cancer essen-
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TABLE 20.1. Number of sexual partners and the risk of cervical dysplasia.

Odds ratio Number of sexual partners

1 2 3–5 6–9 >10

Unadjusted 1.0 1.7 3.1∗ 4.7∗ 4.4∗

Adjusted for HPV status 1.0 1.0 1.1 1.5 1.6

∗: p < 0.05.

HPV, human papilloma virus.

tially disappeared after researchers adjusted for blood estrogen levels. A
dietary modification or dietary supplement study of colorectal neoplasia,
from which rectal biopsy specimens are obtained for mucosal proliferation
assays, could provide information on the extent to which any observed
diet/supplement effect is mediated by proliferation changes.

As a general rule, the greater the intervention effect or exposure associa-
tion, the fewer study participants are needed in a mediation analysis. For
a number of reasons, the relative risks due to exposures in observational
studies tend to be larger than the intervention effects observed in clinical
trials. It follows that mediation analyses might be more likely to provide
interpretable data in observational epidemiologic studies. Although com-
plete mediation is necessary for a marker to be perfectly valid for hypothesis
testing, it does not guarantee that the magnitude of the effects of E on S
can be used to predict the magnitude of the effects of E on T reliably.
Moreover, a demonstration that S mediates the effect of E on T for one
exposure does not guarantee that it does so for another exposure. These
points highlight the desirability of obtaining data on E, S, and T in several
studies with possibly differing exposures.

20.9 Surrogates That Are Likely To Be Valid

Unlike putative surrogates such as epithelial cell proliferation or blood hor-
mone levels, for which validity is problematic, considerable evidence sup-
ports the usefulness of a few “downstream” surrogate markers, that is,
those close to cancer on the causal pathway.

Cervical cancer surrogates. Practically all cervical cancer requires prior
persistent HPV infection. HPV persistence results in inactivation,
by the E6 and E7 proteins of the HPV genome, of the TP53 and
RB tumor suppressor genes, leading in turn to increasingly severe
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intraepithelial neoplasia and, eventually, cancer (zur Hausen 2000).
At most only a very small proportion of cervical cancer can arise as a
result of tumor suppressor inactivation occurring by mutation in the
absence of HPV infection. Because most cervical cancer does occur
through persistent HPV infection, an intervention that eliminates
or reduces such infection would have a high likelihood of decreasing
cervical cancer incidence.
Cervical intraepithelial neoplasia (CIN), especially CIN3, is also con-
sidered a strong surrogate for cancer and has been used as an end-
point in a number of epidemiologic studies. A very high percentage
of CIN3 will progress to cancer in 20 years; only a very small fraction
regresses. In fact, CIN3 is very close to being invasive cancer and
is downstream from persistent HPV infection in the causal pathway
leading to malignancy.

Adenomatous polyps for colorectal cancer. Another potential surrogate
endpoint for which inferences to cancer are considered to be strong
is the adenomatous polyp (adenoma). Colorectal adenomas are at-
tractive candidates for cancer surrogacy in research studies because
of their high recurrence rate: about 10% of persons having an ade-
noma removed will have a recurrence in the next year, an occur-
rence frequency nearly 2 orders of magnitude greater than the in-
cidence of cancer. The underlying biological rationale for the use of
adenoma endpoints in epidemiologic studies and clinical trials is the
strong evidence for a relationship between this marker and colorec-
tal cancer. This adenoma-carcinoma sequence is supported by studies
demonstrating carcinomatous foci in adenomas and adenomatous foci
within carcinomas, experiments showing the malignant transforma-
tion of adenoma cell lines, and studies identifying common mutations
in adenomatous and carcinomatous tissue (Sugarbaker et al. 1985,
Paraskeva et al. 1990, Fearon 1990). An intervention reducing the
recurrence of adenomas in the large bowel would therefore proba-
bly decrease the incidence of colorectal cancer, thus making adenoma
recurrence a reasonably valid surrogate marker.
Nevertheless, even the adenoma is not a perfectly reliable surrogate
and some inferential difficulties remain with trials in which adenoma
recurrence is used as a surrogate endpoint. Recurrent adenomas occur
early in the tumorigenic sequence. The results of adenoma recurrence
trials can be misleading if the intervention factor being tested oper-
ates later in the neoplastic process, for example from the growth of a
small into a large adenoma or the transformation of a large adenoma
to carcinoma. A (false) null result for recurrent adenomas can result if
the intervention operates only in the later stages of neoplasia. A pos-
itive result, though, suggests that cancer would be reduced, because
large adenomas and cancers derive from small adenomas.
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FIGURE 20.5. Hypothetical setting.

A second inferential difficulty with adenoma recurrence as a surrogate
endpoint flows from the likely biological heterogeneity of adenomas.
Only a relatively small proportion of adenomas go on to cancer. Sup-
pose that one type, the “bad” adenoma that progresses to cancer,
is caused by exposures E1 and E2, as in Figure 20.5. The second
type, the “innocent” adenoma, is caused by the same exposure E1
but in concert with exposure E3. Imagine an intervention that works
only on exposure E3. We could reduce the pool of innocent adeno-
mas, thereby yielding a statistically significant reduction in adenoma
formation in our trial, but in fact the incidence of bad adenomas
and cancer would be unaffected. This could work the other way as
well: we might see at most a small reduction in all adenomas (the
bad ones being only a small proportion of all adenomas) even though
the intervention truly decreases the formation of bad adenomas and,
therefore, reduces the incidence of cancer.

20.10 Measurement Error

All biomarkers are measured with some error. Two important statistical
issues need to be considered. First, a potential surrogate is useful (and ul-
timately valid) only if it can discriminate among study participants: those
in the different treatment arms of a trial or the various exposure categories
in an epidemiologic study. Discrimination is possible only if the surrogate
values vary more between participants than they do within the same in-
dividual (for example, differences in marker values obtained from different
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tissue areas, measured at different time points, or read by multiple read-
ers.) This can be measured by calculating a value known as the intraclass
correlation coefficient (ICC), and this needs to be relatively large if the
surrogate is to be useful (Fleiss 1986, pp. 1–5).

Intra-participant variability may be reduced, and the ICC thereby in-
creased, by taking repeat samples, such as several biopsies from different
areas or multiple blood samples over time. At a minimum, therefore, data
are required on the potential surrogate marker’s components of variance to
establish the minimum number of marker samples needed for meaningful
discrimination among study participants. In the absence of such data, it is
not possible to ascertain whether null findings for a potential surrogate re-
flect a true lack of effect (or association) or simply the attenuating influence
of random sources of intra-individual variation.

Reliability data have not been routinely collected in marker studies. Few
studies have provided data on potential surrogate marker variability, par-
ticularly with respect to variability over time. A notable exception is re-
cent investigations attempting to estimate the number of estradiol mea-
surements necessary to discriminate among individuals (Hankinson et al.
1995). Studies measuring intra-individual variation in colorectal epithelial
cell proliferation are under way (Lyles et al. 1994, McShane et al. 1998,
Kulldorf et al. 2000). Quality-control studies designed to obtain data on
the variability characteristics of potential surrogate markers are essential.

Second, even if the ICC is acceptable, measurement error will tend to at-
tenuate findings from studies designed to answer each of the three ques-
tions posed above. The associations between intervention (exposure) and
marker, and between marker and cancer, will be attenuated by errors in
marker measurement (Franco 1991, Schiffman and Schatzkin 1994). Mea-
surement error in S can also lead to an underestimate of the extent to
which a correctly measured S would mediate the effect of E on T .

20.11 Conclusion

Because studies with surrogate cancer endpoints can be smaller, faster,
and substantially less expensive than those with frank cancer outcomes,
the use of surrogate endpoints is undeniably attractive. This attractiveness
is likely to grow in coming years as the rapidly advancing discoveries in cell
and molecular biology generate new therapies requiring testing and new
markers that could plausibly serve as surrogates for cancer.

Surrogate endpoint studies can certainly yield useful information. They
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continue to play a legitimate role in Phase II clinical studies. In some areas
of clinical therapeutics, surrogate endpoints like blood pressure, blood sugar
level, or HIV viral load, are regarded as useful for Phase III studies. In other
circumstances, the most that can be said is that surrogates might give the
right answers about intervention effects on (or exposure associations with)
cancer.

The problem is the uncertainty attached to conclusions based on surrogates.
Except for those few surrogates that are both necessary for and relatively
close developmentally to cancer, such as CIN3 and cervical cancer, the ex-
istence of plausible alternative pathways makes inferences to cancer from
surrogates problematic. Merely being on the causal pathway to cancer does
not in itself constitute surrogate validity; it is the totality of causal con-
nections that is crucial. There is, unfortunately, a fairly extensive history
of quite plausible surrogate markers giving the wrong answer about the ef-
fects of treatments for chronic disease (Fleming and DeMets 1996). There
is no reason to believe that observational studies of cancer etiology based
on cancer surrogates are immune to such inferential difficulties.

We should also consider the use of surrogate markers in the broader con-
text of multiple disease endpoints, including treatment toxicity. A surrogate
marker might give the “right” answer about cancer for a given interven-
tion, but nevertheless give little or no information about important adverse
events that greatly influence overall evaluation of the intervention. Suppose,
for example, that we have a valid tissue or blood marker for breast cancer,
one that gives us the right answer about a promising hormone-modulating
intervention. That breast-cancer surrogate will tell us nothing about the
potential of the intervention to increase the incidence of stroke. A potential
stroke surrogate could be measured, but we are then faced with uncertain-
ties about the reliability of this surrogate for stroke itself. This illustrates
yet another difficulty arising from exclusive reliance on surrogate marker
studies.

This chapter emphasizes the importance of conducting the investigations
necessary to evaluate potential surrogates that include information on E, S,
and T for study participants. Such studies are needed if we are to generalize
from surrogate endpoint findings to cancer. There is, however, an implicit
and perhaps unavoidable irony here: the large, long, expensive studies re-
quired to fully evaluate potential surrogates are precisely the studies that
surrogates were designed to replace. Moreover, the exposure-dependence
alluded to above complicates matters further: establishing validity for a
given surrogate for one intervention/exposure does not necessarily trans-
late into validity for another intervention/exposure. To assess validity for a
variety of related interventions or exposures, the investigator needs a series
of studies that provide individual-level data on T , S, and E.
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The problems inherent in using surrogate endpoints need not be regarded
as a cause for pessimism in cancer research. If anything, the limitations of
surrogacy remind us of the complexity of cancer causation and affirm the
continued importance of large clinical trials and observational epidemio-
logic studies with explicit cancer endpoints. In the context of such a re-
search program, we may identify surrogates that can play a useful role in
exploratory investigations and Phase II trials and, in some instances, in
more definitive studies.
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55–57, 116–117,
173–176, 180–182, 193,
196, 266, 335–336, 338

advanced prostate cancer, 220
advanced prostate cancer study,
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Akaike’s Information Criterion
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angioplasty, 43
ANOVA, 33
anti-anginal drug, 41
anti-platelet drug, 43
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anticoagulant, 43
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area under the curve (AUC), 32
area under the curve minus
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arrythmia, 3
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attributable fraction, 16
attributable proportion, 16, 73,
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baseline hazard, 166, 172, 197
Bayesian, 126–128, 138, 196,

253–270, 307–318
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posterior distribution, 265,

267, 269, 309, 312, 313
posterior mean, 258, 261,

264, 267, 268
prior distribution, 261, 264,
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beta blocker, 43
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binary endpoint, 11, 62, 65, 68,
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Brief Psychiatric Rating Scale,
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calcium channel blocker, 43
cancer, 346

advanced, 55, 56, 58, 59
breast, 8, 349, 351, 352, 358,
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cervical, 351
cervix, 351, 358, 360, 361
colorectal, 56, 58, 355, 362
endometrial, 351
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prostate, 59, 351
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cardiovascular, 40–45, 65, 86–87,
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case-control study, 358, 359
CAST trial, 3, 44
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Centers for Disease Control and
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cohort study, 358, 359
computation, 104, 211, 231
conditional independence, 144
conditional model, 153
conditional variance-covariance,
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convergence, 174, 182, 185
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Archimedean, 182, 215
bivariate, 197
Clayton, 164, 172, 176, 180,

183, 346, 347
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correlation coefficient, 166, 273,

278, 283, 284, 292



Index 403

counting process, 220
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auto-regressive, 232, 233
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compound symmetry, 232
factor-analytic, 232
spatial, 232, 233
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Cox model, see proportional
hazards

CPMP, see regulatory
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credible interval, 264, 267, 270
crixivan, 31
Cronbach’s alpha, 271
cryptosporidiosis, 298
cumulative hazard, 209
cyclophosphamide, 55
cyproterone acetate, 59
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cytotoxic therapy, 195
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Data Safety and Monitoring

Board (DSMB), 32
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ddI, 29, 31, 33, 34
delta method, 74, 85, 173, 208,
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depression, 274
discriminant analysis, 330
discrimination, 363
disease-free survival, 35, 163
DNA, 28
doxil, 37
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early progression, 224
ecologic study, 358, 359
efficacy, 50
efficiency, 326
EM algorithm, 188, 192, 221,
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EMEA, see regulatory
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empirical Bayes, 100, 308
encainide, 2, 44
Endogeneous Hormones and

Breast Cancer
Collaborative Group,
360

Epanechnikov kernel, 224
epidemiology, 357
epithelial cell proliferation, 359
epithelial hyperproliferation,

356–357
equivalence trial, 63, 122, 278,

290–292
errors in variables, 196
estimability, 174
estimating equation, 148
exponential distribution, 183
exposure, 352, 359
exposure-response relationship,
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factor analysis, 271
false positive rate, 48
fast track approval, see

accelerated approval
Fieller’s theorem, 74, 330
first-line therapy, 179
Fisher’s exact test, 34
fixed effects, 95
flecainide, 2, 44
fluoropyrimidine, 58, 201
flutamide, 59, 223
folinic acid, 56
Food and Drug Administration
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fractional polynomial, 224–227
frailty, 164, 181, 188, 221
frailty distribution, 181

Gaussian endpoint, 11, 68, 83,
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Gaussian stochastic process, see
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generalized linear mixed model,
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Gibbs sampling, 188
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global cross-ratio, 165
global odds ratio, 165, 200, 213
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hazard function, 221
hazard rate, 224, 342, 344
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helicobacter pylori, 351
herpes simplex infection, 298
hierarchical data, 53, 81, 153,
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Collaborative Group,
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human papillomavirus, 351, 358
hypertension, 41, 42
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infection, 351
inflammation, 351
interferon, 56
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Kaplan-Meier, 32, 116
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Kronecker product, 232, 233, 243

landmark analysis, 205–206, 209,
210, 212, 215

Laplace approximation, 155,
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latent process, 222
latent variable, 219, 222
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left ventricular hypertrophy, 41
length-biased sampling, 204–206,
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leucovorin, 58
leukemia, 352
liarozole, 59, 224
likelihood ratio, 181, 245
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limit of quantification, 34
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linear mixed model, 95, 97, 98,
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linear regression, 199, 209, 307,
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weighted, 108, 316
log-rank, 32, 57, 59, 343
logistic regression, 83–86, 88, 89,

153, 197, 210, 212
longitudinal endpoint, 12,

219–229, 231–251
bivariate, 232–251
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lost to follow up, 39
lymphoma, 298

marginal model, 148–151, 153
marginal pseudo-likelihood, 162
marginal quasi-likelihood, 155
Markov Chain Monte Carlo, 262,
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maximum likelihood, 107, 109,
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maximum pseudo-likelihood, 158
mean square error, 167
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171–172, 174, 176, 178,
187, 208, 255–257, 333,
335, 363–364

median survival time, 196
mental health, 271–293
meta-analysis, 58, 96, 201–214,

216, 231, 246, 282, 302,
307, 310, 356, 360

publication bias, 196
summary data, 196, 316

meta-analytic framework, see
hierarchical framework

microarray, 351
missing data, 5
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outcomes, 87–93
MLwiN, 188
Monte-Carlo method, 229

moricizine, 2, 45
mortality, 43, 44
MQL, see marginal

quasi-likelihood
multi-level model, 154, 188
multifocal leukoencephalopathy,

298
multivariate failure time, 188
myocardial infarction, 41, 43, 44,

65

National Cancer Institute, 40
nausea, 159
necessary and sufficient

condition, 72
nevirapine, 32
New Drug Application (NDA),

22, 37, 38
Newton-Raphson algorithm, 173,

204
non-compliance, 5
non-nucleoside reverse

transcriptase inhibitor
(NNRTI), 32, 35, 296,
315, 318

non-parametric estimation, 182,
347

nucleoside reverse transcriptase
inhibitor (NRTI), 296,
318

numerical integration, 155
numerical problems, 162, 182,

188, 194, 211, 231

odds ratio, 195
oncology, 4, 8, 35–40, 163, 183,

195, 349–366
ordinal endpoint, 65, 84–87,

195–217

p24, 28
p53 gene, 4
pairwise likelihood, 156
PANSS, 61, 64, 121, 140,

246–249, 282–292
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paraplegia, 274
partial likelihood, 347
PE, see proportion explained
penalized quasi-likelihood, 155
performance status, 178
peripheral vascular disease, 43
pharmacodynamics, 17
Phase IV trial, 40, 46
phonophobia, 159
photophobia, 159
PHREG procedure, 192
Pillai’s trace, 241
Pneumocytis carinii pneumonia,

299, 319
polyp prevention trial, 358
Positive and Negative Syndrome

Scale, see PANSS
PQL, see pseudo quasi-likelihood
pre-clinical development, 20
prediction, 2, 82, 97, 103, 116,

143, 148, 150, 170–172,
176, 196, 206, 227, 237,
248, 251, 254, 280, 285,
287, 288, 308, 315,
323–340, 345–347, 352,
356, 361

error, 176
prediction interval, 99

Prentice’s criteria, see surrogate
endpoint evaluation
criteria

Prentice’s definition, see
surrogate endpoint
definition

probit model, 87–89, 153
PROC MIXED, 100, 107, 109,

125
prognostic factor, 178, 208, 278,

352
progression, 55
progression-free survival, 9, 55,

57, 115, 163, 174, 177,
178, 193, 194, 333, 335

proportion explained, 73–75,
77–79, 81, 85, 102–103,

253, 279, 283, 286, 289,
291, 292, 343

proportion of treatment effect
explained, see
proportion explained

proportion of variance explained,
234

proportional hazards, 32, 165,
171, 172, 189, 197, 198,
204, 215, 343, 345, 347

stratified, 189
proportional odds, 84, 86, 197,

198, 210, 215
prostate-specific antigen, 60,

220, 223–228, 352
protease inhibitor, 296, 315, 318
pseudo quasi-likelihood, 161
pseudo-likelihood, 156
psychiatric symptom scale, 271,

278
PTE, see proportion explained

QT interval, 50
quality of life, 35, 195

RANDOM statement, 106
‘subject=’ option, 106

randomized clinical trial, 2, 183,
219, 253, 295, 346

regulatory authorities, 8–10, 68
CPMP, 9
EMEA, 9
FDA, 8, 13–51, 195, 295,

305, 350
ICH, 10, 14

relative effect, 10, 75–79, 81, 83,
91, 102–103, 207, 253,
279, 284, 286, 289, 292

relative risk, 16, 303, 358, 360
reliability, 271

intra-observer, 271
test-retest, 271

repeated measures, see
longitudinal data

REPEATED statement, 106
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‘subject=’ option, 106
response rate

objective, 39, 46
restricted maximum likelihood,

107, 125, 188
risperidone, 60, 283, 290
RNA, 28, 219, 296

safety, 39, 41, 43, 50
SAS IML, 173

NLPNRR, 173, 204
schizophrenia, 60–64, 121,

138–140, 246–249,
274–277, 282–292

Schwarz’s Bayesian Criterion
(SBC), 180

score test, 220, 343
semi-parametric model, 188, 215,

221, 346
sensitivity, 16
sensitivity analysis, 205
separability, 243, 244
serial correlation, 221, 222
serum cholesterol, 65
simplex algorithm, 222
simplified strategy, 104, 189–193,

227
endpoint dimension, 106,

109
measurement error

dimension, 106,
108–109

trial dimension, 106–108
simulations, 104–111, 128–138,

182–187, 268
small-cell lung cancer, 196
smoothing

loess, 224
solid tumor, 195
South-Western Collaborative

Oncology Group
(SWOG), 40

Spearman’s ρ, 200
specificity, 16
spline, 247

stopping rule, 32
stroke, 42
structural model, 255–257
sudden death, 44
surrogate endpoint, see

surrogate marker
definition, 17–18, 68–72

surrogate endpoint evaluation
criteria, 68–72

surrogate marker
definition, 10

surrogate marker evaluation, 67
criteria, 15, 73

surrogate threshold effect, 323,
326–340

survival, 35, 36, 39, 42, 46, 55,
57, 60, 68, 333, 335,
342, 352

survival analysis, 39, 149,
163–217, 219–229, 244

time to failure, 39
time to progression, 38, 46, 163,

183
tolerance, 36
toxicity, 36, 37, 50, 51
treatment indicator, 53
trial design, 37
trial-level surrogacy, 97–100,

108, 109, 124, 143, 146,
154, 158, 161, 166, 169,
174, 185, 188, 192, 199,
206, 208, 213, 222, 227,
233, 235, 236, 248, 250,
254, 258–261, 268, 298,
307, 324, 352, 357

trial-specific surrogacy, 184
tumor growth, 352
tumor response, 35, 58, 195,

201–214
complete response, 35, 39,

58, 201–214
partial response, 35, 58,

201–214
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progressive disease, 58,
201–214

stable disease, 58, 201–214
tumor shrinkage, 35, 36, 195,

350, 352
two-stage approach, 95, 106, 165,

182, 185, 201, 216, 222,
236, 247, 254, 255, 257,
267, 330, 335, 336, 347

two-way design, 47
type I error, 46

upward compatible, 84

vaccine, 321
validity, 272

concurrent, 272, 277, 280
construct, 272
content, 272
criterion, 272, 278, 279, 282
face, 272
individual-level, 281, 285,

287, 292
predictive, 272, 278, 280

trial-level, 280, 285, 287, 292
variance reduction factor,

233–237, 239, 246–249,
282

vasodilator, 43
ventricular arrhythmia, 44
ventricular ectopy, 44
ventricular premature beat, 44
viral load, 219
viramune, 32
visual acuity, 54

Weibull distribution, 172, 173,
204, 209, 212

weighted linear regression, 195
Wilk’s Lambda, 242
WINBUGS, 262, 268
Wishart distribution, 261
Women’s Health Initiative Study

Group, 349
World Health Organization

(WHO), 201

zidovudine, 29, 31, 33, 34
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