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Chapter 1

Introduction

For more than 10 years, two independent approaches in
software engineering have been emerging: software product
line engineering (SPLE) and model-driven engineering (MDE).
Software product line engineering is a software process,
which puts emphasis on “re-use” organized through a common
software architecture [GOM 04]. This process relies on a
domain analysis and scoping activity to characterize the
products to be delivered. The realization of a concrete
application is based on a production plan, and the configuration
of the application of the engineering step. Model-driven
engineering emphasizes the creation of models that represent
the system under consideration at a high level of abstraction.
These models are the base on which to implement the
application automatically. These two approaches have in
common the following concerns: improving productivity,
increasing the quality of software and automating, as much
as possible, the construction of software assets. They are also
complementary: model-driven engineering seems a promising
trend to automate the production chain needed for product
creation in product lines. It also seems suited for modeling the
various concerns and artifacts of a product line. In software
engineering, traceability is the ability to track the information

Model-Driven and Software Product Line Engineering            Hugo Arboleda and Jean-Claude Royer
© 2012 ISTE Ltd.  Published 2012 by ISTE Ltd.



2 Model-Driven and Software Product Line Engineering

flow of software artifacts. Traceability is also a crucial issue in
product line engineering. MDE can help in managing artifacts
and tracing links.

The main focus of this book is to propose a practical
approach to engineering a software product line based on MDE.
This book presents the basic concepts of both engineering
approaches and the main challenges in defining a model-
driven tool. The book is concerned with the technical aspects
of modeling variability, defining a reference architecture, and
constructing tool support. This book can be useful for graduate
students as well as software engineers who wish to learn about
product lines and concepts of model-driven engineering. Two
application examples illustrate the concepts and the processes:
a product line of Smart-Homes and a product line of Collection
Managers. It is also appropriate for researchers in the area of
MDE and SPLE since it addresses some complex issues such
as fine-grained configuration and fine-grained variation.

1.1. Software product line engineering

Software engineering aims at speeding up software
development and maintenance processes, decreasing costs,
and improving productivity and quality. By addressing these
objectives, software product line engineering seeks to develop
software products through the re-use of artifacts. Thus, the
products should be quickly developed, and their quality
should be as good as the quality of the artifacts used for
their construction. A software product line (SPL) is defined
as a set of similar products created from re-usable artifacts
in the context of a specific application domain. In SPLE,
product designers configure and derive products by re-using
the available artifacts created by the product line architects.
The description of the set of products that are part of an SPL
is called the scope of the product line. To capture and express
the scope of SPLs, product line architects first determine the
commonalities, i.e. the characteristics shared by all products in
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the scope, and then they study their variability. The architects
build a feature model or, more generally, a variability model.
This model is a structured set of variation points associated
with their variants, which can be either requirements, code,
architectures, testing plans, or any other elements of a full
software development process. Variation points are relevant
characteristics that can have different values, the so-called
“variants”, according to the variability of a product line. The
set of re-usable artifacts occurring in the products defines the
product line platform. In this book, it shall be referred to as
the core asset.

The development of the product and core asset are fairly
complex processes, often presented with two phases: domain
engineering and application engineering. The former process
analyzes the domain, the commonalities, and the variability; it
elaborates a production plan for the product line development
and generates the assets to be re-used. The latter process is
in charge of building each product from its characteristics,
the core assets and the plan defined during the first phase.
This second phase can be a complete software lifecycle:
the most important activities are the product configuration
and the product derivation. The product configuration is a
representation of the product to be built expressed in terms
of the variability model. It is from such configuration, core
assets, and production plan that the effective product can be
generated.

1.2. Model-driven engineering

Model-driven engineering refers to a range of development
approaches based on the use of software modeling as primary
documents. These documents comprise requirements or other
artifacts such as feature models, use cases, Unified Modeling
Language (UML) diagrams, and architectures, among others.
Code is written by hand or generated in part or in whole
from the models. Whenever possible, code generation ranges
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from system “stubs” or “skeletons” to deployable products.
Several steps are required to iteratively integrate various
concerns and to transform models until the source code is
obtained. Models are less sensitive to computing technology
and to evolutionary changes of that technology. We can have
general models describing the problem space and deriving
other distinct models representing some solutions. Platform-
specific aspects, such as the characteristics of languages, can
be integrated in subsequent steps and then performance issues
or deployment aspects can be further added. In this way,
abstraction and separation of concerns can be used in a
uniform and tool-assisted process. The need for such facilities
is increasing as the semantic gap between modeling languages
and implementation codes becomes wider-and-wider.

MDE originated in the late 1990s out of the need for
more abstract software description, and to increase software
productivity and quality. It emerged from the adoption of UML
as a standard and from research on data representation, CASE
tools, and interchange format. MDE emphasizes such concerns
as abstraction, early verification, model transformation, and
automatic code generation. MDE provides a unified formalism
with models and transformations to represent artifacts and
processes of software engineering. The ability to build readable
models is important for stakeholders to collaborate efficiently.
Models only capture single points of view and focus on some
domain concepts that are known to be easier to specify,
understand, and maintain.

Software engineering needs automation. This is a fact
learned from the history of engineering. Automation is
by far the most effective technological means for boosting
productivity and reliability. MDE provides automation at every
step of development and facilitates a progressive integration of
knowledge and platform details. The techniques and tools for
using MDE successfully have now reached a degree of maturity
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that renders them practical even in large-scale industrial
applications.

MDE appears as a promising technique for SPLE since it
provides uniformity and abstraction for software artifacts and
processes. SPLE is a paradigm that focuses on artifact re-use
and variability management. It introduces a complex software
process and artifacts that are more numerous, heterogeneous,
and complex than in traditional software engineering. MDE
can help in representing the artifacts in a uniform and
abstract way. SPLE also requires some specific tasks such
as product configuration and should place more emphasis
on traceability management. MDE has the ability to build
complex transformations,which is promising in the automation
of domain and application engineering.

1.3. Merging model-driven and software product line
engineering

SPLE and MDE have common concerns: improving
productivity, making software development cost-effective,
empowering domain experts in software development,
enforcing architecture, capturing domain and technological
knowledge in separate artifacts, increasing software quality,
and automating the construction of software products as
much as possible. They are also complementary. Model-driven
engineering seems a promising trend in automating the
production chain needed for the creation of product lines. It
is also suited to model the various concerns and artifacts of
a product line. SPLE proposes a global view and process for
product line engineering with a strong focus on the rational
re-use of artifacts.

Many approaches to create SPLs based on MDE have
emerged e.g. [VÖL 07b, WAG 05]. These are called MDE-based
SPL approaches or MD-SPL approaches. MDE conceives the
whole software development cycle as a process of creation,
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iterative refinement, and the integration of models. We
define an MD-SPL as a set of products developed from
application domain models, and derived from a set of re-usable
model transformation rules. There is a general agreement
on the fact that model transformations may require several
stages, e.g. [VÖL 07b, ARB 09b, ARB 09a]. At each stage,
application domain models are automatically transformed
to include more implementation details. Models with only
problem space concerns are incrementally transformed to
include the solution space, i.e. concerns of software design
and/or technological platforms, as well as performance issues.
At the end of a staged model transformation process, models
including all the implementation details are transformed into
source code of software systems.

Most of the current MD-SPL approaches [VÖL 07b,WAG 05,
LOU 08, SAN 08] create application domain metamodels
and variability models to capture and express variability
separately. For configuring a particular product, the product
designers create configurations that consist of (1) application
domain models and (2) instances of variability models.
An instance of a variability model includes a selection of
variants from the variability model. The MD-SPL approaches
using multi-staged model transformations also facilitate
the configuration of products by creating specific instances
of variability models. For example, product designers can
select software architectural details before executing model
transformations in charge of adding architectural information.
Therefore, the staged transformation of an application
domain model may derive products with different software
architectures or products to run on different technological
platforms.

During the product derivation process, the instances of
variability models are used to decide what transformation
rules must apply. Thus, from different instances of variability



Introduction 7

models, different products can be derived from the same
application domain model.

Figure 1.1 sketches the process of creating an MD-SPL
example. Each product line member manages its data by means
of a relational database schema. In this example, product line
architects have chosen to use the UML Class Metamodel
to capture and express the variability related to problem
space concerns. Thus, product designers are able to start the
configuration process of products by creating diverse class
models. To capture variability in the context of relational
database schemas, product line architects create a variability
model that includes one variation point, a Primary Key
Structure with two alternative variants: With Primary
Key and Without Primary Key. Additionally, the architects
relate a different model transformation rule to each variant.
Rule One is related to the variant With Primary Key

Figure 1.1. Example of a MD-SPL creation process
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and Rule Two is related to the variant Without Primary
Key. Product designers complete the configuration process of
products by creating instances of the variability model. If the
variant With Primary Key is selected in an instance of the
variability model, using Rule One, all the class elements in
a Source Class Model are transformed into table elements
with one primary key. If the variant Without Primary Key
is selected in another instance of the variability model, using
Rule Two, all the class elements in a Source Class Model
are transformed into table elements without a primary key.

1.4. The FieSta framework

This book covers most of the creation lifecycle of MD-
SPL. The activities have been organized in a framework
that incorporates the principles of MD and SPL engineering.
We have named this framework FieSta for fine-grained
scope definition, configuration, and derivation of model-driven
and software product lines. FieSta focuses on two major
processes. Firstly, the process of capturing and expressing
variability in MD-SPL, which impacts, consequently, on the
process of configuring product line members. Secondly, the
process of deriving products by re-using and composing model
transformations based on product configurations.

FieSta provides model-based mechanisms to extend the
expressive power of variability involved in current MD-SPL
approaches in such a way that more detailed products can be
configured according to the fine-grained variability principle.
FieSta includes a mechanism that allows product designers
to create fine-grained configurations that represent valid
products. We define a valid product as an assembly that meets
the requirements that product designers specify by means of
configurations. FieSta also includes a mechanism to control
the valid fine-grained variations. FieSta resolves problems
in application domains where (1) model elements must be
configured individually and (2) products must be configured in
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multiple stages, sometimes by designers with different domain
knowledge.

During the process of product derivation, model
transformation rules must be composed to derive products
from their configuration. The composition is done according
to each configuration. FieSta maintains uncoupled the
information of relationships between variants and their
related transformation rules. This facilitates the maintenance,
re-use, and evolution of transformation rules and/or variability
models. Additionally, FieSta proposes a high-level mechanism
to compose model transformation rules and to adapt their
execution ordering (or execution scheduling) to create fine-
grained configurations and derive products based on them.

FieSta (1) provides mechanisms to extend the power
of variability of MD-SPL by using metamodeling and
feature modeling conjointly, and (2) integrates a product
derivation process, which uses the decision model and
Aspect-Oriented Programming (AOP) facilitating the re-use,
adaptation, and composition of model transformation rules.
Figure 1.2 presents an activity diagram summarizing the
processes involved in FieSta.

During the domain-engineering process, product line
architects create model transformations consisting of sets of
transformation rules. Each transformation rule is responsible
for producing a part of a final product. Model transformation
rules implement algorithms to transform application domain
models into refined models (or source code) including concerns
from a different level of abstraction. Product line architects
also create decision models. Decision models are the basis
of our mechanism to derive products including variability.
They capture the execution ordering of transformation rules
to be performed by the model transformation engine to derive
configured products. We use AOP to build the scheduling of the
transformation rules, i.e. the order in which transformation
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Figure 1.2. The FieSta general process

rules are going to process model elements to accomplish the
required derivation.

During the domain engineering process, product line
architects create application domain metamodels, feature
models, and constraint models to capture the variability and
commonalities of MD-SPL. We introduce constraint models
that make it possible for product line architects to capture and
express the valid fine-grained variations among product line
members using the concepts of constraint, cardinality property,
and structural dependency property.

To configure a product during the application engineering
process, product designers create (1) application domain
models that conform to application domain metamodels and
(2) binding models, which are sets of bindings between model
elements and features. After a binding model is created,
it is validated against a set of object constraint language
(OCL) statements derived from its respective constraint model.
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To derive a complete product according to a binding model,
we dynamically adapt the parameters of model transformation
executions, which we achieve by using model transformation
rules that are selected from the binding model and the pre-
created decision models.

Along with FieSta, we present model-based tool support, the
FieSta toolkit, which implements facilities to (1) capture fine-
grained variations between product line members, (2) configure
detailed products, and (3) derive fine-grained configured
products. We illustrate the FieSta approach through two
application examples: a product line of Smart-Homes and a
product line of Collection Managers.

1.5. Book structure

Figure 1.3 presents the structure of this book, which is
organized in four parts: an introduction, a presentation of the
state-of-the-art, our proposal (the FieSta framework), and the
conclusions.

Figure 1.3. Structure of the document
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Following this chapter, the reader shall find a chapter on
software product line engineering, a chapter on model-driven
engineering, and a chapter considering the state-of-the-art
in model driven and software product line engineering. These
chapters provide the foundation for our framework. Part three
discusses the FieSta approach. It includes one chapter on the
principles of FieSta for fine-grained variation, configuration,
and derivation. Following this discussion, we describe the
tools for supporting the MD-SPL engineering mechanisms we
previously introduced. The concepts and tools are illustrated
on a Smart-Home case study. Chapter 7 is devoted to a
second application example. The final part is composed of two
chapters; the first one presents further readings and the second
concludes this book, including a discussion and an outlook for
future work.

Chapter 2: Software product line engineering basics. This
chapter introduces software product line (SPL) engineering.
The major stages in SPL development are discussed: (1)
the domain engineering process and (2) the application
engineering process. Feature modeling is introduced as a
mechanism for expressing product line variability and for
configuring products. Decision models are included as artifacts
used to relate re-usable core assets and variants from product
lines, and support the product derivation process based on
product configurations.

Chapter 3: Using model-driven engineering. This chapter
introduces the main concepts of MDE: models, metamodels,
and model transformations. Regarding models, we introduce
some definitions and we explain the concept of separation
of concerns of a system in different models. We also discuss
the concept of level of abstraction of models, and we classify
the levels of abstraction as a particular case of separation of
concerns. We explain the general concepts of metamodeling:
domain specific modeling (DSM), the relation of conformity,
and the four-layer metamodeling framework. We summarize
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UML and OCL notations to help readers understand the
models presented in this book. We also introduce the
eclipse modeling framework (EMF), which is a metamodeling
and modeling framework. Finally, we define the concept
of model transformations and we classify them into four
major categories: model-to-model, model-to-text, horizontal,
and vertical transformations. We introduce the Xpand and the
Xtend model transformation languages, which are languages
included in the OAW framework.

Chapter 4: Model-driven and software product line
engineering. We give an overall view of the process, the
challenges of merging these two engineering approaches, and
the impact in the problem and solution dimensions. We discuss
in depth the variability expression, the multi-stage process,
the core asset development, the product configuration, and the
product derivation process.

Chapter 5: The FieSta framework. The previous chapters
present the background for this chapter in which FieSta,
our approach to create SPL based on MDE, is introduced.
This chapter makes use of the application example introduced
throughout the previous chapters to illustrate the different
axes of our framework. Constraint models, which are
re-usable artifacts we build to capture the scope of MD-SPLs,
are presented and their use is illustrated within the context
of the Smart-Home example. Binding models, which serve to
configure products and are sets of bindings between model
elements and features that satisfy the constraint models, are
explained and also illustrated with our application example.
We then show how to derive products based on the binding
models and the decision models, which are sets of aspects
we use to adapt model transformations required to derive
configured products. Finally, we present the limitations of
FieSta for deriving products based on decision models.

Chapter 6: Tools support.This chapter validates FieSta,our
MD-SPL approach, by presenting examples of products that we
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are able to derive using our MD-SPL mechanisms. It presents
the results of configuring and deriving products of the Smart-
Home product line. The implementation strategy of FieSta is
sketched. It defines the general process for the implementation
of our MD-SPL engineering mechanisms for creating product
lines. The implementation strategy includes (1) the required
activities for the creation of products, and (2) the tools we create
to support these activities. The tool support for expressing
variability and configuring products, as well as the tool support
for deriving configured products are described.

Chapter 7: A Second comprehensive application example.
In addition to our Smart-Home systems’ MD-SPL, we have
also created a product line of stand-alone applications to
manage data collections. We call a member of this product
line a collection manager system. For example, a collection
manager system manages the students of a school and their
personal information: name, address, e-mail, etc. Another
product manages records in a music store and their related
information: name, artist, price, etc. At the architecture level,
products are structured in two tiers: the kernel and the
Graphical User Interface (GUI). The kernel tier implements
functional requirements to add elements into the collection and
to order the collection. The GUI tier implements visualization
and interaction with the final users and the kernel component.

Chapter 8: Further reading. The purpose of this chapter
is to provide the main references related to product line
engineering and to discuss some open or more advanced issues.
This chapter reviews some of the previous books related to
product lines and to model-driven approaches. For historical
and pedagogical reasons, we comment on Northrop’s and Pohl’s
books. Gomaa’s book promotes a rather UML-like approach for
SPLE, while the book is aligned with new technologies such as
MDE and AOP. The book from van der Linden et al. addresses
a survey of product line practices as well as various application
examples, being a valuable reference for practitioners who
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want to launch a product line. A section of this chapter is
dedicated to featuring modeling notations, which are of prime
importance in SPLE. The problem of mixing product line
engineering and model-driven engineering has been already
addressed in several works. A specific section is devoted to
these approaches, a detailed discussion, and a comparison table
are presented. An advanced topic, not yet discussed in the
current book, is the management of dynamic information in
such an engineering process. Domain Specific Languages (DSL)
are nowadays, techniques which are completely relevant in
our context. We present some facts concerning the relations
between DSL and model-driven engineering. A final section
collects several important references to provide readers with
a more comprehensive view of this domain.

Chapter 9: Conclusion. This chapter concludes this book
presenting (1) a summary of our framework, (2) a reflection
taking into account the contributions we propose to the
field of model-driven software product line engineering, and
(3) future outlooks for research.



Chapter 2

Software Product Line
Engineering Basics

Software product line engineering is a recent trend in
software development. It can bring benefits in terms of costs
and productivity; however, it also involves a complex software
development process. This chapter introduces the basics for
product line engineering and addresses the main technical
aspects.The management of product line engineering processes
is an important issue; however, it is not dealt within this book.
Interested readers can refer to [NOR 02, POH 05a, CAC 06].

2.1. Introduction to product line engineering

Software systems are complex and their development is
time-consuming and error-prone. Many software companies
are building applications that share more commonalities than
differences. They often repeatedly add new features and
build new variants or releases of their applications. Most
often, software development consists of creating variations
from existing software. The strategy of re-using software
artifacts has been seen as a means to alleviate the problems
associated with software development. Re-using software
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artifacts facilitates the composition of products from a set
of artifacts already developed and tested, instead of building
the products from scratch. Software product line engineering
is a paradigm that provides a means to incorporate the
re-use strategy as a central part of software development
[CLE 01, BOS 02]. A software product line (SPL) is a set of
software products that share many common properties to be
built from a common set of assets [CZA 00]. The ultimate
objective of product line engineering is to improve productivity,
i.e. save time, reduce costs, and increase the quality of products.
In this chapter, we first introduce the basis of SPL engineering
(SPLE), including the main processes involved in the creation of
SPLs: domain engineering process, section 2.5, and application
engineering process, section 2.7. These two processes are also
often called “development for re-use” and “development with
re-use”, placing strong emphasis on re-usability.

The principle of SPLE is to develop several products sharing
some common concerns in a development cycle.

DEFINITION 2.1. – A software product line is a set of software
applications that shares concerns, features, requirements, or
market specificity and that are built in a rational and planned
way from a set of re-usable assets.

Mainly used in Europe, the term product family can be
considered as a synonym. The term software factory is a related
and older concept, but it is not equivalent and covers various
meanings. It was used earlier to denote product lines and
it is still used, specifically in the Microsoft context. Often, a
software factory denotes a new generation framework trying to
automate the application engineering as much as possible. This
concept emerges from model-driven engineering and some new
generative approaches making the definition of complex and
automated tool chains possible. A software factory can be a part
of an SPL, namely in the latest generation where application
engineering is strongly automated. However, product line is
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a broader concept that includes variability management and
domain analysis, which are not considered in a software factory.

The first thing to note about SPLE is that the development
cycle produces several products or applications, while most of
the traditional development cycles focus on one application
at a time. The second point is that the products share some
concerns; usually, one can say that they belong to the same
domain. For instance, we can have several configurations
for Smart-Home that are more or less secure, autonomous,
interconnected with the Web and so on. The common parts
define what is called the commonalities. All Smart-Homes
should have at least rooms, doors, windows, and a heating
system. However, these products are different, thus, they have
some specific parts. The set of these differences is called the
variability. For instance, we can define a basic home with a
security system, another one with automatic windows, and a
third one with both features. One important task in SPLE
is to define precisely the domain of interest, to express the
commonalities and the variability of the products, and to
structure this information.

A simple and abstract view of the main processes involved
in SPLE is depicted in Figure 2.1. It involves three interacting
and iterative processes. The management process is under
the control of the business plan which decides the production
of applications. It acts as a supervisor for the two other
processes. It looks at the quality of the core assets and the
final products. The core assets development is responsible for
developing individual elements (e.g. requirements, codes, tests,
documentations) and to make them re-usable. It also defines
the product line scope and elaborates a production plan. The
former describes the set of products while the latter shows how
to build the products. The products development is responsible
for the building of products following the production plan. It
starts from a configuration of the product,which is a description
of its included features, and it then builds the expected product
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application using the core assets but also suggesting new
assets if needed. These three processes are orchestrated by the
management process but they are all strongly interacting.

Figure 2.1. The three processes view

Here, we concentrate on technical engineering activities
rather than on project management. Effective technical
engineering is presented in two phases: domain engineering
and application engineering. The first engineering step
analyzes the domain, the commonalities, and the variability. It
elaborates a global and common production plan and generates
the assets to be re-used. The second engineering step is
responsible for building one product from its characteristics,
the core assets, and the plan defined during the first step.
The plan can be an informal document describing how to
build the products. The future trend in SPLE is to automate
the production plan, and one successful technique is to use
MDE to define an executable tool chain. These steps will be
described in more detail in the rest of the book. Another
point to bear in mind is the difference between the problem
space and the solution space traditionally used in software
engineering. The problem space is the set of requirements,
the need for some applications, regardless of the precise
structure and shape of this information. Its goal is to describe
the functionality of the system, but often non-functional
requirements are also added, such as performance or even
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marketing requirements. The solution space is concerned with
the description of one solution to the problem using various
notations ranging from message sequences, architecture, class
diagrams, or source codes. The interplay between the two
engineering steps, problem and solution space, and core assets
is depicted in Figure 2.2. In this picture, we simplify the
development process during engineering when all the steps
of a classic lifecycle are relevant. Thus, we should add tests,
maintenance, documentation, versioning, etc.

In this diagram, the core assets form a central repository to
store and mine assets. These assets can be produced by all the
steps; they are referenced in the production plan and effectively
used in application engineering to build products.

Figure 2.2. Domain and application engineering

2.2. Brief history

The notion of the product line is rather old;Wikipedia argues
that the oldest assembly line is “The Terracotta Army”



22 Model-Driven and Software Product Line Engineering

around the year 215 BC before Christian era. (http://en.
wikipedia.org/wiki/Assembly_line#Overview:_a_culmination
_of_many_efforts). The most famous and more recent assembly
line was introduced by the car manufacturer H. Ford around
1913 as the result of the efforts of several engineers over seven
years. The assembly line decreased car production costs mainly
by reducing the assembly time. It paved the way for mass
production but also influenced the industry considerably. The
history of software product lines started 30 years ago. There
are some differences between classic manufactured products
and software systems. For instance, making an exact copy of
a type of software is easy and there are often many possible
variations. Software engineering is not the straight application
of industry engineering to software. This engineering is still
exploring new approaches and product lines are a normal
evolution of software engineering. The advent of SPLE is
comparatively recent and the first Software Product Line
Conference, organized by the Software Engineering Institute,
was held in 2000. [SUG 06] introduces a special issue of CACM
dedicated to software product lines.

This history has three foundations: Artifact re-use, program
families,and domain analysis.The paper from Mc Ilroy [McI 68]
is the main source for re-usability and software component
concepts. The idea was to build software applications like
hardware systems, by assembling pre-defined components.
Parnas [PAR 76] introduced the notion of program families in
the middle of the 1970s. It can be viewed as a forerunner of
the software product family concept but dealing only with the
design step. The notion of domain analysis was introduced in
the middle of the 1980s by Neighbors [NEI 89]. He introduced
the Draco approach to the construction of software systems
from re-usable components. “The basic idea captures the
frustrating feeling that most of the system you are currently
building is the same as the last few systems you have built; but
once again you are building everything from scratch”. This work
exposes the three major stakeholders in domain analysis: the
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application domain analyst, the modeling domain analyst, and
the domain designer.

The first industrial project was the Toshiba Software Factory
in 1977; it concerns the development of a family of power
generators. One useful reference about the activity in this
domain is the SEI site (http://www.sei.cmu.edu/productlines/),
which contains information about case studies, tools, and
methods as well as a catalog of software product line projects.
Northrop, in [NOR 02], was the first author to propose a
comprehensive view of SPLE with all the related technical
and organizational activities. The SEI group was also at
the origin of the patterns for categorizing SPL practices. At
the beginning of 1980s, the European community sponsored
several important projects in this domain such as ESAPS,
CAFE, FAMILIES and more recently AMPLE (www.ample-
projet.net). Another sign of the activity in this domain was
the launching of conferences: the two main ones are Software
Product Line and Product Family Engineering conferences that
were merged in 2005. More details on these past events can be
found on the SPLC website (http://www.splc.net/history.html).

The SPL success story of product line engineering includes
HP printers, Nokia smart phones, and many others. HP
developed a line of firmware for a number of printers
and multifunction (printer/copier/scanner/fax) devices. These
products have been created with a quarter of the team, in a
third of the time, and with 1/25th the number of bugs in earlier
products. Nokia Mobile Phones produces a wide range of mobile
phones, more than 30 models, with a wide variety of functional
features, different user interfaces, and using several platforms.
Nokia is a leader in mobile phone manufacture, and software
product line engineering has helped them reach that position.
MARKET MAKER provides software in Europe for the stock
market. The company decided to plan the Internet versions
as a software product line. Due to its systematic product line
approach, the company was able to set up products in a few
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days. The time to market is 2-4 days and after five products,
there is a reduction of 60% in maintenance costs. More details
can be found in the hall of fame (http://www.splc.net/fame.html)
on the SPLC website.

2.3. Application example: Smart-Home systems

To better explain the basis of MDE and SPLE, and to
demonstrate the feasibility and economies of our approach,
we consider two examples from two different domains. In this
chapter, we introduce the first one. This is a home automation
system, which is rather a classic application of product lines.
The second one is introduced and developed in Chapter 7. It
has more characteristics of information system applications
where we need to manage, present, and store several pieces
of information of a business domain.

The Smart-Home illustrative example is taken from
the domain of home automation. “A smart home is a
building for living equipped with a set of electrical and
electronic sensors and actuators in order to allow for an
intelligent sensing and controlling of the building’s devices:
windows, heaters, lights, etc.” [ELS 08]. This application
example was also exploited in several other projects, for
instance in the AMPLE project [RAS 11] and in Pohl’s
book [POH 05b].

2.3.1. Smart-Home system’s domain

Smart-Homes are equipped with a wide range of electronic
and electrical devices, such as light arrays, temperature
sensors, thermostats, electrically steered blinds and windows,
door sensors, door openers, etc. A Smart-Home software system
coordinates and controls such devices enabling inhabitants
to manage them from a common user interface. A Smart-
Home system offers high-level functionality where several
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sensors and actuators work together. The sensors are physical
devices that measure values of the environment and make
them available to the Smart-Home system. The actuators
activate the devices whose state can be monitored and changed.
All installed devices, including sensors and actuators, are
a part of the Smart-Home network. The status of devices
can be changed by inhabitants through the user interface,
remotely by using an Internet connection or by the system
using predefined policies. These policies let the system act
autonomously in case of certain events. For example, in case
of low indoor temperature, the windows close automatically;
in case of fire, the fire brigade is automatically called, and
so on.

The architectural structure of buildings (e.g. the number
of floors, rooms, or windows), the sensors and actuators as
well as other devices, their location inside the buildings, and
the policies, are specific for each Smart-Home system and
must be defined by the designers of the Smart-Home systems.
Thus, Smart-Home systems can be created with the necessary
software components to respond to the particular requirements
of each Smart-Home owner. At runtime, the Smart-Home
system is then ready to respond to external or internal stimuli
depending on the defined structure of the building, its devices,
and the chosen policies.

In our example, Smart-Home systems must provide the
following functions:

– Climate control system. Climate control devices must be
orchestrated to keep the preferred temperature in the rooms of
the house.

– Security system. The door, the window sensors, and the
motion detectors should detect unauthorized entries into the
house. If any attempt at intrusion is detected, emergency action
must be taken.

– Energy saving. House devices should be orchestrated to
use the least amount of energy.
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The objective of this application example is to generate
software applications that simulate the interactions and
behaviors of home automation systems.

2.3.2. Requirements of the application example

Several types of houses, different customer demands, the
need for short time-to-market, and cost saving are the main
causes for variability and create a demand for product lines
of Smart-Home systems. We characterize the product line of a
Smart-Home system according to the following three sources
of variability:

– House architectural structure. Each house has its
particular architectural structure with several floors, rooms,
stairs, doors, and windows.

– Smart-Home facilities. Each house is equipped with
several facilities related to controlled devices.

– Software architecture. Each Smart-Home system has a
technology platform integrating its devices under different
software architectures.

The objective of this application example is to develop
diverse Smart-Home systems which (1) are able to manage
particular variants of Smart-Homes and (2) only include the
necessary software components to satisfy the requirements of
Smart-Home’s owners. It is not our aim to develop only one
Smart-Home system, which can be dynamically configured to
support the considered variability. The following subsections
describe in more detail the particular variants related to each
of the three sources of variability considered in our product line.

2.3.2.1. House architectural structure

The structure of houses is the most evident source of
variation. The description of a house includes structural
elements such as floors and rooms. In our application example,
we take into account the following structural elements: floors,
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rooms, staircases, doors, and windows. Thus, houses can have
different number of floors; floors can have different number of
rooms; rooms can have different number of windows or doors;
staircases connect the different floors in the house, and so on.
Therefore, the configuration of the architectural structure of
houses must be performed by building architects.

2.3.2.2. Smart-Home’s facilities

We take into account the need for incorporating automation
facilities for houses that are independent to the house
structure. By orthogonal,we mean facilities that affect multiple
structural entities. These facilities allow autonomous actions
according to the defined policies. Houses include electrical
and electronic devices such as automatic lights, electric
windows, security devices as alarms, and security systems for
authentication. These devices, and therefore their actuation,
are related to optional facilities that the designer has to select
and bind to other elements that already exist in the house. For
instance, the automatic lights can be bound to all rooms in the
house or the security alarm system can be bound only to the
main entrance door.

For this application example, we consider two groups of
facilities. The first group is related to access control facilities.
The second one is related to environmental control facilities:

– Access control. This facility group should insure that
only inhabitants and authorized visitors can enter into the
house. Two alternative options must be provided to control
the access of inhabitants: (1) keypad authentication and
(2) fingerprint authentication.

– Environmental control. This facility adds the capability
of measuring the indoor temperature and takes some
action according to pre-defined policies. Two alternative
options must be provided for environmental control:
(1) automatic windows and (2) air-conditioning. Automatic
windows must be automatically opened if the temperature
in a room rises above a certain threshold and closed if the
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temperature falls under a certain threshold. Similarly, air
conditioning is turned on if the temperature in a room rises
above a certain threshold and turned off if the temperature
falls under a certain point.

The configuration of Smart-Homes facilities is in the charge
of domain experts who know how to set up houses including
devices such as sensors and actuators. Facilities designers must
also support owners of houses to take decisions about the
distribution of devices, for example to save costs of construction
and maintenance of Smart-Home systems.

2.3.2.3. Software architecture

We build Smart-Home systems using a component-based
development strategy. We create components to manage the
different devices included in Smart-Home systems. For our
application example, we use OSGi (Open Services Gateway
Initiative) [OSG 09] as our base component integration
platform because it is currently the preferred platform for home
automation. See also [RAS 11].

We classify software components according to their type
(active or passive components) and their instantiation mode
(Deployment or Invocation). Thus, the architecture of Smart-
Home systems can vary depending on the type of components
we create to manage the devices and their instantiation mode:

– Active and passive components. Active components
are components offering one service periodically. The
infrastructure invokes this service periodically after a
configurable time period. Active components have their own
threads of control and they are started once the component
is activated. Passive components offer on-demand services to
other components. The type of a component depends on the
services provided by the component. For instance, a component
providing a service to open/close automatic windows according
to the temperature of rooms is an active component. This
component could check the temperature of rooms periodically
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to open/close the automatic windows. A component providing
services to open/close doors only when inhabitants arrive is a
better candidate to be a passive one.

– Instantiation mode: on deployment or on invocation. A
component can be instantiated either when it is deployed or
when one of its services is invoked (lazy deployment).

Figure 2.3. Example of a Smart-Home system

The configuration of the software architecture of Smart-
Home systems is driven by software architects who are
experienced in taking software design decisions. Each different
source of variability is the responsibility of a particular expert
that has the skills required to configure this aspect of Smart-
Home systems. In our application example, these are the
building architect, the facilities designer, and the software
architect. This is the main reason that implies the use of a
staged-configuration mechanism. The configuration process is,
thus, a combination of several stages dedicated to a variability
aspect and a particular expert of this bearing.

Figure 2.3 is an example of the GUI (graphical user
interfaces) corresponding to one Smart-Home System. This
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Smart-Home system has one floor with two rooms, the Main
Room and the Living Room. Figure 2.3 presents the Main
Room, which has Air Conditioning as the Environmental
Control, and its door has Fingerprint as the Door Lock
Control.

2.4. Software product line engineering

The Software Engineering Institute (SEI) [CAR 09], which
has been the most important promoter of the software product
line paradigm, provides the following definition of what an
SPL is: “A software product line is a set of software-intensive
systems sharing a common, managed set of features that satisfy
the specific needs of a particular market segment or mission
and that are developed from a common set of core assets in
a prescribed way” [CLE 01]. This definition uses the term
core asset, which are re-usable artifacts considered as building
blocks in SPLE. These re-usable artifacts can be models,
common components, documentation, requirements, test cases,
and so on.

To obtain benefits from the creation of re-usable common
assets, it is important to be able to derive many products from
the assets. In SPLE, the description of the set of products,
which are parts of an SPL, is called the scope of the product
line. To achieve a profitable SPL, its scope must be neither very
large nor very small. To capture the scope of SPLs, product line
architects determine the commonalities, i.e. the characteristics
shared by all products in a product line, and the ways in
which they can vary (variability). If the ratio between the
commonality and the variability is low, then the core assets
will lose their ability to satisfy the variability; economy of
product derivation will be lost, and the product line will fall
into the traditional style of “one-product-per-time”. If the scope
is very small, then the core assets might not be built in a
generic enough way, and the return on investment will never
be achieved [CLE 02a, CLE 01]. The management of variability
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is the most important activity in SPL development. It is a
transverse activity performed during the whole product line
development cycle.

Figure 2.4 summarizes the five main activities involved in
the two SPL engineering processes. In this figure, variability
management covers the entire domain engineering since
several kinds of variability and several stages are needed.
The core assets result from domain engineering; this is “for
re-use”, while product derivation re-uses the elements from
the core assets. The product configuration can be seen as
creating a specific instance of the variability model built during
domain engineering. The production plan is the main activity
responsible for the derivation of each product. The following
sections detail these activities.

Figure 2.4. The processes of domain and application engineering

Several dimensions are interesting for SPLE: the adoption
of SPLE, the development process, the re-use organization, and
the technical aspects.
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The adoption of SPLE by a company is an important
problem, for which, not much research has been undertaken.
However, [CLE 02b, CLE 06] present some results on this
subject. Adoption requires an initial investment and the
coordination of several business and technical activities.
In [CLE 06] the authors argue the need for re-using
an “Adoption Factory” to coordinate these practices for
successfully initiating a product line. As explained by Krueger
in [KRU 06] the first generation of SPL methods rely on
manual techniques to build products. The next generation
of methods offers another step forward with bounded
variability combinations and software mass customization.
This new generation will minimize the adoption barrier by
automating application engineering and reducing the number
of product configurations. In this book, we will focus on
the process and technical aspects related to MDE. The
techniques presented here, like the automated application
engineering with configurators and the creation of feature
model configurations, are completely aligned with this new
generation.

To run an SPLE process, three main ways have been
identified in the literature: proactive, reactive, or extractive
(see [FRA 05, CLE 02b]). In the proactive process, the
engineering starts from scratch, analyzes the domain, builds
the reference architecture, the core assets, and then generates
the products. There is an important investment at the
beginning to start the line and precise management must
be done to evaluate the benefits. It will be successful in a
mature and stable domain where it is possible to know in
advance the features and the product characteristics. The
reactive process is a way to dynamically develop and extend
the product line. It starts with an existing product line or
a product and then builds the variability models with new
products and new features. This is suitable for a domain where
products are not stable or not known when the product line
begins. It does not need a significant initial investment but
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the re-factoring of assets during the product line evolution
is complex. Evolution in software engineering is an intricate
problem and it is increasing with SPLE. The latest method
is called extractive: It starts with a family of existing products,
which will be transformed in a product line. Thus, the company
has a good knowledge of the domain and the applications to
build. This is an interesting way for companies having some
application domains and wanting to quickly adopt SPLE. In
this book, we will focus on proactive product lines; however,
most of the techniques used apply to the other approaches.

Another process characterization was illustrated
in [RAS 11]; it is related to the kind of products the company
has to build with regard to its business model. In the product-
oriented approach the products are well identified and are
expected to be sold a number of times. The number of different
products is stable and they are mastered by the company.
However, new features can be added to some products in
the line, thus, facilitating product line evolution. Multimedia
systems or mobile phone applications are examples for which
we can expect to automate the product generation as much
as possible. Hence, the focus is on maintenance and evolution
of the product lines to get benefits. The solution-oriented is
quite adequate to manage a set of products for which the
variability analysis is difficult; for instance, if the products are
too numerous. It is the case that if products are sold only once;
each product is different from the previous one, but they share
some commonalities. It is rather difficult to automate the
product derivation, but it is convenient to use SPLE to get a
more rational process than a simple copy-and-paste paradigm.
For instance, web applications for enterprises are often very
similar but different in many details about their content,
interactions, and presentations. In this approach, the degree
of automation provided by the software factory is considered
more crucial than scoping the domain. These orientations
and ways are not completely orthogonal. For instance, the
solution-oriented approach can be viewed as the initial step



34 Model-Driven and Software Product Line Engineering

of any reactive product line engineering. That is, once the
solution-oriented approach has been completed, the reactive
team could lift up specific product analysis/design/coding done
in application engineering and improve domain engineering
to evolve the product line.

The organization of the re-use is an important factor for
the benefits of a product line. However, it requires an initial
investment and it pays off only after the assets are re-
used in several products. It seems that in any case, a good
management of the re-use needs centralization. A completely
distributed management of the core assets is risky; the
focus of the product line may diverge. The critical technical
aspects are numerous and many different points have to
be considered for the success of an SPLE process. Some of
these are discussed in this book and in further detail in this
section. An important one is variability management, but also
the building of the architecture reference, and the chain for
product derivation. Testing, evolution, traceability, and quality
management are of great importance; they are usual in the
traditional software development process but in SPLE they
have new characteristics and they are more complex. Some of
these issues are briefly discussed in section 2.9.

2.5. Domain engineering

Domain engineering is the process of SPL engineering in
which the commonality and the variability of the product line
are defined [POH 05b]. The development of an SPL starts with
the analysis and modeling of common and variable features of
the product line. A domain analysis, which limits the product
line scope, is performed. In a second step, commonality and
variability are identified, classified, and documented. During
this engineering, re-usable core assets are built to fulfill the
identified and classified variations. Finally, a production plan
is defined, which is the set of rules to build the products of the
domain.
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DEFINITION 2.2. – The product line scope is the set of products
that is built by the product line. It defines the business domain,
which is the focus of the product line.

There is no standard way to define this set; an enumeration
complemented with informal textual descriptions can be used.
The variability management tries to give a more formal
description using, for example, feature models and product
configurations.

DEFINITION 2.3. – The core assets are the set of re-usable artifacts
that are built and maintained along the product line activities.
These assets are the building blocks for the products of the
product line.

The notion of asset or artifact is neutral and can be
anything needed in the product line development. That means
the usual elements used in software engineering such as
requirements, UML, programs in any language, configuration
scripts, architectures, documentations, or tests. It can also
include performance models, budget estimations, marketing
requirements, and so on.

DEFINITION 2.4. – The production plan is a guide to build
the products from the product configuration by re-using and
configuring the assets.

The production plan collects a set of rules to build
the products from the configuration, thus, managing the
commonality, the variability, and re-using of the assets. The
production plan usually defines a reference architecture, which
is a way to map all the products to build in a common
framework. In the new approach of SPLE based on MDE, this
production plan materializes by a chain of transformations.
This is then more formal and also paves the way for automatic
product derivation.

DEFINITION 2.5. – The reference architecture is a specification
capturing some global properties of the functions, qualities,
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organizations, and interactions of the products in the
product line.

Its role is to collect, in one single artifact, the overall common
and variable knowledge related to the functionality of the
products. It can also express the structural organization,
qualities, and the connections between the different
components of the products. It is architecture, and as
such, can be specified in various ways ranging from
formal architectural languages to light weight notations
and natural languages. One of the main notations is UML
with additional stereotypes or constructions such as the
UML merging operator. MDE in this context is also used
and several metamodels exist [GOM 04, RAS 11]. The
reference architecture should represent the product line
scope; validation or evaluation has to be performed to ensure
this representation. Another aspect is that, like all other
re-usable artifacts, the reference architecture can be subject
to evolution.

2.5.1. Component-based software engineering

One important idea to improve re-usability, which dates
back to the McIlroy paper [McI 68], is software components.
One can say that component-based software engineering
(CBSE) is the root of domain engineering. This principle
is extensively exploited in software product lines to define
applications by assembling assets. This is suitable in all the
development steps where new assets are preferably built from
existing assets, and this is also true for final products. To
take into account variability, new assets and new links can be
added, removed, or changed in a given configuration. Various
models of components and composition are of interest; for
instance, template, module, software component, architectural
description language [MED 00], model and weaving [JÉZ 08],
or aspect oriented programming [KIC 97]. As an example,
one of the first experiments of software product lines was
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done by Philips in the mid-1990s. Philips was developing a
large range of televisions worldwide. While the hardware was
modular, the software parts were developed through a classic
approach using mainly compiler switches, runtime options,
and code duplication with changes. However, the new products
needed more and more functionalities and combinations of
these functionalities. The company had to integrate different
pieces of software coming from different areas and developed at
different times. The existing component technology available
at this time was not suited to the existing constraints; thus,
Philips designed the Koala component language [OMM 00].
It was inspired by the Darwin language [MAG 96] dedicated
to distributed system architectures. Component languages
are really akin to implementing software product lines.
However, it can raise some unexpected issues as demonstrated
in [PAV 04] with the implementation in ArchJava. In this
case, the communication integrity property makes the dynamic
configuration of composite components difficult. Nevertheless,
some solutions exist; for instance, the use of component
generators.

2.6. Variability management

Variability management in SPL engineering is the set of
activities related to the identification, expression, and binding
of common and variable features included in the scope of the
product line. The management of variability is of primary
importance for product line development. The effectiveness of
a product line approach depends on how well it manages the
variability throughout the development lifecycle, from early
analysis to the final derivation of products [STA 06]. The
management of variability in SPLs is the most general and
important topic, and it is at the core of the approach we
present in Chapter 5. Different definitions related to variability
management can be found in the literature. Here, we list two of
them, which refer to variability and variability management.
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DEFINITION 2.6. – The variability of a set of software systems or
products is the set of differences, described in a structured way,
of some or all of their characteristics.

There are many methods for classifying and documenting
variability in software product lines [CHE 09]. Several
approaches for classifying and documenting variability focus
on the use of variability models [SIN 07, BAY 06].

From an abstract point of view, variability management
can be seen as the definition of variation points and variants.
A variation point is a location point in an artifact where
several variants are possible. A variant is a concrete realization
of a variation point; it corresponds to an alternative to
bind the variation point. There are some characteristics or
constraints related to the possible variants, which are attached
to the variation point. In a secure Smart-Home, we have
authentication requirements (the variation point), which could
be more or less sophisticated. The variants are a simple key
lock, an electronic keyboard, and various kinds of recognizer
devices (e.g. visual, vocal, digital). In the physical architecture
of the Smart-Home, we should allow various structures. Thus,
we can have one or more floors, each of them with different
structures in terms of rooms, doors, windows, etc. Another way
to describe this variability is to enumerate a set of predefined
alternatives such as standard flat, house, hotel, castle, etc. The
Smart-Home structure is a variation point with many complex
variants.

DEFINITION 2.7. – Variability management is the process of
making the variability of software artifacts explicit and to
enable variant binding throughout the lifecycle.

Pohl et al. [POH 05b] define variability management as
the set of activities for defining and exploiting variability
throughout the SPL development lifecycle. The concept
covers the following issues: (1) supporting activities
concerned with variability and commonality analysis, which
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includes identification and documentation of variability, and
(2) supporting activities concerned with variability binding and
variability realization, which includes configuration of product
line members and derivation of these products. Typically,
(1) the variability and commonality analysis is performed
during the domain engineering process; (2) the variability
binding and variability realization is performed during the
application engineering process.

A distinction is often made between positive variability
and negative variability. In negative variability, the reference
architecture builds a product with all the features and a
mechanism is responsible to mask or remove non-selected
variants. This is a practical response, which is simple but not
really scalable. Mechanisms such as C macros (#define and
#ifdef) can be used for that. Positive variability is a much
more complex mechanism, which builds the product, in a
constructive way, with only the selected features. Most of the
existing mechanisms allow positive variability. Variability
is possible at any level of the software development process
and a convenient classification is essential variability and
technical variability introduced by [POH 05b]. While essential
variability is related to the requirement of the client, technical
variability is that which occurs in the process of realizing it. In
the Smart-Home described earlier, the two first variabilities,
home architecture and smart-home facilities, are essential
variabilities, while software infrastructure is only a technical
variability. Since artifacts, products and even the product line
are evolving, we must consider variation in time, which is
the evolution and versions of artifacts along the time. Two
products may differ since they have different implementations
of the same features; this is variation in space.

The variability mechanisms can be classified according to
the software development steps or the main concepts they
address. A more comprehensive taxonomy of variability
realization techniques is described in [SVA 05]. For
requirements, we can use the use case notation from UML
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with specialization, which extends and includes relationships.
But the most common is feature modeling; however, many
approaches are now based on the use of one or several
metamodels addressing specific variability concerns. The next
subsection explains what feature modeling is;Chapter 3 – MDE
will describe the metamodel approach and Chapter 4 will show
how to use both ways consistently. At the architecture level,
UML construction such as inheritance, the merge operator,
and metamodels are of great importance for variability. Due
to the deficiency or the non-suitability of existing languages,
there are some specific proposals such as the VML4Arch
of the AMPLE project [RAS 11]1. At implementation, there
are various ways to express variability in code, ranging from
macros (like #define), inheritance, parameterization (template,
generic), aspects, feature-oriented programming, and patterns
or frameworks. During testing, composition, configuration,
and parameterization are classical means to build new test
sets. The reader should note that these are rapidly evolving
and there will be a variability language in the near future.
There is currently an attempt to propose an OMG standard,
which is called Common Variability Language (CVL)2.

2.6.1. Feature modeling

The features describe the common and variable
functionality of a system under development. The feature
modeling notation facilitates the construction of a hierarchical
decomposition of features into a tree structure, which
represents variation points and variants. As said before, a
variation point is a relevant characteristic of a system; for
example, the operating system under which a system can
run. A variation point can have different values or variants
according to the variability of a product line. The features are

1 In fact, this book proposes a variability modeling family called VML*.
2 See http://www.omgwiki.org/variability/doku.php for more information.
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used to define a specific domain in terms of their mandatory,
optional, or alternative characteristics. The commonalities are
represented as a tree of mandatory features. Optional denotes
characteristics specific to some products and alternatives
express a choice between several variants.

Extensions have been introduced to increase the expressive
power, such as feature cardinality, groups and group
cardinality, and attributes for features. The purpose of these
extensions is to restrict the set of variants that can be selected
from feature models to create particular configurations. One
of the most cited works on feature modeling was done
by Czarnecki et al. [CZA 04], where the authors propose
a cardinality-based notation for feature modeling including
solitary, group, and grouped features. This approach integrates
a number of existing extensions of previous approaches; thus,
we suggest the use of this notation.

Figure 2.5 presents a feature model including alternative
Smart-Homes’ facilities. One FeatureGroup appears for each
group of facilities. The Lock Door Control feature groups
the features Fingerprint and Keypad and has cardinality
[0..1], which implicitly means that Door elements can have
either keypad, fingerprint, or none of them as lock door control
mechanisms. The Environmental Control feature groups
the features Air Conditioning and Automatic Windows
and also has cardinality [0..1], which implicitly means
that Room elements can have either automatic windows, air
conditioning, or none of them as lock environmental control
mechanism. We say implicitly because there is no semantics in
traditional feature models or in metamodels, to formally denote
that features represent variants that affect particular model
elements.

Figure 2.6 presents another example to illustrate the
concepts introduced by Czarnecki et al. by using a feature
model of an operating system security profile [CZA 04].
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Figure 2.5. Smart-Homes’ facilities feature model

Figure 2.6. Feature model example

The Password Policy of the Security Profile has
associated a policy to manage the password Expiration date.
For the Password Policy a solitary feature has been
created. In this case, the solitary feature has associated
the cardinality [1..1], which means that one and only one
Password Policy can be defined for a particular system
under development. For the Expiration date, a group feature
is created. A group feature has a set of grouped features. In
this example, the Expiration date has two grouped features,
inDays and Never. Thus, passwords can be set to expire after
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a given number of days, or never expire. The number of days
a password remains valid can be set in an integer attribute
associated to the inDays feature. The constraints on the
number of policies for the Expiration date are captured in
the cardinality associated with the group feature. In this
case, the Expiration date has the cardinality [1..1], which
means that one and only one policy for the expiration date
can be selected. The feature model also takes into account
the possible requirements on the characters to be used in
a password. The constraints on characters required in a
password are specified by a group feature, Chars, with
cardinality [1..2]. This means that any actual password
policy must specify between one and two requirements on
characters (Chars) in a password, Upper Case and/or Lower
Case.

Such a feature model can be designed by some specific
languages but a convenient way is to use a metamodel to define
this language. This aspect is further developed and illustrated
in Chapter 3.

2.7. Application engineering

Pohl et al. define application engineering as “the process
of SPL engineering in which product line members are
built by re-using core assets and exploiting the product line
variability” [POH 05b].

DEFINITION 2.8. – Application engineering is the process of
building the products of the product line and re-using core assets
according to the production plan.

During this process, product designers use the variability
identified and the core assets created during domain
engineering to ensure the correct derivation of required
products. The application engineering process is composed
of activities for configuring individual products inside the
set of valid variation points (product configuration), and
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creating product line members by using the available core
assets (product derivation). When a product is being produced,
the management process has to evaluate whether it is a
new product or a product in the scope. If the product is
not covered by the scope, the normal strategy is to review
the domain engineering to extend the scope and to review
the production plan; this is a reactive process. However, in
some cases, a lightweight approach is possible where the
application engineering becomes a complete software process,
as in solution-oriented product lines. It consists of analyzing
the new requirements, building the needed assets, re-using
some artifacts from the core assets, and composing – all trying
to conform to the production plan. This has the drawback of not
capitalizing on the core assets and on the domain scope.

2.7.1. Product configuration

In SPL engineering, during the product configuration
activity, product designers are responsible for configuring
particular product line members by choosing sets of valid
combinations of variants identified at the domain engineering
process.

DEFINITION 2.9. – Product configuration is the process of
selecting a valid and complete set of variants to bind to the
variation points.

In order to build a product, the product designer selects
the variants to include in his product. Some variants may be
incompatible, some others may have requirement constraints
that need to be satisfied, and finally, the set of selected
variants should define a viable product. Thus, this process
needs some validation steps and also tools to assist in the
configuration and validation. Some tools already incorporate
feature model design, validation, and verification, such as pure
variants [PUR 10]. However, there is a recent and active
research area and useful techniques should be transferred
from academic to commercial and publicly available tools.
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The interested reader can look at our related work in
Chapter 8. When product designers select variants to appear
in a particular product configuration is called binding time
of the variability [BAC 03, BOS 02, POH 05b]. Some
authors have identified the advantages of deciding very late
on the binding time, and, thus, making the binding time
variable [OMM 02, CZA 05, ASI 07]. The advantage of
postponing the binding time is that decisions, i.e. design or
technological decisions, may be left open very late in the
configuration and derivation processes. This adds flexibility to
the product line and decouples platform decisions from design
decisions or functional requirements.

Product configuration is a simple task when only considering
basic feature modeling. However, it becomes tricky with new
feature models allowing cardinality, groups, and constraints.
One problem is the volume of the information to manage,
but maybe the most crucial issue is to define inconsistent
configurations. Product configurators are artifacts defined to
support the creation of product configurations. The basic
functionality of a configurator is to facilitate the creation of
valid configurations from given variability models. According
to Asikainen et al. “a configurator must make deductions
based on the requirements the product designer has entered
so far, and prevents or discourages the designer from making
incompatible choices” [ASI 07]. Different configurators have
been proposed to support product configuration at different
stages of the activity, e.g. [ASI 07, ANT 04, WAG 05, POH 06b].
One example of a product configurator using feature models
is the FeaturePlugin [ANT 04], a feature modeling plug-in for
the Eclipse Platform. The tool supports configuration based
on feature models that conform to Czarnecki et al.’s feature
metamodel from Figure 3.3. This configurator implements
cardinality-based feature modeling, which includes feature and
group cardinalities, and feature attributes. In Chapter 6 we
present the product configurator we created to support our MD-
SPL approach.
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2.7.2. Product derivation

DEFINITION 2.10. – The product derivation is the activity related
to the manual or automated construction of product line
members from the product configuration, the core asset, and the
production plan.

The requirement specifications of products, which are
captured in product configurations, are the main input for the
product derivation activity. Therefore, to derive products, it is
necessary to adapt and assemble core assets according to the
variants chosen from the variability models and captured in
product configurations. The guidelines and rules to build the
correct product from a product configuration and the core assets
are defined in the production plan. As already mentioned, the
production plan refers to a reference architecture, which is the
general map to construct the products.

Core assets are, thus, the re-usable artifacts considered
as building blocks; these artifacts include re-usable common
models, components, documentation, requirements, and test
cases among others. Product line architects create core assets
according to the variants identified and documented during
the activity of variability management. For instance, for the
Expiration feature from Figure 2.6, a product line architect
creates two (different) software components, one for each
group, inDays and Never. The first software component has
services for checking that passwords are changed once in a
specified number of days, and for supporting the requirement
of changing a password. This software component is created for
the inDays feature. The second software component, created
for the Never feature, only has one service to inform that
passwords cannot be changed.

In practice, there is a significant gap between variability at a
conceptual level (variation points and variants) and variability
at the implementation level (concrete core assets). Decision
models [ATK 00, BAY 00, FOR 08, DHU 08] intend to close
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that gap. A decision model is defined as a model that captures
variability in a product line in terms of open decisions and
possible resolutions [BAY 00].

DEFINITION 2.11. – A decision model is an artifact capturing
product line variability and making the resolution of this
variability effective during product derivation.

Each decision is expressed in terms of a selected variation
point and associated with a set of possible resolutions, which
in turn, refer to variants of selected variation points. A set of
effects is associated with each possible resolution. An effect
indicates how a particular core asset is re-used to create a
product line member.

DEFINITION 2.12. – A resolution model is a decision model
instance, which binds variability and defines how to derive one
product.

In resolution models, all decisions must be resolved. As
resolutions are related to variants and effects on particular
core assets, a resolution model defines a product line member
including (1) a subset of variants, (2) the core assets required
to derive the required product, and (3) the adaptation that
must be performed on the core assets to obtain a product line
member.

Table 2.1 presents a decision model example to create
an SPL, which includes variants of the security profile
from Figure 2.6. This decision model includes only one decision
expressed in terms of the variation point Expiration date,
which has been created as a FeatureGroup. This decision is
associated with two possible resolutions, which in turn, refer to
variants from the Expiration date variation point, inDays
and Never. One effect is associated with each resolution.
Each effect indicates the software components that must
be deployed in case a particular resolution is selected. Thus
for instance, if a resolution model is created including the
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resolution “Passwords will expire in a determined
number of days”, then the PasswordExpire component is
deployed with the rest of the common components.

Decision Resolution Effect

What policy
for Password
expiration
will be used?

Password will
expire in a
determined
number of days

The PasswordExpire component is
deployed with the rest of common
components.

Password will
never expire.

The PasswordNever Expire
component is deployed with the
rest of the common components.

Table 2.1. Example of a textual decision model

Even when decision models help in the process of creating
SPLs, there are still several problems remaining regarding the
gap between variability at a conceptual level and variability at
the implementation level. These problems are important for us
when they are taken into the field of MD-SPL approaches. The
use of MDE is a promising technique to assist and automate
product derivation. We go deeper into these specific problems
in Chapter 4 and Chapter 5.1, which will explicitly deal with
such issues.

2.8. Benefits and drawbacks

On the technical and software engineering side, SPLE
should improve and rationalize the management of the core
assets. We can expect a better quality of the re-usable assets
as they are re-used and tested over and over. It also improves
the architecture of applications, tracks code duplication, and
increases the artifacts re-use. The consistency of all the
assets is better since a global view of the architecture and
of the products is maintained. Requirement engineering is
a mandatory step; it requires strong interactions with the
clients, and thus it provides a more stable and organized set
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of requirements. There are other benefits for the company that
adopts the product line approach. It increases the company’s
domain knowledge and its expertise about the product that
it is developing and selling. This also has important business
benefits in terms of product costs, time-to-market, and process
efficiency. The company can expect some strong feedback on
its organization and its relationships with customers becomes
more reliable.

Nonetheless, there are also some drawbacks. One of the
main drawbacks is that product line engineering needs
expertise and an initial investment. It is not realistic to
expect a quick return on investment; visible benefits are not
immediate since we first have to play domain engineering. It
is well known that a sufficient number of products must be
developed before the product line takes advantage over a more
classic software engineering approach. Due to the efforts to
launch SPLE, this is mainly adopted by big companies and
is difficult for smaller companies. To manage a product line
requires connecting and using various tools and formalisms.
It is difficult to make various software systems interoperable.
This is a point where MDE is still a promising technology. There
are also social resistances, for instance, to change the practices
of engineers and developers. Thus, a domain expert is required
to correctly manage a product line project but participants
should also get a global view of the entire product line. This
needs an initial investment for teaching SPLE in the company.
Communication and documentation about the product line are
important aspects to ensure the global consistency between the
various activities and stakeholders.

2.9. Issues in product line

Several issues exist in the adoption of software product lines.
Here, we focus on some of them: the use of MDE to automate
and represent variability, testing, the need for traceability,
software evolution, and tool support.
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2.9.1. Variability management

At present, there is no standard way to represent variation
points and variants in variability models. However, one of the
most used methods to represent variation points and variants
is by means of feature models. Feature modeling and meta
modeling deserve special attention in this book. Currently,
in SPL engineering, there is a trend to separate different
concerns involved in a product line. For example, it is desirable
to create a variability model including software design
concerns separately from technological platform concerns.
This separation of concerns facilitates the product line
architects’ tasks focusing on particular concerns at different
times. Similarly, when products are configured, staged feature
configurations could be created by different groups of product
designers focusing on particular concerns. To facilitate the
separation of concerns and the staged configuration of products,
separate feature models can be created. Czarnecki et al.
motivate the concept of staged configuration and stepwise
specialization of feature models [CZA 05]. They propose to
create separate feature models but with relationships between
them. Thus, they avoid a breakdown between the different
concerns of individual feature models. For instance, they create
a feature model including software architectural concerns
and another feature model including technological platform
concerns. They maintain relationships between these feature
models. For example, one relationship indicates that only
if the feature ObservablePattern of the architectural feature
model appears in a feature configuration, then the feature
OSGi-PeriodicComponent of the platform feature model will
be available to be selected. In Chapter 4, we present how we
have introduced the concept of staged expression of variability
and staged configuration of products in our MD-SPL approach.

2.9.2. Product derivation

Product derivation is the process of building a product
from its configuration and according to the production plan.
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The product derivation follows a complete software lifecycle
with re-use of the core assets developed during domain
engineering. Engineers aim at automating and increasing
software productivity. MDE was already used to improve SPLE
and one of its benefits is to make the automation of the
production plan possible. However, this is a complex task,which
needs several stages and various kinds of artifacts. Variability
can occur everywhere. Given that one objective of SPLE is to
automate the process of deriving products, there exists the need
for using mechanisms that allow designers to automatically
select and assemble the common core assets and variable
core assets, which are assets related to variants (features).
These mechanisms must also ensure the correct assembling. By
correct, we mean assembling the required configured product.
Therefore, an open issue is the definition of explicit models to
capture (1) the relationships between features and core assets,
and (2) the required rules to assemble them to create valid
products based on product configurations.

2.9.3. Testing

In the context of SPLE, we must revisit the testing practices
since they raise new challenges. In [PM 06a], Pohl and Metzger
summarize the three main points. The first is about what
to test during the two engineering steps. We could test the
commonalities and the different variants. However, separately,
they cannot define a viable product. Another problem is that
the number of product combinations is exploding; thus, it is
not feasible to test all of them. We need to test the realized
products and we expect to re-use the tests done for other
products sharing the same concerns or features. One rule seems
to define the tests accordingly with the variability; in some
sense, the tests are new products defined during domain testing
and built in application testing. The last point is related to the
variability binding in a product. Two problems occur. In the
first, a feature is not bound in the product, but it should be
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present. The second problem is the opposite: a variant has been
selected but the configuration choice would have to eliminate it.
Testing the commonalities is mandatory, but testing the most
used variants in the products could be critical. Thus, it is a good
practice to test the reference or base application intensively
and to elaborate a plan for re-using testing artifacts.

2.9.4. Traceability

Traceability means to follow the life and the dependencies
of the artifacts in the development cycle with the software
evolution. Traceability is a necessary system characteristic;
for example, to support software management, change
impact analysis, software evolution, and validation. Providing
traceability support during product line development is
a complex feature since it concerns every artifact, every
development step or iteration, configuration, and evolution
management. Traditionally, links between artifacts of a single
development step are called vertical traceability, and links
between artifacts of two or more development steps are
called horizontal traceability. However, SPLE introduces two
new dimensions [ANQ 09] into the field of traceability. The
first dimension is traceability of variations, which goes from
domain engineering to application engineering level. The
second dimension is related to configuration management and
software evolution, which carries a notion of traceability in
time. This means that the software product line process has
to be modeled, artifacts have to be extended to cope with
tracing, and a traceability tool chain needs to be designed and
implemented.

Traceability is needed for various purposes and at various
levels of granularity. We can expect to trace some parts of the
general software process and in case of problems to generate
finer trace sets. This is difficult to achieve when the process
is only manual. We should collect as much information as
possible. A challenge is the management of a huge amount of
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complex data, which requires a good data base and an efficient
querying system. In case of automatic processes, the situation
is much better since we can replay the sequence and tune
the trace configuration. Traceability is often used for change
impact and covering analysis. It is more complex with SPLE
since one modification has an effect on re-usable artifacts,
than on several products. This holds good for other analysis
like covering. The use of MDE to model trace links seems
obvious, it provides automation, and can capture links during
the tool chain. However, it could also permit the tuning of the
granularity of artifacts and the granularity of links needed for
a successful analysis of trace links.

As a result, a traceability framework has to be configured
for each use by the software architect. The architect has to
choose the kinds of artifacts he wants to trace, the dependency
links he needs to observe, and also insert the correct trace
actions in the right places. Such a framework provides the
basic support for storing the chosen artifacts and dependencies
using interface managers. In addition, it is possible to provide
some interactive help for inserting trace actions in the source
code. The interested reader could look at the proposal described
in [ANQ 09].

2.9.5. Product line evolution

Software evolution is defined as software artifacts evolving
over time due to updates and changes during software
maintenance. The reasons to maintain software assets are
usually classified into four categories: corrective, perfective,
preventive, and adaptive. Change in one asset may impact
several other dependent artifacts and also several products
and probably several versions of the products. Thus, evolution,
anticipated or not, is an important challenge in the
management of a product line. Analyzing the reasons for
changes and the direction of these changes can greatly help in
anticipating the evolution. [McG 03] analyzes how evolutionary
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changes affect the various types of assets in a software product
line and how anticipation and direction can save the product
line consistency. Conceptual and automated techniques that
support these practices are also presented. One obvious link is
generally between management of evolution and traceability;
both have a common objective of facilitating changes. However,
both are very often disconnected and insufficient to manage a
product line properly.

In [MOH 08] the authors argue for a strong synergy
between software configuration management and traceability
repositories. Software configuration management, such as
Subversion, or Microsoft Visual SourceSafe are able to store
software artifacts and to memorize their evolution. The
primary aspect of traceability that is enabled by configuration
management systems is the traceability of the evolution of
versioned items. As configuration management typically has
its own repository and rules to store artifact versions, the
difficulty is to facilitate a consistent trace and configuration
repository without loss of efficiency, loss of information, or
difficult querying.

As far as we know, two attempts have been made to connect
configuration management and traceability. An advanced
solution is proposed in [MIT 08] with the concept of feature-
driven versioning. This is a solution able to version product line
artifacts on a per feature basis; thus, it is really adequate for a
product line. However, the current configuration management
is file based and, thus, it requires a new configuration system.
The second approach is described in [ANQ 09, RAS 11]. The
solution adopted is to import references of the versioning
items of the configuration management repository (SVN in this
case) as traceable artifacts. Versioning in the configuration
management repository leads to traces in the traceability
repository between the considered artifacts. This provides a
uniform way to manage and query trace information. One
interesting point of this solution is that, once the versioning
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has been done (automatically or manually), then the traces are
automatically created.

2.9.6. Tool support

As in general engineering, software engineering needs
tool support. These tools can be heterogeneous and
interoperable, or they can be well-integrated in an IDE.
These tools should support all the steps of the lifecycle
and an iterative development process. SPLE adds more
challenges since it covers two complete engineering processes.
Requirements engineering can be connected with domain
analysis; requirements should be structured and organized in
a variability model.

Verification and validation of requirements engineering is
important to increase reliability and suitability of software
systems. Feature model verification and validation is a recent
and active area of research; important progress has been made
in this context. For example, the ArborCraft tool from the
AMPLE project is devoted to assist requirement analysis and
to generate a feature model. Several tools already integrate
some verifications of the feature model; for instance pure
variants. The Feature Modeling Plug-in (FMP) [ANT 04] is
a rich diagrammatic notation with cardinality, group, and
constraints. It already allows a static verification of the feature
model and checking of the constraints for a configuration.
SPLE also requires expression of variabilities and product
configurations and verification that it is a complete and
consistent assembly. As quoted in Chapter 8, the issues are
numerous, but some new techniques are emerging.

The core assets is a repository that should be managed
and browsed. To explore the core assets means to search
for a given piece of software and re-using it as such or
after some customizations. One difficulty is that artifacts are
evolving; a versioning and software configuration management
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system should be used. New domain specific languages are
required in order to represent the production plan and the
reference architecture. The automation of product derivation
is a promising issue. Since the reference architecture and
product configuration are software pieces, the next step is to
add generative power to it. Elaborating a partially automated
production tool chain is an important challenge for efficiency
and code quality. Traceability support demands specific tools
that support all the dimensions [ANQ 09].

Product-line testing is crucial to success in SPLE. For
test automation, the “Tool Support” practice area in the
Framework for Software Product Line Practice developed
by the SEI provides a comprehensive discussion. However,
concrete mechanisms for testing of product lines and tools
to support those mechanisms are subjects that need greater
emphasis in practical approaches. There are still fundamental
challenges in tool support for testing SPLs. For instance, how
can we manage the complexity of the test space taking into
account possible combinations of several variants; how can
we plan, manage, and execute different types of testing such
as unit testing, integration testing, conformance testing, and
regression testing, using SPL-driven tools. Recurrent solutions
provide a configuration management tool to manage multiple
versions of each test. This strategy can be used to provide
traceability between the tests and the artifacts to which they
are applied. Then, SPLE tests can be taken from repositories
and parameterized based on the variation points captured
in variability models. This solution has some strengths and
weaknesses. That is why these subjects are still open for
discussion and are the motivation for events such as the series
of International Workshops on Software Product Line Testing.

2.10. Summary

Software product line engineering is a recent trend in
software development. It can bring benefits in terms of
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costs and productivity; however, it also involves a complex
software development process. Many software companies are
building applications that share more commonalities than
differences. They often repeatedly add new features and
build new variants or releases of their applications. Most
often, software development consists of creating variations
from existing software. The strategy of the planned re-
use of software artifacts promoted by SPLE has been seen
as a means to alleviate problems associated with software
development. The SPLE has a two-fold software process:
domain engineering and application engineering. These two
processes are also often called “development for re-use”
and “development with re-use”. Domain engineering is
responsible for analyzing and modeling the variability in
product lines. It also builds the core assets and defines
the production plan. The variability model is a structured
representation of the commonality and the variability of the
products in the scope of the line. One of the main notations
is feature modeling; however, metamodels are used more and
more to represent variability. Application engineering is the
process of creating a product from the product configuration
and the core assets following the production plan. Product
configuration is an assembly of variants binding the variation
points defined in the variability model. Benefits of a product
line are clear, provided that the initial investment was precisely
measured. Engineers do not have to minimize the complexity
and the organization needed to successfully launch and manage
a software product line. There are still numerous issues in
SPLE: variability management, product derivation, core assets
exploitation, testing, traceability, and tool support are some
concerns we discuss in this book.



Chapter 3

Model-Driven Engineering

3.1. Introduction

The use of abstract descriptions of systems before building
a complex system is mandatory in every engineering and
modern discipline. Today, no one can imagine building a system
without a extensive analysis of its overall organization, the
interactions between its parts, the cost of building the system,
the study of properties such as security or robustness, and so
on. Models, architectures, or plans are used to design complex
systems in general engineering and model-driven engineering.
MDE proposes a framework using models as first engineering
artifacts to define software development methodologies, to
develop systems at any level of abstraction, and to organize and
automate system testing and validation. Thus, MDE conceives
the whole software development cycle as a process of creation,
iterative refinement, and integration of models. During the
software lifecycle, stakeholders create models and use model
transformations to derive products.

MDE expectations are to increase software productivity
by simplifying and automating the design and promoting
communication between stakeholders and teams working on
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the system. One of the main reasons for the attractive
power of MDE is its ability to address the entire software
development process (requirements, architecture, coding,
testing, and traceability) in an iterative view well suited
to modern software lifecycles. This trend allows designers
to specify software using platform-independent descriptions
called models. These models are then gradually (manually
or automatically) transformed into executable applications
for different platforms and targeted devices. Models help
us in understanding, building, verifying, maintaining, and
documenting software systems. MDE shares with more
traditional compilation techniques, or “the gammarware way”,
some concerns such as abstraction, early verification, and
automatic code generation.

This chapter presents the main concepts involved in
the MDE paradigm: models, metamodels and model
transformations. It also briefly introduces the object constraint
language (OCL), a valuable tool to complement structural
model descriptions. Additionally, this chapter introduces
some representative modeling frameworks and model
transformation languages. These MDE-frameworks and
the transformation languages provide specific functionality to
create and process models based on the MDE principles.

3.2. Models and metamodels

MDE uses models as first-class entities during the whole
software development process. There is no standard definition
of a model, even in the software engineering field. There is,
however, a common consensus among many definitions about
one fundamental characteristic: a model is an abstraction of
a system and/or its environment. The MDA guide [OMG 03]
defines a model of a system as follows: “A model of a system is a
description or specification of that system and its environment
for some certain purpose”.
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A model has been usually referred to in software engineering
as an artifact built by using a modeling language (e.g.
UML). Stachowiak [STA 73] describes the model concept
more precisely by presenting three criteria, which were also
discussed by Kuhne [KÜH 05]:

– Mapping. A model represents a mapping between some
part of the reality and the set of elements forming the model;

– Reduction. A model only reflects a (relevant) selection of the
original’s properties;

– Pragmatic. A model needs to be usable in place of the
original with respect to some purpose.

A model is specified in some modeling language. Modeling
languages are usually called domain specific modeling
languages (DSML) because they are tailored to certain
concerns of specific domains, which make them easier to specify,
understand, and maintain than general-purpose modeling
languages. DSMLs tend to support high-level abstractions,
which are closer to the problem domain than to the
implementation domain.

A DSML is either visual or textual and involves at least
four aspects: (1) a notation for the construction of models,
which is defined by a concrete syntax, (2) a description of the
vocabulary (concepts, relationships, and integrity constraints)
of the domain concepts, which is defined by an abstract
syntax, (3) mappings between abstract and concrete syntax, and
(4) the way to use the domain concepts to create well-formed
models, which is defined by the semantic domain. The semantic
domain is usually defined by means of some mathematical
formalism in terms of which the meaning of the models is
explained [EME 04]. This is a form of static semantics for
models. The dynamic semantic is a more difficult thing to
express; formal or mathematical notations are required. In
the context of UML and MDE, it is often defined using OCL
expressions, see section 3.3.
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Figure 3.1 presents a model example. This is a class model.
The concrete syntax we used to create this model presents
model elements as stereotyped boxes and labeled arrows.
Each stereotype in a box indicates the type of model element.
Values for element properties are displayed inside each box.
Relationships between model elements are represented by
standard class model arrows (directed-composition or directed-
association arrows). Thus, the class model has one package,
School, containing two classes, Student and Program.
Student has two attributes, studentName of type String
and registeredProgram of type Program. Program has
one attribute, programName, which is of type String. The
composition links from the package named School and the two
classes (Program and Student) are labeled with their roles,
respectively class1 and class2.

Figure 3.1. Class model example

The abstract syntax of a language is often defined using
a metamodel. A metamodel describes the concepts of the
language, the relationships between them, and the structuring
rules that constrain the model elements and their combinations
to respect the domain rules. Figure 3.2 presents a sample
metamodel for UML class models. This metamodel is expressed
as a UML class diagram and includes the metaconcept
of Classifier, which is the abstract superclass of both
the concrete metaconcepts PrimitiveDataType and Class.
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A Package is composed of classes, and a Class contains
attributes.

Figure 3.2. Metamodel for class models

The relation between a model and its reference metamodel
is called conformance [BÉZ 05]. Thus, we say that a
model conforms to its metamodel, i.e. a model is written
in the language defined by its metamodel. The relation of
conformance is a mapping between the data of the model type
and the model instance. There is, first, a notion of structural
conformance that intuitively means that each element in
the model is a valid instance of its type in the metamodel.
This is true for objects, associations, inheritance, and other
links. Since the metamodel can also express constraints, a
model must also satisfy the cardinality, or other first-order
sentences expressed by these constraints. These notions are
not usually well understood by users; however, recent work has
successfully defined them. In [EGE 09], the authors propose
formal definitions for the notions of structural conformance
and semantic conformance in order-sorted logic. Furthermore
these semantics can be automatically checked by OCL tools.
According to our model and metamodel example, Figure 3.1
presents a class model that conforms to the metamodel for
class models in Figure 3.2. The mappings between abstract
and concrete syntax can be seen in the stereotypes presented
in Figure 3.1, where boxes have the stereotype that correspond
to metaconcepts.

Another metamodel example, in the context of this book,
is Czarnecki et al.’s metamodel, which is the reference
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model to create feature models such as those presented in
Chapter 2. Figure 3.3 presents Czarnecki et al.’s feature
metamodel [CZA 04]. FeatureGroup expresses a choice
over the set of GroupedFeatures in the group and its
groupCardinality defines the restriction on the number of
choices. A GroupedFeature does not have cardinality and
a SolitaryFeature is a feature that is not grouped by
any FeatureGroup. The cardinality of a SolitaryFeature
specifies the maximum number of times this feature can
appear in a final feature configuration. Thus, for example, if
a SolitaryFeature has cardinality [1..2], this feature can
appear once or twice in a feature configuration. The process
of creating several features in feature configurations from one
SolitaryFeature is called cloning, and the features created
are called clones. Finally, features may have Attributes
of different types and references (FDReference) to other
features. The values for the attributes related to clones can
be different for each clone.

Figure 3.3. Czarnecki et al.’s feature metamodel [CHE 04]

Figure 3.4 presents our Smart-Home feature model for
the facilities introduced in Chapter 2. One FeatureGroup
appears for each group of facilities. The Lock Door Control
feature groups the features Fingerprint and Keypad and has
cardinality [0..1], which means that Door elements can have
either keypad, fingerprint, or none of them as a lock door control
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mechanism. The Environmental Control feature groups
the features Air Conditioning and Automatic Windows
and also has cardinality [0..1], which implicitly means
that Room elements can have either automatic windows, air
conditioning, or none of them as lock environmental control
mechanism.

Figure 3.4. Smart-Homes’ facilities feature model

3.2.1. The 4-level metamodeling framework

Since metamodels are also models, they need to be written in
another language, which is described by its meta-metamodel.
This recursive definition normally ends at that level, since
meta-metamodels conform to themselves [BÉZ 05, OMG 06B].

The OMG has introduced the Meta Object Facility (MOF),
a 4-level metamodeling framework that removes ambiguities
from the term meta [OMG 06B]. MOF can be seen as a
DSML for defining metamodels; in other words, a standard for
writing metamodels. The OMG framework is based on a four-
layer metadata architecture used to describe the relationships
between data and descriptions of them. These layers are
Information, Model, Metamodel, and Metametamodel. The
Information layer comprises the data to be described. The
Model layer contains metadata that describes the data in
the information layer. The Metamodel layer is composed



66 Model-Driven and Software Product Line Engineering

of descriptions that define the structure and semantics of
metadata. The MetaMetamodel layer is composed of the
descriptions of the structure and semantics of meta-metadata.
Figure 3.5 presents the four-layer metadata architecture.

Figure 3.5. The four-layer metadata architecture

As defined in its specification V2.0, MOF provides, among
others, the following four basic meta-metaconcepts for creating
metamodels:

– Classes are types. Metaconcepts that conform to Class
have identity, state, and behavior. The state of a Class
metaconcept is expressed by its Attributes and Constants,
and its behavior is governed by Operations and Exceptions;

– Associations describe the binary relationships between
classes. They may express composite or non-composite
aggregation semantics. MOF associations have no object
identity;

– Packages are containers for modularizing and
partitioning metamodels into logical sub-units. Generally,
a non-nested package contains all of the elements of a
metamodel and packages can be nested to logically organize
the units of information;
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– constraints specify the well-formedness rules that govern
valid domain models. MOF provides several features for
metamodel composition, extension, and re-use, including
Class inheritance, Package inheritance, Class
importation, and Package importation.

As part of our work, we have used Ecore as meta-metamodel.
Ecore is a core subset of the MOF meta-metamodel where
concepts are prefixed by the letter “E”. Figure 3.12 presents a
part of the Ecore metamodel. As with MOF, EClass instances
are types. Metaconcepts that conform to EClass have identity,
state, and behavior. The state of an EClass metaconcept is
expressed by its EAttributes and EReferences. Ecore and
the Eclipse Modeling Framework (EMF) [BUD 03], which is
a framework that aims to follow the MOF standard and uses
Ecore as meta-metamodel, are explained in detail in section 3.5.

3.2.2. The nature of models

An intrinsic characteristic of MDE is the separation of
concerns of a software system into different models. In MDE,
it is possible to create and process several models from the
same system simultaneously, describing different perspectives
or points of view of different stakeholders.

The models describing a system can be classified in terms
of their level of abstraction. The level of abstraction of a
model refers to the extent of implementation details that the
model has. In other words, it indicates how close the model
is to the problem space; the closer to the problem space, the
higher the level of abstraction; the closer to the solution space,
the lower the level of abstraction. For example, stakeholders
may create high-level abstraction models that include only
domain-specific application details or only concepts regarding
the problem. Other stakeholders may create or interact
with models including details of software design. These
models can be considered as medium-level abstraction models.
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Finally, stakeholders could process models including details
of the technological platforms used to implement the system.
These models are considered low-level abstraction models.
Thus, MDE conceives software development as a chain of
modifications (enhancements) where models of a system are
transformed through different levels of abstraction starting at
the problem space and finishing at the solution space.

The model presented before in Figure 3.1 is an example
of a high-level abstraction model including only concepts
regarding the problem space. Figure 3.6 presents a lower-
level abstraction model. This model includes software design
concerns to represent EJBSession and EJBEntity elements.
Thus, this model is closer to the solution space, i.e. it includes
more implementation details than the model presented in
Figure 3.1.

Figure 3.6. Low-level abstraction class model

The separation of concerns of a system in different models
according to the level of abstraction is only one of the criteria
that stakeholders can use to separate models. At each different
level of abstraction of a system, different stakeholders may
have different points of view of the system. Figure 3.7 presents
an example of a high-level class model including an extra
property, isPersistent, related to Class elements. This
property allows stakeholders to tag the Class elements whose
data need to be maintained in a data base repository.

3.3. UML class diagrams and OCL

In the previous sections, we saw how to describe models
and metamodels using structural descriptions inspired from
the so-called class diagram of UML. However, as for UML,
structural descriptions alone are not sufficient to precisely
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describe the information. The object constraint language (OCL)
is a purely functional language (that is side effect-free) and
OOP style devoted to the description of UML elements and
navigation in diagrams. It was originally developed by IBM
in 1997 as a formal specification language for UML. Now, it
is a part of the UML standard and may be used with any
MOF metamodel, including all UML diagrams. The OCL 1.4
definition specified a constraint language and OCL 2.0 has been
extended to include general object query language definitions.
OCL is based on first-order predicate logic and uses syntax close
to programming languages and related to the syntax of UML.
It is more suitable for everyday modeling than pure first-order
predicate logic.

Figure 3.7. Class model with persistence’s properties

The reason OCL is used is that some computations cannot be
expressed solely with diagrammatic notations. For instance, a
UML diagram, such as a class diagram, is typically not refined
enough to provide all the relevant aspects of a specification.
There is then a need to describe additional constraints about
the objects in the model. OCL is a formal language to
specify unambiguously constraints with no side effects, which
means that the states of objects in a model cannot change
during the evaluation of OCL sentences. For example, we can
represent collections of elements by using class diagrams, but
if we want to define sorted lists or lists without duplication
we should use some constraints. These constraints can be
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expressed with OCL sentences; this is the main usage, but
it is also useful in expressing the semantics of methods in a
pre/post-condition manner. The interested reader could look at
the official site http://www.omg.org/spec/OCL/ to find a more
detailed and exhaustive presentation of this language. To get
a more rigorous insight of it [RIC 02] presents a formal syntax
and formal semantics based on set theory for invariant, pre-
conditions, and post-conditions.

In OCL, a constraint is written as an expression between
brackets ({}) and associated with an element in a model,
usually inside a comment box. In UML such an expression
can denote various things such as structural constraints
for classes, semantics of methods, guards in state diagrams,
guards with messages in sequence charts, a set of objects
and operations on them, or specification of derived elements
(attribute, associations). Navigation is done by the usual dot
notation (.) but more often a navigation denotes a collection of
objects, an arrow (->) should be used in this case.

A simple expression is to reference an attribute, for instance
in Listing 3.1 we state that the name cannot be the empty
string. To reference an attribute, it is sufficient to name
it: not(name = ""). The same notation is used to call a
method: not(name.equals("")), provided that equals is a
method of class String. To navigate through an association,
the best way is to use its role, if it exists, or else to use
the association name or the target class name. For instance,
anAttribute.type.name = "Integer" should check that
the name of the type of anAttribute object is equal to
"Integer". Generally, such a navigation denotes a collection
of objects rather than a single object and we should rely
on the -> operator. For example, name->isNotEmpty(),
aPackage.elements->isEmpty() or aPackage.elements
->first().attributes->isEmpty().

Nevertheless, these expressions should be written in a
specific context to avoid ambiguities. A context is either
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the global context or an element of the considered diagram.
The textual notation provides the context keyword, but, in
addition, we should also define the kind of information. An
invariant specifies a property, which must hold at each state
of the computation. This is a common property in computer
science and it is expressed by the inv keyword. A simple
invariant for Attribute could becontext Attribute inv:
not(name = ""). The context notation must denote the
exact element, and sometimes it is required to apply the ::
operator to navigate inside a package or inside a class. For
instance, context foo::bar::Attribute denotes the class
Attribute in package bar inside the foo package. In such a
context, as with OOP in a method, it could be useful to reference
the receiver object that is denoted by Self as in context
Attribute inv: not(Self.name = "Foo").

To specify a method is a bit more complex; the first task is to
define the name, the parameters, and the resulting type. The
keywords pre and post are related to the description of the
pre-conditions and post-conditions (as per the usual Hoare’s
meaning [HOA 69]). A simple example for a method that checks
if the attribute name is equal to some name n is given in
Listing 3.1.

1 context Attr ibute : : check (String n ) : Boolean
2 pre : not ( S e l f . name=
3 post : r e s u l t = ( S e l f . name = n)

"")

Listing 3.1. OCL method behavior

The keyword result denotes the value returned by the
method. The meaning of this expression is the following: if the
pre-conditions hold (that is the name exists) then after the call
to check the post-condition is ensured (i.e. the function returns
if the name is equal to n or not).

Sometimes, auxiliary variables are required and can be
defined using the let <variable>:<Type> = <request>
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in <expression> construction. For instance, thecapitalize
method is described in Listing 3.2.

1 context Attr ibute : : c a p i t a l i z e ( ) : String
2 pre : name−>isNotEmpty ( )
3 post : l e t prem : String = name . sub s t r i ng ( 1 , 2 ) . toUpper ( ) in
4 r e s u l t = prem . concat (name . sub s t r i ng (2 , name . s i z e ( ) ) )

Listing 3.2. OCL description of capitalize

In this expression, the prem expression is set and stands
in the resulting expression. The @pre operator allows
the specifier to specify the changes of attribute values
before and after a method call. For instance, if one wants
to specify a method that adds a suffix to an attribute name,
he will write:context Attribute::addSuffix(String t)
post: name = name@pre + "_" + t. The expression
name@pre stands for the value of name before the call of
addSuffix that is at the pre-condition time.

One important aspect of OCL is navigating through
associations. Generally, the association name is used or the role
name, provided that the association is navigable. The resulting
type of such a navigation depends on the cardinality; if it is 1,
it is a single object; else, it is a collection. However, it is also
possible to add constraints on the end of the association; for
instance, to get a Sequence rather than a Set. To reach an
association class, or if the association has neither name nor
role, the specifier can use the name of the class in lowercase as
an implicit role. To navigate from an association class is like
navigating from a class.

OCL is a type-checked language allowing type hierarchies
and the associated operators to check for types. It also
introduces several base types and collections. Base types
are standard: Boolean, Integer, String, Real with their
natural operators. The abstract root of the collections is
Collection and has subclasses: Set, Bag, OrderedSet and
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Sequence. These collections manage duplication and ordering
of elements in different ways but somewhat similar to generics
introduced in Java 5. These are generic collections and they
can be nested. OCL provides a set of generic operators to test
and convert collections. Normally, to navigate from a collection,
one should use the -> operator but it is also meaningful in
case of one object only. OCL defines several operations on
collections; they are devoted to computing some information
like the number of elements, to search in the collection, to
extract some subset or to iterate some actions.

As an example, if we want to check that the class names in
a package are not empty, we use the “for all” primitive as in
Listing 3.3. The forAll is a universal quantification.

1 context Package : : checkClassNames ( )
2 post : r e s u l t = S e l f . e lements−>f o rA l l (not (name= "" ) )

Listing 3.3. OCL quantification example

To find that a class with a given name exists in a package,
we will write an expression with the collect iterator as in
Listing 3.4. Here the collect builds the set of the class names
and includes tests if an element is in the set.

1 context Package : : i s I n (String n)
2 post : r e s u l t = S e l f . e lements−>c o l l e c t (name)−> i n c l ud e s (n )

Listing 3.4. Collect and test in OCL

To compute the set of all the attributes of classes in a
package, we could use the general iteration mechanism as
illustrated in Listing 3.5. The iterate primitive repeats the
collect action, to collect the class attributes, over the elements
of the collection (Self.elements).

1 context Package : : a l l A t t r i b u t e s ( )
2 post : r e s u l t = S e l f . e lements−>i t e r a t e ( x : Set ; acc : Set = Set{}
3 | acc−>c o l l e c t ( x . a t t r i b u t e s ) )

Listing 3.5. An OCL iteration
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3.4. Model transformations

Model transformation appears to be one of the most
useful operations on models. Model transformations are
software artifacts that implement algorithms to transform
models conforming to source metamodels into either models
conforming to target metamodels or source code.

Figure 3.8 presents the scenario of a model transformation
with one source model and one target model. Note that (1) each
model conforms to its respective metamodel and (2) the model
transformation refers to the source and target metamodels.
Metamodels are used in model transformation to navigate
models by using transformation rules. Transformation rules
are considered as functions or procedures implementing some
transformation step. They are the smallest unit of model
transformations [CZA 06]. Finally, a transformation engine is
in charge of executing the model transformation on the source
model to derive the target model.

Transformations are equivalent to functions and procedures
in programming languages, but for models. The source
and target metamodels can be seen as the type of the
transformation. This analogy is quite complete since there are
imperative and purely functional transformations as well as
high-order transformations; besides, transformations can be
compound.

Figure 3.8. Model transformation scenario
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Listing 3.6 presents an example of a simple declarative
model transformation rule using the ATL language [JOU 05].
Line 2 states the source and target models. Line 3 presents
the signature of the transformation rule, which creates Table
elements (line 7) from Class elements (line 4). Thus, for
each class in a SimpleClass model, one table is created in a
SimpleRDBMS model. The source and target metamodels (the
class metamodel and the RDBMS metamodel) are specified in
a descriptor file used to execute the rule.

1 module SimpleClass2SimpleRDBMS ;
2 create OUT : SimpleRDBMS from IN : SimpleClass ;
3 r u l e Class2Table{
4 from
5 c : S impleClass ! Class
6 to
7 t : SimpleRDBMS ! Table (
8 name<−c . name
9 )

10 }

Listing 3.6. Example of a declarative model transformation rule

1 import SimpleClassMetamodel ;
2 import SimpleRDBMSMetamodel ;
3
4 create Table c l a s s2Tab l e ( Class c ) :
5 this . setName ( c . name) −>
6 this ;

Listing 3.7. Example of an imperative model transformation rule

Listing 3.7 presents an example of the transformation
rule in Listing 3.6 but using Xtend, which is an imperative
language [OAW 09]. Line 1 and line 2 present the required
import to refer metaconcepts in transformation rules. The rule
in line 4 uses a so-called create extension. Create extensions,
as a side effect when called, create an instance of the type
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given after the create keyword. In our case, this rule creates
one Table element from one Class element, which is the only
parameter. This newly created object can be referred to in the
transformation by this (which is why this is specified behind
the type). This rule must be called from another rule for each
Class element that needs to be transformed.

3.4.1. Scheduling of transformation rules

Transformation rules are the smallest units of model
transformations. To transform source models into target
models, several transformation rules are required as well as
an execution ordering. Czarnecky and Helsen name scheduling
of transformation rules the execution ordering of a set of
transformation rules [CZA 06]. Basically the scheduling of
transformation rules is a call graph in the context of routines
to transform models. A call graph is a directed graph that
represents calling relationships between subroutines in a
program. Each node represents a procedure and each edge
(f, g) indicates that procedure f calls procedure g [RYD 79].
Describing the scheduling of transformation rules depends
on the paradigms followed by the model transformation
language chosen to write the transformation rules. Current
model transformation languages use well-known paradigms for
programming languages. The most common paradigms used in
model transformation languages are the declarative and the
imperative paradigms [JOU 05].

In declarative programming, the logic of a computation
is expressed without describing its control flow. Model
transformation languages applying declarative programming,
e.g. ATL [JOU 05] and Tefkat [LAW 07], attempt to minimize or
eliminate side effects by describing what the program should
accomplish, rather than describing how to do it. For instance,
the transformation rule in Listing 3.6 expresses what the
transformation does, but it does not provide details about how
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the transformation is done in terms of cycles, conditionals, and
so on.

In imperative programming, computations are described
in terms of statements that change a program state.
Examples of model transformation languages applying
imperative programming are Xtend and Xpand [OAW 09].
Imperative transformation rules define sequences of
commands to perform on source models, and require a
detailed description of the algorithm to be run and the
scheduling of transformation rules. Listing 3.8 presents
an example of a detailed description of the algorithm
to be run and the scheduling of transformation rules to
transform a Class element and its Property elements.
In line 6, the rule property2Attribute is called for
each Property in the Class being transformed. The rule
property2Attribute creates an Attribute and adds it
to the collection of attributes of the created Table element
(line 11).

1 import SimpleClassMetamodel ;
2 import SimpleRDBMSMetamodel ;
3
4 create Table c l a s s2Tab l e ( Class c ) :
5 this . setName ( c . name) −>
6 c . p r op e r t i e s . p roper ty2Att r ibute ( this ) −>
7 this ;
8
9 create Attr ibute proper ty2Att r ibute ( Table t , Property p ) :

10 this . setName (p . name)−>
11 t . a t t r i b u t e s .add( this)−>
12 this ;

Listing 3.8. Example of an imperative model transformation rule

We selected imperative model transformation languages
in the implementation of the application examples we
used through this book. These are the Xtend and Xpand
languages. One of the reasons we selected imperative model
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transformation languages was to have control on the call graph
of transformation rules; thus, we could manipulate it when
required. Imperative languages are also easier to learn by most
of practitioners who are familiar with OOP; this makes their
adoption faster than that of declarative languages.

3.4.2. Model transformation patterns

Transformation rules are written in terms of the source
and target metamodels. It means that models are transformed
following transformation patterns defined in terms of
metaconcepts of the source and target metamodels. Figure 3.9
presents an example to illustrate this characteristic of model
transformation rules. In the example, Class elements are
transformed into Table elements using a transformation rule
that is written in terms of the metaconcepts Class and Table.

Figure 3.9. Example of a model transformation pattern

This characteristic of transformation rules implies that
several transformation rules are written when model
elements that conform to the same metaconcept are
transformed following several (different) transformation
patterns. For example, we can write a transformation
rule ClassToPersistentClass to transform elements that
conform to the Class metaconcept from Figure 3.1 into
elements that conform to the Class metaconcept from
Figure 3.7, which has a boolean property isPersistent.
ClassToPersistentClass transforms any source Class
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element following a transformation pattern, which creates a
target Class element with the property isPersistent set to
true. If we need to transform source Class elements into a
target Class element with the property isPersistent set to
false, we must create another transformation rule.

In Chapter 4 we present some mechanisms that allow
us to select the transformation rules that must be executed
according to particular requirements of stakeholders. For
instance, if a stakeholder needs to create a target Class
element with the property isPersistent set to true, the rule
ClassToPersistentClass is automatically selected. These
mechanisms also include strategies to modify the scheduling
of transformation rules to derive various products.

3.4.3. Classification of model transformations

It is possible to classify model transformations according
to several criteria. Given the particular interest of our work,
we focus on two general classifications. On the one hand,
Czarnecky and Helsen have classified model transformations
establishing as their major categories model-to-model and
model-to-text transformations [CZA 03, CZA 06a]. The reason
for this distinction is that the techniques, languages, and
tools used for both categories are different. Model-to-model
transformations are used to transform models that conform
to source metamodels into models that conform to target
metamodels. Model-to-text transformations are mostly used for
transforming low-level abstraction models into the source code
of a specific programming language, and also for generating
low-level artifacts including technology implementation details
such as deployment descriptors or configuration files. We can
also add here the concept of text-to-model transformation
denoting procedure used in reverse engineering tools to extract
models from code source; for instance, ArgoUML1 imports

1 http://argouml.tigris.org/.
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Java or C++ source code and creates the corresponding UML
class diagram.

On the other hand, France and Bieman categorize
model transformations along vertical and horizontal
dimensions [FRA 01]. Vertical transformations occur when a
source model is transformed into a target model at a different
level of abstraction. A horizontal transformation involves
transforming a source model into a target model that is at the
same level of abstraction as the source model. The next two
subsections deal with these explanations and present some
examples.

3.4.4. Vertical model transformations

Vertical transformations transform models between
different abstraction levels. This type of model
transformation is classified in refinement and abstraction
transformations [FRA 01]. Refinement transformations
transform models at a higher abstraction level into models at a
lower abstraction level, whereas abstraction transformations
transform models at a lower abstraction level into models at a
higher abstraction level.

Figure 3.10 presents an example of a refinement
transformation. On the left, the high-level abstraction
model presented before in Figure 3.1 is transformed into
the lower-level abstraction model from Figure 3.6. In
this example, Package elements are transformed into
Model elements and Class elements still remain as Class
elements. One Controler element and one View element
are created from each Package element and associated
with the corresponding Model element. Thus, the target
model includes software design concerns to represent a
basic Model-View-Controller (MVC) architectural design
pattern.
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Figure 3.10. Example of vertical transformation

3.4.5. Horizontal model transformations

Horizontal transformations relate or integrate models
covering different aspects or domains within a system, but at
the same level of abstraction. Horizontal transformations
are classified in migration, merge, and identification
transformations [FRA 01]. Migration transformations
transform one model that conforms to a source metamodel
into another model that conforms to a target metamodel. The
source and target metamodels can be the same metamodel.
Merge transformations combine individual models, seen as
different views, to form a complete model. Finally, identification
transformations create target models selecting some elements
in source models according to a selection filter.

As part of the approach, we introduce in Chapter 5,
vertical (refinement) transformations to incrementally add
implementation details to high-level abstraction models until
software systems are derived. We use horizontal (migration
and merge) transformations for adding various concerns to
models from the same abstraction level in different model
transformation stages.

3.4.6. Model composition or model weaving

A simple view of transformation is not sufficient and MDE
requires the use of model weaving. The aim is to provide
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a means to compose models and to represent links between
model elements. There are some applications that require this:
traceability, model comparison, or model annotation. In these
cases, model weaving allows us to capture the links between
source and target model elements. This is one point where MDE
meets aspect-oriented programming as detailed in [JÉZ 08].
Model composition or model weaving is an operation to combine
several models into a single one. A weaving operation is a
special type of model transformation that takes two models,
M1 and M2, as input and combines their elements into a
model M1+M2. Model weaving varies according to composition
requirements. Elements to be woven and the way they are
combined depends on the required operation. For example, if
we compose two class models, it is required to specify what
classes from both class models will be in the resulting class
model.

Figure 3.11. Model weaving example
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Figure 3.11 presents an example where two models
that conform to the UML component metamodels are
woven. On the left, we present a component model
including the components User Control, Authentication
Manager, and Lock Control. On the right, we present a
component model including the components Door Actuator
and Electronic Lock. On the bottom, we present a
component model, which is the result of weaving the two
models presented before. These models are woven to create
an application that automatically opens and closes doors in a
Smart-Home.

3.5. Modeling framework

The Eclipse modeling framework (EMF) [BUD 03] is
the main academic and industrial reference of modeling
frameworks. Other modeling frameworks, such as the Topcased
toolkit [PAN 07], extend the facilities that EMF provides.
Through our work, we use the Topcased facility to create model
editors. This section introduces EMF and Topcased.

3.5.1. The eclipse modeling framework

The EMF [BUD 03] is a modeling framework and code
generation facility for building tools and other applications
based on models. EMF started as an implementation of
the MOF specification and currently it uses Ecore as meta-
metamodel, which is a core subset of the MOF model.

EMF offers editing tools for creating and manipulating
metamodels that conform to Ecore and models that conform
to such metamodels. This support includes re-usable classes
for building model editors and code generation capabilities.
EMF also offers runtime support for operations with models,
including change notification, persistence support with XML
Metadata Interchange (XMI) serialization, and a reflective API
for manipulating EMF objects.
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Figure 3.12 presents a subset of the Ecore metamodel.
Ecore prefixes an “E” before all its metaclasses. This helps,
for example, to distinguish between Ecore metaconcepts and
UML metaconcepts. It also makes a distinction between
EAttribute and EReference. The difference is that the type
of an EAttribute is always a primitive type, such as String
or Integer, while the type of an EReference is always an
EClass. Associated EReferences are related to each other
using the eOpposite property.

Figure 3.12. The ecore meta-metamodel

Ecore models, i.e. metamodels that conform to the Ecore
meta-metamodel, can be created in at least three ways: (1)
Java Interfaces, (2) UML-type Class Diagrams and (3) XML
Schemas. Once a model is created using one of the three
different ways, EMF can generate the others. Figure 3.13
presents the EMF editor to create Ecore models using UML-
type Class Diagrams. On the left, a sample Ecore model that
correspond to a part of the class metamodel shown in Figure 3.2
is presented. On the right, the “palette” of options to create
Ecore models is displayed.

EMF also provides facilities to create models that conform
to Ecore models; the syntax is based on a tree structure. A tree
structure is a way to represent the hierarchical nature of a



Model-Driven Engineering 85

model. Figure 3.14 presents an example where the EMF model
editor is used to create a class model that conforms to the class
metamodel. The root of the tree is a package–School. This
package contains two classes, Student and Program, which in
turn have one attribute each.

Figure 3.13. Ecore class model example

Figure 3.14. EMF models’ editor
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3.5.2. The Topcased toolkit

The Toolkit in OPen source for Critical Applications and
SystEms Development [PAN 07] (TOPCASED) is an integrated
model-oriented system/software engineering toolkit. It covers
the stages from requirements analysis to implementation, as
well as some transverse activities such as version control and
requirements traceability. Topcased provides model editors,
model checkers, and model transformations.

Topcased also provides a generative component for
developing graphical editors based on Ecore models. Thus,
the toolkit allows DSML developers to create and associate
concrete syntax to particular metamodels instead of using the
general model editor provided by EMF. Figure 3.15 presents an
example of a model editor to create class models. On the left,
the figure presents the customized palette of options to create
models that conform to the class metamodel from Figure 3.13,
and, on the right, a class model example.

Figure 3.15. Topcased model editor example

3.6. Model transformation languages

OMG proposes MOF-QVT (Query/View/Transformation)
[OMG 06a] as the standard language for specifying model
transformations. QVT exists as an OMG specification; however,
even when there are some implementations for the concrete
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syntax of QVT such as SmartQVT [FRA 09], at the time of
writing, there is no official reference implementation.

There are several implemented MOF-based model-
to-model transformation languages, such as ATL [JOU 06] and
Kermeta [MUL 05]. Similarly, the openArchitectureWare (oAW)
framework [OAW 09] provides a textual language to support
the activities of model-to-model transformations, the Xtend
language, but also a language to support the activities of code
generation, the Xpand language.

3.6.1. QVT

Recognizing that model transformations are a critical
component of MDE, OMG issued a request for proposal (RFP)
in 2002 on MOF Query/View/Transformation. It was finally
adopted in July 2007. QVT defines a standard way to transform
source models into target models. In QVT, source and target
models may conform to arbitrary MOF metamodels. The
transformation program is itself considered a model; then, it
conforms to a MOF metamodel. This means that the abstract
syntax of QVT should conform to a MOF 2.0 metamodel.

The QVT standard only addresses model-to-model
transformations. Transformations of type model-to-text
or text-to-model, are currently outside the scope of QVT.
QVT has a hybrid declarative/imperative nature and it
defines three domain-specific languages named Relations,
Core and Operational Mappings. Relations is a declarative
language, which has a graphical concrete syntax and supports
complex object pattern matching and object template creation.
Relations supports traces between model elements involved
in a transformation (they are created implicitly). Core is a
declarative language that supports pattern matching over
a flat set of variables by evaluating conditions over those
variables against a set of models. In Core, all trace classes are
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explicitly defined as MOF models, and trace instance creation
and deletion is defined in the same way as the creation and
deletion of any other object.

The Operational Mappings language is an imperative
language that extends both Relations and Core. The syntax
of the Operational Mappings language provides constructs
commonly found in imperative languages (loops, conditions,
etc.). The language provides OCL extensions with side effects
that allow a more procedural style, and a concrete syntax
that looks familiar to imperative programmers. Operational
Mappings can be used to implement one or more relations from
a Relations specification when it is difficult to provide a purely
declarative specification of how a relation is to be populated.
Currently, there are several products that claim compliance
to the QVT standard. Smart QVT is the most representative
one [FRA 09]. This is an open-source model transformation
tool implementing the MOF 2.0 QVT-Operational Mappings
that is being developed by France Telecom R&D as an Eclipse
plug-in. Listing 3.9 presents an example of a SmartQVT
program to transform a class model into an RDBMS model.
In line 2, the source model (srcModel), source metamodel
(ClassMetamodel), target model (destModel), and target
metamodel (RDBMSMetamodel) are presented. The main
(line 3) is the entry point to the transformation. In line 4,
srcModel.objects()[Class] returns all the elements
in srcModel that conforms to the Class metaconcept.
This operation is a shorthand for the OCL-type sentence
select(e | e.oclIsKindOf(UML::Class)). In line 4, ->
map class2table() applies the mapping class2
table() to each returned class element. A mapping is
an operation associating an element from a model with
another element often from another model. In this case, each
Class element is transformed and associated with a Table
element. Line 5 transforms the Association elements of
classes to the Association elements of tables.
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t rans fo rmat ion Simpleuml To Rdb
( in srcModel : ClassMetamodel , out des t : RDBMSMetamodel ) ;

main ( ) {
srcModel . ob j e c t s ( ) [ Class ]−>map c l a s s 2 t a b l e ( ) ;
srcModel . ob j e c t s ( ) [ As soc i a t i on ]−>map as s o2 t ab l e ( ) ;

}

1
2
3
4
5
6

Listing 3.9. Example of a SmartQVT program

3.6.2. ATL

ATL (ATLAS Transformation Language) is a model
transformation language and toolkit currently developed and
maintained by the OBEO company and the AtlanMod team.
It was initiated by the AtlanMod team (previously called
the ATLAS Group) as a part of the AMMA (ATLAS Model
Management Architecture) platform. ATL was developed
to answer the QVT RFP. The language is specified both
as a metamodel and as a textual concrete syntax. ATL
transformations are unidirectional, operating on read-only
source models,and producing a write-only target model. During
the execution of a transformation, only the source model is
navigated and changes are not allowed. An ATL transformation
program is composed of rules that define how source model
elements are matched and navigated to create and initialize
the elements of the target models.

Like QVT, ATL is a hybrid transformation language
that contains a mixture of declarative and imperative
constructs. The preferred style of writing transformation
is declarative, which allows the easy expression of simple
mappings. Imperative constructs are also provided so that
complex mappings can still be specified. The declarative style
of transformation is usually based on specifying relations
between source and target patterns. This can be seen as closer
to the way the MDE developers perceive a transformation.
This style stresses on encoding these relations and hides the
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details related to selection of source elements, rule triggering
and ordering, dealing with traceability, etc. Imperative
programming makes “native” operation calls possible. This
solution moves the control flow out of the transformation
language semantics. The operative part of ATL is based on
two constructs, (1) called rules and (2) action blocks. A called
rule is basically a procedure. An action block is a sequence
of imperative statements and can be used instead of or in
combination with a target pattern in matched or called rules.
The imperative statements available in ATL are the well-
known constructs for specifying control flow such as conditions,
loops, assignments, etc. The available ATL tools include an
ATL transformation engine, an ATL IDE based on Eclipse, and
an ATL debugger. Listing 3.6 presents an example of an ATL
transformation rule.

3.6.3. The openArchitectureWare framework

openArchitectureWare [OAW 09] is an MDE framework
integrated recently into Eclipse. oAW offers facilities to
transform models into other models or into text or source code.
At the core of oAW, there is a workflow engine allowing the
definition of model transformation workflows by sequencing
diverse workflow components. A workflow component specifies
a step in the model transformation chain. oAW has some
pre-built workflow components that facilitate the reading
and instantiation of models, checking them for constraint
violations, and transforming them into other models or source
code. Transformation workflows are built using XML files that
describe the steps needed to be executed in a generator run.

Xtend and Xpand, openArchitectureWare’s transformation
languages, are built up on a common type system and
expression language. Therefore, they can operate on models,
metamodels and meta-metamodels by using the same syntax.
We have selected Xtend and Xpand as our transformation
languages and implemented our illustrative examples using
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and extending oAW. In the following subsections, we introduce
oAW, the type system and the expression language used by
the Xtend and Xpand languages, and the Xtend language
itself. Given that, the Xpand language uses the same type
system, the expression language, and the general facilities that
Xtend uses. In this section, we do not include a particular
description of Xpand. For details, please refer to the oAW
manual reference [OAW 09].

oAW provides support for Aspect-Oriented Modeling (AOM)
and AOP in the context of MDE. In section 3.6.4, we
will illustrate how AOP is integrated into MDE. This
characteristic is specially useful to create SPLs using the MDE
principles [VÖL 05, GRO 08, VÖL 07a, VÖL 07b], and it is
one of the main reasons why we had selected oAW as the
implementation framework for our approach.

The oAW type system. In the oAW generator framework,
every object (e.g. metaconcepts, model elements, values, etc.)
has a type. Every type has a simple name (e.g. String) and
an optional namespace used to distinguish between two types
with the same name. Thus, a fully qualified name looks like
this: my::fully::qualified::typeName.

The type system provides access to built-in types such
as String, Object, Collection, List, or Set. Each type
contains properties and operations. For instance, the String
type has a library, which is especially important for code
generation. The type system supports the ’+’ operator
for concatenation, the usual java.lang.String operations
and some special operations such as toFirstUpper() and
toFirstLower().

The type system is also extensible, allowing for accessing
types corresponding to models or metamodels created by MDE
developers. For example, an MDE developer can register the
class metamodel from Figure 3.2 in the type system and then
have access to the types Package, Class, and Attribute.
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The oAW expression language. The oAW expression
language is a syntactical mixture of Java and OCL.
For instance, to access a model element property, the
following syntax is used: myModelElement.property.
Respectively, a boolean expression looks like this:
!("textExample".startsWith(’t’) && ! false). The
expression language provides several literals for built-in
types, for example, the boolean literals are true and false.
Like OCL, the expression language also defines several
special operations on collections such as select, collect,
reject, forAll and exist between others. For instance,
the forAll operation allows specifying a boolean expression,
which must be true for all objects in a collection in order for
the forAll operation to return true: collection.forAll
(v | boolean-expression-with-v). The expression
language includes conditional expressions (if and switch
expressions), expressions to instantiate new objects (create
expressions) and expressions to define local variables
(let expressions) among others.

3.6.4. The Xtend language

The Xtend language is a textual and functional
transformation language. As said before, Xtend is built
on the common type system and expression language of oAW.
Listing 3.10 presents an example of an Xtend file including
transformation rules to transform models that conform
to the class metamodel from Figure 3.2 into models that
conform to a metamodel of relational database schemas for a
relational database management system. The metamodel of
the relational database schema has two metaconcepts, Table
and Column. A Table contains columns and both Table and
Column have a name property.

In line 1 and line 2 of Listing 3.10, import statements are
used to import the name spaces of several types; in this case, the
types corresponding to metaconcepts of the classMetamodel
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and the relationalDatabaseMetamodel. In line 4, a
transformation rule appears. This transformation rule receives
one Class element as parameter, myClass, and returns a
Table element. As soon as this transformation rule starts
its execution, a Table element is created. In line 5, the
name property of myClass is assigned to the name property
of the created Table element. In line 9, the transformation
rule createColumn(Attribute myAtt, Table myTable)
is called for each attribute of myClass. This transformation
rule receives an Attribute element and a Table element,
creates a Column element from the received attribute, adds it
to the collection of attributes of the received Table element,
and returns the created Column element.

import classMetamodel ;
import re lat ionalDatabaseMetamodel ;

create Table class2ER ( Class myClass ) :
this . setName ( myClass . name)−>
myClass . a t t r i b u t e s . createColumn ( this)−>
this ;

create Column createColumn ( Att r ibute myAtt , Table myTable ) :
this . setName (myAtt . name)−>
myTable .add( this )
this ;

1
2
3
4
5
6
7
8
9

10
11
12

Listing 3.10. Example of an Xtend model transformation

In Xtend, a function is evaluated only once for each unique
combination of parameters. Thus, one can call the same
function with the same number of arguments multiple times,
and it will only be evaluated the first time. This is an essential
feature when working with graph transformations; especially,
if they contain circular references. The Xtend language also
provides the possibility to define libraries of independent
operations and non-invasive metamodel extensions based on
either Java methods or oAW expressions. Those libraries can
be referenced from all other textual languages that are based
on the expressions framework such as Xpand.
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Workflow components. To run the oAW model transformation
engine, we have to define a workflow. It controls which steps
(loading models, checking and transforming them, generating
code, etc.) the engine executes. To transform models into
models, Xtend can be invoked within a workflow. An example
of a workflow configuration of the Xtend component is
presented in Listing 3.11. In line 4 and line 8, the source
and target metamodels are registered in the execution context.
Thus, the types from the metamodels are added to the
set of types available in the type system. In line 11, the
root transformation rule, create Table class2ER (Class
myClass) is invoked and its result is left in the outputSlot
(line 12).

<component class="oaw . xtend . XtendComponent">

<metaModel class="oaw . type . emf . EmfMetaModel">
<metaModelFile value="classMetamodel . e co r e"/>

</metamodel>

<metaModel class="oaw . type . emf . EmfMetaModel">
<metaModelFile value="erMetamodel . e co re "/>

</metaModel>

<invoke value="my : : path : : class2ER ( sourceModel )"/>
<outputSlot value="transformedErModel"/>

</component>

1
2
3
4
5
6
7
8
9

10
11
12
13

Listing 3.11. Example of a workflow configuration of the Xtend

Aspect-oriented programming in Xtend. Aspect-oriented
programming (AOP) [KIC 97] is a technique that proposes
to modularize concerns that crosscut a system decomposition
and scatter across multiple design elements. An aspect is a
pointcut and an advice. If a pointcut matches some points in
the code of an application then the advice is inserted. The
process of connecting some aspects on a base code is the
weaving process. In the oAW context, aspect orientation is
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about weaving code into different points inside the call graph
of a program. Such points are called join points. One specifies
on which join points the contributed code should be executed
by specifying a pointcut, which is a set of join points. Whenever
the program execution reaches one of the join points described
in the pointcut, a piece of code associated with the pointcut
(called advice) is executed.

In Xtend, the join points are the invocations to
transformation rules. Xtend provides a mechanism to define
and use around advices. Thus, it is possible to re-use available
transformation rules changing part of their behavior without
modifying any code.

Listing 3.12 presents an example of an advice, which is
weaved around every invocation of the transformation
rule createColumn(AttributemyAtt, TablemyTable).
This advice is saved as any other Xtend file with extension
.ext, for instance myAdvice.ext. Note that the parameters
of the transformation rule must be also specified in the
pointcut. Inside the advice (line 2), we call the underlying
transformation rule. This is done using the implicit variable
ctx that provides an operation proceed(), which invokes the
underlying transformation rule with the original parameters.
Thus, the advice adds an entry to the execution log indicating
which underlying transformation rule is invoked, and then it
invokes the transformation rule.

around my : : path : : createColumn ( Att r ibute myAtt , Table myTable ) :
l og ("I nvoking" + ctx . name) −> ctx . proceed ( ) ;

1
2

Listing 3.12. Example of an Xtend advice

To weave the defined advice into the selected join points,
one needs to configure the XtendComponent indicating the
(fully qualified) name of the Xtend file containing the advice.
Listing 3.13 presents an example of such a configuration. Note
that in line 13, the workflow definition from Listing 3.11 now
includes the name of the Xtend file containing the advice.
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<component class="oaw . xtend . XtendComponent">

<metaModel class="oaw . type . emf . EmfMetaModel">
<metaModelFile value="classMetamodel . e co r e"/>

</metamodel>

<metaModel class="oaw . type . emf . EmfMetaModel">
<metaModelFile value="erMetamodel . e co re "/>

</metaModel>

<invoke value="my : : path : : class2ER ( sourceModel )"/>
<outputSlot value="transformedErModel"/>
<value="my : : Advices : : myAdvice"/>

</component>

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Listing 3.13. Example of a workflow configuration including advices

3.7. Benefits and challenges for SPLE

As seen in Chapter 2, SPLE is a paradigm that focuses
on artifact re-use and variability management. It introduces
a complex software process with potentially numerous and
heterogeneous artifacts. It also requires some specific tasks
like product configuration and should put more emphasis
on traceability management. MDE appears as a promising
technique for SPLE since it provides uniformity and
abstraction for software artifacts and processes. The ability
to build complex transformations is promising to automate
domain and application engineering. However, there are some
challenges.

How can domain-specific models help to separate concerns
or viewpoints involved in product line development? How do
we address domain evolution changes? How can MDE support
the process of building product line members from separated
models and variability models? For instance, how do we build
complete Web applications from independent data models,
navigation models, or presentation models? How can models
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and model weaving help in requirements engineering? How do
we use it to structure the concerns and elaborate variability
models of a product line?

An important question in SPLE is variability management.
The first trend is to use feature models, which express a coarse
grained variability grouping set of consistent requirements
called features. Another trend, widely used in SPL and MDE,
is to have several models capturing different variabilities:
domain space, structural models, and technical platform
specificities. These models allow a variable-grained approach
for variability. Thus, one important question is how to conciliate
these different ways to manage variability in a consistent
framework? Both have their advantages and seem devoted to
different steps of the development cycle.

For domain engineering, the challenge is to build realistic
tool chains starting from a feature model and leading to
code generation. The designers have to build an adequate
representation of the product family at each level. For
instance, at the architectural level, the architecture
should express all the possible products. It can be viewed
as a “super-architecture” superimposing all the products and
allowing the selection of a given specific product architecture
from the selection of its configuration. The product line
reference architecture is the basis for all products and is
developed as a creative task. The main approach is to build
some template models incorporating annotations that describe
what components should be inserted and connected when
selecting a feature. Thus, we need to link variation points
from a variability model to variants occurring in the products.
The tool chain needs several well-defined stages; for instance,
domain space modeling with feature model, architecture
modeling with UML, and code generation with Java. It is not
yet clear which language to use to link variability and variants
to allow an automatic derivation mechanism.

For application engineering, two possible uses of MDE are
the configuration process and the product derivation process.
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The first is about the representation of configuration models;
it must cope with the complexity of variability approaches.
Feature model configuration is rather simple; however, it is
more delicate with metamodels, which allow more powerful and
constructive means. The second use is in the derivation process;
it should consider the core asset and the configuration model
to generate the product. This mechanism should allow the
selection of transformation rules and control of their scheduling
since there could be some feature or variation interactions.

The complexity of the software process makes the use
of traceability to track and analyze the flow of information
mandatory. One challenge is the management of a huge amount
of complex data. To do a precise analysis, we need relevant data,
which means producing and processing this data. We also need
a tool supporting most of the stages in a product line, that is,
covering end-to-end traceability from market requirements to
test cases.

3.8. Summary

The model-driven engineering paradigm organizes the
whole software development cycle as a process of creation,
iterative refinement, and integration of models. Models are
first-class entities that capture a partial view of a system. Each
model conforms to its metamodel, which describes the domain
grammar and constraints. The unified modeling language is
often used to describe the structure of models and metamodels.
The object constraint language is the standard language to
express constraints over models and metamodels. It is a side
effect free and object-oriented language style devoted to the
description of UML elements and navigation in diagrams.

Domain-specific modeling is a way to develop software
systems that involves the use of domain-specific modeling
languages to represent the different concerns of an application
domain. In the context of MDE and DSML, we introduce the
concept of metamodels, the relation of conformance between



Model-Driven Engineering 99

models and metamodels, and the MOF 4-level metamodeling
framework.

Model transformation appears to be one of the most
useful operations on models. Model transformations are
software artifacts that implement algorithms to transform
models conforming to source metamodels into either
models conforming to target metamodels or source code.
Transformations can use a declarative or an imperative style.
In the latter case, it is important to express the transformation
scheduling.

We have explained how MDE uses model transformations
to achieve the transition of models between several levels of
abstraction by means of vertical transformations. We have
also presented horizontal transformations as the mechanism
to transform models at the same level of abstraction but
integrating several concerns or points of view of an application
domain. Model composition and model weaving are more
advanced operations on models; this is one point where MDE
meets aspect-oriented programming.

MDE technologies are now mature technologies and
tool supports are effective. In particular, the Eclipse
modeling framework, the Topcased toolkit, and the
openArchitectureWare framework are tools enabling
metamodeling and automation of model transformation.
Model transformation languages still exist as QVT and ATL.
We further describe the openArchitectureWare environment
since it is used to support our FieSta approach. Xtend and
Xpand are the model transformation languages provided by
oAW, which also allows aspect-oriented programming in MDE.
MDE appears as a promising technique for SPLE since it
provides uniformity and abstraction for software artifacts and
processes. The ability to build complex transformations is
promising to automate domain and application engineering.
However, there are some challenges. These will be dealt with
in the next chapter.



Chapter 4

Model-Driven and Software Product
Line Engineering

Software product line engineering can bring benefits in
terms of costs and productivity by taking advantage of the
commonality within a set of similar products. These products
are adapted during the generation process with variations
in their set of features. Positive variability, as one of these
processes is referred to, relies on a core set of common
features with all products to which additional features will be
added. Model-driven engineering techniques and tools have the
potential to significantly increase the productivity and quality
of software engineering processes. One question that arises is
how to integrate these two trends to increment productivity
and reduce development costs. That is, how to adapt MDE
processes for development of SPLs? How to integrate SPLE
for the development of model-driven artifacts? This chapter
explores the issues in merging MDE and SPLE to build a
production chain to capitalize on product line development,
and addresses the main concerns of model-driven and software
product line engineering, MD-SPL engineering for short. We
illustrate the approach by creating our application example of
a product line of Smart-Home systems. We include suitable
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mechanisms to re-use composition techniques from SPLE
in the approach, and we merge them with model-driven
mechanisms and techniques to capitalize on product line
development.

4.1. Introduction

To date, the software engineering industry keeps looking to
increase the productivity and quality of software engineering
processes, reducing costs, and time-to-market. This is a
perpetual challenge; researchers and engineers are focusing
on several attempts to improve software engineering practices.
However, the industry is struggling to adopt model-driven
engineering as well as software product line engineering
concepts, techniques, and tools on a large scale as a means to
alleviate such needs.

MDE-based SPLs are product lines based on MDE
principles. Several approaches that use MDE to create SPLs
have emerged. (See Chapter 8 for more details) There is
still no standard way to integrate MDE and SPLE, either
from a practical or an academic perspective. However, all the
current approaches agree that to be successful, model-driven
and software product line engineering involves the definition
of suitable mechanisms to re-use promised modularization
and composition techniques from SPLE. It also involves
aligning the academic and practical efforts toward model-
driven mechanisms that facilitate the development of software
products.

A fundamental objective of introducing MDE in SPL is
the expectation of automating the production plan. The ideal
situation is to configure products from the set of features or
requirements they must include and then to push a button
to build the product. However, this ideal situation is far from
the state-of-the-art in MDE and SPLE. To fully generate
code from models, we need the complete behavior, and it is
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complex to get structural, functional, and dynamic descriptions
together. Generally, models provide structural aspects; some
behavioral constraints can be defined using OCL. However,
even when OCL facilitates the description of semantics of
methods, it does not make the generation of efficient code easier.
Some approaches are able to cope with dynamic behavior but
consistency of the overall descriptions and code generation
remain mainly under study.

Many of the benefits expected from software product lines
are based on the assumption that the additional investment in
setting up a product line pays off later when products are built.
Thus, to define the basis for model-driven and software product
line engineering, one must integrate both approaches to define
new processes in the problem space for expressing variability
and configuring products, and in the solution space for deriving
products. MD-SPL deeply impacts the management of core
assets, the expression and use of variability, and the production
chain.

Regarding the problem space, the issues are “How to define
mechanisms to manage variability based on metamodeling;
for e.g. feature modeling? How to implement multi-staged
configuration of products? How to model and configure
products from several concerns and several abstraction
levels?”

An effective return on investment in product line
engineering is achievable when the product lines can be
efficiently used for product derivation. If we want to improve
product derivation, we require models that are more than just
vehicles for documentation and discussions on the whiteboard.
Then, regarding the mechanisms used in the solution space,
questions that arise are: What are the core assets that
are required? How to create and use decision models in
conjunction with other model assets to tackle the derivation
of products?
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A general MD-SPL approach can be summarized as in
Figure 4.1. We refer to it as the summary of a general
MD-SPL approach because the involved processes are used
irrespective of the type of product line we are creating:
proactive, reactive, or extractive. This view is intended to
subsume many other approaches in this domain. One of the
first uses of MDE for a product line is the work of Trask
in [TRA 06]. It illustrates the importance of domain-specific
modeling in the engineering of components and applications
for radio. Several approaches to create SPLs have emerged
that are based on MDE, such as Czarnecki and Antkiewicz’s
approach [CA 05], Wagelaar’s approach [WAG 05, WAG 08b,
WAG 08a], approaches coping with dynamic behaviors [ZIA 06,
PER 08], Loughran et al.’s approach [LOU, SAN 08], and Voelter
and Groher’s approach [VÖL 07b]. Recently, the AMPLE way to
develop product lines introduced product-oriented and solution
oriented approaches and two dedicated MD-SPL organizations.
A more detailed discussion about these approaches is provided
in Chapter 8.

Figure 4.1. Model-driven software product lines

The input of any SPL development includes business and
non-functional requirements. Both determine the reference
architecture, which is depicted by metamodels and model
transformations. During domain engineering and problem
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space, a metamodel of business, the domain metamodel, is
created by SPL architects representing the functional scope
of the product line. Of course, this design can be complemented
using the classic feature model notation. Since metamodels are
able to represent the feature model notation, a MDE is general
and uniform. Then, from this metamodel, SPL architects
develop at least one architectural reference metamodel, which
summarizes the architecture of any product line member.
Reference architecture captures the common architecture of
any product and the variations included in the domain. This
design can be complemented using feature models. All the other
core assets are created during domain engineering and the
production chain is established.

In MD-SPL engineering, the rationale of a production chain
is an assembly of model transformation rules that transform
domain models into architectural or other intermediate
models and finally into source code. The production chain
relates three important pieces: the domain metamodel, the
model transformation rules, and the architecture metamodel.
Obviously, this is the main difficulty in domain engineering
since the role of the production chain is to generate a
product from a product configuration represented as a domain
model, the reference architecture, and other core assets. The
production chain is complex and cannot be modeled by one
stage only; this is a multi-staged process. Here, we only
relate the two main stages and views: architecture and source-
code levels. Thus, the production chain will first create a
product model using model-to-model transformations and then
additional model-to-text transformations generate the source
code application. Any realistic software engineering chain
should be open to the external world, that is mainly to re-
use existing artifacts or to support modifications for various
evolution purposes. For instance, the use of external libraries
can be undertaken both at the architectural or source-code
level, provided that component interfaces are well designed
and included in the models of the products. Interfaces, in a



106 Model-Driven and Software Product Line Engineering

broad sense, are important artifacts in such types of software
chains. Manually written code should, and could, be integrated.
Still, interfaces are needed to materialize the contract the
programmer has to satisfy during code design.

The notion of views or points of view has been used
for a long time in software engineering and is also used
in MD-SPL engineering. The development of a complex
system needs several stakeholders – requirements analysts,
architects, designers, programmers, who are concerned
with several different aspects of the software system
(requirements, architectures, GUI, persistence, concurrency,
security, distribution, etc.). The viewpoints of a software are
multiple, and for instance, several approaches have been
defined to tackle this issue in OOP [SHI 89, CAR 90].
A reference work for the use of views in architecture
is [KRU 95], which distinguishes four views, namely the
logical, process, physical, and development views. In SPLE,
we deal with traditional views and some new ones. We
will use feature models and/or models for variability,
a reference architecture, product architectures, component
views, technical, or implementation platform information, the
production plan, etc. A general software process should start
from requirements and lead to source code and testing artifacts.
We will present our general view, which is consistent with the
one above, but we have not considered requirements analysis.
Our process assumes that some requirements are met by
feature models and other kinds of models. For a reference that
provides a view and tools for requirements analysis in SPLE,
the reader could consider [RAS 00]. In the next chapter, we
will extend our product line chain to cope with the specific
issue of fine-grained variability and configuration. Considering
the need for several views, which cannot always be completely
orthogonal, models provide a uniform way to represent these
various aspects and also the constraints between them. Model
weaving and model transformations are the computation
processes enabling us to combine these views and to build
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the full architecture or the full source code. Throughout this
chapter, we elaborate the issues involved in integrating MDE
and SPLE, and we present our MD-SPL approach, which
integrates most of the current MDE and SPLE mechanisms
used to build production chains.

4.2. Problem space issues

In the problem space dimension, MDE mechanisms impact
mainly on variability expression, the way to configure products,
and the elaboration of an automated production chain. The
main outcome is that several views of the software are needed,
each one with its specific requirements; thus, several stages to
define variability and then to configure products are needed.
This section describes variability capture based on models
and feature models, product configuration, and the concept of
multi-staged process.

4.2.1. Separating points of views

As discussed previously, the separation of concerns is a
mandatory pre-occupation for software engineering. As an
MDE approach, an approach to create MD-SPL must define
the criteria to decide how to separate concerns from an
application domain in several views; this is, how to represent
each product line member using diverse points of view, each
one including particular concerns. As an example, consider an
MD-SPL approach that decides a unique criteria to split the
application domain in two separated views: conceptual view
and architectural view, which includes details of technological
implementation. If we are interested in building our MD-SPL
of Smart-Home systems using such an approach, each system
should be represented using at least two points of view: the
conceptual and the architectural. The conceptual view includes
details of functional requirements of the system such as the
available rooms and facilities in the house. The architectural
view includes, among others, information regarding the type
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of required software components for periodically checking
temperature inside a room.

Decisions on how to separate concerns (how many views to
define, how are they related, and so on) are strongly linked
to the application domain and the variability identified in
the SPL under development. That is why one of the most
important characteristics in an MD-SPL approach is that it
facilitates and supports the separation of concerns in as many
views as required. For instance, the elements concerned with
security facilities could be separated if the requirements of the
product line demand it. Product designers could then select the
security profile for a product line member under configuration.
For this, it is mandatory that the MD-SPL approach provide
mechanisms for managing several points of view according to
the identified variability.

In our application example of Smart-Home systems, we
only take into account those points of view related to the
architectural structure of buildings, habitat facilities, and
software architecture designs. The approach we present in this
chapter provides the mechanisms to capture other concerns in
separated models if required; for example, views of behavior
such as those we can capture with message sequence charts
or state charts (see [ZIA 06] for a related approach), or views
to capture and express other issues such as performance,
distribution, or concurrency.

4.2.2. Capturing variability and configuring products

An MD-SPL approach must establish how to represent
the several points of view involved with product line
members. Metamodeling and feature modeling are the most
common mechanisms used in MDE and SPLE, respectively,
for capturing and expressing variability. Both metamodeling
and feature modeling can be used for capturing not only
structural and behavioral variations, but also functional and
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non-functional requirements. However, they are different in
many ways. Metamodels facilitate the modeling of variations at
language level. Product designers who are domain experts are
capable of configuring different products by creating diverse
and rich application domain models. Thus, metamodeling
implies a constructive approach that requires a high level of
expertise. Still, models and metamodels are general vehicles for
expressing variability in software artifacts, which are models
in MDE. On the other hand, feature models ease the modeling
of variations using a well-known syntax and semantics to
capture variability. Feature modeling allows the configuration
of products only by selecting features and hiding the complexity
of building complex models; this is a selection-based approach
that requires only domain knowledge.

The use of alternative (less-used) mechanisms for capturing
and expressing variability, such as ontology models from the
SPLE field, seems very relevant. However, there are not
enough practical examples available to incorporate in the
MDE field. Therefore, an MD-SPL approach must provide at
least mechanisms to capture variability and configure products
based on meta modeling and feature modeling. In addition, the
approach must allow product line architects to decide when to
choose either metamodeling or feature modeling.

4.2.3. Relating several points of view

We introduced the need for MD-SPL approaches for
providing mechanisms to represent, using metamodels and/or
feature models, each product line member according to
different concerns. Thus, a product line architect could, for
example, represent the variability of a Smart-Home system
by using a metamodel to capture the conceptual elements
of the application domain, and by using a feature model
to represent the scope of the product line for architectural
features. Consequently, a product designer could configure a
product by creating a model that conforms to the conceptual
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metamodel and a feature configuration including architectural
decisions.

Nevertheless, an MD-SPL approach must also provide
mechanisms to establish relationships between several models.
Product line architects have to decide (1) how to separate
concerns of an SPL in points of view, and (2) choose
the type of models to represent such views. No matter
how product line architects decide to separate concerns in
diverse points of view, inter-dependencies always remain
between several views of a software system. Following the
Smart-Home systems example, product line architects must
express a relationship between conceptual and architectural
elements. For instance, there is a relationship between the
concepts representing rooms with automatic windows and the
available type of architectural components to implement such
a facility.

4.2.4. Configuring products in a multi-staged process

MD-SPL approaches should consider several stages for
the configuration of products, selecting variants from diverse
concerns at each stage. Of course, the relationships between
models representing diverse points of view play an important
role when products are configured in several stages. It
is possible to perform multi-staged configurations only
when relationships between models representing variability
from the defined points of view are well known and
documented.

Using multi-staged configuration, products may be
configured at different binding times where at each stage,
specific variants are chosen. Multi-staged configuration also
facilitates the intervention of product designers with different
domain knowledge at different binding times. Then, design or
technology decisions may be left open or postponed to the latest
possible binding time in the configuration process. Another
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very important characteristic of multi-staged configuration
is that when variants are selected in one stage, variants
from the next stage can be delimited because of the current
selection.

Figure 4.2 summarizes a process example to configure
and derive a Smart-Home system using a multi-staged
process. First, a building architect creates a domain model.
Then, a facilities designer creates a configuration based
on a facilities feature model. Finally, a software designer
creates another configuration based on an architectural feature
model.

Figure 4.2. Multi-staged configuration process

4.3. Solution space issues

The solution space is concerned with the description of
a feasible solution to the problem using concrete software
patterns and adequate technology. Thus, the main issues
concerning the solution space dimension are i) the construction
of models, model transformations, textual descriptors, and core
assets to implement the variability captured in the problem
space, and ii) the design of an automated product derivation
dealing with multiple development stages with a range of
models and core assets.
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4.4. Developing core assets

The development of the core assets is the main stay in SPLE.
Some assets are created at problem space to capture variability.
Some others are created manually from requirements,by model
designers during the transition from problem space to solution
space or by programmers who have already implemented re-
usable components. In an MDE process, a set of assets is
also generated from the transformation steps and they can be
subject to re-use. At solution space, some specific assets can be
created and subject to re-use in other products.

We summarize the process of deriving MD-SPL as the
incremental transformation of application domains models,
using re-usable model transformation rules, re-usable models,
and re-usable source code to obtain products. Thus, the main
core assets used in MD-SPL approaches are models, model-to-
model transformations, and model-to-text transformations. Of
course, as SPLE approaches, MD-SPL approaches may/must
(re-)use, also, pieces of code already developed and well tested.

The challenge of MD-SPL approaches, regarding core assets
development, lies in selecting when model transformations,
models, or source code must be developed as re-usable core
assets. Sometimes, model structures must be built to be
used in an intermediate transformation when common models
are required. Sometimes model-to-model transformations are
required for either (1) transforming source models into target
models in some transformation step, or (2) weaving models
created by designers or product line architects. Finally,
sometimes source code (or any kind of text descriptor) must
be developed, tested, and intensively re-used.

4.4.1. Developing decision models and deriving products

Given that one objective of MD-SPL approaches is to
automate completely the process of transforming models to
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generate products, there is a need to use a mechanism
that allows designers to select and execute transformation
rules automatically according to variants selected by product
designers through the configuration process. This mechanism
must also ensure the correct execution ordering, also called
execution scheduling, of the selected transformation rules. By
correct, we mean an execution ordering that allows derivation
of the required configured product.

There is, then, the need of introducing decision models
in the context of MD-SPL as a mechanism for composing
transformation rules based on product configurations. In
section 2.7.2, we presented a decision model as a model that
captures variability in a product line in terms of open decisions
and possible resolutions [BAC 00]. Each decision is expressed
in terms of a selected variation point and associated with a
set of possible resolutions, which in turn refer to variants of
selected variation points. A set of effects is associated with each
possible resolution. An effect indicates how a particular core
asset is re-used to create a product line member. Thus, in the
context of MD-SPL engineering, decision models must capture
(1) the relationships between variants and solution space core
assets, such as transformation rules or re-usable source code,
and (2) the required execution ordering of transformation rules
to weave and transform models and/or source code to create
products based on product configurations.

4.5. Variability expression and product configuration

The most common mechanisms used to capture variability
and configure products in current MD-SPL approaches are
metamodels and feature models. As part of our approach to
create MD-SPL, playing the role of product line architects, we
use metamodels and feature models as our base core assets.
Playing the role of product designers, we configure products by
creating (1) models that conform to metamodels and (2) feature
configurations.
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4.5.1. Metamodels

Since we use a multi-staged approach for configuration and
derivation of products, we separate domain-specific concepts
in several metamodels. To create the product line of Smart-
Home systems, the first metamodel we build is the domain
metamodel, which serves as a vocabulary that is familiar to
the practitioners of the system’s domain. A domain model
does not include concepts regarding details of the structure or
processing of the system. Other metamodels contain facilities
and architectural concepts, which are orthogonal to the
concepts in the domain metamodel. These concepts represent
variability that affects multiple domain concepts and their
subsequent processing (i.e. transformation and generation)
stages.

Each metamodel has a main objective to capture the
variability that characterizes a product line; however, they
play different roles during the product line development
lifecycle. Product designers use the first metamodel, the
domain metamodel, during the configuration process. This
metamodel is the reference to create domain models, which are
the starting point to derive product line members.

We create four metamodels to capture, separately, the
three sources of variability that characterize our Smart-Home
system’s product line (see Chapter 2):

– Domain metamodel. This metamodel includes concepts
regarding architectural structure of houses.

– Smart-Home’s facilities metamodel. Each house may
be equipped with several facilities related to controlled
devices.

– Components metamodel. This metamodel includes only
concepts concerning component-based development. This
metamodel is important to represent the problem domain in
terms of software components.
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– Software architecture metamodel. Each Smart-Home
system has a technology platform integrating their devices
under different software architectures.

It is possible to create other metamodels such as a
programming language grammar, or its representation as a
metamodel, to capture the final source code of the product
line members. In our case study, however, we do not create
it; instead, we generate the final representation of a product
directly as source code.

The first stage to configure a product starts with the creation
of a domain model; i.e. the model that represents a particular
building. Figure 4.3 presents the transformation steps of a
domain model from its creation until the production of the
source code application. The model transformation rules are
used in four stages, each one with a dedicated set of rules.
The first set of rules is defined from the domain metamodel
to the facilities metamodel. The second set is defined from
the facilities metamodel to the components metamodel.
The third set is defined from the components metamodel
to the architecture metamodel. Finally, the fourth set of
transformation rules includes model-to-text transformations
that produce the source code of product line members.We create
model-to-text transformation rules from the facilities and the
architecture metamodel to Java source code. The following
sections present the details about the model transformations
and the possible variations these model transformations can
have according to the SPL variability.

We present our four metamodels in detail:

Domain metamodel. The first metamodel is the domain
metamodel, which includes application domain concepts that
facilitate the creation of models representing the structure of
houses. Figure 4.4 presents the domain metamodel. Using this
metamodel we can create houses with several architectural
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structures including several Floor, Room, Door, and Window
elements.

Figure 4.3. Staged transformations to derive SPL members

Figure 4.4. The domain metamodel

Figure 4.5 shows a domain model example that conforms
to the domain metamodel. The model defines firstFloor
and secondFloor. These conform to the Floor metaconcept.
In the firstFloor there are two rooms, livingRoom,
and kitchen. In the secondFloor there is another
room, mainRoom, which has two windows, mainRoomW1 and
mainRoomW2. There are also two doors. The first door,
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livingRoomD1, is in the livingRoom. The second door,
mainRoomD2, is in the mainRoom.

Figure 4.5. Example of a domain model

Facilities metamodel. The facilities metamodel is presented
in Figure 4.6. This metamodel is at the same level of
abstraction as the domain metamodel.The facilities metamodel
includes, however, metaconcepts of Smart-Homes facilities,
such as environmental control and authentication devices.
Based on this metamodel, it is possible to add facilities to
Smart-Homes. The Window metaconcept is now specialized
in Automatic and Manual metaconcepts. Thus, windows
can be configured as automatic or manual windows. The
Room metaconcept contains one EnvironmentalControl
metaconcept, which is specialized in the WindowsController
and AirConditioning metaconcepts. Thus, rooms can be
configured to manage air conditioning or automatic windows as
environmental control. Finally, the Doormetaconcept contains
the LockDoorControl metaconcept, which is specialized in
the Fingerprint and Keypad metaconcepts. Thus, doors can
be configured to manage fingerprint or keypad as lock door
control.

Components metamodel. The software components
metamodel is used to represent concepts of component-
based development. For instance, in the smart-home, we
could have controller components for the windows, the air
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conditioning, or the door lock controls. We can use several
different components technologies such as J2EE and Fractal,
but in the domain of home-automation OSGi [OSG 09] is the
de facto standard. The chosen technology generally implies
a particular metamodel associated with the framework or
the language. The interested reader will find general surveys
about component programming and architectural description
languages in [CZA 99, MED 00]. In our case, we choose
OSGi and use a proper metamodel based on UML2 notations.
The OSGi framework implements a complete and dynamic
component model. Applications or components (bundles for
deployment) can be remotely installed, started, stopped,
updated and uninstalled without requiring a reboot. The
management lifecycle is achieved through APIs that allow for
remote downloading of management policies. The OSGi
metamodel includes more implementation details than the
domain metamodel and the facilities metamodel. That is
because this metamodel is at a lower abstraction level than
the two previously presented metamodels.

Figure 4.6. The facilities metamodel
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Figure 4.7 presents our components metamodel. We take the
basic concepts from the UML2 metamodel to create a simplified
metamodel of components. This metamodel is also a subset of
the one developed in the AMPLE project in the context of its
Smart-Home case study [AMP 08]. A Component is a modular,
replaceable, and deployable piece of software, which interacts
with its environment through interfaces or ports [LU 05].
We specialize the Component metaconcepts in the Periodic
metaconcept. Thus, we can create Periodic (Component)
elements when the component is a periodic component in the
final software architecture of a Smart-Home system. A periodic
component is an active component whose offered services can
be executed periodically according to well-defined business
rules. A Port serves as a contract between the elements
it connects. Ports are usually of the type Interface. In
UML2, interfaces can be either Provided or Required ones.
Provided interfaces specify the providedOperations that a
component offers to their clients. Required interfaces specify
the requiredOperations that a component needs to perform
its functions. In UML2 Provided and Required interfaces
are related using connectors. To simplify our metamodel,
we connect Provided and Required interfaces creating a
directed relationship between them, useProvided. Finally,
a Component owns a unique identifier, componentName, and a
set of Property elements.

Figure 4.7. The components metamodel
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The architecture metamodel. The architecture metamodel is
at the same level of abstraction as the components metamodel.
However, the architecture metamodel includes new
metaconcepts to represent the variants identified regarding
architectural design. While the components metamodel
has general and common concepts regarding component
based development, the architecture metamodel refines it to
include concepts of specific vendors’ implementations such
as OSGi. Figure 4.8 presents the architecture metamodel.
The Component metaconcept is now also specialized in
Service; thus, components can be configured to be either
periodic or service components. Furthermore, the Component
metaconcept includes the property instantiationMode to
indicate when a component is instantiated, ON_INVOCATION
or ON_DEPLOYMENT. Thus, a software designer can configure a
component to be a periodic or a service component and to be
instantiated on invocation or on deployment. Let us suppose
a building owner wants to check the environment inside
the building to open/close the windows accordingly. Then,
the software designer should configure a basic component to
manage automatic windows devices to be a periodic component.

Figure 4.8. The architecture metamodel

4.5.2. Feature models

Due to the different sources of variability, MD-SPL
approaches must allow product designers to configure a product
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giving its domain model and selecting variants from the sources
of variability. For instance, in our application example, those
are the variants from Smart-Home’s facilities and software
architecture. In [POH 05] the authors introduce the idea of an
orthogonal variability model dedicated to collecting variability
in the entire product line, not only at the level of requirements.
This role features models, which address specific aspects of the
variability: Smart-Home and building architecture facilities,
software architectural considerations, implementation choices,
and so on.

Figure 4.9 presents an example of how limited the
configuration and the derivation of Smart-Home systems is
when only product designers configure a product by means
of a specific domain model. In the example, from a building
representing the architectural structure of a Smart-Home, only
one possible Smart-Home system could be derived, without
including variants from concerns different from the structure
of the building.

Figure 4.9. Example of configuration without variability models

We use feature modeling to allow product designers to
configure products from sources other than the application
domain. Like metamodeling, feature modeling can be used for
capturing not only structural, but also behavioral variations.
Metamodeling facilitates the configuration of products by
creating rich models using a constructive approach that
requires a high level of expertise. Feature modeling facilitates
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the configuration of products by selecting features and
hiding the complexity of building models from scratch; this
is a selection-based approach that requires only domain
knowledge.

We create our feature models based on Czarnecki et al.’s
metamodel [CZA 04], which is itself based on FODA [KAN 90].
Figure 4.10 presents our simplified feature metamodel.
As in the Czarnecki et al.’s metamodel, a FeatureGroup
expresses a choice over the set of GroupedFeatures and
its cardinality defines the restriction on the number of
choices. A GroupedFeature does not have cardinality and
a SolitaryFeature is a feature that is not grouped by any
FeatureGroup. Examples of feature models are given in the
next subsection using our application example.

Figure 4.10. Simplified feature metamodel

For the SPL of our application example, playing the role
of product line architects, we create a feature model that
represents variants of Smart-Homes facilities, and another
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one that represents variants of architectural (software) design.
Thus, product designers are able to configure products by
creating feature configurations including choices of Smart-
Homes facilities and (software) architecture. These feature
configurations are input to the product derivation process. They
are used to select the transformation rules to be used in each
stage of the model transformation chain.

The facilities feature model. As we introduced in
section 2, we take into account the need to incorporate to the
house, automation facilities that are orthogonal to the house
structure. We consider particularly two groups of facilities:
access control facilities and environmental control facilities.

Figure 4.11 presents our Smart-Homes facilities feature
model. One FeatureGroup appears for each group of
facilities. The Lock Door Control feature groups the
features Fingerprint and Keypad and has cardinality
[0..1], which implicitly means that Door elements can
have either keypad, fingerprint, or none of them as lock
door control mechanism. The Environmental Control
feature groups the features Air Conditioning and
Automatic Windows and also has cardinality [0..1],
which implicitly means that Room elements can have
either automatic windows, air conditioning, or none of
them as lock environmental control mechanism. We say
implicitly because there is neither semantics in traditional
feature models, nor in metamodels, to formally denote that
features represent variants that affect particular model
elements.

The architecture feature model. Figure 4.12 presents our
architecture feature model. Given that we have classified
software components according to their type, and their
instantiation mode, we create one FeatureGroup for each
classification. The Component Type feature groups the
features Periodic and Service and has cardinality [1..1],
which implicitly means that Component elements can be either
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periodic or service components. The Instantiation mode
feature groups the features Deployment and Invocation and
also has a cardinality [1..1], which implicitly means that
Component elements can be instantiated either on deployment
or on invocation.

Figure 4.11. Smart-Homes’ facilities feature model

Figure 4.12. Architecture feature model

Figure 4.13 summarizes the processes of (1) expressing
the variability in our application example SPL and (2)
configuring a Smart-Home system, by using only metamodels
and feature models. First, a building architect creates a
Domain Model based on the Domain Metamodel. Then,
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a facilities designer creates a feature configuration based
on the facilities feature model. The facilities feature
model affects the transformation of the Domain Model
into the Facilities Model. According to selected facilities
features, particular transformation rules must be executed
to transform domain models into facilities models. For
instance, if the feature Automatic Windows is selected,
a particular transformation rule is executed to transform
Window elements into Automatic Windows elements. If
the feature Automatic Windows is not selected, another
different transformation rule is executed to transform Window
elements into Manual Window elements. The Facilities
Model is transformed into a Components model and then
a software architect creates another feature configuration
based on the architecture feature model. The Architecture
Feature Model Configuration affects the transformation
of the Components Model into the Architectural Model.
Finally, the Architectural Model and the Facilities
Model are used to generate the final Java Source Code. The
next section describes the process of deriving products using
model transformation stages.

Figure 4.13. Summary of the Smart-Home systems
configuration and derivation process
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Figure 4.14 presents an example of the staged configuration
of two different Smart-Home systems. In the example, we
only present two stages. In the first stage a building architect
configures the architectural structure of a building. In the
second one, a facilities designer creates two configurations
to derive two different Smart-Home systems from the same
building: on the left, the configuration indicates that the Smart-
Home system will have a keypad as lock door control in all the
doors; on the right, the configuration indicates that the Smart-
Home system will have automatic windows as environmental
control, which implies that all the windows will be automatic
windows.

Figure 4.14. Example of configuration with variability models

4.6. Core asset development and product derivation

We have introduced metamodels and feature models as the
core assets we use in our approach to express variability and
configure products. Similar to many other MD-SPL approaches,
in our approach,we use model transformation rules as the main
core assets to derive product line members. In addition, we also
use pre-created software artifacts to assemble final products.

In the next two subsections, we present (1) the
transformation rules and software artifacts we have created
for our application example and (2) the mechanism we use to
create decision models, i.e. models where we relate the created
transformation rules to validate feature configurations and we
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define the required execution ordering of such transformation
rules to derive configured products.

4.6.1. Transformation rules in the Smart-Home systems
SPL

As we introduced before (see Figure 4.3 and Figure 4.13),
the transformation rules we have created for our application
example are used in four stages. The first set of rules is defined
from the domain metamodel to the facilities metamodel.
They are created taking into account the facilities feature
model. The second set is defined from the facilities metamodel
to the components metamodel. The third set is defined from
the components metamodel to the architecture metamodel,
taking into account the architecture feature model. Finally,
the fourth set of transformation rules includes model-to-text
transformations, which produce the source code of product line
members.

First stage: Domain-to-facilities transformation rules. The
purpose of these transformation rules is the adding of
information about Smart-Homes’ facilities to domain models.
These are horizontal model-to-model transformations. It
means, they transform models inside the same abstraction
level, the application domain abstraction level, by adding
concerns related to Smart-Homes’ facilities.

In this stage, we create two sets of transformation
rules: the base and the specific ones. On the one
hand, base transformation rules do not depend on any
variant of the product line. They are responsible for
building the common or base product. Thus, they are
always executed during the transformation process.
For instance, we create a base transformation rule to
transform Domain metamodel::House elements into
FacilitiesMetamodel::House elements. Similarly,
we create a base transformation rule to transform
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Domain metamodel::Floor elements into Facilities
Metamodel::Floor elements.

On the other hand, we create specific transformation
rules taking into account the possible features that can
affect the transformation process. In this case, those are
features from the facilities feature model. For instance,
we create two transformation rules to transform Domain
metamodel::Window elements. The first one, taking
into account the Automatic Windows feature, creates
FacilitiesMetamodel::Automatic (Window) elements
and one FacilitiesMetamodel::WindowsController
element for each created Room element. The second one,
taking into account the Air Conditioning feature, creates
FacilitiesMetamodel::Manual (Window) elements and
one FacilitiesMetamodel::AirConditioning element
for each created Room element. Therefore, if the feature
Automatic Windows is selected, the first transformation
rule must be executed; if the feature Air Conditioning is
selected, the second transformation rule must be executed.

Similarly, we create two different transformation rules to
transform Domain metamodel::Door elements. The first one
createsFacilitiesMetamodel::Door elements containing a
Domain metamodel::Fingerprint element; the second one
creates FacilitiesMetamodel::Door elements containing
a Domain metamodel::Keypad element. The model-to-model
and the model-to-text transformation rules we have created for
our application example are available in the website [ARB].

Second stage: Facilities-to-components transformation rules.
The second set of transformation rules is defined from the
facilities metamodel to the components metamodel. These are
vertical model-to-model transformations since they transform
models between different abstraction levels. The source
abstraction level is the application domain abstraction level,
the target one is the abstraction level including concerns
related to software components.
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We create only base transformation rules given that there
are no feature models affecting this transformation stage.
However, in this particular case,not all the base transformation
rules are always executed. Their execution depends on the
transformation of the facility models. For instance, if at least
one FacilitiesMetamodel::WindowsController element
exists, then a base transformation rule in charge of creating a
component that serves as controller for the automatic windows
is executed.

Figure 4.15. Example of a Smart-Home systems’ components model

Figure 4.15 presents an example of a derived component
model. This model is presented using the UML2 syntax.
Periodic components in this model can either remain
Periodic components after the next transformation stage,
which creates architecture models, or not. The components
inside dashed squares are not always created. The following
conditions are required to create such components:

– The rule to create the WindowController component, its
ports and interfaces, is only executed if there exists at least
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one FacilitiesMetamodel::WindowsController element
in the source model.

– The rule to create the AirConditioningController
component, its ports, and interfaces, is only executed
if there exists at least one Facilities Metamodel::
AirConditioning element in the source model.

The GUI component corresponds to the graphical
user interface (GUI) of the Smart-Home systems. This
component requires services of all the other components. In
Figure 4.15, we only include one of its Required interfaces,
IDoorController.

Third stage: Components-to-architecture transformation
rules. The purpose of these transformation rules is the adding
to component models information about the type of the
components, periodic or service, and their instantiation mode,
on invocation or on deployment. These are horizontal model-
to-model transformations given that models are transformed
inside the same abstraction level.

In this stage, we create base and specific transformation
rules. For instance, we create a base transformation rule to
transform ComponentMetamodel::Interface elements into
ArchitectureMetamodel::Interface elements.

We create specific transformation rules taking into account
the possible features that can affect the transformation
process. In this case, those are features from the architecture
feature model. For instance, we create two transformation rules
to transform ComponentMetamodel::Component elements.
The first one, taking into account the Service feature, creates
ArchitectureMetamodel::Service (Component) elements.
The second one, taking into account the Periodic feature,
creates ArchitectureMetamodel::Periodic (Component)
elements from ComponentMetamodel::Periodic elements.
Therefore, if the feature Service is selected, the first
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transformation rule must be executed; if the feature Periodic
is selected the second transformation rule must be executed.

Similarly, we create two different specific transformation
rules to transform Domain metamodel::Door elements. The
first one creates FacilitiesMetamodel::Door elements;
each one containing a Domain metamodel::Fingerprint
element; the second one creates Facilities
Metamodel::Door elements; each one containing a Domain
metamodel::Keypad element.

Fourth stage: Model-to-text transformation rules. The model-
to-text transformation rules produce the source code of product
line members. These transformation rules have as input an
architecture model and a facilities model. On the one hand,
the architecture model is transformed into the source code
of OSGi components (Bundles) as presented in Figure 4.15.
For this transformation, it is also possible to re-use pieces
of code previously written by product line architects. Thus,
the transformation rules are only in charge of connecting the
already created pieces of code representing components.

On the other hand, the facilities model is transformed into
an extra OSGi component, HouseStructure, which manages
the structural design of the configured Smart-Home. Thus,
if the Smart-Home has been configured to have one floor
and two rooms, the HouseStructure component maintains this
structure to provide the required services to the configured
structural element. These model-to-text transformation rules
are available along with the model-to-model transformation
rules on the Website [ARB 12].

Figure 4.16 presents an example of the GUI corresponding to
one configured Smart-Home System. The Smart-Home system
was configured to have one floor with one room, theMain Room.
This room has Automatic Windows as Environmental
Control. The only door in the Main Room has Fingerprint
as Door Lock Control.
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Figure 4.16. Example of a Smart-Home system

4.6.2. Creating and using decision models

In the previous section, we explained how we created specific
transformation rules taking into account the possible features
that can affect a model transformation stage. For instance,
in the first transformation stage, those are features from the
facilities feature model.

Remember one objective of an MD-SPL approach is to
automate as far as possible the production plan. This “big
process”, thanks to MDE, can be viewed as an assembly of
model transformations from requirements until code and tests.
Thus, it implies defining a mechanism that enables selecting
and executing automatically the base transformation rules
and only some specific transformation rules. These are specific
rules related to selected features in feature configurations. This
mechanism must also ensure the correct execution ordering,
also called execution scheduling, of the selected transformation
rules. By correct, we mean an execution ordering that allows
derivation of the required configured product.

We propose the use of explicit decision models in the context
of MDE as a mechanism for composing transformation rules
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based on feature configurations [ARB 09]. This mechanism
can be used in conjunction with transformation languages
that provide facilities for the composition of transformation
rules. In particular, we used the oAW modeling framework
and the Xtend and Xpand model transformation languages,
which provide a mechanism based on Aspect-Oriented
Programming (AOP) for composing transformation rules (see
section 3.6.4).

Our decision models are useful to capture (1) the
relationships between features and specific transformation
rules, and (2) the required execution ordering of transformation
rules to create products based on feature configurations. Our
basic idea to obtain a final execution scheduling is to construct
a baseline ordering, modified according to valid feature
configurations.A baseline ordering describes a sequence of calls
to base transformation rules. Our mechanism to adapt the
baseline ordering is supported by AOP concepts. We capture
in decision models information about aspects that must be
woven with a baseline ordering to adapt it. Aspects maintain
the information of what base transformation rules must be
intercepted (join points) and what specific transformation rules
must then be executed (advices) according to defined conditions
on feature configurations.

Table 4.1 presents examples of conditions on feature
configurations that we can capture in our decision models.
These conditions imply modifying a baseline ordering. In the
first column, we present examples of conditions; in the second
column, we present the name of the base rule in the baseline
ordering to be intercepted (join point); in the third column, we
present the name of the specific rule (advice) to be executed if
the condition appears in a feature configuration. Thus, if the
Feature One appears Selected in a feature configuration,
regardless of the other features, Rule A must be intercepted
and the Rule A’ must be executed instead. If Feature Two
appears Unselected in a feature configuration, regardless
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of the other features, the Rule B must be intercepted
and the Rule B’ must be executed instead. We can also
capture more complex conditions. For instance, in row three,
we express that if the Feature One appears Unselected
and the Feature Three appears Selected in a feature
configuration, regardless of the other features, the Rule A
must be intercepted and the Rule Cmust be executed instead.

Condition Join point Advice
Feature One Selected Rule A Rule A’

Feature Two Unselected Rule B Rule B’

Feature One Unselected
and

Feature Three Selected Rule A Rule C

Table 4.1. Examples of conditions on feature configurations that imply
an adaptation of a baseline (transformation rules’) ordering

For example, in the context of our smart home application,
during the derivation of a Smart-Home system, if the
feature Automatic Windows is selected in a feature
configuration, the base sequence to transform domain models
into facilities models must be modified. This modification
is done in a defined point to include an alternative
step where the transformation rule in charge of creating
automatic windows is called. Figure 4.17 presents a
small part of our decision model to transform domain
models into facilities models. Firstly, we define a baseline
ordering including the execution of the transformation
rules domainFloorsToFacilitiesFloors and domain
WindowsToFacilitiesWindows. Secondly, we create an
aspect indicating that if the feature Automatic Windows is
selected in a feature configuration, the execution of the base
transformation rule domainWindowsToFacilitiesWindows
must be intercepted and the specific transformation rule
windowsToAutomaticWindows must then be executed.
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Figure 4.17. Example of a decision model to create
Smart-Home systems

Our decision models also allows us to capture the
different transformation stages included in a product line
derivation process. For our application example, these are
four transformation stages, from domain models to obtaining
Java source code. This type of composition, which composes
transformation rules using the output model of a rule
as the input model of another rule is called external
composition [WAG 08a]. Figure 4.18 presents the part of our
decision model capturing the external composition required for
deriving Smart-Home systems given our four transformation
stages. We create this model using the decision model editor
which we will present in Chapter 6. In section 5.4, we discuss
limitations of our mechanism to derive products based on
decision models.

The decision metamodel. Figure 4.19 presents the decision
metamodel we have created to create decision models. A
model transformation Workflow contains a sequence of
TransformationPrograms. A TransformationProgram is
either a Model2Model or a Model2Text transformation. Each
TransformationProgram uses a set of Transformation
Rules and a set of Aspects to perform its process
of transformation. As introduced before, we classify
TransformationRules in Base and Specific ones.
An Aspect specifies its advice, which is a Specific
transformation rule, and its join point, which in turn is a Base
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transformation rule. A Workflow must take into account a
set of ExecutionConditions, which depends on a set of
Features with a particular SelectionType, SELECTED or
NOT_ SELECTED. Finally, an Aspect must be woven if its
executionCondition appears in a feature configuration.

Figure 4.18. Decision model including external composition

Creating executable model transformation workflows from
decision models. As we mentioned before, we use the oAW
modeling framework and the Xtend and Xpand model
transformation languages to implement our approach and
application example. We then transformed our decision models
into oAW workflows that include the required instructions (1)
to execute model transformations in different stages (external
composition), and (2) to modify a baseline ordering of a set
of transformation rules (internal composition [WAG 08a]).
For transforming our decision models into oAW workflows,
we created a model-to-text transformation. This model-to-text
transformation is provided at [ARB 12]. We use it in the
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decision models editor (Chapter 6) to provide the facility of
transforming decision models into executable oAW workflows.

Figure 4.19. Decision metamodel

Listing 4.1 presents a part of a sample generated
oAW workflow. This workflow specifies that the
transformation rule domainWindowsToFacilitiesWindows
is intercepted (line 2-3 and line 9) and the transformation rule
adviceWindowsToAutomaticWindows is executed (line 5)
if the feature Automatic Windows is selected in a feature
configuration (line 1).

1 <Feature s e l e c t e d="Automatic Windows">
2 <transformationAspect adviceTarget=
3 "domainWindowsToFacilitiesWindows">
4 <extensionAdvice
5 value="adviceWindowsToAutomaticWindows"/>
6 </transformationAspect>
7 </Feature>
8
9 <transform id="domainWindowsToFacilitiesWindows">

10 <invoke value="domainWindowsToFacilitiesWindows"/>
11 </transform>

Listing 4.1. Example of an oAW workflow
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4.7. Summary

Software product line engineering brings benefits in
terms of costs and productivity by taking advantage of the
commonality. Model driven engineering techniques and tools
have, without any doubt, the potential to significantly increase
the productivity and quality of software engineering processes.
Although the integration of both approaches is promising, it
requires a tight coupling and tuning of the derivation chain.
This chapter exposes a general view of the MDE product line
and some issues about capturing the variability of different
software views and configuring and deriving products in a
multi-staged process. The notion of view has been used for
years in software engineering. It is mandatory to develop
complex systems with several stakeholders: requirement
analysts, architects, designers, programmers, concerned with
several different aspects of the software system (requirements,
architectures, GUI, persistence, concurrency, distribution, etc.).

This chapter focuses on capturing the variability in different
models conforming to metamodels, configuring the product,
and defining an automated production chain relying on a
multi-staged process. We make explicit examples of variability
models with the facilities and architectural feature models
and we show how these models are taken into account
in the transformation process. The derivation process is a
complex task and it requires sequences of transformations
that need a precise scheduling. Decision models are artifacts
specifying base and specific transformation rules for scheduling
the rules for both commonality and variability. To schedule
these rules correctly, the mechanism uses aspect-oriented
programming. Decision models capture transformational
aspects of the baseline derivation process to derive specific
variable applications. This general MD-SPL process is effective
but it is not always sufficiently flexible for fine-grained
configuration. We need rather to configure differently several
instances of the same kind of artifacts. The next chapter
discusses this issue and presents the FieSta solution.



Chapter 5

The FieSta Framework: Fine-grained
Derivation and Configuration

5.1. Introduction

In Chapter 4, we presented how MDE can be used to enhance
SPLE. We have shown that models and model transformations
can be used to support the configuration and derivation of
product line members, respectively. We have also noted that
these MD-SPL approaches are not enough to configure and
derive products with fine-grained variations. These approaches
have some limitations to express variability and to configure
products, and they do not provide appropriate mechanisms
to derive products that facilitate the maintenance, re-use,
and evolution of core assets such as transformation rules.
This chapter first introduces the concepts of coarse-grained
and fine-grained variations. Our solution to fix this issue is
called FieSta, for Fine-grained derivation and configuration
for Software product lines. This approach relies on constraint
and binding models, which are described and illustrated.
We present our proposal to improve the expressive power
of variability in section 5.2; we introduce a mechanism to
capture and express fine-grained variations between products
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of an MD-SPL. Finally, we present our mechanisms for
deriving configured products supported by decision models in
section 5.3. At the end of this chapter, we present limitations
of FieSta in section 5.4.

5.1.1. Coarse-grained and fine-grained variations

The base mechanisms which we have introduced until now
in this book allow product line architects to capture and express
the possible variations between members of a product line
by separately creating metamodels and feature models. This
allows us to capture and express coarse-grained variations
between products. For example, a Smart-Home system has
a coarse-grained variation, with respect to the Automatic
Windows feature, if either all or none of the Windows in the
Smart-Home products generated from the product line are
Automatic Windows. Rephrasing it, a coarse-grained feature
may be selected for all the models conforming to a given
concept. Thus, a coarse-grained variation applies uniformly to
all the instances of a metaconcept.

We obtain coarse-grained variations between members
of our product line example by creating coarse-grained
configurations. A coarse-grained configuration is an association
between models that conform to metamodels and instances of
feature models. Thus, for instance, a first Smart-Home system
can be coarse-grained configured by creating a domain model
and selecting the feature Fingerprint. A second Smart-Home
system can be coarse-grained configured by using the same
domain model and selecting the feature Keypad. When Smart-
Home systems are derived, a coarse-grained variation between
them appears: all the Doors in the first Smart-Home system
have Fingerprint as lock door control mechanism, and all
the Doors in the second Smart-Home system have Keypad as
lock door control mechanism. One immediate solution to this
problem is to refine the model and to introduce more specific
models making some of the variations explicit. If the degree of
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variation is not high, this is a good solution; but in many real
situations, this is not acceptable. Thus, we need to introduce
concepts and constructs to solve this issue.

We propose to improve the expressive power of variability by
providing a mechanism we have named fine-grained variations
between products of an MD-SPL. For instance, the first Smart-
Home system can have a fine-grained variation in relation
to the second Smart-Home system if both systems have
automatic windows, but they may differ in the specific windows
that are automatic. Additionally, we propose a mechanism to
create fine-grained configurations, which allows us to configure
model elements individually based on features. For example, by
creating a fine-grained configuration, we could configure the
mainRoom to manage Air Conditioning as environmental
control and the livingRoom to manage Automatic Windows
as environmental control [ARB 09]. A coarse-grained variation
can be viewed as a “class variation” conversely, a fine-grained
variation is an “instance variation” that is specific to one
instance of a concept. The product line architect has to analyze
the domain variability, to choose between coarse-grained
and fine-grained variations accordingly with its structural
metamodel.

To solve the problem of fine-grained configuration, one
can define metaconcepts associated with every relevant
combination of features and structural elements. For instance,
we can have a metaconcept of RoomWithAutomaticWindow
and RoomWithManualWindow. However, this is not a scalable
approach and we propose a more definitive solution. The
solution is to define links between features and particular
elements of the structural model. However, we should continue
to propose coarse-grained variation in a context where group
features and cardinality are possible. Thus, we need to
add some constraints to avoid illegal configurations and a
mechanism to check the configuration validity.
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5.2. Binding models and constraint models

The mechanisms we propose are based on what we
have named constraint models and binding models. To
facilitate the understanding of our proposal, first we introduce
our mechanism for configuring products by using binding
models. Afterwards, we present our approach to improve the
expressive power of variability in MD-SPLs by using constraint
models.

5.2.1. Binding models

We call the relationship between a model element and
a feature a binding. For example, let us assume that the
livingRoom (see Figure 4.5) has Air Conditioning as
environmental control mechanism (see Figure 4.11). A binding
B is a pair B = [E, F ] composed of a model element E
and a feature F , where F is either a SolitaryFeature or
a GroupedFeature. For example, a product designer can
create a binding relating the livingRoom and the Automatic
Windows feature, B = [livingRoom, Automatic Windows].

DEFINITION 5.1. – We define a binding model as the set of
bindings defined by a product designer between a model that
conforms to a metamodel and a feature model, which conforms
to a feature metamodel.

Figure 5.1 presents a binding model example for our case
study. This binding model is created between the domain
model from Figure 4.5 and the facilities feature model from
Figure 4.11. binding1 configures the livingRoomD1 to
have Keypad as Lock Door Control. binding2 denotes the
designer selection of Air Conditioning in the livingRoom
as environmental control system. Finally, binding3 defines
that the mainRoomW1 is configured to be an Automatic
Window. Chapter 6 will present tools to help in binding and
configuring products in FieSta; it also gives an example of the
configuration and derivation of a Smart-Home system of our
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case study. The example includes a binding model between a
component model and the architecture feature model.

Figure 5.1. Binding model example

5.2.2. Constraint models

Product line architects must use constraint models to
restrict the bindings between model elements and features; for
example, to express that only domain models can be bound to
facilities models, or that maximum three Room elements can be
bound to the feature Air Conditioning.

A constraint model is a set of constraints.

DEFINITION 5.2. – A constraint is a quadruple C = [M, F, A, D]
composed of a metaconcept M , a feature F , and two properties:
A and D. A constraint C expresses the fact that model elements
that conform to the metaconcept M can be bound to the
feature F .

The properties A and D are described in sections 5.2.3
and 5.2.4. Each constraint is unique in a constraint model;
this means, only one constraint includes a pair [M, F ].
Our constraints serve to avoid inconsistencies during the
configuration and derivation processes. Constraints must
prevent the following problems:

– Any model is bound to any feature model. For example, in
our case study,only domain models can be bound to the facilities
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feature models and only components models can be bound to
the architecture feature models.

– Model elements that conform to any metaconcept are
bound to any feature. For example, for a requirement of
the product line (R1) specifying that only windows can be
automatic, a constraint must exclude Door elements from the
Automatic Windows feature.

– Any number of model elements that conform to a
metaconcept is bound to any number of features. For example,
since the installation of automatic windows could be expensive
in a product line for economical Smart-Homes, a product line
architect may deal with a requirement (R2) that specifies
that only (maximum) one window can be automatic. Thus, a
constraint must prevent more than one Window element from
being bound to the Automatic Windows feature.

– Model elements and features are bound without taking
into account constraints between functional requirements.
For example, for a requirement of the product line (R3),
which specifies that automatic windows must have sensors,
a constraint must prevent Window elements without an
associated Sensor element from being configured as
Automatic Windows.

– Model elements and features are bound without taking
into account the prerequisites of the configuration. For
example, a requirement of the product line (R4) specifies that
automatic windows can only be selected from rooms, which
are not configured to have air conditioning. A constraint must
prevent Window elements with their rooms associated to the
Air Conditioning feature being configured as Automatic
Windows.

Therefore, for our case study, with respect to the
requirement (R1), a product line architect could define
a constraint between the Window metaconcept and
the Automatic Windows feature, constraint1=[Window,
Automatic Windows, A, D]. The constraint describes that
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during the configuration of a product, product designers can
bind Window elements; for example, the mainRoomW2 with
the feature Automatic Windows (see Figure 5.1). Another
constraint can be created between the Door metaconcept
and the Lock Door Control feature, constraint2=[Door,
Lock Door Control, A, D]. The constraint describes that
product designers can bind Door elements with either the
feature Keypad or the feature Fingerprint. Figure 5.2
presents these constraints. In Chapter 6, we present the
constraint models we created for the SPL of our Smart-Home
system.

Figure 5.2. Constraint model example

A product line architect could also define a constraint
between the Room metaconcept and the Automatic Windows
feature, like in constraint3 for R3. The constraint describes
that product designers may bind Room elements with
the feature Automatic Windows to indicate that all the
windows in the bound room are automatic windows. Product
line architects can add descriptions to constraints to help
product designers during the creation of bindings. Thus, for
constraint1 we added the description: “A window may be an
automatic window”; for constraint3: “All the windows in a
room may be automatic windows”.
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5.2.3. The cardinality property

To fulfill the requirement R2 presented before, which
specifies that only (maximum) one window can be automatic,
our approach includes the definition of the cardinality
property (A). The cardinality property is similar in form to
feature cardinality.

DEFINITION 5.3. – We define cardinality as a UML-like
cardinality A = [i..j],where i <= j, i and j are natural numbers,
and j can be denoted by ∗ to express an unbounded number.
Cardinality (A) adds semantics to a constraint C = [M, F, A, D]
by expressing the fact that the designer can create a restricted
number of bindings between model elements that conform to M
and the feature F (a number between i and j).

The requirement (R2) is an example where cardinality is
required to limit the number of bindings among model elements
and features. This indicates that only (a maximum) one window
can be automatic.

The next two subsections present the semantics of the
cardinality property in a constraint. The semantics depend
on the type of feature included in the constraint, i.e. group,
grouped or solitary. The introduction of the cardinality property
specifies the cardinality of the original features in the feature
model.

Cardinality on Solitary and Grouped Features. In a
constraint C = [M, F, A = [i..j], D] where F is a solitary
or grouped feature, the meanings of i and j are respectively
the minimum and maximum number of model elements that
conform to M that can be bound to F . For example, if a
product line architect wants to restrict to 0 or 1 the number
of automatic windows, he must add the cardinality A = [0..1]
to the constraint1 presented in Figure 5.2. Thus, maximum
one window could be automatic, e.g. the mainRoomW2 (see
Figure 5.1).
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Cardinality on Group Features. In a constraint C =
[M, F, A = [i..j], D] where F is a group feature, the meanings of
i and j are respectively the minimum and maximum number of
features grouped by F that can be bound to a particular model
element that conforms to M .

For example, for a requirement of the product line specifying
that lock doors control can be managed by using either
keypad or fingerprint, the product line architect creates
a constraint using the Room metaconcept and the Lock
Door Control feature, constraint2= [Door, Lock Door
Control, A, D] (see Figure 5.2). The architect sets the
cardinality A = [0..1], constraining to zero or one the
number of grouped features (Fingerprint, Keypad) that
can be bound to a Door element. Thus a door, e.g. the
livingRoomD1 (Figure 5.1), can be bound to only one of the
features Keypad or Fingerprint.

When a group feature F has the cardinality [n..m], the
cardinality of a constraint C = [M, F, A, D] has to be inside the
limits of the cardinality of F . It implies that if the cardinality
A = [i..j] then n ≤ i ≤ j ≤ m. This ensures that constraint
models are consistent with feature models used for their
construction.

5.2.4. The structural dependency property

DEFINITION 5.4. – The structural dependency property D in a
C = [M, F, A, D], denotes conditions that model elements have
to satisfy to be bound to specific features.

An example from requirement R3 presented before is that
automatic windows must have sensors. In this case, the model
elements we identified in the conditions are Window and
Sensor, and the feature is Automatic Windows. Thus, to
bind a Window element to the Automatic Windows feature,
allowed by the constraint1, the Window element should have
a Sensor element.
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Another example is a requirement specifying that only
one room can have automatic windows. This requirement
defines the requirement (R1), specifying that windows must
be localized in the same room. Then, only Window elements
from the same Room element can be bound to the Automatic
Windows feature.

We also use the structural dependency property to
describe dependencies between bindings. For example, the
requirement (R4), which specifies that only automatic windows
can be selected from rooms that are not configured to have
air conditioning, implies that a Window element can be
bound to the Automatic Windows feature only if the Room
element where the window is located is not bound to the Air
Conditioning feature.

We express the value of the property D as a set of
OCL sentences (see section 3.3). For example, for the
requirement (R3) a product line architect must set the
structural dependency property of the constraint1 to D =
{sensor− > notEmpty()}.

5.2.5. The constraint metamodel and the binding
metamodel

Constraint and binding models have their own metamodel,
which is described in this section.

5.2.5.1. The constraint metamodel

We have created a constraint metamodel to facilitate the
creation of constraint models. Our constraint metamodel is
based on our feature metamodel (see Figure 4.10). We extended
its semantics to include the constraints for managing binding
models.
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Figure 5.3 presents our constraint metamodel. The main
new concepts and attributes added to our feature metamodel
are the following:

– GroupConstraint. It allows us to create constraints
including group features;

– Constraint. It allows us to create constraints including
solitary or grouped features;

– fineMin and fineMax attributes. They allow us to relate
the cardinality property to constraints;

– OCLExpression. It represents the structural dependency
property of constraints;

– Metaconcept. It represents metaconcepts related to
constraints.

Figure 5.3. Constraint metamodel
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Thus, in a constraint C = [M, F, A, D], C conforms
either to GroupConstraint or Constraint, M conforms
to MetaConcept; F conforms to either Grouped or
CointainableByF (Group or Solitary), i and j (from
A = [i, j]) conforms to fineMin and fineMax, and D conforms
to OCLExpression.

5.2.5.2. The binding metamodel

To introduce the concept of binding, we create a binding
metamodel, Figure 5.4. This metamodel extends our constraint
metamodel with concepts for binding model elements
to features. Thus, a set of Configurations associated
with a RootFeature can be created. A Configuration
groups a set of bindings between Features and model
elements. We maintain the information of model elements as
properties of the Binding metaconcept, metaconceptName,
and elementName.

Figure 5.4. Binding metamodel

5.2.6. Validating binding models against constraint
models

We say a binding B = [E, F1] satisfies a constraint
C = [M, F2, A, D] when E conforms to M , F1 = F2, and B
satisfies the restrictions defined by the properties A and D.
We note this relationship B

s→ C. For example, binding3
from Figure 5.1 satisfies the constraint1 from Figure 5.2
because mainRoomW2 conforms to Window and B satisfies
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the restrictions defined by the properties A and D of the
constraint1. The validation of a binding model against a
constraint model implies that every existing binding satisfies
one constraint in the constraint model.

We validate existing bindings in a binding model
automatically against a set of OCL-type sentences that
we generate from each constraint in a constraint model.
For example, if the feature involved in the constraint
C = [$metaConcept, $feature, [$fineMin, $fineMax], D] is
a grouped or solitary feature, we generate the sentence
in Listing 5.1. The dollar symbol $ denotes variables
and the operator aCollection->between(a,b) is
equivalent to the expression (aCollection->size()≥a)
&& (aCollection->size()≤b). Listing 5.2 presents
the particular sentence generated for the constraint=
[Window, Automatic Windows, [0..1], D], where D =
bindings-> select(b|b.elementName==“mainRoomW1”)->
between(0,0). In this case, D specifies that there cannot exist
any binding where the mainRoomW1 is involved.

1
2 Context Conf igurat i on inv :

b3 indings−>select (b | b . feature . name=$ f e a tu r e and
b. metaConceptName=$metaConcept)−>between( $f ineMin, fineMax$ ) and $D$ ;4

Listing 5.1. Example of a generated OCL-type sentence

Context Conf igurat i on inv :
b indings−>select (b|b . feature . name="Automatic Windows"
and b . metaConceptName="Window")−>between ( 0 , 1 )
and bindings−>select (b|b . elementName="mainRoomW1")−>between ( 0 , 0 ) ;

1
2
3
4
5

Listing 5.2. Example of a generated OCL-type sentence

For the generation of OCL sentences,we have created model-
to-text transformation rules. These transformation rules
generate Check expressions. Check is a language included
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in the oAW framework which allows us to validate models
against OCL-type expressions [OAW 09]. We generate Check
expressions from the constraint models we create using the
constraint models creator that we later present in Chapter 6.
Therefore, product designers are able to validate binding
models against the generated Check expressions. We include
details of the model-to-text transformation rules in charge of
creating Check expression on the Website [ARB]. In Chapter 6
we present a complete example of the staged configuration
and derivation of Smart-Home systems of our MD-SPL. This
example includes examples of the generated Check expressions
for our constraint models.

5.3. Deriving products based on constraint models and
binding models

In section 4.6.2,we introduced decision models in the context
of MDE as our mechanism for composition of transformation
rules based on feature configurations. We discussed how our
decision models are useful to capture (1) the relationships
between features and specific transformation rules, and (2) the
required execution ordering of transformation rules to create
products based on feature configurations.

Our basic idea of obtaining a final execution scheduling
was to construct a baseline scheduling, which is modified
according to valid feature configurations. Thus, for example,
during the derivation of a Smart-Home system, if the
feature Automatic Windows was selected in a feature
configuration, the base sequence to transform domain
models into facilities models was modified to replace the
rule domainWindowsToFacilitiesWindows by the rule
windowsToAutomaticWindows.

Binding models imply the modification of a baseline
scheduling taking into account not only features from
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feature configurations, but also bindings from binding models.
Thus, for example, if any Window element is bound to
the feature Automatic Windows in a binding model, the
base sequence to transform domain models into facilities
models must be modified. This modification implies replacing
the rule domainWindowsToFacilitiesWindows by the rule
particularWindowsToAutomaticWindows. This rule must
transform only the Domain metamodel::Window elements,
which are bound to the Automatic Windows feature, into
FacilitiesMetamodel:Automatic window elements. For
instance, from the binding model presented in Figure 5.1, given
that the mainRoomW2 is the only window bound to the feature
Automatic Windows, this is the only window that must be
transformed into an automatic window.

Condition Join point Advice

Exists at least one binding B1 = [E1, F1]
that satisfies the constraint

C1 = [M1, F1, A, D] Rule A Rule A’(E1)

Feature Two Unselected and
exists at least one binding B2 = [E2, F2]

that satisfies the constraint
C2 = [M2, F2, A, D] Rule B Rule B’(E2)

Table 5.1. Examples of fine-grained conditions on feature configurations
which imply to adapt a baseline (transformation rules’) scheduling

Table 5.1 presents examples of conditions on binding models
that we can capture in our extended decision models. These
conditions imply the modification of a baseline scheduling.
In the first column, we present examples of conditions; in
the second column, we present the name of the base rule
in the baseline scheduling to be intercepted (join point); in
the third column, we present the name of the specific rule
(advice) to be executed if the condition appears in a binding
model. We express conditions in terms of bindings that satisfy
constraints. Thus, row one in Table 5.1 expresses that if at
least one binding B1 = [E1, F1] that satisfies the constraint
C1 = [M1, F1, A, D] in a binding model exists, Rule A must be
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intercepted and Rule A’must be executed instead using E1 as
a parameter. We can also capture conditions, which have taken
into account not only bindings, but also a selection of features.
For instance, in row two, we express that if Feature Two
appears Unselected and at least one binding B2 = [E2, F2]
exists that satisfies the constraint C2 = [M2, F2, A, D] in a
binding model,Rule Bmust be intercepted and Rule B’must
be executed instead using E2 as parameter.

Figure 5.5 presents a small part of our decision model to
transform domain models into facilities models by taking
into account binding models. Similarly, as presented before
in section 4.6.2, we first define a baseline scheduling,
which includes the execution of the transformation
rules domainFloorsToFacilitiesFloors and domain
WindowsToFacilitiesWindows. Then, we create an
aspect indicating that if some bindings satisfies the
constraint1 (which describes that product designers can
bind Window elements with the feature Automatic Windows)
the execution of the base transformation rule domain
WindowsToFacilitiesWindows must be intercepted. After
the interception is done, the specific transformation rule
particularWindowsToAutomatic Windows must be then
executed. This rule queries the binding model used to configure
the product that is derived and transforms only the Window

Figure 5.5. Example of a decision model to create
Smart-Home systems with binding models
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elements bound to the Automatic Windows feature. In
section 5.4, we discuss some limitations of our mechanism to
derive products based on decision models.

5.3.1. The extended decision metamodel

We extended the decision metamodel that we presented
before in Figure 4.19. Figure 5.6 presents our extended decision
metamodel, which allows us to derive products taking into
account binding models.

Figure 5.6. Decision metamodel with binding models

We still include the concepts of Workflow,
TransformationProgram, Transformationrule, and
Aspect. We modify, however, the concept of Execution
Condition. In this extended decision, metamodel an
ExecutionCondition, depends on a set of Variants, which
we specialized in CoarseCondition and FineCondition.
A CoarseCondition represents a feature that can be
SELECTED/NOT_SELECTED. A FineCondition represents a
constraint.
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Thus, based on a binding model, we can indicate that a
Specific transformation rule must be woven with a Base
transformation rule when bindings that satisfy the constraint
denoted by a FineCondition element exist. For instance,
we can indicate that a specific transformation rule must be
woven with a base transformation rule when the feature Air
Conditioning appears bound to a Window element.

5.3.2. Creating executable model transformation
workflows from decision models and constraint models

As presented earlier, we transform our decision models into
oAW workflows, which include the required instructions
to execute model transformations in different stages
(external composition), and modify a baseline scheduling
of a set of transformation rules (internal composition). For
transforming our decision models into oAW workflows taking
into account constraint models and binding models, we
modified the model-to-text transformation we introduced
before in section 4.6.2. This model-to-text transformation
allows us to generate executable oAW from decision
models. The oAW generated script contains a querying
mechanism, which looks for bindings that satisfy particular
constraints. Listing 5.3 presents a part of a generated oAW
workflow. This workflow specifies that the transformation rule
domainWindowsToFacilitiesWindows is intercepted (line
2-3 and line 9) and the transformation rule particular
WindowsToAutomaticWindows is executed (line 4-5)
if bindings that satisfy the constraint created between
the Automatic Windows feature and the Window
metaconcept (line 1) exist. We created the oAW component,
which allows us to query binding models looking for bindings
that satisfy a particular constraint. The line 1 from Listing 5.3
shows a call to our oAW component. The component queries
a binding model, which has been previously loaded in the
execution context of an oAW workflow. The model-to-text
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transformation we created to generate oAW workflows from
decision models is available at [ARB 12].

<fineFeature toFeature="Automatic" b oundMetaconcept="Window">
<transformationAspect

adviceTarget="domainWindowsToFacilitiesWindows">
<extensionAdvice

value="particularWindowsToAutomaticWindows" />
</transformationAspect>

</fineFeature>

<transform id="domainWindowsToFacilitiesWindows">
<invoke value="domainWindowsToFacilitiesWindows" />

</transform>

1
2
3
4
5
6
7
8
9

10
11

Listing 5.3. Example of a generated oAW workflow

5.4. Identified limitations

In previous sections, we discussed how our decision models
are useful to capture the relationships between features and/or
bindings, and specific transformation rules, and how the
required execution scheduling of transformation rules to create
products is based on feature configurations and/or binding
models. Our idea to obtain a final execution scheduling was to
construct a baseline scheduling, which is modified according to
execution conditions defined in terms of feature configurations
and/or binding models. We have identified at least three
limitations in our strategy of relating execution conditions
to specific transformation rules. Two of them occur when
conditions only take into account feature configurations (see
Table 4.1). The other one occurs when conditions take into
account not only feature configurations, but also binding
models (see Table 5.1).

5.4.1. Features combinatorial

The first limitation of our approach is that the number of
valid feature configurations, which can be created based on one
feature model could be high. In our current approach, we do not
include mechanisms to guarantee that either for all possible
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valid feature configurations there is a set of transformation
rules in charge of generating a runnable product, or that in our
decision models we include execution conditions that take into
account each valid feature configuration. Currently, this is the
responsibility of the product line architects.

We have made some attempts to manipulate feature models
in SPLE using the concurrent constraint programming (CCP)
paradigm in [ARB 10]. The novelty of our approach is that we
facilitate the management of feature interactions to architects.

5.4.2. Features interaction

A feature interaction occurs when a feature modifies or
influences another feature in defining the overall system
behavior [CAL 03]. Generally, such an interaction occurs when
two items have some intersections and their execution does
not commute. For example, assume a feature model including
three features, A, B, and C. If the feature A interacts with
the features B and C, the selection in a feature configuration
of A and B will imply baseline scheduling. The selection of A
and C will imply a different adaptation and then the selection
of the three would not produce the expected result. The
problem of dealing with feature interactions is an important
problem, which currently deserves special attention in the field
of feature modeling [REI 09]. In our current approach, we
take into account that the presence of one particular feature
in different valid feature configurations may imply different
adaptations of a baseline scheduling of transformation rules.
For instance, in Table 4.1 the presence of the Feature One in
two different possible feature configurations implies a different
adaptation. In row one, we specify that if the Feature One
appears Selected in a feature configuration, irrespective
of the other features, Rule A must be intercepted and the
Rule A’ must be executed instead. In row three, we
express that if Feature One appears Unselected and
Feature Three appears Selected in a feature configuration,
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irrespective of the other features, Rule A must be intercepted
and Rule C must be executed instead. Nevertheless, it is
the responsibility of the product line architects (1) to identify
feature interactions, (2) to define transformation rules for
the different scenarios derived from feature interactions,
(3) to define execution conditions for such scenarios and (4) to
create and relate transformation rules to the defined execution
conditions. Our approach does not provide mechanisms to
validate that all possible feature interactions are taken into
account.

5.4.3. Bindings interaction

When conditions take into account binding models (see
Table 5.1), our approach allows product line architects to create
decision models where decisions consider bindings satisfying
only one constraint. For instance, row one inTable 5.1 expresses
that if there exists at least one binding B1 = [E1, F1] that
satisfies the constraint C1 = [M1, F1, A, D] in a binding model,
Rule A must be intercepted and Rule A’ must be executed
instead using E1 as parameter. In this case, we only consider
bindings satisfying one constraint, C1. To understand why we
cannot consider bindings that satisfy more than one constraint,
let us assume the following scenario. Suppose we have a
condition expressing that if there exists in a binding model at
least one binding B1 = [E1, F1] that satisfies the constraint
C1 = [M1, F1, A, D] and at least one binding B2 = [E2, F2]
that satisfies the constraint C2 = [M2, F2, A, D], then Rule B
must be intercepted and Rule B’ must be executed instead
using E1 and E2 as parameter. Now, suppose we have a binding
model with two bindings that satisfy C1, B1 = [E1, F1] and
B1� = [E1� , F1], and two bindings that satisfy C2, B2 = [E2, F2]
and B2� = [E2� , F2]. In this case, it is not possible to know the
ordering of the parameters to execute the Rule B’. It means,
we are not able to know if we must invoke Rule B’(E1, E2),
Rule B’(E1� , E2), or Rule B’(E1, E2�). Therefore, if for each
condition, we consider bindings satisfying several constraints,
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we cannot guarantee that the specific rules (advices) will be
executed with the suitable parameters.

5.5. Summary

In this chapter, we first introduced the concept and
the need for fine-grained variation and configuration. Fine-
grained variation arises when we need to define variable
artifacts of the same kind. Coarse-grained approaches do not
allow us to configure differently the instances of the same
metamodel. Introducing new models making some variations
explicit could be possible, but it is not a general solution.
To solve this issue, we introduce binding and constraint
models. On the one hand, binding models allow us to capture
the links between a model and a variability model, thus
enabling the fine-grained configuration of model elements. On
the other hand, the constraint model specifies precisely the
semantics of the bindings using cardinality and structural
dependency properties. This specification is based mainly on
OCL sentences, which are common and supported by various
validation tools. We have also described the metamodels we
created to support the creation of constraint, binding, and
decision models. Our basic idea to obtain a final execution
scheduling was to construct a baseline scheduling, which
is modified according to valid feature configurations. We
tune our general strategy for validating binding models
against constraint models and for generating executable
model transformation workflows from decision models. Binding
models imply modification of the baseline scheduling taking
into account not only features from feature configurations,
but also bindings from binding models. Aspects responsible
for the rules scheduling associated with variations, query the
binding model to get the precise element impacted by the
rule. The decision metamodel has been extended to allow
for the derivation of products taking into account binding
models. Finally, we presented the limitations of our approach
for deriving products based on decision models.



Chapter 6

Tools Support

6.1. Introduction

This chapter presents the use of FieSta, our MD-SPL
approach, its tooling, and its application in the Smart-Home
case study. We also present our implementation strategy
for FieSta. The implementation strategy defines the general
process for the implementation of our MD-SPL engineering
mechanisms for creating product lines. Our implementation
strategy includes the required activities to create products,
and the tools we have created to support these activities.
We present the tool support for expressing variability and
configuring products in section 6.4, and the tool support for
deriving configured products in section 6.5.

Our tool support assists product line architects and product
designers during the whole development lifecycle of MD-SPLs.
We provide Eclipse plug-ins to create MD-SPL projects,
feature models, constraint models, binding models, OCL-type
expressions to validate binding models against constraint
models, and decision models. We also provide oAW components
to facilitate the processing of binding models and decision
models to derive products. For the implementation of our tool

Model-Driven and Software Product Line Engineering            Hugo Arboleda and Jean-Claude Royer
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support, we chose EMF as the modeling framework, which
means we express all our metamodels based on the Ecore
meta-metamodel (see section 3.5.1). We opted to use oAW as
our model transformation engine. We selected oAW because,
as presented before in section 3.6.3, this is a complete MDE
framework integrated with Eclipse that makes the reading,
instantiation, checking, and transformation of models possible.
oAW has been used successfully to create SPLs, and there is
an active community of SPL and MDE developers using and
improving it.

The entire FieSta toolkit, the instructions for installing
it, and the two case studies can be found on the Website
[ARB].

6.2. The FieSta process

The UML activity diagram in Figure 6.1 presents
the general overview of the software process for FieSta.
Domain engineering and application engineering organize the
activities. For domain engineering, we built tools to support
product line architects in the creation of a special type of
Eclipse project, MD-SPL project. An MD-SPL project
includes the required oAW and EMF dependencies to
create MD-SPLs and define a preliminary hierarchical folder
structure to manage and centralize the core assets used
to derive products. Then, architects can create and manage
domain metamodels, feature models, and constraint
models in a common repository, which captures and expresses
the possible fine-grained variations affecting the product
line. Product line architects also create transformation
rules and decision models, which are transformed into
(executable) model transformation workflows.

The automated production chain is implemented via
model transformations and generated during domain
engineering from the decision model. Its execution is
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realized during application engineering to derive a product.
During application engineering, product designers use the
variability identified and the core assets created during domain
engineering, metamodels, feature models, models, and
model transformation workflows to ensure the correct
derivation of required products. Product designers create
domain models and binding models, which must satisfy
the constraint models previously created, to configure
and derive products. Finally, designers execute the generated
model transformation workflows using domain models
and binding models as inputs, and transformation rules
for processing the inputs.

Figure 6.1. Overview of our implementation strategy
to create MD-SPLs

6.3. The SPL of Smart-Home systems

The SPL we use through this chapter is the SPL of
Smart-Home systems that was introduced in section 2.3.1. We
present examples of diverse Smart-Home systems, which can
be derived from the Small Building in Figure 6.2. To derive
such Smart-Home systems, we re-use a common set of base and
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specific transformation rules that we developed as product line
architects.

Figure 6.2. Examples of buildings created by building architects

Figure 6.3 presents the stages to configure and derive
products. To configure diverse Smart-Home systems, on the one
hand, facilities designers have three features from the facilities
feature model (see Figure 4.11): Fingerprint, Keypad, and
Automatic Windows. On the other hand, software architects
have two features from the architecture feature model (see
Figure 4.12): Periodic and Service. We have created
specific transformation rules for deriving products, taking
into account possible configurations the designers can create.
For instance, we created one specific transformation rule for
creating automatic windows. This transformation rule is re-
used each time an automatic window is created.

In the second configuration stage (see Figure 6.3), facilities
designers relate facilities to structural elements of buildings.
For example, the Small Building can be configured to use
Fingerprint in the Main Door as lock door control and
Keypad in the Back Door. Similarly, each window can be
individually configured as an Automatic or Manual Window.
Table 6.1 presents the possible fine-grained configurations
a facilities designer can create from the Small Building
taking into account the variants Fingerprint, Keypad, and
Automatic Windows. These are the 16 possible Smart-Home
systems.
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Figure 6.3. Stages to configure and derive products

Table 6.2 presents the possible configurations a designer can
create taking into account only coarse-grained variations; for
instance, the approaches in Chapter 4. In this case only four
possible Smart-Home systems can be configured.

In the third configuration stage (see Figure 6.3), software
architects relate software architecture variants to model
elements representing software components.Table 6.3 presents
the possible fine-grained configurations a software architect
can create for the Smart-Home system from row one in
Table 6.1 (SH-1), taking into account the variants Periodic
and Service. There are four possible Smart-Home systems
that can be configured. Thus, from the Small Building,
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taking into account the variants Fingerprint, Keypad,
and Automatic Windows, and the variants Periodic and
Service, product designers are able to configure 64 Smart-
Home systems.

Smart-Home Window-1 Window-2 Main Door Back Door

SH-1 Automatic Automatic Keypad Keypad

SH-2 Automatic Automatic Fingerprint Fingerprint

SH-3 Automatic Automatic Keypad Fingerprint

SH-4 Automatic Automatic Fingerprint Keypad

SH-5 manual manual Keypad Keypad

SH-6 manual manual Fingerprint Fingerprint

SH-7 manual manual Keypad Fingerprint

SH-8 manual manual Fingerprint Keypad

SH-9 Automatic manual Keypad Keypad

SH-10 Automatic manual Fingerprint Fingerprint

SH-11 Automatic manual Keypad Fingerprint

SH-12 Automatic manual Fingerprint Keypad

SH-13 manual Automatic Keypad Keypad

SH-14 manual Automatic Fingerprint Fingerprint

SH-15 manual Automatic Keypad Fingerprint

SH-16 manual Automatic Fingerprint Keypad

Table 6.1. Example of a fine-grained configuration for a Smart-Home
system including Smart-Homes’ facilities

Table 6.4 presents the possible configurations a software
architect can create for the Smart-Home system from row
one in Table 6.1 (SH-1), taking into account the variants
Periodic and Service, but considering only coarse-grained
variations. In this case, product designers can only configure
two different Smart-Home systems. Therefore, from the Small
Building, taking into account the variants Fingerprint,
Keypad, Automatic Windows, Periodic and Service, but
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considering only coarse-grained variations, product designers
can configure only eight Smart-Home systems.

Smart-Home Window-1 Window-2 Main Door Back Door

SH-1 Automatic Automatic Keypad Keypad

SH-2 Automatic Automatic Fingerprint Fingerprint

SH-3 manual manual Keypad Keypad

SH-4 manual manual Fingerprint Fingerprint

Table 6.2. Example of a coarse-grained configuration for a
Smart-Home system including

Smart-Homes’ facilities

Windows Doors Lock
Smart- Main Back Controller Controller
Home Window-1 Window-2 Door Door Component Component

SH-1.1 Automatic Automatic Keypad Keypad Periodic Periodic

SH-1.2 Automatic Automatic Keypad Keypad Service Service

SH-1.3 Automatic Automatic Keypad Keypad Periodic Service

SH-1.4 Automatic Automatic Keypad Keypad Service Periodic

Table 6.3. Example of a fine-grained configuration for a Smart-Home
system including software components’ variants

Windows Doors Lock
Smart- Main Back Controller Controller
Home Window-1 Window-2 Door Door Component Component

SH-1.1 Automatic Automatic Keypad Keypad Periodic Periodic

SH-1.2 Automatic Automatic Keypad Keypad Service Service

Table 6.4. Example of a coarse-grained configuration for a Smart-Home
system including software components’ variants

Using this small example, we showed how the concept of
fine-grained configuration allows product designers to extend
the scope of MD-SPLs. From eight Smart-Home systems that
can be configured using coarse-grained configurations, we have
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shown how we can configure sixty four Smart-Home systems
using the concept of fine-grained configuration. These fine-
grained configurations satisfy the constraints defined in the
constraint models of our application example, which capture
the possible variability of the MD-SPL.

Regarding the derivation of the configured products, we
created transformation rules that guarantee we can generate
valid products from the fine-grained configurations. We define
a valid product as an operable system that accomplishes
the requirements that product designers specify by means
of fine-feature configurations or binding models, which
satisfy constraint models. However, considering the limitations
presented in section 5.4, it was our responsibility as product
line architects to create the transformation rules. Our approach
does not yet provide mechanisms validating the transformation
rules regarding the derivation of valid products from fine-
grained configurations.

Figures 6.4 and 6.5 are examples of the GUI corresponding
to one (fine-grained) configured Smart-Home System we
derived. The Smart-Home system was configured to have
one floor with two rooms, the Main Room and the Living
Room. Figure 6.4 presents the Main Room, which has Air
Conditioning as Environmental Control, and its door
has Fingerprint as Door Lock Control. In this case,
the product was configured to have the Air Conditioning
Controller (software) component as a Service component.
That is the reason why the air conditioning must be turned
on/off manually.

Figure 6.5 presents the Living Room, which has
Automatic Windows as Environmental Control, and
its door has Keypad as Door Lock Control. The Living
Room has three windows; two of them were (fine-grained)
configured as Automatic Windows.
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Figure 6.4. Example 1 of the GUI of a fine-grained configured
Smart-Home system

Figure 6.5. Example 2 of the GUI of a fine-grained configured
Smart-Home system

Regarding the production cost, the highest cost to produce
members of the Smart-Home MD-SPL is concentrated in the
activities of core assets development (metamodels, feature
models, transformation rules, and decision models), which are
the responsibility of product line architects who must also be
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MDE experts. However,we achieve a good return on investment
since we obtain high quality in derived products and product
designers invest little time in configuring products. Given that,
the activities of product configuration are the responsibility of
several (specialized) product designers, e.g. building architects,
facilities designers, and software architects.

6.4. Variability expression and product configuration

This section presents the Eclipse plug-in tools devoted to
the creation of a FieSta project and the various artifacts used
to manage variability and to configure products.

6.4.1. MD-SPL project creation

We built an Eclipse plug-in that allows product line
architects to create a particular type of Eclipse project.
This type of project includes the required oAW and EMF
dependencies to create MD-SPLs and define a hierarchical
folder structure to manage and centralize the core assets
associated to an MD-SPL project. We named this plug-in the
(MD-SPL) Project Creator.

Figure 6.6 presents on the left a screenshot of the Eclipse
menu including the option to create MD-SPL projects. On the
right, Figure 6.6 presents the folder structure of an empty MD-
SPL project.

6.4.2. Metamodels and feature models creation

In MDE, the metamodel creation is an important activity;
this section describes the approach proposed by FieSta and also
how to create specific feature models.

6.4.2.1. Metamodels creation

Once an MD-SPL project has been created, product line
architects can create metamodels and feature models. Product
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line architects create metamodels by using MagicDraw
[MAG 10], which is a UML 2 modeling tool that allows us
to create UML Class Models and export them into UML
2 XMI files. Thus, from the UML 2 XMI files, product
line architects generate Ecore models by using a component
provided by oAW to transform UML 2 class models into
Ecore models. Metamodels can also be created using Eclipse,
EMF, or other UML editors that export to XMI files. The
MD-SPL projects we create using our Project Creator plug-
in include an oAW workflow file, which invokes the oAW
component in charge of transforming UML 2 XMI files into
Ecore models. To generate Ecore models, product line architects
must meet the parameters for this oAW workflow file and
then execute it to obtain the Ecore model. Therefore, we allow
product line architects to create metamodels from a classic
UML perspective, which facilitates the creation of domain
metamodels.

Figure 6.6. Screenshot of the Project Creator plug-in
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Listing 6.1 presents an example of an oAW workflow
file with parameters to generate Ecore models from UML
2 XMI files. In line 3, we define the location of the UML
2 model to be transformed. In line 4, we specify the target
location of the resulting Ecore model. Line 5 to line 8
describes some additional properties required to perform the
transformation.

<c a r t r i d g e
f i l e="org / openarch i t ec tureware / u t i l / uml2ecore /uml2ecoreWorkflow . oaw"
uml2ModelFile=" . . UML2Models∩domainMetamodel . uml2"

outputPath=" . . EcoreModels∩domainMetamodel . e co r e"
nsUr iPre f i x="h ttp :// domainModel"
inc ludedPackages="Data"
addNameAttribute=" f a l se "
resourcePerTopleve lPackage=" f a l s e "/>

1
2
3
4
5
6
7
8

Listing 6.1. Example of an oAW workflow to generate

metamodels from UML 2 XMI files

6.4.2.2. The feature models creator

To create feature models, we provide the Feature Models
Creator, which is an Eclipse plug-in. We decided to create
our own Feature Models Creator instead of using commercial
tools such as pure :: variants [PUR 10] or open source tools
without support teams such as fmp [ANT 04]. Our Feature
Models Creator includes a facility for preliminary validation
of feature models. This plug-in validates that the lower bound
of cardinality of features is minor or equal to the upper
bound of cardinality of features, and solitary features have
cardinality between zero and one; that is, the cardinality
is [0..1] or [1..1]. To perform the validation of a feature
model, we modified the Eclipse contextual menu that is
related to files with extension .featuremetamodel, which is the
extension that the Feature Models Creator associates with
feature models. Thus, we provide the option to Validate Feature
Models Structure, and we are able to present messages to
inform the user if any inconsistency is found in a feature
model.
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6.4.2.3. Metamodels and feature models for the SPL of Smart-
Home systems

In section [4.5] we introduced in detail the metamodels and
feature models for our application example of the SPL of the
Smart-Home systems (see from Figure 4.4 to Figure 4.12).
Figure 6.7 presents the feature models created with the
Feature Models Creator for this application example. The
left side presents the facilities feature model and the right
side describes the architecture feature model with classic tree
views.

Figure 6.7. Feature models for the SPL of Smart-Home systems

6.4.3. Constraint models creation

This section presents the Constraint Model Creator and its
use on the Smart-Home example.

6.4.3.1. The constraint models creator

We built an Eclipse plug-in to create constraint models,
the Constraint Models Creator. Figure 6.8 presents the
view associated with the Constraint Models Creator. The
figure shows the creation of constraints between the domain
metamodel and the facilities feature model from the SPL of our
Smart-Home systems. Using our Constraint Models Creator,
product line architects can load a metamodel and a feature
model, create and delete constraints, clean up the workspace
and then reload a new metamodel and a new feature model, and
save a constraint model. The Constraint Models Creator allows
for capturing the minimum and maximum cardinality that
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defines the constraint’s cardinality property, and a description
associated with the constraint.

Figure 6.8. Eclipse view of the constraint models creator

When a product line architect chooses to save a constraint
model, the plug-in performs two activities. First, it saves
a file with extension .constraint metamodel containing the
constraint model. Second, it saves a file with extension .chk
that contains the Check expressions to validate binding
models against the constraint model. Listing 6.2 presents an
example of a Check expression generated by the Constraint
Models Creator. The expression is generated from a constraint
specifying that at least one Door element bound to the feature
Lock Door Control has to exist in the binding model being
validated.

Our current implementation of the Constraint Models
Creator allows product line architects to create the constraint
properties associated with constraints. This implementation
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does not allow, however, product line architects to create the
structural properties associated with constraints. Therefore,
the structural properties must be written directly on the Check
files.

context Binding ERROR loc ( ) +
"There are l e s s than 1 Door element bound"+
"t o the f e a t u r e Lock Door Control ” :

( this . metaConcept = 'Door '& &
this . feature . parentFeature . name = 'Lock Door Control '
&& (( Conf i gurat i on ) this . eContainer ) . binding−>

select (b|b . name=this . name && this . metaConcept='Door '
&& this . feature . parentFeature . name='Lock Door Control ') .

s ize >= 1 ) ;

1
2
3
4
5
6
7
8
9

10
11

Listing 6.2. Example of a check file generated

by the constraint models creator

Listing 6.3 presents an example of a Check expression for
a structural property. This is related to a constraint between
the Component, metaconcept, and the feature Periodic. The
structural property defines that only a Component element
that is bound to the feature On Invocation can be bound
to the feature Periodic. As part of our future work, we will
allow product line architects to create the structural properties
associated with constraints directly on the Constraint Models
Creator.

context Binding ERROR loc ( ) +
"The Component"+ this . elementName +"must be"+
"a l s o bound to the ∗On Invocat ion ∗ f e a t u r e " :

( this . metaConcept = 'Component '&&
this . feature . name = 'Per iod ic '
&& (( Conf i gurat i on ) this . eContainer ) . binding−>

select (b|b . name=this . name && this . feature . name=
'On Invocat ion ') . s ize = 1 ) ;

1
2
3
4
5
6
7
8
9

10

Listing 6.3. Example of a check expression for a structural property
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In summary, our Constraint Models Creator allows product
line architects to capture and express the variability described
by possible fine-grained configurations, which we represent by
using binding models, taking into account that fine-grained
configurations have to be also restricted to represent valid
products.

6.4.3.2. Constraint models for the SPL of Smart-Home systems

We create two constraint models for the SPL of our Smart-
Home Systems. The first one is created between the domain
metamodel and the facilities feature model. Table 6.5 presents
these constraints that allow product line architects to capture
and express the possible fine-grained variations between
Smart-Home systems regarding domain and facilities concepts.

For example, product line architects can express that
between one and two Doors can have Fingerprint as Lock
Door Control in Smart-Home systems. As a result, product
designers will be able to configure a Smart-Home system
with one particular door having Fingerprint as Lock door
control and another Smart-Home system with two selected
doors having Fingerprint as Lock door control.

The second constraint model is created between the
components metamodel and the architecture feature model.
Table 6.6 presents these constraints, which allow product line
architects to capture and express the possible fine-grained
variations between Smart-Home systems regarding software
components and software architecture concepts.

As a result, product line architects can express that in
Smart-Home systems, for example, a component for managing
Automatic Windows could be either a Service Component
or a Periodic Component. Product designers will be able
to configure a Smart-Home system with the component for
managing Automatic Windows as a Periodic Component.
This component will check the temperature of the room
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automatically where the automatic windows are used to open
or close the windows. Another product designer will be able
to configure a Smart-Home system with the component for
managing Automatic Windows as a Service Component.
In this case, the inhabitants must manually check the
temperature of the room where the automatic windows are
located. They must also manually activate the opening or
closing of the windows.

Metaconcept Feature Cardinality Description

Door Lock Door Control [0..1] Doors can have
either Fingerprint
or Keypad
or none of them as
Lock Door Control

Door Fingerprint [1..2] Between one and two
Doors can have
Fingerprint as
Lock doorcontrol

Door Keypad [0..1] Between zero and one
Doors can have Keypad as
Lock Door Control

Room Environmental [0..1] Rooms can have
Control either Automatic Windows

or Air Conditioning
or none of them as
Environmental Control

Room Automatic Windows [1..1] Only one Room can
have Automatic Windows
as Environmental Control

Room Air Conditioning [1..3] Between one and three
Rooms can have
Air Conditioning as
Environmental Control

Window Automatic Windows [0..4] Between zero and four
Windows can be
Automatic Windows

Table 6.5. Constraints between the domain metamodel
and the facilities feature model
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Metaconcept Feature Cardinality Description

Periodic Component Type [0..1] Components classified as
Periodic can be
either Service or
Periodic Components
in the final software
architecture

Component Instantiation Mode [1..2] Components can be
instantiated either
On Deployment or
On Invocation

Table 6.6. (continued) Constraints between the components’
metamodel and the architecture feature model

6.4.4. Domain models and binding models creation

The fine-grained approach of FieSta requires the definition
of several domain models and binding models to link the
former with feature models describing variations. This section
presents the process of creating domain and binding models
and applies it to the Smart-Home case study.

6.4.4.1. Domain models creation

We built an Eclipse plug-in to create domain models using
the facility provided by Eclipse to generate model editors
from Ecore models. We named this plug-in the Smart-Homes
Domain Models Creator. Product line architects have to create
new domain metamodels and new domain model editors for
producing new MD-SPLs.

Figure 6.9 presents a domain model created with our
Smart-Homes Domain Models Creator. The model created by
a building architect defines firstFloor and secondFloor.
In the firstFloor there are two rooms, livingRoom,
and kitchen. In the secondFloor, there is another
room, mainRoom, which has two windows, mainRoomW1 and
mainRoomW2. There are also two doors. The first door,
livingRoomD1, is in the livingRoom. The second door,
mainRoomD2, is in the mainRoom.
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Figure 6.9. Example of a domain model created with our
Smart-Homes domain models creator

6.4.4.2. The binding models creator

We developed an Eclipse plug-in named the Binding Models
Creator to create binding models. Figure 6.10 presents the view
associated with the Binding Models Creator. In this figure, we
present the creation of bindings between the domain model
and the facilities feature model from our Smart-Home systems
SPL.

Using the Binding Models Creator, product designers can
load a feature model, a domain model, and a constraint
model, which will be used to validate the created binding
model. Designers can create and delete bindings or select a
feature. The facility to select features is useful when coarse-
grained configurations are required. Therefore, we can select,
for example, the automatic windows for all the windows
in the house only by selecting the Automatic Windows
feature.

When a product designer chooses to save a binding model,
the plug-in performs two activities. First, it saves a file with
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extension .configurationmetamodel containing the binding
model. Second, the binding model is validated against the
constraint model loaded before. What really occurs is that
the Check expressions generated from the constraint model
are used to check the binding model to determine if it
satisfies the constraints. After the validation, the product
designer obtains messages informing him about the state of
the validation.

Figure 6.10. Eclipse view of the constraint models creator

In summary, our Binding Models Creator allows product
designers to create fine-grained configurations by means of
binding models. Our Binding Models Creator also allows
product designers to validate the configurations against
constraints expressing the valid fine-grained variations
between products of the MD-SPL. This guarantees the
configuration and subsequent derivation of valid products.

6.4.4.3. Binding models for the SPL of Smart-Home systems

Product designers can create several binding models, as well
as domain models, to configure diverse Smart-Home systems
of our MD-SPL. In the following section, we will present the
process of configuring one particular Smart-Home system by
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creating the required binding models, which must satisfy the
constraints presented before in Tables 6.5 and 6.6. The result
will be a complete fine-grained configuration of a particular
Smart-Home system of our MD-SPL.

Table 6.7 presents a set of bindings between the domain
model from Figure 6.9 and our facilities feature model. These
bindings are created by a facilities designer, and along with the
domain model are part of the fine-grained configuration of the
particular Smart-Home system we are configuring. They must
satisfy the constraints presented in Table 6.6.

Element Feature Description

livingRoom Air Conditioning The livingRoom will manage
Air Conditioning as
Environmental Control

livingRoomD1 Fingerprint The livingRoomD1 will manage
Fingerprint as Lock Door
Control System

mainRoomW1 Automatic Windows The mainRoomW1 will be an
Automatic Window

mainRoomD2 Keypad The mainRoomD2 will manage
Keypad as Lock Door Control
system

Table 6.7. Bindings between the domain model from Figure 6.9
and our facilities feature model

According to this configuration, after the execution of the
model transformation process, the product designer will obtain
a particular Smart-Home system whose GUI is presented in
Figures 6.11 and 6.12. Figure 6.11 shows the view associated
with the mainRoom, which has one Automatic Windows,
mainRoomW1, and its door, mainRoomD2, has Keypad as Lock
Door Control mechanism.

Figure 6.12 presents the view associated with the
livingRoom. In this case, theAir Conditioning is managed
by a Periodic software component. That is the reason why
the system automatically turns it on/off according to the
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desired temperature of the room. In this case the Desired
Temperature of the Living Room is 19◦C and the Current
Temperature is 17◦C, then the Air Conditioning is turned
off.The door,livingRoomD1,hasFingerprint asLock Door
Control mechanism.

Figure 6.11. View of the Main Room of the configured Smart-Home system

Figure 6.12. View of the Living Room of the configured
Smart-Home system
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Figure 6.13 presents the component’s model derived from
the domain model in Figure 6.9 given the bindings from
Table 6.7. Product designers, who are software architects, have
to create a binding model between this model of generated
components and the architecture feature model. This binding
model corresponds to the fine-grained configuration of the
software components included in the Smart-Home system, and
these bindings have to satisfy the constraints presented in
Table 6.6.

Figure 6.13. Components’ model derived from a domain model

Table 6.8 presents a set of bindings between the components’
model from Figure 6.13 and our architecture feature model.
These bindings complete the required configuration to derive
the Smart-Home system we are configuring. According to these
bindings, the final architecture model for the Smart-Home
system presented in Figures 6.11 and 6.12 will have
only one Periodic Component, the Air Conditioning
Controller Component. Furthermore, the House and
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Floor Components will be instantiated on Invocation. The
other components will be instantiated on Deployment.

Element Feature Description

Windows Controller Service The Windows Controller
component will be
a Service Component

Air Conditioning Periodic The Air Conditioning
Controller Controller component will

be a Periodic Component

House Invocation The House Component will be
instantiated on Invocation

Floor Invocation The Floor Component will be
instantiated on Invocation

Table 6.8. Bindings between the components’ model from Figure 6.13
and our architecture feature model

6.5. Completing and running the product derivation

To automatically derive products with FieSta, we should
create transformation rules and elaborate a decision model
scheduling these rules according to the product configuration.

6.5.1. Transformation rules creation

In section 4.6, we introduced the several stages of model-
to-model and model-to-text transformation rules for deriving
configured Smart-Home systems.

Figure 6.14 presents a screenshot of the folder structure
to maintain our model transformation rules. We use the
Xpand and Xtend languages to create our transformation
rules. These languages create files with extensions .xpt
and .ext, respectively. We create two sets of transformation
rules: the base and the specific ones. On the one hand,
base transformation rules do not depend on any variant of
the product line. Thus, they are always executed during the
transformation process. On the other hand, we create specific
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transformation rules taking into account features that can
affect the transformation process. Our transformation rules are
organized in folders created for each transformation step.

Figure 6.14. Folder structure for transformation rules files

Listing 6.4 presents a part of the model-to-text
transformation rule to transform Component elements
into Java source code. As was introduced in Chapter 5, we
re-use pieces of code that have been previously tested to
build complete OSGi implementations. The strategy is to
use pre-built OSGi bundles and assemble them with the
complete product line architecture. As a result, we guarantee
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the quality of derived Smart-Home systems. The source code
in Listing 6.4 corresponds to the method we created to turn on
the air conditioning located in a particular room.

"DEFINE implementation FOR componentsMetamodel : : Component "
public void s t a r t ( Integer f l o o r I d , Integer roomId )

throws Exception{

Room room = getRoom( f l o o r I d , r oomId ) ;
i f ( room != nu l l && room . getEnvironmentalControl ( ) ==

TypeEnvironmentalControl .AIRCONDITIONING){
room . se tA i rCond i t i onSta tus ( true ) ;

}
}
"ENDDEFINE"

1
2
3
4
5
6
7
8
9

10
11

Listing 6.4. Model-to-text transformation rule to transform Component

elements into Java source code

6.5.2. Decision models creation

The decision is the main piece for running the production
chain. This section explains how to create it and illustrates
this with the Smart-Home example.

6.5.2.1. The decision models editor

We built an Eclipse plug-in to create decision models, the
Decision Models Editor. This editor was developed using the
Topcased facility to create model editors (see section 3.5) and
is part of the contributions of the Master thesis of Andrés
Romero [ROM 09].

Figure 6.15 presents the GUI of our Decision
Models Editor. On the left, we present the palette of
options to create Model-to-Model and Model-to-Text
transformations, Base and Specific transformation rules,
Aspects, Execution Conditions, CoarseConditions
and FineConditions. Options also include the definition of
the Source and Target models of the model transformations.
On the right, we present part of the decision model created for
our SPL of Smart-Home systems.
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Our Decision Models Editor allows product line architects
to maintain uncoupled i) the information of features, ii) the
transformation rules, and iii) the possible execution conditions
of transformation rules that particular feature configurations
imply. Furthermore, our Decision Models Editor allows product
line architects to capture, as independent Aspects, how
transformation rules must be composed to derive configured
products. This is a high-level mechanism, which is independent
of the technology used to implement our approach. Finally,
our plug-in can capture execution conditions of transformation
rules to derive products based on binding models, which
represent fine-grained configurations.

Figure 6.15. Graphical user interface of our decision models editor

6.5.2.2. Decision models for the SPL of Smart-Home systems

The decision models of our application example facilitate
the derivation of any product that has been configured by
creating i) a domain model, ii) a valid binding model between
the facilities metamodel and the domain model, and iii) a valid
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binding model between the architecture metamodel and the
component model derived from the domain model.

In section 4.6, we introduced part of the decision model we
created for deriving configured Smart-Home systems. Similar
to Figure 5.5, we defined an Aspect element related to each
constraint in the two constraint models. As a result, we can
guarantee that any binding satisfying a constraint will be
taken into account during the derivation process. The model
element involved in the binding will be transformed using
a specific transformation rule in charge of transforming it
according to the feature involved in the binding.

For instance, Figure 6.16 presents another part of the
decision model for deriving configured Smart-Home systems. In
this case, we present the Aspect we created for the constraint
between the Door metaconcept and the Fingerprint feature.
This Aspect specifies that any Door element in a binding
model will be transformed using the specific transformation
rule doorToDoorWithFingerprint. As a result, we can
guarantee that any binding satisfying the constraint between
the Door metaconcept and the Fingerprint feature will be
taken into account to derive a Smart-Home system. The doors
involved in the bindings will have fingerprint as lock door
control mechanism.

6.5.3. Generation and execution of model transformation
workflows

As we explained in Chapter 5, to execute our decision models,
we need to transform them into executable oAW workflows by
using a model-to-text transformation. This transformation is
achieved using a model-to-text transformation, which is part of
the Website [ARB]. As a result, we can execute the generated
model transformation workflows on the model transformation
engine of oAW. Thus, we derive any (fine-grained) configured
product.
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Figure 6.16. Decision model including an aspect to derive doors with
fingerprint as lock door control mechanism

Figure 6.17 presents the final result of executing the
sequence of model transformations we defined to generate a
Smart-Home system of our product line. The files correspond
to Java (OSGi) source code and XML descriptors, which have
been generated departing from the domain model in Figure 6.9
and the binding models in Tables 6.7 and 6.8.

Figure 6.17. Source code of a generated Smart-Home system
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We include on the Website [ARB], details about our entire
tool support and the installation instructions. We also include
all the core assets to create MD-SPLs of Smart-Home systems,
such as the one we have used throughout this book to illustrate
our approach. Additionally, we present another MD-SPL of
stand-alone systems for managing collections, including all the
required core assets to derive its product line members.

6.6. Summary

The FieSta toolkit is the set of tools we developed to
support our MD-SPL engineering mechanisms to create SPLs.
This chapter describes the Constraint Models Creator, the
Feature Model Creator, the Binding Models Creator, and the
Decision Models Editor. The FieSta process is represented
as a UML activity diagram, which defines the various steps
to create and to bind models during domain and application
engineering. Once the MD-SPL is created, the user has to
define metamodels, feature models, and constraint models
at domain engineering. A subsequent step is to provide the
transformation rules and the decision models that are required
to generate the production workflow. During application
engineering, the products are configured using domain models
and binding models. These binding models link domain models
and can be validated against the constraint models. Then,
the product derivation can take place from the binding model
and execute the production workflow. The entire chain is
applied to the Smart-Home case study and illustrates the
expressive power of fine-grained variations provided by the
FieSta approach. Throughout this chapter, we have presented
several examples of Smart-Home systems we derived using our
MD-SPL engineering mechanisms and tool support.



Chapter 7

A Second Comprehensive
Application Example

In this chapter, we present an application example
that is related to stand-alone applications managing data
collection. We call it a collection manager system, a product
line member of this MD-SPL. For example, a collection
manager system manages students from a school and their
personal information: name, address, e-mail, etc. Another
product manages discs in a music store and related
information: name, artist, price, etc. This is a simpler
example than the Smart Home, but its comprehensive
presentation should help the reader to fully understand
MD-SPL engineering.

7.1. Domain of the collection manager system

A collection manager is a kind of information system
application devoted to the management (e.g. creation, storage,
and query) of specific data from a business domain (e.g. school
and university, employee management, music, or video store).
Collection manager systems can be functionally represented
and manipulated by data structures of type Group. A Group

Model-Driven and Software Product Line Engineering            Hugo Arboleda and Jean-Claude Royer
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always has a main element that groups other elements.
For example, in a music store application, it should be
a MusicStore Group that assembles Discs and every Disc
assembles Songs. Every element in the collection has a set of
properties, and these properties are possibly related to other
elements of the collection. Finally, each element is responsible
for making its information persistent. Some of the functions
that collection manager systems must provide include:

– Create, Remove, Update, and Delete Elements. These are
generic facilities to manage elements in collections.

– Organize, Filter, and Serialize Elements. Elements in a
collection must be organized according to several criteria to
be presented to final users, for instance, alphabetical ordering
of names, price ordering, etc. They can also be filtered for
presentation to users or exported in several kinds of files.

– Graphic Presentation of Elements. Elements must be
presented in different presentation views, such as tree, list,
graph, or table.

These are only some sample functionalities considered in the
second example. In this example, however, we could consider
several other sources of variation, for example, performance
issues of data management (memory and time consumption).
Here, we simplify the problem and consider two dimensions:
the kernel functionality, which allows us to vary the business
domain (scholar, music store, or any kind of store, employees
in a company, etc.) and the graphic presentation. Thus, we can
deal with the usual range of classic variations we find in any
kind of software applications managing data.

7.2. Requirements of the application example

For our particular application example, we characterize
the product line of a collection manager system according to
the following two sources of commonalities and two sources
of variabilities associated with kernel functionality and user
graphic presentation.
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7.2.1. Kernel commonalities

The kernel manages data associated with instances of a
business logic domain, such as student or music store. Thus,
the business concept and its related characteristics can be
represented using an aggregation structure. For example,
a student assembles the set of characteristics: code, name,
address, and e-mail. Any modeled business concept has a
name characteristic and every product of the product line has
functionality for adding data.

7.2.2. GUI commonalities

Graphical user interfaces use elements such as panels,
lists, labels, and images, among others. All the GUI elements
are grouped by different types of views. There are seven
types of view that are mandatory for every product: (1) main,
(2) list, (3) information, (4) order, (5) filter, (6) exportation, and
(7) creation views; see Figure 7.1. The main view is in charge
of communicating the kernel and the GUI by grouping all the
other views. The list view displays data related to the name
characteristic of created instances of the business logic concept.
The information view is used to show the data related to all
the characteristics of created instances of the business logic
concept. The order view is used to select a characteristic that
will be used as a reference for ordering the data displayed in
the information and list views. The filter view is used to select a
characteristic and a string of characters that will be used as the
reference for filtering the data displayed in the information and
list views. The exportation view is used to select the mechanism
to export the data. The creation view is used to enter data for
new instances of the business logic concept.

7.2.3. Kernel and GUI variability

– Business Concept. The most evident source of variation is
the business concept and its characteristics. As we presented
before, products can be created to manage data, such as
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students, music stores, or address books. Each concept may
have several characteristics to describe it. Therefore, the
configuration of the business concept and its characteristics
must be performed by domain experts who are familiar with
the data to be managed.

Figure 7.1. Graphical user interface of a collection manager system

– Ordering Data. We take into account the need to
incorporate the facilities of a collection manager that are
orthogonal to the selected business concept. The first one is
the facility for ordering data in the collection. Elements in a
collection must be organized according to several criteria to be
presented to final users, for instance, alphabetical ordering of
names or price ordering. A product may (or may not) provide
functionality for ordering data. If it does, the data can be
ordered using either the bubble or insertion algorithms. Thus,
when products are configured, one ordering algorithm can be
chosen to denote that every domain concept characteristic can
be chosen for ordering data by using the selected algorithm,
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which is a coarse-grained variation. For instance, if there
exist two characteristics, code and name, and the bubble
algorithm is selected, a product is generated where data can
be ordered by code or name using the bubble algorithm. This
characteristic can be also bound to optional domain concept
characteristics that the designer has to select. For instance,
a name characteristic can be bound to the bubble algorithm
for ordering data or a price characteristic can be bound to the
insertion algorithm. These are fine-grained variations between
products.

– Filtering Data. Elements in a data collection can be filtered
according to criteria based on domain concept characteristics
to be presented to final users. Thus, data can be filtered, for
instance, by address that matches some criteria. A product
may (or may not) provide functionality for filtering data. If it
does, data is filtered removing the elements that do not match
the defined criteria. When products are configured, this facility
can be chosen and bound to domain concept characteristics
that the designer has to select. This allows a fine-grained
variation between products. For instance, only the Zip Code
characteristic can be used to be the base of a filter.

– Managing Identifiers. Domain concept characteristics can
be selected to allow or disallow dealing with duplicate data.
For instance, while managing a collection of songs, the song
duration characteristic can be selected to allow duplicates;
however, the song name characteristic can be selected to avoid
duplicates. This allows you to have several songs with the
same duration time but not with the same name. Thus, when
products are configured, this facility can be chosen and bound to
domain concept characteristics that the designer has to select,
which allows fine-grained variations between products. For
instance, as presented before, a song name characteristic can
be selected to avoid duplicates.

– Exporting Data. Elements in a data collection can be
exported in several formats. In our example, these formats are
plain text, Excel-type files, or java serialized files. In the final
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product, the end-user has one format to export the data. Each
product will be configured to allow the choice of the exporting
format.

– GUI Variability. The product designer can select from
several alternative views to present the data in the information
view. The first one is a simple view with labels and text fields
for each characteristic related to the domain concept managed
by the product. Instances are displayed one-by-one. The second
one uses a grid component. The grid component facilitates the
display of many instances of the problem space concept at the
same time. The third one uses a tree representation. Figure 7.1
presents the GUI of a collection manager system managing
information of students and using a tree information view.

7.3. The overall process

According to our approach, we organize the lifecycle creation
of MD-SPLs in a framework, FieSta, which incorporates the
main principles of Model-Driven and SPL Engineering. There
are two major processes on which our framework is focused: one
is the process of capturing and expressing variability in MD-
SPLs, which impacts consequently on the process of configuring
product line members, and the other is the process of deriving
products by re-using and composing model transformations
based on product configurations. Figure 7.2 presents an activity
diagram summarizing the processes involved in FieSta.

7.3.1. Domain engineering

During the domain engineering process, a product line
architect creates metamodels, feature models, and constraint
models to capture the variability and commonalities of
MD-SPLs. As we have presented, constraint models make it
possible for product line architects to capture and express the
valid fine-grained variations between product line members
by using the concepts of constraint, cardinality property,
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and structural dependency property. During the domain
engineering process, product line architects create model
transformations that implement algorithms to transform
application domain models into refined models or source code.
Product line architects also create decision models. Decision
models capture the execution ordering of transformation rules
to be performed by the model transformation engine to derive
configured products.

Figure 7.2. General process

7.3.2. Application engineering

To configure a product during the application engineering
process, product designers create Models, which conform
to metamodels created at domain engineering, and binding
models, which denote fine-grained variations. After a binding
model is created, we validate this against a set of OCL
sentences derived from its respective constraint model. To
derive a complete product according to a binding model, we
dynamically adapt the parameters of model transformation
executions. We achieve it using model transformation rules,
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which are selected from the binding model and the pre-created
decision models.

7.4. Variability expression and product configuration

As presented previously, playing the role of product line
architects, we use metamodels and feature models as our base
core assets to capture and express variability; playing the role
of product designers, we configure products by creating models
that conform to metamodels and binding models.

7.4.1. Metamodels

In FieSta, we use a multi-staged approach for configuration
and derivation of products. To create the product line of
collection manager systems, we create metamodels playing the
role of product line architects. The first metamodel we built as
product line architects is the problem space metamodel, which
serves to define the domain concept we want to manage and
its characteristics. Problem Space models, which are created
by product designers, do not include GUI concepts or details of
functionality. Other metamodels contain GUI and functionality
concepts, which are orthogonal to the domain concept chosen
to be managed. Every metamodel plays a different role during
the product line development lifecycle. The first metamodel is
used by designers during the configuration process to create
domain models, which are the starting point to derive collection
manager systems. The other two metamodels capture the
sources of variability that characterize our product line:

– Problem Space Metamodel. This metamodel includes
concepts regarding the domain concept to be managed and its
characteristics.

– Kernel Metamodel. Every system has functionalities
according to product user choices; the kernel metamodel allows
us to model variable products from the end-user functionality
point of view.
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– GUI Metamodel. This metamodel includes only concepts
concerning the user interface. This metamodel represents the
domain concept and its characteristics in terms of graphical
elements.

In the same way as the Smart-Home example, it is
also possible to create other metamodels to represent other
viewpoints involved in the development of product line
members. In this case study, however, we limit the viewpoint
division to the metamodels we described before in order to have
a comprehensive example.

Figure 7.3 presents the transformation steps processed on
a model conforming to the problem space metamodel from its
creation until the production of the source code application.
The model transformation rules are used in three stages, each
one with a dedicated set of rules. The first set of rules is
defined from the problem space metamodel to the Kernel
metamodel. The second set is defined from the problem space
metamodel to the GUI metamodel. Finally, the third set of
transformation rules includes model-to-text transformations,
which produce the source code of product line members. We
create model-to-text transformation rules from the Kernel
and the GUI metamodels to Java source code. The following
sections present details about the model transformations, and
the possible variations these model transformations can have
according to the SPL variability.

Problem Space Metamodel. The first metamodel is the
Problem Space metamodel, which includes the domain
concept and their characteristics. Figure 7.4 presents this
metamodel (left) and an example of a domain model
(right). The model defines a student element, which conforms
to Concept. Every student is characterized by their
characteristics: code, name, address and e-mail, which
conforms to Characteristic .
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Figure 7.3. Staged-transformations to derive collection manager systems

Figure 7.4. Problem space metamodel and a model example

Kernel Metamodel. This metamodel is at the same
level of abstraction as the Problem Space metamodel.
Similar to the Problem Space metamodel, the Kernel
metamodel includes the domain concept to be modeled and its
characteristics. In addition, it includes concepts to represent
the possible variations regarding filters to be applied on
data (Filter), sorting algorithms to present data (Sort, and
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AlgorithmSort), and the characteristic of every attribute that
indicates if data can be duplicated (isIdentifier). Figure 7.5
presents the Kernel metamodel. Models that conform to this
metamodel are generated from Problem Space models in our
defined staged-transformation chain. Product designers do not
take place in the manual creation of Kernelmodels. Designers
configure resulting kernel models by selecting features from
the feature model we present in Figure 7.7.

Figure 7.5. Kernel metamodel

GUI Metamodel. The GUI metamodel represents the
graphical user interface viewpoint. This metamodel is at a
lower abstraction level than the Problem Space and Kernel
metamodels. Every concept in the metamodel represents a type
of View, all of them grouped by the MainView. The InfoView
is specialized by the InfoSingleView, InfoGridView and
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InfoTreeView. This allows us to create GUI models where
the information view varies. Figure 7.6 presents the GUI
metamodel. Models that conform to this metamodel are
generated from Problem Space models. Similarly, as in the
Kernel model, product designers do not take part in the
manual creation of this model. Designers configure resulting
GUI models by selecting features from the feature model we
present in Figure 7.7.

Figure 7.6. GUI metamodel

7.4.2. The feature model

In FieSta, we allow product designers to configure a product
by giving a starting model, a Problem Space model in
this example, and creating a binding model that satisfies a
constraint model. To create binding models and constraint
models, we have to first define a feature model. For this
example, playing the role of product line architects, we create
only one feature model that represents the variants of collection
manager applications that are not represented in the Problem
Space metamodel.

As was introduced in section 7.2.3, we take into account
the need for incorporating facilities to the collection manager
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Figure 7.7. Collection manager feature model

applications that are orthogonal to the domain concept
and its characteristics. Figure 7.7 presents our feature
model. The Kernel feature, which is a solitary one, has
two group features, AttributeType and Serialization.
AttributeType groups the three variations that can be
applied to characteristics, FilteringData, Identifier,
and Comparable. These variations are used to create
constraint models to express that, for instance, one or
several characteristics can be selected as the base the for
FilteringData; one or several characteristics can be used
to define the uniqueness of one record over the complete data
by means of an Identifier, which is also a fine-grained
variation; one or several Comparable characteristics can be
used to sort the data by using one of the available algorithms,
Bubble or Insertion. Features grouped by the Attribute
Type feature are able to define fine-grained variations
between products; that is, features grouped by the Attribute
Type feature can be bound to particular characteristics
one-by-one.
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Serialization groups the three variations for exporting
data, PlainText, Excel, and standard Java serialization.
These variants represent a coarse-grained variation, which
means that only by selecting one of the features in a
configuration, the generation of a product follows a general
pattern. In this case, for instance, if a product designer selects
the feature PlainText, a product exporting data to plain text
will be created.

The GUI feature, which is a group, groups the three
variations for creating the information view, Grid, Single,
and Tree. This is also a coarse-grained variation. For instance,
if a product designer selects the feature Grid, a product with
a grid as information view will be created.

7.4.3. The constraint model

Playing the role of product line architects, we create
constraint models to restrict the bindings among model
elements and features; for example, to express that only
problem space models can be bound to our feature model,
or that maximum two Characteristic elements can be
bound to the feature FilteringData. We can also say that
constraint models restrict the fine-grained variations allowed
between product line members. Our constraints serve to
avoid inconsistencies during the configuration and derivation
processes.

Figure 7.8 presents our constraint model for this
example. We define a constraint between theCharacteristic
metaconcept and the FilteringData feature,
constraint1= [Characteristic , FilteringData , [0..*],
true]. The constraint describes that during the configuration
of a product, product designers can bind undetermined
Characteristic elements; for example, the code, with the
feature FilteringData (see Figure 7.9). Then, each bound
element could be used as a filter in the final product.
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The constraint between the Characteristic metaconcept
and the Attribute Type feature, constraint2=
[Characteristic, Attribute Type,[0..2], true], describes
that product designers can bind Characteristic elements
with the Identifier feature, the Comparable feature, or
both of them. Then on the one hand, elements in the collection
could be unique in terms of one characteristic; for instance, if a
code characteristic is an identifier, then it is not possible
to have two elements in the collection with the same code. On
the other hand, elements in the collection could be ordered
using one sort algorithm as described by the constraint3.

Figure 7.8. Collection manager constraint model

Theconstraint3= [Characteristic,Sort Algorithm,
[0..2], true], describes that product designers can bind
Characteristic elements with the Insertion feature, the
Bubble feature, or both of them. Then, elements in the
collection could be ordered using the characteristic and any
of the available sort algorithms.

7.4.4. Binding models

Product designers create binding models to configure
products. That is, binding models capture fine-grained
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variations between products. A binding is a relationship
between a model element and a feature. For example, to
express that the code is used for FilteringData, B = [code,
FilteringData].

Figure 7.9 presents our binding model for this example.
This binding model is created between the problem space
model from Figure 7.4 and the feature model from Figure 7.7.
binding1 configures the code characteristic for filtering data.
binding2 denotes the code characteristic as an Identifier,
which means that two records with the same code cannot
exist in the collection manager. binding3 and binding4
configure the name characteristic as a base for ordering data by
using the Insertion algorithm. binding5 and binding6
configure the career characteristic as a base for ordering data
by using the Bubble algorithm.

Figure 7.9. Collection manager binding model

Figure 7.10 summarizes the processes of (1) expressing the
variability in our application example SPL and (2) configuring
a collection manager system. First, a product designer creates
a Problem Space Model based on the Problem Space
metamodel. Then, the designer creates a binding model based
on the feature model and the problem space model. The
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binding model affects the transformation of the Problem
Space Model into the Kernel Model. According to created
bindings in the case of fine-grained variations and selected
features in the case of coarse-grained variations, particular
transformation rules must be executed to create kernel models.

Figure 7.10. Summary of the configuration process
of the collection manager systems

7.5. Core assets development and product derivation

We introduced metamodels, feature models, and constraint
models as the core assets we use to express variability. In
FieSta, we use model transformation rules as the main core
assets to derive product line members. In the next subsections
we present: the transformation rules and software artifacts we
created for our second application example and the decision
model we built to derive products.

7.5.1. Rule transformations in the SPL of the collection
manager systems

As we introduced before (see Figure 7.3), the transformation
rules we created for our application example are used in three
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stages. The first set of rules is defined from the problem space
metamodel to the Kernelmetamodel. The second set is defined
from the problem space metamodel to the GUI metamodel.
These are created taking into account our constraint model.
The third set of transformation rules includes model-to-text
transformations, which produce the source code of product line
members.

First Stage: Problem space-to-kernel transformation
rules. The purpose of these transformation rules is
adding information about collection manager facilities to
problem space models. These are horizontal model-to-model
transformations. It means they transform models inside the
same abstraction level, the application domain abstraction
level, but add concerns related to collection manager facilities.

We created two sets of transformation rules: the base
and the specific ones. For instance, we create a base
transformation rule to transform ProblemSpace::Entity
elements into Kernel::Element elements. Similarly,
we created a base transformation rule to transform
ProblemSpace::Characteristic elements into
Kernel::Attribute elements. We created specific
transformation rules taking into account the possible bindings
that can affect the transformation process. For instance,
we created two specific transformation rules to transform
ProblemSpace::Characteristic elements; the first one,
taking into account the constraint1 (see Figure 7.8), creates
Kernel::Filter elements for each Characteristic bound
to the FilteringData feature in the binding model; the
second one, taking into account the constraint3, creates
Kernel::Sort elements for each Characteristic bound to
one of the Sort Algorithm (grouped) features in the binding
model.

Second Stage: Problem space-to-GUI transformation rules.
The second set of transformation rules is defined from the
problem space metamodel to the GUI metamodel. These are
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vertical model-to-model transformations since they transform
models between different abstraction levels. The source
abstraction level is the application domain abstraction level,
whereas the target level is the abstraction level including
concerns related to GUI components.

We created base transformation rules to create the
common views in the GUI of a collection manager
system. We created three specific transformation rules to
create GUI:InfoSingleView, GUI:InfoGridView, and
GUI:InfoTreeView. In this case, since these are coarse-
grained variants, which means that the selection of a feature
guides the derivation process without taking into account
model elements, these three transformation rules are created
based only on the feature model without taking into account
either the constraint or the binding models. Thus, for instance,
if the Single feature is selected, one GUI:InfoSingleView
element is created.

Third Stage: Model-to-text transformation rules. The model-
to-text transformation rules produce the source code of product
line members. These transformation rules have as input a
kernel model and a GUI model. The transformation rules are
in charge of creating Java classes at the kernel and GUI layers
to connect them.

7.5.2. Decision models

We explained that we create specific transformation rules
taking into account the possible bindings in binding models,
which satisfy constraints in constraint models. That is, taking
into account fine-grained variations. We need a mechanism for
selecting and executing automatically the base transformation
rules and only some specific transformation rules associated
to fine-grained variations. We proposed the use of explicit
decision models for composition of transformation rules based
on binding models, which implies the modification of a
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baseline scheduling taking into account not only features
from feature configurations, but also bindings from binding
models.

Thus, for instance, if any Characteristic element is
bound to the feature FilteringData in a binding model,
the base sequence to transform problem space models into
kernel models must be modified. This modification implies
the replacement of the rule characteristicToAttribute
by the rule charactericticToFilterAttribute. This rule
must transform only the ProblemSpace::Characteristic
elements that are bound to the FilteringData feature, into
Kernel:Filter elements. For instance, from the binding
model presented in Figure 7.8, given that the code element
in the problem space model is the only characteristic bound
to the FilteringData feature, this is the only characteristic
that must be transformed into a Filter element in the kernel
model.

Figure 7.11 presents a small part of our decision model to
transform problem space models into kernel models taking
into account binding models. We can see in the figure that we
first define a baseline scheduling, which includes the execution
of the transformation rules problemSpaceToSystem,
entityToElement, and characteristicToAttribute.
Then, we create an aspect indicating that if some bindings
satisfy constraint1 (which describes that product designers
can bind Characteristic elements with the feature
FilteringData) the execution of the base transformation
rule characteristicToEntity must be intercepted.
After the interception is done, the specific transformation
rule charactericticToFilterAttribute must be then
executed. This rule queries the binding model used to
configure the product, which is derived, and transforms only
the Characteristic elements bound to the FilteringData
feature.
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Figure 7.11. Example of a decision model to create collection
manager systems with binding models

7.6. Summary

In this chapter, we presented a second application example
related to stand-alone applications managing data collections.
We call this a collection manager system, a product line
member of this MD-SPL. A collection manager is devoted to
the management of specific data from a business domain. We
presented the commonalities and variability involved in the
product line along with the metamodels, the feature model, and
the constraint model we created to capture such commonality
and variability. We presented as an example some parts of a
binding model we created as a means to configure a product
line member, and we presented also parts of the decision model
we used to generate operable systems. We explained the staged
process to generate a collection manager system, from the
creation of a problem space model, through the configuration
of the variations chosen for product designers, until the final
generation of a product.



Chapter 8

Further Reading

This chapter is devoted to additional references and
discussions. It first introduces some of the main books related
to the topics of product lines and model engineering. We
discuss more precisely feature modeling, decision modeling,
MD-SPL approaches, dynamic variability, and domain- specific
modeling. Some complementary topics and references are
presented to advise the reader about future trends close to
MD-SPL engineering.

8.1. Northop and Clements’ book

Northop and Clements’ book is a summary of the
fundamentals on software product lines that presents
explanations of the fundamental concepts and describes
three case studies. The authors define and explore
the core activities for development of software product
lines and discuss specific practice areas in engineering,
technical management, and organizational management. For
example, defining the architecture is a software engineering
practice area; configuration control is a technical management
practice area; and training is an organizational management

Model-Driven and Software Product Line Engineering            Hugo Arboleda and Jean-Claude Royer
© 2012 ISTE Ltd.  Published 2012 by ISTE Ltd.
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practice area. Methods to develop a re-usable base of core
assets and to develop products that use those core assets are
also discussed. To help organizations to develop SPLs, the
book describes 29 practice areas that must be mastered. This
book, however, presents an academic point of view; it lacks
real industry problems. The authors succeed in presenting a
pattern catalog for SPLE. The catalog includes, for instance,
each asset pattern, build pattern, product parts pattern,
assembly line pattern, product builder pattern, cold start
pattern, process pattern, and factory pattern.

8.2. Pohl, Böckle and Van der Linden’s book

The book from Pohl et al. [POH 05b] gives a general
view and the foundations of SPLE, but it does not address
MDE techniques. It is an important work as it clearly
defines the concepts and the processes involved in product
line engineering. It covers most of the questions raised by
this engineering: variability modeling, documentation, testing,
requirements engineering, and traceability. Each process,
domain and application engineering, are split into four stages:
requirements, design, realization, and testing, which gives a
strong consistency to the approach. One chapter is dedicated
to variability management. The book argues for an orthogonal
variability model and explains how to document variability in
artifacts. It also presents two key organizational aspects not
covered at all in our book. Traceability is mentioned as an
important aspect in SPLE, but there is no part summarizing a
precise methodology to follow.

8.3. Gomaa’s book

The Designing Software Product Lines with UML [GOM 04]
proposes an extension of UML 2.0 to cope with software
families. It presents a UML-based analysis and design method
and uses the model-driven architecture concepts to develop
component-based software for product lines. As such, this
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is a practical and seamless approach to switch to SPLE.
The method PLUS described in the book proposes a set
of concepts to extend UML notations with variability. The
extended diagrams are use cases, static, state machines,
and interaction diagrams. These classic UML diagrams are
enriched to address commonalities and variabilities. A feature
modeling view, based on a static class diagram, is proposed to
capture commonalities and variabilities at the requirements
level. An additional view is devoted to the implementation
dependencies between the feature diagram and the static
diagram. The book also introduces architectural patterns to
develop re-usable component architectures. The scope of the
book is restricted to traditional software development with
UML and explores the adaptation of the Unified Development
Software Process to address software product lines. One of the
most original parts of the book is the extension of state charts
leading to dynamic variability. One chapter is dedicated to the
comprehensive description of three case studies.

8.4. Van der Linden, Schmid, and Rommes’ book

The book [LIN 07] addresses a survey of product line
practices and is a valuable reference for practitioners who want
to launch a product line. The book first introduces general
concepts about SPLE and the main processes. One important
point is that it covers business and organizational concerns
and shows that they are important for the success of any SPL
project. It thoroughly reviews the most important points and
argues that the model’s business, architecture, process, and
organization are suitable to manage product line engineering.
It also provides a framework to evaluate an SPL organization
based on the CMMI model. Part 2 of the book summarizes
ten different examples of SPL realizations, covering various
domains and different companies and business organizations.
Thus, the book exposes some guidelines to having a successful
SPLE but also some problems and examples of real benefits
of using SPLE. The last part is devoted to a summary and
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analysis of the results gained from the SPL examples. One
chapter focuses precisely on the question of introducing SPLE
and proposes a ten-step approach.

8.5. Stahl, Voelter, and Czarnecki book

Model-Driven Software Development: Technology,
Engineering, Management [SVC 06a] is a complete guide
for MDE practitioners. Part 1 of the book presents an overview
of the approach: terminology, history, and classification in the
generative development field, and at the time of its creation
(2006), the status of the MDE practice. The authors also
present in detail the case study of a typical Web application
with all the challenges it overcomes, which helps the reader
understand the real context of software development. The
second part of the book introduces concepts regarding domain-
specific modeling by means of metamodels and UML-based
techniques. Software architectures are specially treated in
this part in order to illustrate the applicability of MDE. A
deep discussion of MDE in the context of code generation
techniques is presented along with a broad classification of
such techniques. The third part of the book centers on the
processes involved in MDE projects and presents two new
case studies to illustrate a full MDE process chain. The fourth
section covers economic and organizational topics. The return
of investment on MDE is evaluated, roles and skills are
defined for practitioners, and strategies for MDE adoption are
discussed.

8.6. AMPLE book

The results of the AMPLE project1 were published in a
book [RAS 11]. This European project aimed at combining
state-of-the-art in aspect-oriented software development and

1 http://www.ample-project.net/.
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MDE to advance software product line engineering. Currently,
there is a big gap between research in requirements analysis,
architectural modeling, implementation technology, and the
industrial practice in SPL engineering. The focus of current
approaches is mainly on the design and code level while the
variations still need to be identified, managed, and analyzed
from the very early stage of requirements engineering.
Architecture models are linked to requirements in an
ad-hoc fashion and implementations are pre-processed, which
are inadequate substitutes for proper programming language
support for variability. There is no systematic traceability
framework for relating variations across an SPL engineering
lifecycle.

The AMPLE book provides a holistic view of SPLE and
proposes several advances in this domain. The first one is about
the analysis of requirements to produce a feature model in an
assisted way. The partners of the project have also elaborated
a general language for variability modeling and one Java
extension enabling feature-oriented programming. One specific
effort has been made on traceability, which is cutting across all
the SPL activities. In a complex software process such as SPLE,
it could be beneficial to have techniques and tools to analyze
design rationale and to support non-functional requirements.

The book provides several chapters dedicated to SPLE and
MDE with concrete examples. Most of these researches were
implemented in tools and experimented with on case studies.
A general tool chain was designed covering both solution and
product-oriented product lines. This general approach uses
model-driven engineeringand aspect-oriented programming,
but can be “forked” in two different MD-SPL chains, namely
TENTE and MAPLE. TENTE proposes a way where automatic
derivation from the feature model is increased, but it
required the use of an advanced programming language
incorporating facility for feature-oriented programming. Thus,
more variability could be left open until source code
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compilation or runtime execution. MAPLE does not require
such an advanced programming language and relies only
on traditional programming language. Variability is often
managed by successive model transformations before source
code generation. We have to mention that the approach we
present in this book was developed also in the context of the
AMPLE project.

8.7. Feature modeling notations

Feature modeling is a method and notation for capturing
commonalities and variabilities in product lines [KAN 90,
KAN 98, RIE 02, CZA 05, VÖL 07b]. Features describe the
common and variable functionality of a system under
development. Feature modeling was first introduced by Kang
et al. as FODA [KAN 90]. FODA is described as a domain
analysis method for identifying prominent and distinctive
features of a set of systems in a specific domain. In FODA,
the features are used to define a specific domain in terms of its
mandatory, optional, or alternative characteristics. After Kang
et al., other authors extended the concepts regarding feature
modeling. Among these extensions are the concepts of feature
cardinality [CZA 00], groups and group cardinality [RIE 02],
and attributes for features [CZA 02] among others. The purpose
of these extensions is to restrict the set of variants that
can be selected from feature models to create particular
configurations. One of the most cited works on feature modeling
is presented by Czarnecki et al. [CZA 04], where the authors
propose a cardinality-based notation for feature modeling
including solitary, group, and grouped features. This approach
integrates a number of existing extensions; thus we suggest the
use of this notation.

8.8. Decision models

Decision models were introduced to capture variability and
to help in deriving products [ATK 00, BAY 00]. Product line
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architects create decision models during domain engineering.
Decision models are used during application engineering
as the main artifacts to assist in the product derivation.
Decision models, as used in [ATK 00, BAY 00, FOR 08,
DHU 08], are intended to close the gap between variability at a
conceptual level (variation points and variants) and variability
at the implementation level (concrete core assets). Bayer
et al. [BAY 00], in the PuLSE approach, use decision models
as a means to realize domain and architecture decision. Many
authors have been now exploiting this notion, such as [ZIA 06]
who designed it with the abstract factory pattern. [FOR 08]
present decision models as a means for dealing with software
variability and views on decision models that are supposed
to help in variability management. Some mechanisms for
supporting the process of decision modeling and resolving
decision models have been introduced. In general terms,
every SPL approach based on MDE introduces a form of
decision model or similar artifacts in order to assist the
derivation process (see Chapter 4). For instance, Wagelaar’s
approach [WAG 05, WAG 08a, WAG 08b] uses platform
dependency constraints and superimposition variants, an ATL
facility, in order to assist the derivation process; Loughran
et al.’s approach [LOU 08, SAN 08], defines a language to
capture variability and decision models.

MDE and AOP provide good opportunities to automate
the product derivation, thus improving greatly the
production chain. We propose the use of explicit decision
models in the context of MDE as a mechanism for
composition of transformation rules based on feature
configurations [ARB 09]. This mechanism can be used in
conjunction with transformation languages, which provide
facilities to compose transformation rules. One of the strengths
of our approach is that it provides a model-based strategy
for defining decision models. It can be, thus, the base of
a platform independent strategy. In particular, we used
the oAW modeling framework and the Xtend and Xpand
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model transformation languages, which provide a mechanism
based on AOP for the composition of transformation rules
(see section 3.6.4). Decision models are the base of our
mechanism to derive products including variability. They
capture the execution ordering of transformation rules to
be performed by the model transformation engine to derive
configured products. We use aspect-oriented programming,
provided by oAW, to build the scheduling of the transformation
rules, i.e. the ordering in which transformation rules are
going to process model elements to accomplish the desired
derivation.

8.9. Model-driven software product lines

MD-SPL are product lines created based on MDE
principles (see Chapter 4). A product line member of an
MD-SPL is created from an application domain model that
(1) conforms to an application domain metamodel and (2) is
transformed until obtaining the application by using model-
to-model and model-to-text transformations. There is no
reference framework for creating MD-SPLs. For many in this
domain (e.g. [VÖL 07b]), including us [ARB 09a, ARB 09b],
these model transformations may require several stages
and may include horizontal and vertical transformations. At
each transformation stage, application domain models are
automatically transformed to include new concerns from a
particular abstraction level or more implementation details
from lower abstraction levels.

Several approaches to create SPLs have emerged that
are based on MDE. In this section, we discuss four of
the most representative works presented in the area. These
approaches are Czarnecki and Antkiewicz’s approach [CZA 05],
Wagelaar’s approach [WAG 05, WAG 08a, WAG 08b], Loughran
et al.’s approach [LOU 08, SAN 08], and Voelter and
Groher’s approach [VÖL 07b]. We have chosen to present
each work following two aspects, see Figure 8.1. The first
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one, located in the problem space [CZA 00], is related to the
mechanisms the approaches use for expressing variability and
configuring products. The second one, located in the solution
space [CZA 00], is related to the core assets development
and the mechanisms for deriving products. These two aspects
deserve our attention since they are at the core of the research
problems exposed in this book, which we aim to resolve with
our proposal (Chapter 5).

Figure 8.1. Aspects to review related work regarding
model-driven software product lines

At the end of this section, we present a discussion
emphasizing the advantages and drawbacks of the different
mechanisms used by the presented approaches. We did not
list other valuable references like [ZIA 06, ATK 00, BAY 99,
PUR 10] since they are subsumed by the four presented here,
or are discussed in other parts of this book, or are commercial
approaches without available full documentation.
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8.9.1. The Czarnecki and Antkiewicz’s approach

8.9.1.1. Problem space: expressing variability and configuring
products

To express variability, Czarnecki and Antkiewicz [CZA 05]
propose an approach where variation points and variants are
captured by means of feature models. They extend the FODA
approach by adding cardinality and attributes for features.
Products are configured by creating feature configurations.

8.9.1.2. Solution space: core assets development and products
derivation

The main core assets built by product line architects to
derive products in Czarnecki and Antkiewicz’s approach are
template models and model transformations.

Template models are expressed using UML and represent all
the possible elements required to create product line members.
For example, to represent a family of UML 2.0 activity models,
both the model template and the template instances are
expressed using the UML 2.0 activity modeling notation. A
template model is a superimposition of all the possible model
elements required to derive diverse products according to
feature configurations.

Template models are annotated by product line architects
using presence conditions and meta-expressions. The
annotations are defined in terms of features from a feature
model, which capture the variability of the product line
under development. Presence conditions indicate whether
an element should remain in or be removed from a template
instance because of the presence of a particular feature in
feature configurations. Meta-expressions indicate how to
compute attributes of model elements, such as the name of an
element or the return type of an operation, based on values
assigned to feature attributes in feature configurations.
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Product line architects also create model-to-model
transformations to instantiate the template models
automatically and thus to derive configured product line
members. In these model-to-model transformations, both the
input and output models conform to the UML 2.0 metamodel.
Several model transformations are created; each one is
in charge of removing elements from the template model
and/or computing attributes of model elements according
to the annotations in the template model. Thus, based on a
feature configuration, a template model can be instantiated
automatically by using model transformations.

Decision models are not explicitly created to support the
product derivation process. The resolution of variability
is performed by product designers creating feature
configurations. However, the effects on UML models are
specified in the model annotations. This produces high
coupling between the core assets and the required effects to
create products.

Thus, products are derived from UML models executing
the created model transformations. The execution order of the
set of model transformations is pre-defined by product line
architects. To ensure the consistency of the created template
instances after the model transformations are executed, the
Czarnecki and Antkiewicz’s approach proposes two additional
processing steps: patch application and simplification. A patch
is a transformation that automatically fixes a problem that may
result from removing elements. It is defined for situations in
which there exists a unique and intuitive solution to a problem
created by element removal. Simplification involves removing
elements that have become redundant after removing other
elements.

Figure 8.2 [CZA 05] presents an example of a UML class
diagram with annotations. In this example, some of the
annotations indicate the following: the class Category is
present in a template instance if the feature Categories
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appears in a feature configuration, a containment hierarchy
for Category is present if the feature MultiLevel is
selected, the class Asset is present in a template instance
if the feature AssociatedAsset is chosen, the feature
PhysicalGoods implies the attribute weight in the class
Product, and so on.

Figure 8.2. Example of a UML class diagram with
annotations [CZA 05] (for a color version of this figure, see

www.iste.co.uk/arboleda/SPLeng.zip)

8.9.2. The Wagelaar’s approach

Problem space: expressing variability and configuring
products. The Wagelaar’s approach [WAG 05, WAG 08a,
WAG 08b] focuses on variability related to technological
platforms. The author proposes an explicit platform model,
which serves as a vocabulary for describing technological
platforms. The platform model is expressed using the Web
Ontology Language (OWL) [SMI 04].

Ontologies are commonly used to represent domain
knowledge and to provide a controlled vocabulary in specific
domains. OWL supports the necessary concepts of a general
ontology language, such as classes, properties, individuals,
and relationships between these individuals. In OWL, domain
concepts are generally represented as simple named classes,
which can have subclasses. Class members or instances are
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called individuals. Properties allow us to assert general facts
about members of classes and specific facts about individuals.
A property is a binary relationship. Two types of properties
are distinguished, datatype and object properties. Datatype
properties describe relations between instances of classes
and primitive data types. Object properties describe relations
between instances of two classes.

To capture variation points and variants regarding
particular technological platforms, the author creates
instances of the platform model, or platform instances for
short. Each platform instance is composed of a set of class
members or OWL individuals of the ontology representing
the platform model. Figure 8.3 [WAG 08b] presents an
example of a platform instance for describing Java runtime
environments. The JavaPackageManager is a class member
of the class platform:PackageManager, which is a class
from the platform model. This class member or individual
represents a variation point with three possible variants,
JavaWebApplet, JavaWebStart, and JavaMIDlet. Thus, a
product line architect may create different platform instances
for different technological platforms.

Figure 8.3. Example of a platform instance for describing
Java runtime environments [WAG 08b]
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The author proposes creating configuration metamodels as
a means to complement the expression of variability taking
into account concerns from different technological platforms.
Figure 8.4 [WAG 08b] presents a metamodel capturing
possible variations of the SPL of an instant messenger. In
the figure, the UserInterface metaconcept represents a
variation point with three variants, AWTUserInterface,
SwingUserInterface, and LCDUIUserInterface. The
Packaging metaconcept represents a variation point with
three variants, WebAppletPackaging, IpkgPackaging, and
MIDletPackaging. The JabberTransport metaconcept
represents a variation point with two variants, Default
JabberTransport and MEJabberTransport. Therefore,
a product designer could, for instance, configure an instant
messenger with a SwingUserInterface, while also selecting
the WebAppletPackaging as the packaging method and
the DefaultJabberTransport as the jabber transporter.

Figure 8.4. Example of a configuration metamodel in Wagelaar’s
approach [WAG 08b]

The approach suggests extending configuration metamodels
with annotations based on platform instances. This linking
between configuration metamodels and technological
platform constraints allows imposing certain technological
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platform dependencies on the choices provided by the
configuration metamodel. Then, products are configured by
creating configuration models that conform to configuration
metamodels. Thus, whenever a model element is included in
a configuration model, the platform dependency constraints
(related to its metaconcept) apply.

Solution space: core assets development and products
derivation. As in Czarnecki and Antkiewicz’s approach, product
line members are derived from UML class models created
as templates. Each template model is created for a group of
variants included in a configuration metamodel. A template
model represents a superimposition of all the possible classes,
properties, and operations required to include their respective
variants in a final product. Figure 8.5 [WAG 08b] presents an
example of a template model. This template model is created
for the JabberTransport variation point from Figure 8.4.
Then, a template instance is derived from this template model
according to the variant selected for a product designer:
DefaultJabberTransport or MEJabberTransport. Some
of the class elements, their properties, and operations are
annotated. These annotations are used during the process of
transforming the template models into final products.

Product line architects create several groups of model
transformations to derive products from template models.
Each group is in charge of transforming one template
model into a part of a final product that runs on a
particular technological platform. Thus, when a product
designer creates a configuration model and selects a target
technological platform, the template models related to the
selected variants are transformed using the respective group
of model transformations created for the selected target
technological platform.

Decision models are not explicitly created to support the
product derivation process. The resolution of variability is
performed by product designers creating configuration models
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and selecting a target technological platform. The effects on
template models, which are used as starting core assets to
derive products, are specified in the model transformations.
Therefore, the effects must be expressed in terms of the
model transformations. What model transformations must be
used, and the execution ordering required to include selected
variants?

Figure 8.5. Example of a template model in Wagelaar’s
approach [WAG 08b]

The selection of the groups of model transformations
to be used is defined from the selected variants, i.e. the
model elements included in the configuration models, and the
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selected target technological platform. The execution ordering
of the model transformations is predefined by creating a
type of abstract execution ordering. The abstract execution
ordering defines the required sequence of calls to abstract
transformation rules. The concrete transformation rules are
executed once the groups of model transformations to be used
are defined from the selected variants and the selected target
technological platform.

To replace the abstract transformation rules by the
concrete transformation rules during execution of the model
transformations, the authors propose a composition technique
they call module superimposition. To apply this technique,
transformation rules must be grouped in modules. This
technique allows the modification of an execution ordering,
which includes transformation rules from a module “m-1”,
overriding it to include: (1) new calls to transformation
rules from a module different from “m-1”, and (2) calls
to transformation rules with the same names and the
same parameters that are included in the module “m-1”,
but from a module different from “m-1”. This mechanism
has been implemented using the ATLAS Transformation
Language (ATL) [JOU 05].

8.9.3. Loughran et al.’s approach

In [LOU 08, SAN 08] the authors propose a powerful
approach that relies on some feature-oriented models and
programming.

Problem space: expressing variability and configuring
products. Loughran et al. propose an approach where
variability is expressed using cardinality-based feature models.
Products are configured creating feature configurations.

The main purpose of Loughran et al. is to provide support
for composition of software components based on feature
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configurations. Configuration of products could be performed
by product designers in one or several stages. However, the
authors only consider one configuration stage to capture
domain (non-architectural) choices.

Solution space: core assets development and products
derivation. Product line members are derived from component
models of UML 2.0. A set of component models is created for
each feature in the feature model. Additionally, a set of common
components is created. Common components are present in
every product of the product line. Figure 8.6 [SAN 08] presents
an example of a feature model (top) and a reference architecture
model (bottom) including the set of components related to the
different features. Thus, for example, if the Keypad feature
is selected in a feature configuration, the KeypadReader
component must be connected to the common component
LockControlMng to derive a final product.

Figure 8.6. Example of reference architecture in Loughran et al.’s
approach [SAN 08]
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Loughran et al. propose a language – VML, to express how
software components must be composed according to feature
configurations. VML includes constructs that correspond to
possible operations on components such as connect
(component-1, component-2) or disconnect(component-1,
component-2). VML also supports the specification of
links between features and components, indicating how
the components of the reference architecture model must
be composed according to features selected in feature
configurations. For example, it is possible to specify that the
KeypadReader component must be connected to the common
component LockControlMng using the interface IAccess if
the Keypad feature was selected in a feature configuration.
Listing 8.1 presents the VML specification for this example.

1 Concern LockControl {
2 VariationPoint Authent i cat ionDev ice {
3 Kind : a l t e r n a t i v e ;
4 Variant Keypad {
5 SELECT:
6 connect (KeypadReader , LockControlMng )
7 using interface ( IAccess ) ;
8 UNSELECT:
9 remove( KeypadReader ) ;

10 }

Listing 8.1. Example of a VML specification

Therefore, VML allows for creating decision models using
its well-structured constructs. Using the VML constructs, it is
possible to relate (1) a set of effects on the reference architecture
and (2) features in a determinate state (selected/unselected).
For instance, from Listing 8.1, if the Keypad feature is
SELECTED then VML executes commands from lines 6 and 7
else the Keypad feature is UNSELECTED and then VML executes
commands from line 9. Commands from lines 6, 7 and 9 imply
effects on the reference architecture. Using the VML constructs,
it is not possible, however, to relate (1) a set of effects on the
reference architecture model and (2) a subset of features in
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determinate states. For instance, it is not possible to have
both the Keypad feature SELECTED, the CardReader feature
UNSELECTED and to execute a set of commands.

To transform VML specifications into a set of model
transformations in charge of transforming reference
architecture models into final products, the authors have
created a High Order Transformation (HOT). A HOT
is a model transformation that generates other model
transformations. For executing the created HOT, the authors
propose first to transform VML specifications into models
that conform to a VML metamodel. Thus, for instance, for
line 6 of the VML specification from Listing 8.1, the HOT
generates a transformation rule to transform the reference
architecture model from Figure 8.6 into a model including the
connection between the KeypadReader and LockControlMng
components by using the IAccess interface.

Thus, when a product designer creates a feature
configuration, the generated model transformations are
executed and the final product is derived. The execution
ordering of the generated model transformations must be
predefined, and they are fixed to avoid inconsistencies in the
final product.

8.9.4. Voelter and Groher’s approach

Voelter and Groher, in [VÖL 07b], provide a tool chain, which
inspired our work.

Problem space: expressing variability and configuring
products. Voelter and Groher’s approach proposes to create
metamodels in conjunction with cardinality-based feature
models to capture and express variability. This approach
supports the explicit and separated modeling of variability
in metamodels and feature models. Product line architects
create different metamodels during domain engineering;
each metamodel captures some concerns related to different
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points of view. One metamodel is the domain metamodel,
which serves as a standard vocabulary to practitioners of the
system’s domain. A domain model does not include concepts
regarding details of the structure or processing of the system.
Other metamodels are the architectural metamodel, which
contains software architectural concerns, and the platform
metamodel, which contains technological platform concerns.

Only one feature model is created grouping different
concerns. This approach is particularly concerned with staged-
configuration and staged-derivation of products. To configure a
product, first a product designer creates a model that conforms
to the domain metamodel. Then, another product designer
selects features from the feature model including choices
from concerns that are different from the general application
domain.

Solution space: core assets development and products
derivation. Products are derived from (1) domain models, (2) re-
usable models that conform to the architectural and platform
metamodels, (3) re-usable pieces of source code, and (4) model
transformations in charge of adapting the re-usable models,
and pieces of code according to domain models and the valid
feature configurations.

For each feature in the feature model, the authors
suggest the creation of a set of re-usable models, source
code, and model transformations. Model transformations are
created to transform (1) domain models into architectural
models, (2) architectural models into platform models,
and finally, (3) platform models into source code. Thus,
if a feature is selected in a feature configuration, the
domain model is incrementally transformed using the model
transformations associated with the selected feature. The
model transformations not only create new model structures
in the architectural and platform domains, but they also take
the re-usable models and weave them into the newly created
model structures. Similarly, in the latest transformation, the
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model-to-text transformations create source code and re-use
pieces of code to build final products.

For the implementation of this approach, the authors
use the oAW framework, including its AOP mechanism (see
section 3.6.4). Thus, decision models are created as oAW
workflows, textual descriptors, to support the product
derivation process. In these descriptors, the authors indicate
the model transformations that must be executed and the
required execution ordering according to selected features.
For modifying the execution ordering coping with feature
configurations, the authors have created a new oAW
component. This component allows for querying a feature
configuration at model transformation execution time, and
weaving an oAW aspect if a particular feature appears in the
configuration (selected or unselected).

1
2 <feature isSelected="featureExample">
3 <transformationAspect adviceTarget="baseModelTransformation">
4 <extensionAdvice value="t rans format ionAdvice"/>
5 </transformationAspect>
6 </feature>
7
8 <transform id="baseModelTransformation">
9 <invoke value="t rans format ionRuleBase ( domainModel )"/>

10 <outputSlot value="arch i t ec tureMode l"/>
11 </transform>

Listing 8.2. Example of a workflow using the Voelter

and Groher’s component

Listing 8.2 presents an example of an oAW workflow
by using the created component. The baseModel
Transformation from line 6 transforms a domain model
into an architectural model. For this, the first rule to be
executed is transformationRuleBase(domainModel)
(line 9). The normal call graph of this rule is modified if the
featureExample is selected. This is specified in line 2. If
the feature appears selected in a feature configuration, the
transformationAdvice is executed, thus modifying the base
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execution ordering. For details of how the AOP mechanism of
oAW works see section 3.6.4 and [OAW 09].

8.9.5. Comparison table

Table 8.1 presents a comparison summary based on the
discussion presented in this section.

Czarnecki Wagelaar Loughran Voelter
and et al. and

Antkiewicz Groher
Metamodeling for expressing
variability and modeling for
configuring products No Yes No Yes

Multi-staged configuration
of products No No No Yes

Expression of fine-grained
variations and creation of
fine-grained
configurations No No No No

Creation of explicit
decision models No No Yes Yes

Decision models take
into account the effects that
possible feature combinations
may have in final products n/a n/a No Yes

Decision models are
independent of particular
implementation languages n/a n/a Yes No

Selection of transformation
rules according to selected
variants No Yes Yes Yes

Modification of transformation
rules’ execution ordering
according to selected variants No Yes No Yes

Mechanisms for modifying
execution ordering of
transformation rules
independent of particular
model transformation
languages n/a No n/a Yes

Table 8.1. Related work’s comparison table
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8.10. Dynamic variability

The notion of dynamic variability has different meanings.
The first general meaning is related to the binding time
of variants to variation points that can ultimately occur at
runtime. For instance, it is used in context-aware and adaptive
systems, which need automatic adaptation to changes in their
environment. In this case, the management of changes in
variability due to modifications in requirements or software
evolution in general, is the main concern. Techniques such
as reflexivity, late binding, and conditions can be used here.
This dynamic variability is required for software adaptive
systems, service robotics, ubiquitous systems, and medical
devices. Dynamic software product lines [HAL 08] are mainly
concerned with binding variation points at runtime; thus,
they rely on dynamic variability. Two recent illustrations of
researches on dynamic variability are: Context awareness
product lines of [PAR 09] and the DIVA project2. A presentation
of the DIVA approach can be found in Chapter 12 of the
AMPLE book [RAS 11]. Dynamic software product lines, as
defined in [PAR 09], are product lines devoted to generate
products reacting to changes in their environment. This goal
implies reconsidering the development process of product
lines and using recent techniques, such as MDE, AOP, AOM,
context awareness, and adaptation. Even if evolution and
adaptation arise at different times in the development process,
it seems suitable to unify them. The proposal, called CAPucine,
for Context Aware Software Product Line, adds a runtime
derivation process to the classic SPL engineering process.
The design derivation process is controlled by the developer
team while the runtime one is automatically managed by the
events denoting changes in the execution context. The set of
core assets is enriched with aspect models, which correspond
to alternatives and options of the features models and can
be woven at design time or at runtime. An aspect model

2 http://www.ict-diva.eu/.
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captures a variant and is compounded by an event, a model,
an advice, and a pointcut. This concept unifies the assets
for design and runtime and proposes a simple but general
model to establish a straight link between feature model,
architecture, and implementation. The concept of aspect model
is described by metamodel and specific languages devoted to
expression of pointcuts and events that have been designed.
The runtime derivation needs a specific lifecycle based on an
adaptation loop that involves acquiring change events,deciding
and validating the reconfiguration, and then processing the
chosen reconfiguration.

A second more narrow meaning is related to the specification
of dynamic behavior in a product line. In a specification, several
plans or views can be distinguished. Often, the specification
is reduced to structural and functional aspects while dynamic
behavior is forgotten. Dynamic behavior expresses the control,
the communication, and the concurrency constraints between
the entities in the specification. This behavior adds some
important information to the specification and paves the way
to more advanced verifications such as model-checking. This
is a current situation with UML, where use cases and static
diagrams are the main pieces; sometimes, message sequence
charts are used but rarely state charts. Most of the MD-
SPL approaches do not deal with full dynamic behavior. At
least two main problems arise. The first one is to elaborate
dynamic diagrams and to get the complete specification. The
second one is to integrate this dynamic behavior into the
production plan until code generation. However, there are some
attempts to overcome this deficiency. One approach for this is
given by Ziadi and Jézéquel in [ZIA 06]. The principle is to
use message sequence charts to build the state charts since
one message chart denotes the cooperation of several state
charts. It does not solve all the above problems but helps
in constructing state charts, which can be improved later by
the designer. In [GOM 04] a different way is proposed. The
dynamic variability is described as logical expressions used to
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parameterize the state charts. In some sense, it enables the
configuration of the dynamic behavior according to the features
selected in a product. There is a need to improve MD-SPL to
address dynamic variability; one new aspect is the existence of
international workshops dedicated to this issue.

8.11. Domain specific languages

A domain specific language (DSL) is a language devoted
to a specific area of expertise; it is a language tailored for
particular application contexts. In DSLs, the language concepts
represent things in the domain context, not the code context.
The language follows the domain semantics and abstractions,
allowing developers to perceive themselves as working directly
with domain concepts. DSLs can be seen as opposed to general
purpose languages such as C++ or Java, which can express
any domain and any computation on these domains. The rules
of the domain can be included in the language as constructs
or constraints, ideally making it impossible to specify illegal
programs. The close alignment of DSLs and domain problems
offer several benefits. Many of these benefits are common to
other strategies for moving toward higher levels of abstraction:
better system quality, better tackling of complexity, and
improved productivity. Every domain contains its own specific
concepts, constructs, and semantics. Therefore, DSLs need to
be specific for each domain. Domain concepts are more natural
and reflect the underlying computational models, which are
typically already known and in use, and needed to design
the products. Final code can still be generated from these
high-level specifications. The main principle for the automated
code generation from DSLs is that both the generators and
languages have to fit the selected context requirements.

This is a current active area of research; it was identified
as an important technology for generative programming
in [CZA 02]. DSLs cover a wide variety of forms and
techniques [MER 05, CZA 02]; the interested reader should
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refer to more specific literature. There are several important
benefits of defining and creating DSLs:

– They are specific to a domain; thus, they may be used
to interact with stakeholders or clients, who are definitely
not designers or programmers. For instance, requirements
elicitation, spreadsheet computation, resources or energy
consumption are examples of domains where DSLs already
exist.

– They are not designed to express every concept of the
world; thus, the re-use of programs written with DSLs is
simpler and safer than with general purpose languages.

– They are more restricted; some properties related to the
domain can be easily expressed and enforced.

A simple and well-known example is the BNF language for
grammar descriptions. Another example is a DSL for defining
type systems of programming languages, which includes type
checking. By means of such languages, types can be easily
defined and type checking rules can be written. In the context of
SPLE, there is a need for various DSLs. On the one hand there
are those related to capturing development artifacts, such as
requirements or use cases (see a proposal in [RAS 11]). On the
other hand there are those specific to domains where SPLs are
created; e.g. automotive industry, ERP systems, etc.

Generally, a language is defined through its grammar and
semantics [MER 05]. Recently, the use of MDE emerged as an
effective means to define DSLs by means of models; these are
Domain-Specific Modeling Languages. A metamodel defines an
abstract grammar and syntactic constraints; thus, it can easily
represent a DSL. MDE frameworks provide tools to support
the concrete syntax creation and various related activities.
Thus, Domain-Specific Modeling can be seen as the definition
of languages, editors, and generators for particular domains
by means of models. One result of the activities around DSLs,
MDE, and DSM is the raising of software language engineering
as a new research domain.
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8.12. Additional references

Finally, we mention the main events related to model-
driven and product line engineering. During theThird Software
Product Line Conference (SPLC 2004), the steering committee
decided to merge the SPLC with its European counterpart,
the Product Family Engineering (PFE) conference. With the
9th International Software Product Line Conference (SPLC-
Europe 2005) [SPL 11], this new organization was inaugurated.
Since then, this is the most important event bringing together
MD-SPLs, practitioners, and researchers. The 11th Conference
on Generative Programming and Component Engineering
(GPCE) [GPC 11] took place in 2011. This conference
brought together people interested in techniques that used
program generation and component deployment to increase
productivity. The International Conference on Model-Driven
Engineering Languages and Systems (MODELS) [MOD 11]
was the space for the exchange of innovative ideas and
experiences of model-based approaches in the development
of complex systems. The International Workshop on Model-
Driven Approaches in Software Product Line Engineering
(MAPLE) [MAP 11] and the International Workshop on Model-
Driven Product Line Engineering (MDPLE) [MDP 11] are
equivalent events in conjunction with SPLC and the European
Conference on Model-Driven Architecture (ECMDA) [ECM 11].

The special CACM issue for software product lines [CAC 06]
is a useful piece of information since it provides several
survey articles written by well-known specialists. The guest
editors [SUG 06] give some information about SPLE and its
history. Clements et al. in [CLE 06] discuss how the Adoption
Factory pattern helps. Product line adoption requires the
mapping of the technical and business activities in a consistent
way. In [KRU 06], C. Kruger examines the next-generation
methods for SPL. Pohl and Metzger wrote a short article with
the main references and challenges related to testing. Software
product line testing [POH 06a] is a problem not addressed
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in recent work. Verification and validation of requirements
engineering is important to increase reliability and adequacy
of software systems.

Feature model verification and validation is a recent and
active area of research; several directions are successful
and important progress has been made in this context.
As it concerns mainly requirements, early verification and
validation solutions are preferable. Requirement reviews or
natural language analysis can be used to validate feature
models. As already said, the AMPLE approach [RAS 11]
suggests a way to analyze, organize, and extract a feature
model for requirements in natural languages. This provides
a valuable tool and an approach allowing validation from the
stakeholders.

One survey about the analyses of feature models is [BEN 06].
Obviously, the verification of feature models depends on
the complexity of the notations; for instance, cardinality,
constraint, or group concepts introduces more difficulties.
Verification of feature models is an issue explored by several
researchers, mainly using constraint programming, description
logic, BDD, and satisfiability techniques. In [BAT 06], the
authors present some of the main challenges. Of course we
need automatic and efficient techniques. General properties
such as completeness or consistency can be formulated and
sometimes proved over formally specified systems. Techniques
such as formal proofs or model-checking can be used as soon as
the system is formally specified. As the feature model is close to
propositional or first-order logic, several attempts were made to
use formal declarative languages or OCL and associated tools.

Czarnecki and Pietroszek [CZA 06] propose to analyze
feature-based model templates, that is, a feature model and an
annotated UML model describing additional semantics of the
feature model. They use a translation into OCL expressions of
the template model and a SAT solver to automatically check
that configured instances are compliant with the template’s
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feature model. Since the number of systems represented by a
feature model is large, two issues are the scalability of modeling
and the efficiency of verification. In [CLA 10] the authors
address these issues by defining the notion of the featured
transition system and then using the model-checking technique
to check properties on the model.

8.13. Summary

There are several books focusing on software product
line engineering. The most relevant, from our point of view,
are Northop and Clements’ book and Pohl, Böckle and
Vander Linden’s book. There are also extensions of UML.
Gommaa’s book provides a practical and seamless approach
in this context. However, product line engineering needs
more sophisticated techniques and more advanced languages.
The AMPLE Book is a recent book covering most of the
engineering processes and uses modern techniques such as
variability languages, MDE,AOP, natural processing language,
etc. Our current book is focused on the use of model-driven
engineering for a product line. It covers the overall design, the
derivation tool chain, variability management with multiple
stages, and fine-grained variability. There are many topics only
overviewed here requiring more detail. Dynamic variability,
domain-specific languages, and decision models are some of
them. They will be more important in the future of MD-SPL
engineering.



Chapter 9

Conclusion

The intent of this book is threefold. First, it is a pedagogical
tool for undergraduate and graduate students to understand
what a product line is and why it is so important in
modern software engineering. Second, the technical parts are
dedicated to engineers who want to launch a software product
line chain using model engineering. Both product lines and
model-driven engineering are becoming popular techniques
for software development. Finally, this book also “tags” some
challenges, some open problems, and related work that are
of interest for software researchers. Due to the complexity of
SPL, this is an area where various techniques and theories
are interacting and growing. For instance, there is research
about requirements engineering, natural language processing,
and construction of feature models. A feature model can be
seen as a new logic formalism for organizing requirements
and advanced verification techniques; proof-based or model-
checking are needed. There is an important requirement
to define languages for variability at various stages of
the development cycle. Defining reference architecture is a
complex task and automating the production chain is far
from completion. Implementation languages could benefit from
better variability mechanisms, and there is an opportunity to

Model-Driven and Software Product Line Engineering            Hugo Arboleda and Jean-Claude Royer
© 2012 ISTE Ltd.  Published 2012 by ISTE Ltd.
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enrich or extend existing programming languages to cope with
variability and to close the gap from variability to source code.

The next section summarizes the main concepts and
notations introduced in this book. Then, the last section
outlines some issues of MD-SPL engineering discussed in the
previous chapters and concludes with some perspectives.

9.1. Book summary

One can observe that many software companies are building
applications that share more commonalities than differences.
They often repeatedly add new features and build new variants
or releases of their applications. The strategy of systematic
and planned re-use of software artifacts was seen as a
means to improve software cost, productivity, and quality.
Software product line engineering is a new trend in software
development, which promotes the re-usability of artifacts.
Benefits of a product line are clear, provided that the initial
investment has been precisely measured. Engineers do not
have to minimize the complexity and the organization needed
to successfully launch and manage a software product line. This
engineering involves a complex two-fold software development
process: domain engineering and application engineering.
Domain engineering is responsible for defining the domain
scope and modeling the variability of the product line. This
is an important and critical engineering step where the core
assets are built and the production plan to derive products
is made. The variability model is a structured representation
of the commonalities and the variabilities of the products in
the scope of the line. Abstractly, a variability model is a base
description with variation points and their associated variants.
One of the main notations is feature modeling; however,
metamodels are increasingly used to represent variability.
Application engineering is the process of creating a product
from the product configuration and the core assets following the
production plan. The product configuration is an assembly of
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variants binding the variation points defined in the variability
model. There are still numerous issues in SPLE: Variability
management, product derivation, core assets exploitation,
testing, traceability and tool support are some of these.

Model-driven engineering is another new trend in software
engineering. It considers that models and transformations are
governing software development. Thus, the whole software
development cycle is viewed as a process of creation, iterative
refinement, and integration of models. Models are first-
class entities that denote a viewpoint of a system. Each
model conforms to a metamodel making the grammar and
the constraints of a particular concern explicit. Domain-
specific modeling is used to develop software systems, and
it involves the use of a domain-specific modeling language
to represent the different concerns of an application domain.
Model transformations appear to be one of the most important
operations on models. They are software artifacts that
implement algorithms to transform models that conform
to source metamodels into models that conform to target
metamodels. Transformations are often classified as model-
to-model, model-to-text, or text-to-model transformations.
Transformations can use a declarative or an imperative style;
in the latter,we express the transformation scheduling.Vertical
transformations are model transformations crosscutting
the level of abstractions. Horizontal transformations are
mechanisms to transform models at the same level of
abstraction but integrating several concerns or points of view
of an application domain. MDE technologies are now mature
technologies and tool supports such as the Eclipse modeling
framework, the Topcased toolkit, and the oAW framework.
Model transformation languages exist as QVT, ATL, or the
Xtend and Xpand from oAW.

MDE appears as an effective technique for product
lines since it provides uniformity and abstraction for
software artifacts and processes. The ability to build complex
transformations is crucial to automate domain and application
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engineering. Model-driven engineering techniques and tools
have the potential to increase the productivity and quality of
software engineering processes significantly. The integration
of both approaches requires a tight coupling and tuning of
the derivation chain. To develop complex and modern systems,
we can use several points of view, which can be captured
in different models. This implies capturing the variability in
different models conforming to metamodels, configuring the
product, and defining an automated production chain relying
on a multi-staged process. Examples of variability models
are feature models that organize the client requirements
whereas architectural models are concerned with the structure
of software. The derivation process is a complex task, and
it requires sequences of transformations with a precise
scheduling. Decision models are artifacts specifying base and
specific transformation rules for scheduling the rules for
both commonality and variability. Decision models capture
transformational aspects of the baseline derivation process to
derive specific variable applications.

This general MD-SPL process is effective, but it is not
always flexible enough for fine-grained configuration. We have
to go further to configure differently several instances of the
same kind of artifacts. The purpose of the FieSta approach
is to extend MD-SPL processes to cope with fine-grained
variation and configuration. The fine-grained variation arises
when we need to define variable artifacts of the same kind.
Coarse-grained approaches do not allow the configuration
of different instances of the same metamodel. To solve this
issue, the concepts of binding and constraint models are
introduced. Binding models allow the capture of the links
between a model and a variability model, thus, enabling the
fine-grained configuration of model elements. On the other
hand, the constraint model specifies precisely the semantics
of the bindings using cardinality and structural dependency
properties. Metamodels were created to support the creation
of constraint, binding, and decision models. The baseline
scheduling of the rules is modified according to valid feature
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configurations and bindings of the binding models. Aspects,
which are responsible for the scheduling of rules associated
with variations query the binding model to get the precise
element impacted by the rule.The decision metamodel has been
extended to allow for deriving products taking into account
binding models.

A set of plug-ins has been defined to support the metamodels
required by the FieSta approach. The approach and the tools
are illustrated in two case studies.The first one, the smart home
system, is a classic in product line engineering. The second one
is typical of many business applications where variations are
important for presentation, persistence, or interoperability, but
where computation and control are quite simple or standard.
This is a simple stand-alone, yet generic, application managing
data collection.

9.2. MD-SPL engineering

Today, software engineers need to be aware about modern
development techniques such as the ones discussed in this
book. As summarized in the previous section, there are
important advantages of using SPL and MDE; however, the
total amount of benefits is greater than the sum of its parts.
Nevertheless, this engineering is complex and tricky. The first
step is to acquire the SPL and MDE principles and to merge
them both in a consistent and efficient way. The general process
presented in Chapter 4 is a compound from metamodels and
models to capture domain scope and product configuration.
Transformation rules and decision models are used to automate
the production plan. We analyze some related issues: multiple
points of view, multiple variability models, and multi-stage
processes to model variation, to configure and to generate the
products. This first level does not allow fine-grained variations
and configurations.

The second level is to introduce a way to take into account
specific features at the level of metamodel instances. This
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obviously complicates the modeling and the derivation tool
chain.

The FieSta approach is our MD-SPL chain coping with
fine-grained variations and configurations. In this section, we
analyze the advantages and drawbacks of FieSta regarding the
MD-SPL engineering mechanisms. We focus on two aspects
impacted by fine-grained variability: i) variability expression
and product configuration in MD-SPL, and ii) the derivation of
configured products. We also compare FieSta with other MD-
SPL approaches.

9.2.1. Metamodeling and feature modeling

We use metamodeling and feature modeling for capturing
and expressing variability. Metamodels facilitate modeling
variations at the language level. Product designers, for
instance, building architects, are capable of configuring
different products by creating diverse building models. Feature
modeling allows us to configure products by selecting features.
Therefore, for instance, facilities designers and software
architects can configure products without the need for creating
complex models.

Using feature modeling and metamodeling separately gives
us the flexibility and power of expression of metamodels, and
the simplicity of feature models.We have also proposed to relate
metamodels and feature models to create what we have named
constraint models. Constraint models allow us to express fine-
grained variations between products of MD-SPL. We have
shown how to express the possible fine-grained variations
between products of an MD-SPL by creating relationships
between metamodels and feature models. For example,
fine-grained variations allow us to express that two Smart-
Home systems could be different in the location of their
automatic windows.
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As we demonstrated in Chapter 6 and in [ARB 09], our
mechanism for expressing fine-grained variations between
products of an MD-SPL by using constraint models extends the
expressive power of variability in MD-SPL, and consequently,
extends the scope of products that can be fine-grained
configured.

9.2.2. Multi-staged configuration of products

Our approach supports the modeling of variability in several
stages. We allow product line architects, at different (staged)
times, to express and capture coarse and fine-grained
variations between members of product lines. This helps
product line architects with different skills to focus on
particular concerns at different times.

At configuration time, we allow product designers
configuring products at different binding times to choose
at each stage specific variants to create domain models and
binding models. Thus, we postponed the binding time of
variations facilitating the intervention of stakeholders with
different profiles in the configuration process. For instance,
facilities designers and software architects can provide
their choices for the facilities and software architecture of
Smart-Homes, at different times.

9.2.3. Coarse and fine-grained variations and
configurations

As far as we know, our approach is the only MD-SPL
approach allowing the creation of fine-grained configurations
and derivation of products based on such configurations. This
adds expressive power to variability modeling, which usually
only captures coarse-grained variability. We have presented
the way to model fine-grained configurations between product
line members by means of binding models. A binding model
allows us to configure model elements individually based on
features. For example, we have created a binding to indicate
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that the feature Periodic Component affects individually
the component Air Conditioning Controller, and the
feature Keypad affects individually the door mainDoorD2.
We first introduced our mechanism for creating fine-grained
configurations in [GAR 07], then we used it in [ARB 07a,
ARB 07b, ANQ 08, ARB 09].

9.2.4. Core assets development and decision models

We improved the use of explicit decision models in MD-
SPL engineering. Our decision models allow us to capture
separately i) the base and specific model transformation
rules used to derive product line members, ii) the variants
represented in feature models, and iii) the relationships
between model transformations and variants. Decision
models are the key of our mechanism to compose model
transformations and adapt their execution ordering according
to particular product configurations.

Other approaches such as Loughran et al.’s
approach [LOU 08, SAN 08] and Voelter and Groher’s
approach [VÖL 07b] have proposed the use of decision
models. Our approach, however, is concerned with both the
problem of transformation rules composition based on product
configurations, which is a complex problem in MD-SPL
engineering, and the independence from model transformation
languages to create decision models. As we have presented
before in section 8.9, the Loughran et al. approach is only
concerned with the composition of software components, and
the Voelter and Groher’s approach is restricted to the use
of a platform-dependent language, Xtend, to create decision
models. Furthermore, our mechanism based on decision
models to derive products takes into account that several
features selected together may imply different adaptations
than those required when features are selected separately.
This is not taken into account by the Loughran et al. approach.
Our decision models also capture the required information
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about how transformation rules must be composed to derive
fine-grained configured products. Given that our approach
takes into account fine-grained variations and fine-grained
configurations, it also copes with the derivation of fine-grained
configured products. Our decision models have been presented
in [ARB 09a, ARB 09b, ARB 08].

9.2.5. Product derivation

Based on our decision models, we propose a mechanism for
selecting transformation rules and modifying their execution
ordering according to selected variants. In our current
implementation, we have used the model transformation
engine of oAW to execute model transformation workflows
derived from our decision models. Our decision models,
however, are independent of model transformation languages
and can be used to support product derivation in contexts
different from the oAW context. For instance, currently, we
explore how our decision models can be used to derive products
by using the ATL language and its facilities for transformation
rules composition [ROM 09]. Further work on this field is part
of our future work. Our mechanism for product derivation has
been presented in [ARB 09a, ARB 08].

9.2.6. Comparison table

Table 9.1 presents a summary of this section taking into
account our approach and the related approaches. This table
summarizes the comparaison of MD-SPL approaches (the
rows). The lines represent the various characteristics we
previously discussed (yes/no meaning presence/absence and n/a
for not applicable).

We believe that our MDE mechanisms are scalable to
traditional SPL engineering where models are used only as
artifacts for documentation. Currently, MDE is being used not
only in academia but also in industry. Several international
events, journals, and research projects are concerned about the
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FieSta Czarnecki Wagelaar Loughran Voelter
and et al. and

Antkiewicz Groher

Metamodeling for
expressing variability
and modeling for
configuring products Yes No Yes No Yes

Multi-staged
configuration of
products Yes No No No Yes

Expression of
fine-grained variations
and creation of
fine-grained
configurations Yes No No No No

Creation of explicit
decision models Yes No No Yes Yes

Decision models take
into account the
effects that possible
feature combinations
may have in
final products Yes n/a n/a No Yes

Decision models
independent of
particular
implementation
languages Yes n/a n/a Yes No

Selection of
transformation rules
according to selected
variants Yes No Yes Yes Yes

Mechanisms to
modify the rules
execution ordering
according to selected
variants Yes No Yes No Yes

Mechanisms for
modifying execution
ordering of
transformation rules
independent of
particular model
transformation
languages Yes n/a No n/a Yes

Table 9.1. Summary of the discussion regarding our contribution
to the MD-SPL engineering domain
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subject. Thus, a body of knowledge including tool support is
being created to support MDE. We have shown through this
book how our MDE mechanisms contribute toward making SPL
engineering more feasible and profitable, and consequently
more interesting for SPL developers to adopt it.

9.2.7. Perspectives

In this book, we integrated model-driven engineering and
software product line engineering. The following subsection
presents some continuation of this work.

We discussed in section 5.4 some limitations of our approach.
We consider it important to improve our approach overcoming
such limitations. First, a mechanism is required to validate
that for each possible feature configuration, product line
architects provide the required transformation rules to derive
valid products. Second, another mechanism is required that
allows product line architects to capture possible feature
interactions by means of scenarios, and thus, to create and
relate transformation rules to such scenarios. Finally, it is
required to consider bindings that satisfy several constraints
when execution ordering of transformation rules is modified
according to binding models.

We focused on the use of feature models as variability
models. However, other variability models, such as ontology
models or the one presented by Bayer et al. [BAY 06], involve
other relevant concepts differencing only in Group,Grouped or
Solitary Feature. These variability models deserve special
attention for the rich semantics they provide to express
variability in product lines. We consider it fruitful to integrate
ontology models into our approach to complement feature
models, to improve the expressive power of variability models,
and to extend the scope of MD-SPL.

Our approach supports staged capture of variability,
and also staged configuration of products. We showed,
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using our case study, how one of these stages involved
concerns about software architecture based on components.
For this, we created one specialized metamodel capturing
concepts of component-based software development. There are,
however, several Architectural Description Languages (ADL)
such as [ASI 07, DAS 05, RAS 11], which are based on
metamodels that include very complete information about
architectural concerns. We consider it important to include
the use of these ADLs into our approach to extend the
scope of variations we are able to manage regarding
software architecture, irrespective of the domain of the
MD-SPL we are interested in developing.

We considered AOP as a suitable paradigm to tackle the
problem of adapting the execution ordering of transformation
rules. Recent work (see [ASP 08]), has shown how AOM
is a valuable paradigm to be incorporated in model-driven
engineering. AOM allows product line architects to create
re-usable models, which during the derivation of product
line members can be woven with other models according
to variability choices performed by product designers. We
believe that AOM enables the explicit expression and
modularization of variability on model level and facilitates
the maintainability and re-use of models as core assets.
Thus, we consider it important to integrate AOM in our
approach.

Declarative programming minimizes side effects by
describing what the program should accomplish, rather
than describing how to go about accomplishing it [LLO 94].
Declarative programming in MDE has a number of advantages.
Declarative transformation rules are based on specifying
relations between source and target patterns, hiding the
details related to selection of source elements, rule triggering,
and ordering [JOU 05]. We believe that the integration of
declarative transformation rules may help to deal with the
problem of adapting the execution ordering of transformation
rules, given different product configurations.
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Furthermore, we currently explore constraint programming,
which is a type of declarative programming, to tackle the
problem of relating transformation rules to sets of variants
with particular interactions stated in the form of constraints.
The idea of using constraints to define suitable configurations
can be extended to the design and implementation of a
constraint system specialized in those kind of constraints,
in which all the power of specialized solvers can be used
to validate configurations. Likewise, it could be important
to explore if modeling the transformation of the problem of
scheduling rules using constraints can be a more efficient way
to solve it, instead of using aspect-oriented programming.

We have started a study tending to formalize our approach
using basic set theory. Our aim is to generalize our MD-SPL
approach making it extensible and independent of specific
platform modeling frameworks and/or model transformation
languages. One benefit, maybe the most important of such
activity, is to get a better insight into product lines and model-
driven engineering.
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