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A−1 inverse matrix to regular (i.e. nonsingular) matrix (square one)
A > 0 positively definite matrix (symmetric one): x′Ax > 0 for

arbitrary x �= 0
A ≥ 0 positively semidefinite matrix (symmetric one): x′Ax ≥ 0 for

arbitrary x
Aij (i, j)-th element of matrix A
Ai· i-th row of matrix A (row vector)
A·j j-th column of matrix A (column vector)
A·A = A idempotent matrix (square one)
det(A) = |A| determinant of matrix A (square one)
diag{d1, ..., dn} diagonal matrix (square one) with elements d1, ..., dn on

principal diagonal
tr(A) trace of matrix A (square one), i.e. the sum of diagonal

elements
h(A) rank of matrix A
A·a = λ·a eigenvalue λ and corresponding eigenvector a of matrix A

(square one)
a1, ..., an orthonormal eigenvectors of matrix A (n×n): a′iaj = δij, (i,

j = 1, . . ., n)

χ2
α(n) α-quantile of χ2-distribution with n degrees of freedom
δij Kronecker delta: δij = 1 for i = j, = 0 for i �= j
� distribution function of normal distribution N(0, 1)
γ 1 kurtosis
γ 2 skewness
μk kth central moment
μ′k kth moment
ρ(X, Y) correlation coefficient of random variables X and Y
σ (X) standard deviation of random variable X
�xx covariance matrix of random variables X1, ..., Xn

(
, B, P) probability space with set of elementary events 
, σ -algebra
B and probability measure P



Chapter 1
Introduction

Financial and insurance calculations become more and more frequent and helpful
for many users not only in their profession life but sometimes even in their personal
life. Therefore a survey of formulas of financial and insurance mathematics that
can be applied to such calculations seems to be a suitable aid. In some cases one
should use instead of the term formula more suitable terms of the type method, pro-
cedure or algorithm since the corresponding calculations cannot be simply summed
up to a single expression, and a verbal description without introducing complicated
symbols is more appropriate.

The survey has the following ambitions:

• The formulas should be applicable in practice: it has motivated their choice for
this survey first and foremost. On the other hand it is obvious that by time one puts
to use in practice seemingly very abstract formulas of higher mathematics, e.g.
when pricing financial derivatives, evaluating financial risks, applying account-
ing principles based on fair values, choosing alternative risk transfers ARL in
insurance, and the like.

• The formulas should be error-free (though such a goal is not achievable in full)
since in the financial and insurance framework one publishes sometimes in a hec-
tic way various untried formulas and methods that may be incorrect. Of course,
the formulas are introduced here without proofs because their derivation is not
the task of this survey.

• The formulas should be systematically sorted and described including a simple
denotation that enables a quick and operative searching. Explanation and refer-
ences to related parts of the survey are often attached to some formulas so that
one can browse and look up in the text in an effective way. The detailed Index is
also helpful for this purpose.

• The formulas should be presented in the form that is in average the most frequent
and the most conventional one in practice.

• The formulas should be sufficiently self-contained. Therefore formulas of related
disciplines (e.g. from statistics, theory of probability, demography and others) are
also given in final chapters.

1T. Cipra, Financial and Insurance Formulas, DOI 10.1007/978-3-7908-2593-0_1,
C© Springer-Verlag Berlin Heidelberg 2010



2 1 Introduction

The mathematical level of the formulas and methods ranges from simple ones
exploiting only an arithmetic to very sophisticated matters of higher mathematics
(e.g. the stochastic calculus, and the like). The author hopes that users find in this
survey their level of acceptability corresponding to the problems they solve. The
survey contains also “Mathematical Compendium” to remind some basic mathe-
matical principles, and chapters that are related in direct or indirect way to financial
and insurance analysis: “Descriptive and Mathematical Statistics”, “Econometrics”,
“Index Numbers”, “Stochastic Processes” and “Statistical Analysis of Time Series”.
One attaches also “List of Symbols” for symbols that are frequent in the text
(however, special symbols may be explained in the context of particular formulas).

Acknowledgement The author thanks for various forms of help to Dr. K. Janeček, Dr. P. Myška
and Dr. H. Zaňková. The work is a part of the research project MSM0021620839 (Czech Republic).
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Chapter 2
Simple Interest and Discount

Abstract Chapter 2 contains basic formulas for simple interest and discount: 2.1.
Simple Interest, 2.2. Calendar Conventions, 2.3. Simple Interest with Principals
Credited mthly, 2.4. Simple Discount.

2.1 Simple Interest

• Interest (1) from the point of view of debtor: is the price paid for borrowed
money; (2) from the point of view of creditor: is the reward for postponed con-
sumption and uncertainty of investment; the interests can be of various types:

– active: are interests paid by clients for credits (loans) from banks
– effective: are actual interests respecting various effects that influence returns

(due to conversions m times per year, time shifts, charges, and the like)
– nominal: are quoted interests that do not respect the actual conversion periods
– passive: are interests paid by banks for deposits from clients
– real: are interests adjusted for inflation
– returns: are yields (gains, profits) due to investment

• Simple interest model: means that a loan has an interest calculated at any period
entirely from the original principal so that the amount due increases linearly

Denotation:

i annual (p.a.) interest rate given as a decimal value
p annual (p.a.) interest rate given as a per cent value: i = p/100
t time measured in years (e.g. t = 0.5 means half a year)
k time measured in days: t = k/365 (see Sect. 2.2)
It interest credited at time t
P principal (principal capital, present value)
St amount due at time t (future value, terminal value): S0 = P

5T. Cipra, Financial and Insurance Formulas, DOI 10.1007/978-3-7908-2593-0_2,
C© Springer-Verlag Berlin Heidelberg 2010



6 2 Simple Interest and Discount

It = Pit = Pi
k

365
= P

p

100

k

365

(simple interest credited at time t: it is applied when the time t does not exceed
1 year, i.e. 0 ≤ t ≤ 1 or 0 ≤ k ≤ 365)

P = It

it
(principal P)

i = It

Pt
(interest rate i); p = 100It

Pt
(interest rate p given as percent)

t = It

Pi
(time t); k = 365It

Pi
(time k measured in days)

I = IN1 + · · · + INn

ID

where INj = (Pjkj)/100 is interest number for principal Pj and time kj measured in
days (j= 1, . . ., n); ID= 365/p is interest divisor for interest rate p given as per cent

(simple interest for checking account (demand deposit): principals P1, . . ., Pn bear
interests within k1, . . ., kn days, respectively, due to a fixed interest rate p)

St = P+ It = P(1+ it) = P

(

1+ i
k

365

)

= P

(

1+ p

100

k

365

)

(amount due at time t: is the principal P with simple interest It accrued up to time t;
it is applied when the time t does not exceed 1 year, i.e. 0 ≤ t ≤ 1 or 0 ≤ k ≤ 365)

P = St

1+ it
(principal P)

i = St − P

Pt
(interest rate i); p = 100(St − P)

Pt
(interest rate p given as percent)

t = St − P

Pi
(time t in years); k = 365(St − P)

Pi
(time k measured in days)

t̄ = S1 + · · · + Sn − P

Pi
, where P = S1

1+ it1
+ · · · + Sn

1+ itn

(mean pay-off time for simple interest: is an equivalent time at which all amounts
S1, . . ., Sn corresponding originally to times t1, . . ., tn could be paid off all at once)
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• Discount rate: is the interest rate charged on discount loans (short-term funds) by
the central bank to commercial banks (such loans provide reserves to banks in a
time of need and are a tool of monetary policy: e.g. the central bank increases the
discount rate when a higher inflation is expected)

• Repo rate: is the interest rate charged by the central bank when purchasing bills
of exchange discounted by commercial banks (more generally, repo rates are the
rates applied in any repo operation)

• Interbank interest rates: are the interest rates for short-term loans among com-
mercial banks (their motivation is the same as in the case of discount rate); e.g.
LIBOR (London Interbank Offered Rate) and LIBID (London Interbank Bid
Rate) are published daily for leading currencies and various maturities as the
trimmed average of eight or sixteen leading interest rates on the interbank market
in UK; similarly, one applies FIBOR in Germany (Frankfurt) or EURIBOR in EU

2.2 Calendar Conventions

• Calendar conventions: are rules how to count the difference between two dates;
in particular, one applies them in formulas of simple interest model (see Sect.
2.1) and simple discount model (see Sect. 2.4)

Denotation:

DMY symbol for date (e.g. the date November 6, 2009 corresponds to D = 6, M
= 11, Y = 2009); for a time interval one needs dates T1 = D1M1R1 and T2
= D2M2R2

t = k

360
or t = k

365
or t = k

act

(calendar conventions: express the time t in interest or discount models as a fraction
of year (see examples thereinafter); they differ according to countries and financial
products)

t = 360(R2 − R1)+ 30(M2 −M1)+min{D2; 30} −min{D1; 30}
360

(calendar Euro-30/360: all months have 30 days and all years have 360 days)

t = 360(R2 − R1)+ 30(M2 −M1)+ D∗2 − D∗1
360

(calendar US-30/360: the asterisks mean that all dates ending on 31st are changed
to 30th as for Euro-30/360 with the only exception, namely if D1 < 30 and D2 = 31
then one changes T2 to the first day of the next month)
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t = T2 − T1

360

(calendar act/360: uses the actual number of days of the given period (one denotes
it as T2 – T1), but 360 days of the year are considered in denominator of the corre-
sponding fraction; it is used e.g. in Germany for operations with eurocurrencies and
for floaters)

t = T2 − T1

365

(calendar act/365: uses the actual number of days of the given period (one denotes it
as T2 – T1) and 365 days of the year are considered in denominator (also for the leap
year); it is used e.g. in UK or for short-termed securities on German money-market)

t = k1

number of days in beginning year R1
+R2−R1−1+ k2

number of days in ending year R2

(calendar act/act: uses the actual number of days of the given period and the actual
number of days of particular years; k1 is the actual number of days of the given
period in the beginning year R1 and k2 is the actual number of days of the given
period in the ending year R2 (if R1 = R2, then k1 is the actual number of days from
the beginning of the given period till the end of this year and k2 is the actual number
of days from the beginning of this year till the end of the given period)

i2 = i1
t1
t2

(conversion of the rate of return i1 to i2 due to change from the calendar convention
t1 to t2)

i2 = i1
365

360

(example of conversion of the rate of return i1 to i2 due to change from the calendar
convention t1 = act/360 to t2 = act/365)

• Conventions that are applied when the maturity date is not the bank day:

– following day: the maturity date is taken as the following bank day
– modified following day: the maturity date is taken as the following bank day,

if it still lies in the same month; otherwise one takes the preceding bank day
– preceding day: the maturity date is taken as the preceding bank day
– modified preceding day: the maturity date is taken as the preceding bank day,

if it still lies in the same month; otherwise one takes the following bank day
– second-day-after: the maturity date is taken as the following second bank day
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2.3 Simple Interest with Principals Credited mthly

• Simple interest with principals credited mthly: instead of the usual calculation of
the simple interest at the end of an annual period, one divides it to m subperi-
ods (e.g. to months for m = 12) as if the same principals r were credited from
the beginnings or from the ends of particular subperiods to the end of the given
annual period; at this date a single annual compensation for all subperiods is
paid up

Denotation:

i annual (p.a.) interest rate
r amounts of principals credited mthly (e.g. monthly for m = 12)
R annual compensation for all subperiods

R = rm+ r
i

m
(m+ (m− 1)+ · · · + 1) = r

(

m+ m+ 1

2
i

)

(simple interest with principals credited mthly from the beginnings of particular
subperiods: e.g. for m = 12 one obtains R = r·(12 + 6.5·i))

R = rm+ r
i

m
((m− 1)+ (m− 2)+ · · · + 1) = r

(

m+ m− 1

2
i

)

(simple interest with principals credited m-thly from the ends of particular subperi-
ods: e.g. for m = 12 one obtains R = r·(12 + 5.5·i))

2.4 Simple Discount

• Simple discount: is an interest transaction common mainly for short-term loan
instruments, i.e. with maturity up to 1 year (bills of exchange, certificates
of deposits (CD’s), Treasury bills (T-bills), and the like), where the price
of the corresponding loan is set down by subtracting the so-called discount
from the amount due; such a loan makes use of the discount principle, i.e.
the corresponding interest is credited at the beginning of the discount period
(interest-in-advance), while in the simple interest model the interest is credited
in arrears at the end of the interest period

Denotation:

d annual (p.a.) discount rate given as a decimal value
t time measured in years (e.g. t = 0.5 means half a year)
k time measured in days: t = k/365 (see Sect. 2.2)
Dt discount (interest-in-advance) credited at the beginning of discount period t
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P principal
St amount due at time t

Dt = Stdt = Std
k

365
(discount credited at the beginning of discount period t)

P = St − Dt = St(1− dt) = St

(

1− d
k

365

)

(principal P)

d = St − P

Stt
(discount rate d)

t = St − P

Std
(discount period t measured in years)

k = 365(St − P)

Std
(discount period k measured in days)

i = St − P

Pt
> d = St − P

Stt
(comparison of interest rate i and discount rate d)

i = d

1− dt

(relation between interest rate i and discount rate d)
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Chapter 3
Compound Interest and Discount

Abstract Chapter 2 contains basic formulas for compound interest and discount:
3.1. Compound Interest, 3.2. Compound Discount, 3.3. Compound Interest and
Discount Convertible mthly, 3.4. Combination of Simple and Compound Interest.

3.1 Compound Interest

• Compound interest model: means that interest after each interest period (or con-
version period) is added to the previous principal and the interest for the next
period is calculated from this increased value of the principal so that the amount
due increases exponentially (i.e. interest itself earns interest)

Denotation:

i annual (p.a.) interest rate given as a decimal value
p annual (p.a.) interest rate given as a per cent value: i = p/100
q interest factor: q = 1 + i
qn accumulation factor: qn = (1 + i)n

n number of annual interest periods
P principal (principal capital, present value)
Sn amount due after n annual interest periods (future value, terminal value, time

value of capital at time n): S0 = P

Sn = P(1+ i)n = P
(

1+ p

100

)n = Pqn

(amount due after n interest periods: is calculated by multiplying the principal P by
the accumulation factor, i.e. by the appropriate power of the interest factor)

i =
(

Sn

P

)1/n

− 1 = n

√
Sn

P
− 1 (interest rate i)

11T. Cipra, Financial and Insurance Formulas, DOI 10.1007/978-3-7908-2593-0_3,
C© Springer-Verlag Berlin Heidelberg 2010



12 3 Compound Interest and Discount

n = ln Sn − ln P

ln(1+ i)
= ln(Sn/P)

ln q
= log Sn − log P

log(1+ i)
= log(Sn/P)

log q

(number of annual interest periods n)

n ≈ 69

p
+ 0.35

(rule 69: approximative number of interest periods to double the principal)

n ≈ 72

p

(rule 72: approximative number of interest periods to double the principal)

n ≈ 110

p
+ 0.52

(rule 110: approximative number of interest periods to triple the principal)

t̄ = ln(S1 + · · · + Sn)− ln P

ln q
, where P = S1

qt1
+ · · · + Sn

qtn

(mean pay-off time for compound interest model: is an equivalent term at which all
amounts S1, . . ., Sn due at terms t1, . . ., tn could be paid up all at once)

Kn = K0(1+ i1)(1+ i2) · · · (1+ in) = K0q1q2 · · · qn

(amount due after n interest periods with varying interest rate)

3.2 Compound Discount

• Compound discount model: is the inverse one to the compound interest model
(see Sect. 3.1)

Denotation:

i annual (p.a.) interest rate given as a decimal value
v discount factor: v = 1

1+i
vn present value of 1: vn = 1/(1 + i)n

d annual (p.a.) discount rate given as a decimal value: d = 1− v = iv
n number of annual discount periods
P principal (present value)
Sn amount due after n annual interest periods (future value)
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P = Sn

(1+ i)n
= Snvn = Sn(1− d)n

(present value before n interest periods, i.e. the principal that will accrue to the
given amount due Sn: is calculated by multiplying the amount due Sn by the appro-
priate power of the discount factor; the difference between the amount due and its
present value is compound discount (compare with the simple discount model P =
St(1 − dt) in Sect. 2.4))

P = Sn
1

1+ i1

1

1+ i2
· · · 1

1+ in
= Pv1v2 · · · vn = P(1− d1)(1− d2) · · · (1− dn)

(present value before n interest periods with varying interest rate)

3.3 Compound Interest and Discount Convertible mthly

• Compound interest convertible mthly: when the interest (conversion) period does
not coincide with the basic annual time unit, the interest rate is called nomi-
nal but convertible mthly with interest rate i/m per conversion period, where in
particular

– m = 1, i.e. annually (p.a. = per annum)
– m = 2, i.e. semiannually (p.s. = per semestre)
– m = 4, i.e. quarterly (p.q. = per quartale)
– m = 12, i.e. monthly (p.m. = per mensem)
– m = 52, i.e. weekly (p.sept.= per septimanam)
– m = 365, i.e. daily (p.d. = per diem)

Denotation:

i annual (p.a.) interest rate (nominal interest rate convertible mthly)
i/m interest rate per conversion period
k number of conversion periods of length 1/m (e.g. the number of months for m

= 12); in particular, it is k= m n when the interests are calculated over n years
P principal (present value)
Sk amount due after k conversion periods (future value)

Sk = P

(

1+ i

m

)k

(amount due after k conversion periods: is calculated using the interest rate per
conversion period i/m and the number k of conversion periods of length 1/m)

Sk ≈ P
(

m
√

1+ i
)k = P (1+ i)k/m

(amount due after k conversion periods with root approximation of the interest factor
over one conversion period)
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ief =
(

1+ i

m

)m

− 1

(effective interest rate: is the interest rate converted annually that will produce the
same amount of interest per year as the nominal rate i converted m times per year;
more generally, an interest rate is called effective, if its conversion period and the
basic time unit, which is used for all interest rates, are identical; it is applied to put
different rates and frequencies of conversion on a comparable basis; it holds ief > i
(excepting the trivial case m= 1 with ief = i); for a fixed nominal rate i, the effective
rate ief increases with increasing frequency m)

i(m) = m
(
(1+ i)1/m − 1

)

(conformal interest rate to given (annual) effective interest rate i and frequency of
conversion m: is the nominal interest rate, convertible m times per year, which is
equivalent (conformal) to i and m; it holds i(m) < i (excepting the trivial case m = 1
with i(1) = i))

• Compound discount model convertible mthly: is the inverse one to the compound
interest model convertible mthly

Denotation:

d annual (p.a.) discount rate (nominal discount rate convertible mthly)
d/m discount rate per conversion period
k number of conversion periods of length 1/m (e.g. the number of months for

m = 12); in particular, it is k = m · n when the discounts are calculated over
n years

P = Sk

(

1− d

m

)k

(present value before k conversion periods, i.e. the principal that will accrue to the
given amount due Sk: is calculated using the discount rate per conversion period d/m
and the number k of conversion periods of length 1/m)

P ≈ Sk

(
m
√

1− d
)k = Sk (1− d)k/m

(present value before k conversion periods with root approximation of the discount
factor over one conversion period)

def = 1−
(

1− d

m

)m

(effective discount rate: is the discount rate converted annually that will produce
the same discount per year as the nominal discount rate d converted m times per
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year; it is applied to put different discount rates and frequencies of conversion on
a comparable basis; it holds def < d (excepting the trivial case m = 1 with def =
d); for a fixed nominal discount rate d, the effective discount rate def decreases with
increasing frequency m)

d(m) = m
(

1− (1− d)1/m
)

(conformal discount rate to given (annual) effective discount rate d and frequency
of conversion m: is the nominal discount rate, convertible m times per year, which
is equivalent (conformal) to d and m; it holds d(m) > d (excepting the trivial case
m = 1 with d(1) = d))

(

1+ i(m)

m

)m

= 1+ i;

(

1− d(m)

m

)m

= 1− d

1

d(m)
= 1

i(m)
+ 1

m
; d(m) = i(m)

1+ i(m)/m
; i(m) = d(m)

1− d(m)/m

3.4 Combination of Simple and Compound Interest

• Combination of simple and compound interest: combines both types of models
in such a way that the simple interest model is applied only to the first and last
incomplete years of the model

Denotation:

i annual (p.a.) interest rate given as a decimal value
p annual (p.a.) interest rate given as a per cent value: i = p/100
n number of annual interest periods
t1 incomplete part of the first year (0 ≤ t1 < 1)
t2 incomplete part of the last year (0 ≤ t2 < 1)
k1 number of days credited in the first year
k1 number of days credited in the last year
P principal (present value)
St amount due after time t

St = P(1+ it1)(1+ i)n(1+ it2) = P

(

1+ p

100

k1

365
(1+ i)n

)(

1+ p

100

k2

365

)

(amount due after time t: the reason of such a combination of both types of models
is the fact that creditors prefer for 0 < t < 1 the simple interest model, but for t > 1
the compound interest model (this strategy guarantees them higher interests))



16 3 Compound Interest and Discount

St ≈ P(1+ i)t

(amount due after time t with approximation of the combined models: t = t1 +
n + t2)

St = P(1+ i)[t](1+ i{t})

(amount due after time t with approximation of the combined models: [t] and {t}
are integral and nonintegral parts of time t, respectively)
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Chapter 4
Continuous Interest and Discount

Abstract Chapter 4 deals with basic formulas for continuous interest and discount.

• Continuous interest model: comes from the usual compounding interest model
for the number of conversion periods approaching to infinity (i.e. for conversion
periods of infinitesimal lengths corresponding to the frequency of conversion m
→∞, see Sect. 3.3); the corresponding conformal interest rate i(∞) is called the
force of interest δ

Denotation:

i annual (p.a.) interest rate given as a decimal value
d annual (p.a.) discount rate given as a decimal value: 1− d = 1

1+i
t time measured in years (e.g. t = 1.5 means 1 year and 6 months)
i(m) conformal interest rate (see Sect. 3.3): i(m)=m

(
(1+ i)1/m − 1

)

d(m) conformal discount rate (see Sect. 3.3): d(m)=m
(
1− (1− d)1/m)

= m
(
1− (1+ i)−1/m)

δ force of interest
δ(τ ) force of interest at time τ
P principal (present value)
St amount due after time t (future value)

δ = ln(1+ i) = − ln(1− d)

(force of interest corresponding to (effective) interest rate i)

i = eδ − 1; d = 1− e−δ

i(∞) = lim
m→∞ i(m) = δ; d(∞) = lim

m→∞ d(m) = δ

17T. Cipra, Financial and Insurance Formulas, DOI 10.1007/978-3-7908-2593-0_4,
C© Springer-Verlag Berlin Heidelberg 2010



18 4 Continuous Interest and Discount

St = P lim
m→∞

(

1+ i(m)

m

)tm

= P(1+ i)t = Peδt

(amount due after time t: is calculated by multiplying the principal P by the
appropriate power of the exponential value eδ)

P = St lim
m→∞

(

1− d(m)

m

)tm

= St(1− d)t = Ste
−δt

(present value before time t, i.e. the principal that will accrue to the given amount
due St: is calculated by multiplying the amount due St by the appropriate power of
the exponential value e−δ)

t̄ = ln(S1 + · · · + Sn)− ln P

δ
, where P = S1e−δt1 + · · · + Sne−δtn

(mean pay-off time for continuous interest model: is an equivalent term at which all
amounts S1, . . ., Sn due at terms t1, . . ., tn could be paid up all at once)

St = Sse
∫ t

s δ(τ ) dτ = Ssq(s, t)

(future value at the end of time interval from s to t (s < t) with varying force of

interest δ(τ ) (amount due): q(s,t) = exp
{∫ t

s δ(τ ) dτ
}

is the accumulation factor

corresponding to the force of interest δ(τ ); in particular, for s = 0 one denotes q(t)
= q(0,t))

Ss = Ste
− ∫ t

s δ(τ ) dτ = Stv(s, t)

(present value at the beginning of time interval from s to t (s < t) with varying force

of interest δ(τ ) (principal): v(s,t) = exp
{
− ∫ t

s δ(τ ) dτ
}

is the present value of 1

corresponding to the force of interest δ(τ ); in particular, for s = 0 one denotes v(t)
= v(0,t))

1

St

dSt

dt
= d ln St

dt
= δ(t)

(differential equation for St: in addition, one must prescribe a value Ss at time
s (s < t) as the boundary condition)

dSt = δ(t)St dt (equivalent form of differential equation for St)
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i p q v d δ

i i 100i q − 1 1−v
v

d
1−d eδ − 1

p 100i p 100(q – 1) 100 1−v
v 100 d

1−d 100(eδ − 1)

q 1 + i 1+ p
100 q 1

v
1

1−d eδ

v 1
1+i

100
100+p

1
q v 1 – d e−δ

d i
1+i

p
100+p

q−1
q 1 – v d 1− e−δ

δ ln(1+ i) ln
(
1+ p

100

)
ln q − ln v ln

(
1

1−d

)
δ

δ(τ ) = α + β

1+ βγ eβ·τ

(Stoodley’s model of force of interest: in practice, the parameters α, β, γ must be
estimated or chosen properly)

v(t) = 1

1+ γ
e−(α+β)t + γ

1+ γ
e−αt

(present value of 1 according to Stoodley’s model)

Further Reading

Cissell, R., Cissell, H., Flaspohler, D.C.: Mathematics of Finance. Houghton Mifflin, Boston, MA
(1982)

Dupacova, J., Hurt, J., Stepan, J.: Stochastic Modeling in Economics and Finance. Kluwer,
Dordrecht (2002)

McCutcheon, J.J., Scott, W.F.: An Introduction to the Mathematics of Finance. Heinemann,
London (1986)



Chapter 5
Classical Analysis of Interest Rates

Abstract Chapter 5 deals with basic theory of interest rates: 5.1. Risk-Free Interest
Rate and Real Interest Rate, 5.2. Term Structure of Interest Rates.

5.1 Risk-Free Interest Rate and Real Interest Rate

• Decomposition of interest rate to factor components: separates factors cor-
responding usually to particular interest premiums that are charged for in
practice

Denotation:

i nominal interest rate (before decomposition to factor components)
if risk-free interest rate rfr (considered in practice to be really “free of risk”)
iinfl inflation premium (expected rate of inflation)
idefault default risk premium (charged for the risk that the debtor will not pay the

principal or the interest)
iliquid liquidity premium (charged for the risk that particular assets are not

readily convertible into cash without considerable costs)
imat maturity risk premium (charged for the risk produced by possible changes

of interest rates during the life of particular assets, e.g. reinvestment risk
or volatility risk)

1+ i = (1+ if)(1+ iinfl)(1+ ideault)(1+ iliquid)(1+ imat)

(decomposition of interest rate)

i ≈ if + iinfl + idefault + iliquid + imat

(approximative decomposition of interest rate)

21T. Cipra, Financial and Insurance Formulas, DOI 10.1007/978-3-7908-2593-0_5,
C© Springer-Verlag Berlin Heidelberg 2010



22 5 Classical Analysis of Interest Rates

• Inflation: is the currency depreciation in consequence of rising prices (the
opposite phenomenon is deflation)

• Rate of inflation iinfl: is the relative increase of the corresponding CPI (consumer
price index) or the relative increase of the average CPI over a given period;
various variants of iinfl may be published, e.g.

– rate of inflation as the increase in average annual CPI (see below table for the
Euro area)

– rate of inflation as the increase in CPI compared with the corresponding month
of preceding year

– rate of inflation as the increase in CPI compared with preceding month
– rate of inflation as the increase in CPI compared with a base period (e.g. year

2005 = 100)

Year

Annual inflation
rate in Euro area
iinfl (%)

1996 2.2
1997 1.6
1998 1.1
1999 1.1
2000 2.1
2001 2.3
2002 2.2
2003 2.1
2004 2.1
2005 2.2
2006 2.2
2007 2.1
2008 3.3

Source: European Central Bank (Statistical
Data Warehouse, sdw.ecb.europa.eu)

• Real interest rate: is the nominal interest rate adjusted for inflation

Denotation:

ireal real interest rate
itax tax rate

1+ i = (1+ ireal)(1+ iinfl)

(Fisher’s formula: decomposition of interest rate when adjusting for inflation)
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ireal = i− iinfl

1+ iinfl

(real interest rate)

ireal ≈ i− iinfl

(approximation for real interest rate: can be applied only when inflation is low)

inet
real =

i · (1− itax)− iinfl

1+ iinfl

(net (i.e. after tax) real interest rate)

5.2 Term Structure of Interest Rates

• Term structure of interest rates: concerns the relations among interest rates in
time with respect to the current time

• Spot interest rate: is the interest rate that is in force during a stipulated period
since the current time (i.e. it holds immediately)

• Forward interest rate: is the interest rate that is in force during a stipulated period
since a future time (i.e. it will start to hold in future)

Denotation:

in annual spot interest rate for n years (i.e. for period (0, n), if t = 0 denotes the
current time)

it, n annual forward interest rate for n years (i.e. for period (t, t + n))

(1+ it)
t(1+ it, n)n = (1+ it+ n)t+ n

(1+ it)
t = (1+ i1)(1+ i1, 1)(1+ i2, 1) · . . . · (1+ it− 1, 1)

it, n =
(

(1+ it+ n)t+ n

(1+ it)t

)1/n

− 1; it, 1 = (1+ it+ 1)t+ 1

(1+ it)t
− 1

(forward interest rate expressed by means of spot interest rate)
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Chapter 6
Systems of Cash Flows

Abstract Chapter 6 deals with analysis of cash flow systems including rules of
investment decision: 6.1. Present and Future Value, 6.2. Internal Rate of Return,
6.3. Pay-Back Period, 6.4. Duration, 6.5. Convexity.

• Cash flows (CF): are payments (sums) related to various time date in the
framework of financial, investment or business transactions and projects. One
distinguishes

– inflows: i.e. amounts received (with positive signs in formulas)
– outflows: i.e. amounts paid (with negative signs in formulas)

• Net cash flows: originate by netting all inflows and outflows that are related to
the same time date

6.1 Present and Future Value

• Valuation interest rate (cost of capital, opportunity cost rate): is the rate of return
(see Sect. 12.1) that can be earned on alternative investments of the given capital
sums; it is used to price cash flow systems

• Present value PV of cash flow system: is the price of the given system if we price
it by means of the valuation interest rate at the present time t = 0

Denotation:

CFt cash flow at time t
i valuation interest rate
PV present value
NPV net present value

25T. Cipra, Financial and Insurance Formulas, DOI 10.1007/978-3-7908-2593-0_6,
C© Springer-Verlag Berlin Heidelberg 2010



26 6 Systems of Cash Flows

PV = CF0 + CF1

1+ i1
+ · · · + CFn

(1+ in)n
=

n∑

t=0

CFt

(1+ it)t

(present value of cash flows CF0, CF1, . . ., CFn using spot valuation interest rates
(it is the spot interest rate (over one interest period) for t interest periods), see
Sect. 5.2)

PV = CF0 + CF1v1 + · · · + CFnvn
n =

n∑

t=0

CFtv
t
t, where vt = 1

1+ it

(present value calculated by means of discount factors, see Sect. 3.2)

PV = CF0 + CF1e−δ1 + · · · + CFne−δnn =
n∑

t=0

CFt e−δt t, where δt = ln(1+ it)

(present value in continuous interest model, see Chap. 4)

NPV = CF1

1+ i1
+ · · · + CFn

(1+ in)n
− C

(net present value of cash flows CF1, . . ., CFn when one separates initial costs
C (C can be e.g. the purchase price of a security P = C); it is a special case
of the general formula for CF0, CF1, . . ., CFn (see thereinbefore) when one puts
CF0 = – C or CF0 = – P)

PV = CF0+ CF1

1+ i1
+ CF2

(1+ i1)(1+ i1, 1)
+ · · ·+ CFn

(1+ i1)(1+ i1, 1) . . . (1+ in−1, 1)

=
n∑

t=0

CFt
∏t

k=1 (1+ ik−1, 1)

(present value of cash flows CF0, CF1, ..., CFn using forward valuation interest rates
(it, 1 is the forward interest rate since time t for the next interest period, i.e. for period
(t, t + 1)), see Sect. 5.2)

PV = CF0 + CFt1vt1
t1 + · · · + CFtn vtn

tn =
n∑

k=0

CFtk vtk
tk ,

where vt = 1

1+ it

(present value of cash flows at irregular time instants 0 = t0 < t1 < . . . < tn, see
Sect. 3.2)
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PV =
∑

t: CFt> 0

CFt

(1+ iIt)t
+

∑

t: CFt< 0

CFt

(1+ iOt)t

(present value of cash flows using different valuation interest rates for inflows (iI)
and for outflows (iO))

• Cash flows in continuous time: can model continuous changes of capital in time
due to a varying intensity of payments

Denotation:

CF(t) cash flow coming for the period (0, t)
cf(t) force of capital at time t: cf(t) = CF ′(t)
v(t) discount factor corresponding to the force of interest δ(τ ) over period (0, t):

v(t) = exp
{
− ∫ t

0 {δ(τ ) dτ }
}

(see Chap. 4)

CF(t2)− CF(t2) =
∫ t2

t1
cf(t) dt

(cash flows for the period (t1, t2))

PV =
t∫

0

cf(t)v(t) dt

(present value of cash flows for the period (0, t))

• Investment decision: is usually based on (1) profitability (see thereinafter), (2)
risk (i.e. the level of uncertainty for expected returns, see Sect. 12.2) and (3)
liquidity (i.e. the level of convertibility for investments readily into cash); in the
case of several investment alternatives, the corresponding projects can be

– independent (an arbitrary number of them can be accepted)
– mutually exclusive (at most one of them can be accepted)

• Profitability of investments can be compared by means of various rules of
investment decision, mainly

– present value rule (see thereinafter)
– internal rate of return rule (see Sect. 6.2)
– payback period rule (see Sect. 6.3)

PV > 0

(present value rule: if the investment projects are independent (see thereinbefore),
then all of them with positive present values are accepted; if the investment projects
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are mutually exclusive, then the one with the highest positive present value is chosen
(all calculations are performed with the given valuation interest rate))

• Future value FV of system of cash flows: is the price of the given system if we
price it by means of the valuation interest rate at a given future time

FV = CF0(1+ in)n + CF1(1+ in−1)n−1 + · · · + CFn =
n∑

t=0

CFt(1+ in−t)
n−t

(future value of cash flows CF0, CF1, ..., CFn using spot valuation interest rates
(it is the spot interest rate (over one interest period) for t interest periods), see
Sect. 5.2)

FV = CF0(1+ i1)(1+ i1, 1) · · · (1+ in−1, 1)+ · · · + CFn−1(1+ in−1, 1)+ CFn

=
n∑

t=0

CFt

∏n

k=t+ 1
(1+ ik−1, 1)

(future value of cash flows CF0, CF1, ..., CFn using forward valuation interest rates
(it, 1 is the forward interest rate since time t for the next interest period, i.e. for period
(t, t + 1)), see Sect. 5.2)

FV = PV(1+ i)n,

where the valuation interest rate i is constant

6.2 Internal Rate of Return

• Internal rate of return IRR: is the valuation interest rate for which the present
value of inflows is equal to the present value of outflows; equivalently, it is such
an interest rate that equates the present value of the whole cash flow system to
zero; sometimes (e.g. for securities) one also uses the term yield to maturity YTM;
IRR does not depend on t (unlike the spot valuation interest rates it for calculation
of PV, see Sect. 6.1))

Denotation:

CFt cash flow at time t
P market price of cash flow system; in the case of securities that are not quo-

ted, P can be also their present value (see Sect. 6.1) estimated by means
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of reference valuation interest rates; therefore the term price of cash flow
system or simply price of cash flows is simply used

y internal rate of return IRR (yield to maturity YTM)
y∗ reference valuation rate of return
P(y) price P of cash flow system considered as a function of internal rate of

return y

∑

t: CFt > 0

CFt

(1+ y)t
= −

∑

t: CFt < 0

CFt

(1+ y)t

(definition relation for internal rate of return)

P = CF1

1+ y
+ ...+ CFn

(1+ y)n
=

n∑

t=1

CFt

(1+ y)t

(equation for calculation of internal rate of return of cash flows CF1, ..., CFn with
market price P at time t= 0; in practice, it is the most frequent way how to calculate
y (it corresponds to the previous formula for CF0 = – P); sometimes this relation is
looked upon as the definition relation for function P(y) with argument y)

P =
n∑

k=1

CFtk

(1+ y)tk

(equation for calculation of internal rate of return of cash flows at irregular times
0 < t1 < ··· < tn)

Sj =
∑j

t=0
CFt, j = 0, 1, ..., n; S0 �= 0 ; Sn �= 0

(existence condition of exactly one positive root y: the sequence of S0, S1, ..., Sn with
zeroes excluded changes the sign just once; S0 = CF0 = –P)

y

{
> y∗, if price of cash flows is decreasing function of internal rate of return
< y∗, if price of cash flows is increasing function of internal rate of return

(internal rate of return rule (see Sect. 6.1): a given investment project is accepted,
if its internal rate of return y fulfils the corresponding inequality, where y∗ is the
reference valuation rate of return)
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y > y∗, where CF0 = −P < 0, CFt1 > 0, ..., CFtn > 0

(internal rate of return rule for an investment project with exactly one outflow initial-
izing the project (all remaining cash flows are inflows): the given investment project
is accepted, if its internal rate of return y exceeds the reference valuation rate of
return y∗)

6.3 Payback Period

• Payback period PB: is the number of periods required to recover the initial
outflows

Denotation:

CFt cash flow at time t
i valuation interest rate

Sj =
∑j

t=0
CFt, j = 0, 1, ..., n

S(i)
j =

∑j

t=0

CFt

(1+ it)t
, j = 0, 1, ..., n

PB = k − 1 − Sk−1

CFk
,

where k is the first index such that Sk > 0 (k – 1 is the period just preceding the full
recovery)
(payback period of cash flows CF0 < 0, . . ., CFn > 0, where only inflows follow
several initial outflows)

PB = k − 1 − S(i)
k−1

CFk/(1+ ik)k
, where k is the first index such that S(i)

k > 0

(discounted payback period of cash flows CF0 < 0, ..., CFn > 0, where only inflows
follow several initial outflows)

min {PB}

(payback period rule (see Sect. 6.1): if the investment projects are mutually
exclusive, then the one with the shortest (discounted) payback period is chosen)
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6.4 Duration

• Duration (expected life of cash flow system, also see Sect. 9.2): is an important
instrument of cash flow analysis that enables to investigate

– sensitivity of a cash flow system to varying interest rates
– various aspects concerning the length of life of investment portfolios (e.g. in

the framework of bond portfolio matching and immunization, see Sect. 9.2)

Denotation:

CFt cash flow at time t
y internal rate of return IRR (yield to maturity YTM, see Sect. 6.2)
P(y) price P of cash flow system considered as a function of internal rate of

return y

D =
∑n

t=1 tCFt(1+ y)−t
∑n

t=1 CFt(1+ y)−t
=
∑n

t=1 tCFt(1+ y)−t

P
= −1+ y

P(y)

dP(y)

dy

((Macaulay) duration of cash flows CF1, . . ., CFn with price P and internal rate of
return y; D is a weighted average of times prior to particular cash flows, using the
relative present values of the payments as weights; D can be also characterized as
the ratio of price and interest elasticity; in particular, for CF1 = ··· = CFn−1 = 0 and
CFn �= 0 (i.e. for deposits or zero-coupon bonds) it holds D = n)

D ≈ −P(y)/P(y)

y/(1+ y)
≈ − (P(y+y)− P(y−y)) /P(y)

2y/(1+ y)

(approximation of the duration by means of the relative change of price P(y)/P(y)
and the corresponding relative change of interest factor (1 + y)/(1 + y) =
y/(1 + y))

P(y)/P(y) ≈ −D ·y/(1+ y) or P(y) ≈ −P(y) · D · y

1+ y

(approximation of the relative change of price P(y)/P(y) by means of the dura-
tion and the corresponding relative change of interest factor (1 + y)/(1 + y) = y/
(1 + y); this approximation and its modifications (see thereinafter) are used in prac-
tice when investigating sensitivity of cash flow systems to varied interest rates (it is
based on Taylor expansion))
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DD =
∑n

t=1
tCFt(1+ y)−t−1 = 1

1+ y

∑n

t=1
tCFt(1+ y)−t = −dP(y)

dy

(dollar duration of cash flows CF1, ..., CFn with price P and internal rate of return
y; unlike D, it is a linear function of cash flows, but for CF1 = . . . = CFn−1 = 0 and
CFn �= 0 it does not hold DD = n)

DD ≈ −P(y)

y
≈ −P(y+y)− P(y−y)

2y

(approximation of the dollar duration by means of the change of price P(y) and
the corresponding change of internal rate of return y)

P(y) ≈ −DDy

(approximation of the change of price P(y) by means of the dollar duration and
the corresponding change of internal rate of return y)

y ≈ DDmim + DDnin
DDm + DDn

,

where

CFm

(1+ y)m
+ CFn

(1+ y)n
= CFm

(1+ im)m
+ CFn

(1+ in)n

(relation among internal rate of return y of the system of two cash flows {CFm, CFn}
and the spot interest rates im and in expressed by means of the dollar durations (e.g.
DDm = m · CFm · (1 + y)− m−1 is the dollar duration of the cash flow CFm using the
internal rate of return y))

MD =
∑n

t=1 tCFt(1+ y)−t−1
∑n

t=1 CFt(1+ y)−t
= 1

1+ y

∑n
t=1 tCFt(1+ y)−t

P(y)
= − 1

P(y)

dP(y)

dy

= D

1+ y
= DD

P(y)

(modified duration of cash flows CF1, ..., CFn with price P and internal rate of return
y; MD is a ratio of the dollar duration DD and the price P)

MD ≈ −P(y)/P(y)

y
≈ − (P(y+y)− P(y−y)) /P(y)

2y

(approximation of the modified duration by means of the relative change of price
P(y)/P(y) and the corresponding change of internal rate of return y)
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P(y)/P(y) ≈ −MDy or P(y) ≈ −P(y)MDy

(approximation of the relative change of price P(y)/P(y) by means of the modified
duration and the corresponding change of internal rate of return y)

MD =
∑n

t=1 tCFte−δt
∑n

t=1 CFte−δt
=
∑n

t=1 tCFte−δt

P(δ)
= − 1

P(δ)

dP(δ)

dδ

(modified duration of cash flows CF1, ..., CFn in continuous interest model)

6.5 Convexity

CX =
∑n

t=1 t(t + 1)CFt(1+ y)−t
∑n

t=1 CFt(1+ y)−t =
∑n

t=1 t(t + 1)CFt(1+ y)−t

P
= (1+ y)2

P(y)

d2P(y)

dy2

((Macaulay) convexity of cash flows CF1, . . ., CFn with price P and internal rate
of return y; CX and its modifications (see thereinafter) improve the approximations
based only on durations (see Sect. 6.4))

P(y) ≈ −P(y)D
y

1+ y
+ 1

2
P(y)CX

(y)2

(1+ y)2

(approximation of the change of price P(y) by means of the duration and the
convexity)

DCX =
∑n

t=1
t(t + 1)CFt(1+ y)−t−2 = 1

(1+ y)2

∑n

t=1
t(t + 1)CFt(1+ y)−t

= d2P(y)

dy2

(dollar convexity)

DCX ≈ P(y+y)+ P(y−y)− 2P(y)

(y)2

(approximation of the dollar convexity)

P(y) ≈ −DDy+ 1

2
DCX(y)2

(approximation of the change of price P(y) by means of the dollar duration and
the dollar convexity)
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MCX = 1

(1+ y)2
·
∑n

t=1 t(t + 1)CFt(1+ y)−t

P(y)
= 1

P(y)

d2P(y)

dy2
= CX

(1+ y)2
= DCX

P(y)

(modified convexity)

MCX ≈ (P(y+y)+ P(y−y)− 2P(y)) /P(y)

(y)2

(approximation of the modified convexity)

P(y) ≈ −P(y)MDy+ 1

2
P(y)MCX(y)2

(approximation of the change of price P(y) by means of the modified duration and
the modified convexity)
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Chapter 7
Annuities

Abstract Chapter 7 contains formulas on financial annuities: 7.1. Annuity
Calculus, 7.2. Dynamic Annuities, 7.3. Annuities Payable mthly, 7.4. Continuously
Payable Annuities, 7.5. Amortization of Debt.

• Annuity: is a series of periodic payments (installments) that are repeated regularly
in time and are of the same amount, or change according to a given schedule
(it is a system of regularly distributed CF’s (see Sect. 6)); one can classify the
following types of annuities:

– annuity-certain: its payments are guaranteed (e.g. by a contract)
– contingent annuity: its payments are qualified by given conditions which have

usually a random character (e.g. a life annuity)
– annuity-due: its periodic payments are made at the beginning of each payment

period (i.e. the payments are made in advance)
– immediate annuity: its periodic payments are made at the end of each payment

period (i.e. the payments are made in arrear)
– temporary annuity: its payments have a limited duration (by a contract, e.g. a

10-year annuity)
– perpetuity: there is no contractual limit of duration (e.g. dividends of a com-

mon stock, coupons of the British government bonds known as consols that
have no maturity date, awards of Nobel prize)

– deferred annuity: its payments begin not in the first period but after several
periods of a fixed deferment

– annual annuity: its payment periods are years (e.g. the payments are made
once year on the third February)

– monthly annuity: its payment periods are months (e.g. payments are made
on the seventh day of each month); similarly for quarterly annuity, daily
annuity etc.

35T. Cipra, Financial and Insurance Formulas, DOI 10.1007/978-3-7908-2593-0_7,
C© Springer-Verlag Berlin Heidelberg 2010
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– unit annuity: pays out a unit amount in total each year (e.g. the unit annual
annuity has annual payments in amount of 1 for a given monetary unit); it is
used when constructing annuity formulas

• The formulas in this chapter assume for simplicity that payment periods coincide
with interest periods (otherwise the formal notation must be more complicated
but the formulas are similar)

7.1 Annuity Calculus

• Present value of annuity: is PV (see Sect. 6.1) of such a system of CF’s that
consists of the annuity payments; it can be interpreted as

– the price of the annuity (capitalized annuity)
– the principal of the debt amortized by the annuity payments

• Future value of annuity: is FV (see Sect. 6.1) of such a system of CF’s that
consists of the annuity payments; it can be interpreted as

– the amount accumulated by the annuity payments (accumulation)

• Classical annuity calculus produces explicit formulas for PV and FV of annu-
ities if one assumes that the interest rate i over one payment (= interest) period
remains the same for all payment periods, i.e. it = i for all t (see Sect. 6.1)

Denotation:

PVdue present value of annuity-due
FVdue future value of annuity-due
PVimm present value of immediate annuity
FVimm future value of immediate annuity
Vt

due value of annuity-due at time t
Vt

imm value of immediate annuity at time t
K amount of periodic payment
i interest rate over one payment (= interest) period
q interest factor (see Sect. 3.1): q = 1 + i
v discount factor (see Sect. 3.2): v = 1

1+i
d discount rate over one payment (= interest) period (see Sect. 3.2): d =

1− v = i · v
n number of payment (= interest) periods (run time of annuity)

än = 1+ v+ · · · + vn−1 = 1− vn

1− v
= 1− vn

d
= qn − 1

qn−1(q− 1)

(present value of unit annuity-due)
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an = v+ v2 + · · · + vn = 1− vn

i
= v

1− vn

1− v
= qn − 1

qn(q− 1)

(present value of unit immediate annuity)

s̈n = q+ q2 + · · · + qn = qn − 1

1− v
= qn − 1

d
= q

qn − 1

q− 1

(future value of unit annuity-due)

sn = 1+ q+ · · · + qn−1 = qn − 1

i
= qn − 1

q− 1

(future value of unit immediate annuity)

ä∞ = 1+ v+ · · · = 1

1− v
= 1

d
= q

q− 1

(present value of unit perpetuity-due)

a∞ = v+ v2 + · · · = 1

i
= 1

q− 1

(present value of unit immediate perpetuity)

ä1 = 1; a1 = v; s̈1 = q; s1 = 1

ä0 = a0 = s̈0 = s0 = 0

än = qan; s̈n = qsn

(relations between values of due and immediate annuities)

än = vns̈n; an = vnsn; s̈n = qnän; sn = qnan; 1/an = 1/sn + i

(relations between present and future values of annuities)

än+1 = vän + 1; an+1 = v(an + 1); s̈n+1 = q(s̈n + 1); sn+1 = qsn + 1

(recursive relations for present or future values of annuities)

än+1 = an + 1; sn+1 = s̈n + 1

(relations between adjacent present or future values of due and immediate annuities)
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än an s̈n sn qn vn

än än qan
s̈n

1+ d s̈n
qsn

1+ isn
qn − 1

dqn

1− vn

d

an vän an
vs̈n

1+ d s̈n
sn

1+ isn
qn − 1

iqn

1− vn

i

s̈n
än

1− dän
qan

1− ian
s̈n qsn

qn − 1

d

1− vn

dvn

sn
vän

1− dän
an

1− ian
vs̈n sn

qn − 1

i

1− vn

ivn

qn 1

1− dän
1

1− ian
1+ d s̈n 1+ isn qn 1

vn

vn 1− dän 1− ian
1

1+ d s̈n
1

1+ isn
1

qn
vn

PVdue
n = Kän = K

1− vn

d
; FVdue

n = Ks̈n = K
qn − 1

d
;

PVdue∞ = Kä∞ = K
q

i

(present and future value of annuity-due)

PVimm
n = Kan = K

1− vn

i
; FVimm

n = Ksn = K
qn − 1

i
;

PVimm∞ = Ka∞ = K
1

i

(present and future value of immediate annuity)

K = PVdue
n

än
= PVdue

n
d

1− vn
= FVdue

n
s̈n

= FVdue
n

d

qn − 1

(payments-due for a given debt or for a given accumulation)

K = PVimm
n

an
= PVimm

n
i

1− vn
= FVimm

n
sn

= FVimm
n

i

qn − 1

(immediate payments for a given debt or for a given accumulation)
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n = 1

ln q
ln

Kq

Kq− PVdue
n i

= 1

ln q
ln

(

FVdue
n

i

Kq
+ 1

)

(number of payments-due for a given debt or for a given accumulation)

n = 1

ln q
ln

K

K − PVimm
n i

= 1

ln q
ln

(

FVimm
n

i

K
+ 1

)

(number of immediate payments for a given debt or for a given accumulation)

Vdue
t = K(s̈t + än− t) = Kqtän (value of annuity-due at time t)

V imm
t = K(st + an− t) = Kqtan (value of immediate annuity at time t)

t̄due = 1

ln q
ln

nqni

qn − 1
− 1 ≈ n− 1

2

(mean settlement time of annuity-due: is the run time after which one can set-
tle the annuity-due with n unit payments by a one-off payment of amount n, i.e.:
nvt̄due = än)

t̄imm = 1

ln q
ln

nqni

qn − 1
≈ n+ 1

2

(mean settlement time of immediate annuity: is the run time after which one can
settle the immediate annuity with n unit payments by a one-off payment of amount
n, i.e.:
nvt̄imm = an)

Ddue = v+ 2v2 + · · · + (n− 1)vn−1

1+ v+ · · · + vn−1
= 1

i
− n

qn − 1

(duration of annuity-due (see Sect. 6.4): is the mean time of payments of the
annuity-due weighted by their present values; it can be interpreted as a centre of
gravity of present values of payments of the annuity-due or as the time in which the
value of the annuity-due is insensitive to changes in the interest rate)

Dimm = v+ 2v2 + · · · + nvn

v+ v2 + · · · + vn
=

1+ 2v+ · · · + nvn−1

1+ v+ · · · + vn−1

=
q

i
− n

qn − 1
= Ddue + 1

(duration of immediate annuity (see Sect. 6.4): is the mean time of payments of the
immediate annuity weighted by their present values; it can be interpreted as a centre
of gravity of present values of payments of the immediate annuity or as the time in
which the value of the immediate annuity is insensitive to changes in the interest
rate)
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7.2 Dynamic Annuities

(Iä)n = 1+ 2v+ · · · + nvn−1 = 1

d
(än − nvn)

(present value of unit increasing annuity-due of the type 1, 2, . . . , n)

(Ia)n = v+ 2v2 + · · · + nvn = 1

i
(än − nvn)

(present value of unit increasing immediate annuity of the type 1, 2, . . . , n)

(Is̈)n = qn + 2qn−1 + · · · + nq = 1

d
(s̈n − n)

(future value of unit increasing annuity-due of the type 1, 2, . . . , n)

(Is)n = qn−1 + 2qn−2 + · · · + n = 1

i
(s̈n − n)

(future value of unit increasing immediate annuity of the type 1, 2, . . . , n)

(Dä)n = n+ (n− 1)v+ · · · + vn−1 = 1

d
(n− an)

(present value of unit decreasing annuity-due of the type n, n – 1, . . . , 1)

(Da)n = nv+ (n− 1)v2 + · · · + vn = 1

i
(n− an)

(present value of unit decreasing immediate annuity of the type n, n – 1, . . . , 1)

(Ds̈)n = nqn + (n− 1)qn−1 + · · · + q = 1

d
(nqn − sn)

(future value of unit decreasing annuity-due of the type n, n – 1, . . . , 1)

(Ds)n = nqn−1 + (n− 1)qn−2 + · · · + 1 = 1

i
(nqn − sn)

(future value of unit decreasing immediate annuity of the type n, n – 1, . . . , 1)

(Iä)∞ = 1+ 2v+ · · · = 1

d2

(present value of unit increasing perpetuity-due of the type 1, 2, . . .)
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(Ia)∞ = v+ 2v2 + · · · = 1

id

(present value of unit increasing immediate perpetuity of the type 1, 2, . . .)

(Iä)n = q(Ia)n; (Is̈)n = q(Is)n;

(Dä)n = q(Da)n; (Ds̈)n = q(Ds)n

(relations between values of due and immediate dynamic annuities)

(Is̈)n = qn(Iä)n; (Is)n = qn(Ia)n;

(Ds̈)n = qn(Dä)n; (Ds)n = qn(Da)n

(relations between present and future values of dynamic annuities)

(Iä)n + (Dä)n = (n+ 1)än; (Ia)n + (Da)n = (n+ 1)an

PVdue
n = K

(
än + δv(Iä)n−1

)
; FVdue

n = K
(
s̈n + δ(Is̈)n−1

)
;

PVdue∞ = K
q

i

(

1+ δ

i

)

(present and future value of arithmetically increasing annuity-due of the type K,
K(1 + δ), K(1 + 2δ), . . . with increments proportional to the payment K; in fact it
means an arithmetic decrease for δ < 0)

PVimm
n = K

(
an + δv(Ia)n−1

)
; FVimm

n = K
(
sn + δ(Is)n−1

)
;

PVimm∞ = K
1

i

(

1+ δ

i

)

(present and future value of arithmetically increasing immediate annuity of the type
K, K(1 + δ), K(1 + 2δ), . . . with increments proportional to the payment K)

PVdue
n = K

(
än + δ(Dä)n−1

)
; FVdue

n = K
(
s̈n + δq(Ds̈)n−1

)
;

PVdue∞ = K
q

i

(
1+ δ

(
n− q

i

))

(present and future value of arithmetically decreasing annuity-due of the type . . . ,
K(1 + 2δ), K(1 + δ), K with decrements proportional to the payment K; in fact it
means an arithmetic increase for δ < 0)
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PVimm
n = K

(
an + δ(Da)n−1

)
; FVimm

n = K
(
sn + δq(Ds)n−1

)
;

PVimm∞ = K
1

i

(
1+ δ

(
n− q

i

))

(present and future value of arithmetically decreasing immediate annuity of the type
. . . , K(1 + 2δ), K(1 + δ), K with decrements proportional to the payment K)

PVdue
n = Kän + 

i

(

än − n

qn−1

)

; FVdue
n = Ks̈n + 

i

(
s̈n − nq

)
;

PVdue∞ =
q

i

(

K + 

i

)

(present and future value of arithmetically increasing annuity-due of the type K,
K + , K + 2, . . . with increments independent of the payment K; in fact it means
an arithmetic decrease for  < 0)

PVimm
n = Kan + 

i

(

an − n

qn

)

; FVimm
n = Ksn + 

i

(
sn − n

)
;

PVimm∞ =
1

i

(

K + 

i

)

(present and future value of arithmetically increasing immediate annuity of the type
K, K + , K + 2, . . . with increments independent of the payment K)

PVdue
n = Kän − q

i

(
än − n

)
; FVdue

n = Ks̈n − q

i

(
s̈n − nqn) ;

PVdue∞ =
q

i

(

K − q

i
+ n

)

(present and future value of arithmetically decreasing annuity-due of the type . . . ,
K + 2, K + , K with decrements independent of the payment K; in fact it means
an arithmetic increase for  < 0)

PVimm
n = Kan − q

i

(
an − n

q

)
; FVimm

n = Ksn − q

i

(
sn − nqn−1

)
;

PVimm∞ =
1

i

(

K − q

i
+ n

)

(present and future value of arithmetically decreasing immediate annuity of the type
. . . , K + 2, K + , K with decrements independent of the payment K)
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PVdue
n = vnFVdue

n ; FVdue
n =

q

i

(

K(qn − 1)+

(
qn − qn− (k−1)f

qf − 1
− k + 1

))

(present and future value of periodic-arithmetically increasing annuity-due of the
following type: the first f payments in amount K, the second f payments in amount
K + , the third f payments in amount K + 2, etc.)

PVimm
n = vnFVimm

n ; FVimm
n = 1

i

(

K(qn − 1)+

(
qn − qn− (k−1)f

qf − 1
− k + 1

))

(present and future value of periodic-arithmetically increasing immediate annuity
of the following type: the first f payments in amount K, the second f payments in
amount K + , the third f payments in amount K + 2, etc.)

PVdue
n =

⎧
⎨

⎩

K

qn−1

qn − bn

q− b
, b �= q

Kn, b = q
; FVdue

n =qnPVdue
n ;

PVdue∞=K q
q−b , b < q

(present and future value of geometrically increasing annuity-due of the type K, Kb,
Kb2, . . . , Kbn–1; in fact it means a geometric decrease for 0 < b < 1)

PVimm
n =

⎧
⎪⎪⎨

⎪⎪⎩

K

qn

qn − bn

q− b
, b �= q

K
n

q
, b = q

; FVimm
n =qnPVimm

n ;

PVimm∞ =K
1

q− b
, b < q

(present and future value of geometrically increasing immediate annuity of the type
K, Kb, Kb2, . . . , Kbn–1)

FVimm
n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

K
qf − 1

i
kq(k−1)f , b = qf ; n = kf

K
qf − 1

i

qkf − bk

qf − b
, b �= qf ; n = kf

FV(k−1)f qn− (k−1)f + K
1

i
bk−1(qn− (k−1)f − 1), (k − 1)f < n ≤ kf

(future value of periodic-geometrically increasing immediate annuity of the follow-
ing type: the first f payments in amount K, the second f payments in amount Kb, the
third f payments in amount Kb2, etc.)
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7.3 Annuities Payable mthly

• Annuity payable mthly: is an annuity that is payable more frequently than once
year (usually on monthly basis for m = 12, on quarterly basis for m = 4 or on
semiannual basis for m= 2); one still assumes for simplicity that payment periods
coincide with interest periods, i.e. the interest is payable also mthly per year (see
Sect. 3.3)

• Unit annuity payable mthly: each year one pays mthly payments in amount of
1/m (as if the unit amount would be paid off in total each year)

Denotation:

i annual effective interest rate
q interest factor (see Sect. 3.1): q = 1 + i
v discount factor (see Sect. 3.2): v = 1

1+i
d annual effective discount rate: d = 1− v = iv
n number of years
m frequency of payments (e.g. monthly for m = 12)
i(m) nominal interest rate conformal to i and m (see Sect. 3.3): i(m) =

m
(
(1+ i)1/m − 1

)

d(m) nominal discount rate conformal to i and m (see Sect. 3.3): d(m) =
m
(
1− (1− d)1/m)

ä(m)
n =

1

m

mn −1∑

k=0

v
k
m = d

d(m)
än = 1− vn

d(m)
≈ än + m− 1

2m
(1− vn)

(present value of unit annuity-due payable mthly)

a(m)
n =

1

m

mn∑

k=1

v
k
m = i

i(m)
an = 1− vn

i(m)
≈ an − m− 1

2m
(1− vn)

(present value of unit immediate annuity payable mthly)

s̈(m)
n =

1

m

mn∑

k=1

v
k
m = d

d(m)
s̈n = qn − 1

d(m)
≈ s̈n + m− 1

2m
(qn − 1)

(future value of unit annuity-due payable mthly)

s(m)
n =

1

m

mn −1∑

k=0

v
k
m = i

i(m)
sn = qn − 1

i(m)
≈ sn − m− 1

2m
(qn − 1)

(future value of unit immediate annuity payable mthly)
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ä(m)
∞ =

1

d(m)

(present value of unit perpetuity-due payable mthly)

a(m)
∞ =

1

i(m)

(present value of unit immediate perpetuity payable mthly)

(I(k)ä)(m)
n =

1

d(m)
(ä(k)

n − nvn); (I(k)a)(m)
n =

1

i(m)
(ä(k)

n − nvn),

where m is divisible by k
(present value of unit due and immediate annuity increasing kthly by 1/k and payable
mthly each year during n years with the first payment of amount 1/k)

(D(k)ä)(m)
n =

1

d(m)
(n− a(k)

n ); (D(k)a)(m)
n =

1

i(m)
(n− a(k)

n ),

where m is divisible by k
(present value of unit due and immediate annuity decreasing kthly by 1/k and
payable mthly each year during n years with the first payment of amount n)

(I(k)ä)(m)
∞ =

1

d(m)d(k)
; (I(k)a)(m)

∞ =
1

i(m)d(k)
, where m is divisible by k

(present value of unit due and immediate perpetuity increasing kthly by 1/k and
payable mthly each year with the first payment of amount 1/k)

7.4 Continuously Payable Annuities

• Payments in continuous time (payment streams, also see Sect. 6.1): are deter-
mined by theirs annual instantaneous rate of payment c(t) that is a function in
continuous time such that the amount c(t)dt is paid off in total in the infinitesimal
interval (t, t + dt)

Denotation:

i annual interest rate with interest factor q = 1+ i and discount factor
d annual discount rate: 1− d = 1

1+i
δ force of interest (see Chap. 4): δ = ln(1+ i) = ln q = − ln v = − ln(1− d)
δ(τ ) force of interest at time τ (see Sect. 4)

PV =
∫ t

0
c(τ )e−

∫ τ
0 δ(s) dsdτ ; FV =

∫ t

0
c(τ )e

∫ t
τ δ(s) dsdτ

(present and future value of payments in continuous time (0, t))
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ān =
n∫

0

e−δtdt = 1− e−δn

δ
= 1− vn

δ
;

s̄n =
n∫

0

eδtdt = eδn − 1

δ
= qn − 1

δ

(present and future value of annuity with unit rate of payment c(t) = 1)

ā∞ =
∞∫

0

e−δtdt = 1

δ

(present value of perpetuity with unit rate of payment c(t) = 1)

(Ī ā)∞ =
∞∫

0

te−δtdt = 1

δ2

(present value of continuously increasing perpetuity with rate of payment c(t) = t)

(I ā)∞ =
∞∫

0

[t + 1]e−δtdt = 1

δd

(present value of perpetuity increasing in steps with rate of payment c(t) = [t + 1],
where [ ] denotes the integer part of a number)

7.5 Amortization of Debt

• Amortization of debt: is a gradual repayment of interest-bearing debt (credit,
loan) by its debtor (borrower) to its creditor (lender) according to an amorti-
zation schedule (repayment plan); each repayment (installment) in this schedule
comprises of two components:

– payment on principal: it reduces gradually the principal (unpaid balance) of
the debt

– payment on interest: it settles interest from the unpaid balance of the debt due
to the given credit interest rate (it is important for tax declarations)

• Repayments: can be

– unequal: e.g. interest, uniform, accelerated or general amortization of the debt
– equal (the so-called annuity amortization of the debt): e.g. with a pre-

scribed number of repayments and the corresponding amount of repayments,
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with a prescribed amount of repayments and the corresponding number of
repayments, and the like)

Denotation:

i credit interest rate over one repayment period with factors q = 1 + i and
v = 1

1+i
d discount rate: d = 1− v = i · v
S0 (initial) principal
Sk principal outstanding at the end of the kth repayment period (after the kth

repayment)
Kk repayment at the end of the kth repayment period: Kk = Tk + Uk

Tk payment on principal in the kth repayment
Uk payment on interest in the kth repayment
U total interest: U = U1 + U2 + . . . + Un

PVU present value of the total interest
n number of repayment periods (time of amortization)

• Interest amortization (one repays only interests, and the principal is amortized as
late as in the last repayment):

Kk = S0i, k = 1, 2, . . . , n− 1; Kn = S0(1+ i)

• Uniform amortization (repayments amortize always the same part of the
principal):

Kk = S0

n
(1− (n− k + 1)i)

Tk = S0

n

Uk = S0

(

1− k − 1

n

)

i

Sk = S0

(

1− k

n

)

U = n+ 1

2
S0i;

PVU = S0i

n

(

(n+ 1)an −
(

1− vn

id
− nvn

i

))

• Annuity amortization (repayments of the same amount K result from the pre-
scribed time of amortization n):
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K = S0

an
= S0

i

1− vn

T1 = K − S0i = Kvn; Tk = T1qk−1 = Kqk− n −1 = Kv n − k+1

Uk = K − Tk = K − T1qk−1 = Kian− k+1 = K(1− vn− k+1)

Sk = S0qk−Ksk = S0−T1sk = S0
1− vn− k

1− vn
= K(an− k+1 − vn− k+1) = Kan− k

Repayment Tk Uk Principal outstanding Sk

1 K Kvn Kian = K(1− vn) K(an − vn) = Kan−1
2 K Kvn−1 Kian−1 = K(1− vn−1) K(an−1 − vn−1) = Kan−2
3 K Kvn−2 Kian−2 = K(1− vn−2) K(an−2 − vn−2) = Kan− 3
...

...
...

...
...

n – 1 K Kv2 Kia2 = K(1− v2) K(a2 − v2) = Ka1
n K Kv Kia1 = K(1− v) K(a1 − v) = 0
� Kn S0 Kn – S0

• Annuity amortization (time of amortization n results from the prescribed repay-
ments of the same amount K):

n = ln K − ln(K − S0i)

ln q

• General amortization (using repayments of general amounts K1, . . . , Kn–1 one
calculates the amount Kn of the last repayment to amortize the debt):

Sk = S0qk −
k∑

j=1

Kjq
k−j, k = 1, 2, . . . , n− 1

Kn = S0qn −
n−1∑

j=1

Kjq
n−j
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Chapter 8
Depreciation

Abstract Chapter 8 is an overview of basic accounting depreciation methods.

• Depreciation: is the reduction in the value of an asset due to usage, passage of
time, wear and tear, technological outdating or obsolescence or other such fac-
tors; in accounting, this term describes any method of allocation of purchase cost
of a depreciable asset across time when the asset is employed to generate rev-
enues; the depreciation affects the financial statements and in most countries also
taxes

• Methods of depreciation: are various schedules how to distribute the depreci-
ations across the useful life of the asset; the key factors in the corresponding
formulas are:

– original cost of the given depreciable asset
– salvage value (scrap value) of the asset: this value is not further depreciated
– depreciation time period (useful life) of the asset
– depreciation strategy: the annual depreciation expenses can be uniform (lin-

ear depreciation methods) or gradually decreasing (declining or degressive
depreciation methods, accelerated depreciation) or gradually increasing (pro-
gressive depreciation methods); e.g. when using the accelerated depreciation,
one can speed up the investment payback due to lower tax payments in the first
years of an investment

Denotation:

P0 original cost of the given asset
Pk depreciated cost (book value) after k years
n depreciation time measured in years
ok depreciation charges of the kth year
O accumulated depreciation: O = P0 – Pn = o1 + o2 + . . . + on

s depreciation rate (with respect to P0)
sk depreciation rate (with respect to Pk)
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• Straight line depreciation method (the annual depreciation charges are equal
across the useful asset’s life):

ok = o = P0 − Pn

n

Pk = P0 − ko

s = o

P0

sk = o

Pk
= P0 − Pn

nP0 − k(P0 − Pn)

• Arithmetical declining balance depreciation method (the annual depreciation
charges decrease arithmetically):

condition for o1 :
P0 − Pn

n
≤ o1 ≤ 2(P0 − Pn)

n
(then d ≥ 0, on ≥ 0)

ok = ok−1 − d = o1 − (k − 1)d, where d = 2

n− 1

(

o1 − P0 − Pn

n

)

Pk = P0 − ko1 + (k − 1)k

(n− 1)n
(no1 − (P0 − Pn))

• Sum of years digit depreciation method: is a special case of the previous method
for on = d (i.e. on+1 = 0):

ok = (n− k + 1) · d, where d = (P0 − Pn)

n(n+ 1)/2

o1 = P0 − Pn

(n+ 1)/2
= nd

Pk = P0 − k(P0 − Pn)

n(n+ 1)
(2n+ 1− k)

• Geometrical declining balance depreciation method (the annual depreciation
charges decrease geometrically):

ok = ok− 1s = P0s(1− s)k− 1, where s = 1− n

√
Pn

P0

Pk = P0(1− s)k
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• Arithmetical progressive balance depreciation method (the annual depreciation
charges increase arithmetically):

ok = ok− 1 + d = o1 + (k − 1)d, where d = 2

n− 1

(
P0 − Pn

n
− o1

)

o1 = P0 − Pn

n
− n− 1

2
d
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Chapter 9
Financial Instruments

Abstract Chapter 9 provides important formulas for basic financial instruments
and securities: 9.1. Discount Securities, 9.2. Bonds, 9.3. Stocks, 9.4. Currencies.

9.1 Discount Securities

• Discount securities: are quoted (priced) using the discount principle, i.e. their
price is set down by subtracting the discount from the face value (amount due)
using the corresponding discount rate (see Sect. 2.4) and a suitable calendar
convention (frequently, for simplicity, calendar Euro-30/360, see Sect. 2.2);
discount securities are mostly money market instruments (i.e. short-term ones
meaning 1 year or less) and also fixed-income instruments (i.e. promising the
investor to receive a specified cash flow at a specified time in the future);
examples are as follows:

• Certificates of deposit (CD): are securities representing savings deposits at
commercial banks or savings institutions

• Eurodollars: are CD’s denominated in US dollars at banks outside the United
States (mainly in Europe)

• Bills of exchange (drafts): are unconditional orders issued by a first party
(drawer) directing a second party (drawee, mainly a bank) to make a certain
payment to a third party (payee) at a future date (sometimes they may be not
“orders” but “promises”); a common type of bills of exchange is the cheque

• Commercial papers: are unsecured promissory notes issued by large banks and
corporations collecting money to meet their short-term debt obligations, and
backed only by an issuing bank or corporation’s promise to pay the face amount
on the maturity date specified on the note

• Banker’s acceptances: are drafts used in foreign trade; upon acceptance, which
occurs when an authorized bank accepts them, the drafts become an uncondi-
tional liability of the bank

55T. Cipra, Financial and Insurance Formulas, DOI 10.1007/978-3-7908-2593-0_9,
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56 9 Financial Instruments

• Treasury bills (T-bills): are government securities issued by central banks (by the
Fed in the United States) to finance the government in short-terms, i.e. to cover
the short-term state or communal deficit; their maturities vary from weeks to
1 year

Denotation:

P quoted price
F face value
d annual discount rate for pricing the discount security
k maturity (i.e. the length of time to maturity measured in days mostly according

to the calendar Euro-30/360, see Sect. 2.2)
d1 annual discount rate for pricing the discount security at the moment of its

purchase
k1 maturity at the moment of purchase
d2 annual discount rate for pricing the discount security at the moment of its sale
k2 maturity at the moment of sale
i annual yield to maturity (i.e. the interest rate corresponding to the simple

discount, see Sect. 2.4)

D = Fd
k

360

(discount for pricing the discount security)

P = F − D = F

(

1− d
k

360

)

(quoted price)

d = F − P

F

360

k

(discount rate corresponding to the quoted price P)

i = d

1− d k
360

(annual yield to maturity)

i =
(

1− d2
k2

360

1− d1
k1

360

− 1

)
360

k1 − k2

(annual yield to maturity at the moment of sale prior to the maturity date)
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9.2 Bonds

• Bonds: are long-term debt securities in which the authorized issuer (central or
local government, bank, corporation in the position of borrower) promises to the
bond holder (in the position of lender) to pay periodically the interest (coupon)
and to repay at the maturity date the face value (par value, nominal value, princi-
pal); one sometimes uses the following classification of fixed-income securities
according to their maturities:

– bills with short-term maturities up to 1 year (see Sect. 9.1)
– notes with medium-term maturities between 1 and 5 years
– bonds with long-term maturities greater than 5 years

• Coupons: are paid regularly at the ends of (annual or semiannual) coupon periods
up to and including the maturity date (the exception are the consol bonds with no
maturity); the coupon expressed relatively to the face value is called coupon rate;
when a new bond holder obtained the bond after the date ex-coupon, then the first
forthcoming coupon belongs to the previous holder

• Types of bonds:

– zero-coupon bonds: pay only the face value at maturity (no regular interests)
but they are issued at a substantial discount to the face value; such “long-term
CD’s” are common in some countries mainly due to tax reasons

– coupon bonds: pay periodically interests in the form of coupons (see there-
inbefore)

– consol bonds (perpetual bonds): have no maturity date so that their face value
is never paid up

– fixed rate bonds: have the coupon rate that remains constant till the maturity
date

– indexed bonds (inflation linked bonds): have the coupons and sometimes also
the face value indexed to inflation or to another business indicator (they are
common in pension fund portfolios, e.g. inflation linked UK Gilts)

– floating rate notes (FRN’s, floaters): have a variable coupon rate that is linked
to a reference interest rate (e.g. to LIBOR, see Sect. 2.1); the coupon rate is
recalculated periodically (typically every 1 or 3 months) and charged by a
margin (spread) that reflects the credit risk of the issuer and the liquidity of
the market

– callable bonds: give the issuer the right of option to pay up the face value
(usually plus a call premium) prior to the original maturity date (“bonds
with embedded call option”); putable bonds enable a similar option for the
bondholders

– convertible bonds: give the bondholders the right to exchange the bond for
another security (typically for the common stock issued by the same company)

– bonds with warrant: unlike the convertible bonds, the warrant can be separated
from such a bond and offered as an individual call option (on common stock,
see Sect. 10.5)
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– asset-backed securities: are bonds whose interest and principal payments are
backed by underlying cash flows from other assets; examples are mortgage-
backed securities (MBS’s), collateralized mortgage obligations (CMO’s)
and collateralized debt obligations (CDO’s) that enable banks to finance
mortgages

– subordinate bonds: have a lower priority than other bonds of the same issuer
in the case of default

– junk bonds: are high-yield bonds of speculative (non-investment) grade with a
higher risk of default

– structured bonds: have payments dependent on various market factors (they
are linked e.g. to development of FX courses at FOREX, segments of stock
market and the like)

– state bonds (Treasury notes, Treasury bonds): are government securities issued
by central banks (by the Fed in the United States) to finance the government
in long-terms, i.e. to cover the long-term state deficit (see also T-bills in Sect.
9.1)

– municipal bonds: are issued by local governments, regions, cities and the like
– corporate bonds: are issued by corporations (firms or banks)

• Bond pricing:

– market price: is given by the current supply and demand on the capital market;
if a bond is not regularly quoted (marked-to-market), then it can be priced by
its present value using a suitable reference interest rate (as benchmarks, one
uses e.g. YTM’s of government securities that must be for the priced bond
charged by various spreads)

– present value (fair value): is calculated as the present value of future cash
flows corresponding to the bond (i.e. the future coupons and the face value) by
means of the valuation interest rate for discounting (see Sect. 6.1)

– accrued interest AI: is the part of the next forthcoming coupon to which the
seller of the bond is entitled if the bond is sold prior this next coupon payment

– gross price (dirty price, full price, settlement price): is equal to the market
price if the accrued interest is explicitly involved; in practice, bonds are usually
traded in the gross prices

– net price (pure price): is the gross price without the accrued interest; in
practice, bonds are usually quoted in the net prices

Denotation:

F face value
c annual coupon rate
C annual coupon: C = F · c
n number of annual coupons remaining to maturity date
τ time period (a part of year) since the last preceding coupon (with respect

to the current date of pricing): 0 ≤ τ < 1
m annual frequency of coupon payments (mainly semiannually for m = 2)
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PV present value
i annual valuation interest rate (see Sect. 6.1)
P market price of bond
y yield to maturity (YTM, see Sect. 6.2)
P(y) price P of bond considered as a function of yield to maturity y
AI accrued interest
Pgross gross price
Pnet net price

PV = C

1+ i1
+ · · · + C + F

(1+ in)n
=

n∑

t=1

C

(1+ it)t
+ F

(1+ in)n

(present value of bond at the end of an annual coupon period, where it denotes the
annual valuation spot interest rate for t years (see Sect. 5.2))

yc = C

P

(current yield)

P = C

1+ y
+· · ·+ C

(1+ y)n−1
+ C + F

(1+ y)n =
F

y

(

c+ y− c

(1+ y)n

)

= C

y
+ 1

(1+ y)n

(

F − C

y

)

(equation for calculation of yield to maturity y at the end of an annual coupon period;
yield to maturity is the internal rate of return IRR (see Sect. 6.2) of the cash flow
system corresponding to the given bond)

y ≈ C + (F − P)/n

P

(approximate calculation of yield to maturity y (commercial method))

y ≈ C + (F − P)/n

0.6P+ 0.4F

(approximate calculation of yield to maturity y (Hawawini-Vora))

P(y) =
C

1+ y
+ · · · + C

(1+ y)n−1
+ C + F

(1+ y)n
= C

1− (1+ y)− n

y
+ F

(1+ y)n

=
F

y

(

c+ y− c

(1+ y)n

)

= C

y
+ 1

(1+ y)n

(

F − C

y

)

(price of bond at the end of an annual coupon period considered as a function of
yield to maturity y (on the contrary, if P is given, then one obtains the equation for
calculation of y, see thereinbefore))
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• Properties of the price P = P(y):

– there is exactly one value y for given P
– P decreases at a decreasing rate with increasing yield to maturity y (the convex

relationship between price and yield)
– the absolute change of the price P due to a change of y is larger (and the

relative change of the price P due to a change of y is smaller), if the coupon
rate c is larger

– if y = c, or y > c, or y < c, then with the decreasing number n of remain-
ing coupons (i.e. with the decreasing maturity) the price P remains equal to F
(P = F is called “sell at par”), or P increases to F (P < F is called “sell at dis-
count”), or P decreases to F (P > F is called “sell at premium”), respectively;
in addition, such an increase of P, or such a decrease of P, accelerates with
decreasing maturity n, respectively

– empirical rules: (1) “yields of bonds decrease (or increase) with increasing (or
decreasing) average yields on the capital market, respectively”; (2) “yields
of bonds decrease (or increase) with increasing (or decreasing) inflation,
respectively”

⎧
⎨

⎩

P = F, if and only if y = c
P = F, if and only if y > c
P = F, if and only if y < c

P(y) = C/m

(1+ y)1/m
+ C/m

(1+ y)2/m
+· · ·+ C/m+ F

(1+ y)n
= C

m

1− (1+ y)−n

(1+ y)1/m − 1
+ F

(1+ y)n

(price of bond at the end of an annual coupon, if the annual coupon C is divided to
m regular installments during each year (mainly semiannually for m = 2))

AI = C

y

(
(1+ y)τ − 1

)

(theoretical calculation of accrued interest, when τ is the time period (a part of year)
since the last preceding coupon (0 ≤ τ < 1))

AI ≈ k

360
C

(practical calculation (calendar convention 30E/360, see Sect. 2.2) of accrued inter-
est, when k is the time period (measured in days) since the last preceding coupon (0
≤ k < 360))

Pgross = C

(1+ y)1−τ +· · ·+
C

(1+ y)n−1−τ +
C + F

(1+ y)n−τ =
C

y
(1+y)τ+ 1

(1+ y)n−τ

(

F − C

y

)

(gross price of bond, when τ is the time period (a part of year) since the last
preceding coupon (0 ≤ τ < 1) and n is the remaining number of annual coupons)
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Pgross ≈ P0 + k

360
(P1 − P0 + C)

(approximate calculation of gross price by means of interpolation between the price
P0 at the date of the last preceding coupon and the price P1 at the date of the next
forthcoming coupon, when k is the time period (measured in days) since the last
preceding coupon (0 ≤ k < 360))

Pnet = Pgross − AI = C

y
+ 1

(1+ y)n− τ

(

F − C

y

)

≈ Pgross − k

360
C ≈ P0 + k

360
(P1 − P0)

(net price of bond; in practice, the quoted net prices are usually obtained using
YTM’s of government securities as benchmarks that must be charged for the priced
bonds by various spreads reflecting credibility, liquidity and market psychology)

P0 = C

1+ y
+ · · · + C

(1+ y)n−1
+ C + Pn

(1+ y)n

(equation for calculation of holding-period return (realized return, yield to call)
y across n annual coupon periods, where P0 and Pn are the realized prices at the
beginning and at the end of the holding period)

• Yield curve: plots interest rates paid on interest bearing securities against the time
to maturity (for bonds, it is simply a graph of YTM for various maturities); such
a plot makes sense only for classes of comparable securities (e.g. for Treasury
bonds with rating AA) and for the current date that must be fixed for all plotted
maturities (yield curves constructed today and next month may be different); one
distinguishes:

– yield curve of zero-coupon bonds: plots annual yields to maturity yn of zero-
coupon bonds against their maturities n (i.e. yn = (F/P)1/n – 1); in practice,
it is usually impossible to collect the corresponding data so that one uses the
yield curve of swap interest rates (see Sect. 10.4) charged by suitable spreads
for this purpose

– yield curve of coupon bonds: plots annual yields to maturity yn of coupon
bonds against their maturities n

– forward yield curve: plots annual forward yields to maturity against maturities
n (see forward interest rate in Sect. 5.2); one can construct e.g. the curve of
annual forward yields to maturity y1, n valid in 1 year for zero-coupon bonds
with maturity n

(1+ y1)(1+ y1, n)n = (1+ yn + 1)n + 1

(construction of the forward yield curve y1, n by means of the spot yield curve yn for
zero-coupon bonds)
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Pn = Cn

1+ y1
+ Cn

(1+ y2)2
+ · · · + Cn

(1+ yn−1)n−1
+ Cn + Fn

(1+ yn)n
, n = 1, 2, . . .

(bootstrapping: is a recursive method for construction of the yield curve yn of zero-
coupon bonds (not available in practice) by means of market data on coupon bonds
(available in practice): yn is constructed by means of previous y1, . . . , yn−1 and
observed values {Pn, Cn, Fn} for the coupon bond with maturity n)

y(t) = β0+(β1+β2)
1− exp(−t/τ )

t/τ
−β2 exp(−t/τ ) (β0, β1, β2, τ are parameters)

(Nelson-Siegel curve for modeling yield curves y(t) of zero-coupon bonds against
maturities t by means of the nonlinear regression methods, see Sect. 27.11)

• Shape of yield curve: is explained by various theories; the typical shape is
upward-sloping (i.e. increasing and concave), but it can be also downward-
sloping (i.e. decreasing and convex), humped (i.e. increasing first and decreasing
for longer maturities), flat, U-shaped, and the like

• The increasing yield curves have the following ordering: coupon bonds < zero-
coupon bonds < forward bonds

• The decreasing yield curves have the following ordering: forward bonds < zero-
coupon bonds < coupon bonds

• Duration: is a measure of length of financial instruments (in particular, the
bonds) that enables (similarly as for general cash flow systems in Sect. 6.4) to
investigate
– a sensitivity of bond prices to yields
– a length of bond lives (e.g. for constructing dedicated or immunized bond

portfolios, for matching bond assets to corresponding liabilities, and the like)

Denotation:

y yield to maturity of bond
P = P(y) price P of bond at the end of an annual coupon period considered as a

function of its yield to maturity y
D duration of bond
CX convexity of bond
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D =
∑n−1

t=1 tC(1+ y)−t + n(C + F)(1+ y)−n

∑n
t=1 C(1+ y)−t + F(1+ y)−n

=
∑n−1

t=1 tC(1+ y)−t + n(C + F)(1+ y)−n

P

= −1+ y

P(y)

dP(y)

dy
= 1+ y

y
− n(c− y)+ 1+ y

c(1+ y)n − (c− y)

((Macaulay) duration of coupon bond: is the expected bond life calculated as the
weighted average of times prior to particular coupons, using the relative present
values of particular payments (i.e. the discounted coupons and the discounted last
coupon plus face value, all related to the bond price) as weights; the 1-year bond
has D = 1; the zero-coupon bond has D = n; the consol bond has D = (1 + y)/y)

• Properties of the duration D:

– D decreases with increasing coupon rate c
– D decreases at a decreasing rate with increasing yield to maturity y
– D increases at a decreasing rate with increasing maturity n (only for bonds

with long maturities and deep discounts, the duration can turn to decline after
some fairly long maturities)

P(y)/P(y) ≈ −Dy/(1+ y), resp. P(y) ≈ −P(y)D
y

1+ y

(approximation of the relative change of price P(y)/P(y) by means of the dura-
tion and the corresponding relative change of interest factor (1 + y)/(1 + y) =
y/(1 + y))

DD = 1

1+ y

(∑n−1

t=1
tC(1+ y)−t + n(C + F)(1+ y)−n

)

= −dP(y)

dy
= P(y)D

1+ y

(dollar duration of coupon bond)

P(y) ≈ −DDy

(approximation of the change of price P(y) by means of the dollar duration and
the corresponding change of yield to maturity y)

MD = 1

1+ y

∑n−1
t=1 tC(1+ y)−t + n(C + F)(1+ y)−n

P(y)

= − 1

P(y)

dP(y)

dy
= D

1+ y
= DD

P(y)

(modified duration of coupon bond)
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P(y)/P(y) ≈ −MDy, resp.P(y) ≈ −P(y)MDy

(approximation of the change of price P(y) by means of the modified duration and
the corresponding change of yield to maturity y)

CX =
∑n− 1

t= 1 t(t + 1)C(1+ y)− t + n(n+ 1)(C + F)(1+ y)− n

P
= (1+ y)2

P(y)

d2P(y)

dy2

((Macaulay) convexity of coupon bond (and its modifications, see Sect. 6.5):
improves the approximations based only on durations)

P(y) ≈ −P(y)D
y

1+ y
+ 1

2
P(y)CX

(y)2

(1+ y)2

(approximation of the change of price P(y) by means of duration and convexity)

D = P1D1 + · · · + PNDN

P1 + · · · + PN

(duration of portfolio constructed from bonds of N types: Pk is the price of bonds of
the kth type in portfolio and Dk is their duration (k = 1, . . ., N))

PA(y0) = PP(y0),

where PA(y0) is the price of assets and PP(y0) is the price of liabilities with internal
rate of return y0

(matching assets and liabilities: an investor balances assets and liabilities so that
their present values calculated with the required internal rate of return y0 are equal;
in the bond context, the asset side can be just an investment bond portfolio with the
price PA(y0) and the yield to maturity y0)

⎧
⎨

⎩

PA(y0) = PP(y0)
DA(y0) = DP(y0)
CXA(y0) > CXP(y0)

,

where PA(y0), DA(y0) and CXA(y0) is the price, duration and convexity of assets and
PB(y0), DB(y0) and CXB(y0) is the price, duration and convexity of liabilities with
internal rate of return y0

(matching assets and liabilities including immunization: an investor immunizes the
balanced assets and liabilities to become immune against changes of the yield curve
in a vicinity of the required internal rate of return y0; the last inequality guarantees
(under suitable assumptions) that then PA(y) > PP(y) holds in this vicinity; vari-
ous problems of construction of asset portfolios for given liability portfolios can be
solved under these conditions (in addition, if the minimal acquisition costs of the
investment bond portfolio is required, then the solution is called the dedicated bond
portfolio)
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• Floater (see thereinbefore): is a coupon bond with a variable coupon rate that
is linked to a reference interest rate (e.g. to LIBOR or swap interest rates (when
LIBOR is not quoted across the given period)) plus a margin (involving credit and
liquidity spreads); this reference interest rate plus margin may be applied also for
discounting cash flows corresponding to the floater

Denotation:

F face value of floater
i annual reference interest rate plus margin: it serves (1) as the coupon rate for

the current annual coupon period (i.e. the next forthcoming annual coupon
is C = F · i), and (2) as the interest rate for discounting cash flows

τ time period (a part of year) since the last preceding coupon (with respect to
the current date of pricing): 0 ≤ τ < 1

PV price of floater (with respect to the current date of pricing)

PV = (1+ i)F

1+ i(1− τ )

(price of floater: for pricing a floater, its maturity n is obviously irrelevant; when
pricing a floater immediately after a coupon payment (i.e. τ = 0), then PV = F (i.e.
the floater is priced by its face value); in practice, the discounting rate for a floater
can differ from its coupon rate (mainly due to different margins) so that the previous
formula is only approximate)

9.3 Stocks

• Stocks (shares): are securities that represent an ownership position in a company
(the property of stockholders is called equity); the stocks give their holders the
right (1) to engage in the decisions concerning the company (voting right), (2)
to participate in company’s profit distributed to stockholders (right to dividends),
(3) to participate in the residual value in the case of company’s liquidation, (4) to
make use of the rights issue (privileged subscription) which is an offer to exist-
ing stockholders to subscribe cash for new stocks in proportion to their existing
holdings (see thereinafter); stock companies (corporations) collect equities by
underwriting stocks which is a well proven way how to diversify enterprise risks
over more subjects

• Dividends: are payments made to stockholders based on company’s profit (stocks
are so called dividend securities unlike the fixed-income securities represented
mainly by bonds); the amount distributed to stockholders as dividends equals
company’s earnings less its retained earnings (the part of earnings intended for
reserves and reinvestment); if a new stockholder buys the stock after the ex-
dividend date (shortly before the dividend date), the next forthcoming dividend
remains with the previous stockholder
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• Stock split: increases the number of stocks in issue without any change in com-
pany’s assets representing the equity, thereby reducing the stock price (e.g. in a
5 for 1 stock split, the company replaces each existing stock by five new ones);
the stock split may be argued as the prospect of increased marketability due to
increased divisibility of stock holdings, and the like

• Types of stocks:
– common stock (US), ordinary share (UK): see thereinbefore
– preferred stock: is a hybrid form of security that has characteristics of both

common stocks and bonds (preferred stockholders receive their dividends
prior to common stockholders, but they do not have voting right; moreover,
the dividends are usually fixed similarly to bond coupons)

• Stock pricing:
– market price (market value) P: is given by the current supply and demand on

the capital market
– present value (fair value) PV: is calculated as the present value of future cash

flows corresponding to the stock (see Sect. 6.1); in the framework of the fun-
damental analysis (see thereinafter), it can be taken as a benchmark for the
market price of the given stock

• Stock analysis:
– fundamental analysis: consists in studying company’s financial statements (the

balance sheet and the income (i.e. profit and loss) statement) and related trends
(in efficient capital markets, “any new information is immediately and fully
reflected in prices”)

– technical analysis: is based on price movements and pattern trends
– psychological analysis: studies behaviour of people dealing with stocks

• Ratios in fundamental analysis of stocks:
(1) earnings ratios:

ROA = earnings after taxes (net income)/total assets

(return on (total) assets)

ROE = earnings after taxes (net profit)/equity

(return on equity)

(2) leverage ratios (for long-term debts):

debt/(equity+ debt)

(debt ratio)
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debt/equity

(debt-equity ratio)

(3) investment ratios:

DPS = total dividends/number of stocks

(dividend per stock)

EPS = earnings after taxes (net income)/number of stocks

(earnings per stock)

DPS/EPS

(payout ratio)

EPS/DPS = 1/payout ratio

(dividend cover)

(EPS− DPS)/EPS = 1− payout ratio

(retention ratio)

DPS/P

(dividend yield)

earnings per stock/P

(earnings yield)

P/E = P/EPS = 1/earnings yield
(P/E ratio, price/earning ratio: means (1) “which is the price of unit
net income of the stock”; (2) “which is the payback period of the stock
(measured in years)”)

• Discount dividend model in fundamental analysis of stocks:

Denotation:

PV present value of stock
Pt expected market price of stock at the end of tth year (in particular, P0 is the

current market price of stock at time t = 0)
Dt expected dividend paid out per stock at the end of tth year
Et expected earnings reported per stock at the end of tth year (in particular, E0

are the last earnings per stock reported prior time t = 0)
dt payout ratio (i.e. dt = Dt /Et)
bt measure of retained earnings (i.e. bt = 1– dt)
P/E P/E ratio (i.e. P/E = P0 /E0 at time t = 0)
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i annual valuation (reference) interest rate (see Sect. 6.1) for discounting cash
flows corresponding to the stock (in practice, it can be e.g. the required by
stockholders); mostly i = if + ir, where if is the risk-free interest rate and ir
is the corresponding risk margin (see Sect. 5.1)

it annual valuation spot interest rate for t years (see Sect. 5.2)

PV = D1(1+ i)−1 + D2(1+ i)−2 · · · =
∞∑

t= 1

Dt(1+ i)− t

(general discount dividend model)

PV = D1(1+ i1)−1 + D2(1+ i2)−2 · · · =
∞∑

t= 1

Dt(1+ it)
− t,

(general discount dividend model with valuation spot interest rates)

PV = D(1+ i)−1 + D(1+ i)−2 · · · = D

i

(zero-growth discount dividend model; it is used sometimes to approximate calcula-
tion of the P/E ratio by means of the payout ratio: P/E ≈ d/i)

PV = D1(1+ i)−1 + D1(1+ g)(1+ i)−2 + D1(1+ g)2(1+ i)−3 . . . = D1

i− g
,

where g is the annual growth rate (i > g) (multiple-growth discount dividend model
(Gordon’s model); in practice, one can estimate the annual growth rate as g ≈
b · ROE)

PV =
T∑

t= 1

D1(1+ g1)t− 1(1+ i)− t +
∞∑

t= T+ 1

D1(1+ g1)T− 1(1+ g2)t− T (1+ i)− t

=
T∑

t= 1

D1(1+ g1)t− 1(1+ i)− t + D1(1+ g1)T− 1(1+ g2)

(1+ i)T (i− g2)
,

where g1 is the annual growth rate during the initial period of length T and g2 is the
annual growth rate during the following infinite period (i > g2)

(two-stage multiple-growth discount dividend model; it can be generalized to more
stages of growth)

• Earnings model in fundamental analysis of stocks:

PV = (P/E)normE1,

where (P/E)norm is an estimate of average P/E ratio of the given stock
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(earnings model: (P/E)norm can be estimated by various methods (see thereinafter))

(P/E)norm = d1

i− g

(estimate of (P/E)norm (for an earnings model, see thereinbefore) based on the
multiple-growth discount dividend model with growth rate g)

(P/E)norm = b0 + b1g+ b2d + b3σ ,

where g is the annual growth rate, d is the payout ratio and σ is the risk measured
as the volatility of the stock price returns, see Sect. 12.2)

(regression estimate of (P/E)norm (see Sect. 27.11) (for an earnings model, see
thereinbefore) based on the linear regression model

(P/E)norm = β0 + β1g+ β2d + β3σ + ε)

(P/E)norm = (P/E)M ,

where (P/E)M is an aggregate P/E ratio over all stocks of the given branch of
economy

(comparative estimate of (P/E)norm (for an earnings model, see thereinbefore))

• Indicators in technical analysis of stocks:

Denotation:

Pt expected market price of stock at the end of tth
P̂t value Pt smoothed by a smoothing time series method (see Sect. 31.2)

(1) moving averages and exponential smoothing (see Sect. 31.2): e.g.

P̂t = αPt + (1− α)P̂t−1,

where α (0 ≤ α < 1) is the smoothing constant (simple exponential smoothing)
(recommended instruments of technical analysis of stock prices are based on
exponential smoothing of time series (see Sect. 31.2); using suitable choices of
α, one can achieve a higher degree of smoothing (the so-called long averages:
e.g. for α = 0.1), or a lower degree of smoothing (the so-called short averages:
e.g. for α = 0.3); if at a time point of the corresponding chart the short averages
intersect the long averages from below (or from above), then it indicates to buy
(or to sell) given stocks, respectively)

(2) moments: e.g.

M = P̂t

P̂t− m
,

where m is a preset fixed period (moment of stock price)
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(3) indicators of volatility: e.g.

SDt =
√
√
√
√ 1

m

m∑

i= 1

(
P̂t− i+ 1 − Pt− i+ 1

)2,

where m is a preset fixed period (standard deviation of stock price)
(4) oscillators: e.g.

Ot = P̂(1)
t − P̂(2)

t ,

where P̂(1)
t and P̂(2)

t are values Pt smoothed by two different smoothing meth-
ods (usually by means of moving averages with different lengths, see Sect. 31.2)
(oscillator of stock price)

(5) indices: e.g.

CFI = PCF/NCF

1+ PCF/NCF
,

where PCF (or NCF) is the cumulative amount of all positive (or negative) cash
flows, respectively, caused by changes of stock price during a given period (cash
flow index CFI)

• Rights issue (privileged subscription): is an offer to existing stockholders to sub-
scribe cash for new stocks in proportion to their existing holdings (in addition,
this offer includes an advantageous subscription price for the stock); the rights
are distributed to the existing stockholders similarly as the dividends, namely one
usually allocates one right to each stock; in particular, if a stockholder buys the
stock after the ex-right date (shortly before the right date), the distributed right
remains with the previous stockholder

Denotation:

R price of right
Pbefore price of stock before the ex-right date
Pafter price of stock after the ex-right date
S subscription price (see thereinbefore)
N number of rights that entitle to purchase one stock for the subscription

price S

R =

⎧
⎪⎨

⎪⎩

Pbefore − S

N + 1
before ex-right date

Pafter − S

N
after ex-right date

(price of right)
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9.4 Currencies

• Exchange rate: is the number of units of domestic currency A which can be
exchanged for one unit of foreign currency B (more generally, instead of domes-
tic and foreign currencies one can have basic and non-basic ones, respectively);
exchange rates can be
– fixed: the currency value is fixed through regulation mechanisms to an

acceptable standard (gold, US dollar, currency basket, and the like)
– floating: the currency value is based through market mechanisms upon supply

and demand for the currencies

• Foreign exchange market (FOREX or FX): is the place of currency trading

• Exchange quotation in bank practice:
– bid rate: is used if the bank buys the foreign currency B and pays the exchange

equivalent in the domestic currency A
– ask rate (offer rate): is used if the bank sells the foreign currency B and

receives the exchange equivalent in the domestic currency A

A/Bbid − A/Bask (e.g. EUR/USD 0.7099− 0.7107)

where A is the domestic (i.e. basic) currency and B is the foreign (i.e. non-basic)
currency

(quoted exchange rate; it holds mostly A/Bbid < A/Bask; the range A/Bbid – A/Bask is
called bid/ask spread)

B/Cbid = A/Cbid

A/Bask
; B/Cask = A/Cask

A/Bbid

(calculation of cross exchange rates)
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Chapter 10
Derivative Securities

Abstract Chapter 10 deals with term trading and derivative securities: 10.1.
General Classification, 10.2. Forwards, 10.3. Futures, 10.4. Swaps, 10.5. Options.

10.1 General Classification

• Derivative securities: are securities whose values are dependent on (derived
from) the values of other more basic underlying variables which may be prices of
traded securities (bonds, stocks), currencies, commodities or other cash market
instruments, stock indices, and the like (one deals here with contingent claims
whose amounts are determined by the behaviour of market securities up to
maturity dates they are paid)

– from theoretical point of view: derivative securities are financial contracts
whose value FT at the maturity date T is determined exactly by the market
price ST of the underlying cash instrument at the time T

– in contrast to prompt trading, derivative securities represent term trading with
the agreed term between the contract date (on which the contract is entered
into) and the maturity date; typically, all determinants of such a contract are
agreed at the contract date, i.e.

– type and volume of underlying assets (bonds, commodities, and the like);
the term financial derivatives means that they are underlain by financial
assets (i.e. not by commodities)

– type of contract: obligation or right to buy or sell (the party of the contract
that agrees to buy the underlying asset assumes the so-called long position,
and the party that agrees to sell the underlying asset assumes the so-called
short position)

– maturity date (delivery date, exercise date, expiration date) in future
– term price (delivery price, exercise price, strike price) of underlying assets
– other relevant conditions (e.g. the type of underlying bonds, the delivery

place of underlying commodities)

73T. Cipra, Financial and Insurance Formulas, DOI 10.1007/978-3-7908-2593-0_10,
C© Springer-Verlag Berlin Heidelberg 2010
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• Hedging: means to protect the position of an investor (hedger) against the risk of
market movement; an approximate hedging consists in taking opposite positions
in two assets which are highly negatively correlated; however, a perfect hedging
can be achieved just using derivatives, which enable to “lock” the price of the
underlying asset

• Arbitrage: enables to form a riskless position by means of a suitable combination
of derivative securities with the underlying asset so that such a configuration
continues to earn riskless returns

• Trading: is a term business by speculators that intend to profit of the assumed
price development; if one believes that the price of underlying assets will grow
(or will drop) then one enters the term purchases (or term sales), respectively

• Types of derivative securities:

– according to the type of the underlying assets:

– commodity derivatives: contract future purchase or sale of material com-
modities

– currency derivatives: contract future purchase or sale of some currencies
– interest rate derivatives: contract future purchase or sale of interest instru-

ments (deposits, credits, short-term or long-term bonds, etc.)
– stock derivatives: contract future purchase or sale of stocks
– stock index derivatives: bet on future development of stock indices
– financial derivatives and non-financial derivatives: non-financial deriva-

tives are commodity derivatives with exception of derivatives for precious
metals; all others are financial derivatives

– according to the symmetry in positions of both parties participating in the term
trading:

– symmetric positions: both parties enter the contract free of charge, but they
are obliged to accomplish the dealing regardless of the real market situation;
typically, it concerns the derivative contracts (e.g. forwards or swaps) at
over-the-counter markets (OTC markets) outside exchanges

– asymmetric positions: one party pays an option premium and obtains the
possibility of option, once the contract matures (the counterparty must
await in a passive position the decision of the active party); it concerns
the derivative securities called options, caps, floors or collars

10.2 Forwards

• Forward contract: is an obligation to buy (for the party assuming the long posi-
tion) or to sell (for the party assuming the short position) an underlying asset
at a specified delivery price on a known maturity date (settlement day); on the
contract date the delivery price is chosen so that it costs nothing to take either a
long or a short position (“the value of the contract to both parties is zero”, see
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thereinafter); the forward contract is settled at maturity: the holder of the short
position delivers the asset to the holder of the long position in return for the
amount equal to the delivery price; in practice, the forward is usually contracted
between two financial institutions or between a financial institution and one of its
corporate clients (it is not normally traded on an exchange)

• Currency forward (FX-forward): serves for the term purchase or sale of a cur-
rency at the term exchange rate agreed on the contract date (it differs mostly
from the spot exchange rate valid on the contract date); typically, such a contract
is usual between the bank and its client that endeavours to secure a reasonable
exchange rate for intended future purchase or sale of a currency (or speculates at
the foreign exchange market)

Denotation:

TKbid
A/B or TKask

A/B bid or ask term exchange rate, if the bank buys or sells the for-
eign currency B and pays or receives the exchange equivalent in
the domestic currency A, respectively (see Sect. 9.4)

SKbid
A/B or SKask

A/B bid or ask spot exchange rate, if the bank buys or sells the for-
eign currency B and pays or receives the exchange equivalent in
the domestic currency A, respectively (see Sect. 9.4)

idA or icA annual interest rate of bank deposits (a borrowed money) or
bank credits (a lent money) in the currency A over the term
corresponding to the considered forward term, respectively
(similarly for the currency B)

t current date
T maturity date of forward

TKbid
A/B = SKbid

A/B
1+ idA(T − t)/360

1+ icB(T − t)/360

(bid term exchange rate)

TKbid
A/B ∼ SKbid

A/B[1+ (idA − icB)(T − t)/360]

(approximate bid term exchange rate)

TKask
A/B = SKask

A/B
1+ icA(T − t)/360

1+ idB(T − t)/360

(ask term exchange rate)

TKask
A/B ∼ SKask

A/B[1+ (icA − idB)(T − t)/360]

(approximate ask term exchange rate)
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• FX-swap (foreign exchange swap): modifies the currency forward (with appli-
cations for currency trading or for short-term asset/liability management); it is
formed by spot and term currency transactions, which are inverse, but with dif-
ferent exchange rates (e.g. the spot purchase of dollars at euros and then the term
sale of dollars at euros); here the key factor is the swap rate (in practice, it is used
also when man quotes the FX-forwards):

SWbid→ask
A/B = TKask

A/B − SKbid
A/B;

SWask→bid
A/B = TKbid

A/B − SKask
A/B

(swap rate of FX-swap)

• Interest rate forward (forward rate agreement FRA): enables for a short future
period to fix the interest rate for a received credit (i.e. a bank or a firm borrows
money) or a provided credit (i.e. a bank or a firm lends money or invests in short
terms); typically, FRA consists in the interest balancing for the difference really
existing on the FRA maturity date (this date must be chosen as the initial date
of the received or provided credit) between a fixed interest rate (so called FRA-
rate) and a floating interest rate (so called reference rate, e.g. 2% above LIBOR)
agreed for the notional amount of the credit (the term “notional” denotes that this
amount serves only to calculation of the balancing payment):

– FRA buyer (i.e. the long-position party) receives from the FRA seller the
interest difference between reference rate and FRA-rate (if the difference is
negative, then this balancing payment goes in fact from the FRA buyer to the
FRA seller); the FRA buyers hedge against the risk of increasing interest rates
for a future borrowed money (“they lock the future paid interests”)

– FRA seller (i.e. the short-position party) receives from the FRA buyer the inter-
est difference between FRA-rate and reference rate; the FRA sellers hedge
against the risk of decreasing interest rates for a future lent or invested money
(“they lock the future received interests”)

Denotation:

P notional amount of the underlying credit
t current date
T maturity date of FRA (initial date of the underlying credit)
T ∗ maturity date of the underlying credit (t < T < T∗)
iref annual reference interest rate
iFRA annual FRA-rate
iT annual risk-free interest rate (see Sect. 5.1) at time t with maturity at

time T
iT∗ annual risk-free interest rate (see Sect. 5.1) at time t with maturity at

time T ∗
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Kbuy
FRA = −Ksell

FRA = P
(iref − iFRA)(T∗ − T)/360

1+ iref(T∗ − T)/360

(balancing payment for the FRA buyer; balancing payment for the FRA seller has
the opposite sign only)

iFRA = iT∗(T∗ − t)− iT (T − t)

[1+ iT (T − t)/360](T∗ − T)
(FRA-rate)

• Cost-of-carry model: is in general the relationship between term (i.e. future)
prices and spot prices; the cost of carry measures the interest that is paid to
finance an asset (plus the storage cost) less the income earned on the asset; in
particular, if one opens a forward position, then it must correspond to refinancing
costs that would be necessary to achieve the same result at the spot market

• Delivery price: is a specified price K of the asset (underlying the given forward)
valid on the maturity date, but agreed on the contract date

• Long forward value at time t (t ≤ T): is a potential momentary profit ft due to the
long forward position assumed at time t; short forward value at time t has just the
opposite value – ft; long and short forward values on the contract date are zero
(it costs nothing to take either a long or a short position); if ST denotes the actual
price of the underlying asset on the maturity date T, then fT = ST − K

• Forward price at time t (t≤ T): is such a delivery price denoted as Ft which would
make the forward to have zero value at time t; on the contract date, the forward
price is equal to the delivery price K (however, as time passes, the forward price
is liable to changes, while the delivery price remains the same)

Denotation:

K delivery price
t current date
T maturity date of forward

St price of underlying asset at time t (spot quotation)
ST price of underlying asset at time T (i.e. on the maturity date)
ft long forward value at time t
Ft forward price at time t (term quotation)
i annual riskless interest rate (see Sect. 5.1) at the period from t up to T

Vt present value (at time t) of such bond coupons which are to be paid up to
the forward maturity (one applies corresponding riskless interest rates for its
calculation)

d constant annual rate of dividend yield paid continuously
ic annual riskless interest rate for a foreign currency at the period from t

up to T
s constant annual rate of storage costs
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ft = St − Ke− i(T− t)

(long forward value for zero-coupon bond)

Ft = K = Ste
i(T− t)

(forward price for zero-coupon bond on the contract date)

ft = St − Vt − Ke− i(T− t)

(long forward value for coupon bond)

Ft = K = (St − Vt)e
i(T− t)

(forward price for coupon bond on the contract date)

ft = Ste
−d(T− t) − Ke− i(T− t)

(long forward value for stock)

Ft = K = Ste
(i− d)(T− t)

(forward price for stock on the contract date)

ft = Ste
− ic(T− t) − Ke− i(T− t)

(long forward value for foreign currency)

Ft = K = Ste
(i− ic)(T− t)

(forward price for foreign currency on the contract date)

ft = Ste
s(T− t) − Ke− i(T− t)

(long forward value for precious metal)

Ft = K = Ste
(i+s)(T− t)

(forward price for precious metal on the contract date)

10.3 Futures

• Futures: are forward contracts standardized in such a way that they can be
normally traded on exchanges; such a mass trading opens further possibilities:
– any profit or loss is daily recorded in the account of each contract holder

(marking to market) as if each future contract has been daily settled and
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simultaneously a new contract has been written (the term futures price is used
instead of the forward price)

– system of margins prescribed for participants eliminates financial (default)
risks

– one can open and close particular futures positions in an effective way
by means of clearing houses that stand between the parties and guarantee
contractual provisions

– underlying assets can be replaced by intangible security indices (e.g. S&P 100)

• Standardization of futures includes e.g.:
– standardized type of underlying asset (e.g. any government bond with rating

at least AA and with maturity from 8 to 10 years)
– standardized quantity of underlying asset (e.g. multiples of 125 000 EUR for

FX-futures)
– standardized maturity date (e.g. the third Friday in March)
– minimal possible change of future price (tick size)

• Subject with an open (long or short) position can:
– keep the position up to the maturity date and perform it through a physical

delivery or a cash settlement
– close out the position, i.e. enter into an opposite trade to the original one (e.g.

if an investor went long one futures position, he or she can close out by going
short one futures position of the same type); majority of futures contracts are
closed out in this way (the total number of contracts outstanding at the end of
a business day is reported as open interest)

N = β
S

F

(number N of futures contracts for a stock index (see Sect. 10.1) that are necessary to
hedge stocks (or stock portfolio) with the price S and the measure β (see Sect. 13.3)
against the given stock index with the term quotation F per one contract)

gross basis = spot quotation− actual term quotation

(gross basis: is the difference between the spot quotation (i.e. the price of underlying
asset at the current time) and the actual term quotation (i.e. the actual future price at
the current time, see Sect. 10.2))

carry basis = spot quotation− theoretical term quotation

(carry basis: reflects net refinancing costs between the spot quotation and the
theoretical term quotation (the theoretical term quotation follows from the cost-of-
carry model, see Sect. 10.2))
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value basis = theoretical term quotation – actual term quotation

= gross basis – carry basis

(value basis: reflects market factors that affect the actual term quotation, but are
different from the theoretical “cost-of-carry” factors; if the value basis is zero, then
the situation with fair value occurs, i.e. the theoretical term quotation can be applied
directly in practice)

10.4 Swaps

• Swaps: are agreements between two parties to exchange cash flows across a future
period according to a prearranged formula

• Interest rate swap IRS: is a contract between two parties to exchange inter-
est streams with different characteristics (e.g. fixed interests against floating
interests) based on an underlying principal, which serves only to calculation of
the interest payments (notional amount, volume of swap); typically, IRS’s are
contracted at OTC markets (outside exchanges) with following motivations:
– speculation consisting in different expectations on future development of

interest rates by both parties
– hedging against the interest rate risk by exchanging the given interest sched-

ules
– better accessibility of credits or investments when man transfers to another

interest schedule
– possibility to acquire cheaper capital resources by reducing the costs of their

acquisition

• Cross currency swap CCS (be careful to distinguish properly the CCS’s and the
FX-swaps, see Sect. 10.2)): is a swap contract, where, in addition, the inter-
est payments exchanged by parties are nominated in different currencies due to
exchange of notional amounts nominated in these currencies

• Special types of swaps:
– coupon swap (fixed-to-floating-swap): means that one party pays the other

fixed interest rate coupons, and the other, in return, pays floating interest rate
coupons (e.g. based on the 6 months LIBOR)

– basis swap (floating-to-floating-swap): means that both parties apply differ-
ent floating interest schemes (e.g. the 6 months LIBOR against the 3 months
LIBOR)

– step-up-swap: increases gradually by means of a given scenario either the
notional amount, or the corresponding interest rates

– depreciated swap: reduces gradually the principal by its notional depreciation
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– up-front-payment-swap: is initiated by a one-off payment that balances the
present values of interests streams for both parties

– forward-swap: defers the initiation of the swap transaction to a future date
– multi-leg-swap: involves more swap parties mixing several types of basic

swaps

10.5 Options

• Options: are contracts agreed at time t giving their holders the right (but not the
obligation, which is the case of forwards and futures) to do a transaction by a
future date T (exercise date or expiration date), where t < T; options contracts are
mostly standardized and then traded on derivative exchanges but they can also
have OTC forms

• Call (option): gives its buyer (holder in long position) the right to buy an under-
lying asset St by an expiration date for a preset price X (exercise price, strike
price); the call option can be purchased for a price Ct (call option price, call
option premium); the seller of the call option (writer in short position) must sell
the underlying asset by the expiration date according to the holder’s decision

• Put (option): gives its buyer (holder in long position) the right to sell an under-
lying asset St by an expiration date for a preset price X (exercise price, strike
price); the put option can be purchased for a price Pt (put option price, put option
premium); the seller of the put option (writer in short position) must buy the
underlying asset by the expiration date according to the holder’s decision

• European option: can be exercised only on the expiration date itself
• American option: can be exercised at any time up to the expiration date
• Commodity option, currency option, interest rate option, stock option, stock index

option and others: is the classification of options according to the type of the
underlying assets

• Clearing houses stand between the holders and writers on exchanges; they orga-
nize the option trading in an effective way by means of margins (similarly as for
futures, see Sect. 10.3)

Denotation:

X exercise price (strike price)
t current date
St price of underlying asset at time t (spot price)

• Option is at time t:

– at-the-money, if the exercise price is equal to the price of underlying asset
(X = St)

– in-the-money, if the exercise price is for the option holder more convenient
than the price of underlying asset (i.e. X < St for call, and X > St for put)
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– out-of-the-money, if the exercise price is for the option holder less convenient
than the price of underlying asset (i.e. X > St for call, and X < St for put)

Denotation:

S price of underlying asset on the exercise date
X exercise price
C call option price (premium)
P put option price (premium)

ZC = max(0, S− X)− C

(payoff of exercised call: is the profit of the long call position, i.e. the profit of the
call holder)

ZP = max(0, X − S)− P

(payoff of exercised put: is the profit of the long put position, i.e. the profit of the put
holder)

• Call options fulfil:

– profit of the long call position= loss of the short call position (zero-sum game)
– the long call position produces the profit for S > X + C, the constrained loss

for X < S < X + C and the maximal loss for S ≤ X
– profit of the long call position is not constrained, but its loss is constrained (by

the option price)
– call holders and put writers often speculate on a later price increase of the

underlying assets (such speculators are called bulls)

• Put options fulfil:

– profit of the long put position= loss of the short put position (zero-sum game)
– the long put position produces the profit for S < X – P, the constrained loss for

X – P < S < X and the maximal loss for S ≥ X
– profit of the long put position is constrained (by the value X – P) and its loss

is also constrained (by the option price)
– put holders and call writers often speculate on a later price decrease of the

underlying assets (such speculators are called bears)

• Warrants (see Sect. 9.2): are typically call options issued by a stock company
which give the holder the right to buy a specified number (so called option
ratio) of common stocks for a fixed price; unlike the classical call options, (1)
the warrants are usually long-term securities, (2) the writer of the warrants is
simultaneously the issuer of the underlying stocks, (3) the warrants use to be
parts of other securities (usually bonds), from which they can be separated

• (Interest rates) caps: provide corporate borrowers with protection against the rate
of interest on a floating-rate loan going above some level called cap rate; if the
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interest rate goes above the cap rate, the writer (seller) of the cap provides to the
holder (buyer) of the cap the difference between the interest and the cap rate; in
practice, the cap takes the form of consequent payments called caplets

• (Interest rates) floors: provide corporate lenders with protection against the rate
of interest on a floating-rate loan going below some level called floor rate analo-
gously as for caps; in practice, the floor takes the form of consequent payments
called floorlets

• (Interest rates) collars: are combinations of caps and floors specifying both the
upper and the lower limit for the interest rate that will be charged

• Options on futures (futures options): are options, whose underlying asset is a
futures contract (see Sect. 10.3); if the holder of such a call (or put) option exer-
cises then he or she acquires from its writer a long (or short) position in the
underlying futures contract plus a cash amount equal to the excess of the futures
price over the exercise price (or the excess of the exercise price over the futures
price), respectively

• Compound options: are options on options
• Swaptions: are options on swaps (see Sect. 10.4)
• Captions: are options on caps (see thereinbefore)
• Exotic options: have more complicated payoffs than the standard European or

American calls and puts; they are usually traded over the counter (i.e. OTC) and
path-dependent (i.e. their payoffs depend on the history of the underlying asset);
examples are (1) Asian options (the payoff is defined in terms of an average value
of the underlying asset); (2) barrier options (the payoff depends on whether the
underlying asset price reaches a certain level during a certain time period); (3)
“as-you-like-it” options (the holder can decide after a certain time whether they
will be calls or puts); (4) binary options (the payoff is a fixed amount if the
underlying asset price rises or falls bellow the exercise price), and others

• Option pricing: in practice, the option price (option premium, see thereinbefore)
is usually calculated by means of Black-Scholes formula and its modifications;
the construction of such formulas is based on principles and instruments of
stochastic financial analysis (see Sects. 15.8 and 15.9)

• Intrinsic value at time t: is the corresponding payoff when the option should
exercise at time t (compare with the long forward value at time t, see Sect. 10.2);
this value has only a theoretical meaning and depends only on the exercise price
of the option and on the spot price of the underlying asset (see below the table)

Change of intrinsic value of option

call put

St ↑ ↓ ↓
X ↑ ↓ ↑
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• Time value at time t: is the award which the holder of option is willing to pay
to its writer in view of the possibility that by the exercise date the price of the
underlying asset will change to his benefit; the total value of the option (i.e. the
option price) can be thought as the sum of its intrinsic value and time value; the
time value declines to zero value with forthcoming expiration date and depends
on several factors (see below the table)

Change of time value of option

call put

|St – X| ↑ ↓ ↓
T − t ↑ ↑ ↑
σ ↑ ↑ ↑
i ↑ ↑ ↓

Denotation:

X exercise price
t current date
T exercise date of option
St price of underlying asset at time t (spot price)
σ price volatility of underlying asset (see Sect. 12.2)
i risk-free interest rate (see Sect. 5.1)
iC risk-free interest rate for currency bought by means of currency call option
iP risk-free interest rate for currency sold by means of currency put option
Ct call option price (premium) at time t
Pt put option price (premium) at time t
IVt

C intrinsic value of call option at time t
IVt

P intrinsic value of put option at time t
Dt present value (at time t) of stock dividends paid up to the exercise date of

option
d constant annual rate of dividend yield paid continuously (see Sect. 10.2)
Ft futures price at time t (see Sect. 10.3)
�(·) distribution function of normal distribution N(0, 1) (see Sect. 26.2)
ϕ(x) probability density of normal distribution N(0, 1) (see Sect. 26.5)

IVC
t = max(St − X, 0) = (St − X)+

(intrinsic value of call option)

IVP
t = max(X − St, 0) = (X − St)

+

(intrinsic value of put option)
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option price = intrinsic value of option+ time value of option

• Lower and upper bounds for option prices (option premiums): hold in various
particular cases, e.g.:

max(St − Xe− i(T− t), 0) ≤ Ct ≤ St

(bounds for price of European call option)

max(Xe− i(T− t) − St, 0) ≤ Pt ≤ Xe− i(T− t)

(bounds for price of European put option)

max(St − Xe− i(T− t) − Dt, 0) ≤ Ct ≤ St − Dt

(bounds for price of European call option on dividend-paying stock)

max(Xe− i(T− t) − St + Dt, 0) ≤ Pt ≤ Xe− i(T− t) + Dt

(bounds for price of European put option on dividend-paying stock)

max(St − Xe− i(T− t), 0) ≤ Ct ≤ St

(bounds for price of American call option)

max(X − St, 0) ≤ Pt ≤ X

(bounds for price of American put option)

• Put-call parity: is the relation between option prices of mutually corresponding
calls and puts (i.e. with the same underlying asset, exercise price and exercise
date), e.g.:

Pt = Ct + Xe− i(T− t) − St

(put-call parity for European options)

Pt = Ct + Xe− i(T− t) − St + Dt

(put-call parity for European options on dividend-paying stock)

St − X ≤ Ct − Pt ≤ St − Xe− i(T− t)

(put-call parity for American options)
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St − X − Dt ≤ Ct − Pt ≤ St − Xe− i(T− t)

(put-call parity for American options on dividend-paying stock)

• Black-Scholes formula (B-S formula): expresses analytically the option price as
a function of five factors: St (spot price of underlying asset), X (exercise price
of option), T – t (time remaining to exercise date), σ (price volatility of under-
lying asset), i (risk-free interest rate) for the period of length T – t; in various
modifications one must add further factors:

Ct = St�(d1)− Xe− i(T− t)�(d2), where

d1= ln(St/X)+ (i+ σ 2/2)(T − t)

σ
√

T − t
; d2 = ln(St/X)+ (i− σ 2/2)(T − t)

σ
√

T − t
= d1 − σ

√
T − t

(B-S formula for price of European call option)

Pt = Xe− i(T− t)�(−d2)− St�(−d1) = Xe− i(T− t)[1−�(d2)]− St[1−�(d1)]

(B-S formula for price of European put option)

Ct = St�(d1)− Xe− i(T− t)�(d2)

(B-S formula for price of American call option; an analogous analytical formula for
American put option does not exist, and one must apply numerical procedures)

Ct = Ste
− d(T− t)�(d1)− Xe− i(T− t)�(d2)

(B-S formula for price of European call option on dividend-paying stock)

Pt = Xe− i(T− t)�(−d2)− Ste
− d(T− t)�(−d1)

(B-S formula for price of European put option on dividend-paying stock)

Ct = Ste
− iC(T− t)�(d1)− Xe− iP(T− t)�(d2), where

d1 = ln(St/X)+ (iP − iC + σ 2/2)(T − t)

σ
√

T − t
; d2 = d1 − σ

√
T − t

(Garman-Kohlhagen formula for price of currency call option; analogously for
currency put option)
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Ct = e− i(T− t)[Ft�(d1)− XN(d2)]; Pt = Ct + e− i(T− t)(X − Ft) , where

d1 = ln(Ft/X)+ (σ 2/2)(T − t)

σ
√

T − t
; d2 = d1 − σ

√
T − t

(B-S formula for price of European option on futures, see Sect. 10.3)

• Greeks: are special measures for sensitivity (or risk) of the option price (option
premium) to factors which affect this price (due to Greek symbols, one calls such
measures simply “Greeks”); the Greeks are mostly (mathematical) derivatives of
the option price (evaluated by the B-S formula) with respect to the corresponding
factor; the resulting measure quantifies an approximate linear dependence of the
option price on the given factor:

– delta: describes sensitivity of the option price to changes of the price of the
underlying asset

– gamma: describes sensitivity of the measure delta to changes of the price of
the underlying asset

– lambda: describes sensitivity of the option price to changes of the price
volatility of the underlying asset

– rho: describes sensitivity of the option price to changes of the risk-free
interest rate

– theta: describes sensitivity of the option price to changes of the time up to
exercise date

• Examples of Greeks for European options (see thereinbefore):

deltaC
t =

∂Ct

∂St
= �(d1); deltaP

t =
∂Pt

∂St
= deltaC

t − 1 = −�(−d1) (delta)

gammaC
t =

∂2Ct

∂S2
t
= ϕ(d1)

σSt
√

T − t
; gammaP

t =
∂2Pt

∂S2
t
= gamaC

t (gamma)

thetaC
t =

∂Ct

∂t
= − σSt

2
√

T − t
ϕ(d1)− iXe− i(T− t)�(d2);

thetaP
t =

∂Pt

∂t
= thetaC

t + iXe− i(T− t) (theta)

lambdaC
t =

∂Ct

∂σ
= St

√
T − t · ϕ(d1); lambdaP

t =
∂Pt

∂σ
= vegaC

t (lambda)

rhoC
t =

∂Ct

∂i
= (T−t)Xe− i(T− t)�(d2); rhoP

t =
∂Pt

∂i
= −(T−t)Xe− i(T− t)�(−d2) (rho)
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• Strategic combinations based on options: in practice, one frequently combines
options of various types or combines options with commodities or other securities
(e.g. hedging of investment portfolio by means of long put options on under-
lying assets from this portfolio); in this way, one can realize various strategies
according to expected development of market (e.g. a suitable combination will
be profitable under low price volatility of underlying assets, and the like); pop-
ular strategies combine options of different type, but with the same underlying
asset and the same exercise date:

long synthetic stock = long call (X)+ short put (X)

(synthetic stock: combines reverse call and put positions (i.e. long and short) which
have the same exercise price: e.g. the given long synthetic stock combining long call
and short put replicates a real purchase of the underlying asset for an investor that
expects increasing price of the underlying asset)

long straddle = long call (X)+ long put (X)

(straddle, V-combination: combines the same call and put positions which have the
same exercise price: e.g. the given long straddle combining long call and long put
is suitable for an investor that expects increasing price volatility of the underlying
asset)

long bull spread = long call (X1)+ short call (X2), where X1 < X2

(bull spread: combines the reverse call positions or reverse put positions which have
different exercise prices: e.g. the given long bull spread combining long call with
exercise price X1 and short call with exercise price X2 for X1 < X2 is suitable for
“bulls” that speculate on increasing prices)

long bear spread = short call (X1)+ long call (X2), where X1 < X2

(bear spread: is analogous to the long bull spread: e.g. the given long bear spread
combining short call with exercise price X1 and long call with exercise price X2 for
X1 < X2 is suitable for “bears” that speculate on decreasing prices)

long risk reversal = short put (X1)+ long call (X2), where X1 < X2

(risk reversal: combines the reverse call and put positions which have different exer-
cise prices: e.g. the given long risk reversal combining short put with exercise price
X1 and long call with exercise price X2 for X1 < X2 is suitable for “bulls” that
speculate on increasing prices)
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Chapter 11
Utility Theory

Abstract Chapter 11 deals briefly with fundamentals of utility theory.

• Utility: means a degree of satisfaction or welfare coming from an economic
activity (in finance mainly from an investment activity)

x � y, where x = (x1, . . . , xN)′ ∈ X; y = (y1, . . . , yN)′ ∈ X

(preference of investment strategy x to investment strategy y: is an ordering of the
elements of a set of investment strategies X (from the mathematical point of view,
an ordering relation on X×X) corresponding to preferences of a given investor (xi

is usually interpreted as the volume of the ith investment (i= 1,. . ., N) in the invest-
ment strategy x); weak preference x to y admits also the equivalence of x and y, i.e.
simultaneously the weak preference of y to x)

x ∼ y, where x = (x1, . . . , xN)′ ∈ X; y = (y1, . . . , yN)′ ∈ X

(equivalence of investment strategies x and y: means indifference of investment
strategies from the point of view of a given investor)

• Utility function: is a real function on the set of investment strategies X, which
indicates by means of relations of its values a given preference ordering:

(U(x) > U(y) ⇔ x � y) ∧ (U(x) = U(y) ⇔ x ∼ y)

(utility function on the set of investment strategies; any increasing function of a
utility function is again a utility function)

Ic = {x ∈ X : U(x) = c} where c ∈ R (indifference curve)

• Examples of utility functions on the set of investment strategies X: are increas-
ing, continuous, twice differentiable functions (a possible concavity reflects the
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law of diminishing marginal utility, according to which the additional utility will
decrease with the increasing amount of investment):

U(x) =
N∑

i=1

aiUi(xi), where ai>0 and Ui(xi) are utility functions (i = 1, . . . , N)

(separable utility function)

U(x) = 1

γ

N∑

i=1

aix
γ
i , where 0<γ≤1 and ai>0 (i = 1, . . . , N)

(separable power utility function: is linear for γ=1 and concave for 0<γ<1)

U(x) =
N∑

i=1

ai ln xi, where ai>0 (i = 1, . . . , N)

(separable logarithmic utility function: is the limit case of the power one for γ→0+)

U(x) =
N∏

i=1

xai
i , where ai>0 (i = 1, . . . , N)

(Cobb-Douglas production function: is increasing and concave for 0<ai<1
(i=1,. . ., N))

• Examples of utility functions in the portfolio theory (see Sect. 13):

U(μ, σ ; κ) = μ− κ · σ 2

(quadratic utility function: parameter κ is the measure of investor’s risk aversion)

• Examples of utility functions of the cumulated wealth W:

U(W) = max
x
{U(x) : p′x = W}, where p = (p1, . . . , pN)′ is a given vector of prices

(utility function of wealth W defined by means of a utility function U(x) on X)

U(W) = −1

η
e− η·W , where η>0 (exponential utility function)

U(W) = 1

γ
Wγ , where γ>0 (power utility function (see thereinbefore))
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U(W) = ln W

(logarithmic utility function: is the limit case of the power one for γ→0+ (see
thereinbefore))

U(W) = 1− γ

γ

(
β ·W
1− γ

+ η

)γ
, where β > 0, γ �= 0

(HARA utility function (hyperbolic absolute risk aversion))

• Measures of risk aversion:

A(W) = −U′′(W)

U′(W)

(Arrow-Pratt measure of absolute risk aversion)

R(W) = W · A(W)

(Arrow-Pratt measure of relative risk aversion)
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Chapter 12
Rate of Return and Financial Risk

Abstract Chapter 12 is devoted to problems related to financial risk: 12.1. Rate of
return, 12.2. Financial risk, 12.3. Value at risk VaR, 12.4. Credit at risk CaR.

12.1 Rate of Return

• Rate of return ROR: is difference between the capital (in monetary units) at the
end and at the beginning of the given period (typically, expressed relatively to the
capital at the beginning of the given period):

ROR = Captial at end of period− Capital at beginning of period

Captial at beginning of period

Denotation:

Pt price of asset (e.g. a security or a foreign currency) at time t measured in
chosen monetary units (if the time is measured in months, then Pt is the price
at the end of month t, while Pt–1 is the price at the end of previous month t–1)

Dt possible payment for the period from time t–1 up to time t (e.g. a coupon in
the case of bonds or a dividend in the case of stocks); if the time is measured
e.g. in months and D is the dividend paid out yearly, then Dt=D/12)

pt logarithmic price of asset: pt = ln Pt

t = Pt − Pt−1

(absolute price change at time t: is the absolute change of price from time t–1 up to
time t)
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Rt = RORt = Pt − Pt−1

Pt−1
= Pt

Pt−1
− 1

(rate of return (relative price change) at time t: is the relative change of price from
time t–1 up to time t (typically, given as a percent value); in practice, the relative
price change is preferred to the absolute one since it respects the given price level)

Pt = Pt−1 · (1+ Rt)

(the next forthcoming price expressed by means of the previous price and the rate
of return, see Sect. 2.1)

Rt = RORt = Pt + Dt − Pt−1

Pt−1
= Pt − Pt−1

Pt−1
+ Dt

Pt−1

(rate of return at time t taking into account the coupon or the dividend)

rt = ln(1+ Rt) = ln

(
Pt

Pt−1

)

= pt − pt−1

(logarithmic rate of return (also see Sect. 4): can be interpreted as the absolute
change of logarithmic prices from time t–1 up to time t)

Pt = Pt−1 · ert

(the next forthcoming price expressed by means of the previous price and the
logarithmic rate of return, see Sect. 4)

rt = Rt + O(R2
t )

(approximation of the logarithmic rate of return by the rate of return: just due to this
relation, the both rates of return are usually looked upon as equivalent)

Denotation:

PA/B, t exchange rate of currencies A and B at time t (the price of the foreign (i.e.
non-basic) currency B unit priced by the domestic (i.e. basic) currency A
units, see Sect. 9.4)

wit proportion of funds invested at time t into ith asset (see the portfolio
aggregation of N assets in Sect. 13.1); wit≥ 0 (however, the short position
in an asset can have its weight negative); w1t +. . .+ wNt = 1

Ppt price of portfolio at time t
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rA/B, t = ln

(
PA/B, t

PA/B, t−1

)

(logarithmic rate of return of currencies A and B)

rA/B, t = − rB/A, t

rA/B, t = rA/C, t − rB/C, t

Rt(k) = Pt − Pt−k

Pt−k

(time aggregated rate of return over k previous periods)

Rt(k) = (1+ Rt) · (1+ Rt−1) · . . . · (1+ Rt−k+1)− 1

rt(k) = ln (1+ Rt(k)) = ln

(
Pt

Pt−k

)

= pt − pt−k

(time aggregated logarithmic rate of return)

rt(k) = rt + rt−1 + . . .+ rt−k+1

Ppt = w1, t−1 · Pp, t−1 · (1+ R1t)+ . . .+ wN, t−1 · Pp, t−1 · (1+ RNt)

(price of portfolio at time t)

Rpt = Ppt − Pp, t−1

Pp, t−1

(portfolio aggregated rate of return (i.e. rate of return of the whole portfolio))

Rpt = w1, t−1 · R1t + . . .+ wN, t−1 · RNt

rpt = ln
(
1+ Rpt

) = ln

(
Ppt

Pp, t−1

)

(portfolio aggregated logarithmic rate of return)
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Time aggregation Portfolio aggregation

Rate of return Rt(k) =
k−1∏

j= 0
(1+ Rt−j)− 1 Rpt =

N∑

i=1
wi, t−1 · Rit

Logarithmic rate of return rt(k) =
k−1∑

j= 0
rt−j rpt = ln

(
N∑

i=1
wi, t−1 · erit

)

rpt = ln
(
w1, t−1 · er1t + . . .+ wN, t−1 · erNt

) ≈ w1, t−1 · r1t + . . .+ wN, t−1 · rNt

12.2 Financial Risk

• Financial risk: concerns potential price changes of financial assets, where
the corresponding price change (expressed mainly as the rate of return, see
Sect. 12.1) is looked upon as a random variable (see Sect. 26.3)

• Volatility: is the financial risk of corresponding financial asset measured as the
standard deviation (or sometimes as the variance, see Sect. 26.3) of the rate of
return for the asset

Denotation:

rt logarithmic rate of return: is abbreviated simply as rate of return since it is an
approximation of Rt (see Sect. 12.1)

σt = σ (rt) =
√

var(rt) (volatility of rate of return for a financial asset)

σt ≈
√

E(r2
t )

(approximation of volatility (typically in the case of daily rate of return with mean
value near to zero))

σ (Pt) = σt · Pt−1 (volatility of price Pt for a financial asset)

σt(k) = √var(rt + rt−1 + . . .+ rt−k+1) =
√
σ 2

t + σ 2
t−1 + . . .+ σ 2

t−k+1

(volatility of time aggregated rate of return over k previous periods under assump-
tion of uncorrelated rates (see Sect. 26.6) in particular periods)

σannual ≈
√

252 · σdaily

(approximation of annual volatility by daily volatility aggregating over 252
business days per year (which is the average number of business days per
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year frequently used in practice); the approximation may be used only under
assumptions that daily values of rate of return are sufficiently uncorrelated and
homoscedastic)

Denotation:

wit proportion of funds invested at time t into the ith asset (see the portfolio
aggregation over N assets in Sect. 13.1); wit≥ 0 (however, the short position
in an asset has its weight negative); w1t +. . .+ wNt =1; wt = (w1t,. . ., wNt)′ is
the weight vector

σ it volatility of rate of return rit for the ith asset in the portfolio:

σit = √σijt =
√

var(rit)

σ ijt covariance (see Sect. 26.6) of rates of return for ith and jth assets in the
portfolio:

�t matrix of covariances σijt (see Sect. 26.6)
Pit price of ith asset at time t (i.e. funds invested at time t into ith asset called the

position in the ith asset of the portfolio)
rpt rate of return of portfolio (i.e. portfolio aggregated rate of return) at time t
Ppt price of portfolio at time t

σpt =
√

var(rpt) =
√
√
√
√var

(
N∑

i=1

wi, t−1 · rit

)

=
√
√
√
√

N∑

i=1

N∑

j=1

wi, t−1 · wj, t−1 · σijt

=
√

w′t−1 · �t · wt−1

(volatility of rate of return for portfolio (i.e. the volatility of portfolio aggre-
gated rate of return): takes into account the covariances between rates of return
of particular assets (such correlations can be significant in practice)

βit = 1

σpt
· ∂σpt

∂wi, t−1
= 1

2σ 2
pt
· ∂σ 2

pt

∂wi, t−1
= cov(rit, rpt)

σ 2
pt

(sensitivity coefficient of relative changes in the volatility of portfolio aggregated
rate of return at time t to changes in the weight of the ith asset in the portfolio)

σptβitwi, t−1

(incremental volatility at time t due to the increment wi, t−1 of weight wi, t–1)
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βt =
�t · wt−1

w′t−1 · �t · wt−1
(sensitivity vector βt = (β1t, . . . ,βNt)

′)

σpt =
N∑

i=1

σpt · βit · wi, t−1

(decomposition of volatility of portfolio aggregated rate of return at time t: the com-
ponent σ pt β it wi, t–1 represents the part of volatility of portfolio aggregated rate of
return corresponding to the ith asset in the portfolio)

βit = 1

σ (Ppt)
· ∂σ (Ppt)

∂Pit

(sensitivity coefficient of relative changes in the volatility of portfolio price at time
t to changes in the price (i.e. in the position) of ith asset in the portfolio)

βt = �t · Pt

P′t ·�t · Pt

(sensitivity vector for Pt = (P1t,. . .,PNt)′)

σ (Ppt) =
N∑

i=1

σ (Ppt) · βit · Pit

(decomposition of volatility of portfolio price at time t: the component σ (Ppt) β it

Pit represents the part of volatility of portfolio price corresponding to the ith asset
in the portfolio)

• Prediction of volatility: plays key role in the market risk management; it is impor-
tant for the VaR methodology (see Sect. 12.3) or in the cases, where the price of
financial assets depends on volatility by a predictable way (e.g. through B-S for-
mula, see Sect. 10.5); there are various methods for volatility prediction based
on time series analysis (see thereinafter); a quite different approach (popular in
practice) is the method of implied volatility based on the fact that the price of
options (see Sect. 10.5) depends analytically also on the volatility of particular
rates of return so that the corresponding volatilities can be calculated (and then
quoted) by means of the market prices of these options

Denotation:

σ t+1|t prediction of volatility for time t+1 at time t (i.e. prediction is based on the
observed values of rate of return rt, rt–1, rt–2,. . .)
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σt+1|t =
√
σ 2

t+1|t =
√
√
√
√ 1

M

M−1∑

i= 0

r2
t−i, where M ∈ N is a fixed length

(prediction of volatility by method of moving averages (see Sect. 31.2); the predic-
tion makes use only of M previous values of rate of return rt, rt–1,. . ., rt– M+1; the
choice of the suitable length M of moving averages (“length of window”) is very
important)

σ 2
t+1|t = (1− λ) ·

∞∑

i= 0

λi · r2
t−i = (1− λ) · r2

t + λ · σ 2
t | t−1, where 0 < λ < 1

(prediction of volatility by method of (simple) exponential smoothing (see
Sect. 31.2); the prediction makes use of all previous values of rate of return rt, rt–1,
rt–2, . . . with weights, which decrease exponentially with the age of observations;
typically, the recursive form of the corresponding formula is used in practice; the
choice of the suitable smoothing constant 1–λ is important, e.g. some commercial
systems use λ = 0.94 for daily rates of return and λ = 0.97 for monthly rates of
return)

σ 2
t+1|t = α0 + α1r2

t + β1σ
2
t | t−1

(prediction of volatility by model GARCH(1, 1) (i.e. by the principle of conditional
heteroscedasticity in financial time series, see Sect. 31.5); in particular, the choice
α0 = 0, α1= 1–λ, β1= λ corresponds to the volatility prediction by the method
of exponential smoothing (see thereinbefore); the model parameters are estimated
usually by the maximum likelihood method (see Sect. 27.9))

σ 2
t+1|t = α0 + α1r2

t

(prediction of volatility by model ARCH(1, 1); it is a special case of the
model GARCH(1, 1) lacking some suitable properties of the model GARCH
(see Sect. 31.5))

√

E[(rt+T + rt+T−1 + . . .+ rt+1)2|rt, rt−1, . . .)] ≈ √T · σt+1|t

(approximation of volatility prediction of time aggregated rate of return under
assumption of uncorrelated values of rate of return in particular future periods)

ρ12 t+1|t = (1− λ) · r1t · r2t + λ · ρ12 t | t−1, where 0 < λ < 1

(prediction of correlation coefficient (see Sect. 26.6) of rates of return r1t and
r2t of two financial assets by the method of (simple) exponential smoothing (see
thereinbefore))
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12.3 Value at Risk VaR

• Methodology VaR (value at risk): is based on an estimate of the worst loss that
can occur with a given probability (confidence) in a given future period; it is one
of the best used approach to set up capital requirements when regulating capital
adequacy (e.g. in so called internal models for banks: VaR represents the smallest
capital amount that guarantees the bank solvency with a given confidence); more
generally, VaR is the key instrument for financial risk management (e.g. by means
of commercial systems of the type RiskMetrics)

• Methodology VaR is specified by the following factors:
– holding period: is the period in which a potential loss can occur; accord-

ingly, the used terms are the daily value at risk (over one business day, e.g.
in RiskMetrics) or the 10 days value at risk (over two calendar weeks with
ten business day, e.g. according to recommendation of Basle Committee on
Banking Supervision)

– confidence level: is the probability that the actual loss does not exceed the
value at risk (during the given holding period); in practice, one applies e.g.
the confidence 95% (in RiskMetrics), or 99 % (according to Basle Committee
on Banking Supervision)

Denotation:

X random variable representing profit (if X is positive) or loss (if X is neg-
ative) accumulated during the given holding period (e.g. for a controlled
investment portfolio)

c required confidence (e.g. c = 0.95)
P price (e.g. price of a controlled investment portfolio)
r rate of return over the given holding period looked upon as a random variable

with mean value μ
r1–c (1–c)-quantile of random variable r (see Sect. 26.3)
u1–c (1–c)-quantile of standard normal distribution N(0, 1) (see Sect. 26.5: u1–c=

–uc)
C(X) risk measure: mapping which assigns real values C(X) to random variables

X (a typical example of a risk measure is VaR); a risk measure is called
coherent, if it possesses following properties (for bounded random variables
X and Y):

(i) subadditivity: C(X+Y)≤C(X)+C(Y)
(ii) monotony: if X≤Y, then C(X)≤C(Y)
(iii) positive homogeneity: C(λX)=λC(X) for an arbitrary constant λ>0
(iv) translation invariance: C(X+a)=C(X)+a for an arbitrary constant a>0

P(X < −VaR abs) = P(−X > VaR abs) = 1− c

(absolute value at risk VaR abs: the value VaR abs is the worst loss, which occurs
within a100·c% portion of all possible outcomes; the opposite value −VaR abs is the
(1–c)-quantile x1–c of random variable X (see Sect. 26.3))
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VaR = VaR rel = VaR abs + E(X)

((relative) value at risk VaRrel: is related to the mean value E(X) of random variable
X (see Sect. 26.3) as the distance between the absolute value at risk (i.e. VaRabs) and
the mean loss (i.e. −E(X)); in practice, it is called simply value at risk and denoted
as VaR, since one uses it frequently)

VaR abs = −P · r1−c

(absolute value at risk expressed by means of the rate of return)

VaR = VaR rel = −P · (r1−c − μ)

(value at risk expressed by means of the rate of return)

• Distribution of random variable X (profit or loss) or r (rate of return):
– one assumes usually that it is normal (see thereinafter)
– however, such a normality assumption may not be compatible with reality,

where the loss tail of financial data (i.e. the left negative tail of X) can be much
heavier than the normal one (in such a case the normal approximation produces
a smaller value at risk than it should be actually); therefore various alternatives
to the normal approximation have been suggested, e.g. the t distribution (see
Sect. 26.5), a mixture of normal distributions, and the like

VaR abs = −P · (μ+ σ · u1−c)

(absolute value at risk expressed by means of the rate of return with normal
distribution r ∼ N(μ,σ 2) (see Sect. 26.5))

VaR = −P · σ · u1−c

(value at risk expressed by means of the rate of return with normal distribution
r∼N(·,σ 2))

VaR = −P · σ · u1−c ·
√
t

(value at risk expressed by means of the rate of return with normal distribution
r∼N(·, σ 2) over holding period t (the rate of return r relates to the corresponding
time unit, so that e.g. for annual rate of return r and daily holding period with 252
business days per year one must substitute t=1/252))

VaR = 1.65 · P · σ · √t

(value at risk expressed by means of the rate of return with normal distribution
r∼N(·,σ 2) over holding periodt and with confidence level 95% (see RiskMetrics))
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VaR = 2.33 · P · σ · √t

(value at risk expressed by means of the rate of return with normal distribu-
tion r∼N(·,σ 2) over holding period t and with confidence level 99% (see Basle
Committee on Banking Supervision))

VaRt+ t | t = −P · σt+ t | t · u1−c ·
√
t

(value at risk constructed as prediction at time t for future holding period t using
volatility prediction σt+ t | t (see Sect. 12.2))

DEaR = VaRt+1|t = 1.65 · P · σt+1|t

(daily earnings at risk: are daily predictions of the value at risk (t denotes particular
business days) with confidence level 95%)

VaRp = VaRp · βi ·Pi

(incremental value at risk IVaR): provides the increment VaRp of the portfolio’s
value at risk VaRp corresponding to the increment Pi of price Pi of the ith asset
in the portfolio; β i is the sensitivity coefficient of relative changes in the volatil-
ity of portfolio price to changes in the price of the ith asset in the portfolio (see
Sect. 12.2))

VaRp =
N∑

i=1

VaRp · βi · Pi

(decomposition of value at risk of portfolio)

VaR BC = 2.33

1.65
· √10 · VaR RM = 4.47 · VaR RM

(example of conversion of the value at risk (under assumptions that the rates of
return are iid normal random variables) for 1 day holding period and confidence
level 95% (see RiskMetrics) to the value at risk for 2 weeks holding period (i.e. ten
business days) and confidence level 99% (see Basle Committee); the table shows
various combinations of holding periods and confidence levels, which give the
same VaR per 1,000 monetary units of the standard deviation, e.g. 4 weeks hold-
ing period and confidence level 95% gives the same VaR as 2 weeks holding period
and confidence level 99%)
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Holding period Confidence (%) t P·σ VaR

1 year 67.85 1 1,000 463.42
3 months 82.30 3/12 1,000 463.42
4 weeks 95.00 21/252 1,000 463.42
2 weeks 99.00 10/252 1,000 463.42
1 week 99.95 5/252 1,000 463.42
1 day 100.00 1/252 1,000 463.42

TVaR = E (X | X < − VaR)

(tail value at risk, expected tail loss, expected shortfall ES)

(TVaR is the conditional mean value of potential loss higher than the value at risk
for the same confidence level; in particular, TVaR = E(X) when the confidence level
is 100%; unlike VaR, the TVaR is the coherent (and more sensitive) risk measure;
another alternative to the value at risk is the maximum possible loss)

Application of VaR methodology: requires to take into account a lot of practical
aspect, e.g.:
• various conventions (e.g. the capital requirements when regulating capital ade-

quacy according to Basle II may be set up as the treble up to the quadruple of the
10 days VaR)

• the calculation of VaR in practice: namely

– variance-covariance method applied to particular cash flows of the evaluated
financial system

– historical simulation method simulates rates of returns using the history of the
evaluated financial system

– structured method Monte Carlo involves simulations of an explicit parametric
model for risk-factor changes

– method of observed losses over several periods and scaling
– back testing makes use of statistical tests to verify credibility of VaR approaches
– stress testing checks the vulnerability of VaR approaches to various (hypothet-

ical) catastrophic phenomena

12.4 Credit at Risk CaR

• Credit risk: is the risk that the creditor (lender) may not receive promised repay-
ments on outstanding investments (such as loans, credits, bonds, etc.), because
of the default of the debtor (borrower); defaults can consist in insolvency or
reluctance of the debtor, in his refusal to deliver or to buy underlying assets in the
case of options, and the like)
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• Quantitative components of credit risk:
– Probability of default PD: is the probability that the debtor may not fulfil con-

tract liabilities (obligations agreed in the contract); it is quantified by means
of credit rating using an internal appreciation of client’s ability to pay or an
agency rating (Standard & Poor’s, Moody’s, Fitch and others)

– Exposure at default EAD: quantifies the momentary credit exposure that is
subject to be lost in the case of default (it is equal directly to the unpaid amount
of claims in the case of balance sheet items or to suitable credit equivalents in
the case of off-balance sheet entries (e.g. financial derivatives))

– Loss given default LGD: describes the portion of loss the creditor will really
suffer in the case of default; it is a fraction of EAD determined approximately
as “1 minus recovery rate” (recoveries are e.g. collaterals, residual values in
the case of company’s liquidation, and the like); e.g. LGD = 0.6 means that
the creditor hopes to regain 40 % outstanding debt)

– Expected loss EL: is the mean value of loss:

EL = PD · EAD · LGD

• Credit at risk CaR: is the methodology applying the VaR approach (see Sect. 12.3)
to the credit risk; the credit exposure (adjusted by recoveries) is looked upon as a
random variable X:

Denotation:

X credit exposure adjusted by recoveries (i.e. such a random variable that its
positive values represent creditor’s loss in the case of debtor’s default)

f(x) probability density (see Sect. 26.3) of the random variable X

• Some measures of methodology CaR:

ECE =
∞∫

−∞
max(x, 0) · f (x) dx

(expected credit exposure ECE: is the probability-weighted credit exposure
(adjusted by recoveries) with negative values replaced by zero values)

ECE = σ√
2π

(expected credit exposure for X∼N(0,σ 2) (see Sect. 26.3))
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EDL ≈ ECE · PD

2

(expected default loss EDL (compare with EL, see thereinbefore): is an evaluation
of the average creditor’s loss caused by the debtor’s default (PD/2 is an approxi-
mate estimate of the probability that the debtor defaults when the momentary credit
exposure is positive))

EDL ≈ σ · PD√
8π

(expected default loss in the case of debtor’s default for X∼N(0, σ 2))

CaR = 1, 65 · σ

(credit at risk with confidence level 95% for X∼N(0,σ 2): is an estimate of the worst
credit exposure that can occur with a given probability (confidence); it equals to the
corresponding quantile of the credit exposure)

DVaR = CaR · PD

(default-related value at risk DVaR: is equivalent to VaR for the credit risk evaluating
with a given confidence the worst creditor’s loss caused by the debtor’s default)
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Chapter 13
Portfolio Analysis and CAPM Model

Abstract Chapter 13 deals with portfolio analysis including the CAPM theory:
13.1. Construction of Portfolio, 13.2. Portfolio with a Risk-Free Asset, 13.3. CAPM
Model.

13.1 Construction of Portfolio

• Portfolio: is a set of assets (investment entries) of various types; rational investors
construct their portfolios so as to minimize the risk and to maximize the return of
investment activities; therefore the portfolio construction consists in looking for
an optimal trade-off between minimum risk and maximum return values of the
resulting portfolio; the rates of return are systematically looked upon as random
variables with mean values and standard deviations denoted as expected returns
and (financial) risk, respectively; typically, investment portfolios are constructed
for funds of big institutional and private clients (including pension funds)

• Theory of portfolio: is an important part of financial theory; its basic form
(Lintner, Markowitz, Sharpe, Tobin and others) makes use of abstract assump-
tions of efficient market:

– the investors make decisions exclusively on the information based on the
expected returns and covariance structure of the returns; such an information
is equally available to all the investors

– no investor can affect the returns of particular assets in the portfolio
– the investors have different preferences for the resulting trade-off between the

minimum risk and maximum return values (in particular, they have different
utility functions and indifference curves, see Chap. 11)

– the investors choose portfolios with the highest expected return among those
with the same risk, and portfolios with the smallest risk among those with the
same expected return (see Sect. 12.2)

– the assets for portfolio construction are infinitely divisible and marketable
– the investment horizon is one period of time

109T. Cipra, Financial and Insurance Formulas, DOI 10.1007/978-3-7908-2593-0_13,
C© Springer-Verlag Berlin Heidelberg 2010
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– there are no transaction costs and taxes
– there exists just one risk-free interest rate (see Sect. 5.1), and all the investors

can lend or borrow any amount of necessary funds at this risk-free interest rate

• Portfolio construction using N risk assets (i.e. combining suitable amounts of N
assets with nonzero risk): is the basic task of portfolio theory (with preset opti-
mality requirements); each portfolio is determined uniquely by the system of
weights wi, which give proportions of particular assets in the constructed portfo-
lio (i = 1, . . . , N: wi ≥ 0 (the case of short positions in some assets with wi < 0
will be considered later); w1 + . . . + wN = 1)

Denotation:

ri rate of return of ith asset (i = 1, . . . , N): is looked upon as random variable
(see Sect. 12.2)

r̄i expected return of ith asset: r̄i = E(ri)
σ i risk of ith asset: σ i

2 = σ ii = var(ri); σ i =σ ii = σ (ri)
σ ij covariance (see Sect. 26.6) between rates of return of ith asset and jth asset:

σ ij = cov(ri,rj)
ρij correlation coefficient (see Sect. 26.6): ρij = ρ(ri,rj) = σ ij/(σ i ·σ j)
r vector of rates of return: r = (r1, . . ., rN)′
w vector of weights: w = (w1, . . ., wN)′, w ≥ 0; e′·w = 1
� covariance matrix (see Sect. 26.6): � = (σij)
rP rate of return of portfolio
r̄P expected return of portfolio: r̄P = E(rP)
σP risk of portfolio: σP

2 = var(rP)

r̄P = w1 · r̄1 + . . . + wN · r̄N = w′ r̄

(expected return of portfolio)

σP =
√

w2
1 · σ11 + w1 · w2 · σ12 + w1 · w3 · σ13 + . . .+ w2

N · σNN

=
√
√
√
√

N∑

i= 1

N∑

j= 1

wiwjσij =
√

w′ � w

(risk of portfolio)

r̄P = w · r̄1 + (1− w) · r̄2, where 0 ≤ w ≤ 1

(expected return of portfolio for N = 2)
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σP =
√

w2 · σ11 + (1− w)2 · σ22 + 2 · w · (1− w) · σ12

=
√

w2 · σ 2
1 + (1− w)2 · σ 2

2 + 2 · w · (1− w) · σ1 · σ2 · ρ12

(risk of portfolio for N = 2)

σP < min(σ1, . . . , σN)

(diversification of portfolio: is a positive phenomenon from the investor’s point of
view, since the risk of portfolio is then smaller than the risk of each of N risk assets
making up this portfolio; diversification can be achieved easier, if there are high
negative correlations among particular assets in the portfolio (obviously, if the price
of an asset declines, then the increasing price of another one may help, and vice
versa)

• (σ , r̄)-plane: is the plane, where the horizontal axis indicates risk as measured by
the standard deviation and the vertical axis indicates reward as measured by the
expected return; if the investor’s utility function is a function of risk and expected
return (e.g. U(r̄, σ ; κ) = r̄ − κ · σ 2 with a parameter κ, see Chap. 11), then one
can plot in this plane the corresponding indifference curves (see Chap. 11); a
standard investor (see the assumptions of efficient market) has increasing convex
indifference curves and northwest direction of preferences:

moderately risk-averse
investor:

A ~ B 

slightly risk-averse
investor:

A < B 

highly risk-averse
investor:

A > B 

risk-neutral
investor:

risk-seeking
investor:

A <  B A < B 

rr

rr
r
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• feasible set: represents the set of all portfolios which can be formed from the
given N assets (i.e. applying all the possible systems of weights); it has an
“umbrella shape” in the (σ , r̄)-plane

r

feasible set
efficient set
optimal portfolio

• efficient set (efficient frontier): is a subset of the feasible set that offers maximum
expected return for varying level of risk, and minimum risk for varying level of
expected return; typically, it is the northwest frontier of the feasible set

• Feasible portfolios: are elements of the feasible set; they enable to construct
further feasible portfolios:

Denotation:

rPj rate of return of jth feasible portfolio (j = 1, . . . , J)
r̄Pj expected return of jth feasible portfolio: r̄Pj = E(rPj)
σPj risk of jth feasible portfolio: σPj = σ (rPj)
σPij covariance between rates of return of ith and jth feasible portfolio
wPj weight for jth feasible portfolio (wPj ≥ 0; wP1 + . . . + wPJ = 1)

r̄P = wP1 · r̄P1 + . . . + wPJ · r̄PJ

(expected return of portfolio made up of feasible portfolios)

σP ≤ wP1 · σP1 + . . . + wPJ · σPJ

(inequality for risk of portfolio made up of feasible portfolios; for J = 2 it implies
the concavity of the curve joining two feasible points (portfolios) in the(σ , r̄)-plane
with coordinates (σP1, r̄P1) and (σP2, r̄P2): in particular, such a curve is the abscissa
for ρ12 = 1 and the broken-abscissa for ρ12 = −1)

σ 2
P =

(
r̄P − r̄P2

r̄P1 − r̄P2

)2

· σ 2
P1 +

(
r̄P − r̄P1

r̄P1 − r̄P2

)2

· σ 2
P2 − 2 · (r̄P − r̄P1) · (r̄P − r̄P2)

(r̄P1 − r̄P2)2
· σP12

(relation between risk σP and expected return r̄P of portfolio made up of two feasible
portfolios)
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diversification of portfolio
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• Efficient portfolios: are elements of the efficient set (the efficient frontier); one
can construct them:

– by means of optimization methods (e.g. quadratic programming)
– in some special cases, by means of explicit formulas (see thereinafter) or by means

of the capital market line CML (see Sect. 13.3)

Denotation:

r0 prescribed constant rate of return for the constructed efficient portfolio
r vector of rates of return r = (r1, . . ., rN)′ of particular risk assets for the

constructed efficient portfolio (exclusive of the case r = k · e, where k is a
constant)

r̄ vector of expected returns r̄ = (r̄1, . . . , r̄N)′ for vector r
� positively definite covariance matrix of vector r
w∗ vector of weights w∗ = (w1

∗, . . ., wN
∗)′ for the constructed efficient port-

folio: e′·w∗ = 1 (negative weights, i.e. short positions in some assets, are
possible for the constructed efficient portfolio)

w∗ = δ(r0) · w1 + (1− δ(r0)) · w2, where

A = e′ �− 1e ; B = e′ �− 1r̄ �= 0 ; C = r̄′ �− 1r̄ ;  = A · C − B2;

w1 = �− 1e
A

; w2 = �− 1r̄
B

; δ(r0) = A · (C − r0 · B)



(vector of weights (negative weights are possible) for construction of efficient port-
folio with prescribed expected return; in the excluded case r = k · e, the resulting
efficient portfolio may be formed by a single asset, namely by the one with minimal
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risk; moreover, the case B = 0 has also explicit solution:

w∗ = �−1e
e′�−1e

+ r0�
−1r̄

r̄′�−1r̄

)

13.2 Portfolio with a Risk-Free Asset

• Portfolio construction using N risk assets and a risk-free asset (i.e. combining
suitable amounts of N assets with nonzero risk and a suitable amount of one asset
with zero risk): is a substantial extension of the theory from Sect. 13.1; the given
risk-free asset in the portfolio can be either in the long position (with a positive
weight), or in the short position (with a negative weight, which means that the
investor borrows at the risk-free interest rate rf to purchase some of the risk assets;
the case of the short position in a risk asset is not usual in the basic formulation
of portfolio theory)

Denotation:

rf risk-free rate of return of a risk-free asset (see Sect. 5.1): is a nonrandom
variable (since it has the zero risk, i.e. the zero standard deviation, so that
r̄f = rf )

wT vector of weights wT = (wT1, . . ., wTN)′ which determines the tangency
portfolio (see thereinafter)

r̄T expected return of tangency portfolio
σ T risk of tangency portfolio

tangency portfolio ≡
≡ market portfolio

efficient set

σE

rE

rf

{
r̄E = w · rf + (1− w) · r̄T

σE = (1− w) · σT

(tangency portfolio: an arbitrary efficient portfolio with expected return r̄E and risk
σE constructed of N risk assets and a risk-free asset can be alternatively made up of
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this risk-free asset included with a weight w (w may be negative, see thereinbefore)
and of the so called tangency portfolio; the tangency portfolio is made up entirely of
the considered risk assets and does not vary with varying efficient portfolios (only its
weight 1 − w varies in such a case); this mechanism is sometimes called separation
theorem, since the effect of the risk assets is separated just to the invariant tangency
portfolio; the attribute “tangency” reminds the fact that the set of efficient portfolios
(efficient frontier in the case of N risk assets combined with a risk-free asset) coin-
cides with the tangent launched from the risk-free asset point in the (σ , r̄)-plane to
the feasible set made up only of the risk assets (i.e. without the risk-free asset): the
corresponding adherent point is just the tangency portfolio)

α · � · w′T = r̄− rf · e

(relation for construction of tangency portfolio: if all the weights in the vector wt

which determines the tangency portfolio are positive, then there exists a constant
α > 0, for which these weights fulfil the given system of linear equations)

Denotation:

r0 prescribed constant rate of return for the constructed efficient portfolio, if a
risk-free asset is also used for the construction

r vector of rates of return r = (r1, . . ., rN)′ of particular risk assets for the
constructed efficient portfolio (exclusive of the case r = k · e, where k is a
constant)

r̄ vector of expected returns r̄ = (r̄1, . . . , r̄N)′ for vector r
� positively definite covariance matrix of vector r
w∗ vector of weights w∗ = (w0

∗, w1
∗, . . ., wN

∗)′ for the constructed efficient
portfolio: e′·w∗ = 1 (negative weights, i.e. short positions in some assets,
are possible for the constructed efficient portfolio)

w∗ = δ(r0) · w1 + (1− δ(r0)) · w2,

where A = e′ �− 1e ; B = e′ �− 1r̄ ; rf <
B

A
; C = r̄′ �− 1r̄ ;

w1 = (1, 0, . . . , 0)′ ; w2 = (0, w′t)′ ; wt = �− 1(r− rf · e)

B− A · rf
;

δ(r0) = 1− (r0 − rf ) · (B− A · rf )

A · r2
f − 2B · rf + C

(vector of weights (negative weights are possible) for the construction of efficient
portfolio with prescribed expected return, if a risk-free asset is also used for the
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construction; the assumption rf < B/A concerns the fact that B/A is equal to the
expected return of the (global) minimum-variance portfolio made up of risk assets)

• Market portfolio M: denotes a hypothetical portfolio with expected return r̄M and
risk σM, which would consist of all the investment assets, where the proportion
to be invested in each asset corresponds to its relative market value (i.e. to the
aggregate market value of the asset divided by the sum of the aggregate market
values of all the investment assets); under standard assumptions of the efficient
market (see Sect. 13.1), the market portfolio coincides with the tangency portfolio
(if the risk-free asset is not a component of the market portfolio); in practice, the
market portfolio is usually approximated by a suitable market indicator (e.g. a
stock exchange indicator, see Sect. 29.3)

13.3 CAPM Model

• Capital asset pricing model CAPM: is the basic model of the contemporaneous
investment theory, since it relates the analyzed investment strategy to the market
portfolio (i.e. in fact, to a suitable market indicator, see Sect. 29.3) and to a risk-
free asset (i.e. actually, to government securities, see Sect. 9.1)

Denotation:

r̄E, σE expected return and risk of efficient portfolio
r̄T , σ T expected return and risk of tangency portfolio
r̄M , σM expected return and risk of market portfolio
rf risk-free rate of return
r̄i, σ i expected return and risk of ith risk asset (i = 1, . . ., N)
σ iM covariance (see Sect. 26.6) between rate of return of ith risk asset and

rate of return of market portfolio: σ iM = cov(ri, rM)
r̄R expected return of portfolio made up of risk assets
σRM covariance (see Sect. 26.6) between rate of return of portfolio made up

of risk assets and rate of return of market portfolio: σRM = cov(rR, rM)

r̄E = rf + r̄M − rf

σM
· σE

(capital market line CML: concerns an arbitrary efficient portfolio)

r̄E − rf

σE
= r̄M − rf

σM
= r̄T − rf

σT

(market price of risk, Sharpe’s measure of portfolio: is the same for an arbitrary
efficient portfolio (i.e. also for the market or tangency portfolio))
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rf

σM σE

efficient set

market portfolio

rM

rE

r̄i − rf

σi
≤ r̄E − rf

σE
, i = 1, . . . , N

(market price of risk for risk asset: cannot exceed the market price of risk for an
arbitrary efficient portfolio (i.e. also for the market or tangency portfolio))

r̄i − rf = (r̄M − rf ) · βi, whereβi = σiM

σ 2
M

(security market line SML: is suitable for financial analysis and pricing not only of
particular risk assets (mostly stocks), but also for analysis of the whole enterprise
branches; β i are called factors beta, and one publishes them in financial periodical
titles (so called Beta Books) for particular companies and branches; they are very
important when evaluating exposure of capital: assets with β > 1 (or β < 1) are
more risky (or less risky) than the market average, respectively (efficient portfolios
including the market portfolio have β = 1, risk-free assets have β = 0)

r̄R − rf = (r̄M − rf ) · βR, whereβR = σRM

σ 2
M

(generalization of SML for an arbitrary portfolio constructed of risk assets)

rit − rft = αi + (rMt − rft) · βi + εit, t = 1, . . . , T

(linear regression model (see Sect. 27.11) for estimation of factor beta (see therein-
before) and factor alpha (factor of disequilibrium) of ith risk asset: one substitutes
observed values (t = 1, . . . , T) for the rate of return of the ith risk asset ri, the
risk-free asset rf and the market portfolio rM (εi is the residual of the model); the fac-
tor alpha of the ith risk asset represents the difference between the expected return
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according to the observed reality and the (equilibrium) expected return according to
the CAPM theory: if the estimated alpha is significantly positive or negative, then
the given risk asset produces returns that are over or below the appropriate values
following from the theory, so that the asset seems to be at the market underestimated
of overestimated, respectively)

σ 2
i = β2

i · σ 2
M + σ 2

εi

(decomposition of (squared) risk of ith risk asset σ i
2 to market risk β i

2 ·σM
2 and

specific (unique) risk σ 2
εi
: the market risk is also denoted as systematic risk and the

specific risk as nonsystematic risk, since only the specific (nonsystematic) risk is
diversifiable in the sense that by holding a risk asset in a sufficiently large portfolio,
the prevailing part of the risk of the whole portfolio is that of market (systematic)
risk; while a higher systematic risk is compensated by a higher expected return
(according to the relation SML due to the higher factor beta, see thereinbefore), it
is not the case for nonsystematic risk; in practice, the systematic and nonsystematic
risks are key concepts taken into account in the framework of the capital adequacy)

ri

rf

rM

)~( Mi rr

)~(   fi rr

rf

Further Reading

Brealey, R.A., Myers, S.C.: Principles of Corporate Finance. McGraw-Hill, New York (1988)
Dupacova, J., Hurt, J., Stepan, J.: Stochastic Modeling in Economics and Finance. Kluwer,

Dordrecht (2002)
Elton, E.J., Gruber, M.J.: Modern Portfolio Theory and Investment Analysis. Wiley, New York

(1991)
Ingersoll, J.E.: Theory of Financial Decision Making. Rowman & Littlefield, Savage (1987)
Markowitz, H.M.: Portfolio selection. Journal of Finance 6, 77–91 (1952)
Sharpe, W.F., Alexander, G.J.: Investments. Prentice Hall, Englewood Cliffs, NJ (1990)



Chapter 14
Arbitrage Theory

Abstract Chapter 14 is an introduction to basic formulas of arbitrage theory.

• Arbitrage opportunity: is a possibility of a risk-free profit through simultaneous
long and short positions in suitable investment assets that ensure free of risk a
higher rate of return than the risk-free one (on the other hand, the arbitrage oppor-
tunity enabled by different prices of assets at different places at the same time is
almost impossible in the contemporary financial world); the characterization as
“money pump” is sometimes used

• Arbitrage-free principle: is a hypothetical situation that excludes any arbitrage
opportunity (“there is no such thing like a free lunch”); this principle is a theo-
retical background of contemporary approach to mathematical pricing of some
assets (e.g. financial derivatives, see Chap. 10)

Denotation:

S(t) vector S(t) = (S1(t),. . ., SN(t))′ of prices of unit amounts for N investment
assets at time t

x(t) vector x(t)= (x1(t),. . ., xN(t))′ of numbers of unit amounts for N investment
assets at time t

k index indicating one of K possible states of financial market (k = 1, . . ., K)
D(t+1) payoff matrix D(t +1) = (dik(t +1)) of type N × K: dik(t +1) is the payoff

at time t+1 for an investor that held the unit amount of the ith investment
asset (i = 1, . . ., N) from time t to time t+1 under the condition that the
financial market was during this period at the state k (k = 1, . . ., K); the
first one of the given assets (i= 1) is a risk-free asset with the rate of return
rf (see Sects. 5.1 and 13.2: therefore the first row of the matrix D(t +1)
contains identical elements 1 + rf, since the payoff for the investor that held
the risk-free asset does not depend on the state of financial market during
the holding period)

119T. Cipra, Financial and Insurance Formulas, DOI 10.1007/978-3-7908-2593-0_14,
C© Springer-Verlag Berlin Heidelberg 2010
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S(t)′ · x(t) (price of investment portfolio at time t)

D(t + 1)′ · x(t)

(vector of payoffs at time t+1 for particular states of financial market k (k = 1,
. . . , K), if the investor held the amounts x(t) of investment assets from time t to
time t +1)

S(t)′ · x(t) ≤ 0 and D(t + 1)′ · x(t) > 0

(arbitrage opportunity of the first type: with no cost at time t, profits are achieved in
all states at time t +1 (see List of Symbols for the meaning of inequalities between
vectors))

S(t)′ · x(t) < 0 and D(t + 1)′ · x(t) ≥ 0

(arbitrage opportunity of the second type: with a negative cost at time t, the invest-
ment is not loss-making at time t +1 (the unspecified term arbitrage opportunity
means the arbitrage opportunity of the first or second type in this text))

S(t)′ · x(t) = 0 and P(D(t + 1)′ · x(t) ≥ 0) = 1 and E (D(t + 1)′ · x(t)) > 0

(arbitrage opportunity through probability concepts: the last condition can be
replaced by an equivalent one: P(D(t +1)′· x(t) > 0) > 0)

⎛

⎜
⎜
⎜
⎝

S1(t)
S2(t)

...
SN(t)

⎞

⎟
⎟
⎟
⎠
=

⎛

⎜
⎜
⎜
⎝

1+ rf 1+ rf . . . 1+ rf

d21(t + 1) d22(t + 1) . . . d2K(t + 1)
...

...
...

...
dN1(t + 1) dN2(t + 1) · · · dNK(t + 1)

⎞

⎟
⎟
⎟
⎠
·

⎛

⎜
⎜
⎜
⎝

ψ1
ψ2

...
ψN

⎞

⎟
⎟
⎟
⎠

(iff condition of nonexistence of arbitrage opportunities (see thereinbefore): there
exist positive numbers ψ1, . . ., ψN so that the given relation is fulfilled)

(
1
S(t)

)

=
(

1+ rf 1+ rf

S1(t + 1) S2(t + 1)

)

·
(
ψ1
ψ2

)

(special case of the “iff condition” of nonexistence of arbitrage opportunities for
N= 2 (i.e. only two investment assets are used: the first of them is the risk-free one,
and its amount at time t is normed to unit) and K = 2 (i.e. only two states of the
financial market are possible, where the price per unit amount of the second (risk)
asset at time t+1 is denoted S1(t +1) at the first state and S2(t +1) at the second state):
there exist positive numbers ψ1 and ψ2 so that the given relation is fulfilled)
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r1 < 1+ rf < r2,

where r1 = S1(t + 1)

S(t)
; r2 = S2(t + 1)

S(t)
; S1(t + 1) < S2(t + 1)

(special case of the “iff condition” of nonexistence of arbitrage opportunities for
N = 2 and K = 2 (see thereinbefore))

S(t) = 1

1+ rf
· EP̃ (S(t + 1)) = 1

1+ rf
· (P̃1 · S1(t + 1)+ P̃2 · S2(t + 1)

)
,

where P̃i = (1 + rf ) · ψi (for i = 1, 2) is the so-called risk-neutral probability
(P̃i > 0, P̃1 + P̃2 = 1)

(present price of risk asset (under the condition of nonexistence of arbitrage oppor-
tunities) expressed as the discount mean value of future payoffs of risk asset using
the risk-free rate of return for discounting and the risk-neutral probability for mean
value calculation; it is the model situation when evaluating some assets (e.g. finan-
cial derivatives, see Sect. 15.8) or when evaluating options and guaranteed values in
insurance contracts (see Sects. 18.1 and 19.6))

P̃1 · r1 + P̃2 · r2 = 1+ rf , where P̃i = (1+ rf ) · ψi; ri = Si(t + 1)

S(t)
(i = 1, 2)

(the expected return of risk asset calculated by means of risk-neutral probability
(see thereinbefore) coincides with the risk-free rate of return under the condition of
nonexistence of arbitrage opportunities)

EP̃ (X(t + s) | It ) = X(t), where X(t + s) = 1

(1+ rf )s
· S(t + s), s ≥ 0

(normed price X(t + s) of risk asset is the martingale (see Sect. 26.9) with respect
to the risk-neutral probability: the conditional mean value (see Sect. 26.8) of this
normed price X(t + s) at time t + s with respect to the total of information It on
the given asset observed up to time t is namely equal to the price X(t) = S(t) at
time t; the martingales are important instruments of financial stochastic analysis, see
Sect. 15.8)

• Arbitrage pricing model APM: is the basic model of the so-called arbitrage pric-
ing theory (APT theory); it is a multifactor model (the model CAPM in Sect. 13.3
as a one-factor model, where the corresponding factor is a suitable market indi-
cator, is its special case); moreover, an assumption that there are no arbitrage
opportunities at the balanced market is usually assumed; the practical applica-
tions of the APM make use of the regression analysis (see Sect. 27.11) and the
factor analysis.
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Chapter 15
Financial Stochastic Analysis

Abstract Chapter 15 deals with formulas of stochastic calculus: 15.1. Wiener
Process in Finance, 15.2. Poisson Process in Finance, 15.3. Ito Stochastic Integral,
15.4. Stochastic Differential Equations SDE, 15.5. Ito’s Lemma, 15.6. Girsanov
Theorem on Equivalent Martingale Probability, 15.7. Theorem on Martingale
Representation, 15.8. Derivatives Pricing by Means of Equivalent Martingale
Probabilities, 15.9. Derivatives Pricing by Means of Partial Differential Equations
PDE, 15.10. Term Structure Modeling.

15.1 Wiener Process in Finance

{Wt, t ≥ 0}, where (also see Sect. 30.4)

⎧
⎪⎪⎨

⎪⎪⎩

(i) W0 = 0
(ii) trajectories of the process are continuous in time
(iii) Wt2 −Wt1 , ..., Wtn −Wtn− 1 are independent for arbitrary 0 ≤ t1 < ... < tn
(iv) Wt −Ws ∼ N (0, |s− t|) with respect to probability P for arbitrary s, t ≥ 0

(Wiener process (Brownian motion) with respect to probability P: is a homogeneous
Markov process (i.e. in continuous time) with continuous states on a probability
space with probability P (see Sect. 30.3))

{Wt, t ≥ 0}, where

⎧
⎪⎪⎨

⎪⎪⎩

(i) W0 = 0
(ii) trajectories of the process are continuous in time
(iii) Wt is square integrable martingale with respect to �t and probability P
(iv) E

(
(Wt −Ws)2

) = |s− t| for arbitrary s, t ≥ 0

(equivalent definition of Wiener process as a continuous martingale on a pro-bability
space with probability P (see Sect. 26.9): �t are σ -algebras of the filtration, to

123T. Cipra, Financial and Insurance Formulas, DOI 10.1007/978-3-7908-2593-0_15,
C© Springer-Verlag Berlin Heidelberg 2010
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which the martingale is adapted (�t can be interpreted as a summary information
on the past and present of the process at time t: if one knows the information coded
in �t then one also exactly knows the value Wt, which becomes conditionally on
�t an observable nonrandom value; if the filtration is altered then the considered
Wiener process is altered as well); in particular according to martingale properties,
Wt has unpredictable increments; the normality of the increments in this equivalent
definition of Wiener process is guaranteed by Lévy theorem)

cov(Ws, Wt) = min(s, t)

• Some properties of Wiener process (the properties of trajectories hold only with
probability one):
– trajectories (see Sect. 30.1) of the process are nowhere differentiable (i.e.

these functions of time have nowhere their first derivatives, although they are
continuous)

– trajectories of the process hit any and every real value no matter how large, or
how negative

– the process has a fractal form (i.e. if one chooses a trajectory it looks just the
same in any scale)

– the process after suitable transformations (e.g. in order to achieve a necessary
trend, volatility and non-negativity) can be used to model continuous motions
of interest rates, exchange rates and prices of financial assets (see Sect. 15.8);
in the case of jumps in the motion one must combine Wiener process with
Poisson process (see Sect. 15.2)

{Xt = μ · t + σ ·Wt, t ≥ 0}

(Wiener process with drift (trend parameter) μ and volatility (diffusion parameter)
σ , i.e. μ · t is a trend component and σ ·Wt is a diffusion component of Xt: in general
the drift μ and the volatility σ can be stochastic processes (see Sect. 15.3); E(Xt) =
μ · t and var(Xt) = σ 2 · t)

{St = eXt = eμ· t+ σ · Wt , t ≥ 0}

(exponential Wiener process or geometric Brownian motion with logarithmic drift
μ and logarithmic volatility σ : these are namely “linear drift” and “linear volatility”
of the process ln St; in general, the drift μ and the volatility σ can be stochastic
processes (see Sect. 15.3); E(St) = exp(μt + σ t

2/2) and var(St) = exp[(2μt + σ t
2)·

t]· [exp(σ t
2 · t)− 1]; the exponential transformation is applied frequently in order to

achieve the non-negativity of the process)
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15.2 Poisson Process in Finance

{Nt, t ≥ 0}, where (also see Sect. 30.4)

⎧
⎨

⎩

(i) N0 = 0
(ii) Nt2 − Nt1 , ..., Ntn − Ntn− 1 are independent for arbitrary 0 ≤ t1 < ... < tn
(iv) Nt − Ns ∼ P (λ · (t − s)) for arbitrary 0 ≤ s < t

Poisson process with intensity λ > 0: is a homogeneous Markov process, i.e. in
continuous time, with discrete state space S = N0 = {0, 1, . . .} (see Sect. 30.3),
where

pij(h) =

⎧
⎪⎪⎨

⎪⎪⎩

λ · h+ o(h) for j = i+ 1
1− λ · h+ o(h) for j = i
o(h) for j > i+ 1
0 for j < i

;

Nt at time t ≥ 0 gives the number of occurrences of a random event in time interval
〈0, t〉 and is suitable to model random variables developing in jumps, i.e. to model
so called rare events which are e.g. stock exchange crashes in finance; it holds

pi(t) = P(Nt = i) = e−λ · t (λ · t)i

i! , t ≥ 0; i ∈ N0

(see Poisson distribution in Sect. 26.4 with mean value λ · t); the lengths of intervals
between particular occurrences of the given event are iid random variables with
distribution Exp(λ) (see exponential distribution in Sect. 26.5 with mean value 1/λ
and variance 1/λ); it holds E(Nt)= λ · t and var(Nt)= λ · t; in general, one can have
an intensity λt depending on time)

{Mt = Nt − λ · t, t ≥ 0}

(compensated Poisson process with intensity λ > 0: is a quadratically integrable
martingale continuous from the right (see Sect. 26.9), i.e. in particular, it has
unpredictable increments; it holds E(Mt) = 0 and var(Mt) = λ · t)

• Comparison of Wiener and Poisson processes from the point of view of financial
applications:
– increments of Wiener process Wt+h − Wt (for h → 0+ denoted as dWt, see

Sect. 15.3) describe “regular events of insignificant size” (for small h), while
increments of Poisson process Nt+h − Nt (for h→ 0+ denoted as dNt ) describe
“irregular (rare) events of significant size (jumps)”
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– Wiener process is suitable to model continuous motions of interest rates,
exchange rates and prices of financial assets, while Poisson process (mostly
in combination with Wiener process) is suitable to model their motions with
jumps

15.3 Ito Stochastic Integral

T∫

0

σt dWt, where σt is a nonanticipating stochastic process; E

⎛

⎝

T∫

0

σ 2
t dt

⎞

⎠ <∞,

0 ≤ T <∞
(Ito stochastic integral: is an analogy of Riemann-Stieltjes integral with a “ran-
dom function” Wt (i.e. Ito integral is a random variable); values σ t can be also
random (but in this case independent on the future) and must not be “explosive”
(in square) in the given interval; nonanticipativity (or also previsibility) at time t is
independence on the future in the sense of measurability of σ t with respect to the
past and present information included in �t, see Sect. 15.1; in practice, σ t = σ (St, t)
is often the volatility of a given financial variable St for a suitable deterministic
function σ (· , ·); in particular, if σ t = σ (Wt, t) for a continuous function σ (· , ·) then
Ito stochastic integral exists)

Assumption: Each Ito stochastic integral given in the following text exists

n∑

k= 1

σtk− 1 · (Wtk −Wtk− 1 )
L2→

T∫

0

σt dWt,

i.e. lim
n→∞E

⎧
⎪⎨

⎪⎩

⎡

⎣
n∑

k= 1

σtk− 1 · (Wtk −Wtk− 1 )−
T∫

0

σt dWt

⎤

⎦

2
⎫
⎪⎬

⎪⎭
= 0

(definition of Ito stochastic integral: this integral is the limit in the mean square
(see Sect. 26.14) of the areas of approximate Riemann-Stieltjes rectangles of the
form σtk− 1 · (Wtk − Wtk− 1 ) for finer and finer partitions 0 = t0 < t1 < . . . < tn = T
of the integration interval (the limit value remains the same for arbitrarily chosen
partitions); one applies sometimes more generally the limit in probability (see Sect.
26.14) instead of the limit in the mean square)

T∫

0

(a1t · σ1t + a2t · σ2t) dWt = a1t ·
T∫

0

σ1t dWt + a2t ·
T∫

0

σ2t dWt,

where a1t and a2t are deterministic functions (linearity)
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u∫

s

σt dWt =
T∫

0

I〈s, u〉(t) · σt dWt;

u∫

s

dWt = W(u)−W(s), where 0 ≤ s < u ≤ T

E

⎛

⎝

T∫

0

σt dWt

⎞

⎠ = 0; in particular E

⎛

⎝

T∫

0

Wt dWt

⎞

⎠ = 0

E

⎛

⎝

T∫

0

σt dWt

⎞

⎠

2

= E

⎛

⎝

T∫

0

σ 2
t dWt

⎞

⎠ = E

⎛

⎝

T∫

0

σ 2
t dt

⎞

⎠

=
T∫

0

E(σ 2
t ) dt, if

T∫

0

E(σ 2
t ) dt <∞

E

⎛

⎝

T∫

0

σ1t dWt ·
T∫

0

σ2t dWt

⎞

⎠ = E

⎛

⎝

T∫

0

σ1t · σ2t dWt

⎞

⎠ = E

⎛

⎝

T∫

0

σ1t · σ2t dt

⎞

⎠

=
T∫

0

E(σ1t · σ2t) dt, if

T∫

0

E(σ1t · σ2t) dt <∞

Xt =
t∫

0

σs dWs, where 0 ≤ t ≤ T

(stochastic process Xt defined by means of Ito stochastic integral is the quadratically
integrable continuous martingale (see Sect. 26.9) with respect to �t)

t∫

0

Ws dWs = 1

2
(W2

t − t) , where 0 ≤ t ≤ T

{Xt =
t∫

0

μsds+
t∫

0

σs dWs, t ≥ 0}

(Wiener process with drift μt and volatility σ t (also see Sect. 15.1): drift μt and
volatility σ t are nonanticipating stochastic processes (see thereinbefore) and have
often the form μt = μ (Xt, t) and σ t = σ (Xt, t) for suitable deterministic functions
μ (· , ·) and σ (· , ·))

{St = eXt = exp

⎛

⎝

t∫

0

μsds+
t∫

0

σs dWs

⎞

⎠ , t ≥ 0}

(exponential Wiener process or geometric Brownian motion with logarithmic drift
μt and logarithmic volatility σ t (also see Sect. 15.1))
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T∫

0

σt dMt, where Mt = Nt − λ · t is a compensated Poisson process (see Sect. 15.2)

(Ito stochastic integral with respect to process Mt: definition and assumptions are
the same as for

∫ T
0 σt dWt; the martingale Xt =

∫ t
0 σs dMs is continuous only from

the right in this case since it moves in jumps)

15.4 Stochastic Differential Equations SDE

Denotation and assumptions:

{�t , t ≥ 0} filtration (see Sect. 15.1)
{Xt , t ≥ 0} stochastic process (more generally, 0 ≤ t ≤ T with possi-

bility T =∞)
μt and σ t nonanticipating stochastic processes (see Sect. 15.3, in

particular, one can put μt = μ (Xt, t) and σ t = σ (Xt, t) for
suitable deterministic functions μ (· , ·) and σ (· , ·)) such
that

∫ t
0 |μs| ds < ∞ and

∫ t
0 σ

2
s ds < ∞ with probability

one for arbitrary 0 ≤ t ≤ T
dXt = μtdt + σtdWt integral relation Xt = X0 +

∫ t
0 μsds + ∫ t

0 σsdWs (see
Sect. 15.3) rewritten as differential one with stochastic
differentials dXt and dWt

Xt+h − Xt =
t+h∫

t

μsds +
t+h∫

t

σsdWs ≈ μt · h+ σt · (Wt+ h −Wt)

(relation dXt = μtdt + σtdWt rewritten in this approximate form is suitable for
models of interest rates (but not for models of market prices of stock))

dXt = μ(Xt, t) dt + σ (Xt, t) dWt

((Ito) stochastic differential equation (SDE): its solution is a stochastic process Xt

which under initial condition X0 fulfils relation)

Xt = X0 +
∫ t

0
μ(Xs, s)ds+

∫ t

0
σ (Xs, s)dWs

)

dXt = μ dt + σ dWt

(SDE with linear constant coefficients and initial condition X0 = 0: → its solution
is Xt = μ · t + σ ·Wt)
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dXt = μ · Xtdt + σ · XtdWt or equivalently
dXt

Xt
= μ dt + σ dWt

(geometric SDE with constant coefficients and initial condition X0 = 1: it is applied
frequently to model development of relative changes of financial variables (e.g.
development of a rate of return if the price is Xt):

→ its solution is Xt = exp

{(

μ− 1

2
σ 2
)

· t + σ ·Wt

})

dXt = σ · XtdWt or equivalently
dXt

Xt
= σ dWt

(special case of geometric SDE with μ = 0 and initial condition X0 = 1: relative
changes of a financial variable Xt are calibrated increments of Wiener process:

→ its solution is Xt = exp

{

−1

2
σ 2 · t + σ ·Wt

})

dXt=
(

μ+ 1

2
σ 2
)

·Xtdt+σ ·XtdWt or equivalently
dXt

Xt
=
(

μ+ 1

2
σ 2
)

dt+ σ dWt

(special case of geometric SDE with initial condition X0 = 1: the natural logarithm
of its solution is Wiener process with drift μ and volatility σ (see Sect. 15.1):

→ its solution is Xt = exp {μ · t + σ ·Wt})

15.5 Ito’s Lemma

Denotation and assumptions:

dXt = μtdt + σtdWt stochastic process Xt in differential form (see Sect. 15.4)
f(Xt, t) continuous (nonrandom) function of the stochastic pro-

cess Xt and time t with continuous partial derivatives
fx = ∂f/∂Xt, fxx = ∂2f/∂Xt

2, ft = ∂f/∂t

df (Xt, t) =
(

fx · μt + ft + 1

2
fxx · σ 2

t

)

dt + fx · σtdWt, where 0 ≤ t ≤ T

(Ito’s lemma)

f (Xt, t) = f (X0, 0)+
t∫

0

(

fx · μs + fs + 1

2
fxx · σ 2

s

)

ds +
t∫

0

fx · σsdWs, where 0 ≤ t ≤ T

(integral form of Ito’s lemma)
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df (Xt, t) =
(

f′x · μt + ft + 1

2
tr(�t�

′
tfxx)

)

dt + f′x · �tdWt, where 0 ≤ t ≤ T

(multivariate Ito’s lemma: Wt is an m-variate stochastic process formed by inde-
pendent Wiener processes; Xt is a d-variate stochastic process with differential form
dXt = μtdt + �tdWt (i.e. in particular, μt is a d-variate and �t is a (d × m)-variate
stochastic process of appropriate properties); f(Xt, t) is a continuous (nonrandom)
function of the stochastic process Xt and time t with d-variate vector fx = (∂f/∂Xti),
(d× d)-variate matrix fxx = (∂2f/∂Xti ∂Xtj) and scalar ft = ∂f/∂t of continuous partial
derivatives)

d (exp(μ · t + σ · Wt)) =
(

μ + 1

2
σ 2
)

· exp(μ · t+ σ ·Wt) dt+ σ · exp(μ · t+ σ ·Wt) dWt

(example of an application of Ito’s lemma, also see Sect. 15.4)

d(W2
t ) = dt + 2Wt dWt

(identity derived using Ito’s lemma or integral relation
∫ t

0 Ws dWs = (W2
t − t)/2 (see

Sect. 15.3): it differs significantly from the nonrandom differential d(x2) = 2x dx)

d(Xt · Yt) = XtdYt + YtdXt + σt · ρt dWt for

{
dXt = μtdt + σtdWt

dYt = νtdt + ρtdWt

d(Xt · Yt) = XtdYt + YtdXt for

{
dXt = μtdt + σtdWt

dYt = νtdt + ρtdW̃t
,

where processes Wt and W̃tare independent

15.6 Girsanov Theorem on Equivalent Martingale Probability

Denotation and assumptions:

Wt Wiener process with respect to probability P (see Sect. 15.1)
P′ probability equivalent to probability P: P(A) = 0 if and only if P′(A) = 0

(i.e. probabilities P and P′ dominate each other, see Sect. 26.8)
γ t nonanticipating (see Sect. 15.3) stochastic process for arbitrary 0 ≤ t ≤ T

< ∞ which fulfils EP{exp[(1/2)
∫ T

0 γ 2
t dt]} < ∞ (the index P denotes the

calculation of the mean value for P)
rf risk-free interest rate (see Sects. 5.1 and 13.2)
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dW̃t = γtdt + dWt or equivalently W̃t =
t∫

0

γsds+Wt

(Girsanov theorem: for P and γ t (see thereinbefore), there exists probability Q
equivalent to P such that W̃t is Wiener process with respect to Q; Q is called
equivalent martingale probability since it enables to transform the stochastic pro-
cess

∫ t
0 γtdt +Wt, which in general is not a martingale (with respect to P), to a

martingale (with respect to Q); Radon-Nikodym derivative of Q with respect to P

(see Sect. 26.8) is dQ
dP = exp

(

− 1
2

T∫

0
γ 2

t dt −
T∫

0
γtdWt

))

dXt = μtdt + σtdWt with respect to P → dXt = νtdt + σtdW̃t with respect to Q

for γt = μt − νt

σt

(transformation of Wiener process with respect to probability P with drift μt and
volatility σ t (written in the form of SDE, see Sects. 15.1 and 15.4) to Wiener
process with respect to equivalent martingale probability Q (see thereinbefore)
with another drift νt, but still maintaining the original volatility σ t (assuming that
EP{exp[(1/2)

∫ T
0 γ 2

t dt]} <∞); in particular, for νt = 0 the transformation result is
Wiener process with respect to Q without drift and with the original volatility)

e− rf · tSt = e− rf · tS0eXt = S0e(μ− rf ) · t+σ ·Wt with respect to P

→ dSt

St
= rf dt+ σ dW̃t with respect to Q for γ = μ+ σ 2/2− rf

σ

(transformation of exponential Wiener process St (in general μ and σ may be
nonanticipating stochastic processes, see Sect. 15.3) which is discounted by risk-
free rate of return rf (see Sects. 5.1 and 13.2) to geometric SDE (see Sect. 15.4)
describing relative changes of the process St by means of increments formed by
the risk-free drift rf and Wiener process with the original logarithmic volatility σ ;
the equivalent martingale probability Q is called the risk-neutral probability in this
context (since the drift is risk-free, also see Chap. 14): it is applied when pricing
financial derivatives (see Sect. 15.8); γ is called the market price of risk: it is an
excess of the drift over rf per volatility unit or risk unit (since it holds dSt/St =
(μ + σ 2/2) dt + σ dWt with respect to the original P); when no arbitrage
opportunity exists (see Chap. 14) then all tradable assets must have the same mar-
ket price of risk; the corresponding SDE has the form dUt/Ut = σdW̃t, where
Ut = exp(−rf · t) · St)
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15.7 Theorem on Martingale Representation

Denotation and assumptions:

Mt Wiener process with drift and volatility σ t (see Sect. 15.3),
which is a martingale (see Sect. 26.9) with respect to prob-
ability Q (the volatility σ t is positive with probability one
for each t)

Kt arbitrary martingale with respect to probability Q

Kt = K0 +
t∫

0

ϕsdMs or equivalently dKt = ϕtdMt

(theorem on martingale representation: for Mt and Kt (see thereinbefore) there exists
a nonanticipating (see Sect. 15.3) stochastic process φt (

∫ T
0 ϕ2

t · σ 2
t dt<∞) fulfill-

ing the given relation: the so-called martingale representation of Kt by means of Mt;
it is a special case of Doob-Meyer submartingale decomposition (see Sect. 26.9))

dXt = μtdt + σtdWt, where E

(∫ T

0
σ 2

t dt

)2

<∞

(Wiener process Xt (see Sects. 15.3 and 15.4) with drift μt and volatility σ t fulfilling
the given assumption on σ t is a martingale, if and only if its drift is zero (μt = 0);
the martingale property of the process Xt without the given assumption on σ t is
fulfilled only locally so that one has a so-called local martingale)

dXt

Xt
= σtdWt, where E

(

exp

(
1

2

∫ T

0
σ 2

t dt

))

<∞

(exponential Wiener process Xt (see Sects. 15.3 and 15.4) without drift and with
logarithmic volatility σ t fulfilling the given assumption on σ t is a martingale; in
particular, the process Ut fulfilling dUt/Ut = σdW̃t (see Sect. 15.6) is a martingale)

15.8 Derivatives Pricing by Means of Equivalent Martingale
Probabilities

Denotation and assumptions:

St = S0eμ · t+σ ·Wt price of an asset unit underlying a financial derivative at time t:
it has the form of exponential Wiener process with logarithmic
drift μ and logarithmic volatility σ on a probability space with
σ -algebras �t of the filtration (to which the martingale W is
adapted) and with probability P (see Sect. 15.1)
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Bt = e rf · t interest factor of continuous compounding (see Chap. 4) with
risk-free rate of return r (see Sects. 5.1 and 13.2): it can be
interpreted as the price of the unit (B0 = 1) of a risk-free zero-
coupon bond at time t (see Sect. 9.2)

ZT claim guaranteed by the financial derivative in maturity date
T (e.g. for a call option with strike price X one puts ZT =
(ST − X)+, see Sect. 10.5)

Vt price (or value) of the financial derivative (if no arbitrage
opportunity exists, see Chap. 14) at time t (0 ≤ t ≤ T)

φt number of the underlying asset units (see thereinbefore) in the
portfolio, which replicates the price motion of the financial
derivative (if no arbitrage opportunity exists) at time t (0 ≤
t ≤ T)

ψ t number of units of the zero-coupon bond (see thereinbefore) in
the replicating portfolio at time t (0 ≤ t ≤ T)

Vt = ϕt · St + ψt · Bt

(price of financial derivative at time t: one can find it as the price of the replicating
portfolio at time t using φt units of the underlying asset with unit price St and ψ t

units of the risk-free zero-coupon bond with unit price Bt)

dVt = ϕt · dSt + ψt · dBt

(self-financing portfolio: any change of its price can be realized exploiting price
changes of its components alone without injecting a cash to the portfolio)

• Construction of replicating portfolio to price a financial derivative (see therein-
before):
(1) Ut = e− rf · tSt = B−1

t St with respect to P→ dUt
Ut
= σ dW̃t with respect to Q

(output: equivalent martingale (risk-neutral) probability Q such that the pro-
cess St discounted with respect to the risk-free rate of return is a martingale
(see Sects. 15.6 and 15.7))

(2) Vt = e− rf · (T− t)EQ (ZT |�t ) = Bt · EQ

(
B− 1

T · ZT |�t

)
with respect to Q

(output: the price of the financial derivative at time t (see thereinbefore) is
equal (if no arbitrage opportunity exists, see Chap. 14) to the conditional
mean value of the maturity claim ZT (see thereinbefore) discounted using
the risk-free rate of return to time t with respect to the probability Q (see
(1)) and the information included in the σ -algebra �t (see Sect. 26.8); if one
aims to price the financial derivative only (i.e. an explicit construction of
replicating portfolio is not required) then the procedure can be finished by
calculating Vt)
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(3) dEt = ϕtdUt, where Et = B− 1
t · Vt = EQ

(
B− 1

T · ZT |�t

)
with respect to Q

(output: number of units of the underlying asset φt according to the theorem
on martingale representation (φt is nonanticipating stochastic process, see
Sect. 15.7) since the processes Et and Ut are martingales with respect to Q
(see Sect. 15.7))

(4) ψt = Et − ϕt · Ut = B− 1
t · (Vt − ϕt · St)

(output: number of units of the bond ψ t; the corresponding replicating port-
folio has indeed the price Vt = ϕt · St + ψt · Bt and is self-financing (see
thereinbefore))

Vt = Ct = St ·�(d1)− X · e− rf (T− t) ·�(d2), )

where d1 = ln(St/X)+ (rf + σ 2/2)(T − t)

σ
√

T − t
; d2 = d1−σ

√
T − t

(Black-Scholes formula for the price of a European call option with maturity date
T and strike price X at time t (also see Sect. 10.5): an example of application of the
formula (2) for
ZT = (ST−X)+ and St = S0 · exp(μ· t + σ · Wt) = S0 · exp

(
(rf − σ 2/2) · t + σ · W̃t

)
,

where W̃t has the distribution N(0, t) with respect to the appropriate equivalent mar-
tingale (risk-neutral) probability Q, i.e. St/S0 has with respect to the same Q the
distribution LN

(
(rf − σ 2/2)·t, σ 2·t) (see Sect. 26.5))

15.9 Derivatives Pricing by Means of Partial Differential
Equations PDE

• Alternative approach to derivatives pricing consists in solving specific partial
differential equations (PDE) derived using the principle of risk-free portfolio with
the risk-free rate of return rf

Denotation and assumptions:

dSt = μ(St, t) · dt + σ (St, t) · dWt price motion of an asset underlying a financial
derivative

Vt = F(St, t) price of the financial derivative (if no arbitrage
opportunity exists, see Chap. 14)) at time t (0
≤ t ≤ T); it is an (unknown) function F of the
underlying asset, and one looks for F solving
the corresponding PDE

F(ST, T) = G(ST, T) boundary condition of the PDE with a given
function G (e.g. it is G(ST, T)= (ST − X)+ for a
call option with strike price X and maturity date
T, see Sect. 10.5)
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− rf · F(St, t) + rf · ∂F(St, t)

∂St
· St + ∂F(St, t)

∂t
+ 1

2
· ∂

2F(St, t)

∂S2
t

· σ 2 (St, t) = 0,

0 ≤ t ≤ T

(PDE for the price of a financial derivative F(St, t) with a suitable boundary
condition F(ST, T) = G(ST, T))

− rf · F(St, t) + rf · ∂F(St, t)

∂St
· St + ∂F(St, t)

∂t
+ 1

2
· ∂

2F(St, t)

∂S2
t

· σ 2 · S2
t = 0,

0 ≤ t ≤ T

(PDE for the price of a European call option with maturity date T and strike price
X (the price motion of the underlying asset is modeled as the exponential Wiener
process dSt/St = μ · dt+ σ · dWt and the boundary condition is G(ST, T) = (ST −
X)+): the solution is Black-Scholes formula (see Sects. 10.5 and 15.8))

15.10 Term Structure Modeling

• Term structure of interest rates: is dependence of interest rates on the time to
maturity (also see yield curve); its modeling is important for analysis and pricing
of various interest instruments (in particular, bonds (see Sect. 9.2) and inter-
est derivatives (see Chap. 10)); unlike the classical discrete approach to these
problems (e.g. see yield curves in Sect. 9.2 or rates of return in Sect. 12.1),
the continuous approach (see thereinafter) makes use of methods of stochastic
financial analysis

Denotation:

P(t,T) price of a risk-free zero-coupon bond (see
Sect. 9.2) with time to maturity T and unit
face value (P(T,T) = 1) at time t

R(t, T) = − ln P(t,T)
T−t rate of return (yield curve, yield-to-

maturity) to time T at time t (t < T) in the
sense of continuous compounding

F(t, T , U) = − ln P(t,U)−ln P(t,T)
U−T forward rate of return from time T to time

U at spot time t (t < T < U) in the sense of
continuous compounding

rt = R(t, t) = − ∂ ln P(t,t)
∂T instantaneous rate of return (short rate)

at time t in the sense of continuous com-
pounding

f (t, T) = − ∂ ln P(t,T)
∂T instantaneous forward rate of return from

time T at spot time t (t ≤ T); f(t, t) = rt =
R(t, t)
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• It holds:

P(t, T) = e−R(t,T)·(T− t) (equivalent form with rate of return R (t, T))

P(T, U) = e−F(t,T ,U)·(U−T)(equivalent form with forward rate of return F(t, T , U))

P(t, T) = exp

⎛

⎝−
T∫

t

f (t, u) du

⎞

⎠

(equivalent form with instantaneous forward rate of return f(t, u))

R(t, T) = 1

T − t

T∫

t

f (t, u) du (equivalent form for rate of return R (t, T))

• Yield curve (also see Sect. 9.2): is a plot of R(t,·) against T for fixed t
• Discount curve: is a plot of P(t,·) against T for fixed t
• (Credit) spread curve: is a plot of s(t,·) = R(t,·) − Rf (t,·) against T for fixed t

where s(t,T) is the spread between the rate of return R(t,T) of a risk zero-coupon
bond and the rate of return Rf(t,T) of a risk-free zero-coupon bond

Denotation and assumptions:

drt = a(rt, t) dt + b(rt, t) dWt single-factor interest rate model: describes the
motion of instantaneous rate of return rt (see there-
inbefore) by means of SDE (see Sect. 15.4); it
includes only one interest factor rt; special forms
of this SDE (see thereinafter) are applied to mod-
eling term structure of interest rates R(rt, t, T) and
prices of interest instruments P(rt, t, T) assum-
ing non-occurrence of arbitrage opportunities (see
Chap. 14); for simplicity one often omits argu-
ments in the notation, e.g. P(rt, t, T) = P

dP = P · μ dt + P · σ dz, where

μ = μ(rt, t, T) = 1
P ·
(
∂P
∂t + a · ∂P

∂r + 1
2 b2 · ∂2P

∂r2

)
; σ = σ (rt, t, T) = 1

P · b · ∂P
∂r

(SDE for P(rt, t, T)= P in the single-factor interest rate model (see thereinbefore))
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q = q(rt, t) = μ(rt, t, T)− rt

σ (rt, t, T)

(market price of risk (also see Sects. 13.3 and 15.6): if no arbitrage opportunities
exist then q does not depend on the time to maturity T (i.e. bonds with different
times to maturity have the same market price of risk); the equality μ − r = q · σ
can be interpreted in such a way that the expected yield μ exceeding r compensates
the risk q · σ )

∂P

∂t
+ (a− b · q) · ∂P

∂r
+ 1

2
b2 · ∂

2P

∂r2
= P · r for t < T; P(rT , T , T) = 1

((Vasicek) PDE for P (rt, t, T) = P in the single-factor interest ratemodel)

P(rt, t, T) = E

⎛

⎝ exp

⎛

⎝−
T∫

t

ru du− 1

2

T∫

t

q2(ru, u) du−
T∫

t

q(ru, u) dWu

⎞

⎠

∣
∣
∣
∣
∣
∣
�t

⎞

⎠ for t ≤ T

(solution of Vasicek PDE (see thereinbefore) by means of Ito stochastic integral, see
Sect. 15.3)

• In practice one applies:
– first of all some special cases of the single-factor interest rate model:

mean-reverting Vasicek model (see thereinafter), Cox-Ingersoll-Ross model
(see thereinafter) and others

– binomial tree models (e.g. models Rendleman-Bartter, Jarrow-Rudd and
others)

– multi-factor interest rate models including more interest factors simultane-
ously (e.g. models Brennan-Schwartz, Fong-Vasicek, Longstaff-Schwartz and
others)

drt = α · (γ − rt) dt + b dWt, whereα > 0; γ ∈ R; b ∈ R; q(rt, t) = q = const

(mean-reverting Vasicek model (Ornstein-Uhlenbeck process): rt fluctuates around
a constant level γ but the trend coefficient α· (γ − rt) reverts the values rt that
deviated too much from γ back to this level (remind of the fact that the volatility b
is constant); one assumes for simplicity that the market price of risk q is constant)

dP = P · μ dt + P · σ dWt, whereμ = μ(rt, t, T) = rt − b · q
α
·
(

1− e−α · (T− t)
)

;

σ = σ (rt, t, T) = b

α
·
(

1− e−α · (T− t)
)

(SDE for P(rt, t,T) = P in the mean-reverting Vasicek model (see thereinbefore))
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P(rt, t, T) = exp
[

1
α
· (1− e−α · (T− t)

) ·
(
γ + b · q

α
− b2

2α2 − rt

)
−

−
(
γ + b · q

α
− b2

2α2

)
· (T − t)− b2

4α3 ·
(
1− e−α · (T− t)

)2
]

for t ≤ T

(price of zero-coupon bond in the mean-reverting Vasicek model (see thereinbe-
fore))

R(rt, t, T) = γ + b · q
α
− b2

2α2
− 1

α · T ·
(

1− e−α ·T)
)
·
(

γ + b · q
α
− b2

2α2
− rt

)

+ b2

4α3T
·
(

1− e−α ·T
)2

(time structure of interest rates in the mean-reverting Vasicek model (see thereinbe-
fore); R(rt, t, 0) = rt; R(rt, t, ∞) = γ + b · q/α − b2/(2α 2); R(rt, t, T) increases,
or reverses from increase to decrease, or decreases if rt ≤ γ + b · q/α −3b2/
(4α 2), or γ + b · q/α −3b2/(4α 2) < rt < γ + b · q/α , or rt ≥ γ + b·q/α, respectively)

drt = α ·(γ −rt) dt+b ·√rt dWt, whereα > 0; γ ∈ R; b ∈ R; q(rt, t) = q = const

(Cox-Ingersoll-Ross model: in contrast to Vasicek model the volatility in this model
is not constant but proportional to the value rt (consequently the corresponding solu-
tion P(rt, t, T) does not attain negative values); one assumes again for simplicity that
the market price of risk q is constant)

P(rt, t, T) = A(t, T) · exp[−B(t, T) · rt)], whereψ = α + b · q ; δ =
√

ψ2 + 2b2;

A(t, T) =
[

2δ · e(δ+ψ) · (T− t)/2

2δ + (δ + ψ) · (eδ · (T− t) − 1
)

]2α · γ /b2

;

B(t, T) = 2
(
eδ · (T− t) − 1

)

2δ + (δ + ψ) · (eδ · (T− t) − 1
)

(price of zero-coupon bond in Cox-Ingersoll-Ross model (see thereinbefore))

• No arbitrage models: is another class of models for time structure of interest
rates which make use of information on the initial structure of interest rates,
e.g. information included in the function f(0, t) (i.e. in the initial instantaneous
forward rate of return, see thereinbefore); examples are models Ho-Lee, Hull-
White, Heath-Jarrow-Morton, Black-Derman-Toy, Black-Karasinski and others;
in practice, one applies also frequently the so-called LIBOR market model LMM
estimated by means of the current yield curve and the current prices of interest
derivatives
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Part II
Insurance Formulas



Chapter 16
Insurance Classification

Abstract Chapter 16 provides various classifications of insurance industry.

• Insurance: is an instrument of financial elimination of negative consequences of
contingency

• Insurance risk: is a potential possibility of occurrence of an insured event, where
according to the insurance contract (insurance policy) the insurance company
pays out an insurance benefit

• Characterization of insurance: the insured cedes his or her risks (potential loss
consequences of such risks from the insured’s individual point of view may be
catastrophic or winding up) to the insurer (insurance company), that is capable
owing to incoming insurance premiums (if the insurance portfolio, i.e. the set of
insurance contracts of similar character, is sufficiently large) not only to master
the accepted risks (as a whole), but even to make business profit of them

• Classification of insurance risks: coincides often with particular insurance
products:
– objective risk: is given by objective factors (e.g. by age, gender, health

conditions, profession, characteristics of insured object or environment)
– subjective risk: is given by subjective factors (e.g. by tendency of insured to

retain one’s life, health and property, to avoid conflicts against law)
– moral hazard: appears in such a situation, where the insured does not prefer

unconditionally the loss prevention to the loss occurrence
– pure risk: is not incited artificially (as it is the case e.g. in lottery)
– personal risk: is the risk of early exit, physical hazard (→ accident (or bodily

injury) insurance), morbidity risk (→ sickness insurance) or longevity risk
(→ life annuities)

– natural peril: is the risk of a direct loss in consequence of a natural catastrophe
(e.g. fire, flood, earthquake, and the like)

– traffic risk: is the risk of loss in connection to vehicles (→ hull (or casco)
insurance) or in connection to goods in transit (→ transport (or cargo)
insurance)

143T. Cipra, Financial and Insurance Formulas, DOI 10.1007/978-3-7908-2593-0_16,
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– theft and vandalism risk
– engineering risk: is the risk of accident or break-down of a machinery in

consequence of unqualified servicing, material defect, faulty technology, and
the like

– business interruption risk (including loss of profits risk): is the risk of an
indirect loss in consequence of a natural disaster, accident, break-down, and
the like

– liability risk (third party risk): is the risk of loss caused through conduct of the
insured to life, health and property of another subject (“third party” in addition
to the insured and to the insurer); the corresponding insurance product is e.g.
motor third party liability insurance)

– socio-political risk: includes wars and war-like events, embargos, strikes and
similar restraints of trade

– business and financial risks: result from varying economic and business
conditions; an important special case is e.g. credit risk (see Sect. 12.4)

– modern risks: are e.g. nuclear risk, ecological hazard (environmental risk), risk
of AIDS, and the like

– underwriting risk: consists in a potentiality that the insurer does not man-
age to achieve the balance between the incoming premium and the paid
claims; if the insurance portfolios enlarge, then the underwriting risk
decreases

• Classification of insurance:
– private insurance:

– life insurance: can be further classified to (1) capital life insurance with
savings premium which is such a part of the premium that accumulates
capital amounts, (2) risk life insurance (in particular, term insurance) with
risk premium covering only mortality risk (i.e. without savings premium)
and (3) life annuities (insurance)

– property insurance
– accident insurance
– insurance for private medical treatment
– liability insurance (third party insurance) (globally, the property insurance,

accident insurance, insurance for private medical treatment and liability
insurance are referred to as non-life insurance or as general insurance
business or in the US as property and casualty insurance)

– social insurance (social security): guarantees benefits in the case of in-
capacity for employment that can be either temporary (→ e.g. sickness
insurance) or permanent mainly in consequence of age or disablement (→
(retirement or invalidity) pension insurance guaranteed by the state or by
pension funds)

– health (or medical) insurance: is guaranteed by the state or has a contractual
form as the insurance for private medical treatment (see thereinbefore)
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• Classification of insurance from the point of law:
– voluntary (or optional) insurance: is effected as a free decision of clients (in

the form of insurance contracts (insurance policies))
– compulsory (or obligatory) insurance:

– compulsory contractual insurance: a statutory regulation requires to effect
this insurance (in the form of insurance policy) as the necessary condition
for pursuing a given activity (e.g. motor third party liability insurance)

– mandatory insurance: is the insurance required by law (no insurance
policies are effected)

• Classification of insurance from the point of insurable interest:
– indemnity insurance (insurance against loss and damage): the insurance

indemnity just covers the loss caused by the insurance event, i.e. the insurance
benefit is constrained by the extent of insurable interest

– sum insurance: the insurance benefit serves to cover “abstract” needs without
specifying an extent of insurable interest (it concerns mainly the life insurance,
but also e.g. the accident insurance for the case of death)

• Classification of life insurance:
– risk life insurance: the insurance event is the insured’s death; in particular, the

term insurance means that this event must occur during a stipulated period
(e.g. during 10 years since the inception of insurance); if it is not the case, one
calls it the whole life insurance

– pure endowment: the insurance event is the insured’s survival till a stipu-
lated age

– endowment: the insurance event is both the insured’s death and the insured’s
survival till a stipulated age according as which event occurs earlier

– life annuity: can be looked upon as a special case of pure endowment, where
the insurance benefits repeat regularly as long as the insured is alive

– fixed term insurance (children’s insurance): e.g. educational insurance, dowry
insurance, and the like

– tontines: mean that participants join together in order to capitalize jointly
their contributions and to distribute continually the accumulated capital among
survivors

– modern life insurance products: e.g.
– critical illness (or dread disease) insurance: extends the mortality risk in

such a way that the sum insured (or its percentage part) is paid out, as soon
as a given illness is diagnosed (usually cancer, heart attack or stroke of
given seriousness)

– long-term care insurance: the insurance benefit is paid out regularly, when
the insured’s common skills (mobility, hygiene, food, and the like) nec-
essary for life are reduced; it has the form of daily allowances or care
expenditures payments

– permanent health insurance (called disability insurance in the US): pro-
vides benefits on sickness and disability, the amounts of which are related
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to the loss of earnings suffered by the insured due to being unable to carry
his or her normal occupation

– unit-linked insurance (called variable life insurance in the US): is a combi-
nation of life insurance (usually the term insurance) and investment funds;
the insurance benefit may depend on the momentary price of investment
units owned by the policyholder in investment portfolios of the insurer (it
implies that the client bears the whole investment risk of the policy)

– index-linked insurance: the insurance indemnity may depend on the aver-
age development of a market factor (see Sect. 29.3, e.g. a stock exchange
indicator, the LIBOR interest rate, and the like)

– universal life insurance: is characterized first of all by significant flexibility
of collected insurance premiums and by various alternatives of insurance
benefits; moreover, it separates strictly the risk premium and the savings
premium so that the mechanism of the product is transparent even for
laymen; it is frequently combined with unit-linked insurance (see there-
inbefore) and then called the variable universal life; particular cases are
products, which enable benefit changes always after a change of insurable
interest without evaluating health conditions

– bancassurance: makes use of the fact that nowadays insurance companies
and banks cooperate closely in the framework of financial groups (holding
companies): the policyholders are mainly clients of the bank, the allo-
cated insurance products (using often bank sale desks) may support bank
products (e.g. credits), and the like

• Classification of life insurance from the point of establishment of technical pro-
visions (see Sect. 18.3):
– capital life insurance (capitalizing type of life insurance, life insurance with

policy value): uses the savings premium which is such a part of the premium,
which generates a substantial capital amount called the premium reserve (the
premium reserve as the most important technical provision in life insurance
represents the policy value)

– risk life insurance: uses only the risk premium covering mortality risk (i.e.
there is no savings premium) so that the premium reserve of risk life insurance
products is mostly negligible (see e.g. the term insurance)

• Classification of life insurance from the point of profit benefits:
– participating life insurance (or with-profit benefits product): means that poli-

cyholders participate significantly in profits earned by the insurer (under the
with-profit contract the insurer increases the return to the policyholders by
means of additional periodic distributions (dividends), which are determined
from time to time to cover individual policyholders’ shares of the insurer’s
profits; it is popular in the UK

– non-participating life insurance (or non-profit benefits product): means that
policyholders participate only in the technical gain that consists of (1)
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investment gain due to difference between the actually earned interest rate
and the technical interest rate used for insurance calculations, (2) mortality
gain due to analogous difference in mortalities, and (3) expense gain due to
analogous difference in expenses

• Classification of non-life insurance (general insurance business):
– personal lines of business:

– household (contents) insurance
– building insurance
– private motor insurance (includes both the hull insurance and the motor

third party liability insurance)
– accident insurance: pays out benefit for (1) period of necessary medical

treatment, (2) permanent consequences of injury and (3) fatality death
– insurance for private medical treatment
– travel insurance
– liability insurance:

– voluntary: e.g. personal liability insurance
– contractual compulsory: e.g. motor third party liability insurance, pro-

fessional malpractice insurance, hunting liability insurance, etc.
– commercial insurance (business and industrial insurance):

– motor fleet or commercial vehicles insurance
– commercial fire (or multi-peril) insurance: e.g. FLEXA (fire, lightning,

explosion, aircraft)
– aviation, marine and transport insurance
– liability insurance: e.g. general liability insurance, product liability insur-

ance, professional indemnity
– agriculture insurance: e.g. crop-hail insurance, crop insurance, forest

insurance

• Classification of pension insurance:
– social insurance (social security): is guaranteed by the state (the so-called

state pensions) and financed mostly through the pay-as-you-go (PAYGO)
system

– pension funds

• Classification of pension insurance according to contribution and benefit
calculations:
– defined contribution plan: one calculates benefits with respect to prescribed

contributions
– defined benefit plan: one calculates contributions with respect to required

benefits
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• Classification of benefits of pension plans:
– retirement pension: is paid out after achievement of the retirement age
– pension due to participation: is paid out after achievement of a stipulated

period of participation
– disability pension: is paid out after admission of the partial or total disability
– survivor’s pension: e.g. widow’s pension, widower’s pension and orphan’s

pension
– lump sum benefit: is paid out as a single amount instead of pension payments
– surrender: is paid out if the pension is cancelled (lapsed)
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Chapter 17
Actuarial Demography

Abstract Chapter 17 provides formulas of actuarial demography that are impor-
tant for life and pension insurance: 17.1. Selected Population Indicators, 17.2. Life
Tables, 17.3. Mortality and Survival Modeling, 17.4. Multiple Decrement Models,
17.5. Multiple Life Functions, 17.6. Commutation Functions.

17.1 Selected Population Indicators

• Unfortunately the terminology for the population (or demographic) indicators
is not uniform in particular territories; a simple verbal description is sometimes
preferred to symbolic formulas in this brief survey:

mid-population is the population of the given territory (males,
females, both genders (unisex)) in middle of the
given period (e.g. the mid-population in year
2009 is the population as of 1 July of 2009);
sometimes it may be also e.g. the arithmetic
mean of the initial and final population (see
thereinafter)

final population is the population of the given territory (males,
females, both genders (unisex)) at the end of the
given period (e.g. the final population in year
2009 is the population as of 31 December of
2009); similarly for the initial population

(individual) age is the completed age attained by the given person
at the given time (i.e. the age of the last preceding
birthday)

age-specific population is the classification of population by age accord-
ing to particular age groups which may be 1-year
groups (i.e. the classification by age units), 5-year
groups (the so-called abridged age classification)
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or others; sometimes the classification by gener-
ations (cohorts) is more convenient; the term age
pyramid is also used in this context

natural increase of population is the difference between the numbers of live
births and deaths in the given period and territory;
it may be negative

total increase of population is the difference between the final and initial
population in the given period and territory (see
thereinbefore); it is the aggregate of the natural
increase (see thereinbefore) and the net migration
(migration balance)

crude birth rate is the number of live births in the given period
per 1,000 inhabitants from the mid-population for
this period (see thereinbefore); if also dead births
are included, then the indicator becomes the total
birth rate

age-specific fertility rate is the number of live births in the given period
per 1,000 women in the given age group from
the mid- population for this period (see therein-
before)

total fertility rate is the average number of live births delivered
by a woman during her reproductive age span
(childbearing ages are often taken from 15 to 49
years old, but sometimes from 15 to 45) under the
assumptions that the age-specific fertility rates
(see thereinbefore) would be fixed at level of
the given period, for which the total fertility rate
is calculated, and the female mortality during
the reproduction age span would be zero; the
total fertility rate under 2.1 means a long-term
population decrease

gross reproduction rate is the average number of live-born daughters
delivered by a woman during her reproductive
age span (see thereinbefore) under the assump-
tion that the age-specific fertility rates (see there-
inbefore) would be fixed at level of the given
period, for which the gross reproduction rate is
calculated; if only the daughters are taken into
account who survive till such an age of their
mothers, when these daughters have been born,
then the indicator becomes the net reproduction
rate

crude mortality rate is the number of deaths in the given period per
1,000 inhabitants from the mid-population for
this period (see thereinbefore)
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age-specific mortality rate is the number of deaths in the given period per
1,000 inhabitants in the given age group from
the mid-population for this period (see there-
inbefore); in addition, this rate may be further
classified by causes of death

infant mortality rate is the number of infant deaths (i.e. the deaths dur-
ing the first year of life) in the given period per
1,000 live births in this period; if only neonate
deaths during the first 28 days of life are taken
into account, then the indicator becomes the
neonatal mortality rate

age-specific life expectancy is the expected number of years that a person
(usually distinguishing males and females) in the
given age group will live under the assumption
that the age-specific mortality rates (see there-
inbefore) would remain at level of the year for
which the life expectancy is calculated; the life
expectancy is the expected future lifetime at birth
(i.e. at zero age)

crude marriage rate is the number of marriages occurring in the
given period per 1,000 inhabitants from the mid-
population for this period (see thereinbefore)

age-specific marriage rate is the number of marriages occurring in the given
period per 1,000 men (or women, respectively) in
the given age group from the mid-population for
this period (see thereinbefore)

crude divorce rate is the number of divorces occurring in the
given period per 1,000 inhabitants from the mid-
population for this period (see thereinbefore)

age-specific divorce rate is the number of divorces occurring in the given
period per 1,000 men (or women, respectively) in
the given age group from the mid-population for
this period (see thereinbefore)

divorce ratio is the percentage of ultimately divorced mar-
riages in the given period

Denotation:

Kt final population in year t (see thereinbefore)
St, St

m, St
f mid-population (both genders, males, females) in year t

(see thereinbefore)
Sxt, Sxt

m, Sxt
f mid-population (both genders, males, females) of age x in

year t (see thereinbefore)

rt = Kt − Kt−1

Kt−1
(growth rate of population in year t)
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r̄ =
(

Kt

Kt−n

)1/n

− 1 (mean annual growth rate of population during n years)

ρt = ln

(
Kt

Kt−1

)

(growth intensity of population in year t)

ρ̄ = 1

n
ln

(
Kt

Kt−n

)

(mean annual growth intensity of population during n years)

Sm
t

Sf
t

(masculinity index or sex ratio in year t; its inverse value is femininity index in year t)

Sm
xt

Sf
xt

(masculinity index or sex ratio of age x in year t)

∑14
x=0 Sxt

St
(proportion of persons under age 15 or child proportion in year t)

∑
x ≥ 65 Sxt

St
(proportion of aged persons in year t)

∑
x ≥ 65 Sxt
∑14

x=0 Sxt
(aged-child ratio in year t)

∑14
x=0 Sxt +∑x ≥ 65 Sxt

∑64
x=15 Sxt

(age dependency ratio in year t: represents the ratio of the combined child and aged
population to the population of intermediate “working” age; the age limits for child
and aged population may be different in particular countries and may vary in time)

x̄ = 1

St

∑

x

(x+ 0.5) · Sxt (mean age of population in year t)

x̃ :
x̃−1∑

x=0

Sxt <
St

2
≤

x̃∑

x=0

Sxt (median age of population in year t, see Sect. 27.5)

x̂ : Sx̂t = max
x

Sxt (modal age of population in year t, see Sect. 27.5)
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17.2 Life Tables

• Life tables: serve as decrement instruments (in addition to financial instruments)
for calculations in life and pension insurance; they are mostly constructed sep-
arately for males and females; one distinguishes the following types of life
tables:

– complete: have 1-year age intervals (i.e. items for age 0, 1, . . . )
– abridged: have multiyear age intervals (mostly 0, 1–4, 5–9, 10–14, . . . )
– current (or period): are snapshots of the current mortality of population; they

are based on mortality experience of population during a short time (mostly
1-year) period

– generation (or cohort): are records of the actual lifetime of a given generation;
they are based on mortalities experienced by particular birth cohorts

• Description of columns of a complete current life tables (such life tables are
common in insurance practice):

– Age x (or life aged x):

– x = 0, 1, . . ., ω (the last age interval means “at age ω or more”); insurance
companies usually use x = 15, 16, . . . or x = 18, 19, . . .

– Probability of death at age x: qx

– is the probability of dying within 1 year, given that the age x has
been attained (i.e. the probability that a life aged x will die within 1
year)

– Probability of survival at age x: px = 1 – qx

– is the probability of surviving 1 year, given that the age x has been attained
(i.e. the probability that a life aged x will survive to age x + 1); px = 1 – qx

– more generally (but not given explicitly in the life tables): nqx (or npx) is
the probability that a life aged x will die within n years (or will survive to
age x + n), respectively

– Number of survivors to age x: lx

– is the expected number of lives surviving to age x from l0 newborns
– the sequence l0 ≥ l1 ≥ l2 ≥ . . . is called mortality decrement order (or sim-

ply life table): it represents a hypothetical lifetime of chosen l0 newborns
under the assumption that the age-specific mortality rates (see Sect. 17.1)
would remain at level of the period for which the life table is constructed;
l0 is called radix of the life table with a usual value l0 = 100,000 (but
sometimes also e.g. l15 = 100,000 or l18 = 100,000)

– the information contained in q0, q1, q2, . . . is fully equivalent to the
information contained in l0, l1, l2, . . .
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– Number of deaths at age x: dx

– is the expected number of deaths at age x by survivors of the initial group
of l0 newborns (dω = lω)

– Number of years lived at age x: Lx

– is the expected total number of years lived between ages x and x + 1
by survivors of the initial group of l0 newborns; one applies frequently
the approximations of the type Lx = lx+1 + 0.5·dx = (lx + lx+1)/2 (with
exceptions L0 = l1 + 0.1· d0, Lω = lω /2)

– Number of years lived beyond age x: Tx

– is the expected total number of years lived beyond age x by survivors of the
initial group of l0 newborns; the usual approximation is simply Tx = Lx +
Lx+1 + . . .

– Life expectancy at age x: ◦ex

– is the expected future lifetime at age x; the usual approximation is ◦ex =
Tx /lx

– in particular, ◦e0 is the life expectancy (at birth) (i.e. at the age zero)

• Selected relations for life table values:

npx = px · px+1 · . . . · px+n −1 = (1− qx) · (1− qx+1) · . . . · (1− qx+n −1)

mpx · npx+m = m+npx

dx = lx − lx+1

qx = dx

lx
= lx − lx+1

lx
; px = lx+1

lx
; lx+1 = px · lx = (1− qx) · lx

n|qx = dx+n

lx
(probability that a life aged x will die just at age x+ n)

◦ex = 1

2
+ 1px + 2px + . . . =

(
lx + lx+1

2
+ lx+1 + lx+2

2
+ . . .

+ lω −1+lω
2 + lω

2

)/
lx

x+◦ ex = 1

2
+
∑

t=x
t · dt

∑

t=x
dt

qx = 1− e− mx for mortality rate at age x (see Sect. 17.1) estimated as mx = MIII
x

Sx
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(estimate of life table value qx according to a usual methodology of life table con-
struction in practice: Sx is the mid-population (males or females) at age x (see Sect.
17.1); Mx

III is the number of “deaths of the third order” at age x (e.g. for year 2010 at
age 40 is MIII

40 the number of deaths in year 2010 at completed age 40 from genera-
tions 1969 and 1970); the estimated qx enables to find the other life table values px,
lx, dx, Lx, Tx, ◦ex)

• Graduation of life tables: is a smoothing of fluctuations in the sequence qx or
lx due to the fact that the table values are statistical estimates constructed using
observed data (e.g. without applying graduations, the necessary inequalities l0 ≥
l1 ≥ l2 ≥ . . . may not hold); in practice, there exist various method of gradua-
tion (though modern statistical offices publish life tables in a properly smoothed
form), e.g.:

l̂x = k̂ · ŝx · ĝĉx

(analytical graduation of life tables by means of (analytical) laws of mortality
(see e.g. Gompertz-Makeham’s law in Sect. 17.3); k̂, ŝ, ĝ, ĉ are estimated param-
eters k, s, g, c obtained by means of the regression analysis (see Sect. 27.11) for
the values lx prior to graduation; sometimes graduations for several age spans
must be combined using spline methods)

q̂x = 1

25
(qx−4+ 2qx−3+ 3qx−2+ 4qx−1+ 5qx+ 4qx+1+ 3qx+2+ 2qx+3+ qx+4)

(mechanical graduation of life tables by means of 9-point Wittstein’s method; it
is a special case of the moving averages (see Sect. 31.2))

q̂x = 1

27
(−qx−4 + 2qx−2 + 8qx−1 + 9qx + 8qx+1 + 2qx+2 − qx−4)

(mechanical graduation of life tables by means of 9-point Schärtlin’s method;
it is again a special case of the moving averages (see Sect. 31.2); other meth-
ods of this type are used in practice, e.g. Whittaker-Henderson’s, King-Hardy’s,
graphical smoothing, and the like)

• Some aspects of life tables applied in life and pension insurance:
(1) male and female mortality in life tables: due to the significantly higher male

mortality in comparison to the female mortality accross the whole insured
age span, the insurers apply various strategies, e.g. they calculate insurance
premiums:
– separately for males and females using male and female life tables
– without distinguishing gender using unisex life tables
– by shifting male insurance premiums (in order to obtain female pre-

miums): e.g. 5-year shifts are popular so that a female effecting a life
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insurance at age 40 pays the same premiums as a male effecting the same
type of insurance at age 35

(2) security loading implicitly included in life tables: the insurers adjust life
tables by loadings (margins) in their favour, since the loadings increase the
corresponding insurance premiums; e.g. one uses:
– an artificial aging by 1 year in the case of mortality risk (then e.g. the

value q40 equals to the actual value q41 prior to the age shift)
– an artificial rejuvenation by 2 years in the case of longevity risk (then e.g.

the value q40 equals to the actual value q38 prior to the age shift)
– other modifications, e.g. of the type q̂x ± c/◦ex, where ◦ex is the life

expectancy at age x (see thereinbefore) and c is a suitable constant (e.g.
0.015, if a higher security loading is necessary)

(3) select life tables: unlike the classical (aggregate) life tables, the probabilities
qx are graded according to the age at entry so that the tables contain values
of the type q[x−t]+t, which is the probability of death at age x, given that
the insurance has been effected t years ago; typically, a person who has just
bought insurance will be (due to subjective reasons or medical tests) of better
health than a person who has bought insurance several years ago; hence the
selection leads to inequalities q[x] < q[x−1]+1 < q[x−2]+2 < . . .

(4) antiselection in life tables: reflects the effort of policyholders to effect an
insurance in their favour (i.e. inconvenient for the insurer); unhealthy persons
want to have a policy covering the mortality risk, so that the insurer protects
oneself through entry medical tests; on the contrary, healthy persons want
to have a policy covering the longevity risk (mainly life annuities), so that
the insurer protects oneself through reduction coefficients rx for life annuity
portfolios, where the calculated probability of death at age x is not qx, but
rx·qx for 0 < rx < 1

(5) multiple life tables: are important instruments for multiple life insurance (e.g.
widow’s, widower’s or orphan’s pensions, insurance of boards of directors,
and others, see Sect. 18.8); these tables apply to couples of persons (x, y)
of the type “male at age x and female at age y” (or generally, to n-tuples of
persons), where under the assumption of independent mortality behaviour of
male and female population one can put

pxy = px · py; qxy = 1− pxy; lxy = lx · ly

pxy probability that a couple (x, y) will survive to ages (x +1, y +1)
qxy probability that a couple (x, y) will fail prior to ages (x +1, y +1)
lxy number of couples surviving to ages (x, y) (the joint-life status)
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px, lx values from a male life table (see thereinbefore)
py, ly values from a female life table (see thereinbefore)

(6) combination of current and generation life tables: unlike the classical current
life tables, the probabilities qx are graded according to the calendar years
so that the tables contain the values qx(t) (the probability of death at age x
in calendar year t) or qx

τ (the probability of death at age x for generation
τ = t − x):

qx(t) = T(x, t) ·qB
x = e− F(x)·(t− t∗) ·qB

x ; qτx = e− F(x)·(x+ τ − t∗) ·qB
x = qB

x + h(τ )

T(x, t) trend function
F(x) trend factor
qx

B probability of death at age x from a basic life table that corresponds
to a preset calendar year t∗ (the basic values qx

B must be tabulated
in advance for a fixed t∗)

h(τ ) shift of current age of a life aged x from generation τ to the adjusted
age x + h(τ ) proper for this generation (the shifts h(τ ) must be
tabulated in advance)

(7) multiple decrement life tables: are graded according to different causes of
decrement, due to which a person leaves an initial status (e.g. in the disability
pension insurance, the initial status is “active” and the causes of decrement
may be “disablement” and “death”); the tables contain values of the type
qx

(j), which is the probability of leaving the initial status at age x by cause j
(the so-called probability of decrement, see Sect. 17.4)

17.3 Mortality and Survival Modeling

• In life insurance one must combine financial calculations with mathematical
modeling of mortality, since insurance events in the context of life insurance
consist in dying within a given age span or surviving to a given age:

Fx(t) = P(Tx ≤ t) = P(Tx < t)

(random variable Tx represents the future lifetime at age x; the sharp inequality
when calculating the distribution function Fx(t) is justified by the continuity of
the random variable Tx)

x+ Tx (whole lifetime (past and future) of a life aged x)

Sx(t) = P(Tx > t) (survival function at age x)

qx = Fx(1) = P(Tx ≤ 1)

(probability of death at age x (see Sect. 17.2): is the probability that a life aged x
will die within 1 year)
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px = Sx(1) = P(Tx > 1)

(probability of survival at age x (see Sect. 17.2): is the probability that a life aged
x will survive to age x + 1)

s|qx = Fx(s+ 1)− Fx(s) = P(s < Tx ≤ s+ 1)

(probability that a life aged x will die at age x + s; it simplifies to qx for s = 0)

tqx = Fx(t) = P(Tx ≤ t)

(t-year probability of death at age x: is the probability that a life aged x will die
within t years; it simplifies to qx for t = 1)

tpx = Sx(t) = P(Tx > t)

(t-year probability of survival at age x: is the probability that a life aged x will
survive to age x + t; it simplifies to px for t = 1)

s|tqx = Fx(s+ t)− Fx(s) = P(s < Tx ≤ s+ t)

(probability that a life aged x will survive to age x + s, but will die within further
t years; it simplifies to s|qx for t = 1)

s+tpx = spx · tpx+s

s+tqx = 1− (1− sqx) · (1 − tqx+s)

s|qx = spx · qx+s; s| tqx = spx · tqx+s

npx = px · px+1 · . . . · px+n−1

Assumption: the random variable Tx (see thereinbefore) has probability density
(see Sect. 26.3):

fx(t) = d

dt
Fx(t) = − d

dt
tpx

μx+t= fx(t)

tpx
= fx(t)

Sx(t)
=−d

dt
ln(tpx) (force of mortality at age x + t of a life aged x)

μx ·x ≈ P(Tx ≤ x) = xqx

(μx ·x can be interpreted as an approximation of the probability that a life aged
x will die within age interval (x, x + x) of a (small) length x)
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tqx =
t∫

0

spx · μx+ sds ; tpx = exp

⎛

⎝−
t∫

0

μx+ sds

⎞

⎠

◦ex = E(Tx) =
∞∫

0

t · fx(t) dt =
∞∫

0

(1− Fx(t)) dt =
∞∫

0

t · tpx · μx+t dt =
∞∫

0

tpx dt

(life expectancy at age x: is the expected future lifetime at age x)

var(Tx) =
∞∫

0

t2 · tpx · μx+t dt−
⎛

⎝

∞∫

0

t · tpx · μx+t dt

⎞

⎠

2

=
∞∫

0

2t · tpx dt−
⎛

⎝

∞∫

0

tpx dt

⎞

⎠

2

lx = l0 · exp

⎛

⎝−
x∫

0

μt dt

⎞

⎠; dx =
x+1∫

x

lt · μt dt; Lx =
x+1∫

x

lt dt;

Tx =
ω∫

x

lt dt; ◦ex = 1

lx
·

ω∫

x

lt dt

(values in life tables (see Sect. 17.2) calculated with respect to continuous
arguments)

• Laws of mortality: represent mortality decrement orders expressed by means of
analytical functions; they can be classified according to the corresponding force
of mortality:

– constant force of mortality:

μx = λ; tpx = e−λ·t

– De Moivre’s law of mortality: has Tx with the uniform distribution (see Sect.
26.5):

μx = 1

ω − x
; tpx = ω − x− t

ω − x

– Gompertz’s law of mortality: has μx that increases exponentially:

μx = B · cx; tpx = gcx(ct−1) (B > 0; c > 1; g = exp{−B/ ln(c)})
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– Gompertz-Makeham’s law of mortality: modifies Gompertz’s law:

μx = A+ B · cx; tpx = st · gcx(ct−1)

(A > 0; B > 0; c > 1; g = exp{−B/ ln(c)}; s = exp(−A))

– Weibull’s law of mortality: has μx that increases polynomially:

μx = k·xn; tpx = w(x+ t)n+1− xn+1
(k > 0; n > 0; w = exp{−k/(n+1)})

Tx = Kx + Sx, where Kx = [Tx] and 0 ≤ Sx < 1

(Kx is the curtate future lifetime at age x (i.e. a random variable with values 0, 1,
2, . . . representing the integer number of completed future years lived by a person
aged x); Sx is the fraction of the year, during which the person aged x is alive in
the year of death)

P(Kx = k) = kpx − k+1px = kpx · qx+ k, k = 0, 1, 2, . . .

ex = E(Kx) =
∞∑

k=0

k · P(Kx = k) =
∞∑

k=1

k· kpx · qx+ k =
∞∑

k=1

kpx

(life expectancy at age x as the expected curtate future lifetime at age x (in
contrast to ◦ex = E(Tx)))

◦ex ≈ ex + 1

2

(approximation of E(Tx), given that Sx (i.e. the fraction of the year of death, see
thereinbefore) has the uniform distribution (see Sect. 26.5) in interval (0, 1), see
also Sect. 17.2)

var(Tx) ≈ var(Kx)+ 1

12
=

∞∑

k=1

k2· kpx · qx+ k −
( ∞∑

k=1

kpx

)2

+ 1

12

(approximation of var(Tx), given that Sx (i.e. the fraction of the year of death, see
thereinbefore) has the uniform distribution (see Sect. 26.5) in interval (0, 1))

• Some approximations of the distribution of Sx (i.e. the fraction of the year of
death, see thereinbefore):

– assumption of linearity: t qx = t · qx for 0 ≤ t ≤ 1:
then (1) t px = 1 − t · qx for 0 ≤ t ≤ 1; (2) Kx and Sx are independent; (3) Sx

has the uniform distribution in (0, 1)
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– assumption of constant force of mortality: μ x + t = μ for 0 ≤ t ≤ 1:
then (1) t px = (px )t for 0 ≤ t ≤ 1; (2) Kx and Sx are not independent; (3) Sx

has the censored exponential distribution in (0, 1)
– rounding of Sx to next forthcoming multiple of 1/m: Sx

(m) = [m·Sx + 1]/m:
then (1) if Kx and Sx are independent, then also Kx and Sx

(m) are independent;
(2) if Sx has the uniform distribution in (0, 1), then also Sx

(m) has the uniform
(but discrete) distribution in (0, 1)

17.4 Multiple Decrement Models

• In actuarial models the person under consideration is in a specified status (called
initial status) at age x and leaves that status at time Tx due to one of m mutually
exclusive causes of decrement (numbered from 1 to m); such a situation gener-
alizes the classical model with the only one cause of decrement (namely death),
since one must study the pair of random variables: (1) the remaining lifetime in
the initial status Tx and (2) the cause of decrement J (J = 1, . . ., m); e.g. in a
simple disability pension model, the initial status is “active” and the causes of
decrement may be “disablement” and “death” (see multiple decrement life tables
in Sect. 17.2):

tq
( j)
x = P(Tx ≤ t, J = j), j = 1, . . . , m

(t-year probability of decrement at age x by cause j: is the probability that a life aged
x will leave the initial status within t years by cause j)

tqx = tq
(1)
x + . . . + tq

(m)
x = P(Tx ≤ t) ; tpx = 1 − tqx

(t-year probability of decrement at age x without distinguishing causes of decre-
ment: is the probability that a life aged x will leave the initial status within
t years)

Assumption: there exists probability density fx(j)(t) (see Sect. 26.3):

f ( j)
x (t) = d

dt
tq

( j)
x

μ
( j)
x+t =

f ( j)
x (t)

tpx

(force of decrement at age x + t by cause j for a life that is at age x + t still in the
initial status)

μx+t = μ
( j)
x+ t + . . . + μ

( j)
x+ t

(force of decrement at age x + t without distinguishing causes of decrement)
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P(Kx = k, J = j) = kpx · q( j)
x+ k, k = 0, 1, 2, . . . ; j = 1, 2, . . . , m

(Kx is the curtate remaining lifetime in the initial status at age x: Kx = [Tx])

17.5 Multiple Life Functions

• Multiple life insurance (see Sect. 18.8): are insurance products, in which insur-
ance benefits depend on life status (mostly “alive” or “dead”) of several lives
(married couples, whole families, boards of directors, and others); in such situa-
tions one applies the actuarial model of couples (x, y) (usually a male aged x at
entry and a female aged y at entry), model of triplets (x, y, z) (in addition, a child
aged z at entry), or more generally, model of n-tuples with entry ages (x1, . . ., xn)
(see multiple life tables in Sect. 17.2):

qxy probability that a couple (x, y) will fail prior to ages (x + 1, y + 1)
pxy = px · py probability that a couple (x, y) will survive to ages (x +1, y +1)

(the opportunity to multiply probabilities from individual life tables
(e.g. for males and females) follows from the assumption of inde-
pendent mortality behaviour of male and female population, see
Sect. 17.2)

lxy = lx · ly number of couples surviving to ages (x, y) (the so-called joint-life
status again under the assumption of independence, see thereinbe-
fore)

dxy number of couples failing at ages (x, y) (i.e. prior to achieving ages
(x + 1, y + 1))

dxy = lxy − lx+1, y+1 = lx · ly − lx+1 · ly+1

qxy = dxy

lxy
= lxy − lx+1, y+1

lxy
; pxy = lx+1, y+1

lxy

17.6 Commutation Functions

• Commutation functions: are constructed by (financial) discounting (see Sect. 3.2)
of life table functions (see Sect. 17.2); these actuarial instruments achieved great
popularity, since (1) they simplify numerical calculations of many actuarial val-
ues and (2) various expected values (applied e.g. to calculation of insurance
premiums or reserves) may be derived within deterministic models, which are
closely related just to the commutation functions (though nowadays, stochastic
models based on probability theory are preferred in actuarial practice):
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• Commutation functions of zero order:

Dx = lxv x (discounted number of survivors at age x)

Cx = dxv x+1 (discounted number of deaths at age x)

• Commutation functions of first order:

Nx = D[2]
x =

ω − x∑

j=0

Dx+j = Dx + Dx+1 + . . . + Dω

Mx = C[2]
x =

ω − x∑

j=0

Cx+j = Cx + Cx+1 + . . . + Cω

• Commutation functions of second order: are applied mostly to variable insur-
ance products as e.g. to increasing life annuities in Chap. 18 (the commutation
functions of higher than the second order have mostly no applications in
practice):

Sx = D[3]
x =

ω − x∑

j=0

Nx+ j = Nx + Nx+1 + . . . + Nω

Rx = C[3]
x =

ω − x∑

j=0

Mx+ j = Mx +Mx+1 + . . . +Mω

• Relations among commutation functions (where v = 1/(1 + i); d = 1 − v), e.g.:

n −1∑

j=0

Dx+j = Dx + Dx+1 + . . . + Dx+n−1 = Nx − Nx+n

n −1∑

j=0

Cx+j = Cx + Cx+1 + . . . + Cx+n−1 = Mx −Mx+n

ω − x∑

j=0

( j+ 1) · Dx+j = Sx;
ω − x∑

j=0

( j+ 1) · Cx+j = Rx

n−1∑

j=0
( j+ 1) · Dx+j = Sx − Sx+n − n · Nx+n

n−1∑

j=0
( j+ 1) · Cx+j = Rx − Rx+n − n ·Mx+n

Cx = v · Dx − Dx+1

Mx = v · Nx − Nx+1 = Dx − d · Nx; Rx = v · Sx − Sx+1 = Nx − d · Sx
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Nx = Nx+1 + Dx; Nω = Dω ; Mx = Mx+1 + Cx; Mω = Cω

Sx = Sx+1 + Nx; Sω = Nω ; Rx = Rx+1 +Mx; Rω = Mω

• Commutation functions in models of couples (see Sects. 17.5 and 18.8):

Dxy = lxy · v(x+ y)/2 = lx · ly · v(x+y)/2; Nxy = Dxy + Dx+1, y+1 + . . .

Cxy = dxy · v(x+ y)/2 +1 = (lx · ly − lx+1 · ly+1)v(x+ y)/2 +1;

Mxy = Cxy + Cx+1, y+1 + . . .
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Chapter 18
Classical Life Insurance

Abstract Chapter 18 contains formulas of classical life insurance: 18.1. Basic
Concepts of Life Insurance, 18.2. Symbols and Calculation Principles of Life
Insurance, 18.3. Technical Provisions in Life Insurance, 18.4. Pure Endowments,
18.5. Whole Life and Term Insurance, 18.6. Further Products of Capital Life
Insurance, 18.7. Life Annuities, 18.8. Multiple Life Insurance, 18.9. Premium
Reserve and Its Implications, 18.10. Medical Underwriting.

18.1 Basic Concepts of Life Insurance

• Insured event: is a contingency specified in the insurance contract (insurance pol-
icy), under which the insurer pays out a benefit insured; under a life insurance
contract the benefit insured consists either of a single payment (the sum insured),
or repeated payments (e.g. in life annuities)

• Term of insurance: is the period of insurance cover, according to which one
classifies:

– temporary insurance: has a limited period of cover stipulated in the insurance
contract

– perpetual insurance: has a period of cover, which in not limited by the
insurance contract (e.g. a whole life annuity)

– deferred insurance: has a period of deferment, by which the given insurance
cover is postponed (e.g. a deferred life annuity); in the case of short-term defer-
ment (in order to reduce moral hazards of clients, see Chap. 16), the concept
of waiting period is used instead

• Participants in life insurance (classification):

– insurer: is a legal entity that is entitled according to law to carry out insurance
– policyholder: is a natural person or a legal entity that concluded an insurance

contract with the insurer (an important obligation of policyholders is to pay
insurance premiums)

165T. Cipra, Financial and Insurance Formulas, DOI 10.1007/978-3-7908-2593-0_18,
C© Springer-Verlag Berlin Heidelberg 2010
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– insured (person): is a natural person, the life and health of which is the subject
matter of the insurance (in non-life insurance the insured may be a legal entity,
as well)

– beneficiary: is a natural person or a legal entity that has right to the benefit
insured as the consequence of the insured event

• Insurance premium (classification):

– net premium: is calculated by means of the so-called equivalence principle,
according to which the expected loss of insurer should be zero

– gross premium (office premium): is the expense-loaded net premium (usually
including the security loading, see Sect. 7.2), which covers expenses of the
insurer

– classification according to premium payments:

– single premium
– periodic premiums of a constant amount (level premiums) usually at the

beginning of stipulated periods (months, quarters, years)
– periodic premiums of varied amounts

– written versus collected premium: is classification according to payment status
– adjusted premium: is periodically increased in accordance with the inflation
– special modes of premium payments: e.g.

– paid-up policy: means that the policy is converted to a mode with reduced
benefits (mainly due to the premature cessation of premium payments)

– waiver: is an exemption from premium payments (mainly due to disability
of the policyholder)

• Surrender: means that withdrawing life insurance policyholders are entitled to
non-forfeiture benefits (which are benefits that are not lost because of the pre-
mature cessation of premium payments); the surrender amount is usually a given
part of the corresponding premium reserve (see Sect. 18.9)

• Insurance with return of premiums in the case of death: is appropriate in sit-
uations, where the insured’s death would mean the cancellation of the given
insurance without remuneration of beneficiaries (e.g. in a pure endowment with
periodic premiums, see Sect. 18.4); this amendment raises the price of the
original insurance product

• Insurance tariff: lists gross premiums for particular insurance products offered
by insurance companies; the tariffs take into account:

– insured’s gender (see Sect. 7.2)
– insured’s age at entry: usually the difference between the calendar year of

insurance contract and the calendar year of insured’s birth
– term of insurance (see thereinbefore)

• Technical interest rate: is the valuation interest rate (see Sect. 6.1) used in
life insurance when pricing cash flows in calculations of premiums, premium
reserves, and the like; its level may be regulated by the state (state insurance
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supervision); the low (or high) value of the technical interest rate increases (or
decreases) the insurance price, respectively; typically, a conservative choice of
this interest rate is typical in practice

• Profit sharing: is an allocation of a given part of insurer’s technical gain to poli-
cyholders (see Sect. 18.9); the technical gain consists of (1) investment gain due
to a positive difference between the actually earned interest rate and the technical
interest rate used for insurance calculations, (2) mortality gain due to an appro-
priate difference in assumed and actual mortalities, and (3) expense gain due to
an appropriate difference in assumed and actual expenses; the values assumed a
priori in calculations are usually called statutory values

• Life insurance options: mean that in various phases of life insurance contracts
clients have a possibility of choice among several alternatives without additional
charges (e.g. an option to convert a sum insured into a life annuity)

• Multiple life insurance (see Sect. 18.8): are insurance products, in which insur-
ance benefits depend on life status (mostly “alive” or “dead”) of several lives
(married couples, whole families, boards of directors, and the like)

• Group insurance: relates to a group of insured persons that exists because of
another reason than the given insurance (mainly a life insurance for employees
of an employer)

• Comprehensive policy (insurance package): is a multiple risk cover by a single
insurance policy; various riders of basic policies are popular in practice (e.g. a
classical life insurance policy with a rider for accident insurance or for dread
diseases)

18.2 Symbols and Calculation Principles of Life Insurance

♦ position of the corresponding actuarial symbol (e.g. A, P, a)
♦̈, ♦ payment-due and immediate payment, respectively
♦x , ♦y one person aged x (mostly a male) and one person aged y (mostly a

female)
♦x y . . . several persons aged x, y, . . .
♦x:n , ♦x temporary and perpetual payments, respectively
k |♦x , ♦x deferred payments and payments without deferment, respectively
♦(m) payments payable mthly (mostly within 1 year)
♦̄ continuous payments (i.e. m→∞)
I ♦ unit increasing payments of the type 1, 2, . . .
D ♦ unit decreasing payments of the type n, n – 1, . . .

• Cash flows (see Chap. 6) in classical life insurance:

– insurance benefits (settlements) from insurers:

– lump sum benefit (e.g. on survival, on death, on a stipulated date)
– multiple (periodic) benefits within a stipulated period (e.g. life annuities)
– constant or increasing or decreasing or general or continuous benefits, and

the like



168 18 Classical Life Insurance

– insurance premiums from policyholders:

– single premium (on the commencement date of policy issue, i.e. at time
t = 0)

– periodic premiums within a stipulated period (e.g. whole life or temporar-
ily)

– constant or increasing or decreasing or general or continuous premiums,
and the like

– net approach: takes into account (as basis of calculation) only insurance
benefits

– gross approach: takes into account not only insurance benefits, but also
expenses by the insurer and other facts relevant in practice

• Equivalence principle: means that the insurance premiums are calculated in such
a way that the expected present value (calculated at the time of policy issue, see
Sect. 6.1) of the premiums is equal to the expected present value of the benefits;
this principle can be also formulated by means of the zero expected total loss by
the insurer, where the total loss is the difference between the present value of
benefits and the present value of premiums; the equivalence principle is appro-
priate since (1) the discounting of cash flows may solve the problem of long-term
horizons in life insurance and (2) the expected values may solve the problem of
randomness of corresponding variables

Denotation:

Z random variable representing the present value
of insurance benefits (see Sect. 6.1) calculated at
the time of policy issue (t = 0) by means of the
technical interest rate (see Sect. 18.1)

PV = E(Z) expected present value of insurance benefits (see
thereinbefore)

PVP expected present value of insurance premiums
calculated at the time of policy issue (t = 0) by
means of the technical interest rate; the expected
value is necessary since periodic premium pay-
ments may be also of random character (e.g. they
usually cease after the insured’s death)

L = PV − PVP net expected loss by insurer
PVE expected present value of expenses by insurer cal-

culated at the time of policy issue (t = 0) by
means of the technical interest rate

Lgross = (PV + PVE) − PVP gross expected loss by insurer

L = 0

(equivalence principle for net values: PV = PVP ; more generally, one can write
E{L(u)} = 0, where u is the difference between the present value of benefits and
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the present value of premiums calculated at the time of policy issue and L(·) is a
suitable (e.g. asymmetric) loss function)

Lgross = 0

(equivalence principle for gross values: PV + PVE = PVP; in life insurance prac-
tice, the actual incomes mostly exceed the actual outcomes so that the accrued
(unscheduled) profit is (partly) allocated to clients as their profit sharing (see
Sect. 18.1)

σ (Z) = √var(Z) =
{

E(Z − PVP)2
}1/2 =

{
E(Z2)− (PVP)

2
}1/2

(underwriting risk: consists in a potentiality that the insurer does not achieve
the balance between the incoming premium and the outcoming benefits (see
Chap. 16))

hEx = hpx · vh = lx+ h · vh

lx
= Dx+ h

Dx

(actuarial discounting: the coefficient for multiplying a given actuarial value cor-
responding to age x + h in order to shift it to age x, i.e. by h years backwards)

1

hEx
= 1

hpx
· (1+ i)h = lx · (1+ i)h

lx+ h
= Dx

Dx+ h

(actuarial compounding: the coefficient for multiplying a given actuarial value
corresponding to age x in order to shift it to age x + h, i.e. by h years forwards)

• Expenses by insurer:

α acquisition expenses: are charged against the policy as the percentage α of
the sum insured, respectively as the percentage α of the annuity level; one
usually distinguishes:

αN new business commission: is the first-year provision for insurance
agents, medical examination, and the like

αC collecting commission: are provisions in further years for maintain-
ing the policy in force

β collection expenses: are charged at the beginning of every year in which
a premium is to be collected as the percentage β of the expense-loaded
(periodic) premium

γ administration expenses: are charged against the policy at the beginning
of every year during the entire contract period as the percentage γ of the
sum insured, respectively as the percentage γ of the annuity level; various
expenses are included in this item, such as wages, data processing costs,
investment costs, taxes, licence fees, and the like; if the period in which
premiums are collected is shorter than the entire contract period, then one
sometimes distinguishes:
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γ 1 administration expenses during period when premiums are collected
γ 2 administration expenses during period when premiums are no longer

collected

δ life annuity expenses: are charged at the beginning of every year in which an
annuity payment is to be paid as the percentage δ of the annuity level

ε integrated expenses: are charged by some insurers as the percentage ε

of the expense-loaded premium; they include all types of expenses (see
thereinbefore)

18.3 Technical Provisions in Life Insurance

• Technical provisions (insurance reserves): are established by insurers (mostly
as the book costs according to law) to fulfil obligations arising from insur-
ance activities (such obligations are probable or certain, though their amount
or time may be still uncertain); the technical provisions are important statutory
liabilities of each insurance company that are conform to special account-
ing principles and tax regulations; the assets covering the technical provisions
are subject to strict investment restrictions since their financial placement
should fulfil principles of prudence, diversification, profitability and liquid-
ity; according to particular insurance legislations, various technical provi-
sions may be established in life insurance (see also Sect. 21.4 for non-life
insurance):

– premium reserve: must be established due to the fact that at time t (t > 0)
following the policy issue (t = 0) there is no longer an equivalence between
future financial obligations of the insurer and the policyholder: the expected
present value of future benefits will always exceed the expected present value
of future level premiums at time t; this fact implies a positive difference which
is a significant life insurer’s liability called the premium reserve; moreover,
one distinguishes (1) gross premium reserve (also called expense-loaded pre-
mium reserve), if the expenses by insurer (see Sect. 18.2) are included, and
(2) net premium reserve, if it is not the case; the difference between the
sum insured and the premium reserve (net or gross) is called the amount
at risk

– reserve for unearned premium: corresponds to such a part of the written pre-
mium that relates to future accounting periods; e.g. a quarter of an annual
premium paid at the beginning of October covers the rest of the current year
of account (the so-called earned premium), while the remaining three quarters
(the so-called unearned premium) relate to the first 9 months of the next year
of account so that one must establish the reserve for unearned premium in the
current year of account for this purpose

– claim reserve: covers obligations due to insured events (claims) which in the
current accounting period have been:
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– reported but not settled (the so-called RBNS reserve)
– incurred but not reported (the so-called IBNR reserve)

(the claim reserves use not to be significant in life insurance (unlike the non-
life insurance, see Sect. 21.4))

– reserve for bonuses and rebates: covers costs of bonuses and rebates guaran-
teed by insurance policies

– life insurance reserve where investment risk is borne by policyholder: applies
to unit-linked insurance products (see Sect. 19.3)

– other life insurance reserves approved by authorities (by the state insurance
supervision)

Denotation:

tZ random variable representing the present
value of insurance benefits (see Sect. 6.1)
calculated at time t (t > 0) following the pol-
icy issue (t = 0) by means of the technical
interest rate (see Sect. 18.1)

tPV = E(tZ) expected present value of insurance benefits
calculated at time t (see thereinbefore)

tPVP expected present value of insurance premi-
ums calculated at time t

tVx = tPV − tPVP net premium reserve at time t for a life aged
x at entry (prospective method: the reserve is
calculated as the net expected loss by insurer
at time t (0Vx = 0))

tFV expected future (i.e. final) value of insurance
benefits (see Sect. 6.1) calculated at time t

tFVP expected future (i.e. final) value of premiums
calculated at time t

tVx = tFVP − tFV net premium reserve at time t for a life aged x
at entry (retrospective method: the reserve is
calculated as the net past profit by insurer at
time t (0Vx = 0); the method gives the same
result as the prospective one (see thereinbe-
fore))

tPVE expected present value of expenses by insurer
calculated at time t

tVx
gross = (tPV + tPVE) − tPVP gross premium reserve (also called expense-

loaded premium reserve) at time t for a life
aged x at entry (prospective method: the ret-
rospective one is analogous)

• Formulas of the net and gross premium reserves for particular insurance products
(see thereinafter) are presented in the prospective form (in practice, the prospec-
tive formulas are preferred since (1) they enable to carry out comfortably various
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future changes in the insurance policy; (2) they may be simpler at time t than the
retrospective ones when premiums are no longer collected at time t (in particular,
this scenario holds for products with single premiums)):

tVx:n =

n∑

j=t+1
(aj · Dx+j + bj · Cx+j−1)

Dx+t
−

Px:n ·
n∑

j=t+1
Dx+j−1

Dx+t

(net premium reserve at the end of the year t of an n-year insurance for a life aged
x at entry (analogously for perpetual insurances): Px:n is the annual premium paid
always at the beginning of further year of insurance; at is the stipulated benefit paid
on survival of the end of the year t of insurance; bt is the stipulated benefit paid
at the end of the year t of insurance on death within this year; when premiums are
no longer collected at time t (in particular, in products with single premiums), then
the second term (the subtrahend) in the given formula is dropped out; some insur-
ance products (e.g. the term insurance, see Sect. 18.5) establish so small premium
reserves that such reserves may be ignored in practice: hence the insurance products
may be classified to capitalizing and non-capitalizing ones)

tVx:n =
Px:n ·

t∑

j=1
Dx+j−1

Dx+t
−

t∑

j=1
(aj · Dx+j + bj · Cx+j−1)

Dx+t

(retrospective form of net premium reserve: is equal to the prospective one (see
thereinbefore); the retrospective form is not usual in practice)

tVx:n · Dx+t = (t−1Vx:n + Px:n) · Dx+t−1 − (at · Dx+t + bt · Cx+t−1)

(recursive form of net premium reserve: is used to derive some relations, e.g. to
decompose the period premium to the saving premium and the risk premium (see
thereinafter))

Ps
x:n(t) = tVx:n · v− t−1Vx:n; Pr

x:n(t) =
at · Dx+t + (bt − tVx:n) · Cx+t−1

Dx+t−1

(saving premium at time t: serves to increase the net premium reserve at the begin-
ning of the year t in addition to the interest compounding; risk premium at time
t: covers on average the risk that the insurer will pay off at the end of tth year
the benefit amounting at · px + t−1 · v + bt · qx + t−1 · v = at · (Dx + t/Dx + t−1)
+ bt · (Cx + t−1/Dx + t−1) making use of the fund tVx:n · qx + t−1 · v = tVx:n
· (Cx + t−1/Dx + t−1) released from the net premium reserve due to death event within
the year t (see e.g. Sect. 18.6 for the endowment); if the death event occurs in a
capitalizing product (see thereinbefore), then the sum insured required from the
insurer as the benefit is composed by two sources: (1) by the net premium reserve
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established by saving premiums of the given policyholder and (2) by the amount at
risk (which is the difference between the sum insured and the premium reserve at
the given time) established by risk premiums of all policyholders (the mechanism
works in such a way that the amounts at risk for the policies with death events are
covered by risk premiums across the whole insurance portfolio))

tV
gross
x:n (Pgross) = tVx:n(P)− αN · äx+t: n−t

äx:n
= tVx:n(P)− αN · (1− tVx:n(P))

(gross premium reserve for periodic premiums (analogously for perpetual insur-
ances): in contrast to the net premium reserve, the new business commission αN

(i.e. the first-year provision, see Sect. 18.2) symbols in the formula; the term which
is subtracted from the net premium reserve in the formula is called the zillmerising
term (or the negative acquisition expenses reserve); its subtraction from the net pre-
mium reserve is called zillmerisation and has the following interpretation: (1) the
new business commission αN (amounting significant values nowadays) is expended
by the insurer immediately at the time of policy issue → (2) however, this amount
due is paid back gradually in particular periodic premium payments (hence, the
insurer becomes the “creditor” of the policyholder) → (3) therefore at the given
time t the insurer always reduces the net premium reserve by the non-amortized
part of the new business commission at time t, which is just the zillmerising term at
time t; the zillmerisation may produce negative values of the gross premium reserve
(usually in initial years of long-term policies), which are mostly replaced by zero
values in practice)

tV
gross
x:n (SPgross) = tVx:n(SPgross)+ (αC + γ ) · äx+t: n−t

(gross premium reserve for single premium (analogously for perpetual insurances):
in contrast to the net premium reserve, the expenses αC and γ (see Sect. 18.2) sym-
bol in the formula; the term which is added to the net premium reserve in the formula
should just cover these future costs)

t+ 13−m
12

Vx:n = m−1

12
tVx:n + 13− m

12
t+1Vx:n

(net premium reserve at fractional durations: monthly values of the net premium
reserve with monthly premiums (analogously for perpetual insurances or for gross
premium reserves at fractional durations))

t+ 13−m
12

Vx:n = m− 1

12
tVx:n + 13− m

12
t+1Vx:n + m− 1

12
Px

(net premium reserve at fractional durations: monthly values of the net premium
reserve with annual premiums (analogously for perpetual insurances or for gross
premium reserves at fractional durations))
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18.4 Pure Endowments

Denotation (see also Sects. 17.3 and 18.2, it holds for further insurance products
in Chap. 18, as well):

Z random variable representing the present value of insurance bene-
fits calculated at the time of policy issue by means of the technical
interest rate (see Sect. 18.2)

Tx future lifetime at age x (see Sect. 17.3)
Kx curtate future lifetime at age x (see Sect. 17.3)
σ (Z) underwriting risk (see Sect. 18.2)
SPx net single premium
Px:n , Px net annual premium

SPgross
x gross single premium

Pgross
x:n , Pgross

x gross annual premium

tVx:n , tVx net premium reserve (see Sect. 18.3)

tV
gross
x:n , tV

gross
x gross premium reserve (see Sect. 18.3)

• Pure endowment: provides the payment of the sum insured only if the insured
aged x at entry is alive at the end of the stipulated term of n years; if the insured
dies during the term of insurance, then the policy ceases without remuneration
(therefore in the case of periodic premiums, the return of the premiums on death
is usual in practice, though this amendment raises the price of the original pure
endowment (see thereinafter)):

SPx:n = nEx = A 1
x:n =

Dx+n

Dx
(n-year pure endowment)

= E(Z) = npx·vn, where Z =
{

0 , Kx = 0, 1, . . . , n− 1
vn, Kx = n, n+ 1, . . .

according to the table:

Value of Kx Value of Z Probability

0 0 0|qx = qx
1 0 1|qx
2 0 2|qx
...

...
...

n − 1 0 n − 1|qx
n
n+ 1
...

⎫
⎪⎬

⎪⎭
v n

n px



18.5 Whole Life and Term Insurance 175

σ (Z) =
{

npx · v2n − (npx · vn)2
} 1/2 = {npx · nqx} 1/2 · vn =

{
2
nEx − (nEx)2

} 1/2
,

where 2
nEx is as nEx calculated with the discount factor v2 instead of v

Px:n = nEx

äx:n
= Dx+n

Nx − Nx+n

P(m)
x:n = nEx

m · ä(m)
x:n

≈ nEx

m ·
[
äx:n − m−1

2m ·
(

1− Dx+n
Dx

)]

SPgross
x = nEx + αN + (αC + γ ) · äx:n

Pgross
x:n = nEx + αN + (αC + γ ) · äx:n

(1− β) · äx:n
= 1

1− β
·
(

nPx + αN

äx:n
+ αC + γ

)

Pgross+remuneration
x:n = nEx + αN + (αC + γ ) · äx:n

(1− β) · äx:n − (IA)1
x:n

((IA)1
x:n is defined in Sect. 18.5)

(pure endowment with return of level premiums on insured’s death during insurance
term)

tVx:n(SPx) = n−tEx+t = Dx+n

Dx+t

tVx:n(Px:n) = n−tEx+t − Px:n · äx+t: n−t = Dx+n

Dx+t
· Nx − Nx+t

Nx − Nx+n

tV
gross
x:n (SPgross

x ) = tVx:n(SPx)+ (αC + γ ) · äx+t: n−t

tV
gross
x:n (Pgross

x:n ) = tVx:n(Px:n)− αN · äx+t: n−t
äx:n

tV
gross
x:n (Bgross+remuneration

x:n ) = tVx:n(Px:n)− αN · äx+t: n−t
äx:n

+ Pgross
x:n

[
Rx+t − Rx+n + t ·Mx+t − n ·Mx+n

Dx+t

−Rx − Rx+n− n ·Mx+n

Dx+t
· Nx+t − Nx+n

Nx − Nx+n

]

18.5 Whole Life and Term Insurance

• Whole life insurance: provides the payment of the sum insured at the end of
the year of death for the insured aged x at entry (see Sects. 18.2 and 18.4 for
denotation):
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SPx = Ax = Mx

Dx
(whole life)

= E(Z) =
∞∑

k= 0

k|qx · vk+ 1 =
∞∑

k= 0

kpx · qx+k · vk+ 1

where Z = vKx+ 1 according to the table:

Value of Kx Value of Z Probability

0 v 0|qx = qx

1 v2
1|qx

2 v3
2|qx

...
...

...

σ (Z) =
{

2Ax − (Ax)2
} 1/2

,

where 2Ax is as Ax calculated with the discount factor v2 instead of v

σ
(

vKx+ 1 − Px · äKx+ 1
)
=
(

1+ Px

d

)

·
{

2Ax − (Ax)2
}1/2

>
{

2Ax − (Ax)2
}1/2

(underwriting risk for whole life insurance with annual premiums)

SPx = Āx = E(Z) = E(vTx ) =
∞∫

0

tpx · μx+t · vt dt ≈ (1+ i)1/2 · Ax

(continuous approach: provides the payment of the sum insured at the moment of
death (without waiting for the end of the year of death, see thereinbefore))

σ (Z) =
{

2Āx − (Āx)2
} 1/2

(continuous approach: 2Āx is as Āx calculated with the discount factor v2 instead
of v)

Px = Ax

äx
= 1

äx
− d = Mx

Nx
; P(m)

x = Ax

m · ä(m)
x

≈ Ax

m ·
(

äx − m−1
2m

)

Px = Āx

äx
(net annual premium applying continuous approach)

Px:k = Ax

äx:k
= Mx

Nx − Nx+k
(net annual premium payable k years (k ≤ n))

SPgross
x = Ax + αN + (αC + γ ) · äx
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Pgross
x = Ax + αN

(1− β) · äx
+α

C + γ

1− β
; Pgross

x:k =
Ax + αN + (αC + γ1) · äx:k + γ2 · k|äx

(1− β) · äx

tVx(SPx) = Ax+t = Mx+t

Dx+t

tVx(Px) = Ax+t− Px · äx+t = 1− (Px + d) · äx+t = 1− äx+t

äx
=
(

1− Px

Px+t

)

· Ax+t

=
(

1− Px

Px+t

)

· Ax+t = (Px+t − Px) · äx+t = Px+t − Px

Px+t + d
= 1− Dx

Dx+t
· Nx+t

Nx

tVx(Px:k) = Ax+t − Px:k · äx+t: k−t (for annual premiums payable k years (k ≤ n))

σ
(

vKx+t+ 1 − Px · äKx+t+ 1
)
=
(

1+ Px

d

)

·
{

2Ax+t − (Ax+t)
2
}1/2

(net reserve risk for whole life insurance with annual premiums)

tV
gross
x (SPgross

x ) = tVx(SPx)+ (αC + γ ) · äx+t

Vgross
x (Pgross

x ) = tVx(Px)− αN · äx+t

äx

Ax = 1− d · äx = v · äx − ax

Ax+ 1 = Dx

Dx+ 1
·
(

Ax − Cx

Dx

)

k|Ax = kEx · Ax+k = Mx+k

Dx
(deferment by k years)

(IA)x =
∞∑

k= 0

(k + 1) · kpx · qx+k · vk+1 = Rx

Dx

(whole life insurance with increasing sum insured of the type 1, 2, . . .)

(IhA)x =
h− 1∑

k= 0

(k + 1) · kpx · qx+k · vk+ 1 + h ·
∞∑

k= h

kpx · qx+k · vk+ 1

= Rx − Rx+ h − h ·Mx+ h

Dx
(whole life insurance with varied sum insured of the type 1, 2, . . ., h, h, h, . . .)
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(DhA)x =
h− 1∑

k= 0

(h− k) · kpx · qx+k · vk+ 1 +
∞∑

k= h

kpx · qx+k · vk+ 1

= (h+ 1) ·Mx −Mx+ h − Rx + Rx+ h

Dx

(whole life insurance with varied sum insured of the type h, h −1, .. .., 1, 1, 1, . . .)

• Term insurance: provides the payment of the sum insured at the end of the year of
death for the insured aged x at entry, only if death occurs within the first n years
(if the insured survives n years, then the policy ceases without remuneration);
in practice, (mortgage) banks make use of it to cover the mortality risk during
amortization of credits, i.e. the debtor is the term insured and the bank becomes
the beneficiary (see Sects. 18.2 and 18.4 for denotation):

SPx = A1
x:n =

Mx −Mx+n

Dx
(n-year term insurance)

= E(Z) =
n− 1∑

k= 0

k|qx · vk+ 1 =
n− 1∑

k= 0

kpx · qx+k · vk+ 1,

where Z =
⎧
⎨

⎩

vKx+ 1, Kx = 0, 1, . . . , n− 1

0 Kx = n, n+ 1, . . .
according to the table:

Value of Kx Value of Z Probability

0 v 0|qx = qx

1 v2
1|qx

2 v3
2|qx

...
...

...
n − 1 v n

n − 1|qx
n
n+ 1
...

⎫
⎪⎬

⎪⎭
0 n px

σ (Z) =
{

2A1
x:n − (A1

x:n)2
} 1/2

,

where 2A1
x:n is as A1

x:n calculated with the discount factor v2 instead of v
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SPx = Ā1
x:n =

n∫

0

tpx · μx+t · vt dt ≈ (1+ i)1/2 · A1
x:n

(continuous approach: provides for payment of the sum insured at the moment of
death)

Px:n =
A1

x:n
äx

= Mx −Mx+n

Nx − Nx+n

P(m)
x:n =

A1
x:n

m · ä(m)
x:n

≈ A1
x:n

m ·
[
äx:n − m−1

2m ·
(

1− Dx+n
Dx

)]

SPgross
x = A1

x:n + αN + (αC + γ ) · äx:n

Pgross
x:n =

A1
xn + αN

(1− β) · äx:n
+ αC + γ

1− β

tVx:n(SPx) = A1
x+t: n−t =

Mx+t −Mx+n

Dx+t

tVx:n(Px:n) = A1
x+t: n−t − Px:n · äx+t: n−t

= Mx+t −Mx+n

Dx+t
− Mx −Mx+n

Dx+t
· Nx+t − Nx+n

Nx − Nx+n

tV
gross
x:n (SPgross

x ) = tVx:n(SPx)+ (αC + γ ) · äx+t: n−t

tV
gross
x:n (Pgross

x:n ) = tVx:n(Px:n)− αN · äx+t: n−t
äx:n

A1
x:n = 1− d · äx:n − nEx = v · äx:n − ax:n

A1
x+1: n =

Dx

Dx+ 1
·
(

A1
x:n −

Cx − Cx+n

Dx

)

k|A1
x:n = kEx · A1

x+k:n =
Mx+k+n −Mx+k

Dx
(deferment by k years)

Ax = A1
x:n + n|Ax

(decomposition of whole life insurance to term and deferred ones)

(IA)1
x:n = äx:n − d · (Iä)x:n = Rx − Rx+n − n ·Mx+n

Dx

(term insurance with increasing sum insured of the type 1, 2, . . ., n)
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(DA)1
x:n =

n ·Mx − Rx+ 1 + Rx+n+ 1

Dx

(term insurance with decreasing sum insured of the type n, n −1, . . ., 1)

18.6 Further Products of Capital Life Insurance

• Endowment: provides the payment of the sum insured at the end of the year of
death for the insured aged x at entry, only if death occurs within the first n years,
otherwise at the end of the stipulated term of n years (i.e. the sum insured is
payable on death or survival according to which alternative occurs earlier); prod-
ucts of this type belong to the most popular ones in Europe (see Sects. 18.2 and
18.4 for denotation):

SPx = Ax:n = Mx −Mx+n + Dx+n

Dx
(n-year endowment)

= E(Z) =
n−1∑

k= 0

k|qx · vk+1 + npx · vn =
n−2∑

k= 0

k|qx · vk+1 + n−1 px · vn,

where Z =
{

vKx+1, Kx = 0, 1, . . . , n− 1

vn, Kx = n, n+ 1, . . .
according to the table :

Value of Kx Value of Z Probability

0 v 0|qx = qx

1 v2
1|qx

2 v3
2|qx

...
...

...
n − 2 v n − 1

n − 2|qx
n− 1
n
n+ 1
...

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

v n
n − 1|qx + n px = n − 1 px

σ (Z) =
{

2Axn − (Axn)2
} 1/2

,

where 2Axn is as Axn calculated with the discount factor v2 instead of v

SPS/D
x = S · (Mx −Mx+n)+ D · Dx+n

Dx

(endowment with the sum insured S on death and the sum insured D on survival)
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SPx = Āx:n = Ā1
x:n + nEx =

n∫

0

tpx · μx+t · vt dt + npx · vn ≈ (1+ i)1/2 · (Mx −Mx+n)+ Dx+n

Dx

(continuous approach: on death provides the payment of the sum insured at the very
moment)

Px:n = Ax:n
äx:n

= Mx −Mx+n + Dx+n

Nx − Nx+n

P(m)
x:n =

Ax:n
m · ä(m)

x:n
≈ Ax:n

m ·
[
äx:n − m−1

2m ·
(

1− Dx+n
Dx

)]

Px:k = Ax:n
äx:k

= Mx −Mx+n + Dx+n

Nx − Nx+k
(net annual premium payable k years)

Pgross
x:n =

Ax:n + αN + (αC + γ ) · äx:n
(1− β) · äx:n

= 1

1− β
·
(

Px:n + αN

äx:n
+ αC + γ

)

Pgross (m)
x:n = Ax:n + αN + (αC + γ ) · äx:n

(1− β) · m · ä(m)
x:n

≈ Ax:n + αN + (αC + γ ) · äx:n
(1− β) · m ·

[
äx:n − m−1

2m ·
(

1− Dx+n
Dx

)]

Pgross
x:k =

Ax:n + αN + (αC + γ1) · äx:k + γ2 · k|äx:n
(1− β) · äx:k

(gross annual premium payable k years)

tVx:n(SPx) = Ax+t: n−t = Mx+t −Mx+n + Dx+n

Dx+t

tVx:n(Px:n) = Ax+t: n−t − Px:n · äx+t: n−t

= 1

tEx
(Px:n · äx:t − Ax:t) = 1− äx+t: n−t

äx:n

=
(

Ax+t: n−t
äx+t: n−t

− Px:n
)

·äx+t: n−t = (Px+t: n−t − Px:n) · äx+t: n−t

=
(

1− Px:n · äx+t: n−t
Ax+t: n−t

)

· Ax+t: n−t

=
(

1− Px:n
Px+t: n−t

)

· Ax+t: n−t

= 1− Dx

Dx+t
· Nx+t − Nx+n

Nx − Nx+n
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Ps
x:n(t) = v · tVx:n(Px:n) −t− 1Vx:n(Px:n); Pr

x:n(t) = v·qx+t− 1·(1 − tVx:n(Px:n))

(saving and risk premium at time t: Px:n = Ps
x:n(t)+ Pr

x:n(t))

tVx:n(Px:k) =
{

Ax+t: n−t − Px:n · äx+t: n−t, t < k

Ax+t: n−t, t ≥ k

(for annual premiums payable k years)

tV̄x:n(P̄x:n) = Āx+t: n−t − P̄x:n · āx+t: n−t

= 1− āx+t: n−t
āx:n

= 1−

n−t∫

0
spx+t · vs ds

n∫

0
spx · vs ds

tV
gross
x:n (SPgross

x ) = tVx:n(SPx)+ (αC + γ ) · äx+t: n−t

tV
gross
x:n (Pgross

x:n ) = tVx:n(Px:n)− αN · äx+t: n−t
äx:n

Ax:n = 1− d · äx:n = v · äx:n − ax: n− 1

Ax:n = A1
x:n + nEx = A1

x:n + A 1
x:n

(decomposition of endowment insurance to term and pure endowment ones)

(IA)x:n = (IA)1
x:n + n · nEx = Rx − Rx+n − n ·Mx+n + n · Dx+n

Dx

(endowment with increasing sum insured of the type 1, 2, . . ., n)

(DA)x:n = (DA)1
x:n + nEx = n ·Mx − Rx+ 1 + Rx+n+ 1 + Dx+n

Dx

(endowment with decreasing sum insured of the type n, n −1, . . ., 1)

• Fixed term insurance: provides the payment of the sum insured at the end of the
stipulated term of n years regardless as to whether the insured aged x at entry
is alive at age x + n or died in the meantime; the payments of periodical premi-
ums cease on death of the insured within the stipulated term; one applies it as
children’s insurance, educational insurance, dowry insurance, and the like (see
Sects. 18.2 and 18.4 for denotation):
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Px:n = vn

äx:n
= vn · Dx

Nx − Nx+n
(n-year fixed term insurance)

Pgross
x:n =

vn + αN

(1− β) · äx:n
+ αC + γ

1− β

tVx:n(Px:n) = vn−t − Px:n · äx+t: n−t

= vn−t − vn · Dx

Dx+t
· Nx+t − Nx+n

Nx − Nx+n

18.7 Life Annuities

• Whole life annuity: provides the annual payments as long as the insured aged x at
entry is alive; if the periodic payments are made at the beginning (or at the end)
of each payment period, i.e. in advance (or in arrear), then such an annuity is
called annuity-due (or immediate annuity), respectively (see Sects. 18.2 and 18.4
for denotation):

SPx = äx = Nx

Dx
(whole life annuity-due)

= E(Z) =
∞∑

k= 0

k|qx · äk+ 1 =
∞∑

k= 0

kpx · vk,

where Z = äKx+ 1 according to the table:

Value of Kx Value of Z Probability

0 ä1 0|qx = qx
1 ä2 1|qx
2 ä3 2|qx
...

...
...

SPx = ax = Nx+ 1

Dx
=

∞∑

k= 1

k|qx · ak =
∞∑

k= 1

kpx · vk = äx − 1

(whole life immediate annuity)

σ (Z) = 1

d

{
2Ax − (Ax)2

} 1/2

(underwriting risk of whole life annuity-due or immediate annuity: 2Ax is as Ax

calculated with the discount factor v2 instead of v)
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ä(m)
x =

∞∑

k= 0

1

m
· k

m
px · v k

m ≈ äx − m− 1

2m

a(m)
x =

∞∑

k= 1

1

m
· k

m
px · v k

m ≈ ax + m− 1

2m

(unit whole life annuity-due and immediate annuity payable mthly, i.e. the insurer
pays mthly within each year the payments in amount of 1/m as long as the insured
is alive)

ä(m)
x ≈ äx − m− 1

2m
− m2 − 1

6m2
· i ; a(m)

x ≈ ax + m− 1

2m
− m2 − 1

6m2
· i

(more precise approximations)

āx =
∞∫

0

tpx · vt dt =
∞∫

0

tpx · e−δ·t dt ≈ äx − 1

2
= ax + 1

2

(continuous whole life annuity with unit rate of payment and force of interest δ (see
also Sect. 7.4))

σ (Z) = 2

δ
· (āx − 2āx)− (āx)2

(continuous approach: 2āx is as āx calculated with the force of interest 2δ instead
of δ)

SPgross
x = (1+ γ + δ) · äx

1− β
(whole life annuity-due)

tVx(SPx) = äx+t (whole life annuity-due)

äx = 1− Ax

d

äx+1 = Dx

Dx+ 1
· (äx − 1)

(Iä)x = Sx

Dx
(increasing whole life annuity-due of the type 1, 2, 3, . . .)
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• Temporary life annuity: provides the annual payments during the first n years
as long as the insured aged x at entry is alive (see Sects. 18.2 and 18.4 for
denotation):

SPx = äx:n = Nx − Nx+n

Dx
(n-year life annuity-due)

= E(Z) =
n− 1∑

k= 0

k|qx · äk+1 + npx · än

=
n− 2∑

k= 0

k|qx · äk+1 + n− 1px· än =
n− 1∑

k= 0

kpx · vk,

where Z =
{

äKx+1, Kx = 0, 1, . . . , n− 1

än, Kx = n, n+ 1, . . .
according to the table:

Value of Kx Value of Z Probability

0 ä1 0|qx = qx
1 ä2 1|qx
2 ä3 2|qx
...

...
...

n − 2 än − 1 n− 2|qx
n− 1
n
n+ 1
...

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

än n − 1|qx + n px = n − 1 px

σ (Z) = 1

d

{
2Axn − (Axn)2

} 1/2

(underwriting risk of n-year temporary life annuity-due: 2Ax:n is as Ax:n calculated
with the discount factor v2 instead of v)

SPx = ax:n = Nx+1 − Nx+n+1

Dx
=

n∑

k= 1

kpx · vk = äx: n+1 − 1

(n-year life immediate annuity)

σ (Z) = 1

d

{
2Ax: n+1 − (Ax: n+1)2

} 1/2

(underwriting risk of n-year life immediate annuity)
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ä(m)
x:n ≈ äx:n − m− 1

2m
·
(

1− Dx+n

Dx

)

; a(m)
x:n ≈ ax:n + m− 1

2m
·
(

1− Dx+n

Dx

)

(unit n-year life annuity-due and immediate annuity payable mthly, i.e. the insurer
pays mthly within each year the payments in amount of 1/m)

āx:n =
n∫

0

tpx · vt dt =
n∫

0

tpx · e−δ·t dt ≈ äx:n − 1

2

(

1− Dx+n

Dx

)

= ax:n + 1

2

(

1− Dx+n

Dx

)

(continuous n-year life annuity with unit rate of payment and force of interest δ (see
also Sect. 7.4))

äx:n = 1− Ax:n
d

äx: n+ 1 = äx:n + nEx

(Iä)x:n = Sx − Sx+n − n · Nx+n

Dx

(increasing temporary life annuity-due of the type 1, 2, . . ., n)

(Dä)x:n = n · Nx − Sx+1 + Sx+n+1

Dx

(decreasing temporary life annuity-due of the type n, n −1, . . ., 1)

(Iä)x:n + (Dä)x:n = (n+ 1) · äx:n

• Whole life annuity guaranteed for n years: is the whole life annuity, which on
insured’s death during the first n years descends to beneficiaries so that the
annuity persists at least n years in any case:

äxn = än+ n |äx = 1− vn

1− v
+Nx+n

Dx
(whole life annuity-due guaranteed for n years)

• Whole life annuity extended by n years: is the whole life annuity, which on
insured’s death descends to beneficiaries for the next n years forthcoming:

äx:� = äx + Ax · än = (Dx + Cx · än)+ (Dx+1 + Cx+1 · än )+ . . .

Dx
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= Nx +Mx · 1−vn

1−v

Dx

(whole life annuity-due extended by n years)

• Deferred life annuity: defers the first payment by a fixed deferment of k years;
during the deferment period the periodic premiums are usually collected; if the
insured dies during the deferment, then the life annuity ceases without remuner-
ation (therefore in the case of periodic premiums, the return of the premiums on
death during deferment is usual in practice, though this amendment raises the
price of the original deferred life annuity (see thereinafter)):

SPx = k|äx = Nx+k

Dx
(whole life annuity-due deferred by k years)

σ (Z) = 1

d

{
2
k|Ax − ( k|Ax)2

} 1/2

(underwriting risk of whole life annuity-due deferred by k years: 2
k|Ax is as k|Ax

calculated with the discount factor v2 instead of v)

SPx = k|ax = Nx+k+ 1

Dx
= k+ 1|äx (whole life immediate annuity deferred by k years)

σ (Z) = 1

d

{
2
k+ 1|Ax − ( k+ 1|Ax)2

} 1/2

(underwriting risk of whole life immediate annuity deferred by k years)

k|ä(m)
x ≈ k|äx − m− 1

2m
· Dx+k

Dx
; k|a(m)

x ≈ k|ax + m− 1

2m
· Dx+k

Dx

(unit whole life annuity-due and immediate annuity payable mthly deferred by k
years, i.e. the insurer pays mthly within each year following the deferment the
payments in amount of 1/m)

k|āx =
∞∫

k

tpx · vt dt

(continuous deferred whole life annuity with unit rate of payment and force of
interest δ (see also Sect. 7.4))

Px:k = k|äx

äx:k
= Nx+k

Nx − Nx+k
; Px:k = k|ax

äx:k
= Nx+k+ 1

Nx − Nx+k

(whole life annuity-due and immediate annuity deferred by k years)
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SPgross
x = (1+ δ) · k|äx + γ · äx

1− β
(whole life annuity-due deferred by k years)

Pgross
x:k =

(1+ δ + γ2) · k|äx + αN

(1− β) · äx:k
+ αC + γ1

1− β

(whole life annuity-due deferred by k years)

Pgross+remuneration
x:n = (1+ δ) · k|äx + α + γ · äx:k

(1− β) · äx:k − (IA)1
x:k

(whole life annuity-due deferred by k years with return of level premiums on
insured’s death during deferment)

tVx(Px:k) =

⎧
⎪⎪⎨

⎪⎪⎩

k−t|äx+t − Px:k · äx+t: k−t = Nx+k
Dx+t

· Nx−Nx+t
Nx−Nx+k

, t < k

äx+t = Nx+t

Dx+t
, t ≥ k

(whole life annuity-due deferred by k years)

tV
gross
x (SPgross

x ) =
⎧
⎨

⎩

(1+ γ + δ) · k−t|äx+t + (αC + γ ) · äx+t: k−t, t < k

(1+ γ + δ) · äx+t, t ≥ k

(whole life annuity-due deferred by k years)

tV
gross
x (Pgross

x:k ) =

⎧
⎪⎪⎨

⎪⎪⎩

(1+ δ) · tVx(Px:k)− αN · äx+t: k−t
äx:k

, t < k

(1+ δ) · tVx(Px:k), t ≥ k

(whole life annuity-due deferred by k years)

k|äx = Dx+t

Dx
· äx+k

k|äx+ 1 = Dx

Dx+ 1
· ( k|äx − kEx

)

äx = äx:n + n|äx

(decomposition of whole life annuity to temporary and deferred ones)
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18.8 Multiple Life Insurance

• Multiple life insurance: are insurance products, in which insurance benefits
depend on life status (mostly “alive” or “dead”) of several lives (married cou-
ples, whole families, boards of directors, and the like); in such situations one
applies the actuarial model of n-tuples with entry ages (x1, . . ., xn) (in particular,
see Sects. 17.5 and 17.6 for model of couples (x, y), which are usually a male
aged x at entry and a female aged y at entry):

• Risk insurance for couple: provides the payment of the sum insured on the first
death within the given couple (such a principle is called the joint-life status):

Axy = Mxy

Dxy
= 1− d · äxy

• Endowment for couple: provides the payment of the sum insured on the first death
in the given couple, if a death occurs within the first n years, otherwise at the end
of the stipulated term of n years (i.e. on survival by the couple):

Axy:n = Mxy −Mx+n, y+n + Dx+n, y+n

Dxy
= 1− d · äxy:n

• Life annuity for couple to the first death: provides the annual payments as long as
the both persons of the given couple are alive:

äxy = Nxy

Dxy

• Temporary life annuity for couple to the first death: provides the annual payments
as long as the both persons of the given couple are alive, but not longer than n
years:

äxy:n = Nxy − Nx+n, y+n

Dxy

• Life annuity for couple to the second death: provides the annual payments as
long as a persons of the given couple is alive (such a principle is called the last-
survivor status):

äxy = äx + äy − äxy

• Life annuity for couple from the first death to the second death (annuity for sur-
vivor): provides the annual payments as long as just one person of the given
couple is alive (annuities payable during the existence of a status, but only after
the failure of a second status, are called reversionary annuities):

ä[1]
xy = äx + äy − 2äxy
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• Asymmetric life annuity for survivor: provides the annual payments as long as
just the second person of the given couple is alive (e.g. widow’s annuity):

äy|x = äy − äxy (analogously for widower’s annuity äx|y)

• Family insurances: are comprehensive insurances to protect family against
combined risks (mainly death and accident of parents and children)

18.9 Premium Reserve and Its Implications

• Surrender (see Sect. 18.1): means that withdrawing life insurance policyholders
are entitled to non-forfeiture benefits (which are benefits that are not lost because
of the premature cessation of premium payments); the surrender amount is usu-
ally a given part of the corresponding premium reserve (see Sect. 18.3) so that
only the capitalizing type of life insurance (i.e. the life insurance with policy
value) can allow it (on the other hand, the term lapse is used when the policy
ceases without any remuneration for clients); in practice, the surrender in amount
of the (gross) premium reserve reduced by the so-called surrender charge is
usual; the surrender charge is frequently given as a percentage of the reserve and
mostly decreases with increasing duration of the policy, e.g. the surrender at the
year t of a policy with the term n≥ 20 for a life aged x at entry may be constructed
in such a way that the surrender charge decreases linearly from 10 to 2%:

tSx:n =

⎧
⎪⎨

⎪⎩

0.90 tV
gross
x:n for t ≤ 3

(0.885+ 0.005 t) · tV
gross
x:n for 3 < t < 19

0.98 tV
gross
x:n for t ≥ 19

• Paid-up policy: means that the policy is converted to a mode with reduced benefits
(mainly due to premature cessation of premium payments); similarly as for the
surrender, only the capitalizing type of life insurance admits this special mode:
even if the policy holder does not pay the periodic premiums, the policy persists,
but with reduced parameters; in practice, one reduces mainly the sum insured or
annuity payments (preserving the original term of the insurance contract); e.g.
for the endowment it may be:

tRx:n = tSx:n
Ax+t: n−t + γ · äx+t: n−t

(reduced sum insured corresponding to a unit of the original sum insured when
an endowment policy is paid-up at time t: the surrender is used as the net single
premium with administration expenses (see Sect. 18.2) charged for the remaining
period of the policy)
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• Valorized periodic premium (adjusted periodic premium): is offered each year
(without any medical test) to policyholders as a counter-inflation valorization:

S′ = S+ g

100
· Pgross

Pgross
x+t: n−t

(adjusted sum insured S′ (S′ > S) in the case that in the year t +1 of the policy,
when the insured aged x at entry should pay the gross annual premium Pgross for
the sum insured S as in the previous year t, the insured will pay the gross annual
premium valorized by g percent; it is necessary to repeat this formula with proper
values, when one valorizes the premiums gradually in particular years)

• Increased sum insured for increased premium:

(Pgross)′ = S · Pgross
x:n + (S′ − S) · Pgross

x+t: n−t

(adjusted annual premium (Pgross)′ in the case that in the year t +1 of the policy
the sum insured S originally stipulated by the insured aged x at entry is increased
to a new value S′ (S′ > S) without any lump sum increase of the premium reserve
at the moment of change)

• Increased sum insured for increased premium and increased premium reserve:

(Pgross)′ = S′ · Pgross
x:n ;  = (S′ − S) · tV

gross
x:n

(adjusted annual premium (Pgross)′ and lump sum adjustment of premium reserve
 in the case that in the year t+1 of the policy the sum insured S originally
stipulated by the insured aged x at entry is increased to a new value S′ (S′ > S))

• Profit sharing (see Sect. 18.1): is an allocation of a given part of insurer’s techni-
cal gain to policyholders; the technical gain consists of (1) investment gain due
to a positive difference between the actually earned interest rate and the technical
interest rate used for insurance calculations, (2) mortality gain due to an appro-
priate difference in assumed and actual mortalities, and (3) expense gain due to
an appropriate difference in assumed and actual expenses; the values assumed a
priori in calculations are usually called statutory values; the practical forms of
the profit sharing can be various, e.g.
– extra bonus included in insurance benefits
– direct payments of the profit sharing yearly to the client
– reduction of premiums in amount of the profit sharing
– reduction of insured period (only in the capitalizing type of life insurance) by

means of the profit sharing added to the premium reserve
– another insurance paid by the profit sharing of the original insurance
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tGx:n = tG
investment
x:n + tG

mortality
x:n + tG

expense
x:n , where

tG
investment
x:n = 1

1− q′x+t− 1
· (i′ − i) · [t− 1Vgross

x:n + (1− β ′) · Pgross
x:n − δ(t) · α′ − γ ′]

Gmortality
x:n = 1

1− q′x+t−1
· (qx+t−1 − q′x+t−1) · (1 − tV

gross
x:n )

tG
expense
x:n = 1

1− q′x+t−1
· (1+ i) ·[δ(t) · (α − α′) + (γ − γ ′)+ (β − β ′) · Pgross

x:n ],

where δ(t) = 1 for t = 1 and δ(t) = 0 otherwise

(contribution formulas: provide the profit tGx:n per unit sum insured in the year t of
the policy for the statutory values i, qx, α, β, γ (for simplicity, one puts αN = α and
αC = 0) and the actual values i′, qx

′, α ′, β ′, γ ′)

tGx:n ≈ k · (i′ − i) · t− 1Vgross
x:n + tV

gross
x:n

2

(approximate contribution formulas used in practice: takes into account only the
technical profit due to investment, i.e. the difference between the actually earned
interest rate i’ and the technical interest rate i used for insurance calculations; k is a
ratio guaranteed by the insurance contract (e.g. k = 0.90))

18.10 Medical Underwriting

• Medical underwriting: is a qualified evaluation of the health state of the client
that wants to enter into an insurance contract covering (at least partly) mortality
or morbidity risks; the corresponding procedure is based on results of the entry
medical examination; the insurer’s approach to a person with health problems
may be different:
– the person is insurable, but for extra premium (such an approach is frequent in

practice, see thereinafter)
– the person is insurable, but in the case of death the insurer may reduce the

insurance benefits
– the person is not insurable and is refused by the insurer

• Medical underwriting manuals: are special statistical tables (usually constructed
by prestigious reinsures) that enable to evaluate quantitatively the increased
health risk (impaired life) by means of medical reports, tests and diagnoses tak-
ing into account gender, age, suggested term of insurance, and the like; the output
offered by the manual for an increased mortality risk can be as follows:
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– age rating: consists in an artificial aging of the client by a given number of
years

– increased force of mortality: one adds to the force of mortality (see Sect. 7.3)
constants recommended by the manual:

npc
x · vn = exp

⎛

⎝−
n∫

0

(μx+ s + c) ds

⎞

⎠ · e−δ·n

= exp

⎛

⎝−
n∫

0

μx+s ds

⎞

⎠ ·
(

e− (c+δ)
)n = npx · (v · e− c)n

(this relation shows that the force of mortality increased in a given age interval
by a constant c can be interpreted as the force of interest increased by the same
constant)

– multiplicative and additive excess mortality is the most frequently used
approach: one looks up in the manual for given gender, age at entry and various
health characteristics of the potential client:

– multiplicative excess mortality mm (%)
– additive excess mortality ma (per mile): concerns frequently postoperative

states
– then instead of classical probabilities of death qx (see Sect. 7.2), all technical

calculations for this client apply adjusted probabilities of death qx
H, which

take into account the client’s health state:

qH
x =

(
1+ mm

100

)
· qx + ma

1 000

• Health coefficient: indicates the ratio of the premium adjusted due to the client’s
health state to the standard premium of the insurance tariff
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Chapter 19
Modern Approaches to Life Insurance

Abstract Chapter 19 presents some modern forms and instruments of life
insurance: 19.1. Critical Illness Insurance, 19.2. Flexible Products of Life Insurance,
19.3. Unit Linked, 19.4. Profit Testing, 19.5. Embedded Value, 19.6. Fair Value.

19.1 Critical Illness Insurance

• Critical illness insurance (dread disease insurance, DD insurance): extends the
mortality risk in such a way that the sum insured (or its percentage part) is paid
out, as soon as certain terminal or highly debilitating illnesses are diagnosed (usu-
ally cancer that is life threatening, heart attack and stroke, but also other diseases
may be included, e.g. paralysis, Alzheimer’s or Parkinson’s disease, multiple
sclerosis, blindness, kidney failure) or medical procedures must be performed
(such as a coronary bypass or organ transplant)

• Protective measures of insurers:

– waiting period: is a stipulated period (usually several months), from when
the policy was written, before the coverage is in force (it is an anti-selective
measure)

– survival period: requires the insured to survive a minimum number of days
(usually 28 or 30), from when the illness was first diagnosed (it is an adminis-
trative measure to distinguish the DD insurance benefit from the classical risk
life insurance benefit)

• Types of DD insurance:

– accelerated benefit: the benefit stipulated for a basic (ordinary) life insurance
(e.g. for a term insurance, see Sect. 18.5) is accelerated in such a way that
the sum insured (face amount) is paid out either fully (so called one hundred
percent DD acceleration), or partly (so called k percent DD acceleration),
already when the illness is first diagnosed; a DD rider of the basic policy (see
Sect. 18.1) is the typical form in this case

195T. Cipra, Financial and Insurance Formulas, DOI 10.1007/978-3-7908-2593-0_19,
C© Springer-Verlag Berlin Heidelberg 2010
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– independent benefit: the DD benefit is guaranteed without any link to other
circumstances; a DD stand-alone policy is the typical practical form in
this case

Denotation:

qx is the probability that a life aged x will die within 1 year (i.e. prior
the age x + 1 has been attained, see Sect. 17.2)

qx
acc is the probability that a life aged x without DD diagnosis will die

or will be DD diagnosed within 1 year (the index acc reminds
“acceleration”)

ix is the probability that a life aged x without DD diagnosis will be
DD diagnosed within 1 year (the probability of the first incidence)

kx is ratio of the number of DD deaths at age x to overall number of
deaths at age x

qx
notDD/notDD is the probability that a life aged x without DD diagnosis will

die within 1 year, where the cause of death will not be the DD
diagnosis

qx
DD/notDD is the probability that a life aged x with DD diagnosis will die

within 1 year, where the cause of death will not be the DD
diagnosis

qacc
x ≈ ix + (1− kx) · qx = ix + qx − kx · qx

(approximate formula for qacc
x based on an approximation qx

notDD/notDD ≈
qx

DD/notDD)

lacc
0 = 100 000

lacc
x+1 = lacc

x · (1− qacc
x ); Dacc

x = lacc
x · vx; nacc

x = Dacc
x + Dacc

x+1 + . . .

dacc
x+1 = lacc

x · qacc
x ; Cacc

x = dacc
x · vx+1; Macc

x = Cacc
x + Cacc

x+1 + . . .

(commutation functions constructed for DD insurance with accelerated benefit (see
thereinbefore))

Pacc
x:n =

A1 acc
x:n

äacc
x:n

= Macc
x −Macc

x+n

Nacc
x − Nacc

x+n

(term insurance with one hundred percent DD acceleration: net annual premium)
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Pacc
x:n =

Aacc
x:n

äacc
x:n

= Macc
x −Macc

x+n + Dacc
x+n

Nacc
x − Nacc

x+n

(endowment with one hundred percent DD acceleration: net annual premium)

Pacc (k%)
x:n = k

100
· Pacc

x:n +
(

1− k

100

)

· Px:n,

where Pacc
x:n is the net annual premium for term insurance with one hundred percent

DD acceleration (see thereinbefore) and Px:n is the net annual premium for term
insurance (see Sect. 18.5)
(term insurance with k percent DD acceleration: net annual premium; an analogous
formula holds for the endowment)

di
x = lacc

x · ix; Ci
x = di

x · vx+1; Mi
x = Ci

x + Ci
x+1 + . . .

(commutation functions constructed for DD insurance with independent benefit (see
thereinbefore))

Pind
x:n =

A1 ind
x:n

äacc
x:n

= Mi
x −Mi

x+n

Nacc
x − Nacc

x+n

(DD term insurance with independent benefit: net annual premium)

19.2 Flexible Products of Life Insurance

• Flexible products of life insurance (flexible life insurance policies): give policy-
holders numerous options in terms of premiums, sum insured (face amounts), and
investment objectives so that they can change these components of the policies in
response to changing needs and circumstances; flexible life policies include: (1)
Universal Life, (2) Adjustable Life, (3) Variable Universal Life, and other types
(see thereinafter)

• Universal Life: is a flexible premium, adjustable death benefit insurance which
accumulates cash value in the individual policyholder’s account, i.e. it combines
a whole life insurance protection with a savings feature (however in contrast to
the endowment, the both components of Universal Life are strictly separated):
– the risk component of the premium Prisk(x) for the case of death is presented

as mortality charges and is calculated for the age x being and for the stipulated
sum insured S (usually applying up-to-date mortalities) as:

P risk(x) = S · qx

– the cash value is credited each month with premium payments and with inter-
est at a rate specified by the company; on the other hand, the cash value
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is debited each month by cost of insurance (COI) charges, i.e. by mortality
charges, administrative costs and fees for insurer; the policyholder is regularly
informed on these items

– on insured’s death the insurer pays out the sum insured (stipulated for the case
of death) plus the amount remaining in the cash account of the given policy;
the surrender value of the policy (see Sect. 18.1) is the amount remaining in
the cash account less applicable surrender charges; on survival of a stipulated
term (if any) the insurer pays out the amount remaining in the cash account

– the policyholder may choose one of two options regarding the death benefit:
– the first option provides a level death benefit equal to the policy’s sum

insured (face value): this choice supposes that more of the premium is
placed in the cash account making the cash value rise more quickly

– the second option provides an increasing death benefit equal to the policy’s
sum insured plus the cash value: cash value does not increase so quickly
because more of the premium is applied to the higher mortality charges of
the increasing death benefit over the policy’s life

• Adjustable Life: is a policy that gives the policyholder the options to adjust the
sum insured (face value), premium, and length of the coverage (e.g. from term to
whole life) without having to change the policy

• Variable Universal Life: is a combination of Universal Life (see thereinbefore)
with Unit Linked (see thereinafter)

19.3 Unit Linked

• Unit Linked (Variable Life): is a combination of life insurance (usually the
term insurance) and investment funds; the insurance benefit may depend on the
momentary price of investment units owned by the policyholder in investment
portfolios of the insurer; unlike the classical life insurance (see Chap. 18) or the
Universal Life (see Sect. 19.2):
– the policyholders bear the whole investment risk by determining investment

strategy for individual policies
– most insurers offer a wide range of investment funds to suit client’s investment

objectives, risk profile and time horizon, e.g.:
– cash funds (money market funds that invest in cash, bank deposits and

money market instruments)
– fixed interest and bond funds (see Sect. 9.2)
– equity funds (see Sect. 9.3)
– balanced funds (they combine equity investments with fixed interest

instruments)
– real estate funds
– regional funds, environmental funds, humanitarian funds, and the like
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– the policyholder’s benefits are defined by reference to the number and the price
of shares (units) in the particular investment funds; these units are notion-
ally owned by the policyholder that disposes of a high flexibility in payment
of premiums similarly as in the Universal Life (i.e. the policyholders have
individual accounts)

– on insured’s death the insurer pays out the sum insured (stipulated for the case
of death) plus the value of the client’s units; on survival of a stipulated term (if
any) or on surrender the insurer pays out the value of the client’s units

– the death benefit due to the term insurance (see Sect. 18.5) involved in the Unit
Linked is usually decreasing in time; various constructions of this insurance
are frequent in practice, e.g.:
– for level premiums with regularly decreasing sum insured (see Sect. 18.5)
– for risk premium with sum insured decreasing in such a way that after

adding the client’s units it provides a stipulated minimal level
– modern approaches (e.g. profit testing, see Sect. 19.4) are used in Unit Linked

calculations
– the insurer must solve a significant need of new business capital (the so-called

new business strain), since particular insurance policies may show significant
negative cash flows in the beginning

Basic concepts:

• Unit: is a basic share of the given investment fund; typically, the first few
years’ premiums are invested in initial units, from which higher charges may
be deducted to redeem the initial expenses; later years’ premiums are invested
in accumulation units, from which annual charges (regular fees and risk pre-
miums) are deducted (obviously, these charges are much lower than the initial
ones)

• Offer price vs. bid price of unit: is the price, at which the unit can be purchased
or sold, respectively; the difference between offer and bid prices (the so-called
bid/offer spread) is credited to the insurer

• Unit fund: is the account of units that are owned by the given client
• Sterling fund: is the account, in which premiums unallocated in the unit fund

plus explicit charges which may be deducted from the unit fund are accumulated
(“sterling” refers simply to “cash” here, to distinguish it from the unit fund)

• Allocation percentage: is the allocated part of premiums, i.e. the part of
premiums, for which the units are purchased

• Allocation ratio: describes the distribution of the allocated premiums among
particular investment funds

• Profit of the Unit Linked insurer comes only from various charges and fees
credited to the insurer, which are e.g.
– fund management charges
– bid/offer spread charges (see thereinbefore)
– surrender charges
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– fund switching charges for transfer of units to other investment funds of the
insurer

Denotation:

Ft unit fund (see thereinbefore) at the beginning of the year t
at allocation percentage (see thereinbefore) at the year t
Pt annual premium paid at the beginning of the year t
λ bid/offer spread charges (see thereinbefore)
iu rate of return for the client’s unit fund
mt rate of fund management charges deducted from the client’s unit fund at

the end of the year t
Ct charges deducted from the client’s unit fund at the end of the year t
CFt insurer’s profit (cash flow) from a Unit Linked policy at the end of the

year t
Et expenses expended by the insurer at the beginning of the year t
is rate of return for the client’s sterling fund
St death benefit for the term insurance
qx+t–1 probability of client’s death at age x + t − 1

Ft+1 = [Ft + at · Pt · (1− λ)] · (1+ iu) · (1− mt)

(development of client’s unit fund: the amount at · Pt · (1 − λ) is invested in
client’s favour)

ct = [Ft + at · Pt · (1− λ)] · (1+ iu) · mt

(charges deducted from the client’s unit fund: the amount at · Pt · (1 − λ) is
invested in client’s favour)

CFt = [(1− at)Pt + at · Pt · λ− Et] · (1+ is)+ Ct − St · qx+ t−1

(insurer’s profit: the amount (1 − at) · Pt is credited to the sterling fund; the
amount at · Pt · λ is credited to the insurer; the expression in brackets is the
amount of the sterling fund at the beginning of the year t)

St = max{S− Ft+1, 0}
(death benefit decreasing in such a way that after adding the client’s units it
provides a stipulated minimal level S (see thereinbefore)

• Index Linked: means that a capital life insurance product is linked to development
of a market indicator (e.g. a stock exchange indicator) of a given capital market
(see Sect. 29.3)
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19.4 Profit Testing

• Profit testing: is a modern approach to actuarial calculations carried out using
cash flow techniques where one views particular life insurance contracts as cash
flow systems (see Chap. 6); typically, profit tests generate expected profit signa-
tures of particular tranches of business on the basis of premium rates assumptions
with the goal to keep the profitability in acceptable bounds; convenience of such
an approach consists in:

– effective measurement of profitability (e.g. momentary losses will be compen-
sated by future profits)

– realistic analysis due to realistic basis of calculation
– flexibility of pricing (i.e. the calculation of premiums) and valuation (i.e. the

calculation of reserves)
– effective exploitation of modern computing facilities (e.g. simulations of

scenarios, stress testing, and the like)

• Risk discount rate (rdr): is the interest rate used for discounting future cash flows
(see Sect. 6.1) in modern approaches to life insurance; it reflects the price of
investment capital and the risk due to its investment in insurance business; the
components of rdr are:

– risk free rate rfr (see Sects. 5.1 and 13.2)
– costs of investment capital
– risk margins for given market and business
– other margins (e.g. due to risk corresponding to the country of business)

rdr = rfr + (rM − rfr) · β
(risk discount rate according to the model CAPM (see Sect. 13.3): is constructed
by means of risk free rate rfr, expected market return (expected return of market
portfolio) rM and factor β; the term (rM – rfr)·β is called risk margin)

Denotation:

Pt (gross) premium at the beginning of the year t
E’t actual expenses by insurer at the beginning of the year t
i’ actual investment rate of return by insurer (i.e. actually earned interest

rate)
tVx

stat statutory premium reserve (i.e. the premium reserve calculated by
means of mortalities and technical interest rate as were assumed for the
premium calculations) at the end of the year t for a life aged x at entry
(see Sect. 18.3)

St
death death benefit at the end of the year t on death during this year

St
surv survival benefit at the end of the year t on survival up to this moment

St
surr surrender benefit at the end of the year t on surrender during this year
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px’ actual probability of survival at age x (see Sect. 17.2)
qx’ actual probability of death at age x (see Sect. 17.2)
wt’ actual probability of surrender (see Sect. 18.9) during the year t

PROt = (Pt − E′t) · (1+ i′) + t−1Vstat
x · (1+ i′) −t Vstat

x · p′x+ t−1−
−Sdeath

t · q′x+t−1 − Ssurv
t · p′x+t−1 − Ssurr

t · w′t
(annual profit per policy in force: is the profit expected to be earned during the
year t per policy of the given type, which is in force at the beginning of the year
t; if the values assumed for calculations (without apostrophes) are equal to the
actual ones (with apostrophes) then PROt = 0)

PROSt = PROt · t−1 p′x

(annual profit signature per policy: is the future profit expected at entry age x to
be earned during the year t per policy of the given type)

PVFP =
n∑

t=1

PROSt

(1+ rdr)t

(present value of future profits expected per policy of the given type)

• Criteria of profitability applied in profit testing:

– profit as percentage of PV of premiums (profit margin):

PVFP
n∑

t=1
Pt · t−1 p′x · (1+ rdr)− (t−1)

· 100%

– profit as percentage of PV of commissions (commissions Com for insurance
agents may be used as a basis if one measures profitability of the given
insurance business):

PVFP
n∑

t=1
Comt · t−1 p′x · (1+ rdr)− (t−1)

· 100%

– profit as internal rate of return IRR (see Sect. 6.2):

n∑

t=1

PROSt

(1+ IIR)t
= 0

– profit according to payback of invested capital: the criterion prefers the insur-
ance business with the shortest payback periods (see Sect. 6.3) defined as the
first k such that PVFPk ≥ 0:



19.5 Embedded Value 203

PVFPk =
k∑

t=1

PROSt

(1+ rdr)t
, k = 1, . . . , n

19.5 Embedded Value

• Embedded value EV: is a modern methodology suggested primarily for the val-
uation of insurance liabilities (i.e. for the calculation of premium reserves); it
consists in global profit testing analysis (see Sect. 19.4) for the whole insurance
portfolio

• Valuation of insurance liabilities:

– by means of statutory reserves (see Sect. 19.4): is based on conservative
assumptions applied to the premium calculation; such assumptions do not
frequent-ly correspond to reality; the statutory reserves are the standards used
in the framework of the insurance business regulation

– by means of EV reserves (see thereinafter): reduces the statutory reserves by
the present value of future profits (see Sect. 19.4) respecting solvency require-
ments; such an approach is important for shareholders and management (e.g. it
respects the fact that momentary losses may be compensated by future profits)

• Characteristics of EV:

– one projects (i.e. discounts backwards to the valuation date) future (gross)
profit cash flows (see Sect. 19.4) concerning the whole insurance portfolio

– these projections are based on the best estimates of the corresponding future
profits (the best estimated level of assumptions on mortality, lapses, com-
missions, expenses, investment return, etc. is understood to be their expected
value)

– the risk and uncertainty that real future cash flows will differ from their best
estimates is covered in the discount operations using the risk discount rate
(rdr, see Sect. 19.4)

– costs of embedded options and guarantees (see Sect. 18.1) cannot be included
objectively using EV approach

Denotation is analogous to the one for profit testing (see Sect. 19.4):

P’t total estimated premium income at the beginning of the year t (i.e. pre-
miums of all policies in force estimated for the beginning of the year t
in the investigated insurance portfolio)

E’t total estimated expenses by insurer at the beginning of the year t
i’ estimated annual rate of return by insurer in the investigated insurance

portfolio
tV’stat total estimated statutory premium reserves at the end of the year t
St’death total estimated death benefit at the end of the year t
St’surv total estimated survival benefit at the end of the year t
St’surr total estimated surrender benefit at the end of the year t
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PROt = (P′t − E′t) · (1+ i′)+t−1V ′stat · (1+ i′)−tV
′stat − S′death

t − S′surv
t − S′surr

t

(total estimated profit in the investigated insurance portfolio during the year t)

PVFP =
n∑

t=1

PROt

(1+ rdr)t

(present value of future profits in the investigated insurance portfolio; if one applies
net profits (after tax) reduced by future changes of required solvency capital (the
so-called allocated capital AC, see thereinafter) expressed as (ACt+1 – ACt) – ACt ·
i′· (1 – tax), then one obtains the present value of future distributable earnings (see
thereinafter), which could be paid out as dividends to shareholders of the insurance
company)

tV
EV =t Vstat − PVFP

(EV reserves: an indirect method of calculation of EV reserves that consists in
reducing the statutory reserves by the present value of future distributable earn-
ings (see thereinbefore); the concept of EV reserves is important for shareholders
and management (see thereinbefore))

Denotation:

FA free assets of insurer: is the capital that does not support any in-force business
of insurer at the valuation date (i.e. the assets that back neither liabilities nor
required solvency margin of the insurer so that the shareholders can use them
without jeopardizing the company economy)

NA net assets of insurer
AC allocated capital (assigned capital) of insurer: is the required solvency capital

(see also Sect. 24.3); it holds NA = FA + AC

EV = FA+ PVFP

(embedded value (implicit value) of insurer: is used as an estimation of the value
of the company (it is another application of the EV approach beside the liabil-
ity valuation by means of EV reserves, see thereinbefore); PVFP is the present
value of future distributable earnings (see thereinbefore) from in-force business;
sometimes the present value of future changes of required solvency capital (see
thereinbefore) is expressed alternatively as the present value of differences between
rdr and net rate of return i′· (1 – tax) applied to allocated capital amounts, i.e.∑n

t=1 ACt−1 ·
(
rdr − i′ · (1− tax)

)
/(1+ rdr)t, where AC = AC0)

VBIF = PVFP− AC

(value of business in-force (portfolio value): is the best used estimate of the market
price of insurance portfolio)
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AV = EV + PVNB

(appraisal value: is the estimate of the market price of insurance company; it
completes the EV reserves by the present value of future distributable earnings
(see thereinbefore) from the estimated new business (PVFP covers only the in-
force business); AV is applied e.g. for sales, acquisitions and mergers of insurance
companies)

19.6 Fair Value

• Fair value FV: is an alternative to EV (see Sect. 19.5), which promotes itself in the
framework of modern accounting principles (International Accounting Standards
IAS and International Financial Reporting Standards IFRS); in general, the fair
value is defined as the amount for which an asset could be exchanged and a
liability settled between knowledgeable, willing parties in an arm’s transaction;
similarly as for the EV reserves (see Sect. 19.5), the valuation of liabilities by
means of the FV reserves is important for shareholders and management of the
company

• Characteristics of FV:

– one projects (i.e. discounts backwards to the valuation date) future cash flows
(see thereinafter) concerning the whole insurance portfolio

– unlike EV approach, necessary assumptions are not used on the best estimation
level, but they are adjusted by the so-called market value margin MVM, which
should cover the risk and uncertainty of future development; in particular, the
investment rate of return rfrMVM used in this context is the risk-free interest
rate adjusted by MVM (see thereinafter)

– unlike EV approach, the discount operations are performed by means of the
risk-free interest rate (rfr, see Sects. 5.1 and 13.2)

– unlike EV approach, costs of embedded options and guarantees can be
included objectively (e.g. by means of deflators, see thereinafter)

Denotation is analogous to the one for embedded value (see Sect. 19.5):

Pt
MVM total estimated premium income (in the investigated insur-

ance portfolio) adjusted by MVM at the beginning of the
year t

Et
MVM total estimated expenses by insurer adjusted by MVM at the

beginning of the year t
rfrMVM risk-free interest rate adjusted by MVM used as the invest-

ment rate of return
St

death, MVM total estimated death benefit adjusted by MVM at the end of
the year t
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St
surv, MVM total estimated survival benefit adjusted by MVM at the end

of the year t
St

surr, MVM total estimated surrender benefit adjusted by MVM at the
end of the year t

CFt = (PMVM
t − EMVM

t ) · (1+ rfrMVM)− Sdeath, MVM
t − Ssurv, MVM

t − Ssurr, MVM
t

(total estimated cash flow in the investigated insurance portfolio at the end of the
year t)

FV =
n∑

t=1

CFt

(1+ rfr)t

(fair value FV: is constructed as the present value of future cash flows (see there-
inbefore) in the investigated insurance portfolio performing discount operations by
means of the risk-free interest rate; unlike the future profits PROt in EV (see Sect.
19.5), the future cash flows CFt in FV: (1) do not include increments of the statutory
reserves; (2) their best estimated level is adjusted by MVM; (3) are discounted by
means of the risk-free interest rate)

• Deflators: enable to evaluate embedded options, which are client’s possibilities
to choice among several alternatives of insurance contract development without
additional charges (see Sect. 18.1); in the framework of modern accounting prin-
ciples IFRS (see thereinbefore), the embedded options should be evaluated as the
risks by insurers

Denotation:

Bt = e rf · t interest factor of continuous compounding (see Chap. 4) using risk-
free interest rate rf : it can be interpreted as the price of unit (B0 = 1)
of a risk-free, zero-coupon bond at time t (see Sect. 9.2)

ZT claim guaranteed by the evaluated embedded option (see thereinbe-
fore) on maturity date T (compare with the claim guaranteed by a
financial derivative, see Sect. 15.8)

Vt price (or value) of the embedded option at time t (0 ≤ t ≤ T)
Q equivalent martingale (risk-neutral) probability Q with respect to

probability P and filtration �t describing dynamics of the risk events
to be evaluated (compare with the financial derivatives pricing, see
Sect. 15.8)

Vt = e− rf · (T− t)EQ (ZT | �t ) = Bt · EQ

(
B−1

T · ZT | �t

)

(price of embedded option at time t (see thereinbefore): is equal (if no arbitrage
opportunity exists, see Chap. 14) to the conditional mean value (with respect to
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probability Q and filtration �t) of the claim ZT discounted using the risk-free rate of
return to time t)

Dt = e− rf · tEP

(
dQ

dP
| �t

)

(deflator at time t: dQ
dP is Radon-Nikodym derivative of Q with respect to P, see Sect.

26.8)

Vt = D−1
t · EP (DT · ZT | �t )

(price of embedded option at time t by means of deflator: application of the defla-
tor enables to use the conditional mean value with respect to the original (risk)
probability P)
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Chapter 20
Pension Insurance

Abstract Chapter 20 is devoted to the topic of pensions: 20.1. Basic Concepts of
Pension Insurance, 20.2. Defined Contribution Plan, 20.3. Defined Benefit Plan.

20.1 Basic Concepts of Pension Insurance

• Pension: is an arrangement to provide people with income when they are no
longer earning a regular income from employment; typically, pensions concern
major population groups defined in a specific way: e.g. the population of a whole
region or country (social pensions, state pensions, social security), the employ-
ees or members of a trade association (occupational pensions, employer-based
pensions) or other forms of pension plans (retirement schemes, pension funds)
combined frequently with personal savings; from the point of view of insur-
ance, the pensions may cover risks of longevity (social insufficiency), disability
or sickness

• Contributions: are incomes of pension plans (mainly the payments by active par-
ticipants, employers or state) in favour of participants; typically, the contribution
is expressed as a percentage of participant’s salary

• Benefits: are outcomes of pension plans (mainly the payments of pensions);
the pensions may be classified according to circumstances on which they are
contingent:
– retirement pension (old age pension): on achievement of a (normal) retirement

age (sometimes an early retirement or late retirement is also possible)
– past-service pension (merit pension): on achievement of a prescribed number

of active participation years, in which contributions have been paid
– disability pension: in the case of (total) disability (on reinstatement of the

disabled participant, the disability pension is suspended)
– survivor’s pension: in the case of participant’s death (e.g. widow’s pension)

209T. Cipra, Financial and Insurance Formulas, DOI 10.1007/978-3-7908-2593-0_20,
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210 20 Pension Insurance

– lump-sum settlement: may be chosen instead of particular pensions
– surrender: is a reimbursement when the active participation is insufficient

(sometimes such a participant obtains so called vested right to transfer the
accrued amount e.g. to a pension fund of another employer)

• Types of pension plans:

(a) according to calculations of contributions and benefits:

– defined contribution plan: contributions are paid into an individual
account for each participant with investment returns credited also to this
individual’s account; on retirement, the participant’s account is used to
provide benefits (pensions) that are dependent upon the amount of money
contributed and the investment performance; in, particular it means that
the contributions are known but the benefits are unknown until calculated
by prescribed methods (see Sect. 20.2)

– defined benefit plan: guarantees a certain benefit (pension) after retire-
ment; this benefit is determined by a benefit formula that may incorporate
(1) the participant’s salary, (2) service years (i.e. the years of employ-
ment or the years of active participation with contributions paid), (3) age
at retirement (and other factors), e.g.

– flat rate pension plan: defines flat pensions for all pensioners
– money times service pension plan: defines pensions based only on the

service years (e.g. a plan offering 100 USD a month per 1 year of ser-
vice will provide 2,000 USD a month to the retiree with twenty service
years)

– final salary pension plan: defines monthly pensions equal to the service
years, multiplied by the participant’s salary at retirement, multiplied by
a factor known as accrual rate

– career average salary pension plan: defines pensions similarly as the
final salary plan except for averaging salary over all the service years
instead of the final salary

– final average salary pension plan: defines pensions similarly as the
final salary plan except for averaging salary over the final service years
prior to retirement instead of the final salary

The calculation of contributions which will guarantee the defined ben-
efit (in funded pension plans, see thereinafter) is mostly based on the
equivalence principle (see Sect. 18.2), i.e. one must calculate the present
value (for age at entry) of the corresponding benefit (probabilities of
survival in active state to retirement age should be used for retirement
pensions, probabilities of transition to disability state should be used
for disability pensions, etc., see Sect. 20.3) and cover it by the present
value of contributions, which are to be fixed (usually as a percentage
of salary)
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(b) according to financing: various strategies of liability capitalization are
possible with two distinctive types:

– unfunded pension plan (pay-as-you-go financing, PAYGO financing):
means that benefits are paid directly from current workers’ contributions
and taxes; it is a usual way how social security systems are financed all
over the world

– funded pension plan: means that contributions are invested in funds to
meet the benefits; typically, the contributions to be paid are regularly
reviewed when evaluating the plan’s assets and liabilities by actuaries to
ensure that the funds will meet future payment obligations (see Sect. 20.3)

(c) according to organizing aspects, e.g.:

– company pension scheme (staff provident scheme): is organized directly
by the employer; the pensions usually figure as liabilities in the
employer’s balance-sheet

– professional pension scheme: is organized by a professional operator
accredited by the employer (a commercial insurance company, a provident
society, etc.)

– state pension institutions (governmental insurer, social security adminis-
tration)

20.2 Defined Contribution Plan

• Formulas for defined contribution plans (see Sect. 20.1) are represented here by
possible examples how the payments of retirement and survivor’s pensions can
be calculated:

Denotation:

C RP participant’s account for retirement pension at the moment when the
pension becomes due

C SP participant’s account for survivor’s pension at the moment when the
pension becomes due

x participant’s age at the moment when the retirement pension becomes
due, or survivor’s age at the moment when the survivor’s pension
becomes due

P annual pension payment
äx present value of unit whole life annuity-due (see Sect. 18.7)
äx:n present value of unit n-year annuity-due (see Sect. 18.7)
än present value of annuity-certain used in finance (see Sect. 7.1)
◦ex life expectancy at age x (see Sect. 17.2)
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• Examples of formulas for retirement pension:

P = CRP

äx

(whole life retirement pension by means of actuarial approach with guaranteed rate
of return i (∼ technical interest rate); the investment gain over the guaranteed rate
of return may be distributed to pensioners in addition to the benefits P)

P = CRP

ä◦ex

(whole life retirement pension by means of life expectancy with guaranteed rate of
return i; it holds ä◦ex > äx)

P = CRP

◦ex

(whole life retirement pension by means of life expectancy without guaranteed rate
of return; this type of annuity decomposition is sometimes applied in the tax context)

Px+n = CRP
x+n

äx+n
; Px+n = CRP

x+n

ä◦ex+n
; Px+n = CRP

x+n
◦ex+n

where Cx+n and ◦ex+n are up-to-date values for the year of calculation (whole life
retirement pension with varied payments according to up-to-date situation)

• Examples of formulas for survivor’s pension:

P = CSP

äx:n
(temporary survivor’s pension by means of actuarial approach with guaranteed rate
of return)

P = CSP

än
; P = CSP

n

(temporary survivor’s pension in the form of annuity-certain (see Sect. 7.1) with
guaranteed rate of return i, respectively without guaranteed rate of return)

P = CRP

äx:n
= CRP

än+ n|äx
= CRP

1−vn

1−v + Nx+ n
Dx

(retirement pension in combination with survivor’s pension guaranteed for n years:
combines the whole life retirement pension with the temporary survivor’s pension
in such a way that on death of the recipient of retirement pension during the first n
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years, the payments of original amount go on as survivor’s pension till the end of
the guaranteed period n (see also Sect. 18.7))

P = CRP

äx�n
= CRP

äx + Ax · än
= CRP

Nx
Dx
+ Mx

Dx
· 1−vn

1−v

(retirement pension in combination with survivor’s pension extended by n years:
combines the whole life retirement pension with the temporary survivor’s pension
in such a way that on death of the recipient of retirement pension, the payments of
original amount go on as survivor’s pension for the next n years forthcoming (see
also Sect. 18.7))

20.3 Defined Benefit Plan

• Actuarial calculations for defined benefit plans:

– are based on the present value of (expected) future benefits PVFB and con-
tributions of the participant aged x applying the equivalence principle (see
Sect. 18.2) and respecting possibly the salary development; one may use com-
mutation functions to simplify numerical calculations similarly as in the life
insurance (see Sect. 17.6)

– take into account the service years distinguishing usually the past service PS
and the future service FS in the pension plan (see thereinafter)

– enable to construct (in order to fund the pension plan, i.e. to cover benefits
gradually prior to their maturity by necessary financial funds):

– normal contributions NC (standard contribution rate SCR): are designed
to amortize PVFB (see thereinbefore) over the participants service years
(working lifetime), the pattern of amortization being specified by par-
ticular actuarial funding methods; it is an analogy of premiums in life
insurance

– actuarial liabilities AL: are equal (prospectively, at age y for y > x) to PVFB
at this age less the present value of (expected) future NC yet to be made; it
is an analogy of premium reserves in the life insurance (see Sect. 18.3)

Denotation:

lx number of active participants of the pension plan at age x
dx number of deaths at age x
wx number of withdrawals at age x
ix number of disability incidences at age x
rx number of retirement pensions paid since age x

lx+1 = lx − (dx + wx + ix + rx)

(decrement order of active participants: decrements are distributed uniformly over
each year)
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dx = qx · lx, wx = qw
x · lx, ix = qi

x · lx, rx = qr
x · lx

(probability expressions: qj
x is the decrement rate (decrement probability) of the type

j at age x)

• Present value of retirement pension independent on salary (i.e. the PVFB
corresponding to the retirement pension, see thereinbefore) assuming that

– the participant is aged x with n service years
– the annual retirement pension accrual per each service year is b (see Sect. 20.1)
– the normal retirement age is u with possibility of early retirement, but without

possibility of late retirement
– the present value of unit pension paid since retirement at age x is är

x
– the discount operations are performed by means of the discount factor v (see

Sect. 3.2)

PV = PS+ FS = n · b · Mra
x

Dx
+ b · Rra

x

Dx
,

where

Dx = lx · vx, Cra
x = rx · är

x · vx, Mra
x =

u − x∑

j= 0
Cra

x+j, Rra
x =

u − x∑

j=1
Mra

x+j

• Present value of disability pension independent on salary assuming that

– the participant is aged x with n service years
– the annual disability pension accrual per each service year is b
– the normal retirement age is u
– the present value of unit pension paid since disability incidence at age x is äi

x
– the discount operations are performed by means of the discount factor v (see

Sect. 3.2)

PV = PS+ FS = n · b · Mia
x

Dx
+ b · Ria

x

Dx
,

where

Dx = lx · vx, Cia
x = ix · äi

x · vx, Mia
x =

u−x−1∑

j=0
Cia

x+j, Ria
x =

u−x−1∑

j=1
Mia

x+j

• Present value of retirement pension dependent on career average salary assum-
ing that

– the participant is aged x with n service years
– the salary scale function is {sx} (i.e. the ratio of salary increase between ages x

and x + t is sx+t/sx), the participant’s cumulative salary during the past service
is S, and the participant’s annual salary at age x is s
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– the annual retirement pension accrual per each service year is zu/K for a fixed
K, where zu is the participant’s average salary over the whole past service (over
the whole career)

– the normal retirement age is u with possibility of early retirement, but without
possibility of late retirement

– the present value of unit pension paid since retirement at age x is är
x

– the discount operations are performed by means of the discount factor v (see
Sect. 3.2)

PV = PS+ FS = S

K
· Mra

x

Dx
+ s

K
·

sRra
x

sDx
,

where sDx = sx · Dx, sMra
x = sx−1 ·Mra

x , sRra
x =

u − x∑

j=1

sMra
x+j

• Present value of retirement pension dependent on final average salary (over m
last salaries prior to retirement, the case m = 1 (i.e. with dependence on final
salary only) being frequent in practice) assuming that

– the participant is aged x with n service years
– the salary scale function is {sx} (i.e. the ratio of salary increase between ages

x and x + t is sx+t/sx), the participant’s average salary over m years prior to age
x is zx = (sx–m + . . . + sx–1)/m, and the participant’s annual salary at age x is s

– the annual retirement pension accrual per each service year is zu/K for a fixed
K, where zu is the participant’s average salary over m years prior to retirement

– the normal retirement age is u with possibility of early retirement, but without
possibility of late retirement

– the present value of unit pension paid since retirement at age x is är
x

– the discount operations are performed by means of the discount factor v (see
Sect. 3.2)

PV = PS+ FS = n · s
K
·

zMra
x

sDx
+ s

K
·

zRra
x

sDx
,

where

zCra
x = zx · Cra

x , zMra
x =

u − x∑

j= 0

zCra
x+j,

zRra
x =

u − x∑

j=1

zMra
x+j

• Present value of contributions independent on salary assuming that

– the participant is aged x with n service years
– the annual participant’s contribution is C
– the normal retirement age is u
– the discount operations are performed by means of the discount factor v (see

Sect. 3.2)
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PV = C · Nx

Dx
,

where Nx =
u−x−1∑

j=0

Dx+j

• Present value of contributions dependent on salary assuming that

– the participant is aged x with n service years
– the salary scale function is {sx} (i.e. the ratio of salary increase between ages

x and x + t is sx+t/sx), the participant’s annual salary at age x is s, and the
participant’s annual contribution is c percent of annual salary

– the normal retirement age is u
– the discount operations are performed by means of the discount factor v (see

Sect. 3.2)

PV = c · s ·
sNx
sDx

,

where sNx =
u−x−1∑

j=0

sDx+j

Denotation:

nct normal contributions NC (see thereinbefore) at time t (relatively to the
salary)∑
sum over all active participants of the pension plan at time t

x(t) age of a participant at time t
x0 entry age of a participant
Sx(t) annual salary of a participant at age x(t)
PVx:k liability of the pension plan towards a participant aged x due to the par-

ticipant’s future service between ages x and x + k respecting the future
salary increase

Ft actual value of the pension fund at time t

• Methods of funding by regularly collected contributions:

– Current Unit: keeps the fund in such an amount, so that in any time the fund
covers liabilities towards the participants (e.g. if the complete withdrawals
might be immediately reimbursed); this objective implies the corresponding
contribution percentage (it is the example of the so-called fund-driven meth-
ods, where the fund amount is primary, implying the contribution amount):

nct =
∑

PVx(t)− 1: 1
∑

Sx(t)

– Projected Unit: is based on the same principle as the Current Unit (see there-
inbefore), but one uses projections to the retirement age instead (it is again the
example of fund-driven methods):
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nct =
∑

PVx(t)− 1,:1
∑

Sx(t)
(just as for the Current Unit, see thereinbefore)

– Entry Age: sets down the contribution in such an amount, so that right away
at the entry age the present value of expected future contributions corresponds
to the present value of expected future benefits PVFB (it is the example of the
so-called contribution-driven methods, where the contribution level is primary,
implying the amount of the cumulated fund):

nct =
∑ PVx0 : u−x0

säx0 : u−x0∑
Sx(t)

, where säx:u−x =
sNx
sDx

– Attained Age: sets down the contribution in such an amount, so that the value
of future contributions expected since the attained age corresponds to the value
of future benefits expected since the attained age (it is again the example of
contribution-driven methods, see thereinbefore):

nct =
∑ PVx(t) : u− x(t)

säx(t) : u− x(t)∑
Sx(t)

– Aggregate Method: sets down the contribution in such an amount, so that the
difference between the value of pension plan liabilities (for both the past and
future service) and the value of the actual cumulated fund is covered by the
amount of expected future contributions (again the example of contribution-
driven methods, see thereinbefore)

nct =
∑

PVx(t) : u−x(t) − Ft
∑

(Sx(t) · säx(t) : u−x(t))
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Chapter 21
Classical Non-Life Insurance

Abstract Chapter 21 contains formulas of classical non-Life insurance: 21.1.
Basic Concepts of Non-Life Insurance, 21.2. Premium Calculations in Non-Life
Insurance, 21.3. Forms of Non-Life Insurance and Deductibles, 21.4. Technical
Provisions in Non-Life Insurance, 21.5. Bonus-Malus Systems.

21.1 Basic Concepts of Non-Life Insurance

• Some concepts of non-life insurance are used also in the context of life insurance
(see Sect. 18.1)

• Intensity of insurance protection: is the ratio I of the insurance benefit to the
corresponding claim (0 ≤ I ≤ 1):

I = insurance benefit

claim

• Value insured V (mainly in property and liability insurance, see Chap. 16) is
– at time of the contract: the real value of the insured object
– at time of the claim: the current value or the replacement value of the insured

object (see thereinafter)

• Current value insurance: means that the insurance contract applies such a value
of the insured object, which corresponds to the value of the new object reduced
by the amortization

• Replacement value insurance: means that the insurance contract applies such a
value of the insured object, which is necessary to replace the object at the time of
the claim

• Maximum possible loss MPL: is the estimate of the maximum loss, which would
occur as the result of a damage caused by the most destructive peril to be insured

• Sum insured S has technical motivation: (1) it is used for calculation of premi-
ums; (2) it restricts insurance benefits from above; (3) it depends usually on the
client’s decision

219T. Cipra, Financial and Insurance Formulas, DOI 10.1007/978-3-7908-2593-0_21,
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220 21 Classical Non-Life Insurance

• Underinsurance: is a situation with S < V (see Sect. 21.3); in such a case, the
insurer may reduce insurance benefits using ratio S/V

• Insurance premium: may be classified as in the life insurance (see Sect. 18.1) but
other classifications are also possible:
– natural premium: covers the corresponding risk in a given insurance portfolio

during 1 year (i.e. in such a portfolio there is a balance between collected
premiums and paid insurance benefits within each year so that no premium
reserves (see Sect. 18.3) are necessary

– multi-year insurance premium: can be
– pre-paid premium: with possibility of its reimbursed cancellation
– single premium: without possibility of its cancellation

– written premium: is given by insurance contracts
– collected premium: is really paid by policyholders; it can be

– earned premium: relates to the current accounting period (current account-
ing year)

– unearned premium: relates to future accounting periods (see also the
technical provision for unearned premium in Sect. 21.4)

– net premium: is calculated so as to cover in average the corresponding
insurance benefits (see also Sect. 18.1)

– risk premium: is net premium with safety margin to cover adverse claim
deviations

– gross premium (office premium): is the expense-loaded net premium usually
including also the security and profit loading:

gross premium = risk premium + expenses+ calculated profit =
= net premium + safety margin + expenses + calculated profit

– credibility premium: is a combination of the premium based on insurer’s past
data and the premium based on global past data (over the global insurance
market); this concept relates to credibility, which is attributed to insurer’s data
in comparison with global data (see Sects. 21.2 and 22.4)

• Tariff groups: are homogeneous groups of insurance contracts, for which the
insured risk is approximately the same; therefore the insurer may fix the same
premium rate within each tariff group; if the number of tariff groups is high then
the risks are very strictly classified (e.g. in the accident insurance)

• Cancellation (lapse) of insurance contracts: can be
– voluntary: due to decision of the client
– natural: due to non-existence of insurable risk or interest
– due to the claim (if the contract is automatically cancelled in such a case)

• Deductible: means (see Sects. 21.3 and 22.6) that the client participates in a given
way in the claim settlement (it implies that the client’s premium is lower when
the client’s deductible is stipulated)
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• Bonus-malus system (see Sects. 21.5 and 22.7): means that the premium adjusts
according to the claims experience (the reduction discounted from the premium
is called bonus, and the penalty charged to the premium is called malus in such a
case)

Denotation and statistical data (usually for particular tariff groups and calendar
years):

N number of policies
n number of claims
total sum insured i.e. sum over all policies
total claim i.e. sum of claims over all policies (plus claim reserves (see

Sect. 21.4) established in the given year for future years minus
claim reserves established in previous years and used in the
given year)

total premium i.e. sum of premiums over all policies

• Statistical indicators (usually for particular tariff groups and calendar years):

Average Insurance Benefit = total claim

N

Average Sum Insured = total sum insured

N

Average Claim = total claim

n

Loss Frequency = q1 = n

N

Premium Rate = total premium

total sum insured

Claim Rate = total claim

total sum insured

Claim Ratio = total claim

total premium

Average Claim Degree = q2 = Average Claim

Average Sum Insured
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Average Insured Benefit = q1×Average Claim = Claim Rate×Average Sum Insured

Claim Rate = Claim Ratio× Premium Rate = q1q2

• Loss table: is a frequency table (see Sect. 27.3) of the claim distribution for a
given tariff group; it contains particular claim degrees (see thereinbefore) with
corresponding relative frequencies; analogously as the life tables in life insurance
(see Sect. 17.2), the loss tables in non-life insurance are constructed by means of
real data, but for a hypothetical sample of claims (e.g. for a sample of 100,000
claims)

• Description of columns of a loss table:
– z: interval claim degrees (e.g. if using ten interval claim degrees of the same

width, then z = 30% denotes the interval claim degree (20%, 30%〉)
– Tz: number of claims with the interval claim degree z (the sum of Tz over all z

is equal to the total number of claims n = 100,000)
– tz: relative frequency of claims with the interval claim degree z: tz = Tz/n
– bz: cumulative relative frequency of claims with the interval claim degrees at

most z (i.e. the sum of relative frequencies of claims with the interval claim
degrees not exceeding z)

– Yz: weighted claim degree z, where the relative frequency of claims with the
interval claim degree z is used as the weight: Yz = tz × mid-point of interval z

– Gz: cumulative weighted claim degree at most z (i.e. the sum of weighted claim
degrees not exceeding z)

q2 = G100%

(average claim degree for practical calculations of premiums (see Sect. 21.2) by
means of a suitable loss table for a given tariff group)

q2 =
1∫

0

tzz dz (average claim degree : the continuous version)

21.2 Premium Calculations in Non-Life Insurance

Denotation:

S sum insured
q1 loss frequency (for a given tariff group, see Sect. 21.1)
q2 average claim degree (for a given tariff group, see Sect. 21.1)
v annual discount factor (see Sect. 3.2; it may be ignored when calculating

annual natural premiums in non-life insurance)
e average length of claim period (for a given tariff group, see thereinafter)
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Se sum insured per unit of claim period
RP risk premium (see Sect. 21.1)
N number of policies (for a given tariff group)
s estimated standard deviation (see Sect. 27.6) of claims (for particular

policies of a given tariff group)
γ̂1 estimated skewness (see Sect. 27.7) of claims (for particular policies of a

given tariff group)
Pgross gross premium
prof calculated profit (see Sect. 21.1) as a percentage of gross premium

P = vq1q2S

(annual net premium: it is the annual natural premium (see Sect. 21.1) per sum
insured S; v · q1 · q2 is the corresponding net premium rate (i.e. the annual net
premium per unit sum insured, see Sect. 21.1))

P = vq1eSe

(annual net premium: it is a particular case of the previous formula in such a situa-
tion that the sum insured Se is paid per each time unit (e.g. per each day) of insured’s
stay in a specified claim status (e.g. in the status of sick persons in the context
of sickness insurance, or in the status of persons unable to work in the context of
accident insurance))

�n = P+ Pv+ · · · + Pvn−1 = P
1− vn

1− v
= Pän

(pre-paid net premium (see Sect. 21.1) for n years, when the annual net premium is
P; the reimbursement due to a possible cancellation after r years is
�n− r = Pän−r)

�n = P
1− vn(1− a)n(1− q1)n

1− v(1− a)(1− q1)

(single net premium (see Sect. 21.1) for n years, when the annual net premium is P
(a is the probability of natural cancellation, see Sect. 21.1))

RP = (1+ λ1)P

(risk premium (i.e. the net premium with safety margin loaded, see Sect. 21.1) on
principle of mean value (λ1 > 0 is a constant))

RP = P+ λ2s

(risk premium on principle of standard deviation (λ2 > 0 is a constant))
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RP = P+ λ3s2

(risk premium on principle of variance (λ3 > 0 is a constant); the constants λ
in the previous formulas for risk premiums can be obtained as confidence inter-
val estimates (see Sect. 27.9) with prescribed confidence level assuming a suitable
probability distribution of claims (see Sect. 21.1))

RP = P+ λ3s2 + λ4γ1

(risk premium on principle of variance and skewness (λ3 > 0, λ4 > 0 are constants))

RP = 1

λ5
ln E

(
eλ5X)

)

(risk premium on exponential principle (λ5 > 0 is a constant, X has the claim
distribution))

RP = P+ 4√
N

s

(risk premium on principle of standard deviation used in practice: the form given
here shows a very high safety)

• Expenses in the context of non-life insurance can be classified to the expenses
for

– acquisition (mainly provisions of insurance agents)
– organization (e.g. extensions of regional offices)
– administration
– collection of premiums
– cancellation (lapses of policies)
– settlement of claims
– independent on premiums
– dependent on premiums (e.g. they increase with increasing premiums)

Pgross = RP+ acqind + orgind + admind + collind + cancind + settlind

1− (acqdep + orgdep + admdep + colldep + cancdep + settldep)− prof

(gross premium)

Pgross = RP

1− ε − prof
, (gross premium)

where ε are combined expenses (in percents of gross premium)
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Pcredib = Z · Pown + (1− Z) · Pglobal

(credibility premium (see Sect. 21.1): Pown is the premium based on insurer’s past
data; Pglobal is the premium based on global past data (over the global insurance
market); Z (0≤ Z≤ 1) is a credibility coefficient, i.e. the weight corresponding to the
own data; in the context of theory of risk (see Sect. 22.4), one solves the problem of
an optimal value of Z (the so-called theory of credibility); typically, Z increases with
increasing insurance portfolio, but decreases with increasing variability of claims)

Pt = αXt + (1− α)Pt−1,

where α (0 ≤ α ≤ 1) is a smoothing constant

(exponential smoothing (see Sect. 31.2): is a method of the so-called experience-
rating, which generalizes the credibility approach to the calculation of premiums in
non-life insurance (see thereinbefore); the past premiums are all the time corrected
using the a posteriori information on the current claim development of the given
insurance product)

21.3 Forms of Non-Life Insurance and Deductibles

Denotation:

S sum insured (in a given policy, see Sect. 21.1)
V value insured (in a given policy, see Sect. 21.1)
X loss amount (in a given policy)
B insurance benefit (claim payment in a given policy)
q1 loss frequency (in a given tariff group, see Sect. 21.1)
q2 average claim degree (in a given tariff group, see Sect. 21.1)
v annual discount factor (see Sect. 3.2; it may be ignored when calculating

annual natural premiums in non-life insurance)
BD, BI client’s deductible and insurer’s payment in a policy with insurance

benefit B (B = BD + BI)

• Form of non-life insurance: is the function that shows how the insurance benefit
(the claim payment) depends on the loss amount incurred in the given policy (usu-
ally through the sum insured); moreover, the form of insurance determines the
intensity of insurance protection (see Sect. 21.1); the forms of non-life insurance
can be classified to (1) sum insurances; (2) loss insurances; (3) deductibles:

(1) Sum insurances: typically for this form, the insurance benefit is equal
directly to the sum insured abstractedly from the loss incurred (e.g. the insur-
ance benefit for accidental death in the accident insurance); unlike the life
insurance, this form is not typical for the non-life insurance; the intensity of
insurance protection I cannot be found for this form:
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Bsum = S (insurance benefit in sum insurance policies)

Psum = vq1S (net premium in sum insurance policies)

(2) Loss insurances (indemnity insurances): the insurance benefit depends on
the loss amount X incurred in the given policy

B ≤ X (insurance benefit in loss insurance policies)

It is the typical form of property and liability insurances; in practice one
applies various forms of the loss insurances:

– insurance without sum insured: the insurance benefit is equal directly to the
loss incurred (the sum insured is not prescribed at all in such a case); this
form is not usual in practice, though it provides the full insurance protection
(I = 1):

Bwithout = X (insurance benefit in insurance policies without sum insured)

Pwithout = vq1q2V (net premium in insurance policies without sum insured)

– full value insurance: the client’s choice of a suitable sum insured S (S ≤ V),
which is related to the value insured V through a ratio s (s ≤ 1), implies the
corresponding intensity of insurance protection (since it holds I= s); it is the
preferred form of the property insurances:

Bfull = sX,

where s = S

V
(insurance benefit in full value insurance policies)

SPV
full = vq1q2S = vq1q2sV = sPwithout

(net premium in full value insurance policies: if S = V (i.e. s = 1), then the
client has chosen the insurance without sum insured (see thereinbefore); if
S < V (i.e. s < 1), then the client has chosen the underinsurance (with an
implicit deductible of the client, see Sect. 21.1))

– first loss insurance: this form has B = X (similarly as for the insurance
without sum insured, see thereinbefore), but the insurance benefit is upper
bounded by the sum insured S (i.e. an implicit deductible of the client is
again possible); it is popular e.g. in the liability insurance:

Bfirst =
{

X for X ≤ S
S for X > S

(insurance benefit in first loss insurance policies)
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SPV
first = vq1[GsV + (1− bs)S] = vq1[Gs + (1− bs)s]V , where s = S

V

(net premium in first loss insurance policies: one may make use of the values
from a suitable loss table for the given tariff group (see Sect. 21.1))

(3) Deductibles: mean (see also Sect. 22.6) that the clients participate in the
claim settlements, which implies lower premiums than in the case without
deductibles; the deductibles must be always combined with basic forms of
insurance:

– quota deductible: the insured’s deductible is a stipulated proportion (1 – q)
of the insurance claim (quota q gives the proportion of the insurer’s
participation):

BD = (1− q)B

(insured’s quota deductible)

qPwithout = qPwithout

(net premium combining insurance without sum insured (see thereinbefore)
with quota deductible)

– excess deductible: the insured’s deductible is the whole claim amount, which
does not exceed a stipulated amount Fe (the so-called priority), or it is the
amount Fe, if the claim amount is higher than Fe:

BD =
{

B for B ≤ Fe

Fe for B > Fe

(insured’s excess deductible)

S
Fe

PV
first = vq1[Gs + (1− bs)s− Gfe − (1− bfe )fe]V , where s = S

V
, fe = Fe

V

(net premium combining first loss insurance (see thereinbefore) with excess
deductible)

– integral deductible: the insured’s deductible is the whole claim amount,
which does not exceed a stipulated amount Fi, or it is zero, if the claim
amount is higher than Fi:

BD =
{

B for B ≤ Fi

0 for B > Fi
(insured’s excess deductible)
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S
Fi

PV
full = vq1(q2 − Gfi)S, where fi = Fi

V

(net premium combining full value insurance (see thereinbefore) with
integral deductible)

21.4 Technical Provisions in Non-Life Insurance

• Technical provisions (insurance reserves): are established (similarly as in the life
insurance, see Sect. 18.3) by insurers (mostly as the book costs according to law)
to fulfil obligations arising from insurance activities (such obligations are proba-
ble or certain, though their amount or time may be still uncertain); the technical
provisions are important statutory liabilities of each insurance company and are
conform to special accounting principles and tax regulations; the assets covering
the technical provisions are subject to strict investment restrictions in order that
their financial placement fulfils principles of prudence, diversification, profitabil-
ity and liquidity; according to particular insurance legislations, various technical
provisions may be established in the non-life insurance (see also Sect. 18.3 for
the life insurance):

– reserve for unearned premium: similarly as in the life insurance (see Sect.
18.3), this reserve corresponds to such a part of the written premium, which
relates to future accounting periods

– claim reserve: unlike the life insurance (see Sect. 18.3), it is usually the most
important technical provisions in the framework of non-life insurance due to
the fact, that the final evaluation of insurance claims (e.g. the confirmation of
the degree of disability) may sometimes take several years; the claim reserves
cover obligations due to the claims, which in the current accounting period
have been:

– reported but not settled (the so-called RBNS reserve)
– incurred but not reported (the so-called IBNR reserve):

claim reserve = RBNS reserve + IBNR reserve

qualified estimates of the claim reserves can be obtained by means of actu-
arial methods based on run-off triangles (see thereinafter) respecting external
factors (inflation, changes of legislative, and the like)

– reserve for bonuses and rebates: covers costs of bonuses and rebates guar-
anteed by insurance policies (e.g. the bonus system in the motor third party
liability insurance)

– equalization reserve: should cover increased costs of insurance claims due to
CR (claim ratio) fluctuations (see Sect. 21.1), which cannot be managed by
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the insurer; this reserve is typical for special insurance products, e.g. for the
credit insurance; in some countries it can have a prescribed form, e.g.

k

√
√
√
√ 1

14

15∑

i=1

(CRt−i − CRt)2Pt, where CRt = 1

15

15∑

i=1

CRt−i

(amount of equalization reserve at time t (Germany): k-multiple (e.g. k = 4.5)
of the sample standard deviation of the claim rate (see Sect. 21.1) over the last
15 years applied to the premium Pt at time t)

– other life insurance reserves approved by authorities (by state insurance
supervisions similarly as for the life insurance (see Sect. 18.3))

• Run-off triangle: is a specific arrangement of past claim data of the given insur-
ance company, which is used for qualified estimation of its claim reserves (mainly
in the case of IBNR reserves, but sometimes also for the claim reserves in total
(see thereinbefore)); the past claims paid off yearly by the insurer up to the current
time t of estimation are arranged to rows according to the accident years and to
columns according to the development years (see thereinafter, though sometimes
other schemes are possible, e.g. with quarterly data reflecting seasonality, with
rows according to the reporting years, with rows according to the underwriting
years, and the like):

– accident year: is the year, in which the given claim incurred (if the triangle
concerns ten past years, then e.g. the first row contains total payments on the
claims incurred in the first year of this past decade)

– development year: means how many years (before the payment) the given
claim has incurred (e.g. the first column denoted as “0” contains total
claim payments, which have been made directly in the year, in which the
corresponding claims incurred)

– calendar year: the particular south-east diagonals of the run-off triangle cor-
respond to the corresponding calendar years (e.g. the main diagonal contains
total claim payments, that have been made in the most recent calendar year of
the considered past period)

• Cumulative run-off triangle (see below table): is constructed by the sequential
accumulation of the elements of particular rows in the run-off triangle:

Xj,s =
s∑

k=0

Yj,k , j = 1, . . . , t; s = 0, . . . , t − 1

(cumulative run-off triangle: Yj, s is the total payment for the claims incurred in the
accident year j, which has been paid out in the development year s)
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Development year

Accident year 0 1 . . . s . . . t − 2 t − 1

1 X1, 0 X1, 1 . . . X1, s . . . X1, t−2 X1, t−1
2 X2, 0 X2, 1 . . . X2, s . . . X2, t−2
...

...
...

...
...

...
j Xj, 0 Xj, 1 . . .

...
...

...
t − 1 Xt−1,0 Xt−1,1
t Xt,0

• Run-off triangle methods: are statistical methods (Bornhuetter-Ferguson, Cape
Cod, Chain-Ladder, de Vylder, London Chain-Ladder, separation and others, see
thereinafter) that enable to complete (cumulative) run-off triangles to rectangles
by estimated future values (predictions) X̂j, s and to obtain in this way the predic-
tion X̂j,∞ of the total payments on the claims incurred in the year j (j = 1, . . . , t):

X̂j,∞ − Xj, t−j ≈ X̂j, t−1 − Xj, t−j, j = 1, . . . , t

(the part of the claim reserve, which at the end of the year t covers future payments
on the claims incurred in the year j (it holds X̂j, t−1 ≈ X̂j,∞ for sufficiently large t)

Yj, s = Xj, s − Xj, s−1, j = 1, . . . , t; s = 0, . . . , t − 1

(non-cumulative values: Yj, s is the total payment on the claims incurred in the acci-
dent year j, which has been paid out in the development year s (see thereinbefore))

ĉs =

t−s−1∑

j=1
Xj, s+1

t−s−1∑

j=1
Xj, s

, s = 0, . . . , t − 2

(development coefficients for cumulative run-off triangle)

ĉs =

t−s−1∑

j=1
wj, s cj, s

t−s−1∑

j=1
wj, s

, where cj, s =
Xj, s+1

Xj, s
, j = 1, . . . , t − 1; s = 0, . . . , t − 2

(modified development coefficients for cumulative run-off triangle: wj, s are weights
chosen in such a way that the weights of more recent data are higher than the weights
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of earlier data (one of possible choices is wj, s = j + s))

X̂j, s = ĉt−j · . . . · ĉs−1 · Xj, t−j, j = 2, . . . , t; s = t − j+ 1, . . . , t − 1

(Chain-Ladder method and its various modifications: is based on the assumption
that the ratio of cumulative claim amounts between neighbouring development years
remains approximately same over particular years of accident; therefore the comple-
tion of the triangles to the rectangles can be done just by means of the development
coefficients ĉs (see thereinbefore))

X̂j, s = ĉj, t−j · . . . · ĉj, s−1 · Xj, t−j, j = 2, . . . , t; s = t − j+ 1, . . . , t − 1

(Chain-Ladder method with development coefficients depending on accident year j:
the estimated development coefficients ĉj, s can be obtained from cj, s (see therein-
before) by means of extrapolation (to the rectangle) in columns of the triangle cj, s

(j = 1, . . . , t – 1; s = 0, . . . , t – 2) using a trend regression; moreover, in the last
column one can extrapolate by repeating the value c1, t–2, in the last but one column
by repeating the average (c1, t–3 + c2, t–3)/2, and the like)

• Separation methods: are special run-off triangle methods, which separate the sta-
ble (i.e. time invariant) distribution {r0, r1, . . . , rt – 1} of delayed claims from
unstable factors {λ1, λ2, . . . , λt} that present dependence on time including the
inflation (see below table); non-cumulative run-off triangles are applied in this
context (see thereinbefore):

Yj, s = rsλj+s, j = 1, . . . , t; s = 0, . . . , t − 1; j+ s ≤ t

(principle of separation methods: Yj, s is the total payment on the claims incurred in
the accident year j, which has been paid out in the development year s (see there-
inbefore); moreover, these payments in particular rows are at first divided by values
that can be taken as suitable risk measures for accident particular years (e.g. by the
numbers of claims incurred in particular accident years)

Development year

Accident year 0 1 . . . t – 2 t – 1

1 r0λ1 r1λ2 . . . rt−2λt−1 rt−1λt
2 r0λ2 r1λ3 . . . rt−2λt
...

...
...

...
t − 1 r0λt − 1 r1λt
t r0λt
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t− 1∑

s=0

rs = 1

(arithmetic separation method)

λ̂k =

k∑

j= 1
Yj, k−j

k−1∑

s= 0
r̂s

, k = 1, . . . , t − 1; λ̂t =
t∑

j= 1

Yj, t−j; r̂s =

t−s∑

j= 1
Yj, s

t∑

k= s+1
λ̂k

, s = 0, . . . , t − 1

(separation of factors in arithmetic separation method: the given sequence of
calculations must be strictly followed)

t− 1∏

s= 0

rs = 1

(geometric separation method)

λ̂k =

⎡

⎢
⎢
⎢
⎢
⎣

k∏

j=1
Yj, k−j

k−1∏

s=0
r̂s

⎤

⎥
⎥
⎥
⎥
⎦

1
k

, k = 1, . . . , t − 1; λ̂t =
⎡

⎣
t∏

j=1

Yj, t−j

⎤

⎦

1
t

r̂s =

⎡

⎢
⎢
⎢
⎣

t−s∏

j=1
Yj, s

t∐

k= s+1
λ̂k

⎤

⎥
⎥
⎥
⎦

1
t−s

, s = 0, . . . , t − 1

(separation of factors in geometric separation method: the given sequence of
calculations must be strictly followed)

Ŷj, s = r̂sλ̂j+s, j = 1, . . . , t; s = 0, . . . , t − 1; j+ s > t

(separation method: the estimates λ̂k for k = t + 1, . . . , 2t − 1, which are neces-
sary in order to complete the (non-cumulative) run-off triangle to the rectangle, are
obtained by extrapolating the values λ̂1, λ̂2, . . . , λ̂t)

• Method of claim ratio: this method of claim reserve estimation applies the claim
ratio CRj in the year j (see Sect. 21.1) to the earned premium EPj in the year j
subtracting the cumulative claim amount Xj, t – j (i.e. subtracting all past payments
for the claims incurred in the year j):
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CRjEPj − Xj, t−j, j = 1, . . . , t

(method of claim ratio: the part of the claim reserve, which in the year t covers all
future payments on the claims incurred in the year j)

CRjEPj(1− 1/ĉj, ∞), where ĉj, ∞ = ĉj, t−jĉj, t−j+1 · . . . · ĉj, t− 2; j = 1, . . . , t

(Bornhuetter-Ferguson method: the part of the claim reserve, which in the year t
covers all future payments on the claims incurred in the year j; the estimated devel-
opment coefficients ĉj, s can be obtained similarly as in the Chain-Ladder method
(see thereinbefore))

21.5 Bonus-Malus Systems

• Bonus-malus system (see Sect. 22.7): means that the premium adjusts according
to claims experience; in practice the bonus-malus systems are typical mainly for
the private motor insurance (i.e. both for the hull insurance and for the motor
third party liability insurance); the bonus systems without malus, which are also
called No Claim Discount systems (NCD systems), are more frequent in practice

• Bonus: is a premium discount (guaranteed in the insurance policy) usually
according to the number of the past policy years without claims

• Malus: is a premium penalty (specified in the insurance policy) usually according
to the number and amount of the past policy claims

• Bonus load of a bonus system (P′ are the total insurance premiums applying
bonus, P are the corresponding total insurance premiums theoretically without
applying bonus): (

1− P′

P

)

100 (%)

• Hunger for bonus: is a situation, where clients prefer not to report claims in order
not to impair their bonus positions

• Characteristics of bonus systems are: (1) number of bonus levels corresponding
to particular discounts of the so-called basic premium (i.e. the premium with-
out bonus); (2) bonus level at entry; (3) decisive period (i.e. the period since
the previous claim reported in the given insurance policy without another claim
reported; (4) system rules (e.g. which is the reduction of the attained bonus level
after a claim reported, which is the new decisive period in such a case, and the
like); mathematical models of bonus-malus systems (see Sect. 22.7) are based
on the theory of Markov chains (see Sect. 30.2): e.g. the transition probabilities
between particular bonus levels are important
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Chapter 22
Risk Theory in Insurance

Abstract Chapter 22 presents basic formulas of risk theory in the context of
insurance: 22.1. Collective Risk Model, 22.2. Aggregate Claim Distribution, 22.3.
Copula, 22.4. Credibility Premium, 22.5. Ruin Probability, 22.6. Deductible, 22.7.
Calculations for Bonus-Malus Systems.

22.1 Collective Risk Model

• Risk model in insurance: is intended to model the total loss amount Z for claims,
which incurred during a time period of length T (e.g. during 1 year) in a given
insurance portfolio

• Individual risk model: deals with risks corresponding to particular (individual)
insurance policies:

Z =
k∑

i=1

Yi

(total claim amount in individual risk model: Y1, . . . , Yk is a sequence of
claims corresponding to particular insurance policies for an insurance portfo-
lio consisting of k policies; typically, Yi are independent random variables (see
Sect. 26.6))

• Collective risk model: assumes that in homogeneous insurance portfolios (or tar-
iff groups, see Sect. 21.1) the claims incurred due to particular insurance events
are identically distributed (and mostly also independent) random variables:

Z =
N∑

i=1

Xi

(total claim amount in collective risk model: X1, . . . , XN is a sequence of claims
(unlike the individual risk model, the ordering of this sequence is arbitrary

235T. Cipra, Financial and Insurance Formulas, DOI 10.1007/978-3-7908-2593-0_22,
C© Springer-Verlag Berlin Heidelberg 2010
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regardless of the corresponding policies), and N is the number of claims during
a given period; typically, Xi are independent and identically distributed random
variables which are independent of the random variable N)

• Models for number of claims: assume a probability distribution of the random
variable N (the number of claims during a given period, see thereinbefore) with
values 0, 1, 2, . . . ; the best used probability distributions of N are:

– Poisson distribution (see Sect. 26.4) N ∼ P(λ): is the discrete probability dis-
tribution with one parameter λ > 0; such an N may model the number of
claims for a large number of independent homogeneous policies with a small
probability of the claim (so called “distribution of rare events”):

P(N = j) = e−λ λ
j

j ! , j = 0, 1, 2, . . . ; E(N) = λ = var(N)

– negative binomial distribution (see Sect. 26.4) N ∼ NB(r, p): is the discrete
probability distribution with two parameters r > 0 and 0 < p < 1; such an N may
model (for r ∈ N) the number of failures before the rth success in independent
trials with probability p of success:

P(N = j) =
(

r + j− 1
j

)

pr(1− p) j, j = 0, 1, 2, . . .

E(N) = r(1− p)

p
< var(N) = r(1− p)

p2

– mixed Poisson distribution: is the Poisson distribution with random parameter
λ (λ is interpreted as a random intensity with distribution function F(λ)); it
is applied to insurance portfolios with heterogeneous risks, where insurance
policies with a small risk (or a large risk) have λ with small values (or large
values), respectively; in particular, the case of a constant λ with P(λ= λ0)= 1
implies the distribution P(λ0) of N (see thereinbefore), and the case of the
gamma distribution (see Sect. 26.5) with parameters p/(1 – p) and r implies
the distribution NB(r, p) of N (see thereinbefore):

P(N = j) =
∞∫

0

e−λ λ
j

j ! dF(λ), j = 0, 1, 2, . . .

• Models for number of claims in K tariff groups: N denotes the number of claims
during a given period in K mutually independent tariff groups (i.e. N = N1 + . . .
+ NK, where Ni is the number of claims during a given period in the ith tariff
group):
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– if Ni ∼ P (λi), then N ∼ P(λ1 + · · · + λK) ≈ N(λ1 + · · · + λK , λ1 + · · · + λK)
– if Ni ∼ NB(ri, p), then N ∼ NB(r1 + · · · + rK , p)

• Models for claim amount: assume a probability distribution of the random vari-
able X (usually the claim amount per one claim during a given period, see
thereinbefore) with non-negative values; the best used probability distributions
of X are:

– logarithmic normal distribution (see Sect. 26.5) X ∼ LN(μ, σ 2): is the con-
tinuous distribution with two parameters –∞ < μ < ∞ and σ > 0; it holds ln
X∼ N(μ, σ 2); such an X may model the claim amount e.g. in accident, private
motor, fire, windstorm and other insurances:

f (x) = 1√
2πσ x

exp

(

− (ln x− μ)2

2σ 2

)

, x > 0

E(X) = exp

(

μ+ 1

2
σ 2
)

var(X) = exp
(

2μ+ σ 2
) (

exp(σ 2)− 1
)

– gamma distribution (see Sect. 26.5) X∼ �(a, λ): is the continuous distribution
with two parameters a > 0, λ > 0:

f (x) = λa

�(a)
xa−1 e−λx, x ≥ 0; E(X) = a

λ
; var(X) = a

λ2

– Weibull distribution (see Sect. 26.5): is the continuous distribution with two
parameters a > 0, λ > 0:

f (x) = aλaxa−1 exp
(−λaxa), x > 0

E(X) = 1

λ
�

(
a+ 1

a

)

var(X) = 1

λ2

(

�

(
a+ 2

a

)

− �2
(

a+ 2

a

))

– exponential distribution (see Sect. 26.5) X ∼ Exp(λ): is the continuous distri-
bution with one parameter λ > 0; it is a special case of the gamma distribution
and the Weibull distribution for a= 1 (see thereinbefore); the exponential dis-
tribution is also used to model the lengths of periods between insurance claims
(see Sect. 22.2):
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f (x) = λ e−λx, x ≥ 0; E(X) = 1

λ
; var(X) = 1

λ2

– beta distribution (see Sect. 26.5): is the continuous distribution with two
parameters p > 0, q > 0; the U-shaped probability density of the beta distri-
bution for p < 1, q < 1 is used to model claims e.g. in the fire insurance (either
very small claims, or on contrary very large ones are typical for this insurance
product):

f (x) = 1

B(p, q)
xp−1(1− x)q−1, 0 < x < 1

E(X) = p

p+ q
; var(X) = pq

(p+ q)2(p+ q+ 1)

– Pareto distribution (see Sect. 26.5): is the continuous distribution with two
parameters a > 0, b > 0; due to heavy tails, it is applied in situations with
outlying extreme loss amounts, e.g. in the sickness, fire and other insurances:

f (x) = b ab

xb+1
, x ≥ a

E(X) = ab

b− 1
pro b > 1

var(X) = a2b

(b− 1)2(b− 2)
for b > 2

22.2 Aggregate Claim Distribution

Assumptions and denotation:

X1, X2, . . . sequence of iid non-negative random variables with the
distribution function FX (claim amounts, see Sect. 22.1)

N random variable independent of X1, X2, . . . with non-
negative integer values (number of claims, see Sect. 22.1)

Z = X1 + . . .+ XN aggregate claim amount (total loss) in the collective risk
model (see Sect. 22.1)

• Compound distribution: arises by compounding the distribution of the random
variable N and the distribution of the random variables Xi (i.e. the distribution of
the random variable X due to the identical distribution of Xi); it models the aggre-
gate claim amount (total loss) Z that aggregated during the given period in the
given insurance portfolio; in other words, Z is the random sum of random vari-
ables (see Sect. 26.12); its distribution can be derived applying e.g. the moment
generating functions (see Sect. 26.10):



22.2 Aggregate Claim Distribution 239

mZ(x) =
∞∑

j=0

P(N = j) (MX(x))j = MN (ln MX(x))

(moment generating function (see Sect. 26.10) of the aggregate claim amount Z
by means of the moment generating functions MN and MX)

FZ(x) =
∞∑

j=0

P(N = j)F∗j
X (x), x ∈ R

(distribution function of the aggregate claim amount Z by means of the convolu-
tion (see Sect. 26.11) of the distribution function FX)

E(Z) = E(N)× E(X); var(Z) = E(N)var(X)+ var(N) (E(X))2

• Compound Poisson distribution (see Sect. 26.12) Z ∼ CP(λ, FX): is the distribu-
tion of the aggregate claim amount for N ∼ P(λ):

FZ(x) =
∞∑

j=0

e−λ λj

j! F∗j
X (x)

(distribution of the aggregate claim amount Z with compound Poisson distribu-
tion)

E(Z) = λE(X); var(Z) = λE(X2); γ1 = E(X3)
(
λ
(
E(X2)

)3
)1/2

; γ2 = E(X4)

λ
(
E(X2)

) 2

X + Y ∼ CP(λX + λY , (λXFX + λYFY )/(λX + λY )) ,

where X ∼ CP(λX, FX) and Y ∼ CP(λY, FY) are mutually independent

• Numerical methods (for the calculation of the distribution of the aggregate claim
amount) applied in practice instead of analytic (complicated) formulas:

(1) Panjer’s recursive formula: is applicable in the case of X (the distribution of
the claim amounts) with natural values only:
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Denotation:

P(X = k) = x(k), k ∈ N
P(Z = j) = z(j), j ∈ N0

z(j+ 1) = λ

j+ 1

j∑

i=0

z(j− i)x(i+ 1)(i+ 1), j ∈ N0; z(0) = e−λ

(distribution of Z by means of Panjer’s recursive formula for N ∼ P(λ) (see
Sect. 22.1))

z(j+1) = 1

j+ 1

j∑

i=0

z(j− i)x(i+1)(1−p) ((j− i)+ r · (i+ 1)), j ∈ N0; z(0) = pr

(distribution of Z by means of Panjer’s recursive formula for N ∼ NB(r, p)
(see Sect. 22.1))

Denotation:

μ = E (Z) mean value (see Sect. 26.3) of the aggregate claim
amount Z

σ 2 = var (Z) variance (see Sect. 26.3) of the aggregate claim amount Z
γ 1 = γ 1 (Z) skewness (see Sect. 26.3) of the aggregate claim amount Z
γ 2 = γ 2 (Z) kurtosis (see Sect. 26.3) of the aggregate claim amount Z
fnormZ (x) probability density (see Sect. 26.3) of the normed aggre-

gate claim amount (Z – μ)/σ
�(x), �(j)(x) distribution function of N(0, 1) (see Sect. 26.5) and its jth

derivative
ϕ(x) probability density of N(0, 1) (see Sect. 26.5)

(2) Approximation by normal distribution: is denoted as approximation NP1 (in
contrast to the power approximation by normal distribution denoted as NP2,
see thereinafter):

P

(
Z − μ

σ
≤ x

)

≈ �(x)

(distribution of Z: approximation by normal distribution)

(3) Approximation by gamma distribution (see Sect. 22.1): due to the asymmetry
it takes into account also the skewness (see Sect. 26.3) of Z (one uses the
gamma distribution in the form �(a, 1)):

P

(
Z − μ

σ
≤ x

)

≈ 1

�(a)

a+√a·x∫

0
ya−1e−y dy, where a = 4

γ 2
1

(distribution of Z: approximation by gamma distribution)
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(4) Approximation by logarithmic-normal distribution (see Sect. 22.1): again
due to the asymmetry it takes into account the skewness (see Sect. 26.3)
of Z (one uses the logarithmic-normal distribution shifted by a suitable
constant):

P

(
Z − μ

σ
≤ x

)

≈ �

(
b

2
+ 1

b
ln

(

x
√

exp(b2)− 1+ 1

))

,

where

b = √ln q; q = 3
√

d +
√

d2 − 1+ 3
√

d −
√

d2 − 1− 1; d = 1+ γ 2
1

2
(distribution of Z: approximation by logarithmic-normal distribution)

(5) Gram-Charlier approximation: is based on the expansion of the probability
density of Z by means of orthogonal polynomials:

P

(
Z − μ

σ
≤ x

)

≈ � (x)− γ1

6
�(3)(x)+ γ2 − 3

24
�(4)(x)

(distribution of Z: Gram-Charlier approximation)

(6) Edgeworth approximation: is based on Taylor expansion of the moment
generating function (see Sect. 26.10) of normed Z:

fnormZ(x) ≈ ϕ (x)− γ1

6
ϕ(3)(x)+ γ2 − 3

24
ϕ(4)(x)+ γ 2

1

72
ϕ(6)(x)

(distribution of Z: Edgeworth approximation; the first three summands
correspond to Gram-Charlier approximation)

(7) Approximation NP2: is the power approximation by normal distribution
taking into account the skewness (see Sect. 26.3) of Z and using Gram-
Charlier approximation (see thereinbefore); it is the best used approximation
in practice:

P

(
Z − μ

σ
≤ x+ γ1

6
(x2 − 1)

)

≈ �(x)

(distribution of Z: approximation NP2)

(8) Esscher approximation: is based on the moment generating function (see
Sect. 26.10) of Z under the assumption that one knows the form of this
function
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• Risk process {T1, X1, T2, X2, . . .}: is a sequence of mutually independent, non-
negative random variables (see stochastic process in Sect. 30.1); one usually
interprets Xi as claims incurred at times Wi = T1 + T2 + · · ·+ Ti (i.e. Ti is the
random claim interoccurrence time between Xi and Xi+1); there are two other
processes closely related to the risk process:

– claim number process {Nt, t ≥ 0}: Nt is the number of claims up to time t (i.e.
in the time interval (0, t〉):

Nt =
∞∑

i=1

I[Wi≤ t]

– accumulated claims process {Zt, t ≥ 0}: Zt is the aggregate claim (the total
loss) up to time t (i.e. in the time interval (0, t〉):

Zt =
Nt∑

i=1

Xi

• Poisson risk process {T1, X1, T2, X2, . . . } with intensity λ > 0: is the risk process
(see thereinbefore), where Ti ∼ Exp(λ) (i.e. the claim interoccurrence times are
identically distributed with the exponential distribution (see Sect. 26.5)) and Xi

are identically distributed with the distribution function FX; then it holds for the
claim number process and the accumulated claims process (see thereinbefore):

{Nt, t ≥ 0} ∼ Poisson process with intensity λ (see Sect. 30.4)

{Zt ∼ CP(λt, FX), t ≥ 0}
(process with compound Poisson distribution, see thereinbefore)

FZt (x) =
∞∑

j=0

e−λt (λt)j

j! F∗j
X (x)

E(Zt) = λtE(X); var(Zt) = λtE(X2); γ1(Zt) = E(X3)
(
λt
(
E(X2)

)3
)1/2

22.3 Copula

• Copula: is an instrument which enables to model specific dependencies among
random variables mainly in financial and insurance models, e.g. in the context
of the capital adequacy of banks (see e.g. the methodology VaR in Sect. 12.3)
or the solvency of insurance companies (see Sect. 24.3), where simulations of
portfolios with prescribed dependency structures are necessary; for simplicity,
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only two- dimensional copulas are presented here, which model dependencies
between two random variables

• Two-dimensional copula: is a function C: 〈0, 1〉 × 〈0, 1〉 → 〈0, 1〉 with following
properties:

– C(u, 0) = C(0, v) = 0 for all u, v ∈ 〈0, 1〉
– C(u, 1) = u and C(1, v) = v for all u, v ∈ 〈0, 1〉
– C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 0 for all u1, u2, v1, v2 ∈
〈0, 1〉 such that u1 ≤ u2, v1 ≤ v2

(in general, the n-dimensional copula C(u) is a function 〈0, 1〉n → 〈0, 1〉, which
(1) is equal to zero for all u ∈ 〈0, 1〉n, that have at least one coordinate ui equal to
zero, (2) is equal to the coordinate ui, if all other coordinates of u are unities, and
(3) is n-increasing (in the same sense as the joint distribution function of random
variables X1, . . . , Xn (see Sect. 26.6))

H(x, y) = C (F(x), G(y))

(Sklar’s Theorem: for an arbitrary joint distribution function H(x, y) with
marginal distribution functions F(x) and G(y) (see Sect. 26.6), there exists a
two-dimensional copula C(u, v) that fulfils the given relation (moreover, this cop-
ula is unique on the domain {range of F}×{range of G}, if F(x) and G(y) are
continuous); conversely, if C(u, v) is a copula and F(x) and G(y) are distribu-
tion functions, then the function H(x, y) defined by the given relation is a joint
distribution function with marginal distribution functions F(x) and G(y))

C(u, v) = ϕ−1 (ϕ(u)+ ϕ(v)) ,

where ϕ is a continuous, strictly decreasing function 〈0, 1〉 → 〈0, ∞〉 such that
ϕ(1) = 0 (it may be ϕ(0) =∞))
(Archimedean copula: the function C(u, v) defined by the given relation is a cop-
ula, if and only if the function ϕ is convex (i.e. ϕ[au +(1– a)v] ≤ aϕ(u) + (1 –
a)ϕ(v) for all a, u, v ∈ 〈0, 1〉); the Archimedean copula is a special case of the gen-
eral copula (see thereinbefore), and the function ϕ is called its generator; if using
suitable generators in Sklar’s theorem (see thereinbefore), one may achieve such
dependencies among marginal distributions, which are necessary in financial and
insurance models)

22.4 Credibility Premium

• Credibility theory: is a set of quantitative tools which allow an insurer to perform
prospective experience rating, i.e. to construct future premiums given past expe-
rience; in this context the insurer is forced to answer the question, how credible is
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the policyholder’s own experience (i.e. whether the policyholder is really a better
or worse risk than the average of the given rating class or tariff group)

• Credibility premium: may be constructed in two ways:

(1) American credibility: constructs the credibility premium directly as a combi-
nation of the premium based on own past data of the insurer and the premium
based on global past data (e.g. for the whole insurance market); in prac-
tice, such a combination is usually constructed ad hoc without a theoretical
background:

Pcred = Z · Pown + (1− Z) · Pglob

(credibility premium according to American credibility: Pown is the premium
based on own past data of the insurer; Pglob is the premium based on global
past data (for the whole insurance market); Z is the credibility coefficient
(i.e. the weight for the own data); the credibility coefficient should have the
following properties: (1) 0 ≤ Z ≤ 1; (2) Z increases with increasing volume
of the own data of the insurer (other things being equal); (3) Z decreases
with increasing significance of external data (other things being equal);
(4) Z decreases with increasing volatility of the claims paid by the insurer)

P
(
|θ − θ̂ | ≤ kθ

)
≥ 1− α

(full credibility of estimated parameter θ : means that the error of the estima-
tor θ̂ does not exceed k% of θ (k is fixed in advance, e.g. 5% of θ ) with a
sufficient confidence at least 1 – α (e.g. 95%); typically, the estimated param-
eter is an important insurance indicator in this context (e.g. claim ratio, loss
frequency, average claim degree, see Sect. 21.1))

Denotation:

nf number of claims necessary to achieve the full credibility (i.e. such
a volume of data that guarantees the full credibility according to the
given definition when estimating the corresponding parameter θ , see
thereinbefore)

n number of claims in the corresponding portfolio of the insurer (i.e. the
volume of the own data)

Z = min

(√
n

nf
, 1

)

(credibility coefficient: approach recommended in practice)

(2) Bayesian credibility: constructs the credibility premium by means of
Bayesian methods (see Bayes Theorem in Sect. 26.2); the Bayesian approach
to credibility has been suggested by Bühlmann and Straub (see thereinafter)
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• Bühlmann-Straub credibility model (B-S model): is based on the principle that
the individual risk experience may be described by a (hypothetical) parameter
values θ associated with individual risks as unobservable realizations of a random
variable (or a random vector) �:

Aim: construction of premiums at the time period t + 1 for J risk classes (tariff
groups) using observations at past t periods

Assumptions and denotation:

Xjs total claims in the risk class j at the period s (j = 1, . . . ,
J; s = 1, . . . , t)

�j random variable for the risk class j (j = 1, . . . , J) with
risk parameter values θ j as its realizations

μ(�j) = E(Xjs|�j) premium for the risk class j (j= 1, . . . , J) using the prin-
ciple of mean value for net premiums (see Sect. 21.2),
i.e. the premium is constructed as the corresponding
conditional mean value given the risk parameter (see
Sect. 26.8); it does not depend on the time index s

σ 2 (�j) = var(Xjs|�j) variance for the risk class j (j = 1, . . . , J) given the risk
parameter; it does not depend on the time index s

cov(Xjs, Xjr |�j) = 0 covariance for the risk class j (j = 1, . . . , J) given the
risk parameter; it is zero between different time periods,
i.e. one assumes conditional uncorrelated behaviour for
s �= r

iid �j independent and identically distributed random vari-
ables �j (j = 1, . . . , J), i.e. one assumes that loss
(probability) characteristics in particular risk classes are
equal with mutually independent behaviour

{�j, Xj1, . . . , Xjt} independent random vectors (j = 1, . . . , J), i.e. one
assumes that particular risk classes are mutually
independent

Pj = ZjX̄j · + (1− Zj)X̄· ·, where

X̄j · = 1

t

t∑

s=1

Xjs; X̄· · = 1

tJ

t∑

s=1

J∑

j=1

Xjs; Zj = ta

ta+ s2

s2 = est E(σ 2(�j)) = 1

J

J∑

j=1

1

t − 1

t∑

s=1

(
Xjs − X̄j ·

)2

a = est var(μ(�j)) = 1

(J − 1)

J∑

j=1

(
X̄j · − X̄· ·

)2 − 1

t
s2

(credibility premium in B-S model for the risk class j (j= 1, . . . , J): the premium
is derived as the best linear unbiased estimate (see Sect. 27.11))
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• General Bühlmann-Straub credibility model:

Pj = ZjX̄jE + (1− Zj)X̄ZE, where

Ej · =
t∑

s=1

Ejs; E· · =
t∑

s=1

J∑

j=1

Ejs; Zj = Ej ·a
Ej ·a+ s2

; Z · =
J∑

j=1

Zj

X̄jE =
t∑

s=1

Ejs

Ej ·
Xjs; X̄EE =

J∑

j=1

Ej ·
E· ·

X̄jE

X̄ZE =
J∑

j=1

Zj

Z ·
X̄jE =

J∑

j=1

Zj

Z ·

t∑

s=1

Ejs

Ej ·
Xjs

s2 = est E(σ 2(�j)) = 1

J

J∑

j=1

1

t − 1

t∑

s=1

Ejs(Xjs − X̄jE)2

a = est var(μ(�j)) =
(

J∑

j=1
Ej ·(X̄jE − X̄EE)2 − (J − 1) s2

)/(

E· · −
J∑

j=1

E2
j ·

E· ·

)

(credibility premium in general B-S model for the risk class j (j = 1, .... , J): it
takes into account also the risk volume Ejs in the risk class j at the period s (j =
1, . . . , J; s = 1, . . . , t), i.e. the claim amounts Xjs are replaced by loss burdens
Xjs /Ejs per a risk unit in the risk class j at the period s)

• More general credibility models: are e.g.

– regression credibility models: the random variable μ (�j) = E(Xjs|�j) for the
risk class j (j= 1, . . . , J) is the response variable (regressand) in a linear regres-
sion model (see Sect. 27.11) with known explanatory variables (regressors)
and unknown parameters, which are functions of Θ j

– evolutionary credibility models: enable to describe changes of loss charac-
teristics in time, e.g. they model an evolution of E(Xjs|�j) at the periods
s = 1, . . . , t for the risk class j (j = 1, . . . , J) as an autoregressive process
(see Sect. 30.4 and Sect. 31.4)

22.5 Ruin Probability

• Ruin theory: investigates behaviour of the given insurance process (risk process,
see Sect. 22.2), where the analyzed reserve (surplus) of the insurer increases
(starting with an initial value) due to premiums collected and decreases due to
insurance claims paid
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• Probability of ruin Ψ (U): is (in this context) the probability that the surplus will
sometimes become negative; from the practical point of view, it is closely related
to the solvency of insurer (see Sect. 24.3)

Denotation and assumptions:

U initial surplus (initial reserve) at the time 0 (U ≥ 0)
P premium amount (constant in time) for the unit time period
Zt total loss (accumulated claims process) up to time t in the Poisson risk

process {T1, X1, T2, X2, . . . } with intensity λ (see Sect. 22.2)

Rt = U + Pt − Zt

(surplus accumulated up to time t)

�(U) = P

(

min
t ≥0

Rt < 0

)

(probability of ruin)

�(U) ≤ e−r·U ,

where r is so called Lundberg’s coefficient (adjustment coefficient)
(Lundberg’s inequality for probability of ruin: it holds for the Poisson risk process
(see Sect. 22.2) under the assumption P > E(X))

∞∫

0

[1− FX(x)] erxdx = P

λ

(equation for Lundberg’s coefficient: r is its unique positive solution)

�(U) ≈ P/λ− E(X)

r
∞∫

0
x [1− FX(x)] erxdx

e−rU

(Lundberg’s approximation for probability of ruin)

r ≈ 2E(P− X)

var(X)
= 2λ1E(X)

var(X)

(approximation for Lundberg’s coefficient : the second expression holds, if the
principle of mean value is used, i.e. P = (1 + λ1) · E(X), where λ1 is the security
loading (see Sect. 21.2))
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U ≈ − ln ε

r
≈ − ln ε

var(X)

2E(P− X)
= − ln ε

var(X)

2λ1E(X)
(approximation for initial surplus: it is applicable under the condition that the
probability of ruin does not exceed a given bound ε > 0)

U

E(X)
≈ − ln ε

var(X)

2λ1 (E(X))2
= − ln ε

2λ1
(V(X))2

(approximation for the ratio of the initial surplus U to the net premium E(X) under
the condition that the probability of ruin does not exceed a given bound ε > 0: the
approximation is formulated by means of the coefficient of variation V(X) (see
Sect. 26.3) that measures the relative volatility of insurance claims)

22.6 Deductible

• Deductibles: mean (see also Sect. 21.3) that the clients participates in the claim
settlements, which implies lower premiums than in the case without deductibles;
the formulas used in the case of deductibles (see thereinafter) correspond to
analogous formulas used in the framework of reinsurance (see Sect. 24.2)

Denotation:

X claim amount (in a given insurance policy) with distri-
bution function F(x)

Z = X1 + · · ·+ XN aggregate claim amount (total loss) in the collective risk
model (see Sect. 22.2)

X̃, X̃i, Z̃, Ñ insured’s deductible
X̂, X̂i, Ẑ, N̂ insurer’s participation
μ, σ , γ 1 mean value, standard deviation and skewness of the

claim amount (μ = E(X), σ = σ (X), γ 1 = γ 1(X), see
Sect. 26.3)

�, ϕ distribution function and probability density of N(0, 1)
(see Sect. 26.5)

• Quota deductible: the insured’s deductible is a stipulated proportion (1 – q) of the
insurance claim (quota q gives the proportion of the insurer’s participation):

Ñ = N̂ = N

X̃ = (1− q)X; X̂i = qX

E(X̂) = qE(X); var(X̂) = q2var(X); V(X̂) = σ (X̂)

E(X̂)
= σ (X)

E(X)
= V(X)
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S̃ = (1− q)S; Ŝ = qS

• Excess deductible: the insured’s deductible is the whole claim amount, which
does not exceed a stipulated amount a (the so-called priority), or it is the amount
a, if the claim amount is higher than a:

Ñ = N; E(N̂) = paE(N)

var(N̂) = pa(1− pa)E(N)+ p2
avar(N), where pa = P(X > a) = 1− F(a)

N ∼ P(λ) ⇒ N̂ ∼ P(paλ) (see Sect. 26.4)

N ∼ B(n, p) ⇒ N̂ ∼ B(n, pap) (see Sect. 26.4)

N ∼ NB(r, p) ⇒ N̂ ∼ NB

(

r,
p

p+ pa(1− p)

)

(see Sect. 26.4)

X̃ = min(X, a); X̂i = (X − a)+

E(X̃) =
a∫

0

(1− F(x)) dx; var(X̃) = 2

a∫

0

x (1− F(x)) dx− [E(X̃)]2

E(X̂) =
∞∫

a

(1− F(x)) dx;

var(X̂) = 2

⎧
⎨

⎩

∞∫

a

x (1− F(x)) dx− a

∞∫

a

(1− F(x)) dx

⎫
⎬

⎭
− [E(X̂)]2

E(X̂ | X > a) = 1

1− F(a)

∞∫

a

(1− F(x)) dx

E(X̂) <
σ 2

a− μ
; E(X̂) <

σ

2

(√
1+ z2 − z

)
, where z = a− μ

σ

E(X̂) ≈ σ

⎧
⎪⎨

⎪⎩

ϕ(v)
(

1+ v · γ1

6

)
− z (1−�(v)) , γ1 > 0

ϕ(v)
(

1− v · γ1

6

)
− z�(v) , γ1 < 0

,

where z = a− μ

σ
; v = − 3

|γ1| +
1

| γ1|
√
γ 2

1 + 6γ1z+ 9

(approximation based on NP2, see Sect. 22.2)
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E(X̂2) ≈ σ 2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1−�(v))

(

z2 + 2
(γ1

6

)2 + 1

)

+ϕ(v)

((γ1
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(
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, γ1 < 0

(approximation based on NP2, see thereinbefore and Sect. 22.2)

E(S̃) = E(N)× E(X̃)

var(S̃) = E(N)var(X̃)+ var(N)
(
E(X̃)

)2

E(Ŝ) = E(N)× E(X̂)

var(Ŝ) = E(N)var(X̂)+ var(N)
(

E(X̂)
)2

• Integral deductible: the insured’s deductible is the whole claim amount, which
does not exceed a stipulated amount a (priority), or it is zero, if the claim amount
is higher than a:

E(Ñ) = (1− pa)E(N)

var(Ñ) = pa(1− pa)E(N)+ (1− pa)2 var(N),

where pa = P(X > a) = 1− F(a)

E(N̂) = paE(N)

var(N̂) = pa(1− pa)E(N)+ p2
avar(N)

E(X̃) =
a∫

0

(1− F(x)) dx− a (1− F(a))

var(X̃) = 2

a∫

0

x (1− F(x)) dx− a2 (1− F(a))− (E(X̃)
)2

E(X̂) =
∞∫

a

(1− F(x)) dx+ a (1− F(a))

var(X̂) = 2

∞∫

a

x (1− F(x)) dx+ a2 (1− F(a))−
(

E(X̂)
)2



22.7 Calculations for Bonus-Malus Systems 251

22.7 Calculations for Bonus-Malus Systems

• Bonus-malus system (see Sect. 21.5): is given by (1) number of bonus levels
corresponding to particular discounts of the so-called basic premium (i.e. the pre-
mium without bonus); (2) bonus level at entry; (3) decisive period (i.e. the period
from the previous claim reported in the given insurance policy without another
claim reported; (4) system rules (e.g. which is the reduction of the attained bonus
level after a claim reported, which is the new decisive period in such a case, and
the like); the calculations for the bonus-malus systems are usually based on the
theory of Markov chains (see Sect. 30.2)

Denotation and assumptions:

J number of bonus (and malus) levels
pij(θ ) transition probability (see Sect. 30.2) of going

from the level i to the level j (i, j = 1, . . . , n)
for the insured with risk characteristics given
by the parameter value θ (similarly as for the
Bayesian credibility, see Sect. 22.4)

P(θ ) = (pij(θ )
)J

i,j=1 transition matrix (see Sect. 30.2)
pn

i (θ ) probability that the insured with the risk param-
eter value θ attains the level i in the year n

pn(θ ) = (pn
1(θ ), . . . , pn

J(θ )
)

row vector of probabilities pn
i (θ )

p1 = (0, . . . , 1, . . . , 0) row vector coding by means of the unity and
zeroes the bonus level at entry

π0 basic premium (see thereinbefore)
c = (c1, . . . , cJ)′ column vector containing per cents of the basic

premium π0 (see thereinbefore) for particular
bonus levels

wn(θ ) probability that a randomly chosen insured with
a risk parameter value θ persists in the given
bonus-malus system just n years: the distri-
bution of the policyholders according to the
number of insured years may be e.g. geometric
with parameter p ∈ (0, 1) (see Sect. 26.4)

e(θ ) =∑∞
n=1 n · wn(θ ) mean number of insured years for the insured

with the risk parameter value θ
u(θ ) probability density of risk parameter θ ; θ is a

random variable (see Sect. 22.4), which may
have in practice e.g. gamma distribution with
parameters a > 0, λ > 0 (see Sect. 26.5)

X claim amount distribution in the given insur-
ance portfolio under the iid assumption for the
claims
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pn+1(θ ) = pn(θ ) · P(θ ), n = 1, 2, . . .

(recursive calculation, see Sect. 30.2)

pn(θ ) = p1(θ ) · P(θ )n−1, n = 1, 2, . . .

π (θ ) = π0

∞∑

n=1

wn(θ )
J∑

j=1

pn
j (θ )cj

(average premium over policyholders with risk parameter value θ )

π (θ ) = π0(1− p) x(θ )entry,

where x(θ )entry is the component corresponding to the bonus level at entry in the
vector x(θ ), which is the solution of the equation (I− p P(θ )) x(θ ) = c
(average premium over policyholders with risk parameter value θ , if wn(θ ) is the
geometric distribution with parameter p ∈ (0, 1), see thereinbefore)

∞∫

0

u(θ )π (θ ) dθ =
∞∫

0

θu(θ ) dθ · E(X)

(equation for calculation of basic premium π0)

• Analysis of bonus-malus systems usually looks for a possible stationary dis-
tribution (see Sect. 30.2) of the given Markov chain, since such a distribution
corresponds to the stabilized behaviour of the insurance portfolio (e.g. which
part of the insured drivers attains in such a stable mode the highest bonus level,
and the like)
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Chapter 23
Health Insurance

Abstract Chapter 23 deals briefly with fundamentals of insurance for private
medical treatment.

• Insurance for private medical treatment: makes use of calculations, which are
based on the equivalence principle, i.e. the expected present value (calculated at
the time of policy issue) of the premiums is equal to the expected present value
of the benefits similarly as for the life insurance in Sect. 18.2 (but now we deal
with a class of non-life insurance, see Chap. 16)

• Classification according to type of insurance claims: e.g.
– sickness insurance (costs of therapy usually including prophylactic treatment)
– hospitalization insurance (excluding costs of stationary therapy included in

sickness insurance, i.e. mainly hotel services)
– daily benefits insurance in the case of sick leave
– insurance of over-standard treatment (the application of more expensive

medicaments and medical materials, and the like)

• Classification of health insurer’s costs of claims (this classification is more
detailed and dynamic than the one above): e.g.
– costs of outpatient treatment
– costs of doctor’s visits at home
– costs of medicaments and medical materials
– costs of surgical operations
– costs of hospitalization
– costs due to pregnancy and birth
– costs of dental treatment and prosthetics

• Method of average costs: is the best used method for health insurance calculations
(e.g. in Germany):

Denotation:

lx number of policyholders aged x
qx probability of death at age x (see Sect. 17.2)

255T. Cipra, Financial and Insurance Formulas, DOI 10.1007/978-3-7908-2593-0_23,
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wx probability of cancellation (lapse) of health insurance at age x (these
probabilities may be estimated e.g. by means of mathematical curves)

Kx
j average costs per capita: are the average annual costs per capita (classified

according to sex) in jth class of health insurance at age x (e.g. Kx
outpatient

are the average annual costs of outpatient treatment of a male aged x)

Gj = Kj
x0

(basic costs per capita (in practice one often puts x0 = 28 or x0 = 43))

lx+1 = lx · (1− qx − wx)

(decrement order of health insurance)

kj
x =

Kj
x

Kj
x0

= Kj
x

Gj

(profile (normed costs per capita): are the average costs per capita Kx
j relatively

to the costs at a chosen age x0)

Kj
x = Gj · kj

x

(profile application in practice of health insurance: unlike the average costs per
capita, the profile is mostly stable in time so that it is not necessary to change it
within a lot of years; in a given year, it is sufficient to multiply the profile by the
value Gj, which is specific just for this year)

• Commutations functions in health insurance (see Sect. 17.6):

Dx = lx · vx; Nx = Dx + Dx+1 + . . .+ Dω

Oj
x = kj

x · Dx

Uj
x = Oj

x + Oj
x+1 + . . .

äx = Nx

Dx

Aj
x =

Kj
x · lx + Kj

x+1 · lx+1 · v+ . . .

lx
= Gj · kj

x · lx · vx + kj
x+1 · lx+1 · vx+1 + . . .

lx · vx

= Gj · Oj
x + Oj

x+1 + . . .

Dx
= Gj · Uj

x

Dx

(net single premium in jth class of health insurance for policyholders aged x at
entry)
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Pj
x =

Aj
x

äx

(net annual premium in jth class of health insurance for policyholders aged x at
entry)
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Chapter 24
Reinsurance

Abstract Chapter 24 deals with actuarial problems of modern reinsurance: 24.1.
Basic Concepts of Reinsurance, 24.2. Types of Reinsurance, 24.3. Solvency, 24.4.
Alternative Risk Transfer ART.

24.1 Basic Concepts of Reinsurance

• Reinsurance (“insurance of the risk assumed by the insurer”): is the principal
mechanism, which insurance companies use to transfer part the risk assumed
through their own underwriting activities to reinsurance companies; the insurer
(called cedant or direct insurer or reinsured in this context) is said to cede risk to
the reinsurer (cessionaire); there is usually no contract between any insured from
the insurance portfolio of the insurer on one side and the reinsurer on other side

• Retention (deductible): is the part of the risk that is not ceded and is kept for own
account of the insurer

• Priority: is the maximum part of the loss incurred, which is covered by the insurer
• Reinsurance premium: is the premium paid by the insurer to the reinsurer for the

risk accepted
• Limit of reinsurer: is the maximum part of the insured risk that can be ceded to

the reinsurer; there may be more reinsurers for a given insurer that cover various
layers of the insured risk

• Capacity of insurer: is the maximum amount of a risk that can be accepted in
insurance; one of the aims of reinsurance (see thereinafter) is just to enlarge the
underwriting capacity of the insurer given by the retentions of this insurer and by
the limits of the participating reinsurers

• Profit commission: is a contractually agreed commission paid by the reinsurer to
the insurer in proportion to reinsurer’s profits in the given reinsurance business;
it motivates the insurer to be concerned in profitability of the reinsurer

• Commission: is a remuneration paid by the reinsurer to the insurer for insurer’s
costs related to the reinsurance business

• Reinsurance basis: concerns mainly life reinsurance, which can be contracted:
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– on risk basis: is a system of life reinsurance, under which the reinsurer partic-
ipates in death risk only, and only insofar as it exceeds the premium reserves
(the administration of insurance and premium reserves stay with the cedant)

– on normal basis: all essentials of the insurance contract are ceded in a given
ratio

– on modified basis: the only distinction from the normal basis consists in the
reinsurer’s duty to deposit the premium reserves with the insurer

• Retrocession: passes on a part of the ceded risk further to another reinsurer
(retrocessionaire)

• Coinsurance: refers to the joint assumption of risk among various insurers, i.e. a
number of insurers share a risk

• Insurance pool: is a risk-sharing community in the legal form of a non-trading
partnership; the members of the pool agree to submit all the risks falling under the
terms of the pooling agreement into the pool; in return, they participate according
to a pre-defined distribution in the entire volume of business brought into the pool

• Coinsurance pool: means that the pool itself is organized as a risk carrier and
the pool members act only as intermediaries: they write business for the pool’s
account and authorize and oblige the pool directly; the coinsurance pool itself
operates as an insurer in the form of a legal entity (e.g. nuclear pool)

• Reinsurance pool: is an insurance pool, in which the risks are initially written
by individual pool members; the other pool members then participate in all risks
by way of reinsurance in accordance with a pre-distributed allocation formula;
unlike the coinsurance pool, the reinsurance pool is not a visible legal entity

• Reciprocity: is the mutual exchange of reinsurance

• Types of reinsurance:

– facultative: is an individual reinsurance negotiated and placed individually
with a separate reinsurance contract and policy terms; it involves a case-by-
case review and acceptance of risks by the reinsurer; this arrangement is often
used for large or unique risks

– obligatory: is a treaty, where the insurer is obliged to cede and the reinsurer
is obliged to accept (when treaty stipulations regarding the business to be
reinsured are met); the treaty, where reinsurances are ceded optionally by the
insurer, but simultaneously the reinsurer is obliged to accept all such cessions,
is called facultative-obligatory

– proportional: is a form of reinsurance in which exposures (risks, sums
insured), claims (losses) and premiums of the insurer are shared proportion-
ally by the insurer and the reinsurer on the basis of some predefined formula,
such as fixed or variable percentages of these values

– non-proportional: allocates exposure through non-proportional layers, based
on actual claims received (therefore it is sometimes called claim reinsurance);
the reinsurer usually agrees to pay any losses, which exceed a specified priority
up to a maximum limit against payment of a specially calculated reinsurance
premium
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– finite or financial: is a combination of risk transfer and risk financing, where
the investment aspects, i.e. how much return can be gained on the sum
invested, play a special role (also see alternative risk transfer in Sect. 24.4)

• Reinsurance achieves several important goals:

– it increases underwriting capacity (see thereinbefore)
– it makes an insurance portfolio more homogeneous, e.g. by protecting the

insurer against low-frequency/high-severity events
– it creates profit stability violated due to various risks, e.g. due to

– risk of fluctuations in claim ratio (it is the ratio of claim amounts to
corresponding premiums, see Sect. 21.1)

– risk of economic, social and technological changes (their impact can be
hardly involved into calculations of premiums)

– risk of errors such as an inappropriate interpretation of underlying statistics

– it diversifies insurance risks using
– territorial diversification due to distinct development of insurance results

in various countries
– product diversification due to distinct development of insurance results for

various products in the portfolio
– time diversification due to joint account of the insurer and the reinsurer over

a longer time horizon so that the insurer’s profits and losses may balance
mutually

– it enables some financial benefits mainly due to finite reinsurance (see Sect.
24.4)

– it guarantees professional services from reinsurer when introducing new
products, evaluating risks in a skilled way, educating the staff, and the
like

24.2 Types of Reinsurance

Denotation:

N, S, X, Z, P number of claims, sum insured in a policy, claim
amount (loss) in a policy, total claim amount in the
reinsured portfolio, premium in a policy

NI, SI, XI, ZI, PI as thereinbefore, but for own account of the insurer
NR, SR, XR, ZR, PR as thereinbefore, but for own account the reinsurer
XF(x) = P(X ≤ x) and X f (x) distribution function and probability density of the

claim amount X (see Sect. 26.3)
XFI(x) = P(XI ≤ x), X f I(x) as thereinbefore, but for own account of the

insurer
XFR(x) = P(XR ≤ x), X fR(x) as thereinbefore, but for own account of the reinsurer
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X = XI + XR, Z = ZI + ZR, P = PI + PR

• Proportional reinsurance (see Sect. 24.1): is usually applied in life insurance; the
proportional reinsurance can be as follows:

(1) Quota share: the insurer and reinsurer agree to split exposures (risks, sums
insured), claim amounts (losses) and premiums as fixed percentages of these
values; the fixed percentage of the reinsurer share is called quota:

SR = q · S; XR = q · X; PR = q · P, where 0 < q < 1

(quota share: q is the quota of the reinsurer; the partition of the risk between
the insurer and the reinsurer is the same for each policy; the advantage con-
sists in the administrative simplicity (everything is divided in the same ratio);
the disadvantages are an insufficient homogeneity of the reinsured portfo-
lio and an unnecessary cession for policies with small sums insured which
should be no problem for the insurer, even if no reinsurance is applied)

PR(t) = q · (S−tVx:n) · qx+ t−1 ≈ q · Priz
x:n(t)

(reinsurance premium at time t in the framework of the quota share reinsur-
ance on the risk basis (see Sect. 24.1) with the quota of reinsurer q, if one
reinsures a life contract with the net premium reserve tVx:n (see Sect. 18.3)
and with the sum insured S; qx+t–1 is the probability of death at age x + t − 1
and its value is chosen by the reinsurer (it can differ from the one used by
the insurer, see Sect. 17.2); Priz

x:n(t) is the risk premium at time t of the direct
insurance (see Sect. 18.3))

N = NI = NR

S = SI + SR

E(XI) = (1− q) · E(X), E(XR) = q · E(X)

var(XI) = (1− q)2 · var(X), var(XR) = q2 · var(X)

σ (XI)

E(XI)
= σ (XR)

E(XR)
= σ (X)

E(X)

XFI(x) =XF(x/(1− q)), XFR(x) =XF(x/q)

XfI(x) = Xf (x/(1− q))

1− q
, XfR(x) = Xf (x/q)

q

(2) Surplus: the insurer and reinsurer agree to split exposures (risks, sums
insured), claim amounts (losses) and premiums as variable percentages
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of these values; the percentage of the insurer’s share in a given policy
corresponds to the ratio of insurer’s retention s to the sum insured S in
this policy (accordingly the percentage for the reinsurer (S − s)/S = 1−s/S
corresponds to reinsurer’s surplus S − s):

SR =
{

0 for S ≤ s,
S− s for S > s,

XR =
{

0 for S ≤ s,(
1− s

S

) · X for S > s,

PR =
{

0 for S ≤ s,(
1− s

S

) · P for S > s,
where s > 0

(surplus: s is the retention of the insurer; unlike the quota share reinsur-
ance (see thereinbefore), the partition of the risk between the insurer and
the reinsurer can differ among various policies; the advantage is an efficient
homogeneity of the reinsured portfolio; the disadvantage is an administrative
complexity (the partition of the risk between the insurer and the reinsurer
is variable)); see also formulas given thereinbefore for the quota share
with

q =
{

0 for S ≤ s
1− s

S for S > s

SR =
⎧
⎨

⎩

0 for S ≤ s,
S− s for s < S ≤ s+ L,

L for S > s+ L,
XR =

⎧
⎨

⎩

0 for S ≤ s,(
1− s

S

) · X for s < S ≤ s+ L,
L
S · X for S > s+ L,

PR =
⎧
⎨

⎩

0 for S ≤ s(
1− s

S

) · P for s < S ≤ s+ L
L
S · P for S > s+ L

(surplus with limit of reinsurer: the limit of reinsurer L is usually given as
multiples of the retention (so called lines): e.g. three lines mean that the
reinsurer covers the risk in the amount of the treble of the retention)

• Non-proportional reinsurance (see Sect. 24.1): is usually applied in nonlife insur-
ance; it is characterized by a distribution of liability between the insurer and
the reinsurer on the basis of losses rather than sums insured; as compensa-
tion for the cover provided, the reinsurer receives part of the original premium
and not the part of the premium corresponding to the sum reinsured as in the
proportional reinsurance; the treaty defines a priority, up to which the insurer
pays all losses; for his part, the reinsurer obliges himself to pay all losses
above the priority and not out of a contractually defined layer (there are usually
several adjacent layers contracted with several reinsurers); in practical rein-
surance one applies as the loss amount the so-called ultimate net loss UNL
(the reinsured loss after deduction of all reimbursements from other reinsur-
ance contracts) and as the premium amount the so-called gross net premium
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income GNPI (the premium in the reinsured business after deduction of all
lapses and reinsurance premiums for other reinsurance contracts, which reduce
the exposure of the given business); the non-proportional reinsurance may be
as follows:

(1) WXL/R reinsurance (working excess of loss cover per risk): is created to
reinsure individual risks on loss basis (its aim is to relieve the insurer of
losses which surpass the amount retained for own account on any particular
risk); if any contract from the reinsured portfolio is affected by a loss with
claim exceeding the priority, then the excess incurred is reimbursed by the
reinsurer (but only within the reinsurer’s layer):

XR =
{

0 for X ≤ a,
X − a for X > a,

where a > 0

(excess in WXL/R reinsurance: a is the priority of the insurer; in practice one
uses denotations of the type “1,000,000 EUR xs 400,000 EUR” (1,000,000
EUR is the layer of the reinsurer and 400,000 EUR is the priority of the
insurer))

NI = N

P(NR = n) =
∞∑

i=n

P(N = i) ·
(

i
n

)

· pn
a · (1− pa)

i−n ,

where pa = P(X > a) = 1−XF(a)

E(NR) = pa · E(N); var(NR) = pa · (1− pa) · E(N)+ p2
a · var(N)

P(NR = n) = e−λ·pa · (λ · pa)n

n! ; E(NR) = λ · pa; var(NR) = λ · pa

for Poisson distribution N ∼ P(λ) (see Sect. 26.4)

P(NR = n) =
(

r + n− 1
n

)(
p

p+ pa · (1− p)

)r

·
(

1− p

p+ pa · (1− p)

)n

for negative binomial distribution N ∼ NB(r, p) (see Sect. 26.4)

XFI(x) =
{

XF(x) for x < a;
1 for x ≥ a; XFR(x) =XF(a+ x)

E(XI) =
a∫

0

x d XF(x)+ a · (1−XF(a)) =
a∫

0

(1−XF(x)) dx
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E(XR) =
∞∫

a

x d XF(x) −a · (1−XF(a)) =
∞∫

a

(1−XF(x)) dx = E(X)−E(XI)

var(XI) = 2

a∫

0

x · (1−XF(x)) dx− [E(XI)]
2

var(XR) = 2

⎧
⎨

⎩

∞∫

a

x · (1−XF(x)) dx− a ·
∞∫

a

(1−XF(x)) dx

⎫
⎬

⎭
− [E(XR)]2

E(XI
j) =

a∫

0

x j d XF(x) + a j · (1−XF(a)) , where j ∈ N

E(XR
j) =

j∑

i=1

(
j
i

)

· (−a) j−i · [E(Xi)− E(XI
i)], where j ∈ N

Assumptions:

ZI =
N∑

i=1

XiI ; ZR =
N∑

i=1

XiR,

where X1, X2, . . . are iid random variables independent on the random
variable N

E(ZI) = E(N) · E(XI) = E(Z) ·XF(1)(a)

var(ZI) = E(N) · var(XI)+ var(N) · [E(XI)]
2 = var(Z) ·XF(2)(a)

where

XF (j)(a) =

a∫

0
x j d XF(x)+ a j · (1−XF(a))

E(Xj)
, j ∈ N

E(ZR) = E(N) · E(XR); var(ZR) = E(N) · var(XR)+ var(N) · [E(XR)]2

(2) WXL /E reinsurance (working excess of loss cover per event): offers the
insurer protection against losses caused by the same event of a non-
catastrophic character; if several contracts from the reinsured portfolio is
affected by a loss event with aggregate claim exceeding the priority con-
tracted for all these policies altogether then the excess incurred is reimbursed
by the reinsurer (but only within reinsurer’s layer):
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XR =

⎧
⎪⎪⎨

⎪⎪⎩

0 for
n∑

i=1
Xi ≤ a ,

n∑

i=1
Xi − a for

n∑

i=1
Xi > a ,

where a > 0

(excess in WXL/E reinsurance: a is the priority of the insurer; X1, . . ., Xn are
claim amounts for a given loss event in n affected policies)

(3) CatXL reinsurance (catastrophe excess of loss cover): coincides with
WXL/E reinsurance (see thereinbefore) except for the catastrophic charac-
ter of the loss event, which causes in this case a substantial accumulation of
losses; for natural catastrophes with exposure persisting a longer time (flood,
hurricane. and the like), one contracts in addition the so-called n-hours
clause (for a given loss event the reinsurer covers only such losses, which
accumulate within n h); Umbrella Cover reinsurance (All Risks Cover) con-
cerns an accumulation of losses from a single (catastrophic) event, but over
various branches of insurance

(4) SL reinsurance (stop loss reinsurance): the priority of the insurer is applied
to the annual result of the insurer in one branch against a negative deviation
due to a marked increase in the number and the cost of losses; it has usually
the form of a boundary for the claim ratio (see Sect. 21.1), to which the claim
ratio must be rolled back in consequence of the reinsurer’s intervention:

XR =
⎧
⎨

⎩

0 for X/P ≤ p,
X − p · P for p < X/P ≤ l,
(l− p) · P for l < X/P,

where l > 0; p > 0

(excess in SL reinsurance: p is the priority of the insurer; l is the limit of the
reinsurer ( p and l are applied to the claim ratio X/P with claim amounts X
and premiums P))

(5) LCR(r) reinsurance (largest claims reinsurance): works in such a way that
the reinsurer reimburses r largest claims (r ∈ N is a given number), which
incurred during the covered period (usually during a calendar year):

XR = X(1) + X(2) + . . .+ X(r)

(LCR(r) reinsurance: X(1) ≥ X(2) ≥ . . .≥ X(r) ≥ . . .≥ X(n) are ordered claims
X1, X2, . . ., Xn in a given year (see Sect. 27.3))

(6) ECOMOR(r) reinsurance: works in such a way that the reinsurer reimbur-
ses only such parts of the claims that exceed the rth largest claim (r ∈ N is a
given number, see thereinbefore):

XR =
(
X(1) − X(r)

) +. . .+(X(r−1) − X(r)
) = X(1)+. . .+X(r−1)−(p−1)·X(r)

(ECOMOR(r) reinsurance: X(1) ≥ X(2) ≥ . . . ≥ X(r) ≥ . . . ≥ X(n) are ordered
claims X1, X2, . . ., Xn in a given year (see Sect. 27.3))
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24.3 Solvency

• Solvency of insurer: is insurer’s ability to cover the liabilities accepted (i.e. to
cover the entitled claims in events incurred)

• Solvency reporting: is a methodology for public supervision and regulation
of the insurance industry to safeguard policyholders (or claimants in general)
from the disastrous consequences of the insolvency of an insurer; this requires
arrangements for preventing insurers from becoming bankrupt; such a supervi-
sion consists usually in testing the financial position of each insurer at regular
intervals, normally annually; if there appears a substantial risk of insolvency
urgent remedial measures will be required (including such hard measures as the
withdrawal of the company’s licence); solvency methodologies concentrate on
the capital adequacy of the given insurer, i.e. whether insurer’s assets will be suf-
ficient to meet all claims and other obligations when the insurer would have to
settle immediately all liabilities (the so-called winding-up or break-up schedule),
or when no new business is written thereafter nor is any business renewed (the
so-called run-off schedule), or when the insurer’s activities will continue in future
(the so-called going-concern schedule)

• Ruin theory: is a part of risk theory (see Sect. 22.5); it looks for the probabil-
ity of the event that a value of the insurance process (usually a corresponding
reserve) falls under an a priori given boundary (the so-called ruin probability);
this theoretical context can be applied when modeling solvency

• Measurement of solvency:

(1) Analysis of basic accounting indicators:

available solvency margin

net premium

(solvency ratio: available solvency margin ASM (free assets FA) of the
insurer is excess of insurer’s assets over and above what is needed to
match insurer’s liabilities (ASM involves usually the shareholders’ equity,
the undistributed (retained) profit, various reserve funds with exception of
the technical reserves (i.e. provisions covering insurance liabilities), hidden
reserves, and the like, also see FA in Sect. 19.5); net premium is the premium
for own account of the insurer after deduction of the reinsurance premium,
see Sect. 24.1)

technical provisions

net premium
(reserves ratio : see Sects. 18.3 and 21.4)

net premium

premium

(retention ratio: is the ratio of the premium after deduction of the reinsurance
premium against the premium before deduction of the reinsurance premium)



268 24 Reinsurance

(2) Solvency capital requirements SCR (target capital): is a level for ASM (see
thereinbefore) required usually in the sense of going-concern schedule (see
thereinbefore); as SCR is a “soft” level, the minimum capital requirements
MCR is a “hard” level, under which the crisis management must be applied
in the insurance company

(3) Risk-based capital RBC: is an approach to SCR (see thereinbefore), which
looks for the required capital adequacy of the insurer by quantifying the
corresponding risks; it is an analogy of the capital adequacy approach in
finance (see Sect. 12.3: particular classes of assets of a bank are weighted by
prescribed risk weights); this approach has been developed by the National
Association of Insurance Commissioners (NAIC) as the regulatory system
for the US (see thereinafter)

(4) Simulation models: are based mostly on the ruin theory (see thereinbefore)
and simulate various scenarios when modeling future development

(5) Rating assessment: is essentially the RBC approach (see thereinbefore),
where the risk weights applied depend on an official rating of the given risk
category (which can be rating of the issuers of securities in the context of
asset risk, rating of the debtors (including reinsurers) in the context of credit
risk, and the like)

• Practical approaches to solvency reporting:

(1) Solvency I (Europe):

ASM ≥ k1 · RI + k2 · RCI

(solvency reporting in life insurance: available solvency margin ASM (see
thereinbefore) must not decrease under the solvency capital requirements
SCR (see thereinbefore) calculated as a prescribed percentage k1 of the pre-
mium reserves (see Sect. 18.3) for own account of the insurer RI and a
prescribed percentage k2 of the risk capital (the risk capital is the differ-
ence between the sums insured and the premium reserves, see Sect. 18.3) for
own account of the insurer RCI)

AMS ≥ max{m1 · XI ; m2 · PI}
(solvency reporting in non-life insurance): available solvency margin ASM
(see thereinbefore) must not be lower than the solvency capital requirements
SCR (see thereinbefore) calculated as the maximum value between a pre-
scribed percentage m1 of the claim amounts for own account of the insurer
XI and from a prescribed percentage m2 of the premiums for own account of
the insurer PI)
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(2) RBC (the US):
TAC ≥ RBC

(solvency reporting: total adjusted capital TAC (an analogy of AMS, see
thereinbefore) must not be lower than the risk-based capital RBC (see
thereinafter))

RBC = C0 +
√
(C1 + C3)

2 + C2
2 + C4

(risk-based capital in life insurance: Ci are required capital amounts, which
cover the corresponding types of risks: C0 for investments in insurance affil-
iates, for off-balance sheet risks and for contingent obligations; C1 for asset
risk, including risk of default, concentration risk and risk of reinsurance non-
recoverability; C2 for insurance risk, arising from high levels of claims, i.e.
for risk of technical provisions and written premium risk; C3 interest rate
risk, arising from changes in levels of interest rates; C4 for business risk,
including expense overruns and management incompetence)

RBC = R0 +
√

R2
1 + R2

2 +
(

1

2
R3

)2

+
(

1

2
R3 + R4

)2

+ R2
5

(risk-based capital in non-life insurance: Ri are required capital amounts,
which cover the corresponding types of risks: R0 for investments in insurance
affiliates, for off-balance sheet risks and for contingent obligations; R1 for
fixed interest investments; R2 for equities, real estate investments and other
asset risks; R3 for credit risk including reinsurance non-recoverability; R4 for
loss reserve risk, i.e. for risk of technical provisions excepting the unearned
premium reserves, and for reserve growth risk; R5 for written premium risk
and for premium growth risk)

(3) Solvency II (world): a new schedule that can make use of insurer’s internal
models

24.4 Alternative Risk Transfer ART

• Alternative risk transfer ART: is a product, channel or solution that transfers
risk exposures between the insurance and capital markets to achieve prescribed
risk management goals; the ART market is the combined risk management
marketplace for innovative insurance and capital market solutions

• Finite reinsurance: is an important part of ART that addresses the problem of the
limited (i.e. finite) risk in the context of reinsurance (sometimes a more spe-
cial term financial reinsurance is used, see Sect. 24.1); the features of finite
reinsurance are as follows:
– limited acceptance of insurance risk by the reinsurer (finite products stabilize

reinsurance costs)
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– smoothing of fluctuations in insurance and reinsurance results (e.g. finite
products attenuate cyclical trends in the insurance market)

– expansion of insurance and reinsurance capacity (e.g. the securitization of
insurance risks makes use of the enormous capacity of capital markets, see
thereinafter)

– separation of underwriting and timing risk
– experience account (the direct insurer participates in the losses as well in the

profits so that the insurer’s balance sheet is optimized)
– future investments income is explicitly taken into account in the calculation of

the premiums (the finite reinsurance promotes the establishment of long-term
relationships between the insurer and the reinsurer)

– reduction of credit risk (ways and means for ART reimbursements are often
prepared in advance and in extenso)

– multi-years cover
– multiple, inter-connected triggers
– several lines of business may be covered
– application of various financial and tax aspects

• Some products, vehicles and solutions in the framework of ART:
(1) Captive: is a risk channel, which is used to facilitate a company’s own

insurance/reinsurance risk financing or risk transfer strategies; a captive is
generally formed as a licenced insurance/reinsurance company and may be
controlled by a single owner or multiple owners (or sponsors)

(2) Risk retention group RRG: is a retention vehicle (similar to the group cap-
tive), where a group assumes and spreads the liability risks of its members
via pooling

(3) Coinsurance and reinsurance pools (see Sect. 24.1): are sometimes consid-
ered to be forms of ART, since they mobilize sufficient capacities to cover
large risks

(4) Securitization: is the process of removing assets, liabilities or cash flows
from the balance sheet and conveying them to third parties through tradable
securities (the so-called insurance-linked securities ILS, see thereinafter);
the factors that support the securitization of insurance risks are e.g. as
follows:
– ILS triggers: are triggers on the insurance-linked securities, where the sus-

pension of interest and/or principal (see thereinafter) occurs when actual
losses sustained by the issuer in a pre-defined segment of business reach
a certain level (the so-called indemnity triggers), or when the value of
a recognized third-party index reaches a certain threshold (the so-called
index triggers, which are based on corresponding loss indices measured
by reputable agencies as a standardized average loss development in the
given region for the given type of insurance risk)

– risk exchanges trading with securitized insurance risk, e.g. CATEX in the
US (Catastrophe Risk Exchange)

– special purpose vehicles SPV: are organizers of ILS trading
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• Catastrophe bonds (CatBonds): are highly profitable bonds (their coupon rate
is usually much higher than the market average, see Sect. 9.2), for which the
suspension of coupons and/or principal occurs in the case of a predefined natural
catastrophe; e.g. an annual reinsurance treaty, according to which the reinsurer
reimburses a sum insured L at the end of the contract year, if the catastrophe
has occurred, can be replaced by the issue of a 1-year catastrophe bond with an
annual coupon; the following table contains the appropriate cash flows, which
comply with requirements of all participating sides: qcat is the probability of the
natural catastrophe, i is the annual coupon rate, F is the face value (principal) of
the bond (see Sect. 9.2), PR is the reinsurance premium (see Sect. 24.1):

Time t = 0 Time t = 1

Occurrence of
catastrophe (with
probability qcat)

Non-occurrence
of catastrophe
(with probability
1 − qcat)

Insurer −PR = − 1
1+i · qcat · L L 0

Reinsurer=Issuer
(CatBond)

PR + F −L −L

Investor
(CatBond)

−F = − 1
1+i ·(1−qcat)·L 0 L

qb = L− F∗ · (1+ i)

L
.

(probability of catastrophe priced by the bond market (unlike the estimate qcat
by the reinsurance market, see thereinbefore): F∗ is the market price of the given
catastrophe bond)

PRb =
1

1+ i
· qb · L = L

1+ i
− F∗

(reinsurance premium priced by the bond market: see thereinbefore)

• Insurance derivatives (insurance swaps, insurance options, insurance futures, and
the like): are derivative instruments, which are similarly as catastrophe bonds
related to insurance (e.g. by means of the loss indices, see thereinbefore)
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Chapter 25
Mathematical Compendium

Abstract Chapter 25 reminds basic mathematical skills.

25.1 Powers with Integral Exponents (a, b ∈ R; a, b �= 0; p, q ∈ Z)

apbp = (ab)p;
ap

bp
=
(a

b

)p

apaq = ap+q;
ap

aq
= ap−q;

(
ap) q = ap·q

25.2 Roots of Real Numbers (a, b ∈ R; a, b > 0; m, n ∈ N; p ∈ Z)

n
√

ab = n
√

a
n
√

b; n

√
a

b
=

n
√

a
n
√

b

n
√

ap = ( n
√

a
)p

; m
√

n
√

a = m·n√a

25.3 Powers with Rational Exponents (a ∈ R; a > 0; m, n ∈ N)

a1/n = n
√

a; a− 1/n = 1
n
√

a
; am/n = n

√
am

275T. Cipra, Financial and Insurance Formulas, DOI 10.1007/978-3-7908-2593-0_25,
C© Springer-Verlag Berlin Heidelberg 2010
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25.4 Powers with Real Exponents (a, b ∈ R; a, b > 0; x, y ∈ R)

ax = lim
n→∞ arn , where lim

n→∞ rn = x, rn ∈ Q

1x = 1; axbx = (ab)x;
ax

bx
=
(a

b

)x

axay = ax+y;
ax

ay
= ax−y;

(
ax) y = ax·y

25.5 Formulas an ± bn (a, b ∈ R; n, k ∈ N)

a2 − b2 = (a+ b)(a− b)

a3 ± b3 = (a± b)(a2 ∓ ab+ b2)

an − bn = (a− b)
(

an−1 + an−2b+ an− 3b2 + . . .+ abn−2 + bn−1
)

a2 k − b2 k = (a+ b)
(

a2 k− 1 − a2 k−2b+ a2 k− 3b2 − . . .− b2 k− 1
)

a2 k+1 + b2 k+1 = (a+ b)
(

a2 k − a2 k− 1b+ a2 k−2b2 − . . .+ b2 k
)

25.6 Logarithms (x, y ∈ R; x, y > 0; a, b, c ∈ R; a, b > 0; a, b �= 1)

y = loga x ⇔ ay = x

log x = log10 x (common logarithm)

ln x = loge x

(natural logarithm: e = lim
n→∞(1 + 1/n)n = 2, 718 28 . . . is the base of natural

logarithm)
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aloga x = x; loga a = 1; loga 1 = 0

loga xy = loga x+ loga y; loga
x

y
= loga x− loga y; loga xc = c · loga x

logb x = loga x

loga b

25.7 Factorial and Binomial Coefficients (k, m, n ∈ N0; k ≤ m,
k ≤ n)

n ! = 1 · 2 · . . . · n; 0 ! = 1 (factorial)

(
n
k

)

= n!
k!(n− k)! =

n · (n− 1) · . . . · (n− k + 1)

1 · 2 · . . . · k (binomial coefficient)

(
n
k

)

=
(

n
n− k

)

;

(
n
0

)

=
(

n
n

)

= 1 ;

(
n
1

)

=
(

n
n− 1

)

= n

(
n
k

)

+
(

n
k − 1

)

=
(

n+ 1
k

)

;

(
k
k

)

+
(

k + 1
k

)

+ . . .+
(

n
k

)

=
(

n+ 1
k + 1

)

(
n
0

)(
m
k

)

+
(

n
1

)(
m

k − 1

)

+. . .+
(

n
k

)(
m
0

)

=
(

n+ m
k

)

;
n∑

k= 0

(
n
k

)

= 2n;

n∑

k= 0

(
n
k

)2

=
(

2n
n

)

• Binomial coefficients may be ordered in Pascal’s triangle:

Binomial coefficients

n = 0: 1
n = 1: 1 1
n = 2: 1 2 1
n = 3: 1 3 3 1
n = 4: 1 4 6 4 1
n = 5: 1 5 10 10 5 1

... . .
.

. .
.

. .
.

. .
.

. .
.

. .
.

• Binomial coefficients and corresponding relations (see thereinbefore) remain in
force for n ∈ R
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25.8 Binomial Theorem (a, b ∈ R; n ∈ N)

(a±b)n =
n∑

k=0

(±1)k
(

n
k

)

an− kbk = an±
(

n
1

)

an−1b+
(

n
2

)

an−2b2±. . .+(±1)nbn

(a± b)2 = a2 ± 2ab+ b2

(a± b)3 = a3 ± 3a2b+ 3ab2 ± b3

25.9 Sums of Powers of Natural Numbers (n ∈ N)

1+ 2+ . . .+ n = n(n+ 1)

2

12 + 22 + . . .+ n2 = n(n+ 1)(2n+ 1)

6

13 + 23 + . . .+ n3 = n2(n+ 1)2

4

14 + 24 + . . .+ n4 = n(n+ 1)(2n+ 1)(3n2 + 3n− 1)

30

25.10 Numerical Series (a1, d, q, v ∈ R; n ∈ N)

n−1∑

k= 0
(a1 + kd) = a1 + (a1 + d)+ . . .+ (a1 + (n− 1)d) = na1

+ n(n−1)
2 d (arithmetic series)

n−1∑

k= 0

a1qk = a1 + a1q+ . . .+ a1qn−1 =
{

a1
1−qn

1−q , q �= 1
a1n, q = 1

(geometric series)

∞∑

k= 0

qk = 1+q+q2+. . . = 1

1− q
, |q| < 1;

∞∑

k=1

qk = q+q2+. . . = q

1− q
, |q| < 1

n∑

k=1

kqk = q+ 2q2 + . . .+ nqn =
{

q · nqn+ 1−(n+1)qn+1
(1−q)2 , q �= 1

n(n+1)
2 , q = 1

∞∑

k=1

kqk = q+ 2q2 + . . . = q

(1− q)2
, |q| < 1
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n∑

k=1

k

qk
= 1

q
+ 2

q2
+ . . .+ n

qn
=
{

1
qn · qn+1−(n+1)q+n

(1−q)2 , q �= 1
n(n+1)

2 , q = 1

∞∑

k=1

k

qk
= 1

q
+ 2

q2
+ . . . = q

(1− q)2
, |q| > 1

n∑

k=1

(
kqk
)2 = q2 +

(
2q2
)2 + . . .

(
nqn)2 =

=

⎧
⎪⎨

⎪⎩

−n2q2n+ 6 + (2n2 + 2n− 1)q2n+4 − (n+ 1)2q2n+2 + q4 + q2

(1− q2)3
, q �= 1

n(n+ 1)(2n+ 1)

6
, q = 1

∞∑

k=1

(
kqk
)2 = q2 +

(
2q2
)2 + . . . = q2(q2 + 1)

(1− q2)3
, |q| < 1

n∑

k=1

kqn−k+1 = qn + 2qn−1 + . . .+ nq =
{

q · qn+1−(n+1)q+n
(1−q)2 , q �= 1

n(n+1)
2 , q = 1

n∑

k=1

k

qn−k+1
= 1

qn
+ 2

qn−1
+ . . .+ n

q
=
{

1
qn · nqn+1−(n+1)qn+1

(1−q)2 , q �= 1
n(n+1)

2 , q = 1

n−1∑

k= 0
(a1 + kd) · vk = a1 + (a1 + d) · v+ . . .+ (a1 + (n− 1)d) · vn−1

=
{

a1
1−vn

1−v + dv (n−1)vn−nvn−1+1
(1−v)2 , v �= 1

na1 + d (n−1)n
2 , v = 1

n−1∑

k= 0
(a1 + kd) · vn−k−1 = a1 · vn−1 + (a1 + d) · vn−2 + . . .+ (a1 + (n− 1)d)

=
{

a1
1−vn

1−v + d vn−nv+n−1
(1−v)2 , v �= 1

na1 + d (n−1)n
2 , v = 1

n−1∑

k= 0

(
a1qk

)
· vk = a1 + (a1q) · v+ . . .+

(
a1qn−1

)
· vn−1 =

⎧
⎪⎪⎨

⎪⎪⎩

a1
1−(qv)n

1−qv , v �= 1

q

na1, v = 1

q

n−1∑

k= 0

(
a1qk

)
· vn−k−1 = a1 ·vn−1+(a1q)·vn−2+. . .+

(
a1qn−1

)
=
{

a1
qn−vn

q−v , v �= q

na1qn−1, v = q
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25.11 Means (x1, . . ., xn ∈ R; k, n, n1, . . ., nk ∈ N; n =
k∑

i = 1
ni)

x̄ =

n∑

i= 1
xi

n
(arithmetic mean)

x̄G = n
√

x1x2 . . . xn (geometric mean)

x̄H = n
n∑

i= 1

1
xi

(harmonic mean)

x̄K =

√
√
√
√
√

n∑

i= 1
x2

i

n
(quadratic mean)

x̄ =

k∑

i= 1
nixi

n
(weighted arithmetic mean)

x̄G = n
√

xn1
1 xn2

2 . . . xnk
k (weighted geometric mean)

x̄H = n
k∑

i= 1

ni
xi

(weighted harmonic mean)

x̄K =

√
√
√
√
√

k∑

i= 1
nix2

i

n
(weighted quadratic mean)

x̄H ≤ x̄G ≤ x̄ ≤ x̄K

25.12 Beta and Gamma Function (x, p, q ∈ R; p > 0, q > 0; n ∈ N)

Γ (x) =
∞∫

0

e− ttx−1 dt (gamma function)

Γ (x+ 1) = x · Γ (x); Γ (n) = (n− 1)! ; Γ (1) = 1; Γ (2) = 1; Γ

(
1

2

)

= √π ;

Γ

(
3

2

)

= 1

2

√
π
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B(p, q) =
1∫

0

x p− 1(1− x)q−1 dx (beta function)

B(p, q) = B(q, p); B(p, q) = Γ (p)Γ (q)

Γ (p+ q)

Further Reading

Rektorys, K. et al.: Survey of Applicable Mathematics. Kluwer, Dordrecht (1994)



Chapter 26
Probability Theory

Abstract Chapter 26 deals with formulas and laws of probability theory: 26.1.
Random Events and Probability, 26.2. Conditional Probability and Independent
Events, 26.3. Random Variables and Their Basic Characteristics, 26.4. Important
Discrete Distributions, 26.5. Important Continuous Distributions, 26.6. Random
Vectors and Their Basic Characteristics, 26.7. Transformation of Random Variables,
26.8. Conditional Mean Value, 26.9. Martingales, 26.10. Generating Function,
26.11. Convolutions and Sums of Random Variables, 26.12. Random Sums of
Random Variables, 26.13. Some Inequalities, 26.14. Limit Theorems of Probability
Theory.

26.1 Random Events and Probability

0 ≤ P(A) ≤ 1 (probability of random event A)

P(∅) = 0 (impossible event); P(
) = 1 (certain event)

P(A) = 1− P(A) (complementary random event)

P(A ∪ B) = P(A)+ P(B)− P(A ∩ B) (union of random events)

P(A ∪ B) = P(A)+ P(B) (union of disjoint random events : A ∩ B = ∅)

P(A− B) = P(A)− P(A ∩ B) (difference of random events : A− B = A ∩ B)

A ⊂ B ⇒ P(A) ≤ P(B) (random event A implies random event B)

P

(
n⋃

i=1
Ai

)

= n∑

i=1
(−1)i−1· ∑

1 ≤ k1<...< ki≤ n
P(Ak1 ∩ . . . ∩ Aki)

283T. Cipra, Financial and Insurance Formulas, DOI 10.1007/978-3-7908-2593-0_26,
C© Springer-Verlag Berlin Heidelberg 2010
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P

(
n⋂

i=1
Ai

)

≥ 1− n∑

i=1
[1− P(Ai)] (Bonferroni Inequality)

P(A) =

(
K
k

)

·
(

N − K
n− k

)

(
N
n

)

(probability that there are precisely k defective products in a sample of n products
randomly selected from a lot of N products that contains K defective ones)

(Ω , B, P)
(probability space with elementary events ω ∈ Ω , σ -algebra B (see thereinafter)
and probability P; it is the key concept of axiomatic probability theory)

B from triplet (Ω , B, P) (see thereinbefore), where (i) Ω ∈ B; (ii) Ā∈ B for A ∈ B;
(iii) A1 ∪ A2 ∪ A3 ∪ . . .∈ B for A1, A2, A3, . . .∈ B (σ -algebra of probability space; it
is a non-empty family of all considered random events, which are sets of elementary
events from Ω)

P from triplet (Ω , B, P) (see thereinbefore), where (i) P(Ω) = 1; (ii) P(A) ≥ 0 for
A ∈ B; (iii) P

(⋃∞
i=1 Ai

) = ∑∞
i=1 P(Ai) for mutually disjoint A1, A2, A3, . . .∈ B

(probability (or strictly speaking probability measure) of probability space)

⎧
⎨

⎩

P
(⋂∞

k=1
⋃∞

i= k Ai
) = 0 for

∑∞
i=1

P(Ai) <∞
= 1 for

∑∞
i=1

P(Ai) = ∞ with mutually disjoint A1, A2, . . .∈ Ω
(Borel–Cantelli lemma: the corresponding probability can be interpreted as P{ω : ω
∈ Ai for infinite number of i})

26.2 Conditional Probability and Independent Events

P(A|B) = P(A ∩ B)

P(B)

(conditional probability of event A given event B, where P(B) > 0)

P(B) =
n∑

i=1

P(Ai) · P(B|Ai) ,

where A1, . . . , An are disjoint, and their union is certain event (total probability rule)
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P(Ak |B) = P(Ak) · P(B |Ak)
n∑

i=1
P(Ai) · P(B |Ai)

, k = 1, . . . , n,

where A1, . . . , An are disjoint, and their union is certain event (Bayes Theorem)

P(A ∩ B) = P(A) · P(B) (independent events A and B)

P(Ai1 ∩ . . .∩ Air ) = P(Ai1 ) · . . . ·P(Air ), 1 ≤ i1 < . . . < ir (independent events A1, A2, . . .)

P(A|B) = P(A),

where A and B are independent events and P(B) > 0

26.3 Random Variables and Their Basic Characteristics

{ω : X(ω) ≤ x} ∈ B for x ∈ R

(random variable X: is measurable (see thereinbefore) real function X: Ω → R on
probability space (Ω , B, P) (see Sect. 26.1); the smallest σ -algebra, for which X is
measurable, is called σ -algebra generated by random variable X and is denoted
σ (X)⊂B (analogously one can define σ -algebra generated by more random
variables))

F(x) = P(X ≤ x), x ∈ R

(distribution function of random variable X: F(x) is non-decreasing and continuous
from the right)

lim
x→−∞F(x) = 0; lim

x→∞F(x) = 1

P(a < X ≤ b) = F(b)− F(a); P(X = a) = F(a)− F(a− 0), a, b ∈ R; a < b

F(x) =
∑

xj≤x

pj

(distribution function of discrete random variable with pj = P(X = xj),
∑

xj

pj = 1)

F(x) =
x∫

−∞
f (t) dt

(distribution function of continuous random variable with probability density f)
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P(a < X ≤ b) =
b∫

a

f (x) dx, a, b ∈ R; a < b,

where X has the probability density f(x)

E(X) =
∫




X dP(ω)

(mean value of random variable: general definition of mean value as the integral
of X with respect to a probability measure P; the existence of finite mean value is
equivalent with integrability of X with respect to P)

E(X) =
∑

xj

xj · pj

(mean value of discrete random variable: “average of this variable”, see Sect. 27.5)

E(X) =
∞∫

−∞
x · f (x) dx

(mean value of continuous random variable: “average of this variable”)

E (g(X)) =
∑

xj

g(xj)pj; E (g(X)) =
∞∫

−∞
g(x)f (x) dx,

where g is a function of random variable X

var(X) = E
(
(X − E(X))2

)
= E(X2)− (E(X))2 (variance, see Sect. 27.6)

σ (X) = √var(X)

(standard deviation: “average deviation from average”, see Sect. 27.6)

E (|X − EX|) (mean deviation)

V(X) =
√

var(X)

|E(X)|
(coefficient of variation: “relative standard deviation with respect to average”, see
Sect. 27.6)
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γ1 = E (X − E(X))3

σ 3

(skewness: “distinction in concentration of higher and lower values”, see Sect. 27.7)

γ2 = E (X − E(X))4

σ 4
− 3

(kurtosis: “distinction in concentration of inner and outer values”, see Sect. 27.7)

μ′k = E(Xk), k ∈ N0 (kth moment : μ′0 = 1, μ′1 = EX)

μk = E (X − E(X))k, k ∈ N0

(kth central moment: μ0 = 1, μ1 = 0, μ2 = var(X))

μk =
k∑

j= 0

(
k
j

)

(−μ′1) jμ′k−j; μ′k =
k∑

j= 0

(
k
j

)

(μ′1) jμk−j, k ∈ N0

F(xp − 0) ≤ p, F(xp) ≥ p, 0 < p < 1

(p-quantile xp of random variable: “it separates 100p% lower values from 100·
(1 – p) % higher values”, see Sect. 27.4)

P(X ≤ xp) = p, 0 < p < 1

(p-quantile xp of continuous random variable, see Sect. 27.4)

x0, 5 (median: “50% quantile”, see Sects. 27.4 and 27.5)

x0, 25 (lower quartile, see Sect. 27.4); x0, 75 (upper quartile, see Sect. 27.4)

xk/10, k= 1, . . . , 9 (kth decile); xk/100, k= 1, . . . , 99 (kth percentile, see Sect. 27.4)

x0, 75 – x0, 25 (interquartile range, see Sect. 27.6); x0, 9 − x0, 1 (interdecile range,
see Sect. 27.6)

P(X = x̂) ≥ P(X = xj) for all xj

(mode x̂ of discrete random variable with pj = P(X = xj),
∑

xj

pj = 1, see Sect. 27.5)

f (x̂) ≥ f (x) for all x

(mode x̂ of continuous random variable with probability density f(x), see Sect. 27.5)
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m(t) = E
(
et·X) , t ∈ R (moment generating function)

μ′k = m(k)(0), k ∈ N0,

where μ′k is kth moment and m(k)(·) is kth derivative of moment generating function

26.4 Important Discrete Distributions

P(X = x) =
(

n
x

)

px(1− p)n−x, x = 0, 1, . . . , n

(binomial distribution B(n, p) with parameters n∈N, p∈(0, 1): E(X) = np; var(X) =
np(1− p); γ1 = 1−2p√

np(1−p)
; γ2 = 1−6p(1−p)

np(1−p)

)

P(X = x) =
{

pr, x = 0
(r+x−1)(r+x−2)... r

x! pr(1− p)x, x = 1, 2, . . .

(negative binomial distribution NB(n, p) with parameters r > 0, p∈(0, 1): E(X) =
r(1−p)

p ; var(X) = r(1−p)
p2 ; γ1 = 2−p√

r(1−p)
; γ2 = p2−6p+6

r(1−p)

)

P(X = x) = p(1− p)x, x = 0, 1, . . .

(geometric distribution with parameter p∈(0, 1): is the negative binomial distribu-
tion with parameters r = 1 and p∈(0, 1))

P(X = x) = e−λ λ
x

x! , x = 0, 1, . . .

(Poisson distribution P(λ) with intensity λ > 0: E (X) = λ; var (X) = λ; γ1 =
1/
√
λ; γ2 = 1/λ)

P(X = x) =
∞∫

−∞
e−ϑ ϑ

x

x! dF(ϑ), x = 0, 1, . . .

(mixed Poisson distribution with distribution function F(ϑ) of random intensityΘ:
– for Θ constant with P(Θ = λ) = 1: Poisson distribution with intensity λ
– for Θ with gamma distribution with parameters p/(1 − p) and r (see Sect. 26.5):

negative binomial distribution with parameters r and p)
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P(X = x) = 1

|log q| ·
px

x
, x = 1, 2, . . .

(logarithmic distribution with parameter p ∈ (0, 1), where q = 1− p: E(X) =
1

|log q|
p
q ; var(X) = 1

(log q)2
p
q2 (|log q|− p) ; γ1 = (1+p)(log q)2−3pq |log q|+2p2

√
p(|log q|−p)3/2

)

26.5 Important Continuous Distributions

f (x) = 1√
2πσ

exp

(

− (x− μ)2

2σ 2

)

, x ∈ R

(normal distribution N(μ, σ 2) with parameters μ ∈ R, σ 2 > 0: E(X) = μ; γ1 = 0;

γ2 = 0; P(a ≤ X ≤ b) = Φ
(

b−μ
σ

)
− Φ

( a−μ
σ

)
; P(|X − μ| ≤ a) = 2Φ

( a
σ

) − 1;

P(|X − μ| > kσ ) =
⎧
⎨

⎩

0.317 3 for k = 1
0.045 5 for k = 2
0.002 7 for k = 3

⎞

⎠

f (x) = ϕ(x) = 1√
2π

exp

(

−x2

2

)

, x ∈ R

(standard normal distribution N(0, 1): F(x) = �(x) =
x∫

−∞
1√
2π

exp
(
− t2

2

)
dt;

E(X) = 0; var(X) = 1; γ1 = 0; γ2 = 0; p-quantiles up (i.e. P(X ≤ up) = p,
0 < p < 1) are tabulated)

f (x) = 1√
2πσx

exp

(

− (ln x− μ)2

2σ 2

)

, x > 0

(logarithmic normal distribution LN(μ, σ 2) with parameters μ ∈ R, σ 2 > 0:

X = exp (Z) for Z ∼ N
(
μ, σ 2

)
; E(X) = exp

(
μ+ σ 2

2

)
; var(X) = exp

(
2μ+ σ 2

)×
(
exp(σ 2)− 1

)
; γ1 =

(
exp(σ 2)+ 2

)√
exp(σ 2)− 1; γ2 = exp(4σ 2) + 2 exp(3σ 2)+

3 exp(2σ 2)− 6
)

f (x) = 1

b− a
, a ≤ x ≤ b

(uniform distribution with parameters a, b ∈ R (a < b): E(X) = a+b
2 ; var(X) =

(b−a)2

12 ; γ1 = 0; γ2 = − 6
5

)
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f (x) = λ e−λ·x, x ≥ 0

(exponential distribution Exp(λ) with parameter λ > 0: F(x) = 1− e−λ·x for x ≥ 0;
E(X) = 1/λ; var(X) = 1/λ2; γ1 = 2; γ2 = 6; P(X > t + s |X > s ) = P(X > t)
for s, t > 0)

f (x) = λ

2
e−λ·|x−a|, x ∈ R

(double exponential distribution with parameters a ∈ R, λ > 0: E(X) = a; var(X) =
2/λ2; γ1 = 0; γ2 = 3)

f (x) = λa

�(a)
xa−1 e−λ·x, x ≥ 0

(gamma distribution Γ (a, λ) with parameters a > 0, λ > 0: E(X) = a/λ; var(X) =
a/λ2; γ1 = 2/

√
a; γ2 = 6/a; Erlang distribution: is gamma distribution with

a ∈ N; χ2(n) distribution: is gamma distribution with a = n/2, λ = 1/2)

f (x) = 1

B(p, q)
xp− 1(1− x)q− 1, 0 < x < 1

(beta distribution with parametersp> 0,q>0: E(X) = p
p+q ; var(X) = pq

(p+q)2(p+q+1)

)

f (x) = aλaxa−1 exp
(−λax a), x > 0

(Weibull distribution with parameters a > 0, λ > 0: E(X) = 1
λ
Γ
(

a+1
a

)
; var(X) =

1
λ2

(
Γ
(

a+2
a

)
− Γ 2

(
a+2

a

))
; Exp(λ): is Weibull distribution with a = 1; Rayleigh

distribution: is Weibull distribution with a = 2)

f (x) = 1

π
· b

b2 + (x− a)2
, x ∈ R

(Cauchy distribution with parameters a ∈ R, b > 0: has no moments (i.e. mean value,
variance, etc.))

f (x) = 1

π
· 2b

b2 + (x− a)2
, x ≥ a

(one-sided Cauchy distribution with parameters a ∈ R, b > 0: has no moments (i.e.
mean value, variance, . . .))
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f (x) = bab

xb+ 1
, x ≥ a

(Pareto distribution with parameters a > 0, b > 0:

E(X) = ab

b− 1
for b > 1; var(X) = a2b

(b− 1)2(b− 2)
for b > 2;

γ1(X) = 2
√

b− 2 (b+ 1)√
b(b− 3)

for b > 3

)

f (x) = 1

2n/2�(n/2)
xn/2−1e−x/2, x > 0

(χ2 distribution with n ∈ N degrees of freedom χ2(n): E(X) = n; var(X) = 2n;
X2

1+ . . .+X2
n for independent random variables X1, . . . , Xn with distribution N(0, 1)

has the distribution χ2(n); p-quantiles χ2
p (n) (i.e. P(X ≤ χ2

p (n)) = p, 0 < p < 1) are
tabulated)

f (x) =
Γ
(

n+1
2

)

√
πn �(n/2)

(

1+ x2

n

)− n+ 1
2

, x ∈ R

(t distribution (Student’s) with n degrees of freedom t(n):

E(X) = 0 for n > 1; var(X) = n
n−2 for n > 2; X/

√
Y/n for independent

random variables X and Y with distribution N(0, 1) and χ2(n) has the distribution
t(n); p-quantiles tp(n) (i.e. P(X ≤ tp(n)) = p, 0 < p < 1) are tabulated)

f (x) = 1

B(n1/2, n2/2)

(
n1

n2

) n1
2

x
n1
2 − 1

(

1+ n1

n2
x

)− n1+ n2
2

, x > 0

(F distribution (Fisher–Snedecor) with n1 and n2 degrees of freedom F(n1,n2):

E(X) = n2
n2−2 for n2 > 2; var(X) = 2n2

2(n1+n2−2)
n1(n2−2)2(n2−4)

for n2 > 4; (X/n1)/(Y/n2) for

independent random variables X and Y with distribution χ2(n1) and χ2(n2) has the
distribution F(n1,n2); p-quantiles Fp(n1,n2) (i.e. P(X ≤ Fp(n1, n2)) = p, 0 < p < 1)
are tabulated)

26.6 Random Vectors and Their Basic Characteristics

F(x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn), x1, . . . , xn ∈ R

(distribution function of random variables X1, . . . , Xn: non-decreasing and continu-
ous from the right in each of its arguments xi)
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lim
xj→−∞

F(x1, . . . , xn) = 0, j = 1, . . . , n; lim
x1→∞, ... , xn→∞

F(x1, . . . , xn) = 1

P(a1 < X ≤ b1, . . . , an < X ≤ bn) =
∑

δ1, ... , δn

(−1)

n∑

i=1
δi

F(c1, . . . , cn),

ai, bi ∈ R; ai < bi (i = 1, . . . , n), where ci = δiai + (1− δi)bi; δi = ±1

P(a1 < X1 ≤ b1, a2 < X2 ≤ b2) = F(b1, b2)−F(a1, b2)−F(a2, b1)+F(a1, a2),

ai, bi ∈ R; ai < bi (i = 1, 2)

F(x1, . . . , xn) =
x1∫

−∞
. . .

xn∫

−∞
f (t1, . . . , tn) dt1 . . . dtn

(distribution function of continuous random variables with probability density
f(x1, . . . , xn))

P(a1 < X ≤ b1, . . . , an < X ≤ bn) =
b1∫

a1

. . .

bn∫

an

f (x1, . . . , xn) dx1 . . . dxn,

ai, bi ∈ R; ai < bi (i = 1, . . . , n)

F1(x1) = lim
x2→−∞

F(x1, x2); F2(x2) = lim
x1→−∞

F(x1, x2)

(marginal distribution functions)

P(X1 = x1) =
∑

x2

P(X1 = x1, X2 = x2); P(X2 = x2) =
∑

x1

P(X1 = x1, X2 = x2)

(marginal probability functions of discrete random variables)

f1(x1) =
∞∫

−∞
f (x1, x2) dx2; f2(x2) =

∞∫

−∞
f (x1, x2) dx1

(marginal probability densities of continuous random variables)

P(X1 = x1| X2 = x2) =
{

P(X1 = x1, X2 = x2)/P(X2 = x2), P(X2 = x2) �= 0
0, P(X2 = x2) = 0

(conditional probability function of discrete random variable)
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f (x1 |x2) =
{

f (x1, x2)/f2(x2), f2(x2) �= 0
0, f2(x2) = 0

(conditional probability density of continuous random variable)

F(x1, . . . , xn) = F(x1) · . . . · F(xn), x1, . . . , xn ∈ R

(distribution function of independent random variables X1, . . . , Xn)

E(Xk1
1 · . . . · Xkn

n ) = E(Xk1
1 ) · . . . · E(Xkn

n ), k1, . . . , kn ∈ N0,

where random variables X1, . . . , Xn are independent

cov(X, Y) = E ((X − E(X)) (Y − E(Y))) = E(XY)− E(X) · E(Y)

(covariance, see Sect. 27.8)

ρ(X, Y) = cov(X, Y)√
var(X)var(Y)

(correlation coefficient: −1 ≤ ρ(X, Y) ≤ 1; ρ(X, Y) = 0 for independent X and Y;

ρ(X, Y) = 1, if and only if Y = aX + b a.s. for a > 0;

ρ(X, Y) = −1, if and only if Y = aX + b a.s. for a < 0, see Sect. 27.8)

ρ(X, Y) = 0 (or equivalently, cov(X, Y) = 0)

(uncorrelated random variables, see Sect. 27.8)

�xx =
(
cov(Xi, Xj)

)
i=1,..., n
j=1,..., n

(covariance matrix of random variables X1, . . . , Xn, see Sect. 27.8)

Rxx =
(
ρ(Xi, Xj)

)
i=1,..., n
j=1,..., n

(correlation matrix of random variables X1, . . . , Xn, see Sect. 27.8)

P(X1 = x1, . . . , Xk = xk) = n!
x1! . . . xk!p

x1
1 . . . pxk

k , xj = 0, 1, . . . , n; x1 + . . .+ xk = n

(k-variate multinomial distribution with parameters n∈N, pj ∈ (0, 1), p1 + . . .

+ pk = 1: E(Xj) = npj; var(Xj) = npj(1 − pj); cov(Xi, Xj) = −npipj for i �= j)
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f (x1, . . . , xn) = 1

(2π )n/2 |�|1/2

× exp

(

−1

2
(x− μ)′�− 1(x− μ)

)

, x = (x1, . . . , xn)′ ∈ Rn

(n-variate normal distribution N(μ, �) with parameters μ ∈ Rn, � > 0:

E(Xi) = μi; cov(Xi, Xj) = σ ij; ( X1, . . . , Xn) has n-variate normal distribution, if
and only if the random variable c1X1 + . . . + cnXn has the normal distribution for
arbitrary c1, . . . , cn ∈ R)

f (x)= 1

2πσ1σ2

√
1− ρ2

×exp

(

− 1

2(1− ρ2)

(
(x1 − μ1)2

σ 2
1

− 2ρ
(x1 − μ1)(x2 − μ2)

σ1σ2
+ (x2 − μ2)2

σ 2
2

))

,

x1, x2 ∈ R

(bivariate normal distribution with parametersμ1,μ2 ∈R; σ 2
1 , σ 2

2 >0; ρ∈ (−1, 1) :
E(X1) = μ1; E(X2) = μ2; var(X1) = σ 2

1 ; var(X2) = σ 2
2 ; cov(X1, X2) = σ1σ2ρ)

26.7 Transformation of Random Variables

Z = aX + b : q(z) = 1

|a| f
(

z− b

a

)

, z ∈ R,

where X and Z have densities f(x) and q(z); a �= 0

Z = X2 : q(z) = 1

2
√

z

(
f
(√

z
)+ f

(−√z
))

, z > 0,

where X and Z have densities f(x) and q(z)

Z = |X| : q(z) = f (z)+ f (−z), z ≥ 0,

where X and Z have densities f(x) and q(z)

Z = eX : q(z) = 1

|z| f (ln z), z > 0,

where X and Z have densities f(x) and q(z)
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Z = 1/X : q(z) = 1

z2
f

(
1

z

)

, z �= 0,

where X and Z have densities f(x) and q(z)

Z = √X : q(z) = 2zf
(

z2
)

, z ≥ 0,

where non-negative X and Z have densities f(x) and q(z)

Z = ln X : q(z) = ezf
(
ez), z ∈ R,

where positive X and real Z have densities f(x) and q(z)

Z = X + Y : q(z) =
∞∫

−∞
f (x)g(z− x) dx =

∞∫

−∞
f (z− y)g(y) dy, z ∈ R,

where X, Y and Z have densities f(x), g(y) and q(z)

Z = XY : q(z) =
∞∫

−∞

1

|x| f (x)g
( z

x

)
dx =

∞∫

−∞

1

|y| f
(

z

y

)

g(y) dy, z ∈ R,

where X, Y and Z have densities f(x), g(y) and q(z)

Z = X/Y : q(z) =
∞∫

−∞
|y| f (yz) g(y) dy, z ∈ R,

where X, Y and Z have densities f(x), g(y) and q(z)

26.8 Conditional Mean Value

E (X |Y )
(conditional mean value of integrable (see Sect. 26.3) random variable X in proba-
bility space (Ω , B, P) with respect to σ -algebra Y (Y ⊂ B): E (X |Y ) is integrable
random variable in probability space (Ω , Y, P) fulfilling

∫

A

E(X |Y ) dP =
∫

A

X dP for all A ∈ Y)
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E (X |Y )
(conditional mean value of random variable X in probability space (Ω , B, P) with
respect to random variable Y: E (X |Y ) is E (X |Y ) for σ -algebra Y= σ (Y) generated
by random variable, see Sect. 26.3)

E (X |B ) = E (X |X ) = X a.s.; E (X | {∅, Ω} ) = E(X) a.s.

E (E (X |Y )|Z ) = E(X |Z ) a.s., where Z ⊂ Y

E (a0 + a1X1 + a2X2 |Y ) = a0 + a1E (X1 |Y )+ a2E (X2 |Y ) a.s., a0, a1, a2 ∈ R

E (E (X |Y )) = E(X)

E (g(Y) · X |Y ) = g(Y) · E (X |Y ) a.s.,

where g is a measurable function of random variable Y

E (X |Y ) = E(X),

where X and Y are independent random variables

P (A |Y )
(conditional probability of random event A ∈ B in probability space (Ω , B, P) with
respect to random variable Y: P (A |Y ) is E (IA |Y ) for indicator IA of event A (i.e.
IA (ω) = 1 for ω ∈ A and IA (ω) = 0 for ω /∈ A))

f = dQ

dP
, where Q(A) = ∫

A
f dP for arbitrary event A ∈ B

(Radon–Nikodym derivative of Q with respect to P: if a probability measure Q in
space (Ω , B) is dominated by a probability measure P in the same space (Ω , B)
(i.e. P(A) = 0 implies Q(A) = 0), then there exists a non-negative random variable f
in (Ω , B) (uniquely except for a zero probability set), which has the property given
thereinbefore)

26.9 Martingales

{(Xt,�t), t ≥ 0},

where random variables Xt and σ-algebras �t ⊂ B in (Ω , B, P) fulfil:
(i) �t ⊂ �T for 0 ≤ t ≤ T (the so-called filtration: �t is the total of information up

to time t)
(ii) Xt are measurable with respect to �t (i.e. Xt are adapted with respect to �t)

(iii) Xt are integrable, i.e. E(|Xt|) <∞
(iv) E (XT |�t ) = Xt for 0 ≤ t ≤ T (one writes simply Et(XT) = Xt)

(martingale: is a stochastic process (see Sect. 30.1), which has properties
(i)–(iv) for given filtration {�t} and probability P (one can also define martingale



26.9 Martingales 297

at discrete time as a stochastic sequence); the key property (iv) can be rewritten to
the form Et(XT − Xt) = 0, i.e. the expected future change of martingale is zero, so
that one cannot expect that martingale will increase or decrease systematically in
future (the best prediction of its future value is its current value): this fact is suitable
when modeling financial assets; if there is inequality Et(XT) ≥ Xt (or Et(XT) ≤ Xt)
in (iv), then one has submartingale (or supermartingale, respectively); continuous
martingale has trajectories (see Sect. 30.1), which are continuous at time; martingale
can be continuous from right only if its trajectories are continuous with exception
of jumps that are continuous from the right; quadratically integrable martingale
has E(Xt

2) < ∞; trajectories of quadratically integrable continuous martingale in
an infinite time interval have infinite variations, finite quadratic variations and zero
variations of the higher than second order (e.g. the quadratic variation is the limit
value of sum of squares of increments of a given trajectory when one refines more
and more the partition of the given time interval)

{(E(Y |�t ),�t), t ≥ 0},
where Y is integrable random variable in (Ω , B, P) (example of martingale (in
particular, Y can be constant))

{(Y0 + Y1 + . . .+ Yn, σ (Y1, . . . , Yn)), n ∈ N0},
where {Yn} is a sequence of independent random variables with zero mean value in
(Ω , B, P) and Y0 = 0; it is called in this context process of martingale differences
(σ (Y1, . . . , Yn) is σ -algebra generated by random variables Y1, . . . , Yn, see Sect.
26.3) (example of martingale)

{(|Xt| ,�t), t ≥ 0},
where {(Xt,�t), t ≥ 0} is martingale (example of submartingale)

{(Wt, σ (Wt)), t ≥ 0},
where {Wt} is Wiener process (see Sect. 30.4) (example of martingale)

{(
W2

t − t, σ (Wt)
)

, t ≥ 0
}

,

where {Wt} is Wiener process (see Sect. 30.4) (example of martingale)

{(
eα·Wt− (α2/2)·t, σ(Wt)

)
, t ≥ 0

}
,

where {Wt} is Wiener process (see Sect. 30.4) and α ∈ R (example of martingale)
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{(Nt − λ · t, σ (Nt)), t ≥ 0},
where {Nt} is Poisson process with intensity λ (see Sect. 30.4) (example of
martingale continuous from right)

Xt = Mt + It

(submartingale {Xt,�t} continuous from right can be decomposed to a martingale
{Mt,�t} continuous from right and to a process {It} measurable with respect to {�t}
with non-decreasing trajectories)

(Doob–Meyer decomposition)

26.10 Generating Function

gN(z) = E(zN) =
∞∑

j=0

P(N = j) · z j, |z| ≤ 1

(generating function of discrete random variable N with

pj = P(N = j);
∑

j

pj = 1, j = 0, 1, . . .)

P(N = j) = 1

j! g(j)
N (0), j = 0, 1, . . .

EN = g′N(1); varN = g′′N(1)+ g′N(1)− (g′N(1)
)2

gN1,..., Nn(z1, . . . , zn) = E(zN1
1 . . . zNn

n )

=
∞∑

j1=0

. . .

∞∑

jn=0

P(N1 = j1, . . . , Nn = jn) · zj1
1 . . . .zjn

n , |z1| , . . . , |zn| ≤ 1

(generating function of discrete random variables N1, . . . , Nn)

P(N1 = j1, . . . , Nn = jn) = ∂ j1 + ... + jn

∂z j1
1 . . . ∂z jn

n

gN1,..., Nn (0, . . . , 0), j1, . . . , jn ∈ N0

E(Ni) = ∂

∂zi
gN1,..., Nn(1, . . . , 1), i = 1, . . . , n

cov(Ni, Nj) = ∂2

∂zi∂zj
gN1,..., Nn (1, . . . , 1)
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− ∂

∂zi
gN1,..., Nn (1, . . . , 1) · ∂

∂zj
gN1,..., Nn (1, . . . , 1), i, j = 1, . . . , n

gN1 + ... + Nn (z) =
n∏

i=1

gNi (z), |z| ≤ 1,

where random variables N1, . . . , Nn are independent

mX(z) = E
(
ez ·X), z ∈ R (moment generating function of random variable X)

E
(

Xk
)
= m(k)

X (0), k ∈ N0

mN(z) = gN(ez); gN(z) = mN(ln z),

where N is discrete random variable

mX(z) = 1+ z

∞∫

0

(1− F(x)) ez·xdx, z ∈ R,

where X is non–negative random variable with distribution function F(x)

mX1,..., Xn (z1, . . . , zn) = E
(
ez1X1+...+ znXn

)
, z1, . . . , zn ∈ R

(moment generating function of random variables X1, . . . , Xn)

E(Xk1
1 · . . . · Xkn

n ) = ∂k1+...+ kn

∂zk1 . . . ∂zkn
mX1,..., Xn (0, . . . , 0), k1, . . . , kn ∈ N0

cov(Xi, Xj) = ∂2

∂zi∂zj
ln mX1,..., Xn (0, . . . , 0), i, j = 1, . . . , n

mX1 + ... + Xn(z) =
n∏

i=1

mXi (z), z ∈ R,

where random variables X1, . . . , Xn are independent
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26.11 Convolutions and Sums of Random Variables

p(j) = (p1 ∗ p2)(j) =
∞∑

i=0

p1(j− i)p2(i) =
∞∑

i=0

p2(j− i)p1(i), j = 0, 1, . . .

(convolution of counting densities p1 and p2 of discrete random variables N1 and
N2, where

p1(j) = P(N1 = j),
∑

j
p1(j) = 1,

p2(j) = P(N2 = j),
∑

j
p2(j) = 1, j = 0, 1, . . . :

is the counting density of sum of independent random variables N1 + N2)

F(x) = (F1 ∗ F2)(x) =
∞∫

−∞
F1(x− y) dF2(y) =

∞∫

−∞
F2(x− y) dF1(y), x ∈ R

(convolution of distribution functions F1 and F2 of random variables X1 and X2: is
the distribution function of sum of independent random variables X1 + X2)

f (x) = (f1 ∗ f2)(x) =
∞∫

−∞
f1(x− y) df2(y) =

∞∫

−∞
f2(x− y) df1(y), x ∈ R

(convolution of probability densities f1 and f2 of random variables X1 and X2: is the
probability density of sum of independent random variables X1 + X2)

p∗n = p∗(n− 1) ∗ p; F∗n = F∗(n− 1) ∗ F; f ∗n = f ∗(n− 1) ∗ f , n = 2, 3, . . .
(convolution powers: p∗1 = p, F∗1 = F, f ∗1 = f )

p∗n(0) = (p(0))n ,

p∗n(j) = 1

j · p(0)

j∑

i=1

((n+ 1) · i− j) · p(i) · p∗n(j− i), j = 1, 2, . . . ,

where p(0) > 0

B(n1, p) ∗ B(n2, p) = B(n1 + n2, p), n1, n2 ∈ N; p ∈ (0, 1)

P(λ1) ∗ P(λ2) = P(λ1 + λ2), λ1, λ2 > 0
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N(μ1, σ 2
1 ) ∗ N(μ2, σ 2

2 ) = N(μ1 + μ2, σ 2
1 + σ 2

2 ), μ1, μ2 ∈ R; σ 2
1 , σ 2

2 > 0

Γ (a, λ1) ∗ Γ (a, λ2) = Γ (a, λ1 + λ2), a, λ1, λ2 > 0

(Exp(λ))∗n = Γ (n, λ), n ∈ N; λ > 0

26.12 Random Sums of Random Variables

FS(x) =
∞∑

j=0

P(N = j) · F∗j
X (x), x ∈ R,

where S = X1 + . . . + XN is a sum of random number N of independent and identi-
cally distributed (iid) random variables X1, . . . , XN, which have distribution function
FX and are independent of N

E(S) = E(N) · E(X), var(S) = E(N) · var(X)+ var(N) · (E(X))2 ,

where S = X1 + . . . + XN is a sum of random number N of independent and identi-
cally distributed random variables X1, . . . , XN, which have moments E(X) and var(X)
and are independent of N

S ∼ CP(λ, FX),

where S = X1 + . . . + XN is a sum of random number N of independent and iden-
tically distributed random variables X1, . . . , XN, which have distribution function
FX(x) and are independent of N ∼ P(λ)
(compound Poisson distribution with intensity λ > 0:

FS =
∞∑

j= 0
e−λ λ j

j! F∗j
X (x) (see Sect. 26.11); E(S) = λ · E(X); var(X) = λ · E (X2

)
;

γ1 = E
(
X3
)

(
λ · (E (X2

)) 3
)1/2

; γ2 = E
(
X4
)

λ · (E (X2
)) 2

26.13 Some Inequalities

P (X > λ · E(X)) ≤ 1/λ,

where X is positive; E(X) <∞; λ > 1 (Markov Inequality)
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P (|X − E(X)| ≥ ε) ≤ var(X)

ε2
,

where E(X2) <∞; ε > 0 (Chebyshev Inequality)

P (X − E(X) ≥ ε) ≤ var(X)

var(X)+ ε2
,

where E(X2) <∞; ε > 0 (one-sided Chebyshev Inequality)

E (g(X)) ≥ g (E(X)),

where E(|X|) <∞; g is convex (see Sect. 22.3) function

(Jensen Inequality)

E (g(X)) ≤ g (E(X)),

where E(|X|) <∞; g is concave function

(Jensen Inequality)

P

(

max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

(Xi − E(Xi))

∣
∣
∣
∣
∣
≥ ε

)

≤

n∑

i=1
var(Xi)

ε2
,

where X1, . . . , Xn are independent; E(Xi
2) <∞; ε > 0 (Kolmogorov Inequality)

|Fn(x)−Φ(x)| ≤ A
E
(|X1 − μ|3)
σ 3
√

n
, x ∈ R,

where X1, . . . , Xn are independent and identically distributed; E(Xi) = μ;
var(Xi)= σ 2; E(|X1

3|) <∞; Fn(x) is distribution function of
∑n

i=1 (Xi − μ)/(σ
√

n);
A is a constant independent of x

(Berry–Essén Inequality)

26.14 Limit Theorems of Probability Theory

lim
n→∞P ( |Xn − X| ≥ ε) = 0,

where ε > 0 is arbitrary (convergence in probability Xn
P→X)
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lim
n→∞P

(∣
∣
∣
∣
∣

1

n

n∑

i=1

Xi − p

∣
∣
∣
∣
∣
≥ ε

)

= 0,

where independent Xi’s have distribution B(1, p), and ε > 0 is arbitrary

(Weak Law of Large Numbers: Bernoulli Theorem)

lim
n→∞P

(∣
∣
∣
∣
∣

1

n

n∑

i=1

Xi − μ

∣
∣
∣
∣
∣
≥ ε

)

= 0,

where independent Xi’s are identically distributed with mean value μ, and ε > 0 is
arbitrary

(Weak Law of Large Numbers: Khintchine Theorem)

lim
n→∞P

(∣
∣
∣
∣
∣

1

n

n∑

i=1

Xi − 1

n

n∑

i=1

E(Xi)

∣
∣
∣
∣
∣
≥ ε

)

= 0,

where independent Xi’s fulfil lim
n→∞

1
n

(
n∑

i=1
var(Xi)

)1/2

= 0, and ε > 0 is arbitrary

(Weak Law of Large Numbers: Markov Theorem)

P
(

lim
n→∞Xn = X

)
= 1

(convergence almost surely Xn → X a.s. (or with probability one))

P

(

lim
n→∞

1

n

n∑

i=1

Xi = μ

)

= 1,

where independent Xi’s are identically distributed with mean value μ

(Strong Law of Large Numbers: Kolmogorov Theorem)

lim
n→∞Fn(x) = F(x)

(convergence in distribution (weak convergence) L(Xn) → L(X): distribution func-
tion Fn of random variables Xn converges to distribution function F of random
variable X at every point x of continuity of the function F)
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lim
n→∞

∫ ∞

−∞
f (x) dFn(x) =

∫ ∞

−∞
f (x) dF(x)

for arbitrary real continuous bounded function f

(convergence in distribution (weak convergence) L(Xn) → L(X): an equivalent
definition)

L

(
1√

np(1− p)

(
n∑

i=1

Xi − np

))

→ N(0, 1),

where independent Xi’s have distribution B(1, p)

(Central Limit Theorem: Moivre–Laplace Theorem)

L

(
1

σ
√

n

(
n∑

i=1

Xi − nμ

))

→ N(0, 1),

where independent Xi’s are identically distributed with mean value μ and
variance σ 2

(Central Limit Theorem: Lévy–Lindeberg Theorem)

L

(
1

(∑n
i=1 var(Xi)

)1/2

(
n∑

i=1

Xi −
n∑

i=1

E(Xi)

))

→ N(0, 1),

where independent Xi’s are identically distributed with mean value μ and variance

σ 2 and fulfil lim
n→∞

n∑

i=1
E
( |Xi − E(Xi)|k

)
/(

n∑

i=1
var(Xi)

)k/2

= 0 for a real k > 2

(Central Limit Theorem: Lyapunov Theorem)

lim
n→∞E

(
(Xn − X)2

)
= 0

(convergence in the mean square Xn
L2→X for E

(
X2

n

)
<∞; n ∈ N)

Xn
L2→X ⇒ Xn

P→X ⇒ L (Xn)→ L (X), Xn → X a.s. ⇒ Xn
P→X
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Chapter 27
Descriptive and Mathematical Statistics

Abstract Chapter 27 deals with basic theory and practical methods of statistical
inference: 27.1. Sampling Theory: Simple Random Sample, 27.2. Sampling Theory:
Stratified Random Sample, 27.3. Elementary Statistical Treatment, 27.4. Sample
Quantiles, 27.5. Measures of Sample Level, 27.6. Measures of Sample Variability,
27.7. Measures of Sample Concentration, 27.8. Measures of Sample Dependence,
27.9. Point and Interval Estimators, 27.10. Hypothesis Testing, 27.11. Regression
Analysis, 27.12. Analysis of Variance (ANOVA), 27.13. Multivariate Statistical
Analysis.

27.1 Sampling Theory: Simple Random Sample

P = 1/

(
N
n

)

(probability that a sample S of size n ∈ N will be selected from a population of
size N ∈ N (n ≤ N), when one applies simple random sampling (it means that each
individual (or statistical unit) has the same probability of being chosen at any stage
during the sampling process); simple random sample can be obtained by random
sampling without replacement when an individual is chosen from the population of
N individuals randomly with the same probability 1/N, then another individual is
chosen from the population of N − 1 remaining individuals with the same probabil-
ity1/(N − 1), etc.; in practice, samples are collected usually, when one observes a
statistical attribute yi of individuals in a given population (i = 1, . . . , N))

p = n/N

(probability that a given individual of the population is selected as an element of the
sample)

307T. Cipra, Financial and Insurance Formulas, DOI 10.1007/978-3-7908-2593-0_27,
C© Springer-Verlag Berlin Heidelberg 2010
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Ȳ = 1

N

N∑

i=1

yi (population mean)

ȳ = 1

n

∑

i∈S

yi (sample mean : is unbiased estimate of population mean Ȳ)

σ 2 = 1

N

N∑

i=1

(yi − Ȳ)2 (population variance)

s2 = 1

n

∑

i∈S

(yi − ȳ)2 (sample variance)

ŝ2 = n(N − 1)

N(n− 1)
s2 is unbiased estimate of population variance σ 2

ȳ ∓
√

N − n

n · (N − 1)
· ŝ · uα/2

((1 – α)100% confidence interval for population mean Ȳ , where uα/2 is the quan-
tile of normal distribution for α ∈ (0, 1): it holds asymptotically under general
assumptions)

• Simple random sampling: see thereinbefore
• Random sampling with replacement: when the same individual is chosen again

then the corresponding draw is repeated (or the whole sampling process may be
repeated from beginning)

• Systematic random sampling: involves selection of individuals from an ordered
sampling frame, in which every kth element is selected

• Stratified random sampling (see Sect. 27.2): stratification is the process of group-
ing members of the population into relatively homogeneous subgroups (strata)
before sampling; the random sampling is then applied within each stratum

27.2 Sampling Theory: Stratified Random Sample

Ȳ = 1

N

L∑

i=1

NiȲi

(population mean, where population of N ∈ N individuals is divided into L disjoint
subgroups (strata) of sizes Ni (N1 + . . . + NL = 1) and Ȳi is the mean in the ith
strata)
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ȳ = 1

n

L∑

i=1

niȳi

(sample mean, where ȳi is the sample mean in the ith strata corresponding here to
a sample of size ni(n1 + . . . + nL = n): is unbiased estimate of population mean Ȳ
only for representative (quota) sample with ni/n = Ni/N, i = 1, . . . , L)

ŷ = 1

N

L∑

i=1

Niȳi

(unbiased estimate of population mean Ȳ; it has variance

var(ŷ) = 1

N2

L∑

i=1

N2
i ·

Ni − ni

Ni − 1
·σ

2
i

ni
,

where σ 2
i =

1

Ni

Ni∑

j=1

(
yij − ȳi

)2 is variance in the ith strata)

• Two-stage sample: it proceeds as a selection of strata in the first stage and a
sampling of individuals in each strata in the second stage

27.3 Elementary Statistical Treatment

x1, x2, . . . , xn

(sample observations of a statistical attribute xi ∈ R, which originate as realization
of a random sampling of size n ∈ N (in practice they are obtained as results of
measurements or experiments); some values among x1, x2, . . . , xn can repeat several
times, e.g. x2 = x5)

x(1) ≤ x(2) ≤ . . . ≤ x(n) (ordered sample)

(x1, y1), (x2, y2), . . . , (xn, yn) (bivariate sample observations)

pj = nj/n

(relative frequencies (j = 1, . . . , k,
∑k

j=1 nj = n): they apply when
– particular values repeat among observations (nj is the number of value xj)
– or one sorts the observation to k class intervals (cells) where the jth class

approximated by the value xj contains just nj observations;
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they may presented in the form of frequency tables:

Frequency Cumulative frequency

Values xj Absolute Relative Absolute Relative

x1 n1 p1 n1 p1
x2 n2 p2 n1 + n2 p1 + p2
...

...
...

...
...

xk nk pk n1 + n2 + . . . + nk p1 + p2 + . . . + pk

∑
n 1

or graphically by means of various graphical instruments: histograms, graphs (area,
bar, column, pie), boxplots (presenting minimal value, lower quartile, arithmetic
mean, median, upper quartile and maximal value of given observations, see Sects.
27.4 and 27.5), STEM-and-LEAF, correlation tables (for multivariate data) and
others)

27.4 Sample Quantiles

x̃p, 0 < p < 1

(p-quantile of sample observations x1, x2, . . . , xn: separates 100p% of low values in
ordered sample from 100(1 – p)% of high values, see Sect. 26.3)

x̃0,5 (median: “sample 50% quantile”, i.e. “middle value of sample”, see Sect. 26.3)

x̃0,25 (lower quartile, see Sect. 26.3); x̃0,75 (upper quartile, see Sect. 26.3)

x̃k/10, k= 1, . . . , 9 (kth decile, see Sect. 26.3); x̃k/100, k= 1, . . . , 99 (kth percentile,
see Sect. 26.3)

Fn(x) =
⎧
⎨

⎩

0 for x < x(1)
i/n for x(i) ≤ x < x(i+1),
1 for x ≥ x(n)

x ∈ R; x(1) ≤ x(2) ≤ . . . ≤ x(n) is ordered sample

(empirical distribution function: if n increases, then Fn(x) converges with prob-
ability one uniformly over all real x to the theoretical distribution function of
the probability distribution, from which the observed sample has been obtained
(Glivenko theorem))

27.5 Measures of Sample Level

x̄ = 1

n

n∑

i=1

xi ((arithmetic or sample) mean)

x̄G = n
√

x1 · . . . · xn, x1, . . . , xn > 0 (geometric mean)
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x̄H = n

1/x1 + . . .+ 1/xn
, x1, . . . , xn > 0 (harmonic mean)

x̄Q =
√
√
√
√1

n

n∑

i=1

x2
i (quadratic mean)

x̄ = 1

n

k∑

j=1

xjnj; x̄G = n
√

xn1
1 · . . . · xnk

k ;

x̄H = n

n1/x1 + . . .+ nk/xn
; x̄K =

√
√
√
√

1

n

n∑

j=1

x2
j nj ,

where nj is the number of the value xj in the sample, j = 1, . . . , k;
∑k

j=1 nj = n

x̄ ≈ 1

n

k∑

j=1

ajnj; x̄G ≈ n
√

an1
1 · . . . · ank

k ;

x̄H ≈ n

n1/a1 + . . .+ nk/an
; x̄K ≈

√
√
√
√

1

n

n∑

j=1

a2
j nj ,

where the sample is grouped to k classes (intervals) approximated by values xj,
j = 1, . . . , k;

∑k
j=1 nj = n

x̄ = 1

n

k∑

j=1

x̄jnj,

where the sample is grouped to k classes represented by arithmetic means of
particular classes (class means) x̄j, j = 1, . . . , k;

∑k
j=1 nj = n

x(1) ≤ x̄H ≤ x̄G ≤ x̄ ≤ x̄K ≤ x̄(n)

x = (x̄1, . . . , x̄m) =
(

1

n

n∑

i=1

xi1, . . . ,
1

n

n∑

i=1

xim

)

= 1

n
e′ X

(mean of m-variate sample (x11, . . . , x1m), . . . , (xn1, . . . , xnm), which is ordered to
matrix X of type n × m)

x̃0,5 =
⎧
⎨

⎩

x(m) for n = 2m− 1

1

2

(
x(m) + x(m+1)

)
for n = 2m

(median, see Sects. 26.3 and 27.4)
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x̂
(mode: is the “most frequent” value of the given sample, i.e. the value with the
highest relative frequency, see Sect. 26.3)

27.6 Measures of Sample Variability

s2
x =

1

n

n∑

i=1

(xi − x̄)2 = 1

n

n∑

i=1

x2
i −

1

n2

(
n∑

i=1

xi

)2

= 1

n

n∑

i=1

x2
i − x̄2 ((sample) variance, see Sect.26.3)

s2
x =

1

n

k∑

j=1

(xj − x̄)2nj

= 1

n

k∑

j=1

x2
j nj − 1

n2

⎛

⎝
k∑

j=1

xjnj

⎞

⎠

2

,

where nj is the number of the value xj in the sample, j = 1, . . . , k,
∑k

j=1 nj = n

s2
x =

1

n

k∑

j=1

(x̄j − x̄)2nj + 1

n

k∑

j=1

s2
xjnj,

where the sample is grouped to k classes, the first summand is the variance of class
means x̄j (among-means variability) and the second summand is the mean of class

variances s2
xj (inside-class variability), j = 1, . . . , k;

∑k
j=1 nj = n

sx =
√

s2
x =

√
√
√
√1

n

n∑

i=1

(xi − x̄)2 (standard deviation, see Sect. 26.3)

Vx = sx

| x̄ | (coefficient of variation, see Sect. 26.3)

R = xmax − xmin = x(n) − x(1) (range)
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x̃0,75 − x̃0,25 (interquartile range, see Sect. 26.3);

x̃0,90 − x̃0,10 (interdecile range, see Sect. 26.3)

x̃0,75 − x̃0,25

2
(quartile deviation);

x̃0,90 − x̃0,10

2
(decile deviation)

M =
n2 −

k∑

j=1
n2

j

n(n− 1)
· 100%

(mutability: variability of a discrete variable with k possible states (e.g. public
inquiry answers) around its mode, where nj is the observed absolute frequency of
j = 1, . . . , k;

∑k
j=1 nj = n)

27.7 Measures of Sample Concentration

γ̂1 = 1

n
·

n∑

i=1
(xi − x̄)3

s3
x

(skewness: describes “distinction in concentration of higher and lower values”, see
Sect. 26.3; the positive skewness γ1 > 0 means a higher concentration of lower
values in the sample, i.e. a longer right-hand tail of the probability density (vice
versa for the negative skewness γ1 < 0))

γ̂1 = nL − nU

n

(simplified skewness: nL is the number of observations in the sample that are smaller
than the sample mean x̄; nU is the number of observations that are larger than x̄)

γ̂2 = 1

n
·

n∑

i=1
(xi − x̄)4

s4
x

− 3

(kurtosis: describes “distinction in concentration of inner and outer values”, see
Sect. 26.3; the positive kurtosis γ2 > 0 means a higher concentration of inner values
in comparison with outer values, i.e. a peaked shape of the probability density; vice
versa, the negative kurtosis γ2 < 0 means comparable concentrations of inner and
outer values, i.e. a flat shape of the probability density)



314 27 Descriptive and Mathematical Statistics

27.8 Measures of Sample Dependence

sxy = 1

n

n∑

i=1

(xi − x̄)(yi − ȳ)

((sample) covariance of bivariate sample observations (x1, y1), . . . , (xn, yn), see
Sect. 26.6)

rxy = sxy

sxsy
=

n∑

i=1
(xi − x̄)(yi − ȳ)

√
n∑

i=1
(xi − x̄)2

n∑

i=1
(yi − ȳ)2

=

n∑

i=1
xiyi − 1

n

n∑

i=1
xi

n∑

i=1
yi

√
√
√
√

(
n∑

i=1
x2

i −
1

n

(
n∑

i=1
xi

)2
)(

n∑

i=1
y2

i −
1

n

(
n∑

i=1
yi

)2
)

(correlation coefficient: is a measure of linear dependence between two statistical
attributes, −1 ≤ rxy ≤ 1; rxx = 1, see Sect. 26.6)

rxy = 0 (or equivalently sxy = 0) (uncorrelated statistical attributes, see Sect. 26.6)

�xx =
(
sxixj

)
i=1, ... , m
j=1, ... , m

= 1

n
X′ X− x̄′ x̄

(covariance matrix of m-variate sample (x11, . . . , x1m), . . . , (xn1, . . . , xnm), which
is ordered to matrix X of type n × m, see Sects. 26.6 and 27.5)

Rxx =
(
rxixj

)
i=1, ... , n
j=1, ... , n

(correlation matrix: has unities in the principal diagonal rxixi = 1, see Sect. 26.6)

ryx =
√

RyxR−1
xx R′yx,

where
Rxx =

(
rxixj

)
i=1, ... , m
j=1, ... , m

, Ryx =
(
ryxi

)
i=1, ... , m

(multiple correlation coefficient between univariate sample y1, . . . , yn and m-variate
sample (x11, . . . , x1m), . . . , (xn1, . . . , xnm): is a measure of linear dependence
between a statistical attribute and a group of statistical attributes)
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ryz.x = ryz − RyxR−1
xx R′zx

√
1− RyxR−1

xx R′yx

√
1− RzxR−1

xx R′zx

,

where

Rxx =
(
rxixj

)
i=1, ... , m
j=1, ... , m

; Ryx =
(
ryxi

)
i=1, ... , m ; Rzx =

(
rzxi

)
i=1, ... , m

(partial correlation coefficient between samples y1, . . . , yn and z1, . . . , zn given
fixed values of m-variate sample (x11, . . . , x1m), . . . , (xn1, . . . , xnm): is a measure
of linear dependence between two statistical attributes when fixing a given group of
other statistical attributes so that they cannot affect this dependence)

27.9 Point and Interval Estimators

X1, X2, . . . , Xn

(random sample of size n ∈ N from a given probability distribution: is a sequence
of independent random variables, which have this distribution; when observing a
random sample one obtains the (statistical) sample x1, x2, . . . , xn, see Sect. 27.3;
the random sample can be multivariate one, i.e. a sequence of independent random
vectors, see Sect. 26.6)

θ̂ = T(X1, . . . , Xn)
(point estimator of parameter θ ∈ R: is a function called statistics, whose proba-
bility distribution (affected by θ ) concentrates maximally in a given sense around
the unknown parameter value θ ; the estimated parameter can be multivariate one
θ ∈ Rm)

θ̂ = T(x1, . . . , xn)
(point estimate of parameter θ ∈R for observed sample x1, x2, . . . , xn: is a numerical
value in contrast to the random variable T(X1, . . . , Xn) (see thereinbefore))

E (T(X1, . . . , Xn)) = θ

(unbiased estimator: if this equality holds only asymptotically for increasing size n
of random sample, then the estimator is asymptotically unbiased; in the multivariate
case, the given equality must hold for all components of the vector θ ∈ Rm)

var (T(X1, . . . , Xn)) ≤ var (S(X1, . . . , Xn))
(best unbiased estimator: is such an unbiased estimator T(X1, . . . , Xn) of parame-
ter θ that the given inequality holds for all the unbiased estimators S(X1, . . . , Xn)
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of θ ; in the multivariate case θ ∈ Rm, the difference of covariance matrices
var (S(X1, . . . , Xn))–var (T(X1, . . . , Xn)) must be always positive semidefinite)

var (T(X1, . . . , Xn)) = 1

n · I(θ )

(efficient estimator (the fraction on the right-hand side with Fisher’s measure of
information I(θ ) is the so-called Cramer-Rao lower bound of variances of unbiased
estimators): is the unbiased estimator of θ with minimal variance; if the lower bound
is achieved only in limit for increasing size n of the sample, then the corresponding
estimator is called asymptotically efficient; the definition can be generalized again
for the multivariate case θ ∈ Rm using Fisher’s matrix of information)

T(X1, . . . , Xn)
P→ θ

(consistent estimator: achieves the unknown parameter value θ as the limit in
probability (see Sect. 26.14) with increasing size n of the random sample)

n∏

i=1

f (xi; θ̂ ) ≥
n∏

i=1

f (xi; θ ) for all admissible θ

(maximum likelihood estimation (f is the probability density of the distribution, from
which the corresponding sample has been obtained): is the most probable parameter
value for the sample observations x1, x2, . . . , xn; the maximum likelihood estimator
is (under general assumptions) asymptotically efficient (hence also asymptotically
unbiased, see thereinbefore))

p̂ = x̄

N
(efficient estimate of p∈(0, 1) for a known N∈N in distribution B(N, p), see
Sect. 26.4)

μ̂ = x̄; σ̂ 2 = n

n− 1
s2

x

(best unbiased estimate of μ ∈ R and σ 2 > 0 in distribution N(μ, σ 2), see Sect. 26.5)

μ̂ = x̄, σ̂ 2 = s2
x

(maximum likelihood estimate of μ ∈ R and σ 2 > 0 in distribution N(μ, σ 2), see
Sect. 26.5)
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μ̂ = 1

n

n∑

i=1

ln xi, σ̂ 2 = 1

n− 1

n∑

i=1

(ln xi − μ̂)2

(best unbiased estimate of μ ∈ R and σ 2 > 0 in distribution LN(μ, σ 2), see
Sect. 26.5)

â = n

n− 1
x(1) − 1

n− 1
x(n), b̂ = n

n− 1
x(n) − 1

n− 1
x(1)

(best unbiased estimate of a, b ∈ R (a < b) in uniform distribution, see Sect. 26.5)

λ̂ = 1

x̄
(best unbiased estimate of λ > 0 in distribution Exp (λ) see Sect. 26.5)

λ̂ = a

x̄
(efficient estimate of λ > 0 for a known a > 0 in distribution Γ (a, λ), see Sect. 26.5)

Td(X1, . . . , Xn) < θ < Th(X1, . . . , Xn)

(100(1 − α)% two-sided confidence interval (interval estimator) of parameter
θ ∈ R: is the interval, in which θ lies with probability (1 – α) (0 < α < 1), i.e.
P(Td(X1, . . . , Xn) < θ < Th(X1, . . . , Xn)) = 1− α)

−∞ < θ < Th(X1, . . . , Xn) or Td(X1, . . . , Xn) < θ <∞
(100(1 – α)% one-sided confidence intervals of parameter θ ∈ R: are one-
sided intervals, in which θ lies with probability (1 – α) (0 < α < 1), i.e.
P(−∞ < θ < Th(X1, . . . , Xn)) = 1− α or P(Td(X1, . . . , Xn) < θ <∞) = 1− α)

Td(x1, . . . , xn) < θ < Th(x1, . . . , xn);

−∞ < θ < Th(x1, . . . , xn); Td(x1, . . . , xn) < θ <∞
(confidence intervals (interval estimation) of parameter θ ∈ R for sample observa-
tions x1, x2, . . . , xn: are numerical intervals)

x̄− t1− α/2(n− 1) · sx/
√

n− 1 < μ < x̄+ t1− α/2(n− 1) · sx/
√

n− 1

n · s2
x

/
χ2

1− α/2(n− 1) < σ 2 < n · s2
x

/
χ2
α/2(n− 1)

sx

√

n
/
χ2

1− α/2(n− 1) < σ < sx

√

n
/
χ2
α/2(n− 1)

(100(1 – α)% two-sided confidence intervals of parameters μ ∈ R, σ 2 > 0 and
σ > 0 in distribution N(μ, σ 2), see Sect. 26.5)
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d − 1

d + 1
< ρ <

h− 1

h+ 1
,

where

d = exp

(

2Z − 2u1−α/2√
n− 3

)

; h = exp

(

2Z + 2u1−α/2√
n− 3

)

; z = 1

2
ln

1+ rxy

1− rxy

(100(1 – α)% two-sided confidence interval of parameter ρ ∈ (–1, 1) (see Sect. 26.6)
in bivariate normal distribution: z is called Fisher’s z-transformation)

x̄− u1− α/2 ·
√

pA(1− pA)/n < πA < x̄+ u1− α/2 ·
√

pA(1− pA)/n

(approximate 100(1 – α)% two-sided confidence interval of probability πA of occur-
rence of an event A, which has (in random counting sample of large size n) the
relative frequency pA = nA/n, see Sect. 27.3)

n ≥ 4
(
u1− α/2

)2 pA(1− pA)

2

(minimal approximate size of sample so that the width of two-sided confidence
interval of πA (see thereinbefore) is not larger than a preset bound )

x̄− u1− α/2 · sx/
√

n < E(X) < x̄+ u1− α/2 · sx/
√

n

s2
x − u1− α/2 · s2

x

√
2/n < var(X) < s2

x + u1− α/2 · s2
x

√
2/n

sx − u1− α/2 · sx/
√

2n <
√

var(X) < sx + u1− α/2 · sx/
√

2n

rxy − u1− α/2(1− r2
xy)/
√

n < ρ(X, Y) < rxy + u1− α/2(1− r2
xy)/
√

n

(approximate 100(1 – α)% two-sided confidence intervals of E(X), var(X),
√

var(X),
ρ(X, Y) in a general random sample of large size n, see Sects. 26.3 and 26.6)

• Nonparametric estimation: is an estimation of a probability distribution charac-
teristic without a parametric specification (e.g. an estimation of median)

27.10 Hypothesis Testing

(x1, . . . , xn)′ ∈ W

(critical region W⊂ Rn of null hypothesis H0 against alternative hypothesis H1 with
significance level α(0 < α < 1): if the observed values fulfil (x1, . . . , xn)′ ∈ W, then
one rejects H0 against H1; every test of statistical hypothesis takes a risk of a wrong
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decision with two possibilities of making an error: (1) type-one error is committed,
if H0 is rejected when it is true, and (2) type-two error is committed, if H0 is not
rejected when it is false; the objective is to find such W that the probability of type-
one error does not exceed α (the prescribed significance level) and, at the same time,
the probability β of type-two error is as small as possible (1 – β is called power of
test))

√
n− 1 |x̄− μ0| /sx ≥ t1− α/2(n− 1)

(critical region of two-sided one-sample t-test of hypothesis H0: μ = μ0 against
alternative H1: μ �= μ0 (μ0 ∈ R is a given constant) with significance level α: test is
based on a sample from distribution N(μ, σ 2), see Sect. 26.5)

√
n− 1 (x̄− μ0)/sx ≥ t1− α(n− 1)

(critical region of one-sided one-sample t-test of hypothesis H0: μ ≤ μ0 against
alternative H1: μ > μ0 (μ0 ∈ R is a given constant) with significance level α: test is
based on a sample from distribution N(μ, σ 2), see Sect. 26.5)

n · s2
x/σ

2
0 ≤ χ2

α/2(n− 1) or n · s2
x/σ

2
0 ≥ χ2

1−α/2(n− 1)

(critical region of two-sided one-sample test of hypothesis H0: σ 2 = σ 2
0 against

alternative H1: σ 2 �= σ 2
0 (σ 2

0 > 0 is a given constant) with significance level α: test
is based on a sample from distribution N(μ, σ 2), see Sect. 26.5)

n · s2
x/σ

2
0 ≥ χ2

1−α(n− 1)

(critical region of one-sided one-sample test of hypothesis H0: σ 2 ≤ σ 2
0 against

alternative H1: σ 2 > σ 2
0 (σ 2

0 > 0 is a given constant) with significance level α: test
is based on a sample from distribution N(μ, σ 2), see Sect. 26.5)

|x̄− ȳ|
√

s2
x

n1 − 1
+ s2

y

n2 − 1

≥ t1− α/2(n1 − 1) s2
x

n1−1 + t1− α/2(n2 − 1)
s2
y

n2−1

s2
x

n1 − 1
+ s2

y

n2 − 1

(critical region of two-sided two-sample t-test of hypothesis H0: μ1 = μ2 against
alternative H1: μ1 �= μ2 with significance level α: test is based on two independent
samples from distribution N(μ1, σ 2

1 ) of size n1 and from distribution N(μ2, σ 2
2 ) of

size n2, see Sect. 26.5)
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√
n · |x̄− ȳ|
√

1
n−1

n∑

i=1
((xi − yi)− (x̄− ȳ))2

≥ t1− α/2(n− 1)

(critical region of two-sided paired t-test of hypothesis H0: μ1 = μ2 against alterna-
tive H1: μ1 �= μ2 with significance level α: test is based on a sample from bivariate
normal distribution with parameters μ1, μ2, σ 2

1 , σ 2
2 , ρ, see Sect. 26.6)

√
n− 2|rxy|

/√
1− r2

xy ≥ t1− α/2(n− 2)

(critical region of two-sided paired t-test of hypothesis H0: ρ = 0 against alternative
H1: ρ �= 0 with significance level α: test is based on a sample from bivariate normal
distribution with parameter ρ, see Sect. 26.6)

• Nonparametric tests: can be used without an assumption on the type of probabil-
ity distribution, e.g.

– sign test: is test of comparability of paired values of a bivariate sample
– one-sample Wilcoxon test: as for the sign test
– two-sample Wilcoxon test: is test of matching of two unknown probability

distributions
– Mann-Whitney test: as for the two-sample Wilcoxon test
– Kruskal-Wallis test: generalizes the two-sample Wilcoxon test for more

samples
– Friedman test: as for Kruskal-Wallis test
– Spearman test: is test of independence between paired values of a bivariate

sample
– Kendall test: as for Spearman test
– test based on iterations under and above median: test of randomness of a

sample
– test based on turning points: test of randomness of a sample
– rank tests: are special cases of the tests thereinbefore (e.g. Spearman or

Kendall rank tests) when replacing the observations by their ranks (rank Ri

of value xi is the number of such x1, x2, . . . , xn, which are smaller or equal
to xi)

• Goodness of fit tests: enable to test whether a given sample has been chosen from
probability distribution of a given type (chi-square test, Kolmogorov-Smirnov test
and others)

27.11 Regression Analysis

Y = f (x1, . . . , xk)+ ε

(regression model: explains response variable (regressand) Y (with the character
of random variable) by means of (nonrandom) explanatory variables (regressors)
x1, . . . , xk, which are arguments of regression function f, and by means of a residual
(error variable) ε)
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Yi = β0 + β1xi1 + . . .+ βkxik + εi,

where
E(εi) = 0; cov(εi, εj) = δijσ

2 (i, j = 1, . . . , n)

(linear regression model: the regression function is a linear function of unknown
parameters β0, β1, . . . , βk ∈ R; Yi denotes the value of the response variable cor-
responding to the values xi1, . . . , xik of the explanatory variables x1, . . . , xk (i =
1, . . . , n; n > k + 1); residuals εi fulfil the given assumptions, i.e. they are uncor-
related random variables (“measurements of the model for various i do not affect
mutually”) with zero mean value (“residuals are random fluctuations without a sys-
tematic component”) and with constant variance σ 2 > 0, which is also an unknown
parameter of the model (“measurement error for various i remains the same”)

yi = β0 + β1xi1 + . . .+ βkxik + εi, i = 1, . . . , n

(observed model of linear regression: unknown parameters β0, β1, . . . , βk can be
estimated by means of observations yi, xi1, . . . , xik (i = 1, . . . , n; n > k + 1); the
residuals εi represent measurement errors, imperfections due to improper choice of
the model, etc.)

y = Xβ+ ε,
where

y = (y1, . . . , yn)′; X = (xij
)

i=1, ... , n
j= 0, 1, ... , k

(xi0 ≡ 1); ε = (ε1, . . . , εn)′

E(β) = 0; var(ε) = �εε = σ 2 I

(matrix form of the observed linear regression model: the first column of X is the
column vector of unities e; one assumes usually that X has linearly independent
columns, i.e. h(X) = k + 1)

b = (X′X)−1X′y, �bb = σ 2(X′X)−1

(best linear unbiased estimate (see Sect. 27.9) of parameters β and its covariance
matrix (Gauss-Markov theorem); it may be obtained from the system of normal
equations (X′X)b = X′y)

b = arg min
β ∈ Rk+1

n∑

i=1

(yi − (β0 + β1xi1 + . . .+ βkxik))2 = arg min
β ∈ Rk+1

(y− Xβ)′(y− Xβ)

(b is obtained by the method of least squares (OLS-estimate, Ordinary Least
Squares))
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bt = bt−1 + Ptxt(yt − x′tbt−1); Pt = Pt−1 − (x′tPt−1xt + 1)−1Pt−1xtx′tPt−1

(recursive method of least squares: the estimate bt is calculated at time t using the
previous estimate bt–1 and the observed values yt and xt = (xt1, . . . , xtk); one must
preset initial values b0 and P0)

ŷ = b0 + b1x1 + . . .+ bkxk = x′ b
(point prediction ŷ: is the value of the response variable Y estimated (“predicted”)
by means of the estimated model for values x′ = (1, x1, . . . , xk ) of the explanatory
variables)

ŷ = (ŷ1, . . . , ŷn)′ = Xb = X(X′X)−1X′y = Xβ+ X(X′X)−1X′ε
(estimated value ŷi = b0 + b1xi1 + . . .+ bkxik: is the value of the response variable
Yi calculated by means of the estimated model (i = 1, . . . , n))

ε̂ = (ε̂1, . . . , ε̂n)′ = y− Xb =
(

I− X(X′X)−1X
′)

y = My

(estimated residual ε̂i = yi− ŷi = yi− (b0+ b1xi1+ . . .+ bkxik): is the value of the
residual εi calculated by means of the estimated model (i = 1, . . . , n); the square
matrix M is symmetric and idempotent)

ŷ1 + . . .+ ŷn = y1 + . . .+ yn

ε̂1 + . . .+ ε̂n = 0

ŷ1ε̂1 + . . .+ ŷnε̂n = 0

x1jε̂1 + . . .+ xnjε̂n = 0, j = 0, 1, . . . , k

St =
n∑

i=1

(yi − ȳ)2, where ȳ = 1

n

n∑

i=1

yi

(total sum of squares: describes the variability of the response variable since it holds
s2

y = St/n, see Sect. 27.6)

Sr =
n∑

i=1

(ŷi − ȳ)2

(regression sum of squares: describes such a part of variability of the response
variable, which is explained by the model)

Sε =
n∑

i=1

ε̂2
i =

n∑

i=1

(yi − ŷi)
2

(residual sum of squares: describes such a part of variability of the response variable,
which is not explained by the model)
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St = Sr + Sε

R2 = Sr

St
= 1− Sε

St

(coefficient of determination: indicate, how the considered linear regression model
is capable to explain variability of the response variable, i.e. R2 assesses the quality
of the model for the given data; 0 ≤ R2 ≤ 1 (it is common to express R2 in per cent,
where 100% means the ideal case)

R̄2 = 1− n− 1

n− k − 1
· Sε

St
(adjusted coefficient of determination: in comparison with R2, the adjusted coeffi-
cient has better properties when estimating the coefficient of multivariate correlation
ryx, see Sect. 27.8)

s2 = 1
n−k−1 Sε = 1

n−k−1

n∑

i=1
(yi − ŷi)2 (unbiased estimate of σ 2)

Sbb = s2(X′X)−1 (unbiased estimate of
∑

bb
= σ 2(X′X−1))

s2
bj
= (Sbb)jj = s2

(
(X′X)−1

)

jj
, j = 0, 1, . . . , k (unbiased estimate of var(bj))

y = Xβ+ ε,

where ε ∼ N(0, σ 2I)
(normal model of linear regression: y∼ N(Xβ, σ 2I); b∼ N(β, σ 2 (X′X)−1, see Sect.
26.6)

β̂ = b = (X′X)−1X′y; σ 2 = 1

n
Sε = 1

n

n∑

i=1

(yi − ŷi)
2 = n− k − 1

n
s2

(maximum likelihood estimate of β and σ 2, see Sect. 27.9)

|bj| /sbj ≥ t1− α/2(n− k − 1)
(test of significance for parameter β j in the normal model of linear regression (j =
0, 1, . . . , k): is the test of hypothesis H0: β j = 0 against alternative H1: β j �= 0 with
significance level α, see Sect. 27.10; the test statistics |bj| /sbj is called t-ratio)
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|bj|/sbj ≥ u1− α/2

(asymptotic test of significance for parameter β j in the model of linear regression
without assumption of normality (j= 0, 1, . . . , k; n is large): is the test of hypothesis
H0: β j = 0 against alternative H1: β j �= 0 with significance level α, see Sect. 27.10)

n− k − 1

k
· R2

1− R2
≥ F1− α(k, n− k − 1)

(test of significance for model (test of significance for coefficient of determination)
in the normal model of linear regression: is the test of hypothesis H0: (β1, . . . ,
βk)′ = 0 against alternative H1: (β1, . . . , βk)′ �= 0 with significance level α, see
Sect. 27.10)

(
ŷ− t1− α/2(n− k − 1) · s ·√1+ x′(X′X)−1x,

ŷ+ t1− α/2(n− k − 1) · s · √1+ x′(X′X)−1x
)

(100(1 – α)% prediction interval in the normal model of linear regression, see Sect.
27.9: one predicts the value of the response variable Y for values x′ = (1, x1, . . . , xk)
of the explanatory variables; ŷ is the point prediction, see thereinbefore)

Yi = β0 + β1xi + εi,
where

E(εi) = 0; cov(εi, εj) = δijσ
2 (i, j = 1, . . . , n)

(regression model of line: the regression function is a line; in particular, k = 1)

b1 =

n∑

i=1
(xi − x̄)yi

n∑

i=1
(xi − x̄)2

=
n

n∑

i=1
xiyi −

n∑

i=1
xi

n∑

i=1
yi

n
n∑

i=1
x2

i −
(

n∑

i=1
xi

)2
;

b0 = ȳ− b1x̄ =

(
n∑

i=1
yi − b1

n∑

i=1
xi

)

n
,

(best linear unbiased estimates of β0 and β1 in the regression model of line)

s2 = 1

n− 2

n∑

i=1

(yi − ȳ− b1(xi − x̄))2 = 1

n− 2

(
n∑

i=1

y2
i − b0

n∑

i=1

yi − b1

n∑

i=1

xiyi

)

(unbiased estimate of σ 2 in the regression model of line)
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s2
b1
= s2

n∑

i=1
(xi − x̄)2

; s2
b0
= s2

⎛

⎜
⎜
⎝

1

n
+ x̄2

n∑

i=1
(xi − x̄)2

⎞

⎟
⎟
⎠

(unbiased estimates of var(b0) and var(b1) in the regression model of line)

|b1|
s

√
√
√
√

n∑

i=1

(xi − x̄)2 ≥ t1 − α/2(n− k − 1)

(test of linearity in the normal regression model of line: is the test of hypothesis H0:
β1 = 0 against alternative H1: β1 �= 0 with significance level α, see Sect. 27.10; the
test statistics is again the t-ratio)

b0 + b1x ± t1 − α/2(n− 2) · s ·
√
√
√
√
√

1+ 1

n
+ (x− x̄)2

n∑

i=1
(xi − x̄)2

;

(100(1 – α)% prediction interval in the normal regression model of line, see Sect.
27.9: one predicts the value of the response variable Y for a value of the explanatory
variable x)

y = Xβ+ ε,
where

E(ε) = 0; var(ε) = �εε = σ 2� (σ 2 > 0; � > 0)

(generalized linear regression model: � is a general positive definite matrix with
unknown elements, i.e. unlike the classical model, the residuals εi need not be
mutually uncorrelated with constant variance)

b̃ = (X′�−1X)−1X′�−1y; �b̃b̃ = σ 2(X′�−1X)−1

(best linear unbiased estimate of parameters β (Aitken estimate) and its covariance
matrix, see Sect. 27.9: the possibilities of its practical application are restricted
due to the fact that the matrix � can be estimated only in such special cases, in
which it can be described using only a small number of (unknown) parameters (see
thereinafter the special cases of heteroscedasticity and autocorrelated residuals))

bw = arg min
β ∈ Rk+1

n∑

i=1

wi (yi − (β0 + β1xi1 + . . .+ βkxik))2 ,

where w1, . . . , wn are given positive weights



326 27 Descriptive and Mathematical Statistics

(bw is obtained by the weighted method of least squares (WLS-estimate, Weighted
Least Squares); it is Aitken estimate with � = diag{w1, . . . , wn}; one can construct
it as the OLS-estimate in the transformed model√

wiyi = β0
√

wi + β1
√

wixi1 + . . .+ βk
√

wixik + ε′i (i = 1, . . . , n))

y = Xβ+ ε,
where

E(ε) = 0; var(ε) = �εε = σ 2diag{k1, . . . , kn} (σ 2 > 0; k1, . . . , kn > 0)

(heteroscedasticity: the residuals εi are uncorrelated but they have variances σ 2ki

with unknown values ki; in such a case one can try to remove the heteroscedasticity
using transformation to yi/xij = β0/xij + β1xi1/xij + . . . + βkxik/xij + ε′i (i = 1,
. . . , n ) , where xj is a suitably chosen explanatory variable with observed positive
values x1j, . . . , xnj)

y = Xβ+ ε,

where
E(ε) = 0; var(ε) = �εε

= σ 2

⎛

⎜
⎜
⎜
⎝

1 ρ · · · ρn−1

ρ 1 · · · ρn−2

...
...

...
...

ρn−1 ρn−2 · · · 1

⎞

⎟
⎟
⎟
⎠

(σ 2 > 0; −1 < ρ < 1)

(autocorrelated residuals: the residuals εi have the constant variance σ 2 but they
are correlated (with correlation structure AR(1), see Sects. 30.4 and 31.4); in such a
case one can remove the autocorrelation of residuals by transformation to

yi − ρ̂yi−1 = β0(1− ρ̂)+ β1(xi1 − ρ̂xi−1,1)+ . . .+ βk(xik − ρ̂xi−1,k)+ ε′i
(i= 2, . . . , n), where ρ̂ =∑n−1

i=1 ε̂iε̂i+1/
∑n

i=1 ε̂
2
i and ε̂i are residuals calculated by

the OLS-method in the original model)

D =

n −1∑

i=1

(
ε̂i+1− ε̂i

) 2

n∑

i=1
ε̂2

i

=

n −1∑

i=1

(
ε̂i+1 − ε̂i

) 2

Sε

(Durbin-Watson statistics for the test of hypothesis H0: ρ = 0 (uncorrelated residu-
als) against alternative H1: ρ > 0 (positive autocorrelations of residuals) or H1: ρ < 0
(negative autocorrelations of residuals))

Yi = f (xi; θ)+ εi, i = 1, . . . , n
(nonlinear regression model: the regression function is a nonlinear function of
unknown parameters θ = (θ1, . . . , θm)′ ∈ Rm; Yi denotes the value of the response
variable corresponding to the values xi = (xi1, . . . , xik)′ of the explanatory variables;
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in the simplest case, the residuals εi fulfil the assumptions of the classical linear
regression model)

θ̂t+1 = θ̂t +
(

F(θ̂t)
′F(θ̂t)

)−1
F(θ̂t)

′ (y− f(θ̂t)
)

, t = 0, 1, . . . ,

where

F(θ̂t) =
(
∂f (xi, θ̂t)

∂θj

)

i=1, ... , n
j=1, ... , m

; f(θ̂t) =
(

f (xi, θ̂t)
)

i =1, ... , n
; y = (yi)i =1, ... , n

(Gauss-Newton method: provides an iterative estimation of parameters θ using a
suitable stop rule)

s2 = 1

n− m

n∑

i=1

(
yi − f (xi, θ̂)

)2
; S

θ̂θ̂
= s2

(
F(θ̂)′F(θ̂)

)−1

(estimates of σ 2 and �
θ̂θ̂

in Gauss-Newton method)

27.12 Analysis of Variance (ANOVA)

xpi = μ+ αi + εpi, i = 1, . . . , I; p = 1, . . . , ni

(model of one-way classification according to a single factor A: the observed sample
of size n is subdivided according to the factor A into I groups; the ith group contains
observations x1i, . . . , xni,i; εpi are independent random variables with distribution
N(0, σ 2); μ, αi, σ 2 are unknown parameters (i = 1, . . . , I; n1 + .. .. + nI = n))

n− I

I − 1
· SA

Sε
= n− I

I − 1
· SA

St − SA
≥ F1− α(I − 1, n− I),

where

St =
I∑

i=1

ni∑

p=1

(xpi − x̄)2; SA =
I∑

i=1

ni(x̄i − x̄)2; Sε =
I∑

i=1

ni∑

p=1

(xpi − x̄i)
2

(critical region for test of hypothesis H0: α1 = . . . = α I = 0 with significance level
α that effects of the factor A in the one-way classification are not significant, see
Sect. 26.5)

(x̄r − x̄s)
2 ≥ nr + ns

nrns
· I − 1

n− I
· Sε · F1− α(I − 1, n− I),

(rejection of equality of the rth and sth group (r, s= 1, . . . , I; r �= s) with significance
level α in the one-way classification, provided that H0 has been rejected, see Sect.
26.5)
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xpij = μ+ αi + βj + εpij, i = 1, . . . , I; j = 1, . . . , J; p = 1, . . . , P

(model of two-way classification according to factors A and B: an observed sample of
size n is subdivided according to the factors A and B into I·J groups; the group corre-
sponding to the values i of A and j of B contains observations x1ij, . . . , xPij; εpij are
independent random variables with distribution N(0, σ 2); μ, αi, β j, σ 2 are unknown
parameters (i = 1, . . . , I; j = 1, . . . , J; I·J·P = n))

n− I − J + 1

I − 1
· SA

Sε
≥ F1− α(I − 1, n− I − J + 1) or

n− I − J + 1

J − 1
· SB

Sη
≥ F1− α(J − 1, n− I − J + 1),

where

St =
I∑

i=1

J∑

j=1

P∑

p=1

(xpij − x̄)2; SA = J · P
I∑

i=1

(x̄i − x̄)2

SB = I · P
J∑

j=1

(x̄j − x̄)2; Sε = St − SA − SB

(critical region for test of hypothesis H0: α1 = . . .= αI = 0 or H0: β1 = . . .= βJ = 0
with significance level α that effects of the factor A or B in the two-way classifica-
tion are not significant, respectively, where unlike the one-way classification, one
respects the effects of the second factor; in addition, the two-way classification with
interactions tests also dependence between effects of both factors)

27.13 Multivariate Statistical Analysis

zi = Xci, i = 1, . . . , m

(ith principal component of m-variate sample (x11, . . . , x1m), . . . , (xn1, . . . , xnm)
arranged to a matrix X of type n × m, where c1, . . . , cm are the orthonormal eigen-
vectors corresponding to the ordered eigenvalues λ1 ≥ . . . ≥ λm of the covariance
matrix �xx, see Sect. 27.8: in particular, the principal components are mutually
uncorrelated and explain the variability of the original sample as much as possible
in their sequence z1, z2, . . . ; therefore several principal components z1, . . . , zk

(k << m) are capable to replace in a sufficient way the original large sample x1, . . . ,
xm: they explain 100(λ1 + . . . + λk)/(λ1 + . . . + λm) % of the original variability (or
original information))

dj = μ′j�−1x− 1

2
μ′j�−1μj + ln pj, j = 1, . . . , r

(linear discriminant analysis: decomposes an m-variate sample into r ≥ 2 discrim-
inant classes, where the statistical units of jth class (j = 1, . . . , r) have m-variate
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normal distribution with known mean vector μj and known covariance matrix �

(see Sect. 27.8) and pj is the probability that a randomly chosen unit belongs to jth
class (μj, � and pj are estimated in advance by means of those statistical units, for
which their allocation to discriminant classes is given a priori); a statistical unit x =
(x1, . . . , xm)′ is then allocated to hth class, if it fulfils dh = max(d1, . . . , dr))

(μ1 − μ2)′�−1x > a,
where

a = 1

2
μ′1�−1μ1 − 1

2
μ′2�−1μ2 + ln p2 − np1

(linear discriminant analysis with two discriminant classes): if a statistical unit x =
(x1, . . . , xm)′ fulfils the given inequality, then it is allocated to the first class; in the
opposite case it is allocated to the second class)

• Quadratic discriminant analysis: generalizes the linear one since its decision
function is quadratic in x, and particular discriminant classes can have different
covariance matrices �j

Further Reading
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Chapter 28
Econometrics

Abstract Chapter 28 presents basic procedures of modern econometrics: 28.1.
Multicollinearity, 28.2. A Priori Restrictions, 28.3. Qualitative Regressors, 28.4.
Probit and Logit Models, 28.5. Random Regressors and Instrumental Variable
Estimation, 28.6. Simultaneous Equation Models and 2SLS-Estimator.

28.1 Multicollinearity

∣
∣X′X

∣
∣ ≈ 0

(multicollinearity in a model of linear regression y = Xβ + ε (see Sect. 27.11):
in economic practice, the assumption h(X) = k + 1 may be “nearly” violated due
to correlations among economic variables in positions of regressors in the matrix
X of type n × (k + 1) (the matrix X′X is ill-conditioned); the OLS-estimate b =
(X′X)−1X′y with covariance matrix �bb = σ 2(X′X)−1 has no practical sense; some
practical recommendations how to face multicollinearity are as follows:
– to omit (or replace) the regressors inducing multicollinearity
– to transform regressors (e.g. to centre by subtracting arithmetic mean or estimated

trend, to standardize dividing by standard deviation, to apply first differences
instead of original regressors)

– to make use of an a priori restrictions (see Sect. 28.2)
– to apply the method of principal components to regressors (see thereinafter))

∣
∣rxixj

∣
∣ ≥ 0.8

(multicollinearity criterion due to correlations between pairs of regressors)

331T. Cipra, Financial and Insurance Formulas, DOI 10.1007/978-3-7908-2593-0_28,
C© Springer-Verlag Berlin Heidelberg 2010
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ri ≥ R

(multicollinearity criterion due to correlations between particular regressors and
remaining regressors: ri = rxi,(x1, ..., xi−1, xi+1, ..., xn) is the multiple correlation coef-
ficient (see Sect. 27.8) and R2 is the coefficient of determination (see Sect. 27.11))

− (n− 1− (2 k + 5)/6) ln |Rxx| ≥ χ2
1−α (k(k − 1)/2)

(statistical test of multicollinearity: the critical region of Farrar-Glauber test with
significance level α and null hypothesis that none of correlation coefficients for
particular pairs of regressors is significantly different from zero)

n− k

k − 1

r2
i

1− r2
i

≥ F1−α/2(k − 1, n− k),

where

ri = rxi,(x1, ... , xi−1, xi+1, ... , xn)

with

r2
i

1− r2
i

= rii − 1 and R−1
xx =

(
rij) (see Sect. 27.8)

(statistical test of multicollinearity: the critical region of the test with significance
level α and null hypothesis that a regressor xi is uncorrelated with the remaining
regressors)

√
n− k

∣
∣r(i, j)

∣
∣

√
1− r2

(i, j)

≥ t1−α/2(n− k),

where

r(i, j) = − rij

√
riirjj

with r(i, j) = rxixj· (x1, ... , xi−1, xi+1, ... , xj−1, xj+1, ... , xn)(see Sect. 27.8)

(statistical test of multicollinearity: the critical region of the test with significance
level α and null hypothesis that regressors xi and xj are uncorrelated when one
eliminates the influence of the remaining regressors)

y− ȳe = Zmγ + ε

(multicollinearity eliminated by method of principal components: the original model
y = Xβ + ε is transformed in a suitable way, where the matrix Zm is created by m
principal components z1, . . . , zm of centered regressors x1, . . . , xk (the response
variable y is also centered); the number m of (ordered) principal components
(m << k) may be chosen according to the usual rule (see Sect. 27.13); finally, the
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OLS-estimate b of parameters β in the original model is obtained by the correspond-
ing reverse transformation of the OLS-estimate c of parameters γ in the transformed
model)

28.2 A Priori Restrictions

y = Xβ+ ε

Rβ = r

}

,

where y= Xβ + ε is a linear regression model (see Sect. 27.11); Rβ= r are a priori
restrictions for parameters β, which have form of linear equalities (R is a known
matrix p × (k + 1), r is a known vector p × 1, h(X) = p < k + 1)

b∗ = b+ (X′X)−1R′
(

R(X′X)−1R′
)−1

(r− Rb), where b = (X′X)−1X′y

(OLS-estimate (i.e. by the method of least squares) of parameters β in the linear
regression model with a priori restrictions for parameters β in the form of linear
equalities; the estimate b∗ is unbiased with var(b) – var(b∗) ≥ 0 (see Sect. 27.9); in
the case of general restrictions, one must apply numerical optimization procedures
of estimation)

y = x1β1 + ε

βd ≤ β1 ≤ βh

}

,

where y= x1β1+ ε is the regression model of line without intercept (see Sect. 27.11);
βd ≤ β1 ≤ βh is the a priori restriction for parameter β1 (i.e. βd and βh are known
bounds)

b∗1 =
⎧
⎨

⎩

βd for b1 < βd

b1 for βd ≤ b1 ≤ βh

βh for b1 > b h

(OLS-estimate of the parameter β1 in the regression model of line without intercept
with the given a priori restriction for parameter β1 (see thereinbefore))

28.3 Qualitative Regressors

y = β0 + β1v1 + β2v2 + β3v3 + ε

(qualitative regressors x1 with three states A, B, C and x2 with two states D, E in
the linear regression model (a special example): qualitative regressors are “coded”
by means of dummy variables (dummies, zero-one variables) v0, v1, v2, v3; for each
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x1 x2 v0 v1 v2 v3

A E 1 0 0 0
A F 1 0 0 1
B E 1 1 0 0
B F 1 1 0 1
C E 1 0 1 0
C F 1 0 1 1

observed value yi (i = 1, . . . , n) one applies the code corresponding to such states
of both regressors, for which this value has been observed (e.g. salaries according
to three age classes A, B, C and according to gender D (male), E (female))

y = β0 + f (x1)+ ...+ f (xk)+ ε,
where f(xi) is a symbolic expression of the qualitative regressor xi with ki states by
means of a linear combination of ki – 1 dummies

(qualitative regressors x1, . . . , xk in the linear regression model (a general case))

y = β0 + β1v1 + β2v2 + β3v3 + β4v4 + β5v5 + ε

x1 x2 v0 v1 v2 v3 v4 v5

A E 1 0 0 0 0 0
A F 1 0 0 1 0 0
B E 1 1 0 0 0 0
B F 1 1 0 1 1 0
C E 1 0 1 0 0 0
C F 1 0 1 1 0 1

(qualitative regressors x1 with three states A, B, C and x2 with two states D, E in
the linear regression model with interactions between regressors (a special exam-
ple): unlike the previous example, the influence of x1 on y and influence of x2 on y
interact)

28.4 Probit and Logit Models

P(yt = 1 | xt·, β) = Φ(xt·β), P(yt = 0 | xt·, β) = 1−Φ(xt·β),

where y is a two-state qualitative variable with value 1 (e.g. a family owns a car) or
0 (a family owns no car); Φ is the distribution function of N(0, 1) (see Sect. 26.5)
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(probit model: unlike the qualitative regressors (see Sect. 28.3), now the response
variable y has the qualitative (binary) character; moreover, the predicted value
Φ(β̂0+ β̂1x1+ ...+ β̂kxk) (or 1 – Φ(β̂0+ β̂1x1+ ...+ β̂kxk)) with estimated param-
eters β is interpreted as the probability that the given values of regressors induce the
value 1 (or 0) of the response variable, respectively)

β̂ = arg max
β ∈ Rk+1

∏T

t=1
(Φ(xt·β))yt (1−Φ(xt·β))1−yt ,

(maximum likelihood estimate of parameters in probit model (see Sect. 27.9))

P(yt = 1 | xt·, β) = ext·β

1+ ext·β
, P(yt = 0 | xt·, β) = 1

1+ ext·β
,

where y is a two-state qualitative variable with value 1 or 0
(logit model: unlike the probit model, the logit model uses the distribution function
of the logistic distribution ext·β/(1+ext·β); the maximum likelihood estimation looks
analogously as in the probit model)

28.5 Random Regressors and Instrumental Variable Estimation

y = Xβ+ ε,

where y = (y1, ... , yn)′;
X = (xij

)
i=1, ... , n
j= 0, 1, ... , k

(xi0 ≡ 1); X is a matrix of (k + 1)-variate (row) random vectors

ε = (ε1, ... , εn)′; E(ε) = 0; var(ε) = �εε = σ 2I

(linear regression model with random regressors: in practice, X has frequently the
form of (k + 1)-variate stochastic process (i.e. the index i is interpreted as the time
index t, see Sect. 30.1) with a regular matrix of the second moments, which is con-
stant in time; special cases corresponding to various types of correlations between
X and ε can be considered)

b∗ = (Z′X)−1Z′y; Sb∗b∗ = s2∗(Z′X)−1Z′Z(X′Z)−1 for s2∗ = ε∗′ε∗

n− k − 1
;

ε∗ = y−Xb∗,
where Z is a matrix n × (k + 1) of observed instrumental variables z0, z1, . . . ,
zk, which are simultaneously uncorrelated with the residual ε and significantly
correlated with the original regressors x0, x1, . . . , xk
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(b∗ is obtained by the method of instrumental variables (IV-estimate) including esti-
mation of its covariance matrix and parameter σ 2: IV-estimate is consistent (see
Sect. 27.9); in practice, the instrumental variables may be found using practical
considerations)

yt = α + βλxt−1 + βλ2xt−2 + βλ3xt−3 + ...+ εt, t = 0, ... , T (0 < λ < 1)

(distributed lag model: is a special case of the linear regression model with random
regressors, which have the form of time lags of variables x)

yt = α(1− λ)+ λyt−1 + βxt + (εt − λεt−1), t = 1, ... , T

(Koyck’s transformation: consists in subtracting the equation for time t–1 multiplied
by the parameter λ from the equation for time t in the distributed lag model; there are
recommended procedures, how to estimate the model after such a transformation)

28.6 Simultaneous Equation Models and 2SLS-Estimator

⎛

⎜
⎜
⎜
⎝

y1
y2
...

ym

⎞

⎟
⎟
⎟
⎠
=

⎛

⎜
⎜
⎜
⎝

X1 0 . . . 0
0 X2 . . . 0
...

...
...

0 0 . . . Xm

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

β1
β2
...
βm

⎞

⎟
⎟
⎟
⎠
+

⎛

⎜
⎜
⎜
⎝

ε1
ε2
...
εm

⎞

⎟
⎟
⎟
⎠

,

var(ε) = � =

⎛

⎜
⎜
⎜
⎝

σ11I σ12I . . . σ1mI
σ21I σ22I . . . σ2mI

...
...

...
σm1I σm2I . . . σmmI

⎞

⎟
⎟
⎟
⎠

,

where for εt · = (εt1, ... , εtm):

E(εt ·) = 0; E(ε′s ·εt ·) = δst�; � = (σij
)

i=1, ... , m
j=1, ... , m

> 0

(SUR-model (seemingly unrelated regressions): is a special case of multiple lin-
ear regression model, where one considers m linear regression equations (see Sect.
27.11) as a system (one has n observations for each equation); residuals at vari-
ous time periods are uncorrelated but they are correlated simultaneously at the same
time with a fixed correlation structure (across particular equations); the estimation of
SUR-system may be organized as Aitken estimate in a generalized linear regression
model (see Sect. 27.11))

γ11yt1 + ... + γm1ytm + β11xt1 + ... + βk1xtk + εt1 = 0
...
γ1myt1 + ...+ γmmytm + β1mxt1 + ...+ βkmxtk + εtm = 0

⎫
⎪⎬

⎪⎭
t = 1, ... , n,
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where

εt· = (εt1, ... , εtm); E(εt ·) = 0; E(ε′s ·εt ·) = δst�; � = (σij
)

i=1, ... , m
j= 1, ... , m

> 0

xt · = (xt1, ... , xtk); E(x′t ·xt ·) = �xx regular for all t; E(x′t ·εt ·) = 0

(structural form of simultaneous equation model (SEM): is a system of m equations,
which describe (using unknown parameters β and γ) relations among m endogenous
variables y1, . . . , ym (the endogenous variables are outputs of the system: their num-
ber is the same as the number of equations) and k exogenous variables x1, . . . , xk (the
exogenous variables are inputs into the system at the given time); one has n obser-
vations for each variable; in addition, the exogenous variables can be either strictly
exogenous ones (originating outside the system) or predetermined ones (originating
within the system, but in a past time))

Y� + XB+ E = 0,

where Y is n × m matrix of observed endogenous variables; X is n × k matrix of
observed exogenous variables; E is n × m matrix of residuals; � is m × m matrix
and B is k × m matrix of unknown parameters

(matrix structural form of simultaneous equation model)

Y = −XB�−1 − E�−1 = X�+ V,
where V is n × m matrix of residuals; � is k × m matrix of unknown parameters

(matrix reduced form of simultaneous equation model: describes the explicit depen-
dence of endogenous variables on exogenous ones (one assumes regularity of the
matrix �)

P = (X′X)−1X′Y

(OLS-estimate of parameters � in reduced form of simultaneous equation model:
the estimate P is consistent (under general assumptions, see Sect. 27.9))

(
Ŷ′

jŶj Ŷ′
jXj

X′jŶj X′jXj

)(
c· j

b· j

)

=
(

Ŷ′
jy

X′jy

)

or equivalently

(
Y′jX(X′X)−1X′Yj Y′jXj

X′jYj X′jXj

)(
c· j

b· j

)

=
(

Y′jX(X′X)−1X′y
X′jy

)
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where y· j = Yjγ· j + Xjβ· j + ε· j is jth equation (of the structural form) to be
estimated (yj a Yj are endogenous variables and Xj are exogenous variables in the
jth equation); Yj = X(X′X)−1X′Yj

(estimates cj and bj of parameters γj and βj are obtained by the method of two-
stage least squares (2-SLS-estimate): 2-SLS-estimate is consistent (under general
assumptions, see Sect. 27.9); 2-SLS-estimate can be interpreted as the IV-estimate
(see Sect. 28.5) constructed by means of the instrumental variables Yj, which are
obtained as estimated endogenous variables obtained by means of OLS-estimation
in the reduced form)
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Chapter 29
Index Numbers

Abstract Chapter 29 provides a basic information on index numbers (mainly price
indices) and stock exchange indicators: 29.1. Indices as Instruments of Comparison,
29.2. Indices in Practice, 29.3. Stock Exchange Indicators.

29.1 Indices as Instruments of Comparison

• Index numbers (or simply indices): serve as instruments of comparison of the
same attribute (mostly price or quantity of goods or services at a given time period
and in a given region) over time (time series) or over regions (cross-section)

p = Q

q

(common denotation of indicators, various changes of which may be described
by means of indices: p is a price (more generally, an intensity indicator); q is a
quantity (more generally, an extension indicator); Q is a value)

Ip; Iq; IQ, respectively

(index of price change; index of quantity change; index of value change, respec-
tively: the corresponding change occurs during a time interval between two time
periods s < t denoted usually as 0 (base period) and 1 (current period); when com-
paring over regions, one considers changes between two places; a more specific
symbol for such indices is Ist (or e.g. Ip;st))

(i) Itt = 1; (ii) Ist = Its (change of time); (iii)
T−1∏

t= 0

It, t+1 = I0T (chain rule)

(axiomatic properties of indices: the indices frequent in practice (see thereinafter)
do not fulfil some of these properties; I01, I02, . . . , I0T are called base indices; I01,
I12, . . . , IT − 1,T are called chain indices)

339T. Cipra, Financial and Insurance Formulas, DOI 10.1007/978-3-7908-2593-0_29,
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Ip = p1

p0
; Iq = q1

q0
; IQ = Q1

Q0
, (individual indices)

29.2 Indices in Practice

• Compound indices (or simply indices): are designed to compare how prices,
quantities (or other attributes) change (over time or place), when they are taken as
a whole for many items; they are usually weighted by means of individual indices

I�q =
∑n

i=1 q1i
∑n

i=1 q0i
; I�Q =

∑n
i=1 Q1i

∑n
i=1 Q0i

; Ip̄ =

∑n
i=1 Q1i

∑n
i=1 q1i

∑n
i=1 Q0i

∑n
i=1 q0i

=

∑n
i=1 p1iq1i
∑n

i=1 q1i
∑n

i=1 p0iq0i
∑n

i=1 q0i

=

∑n
i=1 Q1i

∑n
i=1 Q1i/p1i
∑n

i=1 Q0i
∑n

i=1 Q0i/p0i

,

where p0i denotes the price of the ith item at time 0 (i =1, . . . , n); q1i denotes
quantity of the ith item at time 1 (i = 1, . . . , n), and the like

(aggregated indices: the Ip̄ describes a change of the average price of the whole)

IL
p =

∑n
i=1 Ipip0iq0i
∑n

i=1 p0iq0i
=
∑n

i=1 p1iq0i
∑n

i=1 p0iq0i
; IL

q =
∑n

i=1 Iqip0iq0i
∑n

i=1 p0iq0i
=
∑n

i=1 p0iq1i
∑n

i=1 p0iq0i

(price and quantity Laspeyres index, respectively: one preserves the base quantity
(or the base price, respectively) from the base period to the current one; in gen-
eral, Laspeyres index does not fulfil the properties (ii) and (iii), see Sect. 29.1)

IL
p =

∑n

i=1
wi

p1i

p0i
; IL

q =
∑n

i=1
wi

q1i

q0i
,

where

wi = p0iq0i
n∑

j=1
p0jq0j

(weighted form of the price and quantity Laspeyres index, respectively)
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IP
p =

∑n
i=1 p1iq1i

∑n
i=1

p1iq1i
Ipi

=
∑n

i=1 p1iq1i
∑n

i=1 p0iq1i
; IP

q =
∑n

i=1 p1iq1i
∑n

i=1
p1iq1i

Iqi

=
∑n

i=1 p1iq1i
∑n

i=1 p1iq0i
;

(price and quantity Paasche index: one preserves the current quantity (or the cur-
rent price, respectively) from the base period to the current one; Paasche index
can be written the weighted form analogously as Laspeyres index (see therein-
before); Paasche index does not fulfil the properties (ii) and (iii), see Sect. 29.1)

ILW
p =

∑n
i=1 p1iqi

∑n
i=1 p0iqi

; ILW
q =

∑n
i=1 piq1i

∑n
i=1 piq0i

(price and quantity Lowe index, respectively: one preserves a constant “hypo-
thetic” quantity qi (or a constant “hypothetic” price pi, respectively) from the
base period to the current one; Lowe index fulfils all conditions (i), (ii) and (iii),
see Sect. 29.1)

IF
p =

√
IL
p IP

p =
(∑n

i=1 p1iq0i
∑n

i=1 p0iq0i

∑n
i=1 p1iq1i

∑n
i=1 p0iq1i

)1/2

IF
q =

√
IL
q IP

q =
(∑n

i=1 p0iq1i
∑n

i=1 p0iq0i

∑n
i=1 p1iq1i

∑n
i=1 p1iq0i

)1/2

(price and quantity Fisher index: is the geometric mean of the price (or the
quantity, respectively) Laspeyres and Paasche indices; Fisher index fulfils all
conditions (i), (ii) and (iii), see Sect. 29.1)

IEM
p =

∑n
i=1 p1i(q0i + q1i)

∑n
i=1 p0i(q0i + q1i)

; IEM
q =

∑n
i=1 (p0i + p1i)q1i

∑n
i=1 (p0i + p1i)q0i

(price and quantity Edgeworth-Marshall index: one applies the arithmetic mean
of quantities q0i and q1i (or the arithmetic mean of prices p0i and p1i, respectively)
from the base period to the current one)

IP
p

IL
p
= 1+ rIpIq VIp VIq ,

where VIp and VIq is the variation coefficients (see Sect. 27.6) of individual
indices Ipi and Iqi , respectively (see Sect. 29.1); rIpIq is the correlation coefficient
(see Sect. 27.8) between individual indices Ipi and Iqi

(Bortkiewicz decomposition for comparison of the price Laspeyres and Paasche
index: in practice, one has usually rIpIq < 0 so that IL

p > IP
p ; Bortkiewicz
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decomposition can be applied to explain the difference between two weighted
means calculated using the same values)

• Consumer price indices: are an important example of price indices regularly
published by the statistical offices for each national economy, since one usu-
ally measures the inflation by means of them; they are denoted by specific
abbreviations, e.g.

– CPI (Consumer Price Index) in U.S.
– RPI (Retail Price Index) in UK, and the like

29.3 Stock Exchange Indicators

• Stock exchange indicators (stock index, market indicators) are constructed in a
similar way as the price Laspeyres indices using prices of assets on a given market
(mostly stocks, see Sect. 9.3)

It = Ct0

n∑

i=1

wti pti,

where

Ct0 =
It0

I′t0
; wti ≥ 0;

n∑

i=1

wti = 1

(construction of stock exchange indicator at time t: is a weighted mean of prices
pti of corresponding assets at time t (comp. with the weighted form of price
Laspeyres index in Sect. 29.2); the weight wti corresponds mostly to the relative
turnover of the ith asset at time t on the market (the capital, financial, commodity
one); Ct0 is the continuity factor, which enables to adjust a possible jump at time
t0 due to methodology changes, mergers, replacements of old representatives by
new ones, and the like (the continuity factor is also applied just in the beginning
of construction of the indicator to start with an initial value I0 = 100 or 1,000,
and the like))

DJIAt = 1

Dt

30∑

i=1

pti,

where e.g. D1928 = 30; D1991 = 0.559

(Dow Jones Index DJIA (Dow Jones Industrial Average): is one of the oldest and
most renowned stock exchange indicators recorded since 1897; the divisor Dt has
the function of continuity factor as well (see thereinbefore); DJIA was initially
an ordinary arithmetic mean of thirty stock titles with Dt = 30)
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Chapter 30
Stochastic Processes

Abstract Chapter 30 deals with methodology of stochastic processes (see also
time series in Chap. 31): 30.1. Classification and Basic Characteristics of Stochastic
Processes, 30.2. Markov Chains, 30.3. Markov Processes, 30.4. Important
Stochastic Processes, 30.5. Spectral Properties of Stochastic Processes.

30.1 Classification and Basic Characteristics
of Stochastic Processes

{Xt, t ∈ T}, where T ⊂ R

(univariate stochastic (or random) process: is a family of random variables defined
on the same probability space (Ω , B, P) (see Sect. 26.1) and indexed by means of
time indices t from a set T; according to the form of T one distinguishes:
– stochastic process in continuous time: T is an interval on the real line, e.g.

T = 〈0,∞) (i.e. {Xt, t ≥ 0})
– stochastic process in discrete time (time series): T consists of discrete real values,

e.g. T = N0 (i.e. {X0, X1, . . .}) or T = Z (i.e. {. . ., X−1, X0, X1, . . .})

According to the state space S of values of the random variables Xt one distin-
guishes:
– stochastic process with discrete states: e.g. counting process Xt ∈ N0, which

registers a number of defined events in time
– stochastic process with continuous states: e.g. Xt ∈ 〈0,∞)
– real (or complex) stochastic process: the corresponding state space is the real line

(or the complex plane, respectively)
– multivariate stochastic process: Xt are n-variate random vectors Xt (see Sect. 26.6)

{Xt(ω), t ∈ T} for fixed ω ∈ Ω
(trajectory (realization) of stochastic process: is the deterministic function of time,
which is observed in the given sample)
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Ft1, ... , tn (x1, . . . , xn) =P(Xt1≤ x1, . . . , Xtn≤ xn), n ∈ N;

t1, . . . , tn ∈ T; x1, . . . , xn ∈ R

(distribution function of stochastic process (see Sect. 26.6))

Fti1 , ... , tin (xi1 , . . . , xin ) = Ft1, ... , tn(x1, . . . , xn) for arbitrary
permutation i1, . . . , in of 1, . . . , n

lim
xn+1→∞

Ft1, ... , tn, tn+1 (x1, . . . , xn, xn+1) = Ft1, ... , tn (x1, . . . , xn)

⎫
⎪⎬

⎪⎭

(consistent system of distribution functions: fulfils the properties given above for all
n ∈ N; t1, . . ., tn ∈ T; x1, . . ., xn ∈ R; a system of distribution functions is consistent
if and only if it corresponds to a stochastic process (Kolmogorov theorem))

μt = E(Xt), t ∈ T , where E |Xt| <∞, t ∈ T (mean value of stochastic process)

R(s, t) = cov(Xs, Xt) = E ((Xs − μs)(Xt − μt)), s, t ∈ T ,

where E
(
X2

t

)
<∞; t ∈ T

(autocovariance function of stochastic process: in particular, R(t, t) = var(Xt) is
variance of stochastic process)

(i) |R(s, t)| ≤ √R(s, s)R(t, t); (ii) R(s, t) = R(t, s); (iii)
n∑

i=1

n∑

j=1

cicjR(ti, tj) ≥ 0,

n ∈ N; c1, . . . , cn ∈ R; t1, . . . , tn ∈ T
(properties of autocovariance function: (ii) is symmetry and (iii) is non-negative
definiteness)

B(s, t) = ρ(Xs, Xt) = R(s, t)√
R(s, s) · R(t, t)

, s, t ∈ T , where E
(

X2
t

)
<∞; t ∈ T

(autocorrelation function of stochastic process:|B(s, t)|≤ 1; in particular, it holds
B(t, t) = 1)

Ft1, ... , tn (x1, . . . , xn) = Ft1+ h, ... , tn+ h(x1, . . . , xn)

for all n ∈ N; x1, . . ., xn ∈ R; t1, . . ., tn, t1 + h, . . ., tn + h ∈ T

(strict stationarity of stochastic process: means that finite probability distributions
of the process are invariant with respect to shifts in time)

μt = μ

R(s, t) = R(t − s)

}

s, t ∈ T;

in particular,
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R(0) = var(Xt); R(t) = R(−t); B(t) = R(t)

R(0)

(stationarity (or more exactly, weak stationarity) of stochastic process: means that
its mean value and autocovariance function are invariant with respect to shifts in
time)

R(s, t) = (Rij(s, t)
)

i=1,..., n
j=1,..., n

= �xsxt , s, t ∈ T

(autocovariance function of n-variate stochastic process Xt = (Xt1, . . ., Xtn)′: Rij(t) is
mutual covariance function of processes {Xti} and {Xtj}; in the case of stationarity,
it holds R(s, t) = R(t − s); Rij(−t) = Rji(t))

B(s, t) = (Bij(s, t)
)

i=1,..., n
j=1,..., n

= Rxsxt = D(s, s)−1/2R(s, t)D(t, t)−1/2, s, t ∈ T ,

where D(t, t) = diag{R11(t), . . ., Rnn(t)} = diag{var(Xt1), . . ., var(Xtn)}

(autocorrelation function of n-variate stochastic process Xt = (Xt1, . . ., Xtn)′; in the
case of stationarity, it holds B(s, t) = B(t − s); Bij(−t) = Bji(t))

30.2 Markov Chains

P(Xn+1 = j | Xn = i, Xn−1 = in−1, . . . , X0 = i0) = P(Xn+1 = j | Xn = i)

for all n ∈ N0; i, j, i0, . . . , in−1 ∈ S = N0 = {0, 1, . . .} (one assumes existence of
the given conditional probabilities, see Sect. 26.2)

(Markov property: the stochastic process {X0, X1, . . .} in discrete time, with discrete
states i, j, . . . (i.e. with the discrete state space S=N0) and with the Markov property
is called Markov chain; all that matters in determining the next state Xn+1 of the
process is its current state Xn, and it does not matter how the process got to Xn; the
probability of Xn+1 being in state j, given that Xn is in state i, is called transition
probability)

pij = P(Xn+1 = j | Xn = i) for all n ∈ N0; i, j ∈ N0

(homogeneous Markov chain: its transition probabilities do not depend on the
time n)

pij(n) = P(Xk+n = j | Xk = i), where k, n ∈ N0; i, j ∈ N0

(n-step transition probabilities: pij(0) = δij, pij(1) = pij)
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pi = P(X0 = i), where i ∈ N0

(initial probability distribution of Markov chain: p = (p0, p1, . . .)′)

pi(n) = P(Xn = i), where n ∈ N0; i ∈ N0

(probability distribution of Markov chain at time n: p(n) = (p0(n), p1(n), . . .)′;
p(0) = p)

P = (pij
)
; P(n) = (pij(n)

)
, where n ∈ N0

(transition matrix: is a random matrix, i.e. a matrix of non-negative elements with
row sums equal to unities; P(0) = I; P(1) = P)

pij(n1 + n2) =
∑∞

k= 0
pik(n1) · pkj(n2),

i.e. in the matrix form P(n1 + n2) = P(n1) · P(n2)
(Chapman-Kolmogorov equality)

P(n) = Pn; pi(n) =∑∞
j=0 pj(0) · pji(n), i.e. in the matrix form p(n)′ = p′ · Pn

(properties of transition probabilities)

p̂ij = nij
∑m

k= 0 nik
,

where nij is the number of observed transitions from state i to state j

(maximum likelihood estimate (see Sect. 27.9) of transition probabilities in a
homogeneous Markov chain with finite state space S = {0, 1, . . . , m})

τj = inf{n > 0: Xn = j} (hitting time of state j)

P(τj <∞ | X0 = j) = 1

(recurrent (or persistent) state j of homogeneous Markov chain: the chain starting
in j will return to j after a finite number of steps with probability one)

P(τj = ∞ | X0 = j) > 0

(transient state j of homogeneous Markov chain: given that the chain starts in j, there
is a non-zero probability that it will never return to j)

E(τj | X0 = j) <∞; E(τj | X0 = j) = ∞, respectively

(non-null and null recurrent state j of homogeneous Markov chain, respectively)
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pjj(k · dj) > 0 for all k ∈ N,

where dj ∈ N is the smallest number with this property
(periodic state j with period dj of homogeneous Markov chain: if such a number dj

does not exist or is equal to one, then j is aperiodic)

∑∞
n=0

pjj(n) = ∞, if and only if the state j is recurrent

lim
n→∞ pij(n) = 0,where the state j is null recurrent or transient

lim
n→∞ pij(n) = P(τj <∞ | X0 = i)

E(τj | X0 = j)
,

where the state j is non-null recurrent and aperiodic

lim
k→∞ pjj(k · dj) = dj

E(τj | X0 = j)
,

where the state j is non-null recurrent and periodic with period dj

lim
n→∞

1

n

n∑

k=1

pij(k) = P(τj <∞ | X0 = i)

E(τj | X0 = j)
,

where the state j is non-null recurrent and periodic

pij(n) > 0 for a number n ∈ N0 (the state j is accessible from i)

pij = 0 for all i ∈ C and j /∈ C

(closed class of states C ⊂ S: the probability of leaving such a class is zero:
– irreducible Markov chain contains no closed class of states (with exception of the

class S of all states), i.e. one can get to any state from any state in it; otherwise the
chain is reducible

– all states of the irreducible Markov chain are of the same type (i.e. transient, or
null recurrent, or non-null recurrent, and simultaneously aperiodic, or periodic
with the same period)

– absorbing state j forms a closed class {j} with a single state only, i.e. pjj = 1)

S = T ∪ C1 ∪ C2 ∪ . . .
(decomposition of state space S of Markov chain: T is the class of transient states
and C1, C2, . . . are disjoint closed irreducible classes of recurrent states)



350 30 Stochastic Processes

P =
(

P1 0
A B

)

(the transition matrix of a finite-state Markov chain can be permuted to this form
(P1 and B are square submatrices), if and only if the chain is reducible)

• Finite-state Markov chain has following properties:

– it is not possible that all states are transient
– there are no null recurrent states
– if the chain is irreducible, then all states are non-null recurrent

πj =∑∞
k= 0 πk · pkj, i.e. in the matrix form π ′ = π ′ · P

(stationary distribution of homogeneous Markov chain: such a distribution:
– does not exist in irreducible chain with transient states, or with null recurrent states
– exists uniquely in irreducible chain with non-null recurrent states
– exists in finite-state irreducible chain)

p(n) = π ,

where a chain with stationary distribution π has the initial distribution p(0) = π

(homogeneous Markov chain with such an initial distribution, which is stationary,
is the strictly stationary stochastic process (see Sect. 30.1))

lim
n→∞ pij(n) = πj > 0,

i.e. in the matrix form: lim
n→∞Pn = � =

⎛

⎜
⎝

π ′
π ′
...

⎞

⎟
⎠; lim

n→∞ pj(n) = πj > 0,

where an irreducible chain has non-null recurrent and aperiodic states

lim
n→∞

1

n

n∑

k=1

pij(k) = πj > 0; lim
n→∞

1

n

n∑

k=1

pj(k) = πj > 0,

where an irreducible chain has non-null recurrent and periodic states

Z = (zij
)
, where i, j ∈ N0

(matrix of transition rewards in homogeneous Markov reward chain: zij for i, j ∈ N0
is the reward (the profit or loss) due to the transition from the state i to the state j
within a time unit)

qi =
∑∞

j=0
zij · pij

(expected reward due to a transition from the state i ∈ N0 within a time unit)
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v(n) = q+ P · v(n− 1) =
∑n−1

k= 0
Pkq ≈ (n− 1)�q+ (I− (P−�))− 1 q,

n ∈ N; q = (q0, . . . , qm)′ = v(1); � is matrix with the same rows π′ (see
thereinbefore)

(vector of expected rewards v(n) = (v0(n), . . . , vm(n))′ within n time units in an
irreducible finite-state homogeneous Markov reward chain with non-null recurrent
and aperiodic states S = {0, 1, . . . , m})

v(n) = q+ β · P · v(n− 1) =
∑n−1

k= 0
βkPkq

lim
n→∞ v(n) = (I− β · P)− 1 q, 0 < β < 1 is discount factor

(vector of discounted expected rewards: βkzij is the discounted reward due to the
transition from the state i at time k to the state j at time (k + 1) discounted to the
initial time 0)

30.3 Markov Processes

P(Xs+ t = j | Xs = i, Xtn = in, . . . , Xt1 = i1) = P(Xs+ t = j | Xs = i)

for all n ∈ N; i, j, i1, . . . , in ∈ S= N0 = {0, 1, . . .}; 0 ≤ t1 < . . . < tn < s ≤ s + t (one
assumes existence of the given conditional probabilities, see Sect. 26.2)

(Markov property: the stochastic process {Xt} in continuous time, with discrete
states i, j, . . . (i.e. with the discrete state space S = N0) and with the Markov prop-
erty is called Markov process with discrete states; all that matters in determining the
future state Xs+t of the process is its current state Xs, and it does not matter how the
process got to Xs; the probability of Xs+t being in state j, given that Xs is in state i, is
called transition probability)

pij(t) = P(Xs+ t = j |Xs = i) for all s ≥ 0; i, j ∈ N0

(homogeneous Markov process with discrete states: its transition probabilities do not
depend on the time s (they depend only on the time distance t between corresponding
time periods); pij(0) = δij)

pi = P(X0 = i), where i ∈ N0

(initial probability distribution of Markov process with discrete states:
p = (p0, p1, . . .)′)

pi(t) = P(Xt = i), where t ≥ 0; i ∈ N0
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(probability distribution of Markov process with discrete states at time t:
p(t) = (p0(t), p1(t), . . .)′; p(0) = p)

P(t) = (pij(t)
)
, where t ≥ 0

(transition matrix: is a random matrix, i.e. a matrix of non-negative elements with
row sums equal to unities; P(0) = I)

pij(t1 + t2) =
∑∞

k= 0
pik(t1) · pkj(t2),

i.e. in the matrix form P(t1 + t2) = P(t1) · P(t2)
(Chapman-Kolmogorov equality)

pi(t) =∑∞
j=0 pj(0) · pji(t), i.e. in the matrix form p(t)′ = p′ · P(t)

(property of transition probabilities)

qii = lim
h→0+

pii(h)− 1

h
; qij = lim

h→0+
pij(h)

h
, where i �= j

(transition intensities: fulfil pii(h) = 1 + qii · h + o(h); pij(h) = qij · h + o(h), where
i �= j)

Q = (qij
)

(intensity matrix of homogeneous Markov process with discrete states)

p′ij(t) =
∑∞

k= 0
pik(t) · qkj,

where t > 0; i, j ∈ N0, i.e. in the matrix form P′(t) = P(t) ·Q
(prospective Kolmogorov differential equations for transition probabilities: hold in
the homogeneous Markov process with discrete states under general assumptions;
the derivatives p′ij(t) are explained by means of all the transition probabilities from
the state i)

p′ij(t) =
∑∞

k= 0
qik · pkj(t),

where t > 0; i, j ∈ N0, i.e. in the matrix form P′(t) = Q · P(t)
(retrospective Kolmogorov differential equations for transition probabilities: the
derivatives p′ij(t) are explained by means of all the transition probabilities to the
state j)

p′i(t) =
∑∞

k= 0
pk(t) · qki, where t > 0; i ∈ N0

(Kolmogorov differential equations for probability distribution of the process)
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πj =
∑∞

k= 0
πk · pkj(t), i.e. in the matrix form π ′ = π ′ · P(t), where t ≥ 0

(stationary distribution of homogeneous Markov process with discrete states)

lim
t→∞ pij(t) = lim

t→∞ pj(t) = πj;
∑∞

k= 0
πk · qki = 0 (tj.π ′·Q = 0′) for all i, j ∈ N0

(properties of stationary distribution: hold under general assumptions)

p(t) = π ,

where a process with stationary distribution π has the initial distribution p(0) = π

(homogeneous Markov process with discrete states and with such an initial distribu-
tion, that it is the stationary distribution, is the strictly stationary stochastic process
(see Sect. 30.1))

P
(
X s+t ≤ x

∣
∣(Xτ )τ≤s

) = P(Xs+t ≤ x |Xs )

for all x ∈ R; 0≤ s≤ s + t (one assumes existence of the given conditional probabili-
ties, see Sect. 26.2); P(·|Xt) is the conditional probability given σ -algebra generated
by the random variable Xt (see Sect. 26.3)

(Markov property: the stochastic process {Xt, t ≥ 0} in continuous time, with con-
tinuous states (i.e. with the state space S = R) and with the Markov property is
called Markov process with continuous states; all that matters in determining the
future state Xs+t of the process is its current state Xs, and it does not matter how
the process got to Xs; the probabilities in the Markov property are transition prob-
abilities from time s to time s + t for events of the type Xs+t ≤ x, but one can also
consider more general events of the type Xs+t ∈ B for arbitrary Borel sets B on the
real line)

30.4 Important Stochastic Processes

{Yt, t ∈ N}, where P(Yt = 1) = P(Yt = −1) = 1/2

(binary process: its trajectory is a record of results when tossing an ideal coin)

{Xt, t ∈ N0}, where X0 = 0; Xt =∑t
i=1 Yi, t ∈ N; {Yt, t ∈ N} is the binary

process
(symmetric random walk on line: is a homogeneous Markov chain in discrete time
with the state space S = Z = {. . ., −1, 0, 1, . . .}, where

pij =
{

1/2 for j = i± 1

0 otherwise
; pi =

{
1 for i = 0

0 for i �= 0
for all i, j ∈ Z;
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Xt at time t ∈ N0 describes the position of a particle that moves (from the starting
position in the origin) along integer points on the line in each step with the same
probabilities in both directions)

{Xt, t ∈ N0},
where X0 = 1; Xt+1 = ∑Xt

j=1 Ztj, t ∈ N0; Ztj are iid random variables with values
in N0
(branching process (Galton-Watson process): is a homogeneous Markov chain in
discrete time with the state space S = N0 = {0, 1, . . .}; Xt at time t ∈ N0 describes
the number of members of tth generation (the initial 0th generation has only one
member), where the jth member of tth generation gives rise to a random number Ztj

of members (descendants) of (t + 1)th generation)

{Nt, t ≥ 0}, where
⎧
⎪⎨

⎪⎩

(i) N0 = 0

(ii) Nt2 − Nt1 , . . . , Ntn − Ntn−1 are independent for arbitrary 0 ≤ t1 < . . . < tn
(iii) Nt − Ns ∼ P (λ · (t − s)) for arbitrary 0 ≤ s < t

(Poisson process with intensity λ > 0 (see also Sect. 15.2): is a homogeneous Markov
process in continuous time with the state space S = N0 = {0, 1, . . .}, where

pij(h) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ · h+ o(h) for j = i+ 1

1− λ · h+ o(h) for j = i

o(h) for j > i+ 1

0 for j < i

;

Nt at time t≥ 0 describes the number of occurrences of an observed event (e.g. insur-
ance claims) in the time interval 〈0, t〉 (in the interval of a small length h the given
event occurs just once with probability λ · h + o(h) (which is proportional approxi-
mately to the length h) and more than once with probability o(h)); in particular, it is

pi(t) = P(Nt = i) = e−λ · t (λ · t)i

i ! , t ≥ 0; i ∈ N0

(see Poisson distribution in Sect. 26.4 with mean value λ · t); the times between
particular occurrences of the given event are iid random variables with distribution
Exp(λ) (see exponential distribution in Sect. 26.5 with mean value 1/λ); an efficient
estimate of the process intensity is λ̂ = n/T , where n is the observed number of
occurrences of the given event within the time T)

{Xt, t ≥ 0},
(Yule process (linear birth process) with parameter λ > 0: is a homogeneous Markov
process in continuous time with the state space S = N0 = {0, 1, . . .}, where
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pij(h) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

i · λ · h+ o(h) for j = i+ 1

1− i · λ · h+ o(h) for j = i

o(h) for j > i+ 1

0 for j < i

;

Xt at time t ≥ 0 describes a population size with given initial size X0 = k0 (in the
interval of a small length h each individual gives to rise to just one individual with
probability λ · h + o(h) and to more individuals with probability o(h) independently
of behaviour of other individuals); in particular, it is

pi(t) =

⎧
⎪⎨

⎪⎩

(
i− 1

i− k0

)

e−k0·λ· t
(

1− e−λ · t
) i− k0 for i ≥ k0

0 for i < k0

;

similarly one defines general birth process (it has a general term λi instead of the
linear term i · λ) and linear or general birth-and-death process (here the individuals
originate and die away with given probabilities))

{εt, t ∈ Z}, where E(εt) = 0; cov( εs; εt) = δst · σ 2 ( σ 2 > 0), s, t ∈ Z

(white noise (WN): is a (weakly) stationary stochastic process (see Sect. 30.1) in
discrete time with state space S = R (εt are mutually uncorrelated with zero mean
value and constant variance σ 2> 0); moreover, if εt are iid, then the white noise
is strictly stationary; autocovariance function R(t) (see Sect. 30.1) of the white
noise is

R(t) =
{
σ 2 for t = 0

0 for t �= 0

Xt = εt + θ1 εt − 1 + . . . + θq εt − q, t ∈ Z,
where {εt} is white noise with variance σ 2; θq �= 0
(moving average process of order q denoted as MA(q): is a (weakly) stationary
stochastic process in discrete time with the state space S = R, zero mean value
and autocovariance function (see Sect. 30.1)

R(t) =
{
σ 2∑q− | t |

i=0 θi+ | t | θi for | t | = 0, 1, . . . , q

0 for | t | > q
;

if the polynomial λq + θ1λ
q − 1 + . . . + θq has all roots inside the unit circle in

the complex plane, then the process MA(q) is invertible, i.e. predictable using the
autoregressive form Xt = π1 Xt − 1 + π2 Xt − 2 + . . . + εt (see Sect. 31.4))

Xt = ϕ1 Xt−1 + . . . + ϕp Xt−p + εt, t ∈ Z,

where {εt} is white noise with variance σ 2; ϕp �= 0; the polynomial λp− ϕ1λ
p−1

– . . . −ϕp has all roots inside the unit circle in the complex plane
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(autoregressive process of order p denoted as AR(p): is a (weakly) stationary
stochastic process in discrete time with the state space S = R, zero mean value
and autocovariance function fulfilling Yule-Walker equations

R(t) =
{
ϕ1R(t − 1)+ . . . + ϕpR(t − p) for t = 1, 2, . . .

ϕ1R(1)+ . . . + ϕpR(p)+ σ 2 for t = 0
;

in particular, AR(1) has R(t) = σ 2

1−ϕ2
1
ϕ
| t |
1 , t ∈ Z (see Sect. 31.4))

Xt = ϕ1 Xt−1 + . . . + ϕp Xt−p + εt + θ1 εt−1 + . . . + θq εt−q, t ∈ Z,

where {εt} is white noise with variance σ 2; ϕp �= 0; θq �= 0; the polynomial λp–
ϕ1λ

p−1– . . . – ϕp has all roots inside the unit circle in the complex plane

(mixed process of orders p and q denoted as ARMA(p, q): is a (weakly) station-
ary stochastic process in discrete time with state space S = R, zero mean value
and autocovariance function fulfilling R(t) = ϕ1 R(t − 1) + . . . + ϕp R(t – p) for
t = q + 1, q + 2, . . .; if the polynomial λq + θ1λ

q−1 + . . . + θq has all roots inside
the unit circle in the complex plane, then the process ARMA(p, q) is invertible, i.e.
predictable using the autoregressive form Xt = π1 Xt − 1 + π2 Xt − 2 + . . . + εt (see
Sect. 31.4))

Xt =
∑K

i=1
(Ai cos(λit)+ Bi sin(λit)) , t ∈ R,

where E(Ai) = E(Bi) = 0; var(Ai) = var(Bi) = σ i
2 > 0; E(AiAj) = E(BiBj) = 0

for i �= j; E(AiBj) = 0; λí ∈ R

(harmonic process: is a (weakly) stationary stochastic process in continuous time
with the state space S = R, zero mean value and autocovariance function of the
form

R(t) =
∑K

i=1
σ 2

i cos(λit), t ∈ R
)

{Wt, t ≥ 0}, where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(i) W0 = 0

(ii) trajectories are continuous in time

(iii) Wt2 −Wt1 , . . . , Wtn −Wtn−1 are independent for arbitrary 0 ≤ t1 < . . . < tn

(iv) Wt −Ws ∼ N (0, t − s) for arbitrary 0 ≤ s < t

(Wiener process (Brownian motion, see also Sect. 15.1): is a homogeneous Markov
process in continuous time with the state space S = R; increments Wt+h − Wt have
normal distribution N(0, h) (see Sect. 26.5); Wt is applied when modeling move-
ments of physical particles, interest rates, prices of some assets (it is the base of
majority of financial models), and the like)
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30.5 Spectral Properties of Stochastic Processes

Xt =
π∫

−π
cos(λt) dUλ +

π∫

−π
sin(λt) dVλ, t ∈ Z or

Xt =
∞∫

−∞
cos(λt) dUλ +

∞∫

−∞
sin(λt) dVλ, t ∈ R,

where {Uλ} and {Vλ} are stochastic processes with independent increments, i.e.
E(dUλ) = E(dVλ) = 0; E(dUλ·dUκ ) = E(dVλ·dVκ ) = 0 for λ �= κ; E(dUλ·
dVκ ) = 0
(spectral decomposition of stationary process in discrete or continuous time, respec-
tively: “each stationary process {Xt} is a mixture of periodic components with
various frequencies, where amplitudes of particular components are independent
random increments dUλ and dVλ”)

R(t) =
π∫

−π
cos(λt) dF(λ), t ∈ Z or R(t) =

∞∫

−∞
cos(λt) dF(λ), t ∈ R,

where spectral distribution function F(λ) is non-decreasing; continuous from the
right; F(−π ) = 0 or F(−∞) = 0; F(π ) = R(0) or F(∞) = R(0), respectively

(spectral decomposition of autocovariance function of stationary process in dis-
crete or continuous time, respectively: the function F(λ) of given properties exists
uniquely for arbitrary stationary process)

var(Xt) = R(0) =
π∫

−π
dF(λ), t ∈ Z or var(Xt) = R(0) =

∞∫

−∞
dF(λ), t ∈ R,

where {Xt} is a stationary process in discrete or continuous time, respectively

F(λ) =
λ∫

−π
f (x) dx, −π ≤ λ ≤ π ; F(λ) =

λ∫

−∞
f (x) dx

(spectral density f(λ): exists for absolutely continuous spectral distribution func-
tions; f(λ) can be chosen as even, i.e. f(λ) = f(−λ); dF(λ) = f(λ)dλ represents the
intensity (expressed by the variance) of the periodic component with frequency λ in
the spectral decomposition of the given stationary process (see thereinbefore)
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R(t) =
π∫

−π
cos(λt)f (λ) dλ = 2

π∫

0

cos(λt)f (λ) dλ, t ∈ Z or

R(t) =
∞∫

−∞
cos(λt)f (λ) dλ = 2

∞∫

0

cos(λt)f (λ) dλ, t ∈ R

(spectral decomposition of autocovariance function of stationary process in discrete
or continuous time, respectively, when there exists the spectral density)

f (λ) = 1

2π

∞∑

t= −∞
R(t) cos(λt) = 1

2π

(

R(0)+ 2
∞∑

t=1

R(t) cos(λt)

)

, −π ≤ λ ≤ π ,

where
∞∑

t=0

|R(t)| <∞

or f (λ) = 1

2π

∞∫

−∞
R(t) cos(λt) dt = 1

π

∞∫

0

R(t) cos(λt) dt, λ ∈ R,

where

∞∫

0

|R(t)| dt <∞

(inverse formula: expresses the spectral density by means of the autocovariance
function; it can be interpreted as the Fourier expansion of the spectral density, where
Fourier coefficients are the autocovariances)

f (λ) = σ 2

2π
, −π ≤ λ ≤ π (spectral density of white noise, see Sect. 30.4.)

f (λ) = σ 2

2π
·
∣
∣eiqλ + θ1ei(q− 1)λ + . . .+ θq

∣
∣2

∣
∣eipλ − ϕ1ei(p− 1)λ − . . .− ϕp

∣
∣2

, −π ≤ λ ≤ π

(spectral density of process ARMA(p, q), see Sect. 30.4; in particular, AR(1) has the

spectral density of the form f (λ) = σ 2

2π · 1
1+ϕ2

1−2ϕ1 cos λ
, −π ≤ λ ≤ π

)

• Harmonic process (see Sect. 30.4) has no spectral density: its spectral distribu-
tion function is piecewise constant with jumps of the size σ i

2/2 at the points
±λ1, . . ., ±λK

fij(λ) = 1

2π

∞∑

t=−∞
Rij(t) e− iλt, −π ≤ λ ≤ π , where

∞∑

t=−∞

∣
∣Rij(t)

∣
∣ <∞

(mutual spectral density of processes {Xti} and {Xtj} in the framework of n-
variate stochastic process Xt = (Xt1, . . ., Xtn)′ in discrete time (the construction in
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continuous time is analogous); an alternative sufficient condition for the existence
of fij(λ) is the existence of the spectral densities fi(λ) and fj(λ) of processes {Xti}
and {Xtj})

fij(λ) = c(λ)− i · q(λ), −π ≤ λ ≤ π

(cospectrum c(λ) and quadratic spectrum q(λ): are the real and imaginary part of
fij(λ) except for the sign)

Cij(λ) = | fij(λ)|
(
fi(π )fj(λ)

) 1/2
, −π ≤ λ ≤ π

(coefficient of coherence: is a measure of dependence between processes {Xti} and
{Xtj}, when the dependence concerns the periodic components of {Xti} and {Xtj}
with frequency λ (0 ≤ Cij(λ) ≤ 1, where the values near to one indicate the highest
dependence))

Φij(λ) = arctg
q(λ)

c(λ)
, −π ≤ λ ≤ π

(coefficient of phase shift: describes the phase delay of the periodic component with
frequency λ of the process {Xtj} against the periodic component with the same
frequency λ of the process {Xti})

Rij(λ) = Cij(λ) ·
√

fi(λ)

fj(λ)
, −π ≤ λ ≤ π

(coefficient of gain: is the regression coefficient, when the regression of the pro-
cess {Xti} on the process {Xtj} is performed for the periodic components with
frequency λ, which can be written in a schematic way as Xti(λ) = Rij(λ) · Xtj(λ))

Zt =
∑∞

k=−∞ δkXt− k, t ∈ Z; Zt =
∫ ∞

−∞
δ(τ )Xt− τ dτ , t ∈ R

(linear filter: the stochastic process {Zt} originates by filtering the process {Xt}
applying the filter δ)

ψ(λ) =
∑∞

k=−∞ δke− iλk, −π ≤ λ ≤ π or ψ(λ) =
∫ ∞

−∞
δ(τ )e− iλτ dτ , λ ∈ R

(transfer function of filter: the spectral densities fX(λ) and fZ(λ) of processes {Xt}
and {Zt} fulfil fZ(λ) = |ψ(λ)|2· fX(λ) under general assumptions; the transfer
function of a low-pass filter attains small values for higher frequencies, and the
like)
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Chapter 31
Statistical Analysis of Time Series

Abstract Chapter 31 contains formulas relevant for time series analysis: 31.1.
Predictions in Time Series, 31.2. Decomposition of (Economic) Time Series, 31.3.
Estimation of Correlation and Spectral Characteristics, 31.4. Linear Time Series,
31.5 Nonlinear and Financial Time Series, 31.6 Multivariate Time Series, 31.7.
Kalman Filter.

31.1 Predictions in Time Series

eT = xT − x̂T

(prediction error: x̂T is a (point) prediction of the value xT in an observed time
series, i.e. a statistical estimate of the future (predicted) value xT (T > n) constructed
by means of observations {x1, x2, . . . , xn}; the prediction error can be calculated
explicitly only as late as the observation xT is known)

(
x̂D

T (α), x̂H
T (α)

)

(100(1 − α)% interval prediction (confidence prediction interval): is an interval
estimated statistically by means of known observations {x1, x2, . . . , xn} such that
the future (predicted) value XT (T > n) lies in it with probability 100(1− α) (e.g. for
α = 0.05, it is the 95 % interval prediction))

SSE =
∑n+h

t= n+1

(
xt − x̂t

)2 =
∑n+h

t= n+1
e2

t (sum of squared errors)

MSE = (1/h)
∑n+h

t= n+1

(
xt − x̂t

)2 = (1/h)
∑n+h

t= n+1
e2

t (mean squared error)

( ¯̂x− x̄
)2

MSE
+ (sx̂ − sx)2

MSE
+ 2(1− rx̂x)sx̂sx

MSE
= 100%

(decomposition of MSE to proportional bias, proportional variance and
proportional covariance, respectively: ¯̂x, x̄, sx̂, sx, rx̂x are the corresponding sample
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362 31 Statistical Analysis of Time Series

means, sample standard deviations and sample correlation coefficient of the values
x̂ and x)

MAE = (1/h)
∑n+h

t= n+1

∣
∣xt − x̂t

∣
∣ = (1/h)

∑n+h

t= n+1
|et|

(mean absolute error: is less sensitive against large errors than MSE)

RMSE =
√

1

h

∑n+h

t= n+1

(
xt − x̂t

)2 (root mean squared error)

MAPE = 100

h

∑n+h

t= n+1

∣
∣
∣
∣
xt − x̂t

xt

∣
∣
∣
∣

(mean absolute percentage error: is measured in %)

AMAPE = 100

h

∑n+h

t= n+1

∣
∣
∣
∣

xt − x̂t

(xt + x̂t)/2

∣
∣
∣
∣

(adjusted MAPE: is symmetric with respect to x and x̂)

U =
√∑n+h

t= n+1 (xt − x̂t)2

√∑n+h
t= n+1 x̂2

t +
√∑n+h

t= n+1 x2
t

(Theil’s U-statistics)

100

h

∑n+h

t= n+1
zt, where zt =

{
1 for xt · x̂t > 0
0 others

(percentage of correct predictions of signs + or −)

100

h

∑n+h

t= n+1
zt, where zt =

{
1 for (xt − xt−1) · (x̂t − xt−1) > 0
0 others

(percentage of correct predictions of growth or decrease)

31.2 Decomposition of (Economic) Time Series

Xt = Trt + Ct + It + εt, t ∈ Z

(additive decomposition of stochastic process {Xt}: Trt is the trend component
(trend), which reflects long-run movements in the process; Ct is the cyclical
component (cycle), which refers to recurring up and down movements around
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trend levels (with periodicity usually longer than one year: e.g. cycles economic,
demographic, climatic and others); It is the seasonal component (seasonal vari-
ations), i.e. periodic patterns, which complete themselves within the period of a
calendar year and are then repeated on a yearly basis (it is caused by factors
such as weather and customs); εt is the residual (random, irregular) component
(see Sect. 27.11), which are erratic fluctuations around systematic components
Trt, Ct and It in the process; the classical decomposition analysis assumes that
{εt} is the white noise (see Sect. 30.4), i.e. in particular, var(εt) = σ 2 > 0
for all t)

Xt = Trt · Ct · It · εt, t ∈ Z

(multiplicative decomposition of stochastic process {Xt}: can be transferred by the
logarithmic transformation to the additive decomposition (however, there may be
problems to estimate particular components after such a transformation))

{xt, t ∈ {1, 2, . . . , n}} = {x1, x2, . . . , xn}, n ∈ N; xt ∈ R

(observed time series corresponding to stochastic process with systematic compo-
nents: can be used to estimate systematic components and consequently to smooth
and predict such a time series)

x̂t = T̂rt + Ĉt + Ît, x̂t = T̂rt · Ĉt · Ît , respectively

(smoothed time series (t ≤ n) or prediction in time series (t > n): one makes use
of estimated or predicted values of the systematic components in the additive and
multiplicative decomposition, respectively (see Sect. 27.11))

Xt = β0+εt, t = 1, . . . , n (constant trend)

– the parameter estimation: b0 = x̄ = (1/n)
∑n

t=1 xt

– the point prediction (see Sect. 31.1): x̂T = b0
– the 100(1 − α) prediction (see Sects. 26.5 and 31.1):

⎛

⎝b0 ± t1− α/2(n− 1) ·
√∑n

t=1 (xt − x̄)2

n− 1
·
√

1+ 1

n

⎞

⎠

Xt = β0 + β1 t + εt, t = 1, . . . , n (linear trend)

– is characterized by constant first differences Trt+1 − Trt = β1
– the parameter estimation:
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b1 =
∑n

t=1 txt − ((n+ 1)/2)
∑n

t=1 xt

n(n2 − 1)/12
; b0 = x̄− n+ 1

2
b1

– the point prediction (see Sect. 31.1): x̂T = b0 + b1T
– the 100(1 − α) interval prediction (see Sects. 26.5 and 31.1):

⎛

⎝b0 + b1T ± t1− α/2(n− 2) ·
√∑n

t=1 (xt − b0 − b1t)2

n− 2
·

√

1+ 1

n
+ (T − (n+ 1)/2)2

n(n2 − 1)/12

⎞

⎠

Xt = β0 + β1 t + β2 t2 + εt, t = 1, . . . , n (quadratic trend)

– is characterized by constant second differences (Trt+2−Trt+1)− (Trt+1−Trt)
=β2

– the parameter estimation can be obtained from the system of equations:

b0n + b1
∑

t + b2
∑

t2 =∑ xt

b0
∑

t + b1
∑

t2 + b2
∑

t3 =∑ txt

b0
∑

t2 + b1
∑

t3 + b2
∑

t4 =∑ t2xt

– the point prediction (see Sect. 31.1): x̂T = b0 + b1T + b2T2

– the 100(1 − α) interval prediction (see Sects. 26.5 and 31.1) with

X′ =
⎛

⎝
1 1 . . . 1
1 2 . . . n
1 4 · · · n2

⎞

⎠ :

⎛

⎝b0 + b1T + b2T2 ± t1− ε/2(n− 3) ·
√
∑n

t=1

(
xt − b0 − b1t − b2t2

)2

n− 3
·

√
√
√
√
√1+ (1, T , T2)(X′X)−1

⎛

⎝
1
T

T2

⎞

⎠

⎞

⎟
⎠

Xt = αβ t + εt, t = 1, . . . , n, where β > 0 (exponential trend)

– the trend is modeled by the exponential curve: it is increasing for α > 0 and β > 1
(or it is decreasing for α > 0 and 0 < β < 1)

– is characterized by the constant coefficient of growth Trt+1/Trt = β

– the parameter estimation can be obtained from the system of equations:
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(∑
x2

t

)
lnα + (∑

tx2
t

)
lnβ =∑ x2

t ln xt
(∑

tx2
t

)
lnα + (∑ t2x2

t

)
lnβ =∑ tx2

t ln xt

Xt = γ + αβ t + εt, t = 1, . . . , n, where β > 0 (modified exponential trend)

– the trend is modeled by the modified exponential curve with asymptotic limit (for
α < 0, 0 < β < 1, γ > 0)

– is characterized by the constant ratio of adjacent first differences: (Trt+2 −
Trt+1)/(Trt+1 − Trt) = β

– the approximate parameter estimation for n = 3m can be obtained as follows (�1,
�2, �3 denote the sums of the values in the first, second and last third of the given
time series, respectively):

b =
(∑

3 xt −∑2 xt
∑

2 xt −∑1 xt

)1/m

; a = b− 1

b(bm − 1)2

(∑
2 xt −∑1 xt

)
;

c = 1
m

(
∑

1 xt − ab(bm − 1)

b− 1

)

Xt = γ
1+αβ t + εt, t = 1, . . . , n, where β > 0, γ > 0 (logistic trend)

– the trend is modeled by the S-curve symmetric around inflex point
– is characterized by the constant ratio of adjacent first differences of inverted

values: (1/Trt+2 − 1/Trt+1)/(1/Trt+1 − 1/Trt) = β

– the approximate parameter estimation can be obtained by estimating the following
linear regression model (see Sect. 27.11):

xt − xt−1

xt
= − lnβ + lnβ

γ
xt + ηt, t = 1, . . . , n

– the parameter α can be estimated by Rhodes formula:

lnα = − (n+ 1) lnβ

2
+ 1

n

n∑

t=1

ln

(
β

xt
− 1

)

Xt = exp
(
γ + αβ t

) + εt, t = 1, . . . , n, where β > 0 (Gompertz trend)

– the trend is modeled by the S-curve asymmetric around inflex point
– is characterized by the constant ratio of adjacent first differences of log values:

(lnTrt+2 − lnTrt+1)/(lnTrt+1 − lnTrt) = β

– the parameter estimation can be obtained same way as in the case of the modified
exponential trend (see thereinbefore) for the time series {ln xt}

x̂t =
∑m

i=−m
wixt+i = w−mxt−m + . . . + w0xt + . . . + wmxt+m

(moving average of length 2m + 1 with weights {wi}: is used most often in the case
of Xt = Trt + εt; moreover, if locally in the neighbourhood of time t the trend is
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a polynomial of degree r, namely β0(t) + β1(t)τ + . . . + βr(t)τ r for τ = −m, . . . ,
0, . . . , m, then the corresponding moving average is called the moving average of
length 2m + 1 and degree r (it has always symmetric weights {w−m, . . . , 0, . . . , wm}
summing up to one, which are the same for even r and odd r + 1)

x̂t = 1

35

(

17
∑2

τ=−2
xt+τ − 5

∑2

τ=−2
τ 2xt+τ

)

= 1

35
(−3xt−2 + 12xt−1 + 17xt + 12xt+1 − 3xt+2), t = 3, 4, . . . , n − 2

(an example of the moving average of length 5 and degree 2 or 3: the weights for
various lengths and degrees are tabulated or produced by software systems; for the
first smoothed values x̂1, x̂2 and for the last smoothed values x̂n−1, x̂n and for the
predicted values x̂n+k(n) with k > 0 one must apply special weights, which are again
tabulated, see thereinafter)

x̂n+1(n) = 1

10
(−4xn−4 − xn−3 + 2xn−2 + 5xn−1 + 8xn)

(an example of the prediction moving average of length 5 and degree 1 producing a
one-period-ahead prediction (at time n for time n + 1, see thereinbefore): the weights
for various lengths and degrees are tabulated or produced by software systems
(however, they are asymmetric and distinct for even r and odd r + 1))

x̂t = 1

2m+ 1
(xt−m + . . . + xt + . . . + xt+m)

(arithmetic moving average of length 2m + 1)

x̂t = 1

4m
(xt−m + 2xt−m+1 + . . . + 2xt+m−1 + xt+m)

(centred moving average over a season of length 2m: e.g. for monthly observations
one puts 2m = 12 and

x̂July 08 = (1/24)(x̂January 08 + 2x̂February 08 + . . .+ 2x̂December 08 + x̂January 09)

x̂t = αxt + (1− α)x̂t−1
x̂t+k(t) = x̂t for k > 0

}

(simple exponential smoothing: is used most often in the case Xt = β0(t) + εt (i.e. for
a constant trend, which is flexible in time); 0 < α < 1 is a fixed smoothing constant
(the level of smoothing increases for α approaching zero, and the recommended
values of α are 0 < α ≤ 0.3); in general, the principle of exponential smoothing
includes recursive smoothing and predicting methods, in which the values observed
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up to the present period get weights, which decrease exponentially with the age of
observations (e.g. an equivalent non-recursive representation of the simple expo-
nential smoothing is x̂t = α

∑∞
i= 0 (1− α)ixt−i)); in practice one must choose the

smoothing constant and the initial value x̂0 (e.g. in the simple exponential smooth-
ing, the initial value can be chosen as the arithmetic average of several (usually
six) first observations of the given time series and the smoothing constant α may
be found by minimizing SSE (see Sect. 31.1) over a grid of possible values of this
constant))

x̂t = 2St − S[2]
t

x̂t+k(t) =
(

2+ α·k
1−α
)

St −
(

1+ α·k
1−α
)

S[2]
t for k > 0

St = αxt + (1− α)St−1

S[2]
t = αSt + (1− ε)S[2]

t−1

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(double exponential smoothing (Brown’s method): is used most often in the case
Xt = β0(t)+β1(t)·t + εt (i.e. for a linear trend, which is flexible in time); 0 < α < 1
is a fixed smoothing constant (the recommended values of α are 0 < α ≤ 0.3);
St and St

[2] are auxiliary smoothing statistics; the recommended initial values are
S0 = b0(0) − ((1 − α)/α)· b1(0), S0

[2] = b0(0) − (2(1 − α)/α)· b1(0), where b0(0)
and b1(0) are estimated parameters β0 and β1 applying the linear trend regression
(see thereinbefore) to several first observations of the time series; the smoothing
constant α can be found again e.g. by minimizing SSE)

Lt = αxt + (1− α)(Lt−1 + Tt−1)
Tt = γ (Lt − Lt−1)+ (1− γ )Tt−1
x̂t = Lt

x̂t+k(t) = Lt + Tt · k for k > 0

⎫
⎪⎪⎬

⎪⎪⎭

(Holt’s method: is used most often in the case Xt = β0(t) + β1(t)·t + εt (i.e. for a
linear trend, which is flexible in time); 0 < α, γ < 1 are fixed smoothing constants
(the recommended values are 0 < α, γ ≤ 0.2); Lt and Tt are auxiliary values repre-
senting the level and the slope of the linear trend; it is a generalization of the double
exponential smoothing (see thereinbefore) to the case of two smoothing constants)

xt = Trt + It + εt or xt = Trt · It · εt

(additive or multiplicative seasonal decomposition with length of season s (e.g. it is
s= 12 for monthly observations): the seasonal component It is often called seasonal
index (in the additive case it is measured in the same units as xt, in the multiplicative
case it is a percentage)

∑s

i=1
Ii+s·j = 0 for all j = 0, 1, . . .

(normalization of seasonal indices for additive seasonal decomposition with length
of season s: it guarantees the uniqueness of decomposition)
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∑s

i=1
Ii+s ·j = p or

∏s

i=1
Ii+s ·j = 1 for all j = 0, 1, . . .

(normalization of seasonal indices for multiplicative seasonal decomposition with
length of season s: it guarantees the uniqueness of decomposition; the latter normal-
ization corresponds after the logarithmic transformation to the normalization for the
additive seasonal decomposition (see thereinbefore))

xt = β0 + β1t + α2vt2 + α3vt3 + α4vt4 + εt

(an example of the additive seasonal decomposition with linear trend and length of
season s = 4 (i.e. for quarterly observations): the seasonality is modeled by means
of a qualitative seasonal regressor using three dummies v1, v2, v3 (see Sect. 28.3)):

t vt1 vt2 vt3

1 0 0 0
2 1 0 0
3 0 1 0
4 0 0 1
5 0 0 0
6 1 0 0
7 0 1 0
8 0 0 1
...

...
...

...

xt = β0 + β1 · t + β2 · t · sin

(
2π t

s

)

+ β3 · t · cos

(
2π t

s

)

+ εt

(an example of the multiplicative seasonal decomposition with linear trend and
length of season s: the seasonality is modeled by means of goniometric functions)

Lt = α(xt − It−p)+ (1− α)(Lt−1 + Tt−1)
Tt = γ (Lt − Lt−1)+ (1− γ )Tt−1
It = δ(xt − Lt)+ (1− δ)It−s

x̂t = Lt + It

x̂t+k(t) = Lt + Tt · k + It+k−s for k = 1, . . . , s
= Lt + Tt · k + It+k−2s for k = s+ 1, . . . , 2s

...

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(additive Holt-Winters’ method with season of length p: 0 < α, γ , δ < 1 are fixed
smoothing constants; it is a generalization of Holt’s method (see thereinbefore) for
additive seasonal decomposition with three smoothing constants)
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Lt = α (xt/It−s)+ (1− α)(Lt−1 + Tt−1)
Tt = γ (Lt − Lt−1)+ (1− γ )Tt−1
It = δ (xt/Lt)+ (1− δ)It−s

x̂t = Lt · It

x̂t+k(t) = (Lt + Tt · k) · It+k−s for k = 1, . . . , s
= (Lt + Tt · k) · It+k−2s for k = s+ 1, . . . , 2s

...

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(multiplicative Holt-Winters’ method with season of length p: 0 < α, γ , δ < 1 are
fixed smoothing constants; it is a generalization of Holt’s method (see thereinbefore)
for multiplicative seasonal decomposition with three smoothing constants)

| k − (n− 1)/2 |√
(n+ 1)/12

≥ u1− α/2,

where k is the number of positive differences xt +1 − xt (i.e. the number of the
so-called points of growth) in time series x1, . . . , xn

(critical region for test of hypothesis H0: xt ∼ iid at level of significance α (see
Sect. 27.10): it is one of the simplest tests of randomness applied to the detrended
and deseasonalised time series (e.g. the additive trend or seasonal adjustment is
obtained by subtracting the estimated components Trt or It) in order to appreciate
the quality of such an adjustment (is the residual really a random component?); the
test is derived asymptotically (i.e. it requires a larger n in practice)

| r − 2(n− 2)/3 |√
(16n− 29)/90

≥ u1− α/2,

where r is the number of upper and lower turning points in the time series x1, . . . , xn

(the upper turning point xt is the local maximum xt−1 < xt > xt+1 and the lower
turning point xt is the local minimum xt−1 > xt < xt+1)
(critical region for test of hypothesis H0: xt ∼ iid at level of significance α (see
Sect. 27.10): it is another test of randomness (see thereinbefore); the test is derived
asymptotically (i.e. it requires a larger n in practice) and is applied, when there is a
suspicion that the seasonal adjustment is not sufficient)

31.3 Estimation of Correlation and Spectral Characteristics

{xt, t ∈ T = {1, 2, . . . , n}} = {x1, x2, . . . , xn}, n ∈ N; xt ∈ R

(observed time series of stationary (see Sect. 30.1) stochastic process: can be used
to estimate correlation and spectral characteristics)



370 31 Statistical Analysis of Time Series

μ̂ = x̄ = 1

n

n∑

t=1

xt (estimated mean of stationary time series)

R̂(t) = 1

n

n− t∑

i=1

(xi − x̄)(xi+t − x̄), t = 0, 1, . . . , n− 1

(estimated autocovariance function of stationary time series (see Sect. 30.1): is
preferred in practice to the estimate of the form

R̂(t) = 1

n− t

n−t∑

i=1

(xi − x̄)(xi+t − x̄)

)

B̂(t) = R(t)

R(0)
, t = 0, 1, . . . , n− 1

(estimated autocorrelation function of stationary time series (see Sect. 30.1))

σ
(

B̂(t)
)
=
√

var
(

B̂(t)
)
∼
√

1

n

(

1+ 2
∑

k0
k=1

(
B̂(k)

) 2
)

, t > k0,

where B(t) = 0 for t > k0

(Bartlett’s approximation: approximates the standard deviation of estimated auto-
correlations in a stationary time series beyond the so-called truncation point (i.e.
for zero theoretical autocorrelations B(t) = 0); it is applied to identify this point in
the sequence of estimated autocorrelations (i.e. in the so-called correlogram), which
has implications when identifying a suitable model for a given time series)

B(t|t) = ρ(Xs, Xs+t| Xs+1, . . . , Xs+t−1), t ∈ N0 for arbitrary s ∈ Z

(partial autocorrelation function of stationary stochastic process {Xt} in discrete
time: is the partial correlation coefficient between Xs and Xs+t with fixed values
Xs+1, . . . , Xs+t−1 (see Sect. 27.8); B(0|0) = 1; B(1|1) = B(1); the estimated
partial autocorrelations are usually constructed recursively, e.g. by means of Durbin-
Levinson algorithm, which makes use of the fact that the estimate of B(k|k) can be
obtained as the OLS-estimate of the parameter ϕk in the AR(k) model Xt = ϕ1 Xt −1
+. . .+ ϕk Xt − k + εt)

σ
(

B̂(t | t )
)
=
√

var
(

B̂(t | t )
)
∼ √1/n, t > k0, where B(t | t ) = 0 for t > k0

(Quenouille’s approximation: approximates the standard deviation of estimated par-
tial autocorrelations in a stationary time series beyond the truncation point (i.e.
for zero theoretical partial autocorrelations B(t|t) = 0); it is applied similarly
as Bartlett’s approximation to identify this point in the sequence of estimated
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partial autocorrelations (i.e. in the so-called partial correlogram), which has again
implications when identifying a suitable model for a given time series)

I(λ) = 1

2πn

⎛

⎝

(
n∑

t=1

xt cos(λt)

)2

+
(

n∑

t=1

xt sin(λt)

)2
⎞

⎠

= 1

2π

(

R̂(0)+ 2
n−1∑

t=1

R̂(t) cos(λt)

)

, −π ≤ λ ≤ π

(periodogram of stationary time series: is an important instrument for spectral anal-
ysis (in particular, when estimating spectral density, see Sect. 30.5); it is a principal
of test statistics for the so-called tests of periodicity when identifying and verifying
periodic components in time series, e.g. Fisher’s test of periodicity)

f̂ (λ0) =
π∫

−π
s(λ− λ0) · I(λ) dλ, or

f̂ (λ0) =w0R̂(0)+ 2
n−1∑

t=1

wtR̂(t) cos(λ0t), −π ≤ λ0 ≤ π

(estimated spectral density of stationary time series: by smoothing the peri-
odogram (s(·) is a function chosen in a suitable way), or by weighing estimated
autocovariances (wt are weights chosen in a suitable way))

wt =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1

2π

(

1− 6t2

m2

(
1− t

m

))

for t = 0, 1, . . . ,
m

2
1

π

(
1− t

m

)3
for t = m+ 1

2
, . . . , m

0 for t > m

(Parzen’s estimator of spectral density: wt are weights of estimated autocovariances
in f̂ (λ0) (see thereinbefore); choice of m ∈ N is recommended between n/6 and n/5)

31.4 Linear Time Series

Bxt = xt−1; Bjxt = B(Bj−1)xt = xt−j, j ∈ N (lag operator)

ϕ(B)x1 = θ (B)εt,

whereϕ(B) = 1− ϕ1 B− . . .− ϕp Bp and θ (B) = 1+ θ1 B + . . . + θq Bq

(mixed process ARMA(p, q) (see Sect. 30.4) written by means of the lag operator)
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Xt = εt + ψ1εt−1 + ψ2εt−2 + . . . = ψ(B)εt, t ∈ Z,

where {εt} is a white noise with variance σ 2 (see Sect. 30.4); ψ(B) = 1 + ψ1B+
ψ2B2 + . . .

(linear process: is a theoretical background when modeling linear time series; if the
power series ψ(z) = 1 + ψ1 z + ψ2 z2 + . . . converges for |z| ≤ 1 (i.e. inside and on
the unit circle in the complex plane), then the linear process exists (in sense of the
convergence in the mean square for the corresponding infinite sum, see Sect. 26.14)
and is (weakly) stationary (see Sect. 30.1) with zero mean value; the stationary
processes MA, AR, ARMA (see Sect. 30.4) are special cases of the linear process
and, for time series in practice, they are usually constructed in a systematic way
by means of the so-called Box-Jenkins methodology, which does make use of the
linear models of time series, namely in three steps: (1) identification of model (e.g.
for a time series x1, . . . , xn one identifies a model AR(1)); (2) estimation of model
(e.g. the estimated model xt = ϕ̂1xt−1 + εt is xt = 0.68xt−1 + εt with σ̂ = 11.24);
(3) diagnostic checking (e.g. the model from the step (2) is verified with the 95%
certainty))

X̂t+k(t) = ψk εt + ψk+1 εt−1 + . . . , k ∈ N

(prediction in linear invertible (see thereinafter) process for time t + k at time t: it is
a linear prediction (i.e. a linear function of the process), which is optimal in sense
of the criterion MSE (see Sect. 31.1))

MSE = var(ψt+k + ψ1εt+k−1 + . . .+ ψk−1εt+1) = (1+ ψ2
1 + . . .+ ψ2

k−1)σ 2

(MSE (see Sect. 31.1) of prediction in linear invertible process for time t + k at
time t)

Xt − π1Xt−1 − π2Xt−2 − . . . = π (B)Xt = εt, t ∈ Z,

where {εt} is a white noise with variance σ 2; π (B) = 1 − π1B − π2B2 − . . .

(invertible form of linear process: is a theoretical base when constructing predictions
in practice; if the power series π (z) = 1 − π1 z − π2 z2 − . . . converges for |z| ≤ 1
(i.e. inside and on the unit circle in the complex plane), then the linear process is
invertible)

Xt = εt + θ1εt − 1, t ∈ Z, where {εt} is a white noise with variance σ 2; θ1 �= 0

(moving average process of the first order MA(1) (see Sect. 30.4): is a (weakly)
stationary stochastic process with zero mean value and autocorrelation and partial
autocorrelation functions (see Sect. 30.1) of the form
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B(t) =
{

θ1
1+θ2

1
for t = 1

0 for t > 1
;

B(t|t) = (−1)t−1θ t
1(1− θ2

1 )

1− θ
2(t+1)
1

for t = 1, 2, . . . ;

if |θ1| < 1, then the process MA(1) is invertible)

Xt = εt + θ1εt−1 + θ2εt−2, t ∈ Z,

where {εt} is a white noise with variance σ 2; θ2 �= 0

(moving average process of the second order MA(2) (see Sect. 30.4): is a (weakly)
stationary stochastic process with zero mean value and autocorrelation function (see
Sect. 30.1) of the form

B(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

θ1(1+ θ2)

1+ θ2
1 + θ2

2

for t = 1

θ2

1+ θ2
1 + θ2

2

for t = 2

0 for t > 2

;

if θ1 + θ2 >−1,−θ1 + θ2 >−1,−1 < θ2 <−1, then the process MA(2) is invertible)

Xt = ϕ1Xt−1 + εt, t ∈ Z,

where {εt} is a white noise with variance σ 2; ϕ1 �= 0; |ϕ1| < 1

(autoregressive process of the first order AR(1) (see Sect. 30.4): is a (weakly) sta-
tionary invertible stochastic process with zero mean value and autocorrelation and
partial autocorrelation functions (see Sect. 30.1) of the form

B(t) = ϕt
1, t = 1, 2, . . . ; B(t | t) =

{
ϕ1 pro t = 1
0 pro t > 1

)

Xt = ϕ1Xt−1 + ϕ2Xt−2 + εt, t ∈ Z,

where {εt} is a white noise with variance σ 2; ϕ2 �= 0; ϕ1 + ϕ2 < 1; −ϕ1 + ϕ2 < 1;
−1 < ϕ2 < −1

(autoregressive process of the second order AR(2) (see Sect. 30.4): is a (weakly)
stationary invertible stochastic process with zero mean value and autocorrelation
function (see Sect. 30.1) of the form (G1 and G2 are distinct roots of the equation
1 − ϕ1 B − ϕ2 B2 = 0)
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B(t) = G−1
1 (1− G−2

2 )G− t
1 − G−1

2 (1− G−2
1 )G− t

2

(G−1
1 − G−1

2 )(1+ G−1
1 G−1

2 )
, t = 1, 2, . . .

)

Xt = ϕ1Xt−1 + εt + θ1εt−1, t ∈ Z,

where {εt} is a white noise with variance σ 2; ϕ1 �= 0; θ1 �= 0; |ϕ1| < 1

(mixed process of the first orders ARMA(1, 1) (see Sect. 30.4): is a (weakly) station-
ary invertible stochastic process with zero mean value and autocorrelation function
(see Sect. 30.1) of the form

B(t) = ϕt−1
1

(1+ ϕ1θ1)(ϕ1 + θ1)

1+ 2ϕ1θ1 + θ2
1

, t = 1, 2, . . . ;

if |θ1| < 1, then the process ARMA(1, 1) is invertible)

AIC(k, l) = ln σ̂ 2
k, l +

2(k + l)

n
,

where σ̂ 2
k, l is the estimated variance of the estimated white noise when modeling a

given time series x1, . . . , xn by means of the model ARMA(k, l)

(Akaike’s criterion identifying orders of model ARMA: the estimated orders p̂, q̂ of
the model ARMA are obtained as arguments k, l minimizing AIC(k, l); one can apply
other criteria, e.g. BIC, and the like)

Q = n
∑K

t=1

(
B̂(t; ε̂t)

) 2
,

where ε̂t = xt−ϕ̂1xt−1−. . .−ϕ̂pxt−p− θ̂1ε̂t−1−. . .− θ̂qε̂t−q is the (recursively) esti-
mated white noise in the estimated model ARMA(p, q), and B̂(t; ε̂t) is the estimated
autocorrelation function (see Sect. 31.3) of this estimated white noise

(portmanteau statistics verifying constructed model ARMA(p, q))

Q > χ2
1− α(K − p− q)

(critical region at significance level α (see Sects. 26.5 and 27.10) of portmanteau
test verifying hypothesis that a given time series is compatible with the constructed
model ARMA(p, q): K is a chosen natural number with recommended value K∼√n)

kxt =
(

k
0

)

xt −
(

k
1

)

xt−1 +
(

k
2

)

xt−2 − . . .+ (−1)k
(

k
k

)

xt− k, k ∈ N;

t = k + 1, . . . , n

(kth difference of time series x1, . . . , xn: in particular, the first difference is simply
xt = xt − xt−1 and the second difference is 2xt = (xt) = xt − 2xt−1 + xt−2)
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k = (1− B)k, k ∈ N

(difference operator: e.g. 2xt = (1 − B)2xt = xt − 2Bxt + B2xt = xt − 2xt−1 +
xt − 2)

{Xt} ∼ I(d), d ∈ N0

(integrated process of order d: is a stochastic process, for which d is the mini-
mal differencing order such that the differenced process is (weakly) stationary; in
particular, the symbol I(0) denotes a (weakly) stationary process)

ϕ(B)dXt = θ (B)εt, d ∈ N,

where {εt} is a white noise with variance σ 2; ϕp �= 0; θq �= 0; the autoregressive
polynomial λp − ϕ1λ

p−1 − . . .−ϕp has all roots inside the unit circle in the complex
plane
(integrated mixed process of orders p, d, q (ARIMA(p, d, q)): in general, it is
a nonstationary stochastic process in discrete time with the state space S = R;
one can treat it as the model ARMA(p, q) for the dth differences {dXt} of
the process {Xt}; it is suitable for nonstationary time series, which can be
transferred into stationary ones by differencing them (e.g. in the case of a
time series fluctuating around a constant level, which changes in jumps, one
achieves stationarity by means of the first differences); Box-Jenkins method-
ology makes use of the ARIMA models when modeling nonstationary time
series)

Xt = εt, where {εt} is a white noise with variance σ 2

(integrated mixed process ARIMA(0, 1, 0)): is a random walk with the continuous
state space (see Sect. 30.4); the attribute “integrated” is obvious, when one writes
xt = εt + εt−1 + .. .. + εt−k + xt−k−1)

H0 : ϕ1 = 1 for model Xt = ϕ1Xt−1 + εt

(Dickey-Fuller tests of unit roots: answer the important question, whether differenc-
ing a given time series is really necessary (e.g.: is the suitable model for x1, . . . , xn

a stationary process AR(1) or a nonstationary process ARIMA(0, 1, 0)?); such tests
use statistics of the type (ϕ̂1− 1)/σ̂ (ϕ̂1) with tabulated critical values and have been
augmented for general models ARIMA(p, d, q))

ϕ(B)Φ(B12)dD
12 xt = θ (B)Θ(B12)εt,

where {εt} is a white noise with variance σ 2; Φ(B12) = 1 − Φ1 B12 − . . . − ΦP

B12P; Θ(B12) = 1 + Θ1 B12 + . . . + ΘQ B12Q; 12 = 1 − B12
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(multiplicative seasonal process of order p, d, q, P, D, Q with length of season s= 12
(SARIMA(p, d, q) × (P, D, Q)12): is a seasonal stochastic process with monthly
observations (the model is analogous for other lengths of season); one applies the
same model Φ(B12)D

12 xt = Θ(B12)ηt for all time series of the type {. . . , xJan04,
xJan05, . . .}, {. . . , xFeb04, xFeb05, . . .}, . . . , where the series {ηt}, which joins mul-
tiplicatively the series for particular months, is ARIMA(p, d, q) of the form ϕ(B)
d ηt = θ (B)εt; Box-Jenkins methodology makes use just of these SARIMA models
when modeling seasonal time series)

(1− B)(1− B12)xt = (1+ θ1B)(1+Θ1B12)εt,

i.e. xt = xt−1 + xt−12 − xt−13 + εt + θ1 εt−1 +Θ1 εt−12 + θ1 ·Θ1 εt−13

(example of SARIMA(0, 1, 1) × (0, 1, 1)12)

d Xt = εt, d ∈ R, where {εt} is a white noise with variance σ 2

(fractionally integrated process (FI):d = (1− B)d for d /∈ Z is fractional difference
obtained by means of (infinite) binomial extension of this expression; the process
FI is (weakly) stationary, if and only if d < 1/2; the process FI is invertible, if and
only if d > −1/2 (then Xt − π1 Xt − 1 − π2 Xt − 2 − . . . = εt, where πk = Γ (k − d)/
[Γ (−d) · · Γ (k+1)], see Sect. 25.12); if 0 < d < 1/2, then FI is stationary, but with∑∞

t=1 |R(t)| = ∞ (i.e. values of such a process may be strongly correlated, even if
they are very remote at time) so that one calls it long-memory process or persistent
process (with applications in hydrology or for finance time series); more generally,
one can use fractionally integrated mixed process of orders p, d, q (ARFIMA(p, d, q))

31.5 Nonlinear and Financial Time Series

{x(λ)
t , t ∈ {1, 2, . . . , n}}, where λ ≥ 0 is the parameter of transformation

(transformed time series: transformations of time series may have some positive
effects, namely (1) homogeneity of volatility; (2) symmetry of distribution, which
is skewed before transformation; (3) linearization of the time series so that a linear
model can be used after transformation (see Sect. 31.4))

x(λ)
t =

⎧
⎨

⎩

x(λ)
t − 1

λ
for λ �= 0

ln xt for λ = 0

(Box-Cox transformation: the value of parameter λ suitable for the given time series
(with positive values), which should be transformed, is usually looked for as ML
estimate (see Sect. 27.9))
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x(λ)
t =

⎧
⎪⎪⎨

⎪⎪⎩

1/
√

xt for λ = −1/2
ln xt for λ = 0√

xt for λ = 1/2
xt for λ = 1

⎞

⎟
⎟
⎠

(Jenkins transformation: confines itself to choice among four possible values;
moreover, such a choice may be based on graphical methods)

f (Xt, Xt−1, . . . ; ε1, εt−1, . . .) = 0,

where f is a nonlinear function; {εt} is a white noise with variance σ 2

(nonlinear process in discrete time (nonlinear time series): in comparison with the
linear process (see Sect. 31.4), it is more suitable to model (1) some real pro-
cesses, e.g. physical phenomena of the following type: dependence of frequency
on amplitude, limit cycles, resonance jumps, and the like; (2) financial time series,
e.g. special features of development of interest rates, exchange rates and finan-
cial indices of the following type: high frequency data (e.g. hourly) with irregular
record due to continual trading, volatility clustering (i.e. tendency for volatility in
financial markets to appear in bunches), conditional heteroscedasticity (i.e. variable
variance conditionally on information on previous time series values), leptokurtosis
(i.e. tendency for financial asset returns to have distributions with fat tails and excess
peakedness at the mean), uncorrelated observations, but highly correlated squared
observations (since correlation coefficient is suitable for “linear world” only), dis-
tinct response of volatility to large positive and large negative previous values and
others)

Xt =
∑q

i=1

∑p

j=1
βijεt−iXt−j + εt,

where (β ij) is a matrix (q × p) of parameters; {εt} is a white noise with variance σ 2

(bilinear process of orders p and q: is based on a bilinear form of previous val-
ues of the given process and the white noise; according to the form of matrix (β ij)
the bilinear processes are classified to diagonal ones with a diagonal matrix, sub-
diagonal ones with a subdiagonal matrix (it has zero elements above the principal
diagonal) and superdiagonal ones with superdiagonal matrix (it has zero elements
under the principal diagonal)

Xt = β εt−1Xt−1 + εt, where {εt} is a white noise with variance σ 2

(an example of diagonal bilinear process of orders 1 and 1: for λ2σ 2 < 1 the process
is (weakly) stationary with R(0)= var(Xt)= σ 2(1 + λ2 + λ4)/(1− λ2), R(1)= λ2σ 2

and R(t) = 0 for t = 2, 3, . . .)
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Xt = β εt−3Xt−2 + εt, where {εt} is a white noise with variance σ 2

(an example of subdiagonal bilinear process of orders 2 and 3: for λ2σ 2 < 1 the
process is (weakly) stationary with R(0) = var(Xt) = σ 2/(1 − λ2) and R(t) = 0 for
t = 1, 2, . . .)

Xt =
p∑

i=1

(
ϕi + πi exp(−γ X2

t−1)
)
+ εt,

where ϕi, π i, γ are parameters; {εt} is a white noise with variance σ 2

(exponential autoregressive process of order p: it models dependence of frequency
on amplitude (see thereinbefore))

Xt = εt +
q∑

j=1

(
θ

(1)
j ε+t−j + θ

(2)
j ε−t−j

)
,

where θ (1)
j and θ

(2)
j are parameters; {εt} is a white noise with variance σ 2; ε+t =

max(0, εt); ε
−
t = min(0, εt)

(asymmetric moving average process of order q: it behaves asymmetrically for pos-
itive and negative values of the white noise; for θ (1)

j = θ
(2)
j (j= 1, . . . , q) it becomes

the “symmetric” process MA(q), see Sect. 30.4)

Xt = ϕ
(k)
0 +

pk∑

i=1

ϕ
(k)
i Xt−i + ε

(k)
t for xt−d ∈ Tk(k = 1, . . . , m),

where d ∈ N, pk ∈ N0, ϕi
(k) ∈ R, σ k

2 > 0 are parameters; {εt
(k)} is a white noise

with variance σ k
2; {Tk} is a decomposition of the real line into m disjoint subsets

(mostly intervals)

(threshold process SETAR(m; p1, . . . , pm)d (Self-Exciting Threshold Auto-
regressive): shows distinct behaviour presented by distinct autoregressive models
according to the location of its previous values among fixed thresholds; it belongs to
a more general category of processes with switching regimes determined by observ-
able process values (in contrast to Markov-Switching processes MSW with random
switching of regimes, see thereinafter))

Xt =
(
ϕ

(1)
0 +

∑p1

i=1
ϕ

(1)
i Xt−i

)
·
(

1− 1

1+ exp{−δ · (Xt−d − c)}
)

+
(
ϕ

(2)
0 +

∑p2

i=1
ϕ

(2)
i Xt−i

)
· 1

1+ exp{−δ · (Xt−d − c)} + εt

where d ∈ N, c ∈ R, δ > 0, p1, p2 ∈ N0, ϕi
(1), ϕi

(2) ∈ R, σ 2 > 0 are parameters; {εt}
is a white noise with variance σ 2
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(process STAR(2; p1, p2)d (Smooth Transition Autoregressive): differs from the one-
threshold model SETAR(2; p1, p2)d due to a continuous transition function between
the interval under the threshold and the interval above it; instead of the logistic
function one can use other transition functions)

Xt = ϕ
(st)
0 +

pst∑

i=1

ϕ
(st)
i Xt−i + ε

(st)
t for st = 1, . . . , m,

where pk ∈ N0, ϕi
(k) ∈ R, σ k

2 > 0 (k = 1, . . . , m) are parameters; {εt
(k)} is a white

noise with variance σ k
2; P(st = j| st−1 = i) = pij, i, j = 1, . . . , m

(an example of MSW process (Markov-Switching, see thereinbefore): shows distinct
behavior presented e.g. by distinct autoregressive models, where switching among
particular regimes occurs in dependence on the current value of a homogeneous
Markov chain {st} with m states and transition probabilities pij (see Sect. 30.2); in
practice one applies mostly the case of m = 2 and p1=p2 (the so-called Hamilton’s
two-state MSW process); it belongs to a more general category of processes with
switching regimes determined by unobservable process values)

σ 2
t+1 | t = var(Xt+1 |Xt, Xt−1, . . .)

(conditional variance of stochastic process: is the key concept of nonlinear time
series models denoted as volatility models, which are mostly consistent with
characteristic properties of financial time series (see thereinbefore); when the con-
ditional variance is not constant in time, then such a situation is called conditional
heteroscedasticity)

Xt = σt |t−1 × εt

σ 2
t |t−1= α0 +

p∑

i=1
αiX2

t−i +
q∑

j=1
βj σ

2
t−j |t−j−1= α0 + α(B)X2

t + β(B)σ 2
t |t−1

⎫
⎬

⎭
,

where p, q ∈ N; α0 > 0, αi ≥ 0, β j ≥ 0 are parameters; α (B) = α1 B + . . . + αpBp;
β (B)= β1 B + . . . + βq Bq; random variables {εt} are iid (0, 1) (or even iid N(0, 1))

(conditional heteroscedasticity process GARCH(p, q) (General Autoregressive
Conditional Heteroscedasticity): if α(1) + β(1) < 1, then the process {Xt} is
(weakly) stationary (see Sect. 30.1) with the constant variance var(Xt) = α0/
(1 − α (1) − β (1)), the correlation structure of the white noise and the leptokurtic
distribution (i.e. fat tails and excess peakedness at the mean, see thereinbefore); the
process {Xt

2} is ARMA(m, q) where m = max{p, q}; there are various modifica-
tions of the process GARCH: IGARCH (Integrated GARCH, e.g. IGARCH(1, 1) is
GARCH(1, 1) with α1+β1=1, which implies persistency of its volatility), EGARCH
(Exponential GARCH uses logarithms of conditional variances, which enables to
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reflect the asymmetric effect when modeling volatility), GARCH-M (GARCH-in-
Mean respects dependence between the level and volatility), and others)

Xt = σt|t−1 × εt

σ 2
t|t−1 = α0 + α1X2

t−1 + β1σ
2
t−1|t−2

}

,

where α0 > 0 , α1 > 0, β1 > 0 are parameters; random variables {εt} are iid (0, 1)
(or even iid N(0, 1))

(conditional heteroscedasticity process GARCH(1, 1): if α1 + β1 < 1, then the pro-
cess {Xt} is (weakly) stationary (see Sect. 30.1) with the constant variance var(Xt) =
α0/(1 −α1 − β1) and the correlation structure of the white noise; if moreover
1 − (α1 + β1)2 − 2α1

2 > 0, then

– kurtosis γ2 = 6α2
1

1− (α1 + β1)2 − 2α2
1

is higher than for normal distribution

– {Xt
2} is ARMA(1, 1) with autocorrelation function (see Sect. 30.1:

B(1) = α1 + α2
1β1

1− 2α1β1 − β2
1

, B(t) = (α1 + β1)t−1B(1), t = 2, 3, . . .)

Xt = σt | t−1 × εt

σ 2
t | t −1 = α0 +

p∑

i=1
αiX2

t−i = ε0 + α(B)X2
t

⎫
⎬

⎭
,

where p ∈ N; α0 > 0, αi ≥ 0 are parameters; α (B) = α1 B + . . . + αp Bp; random
variables {εt} are iid (0, 1) (or even iid N(0, 1))

(conditional heteroscedasticity process ARCH(p) (Autoregressive Conditional
Heteroscedasticity): if α(1) < 1, then the process {Xt} is (weakly) stationary (see
Sect. 30.1 with the constant variance var(Xt)= α0 /(1− α(1)), the correlation struc-
ture of white noise and the leptokurtic distribution; the processes ARCH in contrast
to GARCH may not show different responses of volatility to high positive and to
high negative previous values of the process)

Xt = σt | t−1 × εt

σ 2
t | t−1 = α0 + α1X2

t−1

}

,

where α0 > 0, α1 > 0 are parameters; random variables {εt} are iid (0, 1) (or even
iid N(0, 1))

(conditional heteroscedasticity process ARCH(1): if α1 < 1, then the process {Xt}
is (weakly) stationary (see Sect. 30.1 with the constant variance var(Xt) = α0 /
(1 − α1) and the correlation structure of the white noise; if moreover 1 − 3α2

1 >
0, then
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– kurtosis γ2 = 6α2
1

1− 3α2
1

is higher than for normal distribution (see Sect. 26.3)

– {Xt
2} is AR(1) with the autocorrelation function (see Sect. 30.1):

B(t) = αt
1, t = 0, 1, . . .)

31.6 Multivariate Time Series

{εt, t ∈ Z}, where E(εt) = 0;�εs,εt = E(εsε
′
t) = δst · �(� > 0), s, t ∈ Z

(multivariate white noise: the random vectors {εt} have zero mean values and are
serially uncorrelated with constant positively definite variance matrix �)

Xt = 	1Xt−1 + · · · +	pXt−p + εt, t ∈ Z,

where {εt} is a white noise with variance matrix �; 	p �= 0; all roots of the equation
det (Iλp − 	1λ

p− 1 − . . . − 	p) = 0 lie inside the unit circle in the complex plane

(multivariate autoregressive process of order p (VAR(p), Vector Autoregressive): is a
(weakly) stationary stochastic process in discrete time with the state space S = Rn,
zero mean values and autocovariance function fulfilling Yule-Walker equations of
the form

R(t) =
{

	1R(t − 1)+ . . . +	pR(t − p) for t = 1, 2, . . .
	1R′(1)+ . . . +	pR′(p)+� for t = 0

;

one defines analogously multivariate moving average process of order q (VMA(q))
and multivariate mixed process of orders p and q (VARMA(p, q); the construction
of these models in practice is similar as for univariate time series models in the
framework of Box-Jenkins methodology (see Sect. 31.4))

MSE
{

X̂t+h | It

}
< MSE

{
X̂t+h

∣
∣ It\{Yτ }τ ≤ t

}
,

where MSE on the left hand side of this inequality is the mean squared error of
prediction (see Sect. 31.1) for Xt+h in the series {Xt} based on information It up to
time t and MSE on the right hand side is the mean squared error of prediction for
Xt+h in the series {Xt} based on information It up to time t excluding information
contained in the past and present of another stochastic process {Yt}

(Granger-causality: the stochastic process {Yt} Granger-causes the stochastic
process {Xt}; one considers mostly It = {Xτ , Yτ}τ ≤ t; the definition of Granger-
causality can be generalized to multivariate stochastic processes {Xt} and {Yt} and
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modified in various ways; in particular, the application of this concept is simple in
the framework of the vector autoregressive models VAR (see thereinafter))

x1t = ϕ11x1,t−1 + ϕ12x2,t−1 + ε1t

x2t = ϕ21x1,t−1 + ϕ22x2,t−1 + ε2t

(Granger-causality in bivariate VAR(1):

– if ϕ12 �= 0: x2 Granger-causes x1
– if ϕ21 �= 0: x1 Granger-causes x2
– if ϕ12 �= 0 and ϕ21 �= 0: there is unidirectional relationship from x2 to x1
– if ϕ12 = 0 and ϕ21 �= 0: there is unidirectional relationship from x1 to x2
– if ϕ12 �= 0 and ϕ21 �= 0: there is feedback between x1 and x2
– if ϕ12 = 0 and ϕ21 = 0: x1 and x2 are Granger-independent)

{a′ Xt} ∼ I(d − b); a ∈ Rn, d, b ∈ N,

where {Xti} ∼ I(d) for all components i = 1, . . . , n (see Sect. 31.4)

(cointegrated n-variate process {Xt} ∼ CI(d, b): if there exists at least one vector
a �= 0 (the so-called cointegration vector), then one can by means of a nontriv-
ial linear combination reduce the order d of integrated stochastic processes; there
exist at most 0 ≤ m < n cointegration vectors (the so-called cointegration rank);
the most frequent case is d = b, when one completely eliminates from a group of n
stochastic processes by means of a linear combination the long-run tendencies and
trends (such a combination is stationary I(0)) so that a state of long-run equilibrium
is achieved)

{Xt1 − aXt2} ∼ I(0), a �= 0, where {Xti} ∼ I(1) for i = 1, 2 (see Sect. 31.4)

(cointegrated processes {Xt1, Xt2} ∼ CI(1, 1): the simplest case of cointegration)

fij(λ), Cij(λ),Φij(λ), Rij(λ)

(mutual spectral density, coefficient of coherence, coefficient of phase shift, coeffi-
cient of gain for processes {Xti} and {Xtj} (see Sect. 30.5))

31.7 Kalman Filter

θt = Gtθt−1 + wt

xt = Ftθt + vt

}

,

where θt (n × 1) is state vector; xt (m × 1) is vector of observations;
Gt (n × n), Ft (m × n), Wt (n × n), Vt (m × m) are matrices known at time t;
wt (n × 1), vt (m × 1) are residual vectors fulfilling
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E(wt) = 0, E(vt) = 0, E(ws w′t) = δstWt, E(vsv′t) = δstVt, E(wsv′t) = 0

(dynamic linear model DLM: is a theoretical background of (linear) Kalman fil-
ter (in discrete time); the state of a given system (e.g. a trajectory of targetable
missile, a parametric model of stochastic process, and the like) is described by
means of the state vector θt (e.g. the coordinates of the missile, the vector of
all parameters of the statistical model, and the like), which develops in time
according to the first equation of DML (the so-called state equation) under a
given initial condition, but it is observed indirectly via the vector of observa-
tions xt according to the second equation of DML (the so-called observation
equation))

θ̂
t
t = E (θt |x1 , . . . , xt)

Pt
t = E

(
(θ̂

t
t − θt)(θ̂

t
t − θt)

′)

⎫
⎬

⎭
;

θ̂
t−1
t = E (θt |x1 , . . . , xt−1)

Pt−1
t = E

(

(θ̂
t−1
t − θt)(θ̂

t−1
t − θt)

′)

⎫
⎪⎬

⎪⎭
, respectively

(estimated state vector θt at time t and error matrix of this estimator; predicted state
vector θt at time t − 1 and error matrix of this predictor, respectively)

θ̂
t−1
t = Gtθ̂

t−1
t−1

Pt−1
t = GtP

t−1
t−1G′t +Wt

}

and

θ̂
t
t = θ̂

t−1
t + Pt−1

t F′t
(
FtPt−1

t F′t + Vt
)−1
(

xt − Ftθ̂
t−1
t

)

Pt
t = Pt−1

t − Pt−1
t F′t

(
FtPt−1

t F′t + Vt
)−1

FtPt−1
t

⎫
⎬

⎭

((linear) Kalman filter (in discrete time): is a system of recursive formulas for such
an estimator of the state vector θt in DLM, which is at time t a linear function of
all past and current observed values {x1, . . . , xt} and is the best one among all
linear estimators (i.e. the best linear estimator, see Sect. 27.9); moreover, if wt ∼
N(0, Wt) and vt ∼ N(0, Vt), then this estimator is the best one among all (not only
linear) estimators of the state vector; the recursive step from time t − 1 to time t
consists of two substeps (first a construction of prediction for time t at time t − 1
and then a construction of estimation at time t): however, one can join these substeps
to a single explicit formula; initial values x0 and P0 must be chosen in order to start
numerical calculations; a simple example of Kalman filter applications is the method
of recursive least squares RLS (see Sect. 27.11); there are various generalizations
of Kalman filter (for continuous time, nonlinearity, correlated residual vectors and
others))
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x̂t+k(t) = x̂t
t+k = Ft+kθ̂

t
t+k for k ∈ N0, where θ̂

t
t+k = Gt+kGt+k−1 . . . Gt+1θ̂

t
t

(prediction in Kalman filter (for k steps ahead))

ϕt = ϕt−1
xt = X′tϕt + εt = (xt−1, . . . , xt− p)ϕt + εt

}

(DLM for autoregressive process AR(p) with parameters, which are fixed at time)

ϕ̂t = ϕ̂t−1 +
Pt−1Xt

X′tPt−1Xt + 1
(xt − X′tϕ̂t−1)

Pt = Pt−1 − Pt−1XtX′tPt−1

X′tPt−1Xt + 1

σ̂ 2
t =

1

t − p

(

(t − p− 1) · σ̂ 2
t−1 +

(xt − X′tϕ̂t−1)2

X′tPt−1Xt + 1

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(recursive estimation of parameters of autoregressive process AR(p) by means of
Kalman filter (see thereinbefore); the initial values can be chosen e.g. as ϕ̂0 = 0,
P0 = c · I, where c is a preset high positive number and I is the unit matrix p × p)

Pt = Pt−1

Pt−1x2
t−1 + 1

ϕ̂t = ϕ̂t−1 + Ptxt−1(xt − ϕ̂t−1xt−1)

σ̂ 2
t =

1

t − 1

(

(t − 2) · σ̂ 2
t−1 +

(xt − ϕ̂t−1xt−1)2

Pt−1x2
t−1 + 1

)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(in particular, recursive estimation of parameters of autoregressive process AR(1) by
means of Kalman filter)

βt = βt−1

xt = X′tβt + εt = (xt−1, . . . , xt−p, εt−1, . . . , εt−q) βt + εt

}

(DLM for mixed process ARMA(p, q) with parameters, which are fixed at time)
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β̂t = β̂t−1 +
Pt−1X̂t

X̂
′
tPt−1X̂t + 1

(xt − X̂
′
tβ̂t−1)

Pt = Pt−1 − Pt−1X̂tX̂
′
tPt−1

X̂
′
tPt−1X̂t + 1

ε̂t = xt − X̂
′
tβ̂t; X̂t = (xt−1, . . . , xt−p, ε̂t−1, . . . , ε̂t−q)′

σ̂ 2
t =

1

t − p− q

(

(t − p− q− 1) · σ̂ 2
t−1 +

(xt − X̂
′
tβ̂t−1)2

X̂
′
tPt−1X̂t + 1

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(recursive estimation of parameters of mixed process ARMA(p, q) by means of
Kalman filter (see thereinbefore))
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Γ (a, λ), 237

A
Abridged age classification, 161
Absolute value at risk, 102
AC, 204
Accelerated depreciation, 51
Accident insurance, 143–144, 147

for the case of death, 145
Accident year, 229
Accounting indicator, 267
Accrual rate, 210
Accrued interest, 58
Accumulated claims process, 242
Accumulation, 36

factor, 11
Acquisition expenses, 169, 224
Active interest, 5
Actuarial compounding, 169
Actuarial discounting, 169
Actuarial liability, 213
Adapted martingale, 124, 296
Adjustable Life, 198
Adjusted premium, 166
Administration expenses, 169, 224
Age, 149

individual, 149
of population

mean, 152
median, 152
modal, 152

pyramid, 150
retirement, 148
at retirement, 210
-specific population, 147

Aged-child ratio, 152
Age dependency ratio, 152
Agency rating, 106
Aggregate claim amount, 238

Aggregate Method, 217
Agriculture insurance, 147
AI, 58
AIC, 374
Aitken estimate, 325
Akaike’s criterion, 374
AL, 213
σ -Algebra, 123, 285

generated by random variable, 296
Allocated capital, 204
Allocation percentage, 199
Allocation ratio, 199
All Risks Cover, 266
Alpha, 117
Alternative risk transfer, 269
AMAPE, 362
American option, 81
Amortization

annuity, 47–48
of debt, 46
general, 48
interest, 47
schedule, 46
uniform, 47

Amount
claim, 237
due, 5–6, 10–12
notional, 76, 80
at risk, 170, 173

Analysis
discriminant, 328
fundamental, 66
psychological, 66
spectral, 371
stochastic financial, 135
technical, 66
of variance, 327

Annual annuity, 35
Annual compensation, 9
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Annual volatility, 98
Annuity, 35

amortization, 47–48
annual, 35
arithmetically decreasing, 41
arithmetically increasing, 41
capitalized, 36
-certain, 35
contingent, 35
continuously payable, 45
daily, 35
decreasing, 40
deferred, 35
-due, 35, 181
dynamic, 40
geometrically increasing, 43
immediate, 35, 183
increasing, 40
life, 143–145

for couple, 189
monthly, 35
payable mthly, 44
periodic-arithmetically increasing, 43
periodic-geometrically increasing, 43
perpetuity, 35
quarterly, 35
reversionary, 189
temporary, 35
unit, 36

payable mthly, 44
ANOVA, 327
Antiselection, 156
APM, 121
Appraisal value, 205
Approximation

Bartlett’s, 370
Edgeworth, 241
Esscher, 241
by gamma distribution, 240
Gram-Charlier, 241
by logarithmic-normal distribution, 241
Lundberg’s, 247
by normal distribution, 240
NP1, 240
NP2, 240–241
power by normal distribution NP2, 240
Quenouille’s, 370
root, 13

A priori restrictions, 333
APT, 121
Arbitrage, 74

-free principle, 119
opportunity, 119

of the first type, 120
of the second type, 120

pricing model, 121
pricing theory, 121

ARCH, 101, 380
ARFIMA, 376
ARIMA, 375
Arithmetical declining balance depreciation

method, 52
Arithmetical progressive balance depreciation

method, 53
Arithmetic mean, 280, 310

weighted, 280
ARMA(p, q), 356, 371
AR(p), 356
Arrow-Pratt measure, 93
ART, 269
Asian option, 83
Ask rate, 71
ASM, 267
Asset

free, 204, 267
net, 204
risk, 110

present price, 121
risk-free, 114
underlying, 73

Asset-backed security, 58
Assigned capital, 204
Asymmetric position, 74
Attained Age, 217
Autocorrelation function, 346

estimated, 370
partial, 370

Autocorrelation of residuals, 326
Autocovariance function, 336

estimated, 370
spectral decomposition, 357

Autoregressive conditional heteroscedasticity,
380

Autoregressive process, 356
conditional heteroscedasticity, 379–380
exponential, 378
multivariate, 381
self-exciting threshold, 378
smooth transition, 379

Available solvency margin, 267
Average

long, 69
moving, 69
short, 69
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Average claim degree, 221–222
Average costs, 255

per capita, 256
Aviation insurance, 147

B
Back testing, 105
Balancing payment, 76
Bancassurance, 146
Bank day, 8
Banker’s acceptance, 55
Barrier option, 83
Bartlett’s approximation, 370
Basic costs per capita, 256
Basic premium, 233, 251
Basis

carry, 79
gross, 79
modified, 260
normal, 260
reinsurance, 260
risk, 260
swap, 80
value, 80

Basle Committee on Banking Supervision, 102
Basle II, 105
Bayesian credibility, 244
Bayes Theorem, 285
Bear, 82

spread, 88
Beneficiary, 166
Benefit, 147, 209

accelerated, 195
formula, 210
independent, 196
insurance, 143, 167
lump sum, 148, 210
non-forfeiture, 166, 190
profit, 146
reduced, 166

Beta, 117
book, 117
distribution, 238, 290
function, 280

Bid/ask spread, 71
Bid/offer spread, 199
Bid price, 199
Bid rate, 71
Bilinear process, 377

diagonal, 377
subdiagonal, 377
superdiagonal, 377

Bill, 57
of exchange, 55

Binary process, 353
Binomial coefficient, 277
Binomial distribution, 288
Binomial theorem, 278
Binomial tree model, 137
Birth rate

crude, 150
total, 150

Black-Derman-Toy model, 138
Black-Karasinski model, 138
Black-Scholes formula, 83, 86, 134
B(n, p), 288
Bodily injury insurance, 143
Bond, 57

asset-backed, 58
callable, 57
catastrophe, 271
consol, 57
convertible, 57
corporate, 58
coupon, 57
fixed rate, 57
indexed, 57
inflation linked, 57
junk, 58
municipal, 58
perpetual, 57
present value, 59
putable, 57
state, 58
structured, 58
subordinate, 58
treasury, 58
with warrant, 57
zero-coupon, 57

Bond holder, 57
Bonus, 221, 233

extra, 191
level, 251

at entry, 233, 251
load, 233
system, 233

Bonus-malus system, 221, 233, 251
rules, 233, 251

Book value, 51
Bootstrapping, 62
Bornhuetter-Ferguson method, 230, 233
Bortkiewicz decomposition, 341
Box-Cox transformation, 376
Box-Jenkins methodology, 372
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Boxplot, 310
Branching process, 354
Break-up schedule, 267
Brennan-Schwartz model, 137
Brownian motion, 123, 356

geometric, 124
Brown’s method, 367
B-S formula, 86
Bühlmann-Straub credibility model, 244
Building insurance, 147
Bull, 82

spread, 88
Business

in-force, 204
new, 205

Business and industrial insurance, 147

C
Calendar

act/360, 8
act/365, 8
act/act, 8
conventions, 7
Euro-30/360, 7
US-30/360, 7
year, 229

Call, 81, 134–135
Callable bond, 57
Cancellation

due to claim, 220
expenses, 224
of health insurance, 256
natural, 220
voluntary, 220

Cap, 74, 82
rate, 82

Capacity
of insurer, 259
underwriting, 259, 261

Cape Cod method, 230
Capital

allocated, 204
assigned, 204
risk, 268
risk-based, 268–269
target, 268
total adjusted, 269

Capital adequacy, 102
Capital asset pricing model CAPM, 116
Capitalized annuity, 36
Capitalizing type of life insurance, 146, 172
Capital life insurance, 144
Capital market line, 116

Capital requirements, 102
minimum, 268
solvency, 268

Caplet, 83
CAPM, 116
Caption, 83
Captive, 270
CaR, 106
Cargo insurance, 143
Carry basis, 79
Casco insurance, 143
Cash flow, 25

index, 70
net, 25
settlement, 79

Catastrophe bond, 271
Catastrophe excess of loss cover, 266
Catastrophe Risk Exchange, 270
CatBond, 271
CATEX, 270
CaTXL reinsurance, 266
Cauchy distribution, 290

one-sided, 290
Causes

of death, 151
of decrement, 161

CCS, 80
CD, 55
CDO, 58
Cedant, 259
Cell, 309
Centered moving average, 366
Central Limit Theorem, 304
Central moment, 287
Certificate of deposit, 55
Cessionare, 260
CF, 25
CFI, 70
Chain-Ladder method, 230–231
Chapman-Kolmogorov equality,

348, 352
Charge

mortality, 197
surrender, 190

Checking account, 6
Cheque, 55
Child proportion, 152
Children’s insurance, 145
Claim

accumulated, 242
amount, 237

aggregate, 238
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contingent, 73
degree, 221

weighted, 222
interoccurrence time, 242
number, 222

process, 242
rate, 221
ratio, 221

method, 232–233
reinsurance, 261
reserve, 170, 228
status, 223

Class
closed, 349
interval, 309
mean, 311
variance, 312

Clearing house, 79, 81
CML, 116
CMO, 58
Cobb-Douglas production function, 92
Coefficient

adjustment, 247
binomial, 277
of coherence, 359, 382
correlation, 101, 293, 314
credibility, 225, 244
of determination, 323

adjusted, 323
development, 230–231
of gain, 359, 382
of growth, 364
health, 193
Lundberg’s, 247
of phase shift, 359, 382
reduction, 156
of variation, 286, 312

Coherent risk measure, 102
Cohort, 150
Coinsurance, 260

pool, 260, 270
Cointegrated process, 382
Cointegration

rank, 382
vector, 382

Collar, 74, 83
Collateralized debt obligation, 58
Collateralized mortgage obligation, 58
Collected premium, 166, 220
Collection expenses, 169, 224
Combination of simple and compound

interest, 15

Commercial insurance, 147
fire, 147
vehicles, 147

Commercial paper, 55
Commission, 259

collecting, 169
new business, 169
profit, 259

Commodity
derivative, 74
option, 81

Common stock, 66
Commutation function, 162

of first order, 163
in health insurance, 256
in model of couples, 164
of second order, 163
of zero order, 163

Component
cyclical, 362
irregular, 363
random, 363
residual, 363
seasonal, 363
systematic, 363
trend, 362

Compound discount, 12
convertible mthly, 14

Compound distribution, 238
Compound interest, 11

convertible mthly, 13
Compound option, 83
Compound Poisson distribution, 239
Comprehensive policy, 167
Compulsory insurance, 145

contractual, 143
Conditional heteroscedasticity, 377, 379

process, 379
Conditional mean value, 295
Conditional probability, 284

of random event, 289
Confidence interval, 317

one-sided, 317
two-sided, 317

Confidence level, 102
Confidence prediction interval, 361
Conformal discount rate, 15, 17
Conformal interest rate, 14, 17
Consistent estimator, 316
Consol bond, 57
Consumer price index, 22, 342
Contingent annuity, 35
Contingent claim, 73
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Continuous distribution, 289
Continuous interest, 17
Continuously payable annuity, 45
Contract

forward, 74
insurance, 143

Contribution, 209
approximate, 192
formula, 192

Convergence
almost surely, 303
in distribution, 303
in the mean square, 304
in probability, 302
with probability one, 303
weak, 303

Conversion period, 11, 12
Convertible bond, 57
Convexity, 33

dollar, 33
Macaulay, 33, 64
modified, 33

Convolution, 300
Copula, 242

two-dimensional, 243
Corporate bond, 58
Corporation, 65
Correlation

coefficient, 101, 293, 312
multiple, 314
partial, 315

matrix, 293, 314
table, 310

Correlogram, 370
Cospectrum, 359
Cost

average, 256
per capita, 256

basic per capita, 256
of capital, 25
of claims of health insurer’s, 255
depreciated, 51
original, 51

Cost-of-carry model, 77
Counting process, 345
Coupon, 57

bond, 57
period, 57
rate, 57
swap, 80

Covariance, 293, 314
matrix, 293, 314
sample, 314

Cox-Ingersoll-Ross model, 138
CPI, 22, 342
Cramer-Rao lower bound, 316
Credibility, 220

American, 244
Bayesian, 244
coefficient, 225, 244
full, 244
premium, 220, 225, 243
theory, 225, 243

Creditor, 5, 105
Credit rating, 106
Credit risk, 105
Credit at risk, 106
Credit spread curve, 136
Criteria of profitability, 202
Critical illness insurance, 145, 195
Critical region, 318
Crop-hail insurance, 147
Crop insurance, 147
Cross currency swap, 80
Cross exchange rate, 71
Currency, 71

derivative, 74
forward, 75
option, 81

Current Unit, 216
Current value insurance, 219
Current yield, 59
Curtate future lifetime, 160
Curve

discount, 136
indifference, 91, 111
Nelson-Siegel, 62
S-, 365
spread, 136
yield, 135–136

Cycle, 362

D
Daily annuity, 35
Daily benefits insurance, 255
Daily earnings at risk, 104
Daily volatility, 98
Date

delivery, 73
dividend, 65
ex-coupon, 57
ex-dividend, 65
exercise, 73, 81
expiration, 73, 81
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ex-right, 70
maturity, 73
right, 70

Day
bank, 8
following, 8
modified following, 8
modified preceding, 8
preceding, 8
second-day after, 8

DD
insurance, 195
rider, 195
stand-alone policy, 196

DEaR, 104
Death

causes, 151
fatality, 147
probability, 153

Debt
amortization, 46
ratio, 66

Debt-equity ratio, 67
Debtor, 5, 105
Decile, 287, 310

deviation, 313
Decisive period, 233, 251
Decomposition

additive, 362
Bortkiewicz, 341
Doob-Meyer submartingale, 132, 298
of interest rates, 21
multiplicative, 363
seasonal, 367
spectral, 357
of state space, 349

Decreasing annuity, 40
Decrement

cause, 161
force, 161
mortality, 157
multiple, 157, 161
probability, 157

Decrement order
of active participants, 213
of health insurance, 256
mortality, 153

Dedicated bond portfolio, 64
Deductible, 220, 227, 248, 259

excess, 227, 249
integral, 227, 250
quota, 227, 248

Default, 105
probability, 106
risk premium, 21

Default-related value at risk, 107
Deferment, 35, 165
Deferred annuity, 35
Deferred insurance, 165
Defined benefit plan, 147, 210
Defined contribution plan, 147, 210
Deflation, 22
Deflator, 206–207
Delivery

date, 73
physical, 79
price, 73, 77

Delta, 87
Demand deposit, 6
De Moivre’s law of mortality, 159
Density

conditional, 293
marginal, 292
probability, 287, 292
spectral, 357

Depreciated cost, 51
Depreciation, 51

accelerated, 51
expenses, 51
strategy, 51
time period, 51

Depreciation method, 51
arithmetical declining balance, 52
arithmetical progressive balance, 53
declining, 51
degressive, 51
depreciation strategy, 51
depreciation time period, 51
geometrical declining balance, 52
linear, 51
original cost, 51
progressive, 51
salvage value, 51
scrap value, 51
straight line, 52
sum of years digit, 52
useful life, 51

Derivative
commodity, 74
currency, 74
financial, 73, 74
interest rate, 74
non-financial, 74
pricing, 132
Radon-Nikodym, 296
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security, 73
stock, 74
stock index, 74

Development coefficient, 230–231
modified, 230

Development year, 229
Deviation

decile, 313
mean, 286
quartile, 313
standard, 286, 312

De Vylder, method, 230
Dickey-Fuller test of unit root, 375
Difference, 374

fractional, 376
operator, 375

Differential equation
partial, 134
stochastic, 128

Diffusion parameter, 124
Dirty price, 58
Disability

insurance, 145
partial, 148
pension, 148, 209
total, 148

Discount, 56
compound, 12
period, 10
simple, 9–10

Discount curve, 136
Discount dividend model, 68

multiple-growth, 68
two-stage multiple-growth, 68
zero-growth, 68

Discount factor, 12
Discount principle, 9
Discount rate, 7, 10, 12, 56

conformal, 15, 17
effective, 14
nominal, 14
risk, 201, 203

Discount security, 55
Discrete distribution, 288
Discriminant analysis

linear, 328
quadratic, 329

Distributable earnings, 204
Distributed lag model, 336
Distribution

χ2(n), 290
beta, 238, 290
binomial, 288

Cauchy, 290
one-sided, 290

compound, 238
continuous, 289
discrete, 288
Erlang, 290
exponential, 237, 290

double, 290
F distribution, 291
Fisher-Snedecor, 291
function, 285
gamma, 237, 290
geometric, 288
logarithmic, 289
logarithmic normal, 237, 289
multinomial, 293
negative binomial, 236, 288
normal, 289

bivariate, 294
n-variate, 294

Pareto, 238, 291
Poisson, 236, 288

compound, 239
mixed, 236, 288

Rayleigh, 290
standard normal, 289
stationary, 350
student’s, 291
t distribution, 291
uniform, 289
Weibull, 237, 290

Distribution function, 285
empirical, 310
marginal, 292
spectral, 357
of stochastic process, 346

Diversification
of portfolio, 111
product, 261
territorial, 261
time, 261

Dividend, 65
cover, 67
date, 65
ex-dividend date, 65
per stock, 67
security, 65
yield, 67

Divisor, 342
Divorce rate

age-specific, 151
crude, 151

Divorce ratio, 151



Index 395

DJIA, 342
DLM, 383
Dollar convexity, 33
Dollar duration, 32

of coupon bond, 63
Doob-Meyer submartingale decomposition,

132, 298
Dow Jones Industrial Average DJIA, 342
Draft, 55
Drawee, 55
Dread disease insurance, 145, 195
Drift, 124, 127

logarithmic, 124, 127
Dummy (variable), 333
Duration, 31, 62

of annuity-due, 39
dollar, 32, 63
of immediate annuity, 39
Macaulay, 31, 63
modified, 32, 63
of portfolio, 64

Durbin-Levinson algorithm, 370
Durbin-Watson statistics, 326
DVaR, 107
Dynamic annuity, 40
Dynamic linear model, 383

E
EAD, 106
Earned premium, 170, 220
Earnings

daily at risk, 104
distributable, 204
model, 69
per stock, 67
ratio, 66
yield, 67

ECE, 106
ECOMOR(r) reinsurance, 266
Edgeworth approximation, 241
EDL, 107
Effective discount rate, 14
Effective interest, 5
Effective interest rate, 14
Efficient estimator

asymptotically, 316
Efficient frontier, 112
Efficient market, 109
Efficient portfolio, 113
Efficient set, 112
EGARCH, 379
EL, 106
Embedded option, 203, 206

Embedded value, 203, 204
Endogenous variable, 337
Endowment, 145, 180

for couple, 189
pure, 145, 174

Entry Age, 21
Equalization reserve, 228
Equation

Kolmogorov differential, 352
normal, 31
observation, 383
state, 383
stochastic differential SDE, 128
Yule-Walker, 356

Equity, 65
Equivalence of investment strategies, 91
Equivalence principle, 166, 168, 210,

213, 255
Equivalent martingale probability,

131, 133
Equivalent probabilities, 130
Erlang distribution, 290
Error

matrix, 383
mean absolute, 362
mean squared, 361
prediction, 361
type-one, 319
type-two, 319
variable, 320

ES, 105
Esscher approximation, 241
Estimator

Aitken, 325
best unbiased, 315, 321
consistent, 316
efficient, 316

asymptotically, 316
maximum likelihood, 316
point, 315
unbiased, 315

asymptotically, 315
EURIBOR, 7
Eurodollar, 55
European option, 81, 134, 135
EV, 203

reserves, 203
Event

independent, 285
insured, 165
random, 283
rare, 125

Evolutionary credibility model, 246
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Excess
deductible, 227, 249
of loss cover

catastrophe, 266
working per event, 265
working per risk, 264

Excess mortality
additive, 193
multiplicative, 193

Exchange rate, 71
cross, 71
fixed, 71
floating, 71
quotation, 71
quoted, 71
spot, 75
term, 75

Ex-coupon date, 57
Ex-dividend date, 65
Exercise date, 73, 81
Exercise price, 73, 81
Exogenous variable, 337
Exotic option, 83
Exp(λ), 237, 290
Expected credit exposure, 106
Expected default loss, 107
Expected loss, 106
Expected return, 109

of asset, 110
of portfolio, 110

Expected shortfall, 105
Expected tail loss, 105
Expense

acquisition, 169, 224
administration, 169, 224
cancellation, 224
collection, 169, 224
dependent, 224
depreciation, 51
gain, 147, 167, 191
independent, 224
of insurer, 166
integrated, 170
life annuity, 170
organization, 224
settlement, 224

Experience-rating, 225
Expiration date, 73, 81
Exponential distribution, 237, 290

double, 290
Exponential smoothing, 69, 225, 366

double, 367
simple, 69, 101, 366

Exponential Wiener process, 124
Exposure at default, 106
Ex-right date, 70

F
FA, 204, 267
Face value, 55, 57
Factor

accumulation, 11
alpha, 117
beta, 117
continuity, 342
discount, 12
of disequilibrium, 117
interest, 11

Factorial, 277
Facultative-obligatory reinsurance, 260
Facultative reinsurance, 260
Fair value, 58, 66, 80, 205–206
Family insurance, 190
Fatality death, 147
Feasible portfolio, 112
Feasible set, 112
Femininity index, 152
Fertility rate, 150

age-specific, 150
total, 148

FI, 376
FIBOR, 7
Filter, 359

Kalman, 382–383
Filtration, 123, 296
Financial derivative, 73
Financial placement, 170
Financial reinsurance, 261, 269
Financial risk, 98, 109
Financial time series, 376
Finite reinsurance, 261, 269
First incidence, 196
First loss insurance, 226
Fisher’s formula, 22
Fisher’s measure of information, 316
Fisher-Snedecor distribution, 291
Fisher’s z-transformation, 318
Fitch, 106
Fixed-income

instrument, 55
security, 65

Fixed-rate bond, 57
Fixed term insurance, 145, 182
FLEXA, 147
Flexibility, 146
Flexible life insurance, 197
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Floater, 57, 65
Floating rate note, 57
Floor, 74, 83

rate, 83
Floorlet, 83
Fong-Vasicek model, 137
Force of capital, 27
Force of decrement, 161
Force of interest, 17, 45

varying, 18, 46
Force of mortality, 158

constant, 159, 161
Foreign exchange

market, 71
swap, 76

Forest insurance, 147
FOREX, 58, 71
Form of non-life insurance, 225
Formula

benefit, 210
Black-Scholes, 83, 86, 134
B-S, 86
contribution, 192

approximate, 192
Fisher’s, 22
Garman-Kohlhagen, 86
inverse, 348
Panjer’s recursive, 239
Rhodes, 365

Forward, 74
contract, 74
currency, 75
FX-, 75
interest rate, 76
price, 77
value, 77

Forward interest rate, 23, 26
Forward rate agreement, 76
Forward rate of return, 135

instantaneous, 135
Forward yield curve, 61
FRA, 76

buyer, 76
-rate, 76
seller, 76

Fractionally integrated process, 376
Free assets, 204, 267
Frequency, 357

loss, 221
relative, 309

FRN, 57

Frontier
efficient, 112
northwest, 112

Full price, 58
Full value insurance, 226
Function

autocorrelation, 346
autocovariance, 346
beta, 280
commutation, 162, 256
distribution, 285

empirical, 310
gamma, 280
measurable, 285
moment generating, 288
multiple life, 162
mutual covariance, 347
regression, 320
salary scale, 214
survival, 157
transfer, 359
utility, 91

Fund
pension, 147, 209
sterling, 199
unit, 199

Fundamental analysis, 66
Future lifetime, 157

curtate, 160
Futures, 78

option, 83
price, 79

Future value, 5, 11–12, 28
of annuity, 36

FV, 28, 36, 205–206
FX, 58, 71

-forward, 75
-swap, 76

G
Gain

expense, 147, 167, 191
investment, 147, 167, 191
mortality, 147, 167, 191
technical, 147, 191

Galton-Watson process, 354
Gamma, 87

distribution, 237, 290
function, 280

GARCH, 101, 379
GARCH-M, 380
Garman-Kohlhagen formula, 86
Gauss-Newton method, 327
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General amortization, 48
General autoregressive conditional

heteroscedasticity, 379
General birth-and-death process, 355
General birth process, 355
General Bühlmann-Straub credibility

model, 246
General insurance business, 144
Generalized linear regression model, 325
General liability insurance, 147
Generating function

of random variable(s), 298
moment, 298

Generation, 150
Geometrically declining balance depreciation

method, 52
Geometric Brownian motion, 124
Geometric distribution, 288
Geometric mean, 280, 310

weighted, 280
Girsanov theorem, 131
GNPI, 264
Going-concern schedule, 267
Gompertz-Makeham’s law of mortality,

155, 160
Gompertz’s law of mortality, 159
Gordon’s model, 68
Graduation of life tables, 155

analytical, 155
graphical smoothing, 155
mechanical, 153

Gram-Charlier approximation, 241
Granger-causality, 381
Greeks, 87
Gross basis, 79
Gross net premium income, 263–264
Gross premium, 166
Gross premium reserve, 170–171
Gross price, 58, 220
Group insurance, 167
Growth rate of population, 151
Guaranteed rate of return, 212

H
H0, 318
H1, 318
HARA utility function, 93
Harmonic process, 356, 358
Hawawini-Vora, 59
Health coefficient, 193
Health insurance, 143, 255

Health insurer’s costs of claims, 255
Heath-Jarrow-Morton model, 138
Hedging, 74, 88
Heteroscedasticity, 326

conditional, 377, 379
High frequency data, 377
Histogram, 310
Historical simulation method, 105
Holding period, 102

return, 61
Ho-Lee model, 138
Holt’s method, 367
Holt-Winters’ method

additive, 368
multiplicative, 369

Hospitalization insurance, 255
Household (contents) insurance, 147
Hull insurance, 143, 147
Hull-White model, 138
Hunger for bonus, 233
Hunting liability insurance, 147
Hypothesis

alternative, 318
null, 318
testing, 318

I
IAS, 205
IBNR reserve, 171, 228
IFRS, 205
IGARCH, 379
ILS, 270

trigger, 270
Immediate annuity, 35
Immunization, 64
Impaired life, 192
Implicit value, 204
Implied volatility, 100
Incidence, 196
Increase of population

natural, 150
total, 150

Increasing annuity, 40
Incremental value at risk, 104
Incremental volatility, 99
Indemnity

insurance, 145, 226
trigger, 270

Independent events, 296
Independent increments, 357
Index, 70, 339–340

aggregated, 340–341
base, 340
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cash flow, 70
chain, 339
compound, 340
consumer price CPI, 22, 342
Dow Jones, 342
Edgeworth-Marshall, 341

price, 341
quantity, 341

femininity, 152
Fisher, 333

price, 341
quantity, 341

individual, 340
Laspeyres, 340

price, 340
quantity, 340
weighted, 340

loss, 271
masculinity, 152
number, 339
Paasche, 341

price, 341
quantity, 341

of price change, 339
of quantity change, 339
seasonal, 367
stock, 342
trigger, 270
of value change, 339

Indexed bond, 57
Index Linked, 200

insurance, 146
Indicator, 339

accounting, 267
extension, 339
intensity, 339
market, 342
population, 149
statistical in non-life insurance, 221
stock exchange, 342
technical analysis of stock, 69
of volatility, 70

Indifference curve, 91, 111
Individual account, 210
Inequality

Berry-Essén, 302
Bonferroni, 284
Chebyshev, 302

one-sided, 302
Jensen, 302
Kolmogorov, 302
Lundberg’s, 247
Markov, 301

Inflation, 22
linked bond, 57
premium, 21
rate, 22

Installment, 35, 46
Instantaneous rate of payment, 45
Instantaneous rate of return, 135
Instrument

fixed-income, 55
money market, 55
short-term, 55

Instrumental variables, 335–336
Insurable interest, 145
Insurance, 143

accident, 143–144, 147
for the case of death, 145

agriculture, 147
benefit, 143, 167
bodily injury, 143
building, 147
business and industrial, 147
cargo, 143
casco, 143
children’s, 145
classification, 144
commercial, 147

fire, 147
vehicles, 147

company, 143
compulsory, 145

contractual, 143
contract, 143
critical illness, 145, 195
crop, 147
crop-hail, 147
current value, 219
daily benefits, 255
DD, 195
deferred, 165
disability insurance, 145
dread disease, 145, 195
family, 190
first loss, 226
fixed term, 145, 182
flexible, 197
forest, 147
full value, 226
general business, 144
group, 167
health, 144, 255
hospitalization, 255
household (content), 147
hull, 143, 147
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indemnity, 145, 226
index-linked, 146
invalidity pension, 144
liability, 144, 147

hunting, 147
life, 144

capital, 144, 146
flexible, 197
non-participating, 146
participating, 146
with policy value, 146
risk, 144
variable, 146

life annuity, 145
long-term care, 145
loss, 225
against loss and damage, 145
mandatory, 145
medical, 144
modern life, 145
motor fleet, 147
motor third party liability, 144, 147
multi-peril insurance, 147
multiple life, 156, 162, 167
non-life, 144, 219
obligatory, 145
optional, 145
of over-standard treatment, 255
package, 167
participating life, 146
pension, 144
permanent health, 145
perpetual, 165
policy, 143
pool, 260
portfolio, 143
premium, 143, 166, 168, 219
pricing, 201
private, 144

motor, 147
for private medical treatment, 144,

147, 255
professional malpractice, 147
property (and casualty), 144
replacement value, 219
reserve, 170, 228
retirement pension, 144
with return of premiums, 166
risk, 143

for couple, 189
risk life, 145, 146
settlement, 167
sickness, 143–144, 255

social, 144, 147
state supervision, 166–167
sum, 145, 225
without sum insured, 226
tariff, 166
temporary, 165
term, 144–145, 178
third party, 144
transport, 143
travel, 147
unit-linked, 146
universal life, 146
valuation, 201
variable life, 146
voluntary, 145
whole life, 145, 175

Insurance-linked security, 270
Insurance reserve, 170
Insurance risk, 143

classification, 143
Insurance tariff, 166
Insured, 143, 165
Insurer, 143, 165

direct, 259
governmental, 211

Integrability, 286
Integral deductible, 227–228, 250
Integrated process, 375

fractionally, 376
Intensity

of insurance protection, 219
matrix, 352
of Poisson process, 125
of Poisson risk process, 242
transition, 352

Interaction, 328, 334
Interbank interest rate, 7
Interest

accrued, 58
active, 5
in advance, 9
in arrears, 9
balancing, 76
compound, 11
continuous, 17
effective, 5
force of, 17, 45
forward, 23
insurable, 145
net real, 23
nominal, 5, 21
open, 79
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passive, 5
real, 5, 22
return, 5
simple, 5–6

Interest amortization, 47
Interest divisor, 6
Interest factor, 11
Interest number, 6
Interest period, 11, 36
Interest rate, 6, 26

conformal, 14, 17
derivative, 74
effective, 14
forward, 23, 26, 76
index-linked, 146
interbank, 7
multi-factor model, 137
nominal, 13
option, 81
reference valuation, 29
risk-free, 21, 110, 205
single-factor model, 136
spot, 23
swap, 80
technical, 147, 166
valuation, 25
varying, 12–13

Internal model, 102
Internal rate of return, 28, 202

rule, 27, 29
Interval

class, 309
confidence, 317
estimation, 317
prediction, 324, 361

Intrinsic value, 83
Invalidity pension insurance, 144
Inverse formula, 358
Invertible process, 356, 372
Investment

decision, 27
gain, 147, 167, 191
ratio, 67

IRR, 28, 202
IRS, 80
Issuer, 57
Ito’s lemma, 129

multivariate, 130
Ito stochastic differential

equation, 128
Ito stochastic integral, 126
IVaR, 104
IV-estimate, 336

J
Jarrow-Rudd model, 137
Joint-life status, 156, 162, 189
Jump, 124
Junk bond, 58

K
Kalman filter, 382–383
King-Hardy’s method, 155
Kolmogorov differential equations

prospective, 352
retrospective, 342

Koyck’s transformation, 336
Kurtosis, 287, 313

L
Lag operator, 371
Lambda, 87
Lapse, 190, 220, 224

of health insurance, 256
Largest claims reinsurance, 266
Law

De Moivre’s, 159
of diminishing marginal utility, 92
Gompertz-Makeham’s, 155, 160
Gompertz’s, 159
of large numbers

strong, 303
weak, 303

of mortality, 155, 159
Weibull’s, 160

Layer, 263
LCR(r) reinsurance, 266
Least squares, 321

two-stage, 338
weighted, 326

Lemma
Borel-Cantelli, 284
Ito’s, 129

multivariate, 130
Leptokurtosis, 377
Level

bonus, 233, 251
confidence, 102
premium, 166
significance, 318

Leverage ratio, 66
LGD, 106
Liability insurance, 144, 147

general, 147
hunting, 147
product, 147

LIBID, 7
LIBOR, 7
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LIBOR market model, 138
Life

adjustable, 198
impaired, 192
universal, 197
useful, 51
variable, 198
variable universal, 146, 198

Life annuity, 143–145
asymmetric, 190
for couple

asymmetric for survivor, 190
to the first death, 189
from the first death to the second

death, 189
reversionary, 189
to the second death, 189
for survivor, 189
temporary to the first death, 189

expenses, 170
temporary, 185
whole, 183
widower’s, 190
widow’s, 190

Life expectancy, 151, 154, 159, 160
age-specific, 151
at birth, 154

Life insurance, 144
capital, 144, 146
flexible, 197
modern, 145
multiple, 156, 162, 167, 189
non-participating, 146
option, 167
participating, 146
with policy value, 146
risk, 144–146
universal, 146
variable, 146
whole, 145, 175

Life tables, 153
abridged, 153
aggregate, 156
basic, 157
cohort, 153
complete, 153
current, 153
estimate, 155
generation, 153
multiple, 156
multiple decrement, 157
period, 153

select, 156
unisex, 155

Lifetime
future, 157

curtate, 160
remaining in initial status, 161

Limit of reinsurer, 259
Line

capital market line, 116
security market line, 117
in surplus, 263

Linear birth-and-death process, 355
Linear birth process, 354
Linear filter, 359
Linearity, 126
Linear process, 372
Linear regression model, 321

generalized, 325
multiple, 336
with random regressors, 335

Liquidity, 27
premium, 21

LMM, 138
LN (μ, σ 2), 289
Local martingale, 132
Logarithm

common, 276
natural, 276

Logarithmic distribution, 289
Logarithmic drift, 124, 127
Logarithmic normal distribution, 237, 289
Logarithmic rate of return, 96
Logarithmic volatility, 124, 127
Logit model, 335
London Chain-Ladder method, 230
Long average, 69
Long-memory process, 376
Long position, 73, 81, 114
Long-run equilibrium, 382
Longstaff-Schwartz model, 137
Long-term care insurance, 145
Loss

table, 222
expected, 106
expected default, 107
expected tail, 105
frequency, 221
given default, 106
index, 270
insurance, 226
maximum possible, 105
total, 168, 238
ultimate net, 263
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Lump sum
benefit, 148
settlement, 210

Lundberg’s
approximation, 247
coefficient, 247
inequality, 247

M
M, 116
Macaulay convexity, 33

of coupon bond, 64
Macaulay duration, 31

of coupon bond, 63
MAE, 362
Malus, 221, 233
Mandatory insurance, 145
MAPE, 362

adjusted, 362
MA(q), 355
Margin, 79

available solvency, 267
market value, 205
profit, 202
risk, 201
safety, 220, 223

Marine insurance, 147
Market

efficient, 109
foreign exchange, 71
over-the-counter OTC, 74

Market indicator, 342
Market portfolio, 116
Market price, 58, 66

of risk, 116, 131, 137
Market risk, 118

management, 100
Market value, 66

margin, 205
Mark-to-market, 58, 78
Markov chain, 233, 251, 347

finite-state, 350
homogeneous, 347
irreducible, 349
probability distribution, 348

initial, 348
reducible, 349
reward, 350

Markov process
with continuous states, 353
with discrete states, 351
homogeneous, 347

probability distribution, 348
initial, 348

Markov property, 347, 351, 353
Markov-Switching process, 379
Marriage rate

age-specific, 151
crude, 151

Martingale, 121
adapted, 124, 296
continuous, 297

from the right, 297
differences, 297
local, 132
quadratically integrable, 297
representation, 132

Masculinity index, 152
Matching assets and liabilities, 64
Matrix

correlation, 293, 314
covariance, 293, 314
error, 383
ill-conditioned, 331
of information, 316
intensity, 352
random, 348, 352
transition, 348, 352
of transition rewards, 350

Maturity, 56
date, 57, 73
risk premium, 21

Maximum likelihood estimation, 316, 323
Maximum possible loss, 105, 219
MBS, 58
MCR, 268
Mean, 310

arithmetic, 280, 310
weighted, 280

class, 311
geometric, 280, 310

weighted, 280
harmonic, 280, 311

weighted, 280
population, 308
quadratic, 280, 311

weighted, 280
sample, 308, 310

Mean absolute error, 362
Mean absolute percentage error, 362
Mean deviation, 286
Mean pay-off time, 6, 12, 18
Mean settlement time

of annuity-due, 39
of immediate annuity, 39
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Mean squared error, 361
root, 362

Mean value, 286
conditional, 295
of stochastic process, 346

Measure
probability, 284
risk, 102

Median, 287, 310–311
Medical insurance, 144, 255
Method

of ARCH, 101
of average costs, 255
backtesting, 105
Brown’s, 367
of claim ratio, 232–233
commercial, 59
contribution-driven, 217
of depreciation, 51
of exponential smoothing, 101
fund-driven, 216
of funding, 216
of GARCH, 101
Gauss-Newton, 327
historical simulation, 105
Holt’s, 367
Holt-Winters’

additive, 368
multiplicative, 369

of instrumental variables, 335
King-Hardy’s, 155
of least squares, 321

weighted, 326
of moving average, 101
of observed losses over several periods, 105
prospective, 171
retrospective, 171
run-off triangle, 230
scaling, 105
Schärtlin’s, 155
separation, 231
stresstesting, 105
structured Monte Carlo, 105
of two-stage least squares, 338
variance-covariance, 105
Whittaker-Henderson’s, 155
Wittstein’s, 155

Mid-population, 149
Migration

balance, 150
net, 150

Minimum capital requirements, 268
Mixed Poisson distribution, 236

Mixed process, 356, 371
integrated, 375
multivariate, 381

Mode, 287, 312
Model

arbitrage pricing, 121
binomial tree, 137
Black-Derman-Toy, 138
Black-Karasinski, 138
of bonus-malus systems, 233
Brennan-Schwartz, 137
for claim amount, 237
cost-of-carry, 77
of couples, 162, 189
Cox-Ingersoll-Ross model, 138
of credibility

Bühlmann-Straub, 245
evolutionary, 246
general Bühlmann-Straub, 246

deterministic, 162
discount dividend, 68
distributed lag, 336
dynamic linear, 383
earnings, 69
Fong-Vasicek, 137
Gordon’s, 68
Heath-Jarrow-Morton, 138
Ho-Lee, 138
Hull-White, 138
internal, 102
Jarrow-Rudd, 137
LIBOR market, 138
linear regression, 321
logit, 335
Longstaff-Schwartz, 137
multi-factor interest rate, 137
multiple decrement, 161
no arbitrage, 138
nonlinear regression, 326
for number of claims, 236
of one-way classification, 327
probit, 335
regression, 246, 320
Rendleman-Bartter, 137
risk, 235

collective, 235
individual, 235

simulation, 268
simultaneous equation, 336
single-factor interest rate, 136
stochastic, 162
Stoodley’s, 19
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SUR, 336
of two-way classification, 328

with interactions, 328
Vasicek mean-reverting, 137
volatility, 379

Modern life insurance, 145
Modified convexity, 34
Modified duration, 32

of coupon bond, 63
Moment, 69, 287

central, 287
of stock price, 69

Moment generating function, 299
Money market instrument, 55
Monthly annuity, 35
Moody’s, 106
Moral hazard, 143
Mortality

charges, 197
decrement order, 153
excess, 193

additive, 193
multiplicative, 193

female, 155
force, 158
gain, 146, 167, 191
law, 155, 159
male, 155

Mortality rate
age-specific, 151
crude, 150
infant, 151
neonatal, 151

Mortgage-backed security, 58
Motion

Brownian, 123, 356
geometric, 124

continuous, 124
Motor fleet insurance, 147
Motor third party liability insurance, 144, 147
Moving average, 69, 101, 365

arithmetic, 366
centered, 366
prediction, 366

Moving average process, 355
asymmetric, 378
vector, 381

MPL, 217
MSE, 361
MSW process, 379
Multicollinearity, 331
Multi-factor interest rate model, 137
Multinomial distribution, 293

Multi-peril insurance, 147
Multiple correlation coefficient, 314
Multiple decrement

life tables, 157
model, 161

Multiple life insurance, 156, 162, 167, 189
Multivariate stochastic process, 345
Multivariate time series, 381

autoregressive, 381
mixed, 381
moving average, 381
white noise, 381

Multi-year premium, 220
pre-paid, 220
single, 220

Municipal bond, 58
Mutability, 313
Mutual covariance function, 347
MVM, 205

N
N (μ, σ 2), 289
N (0, 1), 289
NAIC, 268
National Association of Insurance

Commissioners, 268
Natural peril, 143
Natural premium, 220
NB(n, p), 288
NC, 213
NCD system, 233
Negative binomial distribution, 236, 288
Nelson-Siegel curve, 62
Net cash flow, 25
Net premium, 166, 220, 267

rate, 223
Net premium reserve, 170–171

at fractional durations, 173
prospective form, 171
recursive form, 172
retrospective form, 172

Net present value, 26
Net price, 58
New business strain, 199
N -hours clause, 266
No arbitrage model, 138
No Claim Discount system, 233
Nominal discount rate, 14
Nominal interest, 5
Nominal interest rate, 13, 21
Nominal value, 57
Nonanticipativity, 126
Non-capitalizing type of life insurance, 172
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Non-financial derivative, 74
Non-life insurance, 144, 219
Nonlinear regression model, 326
Nonparametric estimation, 318
Nonparametric test, 320
Non-participating life insurance, 146
Non-profit benefits product, 147
Non-proportional reinsurance, 260, 263
Nonsystematic risk, 118
Normal contribution, 213
Normal distribution, 289

standard, 289
Normal equations, 321
Normalization of seasonal indices, 367–368
Northwest direction of preferences, 111
Northwest frontier, 112
Note, 57

floating rate, 57
treasury, 58

Notional amount, 76, 80
NP1 approximation, 240
NP2 approximation, 240–241
NPV, 25
Number

of claims, 222, 236
of deaths, 154

discounted, 163
of surviving couples, 162
of survivors, 153

discounted, 163

O
Obligatory insurance, 145
Obligatory reinsurance, 260
Observation, 309
Occupational pension, 209
Offer price, 199
Offer rate, 71
OLS-estimate, 321

with a priori restrictions, 333
Open interest, 79
Open position, 79
Opportunity cost rate, 25
Option, 74, 81

American, 81
Asian, 83
“as-you-like-it”, 83
at-the-money, 81
barrier, 83
binary, 83
call, 81, 134–135
commodity, 81
compound, 83

currency, 81
embedded, 203, 206
European, 81, 134–135
exotic, 83
on futures, 83
interest rate, 81
in-the-money, 81
life insurance, 167
out-of-the-money, 82
path-dependent, 83
premium, 74, 81, 83
price, 81
pricing, 83
put, 81
ratio, 82
stock, 81
stock index, 81

Optional insurance, 145
Ordinary share, 66
Original cost, 51
Ornstein-Uhlenbeck process, 137
Oscillator, 70

of stock price, 70
OTC market, 74
Over-the-counter market, 74

P
P(λ), 288
p.a., 13
Paid-up policy, 166, 190
Panjer’s recursive formula, 239
Pareto distribution, 238, 291
Partial autocorrelation function, 370
Partial correlation coefficient, 315
Partial differential equation, 134

Vasicek, 137
Participating life insurance, 146
Par value, 57
Parzen’s estimator, 371
Pascal’s triangle, 277
Passive interest, 5
Pay-as-you-go, 147, 211
Payback, 202

period, 30
discounted, 30

period rule, 27, 30
Payee, 55
PAYGO, 147, 211
Payment

balancing, 76
on interest, 46
period, 36
periodic, 35
on principal, 46
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Payout ratio, 67
PB, 30
PD, 106
p.d., 13
PDE, 134

Vasicek, 137
Pension, 209

disability, 148, 209
due to participation, 148
employer-based, 209
extended by n years, 213
guaranteed for n years, 212
insurance, 144
merit, 209
occupational, 209
old age, 209
past-service, 209
plan, 209
retirement, 148, 209
social, 209
state, 209
survivor’s, 148, 209

Pension fund, 147
Pension funding

aggregate method, 217
attained age, 217
current unit, 216
entry age, 217
projected unit, 216

Pension plan, 146, 207
career average salary, 210
defined benefit, 147, 210
defined contribution, 147, 210
final average salary, 210
final salary, 210
flat rate, 210
funded, 211
money times service, 210
unfunded, 211

Pension scheme
company, 211
professional, 211
retirement, 209
staff provident, 211

P/E ratio, 67
Percentile, 287, 310
Period, 349

base, 341
conversion, 11, 13
coupon, 57
current, 339
decisive, 233, 251

of deferment, 165
discount, 10
holding, 102
interest, 11, 36
of necessary medical treatment, 147
payback, 30
payment, 36
survival, 195
waiting, 163, 193

Periodic payment, 35
Periodic premium, 166

valorized, 191
with varied amounts, 166

Periodogram, 371
Permanent consequences of injury, 147
Permanent health insurance, 145
Perpetual bond, 57
Perpetuity, 35

increasing, 40–41
Personal liability insurance, 147
Personal lines of business, 147
Personal savings, 209
Physical delivery, 79
(σ, r̄)-plane, 111
p.m., 13
Point

estimator, 315
of growth, 369
truncation, 370
turning, 369

Poisson distribution, 236, 288
compound, 239
mixed, 236, 288

Poisson process, 125, 354
compensated, 125

Poisson risk process, 242
Policy

comprehensive, 167
paid-up, 166, 190
value, 146

Policyholder, 165
Pool

coinsurance, 260, 270
insurance, 260
reinsurance, 260, 270

Population, 307
age-specific, 149
final, 149
growth rate, 152
increase, 150
indicator, 149
initial, 149
mid-, 149
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Portfolio, 109
dedicated bond portfolio, 64
diversification, 111
duration, 64
efficient, 113
feasible, 112
insurance, 143
market, 116
price, 97
replicating, 134
self-financing, 133
tangency, 114
theory, 109
value, 204

Portfolio aggregated rate of return, 97
Portmanteau statistics, 374
Position

asymmetric, 74
long, 73, 81, 114
open, 79
short, 73, 81, 114
symmetric, 74

Power of test, 319
p.q., 13
Precious metal, 78
Predetermined variable, 337
Prediction, 372

error, 361
interval, 324, 361
point, 322
in time series, 363
of volatility, 100

Preference of investment strategy, 91
weak, 91

Preferred stock, 66
Premium

adjusted, 166
basic, 233, 251
collected, 166, 220
credibility, 220, 225, 243
default risk, 20
earned, 170, 220
gross, 167, 220
inflation, 22
insurance, 143, 166, 168
level, 166
liquidity, 21
maturity risk, 21
multi-year, 220

pre-paid, 220
single, 220

natural, 220
net, 166, 220, 267

office, 166, 220
option, 74, 81, 83
periodic, 166

with varied amounts, 166
rate, 221
reinsurance, 259
reserve, 146, 170
risk, 172, 220
saving, 172
single, 166
stochastic, 345
unearned, 170, 220
written, 166, 220

Premium rate, 221
Premium reserve, 170

expense-loaded, 169–170
gross, 170–171
net, 170–171
prospective form, 171
recursive form, 172
retrospective form, 172

Present price of risk asset, 121
Present value, 5, 11–12, 25, 58

of 1, 12
of annuity, 36
of bond, 59
expected of expenses by insurer, 168
expected of insurance benefits, 168
expected of insurance premiums, 168
of future benefits, 213
of future profits, 202, 204
net, 26
rule, 27

Previsibility, 126
Price, 339

bid, 199
of cash flows, 29
delivery, 73, 77
dirty, 58
exercise, 73, 81
expiration, 73
of floater, 65
forward, 77
full, 58
futures, 79
gross, 58
market, 58, 66
net, 58
offer, 199
option, 81
of portfolio, 97
present of risk asset, 121
pure, 58
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quoted, 56
of right, 70
settlement, 58
spot, 81
strike, 73, 81
subscription, 70
term, 73
volatility, 98

Price/earning ratio, 67
Pricing

derivatives, 132
insurance, 201
option, 83

Principal, 5–6, 10–12, 46, 57
Principal capital, 5, 11
Principal components, 328
Principle

arbitrage-free, 119
discount, 9
equivalence, 166, 168, 210, 213, 255

Priority, 249, 250, 259, 263
Private insurance, 144
Private motor insurance, 147
Privileged subscription, 65, 70
Probability, 283–284

conditional, 284
of death, 153, 157
of decrement, 157
of default, 106
density, 285, 292

conditional, 293
marginal, 292

equivalent, 130
martingale, 131, 133

measure, 284
dominated, 296

of random event, 283
risk-neutral, 121, 131, 133
of ruin, 247
ruin, 267
space, 284
of survival, 153, 158
transition, 347, 351, 353

Probit model, 335
Process

accumulated claims, 242
autoregressive, 356

vector, 381
bilinear, 377
binary, 353
branching, 354
claim number, 242
cointegrated, 382

conditional heteroscedasticity, 379–380
counting, 345
fractionally integrated, 376
Galton-Watson, 354
general birth, 355
general birth-and-death, 355
harmonic, 356, 358
integrated, 375
invertible, 356, 372
linear, 372
linear birth, 354
linear birth-and-death, 355
long-memory, 376
Markov, 351
Markov-switching, 379
of martingale differences, 297
mixed, 356, 371
moving average, 355
MSW, 379
nonlinear, 377
Ornstein-Uhlenbeck, 137
persistent, 376
Poisson, 125, 354

compensated, 125
Poisson risk, 242
random, 345
risk, 242
seasonal, 376
stochastic, 345

multivariate, 335
vector autoregressive, 381
Wiener, 123, 356

exponential, 124
Yule, 345

Product liability insurance, 147
Professional indemnity, 147
Professional malpractice insurance, 147
Profile, 256
Profit, 202, 204

benefit, 146
commission, 259
margin, 202
sharing, 167, 191
signature, 201–202
testing, 199, 201

Profitability, 27, 201
criteria, 202

Projected Unit, 216
Prompt trading, 73
Property (and casualty) insurance, 144
Proportion

of aged persons, 152
child, 152
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Proportional reinsurance, 262
p.s., 13
p.sept., 13
Psychological analysis, 66
Pure endowment, 143, 172
Pure price, 58
Put, 81
Putable bond, 57
Put-call parity, 85
PV, 25, 36
PVFB, 213–214
PVFP, 202, 204

Q
Quadratic spectrum, 359
Qualitative regressor, 333

with interaction, 334
Quantile, 287, 310

sample, 310
Quantity, 339
Quarterly annuity, 35
Quartile

deviation, 313
lower, 287, 310
upper, 287, 310

Quenouille’s approximation, 370
Quota, 227, 262

deductible, 227, 248
share, 262

Quotation
exchange, 71
spot, 77
term, 77

Quoted exchange rate, 71
Quoted price, 56

R
R2, 323
Radix, 153
Radon-Nikodym derivative, 296
Random event, 283

disjoint, 283
Random sampling

with replacement, 308
simple, 308
stratified, 308
systematic, 308

Random sum of random variables, 301
Random variable, 285

continuous, 286
discrete, 285
sum, 300
uncorrelated, 293

Random walk, 375
symmetric, 353

Range, 312
interdecile, 287, 313
interquartile, 287, 313

Rank, 320
test, 320

Rare events, 125
Rate

accrual, 210
ask, 71
bid, 71
birth, 150
cap, 83
claim, 221
coupon, 57
cross exchange, 71
discount, 7, 10, 12, 56
divorce, 151
exchange, 71
fertility, 150
floor, 83
FRA-, 76
growth of population, 151–152
inflation, 22
interest, 6
marriage, 151
mortality, 150
net premium, 223
offer, 71
of payment (instantaneous), 45
premium, 221
recovery, 106
reference, 76
repo, 7
reproduction, 150
standard contribution, 213
swap, 76
tax, 22

Rate of return, 95, 98, 135
forward, 135
guaranteed, 210
instantaneous, 135

forward, 135
internal, 28, 202
logarithmic, 96
portfolio aggregated, 97
time aggregated, 97
volatility, 98

Rating
agency, 106
assessment, 268



Index 411

credit, 106
experience, 225, 243

Ratio
age-child, 152
age dependency, 152
allocation, 199
claim, 221
debt, 67
debt-equity, 67
divorce, 151
earnings, 66
investment, 67
leverage, 66
option, 82
payout ratio, 67
P/E, 67
price/earning, 67
reserves ratio, 267
retention, 67, 267
sex, 152
solvency, 267

Rayleigh distribution, 290
RBC, 268–269
RBNS reserve, 171, 228
rdr, 201, 203
Real interest rate, 22

net, 23
Realization of stochastic process, 345
Realized return, 61
Reciprocity, 260
Recoveries, 106
Recovery rate, 106
Reduced benefit, 166
Reduced sum insured, 190
Reduction coefficient, 156
Reference rate, 76
Reference valuation interest rate, 29
Regressand, 320
Regression

analysis, 320
credibility model, 246
function, 320
model, 312

of line, 321
linear, 321
nonlinear, 326

Regressor, 320
qualitative, 333

Reinsurance, 260
all risks cover, 266
basis, 260
catastrophe excess of loss cover, 266
CaTXL, 266

claim, 261
ECOMOR(r), 266
facultative, 260
facultative-obligatory, 260
financial, 261, 270
finite, 261, 270
largest claims, 266
LCR(r), 266
on modified basis, 260
non-proportional, 260, 263
on normal basis, 260
obligatory, 260
pool, 260, 270
premium, 259
proportional, 260, 262
on risk basis, 260
SL, 266
stop loss, 266
umbrella cover, 266
working excess of loss per event, 265
working excess of loss per risk, 264
WXL/E, 265
WXL/R, 264

Reinsured, 260
Reinsurer, 260
Relative frequency, 312
Relative value at risk, 103
Rendleman-Bartter model, 137
Repayment, 46

equal, 46
unequal, 46

Repayment plan, 46
Replacement value insurance, 219
Replicating portfolio, 134
Repo rate, 7
Reproduction rate

gross, 150
net, 150

Reserve
for bonuses and rebates, 171, 228
claim, 170, 228
EV, 203
IBNR, 171, 228
insurance, 170, 228
premium, 146, 170
ratio, 267
RBNS, 171, 228
statutory, 203
for unearned premium, 170, 228

Residual, 320
autocorrelated, 326
estimated, 322
vector, 382
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Retail Price Index, 342
Retained earning, 65
Retention, 259

ratio, 67, 267
Retirement

age, 148, 209
normal, 214

early, 209
insurance, 144
late, 209
pension, 148, 209
scheme, 209

Retrocession, 260
Retrocessionaire, 260
Return, 5

on assets, 66
on equity, 66
expected, 109
holding-period, 61
rate, 95, 98, 135
realized, 61

Reward
expected, 350

discounted, 351
Markov chain, 350

rfr, 21, 205
Rho, 87
Rider, 167

DD, 195
Right

date, 70
to dividends, 65
issue, 65, 70
price, 70
vested, 210
voting, 65

Risk
of asset, 109
asset, 110
aversion, 92

Arrow-Pratt measure, 93
business and financial, 144
business interruption, 144
capital, 269
credit, 105, 144
credit at risk, 106
discount rate, 201
engineering, 144
exchange, 270
financial, 98, 109
insurance, 143
liability, 144
loss of profits, 144

margin, 201
market, 118
market price, 116, 131, 137
measure, 102

coherent, 102
modern, 144
nonsystematic, 118
objective, 143
personal, 143
of portfolio, 109
premium, 172, 220
process, 242
pure, 143
reversal, 88
socio-political, 144
specific, 118
subjective, 141
systematic, 118
theft and vandalism, 144
third party, 144
traffic, 143
underwriting, 144, 169
unique, 118
value at risk, 102

Risk-based capital, 268, 269
Risk capital, 268
Risk discount rate, 201, 203
Risk-free asset, 114
Risk-free interest rate, 21, 110, 205
Risk insurance for couple, 189
Risk life insurance, 146
Risk margin, 201
RiskMetrics, 102
Risk model, 235

collective, 235
individual, 235

Risk-neutral probability, 121, 131, 133
Risk premium, 172, 220

on exponential principle, 224
on principle of mean value, 223
on principle of standard deviation, 223
on principle of variance, 224
on principle of variance and skewness, 224

Risk process, 242
Poisson, 242

Risk retention group, 270
RMSE, 362
ROA, 66
ROE, 66
Root approximation, 13
ROR, 95
RPI, 342
RRG, 270
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Ruin
probability, 267
theory, 246, 267

Rule
69, 12
72, 12
110, 12
chain, 339
internal rate of return, 27, 29
of investment decision, 27
payback period, 27, 30
present value, 27
total probability, 284

Run-off schedule, 267
Run-off triangle, 228, 229

cumulative, 229
methods, 230

Bornhuetter-Ferguson, 230, 233
Cape Code, 230
Chain-Ladder, 230, 231
of claim ratio, 232, 233
de Vylder, 230
London Chain-Ladder, 230
separation, 230, 231

S
Safety margin, 220, 223
Salary, 210, 214, 215

average, 210
career, 210, 214
final, 210, 215

final, 210
scale function, 214

Salvage value, 51
Sample, 307

bivariate, 309
concentration, 313
dependence, 314
level, 310
mean, 310
ordered, 309
quantile, 310
random, 315
simple random, 307
stratified random, 308
variability, 312
variance, 312

Sampling theory, 307
SARIMA, 376
Saving premium, 172
Scaling method, 105
Scenario, 201
Schärtlin’s method, 155

SCR, 213, 268
Scrap value, 51
S-curve, 365
SDE, 128

geometric, 129
with linear constant coefficients, 128

Seasonal index, 367
normalization, 367, 368

Seasonal process, 376
multiplicative, 376

Securitization, 270
Security

derivative, 73
discount, 55
dividend, 65
fixed-income, 65
insurance-linked ILS, 270
loading, 156
social, 144, 147, 209

Security market line, 117
Self-financing portfolio, 133
Sell

at discount, 60
at par, 60
at premium, 60

SEM, 337
Separable utility function, 92
Separation

methods, 230, 231
arithmetic, 232
geometric, 232

theorem, 115
Service

future, 213
past, 213
years, 210

Set
efficient, 112
feasible, 112

SETAR, 378
Settlement, 167

cash, 79
expense, 224
lump-sum, 210
price, 58

Sex ratio, 152
Share, 65

ordinary, 66
Sharpe’s measure of portfolio, 116
Short average, 69
Short position, 73, 81, 114
Short-term instrument, 55
Sickness insurance, 143, 144, 255
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Significance level, 318
Simple discount, 9
Simple interest, 5, 6

with principals credited mthly, 9
Simulation models, 268
Simulation of scenarios, 201
Simultaneous equation model, 336

reduced form, 397
structural form, 337

Single-factor interest rate model, 136
Single premium, 166, 220
Skewness, 287, 313

simplified, 313
SL reinsurance, 267
SML, 117
Smoothing constant, 366
Social insurance, 144, 147
Social pension, 209
Social security, 144, 147, 209

administration, 211
Solvency

available margin, 268
capital requirements SCR, 268
of insurer, 247, 269
ratio, 267
reporting, 268

Solvency I, 268
Solvency II, 269
Space

probability, 285
state, 345

Special purpose vehicles, 270
Specific risk, 118
Spectral analysis, 371
Spectral decomposition

of autocovariance function, 357
of stationary process, 357

Spectral density, 357
mutual, 358, 382

Spectral distribution function, 357
Spot exchange rate, 75
Spot interest rate, 26, 28
Spot price, 81
Spot quotation, 77
Spread, 136

bear, 88
bid/ask, 71
bid/offer, 199
bull, 88

Spread curve, 136
credit, 136

SPV, 270
SSE, 361

Standard & Poor’s, 106
Standard contribution rate, 213
Standard deviation, 286, 312

of stock price, 70
STAR, 379
State

absorbing, 349
aperiodic, 349
periodic, 349
persistent, 348
recurrent, 348

non-null, 349
null, 349

transient, 348
State bond, 58
State insurance supervision, 171
State pension, 209

institutions, 211
State space, 345
State vector, 382
Stationarity, 346, 347

strict, 346
weak, 347

Stationary distribution, 350
Statistics, 315

Durbin-Watson, 326
portmanteau, 374

Status
claim, 223
initial, 157, 161
joint-life, 156, 162, 189

Statutory liabilities, 170
Statutory reserves, 203
Statutory values, 167, 191
Sterling fund, 199
Stochastic differential equation, 128

geometric, 129
with linear constant coefficients, 128

Stochastic process, 345
with independent increments, 357
mean value, 346
nonstationary, 375
variance, 346

Stock, 65
common, 66
company, 65
derivative, 74
option, 81
preferred, 66
split, 66
synthetic, 88

Stock exchange indicator, 342
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Stock index, 342
derivative, 74
option, 81

Stoodley’s model, 19
Stop loss reinsurance, 266
Straddle, 88
Straight line depreciation method, 52
Strategic combinations based on options, 88
Stratum (strata), 308
Stress testing, 105, 201
Strictly exogenous variable, 337
Strike price, 73, 81
Structured bond, 58
Structured method Monte Carlo, 105
Student’s distribution, 291
Submartingale, 297

Doob-Meyer decomposition, 132, 298
Subordinate bond, 58
Subscription price, 70
Sum

insured, 165, 219
reduced, 190

random, 301
of random variables, 300
of squared errors, 361
of squares, 322

regression, 322
residual, 322
total, 322

of years digit depreciation method, 52
Sum insurance, 145, 225
Supermartingale, 297
SUR-model, 336
Surplus, 246, 263
Surrender, 148, 166, 190, 210

charge, 190
Survival function, 157
Survival period, 195
Survivor’s pension, 148, 209
Swap, 74, 80

basis, 80
coupon, 80
cross currency, 80
depreciated swap, 80
foreign exchange, 76
forward-swap, 81
FX-, 76
interest rate, 80
multi-leg-swap, 81
rate, 76
step-up-swap, 80
up-front-payment-swap, 81

Swaption, 83

Symmetric position, 74
Synthetic stock, 88
Systematic risk, 118

T
Table

correlation, 310
frequency, 310
life, 153
loss, 222

TAC, 269
Tail value at risk, 105
Tangency portfolio, 114
Target capital, 268
Tariff groups, 220, 236
Tax rate, 22
T-bill, 56, 58
t Distribution, 291
Technical analysis, 66
Technical gain, 146, 191
Technical interest rate, 147, 166
Technical provision, 170, 228
Temporary annuity, 35
Temporary insurance, 165
Temporary life annuity, 185
Term

of insurance, 165
zillmerising, 173

Term exchange rate, 75
Terminal value, 5, 11
Term insurance, 144–145, 178
Term price, 73
Term quotation, 77
Term structure of interest rates,

23, 135
Term trading, 73
Test

based on iterations under and above
median, 320

based on turning points, 320
chi-square, 320
Dickey-Fuller, 375
Farrar-Glauber, 332
Fisher’s, 371
Friedman, 320
goodness of fit, 320
Kendall, 320
Kolmogorov-Smirnov, 320
Kruskal-Wallis, 320
of linearity, 325
Mann-Whitney, 320
of multicollinearity, 332
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of periodicity, 371
portmanteau, 374
of randomness, 369
rank, 320
sign, 320
of significance, 323
Spearman, 320
t-, 319
Wilcoxon, 320

Theil’s U-statistics, 362
Theorem

Bayes, 285
Bernoulli, 303
binomial, 278
central limit, 304
Gauss-Markov, 321
Girsanov, 131
Glivenko, 310
Khintchine, 303
Kolmogorov, 303, 346
Lévy-Lindeberg, 304
Lyapunov, 304
Markov, 303
on martingale representation, 132
Moivre-Laplace, 304
separation, 115

Theory
arbitrage pricing, 121
of credibility, 225, 243
of portfolio, 109
of ruin, 246, 267
sampling, 307

Theta, 87
Third party insurance, 144
Threshold process, 378
Tick size, 79
Time, 6

of amortization, 47
claim interoccurrence, 242
hitting, 348
mean pay-off, 6, 12, 18
mean settlement of annuity, 39

Time aggregated rate of return, 97
Time series, 363

financial, 377
linear, 371
nonlinear, 377
smoothed, 363

Time value, 84
of capital, 11

Tontines, 145
Total adjusted capital, 269
Total loss, 168, 238

Trading, 74
prompt, 73
term, 73

Trajectory, 345
Transfer function, 359
Transformation

Box-Cox, 376
Fisher’s z-transformation, 318
Jenkins, 377
Koyck’s, 336
of random variables, 294

Transition intensity, 352
Transition matrix, 348, 352
Transition probability, 347, 351, 353
Transport insurance, 143, 147
Travel insurance, 147
Treasury bill, 56
Treasury bond, 58
Treasury note, 58
Treaty, 260
Trend, 362

constant, 363
exponential, 364
Gompertz, 365
linear, 363
logistic, 365
modified exponential, 365
parameter, 124
quadratic, 364

Trigger
ILS, 270
indemnity, 270
index, 270

Truncation point, 370
t-Test, 319

one-sample, 319
paired, 320
two-sample, 319

Turning point
lower, 369
test, 320
upper, 369

TVaR, 105
Two-SLS estimate, 338
Two-stage least squares method, 338

U
Ultimate net loss, 263
Umbrella Cover reinsurance, 266
Umbrella shape, 112
Unbiased estimator, 315

asymptotically, 315
best, 315



Index 417

Underinsurance, 220
Underlying asset, 73
Underwriting

capacity, 259, 261
medical, 192
risk, 144, 169

Unearned premium, 170, 220
reserve, 228

Uniform amortization, 47
Uniform distribution, 289
Unique risk, 118
Unit, 199

accumulation, 199
fund, 199
initial, 199

Unit annuity, 36
payable mthly, 44

Unit Linked, 198
insurance, 146

Universal Life, 197
insurance, 146, 197

UNL, 263
Unpaid balance, 46
Useful life, 51
Utility, 91
Utility function, 91

exponential, 92
HARA, 93
logarithmic, 93
power, 92
quadratic, 92
separable, 92

logarithmic, 92
power, 92

V
Valorization, 191
Valorized periodic premium, 191
Valuation of insurance, 203
Valuation interest rate, 25

reference, 29
Value, 339

of annuity-due, 39
appraisal, 205
basis, 80
book, 51
of business in-force, 204
cash, 197
estimated, 322
face, 55, 57
fair, 58, 66, 80, 205–206
forward, 77
future, 5, 11–12, 28

of immediate annuity, 39
implicit, 204
insured, 219
intrinsic, 83
market, 66
mean, 286

conditional, 295
nominal, 57
par, 57
policy, 146
portfolio, 204
present, 5, 11–12, 25, 58
salvage, 51
scrap, 51
statutory, 167, 191
terminal, 5, 11
time, 84

Value at risk, 102
absolute, 102
default-related, 107
embedded, 203
incremental, 104
relative, 103
tail, 105

VaR, 102
Variability

among-means, 312
inside-class, 312
sample, 312

Variable
dummy, 333
endogenous, 337
error, 320
exogenous, 337
explanatory, 320
instrumental, 335
predetermined, 337
random, 285
response, 320
strictly exogenous, 337
zero-one, 333

Variable Life, 198
insurance, 146

Variable Universal Life, 146, 198
Variance, 286, 312

class, 312
population, 308
sample, 308, 312
of stochastic process, 345

Variance-covariance method, 105
VAR(p), 381
Vasicek mean-reverting model, 137
VBIF, 204
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V-combination, 88
Vector

of observations, 382
residual, 382
state, 382

Vector autoregressive process, 381
Vested right, 210
VMA, 381
Volatility, 98, 124, 127

annual, 98
clustering, 377
daily, 98
implied, 100
incremental, 99
indicator, 70
logarithmic, 124, 127
model, 379
prediction, 100
of price, 98
of rate of return, 98

Volume of swap, 80
Voluntary insurance, 145

W
Waiting period, 165, 195
Waiver, 166
Warrant, 57, 82
Weibull

distribution, 237, 290
law of mortality, 160

Weighted least squares, 326
White noise, 355

multivariate, 381
Whittaker-Henderson’s method, 155
Whole life annuity, 183

extended by n years, 186
guaranteed for n years, 186

Whole life insurance, 145, 175
Widower’s annuity, 190
Widow’s annuity, 190

Wiener process, 123, 356
exponential, 124

Winding-up schedule, 267
With-profit benefits product, 146
Wittstein’s method, 155
WLS-estimate, 326
WN, 355
Working excess of loss cover

per event, 265
per risk, 264

Written premium, 170, 220
WXL/E reinsurance, 266
WXL/R reinsurance, 264

Y
Year

accident, 229
calendar, 229
development, 229

Yield
to call, 61
current, 59
curve, 61, 135–136

of coupon bonds, 61
forward, 61
of swap interest rates, 61
of zero-coupon bonds, 61

dividend, 67
earnings, 67
to maturity, 28, 56, 135

YTM, 28
Yule process, 354
Yule-Walker equations, 356

Z
Zero-coupon bond, 57
Zero-sum game, 82
Zillmerisation, 173
Zillmerising term, 173
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