
Thomas W. MacFarland · Jan M. Yates

Introduction to
Nonparametric Statistics
for the Biological
Sciences Using R

Introduction to Nonparametric Statistics
for the Biological Sciences Using R

Thomas W. MacFarland • Jan M. Yates

Introduction to
Nonparametric Statistics
for the Biological Sciences
Using R

123

Thomas W. MacFarland
Office of Institutional Effectiveness
Nova Southeastern University
Fort Lauderdale, FL, USA

Jan M. Yates
Abraham S. Fischler College of Education
Nova Southeastern University
Fort Lauderdale, FL, USA

ISBN 978-3-319-30633-9 ISBN 978-3-319-30634-6 (eBook)
DOI 10.1007/978-3-319-30634-6

Library of Congress Control Number: 2016934853

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

This text is about the use of nonparametric statistics for the biological sciences and
the use of R to support data organization, statistical analyses, and the production
of both simple and publishable graphics. Nonparametric techniques have a role in
the biological sciences, and R is uniquely positioned to support the actions needed
to accommodate biological data and subsequent hypothesis-testing and graphical
presentation.

Introduction to Nonparametric Statistics for the Biological Sciences Using R
begins with a general discussion of data, specifically the four commonly listed data
types: nominal, ordinal, interval, and ratio. This discussion is critical to this text
given the frequent use of nominal and ordinal data using nonparametric statistics.
The beginning presentation then moves to an introductory display of R, with a
caution that far more detail in the use of R and specifically R syntax is covered
in later chapters.

The remaining chapters are largely self-contained lessons that cover the follow-
ing individual nonparametric tests, listed here in the order of presentation in the
book:

• Sign Test
• Chi-square
• Mann-Whitney U Test
• Wilcoxon Matched-Pairs Signed-Ranks Test
• Kruskal-Wallis H-Test for Oneway Analysis of Variance (ANOVA) by Ranks
• Friedman Twoway Analysis of Variance (ANOVA) by Ranks
• Spearman’s Rank-Difference Coefficient of Correlation
• Binomial Test
• Walsh Test for Two Related Samples of Interval Data
• Kolmogorov-Smirnov (K-S) Two-Sample Test
• Binomial Logistic Regression

A common approach is used for each nonparametric analysis, promoting a
consistent and thorough attempt at analyses: background on the lesson, the import-
ing of data into R, data organization and presentation of the Code Book, initial

v

vi Preface

visualization of the data, descriptive analysis of the data, the statistical analysis,
and interpretation of outcomes in a formal summary. Most chapters have additional
lessons, listed in an addendum, and many chapters have multiple addenda.

This text should help beginning students and researchers consider the use of
nonparametric approaches to analyses in the biological sciences. With R used as
a platform for presentation, the diligent reader will develop a reasonable level of
expertise with the R language, aided by the clearly shown syntax in an easy-to-read
fixed format font.

Additionally, all datasets are available on the publisher’s Web page for this
text. Each dataset is presented in .csv (i.e., comma-separated values) file format,
facilitating simple use and universal availability, regardless of selected operating
system and computing platform. The subject matter for these datasets is fairly
general and should apply as useful examples to all disciplines in the biological
sciences.

A parametric approach to biologically oriented statistical analyses is frequently
seen in the literature. However, as presented throughout this text, a nonparametric
approach should also receive consideration when there are concerns about scale,
distribution, and representation. That is to say, nonparametric statistics provide a
useful purpose for inferential analyses when data (1) do not meet the purported
precision of an interval scale, (2) there are serious concerns about extreme deviation
from normal distribution, and (3) there is considerable difference in the number of
subjects for each breakout group.

Consider the importance of each condition from the three conditions listed above
and why a nonparametric approach should be considered, either as an exploratory
approach to statistical testing, a final approach to statistical testing, or at least as a
confirming approach to statistical testing.

• Scale: Many nonparametric analyses are based on ranked data, where the scale
used to define data may not be as precise as desired. Given the realities of field
work in the biological sciences, there are many times when it is not possible to
obtain a precise measure (i.e., a measure that uses a scale that is both reliable and
valid). Instead, field staff may only be able to obtain measures such as (1) large,
medium, or small; (2) successful or not successful; etc. When precise measures
are lacking, data that are instead ranked can be applied to good effect through the
use of nonparametric analyses.

• Distribution: As many biologically focused research projects are put into
place, it often becomes only too evident that the sample in question not only
does not follow normal distribution patterns for selected variables, but the
measurements do not even begin to approximate any semblance of normal
distribution. Nonparametric techniques are extremely valuable when distribution
patterns come into question, since many nonparametric tests are based on the use
of ranks and are distribution-free (i.e., selected nonparametric tests are often quite
appropriate even when data from the sample do not meet expected distribution
patterns typically associated with a normally distributed population).

Preface vii

• Representation: There are many situations when there are extreme differences in
the number and corresponding percent of total for breakout groups when samples
are drawn from a population. Consider the representation of blood types. In
the United States, there is extreme variation in the expected representation of
blood type, such that O-positive is an expected blood type for nearly 40 % of the
population, whereas AB-negative is a rare blood type and is observed for only
1 %, or less, of the population. This difference in representation by blood type is
so extreme that comparisons of some measured variable by the two blood types
would be greatly compromised in most cases, unless a nonparametric approach
was used for later inferential analyses.

Although many nonparametric analyses were developed back when nearly all
analyses were attempted using paper and pencil, it is now common to use a
computer-mediated approach with contemporary statistical analysis software. This
text is based on the use of R for this purpose. The R programming language is
freely available open source software that it is now among the top 10 programs
for worldwide use. R has gained wide acceptance due to its flexibility for data
organization and data management, statistical analysis, and production of graphical
images portraying relationships between and among data.

The comparative advantage of R is not only its functionality, which is also
found to a degree in other computer-based programs; but, instead, the comparative
advantage of R is the user community, where interested individuals can develop and
use functions that operate on data for specific purposes and these actions are self-
initiated, with no interference by a manager-led development team or marketing
staff members. With R, a researcher has control over the data in ways that cannot be
equaled when using commercial software that can be limiting to the imagination.

However, a limited degree of functionality is available when R is first down-
loaded. The extreme functionality comes from the more than 5000 packages
available to the worldwide R community, with many packages having 25, 50, 100,
or more functions. Again, the R data-centric environment is free and the R software
is open source, such that the use of R is only limited by vision and skills. Functions
developed by others are made freely available and the functions can be modified as
desired.

Fort Lauderdale, FL, USA Thomas W. MacFarland
Jan M. Yates

Contents

1 Nonparametric Statistics for the Biological Sciences . 1
1.1 Background on This Lesson. 1
1.2 Data Types . 2

1.2.1 Nominal Data . 3
1.2.2 Ordinal Data . 4
1.2.3 Interval Data . 4
1.2.4 Ratio Data. 5

1.3 How R Syntax, R Output, and Graphics Show in This Text 5
1.4 Graphical Presentation of Populations . 6

1.4.1 Samples that Exhibit Normal Distribution 7
1.4.2 Samples That Fail to Exhibit Normal Distribution 9

1.5 R and Nonparametric Analyses . 11
1.5.1 Precision of Scales: Ordinal vs Interval . 11
1.5.2 Deviation from Normal Distribution . 12
1.5.3 Sample Size and Possible Issues with Representation 17

1.6 Definition of Nonparametric Analysis . 23
1.7 Statistical Tests and Graphics Associated with Normal

Distribution . 25
1.8 Addendum: Data Distribution and Sampling . 30
1.9 Prepare to Exit, Save, and Later Retrieve This R Session 50

2 Sign Test . 51
2.1 Background on This Lesson. 51

2.1.1 Description of the Data. 51
2.1.2 Null Hypothesis (Ho) . 54

2.2 Data Entry by Copying Directly into a R Session. 54
2.3 Organize the Data and Display the Code Book . 57
2.4 Conduct a Visual Data Check . 60
2.5 Descriptive Analysis of the Data . 63
2.6 Conduct the Statistical Analysis . 73
2.7 Summary . 74

ix

x Contents

2.8 Prepare to Exit, Save, and Later Retrieve This R Session 76

3 Chi-Square . 77
3.1 Background on This Lesson. 77

3.1.1 Description of the Data. 78
3.1.2 Null Hypothesis (Ho) . 80

3.2 Data Import of a .csv Spreadsheet-Type Data File into R 80
3.3 Organize the Data and Display the Code Book . 82
3.4 Conduct a Visual Data Check . 84
3.5 Descriptive Analysis of the Data . 90
3.6 Conduct the Statistical Analysis . 92
3.7 Summary . 97
3.8 Addendum: Calculate the Chi-Square Statistic

from Contingency Tables . 100
3.9 Prepare to Exit, Save, and Later Retrieve This R Session 102

4 Mann–Whitney U Test . 103
4.1 Background on this Lesson. 103

4.1.1 Description of the Data. 104
4.1.2 Null Hypothesis (Ho) . 106

4.2 Data Import of a .csv Spreadsheet-Type Data File into R 106
4.3 Organize the Data and Display the Code Book . 108
4.4 Conduct a Visual Data Check . 111
4.5 Descriptive Analysis of the Data . 118
4.6 Conduct the Statistical Analysis . 125
4.7 Summary . 128
4.8 Addendum: Stacked Data vs Unstacked Data . 129
4.9 Prepare to Exit, Save, and Later Retrieve this R Session 132

5 Wilcoxon Matched-Pairs Signed-Ranks Test . 133
5.1 Background on this Lesson. 134

5.1.1 Description of the Data. 134
5.1.2 Null Hypothesis (Ho) . 136

5.2 Data Import of a .csv Spreadsheet-Type Data File into R 137
5.3 Organize the Data and Display the Code Book . 139
5.4 Conduct a Visual Data Check . 141
5.5 Descriptive Analysis of the Data . 150
5.6 Conduct the Statistical Analysis . 158
5.7 Summary . 160
5.8 Addendum 1: Stacked Data and the Wilcoxon

Matched-Pairs Signed-Ranks Test . 163
5.9 Addendum 2: Similar Functions from Different Packages 167
5.10 Addendum 3: Nonparametric vs Parametric

Confirmation of Outcomes . 172
5.11 Prepare to Exit, Save, and Later Retrieve this R Session 174

Contents xi

6 Kruskal–Wallis H-Test for Oneway Analysis of Variance
(ANOVA) by Ranks . 177
6.1 Background on this Lesson. 178

6.1.1 Description of the Data. 178
6.1.2 Null Hypothesis (Ho) . 181

6.2 Data Import of a .csv Spreadsheet-Type Data File into R 181
6.3 Organize the Data and Display the Code Book . 183
6.4 Conduct a Visual Data Check . 190
6.5 Descriptive Analysis of the Data . 197
6.6 Conduct the Statistical Analysis . 206
6.7 Summary . 207
6.8 Addendum: Comparison of Kruskal–Wallis Test

Differences by Multiple Breakout Groups. 208
6.9 Prepare to Exit, Save, and Later Retrieve this R Session 211

7 Friedman Twoway Analysis of Variance (ANOVA) by Ranks 213
7.1 Background on This Lesson. 214

7.1.1 Description of the Data. 214
7.1.2 Null Hypothesis (Ho) . 218

7.2 Data Import of a .csv Spreadsheet-Type Data File into R 218
7.3 Organize the Data and Display the Code Book . 220
7.4 Conduct a Visual Data Check . 223
7.5 Descriptive Analysis of the Data . 230
7.6 Conduct the Statistical Analysis . 236
7.7 Summary . 239
7.8 Addendum: Similar Functions from External Packages 240
7.9 Prepare to Exit, Save, and Later Retrieve This R Session 247

8 Spearman’s Rank-Difference Coefficient of Correlation 249
8.1 Background on This Lesson. 250

8.1.1 Description of the Data. 250
8.1.2 Null Hypothesis (Ho) . 253

8.2 Data Import of a .csv Spreadsheet-Type Data File into R 253
8.3 Organize the Data and Display the Code Book . 254
8.4 Conduct a Visual Data Check . 261

8.4.1 Use of the Graphics Package . 262
8.4.2 Use of the Lattice Package . 269
8.4.3 Use of the ggplot2 Package . 272

8.5 Descriptive Analysis of the Data . 275
8.6 Conduct the Statistical Analysis . 282
8.7 Summary . 294
8.8 Addendum: Kendall’s Tau. 295
8.9 Prepare to Exit, Save, and Later Retrieve This R Session 297

xii Contents

9 Other Nonparametric Tests for the Biological Sciences 299
9.1 Binomial Test . 300
9.2 Walsh Test for Two Related Samples of Interval Data 303
9.3 Kolmogorov-Smirnov (K-S) Two-Sample Test . 308
9.4 Binomial Logistic Regression . 312
9.5 Prepare to Exit, Save, and Later Retrieve This R Session 324
9.6 Future Applications of Nonparametric Statistics . 325
9.7 Contact the Authors . 326

Index . 327

List of Figures

Fig. 1.1 Histogram and density plot: normal distribution . 8
Fig. 1.2 Histogram and density plot: failure to meet normal distribution . . . 10
Fig. 1.3 Stacked bar plot of two object variables . 14
Fig. 1.4 Multiple density plots . 19
Fig. 1.5 Histogram, density plot, and Quantile-Quantile plot:

normal distribution. 29
Fig. 1.6 Throwaway histogram . 32
Fig. 1.7 Throwaway histograms showing multiple nclass declarations 33
Fig. 1.8 Histogram showing a rug along the X axis . 34
Fig. 1.9 Density plot . 35
Fig. 1.10 Multiple graphing curves in one figure . 36
Fig. 1.11 Boxplot and violin plot in one figure . 36
Fig. 1.12 Histogram and normal curve overlay . 38
Fig. 1.13 Embellished histogram and normal curve overlay 39
Fig. 1.14 Quantile-Quantile (i.e., QQ or Q-Q) plot . 40
Fig. 1.15 Histogram and Quantile-Quantile plot . 43
Fig. 1.16 Detailed histograms. 45
Fig. 1.17 Embellished histogram with multiple legends. 47
Fig. 1.18 Quantile-Quantile plot with noise showing in the tails 48
Fig. 1.19 Multiple embellished histograms . 50

Fig. 2.1 Bar chart using the epicalc::tab1() function . 63
Fig. 2.2 Sorted dotplot using the epicalc::summ() function 69
Fig. 2.3 QQ plots comparing two separate object variables. 73

Fig. 3.1 Mosaic plot using the vcd::mosaic() function . 85
Fig. 3.2 Side-by-side bar plot of two separate object variables 89

Fig. 4.1 Boxplot using the lattice::bwplot() function . 113
Fig. 4.2 Comparative density plots using the

lattice::densityplot() function . 116

xiii

xiv List of Figures

Fig. 4.3 Comparative density plots using the
sm::sm.density.compare() function . 117

Fig. 5.1 Comparative boxplots of separate object variables in
one common graphic . 145

Fig. 5.2 Comparative density plots of separate object variables
in one common graphic. 147

Fig. 5.3 Comparative histograms, normal curves, and
density curves of separate object variables using the
descr::histkdnc() function placed into one common graphic 148

Fig. 5.4 Comparative QQ plots with QQ lines. 158

Fig. 6.1 Frequency distribution of four breakout groups using
the epicalc::tab1() function . 188

Fig. 6.2 Multiple (two rows by two columns) density plots
using the which() function for Boolean selection 190

Fig. 6.3 Multiple (one row by two columns) density plots using
the which() function for Boolean selection . 191

Fig. 6.4 Boxplots of four breakout groups using the
lattice::bwplot() function with emphasis on outliers 194

Fig. 6.5 Boxplots of two breakout groups using the
lattice::bwplot() function with emphasis on outlines 194

Fig. 6.6 Color-coded sorted dot plots of four breakout groups
using the epicalc::summ() function . 199

Fig. 6.7 Multiple bar plots in one graphic based on enumerated values 202
Fig. 6.8 Multiple side-by-side QQ plots based on use of the

with() function for Boolean selection . 205

Fig. 7.1 Simple density plot of a single object variable . 225
Fig. 7.2 Box plot with descriptive enumerated legends . 225
Fig. 7.3 Multiple violin plots using the

UsingR::simple.violinplot() function . 228
Fig. 7.4 Color-coded sorted dot plots of five breakout groups

using the epicalc::summ() function . 232
Fig. 7.5 Interaction plot of median values for multiple object variables 239
Fig. 7.6 Sum of ranks comparison bar plots of breakout groups

using the agricolae::bar.group() function . 243
Fig. 7.7 Boxplot of breakout groups using the

descr::compmeans() function . 247

Fig. 8.1 Comparative box plots of separate object variables 266
Fig. 8.2 Multiple scatter plots of separate object variables

placed into one graphical figure . 268
Fig. 8.3 Box plots of two breakout groups using the

lattice::bwplot() function . 271
Fig. 8.4 Scatter plot of two continuous object variables using

the ggplot2::ggplot() function . 275

List of Figures xv

Fig. 8.5 Multiple QQ plots in one graphic, to compare
distribution patterns . 283

Fig. 8.6 Scatter plot of two continuous object variables with a
legend showing Spearman’s rho statistic . 285

Fig. 8.7 Scatter plot matrix (SPLOM) showing only the lower panel 287
Fig. 8.8 Color-gradient correlation plot of four continuous

object variables using the psych::cor.plot() function 289
Fig. 8.9 Bagplot of two continuous object variables using the

aplpack::bagplot() function. 290

Fig. 9.1 Histogram of binomial probability . 302
Fig. 9.2 Comparative density plots with color-coded legend 306
Fig. 9.3 Simple comparison of two side-by-side density plots. 310
Fig. 9.4 Simple frequency distribution of two breakout groups 316
Fig. 9.5 Density plot of M1: original scale 100–200 . 316
Fig. 9.6 Density plot of M2: original scale 2.00–4.00. 317
Fig. 9.7 Scatter plot of M1 and M2 . 317
Fig. 9.8 Scatter plot with box plots on X axis and Y axis using

the car::scatterplot() function. 318
Fig. 9.9 Cumulative probability (0.0–1.0) plot . 318
Fig. 9.10 Conditional density plot . 319

Chapter 1
Nonparametric Statistics for the Biological
Sciences

Abstract Nonparametric statistics provide a useful purpose for inferential analyses
when data: (1) do not meet the purported precision of an interval scale, (2) there are
serious concerns about extreme deviation from normal distribution, and (3) there
is considerable difference in the number of subjects for each breakout group. It
is not totally uncommon to hear terms such as ranking tests and distribution-free
tests to describe the inferential tests associated with nonparametric statistics, due
to the use of nominal and ordinal data and data that may not meet the desired
assumption of normal distribution (i.e., bell-shaped curve). Although those who
work in the biological sciences would ideally like to have precise measurement
for their data, to have data that follow normal distribution patterns, and to have
adequately-sized samples for all breakout groups, only too often these three desires
are not met. Nonparametric statistics and the many inferential tests associated with
nonparametric statistics provide a valuable set of options on how these data can be
used to good effect. Following along with these aspirations, the R environment and
the many external packages associated with R offer many practical applications that
support inferential tests associated with nonparametric statistics.

Keywords Anderson-Darling test • Bar plot (stacked, side-by-side) • Box plot
• Central tendency • Code book • Continuous scale • Density plot • Distribution-
free • Dotplot • Frequency distribution • Histogram • Interval • Mean
• Median • Mode • Nominal • Nonparametric • Normal distribution • Ordinal
• Parametric • Quantile-Quantile (QQ, Q-Q) • Ranking • Ratio • Violin plot

1.1 Background on This Lesson

The purpose of this set of lessons is to provide guidance on how R is used for
nonparametric data analysis:

• To introduce when nonparametric approaches to data analysis are appropriate.
• To introduce the leading nonparametric tests commonly used in biostatistics and

how R is used to generate appropriate statistics for each test.

© Springer International Publishing Switzerland 2016
T.W. MacFarland, J.M. Yates, Introduction to Nonparametric Statistics
for the Biological Sciences Using R, DOI 10.1007/978-3-319-30634-6_1

1

2 1 Nonparametric Statistics for the Biological Sciences

• To introduce common graphics (i.e., figures) typically associated with nonpara-
metric data analysis and how R is used to generate appropriate graphics in support
of each dataset.

The primary purpose of this introductory lesson is to provide guidance on
how R is used to distinguish between data that could be classified as nonparametric
as opposed to data that could be classified as parametric. Saying that immediately
brings to question the meaning of nonparametric data and as a counterpart, the
meaning of parametric data, with both approaches to data classification covered
extensively in this lesson.

The secondary purpose of this introductory lesson is to introduce R syntax and
to provide an advance organizer on how R is used to organize data, prepare statistical
analyses, and generate quality graphical images. For this introductory lesson merely
give broad attention to R syntax and focus only on the concepts associated with data
distribution and outcomes from provided samples. The many packages, functions,
and arguments associated with R are covered in detail in later lessons.

1.2 Data Types

At the broadest level and as will be demonstrated in this lesson, nonparametric data
are often considered distribution-free data. That is to say, there is no anticipated
or expected pattern to how nonparametric data are distributed. Accordingly, the
converse is that for parametric data there is some type of distribution pattern, where
the data typically have some degree of expected semblance to the normal curve.

Data can take many forms. The number of common snapping turtles (Chelydra
serpentina) in a freshwater pond is one type of datum—a simple headcount. The
mean weight of these turtles is an entirely different type of datum—a mathematical
average based upon measured weights: the Sum of All Weights divided by the
Number of All Subjects Weighed equals Mean Weight. Yet, a headcount of snapping
turtles and the mean weight of snapping turtles would both be associated with a
research study into the ecology of fresh water ponds.

Given this simple example of counts v measurements, it is best to consider how
data can be conceptualized from different perspectives. One way to view data is to
differentiate between nonparametric data and parametric data:

• Nonparametric data are data that are either counted or ranked.

– Counted Data—An actual headcount of the number of snapping turtles
sunning on the shoreline of a freshwater pond during a warm spring afternoon
is an example of a nonparametric datum.

– Ranked Data—Due to potential injury from handling a snapping turtle (i.e.,
injury to both the specimen as well as the handler) to gain information on
length or weight, it may be necessary to establish protocols so that adult
snapping turtles are visually ranked (i.e., categorized) as large, medium, or

1.2 Data Types 3

small, with no effort to actually capture specimens and, in turn, obtain more
precise measurements. This ranking is another example of a nonparametric
datum.

• Parametric data are data that are measured.

– Typical parametric biological data would include a wide variety of measure-
ments, such as: height or length of a subject in either inches or centimeters,
weight of a subject in either pounds or kilograms, or Systolic Blood Pressure
(SBP) while at rest with millimeters of mercury (mm Hg) used as a measure
of pressure.

– A typical measurement of parametric biological data may include proxy
measurements such as dry weight of scat, width of claw marks on tree bark,
estimated weight of eaten prey, etc.

The difference between nonparametric data and parametric data need not be
confusing, although it often is for those who are only beginning biological research
careers. If a datum was either counted or ranked, then it is common to view the
datum as a nonparametric datum. At the broadest level, if a datum was somehow
measured (recognizing that all measurements may not be as precise as desired, but
that is a separate issue to this discussion) then the datum may be a parametric datum.
Selection of tests for statistical analysis and the ability to select the appropriate test
are an important reason for learning how to differentiate between nonparametric
data and parametric data.

Given all of this attention to data and differences between nonparametric data
and parametric data, consider how it is generally agreed that there are four levels of
data measurement, often viewed using the acronym NOIR: (1) nominal, (2) ordinal,
(3) interval, and (4) ratio.

1.2.1 Nominal Data

Nominal (i.e., named) data are counted and are conveniently placed into predefined
categories. A common example is to consider gender and to count the number of
females and males in a sample. Assuming that each subject from a sample can
only be either female or male at the time the sample is examined, the concept of
female and correspondingly the number of female subjects is a nominal datum.
Following along with this approach, the concept of male and, correspondingly, the
number of male subjects is also a nominal datum. Note how there is no measurement
of gender other than to assign a headcount number for those subjects who are
considered female and a corresponding headcount number for those subjects who
are considered male.

4 1 Nonparametric Statistics for the Biological Sciences

1.2.2 Ordinal Data

Ordinal (i.e., ordered) data are ranked data that represent some type of predefined
hierarchy. As such, ordinal data show some attempt at measurement and allow
greater inference than data associated with the nominal scale. To return to the
previous example on weights of biological specimens, imagine that in an inventory
of adult snapping turtles the sample consisted of six adult specimens and that the
previously mentioned ordering scheme were used to assign size as a proxy for
weight and length:

• Specimen 201504121001 Size D Large
• Specimen 201504121002 Size D Medium
• Specimen 201504121003 Size D Medium
• Specimen 201504121004 Size D Small
• Specimen 201504121005 Size D Large
• Specimen 201504121006 Size D Small

Further assume that established protocols and training were used to make size-
type assignments by field researchers. Although these measures for size (e.g.,
large, medium, small) certainly do not have the precision of weights gained from
a calibrated scale or length gained from a calibrated ruler, if the sample of six
snapping turtles were representative of the overall population then this sample
certainly provides a general sense of size for the population. The data could then
be used to prepare frequency distributions, bar charts, etc., of size, with size serving
as a proxy measure of weight and length.

1.2.3 Interval Data

Interval (i.e., degree of difference) data are measured in equal units (i.e., inter-
vals). Consider systolic blood pressure (SBP) of adult male subjects. SBP readings
of 118, 122, and 126 could conceivably be three possible measures on an interval
scale, measured as mm Hg SBP using a sphygmomanometer.1 If indeed the scale is
interval, then it is known that the degree of difference between 118 and 120 is equal
to the degree of difference between 122 and 124 or the degree of difference between
126 and 128. There is a degree of precision to an interval scale that is not found
with a less precise scale, such as an ordinal ranking-type scale that only uses low,
average, or high to describe SBP. In turn, it is possible to make greater inference
with interval data than is possible when using nominal data and interval data.

1By long-standing convention regarding blood pressure measurements and the use of non-digital
sphygmomanometers, it is common to express mm Hg SBP readings as even numbers, only.

1.3 How R Syntax, R Output, and Graphics Show in This Text 5

1.2.4 Ratio Data

Ratio (i.e., some type of mathematical comparison) data have the characteristics of
interval data, but ratio data also have two other very important characteristics:

• Ratio data have a true and unique value for zero (i.e., the Kelvin scale has an
absolute zero temperature).

• Ratio data are real numbers and they can be subjected to standard mathematical
procedures (e.g., addition, subtraction, multiplication, division). Because of this
characteristic, ratio data can be expressed in ratio form. With ratio data, you can
assume that a measured value of 50 is truly twice the measure of 25, whatever
the measure represents (e.g., length, width, temperature, hours, etc.).

1.3 How R Syntax, R Output, and Graphics Show
in This Text

As a guide to the way the R syntax, R output, and graphics shown immediately
below and throughout this text are organized, R syntax used for input is shown
within a green frame and R output is shown within a red frame:

R syntax shows in this green frame.

R output shows in the red frame.

This simple technique should make it fairly easy to distinguish between input
and output without the need for an excessive display of screen snapshots. A simple
display is shown immediately below of R syntax as input and the resulting R output:

2 + 2

TestScores <- c(98, 75, 83, 92, 94, 79, 71, 83)

median(TestScores)
mean(TestScores)
sd(TestScores)
length(TestScores)

> 2 + 2
[1] 4
>
> TestScores <- c(98, 75, 83, 92, 94, 79, 71, 83)
>
> median(TestScores)
[1] 83
> mean(TestScores)
[1] 84.375

6 1 Nonparametric Statistics for the Biological Sciences

> sd(TestScores)
[1] 9.530965
> length(TestScores)
[1] 8

All R syntax shows in this text, but to keep the length to a reasonable number of
pages, only selected output shows. Of course, all output can be generated merely by
using the data and R syntax associated with this text.2

In the same way that all output does not show in this text, only selected figures
show. Again, use the data and R syntax to practice and generate the figures.
Remember that par(askDTRUE) is used to manage the screen, to show one figure
at a time.

1.4 Graphical Presentation of Populations

Along with an expectation of increased precision of measurement, with both interval
and ratio measures, there is also an expectation that interval data and ratio data for
a population and subsequently a sample from a population follow some degree of
normal distribution. A visual display of data may not fully equate to a perfect bell-
shaped curve, but there should be at least some degree of adherence to this model.
Otherwise, if data are distribution-free and do not follow an expected degree of
distribution of values, then it may be desirable to think of nonparametric statistics
as an alternate to the use of parametric statistics.

With this general information on the different types of data and the possible
impact that data types have on selected statistical tests, think about the practical
implications of data for the biological sciences regarding how data are viewed. From
this comparison consider how the following conditions impact later decisions:

• Precision of data measurement
• Distribution patterns
• Sample size (i.e. representation: Is the sample representative of the population?)

Even with recognition that there is always the possibility of outliers (i.e., extreme
values that are not errors), do the data follow along theoretical limits and normal
distribution patterns? When data do not follow a pattern of normal distribution, it
is common to use a nonparametric approach to later statistical analyses or to at
least consider the use of a nonparametric approach to statistical analyses. Initial
bias toward data and data types must be avoided.

For example, imagine that adult males are measured for height. A few adult males
may be approximately 60 inches or less, and equally, a few adult males may be 80
inches or more. However, most adult males will be about 70 inches, within some

2All .csv datasets are posted on the publisher’s Web page devoted to this text.

1.4 Graphical Presentation of Populations 7

degree of variance. If the sample were representative of the overall population a
graphical distribution of the data will follow along a normal curve. To demonstrate
this concept, look at the two samples (the samples are generated using rnorm() and
runif(), R-based functions) on the height of adult males, where one sample follows
along a normal distribution pattern and the other sample fails to exhibit a normal
distribution pattern.

1.4.1 Samples that Exhibit Normal Distribution

With R, use the rnorm() function and appropriate arguments to create an object
variable that displays normal distribution for a sample of 10,000 subjects, represent-
ing the height (inches) of adult males. Use rnorm() function arguments so that the
sample represents the height of 10,000 subjects (adult males) with mean D 70 inches
and standard deviation D 5 inches.3 Display descriptive statistics, a histogram, and
a density plot of the sample. Although R syntax in an interactive fashion is used in
this lesson, the immediate concern is on the concepts associated with nonparametric
data compared to parametric data. Adequate documentation is used with the R
syntax shown below and far more detail on the use of R syntax is explained in later
lessons. Again, for this lesson, focus on the concepts of data distribution, sample
size, nonparametric v parametric data, etc., and avoid undue concern about the R
syntax which is explained in detail later.

The initial R syntax used for each lesson shows immediately below, as House-
keeping. This R syntax will remove unwanted files from any prior work, declare
the working directory, etc. This startup R syntax is then followed by the R syntax
directly associated with this part of the lesson (Fig. 1.1).

###
Housekeeping Use for All Analyses
###
date() # Current system time and date.
R.version.string # R version and version release date.
ls() # List all objects in the working

directory.
rm(list = ls()) # CAUTION: Remove all files in the working

directory. If this action is not desired,
use the rm() function one-by-one to remove
the objects that are not needed.

ls.str() # List all objects, with finite detail.
getwd() # Identify the current working directory.
setwd("F:/R_Nonparametric")

Set to a new working directory.
Note the single forward slash and double

3It is common to see the use of uppercase and lowercase for terms, such as mean D 123 or
Mean D 123, when used in a narrative presentation. Both approaches are used in this text.

8 1 Nonparametric Statistics for the Biological Sciences

40

Histogram of Male Height (inches) Using
rnorm(): Normal Distribution Pattern

Density Plot of Male Height (inches) Using
rnorm(): Normal Distribution Pattern

0
50

0
10

00
15

00

50 60
Height (Inches)

F
re

qu
en

cy

70 80 90 100 40

0.
00

0.
02

0.
04

0.
06

0.
08

50 60
Height (Inches)

D
en

si
ty

70 80 90 100

Fig. 1.1 Histogram and density plot: normal distribution

quotes.
This new directory should be the directory
where the data file is located, otherwise
the data file will not be found.

getwd() # Confirm the working directory.
list.files() # List files at the PC directory.
##

MHeight_rnorm <- round(rnorm(10000, mean=70, sd=5))
Create an object called MHeight_rnorm, which consists of
10,000 random subjects, with mean equal to 70 inches and
standard deviation equal to 5 inches. The object variable
MHeight_rnorm represents a theoretical representation of
heights for adult males, measured in inches. Note how the
round() function was also used, so that whole numbers are
generated, only.
#
When using the rnorm() function and the runif() function,
be sure to note how the actual values generated will change
with each use.

head(MHeight_rnorm) # First line(s) of data
tail(MHeight_rnorm) # Last line(s) of data
summary(MHeight_rnorm) # Summary
mean(MHeight_rnorm) # Mean
sd(MHeight_rnorm) # SD
median(MHeight_rnorm) # Median

par(ask=TRUE) # Side-by-Side Histogram
par(mfrow=c(1,2)) # and Density Plot
hist(MHeight_rnorm, # Histogram function
breaks=25, # Adequate bins
col="red", # Color
font=2, # Bold

1.4 Graphical Presentation of Populations 9

font.lab=2, # Bold labels
cex.axis=1.25, # Large axis
main="Histogram of Male Height (inches) Using
rnorm(): Normal Distribution Pattern",
xlab="Height (Inches)",# Label text
xlim=c(40,100)) # Axis limits

plot(density(MHeight_rnorm), lwd=6, col="red",
font=2, font.lab=2, cex.axis=1.25,
main="Density Plot of Male Height (inches) Using
rnorm(): Normal Distribution Pattern",
xlab="Height (Inches)", xlim=c(40,100))
Note above and throughout these lessons that
the function par(ask=TRUE) is used to freeze
the screen, making it necessary to either
press or click the Enter key, which gives
more control over screen actions.
#
The parameters in par(mfrow=c(1,2)) are used
so that output of the hist() function and
output of the plot() function would occupy
one row and two columns, placing the two
figures side-by-side and in turn allow easy
comparison.

1.4.2 Samples That Fail to Exhibit Normal Distribution

With R, use the runif() function and appropriate arguments to create an object
variable that populates a sample with random numbers—ignoring any attempt to
have normal distribution. Again, there will be 10,000 subjects (adult males) in this
sample but observe the descriptive statistics, histogram, and density plot for this
sample of random adult male heights, all falling within the limits set using runif()
function arguments: minimum D 55 inches and maximum D 85 inches, or about C
and � three standard deviations from mean D 70 inches and standard deviation D 5
inches. Once again, focus on the concept of distribution patterns. The documentation
provided, along with the R syntax, should be useful. These functions and arguments
will be explained in far greater detail in later lessons (Fig. 1.2).

MHeight_runif <- round(runif(10000, min=55, max=85))
Create an object called MHeight_runif, which consists of
10,000 random subjects. The minimum value will be 55
inches and the maximum value will be 85 inches. Note how
these limits are in general parity of + and - three
standard deviations of the above example, where the mean
was 70 inches and standard deviation was 5 inches (e.g.,
70 - (5 inches per SD * 3 SDs) = 55 and 70 + (5 inches per
SD * 3 SDs) = 85). The object MHeight_runif represents a
theoretical representation of heights for adult males, but
by no means a normal distribution that is based on a set

10 1 Nonparametric Statistics for the Biological Sciences

40

Histogram of Male Height (inches) Using
runif(): Failure to Meet a Normal

Distribution Pattern

Density Plot of Male Height (inches) Using
runif(): Failure to Meet a Normal

Distribution Pattern

0

0.
00

0
0.

01
0

0.
02

0
0.

03
0

10
0

20
0

30
0

40
0

50
0

Height (Inches)

F
re

qu
en

cy

D
en

si
ty

50 60 70 80 90 100 40
Height (Inches)

50 60 70 80 90 100

Fig. 1.2 Histogram and density plot: failure to meet normal distribution

mean and a set standard deviation. Again, the round()
function was used, so that whole numbers are generated,
only.
#
When using the rnorm() function and the runif() function,
be sure to note how the actual values generated will change
with each use.

head(MHeight_runif) # First line(s) of data
tail(MHeight_runif) # Last line(s) of data
summary(MHeight_runif) # Summary
mean(MHeight_runif) # Mean
sd(MHeight_runif) # SD
median(MHeight_runif) # Median

par(ask=TRUE) # Side-by-Side Histogram
par(mfrow=c(1,2)) # and Density Plot
hist(MHeight_runif, # Histogram function
breaks=25, # Adequate bins
col="red", # Color
font=2, # Bold
font.lab=2, # Bold labels
cex.axis=1.25, # Large axis
main="Histogram of Male Height (inches) Using
runif(): Failure to Meet a Normal
Distribution Pattern",
xlab="Height (Inches)",# Label text
xlim=c(40,100)) # Axis limits

plot(density(MHeight_runif), lwd=6, col="red",
font=2, font.lab=2, cex.axis=1.25,
main="Density Plot of Male Height (inches) Using
runif(): Failure to Meet a Normal

1.5 R and Nonparametric Analyses 11

Distribution Pattern",
xlab="Height (Inches)", xlim=c(40,100))
Note above and throughout these lessons that
the function par(ask=TRUE) is used to freeze
the screen, making it necessary to either hit
or click the Enter key, which gives more
control over screen actions.
#
The parameters in par(mfrow=c(1,2)) are used
so that output of the hist() function and
output of the plot() function would occupy
one row and two columns, placing the two
figures side-by-side and in turn allow easy
comparison.

Although the samples found in object MHeight_rnorm and object MHeight_runif
both share the same general descriptive statistics, with a Mean of about 70 inches
and a Median of about 70 inches, there are vast differences between object
MHeight_rnorm and object MHeight_runif in terms of distribution patterns:

• Data for the sample MHeight_rnorm tend to follow a normal distribution pattern,
as exhibited in the accompanying histogram and density plot.

• Data for the sample MHeight_runif do not follow along a normal distribution
pattern, as exhibited in the accompanying histogram and density plot.

Accordingly, it is suggested that the use of a nonparametric approach would
be the most appropriate way to address any statistical analyses or tests using the
MHeight_runif sample. There is simply no assumption of normal distribution for
the MHeight_runif dataset.

1.5 R and Nonparametric Analyses

1.5.1 Precision of Scales: Ordinal vs Interval

Ideally, researchers in the biological sciences would work only with data that meet
desired levels of measurement. As an example using forage crops, due to economic
pressures it is no longer acceptable to measure yields for alfalfa (Medicago sativa)
in whole numbers, such as 4 or 5 tons of alfalfa per acre. Cost-accounting of modern
agri-business practices now demands more precision, such as measuring alfalfa
yields as 4.25 tons per acre, 4.95 tons per acre, 5.15 tons per acre, etc. Even more
precision should accompany these weight measures, such as moisture content of hay
when put into storage, an empirical measure for condition of the hay, total digestible
nutrients (TDN), crude protein (CP), etc. Using the many tools available today this
type of measured precision can be obtained.

12 1 Nonparametric Statistics for the Biological Sciences

1.5.2 Deviation from Normal Distribution

Although extreme precision may be desired, there are times when researchers in the
biological sciences do not have the ability to obtain desired levels of measurement,
due to a variety of reasons including limited budgets, time constraints, possible harm
if specimens were collected, etc. Consider a situation where an insect pest represents
a major threat to crop production and the role of Integrated Pest Management (IPM)
team members (i.e., scouts) for data collection regarding the crop and pest presence.

For this example, assume that an insect pest has the potential to soon damage a
specific crop and that in response to this potential damage, some type of treatment
was applied to 15 different research plots:

• Some plots (N D 8) received a biological treatment, to minimize insect damage.
• Some plots (N D 7) received a chemical treatment, to minimize insect damage.

Approximately 3 days after treatment, when it is judged safe to walk in the
chemically-treated plots,4 IPM team members went into the 15 different plots
and made quick assessments of damage from the infestation, largely to determine
effectiveness of the different treatments and to also determine if follow-up treat-
ments are needed. Due to the need for a possible quick same-day application of a
second treatment (instead of the regular practice of counting the specific number
of destructive insects per square meter at five random locations in each plot) IPM
protocols were used that call for rapid damage assessment, using a simple three-
tiered scale for crop damage: (1) Minimal Damage, (2) Moderate Damage, and
(3) Extreme Damage. Although this type of measure lacks precision, assume that
the IPM scouts have had proper training and that they closely follow the protocols
associated with this type of rapid crop assessment.

Again, although this three-tiered scale is appropriate given the need for rapid
response to a known threat of insect infestation, it certainly lacks precision. Given
this background, look at the way R is used to organize the data for monitoring 15
separate plots of insect infestation after treatment, both biological treatment and
chemical-based treatment.

Use R in an interactive mode to create the data, placing values into three separate
object variables: Plot, Treated, and Damage. In later lessons separate spreadsheet-
based datasets will be imported into R, but for these introductory examples data are
created in an interactive fashion.

Plot <- c("A", "B", "C", "D", "E",
"F", "G", "H", "I", "J",
"K", "L", "M", "N", "O")

Create a character-based object vector

class(Plot) # Determine class

4The word plot is frequently used in agriculture to refer to a small section of a field. Do not confuse
the term plot, used in this context, with the R plot() function.

1.5 R and Nonparametric Analyses 13

str(Plot) # Determine structure
Plot # Show all values

Treated <- c(2, 2, 1, 1, 2,
1, 2, 1, 1, 2,
1, 2, 2, 1, 1)

Create a numeric-based object vector:
1 = Biological and 2 = Chemical

class(Treated) # Determine class
str(Treated) # Determine structure
Treated # Show all values

Damage <- c(2, 1, 3, 2, 2,
2, 1, 3, 3, 2,
2, 1, 2, 2, 3)

Create a numeric-based object vector:
1 = Minimal, 2 = Moderate, 3 = Extreme

class(Damage) # Determine class
str(Damage) # Determine structure
Damage # Show all values

Use R in an interactive fashion to join the three separate object variables (e.g.,
Plot, Treated, and Damage) into a single object. By default, the constructed object
will initially be a matrix.

Report <- cbind(Plot, Treated, Damage)
Use the cbind() function to join Plot,
Treated, and Damage into a matrix (by
default), with the data placed into
columns.

class(Report) # Determine class

str(Report) # Determine structure
Report # Show all data

For many purposes, it is often best to use data that are organized as a dataframe
and not a matrix. Use R in an interactive fashion to coerce the matrix (i.e., Report)
into a dataframe (i.e., Report.df). Although it is not required, as a good programming
practice note below how .df is used as part of the object name, to provide adequate
documentation that the object is a dataframe.

Report.df <- data.frame(Report)
Transform the data in object variable
Report into a dataframe, and call the
new object Report.df.

class(Report.df) # Determine class
str(Report.df) # Determine structure
Report.df # Show all data

14 1 Nonparametric Statistics for the Biological Sciences

Minimal

Stacked Bar Plot of Damage v Treatment
0

2
4

6
8

Moderate
Insect Damage

Extreme

Chemical

Biological

Fig. 1.3 Stacked bar plot of two object variables

Plot Treated Damage
1 A 2 2
2 B 2 1
3 C 1 3
4 D 1 2
5 E 2 2
6 F 1 2
7 G 2 1
8 H 1 3
9 I 1 3
10 J 2 2
11 K 1 2
12 L 2 1
13 M 2 2
14 N 1 2
15 O 1 3

At this point, note how R was used in an interactive fashion so that data were
put into three separate object variables, and these three objects were then joined
together, initially as a matrix with three columns. The matrix was then put into
dataframe format. The next set of actions will provide labels and final desired format
for each object variable, to improve how output shows when text and graphical
images are generated.

Note also how formal notation is used, where the name for the dataframe
and the name for the object variable are both used with the $ sign serving
as a separator between the two, such as Report.df$Plot, Report.df$Treated, and
Report.df$Damage, etc. This type of nomenclature may be somewhat verbose, but
it can be used to avoid later problems when there might otherwise be a conflict in
how object variables are named and used (Fig. 1.3).

1.5 R and Nonparametric Analyses 15

Report.df$Plot <- factor(Report.df$Plot,
labels=c("Plot A", "Plot B", "Plot C",

"Plot D", "Plot E", "Plot F",
"Plot G", "Plot H", "Plot I",
"Plot J", "Plot K", "Plot L",
"Plot M", "Plot N", "Plot O"))

Coerce object variable Report.df$Plot
into a factor and assign labels

class(Report.df$Plot) # Determine class
str(Report.df$Plot) # Determine structure
summary(Report.df$Plot) # Summary
Report.df$Plot # Show all data
par(ask=TRUE)
barplot(table(Report.df$Plot), col=rainbow(15),
main="Barplot of Report.df$Plot", font=2)
Use the table() function to determine frequency
distribution and then prepare a simple barplot of
that outcome, for quality assurance purposes.
#
There are 15 values for Report.df$Plot so note
how each value was assigned a unique color, based
on the way col=rainbow(15) was used.
#
Along with a descriptive title, the figure was
enhanced with bold text by using font=2.

Report.df$Treated <- factor(Report.df$Treated,
labels=c("Biological", "Chemical"))
Coerce object variable Report.df$Treated into
a factor and assign labels

class(Report.df$Treated) # Determine class
str(Report.df$Treated) # Determine structure
summary(Report.df$Treated) # Summary
Report.df$Treated # Show all data
par(ask=TRUE)
barplot(table(Report.df$Treated), col=rainbow(2),
main="Barplot of Report.df$Treated", font=2)
Use the table() function to determine frequency
distribution and then prepare a simple barplot of
that outcome, for quality assurance purposes.
#
There are 2 values for Report.df$Treated so note
how each value was assigned a unique color, based
on the way col=rainbow(2) was used.

Report.df$Damage <- factor(Report.df$Damage,
labels=c("Minimal", "Moderate", "Extreme"))
Coerce object variable Report.df$Damage into
factor and assign labels

class(Report.df$Damage) # Determine class

16 1 Nonparametric Statistics for the Biological Sciences

str(Report.df$Damage) # Determine structure
summary(Report.df$Damage) # Summary
Report.df$Damage # Show all data
par(ask=TRUE)
barplot(table(Report.df$Damage), col=rainbow(3),
main="Barplot of Report.df$Damage", font=2)
Use the table() function to determine frequency
distribution and then prepare a simple barplot of
that outcome, for quality assurance purposes.
#
There are 3 values for Report.df$Damage so note
how each value was assigned a unique color, based
on the way col=rainbow(3) was used.

With each object variable appropriately organized and assigned labels, perform
a few quality assurance actions against the entire dataframe (i.e., Report.df).

class(Report.df) # Determine class
str(Report.df) # Determine structure
summary(Report.df) # Summary

Plot Treated Damage
Plot A :1 Biological:8 Minimal :3
Plot B :1 Chemical :7 Moderate:8
Plot C :1 Extreme :4
Plot D :1
Plot E :1
Plot F :1

Use R-based assignment to create a new object (i.e., DamageTreatment). The
object DamageTreatment will be the output of applying the table() function against
a crosstabulation of the object variables Report.df$Treated and Report.df$Damage.

DamageTreatment <- table(Report.df$Treated, Report.df$Damage)
ftable(DamageTreatment) # Table output
xtabs(~Treated+Damage, data=Report.df) # Table output
summary(DamageTreatment) # Summary

par(ask=TRUE)
barplot(DamageTreatment, xlab="Insect Damage",
col=c("blue","red"), legend=rownames(DamageTreatment),
main="Stacked Bar Plot of Damage v Treatment",
beside=FALSE, font.lab=2, font.axis=2, cex.axis=1.25)
Create a barplot of DamageTreatment, the crosstab of
Report.df$Treated and Report.df$Damage.
#
Use appropriate arguments to add color, a legend, a
main title, bold fonts, and large print. Use the
argument beside=FALSE to make a stacked barplot instead
of a side-by-side barplot.

1.5 R and Nonparametric Analyses 17

The emphasis in this early lesson is on measurement, not R syntax. When
viewing the example, the codes (e.g., Minimal, Moderate, and Extreme) used to
indicate insect damage after treatment represent a degree of measurement, but
certainly not a precise degree of measurement. Consider how a plot marked as
Minimal, with just a slight increase in damage, could be classified as Moderate.
Or, a plot marked as Extreme could have near total destruction of the crop, whereas
another plot marked Extreme could have been just slightly more damaged than a
field marked with Moderate damage.

Given this degree of precision, or more appropriately—lack of precision, the data
associated with the object variable Report.df$Damage are ordinal and not interval.
That is to say, there is certainly an ordering to the data: Extreme represents more
damage than Moderate and Moderate represents more damage than Minimal. Even
so, the data are ordered, only. Given only this degree of measurement, using an
ordinal scale and not an interval scale, it would be appropriate to use nonparametric
techniques with any analyses involving Report.df$Damage.

As a reminder about the nature of data in this sample, the data associated with
objects Report.df$Plot and Report.df$Treated represent headcounts in this example.
The 15 plots linked to Report.df$Plot merely have 15 different names, and there is
no suggestion that there is any ordered value to the 15 plots (i.e., Report.df$Plot).
Equally, the same can be said for data associated with Report.df$Treated, where two
terms are used to express the type of treatment, biological or chemical. There is no
suggestion that there is any degree of ordering to the treatments (Report.df$Treated)
used in this example.

1.5.3 Sample Size and Possible Issues with Representation

It is common for beginning researchers to worry about sample size so much that
unfortunately the issue of sample representation of the overall population is given
inadequate attention. Sample size is important and small samples should be carefully
examined to determine if nonparametric or parametric approaches should be
considered for later statistical analyses. However, a small sample by itself is not the
immediate concern—the main concern should always be to question if the sample
is representative of the population. A theoretical example will provide a broad
demonstration of how sample size may impact selected approach (nonparametric
or parametric), and a second example will offer a more real-world example of how
sample size needs consideration.

1.5.3.1 Example 1: Theoretical Example of Attention to Sample Size

Consider an example involving Systolic Blood Pressure (SBP) that will explore
how sample size brings to question whether data should be viewed as either
nonparametric or parametric. In this example the focus is on sample size and a set

18 1 Nonparametric Statistics for the Biological Sciences

of sample object vectors that increasingly decrease in size. Notice how the rnorm()
function is used to create a dataset and that arguments associated with the rnorm()
function are used to establish the N, mean, and standard deviation of the dataset.

To demonstrate this example look at a set of six object variables where each
object variable has Mean D 120 and Standard Deviation D 10. However, the sample
size decreases from 1,000,000 to eventually 10—yet again, each object variable is
assigned Mean D 120 and Standard Deviation D 10.

The emphasis in this example will be on the visual images since ostensibly each
object variable has the same mean and standard deviation.

SBP_1000000 <- round(rnorm(1000000, mean=120, sd=10))
SBP_100000 <- round(rnorm(100000, mean=120, sd=10))
SBP_10000 <- round(rnorm(10000, mean=120, sd=10))
SBP_1000 <- round(rnorm(1000, mean=120, sd=10))
SBP_100 <- round(rnorm(100, mean=120, sd=10))
SBP_10 <- round(rnorm(10, mean=120, sd=10))

mean(SBP_1000000); sd(SBP_1000000); length(SBP_1000000)
mean(SBP_100000); sd(SBP_100000); length(SBP_100000)
mean(SBP_10000); sd(SBP_10000); length(SBP_10000)
mean(SBP_1000); sd(SBP_1000); length(SBP_1000)
mean(SBP_100); sd(SBP_100); length(SBP_100)
mean(SBP_10); sd(SBP_10); length(SBP_10)
Confirm descriptive statistics (Mean and SD) and
observe how length (e.g., N) declines. Note how
Mean and SD are somewhat variable as length
declines. This observation will also show when
the density plots and histograms are prepared for
each theoretical distribution.

Prepare highly-embellished graphical images of how data are distributed. Place
these images into a single presentation: density plot and histogram. A set of par()
function arguments, used at a global level, will enhance presentation of these
images. Remember that this R-based syntax is described in far more detail in later
lessons.

savefont <- par(font=2) # Bold
savelwd <- par(lwd=4) # Line Width
savecol <- par(col="red") # Color
savecex.lab <- par(cex.lab=1.25) # Label Size
savecex.axis <- par(cex.axis=1.25) # Axis Size
savefont.lab <- par(font.lab=2) # Label Bold
savefont.axis <- par(font.axis=2) # Axis Bold
par(ask=TRUE) # Side-by-Side
par(mfrow=c(3,2)) # Density Plots
plot(density(SBP_1000000)) # N = 1000000
plot(density(SBP_100000)) # N = 100000
plot(density(SBP_10000)) # N = 10000
plot(density(SBP_1000)) # N = 1000
plot(density(SBP_100)) # N = 100
plot(density(SBP_10)) # N = 10

1.5 R and Nonparametric Analyses 19

80

density.default(x = SBP_1000000)
0.

00
D

en
si

ty
0.

02
0.

04

N = 1000000 Bandwidth = 0.5685
100 120 140 160

80

density.default(x = SBP_10000)

0.
00

D
en

si
ty

0.
02

0.
04

N = 10000 Bandwidth = 1.43
100 120 140 160

density.default(x = SBP_100)

0.
00

D
en

si
ty

0.
02

0.
04

N = 100 Bandwidth = 3.743
100 120 140 160

80

density.default(x = SBP_100000)

0.
00

D
en

si
ty

0.
02

0.
04

N = 100000 Bandwidth = 0.9042
100 120 140 160

80

density.default(x = SBP_1000)

0.
00

D
en

si
ty

0.
02

0.
04

N = 1000 Bandwidth = 2.265
100 120 140 160

density.default(x = SBP_10)

0.
00

D
en

si
ty

0.
02

0.
04

N = 10 Bandwidth = 4.026
80 90 100 110 120 130 140

Fig. 1.4 Multiple density plots

par(savefont); par(savelwd); par(savecol);
par(savecex.lab); par(savecex.axis);
par(savefont.lab); par(savefont.axis)

Notice how there is a semblance of normal distribution until the last few density
plots, where the number of subjects in the sample declines greatly. For object
variable SBP_10, with only ten values, there is simply no demonstration of normal
distribution. It would be unwise to use a parametric analysis that demands normal
distribution. This is an example of where a nonparametric approach would be best
for any analyses involving SBP_10, all due to failure to see normal distribution with
such a small sample size (Fig. 1.4).

A histogram of data distribution for each Systolic Blood Pressure (SBP) sample
may be a better graphic if the density plot is currently an unfamiliar graphical tool.

savefont <- par(font=2) # Bold
savelwd <- par(lwd=4) # Line Width
savecex.lab <- par(cex.lab=1.25) # Label Size
savecex.axis <- par(cex.axis=1.25) # Axis Size
savefont.lab <- par(font.lab=2) # Label Bold
savefont.axis <- par(font.axis=2) # Axis Bold
par(ask=TRUE) # Side-by-Side
par(mfrow=c(3,2)) # Histograms
hist(SBP_1000000, col="red", xlim=c(0,200)) # N = 1000000
hist(SBP_100000, col="red", xlim=c(0,200)) # N = 100000
hist(SBP_10000, col="red", xlim=c(0,200)) # N = 10000
hist(SBP_1000, col="red", xlim=c(0,200)) # N = 1000
hist(SBP_100, col="red", xlim=c(0,200)) # N = 100
hist(SBP_10, col="red", xlim=c(0,200)) # N = 10
par(savefont); par(savelwd);
par(savecex.lab); par(savecex.axis);
par(savefont.lab); par(savefont.axis)

20 1 Nonparametric Statistics for the Biological Sciences

Similar to what was displayed in the density plots, look at the way the distribution
pattern begins to degrade when the sample size (i.e., N, or length() using R
syntax) gets exceedingly small. Even at N = 100 there is some semblance of
normal distribution. However, with an exceptionally small sample size, as seen with
SBP_10, it is simply not possible to say that the data for this sample (i.e., SBP_10)
exhibit normal distribution, at least using a visual display of the data.

1.5.3.2 Example 2: Real-World Example of Attention to Sample Size

Sample size needs to be considered when exploring data and possibly later when
deciding that a sample does not warrant a parametric approach to data analysis, such
that a nonparametric approach may be the more appropriate selection. However,
sample size alone is not the one-and-only determining issue. A small dataset
could easily show normal distribution and a large dataset could equally fail to
achieve normal distribution. Sample size, alone, is not the determining factor to
automatically decide if data are best viewed as either nonparametric or parametric.

Consider the two similar sample datasets shown below, with each dataset
consisting of nine numeric values. The values represent subject weights (pounds).
Each dataset has nine values, but one dataset (Class_A) exhibits a semblance
of normal distribution and the other dataset (Class_B) does not exhibit normal
distribution. Again, representation of the dataset (typically, displayed as a histogram
or density plot) must be considered along with sample size.

Imagine a class (e.g., Class_A) of Grade 7 students (typically 11, 12, or 13 years
old), where there are only nine students in the class. Each student was weighed
(pounds, not kilograms), and the weights are expressed below using R syntax:

Class_A <- c(105, 109, 100, 113, 120, 108, 111, 117, 121)
Create a numeric-based object vector

median(Class_A) # Median
mean(Class_A) # Mean
sd(Class_A) # Standard Deviation
summary(Class_A) # Summary

Now, imagine another class (e.g., Class_B) of nine students that somehow had
the same weights for the first seven (of the nine) students in Class_A, but see
how the descriptive statistics change when the weights for Class_B Student 8
and Class_B Student 9 are different from the weights for Class_A Student 8 and
Class_A Student 9. Again, only two students (e.g., Class_B Student 8 and Class_B
Student 9) had different weights than their counterparts in Class_A.

1.5 R and Nonparametric Analyses 21

Class_B <- c(105, 109, 100, 113, 120, 108, 111, 187, 221)
Create a numeric-based object vector

median(Class_B) # Median
mean(Class_B) # Mean
sd(Class_B) # Standard Deviation
summary(Class_B) # Summary

A side-by-side graphical image of density plots for Class_A and Class_B will
show data distribution patterns for students in these two classes.

savefont <- par(font=2) # Bold
savelwd <- par(lwd=4) # Line Width
savecol <- par(col="red") # Color
savecex.lab <- par(cex.lab=1.25) # Label Size
savecex.axis <- par(cex.axis=1.25) # Axis Size
savefont.lab <- par(font.lab=2) # Label Bold
savefont.axis <- par(font.axis=2) # Axis Bold
par(ask=TRUE) # Side-by-Side Density Plots
par(mfrow=c(1,2)) # of Class_A and Class_B
plot(density(Class_A))
plot(density(Class_B))
par(savefont); par(savelwd); par(savecol);
par(savecex.lab); par(savecex.axis);
par(savefont.lab); par(savefont.axis)

With a somewhat different emphasis on graphical presentation, a set of side-by-
side dotcharts provides another view of data distribution.

savefont <- par(font=2) # Bold
savelwd <- par(lwd=2) # Line Width
savecol <- par(col="red") # Color
savefont.lab <- par(font.lab=2) # Label Bold
savefont.axis <- par(font.axis=2) # Axis Bold
par(ask=TRUE) # Side-by-Side Density Plots
par(mfrow=c(1,2)) # of Class_A and Class_B
dotchart(Class_A,
main="Dotchart Class A Weights", # Main title
xlab="Weight (Pounds)", # X axis label
ylab="Subject", # Y axis label
xlim=c(0,250), # X axis limits
pch=19, # Dot type (solid circle)
col=(1:9), # Color sequence
cex=1.25) # Font size

dotchart(Class_B, main="Dotchart Class B Weights",
xlab="Weight (Pounds)", ylab="Subject", xlim=c(0,250),
pch=19, col=(1:9), cex=1.25)

par(savefont); par(savelwd); par(savecol); par(savefont.lab);
par(savefont.axis)

If the vertical presentation of a dotchart is hard to follow then consider the use of
a stripchart to show the same data for Class_A and Class_B.

22 1 Nonparametric Statistics for the Biological Sciences

savefont <- par(font=2) # Bold
savelwd <- par(lwd=2) # Line Width
savecol <- par(col="red") # Color
savefont.lab <- par(font.lab=2) # Label Bold
savefont.axis <- par(font.axis=2) # Axis Bold
par(ask=TRUE) # Side-by-Side Density Plots
par(mfrow=c(1,2)) # of Class_A and Class_B
stripchart(Class_A,
main="Stripchart Class A Weights",# Main title
xlab="Weight (Pounds)", # X axis label
xlim=c(0,250), # X axis limits
pch=19, # Symbol
cex=1.10) # Font size

stripchart(Class_B, main="Stripchart Class B Weights",
xlab="Weight (Pounds)", xlim=c(0,250), pch=19, cex=1.10)

par(savefont); par(savelwd); par(savecol); par(savefont.lab);
par(savefont.axis)

Regarding descriptive statistics for subjects from both groups, the median weight
was 111 pounds for subjects in both Class_A and Class_B. In contrast, the mean
weight for subjects in Class_A was 111.5556 pounds, and the mean weight for
subjects in Class_B was 130.4444 pounds.

• Of course, the median weight is based on a ranking of the data, with the median
representing a midpoint. In this example, the midpoint is the same for both
Class_A and Class_B.

• In contrast, the mean weight represents an arithmetic average. The arithmetic
average changed greatly when weight for Class_B Student 8 and Class_B
Student 9 was substituted for the weight of Class_A Student 8 and Class_A
Student 9.

Class_A; median(Class_A); mean(Class_A); sd(Class_A)

[1] 105 109 100 113 120 108 111 117 121
[1] 111
[1] 111.5556
[1] 6.966188

Class_B; median(Class_B); mean(Class_B); sd(Class_B)

[1] 105 109 100 113 120 108 111 187 221
[1] 111
[1] 130.4444
[1] 42.9072

Considering the large difference in mean weights for students from both classes,
recall that the only change in this simple example was the weight for two students.
A weight of 187 pounds for Class_B Student 8 seems somewhat high, but it is
perhaps not totally unexpected for a Grade 7 student ranging in age from 11 to 13

1.6 Definition of Nonparametric Analysis 23

years old. However, did Class_B Student 9 really weight 221 pounds? Is this value
an outlier or is this value an error, either due to an initial error in data collection when
field notes were prepared or a later error during data entry? Although uncommon,
it is possible that an 11–13 year old Grade 7 student could weight 221 pounds.
Of course, an error of some type could also be the reason for this value—an incorrect
value if that were the case. The diligent researcher will go back to the original source
of data and either confirm or discount the presence of outliers or, if needed, identify
the error source and make corrections.

Assume that the data for both Class_A and Class_B are correct. If that were the
case, would it be appropriate to use a Student’s t-Test for Independent Samples
to compare weights for Class_A to Class_B, to see if there were a statistically
significant difference (p <= 0.05) in weights between the two classes? Ideally,
a test of this type might assume that the two samples (e.g., Class_A weights and
Class_B weights) are taken from the same population, but that assumption could
easily be disputed in this example after looking at the Class_A and Class_B side-
by-side density plots, dotcharts, and stripcharts.

• Going back to the advance organizer mentioned at the beginning of this lesson,
it could be stated that the weights for Class_A follow an acceptable normal
distribution pattern and that the data are parametric even though the sample is
somewhat small (i.e., N = 9). As a fairly broad statement, there are parameters
for the Class_A data and these parameters are visually evident in a density plot.

• However, there may be a question if the data for Class_B follow an acceptable
normal distribution pattern. The extreme variance in data for Class_B are such
that it could be declared that the data for Class_B are nonparametric. They do
not follow set (i.e., expected) parameters.

This simple example is presented within the context of an exceptionally small
(e.g., Class_A N D 9 and Class_B N D 9) sample for each of the two object
variables. Sample size (either small or large) by itself is not enough to declare if
data meet the assumptions needed for parametric analysis. It is generally best to
graphically display the data, regardless of sample size, to view representation.

1.6 Definition of Nonparametric Analysis

Given this discussion about nonparametric statistics and sample datasets that
may benefit from a nonparametric approach to inferential analysis, nonparametric
statistics provide a useful purpose for when data meet certain conditions:

• Consider a nonparametric approach to statistical analysis when data do not meet
the precision of an interval scale and instead data are viewed from a nominal or
ordinal perspective.

• Consider a nonparametric approach to statistical analysis when there are serious
concerns about extreme deviation from normal distribution.

24 1 Nonparametric Statistics for the Biological Sciences

• Consider a nonparametric approach to statistical analysis when there is consider-
able difference in the number of subjects for each breakout group.

Given these different considerations, it is evident that there is no single visual test
to determine if data meet the assumptions needed to use analyses that depend on a
parametric approach to data analysis. It is perhaps best to say that nonparametric
statistics takes into account those analyses where there are no (or at least fewer)
assumptions about data distribution patterns (i.e., normal distribution) and the
subsequent impact of distribution patterns on parameters typically associated with
the mean and either variance or standard deviation. As often found in the literature,
nonparametric analyses are based on the assumption that data are distribution free.

Given this definition and from a practical viewpoint, nonparametric analyses are
often associated with either beginning exploratory analyses or ending confirmatory
analyses. More importantly, nonparametric analyses are often used when there may
be questions whether data meet the assumptions need for parametric analysis. An
experienced researcher may want to subject a dataset to both nonparametric and
parametric analyses, to: (1) first explore the data and (2) later confirm outcomes
using a different view of the data.

Consider another simple example, either of subject weights or subject Systolic
Blood Pressure (SBP). Instruments and protocols exist such that it is generally a
reasonable task to obtain reliable and valid measures for either weight or SBP. For
either weight or SBP, imagine that the data show a semblance of normal distribution,
but there is some observed deviation away from a normal distribution pattern:

• How much deviation from normal distribution can a researcher accept before a
parametric approach is considered inappropriate and a nonparametric approach
is a more prudent choice? This question can be applied as general exploratory
analyses are approached or it can be applied as a confirming activity.

• For day-to-day research, as opposed to the simple examples shown in this
introductory lesson, data do not come pre-labeled as either nonparametric or
parametric. Many actions, perhaps involving the preparation of both descriptive
statistics and graphical presentations, are needed before a judgment of this type
can be made with any degree of assurance. Even then, peers may have other
views and these other views should be considered as part of an interactive and
collaborative decision-making process.

Nonparametric statistics have an important role in biostatistics in that they
provide a set of tools for when data do not follow any reasonable interpretation
of normal distribution, for whatever reason (i.e., extreme values or sample size)
and therefore assumptions about distribution cannot be accepted. A nonparametric
approach to data analysis should never be viewed as a second choice. Instead, a
nonparametric approach to data analysis should be viewed along a continuum of
acceptable choices, with the best choice based on data characteristics and research
needs.

1.7 Statistical Tests and Graphics Associated with Normal Distribution 25

1.7 Statistical Tests and Graphics Associated
with Normal Distribution

In this lesson, the emphasis has been on a visual display of distribution pat-
terns. The use of density plots, histograms, dot charts, and strip charts are all
certainly useful and they are excellent tools for presenting overall distribution of
selected datasets. A general sense of data distribution is gained from these visual
observations and consequently some degree of judgment is made regarding analysis
of the data from a nonparametric perspective or from a parametric perspective.

Going beyond visual inspection, be sure to always consider the many statistics
directly associated with data distribution:

• Mode
• Median
• Mean (Arithmetic Mean, Geometric Mean, and Harmonic Mean)
• Variance
• Standard Deviation
• Minimum, Maximum, and Range
• Skewness
• Kurtosis

There is at least one R-based function in support of each of these statistics
and there are often multiple functions for each type of analysis, with these many
functions found in different R-based packages.5

There are also a few statistical tests, also supported by R, that provide some
degree of empirical estimate of normal distribution and these include:

• Anderson-Darling Test for Normality
• Kolmogorov-Smirnov Test
• Lilliefors (Kolmogorov-Smirnov) Test for Normality
• Shapiro-Wilk Normality Test

For this discussion, consider two separate datasets: X_rnorm and X_runif. These
two datasets are created in a manner similar to what was seen at the beginning of
this lesson. For each, the dataset will be created using R in an interactive fashion,
the dataset will be presented visually, and then the many statistics associated with
distribution patterns and mentioned immediately above will be presented. The
specialized tests, such as the Anderson-Darling Test for Normality, the Lilliefors
(Kolmogorov-Smirnov) Test for Normality, and the Shapiro-Wilk Normality Test
have some value and explicit detail on how each test is used in R is available

5As open-source software, a comparative advantage of R over proprietary software is that the
user community contributes to development of the software. A limited degree of functionality is
available when R software is first downloaded. The extreme functionality comes from the more
than 5000 packages available to the R community, with most packages having 25, 50, 100, or more
functions. These packages are easily and freely obtained, from host sites throughout the world.

26 1 Nonparametric Statistics for the Biological Sciences

by using the R help(function_name) function (e.g., help(mean), help(median),
help(sd), etc.).6

Some of the R syntax used below calls for the use of functions found in
external R-based packages. When R is first downloaded a large set of base
functions is immediately available. However, there are thousands (perhaps 5000 or
more) external R-based packages that have functions that provide opportunities for
analysis and graphical presentation far beyond what is available when the base R
package is downloaded. Note below how these packages are obtained, how they are
named, and how they are used. As a general comment, it is the availability of these
thousands of R-based packages and functions that makes R a superior environment
for data analysis and graphical presentation.

install.packages("nortest")
library(nortest) # Load the nortest package.
help(package=nortest) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

install.packages("asbio")
library(asbio) # Load the asbio package.
help(package=asbio) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

install.packages("psych")
library(psych) # Load the psych package.
help(package=psych) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

Create a Dataset That Should Ostensibly Show Normal Distribution

X_rnorm <- round(rnorm(5000, mean=100, sd=5))
Create an object called X_rnorm, which consists of 5,000
random subjects, with mean equal to 100 and standard
deviation equal to 5. The object X_rnorm represents a
theoretical set of otherwise unnamed measurements. Note
how the round() function was also used, so that whole
numbers are generated, only.
#
When using the rnorm() function and the runif() function,
be sure to note how the actual values generated will change
with each use.

6Regarding assessment of normality, consider also how the qqnorm(), qqline(), and qqplot()
functions are typically used when investigating distribution patterns. There remains some degree
of inconsistency as to whether the correct usage is either QQ or Q-Q when referencing the term
Quantile-Quantile. Both terms (i.e., QQ or Q-Q) may be found in this text.

1.7 Statistical Tests and Graphics Associated with Normal Distribution 27

General Summary of the Dataset

head(X_rnorm) # First line(s) of data
tail(X_rnorm) # Last line(s) of data
summary(X_rnorm) # Summary
length(X_rnorm) # N

R-Based Functions Specific to Distribution Patterns

asbio::Mode(X_rnorm) # Mode
median(X_rnorm) # Median
mean(X_rnorm) # Arithmetic Mean
asbio::H.mean(X_rnorm) # Harmonic Mean
psych::geometric.mean(X_rnorm) # Geometric Mean
var(X_rnorm) # Variance
sd(X_rnorm) # Standard Deviation
range(X_rnorm) # Range
asbio::skew(X_rnorm) # Skewness
asbio::kurt(X_rnorm) # Kurtosis
nortest::ad.test(X_rnorm) # Anderson-Darling Test
nortest::lillie.test(X_rnorm) # Lilliefors (KS)
shapiro.test(X_rnorm) # Shapiro-Wilk

Visual Presentation of Distribution Pattern

par(ask=TRUE) # Side-by-Side Histogram,
par(mfrow=c(1,3)) # Density Plot, and QQPlot
hist(X_rnorm, # Histogram function
breaks=25, # Adequate bins
col="red", # Color
font=2, # Bold
font.lab=2, # Bold labels
cex.axis=1.5, # Large axis
main="Histogram of X_rnorm", # Title
xlab="X_rnorm Measurement", # Label text
xlim=c(50,150)) # Axis limits

plot(density(X_rnorm), lwd=6, col="red",
font=2, font.lab=2, cex.axis=1.5,
main="Density Plot of X_norm",
xlab="X_rnorm Measurement)",
xlim=c(50,150))

qqnorm(X_rnorm, col="red", font=2,
font.lab=2, cex.axis=1.5,
main="QQPlot of X_rnorm")

qqline(X_rnorm, lwd=3, col="darkblue")

Create a Dataset That Fails to Show Normal Distribution

X_runif <- round(runif(5000, min=85, max=115))
Create an object called X_runif, which consists of 5,000
subjects. The minimum value will be 85 and the maximum
value will be 115. Note how these limits are in general
parity of + and - three standard deviations of the above
example, where mean was 100 and standard deviation was 5

28 1 Nonparametric Statistics for the Biological Sciences

(e.g., 100 - (5 * 3 SDs) = 85 and 100 + (5 * 3 SDs) = 115).
The object X_runif represents a theoretical representation
of measurements, but by no means a normal distribution that
is based on a set mean and a set standard deviation.
Again, the round() function was used, so that whole numbers
are generated, only.
#
When using the rnorm() function and the runif() function,
be sure to note how the actual values generated will change
with each use.

General Summary of the Dataset

head(X_runif) # First line(s) of data
tail(X_runif) # Last line(s) of data
summary(X_runif) # Summary
length(X_runif) # N

R-Based Functions Specific to Distribution Patterns

asbio::Mode(X_runif) # Mode
median(X_runif) # Median
mean(X_runif) # Arithmetic Mean
asbio::H.mean(X_runif) # Harmonic Mean
psych::geometric.mean(X_rnorm) # Geometric Mean
var(X_runif) # Variance
sd(X_runif) # Standard Deviation
range(X_runif) # Range
asbio::skew(X_runif) # Skewness
asbio::kurt(X_runif) # Kurtosis
nortest::ad.test(X_runif) # Anderson-Darling Test
nortest::lillie.test(X_runif) # Lilliefors (KS)
shapiro.test(X_runif) # Shapiro-Wilk

These many statistics and associated functions certainly have value and even-
tually can be used to support decision-making regarding judgment on normal
distribution. Yet, it is important to recall that sample size is important when using
tests such as the Anderson-Darling Test. With a small sample a large deviation from
normality may not be detected. Conversely, with large samples a small deviation
from normality may well result in test-based rejection of normality when the
opposite is the case. As such, visual presentations have a prime role in the human
decision to accept or reject whether a dataset exhibits normal distribution (Fig. 1.5).

Visual Presentation of Distribution Pattern

par(ask=TRUE) # Side-by-Side Histogram,
par(mfrow=c(1,3)) # Density Plot, and QQPlot
hist(X_runif, # Histogram function
breaks=25, # Adequate bins
col="red", # Color
font=2, # Bold
font.lab=2, # Bold labels

1.7 Statistical Tests and Graphics Associated with Normal Distribution 29

60

0

0.
00

85
90

95
10

0
10

5
11

0
11

5

0.
02

0.
04

0.
06

0.
08

10
0

20
0

F
re

qu
en

cy

D
en

si
ty

S
am

pl
e

Q
ua

nt
ile

s30
0

40
0

80
X_rnorm Measurement

Histogram of X_rnorm Density Plot of X_norm QQPlot of X_rnorm

100 120 140 60 −4 −2 0 2 480
X_rnorm Measurement Theoretical Quantiles

100 120 140

Fig. 1.5 Histogram, density plot, and Quantile-Quantile plot: normal distribution

cex.axis=1.5, # Large axis
main="Histogram of X_runif", # Title
xlab="X_runif Measurement", # Label text
xlim=c(50,150)) # Axis limits

plot(density(X_runif), lwd=6, col="red",
font=2, font.lab=2, cex.axis=1.5,
main="Density Plot of X_norm",
xlab="X_runif Measurement)",
xlim=c(50,150))

qqnorm(X_runif, col="red", font=2,
font.lab=2, cex.axis=1.5,
main="QQPlot of X_runif")

qqline(X_runif, lwd=3, col="darkblue")

It is beyond the purpose of this lesson to provide explicit notes on statistics such
as skewness (focusing on the tails of a distribution) and kurtosis (focusing on the
peakedness of a distribution). Many resources could be reviewed for these statistics,
as well as tests such as the Anderson-Darling Test for Normality, the Lilliefors
(Kolmogorov-Smirnov) Test for Normality, and the Shapiro-Wilk Normality Test.
The major focus in this lesson was to review descriptive statistics, such as median
and mean, and to then prepare graphical images of distribution patterns to visually
observe how the data for a specific variable appear when put into some type of
figure.

Ideally, good judgment supported by extensive review of the data will serve as the
basis for judgment on whether data are best used from a nonparametric perspective,
or if the data meet the conditions needed for use from a parametric perspective.

As a final reminder about this introduction, the many R-based functions and
arguments shown in this lesson will be viewed multiple times throughout this set
of lessons. These functions and arguments will be detailed in general narrative as
well as in R-based syntax comments.

30 1 Nonparametric Statistics for the Biological Sciences

1.8 Addendum: Data Distribution and Sampling

The concept of data distribution patterns and the importance of normal distribution
on inferential test selection should not be overlooked. Look again at the reminder
about how nonparametric statistics provide a useful purpose for inferential analyses
when data: (1) do not meet the purported precision of an interval scale, (2) there are
serious concerns about extreme deviation from normal distribution, and (3) there is
considerable difference in the number of subjects for each breakout group.

This addendum focuses on different ways that R can be used to visually present
data distribution patterns. This visualization provides a perspective of the data that
goes beyond review of static numerical statistics. Quite simply, how far can a sample
deviate from normal distribution before there are concerns that normal distribution
has been violated beyond what can be reasonably accepted? What are the best, or
at least most common, tools used to visually represent data distribution? Perhaps
the best way to start discussion on this issue is to graphically demonstrate a large
dataset that exhibits normal distribution and to then compare this large dataset to a
sample from the dataset that is smaller and may, or may not, violate accepted normal
distribution.

For this addendum consider Intelligence Quotient (IQ) scores for 100,000 adult
subjects. Although IQ is a construct more appropriately associated with psychology,
education, and the social sciences (and not biostatistics) it was selected for this
demonstration since most adults have some general awareness of IQ scores, IQ
testing, the meaning of IQ scores, and the impact of IQ scores throughout society.

A series of R-based functions will be used to create a numeric object variable
called IQ (i.e., Intelligence Quotient). In this lesson, the object variable IQ will be
populated with 100,000 subjects. The mean will be 100 and the standard deviation
will be 15. This Mean and Standard Deviation parallels expected norms for IQ
among adult subjects. The object variable IQ, with 100,000 subjects, will then be
subjected to a few R functions to eventually generate a sample consisting of 1000 IQ
scores. Throughout this addendum, the focus will be on visualization and R-based
graphical imagery.

Observe the syntax below to see how the rnorm() function was used to create the
object IQ for this demonstration. As the theoretical dataset for this demonstration
is constructed, the R function set.seed() will be used to encourage some degree of
consistency for data and later outcomes.7

set.seed(10) # Promote consistency
IQ <- rnorm(100000, mean=100, sd=15) # Create the object
is.vector(IQ) # Quality assurance
class(IQ) # Quality assurance

7IQ scores in this demonstration are generated using the rnorm() function. The individual
datapoints in the object variable IQ will likely change each time the rnorm() function is used
to generate a new set of IQ scores, even though the overall dataset maintains Mean = 100 and
SD D15.

1.8 Addendum: Data Distribution and Sampling 31

head(IQ) # Review data
tail(IQ) # Review data
length(IQ) # Descriptive statistics
summary(IQ) # Descriptive statistics

> set.seed(10) # Promote consistency
> IQ <- rnorm(100000, mean=100, sd=15) # Create the object
> is.vector(IQ) # Quality assurance
[1] TRUE
> class(IQ) # Quality assurance
[1] "numeric"
> head(IQ) # Review data
[1] 100.28119 97.23621 79.43004 91.01248 104.41818 105.84691
> tail(IQ) # Review data
[1] 86.33463 88.31597 96.82652 83.29804 75.13473 122.73481
> length(IQ) # Descriptive statistics
[1] 100000
> summary(IQ) # Descriptive statistics

Min. 1st Qu. Median Mean 3rd Qu. Max.
36.05 89.76 99.94 99.91 110.00 167.00

Note above how IQ scores show in decimal format. However, IQ scores are
expressed as whole numbers, so use the round() function to accommodate the values
in this otherwise theoretical dataset.

IQ <- round(IQ) # Adjust dataset
is.vector(IQ) # Quality assurance
class(IQ) # Quality assurance
head(IQ) # Review data
tail(IQ) # Review data
length(IQ) # Descriptive statistics
summary(IQ) # Descriptive statistics

> IQ <- round(IQ) # Adjust dataset
> is.vector(IQ) # Quality assurance
[1] TRUE
> class(IQ) # Quality assurance
[1] "numeric"
> head(IQ) # Review data
[1] 100 97 79 91 104 106
> tail(IQ) # Review data
[1] 86 88 97 83 75 123
> length(IQ) # Descriptive statistics
[1] 100000
> summary(IQ) # Descriptive statistics

Min. 1st Qu. Median Mean 3rd Qu. Max.
36.00 90.00 100.00 99.91 110.00 167.00

Note: Remember that R is case sensitive (i.e., iq, Iq, iQ, etc., are not the same as
uppercase IQ).

Using no arguments or embellishments, prepare a simple histogram of the
vector IQ.

32 1 Nonparametric Statistics for the Biological Sciences

40

0

F
re

qu
en

cy
50

00
10

00
0

15
00

0
20

00
0

25
00

0

60 80

Histogram of IQ

100
IQ

120 140 160

Fig. 1.6 Throwaway histogram

par(ask=TRUE); hist(IQ) # ; allows all syntax on one line.

From this initial presentation, prepare a slightly more detailed histogram of
object variable IQ and then alter the number of intervals (i.e., often called bins
with other software programs) included in the histogram using the nclass argu-
ment. Consolidate the different histograms into one common figure by using the
par(mfrow=c(2,3)) function and argument.8 This action is used to create a graphic
with two rows, three columns, and a graphical image placed in each cell (Fig. 1.6).

Be sure to notice how results in the histogram appear as the number of
intervals increases, by using the nclass argument. To highlight and contrast data
distribution and the number of histogram intervals (i.e., bars), use multiple colors
for histogram intervals. The use of multiple colors for histogram intervals is for
demonstration purposes only. Usually this would be an undesirable practice in any
formal publication or group presentation.

par(mfrow=c(2,3)) # 2 by 3 (Row by Column)
par(ask=TRUE)
##
hist(IQ, col="red", font=2, cex.lab=1.25,
main="IQ Scores - Default nclass")
font=2 Bold print
cex.lab=125 Large label(s)

##
par(ask=TRUE)
hist(IQ, col=c("red", "green"),
font=2, cex.lab=1.25, nclass=005,
main="IQ Scores - nclass = 005")

8There are six cells in this figure; 2 rows * 3 columns = 6 cells. The individual cells are populated
from left to right.

1.8 Addendum: Data Distribution and Sampling 33

##
par(ask=TRUE)
hist(IQ, col=c("red", "green", "blue"),
font=2, cex.lab=1.25, nclass=010,
main="IQ Scores - nclass = 010")

##
par(ask=TRUE)
hist(IQ, col=c("red", "green", "blue",
"magenta"),
font=2, cex.lab=1.25, nclass=050,
main="IQ Scores - nclass = 050")

##
par(ask=TRUE)
hist(IQ, col=c("red", "green", "blue",
"magenta", "black"),
font=2, cex.lab=1.25, nclass=100,
main="IQ Scores - nclass = 100")

##
par(ask=TRUE)
hist(IQ, col=c("red", "green", "blue",
"magenta", "black", "violet"),
font=2, cex.lab=1.25, nclass=125,
main="IQ Scores - nclass = 125")

##

Going back to a simple histogram, add a title over the top of the histogram and
a label under the X axis. Embellish the axis with bold font and larger font, to make
it easier to read. Use the rug() function to add a rug below the X axis to provide a
sense of N for each place along the continuum of the histogram (Fig. 1.7).

par(ask=TRUE)
hist(IQ, nclass=150, col=c("red"),
main="Histogram of IQ Scores: N = 100,000,

40 50

40 60 80 100 120 140 160

100 150

IQ Scores - Default nclass IQ Scores - nclass = 005

IQ Scores - nclass = 050 IQ Scores - nclass = 100

0 0
10

00
0

30
00

0

0 0
50

0
15

00
25

00

10
00

30
00

50
00

50
00

15
00

0
25

00
0

60
IQ IQ

F
re

qu
en

cy

F
re

qu
en

cy

F
re

qu
en

cy

F
re

qu
en

cy

80 100 120 140 160

40 60
IQ IQ

40 60 80 100 120 140 160

IQ Scores - nclass = 125

0
50

0
15

00
25

00

F
re

qu
en

cy

IQ

40 60 80 100 120 140 160

IQ Scores - nclass = 010

0
50

00
15

00
0

25
00

0

F
re

qu
en

cy

IQ

80 100 120 140 160

Fig. 1.7 Throwaway histograms showing multiple nclass declarations

34 1 Nonparametric Statistics for the Biological Sciences

40

Histogram of IQ Scores: N = 100,000,
Mean = 100, and SD = 15

0

F
re

qu
en

cy

50
0

10
00

15
00

25
00

25
00

Object Variable IQ - Rug Below X Axis
60 80 100 120 140 160

Fig. 1.8 Histogram showing a rug along the X axis

Mean = 100, and SD = 15",
xlab="Object Variable IQ - Rug Below X Axis",
cex.lab=1.25, font=2)

rug(IQ, col=c("darkblue"), lwd=3) # Moderate line

Show a density curve instead of a histogram for object variable IQ. Use the lwd
argument to make the density curve show as a large, dark line (Fig. 1.8).

par(ask=TRUE)
plot(density(IQ), col=c("red"),
main="Density Plot of IQ Scores: N = 100,000,
Mean = 100, and SD = 15",
xlab="Object Variable IQ", cex.lab=1.25, font=2,
lwd=6) # Heavy dark line

As useful as these initial views may be, use the descr::histkdnc() function to gain
yet another view of how the data in IQ are distributed. Observe how there is multiple
visualization of a density curve, histogram, and normal curve in the same figure.
A rug (i.e., a graphic device added to a plot and composed of multiple vertical lines)
will also be displayed under the histogram, again, to give a sense of the N for each
datapoint along the histogram (Fig. 1.9).

install.packages("descr")
library(descr) # Load the descr package.
help(package=descr) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

savelwd <- par(lwd=6) # Heavy line
savefont <- par(font=2) # Bold
savecex.lab <- par(cex.lab=1.25) # Label

1.8 Addendum: Data Distribution and Sampling 35

40

0.
00

0
0.

00
5

0.
01

0

D
en

si
ty

0.
01

5
0.

02
0

0.
02

5

Object Variable IQ
60 80

Density Plot of IQ Scores: N = 100,000,
Mean = 100, and SD = 15

100 120 140 160

Fig. 1.9 Density plot

savecex.axis <- par(cex.axis=1.25) # Axis
par(ask=TRUE)
descr::histkdnc(IQ,
main="Density Curve, Histogram, and Normal Curve of IQ
Scores: N = 100,000, Mean = 100, and SD = 15",
xlab="Object Variable IQ - Rug Below X Axis",
col=grey(0.95)) # Allow color contrast with lines

rug(IQ, col=c("deeppink"), lwd=3)
The rug is below the histogram.

par(savelwd); par(savefont); par(savecex.lab);
par(savecex.axis) # Use ; to move to next line

To gain another view of distribution patterns, prepare a boxplot (i.e., box-
and-whiskers) of IQ and look for the small circles (e.g., bubbles) beyond the
whiskers, which show the presence of outliers. Next, embellish the boxplot to
improve presentation, whether for later publication or group presentation. As an
additional way to view data distribution, prepare a violin plot of the object variable
IQ (Figs. 1.10 and 1.11).

install.packages("vioplot")
library(vioplot) # Load the vioplot package.
help(package=vioplot) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

par(mfrow=c(1,3)) # 1 by 3 (Row by Column)
par(ask=TRUE)
###
boxplot(IQ, ylim=c(0,200))
###
boxplot(IQ,
main="Boxplot of IQ Scores: N = 100,000,
Mean = 100, and SD = 15",

36 1 Nonparametric Statistics for the Biological Sciences

40

0.
00

0
0.

01
0

D
en

si
ty

0.
02

0

Object Variable IQ - Rug Below X Axis
60

Density Curve, Histogram, and Normal Curve of IQ
Scores: N = 100,000, Mean = 100, and SD = 15

80 100 120 140 160

Fig. 1.10 Multiple graphing curves in one figure

0
50

10
0

15
0

20
0

0
50

10
0

15
0

20
0

0
50

10
0

15
0

20
0

Boxplot of IQ Scores: N = 100,000,
Mean = 100, and SD = 15

Violin Plot of IQ Scores: N = 100,000,
Mean = 100, and SD = 15

Object Variable IQObject Variable IQ

Fig. 1.11 Boxplot and violin plot in one figure

xlab="Object Variable IQ", col=c("red"),
font.lab=2, font.axis=2, font.main=2,
cex.lab=1.15, cex.axis=1.15, lwd=2,
ylim=c(0,200)) # Scale for Y axis
Generate large labels with bold fonts that
are slightly enhanced

###
vioplot::vioplot(IQ, col="red", horizontal=FALSE,
names=c("Object Variable IQ"), lwd=3, lty=6,
ylim=c(0,200))
Double Dash (lty=6) and Moderate (lwd=3) line
title("Violin Plot of IQ Scores: N = 100,000,
Mean = 100, and SD = 15")

###

1.8 Addendum: Data Distribution and Sampling 37

Although these many graphical figures are useful, a fairly complex (but easily
prepared) figure may best show distribution of IQ scores and how the data follow
normal distribution in this initial theoretical demonstration.

Prepare an object variable representing the Mean of IQ and another object
variable representing the Standard Deviation of IQ.

IQMean <- mean(IQ)
IQMean

IQStdv <- sd(IQ)
IQStdv

> IQMean <- mean(IQ)
> IQMean
[1] 99.91027
>
> IQStdv <- sd(IQ)
> IQStdv
[1] 15.05846

Next, use these two new objects, along with the syntax that follows, to place a
normal curve over the histogram of object variable IQ.

par(ask=TRUE)
hist(IQ,
main="Histogram and Normal Curve Overlay of IQ Scores:
N = 100,000, Mean = 100, and SD = 15",
xlab="Object Variable IQ", col=c("red"), breaks=100,
prob=TRUE, lwd=4, lty=6, cex.lab=1.25, font=2,
ylim=c(0, 0.045)) # Define Y axis

curve(dnorm(x, mean=IQMean, sd=IQStdv), col="darkblue",
lwd=6, lty=3, add=TRUE) # Heavy dotted line to the curve

Add a descriptive legend where there is open white space.
savefamily <- par(family="mono") # Courier font
savefont <- par(font=2) # Bold text
legend("topleft",
legend = c(
"==",
"The normal curve placed over the histogram",
"has the following properties: ",
" N 100,000 ",
" Mean 100 ",
" Standard Deviation (SD) .. 15 ",
"=="),
ncol=1, locator(1), xjust=1,
text.col="darkblue",
cex=1.05, inset=0.01, bty="n")
par(savefamily)
par(savefont)

The normal curve overlay certainly adds to an understanding of how the data
are distributed, especially when data deviate from normal distribution. However,

38 1 Nonparametric Statistics for the Biological Sciences

40 60

Histogram and Normal Curve Overlay of IQ Scores:
N = 100,000, Mean = 100, and SD = 15

0.
00

0.
01

0.
02

0.
03

0.
04

80 100
Object Variable IQ

The normal curve placed over the histogram
has the following properties:
N 100,000
Mean 100
Standard Deviation (SD) .. 15

D
en

si
ty

120 140 160

Fig. 1.12 Histogram and normal curve overlay

some type of marker for the standard deviations would also contribute to a better
understanding of the data. Follow along with the syntax below to see how more
detail can be added to further reinforce how the data for IQ exhibit normal
distribution. Notice how additional detail was added using legends (Fig. 1.12).

par(ask=TRUE)
hist(IQ,
main="Histogram and Normal Curve Overlay of IQ Scores:
N = 100,000, Mean = 100, and SD = 15",
xlab="Object Variable IQ", col=c("red"), breaks=100,
prob=TRUE, lwd=4, lty=6, cex.lab=1.25, font=2,
ylim=c(0, 0.045)) # Define Y axis

curve(dnorm(x, mean=IQ_Mean, sd=IQ_Stdv),
col="darkgreen", lwd=4, lty=6, add=TRUE)

abline(v=100, lwd=5) # Value(s) (v) for vertical line
abline(v=c(055,070,085,115,130,145), # Values - and + 3 SDs
lwd=2, lty=3)
Add a descriptive legend where there is open white space.
savefamily <- par(family="mono") # Courier font
savefont <- par(font=2) # Bold text
legend("topright",
legend = c(
"N 100,000 ",
"Mean ... 100 ",
"SD 15 ",
" ",
"Mean +1 SD = 115 ",
"Mean +2 SD = 130 ",
"Mean +3 SD = 145 ",
"Mean -1 SD = 085 ",
"Mean -2 SD = 070 ",
"Mean -3 SD = 055 "),
ncol=1, locator(1), xjust=1,
text.col="darkblue",

1.8 Addendum: Data Distribution and Sampling 39

cex=1.05, inset=0.01, bty="n")
par(savefamily)
par(savefont)
##
savefamily <- par(family="mono") # Courier font
savefont <- par(font=2) # Bold text
legend("topleft",
legend = c(
"Solid vertical line ... Mean",
"Dotted vertical line .. SD",
"Dashed line Curve"),
ncol=1, locator(1), xjust=1,
text.col="darkblue",
cex=1.05, inset=0.005, bty="n")
par(savefamily)
par(savefont)

As another visual check, use the qqnorm() function and the qqline() function
to examine distribution of IQ data and any possible deviation away from normal
distribution. Ideally, if the data exhibit normal distribution, the datapoints in a
Quantile-Quantile plot should follow along or at least follow very closely to the
line which passes through the quartiles (Fig. 1.13).

qqnorm(IQ, main="QQ Plot of IQ",
ylim=c(40,160), font=2, cex.lab=1.15,
cex.axis=1.25, lwd=6, col="cyan")

qqline(IQ, lwd=4, col=c("darkblue"))

The qqnorm() function and qqline() function in this lesson clearly demonstrate
that IQ follows along with normal distribution, even though there are a few
noticeable outliers. Outliers are important, and an experienced researcher will check

40

0.
00

0.
01

0.
02

0.
03

0.
04

60 80 100
Object Variable IQ

Histogram and Normal Curve Overlay of IQ Scores:
N = 100,000, Mean = 100, and SD =15

D
en

si
ty

Solid vertical line ... Mean
Dotted vertical line .. SD
Dashed line Curve

N100,000
Mean ... 100
SD 15

Mean +1 SD = 115
Mean +2 SD = 130
Mean +3 SD = 145
Mean -1 SD = 085
Mean -2 SD = 070
Mean -3 SD = 055

120 140 160

Fig. 1.13 Embellished histogram and normal curve overlay

40 1 Nonparametric Statistics for the Biological Sciences

−4

40
60

80
10

0
12

0
14

0
16

0

−2 0
Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s
QQ Plot of IQ

2 4

Fig. 1.14 Quantile-Quantile (i.e., QQ or Q-Q) plot

on these values to see if they represent an error or if they represent a true, but
extreme, value. However, for this lesson the outliers are so minimal in number that
they cause no great concern and are reasonably expected in a population of 100,000
subjects (Fig. 1.14).

Up to this point, the presentation in this addendum has been for IQ, an object
created using the rnorm() function with 100,000 datapoints, and with Mean = 100
and SD = 15. The preliminary figures provide visual evidence that IQ exhibits
normal distribution.

As desirable as it may be to have a normally distributed object variable consisting
of 100,000 datapoints, imagine the command-and-control actions that would be
needed to obtain these data. Then, imagine the budget needed to obtain IQ
scores from 100,000 adult subjects. It is largely unthinkable to suggest that a
proactive study of this magnitude would ever be proposed and funded. Time-on-
task, coordination of activities, Institutional Review Board (IRB) permissions, and
project budgets are only a few of the many issues that contribute to the need for
sampling and the avoidance of queries against entire populations.

• Given concern about the many management actions needed to obtain data from
100,000 subjects, consider a more manageable sample of 1000 subjects.

• Would results (i.e., adherence to normal distribution, expected Mean and SD,
etc.) appear the same if a sample of 1000 subjects were used instead of the far
larger population of 100,000 subjects?

There are many ways to prepare a sample of 1000 subjects from the overall set
of 100,000 IQ scores. Conceivably, it is possible to select the first 1000 datapoints
and to discard the remaining 99,000. Although this action might be convenient, the
aim should be on random selection and not convenience.

In an effort to eventually select a representative sample of 1000 subjects for
the 100,000 subjects found in the object variable IQ, assume that of the 100,000
IQ datapoints, half (i.e., 50,000) are even numbers and half (i.e., 50,000) are odd
numbers. Test this assumption using the gtools::odd() function.

1.8 Addendum: Data Distribution and Sampling 41

install.packages("gtools")
library(gtools) # Load the gtools package.
help(package=gtools) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

IQoddeven <- gtools::odd(IQ)
Apply the gtools::odd() function against the object
variable IQ and direct the output to the new object
variable called IQoddeven. It is expected that the
result will consist of a series of TRUE or FALSE
listings, where TRUE represents a value that is odd.

head(IQoddeven) # Quality assurance
tail(IQoddeven) # Quality assurance

summary(IQoddeven) # Determine if odd-even is 50/50

> IQoddeven <- gtools::odd(IQ)
> # Apply the gtools::odd() function against the object
> # variable IQ and direct the output to the new object
> # variable called IQoddeven. It is expected that the
> # result will consist of a series of TRUE or FALSE
> # listings, where TRUE represents a value that is odd.
>
> head(IQoddeven) # Quality assurance
[1] FALSE TRUE TRUE TRUE FALSE FALSE
> tail(IQoddeven) # Quality assurance
[1] FALSE FALSE TRUE TRUE TRUE TRUE
>
> summary(IQoddeven) # Determine if odd-even is 50/50

Mode FALSE TRUE NA’s
logical 49713 50287 0

Reviewing output from the summary() function, it is evident that approximately
half of all IQ scores are odd and half are even. Merely to demonstrate Boolean
selection and build on needed skills, review the syntax below to see how IQ scores
are selected and put into a new object variable, in an effort to eventually achieve a
sample of 1000 IQ scores that represent the original population. From among the
many possibilities on how R can be used to obtain even numbers only, in this lesson
note how the subset() function was wrapped around use of the trunc() function. Note
also how two equal signs (i.e., ==) are used to indicate equivalency.

IQEven <- subset(IQ, IQ/2==trunc(IQ/2))
is.vector(IQEven) # Quality assurance
class(IQEven) # Quality assurance
head(IQEven) # Review data
tail(IQEven) # Review data
length(IQEven) # Descriptive statistics
summary(IQEven) # Descriptive statistics

42 1 Nonparametric Statistics for the Biological Sciences

> IQEven <- subset(IQ, IQ/2==trunc(IQ/2))
> is.vector(IQEven) # Quality assurance
[1] TRUE
> class(IQEven) # Quality assurance
[1] "numeric"
> head(IQEven) # Review data
[1] 100 104 106 82 76 96
> tail(IQEven) # Review data
[1] 120 108 106 102 86 88
> length(IQEven) # Descriptive statistics
[1] 49713
> summary(IQEven) # Descriptive statistics

Min. 1st Qu. Median Mean 3rd Qu. Max.
36.00 90.00 100.00 99.88 110.00 162.00

Already there is a general sense that the sample (IQEven) consists of approxi-
mately 50,000 datapoints and that the data in IQEven are all even numbers. Perhaps
more importantly for the purpose of this addendum, it is necessary to question
whether the data in IQEven follow the normal distribution patterns exhibited in the
original vector, IQ. As a data check, prepare a simple histogram of IQEven to gain
an overall sense of the data beyond the descriptive information gained from the R
functions immediately above. To supplement this visual check, use the qqnorm()
function and qqline() function to examine distribution of IQEven data and any
possible deviation from normal distribution.

par(mfrow=c(1,2)) # 1 by 2 (Row by Column)
par(ask=TRUE)
###
hist(IQEven, col="red", font=2, cex.lab=1.25)
###
qqnorm(IQEven, main="QQ Plot of IQEven",
ylim=c(40,160), font=2, cex.lab=1.15,
cex.axis=1.25, lwd=6, col="cyan")

qqline(IQEven, lwd=4, col=c("darkblue"))
###

Both the histogram and the qqnorm() function provide some degree of assurance
that the distribution of data in IQEven approximates normal distribution, which was
the case previously for the distribution of data in IQ. It is appropriate to continue
with further sampling in an effort to obtain a sample of 1000 representative subjects.

As another adjustment in preparation of the final sample of representative IQ
scores, use the Boolean selection processes supported in R to obtain IQEven scores
that range from 55 to 145 to keep within (� or C) three standard deviations in view
of Mean D 100 and SD D 15. Use the length() function and summary() function to
confirm length, minimum, and maximum values. Then, apply the subset() function
to trim extreme values (e.g., the few values below 55 and greater than 145) and then
look again at output from the length() function and summary function to see how
many datapoints were removed from IQEven (Fig. 1.15).

1.8 Addendum: Data Distribution and Sampling 43

40

0
20

00

F
re

qu
en

cy

IQEven

40
00

60
00

80
00

12
00

0

60 80 100

Histogram of IQEven

120 140 160 −4

40
60

S
am

pl
e

Q
ua

nt
ile

s

Theoretical Quantiles

80
10

0
12

0
14

0
16

0

−2 0 2

QQ Plot of IQEven

4

Fig. 1.15 Histogram and Quantile-Quantile plot

length(IQEven)
summary(IQEven)

IQEven <- subset(IQEven, (IQEven >= 55) & (IQEven <= 145))
is.vector(IQEven) # Quality assurance
class(IQEven) # Quality assurance
head(IQEven) # Review data
tail(IQEven) # Review data
length(IQEven) # Descriptive statistics
summary(IQEven) # Descriptive statistics

> length(IQEven)
[1] 49713
> summary(IQEven)

Min. 1st Qu. Median Mean 3rd Qu. Max.
36.00 90.00 100.00 99.88 110.00 162.00

>
> IQEven <- subset(IQEven, (IQEven >= 55) & (IQEven <= 145))
> is.vector(IQEven) # Quality assurance
[1] TRUE
> class(IQEven) # Quality assurance
[1] "numeric"
> head(IQEven) # Review data
[1] 100 104 106 82 76 96
> tail(IQEven) # Review data
[1] 120 108 106 102 86 88
> length(IQEven) # Descriptive statistics
[1] 49565
> summary(IQEven) # Descriptive statistics

Min. 1st Qu. Median Mean 3rd Qu. Max.
56.00 90.00 100.00 99.87 110.00 144.00

44 1 Nonparametric Statistics for the Biological Sciences

With this action and as confirmed using the length() function and summary()
function, the few values less than 55 and greater than 145 have been removed from
the object IQEven. Most importantly, notice how Median = 100 was the case before
and after the extreme values were trimmed.

Given the desire to have a more manageable sample of adult subjects in this
presentation on data distribution and sampling, select a sample of 1000 subjects
using the sample() function. Use the replace=TRUE argument. Place the output of
the sampling process into a new object, called IQEven1000.

length(IQEven) # Confirm length (N) prior to sampling
summary(IQEven) # Confirm mean and median

IQEven1000 <- sample(IQEven, size=1000, replace=TRUE)
is.vector(IQEven1000) # Quality assurance
class(IQEven1000) # Quality assurance
head(IQEven1000) # Review data
tail(IQEven1000) # Review data
length(IQEven1000) # Descriptive statistics
summary(IQEven1000) # Descriptive statistics

> length(IQEven) # Confirm length (N) prior to sampling
[1] 49565
> summary(IQEven) # Confirm mean and median

Min. 1st Qu. Median Mean 3rd Qu. Max.
56.00 90.00 100.00 99.87 110.00 144.00

>
> IQEven1000 <- sample(IQEven, size=1000, replace=TRUE)
> is.vector(IQEven1000) # Quality assurance
[1] TRUE
> class(IQEven1000) # Quality assurance
[1] "numeric"
> head(IQEven1000) # Review data
[1] 86 110 76 94 102 104
> tail(IQEven1000) # Review data
[1] 88 110 102 104 88 92
> length(IQEven1000) # Descriptive statistics
[1] 1000
> summary(IQEven1000) # Descriptive statistics

Min. 1st Qu. Median Mean 3rd Qu. Max.
56.0 90.0 100.0 100.2 110.0 144.0

As an additional data check, prepare a simple histogram of IQEven1000, which
now consists of only 1000 subjects from a dataset that originally represented a
population of 100,000 subjects. Then, place the data for IQEven1000 in another
histogram, but now include a density curve and normal curve overlay that show in
more detail data distribution for the sample IQEven1000.

1.8 Addendum: Data Distribution and Sampling 45

par(mfrow=c(1,2)) # 1 by 2 (Row by Column)
par(ask=TRUE)
###
hist(IQEven1000, col="red", font=2, cex.lab=1.25,
xlim=c(50,150), nclass=65,
main="IQEven Scores Between 55 and 145, Inclusive")

###
savelwd <- par(lwd=6) # Heavy line
savefont <- par(font=2) # Bold
savecex.lab <- par(cex.lab=1.25) # Label
savecex.axis <- par(cex.axis=1.25) # Axis
par(ask=TRUE)
descr::histkdnc(IQEven1000,
main="Density Curve (Red), Histogram (Grey), and Normal
Curve (Blue) of IQEven1000 Scores: N = 1,000,
Mean = 100, and SD = 15",
xlab="IQEven1000",
col=grey(0.95)) # Allow contrast with lines

par(savelwd); par(savefont); par(savecex.lab);
par(savecex.axis) # Use ; to move to next line
###

As these histograms seem to verify, there is now a more manageable object
variable (i.e., IQEven1000) of IQ scores, with length=1000, mean=100, sd=15,
min=055, and max=145 (Fig. 1.16).

As a further demonstration of data distribution, use the previously demonstrated
syntax to overlay a normal curve over IQEven1000 data and highlight the standard
deviations and mean.

60
IQEven 1000

F
re

qu
en

cy

IQEven 1000

D
en

si
ty

60

0.
00

0
0.

01
0

0.
02

0

80 100 120 140

0
10

20
30

40
50

80

IQEven Scores Between 55 and 145, Inclusive
Density Curve (Red), Histogram (Grey), and Normal

Curve (Blue) of IQEven1000 Scores: N = 1,000,
Mean = 100, and SD = 15

100 120 140

Fig. 1.16 Detailed histograms

46 1 Nonparametric Statistics for the Biological Sciences

IQEven1000Mean <- mean(IQEven1000)
IQEven1000Mean

IQEven1000Stdv <- sd(IQEven1000)
IQEven1000Stdv

> IQEven1000Mean <- mean(IQEven1000)
> IQEven1000Mean
[1] 100.212
>
> IQEven1000Stdv <- sd(IQEven1000)
> IQEven1000Stdv
[1] 14.98972

par(ask=TRUE)
hist(IQEven1000,
main="Histogram and Normal Curve Overlay of IQ Scores
(IQEven1000): N = 1,000, Mean = 100, and SD = 15",
xlab="Object Variable IQEven1000", col=c("red"),
breaks=50, prob=TRUE, xlim=c(45,155), ylim=c(0,0.035),

Adjust xlim and ylim as needed, to present a full picture
of data distribution, including all parts of the
histogram.
lwd=4, lty=6, cex.lab=1.25, font=2)

curve(dnorm(x, mean=IQEven1000Mean, sd=IQEven1000Stdv),
col="darkgreen", lwd=4, lty=6, add=TRUE)

abline(v=100, lwd=5) # Value(s) (v) for vertical line
abline(v=c(055,070,085,115,130,145), # Values - and + 3 SDs
lwd=2, lty=3) # SD
Add a descriptive legend where there is open white space.
As shown below, use spaces to fine-tune placement when
using a Courier fixed-font presentation.
savefamily <- par(family="mono") # Courier font
savefont <- par(font=2) # Bold text
legend("topright",
legend = c(
"N 1,000 ",
"Mean ... 100 ",
"SD 15 ",
" ",
"Mean +1 SD = 115 ",
"Mean +2 SD = 130 ",
"Mean +3 SD = 145 ",
"Mean -1 SD = 085 ",
"Mean -2 SD = 070 ",
"Mean -3 SD = 055 "),
ncol=1, locator(1), xjust=1,
text.col="darkblue",

1.8 Addendum: Data Distribution and Sampling 47

cex=1.05, inset=0.01, bty="n")
par(savefamily)
par(savefont)
##
savefamily <- par(family="mono") # Courier font
savefont <- par(font=2) # Bold text
legend("topleft",
legend = c(
"Solid vertical line ... Mean",
"Dotted vertical line .. SD",
"Dashed line Curve"),
ncol=1, locator(1), xjust=1,
text.col="darkblue",
cex=1.05, inset=0.005, bty="n")
par(savefamily)
par(savefont)

As another visual check, use the qqnorm() function and qqline() function to
examine distribution of IQEven1000 data and any possible deviation away from
normal distribution (Fig. 1.17).

qqnorm(IQEven1000, main="QQ Plot of IQEven1000",
ylim=c(40,160), font=2, cex.lab=1.15,
cex.axis=1.25, lwd=6, col="cyan")

qqline(IQEven, lwd=4, col=c("darkblue"))

0.
00

0
0.

01
0

0.
02

0
0.

03
0

60 80 100

Object Variable IQEven1000

Histogram and Normal Curve Overlay of IQ Scores
(IQEven1000): N = 1,000, Mean = 100, and SD =15

D
en

si
ty

Solid vertical line ... Mean
Dotted vertical line .. SD
Dashed line Curve

N 1,000
Mean ... 100
SD 15

Mean +1 SD = 115
Mean +2 SD = 130
Mean +3 SD = 145
Mean -1 SD = 085
Mean -2 SD = 070
Mean -3 SD = 055

120 140

Fig. 1.17 Embellished histogram with multiple legends

48 1 Nonparametric Statistics for the Biological Sciences

−3

40
60

80
10

0
12

0
14

0
16

0

−2 −1 0 1
Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s
QQ Plot of IQEven1000

2 3

Fig. 1.18 Quantile-Quantile plot with noise showing in the tails

Note especially how there may be some noise at the two tails of the QQ plot.9

It is reasonable to at least question whether data distribution is as ideal as was seen
in the QQ plot for the original dataset, IQ, before sampling occurred (Fig. 1.18).

Using these many tools, it is now possible to visually examine and then make
some degree of informed judgment on whether the values in the object variable
of interest (IQEven1000) follow normal distribution. If normal distribution is not
evident, then it is necessary to decide whether the deviation away from normal
distribution is so great that a nonparametric inferential test should be considered
as an alternate approach over use of a more parametric approach.

A final graphic will help guide decision-making on the visual presentation of data
distribution patterns for: IQ, IQEven, and IQEven1000. The function and argument
par(mfrow=c(1,3)) is used to create a graphic with one row and three columns with
a graphical image placed in each cell.

par(mfrow=c(1,3)) # 1 row by 3 column format
par(ask=TRUE)
##
savelwd <- par(lwd=6) # Heavy line
savefont <- par(font=2) # Bold font
savecex.lab <- par(cex.lab=1.25) # Label size
savefont.lab <- par(font.lab=2) # Label bold
savecex.axis <- par(cex.axis=1.25) # Axis size
savefont.axis <- par(font.axis=2) # Axis font
par(ask=TRUE)
descr::histkdnc(IQ,
main="Density Curve (Red), Histogram (Grey), and Normal

9The term noise refers to the observation that the small circles used to indicate individual datapoints
do not follow along the otherwise straight line of the Quantile-Quantile plot. A few deviations
away from the straight line are expected. However, when there are too many deviations it is best to
question if the data display normal distribution.

1.8 Addendum: Data Distribution and Sampling 49

Curve (Blue) of IQ Scores: N = 100,000,
Mean = 100, and SD = 15",
xlab="Object Variable IQ",
xlim=c(40,160), ylim=c(0,0.03),
col=grey(0.95)) # Allow contrast with lines

par(savelwd); par(savefont); par(savecex.lab);
par(savefont.lab); par(savecex.axis); par(savefont.axis)
Use ; to move to next line
##
savelwd <- par(lwd=6) # Heavy line
savefont <- par(font=2) # Bold font
savecex.lab <- par(cex.lab=1.25) # Label size
savefont.lab <- par(font.lab=2) # Label bold
savecex.axis <- par(cex.axis=1.25) # Axis size
savefont.axis <- par(font.axis=2) # Axis font
par(ask=TRUE)
descr::histkdnc(IQEven,
main="Density Curve (Red), Histogram (Grey), and Normal
Curve (Blue) of IQEven Scores: N ~ 50,000,
Mean = 100, and SD = 15",
xlab="Object Variable IQEven",
xlim=c(40,160), ylim=c(0,0.03),
col=grey(0.95)) # Allow contrast with lines

par(savelwd); par(savefont); par(savecex.lab);
par(savefont.lab); par(savecex.axis); par(savefont.axis)
Use ; to move to next line
##
savelwd <- par(lwd=6) # Heavy line
savefont <- par(font=2) # Bold font
savecex.lab <- par(cex.lab=1.25) # Label size
savefont.lab <- par(font.lab=2) # Label bold
savecex.axis <- par(cex.axis=1.25) # Axis.size
savefont.axis <- par(font.axis=2) # Axis font
par(ask=TRUE)
descr::histkdnc(IQEven1000,
main="Density Curve (Red), Histogram (Grey), and Normal
Curve (Blue) of IQEven1000 Scores: N = 1,000,
Mean = 100, and SD = 15",
xlab="Object Variable IQEven1000",
xlim=c(40,160), ylim=c(0,0.03),
col=grey(0.95)) # Allow contrast with lines

par(savelwd); par(savefont); par(savecex.lab);
par(savefont.lab); par(savecex.axis); par(savefont.axis)
Use ; to move to next line
##

These images, alone, should not be the only guide to determine if a collection of
data follows normal distribution. However, graphics are important and they certainly
serve as a first consideration to examine distribution patterns. As the lessons in this
text progress, other options will be demonstrated and explained. However, never
discount the value of graphics and the capability of R to produce graphics that rival
all other statistical analysis software—and surpass most (Fig. 1.19).

50 1 Nonparametric Statistics for the Biological Sciences

Object Variable IQ

D
en

si
ty

6040

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

80 100 120 140 160

Density Curve (Red), Histogram (Grey), and Normal
Curve (Blue) of IQ Scores: N = 100,000,

Mean = 100, and SD = 15

Object Variable IQEven

D
en

si
ty

6040

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

80 100 120 140 160

Density Curve (Red), Histogram (Grey), and Normal
Curve (Blue) of IQEven Scores: N ~ 50,000,

Mean = 100, and SD = 15

Object Variable IQEven1000

D
en

si
ty

6040

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

80 100 120 140 160

Density Curve (Red), Histogram (Grey), and Normal
Curve (Blue) of IQEven1000 Scores: N = 1,000,

Mean = 100, and SD = 15

Fig. 1.19 Multiple embellished histograms

1.9 Prepare to Exit, Save, and Later Retrieve This R Session

getwd() # Identify the current working directory.
ls() # List all objects in the working

directory.
ls.str() # List all objects, with finite detail.
list.files() # List files at the PC directory.

save.image("R_Lesson_Nonparametric_Introduction.rdata")

getwd() # Identify the current working directory.
ls() # List all objects in the working

directory.
ls.str() # List all objects, with finite detail.
list.files() # List files at the PC directory.

alarm() # Alarm, notice of upcoming action.
q() # Quit this session.

Prepare for Save workspace image? query.

Use the R Graphical User Interface (GUI) to load the saved rdata file: File ->
Load Workspace.10 Otherwise, use the load() function, keying the full pathname, to
load the .rdata file and retrieve the session.

Recall, however, that it may be just as useful to simply use the .R script file
(typically saved is a .txt ASCII-type file) and recreate the analyses and graphics,
provided the data files remain available.

10The use of R syntax is stressed in this text. However, this is one case where it may be best to use
the R menuing selections (e.g., File - Edit - View - Misc - Packages - Windows - Help), instead of
syntax, to ensure that all session activities are placed in the desired location.

Chapter 2
Sign Test

Abstract The Sign Test is typically used to examine differences between two
sets of data at the broadest level of comparison. As this lesson is structured, the
nonparametric Sign Test is used to examine any possible difference between pretest
and posttest measures but with the caution that the Sign Test is by no means as
robust as other statistical tests. Even with limited rigor, the Sign Test is an excellent
exploratory test and the use of this tool should not be overlooked when working
with data that support nonparametric analyses. It is interesting to note that the Sign
Test name, itself, is due to signs (i.e., �, C, and o) being derived from measured
data. These signs are used to represent direction, as will be shown in this lesson.

Keywords Anderson-Darling test • Bar plot (stacked, side-by-side) • Code
book • Continuous scale • Density plot • Descriptive statistics • Distribution-
free • Frequency distribution • Histogram • Interval • Mean • Median • Mode
• Nominal • Nonparametric • Normal distribution • Null hypothesis • Ordinal
• Parametric • Probability (p-value) • Quantile-Quantile (QQ, Q-Q) • Ranking
• Ratio • Sign test • Statistical significance

2.1 Background on This Lesson

The Sign Test is an excellent exploratory tool for when it is simply not possible
to obtain quantitative measures but it is possible to obtain rank measures between
members of a pair, which is demonstrated in this lesson. As suggested in the name
for this test, the Sign Test uses the symbols - , +, and o as directional signs.

2.1.1 Description of the Data

This lesson on the Sign Test is based on Pretest v Posttest measures from a study
involving 40 individual laboratory rats (Rattus norvegicus) and observed change
(Pretest and Posttest) after some type of treatment.

© Springer International Publishing Switzerland 2016
T.W. MacFarland, J.M. Yates, Introduction to Nonparametric Statistics
for the Biological Sciences Using R, DOI 10.1007/978-3-319-30634-6_2

51

52 2 Sign Test

• The subjects are from four different laboratories, and it is assumed that the rats
experienced different conditions regarding housing and feeding—at least up to
the time the treatment was provided.

• There is equally no assumption that the subjects are of the same strain.
• As the dataset was constructed, the gender and age of each subject are both

unidentified.
• The nature of the treatment is currently unknown to the researcher assigned

responsibility for statistical analyses:

– The treatment may have been some type of supplement added to the diet, and
Pretest and Posttest measures involve some type of measure for weight or
vigor.

– The treatment may have been some type of behavioral intervention, and the
Pretest and Posttest measures involve some type of performance assessment
on a structured skills test.

– The treatment may have been some type of environmental condition, and the
Pretest and Posttest measures involve some type of response to light, noise,
temperature, etc.

• It is unknown if Pretest measurements were obtained at or near the same time,
and equally it is unknown if a consistent amount of time was observed for Posttest
measurements after application of the treatment.

The only conditions for this study that are known are that the 40 subjects (i.e.,
laboratory rats) were measured (Pretest), some type of treatment was applied, and
the same subjects were measured (Posttest) some time after application of the
treatment. Tracking procedures were used so that each rat was clearly identified
when the Pretest measure was taken, when the treatment was applied, and later
when the Posttest measure was taken.

This study represents a matched-pair approach, where each subject is measured
twice, a Pretest measurement made before application of the treatment and a Posttest
measurement made after application of the treatment. However, look at the many
previously listed unknown factors associated with this study. Saying all of this, the
Sign Test was judged the most appropriate nonparametric test to use given the wide
variance in structure for methods and subsequent data, such as the data coming
from subjects kept at four different laboratories, with each laboratory possibly using
different housing and feeding regimes—all from rats that are genetically similar but
that may not be genetically identical.

Regarding the actual Pretest and Posttest measures, for this lesson the only
concern is that the Pretest and Posttest measures are viewed as ordinal data and
that they lack the assumed precision of interval data. As ordinal data and with the
scale used for this lesson, it is known that an 8 is more than a 7 and that a 6 is more
than a 5, but there is no assumption that the difference between an 8 and a 7 and the
difference between a 6 and a 5 are consistent with each other each time. From this

2.1 Background on This Lesson 53

scheme for both methods and measurement, there will be greatest interest in broad
comparisons, resulting in the appropriate sign (i.e., or the directional difference
between Pretest and Posttest):

• If a Posttest measure is less than a Pretest measure, then the � sign is applied to
the comparison.

• If a Posttest measure is greater then a Pretest measure, than the C sign is applied
to the comparison.

• If a Posttest measure is equal to a Pretest measure, then the o sign is applied to
the comparison.

Given that the data are ordinal and not interval, it is best to focus on the Median
when considering measures of central tendency. Statistics such as the Mean and
Standard Deviation have value and are used in this lesson for some degree of
guidance, but Mean and Standard Deviation should also be viewed with caution in
terms of precision when these types of descriptive statistics are gained from ordinal
data.

To be brief as to the conditions that support selection of the Sign Test for this
design, admittedly a less than rigorous research design but still a design that could
yield insight into general trends:

• Although there is a continuous-type scale (01 to 10), there is no assumption of
normal distribution of the ordinal data, either for Pretest measures or Posttest
measures.

• Although it is known that the rats are all generally similar, different laboratories
provided the subjects and there is no assumption that the rats are all drawn from
the same population.

Within the reality of these conditions and assumptions about the data, it is judged
that the exploratory Sign Test is the best first choice for any attempt at inferential
analysis of change in this fairly simple Pretest—Treatment—Posttest study. Other
inferential tests may have later value, especially with greater command-and-control
over the methods, as future iterations of this study are refined, but the Sign Test is
an appropriate first choice—as an exploratory test to discern general trends.

The dataset is fairly simple and as explained later, data for this study were
originally entered into a simple text editor, not the a spreadsheet:

• The first line (i.e., row) of data consists of a header, using descriptive variable
names: Lab, Subject, Pretest, Posttest, Success, Sign. The header is then followed
by 40 lines of data, one line of data for each subject.

• Lab: An alpha code (LA, LB, LC, LD) is used to identify the laboratory that
supplied each Subject. Be sure to note later that there is an unequal number of
Subjects from each laboratory.

• Subject: There is a coded number (S01 to S40) for each Subject. Adequate
tracking protocols were used to correctly identify each Subject when Pretest and
Posttest measures were obtained and during application of the Treatment.

54 2 Sign Test

• Pretest: The ordinal scale used for Pretest measures ranged from 01 to 10. The
exact nature of these numeric values is currently unknown other than that they
are viewed as ordinal data.

• Posttest: The ordinal scale used for Posttest measures ranged from 01 to 10. The
exact nature of these numeric values is currently unknown other than that they
are viewed as ordinal data.

• Success: Given that the dataset is fairly small, with only 40 subjects, the Success
variable was hand-calculated, and it is provided to clearly communicate Pretest
v Posttest results. Success represents a binary comparison of Pretest and Posttest
measures, Y (Yes) if Posttest is greater than Pretest and N (No) if Posttest is not
greater than Pretest. Be sure to note how Pretest and Posttest measures that are
equivalent (e.g., Pretest = 7 and Posttest = 7) are viewed as N (No) in the coding
scheme for Success. Equivalency is not viewed as Success. Use of the term
Success is fairly standard for how outcomes are viewed for a Success–Failure,
True–False, Go–Stop, Survival–Death, binomial, way of presenting change-type
outcomes.

• Sign: The Sign variable was also hand-calculated and equally serves as a com-
parison of Pretest and Posttest measures. Both use of the term Sign, and the
associated � C o symbols are fairly standard for how outcomes of the Sign Test
are viewed:

– The symbol � is used if Posttest is less than Pretest.
– The symbol C is used if Posttest is greater than Pretest.
– The symbol o is used if Posttest equals Pretest (i.e., there is a tie between

Pretest and Posttest).

Again, very few assumptions are placed on the data and subsequently the Sign
Test is viewed as a test that is less robust than other tests in terms of support for later
decision-making. Even so, the Sign Test is an excellent tool for initial exploratory
analyses and its use should not be overlooked.

2.1.2 Null Hypothesis (Ho)

The median of differences between Pretest and Posttest measures of laboratory rats,
after application of an otherwise unidentified treatment, equals 0 (p <= 0.05).

2.2 Data Entry by Copying Directly into a R Session

The dataset for this lesson originally consisted of Pretest and Posttest measures from
40 laboratory rats, with the rats supplied by four different laboratories. Adequate
protocols were used so that the Subjects (i.e., laboratory rats) were identified by a

2.2 Data Entry by Copying Directly into a R Session 55

control number (S01 to S40). There are no missing data, with Pretest and Posttest
measures obtained for each of the 40 Subjects. Data for the Success and Sign
variables were hand-calculated, based on comparisons of Posttest–Pretest measures.

It is common for data to be entered into a spreadsheet, such as the freely-
available Gnumeric spreadsheet program or any of the many proprietary spreadsheet
programs. It is equally common for the spreadsheet to then be saved in .csv (i.e.,
comma-separated values) file format so that data in the .csv file can be easily shared
with others.

However, for this lesson there are only 40 Subjects and the variables Success
and Sign are hand-calculated. The data were instead prepared using a simple text
editor (e.g., Crimson Editor, Tinn-R, or vim are all possible selections), copied, and
then pasted into the R session, in concert with wrapping the read.table() function
around the textConnection() function, as shown below. In later lessons, data will be
organized in a spreadsheet, saved in .csv file format, and then as an external .csv file
imported directly into R using the R read.table() function. For this lesson, however,
consider this example of data entry—data import as another way from among the
many possible ways data can be brought into R.

Start a new R session and then attend to beginning actions such as removing
unwanted files from prior work, declaring the working directory, etc.

###
Housekeeping Use for All Analyses
###
date() # Current system time and date.
R.version.string # R version and version release date.
ls() # List all objects in the working

directory.
rm(list = ls()) # CAUTION: Remove all files in the working

directory. If this action is not desired,
use the rm() function one-by-one to remove
the objects that are not needed.

ls.str() # List all objects, with finite detail.
getwd() # Identify the current working directory.
setwd("F:/R_Nonparametric")

Set to a new working directory.
Note the single forward slash and double
quotes.
This new directory should be the directory
where the data file is located, otherwise
the data file will not be found.

getwd() # Confirm the working directory.
list.files() # List files at the PC directory.
##

Create an object called PrePostRats.df. The object PrePostRats.df will be a
dataframe, as indicated by the enumerated .df extension to the object name. This
object will represent the output of applying the read.table() function wrapped
around the textConnection() function against the data that immediately follow,

56 2 Sign Test

which for this lesson are in an easy-to-read fixed column format. Be sure to note the
header=TRUE argument (associated with the read.table() function), that indicates
how the first row is a header representing descriptive variable names.

PrePostRats.df <- read.table(textConnection("
Lab Subject Pretest Posttest Success Sign
LA S01 05 08 Y +
LA S02 04 06 Y +
LA S03 03 03 N o
LA S04 06 05 N -
LA S05 08 09 Y +
LB S06 10 09 N -
LB S07 08 07 N -
LB S08 08 08 N o
LB S09 04 08 Y +
LB S10 05 05 N o
LB S11 08 09 Y +
LB S12 03 05 Y +
LB S13 05 04 N -
LB S14 06 05 N -
LB S15 04 04 N o
LB S16 07 08 Y +
LB S17 07 09 Y +
LB S18 09 09 N o
LB S19 08 07 N -
LB S20 05 08 Y +
LC S21 05 06 Y +
LC S22 08 08 N o
LC S23 03 04 Y +
LC S24 05 06 Y +
LC S25 06 07 Y +
LC S26 04 08 Y +
LC S27 07 08 Y +
LC S28 09 10 Y +
LD S29 10 10 N o
LD S30 08 09 Y +
LD S31 08 08 N o
LD S32 04 06 Y +
LD S33 04 05 Y +
LD S34 07 08 Y +
LD S35 05 07 Y +
LD S36 07 09 Y +
LD S37 08 10 Y +
LD S38 03 06 Y +
LD S39 05 06 Y +
LD S40 07 08 Y + "), header=TRUE)

getwd() # Identify the working directory
ls() # List objects
attach(PrePostRats.df) # Attach the data, for later use
str(PrePostRats.df) # Identify structure
nrow(PrePostRats.df) # List the number of rows
ncol(PrePostRats.df) # List the number of columns

2.3 Organize the Data and Display the Code Book 57

dim(PrePostRats.df) # Dimensions of the dataframe
names(PrePostRats.df) # Identify names
colnames(PrePostRats.df) # Show column names
rownames(PrePostRats.df) # Show row names
head(PrePostRats.df, n=10) # Show the head (10 rows)
tail(PrePostRats.df, n=10) # Show the tail (10 rows)
PrePostRats.df # Show the entire dataframe
summary(PrePostRats.df) # Summary statistics

2.3 Organize the Data and Display the Code Book

Now that the data have been brought into R, it is usually necessary to check the data
for format and then make any changes that may be needed to organize the data (and
later coerce the data into desired class). As a typical example, consider the common
practice of either numeric, letter, or symbolic codes, as factors, which is the case in
this lesson for the object variables Success and Sign:

• The letters Y and N (in CAPS, remember that R is case sensitive) are used with
the object variable Success to indicate Yes and No.

• For the object variable Sign, the � C o symbols are used to indicate how Posttest
measures compare to prior Pretest measures, or the outcome of Posttest - Pretest.

However data are viewed and whatever symbols are used for factor-type objects,
routine data-checking processes should always be used before graphics are prepared
and analyses are attempted. These initial actions should be seen as a standard quality
assurance practice.

For this simple lesson, the class() function, str() function, and duplicated()
function will be sufficient first steps to be sure that data are organized as desired.

class(PrePostRats.df)
class(PrePostRats.df$Lab) # DataFrame$ObjectName notation
class(PrePostRats.df$Subject) # DataFrame$ObjectName notation
class(PrePostRats.df$Pretest) # DataFrame$ObjectName notation
class(PrePostRats.df$Posttest) # DataFrame$ObjectName notation
class(PrePostRats.df$Success) # DataFrame$ObjectName notation
class(PrePostRats.df$Sign) # DataFrame$ObjectName notation

str(PrePostRats.df) # Structure

duplicated(PrePostRats.df$Subject) # Duplicates

In the dataframe PrePostRats.df, notice how the object variables Pretest and
Posttest have no observed decimal values. They show as integers when the class()
function is applied. With this caution, the class for each object seems to be currently
correct and there are no duplicate subjects in the sample. Saying this, a Code Book
will help with future understanding of this dataset, even if the data currently seem
simple and obvious.

58 2 Sign Test

A Code Book is useful tool for anyone involved in the day-to-day activities of
the research and statistics process. The Code Book is typically brief and only serves
as a brief reminder for what can be easily forgotten months (or even weeks) later, to
make it easy to decipher what may otherwise be seen as arcane numeric codes.
Coding schemes that are intuitively obvious today can easily become forgotten
tomorrow. Now that the class(), str(), and duplicated() functions have been used for
basic diagnostics, consult the Code Book and then coerce each object, as needed,
into its correct class.

###
Code Book for PrePostRats.df
###
#
Lab Factor (i.e., nominal)
A unique ID ranging from LA to LD
#
Subject Factor (i.e. nominal)
A unique ID ranging from S01 to S40
#
Pretest Numeric (i.e., ordinal)
Pretest measure, ranging from 01 to 10
#
Posttest Numeric (i.e., ordinal)
Posttest measure, ranging from 01 to 10
#
Success Factor (i.e., nominal)
Comparison of Posttest to Pretest
N Not Successful
S Successful
#
Sign Factor (i.e., nominal)
Comparison of Posttest to Pretest
- Posttest < Pretest
+ Posttest > Pretest
o Posttest = Pretest
###

Descriptive names for object variables are certainly a good programming
practice, as a demonstration of self-documentation. Even with attention to this
practice, variable labels are usually needed, as another measure of documentation
that supports recall when analyses are reviewed in the future. The epicalc::label.var()
function, part of the external epicalc package, is one tool used to provide descriptive
labels.1

1The use of descriptive labels promotes quality analyses. The labels may not be required, but their
use will certainly be helpful when the analyses are revisited weeks and months later, which is often
the case.

2.3 Organize the Data and Display the Code Book 59

install.packages("epicalc")
library(epicalc) # Load the epicalc package.
help(package=epicalc) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

epicalc::des(PrePostRats.df) # Description of the dataset

epicalc::label.var(Lab, "Laboratory",
dataFrame=PrePostRats.df)

epicalc::label.var(Subject, "Subject ID",
dataFrame=PrePostRats.df)

epicalc::label.var(Pretest, "Pretest Measures",
dataFrame=PrePostRats.df)

epicalc::label.var(Posttest, "Posttest Measures",
dataFrame=PrePostRats.df)

epicalc::label.var(Success, "Binomial Comparison of Change",
dataFrame=PrePostRats.df)

epicalc::label.var(Sign, "- + o Comparison of Change",
dataFrame=PrePostRats.df)

epicalc::des(PrePostRats.df) # Description of the dataset

No. of observations = 40
Variable Class Description

1 Lab factor Laboratory
2 Subject factor Subject ID
3 Pretest integer Pretest Measures
4 Posttest integer Posttest Measures
5 Success factor Binomial Comparison of Change
6 Sign factor - + o Comparison of Change

With assurance that the dataframe is currently in correct format, coerce each
object variable into desired format, as a factor object variable, numeric object
variable, etc.

class(PrePostRats.df) # Confirm nature of the dataset
str(PrePostRats.df) # Confirm nature of the dataset

PrePostRats.df$Lab <- factor(PrePostRats.df$Lab,
labels=c("Lab A", "Lab B", "Lab C", "Lab D"))

PrePostRats.df$Subject <- as.factor(PrePostRats.df$Subject)
PrePostRats.df$Pretest <- as.numeric(PrePostRats.df$Pretest)
PrePostRats.df$Posttest <- as.numeric(PrePostRats.df$Posttest)
PrePostRats.df$Success <- factor(PrePostRats.df$Success,
labels=c("N Not Successful", # Note the ordering of labels, or

"Y Successful")) # N and then Y
PrePostRats.df$Sign <- factor(PrePostRats.df$Sign,
labels=c("- Posttest < Pretest", # Note the ordering of

"+ Posttest > Pretest", # labels, or - and then + and
"o Posttest = Pretest"))# then o

Labels were added and from this note use of the factor()
function and not as.factor() for PrePostRats.df$Lab,
PrePostRats.df$Success, and PrePostRats.df$Sign.

60 2 Sign Test

As a sidebar comment, at the R prompt, key help(factor) and
help(numeric) to learn more about how data can be coerced into
different formats.

Comment: The object variables PrePostRats.df$Pretest and
PrePostRats.df$Posttest were coerced from integer to numeric types. In turn, math
operations will be used against these two object variables (e.g., calculation of
Mean and Standard Deviation). Remember the prior caution that these Pretest
and Posttest measures are based on ordinal data, not interval data. Accordingly, use
good judgment and perhaps a degree of skepticism when later viewing math-specific
statistics gained from these ordinal object variables coerced from integer to numeric
class. Measures of central tendency, such as Mean and Standard Deviation, when
based on ordinal data, have a role in guidance and decision-making, but, again, only
with caution.

attach(PrePostRats.df) # Confirm data are attached correctly

class(PrePostRats.df) # Confirm nature of the dataset
class(PrePostRats.df$Lab) # DataFrame$ObjectName notation
class(PrePostRats.df$Subject) # DataFrame$ObjectName notation
class(PrePostRats.df$Pretest) # DataFrame$ObjectName notation
class(PrePostRats.df$Posttest) # DataFrame$ObjectName notation
class(PrePostRats.df$Success) # DataFrame$ObjectName notation
class(PrePostRats.df$Sign) # DataFrame$ObjectName notation

ls() # List all objects
str(PrePostRats.df) # Confirm nature of the dataset
summary(PrePostRats.df) # Broad view of descriptive statistics
epicalc::des(PrePostRats.df) # Description of the dataset

Use of the attach(), class(), ls(), str(), summary(), and epicalc::des() functions
may be somewhat redundant, but it is always a good idea to confirm that actions
resulted in desired format. To use the common expression, Trust, but verify.

2.4 Conduct a Visual Data Check

It is common to immediately consider descriptive statistics and measures of central
tendency when inferential analyses are planned and later completed. Certainly, it is
important to know the Mode, Median, Mean, Standard Deviation, etc. However, in
these lessons the data are first examined visually, using the strong graphical features
supported by R. The images can be simple throwaway graphics (designed only to
offer a general sense of the data), or the images can be fully embellished (of high
quality, and suitable for presentation or publication). Regardless of details in the
final view, graphics provide a composite understanding of the data that may be
difficult to grasp when only statistics are viewed.

For initial purposes, the graphical functions of primary interest are hist()
and plot(). It is also common to use plot(density()) (i.e., the plot() function
wrapped around the density() function). Again, many arguments are available

2.4 Conduct a Visual Data Check 61

to support the functions used for graphics, but for now the figures will be prepared
in fairly simple format.

The par(ask=TRUE) function and argument are used to freeze the presentation
on the screen, one figure at a time. When par(ask=TRUE) is used, note how the
top line of the figure in the R interface, under File -> Save as, provides a variety of
graphical formats to save each figure, with selections showing in this order: Metafile,
Postscript, PDF, PNG, BMP, TIFF, and JPEG.2 It is also possible to perform a simple
copy-and-paste against each graphical image. R syntax can also be used to save a
graphical image.

par(ask=TRUE)
plot(PrePostRats.df$Lab, main="Laboratory", col="red",
ylim=c(0,16)) # Force Y axis scale to show 15

par(ask=TRUE)
plot(PrePostRats.df$Subject, main="Subject",
col=c(rainbow(40)))

par(ask=TRUE)
hist(PrePostRats.df$Pretest,
main="Histogram of Lab Rat Pretest Measures",
font=2, # Bold text
cex.lab=1.15, # Large font
col="red") # Vibrant color

par(ask=TRUE)
hist(PrePostRats.df$Posttest,
main="Histogram of Lab Rat Posttest Measures",
font=2, # Bold text
cex.lab=1.15, # Large font
col="red") # Vibrant color

par(ask=TRUE)
plot(density(PrePostRats.df$Pretest,
na.rm=TRUE), # Required for the density() function
main="Density Plot of Lab Rat Pretest Measures",
lwd=6, col="red", font.axis=2, font.lab=2)

par(ask=TRUE)
plot(density(PrePostRats.df$Posttest,
na.rm=TRUE), # Required for the density() function
main="Density Plot of Lab Rat Posttest Measures",
lwd=6, col="red", font.axis=2, font.lab=2)

par(ask=TRUE)
plot(PrePostRats.df$Success,
main="Frequency Distribution of Success: Success is
Defined as Posttest > Pretest",

2To keep this text to a manageable number of pages, all figures are not shown. However, as a
practice activity they can be easily created with the R syntax in this text and the .csv datasets that
are available on the publisher’s Web page associated with this text.

62 2 Sign Test

lwd=6, col="red", font.axis=2, font.lab=2,
ylim=c(0,31)) # Force Y axis scale to show 30

par(ask=TRUE)
plot(PrePostRats.df$Sign,
main="Frequency Distribution of Sign and Comparison
of Posttest to Pretest",
lwd=6, col="red", font.axis=2, font.lab=2,
ylim=c(0,31)) # Force Y axis scale to show 30

par(ask=TRUE) # Bar and Frequencies of Plot of Success
epicalc::tab1(PrePostRats.df$Success,
decimal=2, # Use the tab1() function
sort.group=FALSE, # from the epicalc
cum.percent=TRUE, # package to see details
graph=TRUE, # about the selected
missing=TRUE, # object variable. (The
bar.values=c("frequency"), # 1 of tab1 is the one
horiz=FALSE, # numeric character and
cex=1.15, # it is not the letter
cex.names=1.15, # l).
cex.lab=1.15, cex.axis=1.15,
main="Frequency of Success: N (Posttest !> Pretest) or
Y (Posttest > Pretest)",
ylab="Frequency: N (Not Successful) and Y (Successful)",
col= c("black", "red"),
gen=TRUE)
Note how a frequency distribution is provided, too.

PrePostRats.df$Success :
Frequency Percent Cum. percent

N Not Successful 14 35 35
Y Successful 26 65 100
Total 40 100 100

par(ask=TRUE) # Bar and Frequencies of Plot of Sign
epicalc::tab1(PrePostRats.df$Sign,
decimal=2, # Use the tab1() function
sort.group=FALSE, # from the epicalc
cum.percent=TRUE, # package to see details
graph=TRUE, # about the selected
missing=TRUE, # object variable. (The
bar.values=c("frequency"), # 1 of tab1 is the one
horiz=FALSE, # numeric character and
cex=1.15, # it is not the letter
cex.names=1.15, # l).
cex.lab=1.15, cex.axis=1.15,
main="Frequency of Sign: - (Posttest < Pretest),
+ (Posttest > Pretest), or 0 (Posttest = Pretest)",
ylab="Frequency: - + 0",
col= c("black", "red", "blue"),
gen=TRUE)
Note how a frequency distribution is provided, too.

2.5 Descriptive Analysis of the Data 63

- Posttest < Pretest + Posttest > Pretest

F
re

qu
en

cy
: -

 +
 0

0 Posttest = Pretest

Frequency of Sign: - (Posttest < Pretest),
+ (Posttest > Pretest), or 0 (Posttest = Pretest)

0

6

26

810
5

15
20

25

Fig. 2.1 Bar chart using the epicalc::tab1() function

PrePostRats.df$Sign :
Frequency Percent Cum. percent

- Posttest < Pretest 6 15 15
+ Posttest > Pretest 26 65 80
o Posttest = Pretest 8 20 100
Total 40 100 100

Because the Pretest data and Posttest data are ordinal, it is best to focus
on frequency distributions, at least initially. Although the boxplot() function and
different functions for the violin plot could have been used, the above graphic
provides sufficient context for this simple dataset where the focus is on ordinal data
(Fig. 2.1).3

2.5 Descriptive Analysis of the Data

Special accommodations are often needed for missing data. Knowing that missing
data can be a concern, it is often helpful to first check for missing data by using the
is.na() function and the complete.cases() function against the entire dataset. Both
functions return a TRUE or FALSE response, depending on the function and the
outcome of whether or not data are missing.

is.na(PrePostRats.df) # Check for missing data
complete.cases(PrePostRats.df) # Check for complete cases

3There remains some degree of inconsistency on correct usage for either Boxplot or Box Plot when
referencing a Box-and-Whiskers Plot. Both terms may be found in this text.

64 2 Sign Test

For the dataset PrePostRats.df, there are no missing data and all cases are
complete. That may not be the situation for later lessons, where there will be
challenges to accommodation of the dataset.

This dataset consists of only 40 subjects, with the dataset complete for all
six object variables. Again, the summary() function is applied, to reinforce an
understanding of the data. Note how the summary() function is applied against the
entire dataset, thus yielding information about all object variables.

summary(PrePostRats.df)

The summary() function is very useful and it should always be considered as a
first selection when preparing descriptive analyses.

Frequency Distributions of the Factor-Type Object Variables
It is fairly common to provide a general tally of the breakouts for factor-type object
variables, such as the number or percentage of individuals who were classified as
Not Successful and those who were classified as Successful (the Success object
variable) or the number and percentage of individuals who were classified as—
(Posttest < Pretest), + (Posttest > Pretest), or o(Posttest = Pretest) (the Sign object
variable).

Showing another option available with R, the table() function, by itself or with
the cbind() function serving as a wrapper around the table() function may be all that
it needed for a fairly simple output of frequency distributions of factor-type object
variables:

table(PrePostRats.df$Success, useNA = "always")

cbind(table(PrePostRats.df$Success, PrePostRats.df$Pretest,
useNA = "always")) # Finite breakouts by specific values

3 4 5 6 7 8 9 10 <NA>
N Not Successful 1 1 2 2 0 5 1 2 0
Y Successful 3 5 6 1 6 4 1 0 0
<NA> 0 0 0 0 0 0 0 0 0

cbind(table(PrePostRats.df$Success, PrePostRats.df$Posttest,
useNA = "always"))# Finite breakouts by specific values

3 4 5 6 7 8 9 10 <NA>
N Not Successful 1 2 3 0 2 3 2 1 0
Y Successful 0 1 2 6 2 8 5 2 0
<NA> 0 0 0 0 0 0 0 0 0

table(PrePostRats.df$Sign, useNA = "always")

cbind(table(PrePostRats.df$Sign, PrePostRats.df$Pretest,
useNA = "always")) # Finite breakouts by specific values

2.5 Descriptive Analysis of the Data 65

3 4 5 6 7 8 9 10 <NA>
- Posttest < Pretest 0 0 1 2 0 2 0 1 0
+ Posttest > Pretest 3 5 6 1 6 4 1 0 0
o Posttest = Pretest 1 1 1 0 0 3 1 1 0
<NA> 0 0 0 0 0 0 0 0 0

cbind(table(PrePostRats.df$Sign, PrePostRats.df$Posttest,
useNA = "always"))# Finite breakouts by specific values

3 4 5 6 7 8 9 10 <NA>
- Posttest < Pretest 0 1 2 0 2 0 1 0 0
+ Posttest > Pretest 0 1 2 6 2 8 5 2 0
o Posttest = Pretest 1 1 1 0 0 3 1 1 0
<NA> 0 0 0 0 0 0 0 0 0

Not surprisingly, there are other functions (many in external packages) that
present frequency distributions of factor-type object variables in a somewhat
more attractive and concise manner. The xtabs() function and the Epi::stat.table()
function, shown immediately below, should both be considered when preparing
frequency distributions.

The xtabs() function has value for preparing somewhat more complex summa-
rized frequency distributions of the two factor-type object variables found in this
lesson:

xtabs(~Sign+Success, data=PrePostRats.df)

Success
Sign N Not Successful Y Successful
- Posttest < Pretest 6 0
+ Posttest > Pretest 0 26
o Posttest = Pretest 8 0

The Epi::stat.table() function is especially helpful for presentation of frequency
distributions by percent. Review the following to see the percentage for frequency
distributions, overall and by breakouts.

install.packages("Epi")
library(Epi) # Load the Epi package.
help(package=Epi) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

Epi::stat.table(index=list("Successful: Yes or No"=Success,
"Sign: - + 0"=Sign), percent(Success,Sign), margin=TRUE,
data=PrePostRats.df)
Table with cell percentages and margin totals

66 2 Sign Test

--
------------Sign: - + o------------

Successful: - + o Total
Yes or No Posttest Posttest Posttest

< > =
Pretest Pretest Pretest

--
N Not Successful 15.0 0.0 20.0 35.0
Y Successful 0.0 65.0 0.0 65.0

Total 15.0 65.0 20.0 100.0
--

> # Table with cell percentages and margin totals

Measures of Central Tendency of the Numeric Object Variables
Even though the summary() function is quite sufficient for a general overview
of descriptive statistics, descriptive statistics for individual object variables may
be desired. To achieve this aim, review use of the following functions: length(),
asbio::Mode(), median(), mean(), sd(), tapply(), and once again summary(). As
needed (but not always, depending on specific functions), the na.rm=TRUE argu-
ment or some other similar convention will be used to accommodate missing
data—which is not a concern for this specific dataset.

Equally, remember that object variables PrePostRats.df$Pretest and PrePos-
tRats.df$Posttest represent ordinal data, and the main focus should be on Median,
not Mean and SD (even though these other measures of central tendency have value
for understanding the data and are presented in this lesson).

length(PrePostRats.df$Pretest) # N of Pretest
length(PrePostRats.df$Posttest) # N of Posttest

install.packages("asbio")
library(asbio) # Load the asbio package.
help(package=asbio) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

asbio::Mode(PrePostRats.df$Pretest) # Mode as average
asbio::Mode(PrePostRats.df$Posttest)# Mode as average

median(PrePostRats.df$Pretest, na.rm=TRUE) # Median

[1] 6

median(PrePostRats.df$Posttest, na.rm=TRUE) # Median

[1] 8

2.5 Descriptive Analysis of the Data 67

mean(PrePostRats.df$Pretest, na.rm=TRUE) # Mean
sd(PrePostRats.df$Pretest, na.rm=TRUE) # SD

mean(PrePostRats.df$Posttest, na.rm=TRUE) # Mean
sd(PrePostRats.df$Posttest, na.rm=TRUE) # SD

Descriptive statistics at the summary level are always useful, but breakout
statistics are also needed to gain a more complete understanding of the data.
There are many ways to obtain breakout statistics, but the tapply() function,
epicalc::summ() function, prettyR::brkdn() function, psych::describe.by() function,
Hmisc::bystats() function, and the lessR::SummaryStats() function are among the
most detailed and easiest to use, to discern differences between breakout groups. For
this lesson, given the simple nature of the dataset, only the tapply() function and the
epicalc::summ() function are demonstrated. A useful feature for the epicalc::summ()
function is that a graphic is prepared, as well as the descriptive statistics.

Comment: Be sure to recall the prior caution that the Pretest and Posttest
measures associated with this lesson are viewed as ordinal data. Descriptive
statistics (i.e., Mean, SD, etc.) can be easily calculated against ordinal data if the
ordinal data are coerced into numeric class, but, as shown below, the meaning of
these descriptive statistics should always be viewed with care given the nature of
ordinal data as compared to interval data.

tapply(Pretest, Success, summary, na.rm=TRUE,
data=PrePostRats.df) # Pretest by Success, using tapply()

tapply(Posttest, Success, summary, na.rm=TRUE,
data=PrePostRats.df) # Posttest by Success, using tapply()

tapply(Pretest, Sign, summary, na.rm=TRUE,
data=PrePostRats.df) # Pretest by Sign using tapply()

tapply(Posttest, Sign, summary, na.rm=TRUE,
data=PrePostRats.df) # Posttest by Sign using tapply()

$‘- Posttest < Pretest‘
Min. 1st Qu. Median Mean 3rd Qu. Max.

4.000 5.000 6.000 6.167 7.000 9.000

$‘+ Posttest > Pretest‘
Min. 1st Qu. Median Mean 3rd Qu. Max.

4.000 6.000 8.000 7.423 8.750 10.000

$‘o Posttest = Pretest‘
Min. 1st Qu. Median Mean 3rd Qu. Max.

3.000 4.750 8.000 6.875 8.250 10.000

68 2 Sign Test

par(ask=TRUE) # Use the epicalc package for breakout analyses
epicalc::summ(PrePostRats.df$Pretest,
by=PrePostRats.df$Success,
graph=TRUE, pch=18, ylab="auto",
main="Sorted Dotplot of Pretest by Success",
cex.X.axis=1.15, cex.Y.axis=1.15, font.lab=2, dot.col="auto")
Note the descriptive statistics and not only the graphic
that go along with the epicalc::summ() function.

par(ask=TRUE) # Use the epicalc package for breakout analyses
epicalc::summ(PrePostRats.df$Posttest,
by=PrePostRats.df$Success,
graph=TRUE, pch=18, ylab="auto",
main="Sorted Dotplot of Posttest by Success",
cex.X.axis=1.15, cex.Y.axis=1.15, font.lab=2, dot.col="auto")
Note the descriptive statistics and not only the graphic
that go along with the epicalc::summ() function.

par(ask=TRUE) # Use the epicalc package for breakout analyses
epicalc::summ(PrePostRats.df$Pretest,
by=PrePostRats.df$Sign,
graph=TRUE, pch=18, ylab="auto",
main="Sorted Dotplot of Pretest by Sign",
cex.X.axis=1.15, cex.Y.axis=1.15, font.lab=2, dot.col="auto")
Note the descriptive statistics and not only the graphic
that go along with the epicalc::summ() function.

par(ask=TRUE) # Use the epicalc package for breakout analyses
epicalc::summ(PrePostRats.df$Posttest,
by=PrePostRats.df$Sign,
graph=TRUE, pch=18, ylab="auto",
main="Sorted Dotplot of Posttest by Sign",
cex.X.axis=1.15, cex.Y.axis=1.15, font.lab=2, dot.col="auto")
Note the descriptive statistics and not only the graphic
that go along with the epicalc::summ() function.

For PrePostRats.df$Sign = - Posttest < Pretest
obs. mean median s.d. min. max.
6 6.167 6 1.835 4 9

For PrePostRats.df$Sign = + Posttest > Pretest
obs. mean median s.d. min. max.
26 7.423 8 1.604 4 10

For PrePostRats.df$Sign = o Posttest = Pretest
obs. mean median s.d. min. max.
8 6.875 8 2.532 3 10

The Epi::stat.table() function, shown previously for frequency distributions and
percentages, can also be used for a limited set of descriptive statistics. Look below
at the use of this function for breakout statistics by median (Fig. 2.2).

2.5 Descriptive Analysis of the Data 69

3

− Posttest < Pretest

+ Posttest > Pretest

0 Posttest = Pretest

Sorted Dotplot of Posttest by Sign

4 5 6 7 8 9 10

Fig. 2.2 Sorted dotplot using the epicalc::summ() function

Epi::stat.table(index=list("Success Y or N"=Success),
list(N=count(), "Median of Pretest"=median(Pretest)),
data=PrePostRats.df)
Success: Median of breakouts for Pretest

Epi::stat.table(index=list("Success Y or N"=Success),
list(N=count(), "Median of Posttest"=median(Posttest)),
data=PrePostRats.df)
Success: Median of breakouts for Posttest

Epi::stat.table(index=list("Sign - + o"=Sign),
list(N=count(), "Median of Pretest"=median(Pretest)),
data=PrePostRats.df)
Sign: Median of breakouts for Pretest

Epi::stat.table(index=list("Sign - + o"=Sign),
list(N=count(), "Median of Posttest"=median(Posttest)),
data=PrePostRats.df)
Sign: Median of breakouts for Posttest

--
Sign N Median
- + o of

Posttest
--
- Posttest < Pretest 6 6.00
+ Posttest > Pretest 26 8.00
o Posttest = Pretest 8 8.00
--

The tables::tabular() function can be used to provide even more detail. Output
from the tables::tabular() function is fairly attractive and this output can be easily
copied or used in some other fashion in a summary report. Again, the emphasis for
this lesson will be on the Median, not the Mean and SD.

70 2 Sign Test

install.packages("tables")
library(tables) # Load the tables package.
help(package=tables) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

tables::tabular((Success + 1) ~ (n=1) + Format(digits=2)*
(Pretest + Posttest)*(min + max + median),
data=PrePostRats.df)
Success (row) by Pretest and Posttest (columns)
Focus on the Median, not Mean or SD

tables::tabular((Sign + 1) ~ (n=1) + Format(digits=2)*
(Pretest + Posttest)*(min + max + median),
data=PrePostRats.df)
Sign (row) by Pretest and Posttest (columns)
Focus on the Median, not Mean or SD

Pretest Posttest
Sign n min max median min max median
- Posttest < Pretest 6 5 10 7 4 9 6
+ Posttest > Pretest 26 3 9 5 4 10 8
o Posttest = Pretest 8 3 10 8 3 10 8
All 40 3 10 6 3 10 8

The output from the tables::tabular() function can also be put into LATEXformat
by using the Hmisc::latex() function as a wrapper. Look below at the professional
quality of a table put into LATEXformat to see why LATEXis used so frequently for
typesetting scientific papers, journal articles, texts, etc.

install.packages("Hmisc")
library(Hmisc) # Load the Hmisc package.
help(package=Hmisc) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

Hmisc::latex(
tables::tabular((Success + 1) ~ (n=1) + Format(digits=2)*
(Pretest + Posttest)*(min + max + median),
data=PrePostRats.df)
Success (row) by Pretest and Posttest (columns)
Focus on the Median, not Mean or SD

) # Note placement of ending) character

2.5 Descriptive Analysis of the Data 71

Pretest Posttest

Success n Min Max Median Min Max Median

N not successful 14 3 10 8 3 10 7

Y successful 26 3 9 5 4 10 8

All 40 3 10 6 3 10 8

Hmisc::latex(
tables::tabular((Sign + 1) ~ (n=1) + Format(digits=2)*
(Pretest + Posttest)*(min + max + median),
data=PrePostRats.df)
Sign (row) by Pretest and Posttest (columns)
Focus on the Median, not Mean or SD

)

Pretest Posttest

Sign n Min Max Median Min Max Median

� Posttest < Pretest 6 5 10 7 4 9 6

C Posttest > Pretest 26 3 9 5 4 10 8

o Posttest = Pretest 8 3 10 8 3 10 8

All 40 3 10 6 3 10 8

The R-based output from use of the Hmisc::latex() function may seem more than
difficult to read, at first. However, when placed into LATEX, the table is quite attractive
and meets most standards for publication in a professional paper. Remember, of
course, that the output has to be compiled as a LATEXdocument. The original output,
as text showing on the R screen, will seem quite odd for those who do not use LATEX.

Application of the Anderson-Darling Test
Although graphical images and descriptive statistics are helpful in understanding
the data, it is also useful to apply selected statistical tests to serve as an additional
support for decision-making on acceptance of nonparametric or parametric views
toward the data. To that end, consider application of the Anderson-Darling Test, the
Lilliefors (KS) Test, and the Shapiro-Wilk Test. It should be mentioned that these
tests may be influenced by sample size and that they provide one view—but not the
only view—on the nature of distribution patterns. Experience, needs, and practical
judgment, supported by careful review of graphical images, descriptive statistics,
and statistical tests should be used when deciding if variables from a dataset are
best viewed from a nonparametric or parametric perspective.

72 2 Sign Test

install.packages("nortest")
library(nortest) # Load the nortest package.
help(package=nortest) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

From among a few different possible tests, the Anderson-Darling Test is used for
this lesson to examine distribution. The Null Hypothesis for the Anderson-Darling
Test is structured to examine if the data follow a specified distribution:

Anderson-Darling Null Hypothesis: The data follow the normal distribution.

nortest::ad.test(PrePostRats.df$Pretest)
Anderson-Darling Test

Anderson-Darling normality test

data: PrePostRats.df$Pretest
A = 0.9737, p-value = 0.01279

nortest::ad.test(PrePostRats.df$Posttest)
Anderson-Darling Test

Anderson-Darling normality test

data: PrePostRats.df$Posttest
A = 1.0195, p-value = 0.009813

The calculated Anderson-Darling Test for normality p-value is fairly small for
both object variables, PrePostRats.df$Pretest and PrePostRats.df$Posttest:

• Anderson-Darling Test PrePostRats.df$Pretest p-value = 0.01279
• Anderson-Darling Test PrePostRats.df$Posttest p-value = 0.009813

Given these p-values, reject the Anderson-Darling Null Hypotheses that the data
are from a normal distribution. In this lesson, the data for object variables PrePos-
tRats.df$Pretest and PrePostRats.df$Posttest do not display normal distribution.

par(ask=TRUE)
par(mfrow=c(1,2)) # Side-by-Side QQ Plots
qqnorm(PrePostRats.df$Pretest,
col="black", bg="red", pch=23, # Points in the plot
font=2, font.lab=2, cex.axis=1.5,
main="QQPlot of PrePostRats.df$Pretest")

qqline(PrePostRats.df$Pretest, lwd=4, col="darkblue")
qqnorm(PrePostRats.df$Posttest,
col="black", bg="red", pch=23, # Points in the plot
font=2, font.lab=2, cex.axis=1.5,
main="QQPlot of PrePostRats.df$Posttest")

qqline(PrePostRats.df$Posttest, lwd=4, col="darkblue")

2.6 Conduct the Statistical Analysis 73

−2

3
4

5
6

7
8

9
10

−1 0

Theoretical Quantiles

QQPlot of PrePostRats.df$Pretest QQPlot of PrePostRats.df$Posttest
S

am
pl

e
Q

ua
nt

ile
s

S
am

pl
e

Q
ua

nt
ile

s

Theoretical Quantiles
1 2 −2

3
4

5
6

7
8

9
10

−1 0 1 2

Fig. 2.3 QQ plots comparing two separate object variables

The QQ plot (i.e., normal probability plot) provides additional confirmation that
the data are best viewed from a nonparametric perspective.4 Note the placement of
the data along the qqline, especially at the tails (Fig. 2.3).

2.6 Conduct the Statistical Analysis

Use the BSDA::SIGN.test() function to conduct a Dependent Samples Sign Test of
differences in Pretest and Posttest measures, at the level of:

• � or Posttest < Pretest
• C or Posttest > Pretest
• o or Posttest = Pretest (scores are tied)

By no means are these three classifications seen as robust measures (i.e., the
Pretest = 5 to Posttest = 6 difference yields a C and a Pretest = 5 to Posttest = 9 also
yields a C), but it has been judged that design and/or measurement process for this
exploratory lesson on the Sign Test does not support more exact measures.

install.packages("BSDA", dependencies=TRUE)
library(BSDA) # Load the BSDA package.
help(package=BSDA) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

BSDA::SIGN.test(PrePostRats.df$Pretest,
PrePostRats.df$Posttest, md=0)

4The Quantile-Quantile (Q-Q or QQ) plot is a graphical tool that is used to examine data
distribution patterns.

74 2 Sign Test

Dependent-samples Sign-Test

data: PrePostRats.df$Pretest and PrePostRats.df$Posttest
S = 6, p-value = 0.0005351
alternative hypothesis: true median difference is not equal to 0
95 percent confidence interval:
-1.0000000 -0.2729644

sample estimates:
median of x-y

-1

Conf.Level L.E.pt U.E.pt
Lower Achieved CI 0.9193 -1 -1.000
Interpolated CI 0.9500 -1 -0.273
Upper Achieved CI 0.9615 -1 0.000

2.7 Summary

For a dependent samples Sign Test (i.e., a two-sample dependent Sign Test), the Null
Hypothesis is focused on the median and the median for the differences of x and y,
or Pretest and Posttest in this sample lesson. Consider, again, the Null Hypothesis:

The median of differences between Pretest and Posttest measures of labo-
ratory rats, after application of an otherwise unidentified treatment, equals 0
(p <= 0.05).

Going beyond the use of frequency distributions and measures of central ten-
dency such as the Median, the Sign Test provides evidence that there is a statistically
significant difference in outcomes between Pretest and Posttest measures after
application of the treatment, given a calculated p-value of 0.0005351, which is
certainly less than p <= 0.05.

Accordingly, the Null Hypothesis is rejected and it has been determined that
there is a statistically significant difference (p <= 0.05) in Pretest and Posttest
measures among laboratory rats after application of the otherwise unknown treat-
ment.

The finding of a statistically significant difference between Pretest and Posttest
measures is in parity with the descriptive statistics associated with this lesson.
Observe the Median value for both the Pretest and the Posttest, both at a simple
level of comparison using the median() function and with greater detail using the
tables::tabular() function.

median(PrePostRats.df$Pretest)

[1] 6

2.7 Summary 75

median(PrePostRats.df$Posttest)

[1] 8

tables::tabular((Sign + 1) ~ (n=1) + Format(digits=2)*
(Pretest + Posttest)*(min + max + median),
data=PrePostRats.df)
Sign (row) by Pretest and Posttest (columns)
Focus on the Median, not Mean or SD

Pretest Posttest
Sign n min max median min max median
- Posttest < Pretest 6 5 10 7 4 9 6
+ Posttest > Pretest 26 3 9 5 4 10 8
o Posttest = Pretest 8 3 10 8 3 10 8
All 40 3 10 6 3 10 8

For the collection of all 40 laboratory rats, Median Pretest = 6 and Median
Posttest = 8. Equally, review the Sign Test and how the calculated p-value
of 0.0005351 was less than the p-value associated with the Null Hypothesis,
p <= 0.05. These two outcomes support judgment that the treatment (i.e.,
intervention) resulted in a difference.

When interpreting the frequency distributions associated with this lesson, it
is often best to use the following methodology to interpret the meaning of the
calculated p value:

• � changes = 06 (Posttest < Pretest)
• C changes = 26 (Posttest > Pretest)
• o changes = 08 (Posttest = Pretest)

After careful analysis of the data, the Null Hypothesis is rejected and instead it
is declared that there is a statistically significant difference (p <= 0.05) between
Pretest and Posttest measures of laboratory rats after application an unidentified
treatment. The outcome (as indicated by difference in Pretest and Posttest measures)
was influenced by the treatment (i.e., intervention) activity. To be more exact, the
lab rats associated with this lesson showed gain (however gain was viewed) after the
treatment:

• 26 rats showed an increase from Pretest to Posttest
• 06 rats showed a decrease from Pretest to Posttest
• 08 rats showed no change from Pretest to Posttest

The treatment, overall, resulted in gain. However, avoid saying that there was a
65 % (26/40) positive change because of the intervention. This type of statement
is sometimes observed in publications, but it should be recalled that the Sign Test
does not support this level of measurement and subsequent conclusion. Instead, it is
only possible to claim that there was an overall difference (viewed as gain, in this
lesson—whatever gain means) as evidenced by use of the Sign Test.

76 2 Sign Test

Again, view the Sign Test as an exploratory tool and use more robust analyses
(based on more controlled research designs) for more finite conclusions. As shown
in this lesson, with little known about the laboratories providing the subjects and
other command-and-control issues, more precise methodologies and inferential tests
would be needed to offer a greater level of judgment on the magnitude of change.
Even so, for initial attempts to examine a problem, the Sign Test may be a very
appropriate test to gain a sense of general direction in trends.

2.8 Prepare to Exit, Save, and Later Retrieve This R Session

getwd() # Identify the current working directory.
ls() # List all objects in the working

directory.
ls.str() # List all objects, with finite detail.
list.files() # List files at the PC directory.

save.image("R_Lesson_Sign-Test.rdata")

getwd() # Identify the current working directory.
ls() # List all objects in the working

directory.
ls.str() # List all objects, with finite detail.
list.files() # List files at the PC directory.

alarm() # Alarm, notice of upcoming action.
q() # Quit this session.

Prepare for Save workspace image? query.

Use the R Graphical User Interface (GUI) to load the saved rdata file: File ->
Load Workspace. Otherwise, use the load() function, keying the full pathname, to
load the .rdata file and retrieve the session.

Recall, however, that it may be just as useful to simply use the .R script file
(typically saved is a .txt ASCII-type file) and recreate the analyses and graphics,
provided the data files remain available.

Chapter 3
Chi-Square

Abstract The Chi-square test is perhaps the most frequently used (or overused)
nonparamteric statistical test. The Chi-square test, named for the Greek letter � (i.e.,
Chi or the Greek letter for x), is typically used to test for differences in proportions
between two or more groups. The Chi-square test is also called a goodness of fit
test. That is to say, the Chi-square test is used to see if grouped data actually fit into
declared groups, or if the data instead do not fit into the group. For this lesson, Chi-
square will be demonstrated using data in two formats: (1) Chi-square using R will
first be demonstrated where the data are presented as an external file imported into R,
with data organized at the level of individual subjects, (i.e., each row represents the
data for an individual subject) and (2) Chi-square using R will also be demonstrated
where data are not at the level of individual subjects but data are instead presented
in summary format, as a collapsed contingency table.

Keywords Bar plot (stacked, side-by-side) • Boolean • Central tendency •
Chi-square • Code book • Comma-separated values (.csv) • Contingency table
• Crosstabs • Distribution-free • Dotplot • Frequency distribution • Goodness
of fit • Histogram • Mosaic plot • Nominal • Nonparametric • Normal
distribution • Null hypothesis • Parametric • Probability (p-value) • Proportion
• Representation • Statistical significance • Yates correction

3.1 Background on This Lesson

Chi-square is used to test for differences in proportions between two or more groups.
The Chi-square test is typically used when the data are represented as frequency
counts (i.e., headcounts) grouped into specific categories. It is common to use Chi-
square analyses with nominal data presented as counts in assigned cells.

The general approach with Chi-square is to determine if the number of subjects
in identified groups differ by relative frequency. The proportion of cases from one
group are compared to the proportion of cases from a different group.

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-3-319-
30634-6_3) contains supplementary material, which is available to authorized users.

© Springer International Publishing Switzerland 2016
T.W. MacFarland, J.M. Yates, Introduction to Nonparametric Statistics
for the Biological Sciences Using R, DOI 10.1007/978-3-319-30634-6_3

77

http://dx.doi.org/10.1007/978-3-319-30634-6_3
http://dx.doi.org/10.1007/978-3-319-30634-6_3

78 3 Chi-Square

The compelling advantage of Chi-square is that it supports well-accepted
analyses with data that are only nominal (e.g., Gender—Female or Male, Location—
Sect. 3.1 or Sect. 3.2, etc.) in terms of measurement. The samples in this lesson will
provide more insight into the use of Chi-square.

3.1.1 Description of the Data

This lesson on Chi-square analysis is based on the occurrence of a specific trait
between female and male members of a biological organism. In this lesson, assume
that 60 subjects of a specific biological organism are examined by a team of trained
technicians for two immediate judgments: Gender (i.e., Female or Male) and Trait
(i.e., Trait is Absent or Trait is Present). For the purpose of this lesson, it is not
necessary to know the type of biological organism (e.g., possible examples could
include Alces alces, Moose; Carcharodon carcharias, Great White Shark; Homo
sapien, Human), and it is equally not necessary to know the nature of the trait. It is
only necessary to know that the technicians have received adequate training for all
protocols and it is therefore assumed that the data are correct and are presented as
frequency counts:

• Assume that the gender has been identified correctly.
• Assume that the absence or presence of the trait has also been identified correctly.

Further, the degree of absence or presence of the trait is not measured. Instead,
for this lesson the measure is binary. The trait in question is either absent or the
trait in question is present.

Although it is beyond the purpose of this lesson, be sure to recall that many
measurements in the biological sciences must be made quickly and often with less
precision than may be desired.

• In a laboratory setting when working with non-moving organisms or perhaps
small docile animals, it may be possible to use protocols that allow for close
examination and careful measurement.

• Under field conditions, however, speed and safety may override the desire
for precision, either for protection of the technicians taking measurements or
for protection of the organism under study, such as when working with large
unsedated animals that have sharp teeth and large claws, hooves, or talons.

In this study, a team of field technicians gained data on Gender and Trait from
60 unique subjects, all of the same organism. The lead technician then reviewed
individual field notes (i.e., paper-based data sheets) and prepared a dataset at
the level of the individual subject. A Gnumeric-based spreadsheet was originally
prepared, but to further assure future data compatibility with other professionals the
.gnumeric spreadsheet was then also saved in .csv (comma-separated values) format.
The data are summarized below, and they are also found in original format (by
subject row-by-row) in the file GenderTrait.csv, which is found on the publisher’s
Web page associated with this text.

3.1 Background on This Lesson 79

Contingency Table of Trait
by Gender
==========================

Trait

Absent Present
=======================
| | |

Female | N = 31 | N = 12 | Row 1
| | | N Female . 43

subjects
Gender |=====================|

| | |
Male | N = 09 | N = 08 | Row 2

| | | N Male ... 17
subjects

======================= ===================
Total 60
subjects

Column 1 N Trait Absent 40 subjects

Column 2 N Trait Present ... 20 subjects
===============================
Total 60 subjects

To summarize this simple, and fairly common, 2 by 2 (i.e., 2 rows by 2 columns)
contingency table:

• The trait in question is absent in 31 female subjects and it is absent in 09 male
subjects.

• The trait in question is present in 12 female subjects and it is present in 08 male
subjects.

Because of distinguishing characteristics, assume that it is fairly easy to deter-
mine Gender. However, recall that there is no precise measurement for the object
variable Trait. Neither a sphygmomanometer, thermometer, or weighing scale were
used to obtain data for Trait. Instead, trained technicians examined subjects, made
informed but quick judgment, and then immediately recorded field notes on paper-
based worksheets. The data were only later put into electronic format.

When viewing the data found in GenderTrait.csv, be sure to note how numerical
codes have been purposely used for the data (Gender and Trait) in this lesson.
Numerical codes are quite common, and the creation of a later Code Book is
essential so that there is a record of what each code represents.

When using Chi-square, there are a few criteria that must be observed regardless
of the field conditions or nature of individual subjects, whether human or other-
wise:

80 3 Chi-Square

• Data must be presented as frequency (i.e., counted) data, such as the number
of Yes responses to a specific survey statement or the number of left-handed
batters on a baseball team. Recall, however, that ordinal and even interval data
can be organized (i.e., collapsed or grouped) into categories such as The number
of human subjects with Systolic Blood Pressure GTE (greater than or equal to)
114 and The number of human subjects with Systolic Blood Pressure LT (less
than) 114.1

• Due to the undesired impact of low cell counts in a contingency table, the number
of observed frequencies for each cell should be five or more. Some reference
materials suggest that the number of observed frequencies for each cell should be
ten or more. Otherwise, it may be necessary to use the Yates correction formula
along with Chi-square, to accommodate low cell counts.

• Regardless of the organization scheme, the data must be arranged in a logical
manner. All subjects must be considered once and only once.

3.1.2 Null Hypothesis (Ho)

There is no statistically significant difference (p <= 0.05) between the two
genders (Female or Male) in regard to the presence (Absent or Present) of a specific
unnamed trait of an otherwise unidentified biological organism.

Notice how the Null Hypothesis (Ho) uses p <= 0.05. The expression
p <= 0.05 is used to identify the declared probability level specific to the Null
Hypothesis. Many exploratory inferential analyses in the biological sciences are
conducted at p <= 0.05. However, it is not uncommon to see some analyses set
at the more restrictive level of p <= 0.01 and even p <= 0.001.

Along with the use of p, you will also see the term alpha in many discussions
about the level of probability, but p will be used in this lesson.

3.2 Data Import of a .csv Spreadsheet-Type Data File into R

The dataset for this lesson represents data from 60 subjects, all of the same but
unnamed biological species. Adequate protocols were used so that the organisms
(i.e., Subjects) were identified by a control number (S01 to S60). There are no
missing data, with data for Gender and Trait obtained for each of the 60 Subjects.
As previously mentioned, data were transferred from paper-based field notes to a
Gnumeric-based spreadsheet and then to a .csv file.

1Although it is beyond the immediate purpose of this text on R, it is still useful to have some
background with Boolean terms used for selection. As time permits, become acquainted with the
following terms: EQ (equals), NE (not equals), LT (less than), LTE or LE (less than or equal), GT
(greater than), and GTE or GE (greater than or equal).

3.2 Data Import of a .csv Spreadsheet-Type Data File into R 81

Start a new R session and then attend to beginning actions such as removing
unwanted files from prior work, declaring the working directory, etc.

###
Housekeeping Use for All Analyses
###
date() # Current system time and date.
R.version.string # R version and version release date.
ls() # List all objects in the working

directory.
rm(list = ls()) # CAUTION: Remove all files in the working

directory. If this action is not desired,
use the rm() function one-by-one to remove
the objects that are not needed.

ls.str() # List all objects, with finite detail.
getwd() # Identify the current working directory.
setwd("F:/R_Nonparametric")

Set to a new working directory.
Note the single forward slash and double
quotes.
This new directory should be the directory
where the data file is located, otherwise
the data file will not be found.

getwd() # Confirm the working directory.
list.files() # List files at the PC directory.
##

GenderTrait.df <- read.table (file =
"GenderTrait.csv",
header = TRUE,
sep = ",") # Import the csv file

getwd() # Identify the working directory
ls() # List objects
attach(GenderTrait.df) # Attach the data, for later use
str(GenderTrait.df) # Identify structure
nrow(GenderTrait.df) # List the number of rows
ncol(GenderTrait.df) # List the number of columns
dim(GenderTrait.df) # Dimensions of the dataframe
names(GenderTrait.df) # Identify names
colnames(GenderTrait.df) # Show column names
rownames(GenderTrait.df) # Show row names
head(GenderTrait.df) # Show the head
tail(GenderTrait.df) # Show the tail
GenderTrait.df # Show the entire dataframe
summary(GenderTrait.df) # Summary statistics

By completing these actions, an object called GenderTrait.df has been created.
This R-based object is a dataframe, and it consists of the data originally included
in the file GenderTrait.csv, a comma-separated values .csv file. To avoid possible
conflicts, make sure that there are no prior R-based objects called GenderTrait.df
in the current working directory. The prior use of rm(list = ls()) accommodates this
concern, removing all prior objects in the current R session.

82 3 Chi-Square

Observe how it was only necessary to key the filename for the .csv file and not
the full pathname since the R working directory is currently set to the directory
and/or subdirectory where this .csv file is located. See the Housekeeping section at
the beginning of this lesson.

3.3 Organize the Data and Display the Code Book

Now that the data have been imported into R, it is usually necessary to check the
data for format and then make any changes that may be needed to organize the data.
This dataset consists of 60 subjects and the data are fairly simple, with an identifying
code for Subject, a numeric code for Gender, and a numeric code for Trait. Although
the data are simple, it will be necessary to accommodate the numeric codes for the
factor-type object variables, Gender (i.e., factors Female or Male) and Trait (i.e.,
factors Absent or Present) and put them into a format that is easier to understand.

This lesson will also use rownames for the dataset, using the rownames()
function. Although this action is not required, rownames may be helpful when
working with increasingly large datasets. The rownames() function assigns a unique
identifier for each row in the dataset. In this lesson, each rowname begins with the
term Subject.

rownames(GenderTrait.df) <- paste(’Subject’, 1:60)

tail(GenderTrait.df) # Show the tail, now to confirm rownames

For this lesson, the class() function, str() function, and duplicated() function will
be used to confirm that data are organized correctly.

class(GenderTrait.df)
class(GenderTrait.df$Subject)
class(GenderTrait.df$Gender)
class(GenderTrait.df$Trait)
Use DataFrame$ObjectName notation for object variables

str(GenderTrait.df) # Structure

duplicated(GenderTrait.df) # Duplicates

Based on the above actions, the class for each object seems to be correct, and
there are no duplicate rows of data in the dataframe. A Code Book will help with
future understanding of this dataset.

For anyone involved in the day-to-day activities of the research and statistics
process, a Code Book is an essential aid—especially when data need to be reviewed
in the future when object variable names and values are forgotten. The Code Book is
typically brief and only serves as a useful reminder for what can be easily forgotten
months (or even weeks) later. Coding schemes that are intuitively obvious today can
easily become forgotten tomorrow.

3.3 Organize the Data and Display the Code Book 83

Now that the class(), str(), and duplicated() functions have been used for basic
diagnostics, consult the Code Book and coerce each object, as needed, into its
correct class.

###
Code Book for GenderTrait.df
###
Subject S01 (Low) to S60 (High)
#
Gender Female = 1 and Male = 2
#
Trait Absent = 1 and Present = 2
###

After data are brought into the current R session and there is agreement that
the data are in correct format, it is usually necessary to organize the data to some
degree. In this lesson, note how numeric codes have been used to identify Gender
and Trait. Note also how these numeric codes are currently viewed as integers, as
communicated by output from the str() function.

With assurance that the dataframe is in correct format and that labels are correct,
coerce objects into correct format. A set of simple R-based actions can easily:

• Transform (i.e., recode) GenderTrait.df$Gender and GenderTrait.df$Trait into
new object variables.

• Change the recoded object variables from original integer format to factor format.
• Apply narrative text labels for the otherwise cryptic numeric codes.

This transformation (again, typically called a recode action) is needed and the
process, using R-based syntax, follows:

GenderTrait.df$Gender.recode <- factor(GenderTrait.df$Gender,
labels=c("Female", "Male"))

GenderTrait.df$Trait.recode <- factor(GenderTrait.df$Trait,
labels=c("Absent", "Present"))

As a reminder, in this lesson, Gender has been recoded from 1s and 2s into two
separate groups (i.e., Female and Male). Equally, Trait has been recoded from 1s
and 2s into two separate groups (e.g., Absent and Present):

• The object variable GenderTrait.df$Gender.recode was created by putting the
object variable GenderTrait.df$Gender into factor format. Labels were then
applied in sequential order for this new object, with Female used to represent
every occurrence of the numeric value 1 and Male used to represent every
occurrence of the numeric value 2.

• The object variable GenderTrait.df$Trait was created by putting the object vari-
able GenderTrait.df$Trait into factor format. Labels were applied in sequential

84 3 Chi-Square

order for this new object, with Absent used to represent every occurrence of the
numeric value 1 and Present used to represent every occurrence of the numeric
value 2.

Note the formal nomenclature for this recode action and use of Dataframe-
Name$ObjectName when working with object variable names. Note also how the $
symbol is used to separate the name of the dataframe from the name of the object:
DataframeName$ObjectName.

A confirming set of functions may not be necessary, but a redundant data check
is always helpful to provide assurance that data in the current R session are correct
prior to use of the data. Trust that the data are correct, but verify—as a continuous
quality assurance process, as shown below in the following R syntax:

getwd() # Identify the working directory
ls() # List objects
attach(GenderTrait.df) # Attach the data, for later use
str(GenderTrait.df) # Identify structure
nrow(GenderTrait.df) # List the number of rows
ncol(GenderTrait.df) # List the number of columns
dim(GenderTrait.df) # Dimensions of the dataframe
names(GenderTrait.df) # Identify names
colnames(GenderTrait.df) # Show column names
rownames(GenderTrait.df) # Show row names
head(GenderTrait.df) # Show the head
tail(GenderTrait.df) # Show the tail
GenderTrait.df # Show the entire dataframe
summary(GenderTrait.df) # Summary statistics

summary(GenderTrait.df[, 2:5]) # Variables 2 to 5
Gender Trait Gender.recode Trait.recode

Min. :1.000 Min. :1.000 Female:43 Absent :40
1st Qu.:1.000 1st Qu.:1.000 Male :17 Present:20
Median :1.000 Median :1.000
Mean :1.283 Mean :1.333
3rd Qu.:2.000 3rd Qu.:2.000
Max. :2.000 Max. :2.000

3.4 Conduct a Visual Data Check

Graphics are important for multiple reasons. Throwaway graphics serve as a useful
quality assurance tool, identifying data that may be either out-of-range or illogical.
Graphics also provide a general sense of outcomes and comparisons between and
among variables. Although the precise statistics presented in tables are important
to those who regularly work with data, publishable quality graphics are perhaps
the most common medium for communication with the general public on research
findings.

3.4 Conduct a Visual Data Check 85

P
re

se
nt

A
bs

en
t

Female
Gender.recode

T
ra

it
.r

ec
o

d
e

Male

Fig. 3.1 Mosaic plot using the vcd::mosaic() function

First, prepare a throwaway graphic of each main variable simply to see general
trends and to also serve as a review of the data. Avoid making any attempt to overly
embellish these initial figures.

par(ask=TRUE) # Barchart of Subject
plot(GenderTrait.df$Subject,
main="Barplot of Subject")

par(ask=TRUE) # Dotchart of Gender
dotchart(GenderTrait.df$Gender,
main="Dotchart of Gender Before Recode")

par(ask=TRUE) # Dotchart of Trait
dotchart(GenderTrait.df$Trait,
main="Dotchart of Trait Before Recode")

A conditional mosaic-type plot may help explain the relationship between and
among data of interest, or Gender.recode and Trait.recode for this lesson. The
vcd::mosaic() function is a good first choice for this simple graphic (Fig. 3.1).

install.packages("vcd")
library(vcd) # Load the vcd package.
help(package=vcd) # Show the information page.
sessionInfo() # Confirm all attached packages.

86 3 Chi-Square

Select the most local mirror site using Set CRAN mirror.

par(ask=TRUE)
vcd::mosaic(~ Gender.recode + Trait.recode,
data = GenderTrait.df, legend=FALSE,
gp = shading_diagonal)

par(ask=TRUE)
vcd::mosaic(~ Trait.recode + Gender.recode,
data = GenderTrait.df, legend=FALSE,
gp = shading_diagonal)

In the figures that follow, notice how the barplot() function wraps around the
table() function.

par(ask=TRUE) # Barplot of Gender.recode
barplot(table(GenderTrait.df$Gender.recode),
main="Barplot of Gender After Recode")

par(ask=TRUE) # Barplot of Trait.recode
barplot(table(GenderTrait.df$Trait.recode),
main="Barplot of Trait After Recode")

par(ask=TRUE) # Stacked barplot
barplot(table(GenderTrait.df$Gender.recode,
GenderTrait.df$Trait.recode),
beside=FALSE, # Stacked barplot
main="Stacked Barplot")

par(ask=TRUE) # Side-by-side barplot
barplot(table(GenderTrait.df$Gender.recode,
GenderTrait.df$Trait.recode),
beside=TRUE, # Side-by-side barplot
main="Side-by-Side Barplot")

Then, when there is agreement that data are correct and the general approach for
the graphic is acceptable, prepare a more embellished figure if desired. Remember
to make colors vibrant and use print that is large and dark, whenever possible, to
support future public display of the figure.

There are many R-based functions to select from when preparing graphics. The
tools that come with initial download of R typically meet immediate needs for the
production of graphics. However, with practice and more experience, be sure to
explore the many additional R-based functions available in the thousands of external
packages currently available to the R community.

3.4 Conduct a Visual Data Check 87

Along with producing graphical figures, many functions also produce statistics of
some type, usually measures of central tendency or frequency distributions. Again,
explore the many possibilities available here and recall that when using R, rarely
if ever is there a one-and-only-one function available to support production of a
graphic.

par(ask=TRUE)
barplot(table(GenderTrait.df$Gender.recode),
main="Barplot of Gender", # Title
xlab="Gender", # X axis label
ylab="Frequency", # Y axis label
cex.axis=1.25, # Axis size
cex.names=1.25, # Names size
cex.lab=1.25, # Label size
col=c("pink", "blue"), # Color of bar
font.lab=2) # Bold font

par(ask=TRUE)
barplot(table(GenderTrait.df$Trait.recode),
main="Barplot of Trait", # Title
xlab="Trait", # X axis label
ylab="Frequency", # Y axis label
cex.axis=1.25, # Axis size
cex.names=1.25, # Names size
cex.lab=1.25, # Label size
col=c("red", "green"), # Color of bar
font.lab=2) # Bold font

A legend may help better identify groups and group membership, while still
keeping the figures simple. To achieve this aim, use the table() function to create a
new object variable that represents a crosstab table of GenderTrait.df$Gender.recode
by GenderTrait.df$Trait.recode. Then, see how this newly created object variable
(GenderTrait.crosstab) is used in concert with the barplot() function and the legend
argument.

GenderTrait.crosstab <- table(# Organize the data
GenderTrait.df$Gender.recode, # into a table, to
GenderTrait.df$Trait.recode) # ease later actions.

rownames(GenderTrait.crosstab) <- c("Female", "Male")
colnames(GenderTrait.crosstab) <- c("Absent", "Present")
GenderTrait.crosstab # Print the table.
str(GenderTrait.crosstab) # Object structure
attributes(GenderTrait.crosstab) # Object attributes

par(ask=TRUE) # Barplot of Gender.recode by Trait.recode
barplot(GenderTrait.crosstab,
main="Gender by Trait (Stacked)", # Title
xlab="Trait", # X axis label
ylab="Frequency", # Y axis label
cex.axis=1.25, # Axis size
cex.names=1.25, # Names size
cex.lab=1.25, # Label size
font.lab=2, # Bold font

88 3 Chi-Square

col=c("pink", "blue"), # Factor colors
legend=rownames(GenderTrait.crosstab), # Legend
beside=FALSE) # Stacked

par(ask=TRUE) # Barplot of Gender.recode by Trait.recode
barplot(GenderTrait.crosstab,
main="Gender by Trait (Side-by-Side)", # Title
xlab="Trait", # X axis label
ylab="Frequency", # Y axis label
cex.axis=1.25, # Axis size
cex.names=1.25, # Names size
cex.lab=1.25, # Label size
font.lab=2, # Bold font
col=c("pink", "blue"), # Factor colors
legend=rownames(GenderTrait.crosstab), # Legend
beside=TRUE) # Side-by-side

TraitGender.crosstab <- table(# Organize the data
GenderTrait.df$Trait.recode, # into a table, to
GenderTrait.df$Gender.recode) # ease later actions.

rownames(TraitGender.crosstab) <- c("Absent", "Present")
colnames(TraitGender.crosstab) <- c("Female", "Male")
TraitGender.crosstab # Print the table.
str(TraitGender.crosstab) # Object structure
attributes(TraitGender.crosstab) # Object attributes

par(ask=TRUE) # Barplot of Trait.recode by Gender.recode
barplot(TraitGender.crosstab,
main="Trait by Gender (Stacked)", # Title
xlab="Gender", # X axis label
ylab="Frequency", # Y axis label
cex.axis=1.25, # Axis size
cex.names=1.25, # Names size
cex.lab=1.25, # Label size
font.lab=2, # Bold font
col=c("red", "green"), # Factor colors
legend=rownames(TraitGender.crosstab), # Legend
beside=FALSE) # Stacked

par(ask=TRUE) # Barplot of Trait.recode by Gender.recode
barplot(TraitGender.crosstab,
main="Trait by Gender (Side-by-Side)", # Title
xlab="Gender", # X axis label
ylab="Frequency", # Y axis label
cex.axis=1.25, # Axis size
cex.names=1.25, # Names size
cex.lab=1.25, # Label size
font.lab=2, # Bold font
col=c("red", "green"), # Factor colors
legend=rownames(TraitGender.crosstab), # Legend
beside=TRUE) # Side-by-side

3.4 Conduct a Visual Data Check 89

Female

Absent
Present

Gender

Trait by Gender (Side-by-Side)
F

re
qu

en
cy

0
5

10
15

20
25

30

Male

Fig. 3.2 Side-by-side bar plot of two separate object variables

Although these figures prepared by using the barplot() function are both useful
and visually appealing, use the epicalc package to produce additional information
(i.e., frequency distributions and percentage representation) about the factor object
variables in question, Gender.recode and Trait.recode for this sample (Fig. 3.2).

install.packages("epicalc")
library(epicalc) # Load the epicalc package.
help(package=epicalc) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

epicalc::tableStack(Gender.recode,
dataFrame=GenderTrait.df,
by="none", count=TRUE, decimal=2,
percent=c("column", "row"),
frequency=TRUE, name.test=TRUE,
total.column=TRUE, test=TRUE)

par(ask=TRUE) # Bar Plot of Gender.recode
epicalc::tab1(GenderTrait.df$Gender.recode,
decimal=2, # Use the tab1() function
sort.group=FALSE, # from the epicalc
cum.percent=TRUE, # package to see details
graph=TRUE, # about the selected
missing=TRUE, # object variable. (The
bar.values=c("frequency"), # 1 of tab1 is the one
horiz=FALSE, # numeric character and
cex=1.15, # it is not the letter
cex.names=1.15, # l).
cex.lab=1.15, cex.axis=1.15,
main="Gender",
ylab="Frequency of Gender, Includings NAs if Any",
col= c("pink", "blue"),

90 3 Chi-Square

gen=TRUE)

epicalc::tableStack(Trait.recode,
dataFrame=GenderTrait.df,
by="none", count=TRUE, decimal=2,
percent=c("column", "row"),
frequency=TRUE, name.test=TRUE,
total.column=TRUE, test=TRUE)

par(ask=TRUE) # Bar Plot of Trait.recode
epicalc::tab1(GenderTrait.df$Trait.recode,
decimal=2, # Use the tab1() function
sort.group=FALSE, # from the epicalc
cum.percent=TRUE, # package to see details
graph=TRUE, # about the selected
missing=TRUE, # object variable. (The
bar.values=c("frequency"), # 1 of tab1 is the one
horiz=FALSE, # numeric character and
cex=1.15, # it is not the letter
cex.names=1.15, # l).
cex.lab=1.15, cex.axis=1.15,
main="Trait",
ylab="Frequency of Trait, Includings NAs if Any",
col= c("red", "green"),
gen=TRUE)

3.5 Descriptive Analysis of the Data

Measures of central tendency (e.g., Mode, Median, Mean, SD, etc.) are not needed
for this lesson since there are no data of interest that have measured, as opposed to
counted, numerical values. Instead, the focus of this lesson is on frequency counts,
percentages, and breakouts of frequency counts.

For this simple dataset, the summary() function may be all that is necessary
to gain a sense of the data. Note how the summary() function is applied against
the entire dataset, thus yielding information about all object variables including
those that are not directly used in this lesson, including ostensibly unnecessary
information about Subject, Gender (prior to recode), and Trait (prior to recode).

summary(GenderTrait.df) # Entire dataframe

summary(GenderTrait.df[, 4:5]) # Variables 4 to 5

However, there are many other R-based functions that support analysis of
frequency-type data. A few of these functions are demonstrated below.

Two way frequency tables are easily achieved in different presentations by using
the table() function, the margin.table() function, and the prop.table() function. As

3.5 Descriptive Analysis of the Data 91

always, use the interactive help(function_name) at the R prompt to learn more about
the specific use of these many functions.

table(GenderTrait.df$Gender.recode,
GenderTrait.df$Trait.recode)
Breakouts, row by column

margin.table(table(GenderTrait.df$Gender.recode,
GenderTrait.df$Trait.recode))
Total

margin.table(table(GenderTrait.df$Gender.recode,
GenderTrait.df$Trait.recode), 1)
Breakouts for Gender.recode

margin.table(table(GenderTrait.df$Gender.recode,
GenderTrait.df$Trait.recode), 2)
Breakouts for Trait.recode

prop.table(table(GenderTrait.df$Gender.recode,
GenderTrait.df$Trait.recode))
Total

Absent Present
Female 0.5166667 0.2000000
Male 0.1500000 0.1333333

prop.table(table(GenderTrait.df$Gender.recode,
GenderTrait.df$Trait.recode), 1)
Breakouts for Gender.recode to total 100 percent
for Trait.recode

prop.table(table(GenderTrait.df$Gender.recode,
GenderTrait.df$Trait.recode), 2)
Breakouts for Trait.recode to total 100 percent
for Gender.recode

The xtabs() function should also be considered for presentation of a frequency
distribution table. The xtabs() function produces attractive output and label headers
make a useful addition.

xtabs(~Gender.recode+Trait.recode,
data=GenderTrait.df, sparse=FALSE)

Trait.recode
Gender.recode Absent Present

Female 31 12
Male 9 8

A few more specialized functions will be demonstrated later in this lesson,
since these functions not only present frequency distributions, but they also provide
statistical analyses, such as the Chi-square statistic.

92 3 Chi-Square

3.6 Conduct the Statistical Analysis

chisq.test() Function
The chisq.test() function is used to conduct this Chi-square analysis of Gen-
der.recode by Trait.recode. Specifically, the Pearson’s Chi-square Test for Count
Data is used to determine if there is a statistically significant difference in the relative
frequency of occurrence of Gender (Female and Male) by a specific trait (Absent
and Present). At the R prompt, key help(chisq.test) to learn more about this
function. This interactive approach for obtaining immediate help with R applies to
all R functions available in the active R session.

Perspective of Gender (row) by Trait (column)

table(GenderTrait.df$Gender.recode,
GenderTrait.df$Trait.recode)
Gender (row) by Trait (column)

Absent Present
Female 31 12
Male 9 8

chisq.test(GenderTrait.df$Gender.recode,
GenderTrait.df$Trait.recode, correct=TRUE)
Use continuity correction, (e.g., Yates) which is a
concern whenever N <= 10 for any individual cell in
a 2 by 2 table.

Pearson’s Chi-squared test with Yates’ continuity correction

data: GenderTrait.df$Gender.recode and
GenderTrait.df$Trait.recode

X-squared = 1.2415, df = 1, p-value = 0.2652

chisq.test(GenderTrait.df$Gender.recode,
GenderTrait.df$Trait.recode, correct=FALSE)
Do not use continuity correction.

Pearson’s Chi-squared test

data: GenderTrait.df$Gender.recode and
GenderTrait.df$Trait.recode

X-squared = 2.0109, df = 1, p-value = 0.1562

chisq.test(GenderTrait.crosstab, correct=TRUE)
Use continuity correction, (e.g., Yates) which is a
concern whenever N <= 10 for any individual cell in
a 2 by 2 table.

chisq.test(GenderTrait.crosstab, correct=FALSE)
Do not use continuity correction.

summary(GenderTrait.crosstab)

3.6 Conduct the Statistical Analysis 93

Perspective of Trait (row) by Gender (column)

table(GenderTrait.df$Trait.recode,
GenderTrait.df$Gender.recode)
Trait (row) by Gender (column)

Female Male
Absent 31 9
Present 12 8

chisq.test(GenderTrait.df$Trait.recode,
GenderTrait.df$Gender.recode, correct=TRUE)
Use continuity correction, (e.g., Yates) which is a
concern whenever N <= 10 for any individual cell in
a 2 by 2 table.

Pearson’s Chi-squared test with Yates’ continuity correction

data: GenderTrait.df$Trait.recode and
GenderTrait.df$Gender.recode

X-squared = 1.2415, df = 1, p-value = 0.2652

chisq.test(GenderTrait.df$Trait.recode,
GenderTrait.df$Gender.recode, correct=FALSE)
Do not use continuity correction.

Pearson’s Chi-squared test

data: GenderTrait.df$Trait.recode and
GenderTrait.df$Gender.recode

X-squared = 2.0109, df = 1, p-value = 0.1562

chisq.test(TraitGender.crosstab, correct=TRUE)
Use continuity correction, (e.g., Yates) which is a
concern whenever N <= 10 for any individual cell in
a 2 by 2 table.

chisq.test(TraitGender.crosstab, correct=FALSE)
Do not use continuity correction.

summary(TraitGender.crosstab)

When using the chisq.test() function and more specifically by using the argument
correct=TRUE and later changing the argument to correct=FALSE, note how the
Chi-square statistic was calculated using Yates correction (correct=TRUE) and how
it was calculated without Yates correction (correct=FALSE). Yates correction is
often used when any individual cell has an observed N of five or fewer datapoints,
whereas others suggest that Yates correction should be used when any individual
cell has an observed N of ten or fewer datapoints. In this sample:

94 3 Chi-Square

• With Yates Correction, p-value = 0.2652
• Without Yates Correction, p-value = 0.1562

It was a simple task to use both approaches toward the use of Yates correction
and later it will be decided which of the two approaches (e.g., use Yates or not use
Yates) is the better choice. Recall that there are two cells (Gender = Male and Trait
= Absent, where N D 9; Gender = Male and Trait = Present, where N D 8) in the
two by two contingency table where observed N is less than ten. Accordingly, it is
possible that Yates correction may be appropriate for this problem.

gmodels::CrossTable() Function
Along with use of the chisq.test() function, the gmodels::CrossTable() function
should also be considered as a perhaps redundant, but still useful, check of all
calculations. Note the way data are summarized in the crosstabs table gained from
the gmodels::CrossTable() function. Equally, notice how the statistics are provided
for both calculations, with Yates correction (for this sample, Chi-square D 1.24145,
d.f. D 1, and p D 0.2651918) and also without Yates correction (for this sample,
Chi-square D 2.010944, d.f. D 1, and p D 0.1561681).

install.packages("gmodels")
library(gmodels) # Load the gmodels package.
help(package=gmodels) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

gmodels::CrossTable(GenderTrait.df$Gender.recode,
GenderTrait.df$Trait.recode,
expected=TRUE, # Include expected cell counts.
prop.r=TRUE, # Include row proportions.
prop.c=TRUE, # Include column proportions.
prop.t=TRUE, # Include table proportions.
chisq = TRUE, # Include Chi-square test results,
format=c("SPSS")) # Model SPSS output format.

Pearson’s Chi-squared test
--
Chi^2 = 2.010944 d.f. = 1 p = 0.1561681

Pearson’s Chi-squared test with Yates’ continuity correction
--
Chi^2 = 1.24145 d.f. = 1 p = 0.2651918

Along with Chi-square statistics, note in the complete gmodels::CrossTable()
function output how this function also provides a set of percentages for all cells in
the contingency table: row percentages, column percentages, and total percentages.
Even if it were not necessary to calculate the Chi-Square statistic, the way these
percentages are presented support use of the gmodels::CrossTable() function.

3.6 Conduct the Statistical Analysis 95

summary(xtabs()) Functions
Another useful function is the xtabs() function, with the summary() function
wrapped around it. Consider below how the combined use of these two functions
generates the Chi-square statistic.

summary(xtabs(~Gender.recode+Trait.recode,
data=GenderTrait.df, sparse=FALSE))

Number of cases in table: 60
Number of factors: 2
Test for independence of all factors:

Chisq = 2.0109, df = 1, p-value = 0.1562

The output gained from use of the summary(xtabs()) functions is certainly not
verbose and there is no accompanying graphic, but all relevant statistics are provided
in support of later decision-making.

vcd::table2d_summary() Function
Consider the vcd::table2d_summary() function as an another tool to calculate the
Chi-square statistic. The output provides an attractive frequency distribution table
and all relevant statistics for a Chi-square analysis: Chi-square statistic, Degrees of
Freedom (df), and p-value. Below, note how the vcd::table2d_summary() function
is applied against the previously created table, GenderTrait.crosstab and then again
against TraitGender.crosstab.

vcd::table2d_summary(GenderTrait.crosstab)

vcd::table2d_summary(TraitGender.crosstab)

However, consider the use of selected arguments with the
vcd::table2d_summary() function to provide margin totals, enhancing under-
standing of relationships between and among data in one simple presentation.

vcd::table2d_summary(GenderTrait.crosstab,
margins=TRUE, percentages=TRUE)
Use arguments for more information.

Absent Present TOTAL

Female freq 31.00 12.00 43.00
% 51.67 20.00 71.67

Male freq 9.00 8.00 17.00
% 15.00 13.33 28.33

TOTAL freq 40.00 20.00 60.00
% 66.67 33.33 100.00

Number of cases in table: 60
Number of factors: 2
Test for independence of all factors:

Chisq = 2.0109, df = 1, p-value = 0.1562

96 3 Chi-Square

vcd::table2d_summary(TraitGender.crosstab,
margins=TRUE, percentages=TRUE)
Use arguments for more information.

Female Male TOTAL

Absent freq 31.00 9.00 40.00
% 51.67 15.00 66.67

Present freq 12.00 8.00 20.00
% 20.00 13.33 33.33

TOTAL freq 43.00 17.00 60.00
% 71.67 28.33 100.00

Number of cases in table: 60
Number of factors: 2
Test for independence of all factors:

Chisq = 2.0109, df = 1, p-value = 0.1562

Note especially how the vcd::table2d_summary() function produces an easy-to-
read frequency distribution table of cell counts and percentages.

lessR::BarChart() Function
Although these many (and other) functions are sufficient for Chi-square analyses,
there are many cases where functions in external packages have been developed
that combine both graphic output and statistical analysis. Below, look at the way the
barplot() function will be improved upon by using the lessR::BarChart() function.
The lessR::BarChart() function will not only produce a barplot, but by using the
quiet=FALSE argument the lessR::BarChart() function will also generate useful
tables and an output of the Chi-square statistic, which can easily serve as another
quality assurance check against the chisq.test() function.

install.packages("lessR")
library(lessR) # Load the lessR package.
help(package=lessR) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

Prepare an initial graphic of Gender by Trait, with supporting Chi-square analysis
in the Gender by Trait crosstabs.

par(ask=TRUE) # Barplot of Gender.recode by Trait.recode
lessR::BarChart(Gender.recode, # Gender.recode
by=Trait.recode, # Trait.recode
data=GenderTrait.df, # Data source
beside=TRUE, # Side-by-Side barchart
col.fill=c("red", "green"), # Legend colors
col.bg=c("white"), # Background color
col.grid=c("grey"), # Grid color
xlab="Gender", # X axis label
ylab="Frequency", # Y axis label
main="Frequency of Gender and Trait",

3.7 Summary 97

cex.axis=1.25, # Adjust axis
col.axis="black", # Color axis
font.lab=2, # Bold font
legend.title="Trait Legend", # Legend title
legend.loc="topright", # Legend location
quiet=FALSE) # Produce statistics

Joint and Marginal Frequencies

Gender.recode
Trait.recode Female Male Sum
Absent 31 9 40
Present 12 8 20
Sum 43 17 60

Chi-square Analysis

Number of cases (observations) in analysis: 60
Number of variables: 2
Test of independence: Chisq = 2.010944, df = 1,
p-value = 0.1562

Be sure to view the full set of statistics generated along with the barchart figure.
Again, note how the accompanying statistics produced by the lessR::BarChart()
function (Chisq = 2.010944, df = 1, p-value = 0.1562) are consistent with what
has been generated by using the chisq.test() function, the gmodels::CrossTable()
function, and the other previously demonstrated functions. Redundancy is often
useful as a quality assurance check.

3.7 Summary

In this lesson, the graphical and text output provided a great deal of information. Of
immediate importance, however, focus on the 2 by 2 (2 rows by 2 columns) contin-
gency table of Gender.recode by Trait.recode or Trait.recode by Gender.recode and,
most importantly, give attention to the calculated p value both with Yates correction
and without Yates correction:

chisq.test(table(
GenderTrait.df$Gender.recode, GenderTrait.df$Trait.recode),
correct=TRUE) # Yates correction, for low N cells

Pearson’s Chi-squared test with Yates’ continuity correction

data: table(GenderTrait.df$Gender.recode,
GenderTrait.df$Trait.recode)

X-squared = 1.2415, df = 1, p-value = 0.2652

98 3 Chi-Square

chisq.test(table(
GenderTrait.df$Gender.recode, GenderTrait.df$Trait.recode),
correct=FALSE) # Not Yates correction, for low N cells

Pearson’s Chi-squared test

data: table(GenderTrait.df$Gender.recode,
GenderTrait.df$Trait.recode)

X-squared = 2.0109, df = 1, p-value = 0.1562

chisq.test(table(
GenderTrait.df$Trait.recode, GenderTrait.df$Gender.recode),
correct=TRUE) # Yates correction, for low N cells

Pearson’s Chi-squared test with Yates’ continuity correction

data: table(GenderTrait.df$Trait.recode,
GenderTrait.df$Gender.recode)

X-squared = 1.2415, df = 1, p-value = 0.2652

chisq.test(table(
GenderTrait.df$Trait.recode, GenderTrait.df$Gender.recode),
correct=FALSE) # Not Yates correction, for low N cells

Pearson’s Chi-squared test

data: table(GenderTrait.df$Trait.recode,
GenderTrait.df$Gender.recode)

X-squared = 2.0109, df = 1, p-value = 0.1562

chisq.test(GenderTrait.crosstab, correct=TRUE)
Yates correction

Pearson’s Chi-squared test with Yates’ continuity correction

data: GenderTrait.crosstab
X-squared = 1.2415, df = 1, p-value = 0.2652

chisq.test(GenderTrait.crosstab, correct=FALSE)
Not Yates correction

Pearson’s Chi-squared test

data: GenderTrait.crosstab
X-squared = 2.0109, df = 1, p-value = 0.1562

chisq.test(TraitGender.crosstab, correct=TRUE)
Yates correction

3.7 Summary 99

Pearson’s Chi-squared test with Yates’ continuity correction

data: TraitGender.crosstab
X-squared = 1.2415, df = 1, p-value = 0.2652

chisq.test(TraitGender.crosstab, correct=FALSE)
Not Yates correction

Pearson’s Chi-squared test

data: TraitGender.crosstab
X-squared = 2.0109, df = 1, p-value = 0.1562

With Yates correction, the calculated p value is 0.2652 (which rounds to 0.27).
Without Yates correction, the calculated p value is 0.1562 (which rounds to 0.16).

Both p values (0.2652 with Yates correction and 0.1562 without Yates correction)
exceed the previously declared value of p <= 0.05, associated with the Null
Hypothesis. In this case, the calculated p value of 0.16 (or 0.27, depending on use of
Yates correction) exceeds p <= 0.05, providing another measure to confirm that
for the sample in question, there is no difference (p <= 0.05) in the occurrence
of a specific trait for the two genders.

Null Hypothesis (Ho) There is no statistically significant difference (p <= 0.05)
between the two genders (Female or Male) in regard to the presence (Absent
or Present) of a specific unnamed trait of an otherwise unidentified biological
organism.

Although the nature of the study was masked in this sample, it can be stated with
a fair degree of confidence that there is no difference between the two genders in
terms of the absence or presence of the trait relevant to this lesson.

Of course, more precise measures may have been desirable, along with a larger
sample. Recall that in this sample an individual technician determined both gender
and presence or absence of the trait. It is assumed that gender is fairly easily
identified, but that is not always the case. More problematic, however, is declaration
of the nature of the trait and how it may have benefited from some type of empirical
measure, such as a reading on a scaled or calibrated instrument, but that was not
the case in this lesson. Perhaps the sample consisted of a biological organism that
was captured in the wild and needed to be released quickly to avoid harm to either
the organism or field staff. Under these conditions, a quick call may be the only
choice for data collection. Of course, there may be other equally compelling reasons
for the way data were obtained, but that is not evident in what was provided to
the researcher charged with analysis. For this sample, it is only sufficient to know
that there was no statistically significant difference (p <= 0.05) between the two
genders regarding presence or absence of the trait in question.

100 3 Chi-Square

3.8 Addendum: Calculate the Chi-Square Statistic
from Contingency Tables

This lesson demonstrated calculation of the Chi-square statistic for data that were
eventually organized into a 2 by 2 contingency table. A 2 by 2 table with four
cells is perhaps the most common approach to use of Chi-square analyses, but other
configurations are possible.

Consider another typical scenario for a Chi-square test where data have been
organized into discrete categories where there are six cells. In this sample, data are
organized by gender (rows) in regard to responses to a survey-based health-related
question that allowed Yes, No, or Undecided as possible responses (columns),
allowing for three possible selections to the question.

As opposed to the 2 (rows) by 2 (columns) table presented previously, in this
sample the data are organized into a 2 (rows) by 3 (columns) table, consisting of
2*3 = 6 cells. Again, totals are provided to the right and bottom:

Response to a Health-Related Survey Question
by Gender
==

Response
--

Yes No Undecided Total
==
| | | | | |

Female | N = 09 | N = 11 | N = 14 | | 34 |
| | | | | |

Gender |==|
| | | | | |

Male | N = 12 | N = 07 | N = 08 | | 27 |
==
| | | | | |

Total | N = 21 | N = 18 | N = 22 | | 61 |
==

The original data file is not available, which is often quite common, but notice
how a contingency table can be built using R if totals for each cell are known. For
this sample, observe how the cbind() function is used to construct a dataframe called
GenderSurveyQ.cross:

GenderSurveyQ.cross <- cbind(c(09, 12), c(11, 07), c(14, 08))
rownames(GenderSurveyQ.cross) <- c("Female", "Male")
colnames(GenderSurveyQ.cross) <- c("Yes", "No", "Undecided")
str(GenderSurveyQ.cross) # Object structure
attributes(GenderSurveyQ.cross) # Object attributes
GenderSurveyQ.cross # Print the table.

GenderSurveyQ.cross <- data.frame(GenderSurveyQ.cross)

3.8 Addendum: Calculate the Chi-Square Statistic from Contingency Tables 101

str(GenderSurveyQ.cross) # Object structure
attributes(GenderSurveyQ.cross) # Object attributes
GenderSurveyQ.cross # Print the table.

First, calculate the Chi-square statistic using the fairly terse chisq.test() function.

chisq.test(GenderSurveyQ.cross)

Pearson’s Chi-squared test

data: GenderSurveyQ.cross
X-squared = 2.1792, df = 2, p-value = 0.3363

Then, in an effort to obtain a better cell-by-cell understanding of outcomes,
calculate the Chi-square statistic using the far more verbose mosaic::xchisq.test()
function.

install.packages("mosaic")
library(mosaic) # Load the mosaic package.
help(package=mosaic) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

mosaic::xchisq.test(GenderSurveyQ.cross)

Pearson’s Chi-squared test

data: x
X-squared = 2.1792, df = 2, p-value = 0.3363

9.00 11.00 14.00
(11.70) (10.03) (12.26)
[0.625] [0.093] [0.246]
<-0.79> < 0.31> < 0.50>

12.00 7.00 8.00
(9.30) (7.97) (9.74)
[0.787] [0.117] [0.310]
< 0.89> <-0.34> <-0.56>

key:
observed
(expected)
[contribution to X-squared]
<residual>

From this organization of data, the p-value was calculated (p-value
<= 0.3363) and subsequent decision-making can used to determine if overall
differences between observed and expected counts in each cell are due to chance,
or if the differences are instead due to true differences between the two genders and
responses to the survey question, at p <= 0.05.

102 3 Chi-Square

Using the appropriate statistical analysis, it was determined in this example of
Gender (Female or Male) by Survey Question Response (Yes, No, or Undecided)
that Chi-square D 2.179, degrees of freedom D 2, and p <= 0.3363. Given that
calculated p (0.34) is greater than the typically declared p value of p <= 0.05,
it can be declared there is no statistically significant difference (p <= 0.05) in
survey question response by gender from among subjects in this sample. Again, this
sample presented a 2 by 3 contingency table (2 rows by 3 columns) instead of the
more common 2 by 2 contingency table. Yet, R-based functions are easily used for
this expanded contingency table, where data were not available at the level of the
individual subject but were instead only available in collapsed (i.e., grouped) format
for each cell in the contingency table.

3.9 Prepare to Exit, Save, and Later Retrieve This R Session

getwd() # Identify the current working directory.
ls() # List all objects in the working

directory.
ls.str() # List all objects, with finite detail.
list.files() # List files at the PC directory.

save.image("R_Lesson_Chi-square.rdata")

getwd() # Identify the current working directory.
ls() # List all objects in the working

directory.
ls.str() # List all objects, with finite detail.
list.files() # List files at the PC directory.

alarm() # Alarm, notice of upcoming action.
q() # Quit this session.

Prepare for Save workspace image? query.

Use the R Graphical User Interface (GUI) to load the saved rdata file: File ->
Load Workspace. Otherwise, use the load() function, keying the full pathname, to
load the .rdata file and retrieve the session.

Recall, however, that it may be just as useful to simply use the .R script file
(typically saved is a .txt ASCII-type file) and recreate the analyses and graphics,
provided the data files remain available.

Chapter 4
Mann–Whitney U Test

Abstract The Mann–Whitney U test is often viewed as the nonparametric
equivalent of Student’s t-Test for Independent Samples, but this comparison may be
somewhat too convenient. The two tests (the nonparametric Mann–Whitney U-Test
and the parametric Student’s t-Test for Independent Samples) may have similar
purposes in that they are both used to determine if there are statistically significant
differences between two groups. However, the Mann–Whitney U-Test is used
with nonparametric data (typically, ordinal data) whereas the Student’s t-Test for
Independent Samples is used with data that meet the assumptions associated with
parametric distributions (typically interval data that approximate an acceptable level
of normal distribution). Even so, the Mann–Whitney U-Test has many appropriate
uses and it should be considered when using ranked data, data that deviate from
acceptable distribution patterns, or for when there are noticeable differences in the
number of subjects in the two comparative groups.

Keywords Anderson-Darling Test • Bar plot (stacked, side-by-side) • Box
plot • Code Book • Comma-separated values (.csv) • Continuous scale
• Density plot • Descriptive statistics • Distribution-free • Frequency distribution
• Histogram • Interval • Mann–Whitney U Test • Mean • Median • Mode
• Nominal • Nonparametric • Normal distribution • Null hypothesis • Ordinal
• Parametric • Probability (p-value) • Quantile-Quantile (QQ, Q-Q) • Ranking
• Stacked data • Statistical significance • Student’s t-Test for Independent
Samples • Unstacked data

4.1 Background on this Lesson

Typically using ordinal data, the Mann–Whitney U Test is used to determine if
two independent groups are from the same population. The Mann–Whitney Test
is quite powerful and by no means should it be considered anything but equivalent
to Student’s t-Test for Independent Samples in terms of utility. However, the data

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-3-319-
30634-6_4) contains supplementary material, which is available to authorized users.

© Springer International Publishing Switzerland 2016
T.W. MacFarland, J.M. Yates, Introduction to Nonparametric Statistics
for the Biological Sciences Using R, DOI 10.1007/978-3-319-30634-6_4

103

http://dx.doi.org/10.1007/978-3-319-30634-6_4
http://dx.doi.org/10.1007/978-3-319-30634-6_4

104 4 Mann–Whitney U Test

for Mann–Whitney are usually ordinal, whereas the data for Student’s t-Test are
interval. Of course, there are those who suggest that far too many studies use data
that are declared interval, and, subsequently, Student’s t-Test is used to examine
differences. Yet, in reality, the data are ordinal and the Mann–Whitney Test would
be the more appropriate choice.

4.1.1 Description of the Data

This lesson on the Mann–Whitney U-Test is based on a study about goats (Capra
aegagrus hircus) and more specifically judgments about two groups of goats after
a mineral supplement was introduced into the diet of one group of goats (i.e.,
experimental group) but not the other group of goats (i.e., control group). To be
more specific about the conditions associated with the data:

• A herd (i.e., tribe) of 30 goats was divided into two separate groups. From among
the 30 goats available for placement into the two groups, assignment into either
Group 1 or Group 2 was based on random selection.

– Group 1 served as a control group and these goats received regular feed during
the treatment period.

– Group 2 served as the experimental group and these goats received a mineral
supplement during the treatment period, in addition to the regular feeding
program. Application of the mineral supplement treatment was consistent
for the 15 goats receiving the treatment. However, the nature of the mineral
supplement, amount, means of introduction into the feeding program (e.g,
powder, liquid, granules, etc.), regularity of treatment, etc., remain unknown
to the researcher responsible for data analysis.

• At the end-of-treatment, each goat was judged against a measure that potentially
ranged from 40 to 100. The nature of the judgment remains unknown to the
researcher responsible for data analysis.

It should be emphasized that the exact nature of the treatment (i.e., object variable
Treatment) used for the two groups of goats is currently unidentified. The treatment
consisted of some type of mineral supplement to the diet, but there is no other usable
information about the treatment.

It is also necessary to recognize that the measure used to determine outcomes
at the end-of-treatment (i.e., object variable Judgment) is equally unidentified. The
data for Judgment may refer to some measure about hair color, some measure about
overall vigor, some measure of milk production (such as protein content or butterfat
content), etc.

• A key point here regarding the object variable Judgment is that based on prior
experience with the treatment process and later measures obtained at time-of-
judgment, there is no expectation that outcomes are normally distributed and
follow along some semblance of the bell-shaped curve. This view toward normal
distribution of data may occur, but normal distribution is not expected.

4.1 Background on this Lesson 105

• Another issue involving the object variable Judgment is that there are concerns
about the nature of the data and whether the data are ordinal or if they rise to
meet conditions necessary to consider the data interval. For the purpose of this
lesson, the data associated with object variable Judgment are viewed as ordinal
data.

Given the nature of the data associated with this study and, specifically, the
data associated with the object variable Judgment, Student’s t-Test for Independent
Samples is not the appropriate test to use to critically examine if there are
statistically significant differences between the two groups.

Instead, this lesson will be based on use of the Mann–Whitney U-Test, with
no expectation for Judgment measures other than that the data are assumed to
be ordered and distribution-free. Accordingly, the data for Judgment are therefore
viewed from a nonparametric perspective.

The dataset is fairly simple, and the entire dataset is found as stacked data in the
file Goats.csv:

• The first line consists of a header that uses descriptive variable names: Goat,
Treatment, and Judgment.

• The header is then followed by 30 lines of data, one line of data for each goat
(i.e., subject).

• Goat: There is a coded identifier (G01 to G30) for each goat. Adequate tags and
tracking protocols were used to correctly identify each goat throughout the study.

• Treatment: Binary values of 1 and 2 are used to differentiate between the two
groups of goats associated with this study:

– Group 1 (i.e., control group): Regular Feed
– Group 2 (i.e., experimental group): Regular Feed and Added Mineral

Supplement

• Judgment: At the end-of-treatment, each goat was individually judged by a
qualified technician for an otherwise unidentified characteristic, measure, trait,
etc. The scale for Judgment ranged from 40 (low) to 100 (high). Based on prior
experience it is assumed that:

– The data do not follow along any consistent pattern of normal distribution.
– The data do not have a consistent scale and they should be viewed as ordinal

data and not interval data. That is to say, the difference between a measure of
89 and 90 may not be consistently equal to the difference between a 90 and
91, 93 and 94, 98 and 99, etc.

Given these conditions and the view that Judgment measures are ordinal
data that do not follow normal distribution, the nonparametric Mann–Whitney
U-Test is viewed as the most appropriate inferential test to determine if there is
a statistically significant difference (p <= 0.05) between the two groups, goats
who experienced Treatment 1 (i.e., control group) and their counterparts who
experienced Treatment 2 (i.e., experimental group).

106 4 Mann–Whitney U Test

It is beyond the purpose of this lesson to offer a detailed lecture on experimental
designs for the biological sciences. By no means is the design for this lesson offered
as an ideal, but this design is an accurate portrayal of the realities of exploratory
biological research, especially when faced with field conditions, as opposed to
research with greater control under laboratory conditions.

• There is no attempt to select subjects beyond this one herd of 30 goats.
• No background information about the herd of 30 goats is known and from this

limited information there is no differentiation in selected subjects by breed, age,
gender, etc.

• There is no pretest measure of Judgment for either Group 1 (i.e., control group)
or Group 2 (i.e., experimental group). As such, it is not possible to assess change
over time, and instead it is only possible to assess differences between the two
groups on a posttest measure only.

Given the nature of the data, the nonparametric Mann–Whitney U-Test is judged
the most appropriate inferential test for this analysis of differences between goats in
Group 1 (i.e., the control group) and goats in Group 2 (i.e., the experimental group).

4.1.2 Null Hypothesis (Ho)

There is no statistically significant difference (p <= 0.05) between goats that
received regular feed during a treatment period (i.e., the control group) and their
counterparts that received regular feed and an otherwise unidentified mineral
supplement added to the feeding program during the same treatment period (i.e.,
the experimental group).

The Null Hypothesis (Ho) uses p <= 0.05, which is quite common for
exploratory research. Saying that, it is equally common to see more restrictive
probability levels (i.e., the term alpha is sometimes seen) used in research that
benefits from a more rigorous design, with p <= 0.01 frequently used.

4.2 Data Import of a .csv Spreadsheet-Type Data File into R

The data for this lesson were originally entered into a Gnumeric-based spreadsheet.
The data were then also saved in .csv (i.e., comma-separated values) file format
as Goats.csv. The data in the .csv file are separated by commas, not tabs and not
spaces. As a .csv file the data can be easily sent to, and opened by, other researchers
without the need for specialized software or proprietary software that may be cost
prohibitive for many.

Start a new R session and then attend to beginning actions such as removing
unwanted files from prior work, declaring the working directory, etc.

4.2 Data Import of a .csv Spreadsheet-Type Data File into R 107

###
Housekeeping Use for All Analyses
###
date() # Current system time and date.
R.version.string # R version and version release date.
ls() # List all objects in the working

directory.
rm(list = ls()) # CAUTION: Remove all files in the working

directory. If this action is not desired,
use the rm() function one-by-one to remove
the objects that are not needed.

ls.str() # List all objects, with finite detail.
getwd() # Identify the current working directory.
setwd("F:/R_Nonparametric")

Set to a new working directory.
Note the single forward slash and double
quotes.
This new directory should be the directory
where the data file is located, otherwise
the data file will not be found.

getwd() # Confirm the working directory.
list.files() # List files at the PC directory.
##

With R set to work in the desired directory, create an object called Goats.df. The
object Goats.df will be a dataframe, as indicated by the enumerated .df extension to
the object name. This object will represent the output of applying the read.table()
function against the comma-separated values file called Goats.csv. The arguments
used with the read.table() function show that there is a header with descriptive
variable names (header = TRUE) and that the separator between fields is a comma
(sep = ",").

Goats.df <- read.table (file =
"Goats.csv",
header = TRUE,
sep = ",") # Import the .csv file

getwd() # Identify the working directory
ls() # List objects
attach(Goats.df) # Attach the data, for later use
str(Goats.df) # Identify structure
nrow(Goats.df) # List the number of rows
ncol(Goats.df) # List the number of columns
dim(Goats.df) # Dimensions of the dataframe
names(Goats.df) # Identify names
colnames(Goats.df) # Show column names
rownames(Goats.df) # Show row names
head(Goats.df, n=10) # Show the head
tail(Goats.df, n=10) # Show the tail
Goats.df # Show the entire dataframe
summary(Goats.df) # Summary statistics

108 4 Mann–Whitney U Test

These actions result in the creation of an object called Goats.df. This R-based
object is a dataframe and it consists of the data originally included in the file
Goats.csv, a comma-separated values .csv file. To avoid possible conflicts, make
sure that there are no prior R-based objects called Goats.df. The prior use of rm(list =
ls()) accommodates this concern, removing all prior objects in the current R session.

Observe how it was only necessary to key the filename for the .csv file and not
the full pathname since the R working directory is currently set to the directory
and/or subdirectory where this .csv file is located. See the Housekeeping section at
the beginning of this lesson.

4.3 Organize the Data and Display the Code Book

After the data are imported into R, it is always best to organize the data by checking
format and then making any changes that may be needed. The dataset for this lesson
is fairly small (N = 30 subjects), and there are no missing data.

To support tracking purposes, a rowname will be used with this dataset, using the
rownames() function. Although the dataset for this lesson is small and this action is
not required, the addition of rownames is helpful—especially when working with
large datasets. The rownames() function assigns a unique identifier for each row in
the dataset, each beginning with the term Goat in this example.

rownames(Goats.df) <- paste(’Goat’, 1:30)

head(Goats.df) # Show the first few lines of the dataset
tail(Goats.df) # Show the last few lines of the dataset
Goats.df # Show the entire dataset since it is small

For this lesson, the class() function, str() function, and duplicated() function will
be used to be sure that data are organized as desired.

class(Goats.df)
class(Goats.df$Goat) # DataFrame$ObjectName notation
class(Goats.df$Treatment) # DataFrame$ObjectName notation
class(Goats.df$Judgment) # DataFrame$ObjectName notation

str(Goats.df) # Structure

duplicated(Goats.df) # Duplicates

The class for each object is currently correct and there are no duplicate rows of
data in the dataframe. With the data in correct format, a Code Book will help with
future understanding of the data in this dataset.

The Code Book is typically brief and only serves as a useful reminder for what
can be easily forgotten months (or even weeks) later, and to also make it easy to
decipher what may otherwise be seen as arcane numeric codes (e.g., For Gender,
does 1 = Female and 2 = Male or does 1 = Male and 2 = Female? Without a Code

4.3 Organize the Data and Display the Code Book 109

Book it is only too easy to make mistakes with the way codes are organized.).
Coding schemes that are intuitively obvious today can easily become forgotten
tomorrow.

The Code Book below represents how data are desired before analyses begin.
Recoding may be needed to put data into new formats.

###
Code Book for Goats.df
###
#
Goat Factor (i.e., nominal)
A unique ID ranging from G01 to G30
#
TreatmentFactor (i.e., nominal)
Regular Feed = 1
Regular Feed and Added Mineral Supplement = 2
#
Judgment Numeric (i.e., ordinal)
A numeric measure that ranges
from 40 to 100
###

The str() function is then again applied against the dataframe to show the nature
of each object variable as well as to confirm that the data are collectively viewed as
a dataframe.

str(Goats.df) # Structure, before recoding

’data.frame’: 30 obs. of 3 variables:
$ Goat : Factor w/ 30 levels "G01","G02","G03",..: 1 2 ...
$ Treatment: int 1 1 1 1 1 1 1 1 1 1 ...
$ Judgment : int 80 82 91 100 76 65 85 88 97 55

Recall that the Code Book shows data in their desired formats, which often
requires some degree of recoding, which has not yet occurred.

Once there is agreement that the data were brought into R in correct format, it is
usually necessary to organize the data to some degree:

• The object variable Goat is only used to identify specific subjects. Each datum
for Goat begins with the letter G, and this object variable is currently recognized
as a factor object variable.

• In this lesson, note how whole numbers (e.g., 1 and 2, as integer-type codes)
have been used in the original file to identify groups for the factor object variable
named Treatment. A set of simple R-based actions can easily:

– Transform (i.e., recode) the object variable Goats.df$Treatment into a new
object variable.

110 4 Mann–Whitney U Test

– Change the recoded object variable from original integer format to enumerated
factor format.1

– Apply narrative labels for the otherwise cryptic numeric codes (e.g., 1 and 2).

• Values for Judgment are currently whole numbers, and as such they are first
treated in R as integers. A simple recode action will instead be used to put these
values into numeric format.

Goats.df$Goat <- as.factor(Goats.df$Goat)

Goats.df$Treatment.recode <- factor(Goats.df$Treatment,
labels=c("Regular Feed", "Added Mineral Supplement"))
Use factor() and not as.factor().

Goats.df$Judgment <- as.numeric(Goats.df$Judgment)

str(Goats.df) # Structure, after recoding

’data.frame’: 30 obs. of 4 variables:
$ Goat : Factor w/ 30 levels "G01","G02","G03",..:

1 2 ...
$ Treatment : int 1 1 1 1 1 1 1 1 1 1 ...
$ Judgment : num 80 82 91 100 76 65 85 88 97 55 ...
$ Treatment.recode: Factor w/ 2 levels "Regular Feed",..: 1 1 1

1 ...

Before continuing, a few redundant actions will help confirm that the data are in
correct and desired format.

getwd() # Identify the working directory
ls() # List objects
attach(Goats.df) # Attach the data, for later use
str(Goats.df) # Identify structure
nrow(Goats.df) # List the number of rows
ncol(Goats.df) # List the number of columns
dim(Goats.df) # Dimensions of the dataframe
names(Goats.df) # Identify names
colnames(Goats.df) # Show column names
rownames(Goats.df) # Show row names
head(Goats.df) # Show the head
tail(Goats.df) # Show the tail
Goats.df # Show the entire dataframe
summary(Goats.df) # Summary statistics

summary(Goats.df[, 2:4]) # Variables 2 to 4

1Review the factor() function and the as.factor() function to see appropriate applications of each,
specifically for when object variables are recoded from one class to another class.

4.4 Conduct a Visual Data Check 111

Treatment Judgment Treatment.recode
Min. :1.0 Min. : 47.00 Regular Feed :15
1st Qu.:1.0 1st Qu.: 76.75 Added Mineral Supplement:15
Median :1.5 Median : 84.50
Mean :1.5 Mean : 82.87
3rd Qu.:2.0 3rd Qu.: 90.50
Max. :2.0 Max. :100.00

The object variable Goats.df$Treatment.recode was created by putting the
object variable Goats.df$Treatment into factor format. Labels were then applied
in sequential order for this new object, with Regular Feed used to represent every
occurrence of the numeric value 1 and Added Mineral Supplement used to represent
every occurrence of the numeric value 2.

The object variable Goats.df$Judgment was recoded from integer format to
numeric format by applying the as.numeric() function.

Note the formal nomenclature used in this recode action and Dataframe-
Name$ObjectName notation when working with object variables that are part of a
dataframe. Note also how the $ symbol is used to separate the name of the dataframe
from the name of the object: DataframeName$ObjectName.

4.4 Conduct a Visual Data Check

It is common to immediately consider descriptive statistics and measures of central
tendency when inferential analyses are planned and later completed. When working
with numeric data viewed from a parametric perspective it is critical to know the
Mode, Median, Mean, Standard Deviation, etc. However, in these lessons the data
are first examined visually, using the strong graphical features supported by R. The
images can be simple throwaway graphics, designed only to offer a general sense
of the data. Or, the images can be fully embellished, high quality, and suitable for
presentation or publication. Regardless of details in the final view, graphics provide
a composite understanding of the data that may be difficult to grasp when statistics,
only, are viewed.

For initial purposes, the graphical functions of primary interest are plot() and epi-
calc::tab1() for factor-type object variables and boxplot(), hist(), and plot(density())
for numeric-type object variables. More specialized functions from the lattice
package will then be demonstrated to provide a brief demonstration of how R
supports a wide range of graphical functions—functions that often go far beyond
what is available when R is first downloaded.

The par(ask=TRUE) function and argument are used to freeze the presentation
on the screen, one figure at a time. Note how the top line of the figure, under
the selection File—Save as, provides a variety of graphical formats to save each
figure, listed in the following order: Metafile, Postscript, PDF, PNG, BMP, TIFF, and

112 4 Mann–Whitney U Test

JPEG.2 It is also possible to perform a simple copy-and-paste against each graphical
image. R syntax can also be used to save a graphical image.

Visual Presentation of Factor-Type Object Variables

par(ask=TRUE)
plot(Goats.df$Goat, main="Goat - Subject")

par(ask=TRUE)
plot(Goats.df$Treatment.recode,
main="Frequency Distribution of Treatment: Regular Feed v
Regular Feed and Added Mineral Supplement",
lwd=6, col="red", font.axis=2, font.lab=2)

As a general comment about this figure and other figures, titles should be
adequately descriptive, often at the point of being somewhat lengthy. However,
labels need to be somewhat brief, or even terse, if they are to fit on the graph in
the allowed space.

install.packages("epicalc")
library(epicalc) # Load the epicalc package.
help(package=epicalc) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

par(ask=TRUE) # Bar and Frequencies Treatment.recode
epicalc::tab1(Goats.df$Treatment.recode,
decimal=2, # Use the tab1() function
sort.group=FALSE, # from the epicalc
cum.percent=TRUE, # package to see details
graph=TRUE, # about the selected
missing=TRUE, # object variable. (The
bar.values=c("frequency"), # 1 of tab1 is the one
horiz=FALSE, # numeric character and
cex=1.15, # it is not the letter
cex.names=1.15, # l).
cex.lab=1.15, cex.axis=1.15,
main="Regular Feed (Control Group) v Regular Feed and
Added Mineral Supplement (Experimental Group)",
ylab="Regular Feed and Added Mineral Supplement",
col= c("black", "red"),
gen=TRUE)
Note how a frequency distribution is provided, too.

Visual Presentation of Numeric-Type Object Variables
As these visual presentations of the numeric-type object variable Goats.df$Judgment
are prepared, recall that the data for this object variable are considered ordinal, not

2Each format has specific advantages. All figures associated with this text were saved in .PNG
(i.e., Portable Network Graphics) format, because .PNG figures are effective and their inclusion
eliminates any concerns about free use.

4.4 Conduct a Visual Data Check 113

20

Regular Feed

Added Mineral Supplement

40 60
Judgment

Boxplot of Judgment by Treatment
T

re
at

m
en

t

80 100

Fig. 4.1 Boxplot using the lattice::bwplot() function

interval. The object variable Goats.df$Judgment has been presented as a numeric
variable and indeed it should be viewed this way—the object variable Judgment in
this lesson is certainly a number. However, merely keep in mind that the scale is
not consistent as would be expected if the data followed along a more parametric
perspective associated with interval measurement.

Look carefully, below, as the following R syntax is reviewed. The subtle
difference of a named object variable, a | (i.e., pipe) instead of a ~ (i.e., tilde),
the selection of one argument over another, etc., can make all the difference in how
a figure appears. The comments are helpful, but the best way to approach this syntax
is to copy it then use it for individual practice (Fig. 4.1).

par(ask=TRUE)
boxplot(Goats.df$Judgment,
main="Boxplot of Judgment (End-of-Treatment Measure)",
font=2, # Bold text
cex.lab=1.15, # Large font
cex.axis=1.25, # Large axis text
lwd=2, # Thick line
col="red") # Vibrant color

par(ask=TRUE)
boxplot(Goats.df$Judgment ~ Goats.df$Treatment.recode,
main="Boxplot of Judgment (End-of-Treatment Measure) by
Treatment:

Regular Feed v Regular Feed and Added Mineral Supplement",
font=2, # Bold text
cex.lab=1.15, # Large font
cex.axis=1.25, # Large axis text
lwd=2, # Thick line
col="red") # Vibrant color

114 4 Mann–Whitney U Test

par(ask=TRUE)
hist(Goats.df$Judgment,
main="Histogram of Judgment (End-of-Treatment Measure)",
font=2, # Bold text
xlab="Judgment",# X axis label
cex.lab=1.15, # Large font
cex.axis=1.25, # Large axis text
lwd=2, # Thick line
col="red") # Vibrant color

par(ask=TRUE)
plot(density(Goats.df$Judgment,
na.rm=TRUE), # Required for the density() function
main="Density Plot of Judgment (End-of-Treatment Measure)",
font=2, # Bold text
cex.lab=1.15, # Large font
cex.axis=1.25, # Large axis text
lwd=6, # Thick line
col="red") # Vibrant color

There are also many other ways to show the numeric variables, individually and
by breakout groups. From among the many possible selections, the lattice package
and specifically the lattice::histogram() and lattice::bwplot() functions will be used
to show valuable displays of Judgment individually and then by Treatment (i.e.,
Regular Feed v Regular Feed and Added Mineral Supplement).

install.packages("lattice")
library(lattice) # Load the lattice package.
help(package=lattice) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

par(ask=TRUE) # 1 Column by 1 Row Histogram
lattice::histogram(~ Goats.df$Judgment,
type="count", # Note: count
par.settings=simpleTheme(lwd=2),
par.strip.text=list(cex=1.15, font=2),
scales=list(cex=1.15),
main="Histogram (Count) of Judgment",
xlab=list("Judgment", cex=1.15, font=2),
xlim=c(0,115), # Note the range.
ylab=list("Count", cex=1.15, font=2),
aspect=1, breaks=10,
layout = c(1,1), # Note: 1 Column by 1 Row.
col="red")

par(ask=TRUE) # 1 Column by 2 Rows Histogram
lattice::histogram(~ Goats.df$Judgment |
Goats.df$Treatment.recode,
type="count", # Note: count
par.settings=simpleTheme(lwd=2),
par.strip.text=list(cex=1.15, font=2),
scales=list(cex=1.15),

4.4 Conduct a Visual Data Check 115

main="Histograms (Count) of Judgment by Treatment",
xlab=list("Judgment", cex=1.15, font=2),
xlim=c(0,115), # Note the range.
ylab=list("Count", cex=1.15, font=2),
aspect=0.25, breaks=10,
layout = c(1,2), # Note: 1 Column by 2 Rows.
col="red")

par(ask=TRUE) # Singular boxplot.
lattice::bwplot(Goats.df$Judgment,
par.settings = simpleTheme(lwd=2),
par.strip.text=list(cex=1.15, font=2),
scales=list(cex=1.15),
main="Boxplot of Judgment",
xlab=list("Judgment", cex=1.15, font=2),
xlim=c(0,115), aspect=0.5, layout=c(1,1),
col="red")

par(ask=TRUE) # Breakout group by measured object
lattice::bwplot(Goats.df$Treatment.recode ~
Goats.df$Judgment,
par.settings = simpleTheme(lwd=2),
par.strip.text=list(cex=1.15, font=2),
scales=list(cex=1.15),
main="Boxplot of Judgment by Treatment",
xlab=list("Judgment", cex=1.15, font=2),
xlim=c(0,115),
ylab=list("Treatment", cex=1.15, font=2),
aspect=0.5, layout=c(1,1), col="red")

Although histograms and boxplots are certainly useful graphical tools, the
density plot is especially helpful for visualizing how data are distributed indi-
vidually and by breakout groups, which is why syntax for the density plot
was included earlier in this lesson.3 That demonstration of the density plot was
dependent on wrapping the plot() function around the density() function, deployed
as plot(density()).

For this lesson, look again at the density plot as a useful tool for visualizing
data and, more importantly, the distribution of data. First, prepare a throwaway
density plot with the UsingR::DensityPlot() function and then, if the outcomes
show promise, use the lattice::densityplot() function for more aesthetic and visually
appealing density plot images.

3Separate from the use of R or any other software, be sure to study the many possibilities for
how data can be graphically displayed. Start with simple tools, such as the histogram and boxplot.
Then, with more practice and understanding, move to more sophisticated tools such as density plot,
violin plot, etc. An Internet search on graphical display of data or some similar term will provide
an ample number of quality resources on this topic.

116 4 Mann–Whitney U Test

install.packages("UsingR")
library(UsingR) # Load the UsingR package.
help(package=UsingR) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

par(ask=TRUE)
UsingR::DensityPlot(Judgment ~ Treatment.recode, data=Goats.df)

As demonstrated in the R syntax, a density plot is used to visualize how measured
data are organized at the singular level and also by breakout groups. Look at the
way these density plots have been prepared, only this time with more detail by
using the lattice::densityplot() function. Statistical analyses are certainly necessary
and should never be neglected, no matter how visual presentations appear. In this
lesson, note how the density plot presentation of Judgment by Treatment brings to
attention a visual reminder that the distribution of Judgment measures is certainly
not equivalent for the two Treatment breakout groups: Regular Feed (Control
Group) vs Regular Feed and Added Mineral Supplement (Experimental Group).
Of course, this visual difference does not mean that there is a statistically significant
difference, but the visual image provides a reminder of trends (Fig. 4.2).

par(ask=TRUE) # 1 Column by 1 Row Density Plot
lattice::densityplot(~ Goats.df$Judgment,
type="count", # Note: count
par.settings=simpleTheme(lwd=2),
par.strip.text=list(cex=1.15, font=2),
scales=list(cex=1.15),

20

0.00

0.01

0.02

0.03

0.04

0.00

0.01

0.02

0.03

0.04

40 60 80 100
Judgment

Regular Feed

Added Mineral Supplement

Density Plot of Judgment by Treatment

D
en

si
ty

Fig. 4.2 Comparative density plots using the lattice::densityplot() function

4.4 Conduct a Visual Data Check 117

main="Density Plot of Judgment",
xlab=list("Judgment", cex=1.15, font=2),
xlim=c(0,115), # Note the range.
ylab=list("Density", cex=1.15, font=2),
aspect=1,
layout = c(1,1), # Note: 1 Column by 1 Row.
col="red")

par(ask=TRUE) # 1 Column by 2 Rows Density Plot
lattice::densityplot(~ Goats.df$Judgment |
Goats.df$Treatment.recode,
type="count", # Note: count
par.settings=simpleTheme(lwd=2),
par.strip.text=list(cex=1.15, font=2),
scales=list(cex=1.15),
main="Density Plot of Judgment by Treatment",
xlab=list("Judgment", cex=1.15, font=2),
xlim=c(0,115), # Note the range.
ylab=list("Density", cex=1.15, font=2),
aspect=0.25,
layout = c(1,2), # Note: 1 Column by 2 Rows.
col="red")

Of course, the lattice package is by no means the only package with functions
that support breakout group comparisons for density plots. As shown previously,
consider the plot(density()) function and the UsingR::DensityPlot() function as
initial tools for preparation of throwaway density-type graphical comparisons.

However, the sm::sm.density.compare() function is possibly more useful, in part
because it is easier to embellish for bolder presentation. As the syntax has been
prepared, a left-click on the mouse is used to place the legend at any desired location,
typically at an open area with sufficient white space (Fig. 4.3).

0

0.
00

0.
01

0.
02

0.
03

0.
04

20 40 60
Judgment

Density Plot of Judgment by Treatment

D
en

si
ty

80 100

Added Mineral Supplement

Regular Feed

Fig. 4.3 Comparative density plots using the sm::sm.density.compare() function

118 4 Mann–Whitney U Test

install.packages("sm")
library(sm) # Load the sm package.
help(package=sm) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

savecexaxis <- par(cex.axis=1.25)
par(ask=TRUE)
sm::sm.density.compare(Goats.df$Judgment,
Goats.df$Treatment.recode,
lwd=6,
xlab=list("Judgment", cex=1.15, font=2),
ylab=list("Density", cex=1.15, font=2),
xlim=c(0,115), ylim=c(0,0.04)) # Adjust as needed
title(main="Density Plot of Judgment by Treatment")

colorfill <- c(2:(2+length(levels(
Goats.df$Treatment.recode))))

savefont <- par(font=2) # Local to the legend
legend(locator(1), levels(
Goats.df$Treatment.recode),
fill=colorfill, bty="n")
There is no box around the legend (bty="n") so
that bold text does not write lines in the legend
box.

par(savefont) # Local to the legend
Remember to click on an open location to paste the
legend into the figure.

par(savecexaxis)
Return to the original value.

Although descriptive statistics and inferential tests (Mann–Whitney U-Test for
this lesson) are needed to make final judgment, graphics provide a sense of general
trends and how the data compare to each other, individually and by group breakouts.
Remember that the syntax used in this lesson can, of course, be used with future
analyses. Simply alter the syntax, typically the dataframe name and object names,
and adjust margins as needed to account for different scales.

4.5 Descriptive Analysis of the Data

Before the descriptive analyses are attempted for this lesson, it is important to once
again mention that data for the object variable Goats.df$Judgment are viewed as
ordinal data:

• A Judgment of 95 has a greater value than a Judgment of 94 and a Judgment of
75 has a greater value than a Judgment of 74. The data are certainly numeric, and
as such it is possible to calculate descriptive statistics such as Mean and SD.

4.5 Descriptive Analysis of the Data 119

• However, the difference between 95 and 94 and the difference between 75 and 74,
as displayed above, may not be consistently equivalent to the difference between
92 and 91, 88 and 87, etc. Equivalency in scale is essential if the data are classified
as interval. Such equivalency is not assumed in this lesson.

Measures of Central Tendency of the Numeric Object Variables
The data for Goats.df$Judgment are ordinal, and because of this declaration there
should be a degree of caution when viewing statistics such as Mean and SD for
ordinal data. There are those who would argue that statistics such as Mean and SD
are more appropriately associated with interval data and these descriptive statistics
should be viewed with a degree of skepticism, or possibly avoided, when calculated
against ordinal data. It is far beyond the purpose of this lesson, however, to go into
this somewhat theoretical discussion. There are certainly many resources that would
be of value to an interested reader on the appropriate use of descriptive statistics and
measures of central tendency with ordinal data.

For this lesson, descriptive statistics such as Mean and SD are presented to
understand better the object variable Goats.df$Judgment, even though the data
associated with this object are ordinal.

Given the different ways missing data can impact analyses, it is best to first check
for missing data (there are no missing data in Goats.df, the dataset used in this
lesson) by using the is.na() function and the complete.cases() function against the
entire dataset. Both functions return a TRUE or FALSE response, depending on the
function and the outcome of whether data are missing or data are not missing.

is.na(Goats.df) # Check for missing data
complete.cases(Goats.df) # Check for complete cases

For this simple dataset, the summary() function may be all that is necessary
to gain a sense of the data. Note how the summary() function is applied against
the entire dataset, thus yielding information about all object variables including
those that are not directly used in this sample, including ostensibly unnecessary
information about Subject and also Treatment, prior to the transformation of
Treatment into Treatment.recode.

Although the summary() function is quite sufficient, descriptive statistics for
individual object variables may be desired. To achieve this need, review the help
pages and other documentation for the following functions: length(), asbio::Mode(),
median(), mean(), sd(), table(), and summary(). Additionally, consider function
arguments needed to accommodate missing data, such as na.rm=TRUE. Using these
available tools, look at the way measures of central tendency are approached:

length(Goats.df$Treatment.recode) # N
length(Goats.df$Judgment) # N

install.packages("asbio")
library(asbio) # Load the asbio package.
help(package=asbio) # Show the information page.
sessionInfo() # Confirm all attached packages.

120 4 Mann–Whitney U Test

Select the most local mirror site using Set CRAN mirror.

asbio::Mode(Goats.df$Judgment) # Mode

median(Goats.df$Judgment, na.rm=TRUE) # Median

mean(Goats.df$Judgment, na.rm=TRUE) # Mean
sd(Goats.df$Judgment,na.rm=TRUE) # SD
Measures of Central Tendency

table(Goats.df$Treatment.recode)
Frequency Distribution of Nominal Variable

summary(Goats.df) # All variables

summary(Goats.df[, 3:4]) # Variables 3 to 4

Judgment Treatment.recode
Min. : 47.00 Regular Feed :15
1st Qu.: 76.75 Added Mineral Supplement:15
Median : 84.50
Mean : 82.87
3rd Qu.: 90.50
Max. :100.00

The epicalc::summ() function, below, is also useful in that it can provide
descriptive statistics and a representative figure of individual object variables.

par(ask=TRUE) # Use the epicalc package.
epicalc::summ(Goats.df$Judgment,
by=NULL, graph=TRUE, box=TRUE, # Make a boxplot
pch=18, ylab="auto",
main="Sorted Dotplot and Boxplot of Judgment",
cex.X.axis=1.15, cex.Y.axis=1.15, font.lab=2,
dot.col="auto")
Note the descriptive statistics that go
along with the epicalc::summ() function.

savefont <- par(font=2) # Bold text
par(ask=TRUE) # Use the epicalc package.
epicalc::summ(Goats.df$Judgment,
by=Goats.df$Treatment.recode,
graph=TRUE, box=FALSE, # No boxplot
pch=18, ylab="auto",
main="Sorted Dotplot Judgment by Treatment",
cex.X.axis=1.15, cex.Y.axis=1.05,
dot.col="auto")
Note the descriptive statistics that go
along with the epicalc::summ() function.

par(savefont)

4.5 Descriptive Analysis of the Data 121

For Goats.df$Treatment.recode = Regular Feed
obs. mean median s.d. min. max.
15 81.93 82 12.572 55 100

For Goats.df$Treatment.recode = Added Mineral
Supplement
obs. mean median s.d. min. max.
15 83.8 85 12.857 47 100

The epicalc::summ() by=NULL argument can be set to either TRUE or FALSE,
to either obtain or limit breakout descriptive statistics, as desired.

Although the epicalc::summ() function may be sufficient for production of
descriptive statistics by different groups, there are many other functions that serve
the same purpose, including the tapply() function and the psych::describeBy()
function. As time permits, explore the many other R functions that serve a similar
purpose.

tapply(Judgment, Treatment.recode, summary, na.rm=TRUE,
data=Goats.df) # Breakouts of Judgment by Treatment.recode

$‘Regular Feed‘
Min. 1st Qu. Median Mean 3rd Qu. Max.

55.00 75.50 82.00 81.93 89.50 100.00

$‘Added Mineral Sup plement‘
Min. 1st Qu. Median Mean 3rd Qu. Max.
47.0 80.5 85.0 83.8 91.0 100.0

install.packages("psych")
library(psych) # Load the psych package.
help(package=psych) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

psych::describeBy(Goats.df$Judgment,
Goats.df$Treatment.recode, mat=TRUE) # Matrix output
Breakouts of Judgment by Treatment.recode

The tables::tabular() function can be used to provide even more detail, in a fairly
attractive table format that can be easily copied into a summary report.

install.packages("tables")
library(tables) # Load the tables package.
help(package=tables) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

tables::tabular((Treatment.recode + 1) ~ (n=1) +
Format(digits=4) * (Judgment)*(min + max + median + mean + sd),
data=Goats.df)
Treatment.recode (row) by Judgment (columns)

122 4 Mann–Whitney U Test

Judgment
Treatment.recode n min max median mean sd
Regular Feed 15 55.00 100.00 82.00 81.93 12.57
Added Mineral Supplement 15 47.00 100.00 85.00 83.80 12.86
All 30 47.00 100.00 84.50 82.87 12.53

Although it may at first seem redundant, another function used to produce
descriptive statistics in detailed tables is the etable::tabular.ade() function. The
output can be easily copied and pasted into a standard word processing editor and,
with minor editing, the output can be formatted into tables that have a great deal of
specificity.

install.packages("etable")
library(etable) # Load the etable package.
help(package=etable) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

etable::tabular.ade(x_vars="Judgment",
data=Goats.df,
xname="Judgment",
rows=c("Treatment.recode", "ALL"),
rnames="Treatment",
y_vars=c("N", "MIN", "MAX", "MEDIAN", "MEAN", "SD"),
allnames=TRUE,
FUN=stat_cell)
Treatment.recode (row) by Judgment (column)

1 Treatment
2 N MIN MAX MEDIAN MEAN SD
3 Regular Feed 15 55.0 100 82.0 81.9 12.6
4 Added Mineral Supplement 15 47.0 100 85.0 83.8 12.9
5 Total 30 47.0 100 84.5 82.9 12.5

From among the many possible R functions used for descriptive statistics,
whether statistics are presented as singular values or table format, consider the
prettyR::brkdn() function that provides output that can be copied from R and pasted
into a word processing document, often with minimal if any editing for presentation.

install.packages("prettyR")
library(prettyR) # Load the prettyR package.
help(package=prettyR) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

prettyR::brkdn(Judgment ~ Treatment.recode,
data=Goats.df, maxlevels=2,
num.desc=c("valid.n", "median", "mean", "sd"),
width=10, round.n=2)
Treatment.recode (row) by Judgment (column)

4.5 Descriptive Analysis of the Data 123

Breakdown of Judgment by Treatment.recode
Level valid.n median mean sd
Regular Feed 15 82 81.93 12.57
Added Mineral Supplement 15 85 83.8 12.86

Application of the Anderson-Darling Test
Graphical images and descriptive statistics are helpful in understanding data. It is
also useful to apply selected statistical tests to serve as an additional support for
decision-making on acceptance of nonparametric or parametric views toward the
data. To that end, consider application of the Anderson-Darling Test, the Lilliefors
(KS) Test, and the Shapiro-Wilk Test. These tests may be influenced by sample
size and they provide one view, but not the only view, on the nature of distribution
patterns. Experience, needs, and practical judgment, supported by careful review of
graphical images, descriptive statistics, and statistical tests, should be used when
deciding if variables from a dataset are best viewed from a nonparametric or
parametric perspective.

install.packages("nortest")
library(nortest) # Load the nortest package.
help(package=nortest) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

For this lesson is will be sufficient to apply the Anderson-Darling Test only. The
Null Hypothesis for the Anderson-Darling Test is structured to examine whether
data follow a specified distribution:

Anderson-Darling Null Hypothesis: The data follow the normal distribution.
For this lesson there will be three approaches to the Anderson-Darling Test and

subsequent examination of p-values for each approach4:

• The Anderson-Darling Test will be applied against the values for
Goats.df$Judgment, overall.

• The Anderson-Darling Test will be applied against the values for
Goats.df$Judgment, where Treatment.recode is Regular Feed (i.e., Treatment
is 1).

• The Anderson-Darling Test will be applied against the values for
Goats.df$Judgment, where Treatment.recode is Added Mineral Supplement
(i.e., Treatment is 2).

with(Goats.df, nortest::ad.test(Judgment))
All values for Goats.df$Judgment

4In the R syntax shown immediately below, notice how the with() function was used for selection.
In association with this approach, note the use of two equal signs (i.e., ==) and not one equal sign.

124 4 Mann–Whitney U Test

Anderson-Darling normality test

data: Judgment
A = 0.5469, p-value = 0.1462

with(Goats.df, nortest::ad.test(Judgment[Treatment.recode ==
"Regular Feed"]))
Values for Goats.df$Judgment where there was Regular Feed

Anderson-Darling normality test

data: Judgment[Treatment.recode == "Regular Feed"]
A = 0.1922, p-value = 0.8759

with(Goats.df, nortest::ad.test(Judgment[Treatment.recode ==
"Added Mineral Supplement"]))
Values for Goats.df$Judgment where there was Regular Feed
and Added Mineral Supplement

Anderson-Darling normality test

data: Judgment[Treatment.recode == "Added Mineral Supplement"]
A = 0.6173, p-value = 0.08771

The calculated Anderson-Darling Test for normality p-value is fairly large overall
(p-value = 0.1462) and for subjects that had regular feed only (p-value = 0.8759).
However, for subjects that had a mineral supplement added to the regular feeding
program the calculated p-value begins to approach 0.05 (p-value = 0.08771):

• Anderson-Darling Test Goats.df$Judgment p-value = 0.1462 for all subjects.
• Anderson-Darling Test Goats.df$Judgment p-value = 0.8759 for those subjects

that had regular feed only.
• Anderson-Darling Test Goats.df$Judgment p-value = 0.08771 for those subjects

that had regular feed and an added mineral supplement.

The p-values associated with these three attempts at the Anderson-Darling Test
all exceed the p-value of 0.05 and it could be stated that the Null Hypothesis
is confirmed and relative to this critical p-value (0.05) the data follow normal
distribution. That is to say, for all three iterations of the Anderson-Darling Test,
the Null Hypothesis is confirmed and the data follow the normal distribution.

However, for those subjects that had regular feed and an added mineral sup-
plement, the result is not quite clear-cut, because a calculated p-value of 0.08771
begins to approach a critical p-value of 0.05. This type of finding is where personal
experience with the research process and a broad view of the data need to be applied.

4.6 Conduct the Statistical Analysis 125

In an abundance of caution, and equally based on review of the graphical
images of distribution patterns, a nonparametric approach will be used in this lesson
for Judgment and comparisons of Judgment by Treatment, even though all three
Anderson-Darling Test p-values exceed 0.05.

The QQ plot (i.e., normal probability plot) provides additional confirmation that
the data are best viewed from a nonparametric perspective. Note placement of the
data along the qqline, especially at the tails.

par(ask=TRUE)
par(mfrow=c(1,2)) # Side-by-Side QQ Plots
with(Goats.df, qqnorm(Judgment[Treatment.recode ==
"Regular Feed"],
pch=22, col="red", bg="black", font=2, font.lab=2,
cex.axis=1.5, # Adjust points in the QQ Plot
main="QQPlot: Judgment with Regular Feed Only"))

with(Goats.df, qqline(Judgment[Treatment.recode ==
"Regular Feed"],
lwd=4, col="darkblue")) # Adjust the QQ Line

with(Goats.df, qqnorm(Judgment[Treatment.recode ==
"Added Mineral Supplement"],
pch=22, col="red", bg="black", font=2, font.lab=2,
cex.axis=1.5, # Adjust points in the QQ Plot
main="QQPlot: Judgment with Regular Feed and
Added Mineral Supplement"))

with(Goats.df, qqline(Judgment[Treatment.recode ==
"Added Mineral Supplement"],
lwd=4, col="darkblue")) # Adjust the QQ Line

4.6 Conduct the Statistical Analysis

The dataset for this lesson was originally prepared as a Gnumeric spreadsheet
and saved as Goats.gnumeric. The Gnumeric File—Save as feature was then used
to save Goats.gnumeric into Goats.csv, a comma-separated values file. Goats.csv
was then imported into R and saved as the object Goats.df. Additional changes
were made to the dataset, after the data were imported into R, by using a few
recoding techniques. As an example, the object variable Goats.df$Treatment.recode
was created to understand the data more fully, given the stark numeric values used
for the object variable Goats.df$Treatment.

class(Goats.df) # Confirm the data
names(Goats.df) # Confirm the data
str(Goats.df) # Confirm the data

This lesson is focused on determining if there is a statistically significant differ-
ence in Judgment between those goats that received Treatment 1 (the control group
that received regular feed) and goats that received Treatment 2 (the experimental
group that received a mineral supplement added to the regular feeding program). To
be more precise, consider the exact wording of the Null Hypothesis:

126 4 Mann–Whitney U Test

Null Hypothesis (Ho) There is no statistically significant difference (p <= 0.05)
between goats that received regular feed during a treatment period (i.e., the
control group) and their counterparts that received regular feed and an otherwise
unidentified mineral supplement added to the feeding program during the same
treatment period (i.e., the experimental group).

Again, the data associated with Judgment are viewed as ordinal data, not interval
data. The data are numerical, and there is certainly an ordering to Judgment data
(i.e., Judgment D 88 is greater than Judgment D 87 and Judgment D 77 is less than
Judgment D 78).

Yet, data distribution and precision in scale are such that it is only prudent to
view the data as ordinal data. Because of this view toward the data, the Mann–
Whitney U-Test is viewed as the most appropriate test to determine if there is a
statistically significant difference in Judgment between the two groups (i.e., control
vs experimental). If the data were viewed as interval data, then Student’s t-Test for
Independent Samples would receive consideration, but that is not the case in this
lesson.

Note: Use the transformed object variable Treatment.recode, to have output show
as narrative text instead of output showing as a cryptic numeric code, which would
be the case if the object variable Treatment, alone, were used.

As is often the situation with R, there are more than a few functions available for
the Mann–Whitney U Test and three will be demonstrated below. Notice how the
primary information is consistent for each function, but the visual presentation and
supplementary information are different for each of the three functions: wilcox.test()
function, coin::wilcox_test() function, and exactRankTests::wilcox.exact() func-
tion. As time permits, review reputable resources on the Internet as to why the
Mann–Whitney U-Test is associated with the Wilcox Test, but that discussion is
beyond the purpose of this lesson.

wilcox.test() Function

wilcox.test(Goats.df$Judgment ~ Goats.df$Treatment.recode,
alternative = c("two.sided"),
paired=FALSE, exact=TRUE, correct=TRUE)
Note the use of ~ between the two object variables

Wilcoxon rank sum test with continuity correction

data: Goats.df$Judgment by Goats.df$Treatment.recode
W = 98, p-value = 0.5611
alternative hypothesis: true location shift is not equal to 0

Warning message:
In wilcox.test.default(x = c(80, 82, 91, 100, 76, 65, 85, 88,:
cannot compute exact p-value with ties

The statistic of greatest importance in this application of the wilcox.test()
function is the calculated p-value of 0.5611, which more than exceeds the criterion
p-value of 0.05.

4.6 Conduct the Statistical Analysis 127

coin::wilcox_test() Function

install.packages("coin")
library(coin) # Load the coin package.
help(package=coin) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

coin::wilcox_test(Judgment ~ Treatment.recode,
data = Goats.df,
distribution = "exact", conf.int = TRUE)
Note the use of ~ between the two object variables

Exact Wilcoxon Mann-Whitney Rank Sum Test

data: Judgment by Treatment.recode
(Regular Feed, Added Mineral Supplement)

Z = -0.602, p-value = 0.5595
alternative hypothesis: true mu is not equal to 0
95 percent confidence interval:
-11 6

sample estimates:
difference in location

-2

The statistic of greatest importance in this application of the coin::wilcox_test()
function is the calculated p-value of 0.5595, which more than exceeds the criterion
p-value of 0.05.

exactRankTests::wilcox.exact() Function

install.packages("exactRankTests")
library(exactRankTests) # Load the exactRankTests package.
help(package=exactRankTests) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

exactRankTests::wilcox.exact(Judgment ~ Treatment.recode,
data=Goats.df,
paired=FALSE, conf.int=TRUE, alternative="two.sided")
Note the use of ~ between the two object variables

Exact Wilcoxon rank sum test

data: Judgment by Treatment.recode
W = 98, p-value = 0.5595
alternative hypothesis: true mu is not equal to 0
95 percent confidence interval:
-12 7

sample estimates:
difference in location

-2.5

128 4 Mann–Whitney U Test

The statistic of greatest importance in this application of the exactRank-
Tests::wilcox.exact() function is the calculated p-value of 0.5595, which more
than exceeds the criterion p-value of 0.05.

4.7 Summary

In this lesson, the graphics and descriptive statistics provided a great deal of infor-
mation about the object variable Judgment and Judgment by Treatment breakouts.
Of immediate importance, however, are the Null Hypothesis and the subsequent
p-value associated with each of the three attempts at the Mann–Whitney U-Test.
Compare the calculated p-value from each of the three tests (using wilcox.test(),
coin::wilcox_test(), and exactRankTests::wilcox.exact() functions) to the criterion
p-value of 0.05 associated with the Null Hypothesis.

Although more detail about the nature of the object variable Judgment and
exactly what it represents would have been useful, for the immediate purpose of
this lesson this detail is not needed and may only cause confusion, which is why
the analyst knew very little about the biological experiment associated with this
lesson. What is important to know is that one group of goats received regular feed
throughout the experiment and another group received an added mineral supplement
to go along with their regular feeding program. Judgment represents some type of
measurement at the end-of-treatment.

Saying this, the analyses supported the observation that there is no statistically
significant difference (p <= 0.05) in Judgment by Treatment. That is to say,
for this one-time, non-replicated, posttest-only experiment, there was no difference
in Judgment by the two Treatment breakouts (i.e., control group vs experimental
group). Goats that received the added mineral supplement did not have a signifi-
cantly different (p <= 0.05) Judgment measure than their counterparts that did
not receive the added mineral supplement.

Although the Mann–Whitney U Test provided the information needed to make
this assessment about Judgment and more specifically, Judgment by the two
Treatment groups, it is helpful to once again review the descriptive statistics
associated with this lesson. Because the data are ordinal, give special attention to the
Median. Review prior comments for why it is appropriate to review other descriptive
statistics such as Mean and SD even though the data are not interval.

prettyR::brkdn(Judgment ~ Treatment.recode,
data=Goats.df, maxlevels=2,
num.desc=c("valid.n", "median", "mean", "sd"),
width=10, round.n=2)
Treatment.recode (row) by Judgment (column)

Breakdown of Judgment by Treatment.recode
Level valid.n median mean sd
Regular Feed 15 82 81.93 12.57
Added Mineral Supplement 15 85 83.8 12.86

4.8 Addendum: Stacked Data vs Unstacked Data 129

As confirmed by using three different R-based functions associated with the
Mann–Whitney U Test, there is no statistically significant difference (p <= 0.05)
in Judgment between goats who had regular feed and goats who had an added
mineral supplement.

4.8 Addendum: Stacked Data vs Unstacked Data

It was previously mentioned that the data in Goats.gnumeric, Goats.csv, and
Goats.df were presented in stacked format as opposed to the use of unstacked data.
A brief visual display of the two ways data can be organized (stacked data and
unstacked data) follows. Using data totally separate from this lesson on goats, the
example shown below is simple and shows data for six dogs: Breed (Labrador vs
Beagle) and Weight (measured in pounds).

Stacked Data

Breed (Grouping Variable) Weight (Measured Variable)
Labrador L1 53
Labrador L2 58
Labrador L3 49
Beagle B1 33
Beagle B2 25
Beagle B3 28

Unstacked Data

Labrador_Weight Beagle_Weight
53 33
58 25
49 28

Experienced researchers typically work with data in multiple formats. Because
of the need for exposure to a variety of formats, the stacked data previously found in
the object Goats.df are presented below as unstacked data. Because the dataset for
30 goats is fairly small, the data will be entered directly into this R session. The data
could have easily been saved in a separate file and then imported into R, but for this
small collection of data it was deemed useful to demonstrate the textConnection()
function as a means of entering data into R.

As shown below, the unstacked data about goats will be hand-entered and then a
series of actions will be used to confirm that the data are correct and equivalent to
the goats data that were seen previously in stacked format.

130 4 Mann–Whitney U Test

Goats_Unstacked.df <- read.table(textConnection("
Regular Mineral
80 72
82 89
91 86
100 85
76 99
65 47
85 79
88 88
97 100
55 76
69 83
88 94
75 84
97 82
81 93 "), header=TRUE)

getwd() # Identify the working directory
ls() # List objects
attach(Goats_Unstacked.df) # Attach the data, for later use
str(Goats_Unstacked.df) # Identify structure
nrow(Goats_Unstacked.df) # List the number of rows
ncol(Goats_Unstacked.df) # List the number of columns
dim(Goats_Unstacked.df) # Dimensions of the dataframe
names(Goats_Unstacked.df) # Identify names
colnames(Goats_Unstacked.df) # Show column names
rownames(Goats_Unstacked.df) # Show row names
head(Goats_Unstacked.df) # Show the head
tail(Goats_Unstacked.df) # Show the tail
Goats_Unstacked.df # Show the entire dataframe

summary(Goats_Unstacked.df)
Summary statistics unstacked data

Regular Mineral
Min. : 55.00 Min. : 47.0
1st Qu.: 75.50 1st Qu.: 80.5
Median : 82.00 Median : 85.0
Mean : 81.93 Mean : 83.8
3rd Qu.: 89.50 3rd Qu.: 91.0
Max. :100.00 Max. :100.0

tapply(Judgment, Treatment.recode,
summary, na.rm=TRUE,
data=Goats.df)
Summary statistics stacked data

4.8 Addendum: Stacked Data vs Unstacked Data 131

$‘Regular Feed‘
Min. 1st Qu. Median Mean 3rd Qu. Max.

55.00 75.50 82.00 81.93 89.50 100.00

$‘Added Mineral Supplement‘
Min. 1st Qu. Median Mean 3rd Qu. Max.
47.0 80.5 85.0 83.8 91.0 100.0

After reviewing the summary statistics at the breakout levels of Treatment (i.e.,
regular feed v regular feed and added mineral supplement), there is assurance that
the data are correct. Saying that, use the wilcox.test() function again but now with
the R-based syntax needed for unstacked data.

wilcox.test(Goats_Unstacked.df$Regular,
Goats_Unstacked.df$Mineral,
alternative = c("two.sided"),
paired=FALSE, exact=TRUE)
Note the use of , between the two object variables

Wilcoxon rank sum test with continuity correction

data: Goats_Unstacked.df$Regular and
Goats_Unstacked.df$Mineral

W = 98, p-value = 0.5611
alternative hypothesis: true location shift is not equal to 0

Warning message:
In wilcox.test.default(Goats_Unstacked.df$Regular,
Goats_Unstacked.df$Mineral, :
cannot compute exact p-value with ties

Both variables (Regular and Mineral) are numeric. There is no grouping variable,
such as the role of Treatment and Treatment.recode in Goats.df. This approach, and
the use of a comma (i.e., ,) to separate the two numeric variables for unstacked
data, is in contrast to the use of a tilde (i.e., ~) character to separate the two numeric
variables for stacked data.

Notice in the output with unstacked data that the calculated p-value is 0.5611,
which was the same when the data were in stacked format. Whether stacked or
unstacked, the data were consistent and the outcome was equivalent.

Again, the calculated p-value of 0.5611 exceeds the criterion p-value associated
with the Null Hypothesis (p <= 0.05) and, again, it is confirmed that there is no
difference in Judgment for goats fed a regular diet and goats fed a regular diet and
an added mineral supplement.

132 4 Mann–Whitney U Test

4.9 Prepare to Exit, Save, and Later Retrieve this R Session

getwd() # Identify the current working directory.
ls() # List all objects in the working

directory.
ls.str() # List all objects, with finite detail.
list.files() # List files at the PC directory.

save.image("R_Mann-Whitney-U-Test.rdata")

getwd() # Identify the current working directory.
ls() # List all objects in the working

directory.
ls.str() # List all objects, with finite detail.
list.files() # List files at the PC directory.

alarm() # Alarm, notice of upcoming action.
q() # Quit this session.

Prepare for Save workspace image? query.

Use the R Graphical User Interface (GUI) to load the saved rdata file: File ->
Load Workspace. Otherwise, use the load() function, keying the full pathname, to
load the .rdata file and retrieve the session.

Recall, however, that it may be just as useful to simply use the .R script file
(typically saved is a .txt ASCII-type file) and recreate the analyses and graphics,
provided the data files remain available.

Chapter 5
Wilcoxon Matched-Pairs Signed-Ranks Test

Abstract The Wilcoxon Matched-Pairs Signed Ranks Test is a nonparametric test
that is often viewed as being similar to Student’s t-Test for Matched Pairs, but it
is used for ordinal data or data that seriously violate any semblance of normal
distribution. Of course, there are many who would argue that it is simply too
convenient to compare the Wilcoxon Matched-Pairs Signed Ranks Test to Student’s
t-Test for Matched Pairs even though they serve similar purposes. Group differences
for when there are two matched pairs are addressed by both tests, but again, the
Wilcoxon Matched-Pairs Signed Ranks Test is often used with ordinal data and/or
data that are viewed as being nonparametric (with attention to medians) whereas the
Student’s t-Test for Matched Pairs is generally used with interval data that rise to the
level of parametric distributions (with attention to means). This lesson is interesting
in that there is a tied set of values for one of the matched pairs, which introduces
some degree of complexity on how values are ranked when there are ties (i.e., for
an individual matched pair, there is no difference in the two scores that are being
compared).

Keywords Anderson-Darling Test • Bar plot (stacked, side-by-side) • Box plot
• Code Book • Comma separator • Comma-separated values (.csv) • Continu-
ous scale • Density plot • Descriptive statistics • Distribution-free • Frequency
distribution • Hinge (lower and upper) • Histogram • Interval • Matched pairs
• Mean • Median • Mode • Nominal • Nonparametric • Normal distribution
• Null Hypothesis • Ordinal • Outlier • Parametric • Percentile • Probability
(p-value) • Quantile-Quantile (QQ, Q-Q) • Ranking • Stacked data • Statistical
significance • Student’s t-Test for Matched Pairs • Tilde separator • Unstacked
data • Violin plot • Whisker (lower and upper) • Wilcoxon Matched-Pairs Signed
Ranks Test

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-3-319-
30634-6_5) contains supplementary material, which is available to authorized users.

© Springer International Publishing Switzerland 2016
T.W. MacFarland, J.M. Yates, Introduction to Nonparametric Statistics
for the Biological Sciences Using R, DOI 10.1007/978-3-319-30634-6_5

133

http://dx.doi.org/10.1007/978-3-319-30634-6_5
http://dx.doi.org/10.1007/978-3-319-30634-6_5

134 5 Wilcoxon Matched-Pairs Signed-Ranks Test

5.1 Background on this Lesson

As the name suggests, the Wilcoxon Matched-Pairs Signed-Ranks Test uses data
from matched pairs. The Wilcoxon Test uses ordinal data and is focused on the
magnitude, as well as the direction, of differences for matched pairs. That is to say,
the algorithm associated with the Wilcoxon Test considers the degree or amount of
difference and accordingly uses an ordered metric scale for this difference.

5.1.1 Description of the Data

This lesson on the Wilcoxon Matched-Pairs Signed Ranks Test is based on a study
about young female sheep (Ovis aries, where the female is called an ewe and the
male is called a ram), with data obtained sometime after weaning but prior to
classification as yearlings. In this matched-pairs study, the data are from twin ewes
and refer to weight (pounds) measured under field conditions.

A matched-pairs study can be structured as a pretest–posttest design, where data
are initially gained from a specific subject as a pretest measure, a treatment is
applied, and after a period of time data are then gained again from the same subject
as a posttest measure. In this type of matched-pairs design, each individual subject
is its own pair.

However, this study represents a matched-pairs design where two closely related
(or at least similar) subjects represent the pair. In this specific study, data are gained
from twin ewes. Twins of the same gender are used so that genetic variability
(i.e., closely related siblings should be genetically similar) and gender variability
(i.e., equivalent genders should promote similarity to experimental conditions and
outcomes) that may possibly impact weight are controlled, at least to some degree,
given the field conditions of this study.

The specific structure for this study is fairly simple and by no means is it
suggested that the design is ideal, but that is typically the case for many exploratory
studies. To be specific on how the data were obtained:

• From a large flock of sheep sometime after weaning, 20 pairs of recently weaned
ewes were selected, resulting in 40 individual ewes—two twin ewes representing
each pair.

• Adequate marking (i.e., tags) were used so that each ewe could be identified
correctly at all times.

• From each of these 20 pairs of ewes, one ewe was marked as the control ewe and
the other ewe (i.e., its twin sibling) was marked as the treatment ewe.

• All subjects were kept with the larger flock, and all sheep generally experienced
the same feeding program, exercise, environmental conditions, stress, etc.

• However, the 20 treatment ewes were periodically administered a treatment of
some type, and the treatment was administered only to the 20 treatment ewes.

• The initial weight of each ewe was either not attempted or not recorded and is
unknown to the researcher assigned with responsibility for data analysis.

5.1 Background on this Lesson 135

• The regularity of treatment (e.g., daily, weekly, etc.) is unknown to the researcher
responsible for data analysis. It is only known that treatment was administered as
protocols required.

• The nature of the treatment (e.g., mineral supplement, vitamins, extra rations,
etc.) is unknown to the researcher assigned responsibility for data analysis.

• The vector for treatment (e.g., feeding supplement, injection, liquid, pill, powder,
etc.) is unknown to the researcher assigned responsibility for data analysis.

• The length of time for treatment (e.g., one week, one month, etc.) is unknown to
the researcher assigned responsibility for data analysis.

• The number of treatments is unknown to the researcher assigned responsibility
for data analysis.

At completion of the treatment period, all subjects were weighed on the same
day under field conditions. Because of the harsh realities of weighing sheep out in
the field and the difficulty of calibrating a scale to desired levels of accuracy under
these conditions, it is assumed that the weights represent ordinal data and that they
are not at the level of reliability and validity more appropriately associated with
interval data. There is no doubt that a weight of 87 pounds is more than a weight
of 86 pounds, but there is limited assurance that the difference between these two
measures is consistently equivalent to the difference between 92 pounds and 91
pounds and similar comparisons. Weights are measured to the nearest pound and
they are viewed as ordinal data, not interval data.

Further, it was noticed when weights were taken that there may be concerns about
normal distribution of weights for subjects in the two breakout groups: Control
ewes and Treatment ewes. Accordingly, the data are not only ordinal, but there may
also be questions about normal distribution of weights. Both concerns prompt the
research staff to consider the use of a nonparametric approach to data analysis.

Be sure to notice once again that this study has not been designed as a pretest–
treatment–posttest experiment. Instead, it is assumed that the subjects, because they
are gender-equivalent twins in close proximity to each other and experiencing the
same field conditions and feeding patterns, are similar to each other at the beginning
of the experiment. A treatment is applied to one of the two twins from each pair, and
at the end of the treatment all subjects are weighed at the same time: the 20 ewes
that did not receive the treatment and the 20 ewes that received the treatment.

Given the nature of the data associated with this study and, specifically, concerns
about exact calibration of the scale when used under rough field conditions, it
is viewed that the data should be considered ordinal and not internal. There is
the additional concern about data distribution and if the data approach normal
distribution. With all of these considerations, the Student’s t-Test for Matched pairs
is not the appropriate test for this study.

Instead, the Wilcoxon Matched-Pairs Signed Ranks Test, which is more appro-
priately used with ordinal data and/or data that do not show normal distribution,
will be used to critically examine differences between the two groups. Again, the
weights used in this study represent nonparametric data.

The data are organized as unstacked data and are found in the file EweTwin.csv,
which is available on the publisher’s Web page associated with this text:

136 5 Wilcoxon Matched-Pairs Signed-Ranks Test

• The first line consists of a header, using descriptive variable names: Pair, Control,
Treatment.

• The header is then followed by 20 lines of data, one line of data for each pair of
ewe twins.

• Pair: There is a coded identifier (P01–P20) for each pair. Adequate markings and
tracking protocols were used to correctly identify each ewe throughout the study:
pair number and classification as either the control ewe or the treatment ewe.

• Control: Each datum in the Control column represents the weight (pounds) for the
paired ewe viewed as the control subject, with weight taken at end-of-treatment.

• Treatment: Each datum in the Treatment column represents the weight (pounds)
for the paired ewe viewed as the treatment subject, with weight taken at end-of-
treatment.

As a reminder, there are concerns about the normal distribution of weights for
both Control subjects and Treatment subjects. There is equally a concern that the
data are ordinal, and not interval. Again, desired precision for the scale was not
possible when weights were obtained under field conditions.

This lesson does not demonstrate a biological experiment structured under ideal
conditions. However, this lesson gives a glimpse of the conditions for many field
studies. At the least, consider how:

• Subjects were selected from a large flock of sheep, but the data are still only from
one flock of sheep.

• The researcher assigned responsibility for data analysis has no information about
the breed, which may have a role in outcomes.

• There is no pretest measure of weight for either the Control ewes or the Treatment
ewes. Instead, it is only possible to assess differences between the two groups
(i.e., Control v Treatment) at end-of-treatment.

Again, given the nature of the data the nonparametric Wilcoxon Matched-Pairs
Signed Ranks Test is judged the most appropriate inferential test for this analysis of
differences between twin ewes and their weights at the end of this study.

5.1.2 Null Hypothesis (Ho)

There is no statistically significant difference (p <= 0.05) in weight between
ewes that experienced regular field conditions during a treatment period (i.e., the
control group) and their gender-equivalent twin counterparts that not only expe-
rienced regular conditions but also received an otherwise unidentified supplement
during the same treatment period (i.e., the treatment group).

As an exploratory study, the Null Hypothesis (Ho) uses p <= 0.05. It is
not uncommon for more structured and tightly-controlled studies in the biolog-
ical sciences to use a more restrictive p-level, perhaps p <= 0.01 or even
p <= 0.001. However, given the nature of this lesson and how it demonstrates
an exploratory study under field conditions, it is appropriate to use p <= 0.05 as
the criterion p-value. Then, with replication and greater controls, more restrictive
p-values may have merit—but not for this lesson.

5.2 Data Import of a .csv Spreadsheet-Type Data File into R 137

5.2 Data Import of a .csv Spreadsheet-Type Data File into R

The data for this lesson, originally found in EweTwin.csv and later organized in the
R session as the object EweTwin.df, are presented in unstacked format. A very brief
demonstration, below, shows each of these two methods for organizing data, using
a small sample of data from a different study:

Unstacked Data

Pair Control_Height_Inches Treatment_Height_Inches
1 64 67
2 61 62
3 66 63

Stacked Data

Group Pair Height_Inches
Control 1 64
Control 2 61
Control 3 66
Treatment 1 67
Treatment 2 62
Treatment 3 63

It is perhaps more common to experience data in stacked format than to
experience data in unstacked format. However, experienced researchers should have
the skills needed to work with data in multiple formats, unstacked and stacked. R
has some capabilities to transform data, but there are many other software tools that
can also be used if it were necessary to reconfigure data to suite production needs.

This lesson was structured to use free desktop software. Given that goal, the
dataset for this lesson was originally prepared as a Gnumeric spreadsheet. The
data were then also saved in .csv (i.e., comma-separated values) file format as
EweTwin.csv. The data are separated by commas, not tabs and not spaces. Similar
to the open nature of any .csv file, this file can be easily sent to, and opened by,
other researchers without the need for specialized and overly-expensive proprietary
software.

Start a new R session and then attend to beginning actions such as removing
unwanted files from prior work, declaring the working directory, etc.

###
Housekeeping Use for All Analyses
###
date() # Current system time and date.
R.version.string # R version and version release date.
ls() # List all objects in the working

directory.
rm(list = ls()) # CAUTION: Remove all files in the working

138 5 Wilcoxon Matched-Pairs Signed-Ranks Test

directory. If this action is not desired,
use the rm() function one-by-one to remove
the objects that are not needed.

ls.str() # List all objects, with finite detail.
getwd() # Identify the current working directory.
setwd("F:/R_Nonparametric")

Set to a new working directory.
Note the single forward slash and double
quotes.
This new directory should be the directory
where the data file is located, otherwise
the data file will not be found.

getwd() # Confirm the working directory.
list.files() # List files at the PC directory.
##

Now that the R session has been initially organized, use R to import the data in
the file EweTwin.csv and in turn put the data into an object called EweTwin.df. The
object EweTwin.df will be a dataframe, as indicated by the enumerated .df extension
to the object name. This object will represent the output of applying the read.table()
function against the comma-separated values file called EweTwin.csv. Note the
arguments used with the read.table() function, showing that there is a header with
descriptive variable names (header = TRUE) and that the separator between fields is
a comma (sep = ",").

EweTwin.df <- read.table (file =
"EweTwin.csv",
header = TRUE,
sep = ",") # Import the .csv file

getwd() # Identify the working directory
ls() # List objects
attach(EweTwin.df) # Attach the data, for later use
str(EweTwin.df) # Identify structure
nrow(EweTwin.df) # List the number of rows
ncol(EweTwin.df) # List the number of columns
dim(EweTwin.df) # Dimensions of the dataframe
names(EweTwin.df) # Identify names
colnames(EweTwin.df) # Show column names
rownames(EweTwin.df) # Show row names
head(EweTwin.df, n=10) # Show the head
tail(EweTwin.df, n=10) # Show the tail
EweTwin.df # Show the entire dataframe
summary(EweTwin.df) # Summary statistics

By completing this action, an object called EweTwin.df has been created. This R-
based object is a dataframe, and it consists of the data originally included in the file
EweTwin.csv, a comma-separated values .csv file. To avoid possible conflicts, make
sure that there are no prior R-based objects called EweTwin.df. The prior use of
rm(list = ls()) accommodates this concern, removing all prior objects in the current
R session.

5.3 Organize the Data and Display the Code Book 139

Note how it was only necessary to key the filename for the .csv file and not the
full pathname since the R working directory is currently set to the directory and/or
subdirectory where this .csv file is located. See the Housekeeping section at the
beginning of this lesson.

5.3 Organize the Data and Display the Code Book

The data in EweTwin.csv have been successfully imported into R, now showing as a
dataframe-type object called EweTwin.df. It is always a good idea to check the data
for format and to then make any changes that may be needed, to be sure that the data
are organized as desired. This dataset is fairly small (N D 40 subjects, organized into
20 pairs with data for each pair showing on one line), and there are no missing data.
These early lessons purposely use small, but complete, datasets to help build skills
and confidence with the use of R.

To support tracking purposes, a rowname will be used with this dataset using
the rownames() function. It is not necessary to add rownames, but rownames are
helpful when working with large datasets. The rownames() function assigns a unique
identifier for each row in the dataset, each beginning with the term Ewe Twin Pair
in this example.

rownames(EweTwin.df) <- paste(’Ewe Twin Pair’, 1:20)

head(EweTwin.df) # Show the first few lines of the dataset
tail(EweTwin.df) # Show the last few lines of the dataset
EweTwin.df # Show the entire dataset since it is small

For this lesson, the class() function, str() function, and duplicated() function will
be used to be sure that data are organized. These actions may seem redundant, but
every effort should be made so that the data are organized as desired.

class(EweTwin.df)
class(EweTwin.df$Pair) # DataFrame$ObjectName notation
class(EweTwin.df$Control) # DataFrame$ObjectName notation
class(EweTwin.df$Treatment) # DataFrame$ObjectName notation

str(EweTwin.df) # Structure

duplicated(EweTwin.df) # Duplicates

The class for each object seems to be correct, and there are no duplicate rows of
data in the dataframe. Saying this, a Code Book will help with future understanding
of this dataset.

A Code Book is a must for practicing researchers. The Code Book is typically
brief and only serves as a useful reminder for what can be easily forgotten months
(or even weeks) later, to make it easy to decipher what may otherwise be seen as
arcane numeric codes. Coding schemes that are intuitively obvious today can easily
become forgotten tomorrow.

140 5 Wilcoxon Matched-Pairs Signed-Ranks Test

The Code Book below represents how data are desired before analyses begin.
Recoding may be needed to put data into new formats.

###
Code Book for EweTwin.df
###
#
Pair Factor (i.e., nominal)
A unique ID ranging from P01 to P20
#
Control Numeric (i.e., interval)
Weight (lbs) of a female sheep (e.g., ewe)
at the end of a treatment program
Data may also be viewed as ordinal due to
measurement issues
#
Treatment Numeric (i.e., interval)
Weight (lbs) of a female sheep (e.g., ewe)
at the end of a treatment program
Data may also be viewed as ordinal due to
measurement issues
###

The str() function is then again applied against the dataframe to see the nature of
each object variable as well as confirmation that the data are collectively viewed as
a dataframe:

str(EweTwin.df)

Recall that the Code Book shows data in their desired formats, as opposed to
their original format, which often requires some degree of recoding.

Once there is agreement that the data were brought into R in correct format, it is
usually necessary to organize the data to some degree:

• The object variable Pair is only used to identify specific pairs. Each datum for
Pair begins with the letter P and this object variable is currently recognized as a
factor object variable.

• Values for Control are currently whole numbers and as such they are first treated
in R as integers. A simple recode action will instead be used to put these
values into decimal format. As needed, review the as.integer() function and the
as.numeric() function to see why it is desirable to view the weights for the object
Control as a numeric value and not as an integer.

• Values for Treatment are currently whole numbers and as such they are first
treated in R as integers. A simple recode action will instead be used to put these
values into decimal format. As needed, review the as.integer() function and the
as.numeric() function to see why it is desirable to view the weights for the object
Treatment as a numeric value and not as an integer.

5.4 Conduct a Visual Data Check 141

EweTwin.df$Pair <- as.factor(EweTwin.df$Pair)
EweTwin.df$Control <- as.numeric(EweTwin.df$Control)
EweTwin.df$Treatment <- as.numeric(EweTwin.df$Treatment)

Although it is perhaps redundant, it remains a good idea to place a few actions
against the data and to confirm that the data are indeed in correct and desired format.

getwd() # Identify the working directory
ls() # List objects
attach(EweTwin.df) # Attach the data, for later use
str(EweTwin.df) # Identify structure
nrow(EweTwin.df) # List the number of rows
ncol(EweTwin.df) # List the number of columns
dim(EweTwin.df) # Dimensions of the dataframe
names(EweTwin.df) # Identify names
colnames(EweTwin.df) # Show column names
rownames(EweTwin.df) # Show row names
head(EweTwin.df) # Show the head
tail(EweTwin.df) # Show the tail
EweTwin.df # Show the entire dataframe
summary(EweTwin.df) # Summary statistics

As a brief recap to how the data have been accommodated so far, note how
the data for this lesson were first organized in a Gnumeric spreadsheet. From this
spreadsheet (.gnumeric file extension), the data were then saved in .csv format as a
comma-separated values file. The .csv file was then imported into R and put into a
dataframe-type object with a .df extension. The progression for data format is:

1. EweTwin.gnumeric
2. EweTwin.csv
3. EweTwin.df

Once the data were imported into R, a set of actions was placed against the data to
add rownames and to be sure that the data were in desired format, with Pair viewed
as a factor-type object and Control and Treatment viewed as numeric-type objects.

Throughout this lesson, be sure to follow along with the formal way object
variables are identified: DataframeName$ObjectName. This formal nomenclature
may call for strong typing and some redundant actions, but it eliminates the chance
of introducing error and possibly working with the incorrect object. Time spent in
these initial quality assurance actions will assure that later analyses are correct.

5.4 Conduct a Visual Data Check

Now with a fair degree of assurance that the data are in proper format (i.e.,
specifically, the object variables EweTwin$Control and EweTwin$Treatment are
now of numeric data-type), many inexperienced researchers would immediately

142 5 Wilcoxon Matched-Pairs Signed-Ranks Test

begin statistical tests, perhaps starting with a few attempts at descriptive statistics
and measures of central tendency and then quickly moving on to the test in question,
or the Wilcoxon Matched-Pairs Signed Ranks Test in this lesson. Although this
approach is only too common, it should be avoided. Instead, it is always best to
prepare a few graphical displays of the data and then reinforce understanding of the
data with descriptive statistics and measures of central tendency.

Avoiding that rushed approach, in these lessons the data are first examined
visually, using the strong graphical features supported by R. The images can be
simple throwaway graphics, designed only to offer a general sense of the data. Or,
the images can be fully embellished, of high quality, and suitable for presentation
or publication. Regardless of details in the final view, graphics provide a more
complete understanding of the data that may be difficult to grasp when only statistics
are viewed.

For initial purposes the graphical functions of primary interest are plot() and
barplot(table()) for factor-type object variables. For numeric-type object variables,
a few of the leading graphics use the following R functions: boxplot(), hist(),
plot(density()), vioplot(), and qqnorm(). Although there are far more specialized
functions available, these functions should be more than sufficient to provide an
initial visual representation of the data.

The par(ask=TRUE) function and argument are used to freeze the presentation
on the screen, one figure at a time. When viewing a R-generated figure, note how the
top line of the figure, under File – Save as, provides a variety of graphical formats to
save each figure: Metafile, Postscript, PDF, PNG, BMP, TIFF, and JPEG. It is also
possible to perform a simple copy and paste against each graphical image. Graphical
images can also be saved by using R syntax.

Visual Presentation of Factor-Type Object Variables
The dataset for this lesson on Ewes is fairly simple, with Pairs as the only factor-
type object variable. It is unlikely that the graphics for the object variable Pair will
ever be published, but it is still attempted as a quality assurance measure to be sure
that data have been imported for each of the 20 pairs of ewes.

par(ask=TRUE)
plot(EweTwin.df$Pair,
main="Ewe Pair (N = 20 Pairs) - Subject(s)",
xlab="Pairs", ylab="N",
col=c("red"), cex.lab=1.25, font=2)

Although it may seem somewhat redundant, the barplot() function can be used
to generate the same figure by wrapping the barplot() function around the table()
function. As is nearly always the case with R, there are usually multiple ways to
achieve desired aims.

par(ask=TRUE)
barplot(table(EweTwin.df$Pair),
main="Ewe Pair (N = 20 Pairs) - Subject(s)",
xlab="Pairs", ylab="N",
col=c("red"), cex.lab=1.25, font=2)

5.4 Conduct a Visual Data Check 143

Visual Presentation of Numeric-Type Object Variables
While viewing and then preparing graphical presentations of the numeric-type
object variables EweTwin.df$Control and EweTwin.df$Treatment, recall that the
data for these object variables are considered ordinal—not interval. Both object
variables are certainly numbers given how they represent weight in pounds.
However, use some degree of caution and keep in mind that the scale is not as
consistent as would be expected if the data followed along a more parametric
perspective.

The boxplot is one of the most frequently used tools for graphically representing
measures of central tendency, descriptive statistics, and overall dispersion of a
numerical variable.1 A few text-based (i.e., not graphical) functions that go along
with the boxplot() function are the boxplot.stats() function and the fivenum()
function:

• boxplot.stats() function

– lower whisker
– lower hinge
– median
– upper hinge
– upper whisker
– N
– outliers

• fivenum() function

– minimum
– lower hinge
– median
– upper hinge
– maximum

par(ask=TRUE)
boxplot(EweTwin.df$Control,
main="Boxplot of Control Ewes (Weight - Pounds)",
ylab="Weight - Pounds", # Label
ylim=c(40,100), # Range of Y axis
font=2, # Bold text
cex.lab=1.15, # Large font
cex.axis=1.25, # Large axis text
lwd=2, # Thick line
col="red") # Vibrant color

1As a reminder on the boxplot, the bottom line (i.e., lower hinge) in the box represents the 25th
percentile, the middle line represents the 50th percentile (i.e., median), and the top line (i.e., upper
hinge) represents the 75th percentile. The whiskers are drawn as horizontal lines that represent data
that go beyond values for the 25th percentile (i.e., bottom whisker) and the 75th percentile (i.e.,
top whisker). Exceptionally divergent data are often represented as small circles that go beyond the
whiskers and are typically termed outliers.

144 5 Wilcoxon Matched-Pairs Signed-Ranks Test

boxplot.stats(EweTwin.df$Control)
fivenum(EweTwin.df$Control)

par(ask=TRUE)
boxplot(EweTwin.df$Treatment,
main="Boxplot of Treatment Ewes (Weight - Pounds)",
ylab="Weight - Pounds", # Label
ylim=c(40,100), # Range of Y axis
font=2, # Bold text
cex.lab=1.15, # Large font
cex.axis=1.25, # Large axis text
lwd=2, # Thick line
col="red") # Vibrant color

mtext("Notice the outlier, at 50 or so pounds.",
line=2.5, side=1, cex=1.25, col=c("darkblue"),
font=2)
The mtext() function has been used to place a
comment, not a label, below the X axis. The line
argument was very useful, to place the text a few
lines below the X axis, to improve presentation.

boxplot.stats(EweTwin.df$Treatment)
fivenum(EweTwin.df$Treatment)

If it would help, place both boxplot figures side-by-side while using the same
scale, to gain another view of central tendency and distribution for the two numeric
object variables, Control and Treatment. By using the mfrow() function as presented
below, the two graphics will be placed in a 1 row by 2 column format (Fig. 5.1).

par(ask=TRUE)
par(mfrow=c(1,2)) # 1 row by 2 column format
boxplot(EweTwin.df$Control,
ylab="Weight (Pounds): Control Ewes",
ylim=c(0,115), font=2, cex.lab=1.15, cex.axis=1.25,
lwd=2, col="red")

mtext("Ewes: Control", line=0.5, side=3, cex=1.25,
col=c("darkblue"), font=2)

boxplot(EweTwin.df$Treatment,
ylab="Weight (Pounds): Treatment Ewes",
ylim=c(0,115), font=2, cex.lab=1.15, cex.axis=1.25,
lwd=2, col="red")

mtext("Ewes: Treatment", line=0.5, side=3, cex=1.25,
col=c("darkblue"), font=2)

The histogram is also a standard graphical tool for showing the dispersion of
values for a specific numeric object variable. When looking (below) at the R syntax
for the histogram observe how the arguments are similar to what has been seen
previously with other functions.

5.4 Conduct a Visual Data Check 145

0W
ei

gh
t (

P
ou

nd
s)

: C
on

tr
ol

 E
w

es

20
40

60
80

10
0

Ewes: Control Ewes: Treatment

0W
ei

gh
t (

P
ou

nd
s)

: T
re

at
m

en
t E

w
es

20
40

60
80

10
0

Fig. 5.1 Comparative boxplots of separate object variables in one common graphic

par(ask=TRUE)
hist(EweTwin.df$Control,
main="Histogram of Control Ewes (Weight - Pounds)",
xlab="Weight - Pounds", # Label
font=2, # Bold text
cex.lab=1.15, # Large font
cex.axis=1.25, # Large axis text
lwd=2, # Thick line
col="red") # Vibrant color

mtext("Do Control weights show normal distribution?",
line=1.75, side=1, cex=0.95, col=c("darkblue"),
font=2)

par(ask=TRUE)
hist(EweTwin.df$Treatment,
main="Histogram of Treatment Ewes (Weight - Pounds)",
xlab="Weight - Pounds", # Label
font=2, # Bold text
cex.lab=1.15, # Large font
cex.axis=1.25, # Large axis text
lwd=2, # Thick line
col="red") # Vibrant color

mtext("Do Treatment weights show normal distribution?",
line=1.75, side=1, cex=0.95, col=c("darkblue"),
font=2)

Following along with the desire to show graphical images for EweTwin.
df$Control and EweTwin.df$Treatment, side-by-side, review outcomes for the
following syntax:

par(ask=TRUE)
par(mfrow=c(1,2)) # 1 row by 2 column format
hist(EweTwin.df$Control,
main="Ewes: Control",
xlab="Weight", ylab="Weight (Pounds): Control Ewes",

146 5 Wilcoxon Matched-Pairs Signed-Ranks Test

ylim=c(0,10), xlim=c(0,115), font=2, cex.lab=1.15,
cex.axis=1.25, lwd=2, col="red")

hist(EweTwin.df$Treatment,
main="Ewes: Treatment",
xlab="Weight", ylab="Weight (Pounds): Treatment Ewes",
ylim=c(0,10), xlim=c(0,115), font=2, cex.lab=1.15,
cex.axis=1.25, lwd=2, col="red")

A density plot is equally used to show the distribution of values for a numerical
object variable.2 Notice below how the density plot is prepared for each object
variable in question (EweTwin.df$Control and EweTwin.df$Treatment) and then
how these two object variables show side-by-side. Give attention to the plot()
function and how it is wrapped around the density() function (Fig. 5.2).

par(ask=TRUE)
plot(density(EweTwin.df$Control,
na.rm=TRUE), # Required for the density() function
main="Density Plot of Control Ewes (Weight - Pounds)",
xlab="Weight (Pounds)",
font=2, # Bold text
cex.lab=1.15, # Large font
cex.axis=1.25, # Large axis text
lwd=6, # Thick line
col="red") # Vibrant color

par(ask=TRUE)
plot(density(EweTwin.df$Treatment,
na.rm=TRUE), # Required for the density() function
main="Density Plot of Treatment Ewes (Weight - Pounds)",
xlab="Weight (Pounds)",
font=2, # Bold text
cex.lab=1.15, # Large font
cex.axis=1.25, # Large axis text
lwd=6, # Thick line
col="red") # Vibrant color

par(ask=TRUE)
par(mfrow=c(1,2)) # 1 row by 2 column format
plot(density(EweTwin.df$Control, na.rm=TRUE),
main="Ewes: Control", xlab="Weight (Pounds)",
ylim=c(0, 0.05), xlim=c(0,115), font=2, cex.lab=1.15,
cex.axis=1.25, lwd=6, col="red")

plot(density(EweTwin.df$Treatment, na.rm=TRUE),
main="Ewes: Treatment", xlab="Weight (Pounds)",
ylim=c(0, 0.05), xlim=c(0,115), font=2, cex.lab=1.15,
cex.axis=1.25, lwd=6, col="red")

2The density plot provides a graphical summary of density estimates for a given set of data. Density
estimation is a data smoothing tool, with inferences made about a population based on provided
data.

5.4 Conduct a Visual Data Check 147

0

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

20 40

Ewes: Control Ewes: Treatment

60
Weight (Pounds)

D
en

si
ty

80 100 0

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

20 40 60
Weight (Pounds)

D
en

si
ty

80 100

Fig. 5.2 Comparative density plots of separate object variables in one common graphic

Violin plots are not as well-known as boxplots, but their use should be consid-
ered. Consider, below, how the violin plot complements what is also shown in the
boxplot.

install.packages("vioplot")
library(vioplot) # Load the vioplot package.
help(package=vioplot) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

save.cexaxis <- par(cex.axis=1.25) # Expand axis size
par(ask=TRUE)
vioplot::vioplot(EweTwin.df$Control,
names=c("Control Ewes Weight - Pounds"), ylim=c(40,100),
col="red", horizontal=FALSE, lwd=3, lty=6)
title("Violin Plot of Control Ewes (Weight - Pounds)")

par(save.cexaxis) # Toggle back.

save.cexaxis <- par(cex.axis=1.25) # Expand axis size
par(ask=TRUE)
vioplot::vioplot(EweTwin.df$Treatment,
names=c("Treatment Ewes Weight - Pounds"), ylim=c(40,100),
col="red", horizontal=FALSE, lwd=3, lty=6)

title("Violin Plot of Treatment Ewes (Weight - Pounds)")
par(save.cexaxis) # Toggle back.

Place both violin plots side-by-side, to better understand patterns of central ten-
dency and distribution for the two numeric object variables, Control and Treatment.
By using mfrow(), the two graphics will be placed in a 1 row by 2 column format.

148 5 Wilcoxon Matched-Pairs Signed-Ranks Test

save.cexaxis <- par(cex.axis=1.25) # Expand axis size
par(ask=TRUE)
par(mfrow=c(1,2)) # 1 row by 2 column format
vioplot::vioplot(EweTwin.df$Control,
names=c("Weight (Pounds): Control Ewes"), ylim=c(0,115),
col="red", horizontal=FALSE, lwd=3, lty=6)

mtext("Ewes: Control", line=0.5, side=3, cex=1.25,
col=c("darkblue"), font=2)

vioplot::vioplot(EweTwin.df$Treatment,
names=c("Weight (Pounds): Treatment Ewes"), ylim=c(0,115),
col="red", horizontal=FALSE, lwd=3, lty=6)

par(save.cexaxis) # Toggle back.
mtext("Ewes: Treatment", line=0.5, side=3, cex=1.25,
col=c("darkblue"), font=2)

Along with the graphical tools (i.e., functions) found with the R software
obtained at first download, there are many similar tools in the thousands of external
packages associated with R. Look below how the descr package and specifically
the descr::histkdnc() function combines many different graphical tools in one
convenient figure (Fig. 5.3).

40

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

60
Control Ewes (Weight - Pounds)

D
en

si
ty

Histogram (Weight - Pounds) of Control Ewes,
Superimposed Normal Curve (Blue), and

Density Curve (Red)

Histogram (Weight - Pounds) of Treatment Ewes,
Superimposed Normal Curve (Blue), and

Density Curve (Red)

80 100 40

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

60
Treatment Ewes (Weight - Pounds)

D
en

si
ty

80 100

Fig. 5.3 Comparative histograms, normal curves, and density curves of separate object variables
using the descr::histkdnc() function placed into one common graphic

5.4 Conduct a Visual Data Check 149

install.packages("descr")
library(descr) # Load the descr package.
help(package=descr) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

save.lwd <- par(lwd=4) # Heavy line
save.font <- par(font=2) # Bold
save.cexlab <- par(cex.lab=1.25) # Label
save.cexaxis <- par(cex.axis=1.25) # Axis
par(ask=TRUE)
descr::histkdnc(EweTwin.df$Control,
main="Histogram (Weight - Pounds) of Control Ewes,
Superimposed Normal Curve (Blue), and
Density Curve (Red)",
xlab="Control Ewes (Weight - Pounds)",
col=grey(0.95)) # Allow contrast with lines

par(save.lwd); par(save.font); par(save.cexlab);
par(save.cexaxis) # Use ; to move to next line

save.lwd <- par(lwd=4) # Heavy line
save.font <- par(font=2) # Bold
save.cexlab <- par(cex.lab=1.25) # Label
save.cexaxis <- par(cex.axis=1.25) # Axis
par(ask=TRUE)
descr::histkdnc(EweTwin.df$Treatment,
main="Histogram (Weight - Pounds) of Treatment Ewes,
Superimposed Normal Curve (Blue), and
Density Curve (Red)",
xlab="Treatment Ewes (Weight - Pounds)",
col=grey(0.95)) # Allow contrast with lines

par(save.lwd); par(save.font); par(save.cexlab);
par(save.cexaxis) # Use ; to move to next line

par(ask=TRUE)
par(mfrow=c(1,2)) # 1 row by 2 column format
save.lwd <- par(lwd=4) # Heavy line
save.font <- par(font=2) # Bold
save.cexlab <- par(cex.lab=1.25) # Label
save.cexaxis <- par(cex.axis=1.25) # Axis
par(ask=TRUE)
descr::histkdnc(EweTwin.df$Control,
main="Histogram (Weight - Pounds) of Control Ewes,
Superimposed Normal Curve (Blue), and
Density Curve (Red)",
xlab="Control Ewes (Weight - Pounds)",
ylim=c(0.0, 0.05), # Force ylim to have equal scales
col=grey(0.95)) # Allow contrast with lines

par(save.lwd); par(save.font); par(save.cexlab);
par(save.cexaxis) # Use ; to move to next line
save.lwd <- par(lwd=4) # Heavy line
save.font <- par(font=2) # Bold
save.cexlab <- par(cex.lab=1.25) # Label

150 5 Wilcoxon Matched-Pairs Signed-Ranks Test

save.cexaxis <- par(cex.axis=1.25) # Axis
par(ask=TRUE)
descr::histkdnc(EweTwin.df$Treatment,
main="Histogram (Weight - Pounds) of Treatment Ewes,
Superimposed Normal Curve (Blue), and
Density Curve (Red)",
xlab="Treatment Ewes (Weight - Pounds)",
ylim=c(0.0, 0.05), # Force ylim to have equal scales
col=grey(0.95)) # Allow contrast with lines

par(save.lwd); par(save.font); par(save.cexlab);
par(save.cexaxis) # Use ; to move to next line

As always, remember how R syntax can be used and then reused in multiple
ways, in the current session and in future sessions. With a slight change to the
syntax, typically the dataframe name, object names, and axis scales, considerable
development time can be saved when preparing figures by the simple reuse of
existing syntax.

Regarding data distribution for the object variables Control and Treatment, there
seems to be some deviation away from normal distribution, especially for the
Treatment ewes, but it is cautioned that they key word here is seems. From these
initial views toward the data it is judged, again, that the use of a nonparametric
approach to statistical analysis of the matched pairs seems entirely appropriate.

5.5 Descriptive Analysis of the Data

The dataset for this lesson is fairly small (N = 20 pairs, or 40 subjects) and it is easy
to visually scan the data. A casual review confirms that there are no missing data.
Even so, it is still best to use R to check for missing data by using the is.na() function
and the complete.cases() function against the entire dataset. Both functions return a
TRUE or FALSE response, depending on the function and the outcome of whether
data are missing or not.

is.na(EweTwin.df) # Check for missing data
complete.cases(EweTwin.df) # Check for complete cases

Before Mode, Median, Mean, Standard Deviation, and any other descriptive
statistics are applied against EweTwin.df$Control and EweTwin.df$Treatment, it is
important to again recall that a judgment has been made that the data are ordinal, not
interval. Equally, there is a concern that the data do not exhibit normal distribution.
Given these conditions, the application and interpretation of descriptive statistics
should be viewed with some degree of caution. It will be fairly easy to apply the
functions against the data, but their meaning may not be quite as easy to understand
as would be the case if the data were interval and if the data came from a dataset
with normal distribution.

5.5 Descriptive Analysis of the Data 151

For this simple dataset, the summary() function may be all that is necessary to
understand the data and their possible use with statistical tests. Remember that the
summary() function, as shown below, is applied against the entire dataset, thus
yielding information about all object variables, including the factor-type object
variable Pair.

summary(EweTwin.df)

Pair Control Treatment
P01 : 1 Min. :49.00 Min. : 49.0
P02 : 1 1st Qu.:70.25 1st Qu.: 76.0
P03 : 1 Median :77.00 Median : 83.0
P04 : 1 Mean :76.15 Mean : 79.2
P05 : 1 3rd Qu.:85.75 3rd Qu.: 88.0
P06 : 1 Max. :92.00 Max. :100.0
(Other):14

Measures of Central Tendency of the Numeric Object Variables
Although the summary() function is quite sufficient, descriptive statistics for
individual object variables may be desired. To achieve this aim, consider the many
functions shown below to gain a complete sense of descriptive statistics for the two
numeric object variables in this dataset. Although there are no missing data for either
EweTwin.df$Control or EweTwin.df$Treatment, if there were it would be necessary
to use the na.rm=TRUE argument or some other similar convention to accommodate
missing data.

length(EweTwin.df$Control) # N
length(EweTwin.df$Treatment) # N

install.packages("asbio")
library(asbio) # Load the asbio package.
help(package=asbio) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

asbio::Mode(EweTwin.df$Control) # Mode
asbio::Mode(EweTwin.df$Treatment) # Mode

median(EweTwin.df$Control, na.rm=TRUE) # Median
median(EweTwin.df$Treatment, na.rm=TRUE) # Median

mean(EweTwin.df$Control, na.rm=TRUE) # Mean
sd(EweTwin.df$Control, na.rm=TRUE) # SD

mean(EweTwin.df$Treatment,na.rm=TRUE) # Mean
sd(EweTwin.df$Treatment, na.rm=TRUE) # SD

summary(EweTwin.df)

The epicalc::summ() function is also recommended since it can provide descrip-
tive statistics and a representative figure of individual object variables.

152 5 Wilcoxon Matched-Pairs Signed-Ranks Test

install.packages("epicalc")
library(epicalc) # Load the epicalc package.
help(package=epicalc) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

par(ask=TRUE) # Use the epicalc package.
epicalc::summ(EweTwin.df$Control,
by=NULL, graph=TRUE, box=TRUE, # Generate a boxplot
pch=18, ylab="auto",
main="Sorted Dotplot and Boxplot of Control
(Weight - Pounds)",
cex.X.axis=1.15, cex.Y.axis=1.15, font.lab=2,
dot.col="auto")
Note the descriptive statistics that go
along with the epicalc::summ() function.

par(ask=TRUE) # Use the epicalc package.
epicalc::summ(EweTwin.df$Treatment,
by=NULL, graph=TRUE, box=TRUE, # Generate a boxplot
pch=18, ylab="auto",
main="Sorted Dotplot and Boxplot of Treatment
(Weight - Pounds)",
cex.X.axis=1.15, cex.Y.axis=1.15, font.lab=2,
dot.col="auto")
Note the descriptive statistics that go
along with the epicalc::summ() function.

Although the epicalc::summ() function may be sufficient for production of
descriptive statistics, there are many other functions that serve the same pur-
pose. A few will be demonstrated, including the prettyR::describe() function,
the psych::describe() function, and the lessR::SummaryStats() function. As time
permits, explore the many other R functions that serve a similar purpose.

install.packages("prettyR")
library(prettyR) # Load the prettyR package.
help(package=prettyR) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

prettyR::describe(EweTwin.df$Control)
prettyR::describe(EweTwin.df$Treatment)

install.packages("psych")
library(psych) # Load the psych package.
help(package=psych) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

psych::describe(EweTwin.df$Control)
psych::describe(EweTwin.df$Treatment)

5.5 Descriptive Analysis of the Data 153

Comment: Notice how the prettyR package and the psych package both have
a function called describe: prettyR::describe() and psych::describe(). Because,
in part, of this duplicate naming convention, it is always important to use
a formal naming scheme when using a function from an external package:
package_name::function_name() and not function_name() only.3

install.packages("lessR")
library(lessR) # Load the lessR package.
help(package=lessR) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

lessR::SummaryStats(Control, brief=TRUE, data=EweTwin.df)
The brief argument may or may not be wanted -- experiment

--- Control ---
n miss mean sd min mdn max

20 0 76.15 11.75 49.00 77.00 92.00

lessR::SummaryStats(Treatment, brief=TRUE, data=EweTwin.df)
The brief argument may or may not be wanted -- experiment

--- Treatment ---
n miss mean sd min mdn max

20 0 79.20 13.34 49.00 83.00 100.00

Number of outliers: 1
Small: 49
Large: none

The many functions, shown above, all serve the same general purpose in that
they provide a broad selection of measures of central tendency and descriptive
statistics. However, the output is not necessarily in a formal and attractive format.
The tables::tabular() function can be used to provide even more detail, in a fairly
attractive table format that can be easily copied or used in some other fashion in a
summary report.

install.packages("tables")
library(tables) # Load the tables package.
help(package=tables) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

tables::tabular(Control*(length+min+max+median+mean+sd) ~
1, data=EweTwin.df)

3The only exception to this recommendation is to avoid the package name for the few packages
made available when R is first downloaded: base, datasets, graphics, grDevices, methods,
stats, and utils. Thus, it is common to write mean(SBP) and not base::mean(SBP). However,
base::mean(SBP) is perfectly acceptable and produces the same result as mean (SBP).

154 5 Wilcoxon Matched-Pairs Signed-Ranks Test

All
Control length 20.00

min 49.00
max 92.00
median 77.00
mean 76.15
sd 11.75

tables::tabular(Treatment*(length+min+max+median+mean+sd) ~
1, data=EweTwin.df)

All
Treatment length 20.00

min 49.00
max 100.00
median 83.00
mean 79.20
sd 13.34

The tables::tabular() function cannot immediately accommodate missing values,
which is not an issue for this dataset but should be considered in future analyses. A
simple enumeration of a new set of functions for length, min, max, median, mean,
and sd will take care of this concern. Again, there are no missing data in this lesson
so this demonstration on how to create and use functions that accommodate missing
data may not be needed now, but it will be useful for future lessons.

LENGTH <- function(x) base::length(x)
MIN <- function(x) base::min(x, na.rm=TRUE)
MAX <- function(x) base::max(x, na.rm=TRUE)
MEDIAN <- function(x) stats::median(x, na.rm=TRUE)
MEAN <- function(x) base::mean(x, na.rm=TRUE)
SD <- function(x) stats::sd(x, na.rm=TRUE)

Comment: Note how the length(), min(), max(), and mean() functions are
associated with the base package. In turn, note how median() and sd() functions
are associated with the stats package. Both the base package and the stats package
are obtained in the initial download of R.4

Note also how, because R is case sensitive. The term MEDIAN does not equal
median and therefore MEDIAN is a perfectly acceptable name for an enumerated
function.

tables::tabular(Control*(LENGTH+MIN+MAX+MEDIAN+MEAN+SD) ~
1, data=EweTwin.df)

4Going back to the prior comment about package names and functions, in this listing of enumerated
functions, the base and stats package names have been purposely used to demonstrate their
inclusion among the packages available when R is first downloaded.

5.5 Descriptive Analysis of the Data 155

All
Control LENGTH 20.00

MIN 49.00
MAX 92.00
MEDIAN 77.00
MEAN 76.15
SD 11.75

tables::tabular(Treatment*(LENGTH+MIN+MAX+MEDIAN+MEAN+SD) ~
1, data=EweTwin.df)

All
Treatment LENGTH 20.00

MIN 49.00
MAX 100.00
MEDIAN 83.00
MEAN 79.20
SD 13.34

Additional functions could be demonstrated, but the above functions should
provide a broad representation of how descriptive statistics and measures of central
tendency are determined when using R. The immediate concern for the two object
variables in question is again easily viewed by using the summary() function:

summary(EweTwin.df)

With sufficient experience, preferences and individual choice will help determine
which functions to use. For now, it is only necessary to determine if there
is a statistically significant difference in EweTwin.df$Control, as compared to
EweTwin.df$Treatment.

Application of the Anderson-Darling Test
Graphical images and descriptive statistics certainly help with understanding the
data. Still, it is also useful to apply selected statistical tests to serve as an additional
support for decision-making on acceptance of nonparametric or parametric views
toward the data. To that end, consider application of the Anderson-Darling Test, the
Lilliefors (KS) Test, and the Shapiro-Wilk Test. It should be mentioned that these
tests may be influenced by sample size and that they provide one view, but not the
only view, on the nature of distribution patterns. Experience, needs, and practical
judgment, supported by careful review of graphical images, descriptive statistics,
and statistical tests, should be used when deciding if variables from a dataset are
best viewed from a nonparametric or parametric perspective.

install.packages("nortest")
library(nortest) # Load the nortest package.
help(package=nortest) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

156 5 Wilcoxon Matched-Pairs Signed-Ranks Test

For this lesson, it will be sufficient to apply the Anderson-Darling Test only. The
Null Hypothesis for the Anderson-Darling Test is structured to examine if the data
follow a specified distribution:

Anderson-Darling Null Hypothesis: The data follow the normal distribution.
There will be two approaches to the Anderson-Darling Test and subsequent

examination of p-values for each approach:

• The Anderson-Darling Test will be applied against the values for EweTwin.
df$Control.

• The Anderson-Darling Test will be applied against the values for EweTwin.
df$Treatment.

nortest::ad.test(EweTwin.df$Control) # Anderson-Darling Test

Anderson-Darling normality test

data: EweTwin.df$Control
A = 0.3008, p-value = 0.5466

nortest::ad.test(EweTwin.df$Treatment) # Anderson-Darling Test

Anderson-Darling normality test

data: EweTwin.df$Treatment
A = 0.9531, p-value = 0.01273

The calculated Anderson-Darling Test for normality p-value exceeds 0.05 for
EweTwin.df$Control but is less than 0.05 for EweTwin.df$Treatment:

• The Anderson-Darling Test EweTwin.df$Control p-value is 0.5466.
• The Anderson-Darling Test EweTwin.df$Treatment p-value is 0.01273.

Based on the calculated Anderson-Darling Test p-value for EweTwin.df$Control
(0.5466), which certainly exceeds p <= 0.05, the data for this object variable
follow the normal distribution and the Null Hypothesis is accepted.

However, based on the calculated Anderson-Darling Test p-value for
EweTwin.df$Treatment (0.01273), which is less than p <= 0.05, the data for
this object variable do not follow the normal distribution and the Null Hypothesis
is rejected. Thus, the data for object variable EweTwin.df$Treatment do not display
normal distribution.

These p-values (especially the p-value for EweTwin.df$Treatment) and the
observation that normal distribution is suspect should not be overly surprising given
the graphics (especially the density plots) previously displayed. Accordingly, a
nonparametric approach (i.e., Wilcoxon Matched-Pairs Signed Ranks Test) will be
used for the inferential analysis associated with this lesson.

The QQ plot and associated graphical features will be presented, below, to further
reinforce the decision to reject the Null Hypothesis and to instead declare that the

5.5 Descriptive Analysis of the Data 157

full set of data associated with this lesson do not follow the normal distribution,
specifically the data associated with EweTwin.df$Treatment.5

The qqnorm() function is often used in conjunction with the qqline() function
and the qqplot() function. The Quantile-Quantile (Q-Q) functions take some time
to understand, but they serve as excellent graphical tools to understand data
distribution and it is worth the effort to learn more about these tools. The Q-Q plot
is especially useful as a scatter plot.6 For all applications of the Q-Q functions,
the purpose is to determine if the data in a numerical object variable come from a
known population. Review the many ways the Q-Q plot is used, below, and give
special attention to how the ends (i.e., tails) of the theoretical distributions show
(Fig. 5.4).

par(ask=TRUE)
qqnorm(EweTwin.df$Control, main="QQ Ewes: Control",
ylim=c(40,115), font=2, cex.lab=1.15, cex.axis=1.25,
lwd=8, col="red")

qqline(EweTwin.df$Control, lwd=6, col=c("darkblue"))

par(ask=TRUE)
qqnorm(EweTwin.df$Treatment, main="QQ Ewes: Treatment",
ylim=c(40,115), font=2, cex.lab=1.15, cex.axis=1.25,
lwd=8, col="red")

qqline(EweTwin.df$Control, lwd=6, col=c("darkblue"))

par(ask=TRUE)
par(mfrow=c(1,2)) # 1 row by 2 column format
qqnorm(EweTwin.df$Control, main="QQ Ewes: Control",
ylim=c(40,115), font=2, cex.lab=1.15, cex.axis=1.25,
lwd=8, col="red")

qqline(EweTwin.df$Control, lwd=6, col=c("darkblue"))
qqnorm(EweTwin.df$Treatment, main="QQ Ewes: Treatment",
ylim=c(40,115), font=2, cex.lab=1.15, cex.axis=1.25,
lwd=8, col="red")

qqline(EweTwin.df$Control, lwd=6, col=c("darkblue"))

Similar to the other graphical presentations, the distributions for EweTwin.df
$Control and EweTwin.df$Treatment seem to be different and EweTwin.df
$Treatment seems to negate the assumption of normal distribution. The graphical
presentations continue to build a case and then reinforce the decision that it may
be best to use nonparametric approaches to statistical analysis for the data in this
lesson. As an interesting and final view of the data, go beyond the qqnorm() and
qqline() functions and consider distribution of the variables (EweTwin.df$Control
and EweTwin.df$Treatment) using the qqplot() function.

5Recall the prior comment that QQ and Q-Q are both used as a proxy for the term Quantile-
Quantile.
6Similar to many other compound words, it is common to see the term(s) scatter plot and
scatterplot.

158 5 Wilcoxon Matched-Pairs Signed-Ranks Test

−2

40
60

80
10

0
QQ Ewes: Control QQ Ewes: Treatment

−1 0
Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

1 2 −2

40
60

80
10

0

−1 0
Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

1 2

Fig. 5.4 Comparative QQ plots with QQ lines

par(ask=TRUE)
qqplot(EweTwin.df$Control, EweTwin.df$Treatment,
main="QQ Plot of Ewes: Control v Treatment",
xlab="Control", ylab="Treatment",
font=2, cex.lab=1.15, cex.axis=1.25, lwd=8, col="red")

abline(0,1, lwd=8, col=c("darkblue"))
Include a 45-degree reference line

Again, there seems to be some degree of concern about data distribution and
whether the data follow any reasonable semblance of normal distribution.

5.6 Conduct the Statistical Analysis

The dataset for this part of the lesson was prepared in unstacked format. A brief
demonstration of the same data, but presented as a dataset in stacked format, follows
later in an addendum to this lesson. Review the help pages for the stack() function
and the unstack() function to learn more about this issue.

A fair amount of attention in this lesson has been given to visual presentations
of data distribution and descriptive statistics. These two topics help with an
understanding of the data and how the data are organized, individually and in league
with other variables in the dataset. Yet, the primary emphasis for this lesson involves
the Wilcoxon Matched-Pairs Signed Ranks Test and the Null Hypothesis associated
with this lesson:

Null Hypothesis (Ho) There is no statistically significant difference (p <= 0.05)
in weight between ewes that experienced regular field conditions during a treatment
period (i.e., the control group) and their gender-equivalent twin counterparts that

5.6 Conduct the Statistical Analysis 159

not only experienced regular conditions but also received an otherwise unidentified
supplement during the same treatment period (i.e., the treatment group).

The wilcox.test() function is the primary function used to complete the compar-
ison of the two groups associated with this lesson, ewe weight among members of
the control group and ewe weight among twin counterpart members of the treatment
group. This lesson does not go into explicit detail on the algorithm for the Wilcoxon
Matched-Pairs Signed Ranks Test but is instead focused on the use of R to achieve
this analysis. As time permits, read on the Wilcoxon Matched-Pairs Signed Ranks
Test and how this test is used to compare medians for two groups (i.e., Control v
Treatment). The comparison of medians for two groups (i.e., matched pairs) using
the Wilcoxon Matched-Pairs Signed Ranks Test is opposed to the comparison of
means for two groups, which is inherent to the Student’s t-Test.

As the algorithm for the Wilcoxon Matched-Pairs Signed Ranks Test is reviewed,
read also about the way tie scores are accommodated. In the EweTwin.df dataframe,
notice how the weight for Pair 17 is tied, Control Weight (pounds) = 88 and
Treatment Weight (pounds) = 88. Special accommodations are needed for tied
measures. Fortunately, most statistical analysis programs such as R and the leading
proprietary programs can accommodate tied scores with matched-pairs.

Clearly, this area is complex and the heuristics of the nonparametric algorithm for
matched-pairs is beyond the purpose of this lesson. Instead, this lesson is grounded
on the use of R for calculation of the appropriate statistics for the Wilcoxon
Matched-Pairs Signed Ranks Test. Saying that, notice immediately below how the
wilcox.test() function and related arguments are applied against the EweTwin.df
dataframe.

wilcox.test(EweTwin.df$Control, EweTwin.df$Treatment,
alternative=c("two.sided"), paired=TRUE, exact=TRUE,
correct=TRUE, conf.int=TRUE, conf.level=0.95)
Notice how there was no grouping factor. Instead,
Control as a set of numeric weight-type values was
compared directly against Treatment which is
another set of numeric weight-type values.

Wilcoxon signed rank test with continuity correction

data: EweTwin.df$Control and EweTwin.df$Treatment
V = 79, p-value = 0.5324
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-10.999986 4.499993

sample estimates:
(pseudo)median

-2.500047

The important outcome here is that the calculated p-value (p <= 0.5324)
certainly exceeds the criterion p-value associated with the Null Hypothesis
(p <= 0.05). There is no statistically significant difference in weight (pounds)
between ewes in the Control group and ewes in the Treatment group.

160 5 Wilcoxon Matched-Pairs Signed-Ranks Test

Notice how a comma and not a tilde was used to separate the unstacked object
variables EweTwin.df$Control and EweTwin.df$Treatment. There is no grouping
variable with unstacked data as there is with stacked data since the two sets of
unstacked data represent their own groups. By purposeful design, look at the error
message, below, which was generated by R when a ~ (i.e., tilde) instead of a , (i.e.,
comma) was used with unstacked data.

Purposeful introduction of an error, by using ~ instead of ,
wilcox.test(EweTwin.df$Control ~ EweTwin.df$Treatment,
alternative=c("two.sided"), paired=TRUE, exact=TRUE,
correct=TRUE, conf.int=TRUE, conf.level=0.95)

Error in wilcox.test: grouping factor must have exactly 2 levels

Use the wilcox.test help page to see the many ways this function can be
organized. As with all other R functions, first learn the basics and work with default
settings and simple confidence-building actions. Then use the R-based help pages
and other learning resource materials to develop analyses that are in line with
specific needs.

5.7 Summary

The graphics and statistics are helpful and provided a great deal of information (and
context) about this lesson on weight differences between the two groups of ewes,
those ewes that experienced regular field conditions (i.e., Control) vs those ewes that
received some type of supplement (i.e., Treatment) in addition to their exposure to
regular field conditions. As useful as this upfront information may be, the purpose
of this lesson was to focus on how the Wilcoxon Matched-Pairs Signed Ranks Test
can be used to compare differences in the median weight for these two groups of
ewes.

As a reminder, the nonparametric Wilcoxon Matched-Pairs Signed Ranks Test
was selected for comparison of the two groups instead of Student’s t-Test for
Matched-Pairs. This selection is justified because:

• Anecdotal information gained during field work raised the concern that the data
were ordinal and not interval. Recall how there was an issue about calibration
and consistency in measurement.

• There was also compelling graphical evidence that the distribution of data for the
two groups did not approximate normal distribution.

• The Anderson-Darling Test equally provided evidence that the data for at least
one object variable (EweTwin.df$Treatment) did not follow normal distribution.

5.7 Summary 161

Given these three immediate observations, the focus in this lesson has been on
comparison of medians, which is shown, in part, below:

Control Treatment
Ewes length 20 20

min 49.00 49.00
max 92.00 100.00
median 77.00 83.00
mean 76.15 79.20
sd 11.75 13.34

If it is assumed that the data were organized correctly and that the Wilcoxon
Matched-Pairs Signed Ranks Test was applied correctly, then there is evidence to
support the statement that there is no difference in weights between Control ewes
and Treatment ewes since the calculated p-value of 0.5324 exceeded the criterion
p-value 0.05 associated with the Null Hypothesis. Again, attention to the p-value is
perhaps the easiest way to view differences for this lesson:

• The calculated p-value is 0.5324.
• The criterion (i.e., declared) p-value, from the previously stated Null Hypothesis

is 0.05.
• The calculated p-value is greater than the declared p-value.

Therefore, the Null Hypothesis is accepted (or, some may say the Null Hypothe-
sis was not rejected) and it can be claimed that there is no difference (p <= .05)
between Control ewes and Treatment ewes. That is to say, at the end of the treatment
period in this posttest-only study, there was no statistically significant difference
(p <= 0.05) in the weight of Control ewes and the weight of Treatment ewes.
Any observed difference in weights is due to chance and it does not represent a true
difference. Regarding weights, the two groups of ewes are from the same population.

R served as a more than useful tool to produce graphical images, to generate
descriptive statistics and measures of central tendency, and to apply an appropriate
inferential test against the dataset. It is also helpful to use fairly simple ways to view
data—especially for a small dataset of only 40 subjects placed into 20 matched
pairs. With this challenge, look at the way outcomes are viewed below, after hand-
calculation:

Pair Control Treatment Control v Treatment
===
Ewe Twin Pair 1 P01 90 83 Control > Treatment P01
Ewe Twin Pair 2 P02 84 89 Control < Treatment P02
Ewe Twin Pair 3 P03 78 58 Control > Treatment P03
Ewe Twin Pair 4 P04 79 93 Control < Treatment P04
Ewe Twin Pair 5 P05 65 49 Control > Treatment P05
Ewe Twin Pair 6 P06 49 82 Control < Treatment P06
Ewe Twin Pair 7 P07 92 93 Control < Treatment P07
Ewe Twin Pair 8 P08 71 100 Control < Treatment P08
Ewe Twin Pair 9 P09 85 83 Control > Treatment P09
Ewe Twin Pair 10 P10 76 55 Control > Treatment P10

162 5 Wilcoxon Matched-Pairs Signed-Ranks Test

Ewe Twin Pair 11 P11 68 65 Control > Treatment P11
Ewe Twin Pair 12 P12 71 83 Control < Treatment P12
Ewe Twin Pair 13 P13 88 81 Control > Treatment P13
Ewe Twin Pair 14 P14 89 88 Control > Treatment P14
Ewe Twin Pair 15 P15 76 83 Control < Treatment P15
Ewe Twin Pair 16 P16 61 78 Control < Treatment P16
Ewe Twin Pair 17 P17 88 88 Control = Treatment P17
Ewe Twin Pair 18 P18 58 80 Control < Treatment P18
Ewe Twin Pair 19 P19 73 70 Control > Treatment P19
Ewe Twin Pair 20 P20 82 83 Control < Treatment P20
===

If descriptive statistics, only, were used to compare the two groups it would be
easy to assume (falsely) that Treatment ewes were from a different population than
Control ewes since the overall median and mean for Treatment ewes is greater than
the overall median and mean for Control ewes:

Control Treatment
Ewes length 20 20

min 49.00 49.00
max 92.00 100.00
median 77.00 83.00
mean 76.15 79.20
sd 11.75 13.34

Instead, look at the data from a different perspective, recalling that the data are
ordinal and the key term here is that ordinal data are ordered:

• Is the Control weight < Treatment weight?
• Is the Control weight > Treatment weight?
• Is the Control weight = Treatment weight (tied)?

With this approach toward the main concern, the summary is fairly easy to
determine by hand given how this dataset is small:

• Control < Treatment for 10 pair(s) (Pair 02, 04, 06, 07, 08, 12, 15, 16, 18, 20).
• Control > Treatment for 09 pair(s) (Pair 01, 03, 05, 09, 10, 11, 13, 14, 19).
• Control = Treatment for 01 pair(s) (Pair 17).

From this perspective, it is easier to see justification for acceptance of the
Null Hypothesis and the finding that there is no difference in post-treatment
weights between Control ewes and Treatment ewes. At the level of individual pairs,
Treatment weight was greater than Control weight for only ten of 20 ewe pairs.
Conversely, Treatment weight was less than or equal to Control weight for the other
ten ewe pairs.

Looking at other issues impacting this lesson, although there is no intention to
go into additional details about the strength or weakness of a posttest-only research
design, it should also be remembered that there is no knowledge whether breed,
environmental conditions, palatability of feedstock, etc., has any possible influence
of outcomes. Data were not provided for these factors.

5.8 Addendum 1: Stacked Data and the Wilcoxon Matched-Pairs Signed-Ranks Test 163

5.8 Addendum 1: Stacked Data and the Wilcoxon
Matched-Pairs Signed-Ranks Test

The data in EweTwin.df are in unstacked format, with one column of data reserved
for data associated with Control ewes and another column of data reserved for
data associated with Treatment ewes. However, go back to the prior statement that
researchers should have the skills needed to work with data in multiple formats.

Create a dataframe-type object called EweTwin_Stacked.df directly into the R
session. This object will represent the output of wrapping the read.table() function
around the textConnection() function and the data that immediately follow. The
data are in an easy-to-read fixed-column format. Be sure to note the header=TRUE
argument, indicating that the first line is actually a header with descriptive variable
names.

EweTwin_Stacked.df <- read.table(textConnection("
SSubject SPair Group Weight
P01C StackedPair01 Control 90
P02C StackedPair02 Control 84
P03C StackedPair03 Control 78
P04C StackedPair04 Control 79
P05C StackedPair05 Control 65
P06C StackedPair06 Control 49
PO7C StackedPairO7 Control 92
P08C StackedPair08 Control 71
P09C StackedPair09 Control 85
P10C StackedPair10 Control 76
P11C StackedPair11 Control 68
P12C StackedPair12 Control 71
P13C StackedPair13 Control 88
P14C StackedPair14 Control 89
P15C StackedPair15 Control 76
P16C StackedPair16 Control 61
P17C StackedPair17 Control 88
P18C StackedPair18 Control 58
P19C StackedPair19 Control 73
P20C StackedPair20 Control 82
P01T StackedPair01 Treatment 83
P02T StackedPair02 Treatment 89
P03T StackedPair03 Treatment 58
P04T StackedPair04 Treatment 93
P05T StackedPair05 Treatment 49
P06T StackedPair06 Treatment 82
PO7T StackedPairO7 Treatment 93
P08T StackedPair08 Treatment 100
P09T StackedPair09 Treatment 83
P10T StackedPair10 Treatment 55
P11T StackedPair11 Treatment 65
P12T StackedPair12 Treatment 83
P13T StackedPair13 Treatment 81
P14T StackedPair14 Treatment 88
P15T StackedPair15 Treatment 83

164 5 Wilcoxon Matched-Pairs Signed-Ranks Test

P16T StackedPair16 Treatment 78
P17T StackedPair17 Treatment 88
P18T StackedPair18 Treatment 80
P19T StackedPair19 Treatment 70
P20T StackedPair20 Treatment 83 "), header=TRUE)

getwd() # Identify the working directory
ls() # List objects
attach(EweTwin_Stacked.df) # Attach the data, for later use
str(EweTwin_Stacked.df) # Identify structure
nrow(EweTwin_Stacked.df) # List the number of rows
ncol(EweTwin_Stacked.df) # List the number of columns
dim(EweTwin_Stacked.df) # Dimensions of the dataframe
names(EweTwin_Stacked.df) # Identify names
colnames(EweTwin_Stacked.df) # Show column names
rownames(EweTwin_Stacked.df) # Show row names
head(EweTwin_Stacked.df) # Show the head
tail(EweTwin_Stacked.df) # Show the tail
EweTwin_Stacked.df # Show the entire dataframe
summary(EweTwin_Stacked.df) # Summary statistics

class(EweTwin_Stacked.df)
class(EweTwin_Stacked.df$SSubject)
class(EweTwin_Stacked.df$SPair)
class(EweTwin_Stacked.df$Group)
class(EweTwin_Stacked.df$Weight)
DataFrame$ObjectName notation

str(EweTwin_Stacked.df) # Structure

duplicated(EweTwin_Stacked.df$SSubject) # Duplicates

With the dataframe completed, it is only necessary to prepare the Code Book on
ewe weights, presented in this addendum in stacked format.

The Code Book below represents how data are desired before analyses begin.
Recoding may be needed to put data into new formats.

###
Code Book for EweTwin_Stacked.df
###
#
SSubject (Stacked Subject).. Factor (i.e., nominal)
A unique ID ranging from P01C to P20T
where the C represents Control
and T represents Treatment
#
SPair (Stacked Pair) Factor (i.e., nominal)
A unique ID ranging from StackedPair01
to StackedPair20
#

5.8 Addendum 1: Stacked Data and the Wilcoxon Matched-Pairs Signed-Ranks Test 165

Group Factor (i.e., nominal)
Breakout identifiers, Control and Treatment
#
Weight Numeric (i.e., interval)
Weight (lbs) of a female sheep (e.g., ewe)
at end-of-program
Data may also be viewed as ordinal due to
measurement issues
###

With a better understanding of desired data formats and assurance that the
dataframe is currently in correct format, coerce each object variable into desired
format, as a factor object variable, numeric object variable, etc. Each object
will be coerced into desired class, even if the action is redundant, just to be
sure that all objects are in desired format. In this example, note especially how
EweTwin_Stacked.df$Weight was coerced from integer class to numeric class.

class(EweTwin_Stacked.df) # Confirm nature of the dataset
str(EweTwin_Stacked.df) # Confirm nature of the dataset

EweTwin_Stacked.df$SSubject <- as.factor(
EweTwin_Stacked.df$SSubject)

EweTwin_Stacked.df$SPair <- as.factor(
EweTwin_Stacked.df$SPair)

EweTwin_Stacked.df$Group <- as.factor(
EweTwin_Stacked.df$Group)

EweTwin_Stacked.df$Weight <- as.numeric(
EweTwin_Stacked.df$Weight)

class(EweTwin_Stacked.df)
class(EweTwin_Stacked.df$SSubject)
class(EweTwin_Stacked.df$SPair)
class(EweTwin_Stacked.df$Group)
class(EweTwin_Stacked.df$Weight)
DataFrame$ObjectName notation

str(EweTwin_Stacked.df) # Structure

summary(EweTwin_Stacked.df)

Confirm that the data in EweTwin_Stacked.df match the data in EweTwin.df by
comparing descriptive statistics for each.

Descriptive statistics of ewe weights from EweTwin.df (the dataframe of
unstacked data), by Control and by Treatment, follow:

summary(EweTwin.df$Control, na.rm=TRUE)

Min. 1st Qu. Median Mean 3rd Qu. Max.
49.00 70.25 77.00 76.15 85.75 92.00

166 5 Wilcoxon Matched-Pairs Signed-Ranks Test

summary(EweTwin.df$Treatment, na.rm=TRUE)

Min. 1st Qu. Median Mean 3rd Qu. Max.
49.0 76.0 83.0 79.2 88.0 100.0

Descriptive statistics of ewe weights from EweTwin_Stacked.df (the dataframe
of stacked data), by Weight and by Group, follow:

tapply(Weight, Group, summary, na.rm=TRUE,
data=EweTwin_Stacked.df) # Weight by Group using tapply()

$Control
Min. 1st Qu. Median Mean 3rd Qu. Max.

49.00 70.25 77.00 76.15 85.75 92.00

$Treatment
Min. 1st Qu. Median Mean 3rd Qu. Max.
49.0 76.0 83.0 79.2 88.0 100.0

The data are now included in this active R session in two separate datasets, with
each dataset organized as a dataframe:

str(EweTwin.df) # Unstacked dataframe
EweTwin.df

str(EweTwin_Stacked.df) # Stacked dataframe
EweTwin_Stacked.df

Perform the Wilcoxon Matched-Pairs Signed-Ranks Test on EweTwin.df using
the comma as a separator (e.g., Measured_Object_Group1, Measured_Object
_Group2). Then perform the Wilcoxon Matched-Pairs Signed Ranks-Test on
EweTwin_Stacked.df using the tilde as a separator (e.g., Measured_Object ~
Grouping_Object). Observe similarities and differences, if any, in output and give
special attention to the calculated p-value.

wilcox.test() Function with Unstacked Data, Comma Separator

wilcox.test(EweTwin.df$Control,
EweTwin.df$Treatment,
alternative=c("two.sided"), paired=TRUE, exact=TRUE,
correct=TRUE, conf.int=TRUE, conf.level=0.95)

Wilcoxon signed rank test with continuity correction

data: EweTwin.df$Control and EweTwin.df$Treatment
V = 79, p-value = 0.5324
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:

5.9 Addendum 2: Similar Functions from Different Packages 167

-10.999986 4.499993
sample estimates:
(pseudo)median

-2.500047

Outcome: The calculated p-value is 0.5324, and this value exceeds the criterion
p-value associated with the Null Hypothesis (p <= 0.05). Therefore there is no
statistically significant difference in weight (pounds) between Control ewes and
Treatment ewes.

wilcox.test() Function With Stacked Data, Tilde Separator

wilcox.test(EweTwin_Stacked.df$Weight ~
EweTwin_Stacked.df$Group,
alternative=c("two.sided"), paired=TRUE, exact=TRUE,
correct=TRUE, conf.int=TRUE, conf.level=0.95)

Wilcoxon signed rank test with continuity correction

data: EweTwin_Stacked.df$Weight by EweTwin_Stacked.df$Group
V = 79, p-value = 0.5324
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-10.999986 4.499993

sample estimates:
(pseudo)median

-2.500047

Outcome: The calculated p-value is 0.5324, and this value exceeds the criterion
p-value associated with the Null Hypothesis (p <= 0.05). Therefore there is no
statistically significant difference in weight (pounds) between Control ewes and
Treatment ewes.

As demonstrated in this addendum, the results of the inferential test (i.e.,
Wilcoxon Matched-Pairs Signed-Ranks Test, using the wilcox.test() function) are
equivalent for when the data are organized in an unstacked format and later for
when the data are organized in a stacked format. As will be seen in a later addendum,
there may be slight differences in calculated p-values for when different functions
are used, all due to variance in how algorithms are employed, rounding, and
presentation.

5.9 Addendum 2: Similar Functions from Different Packages

The wilcox.test() function is associated with the stats package, which is obtained
when R is first downloaded. However, there are thousands of external packages
available to the R community and in these many packages are what may seem to
be countless numbers of functions. It is therefore not overly surprising that a few

168 5 Wilcoxon Matched-Pairs Signed-Ranks Test

of these functions would address the Wilcoxon Matched-Pairs Signed-Ranks Test.
Below is a repeat of the wilcox.test() function and, similarly, demonstrations of how
the Wilcoxon Matched-Pairs Signed Ranks Test is approached when functions in
other packages are used:

• stats::wilcox.test() function7

• afex::compare.2.vectors() function
• coin::wilcox_test() function
• exactRankTests::wilcox.exact() function

As these different functions (all related to the Wilcoxon Matched-Pairs Signed-
Ranks Test) are attempted, notice some degree of variation in calculated p-values:

• Either the calculated p-value for Control v Treatment is approximately 0.5.
• Or, the calculated p-value for control v Treatment is approximately 0.3.

The reasons for this variation in calculated p-values for the different R-based
functions is largely due to the way each function accommodates tied values. For
teaching purposes, this lesson was purposely based on a dataset where there was
one tied value. In this lesson, notice how there are tied values for Ewe Twin Pair 17:
Control Weight is 88 pounds and Treatment Weight is 88. Tied values can be a bit
problematic when the mechanical part of matched-pairs analyses are attempted. For
those with a special interest in the way tied values and their impact on algorithm
design are accommodated with the Wilcoxon Matched-Pairs Signed-Ranks Test,
conduct an Internet search on the term nonparametric tests and fuzzy p-values and
similar descriptive phrases dealing with tied pairs and nonparametric tests.

The important outcome here is that the calculated p-value (approximately
0.3–0.5) certainly exceeds the p-value associated with the Null Hypothesis
(p <= 0.05). As demonstrated immediately below, there is no statistically
significant difference in weight (pounds) between ewes in the Control group and
ewes in the Treatment group. This finding is consistent for all functions used to
address the Wilcoxon Matched-Pairs Signed-Ranks Test. The impact of ties on
matched-pairs ranked data should not be underestimated.

stats::wilcox.test() Function with Unstacked Data

stats::wilcox.test(EweTwin.df$Control,
EweTwin.df$Treatment,
alternative=c("two.sided"), paired=TRUE, exact=TRUE,
correct=TRUE, conf.int=TRUE, conf.level=0.95)

p-value = 0.5324

7By convention, it is not necessary to write stats::functionname() or base::functionname() since
the stats package and base package are part of the full set of packages associated with R when it
is first downloaded. The formal term stats::wilcox.test is used merely to reinforce the origin (i.e.,
package) for this function.

5.9 Addendum 2: Similar Functions from Different Packages 169

stats::wilcox.test() Function with Stacked Data

stats::wilcox.test(EweTwin_Stacked.df$Weight ~
EweTwin_Stacked.df$Group,
alternative=c("two.sided"), paired=TRUE, exact=TRUE,
correct=TRUE, conf.int=TRUE, conf.level=0.95)

p-value = 0.5324

afex::compare.2.vectors() Function with Unstacked Data—Two Vectors

install.packages("afex")
library(afex) # Load the afex package.
help(package=afex) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

afex::compare.2.vectors(EweTwin.df$Control,
EweTwin.df$Treatment,
paired=TRUE, # Data are paired
na.rm=TRUE, # Accommodate missing values
tests=c("parametric", "nonparametric"),
coin=TRUE, # Multiple test results
alternative="two.sided", # Two-sided test
wilcox.exact=TRUE, # Exact p-value reported
wilcox.correct=TRUE) # Continuity correction
Both parametric and nonparametric

$parametric
test test.statistic test.value test.df p

1 t t -0.9228219 19 0.3676712

$nonparametric
test test.statistic test.value test.df p

1 stats::Wilcoxon V 79.0000000 NA 0.5324156
2 permutation Z -0.9262647 NA 0.3776800
3 coin::Wilcoxon Z -1.2247449 NA 0.2353100
4 median Z 1.6329932 NA 0.2196200

Warning messages:
1: In wilcox.test.default(x, y, paired = paired, exact =
wilcox.exact, : cannot compute exact p-value with ties
2: In wilcox.test.default(x, y, paired = paired, exact =
wilcox.exact, :cannot compute exact p-value with zeroes

Be sure to see how the afex::compare.2.vectors() function, when using the
tests=c("parametric", "nonparametric") argument, supports both a parametric (Stu-
dent’s t-Test) and nonparametric (Wilcoxon) view for analyses.

Tie scores are often problematic with nonparametric statistics. Notice the
warning message and go back to how tied scores (i.e., Pair 17 in this lesson on
ewes) are accommodated by the various algorithms used to calculate the Wilcoxon
Matched-Pairs Signed-Ranks Test.

170 5 Wilcoxon Matched-Pairs Signed-Ranks Test

coin::wilcox_test() Function
When using the coin::wilcox_test() function, note the many options for the distri-
bution argument and the ties.method argument. Each argument selection will alter
to some degree the calculated p-value so experimentation and good judgment, along
with experience, will help with the best selection for specific needs.

install.packages("coin")
library(coin) # Load the coin package.
help(package=coin) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

coin::wilcox_test(Weight ~ Group,
data=EweTwin_Stacked.df,
distribution="approximate", # Note distribution argument.
ties.method="mid-ranks", # Note ties.method argument.
conf.int=TRUE,
conf.level=0.95,)

Approximative Wilcoxon Mann-Whitney Rank Sum Test

data: Weight by Group (Control, Treatment)
Z = -0.8943, p-value = 0.353
alternative hypothesis: true mu is not equal to 0
95 percent confidence interval:
-12 5

sample estimates:
difference in location

-4

Outcome: p-value D 0.353

coin::wilcox_test(Weight ~ Group,
data=EweTwin_Stacked.df,
distribution="asymptotic", # Note distribution argument.
ties.method="mid-ranks", # Note ties.method argument.
conf.int=TRUE,
conf.level=0.95,)

Outcome: p-value D 0.3712

coin::wilcox_test(Weight ~ Group,
data=EweTwin_Stacked.df,
distribution="exact", # Note distribution argument.
ties.method="mid-ranks", # Note ties.method argument.
conf.int=TRUE,
conf.level=0.95,)

5.9 Addendum 2: Similar Functions from Different Packages 171

Outcome: p-value D 0.3789

coin::wilcox_test(Weight ~ Group,
data=EweTwin_Stacked.df,
distribution="approximate", # Note distribution argument.
ties.method="average-scores", # Note ties.method argument.
conf.int=TRUE,
conf.level=0.95,)

Outcome: p-value D 0.376

coin::wilcox_test(Weight ~ Group,
data=EweTwin_Stacked.df,
distribution="asymptotic", # Note distribution argument.
ties.method="average-scores", # Note ties.method argument.
conf.int=TRUE,
conf.level=0.95,)

Outcome: p-value D 0.3712

coin::wilcox_test(Weight ~ Group,
data=EweTwin_Stacked.df,
distribution="exact", # Note distribution argument.
ties.method="average-scores", # Note ties.method argument.
conf.int=TRUE,
conf.level=0.95,)

Outcome: p-value D 0.3789
Although the p-value is slightly different each time, all depending on selected

arguments, in each case the outcome is consistent in terms of how the calculated
p-value validates acceptance or rejection of the Null Hypothesis.

exactRankTests::wilcox.exact() Function with Stacked Data

install.packages("exactRankTests")
library(exactRankTests) # Load the exactRankTests package.
help(package=exactRankTests) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

exactRankTests::wilcox.exact(Weight ~ Group,
data=EweTwin_Stacked.df,
alternative=c("two.sided"),
paired=TRUE,
exact=TRUE,
conf.int=TRUE,
conf.level=0.95)

172 5 Wilcoxon Matched-Pairs Signed-Ranks Test

Exact Wilcoxon signed rank test

data: Weight by Group
V = 79, p-value = 0.5343
alternative hypothesis: true mu is not equal to 0
95 percent confidence interval:
-11.0 4.5

sample estimates:
(pseudo)median

-2.75

Compare the calculated p-value when using the exactRankTests::wilcox.exact()
function (0.5343) to the calculated p-value when using the stats::wilcox.test()
function (0.5324). Then, compare these p-values to the calculated p-value when
using another function, such as the coin::wilcox_test() function (0.3712, depending
on selected arguments). Or, consider the multiple p-values generated by use of the
afex::compare.2.vectors() function. Each function provides a slightly different p-
value, depending on how ties are accommodated and the use of selected arguments,
but the net outcome is the same in this lesson in terms of acceptance or rejection
of the Null Hypothesis. The calculated p-value for all selected functions supports
acceptance of the Null Hypothesis and the conclusion that there is no difference in
weights (pounds) between Control ewes and Treatment ewes.

5.10 Addendum 3: Nonparametric vs Parametric
Confirmation of Outcomes

Based on anecdotal comments by those who weighed the sheep associated with
this lesson, and the challenges of obtaining precise measurements during field
conditions, it has been declared that the data are ordinal and that they are not
interval. There is also a degree of suspicion, based on visual presentations of
weights for Control ewes and Treatment ewes, that the data seriously violate normal
distribution—at least for Treatment ewes. Concern about distribution patterns were
also evident when applying the Anderson-Darling Test. Given these three issues, it
was judged that a nonparametric inferential test was the most appropriate approach
to determine if there were a statistically significant difference between weights of
the two groups, Control v Treatment.

However, what if the weighing process had been better organized in terms
of obtaining more precise measures? What if there were greater assurance that
data were interval? What if there were no concerns about violation of normal
distribution? If these conditions were somehow of no direct concern, then would it
be appropriate to use Student’s t-Test for Matched Pairs for the selected inferential
test? Look at the two analyses presented immediately below and give special notice
to the calculated p-value for each.

5.10 Addendum 3: Nonparametric vs Parametric Confirmation of Outcomes 173

Student’s t-Test for Matched Pairs, Against Unstacked Data

Default selections.
t.test(EweTwin.df$Control, # Measured variable
EweTwin.df$Treatment, # Measured variable
paired=TRUE, # Matched pairs
na.rm=TRUE) # Missing data

Paired t-test

data: EweTwin.df$Control and EweTwin.df$Treatment
t = -0.9228, df = 19, p-value = 0.3677
alternative hypothesis: true difference in means is not equal
to 0
95 percent confidence interval:
-9.967612 3.867612

sample estimates:
mean of the differences

-3.05

Student’s t-Test for Matched Pairs, Against Stacked Data

Default selections.
t.test(EweTwin_Stacked.df$Weight ~ # Measured variable
EweTwin_Stacked.df$Group, # Grouping variable
paired=TRUE, # Matched pairs
na.rm=TRUE) # Missing data

Paired t-test

data: EweTwin_Stacked.df$Weight by EweTwin_Stacked.df$Group
t = -0.9228, df = 19, p-value = 0.3677
alternative hypothesis: true difference in means is not equal
to 0
95 percent confidence interval:
-9.967612 3.867612

sample estimates:
mean of the differences

-3.05

For both analyses, against unstacked data and stacked data, the calculated p-value
was 0.3677, which is in parity with the prior p-value when the data were subjected to
the Wilcoxon Matched-Pairs Signed-Ranks Test in terms of acceptance or rejection
the Null Hypothesis.

As a caution, confirm this comparison of two sets of matched weights by using
the previously demonstrated afex::compare.2.vectors() function, but now change the
tests argument to parametric only.

afex::compare.2.vectors(EweTwin.df$Control,
EweTwin.df$Treatment,
paired=TRUE, # Data are paired
na.rm=TRUE, # Accommodate missing values
tests=c("parametric"), # Student’s t-Test, only
alternative="two.sided") # Two-sided test

174 5 Wilcoxon Matched-Pairs Signed-Ranks Test

$parametric
test test.statistic test.value test.df p

1 t t -0.9228219 19 0.3676712

For the way the afex::compare.2.vectors() function accommodates tied values
(i.e., Pair 17), and when using a parametric perspective to the data, the calculated
p-value is 0.3676712, which exceeds the criterion p-value associated with the Null
Hypothesis, p <= 0.05. Viewing the data from a parametric perspective and
using Student’s t-Test for Matched Pairs, there is further confirmation that there is no
statistically significant difference between Control weights and Treatment Weights
(p <= 0.05).

There may be those who insist that it is wrong, or at least neither necessary nor
desirable, to perform a confirming parametric test against data that can be defended
as being more appropriately subjected to a nonparametric inferential analysis.
Although this view can be rationalized, experienced researchers always challenge
the data and conduct all manner of confirming quality assurance tests. Although
these confirming tests may never be published, it only seems reasonable that some
may want to use as many tools as are available for quality assurance purposes,
including the use of both parametric as well as nonparametric inferential tests. This
view is not necessarily recommended, but its use should not be unexpected.

5.11 Prepare to Exit, Save, and Later Retrieve this R Session

getwd() # Identify the current working directory.
ls() # List all objects in the working

directory.
ls.str() # List all objects, with finite detail.
list.files() # List files at the PC directory.

save.image("R_Wilcoxon_Matched-Pairs_Test.rdata")

getwd() # Identify the current working directory.
ls() # List all objects in the working

directory.
ls.str() # List all objects, with finite detail.
list.files() # List files at the PC directory.

alarm() # Alarm, notice of upcoming action.
q() # Quit this session.

Prepare for Save workspace image? query.

5.11 Prepare to Exit, Save, and Later Retrieve this R Session 175

Use the R Graphical User Interface (GUI) to load the saved rdata file: File ->
Load Workspace. Otherwise, use the load() function, keying the full pathname, to
load the .rdata file and retrieve the session.

Recall, however, that it may be just as useful to simply use the .R script file
(typically saved is a .txt ASCII-type file) and recreate the analyses and graphics,
provided the data files remain available.

Chapter 6
Kruskal–Wallis H-Test for Oneway Analysis
of Variance (ANOVA) by Ranks

Abstract The Kruskal–Wallis H-Test for Oneway Analysis of Variance (ANOVA)
by Ranks is often viewed as the nonparametric equivalent of the parametric Oneway
Analysis of Variance (ANOVA). Both the Kruskal–Wallis Test (often using ordinal
data) and Oneway ANOVA (typically using interval data) are used to determine
if there are statistically significant differences for comparisons of three or more
groups. However, avoid seeing these tests as being mere complements of each
other. The Kruskal–Wallis Test, as a nonparametric test, is used with ranked data,
particularly for when: (1) the data are ordinal and do not meet the precision of
interval data, (2) there are serious concerns about extreme deviation from normal
distribution, and (3) there is considerable difference in the number of subjects for
each comparative group. This lesson addresses the many quality assurance measures
that should be attempted before actual implementation of this type of multiple-group
comparative inferential analysis.

Keywords Anderson-Darling Test • Bar plot (stacked, side-by-side) • Box plot
• CamelCase • Code Book • Comma-separated values (.csv) • Continuous scale
• Density plot • Descriptive statistics • Distribution-free • Dot plot • Factor
• Frequency distribution • Hinge (lower and upper) • Histogram • Interval
• Kruskal–Wallis H-Test for Oneway Analysis of Variance (ANOVA) by Ranks
• Mean • Median • Mode • Multiple comparisons (Bonferroni • Hochberg
• Holm • Least Significant Difference (LSD) • Scheffé • and Tukey)
• Nominal • Nonparametric • Normal distribution • Null Hypothesis • Oneway
Analysis of Variance (ANOVA) • Ordinal • Outlier • Parametric • Percentile
• Probability (p-value) • Quantile-Quantile (QQ, Q-Q) • Ranking • Sample
(quota, convenience) • Stacked data • Statistical significance • Unstacked data
• Violin plot • Whisker (lower and upper)

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-3-319-
30634-6_6) contains supplementary material, which is available to authorized users.

© Springer International Publishing Switzerland 2016
T.W. MacFarland, J.M. Yates, Introduction to Nonparametric Statistics
for the Biological Sciences Using R, DOI 10.1007/978-3-319-30634-6_6

177

http://dx.doi.org/10.1007/978-3-319-30634-6_6
http://dx.doi.org/10.1007/978-3-319-30634-6_6

178 6 Kruskal–Wallis H-Test for Oneway Analysis of Variance (ANOVA) by Ranks

6.1 Background on this Lesson

The Kruskal–Wallis H-Test for Oneway Analysis of Variance (ANOVA) by Ranks
is a frequently-used nonparametric test for when it is necessary to determine
if three or more independent samples are from the same population or from
different populations. The Kruskal–Wallis test is typically used with data that have
a continuous distribution, but the data are ordinal and not interval. As a conservative
choice, the Kruskal–Wallis Test may also be used if there are grave concerns about
distribution patterns of the data or if differences in the number of subjects in the
multiple breakout groups are extreme.

6.1.1 Description of the Data

This lesson on the Kruskal–Wallis Test is based on adult human subjects who agreed
to participate in a study about Systolic Blood Pressure (SBP). The focus of this study
is on differences in SBP by Race-Ethnicity, as Race-Ethnicity is often organized in
the United States. Along with SBP and Race-Ethnicity, the Gender of each subject
has also been identified but Gender is not a primary focus of this study. To be
specific, the dataset consists of 5000 subjects organized along the following:

Representation of Adult Subjects Participating
in a Study of Systolic Blood Pressure (SBP)
by Race-Ethnicity and Gender

Race-Ethnicity N %
==
Black Female 500 10.0
Black Male 500 10.0
Hispanic Female 750 15.0
Hispanic Male 750 15.0
Other Female 250 05.0
Other Male 250 05.0
White Female 1,000 20.0
White Male 1,000 20.0
Total 5,000 100.0
--
Race-Ethnicity Breakouts
Total Black 1,000 20.0
Total Hispanic 1,500 30.0
Total Other 500 10.0
Total White 2,000 40.0
Total 5,000 100.0
--

6.1 Background on this Lesson 179

Gender Breakouts
Total Female 2,500 50.0
Total Male 2,500 50.0
Total 5,000 100.0
==

Other than what is presented in this table, only a limited amount of information
about the research design, conditions for data acquisition, etc., has been revealed to
the researcher assigned responsibility for this set of analyses:

• It is unknown if the 5000 subjects are representative of the population, or if the
data were from the 5000 subjects by means of a quota sample, a convenience
sample, or some other non-representative sampling process.

• It is also important to note the extreme difference in sample size for the four
breakout groups in this lesson, ranging from 500 subjects classified as Other to
2000 subjects classified as White. This extreme difference in sample size between
breakout groups may (or may not) be representative of the population, but it
does represent a challenge for inferential test selection and justification of data
organization, suggesting that a nonparametric approach may be needed for later
statistical analyses.

• The qualifications and skill set of the individual(s) who obtained the data
were equally unknown: Student Intern, Technician III, Registered Nurse, Nurse
Practitioner, Physician’s Assistant, Doctor, etc.

• There is equally no information about the instrument(s) used to obtain SBP data,
either the type of instrument or the process used to calibrate the instrument.
Was the same instrument or type of instrument used to obtain data for all 5000
subjects? How was calibration of the instrument(s) accommodated, and how
often were baseline data against a known value obtained? To be brief, were the
data valid and consistent (i.e., reliable)?

• There is no other information about the dataset associated with this lesson.
Further, there is no context for SBP readings. That is to say, there is no
information about:

– The time-of-day for when SBP data were obtained is unknown and it is also
unknown if the time-of-day for data acquisition was consistent for all subjects.

– The circumstance for when SBP data were obtained (e.g., measurement after
vigorous exercise, measurement after rest, measurement after smoking or
consumption of alcohol, measurement after eating, etc.) is also unknown.

– It is equally unknown if some subjects were on a regime (e.g., exercise,
diet, medications, etc.) to control blood pressure whereas other subjects make
no attempt to control blood pressure and perhaps have no idea of possible
concerns about the effect of blood pressure on general health.

Even before any graphing techniques or statistical analyses are attempted,
because this information on background and context is unavailable to the researcher
assigned responsibility for analyses, and, in an abundance of caution, it is best to
question if the SBP data are truly interval. Or, are the SBP data for this lesson
ordinal? Questioning the scale and the issue of interval v ordinal, the nonparametric

180 6 Kruskal–Wallis H-Test for Oneway Analysis of Variance (ANOVA) by Ranks

Kruskal–Wallis Test will be used instead of the parametric Oneway Analysis of
Variance (ANOVA) to determine if there are differences in SBP by the four Race-
Ethnicity groups associated with this lesson.

The dataset is fairly simple and the entire dataset is found as stacked data in the
comma-separated values file SBPbyRaceEthnicGender.csv:

• The first line consists of a header, using descriptive variable names: ID, RaceEth-
nic, Gender, and SBP. Notice how there are no spaces or hyphens for variable
names and that a CamelCase uppercase and lowercase technique was used to
identify the object variable RaceEthnic.1

• The header is then followed by 5000 lines (i.e., rows) of data, one line of data for
each subject.

– ID: There is a coded identifier (S0001–S5000) for each subject. IDs are
sequential and there is no coded scheme or organizational hierarchy to
assigned IDs. IDs are merely continuous and are used to track, if needed,
individual subjects.

– RaceEthnic: Numerical codes have been avoided and instead the four different
Race-Ethnicity groups are identified in full-text English, in alphabetical order,
as Race-Ethnicity is commonly viewed in the United States:

* Black (i.e., African-American)
* Hispanic (i.e., Latino)
* Other (i.e., American Indian or Alaskan Native, Asian or Pacific Islander,

Declined Response, etc.)
* White

– Gender: Numeric codes have been avoided, and, instead the two Gender
groups are identified in full-text English, in alphabetical order:

* Female
* Male

– SBP: Systolic Blood Pressure has been recorded for each subject. Due to
unknown quality assurance concerns about the staff member(s) responsible for
obtaining SBP data, concern about consistency, calibration of the instruments,
and other research design issues, SBP data will be viewed as ordinal data, and
not interval data. That is to say, a SBP reading of 126 is definitely greater
than a SBP reading of 124, but there is a concern that the difference in values
between these two readings may not be consistent throughout the entire data
collection process.

Given these conditions and the view that SBP represents ordinal data, the
nonparametric Kruskal–Wallis Test is viewed as the most appropriate inferential
test to determine if there is a statistically significant difference (p <= 0.05)
in Systolic Blood Pressure (SBP) by the four Race-Ethnicity breakout groups:

1CamelCase is a common technique used to easily identify object variables that represent
compound names. Many consider it better to write ObjectName or objectName, as an example
of CamelCase, instead of using hyphens or underscores to separate compound names.

6.2 Data Import of a .csv Spreadsheet-Type Data File into R 181

Black, Hispanic, Other, and White. This approach and the use of a nonparametric
inferential test is based on concerns about data measurement (i.e., ordinal vs
interval), but the issue of normal distribution and possible violation of assumptions
associated with normal distribution should also be considered. Throughout these
lessons, data are constantly examined for distribution patterns. There is also a
concern about the extreme difference in sample size for the four Race-Ethnicity
breakout groups, ranging from N = 500 for Other subjects to N = 2000 for White
subjects. These extreme differences in breakout sample sizes may be entirely
appropriate considering the overall population, but these differences still demand
consideration.

6.1.2 Null Hypothesis (Ho)

There is no statistically significant difference (p <= 0.05) in the Systolic Blood
Pressure (SBP) of adult subjects between the four Race-Ethnicity breakout groups:
Black, Hispanic, Other, and White.

Notice how the Null Hypothesis (Ho) uses p <= 0.05. The expression
p <= 0.05 is used to identify the criterion (i.e., declared) probability level
specific to the Null Hypothesis, or the acceptance of a five percent, or less,
probability of an incorrect inference related to differences associated with this test.

Many exploratory inferential analyses in the biological sciences and social
sciences are conducted at p <= 0.05. However, you will see some problems set
at the more restrictive p <= 0.01 and even p <= 0.001. Along with the use of
p, you will also see the term alpha in some discussions about the level of probability,
but p will be used in this lesson.

Review SBPbyRaceEthnicGender.csv to see how numerical codes for Race-
Ethnicity and Gender have been avoided in this lesson. The two factor-type object
variables in this lesson (i.e., RaceEthnic and Gender) collectively use English text
to identify breakout group membership, (i.e., Black Female, Black Male, Hispanic
Female, Hispanic Male, Other Female, Other Male, White Female, White Male).

6.2 Data Import of a .csv Spreadsheet-Type Data File into R

The dataset for this lesson was originally prepared as spreadsheet, using
Gnumeric—which is free desktop software. The data were then also saved in
.csv (i.e., comma-separated values) file format as SBPbyRaceEthnicGender.csv.
The data are separated by commas, not tabs and not spaces. As a .csv file, the
data can be easily sent to and opened by other researchers without the need for
specialized software or proprietary software that may be cost prohibitive for many.

Start a new R session and then attend to beginning actions such as removing
unwanted files from prior work, declaring the working directory, etc.

182 6 Kruskal–Wallis H-Test for Oneway Analysis of Variance (ANOVA) by Ranks

###
Housekeeping Use for All Analyses
###
date() # Current system time and date.
R.version.string # R version and version release date.
ls() # List all objects in the working

directory.
rm(list = ls()) # CAUTION: Remove all files in the working

directory. If this action is not desired,
use the rm() function one-by-one to remove
the objects that are not needed.

ls.str() # List all objects, with finite detail.
getwd() # Identify the current working directory.
setwd("F:/R_Nonparametric")

Set to a new working directory.
Note the single forward slash and double
quotes.
This new directory should be the directory
where the data file is located, otherwise
the data file will not be found.

getwd() # Confirm the working directory.
list.files() # List files at the PC directory.
###

Create an object called SBPRaceEth.df. The object SBPRaceEth.df will be
a dataframe, as indicated by the enumerated .df extension to the object name.
This object will represent the output of applying the read.table() function against
the comma-separated values file called SBPbyRaceEthnicGender.csv. Note the
arguments used with the read.table() function, showing that there is a header with
descriptive variable names (header = TRUE) and that the separator between fields is
a comma (sep = ",").

SBPRaceEth.df <- read.table (file =
"SBPbyRaceEthnicGender.csv",
header = TRUE,
sep = ",") # Import the .csv file.

getwd() # Identify the working directory
ls() # List objects
attach(SBPRaceEth.df) # Attach the data, for later use
str(SBPRaceEth.df) # Identify structure
nrow(SBPRaceEth.df) # List the number of rows
ncol(SBPRaceEth.df) # List the number of columns
dim(SBPRaceEth.df) # Dimensions of the dataframe
names(SBPRaceEth.df) # Identify names
colnames(SBPRaceEth.df) # Show column names
rownames(SBPRaceEth.df) # Show row names
head(SBPRaceEth.df, n=10) # Show the head (first 10 rows)
tail(SBPRaceEth.df, n=10) # Show the tail (last 10 rows)
SBPRaceEth.df # Show the entire dataframe
summary(SBPRaceEth.df) # Summary statistics

6.3 Organize the Data and Display the Code Book 183

By completing this action, an object called SBPRaceEth.df has been created. This
R-based object is a dataframe, and it consists of the data originally included in the
file SBPbyRaceEthnicGender.csv, a comma-separated .csv file. To avoid possible
conflicts, make sure that there are no prior R-based objects called SBPRaceEth.df.
The prior use of rm(list = ls()) accommodates this concern, removing all prior
objects in the current R session.

Recall how it was only necessary to key the filename for the .csv file and not the
full pathname since the R working directory is currently set to the directory and/or
subdirectory where this .csv file is located. See the Housekeeping section at the
beginning of this lesson.

6.3 Organize the Data and Display the Code Book

With the data now imported into R, quality assurance practices should be used. It
is necessary to check the data for format and to then make any changes that may
be needed to organize the data. The few minutes that it takes to initially check and
review data are more than worth the effort in the desire to produce only the highest
quality graphics and analyses.

In many datasets, it is common for factor-type object variables to use numeric
codes (i.e., the use of 1 for Female and 2 for Male to identify the object variable
Gender). However, that is not the case in this lesson. Values for the object variables
RaceEthnic and Gender are both presented in full-text English, avoiding the need
for any type of coding scheme.

For this lesson, the class() function, str() function, and duplicated() function will
be used to be sure that data are organized as desired.

class(SBPRaceEth.df)
class(SBPRaceEth.df$ID) # DataFrame$ObjectName notation
class(SBPRaceEth.df$RaceEthnic) # DataFrame$ObjectName notation
class(SBPRaceEth.df$Gender) # DataFrame$ObjectName notation
class(SBPRaceEth.df$SBP) # DataFrame$ObjectName notation

str(SBPRaceEth.df) # Structure

duplicated(SBPRaceEth.df) # Duplicates

The class for each object seems to be correct, and there are no duplicate rows of
data in the dataframe. Saying this, a Code Book will help with future understanding
this dataset.

With all of these initial tasks completed, it is now necessary to create a Code
Book, for current and future use. A Code Book serves the day-to-day activities of
the research and statistics process. The Code Book is typically brief and provides
a useful reminder for what can be easily forgotten months (or even weeks) later.
Coding schemes that are intuitively obvious today can easily become forgotten
tomorrow.

184 6 Kruskal–Wallis H-Test for Oneway Analysis of Variance (ANOVA) by Ranks

Now that the class(), str(), and duplicated() functions have been used for basic
diagnostics, consult the Code Book and coerce each object, as needed, into its
correct class.

###
Code Book for SBPRaceEth.df
###
#
Variable Labels
===============
ID Subject Identification Number
RaceEthnic Race-Ethnicity Breakout Group
Gender Gender Breakout Group
SBP Systolic Blood Pressure
###
#
ID.......................... Factor (i.e., nominal)
A unique ID ranging from S0001 to S5000
#
RaceEthnic.................. Factor (i.e., nominal)
Black
Hispanic
Other
White
#
Gender...................... Factor (i.e., nominal)
Female
Male
#
SBP........................ Integer (i.e., ordinal)
Systolic Blood Pressure, ranging from expected
values of >= 80 to <= 200
###

Good programming practices (gpp) call for self-documentation and readability.
A way to achieve that aim is to label all object variables. First, use the epicalc::des()
function and the str() function to see the nature of the dataframe. Then, use the
epicalc label.var() function to provide descriptive labels for each variable. Of course,
be sure to load the epicalc package, if it is not operational from prior analyses.

install.packages("epicalc")
library(epicalc) # Load the epicalc package.
help(package=epicalc) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

epicalc::des(SBPRaceEth.df)

6.3 Organize the Data and Display the Code Book 185

str(SBPRaceEth.df)

epicalc::label.var(ID, "Subject ID",
dataFrame=SBPRaceEth.df)

epicalc::label.var(RaceEthnic,"Race-Ethnicity",
dataFrame=SBPRaceEth.df)

epicalc::label.var(Gender, "Gender",
dataFrame=SBPRaceEth.df)

epicalc::label.var(SBP, "SBP",
dataFrame=SBPRaceEth.df)

Confirm the description of each object variable, to be sure that all actions were
deployed correctly.

epicalc::des(SBPRaceEth.df)

No. of observations = 5000
Variable Class Description

1 ID factor Subject ID
2 RaceEthnic factor Race-Ethnicity
3 Gender factor Gender
4 SBP integer SBP

str(SBPRaceEth.df)

’data.frame’: 5000 obs. of 4 variables:
$ ID : Factor w/ 5000 levels "S0001","S0002",..

: 1 2 3 4 5 6 7
$ RaceEthnic: Factor w/ 4 levels "Black","Hispanic",..

: 1 1 1 1 1 1 1
$ Gender : Factor w/ 2 levels "Female","Male"

: 1 1 1 1 1 1 1 1 1 1
$ SBP : int 126 132 148 126 132 132 116 118 134 136 ...
- attr(*, "var.labels")= chr
"Subject ID" "Race-Ethnicity" "Gender" "SBP"

With assurance that the dataframe is in correct format and that labels are
correct, coerce all object variables into desired format. Notice how variables are
named: DataframeName$ObjectName. At first, this action may seem somewhat
cumbersome and perhaps even redundant for a few object variables, but it is
actually very useful to ensure that actions are performed against the correct object.
Descriptive object variable names promote efficiency and accuracy. Most text
editors allow the use of copy-and-paste and find and replace, so it should be a simple
operation to organize the syntax.

Note also how the object variable SBPRaceEth.df$SBP is an integer-type object
but that it will be coerced into a numeric-type object. Because of this action it will
be possible to apply a full range of numeric-type actions against SBP measurements,
as needed.

186 6 Kruskal–Wallis H-Test for Oneway Analysis of Variance (ANOVA) by Ranks

SBPRaceEth.df$ID <- as.factor(SBPRaceEth.df$ID)
SBPRaceEth.df$RaceEthnic <- as.factor(SBPRaceEth.df$RaceEthnic)
SBPRaceEth.df$Gender <- as.factor(SBPRaceEth.df$Gender)
SBPRaceEth.df$SBP <- as.numeric(SBPRaceEth.df$SBP)

If needed, use the many help resources to learn about the as.integer() function
and the as.numeric() function, specifically to see the differences between these two
R functions and when it is appropriate to use each.2

Again, confirm the structure of the dataset, using both the epicalc::des() function
and the str() function.

epicalc::des(SBPRaceEth.df) # After object coerced

No. of observations = 5000
Variable Class Description

1 ID factor Subject ID
2 RaceEthnic factor Race-Ethnicity
3 Gender factor Gender
4 SBP numeric SBP

str(SBPRaceEth.df) # After object coerced

’data.frame’: 5000 obs. of 4 variables:
$ ID : Factor w/ 5000 levels "S0001","S0002",..

: 1 2 3 4 5 6 7
$ RaceEthnic: Factor w/ 4 levels "Black","Hispanic",..

: 1 1 1 1 1 1 1
$ Gender : Factor w/ 2 levels "Female","Male"

: 1 1 1 1 1 1 1 1 1 1
$ SBP : num 126 132 148 126 132 132 116 118 134 136 ...
- attr(*, "var.labels")= chr
"Subject ID" "Race-Ethnicity" "Gender" "SBP"

Then, in a somewhat redundant fashion and to merely further confirm the nature
of the dataset, use the levels() function (part of the base package obtained when R
is first downloaded) against all factor object variables, to reinforce understanding of
the data.

levels(SBPRaceEth.df$ID) # N = 5,000 levels

levels(SBPRaceEth.df$RaceEthnic) # N = 4 levels

[1] "Black" "Hispanic" "Other" "White"

2When in doubt about a function or any other R feature, at the R prompt key ?? and then the
appropriate term to see a set of selections for more information on the topic in question. By keying
??mean at the R prompt, a Web page appears with a long list of vignettes, code demonstrations,
and help pages that relate to the function mean().

6.3 Organize the Data and Display the Code Book 187

levels(SBPRaceEth.df$Gender) # N = 2 levels

[1] "Female" "Male"

Use the summary() function against the object SBPRaceEth.df, which is a
dataframe, to again gain an initial sense of descriptive statistics and frequency
distributions.

summary(SBPRaceEth.df)

ID RaceEthnic Gender SBP
S0001 : 1 Black :1000 Female:2500 Min. : 92.0
S0002 : 1 Hispanic:1500 Male :2500 1st Qu.:116.0
S0003 : 1 Other : 500 Median :124.0
S0004 : 1 White :2000 Mean :125.8
S0005 : 1 3rd Qu.:132.0
S0006 : 1 Max. :184.0

The dataset seems to be in correct format. Further, for this dataset the use of
numeric codes for factor-type object variables was avoided, and it is not necessary
to perform any type of recode action. Saying this, a few graphical images may help
with gaining a more complete sense of the data and how the data are organized
(Fig. 6.1).

par(ask=TRUE)
epicalc::tab1(SBPRaceEth.df$RaceEthnic,
decimal=2, # The epicalc::tab1() function is
sort.group=FALSE, # used to see details about the
cum.percent=TRUE, # selected object variable. The
graph=TRUE, # 1 of tab1 is the one numeric
missing=TRUE, # character and it is not the
bar.values=c("frequency"), # letter l.
horiz=FALSE,
cex=1.15, cex.names=1.15, cex.lab=1.15, cex.axis=1.15,
main="Factor Levels for Object Variable RaceEthnic:
Race-Ethnicity",
ylab="Frequency of Race-Ethnicity Levels",
col=c("red", "blue", "black", "green"), gen=TRUE)

SBPRaceEth.df$RaceEthnic :
Frequency Percent Cum. percent

Black 1000 20 20
Hispanic 1500 30 50
Other 500 10 60
White 2000 40 100
Total 5000 100 100

par(ask=TRUE)
epicalc::tab1(SBPRaceEth.df$Gender,

188 6 Kruskal–Wallis H-Test for Oneway Analysis of Variance (ANOVA) by Ranks

Black

F
re

qu
en

cy
 o

f R
ac

e-
E

th
ni

ci
ty

 L
ev

el
s

1000

0
50

0
10

00
15

00
20

00

1500

Factor Levels for Object Variable RaceEthnic:
Race-Ethnicity

500

2000

Hispanic Other White

Fig. 6.1 Frequency distribution of four breakout groups using the epicalc::tab1() function

decimal=2, # The epicalc::tab1() function is
sort.group=FALSE, # used to see details about the
cum.percent=TRUE, # selected object variable. The
graph=TRUE, # 1 of tab1 is the one numeric
missing=TRUE, # character and it is not the
bar.values=c("frequency"), # letter l.
horiz=FALSE,
cex=1.15, cex.names=1.15, cex.lab=1.15, cex.axis=1.15,
main="Factor Levels for Object Variable Gender",
ylab="Frequency of Gender Breakout Groups",
col=c("red", "blue"), gen=TRUE)

SBPRaceEth.df$Gender :
Frequency Percent Cum. percent

Female 2500 50 50
Male 2500 50 100
Total 5000 100 100

Note how the epicalc::tab1() function is quite useful in that it generates both a
text-based frequency distribution table as well as a frequency distribution graphic.

Once again as a redundant, but still useful action, use the attach() function to
provide assurance that all data are attached to the dataframe.

attach(SBPRaceEth.df)
head(SBPRaceEth.df)
tail(SBPRaceEth.df)
summary(SBPRaceEth.df) # Quality assurance data check.

str(SBPRaceEth.df) # List all objects, with finite detail.
ls.str(SBPRaceEth.df) # List all objects, with finite detail.

6.3 Organize the Data and Display the Code Book 189

As an additional data check, use the table() function to see how data have been
summarized—just to be assured that data are all in correct format, especially as a
check for any possibility of missing data, which in R are marked as NA.

table(SBPRaceEth.df$RaceEthnic, useNA = c("always"))
table(SBPRaceEth.df$Gender, useNA = c("always"))

table(SBPRaceEth.df$RaceEthnic, SBPRaceEth.df$Gender,
useNA = c("always"))
Crosstabs of Race-Ethnicity (rows) by Gender
(columns)

Female Male <NA>
Black 500 500 0
Hispanic 750 750 0
Other 250 250 0
White 1000 1000 0
<NA> 0 0 0

Note how the argument useNA = c("always") is used with the table() function, to
force identification of missing values.

For far more detail than supported by the table() function, use the gmod-
els::CrossTable() function for explicit detail on row and column counts, row and
column percentages, and contributions of each to total. Again, the need for this type
of information may not seem important at first, but it is another quality assurance
measure that should be attempted before the dataset is finally accepted and resources
are put into graphical presentation and statistical analyses. Anything that can be
done to catch a simple oversight at the initial stages of data analysis is more than
worth the time-on-task. Attention to quality assurance should be a continuous and
pervasive process.

install.packages("gmodels")
library(gmodels) # Load the gmodels package.
help(package=gmodels) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

gmodels::CrossTable(SBPRaceEth.df$RaceEthnic,
SBPRaceEth.df$Gender,
digits=2, expected=TRUE, prop.r=TRUE, prop.c=TRUE,
prop.t=TRUE, prop.chisq=TRUE, missing.include=TRUE,
chisq=TRUE, format="SPSS")

Be sure to note how there are four breakout groups for the rows
(SBPRaceEth.df$RaceEthnic) and two breakout groups for the columns
(SBPRaceEth.df$Gender). As a general approach to organization of a X (rows)
by Y (columns) table, it is usually best to place as rows the object variable with
the greatest number of breakout groups and to place as columns the object variable

190 6 Kruskal–Wallis H-Test for Oneway Analysis of Variance (ANOVA) by Ranks

with the fewest number of breakout groups. By following this action the table will
have a greater length than width which may be useful if the table is copied from R
and placed into a word processed document. Of course, experiment with this type
of configuration to put output to the best advantage.

6.4 Conduct a Visual Data Check

With the data currently in proper format, it would be common to immediately
attempt the appropriate inferential analysis, the Kruskal–Wallis Test for this lesson.
However, it is best to first prepare a few graphical displays of the data and to
then reinforce comprehension of the data with descriptive statistics and measures
of central tendency.

The summary() function, min() function, and max() function are all certainly
useful for data checking, but there are also many advantages to a visual data check
process. In this case, simple plots can be very helpful in looking for data that
may be either illogical or out-of-range. These initial graphics will be, by design,
simple and should be considered throwaways as they are intended only for initial
diagnostic purposes. More complex figures, often of publishable quality, can then
be prepared from these initial throwaway graphics by careful selection of functions
and arguments.

Although the emphasis in this lesson is on the Kruskal–Wallis Test for the factor-
type object variable RaceEthnic (four breakout groups) and the numeric-type object
variable SBP (values can range from >= 80 to <= 200), a simple graphic will be
prepared for each variable, largely as a quality assurance check against the entire
dataset (Figs. 6.2 and 6.3).

80

D
en

si
ty

0.
00

0.
02

0.
04

100 120

Density Plot of SBP: Black

N = 1000 Bandwidth = 3.037

140 160 200180 80

D
en

si
ty

0.
00

0.
02

0.
04

100 120

Density Plot of SBP: Hipanic

N = 1500 Bandwidth = 2.178

140 160 200180

80

D
en

si
ty

0.
00

0.
02

0.
04

100 120

Density Plot of SBP: Other

N = 500 Bandwidth = 1.848

140 160 200180 80

D
en

si
ty

0.
00

0.
02

0.
04

100 120

Density Plot of SBP: White

N = 2000 Bandwidth = 1.469

140 160 200180

Fig. 6.2 Multiple (two rows by two columns) density plots using the which() function for Boolean
selection

6.4 Conduct a Visual Data Check 191

80

D
en

si
ty

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

100 120 140

Density Plot of SBP: Female Density Plot of SBP: Male

N = 2500 Bandwidth = 1.686
160 180 200 80

D
en

si
ty

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

100 120 140
N = 2500 Bandwidth = 2.528

160 180 200

Fig. 6.3 Multiple (one row by two columns) density plots using the which() function for Boolean
selection

names(SBPRaceEth.df) # Confirm all object variables.

par(ask=TRUE)
plot(SBPRaceEth.df$ID,
main="SBPRaceEth.df$ID Visual Data Check")

par(ask=TRUE)
plot(SBPRaceEth.df$RaceEthnic,
main="SBPRaceEth.df$RaceEthnic Visual Data Check")

par(ask=TRUE)
plot(SBPRaceEth.df$Gender,
main="SBPRaceEth.df$Gender Visual Data Check")

par(ask=TRUE)
plot(density(SBPRaceEth.df$SBP,
na.rm=TRUE), # Required for the density() function
main="Density Plot of SBP",
lwd=6, col="red", font.axis=2, font.lab=2)

par(ask=TRUE) # Side-by-Side Density Plots
par(mfrow=c(2,2)) # of SBP by RaceEthnic
plot(density(SBPRaceEth.df$SBP[
which(SBPRaceEth.df$RaceEthnic=="Black")],
na.rm=TRUE), xlim=c(080,200), ylim=c(0,0.055),
main="Density Plot of SBP: Black",
lwd=6, col="red", font.axis=2, font.lab=2)

plot(density(SBPRaceEth.df$SBP[
which(SBPRaceEth.df$RaceEthnic=="Hispanic")],
na.rm=TRUE), xlim=c(080,200), ylim=c(0,0.055),
main="Density Plot of SBP: Hispanic",
lwd=6, col="red", font.axis=2, font.lab=2)

192 6 Kruskal–Wallis H-Test for Oneway Analysis of Variance (ANOVA) by Ranks

plot(density(SBPRaceEth.df$SBP[
which(SBPRaceEth.df$RaceEthnic=="Other")],
na.rm=TRUE), xlim=c(080,200), ylim=c(0,0.055),
main="Density Plot of SBP: Other",
lwd=6, col="red", font.axis=2, font.lab=2)

plot(density(SBPRaceEth.df$SBP[
which(SBPRaceEth.df$RaceEthnic=="White")],
na.rm=TRUE), xlim=c(080,200), ylim=c(0,0.055),
main="Density Plot of SBP: White",
lwd=6, col="red", font.axis=2, font.lab=2)

The which() function is used to make selection.

par(ask=TRUE) # Side-by-Side Density Plots
par(mfrow=c(1,2)) # of SBP by Gender
plot(density(SBPRaceEth.df$SBP[
which(SBPRaceEth.df$Gender=="Female")],
na.rm=TRUE), xlim=c(080,200), ylim=c(0,0.05),
main="Density Plot of SBP: Female",
lwd=6, col="red", font.axis=2, font.lab=2)

plot(density(SBPRaceEth.df$SBP[
which(SBPRaceEth.df$Gender=="Male")],
na.rm=TRUE), xlim=c(080,200), ylim=c(0,0.05),
main="Density Plot of SBP: Male",
lwd=6, col="red", font.axis=2, font.lab=2)

The which() function is used to make selection.

The purpose of these initial plots is to gain a general sense of the data and to
equally look for outliers. In an attempt to look for outliers, the xlim argument and
ylim argument have either been avoided or expanded, so that all data are plotted.
Extreme values may or may not be outliers, but they are certainly interesting and
demand attention. Experienced researchers do not look only at expected data but
instead consider all data.

This sample lesson has been designed to look into the nature of the numeric-
type object variable SBP and the factor-type object variable RaceEthnic. Given the
nature of SBP values, it may also be a good idea to supplement the plot(density())
functions with the hist() function and the boxplot() function to gain a another view
of the distribution pattern for this object variable. There is a concern that the numeric
values for object variable SBP do not show normal distribution along a bell-shaped
curve, and there is a question, given the nature of how data were obtained, if the
distribution of SBP approximates those conditions needed for correct use of Oneway
ANOVA, which is commonly applied using data that meet parametric assumptions.

par(ask=TRUE)
hist(SBPRaceEth.df$SBP,
main="Histogram of Systolic Blood Pressure",
nclass=50, # Number of bins
font=2, # Bold text
cex.lab=1.15, # Large font
col="red") # Vibrant color

6.4 Conduct a Visual Data Check 193

par(ask=TRUE)
boxplot(SBPRaceEth.df$SBP,
horizontal=TRUE,
main="Horizontal Boxplot of Systolic Blood Pressure",
xlab="Systolic Blood Pressure: Expanded Range",
ylim=c(0,245), # Note the selection for ylim.
cex.lab=1.15, cex.axis=1.15, border="blue", col="red")

box()

par(ask=TRUE)
boxplot(SBPRaceEth.df$SBP ~ SBPRaceEth.df$RaceEthnic,
horizontal=FALSE,
main="Vertical Boxplot of Systolic Blood Pressure (SBP) by
Race-Ethnicity",
ylim=c(0,245), # Note the selection for ylim.
ylab="Systolic Blood Pressure: Expanded Range",
xlab="Race-Ethnicity Breakout Groups",
cex.lab=1.15, cex.axis=1.15, border="blue", col="red")

box()

If all group names do not appear in the graphic, adjust the cex.axis setting
to a lower value. As is nearly always the case with R, settings are generally a
matter of balance between personal preferences and presentation requirements.
Many graphic-type settings can be reviewed by keying help(par) at the R prompt, to
learn more about the many arguments and options supported by R graphics.

Note: It is largely a personal preference to display a boxplot in either horizontal
mode or vertical mode. To meet the needs of various readers, it is common to use
both orientations.

The use of par(mfrow=c(2,2)) and par(mfrow=c(1,2)) was previously demon-
strated, in an attempt to place multiple images of breakout values into one composite
graphic. Consider the lattice package, also, as a useful resource to prepare a
composite graphic that provides a sense of all breakout groups in one easy-
to-visualize presentation. Preparing comparisons by breakout groups, all in one
graphical presentation, makes comprehension far easier than if the many graphical
presentations were in separate images, often over several pages in a final report
(Figs. 6.4 and 6.5).3

install.packages("lattice")
library(lattice) # Load the lattice package.
help(package=lattice) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

par(ask=TRUE) # 1 Column by 4 Rows Histogram
lattice::histogram(~ SBPRaceEth.df$SBP |
SBPRaceEth.df$RaceEthnic, # Pipe, not ~ or ,

3The ggplot package, which is gaining attention in the R community and which serves as a
complement to the lattice package, will be presented in a later lesson.

194 6 Kruskal–Wallis H-Test for Oneway Analysis of Variance (ANOVA) by Ranks

100 120

Black

Hispanic

Other

White

Boxplot of Systolic Blood Pressure by
Race-Ethnicity

140

Systolic Blood Pressure

R
ac

e-
E

th
ni

ci
ty

 B
re

ak
ou

t G
ro

up
s

160 180

Fig. 6.4 Boxplots of four breakout groups using the lattice::bwplot() function with emphasis on
outliers

100

Female

Male

120 140
Systolic Blood Pressure

Boxplot of Systolic Blood Pressure by Gender

G
en

de
r

B
re

ak
ou

t G
ro

up
s

160 180

Fig. 6.5 Boxplots of two breakout groups using the lattice::bwplot() function with emphasis on
outlines

type="count", # Note: count
par.settings=simpleTheme(lwd=2),
par.strip.text=list(cex=1.15, font=2),
scales=list(cex=1.15),
main="Histograms (Count) of Systolic Blood Pressure by
Race-Ethnicity",
xlab=list("Systolic Blood Pressure", cex=1.15, font=2),

6.4 Conduct a Visual Data Check 195

xlim=c(080,200), # Note the range.
ylab=list("Count", cex=1.15, font=2),
aspect=0.25, breaks=20,
layout = c(1,4), # Note: 1 Column by 4 Rows.
col="red")

par(ask=TRUE) # 1 Column by 4 Rows Histogram
lattice::histogram(~ SBPRaceEth.df$SBP |
SBPRaceEth.df$RaceEthnic, # Pipe, not ~ or ,
type="percent", # Note: percent
par.settings=simpleTheme(lwd=2),
par.strip.text=list(cex=1.15, font=2),
scales=list(cex=1.15),
main="Histograms (Percent) of Systolic Blood Pressure by
Race-Ethnicity",
xlab=list("Systolic Blood Pressure", cex=1.15, font=2),
xlim=c(080,200), # Note the range.
ylab=list("Percent", cex=1.15, font=2),
aspect=0.25, breaks=20,
layout = c(1,4), # Note: 1 Column by 4 Rows.
col="red")

par(ask=TRUE) # Breakout group by measured object.
lattice::bwplot(SBPRaceEth.df$RaceEthnic ~
SBPRaceEth.df$SBP, # Tilde, not | or ,
par.settings = simpleTheme(lwd=2),
par.strip.text=list(cex=1.15, font=2),
scales=list(cex=1.15),
main="Boxplot of Systolic Blood Pressure by
Race-Ethnicity",
xlab=list("Systolic Blood Pressure", cex=1.15, font=2),
xlim=c(080,200),
ylab=list("Race-Ethnicity Breakout Groups", cex=1.15,
font=2), aspect=0.5, layout=c(1,1), col="red")

par(ask=TRUE) # 1 Column by 4 Rows Histogram
lattice::densityplot(~ SBPRaceEth.df$SBP |
SBPRaceEth.df$RaceEthnic, # Pipe, not ~ or ,
type="density", # Note: density
par.settings=simpleTheme(lwd=4),
par.strip.text=list(cex=1.15, font=2),
scales=list(cex=1.15),
main="Density Plot of Systolic Blood Pressure by
Race-Ethnicity",
xlab=list("Systolic Blood Pressure", cex=1.15, font=2),
xlim=c(080,200), # Note the range.
ylab=list("Density", cex=1.15, font=2),
aspect=0.25, breaks=20,
layout = c(1,4), # Note: 1 Column by 4 Rows.
col="red")

par(ask=TRUE) # 1 Column by 2 Rows Histogram
lattice::histogram(~ SBPRaceEth.df$SBP |

196 6 Kruskal–Wallis H-Test for Oneway Analysis of Variance (ANOVA) by Ranks

SBPRaceEth.df$Gender, # Pipe, not ~ or ,
type="count", # Note: count
par.settings=simpleTheme(lwd=2),
par.strip.text=list(cex=1.15, font=2),
scales=list(cex=1.15),
main="Histograms (Count) of Systolic Blood Pressure by
Gender",
xlab=list("Systolic Blood Pressure", cex=1.15, font=2),
xlim=c(080,200), # Note the range.
ylab=list("Count", cex=1.15, font=2),
aspect=0.25, breaks=20,
layout = c(1,2), # Note: 1 Column by 2 Rows.
col="red")

par(ask=TRUE) # 1 Column by 2 Rows Histogram
lattice::histogram(~ SBPRaceEth.df$SBP |
SBPRaceEth.df$Gender, # Pipe, not ~ or ,
type="percent", # Note: percent
par.settings=simpleTheme(lwd=2),
par.strip.text=list(cex=1.15, font=2),
scales=list(cex=1.15),
main="Histograms (Percent) of Systolic Blood Pressure by
Gender",
xlab=list("Systolic Blood Pressure", cex=1.15, font=2),
xlim=c(080,200), # Note the range.
ylab=list("Percent", cex=1.15, font=2),
aspect=0.25, breaks=20,
layout = c(1,2), # Note: 1 Column by 2 Rows.
col="red")

par(ask=TRUE) # Breakout group by measured object.
lattice::bwplot(SBPRaceEth.df$Gender ~
SBPRaceEth.df$SBP, # Tilde, not | or ,
par.settings = simpleTheme(lwd=2),
par.strip.text=list(cex=1.15, font=2),
scales=list(cex=1.15),
main="Boxplot of Systolic Blood Pressure by Gender",
xlab=list("Systolic Blood Pressure", cex=1.15, font=2),
xlim=c(080,200),
ylab=list("Gender Breakout Groups", cex=1.15,
font=2), aspect=0.5, layout=c(1,1), col="red")

par(ask=TRUE) # 1 Column by 2 Rows Histogram
lattice::densityplot(~ SBPRaceEth.df$SBP |
SBPRaceEth.df$Gender, # Pipe, not ~ or ,
type="density", # Note: density
par.settings=simpleTheme(lwd=4),
par.strip.text=list(cex=1.15, font=2),
scales=list(cex=1.15),
main="Density Plot of Systolic Blood Pressure by Gender",
xlab=list("Systolic Blood Pressure", cex=1.15, font=2),
xlim=c(080,200), # Note the range.
ylab=list("Density", cex=1.15, font=2),

6.5 Descriptive Analysis of the Data 197

aspect=0.25, breaks=20,
layout = c(1,2), # Note: 1 Column by 2 Rows.
col="red")

These lattice-based graphical images would make a good presentation for a large
group, or they would be generally acceptable for inclusion in a report or other
publication. Again, similar graphical images generated by using the ggplot package
are presented in a later lesson.

6.5 Descriptive Analysis of the Data

There are no known missing data in this dataset. Given the different ways missing
data can impact analyses, it is still helpful to first check for missing data by using
the is.na() function and the complete.cases() function against the entire dataset.
Both functions return a TRUE or FALSE response, depending on the function and
the outcome of whether data are missing or not. Again, these actions may not be
needed, but they are still desired as part of a constant and pervasive attempt to
consider quality assurance and how data quality impacts later statistical analyses
and eventually decision-making.

is.na(SBPRaceEth.df) # Check for missing data
complete.cases(SBPRaceEth.df) # Check for complete cases

After this review of the data, the summary() function is likely all that is needed
to gain a first sense of the data. Note how the summary() function is applied against
the entire dataset, thus yielding information about all object variables.

summary(SBPRaceEth.df)

Although the summary() function is generally sufficient, descriptive statistics
for individual object variables may be desired, and in this dataset attention will
be directed toward the object variable SBPRaceEth.df$SBP, overall and by Race-
Ethnicity breakout groups. Although it is not needed for this lesson given how
there are no missing data, as a good programming practice (gpp), the na.rm=TRUE
argument or some other similar convention will be used to accommodate missing
data. Because the nonparametric Kruskal–Wallis Test will be used to determine
if there is a statistically significant difference (p <= 0.05) for Systolic Blood
Pressure by the four Race-Ethnicity breakout groups, give special attention to
outcomes from the median() function as well as the mean() function.

198 6 Kruskal–Wallis H-Test for Oneway Analysis of Variance (ANOVA) by Ranks

Descriptive Statistics of SBPRaceEth.df$SBP—Overall

length(SBPRaceEth.df$SBP) # N

install.packages("asbio")
library(asbio) # Load the asbio package.
help(package=asbio) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

asbio::Mode(SBPRaceEth.df$SBP) # Mode

[1] 120

median(SBPRaceEth.df$SBP, na.rm=TRUE) # Median

[1] 124

mean(SBPRaceEth.df$SBP, na.rm=TRUE) # Mean

[1] 125.8316

sd(SBPRaceEth.df$SBP,na.rm=TRUE) # SD

[1] 12.87823

summary(SBPRaceEth.df$SBP, na.rm=TRUE) # Summary

Min. 1st Qu. Median Mean 3rd Qu. Max.
92.0 116.0 124.0 125.8 132.0 184.0

Descriptive Statistics of SBPRaceEth.df$SBP – by Race-Ethnicity Breakout
Groups
Descriptive statistics at the summary level are certainly needed, but breakout
statistics are also needed to gain a more complete understanding of the data.
There are many ways to obtain breakout statistics, but the tapply() function,
epicalc::summ() function, prettyR::brkdn() function, psych::describeBy() function,
Hmisc::bystats() function, and the lessR::SummaryStats() function are among the
most detailed and easiest to use to discern differences between breakout groups
for SBPRaceEth.df$RaceEthnic: (1) Black, (2) Hispanic, (3) Other, and (4) White.
Experiment with all of these different functions to see similarities and differences
of how information is placed on the screen, level of detail, etc. Then, make a choice
on which function meets requirements and preferences (Figs. 6.6 and 6.7).

tapply(SBP, RaceEthnic, summary, na.rm=TRUE,
data=SBPRaceEth.df)
SBP by RaceEthnic, using tapply()

6.5 Descriptive Analysis of the Data 199

100

Black

Hispanic

Other
White

120

Sorted Dotplot of Systolic Blood Pressure by
Race-Ethnicity

140 160 180

Fig. 6.6 Color-coded sorted dot plots of four breakout groups using the epicalc::summ() function

$Black
Min. 1st Qu. Median Mean 3rd Qu. Max.
92.0 126.0 134.0 135.2 144.0 184.0

$Hispanic
Min. 1st Qu. Median Mean 3rd Qu. Max.

100.0 122.0 128.0 130.2 136.0 180.0

$Other
Min. 1st Qu. Median Mean 3rd Qu. Max.

102.0 114.0 120.0 119.9 126.0 144.0

$White
Min. 1st Qu. Median Mean 3rd Qu. Max.
92.0 114.0 118.0 119.4 124.0 150.0

par(ask=TRUE) # Use the epicalc package for breakout analyses
epicalc::summ(SBPRaceEth.df$SBP, by=SBPRaceEth.df$RaceEthnic,
graph=TRUE, pch=18, ylab="auto",
main="Sorted Dotplot of Systolic Blood Pressure by
Race-Ethnicity",
cex.X.axis=1.15, cex.Y.axis=1.15, font.lab=2, dot.col="auto")
Note the descriptive statistics and not only the graphic
that go along with the epicalc::summ() function.

For SBPRaceEth.df$RaceEthnic = Black
obs. mean median s.d. min. max.
1000 135.2 134 14.336 92 184

For SBPRaceEth.df$RaceEthnic = Hispanic
obs. mean median s.d. min. max.
1500 130.2 128 12.333 100 180

200 6 Kruskal–Wallis H-Test for Oneway Analysis of Variance (ANOVA) by Ranks

For SBPRaceEth.df$RaceEthnic = Other
obs. mean median s.d. min. max.
500 119.9 120 7.117 102 144

For SBPRaceEth.df$RaceEthnic = White
obs. mean median s.d. min. max.
2000 119.4 118 8.754 92 150

install.packages("prettyR")
library(prettyR) # Load the prettyR package.
help(package=prettyR) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

prettyR::brkdn(SBP ~ RaceEthnic, SBPRaceEth.df,
num.desc=c("median","mean","sd","valid.n"))

Breakdown of SBP by RaceEthnic
Level median mean sd valid.n
Black 134 135.2 14.34 1000
Hispanic 128 130.2 12.33 1500
Other 120 119.9 7.12 500
White 118 119.4 8.75 2000

install.packages("psych")
library(psych) # Load the psych package.
help(package=psych) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

psych::describeBy(SBPRaceEth.df$SBP,
SBPRaceEth.df$RaceEthnic,
digits=2, mat=TRUE) # Matrix output

group1 n mean sd median min max
Black 1000 135.16 14.34 134 92 184
Hispanic 1500 130.22 12.33 128 100 180
Other 500 119.88 7.12 120 102 144
White 2000 119.36 8.75 118 92 150

install.packages("Hmisc")
library(Hmisc) # Load the Hmisc package.
help(package=Hmisc) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

Hmisc::bystats(SBPRaceEth.df$SBP, SBPRaceEth.df$RaceEthnic,
nmiss=TRUE, fun=median)

6.5 Descriptive Analysis of the Data 201

median of SBPRaceEth.df$SBP by SBPRaceEth.df$RaceEthnic

N Missing median
Black 1000 0 134
Hispanic 1500 0 128
Other 500 0 120
White 2000 0 118
ALL 5000 0 124

install.packages("lessR")
library(lessR) # Load the lessR package.
help(package=lessR) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

lessR::SummaryStats(SBP, by=RaceEthnic, data=SBPRaceEth.df,
digits.d=2, brief=TRUE) # Reduced output, to improve final
presentation

SBP - by levels of - RaceEthnic
n miss mean sd min mdn max

Black 1000 0 135.16 14.34 92.00 134.00 184.00
Hispanic 1500 0 130.22 12.33 100.00 128.00 180.00
Other 500 0 119.88 7.12 102.00 120.00 144.00
White 2000 0 119.36 8.75 92.00 118.00 150.00

Number of outliers: 122

Because the focus of this lesson is on the nonparametric Kruskal–Wallis Test and
not the parametric Oneway Analysis of Variance, it would be useful to graphically
reinforce output from the median() function in proximity to output from the mean()
function, presented in this case as a graphical image based on the barplot() function.
From among the many possible ways that the breakout statistics could be obtained,
the prettyR::brkdn() function will be used to obtain median and mean statistics of
Systolic Blood Pressure for each Race-Ethnicity breakout group. These statistics
will then be used to create new barplots, side-by-side, to allow for easy comparison
of median values to mean values.

prettyR::brkdn(SBP ~ RaceEthnic, SBPRaceEth.df,
num.desc=c("median","mean","sd","valid.n"))

Breakdown of SBP by RaceEthnic
Level median mean sd valid.n
Black 134 135.2 14.34 1000
Hispanic 128 130.2 12.33 1500
Other 120 119.9 7.12 500
White 118 119.4 8.75 2000

After gaining these descriptive statistics, prepare a set of self-generated bar plots
for the Median and Mean of Systolic Blood Pressure by Race-Ethnicity breakout

202 6 Kruskal–Wallis H-Test for Oneway Analysis of Variance (ANOVA) by Ranks

Black

0
20

40
60

80
10

0
12

0
14

0

Hispanic

Systolic Blood Pressure by Race-Ethnicity: Median

Other White Black

0
20

40
60

80
10

0
12

0
14

0

Hispanic

Systolic Blood Pressure by Race-Ethnicity: Mean

Other White

Fig. 6.7 Multiple bar plots in one graphic based on enumerated values

groups. Use the barplot() function and know that this approach is a kludge (i.e.,
review this term since it is commonly used in computing) that is presented merely
to show another way to visualize outcomes in R. This method works, and it provides
a good sense of comparative outcomes—especially for ranking purposes.

par(ask=TRUE)
par(mfrow=c(1,2)) # Side-by-Side of Median and Mean
barplot(c(134, 128, 120, 118),
names.arg=c("Black", "Hispanic", "Other", "White"),
col=c("red", "blue", "black", "green"),
main="Systolic Blood Pressure by Race-Ethnicity: Median",
font=2, cex.lab=1.25, ylim=c(0,140))

barplot(c(135.2, 130.2, 119.9, 119.4),
names.arg=c("Black", "Hispanic", "Other", "White"),
col=c("red", "blue", "black", "green"),
main="Systolic Blood Pressure by Race-Ethnicity: Mean",
font=2, cex.lab=1.25, ylim=c(0,140))

Application of the Anderson-Darling Test
Graphical images and descriptive statistics are helpful in understanding the data. It
is also useful to apply selected statistical tests to serve as additional supports for
decision-making on acceptance of nonparametric or parametric views toward the
data. The Anderson-Darling Test, the Lilliefors (KS) Test, and the Shapiro-Wilk Test
are often used to support this type of decision-making. These tests may be influenced
by sample size. Overall, these tests provide one view, but not the only view, on the
nature of distribution patterns. Experience, needs, and practical judgment, supported
by careful review of graphical images, descriptive statistics, and statistical tests,
should be used when deciding if variables from a dataset are best viewed from a
nonparametric or parametric perspective.

6.5 Descriptive Analysis of the Data 203

install.packages("nortest")
library(nortest) # Load the nortest package.
help(package=nortest) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

The Anderson-Darling Test will be used for this lesson. The Null Hypothesis
for the Anderson-Darling Test is structured to examine whether the data follow a
specified distribution:

Anderson-Darling Null Hypothesis: The data follow the normal distribution.
For this lesson there will be five approaches to the Anderson-Darling Test with

subsequent examination of p-values for each approach:

• The Anderson-Darling Test will be applied against the values for
SBPRaceEth.df$SBP, overall.

• The Anderson-Darling Test will be applied against the values for
SBPRaceEth.df$SBP, where RaceEthnic = Black.

• The Anderson-Darling Test will be applied against the values for
SBPRaceEth.df$SBP, where RaceEthnic = Hispanic.

• The Anderson-Darling Test will be applied against the values for
SBPRaceEth.df$SBP, where RaceEthnic = Other.

• The Anderson-Darling Test will be applied against the values for
SBPRaceEth.df$SBP, where RaceEthnic = White.

with(SBPRaceEth.df, nortest::ad.test(SBP))
Values of SBPRaceEth.df$SBP for all subjects
Wrap the with() function around the nortest::ad.test()
function

Anderson-Darling normality test

data: SBP
A = 70.3466, p-value < 0.00000000000000022

with(SBPRaceEth.df, nortest::ad.test(SBP[RaceEthnic ==
"Black"]))
Values of SBPRaceEth.df$SBP for Black subjects
Note use of == and not = in this selection process

Anderson-Darling normality test

data: SBP[RaceEthnic == "Black"]
A = 2.2718, p-value = 0.000009264

with(SBPRaceEth.df, nortest::ad.test(SBP[RaceEthnic ==
"Hispanic"]))
Values of SBPRaceEth.df$SBP for Hispanic subjects

204 6 Kruskal–Wallis H-Test for Oneway Analysis of Variance (ANOVA) by Ranks

Anderson-Darling normality test

data: SBP[RaceEthnic == "Hispanic"]
A = 34.5172, p-value < 0.00000000000000022

with(SBPRaceEth.df, nortest::ad.test(SBP[RaceEthnic ==
"Other"]))
Values of SBPRaceEth.df$SBP for Other subjects

Anderson-Darling normality test

data: SBP[RaceEthnic == "Other"]
A = 3.0279, p-value = 0.000000131

with(SBPRaceEth.df, nortest::ad.test(SBP[RaceEthnic ==
"White"]))
Values of SBPRaceEth.df$SBP for White subjects

Anderson-Darling normality test

data: SBP[RaceEthnic == "White"]
A = 19.437, p-value < 0.00000000000000022

The calculated Anderson-Darling Test p-value was far less than 0.05, overall, and
for each Race-Ethnicity breakout group:

• Anderson-Darling Test SBPRaceEth.df$SBP p-value was less than
0.00000000000000022 for all subjects.

• Anderson-Darling Test SBPRaceEth.df$SBP p-value was equal to 0.000009264
for Black subjects.

• Anderson-Darling Test SBPRaceEth.df$SBP p-value was less than
0.00000000000000022 for Hispanic subjects.

• Anderson-Darling Test SBPRaceEth.df$SBP p-value was equal to 0.000000131
for Other subjects.

• Anderson-Darling Test SBPRaceEth.df$SBP p-value was less than
0.00000000000000022 for White subjects.

The p-values associated with these five separate attempts at the Anderson-
Darling Test are all less that the p-value of 0.05, and it could be stated that the
Null Hypothesis is rejected. For all five iterations of the Anderson-Darling Test for
SBP values, overall and by Race-Ethnicity breakout groups, the Null Hypothesis is
rejected and there is a question if the data follow the normal distribution.

The QQ plot (i.e., normal probability plot) provides additional confirmation that
the data are best viewed from a nonparametric perspective (Fig. 6.8).

6.5 Descriptive Analysis of the Data 205

−4

10
0

12
0

14
0

16
0

18
0

−2 0

QQPlot: SBP -All Subjects

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

2 4 −3

10
0

12
0

14
0

16
0

18
0

−1 0

QQPlot: SBP - Black Subjects

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

21 3 −3 −1 0 21 3 −3 −2−1 0 21 3 −3 −1 0 21 3
10

0
12

0
14

0
16

0
18

0

QQPlot: SBP - Hispanic Subjects

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

11
0

12
0

14
0

13
0

QQPlot: SBP - Other Subjects

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

10
0

11
0

90
12

0
14

0
15

0
13

0
S

am
pl

e
Q

ua
nt

ile
s

QQPlot: SBP - White Subjects

Theoretical Quantiles

Fig. 6.8 Multiple side-by-side QQ plots based on use of the with() function for Boolean selection

par(ask=TRUE)
par(mfrow=c(1,5)) # Multiple Side-by-Side QQ Plots
with(SBPRaceEth.df, qqnorm(SBP,
pch=22, col="red", bg="black", font=2, font.lab=2,
cex.axis=1.5, # Adjust points in the QQ Plot
main="QQPlot: SBP - All Subjects"))

with(SBPRaceEth.df, qqline(SBP,
lwd=4, col="darkblue")) # Adjust the QQ Line

with(SBPRaceEth.df, qqnorm(SBP[RaceEthnic == "Black"],
pch=22, col="red", bg="black", font=2, font.lab=2,
cex.axis=1.5, main="QQPlot: SBP - Black Subjects"))

with(SBPRaceEth.df, qqline(SBP[RaceEthnic == "Black"],
lwd=4, col="darkblue")) # Adjust the QQ Line

with(SBPRaceEth.df, qqnorm(SBP[RaceEthnic == "Hispanic"],
pch=22, col="red", bg="black", font=2, font.lab=2,
cex.axis=1.5, main="QQPlot: SBP - Hispanic Subjects"))

with(SBPRaceEth.df, qqline(SBP[RaceEthnic == "Hispanic"],
lwd=4, col="darkblue")) # Adjust the QQ Line

with(SBPRaceEth.df, qqnorm(SBP[RaceEthnic == "Other"],
pch=22, col="red", bg="black", font=2, font.lab=2,
cex.axis=1.5, main="QQPlot: SBP - Other Subjects"))

with(SBPRaceEth.df, qqline(SBP[RaceEthnic == "Other"],
lwd=4, col="darkblue")) # Adjust the QQ Line

with(SBPRaceEth.df, qqnorm(SBP[RaceEthnic == "White"],
pch=22, col="red", bg="black", font=2, font.lab=2,
cex.axis=1.5, main="QQPlot: SBP - White Subjects"))

with(SBPRaceEth.df, qqline(SBP[RaceEthnic == "White"],
lwd=4, col="darkblue")) # Adjust the QQ Line

When viewing the QQ plot, note placement of the data along the qqline,
especially at the tails.

206 6 Kruskal–Wallis H-Test for Oneway Analysis of Variance (ANOVA) by Ranks

6.6 Conduct the Statistical Analysis

The preceding graphical images and descriptive statistics, both summary descriptive
statistics and breakout descriptive statistics, provide a fairly good idea of Systolic
Blood Pressure, overall and by the four Race-Ethnicity breakout groups as follows:

Breakout Descriptive Statistics of Systolic Blood
Pressure by Race-Ethnicity
===

N Missing Median Mean
Black 1000 0 134 135.1600
Hispanic 1500 0 128 130.2200
Other 500 0 120 119.8840
White 2000 0 118 119.3630
ALL 5000 0 124 125.8316
===

With these breakout statistics (especially Median) as a guide, it is a fairly easy
transition to use the kruskal.test() function to gain a more complete sense of the
Kruskal–Wallis Test as it is applied against Systolic Blood Pressure and the four
Race-Ethnicity breakout groups:

kruskal.test(SBP ~ RaceEthnic, data=SBPRaceEth.df)

Kruskal-Wallis rank sum test

data: SBP by RaceEthnic
Kruskal-Wallis chi-squared = 1379.141, df = 3,

p-value < 0.00000000000000022

As seen by application of the kruskal.test() function, the calculated p-value
is less than 0.00000000000000022 which is certainly less than the criterion
p-value <= 0.05. From this one test, at the overall level of comparison, it is
evident that there are statistically significant differences in SBP values between the
four Race-Ethnicity breakout groups.

For additional quality assurance, use a different R-based function spe-
cific to the Kruskal–Wallis Test against the data (SBPRaceEth.df$SBP and
SBPRaceEth.df$RaceEthnic), merely to see if results are consistent. This type
of action may not be necessary, but attention to these seemingly redundant
quality assurance measures provides confirmation that outcomes are consistent
and ostensibly correct. For this additional action, use the muStat::mu.kruskal.test()
function.

install.packages("muStat")
library(muStat) # Load the muStat package.
help(package=muStat) # Show the information page.
sessionInfo() # Confirm all attached packages.

6.7 Summary 207

Select the most local mirror site using Set CRAN mirror.

muStat::mu.kruskal.test(SBPRaceEth.df$SBP,
SBPRaceEth.df$RaceEthnic)

Prentice (Wilcoxon/Kruskal-Wallis/Friedman) rank sum test

data: ’SBPRaceEth.df$SBP’ (y) by
’SBPRaceEth.df$RaceEthnic’ (groups)

statistic: chi-square = 1379.141, df = 3,
p-value < 0.00000000000000022

alternative hypothesis: two.sided

Using both the kruskal.test() function and the muStat::mu.kruskal.test() function,
the calculated p-value is less than 0.00000000000000022, indicating a significant
difference in SBP values by Race-Ethnicity.

Accordingly, there is a statistically significant difference in Systolic Blood Pres-
sure by Race-Ethnicity breakout groups, but where is the difference? It would be rea-
sonable to suggest that there is a statistically significant difference (p <= 0.05)
between Black subjects (Median = 134, the Median with the highest value) and
White subjects (Median = 118, the Median with the lowest value), but it would
only be conjecture to speculate about comparisons for other Race-Ethnicity breakout
groups. Quite simply, the kruskal.test() function and the muStat::mu.kruskal.test()
function do not support that type of detailed comparison, but this challenge will be
addressed in the addendum for this lesson.

6.7 Summary

In this lesson, the graphics and statistics provided a great deal of information. Of
immediate importance, however, it is necessary to focus on the Null Hypothesis
statement and the calculated p-value in comparison to the criterion p-value:

Null Hypothesis (Ho) There is no statistically significant difference (p <= 0.05)
in the Systolic Blood Pressure (SBP) of adult subjects between the four Race-
Ethnicity breakout groups: Black, Hispanic, Other, and White.

Calculated p-value < 0.00000000000000022
Criterion p-value <= 0.05

The calculated p-value (0.00000000000000022) is less than the criterion p-value
(0.05), and there is a statistically significant difference in Systolic Blood Pressure
by the four Race-Ethnicity breakout groups:

Median SBP Black 134
Median SBP Hispanic .. 128
Median SBP Other 120

208 6 Kruskal–Wallis H-Test for Oneway Analysis of Variance (ANOVA) by Ranks

Median SBP White 118
==========================
Median SBP ALL 124

It is assumed that there is a difference in Black SBP (highest median value) and
White SBP (lowest median value), but an assumption of significant difference for
all other comparisons would be unfounded as these comparisons are not supported
by either the kruskal.test() function or the muStat::mu.kruskal.test() function.

6.8 Addendum: Comparison of Kruskal–Wallis Test
Differences by Multiple Breakout Groups

An advantage of R is that the user community has contributed literally thousands
of additional packages that supplement the many functions available when R is first
downloaded. Not surprisingly, the Kruskal–Wallis Test is addressed in some of these
additional packages. A few functions from external packages are demonstrated in
this addendum, focusing on the functions included in the pgirmess package and the
agricolae package.

Use the pgirmess::kruskalmc() Function for Kruskal–Wallis Test Multiple
Comparisons
Use the pgirmess::kruskalmc function to prepare a summary of the many breakout
comparisons of Systolic Blood Pressure (SBP) by Race-Ethnicity (RaceEthnic).

install.packages("pgirmess")
library(pgirmess) # Load the pgirmess package.
help(package=pgirmess) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

pgirmess::kruskalmc(SBPRaceEth.df$SBP,
SBPRaceEth.df$RaceEthnic, probs=0.05)

Multiple comparison test after Kruskal-Wallis
p.value: 0.05
Comparisons

obs.dif critical.dif difference
Black-Hispanic 422.8452 155.4763 TRUE
Black-Other 1644.0315 208.5934 TRUE
Black-White 1760.9395 147.4978 TRUE
Hispanic-Other 1221.1863 196.6638 TRUE
Hispanic-White 1338.0943 130.0808 TRUE
Other-White 116.9080 190.4189 FALSE

As indicated in the column labeled as difference, there is no statistically
significant difference (p <= 0.05) between Other subjects and White subjects
regarding Systolic Blood Pressure.

6.8 Addendum: Comparison of Kruskal–Wallis Test Differences by Multiple. . . 209

• Note the listing of difference=FALSE for Other-White indicated that it is false
to say that there is a difference between Other subjects and White subjects for
Systolic Blood Pressure.

• For all other breakout group comparisons, there is a true statistically significant
difference (p <= 0.05) as indicated by difference=TRUE.

Based on use of the pgirmess::kruskalmc() function against this singular dataset,
it is possible to say that:

• There is a statistically significant difference (p <= 0.05) in comparison of
SBP values between subjects organized in groups marked as Black and Hispanic,
Black and Other, Black and White, Hispanic and Other, and Hispanic and White.

• There is no statistically significant difference (p <= 0.05) in comparison of
SBP values between subjects organized in groups marked as Other and White.

As a general comment, the pgirmess::kruskalmc() function is well received in
that the output is organized, easy to read, and easy to interpret.

Use the agricolae::kruskal() Function for Kruskal–Wallis Test Multiple
Comparisons
Use the agricolae::kruskal() function to prepare a comparative test of the many
breakout comparisons of Systolic Blood Pressure (SBP) by Race-Ethnicity
(RaceEthnic).4

install.packages("agricolae")
library(agricolae) # Load the agricolae package.
help(package=agricolae) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

agricolae::kruskal(SBPRaceEth.df$SBP, SBPRaceEth.df$RaceEthnic,
alpha=0.05, group=FALSE, p.adj="holm",
main="Kruskal-Wallis Using agricolae::kruskal() Function",
console=TRUE)
Use holm for pairwise comparisons. Another choice could
have been to use bonferroni for pairwise comparisons.

Study: Kruskal-Wallis Using agricolae::kruskal() Function
Kruskal-Wallis test’s
Ties or no Ties

Value: 1379.141
degrees of freedom: 3
Pvalue chisq : 0

4Review appropriate literature on multiple comparison techniques for Analysis of Variance. At a
minimum, become acquainted with terms such as Bonferroni, Hochberg, Holm, Least Significant
Difference (LSD), Scheffé, and Tukey. It is far beyond the purpose of this lesson to go into explicit
detail on these, and other, comparative techniques.

210 6 Kruskal–Wallis H-Test for Oneway Analysis of Variance (ANOVA) by Ranks

SBPRaceEth.df$RaceEthnic, means of the ranks

SBPRaceEth.df.SBP r
Black 3496.133 1000
Hispanic 3073.287 1500
Other 1852.101 500
White 1735.193 2000

P value adjustment method: holm
Comparison between treatments mean of the ranks

Difference pvalue sig. LCL UCL
Black - Hispanic 422.8452 0.000000 *** 290.65226 555.0381
Black - Other 1644.0315 0.000000 *** 1466.67610 1821.3869
Black - White 1760.9395 0.000000 *** 1635.53030 1886.3487
Hispanic - Other 1221.1863 0.000000 *** 1053.97406 1388.3986
Hispanic - White 1338.0943 0.000000 *** 1227.49381 1448.6949
Other - White 116.9080 0.056732 . -44.99458 278.8106

As indicated in the column labeled pvalue and the column labeled sig, there
is no statistically significant difference (p <= 0.05) between Other subjects
and White subjects regarding Systolic Blood Pressure. Note how the p-value for
this comparison exceeds 0.05, and equally note how there are no asterisks for
this comparison, confirming that for a criterion p-value of p <= 0.05, there is
no statistically significant difference between Other subjects and White subjects
regarding Systolic Blood Pressure. For all other breakout group comparisons, there
is a statistically significant difference (p <= 0.05, actually p <= 0.001), as
indicated by the values shown in the column labeled pvalue and by the three
asterisks (i.e., ***) in the column labeled sig.5

Whichever test is selected for Kruskal–Wallis Test group comparisons, be sure
to consider the concept of data in the large and the meaning of statistically
significant differences for when p-values are observed and interpreted. In this
example the Other-White p-value was 0.056732, which is greater than 0.05 and
therefore indicates that there is no statistically significant difference (p <= 0.05)
in Systolic Blood Pressure for members of these two breakout groups, but equally
observe how a p-value of 0.056732 is in proximity to a p-value of 0.05.

In the ideal world, there would be stringent controls over subject selection,
instrumentation, and data collection. It could be argued that it would be best
if the data for this lesson were viewed as interval, yet (because of real-world

5The use of asterisks to indicate statistically significant difference goes back to when papers were
typed, not wordprocessed, and a full range of typesetting options was not available. This convention
is not used as frequently as it once was, but it is still used to the degree that it deserves review:

• * p <= 0.05
• ** p <= 0.01
• *** p <= 0.001

6.9 Prepare to Exit, Save, and Later Retrieve this R Session 211

conditions and in an abundance of caution) the data for this lesson were viewed
as ordinal. Would the conclusion that there is no statistically significant difference
(p <= 0.05) in Systolic Blood Pressure between Other subjects and White
subjects (while there is a statistically significant difference for all other group
comparisons) hold if the data had been interval, if there had been more control over
subjects, if there had been more control over instrumentation, and if there had been
more control over data collection processes, etc.?

It is beyond the purpose of this lesson to respond to those questions, but
attention to research design and the command-and-control organization of a study
demands attention too. For now, it can only be stated with confidence that based on
results from the Kruskal–Wallis Test, there is no statistically significant difference
(p <= 0.05) in Systolic Blood Pressure between Other subjects and White
subjects, whereas there is a statistically significant difference (p <= 0.05) for
all other group comparisons.

6.9 Prepare to Exit, Save, and Later Retrieve this R Session

getwd() # Identify the current working directory.
ls() # List all objects in the working

directory.
ls.str() # List all objects, with finite detail.
list.files() # List files at the PC directory.

save.image("R_Lesson_Kruskal-Wallis.rdata")

getwd() # Identify the current working directory.
ls() # List all objects in the working

directory.
ls.str() # List all objects, with finite detail.
list.files() # List files at the PC directory.

alarm() # Alarm, notice of upcoming action.
q() # Quit this session.

Prepare for Save workspace image? query.

Use the R Graphical User Interface (GUI) to load the saved rdata file: File ->
Load Workspace. Otherwise, use the load() function, keying the full pathname, to
load the .rdata file and retrieve the session.

Recall, however, that it may be just as useful to simply use the .R script file
(typically saved is a .txt ASCII-type file) and recreate the analyses and graphics,
provided the data files remain available.

Chapter 7
Friedman Twoway Analysis of Variance
(ANOVA) by Ranks

Abstract The Friedman Twoway Analysis of Variance (ANOVA) by Ranks Test is
often viewed as the nonparametric equivalent of the parametric Twoway Analysis of
Variance (ANOVA). Both the nonparametric Friedman Test and parametric Twoway
ANOVA are used to determine if there are statistically significant differences for
comparisons of multiple groups, with different factors for each group. However,
it may be too convenient to view these tests as being mere complements of each
other. The Friedman Test, as a nonparametric test, is used with ranked data,
particularly for when: (1) the data do not meet the rigor of interval data, (2) there
are serious concerns about extreme deviation from normal distribution, and (3) there
is considerable difference in the number of subjects for each breakout group. The
use of a block-type research design, a factorial design typically associated with
ANOVA, is introduced in this lesson. This lesson also reinforces the many quality
assurance measures that should be attempted before actual implementation of this
type of inferential analysis.

Keywords Anderson-Darling test • Bar plot (stacked, side-by-side) • Block
• Block-type research design • Box plot • Breakout groups • Code book
• Comma-separated values (.csv) • Continuous scale • Density plot • Descriptive
statistics • Distribution-free • Dot plot • Factor • Factorial research design
• Frequency distribution • Friedman twoway analysis of variance (ANOVA)
by ranks • Hinge (lower and upper) • Histogram • Interaction plot • Interval
• Mean • Median • Mode • Multiple comparisons (Bonferroni, Hochberg,
Holm, Least significant difference (LSD), Scheffé, and Tukey) • Nominal
• Nonparametric • Normal distribution • Null hypothesis • Ordinal • Outlier
• Parametric • Percentile • Probability (p-value) • Quantile-Quantile (QQ, Q-Q)
• Ranking • Sample (quota, convenience) • Statistical significance • Treatment
• Twoway analysis of variance (ANOVA) • Violin plot • Whisker
(lower and upper)

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-3-319-
30634-6_7) contains supplementary material, which is available to authorized users.

© Springer International Publishing Switzerland 2016
T.W. MacFarland, J.M. Yates, Introduction to Nonparametric Statistics
for the Biological Sciences Using R, DOI 10.1007/978-3-319-30634-6_7

213

http://dx.doi.org/10.1007/978-3-319-30634-6_7
http://dx.doi.org/10.1007/978-3-319-30634-6_7

214 7 Friedman Twoway Analysis of Variance (ANOVA) by Ranks

7.1 Background on This Lesson

The Friedman Twoway Analysis of Variance (ANOVA) by Ranks Test is used
with ordinal data that are placed in a factorial two-way table, with N rows and k
columns. This type of organization represents, typically, a block design and is easily
represented in a group (row) by condition (column) table:

Condition

1 2 3
======================

Group A | Data | Data | Data |
Group B | Data | Data | Data |

Group Group C | Data | Data | Data |
Group D | Data | Data | Data |
Group E | Data | Data | Data |

======================

There are many variations on the way data can be organized in a factorial group
(row) by condition (column) format, but the basic theme is that breakouts (i.e.,
subgroups) and possible differences by breakouts need to be considered for multiple
variables. In the above table, that would be consideration of breakouts for Group
(Group A to Group E) and breakouts by Condition (Condition 1 to Condition 3).

7.1.1 Description of the Data

This lesson on the Friedman Test is based on a factorial study of alfalfa weevil
(Hypera postica Gyllenhal) larvae where the incidence of alfalfa weevil larvae is
viewed for five different alfalfa varieties (i.e., presented as the block in this factorial
design) and four different management practices (i.e., presented as the treatment in
this factorial design), using data from a total of 20 separate plots (i.e., presented as
the cells or observations in this factorial design):

Alfalfa Varieties (i.e., Block):

• ALPV44NP18
• ALPV54QX13
• ALPV55QX17
• ALPV64TJ19
• ALPV78DG42

A code is used for each alfalfa variety so that it is unknown if the different
varieties are experimental, recently introduced, or established alfalfa varieties.

7.1 Background on This Lesson 215

Management Practices (i.e., Treatment):

• None—Alfalfa is cut at regular intervals, but no proactive measures are used to
manage the crop.

• Organic—Practices that avoid the use of any agricultural petro-chemicals (e.g.,
chemical fertilizers, chemical pesticides, etc.) are used to manage the crop.

• IPM—Integrated Pest Management calls for the sound use of various manage-
ment practices, all in a prudent and appropriate attempt to use a minimal amount
of petro-chemicals in support of crop management.

• Conventional—Agricultural petro-chemicals are used in a prescribed approach
to crop management.

Given these conditions, the five alfalfa varieties and four management practices
were organized into 20 (5 blocks * 4 treatments D 20 plots) separate plots. For this
lesson, there was one case of data collection for each plot.

The number of alfalfa weevil larvae in each plot was determined by using a well
planned data collection process:

• By using multiple technicians assigned to field work, all data from the 20
plots were obtained on the same day, within less than 2 hours of other. This
action minimizes any possible influence of variance due to humidity, sunlight,
temperature, etc., on the incidence of alfalfa weevil larvae in each plot.

• It is assumed that the plots used to grow the alfalfa are equivalent in terms of
support for plant growth, minimizing possible variance in growth patterns that are
due to soil type, rainfall, sunlight, etc. Ideally, the only difference in final results
(i.e., number of alfalfa weevil larvae in each plot) should be due to difference in
alfalfa varieties and difference in management practices.

• On the day of data collection, a team of technicians (i.e., field scouts) went
into separate plots beginning at approximately 8:00 AM. There was a sufficient
number of team members so that data were collected from each of the 20 plots
before 10:00 AM, within the 2-hour time frame for data collection.

• Each team member collected data by using a fine-mesh insect collection net on
a three foot pole. A previously determined set of protocols was used for data
collection (i.e., alfalfa weevil larvae) at random locations throughout each plot.

• Data were collected by making 10 vigorous sweeps in each plot, using the fine-
mesh net. All sweeps were attempted at prescribed random locations.

• After the 10 sweeps in each plot, technicians went back to their trucks where
the entire contents for each net were deposited in a coded collection jar. The
collection jar had a fine mesh covering and was kept in a shaded collection bin
with a mesh covering. No attempt was made at this time to sort through the
contents.

• After all 20 collection jars were obtained, the team met to count the number of
alfalfa weevil larvae in each jar, with each jar representing an individual plot.

• The purpose of the post-collection process was to count the number of alfalfa
weevil larvae in each jar, with 20 collection jars representing the 20 separate
plots. The technicians had adequate training so that they could differentiate
between alfalfa weevil larvae and larvae from other insects.

216 7 Friedman Twoway Analysis of Variance (ANOVA) by Ranks

• As an additional point of interest about the established protocols, no attempt was
made to distinguish between live larvae and larvae that were dead, for whatever
reason. All whole (i.e., not parts) alfalfa weevil larvae were counted, regardless
of state. Further, adult alfalfa weevils were not counted. Again, only whole alfalfa
weevil larvae were counted.

A schematic of how the plots were organized, the alfalfa variety (i.e., block)
grown in each plot, the management practice (i.e., treatment) for each plot, and the
number of alfalfa weevil larvae found in each plot might help better describe how
this factorial study was organized, but of course the data file associated with this
study (which is available at the publisher’s Web page for this book) should also be
reviewed before any attempt is made to begin analyses:

Data Organization of Alfalfa Variety
by Management Treatment

Plot Variety Treatment Larvae
======================================
P01 ALPV44NP18 None 121
P02 ALPV54QX13 None 132
P03 ALPV55QX17 None 148
P04 ALPV64TJ19 None 101
P05 ALPV78DG42 None 153
P06 ALPV44NP18 Organic 104
P07 ALPV54QX13 Organic 115
P08 ALPV55QX17 Organic 136
P09 ALPV64TJ19 Organic 094
P10 ALPV78DG42 Organic 102
P11 ALPV44NP18 IPM 094
P12 ALPV54QX13 IPM 107
P13 ALPV55QX17 IPM 128
P14 ALPV64TJ19 IPM 081
P15 ALPV78DG42 IPM 090
P16 ALPV44NP18 Conventional 088
P17 ALPV54QX13 Conventional 078
P18 ALPV55QX17 Conventional 105
P19 ALPV64TJ19 Conventional 052
P20 ALPV78DG42 Conventional 049

The purpose of this lesson is to show how R is used for the Friedman Test.
Although it is beyond the purpose of this lesson to go into too much detail about
research designs, it may be helpful to view the data from the perspective of a
factorial table, using the common term N rows by k columns.

7.1 Background on This Lesson 217

Alfalfa Weevil Larvae Counts by Alfalfa Variety and
by Treatment (i.e., Management Practice)
===

Treatment
--

Variety None Organic IPM Conventional
===
ALPV44NP18 121 104 094 088
ALPV54QX13 132 115 107 078
ALPV55QX17 148 136 128 105
ALPV64TJ19 101 094 081 052
ALPV78DG42 153 102 090 049

Note: As this complete block design has been
organized, Variety represents blocks and Treatment
represents the manipulated variable, or treatment.
Larvae represent counts of whole alfalfa weevil
larvae, and this datum is viewed as a ranked, or
ordinal, datum.

When viewing this table-like schematic of how the data are organized into rows
and columns, know that the alfalfa plots are in general proximity but they were not
adjacent to each other. This degree of separation was made in an effort to reduce
the ease by which insects and pathogens can otherwise easily move from one plot
to another. Instead, the 20 plots were distributed throughout a more than five square
mile area. For the purpose of this lesson, assume that the soil type, rainfall, sunlight,
and all other growing conditions were equivalent at all 20 plots.

By following this data collection method it was possible to gain a sense of
the incidence of alfalfa weevil larvae infesting this crop, by variety, and to later
investigate possible differences due to alfalfa crop management practices for the
five alfalfa varieties included in this lesson. However, by no means is it suggested
that the data provide a precise measure of insect infestation:

• Although prescribed protocols were used, it was unknown if the random locations
in each plot, where the netting process was used to sweep the alfalfa, were
representative of the entire plot.

• There was no differentiation in this process between stages in the life cycle of
alfalfa weevil larvae. That is to say, there was no differentiation in the data
counting process between live larvae and dead larvae, small larvae and large
larvae. All whole larvae were counted and included in total counts for each plot.

• Note also how the emphasis was on larvae and not adults. Only alfalfa weevil
larvae were included in final counts for each plot.

• It was equally unknown if the alfalfa weevil larvae data collection process was
conducted before the crop was cut for the first time, second time, etc., during the
growing season.

218 7 Friedman Twoway Analysis of Variance (ANOVA) by Ranks

• The height and subsequent biomass of the alfalfa at the time of alfalfa weevil
larvae data collection was also unknown. Data were not recorded on the height,
and it is unknown if the alfalfa was low (had just been cut) or high (waiting to be
cut).

Finally, a feature of this fairly simple factorial design is that it represents a
one-time assessment of alfalfa variety and crop management treatment and the
subsequent number of alfalfa weevil larvae. This lesson is not a repeated measures
design, where data are collected at multiple time periods.

Now, with a better understanding of the data associated with this lesson, consider
how it is prudent to view the data (specifically, the number of alfalfa weevil larvae
counted for each plot) as ordinal data and subsequently why it is necessary to
take a nonparametric approach to inferential analysis. That is to say, from an
ordered perspective there is a fair degree of assurance that Plot P03 (Variety =
ALPV55QX17, Treatment = None, Larvae = 148) had more alfalfa weevil larvae
than Plot P20 (Variety = ALPV78DG42, Treatment = Conventional, Larvae = 049).
However, given the nature of this design and the emphasis on counted larvae,
regardless of state (alive or dead) and size (small or large), it is only prudent to
view the counts as ordinal (i.e., ordered) data and not as interval data.

7.1.2 Null Hypothesis (Ho)

There is no statistically significant difference (p <= 0.05) in the infestation
(i.e., number, count) of alfalfa weevil larvae by alfalfa variety (ALPV44NP18,
ALPV54QX13, ALPV55QX17, ALPV64TJ19, ALPV78DG42) and by treatment
(None, Organic, IPM, Conventional).

As the data are organized, note how numerical codes are not used for the factor-
type data in this lesson. The full name for each alfalfa variety (i.e., Variety) is used
and equally the proper name for each crop management practice (i.e., Treatment) is
also used. Equally, the factorial design is complete and there are no missing data.

7.2 Data Import of a .csv Spreadsheet-Type Data File into R

For this lesson, the dataset has been prepared in .csv (i.e., comma-separated values)
file format. The data are separated by commas. The data are not separated by tabs,
and the data are not separated by spaces. As a .csv file the data can be easily sent
to, and opened by, other researchers without the need for expensive specialized or
proprietary software.

Start a new R session and then attend to beginning actions such as removing
unwanted files from prior work, declaring the working directory, etc.

7.2 Data Import of a .csv Spreadsheet-Type Data File into R 219

###
Housekeeping Use for All Analyses
###
date() # Current system time and date.
R.version.string # R version and version release date.
ls() # List all objects in the working

directory.
rm(list = ls()) # CAUTION: Remove all files in the working

directory. If this action is not desired,
use the rm() function one-by-one to remove
the objects that are not needed.

ls.str() # List all objects, with finite detail.
getwd() # Identify the current working directory.
setwd("F:/R_Nonparametric")

Set to a new working directory.
Note the single forward slash and double
quotes.
This new directory should be the directory
where the data file is located, otherwise
the data file will not be found.

getwd() # Confirm the working directory.
list.files() # List files at the PC directory.
###

Create an object called AfWeevil.df. The object AfWeevil.df will be a dataframe,
as indicated by the enumerated .df extension to the object name. This object
will represent the output of applying the read.table() function against the comma-
separated values file called AlfalfaWeevil.csv. Note the arguments used with the
read.table() function, showing that there is a header with descriptive variable names
(header = TRUE) and that the separator between fields is a comma (sep = ",").

AfWeevil.df <- read.table (file =
"AlfalfaWeevil.csv",
header = TRUE,
sep = ",") # Import the csv file

getwd() # Identify the working directory
ls() # List objects
attach(AfWeevil.df) # Attach the data, for later use
str(AfWeevil.df) # Identify structure
nrow(AfWeevil.df) # List the number of rows
ncol(AfWeevil.df) # List the number of columns
dim(AfWeevil.df) # Dimensions of the dataframe
names(AfWeevil.df) # Identify names
colnames(AfWeevil.df) # Show column names
rownames(AfWeevil.df) # Show row names
head(AfWeevil.df) # Show the head
tail(AfWeevil.df) # Show the tail
AfWeevil.df # Show the entire dataframe
summary(AfWeevil.df) # Summary statistics

220 7 Friedman Twoway Analysis of Variance (ANOVA) by Ranks

With these actions completed, an object called AfWeevil.df has been created and
put into acceptable format for current needs. This R-based object is a dataframe
and it consists of the data originally included in the file AlfalfaWeevil.csv, a
comma-separated values .csv file. To avoid possible conflicts, make sure that there
are no prior R-based objects called AfWeevil.df. The prior use of rm(list = ls())
accommodates this concern, removing all prior objects in the current R session.

Note how it was only necessary to key the filename for the .csv file and not the
full pathname since the R working directory is currently set to the directory and/or
subdirectory where this .csv file is located. See the Housekeeping section at the
beginning of this lesson.

7.3 Organize the Data and Display the Code Book

After the data have been imported into R, it is usually necessary to check the
data for format and then make any changes that may be needed to organize the
data. For this dataset, codes have been avoided, and, instead narrative text has
been used to distinguish between factor-type object variable breakouts: Variety
(ALPV44NP18, ALPV54QX13, ALPV55QX17, ALPV64TJ19, ALPV78DG42)
and Treatment (None, Organic, IPM, Conventional). Recoding is not needed, which
is likely the case, however, when numeric codes are used to identify breakout
groups.

For this lesson, the class() function, str() function, and duplicated() function will
be used to be sure that data are organized as desired.

class(AfWeevil.df)
class(AfWeevil.df$Plot) # DataFrame$ObjectName notation
class(AfWeevil.df$Variety) # DataFrame$ObjectName notation
class(AfWeevil.df$Treatment) # DataFrame$ObjectName notation
class(AfWeevil.df$Larvae) # DataFrame$ObjectName notation

str(AfWeevil.df) # Structure
duplicated(AfWeevil.df) # Duplicates

The class for each object seems to be correct, and there are no duplicate rows
of data in the dataframe. A Code Book will help with future understanding of this
dataset.

The Code Book is best if it is brief since it serves as a useful reminder for
what can be easily forgotten months (or even weeks) later. Coding schemes that
are intuitively obvious today can easily become forgotten tomorrow.

Now that the class(), str(), and duplicated() functions have been used for basic
diagnostics, consult the Code Book and coerce each object, as needed, into its
correct class.

7.3 Organize the Data and Display the Code Book 221

###
Code Book for AfWeevil.df
###
#
Plot........................ Factor (i.e., nominal)
A unique plot (e.g., field) ranging
from P01 to P20
#
Variety Factor (i.e., nominal)
ALPV44NP18
ALPV54QX13
ALPV55QX17
ALPV64TJ19
ALPV78DG42
#
Treatment Factor (i.e., nominal)
None
Organic
IPM
Conventional
#
Larvae Integer (i.e., ordinal)
Number (e.g., count) of alfalfa weevil larvae
collected in each plot
###

In an effort to promote self-documentation and readability, it is often desirable to
label all object variables. First, use the epicalc::des() function and the str() function
to see the nature of the dataframe. Then, use the epicalc::label.var() function to
provide descriptive labels for each variable. Of course, be sure to load the epicalc
package if it is not operational from prior analyses.

install.packages("epicalc")
library(epicalc) # Load the epicalc package.
help(package=epicalc) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

epicalc::des(AfWeevil.df)
str(AfWeevil.df)

epicalc::label.var(Plot, "Plot or Field",
dataFrame=AfWeevil.df)

epicalc::label.var(Variety, "Alfalfa Variety",
dataFrame=AfWeevil.df)

epicalc::label.var(Treatment, "Treatment or Management",
dataFrame=AfWeevil.df)

epicalc::label.var(Larvae, "Larvae Count",
dataFrame=AfWeevil.df)

222 7 Friedman Twoway Analysis of Variance (ANOVA) by Ranks

Confirm the description of each object variable to be sure that all actions were
deployed correctly.

epicalc::des(AfWeevil.df)

No. of observations = 20
Variable Class Description

1 Plot factor Plot or Field
2 Variety factor Alfalfa Variety
3 Treatment factor Treatment or Management
4 Larvae integer Larvae Count

ls.str(AfWeevil.df)

Larvae : int [1:20] 121 132 148 101 153 104 115 136 94 102 ...
Plot : Factor w/ 20 levels "P01","P02","P03",..: 1 2 3 4 5 6 7
Treatment : Factor w/ 4 levels "Conventional",..: 3 3 3 3 3 4
Variety : Factor w/ 5 levels "ALPV44NP18","ALPV54QX13",..: 1 2

The dataframe is now in correct format, and the labels are correct. Coerce
objects into correct format. Notice how variables are named: DataFrame-
Name$ObjectName. At first this action may seem somewhat cumbersome and
perhaps even redundant for a few object variables, but it is actually very useful
to ensure that actions are performed against the correct object. Descriptive object
variable names promote efficiency and accuracy. Most text editors allow the use of
copy-and-paste and find-and-replace, so it should be a simple operation to organize
the syntax.

AfWeevil.df$Plot <- as.factor(AfWeevil.df$Plot)
AfWeevil.df$Variety <- as.factor(AfWeevil.df$Variety)
AfWeevil.df$Treatment <- as.factor(AfWeevil.df$Treatment)
AfWeevil.df$Larvae <- as.numeric(AfWeevil.df$Larvae)

If needed, review help pages for the as.numeric() function and the as.integer()
function to see the differences between these two R functions and when it may be
best to use each.

Again, confirm the structure of the dataset, using both the epicalc::des() function
and the ls.str() function.

epicalc::des(AfWeevil.df)

ls.str(AfWeevil.df)

Larvae : num [1:20] 121 132 148 101 153 104 115 136 94 102 ...
Plot : Factor w/ 20 levels "P01","P02","P03",..: 1 2 3 4 5 6 7
Treatment : Factor w/ 4 levels "Conventional",..: 3 3 3 3 3 4
Variety : Factor w/ 5 levels "ALPV44NP18","ALPV54QX13",..: 1 2

7.4 Conduct a Visual Data Check 223

After the variables were coerced, see how AfWeevil.df$Larvae now shows as
numeric and that it is no longer an integer. Although it was unnecessary to coerce
the factor-type object variables, this redundant action was put into place to have full
assurance that all data were organized as desired.

Use the summary() function against the object AfWeevil.df, which is a dataframe,
to gain an initial sense of descriptive statistics and frequency distributions.

summary(AfWeevil.df)

To have full assurance about the data, use the attach() function again so that all
data are attached to the dataframe.

attach(AfWeevil.df)
head(AfWeevil.df)
tail(AfWeevil.df)
summary(AfWeevil.df) # Quality assurance data check

Plot Variety Treatment Larvae
P01 : 1 ALPV44NP18:4 Conventional:5 Min. : 49.0
P02 : 1 ALPV54QX13:4 IPM :5 1st Qu.: 89.5
P03 : 1 ALPV55QX17:4 None :5 Median :103.0
P04 : 1 ALPV64TJ19:4 Organic :5 Mean :103.9
P05 : 1 ALPV78DG42:4 3rd Qu.:122.8
P06 : 1 Max. :153.0
(Other):14

str(AfWeevil.df) # List all objects, with finite detail
ls.str(AfWeevil.df) # List all objects, with finite detail

7.4 Conduct a Visual Data Check

With the data in proper format, it would be common to immediately attempt the
appropriate inferential analyses, the Friedman Test for this lesson. However, it is
best to first prepare a few graphical displays of the data and to then reinforce
comprehension of the data with descriptive statistics and measures of central
tendency.

The summary() function, min() function, and max() function are all certainly
useful for data checking, but there are also many advantages to a visual data
check process. In this case, simple plots can be very helpful in looking for data
that may be either illogical or out-of-range. These initial plots will be, by design,
simple and should be considered throwaways as they are intended only for initial
diagnostic purposes. More complex figures, often of publishable quality, can then
be prepared from these initial throwaway graphics by careful selection of functions
and arguments.

The emphasis in this lesson is on the Friedman Test for the factor-type object
variables Variety (five breakout groups), Treatment (four breakout groups), and the

224 7 Friedman Twoway Analysis of Variance (ANOVA) by Ranks

ordinal variable Larvae. The object variable Larvae was coerced into a numeric-type
format, ranging from a count of 0–200 or more. With this background, a simple
graphic will be prepared for each variable, largely as a quality assurance check
against the entire dataset.

names(AfWeevil.df) # Confirm all object variables.

par(ask=TRUE)
plot(AfWeevil.df$Plot,
main="AfWeevil.df$Plot Visual Data Check",
col=rainbow(length(AfWeevil.df$Plot)),
lwd=6, font.axis=2, font.lab=2)
Note how rainbow was used to select a continuum
of colors. Then, note how the length function
was applied against the AfWeevil.df$Plot object
variable, to determine the number of colors to
use.

par(ask=TRUE)
plot(AfWeevil.df$Variety,
main="AfWeevil.df$Variety Visual Data Check",
col=c("red", "black", "green", "blue", "cyan"),
lwd=6, font.axis=2, font.lab=2)
Note how an alpha ordering is seen with output.

par(ask=TRUE)
plot(AfWeevil.df$Treatment,
main="AfWeevil.df$Treatment Visual Data Check",
col=c("red", "black", "green", "blue"),
lwd=6, font.axis=2, font.lab=2)
Note how an alpha ordering is seen with output.

par(ask=TRUE)
plot(density(AfWeevil.df$Larvae,
na.rm=TRUE), # Required for the density() function
main="Density Plot of AfWeevil.df$Larvae",
lwd=6, col="red", font.axis=2, font.lab=2)

The purpose of these initial plots is to gain a general sense of the data and to
equally look for outliers or any data that may be unexpected or possibly out-of-
range. In an attempt to look for outliers, the ylim argument has been avoided, so
that all data are plotted. Extreme values may or may not be outliers, but they are
certainly interesting and demand attention (Fig. 7.1).

Boxplot (i.e., Box-and-Whiskers Plot)
Although the data for AfWeevil.df$Larvae are viewed from an ordinal perspective,
it is still useful to complete a few graphical images typically associated with interval
data to gain a broad sense of the ordinal data. Graphics, such as the boxplot,
histogram, density plot, and violin plot, are valued and should be used, even if never
published in a memo, report, or article.

7.4 Conduct a Visual Data Check 225

500.
00

0
0.

00
5

0.
01

0
0.

01
5

100
N = 20 Bandwidth = 12.27

Density Plot of AfWeevil.df$Larvae
D

en
si

ty

150

Fig. 7.1 Simple density plot of a single object variable

60

If any, small bubbles indicate outliers.

Boxplot of Alfalfa Weevil Larvae, All
Varieties and All Treatments

W
ee

vi
l L

ar
va

e
80

10
0

12
0

14
0

> boxplot.stats(AfWeevil.df$Larvae)

[1] 49.0 89.0 103.0 124.5 153.0===
Minimum 049

Median 103
Upper-Hinge (rounded) 125

Maximum 153

Lower-Hinge 089

===

Lower-Whisker 049

Upper-Whisker 153

Median 103
Upper-Hinge (rounded) 125

Lower-Hinge 089

$stats

> fivenum(AfWeevil.df$Larvae, na.rm=TRUE)

[1] 49.0 89.0 103.0 124.5 153.0

Fig. 7.2 Box plot with descriptive enumerated legends

As an interesting addition to the boxplot() function, add output from the
fivenum() function (Tukey’s 5: minimum, lower-hinge, median, upper-hinge, max-
imum) in a legend. Then, add output from the boxplot.stats() function (lower-
whisker, lower-hinge, median, upper-hinge, upper-whisker) as an additional legend
(Fig. 7.2)

fivenum(AfWeevil.df$Larvae, na.rm=TRUE)

[1] 49.0 89.0 103.0 124.5 153.0

boxplot.stats(AfWeevil.df$Larvae)

226 7 Friedman Twoway Analysis of Variance (ANOVA) by Ranks

$stats
[1] 49.0 89.0 103.0 124.5 153.0

$n
[1] 20

$conf
[1] 90.45789 115.54211

$out
numeric(0)

par(ask=TRUE)
boxplot(AfWeevil.df$Larvae,
main="Boxplot of Alfalfa Weevil Larvae, All
Varieties and All Treatments",
col="red", lwd=2, cex.axis=1.25,
ylab="Weevil Larvae", cex.lab=1.25)

savefamily <- par(family="mono") # Courier font
savefont <- par(font=2) # Bold
legend("topleft",
legend = c(
"> fivenum(AfWeevil.df$Larvae, na.rm=TRUE)",
"[1] 49.0 89.0 103.0 124.5 153.0 ",
"===",
"Minimum 049",
"Lower-Hinge 089",
"Median 103",
"Upper-Hinge (rounded)..... 125",
"Maximum 153"),
ncol=1, locator(1), xjust=1,
text.col="darkblue",
cex=1.05, inset=0.02, bty="n")

par(savefamily)
par(savefont)
savefamily <- par(family="mono") # Courier font
savefont <- par(font=2) # Bold
legend("topright",
legend = c(
"> boxplot.stats(AfWeevil.df$Larvae) ",
"$stats ",
"[1] 49.0 89.0 103.0 124.5 153.0 ",
"==",
" Lower-Whisker 049",
" Lower-Hinge 089",
" Median 103",
" Upper-Hinge (rounded)..... 125",
" Upper-Whisker 153"),
ncol=1, locator(1), xjust=1,
text.col="darkblue",
cex=1.05, inset=0.02, bty="n")

par(savefamily); par(savefont)
mtext("If any, small bubbles indicate outliers.",
side=1, cex=0.75, font=2)

7.4 Conduct a Visual Data Check 227

par(ask=TRUE)
boxplot(AfWeevil.df$Larvae ~ AfWeevil.df$Variety,
main="Boxplot of Alfalfa Weevil Larvae by Variety",
col=c("red", "orange", "yellow", "green", "blue"),
lwd=2, cex.axis=1.25, ylab="Weevil Larvae",
cex.lab=1.25)

mtext("If any, small bubbles indicate outliers.",
side=1, cex=0.75, font=2)

par(ask=TRUE)
boxplot(AfWeevil.df$Larvae ~ AfWeevil.df$Treatment,
main="Boxplot of Alfalfa Weevil Larvae by Treatment",
col=c("red", "orange", "green", "blue"),
lwd=2, cex.axis=1.25, ylab="Weevil Larvae",
cex.lab=1.25)

mtext("If any, small bubbles indicate outliers.",
side=1, cex=0.75, font=2)

Histogram
Due to the low N for each breakout group (N Variety = 5 and N Treatment = 4), use
the histogram as a general guide, only. Of course, this syntax is entirely appropriate
and should be used for object vectors where there is a much larger N.

par(ask=TRUE)
hist(AfWeevil.df$Larvae,
main="Histogram of Alfalfa Weevil Larvae, All
Varieties and All Treatments",
xlab="Weevil Larvae", col="red", cex.axis=1.25,
cex.lab=1.25, font=2, nclass=10)

install.packages("lattice")
library(lattice) # Load the lattice package.
help(package=lattice) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

par(ask=TRUE)
lattice::histogram(~ Larvae | Variety,
data=AfWeevil.df, type="percent",
main="Histogram (lattice::histogram() Function) of
Alfalfa Weevil Larvae by Variety: Percent",
xlab=list("Variety", cex=1.15, font=2),
xlim=c(0,250), ylab=list("Larvae", cex=1.15, font=2),
layout=c(5,1), col="red")

par(ask=TRUE)
lattice::histogram(~ Larvae | Variety,
data=AfWeevil.df, type="density",
main="Histogram (lattice::histogram() Function) of
Alfalfa Weevil Larvae by Variety: Density",
xlab=list("Variety", cex=1.15, font=2),
xlim=c(0,250), ylim=c(0,0.03), ylab=list("Larvae",

228 7 Friedman Twoway Analysis of Variance (ANOVA) by Ranks

Conventional

0
50

10
0

15
0

20
0

25
0

IPM

Violin Plot (UsingR::simple.violinplot() Function)
of Alfalfa Weevil Larvae by Treatment

None Organic

Fig. 7.3 Multiple violin plots using the UsingR::simple.violinplot() function

cex=1.15, font=2), layout=c(5,1), col="red")

par(ask=TRUE)
lattice::histogram(~ Larvae | Treatment,
data=AfWeevil.df, type="percent",
main="Histogram (lattice::histogram() Function) of
Alfalfa Weevil Larvae by Treatment: Percent",
xlab=list("Treatment", cex=1.15, font=2),
xlim=c(0,250), ylab=list("Larvae", cex=1.15, font=2),
layout=c(4,1), col="red")

par(ask=TRUE)
lattice::histogram(~ Larvae | Treatment,
data=AfWeevil.df, type="density",
main="Histogram (lattice::histogram() Function) of
Alfalfa Weevil Larvae by Treatment: Density",
xlab=list("Treatment", cex=1.15, font=2),
xlim=c(0,250), ylim=c(0,0.03), ylab=list("Larvae",
cex=1.15, font=2), layout=c(4,1), col="red")

Density Curve, Normal Curve, Histogram, and Violin Plot
There is seemingly no limit to the number of R-based functions that support graphics
and visualization of the data. Experiment, as time permits, with these and other
functions (Fig. 7.3).

install.packages("descr")
library(descr) # Load the descr package.
help(package=descr) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

savelwd <- par(lwd=4) # Heavy line
savefont <- par(font=2) # Bold

7.4 Conduct a Visual Data Check 229

savecex.lab <- par(cex.lab=1.25) # Label
savecex.axis <- par(cex.axis=1.25) # Axis
par(ask=TRUE)
descr::histkdnc(AfWeevil.df$Larvae,
main="Histogram (descr::histkdnc() Function) of Alfalfa Weevil
Larvae, All Varieties and All Treatments: Superimposed
Normal Curve (Blue) and Density Curve (Red)",
xlab="Weevil Larvae", col=grey(0.95))
Allow contrast with lines

par(savelwd); par(savefont); par(savecex.lab);
par(savecex.axis) # Use ; to move to next line - save space

install.packages("vioplot")
library(vioplot) # Load the vioplot package.
help(package=vioplot) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

savelwd <- par(lwd=3) # Heavy line
savefont <- par(font=2) # Bold
savecex.lab <- par(cex.lab=1.25) # Label
savecex.axis <- par(cex.axis=1.25)# Axis
par(ask=TRUE)
vioplot::vioplot(AfWeevil.df$Larvae,
names=c("Weevil"), col="red")

title("Violin Plot (vioplot::vioplot() Function) of Alfalfa
Weevil Larvae, All Varieties and All Treatments")
par(savelwd); par(savefont); par(savecex.lab);
par(savecex.axis)

install.packages("UsingR")
library(UsingR) # Load the UsingR package.
help(package=UsingR) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

savelwd <- par(lwd=3) # Heavy line
savefont <- par(font=2) # Bold
savecex.lab <- par(cex.lab=1.25) # Label
savecex.axis <- par(cex.axis=1.25)# Axis
par(ask=TRUE)
UsingR::simple.violinplot(AfWeevil.df$Larvae ~
AfWeevil.df$Variety, lty=1, col="red", ylim=c(0,250))
title("Violin Plot (UsingR::simple.violinplot() Function)
of Alfalfa Weevil Larvae by Variety")

par(savelwd); par(savefont); par(savecex.lab);
par(savecex.axis)

savelwd <- par(lwd=3) # Heavy line
savefont <- par(font=2) # Bold
savecex.lab <- par(cex.lab=1.25) # Label
savecex.axis <- par(cex.axis=1.25)# Axis
UsingR::simple.violinplot(AfWeevil.df$Larvae ~
AfWeevil.df$Treatment, lty=1, col="red", ylim=c(0,250))

230 7 Friedman Twoway Analysis of Variance (ANOVA) by Ranks

title("Violin Plot (UsingR::simple.violinplot() Function)
of Alfalfa Weevil Larvae by Treatment")

par(savelwd); par(savefont); par(savecex.lab);
par(savecex.axis)

7.5 Descriptive Analysis of the Data

Given the different ways missing data can impact analyses, it is often helpful to
first check for missing data by using the is.na() function and the complete.cases()
function against the entire dataset. Both functions return a TRUE or FALSE
response, depending on the function and the outcome of whether data are missing
or not.

is.na(AfWeevil.df) # Check for missing data
complete.cases(AfWeevil.df) # Check for complete cases

Although there are no missing data in the dataset associated with this lesson, view
the output to see how these functions confirm this statement. Notice how the output
would be somewhat difficult to scan if the dataset were large. For now, it is only
necessary to determine if there are missing data and to use appropriate functions
and arguments if there are missing data.

Especially for this small dataset, the summary() function may be all that is
necessary to gain a sense of the data. As typically used, the summary() function
is applied against the entire dataset, thus yielding information about all object
variables, including the object variable Subject.

summary(AfWeevil.df)

As always, give attention to the listing of NAs, if any, for those object variables
with missing data. Again, the summary() function is very useful, and it should
always be a first selection when preparing descriptive analyses. If needed (but not
always, depending on specific functions), the na.rmDTRUE argument or some other
similar convention will be used to accommodate missing data.

The dataset seems to be in correct form, and to conserve space descriptive
statistics, frequency distributions, and measures of central tendency will only be
provided as needed. Be sure to recall how values for AfWeevil.df$Larvae are
provided for what is viewed as an ordinal object variable. Because of the ordinal
nature of AfWeevil.df$Larvae, an emphasis will be placed on Median, but it is still
good to know Mean and SD for AfWeevil.df$Larvae, as well as a few other useful
statistics.

7.5 Descriptive Analysis of the Data 231

install.packages("asbio")
library(asbio) # Load the asbio package.
help(package=asbio) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

asbio::Mode(AfWeevil.df$Larvae) # Mode

[1] 94

median(AfWeevil.df$Larvae, na.rm=TRUE) # Median

[1] 103

mean(AfWeevil.df$Larvae, na.rm=TRUE) # Mean

[1] 103.9

sd(AfWeevil.df$Larvae,na.rm=TRUE) # SD

[1] 27.85281

summary(AfWeevil.df)

Plot Variety Treatment Larvae
P01 : 1 ALPV44NP18:4 Conventional:5 Min. : 49.0
P02 : 1 ALPV54QX13:4 IPM :5 1st Qu.: 89.5
P03 : 1 ALPV55QX17:4 None :5 Median :103.0
P04 : 1 ALPV64TJ19:4 Organic :5 Mean :103.9
P05 : 1 ALPV78DG42:4 3rd Qu.:122.8
P06 : 1 Max. :153.0
(Other):14

Descriptive statistics at the summary level are always useful, but breakout
statistics are also needed to gain a more complete understanding of the data. A
wide variety of functions are presented in this lesson to demonstrate how breakout
statistics are obtained when using R. The key here is to discern differences in Larvae
counts for the five Variety breakout groups (e.g., ALPV44NP18, ALPV54QX13,
ALPV55QX17, ALPV64TJ19, ALPV78DG42) and the four Treatment breakout
groups (e.g., None, Organic, IPM, Conventional) (Fig. 7.4).

tapply(Larvae, Variety, summary, na.rm=TRUE,
data=AfWeevil.df) # Weevil by Variety

232 7 Friedman Twoway Analysis of Variance (ANOVA) by Ranks

60

ALPV44NP18

ALPV54QX13

ALPV55QX17

ALPV64TJ19

ALPV78DG42

80 100

Sorted Dotplot of Alfalfa Weevil Larvae by Variety

120 140

Fig. 7.4 Color-coded sorted dot plots of five breakout groups using the epicalc::summ() function

$ALPV44NP18
Min. 1st Qu. Median Mean 3rd Qu. Max.
88.0 92.5 99.0 101.8 108.2 121.0

$ALPV54QX13
Min. 1st Qu. Median Mean 3rd Qu. Max.

78.00 99.75 111.00 108.00 119.20 132.00

$ALPV55QX17
Min. 1st Qu. Median Mean 3rd Qu. Max.

105.0 122.2 132.0 129.2 139.0 148.0

$ALPV64TJ19
Min. 1st Qu. Median Mean 3rd Qu. Max.

52.00 73.75 87.50 82.00 95.75 101.00

$ALPV78DG42
Min. 1st Qu. Median Mean 3rd Qu. Max.

49.00 79.75 96.00 98.50 114.80 153.00

par(ask=TRUE) # Use the epicalc package for breakout analyses
epicalc::summ(AfWeevil.df$Larvae, by=AfWeevil.df$Variety,
graph=TRUE, pch=19, cex=1.25, ylab="auto",
main="Sorted Dotplot of Alfalfa Weevil Larvae by Variety",
cex.X.axis=1.15, cex.Y.axis=1.10, font.lab=2, dot.col="auto")
Note the descriptive statistics and not only the graphic
that go along with the epicalc::summ() function.

7.5 Descriptive Analysis of the Data 233

tapply(Larvae, Treatment, summary, na.rm=TRUE,
data=AfWeevil.df) # Weevil by Treatment

par(ask=TRUE) # Use the epicalc package for breakout analyses
epicalc::summ(AfWeevil.df$Larvae, by=AfWeevil.df$Treatment,
graph=TRUE, pch=19, cex=1.25, ylab="auto",
main="Sorted Dotplot of Alfalfa Weevil Larvae by Treatment",
cex.X.axis=1.15, cex.Y.axis=1.15, font.lab=2, dot.col="auto")
Note the descriptive statistics and not only the graphic
that go along with the epicalc::summ() function.

For AfWeevil.df$Treatment = Conventional
obs. mean median s.d. min. max.
5 74.4 78 23.881 49 105

For AfWeevil.df$Treatment = IPM
obs. mean median s.d. min. max.
5 100 94 18.235 81 128

For AfWeevil.df$Treatment = None
obs. mean median s.d. min. max.
5 131 132 21.059 101 153

For AfWeevil.df$Treatment = Organic
obs. mean median s.d. min. max.
5 110.2 104 16.254 94 136

Frequency Distributions of the Factor-Type Object Variables
Simple frequency distributions and descriptive statistics are needed to gain a general
idea of the data. More detail and greater precision can come later. These initial
attempts are simple and are only prepared to provide an initial view of the data. For
any work in biostatistics consider the many functions found in the epicalc package.

par(ask=TRUE)
epicalc::tab1(AfWeevil.df$Variety, # Bar Plot
decimal=2, # Use the tab1() function
sort.group=FALSE, # from the epicalc
cum.percent=TRUE, # package to see details
graph=TRUE, # about the selected
missing=TRUE, # object variable. (The
bar.values=c("frequency"), # 1 of tab1 is the one
horiz=FALSE, # numeric character and
cex=1.15, # it is not the letter
cex.names=1.15, # l).
cex.lab=1.15, cex.axis=1.15,
main="Factor Levels for Object Variable Variety",
ylab="Frequency of Variety, Includings NAs if Any",
col=c("red", "orange", "yellow", "green", "blue"), gen=TRUE)

par(ask=TRUE)
epicalc::tab1(AfWeevil.df$Treatment, # Bar Plot

234 7 Friedman Twoway Analysis of Variance (ANOVA) by Ranks

decimal=2, # Use the tab1() function
sort.group=FALSE, # from the epicalc
cum.percent=TRUE, # package to see details
graph=TRUE, # about the selected
missing=TRUE, # object variable. (The
bar.values=c("frequency"), # 1 of tab1 is the one
horiz=FALSE, # numeric character and
cex=1.15, # it is not the letter
cex.names=1.15, # l).
cex.lab=1.15, cex.axis=1.15,
main="Factor Levels for Object Variable Treatment",
ylab="Frequency of Treatment, Includings NAs if Any",
col=c("red", "orange", "yellow", "green"), gen=TRUE)

The catspec package and specifically the catspec::ctab() function support a very
rich display of frequency distributions. This resource should be used, especially if
there is a desire to copy and paste the frequency distribution table from R into a
word processed report.

install.packages("catspec")
library(catspec) # Load the catspec package.
help(package=catspec) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

catspec::ctab(AfWeevil.df$Variety, AfWeevil.df$Treatment,
dec.places=2,
type=c("n", "row", "column", "total"), style="long",
percentages=TRUE, addmargins=TRUE)

catspec::ctab(AfWeevil.df$Treatment, AfWeevil.df$Variety,
dec.places=2,
type=c("n", "row", "column", "total"), style="long",
percentages=TRUE, addmargins=TRUE)

Measures of Central Tendency of the Numeric Object Variables
Along with frequency distributions of selected factor-type variables, it is also
necessary to prepare descriptive statistics and measures of central tendency for
numeric-type variables. From among the many possibilities, consider the functions
from external packages shown immediately below, using the fields::stats() function
and the tables::tabular() function.

install.packages("fields")
library(fields) # Load the fields package.
help(package=fields) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

fields::stats(AfWeevil.df$Larvae)

7.5 Descriptive Analysis of the Data 235

[,1]
N 20.00000
mean 103.90000
Std.Dev. 27.85281
min 49.00000
Q1 89.50000
median 103.00000
Q3 122.75000
max 153.00000
missing values 0.00000

fields::stats(AfWeevil.df$Larvae, by=AfWeevil.df$Variety)

ALPV44NP18 ALPV54QX13 ALPV55QX17 ALPV64TJ19 ALPV78DG42
N 4.00000 4.00000 4.00000 4.00000 4.0000
mean 101.75000 108.00000 129.25000 82.00000 98.5000
Std.Dev. 14.43087 22.55364 18.13606 21.64871 42.8369
min 88.00000 78.00000 105.00000 52.00000 49.0000
Q1 92.50000 99.75000 122.25000 73.75000 79.7500
median 99.00000 111.00000 132.00000 87.50000 96.0000
Q3 108.25000 119.25000 139.00000 95.75000 114.7500
max 121.00000 132.00000 148.00000 101.00000 153.0000
missing 0.00000 0.00000 0.00000 0.00000 0.0000

fields::stats(AfWeevil.df$Larvae, by=AfWeevil.df$Treatment)

None Organic IPM Conventional
N 5.00000 5.00000 5.00000 5.00000
mean 131.00000 110.20000 100.00000 74.40000
Std.Dev. 21.05944 16.25423 18.23458 23.88095
min 101.00000 94.00000 81.00000 49.00000
Q1 121.00000 102.00000 90.00000 52.00000
median 132.00000 104.00000 94.00000 78.00000
Q3 148.00000 115.00000 107.00000 88.00000
max 153.00000 136.00000 128.00000 105.00000
missing values 0.00000 0.00000 0.00000 0.00000

install.packages("tables")
library(tables) # Load the tables package.
help(package=tables) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

tables::tabular((Variety + 1) ~ (n=1) + Format(digits=2)*
(Larvae)*(min + max + median + mean + sd), data=AfWeevil.df)

Larvae
Variety n min max median mean sd
ALPV44NP18 4 88 121 99 102 14
ALPV54QX13 4 78 132 111 108 23
ALPV55QX17 4 105 148 132 129 18

236 7 Friedman Twoway Analysis of Variance (ANOVA) by Ranks

ALPV64TJ19 4 52 101 88 82 22
ALPV78DG42 4 49 153 96 98 43
All 20 49 153 103 104 28

tables::tabular((Treatment + 1) ~ (n=1) + Format(digits=2)*
(Larvae)*(min + max + median + mean + sd), data=AfWeevil.df)

Larvae
Treatment n min max median mean sd
Conventional 5 49 105 78 74 24
IPM 5 81 128 94 100 18
None 5 101 153 132 131 21
Organic 5 94 136 104 110 16
All 20 49 153 103 104 28

By judgment, the Anderson-Darling Test is not needed for this set of data, given
the way the data were organized into distinct plots and the low N for each grouping
variable (N Variety = 5 and N Treatment = 4). It is stated that Larvae represents
counted ordinal data, without any degree of assurance of an interval view toward
the data.

7.6 Conduct the Statistical Analysis

The preceding graphical images and descriptive statistics, both summary descriptive
statistics and breakout descriptive statistics, provide a fairly good idea of Alfalfa
Weevil Larvae counts, overall and by Variety and Treatment:

Median Alfalfa Weevil Larvae Counts
in Rank Order by Variety
===================================
Variety Median
ALPV64TJ19 88
ALPV78DG42 96
ALPV44NP18 99
ALPV54QX13 111
ALPV55QX17 132

All 103
===================================

Median Alfalfa Weevil Larvae Counts
in Rank Order by Treatment
===================================
Treatment Median
Conventional 78

7.6 Conduct the Statistical Analysis 237

IPM 94
Organic 104
None 132

All 103
===================================

Using the prior graphics (i.e., boxplot, violin plot, etc.), there is certainly a
suspicion (but at this point, only a suspicion) that there are differences in Larvae
counts between the four Treatment groups from among the five alfalfa varieties.

However, it would be best to use an inferential test to confirm these observations
and suspicions on differences. Descriptive statistics and graphical presentations are
insufficient to make declarative statements about statistically significant difference.

Because the quantitative data for the object variable Larvae have been declared
as ordinal data, the nonparametric Friedman Test is likely the most appropriate
inferential test for this lesson, where data have been organized in a factorial block
design. The friedman.test() function is used to perform the Friedman Test with
blocked data (i.e., a complete block design). It is beyond the purpose of this lesson
to go into too much discussion on research design, but recall that in this lesson:

• Block—The object variable Variety (ALPV44NP18, ALPV54QX13,
ALPV55QX17, ALPV64TJ19, ALPV78DG42) was viewed as the blocking
variable for this design.

• Treatment—The object variable Treatment (None, Organic, IPM, Conventional)
was the variable that was manipulated, and, as such, the different management
practices are collectively viewed as the treatment for this design.

• Data—Larvae (alfalfa weevil larvae) were counted for each of the 20 block
and treatment combinations, and there was one and only one measurement for
each block and treatment. This approach represents a blocked design. Note also
how there were no missing data, which would present unique challenges to data
analysis if there were missing data.

The friedman.test() function is associated with the stats package, which is
obtained when R is first downloaded. To use the naming conventions in this set
of lessons, it is not necessary to type stats::friedman.test() as the package name is
only identified for external packages.

friedman.test(AfWeevil.df$Larvae, AfWeevil.df$
Treatment, AfWeevil.df$Variety)

Friedman rank sum test

data: AfWeevil.df$Larvae, AfWeevil.df$Treatment and
AfWeevil.df$Variety

Friedman chi-squared = 15, df = 3, p-value = 0.001817

The immediate interpretation of this Friedman Test of alfalfa weevil Larvae by
Variety and Treatment is that:

238 7 Friedman Twoway Analysis of Variance (ANOVA) by Ranks

• There is a statistically significant difference in the number (i.e., count) of alfalfa
weevil larvae by the four Treatment breakout groups for the five Variety breakout
groups (p <= 0.05). The calculated p-value (p <= 0.001817) is certainly
less than the criterion p-value (p <= 0.05) and therefore the Null Hypothesis
is rejected.

• With a calculated p-value of 0.001817, which is again certainly less than the
criterion p-value of 0.05, there is strong evidence that the number (i.e., count) of
alfalfa weevil larvae is not the same for each Variety (i.e., block) and Treatment
(i.e., management practice).

For further understanding of outcomes, consider the value of an interaction plot.1

Recall that interactions can possibly mask main effects. Saying that, an interaction
plot is a useful tool to examine the data and visualize outcomes from multiple
perspectives. Because the data are ordinal, the focus will be on Median and
not Mean.

savelwd <- par(lwd=4) # Heavy line
savefont <- par(font=2) # Bold
savecex.lab <- par(cex.lab=1.25) # Label
savecex.axis <- par(cex.axis=1.25) # Axis
par(ask=TRUE)
interaction.plot(AfWeevil.df$Variety, AfWeevil.df$Treatment,
AfWeevil.df$Larvae, # Note the ordering of variables.
main="Interaction Plot (Median) of Alfalfa Weevil Larve
Counts by Alfalfa Variety and Treatment",
fun=median, # Use median instead of mean.
legend=TRUE, trace.label="Treatment", fixed=TRUE,
col=c("red", "black", "green", "blue"),
lwd=4, lty=c("solid", "dashed", "dotted", "dotdash"),
xlab="Alfalfa Variety", ylab="Count Alfalfa Weevil Larvae",
font.lab=2, ylim=c(0,200), xtick=TRUE)

par(savelwd) # Return to original setting.
par(savefont) # Return to original setting.
par(savecex.lab) # Return to original setting.
par(savecex.axis) # Return to original setting.

This interaction plot should be reviewed carefully since it clearly demonstrate
the order of Larvae median counts for each Treatment and Variety. Note how there
is no visual indication of interaction (Fig. 7.5).

1Although it is beyond the purpose of this lesson on applications of R for the Friedman Test, as
time permits review interaction and interaction plots as applied to factorial designs. Give special
notice to the terms ordinal interactions and disordinal interactions (i.e., crossover interactions).
Allow sufficient time to study the complexity of how these two conditions are interpreted when
presented in an interaction plot.

7.7 Summary 239

ALPV44NP18

0
50

10
0

15
0

20
0

ALPV54QX13 ALPV55QX17 ALPV64TJ19

Alfalfa Variety

Interaction Plot (Median) of Alfalfa Weevil Larvae
Counts by Alfalfa Variety and Treatment

C
ou

nt
 A

lfa
lfa

 W
ee

vi
l L

ar
va

e

ALPV78DG42

Treatment
Conventional
IPM
None
Organic

Fig. 7.5 Interaction plot of median values for multiple object variables

7.7 Summary

The graphics and statistics in this lesson provide a great deal of information for this
one (but only one) study, about alfalfa weevil larvae and the influence of variety
and treatment on larvae counts. For a complete summary, it is perhaps best to first
revisit the Null Hypothesis. Recall that this design was organized so that Variety
represented block and Treatment represented treatment.

Null Hypothesis (Ho) There is no statistically significant difference (p <= 0.05)
in the infestation (i.e., number, count) of alfalfa weevil larvae by alfalfa variety
(ALPV44NP18, ALPV54QX13, ALPV55QX17, ALPV64TJ19, ALPV78DG42)
and by treatment (None, Organic, IPM, Conventional).

Application of the friedman.test() function provided ample evidence to reject the
Null Hypothesis. The calculated p-value (p <= 0.001817) is certainly less than
the criterion p-value (p <= 0.05), and therefore the Null Hypothesis is rejected.

Going beyond calculated statistical difference, a graphical interaction plot also
provided a general view toward interaction in median larvae counts for Treatment
and Variety.

When viewing these conclusions, observe the caution that replication and rigid
attention to established protocols are inherent to the research process. This sample
is merely one attempt in what is likely a broad assessment of issues answered, in
part, by attention to biostatistics.

This lesson makes no attempt to consider the economic impact of the different
treatment (i.e., management practices) options to control alfalfa weevil or yields
of the selected alfalfa varieties. As readily evident from the descriptive statistics
in this lesson, a conventional treatment program resulted in the fewest number of
alfalfa weevils. Although it may be desirable to have as few alfalfa weevil larvae

240 7 Friedman Twoway Analysis of Variance (ANOVA) by Ranks

as possible, it must be cautioned that conventional management is not inexpensive.
Petro-chemicals, such as fertilizers, fungicides, herbicides, and insecticides, are all
fairly expensive. The advantage of Integrated Pest Management is that the benefits
of petro-chemicals are recognized, but their use is attempted in a more prudent
manner.

It may be necessary to also consider the ancillary cost of these petro-chemicals,
both immediate and long-term costs. Consumer demand and willingness to pay
for organic foods, as well as concern about harm to the environment, are growing
concerns in agriculture. Imagine if the aerial application of an insecticide were used
to control alfalfa weevil larvae, but in the process the insecticide drifted in the wind
to an adjacent field and killed honeybees pollinating cantaloupes. For immediate
concern, any gain from reduced alfalfa weevil counts could easily be lost in lower
yields from the crop of cantaloupes, which would be the case if they were not
adequately pollinated by honeybees. Then, consider the long-term economic cost of
lost honeybees and how this has yield implications for years to come. The decision
to react to statistical analyses is not always easy, given the many factors that impact
the economics of biostatistics.

7.8 Addendum: Similar Functions from External Packages

R has the advantage that the user community has contributed thousands of pack-
ages to supplement the many functions available when R is first downloaded.
As expected, Twoway ANOVA (using interval and ordinal data) is the focus of some
of these additional packages. A few of these other R functions will be demonstrated
below. The additional information gained from these external packages provides a
rich understanding of the data. Experienced researchers purposely use redundant
approaches to test data and to gain perspective from multiple viewpoints.

Although the friedman.test() function and the interaction.plot() function provide
a wealth of information, external packages will be used to provide more granularity
and a better understanding of outcomes. The agricolae (Statistical Procedures for
Agricultural Research) package, the asbio (A Collection of Statistical Tools for
Biologists) package, and the pgrimess (Data Analysis in Ecology) package will be
emphasized in this addendum. As part of the general search process supported by R,
at the R prompt, key ??friedman to see search results about the term friedman in
all R packages.

Friedman Test Using the agricolae Package

install.packages("agricolae")
library(agricolae) # Load the agricolae package.
help(package=agricolae) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

7.8 Addendum: Similar Functions from External Packages 241

The agricolae::friedman() function is especially useful in that it can be used
to confirm prior use of the friedman.test() function. Perhaps more importantly,
it can also be used to examine group comparisons of outcomes by block and
by treatment. The general approach for this complete block design is to use
agricolae::friedman(block, treatment, datum) and then add appropriate arguments.

The agricolae::friedman() function will also be used to generate a barchart.
To better show similarities and differences in alfalfa weevil larvae counts by block
and by treatment, an enumerated object variable (Larvae.Difference.Out) will be
created to hold output from application of the agricolae::friedman(block, treatment,
datum) function.

Larvae.Difference.Out <- (
agricolae::friedman(AfWeevil.df$Variety, AfWeevil.df$Treatment,
AfWeevil.df$Larvae,
main="Alfalfa Weevil Larvae by Variety and by Treatment",
alpha=0.05, group=TRUE, console=TRUE)

) # Note placement of ending) parentheses - rounded bracket

Create the object Larvae.Difference.Out, which is shown below in slightly edited
format to save space.

Larvae.Difference.Out

Study: Alfalfa Weevil Larvae by Variety and by Treatment

AfWeevil.df$Treatment, Sum of the ranks

Friedman’s Test
===============
Adjusted for ties
Value: 15
Pvalue chisq : 0.001816649
F value : Inf
Pvalue F: 0

Alpha : 0.05
t-Student : 2.178813
LSD : 0

Means with the same letter are not significantly different.
GroupTreatment and Sum of the ranks
a None 20
b Organic 15
c IPM 10
d Conventional 5

Using Means and how they are identified by lowercase letters (above), note
how each treatment group (None, Organic, IPM, and Conventional) is significantly
different from the other.

242 7 Friedman Twoway Analysis of Variance (ANOVA) by Ranks

Information related to the ordinal Sum of Ranks will then be incorporated as part
of a legend into a barchart generated from use of the agricolae::bar.group() function.
Again, this is all done to have a better understanding of comparative outcomes
of alfalfa weevil counts (i.e., Larvae) by the different management practices (i.e.,
Treatment).

savelwd <- par(lwd=3) # Heavy line
savefont <- par(font=2) # Bold
savecex.lab <- par(cex.lab=1.25) # Label
savecex.axis <- par(cex.axis=1.25)# Axis
agricolae::bar.group(Larvae.Difference.Out$groups,
main="Comparison (Sum of Ranks) of Alfalfa Weevil Larvae
Counts by Management Practices (e.g, Treatment)",
col=rainbow(4), # Above output shows four groups
ylim=c(0,24))

par(savelwd); par(savefont); par(savecex.lab);
par(savecex.axis)
savefamily <- par(family="mono") # Courier font
savefont <- par(font=2) # Bold
legend("topright",
legend = c(
"==== Alfalfa Weevil Larvae =====",
" Mean r Min Max",
"Conventional 74.4 5 49 105",
"IPM 100.0 5 81 128",
"None 131.0 5 101 153",
"Organic 110.2 5 94 136",
" ",
" ==== Group Comparisons ====",
" Sum of ",
" Treatment ranks M",
" 1 None 20 a",
" 2 Organic 15 b",
" 3 IPM 10 c",
" 4 Conventional 5 d",
" ",
" p <= 0.001816649 "),
ncol=1, locator(1), xjust=1,
text.col="black",
cex=1.01, inset=0.02, bty="n")

par(savefamily); par(savefont)

The agricolae::friedman() function for text output and the agricolae::bar.group()
function for graphical output should both be considered when attempting a Fried-
man Test (Fig. 7.6).

Friedman Test Using the asbio Package
To make this demonstration of how the asbio::pairw.fried() function is used to best
advantage for the Friedman Test, purposely restructure the data and create a new
dataframe. The dataset is fairly small so this should be a simple task. Note how
numeric codes were used to distinguish between the five alfalfa varieties and the
four treatment practices. Further, note how a similar naming convention was used

7.8 Addendum: Similar Functions from External Packages 243

for object names, but every object is created in lowercase. Remember that R is case
sensitive, so lowercase larvae is not the same as Larvae, where the first letter is
in caps.

larvae <- c(121, 132, 148, 101, 153,
104, 115, 136, 094, 102,
094, 107, 128, 081, 090,
088, 078, 105, 052, 049)

Create larvae (note the lowercase l of larvae)
variety <- factor(c(11, 12, 13, 14, 15,

11, 12, 13, 14, 15,
11, 12, 13, 14, 15,
11, 12, 13, 14, 15))

Create variety (note the lowercase v of variety)
treatment <- factor(c(21, 21, 21, 21, 21,

22, 22, 22, 22, 22,
23, 23, 23, 23, 23,
24, 24, 24, 24, 24))

Create treatment (note the lowercase t of treatment)

The object variable variety has been coded as:

• 11 ALPV44NP18
• 12 ALPV54QX13
• 13 ALPV55QX17
• 14 ALPV64TJ19
• 15 ALPV78DG42

The object variable treatment has been coded as:

• 21 None
• 22 Organic

None

a

b

Comparison (Sum of Ranks) of Alfalfa Weevil Larvae
Counts by Management Practices (e.g, Treatment)

c

d

0
5

10
15

20

Organic IPM Conventional

==== Alfalfa Weevil Larvae =====

Conventional 74.4 5 49
81

101
94

105
128
153
136

5
5
5

100.0
131.0
110.2

IPM

Mean r Min Max

None
Organic

==== Group Comparisons ====
Sum of

Treatment ranks
20
15
10
5

p <= 0.001816649

a
b
c
d

M
None

Organic
IPM

Conventional

1
2
3
4

Fig. 7.6 Sum of ranks comparison bar plots of breakout groups using the agricolae::bar.group()
function

244 7 Friedman Twoway Analysis of Variance (ANOVA) by Ranks

• 23 IPM
• 24 Conventional

afweevil.df <- cbind(larvae, variety, treatment)
class(afweevil.df)
Combine all three object variables into a matrix.

afweevil.df <- data.frame(afweevil.df)
class(afweevil.df)
Transform the matrix into dataframe format.

afweevil.df$larvae <- as.numeric(afweevil.df$larvae)
afweevil.df$variety <- as.factor(afweevil.df$variety)
afweevil.df$treatment <- as.factor(afweevil.df$treatment)
Be sure that object variables are in desired format.

attach(afweevil.df)
names(afweevil.df)
str(afweevil.df)
afweevil.df
summary(afweevil.df)

Now that the data are in desired format, apply the asbio::pairw.fried() function to
obtain a sense of multiple comparisons with the Friedman Test.

with(afweevil.df, asbio::pairw.fried(y=larvae,
x = treatment, blocks = variety, nblocks = 5,
conf = .95)) # Use with() as a wrapper

The text output for the asbio::pairw.fried() function follows. Note here, similar
to what was seen previously, the greatest difference in treatment ranks is for
comparisons of Conventional to None. More specifically, the output provides a
reminder to Reject Ho and the calculated p-value is listed as 0.001431 which is
certainly less that a criterion p <= 0.05.

95% confidence intervals for Friedman’s comparisons

Diff Lower Upper Decision Adj. P-value
Avg.rank1-Avg.rank2 1 -1.15413 3.15413 FTR H0 1
Avg.rank1-Avg.rank3 2 -0.15413 4.15413 FTR H0 0.085835
Avg.rank2-Avg.rank3 1 -1.15413 3.15413 FTR H0 1
Avg.rank1-Avg.rank4 3 0.84587 5.15413 Reject H0 0.001431
Avg.rank2-Avg.rank4 2 -0.15413 4.15413 FTR H0 0.085835
Avg.rank3-Avg.rank4 1 -1.15413 3.15413 FTR H0 1

The graphical output of the asbio::bplot() function will help reinforce interpreta-
tion of the asbio::pairw.fried() function.

7.8 Addendum: Similar Functions from External Packages 245

asbio::bplot(y=afweevil.df$larvae, x=afweevil.df$treatment,
main="afweevil.df$treatment Visual Data Check (Median)
With Error Bars",
bar.col=c("red", "violet", "green", "blue"),
slwd=6, font.axis=2, font.lab=2, loc.meas= median)

Friedman Test Using the pgrimess Package
As a purposefully redundant attempt to confirm prior outcomes, use the
pgrimess::friedmanmc() function. Note similarities as well as differences from
use of the simple friedman.test() function.

friedman.test(AfWeevil.df$Larvae, AfWeevil.df$Treatment,
AfWeevil.df$Variety)

Friedman rank sum test

data: AfWeevil.df$Larvae, AfWeevil.df$Treatment and
AfWeevil.df$Variety

Friedman chi-squared = 15, df = 3, p-value = 0.001817

Again, the friedman.test() provides overall information that there is a statistically
significant difference with a p-value of 0.001817, but a comparison between the
different treatment breakout groups is absent.

Use the pgirmess::friedmanmc() function to gain a sense of comparisons, similar
to what was obtained by using the asbio::bplot() function.

install.packages("pgirmess")
library(pgirmess) # Load the pgirmess package.
help(package=pgirmess) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

pgirmess::friedmanmc(AfWeevil.df$Larvae, AfWeevil.df$Treatment,
AfWeevil.df$Variety)

Multiple comparisons between groups after Friedman test
p.value: 0.05
Comparisons

obs.dif critical.dif difference
Conventional-IPM 5 10.77064 FALSE
Conventional-None 15 10.77064 TRUE
Conventional-Organic 10 10.77064 FALSE
IPM-None 10 10.77064 FALSE
IPM-Organic 5 10.77064 FALSE
None-Organic 5 10.77064 FALSE

246 7 Friedman Twoway Analysis of Variance (ANOVA) by Ranks

Again, there is confirmation that the statistically significant difference in treat-
ment groups is for a comparison of Conventional to None. There is no statistically
significant difference for comparisons of the other treatment groups, listed immedi-
ately above in the pgirmess::friedmanmc() output.

And, of course, look at the boxplots below, comparing Larvae by Treat-
ment. Again, visual presentations should be in league with inferential analyses.
Clearly as demonstrated by using the Friedman Test and the supporting boxplots,
there is a statistically significant difference in Larvae counts between Treatments
Conventional—None. But, again, consider the economic cost(s)—both short term
and long term. Take into account the cost of management practices, the cost of
supplies and application equipment, and the value of management time-on-task—
and then factor in the constantly changing price of alfalfa.

par(ask=TRUE)
boxplot(AfWeevil.df$Larvae ~ AfWeevil.df$Treatment,
main="Boxplot of Alfalfa Weevil Larvae by Treatment",
col=c("red", "orange", "green", "blue"),
lwd=2, cex.axis=1.25, ylab="Weevil Larvae",
cex.lab=1.25)

mtext("If any, small bubbles indicate outliers.",
side=1, cex=0.75, font=2)

savelwd <- par(lwd=3) # Heavy line
savefont <- par(font=2) # Bold
savecex.lab <- par(cex.lab=1.25) # Label
savecex.axis <- par(cex.axis=1.25)# Axis
par(ask=TRUE)
descr::compmeans(AfWeevil.df$Larvae, AfWeevil.df$Treatment,
sort=TRUE, plot=TRUE, relative.widths=TRUE,
xlab="Treatment (e.g., Management Practice)",
ylab="Number of Alfalfa Weevil Larvae",
main="Boxplot of Number of Alfalfa Weevil Larvae
by Treatment",
col=c("red", "orange", "yellow", "green"))
Look at the way sort=TRUE was used, to put output into
ascending order, from left to right.

par(savelwd); par(savefont); par(savecex.lab);
par(savecex.axis)

It is never an easy task to make these management decisions, but these statistical
tests provide some degree of guidance and direction (Fig. 7.7).

7.9 Prepare to Exit, Save, and Later Retrieve This R Session 247

Conventional

60
80

10
0

12
0

14
0

IPM

Treatment (e.g., Management Practice)

Boxplot of Number of Alfalfa Weevil Larvae
by Treatment

N
um

be
r

of
 A

lfa
lfa

 W
ee

vi
l L

ar
va

e

Organic None

Fig. 7.7 Boxplot of breakout groups using the descr::compmeans() function

7.9 Prepare to Exit, Save, and Later Retrieve This R Session

getwd() # Identify the current working directory.
ls() # List all objects in the working

directory.
ls.str() # List all objects, with finite detail.
list.files() # List files at the PC directory.

save.image("R_Lesson_Friedman.rdata")

getwd() # Identify the current working directory.
ls() # List all objects in the working

directory.
ls.str() # List all objects, with finite detail.
list.files() # List files at the PC directory.

alarm() # Alarm, notice of upcoming action.
q() # Quit this session.

Prepare for Save workspace image? query.

Use the R Graphical User Interface (GUI) to load the saved rdata file: File ->
Load Workspace. Otherwise, use the load() function, keying the full pathname, to
load the .rdata file and retrieve the session.

Recall, however, that it may be just as useful to simply use the .R script file
(typically saved is a .txt ASCII-type file) and recreate the analyses and graphics,
provided the data files remain available.

Chapter 8
Spearman’s Rank-Difference Coefficient
of Correlation

Abstract Spearman’s Rank-Difference Coefficient of Correlation is often referred
to as Spearman’s � (i.e., the Greek letter rho). It is common to read how Spearman’s
Correlation is often viewed as the nonparametric counterpart to the parametric
Pearson’s Correlation. However, that comparison may be somewhat misleading
given how Spearman’s is used with nonparametric data, whereas Pearson’s is
used with data that are more reasonably viewed as parametric. The key point to
Spearman’s Correlation is that this test is used to determine if there is an association
between two nonparametric variables. However, as a constant reminder, be sure to
recall the often used expression Correlation does not imply causation. There may be
a correlation (i.e., association) between Variable X and Variable Y, but by no means
does that mean that measures for Variable X either cause or influence measures for
Variable Y.

Keywords Anderson-Darling test • Association • Bag plot • Bar plot (stacked,
side-by-side) • Box plot • Breakout groups • Code book • Comma-separated val-
ues (.csv) • Continuous scale • Correlation • Correlation coefficient • Correlation
matrix • Density plot • Descriptive statistics • Distribution-free • Factor • Hinge
(lower and upper) • Histogram • Institutional Review Board (IRB) • Interval •
Kendall’s tau • Mean • Median • Mode • Nominal • Nonparametric • Nor-
mal distribution • Null hypothesis • Ordinal • Outlier • Parametric • Pearson’s
product-moment coefficient of correlation • Pearson’s r • Percentile • Probability
(p-value) • Quantile-Quantile (QQ, Q-Q) • Ranking • Regression line • Sample
(quota, convenience) • Scatter plot • Scatter plot matrix (SPLOM) • Spearman’s
rank-difference coefficient of correlation • Spearman’s rho • Statistical signifi-
cance • Trellis graphics • Whisker (lower and upper)

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-3-319-
30634-6_8) contains supplementary material, which is available to authorized users.

© Springer International Publishing Switzerland 2016
T.W. MacFarland, J.M. Yates, Introduction to Nonparametric Statistics
for the Biological Sciences Using R, DOI 10.1007/978-3-319-30634-6_8

249

http://dx.doi.org/10.1007/978-3-319-30634-6_8
http://dx.doi.org/10.1007/978-3-319-30634-6_8

250 8 Spearman’s Rank-Difference Coefficient of Correlation

8.1 Background on This Lesson

Spearman’s Rank-Difference Coefficient of Correlation, more commonly called
Spearman’s rho or Spearman’s, is one of the earliest nonparametric tests. It was
developed in the early 1900s. Spearman’s is based on ranks (i.e., data that are
ranked in order) and therefore typically uses ordinal data.1 With Spearman’s, two
variables are compared, using ordered series (i.e., ranks) to determine if there is an
association (i.e., correlation) between them. A constant reminder with Spearman’s
or any other test of association is the frequently expressed caution that Correlation
does not imply causation. It is quite possible that two variables may exhibit a strong
degree of association—as X increases Y increases and as X decreases Y decreases.
However, it should never be assumed, without far more evidence, that X causes Y.
This caution applies to all measures of association or correlation.

8.1.1 Description of the Data

This lesson on a nonparametric view toward correlation (i.e., association) is specific
to adult human subjects (N = 200) who have recently experienced some type of
medical procedure and their self-rating of pain, approximately 24 hours later:

• Self-rating of the degree of pain experienced during bed rest
• Self-rating of the degree of pain experienced when standing up after bed rest
• Self-rating of the degree of pain experienced when walking—immediately after

standing up from bed rest

For the purpose of this lesson it is not necessary to know the exact nature of the
medical procedure. It is only necessary to know that Institutional Review Board
(IRB) policy and procedures were followed and that all subjects (i.e., patients) were
subjected to the same medical procedure and that five different protocols were used
to provide the procedure.

For each of the 200 subjects, data on weight (expressed as pounds, not kilograms)
and a self-rating of pain under three different conditions have been recorded for two
factor-type groups, factor F1 (two breakout groups) and factor F2 (five breakout
groups):

• Factor F1 (F1_1 (N = 100) and F1_2 (N = 100)), is represented by two
separate breakout groups that constitute the two genders: Female and Male.

1Spearman’s rho is to ordinal data as Pearson’s r is to interval data. Both tests are used to determine
association and both tests were developed by contemporaries, Charles Spearman and Karl Pearson.
Recognizing the human element to the development of statistical tests, if time permits consult
external resources to see the way both men reacted to each other, having developed similar tests
for association.

8.1 Background on This Lesson 251

• Factor F2 (F2_1 (N = 40), F2_2 (N = 40), F2_3 (N = 40),
F2_4 (N = 40), and F2_5 (N = 40)), is represented by five separate
breakout groups that constitute the five protocols used to provide the medical
procedure: Protocol A, Protocol B, Protocol C, Protocol D, and Protocol E.

Although it may not be an issue for this specific lesson, it is useful to observe the
factorial organization of the data and that there are equal numbers of subjects for
each combined breakout group (F1 and F2):

Organization of Human Subjects in a Study of Pain
===

Female Male
Group F1_1 Group F1_2 Total

Protocol A Group F2_1 N = 20 N = 20 N = 40
Protocol B Group F2_2 N = 20 N = 20 N = 40
Protocol C Group F2_3 N = 20 N = 20 N = 40
Protocol D Group F2_4 N = 20 N = 20 N = 40
Protocol E Group F2_5 N = 20 N = 20 N = 40

Total N = 100 N = 100 N = 200
--

Although it is not the primary focus of this lesson, once again observe the
factorial design of the data and the equal number of subjects for each cell. This type
of organizational structure is certainly convenient for grouping purposes, with equal
numbers of subjects in each cell. However, given knowledge of the population and
the expected representation of subjects for each breakout group, it is immediately
suspected that normal distribution and random selection are not evident for the data
in this lesson and that perhaps some type of quota sampling process or other means
for subject selection were used so that there would be an equal number of subjects
for each cell.

This lesson also looks into the nature of how human subjects view pain. Along
with the notion of no pain, imagine a binomial scale of (1) A little pain or (2) A lot
of pain to express the degree of pain a subject experiences after a medical protocol.
Other notions of pain could be equally presented to subjects. The important thing
to remember for this lesson is that a self-rating is used to describe the degree of
pain currently experienced, as opposed to more finite measures gained from some
type of device, such as the way a medical scale is used to measure weight or a
sphygmomanometer is used to measure blood pressure. There is no such device to
accurately and consistently measure pain, thus the need for a self-rating.

Coupled with this concept of self-rating for pain is the observation that human
subjects vary widely in how they can tolerate, and therefore self-rate, pain. Some
subjects may express intense pain for what other subjects would view as only mild
pain.

Given this background on the wide variance in self-ratings of pain, this lesson
looks at 200 subjects who received some degree of instruction on a self-rating of
pain, using a scale of 0 (no pain) to 100 (excruciating or intense pain). To add greater
use to the opportunities presented in this lesson, pain was self-rated approximately
24 hours after a medical protocol under three conditions: (1) the degree of pain

252 8 Spearman’s Rank-Difference Coefficient of Correlation

experienced during bed rest, (2) the degree of pain experienced when standing up
after bed rest, and (3) the degree of pain experienced when walking—immediately
after standing up from bed rest.

It has been judged that the three measures for pain in this lesson represent ordinal
data, due to concerns about scale (i.e., ordinal v interval) and subject selection (i.e.,
possible violation of population representation and therefore violation of normal
distribution due to sampling and cell population techniques):

• Although all subjects received the same instructions on how to self-rate pain and
the meaning of the 0–100 scale, it is recognized that there will be variance in
how each subject marks the level of pain. The 0–100 scale represents an attempt
at more finite quantification of pain, but by no means is it suggested that the
self-rating scale is consistent (reliable) and accurate (valid) for all subjects (N
= 200) under all conditions (e.g., bed rest, standing after bed rest, walking after
standing).

• Although the process for subject selection is unknown in this lesson, it is
suspected that subjects were not selected at random and that some type of quota,
convenience, or other process was used to populate this study: subjects who met
the conditions needed to be classified as F1_1 by F2_1, F1_1 by F2_2, F1_1 by
F2_3, F1_1 by F2_4, F1_1 by F2_5, F1_2 by F2_1, F1_2 by F2_2, F1_2 by
F2_3, F1_2 by F2_4, and F1_2 by F2_5.

The measure for weight is definitely a more precise datum, where weight was
recorded an hour or so before the medical protocol was provided, using a medical
scale. Even though weight is fairly precise and accordingly represented as an
interval datum, note how height and subsequently Body Mass Index (BMI) are
absent from the dataset associated with this lesson. Is it possible that the pain
experienced when standing by someone who is 200 pounds and 5 ft–2 in. tall is
different than the degree of pain experienced when standing by someone who is 200
pounds and six feet–two inches tall?

This lesson will focus on Spearman’s Rank-Difference Coefficient of Correlation
(Spearman’s rho). Spearman’s rho is perhaps the most common test for determining
if there is an association between phenomena when the data do not meet the
assumptions associated with Pearson’s r, such as when the data are clearly ordinal
and not interval or, as some may caution, if there are serious concerns about random
selection processes and distribution of the data.

Given all of this background information, the purpose of this lesson on corre-
lation, from a nonparametric perspective, is to provide guidance on how R can be
used to determine the association between two variables and then to use this degree
of association to gain a sense of future outcomes. Past behavior is the best predictor
of future behavior. This concept applies in the biological sciences, physical sciences,
social sciences, and also in economics. By knowing past relationships between
variables (i.e., correlation or association), it is then possible to anticipate future
outcomes.

8.2 Data Import of a .csv Spreadsheet-Type Data File into R 253

As an additional point of interest, this lesson will also demonstrate how R is used
to determine Kendall rank correlation. Kendal also provides an opportunity to make
sense of associations, if any, between nonparametric phenomena.

8.1.2 Null Hypothesis (Ho)

Because there are more than a few correlations associated with this dataset
(e.g., Weight:Bed, Weight:Standing, Weight:Walking, Bed:Standing, Bed:Walking,
Standing:Walking), a generic Null Hypothesis (Ho) is presented below, with this
Null Hypothesis applying to all possible X:Y associations associated with this
lesson.

There is no statistically significant correlation (p <= 0.05) between Variable
X and Variable Y.

8.2 Data Import of a .csv Spreadsheet-Type Data File into R

The dataset for this lesson was originally prepared as a Gnumeric spreadsheet, based
on a desire to use only free desktop software for these lessons. The data were later
saved in .csv (i.e., comma-separated values) file format as Pain.csv. The data in the
.csv file are separated by commas, not tabs and not spaces. As a .csv file, the data
can be easily sent to and opened by other researchers without the need for expensive
specialized or proprietary software.

Start a new R session and then attend to beginning actions such as removing
unwanted files from prior work, declaring the working directory, etc. After this
initial activity, import the data and conduct the first set of quality assurance
diagnostics.

###
Housekeeping Use for All Analyses
###
date() # Current system time and date.
R.version.string # R version and version release date.
ls() # List all objects in the working

directory.
rm(list = ls()) # CAUTION: Remove all files in the working

directory. If this action is not desired,
use the rm() function one-by-one to remove
the objects that are not needed.

ls.str() # List all objects, with finite detail.
getwd() # Identify the current working directory.
setwd("F:/R_Nonparametric")

Set to a new working directory.
Note the single forward slash and double
quotes.

254 8 Spearman’s Rank-Difference Coefficient of Correlation

This new directory should be the directory
where the data file is located, otherwise
the data file will not be found.

getwd() # Confirm the working directory.
list.files() # List files at the PC directory.
###

Pain.df <- read.table (file =
"Pain.csv",
header = TRUE,
sep = ",") # Import the csv file

getwd() # Identify the working directory
ls() # List objects
attach(Pain.df) # Attach the data, for later use
str(Pain.df) # Identify structure
nrow(Pain.df) # List the number of rows
ncol(Pain.df) # List the number of columns
dim(Pain.df) # Dimensions of the dataframe
names(Pain.df) # Identify names
colnames(Pain.df) # Show column names
rownames(Pain.df) # Show row names
head(Pain.df, n=15) # Show the head
tail(Pain.df, n=15) # Show the tail
Pain.df # Show the entire dataframe
summary(Pain.df) # Summary statistics

By completing these actions, an object called Pain.df has been created, attached,
and initially reviewed for content and structure. The R-based object Pain.df is a
dataframe and it consists of the data originally included in the file Pain.csv, a
comma-separated values .csv file taken from a directory on an external F drive.2

To avoid possible conflicts, make sure that there are no prior R-based objects called
Pain.df. The use of rm(list = ls()) accommodates this concern, removing all prior
objects in the current R session.

Note how it was only necessary to key the filename to read in (i.e., import) the
.csv file. It was not necessary to key the full pathname since the R working directory
is currently set to the directory and/or subdirectory where this .csv file is located.
See the Housekeeping section at the beginning of this lesson.

8.3 Organize the Data and Display the Code Book

Now that the data have been imported into R, it is always best to check the data
for format and then make any changes that may be needed to organize the data.
Experienced researchers always challenge the data and never assume that the data
were imported correctly, without error.

2In this lesson and all other lessons in this text, the working directory is consistently on the external
F drive. Make accommodations, as needed, for correct directory placement(s).

8.3 Organize the Data and Display the Code Book 255

The object Pain.df was created by importing a dataset that had a header row and
200 rows of data, one row for each subject. The dataset is fairly simple in terms
of organization, but note how there is one missing datum for each measured object
variable (i.e. WeightLb, Bed, Standing, Walking). It is unknown why these data are
missing and although the missing data are few, it may be necessary to make special
accommodation for these variables.

Although it may not be necessary, a rowname will be used with this dataset,
which will be created by using the rownames() function. For small datasets the use
of rownames may not be necessary, but for large datasets rownames are certainly
helpful. The rownames() function assigns a unique identifier for each row of data in
the dataset, with each row beginning with the term ID.

rownames(Pain.df) <- paste(’Row ’, 1:200)

tail(Pain.df) # Show the tail, now to confirm rownames

For this lesson, the class() function, str() function, and duplicated() function will
be used to be sure that data are organized as desired. As stated earlier, experienced
researchers always challenge the data and confirm that all data are in good form.
The class() function is one quality assurance tool to achieve this aim.

class(Pain.df)
class(Pain.df$ID)
class(Pain.df$F1)
class(Pain.df$F2)
class(Pain.df$WeightLb) # Note the CAPITAL L of Lb (pounds)
class(Pain.df$Bed)
class(Pain.df$Standing)
class(Pain.df$Walking)
Use DataFrame$ObjectName notation for object variables

str(Pain.df, digits.d=6) # digits.d argument for WeightLb

’data.frame’: 200 obs. of 7 variables:
$ ID : Factor w/ 200 levels "Subject_001",..: 1 2 3 4 5 6
$ F1 : Factor w/ 2 levels "F1_1","F1_2": 1 1 1 1 1 1 1 1
$ F2 : Factor w/ 5 levels "F2_1","F2_2",..: 1 1 1 1 1 1 1
$ WeightLb: num 165.14 168.1 167.77 175.04 169.21 176.65
$ Bed : int 52 78 61 57 54 61 59 72 NA 70 ...
$ Standing: int 72 72 69 68 68 72 68 66 61 73 ...
$ Walking : int 70 81 77 78 77 82 84 84 79 84 ...

duplicated(Pain.df) # Duplicates

The class for each object seems to be correct, and there are no duplicate rows
of data in the dataframe. A Code Book will help with future understanding of this
dataset.

The day-to-day activities of the research and statistics process are so demanding
that a Code Book is an essential aid. The Code Book is typically brief and it serves
as a useful summary of the data and what the data represent.

256 8 Spearman’s Rank-Difference Coefficient of Correlation

Now that the class(), str(), and duplicated() functions have been used for basic
diagnostics, consult the Code Book and coerce each object, as needed, into its
correct class. A recoding-type activity will also be used for the breakout groups in
object variables Pain.df$F1 and Pain.df$F2 so that later output is more descriptive
and easier to read and understand.

###
Code Book for Pain.df
###
#
Variable Values
===============
ID Factor (i.e., nominal)
A unique ID ranging from Subject_001 to
Subject_200
#
F1 Factor (i.e., nominal)
100 subjects in breakout group F1_1 - Female
100 subjects in breakout group F1_2 - Male
#
Object variable F1 will be recoded later into
object variable F1.recode
#
F2 Factor (i.e., nominal)
040 subjects in breakout group F2_1 - Protocol A
040 subjects in breakout group F2_2 - Protocol B
040 subjects in breakout group F2_3 - Protocol C
040 subjects in breakout group F2_4 - Protocol D
040 subjects in breakout group F2_5 - Protocol E
#
Object variable F2 will be recoded later into
object variable F2.recode
#
WeightLb.................. Numeric (i.e., interval)
Weight (Lbs or pounds), possibly ranging from
075.00 pounds to 275.00 pounds or more
#
Bed Integer (i.e., ordinal)
A self-ranked ordinal measure of pain during
bed rest, on a scale of 0 (no pain) to 100
(excruciating or intense pain)
#
Standing Integer (i.e., ordinal)
A self-ranked ordinal measure of pain, when
standing, immediately after rising from bed

8.3 Organize the Data and Display the Code Book 257

rest, on a scale of 0 (no pain) to 100
(excruciating or intense pain)
#
Walking Integer (i.e., ordinal)
A self-ranked ordinal measure of pain, when
walking, soon after rising and standing
from bed rest, on a scale of 0 (no
pain) to 100 (excruciating or
intense pain)
###

In an effort to promote self-documentation and readability, it is desirable to label
all object variables. First, use the epicalc::des() function and the str() function to see
the nature of the dataframe. Then, use the epicalc::label.var() function to provide
descriptive labels for each variable. Of course, be sure to load the epicalc package,
if it is not operational from prior analyses.

install.packages("epicalc")
library(epicalc) # Load the epicalc package.
help(package=epicalc) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

epicalc::des(Pain.df)
str(Pain.df, digits.d=6) # digits.d argument for WeightLb

epicalc::label.var(ID, "Subject ID",
dataFrame=Pain.df)

epicalc::label.var(F1, "Gender",
dataFrame=Pain.df)

epicalc::label.var(F2, "Protocol",
dataFrame=Pain.df)

epicalc::label.var(WeightLb, "Weight - Pounds",
dataFrame=Pain.df)

epicalc::label.var(Bed, "Pain - Bed Rest",
dataFrame=Pain.df)

epicalc::label.var(Standing, "Pain - Standing",
dataFrame=Pain.df)

epicalc::label.var(Walking, "Pain - Walking",
dataFrame=Pain.df)

Confirm the description of each object variable to be sure that all labeling actions
associated with the epicalc::label.var() function were correct.

epicalc::des(Pain.df)

258 8 Spearman’s Rank-Difference Coefficient of Correlation

No. of observations = 200
Variable Class Description

1 ID factor Subject ID
2 F1 factor Gender
3 F2 factor Protocol
4 WeightLb numeric Weight - Pounds
5 Bed integer Pain - Bed Rest
6 Standing integer Pain - Standing
7 Walking integer Pain - Walking

str(Pain.df, digits.d=6) # digits.d argument for WeightLb

With assurance that the dataframe is in correct format and that labels are
correct, coerce objects into correct format as needed. Notice how variables are
named: DataFrameName$ObjectName. The use of DataFrameName$ObjectName
may seem overly verbose and too formal, especially for a dataset subjected to the
attach() function, but it is actually very useful to ensure that actions are performed
against the correct object. Descriptive object variable names promote efficiency and
accuracy. Most text editors allow the use of copy-and-paste and find-and-replace, so
it should be a simple operation to organize the syntax.

Along with labeling and purposeful (even if redundant) coercion of object
variable structure, a set of simple R-based actions can easily be used to recode object
variables, or variables Pain.df$F1 and Pain.df$F2 in this lesson:

• Even though pain is viewed as a ranked (i.e., ordinal-type) datum, change the
structure of Pain.df$Bed, Pain.df$Standing, and Pain.df$Walking from integer to
numeric, to allow the full set of math-oriented actions if needed.

• Transform (i.e., recode) the object variables Pain.df$F1 and Pain.df$F2 into new
object variables, to have a better understanding of the data other than the codes
found in the original dataset.

• Be sure that object variables Pain.df$F1 and Pain.df$F2 remain in factor-type
structure.

• Label the newly created object variables (object variable Pain.df$F1.recode and
object variable Pain.df$F2.recode) using the epicalc::label.var() function.

• Use appropriate R-based functions to confirm all restructuring and creation of
recoded object variables.

After all of these planned actions, the dataset should be in final form and ready
for diagnostic testing and later analyses.

str(Pain.df, digits.d=6) # digits.d argument for WeightLb
Structure before transformations (Bed, Standing, Walking)
and recoding (F1 to F1.recode and F2 to F2.recode)

Pain.df$ID <- as.factor(Pain.df$ID) # Redundant
Pain.df$F1 <- as.factor(Pain.df$F1) # Redundant
Pain.df$F2 <- as.factor(Pain.df$F2) # Redundant
Pain.df$WeightLb <- as.numeric(Pain.df$WeightLb) # Redundant

8.3 Organize the Data and Display the Code Book 259

Pain.df$Bed <- as.numeric(Pain.df$Bed) # New
Pain.df$Standing <- as.numeric(Pain.df$Standing) # New
Pain.df$Walking <- as.numeric(Pain.df$Walking) # New
Pain.df$F1.recode <- factor(Pain.df$F1, # Recode
labels=c("Female", "Male"))

Pain.df$F2.recode <- factor(Pain.df$F2, # Recode
labels=c("Protocol A", "Protocol B", "Protocol C",

"Protocol D", "Protocol E"))
Note the use of factor and not as.factor for the object
variables Pain.df$F1.recode and Pain.df$F2.recode

epicalc::label.var(F1.recode, "F1.recode", dataFrame=Pain.df)
epicalc::label.var(F2.recode, "F2.recode", dataFrame=Pain.df)

epicalc::des(Pain.df)
Labels, now including labels for the two recoded factor
object variables, Pain.df$F1.recode and Pain.df$F2.recode

No. of observations = 200
Variable Class Description

1 ID factor Subject ID
2 F1 factor Gender
3 F2 factor Protocol
4 WeightLb numeric Weight - Pounds
5 Bed numeric Pain - Bed Rest
6 Standing numeric Pain - Standing
7 Walking numeric Pain - Walking
8 F1.recode factor F1.recode
9 F2.recode factor F2.recode

str(Pain.df, digits.d=6) # digits.d argument for WeightLb
Structure after transformations (Bed, Standing, Walking)
and recoding (F1 to F1.recode and F2 to F2.recode)

’data.frame’: 200 obs. of 9 variables:
$ ID : Factor w/ 200 levels "Subject_001",..: 1 2 3 4 5
$ F1 : Factor w/ 2 levels "F1_1","F1_2": 1 1 1 1 1 1 1 1
$ F2 : Factor w/ 5 levels "F2_1","F2_2",..: 1 1 1 1 1 1
$ WeightLb : num 165.14 168.1 167.77 175.04 169.21 176.65
$ Bed : num 52 78 61 57 54 61 59 72 NA 70 ...
$ Standing : num 72 72 69 68 68 72 68 66 61 73 ...
$ Walking : num 70 81 77 78 77 82 84 84 79 84 ...
$ F1.recode: Factor w/ 2 levels "Female","Male": 1 1 1 1 1 1 1
$ F2.recode: Factor w/ 5 levels "Protocol A","Protocol B",..:
- attr(*, "var.labels")= chr "Subject ID" "Gender" "Protocol"

"Weight - Pounds" ...

If needed, review the help pages for the as.numeric() function and the as.integer()
function to see the differences between these two R functions and when it may
be best to use each. The same applies to the factor() function and the as.factor()
function.

260 8 Spearman’s Rank-Difference Coefficient of Correlation

attach(Pain.df) # Redundant, just to confirm all data are
attached

A confirming set of functions may not be necessary, but with the attach() function
used again, a redundant check of the entire dataframe is always helpful to provide
assurance that data in the current R session are correct prior to actual use of the data.

epicalc::des(Pain.df)
str(Pain.df, digits.d=6) # digits.d argument for WeightLb

Equally, use the head(), tail(), and summary() functions against the object Pain.df,
once again, to gain a continued sense of the data.

head(Pain.df)
tail(Pain.df)
summary(Pain.df) # Quality assurance data check

print(Pain.df)
Observe what part of the dataset shows on the screen when
the print() function is used with a large dataset.

str(Pain.df)
ls.str(Pain.df)
Note the subtle difference in output between use of the str()
function, use of the ls.str() function, and use of these two
functions with no accompanying arguments

Be sure to recall the nature of what was recoded in the dataset Pain.df and how
two new object variables were created:

• Factor object variable F1 was recoded to F1.recode and the F1_1 and F1_2
values in F1 now show as Female and Male in F1.recode

• Factor object variable F2 was recoded to F2.recode and the F2_1, F2_2, F2_3,
F2_4, and F2_5 values in F2 now show as Protocol A, Protocol B, Protocol C,
Protocol D, and Protocol E in F2.recode.

print(Pain.df$F1.recode)
summary(Pain.df$F1.recode) # Confirm recode actions

print(Pain.df$F2.recode)
summary(Pain.df$F2.recode) # Confirm recode actions

Note the formal nomenclature used in this recode and the use of DataFrame
$ObjectName when working with object variables. Note also how the $ symbol
is used to separate the name of the dataframe from the name of the Object:
DataframeName$ObjectName.

Once again, these many actions may be somewhat redundant, but this initial work
is worth the effort in view of quality assurance. Every effort must be made to be

8.4 Conduct a Visual Data Check 261

sure that the data are in correct and desired format—before analyses begin. Merely
glancing at the dataset, either in an external spreadsheet or by using the print()
function, is simply insufficient to meet quality assurance requirements. Never work
with unchallenged data. For a researcher, there are few things worse than investing
hours of work and placing professional reputation on a dataset that is later found
out to have errors—errors that could have easily been corrected at the beginning of
a project, largely by using these many quality assurance actions.

8.4 Conduct a Visual Data Check

A constant reminder throughout this lesson is that experienced researchers always
check their data and never assume that everything is in good order simply because
the data were casually reviewed when first imported in the work session. The use
of simple graphics is an excellent way to review data for correctness, completeness,
and the possible presence of outliers.

Of the thousands of contributed packages associated with R, there are three main
packages in regular use for generating graphics:

1. The graphics package is typically the first choice for beginning students since
it is automatically obtained when R is first downloaded. The many functions
in the graphics package are generally fairly easy to use, but eventually there
are a few limits on presentation capabilities supported by functions in the
graphics package. To learn more about the graphics package when using R,
key the string expression help(package=graphics) at the R prompt to
see a complete index of the many capabilities of the graphics package. As a
brief note on how functions associated with the graphics package are used in
this lesson, imagine that there were a desire to use the graphics-based hist()
function against the object variable X. In this lesson, the expression hist(X) is
used whereas for functions associated with external packages, the more formal
nomenclature package_name::function_name() is used to implement
a package-based function.

2. The lattice package is often the next choice for generating more detailed figures
when the graphics package can no longer easily meet demands for visual detail
and clarity. The lattice package supports Trellis graphics for R and this package
is especially helpful when it is necessary to present multivariate data and rela-
tionships between, and among, object variables.3 To learn more about the lattice

3Trellis graphics was originally developed for S, the precursor to R. As a concept, Trellis graphics
provides visualization of complex and multivariate data in an easy to understand fashion. The
term Trellis graphics is used because the output is often presented in a rectangular set of plots,
supposedly resembling a garden trellis.

262 8 Spearman’s Rank-Difference Coefficient of Correlation

package when using R, key the string expression help(package=lattice)
at the R prompt to see a complete index of the many capabilities of the lattice
package.

3. The ggplot2 package is now another popular choice for generating detailed
figures when using R (the gg of ggplot2 stands for Grammar of Graphics). To
learn more about the ggplot2 package when using R, key the string expression
help(package=ggplot2) at the R prompt to see a complete index of
the many capabilities of the ggplot2 package. There are two general plotting
functions in the ggplot2 package:

• The qplot() function (quick plot) is generally easy to use and to a degree
follows along with capabilities and structure of the graphics package but has
eventual limitations.

• The ggplot() function is somewhat complex and challenging to learn but
in turn supports the production of exceptionally detailed and high-quality
figures.

8.4.1 Use of the Graphics Package

Although the emphasis in this lesson is on Spearman’s rho, a simple throwaway
graphic will be prepared for each variable, largely as a quality assurance check
against the entire dataset. Note below how par(ask=TRUE) is used to freeze the
screen so that figures can be seen one at a time.

names(Pain.df) # Confirm all object variables.

par(ask=TRUE); plot(sort(Pain.df$ID), main="ID")
par(ask=TRUE); plot(sort(Pain.df$F1), main="F1")
par(ask=TRUE); plot(sort(Pain.df$F2), main="F2")
par(ask=TRUE); plot(sort(Pain.df$WeightLb), main="Weight")
par(ask=TRUE); plot(sort(Pain.df$Bed), main="Bed")
par(ask=TRUE); plot(sort(Pain.df$Standing), main="Standing")
par(ask=TRUE); plot(sort(Pain.df$Walking), main="Walking")
par(ask=TRUE); plot(sort(Pain.df$F1.recode), main="F1.recode")
par(ask=TRUE); plot(sort(Pain.df$F2.recode), main="F2.recode")
Sorting makes it easier to look for extreme values

By using the ; character in the above examples, two operations (use of the par()
function and use of the plot() function) could be placed on the same line. The sort()
function provides a useful way of ordering data, again to look for data that may be
either illogical or out-of-range.

The graphical images serve a purpose for review but they would never be accept-
able for public presentation. Consider them as diagnostic throwaway graphics.
However, they have great value since they provide an additional quality assurance
check of the data. Among the many ways data are reviewed, a graphical presentation
of the data is a main part of the quality assurance process.

8.4 Conduct a Visual Data Check 263

A few more simple graphical images would help, however, to learn more about
the data and general trends of, between, and among the different object variables of
direct importance. Look at the following way color is used to enhance the figures.

Visual Presentation of Factor-Type Object Variables
Bar charts may be simple, but they are always a first choice for displaying general
trends for factor-type object variables.

table(Pain.df$F1) # Table format
par(ask=TRUE); barplot(table(Pain.df$F1)) # Graphical format

table(Pain.df$F1.recode) # Table format
par(ask=TRUE)
barplot(table(Pain.df$F1.recode),
col=c("pink","blue")) # Add color

par(ask=TRUE)
barplot(table(Pain.df$F1.recode),
col=rainbow(length(table(Pain.df$F1.recode))))
Add color using rainbow

par(ask=TRUE)
barplot(table(Pain.df$F1.recode),
col=1:2)
Add color using palette default selections

palette() # Key help(palette)

table(Pain.df$F2) # Table format
par(ask=TRUE); barplot(table(Pain.df$F2)) # Graphical format

table(Pain.df$F2.recode) # Table format
par(ask=TRUE)
barplot(table(Pain.df$F2.recode),
col=c("red","green", "blue", "cyan", "black"))
Add color forcing color selection

par(ask=TRUE)
barplot(table(Pain.df$F2.recode),
col=rainbow(length(table(Pain.df$F2.recode))))
Add color using rainbow

par(ask=TRUE)
barplot(table(Pain.df$F2.recode),
col=1:5)
Add color using palette default selections

palette() # Key help(palette)

Visual Presentation of Numeric-Type Object Variables
The histogram is a common graphical tool to display distributions of data. A set
of simple throwaway histograms are provided below, with other graphics showing
more detail and with more appealing presentation.

264 8 Spearman’s Rank-Difference Coefficient of Correlation

par(ask=TRUE);
hist(Pain.df$WeightLb, main="Weight", col="red", breaks=20)

par(ask=TRUE);
hist(Pain.df$Bed, main="Bed", col="red", breaks=20)

par(ask=TRUE);
hist(Pain.df$Standing, main="Standing", col="red", breaks=20)

par(ask=TRUE);
hist(Pain.df$Walking, main="Walking", col="red", breaks=20)

After viewing these throwaway diagnostic histograms, observe how there has
been no attempt to embellish either the X axis or the Y axis, possibly by placing a
more descriptive label on either axis and making axis labels show in either bold or
a contrasting color. There has equally been no attempt to adjust the scale shown on
the X axis. Instead, R-based defaults were accepted. These embellishments will be
attempted in later figures.

The density plot is very useful to look for a general display of the data. The
density plot visualizes distribution patterns and adherence to any semblance of
normal distribution, which is a critical concern regarding the decision to view data
from a nonparametric perspective or a parametric perspective.

par(ask=TRUE)
plot(density(Pain.df$WeightLb,
na.rm=TRUE), # Required for the density() function
main="Density Plot of Weight", lwd=6,
col="red", font.axis=2, font.lab=2, xlim=c(-10,300))

par(ask=TRUE)
plot(density(Pain.df$Bed,
na.rm=TRUE), # Required for the density() function
main="Density Plot of Pain During Bed Rest", lwd=6,
col="red", font.axis=2, font.lab=2, xlim=c(-10,110))

par(ask=TRUE)
plot(density(Pain.df$Standing,
na.rm=TRUE), # Required for the density() function
main="Density Plot of Pain When Standing", lwd=6,
col="red", font.axis=2, font.lab=2, xlim=c(-10,110))

par(ask=TRUE)
plot(density(Pain.df$Walking,
na.rm=TRUE), # Required for the density() function
main="Density Plot of Pain When Walking", lwd=6,
col="red", font.axis=2, font.lab=2, xlim=c(-10,110))

Note how the values for xlim are used to accommodate presentation of the full
range of values on the X axis when shown in graphical format.

8.4 Conduct a Visual Data Check 265

The boxplot (i.e., box-and-whisker plot) is a traditional tool for viewing the
distribution of data, with an emphasis on standard descriptive statistics. See help
pages for the fivenum() function and the boxplot.stats() function, along with the
boxplot() function, to learn more about this visual tool.

par(ask=TRUE)
boxplot(Pain.df$WeightLb,
main="Boxplot of Weight",
col="red", lwd=2, cex.axis=1.25,
ylab="Weight (Pounds)", cex.lab=1.25,
ylim=c(0,300)) # Note the scale used for the Y axis

par(ask=TRUE)
boxplot(Pain.df$Bed,
main="Boxplot of Pain at Bed Rest",
col="red", lwd=2, cex.axis=1.25,
ylab="Pain (0 to 100)", cex.lab=1.25,
ylim=c(-5,105)) # Note the scale used for the Y axis

par(ask=TRUE)
boxplot(Pain.df$Standing,
main="Boxplot of Pain When Standing",
col="red", lwd=2, cex.axis=1.25,
ylab="Pain (0 to 100)", cex.lab=1.25,
ylim=c(-5,105)) # Note the scale used for the Y axis

par(ask=TRUE)
boxplot(Pain.df$Walking,
main="Boxplot of Pain When Walking",
col="red", lwd=2, cex.axis=1.25,
ylab="Pain (0 to 100)", cex.lab=1.25,
ylim=c(-5,105)) # Note the scale used for the Y axis

The three boxplots of pain (i.e., Bed, Standing, Walking) are interesting, and they
give a sense that pain increases with increased mobility. Yet, the three boxplots are
in separate graphics. The procedure used below will place all three boxplots in the
same figure.

• Use the names() function to see the names for each object variable in the
dataframe, and then give attention to the sequential ordering of each object
variable.

• Note how Pain.df$Bed is the 5th object variable, Pain.df$Standing is the 6th
object variable, and Pain.df$Walking is the 7th object variable.

• Use the [, Starting_Column_Number:Ending_Column_Number]
naming scheme shown below to include all three object variables in the same
figure, generating boxplots in this example.

266 8 Spearman’s Rank-Difference Coefficient of Correlation

Bed

P
ai

n
(0

 to
 1

00
)

0
20

40
60

80
10

0

Standing

Comparative Boxplots of Pain: Bed Rest, Standing,
and Walking

Walking

Fig. 8.1 Comparative box plots of separate object variables

names(Pain.df)

par(ask=TRUE)
boxplot(Pain.df[, 5:7], # Variables 5 to 7
main="Comparative Boxplots of Pain: Bed Rest, Standing,
and Walking",
col="red", lwd=2, cex.axis=1.25,
ylab="Pain (0 to 100)", cex.lab=1.25,
ylim=c(-5,105)) # Note the scale used for the Y axis

This side-by-side presentation of boxplots for all three object variables (Bed,
Standing, Walking), for comparative purposes, is far more useful than three separate
boxplots. Support for these multiple comparisons is an advantage for R (Fig. 8.1).

This lesson is focused on correlation (i.e., association) and the desire to see if
there is an association between Variable X and Variable Y. Specifically, this lesson
is focused on the use of Spearman’s rho to accommodate correlation calculations,
since it is judged that the pain-specific data (Pain.df$Bed, Pain.df$Standing,
Pain.df$Walking) are ordinal and not interval. Recall, also, how there is a concern
about data distribution and the possible impact that this construct may have on
acceptance or rejection of nonparametric v parametric approaches to data analysis.

The plot() function will be used to generate basic scatter plots to show the
correlation or degree of association between Variable X and Variable Y:

• WeightLb:Bed, WeightLb:Standing, WeightLb:Walking
• Bed:Standing, Bed:Walking
• Standing:Walking

Simple scatter plots will be produced first. A few embellishments will be added
to make the figures both more appealing and more descriptive.

8.4 Conduct a Visual Data Check 267

par(ask=TRUE)
par(mfrow=c(1,3)) # 1 Row by 3 Columns
plot(Pain.df$WeightLb, Pain.df$Bed,
main="Weight by Bed",
xlim=c(0,300), ylim=c(0,100))

plot(Pain.df$WeightLb, Pain.df$Standing,
main="Weight by Standing",
xlim=c(0,300), ylim=c(0,100))

plot(Pain.df$WeightLb, Pain.df$Walking,
main="Weight by Walking",
xlim=c(0,300), ylim=c(0,100))

par(ask=TRUE)
par(mfrow=c(1,2)) # 1 Row by 2 Columns
plot(Pain.df$Bed, Pain.df$Standing,
main="Bed by Standing",
xlim=c(0,100), ylim=c(0,100))

plot(Pain.df$Bed, Pain.df$Walking,
main="Bed by Walking",
xlim=c(0,100), ylim=c(0,100))

par(ask=TRUE)
plot(Pain.df$Standing, Pain.df$Walking,
main="Standing by Walking",
xlim=c(0,100), ylim=c(0,100))

Notice in these simple throwaway scatter plots how the figures were organized
so that there would be no redundant comparisons. Is a scatter plot of Variable X by
Variable Y equal to a scatter plot of Variable Y by Variable X, where only the X axis
and Y axis are exchanged?

Now, embellish the scatter plots, offering more appeal and detail. Improve the
presentation of the axis, add color, enlarge the symbol used for points in the plot,
and add an abline (i.e., regression line), highlighting the intercept and slope.

Note: When viewing these embellished scatter plots, give attention to the abline,
also known as a regression line. There are those who suggest that an abline should
not be presented for scatter plots that are based on the use of nonparametric data.
The figures below include ablines, but consider this caution when determining
their appropriate use. Of course, the abline could be easily eliminated, either by
eliminating the syntax for this addition to the scatter plot or merely by placing a #
character in front of the abline-specific syntax, to comment-out the syntax (Fig. 8.2).

par(ask=TRUE)
par(mfrow=c(1,3)) # 1 Row by 3 Columns
plot(Pain.df$WeightLb, Pain.df$Bed, # X axis by Y axis
xlab="Weight (Pounds)", ylab="Pain at Bed Rest",
main="Scatter Plot of Weight by Pain at Best Rest
With Regression Line",
pch=23, lwd=4, col="red", cex.axis=1.25, cex.lab=1.25,
font=2, xlim=c(0,300), ylim=c(-010,110))

abline(lm(Pain.df$Bed ~ Pain.df$WeightLb),

268 8 Spearman’s Rank-Difference Coefficient of Correlation

0

0
20

40
60

80
10

0

50 100 150

Weight (Pounds)

Scatter Plot of Weight by Pain at Best Rest
With Regression Line

P
ai

n
at

 B
ed

 R
es

t

200 250 300 0

0
20

40
60

80
10

0

50 100 150

Weight (Pounds)

Scatter Plot of Weight by Pain When Standing
With Regression Line

P
ai

n
W

he
n

S
ta

nd
in

g

200 250 300 0

0
20

40
60

80
10

0

50 100 150

Weight (Pounds)

Scatter Plot of Weight by Pain When Walking
With Regression Line

P
ai

n
W

he
n

W
al

ki
ng

200 250 300

Fig. 8.2 Multiple scatter plots of separate object variables placed into one graphical figure

lwd=6, col="blue") # Note abline(lm(Y ~ X))
plot(Pain.df$WeightLb, Pain.df$Standing, # X axis by Y axis
xlab="Weight (Pounds)", ylab="Pain When Standing",
main="Scatter Plot of Weight by Pain When Standing
With Regression Line",
pch=23, lwd=4, col="red", cex.axis=1.25, cex.lab=1.25,
font=2, xlim=c(0,300), ylim=c(-010,110))

abline(lm(Pain.df$Standing ~ Pain.df$WeightLb),
lwd=6, col="blue") # Note abline(lm(Y ~ X))

plot(Pain.df$WeightLb, Pain.df$Walking, # X axis by Y axis
xlab="Weight (Pounds)", ylab="Pain When Walking",
main="Scatter Plot of Weight by Pain When Walking
With Regression Line",
pch=23, lwd=4, col="red", cex.axis=1.25, cex.lab=1.25,
font=2, xlim=c(0,300), ylim=c(-010,110))

abline(lm(Pain.df$Walking ~ Pain.df$WeightLb),
lwd=6, col="blue") # Note abline(lm(Y ~ X))

par(ask=TRUE)
par(mfrow=c(1,2)) # 1 Row by 2 Columns
plot(Pain.df$Bed, Pain.df$Standing, # X axis by Y axis
xlab="Pain at Bed Rest", ylab="Pain When Standing",
main="Scatter Plot of Pain at Bed Rest by
Pain When Standing With Regression Line",
pch=23, lwd=4, col="red", cex.axis=1.25, cex.lab=1.25,
font=2, xlim=c(-010,110), ylim=c(-010,110))

abline(lm(Pain.df$Standing ~ Pain.df$Bed),
lwd=6, col="blue") # Note abline(lm(Y ~ X))

plot(Pain.df$Bed, Pain.df$Walking, # X axis by Y axis
xlab="Pain at Bed Rest", ylab="Pain When Walking",
main="Scatter Plot of Pain at Bed Rest by
Pain When Walking With Regression Line",
pch=23, lwd=4, col="red", cex.axis=1.25, cex.lab=1.25,

8.4 Conduct a Visual Data Check 269

font=2, xlim=c(-010,110), ylim=c(-010,110))
abline(lm(Pain.df$Walking ~ Pain.df$Bed),
lwd=6, col="blue") # Note abline(lm(Y ~ X))

plot(Pain.df$Standing, Pain.df$Walking, # X axis by Y axis
xlab="Pain When Standing", ylab="Pain When Walking",
main="Scatter Plot pf Pain When Standing by
Pain When Walking With Regression Line",
pch=23, lwd=4, col="red", cex.axis=1.25, cex.lab=1.25,
font=2, xlim=c(-010,110), ylim=c(-010,110))

abline(lm(Pain.df$Walking ~ Pain.df$Standing),
lwd=6, col="blue") # Note abline(lm(Y ~ X))

The purpose of these initial scatter plots is to gain a general sense of the data,
individually and with the possible association between different object variables. It
was also useful to use these scatter plots to look for outliers. In an attempt to look
for outliers, notice how the xlim values and ylim values were extended beyond what
is found in the Code Book. Extreme values may or may not be outliers, but they are
certainly interesting and demand attention, to determine if they represent a mistake
with data entry or if they are valid data, but data that were totally unexpected.

8.4.2 Use of the Lattice Package

The lattice package supports a wide variety of functions that are used to show
relationships between, and among, data. The lattice::densityplot() function is often
a good first choice to better understand measured data. With additional practice, the
lattice package can be used to display density plots by breakout groups—Gender
and Protocol in this lesson.

install.packages("lattice")
library(lattice) # Load the lattice package.
help(package=lattice) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

par(ask=TRUE)
lattice::densityplot(~ WeightLb, data=Pain.df,
plot.points=TRUE, auto.key=TRUE,
par.settings=simpleTheme(lwd=4),
par.strip.text=list(cex=1.15, font=2),
scales=list(cex=1.15),
main="Density Plot of Weight",
xlab=list("Weight (Pounds)", cex=1.15, font=2),
xlim=c(0,300), # Note the range.
ylab=list("Density", cex=1.15, font=2),
aspect=1, breaks=10)

270 8 Spearman’s Rank-Difference Coefficient of Correlation

By using the above syntax, but with only a few minor changes, the lat-
tice::densityplot() function can be used to display density plots for the other
measured object variables used in this lesson.

The lattice::bwplot() function is used to generate boxplots by breakout groups,
which in turn provide a simple way to compare distribution patterns for an individual
object variable, allowing focus on overall distribution and attention to extreme
values (i.e., outliers), if any.

Note below the 2 Columns by 1 Row figure used to show Gender by Protocol
boxplot comparisons for Pain at Bed Rest. The 5 Columns by 1 Row figure shows
Protocol by Gender boxplot comparisons for Pain at Bed Rest. Again, the other
measured variables used in this lesson can be compared by the factor-type variables,
all by changing only a few lines of syntax (i.e., code), but space does not allow
syntax for every possible comparison (Fig. 8.3).

par(ask=TRUE) # 2 Columns by 1 Row
lattice::bwplot(F2.recode ~ Bed | F1.recode,
data=Pain.df,
plot.points=TRUE, auto.key=TRUE,
par.settings=simpleTheme(lwd=2),
par.strip.text=list(cex=1.15, font=2),
scales=list(cex=1.15),
main="Boxplot of Pain at Bed Rest by Gender
and by Protocol",
xlab=list("Pain (0 to 100)", cex=1.15, font=2),
xlim=c(-015,115), # Note the range.
ylab=list("Protocol", cex=1.15, font=2),
aspect=1, breaks=10,
layout = c(2,1)) # 2 Columns by 1 Row

par(ask=TRUE) # 5 Columns by 1 Row
lattice::bwplot(F1.recode ~ Bed | F2.recode,
data=Pain.df,
plot.points=TRUE, auto.key=TRUE,
par.settings=simpleTheme(lwd=2),
par.strip.text=list(cex=1.15, font=2),
scales=list(cex=1.15),
main="Boxplot of Pain at Bed Rest by Protocol
and by Gender",
xlab=list("Pain (0 to 100)", cex=1.15, font=2),
xlim=c(-015,115), # Note the range.
ylab=list("Gender", cex=1.15, font=2),
aspect=1, breaks=10,
layout = c(5,1)) # 5 Columns by 1 Row

This lesson is focused on correlation (i.e., association). Review how the lattice
package can be used to provide side-by-side scatter plots of X and Y by factor-type
breakout object variables.

par(ask=TRUE) # 2 Columns by 1 Row
lattice::xyplot(Standing ~ Bed | F1.recode,

8.4 Conduct a Visual Data Check 271

0

Protocol A

Protocol B

Protocol C

Protocol D

Protocol E

20 40 60

0
Female Male

20 40 60 80 100

80 100
Pain (0 to 100)

Boxplot of Pain at Bed Rest by Gender
and by Protocol

P
ro

to
co

l

Fig. 8.3 Box plots of two breakout groups using the lattice::bwplot() function

data=Pain.df,
plot.points=TRUE, auto.key=TRUE,
par.settings=simpleTheme(lwd=2),
par.strip.text=list(cex=1.15, font=2),
scales=list(cex=1.15),
main="Scatterplot of Pain at Bed Rest
and Pain When Standing by Gender",
xlab=list("Pain at Bed Rest", cex=1.15, font=2),
xlim=c(-015,115), # Note the range.
ylab=list("Pain When Standing", cex=1.15, font=2),
aspect=1, breaks=10,
layout = c(2,1)) # 2 Columns by 1 Row

par(ask=TRUE) # 5 Columns by 1 Row
lattice::xyplot(Walking ~ Bed | F2.recode,
data=Pain.df,
plot.points=TRUE, auto.key=TRUE,
par.settings=simpleTheme(lwd=2),
par.strip.text=list(cex=1.15, font=2),
scales=list(cex=1.15),
main="Scatterplot of Pain at Bed Rest
and Pain When Walking by Protocol",
xlab=list("Pain at Bed Rest", cex=1.15, font=2),
xlim=c(-015,115), # Note the range.
ylab=list("Pain When Walking", cex=1.15, font=2),
aspect=1, breaks=10,
layout = c(5,1)) # 5 Columns by 1 Row

272 8 Spearman’s Rank-Difference Coefficient of Correlation

Many other graphically-focused functions are supported by the lattice package.
As time permits, read more about the lattice package and why it should be
considered when simple graphics are no longer sufficient for presentation.

8.4.3 Use of the ggplot2 Package

The figures presented above are all based on either functions available when R is
first downloaded or functions available through the lattice package (which is one of
thousands of other R-based packages available as an external package). However,
the ggplot2 (again, the term gg stands for Grammar of Graphics) package has
gained wide acceptance in the R community. A few figures based on use of the
ggplot2 package are presented below. There are those who would suggest that the
syntax associated with the ggplot2 package may be a bit more challenging than most
beginning students need to consider, but the gaining popularity of this package calls
for some level of presentation in this lesson.

install.packages("ggplot2")
library(ggplot2) # Load the ggplot2 package.
help(package=ggplot2) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

As with nearly all R-based syntax, there are many ways to structure a graphical
presentation. Experimentation and practice are needed to gain full advantage of
the many capabilities available through use of the ggplot2 package and its many
functions and layers of complexity.

Again, histograms are a good starting point for visual displays of measured object
variables, even if the data are considered ordinal and not interval.

Pain.Standing <- ggplot2::ggplot(data=Pain.df, aes(x=Standing))
There are no layers in this object and it will not
generate a graphic, by itself. Instead, other syntax is
needed to make graphical images with the ggplot2::ggplot()
function.

summary(Pain.Standing)

data: ID, F1, F2, WeightLb, Bed, Standing, Walking, F1.recode,
F2.recode [200x9]

mapping: x = Standing
faceting: facet_null()

par(ask=TRUE)
Pain.Standing + geom_histogram(fill="red") +
labs(title="Pain When Standing: All Subjects") +
labs(x="Pain (0 to 100) When Standing") +
labs(y="Frequency") +

8.4 Conduct a Visual Data Check 273

theme_bw(base_family="sans", base_size=14)
Use theme_bw() to generate an easy-to-read white
background with contrasting black grid lines.

par(ask=TRUE)
Pain.Standing + geom_histogram(fill="red", color="darkblue") +
labs(title="Pain When Standing: All Subjects") +
labs(x="Pain (0 to 100) When Standing") +
labs(y="Frequency") +
theme_bw(base_family="sans", base_size=20) +
theme(axis.title.y = element_text(color="red", face="bold"),

axis.title.x = element_text(color="red", face="bold"),
axis.text.x = element_text(size=18, face="bold"),
axis.text.y = element_text(size=18, face="bold")) +
xlim(0, 100) + ylim(0, 30)

In this graphic, note how limits have been set for both the
X axis (0 to 100) and Y axis (0 to 30).

par(ask=TRUE)
Pain.Standing + geom_histogram(fill="red", color="darkblue") +
labs(title="Pain When Standing by Gender") +
labs(x="Pain (0 to 100) When Standing") +
labs(y="Frequency") +
theme_bw(base_family="sans", base_size=20) +
theme(axis.title.y = element_text(color="red", face="bold"),

axis.title.x = element_text(color="red", face="bold"),
axis.text.x = element_text(size=16, face="bold"),
axis.text.y = element_text(size=18, face="bold")) +
facet_wrap(~ F1.recode) +
xlim(0, 100) + ylim(0, 15)

By including + facet_wrap(~ F1.recode) breakouts for the
measured variable Standing are now provided for each Gender
(Female and Male).

par(ask=TRUE)
Pain.Standing + geom_histogram(fill="red", color="darkblue") +
labs(title="Pain When Standing by Protocol") +
labs(x="Pain (0 to 100) When Standing") +
labs(y="Frequency") +
theme_bw(base_family="sans", base_size=20) +
theme(axis.title.y = element_text(color="red", face="bold"),

axis.title.x = element_text(color="red", face="bold"),
axis.text.x = element_text(size=16, face="bold"),
axis.text.y = element_text(size=18, face="bold")) +
facet_wrap(~ F2.recode) +
xlim(0, 100) + ylim(0, 15)

By including + facet_wrap(~ F2.recode) breakouts for the
measured variable Standing are now provided for each
Protocol (Protocol A to Protocol E).

Along with histograms, the ggplot2 package supports functions used to generate
an exceptionally wide variety of figures. Figures generated using ggplot2 can focus
on individual object variables, but it is also possible to generate figures that provide

274 8 Spearman’s Rank-Difference Coefficient of Correlation

information about measured object variables (i.e., Weight, Pain at Bed Rest, Pain
When Standing, Pain When Walking) at the level of the many breakout groups of
factor-type object variables (i.e., Gender, Protocol).

The ggplot2::ggplot() function will be used to demonstrate correlation (i.e.,
association), given the focus of this lesson. Notice how the first few scatter plots
are very simple with few embellishments. Only the last scatter plot approaches
publishable quality.

par(ask=TRUE)
ggplot2::ggplot(Pain.df, aes(x=Bed, y=Standing)) +

geom_point(shape=1) # Use hollow circles

par(ask=TRUE)
ggplot2::ggplot(Pain.df, aes(x=Bed, y=Standing)) +

geom_point(shape=1) + # Use hollow circles
geom_smooth(method=lm) # Add linear regression line

par(ask=TRUE)
ggplot2::ggplot(Pain.df, aes(x=Bed, y=Standing)) +

geom_point(shape=1) + # Use hollow circles
geom_smooth(method=lm, # Add linear regression line

se=FALSE) # Avoid a shaded confidence region

par(ask=TRUE)
ggplot2::ggplot(Pain.df, aes(x=Bed, y=Standing)) +

geom_point(shape=1) + # Use hollow circles
geom_smooth() # Show a loess smoothed fit curve

with confidence region

par(ask=TRUE)
ggplot2::ggplot(Pain.df, aes(x=Bed, y=Standing)) +
geom_point(shape=21, color = "red", size=4, fill="blue") +
labs(title="Pain at Bed Rest v Pain When Standing") +
scale_y_continuous(limits=c(0,100)) +
scale_x_continuous(limits=c(0,100)) +
geom_smooth(method=lm, se=TRUE) +
theme_bw(base_family="sans", base_size=15) +
theme(axis.title.y = element_text(color="red", face="bold"),

axis.title.x = element_text(color="red", face="bold"),
axis.text.x = element_text(size=14, face="bold"),
axis.text.y = element_text(size=14, face="bold"))

This graphic generates a single scatterplot of Pain.df$Bed
(X Axis) by Pain.df$Standing (Y Axis). Although it is
embellished, it is only a good beginning. A full set of
ggplot2 features could be used to make it publishable.

8.5 Descriptive Analysis of the Data 275

0

0

25

50

75

100

25 50

Pain at Bed Rest v Pain When Standing

Bed

S
ta

nd
in

g

75 100

Fig. 8.4 Scatter plot of two continuous object variables using the ggplot2::ggplot() function

The ggplot2 package has may features and it is increasingly popular, but it
takes some time to learn the many complexities of this package and how syntax
is structured. Experiment with this package and explore its many possibilities after
the basics of R graphics are mastered (Fig. 8.4).

8.5 Descriptive Analysis of the Data

Missing data, ideally, should always be avoided. However, missing data are only too
common, and experienced researchers must come to grips with the reality of how
missing data impact syntax and expected processes for data analysis and graphical
presentations. Look at the syntax throughout this text and notice how more than a
few functions use the na.rm=TRUE argument to accommodate missing data.

The dataframe associated with this lesson was fairly small (N = 200). If desired,
the data could be reviewed line-by-line against field notes, but that of course could
never be meaningfully attempted for a large collection of data with thousands of
subjects. Saying that, it is often helpful to first check for missing data by using the
is.na() function and the complete.cases() function against the entire dataset. Both
functions return a TRUE or FALSE response, depending on the function and the
outcome of whether data are missing or not.

is.na(Pain.df) # Check for missing data
complete.cases(Pain.df) # Check for complete cases

For the dataset Pain.df, note how there is one missing datum for each measured
object variable (i.e., WeightLb, Bed, Standing, Walking). As a first selection on how
missing data are approached, the summary() function may be all that is necessary to

276 8 Spearman’s Rank-Difference Coefficient of Correlation

gain a sense of the data. As typically used, the summary() function is applied against
the entire dataset, thus yielding information about all object variables, including the
object variable Subject.

summary(Pain.df)

Give attention to the listing of NAs, if any, for those object variables with missing
data. Again, the summary() function is very useful, and it should always be a first
selection when preparing descriptive analyses.

Measures of Central Tendency of the Numeric Object Variables
By reviewing the previously created graphical images and studying output from
the summary() function, it seems that the data in Pain.df are generally in good
form. With this initial level of assurance about the data, and to also supplement
the statistics associated with the summary() function, a fairly comprehensive set of
R-based functions will be used to expand understanding of the data, especially the
data that represent some type of measure: WeightLb, Bed, Standing, and Walking.

To achieve this aim, a few functions found in external packages (asbio::Mode
and Zelig::Mode) will be used to expand on those functions immediately available
when R is first downloaded. To save space for what would otherwise be an
unwieldy display of syntax, the many descriptive statistics will be presented only
for Pain.df$WeightLb and Pain.df$Walking.

install.packages("asbio")
library(asbio) # Load the asbio package.
help(package=asbio) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

install.packages("Zelig")
library(Zelig) # Load the Zelig package.
help(package=Zelig) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

With these external packages brought into this R session, prepare descriptive
statistics of selected variables in the Pain.df dataset.

median(Pain.df$WeightLb, na.rm=TRUE) # Median

[1] 165.64

mean(Pain.df$WeightLb, na.rm=TRUE) # Mean

[1] 164.7947

sd(Pain.df$WeightLb, na.rm=TRUE) # Standard Deviation

8.5 Descriptive Analysis of the Data 277

[1] 25.6055

asbio::Mode(Pain.df$WeightLb) # Mode

[1] NA
Warning message:
In asbio::Mode(Pain.df$WeightLb) : NAs introduced by coercion

Zelig::Mode(Pain.df$WeightLb) # Mode

[1] 185.75

range(Pain.df$WeightLb, na.rm=TRUE) # Range

[1] 88.62 220.77

Notice how the output of each function shows on the next line: Median of
Pain.df$WeightLb = 165.64, Mean of Pain.df$WeightLb = 164.7947, Standard
Deviation of Pain.df$WeightLb = 25.6055, etc. The one exception is output for
the asbio::Mode() function, which provides sufficient information to know that this
function, as expressed in this example, cannot accommodate missing data of this
type. Fortunately, the Zelig::Mode() function can accommodate missing data and a
modal value is provided. Later, review package documentation and note how Mode
is expressed for the asbio::Mode() function and the Zelig::Mode() function when
there are missing data and/or multiple modes. As a sidebar comment, the way Mode
is accommodated by these two functions is an example of why it is always a good
idea to use multiple approaches for data analysis, largely to confirm outcomes and to
look for consistency. Redundancy is not necessarily wasteful when reviewing data
and eventual output.

Using this process, view appropriate descriptive statistics (e.g., Median, Mean,
SD, Mode, Range) for the remaining measured object variables, as needed:

median(Pain.df$Bed, na.rm=TRUE) # Median
mean(Pain.df$Bed, na.rm=TRUE) # Mean
sd(Pain.df$Bed, na.rm=TRUE) # Standard Deviation
Zelig::Mode(Pain.df$Bed) # Mode
range(Pain.df$Bed, na.rm=TRUE) # Range

median(Pain.df$Standing, na.rm=TRUE) # Median
mean(Pain.df$Standing, na.rm=TRUE) # Mean
sd(Pain.df$Standing, na.rm=TRUE) # Standard Deviation
Zelig::Mode(Pain.df$Standing) # Mode
range(Pain.df$Standing, na.rm=TRUE) # Range

median(Pain.df$Walking, na.rm=TRUE) # Median

[1] 73

278 8 Spearman’s Rank-Difference Coefficient of Correlation

mean(Pain.df$Walking, na.rm=TRUE) # Mean

[1] 71.58291

sd(Pain.df$Walking, na.rm=TRUE) # Standard Deviation

[1] 16.81425

Zelig::Mode(Pain.df$Walking) # Mode

[1] 84

range(Pain.df$Walking, na.rm=TRUE) # Range

[1] 35 100

These one-by-one calculations of descriptive statistics help, but there are other
functions that provide (in one simple operation) a composite of all needed descrip-
tive statistics. For this lesson, look at use of the fBasics::basicStats() function and
the pastecs::stat.desc() function. Each function provides the same general level
of information about the selected variables, so selection is largely a matter of
preference. There are many other packages and functions that could also be selected
to show multiple descriptive statistics, but these two should meet immediate needs.

names(Pain.df)
str(Pain.df, digits.d=6) # digits.d argument for WeightLb

install.packages("fBasics")
library(fBasics) # Load the fBasics package.
help(package=fBasics) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

options(scipen=80, digits=4)
Prevent scientific notation and keep printouts to a
reasonable width

fBasics::basicStats(Pain.df[, 4:7], ci = 0.95)
Calculate basic statistics against columns 4 to
7 in the dataframe Pain.df:
Column 4 - WeightLb Weight (Pounds)
Column 5 - Bed Pain at Bed Rest
Column 6 - Standing Pain When Standing
Column 7 - Walking Pain When Walking
Use a confidence interval of 0.95

8.5 Descriptive Analysis of the Data 279

WeightLb Bed Standing Walking
nobs 200.0000 200.0000 200.00000 200.0000
NAs 1.0000 1.0000 1.00000 1.0000
Minimum 88.6200 23.0000 36.00000 35.0000
Maximum 220.7700 80.0000 88.00000 100.0000
1. Quartile 147.0650 46.5000 53.00000 58.0000
3. Quartile 180.1150 67.0000 76.00000 86.0000
Mean 164.7947 56.1055 64.44221 71.5829
Median 165.6400 57.0000 65.00000 73.0000
Sum 32794.1500 11165.0000 12824.00000 14245.0000
SE Mean 1.8151 0.9391 0.99457 1.1919
LCL Mean 161.2153 54.2536 62.48091 69.2324
UCL Mean 168.3742 57.9575 66.40352 73.9334
Variance 655.6414 175.5090 196.84387 282.7191
Stdev 25.6055 13.2480 14.03011 16.8143
Skewness -0.1203 -0.2006 -0.08548 -0.1983
Kurtosis -0.4051 -0.7819 -1.18861 -1.1204

Compare the detail and presentation of output from use of the fBa-
sics::basicStats() function to use of the pastecs::stat.desc() function. In many cases,
these functions are redundant and selection is largely a matter of preference.

install.packages("pastecs")
library(pastecs) # Load the lessR package.
help(package=pastecs) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

Notice, again, how selection is only for object variables 4–7, or WeightLb, Bed,
Standing, and Walking.

options(scipen=80, digits=2)
Prevent scientific notation and keep printouts to a reasonable
width

pastecs::stat.desc(Pain.df[,4:7], basic=TRUE, desc=TRUE,
norm=TRUE, p=0.95)

WeightLb Bed Standing Walking
nbr.val 199.00 199.0000 199.000000 199.000000
nbr.null 0.00 0.0000 0.000000 0.000000
nbr.na 1.00 1.0000 1.000000 1.000000
min 88.62 23.0000 36.000000 35.000000
max 220.77 80.0000 88.000000 100.000000
range 132.15 57.0000 52.000000 65.000000
sum 32794.15 11165.0000 12824.000000 14245.000000
median 165.64 57.0000 65.000000 73.000000
mean 164.79 56.1055 64.442211 71.582915
SE.mean 1.82 0.9391 0.994568 1.191931
CI.mean.0.95 3.58 1.8520 1.961305 2.350508
var 655.64 175.5090 196.843866 282.719101

280 8 Spearman’s Rank-Difference Coefficient of Correlation

std.dev 25.61 13.2480 14.030106 16.814253
coef.var 0.16 0.2361 0.217716 0.234892
skewness -0.12 -0.2006 -0.085480 -0.198348
skew.2SE -0.35 -0.5819 -0.247985 -0.575424
kurtosis -0.41 -0.7819 -1.188615 -1.120377
kurt.2SE -0.59 -1.1397 -1.732470 -1.633009
normtest.W 0.99 0.9788 0.954819 0.958306
normtest.p 0.22 0.0042 0.000006 0.000014

Regarding descriptive statistics by breakout groups, the tapply() function can
also be applied against measured object variables, serving as one more in a possibly
long list of potential functions used to gain a better sense of the data and descriptive
statistics. Given interest in nonparametric issues for this lesson, focus on the median.

A full set of descriptive statistics is presented below by breakout groups, by using
the tapply() function and using summary as a function argument. Be sure to focus
on Median. To save space, a printout of output is shown only for Pain.df$Walking
by the five protocol breakouts found in object variable F2.recode.

tapply(WeightLb, F1.recode, summary, na.rm=TRUE, data=Pain.df)
tapply(WeightLb, F2.recode, summary, na.rm=TRUE, data=Pain.df)

tapply(Bed, F1.recode, summary, na.rm=TRUE, data=Pain.df)
tapply(Bed, F2.recode, summary, na.rm=TRUE, data=Pain.df)

tapply(Standing, F1.recode, summary, na.rm=TRUE, data=Pain.df)
tapply(Standing, F2.recode, summary, na.rm=TRUE, data=Pain.df)

tapply(Walking, F1.recode, summary, na.rm=TRUE, data=Pain.df)
tapply(Walking, F2.recode, summary, na.rm=TRUE, data=Pain.df)

$‘Protocol A‘
Min. 1st Qu. Median Mean 3rd Qu. Max.
58 70 74 74 78 84

$‘Protocol B‘
Min. 1st Qu. Median Mean 3rd Qu. Max.
37 46 52 53 60 75

$‘Protocol C‘
Min. 1st Qu. Median Mean 3rd Qu. Max.
71 81 88 86 92 96

$‘Protocol D‘
Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
75 86 89 90 95 100 1

$‘Protocol E‘
Min. 1st Qu. Median Mean 3rd Qu. Max.
35 51 56 56 60 72

8.5 Descriptive Analysis of the Data 281

Application of the Anderson-Darling Test
Graphical images and descriptive statistics are needed to understand the data. It
is also best to apply selected statistical tests to serve as an additional support for
decision-making on acceptance of nonparametric or parametric views toward the
data. To that end, consider application of the Anderson-Darling Test, the Lilliefors
(KS) Test, and the Shapiro-Wilk Test. It should be mentioned that these tests may
be influenced by sample size and that they provide one view, but not the only view,
on the nature of distribution patterns. Experience, needs, and practical judgment,
supported by careful review of graphical images, descriptive statistics, and statistical
tests, should be used when deciding if variables from a dataset are best viewed from
a nonparametric or parametric perspective.

install.packages("nortest")
library(nortest) # Load the nortest package.
help(package=nortest) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

For this lesson, it is sufficient to only apply the Anderson-Darling Test. The Null
Hypothesis for the Anderson-Darling Test is structured to examine whether the data
follow a specified distribution:

Anderson-Darling Null Hypothesis: The data follow the normal distribution.

nortest::ad.test(Pain.df$WeightLb) # Anderson-Darling Test

Anderson-Darling normality test

data: Pain.df$WeightLb
A = 0.53, p-value = 0.1697

nortest::ad.test(Pain.df$Bed) # Anderson-Darling Test

Anderson-Darling normality test

data: Pain.df$Bed
A = 0.93, p-value = 0.01828

nortest::ad.test(Pain.df$Standing) # Anderson-Darling Test

Anderson-Darling normality test

data: Pain.df$Standing
A = 2.3, p-value = 0.000008517

nortest::ad.test(Pain.df$Walking) # Anderson-Darling Test

Anderson-Darling normality test

data: Pain.df$Walking
A = 2.4, p-value = 0.000004758

282 8 Spearman’s Rank-Difference Coefficient of Correlation

The calculated Anderson-Darling Test for normality p-value for weight
(Paind.f$WeightLb), which is a measured variable, exceeded 0.05 which supports
the view that weight follows normal distribution. For weight, the Null Hypothesis
is accepted and it judged that the data follow the normal distribution.

The calculated Anderson-Darling Test for normality p-values for all three
measures of pain (Pain.df$Bed, Pain.df$Standing, and Pain.df$Walking) which are
self-rated values, were less than 0.05 which supports the view that pain does not
follow normal distribution. For all three measures of pain, the Null Hypothesis is
rejected and it judged that the data do not follow the normal distribution.

Given these p-values, it is appropriate to approach measures of association from
a nonparametric view. A QQ plot may help reinforce the distribution patterns and
demonstrate that pain-specific data do not display normal distribution.

par(ask=TRUE)
par(mfrow=c(2,2)) # 2 Columns by 2 Rows
qqnorm(Pain.df$WeightLb, col="red", font=2, font.lab=2,
cex.axis=1.5, main="QQPlot of Pain.df$WeightLb")

qqline(Pain.df$WeightLb, lwd=4, col="darkblue")
qqnorm(Pain.df$Bed, col="red", font=2, font.lab=2,
cex.axis=1.5, main="QQPlot of Pain.df$Bed")

qqline(Pain.df$Bed, lwd=4, col="darkblue")
qqnorm(Pain.df$Standing, col="red", font=2, font.lab=2,
cex.axis=1.5, main="QQPlot of Pain.df$Standing")

qqline(Pain.df$Standing, lwd=4, col="darkblue")
qqnorm(Pain.df$Walking, col="red", font=2, font.lab=2,
cex.axis=1.5, main="QQPlot of Pain.df$Walking")

qqline(Pain.df$Walking, lwd=4, col="darkblue")

The QQ plot (i.e., normal probability plot) provides additional confirmation that
the data, overall, are best viewed from a nonparametric perspective. Look especially
at the tails to see pain-specific data deviating away from the qqline (Fig. 8.5).

8.6 Conduct the Statistical Analysis

The many graphical images and descriptive statistics provide excellent background
on the data of direct interest: Weight, Pain at Bed Rest, Pain When Standing, and
Pain When Walking. A first attempt has also been made to look at breakouts by
Gender and by Protocol.

However, the task for this lesson is correlation and, specifically, correlation
with the view that the object variables Pain.df$Bed, Pain.df$Standing, and
Pain.df$Walking represent ordinal data therefore requiring a nonparametric
approach for data analysis. Consider the tasks needed to determine the correlation
between the (generic) variables X and Y, of which there are multiple X:Y
combinations in this dataset.

8.6 Conduct the Statistical Analysis 283

−3

10
0 30

50
70

40
60

80
14

0
18

0
22

0

40
60

80
10

0

−2 −1 0

QQPlot of Pain.df$WeightLb

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s
S

am
pl

e
Q

ua
nt

ile
s

S
am

pl
e

Q
ua

nt
ile

s
S

am
pl

e
Q

ua
nt

ile
s

1 2 3 −3 −2 −1 0

QQPlot of Pain.df$Bed

Theoretical Quantiles
1 2 3

−3 −2 −1 0

QQPlot of Pain.df$Walking

Theoretical Quantiles
1 2 3−3 −2 −1 0

QQPlot of Pain.df$Standing

Theoretical Quantiles
1 2 3

Fig. 8.5 Multiple QQ plots in one graphic, to compare distribution patterns

By using R, there are many ways to determine Spearman’s rho. From the
perspective of brute force, look at the way multiple individual correlations are
prepared below. View this approach as a declining cascade of comparisons between
X:Y, recognizing that an initial comparison of X:Y equates to a later comparison
of Y:X (i.e, calculation of Spearman’s rho coefficient of correlation between X
and Y results in the same statistic as calculation of Spearman’s rho coefficient of
correlation between Y and X).

options(scipen=80, digits=8)
Adjust digits in output to the screen

cor(Pain.df$WeightLb, Pain.df$Bed,
use="pairwise.complete.obs", method="spearman")

[1] 0.35223058

cor(Pain.df$WeightLb, Pain.df$Standing,
use="pairwise.complete.obs", method="spearman")

[1] 0.43271092

cor(Pain.df$WeightLb, Pain.df$Walking,
use="pairwise.complete.obs", method="spearman")

[1] 0.42324437

cor(Pain.df$Bed, Pain.df$Standing,
use="pairwise.complete.obs", method="spearman")

[1] 0.84038098

284 8 Spearman’s Rank-Difference Coefficient of Correlation

cor(Pain.df$Bed, Pain.df$Walking,
use="pairwise.complete.obs", method="spearman")

[1] 0.86685276

cor(Pain.df$Standing, Pain.df$Walking,
use="pairwise.complete.obs", method="spearman")

[1] 0.89624247

These different individual Spearman’s rho calculations of correlation can be more
easily put into one unified presentation, again using the previously shown Pain.df[,
4:7] nomenclature for declaring desired object variables.

cor(Pain.df[, 4:7], use="pairwise.complete.obs",
method="spearman")

WeightLb Bed Standing Walking
WeightLb 1.00000000 0.35223058 0.43271092 0.42324437
Bed 0.35223058 1.00000000 0.84038098 0.86685276
Standing 0.43271092 0.84038098 1.00000000 0.89624247
Walking 0.42324437 0.86685276 0.89624247 1.00000000

With Spearman’s rho statistics of 0.35–0.43, it can be stated that there is a
general level of correlation (i.e., association) between WeightLb (Weight) and
Bed (Pain at Bed Rest), WeightLb (Weight) and Standing (Pain When Standing),
and WeightLb (Weight) and Walking (Pain When Walking). A caution is offered,
however, that WeightLb may be an inappropriate object variable given the absence
of any information about height and Body Mass Index (BMI) since those data are not
provided in this lesson. Even with this limitation, it can be stated with some degree
of assurance that as weight increases there is an overall post-procedure increase in
pain, too.

The Spearman’s rho statistics for comparisons of pain, alone, are far more
telling. Note how the association between Pain at Bed Rest compared to Pain
When Standing, Pain at Bed Rest compared to Pain When Walking, and Pain When
Standing compared to Pain When Walking all produced Spearman’s rho statistics
of about 0.85. A Spearman’s rho coefficient of correlation of approximately 0.85
indicated that there is a fairly strong degree of association between the variables in
question.4

These numerical calculations are all interesting and they certainly provide
evidence that there is an association involving weight and pain and that there is
an even greater association between pain at various stages of mobility (i.e., bed rest,

4Correlation coefficients range from �1:00 to C1:00. A correlation coefficient of 0.85 is
considered a very strong measure of association.

8.6 Conduct the Statistical Analysis 285

0

0
20

40
60

80
10

0

20 40 60
Pain When Standing

Scatter Plot of Pain When Standing by
Pain When Walking

P
ai

n
W

he
n

W
al

ki
ng

80 100

Spearman’s rho = 0.89624247

Fig. 8.6 Scatter plot of two continuous object variables with a legend showing Spearman’s rho
statistic

standing, walking). Review the previous scatter plots again, but this time with the
abline removed (in deference to those who object to an abline for nonparametric
data). Instead, a legend will be placed in the lower right corner, identifying the
numerical value of Spearman’s rho (Fig. 8.6).

par(ask=TRUE)
plot(Pain.df$WeightLb, Pain.df$Bed, # X axis by Y axis
xlab="Weight (Pounds)", ylab="Pain at Bed Rest",
main="Scatter Plot of Weight by Pain at Best Rest",
pch=23, lwd=4, col="red", cex.axis=1.25, cex.lab=1.25,
font=2, xlim=c(0,300), ylim=c(-010,110))

legend("bottomright",
xjust=1, bty="y", box.lwd=6, box.col="darkblue",
text.col="darkblue", text.font=2,
" Spearman’s rho = 0.35223058 ")

par(ask=TRUE)
plot(Pain.df$WeightLb, Pain.df$Standing, # X axis by Y axis
xlab="Weight (Pounds)", ylab="Pain When Standing",
main="Scatter Plot of Weight by Pain When Standing",
pch=23, lwd=4, col="red", cex.axis=1.25, cex.lab=1.25,
font=2, xlim=c(0,300), ylim=c(-010,110))

legend("bottomright",
xjust=1, bty="y", box.lwd=6, box.col="darkblue",
text.col="darkblue", text.font=2,
" Spearman’s rho = 0.43271092 ")

par(ask=TRUE)
plot(Pain.df$WeightLb, Pain.df$Walking, # X axis by Y axis
xlab="Weight (Pounds)", ylab="Pain When Walking",
main="Scatter Plot of Weight by Pain When Walking",
pch=23, lwd=4, col="red", cex.axis=1.25, cex.lab=1.25,

286 8 Spearman’s Rank-Difference Coefficient of Correlation

font=2, xlim=c(0,300), ylim=c(-010,110))
legend("bottomright",
xjust=1, bty="y", box.lwd=6, box.col="darkblue",
text.col="darkblue", text.font=2,
" Spearman’s rho = 0.42324437 ")

par(ask=TRUE)
plot(Pain.df$Bed, Pain.df$Standing, # X axis by Y axis
xlab="Pain at Bed Rest", ylab="Pain When Standing",
main="Scatter Plot of Pain at Bed Rest by
Pain When Standing",
pch=23, lwd=4, col="red", cex.axis=1.25, cex.lab=1.25,
font=2, xlim=c(-010,110), ylim=c(-010,110))

legend("bottomright",
xjust=1, bty="y", box.lwd=6, box.col="darkblue",
text.col="darkblue", text.font=2,
" Spearman’s rho = 0.84038098 ")

par(ask=TRUE)
plot(Pain.df$Bed, Pain.df$Walking, # X axis by Y axis
xlab="Pain at Bed Rest", ylab="Pain When Walking",
main="Scatter Plot at Pain at Bed Rest by
Pain When Walking",
pch=23, lwd=4, col="red", cex.axis=1.25, cex.lab=1.25,
font=2, xlim=c(-010,110), ylim=c(-010,110))

legend("bottomright",
xjust=1, bty="y", box.lwd=6, box.col="darkblue",
text.col="darkblue", text.font=2,
" Spearman’s rho = 0.86685276 ")

plot(Pain.df$Standing, Pain.df$Walking, # X axis by Y axis
xlab="Pain When Standing", ylab="Pain When Walking",
main="Scatter Plot of Pain When Standing by
Pain When Walking",
pch=23, lwd=4, col="red", cex.axis=1.25, cex.lab=1.25,
font=2, xlim=c(-010,110), ylim=c(-010,110))

legend("bottomright",
xjust=1, bty="y", box.lwd=6, box.col="darkblue",
text.col="darkblue", text.font=2,
" Spearman’s rho = 0.89624247 ")

As useful as the plot() function may be, it is by no means the only R-based
function used to visualize the association between two variables. Going back to a
constant theme in these lessons on the use of R for biostatistics, visual presentations
are perhaps the best way to gain attention of the typical reader. Consider a few tools
shown below on how to present multiple correlation comparisons in one convenient
image, using the pairs() function, lattice::splom() function, psych::pairs.panels()
function, car::scatterplotMatrix() function, and the psych::cor.plot() function. The
same general theme and subsequent output are addressed with each function,
but presentation is slightly different, allowing a variety of selections for final
presentation based on preferences and needs.

8.6 Conduct the Statistical Analysis 287

The pairs() function is likely the first choice for production of a visual correlation
matrix. Of course, the visual representation of X:Y is very helpful as an adjunct to
the otherwise static Spearman’s rho coefficient statistics.

par(ask=TRUE)
pairs(~WeightLb+Bed+Standing+Walking, data=Pain.df, col="red",
main="Scatter Plot Matrix (SPLOM) of Weight and
Post-Procedure Pain at Different Levels of Mobility")

If it is difficult to visualize in the same output the scatter plot for X:Y and Y:X,
then merely use the upper.panel=NULL argument to generate an easier-to-visualize
output of the associations.

par(ask=TRUE)
pairs(~WeightLb+Bed+Standing+Walking, data=Pain.df,
col="black", pch=23, bg="red", # Adjust points
upper.panel=NULL, # Easy-to-Read Output
main="Scatter Plot Matrix (SPLOM) of Weight and
Post-Procedure Pain at Different Levels of Mobility")

The lattice::splom() function is also a good choice to show association, but be
sure to see how the presentation improves as the number of comparisons is set to a
limited number, or in the examples below as the number of comparisons is reduced
from six to three (Fig. 8.7).

par(ask=TRUE)
lattice::splom(~Pain.df[4:7], font=2, col="red",

main="Scatter Plot Matrix (SPLOM) of Weight and
Post-Procedure Pain at Different Levels of Mobility")
Scatter plots for variables 4, 5, 6, and 7 only

100

40
40

50
60

70
80

90
30

50
70

10
0

14
0

18
0

22
0

60
80

10
0

100 120 140 160 180 200 220

120 140 160 180 200 220 30 40 50 60 70 80 40 50 60 70 80 90 40

40
60

80
10

0

50 60 70

Walking

WeightLb

Scatter Plot Matrix (SPLOM) of Weight and
Post-Procedure Pain at Different Levels of Mobility

Standing

Bed

80 90 100

Fig. 8.7 Scatter plot matrix (SPLOM) showing only the lower panel

288 8 Spearman’s Rank-Difference Coefficient of Correlation

Following along with the different ways R supports the creation of a scatter plot
matrix (SPLOM), consider use of the psych::pairs.panels() function. The output is
as appealing as the other SPLOM-type functions, and it may be easier to read. The
output includes a histogram and density plot of each individual variable and then a
scatter plot of each X:Y comparison.

install.packages("psych")
library(psych) # Load the psych package.
help(package=psych) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

par(ask=TRUE)
psych::pairs.panels(Pain.df[4:7],
method="spearman", rug=TRUE, hist.col="red", cex.cor=0.5,
main="Scatter Plot Matrix (SPLOM) (Lower Diagonal) and
Spearman’s rho (Upper Diagonal) of Weight and Pain")

The car::scatterplotMatrix() function provides another view of a scatter plot
matrix. Again, there are many options and eventually individual preferences often
determine selected functions.

install.packages("car")
library(car) # Load the car package.
help(package=car) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

car::scatterplotMatrix(~ WeightLb+Bed+Standing+Walking,
main="Scatterplot Matrix (SPLOM) of Weight and
Post-Procedure Pain at Different Levels of Mobility",
transform=TRUE, data=Pain.df, smoother=loessLine,
legend.plot=TRUE, row1attop=TRUE)

As an interesting change from the traditional SPLOM, look at output from the
psych::cor.plot() function and how color gradients are used to signify the degree of
correlation (�1.0 to +1.0) and, subsequently, Spearman’s rho ranging from �1.0
(Dark Red) to 0.00 (White) to +1.00 (Dark Blue).

par(ask=TRUE)
psych::cor.plot(cor(Pain.df[4:7],
use="complete.obs", method="spearman"),
main="Color-Gradient Correlation Plot of Weight and
Post-Procedure Pain: Dark Red for Spearman’s rho = -1.0
to Dark Blue for Spearman’s rho = +1.0",
font.lab=2, font.axis=2)

From among the many R-based functions shown above, as well as other functions
that could have been presented, the X:Y scatter plot is well-established and there are
many ways to prepare and present a scatter plot. A fairly new approach, however, is
to use the bagplot to show the degree of association between two separate variables,

8.6 Conduct the Statistical Analysis 289

W
ei

gh
tL

b

Walking

Color-Gradient Correlaction Plot of Weight and
Post-Procedure Pain: Dark Red for Spearman’s rho = -1.0

to Dark Blue for Spearman’s rho = +1.0

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Standing

Bed

WeightLb

B
ed

S
ta

nd
in

g

W
al

ki
ng

Fig. 8.8 Color-gradient correlation plot of four continuous object variables using the
psych::cor.plot() function

X:Y. The bagplot is a bivariate boxplot, where 50 % of all points are contained in
the central bag. A fence surrounds the bag and from this fence the remaining points
radiate out, giving a view of distribution points and consequently extreme values, if
there are any (Fig. 8.8).

Compare the visualization of the association between Pain.df$Bed (X axis) by
Pain.df$Walking (Y axis) in a bagplot (below) as compared to the more traditional
X:Y scatter plot. If desired, this syntax could then be reused for the other variables,
largely just by altering variable names.

Give special notice to the way values for the X axis and Y axis are set.
For this set of graphics, xlim=range(Minimum:Maximum) was used instead of
xlim=c(Minimum, Maximum) with the same scheme used for the ylim. With R,
there are usually many ways to achieve the same aim, and this example provides
another way of setting axis limits, at least for this function.

install.packages("aplpack")
library(aplpack) # Load the aplpack package.
help(package=aplpack) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

savelwd <- par(lwd=2) # Heavy line
savefont <- par(font=2) # Bold
savecex.lab <- par(cex.lab=1.25) # Label
savecex.axis <- par(cex.axis=1.25) # Axis
par(ask=TRUE)
aplpack::bagplot(Pain.df$Bed, Pain.df$Walking, # X by Y
main="Bagplot of Pain at Bed Rest (X) by Pain When Walking (Y)
With Central Bag, Fence, and Distribution Points",
na.rm=TRUE, # Accommodate missing data

290 8 Spearman’s Rank-Difference Coefficient of Correlation

0

0
P

ai
n

W
he

n
W

al
ki

ng
20

40
60

80
10

0

20

Bagplot of Pain at Bed Rest (X) by Pain When Walking (Y)
With Central Bag, Fence, and Distribution Points

40
Pain at Bed Rest

60 80 100

Fig. 8.9 Bagplot of two continuous object variables using the aplpack::bagplot() function

xlim=range(0:100), ylim=range(0:100), # Range for each axis
xlab="Pain at Bed Rest", ylab="Pain When Walking",
show.outlier=TRUE, # At the R prompt, key
show.whiskers=TRUE, # help(bagplot) to see details for
show.looppoints=TRUE, # each argument, show.outlier,
show.bagpoints=TRUE, # show.whiskers,etc. Then, decide
show.loophull=TRUE, # which arguments meet individual
show.baghull=TRUE, # needs.
pch=c(22)) # Filled square red symbol

par(savelwd); par(savefont); par(savecex.lab)
par(savecex.axis)

Although it is useful to view Spearman’s rho correlation coefficients and
the many graphics shown in this lesson, as well as general themes for view-
ing correlation (i.e., association), it is still unknown if there are statistically
significant (p <= 0.05) correlations for these different comparisons. To inves-
tigate statistical significance, one method is to use the cor.test() function, with
method="spearman" as the selected argument for what type of correlation test to
use (Fig. 8.9).

cor.test(WeightLb, Bed, method="spearman", data=Pain.df)

Spearman’s rank correlation rho

data: WeightLb and Bed
S = 838018.65, p-value = 0.00000036
alternative hypothesis: true rho is not equal to 0
sample estimates:

rho
0.35223058

8.6 Conduct the Statistical Analysis 291

cor.test(WeightLb, Standing, method="spearman", data=Pain.df)

Spearman’s rank correlation rho

data: WeightLb and Standing
S = 733901.32, p-value = 0.0000000001934
alternative hypothesis: true rho is not equal to 0
sample estimates:

rho
0.43271092

cor.test(WeightLb, Walking, method="spearman", data=Pain.df)

Spearman’s rank correlation rho

data: WeightLb and Walking
S = 746148.19, p-value = 0.0000000005221
alternative hypothesis: true rho is not equal to 0
sample estimates:

rho
0.42324437

cor.test(Bed, Standing, method="spearman", data=Pain.df)

Spearman’s rank correlation rho

data: Bed and Standing
S = 206498.96, p-value < 0.00000000000000022
alternative hypothesis: true rho is not equal to 0
sample estimates:

rho
0.84038098

cor.test(Bed, Walking, method="spearman", data=Pain.df)

Spearman’s rank correlation rho

data: Bed and Walking
S = 172252.46, p-value < 0.00000000000000022
alternative hypothesis: true rho is not equal to 0
sample estimates:

rho
0.86685276

cor.test(Standing, Walking, method="spearman", data=Pain.df)

292 8 Spearman’s Rank-Difference Coefficient of Correlation

Spearman’s rank correlation rho

data: Standing and Walking
S = 134231.01, p-value < 0.00000000000000022
alternative hypothesis: true rho is not equal to 0
sample estimates:

rho
0.89624247

Each correlation has a calculated p-value of <= 0.05. As such, all comparisons
in this lesson exhibit statistically significant correlations (p <= 0.05).

Although the cor.test() function may be all that is needed to calculate Spearman’s
rho, explore the use of other functions, to look for consistency in outcomes
and whether the output is possibly more useful or easier to understand. The
pspearman::spearman.test() function, the fBasics::spearmanTest() function, and the
Hmisc::rcorr() function serve the same purpose of the cor.test() function, but observe
how format for the output is different for each function.

Ideally, the statistics in question (i.e., Spearman’s rho for this lesson) should be
equivalent, or at least in close parity for each function, typically depending on how
missing values are accommodated. To save space, the output of only a few samples
is shown below but the full set of syntax and data can be used to recreate all analyses
and figures.

install.packages("pspearman")
library(pspearman) # Load the pspearman package.
help(package=pspearman) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

pspearman::spearman.test(Pain.df$WeightLb, Pain.df$Bed)
pspearman::spearman.test(Pain.df$WeightLb, Pain.df$Standing)
pspearman::spearman.test(Pain.df$WeightLb, Pain.df$Walking)

pspearman::spearman.test(Pain.df$Bed, Pain.df$Standing)
pspearman::spearman.test(Pain.df$Bed, Pain.df$Walking)

pspearman::spearman.test(Pain.df$Standing, Pain.df$Walking)

Spearman’s rank correlation rho

data: Pain.df$Standing and Pain.df$Walking
S = 134231.01, p-value < 0.00000000000000022
alternative hypothesis: true rho is not equal to 0
sample estimates:

rho
0.89624247

Warning message:
In pspearman::spearman.test(Pain.df$Standing, Pain.df$Walking):
Cannot compute exact p-values with ties

8.6 Conduct the Statistical Analysis 293

fBasics::spearmanTest(Pain.df$Weight, Pain.df$Bed,
title = "Spearman’s rho for Pain.df: Weight v Bed Rest")

fBasics::spearmanTest(Pain.df$Weight, Pain.df$Standing,
title = "Spearman’s rho for Pain.df: Weight v Standing")

fBasics::spearmanTest(Pain.df$Weight, Pain.df$Walking,
title = "Spearman’s rho for Pain.df: Weight v Walking")

fBasics::spearmanTest(Pain.df$Bed, Pain.df$Standing,
title = "Spearman’s rho for Pain.df: Bed Rest v Standing")

fBasics::spearmanTest(Pain.df$Bed, Pain.df$Walking,
title = "Spearman’s rho for Pain.df: Bed Rest v Walking")

fBasics::spearmanTest(Pain.df$Standing, Pain.df$Walking,
title = "Spearman’s rho for Pain.df: Standing v Walking")

Title:
Spearman’s rho for Pain.df: Standing v Walking

Test Results:
SAMPLE ESTIMATES:
rho: 0.8962

STATISTIC:
S: 134231.0103

P VALUE:
Alternative Two-Sided: < 0.00000000000000022
Alternative Less: 1
Alternative Greater: < 0.00000000000000022

Cannot compute exact p-value with ties

Look at output from use of the Hmisc::rcorr() function. This function is quite
information rich, and it generates three types of output: (1) Spearman’s rho values
for each comparison of X:Y, (2) N for each X:Y comparison with missing values
taken out of the comparisons, and (3) X:Y p-values.

install.packages("Hmisc")
library(Hmisc) # Load the Hmisc package.
help(package=Hmisc) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

When viewing the syntax immediately below, be sure to review how the
dataframe must be accommodated as a matrix for the Hmisc::rcorr() function
to work. This requirement is easily accommodated by wrapping the as.matrix()
function around the dataframe name, as shown below.

Hmisc::rcorr(as.matrix(Pain.df[, 4:7], type=spearman))

294 8 Spearman’s Rank-Difference Coefficient of Correlation

WeightLb Bed Standing Walking
WeightLb 1.00 0.35 0.43 0.44
Bed 0.35 1.00 0.84 0.87
Standing 0.43 0.84 1.00 0.90
Walking 0.44 0.87 0.90 1.00

n
WeightLb Bed Standing Walking

WeightLb 199 198 198 198
Bed 198 199 198 198
Standing 198 198 199 198
Walking 198 198 198 199

P
WeightLb Bed Standing Walking

WeightLb 0 0 0
Bed 0 0 0
Standing 0 0 0
Walking 0 0 0

Output from the Hmisc::rcorr() function is somewhat brief, but that can be
viewed as an advantage when faced with overly-detailed output which is the case
with some R functions.

8.7 Summary

This lesson was focused on measures of association, specifically using data from a
health setting. Subject weights were available, as well as post-procedure self-ratings
of pain at three levels of movement on a continuum of mobility: bed rest, standing
immediately after bed rest, and walking after standing.

Various R-based functions were used and the general outcome of how weight
and pain by continuum of mobility are associated with each other is best presented
in a correlation matrix, based on Spearman’s rho since the data were viewed from a
nonparametric perspective:

WeightLb Bed Standing Walking
WeightLb 1.00000000 0.35223058 0.43271092 0.42324437
Bed 0.35223058 1.00000000 0.84038098 0.86685276
Standing 0.43271092 0.84038098 1.00000000 0.89624247
Walking 0.42324437 0.86685276 0.89624247 1.00000000

Based on this correlation matrix and using general terms related to correlation,
it can be said that there is a moderate association between weight and self-rating of
pain along a continuum of mobility. Spearman’s rho coefficients of correlation for
weight and pain were approximately in the rho = 0.40 range, which is viewed as a
moderate measure of correlation.

8.8 Addendum: Kendall’s Tau 295

The same correlation matrix provided evidence that there was a strong measure
of association for pain along the continuum of mobility. Spearman’s rho coefficients
of correlation for the different times when pain was self-rated were approximately
in the rho = 0.85 range, which is viewed as a strong measure of correlation.

Further use of R-based functions provided confirmation that there was a statisti-
cally significant (p <= 0.05) correlation for all X:Y comparisons. The graphics
and statistics provided a great deal of basic information. However, attention should
be given to outcomes of the many X:Y correlations (based on Spearman’s rho) to
gain a sense of association. When considering any general trends be careful to recall
the constant reminder that correlation or association does not equate to causation. X
may be associated with Y, but by no means does that mean that X causes Y.

For those with continued interest in applications of the dataset used in this lesson,
give attention to analyses by gender (Female v Male) and by Protocol (A, B, C, D,
and E):

• Are there differences in self-ratings of pain by the two genders?
• Are there differences in self-ratings of pain by protocol?

Going beyond this broad level of comparison, those who wish to examine the
data may want to see if outcomes are consistent for all breakout comparisons. As
an example, imagine that it is determined that there is a statistically significant
difference (p <= 0.05) in the self-rating of pain at bed rest by the two genders.

• What is the practical significance of this finding?
• Is it then necessary to determine if there are differences between the two genders

for pain when standing, for pain when walking?
• Then, to examine outcomes with even more detail, are any observed differences

by gender consistent across all five protocols or are there differences here, too?

These additional questions are all interesting, although beyond the immediate
purpose of this lesson. Yet, these questions demonstrate how research in the
biological sciences tends to lead to new questions that need attention.

8.8 Addendum: Kendall’s Tau

Spearman’s rho is well established and it is generally the first choice for investiga-
tions into correlation or association for nonparametric data. However, Kendall’s tau
is another test that should also receive some degree of attention.

In the brief demonstration of Kendall’s tau, note especially the warning about
tied parings and the difficulty of calculating exact p values when there are tied pairs
(e.g., a subject that has the same value for both Bed and Standing).

Consider the output for comparisons of WeightLb, Bed, Standing, and Walking
from the perspective of both Spearman’s rho and Kendall’s tau, using the cor()
function but with different arguments for the cor() function: (1) method="spearman"
and (2) method="kendall".

296 8 Spearman’s Rank-Difference Coefficient of Correlation

cor(Pain.df[, 4:7], use="pairwise.complete.obs",
method="spearman")

WeightLb Bed Standing Walking
WeightLb 1.00000000 0.35223058 0.43271092 0.42324437
Bed 0.35223058 1.00000000 0.84038098 0.86685276
Standing 0.43271092 0.84038098 1.00000000 0.89624247
Walking 0.42324437 0.86685276 0.89624247 1.00000000

cor(Pain.df[, 4:7], use="pairwise.complete.obs",
method="kendall")

WeightLb Bed Standing Walking
WeightLb 1.00000000 0.22551955 0.27805696 0.26886907
Bed 0.22551955 1.00000000 0.64429919 0.67910798
Standing 0.27805696 0.64429919 1.00000000 0.71752596
Walking 0.26886907 0.67910798 0.71752596 1.00000000

Spearman’s rho and Kendall’s tau are both nonparametric (i.e., the focus is on
ranks) tests that address correlation (i.e, association). Correlation coefficients range
from �1.0 (perfect negative correlation) to +1.0 (perfect positive correlation).
When correlation coefficients are generated by the two tests, Kendall’s tau corre-
lation coefficients are usually in parity, but of lesser value, than Spearman’s rho
correlation coefficients.

It is beyond the purpose of this lesson discuss the algorithms associated with
the two tests and when one should be selected over the other. For now, know
that Spearman’s rho is usually the first choice for correlation analyses involving
nonparametric data.

As one last view on the use of Kendall’s tau, use the psych::corr.test() function,
but now with method set to kendall instead of method set to spearman.

psych::corr.test(Pain.df[, 4:7], use="pairwise",
method="kendall", alpha=.05)

Correlation matrix
WeightLb Bed Standing Walking

WeightLb 1.00 0.23 0.28 0.27
Bed 0.23 1.00 0.64 0.68
Standing 0.28 0.64 1.00 0.72
Walking 0.27 0.68 0.72 1.00
Sample Size

WeightLb Bed Standing Walking
WeightLb 199 198 198 198
Bed 198 199 198 198
Standing 198 198 199 198
Walking 198 198 198 199

Probability values

8.9 Prepare to Exit, Save, and Later Retrieve This R Session 297

WeightLb Bed Standing Walking
WeightLb 0 0 0 0
Bed 0 0 0 0
Standing 0 0 0 0
Walking 0 0 0 0

Notice how the correlation matrix parallels what was generated using the cor()
function, subject only to rounding. The probability values are all shown as 0, again
confirming that all correlations are statistically significant (p <= 0.05).

8.9 Prepare to Exit, Save, and Later Retrieve This R Session

getwd() # Identify the current working directory.
ls() # List all objects in the working

directory.
ls.str() # List all objects, with finite detail.
list.files() # List files at the PC directory.

save.image("R_Lesson_Spearman.rdata")

getwd() # Identify the current working directory.
ls() # List all objects in the working

directory.
ls.str() # List all objects, with finite detail.
list.files() # List files at the PC directory.

alarm() # Alarm, notice of upcoming action.
q() # Quit this session.

Prepare for Save workspace image? query.

Use the R Graphical User Interface (GUI) to load the saved rdata file: File ->
Load Workspace. Otherwise, use the load() function, keying the full pathname, to
load the .rdata file and retrieve the session.

Recall, however, that it may be just as useful to simply use the .R script file
(typically saved is a .txt ASCII-type file) and recreate the analyses and graphics,
provided the data files remain available.

Chapter 9
Other Nonparametric Tests for the Biological
Sciences

Abstract The purpose of this lesson is to highlight a few other nonparametric
tests that may be of interest to those who work in the biological sciences. These
additional nonparametric tests range in complexity and use. The Binomial Test can
be fairly simple in structure and application. Other nonparametric tests, such as
Binomial Logistic Regression, can become quite complex both in the way data are
organized and in the way results are interpreted. This lesson ends with the reminder
that nonparamteric tests are by no means less desirable than tests associated with
parametric analyses. Quite the opposite, nonparametric tests have a valuable role
in the use, analysis, and interpretation of real-world data—data that do not always
meet the conditions needed for parametric analyses but data that still have value.

Keywords Analysis of variance (ANOVA) • Association • Bar plot (stacked,
side-by-side) • Beta values • Binomial logistic regression • Binomial probabil-
ity • Binomial test • Box plot • Code book • Comma-separated values (.csv)
• Conditional density • Continuous scale • Correlation • Correlation coefficient
• Cumulative probability • Density plot • Descriptive statistics • Distribution
-free • Factor • Frequency distribution • Histogram • Interval • Kolmogorov-
Smirnov (K-S) two-sample test • Mean • Median • Mode • Nominal • Nonpara-
metric • Normal distribution • Null hypothesis • Odds • Odds ratio • Ordinal
• Parametric • Percentile • Predictor variable • Probability (p-value) • Quantile-
Quantile (QQ, Q-Q) • STEAM (Science, Technology, Engineering, Art C
Design, and Mathematics) • STEM (Science, Technology, Engineering, and
Mathematics) • Scatter plot • Statistical significance • Walsh test for two related
samples

A few different nonparametric tests are briefly covered in this concluding lesson.
The tests range in complexity from fairly simple to more than complex. Final
thoughts on future applications of nonparametric statistics are then offered. This
lesson ends with contact information for the two authors and pointers on where to
find the many .csv datasets used in this text.

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-3-319-
30634-6_9) contains supplementary material, which is available to authorized users.

© Springer International Publishing Switzerland 2016
T.W. MacFarland, J.M. Yates, Introduction to Nonparametric Statistics
for the Biological Sciences Using R, DOI 10.1007/978-3-319-30634-6_9

299

http://dx.doi.org/10.1007/978-3-319-30634-6_9
http://dx.doi.org/10.1007/978-3-319-30634-6_9

300 9 Other Nonparametric Tests for the Biological Sciences

9.1 Binomial Test

Background: The data for this lesson on the Binomial Test come from a feeding
experiment with 50 cattle. The subjects were temporarily confined in separate
holding pens during feeding, largely to limit distractions from other cattle.

As the test was organized, the 50 confined cattle were given a choice of two
formulated feeds. The two feeds were judged to be in general parity in terms of
nutritional value, appearance, and palatability:

• Feed A was a standard feed mixture that met all nutritional needs but Feed A also
had an added supplement. As the supplement was formulated, it was suspected
that Feed A would have a better smell and taste and would be more appealing to
the cattle.

• Feed B was also a standard feed mixture that met all nutritional needs. However,
Feed B did not have an added supplement.

While in individual temporary holding pens, the 50 cattle were offered the two
feeds in two separate stations, one station holding Feed A and the other station
holding Feed B. To further differentiate between the two choices, the two feeding
stations were at opposite ends of the holding pen, so that subjects had to purposely
move to either of the two separate stations and could not eat from both stations at
the same time.

The cattle were then observed to see which of the two feeds they completed first,
Feed A or Feed B. The assumption here is that the feed that is completed first is
the preferred feed. For the purpose of this experiment, it is assumed that each feed
had an equal chance of being eaten first, given that the cattle had a binary choice of
finishing Feed A first or Feed B first.

Data: After the experiment, it was observed that 38 subjects out of 50 completed
Feed A first and 12 subjects out of 50 completed Feed B first. Using terms (i.e.,
success, trial(s), probability of success) associated with the Binomial Test:

• 38 is the number of successes (i.e., cattle that finished the experimental Feed A
first)

• 50 is the number of trials
• p <= 0.5 is the hypothesized or theoretical probability of success

Note how the term success should be viewed as a reserved term in this binomial
(e.g., Go/Stop, Live/Die, Success/Failure, True/False, Yes/No, etc.) scenario and the
term success is nominal.

Null Hypothesis (Ho): Given two choices for preferred feeding selection, Feed
A or Feed B, there is no statistically significant difference (p <= 0.05) in the
number of confined cattle that finished Feed A (a feed that has an added supplement
with ostensibly improved smell and taste) first and the number of confined cattle
that finished Feed B (a feed that does not have an added supplement) first.

9.1 Binomial Test 301

As this binomial feeding experiment is structured, cattle have free choice and
they can either finish Feed A first or they can finish Feed B first, resulting in a
theoretical 50/50 view toward selection of the two choices. For this experiment:

• 38 cattle finished Feed A first
• 12 cattle finished Feed B first

Before any data are used, it is best to be sure that all directories and files are
organized and placed where desired. This action will apply to all analyses in this
lesson.

Start a new R session and then attend to beginning actions such as removing
unwanted files from prior work, declaring the working directory, etc.

###
Housekeeping Use for All Analyses
###
date() # Current system time and date.
R.version.string # R version and version release date.
ls() # List all objects in the working

directory.
rm(list = ls()) # CAUTION: Remove all files in the working

directory. If this action is not desired,
use the rm() function one-by-one to remove
the objects that are not needed.

ls.str() # List all objects, with finite detail.
getwd() # Identify the current working directory.
setwd("F:/R_Nonparametric")

Set to a new working directory.
Note the single forward slash and double
quotes.
This new directory should be the directory
where the data file is located, otherwise
the data file will not be found.

getwd() # Confirm the working directory.
list.files() # List files at the PC directory.
###

Visualize the Data: Use the barplot() function to show where 38 (success) of 50
(trials) shows as probability under the Null Hypothesis:

trials <- 50 # N or number of trials
prob <- 0.5 # Declared probability
x <- seq(0, trials) # sequence, to trials
y <- dbinom(x, size=trials, p=prob)# y vector of heights

par(ask=TRUE)
barplot(height=y, names.arg=x,
main="Probability of Success in a Binomial Scenario:
Feed A Selected First",
xlab="Ate Feed A First",
ylab="Probability",
cex.lab=1.25, col="red", font=2)

302 9 Other Nonparametric Tests for the Biological Sciences

0

Probability of Success in a Binomial Scenario:
Feed A Selected First

Ate Feed A First

P
ro

ba
bi

lit
y

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

2 4 6 8 10 12 14 16 18 20 30 5040 42 44 46 4832 34 36 3822 24 26 28

Fig. 9.1 Histogram of binomial probability

Statistical Analysis: The binom.test() function should be sufficient to meet the
needs of this study. The arguments (and their values) that go along with the
binom.test() function are (Fig. 9.1):

• x (38) - number of successes
• n (50) - number of trials
• p (0.5) - hypothesized or theoretical probability of success
• alternative - selection for the alternative hypothesis: "two.sided", "greater" or

"less"
• conf.level - confidence level

binom.test(x=38, n=50, p=0.5, alternative="two.sided",
conf.level=0.95)

Exact binomial test

data: 38 and 50
number of successes = 38, number of trials = 50,
p-value = 0.0003059

alternative hypothesis: true probability of success is
not equal to 0.5

95 percent confidence interval:
0.6183093 0.8693901

sample estimates:
probability of success

0.76

9.2 Walsh Test for Two Related Samples of Interval Data 303

Summary: The calculated p-value is 0.0003059 which is certainly less than the
criterion p-value of p <= 0.05. The Null Hypothesis is rejected.1

Based on this finding, there is a statistically significant difference (p <= 0.05)
in the number of cattle kept in confinement that finished first a feed that had an added
supplement that may improve smell and taste (Feed A) as compared to the number
of cattle kept in confinement that finished first a feed that did not have an added
supplement (Feed B).

• Finished Feed A first = 38/50 = 76 percent selection
• Finished Feed B first = 12/50 = 24 percent selection

Given a 50/50 (i.e., 50 % theoretical or hypothesized probability for this binomial
scenario) view toward selection, the Binomial Test confirms that cattle finished Feed
A first at a statistically significant higher rate of selection over Feed B.

There was a statistically significant (p <= 0.05) preference for Feed A over
Feed B. The importance of applying the Binomial Test is that there is now initial
empirical confirmation that the addition of the supplement (i.e., Feed A) was
appealing, and, with proper management practices, it may increase the preference
for cattle to eat their feed more readily and in turn help meet management goals for
weight gain while avoiding feed waste and spoilage. Because the Binomial Test is
a fairly simple test, far more research would be needed before expensive changes
would ever be implemented in this livestock management scenario.

9.2 Walsh Test for Two Related Samples of Interval Data

Background: The Walsh Test for Two Related Samples of Interval Data (i.e. Walsh
Test) is a nonparametric test used to examine whether there is a difference between
two possibly related samples, typically organized as matched-pairs (i.e., related
samples). The Walsh Test uses differences (d) between paired data, where:

• It is assumed that the measured data are interval.
• It is assumed that the data exhibit symmetrical distribution, such that the mean

and the median accurately represent central tendency.

With the Walsh Test, unlike Student’s t-Test for Matched Pairs, the differences
between x and y (or, for this lesson, between Pretest and Posttest) do not have to
be from normal populations. And, unlike the nonparametric Wilcoxon Matched-
Pairs Signed Ranks Test which is based on the use of ordinal data, the Walsh Test
is dependent on interval data. Consider these requirements when recalling how
researchers must know the nature of their data before any statistical analyses are
attempted.

1It is not uncommon to see the expression The Null Hypothesis is not accepted instead of the
expression The Null Hypothesis is rejected. Although there may be no practical difference between
these two expressions, it is important to those who have a keen interest in the heuristics of statistics.

304 9 Other Nonparametric Tests for the Biological Sciences

Data and Codebook: For this lesson assume that the data come from 15 separate
subjects (Subject A to Subject O). Each subject undertakes a pretest, receives
some type of treatment, and then undertakes a posttest. Because the data are from
15 subjects only, the difference (d) between pretest results and posttest results
(Pr-PoDd) are easily hand-calculated, if needed.

For the purpose of this lesson, is not necessary to know the nature of the
biological organism representing the subjects, pretest, treatment, or posttest. It is
only necessary to know that the data are considered interval and that the data are
distributed in a symmetrical manner. However, because normal distribution is not
assumed, the nonparametric Walsh Test is selected using difference scores with a
focus on the median, which should ostensibly be in parity with the mean.

Create an object called Change.df. The object Change.df will be a dataframe, as
indicated by the enumerated .df extension to the object name. This object will rep-
resent the output of applying the read.table() function against the comma-separated
values file called Change.csv. Note the arguments used with the read.table()
function, showing that there is a header with descriptive variable names (header
D TRUE) and that the separator between fields is a comma (sep D ",").

Change.df <- read.table (file =
"Change.csv",
header = TRUE,
sep = ",") # Import the .csv file

getwd() # Identify the working directory
ls() # List objects
attach(Change.df) # Attach the data, for later use
str(Change.df) # Identify structure
nrow(Change.df) # List the number of rows
ncol(Change.df) # List the number of columns
dim(Change.df) # Dimensions of the dataframe
names(Change.df) # Identify names
colnames(Change.df) # Show column names
rownames(Change.df) # Show row names
head(Change.df) # Show the head
tail(Change.df) # Show the tail
Change.df # Show the entire dataframe
summary(Change.df) # Summary statistics

Change.df$S <- as.factor(Change.df$S)
Change.df$Pr <- as.numeric(Change.df$Pr)
Change.df$Po <- as.numeric(Change.df$Po)
Change.df$d <- as.numeric(Change.df$d)

attach(Change.df)
Change.df
str(Change.df)

9.2 Walsh Test for Two Related Samples of Interval Data 305

’data.frame’: 15 obs. of 4 variables:
$ S : Factor w/ 15 levels "A","B","C","D",..: 1 2 3 4 5 6
$ Pr: num 4 4 3 5 2 4 2 2 4 4 ...
$ Po: num 2 2 1 3 3 2 3 1 2 3 ...
$ d : num 2 2 2 2 -1 2 -1 1 2 1 ...

##
Code Book for Change.df
#
S Subject Factor A to O
#
Pr Pretest Numeric 0 to 5
#
Po Posttest Numeric 0 to 5
#
d Difference Numeric Difference between Pr and Po
##

Null Hypothesis (Ho): The median difference between the Pretest and Posttest is
zero. That is to say, subjects will perform on the pretest and posttest equally well
(p <= 0.05).

Visualize the Data: Display a density plot for Change.df$Pr (Pretest) and
Change.df$Po (Posttest) in the same figure, to gain a sense of data distribution
for each. To achieve this aim, create an object that represents density statistics for
the Pretest (Pr) and another object that represents density statistics for the Posttest
(Po). These new objects of density-type statistics will be used to prepare a density
plot figure for both object variables, Pr and Po.

Pr_density <- density(Pr)
Prepare an object of density() function statistics
Pr_density

Call:
density.default(x = Pr)

Data: Pr (15 obs.); Bandwidth ’bw’ = 0.6818

x y
Min. :-1.0453 Min. :0.0008807
1st Qu.: 0.9773 1st Qu.:0.0262478
Median : 3.0000 Median :0.1268527
Mean : 3.0000 Mean :0.1234355
3rd Qu.: 5.0227 3rd Qu.:0.2058566
Max. : 7.0453 Max. :0.2661030

Po_density <- density(Po)
Prepare an object of density() function statistics
Po_density

306 9 Other Nonparametric Tests for the Biological Sciences

0

0.
0

0.
1

0.
2

0.
3

0.
4

2 4 6 8
Range

Overlap Density Plots of Pretest and Posttest
D

en
si

ty

Pretest Posttest

Fig. 9.2 Comparative density plots with color-coded legend

Call:
density.default(x = Po)

Data: Po (15 obs.); Bandwidth ’bw’ = 0.3908

x y
Min. :-1.1723 Min. :0.000766
1st Qu.: 0.4138 1st Qu.:0.056858
Median : 2.0000 Median :0.142094
Mean : 2.0000 Mean :0.157419
3rd Qu.: 3.5862 3rd Qu.:0.283889
Max. : 5.1723 Max. :0.359178

par(ask=TRUE)
plot(range(Pr_density$x, Po_density$x),
range(Pr_density$y, Po_density$y),
main="Overlap Density Plots of Pretest and Posttest",
xlab="Range", ylab="Density",
cex.axis=1.25, cex.lab=1.25, font=2,
xlim=c(0,8), ylim=c(0.0,0.40),
type="l", lty=2, lwd=2)

points(Pr_density, col="red", lwd=4)
points(Po_density, col="blue", lwd=4)
legend("topleft",
legend=c("Pretest", "Posttest"),
col=c("red", "blue"),
ncol=2, cex=1.25, lwd=4,
text.font=2, text.col=c("red", "blue"))
Use the previously established density statistics
to construct the two density plots in this figure.

9.2 Walsh Test for Two Related Samples of Interval Data 307

Descriptive Statistics: Given that this lesson is based on two simple sets of data,
organized as Pretest scores and Posttest scores, the needed descriptive statistics are
generally simple and it is not necessary to go into extensive detail (Fig. 9.2).

median(Change.df$Pr)

[1] 3

mean(Change.df$Pr); sd(Change.df$Pr); length(Change.df$Pr)

[1] 3.133333
[1] 1.302013
[1] 15

median(Change.df$Po)

[1] 2

mean(Change.df$Po); sd(Change.df$Po); length(Change.df$Po)

[1] 2.333333
[1] 1.112697
[1] 15

Statistical Analysis: The Walsh Test for Two Related Samples of Interval Data
was purposely selected for this lesson to show one of the challenges of computer-
mediated statistical analyses. That is to say, the Walsh Test is only infrequently used
and there are no known R-based functions currently existing in any packages for
implementation of this test. Reacting to this issue, it may be best to substitute both
the nonparametric wilcox.test() function and the parametric t.test() function, both
for paired data, to examine trends and outcomes, with the alternate being hand-
calculation of the Walsh Test:

wilcox.test(Change.df$Pr, Change.df$Po, paired=TRUE)
Use wilcox.test() as a substitute for the Walsh Test

Wilcoxon signed rank test with continuity correction

data: Change.df$Pr and Change.df$Po
V = 97.5, p-value = 0.03051
alternative hypothesis: true location shift is not equal to 0

t.test(Change.df$Pr, Change.df$Po, paired=TRUE)
Use t.test() as a substitute for the Walsh Test

Paired t-test

data: Change.df$Pr and Change.df$Po
t = 2.2563, df = 14, p-value = 0.04057
alternative hypothesis: true difference in means is not equal
to 0

308 9 Other Nonparametric Tests for the Biological Sciences

Summary: By applying the nonparametric wilcox.test() function and the paramet-
ric t.test() function against the data, as substitutes for the Walsh Test, the same
general trend was observed in that there is a statistically significant difference
(p <= 0.05) between the Pretest and the Posttest:

• p-value = 0.03051 using the wilcox.test() function, which is less than
p <= 0.05.

• p-value = 0.04057 using the t.test() function, which is less than p <= 0.05.2

These tests in many ways go along with simple observation of the descriptive
statistics, where the Pretest median was 3 and the Posttest median was 2. Using all
available graphical images, statistical resources, and related outcomes, it can be said
with a fair degree of assurance that Pretest scores are greater than Posttest scores and
that the difference is due to true difference and not due to chance.

It can also be said that there is a need for a R-based Walsh Test function.
Hopefully a function meeting this need will soon be available, due to the open-
source nature of R.

9.3 Kolmogorov-Smirnov (K-S) Two-Sample Test

Background: The Kolmogorov-Smirnov (K-S) Two-Sample Test is a nonparamet-
ric test used to determine if two independent samples are taken from either the same
population or from two populations that have the same distribution pattern. The K-S
Test is sensitive to distribution differences, either differences in central tendency or
dispersion. The focus here is on two separate sets of data.

Ordinal data are used with the K-S Two-Sample Test and this test is especially
useful with small samples, such as when there are fewer than 40 subjects in each
of the two samples. The K-S Test is especially useful for when possible differences
exist between the two sets of data due more to dispersion than differences in central
tendency. That is to say, two sets of data can have the same median and mean, but
because of differences in distribution patterns the K-S Test will help discern if there
are statistically significant differences between the two datasets.

Data and Codebook: This lesson is related to an experiment on a colostrum
substitute, largely to determine if there is a difference in the weight of 3-month-
old female dairy calves between those calves that received colostrum soon after
birth and counterpart calves that instead received a colostrum substitute. There is a
known concern for calves that do not receive colostrum soon after birth and their
risk for infections, possibly placing a future limit on vigor and weight gain. It is

2For these two tests, there is a statistically significant difference at p <= 0.05, but does this
finding apply to p <= 0.01, given how p-values or 0.03 and 0.04 are less than 0.05 but more
than 0.01? This example serves as a reminder on why it is important to provide calculated p-values.
It is insufficient to only state that there is (or is not) a statistically significant difference.

9.3 Kolmogorov-Smirnov (K-S) Two-Sample Test 309

valuable to the dairy industry to have an effective substitute for colostrum-deprived
calves and this analysis begins to addresses that concern.

Subjects: There are 30 calves in this experiment and all calves are of the same
breed. All 30 calves have different mothers. All 30 calves in this experiment
have the same father, which is made possible through artificial insemination (AI).
These two actions (i.e., same breed for mother and father and same father for all
calves) may limit, to some degree, possible differences in subject weights due to
genetic variability.

Methods: The control group (WeightLb3MonthCalfColostrum, N = 15
calves) received colostrum from their mothers. The experimental group
(WeightLb3MonthCalfSubstitute, N = 15 calves) were denied feeding access
to their mothers immediately after birth and were instead provided a colostrum
substitute. Otherwise, the 30 calves were all housed in proximity to each
other, experienced the same feeding regime, and experienced the same set of
management practices and environmental factors.

Data Collection: Ear tags were used for identification purposes and approxi-
mately 90 days after birth all calves were weighed, which was recorded using
pounds (Lbs) as the measuring unit. Although the scale was calibrated, it is
known that the exact weight of excited and moving calves is difficult to obtain,
and, in turn, the weights were viewed as ordinal, not interval, data—due to
fluctuations during the weighing process. Further, it was noticed that there may
be concerns about parity in distribution patterns for weights of the two groups of
calves.

Given concerns about the ordinal nature of the data and uncertain data distribu-
tion patterns, it is best to use the Kolmogorov-Smirnov (K-S) Two-Sample Test to
determine if there are statistically significant (p <= 0.05) differences between
the control group (received colostrum) and the experimental group (received a
colostrum substitute). Weight (pounds, Lbs) at 3 months or approximately 90 days
after birth is the measured datum for comparative purposes.

WeightLbColostrum <- c(301, 308, 318, 325, 305, 311, 315,
320, 299, 319, 313, 305, 307, 317, 296)

summary(WeightLbColostrum)

Min. 1st Qu. Median Mean 3rd Qu. Max.
296 305 311 311 318 325

WeightLbSubstitute <- c(287, 299, 286, 297, 298, 279, 281,
309, 286, 276, 279, 294, 302, 292, 300)

summary(WeightLbSubstitute)

Min. 1st Qu. Median Mean 3rd Qu. Max.
276 284 292 291 298 309

310 9 Other Nonparametric Tests for the Biological Sciences

240 260

0.
00

0.
01

0.
02

0.
03

Density Plot of Control: Received Colostrum
0.

04
D

en
si

ty

280
Weight - Pounds

300 320 340 240 260

0.
00

0.
01

0.
02

0.
03

Density Plot of Experimental: Colostrum Substitute

0.
04

D
en

si
ty

280
Weight - Pounds

300 320 340

Fig. 9.3 Simple comparison of two side-by-side density plots

##
Code Book for Calves.df
#
WeightLb3MonthCalfColostrum Ordinal
Weight (Lbs) of calf that received colostrum
#
WeightLb3MonthCalfSubstitute Ordinal
Weight (Lbs) of calf that received substitute
##

Null Hypothesis (Ho): There is no statistically significant difference
(p <= 0.05) in weight at 3 months between calves that received colostrum
soon after birth and counterpart calves that instead received a colostrum substitute
soon after birth.

Visualize the Data: A side-by-side density curve of the two variables is perhaps
the best way to both visualize and compare the data, calf weights at 90 days after
birth.

par(ask=TRUE)
par(mfrow=c(1,2)) # 1 Row by 2 Columns
plot(density(WeightLbColostrum, na.rm=TRUE),
xlim=c(240,350), ylim=c(0,0.04),
main="Density Plot of Control: Received Colostrum",
xlab="Weight - Pounds",
lwd=6, col="red", font.axis=2, font.lab=2)

plot(density(WeightLbSubstitute, na.rm=TRUE),
xlim=c(240,350), ylim=c(0,0.04),
main="Density Plot of Experimental: Colostrum Substitute",
xlab="Weight - Pounds",
lwd=6, col="red", font.axis=2, font.lab=2)

9.3 Kolmogorov-Smirnov (K-S) Two-Sample Test 311

Descriptive Statistics: The data for this lesson are currently found in two separate
variables, and they are not part of a common object. Combine the two variables into
one common object, as a dataframe, and then apply the pastecs::stat.desc() function
to produce a detailed, but easy-to-read, output of descriptive statistics (Fig. 9.3).

Calves.df <- data.frame(cbind(
WeightLbColostrum, WeightLbSubstitute))
Wrap the data.frame() function around the cbind() function
to put the two separate object variables into one common
object---organized as a dataframe.

Calves.df

install.packages("pastecs")
library(pastecs) # Load the pastecs package.
help(package=pastecs) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

options(scipen=80, digits=4)
Prevent scientific notation and keep printouts to a
reasonable width

pastecs::stat.desc(Calves.df)

WeightLbColostrum WeightLbSubstitute
nbr.val 15.00000 15.00000
nbr.null 0.00000 0.00000
nbr.na 0.00000 0.00000
min 296.00000 276.00000
max 325.00000 309.00000
range 29.00000 33.00000
sum 4659.00000 4365.00000
median 311.00000 292.00000
mean 310.60000 291.00000
SE.mean 2.19263 2.54858
CI.mean.0.95 4.70272 5.46615
var 72.11429 97.42857
std.dev 8.49201 9.87059
coef.var 0.02734 0.03392

Statistical Analysis: A brief review of the previously shown density plots as well
as the descriptive statistics provides a sense that there may be a difference in weight
at 3 months between those calves that received colostrum and those calves that
instead received a colostrum substitute. Of course, an appropriate statistical analysis
is needed to provide assurance that these casual observations are indeed the case. For
this lesson, the Kolmogorov-Smirnov (K-S) Two-Sample Test is judged the most
appropriate test, as applied by use of the ks.test() function.

312 9 Other Nonparametric Tests for the Biological Sciences

ks.test(Calves.df$WeightLbColostrum,
Calves.df$WeightLbSubstitute,
alternative="two.sided", exact=TRUE)

Two-sample Kolmogorov-Smirnov test

data: Calves.df$WeightLbColostrum and
Calves.df$WeightLbSubstitute

D = 0.7333, p-value = 0.0006277
alternative hypothesis: two-sided

Summary: Regarding weights for the two sets of calves, the calculated p-value is
0.0006277, suggesting statistical difference (p <= 0.05):

• Median weight = 311 pounds—Colostrum
• Median weight = 292 pounds—Colostrum Substitute

There is a statistically significant difference in weights for the two sets of calves.
The calculated p-value was 0.0006277 which is less than the criterion p-value of <=
0.05.

For this one-time study, it was evident that calves that received colostrum soon
after birth weighed more at 3 months than those calves that did not receive colostrum
soon after birth. Given the economics of a dairy operation and within the limits
of this one-time study, it is suggested that colostrum is associated with increased
weights after calving and based on prior experience, increased weights early-on are
associated with heightened profits. The colostrum substitute for this study did not
result in weight gains in parity with natural access to colostrum soon after birth.

9.4 Binomial Logistic Regression

Background: Binomial (i.e., Binary) Logistic Regression is presented in this
lesson as a nonparametric test in that the variable of immediate attention is nominal,
with a binary set of outcomes:

• Absent/Present
• Correct/Incorrect
• Dead/Alive
• Fail/Pass
• False/True
• No/Yes
• Off/On

A binary outcome is not measured on any type of continuum, neither as an ordinal
value nor as an interval value.

9.4 Binomial Logistic Regression 313

Past behavior is the best predictor of future behavior. This statement applies to the
biological sciences as well as the social sciences. Regression is used with existing
data to make predictions of the future. The unique nature of Binomial Logistic
Regression is that it can be used to determine the odds ratio of a future binary
outcome.

Data and Codebook: This lesson is focused on a chemical application trial, where
an agricultural crop grown in a greenhouse was subjected to the application of an
experimental chemical. The term Subject represents an individual plant growing in
an individual pot, with all Subjects growing in the same greenhouse:

• Overcrowding is not an issue since the plants (i.e., Subjects) will only be
monitored for a few weeks and there is sufficient space in the greenhouse.

• All plants are of the same variety and strain, limiting genetic variability.
• All plants are grown in the same greenhouse under controlled conditions, limiting

environmental (e.g., sunlight, temperature, nutrients, water availability, humidity,
etc.) variability.

A few days prior to the start of this study, a team of greenhouse workers prepared
3,500 pots with a dry growing media and placed the pots on raised beds in a
greenhouse. Early in the morning on the 1st day of the study a team of greenhouse
workers placed one seed of the type associated with the study in each pot. By noon
planting had been completed and overhead sprinklers were used to wet the pots and
begin germination. Favorable growing conditions were maintained throughout the
study.

On the 17th day of the study the few pots where the seed did not germinate were
culled and removed from the greenhouse. It was observed that germination was
above 90 %, which was judged acceptable for this study.

On the 18th day of the study, a team of research assistants, under the lead of the
principal investigator, made two measurements of the live plants:

• M1 (i.e., Measure 1) is based on a 100–200 scale.
• M2 (i.e., Measure 2) is based on a 2.00–4.00 scale, with precision stated to two

places to the right of the decimal point.

Due to rigorous training of the research assistants and prior estimates of
reliability and validity by the principal investigator, the scales and processes for
M1 and M2 measurements support the view that the data for these two variables are
interval and not ordinal.

At the beginning of the 19th day of the study, the entire collection of plants
in the greenhouse was subjected to an otherwise unidentified chemical treatment.
Favorable growing conditions were continued. On the 22nd day of the study,
the principal investigator and the team of research assistants went back to the
greenhouse, and, based on prior training, judged whether individual plants had died
or survived.

• If the plant in an individual pot was dead, then the Subject received a numerical
code of 0, or Dead.

314 9 Other Nonparametric Tests for the Biological Sciences

• If the plant in an individual pot was alive, then the Subject received a numerical
code of 1, or Survive.

Note how the was no continuum of measurement for Dead or Survive. It was
judged that the team of research assistants had received sufficient training and
instead of a continuum, a binary nominal classification was used, expressed in
numerical format for quick data entry: 0 (i.e., Dead) or 1 (i.e., Survive).

##
Code Book for DeadSurvive.df
#
Subject .. Nominal S_1 to S_3276
Approximately 6% did not germinate
#
M1 Interval 100 to 200
#
M2 Interval 2.00 to 4.00
#
Status ... Nominal 0 (Dead) or 1 (Survive)
#
Outcome .. Nominal Dead or Survive
##

Among the many possible approaches toward data analysis for this rich dataset,
it will be interesting to see if there is any relationship between M1, M2, and the
variable of primary interest to see if an individual plant (i.e., Subject) is either dead
or alive after application of the chemical treatment.

Create an object called DeadSurvive.df. The object DeadSurvive.df will be a
dataframe, as indicated by the enumerated .df extension to the object name. This
object will represent the output of applying the read.table() function against the
comma-separated values file called DeadSurvive.csv. Note the arguments used with
the read.table() function, showing that there is a header with descriptive variable
names (header = TRUE) and that the separator between fields is a comma (sep = ",").

DeadSurvive.df <- read.table (file =
"DeadSurvive.csv",
header = TRUE,
sep = ",") # Import the .csv file

getwd() # Identify the working directory
ls() # List objects
attach(DeadSurvive.df) # Attach the data, for later use
str(DeadSurvive.df) # Identify structure
nrow(DeadSurvive.df) # List the number of rows
ncol(DeadSurvive.df) # List the number of columns
dim(DeadSurvive.df) # Dimensions of the dataframe
names(DeadSurvive.df) # Identify names
colnames(DeadSurvive.df) # Show column names
rownames(DeadSurvive.df) # Show row names

9.4 Binomial Logistic Regression 315

head(DeadSurvive.df, n=10) # Show the head
tail(DeadSurvive.df, n=10) # Show the tail
DeadSurvive.df # Show the entire dataframe
summary(DeadSurvive.df) # Summary statistics

str(DeadSurvive.df)

DeadSurvive.df$Subject <- as.factor(DeadSurvive.df$Subject)
DeadSurvive.df$M1 <- as.numeric(DeadSurvive.df$M1)
DeadSurvive.df$M2 <- as.numeric(DeadSurvive.df$M2)
DeadSurvive.df$Status.recode <- factor(DeadSurvive.df$Status,
labels=c("Dead", "Survive"))
Use factor() and not as.factor().

DeadSurvive.df$Outcome <- as.factor(DeadSurvive.df$Outcome)

str(DeadSurvive.df)

’data.frame’: 3276 obs. of 6 variables:
$ Subject : Factor w/ 3276 levels "S_1","S_10","S_100"
$ M1 : num 129 133 134 135 136 138 138 138 139
$ M2 : num 2.34 2.4 2.19 2.39 2.39 2.21 2.33
$ Status : int 0 0 0 1 0 0 0 0 0 0 ...
$ Outcome : Factor w/ 2 levels "Dead","Survive": 1 1 1
$ Status.recode: Factor w/ 2 levels "Dead","Survive": 1 1 1

When reviewing the data in original format, note how the data were sorted by
M1. It is beyond the purpose of this lesson to go into any great detail on the sort()
function, but this may be a function that deserves further review to use R to best
advantage.

Visualize the Data: The data for this lesson support a variety of graphical
presentations. Some will be fairly simple throwaway graphics, used only for casual
quality assurance (QA) purposes. Some figures will be quite detailed and could be
used with confidence in a group presentation or in a publication (Figs. 9.4 and 9.5).

par(ask=TRUE)
plot(DeadSurvive.df$Subject,
main="Frequency Distribution of Subject")
Due to the many subjects, it is not possible to
identify individual subjects using this QA tool

par(ask=TRUE)
plot(DeadSurvive.df$Status.recode,
main="Frequency Distribution of Status: Dead or Survive",
lwd=6, col="red", font.axis=2, font.lab=2)

par(ask=TRUE)
plot(DeadSurvive.df$Outcome,
main="Frequency Distribution of Outcome: Dead or Survive",
lwd=6, col="red", font.axis=2, font.lab=2)

316 9 Other Nonparametric Tests for the Biological Sciences

Dead

Frequency Distribution of Outcome: Dead or Survive

Survive

0
50

0
10

00
15

00
20

00

Fig. 9.4 Simple frequency distribution of two breakout groups

100 120

0.
00

0.
02

0.
04

D
en

si
ty

0.
06

0.
08

140 160 180 200
M1 Scale - 100 to 200

Density Plot of M1

Fig. 9.5 Density plot of M1: original scale 100–200

par(ask=TRUE)
plot(density(DeadSurvive.df$M1, na.rm=TRUE),
xlim=c(100,200), ylim=c(0,0.08),
main="Density Plot of M1",
xlab="M1 Scale - 100 to 200",
lwd=6, col="red", font.axis=2, font.lab=2)

par(ask=TRUE)
plot(density(DeadSurvive.df$M2, na.rm=TRUE),
xlim=c(2,4), ylim=c(0,1),
main="Density Plot of M2",
xlab="M2 Scale - 2.00 to 4.00",
lwd=6, col="red", font.axis=2, font.lab=2)

9.4 Binomial Logistic Regression 317

2.0

0.
0

0.
2

0.
4D
en

si
ty 0.

6
0.

8
1.

0

2.5 3.0 3.5 4.0
M2 Scale - 2.00 to 4.00

Density Plot of M2

Fig. 9.6 Density plot of M2: original scale 2.00–4.00

100

2.
0

M
2

S
ca

le
 -

 2
.0

0
to

 4
.0

0

3.
0

4.
0

3.
5

2.
5

120 140

M1 Scale - 100 to 200

Scatter Plot of M1 by M2

160 180 200

Fig. 9.7 Scatter plot of M1 and M2

The prior figures are all useful for review purposes, to gain a better understanding
of the data. However, regression is about relationships between, and among,
variables and ultimately, the prediction of future outcomes. The figures below begin
to address these relationships (Figs. 9.6, 9.7, 9.8, 9.9, 9.10).

par(ask=TRUE)
plot(DeadSurvive.df$M1, DeadSurvive.df$M2, # X by Y
xlab="M1 Scale - 100 to 200",
ylab="M2 Scale - 2.00 to 4.00",
main="Scatter Plot of M1 by M2",
pch=23, lwd=4, col="red", cex.axis=1.25, cex.lab=1.25,
font=2, xlim=c(100,200), ylim=c(1.95,4.05))
Note how xlim and ylim scales are declared, to allow for
full presentation of outcomes with adequate white space

318 9 Other Nonparametric Tests for the Biological Sciences

100

2.
0

M
2

S
ca

le
 -

 2
.0

0
to

 4
.0

0
3.

0
3.

5
4.

0
2.

5

120
M1 Scale - 100 to 200

Scatter Plot of M1 by M2 With Loess Line and Ellipse
Pearson’s r = 0.3024627

140 160 180 200

Fig. 9.8 Scatter plot with box plots on X axis and Y axis using the car::scatterplot() function

2 2.4

D
ea

d

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(0
.0

 to
 1

.0
)

D
ea

d
or

 S
ur

vi
ve

S
ur

vi
ve

2.6 2.8 3.2 3.4 3.6
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
3

M2 Scale - 2.00 to 4.00

Cumulative Probability of Outcome (Dead or Survive)
for M2

Dead Survive

Fig. 9.9 Cumulative probability (0.0–1.0) plot

install.packages("car")
library(car) # Load the car package.
help(package=car) # Show the information page.
sessionInfo() # Confirm all attached packages.
Select the most local mirror site using Set CRAN mirror.

cor(DeadSurvive.df$M1, DeadSurvive.df$M2, method="pearson")
Calculate Pearson’s r for correlation

[1] 0.3025

9.4 Binomial Logistic Regression 319

S
ur

vi
ve

D
ea

d

2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M2 Scale - 2.00 to 4.00

Conditional Density of Outcome (Dead or Survive)
for M2

3.53.0

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(0
.0

 to
 1

.0
)

D
ea

d
or

 S
ur

vi
ve

Dead Survive

Fig. 9.10 Conditional density plot

savelwd <- par(lwd=4) # Heavy line
savefont <- par(font=2) # Bold
savecex.lab <- par(cex.lab=1.5) # Label
savecex.axis <- par(cex.axis=1.5) # Axis
par(ask=TRUE)
car::scatterplot(M2 ~ M1, # Y ~ X
data=DeadSurvive.df,
xlab="M1 Scale - 100 to 200",
ylab="M2 Scale - 2.00 to 4.00",
main="Scatter Plot of M1 by M2 With Loess Line and Ellipse
Pearson’s r = 0.3024627",
smooth=TRUE, reg.line=TRUE, boxplots="xy",
grid=FALSE, pch=15, font.lab=2, font.axis=2, lty=1,
cex.main=1.5, xlim=c(100,200), ylim=c(1.95,4.05),
ellipse=TRUE, robust=TRUE)
Show data-concentration ellipse and center of ellipse
If smooth=TRUE then loessLine is generated

par(savelwd); par(savefont); par(savecex.lab)
par(savecex.axis)

saveaxis <- par(cex.axis=1.25) # Axis - Large
savefont <- par(font=2) # Font - Bold
savelab <- par(cex.lab=1.25) # Label - Large
savelwd <- par(lwd=4) # Line - Thick
par(ask=TRUE)
plot(DeadSurvive.df$Outcome ~ DeadSurvive.df$M1,
main="Cumulative Probability of Outcome (Dead or Survive)
for M1",
xlab="M1 Scale - 100 to 200",
ylab="Cumulative Probability (0.0 to 1.0) Dead or Survive",
xlim=c(0, 1), col=c("red", "blue"))

legend("topright",
levels(DeadSurvive.df$Outcome),
fill=c("red", "blue"), bg=c("white"), bty="y",

320 9 Other Nonparametric Tests for the Biological Sciences

inset=0.01, box.lwd=1, xjust=0, ncol=2)
par(saveaxis); par(savefont); par(savelab); par(savelwd)

saveaxis <- par(cex.axis=1.25) # Axis - Large
savefont <- par(font=2) # Font - Bold
savelab <- par(cex.lab=1.25) # Label - Large
savelwd <- par(lwd=4) # Line - Thick
par(ask=TRUE)
plot(DeadSurvive.df$Outcome ~ DeadSurvive.df$M2,
main="Cumulative Probability of Outcome (Dead or Survive)
for M2",
xlab="M2 Scale - 2.00 to 4.00",
ylab="Cumulative Probability (0.0 to 1.0) Dead or Survive",
xlim=c(0, 1), col=c("red", "blue"))

legend("topright",
levels(DeadSurvive.df$Outcome),
fill=c("red", "blue"), bg=c("white"), bty="y",
inset=0.01, box.lwd=1, xjust=0, ncol=2)

par(saveaxis); par(savefont); par(savelab); par(savelwd)

summary(DeadSurvive.df$M1) # Focus on minimum and maximum

par(ask=TRUE)
saveaxis <- par(cex.axis=1.25) # Axis - Large
savefont <- par(font=2) # Font - Bold
savelab <- par(cex.lab=1.25) # Label - Large
savelwd <- par(lwd=4) # Line - Thick
par(ask=TRUE)
cdplot(Outcome ~ M1, data=DeadSurvive.df,
main="Conditional Density of Outcome (Dead or Survive)
for M1",
xlab="M1 Scale - 100 to 200",
ylab="Cumulative Probability (0.0 to 1.0) Dead or Survive",
xlim=c(129, 169), col=c("red", "blue"))

legend("topright",
levels(DeadSurvive.df$Outcome),
fill=c("red", "blue"), bg=c("white"), bty="y",
inset=0.01, box.lwd=1, xjust=0, ncol=2)

par(saveaxis); par(savefont); par(savelab); par(savelwd)
Note use of the cdplot() function and how the produced
graphic is different from use of the plot() function

summary(DeadSurvive.df$M2) # Focus on minimum and maximum

par(ask=TRUE)
saveaxis <- par(cex.axis=1.25) # Axis - Large
savefont <- par(font=2) # Font - Bold
savelab <- par(cex.lab=1.25) # Label - Large
savelwd <- par(lwd=4) # Line - Thick
par(ask=TRUE)
cdplot(Outcome ~ M2, data=DeadSurvive.df,
main="Conditional Density of Outcome (Dead or Survive)
for M2",

9.4 Binomial Logistic Regression 321

xlab="M2 Scale - 2.00 to 4.00",
ylab="Cumulative Probability (0.0 to 1.0) Dead or Survive",
xlim=c(2.01, 3.96), col=c("red", "blue"))

legend("topright",
levels(DeadSurvive.df$Outcome),
fill=c("red", "blue"), bg=c("white"), bty="y",
inset=0.01, box.lwd=1, xjust=0, ncol=2)

par(saveaxis); par(savefont); par(savelab); par(savelwd)

Descriptive Statistics: Although there are many functions available in R for
descriptive statistics, the summary() function applied against the DeadSurvive.df
dataframe may be more than sufficient to initially understand the data. The
summary() function provides basic information (e.g., Minimum, 1st Quartile (25th
Percentile), Median (50th Percentile), Mean, 3rd Quartile (75th Percentile), and
Maximum). Other functions certainly have value, but the summary() function
remains a common first choice for descriptive statistics.

summary(DeadSurvive.df[, 2:3])
Apply the summary() function against columns
2 to 3 in the dataframe DeadSurvive.df:
Column 2 - M1
Column 3 - M2

M1 M2
Min. :129 Min. :2.01
1st Qu.:145 1st Qu.:2.57
Median :149 Median :2.82
Mean :149 Mean :2.85
3rd Qu.:152 3rd Qu.:3.10
Max. :169 Max. :3.96

summary(DeadSurvive.df[, 4:6])
Apply the summary() function against columns
4 to 6 in the dataframe DeadSurvive.df:
Column 4 - Status
Column 5 - Outcome
Column 6 - Status.recode

Status Outcome Status.recode
Min. :0.000 Dead : 894 Dead : 894
1st Qu.:0.000 Survive:2382 Survive:2382
Median :1.000
Mean :0.727
3rd Qu.:1.000
Max. :1.000

Statistical Analysis: It is evident that there is some degree of association
(Pearson’s r = 0.3024627) between the two measured object variables,
DeadSurvive.df$M1 and DeadSurvive.df$M2. The two Cumulative Probability
of Outcome (Dead or Survive) plots and the two Conditional Density of Outcome

322 9 Other Nonparametric Tests for the Biological Sciences

(Dead or Survive) plots equally address association. In these four plots, as scores
for both DeadSurvive.df$M1 and DeadSurvive.df$M2 increase, there is a greater
observation of plants classified as Survive instead of Dead.

Binomial (i.e., Binary) Logistic Regression will be used in this lesson to provide
specifics as to these associations. The glm() function (glm refers to Generalized
Linear Models) will be the primary tool to initiate these analyses.

options(scipen=80, digits=4)

Plants.glm <- glm(DeadSurvive.df$Outcome ~ DeadSurvive.df$M1 +
DeadSurvive.df$M2, family=binomial)
Prepare an object that represents the outcome of applying
glm (Generalized Linear Model) against the relevant
variables, giving attention to a binomial perspective to
the data.

Plants.glm

summary(Plants.glm)

Call:
glm(formula = DeadSurvive.df$Outcome ~ DeadSurvive.df$M1 +
DeadSurvive.df$M2, family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.195 -0.657 0.342 0.692 2.320

Coefficients:
Std. Error z value Pr(>|z|)

(Intercept) 1.4237 -16.9 <0.0000000000000002 ***
DeadSurvive.df$M1 0.0091 10.4 <0.0000000000000002 ***
DeadSurvive.df$M2 0.1815 22.4 <0.0000000000000002 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

As is seen with the three *** symbols showing in this output, there are
statistically significant relationships (p <= 0.001, as indicated by the asterisks)
between the variables.

car::Anova(Plants.glm)
Use ANOVA for a general examination of the data

Analysis of Deviance Table (Type II tests)

Response: DeadSurvive.df$Outcome
LR Chisq Df Pr(>Chisq)

DeadSurvive.df$M1 116 1 <0.0000000000000002 ***
DeadSurvive.df$M2 750 1 <0.0000000000000002 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

9.4 Binomial Logistic Regression 323

The ANOVA analysis confirms the prior glm analysis that indeed there are
statistically significant relationships between the variables.

Now that significance has been confirmed, it is necessary to focus on beta values.
Because there are multiple predictor variables (i.e., M1 and M2), recall that beta
values serve as an indicator, or measure, of how strongly each predictor variable
influences the outcome (i.e., criterion, dependent) variable. It is beyond the purpose
of this lesson to go into more detail on the theories and algorithms of regression, but
there are many available resources for those with specific interest.

Plants.glm.betahat <- Plants.glm$coefficients
Create an object that holds coefficients from
the glm-based object

Plants.glm.betahat

(Intercept) DeadSurvive.df$M1 DeadSurvive.df$M2
-24.12172 0.09441 4.06719

Then, use the exp() function to compute the exponential function overall and
for each individual beta statistic. These statistics are part of the process needed to
calculate odds ratios.

exp(Plants.glm.betahat) # Intercept and predictor variables
exp(Plants.glm.betahat[1]) # Intercept
exp(Plants.glm.betahat[2]) # 1st predictor variable
exp(Plants.glm.betahat[3]) # 2nd predictor variable

exp(coef(Plants.glm)) # Odds ratio only

(Intercept) DeadSurvive.df$M1 DeadSurvive.df$M2
0.00000000003343 1.09901133803832 58.39243209491096

options(scipen=80, digits=1)
Adjust for output width

exp(cbind(OR = coef(Plants.glm), confint(Plants.glm)))
Odds ratio and 95% CI for the intercept and both
predictor variables (M1 and M2) related to the outcome
of Dead or Survive

Waiting for profiling to be done...
OR 2.5 % 97.5 %

(Intercept) 0.00000000003 0.000000000002 0.0000000005
DeadSurvive.df$M1 1.09901133804 1.079743147202 1.1189627822
DeadSurvive.df$M2 58.39243209491 41.165605267114 83.8618497930

The process for this regression analysis is somewhat complex, but follow along
with these sequential steps to generate a table that clearly outlines the Odds Ratio
(i.e., OR, as seen immediately above) for each predictor variable:

324 9 Other Nonparametric Tests for the Biological Sciences

• The Odds Ratio (OR) for DeadSurvive.df$M1 = 1.09901133804.
• The Odds Ratio (OR) for DeadSurvive.df$M2 = 58.39243209491.

Look below to see an interpretation of how to apply the outcomes of a Binomial
(i.e., Binary) Logistic Regression.

Summary: As time permits, read on the terms odds, probability, and odds ratio.
These terms are not synonyms and other resources can be reviewed for a more
complete discussion on these terms, where they are similar and where they differ.

Of immediate interest for this lesson, give special attention to the Odds Ratio
(i.e., OR) output eventually gained from regression applications against the linear
model, as shown above:

• For a one-unit increase in M1, the odds of an individual plant surviving the
chemical treatment (versus dying after the chemical treatment) increased by a
factor of 1.09 (DeadSurvive.df$M1 OR = 1.09901133804).

• For a one-unit increase in M2, the odds of an individual plant surviving the
chemical treatment (versus dying after the chemical treatment) increased by a
factor of 58.39 (DeadSurvive.df$M2 OR = 58.39243209491).

It is unknown what M1 and M2 represent, and for the purpose of this lesson it is
not necessary to know. What is important, however, is that there are two outcomes
to the experiment associated with this lesson: (1) an individual plant was either
recorded as Dead after chemical treatment or (2) an individual plant was recorded
as Survive after chemical treatment. Although it is evident that a one unit increase
in M1 has far less impact on survival than a one unit increase in M2—given the
reminder that the scales for M1 and M2 are different, it is unknown what is needed
to effect an increase in either scale.

Far more research would be needed before it would ever be financially justified to
focus major resources on any specific variable, based on the premise that Survive is
a more desirable outcome than Dead. Even so, given the reality of ROI (i.e., Return
on Investment), it may be desirable to focus on M2 and how even small changes
in this measured variable are associated with desired outcomes (i.e., increased the
odds ratio of surviving the chemical treatment).

9.5 Prepare to Exit, Save, and Later Retrieve This R Session

getwd() # Identify the current working directory.
ls() # List all objects in the working

directory.
ls.str() # List all objects, with finite detail.
list.files() # List files at the PC directory.

save.image("R_Lesson_Future.rdata")

getwd() # Identify the current working directory.

9.6 Future Applications of Nonparametric Statistics 325

ls() # List all objects in the working
directory.

ls.str() # List all objects, with finite detail.
list.files() # List files at the PC directory.

alarm() # Alarm, notice of upcoming action.
q() # Quit this session.

Prepare for Save workspace image? query.

Use the R Graphical User Interface (GUI) to load the saved rdata file: File ->
Load Workspace. Otherwise, use the load() function, keying the full pathname, to
load the .rdata file and retrieve the session.

Recall, however, that it may be just as useful to simply use the .R script file
(typically saved is a .txt ASCII-type file) and recreate the analyses and graphics,
provided the data files remain available.

9.6 Future Applications of Nonparametric Statistics

STEM (Science, Technology, Engineering, and Mathematics) (and now STEAM,
Science, Technology, Engineering, Art + Design, and Mathematics) receives nearly
daily notice in the popular press.3 STEM is also a focus of many preKindergarten to
postsecondary educational initiatives. Given our increasingly high-tech world and
the emerging IoT (Internet of Things), cloud computing, genetic recombination,
smartphones, etc., it is likely that the study of statistics will only increase in
importance, as statistics supports decision-making for these areas.

Within statistics and especially the application of statistics to the biological
sciences, it is equally likely that nonparametric statistics will gain in importance
as more emphasis is placed on quantification of outcomes. Statistical analyses
will increasingly be used to justify budgets and direction, but based upon what
conditions?

• Our measures may not always be as precise as we wish.
• Data distribution may not always be as normal as we wish.
• Sampling realities may not always allow for subject selection as we wish.

Given these three realities, nonparametric analyses have an important and
expanding role as the tenants of statistics are applied to biological organisms—
organisms that do not always allow for the luxury of precise measures, perfect
distribution, or planned sampling.

3The term STEM Smart is frequently used by the press to refer to activities that encourage
parents, teachers, school administrators, and elected officials to implement educational policies and
procedures and allocate human and fiscal resources that emphasize mathematics and the sciences.

326 9 Other Nonparametric Tests for the Biological Sciences

On this thought, consider also the role of R in biostatistics. It has recently been
reported that R is now among the 10 most frequently used programming languages.
As an open-source product with an international user base, it can only be imagined
that R will continue to increase in acceptance as a leading platform for biostatistics.

9.7 Contact the Authors

Dr. Thomas W. MacFarland is Senior Research Associate (Office of Insti-
tutional Effectiveness) and Associate Professor (College of Engineering and
Computing), Nova Southeastern University, Fort Lauderdale, Florida, USA,
tommac@nova.edu. Dr. Jan M. Yates is Associate Professor (Abraham S.
Fischler College of Education), Nova Southeastern University, Fort Lauderdale,
Florida, USA, yates@nova.edu. Both authors first used S on a UNIX-based host
computer in the 1980s, prior to R, when S was then freely available to educational
institutions.

The many accompanying .csv (comma-separated values) datasets are available on
the publisher’s Web page associated with this text. Contact the authors if there are
any questions about the use of this text, details on the accompanying .csv datasets,
or if additional pointers on R for biostatistics are needed. Questions, comments,
and feedback are always appreciated. When sending e-mail to the authors, use a
meaningful and descriptive term in the subject header so that the message does not
get sent to a rarely monitored SPAM folder or is otherwise ignored.

mailto:tommac@nova.edu
mailto:yates@nova.edu

Index

A
Analysis of variance (ANOVA), 177–211,

213–247, 323
Anderson-Darling test, 25, 28, 29, 71–73,

123–125, 155–158, 160, 172, 202–205,
236, 281–282

Association, 123, 250, 252, 253, 266, 269, 270,
274, 282, 284, 286–290, 294–296, 321,
322

B
Bagplot, 288–290
Bar plot (stacked, side-by-side), 14, 16, 86,

89, 96
Beta values, 323
Binomial logistic regression, 312–324
Binomial probability, 302
Binomial test, 300–303
Block, 214–217, 237–239,

241
Block-type research design, 214, 217, 237,

241
Bonferroni, 209
Boolean, 41, 42, 80, 190, 191, 205
Boxplot, 35, 36, 63, 111, 113, 120, 142–145,

147, 192–196, 224, 237, 246, 247, 265,
266, 270, 271, 289, 318

Breakout groups, 67, 114–116, 135, 178–181,
188–190, 193, 194, 197–199, 204,
206–211, 223, 231, 232, 238, 243,
245, 247, 250, 256, 269–271, 274,
280, 316

C
CamelCase, 180
Central tendency, 53, 60, 66, 87, 90, 119–123,

142–144, 151–155, 161, 190, 230,
234–236, 276–280, 303, 308

Chi-square, 77–100
Code book, 57–60, 79, 82–84, 108–111,

139–141, 164, 183–190, 220–223,
254–261

Comma separator, 166
Comma-separated values (.csv), 55, 78, 81,

106–108, 125, 137, 138, 141, 180–182,
218, 220, 253, 254, 314, 326

Conditional density, 319, 321
Contingency table, 79, 80, 94, 100–102
Continuous scale, 53
Correlation, 249–297
Correlation coefficient, 284, 290, 296
Correlation matrix, 294, 297
Crosstabs, 87, 94, 96, 97, 99, 189
Cumulative probability, 318–321

D
Density plot, 7–11, 18–21, 23, 25, 27, 34,

115–118, 146, 147, 156, 190, 191, 224,
264, 269, 270, 288, 305, 306, 310, 311,
316, 317, 319

Descriptive statistics, 7, 9, 11, 20, 22, 29, 53,
60, 66–68, 71, 74, 111, 118–123, 128,
142, 143, 150–155, 158, 161, 162, 165,
166, 187, 190, 198, 199, 202, 206, 223,
231, 234, 236, 237, 239, 265, 276–278,
280–282, 307, 311, 321

© Springer International Publishing Switzerland 2016
T.W. MacFarland, J.M. Yates, Introduction to Nonparametric Statistics
for the Biological Sciences Using R, DOI 10.1007/978-3-319-30634-6

327

328 Index

Distribution free, 2, 6, 24, 105
Dot plot, 69, 199, 232

F
Factor, 52, 57, 60, 64, 65, 82, 83, 89, 109–112,

140–142, 151, 163, 165, 181, 186–188,
190, 192, 214, 216, 218, 220, 223, 224,
234, 235, 240, 246, 250, 258–260, 263,
270, 271, 274, 309, 324

Factorial research design, 53, 76, 179, 180,
211, 216, 237

Frequency distribution, 4, 63–66, 69, 74, 75,
87, 89, 92, 95, 97, 188, 223, 231, 234,
235, 316

Friedman twoway analysis of variance
(ANOVA) by ranks, 213–248

G
Goodness of fit. See Chi-square test

H
Hinge (lower and upper), 143, 225
Histogram, 7–11, 18–20, 25, 29, 31–35, 37–39,

42–45, 47, 50, 114, 115, 145, 148, 225,
227, 228, 263, 264, 272, 273, 288, 302

Hochberg, 209
Holm, 209, 210

I
Institutional Review Board (IRB), 40, 250
Interaction plot, 25, 238–241
Interval, 3–6, 11–12, 17, 23, 30, 32, 52, 53, 60,

67, 103–105, 112, 118, 119, 126, 128,
135, 136, 143, 150, 161, 173, 178–181,
211, 215, 218, 225, 236, 241, 250, 252,
266, 272, 303–309, 313, 314

K
Kendall’s tau, 295–297
Kolmogorov–Smirnov (K-S) two-sample test,

308–312
Kruskal–Wallis H-Test for oneway analysis of

variance (ANOVA) by Ranks, 177–211

L
Least significant difference (LSD), 209, 242

M
Mann-Whitney U test, 103–132
Matched pairs, 133–175, 303
Mean, 2, 7, 9, 11, 18, 22, 24, 25, 29, 30, 34–40,

42, 45, 47, 49, 53, 60, 66, 67, 69, 70,
90, 111, 116, 118, 119, 128, 150, 153,
154, 162, 186, 197, 202, 231, 239, 277,
295, 303, 304, 308, 321

Median, 11, 22, 25, 29, 44, 53, 54, 60, 66,
69, 71, 74, 75, 90, 111, 119, 128, 143,
150, 154, 155, 160, 162, 197, 199, 202,
206–208, 225, 231, 239, 240, 277, 280,
303–305, 308, 309, 312, 321

Mode, 12, 25, 60, 66, 90, 111, 119, 150, 193,
276, 277

Mosaic plot, 85
Multiple comparisons, 244, 266

N
Nominal, 3, 4, 23, 77, 300, 312, 313
Nonparametric, 1–50, 52, 71, 73, 105, 106,

123, 125, 135, 136, 150, 155–160, 169,
170, 172–174, 178, 179, 180, 197, 202,
203, 205, 218, 237, 250, 252, 253,
264, 266, 267, 280–283, 285, 294–296,
299–326

Normal distribution, 6–20, 23–30, 37–40, 42,
47–49, 53, 72, 104, 105, 123, 124, 135,
136, 150, 156–158, 161, 181, 192, 203,
205, 251, 264, 281, 282, 304

Null hypothesis (Ho), 72, 74, 75, 80, 106,
123, 124, 126, 128, 132, 136, 156, 157,
159–161, 163, 166, 169, 171, 172, 174,
181, 203, 205, 207, 218, 238, 240, 253,
281, 282, 300, 301, 303, 305, 310

O
Odds, 312, 323–324
Odds ratio (OR), 312, 323–324
Oneway analysis of variance (ANOVA),

177–211
Ordinal, 3, 4, 11–12, 17, 23, 52–54, 60, 63,

66, 67, 80, 103–105, 112, 118, 119,
126, 128, 134, 135, 136, 143, 150, 161,
162, 172, 178–181, 211, 214, 218, 224,
225, 231, 236–239, 241, 242, 250,
252, 258, 266, 272, 283, 303, 309,
312, 313

Outlier, 6, 23, 35, 39, 40, 143, 192, 194, 224,
225, 261, 269, 270

Index 329

P
Parametric, 2, 3, 6, 7, 17, 19, 20, 23–25, 29,

48, 71, 111, 112, 123, 143, 155, 156,
170, 172–174, 179, 192, 202, 203, 264,
266, 281, 307, 308

Pearson’s product-moment coefficient of
correlation, 283, 285

Pearson’s r, 250, 252, 318, 322
Percentile, 143, 321
Predictor variable, 323, 324
Probability (p-value), 73–75, 80, 95, 97, 99,

101, 106, 124–125, 127, 128, 131, 132,
136, 156, 157, 160, 161, 166–174,
203–208, 210, 211, 218, 238, 240, 245,
246, 282, 292, 293, 303, 308, 312

Proportion, 77, 94

Q
Quantile-Quantile (QQ, Q-Q), 26, 29, 39, 40,

43, 48, 73, 125, 157, 158, 205, 206,
282, 283

R
Ranking, 3, 4, 23, 202
Ratio, 3, 5, 6, 312, 323–324
Regression line, 267, 268
Representation, 6, 17, 20, 23, 89, 142, 155,

178, 251, 252, 287

S
Sample (quota, convenience), 41, 179, 251,

252
Scatter plot, 157, 266–269, 271, 274, 275,

285–289, 318
Scatter plot matrix (SPLOM), 287, 288
Scheffé, 209
Sign test, 51–76
Spearman’s rank-difference coefficient of

correlation, 249–297
Spearman’s rho, 250, 252, 262, 266,

283–290, 292, 294–297
Stacked data, 105, 129–131, 137, 160,

163–169, 172–174, 180

Statistical significance, 290
STEAM (Science, Technology, Engineering,

Art C Design, and Mathematics), 325
STEM (Science, Technology, Engineering, and

Mathematics), 325
Student’s t-test for independent samples, 24,

103, 105
Student’s t-test for matched pairs, 135, 173,

303

T
Tilde separator, 166
Treatment, 12, 16, 17, 51–54, 74–76, 104–106,

109, 111, 113, 114, 116, 117, 119, 123,
125, 126, 128, 131, 134–136, 140, 141,
143–148, 150, 151, 155–163, 166–169,
172–174, 214–218, 220, 224, 227, 229,
232, 236–247, 304, 313, 314, 324

Trellis graphics, 261
Tukey, 209, 225
Twoway analysis of variance (ANOVA),

213–247

U
Unstacked data, 129–132, 135, 137, 160, 165,

166, 168, 169, 173

V
Violin plot, 35, 36, 63, 115, 147, 148, 224, 228,

229, 237

W
Walsh test for two related samples, 303–308
Whisker (lower and upper), 143, 225,

265
Wilcoxon matched-pairs signed ranks test,

133–175

Y
Yates correction, 80, 94, 97, 99

	Preface
	Contents
	List of Figures
	1 Nonparametric Statistics for the Biological Sciences
	1.1 Background on This Lesson
	1.2 Data Types
	1.2.1 Nominal Data
	1.2.2 Ordinal Data
	1.2.3 Interval Data
	1.2.4 Ratio Data

	1.3 How R Syntax, R Output, and Graphics Show in This Text
	1.4 Graphical Presentation of Populations
	1.4.1 Samples that Exhibit Normal Distribution
	1.4.2 Samples That Fail to Exhibit Normal Distribution

	1.5 R and Nonparametric Analyses
	1.5.1 Precision of Scales: Ordinal vs Interval
	1.5.2 Deviation from Normal Distribution
	1.5.3 Sample Size and Possible Issues with Representation
	1.5.3.1 Example 1: Theoretical Example of Attention to Sample Size
	1.5.3.2 Example 2: Real-World Example of Attention to Sample Size

	1.6 Definition of Nonparametric Analysis
	1.7 Statistical Tests and Graphics Associated with NormalDistribution
	1.8 Addendum: Data Distribution and Sampling
	1.9 Prepare to Exit, Save, and Later Retrieve This R Session

	2 Sign Test
	2.1 Background on This Lesson
	2.1.1 Description of the Data
	2.1.2 Null Hypothesis (Ho)

	2.2 Data Entry by Copying Directly into a R Session
	2.3 Organize the Data and Display the Code Book
	2.4 Conduct a Visual Data Check
	2.5 Descriptive Analysis of the Data
	2.6 Conduct the Statistical Analysis
	2.7 Summary
	2.8 Prepare to Exit, Save, and Later Retrieve This R Session

	3 Chi-Square
	3.1 Background on This Lesson
	3.1.1 Description of the Data
	3.1.2 Null Hypothesis (Ho)

	3.2 Data Import of a .csv Spreadsheet-Type Data File into R
	3.3 Organize the Data and Display the Code Book
	3.4 Conduct a Visual Data Check
	3.5 Descriptive Analysis of the Data
	3.6 Conduct the Statistical Analysis
	3.7 Summary
	3.8 Addendum: Calculate the Chi-Square Statistic from Contingency Tables
	3.9 Prepare to Exit, Save, and Later Retrieve This R Session

	4 Mann–Whitney U Test
	4.1 Background on this Lesson
	4.1.1 Description of the Data
	4.1.2 Null Hypothesis (Ho)

	4.2 Data Import of a .csv Spreadsheet-Type Data File into R
	4.3 Organize the Data and Display the Code Book
	4.4 Conduct a Visual Data Check
	4.5 Descriptive Analysis of the Data
	4.6 Conduct the Statistical Analysis
	4.7 Summary
	4.8 Addendum: Stacked Data vs Unstacked Data
	4.9 Prepare to Exit, Save, and Later Retrieve this R Session

	5 Wilcoxon Matched-Pairs Signed-Ranks Test
	5.1 Background on this Lesson
	5.1.1 Description of the Data
	5.1.2 Null Hypothesis (Ho)

	5.2 Data Import of a .csv Spreadsheet-Type Data File into R
	5.3 Organize the Data and Display the Code Book
	5.4 Conduct a Visual Data Check
	5.5 Descriptive Analysis of the Data
	5.6 Conduct the Statistical Analysis
	5.7 Summary
	5.8 Addendum 1: Stacked Data and the Wilcoxon Matched-Pairs Signed-Ranks Test
	5.9 Addendum 2: Similar Functions from Different Packages
	5.10 Addendum 3: Nonparametric vs Parametric Confirmation of Outcomes
	5.11 Prepare to Exit, Save, and Later Retrieve this R Session

	6 Kruskal–Wallis H-Test for Oneway Analysis of Variance (ANOVA) by Ranks
	6.1 Background on this Lesson
	6.1.1 Description of the Data
	6.1.2 Null Hypothesis (Ho)

	6.2 Data Import of a .csv Spreadsheet-Type Data File into R
	6.3 Organize the Data and Display the Code Book
	6.4 Conduct a Visual Data Check
	6.5 Descriptive Analysis of the Data
	6.6 Conduct the Statistical Analysis
	6.7 Summary
	6.8 Addendum: Comparison of Kruskal–Wallis Test Differences by Multiple Breakout Groups
	6.9 Prepare to Exit, Save, and Later Retrieve this R Session

	7 Friedman Twoway Analysis of Variance (ANOVA) by Ranks
	7.1 Background on This Lesson
	7.1.1 Description of the Data
	7.1.2 Null Hypothesis (Ho)

	7.2 Data Import of a .csv Spreadsheet-Type Data File into R
	7.3 Organize the Data and Display the Code Book
	7.4 Conduct a Visual Data Check
	7.5 Descriptive Analysis of the Data
	7.6 Conduct the Statistical Analysis
	7.7 Summary
	7.8 Addendum: Similar Functions from External Packages
	7.9 Prepare to Exit, Save, and Later Retrieve This R Session

	8 Spearman's Rank-Difference Coefficient of Correlation
	8.1 Background on This Lesson
	8.1.1 Description of the Data
	8.1.2 Null Hypothesis (Ho)

	8.2 Data Import of a .csv Spreadsheet-Type Data File into R
	8.3 Organize the Data and Display the Code Book
	8.4 Conduct a Visual Data Check
	8.4.1 Use of the Graphics Package
	8.4.2 Use of the Lattice Package
	8.4.3 Use of the ggplot2 Package

	8.5 Descriptive Analysis of the Data
	8.6 Conduct the Statistical Analysis
	8.7 Summary
	8.8 Addendum: Kendall's Tau
	8.9 Prepare to Exit, Save, and Later Retrieve This R Session

	9 Other Nonparametric Tests for the Biological Sciences
	9.1 Binomial Test
	9.2 Walsh Test for Two Related Samples of Interval Data
	9.3 Kolmogorov-Smirnov (K-S) Two-Sample Test
	9.4 Binomial Logistic Regression
	9.5 Prepare to Exit, Save, and Later Retrieve This R Session
	9.6 Future Applications of Nonparametric Statistics
	9.7 Contact the Authors

	Index

