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PREFACE

A TRIBUTE TO THE LATE PROFESSORS ABRAHAM CHARNES
AND WILLIAM W. COOPER

I dedicate this volume to the late Professors Abraham Charnes (1917–1992) and
William W. Cooper (1910–2012), who opened the door to this wonderful land of
research in efficiency and productivity.

Memoir of Abe Charnes

It was in August 1984 when I visited Abe for the first time in Austin. I was invited to his
home and we talked until midnight. At the end of my visit, Karmarkar’s LP algorithm
appeared in the magazine Science. Abe was strongly against the projective transforma-
tion that Karmarkar was reported to employ and against the way the article was dis-
closed. In January 1987, I was invited to Austin, for the second time, in order to
collaborate on research with Abe. The sudden visit was opened by an international tel-
egram from Austin to my home in Tokyo, beginning with the phrase ‘No Karmarkar,
no, no, no.’ I saw him again in 1988 at the 13th International Symposium on Mathe-
matical Programming in Tokyo and in 1990 at IFORS in Greece. Each time, it was
impressive to touch his strong and warm personality even when he showed his likes
and dislikes directly.

In this volume, I have added a memorial unpublished paper by Abe and me, ‘DEA
models with infinitely many DMUs’, which was written in January 1987 when
I visited Abe in Austin.



Memoir of Bill Cooper

I cannot help but say how Imiss Bill. I met Bill for the first time in 1987 at Dr Charnes’
office in Austin. In 1993, Bill visited Aoyama-Gakuin in Tokyo, where we agreed to
write a textbook on DEA. I began to write the first draft in 1996 and the book was
published in late 1999 by Kluwer (now Springer) under the names of Cooper, Seiford
and Tone. I will talk about something that happened during work on this publication.
We exchanged a memorandum on writing this book. First, we agreed it should be a
textbook but not a monograph. At that time, we had noWindows or e-mail. So, I wrote
the first draft in TeX and sent the dvi file as printed matter to Bill by airmail. It took
about one week to reach Austin. Bill carefully read my draft and responded to me by
revising it with his handwritten material. It was a wonderful experience for me that,
even if I wrote only a few lines on some subject, he expanded it to several pages! His
sentences were long with no periods but with much ornamentation. When I was an
undergraduate student, I read Immanuel Kant’s Prolegomena zu einer jeden künftigen
Metaphysik, die als Wissenschaft wird auftreten können, in the Reclam edition.
I wondered how the great philosopher was able to express his thoughts in continuous
long sentences in a multi-stratified manner. I felt the same surprise at Bill’s writing.
I first learnt to write such long sentences just like composing a symphony. Bill’s brain
was full of polyphonic structure. Moreover, his handwritten letters were difficult to
decipher, as many acquaintances know. He said that when he was a schoolboy he
won an award in penmanship. However, after the invention of the ballpoint pen,
he came to write speedily to express his flowing ideas one after another. So, his cacog-
raphy was caused by the ballpoint pen!

No words can express the deep sorrow I felt when I heard of his demise.

About This Book

This book is a product of the DEAWorkshop 2015 held on 1 and 2 December 2015 at
the National Graduate Institute for Policy Studies (GRIPS) in Tokyo, Japan. The
workshop was supported by the Japan Society for Promotion of Science (JSPS),
Grant-in-Aid for Scientific Research (B), #25282090, titled ‘Studies in Theory and
Applications of DEA for Forecasting Purposes’. I hope DEA will be utilized not only
for evaluation of the efficiency of past and present achievements but also for future
prospects.

I thank all authors for contributing their valuable work.
This book consists of three parts: Part I, DEA Theory; Part II, DEA Applications

(Past–Present Scenario); and Part III, DEA for Forecasting and Decision Making
(Past–Present–Future Scenario).

I acknowledge great support from the GRIPS staff, particularly Ms Kyoko Hirose,
MsAkiko Sawaji, Mr Tohru Takahashi and Dr Xing Zhang, for their efforts in holding
the Workshop. Special thanks are due to Mr Takahashi. In great measure, this book
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could not have been completed without his extraordinary efforts to edit the many
manuscripts by many authors into the present volume.

I wish to thank the people at Wiley for their support for this project, especially
Shivana Raj, Jeba Paul Sharon, Rajitha Selvarajan and, most importantly, Douglas
Meekison, who as a copyeditor did an excellent job of polishing the content and style
of this book. I believe that this book would never have appeared without their kind and
patient collaboration.

Last but not least, I thank Miki Tsutsui. She has been my continual colleague for a
long time.

KAORU TONE

June 2016
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PART I

DEA THEORY



1
RADIAL DEA MODELS

KAORU TONE

National Graduate Institute for Policy Studies, Tokyo, Japan

1.1 INTRODUCTION

Data envelopment analysis (DEA) models started from the seminal paper by Charnes,
Cooper and Rhodes [1] (hereafter referred to as CCR). This opened up fertile territory
for efficiency evaluation. This paper has been cited by more than 20 000 papers as of
the publication date of this book. CCR extended Farrell’s work [2] to models with
multiple inputs and multiple outputs by utilizing linear programming technology
and succeeded in establishing DEA as a powerful basis for efficiency analysis.

1.2 BASIC DATA

DEA compares the relative efficiency of a set of enterprises, called DMUs (decision-
making units), which have common input and output factors. Let the numbers of
DMUs, inputs and outputs be n, m and s, respectively. We denote input i and
output r of DMUj by xij i = 1,…,m; j= 1,…,n and yrj r = 1,…,s; j= 1,…,n ,
respectively. The input and output vectors for DMUh (h= 1,…,n) are defined as

xh = x1h,…,xmh
T and yh = y1h,…,ysh

T . The input and output matrices are defined

Advances in DEA Theory and Applications: With Extensions to Forecasting Models,
First Edition. Edited by Kaoru Tone.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.



as X = xij i = 1,…,m; j= 1,…,n and Y= yrj r = 1,…,s; j = 1,…,n . We assume
X> 0 and Y > 0.1 For the input, smaller is better, while for the output, larger is better.
We evaluate DMUs by the ratio scale of output/input.

1.3 INPUT-ORIENTED CCR MODEL

Let the weights of the inputs and outputs be v = v1,…,vm ≥ 0 and u= u1,…,um ≥ 0.
The input-oriented CCR model evaluates the efficiency of a DMU
xh,yh h= 1,…,n by solving the following fractional programming problem:

[Ratio form]

max
v,u

θ =
u1y1h + + usysh
v1x1h + + vmxmh

(1.1)

s t
u1y1j + + usysj
v1x1j + + vmxmj

≤ 1 j= 1,…,n

v ≥ 0,u ≥ 0
(1.2)

This fractional program can be transformed into the following equivalent linear
program:

[Multiplier form]

max
v,u

θ = u1y1h + + usysh (1.3)

s t v1x1h + + vmxmh = 1

v1x1j + + vmxmj−u1y1j− −usysj ≥ 0 j= 1,…,n

v ≥ 0,u ≥ 0

(1.4)

The dual to the above LP can be described as follows:

[Envelopment form]

min
λ,s− ,s +

θ (1.5)

s t xi1λ1 + + xinλn−θxih ≤ 0 or xi1λ1 + + xinλn−θxih + s−i = 0 i = 1,…,m

yr1λ1 + + yrnλn ≥ yrh or yr1λ1 + + yrnλn−s +r = yrh r = 1,…,s

λj ≥ 0 j , s−i ≥ 0 i , s +r ≥ 0 r

(1.6)

1 In some models, we can relax these assumptions.

4 ADVANCES IN DEA THEORY AND APPLICATIONS



λ, s− and s + are the intensity, input-slack and output-slack vectors, respectively. This
model aims at minimizing inputs while producing at least the given output level.

Let an optimal solution to [Envelopment form] be θ∗,λ∗,s−∗ and s + ∗.

Definition 1.1 (CCR score)
The CCR score of DMUh is defined by θ∗.

Definition 1.2 (Strongly efficient)
DMUh is stronglyCCR efficient if θ∗ = 1 and (s−∗ = 0 and s + ∗ = 0) for all optimal solu-
tions to [Envelopment form].

Definition 1.3 (Weakly efficient)
DMUh is weakly CCR efficient if θ∗ = 1 and (s−∗ 0 or s + ∗ 0) for some optimal
solutions to [Envelopment form].

Definition 1.4 (Inefficient)
DMUh is CCR inefficient if θ∗ < 1.

Definition 1.5 (Production possibility set)
From the data matrices X and Y, we define the production possibility set P by

P= x,y x ≥Xλ,y ≤Yλ,λ ≥ 0 (1.7)

Figure 1.1 shows a typical production possibility set in two dimensions for the single-
input and single-output case. In this example, the possibility set is determined by B
and the ray from the origin through B is the efficient frontier. DMU A is inefficient
and its input-oriented score is PQ/PA = 0.5.
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Figure 1.1 Production possibility set for the CCR model.
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1.3.1 The CRS Model

This model is called the constant-returns-to-scale (CRS) model.

Definition 1.6 (Reference set)
For an optimal solution θ∗,λ∗,s−∗,s + ∗ to [Envelopment form], we define the
reference set of DMUh by

E h = i λ∗j > 0; j= 1,…,n (1.8)

The reference set is not always uniquely determined.

Definition 1.7 (CCR projection)
The CCR projection is defined as

xh = θ∗xh−s−∗, yh = yh + s
+ ∗ (1.9)

Theorem 1.1 The projected xh,yh is strongly CCR efficient.

1.4 THE INPUT-ORIENTED BCC MODEL

The envelopment form of the BCC (Banker–Charnes–Cooper) model [3] is defined as
follows:

[Envelopment form of the BCC model]

min
λ,s− ,s +

θ (1.10)

s t xi1λ1 + + xinλn−θxih ≤ 0 or xi1λ1 + + xinλn−θxih + s−i = 0 i= 1,…,m

yr1λ1 + + yrnλn ≥ yrh or yr1λ1 + + yrnλn−s+r = yrh r = 1,…,s

λ1 + λn = 1

λj ≥ 0 j , s−i ≥ 0 i , s+r ≥ 0 r

(1.11)

The multiplier form is as follows:

[Multiplier form]

max
v,u,u0

θ = u1y1h +…+ usysh−u0 (1.12)

s t v1x1h + + vmxmh = 1

v1x1j + + vmxmj−u1y1j− −usysj + u0 ≥ 0 j = 1,…,n

v ≥ 0,u ≥ 0,u0 free in sign

(1.13)
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The equivalent BCC fractional program is obtained from the multiplier form as
follows:

[Ratio form of the BCC model]

max
v,u,u0

θ =
u1y1h + + usysh−u0
v1x1h + + vmxmh

(1.14)

s t
u1y1j + + usysj−u0
v1x1j + + vmxmj

≤ 1 j = 1,…,n

v ≥ 0,u ≥ 0, u0 free in sign
(1.15)

Figure 1.2 shows a typical production possibility set for the BCC model.

1.4.1 The VRS Model

This model is called the variable-returns-to-scale (VRS) model.

1.5 THE OUTPUT-ORIENTED MODEL

This model attempts to maximize the outputs while using no more than the observed
amount of any input:

η∗ =maxη (1.16)

s t xi1λ1 + + xinλn ≤ xih0 or xi1λ1 + + xinλn + s−i = xih i= 1,…,m

yr1λ1 + + yrnλn ≥ ηyrh or yr1λ1 + + yrnλn−s+r = ηyrh r = 1,…,s

λj ≥ 0 j , s−i ≥ 0 i , s +r ≥ 0 r

(1.17)

Production 
possibility set

Production
frontiers

O
ut

pu
t

Input

Figure 1.2 Production possibility set for the BCC model.
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We define the output-oriented efficiency θ∗ as the inverse of η∗:

θ∗ = 1 η∗ (1.18)

In Figure 1.1, DMU A has η∗ = RS/RA = 2 and hence its output-oriented score is 0.5.
In the CCR model, the input- and output-oriented scores are identical, whereas in the
BCC model they are usually different.

1.6 ASSURANCE REGION METHOD

In the optimal weight (vi
∗, uj

∗) of a DEA model, we may see many zeros – showing
that the DMU has a weakness in the corresponding items compared with other (effi-
cient) DMUs. Large differences in weights from item to item may also be a concern.
This leads to the assurance region method, which imposes constraints on the relative
magnitudes of the weights for special items. For example, we may add a constraint on
the ratio of weights for Input 1 and Input 2 as follows:

L12 ≤ v2 v1 ≤U12 (1.19)

where L12 andU12 are lower and upper bounds that the ratio v2/v1 may assume. See [4]
for details.

1.7 THE ASSUMPTIONS BEHIND RADIAL MODELS

These models assume a proportional reduction of the inputs (such as θ∗xh) and a
proportional expansion of the outputs (such as η∗yh). In some instances, these
assumptions are too restrictive. This has led to the development of non-radial models.

1.8 A SAMPLE RADIAL MODEL

We show an example of a radial model here. Table 1.1 represents 12 hospitals with
two inputs, Doctor and Nurse, and two outputs, Outpatient and Inpatient, where (I)
and (O) indicate input and output, respectively.

Table 1.2 reports scores for the hospital example, both input-oriented (CCR-I,
BCC-I) and output-oriented (CCR-O, BCC-O), while Figure 1.3 shows a graphical
comparison. The scores for CCR-I and CCR-O are identical.2

2 Software for the CCR, BCC and other models is included in DEA-Solver Pro V13 (http://www.saitech-inc.
com). See also Appendix A.
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TABLE 1.1 A hospital example.

Hospital (I) Doctor (I) Nurse (O) Outpatient (O) Inpatient

A 20 151 100 90
B 19 131 150 50
C 25 160 100 55
D 27 168 180 72
E 25 158 80 66
F 55 255 150 60
G 33 235 170 70
H 31 206 130 60
I 30 244 110 60
J 50 290 250 100
K 53 306 230 110
L 38 284 150 90

TABLE 1.2 Efficiency scores obtained by radial models.

Hospital CCR-I CCR-O BCC-I BCC-O

A 1 1 1 1
B 1 1 1 1
C 0.6915 0.6915 0.8344 0.6916
D 1 1 1 1
E 0.7208 0.7208 0.8797 0.7332
F 0.5490 0.5490 0.5555 0.6524
G 0.7048 0.7048 0.7676 0.8693
H 0.6366 0.6366 0.6602 0.7253
I 0.5651 0.5651 0.6417 0.6809
J 0.8046 0.8046 1 1
K 0.7694 0.7694 1 1
L 0.6362 0.6362 0.7556 0.8919

0
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0.4

0.6

0.8

1

1.2

A B C D E F G H I J K  L

CCR BCC-I BCC-O

Figure 1.3 Comparison of scores.
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2
NON-RADIAL DEA MODELS

KAORU TONE

National Graduate Institute for Policy Studies, Tokyo, Japan

2.1 INTRODUCTION

There are two types of model in data envelopment analysis (DEA): radial and non-
radial. Radial models are represented by the CCR model. Basically, they deal with
proportional changes of inputs or outputs. As such, the CCR score reflects the pro-
portional maximum input (or output) reduction (or expansion) rate which is com-
mon to all inputs (or outputs). However, in real-world businesses, not all inputs
(or outputs) behave in a proportional way. For example, if we employ labour, mate-
rials and capital as inputs, some of them are substitutional and do not change pro-
portionally. Another shortcoming of radial models is the neglect of slacks in
reporting the efficiency score. In many cases, we find a lot of remaining non-radial
slacks. So, if these slacks have an important role in evaluating managerial
efficiency, the radial approaches may mislead the decision process if we utilize
the efficiency score as the only index for evaluating the performance of decision-
making units (DMUs).

In contrast, non-radial SBM (slacks-based measure) models put aside the assump-
tion of proportional changes in inputs and outputs, and deal with slacks directly. This
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may discard varying proportions of the original inputs and outputs. SBM models
are designed to meet the following two conditions:

1. Units-invariant: the measure should be invariant with respect to the units of
the data.

2. Monotone: the measure should be monotonically decreasing in each slack in the
input and output.

The rest of this chapter organized as follows. Section 2.2 introduces SBMmodels in
the input-, output- and non-oriented cases under the constant-returns-to-scale assump-
tion.We present an illustrative example in Section 2.3.We observe the dual side of these
models in Section 2.4.We extend them to the variable-returns-to-scale environment and
to weighted-SBM models in Section 2.5. Section 2.6 concludes the chapter.

2.2 THE SBM MODEL

The SBM model was introduced by Tone [1] (see also Pastor et al. [2]). It has three
variations, namely input-, output- and non-oriented. The non-oriented model is both
input- and output-oriented.

Let the set of DMUs be J = 1, 2,…,n , each DMU having m inputs and s outputs.

We denote the vectors of inputs and outputs for DMUj by xj = x1j,x2j,…,xmj
T
and

yj = y1j,y2j,…,ysj
T
, respectively. We define input and output matrices X and Y by

X = x1,x2, ,xn Rm × n andY= y1,y2, ,yn Rs × n (2.1)

We assume that all data are positive, that is, X> 0 and Y> 0.
The production possibility set is defined using a non-negative combination of the

DMUs in the set J as

P= x,y x ≥
n

j= 1
λjxj, 0 ≤ y ≤

n

j= 1
λjyj, λ ≥ 0 (2.2)

λ= λ1,λ2,…,λn
T is called the intensity vector.

The inequalities in (2.2) can be transformed into equalities by introducing slacks as
follows:

x=
n

j= 1
λjxj + s−

y=
n

j= 1
λjyj−s

+

s− ≥ 0, s + ≥ 0

(2.3)

where s− = s−1 ,s
−
2 ,…,s−m

T
Rm and + = s +1 ,s

+
2 ,…,s+s

T
Rs are called the input

and output slacks, respectively.
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2.2.1 Input-Oriented SBM

In order to evaluate the relative efficiency of DMUh = xh,yh , we solve the following
linear program. This process is repeated n times for h = 1,…,n:

[SBM-I-C] (Input-oriented SBM under constant-returns-to-scale assumption)

ρ∗I = min
λ,s− ,s +

1−
1
m

m

i= 1

s−i
xih

subject to

xih =
n

j= 1
xijλj + s−i i = 1,…,m

yrh =
n

j= 1
yrjλj−s +r r = 1,…,s

λj ≥ 0 j , s−i ≥ 0 i , s +r ≥ 0 r

(2.4)

ρ∗I is called the SBM-input efficiency.

Proposition 2.1 ρ∗I is units-invariant, that is, it is independent of the units in which the
inputs and outputs are measured.

Let an optimal solution of [SBM-I-C] be λ∗,s−∗,s+ ∗ .

Definition 2.1 (SBM-input-efficient)
A DMUh = xh,yh is called SBM-input-efficient if ρ∗I = 1 holds.

This means s−∗ = 0, that is, all input slacks are zero. However, output slacks may be
non-zero.

Definition 2.2 (Projection)
Using an optimal solution λ∗,s−∗,s+ ∗ , we define a projection of DMUh = xh,yh by

xh,yh = xh−s−∗,yh + s
+ ∗ (2.5)

Proposition 2.2 The projected DMU is SBM-input-efficient.

Definition 2.3 (Reference set)
We define a reference set R of DMUh = xh,yh by

R= j λ∗j > 0, j J (2.6)

Thus, (xh, yh) can be expressed as follows:

xih = j R
xijλ

∗
j + s

−∗
i i= 1,…,m

yrh = j R
yrjλ

∗
j −s

+ ∗
r r = 1,…,s

(2.7)

Proposition 2.3 DMUs in the reference set R of (xh, yh) are SBM-input-efficient.

Proposition 2.4 The SBM-input-efficiency score is not greater than the CCR
efficiency score. (See Tone [1]) for a proof.)
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2.2.2 Output-Oriented SBM

The output-oriented SBM efficiency ρ∗O of DMUh = xh,yh is defined by
[SBM-O-C]

1 ρ∗O = max
λ,s− ,s+

1 +
1
s

s

r = 1

s +r
yrh

subject to

xih =
n

j= 1
xijλj + s−i i= 1,…,m

yrh =
n

j= 1
yrjλj−s+r r = 1,…,s

λj ≥ 0 j , s−i ≥ 0 i , s+r ≥ 0 r

(2.8)

Let an optimal solution of [SBM-O-C] be λ∗,s−∗,s + ∗ .

Definition 2.4 (SBM-output-efficient)
A DMUh = xh,yh is called SBM-output-efficient if ρ∗O = 1 holds.

This means s + ∗ = 0, that is, all output slacks are zero. However, the input slacks
may be non-zero.

Definition 2.5 (Projection)
Using an optimal solution λ∗,s−∗,s + ∗ , we define a projection of DMUh = xh,yh by

xh,yh = xh−s−∗,yh + s
+ ∗ (2.9)

Proposition 2.5 The projected DMU is SBM-output-efficient.

2.2.3 Non-Oriented SBM

The non-oriented or both-oriented SBM efficiency ρ∗IO is defined by
[SBM-C]

ρ∗IO = min
λ,s− ,s+

1−
1
m

m

i= 1

s−i
xih

1 +
1
s

s

r = 1

s +r
yrh

subject to

xih =
n

j= 1
xijλj + s−i i= 1,…,m

yrh =
n

j= 1
yrjλj−s+r r = 1,…,s

λj ≥ 0 j , s−i ≥ 0 i , s+r ≥ 0 r

(2.10)
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Definition 2.6 (SBM-efficient)
A DMUh = xh,yh is called SBM-efficient if ρ∗IO = 1 holds.

This means s− = 0 and s+ ∗ = 0, that is, all input and output slacks are zero.
[SBM-C] can be transformed into a linear program using the Charnes–Cooper

transformation as follows:
[SBM-C-LP]

τ∗ = min
t,Λ,S− ,S+

t−
1
m

m

i= 1

S−
i

xih
subject to

1 = t +
1
s

s

r = 1

S+
r

yrh

txih =
n

j= 1
xijΛj + S−

i i= 1,…,m

tyrh =
n

j= 1
yrjΛj−S +

r r = 1,…,s

Λj ≥ 0 j , S−
i ≥ 0 i , S+

r ≥ 0 r , t > 0

(2.11)

Let an optimal solution be τ∗, t∗,Λ∗,S−∗,S+ ∗ . Then, we have an optimal solution of
[SBM-C] defined by

ρ∗ = τ∗, λ∗ =Λ∗ t∗, s−∗ = S−∗ t∗, s + ∗ =S+ ∗ t∗ (2.12)

2.3 AN EXAMPLE OF AN SBM MODEL

Table 2.1 shows data for six DMUs using two inputs (x1, x2) to produce two outputs
(y1, y2). We report the results obtained from the SBMmodels along with that from the
CCR model in Table 2.2.1

1 Software for SBM models is included in DEA-Solver Pro V13 (http://www.saitech-inc.com). See also
Appendix A.

TABLE 2.1 Data.

DMU x1 x2 y1 y2

A 4 3 1 2
B 14 6 2 6
C 24 3 3 12
D 20 2 2 6
E 48 4 4 16
F 50 7.5 5 30
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The CCR-I model found five DMUs out of six to be efficient. This caused by
the radial nature of the model, although slacks remain in some of them. However,
the SBM models deal with slacks directly and found DMUs D and E inefficient.
In the SBM-O-C model, DMU E was judged to be efficient, since this DMU has
no output slacks. Figure 2.1 compares the scores graphically.

Table 2.3 shows the optimal slacks for the CCR-I and SBM-I-C models. DMUs
D and E have positive slacks in some input or output. The CCRmodel does not account

TABLE 2.2 Scores and ranks of efficiency.

CCR-I SBM-I-C SBM-O-C SBM-C

DMU Score Rank Score Rank Score Rank Score Rank

A 1 1 1 1 1 1 1 1
B 0.8085 6 0.75 6 0.8067 6 0.6923 6
C 1 1 1 1 1 1 1 1
D 1 1 0.9 4 0.8571 5 0.7714 5
E 1 1 0.8333 5 1 1 0.8333 4
F 1 1 1 1 1 1 1 1

0.4

0.6

0.8

1

A B C D E F

S
co

re

CCR-I SBM-I-C SBM-O-C SBM-C

Figure 2.1 Comparison of scores.

TABLE 2.3 Optimal slacks for CCR-I and SBM-I-C.

CCR-I SBM-I-C

DMU θ∗ s−∗1 s−∗2 s + ∗1 s + ∗2 ρ∗I s−∗1 s−∗2 s + ∗1 s + ∗2

A 1 0 0 0 0 1 0 0 0 0
B 0.8085 0 0 0 0 0.75 0 3 0 1
C 1 0 0 0 0 1 0 0 0 0
D 1 4 0 0 2 0.9 4 0 0 2
E 1 16 0 0 0 0.8333 16 0 0 0
F 1 0 0 0 0 1 0 0 0 0
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for them in the efficiency measure. However, the SBM-I-Cmodel accounts for the input
slacks in the efficiency measurement, and DMUs D and E are judged inefficient.

2.4 THE DUAL PROGRAM OF THE SBM MODEL

The dual program of [SBM-C-LP] can be expressed as follows, with the dual vari-
ables v Rm andu Rs:

[SBM-C-LP-Dual]

max
ξ,v,u

ξ

subject to ξ+ vxh−uyh = 1

−vX + uY ≤ 0, v ≥
1
m

1 xh , u ≥
ξ

s
1 yh

(2.13)

where the notation [1/xh] designates the row vector (1/x1h, 1/x2h,…, 1/xmh). By elim-
inating ξ from the above program, we have the following equivalent program:

max
v,u

uyh−vxh

subject to −vX +uY ≤ 0

v ≥
1
m

1 xh , u ≥
1−vxh +uyh

s
1 yh

(2.14)

The dual variables v ∊ Rm and u ∊ Rs can be interpreted as the virtual costs and
prices of the input and output items, respectively. The dual program aims to find
the optimal virtual costs and prices for DMU (xh,yh) so that the profit uyj − vxj
does not exceed zero for any DMU (including (xh,yh)), and to maximize the profit
uyh − vxh for the target DMU (xh,yh). Apparently, the optimal profit is at best zero
and hence ξ∗ = 1 for the SBM-C efficient DMUs.

2.5 EXTENSIONS OF THE SBM MODEL

In this section, we extend the SBM model to the variable-returns-to-scale (VRS)
environment, and introduce the weighted-SBM model. See [3] for details.

2.5.1 Variable-Returns-to-Scale (VRS) Model

All models can be adjusted to the variable-returns-to-scale environment by adding the
constraint eλ= 1, where e denotes a row vector in which all elements are equal to one.
Thus, the production possibility set is modified to

PVRS = x,y xi ≥
n

j= 1
xij i , 0 ≤ yr ≤

n

j= 1
yrj r , eλ= 1, λ ≥ 0 (2.15)
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For example, input-oriented SBM under VRS can be defined as follows:
[SBM-I-V] (Input-oriented SBM under variable-returns-to-scale assumption)

ρ∗I = min
λ,s− ,s+

1−
1
m

m

i= 1

s−i
xih

subject to

xih =
n

j= 1
xijλj + s−i i= 1,…,m

yrh =
n

j= 1
yrjλj−s+r r = 1,…,s

n

j= 1
λj = 1, λj ≥ 0 j , s−i ≥ 0 i , s+r ≥ 0 r

(2.16)

We can define [SBM-O-V] and [SBM-V] models similarly.

2.5.2 Weighted-SBM Model

We can assign weights to the input and output slacks in the objective function of (2.10)
corresponding to the relative importance of items as follows:

[Weighted-SBM-C]

ρ∗IO = min
λ,s− ,s+

1−
1
m

m

i= 1

w−
i s−i
xih

1 +
1
s

s

r = 1

w+
r s +r
yrh

subject to

xih =
n

j= 1
xijλj + s−i i= 1,…,m

yrh =
n

j= 1
yrjλj−s+r r = 1,…,s

λj ≥ 0 j , s−i ≥ 0 i , s+r ≥ 0 r

(2.17)

with
m

i= 1
w−
i =m and

m

r = 1
w+
r = s. The weights should reflect the intentions of

the decision-makers. We can define input- and output-oriented weighted-SBM
models by neglecting the denominator and numerator, respectively, of the objective
function in (2.17).

2.6 CONCLUDING REMARKS

In this chapter, we have introduced non-radial slacks-based measure of efficiency
(SBM) models and their extensions. SBM models utilize the amount of slacks to
the maximum extent in measuring efficiency. This can be a merit as well as a demerit.
Weighted-SBM models serve to make models more reliable. This corresponds to the
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assurance region approach in radial models. Readers can learn more from the refer-
ences cited in this chapter. In Chapter 22, we extend the ordinary SBM (-Min) model
to an SBM-Max model which searches for nearly the closest point on the efficient
frontiers. Thus, the projected point can be obtained with less input reduction (or output
expansion).
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3.1 INTRODUCTION

Luenberger [1, 2] formulated the benefit and shortage functions, and these functions
were popularized as directional distance functions in production economics by
Chambers, Chung, and Färe [3, 4] and by Färe and Grosskopf [5]. Shephard’s [6, 7]
distance functions are special cases of directional distance functions.

In this chapter, Section 3.2 presents the basics of the directional distance DEA
(DD) model under constant returns to scale (CRS), while Section 3.3 extends
the model to variable returns to scale (VRS). Section 3.4 introduces a slacks-based
inefficiency model, and Section 3.5 discusses the choice of directional vectors.

3.2 DIRECTIONAL DISTANCE MODEL

This section formalizes a directional distance function methodology within a
multi-output, multi-input setting. Let y ℜs

+ and x ℜm
+ denote the vectors
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of outputs and inputs, respectively. The conceptual production technology is
defined as

T = x,y ℜm
+ ×ℜs

+ inputsx yield outputs y (3.1)

which is the set of feasible inputs and outputs. The production technology (3.1) is
assumed to be a nonempty, closed set, exhibiting free input and output disposability.
In addition, the producible output set is assumed to be bounded for finite inputs. This
boundedness property is sometimes called scarcity, and indicates that finite inputs
cannot produce infinite outputs. Chambers et al. [3] introduced a directional (technol-
ogy) distance function, which is a complete characterization of the production
technology (3.1). This directional distance function is defined by

D x,y;g = sup β x−βg− ,y + βg + T (3.2)

where g= g− ,g+ = g−
1 ,…,g−

m ,g
+
1 ,…,g +

s ℜm
+ ×ℜs

+ is the directional vector that

scale outputs and inputs to the frontier of the technology set. Since D x,y;g ≥ 0 if
and only if x,y T , the directional technology distance function (3.2) is a
complete characterization of the production technology (3.1). Under regularity con-
ditions, the following translation property always holds:

D x−σg− ,y + σg+ ; g = D x,y;g −σ, for σ ℜ (3.3)

We assume there are j= 1,…,n observations or decision-making units (DMUs).
Relative to the unknown production technology T defined in (3.1), the DD model
for DMU h is given by the following linear program:

[Envelopment form of DD model]

max
β, λ, s− , s+

β

s t xi1λ1 + + xinλn + βg−
i + s−i = xih i= 1,…,m

yr1λ1 + + yrnλn−βg+
r −s+r = yrh r = 1,…,s

λj ≥ 0 j , s−i ≥ 0 i , s+r ≥ 0 r

(3.4)

The optimal objective function value in (3.4) equals the directional distance (DEA)
function. The dual to the envelopment form consisting of (3.4) is

[Multiplier form of DD model]

min
v, u

v1x1h + + vmxmh−u1y1h− −usysh

s t v1g−
1 + + vmg−

m + u1g+
1 + + usg+

s = 1

v1x1j + + vmxmj−u1y1j− −usysj ≥ 0 j = 1,…,n

v ≥ 0,u ≥ 0

(3.5)
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The variables v and u are virtual prices, with the objective equal to the virtual costs
minus the virtual revenues. Under CRS, the objective in (3.5) equals the negative of
the virtual profits. Relative shadow or support prices for inputs i and i are obtained as
vi vi . Shadow prices for outputs r and r are obtained as ur ur . These shadow prices
can be compared with actual prices to determine whether inputs/outputs are efficiently
allocated. For the envelopment and multiplier forms, see for example Fukuyama [8].
Let β∗, λ, s− , s+ be an optimal solution to [Envelopment form of DD model]. We
make the following definitions.

Definition 3.1 (DD score)
The DD score is represented by β∗, which takes a value greater than or equal to zero.

Definition 3.2 (Strong DD-efficiency)
DMUh is strongly DD-efficient if β

∗ = 0, s−∗ = 0, and s + ∗ = 0 for all optimal solutions
to [Envelopment form of DD model].

Definition 3.3 (Weak DD-efficiency)
DMUh is weakly DD-efficient if β

∗ = 0, s−∗ ≥ 0, and s+ ∗ ≥ 0 for some optimal solution
to [Envelopment form of DD model].

Definition 3.4 (DD-inefficiency)
DMUh is DD-inefficient if β

∗ > 0.

Definition 3.5 (DD-efficient projection)
The DD projection expressed by x = xh−βg− −s− and y = yh−β

∗g+ −s + ∗ is strongly
DD-efficient.

Figure 3.1 depicts the relationship between the DD measure and a directional vec-
tor for a single-input, single-output case. The observed DMUs are A, B, and C, where
C is strongly DD-efficient. The points D and E are projection points of DMU A and

0

T

C

A

Input

D

O
ut

pu
t

B

E

g+

–g–

g

Figure 3.1 Production possibility set of the DD model.
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DMU B, respectively. Given g− ,g + , the DD score for DMU A equals the ratio of
the line segments AD 0g < 1 and that for DMU B equals BE 0g > 1.

3.3 VARIABLE-RETURNS-TO-SCALE DD MODELS

In this subsection we develop a variable-returns-to-scale DD model by adding the

convexity constraint
n

j= 1
λj = 1 to (3.4). The envelopment form of the DD model

is defined as follows:
[Envelopment form of DD model]

max
β, λ, s− , s+

β

s t xi1λ1 + + xinλn + βg−
i + s−i = xih i= 1,…,m

yr1λ1 + + yrnλn−βg+
r −s+r = yrh r = 1,…,s

λ1 + + λn = 1

λj ≥ 0 j , s−i ≥ 0 i , s+r ≥ 0 r

(3.6)

The multiplier form of (3.6) is written as follows:
[Multiplier form]

max
v,u,u0

v1x1h + + vmxmh−u1y1h− −usysh−u0

s t v1g−
1 + + vmg−

m + u1g+
1 + + usg+

s = 1

v1x1j + + vmxmj−u1y1j− −usysj−u0 ≥ 0 j= 1,…,n

v ≥ 0,u ≥ 0, u0 free in sign

(3.7)

This model, consisting of (3.6) and (3.7), is called the variable-returns-to-scale
DD model.

3.4 SLACKS-BASED DD MODEL

Fukuyama and Weber [9] introduced a slacks-based directional distance model as an
extension and generalization of Tone’s [10] slacks-based efficiency model. Under the
assumption of variable returns to scale, the slacks-based directional distance model1

SDD xh,yh;g
− ,g + takes the form

1Fukuyama and Weber [9] called (3.8) the slacks-based inefficiency.
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[Envelopment form of SDD model]

SDD xh,yh;g
− ,g− = max

λ, s− , s +
1
2

1
m

m

i= 1

s−i
g−
i

+
1
s

s

r = 1

s +r
g+
r

s t xi1λ1 + + xinλn + s−i = xih i= 1,…,m

yr1λ1 + + yrnλn−s+r = yrh r = 1,…,s

λ1 + + λn = 1

λj ≥ 0 j , s−i ≥ 0 i , s +r ≥ 0 r

(3.8)

where g− ℜm
++ and g + ℜs

++ are directional vectors that contract inputs and
expand outputs. The directional vectors have the same units of measurement as the
vectors of input slacks and output slacks, which allows the ratios of normalized slacks
to be added. The objective of (3.8) maximizes the mean of two components that com-
prise the average input inefficiencies and the average output inefficiencies. When
SDD xh,yh;g

− ,g− = 0, DMU h is strongly efficient.
The dual to (3.8) is
[Multiplier form of SDD model]

min
v, u

v1x1h + + vmxmh−u1y1h − −usysh−u0

s t v1g−
1 + + vmg−

m + u1g+
1 + + usg+

s = 1

v1x1j + + vmxmj−u1y1j − −usysj−u0 ≥ 0 j= 1,…,n

vi ≥
1

2m g−
i

i= 1,…,m

ur ≥
1

2s g+
r

r = 1,…,s

v ≥ 0,u ≥ 0,u0 free in sign

(3.9)

The SDD model also generalizes the additive model of Bardhan et al. [11,12]. The
objective function of the additive model equals the sum of the input slacks as a pro-
portion of the actual inputs plus the sum of the output slacks as a proportion of the

outputs
m

i= 1
s−i xih +

s

r = 1
s+r yrh with exactly the same constraints as in (3.8).

The Farrell measures of input and output efficiency scale the inputs and outputs by
the same multiplicative factor to either the input isoquant or the production possibility
frontier. Färe and Lovell [13] introduced Russell measures of input and output effi-
ciency that scaled inputs and outputs by varying multiplicative factors. Fukuyama
and Weber [9] generalized the Russell measures by scaling outputs and inputs addi-
tively to the technology set for given directional vectors. Their Russell measure of
inefficiency, called the directional Russell inefficiency, takes the form
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RD xh,yh;g
− ,g+ =max

1
2

1
m

m

i= 1

σi +
1
s

s

r = 1

γr

s t xi1λ1 + + xinλn + σig−
i = xih i= 1,…,m

yr1λ1 + + yrnλn−γrg
+
r = yrh r = 1,…,s

λ1 + + λn = 1

λj ≥ 0 j , σ−
i ≥ 0 i , γ +

r ≥ 0 r

(3.10)

Setting σi = s−i g−
i and γr = s

+
r g+

r , it is easy to see that SDD xh,yh;g
− ,g− =

RD xh,yh;g
− ,g + . Thus, the multiplicative Russell efficiency measures of

Färe and Lovell [13] can be extended to additive measures of inefficiency for any
choice of directional vector.

3.5 CHOICE OF DIRECTIONAL VECTORS

Some reasonable candidates for the directional vectors g= g− ,g + include
(i) g = x,y , where x and y are the averages of the observed inputs and outputs
and the DD model objective function yields the expansion of outputs and contraction
of inputs as proportions of the mean; (ii) g = 1m,1s , where (1m, 1s) are vectors of ones,
so that the DD model objective yields a unit expansion of outputs and a unit contrac-
tion of inputs; (iii) g = 1m 2m,1s 2s , which was used by Färe and Grosskopf [5] in a
slacks-based inefficiency model; (iv) g = xh,yh , proposed by Briec [14,15] and
employed by Fukuyama and Weber [9] so that the DD model objective yields the
expansion of outputs and contraction of inputs as a proportion of the outputs and inputs
of DMU h; (v) g = x∗,y∗ , where the inputs and outputs are chosen endogenously as in
the work of Färe, Grosskopf, and Margaritis [16]; and (vi) g= xmax−min,ymax−min ,
where xmax−min equals the range of the inputs and ymax−min equals the range of the
outputs among the j= 1,…,n DMUs.

For the directional vector (vi), Cooper, Park, and Pastor [17] introduced the RAM
(range-adjusted measure) of inefficiency,2 defined by

RAM xh,yh = max
λ,s− ,s +

1
m+ s

m

i= 1

s−i
xmax−min
i

+
s

r = 1

s +r
ymax−min
r

s t xi1λ1 + + xinλn + s−i = xih i= 1,…,m

yr1λ1 + + yrnλn−s +r = yrh r = 1,…,s

λ1 + + λn = 1

λj ≥ 0 j , s−i ≥ 0 i , s+r ≥ 0 r

(3.11)

2Cooper et al. [17] also defined the RAM efficiency as one minus the optimum objective value in (3.11).
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If the numbers of outputs and inputs are equal (i.e., m = s) and

g−
i = xmax−min

i = xmax
ij −xmin

ij i and g +
r = ymax−max

r = ymax
rj −ymin

rj r (3.12)

then the SDD measure (or, equivalently, the Russell directional measure) is equal to
one half of the RAM of inefficiency. While the slacks-based directional distance
measure can also be thought of as a weighted additive model [18], the directional vec-
tors expressed in DD models give a direct indication of what the directions mean.
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4
SUPER-EFFICIENCY DEA MODELS

KAORU TONE

National Graduate Institute for Policy Studies, Tokyo, Japan

4.1 INTRODUCTION

In this chapter, we introduce super-efficiency models. Efficiency scores are obtained
from these models by eliminating the data for the decision-making unit (DMU)DMUh

to be evaluated from the solution set. This can result in values which are regarded as
according DMUh the status of being ‘super-efficient.’ These values can then be used
to rank the DMUs and thereby eliminate some (but not all) of the ties that occur for
efficient DMUs.

4.2 RADIAL SUPER-EFFICIENCY MODELS

In this section, we introduce input-oriented and output-oriented super-efficiency
models. See [1] for details.

4.2.1 Input-Oriented Radial Super-Efficiency Model

Using the notation in Chapter 2, the input-oriented radial super-efficiency model can
be described as follows:

Advances in DEA Theory and Applications: With Extensions to Forecasting Models,
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Radial Super-I-C θ∗ = min
θ,λ,s− ,s+

θ

s t θxh =
n

j= 1, j h
λjxj + s−

yh =
n

j= 1, j h
λjyj−s

+

λ ≥ 0,s− ≥ 0,s + ≥ 0

(4.1)

This model is under the constant returns-to-scale assumption. If we add the
following condition, we can get the variable-returns-to-scale (VRS) model:

[Radial Super-I-V]

n

j= 1, j h
λj = 1 (4.2)

4.2.2 Output-Oriented Radial Super-Efficiency Model

The output-oriented radial super-efficiency model can be described as follows:

Radial Super-O-C 1 θ∗ = η∗ = max
θ,λ,s− ,s+

η

s t xh =
n

j= 1, j h
λjxj + s−

ηyh =
n

j= 1, j h
λjyj−s

+

λ ≥ 0,s− ≥ 0,s + ≥ 0

(4.3)

If we add the constraint (4.2), we can get the variable-returns-to-scale (VRS) model
[Radial Super-O-V].

4.2.3 Infeasibility Issues in the VRS Model

By dint of the constraint
n

j= 1, j h
λj = 1, variable-returns-to-scale models may

encounter infeasibility.

Proposition 4.1 [Radial Super-I-V] has no feasible solution if there exists r such that
yrh >maxj h yrj , and [Super-Radial-O-V] has no feasible solution if there exists i

such that xih <minj h xij .

4.3 NON-RADIAL SUPER-EFFICIENCY MODELS

Non-radial slacks-based super-efficiency models have three variations: input-, output-
and non-oriented. See [2] for details.
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4.3.1 Input-Oriented Non-Radial Super-Efficiency Model

We solve the following program for an efficient DMU (xh, yh) to measure the mini-
mum ratio-scale distance from the efficient frontier excluding the DMU (xh, yh). The
input-oriented non-oriented model under the constant-returns-to-scale assumption
is described by the following scheme:

Super-SBM-I-C δ∗ =min01 +
1
m

m

i = 1

s−i
xih

subject to

xh + s− =
n

j= 1, j h
xjλj

yh−s
+ =

n

j= 1, j h
yjλj

λ ≥ 0,s− ≥ 0,s + ≥ 0

(4.4)

4.3.2 Output-Oriented Non-Radial Super-Efficiency Model

The output-oriented super-efficiency is measured by the following program:

Super−SBM−O−C 1 δ∗ =max1−
1
s

s

r = 1

s+r
yrh

subject to

xh + s− =
n

j= 1, j h
xjλj

yh−s
+ =

n

j= 1, j h
yjλj

λ ≥ 0,s− ≥ 0,s+ ≥ 0

(4.5)

4.3.3 Non-Oriented Non-Radial Super-Efficiency Model

The non-oriented model is described by the following program:

Super-SBM-C δ∗ =min
1 +

1
m

m

i= 1

s−i
xih

1−
1
s

s

r = 1

s +r
yrh

subject to

xh + s− =
n

j= 1, j h
xjλj

yh−s
+ =

n

j = 1, j h
yjλj

λ ≥ 0,s− ≥ 0,s + ≥ 0

(4.6)
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4.3.4 Variable-Returns-to-Scale Models

By adding the constraint (4.2), we can define the models [Super-SBM-I-V],
[Super-SBM-O-V] and [Super-SBM-V].

Proposition 4.2 [Super-SBM-I-V] and [Super-SBM-O-V] encounter the same infea-
sibility problem as [Proposition 4.1] does. However, [Super-SBM-V] is always fea-
sible and has a finite optimum. (See Cooper et al. [3] and Tone [2].)

4.4 AN EXAMPLE OF A SUPER-EFFICIENCY MODEL

Here, we compare super-efficiency scores for the data presented in Table 4.1 and
Figure 4.1. We compared the models [Super-Radial-I-C] and [Super-SBM-I-C],
and the results are shown in Table 4.2.

DMUs A and E are judged efficient by the radial model, but inefficient by the SBM
model.Figure4.2 illustrates the caseofDMUD.The radial super-efficiencyofDMUDis

TABLE 4.1 Sample data.

Input Output

x1 x2 y

A 2 6 1
B 2 4 1
C 4 2 1
D 8 1 1
E 10 1 1
F 4 4 1
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7
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D E

F

Figure 4.1 The unit isoquant spanned by the test data in Table 4.1.
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measured as OP/OD = 1.1429, while its non-radial super-efficiency is given by 1 + DE/
(2∗8) = 1.125. E gives the minimum objective value of (4.4).1
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TABLE 4.2 Super-efficiency scores.

DMU Super-Radial-I-C Super-SBM-I-C

A 1 0.8333
B 1.25 1.25
C 1.25 1.25
D 1.1429 1.125
E 1 0.9
F 0.75 0.75
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Figure 4.2 The case of DMU D.
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5
DETERMINING RETURNS TO SCALE
IN THE VRS DEA MODEL

BIRESH K. SAHOO
Xavier Institute of Management, Xavier University, Bhubaneswar, India

KAORU TONE

National Graduate Institute for Policy Studies, Tokyo, Japan

5.1 INTRODUCTION

One of the most important aspects of the applied production analysis of organizational
units (called decision-making units, or DMUs) is returns to scale (RTS), which helps
in determining pricing policies and market structure, and consequently government
policies toward both of these [1, 2]. It is therefore imperative that this concept be
measured accurately. To assess the efficiency of DMUs, it is necessary to identify
the nature of the RTS that characterize efficient production. In production economics,
RTS are defined as the maximum proportional increase in all outputs (α) resulting
from a given proportional increase in all inputs (ζ). Constant returns to scale
(CRS) prevail if α = ζ, increasing returns to scale (IRS) prevail if α > ζ, and decreasing
returns to scale (DRS) prevail if α < ζ.

Ever since the nonparametric methodology of data envelopment analysis (DEA)
was introduced by Charnes et al. [3], the economic concept of RTS has been widely
studied within two broader frameworks of DEA. The first framework, by Färe et al.
[4], is aimed at characterizing the RTS of a DMU by considering the ratios of two
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radial efficiency measures under different RTS assumptions, that is, the ratio of the
efficiency measure under CRS to either that under variable returns to scale (VRS)
or that under nonincreasing returns to scale (NIRS). The second framework,
which stems from the work of Banker et al. [5] and Banker and Thrall [6], proceeds
by examining tangential planes to the VRS-based DEA production frontier at a
given point. This is done either by looking at the constant term that represents
the intercept of such a plane with the plane in which all inputs are set to zero, or
by observing the weights of the corner points of the facet of the frontier associated
with that plane.

This second framework can also be extended to both additive and multiplicative
DEA models. Unlike the radial CCR and BCC models, the additive model of Cooper
et al. [7] avoids the problem of choosing between input and output orientations. In
the case of multiplicative models [8], where the piecewise linear frontiers usually
employed in CCR and BCC models are replaced by the piecewise log-linear frontiers,
RTS are obtained from the exponents of these piecewise log-linear functions for the
different segments that form the underlying production frontier. Note that in both
frameworks, the characterization of the RTS of a DMU depends on whether an input-
or output-oriented model is used, since different orientations identify different points
on the frontier from which evaluations are performed.

Since the DEA production technologies are not differentiable at extreme points,
researchers have suggested determining both right- and left-hand RTS at these
extreme points (see, e.g., [6, 9–31], among others).

As recently pointed out by Podinovski et al. [32], the existing methods of comput-
ing RTS apply only to the standard, VRS (BCC), and CRS (CCR) DEA production
technologies, which are examples of a large class of polyhedral technologies. This
large class also includes technologies with production trade-offs [33,34] and weight
restrictions [35,36], technologies with negative inputs and outputs [37], technologies
with weakly disposable undesirable outputs [38], and network DEA technologies
[30,31]. Podinovski et al. suggested a unified linear programming approach to deter-
mining left- and right-hand characterizations of the RTS of technically efficient firms
in any polyhedral technology.

In this chapter, however, we discuss the evaluation of RTS characterizations of
firms in a VRS-based DEA production technology.

5.2 TECHNOLOGY SPECIFICATION AND SCALE ELASTICITY

5.2.1 Technology

We assume throughout that we are dealing with n observed firms; each uses m inputs

to produce s outputs. Let xj = x1j,…,xmj
T Rm

≥ 0 and yj = y1j,…,ysj
T Rs

≥ 0 be the
vectors of inputs and outputs, respectively, of firm j, and let J be the index set of all the
observed firms, that is, J = 1,…,n .
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The production technology that transforms an input vector x Rm
≥ 0 to an output

vector y Rs
≥ 0 can be characterized by the technology set T Rm

≥ 0 ×Rs
≥ 0, defined as

T = x,y Rm+ s
≥ 0 x Rm

≥ 0 can produce y Rs
≥ 0 (5.1)

The neoclassical characterization of the production function is the transformation
function ψ (x, y), which decreases with y and increases with x such that

ψ x,y ≤ 0 if and only if x,y T (5.2)

ψ x,y = 0 represents those input–output vectors that operate on the boundary of T
and, hence, are technically efficient.

5.2.2 Measure of Scale Elasticity

The RTS, or scale elasticity (SE), is based on a relationship such that, for a given pro-
portional expansion of all inputs (α), one can find the maximum proportional expan-
sion of all outputs (β) such that

ψ αx, βy = 0 (5.3)

Assuming ψ to be smooth, differentiation of (5.3) with respect to the input scaling
factor α yields the following measure of SE ε(x, y) [39]:

dβ

dα
= ε x,y = −

m

i= 1

∂ψ

∂xi
xi

s

r = 1

∂ψ

∂yr
yr

(5.4)

Proposition 5.1 The RTS defined at a point (x, y) are increasing (IRS), constant
(CRS), and decreasing (DRS) if ε(x, y) > 1, ε(x, y) = 1, and ε(x, y) < 1, respectively.

5.2.3 Scale Elasticity in DEA Models

The DEA technology under the VRS specification [5] can be expressed as

TDEA
VRS = x,y

j J

xijλj ≤ xi i ,
j J

yrjλj ≥ yr r ,
j J

λj = 1,λj ≥ 0 j (5.5)
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Consider the evaluation of the input-oriented SE for any firm o (o J). The
input-oriented technical efficiency of firm o can be obtained from the following
linear programming (LP) problem:

α β =min α αx, βy TDEA
VRS ; β = 1 (5.6)

Alternatively, the primal envelopment-form-based LP program (5.6) can be expressed
in its dual multiplier form as

α 1 =max
s

r = 1

uryro−uo (5.7)

s t
s

r = 1

uryrj−
m

i= 1

vixij−uo ≤ 0,
m

i= 1

vixio = 1, ur,vi ≥ 0 i,r ;uo free

For any firm o (o J), the transformation function is the following:

ψ α 1 xo,yo
s

r = 1

uryro−
m

i= 1

vi α 1 xio −uo = 0 (5.8)

Using (5.4), the input-oriented SE of firm o can be obtained as

εi xo,yo =
α 1

α 1 + uo
=

1
1 + uo α 1

(5.9)

It is well known that production technologies in DEA are not differentiable at
extreme efficient points, owing to the existence of multiple optimal solutions for
uo(vo). Following Banker and Thrall [6], we therefore set up the following LP pro-
blems to find the maximum and minimum values of uo for firm o as follows:

u+
o u−

o =max min uo (5.10)

s.t.
s

r = 1

uryro−uo = α 1 ,
m

i= 1

vixio = 1

s

r = 1

uryrj−
m

i= 1

vixij−uo ≤ 0 j o , vi,ur ≥ 0 i,r , uo free

Based on the results of solving (5.10), one can determine the input-oriented right-hand
SE ε +i and left-hand SE ε−i for firm o as

ε +i xo,yo =
1

1 + u+
o α 1

and ε−i xo,yo =
1

1 + u−
o α 1

(5.11)

We have now our second proposition.
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Proposition 5.2 Assuming alternate optima in uo, the firm o in TDEA
VRS exhibits (input-

oriented) IRS ε +i > 1 if u +
o < 0, (input-oriented) CRS ε +i ≤ 1 ≤ ε−i if

u+
o ≥ 0 ≥ u−

o , and (input-oriented) DRS ε−i < 1 if u−
o > 0.

5.3 SUMMARY

We have briefly provided a discussion of left- and right-hand RTS characterizations of
efficient firms in a VRS DEA production technology. However, as has recently been
demonstrated by Podinovski et al. [32], it is now possible to perform RTS character-
izations of firms in any polyhedral technology, which is a larger class of technologies
that includes, besides CRS and VRS DEA production technologies, technologies with
production trade-offs and weight restrictions, technologies with negative inputs and
outputs, technologies with weakly disposable undesirable outputs, and network DEA
technologies.
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MALMQUIST PRODUCTIVITY
INDEX MODELS

KAORU TONE

National Graduate Institute for Policy Studies, Tokyo, Japan

MIKI TSUTSUI

Central Research Institute of Electric Power Industry, Tokyo, Japan

6.1 INTRODUCTION

TheMalmquist index (MI) [1] evaluates the change in efficiency of a decision-making
unit (DMU) between two time periods. It is defined as the product of catch-up (CU)
and frontier shift (FS) terms. The CU term is related to the degree of effort that the
DMU has made to improve its efficiency, while the FS term reflects the change in
the efficient frontiers surrounding the DMU between the two time periods 1 and 2.
We denote DMUo in the time periods 1 and 2 by (x1o,y

1
o) and (x2o,y

2
o), respectively.

The CU effect γ is measured by the following formula:

γ =
Efficiency of x2o, y

2
o with respect to the period 2 frontier

Efficiency of x1o, y
1
o with respect to the period 1 frontier

(6.1)

We evaluate each element (efficiency) of the above formula by non-parametric
DEAmodels as described later. A simple single-input, single-output case is illustrated
in Figure 6.1.

Advances in DEA Theory and Applications: With Extensions to Forecasting Models,
First Edition. Edited by Kaoru Tone.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.



The CU effect (in the input orientation) can be computed as

γ =
BD

BQ
AC

AP
(6.2)

Here, γ > 1 indicates progress in relative efficiency from period 1 to 2, while γ = 1 and
γ < 1 indicate the status quo and regress in efficiency, respectively.

In addition to the CU term, we must take account of the FS effect in order to eval-
uate totally the efficiency change of the DMUs, since the CU term is determined
by the efficiencies measured by the distances from the respective frontiers. In the
simple case of Figure 6.1, this can be implemented as follows. The reference point
C for (x1o,y

1
o) is moved to E on the frontier for period 2. Thus, the FS effect at (x1o,y

1
o) is

evaluated from

ϕ1 =
AC
AE

(6.3)

This is equivalent to

ϕ1 =
AC

AP
AE

AP
=
Efficiency of x1o, y

1
o with respect to the period 1 frontier

Efficiency of x1o, y
1
o with respect to the period 2 frontier

(6.4)

The numerator of the right-hand side of (6.4) has already been obtained in (6.1). The
denominator is measured by the distance from the period 2 production possibility set
to (x1o,y

1
o). Likewise, the FS effect at (x2o,y

2
o) is expressed by

Input

Output
Frontier for period 2

Frontier for period 1

B

A

C

D

E

F

Q (x2
0, y2

0)

P (x1
0, y1

0)

Figure 6.1 Catch-up and frontier shift.
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ϕ2 =
BF

BQ
BD

BQ
=
Efficiency of x2o, y

2
o with respect to the period 1 frontier

Efficiency of x2o, y
2
o with respect to the period 2 frontier

(6.5)

We can evaluate the numerator of the above by means of DEA models. Using ϕ1 and
ϕ2, we define the FS effect ϕ by their geometric mean as

ϕ = ϕ1ϕ2 (6.6)

Now, the MI (μ) is obtained as the product of the CU (γ) and FS (ϕ) as

μ= γ ×ϕ (6.7)

This is an index representing the total factor productivity (TFP) of the DMU on mov-
ing from P (x1o,y

1
o) to Q (x2o,y

2
o) in Figure 6.1, in that it reflects progress or regress in the

relative efficiency of the DMU along with progress or regress of the frontier
technology.

We now employ the following notation for the efficiency score of DMU xo,yo
t1

measured by use of the frontier technology t2:

δt2 xo,yo
t1 t1 = 1, 2 and t2 = 1, 2 (6.8)

Using this notation, the CU effect γ in (6.1) can be expressed as

CU γ =
δ2 xo,yo

2

δ1 xo,yo
1

(6.9)

The FS effect is described as

FS ϕ =
δ1 xo,yo

1

δ2 xo,yo
1

×
δ1 xo,yo

2

δ2 xo,yo
2

1 2

(6.10)

From the product of γ and ϕ, we obtain the following formula for the computation of
the MI:

MI μ =
δ1 xo,yo

2

δ1 xo,yo
1

×
δ2 xo,yo

2

δ2 xo,yo
1

1 2

(6.11)
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This last expression gives an another interpretation of the MI, that is, as the geometric
mean of the two relative efficiency ratios, the first being the efficiency change meas-
ured by use of the period 1 technology and the other the efficiency change measured
by use of the period 2 technology.

As can be seen from these formulas, the MI consists of four terms: δ1((xo, yo)
1),

δ2((xo, yo)
2), δ1((xo, yo)

2) and δ2((xo, yo)
1). The first two are related to measurements

within the same time period, while the last two are related to intertemporal compar-
ison. If μ > 1, this indicates progress in the total factor productivity of DMUo from
period 1 to 2, while μ = 1 and μ < 1 indicate the status quo and decay in the total factor
productivity, respectively.

In the non-parametric framework, the MI is constructed by means of DEA techni-
ques. There are a number of ways to compute the MI. First, Färe et al. [2] utilized
an input/output-oriented radial DEA model to compute the MI. However, the radial
models suffer from one shortcoming, that is, neglect of slacks. Second, the MI can be
computed using slacks-based non-radial DEA models, which include both oriented
and non-oriented cases.

6.2 RADIAL MALMQUIST MODEL

The input-oriented radial MI measures the within and intertemporal scores by means
of the linear programs given below:

[Within score in input orientation]

δs xo,yo
s = min

θ,λ
θ (6.12)

subject to θxso ≥X
sλ, yso ≤Y

sλ, L ≤ eλ ≤U, λ ≥ 0

where Xs = xs1,…,xsn and Y s = ys1,…,ysn are the input and output matrices (observed
data), respectively, for the period s. We solve this program for s = 1 and 2. It holds that
δs xo,yo

s ≤ 1, and δs xo,yo
s = 1 indicates that (xo, yo)

s is on the technically effi-
cient frontier of (X, Y)s.

[Intertemporal score in input orientation]

δs xo,yo
t = min

θ,λ
θ (6.13)

subject to θxto ≥X
sλ, yto ≤ Y

sλ, L ≤ eλ ≤U, λ ≥ 0

We solve this program for the pairs (s, t) = (1, 2) and (2, 1). If (xo, yo)
t is not enveloped

by the technology in the period s, the score δs((xo, yo)
t), if exists, has a value greater

than 1. This corresponds to the concept of super-efficiency proposed by Andersen and
Petersen [3].
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Although the above schemes are input-oriented, we can develop an output-
oriented MI as well by means of output-oriented radial DEA models. This is
explained below:

[Within score in output orientation]

δs xo,yo
s = min

η,λ

1
η

(6.14)

subject to xso ≥X
sλ, ηyso ≤Y

sλ, L ≤ eλ ≤U, λ ≥ 0

[Intertemporal score in output orientation]

δs xo,yo
t = min

η,λ

1
η

(6.15)

subject to xto ≥X
sλ, ηyto ≤Y

sλ, L ≤ eλ ≤U, λ ≥ 0

Remark 6.1 Inclusive or Exclusive Scheme
For evaluating the within score δs((xo, yo)

s), there are two schemes: ‘inclusive’ and
‘exclusive’. The ‘inclusive’ scheme means that, when we evaluate (xo, yo)

s with
respect to the technology (X, Y)s, the DMU (xo, yo)

s is always included in the evaluator
(X, Y)s, thus resulting in a score not greater than 1. The ‘exclusive’ scheme employs a
method in which the DMU (xo, yo)

s is removed from the evaluator group (X, Y)s. This
method of evaluation is equivalent to that for super-efficiency evaluation, and the
score, if exists, may be greater than 1. The intertemporal comparisons naturally utilize
this ‘exclusive’ scheme. So, the adoption of this scheme even in thewithin evaluations
is not unnatural and promotes discrimination power.

Remark 6.2 Infeasible-LP issues
In the BCC (VRS) model [(L, U) = (1, 1): variable returns to scale], it may occur that
the intertemporal LP (6.13) has no solution in its input or output orientation. In the
case of the input-oriented model, (6.13) has no feasible solution if there exists i such

that ytio >maxj ysij , whereas in the output-oriented case, (6.15) has no feasible solu-

tion if there exists i such that xtio <minj xsij . In the IRS model [(L, U) = (1, ∞ ):

increasing returns to scale], it may occur that the output-oriented intertemporal LP
has no solution, while the input-oriented case is always feasible. In the case of the
DRS model [(L, U) = (0, 1): decreasing returns to scale], it might be possible that
the input-oriented problem (6.13) has no solution, while the output-oriented model
is always feasible. However, the CRS (CCR) model does not suffer from any such
trouble in its intertemporal measurements. One solution to avoid this difficulty is
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to assign 1 to the score, since we have no means to evaluate the DMU within the
evaluator group.

6.3 NON-RADIAL AND ORIENTED MALMQUIST MODEL

The radial approaches suffer from one general problem, that is, the neglect of slacks.
In an effort to overcome this problem, Tone [4,5] has developed non-radial measures
of efficiency and super-efficiency. Using these measures, we develop here a non-
radial, slacks-based MI.

First, we introduce the input-oriented SBM (slacks-based measure) and super-
SBM [4,5]. The SBM evaluates the efficiency of the examinee (xo, yo)

s (s = 1, 2) with
respect to the evaluator set (X, Y)t (t = 1, 2) with the help of the following LP:

[SBM-I]

δt xo,yo
s = min

λ,s−
1−

1
m

m

i= 1

s−i
xsio

(6.16)

subject to xso =X
tλ+ s− , yso ≤ Y

tλ, L ≤ eλ ≤U, λ ≥ 0, s− ≥ 0

Or, equivalently,

[SBM-I]

δt xo,yo
s = min

θ,λ

1
m

m

i= 1
θi (6.17)

subject to θixsio ≥
n

j= 1
xtijλj i= 1,…,m , yso ≤ Y

tλ, θi ≤ 1 i= 1,…,m ,

L ≤ eλ ≤U, λ ≥ 0

where the vector s− Rm denotes the input slacks. The equivalence between (6.16)
and (6.17) can be shown as follows. Define θi = 1−s−i xsio . Then it holds that
θi ≤ 1 i , and the equivalence follows straightforwardly. This model takes input
slacks (surpluses) into account but not output slacks (shortfalls). Notice that, under
the ‘inclusive’ scheme (see Remark 6.2 above), [SBM-I] is always feasible in the case
where s = t. However, under the ‘exclusive’ scheme, we remove (xo, yo)

s from the
evaluator group (X, Y)s and hence [SBM-I] may have no feasible solution even in
the case s = t. In this case, we solve [Super-SBM-I] below:

[Super-SBM-I]

δt xo,yo
s = min

λ,s−
1 +

1
m

m

i= 1

s−i
xsio

(6.18)

subject to xso ≥X
tλ−s− , yso ≤ Y

tλ, L ≤ eλ ≤U, λ ≥ 0, s− ≥ 0
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Or, equivalently,

[Super-SBM-I]

δt xo,yo
s = min

θ,λ

1
m

m

i= 1
θi (6.19)

subject to θixsio ≥
n

j= 1
xtijλj i = 1,…,m , yso ≤Y

tλ, θi ≥ 1 i = 1,…,m ,

L ≤ eλ ≤U, λ ≥ 0

In this model, the score, if exists, satisfies δt xo,yo
s ≥ 1.

In the output-oriented case, we solve the following LPs:

[SBM-O]

δt xo,yo
s = min

λ,s+

1

1 +
1
r

r

i= 1

s +i
ysio

(6.20)

subject to xso ≥X
tλ, yso = Y

tλ−s + , L ≤ eλ ≤U, λ ≥ 0, s + ≥ 0

where the vector s+ Rr denotes the output slacks. Or, equivalently,

[SBM-O]

δt xo,yo
s = min

λ,η

1
1
r

r

i= 1
ηi

(6.21)

subject to xso ≥X
tλ, ηiy

s
io ≤

n

j= 1
ytijλj i= 1,…,r , ηi ≥ 1 i= 1,…,r , L ≤ eλ ≤U, λ ≥ 0

[Super-SBM-O]

δt xo,yo
s = min

λ,s+

1

1−
1
r

r

i= 1

s +i
ysio

(6.22)

subject to xso ≥X
tλ, yso ≤Y

tλ+ s + , L ≤ eλ ≤U, λ ≥ 0, s + ≥ 0

Or, equivalently,

[Super-SBM-O]

δt xo,yo
s = min

λ,η

1
1
r

r

i= 1
ηi

(6.23)
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subject to xso ≥X
tλ, ηiy

s
io ≤

n

j= 1
ytijλj i= 1,…,r , 0 ≤ ηi ≤ 1 i= 1,…,r ,

L ≤ eλ ≤U, λ ≥ 0

The output-oriented models take all output slacks (shortfalls) into account, but not
input slacks (surpluses).

The non-radial and slacks-based MI evaluates the four elements of the MI,
δ1((xo, yo)

1), δ2((xo, yo)
2), δ1((xo, yo)

2) and δ2((xo, yo)
1), by means of the LPs [SBM-

I] and [Super-SBM-I].

Remark 6.3 Infeasible-LP issues
These models may suffer from the same infeasibility troubles as the radial ones may
encounter.

6.4 NON-RADIAL AND NON-ORIENTED MALMQUIST MODEL

The models in this category deal with input and output slacks. The models [SBM]
and [Super-SBM] used for computing δt((xo, yo)

s) are represented by the following
fractional programs:

[SBM]

δt xo,yo
s = min

λ,s− ,s +

1−
1
m

m

i= 1

s−i
xsio

1 +
1
r

r

i= 1

s +i
ysio

(6.24)

subject to xso =X
tλ+ s− , yso =Y

tλ−s+ , L ≤ eλ ≤U, λ ≥ 0, s− ≥ 0, s+ ≥ 0

Or, equivalently,

[SBM]

δt xo,yo
s = min

θ,η,λ

1
m

m

i= 1
θi

1
r

r

i= 1
ηi

(6.25)

subject to θixsio ≥
n

j= 1
xtijλj i= 1,…,m , ηiy

s
io ≤

n

j= 1
ytijλj i= 1,…,r ,

θi ≤ 1 i= 1,…,m , ηi ≥ 1 i= 1,…,r , L ≤ eλ ≤U, λ ≥ 0

47MALMQUIST PRODUCTIVITY INDEX MODELS



[Super-SBM]

δt xo,yo
s = min

λ,s− ,s+

1
m

m

i= 1

xi
xsio

1
r

r

i= 1

yi
ysio

(6.26)

subject to x ≥Xtλ, y ≤Y tλ, x ≥ xso, y ≤ yso, L ≤ eλ ≤U, y ≥ 0, λ ≥ 0

Or, equivalently,

[Super-SBM]

δt xo,yo
s = min

θ,η,λ

1
m

m

i= 1
θi

1
r

r

i= 1
ηi

(6.27)

subject to θixsio ≥
n

j= 1
xtijλj i= 1,…,m , ηiy

s
io ≤

n

j= 1
ytijλj i = 1,…,r ,

θi ≥ 1 i= 1,…,m , 0 ≤ ηi ≤ 1 i= 1,…,r , L ≤ eλ ≤U, λ ≥ 0

These fractional programs can be transformed into LPs [4]. This model, under the
exclusive scheme (see Remark 6.1) evaluates the four components of the MI, δ1((xo,
yo)

1), δ2((xo, yo)
2), δ1((xo, yo)

2) and δ2((xo, yo)
1), using [SBM], and, if the correspond-

ing LP is found to be infeasible, we then apply [Super-SBM].

Remark 6.4 Infeasible-LP issues
For this non-oriented model, [Super-SBM] is always feasible, and has a finite
minimum in any RTS environment under some mild conditions, that is, for each out-
put i (= 1,…, q), at least two DMUs have positive values. This can be seen from the
constraints in (6.27). See Tone [5] for details.

6.5 CUMULATIVE MALMQUIST INDEX (CMI)

Although the above MI is defined on a two-period base (s t), we can find a cumu-
lative Malmquist index (CMI) based on the first period and period t (1 t) as follows:

μ1 t =Πt
τ = 1μ

τ τ + 1 t = 1,…,T −1 (6.28)

The value of the CMI in period 1 (t = 1) is equal to one, since both the CU and the
FS are in the status quo (γ1 1 = 1 and ϕ1 1 = 1). Therefore, we can easily capture the
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productivity change of DMUo from the first period through multiple periods (1 t),
and compare the results among different DMUs.

In addition, the CMI turns out to be given by

μ1 t = μ1 2 × μ2 t (6.29)

Thus, the intertemporal productivity change between period 1 and period t is modified
by the position at 2, …, t.

Furthermore, the CMI can be decomposed into a cumulative FS (CFS) and the ratio
of the efficiency scores between period 1 and period t as follows:

μ1 t =Πt
τ = 1 ϕτ τ + 1 γτ τ + 1

=ϕ
1 t θ t

θ1

(6.30)

where ϕ
1 t

indicates the CFS to period t from the base period.

6.6 ADJUSTED MALMQUIST INDEX (AMI)

The CMI captures the productivity change from the base period (t = 1). However, the
differences in the efficiency levels of the DMUs in the base period are ignored, since
the initial scores for the CMI for all DMUs are equal to one. In order to take the effi-
ciency levels of DMUs in the base period into account in the CMI, we calculate an
adjusted Malmquist index (AMI) as the product of the CMI and the efficiency score
in the first period as follows:

ξ
1 t

= μ1 t θ1 (6.31)

This can be transformed into the product of the CFS and the efficiency score in period t
as follows:

ξ
1 t

=ϕ
1 t

θ1 (6.32)

which means that the AMI is an efficiency score (θt) incorporating the frontier shift
effect.

The AMI is the same as the ‘actual performance index’ of Thore et al. [6]. This is a
practical measure to capture both the relative efficiency of the DMUs in the base
period and the productivity change from the base period to period t. This can help
to evaluate unfortunate DMUs, which are scored relatively low in terms of efficiency
even they achieve a large productivity change.
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6.7 NUMERICAL EXAMPLE

Table 6.1 shows input and output data for eight DMUs for four periods as a numerical
example. The outputs of all DMUs in each period have been set to one for the sake of
convenience. In this sample, DMUs P, Q, R and S are efficient and form the frontier in
each period. We focus on the intertemporal behaviour of the inefficient DMUs A, B,
C and D, in order to clarify the differences in the related indices.

Figure 6.2 depicts the results for the SBM under CRS (SBM-C). DMU A has rel-
atively good scores during all periods, while the scores of DMUs C and D improve
period by period and finally reach the level of DMUA. In contrast, the scores of DMU
B decrease. However, these are relative scores evaluated using the frontiers for each
period. In order to correctly compare the efficiency trends, we must take frontier shift
effects into account.

The rate of change of the SBM scores between two periods is the CU (Figure 6.3),
which does not include the FS (Figure 6.4). After incorporating the FS into the CU, we
can obtain the MI (Figure 6.5), which is a non-relative productivity index.

Here, we must be careful in interpreting the trends in the CU, FS and MI, which
measure the change in the indices from the previous period. For instance, the FSs for
DMU B show a decreasing trend. However, they are substantially larger than one.
This means that the frontier is in an advancing status period by period, although its
growth rate is gradually decreasing. Another instance where we must be careful is
the MI for DMU C in the period t2 t3, which has the largest value of all in this
period. However, this is caused by the fact that the MI for the previous period
(t1 t2) is very poor (negative). Even though the growth rate is very large, it is prob-
lematic that the productivity level of DMU C exceeds that of the other DMUs in the
period t2 t3.

In order to observe the trends in the growth rate comparatively, cumulative indi-
ces such as the CFS, CCU and CMI are helpful. These indices indicate the growth
from the first period, for which the values are standardized to one for all DMUs
(Figures 6.6, 6.7 and 6.8). We can easily see that the frontier for DMU B is progres-
sing by large amounts period by period, and the MI of DMU C cannot reach the
productivity level of the other DMUs owing to the negative growth in the second
period.

Furthermore, the AMI includes the relative efficiency level for the first period
instead of having a value of one (Figure 6.9). As shown in (6.32), the AMI implies
an SBM efficiency score incorporating the FS, and the results for it are different
from those for the SBM (Figure 6.5), except for DMU D. In particular, the AMI
of DMU B increases continuously, while the SBM decreases. The AMI of DMU
D develops more than DMU A during this period, but the efficiency score in the
first period is too low for it finally to reach the efficiency level of DMU A, although
the SBM nearly reaches the level of DMU A in the last period. The trend in the AMI
for DMU C is close to that for DMU D, although the SBM scores exceed those for
DMU D.
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TABLE 6.1 Dataset for numerical example.

DMU

Period 1 Period 2 Period 3 Period 4

Input 1 Input 2 Output Input 1 Input 2 Output Input 1 Input 2 Output Input 1 Input 2 Output

A 4 5 1 3.4 6 1 2.8 5.7 1 2.2 6 1
B 3 12 1 2 10 1 1.8 8.8 1 1.5 8 1
C 9 3 1 10 3.5 1 8 2.8 1 8 2.3 1
D 10 8 1 8 7 1 7 5 1 5 3.5 1
P 7 1 1 10 2 1 10 2 1 8 2 1
Q 4 4 1 4 4 1 3 5 1 3 5 1
R 3 14 1 1 12 1 1 9 1 1 7 1
S 5 3 1 5 3 1 5 3 1 5 3 1
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Figure 6.4 Frontier shift (FS).
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Figure 6.2 SBM scores.
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Figure 6.3 Catch-up (CU).
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Figure 6.6 Cumulative FS (CFS).
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Figure 6.7 Cumulative CU (CCU).
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Figure 6.5 Malmquist index (MI).
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6.7.1 DMU A

The frontier for DMUA increases slightly (the CFSs are more than one) and the DMU
correspondingly follows it (the CCUs are nearly equal to one). As the result, the CMI
increases only slightly. After the relative efficiency score in the first period is incor-
porated (AMI), the index values are less than those for DMU B, and hence DMU
A takes second place, even though DMU A gets the best scores in in terms of
SBM in the last three periods.

6.7.2 DMU B

The SBM score of DMU B decreases period by period. However, the frontier for
DMU B is constantly progressing, and therefore the AMI of this DMU outperforms
the others, even though DMU B cannot perfectly catch up with the frontier (the index
is less than one).
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Figure 6.8 Cumulative MI (CMI).
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Figure 6.9 Adjusted Malmquist index (AMI).
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6.7.3 DMU C

The SBM score of DMU C increases period by period. On the other hand, the frontier
for DMU C regresses in the first period. DMU C catches up and gets closer to the
frontier, and, finally, the CMI increases after a decrease in the second period. Never-
theless, the AMI of DMU C cannot reach the score of DMUA in the last period, since
the efficiency score in the first period is relatively low.

6.7.4 DMU D

DMU D takes the worst place for the SBM score in the first period, even though that
score increases period by period. The frontier for this DMU does not move during the
period considered (the CFS is scored as nearly one), and therefore DMUD catches up
and gets closer to the frontier very well. As a result, the CMI increases more than that
of DMU B. However, because of the worse efficiency score in the first period, the
AMI is as low as that of DMU C.

6.8 CONCLUDING REMARKS

In this chapter, we have briefly surveyedMalmquist indexmodels. We have explained
the cumulative Malmquist index (CMI) and the adjusted Malmquist index (AMI) in
detail using graphical presentations. The former (CMI) assumes that all DMUs have
equal status in the starting period, and hence they take part in a scratch (no handicap)
race thereafter. The latter (AMI) accounts for different starting conditions in the first
period and evaluates productivity changes thereafter. Both indices differ from the tra-
ditional MI in that the MI deals with productivity change between two consecutive
periods, whereas the CMI and AMI evaluate the productivity change from the starting
period. Hence, it should be noted that the selection of the starting period affects the
whole of the results.1
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THE NETWORK DEA MODEL1
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7.1 INTRODUCTION

Traditional DEA models deal with measurements of the relative efficiency of DMUs
with respect to multiple inputs or multiple outputs. One of the drawbacks of these
models is the neglect of internal or linking activities. For example, many companies
comprise several divisions that are linked as illustrated in Figure 7.1. In this example,
the company has three divisions. Each division utilizes its own input resources to pro-
duce its own outputs. However, there are linking activities (or intermediate products)
as shown by Link 1 2, Link 1 3, Link 2 1 and Link 2 3. Link 1 2 indi-
cates that part of the output from division 1 is utilized as input to division 2.

In traditional DEA models, every activity must belong to either the input or the
output but not to both. So, these models usually employ multiple steps in the evalu-
ation, using intermediate products as outputs in one step and as inputs in another step.
Thus, these models cannot deal with intermediate products directly in a single step.
Although there may be many variants of this process flow, the existence of linking
activities is an indispensable part of network DEA models.

1 Part of the material in this chapter is adapted from European Journal of Operational Research, Vol. 197,
Tone K. and Tsutsui M., Network DEA: A slacks-based measure approach, 243–252, 2009 [1], with
permission from Elsevier Science.
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Network DEA evaluates the efficiencies of multidivisional organizations. This
model solves for the comparative overall efficiency of the organization along with
the divisional efficiencies in a unified framework.2

7.2 NOTATION AND PRODUCTION POSSIBILITY SET

We use the following notation to describe network DEA.

n: number of DMUs ( j = 1, …, n);

K: number of divisions (k = 1, …, K);

mk: number of inputs to division k (i = 1, …, mk);

rk: number of outputs from division k (i = 1, …, rk);

pkh: number of items in link from division k to division h (l = 1, …, pkh);

(k, h): link from division k to division h;

S: set of divisions which have no incoming links, i.e. starting divisions;

T: set of divisions which have no outgoing links, i.e. terminal divisions.

Division 1

Division 2

Output 2

Division 3

Output 3

Output 5

Link 1→3

Link 1→2

Link 2→3 Input 4

Input 3 Output 1

Output 4

Link 2→1

Input 2Input 1

Figure 7.1 Example of network structure.

2 Software for network DEAmodels is included in DEA-Solver Pro V13 (http://www.saitech-inc.com). See
also Appendix A.

58 ADVANCES IN DEA THEORY AND APPLICATIONS

http://www.saitech-inc.com


The observed data are as follows:

xijk R+ : input resource i to division k of DMUj (i = 1, …, mk, k, j);

yijk R+ : output product i from division k of DMUj (i = 1, …, rk, k, j);

zαj k,h l R+ : linking internal output product l at division k to division h of

DMUj ( l, (k,h), j, α = 4 types of links as explained in Section 7.3.2) = linking
internal input resource l at division h from division k of DMUj ( l, (k,h), j, α).

We assume

zαj k,h l = 0 l, j, α,h S no linking input to starting divisions

zαj k,h l = 0 l, j, α,k T no linking output from terminal divisions
(7.1)

The production possibility set P= xk,yk,z k,h is defined in vector notation by

xk ≥
n

j= 1
xjkλkj k

yk ≤
n

j= 1
yjkλ

k
j k

z k,h ≤
n

j= 1
zj k,h λ

k
j k,h as outputs from k

z k,h ≥
n

j= 1
zj k,h λ

h
j k,h as inputs to h

n

j= 1
λkj = 1 k

λkj ≥ 0 k, j

(7.2)

where λkj R+ is the intensity variable for DMUj ( j) corresponding to division k

( k). The constraint
n

j= 1
λkj = 1 corresponds to the variable-returns-to-scale

(VRS) assumption. If we delete this constraint, we have the constant-returns-to-scale
(CRS) model.

7.3 DESCRIPTION OF NETWORK STRUCTURE

7.3.1 Inputs and Outputs

The inputs and outputs of DMUo (o = 1, …, n) P can be represented by
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xiok =
n

j= 1
xijkλ

k
j + s

−
ik i= 1,…,mk, k

yiok =
n

j= 1
yijkλ

k
j −s

+
ik i= 1,…,rk, k

n

j= 1
λkj = 1 k

λkj ≥ 0 k, j , s−ik ≥ 0 i= 1,…,mk, k , s+ik ≥ 0 i= 1,…,rk, k

(7.3)

where s−ik and s +ik indicate input and output slacks (non-negative), respectively.

7.3.2 Links

As regards the linking constraints, we have several options, of which we present four
possible cases. We can choose any of the cases below according to the nature of
the links.

In all cases, we assume the following continuity condition for the links (k, h), which
is critical for a network model connecting activities in two divisions:

n

j = 1
zαj k,h lλ

k
j =

n

j= 1
zαj k,h lλ

h
j l= 1,…,pαk,h , k,h (7.4)

where α stands for ‘free’, ‘fix’, ‘out’ or ‘in’ in the equations below. zαj k,h l is the

observed link l from division k to division h of DMUj ( l, (k,h), j) in the case α.

7.3.2.1 The ‘Free’ Link Value Case The linking activities are freely determined
(discretionary), while keeping the continuity of the free links between division k and
division h as formulated in (7.4). This case can be used to see whether or not the cur-
rent link flow has an appropriate volume in the light of other DMUs, that is, the link
flow may increase or decrease in the optimal solution of the linear programs intro-
duced in Section 7.4. Between the current link value and the free link value, we have
the following relationship:

zfreeo k,h l =
n

j= 1
zfreej k,h lλ

k
j + s

free
k,h l l= 1,…,pfreek,h , k,h (7.5)

where sfreek,h l is a slack of the free link l from division k to division h ( l, (k,h)) and is

free in sign.

7.3.2.2 The ‘Fixed’ Link Value Case The linking activities are kept unchanged
(non-discretionary):

zfixo k,h l =
n

j= 1
zfixj k,h lλ

k
j l = 1,…,pfixk,h , k,h

zfixo k,h l =
n

j= 1
zfixj k,h lλ

h
j l = 1,…,pfixk,h , k,h

(7.6)
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This case corresponds to the situation where the intermediate products are beyond the
control of DMUs or the discretion of the management.

7.3.2.3 The ‘As Output’ Link Value Case The linking activities for which a larger
amount is regarded as favourable are treated ‘as output’ from the preceding division,
and shortages are accounted for in the output inefficiency:

zouto k,h l =
n

j= 1
zoutj k,h lλ

k
j −s

out +
k,h l l= 1,…,poutk,h , k,h (7.7)

where sout +k,h l is an ‘as output’ link slack (non-negative).

7.3.2.4 The ‘As Input’ Link Value Case The linking activities for which a smaller
amount is regarded as favourable are treated ‘as input’ to the succeeding division, and
excesses are accounted for in the input inefficiency:

zino k,h l =
n

j= 1
zinj k,h lλ

k
j + s

in−
k,h l l= 1,…,pink,h , k,h (7.8)

where sin−k,h l is an ‘as input’ link slack (non-negative).

7.4 OBJECTIVE FUNCTIONS AND EFFICIENCIES

We employ the non-radial (SBM) model and the following objective functions for
each case, with the constraints presented in (7.3)–(7.8).

7.4.1 Input-Oriented Case

In the input-oriented case, the excess of inputs and the ‘as input’ links are evaluated as
inefficiency:

θ∗o =min
K

k = 1
wk 1−

1

mk + pink,h

mk

i= 1

s−ik
xiok

+
pin

k,h
l= 1

sin−k,h l

zino k,h l

(7.9)

where wk is the weight of division k, which is supplied exogenously according to the
importance of the division, and these weights satisfy the following condition:

k

t = 1
wk = 1 (7.10)

We define the divisional efficiency by

θ∗ok = 1−
1

mk + pink,h

mk

i = 1

s−∗iok

xiok
+

pin
k,h

l= 1

sin−∗o k,h l

zino k,h l

(7.11)
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where s−∗iok and sin−∗o k,h l are the optimal slacks. The overall efficiency is the weighted

arithmetic mean of the divisional efficiencies:

θ∗o =
K

k = 1
wkθ

∗
ok (7.12)

The free link slacks are not directly incorporated into (7.9), because the signs of
these slacks are free, and therefore we do not know whether there exists an excess
or a shortfall beforehand. The free link values are related to the efficiency scores only
through the link constraints (7.4). The same applies to the output-oriented and non-
oriented models mentioned below.

7.4.2 Output-Oriented Case

In the output-oriented case, the shortfall of the outputs and the ‘as output’ links are
evaluated as inefficiency:

1
η∗o

=max
K

k = 1
wk 1 +

1
rk + poutk,h

rk

i= 1

s +ik
yiok

+
pout

k,h
l= 1

sout +k,h l

zouto k,h l

(7.13)

In order to confine all scores within the range [0, 1], we define the efficiency score of
division k by

η∗ok =
1

1 +
1

rk + poutk,h

rk

i= 1

s + ∗iok

yiok
+

pout
k,h

l= 1

sout + ∗o k,h l

zouto k,h l

(7.14)

where s+ ∗iko and sout + ∗o k,h l are the optimal slacks.

Hence, the overall efficiency η∗o is not the weighted arithmetic mean of the divi-
sional efficiencies but the weighted harmonic mean. Thus, we usually have

η∗o ≤
K

k = 1
wkη

∗
ok (7.15)

7.4.3 Non-Oriented Case

In the non-oriented case, both the excess of inputs and ‘as input’ links and the shortfall
of outputs and ‘as output’ links are evaluated as inefficiency:

ρ∗o =min

K

k = 1
wk 1−

1

mk + pink,h

mk

i= 1

s−ik
xiok

+
pin

k,h
l = 1

sin−k,h l

zino k,h l

K

k = 1
wk 1 +

1
rk + poutk,h

rk

i= 1

s+ik
yiok

+
pout

k,h
l= 1

sout +k,h l

zouto k,h l

(7.16)
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In this case we define the efficiency score of division k by

ρ∗ok =

1−
1

mk + pink,h

mk

i= 1

s−∗iok

xiok
+

pin
k,h

l= 1

sin−∗o k,h l

zino k,h l

1 +
1

rk + poutk,h

rk

i= 1

s + ∗iok

yiok
+

pout
k,h

l= 1

sout + ∗o k,h l

zouto k,h l

(7.17)

Thus, the overall efficiency is neither the arithmetic nor the harmonic mean of the
divisional efficiencies.
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8.1 INTRODUCTION

The measurement of intertemporal efficiency change has long been a subject of con-
cern in data envelopment analysis (DEA). Window analysis and Malmquist index
methods are representative methods. However, the models used in these methods
do not account for the effect of carry-over activities between two consecutive periods.
For each period, these models have inputs and outputs, but the connecting activities
between periods are not accounted for explicitly.

The dynamic DEA model proposed by Färe and Grosskopf [2] was the first inno-
vative scheme that formally dealt with these interconnecting activities. Traditional
DEA models usually deal with the efficiency of input resources versus the output pro-
ducts of associated decision-making units (DMUs) within cross-sectional data. In con-
trast, the dynamic DEAmodel extends these models to dynamic situations as shown in
Figure 8.1. In each period t, each DMU has inputs and outputs along with a carry-over

1 Part of the material in this chapter is adapted from Omega, Vol. 38, Tone K. and Tsutsui M., Dynamic
DEA: A slacks-based measure approach, 145–156, 2010 [1], with permission from Elsevier Science.
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to the next period, t + 1. What distinguishes dynamic DEA from ordinary DEA is the
existence of carry-overs that connect two consecutive periods.

In this chapter, we extend the dynamic DEA model within the slacks-based meas-
ure framework. The dynamic DEAmodel can also be positioned as an extension of the
network SBM described in Chapter 7 to dynamic structures.

Our model has the following features. (i) Since it is a dynamic model, we can com-
pare the long-range performance of companies. (ii) The adoption of non-radial SBM
models enables us to deal with inputs and outputs individually, and hence non-
proportional changes in inputs and outputs are allowed. (iii) Carry-over activities
are categorized into four types: discretionary (free), non-discretionary (fixed), desir-
able (good) and undesirable (bad), and hence we are able to correctly and properly
cope with the demands of researchers and practitioners. (iv) We have developed three
orientations for every model: input-, output- and non-oriented models. Thus, in
accordance with the purpose of the research being carried out, we can choose appro-
priate models for evaluation. If input- or output-side efficiency is the main target, we
can choose input- or output-oriented models, respectively. If both input and output
efficiencies are to be evaluated concurrently, we can apply non-oriented models.2

8.2 NOTATION AND PRODUCTION POSSIBILITY SET

We use the following notation to describe dynamic DEA:

n: number of DMUs ( j = 1, …, n);

T: number of periods (t = 1, …, T);

m: number of inputs (i = 1, …, m);

r: number of outputs (i = 1, …, r);

2 Software for dynamic DEA models is included in DEA-Solver Pro V13 (hppt://www.saitech-inc.com).
See also Appendix A.

Period t Period t+1

Carry-over
(t,t+1)

Output
t

Input
t+1

Input
t

Output
t+1

Figure 8.1 Dynamic structure.
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q: number of items in carry-over from period t to period t + 1 (c = 1, …, q);

(t, t + 1): carry-overs from period t to period t + 1.

The observed data are as follows:

xtij R+ : input resource i to DMUj in period t ( i, j, t);

ytij R+ : output product i from DMUj in period t ( i, j, t);

ωα, t
jc R + : carry-over c of DMUj from period t to period t + 1 ( c, j, t, α = 4

types of carry-overs as explained in Section 8.3.2).

We postulate that we have homogeneous panel data throughout periods 1 to T.
So, we look at the enterprises concerned as a continuum between period 1 and
period T. In addition, we take the initial inputs for carry-overs in period 1 into
account as follows:

ωα,0
jc j, c, α : initial carry-over to period 1.

The production possibility set P= xt,yt,ωt,ω0 is defined in vector notation by

xt ≥
n

j= 1
xtjλ

t
j t

yt ≤
n

j= 1
ytjλ

t
j t

ωt ≤
n

j= 1
ωt

jλ
t
j t = 1,…,T carry-overs as outputs from period t

ωt ≥
n

j= 1
ωt

jλ
t + 1
j t = 1,…,T −1 carry-overs as inputs to period t + 1

ω0 ≤ = ≥
n

j= 1
ω0

j λ
1
j initial carry-overs to period 1

n

j= 1
λtj = 1 t

λtj ≥ 0 j, t

(8.1)

where λtj R+ is the intensity variable for DMUj ( j) corresponding to period t ( t).

The constraint
n

j= 1
λkj = 1 corresponds to the variable-returns-to-scale (VRS)

assumption. If we delete this constraint, we have the constant-returns-to-scale
(CRS) model.

66 ADVANCES IN DEA THEORY AND APPLICATIONS



8.3 DESCRIPTION OF DYNAMIC STRUCTURE

8.3.1 Inputs and Outputs

DMUo o= 1,…,n P can be represented by

xtio =
n

j = 1
xtijλ

t
j + s

t−
i i= 1,…,m, t

ytio =
n

j = 1
ytijλ

t
j −s

t +
i i= 1,…,r, t

n

j= 1
λtj = 1 t

λtj ≥ 0 j, t , st−i ≥ 0 i= 1,…,m, t , st +i ≥ 0 i= 1,…,r, t

(8.2)

where st−i and st +i indicate input and output slacks (non-negative), respectively.

8.3.2 Carry-Overs

We classify carry-over activities into four categories of ‘free’, ‘fixed’, ‘good’ and
‘bad’. In all cases, the continuity of carry-overs between periods t and t + 1 can be
guaranteed by the following condition:

n

j= 1
ωα, t
jc λtj =

n

j= 1
ωα, t
jc λt + 1j c = 1,…,qα, t = 1,…,T −1 (8.3)

where the symbol α stands for ‘free’, ‘fix’, ‘good’ or ‘bad’ as explained below. ωα, t
jc is

the observed carry-over c in the case α for DMUj from period t ( c, j, t). This con-
straint is critical for the dynamic model, since it connects activities in period t and
period t + 1.

8.3.2.1 The ‘Free’ Carry-over Case This corresponds to discretionary carry-
overs that the DMU can handle freely while keeping the continuity between periods
t and t + 1 described by (8.3). The values of the carry-overs can be increased or
decreased from the observed values. The deviation from the current value is measured
as a slack in (8.4):

ωfree, t
oc =

n

j= 1
ωfree, t
jc λtj + s

free, t
c c= 1,…,qfree, t (8.4)

where sfree, tc is a slack of the free carry-over c in period t ( c, t, free in sign), which
is not directly reflected in the efficiency evaluation presented in Section 8.4, but the
continuity condition between two periods in (8.3) exerts an indirect effect on the
efficiency score. This slack can be directly incorporated into efficiency scores using
mixed-integer programming (MIP) [1].
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The initial condition in the free carry-over case is

ωfree,0
oc =

n

j= 1
ωfree,0
jc λ1j + s

free,0
c c = 1,…,qfree (8.5)

where sfree,0c is free in sign.

8.3.2.2 The ‘Fixed’ Carry-over Case This indicates non-discretionary carry-
overs that are beyond the control of the DMU. Their value is fixed at the observed
level. Similarly to free carry-overs, fixed carry-overs affect the efficiency score indi-
rectly through the continuity condition between two periods:

ωfix, t
oc =

n

j= 1
ωfix, t
jc λtj c = 1,…,qfix, t = 1,…,T

ωfix, t
oc =

n

j= 1
ωfix, t
jc λt + 1j c = 1,…,qfix, t = 1,…,T −1

(8.6)

The initial condition in the fixed carry-over case is

ωfix,0
oc =

n

j= 1
ωfix,0
jc λ1j c = 1,…,qfix (8.7)

8.3.2.3 The ‘Good’ Carry-over Case This indicates desirable carry-overs, for
example profit carried forward and net earned surplus carried to the next period. In
our model, desirable carry-overs are treated as outputs and their value is restricted
to be not less than the observed value. A comparative shortage of carry-overs in this
category is accounted for as inefficiency:

ωgood, t
oc =

n

j= 1
ωgood, t
jc λtj −s

good, t +
c c = 1,…,qgood, t (8.8)

where sgood, t +c is a slack (non-negative), which indicates a shortfall in a good
carry-over c in period t ( c, t).

The initial condition in the good carry-over case is

ωgood,0
oc ≤

n

j= 1
ωgood,0
jc λ1j c= 1,…,qgood (8.9)

8.3.2.4 The ‘Bad’ Carry-over Case This indicates undesirable carry-overs, for
example losses carried forward, bad debts and dead stock. In our model, undesirable
carry-overs are treated as inputs and their value is restricted to be not greater than the
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observed value. A comparative excess in carry-overs in this category is accounted
for as inefficiency:

ωbad, t
oc =

n

j= 1
ωbad, t
jc λtj + s

bad, t−
c c = 1,…,qbad, t (8.10)

where sbad, t−c is a slack (non-negative), which indicates an excess in a bad carry-over c
in period t ( c, t).

The initial condition in the bad carry-over case is

ωbad,0
oc ≥

n

j= 1
ωbad,0
jc λ1j c = 1,…,qbad (8.11)

8.4 OBJECTIVE FUNCTIONS AND EFFICIENCIES

In this study, the non-radial SBM model is employed in order to evaluate the overall
efficiency of DMUo o = 1,…,n . We present the objective function for the following
three orientations for each case subject to (8.2)–(8.11). Let an optimal solution
be λt∗o , st−∗io , st + ∗io , sfree, t∗oc , sgood, t + ∗oc , sbad, t−∗oc .

8.4.1 Input-Oriented Case

The input-oriented overall efficiency θ∗o is defined by

θ∗o =min
T

t = 1
Wt 1−

1
m+ qbad

m

i= 1

st−i
xtio

+
qbad

c= 1

sbad, t−c

ωbad, t
oc

(8.12)

where Wt is the weight of period t, which is supplied exogenously according to the
importance of the period, and the weights satisfy the following condition:

T

t = 1
Wt = 1 (8.13)

This objective function is based on the input-oriented SBM model and deals not
only with excesses in input resources but also with undesirable (bad) carry-overs
as the main targets of evaluation. Excesses in undesirable carry-overs are accounted
for in the objective function in the same way as input excesses, because they have a
similar nature to inputs, that is, a smaller amount is favourable. However, undesirable
carry-overs are not inputs. They play the role of connections between two consecutive
periods, as demonstrated by the constraint (8.3).

Each period in the expression in square brackets in (8.12) expresses the efficiency
for the period t as measured by the relative slacks of the inputs and carry-overs, and
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this efficiency is equal to unity if all slacks are zero. The efficiency is units-invariant
and its value is between 0 and 1. Hence, (8.12) is the weighted average of the period
efficiencies over the whole set of periods, which we call the overall efficiency and
which is also between 0 and 1.

We define the period efficiency θ∗ot by

θt∗o = 1−
1

m+ qbad
m

i= 1

st−∗io

xtio
+

qbad

c = 1

sbad, t−∗oc

ωbad, t
oc

t (8.14)

This period efficiency expresses the input-oriented efficiency score for the period t.
The overall efficiency for all the periods (θ∗o) is the weighted average of the period
efficiencies θt∗o , as demonstrated below:

θ∗o =
T

t = 1
Wtθt∗o (8.15)

8.4.2 Output-Oriented Case

The output-oriented overall efficiency η∗o is defined by

1
η∗o

=max
T

t = 1
Wt 1 +

1
r + qgood

r

i= 1

st +i
ytio

+
qgood

c = 1

sgood, t +c

ωgood, t
oc

(8.16)

This objective function is an extension of the output-oriented SBM model and deals
with shortfalls in output products and desirable (good) carry-overs as the main targets
of evaluation. Shortfalls in desirable carry-overs are accounted for in the objective
function in the same way as output shortfalls, because they have a similar nature
to outputs, that is, a larger amount is favourable. However, desirable links are not out-
puts. They play the role of connections between two consecutive periods, as demon-
strated by (8.3).

Each period in the expression in square brackets in (8.16) relates to the efficiency
for the period t as measured by the relative slacks of the outputs and carry-overs, and
this efficiency is equal to unity if all slacks are zero. The efficiency is units-invariant
and its value is greater than or equal to 1. Hence, the right-hand side of (8.16) is the
weighted average over the whole period, which is greater than or equal to 1. Since we
define the overall efficiency by the reciprocal of this quantity, the output overall
efficiency is between 0 and 1.

Using an optimal solution to (8.16), we define the output-oriented period
efficiency ηt∗o by

ηt∗o =
1

1 +
1

r + qgood
r

i = 1

st + ∗io

ytio
+

qgood

c = 1

sgood, t + ∗oc

ωgood, t
oc

t (8.17)

70 ADVANCES IN DEA THEORY AND APPLICATIONS



The output-oriented overall efficiency for all the periods (η∗o) is the weighted
harmonic mean of the period efficiencies ηt∗o , as demonstrated below:

1
η∗o

=
T

t = 1

Wt

ηt∗o
(8.18)

8.4.3 Non-Oriented Case

We define the non-oriented efficiency measure as a combination of the input- and out-
put-oriented cases, by solving the program below:

ρ∗o =min

T

t = 1
Wt 1−

1
m + qbad

m

i= 1

st−i
xtio

+
qbad

c = 1

sbad, t−c

ωbad, t
oc

T

t = 1
Wt 1 +

1
r + qgood

r

i= 1

st +i
ytio

+
qgood

c = 1

sgood, t +c

ωgood, t
oc

(8.19)

subject to (8.2)–(8.11).
This objective function is an extension of the non-oriented SBM model and deals

with excesses in both input resources and undesirable (bad) carry-overs, and with
shortfalls in both output products and desirable (good) carry-overs in a single unified
scheme. The numerator is the average input efficiency and the denominator is the
inverse of the average output efficiency. We define the non-oriented overall efficiency
as their ratio, which ranges between 0 and 1, and attains a value of 1 when all slacks
are zero. This objective function is also units-invariant.

Using an optimal solution λt∗o , st−∗io , st + ∗io , sfree, t∗oc , sgood, t + ∗oc , sbad, t−∗oc

to (8.19), we define the non-oriented period efficiency as follows:

ρt∗o =
1−

1
m+ qbad

m

i= 1

st−∗io

xtio
+

qbad

c= 1

sbad, t−∗oc

ωbad, t
oc

1 +
1

r + qgood
r

i= 1

st + ∗io

ytio
+

qgood

c = 1

sgood, t + ∗oc

ωgood, t
oc

t (8.20)

8.5 DYNAMIC MALMQUIST INDEX

The period efficiencies in the dynamic DEA model are measured relatively, based on
the frontier in each period, and do not take the frontier shift during the study periods
into account. Therefore, even if the period efficiencies of a certain DMU increase
period by period, the absolute productivity of the DMU may not increase because
of regress of the frontier. In order to capture the absolute productivity change in
the dynamic DEA model, we can use the Malmquist productivity index.
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The concept of the Malmquist productivity index is an index representing the total
factor productivity (TFP) growth of a DMU, in that it reflects (i) progress or regress in
efficiency along with (ii) progress or regress of the frontier technology. More details
can be found in Chapter 7. In this section, we define a dynamicMalmquist index based
on the period efficiency scores in the dynamic DEA model. We utilize period effi-
ciency scores θt∗o measured in the input-oriented model, but the same procedure
can be applied to output-oriented and non-oriented efficiency scores.

8.5.1 Dynamic Catch-up Index

We define the dynamic catch-up index (DCU) of DMUo as the ratio of the period effi-
ciencies between t and t + 1, as follows:

DCU γt t + 1
o =

θt + 1∗o

θt∗o
t = 1,…,T −1 (8.21)

where γt t + 1
o > 1, γt t + 1

o = 1 and γt t + 1
o < 1 indicate progress, the status quo and

regress, respectively, in the dynamic catch-up effect.

8.5.2 Dynamic Frontier Shift Effect

We define the dynamic frontier shift effect (DFS) from t to t + 1 in the dynamic DEA
model following the non-radial Malmquist model:

DFS ϕt t + 1
o t = 1,…,T −1 (8.22)

where ϕt t + 1
o > 1, ϕt t + 1

o = 1, and ϕt t + 1
o < 1 indicate progress, the status quo and

regress, respectively, in the dynamic frontier shift effect.

8.5.3 Dynamic Malmquist Index

Using the above DCU and DFS, we define the dynamic Malmquist index (DMI) by
their product as

DMI μt t + 1
o = γt t + 1

o ϕt t + 1
o t = 1,…,T −1 (8.23)

which indicates the absolute productivity change of DMUo between two consecutive
periods. We can compare DMIs among DMUs.

8.5.4 Dynamic Cumulative Malmquist Index

Although the above dynamic Malmquist index is defined on a two-period (t t + 1)
base, we can obtain a dynamic cumulative Malmquist index based on the first period as

DCMI μ1 t
o =Πt

τ = 1μ
τ τ + 1
o t = 1,…,T −1 (8.24)
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The DCMI also turns out to be given by

μ1 t
o = μ1 2

o × μ2 t
o (8.25)

Thus, the intertemporal productivity change between period 1 and period t is modified
by the positions at 2,…,T −1.

Furthermore, the DCMI can be decomposed into a dynamic cumulative frontier
shift (DCFS) and the ratio of the period efficiencies between period 1 and period t as

μ1 t
o =Πt

τ = 1 ϕτ τ + 1
o γτ τ + 1

o =ϕ1 t
o

θt∗o
θ1∗o

(8.26)

where ϕ1 t
o indicates the DCFS to period t from the base period.

8.5.5 Dynamic Adjusted Malmquist Index

The dynamic adjusted Malmquist index (DAMI), which can capture both the relative
efficiency among DMUs in the base period and the productivity change from the base
period to period t, can be obtained as

DAMI ξ1 t
o = μ1 t

o θ1∗o =ϕ1 t
o θt∗o (8.27)
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9.1 INTRODUCTION

The dynamic model with network structure (DNSBM) is a composite of the net-
work SBM (NSBM) and the dynamic SBM (DSBM). Vertically, we deal with
multiple divisions connected by links of the network structure within each period
and, horizontally, we combine the network structures for different periods by
means of carry-over activities between two succeeding periods. See Figure 9.1
for an example.

This model can evaluate (i) the overall efficiency over the entire observed period,
(ii) dynamic changes in the period efficiency and (iii) dynamic changes in divisional
efficiency. The model can be implemented in input-oriented, output-oriented and non-
oriented (both input-oriented and output-oriented) forms under a constant-returns-to-

1 Part of the material in this chapter is adapted from Omega, Vol. 42, Tone K. and Tsutsui M. [1], Dynamic
DEA with network structure: A slacks-based measure approach, 124–131, 2014, with permission from
Elsevier Science.
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scale (CRS) or variable-returns-to-scale (VRS) assumption about the production pos-
sibility set. A Malmquist index can be developed.2

9.2 NOTATION AND PRODUCTION POSSIBILITY SET

9.2.1 Notation

We use the following notation to describe dynamic network DEA:

n: number of DMUs ( j = 1, …, n);

K: number of divisions (k = 1, …, K);

T: number of periods (t = 1, …, T);

mk: number of inputs to division k (i = 1, …, mk);

rk: number of outputs from division k (i = 1, …, rk) ;

pkh: number of items in link from division k to division h (l = 1, …, pkh);

(k, h): from division k to division h;

qk: number of items in carry-over for division k (c = 1, …, qk);

(t, t + 1): carry-overs from period t to period t + 1;

S: set of divisions which have no incoming links, that is, starting divisions;

T: set of divisions which have no outgoing links, that is, terminal divisions.

Output

Output

Output

Division 1
Carry-over

Input

Division 2

Link

Input

Input Link Link

Division 3

Division 1

Division 2
Carry-over

Carry-over

Output

Output

Division 3

Output

Input Link

Input

Input

[Period t] [Period t + 1]

Figure 9.1 Example of dynamic network structure.

2 Software for dynamic network DEA models is included in DEA-Solver Pro V13 (http://www.saitech-inc.
com). See also Appendix A.
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The observed data are as follows:

xtijk R+ : input resource i to division k of DMUj in period t (i = 1, …, mk, k,

j, t);

ytijk R+ : output product i from division k of DMUj in period t (i = 1,…, rk, k,

j, t);

zα, tj k,h l R + : linking products l from division k to division h of DMUj in period t

( l, (kh), j, t, α = 4 types of links as explained in Section 9.3.2);

ωα, t
jkc R + : carry-over c from period t to period t + 1 for division k of DMUj ( c,

k, j, t, α = 4 types of carry-overs as explained in Section 9.3.3).

We assume that

zα, tj k,h l = 0 j, t, l, α,h S no linking input to starting divisions

zα, tj k,h l = 0 j, t, l, α,k T no linking output from terminal divisions
(9.1)

We postulate that we have homogeneous panel data throughout periods 1 to T. So,
we look at the enterprises concerned as a continuum between period 1 and period T. In
addition, we take the initial inputs for carry-overs in period 1 into account as follows:

ωα,0
jkc c, k, j, α initial external input in period 1 for carry-over for division k

The production possibility set P= xtk,y
t
k,z

t
kh ,ω

t
k,ω0

k is defined by

xtk ≥
n

j= 1
xtjkλ

t
jk k, t

ytk ≤
n

j= 1
ytjkλ

t
jk k, t

ztkh ≤
n

j= 1
ztj kh λ

t
jk k,h , t links as outputs from division k interm t

ztkh ≥
n

j= 1
ztj kh λ

t
jh k,h , t links as inputs to division h interm t

ωt
k ≤

n

j= 1
ωt

jkλ
t
jk k, t carry−overs as outputs for division k from term t

ωt
k ≥

n

j= 1
ωt

jkλ
t + 1
jk k, t = 1,…,T −1 carry−overs as input for division k to term t + 1

ω0
k ≥

n

j = 1
ω0

jkλ
1
jk initial external inputs for carry-overs for division k into term1

n

j= 1
λtjk = 1 k, t

λtjk ≥ 0 k, j, t

(9.2)
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where λtjk R+ is the intensity variable corresponding to division k of DMUj for
period t ( k, j, t).

We notice that the above model makes the VRS assumption about production. That
is, the production frontiers are spanned by the convex hull of the existing DMUs.

However, if we neglect the constraint
n

j= 1
λtjk = 1, we can deal with the CRS case

as well.

9.3 DESCRIPTION OF DYNAMIC NETWORK STRUCTURE

9.3.1 Inputs and Outputs

DMUo o= 1,…,n P can be expressed as follows:

xtiok =
n

j= 1
xtijkλ

t
jk + s

t−
ik i, k, t

ytiok =
n

j= 1
ytijkλ

t
jk −s

t +
ik i, k, t

n

j= 1
λtjk = 1 k, t

λtjk ≥ 0 j, k, t , st−ik ≥ 0 i, k, t , st +ik ≥ 0 i, k, t

(9.3)

where st−ik and st +ik indicate input and output slacks (non-negative), respectively.

9.3.2 Links

As regards the linking constraints, we have several options, of which we present four
possible cases.

In all cases, we assume the following continuity condition for the links (k, h), which
is critical for a network model connecting activities in two divisions:

n

j= 1
zα, tj k,h lλ

t
jk =

n

j= 1
zα, tj k,h lλ

t
jh l= 1,…,pαk,h , k,h , t (9.4)

where α stands for ‘free’, ‘fix’, ‘out’ or ‘in’ as explained below. zα, tj k,h l is the

observed link l from division k to division h of DMUj in period t ( l, (k, h),
j, t) in the case α.

9.3.2.1 The Discretionary ‘Free’ Link Value Case The linking activities are
freely determined (discretionary) while keeping continuity between division k and
division h as formulated in (9.4). This case can be used to see whether or not the cur-
rent link flow has an appropriate volume in the light of other DMUs; that is, the link
flow may increase or decrease in the optimal solutions of the linear programs which
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we will introduce in Section 9.4. We have the following relationship between the cur-
rent link value and the free link value:

zfree, to k,h l =
n

j= 1
zfree, tj k,h lλ

t
jk + s

free, t
k,h l l= 1,…,pfreek,h , k,h , t (9.5)

where sfree, tk,h l is a free link slack and is free in sign.

9.3.2.2 The Non-discretionary ‘Fixed’ Link Value Case The linking activities
are kept unchanged (non-discretionary):

zfix, to k,h l =
n

j= 1
zfix, tj k,h lλ

t
jk l= 1,…,pfixk,h , k,h , t

zfix, to k,h l =
n

j= 1
zfix, tj k,h lλ

t
jh l= 1,…,pfixk,h , k,h , t

(9.6)

This case corresponds to the situation where the intermediate products are beyond the
control of the DMUs or the discretion of the management.

9.3.2.3 The ‘As Output’ Link Value Case The linking activities for which a larger
amount is regarded as favourable are treated ‘as output’ from the preceding division,
and shortages are accounted for in the output inefficiency:

zout, to k,h l =
n

j= 1
zout, tj k,h lλ

t
jk−s

out, t +
k,h l l = 1,…,poutk,h , k,h , t (9.7)

where sout, t +k,h l is an ‘as output’ link slack (non-negative).

9.3.2.4 The ‘As Input’ Link Value Case The linking activities for which a smaller
amount is regarded as favourable are treated ‘as input’ to the succeeding division, and
excesses are accounted for in the input inefficiency:

zin, to k,h l =
n

j= 1
zin, tj k,h lλ

t
jk + s

in, t−
k,h l l= 1,…,pink,h , k,h , t (9.8)

where sin, t−k,h l is an ‘as input’ link slack (non-negative).

9.3.3 Carry-Overs

We classify carry-over activities into four categories of ‘free’, ‘fixed’, ‘good’ and
‘bad’. In all cases, the continuity of carry-overs between periods t and t + 1 can be
guaranteed by the following condition:

n

j= 1
ωα, t
jkc λ

t
jk =

n

j= 1
ωα, t
jkc λ

t + 1
jk c = 1,…,qαk , k, t = 1,…,T −1 (9.9)
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where the symbol α stands for ‘free’, ‘fix’, ‘good’ or ‘bad’ as explained below. ωα, t
jkc is

the observed carry-over c in the case α for division k of DMUj from period t ( c, k, j,
t,). This constraint is critical for the dynamic model, since it connects activities in

period t and period t + 1.

9.3.3.1 The Discretionary ‘Free’ Carry-over Case This corresponds to carry-
overs that the DMU can handle freely while keeping the continuity between period
t and t + 1 described by (9.9). The values of the carry-overs can be increased or
decreased from the observed values. The deviation from the current value is not
directly reflected in the efficiency evaluation, but the continuity condition between
two periods presented below exerts an indirect effect on the efficiency score:

ωfree, t
okc =

n

j= 1
ωfree, t
jkc λtjk + s

free, t
kc c = 1,…,qfreek , k, t (9.10)

where sfree, tkc is a free link slack (free in sign), which is not directly reflected in the effi-
ciency evaluation presented in Section 9.4, but the continuity condition between two per-
iods in (9.9) exerts an indirect effect on the efficiency score. This slack can be directly
incorporated into efficiency scores using mixed-integer programming (MIP) [2].

The initial condition in the free carry-over case is

ωfree,0
okc =

n

j= 1
ωfree,0
jkc λ1jk + s

free,0
kc c = 1,…,qfreek , k (9.11)

where sfree,0kc is free in sign.

9.3.3.2 The Non-discretionary ‘Fixed’ Carry-over Case This indicates carry-
overs that are beyond the control of the DMU. Their value is fixed at the observed
level. Similarly to the free carry-overs, fixed carry-overs affect the efficiency score
indirectly through the continuity condition between two periods.

ωfix, t
okc =

n

j= 1
ωfix, t
jkc λtjk c= 1,…,qfixk , k, t = 1,…,T

ωfix, t
okc =

n

j= 1
ωfix, t
jkc λt + 1jk c = 1,…,qfixk , k, t = 1,…,T −1

(9.12)

The initial condition in the fixed carry-over case is

ωfix,0
okc =

n

j= 1
ωfix,0
jkc λ1jk c = 1,…,qfixk , k (9.13)

9.3.3.3 The Desirable ‘Good’ Carry-over Case This indicates desirable carry-
overs, for example profit carried forward and net earned surplus carried to the next
period. In our model, desirable carry-overs are treated as outputs and their value is
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restricted to be not less than the observed value. A comparative shortage of carry-
overs in this category is accounted for as inefficiency:

ωgood, t
okc =

n

j= 1
ωgood, t
jkc λtjk −s

good, t +
kc c = 1,…,qgoodk , k, t (9.14)

where sgood, t +kc is a slack (non-negative), which indicates a shortfall in a good
carry-over.

The initial condition in the good carry-over case is

ωgood,0
okc ≤

n

j= 1
ωgood,0
jkc λ1jk c= 1,…,qgoodk , k (9.15)

9.3.3.4 The Undesirable ‘Bad’Carry-over Case This indicates undesirable carry-
overs, for example losses carried forward, bad debts and dead stock. In our model,
undesirable carry-overs are treated as inputs and their values are restricted to be
not greater than the observed value. A comparative excess in carry-overs in this cat-
egory is accounted for as inefficiency:

ωbad, t
okc =

n

j= 1
ωbad, t
jkc λtjk + s

bad, t−
kc c= 1,…,qbadk , k, t (9.16)

where sbad, t−kc is a slack (non-negative), which indicates an excess in a bad carry-over.
The initial condition in the bad carry-over case is

ωbad,0
okc ≥

n

j = 1
ωbad,0
jkc λ1jk c= 1,…,qbadk , k (9.17)

9.4 OBJECTIVE FUNCTION AND EFFICIENCIES

This section deals with the overall, period and divisional efficiencies in the case of the
non-oriented (i.e. both input- and output-oriented) model.

9.4.1 Overall Efficiency

The overall efficiency is evaluated by the following program:

ρ∗o =min

T

t = 1
Wt K

k = 1
wk 1−

1

mk + pink,h + qbadk

mk

i= 1

st−ik
xtiok

+
pin

k,h
l= 1

sin, t−k,h l

zin, to k,h l

+
qbadk

c= 1

sbad, t−kc

ωbad, t
okc

T

t = 1
Wt K

k = 1
wk 1 +

1

rk + poutk,h + qgoodk

rk

i= 1

st +ik
ytiok

+
pout

k,h
l = 1

sout, t +k,h l

zout, to k,h l

+
qgoodk

c = 1

sgood, t +kc

ωgood, t
okc

(9.18)
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with
T

t = 1
Wt = 1,

K

k = 1
wk = 1, Wt ≥ 0 t and wk ≥ 0 k , and subject to

(9.3)–(9.17), where Wt ( t) is the weight of period t and wk ( k) is the weight of
division k. These weights are supplied exogenously. The input- and output-oriented
models can be defined by considering only the numerator and the denominator,
respectively, of the above objective function.

Let an optimal solution be

λt∗ok , st−∗iok , st + ∗iok , sfree, t∗o k,h l , sout, t + ∗o k,h l , sin, t−∗o k,h l , sfree, t∗okc , sgood, t + ∗okc , sbad, t−∗okc .

9.4.2 Period and Divisional Efficiencies

The period efficiency is defined by

πt∗o =

K

k = 1
wk 1−

1

mk + pink,h + qbadk

mk

i= 1

st−∗iok

xtiok
+

pin
k,h

l= 1

sin, t−∗o k,h l

zin, to k,h l

+
qbadk

c= 1

sbad, t−∗okc

ωbad, t
okc

K

k = 1
wk 1 +

1

rk + poutk,h + qgoodk

rk

i= 1

st + ∗iok

ytiok
+

pout
k,h

l= 1

sout, t + ∗o k,h l

zout, to k,h l

+
qgoodk

c= 1

sgood, t + ∗okc

ωgood, t
okc

t

(9.19)

where the variables on the right-hand side indicate optimal values for the overall
efficiency ρ∗o.

The divisional efficiency is defined by

δ∗ok =

T

t = 1
Wt 1−

1

mk + pink,h + qbadk

mk

i= 1

st−∗iok

xtiok
+

pin
k,h

l= 1

sin, t−∗o k,h l

zin, to k,h l

+
qbadk

c = 1

sbad, t−∗okc

ωbad, t
okc

T

t = 1
Wt 1 +

1

rk + poutk,h + qgoodk

rk

i= 1

st + ∗iok

ytiok
+

pout
k,h

l = 1

sout, t + ∗o k,h l

zout, to k,h l

+
qgoodk

c= 1

sgood, t + ∗okc

ωgood, t
okc

k

(9.20)

Finally, the period-divisional efficiency is defined by

ρt∗ok =

1− 1
mk + pin

k,h + qbadk

mk

i = 1

st−∗iok

xtiok
+

pin
k,h

l= 1

sin, t−∗o k,h l

zin, to k,h l

+
qbadk

c= 1

sbad, t−∗okc

ωbad, t
okc

1 + 1
rk + pout

k,h + qgoodk

rk

i= 1

st + ∗iok

ytiok
+

pout
k,h

l = 1

sout, t + ∗o k,h l

zout, to k,h l

+
qgoodk

c= 1

sgood, t + ∗okc

ωgood, t
okc

k, t

(9.21)

In the input- and output-oriented models, the numerator and the denominator,
respectively, of the above formulas are applied. We notice that, although the overall
efficiency is uniquely determined, the period, divisional and period-divisional
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efficiencies are not necessarily unique. Furthermore, in the input-oriented model, the
overall efficiency is the weighted arithmetic mean of the period efficiencies and, in
the output-oriented model, the overall efficiency is the weighted harmonic mean of
the period efficiencies, whereas in the non-oriented model the overall efficiency is
neither the arithmetic nor the harmonic mean of the period efficiencies.

9.5 DYNAMIC DIVISIONAL MALMQUIST INDEX

The period-divisional efficiencies in the dynamic network DEA model are measured
relatively based on the frontier in each period for each division, and do not take the
frontier shift during the study periods into account. Therefore, even if the period-
divisional efficiency of division k of DMUo increases period by period, the absolute
productivity of the DMU may not increase because of regress of the frontier for divi-
sion k. In order to capture the absolute productivity change of DMUs in the dynamic
network DEA model, we can use the Malmquist index. In this section, we define a
Malmquist index based on the period-divisional efficiency score as follows.

9.5.1 Dynamic Divisional Catch-up Index

We define the dynamic divisional catch-up index (DDCU) of DMUo as the ratio of the
period-divisional efficiencies between t and t + 1 for division k, as follows:

DDCU γt t + 1
ok =

ρt + 1
∗

ok

ρt
∗
ok

t = 1,…,T −1, k (9.22)

where γt t + 1
ok > 1, γt t + 1

ok = 1 and γt t + 1
ok < 1 indicate progress, the status quo and

regress, respectively, in the catch-up effect.

9.5.2 Dynamic Divisional Frontier Shift Effect

We define the dynamic divisional frontier shift effect (DDFS) from t to t + 1 for divi-
sion k following the non-radial Malmquist model described in Chapter 7:

DDFS ϕt t + 1
ok t = 1,…,T −1, k (9.23)

If a division has no inputs or no outputs, its DDFS is unity.

9.5.3 Dynamic Divisional Malmquist Index

Using the above DDCU and DDFS, we define the dynamic divisional Malmquist
index (DDMI) for division k by their product as

DDMI μt t + 1
ok = γt t + 1

ok ϕt t + 1
ok t = 1,…,T −1, k (9.24)

82 ADVANCES IN DEA THEORY AND APPLICATIONS



9.5.4 Dynamic Divisional Cumulative Malmquist Index

Although the above DDMI is defined on a two-period (t t + 1) base, we can obtain a
dynamic divisional cumulative Malmquist index (DDCMI) for division k based on the
first period as

DDCMI μ1 t
ok =Πt

τ = 1μ
τ τ + 1
ok t = 1,…,T −1, k (9.25)

The DDCMI also turns out to be given by

μ1 t
ok = μ1 2

ok × μ2 t
ok (9.26)

Furthermore, the DDCMI can be decomposed into a dynamic divisional cumula-
tive frontier shift (DDCFS) and the ratio of the period-divisional efficiencies between
period 1 and period t for division k as

μ1 t
ok =Πt

τ = 1 ϕτ τ + 1
ok γτ τ + 1

ok

=ϕ1 t
ok

ρt∗ok
ρ1∗ok

(9.27)

where ϕ1 t
ok indicates the DDCFS to period t from the base period for division k.

9.5.5 Dynamic Divisional Adjusted Malmquist Index

The dynamic divisional adjusted Malmquist Index (DDAMI), which can capture both
the relative efficiency among DMUs in the base period and the productivity change
from the base period to period t for division k, can be obtained as

DDAMI ξ 1 t
ok = μ1 t

ok ρ1∗ok

=ϕ1 t
ok ρt∗ok (9.28)

9.5.6 Overall Dynamic Malmquist Index

We can calculate the overall dynamic Malmquist index (ODMI) as the weighted geo-
metric mean of the DDMIs:

ODMI μt t + 1
o =ΠK

k = 1 μt t + 1
ok

wk (9.29)

where wk ≥ 0 is the weight of division k, with
K

k = 1
wk = 1.
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The ODMI can be decomposed into a weighted geometric mean of the DDCU and
DDFS. These quantities can be calculated mathematically; however, it should be
noted that the weighted geometric mean of the DDFS does not indicate an ‘overall
frontier shift’, because we do not assume an overall frontier throughout all divisions.
The weighted geometric mean of the DDCU is also not an ‘overall catch-up’, since it is
calculated with reference to each divisional frontier, not to the ‘overall frontier’.
Therefore, we should understand that the ODMI is a supplemental index that is only
calculated mathematically.
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STOCHASTIC DEA: THE
REGRESSION-BASED APPROACH

ANDREW L. JOHNSON
Department of Industrial and Systems Engineering, Texas A&M University, College Station,
TX, USA

10.1 INTRODUCTION

The papers of Charnes et al. [1] and Banker et al. [2] are considered the two seminal
papers that established data envelopment analysis (DEA). Since the development of
the DEA method there have been multiple attempts to generalize DEA to the stochas-
tic setting. This chapter will briefly review the key developments in the field, focusing
on the assumptions or postulates and data requirements. I will emphasize the regres-
sion-based approaches to stochastic DEA.

The original DEA models are deterministic and require strong assumptions in order
for the efficiency measures to consistently estimate efficiency. These assumptions
include the requirement that the model has been exhaustively specified and the data
have been measured correctly. DEA has some notable features, however, such as axi-
omatic structure, ease of implementation via linear programming, and straightforward
extensions to the multiple-input/multiple-output production case. Since the stochastic
extension of DEA typically attempts to relax some aspects of the deterministic assump-
tions, we begin by listing the four properties (postulates) [2] that form the basis of DEA.

Postulate 10.1 (Convexity)
If x1,y1 T and x2,y2 T , then for any scalar θ 0,1 , θx1 + 1−θ x2,
θy1 + 1−θ y2 T .
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Convexity implies that if two production units, A and B, are observed, a third pro-
duction unit, C, which is unobserved, can be constructed by mixing the operations of
the two units observed. Specifically, we can create production unit C by using 80%
of the inputs and producing 80% of the outputs of production unit A and by using
20% of the inputs and producing 20% of the outputs of production unit B, or any arbi-
trary percentages that sum to 100%. In general, C can be constructed from not just two
observed production units, but an arbitrarily large number of production units. Varian
[3] has argued that convexity can be divided into the two assumptions of divisibility
and additivity. Divisibility means that an observed production unit can be proportion-
ally reduced and operated independently, while additivity implies that feasible pro-
duction processes can be combined without a loss or gain in productivity. If both
divisibility and additivity hold, then the production possibility set satisfies not only
convexity, but also constant returns to scale. If only divisibility and convexity hold,
and additivity does not hold, then nonincreasing returns to scale is implied [2].

Postulate 10.2 (Monotonicity)
(a) If x,y T and x1 ≥ x, then x1,y T . (b) If x,y T and y1 ≤ y, then x,y1 T .

Monotonicity implies that if a particular output level can be achieved with a given
input vector, the same output level or greater should be achievable if additional input
is given. Alternatively, Färe et al. [4] have proposed the concept of congestion. If there
is too much input, the use of additional inputs could lead to less output, thus violating
the monotonicity postulate. Production units typically operate in the monotonic region
of the production function. Firms maximizing output per unit input operate at the most
productive scale size, and the congestion region lies beyond the most productive scale
size at even larger output levels, which implies significant optimization errors.

Postulate 10.3 (Inclusion)
The observed xj,yj T for all DMUs j = 1,…,n.

Inclusion implies that all observed production units must be part of the production
possibility set [4]. Specifically, all observations are below the estimated production
function. Inclusion, however, makes the production function estimator a boundary
estimator and sensitive to outliers, mismeasurement, model specification, and so
on. The use of a stochastic model begins to address the issues of outliers, or sensitivity
of the results to only a few observations. Allowing some observations to lie above the
estimated production function makes the production function a more robust charac-
terization of the production process.

Postulate 10.4 (Minimum Extrapolation)
If a production possibility set T1 satisfies Postulates 10.1, 10.2, and 10.3, then T1 T .

Minimum extrapolation implies that a boundary estimator that is as close as pos-
sible to the data is selected. In regression-based techniques, a loss function that mini-
mizes the sum of the deviations, adding both positive and negative deviations,
measured from the observed data to the estimated function, assures that an estimated
function is as close to the data as possible. While there are many functions that are
monotonic and concave and define a production possibility set that includes all the
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observed production units, the set of functions that also minimizes the distance from
the data, in terms of an L1 norm, is smaller but still infinite. Regression-based stochas-
tic DEA methods, such as the convex nonparametric least squares (CNLS) method
described in Section 10.2.5, uses the minimum-extrapolation principle to uniquely
identify a single functional estimate that minimizes the size of the production
possibility set from among the infinite set of functions that minimizes the least
squares criteria.

10.2 REVIEW OF LITERATURE ON STOCHASTIC DEA

Several discussions of stochastic DEA methods already exist in the literature; see, for
example, Olesen and Petersen [5] and the references that lie within. However, we dis-
tinguish this review by focusing on the underlying assumptions and the data require-
ments, in contrast to Olesen and Petersen [5], who emphasize the importance of the
management science perspective. Olesen and Petersen use Sherman and Zhu [6] as an
example application, which had 5 inputs, 5 outputs, and 33 bank branch observations.
After measuring efficiency using DEA, Olesen and Petersen discuss the use of ques-
tionnaires, field visits, and branch reviews, concluding that improvements are possible
by standardizing management practices, reducing task mismatch, cross-training, and
so on. While these are good consultancy recommendations and techniques, it is not
clear how the DEA analysis really informed the later activities. Furthermore, applying
a nonparametric estimator in such a high-dimensional space is unlikely to result in a
meaningful functional estimation. When relatively complicated and flexible (nonpa-
rametric) statistical estimators such as DEA are used on small datasets for which the
production process is difficult to define, there is a higher risk of obtaining meaningless
efficiency estimates. Cases with limited data require more analysis of individual pro-
cesses via consultancy practices. Flexible nonparametric statistical models are useful
when rich, accurate data are available, but when this is not the case, the first steps
become gathering measurable information about the production process, typically
through observation and adding structure to the model.

The most basic property of an estimator is consistency. Consistency assures us that
as more data are gathered, the estimator will converge to better solutions, so that when
an infinite amount of data is gathered, the truth is recovered. Consistency of an esti-
mator can only be shown for specific data generation processes that have assumptions
associated with them. Therefore, when comparing estimators, it is important to make
the assumptions clear so that it is possible to establish whether or not an estimator has
the basic property of consistency. Typically, consistent estimators are preferred to
inconsistent estimators, and estimators that are consistent under more general assump-
tions help avoid unnecessary modeling assumptions.

This chapter structures the literature on stochastic DEA and related topics into five
categories: random sampling, imprecise measurement of data, uncertainty in the mem-
bership of observations with respect to the production technology, random production
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possibility sets, and random noise. The following five sections review the key char-
acteristics of the methods in each category.

10.2.1 Random Sampling

The methods in this subsection consider the original DEA estimator. The research
results account for the fact that a random sample of n production units is observed,
and we would like to infer characteristics of the production technology that gen-
erated this set of observed production units. Specifically, consider estimating a
multivariate concave and monotonic function from observations xi,yi

n
i= 1,

where xi Rd, d ≥ 1 is a vector of random variables quantifying the inputs to the
production process, or resources, of length d, and yi Rq, q ≥ 1 is a vector of
random variables quantifying the outputs of the production process. The production
process is defined by x,y T , where T is often referred to as the technology, such
that the resource vector x can produce y. Thus, the four postulates in the introduction
still hold.

Banker [7] was the first to describe DEA as a maximum likelihood estimator in
a single-output–multiple-input setting for a deterministic output-oriented model.
The primary implication was that under deterministic modeling assumptions as
the number of observations, n, approached infinity, DEA recovered the true pro-
duction frontier. Korostelev et al. [8,9] found similar results and developed more
rigorous definitions, proofs, and rates of convergence. Kneip et al. [10] proved
consistency in the multiple-input–multiple-output setting and showed the rate of
convergence.

These early papers provided the basis to apply other standard statistical methods,
such as bootstrapping [11]. For example, Simar and Wilson [12,13] developed boot-
strapping methods to estimate the finite sample bias and confidence intervals for DEA
estimators. Although they were not the first to explore using bootstrapping methods
with DEA [14–17], their methods are the most widely used today.

The papers mentioned in this section are often included in the discussion of sto-
chastic DEA. However, the only uncertainty in these models is the random sample
observed. Because the analysis is based on resampling methods, the data requirements
are simply the input and output data.

10.2.2 Imprecise Measurement of Data

Cooper et al. [18] proposed the imprecise DEA model. Imprecise DEA models fre-
quently specify a uniform or triangular distribution to characterize the probability den-
sity of the data over a specified bounded interval in which the data have been
imprecisely measured. Cooper et al. [19] applied this method and demonstrated that
imprecise DEA allows larger distinctions in efficiency to be measured. Imprecise
DEA relaxes Postulate 10.3 to allow some of the data to lie above the frontier because
those observations have been imprecisely measured.
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Cooper et al. [18] formulated the imprecise DEA estimator as

max
q

k = 1

μkyk0

s t
q

k = 1

μkykj−
d

i= 1

ωixij ≤ 0 j= 1,…,n

d

i= 1

ωixi0 = 1

yk = ykj D+
k k = 1,…,q

xi = xij D−
i i= 1,…,d

μ = μk A+

ω= ωi A−

μ,ω ≥ 0

(10.1)

There are q outputs y1j,…, yqj and d inputs x1j,…, xdj for production units j= 1,…,n,
where both the inputs and the outputs are random variables. The variables y0 and x0
represent the output and input vectors for production unit 0, which is under evaluation
in this linear program. The variables μ and ω are often referred to as the weights or
multipliers. These variables are determined within the optimization problem. The first
constraints are for the standard form of a DEAmultiplier model. The data ykj and xij are
assumed to be known imprecisely, meaning that the exact value is unknown, but that
the value is known to lie within upper and lower bounds so that y

kj
≤ ykj ≤ ykj and

xij ≤ xij ≤ xij. The set D
+
k defines an upper limit on the output variables, and D−

i defines
a lower limit on the input variables. Cooper et al. [18] included the concept of mul-
tiplier bounds or assurance regions in the imprecise DEA model to show the analogy
between multipliers that were imprecise, but could be bounded, and production data
that may also be imprecise but boundable. Similarly toD +

k andD−
i , the sets A

+ and A−

define an upper and a lower limit, respectively, on the output weights μ and the input
weights ω. Cooper et al. also assume that the input/output data are semipositive,
which means that yk ≥ 0 and xi ≥ 0, k = 1,…,q, i= 1,…,d, and for at least one k and
one i yk 0 and xi 0, which allows the last constraints to restrict the output and input
multiplier weights to simply be nonnegative.

Imprecise DEA requires the probability density function for each of the input and
output variables, which is not directly observable. Because imprecise DEA is closer to
a sensitivity analysis approach, it is not clear how to interpret the results in terms of a
true unobserved technology. Thus, I view imprecise DEA as distinct from other sto-
chastic DEA methods, with a different purpose and different results. Furthermore, the
data needed for imprecise DEA are not directly observable in cross-sectional data and
therefore panel data are often used. However, this approach requires assuming that
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minimal change has occurred between time periods. When the time periods are
short, this assumption is more tenable; however, typical production data are
measured annually, creating a new set of challenges regarding how to correct the
data for changes over time.

10.2.3 Uncertainty in the Membership of Observations

Uncertainty in the membership of a particular observation with respect to the technol-
ogy leads to fuzzy DEA models. The use of fuzzy methods is the most common way
to model this uncertainty in membership. However, fuzzy methods cover a wide range
of modeling issues, some of which are very close to those mentioned in the previous
subsections; see Hatami-Marbini et al. [20] for a detailed review of fuzzy methods.
Fuzzy DEA models relax Postulate 10.3. Sengupta [21,22] was the first to introduce
fuzzy DEA methods, and in the past 10 years these models have seen a rapid increase
in attention. However, there have been extensive debates in the statistics literature
related to the value and purpose of fuzzy methods [23].

Fuzzy methods use a continuous variable in the range of 0 to 1 to quantify the
membership of a particular observation with respect to the production technology.
Often the membership is not directly observable, but needs to be modeled as an
unobserved latent variable or can be adjusted to perform a sensitivity analysis
[24]. The Triantis and Girod [24] model can be described as a three-step model,
as shown in Figure 10.1.

Here, the random output and input vectors for each production unit j= 1,…,n are
y1,j,…, yq,j and x1,j,…, xd,j, respectively. Similarly, y01, j,…, y0q, j and x01, j,…, x0d, j,

Step 1.

Step 2.

Step 3.
Resolve the linear program in step 2, adjusting the value of μ on a prespecified
interval (for example μ = 0, 0.2, 0.4, ... , 1).

Min θp

s.t. θp(x0
i,p– (x0

i,p– x1
i,p)μ) – γj (x

0
i,j – (x0

i,j – x1
i,j)μ) ≥ 0, i = {1, ... , d }

θp≥ 0, γj ≥ 0, j = {1, ..., N}

j = 1

N

γj ((y0
k,j – y1

k,j)μ + y1
k,j) ≥ (y0

k,j – y1
k,j)μ + y1

k,j, k = {1, ... , q}
j = 1

N

μX(xi,j) =
x0

i,j – xi,j

x0
i,j – x1

i,j

, i = {1, ... , d}

μY(yk,i) =
yk,j – y1

k,j

y0
k,j – y1

k,j

,

j = {1, ... , N}

j = {1, ... , N}k= {1, ... , q}

Figure 10.1 Algorithm for fuzzy DEA [24].
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and y11, j,…, y1q, j and x11, j,…, x1d, j are the impossible and risk-free bounds on the ran-
dom output and input vectors, respectively. The functions μX(xi,j) and μY(yk,i) are
the membership functions. Triantis and Girod’s step 3 is a sensitivity analysis with
respect to the membership level.

The data requirements for fuzzy methods are input–output data and additional
data specifying the impossible and risk-free bounds on the production variables,
for Triantis and Girod’s method. Other methods use different data for defining the
membership function.

10.2.4 Random Production Possibility Sets

The methods in this subsection consider a random production possibility set. There
are multiple related methods that fall within this category, but the relationships
between these models have only been explored on a limited basis. In this group
we include Banker’s stochastic DEA, chance-constrained programming on both
the primal and the dual DEA programs, and the order- m and order-α estimators.
All of these methods relax Postulate 10.3 to allow some of the data to lie above
the frontier. These methods have the similarity that a prespecified parameter either
directly or indirectly determines how much of the data will lie above the frontier.
However, specifying this parameter is the primary outstanding challenge for these
methods.

Banker [25] recognized the relationship between the DEA formulation and the con-
ditions for characterizing subgradients for a concave function from the wider optimi-
zation literature, and used the resulting insights to rewrite the additive DEA
formulation with a goal-programming-type objective function. Specifically, the

objective function was changed to include a random factor,
n

j = 1
u+
j + u−

j + cvj ,

where the u +
j are random positive deviations, u−

j are random negative deviations,
vj are the systematic inefficiency, and c is the prespecified weight defining the ratio
of random noise to systematic inefficiency. By varying c, the least-absolute-deviation
regression model and DEA can be obtained as special cases. For a more recent
treatment of this model, see for example Banker et al. [26]. The data requirements
for this method are the input–output data and specification of the parameter c.

Land, Lovell, and Thore [27] (LLT) were the first to apply chance-constrained
programming to DEA and allowed the constraints in the envelopment model to be
violated by a particular percentage of the observations. Cooper et al. [28]
extended the envelopment formulation to include joint chance constraints. Alter-
natively, Olesen and Petersen [29] considered a DEA model in the multiplier
form. Olesen [30] showed that, for the LLT model, the production function shape
estimated for different levels of constraint violations did not necessarily satisfy
the properties of monotonicity and convexity, depending on the covariance struc-
ture of the noise terms across observations. Olesen [30] also suggested how to
integrate the LLT model with the dual formulation of Olesen and Petersen and
proposed
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minθ

s t
n

j= 1

λjYkj + ξ
+
k ≥ yk k = 1,…,q

−
n

j= 1

λjXij + ξ
−
i ≥ θxi i= 1,…,d

ξ +
k +

1
η

λ 2 ≤ 0 k = 1,…,q

ξ−i +
1
η

λ 2 ≤ 0 i= 1,…,d

1
κ

λ 1 + ξ+k ,ξ−i 2
≥ 0

λ Rn
+ , θ R,ξ− Rd

+ ,ξ
+ Rq

+

(10.2)

Here again, there are q outputs Y1j,…, Yqj and d inputs X1j,…, Xdj for production
units j= 1,…,n, where both the inputs and the outputs are random variables. Let
the mean vectors of the outputs and inputs be denoted by Y1j,…, Yqj and
X1j,…, Xdj, respectively. Also, as in standard DEA notation, θ is the efficiency meas-
ure of the firm under evaluation, and λ1,…, λn are the intensity weights associated
with each observation and are specific to the current firm under evaluation.

Let x 1 =
n

j= 1
xj and x 2 =

n

j= 1
x2j be the L1 and L2 norms, respectively.

Let η−1 be the fractile corresponding to the chosen probability level α with which
the envelopment constraints from the LLT model should hold. Let κ−1 be the fractile
corresponding to the chosen probability level α with which the multiplier constraints
from the Olesen and Petersen model should hold. The variables ξ− and ξ + are referred
to as contingency terms and play a role similar to the slack variables in the classic
DEA model. Constraining the contingency terms more or less leads to the inner
and outer approximations, respectively.

The data requirements for chance-constrained programming are the expected
values of all variables (input and output) for all production units and variance–
covariance matrices for each variable across production units. This information
is not observable and would have to be assumed in the cross-sectional setting.
Often panel data are used to construct this information. However, chance-
constrained programming has similar challenges to imprecise DEA related to panel
data: specifically, how to correct the data for changes over time is an open
question.

Daraio and Simar [31] developed an order-m frontier, which calculates the
expected minimum input among a fixed number of m potential competing firms pro-
ducing more than output level y, wheremmust be less than or equal to n, the size of the
full sample. Daraio and Simar also presented an order-α frontier, in which the prob-
ability α was selected such that with probability 1−α a point is observed above the
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order-α frontier, rather than specifying the number of observations m. The data
requirements for this method are the input–output data and specification of the
parameter m or α.

Banker’s stochastic DEA, chance-constrained programming, and the order-m and
order-α estimators all relax Postulate 10.3 to allow some of the data to lie above the
frontier. To summarize the data requirements, specifying a parameter that directly or
indirectly determines howmuch of the data should lie above the frontier is the primary
challenge for the methods in this category and largely remains an open research topic.
Furthermore, the chance-constrained programming methods require extensive distri-
butional information regarding the input–output data, including variance–covariance
matrices.

10.2.5 Random Noise

Models that includes random noise are also based on a random production possibility
set because the production function or the boundary of the production possibility set is
not directly observed, but rather estimated via randomly observed data. However, we
separate out random noise models because the data requirements and assumptions are
different. Models that include random noise in DEA-type estimators often take the
form of regression models and can be written in the form

y = f x −u+ v (10.3)

where x X Rd, d ≥ 1 is a vector of random variables quantifying the inputs to the
production process of length d, y R is a random variable quantifying the output of
the production process, u is a nonnegative random variable characterizing the system-
atic inefficiency in the production process, and v is a random variable satisfying
E v x = 0, characterizing random noise. While all concepts in this chapter apply to
the general multi-input and multi-output technology (see Kuosmanen et al. [32],
for example), we restrict ourselves to the single-output case for ease of exposition.
Typically, the composed error term −u + v = ε is used to estimate a conditional mean
function, with a second-step adjustment to shift the frontier up under a specific model
for the variance of the error term. When the second-step shift is small relative to the
size of the noise component, Postulate 10.3 is violated.

Some would characterize (10.3) as the stochastic frontier model [33,34]. Meeusen
and van den Broeck [34] explicitly specified the use of a parametric Cobb–Douglas
function in (10.3). Aigner et al. [33], Kumbhakar and Lovell [35], and Parmeter and
Kumbhakar [36] used the notation y= f x;β −u + v, emphasizing the parametric
nature of the regression function f( ) used in stochastic frontier analysis (SFA).

Banker and Maindiratta [37] proposed a maximum likelihood estimator for a
shape-constrained production function, and residual term that is a convolution of a
normally distributed noise term and a half-normally distributed inefficiency term. This
objective function was generally nonlinear, which made the Banker and Maindiratta
estimator difficult to compute. Kuosmanen [38], Kuosmanen and Kortelainen [39],
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and Kuosmanen et al. [32] developed stochastic nonparametric envelopment of data
(StoNED) to estimate the model (10.3) using the CNLS method to estimate a shape-
constrained nonparametric production function at the conditional mean of the data,
followed by the method of moments [33] or pseudo-maximum likelihood [40] to cre-
ate a generalization of SFA. The least squares objective placed CNLS in the class of
problems P that can be solved in polynomial time, whereas Banker and Maindiratta’s
model is in the class NP, nondeterministic polynomial time [41]. Kuosmanen and
Johnson [42] showed how to interpret DEA as a CNLS estimate with a sign constraint
on the residuals.

In 2015, Kuosmanen et al. interpreted StoNED as a generalization of both DEA
and SFA, incorporating a classical model of noise into DEA and imposing axiomatic
properties (postulates of monotonicity and concavity) on the shape of the function
estimated in SFA. The use of a classical noise term creates a link to the standard sta-
tistics literature [43]. Specifically, the central limit theorem states that the arithmetic
mean of a sufficiently large number of independent random variables will be approx-
imately normally distributed regardless of the underlying distributions of the random
variables. The central limit theorem motivates the regression-based approaches and
standard applications where a large number of modeling and measurement errors
are summed together in the noise term.

Kuosmanen and Kortelainen [39] proposed two potential second-stage methods
(the method of moments and the pseudo-maximum likelihood method), but both
require additional distributional assumptions for both the inefficiency and the noise
terms. Kuosmanen and Kortelainen [39] also proposed to use the Jondrow estimator
[44] to calculate firm-specific inefficiency levels. However, Greene [45] argued that
Jondrow’s method results in inconsistent estimates in cross-sectional analysis. Fur-
thermore, identification of the parameters of the inefficiency and noise distributions
relies on the skewness of the residuals [46]. The two-stage method requires a
separability assumption to first estimate a conditional mean and then deconvolute
inefficiency. Homoskedasticity of both the inefficiency and the noise terms is a suf-
ficient condition. Alternatively, well-defined models of heteroskedasticity, such as
a multiplicative residual where y = f x exp −u + v , can be estimated with the
two-stage method. However, separability clearly limits the flexibility of the potential
models for heteroskedasticity. Kuosmanen et al. [32] used a fully nonparametric
kernel deconvolution estimator given by Hall and Simar [47]. Here, we assume that
the inefficiency term is asymmetric. The noise term vi has a unimodal density with a
unique mode at zero. Hall and Simar [47] assume that σ2v approaches zero asymptot-
ically, which is required for proving consistency of their estimator. This allows esti-
mation of the expected value of the inefficiency without any parametric assumptions.

The data requirements for the regression-based methods are the input–output data.
To use Hall and Simar’s method to estimate the average inefficiency level, several
additional assumptions are needed. The unimodal density function for noise is moti-
vated by the central limit theorem as described above. Thus, the additional assumption
needed for the method described by Kuosmanen et al. [32] is that the inefficiency
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TABLE 10.1 Additional data and assumptions needed for stochastic DEA methods.

Stochastic source (method) Additional data Additional assumption

Random sampling DEA None Perfect model specification and data measurement
Bias-corrected DEA None Bootstrap sample is to the full sample as the full sample is to the

true population
Imprecise measurement
of data

Imprecise DEA Bounds on the input and output levels and
bounds on the multiplier weights

Input data lie within an interval which is known, but the exact
value of input or output for a particular firm is unknown

Uncertainty in the
membership of
observations

Fuzzy DEA The membership function or data needed to
construct the membership function

Input data lie within an interval which is known, but the exact
value of input or output for a particular firm is unknown

Random production
possibility set

Banker’s stochastic
DEA

Signal-to-noise ratio Noise is generated from a Laplace distribution

Chance-constrained
programming

Probability of the constraints being violated;
expected values and a variance–
covariance matrices for all variables
(input and output) across production unit

Probability of a constraint being violated is constant over the
production possibility set (a variant of homoskedastic noise
assumption)

Order-m and order-α The quantile of interest (or the frontier) in
terms of the parameter α or m

Output is homoskedastic in inputs

Random noise StoNED None Noise is symmetrically distributed; inefficiency either is
homoskedastic or has a well-defined heteroskedastic structure;
the variance of the noise approaches zero asymptotically



distribution is left-truncated and that the variance of the noise approaches zero asymp-
totically. The left-truncation is motivated by a nonzero density near the frontier, which
is likely in competitive markets, but is debatable for public industries. Hall and Simar
experimented with violations of the noise variance assumption and found that the bias
introduced was small. However, further research to verify this result would be useful.

10.3 CONCLUSIONS

A variety of methods fall into the general category of stochastic DEA. The purpose of
making DEA stochastic is varied and includes making efficiency estimates robust to
outliers, making efficiency estimates more discriminate, modeling uncertainty, and
connecting to the statistics literature, among others. This chapter has emphasized that
while all stochastic DEA methods require additional information in the form of either
data or assumptions, regression-based approaches that build on laws of large numbers
and include a classical noise term reduce the number of arbitrary assumptions needed,
in a manner consistent with the classic DEA mantra, allowing the data to speak for
themselves. Table 10.1 summarizes the additional data and assumptions needed for
the methods discussed.

There are relatively few theories related to production that apply across the diverse
types of production that are observed throughout the economy. However, monotonic-
ity and concavity of the production function are widely accepted in a broad number of
applications. Stochastic DEAmethods maintain these assumptions, which, in part, has
led to their wide popularity. The StoNED framework has clarified the relationship
between the two first-generation efficiency analysis techniques of DEA and stochastic
frontier analysis. StoNED integrates the two analysis techniques into a framework
which can both impose the postulates of monotonicity and concavity and include a
classical noise term. The next generation of efficiency analysis methods should
address model selection, out-of-sample performance, endogeneity, and smoothness.
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11
A COMPARATIVE STUDY OF AHP
AND DEA

KAORU TONE

National Graduate Institute for Policy Studies, Tokyo, Japan

11.1 INTRODUCTION

Both the analytic hierarchy process (AHP) and data envelopment analysis (DEA) aim
at the evaluation of decision-making units (DMUs) in multiple-criteria environments.
AHP uses pairwise comparisons and eigenvector weightings, whereas DEA uses lin-
ear fractional programs. In this chapter, we point out some structural similarities
between the two methods, by comparing the benefit/cost analysis that can be done
by AHP and DEA. Also, we discuss the question of fixed versus variable weights
in multiple-criteria decision making.

11.2 A GLIMPSE OF DATA ENVELOPMENT ANALYSIS

DEA was developed by Charnes et al. [1]. DEA estimates the relative efficiencies of
DMUs that have common factors in their inputs and outputs. Let the multiple inputs
to and outputs from DMUj j= 1,…,n be xij i= 1,…,m and yrj r = 1,…,s ,
respectively. We assume that we have {xij} and {yrj} in the form of observations
or of theoretically prescribed values and that their values are positive. Also, we
assume that the data are normalized so that they satisfy
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n

j= 1
xij = 1 i = 1,…,m (11.1)

and

n

j= 1
yrj = 1 r = 1,…,s (11.2)

This assumption is made for the sake of comparative study and does not influ-
ence any essential features of DEA. From the point of view of efficiency, a DMU
with large outputs relative to small inputs is preferable. We define the relative
efficiency of a DMU h h = 1,…,n by solving the following linear fractional
program:

FP h max
u,v

θh =
s

r = 1
uryrh

m

i= 1
vixih

subject to
s

r = 1
uryrj

m

i= 1
vixij ≤ 1 j= 1,…,n

ur ≥ ε r = 1,…,s ,vi ≥ ε i= 1,…,m

(11.3)

where ur and vi are the weights of the rth output yr and of the ith input xi, respectively,
and ε is a ‘non-Archimedean infinitesimal’ number (a positive number smaller than
any positive real number; see Cooper et al. [2]). We define the efficiency of a DMU to
be the ratio of the weighted sum of output values to the weighted sum of input values.
[FP(h)] maximizes the ratio associated with DMU h, keeping the ratio of every DMU,
including DMU h, not greater than 1. Let the optimal solution to [FP(h)] be u∗, v∗ and
θ∗h. These values vary from one DMU to another.

Definition 11.1
If θ∗h = 1, then DMU h is DEA-efficient. Otherwise, if θ∗h < 1, then DMU h is DEA-
inefficient.

Actually, this definition means the following:

(i) Output orientation: a DMU is inefficient if it is possible to augment any output
without increasing any input and without decreasing any other output.

(ii) Input orientation: a DMU is inefficient if it is possible to decrease any input
without augmenting any other input and without decreasing any output.

A DMU is characterized as efficient if, and only if, neither (i) nor (ii) obtains.
For an inefficient DMU, it is very important to find other DMUs which drive that

DMU into inefficiency.
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Definition 11.2
The efficient frontier for a DMU h is the set of DMUs

E h = j
s

r = 1
u∗r yrj

m

i= 1
v∗i xij = 1, j= 1,…,n (11.4)

where u∗ and v∗ are the optimal solutions to [FP(h)].

11.3 BENEFIT/COST ANALYSIS BY ANALYTIC HIERARCHY
PROCESS

Benefit/cost (b/c) analysis by AHP consists of two processes, namely a benefit process
and a cost process [3]. We estimate the benefit priority and the cost priority separately
by AHP, and then their ratio gives the relative efficiency of the alternative objects. In
this section, first we consider the b/c analysis in the case of a three-level perfect hier-
archy structure and then show that general cases can be reduced to the three-level case.

11.3.1 Three-Level Perfect Graph Case

We will deal with a three-level hierarchy structure as depicted in Figure 11.1. We call
a graph of the structure a perfect hierarchy graph if every node in every level is con-
nected to every node in the succeeding level by an arc and is not connected directly to
any nodes beyond the succeeding level.

We assume that we have s kinds of benefit criteria (B1, …, Bs) in Level 2 and n
kinds of alternative objects (O1,…, On) in Level 3. Let yrj be the priority of the object
Oj associated with the criterion Br, and let Ur be the priority of the criterion Br. Then,
the overall benefit of the object Oj is given by

s

r = 1
Uryrj j= 1,…,n (11.5)

B1 B2 B3 B4 B5

Level 1: Focus

Level 2: Criteria

O1 O2 O3 Level 3: Alternatives

Figure 11.1 Three-level perfect hierarchy graph.
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Here, yrj and Ur satisfy

n

j= 1
yrj = 1 r = 1,…,s and

s

r = 1
Ur = 1 (11.6)

Similarly, we assume that we have a perfect hierarchy cost structure with m cost cri-
teria (C1,…, Cm). Let xij be the priority of the object Ojwith respect to Ci and let Vi be
the priority of Ci. These priorities satisfy

n

j= 1
xij = 1 i= 1,…,m and

m

i= 1
Vi = 1 (11.7)

Then, the overall cost of Oj is given by

m

i= 1
Vixij j = 1,…,n (11.8)

The benefit/cost priority of the object Oh is evaluated as

η∗h =
s

r = 1
Uryrh

m

i= 1
Vixih (11.9)

We notice that in AHP all the elements of x, y, U and V are estimated by processes
of pairwise comparisons and eigenvector weightings or by some other empirical or
theoretical evaluations.

11.3.2 General Cases

We can reduce a general multilevel-structure case to a three-level problem by choos-
ing a key level between the focus and the alternatives, and by aggregating the levels
between them as depicted in Figure 11.2. If some arcs bypass the key level (Level 2),
we introduce additional nodes in the level so that any path connecting the Level 1 node
(the focus) to a Level 3 node (the alternatives) will meet a node in Level 2. Also, we

Level 1: Focus

Level 2: Criteria

Level 3: Alternatives

Key level

Figure 11.2 Reduction of general case to three-level perfect graph.
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introduce additional dummy arcs with very small x or y values to make the three-level
structure ‘perfect’, if necessary. It is easy to see that we can calculate the x, y,U and V
values corresponding to the aggregated three-level structure from the original values.
Thus, general multilevel cases can be reduced to a three-level perfect case by delib-
erately selecting a key level, which usually exists in AHP.

11.4 EFFICIENCIES IN AHP AND DEA

The discussion in Sections 11.2 and 11.3 shows the structural similarity between b/c
analyses done by AHP and DEA. Differences exist in the way they estimate the x, y, u,
v, U and V values.

11.4.1 Input x and Output y

DEA uses available numerical data for the input x and output y, while AHP creates
them by processes of pairwise comparisons and eigenvector weightings. Originally,
DEA was aimed at evaluating relative efficiencies of DMUs in environments where
numerical or theoretically prescribed data exist. On the other hand, AHP works
in a world where only subjective or psychological factors prevail in making
decisions. Although the two methods stem from extremely different motivations, they
exhibit a certain similarity in the presence of data, that is, an input x and an output y,
and of a ratio scale of efficiency evaluations. They can trade off their inputs and out-
puts. AHP could benefit by using the same numerical data as DEA. DEA could
expand its world by incorporating qualitative factors that AHP has exposed for the
first time.

11.4.2 Weights

DEA determines the weights u and v by solving the fractional program [FP(h)] cor-
responding to the decision-making unit DMUh.Hence, the weights differ from one
DMU to another. We call this kind of weights variable weights. The weights are deter-
mined in such a way that they will be the most favourable for the DMU concerned.
AHP uses pairwise comparisons and eigenvector weightings in determining the
weighs U and V of the key-level criteria. The values are common to all alternative
objects. We call this kind of weights fixed.

11.4.3 Efficiency

The AHP-efficiency η∗h of an object Oh is given by the formula (11.9). The DEA-
efficiency of DMUh is the optimal objective function value θ∗h for [FP(h)],

θ∗h =
s

r = 1
u∗r yrh

m

i= 1
v∗i xih (11.10)
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where u∗ and v∗ are the optimal solution to [FP(h)].
For any (U, V) in AHP, let

p = max
j

s

r = 1
Uryrj

m

i= 1
Vixij

and

ur =Ur p r = 1,…,s and vi =Vi i = 1,…,m

(11.11)

Then, (u, v) is feasible for [FP(h)].

Conversely, for any DEA-feasible solution (u, v), let T =
s

r = 1
ur and S =

m

i= 1
vi,

and define

Ur = ur T r = 1,…,s andVi = vi S i= 1,…,m (11.12)

Then, (U, V) is an AHP-feasible solution priority. Since both transformations are scal-
ing, they have the same priority relations in the b/c analysis.

11.4.4 Several Propositions

The above discussions lead us to several propositions [4]. Throughout this subsection,
we assume x and y to be constant.

Proposition 11.1 For any AHP weight (U, V), there exists a DMUh that has the trans-
formed (u, v) as the optimal solution to [FP(h)]. Indeed, h is the DMU that gives the
maximum value to (11.11).

Proposition 11.2 DEA is the most generous method among multiple-criteria methods
for evaluating the efficiency of DMUs by a ratio scale, in the sense that an efficient
DMU under the latter criteria has a corresponding DEA optimal weight (u, v) which
makes that DMU DEA-efficient.

Proposition 11.3 A DEA-inefficient DMU is also AHP-inefficient for any weighting
of the criteria. Moreover, a DEA-inefficient DMU is inefficient under any fixed-
weight multiple-criteria benefit/cost analysis.

11.5 CONCLUDING REMARKS

Both AHP and DEA have turned out to give strong impulses to the multiple-criteria
decision-making community, although their origins and motivations were quite dif-
ferent. In this chapter, we have pointed out structural similarities between them in
the case of b/c analysis and suggested their potential trade-offs. In short, AHP could
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be made more objective by incorporating the DEA-efficiency. AHP could exclude
essentially inefficient objects by using DEA-inefficiency. Conversely, DEA could
be made more subjectively oriented by incorporating some features of AHP. For
example, if constraints such as u1 ≥ u2 or 3v1 ≤ v2 were added to [FP(h)], DEA would
become more intensive in judging the efficiency of the DMU concerned. Although we
have been concerned mainly with a comparative study of b/c analyses by AHP and
DEA, it should be noted that the usual AHP could be regarded as a special case of
the AHP b/c analysis where the cost factor has only one criterion, with equal weights
for each object of the alternatives. Hence, Propositions 11.1 to 11.3 remain valid in the
latter case, where the corresponding [FP(h)] of DEA reduces to a linear program.

A collaboration between AHP and DEA in a group decision-making scenario is
presented in Chapter 31.
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12.1 INTRODUCTION

Usually, DEA deals with a finite set of DMUs. In this chapter, we study DEA pro-
blems with infinitely many DMUs. We assume that every DMU have common mul-
tiple input- and output- factors, and that each factor varies continuously with respect to
DMUs. The problem is to find the efficient DMUs within a tolerance where efficiency
is measured by a ratio of weighted inputs vs. weighted outputs. Section 12.2 describes
Primal and Dual sides of the problem. The outline of the solution process
(Discretization, Deletion and Subdivision) is explained in Section 12.3. Details of

1 Reprinted from Research Report CCS 561, Center for Cybernetic Studies, The University of Texas at Aus-
tin. This article was written under the co-authorship of Professor Charnes when I (Tone) was invited to
Texas in January 1987. This research was partly supported by ONA Contracts N00014-86-C-0398 and
N00014-82-K-0295, and National Science Foundation Grant SES-8520806 with the Center for Cybernetic
Studies, The University of Texas at Austin. Reproduction in whole or in part is permitted for any purpose of
the United States Government. I have changed the original notation a little in order to make it consistent with
Chapter 2 and added proofs of theorems as appendices.
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First Edition. Edited by Kaoru Tone.
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the method when the infinite set is one-dimensional are presented in Section 12.4.
Section 12.5 deals with general cases.

12.2 PROBLEM

Solve the following LP with an infinite set Z of DMUs for a suitable subset of ele-
ments typically designated by zh.

[Problem]

P vP = max
w

uTy zh

subject to

uTy z −vTx z ≤ 0 for z Z

vTx zh = 1

u ≥ εe

v ≥ εe

where

Z a compact convex set, dim Z = L

u Rs,e = 1,1,…,1 T Rs

v Rm,e = 1,1,…,1 T Rm

y z Rs Outputs y z ≥ 0 and C2 onZ

x z Rm Inputs x z ≥ 0 and C2 onZ

ε a positive infinitesimal non−Archimedian quantity

[Dual Problem]

D vD =min θ−εeTs+ −εeTs−

subject to

z Z

y z λ z −s + = y zh

z Z

x z λ z + s− = θx zh

λ z ≥ 0 for every z Z andλ z = 0 except for a finite number of points

s + ≥ 0, s+ Rs

s− ≥ 0, s− Rm
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12.3 OUTLINE OF THE METHOD

The method consists of three main parts: Initial discretization, deletion and subdivi-
sion. The discretized problems are solved by the simplex method throughout the
iterations.

Step 0. (Discretization)
The dual pair (P)–(D) is discretized, i.e., the infinite index set Z is replaced by a
finite set. Let the finite set be (z1,…, zn). We call such sets grid.

Solve the resulting dual pair of linear programs (Ph)–(Dh) h= 1,…,n by
means of the simplex method.

Ph vP = max
u

uTy zh

subject to

uTy zi −vTx zi ≤ 0 for i = 1,…,n

vTx zh = 1

u ≥ εe

v ≥ εe

Dh vD =min θ−εeTs + −εeTs−

subject to
n

i= 1

y zi λi−s + = y zh

n

i= 1

x zi λi + s− = θx zh

λi ≥ 0 for i= 1,…,n

s+ ≥ 0, s + Rs

s− ≥ 0, s− Rm

Let optimal solutions to (Ph) and (Dh) be

u= u1,…,us
T ,v = v1,…,vm

T

and

θ, λ= λ1,…,λn
T , s+ = s +1 ,…,s +s

T
, s− = s−1 ,…,s−m

Step 1. (Deletion)
Apply the “Deletion rule” as explained later in Sections 12.4 and 12.5 to the grid.
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Step 2. (Subdivision or Bisection)
Apply the “Subdivision (bisection) rule” as explained in Sections 12.4 and 12.5 to
the grid.

Step 3. (New (Ph) and (Dh))
Formulate new dual LPs (Ph)–(Dh) by deleting/augmenting constraints/variables to
(Ph)–(Dh). Solve them by the simplex method.

Step 4. (Convergence Check)
Stop the process if the subdivision parameter as explained in Sections 12.4 and
12.5 becomes less than the tolerance. Otherwise go back to Step 1.

12.4 DETAILS OF THE METHOD WHEN Z IS ONE-DIMENSIONAL

In this section, we will show details of the method in case Z is one dimensional. Cases
with dim (Z) > 1 will be discussed in Section 12.5.

12.4.1 Initial Discretization and Subdivision Parameter

Let the set Z be a,b R and arrange the grid z0,…, zn as

a= z0 < z1 < < zn = b (12.1)

where

zi = z0 + i b−a n i = 0,…,n (12.2)

We define the subdivision parameter (or mesh size) T to be

T = b−a n the length of an interval (12.3)

12.4.2 Solving (Dh)

We solve the dual program (Dh) by means of the simplex method. The reason for deal-
ing with the dual program will be clarified later on. The optimal information related to
the primal program is easily obtained from the optimal basis of (Dh).

Let the optimal solution to (Ph) and (Dh) be

u= u1,…,us
T , v= v1,…,vm

T (12.4)

and

θ, λ= λ0,…,λn
T , s + = s+1 ,…,s+s

T
, s− = s−1 ,…,s−m

T
(12.5)
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12.4.3 Deletion/Subdivision Rules

Since the optimal solutions (12.4)–(12.5) solve the discretized problems, we have at
grid point zi,

uTy zi −vTx zi = 0, if λi > 0 (12.6)

and

uTy zi −vTx zi ≤ 0, if λi = 0 (12.7)

However, it is not certain if the relations

uTy z −vTx z ≥ 0 (12.8)

hold for every z Z.
Let

ψ z ≡ uTy z −vTx z (12.9)

The discrepancy δ(u, v) of (u, v) is defined as

δ u,v = max
z a,b

ψ z (12.10)

Theorem 12.1
An upper bound to δ(u, v) is given by

Δ= FMT2 8 (12.11)

[2], where F is an upper bound to ur r = 1,…,s and vk k = 1,…,m ,

M = max
z a,b

s

r = 1

yr z +
m

k = 1

xk z < ∞ (12.12)

and T is defined by (12.3). (See Appendix 12.A for a proof.)

Theorem 12.2
If at two successive grid points zi and zi+1 we have

ψ zi < −Δ andψ zi+ 1 < −Δ,

then it follows that

ψ z < 0 for every z zi,zi+ 1
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(See Appendix 12.B for a proof.)
Thus, we have the deletion rule for grids.

[Deletion Rule]
If at three successive grid points zi, zi+1, and zi+2, we have

ψ zi < −Δ, ψ zi+1 < −Δ and ψ zi+2 < −Δ, (12.13)

then we delete zi+1 and hence the whole interval (zi, zi+2) from further consideration.
Notice that the rule needs to be changed a little at the boundary points.

[Subdivision Rule]
We subdivide the remaining intervals by introducing a new grid at the mid-point of

each interval.
Thus, we have

newT = T 2 and (12.14)

newΔ=Δ 4 (12.15)

Remark 1 Usually it is not easy to determine Δ as defined by (12.11). In such a case,
Δ should be taken to be a threshold for deleting grid points. A smaller Δ deletes more
grid points. If ψ (z) is well approximated by a quadratic curve at a local maximum, the
relation (12.15) will generally hold after the subdivision.

12.4.4 Solving the New LP

We delete the columns corresponding to the deleted grid points from the dual
tableau and introduce new columns corresponding to the new grid points to the tab-
leau. The new columns will be priced out by using the optimal dual basis of the pre-
ceding iteration and the primal simplex method will determine the new optimal
solution.

12.4.5 Convergence Check

We stop the iterations if T comes to satisfy, for some tolerance Ttol,

T < Ttol (12.16)

Remark 2 A typical process of subdivision (or bisection) is sketched in Figure 12.1,
where the curves represent ψ(z) with z as abscissa and the tolerance (−Δ) for each
iteration is given by the dashed line.
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12.5 GENERAL CASE

In this section, we will deal with the dual pair of problems (P)–(D) when Z is a com-
pact convex set with L= dim Z > 1.

12.5.1 Initial Discretization

We discretize Z by using L-dimensional cubes with edge length T. The mesh points
are the initial grid points {z1,…, zn}. The grid points are used to formulate (Ph) and
(Dh), which are solved by the simplex method. Let the optimal solutions be u, v, θ, λ,
s+, and s−.

12.5.2 Deletion and Subdivision (Bisection) Rules

Every grid has at most 2L neighbors.

О

Z

–Δ

О

–Δ

О
–Δ

О
–Δ

Iteration 4

Iteration 3

Iteration 2

Iteration 1

Figure 12.1 One-dimensional case.
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[Deleting Rule]
If the relation

ψ z ≡ uTy z −vTx z < −Δ (12.17)

holds at a grid and its neighbors, then we delete the center grid point and edges con-
necting the center with its neighbors from further consideration. −Δ is a threshold
similar to (12.11) (see also Remark ). For higher dimensional Ls, it would be difficult
to estimateΔ by a formula such as (12.11). A practical way to estimateΔ is as follows:

After the initial LPs are solved, we estimate the discrepancy δ(u, v) by sampling z
from Z. The value will be used as the initialΔ, which will be updated by dividing by 4
at each iteration.

[Subdivision Rule]
We divide the remaining edges by introducing a new grid at the midpoint of each
edge. Thus we have

newT = T 2 (12.18)

and

newΔ=Δ 4 (12.19)

Z

Iteration 1 Iteration 2

Iteration 3

Figure 12.2 Two-dimensional case.
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12.5.3 Solving New LPs and Checking Convergence

These steps are quite similar to those in the one-dimensional case as explained in Sub-
sections 12.4.4 and 12.4.5.

Remark 3 A typical subdivision process of the two-dimensional Z is depicted in
Figure 12.2.

12.6 CONCLUDING REMARKS (BY TONE)

As described in Section 12.2, the input function x(z) and output function y(z) must
be defined on the compact set Z in advance. The purpose of this model is to obtain
the efficient inputs or outputs or both factors in terms of Z. Such situations may
arise in the case of design problems. Although Dr. Charnes did not explicitly
disclose the purpose of this study at the time, I think it was an optimal design
problem.

APPENDIX 12.A PROOF OF THEOREM 12.1

Assume that δ(u, v) has a maximum at z∗ in zi < z∗ < zi+1 and that ψ zi ≤ 0, ψ z∗ > 0,
and ψ zi+1 ≤ 0. Furthermore, without losing generality, we assume that z∗ is closer to
zi+1 than to zi, i.e., zi+1−z∗ ≤T 2. We expand ψ zi+1 around ψ(z∗) as

ψ zi+1 =ψ z∗ + zi+1−z
∗ ψ z∗ +

zi+1−z∗
2

2
ψ z∗∗

where z∗ < z∗∗ < zi+1.
Since ψ z C2 and has a maximum at z∗, we have ψ z∗ = 0. Hence, it holds that

ψ zi+ 1 =ψ z∗ +
zi+ 1−z∗

2

2
ψ z∗∗ ≤ 0

Thus, we have

ψ z∗ ≤
T2

8
ψ z∗∗ =

T2

8
uTy z∗∗ −vTx z∗∗

≤
T2

8
uTy z∗∗ + vTx z∗∗ ≤ FMT2 8
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APPENDIX 12.B PROOF OF THEOREM 12.2

Assume that ψ zi < −Δ, ψ zi+1 < −Δ, and maxzi ≤ z ≤ zi + 1 ψ z =ψ z∗ . Furthermore,
without losing generality, we assume that z∗ is closer to zi+1 than to zi, i.e.,
zi+1−z∗ ≤ T 2. Then, we have

ψ zi+1 =ψ z∗ +
zi+1−z∗

2

2
ψ z∗∗ ≤ −Δ

Hence, it holds that

ψ z∗ < −Δ−
zi+1−z∗

2

2
ψ z∗∗ < −Δ+

T2

8
ψ z∗∗

≤ −Δ+
T2F

8
max
z a,b

s

r = 1

yr z +
m

k = 1

xk z = −Δ +Δ = 0
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13.1 INTRODUCTION

Though agriculture has been the main preoccupation of the bulk of the Indian popu-
lation, policy planners in India want to see how important for the development of the
country the significant contribution from insurance services is. According to govern-
ment sources, the insurance and banking services’ contribution to the country’s gross
domestic product (GDP) is 7%, and the funds available to the state-owned Life Insur-
ance Corporation (LIC) for investments are approximately 8% of GDP. Our objective
in this chapter is therefore to empirically examine the performance behavior of LIC as
a case study.

LIC was formed in September 1, 1956 with a capital contribution of 5 crore
(1 crore = 10 million) of rupees (the rupee is the Indian currency, and is denoted
by “Rs.”) from the Government of India. Since nationalization, the life insurance

1 Part of this chapter is based upon Tone, K. & Sahoo, B.K. (2005) [1], “Evaluating Cost Efficiency and
Returns to Scale in the Life Insurance Corporation of India Using Data Envelopment Analysis”, Socio-
Economic Planning Sciences, 39(4), 261–285, with permission from Elsevier.
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business in India has been coterminous with the state-owned LIC. LIC has played a
dominant role in the economic development of the country in two ways. First, as a life
insurer, it has served to pool and distribute life risks associated with the millions of
deaths of earners (policyholders). Life insurance has thus served the twin purposes of
an economic and a social security umbrella to millions of households, especially the
rural poor and senior citizens (in terms of providing savings for old age). Second, as a
major savings institution, LIC has been a dominant financial intermediary, channeling
funds to the productive sectors of the economy, mostly financing government-
sponsored planned development programs [2].

Since its inception, LIC has grown manyfold. LIC’s new business (individual) in
terms of sum assured has gone up from Rs.283.07 crore in 1957 to Rs.1,24,950.63
crore in 2000–01, and in terms of the number of individual policies it has increased
from 8.16 lakh (1 lakh = 0.1 million) to 196.65 lakh for the same period, reflecting
more than 15% average annual growth in the post-1980s period in terms of both
sum assured (real) and number of policies. Another main indicator of growth, the
individual business in force in terms of sum assured, grew from about Rs.1473 crore
in 1957 to Rs.6,45,042 crore in 2000–01.

In the preliberalization period, LIC sold mostly savings plans. These were tax-
efficient (with exemptions) compared with other common forms of saving. Protection
business was a relatively small proportion of its total business, and riders were not pop-
ular. Before liberalization, distribution was entirely via agencies. But, in response to
changing needs and requirements over time, the Corporation has been devising various
products, albeit at a modest pace, to spread the message of life insurance, and this has
been reflected in increased sales as seen above. Among its various products, endow-
ment assurance (participating) and money back (participating) are the most popular,
comprising 80% of the life insurance business. To further growth, LIC has recently
launched “Bima Plus,” the first unit-linked plan in the country; it is reducing the guar-
antees on its single premium product, and reportedly repricing its annuity products in a
bid to improve profitability; it is linking all its branches into a computer network,
thereby enabling it to establish arrangements with various internet gateways to allow
the payment of premiums through the internet; it is engaging premier educational insti-
tutions in India to train its employees in areas such as human resource development,
marketing, investment, and information technology; it is introducing a portfolio of
riders to compete with the wide range of riders offered by new entrants; and, finally,
in response to the growth of bancassurance, it is taking equity stakes and forming sig-
nificant bancassurance ties with Corporation Bank and Oriental Bank of Commerce.
Also, to reduce the likelihood of future competition from private insurers, LIC is in the
process of bundling savings and investment plans, offering attractive returns.

Notwithstanding the phenomenal growth of LIC and its efforts to diversify its prod-
uct range to spread its life insurance business, the life insurance business in India falls
ways below the achievements in developed countries [3]. For instance, according to
estimates reported by Swiss Reinsurance Company, insurance penetration in 1997
was 1.39%, compared with 9.42% in Japan. Insurance density in 1997 was $5.4,
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compared with $3092 in Japan. Besides, the performance of LIC has come under close
scrutiny with regard to its operational efficiency [4], especially in terms of its financial
performance. Opening up of the insurance sector to both domestic and foreign com-
panies has been at the center of policy debate alongside financial sector reforms as part
of the macroeconomic stabilization cum structural adjustment programs initiated
in 1991.

Despite this history, insurance sector reforms had to wait until the end of the year
2000 owing to a contentious and politically charged debate over the pervasive impli-
cations of privatization and foreign participation in the insurance sector. See Rao [5]
and Ranade and Ahuja [6] for a detailed discussion of the likely implications of
privatization and foreign participation in the life insurance sector, including regula-
tory-related issues. After a prolonged stalemate, following the recommendations of
an official committee, the Committee on Reforms in the Insurance Sector, popularly
known as Malhotra Committee 1996, which has recommended privatization and for-
eign participation in the insurance sector, the Insurance Regulatory and Development
Authority (IRDA) had issued licenses to 11 life insurers and six nonlife insurers by the
end of the year 2000.

Though there are compelling arguments in favor of both parametric and nonpara-
metric approaches to the estimation of cost efficiency and returns to scale, we choose
the latter because they do not require the specification of arbitrary functional forms
and because they have the natural advantage of eliminating the effects of all produc-
tive and scale inefficiencies prior to calculating returns to scale. Recent applications of
data envelopment analysis (DEA) models to the insurance sector include, among
others, work on the efficiency of organizational forms and distribution systems in
the US property and liability insurance industry [7, 8]. However, there has been no
such study, to our knowledge, which has applied DEA to evaluating the performance
of the Indian insurance sector. The current chapter, using aggregate time series data,
thus utilizes DEA to evaluate LIC’s performance in terms of both cost efficiency and
returns to scale for the period 1982–83 to 2000–01.

The rest of this chapter unfolds as follows. Section 13.2 first discusses the various
measures of scale elasticity in the DEA literature, then points out their limitations, and
finally introduces a new variant of the DEA model to circumvent these limitations.
The dataset for LIC operations is discussed in Section 13.3. Section 13.4 deals with
results and provides a discussion, followed by concluding remarks in Section 13.5.

13.2 NONPARAMETRIC APPROACH TO MEASURING
SCALE ELASTICITY

Throughout, we deal with a number n of firms; each uses m inputs to produce s out-
puts. For firm h, we denote the input and output vectors by xh Rm and yh Rs,
respectively. The input and output matrices are defined by X= x1,…,xn Rm× n

and Y = y1,…,yn Rs× n. We assume that X> 0 and Y> 0.
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13.2.1 Technology and Returns to Scale

The standard neoclassical characterization of the production function for multiple out-
puts and multiple inputs is the transformation function ψ(x, y), which satisfies the fol-
lowing properties:

ψ x,y = 0,
∂ψ x,y
∂yr

< 0 r and
∂ψ x,y
∂xi

> 0 i (13.1)

The returns to scale (RTS), or scale elasticity in production (ρp), degree of scale
economies (DSE), or Passus coefficient, is defined as the ratio of the maximum pro-
portional expansion (β) of outputs to a given proportional expansion (μ) of inputs. So,
differentiating the transformation function Ψ μx, βy = 0 with respect to the scaling
factor μ and then equating it to zero yields the following local scale elasticity measure:

ρp x,y ≡ −
m

i= 1

xi
∂ψ

∂xi

s

r = 1

yr
∂ψ

∂yr
(13.2)

See Hanoch [9], Starrett [10], Panzar and Willig [11] and Baumol et al. [12] for a
detailed discussion. For a discussion of the evolution of the concept of scale and the
computational procedure for it in DEA, see, for example, Sahoo et al. [13], Tone and
Sahoo [1, 14–16], Sengupta and Sahoo [17], Podinovski et al. [18], Podinovski and
Førsund [19], Sahoo and Tone [20, 21], Sahoo and Sengupta [22], and Podinovski
et al. [23], among others.

However, in the case of a single-input, single-output technology, ρp is simply
expressed as the ratio of marginal product (MP) to average product (AP), that is,

ρp x,y ≡
MP
AP

=
dy dx

y x
(13.3)

For a neoclassical “S-shaped” production function (or regular ultra Passum law
(RUPL) in the words of Frisch [24]), ρp takes on values ranging from “greater than
one” for suboptimal output levels, through “one” at the optimal scale level, to values
“less than one” at superoptimal output levels. So, the production function satisfies
RUPL if ∂ρp ∂y< 0 and ∂ρp ∂x < 0 [25]. The RTS are increasing, constant, and
decreasing if ρp > 1, ρp = 1, and ρp < 1, respectively.

Following Baumol et al. [12], the dual measure of the production elasticity,
called the cost elasticity (ρc), is defined in a multiple-input and multiple-output
environment as

ρc≡C y;w
s

r = 1

yr
∂C y;w

∂yr
(13.4)
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where C(y; w) is the minimum cost of producing the output vector y when the input
price vector isw. However, ρc can be expressed as the ratio of average cost to marginal
cost in the case of a single output. The RTS are increasing, constant, or decreasing
depending upon whether ρc > 1, ρc = 1, or ρc < 1, respectively.

13.2.2 Qualitative Information on Returns to Scale

The CCR input-oriented model [26], which is based on the assumption of constant
returns to scale (CRS), is used to qualitatively describe the local RTS for firm h:

CCR min θ

subject to −
n

j= 1

xijλj + θxh ≥ 0 i ,
n

j= 1

yrjλj ≥ yh r , λj ≥ 0 j
(13.5)

If
n

j= 1

λ∗j = 1 for any alternate optima, then CRS prevails for firm h; if
n

j= 1

λ∗j < 1 for all

alternate optima, then increasing returns to scale (IRS) prevails; and if
n

j= 1

λ∗j < 1 for all

alternate optima, then decreasing returns to scale (DRS) prevails.
The dual of the BCC model [27], which is based on the assumption of variable

returns to scale (VRS), is also used to obtain qualitative information about the local
RTS for firm h:

BCC maxφ=
m

i= 1

uryrh + uo

subject to
s

r = 1

uryrj−
m

i= 1

vixij + uo ≤ 0, j ,
s

r = 1

vixih = 1, ur, vi ≥ 0, anduo free

(13.6)

If u∗o = 0 (where ∗ represents the optimal value) in any alternate optima, then CRS pre-
vails for firm h; if u∗o > 0 for all alternate optima, then IRS prevails; and if u∗o < 0 for all
alternate optima, then DRS prevails for firm h.

Färe et al. [28] introduced the following “scale efficiency index” (SEI) method,
which is based on nonincreasing returns to scale (NIRS), to determine the nature
of the local RTS for firm h as follows:

SEI min f

subject to −
n

j= 1

xijλj + fxh ≥ 0 i ,
n

j= 1

yrjλj ≥ yh r ,
n

j= 1

λj ≤ 1, λj ≥ 0 j
(13.7)
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If θ∗ =ϕ∗, then firm h exhibits CRS; otherwise, if θ∗ <ϕ∗, then firm h exhibits IRS iff
ϕ∗ > f ∗, and firm h exhibits DRS iff ϕ∗ = f ∗.

These three different RTS methods are equivalent to estimating the RTS parameter
[29,30]. In empirical applications, however, one finds that the CCR and BCC RTS
methods may fail when DEA models have alternate optima. However, the scale effi-
ciency index method does not suffer from the above problem, and hence is found to be
robust.

In the light of all possible multiple-optima problems in the CCR and BCCmethods,
Banker and Thrall [31] generalized the structure by introducing new variables u+

o

and u−
o , which represent optimal solutions obtained by solving the dual of the

output-oriented BCC model. In Banker and Thrall’s approach, the constraint

uryro + uo = 1 was added, while the objective function was replaced by either

u +
o =maxuo or u−

o =minuo. It was shown that IRS operates iff u+
o ≥ u−

o > 0, DRS oper-
ates iff 0 > u+

o ≥ u−
o , and CRS operates iff u +

o ≥ 0 ≥ u−
o .

Banker et al. [32] pointed out that the concept of RTS is unambiguous only at
points on the efficient facets of the production technology. So the RTS for inefficient
units may depend upon whether the efficiency estimation is done in an input-oriented
or output-oriented manner. A detailed method for doing so can be found in the studies
of Banker et al. [29], Tone [33], and Cooper et al. [34].

13.2.3 Quantitative Information on Returns to Scale

Wewill discuss the quantitative evaluation of both production and cost elasticity, then
point out their limitations, and then suggest an alternative measure to get rid of such
limitations.

13.2.3.1 Production Elasticity If firm h is efficient in [BCC], then it holds that

s

r = 1

u∗r yrh−
m

i= 1

v∗i xih + u
∗
o = 0

In order to unify multiple outputs and multiple inputs, let us define a scalar output y

and a scalar input x as y=
s

r = 1

u∗r yrh and x =
m

i= 1

v∗i xih, respectively Then, we have a

relationship between the output (y) and the input (x) y = x−u∗o. From this equation,

we find MP= dy dx= 1 and AP= y x= 1−u∗o, since x =
s

r = 1

v∗i xih = 1. Now, the pro-

duction elasticity (ρp) is defined as

ρp =
MP
AP

=
1

1− u∗o
(13.8)
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However, if firm h is inefficient, then ρp equals φ∗ φ∗−u∗o . The RTS are increasing,
constant, and decreasing if u∗o > 0, u

∗
o = 0, and u∗o < 0, respectively.

Note here that, as pointed out by Førsund and Hjalmarsson [25], the production
elasticity ρp does not satisfy fully the requirement of RUPL, as

∂ρp x,y

∂yrh
= −

u∗o ∂φ ∂yrh

φ∗− u∗o
2 = −u∗ourh

s

r = 1

uryrh

2

r

IRS (u∗o > 0) implies decreasing production elasticity, which is in accordance with
RUPL, while DRS (u∗o < 0) implies an increasing ρp, thus violating the law.

The evaluation of production elasticity has been extended to network DEAmodels
[35, 36].

13.2.3.2 Cost Elasticity Sueyoshi [37, 38] used the following dual of the VRS cost
DEA model:

COST γ∗ =max
s

r = 1

uryro +ωo

−
m

i= 1

vixij +
s

r = 1

uryrj +ωo ≤ 0, j , vi ≤wi, i , ur , vi ≥ 0, r, i , ωo free

(13.9)

to compute the cost elasticity for firm h (where ∗ represents the optimal value).
Following Baumol et al. [12], he computed the cost elasticity (ρc) at (wh, yh) as

ρc =
γ∗

s

r = 1

u∗r yrh

(13.10)

and showed the equivalence of IRS to ρc > 1, CRS to ρc = 0, and DRS to ρc < 1.
It should be noted here that under the assumption of a unique optimal solution, the

production elasticity (ρp) in the BCCmodel and the cost elasticity (ρc) in the VRS cost
model are same when ϕ∗ = 1 and v∗o =ω

∗
o ω∗

o−γ
∗ . Otherwise,

ρc
ρp

=
1−

ω∗
o

ω∗
o−γ

∗

1−
1
φ∗ v

∗
o

(13.11)

The details of the duality relationship between ρp and ρc can be found in Cooper
et al. [39] and Sueyoshi [38].
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13.2.4 An Alternative Measure of Scale Elasticity

The DEA model [COST] (13.9) may be of limited use in actual applications, as this
model is based on a number of simplifying assumptions. First, not only are factor
inputs homogeneous, but also their prices are exogenous. As a result, the scale elasti-
cities in both the production and the cost environments are equal, thus giving the illu-
sion that RTS and economies of scale are the one and same.

With an expansion in production, firms experience changes in the organization of
their processes or in the characteristics of their inputs that are economically more
attractive than the replicated alternatives of those already in use. Therefore, the tech-
nique and inputs used at higher scale are very different from those used at lower scale.
Hence, the inputs are heterogeneous and, as a result of this, their prices may vary
across firms. Since the input resources vary in their quality, the construction of the
technology in (13.9) becomes problematic.

Input prices are also not exogenous, but instead vary according to the actions of
firms. Firms often face ex ante price uncertainty when making production decisions.
Economic theory suggests that firms enjoying some degree of monopoly power
should charge different prices if there is productivity heterogeneity in their inputs.
This is empirically valid, since most firms face an upward-sloping supply curve in
their input purchase decisions. This observation also suggests that the assumption
of common prices for firms, that is, the law of one price, which has long been main-
tained as a necessary and sufficient condition for Pareto efficiency in competitive mar-
kets, is not at all justified when one is aiming to reveal the proper scale economy
behavior of firms when market imperfections exist in any form.

Second, the factor-based technology employed in (13.9) is convex. Convexity, as
argued by Farrell [40], assumes away some important technological features such as
indivisible production activities, economies of scale, and economies of specialization,
which all in fact result from concavities in production.

Third, the [COST] model (13.9) may also be of limited value in actual applications
even when the inputs are homogeneous. This is because, as pointed out by several
scholars [20–22, 41–44], the cost efficiency (CE) reflects only input inefficiencies
(i.e., technical inefficiency and/or allocative efficiency) and not market (price) ineffi-
ciencies. Therefore, these authors suggested a very comprehensive scheme to measure
CE that can be attributed to both inputs and market inefficiencies.

Note that when market imperfections exist, ρh is not very comprehensive, as it
involves the cost effects of output expansion only. To make it comprehensive, one
needs to link ρh with further cost reductions due to other sources such as pecuniary
economies. Therefore, when the inputs are heterogeneous, in order to account for
varying input prices, the alternative CE model of Tone [45] should be used, where
the technology is defined in cost–output space so as to account for varying input
heterogeneity.

Let us describe Tone [45]’s cost DEA model. The cost-based technology Tc is

Tc = x,y x ≥Xλ, y ≤ Yλ, λ ≥ 0 (13.12)
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where x = x1 ,…,xn with xj = w1jx1j,…,wmjxmj
T
. Based on this new production pos-

sibility set Tc, a new technical and scale efficiency (NTSE), θ
∗
, is obtained as the opti-

mal solution of the following LP problem:

NTechcrs θ
∗
=minθ

subject to θxh ≥Xλ, yh ≤ Yλ, λ ≥ 0
(13.13)

Similarly, a new technical efficiency of firm h is computed from the [NTechvrs] model,
which is obtained by imposing a convexity constraint (eλ= 1) in [NTechcrs], where e
Rn is a row vector with each of its elements equal to one.

The new overall scale efficiency (NOSE), γ∗, is defined as γ∗ = ex∗h exh, where x∗h is
the optimal solution of the LP given below:

NCostcrs minex

subject to x ≥Xλ, yh ≤ Yλ, λ ≥ 0
(13.14)

The new allocative scale efficiency (NASE), α∗, is then defined as the ratio of γ∗ to
θ
∗
, that is, NASE (α∗) = NOSE (γ∗)/NTSE (θ

∗
). Similarly, the [NCostvrs] model can be

introduced by adding a convexity constraint (eλ= 1) in [NCostcrs], where the new allo-
cative efficiency is obtained as the ratio of the new overall efficiency to the new tech-
nical efficiency. It should be noted here that the NOSE is not greater than the NTSE,
and these new efficiency measures are all units invariant.

The dual of the [NCostvrs] model can be represented by the following LP problem:

NCostvrs δ=max
s

r = 1

uryrh + σ1−σ2

subject to −
m

i= 1

vixij +
s

r = 1

uryrj + σ1−σ2 ≤ 0, j , vi = 1 i , ur ≥ 0 r , σ1 ≥ 0, σ2 ≥ 0

(13.15)

The primal and dual of [NCostvrs] can be considered as special forms of the assurance
region (AR) DEAmodel of Thompson et al. [46, 47] and the cone ratio (CR) model of
Charnes et al. [48, 49], respectively, where the availability of the reasonable price vec-
tors enters as input weights in the general DEAmodel. See also Schaffnit et al. [50] for
a detailed discussion.

If firm h is efficient, then it holds that −
m

i= 1

vixih +
s

r = 1

uryrh + σ1−σ2 = 0. Unifying

the total cost (c) as
m

i= 1

vixih =
m

i = 1

xih, and the total output (y) as
s

r = 1

uryrh, the cost–

output relationship is represented as c= y + σ1−σ2. From this, we derive the marginal

cost (MC) as dc dy= 1 and the average cost (AC) as c y = δ∗
s

r = 1

uryrh.
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Now we define the cost elasticity (ρc) as

ρc =
AC
MC

=
AC
1

= δ∗
s

r = 1

u∗r yrh = δ∗ u∗yh (13.16)

The degree of scale economies cannot be uniquely determined at wh = e,yh only
when there is a problem of degeneracy, that is, when there are multiple supporting
hyperplanes. The upper and lower bounds of ω then need to be identified from the
following LP model:

max min σ1−σ2

s t −
m

i= 1

vixij +
s

r = 1

uryrj + σ1−σ2 ≤ 0 j ,

vi = 1 i ,
s

r = 1

uryrh = δ
∗, ur ≥ 0 r , σ1 ≥ 0, σ2 ≥ 0

(13.17)

The problem of degeneracy in the unique determination of returns to scale in produc-
tion-based DEA models has been discussed extensively by Banker and Thrall [31],
Banker et al. [29, 32], and Tone [33].

Note that the measure of RTS defined in (13.16) is very different from the standard
measure discussed by Aly et al. [51]. While the former is derived from the cost–
output-based technology set, the latter is from the input–output-based technology set.

13.3 THE DATASET FOR LIC OPERATIONS

As with all service sectors, the measurement of output in the insurance sector is an
insurmountable problem [52]. Therefore, insurance, being essentially a service indus-
try, thus requires a distinct set of criteria for carrying out such an exercise. Let us first
briefly discuss why conventional financial ratios are not meaningful output measures
for financial intermediaries. The principal reason is that such intermediaries do not
exist to produce financial ratios; rather, they seek to produce financial services. Output
measures should thus be a proxy for the volume of financial services provided. For
example, in the case of CRS, if the inputs are increased by 10%, then the outputs
should increase by 10%, which does not necessarily occur with a financial ratio, since
a larger ratio is not necessarily better than a smaller one. For many ratios, such as cap-
ital-to-assets or the liquid assets ratio, there is likely to be some optimal value for the
ratio, such that the firm is worse off if the ratio is much lower or higher than the opti-
mum. For example, investing more in liquid assets is fine, up to a point, beyond which
the firm would begin to encounter operating constraints due to underinvestment in
nonliquid (capital) assets such as computers.
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Another problem with the use of financial ratios is that there are many such ratios
used by financial analysts and regulators in judging the financial health of an institu-
tion. No one ratio necessarily dominates any others as a measure of financial stability;
and, again, virtually none of these ratios has a monotonic relationship to input or
output quantities. The main problem is that financial ratios are quality variables,
not output proxies. Quality variables certainly have a role to play in evaluating a firm,
but they should not be used to represent output quantities.

The question then becomes what measure or measures to use as a proxy for the
volume of financial services. As suggested in the literature, for a proxy for outputs
in the financial sector, one should seek a measure or measures that are highly corre-
lated with the volume of financial services provided. Premiums might seem to be a
logical measure of output volume, but this is not necessarily the case. As Yuengert
[52] pointed out, premiums equal price times quantity, whereas output volumes
should represent only quantity. This suggests a loss-based measure, which has been
used in the majority of existing studies of insurance efficiency (see, e.g., Cummins and
Weiss [53]). This could be losses incurred or, in life insurance, benefits incurred plus
addition to reserves. Losses are an appropriate measure because the purpose of insur-
ance is to pool the experience of all policyholders and pay claims to those who suffer
loss during a given period. Losses are also highly correlated with other services pro-
vided by insurers, such as financial planning.

It has also been argued that losses might not be appropriate because insurers can
sustain unusually high losses owing to random fluctuations and that paying for these
higher-than-expected losses does not represent output. This argument is incorrect,
however, because one of the important financial services provided by an insurer is
the payment of losses even when they are higher than expected. This is called the
residual risk-bearing function in the literature.

Considering these difficulties, and to overcome them, a modified version of the
value added approach to measuring life insurance output was adopted in our study.
The value added approach counts as important outputs those that represent signif-
icant value added, as judged using operating cost allocations [54]. We follow the
recent insurance efficiency literature by defining insurance output as the present
value of real losses incurred (e.g., Berger et al. [55] and Cummins et al. [8]). We
have taken the losses as the claims settled during the year, including claims written
back (y1). Losses were deflated to a base of 1994–95 using the Consumer Price
Index (CPI). The CPI data were taken from the International Financial Statistics
Year Book, 1999.

Following the study of Brockett et al. [7], the ratio of liquid assets to liabilities (y2)
was considered for use as a second output in our study. This ratio reflects a company’s
claims-paying ability, and is an important objective of an insurance firm, with
improvement in claims-paying ability contributing to the likelihood of attracting
and retaining customers. Despite its importance, however, this second output was
completely dropped from our analysis because this output, along with the first output,
was tested and found not to be meaningful. The reasons behind the occurrence of such
results can be viewed from two angles. First, as already discussed above, financial
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intermediaries do not exist to produce financial ratios; rather, they exist to produce
financial services. Second, without knowing whether it is a ratio or a volume measure,
a closer look at the data reveals that there is little variation in this ratio, indicating the
company’s constant claims-paying ability. So taking this ratio as another output is just
like taking a constant output term for all firms in any DEA model, which has, in
essence, no effect on the efficiency scores.

Insurance inputs can be classified into four groups: business services (x1), labor
(x2), debt capital (x3), and equity capital (x4). The business services were taken as com-
mission to agents, which is material input, and this was deflated by the CPI. The input
price for business services (w1) was calculated by dividing the total deflated commis-
sion to agents by the total number of active agents. The labor variable was taken as the
total number of employees. The price per unit of labor (w2) was calculated by dividing
the total deflated salary and other benefits to employees by the total number of
employees.

The debt capital of insurers consists of funds borrowed from policyholders. These
funds were measured in real terms as the life insurance fund deflated using the CPI.
The price of the policyholder-supplied debt capital (w3) was the rate of interest rea-
lized on the mean life insurance fund. Equity capital is an input for the risk-pooling
function because it provides assurance that the company can pay claims even if there
are larger than expected losses. The equity capital was taken as the sum of share-
holders’ paid-up capital, a general reserve, a reserve for bad and doubtful debts, loans,
a reserve for house property, and an investment reserve. This value of equity capital
deflated by the CPI was considered an input category. Following Gutfinger and
Meyers [56], the price of equity capital (w4) was taken as 9% + rate of inflation.
To summarize, we used four inputs: business services, labor, policyholder-supplied
debt capital, and equity capital. The dataset, related to LIC’s operations in 19 annual
periods, is summarized in Table 13.1.

Our primary data source was the annual statements of LIC for the period from
1982–83 to 2000–01. Though LIC has several branches all over India, the relevant
data are not available for each of these branches. The annual statement of LIC is
the only database which compiles aggregate figures of the necessary operational
and financial data for all its branches. In the spirit of earlier studies by Boussofiane
et al. [57], Ray and Kim [58], and Sueyoshi [37, 38], we have treated each of LIC’s
19 years of operation as a distinct firm.

13.4 RESULTS AND DISCUSSION

The analysis of efficiency on the input side rather than the output side is becoming
common in DEA applications for a variety of reasons. First, real-world managers are
never given a bundle of inputs and told to produce the maximum output from it.
Instead, they are given output targets and told to produce them in the most efficient
way possible, that is, with the minimum inputs. Second, profitability in any business
hinges on the efficiency of operations. But if the business involves a commodity,
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then what depends on efficient operations is survival. When prices are beyond a
company’s control, what remain are costs of inputs. This reflects companies’
emphasis on the input dimensions of policies. On a tentative basis, it has been sug-
gested in the literature that costs (or inputs) are generally more predictable than out-
puts, giving cost targets a greater credibility than those for outputs. Sengupta [59]
has argued that: “… data variations may arise in practical situations … when the
output measures have large and uncertain measurement errors which are much more
significant than in the input measures (p. 2,290). For example in school efficiency
studies, the input costs, such as teachers’ salaries, administrative expenses, etc., may
have low measurement errors whereas the performance test scores of students may
contain large errors of measurement of true student quality.” This argument is most
compelling where measurement errors are large relative to true random fluctuations
in the production process.

The efficiency estimates were calculated using the assumption of CRS for the ref-
erence technology. As pointed out by Färe et al. [60], this technology has some useful
features in that it captures the notion of maximal average product (consistent with the
minimum point on a long-run U-shaped average cost curve), which provides a very
nice benchmark for identifying the optimal scale.

Three-way analysis was done from our efficiency/RTS estimates, the first two ele-
ments being the production-and cost-based analysis and the third one being the RTS.
The production-based results are reported in Table 13.1.

TABLE 13.1 Production-based efficiency scores.

Year TSE S-SBM AR NTSE NS-SBM

1982–83 0.851 0.730 0.722 1 1.004
1983–84 0.915 0.856 0.747 1 1.014
1984–85 1 1.026 0.825 1 1.048
1985–86 0.991 0.967 0.831 0.980 0.950
1986–87 0.994 0.949 0.828 0.967 0.957
1987–88 0.952 0.784 0.860 0.978 0.837
1988–89 0.921 0.733 0.891 0.939 0.808
1989–90 0.896 0.702 0.879 0.929 0.775
1990–91 0.907 0.721 0.888 0.923 0.780
1991–92 0.910 0.749 0.893 0.909 0.824
1992–93 0.978 0.865 0.962 1 1.006
1993–94 0.994 0.911 0.980 0.988 0.946
1994–95 1 1.052 1 1 1.037
1995–96 0.951 0.862 0.925 0.897 0.852
1996–97 1 1.005 0.980 0.961 0.946
1997–98 0.996 0.987 0.962 0.997 0.890
1998–99 0.990 0.967 0.926 1 1.016
1999–00 0.991 0.971 0.943 1 1.001
2000–01 1 1.081 1 1 1.064
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13.4.1 Production-Based Analysis

It can be seen from Table 13.1 that though the technical and scale efficiency scores
exhibit a slightly upward trend, the efficiency scores were consistently high (around
one) since 1994–95. In order to differentiate the efficient units, we have reported the
super-slack-based measure (S-SBM) efficiency scores introduced by Tone [61, 62].
Since input price data were available, we have also used the assurance region model
to calculate an AR efficiency score, where the weight ratios (vi/vj), bounded between
min(wi/wj) and max(wi/wj) for all i < j, were as follows:

min(wi/wj) (vi/vj) max(wi/wj)

0.172344 ≤ v1/v2 ≤ 0.407958

0.000153 ≤ v1/v3 ≤ 0.000266

0.000083 ≤ v1/v4 ≤ 0.000209

0.000638 ≤ v2/v3 ≤ 0.001271

0.000279 ≤ v2/v4 ≤ 0.001123

0.427670 ≤ v3/v4 ≤ 0.972358

Use of this AR model serves two purposes. First, it addresses the issue of the
degrees-of-freedom problem (our data are for 19 years only), and second, it protects
against the frequent occurrence of zero weights for some of the inputs. We see here
that although the AR scores rise, they do so only up to 1994–95. They then decline
until 1998–99, after which they rise to 2000–01. However, if we consider the new
efficiency scores (NTSE) obtained from the cost-based production technology, the
overall trend remains more or less constant. Nevertheless, the year-specific score sug-
gests that full efficiency was maintained for the first three years, followed by a declin-
ing trend until 1991–92. Scores then remained high, approaching unity after 1997–98.

The improvement in technical efficiency, particularly after 1997–98, can be
claimed to arise from two phenomena. First, LIC has of late geared itself up to face
future competition. It has devised a more tailor-made, diversified product range, bund-
ling savings and investment plans offering attractive returns. It is also going through
the process of overhauling itself, with significant decentralization in the management
and organizational structure so as to make itself more efficient. But, what is more
important is the changing macroeconomic environment in India. After an initial stock
market boom, especially in the information and technology sector, which started with
liberalization and gained momentum around 1993–94, households swayed by the
speculative stock market boom diverted a significant proportion of their financial sav-
ings into investing in the stock market. But, after the collapse of stock prices as the
information and technology stock price boom changed to bust, households lost con-
fidence in the stock market and resorted to secured forms of savings such as banks and
insurance. See Rao [63] for a discussion of household financial savings behavior and
macroeconomic dynamics in India. Thus, a combination of both an improvement in
the efficiency of LIC and the macroeconomic environment appears to have a definite
bearing on technical efficiency.
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Leibenstein [64] maintains that the theoretical basis for claims that exposure to
competition will generate improvement in efficiency is the notion of X-efficiency
(or technical efficiency). He argues that enterprises exposed to the bracing atmosphere
of competition will respond by eliminating internal inefficiency and seeking out
opportunities for innovation. He refers to the productivity gains arising from this proc-
ess as improvement in X-efficiency. To Stigler [65], this X-efficiency gain is nothing
but simply an increase in the intensity of labor or, equivalently, a reduction in on-the-
job leisure. Ganley and Grahl [66] pointed out that where labor productivity has
increased owing to such competition, there is evidence of increased work intensity.

A closer look at our dataset reveals that labor productivity shows a monotonically
increasing trend, confirming the above-mentioned claim of increased work intensity.
Further, LIC has recently adopted information technology; for instance, it has used
UnixWare 7 to link over 2000 branches throughout India and to serve approximately
11.6 million customers. UnixWare 7 links LIC’s local area networks, metropolitan
area networks, wide area networks, and interactive voice response system, and LIC
has also adopted other labor-saving technologies. This allows each branch office to
act as a stand-alone entity with mutual access to all transactions, information, and
computer support for all policyholders. This adds further support to our finding of
LIC running efficiently in terms of technical and scale dimensions.

13.4.2 Cost-Based Analysis

Since the cost-based efficiency scores obtained using the earlier cost–DEA model
seem to be misleading, we have decided not to report them. Rather, we report here
our new cost and new allocative efficiency scores in Table 13.2.

We see here that, contrary to our AR trend, the NOSE trend is of decline up to
1991–92, with an abrupt rise in year 1992–93, after which the trend is again of decline
up to 1999–2000. The year 2000–01 again sees a marked increase in efficiency. The
declining trend in the NOSE scores up to 1991–92 is due principally to the fall in the
NTSE scores, whereas the declining trend after 1992–93 is due to a fall in the new
allocative efficiency.

Since LIC has pursued computerization vigorously in recent times, it has incurred
substantial costs for such modernization. Therefore, it is not surprising to see that the
cost efficiency has either shown a fluctuating trend or declined from 1992–93 to
1999–00, as it will take a substantial amount of time for any organization to internalize
the initial high fixed cost incurred in modernization of its operations. However, again
as expected, the cost efficiency has shown a significant increase from 1999–00, and
hopefully LIC will continue to show this cost efficiency accrual.

13.4.3 Returns-to-Scale Issue

Table 13.3 presents the estimated minimum cost, and the infimum, supremum, and
average of the scale elasticity (represented by Inf ρc, Sup ρc, and Avg. ρc, respec-
tively), and the RTS in our newVRS cost model. We find here that LIC operates under
IRS for the first two years, followed by CRS in 1984–85, after which DRS applies.
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TABLE 13.2 Cost-based efficiency scores.

Year NOSE NASE

1982–83 0.979 0.979
1983–84 0.959 0.959
1984–85 1 1
1985–86 0.973 0.994
1986–87 0.937 0.969
1987–88 0.958 0.979
1988–89 0.933 0.994
1989–90 0.921 0.991
1990–91 0.913 0.988
1991–92 0.892 0.981
1992–93 0.988 0.988
1993–94 0.953 0.964
1994–95 0.975 0.975
1995–96 0.879 0.979
1996–97 0.915 0.952
1997–98 0.903 0.906
1998–99 0.882 0.882
1999–00 0.873 0.873
2000–01 0.960 0.960

TABLE 13.3 Scale elasticity and RTS.

Year [Ncostvrs] Inf ρc Sup ρc Avg. ρc RTS

1982–83 25.297 1.106 IRS
1983–84 27.86 1.096 1.096 1.096 IRS
1984–85 31.8 0.977 1.083 1.03 CRS
1985–86 34.244 0.978 0.978 0.978 DRS
1986–87 37.349 0.98 0.98 0.98 DRS
1987–88 39.928 0.981 0.981 0.981 DRS
1988–89 46.452 0.984 0.984 0.984 DRS
1989–90 51.586 0.985 0.985 0.985 DRS
1990–91 56.049 0.987 0.987 0.987 DRS
1991–92 62.847 0.988 0.988 0.988 DRS
1992–93 67.783 0.951 0.951 0.951 DRS
1993–94 78.478 0.957 0.957 0.957 DRS
1994–95 84.512 0.96 0.96 0.96 DRS
1995–96 95.676 0.965 0.965 0.965 DRS
1996–97 107.688 0.969 0.969 0.969 DRS
1997–98 113.097 0.97 0.97 0.97 DRS
1998–99 127.337 0.973 0.973 0.973 DRS
1999–00 143.954 0.976 0.976 0.976 DRS
2000–01 155.139 0.000 0.978 0.489 DRS
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13.4.4 Sensitivity Analysis

Since the selection of outputs is problematic in the insurance literature, it is worth test-
ing sensitivity, using premiums or transaction-based variables such as the number of
policies or the number of claims settled as output variables. As we know, the use of
time series data for one firm over 19 years and retaining a technology specification
with more than one output at a time, along with four inputs, might lead to objections
from a methodological viewpoint. The small number of observations and the detailed
specification of the technology can lead to dimensionality problems. High dimension-
ality generates statistical problems in the convergence of DEA estimators [67] and in
the form of model misspecification [68]. With only 19 observations, the pertinence of
an analysis in a six-or-more-dimensional space might be questionable. For example,
the lack of possible comparisons may explain most of the NTSE scores being one.
This problem is also highlighted by quasi-systematic zero shadow prices of the sec-
ond, third, and fourth outputs in some of these years (not shown here). We thus
decided to consider each of these outputs separately. The sensitivity analysis was car-
ried out using the number of policies, premiums, and number of claims separately as
output variables along with the four inputs. The overall and scale efficiency scores are
plotted in Figure 13.1.

The sensitivity analysis shows that two measures (NOSE_1 and NOSE_2) follow
the pattern of NOSE without throwing up any dramatic changes except for a
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Figure 13.1 Sensitivity analysis of cost efficiency. NOSE: overall and scale efficiency when
output is “real loss incurred.” NOSE_1: overall and scale efficiency when output is “number of
policies.” NOSE_2: overall and scale efficiency when output is “premium income.” NOSE_3:
overall and scale efficiency when output is “claims settled including claims written back.”

135PRODUCTIVE PERFORMANCE OF LIFE INSURANCE CORPORATION OF INDIA



continuous improvement in claim settlement (NOSE_3). This is due to the fact that
LIC has had a good reputation throughout the last two decades for being efficient
in settling claims in the shortest possible time [62].

13.5 CONCLUDING REMARKS

The results on the performance trends of Life Insurance Corporation of India suggest a
significant heterogeneity in overall and scale efficiencies over the 19-year study
period. More importantly, there has been a downward trend in performance, measured
in terms of cost efficiency, since 1994–95. This decline in performance is due to the
huge initial fixed cost of modernizing the corporation’s operations. A significant
increase in cost efficiency in 2000–01 suggests that LIC may be beginning to benefit
from such modernization, which will stand it in good stead in terms of future
competition.

Future extensions of this research study include, first, the development of a non-
linear DEAmodel accounting for the relationship between input price and input quan-
tity, as cost has a linkage with production changes (e.g., a bulk purchase), and second,
the development of new concepts concerning technical, cost, and allocative efficien-
cies by formulating a time series DEA cost model.
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14.1 INTRODUCTION

The banking sector plays a crucial socio-economic role at the regional, national and
international levels. Banks are at the heart of financial systems; in fact, they act as
financial intermediaries. To be more specific, banks borrow money by accepting
deposits and issuing debt securities, and lend money both directly to their customers
and indirectly through capital markets by investing in debt securities. Banks play an
important role in money supply and the efficient allocation of financial resources in
an economy. They make profits in exchange for their services, including risk
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management. Nowadays, banks have a diversified portfolio of activities that range
from personal, corporate and investment banking to trading of currency, commodities
and financial securities on stock markets. Because of the crucial importance of bank-
ing systems to the economy and the financial risks they face, banks are required to
comply with both national and international regulations, and their performance is con-
stantly monitored by both regulatory bodies and investors. In fact, poor performance
often leads to distress, which might lead to bankruptcy under some circumstances
along with substantial undesirable financial, economic and social consequences. In
this chapter, we shall report on the current state-of-the-art research on data envelop-
ment analysis (DEA) in the banking sector, with an emphasis on static DEA
methodologies.

DEA is a data-driven, non-parametric, frontier-based methodology originally
designed for the evaluation of the relative performance of a set of entities commonly
referred to as decision-making units (DMUs). Within a DEA framework, benchmark-
ing is done with respect to the best or the worst peers rather than the average perfor-
mers, which is the case for other methodologies such as stochastic frontier analysis.
Since the publication of the seminal paper by Charnes, Cooper and Rhodes in 1978
[1], DEA has witnessed growing popularity amongst academics and practitioners, as
suggested by the relatively large number of both methodological and application-
oriented publications [2–4]. In banking, DEA typically addresses two types of pro-
blems, namely, performance evaluation problems and risk assessment problems. With
respect to performance evaluation problems, the DEA literature on banking can be
further divided into two categories depending on whether one is concerned with asses-
sing the relative performance of banks or the relative performance of the branches of a
given bank. As to risk assessment problems in the banking sector, the DEA literature
could also be further divided into several categories depending on whether one is con-
cerned with distress and bankruptcy of banks, or distress and default of a bank’s cus-
tomers. In this chapter, the focus is on assessing the relative performance of
commercial banks.

The remainder of this chapter is organized as follows. In Section 14.2, we provide a
detailed account of the literature on the performance evaluation of banks using static
DEAmethodologies. In Section 14.3, we provide a summary of the current state of the
art. Finally, Section 14.4 concludes this chapter.

14.2 PERFORMANCE EVALUATION OF BANKS:
A DETAILED ACCOUNT

In this section, we report in detail on the literature on the relative performance eval-
uation of banks using static DEA methodologies in chronological order. As early as
1938, empirical studies investigated the performance of banks and their risk of failure
either directly or indirectly [5,6].

The first use of DEA in banking can be traced back to Rangan et al. [7], who inves-
tigated a sample of 215 US banks with data from 1986. They used the CCR model [1]
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to compute an overall technical efficiency index and the BCC model [8] to compute a
pure technical efficiency index. These indexes or scores were computed using three
inputs (i.e. labour, capital and purchased funds) and five outputs (i.e. real estate loans,
commercial and industrial loans, consumer loans, demand deposits, and time and sav-
ings deposits). Scale efficiencywas then computed as the ratio of the CCR score to the
BCC score. The empirical results revealed that, on average, the banks in their sample
had an overall technical efficiency index of 70% and that the source of inefficiency
was mainly technical, as their scale efficiency index was 97%. In addition, after lin-
early regressing the overall technical efficiency and the pure technical efficiency
against the bank size, the level of product diversity and the extent to which bank
branching was allowed, the empirical results revealed that the technical efficiency
of the banks was positively related to size, negatively related to product diversity,
and not related to the extent to which branch banking was allowed.

In 1990, Ferrier and Lovell [9] used an input-oriented variable-returns-to-scale
(VRS) model with both categorical and continuous environmental variables – an
approach first proposed by Banker and Morey [10] – to assess the pure technical effi-
ciency of a sample of 575 US banks with data from 1984. This model was fed with
three inputs (i.e. labour, occupancy costs and expenditure on furniture and equipment,
and expenditure on materials), five outputs (i.e. number of demand deposit accounts,
number of time deposit accounts, number of real estate loans, number of instalment
loans and number of commercial loans) and 12 environmental variables (i.e. average
size of demand deposit account, average size of time deposit account, average size of
real estate loan, average size of instalment loan, average size of commercial loan, loca-
tion in unit or branch, number of branches operated, membership of a multibank hold-
ing company, and institutional type (non-commercial, savings and loan, mutual
savings, and credit union)). They also used an input-oriented VRS cost allocation
model with both categorical and continuous environmental variables to investigate
the cost efficiency of banks by decomposing the amount by which cost is increased
into technical and allocative inefficiencies, where their cost allocation model mini-
mized the cost-weighted sum of inputs under a set of constraints similar to the
above-mentioned VRS model with environmental variables. Their empirical results
revealed that the banks in their sample exhibited a relatively high technical ineffi-
ciency and modest allocative inefficiency relative to a technology that exhibits
increasing returns to scale, where the most efficient banks belonged to the smallest
size class, and this efficiency advantage enabled them to compete despite the potential
cost disadvantage they suffered owing to the structure of the efficient technology.

In the same year, Elyasiani andMehdian [11] investigated the rate of technological
change (RTC) of a sample of 191 US banks between 1980 and 1985, where the RTC

was defined as 1−θ1980;1985CCR− IO θ1980CCR− IO; θ
1980;1985
CCR− IO was the overall technical efficiency

index computed by solving an input-oriented CCR model (CCR-I) using 1980 and
1985 data, and θ1980CCR− IO was the overall technical efficiency index computed by sol-
ving a CCR-I model using 1980 data only. Both of the CCR-IO models used four
inputs (i.e. deposits, total demand deposits, capital and labour) and four outputs
(i.e. investment, real estate loans, commercial and industrial loans, and other loans),
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where the choice of these inputs and outputs was motivated by an intermediation per-
spective on banks, where the intermediation approach or perspective considers banks
as intermediation agents that collect funds and provide loans and other assets. In addi-
tion, RTCs were linearly regressed against the intensities of inputs and outputs
obtained from the solution of CCR-IO models. The first-stage empirical results sug-
gested that had the banks included in the sample been fully efficient in 1980, on aver-
age, they could have produced the same level of output with 89.55% of the inputs they
actually used. Also, Elyasiani and Mehdian found that the efficiency frontier shifted
inward between 1980 and 1985, reflecting a high pace of technological advancement
achieved by the banks in the sample. The pace, however, varied significantly across
the banks, with some banks even regressing over time. In the second-stage analysis,
linear regression analysis revealed that technological change, over the sample period,
was non-neutral and essentially labour biased.

At the same time, Aly et al. [12] investigated the overall technical, pure technical,
scale, cost and allocative efficiencies of a sample of 322 independent US banks with
data from 1986. The overall and pure technical efficiency measures were computed by
solving a CCR-IO model and a BCC-IO model, respectively. Then, the scale effi-
ciency measure was computed as the ratio of the CCR-IO score to the BCC-IO score.
The cost efficiency measure – also known as the overall efficiency measure – was
computed as the ratio of minimum cost to actual cost, where the minimum cost
was determined by solving a cost allocation model under the constant returns-to-scale
regime. Finally, the measure of allocative efficiency was computed as the ratio of cost
efficiency to technical efficiency. The CCR-IO, BCC-IO and cost allocation models
used three inputs (i.e. labour, capital and loanable funds) and five outputs (i.e. demand
deposits, real estate loans, commercial and industrial loans, consumer loans, and other
loans), and the costs used in the allocation model were the price of labour, as measured
by the ratio of total expenditure on employees to the total number of employees, a
proxy for the price of capital, as measured by the ratio of total expenditure on premises
and fixed assets to book value, and the price of loanable funds, as measured by the
ratio of the sum of interest expenses on time deposits and other loanable funds to loan-
able funds. The empirical results suggested a low level of overall efficiency, which
was mainly technical in nature rather than allocative. In addition, it was found that
the distributions of efficiency measures for branching and non-branching banks were
not significantly different.

Charnes et al. [13] were the first to propose a cone-ratio (CR) CCR-IO model,
which they used, with data from 1980 to 1985, to assess the relative performance
of 48 US commercial banks drawn from the top 300 banks headquartered in America
which were also members of Federal Deposit Insurance Corporation (FDIC). The CR-
CCR-IO model was fed with four inputs (i.e. total operating expenses, total non-
interest expenses, provision for loan losses and actual loan losses) and four outputs
(i.e. total operating income, total interest income, total non-interest income and total
net loans). The empirical results remain illustrative of DEA analysis.

Several studies revealed that minority-owned banks (MOBs) charged higher loan
rates, paid lower deposit rates and yet consistently failed to achieve profitability ratios
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comparable to those of the non-minority-owned banks (NMOBs) – see, for example,
Fukuyama et al. [14]. Elyasiani and Mehdian [15] looked into whether this phenom-
enon was due to technical, scale, cost and/or allocative inefficiencies or whether it was
caused by factors outside the control of the MOB management (e.g. limited portfolio
choices due to deposit instability, scarcity of profitable lending opportunities, higher
operating costs due to neighbourhood location, and higher loan losses and informa-
tion-gathering costs due to the particular clientele that MOBs serve), by investigating
the relationship between bank ownership and efficiency for a sample of 160 US banks
with data from 1988. Their CCR-IO, BCC-IO and cost allocation models were fed
with four inputs (i.e. certificates of deposit and time and savings deposits; demand
deposits; labour; and capital) and four outputs (i.e. commercial and industrial loans,
real estate loans, other loans and investment securities), and the costs used in the allo-
cation model were measured by the sum of interest on deposits, wages, and expenses
on premises, machinery and equipment. The findings supported the hypothesis that,
when the regional, regulatory, size and maturity characteristics of banks were
abstracted, the efficiency differentials between MOBs and NMOBs were not statisti-
cally significant.

Yue [16] assessed the management of 60 US commercial banks for the period ran-
ging from 1984 to 1990 using CCR-IO and weighted additive models with four inputs
(i.e. interest expenses, non-interest expenses, transaction deposits and non-transaction
deposits) and three outputs (i.e. interest income, non-interest income and total loans),
where bank deposits were disaggregated into transaction and non-transaction deposits
because they had different turnover and cost structures. The additive model was first
proposed by Charnes et al. [17]. The weighting scheme used by the weighted additive
model consisted of the inverses of the absolute values of the inputs and outputs. The
efficiency score, however, was computed as follows:
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where x∗i, j and y∗r, j denote the inputs and outputs, respectively, of the projection of
DMUj on the efficiency frontier. In addition, Yue also performed a window analysis
to find out about the evolution of DEA efficiency scores and to identify the most stable
and the most variable banks in terms of their seven-year average DEA scores. This
paper has been included in our survey because of the quality of its pedagogical expo-
sition of DEA. The empirical results remain illustrative of DEA analysis.

Some studies revealed that the quality and efficiency of bank management was a
leading cause of failure [18–23], either by analysing financial indicators of non-failed
and failed banks using statistical tests or by using modelling and prediction frame-
works such as linear regression analysis, logistic regression analysis and discriminant
analysis. Barr et al. [24] made use of a DEA model, namely, the CCR-IO model of
Charnes, Cooper and Rhodes [1], to assess the managerial efficiency of banks for a
sample of 930 US banks over a period ranging fromDecember 1984 toDecember 1998.
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They chose six inputs (i.e. full-time equivalent employees, salary expenses, prem-
ises and fixed assets, other non-interest expenses, total interest expenses, and pur-
chased funds) and three outputs (i.e. core deposits, earning assets and total interest
income) to capture the importance of management to a bank’s survival – these vari-
ables were used as proxies to reflect the quality of management in making decisions
related to input allocation and the product mix needed to attract deposits and make
loans and investments. The empirical results revealed statistically significant differ-
ences in management quality scores between surviving and failing banks, which
tended to increase as the failure date approached, suggesting that a DEA analysis
could prove a valuable tool in detecting signs of distress before failure takes place.
In 1994, the same authors [25], using the same sample of banks, compared the per-
formance of two probit models with and without CCR scores as proxies for manage-
ment quality, along with some financial ratios as proxies for the remaining
dimensions of the CAMEL scoring system (i.e. equity capital/total loans as a proxy
for capital adequacy, non-performing loans/total assets as a proxy for asset quality,
net income/total assets as a proxy for earnings ability, and large deposits/total assets
as a proxy for liquidity) and a proxy for the local economic climate (i.e. percentage
of change in residential construction), in predicting bank failure with logit and probit
models from the literature, and reported that the CCR-IO scores enhanced the clas-
sification accuracy of the model significantly. Then, in 1997, Barr and Siems per-
formed an additional analysis with the same methodological choices as made by
Barr et al. [25] and a sample of 1010 US banks to assess the sensitivity of the results
to misclassification of costs, and reported similar findings [26].

Grabowski et al. [27] investigated the relative performance of two organizational
forms, namely, branch banking and a bank holding company, by comparing the over-
all, allocative, technical, pure technical and scale efficiencies of a sample of 522 US
banks affiliated to multibank holding companies and 407 US banks with branches,
with data from 1989. The CCR-IO, BCC-IO and allocation models were fed with three
inputs (i.e. labour, capital and loanable funds) and five outputs (i.e. real estate loans,
commercial and industrial loans, consumer loans, demand deposits, and investment
securities), and the costs used in the allocation model were the price of labour, as
measured by the ratio of annual salaries plus employee benefits to the number of
full-time equivalent employees on the payroll at the end of the year; the price of cap-
ital, as measured by the ratio of annual expenses for premises and fixed assets to the
book value of the premises and fixed assets at the end of the year; and the price of
loanable funds, as measured by the ratio of annual interest and expenses on time
deposits and other borrowed funds to the dollar value of the end-of-the-year time
deposits and the other borrowed funds. The empirical findings suggested that branch
banking was a more efficient organizational form than a bank holding company.

Fukuyama [28] studied the performance of a sample of 143 Japanese commercial
banks with data from 1991 by comparing their overall technical, pure technical, and
scale efficiencies. The CCR-IO and BCC-IO models with VRS and non-increasing
returns to scale (NIRS) used in this study were fed with three inputs (i.e. labour, capital
and funds from customers) and two outputs (i.e. revenue from loans and revenue from
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other business activities) under the assumption that interest rates were the same for any
loan type across banks. He also investigated the relationship between bank size (as
measured by total assets, on the one hand, and total revenue, on the other hand)
and returns to scale. Finally, he looked into whether the form of organization (i.e. city
banks, regional banks or former sogo banks) implied different levels of efficiency,
using non-parametric tests (i.e. the median test, Kruskal–Wallis test, van der Waerden
test and Savage test) and analysis of variance. His empirical results suggested that the
major cause of overall technical inefficiency was pure technical inefficiency, not scale
inefficiency. Nonetheless, there still existed some degree of scale inefficiency. The
scale inefficiency for pooled data was found to be mainly due to increasing returns
to scale. When commercial banks were divided into three organizational forms – city
banks, regional banks and former sogo banks – similar statements could be made for
regional and former sogo banks, but not for city banks. With respect to both asset and
revenue size definitions, scale efficiency was weakly associated with bank size, while
a relationship of bank size to pure technical efficiency and to overall technical effi-
ciency was not clearly indicated.

Favero and Papi [29] investigated the efficiency of a sample of 174 Italian banks
with data from 1991 using a two-stage analysis framework. To be more specific, in the
first stage, they analysed the technical and scale efficiencies of commercial banks
using CCR-IO and BCC-IO scores derived under two different perspectives, namely,
the asset approach and the intermediation approach. Under the asset approach, these
models were fed with five inputs (i.e. labour, capital, financial capital available for
investment, loanable funds (i.e. current accounts and savings deposits), certificates
of deposit (CDs), and net funds borrowed by other banks) and three outputs (i.e. loans
to other banks and non-financial institutions, investment in securities and bonds, and
non-interest income). Under the intermediation approach, the same inputs and outputs
were used except that current accounts and savings deposits were shifted from being
inputs to being outputs. In the second stage, Favero and Papi linearly regressed the
BCC-IO scores against size (measured by a categorical variable reflecting major,
large, medium, small and minor sizes, which were defined with reference to deposits,
capital and managed external funds), productive specialization (measured by the ratio
of the profit from banking services to the total intermediation margin, where the latter
was defined as the sum of profit from banking services, profit from non-banking ser-
vices and interest margin), ownership (measured by a categorical variable, where
POP = banche popolan, CR = Casse di Risparmio, BIN = banche di interesse nazio-
nale, BCO = banche di credito ordinario and ICDP = istituti di credito di diritto pub-
blico), market structure (measured by the difference between the regional interest rate
on loans and the average national interest rate on loans, weighted to take ‘bad credit’
into account), and localization (measured by two indicators, where the first indicator
took account of the size of the population of the area of localization and whether that
area was industrial or rural, and the second indicator was a categorical variable reflect-
ing the region, namely, Northern Italy, Central Italy or Southern Italy). The empirical
results suggested that, for the sample under consideration, Italian banks in 1991 oper-
ated on average at 88% of their potential overall technical efficiency and achieved
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about 97% of scale efficiency under the intermediation approach. These figures, how-
ever, were lower by 10% or so under the asset approach. The second-stage analysis
revealed that specialization was the only variable that seemed to consistently explain
the efficiency.

Zaim [30] investigated the effect of the 1980 financial liberalization of the banking
sector in Turkey on the efficiency of a sample of 95 commercial banks by performing
pre- and post-financial-liberalization analyses and comparing the overall, allocative,
technical, pure technical and scale efficiencies of banks. The measures of these effi-
ciencies were computed directly or indirectly by solving input-oriented CRS, VRS,
IRS, NIRS and cost allocation models with both categorical and uncontrollable con-
tinuous environmental variables. These models were fed with four inputs (i.e. total
number of employees, total interest expenditure, depreciation expenditure and
expenditure on materials), four outputs (i.e. total balance of demand deposits, total
balance of time deposits, total balance of short-term loans and total balance of
long-term loans), and four environmental variables. Two of the latter were considered
as uncontrollable inputs (i.e. number of branches and institutional type (1 for national
banks and 0 for foreign banks)) and the other two as uncontrollable outputs (i.e. aver-
age size of demand deposit accounts and average size of time deposit accounts). In the
cost allocation model, the price of labour was measured by the ratio of total expend-
iture on salaries and fringe benefits to the total number of employees; however, the
prices of the remaining inputs were set to 1 on the assumption that all banks faced
the same input prices. The empirical results, based on averages of DEA scores, sug-
gested that the financial reform had succeeded in stimulating the commercial banks to
take measures that would enhance both their technical and their allocative efficiencies.
In addition, this study revealed that state banks were more efficient than their private
counterparts, which for the Turkish banking industry contradicted the hypothesis that
public ownership is inherently less inefficient. Furthermore, banks seemed to have
gone through a considerable scale adjustment and were successful in achieving the
optimal scale. Last but not least, the effects of allocative and technical inefficiencies
on cost increases were different for private and state banks; to be more specific, while
state banks were more vulnerable to allocative inefficiency, the effect of technical
inefficiency on cost increases was more dominant for private banks.

Miller and Noulas [31] investigated the efficiency of a sample of 201 US large
commercial banks with data from 1984 to 1990 using a two-stage analysis framework.
In the first stage, they analysed the technical and scale efficiencies of banks using
CCR-IO and BCC-IO scores. The models were fed with four inputs (i.e. total trans-
action deposits, total non-transaction deposits, total interest expenses and total non-
interest expenses) and six outputs (i.e. commercial and industrial loans, consumer
loans, real estate loans, investments, total interest income, and total non-interest
income). In the second stage, Miller and Noulas linearly regressed the overall tech-
nical efficiency scores against bank size (measured by total assets), profitability
(measured by the ratio of net operating income to total assets), market power (the ratio
of bank deposits to the total deposits in the state within which the bank operated) and
location (measured by several different dummy variables for location – one that
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reflected the degree of metropolitanization and two that captured regional aspects of
the US). The empirical results suggested, on one hand, that the average inefficiency,
including both pure technical and scale inefficiency, across all 201 banks was small at
just over 5%, which was due to the stiffer competition for markets and market share in
the late 1980s that forced more efficiency on bank operations, and that the majority of
banks were too large and experienced decreasing returns to scale. On the other hand,
larger and more profitable banks had higher pure technical efficiency. Market power
did not seem to have significantly affected efficiency. Finally, if bank size and prof-
itability effects were held constant, banks in the Mideast (or Northeast) had signifi-
cantly higher pure technical efficiency in the latter half of the 1980s.

Thompson et al. [32] investigated the efficiency of a sample of 48 US large com-
mercial banks with data from 1980 to 1990 using CCR-IO, assurance region (AR)
CCR-IO, linked-cone (LC) CCR-IO and allocative LC-CCR-IO (i.e. maximum profit
ratio andminimum profit ratio) models fed with five inputs (i.e. total labour in terms of
number of employees; total physical capital in terms of book value of bank premises,
furniture and equipment; total purchased funds, including federal funds purchased,
large (> $100 k) CDs, foreign deposits and other liabilities for borrowed money; total
number of branches, including the main office; and total deposits, including demand
deposits, time and savings deposits, and small CDs) and two outputs (i.e. total loans,
including commercial/industrial, instalment and real estate loans, and total non-
interest income), where the space of admissible multipliers was specified by imposing
bounding constraints on the relative magnitude of the multipliers that take account of
the range of values of inputs and outputs. The empirical results revealed that maxi-
mum profit ratios were relatively low across the 48 banks in each year analysed, which
suggests that all 48 banks analysed were assured of losses. The authors of the study
claimed that their results were in accordance with the low actual profit ratios observed.

Bhattacharyya et al. [33] investigated the impact of liberalization of the banking
sector in India on performance using a sample of 70 commercial banks with data from
1986 to 1991 and a two-stage analysis framework. In the first stage, pure technical
efficiency and scale efficiency scores were computed by solving output-oriented
CCR and BCC models (CCR-O and BCC-O) fed with two inputs (i.e. interest
expenses and operating expenses) and three outputs (i.e. advances, investments
and deposits). Then, in the second stage, the pure technical efficiency scores were
regressed against six bank-specific exogenous variables that took account of the
expansion of the banking sector into suburban and rural areas as well as national
and international regulatory requirements (i.e. number of branches in rural areas, num-
ber of branches in suburban areas, number of branches in urban areas, number of
branches in metropolitan areas, ratio of priority sector lending to total advances,
and capital adequacy ratio), along with time dummies to model the evolution of bank
performance through time relative to performance in 1986, and ownership-type dum-
mies. The regression framework was based on stochastic frontier analysis, which
allows one to decompose variations in pure technical efficiency scores into three com-
ponents related to time, ownership and random noise. Once the stochastic frontier
analysis model (without ownership-type dummies) was estimated, the authors of
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the study estimated an index of efficiency change as the difference between time
dummy coefficients in two consecutive periods, following the lead of Baltagi and
Griffin [34]. The empirical findings suggested that publicly owned Indian banks were
the most efficient, followed by foreign-owned banks and privately owned Indian
banks. In addition, out of the 43 banks that turned out to be on the efficiency frontier,
33 displayed decreasing returns to scale. Furthermore, only foreign-owned frontier
banks showed any tendency towards increasing or constant returns to scale. However,
an analysis of the index of efficiency change by bank category suggested that publicly
owned Indian banks experienced a decline in performance, foreign-owned banks
experienced an improvement in performance and privately owned Indian banks did
not experience any trend in their performance. Finally, the authors found that, on aver-
age, across all three ownership forms and throughout the sample period, only 5.7% of
calculated efficiency variation remained unexplained by interaction between temporal
and ownership form effects.

Pastor et al. [35] investigated the efficiency, differences in technology, and pro-
ductivity of the Spanish banking system and performed a comparison with six Euro-
pean countries and the US for the year 1992. The sample details can be summarized
as follows: 168 US banks, 45 Austrian banks, 59 Spanish banks, 22 German banks,
18 UK banks, 31 Italian banks, 17 Belgian banks and 67 French banks. To be more
specific, CCR-IO and BCC-IO models were used to investigate efficiency and dif-
ferences in technology, whereas Malmquist indices computed under the constant-
returns-to-scale assumption were used to investigate productivity change. The
choice of Malmquist indices – instead of the productivity change indices of Fisher
[36] and Törnqvist [37] – was motivated by the fact that Malmquist indices are
decomposable into technical efficiency (catching up) and technical change (frontier
shifts). The CCR-IO and BCC-IO models were fed with two inputs (i.e. non-interest
expenses other than personnel expenses, and personnel expenses) and three outputs
(i.e. loans, other productive assets and deposits). Note that the efficiency scores were
obtained by solving these models so that each bank was compared with its own
banking system, whereas the productivity indices were obtained by solving CCR-
IO so that a bank was compared with a frontier composed of other banking systems
as well. The empirical findings suggested that French, Spanish and Belgian banks
were the most efficient ones, whereas UK, Austrian and German banks were the
least efficient. In addition, some evidence of scale inefficiencies in Austrian, Ger-
man and US banks was found, and almost no trace of scale inefficiency was found in
the French and UK samples. On the other hand, with respect to productivity, the
empirical results revealed that Austrian, Italian, German and Belgian banks were
more productive than US, UK, French and Spanish ones. Furthermore, the decom-
position of the Malmquist index into catching up and distance from the efficiency
frontier revealed that different banks operated under different combinations of the
two factors; for example, banks in countries such as Spain and France showed rel-
atively high efficiency and a relatively low level of technology simultaneously,
whereas other banks in countries such as Austria and Germany combined a very pro-
ductive technology with a low level of efficiency.
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Taylor et al. [38] investigated the efficiency and profitability of 13 Mexican com-
mercial banks with data from 1989 to 1991 using the CCR-IO model, the BCC-IO
model, the cone-ratio assurance region (CR-AR-IO) model under CRS and the LC-
AR profit model [39]. These models were fed with two inputs (i.e. total deposits
and total non-interest expenses) and one output (i.e. total income). The main finding
lay in the fact that DEA-inefficient banks could have higher profits than DEA-efficient
banks. Thus, although LC-profitability and DEA-efficiency are different concepts,
they can complement each other in an empirical analysis.

Chen [40] investigated the impact of liberalization on the performance of Taiwan-
ese commercial banks using a sample of seven publicly owned and 27 privately owned
banks with data from 1996 and a two-stage analysis framework. In the first stage,
overall technical, pure technical and scale efficiency scores were computed using
CCR-IO and BCC-IO models fed with three inputs (i.e. labour, assets and interest
expenses) and four outputs (i.e. loans services, investments, interest income and
non-interest income). Chen compared the overall technical efficiency scores of this
set-up with seven other set-ups where different measures of different criteria were
used (e.g. deposits as an alternative to interest expenses, and business loans and indi-
vidual loans as an alternative to loan services) to assess the impact of the choice of
measures on the efficiency scores, on the one hand, and considered additional inputs
or outputs (e.g. number of branches), on the other hand. In the second stage, the effi-
ciency scores were linearly regressed against ownership (as measured by a dummy
variable representing public and private ownership) and bank size (as measured by
assets, staff or deposit balances). The empirical findings suggested that the whole-
sample mean of the overall technical efficiency was quite high (0.969); that is, Tai-
wanese commercial banks could have produced the same level of output by using
96.9% of the input actually used. In addition, publicly owned banks (with an average
overall technical efficiency of 0.923) were relatively less efficient than the privately
owned ones (with an average overall technical efficiency of 0.979). The decomposi-
tion of overall technical efficiency into pure technical efficiency and scale efficiency
revealed that, on average, these scores were very close; however, publicly owned
banks were less scale efficient than they were pure technically efficient. On the other
hand, ownership seemed to be the main driver of the differences in efficiency scores.

Chu and Lim [41] investigated the relationship between the share prices of six local
Singapore-listed groups of banks and their efficiency using a two-stage analysis
framework, with data from 1992 to 1996. In the first stage, overall technical, pure
technical and scale efficiencies were computed by solving CCR-OO and BCC-OO
models fed with three inputs (i.e. shareholders’ fund, interest expenses, and operating
expenses including provisions) and two outputs (i.e. annual increase in average assets,
and total income or profit, depending on the perspective from which one looks at
banks). In the second stage, annual stock returns (adjusted for capitalization changes)
were linearly regressed against percentage changes in efficiency scores, where the
super-efficiency model of Andersen and Petersen [42] was used instead of the
CCR model to compute these scores, which allowed the authors of the study to break
the ties between banks on the efficiency frontier and thus enhance the statistical fit.
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The empirical findings suggested that all banks within the sample under consideration
had higher overall and pure technical efficiency scores when computed using total
income – rather than total profit – as an output. In addition, larger banks were in gen-
eral more efficient than smaller ones, regardless of the type of efficiency. On the other
hand, the second-stage results suggested that the percentage changes in share prices
were better explained by percentage changes in the super-efficiency scores computed
with total profit – rather than total income – as an output, which could be explained by
the fact that shareholders are more concerned with their profits/dividends than with the
banks’ income.

Pastor [43] investigated the efficiency of four European banking systems (i.e. com-
mercial banks in Spain, Italy, France and Germany, with data from 1988 to 1994),
adjusted for credit risk and environment using a three-phase methodology, where
credit risk was measured by bad loans and decomposed into internal and external com-
ponents. To be more specific, in the first phase, an indicator of risk management effi-
ciency was computed using one of three methodologies (i.e. a single-stage, two-stage
or three-stage input-oriented methodology), where the proportion of bad loans attrib-
utable to bad risk management (as measured by the provision for loans losses, PLL),
the volume of loans, and economic-cycle-related environmental variables (i.e. the
coefficient of variation of the nominal GDP for the period, the growth rate of the nom-
inal GDP for the period and the cumulative annual growth rate in the last five years)
were taken into account. In the second phase, an efficiency measure adjusted for credit
risk due to internal factorswas computed using a BCC-IOmodel fed with three inputs
(i.e. personnel expenses, operating costs and proportion of PLL due to internal factors)
and three outputs (i.e. loans, deposits and other earning assets). Finally, in the third
phase, an efficiency measure adjusted for both credit risk due to internal factors
and the environmentwas computed using an input-oriented VRS model with environ-
mental variables, fed with the three inputs used in phase 2 adjusted for slacks, along
with the economic-cycle-related environmental variables mentioned above, as well as
efficiency-related environmental variables which were structural (i.e. per capita
wages, density of deposits, national income per branch and capital adequacy
ratio), used as inputs or outputs depending on whether they were to be maximized
or minimized. The empirical results suggested that the ranking of countries changed
substantially when credit risk was considered in the performance evaluation of banks.
However, environmental variables did not seem to have a marked effect on efficiency.
Finally, increased competition generated by the deregulation of the EU banking
system did not seem to have pushed banks into riskier business and/or behaviour.

Drake et al. [44] investigated the impact of macroeconomic and regulatory factors
on the efficiency of the Hong Kong banking system using a three-stage analysis
framework. The sample details can be summarized as follows: 59 banks (1995),
66 banks (1996), 52 banks (1997), 66 banks (1998), 62 banks (1999), 61 banks
(2000) and 47 banks (2001). The first stage of the analysis used BCC-IO and
SBM-IO models to compute efficiency scores and slacks. In the second stage, the
radial and non-radial slacks were regressed against environmental variables – divided
into macroeconomic continuous variables and regulatory categorical variables – and
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the inputs were adjusted by the difference between the predicted maximum slack and
the predicted slack. These adjusted inputs were then used in the third stage to compute
new efficiency scores using BCC-IO and SBM-IO models, respectively. This three-
stage analysis framework was implemented under both the profit-oriented approach
and the intermediation approach. Under the profit-oriented approach, both the BCC-
IO and the SBM-IO models were fed with three inputs (i.e. employee expenses, other
non-interest expenses and loan loss provisions) and three outputs (i.e. net interest
income, net commission income and total other income). On the other hand, under
the intermediation approach, both the BCC-IO and the SBM-IO models were fed with
four inputs (i.e. personnel expenses, total deposits + total money market funds + total
other funding, total fixed assets, and loan loss provisions and other provisions) and
three outputs (i.e. total customer loans + total other lending, total other earning assets,
and other non-interest income). The empirical results suggested that Hong Kong
banks, on average, exhibited a relatively high degree of inefficiency regardless of
whether BCC or SBM scores were used. Such high levels of inefficiency are common
in bank efficiency studies which do not incorporate environmental factors. In addition,
the dominant external influence on efficiency in the Hong Kong banking system is the
macroeconomic cycle. Furthermore, the authors of the study found, as expected, that
not incorporating environmental factors would lead to biased efficiency scores. Also,
they found that the efficiency scores were generally higher under the intermediation
approach than under the profit approach. Finally, the authors reported that once envi-
ronmental factors were taken into account, the intermediation approach offered little
scope for discriminating between bank categories, compared with the profit-oriented
approach, which produced a much greater diversity in relative efficiency scores, both
across different asset size groups and across different categories of banks.

Liu and Tone [45] investigated the efficiency of the Japanese banking sector by
performing a three-stage analysis on a sample of Japanese commercial banks. The
details of the sample can be summarized as follows: 138 banks (1997), 134 banks
(1998), 133 banks (1999), 129 banks (2000) and 126 banks (2001). In the first stage,
Liu and Tone solved output-oriented weighted SBM (WSBM-OO) models [46] to
compute efficiency scores and slacks, where theWSBM-OOmodel was fed with three
inputs (i.e. interest expenses, credit costs, and general and administrative expenses)
and two outputs (i.e. interest-accruing loans and lending revenues). In the second
stage, they regressed the normalized slacks obtained in the first stage against environ-
mental variables using a doubly heteroscedastic stochastic frontier analysis frame-
work to allow control for the impacts of both environmental factors and statistical
noise, along with a mechanism to adjust the outputs to an ideal level where there
was an absence of environmental influences and random shocks. Within the doubly
heteroscedastic stochastic frontier analysis framework, the authors of the study used
three categories of environmental variables, namely, environmental variables used
within the log-linear Cobb–Douglas function (i.e. monetary aggregate to GDP ratio,
bank lending to GDP ratio, short-term risk spread, long-term risk spread, Japan pre-
mium, real land price index, real GDP growth index, real stock price index and real
bankrupt debt per case), environmental variables used in the heteroscedastic model of
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the technical efficiency term (i.e. residuals in the non-performing loan ratio and resi-
duals in the capital adequacy ratio) and environmental variables used in the hetero-
scedastic model of the noise or random shock term (i.e. bank heterogeneity in the
non-performing loan ratio and bank heterogeneity in the capital adequacy ratio).
Finally, in the third and last stage, these adjusted outputs were used alongside the orig-
inal inputs to compute efficiency scores using WSBM-OO. The empirical results
revealed that the mean efficiency scores had a volatile pattern when the characteristics
of the operating environment of the banks and random noise were not controlled for,
which hid the learning process of bankers. However, after controlling for the impacts
of environmental factors and statistical noise, the mean efficiency scores exhibited a
stable upward trend, while the standard deviation narrowed over time, suggesting that
Japanese bankers were in fact learning from past experience.

In the next section, we shall analyse the literature surveyed above and provide the
big picture on the current state of the art of static DEA in banking.

14.3 CURRENT STATE OF THE ART SUMMARIZED

So far, the overall technical efficiency, pure technical efficiency, scale efficiency, and
cost and allocative efficiencies of banks have been investigated by a variety of studies –
see the previous section for details. In terms of the DEA-based methodologies used in
these investigations, they fall into three main categories, namely, single-stage, two-stage
and three-stage methodologies.

The single-stage methodologies consist of using a DEA model with or without
environmental variables to compute the efficiency scores of banks. To be more spe-
cific, a typical single-stage methodology uses one or several classical DEA models
(e.g. the CCR, BCC, SBM, assurance region, cone ratio, linked-cone and allocative
models) with or without environmental variables to compute relevant efficiency
scores (e.g. overall technical, pure technical, scale, cost and allocative efficiency
scores), as well as slacks. Although single-stage methodologies have been and are still
very popular, in practice they are not without limitations. In fact, in many practical
settings, the choice of inputs and outputs is often not subject to scrutiny, which might
lead to biased performance profiles due to over- or under-estimated efficiency scores.
One way to overcome this issue is to double-check whether the inputs and outputs are
actually responsible for the performance figures. A simple approach to addressing this
issue is to regress the efficiency scores against the inputs and outputs and reconsider
the choice of those inputs and outputs accordingly. In sum, this issue can be overcome
by using an iterative two-stage methodology, which can be summarized as follows:

• Stage 1. Given a specific choice of inputs and outputs, compute the efficiency
scores most relevant for the analysis under consideration, as well as slacks, using
the appropriate DEA models.

• Stage 2. Regress the efficiency scores computed in Stage 1 against the inputs and
outputs chosen in Stage 1 using a linear regression framework, reconsider the
choice of those inputs and outputs accordingly, and go to Stage 1 if necessary.
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On the other hand, when environmental variables are taken into account in a rel-
ative performance evaluation exercise, the efficiency scores obtained with a single-
stage methodology are environmentally biased in that the environment of a bank
might advantage or disadvantage that bank relative to others and therefore lead to
an unfair comparison. This issue can be overcome by using a two-stage methodology,
which can be summarized as follows:

• Stage 1. Compute the efficiency scores most relevant for the analysis under con-
sideration, as well as slacks, using the appropriate classical DEAmodels fed with
the relevant environment-independent inputs and outputs (e.g. financial
information).

• Stage 2. Regress the efficiency scores computed in Stage 1 against environmen-
tal variables using a linear regression framework or a non-linear one (e.g. tobit or
logit) to find whether or not the efficiency is environment-related, and estimate
new efficiency scores that control for the environment if necessary.

Note, however, that the efficiency scores obtained by this two-stage process will
still be environmentally biased because the inputs and outputs used in Stage 1 are not
adjusted for the environment. In order to properly control for the environmental vari-
ables, one can use a three-stage methodology, which can be summarized as follows:

• Stage 1. Compute the efficiency scores most relevant for the analysis under con-
sideration, as well as slacks, using the appropriate classical DEAmodels fed with
the relevant environment-independent inputs and outputs (e.g. financial informa-
tion). It would be unfair to use the efficiency scores obtained at this stage for an
evaluation of the relative performance of banks, since these operate in different
environments, which could advantage or disadvantage them.

• Stage 2. Filter the slacks computed in Stage 1 for the influence of environmental
variables using a DEA framework. To be more specific, if the DEA analysis is
input-oriented, then the inputs are the slacks computed in Stage 1 and the envi-
ronmental variables amongst those under consideration which are to be mini-
mized, whereas the outputs are the environmental variables amongst those
under consideration which are to be maximized. On the other hand, if the
DEA analysis is output-oriented, then the outputs are the slacks computed in
Stage 1 and the environmental variables amongst those under consideration
which are to be maximized, whereas the inputs are the environmental variables
amongst those under consideration which are to be minimized. Finally, if the
DEA analysis is non-oriented, the input surpluses computed in Stage 1 (i.e.
input-related slacks) and the environmental variables amongst those under con-
sideration which are to be minimized are used as inputs, whereas the output
shortfalls computed in Stage 1 (i.e. output-related slacks) and the environmental
variables amongst those under consideration which are to be maximized are used
as outputs. The resulting filtered slacks are then used to adjust the inputs, outputs
or both depending on the orientation of the DEA model.

155AN ACCOUNT OF DEA-BASED CONTRIBUTIONS IN THE BANKING SECTOR



• Stage 3. Compute the efficiency scores most relevant for the analysis under con-
sideration, as well as slacks, using the appropriate DEA models fed with the
adjusted inputs and outputs computed in Stage 2. The efficiency scores thus
obtained are environment-independent and therefore more appropriate for an
evaluation of the relative performance of banks.

The reader is referred to Table 14.1 for a snapshot of the literature on DEA-based
methodologies or analyses and the underlying models, and to Table 14.2 for a sum-
mary of the response and explanatory variables used in multistage analyses. As to the
inputs and outputs with which the DEA models used in the above-mentioned meth-
odologies are fed, their choice is typically driven by the perspective from which banks
are assessed, namely, the intermediation approach, the asset approach, the production
approach – sometimes referred to as the profit approach – and the value added
approach. The intermediation approach or perspective considers banks as intermedi-
ation agents that collect funds and provide loans and other assets. The asset approach
is a variant of the intermediation approach which considers banks as financial inter-
mediaries between liability holders and those who receive bank funds. The production
approach considers banks as production units that transform inputs into outputs, or
producers of deposit accounts and loan services. In the literature, the production
approach is sometimes referred to as the profit approach – although we believe there
is a distinction between these two approaches because, under the profit approach,
profit should guide the choice of inputs and outputs. Finally, under the value added
approach, the share of value added guides the choice of inputs and outputs. We refer
the reader to Table 14.3 for a snapshot of the literature on the choice of inputs and
outputs under each of these approaches and to Table 14.4 for a summary of the mea-
sures of inputs and outputs and other variables used in analyses of banks’ performance
(when not properly reflected in the definition). For a summary of the environmental
variables used in DEA analyses, we refer the reader to Table 14.5. Also, Table 14.6
provides a summary of the data used in assessing the performance of banks, the period
of analysis, and the data provider or database. Since the empirical results and related
findings of any DEA analysis are sample-dependent, it would be inappropriate to
make any attempt to draw any general conclusions – for the main findings of different
studies, the reader is referred to the previous section. However, to conclude this sec-
tion, we would like to provide the reader with a snapshot of the main types of empir-
ical investigations covered in our survey, summarized in the following bullet points:

• Investigation of the relationship between type of ownership and efficiency. For
example, Elyasiani and Mehdian [15] considered minority-owned and non-
minority-owned US banks, Bhattacharyya et al. [33] considered publicly owned
Indian banks, privately owned Indian banks and foreign-owned banks, and Chen
[40] considered publicly owned and privately owned Taiwanese banks.

• Investigation of the relationship between type of organizational form and effi-
ciency. For example, Aly et al. [12] considered unit banking and branch banking
in the US, Grabowski et al. [27] considered branch banking and bank holding
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TABLE 14.1 Summary of analyses and underlying models for assessing the
performance of banks.

Reference First-stage models Second-stage models
Third-stage
models

Single-stage analysis

Ferrier and
Lovell [9]

Input-oriented VRS and
VRS cost allocation
models with both
categorical and
continuous
environmental variables

N/A N/A

Charnes et al.
[13]

CR-CCR-IO N/A N/A

Elyasiani and
Mehdian
[15]

CCR-IO; BCC-IO; cost
allocation model

N/A N/A

Yue [16] CCR-IO; weighted ADD;
window analysis

N/A N/A

Grabowski
et al. [27]

CCR-IO; BCC-IO; cost
allocation model

N/A N/A

Barr et al. [24] CCR-IO N/A N/A
Fukuyama
[28]

CCR-IO; BCC-IO with
VRS and NIRS

N/A N/A

Zaim [30] Input-oriented CRS, VRS,
IRS, NIRS and cost
allocation models with
both categorical and
uncontrollable
continuous
environmental variables

N/A N/A

Pastor et al.
[35]

Input-oriented CRS and
VRS models with both
categorical and
continuous
environmental variables;
Malmquist indices

N/A N/A

Taylor et al.
[38]

CCR-IO; BCC-IO; CRS-
CR-AR-IO; LC-AR-
based profit model

N/A N/A

Two-stage analysis
Rangan et al.
[7]

CCR; BCC Linear regression
analysis

N/A

Elyasiani and
Mehdian
[11]

CCR-IO; rate of
technological change
(RTC)

Linear regression
analysis

N/A

(continued overleaf )
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TABLE 14.1 (continued)

Reference First-stage models Second-stage models
Third-stage
models

Aly et al. [12] CCR-IO; BCC-IO; cost
allocation model

Linear regression
analysis

N/A

Favero and
Papi [29]

CCR-IO; BCC-IO Linear regression
analysis

N/A

Miller and
Noulas [31]

CCR-IO; BCC-IO Linear regression
analysis

N/A

Bhattacharyya
et al. [33]

CCR-OO; BCC-OO Stochastic frontier
analysis

N/A

Chen [40] CCR-IO; BCC-IO Linear regression
analysis

N/A

Chu and Lim
[41]

CCR-OO; BCC-OO Linear regression
analysis

N/A

Barr et al. [25] CCR-IO Logit and probit
analyses

N/A

Barr and Siems
[26]

CCR-IO Logit and probit
analyses

N/A

Three-stage analysis
Pastor [43] 1. Input-oriented VRS

with environmental
variables;

2. BCC-IO and regression
with environmental
variables;

3. BCC-IO, input-oriented
VRS with
environmental variables
and BCC-IO

BCC-IO

Input-oriented
VRS with
environmental
variables

Drake et al.
[44]

BCC-IO; SBM-IO Tobit analysis with both
categorical and
continuous
environmental
variables

BCC-IO; SBM-
IO with inputs
adjusted for
slacks

Liu and Tone
[45]

WSBM-OO Doubly heteroscedastic
stochastic frontier
analysis with
environmental
variables

WSBM-OO with
outputs
adjusted for
slacks

158 ADVANCES IN DEA THEORY AND APPLICATIONS



TABLE 14.2 Summary of response and explanatory variables used in second-stage
models for assessing the performance of banks.

Reference Response/dependent variable Explanatory variables

Rangan et al.
[7]

Overall technical efficiency;
pure technical efficiency

Bank size (+); level of product diversity
(−); extent to which bank branching is
allowed (no relationship)

Elyasiani and
Mehdian
[11]

Rate of technological change
(RTC)

Intensities (λj) of deposits, total demand
deposit, capital and labour obtained
from the solution to CCR-IO model

Aly et al. [12] Efficiency measures Bank size; bank product diversity;
degree of urbanization that
characterizes a bank’s environment

Favero and
Papi [29]

Pure technical efficiency Bank size; productive specialization;
ownership; market structure;
localization

Miller and
Noulas [31]

Pure technical efficiency Bank size; profitability; market power;
location

Bhattacharyya
et al. [33]

Pure technical efficiency Number of branches in rural areas;
number of branches in suburban
areas; number of branches in urban
areas; number of branches in
metropolitan areas; ratio of priority
sector lending to total advances;
capital adequacy ratio; time dummies
show how bank performance evolves
through time relative to performance
in 1986; ownership dummies
corresponding to the three ownership
forms

Chen [40] Overall technical efficiency;
pure technical efficiency;
scale efficiency

Ownership; size; other bank
characteristics

Chu and Lim
[41]

Annual stock returns (adjusted
for capitalization changes)

Percentage changes in super-efficiency
scores

Pastor [43] Risk management efficiency
without correcting for
environmental variables

Economic-cycle-related environmental
variables, i.e. coefficient of variation
of the nominal GDP for the period,
growth rate of nominal GDP for the
period and cumulative annual growth
rate in the last five years

Drake et al.
[44]

Radial and non-radial slacks Macroeconomic variables: private
consumption expenditure;
government expenditure; gross fixed
capital formation; net export of
goods; net export of services;

(continued overleaf )
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companies in the US, Fukuyama [28] considered city banks, regional banks and
former sogo banks in Japan, and Zaim [30] considered state banks and private
banks in Turkey.

• Investigation of the relationship between some measure of efficiency and one or
several endogenous or exogenous variables. For example, Aly et al. [12] con-
sidered size, extent of product diversity and level of urbanization; Fukuyama
[28] considered bank size; Favero and Papi [29] considered bank size, productive
specialization, ownership, market structure and localization; Miller and Noulas

TABLE 14.2 (continued)

Reference Response/dependent variable Explanatory variables

discount window base rate;
unemployment; retail sales values;
expenditure on housing; and the
current account balance.

Regulatory variables: dummy variable
for the Hong Kong property crash/
Asian financial crisis; dummy
variable for handover to the People’s
Republic of China; dummy variable
for 1999 (Hong Kong Monetary
Authority agreed to phase out the
remaining interest rate controls, i.e.
caps); and a dummy variable for 2001
(remaining interest rate controls
removed).

Liu and Tone
[45]

Normalized slacks obtained in
the first stage

Environmental variables used within the
log-linear Cobb–Douglas function:
monetary aggregate to GDP ratio;
bank lending to GDP ratio; short-term
risk spread; long-term risk spread,
Japan premium; real land price index;
real GDP growth index; real stock
price index; real bankrupt debt per
case.

Environmental variables used in the
heteroscedastic model of the
technical efficiency term: residuals in
non-performing loan ratio; residuals
in capital adequacy ratio.

Environmental variables used in the
heteroscedastic model of the noise or
random shock term: bank
heterogeneity in non-performing loan
ratio; bank heterogeneity in capital
adequacy ratio.
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TABLE 14.3 Summary of inputs and outputs used in DEA models for assessing the
performance of banks.

Reference Inputs Outputs

Intermediation approach
Rangan et al.
[7]

Labour; capital; purchased funds Real estate loans; commercial and
industrial loans; consumer loans;
demand deposits; time and
savings deposits

Ferrier and
Lovell [9]

Total number of employees;
occupancy costs and expenditure
on furniture and equipment;
expenditure on materials

Number of demand deposit
accounts; number of time deposit
accounts; number of real estate
loans; number of instalment
loans; number of commercial
loans

Charnes et al.
[13]

Total operating expenses; total non-
interest expenses; provision for
loan losses; actual loan losses

Total operating income; total
interest income; total non-interest
income; total net loans

Elyasiani and
Mehdian
[11]

Labour; capital; deposits; total
demand deposits

Investment; real estate loans;
commercial and industrial loans;
other loans

Aly et al. [12] Labour; capital; loanable funds Demand deposits; real estate loans;
commercial and industrial loans;
consumer loans; other loans

Elyasiani and
Mehdian
[15]

Labour; capital; certificates of
deposit; time and savings
deposits; demand deposits

Commercial and industrial loans;
real estate loans; other loans;
investment securities

Yue [16] Interest expenses; non-interest
expenses; transaction deposits;
non-transaction deposits

Interest income; non-interest
income; total loans

Grabowski
et al. [27]

Labour; capital; loanable funds Real estate loans; commercial and
industrial loans; consumer loans;
demand deposits; investment
securities

Fukuyama
[28]

Labour; capital; funds from
customers

Revenue from loans; revenue from
other business activities

Zaim [30] Total number of employees; total
interest expenditure; depreciation
expenditure; expenditure on
materials

Total balance of demand deposits;
total balance of time deposits;
total balance of short-term loans;
total balance of long-term loans

Favero and
Papi [29]

Labour; capital; financial capital
available for investment; loanable
funds (i.e. CDs); net funds
borrowed by other banks

Current accounts and savings
deposits; loans to other banks and
non-financial Institutions;
investment in securities and
bonds; non-interest income

Miller and
Noulas [31]

Total transaction deposits; total non-
transaction deposits; total interest
expenses; total non-interest
expenses

Commercial and industrial loans;
consumer loans; real estate loans;
investments; total interest
income; total non-interest income

(continued overleaf )
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TABLE 14.3 (continued)

Reference Inputs Outputs

Taylor et al.
[38]

Total deposits; total non-interest
expenses

Total income

Chen [40] Labour; assets; interest expenses Loan services; investments; interest
income; non-interest income

Drake et al.
[44]

Personnel expenses; total deposits +
total money market funds + total
other funding; total fixed assets;
loan loss provisions and other
provisions

Total customer loans + total other
lending; total other earning assets;
other non-interest income

Asset approach
Favero and

Papi [29]
Labour; capital; financial capital

available for investment; loanable
funds (i.e. current accounts and
savings deposits); CDs; net funds
borrowed by other banks

Loans to other banks and non-
financial institutions; investment
in securities and bonds; non-
interest income

Value added approach
Bhattacharyya

et al. [33]
Interest expenses; operating

expenses
Advances to priority sector

activities; investments; deposits
Pastor et al.

[35]
Non-interest expenses other than

personnel expenses; personnel
expenses

Loans; other productive assets,
including all existing deposits
with banks, short-term
investments, other investments
and equity investments; deposits,
including customer and short-
term funding, which is the sum of
demand, savings, time, interbank
and other deposits

Chu and Lim
[41]

Shareholders’ fund; interest
expenses; operating expenses
(including provisions)

Annual increase in average assets as
a proxy for future income or
future profit; total income or
profit depending on whether X-
efficiency or P-efficiency is
evaluated

Pastor [43] Personnel expenses; operating costs,
excluding personnel expenses and
including financial costs;
proportion of provision for loan
losses due to internal factors; all
inputs adjusted for slacks (for
third phase); structural
environmental variables: per
capita wages; density of deposits;
national income per branch;
capital adequacy ratio; economic-

Loans; deposits; other earning
assets; economic-cycle
environmental variables:
coefficient of variation of the
nominal GDP for the period
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[31] considered bank size, profitability, market power and location; Bhattachar-
yya et al. [33] considered six bank-specific exogenous variables that take
account of the expansion of the banking sector into suburban and rural areas,
as well as national and international regulatory requirements (i.e. number of
branches in rural areas, number of branches in suburban areas, number of
branches in urban areas, number of branches in metropolitan areas, ratio of pri-
ority sector lending to total advances, and capital adequacy ratio), along with
ownership type; and Chen [40] considered ownership and bank size.

• Investigation of the effect of an event on the efficiency of banks. For example,
Zaim [30] considered the effect of post-1980 financial liberalization policies
on the economic efficiency of Turkish commercial banks, and Drake et al.
[44] considered the impact of macroeconomic and regulatory factors on the effi-
ciency of the Hong Kong banking system.

14.4 CONCLUSION

In this chapter, we have provided a detailed account of DEA-based contributions in
the banking sector, with emphasis on static conventional DEA models, often referred
to as black box models. Our account starts from the first paper on DEA in banking,
published in 1988, and covers all major contributions to date. Apart from assessing the
efficiency profiles of banks, the authors of these contributions have investigated the
relationship between the type of ownership and efficiency, the relationship between
the type of organizational form and efficiency, the relationship between somemeasure
of efficiency and one or several endogenous or exogenous variables, and the effect of
an event (e.g. deregulation) on the efficiency of banks. For those researchers who are
unfamiliar with this field, we have summarized the literature into tables that provide
snapshots of the landscape of this research area. These snapshots could also serve as
an ‘aide-memoire’ for readers who are familiar with DEA and its applications in
banking.

TABLE 14.3 (continued)

Reference Inputs Outputs

cycle environmental variables:
growth rate of nominal GDP of
the period; cumulative annual
growth rate in the last five years

Production/profit-oriented approach
Drake et al.
[44]

Employee expenses; other non-
interest expenses; loan loss
provisions

Net interest income; net commission
income; total other income

Liu and Tone
[45]

Interest expenses; credit costs;
general and administrative
expenses

Interest-accruing loans; lending
revenues
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TABLE 14.4 Summary of measures of inputs and outputs and other variables used in
analyses of bank performance.

Variable Measure and reference

Labour Number of full-time employees on the payroll
[7,11,12,15,27–29,40,43]; employee expenses [44]

Capital Book value of premises and fixed assets
[7,11,12,15,27,29]; bank premises and equipment;
suspense payments for constitutions unfinished and
surety deposits and intangibles [28]

Purchased funds Certificates of deposit greater than $100,000; notes
and debentures; other borrowed funds [7]

Deposits Savings and time deposits – including large ($100,000
or more) negotiable CDs – and total demand
deposits [11,15]; transaction deposits and non-
transaction deposits [16]; customer and short-term
funding, which is the sum of demand, savings, time,
interbank and other deposits [35,43]

Total loans Loans and leases net of unearned income [16];
business and individual loans [40]

Loanable funds Sum of time deposits and other borrowed funds [27]
Funds from customers Part of the liabilities in the balance sheet, including

deposits, CDs, call money, bills sold, borrowed
money, foreign exchange and others [28]

Shareholders’ fund Capital provided by bank’s shareholders [41]
Interest expenses Expenses for Federal funds, purchase and sale of

securities, and interest on demand notes and other
borrowed money [16]; interest on deposit (savings,
fixed or time, and current or checking) accounts
[41]; external financial cost [45]

Non-interest expenses Salaries; expenses associated with premises and fixed
assets, taxes and other expenses [16]; non-interest
expenses other than personnel expenses [35,44]

Operating expenses Operating expenses, including provisions [41]
General and administrative expenses Cost of information production, in an economic sense

[45]
Credit cost Credit cost covers unexpected, expected and realized

losses due to credit risk exposures and is calculated
as transfer to reserve for possible loan losses + net
provision of specific reserve for possible loan losses
+ write-off claims + losses in sale of claims −
recoveries of written-off claims [45]

Interest income Interest and fee income on loans, income from lease-
financing receivables, interest and dividend income
on securities, and other income [16]; net interest
income [44]
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TABLE 14.4 (continued)

Variable Measure and reference

Non-interest income Service charges on deposit accounts, income from
fiduciary activities and other non-interest income
[16]

Interest-accruing loans Loans and bills discounted + 0.5 × customers’
liabilities for acceptances and guarantees − loans to
borrowers in legal bankruptcy + past due loans in
arrears by 6 months or more [45]. In Japan, banks
are required to stop accruing interest on a loan that is
past due for 6 months or more.

Investments Government securities and shares and securities in
public and private enterprises [40]

Revenue from loans Interest on loans and discounts and interest on bills
bought – these are the traditional primary business
activities of banks [28]; lending revenue computed
as net interest income + net fees and commission
income [45]

Bad loans attributable to bad risk
management

Provision for loan losses [43,44]

Revenue from other business
activities

Total operating income minus any other operating
income, after deducting gains on foreign exchange
and trading account securities transactions, as well
as gains on sales and redemption of bonds minus
revenue from loans [28]

Bank size Total deposits [7,12]; number of branches [12]; assets,
staff or deposits [40]

Level of product diversity Minus the logarithm of the sum over products of the
squared proportion of a bank’s total dollar revenue
or sales accounted for by a product [7,12]

Extent to which bank branching is
allowed

Categorical variable that takes values of 0, 1 or 2
depending on whether no branch banking is allowed
by the state, limited branch banking is allowed or
unlimited branch banking is allowed [7]

Degree of urbanization that
characterizes a bank’s
environment

Measured by two dummy variables. The first takes a
value of one if the bank operates in a standard
metropolitan statistical area (SMSA), but not in a
consolidated metropolitan statistical area (CMSA),
and zero otherwise. The second dummy variable
takes a value of one if the bank operates in an SMSA
that is also part of a CMSA, and zero otherwise [12].
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TABLE 14.5 Summary of environmental variables used in DEA analyses for assessing
the performance of banks.

Reference Inputs Outputs

Intermediation approach
Ferrier

and
Lovell
[45]

Categorical environmental variables: institutional type (non-commercial; savings
and loan; mutual savings; credit union); membership of a multibank holding
company; location in unit or branch

Number of branches operated Average size of demand deposit
account; average size of time deposit
account; average size of real estate
loan; average size of instalment
loan; average size of commercial
loan

Zaim [30] Categorical environmental variables: institutional type (national bank; foreign
bank)

Number of branches as uncontrollable
input

Average size of demand deposit
accounts; average size of time
deposit accounts as uncontrollable
outputs

Value added approach
Pastor

[43]
Economic environmental variables:

coefficient of variation of the
nominal GDP of the period

Efficiency-related/structural
environmental variables: capital
adequacy ratio

Economic environmental variables:
growth rate of nominal GDP for the
period; cumulative annual growth
rate in the last five years; per capita
wages

Efficiency-related/structural
environmental variables: density of
deposits; national income per branch

Profit-oriented approach
Drake

et al.
[44]

Regulatory variables: dummy variable for the Hong Kong property crash/Asian
financial crisis; dummy variable for handover to the People’s Republic of
China; dummy variable for 1999 (Hong Kong Monetary Authority agreed to
phase out the remaining interest rate controls, i.e. caps); dummy variable for
2001 (remaining interest rate controls removed)

Macroeconomic variables: private consumption expenditure; government
expenditure; gross fixed capital formation; net export of goods; net export of
services; discount window base rate; unemployment; retail sales values;
expenditure on housing; current account balance

Liu and
Tone
[45]

Monetary aggregate to GDP ratio; bank lending to GDP ratio; short-term risk
spread; long-term risk spread; Japan premium; real land price index; real GDP
growth index; real stock price index; real bankrupt debt per case
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TABLE 14.6 Summary of data, period of analysis and its source used in assessing the
performance of banks.

Reference Data/DMUs
Period of
analysis Source of data/data provider

Rangan et al.
[7]

215 US banks 1986 Federal Deposit Insurance
Corporation (FDIC)

Ferrier and
Lovell [45]

575 US banks 1984 The Federal Reserve System’s
Functional Cost Analysis
Program

Charnes et al.
[13]

48 US commercial banks
drawn from the top 300
banks headquartered in
America which are also
members of the FDIC

1980 to 1985 FDIC

Elyasiani and
Mehdian
[11]

191 US banks 1980; 1985 Call and income report tapes
published by the National
Technical Information
Service (NTIS) of the
Department of Commerce

Aly et al. [12] 322 independent US banks 1986 FDIC; tapes on the Reports of
Condition and Reports of
Income (call reports)

Elyasiani and
Mehdian
[15]

160 minority-owned and non-
minority-owned US banks
selected to be from the same
state, county, SMSA,
CMSA and Federal Reserve
district to control for
geographical factors and
regulatory environment

1988 1988 call and income report
tapes

Yue [16] 60 of the largest US
commercial banks located
in Missouri

1984 to 1990 Not provided

Grabowski
et al. [27]

522 US banks affiliated to
multibank holding
companies and 407 US
banks with branches

1989 FDIC files on the Report of
Income and Condition (call
report)

Fukuyama
[28]

143 Japanese commercial
banks

1991 Analysis of financial
statements of all banks from
the Federation of Bankers
Associations of Japan

Barr et al. [24] 930 US banks December
1984 to
December
1989

Not provided

(continued overleaf )
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TABLE 14.6 (continued)

Reference Data/DMUs
Period of
analysis Source of data/data provider

Zaim [30] 95 Turkish commercial banks 1981 (39
banks) and
1990 (56
banks)

Banks Association of Turkey

Favero and
Papi [29]

174 Italian commercial banks 1991 Centrale dei Bilanci-ABI data
set

Miller and
Noulas [31]

201 US large commercial
banks

1984 to 1990 Call report data – reports of
condition and income

Thompson
et al. (1996)

48 US large commercial banks 1980 to 1990 FDIC reports

Bhattacharyya
et al. [33]

70 Indian commercial banks 1986 to 1991 Indian Banks’ Association

Pastor et al.
[35]

168 US banks, 45 Austrian
banks, 59 Spanish banks,
22 German banks, 18 UK
banks, 31 Italian banks,
17 Belgian banks,
67 French banks

1992 International Bank Credit
Analysis Ltd

Taylor et al.
[38]

13Mexican commercial banks 1989 to 1991 Comision Nacional Bancaria
(National Banking
Commission)

Chen [40] 7 publicly owned and
27 privately owned
Taiwanese commercial
banks

1996 Not provided

Chu and Lim
[41]

6 local Singapore-listed
groups of banks

1992 to 1996 End-of-the-year stock prices,
duly adjusted for
capitalization changes,
obtained from Dbank
financial database,
maintained at the National
University of Singapore

Pastor [43] Commercial banks in Spain,
Italy, France and Germany,
resulting in 2598 bank-year
observations

1988 to 1994 IBCA Ltd, an international
rating agency which
homogenizes information
and classifies firms in terms
of specialization, so that
accounting uniformity is
guaranteed.

Data on environmental
variables were taken from
the Economic Bulletin of
the Bank of Spain, Bank
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15.1 INTRODUCTION

Japanese municipal hospitals have experienced financial crises throughout the last few
decades. There are 9000 hospitals in Japan, half of which are owned by private not-
for-profit organizations, and the remainder of which are run by public organizations.
One thousand public hospitals are owned and operated by municipal governments,
and most of these hospitals have been losing money for a long time.

As the Japanese government has huge cumulative deficits, it is important that the
municipal hospitals have sound financial foundations. The municipal hospitals
depend financially on a subsidy from central government through local government.
The master plan for the reform of Japan’s municipal hospitals included five steps from
fiscal year 2007 to fiscal year 2014, as described below. First, the central government
designed guidelines regarding proposed reforms and a timeframe for those reforms in
fiscal year 2007. The government ordered the reform of all municipal hospitals
according to those guidelines. Therefore, all reform of municipal hospitals was to start
in fiscal year 2007.

Advances in DEA Theory and Applications: With Extensions to Forecasting Models,
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Second, the central government ordered individual municipal hospitals to formu-
late a reform plan, including performance indicators for the evaluation of the reform,
within fiscal year 2008. The contents of the reform plan had some range of autonomy,
and municipal hospitals could freely select countermeasures.

The guidelines illustrated several countermeasures that could be used in the reform
of municipal hospitals. These countermeasures can be grouped into four categories.
The first is the introduction of private business management systems. For example, the
guidelines recommend outsourcing to private companies and the adoption of a ‘pri-
vate finance initiative’. The second category is the restructuring and consolidation of
the hospital organization. For example, the guidelines recommend the merging of sev-
eral hospitals and the conversion of hospitals into long-term care facilities. The third
category refers to a reduction in hospitals’ operating costs. For example, the guide-
lines propose a revision of wage systems and reductions in the purchase prices of med-
ical materials. The fourth category is an increase in revenue. For example, the
guidelines recommend increasing occupancy rates and unit values per inpatient
(nearly equal to ‘unit revenue per inpatient per day’).

Municipal hospitals could choose countermeasures from the examples in the
guidelines and could include their own reform countermeasures. Individual reform
plans proposed the recruitment of highly skilled professionals, further education
for healthcare professionals and a revision of the range of medical services. Thus, each
hospital formulated its own reform plan and then self-evaluated the results.

Third, municipal hospitals were required to report the results of the reform plan
annually to central government. The first report was submitted in fiscal year 2009.

Fourth, municipal hospitals were required to submit intermediate reports on the
results of efficiency promotion from fiscal year 2007 to fiscal year 2010 at the end
of fiscal year 2011.

Fifth, municipal hospitals were required to submit a final report on the results of
their individual reform plans at the end of fiscal year 2014. Fiscal year 2014 was the
deadline for the reform. If the reform was not effective, then central government
would request that the municipal hospital shut down, or sell the operation of the
hospital.

As explained above, the guidelines for the reform of municipal hospitals mainly
targeted hospital administration, because the main objective was to reduce the amount
of subsidies that were covering the deficit of the hospitals. Therefore, the central gov-
ernment was more interested in the financial situation of the hospital than in the qual-
ity of medical services.

Harris [1] pointed out that a hospital can be considered as two separate firms. There
are two heterogeneous internal organizations: a medical-examination division and an
administration division. The administration division carries out business management
activities to contain medical expenses within medical revenue. The medical-
examination division provides various medical care services directly. This unique
characteristic of hospitals is particularly strong among municipal hospitals. In a
municipal hospital, executive managers in the administration division are ordinarily
dispatched from the municipal government. They are reshuffled every few years in the
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same way as other municipal officials. These two organizations can be described as
internal mutual exchange services. The administration division provides medical beds
to the medical-examination division, and the medical-examination division repays the
revenue through the use of medical beds for inpatient services.

For local residents, many of the problems with municipal hospitals arise through
the curtailment of certain medical services. Thus, some residents are no longer able to
receive specialized care at those hospitals. The chief medical officer in charge of the
medical-examination division is typically the target of criticism from the stakeholders
of the hospital. The administration division tends to operate from behind closed doors
and avoids blame for any failures. However, previous research has not compared effi-
ciency improvements between the two divisions. Japanese hospitals have acute beds
and long-term care beds in various ratios. The larger hospitals tend to concentrate on
acute care services. In addition, physicians and surgeons are hired and paid by hos-
pitals, as in the case of National Health Service hospitals in the United Kingdom.
These physicians provide services not only to inpatients but also to outpatients at
the same hospitals.

The purpose of this study is to evaluate the policy effects of the reform of municipal
hospitals in Japan. We have estimated efficiency scores from 2007FY to 2012FY not
only for each hospital as a whole but also for the two divisions. In addition, we con-
sider further policy implications to address the financial problems of Japanese munic-
ipal hospitals.

The structure of this chapter is as follows. The background and purpose of our
study have been discussed in this first section. The methods and data are discussed
in the second section. After the estimation of efficiency, we report the efficiency
scores. The results of the analyses are presented in the third section. The last
section includes a discussion of the results and future challenges.

15.2 METHOD AND DATA

15.2.1 Previous Literature

Data envelopment analysis (DEA) is a popular method with which to estimate the effi-
ciency of hospitals [2]. DEA is a non-parametric method used in operations research
to evaluate the efficiency performance of decision-making units (DMUs). The tradi-
tional DEA model is often considered a ‘black-box’ model, because it does not take
account of the internal structure of DMUs. Several previous studies have evaluated the
efficiency of Japanese hospitals using the method [3–6]. These studies used cross-
sectional data from Japanese public hospitals and adopted largely traditional DEA
approaches. Average efficiency scores ranged from 0.8869 to 0.9456 in terms of
revenue efficiency [3, 4]; for technical efficiency, the scores ranged from 0.8585 to
0.90008 [5, 6].

As an extension of the above traditional DEA model, the ‘network DEA model’
accounts for divisional efficiencies as well as overall efficiency in a unified
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framework. Through the network DEAmodel, we can observe not only the efficiency
of DMUs but also divisional efficiencies as its components. Network DEA models
were first introduced by Färe and Grosskopf [7–9]. These models have been extended
by several authors. The network DEAmodel proposed by Lewis and Sexton [10] has a
multistage structure, as an extension of the two-stage DEAmodel proposed by Sexton
and Lewis [11]. That study solved the DEAmodel for each node independently. Prieto
and Zofio [12] applied a network efficiency analysis within an input–output model, as
initiated by Koopmans [13]. Löthgren and Tambour [14] applied a network DEA
model to a sample of Swedish pharmacies with organizational objectives that neces-
sitated the monitoring of efficiency, productivity and customer satisfaction. They
compared the results of the network DEA models with those of traditional DEA mod-
els. Tone and Tsutsui [15] developed this model using a slacks-based measure called
the network slacks-based measure (NSBM). The NSBM approach is a non-radial
method and is suitable for measuring efficiencies when inputs and outputs may
change non-proportionally.

In contrast, the dynamic DEA model can measure the efficiency score obtained
from long-term optimization using carry-over variables. The traditional DEA model
focuses only on a single period, and therefore the measurement of intertemporal effi-
ciency change has long been a subject of concern in DEA. The window analysis of
Klopp [16] was the first approach to account for intertemporal efficiency change.
Based on Malmquist [17], Färe et al. [9] developed the Malmquist index in the
DEA framework. The dynamic DEA model proposed by Färe and Grosskopf [8]
was the first innovative scheme to formally deal with interconnecting activities. Tone
and Tsutsui [15] extended their model within the slacks-based measurement frame-
work proposed by Tone [18] and Pastor et al. [19]. Hence, this model is non-radial
and can deal with inputs and outputs individually, which enables us to obtain non-
uniform input/output factor efficiencies. This is in contrast to radial approaches, which
assume proportional changes in inputs or outputs and provide only uniform input/out-
put factor efficiency.

The dynamic network DEA (DN DEA) model takes into account the internal het-
erogeneous organizations of DMUs, where divisions are mutually connected by link
variables and trade internal products with each other. This DN DEA model can eval-
uate (i) the overall efficiency over the entire observed term, (ii) dynamic changes in
the period efficiency and (iii) dynamic changes in the divisional efficiency. In addi-
tion, each DMU has carry-over variables that take into account a positive or negative
factor for the previous period. We have employed a dynamic DEA model involving
the network structure proposed by Tone and Tsutsui [20]. This DN DEA model has
advantages of being able to evaluate a policy effect on the individual divisions of each
DMU. Tone and Tsutsui [20] provided detailed information about the notation for the
DNDEAmodel. Recently, researchers have started to apply the DNDEAmodel to the
banking sector [21–23] and the hospital sector [24].

The study by Kawaguchi et al. [24] was the first application to a Japanese hospital.
The present study expanded that of Kawaguchi et al. [24] in three ways. First, we
doubled the observation time from three years to six years. Secondly, we added a
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new input variable as a proxy for expensive medical equipment. Thirdly, we calcu-
lated a Malmquist index score from the DN DEA model. Therefore, this study should
provide a more precise evaluation in terms of efficiency change induced by policy
intervention.

15.2.2 Formulas for Efficiency Estimation by DN DEA Model

We deal with nDMUs ( j = 1,…, n), which consist ofK divisions (k = 1,…,K), over T
time periods (t = 1,…, T). Letmk and rk be, respectively, the numbers of inputs to and
outputs from division k. We denote the link leading from division k to division h by
(k, h)l and the set of links by Lkh. The observed data are as follows:

• xtijk R+ (i = 1,…,mk; j =1,…, n; k = 1,…, K; t = 1,…, T) is the input resource i
for DMUj for division k in period t, and

• ytrjk R + (r =1,…,rk; j = 1,…,n; k = 1,…, K; t =1,…, T) is the output product r
from DMUj for division k in period t.

If some outputs are undesirable, we treat them as inputs to division k.

• ztj kh l
R + j= 1,…,n;l= 1,…,Lkh;t = 1,…,T represents the linking intermedi-

ate products of DMUj from division k to division h in period t, where Lkh is the
number of items in the links from k to h.

• z t, t + 1
jkl

R+ (j =1, …, n; l = 1, …, Lk; k = 1, …, K, t = 1, …, T − 1) is the carry-
over of DMUj for division k from period t to period t + 1, where Lk is the number
of items in the carry-over from division k.

DMUo (o = 1, …, n) Pt can be expressed as follows. The input and output con-
straints are

xtok =X
t
kλ

t
k + s

t−
ko k, t

ytok =Y
t
kλ

t
k −s

t +
ko k, t

eλt
k = 1 k, t

λt
k ≥ 0, s

t−
ko ≥ 0, s

t +
ko ≥ 0, k, t

(15.1)

where Xt
k = xt1k,…,xtnk Rmk × n and Yt

k = yt1k,…,ytnk Rrk × n signify the input and
output matrices and st−ko and st +ko are the input and output slacks, respectively.

With regard to the linking constraints, there are several options, for which we
present four possible cases. There are, for example, ‘as input’ and ‘as output’ link
value cases.
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In the ‘as input’ link value case, the linking activities are treated as an input to the
succeeding division, and excesses are accounted for in the input inefficiency:

zto kh in =Z
t
kh inλ

t
k + s

t
o kh in kh in = 1,…, linkink (15.2)

where sto kh in RL kh in represents slacks and is non-negative, and linkink is the number

of ‘as input’ links from division k.
In the ‘as output’ link value case, the linking activities are treated as an output from

the preceding division, and shortages are accounted for in the output inefficiency:

zto kh out =Z
t
kh outλ

t
k −s

t
o kh out kh out = 1,…, linkoutk (15.3)

where sto kh out RL kh out represents slacks and is non-negative, and linkoutk is the num-

ber of ‘as output’ links from division k.
We classify carry-over activities into four categories as follows. Corresponding to

each category of carry-over, we derive the following equations:

z t, t + 1
oklgood

=
n

j= 1
z t, t + 1
jklgood

λtjk −s
t, t + 1
oklgood

kl = 1,…,ngoodk; k; t

z t, t + 1
oklbad

=
n

j= 1
z t, t + 1
jklbad

λtjk + s
t, t + 1
oklbad

kl = 1,…,nbadk; k; t

z t, t + 1
oklfree

=
n

j= 1
z t, t + 1
jklfree

λtjk + s
t, t + 1
oklfree

kl = 1,…, freek; k; t

z t, t + 1
oklfix

=
n

j= 1
z t, t + 1
jklfix

λtjk kl = 1,…, fixk; k; t

s t, t + 1
oklgood

≥ 0, s t, t + 1
oklbad

≥ 0 and s t, t + 1
oklfree

free kl; t

(15.4)

where s t, t + 1
oklgood

, s t, t + 1
oklbad

and s t, t + 1
oklfree

represent slacks denoting carry-over shortfall,

carry-over excess and carry-over deviation, respectively, and ngoodk, nbadk and
nfreek indicate the numbers of desirable (good), undesirable (bad) and free carry-
overs, respectively, for each division k.

The overall efficiency is evaluated by the following program:

θ∗o =min

T

t =1
Wt K

k = 1
wk 1−

1
mk + linkink + nbadk

mk

i =1

st−iok
xtiok

+
linkink

kh l = 1

sto kh lin

zto kh lin

+
nbadk

kl = 1

s t, t + 1
oklbad

z t, t + 1
oklbad

T

t = 1
Wt K

k =1
wk 1 +

1
rk + linkoutk + ngoodk

rk

r = 1

st +rok
ytrok

+
linkoutk

kh l = 1

sto kh lout

zto kh lout

+
ngoodk

kl = 1

s t, t + 1
oklgood

z t, t + 1
oklgood

(15.5)

subject to (15.1)–(15.4), where Wt t is the weight of period t and wk k is

the weight of division k. These weights satisfy the condition
T

t = 1
Wt = 1,
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K

k = 1
wk = 1,Wt ≥ 0 t ,wk ≥ 0 k They are supplied exogenously. The numerator

includes terms associated with the relative slacks of inputs (‘as-input’ links and bad
carry-overs), whereas the denominator includes the relative slacks of outputs (‘as-out-
put’ links and good carry-overs). These terms are weighted by the divisional weightwk

and further by the period weight Wt, and they result in the overall efficiency θ∗o. This
objective function is a generalization of the slacks-based measure developed by Tone
[19]. The divisional weights indicate the importance of the division, for example in
terms of cost and manpower, whereas the period weights reflect, for example, the
discount rate by period. θ∗o ≤ 1 and θ∗o = 1 hold if and only if all slacks are zero.
The input- and output-oriented models can be defined by dealing with the numerator
and denominator, respectively, of the above objective function. Utilizing the optimal
slacks obtained by solving the program (15.5), we define the period and divisional
efficiencies as follows. The period efficiency is defined by

τt∗o =

K

k = 1
wk 1−

1
mk + linkink + nbadk

mk

i= 1

st−iok
xtiok

+
linkink

kh l = 1

sto kh lin

zto kh lin

+
nbadk

kl = 1

s t, t + 1
oklbad

z t, t + 1
oklbad

K

k = 1
wk 1 +

1
rk + linkoutk + ngoodk

rk

r = 1

st +rok
ytrok

+
linkoutk

kh l = 1

sto kh lout

zto kh lout

+
ngoodk

kl = 1

s t, t + 1
oklgood

z t, t + 1
oklgood

t

(15.6)

where the variables on the right-hand side indicate optimal values for the overall effi-
ciency θ∗o. The divisional efficiency is defined by

δ∗ok =

T

t = 1
Wt 1−

1
mk + linkink + nbadk

mk

i= 1

st−iok
xtiok

+
linkink

kh l = 1

sto kh lin

zto kh lin

+
nbadk

kl = 1

s t, t + 1
oklbad

z t, t + 1
oklbad

T

t = 1
Wt 1 +

1
rk + linkoutk + ngoodk

rk

r = 1

st +rok
ytrok

+
linkoutk

kh l = 1

sto kh lout

zto kh lout

+
ngoodk

kl = 1

s t, t + 1
oklgood

z t, t + 1
oklgood

t

(15.7)

Finally, the period-divisional efficiency is defined by

ρt∗ok =

1− 1
mk + linkink + nbadk

mk

i= 1

st−iok
xtiok

+
linkink

kh l = 1

sto kh lin

zto kh lin

+
nbadk

kl = 1

s t, t + 1
oklbad

z t, t + 1
oklbad

1 + 1
rk + linkoutk + ngoodk

rk

r = 1

st +rok
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+
linkoutk

kh l = 1

sto kh lout

zto kh lout

+
ngoodk

kl = 1

s t, t + 1
oklgood

z t, t + 1
oklgood

k; t

(15.8)

In the input- and output-oriented models, the numerator and denominator, respec-
tively, of the above formulas are applied.
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15.2.3 Formulas for Malmquist Index by DN DEA Model

Based on the period-divisional efficiency score, we define a new Malmquist index as
follows. We define the divisional catch-up index as the ratio of the period-divisional
efficiencies between t and t + 1 as follows:

γt t + 1
ok =

ρt + 1
∗

ok

ρt
∗
ok

t = 1,…,T −1; k = 1,…,K; o= 1,…,n (15.9)

We define the position effect from t to t + 1 as

σt t + 1
ok = φ1φ2 t = 1,…,T −1; k = 1,…,K; o = 1,…,n

whereφ1 =
ρt

∗
ok

1
n

n

j= 1
ρt

∗
jk

and φ2 =
ρt + 1

∗
ok

1
n

n

j= 1
ρt + 1

∗
jk

(15.10)

Using the above catch-up index and position effect, we define the divisional Malm-
quist index by their geometric mean:

μt t + 1
ok = γt t + 1

ok σt t + 1
ok t = 1,…,T −1; k = 1,…,K; o = 1,…,n (15.11)

15.2.4 Empirical Data

The data used in this empirical investigation concerned 74 municipal hospitals from
2007FY to 2012FY in a balanced panel. There are approximately 1000municipal hos-
pitals in Japan and there is large heterogeneity among them. We selected municipal
hospitals with more than 300 beds. Therefore, this sample may represent larger acute
hospitals owned by Japanese municipalities. The data were collected from the Annual
Databook of Local Public Enterprise published by theMinistry of Internal Affairs and
Communications. It is a legal requirement that the local chief executive of eachmunic-
ipal government submits audited financial statements to the ministry. Therefore, the
data should be accurate. Accuracy is required for DEA because it cannot take into
account measurement errors in the data. DEA also implicitly assumes a correct model
specification and the correct specification of inputs, outputs and other variables.

The objective of the administration division is to realize a sound financial situation
through labour inputs and capital inputs. The objective of the medical-examination
division is to provide a certain amount of medical services using hospital beds that
are maintained by the administration division at the same hospital. TheDNDEAmodel
makes it possible to havea two-stage production structure inonehospital, that is, both an
administration division and a medical-examination division. The administration divi-
sion raises funds for and maintains medical beds and expensive medical equipment.
Themedical-examination division uses themedical beds andprovidesmedical services.
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Furthermore, the medical-examination division earns medical revenue in return for
medical services and the administration division collects the revenue from the medi-
cal-examination division and manages financial matters. Previous literature that
adopted traditional DEA models in the study of Japanese hospitals did not consider
intermediate products in a hospital. In the case of the DN DEAmodel, we can use link
variables as intermediate products for both divisions. This benefit of theDNDEAmodel
(compared with the traditional DEA model) is that it makes it possible to reflect the
actual situation. We adopted three link variables in our model.

In addition, if we were to add variables related to the administration division in the
traditional DEA model, we would suffer from inadequate correspondence between
inputs and outputs. For example, the administration staff do not directly engage in
the production of medical services. In the case of the traditional DEAmodel, the input
from the administration staff may correspond to the number of inpatients as an output.
However, the relationship between the administration staff and the number of inpa-
tients would cause an undesirable bias in the efficiency estimation. Therefore, the
DN DEA model conceptually reduces bias (compared with the traditional DEA
model) in the estimation of efficiency both by considering the multiple-step produc-
tion structure and by excluding inadequate interactions between inputs and outputs.
However, we did not consider more detailed divisions in this study. For example, we
did not consider pharmaceutical or clinical laboratory divisions.

Many previous studies that have adopted traditional DEA models to examine Jap-
anese hospitals have focused on the activities of the medical-examination division.
These studies typically adopt the numbers of doctors and nurses as inputs and the
numbers of inpatients and outpatients as outputs. Therefore, such studies do not con-
tain the activities of the administration division, by way of either an input variable or
an output variable. However, the DN DEA model enables us to consider activities in
both divisions. We can observe the activities of the administration division separately
from the medical-examination division.

The inputs, outputs, links and carry-overs of the DN DEA model are described in
Figure 15.1. For Division 1, (the administration division), we adopted two labour
inputs and three capital inputs. The administration division does not directly provide
a medical service to patients. The division is in charge of providing medical beds to the
medical-examination division and maintains a sound financial situation for the hos-
pital. Therefore, administration staff should manage the financial situation of the hos-
pital. They also receive subsidies from the municipal government and manage the
reimbursement of hospital bonds issued. Maintenance staff maintain all the hospital
buildings for hospital activities. As labour inputs, we used both the number of admin-
istration officers and the number of maintenance officers. All labour inputs were full-
time equivalents (FTEs). However, we did not consider differences in productivity
and wage levels of staff. As capital inputs, we used the interest cost for financial
arrangements and the municipal subsidies to cover deficits.

For the output of Division 1, we intended to adopt the ‘balance ratio of medical
income to medical expenses’; the break-even point has a value of 1 and a surplus
has a value exceeding 1. However, using a ratio as an input or output makes the
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Figure 15.1 Input variables and output variables in the DN DEA model.



convexity issue of DEA problematic [25]. Emrouznejad and Amin [26] recommended
not using constant returns to scale when there is a ratio in the input/output variables.
Therefore, we decomposed the ratio into medical income and medical expenses: the
numerator was used as an output for Division 1 and the denominator as an input for
Division 1.

For Division 2 (the medical-examination division), we adopted four labour inputs:
the number of doctors, number of nurses, number of assistant nurses and number of
medical technologists. All labour inputs were the corresponding value of FTEs. For
the outputs of Division 2, we adopted the number of inpatients per operation day, the
number of outpatients per operation day and the number of beds in emergency units.
In Japan, there is no gatekeeping system involving general practitioners. Therefore,
hospitals accept a large number of outpatients to attract potential inpatients. In this
study, the number of beds in emergency units was used as a surrogate variable for
the emergency care service because we could not distinguish between emergency care
patients and ordinary patients from the data source.

Previous studies regarding efficiency estimations of Japanese hospitals did not
include emergency medical services. A core function of public hospitals in Japan
is to ensure a quick response for emergency patients. However, some municipal hos-
pitals have closed their emergency units to reduce costs, despite the increasing need
for emergency medical services. Although we consider that the evaluation of the effi-
ciency of municipal hospitals should include the number of emergency patients, we
were not able to obtain numbers from the available data. Therefore, we adopted the
number of emergency beds as a proxy for the number of emergency patients. This
proxy variable has limitations because it did not control for differences in severity
of emergency patients, the quality of the emergency medical service and the occu-
pancy rate of the emergency beds.

The existence of a link variable is one of the key characteristics of the DN DEA
model. The link variable is an intermediate product that acts simultaneously as an out-
put from Division 1 and an input to Division 2. Using an intermediate product, we can
evaluate multiple production steps among divisions in one DMU. Tone and Tsutsui
[20] presented four possible scenarios. For example, the ‘fixed link value case’means
that the linking activities are unchanged.

There are peculiar characteristics in the case of municipal hospitals compared with
private hospitals in Japan. Because of a soft budget constraint and sometimes the elec-
tion tactics of governors, municipal hospitals tend to overinvest in both beds and
expensive medical equipment. Decisions about capital investment are ordinarily made
by the administration division. We need to take account of the effect of capital invest-
ment by the administration division in the medical-examination division in evaluating
the efficiency of municipal hospitals.

We used the both ‘number of beds’ and ‘number of tesla of magnetic resonance
imaging [MRI] scanners’ as link variables from Division 1 to Division 2. We assumed
that Division 1 was in charge of the funding and maintenance of medical beds and
expensive medical devices. Division 1 supplied these beds and devices to Division 2.
Division 2 used the medical beds and devices for delivering medical care services to
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patients. We adopted a non-discretionary ‘fixed’ link, where the linking activity
remains constant. The reason for this is that it would be unusual for the medical-
examination division to negotiatewith the administration division to change the number
of beds. The administration division also has an incentive to generate sufficient medical
revenue (to offset themedical expenses) and to use all available beds.MRI scanners are
expensive medical devices and are very popular in Japanese hospitals. The word ‘tesla’
is a unit of magnetic field strength, and the latter is related to the fineness of diagnostic
imaging.When there were twoMRI scanners in one hospital, we summed the numbers
of tesla of the twoMRI scanners. Therefore, we used the number of tesla of MRI scan-
ners as a proxy variable for both the quality and the quantity of the service provided by
MRI scanners.

We used the ‘average revenue per inpatient per day’ as a link variable fromDivision 2
to Division 1. We assumed that the average revenue was the consideration to be paid to
Division 1 for the beds fromDivision 2. The average revenue per inpatientmay represent
the density of medical care services. We adopted an ‘as-output’ link, where the linking
activity is treated as an output fromDivision 1. The reason for this is that this matter was
not negotiable between the two divisions. Division 1 should be efficient enough to pro-
vide higher-density medical services under the given resource constraints.

There are other peculiar characteristics in the case of municipal hospitals compared
with private hospitals in Japan. Because of the soft budget constraint, municipal hos-
pitals can have a huge cumulative deficit. We need to consider the negative effect of
the deficit in our evaluation.

The carry-over variable is one of the benefits of using the DN DEA model com-
pared with the traditional DEA model. A DMU ordinarily continues its activities over
several terms. Furthermore, intertemporal factors can affect its efficiency. The carry-
over variable makes it possible to account for the effect of connecting activities
between terms. The carry-over variable has four characteristics, according to Tone
and Tsutsui [20]. For example, ‘desirable (good) carry-over’ variables are treated
as outputs, and a comparative shortage of carry-overs is seen as inefficiency.

We used the ‘balance account of the public enterprise bond’ (hospital bond) as an
undesirable (bad) carry-over. The hospital bond was chosen as the carry-over because
municipal hospitals issue these bonds to raise funds for capital investment in hospital
beds. The municipal hospital gradually redeems the bond from any revenue surplus.
We adopted the ‘undesirable (bad)’ carry-over; thus, the connecting activity from
Period 1 to Period 2 was treated as an input. The reason for this is that newly built
hospitals are more attractive to patients but represent a heavier fiscal burden in terms
of repaying the principal. Therefore, treating the public enterprise bond as a carry-over
reflects accurately the competitive condition of the market in which patients can freely
access any hospital. However, we did not consider either the average life or the interest
rate of hospital bonds (Figure 15.1).

According to the first principle that a public hospital is expected to accomplish a
policy goal with a minimum budget, we selected an input-oriented model. We adopted
both a constant-returns-to-scale (CRS) and a variable-returns-to-scale (VRS) model in
the analysis. We also employed a Malmquist productivity index approach and
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decomposed the Malmquist index (MI) into technological change (frontier shift) and
the efficiency change of non-best-practice DMUs (catch-up). In the case of the MI, we
selected the CRS model according to the results of Grifell-Tatje and Lovell [27].
Descriptive statistics of all variables in the analysis are provided in Table 15.1.

Before we move on to efficiency estimation, we should check the three main out-
puts to grasp the time trend of the management of the municipal hospitals during the
observation period. The number of inpatients per operation day decreased by 3 per-
centage points from 2007FY to 2012FY. The number of outpatients per operation day
decreased by 6 percentage points from 2007FY to 2012FY. The balance ratio of med-
ical expenses to medical income improved by 5 percentage points (but was still in the
red) from 2007FY to 2012FY (Figure 15.2).

15.3 RESULTS

15.3.1 Estimated Efficiency Scores

Table15.2presents the key statistics of the estimated efficiency scores obtainedby theDN
DEAmodel. In Table 15.2, the first set of rows shows the efficiency scores of the overall
hospital organization as determinedby theDNDEAmodel. The second set of rows shows
theefficiencyscoresof theadministrationdivisionsof the samplehospitals.The third setof
rows shows the efficiency scores of themedical-examination divisions of the sample hos-
pitals. From the results of the DN DEA model, we obtained four key findings.

First, the average overall efficiency obtained by the DN DEA model was 0.912
(VRS model) for 2007FY. The average efficiency score estimated by the DN DEA
model was almost at the same level as the average efficiency level estimated in pre-
vious studies of Japanese municipal hospitals [3–6].

Second, the average level of relative efficiency in 2012FYwas slightly less than for
2007FY overall. The average efficiency score was 0.912 for 2007FY and 0.895 for
2012FY (VRS model).

Third, because of the advantages of the network structure in the DN DEA model,
we can observe the efficiency changes separately for different internal organizations.
The average level of the estimated period-divisional efficiency of the administration
division decreased from 0.901 in 2007FY to 0.881 in 2012FY (VRS model). The
average period-divisional efficiency of the medical-examination division also
decreased from 0.922 in 2007FY to 0.909 in 2012FY (VRSmodel). On average, there
was no significant efficiency improvement in the two divisions for the 6-year period.

15.3.2 Estimated Malmquist Index Scores

The Malmquist productivity index is suitable for evaluating the dynamic change in
efficiency of the samples. We estimated the MI of both the administration division
and the medical-examination division separately from 2007FY to 2012FY.
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TABLE 15.1 Descriptive statistics of all variables in the DN DEA model.

Variable Names Average S.D. Max Min units

Division 1 Input Number of administration officers 35.48 16.40 92.00 10.00 person
Number of maintenance officers 13.39 15.52 99.00 0.00 person
Interest cost per year 237 234 1,120 5 million Yen
Subsidy from municipality 1,847 1,423 7,195 345 million Yen
Medical expense 13,036 6,123 30,582 4,035 minion Yen

Output Medical income 12,368 6,010 29,151 3.107 million Yen
Link(Div1 Div2) Number of beds 504.8 169.3 1063.0 300.0 unit
Link(Div1 Div2) Number of MRI scanners 2.7 1.2 6.0 1.0 tesla
Division2 Input Number of doctors 85.45 39.31 182.00 19.00 person

Number of nurses 420.06 170.58 991.00 138.00 person
Number of assistant nurses 1.77 3.31 21.00 0.00 person
Number of medical technologists 84.34 31.13 156.00 33.00 person

Output Number of inpatients per operation day 402.00 161.99 850.00 119.00 person
Number of outpatients per operation day 850.14 403.44 1884.00 17.00 person
Number of beds for emergency units 17.56 13.97 50.00 0.00 unit

Link(Div2 Div1) Inpatient revenue 8,499 4,121 21,205 1,866 million Yen
Carry over Cumulative deficit 4,678 5,380 21,355 0 million Yen
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Figure 15.2 Main outputs of sample hospitals from 2007FY to 2012 FY.

TABLE 15.2 Estimation results from DN DEA model.

Division Model Fiscal year 2007 2008 2009 2010 2011 2012

Overall CRS-I Average 0.829 0.841 0.841 0.831 0.832 0.803
SD 0.166 0.164 0.164 0.161 0.160 0.170
Maximum 1.000 1.000 1.000 1.000 1.000 1.000
Minimum 0.382 0.346 0.474 0.506 0.518 0.481

VRS-I Average 0.912 0.917 0.915 0.902 0.905 0.895
SD 0.139 0.133 0.139 0.140 0.136 0.148
Maximum 1.000 1.000 1.000 1.000 1.000 1.000
Minimum 0.542 0.524 0.540 0.531 0.534 0.522

Division1
(admin)

CRS-I Average 0.800 0.809 0.809 0.796 0.791 0.765
SD 0.214 0.212 0.214 0.215 0.219 0.221
Maximum 1.000 1.000 1.000 1.000 1.000 1.000
Minimum 0.301 0.217 0.268 0.318 0.296 0.343

VRS-I Average 0.901 0.908 0.907 0.891 0.882 0.881
SD 0.169 0.163 0.168 0.178 0.180 0.193
Maximum 1.000 1.000 1.000 1.000 1.000 1.000
Minimum 0.385 0.452 0.421 0.394 0.371 0.364

Division
(medical)

2CRS-
I

Average 0.859 0.873 0.873 0.866 0.873 0.840
SD 0.149 0.147 0.142 0.149 0.135 0.156
Maximum 1.000 1.000 1.000 1.000 1.000 1.000
Minimum 0.463 0.476 0.548 0.528 0.557 0.495

VRS-I Average 0.922 0.926 0.923 0.914 0.927 0.909
SD 0.130 0.130 0.129 0.135 0.120 0.139
Maximum 1.000 1.000 1.000 1.000 1.000 1.000
Minimum 0.539 0.591 0.576 0.541 0.561 0.551
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We can observe the efficiency change separately for different internal organiza-
tions. The average level of the estimated MI of the administration division increased
from an initial value of 1.058 from 2007FY to 2008FY, and from an initial value of
1.049 from 2011FY to 2012FY (CRS model). In contrast, the average level of the MI
of the medical-examination division was almost unchanged from an initial value of
0.968 in 2007FY to 2008FY, and an initial value of 1.002 from 2011FY to
2012FY (CRS model) (Table 15.3).

The MI of the administration division improved year by year by about 6%. In con-
trast, theMI of the medical-examination division seems to have shown no change dur-
ing 2007FY–2012FY. To investigate the reason for the improvement of the
administration division, we decomposed the MI into a frontier shift effect and
catch-up effect. The improvement in the MI of the administration division may come
from a ‘frontier shift’ rather than a ‘catch-up’ (Figure 15.3). There may be ‘techno-
logical change’ in the administration division in the form of a frontier shift effect.

07 – 08 08 – 09 09 – 10 10 – 11 11 – 12
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Catch-up

Figure 15.3 Decomposition of the Malmquist productivity index of the administration
division.

TABLE 15.3 Estimation results from Malmquist productivity index scores.

Division Model Year 07 08 08 09 09 10 10 11 11 12

Division1
(admin)

CRS-I Average 1.058 1.070 1.107 1.085 1.049
SD 0.169 0.137 0.136 0.124 0.132
Maximum 1.608 1.516 1.669 1.632 1.465
Minimum 0.714 0.736 0.833 0.820 0.520

Division 2
(medical)

CRS-I Average 0.968 0.980 1.001 0.972 1.002
SD 0.074 0.106 0.113 0.090 0.118
Maximum 1.275 1.494 1.385 1.478 1.554
Minimum 0.761 0.641 0.693 0.750 0.786

187DEA IN THE HEALTHCARE SECTOR



15.4 DISCUSSION

15.4.1 Estimation Results and Policy Implications

Japanese municipal hospitals, which are about a thousand in number, have experi-
enced financial crises throughout the last few decades. The Japanese central govern-
ment established a new reform policy aimed at restructuring hospital operations to
reduce the debt of municipal hospitals that is sustained by the subsidies that it pro-
vides. This would be one of the most extensive reform policies for hospitals in
the world.

The planning for the reform involved several steps from 2007FY to 2014FY.
Recently, the Japanese central government announced that the financial situation
of the municipal hospitals had improved because of the intensive policy campaign
during 2009FY–2011FY. However, this announcement did not include any analysis
of the efficiency improvement of these municipal hospitals. On the contrary, the Min-
istry of Internal Affairs and Communication [28] established the following two points
in a sample survey of annual reports of municipal hospitals for 2009FY. First, almost
all such hospitals did not achieve the targets that had been set for that year. Second, in
an interim evaluation, the ministry concluded that reform of municipal hospitals
should be considered and effective measures implemented. Thus, the purpose of
the present study was to evaluate the policy effect in terms of efficiency improvement.

To evaluate the policy effect, we separately estimated the efficiency change in both
the medical-examination division and the administration division, which are hetero-
geneous internal organizations of a hospital. The administration division conducts
business management, while the medical-examination division provides medical care
services directly. Furthermore, the administration division provides medical beds to
the medical-examination division as interim products, in exchange for the medical
revenue from the medical-examination division obtained by using medical beds.
We believed that both efficiency scores and the countermeasures to improve effi-
ciency would be different in each division.

We employed a DN DEA model to perform the evaluation. This model makes it
possible to simultaneously estimate both the efficiencies of the individual organiza-
tions and the dynamic changes in the efficiencies. We have already published a pre-
liminary evaluation of the policy during 2007FY–2009FY [24]. We extended the
observation period from three years (2007FY–2009FY) to six years (2007FY–
2012FY) with a focus on 2009FY–2011FY, the period of an intensive policy cam-
paign for efficiency improvement as a part of the reform policy.

We also estimated the Malmquist productivity index of both divisions to evaluate
the dynamic change in productivity of the municipal hospitals. The MI of the admin-
istration division improved year by year about 6% during 2007FY–2012FY. In con-
trast, theMI of the medical-examination division seems to have shown no change. The
improvement in the MI of the administration division may come from a ‘frontier shift’
effect rather than a ‘catch-up’ effect. The cause of the improvement could be that
accounting standards had been temporarily loosened in terms of the prerequisites
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for municipal hospitals issuing hospital bonds with financial support from central gov-
ernment. If so, the improvement in the financial situation of municipal hospitals may
be based on some kind of passing the burden on to the future rather than efficiency
improvement. This would cause a further fiscal burden on the Japanese government.
As a conclusion, we cannot state that there is a positive policy effect of the reform of
municipal hospitals in terms of efficiency improvement.

15.4.2 Further Research Questions

This study may be one of the earliest empirical applications of the DNDEAmodel, and
thus there are some limitations that need to be addressed. For example, we were unable
to use variables regarding the ‘quality’ of medical services and the ‘severity’ of the
patients’ condition. Therefore, we assumed that the sample hospitals would be homo-
geneous in terms of quality of service and severity of patients’ condition. We could,
however, narrow the range of samples according to the number of hospital beds to
ensure homogeneity of the sample hospitals on some level.We used the number of beds
in emergency units as an output and used the total number of medical beds as the link
variable. This double counting of medical beds could affect the results in some way.

There are other limitations regarding the control of several factors which could
influence the estimated efficiencies. For example, the price of medical services, which
is covered by public health insurance, changes every two years in Japan. The rate of
reimbursement by public health insurance for medical services changed several times
during the observation time. However, the rate of change was relatively small and did
not exceed 1% in total. Therefore, the relative efficiency scores should show only a
small influence. Many Japanese acute hospitals decided to voluntarily change their
reimbursement system from ‘fee for service’ to ‘per diem based on diagnosis groups’
(DPC). This study did not fully consider these external environmental changes in the
Japanese hospital market.

Regarding policy implications, we did not consider either the relative costs of the
two divisions or the relative costs of improving efficiency in each division. For exam-
ple, one division may be less efficient on average, but the other may be more costly so
that a given efficiency improvement is more beneficial. If we are to play an active role
in policy implementation, we need to consider relative costs in addition to efficiency
scores. Future studies will require a larger sample set and a more complex model.
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16.1 INTRODUCTION

The evaluation of operational performance has become a critical indicator for the
management of transport services. Traditionally, partial indicators are used to measure
the operational performance of transport organizations (e.g. vehicle-miles per vehicle,
passengers per revenue vehicle hour, and revenue vehicle hours per dollar operating
cost). However, partial indicators only focus on single operational factors or parts of
them. They may lead to misleading results, because the operations of transport
organizations are characterized by multiple inputs and multiproduct capability. There-
fore, more advanced techniques are needed to reflect the multidimensional nature of
transport services. To date, the literature has developed some methods to assess the
operational performance of transport organizations, including data envelopment anal-
ysis (DEA) (e.g. [1–11]), stochastic frontier analysis (SFA) (e.g. [12–14]), multiple
linear regression (e.g. [15]), total factor analysis (TFA) (e.g. [16–[18]), the free dis-
posal hull (FDH) method (e.g. [19,20]) and multiple-criteria decision making

1 Part of the material in this chapter is adapted from Yu, M.M., Chen, L.H. and Hsiao, B., 2016, ‘Dynamic
performance assessment of bus transit with the multi-activity network structure’, Omega, 60, 15–25, and
Yu, M.M., Hsiao, B., Hsu, S.H. and Li, S.Y., 2012, ‘Measuring harbour management, stevedoring and
warehousing performance of Taiwanese container ports using the multi-activity network DEA model’,
Journal of International Logistics and Trade, 10(2), 77–115, with permission from Elsevier Science and
the Jungseok Research Institute of International Logistics and Trade.
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(MCDM) (e.g. [21,22]). Among these methods, DEA is considered to be one of the
best approaches for organizing and analysing data, owing to its simple framework. It
applies a mathematical programming approach to set up an overall measurement indi-
cator, where input and output variables are used to calculate the relative efficiency of
individual decision-making units (DMUs) [23]. In addition, it allows efficiency to
evolve over time and requires no prior assumptions for the specification of the
best-practice frontier. There is extensive literature on DEA and it has been applied
to a wide diversity of economic topics.

However, conventional DEA models treat the operational process as a black box,
and use aggregate data to evaluate efficiency, without considering the linking items in
a series. Services provided by transport organizations are unstorable and must be con-
sumed immediately. If they are not consumed, they will disappear [24]. The quantities
of service consumed may be a proportion of the quantities of service produced. Hence,
in general, the operation of a transport organization involves two processes: the pro-
duction process and the service process, and these two processes are interdependent.
The capacities produced in the production process are treated as inputs to generate
service outputs in the service process. In order to reflect the actual operational situa-
tions, Färe and Grosskopf [25,26] proposed a network DEA (NDEA)model to explore
the divisional correlations in the evaluation of operational efficiency. Afterwards, var-
ious models were proposed to measure the efficiencies of individual processes (see
Kao [27] for a review).

The operation of a transport organization is not independent between periods.
When operators plan operationally, they will consider the interrelationship
between consecutive terms, and reserve a proportion of outputs or revenue to
the next period. Hence, in the consideration of long-term planning and investment,
a single-period optimization model is not favourable. Since multiperiod bench-
marking can identify the best industry practices over time, it can grasp long-term
business variations. Wu et al. [28] argued that there are three advantages of multi-
period benchmarking. First, since multiperiod benchmarking can identify the
industry leaders over time, it can provide suitable models for industry followers.
Second, since some industries, such as transport, have seasonal fluctuations, multi-
period benchmarking can obtain more reliable results based on monthly data.
Third, multiperiod benchmarking can specify the potential effects of lagged-
productive or carry-over items. Although window analysis and the Malmquist
index have been used to account for intertemporal efficiency, they ignore the
effects of carry-over items. In response to the interrelationship between consecu-
tive terms, Färe and Grosskopf [25] introduced a dynamic DEA model, which con-
nected storable inputs and carry-over outputs from individual periods, to study
dynamical and historical systems. Since then, various dynamic DEA models have
been proposed to overcome the problem of intertemporal input–output dependence
(e.g. [29–32]).

In addition, in the transport industry, it occurs often that undesirable outputs, such
as pollution and noise, are produced jointly with desirable outputs. They are unwill-
ingly but inevitably generated. Undesirable outputs appear to have a harmful impact
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on the service of a DMU. Without considering the undesirable outputs in the evalu-
ation, efficiency evaluation methods may produce misleading results [33].When eval-
uating the performance of transport organizations, the trade-off between the utilization
of desirable outputs and the control of undesirable outputs should be considered.

In response to these operational characteristics of transport organizations, this
chapter develops a dynamic NDEA (DNDEA) model to explore their operational per-
formance. Then, we extend the DNDEA model to investigate the situation in which
the operation of a transport organization includes multiple activities. In addition, this
chapter provides an application to illustrate the performance of bus transit firms by
applying a multi-activity DNDEA (MDNDEA) model. The concept described in this
chapter can be developed to solve more complex problems.

This chapter is structured as follows. Following the introduction, theDNDEAmodel
for performance evaluation in transport is formulated. Then, the DNDEA model is
extended to consider the effect of interdependence among activities. Afterwards, a
related application to the transport industry is provided to investigate the applicability
of a multiprocess, multiperiod and multi-activity framework. Finally, conclusions
are drawn.

16.2 DNDEA IN TRANSPORT

Conventional DEAmodels treat the operational process as a black box, without exam-
ining the structure of the processes in a DMU’s operation. However, the structure of a
transport organization is complex. It includes mainly two processes: the production
process and the service process. In addition, carry-over items exist in the transport
industry, because the operation of a transport organization in one period is not inde-
pendent of that in the next one. In response to these operational characteristics of
transport organizations, the DNDEA model, which considers the effects of interrela-
tionships among processes and the impacts of carry-over items between two consec-
utive terms, has been designed to improve on the weaknesses of conventional DEA
models. In addition, the outputs of transport services may include undesirable outputs.
In order to deal with problems where some outputs (desirable outputs) are expected to
be maximized and some outputs (undesirable outputs) are expected to be minimized,
the directional distance function proposed by Luenberger [34] is a more adequate tool.
This permits simultaneous expansion of desirable outputs and contraction of undesir-
able outputs. Hence, we build the performance measurement model by using the
DNDEA method and the directional distance function.

Figure 16.1 outlines the structure of our model. For each DMU, the operations of
transport services are assessed for the two processes. The production process transfers
the original inputs while maintaining their capacities, and the production efficiency
(PE) is examined. In addition, some outputs in the production process in the current
period are transferred into the next period. The second process, known as the service
process, uses its previous process capacities as inputs in order to produce service out-
puts, including both undesirable and desirable outputs, and the service efficiency (SE)
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is then examined. In the evaluation of the production process, it can be understood that
if input resources are used inadequately, this will lead to waste. Alternatively, service
inefficiency can be measured as the utilization of production capacity. Finally, the
overall operational efficiency (OE) is determined by mixing the PE and SE.

Suppose that there are n DMUs in period t (t = 1,…,T), and that each DMU

engages in production and service processes. Let Xt
iPjP

= xt1jP,…, xtmPjP
denote

the input vector associated with the production process in period t. For the production
process, in period t, each DMU produces the intermediate output vector

Zt
j PS lPS

= ztj PS 1
,…, ztj PS LPS

, which flows into the service process, and carries

the carry-over item vector Z t, t + 1
jPlP

= z t, t + 1
jP1

,…, z t, t + 1
jPLP

to period t + 1. For the serv-

ice process, the desirable output vector Yt
rdjS

= yt1jS,…, xtsdjS and the undesirable out-

put vector Yt
rndjS

= yt1jS,…, ytsndjS are jointly produced in period t.

Microeconomic theory indicates that one of a firm’s objectives is to produce the
level of outputs where constant returns to scale (CRS) exist. Although firms may oper-
ate under variable returns to scale (VRS) in the short run, they will adjust their scale of
operations to move towards CRS in the long run [35]. In addition, Månsson [36] and
Färe et al. [37] argued that CRS captured the long-run results, while VRS was suitable
for the short run. Hence, in a multiperiod context, it is reasonable to calculate effi-
ciency estimates under the assumption of CRS. Accordingly, there are two production
technologies, Tt

P and Tt
S, in our DNDEA model.

16.2.1 The Production Technology for the Production Process

The production technology Tt
P for the production process under the assumption of

CRS is written as follows:

Tt
P = xt, zt , z t, t + 1

n

j= 1

λtjPx
t
iPjP

≤ xtiPkP, iP = 1,…,mP,

n

j= 1

λtjPz
t
j PS lPS

≥ ztk PS lPS
, lPS = 1,…,LPS,

n

j= 1

λtjPz
t, t + 1
jPlP

≥ z t, t + 1
kPlP

, lP = 1,…,LP,

n

j= 1

λtjPz
t−1, t
jPlP

≤ z t−1, t
kPlP

, lP = 1,…,LP,

λtjP ≥ 0, j= 1,…,n t = 1,…,T (16.1)
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However, if t = 1,
n

j= 1

λ1jpz
0,1
jPlP

≤ z 0,1
kPlP

is substituted for
n

j= 1

λ1jPz
0,1
jPlP

= z 0,1
kPlP

; if t = T ,

n

j= 1

λTjPl
z T,T + 1
jPlP

≥ z T,T + 1
kPlP

is removed.

16.2.2 The Production Technology for the Service Process

Since undesirable outputs are produced together with desirable outputs in the service
process, we model the service process technology by imposing null-jointness between
desirable and undesirable outputs, as well as weak disposability. Then, Tt

S is an output

set, as ytrdS,y
t
rndS

T t
S and 0 ≤ θ ≤ 1 imply θytrdS,θy

t
rndS

T t
S. In other words, this

means that a reduction in undesirable outputs is feasible only if desirable outputs
are simultaneously reduced, given a fixed level of inputs. In addition, we assume that

the desirable outputs are freely disposable, as ytrdS,y
t
rndS

T t
S and ytrdS ≤ ytrdS imply

ytrdS ,y
t
rndS

T t
S. The notion that the desirable outputs are jointly produced with the

undesirable outputs is modelled by stating that if ytrdS,y
t
rndS

T t
S and ytrndS = 0 then

ytrdS = 0. This means that if a desirable output is produced in a positive amount, some
undesirable outputs must also be produced [38].

Then, the production technology Tt
S for the service process under the assumption of

CRS is constructed as follows:

Tt
S = zt, yt

n

j= 1

λtjSz
t
j PS lPS

≤ ztk PS lPS
, lPS = 1,…,LPS,

n

j= 1

λtjSy
t
rdjS

≥ ytrdkS, rd = 1,…,sd,

n

j= 1

λtjSy
t
rndjS

= ytrndkS, rnd = 1,…,snd,

λtjS ≥ 0, j= 1,…,n t = 1,…,T (16.2)

where λtP and λtS are intensity variables associated with the production process and
service process, respectively, in period t.

Based on manipulation of the directional distance function, in period t, the kth
DMU’sproduction inefficiency scoreβtkP can be represented as the directional distance
function defined by the technology Tt

P, and its service inefficiency score βtkS can be
represented as the directional distance function defined by the technology Tt

S.
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Then the overall operational ineffectiveness for DMUk can be estimated by solving the
following DNDEA model:

max βk =
T

t = 1

Wt wP βtkP +w
S βtkS (16.3)

s.t.

(Production process)

n

j= 1

λtjPx
t
iPjP

≤ 1−βtkP xtiPkP, iP = 1,…,mP, t = 1,…, T (16.4)

n

j= 1

λtjPz
t
j PS lPS

= ztk PS lPS
, lPS = 1,…,LPS, t = 1,…,T (16.5)

n

j= 1

λtjPz
t, t + 1
jPlP

=
n

j= 1

λt + 1jP z t, t + 1
jPlP

, lP = 1,…,LP, t = 1,…,T −1 (16.6)

n

j= 1

λtjPz
t, t + 1
jPlP

= z t, t + 1
kPlP

, lP = 1,…,LP, t = 1,…,T −1 (16.7)

(Service process)

n

j= 1

λtjSz
t
j PS lPS

= ztk PS lPS
, lPS = 1,…,LPS, t = 1,…,T (16.8)

n

j= 1

λtjSy
t
rdjS

≥ 1 + βtkS ytrdkS, rd = 1,…,sd, t = 1,…, T (16.9)

n

j= 1

λtjSy
t
rndjS = 1−βtkS ytrndkS, rnd = 1,…,snd, t = 1,…,T (16.10)

(Initial condition)

n

j= 1

λ1jPz
0,1
jPlP

= z 0,1
kPlP

, lP = 1,…,LP (16.11)

(Additional conditions)
T

t = 1

Wt = 1 (16.12)

wP +wS = 1 (16.13)
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λjP, λjS, W
t, wP, wS ≥ 0, j= 1,…,n, t = 1,…,T (16.14)

where βtkP, β
t
kS, λ

t
jP, λ

t
jS and s t, t + 1 ,free

kPlP
, t = 1,…,T , j,k = 1,…,n, lP = 1,…,LP are vari-

ables of this model.Wt, wP and wS are the weights of period t, the production process
and the service process, respectively, and represent the relative importance of these
periods and processes. It is assumed that the linking items between the production
and service processes are fixed by the constraints (16.5) and (16.8), and the carry-over
items in the production process act as the non-discretionary link because of the con-
straints (16.6) and (16.7). The constraint (16.6) imposes a continuity condition
between consecutive periods. In addition, the initial conditions can be accounted
for by the constraint (16.11), and are given and fixed. Based on the above DNDEA
model, various efficiencies can be defined as follows:

Period-production efficiency PPE = 1−βtkP

Period-service efficiency PSE = 1−βtkS

Period-operational efficiency POE = 1− wP βtkP +w
S βtkS

PE= 1−
T

t = 1

Wt βtkP

SE= 1−
T

t = 1

Wt βtkS

OE= 1−βk

βk is equal to zero if and only if the DMU is operationally efficient
and βtkP = β

t
kS = 0, t = 1,…,T .

With regard to the constraints on linking items (intermediate outputs) and carry-
over items, there are several options. Referring to Tone and Tsutsui [39], we present
two possible cases for linking items and four cases for carry-over items. In terms of
linking items, there are fixed and free link value cases. Equations (16.5) and (16.8)
represent the fixed linking constraints, meaning that the linking items are kept
unchanged. If the linking items are freely adjustable, the fixed linking constraints
(16.5) and (16.8) can be replaced with the constraint (16.15):

n

j= 1

λtjPz
t
j PS lPS

=
n

j= 1

λtjSz
t
j PS lPS

, lPS = 1,…,LPS, t = 1,…,T (16.15)

In terms of carry-over items, there are desirable, undesirable, discretionary and
non-discretionary link value cases. Equation (16.7) represents the non-discretionary
linking constraint, meaning that the values of the carry-over items are unchanged.
If the carry-over items are desirable, they are treated as outputs, and the target values
cannot be less than the observed values. The non-discretionary linking constraint
(16.7) can be substituted by the constraint (16.16):
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n

j= 1

λtjPz
t, t + 1
jPlP

≥ z t, t + 1
kPlP

, lP = 1,…,LP, t = 1,…,T −1 (16.16)

In contrast to desirable links, undesirable links are considered as inputs, and the
target values cannot be greater than the observed values. Hence, the non-discretionary
linking constraint (16.7) can be replaced with the constraint (16.17):

n

j= 1

λtjPz
t, t + 1
jPlP

≤ z t, t + 1
kPlP

, lP = 1,…,LP, t = 1,…,T −1 (16.17)

Finally, if the carry-over items are discretionary, their values can be freely
increased or decreased. The constraint (16.7) can be substituted by the con-
straint (16.18):

n

j= 1

λtjPz
t, t + 1
jPlP

= z t, t + 1
kPlP

−s t, t + 1 ,free
kPlP

, lP = 1,…,LP, t = 1,…,T −1 (16.18)

where s t, t + 1 ,free
kPlP

, k = 1,…,n, lP = 1,…,LP, t = 1,…,T −1 are slack variables denot-

ing link deviation.

16.3 EXTENSION

In the above section, we considered the interrelationships between processes and the
effects of carry-over items. However, a transport organization may consist of several
identifiable activities [40]. Take the operations of a container port as an example.
A container port has harbour management, stevedoring and warehousing activities.
Since a transport organization with efficiency in one activity may not be efficient
in other activities, different efficiency ratings for different activities should be distin-
guished. When a DMU jointly carries out various activities and processes which can-
not be assumed to be technologically identical, these activities and processes are
separated into different technologies in a multi-activity DEA model [41]. In addition,
parts of the resources are unseparated, and are shared among different activities and/or
processes. For example, the straddle carriers of a container port work for both harbour
management and warehousing activities. In order to understand more deeply the oper-
ational performance of a transport organization, the multi-activity structure and the
allocation of common inputs also need to be taken into account. Hence, in this section,
we develop an MDNDEA model to evaluate the performance of transport organiza-
tions. Since the operational characteristics of different transport organizations are dif-
ferent, we construct an MDNDEA model by taking bus transit firms, which provide
highway bus (HB) and urban bus (UB) services in the production process, as an
example.

The structure of the multi-activity model for a specific bus transit firm is depicted in
Figure 16.2. Specifically, inputs are divided into two parts. One part consists of
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dedicated inputs that contribute to the specific activity or process, and the other con-
sists of common inputs that are shared between the HB and UB production activities.
The production capacities of these two activities are utilized as the inputs in the service
process. Similarly, some outputs of the HB and UB activities in the current period will
be transferred into the next period.

Similarly, suppose that there are n DMUs in period t (t = 1,…,T), and that each
DMU engages in HB and UB production activities as well as a service process.

Let Xt
iH jH

= xt1jH ,…, xtmHjH
and Xt

iU jU
= xt1jU ,…, xtmUjU

denote the dedicated input

vectors associated with the HB and UB production activities, respectively, in period t,

and let Xt
iHUjHU

= xt1jHU ,…, xtmHUjHU
be a common input vector shared by the HB

and UB production activities in period t. It is assumed that, in period t, DMUj allocates
some portion αt

iHUjH
of the common input quantities xtiHU jHU to the HB production

activity, and the remaining 1−αt
iHUjH

to the UB production activity. For the HB

production process, in period t, each DMU produces the intermediate output vector

Zt
j HS lHS

= ztj HS 1
,…, ztj HS LHS

, which flows into the service process, and carries

the carry-over item vector Z t, t + 1
jHlH

= z t, t + 1
jH1

,…, z t, t + 1
jHLH

to period t + 1. For the

UB production process, in period t, each DMU produces the intermediate output vec-

tor Zt
j US lUS

= ztj US 1
,…, ztj US LUC

, which flows into the service process, and carries

the carry-over item vector Z t, t + 1
jUlU

= z t, t + 1
jU1

,…, z t, t + 1
jULU

to period t + 1. For the serv-

ice process, the desirable output vector Yt
rdjS

= yt1jS,…, xtsdjS and the undesirable

output vector Yt
rndjS

= yt1jS,…, ytsndjS are jointly produced in period t.

Accordingly, there are three production technologies, Tt
H , T

t
U and Tt

S, in our
MDNDEA model.

16.3.1 The Production Technology for HB Activity

The production technology T t
H with CRS for the HB activity is defined as follows:

T t
H = xt, zt, z t, t + 1

n

j= 1

λtjHx
t
iHjH

≤ xtiHkH , iH = 1,…,mH ,

n

j= 1

αt
iHUjH

λtjHx
t
iHUjHU

≤ αt
iHUkH

xtiHUkHU , iHU = 1,…,mHU ,

0 < αt
iHUjH

< 1, iHU = 1,…,mHU ,

n

j= 1

λtjHz
t
j HS lHS

≥ ztk HS lHS
, lHS = 1,…,LHS,
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n

j= 1

λtjHz
t, t + 1
jHlH

≥ z t, t + 1
kHlH

, lH = 1,…,LH ,

n

j= 1

λtjHz
t−1, t
jHlH

≤ z t−1, t
kHlH

, lH = 1,…,LH ,

λtjH ≥ 0, j = 1,…,n t = 1,…,T (16.19)

If t = 1,
n

j= 1

λ1jHz
0,1
jHlH

≤ z 0,1
kHlH

is substituted for
n

j= 1

λ1jHz
0,1
jHlH

= z 0,1
kHlH

; if t = T ,

n

j= 1

λTjHz
T,T + 1
jHlH

≥ z T,T + 1
kHlH

is removed.

16.3.2 The Production Technology for UB Activity

The production technology T t
U with CRS for the UB activity is expressed as follows:

Tt
U = xt, zt, z t, t + 1

n

j= 1

λtjUx
t
iU jU

≤ xtiUkU , iU = 1,…,mU ,

n

j= 1

1−αtiHUjH λtjUx
t
iHUjHU

≤ 1−αt
iHUkH

xtiHUkHU , iHU = 1,…,mHU ,

0 < αtiHUjH < 1, iHU = 1,…,mHU ,

n

j= 1

λtjUz
t
j US lUS

≥ ztk US lUS
, lUS = 1,…,LUS,

n

j= 1

λtjUz
t, t + 1
jUlU

≥ z t, t + 1
kUlU

, lU = 1,…,LU ,

n

j= 1

λtjUz
t−1, t
jUlU

≤ z t−1, t
kUlU

, lU = 1,…,LU ,

λtjU ≥ 0, j = 1,…,n t = 1,…,T (16.20)

Similarly, if t = 1,
n

j= 1

λ1jUz
0,1
jUlU

≤ z 0,1
kUlU

is substituted for
n

j= 1

λ1jUz
0,1
jUlU

= z 0,1
kUlU

; if t = T ,

n

j= 1

λTjUz
T,T + 1
jUlU

≥ z T,T + 1
kUlU

is removed.
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16.3.3 The Production Technology for the Service Process

The production technology T t
S with CRS for the service process is written as follows:

Tt
S = zt, yt

n

j= 1

λtjSz
t
j HS lHS

≤ ztk HS lHS
, lHS = 1,…,LHS,

n

j= 1

λtjSz
t
j US lUS

≤ ztk US lUS
, lUS = 1,…,LUS,

n

j= 1

λtjSy
t
rdjS

≥ ytrdkS, rd = 1,…,sd,

n

j= 1

λtjSy
t
rndjS

= ytrndkS, rnd = 1,…,snd,

λtjS ≥ 0, j = 1,…,n t = 1,…,T (16.21)

where λtH , λ
t
U and λtS are intensity variables associated with the HB production activity,

UB production activity and service process, respectively, in period t.
Based onmanipulation of the directional distance function, in period t, the kthDMU’s

inefficiency score for theHBactivityφt
kH can be represented as the directional distance

function defined by the technology Tt
H , its inefficiency score for the UB activity φt

kU

can be represented as the directional distance function defined by the technology Tt
U ,

and its service inefficiency score φt
kS can be represented as the directional distance

function defined by the technology Tt
S. Then the operational inefficiency for DMUk

can be estimated by solving the following MDNDEA model:

max φk =
T

t = 1

Wt wP wH φt
kH +wU φt

kU +wS φt
kS (16.22)

s.t.

(HB production activity)

n

j= 1

λtjHx
t
iH jH

≤ 1−φt
kH xtiHkH , iH = 1,…,mH , t = 1,…, T (16.23)

n

j= 1

λtjHz
t
j HS lHS

= ztk HS lHS
, lHS = 1,…,LHS, t = 1,…,T (16.24)

n

j= 1

λtjHz
t, t + 1
jHlH

=
n

j= 1

λt + 1jH z t, t + 1
jHlH

, lH = 1,…,LH , t = 1,…,T −1 (16.25)
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n

j= 1

λtjHz
t, t + 1
jHlH

= z t, t + 1
kHlH

, lH = 1,…,LH , t = 1,…,T −1 (16.26)

(UB production activity)

n

j= 1

λtjUx
t
iU jU

≤ 1−φt
kU xtiUkU , iU = 1,…,mU , t = 1,…, T (16.27)

n

j= 1

λtjUz
t
j US lUS

= ztk US lUS
, lUS = 1,…,LUS, t = 1,…,T (16.28)

n

j= 1

λtjUz
t, t + 1
jUlU

=
n

j= 1

λt + 1jU z t, t + 1
jUlU

, lU = 1,…,LU , t = 1,…,T −1 (16.29)

n

j= 1

λtjUz
t, t + 1
jUlU

= z t, t + 1
kUlU

, lU = 1,…,LU , t = 1,…,T −1 (16.30)

(Service process)

n

j= 1

λtjSz
t
j HS lHS

= ztk HS lHS
, lHS = 1,…,LHS, t = 1,…,T (16.31)

n

j= 1

λtjSz
t
j US lUS

= ztk US lUS
, lUS = 1,…,LUS, t = 1,…,T (16.32)

n

j= 1

λtjSy
t
rdjS

≥ 1 +φt
kS ytrdkS, rd = 1,…,sd, t = 1,…, T (16.33)

n

j= 1

λtjSy
t
rndjS

= 1−φt
kS ytrndkS, rnd = 1,…,snd, t = 1,…,T (16.34)

(Shared inputs)

n

j= 1

αt
iHUjH

λtjHx
t
iHUjHU

≤ 1−φt
kH αtiHUkHx

t
iHUkHU

,

iHU = 1,…,mHU , t = 1,…,T

(16.35)

n

j= 1

1−αt
iHUjH

λtjUx
t
iHUjHU

≤ 1−φt
kU 1−αtiHUkH xtiHUkHU ,

iHU = 1,…,mHU , t = 1,…,T

(16.36)
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Lt
iHUH

< αt
iHUH

<Ut
iHUH

, iHU = 1,…,mHU , t = 1,…,T (16.37)

(Initial conditions)

n

j= 1

λ1jHz
0,1
jHlH

=
n

j= 1

λ1jHz
0,1
jHlH

, lH = 1,…,LH (16.38)

n

j= 1

λ1jUz
0,1
jUlU

=
n

j= 1

λ1jUz
0,1
jUlU

, lU = 1,…,LU (16.39)

(Additional conditions)

T

t = 1

Wt = 1 (16.40)

wH +wU = 1 (16.41)

wP +wS = 1 (16.42)

λjH , λjU , λjS, Wt, wH , wU , wP, wS ≥ 0,

j= 1,…,n, t = 1,…,T
(16.43)

where φt
kH , φ

t
kU , φ

t
kS, λ

t
jH , λ

t
jU ,λ

t
jS, and α

t
iHUjH

, t = 1,…,T , j,k = 1,…,n, iHU = 1,…,mHU

are variables of this model. L and U are the lower and upper bounds placed on the
various shared inputs.Wt, wH,wU, wP and wS are the weights of period t, the HB pro-
duction activity, the UB production activity, the production process and the service
process, respectively. The constraints (16.24) and (16.31), as well as the constraints
(16.28) and (16.32), show that the linking items between the HB production activity
and the service process, as well as between the UB production activity and the service
process, are fixed. The constraints (16.25) and (16.26) and the constraints (16.29) and
(16.30) indicate that the carry-over items in the HB and UB production activities act as
non-discretionary links. The constraints (16.25) and (16.29) impose a continuity con-
dition between two consecutive periods. Note that the linking and carry-over items
have several forms, based on the characteristics of these items. The related constraints
of these forms have been shown in (16.15)–(16.18). In addition, the initial conditions
can be accounted for by the constraints (16.38) and (16.39). With the proposed
MDNDEA model, the individual efficiencies can be defined as follows:

Period-production efficiency in theHBactivity PHBPE = 1−φt
kH (16.44)

Period-production efficiency in theUBactivity PUBPE = 1−φt
kU (16.45)

PSE= 1−φt
kS (16.46)
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PPE= 1− wH φt
kH +wU φt

kU (16.47)

POE= 1− wP wH φt
kH +wU φt

kU +wS φt
kS (16.48)

Production efficiency of theHBactivity HBPE = 1−
T

t = 1

Wt φt
kH (16.49)

Production efficiency of theUBactivity UBPE = 1−
T

t = 1

Wt φt
kU (16.50)

PE = 1−
T

t = 1

Wt wH φt
kH +wU φt

kU (16.51)

SE = 1−
T

t = 1

Wt φt
kS (16.52)

OE= 1−φk (16.53)

φk is equal to zero if and only if the bus transit firm is operationally efficient and
φt
kH =φt

kU =φt
kS = 0, t = 1,…,T . Since the model combines the measures of PHBPE,

PUBPE and PSE to compute the OE measure, the results can provide further insight
into the sources of OE.

16.4 APPLICATION2

This section provides an example based on 20 bus transit firms in Taiwan for the
period 2004–2012 to investigate performance issues by an MDNDEA model.

16.4.1 Input and Output Variables

The operational framework of a bus transit firm in theMDNDEAmodel is represented
in Figure 16.3. The input and output variables of the bus transit firm that are adopted in
this example are illustrated as follows:

1. Dedicated inputs: (i) HB service: the number of drivers (DRIVER), the number
of vehicles (VEHICLE) and the number of litres of fuel (FUEL). (ii) UB service:
DRIVER, VEHICLE and FUEL. (iii) Consumption service: the number of
ticket agents (TICKET).

2. Common inputs: (i) Shared between HB and UB services: the number of tech-
nicians (TEC). (ii) Shared among HB, UB and consumption services: the num-
ber of management staff (MGT).

2Adapted from Yu et al. [42].
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Figure 16.3 The operational framework of a bus transit firm.



3. Intermediate outputs: (i) HB service: vehicle-kilometres (VEHKM). (ii) UB
service: VEHKM.

4. Final desirable outputs: Passenger-kilometres (PASSKM) and the number of
passengers (PASS).

5. Final undesirable output: The number of accidents (ACC).

6. Carry-over items: (i) HB service: network length (NWLTH). (ii) UB
service: NWLTH.

However, the MDNDEA model does not allow these common inputs to take
weights of 0 or 1. The weights for these common inputs need to be limited. We con-
sidered the proportion of TEC shared with the HB service in period t to range from 0.3
to 0.7, while the proportions of MGT shared with the HB and UB services in period t
ranged from 0.2 to 0.8. Finally, since the weights of periods, the production process
and the consumption process are exogenously pre-assigned scalars, we assumed for
simplicity that the weight of each period was 0.1111, the weights of the HB and UB
services were equal to 0.5, and the weights of the production and consumption pro-
cesses were equal to 0.5.

16.4.2 Empirical Results

Table 16.1 displays the average results for the OE scores and its components for the
bus transit firms obtained by use of the MDNDEAmodel. Looking first at the average
OE score of the bus transit firms, its value was 0.8540, with a range from 0.7507 to
0.9871. This indicates that, on average, there was room for bus transit firms to enhance
their performance by 14.6% in the study period. Since the OE is defined as the
weighted-average performance of the production and consumption processes, we
can explore the contributions of these two processes. As can be seen from
Table 16.1, the PE (0.7960) was worse than the SE (0.9121), implying that the oper-
ational inefficiency came mainly from the production process. For the production
process, the PE score was determined by the weighted average of the HBPE and
UBPE scores. We can investigate further where the production inefficiency comes
from. As shown in Table 16.1, the HBPE (0.7904) was slightly lower than the UBPE
(0.8015). This means that inefficiencies in both the HB and the UB activities lead to
production inefficiency.

For the individual bus transit firms, the results show that no bus transit firm was
efficient in terms of the OE. Since the OE score is equal to unity if and only if all
production and consumption processes are simultaneously efficient in each period,
this result signifies that none of the bus transit firms performed efficiently in terms
of all their three services in each period. All bus transit firms could enhance their per-
formance in at least one of these three services. In terms of individual activities, four
bus transit firms (CitiAir, Hualien, Fengyuan and Chiayi) were efficient in the HB
activity, six firms (Sanchung, Taipei, Kuang-hua, Tansui, Chungli and Chiayi) were
efficient in the UB activity, and eight firms (Sanchung, Capital, Taipei, Chih-nan,
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Taoyuan, Hsinchu, Hualien and Ubus) were efficient in the consumption process.
However, some firms with efficiency in one dimension were relatively inefficient
in others. For example, Taoyuan was efficient in the consumption process, but had
a lower PE in both production activities. Taoyuan could improve its resource utiliza-
tion. The ranking of the bus transit firms is also listed in Table 16.1. Hualien was the
best among all in terms of the OE, with the first ranking in HBPE and SE, and the ninth
ranking in UBPE. On the other hand, Geya had the lowest OE. The main reason for
this is that Geya had an extraordinarily low UBPE (0.3013). Although Kuang-hua and
Taoyuan ranked first in terms of UBPE and SE, respectively, they were 16th and 17th
in OE. This result indicates that the ranking of bus transit firms in different dimensions
of the performance measures is inconsistent. In other words, the sources of operational
inefficiency of the bus transit firms are different. Hence, compared with the conven-
tional DEA model, the proposed MDNDEA model can reveal inefficiency in individ-
ual activities and processes, and provide operators with more information about where
to improve performance.

One of the merits of the MDNDEA model is that it can measure the period perfor-
mance in a unified model, so that it can provide an overall trend of performance
change. This is why the MDNDEA model is superior to the static multi-activity

TABLE 16.1 Operational efficiency and its components for individual bus transit
firms.a

Firm OE PE HBPE UBPE SE

Sanchung 0.8729 (9) 0.7459 (14) 0.4917 (19) 1.0000 (1) 1.0000 (1)
Capital 0.8816 (8) 0.7633 (13) 0.5770 (17) 0.9496 (8) 1.0000 (1)
Taipei 0.8469 (12) 0.6937 (17) 0.3874 (20) 1.0000 (1) 1.0000 (1)
Chih-nan 0.8919 (5) 0.7837 (10) 0.5875 (16) 0.9799 (7) 1.0000 (1)
CitiAir 0.8180 (15) 0.9715 (3) 1.0000 (1) 0.9431 (10) 0.6644 (19)
Chung-shing 0.7566 (18) 0.6880 (18) 0.8069 (12) 0.5692 (17) 0.8252 (16)
Kuang-hua 0.7930 (16) 0.9229 (5) 0.8458 (9) 1.0000 (1) 0.6631 (20)
Tansui 0.9347 (4) 0.9358 (4) 0.8717 (8) 1.0000 (1) 0.9336 (13)
Chungli 0.9444 (2) 0.8966 (6) 0.7932 (13) 1.0000 (1) 0.9923 (10)
Taoyuan 0.7776 (17) 0.5553 (20) 0.4997 (18) 0.6108 (15) 1.0000 (1)
Hsinchu 0.8519 (11) 0.7038 (16) 0.9372 (6) 0.4704 (19) 1.0000 (1)
Hualien 0.9871 (1) 0.9743 (2) 1.0000 (1) 0.9485 (9) 1.0000 (1)
Fengyuan 0.8217 (14) 0.7650 (12) 1.0000 (1) 0.5300 (18) 0.8783 (15)
Taichung 0.8846 (6) 0.7961 (9) 0.7897 (14) 0.8025 (12) 0.9731 (11)
Changhua 0.8818 (7) 0.7679 (11) 0.9628 (5) 0.5729 (16) 0.9958 (9)
Ubus 0.8618 (10) 0.7236 (15) 0.8306 (10) 0.6166 (14) 1.0000 (1)
Geya 0.7507 (20) 0.5564 (19) 0.8114 (11) 0.3013 (20) 0.9451 (12)
Kaohsiung 0.7511 (19) 0.8145 (8) 0.6884 (15) 0.9406 (11) 0.6877 (18)
Pingtung 0.8284 (13) 0.8609 (7) 0.9269 (7) 0.7949 (13) 0.7959 (17)
Chiayi 0.9440 (3) 1.0000 (1) 1.0000 (1) 1.0000 (1) 0.8880 (14)
Average 0.8540 0.7960 0.7904 0.8015 0.9121
Std. dev. 0.0681 0.1280 0.1907 0.2250 0.1207

a Rankings are provided in parentheses.
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network DEA model. Hence, we can investigate further the average trend of perfor-
mance change over the period 2004–2012. Figure 16.4 indicates that the average POE
scores maintained a stable variance over the sample period. The POE can be decom-
posed into PPE and PSE. From Figure 16.4, it can be seen that the PPE scores were
lower than the PSE scores during 2004–2011, while the PSE score was worse than the
PPE score in 2012. It is worth noting that the average PSE scores showed higher levels
over the sample period. This implies that these bus transit firms performed well in the
consumption process over the sample period. We can explore the PPE further between
the HB and UB activities. As can be seen in Figure 16.4, the PHBPE scores were better
than the PUBPE scores during 2004–2007, while the PUBPE scores were greater than
the PHBPE scores during 2008–2012. However, PHBPE and PUBPE appeared to
have similar patterns over the sample period.

In addition, the proposed MDNDEA model considers the impacts of carry-over
items. Hence, it can help bus transit firms to modify their long-term planning and
investments by investigating changes in carry-over items. Table 16.2 shows by what
amount the average of the network lengths of the HB and UB services can be reduced
or expanded during 2004–2012.3 Only one bus transit firm (Chiayi) shows no changes
in both carry-over items. Two firms (Sanchung and Kuang-hua) should increase the
network length of their highway bus service, while two firms (Taipei and Chungli)
should decrease the network length of their highway bus service. Three firms
(CitiAir, Hualien and Fengyuan) require a reduction of the network length of their
urban bus service. Four firms (Taoyuan, Hsinchu, Taichung and Kaohsiung) need
to expand both carry-over items, while three firms (Chih-nan, Changhua and Geya)
need to reduce both carry-over items. Five firms (Capital, Chung-shing, Tansui, Ubus
and Pingtung) should enlarge the network length of their highway bus service, but
reduce the network length of their urban bus service.

0.4
2004 2005 2006 2007 2008 2009 2010 2011 2012

POE

PPE

PHBPE

PUBPE

PSE

0.6

0.8

1

Figure 16.4 Period performance.

3 Since the network lengths of the HB and UB services have been defined as a discretionary link in this
application, they can be freely increased or decreased.

211DEA IN THE TRANSPORT SECTOR



16.5 CONCLUSIONS

This chapter has provided a more comprehensive analysis to reflect the operational
characteristics of transport organizations in an efficiency evaluation, and has pre-
sented the construction of a DNDEA model that illustrates a network and dynamic
structure with undesirable outputs. The DNDEA model is designed to evaluate the
performance achieved by transport organizations which have several operational pro-
cesses and carry-over items between two consecutive terms. In order to provide more
accurate performance measurement in the transport sector, we have extended the
DNDEA model further to consider a multi-activity framework. Based on these mod-
els, the sources of inefficiency within a transport organization can be identified. In
addition, we have chosen one related application to transport organizations to illus-
trate the selection of inputs and outputs, and to investigate the applicability of a multi-
process, multiperiod and multi-activity framework.
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17.1 INTRODUCTION

In this chapter, we develop a multiperiod dynamic network DEA (data envelopment
analysis) model and apply it to production in Japanese prefectures during 2007–2009.
Our method assumes that a human capital sector, a private physical capital sector, and
a social overhead capital sector jointly produce a final output. Private physical capital
and social overhead capital from a preceding period affect current production possi-
bilities and, in turn, both types of capital can be carried over to a subsequent period.
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The objective function of our model seeks to maximize the size of the technology sets
for a decision-making unit (DMU), in this case a prefecture, over all periods by choos-
ing the amounts of private physical and social overhead capital to be used in the cur-
rent period and the amounts to be carried over to the subsequent period. Resources can
be reallocated between periods as long as the decline in output or increase in input in
one period is more than offset by an increase in output or decrease in input in a sub-
sequent period.

We first provide a general model for incorporating a network structure and dynam-
ics. Färe and Grosskopf [1] presented a dynamic methodology that comprises a
sequence of technologies which are connected by storable inputs and carry-over out-
puts from period to period. Färe and Grosskopf [2] proposed a DEA technique, which
they called network DEA, to measure the efficiency of a DMU with a network pro-
duction structure. Following and building upon the foundation laid by Färe and Gross-
kopf [1,2], various authors have incorporated quasi-fixed inputs [3], assessed dynamic
efficiency and examined the correspondence between carry-over products [4], and
incorporated lagged effects of input consumption using DEA [5,6]. Tone and Tsutsui
[7] developed a dynamic slacks-based measure of performance and classified carry-
over activities as either good (enhancing production), bad, free, or fixed. Tone and
Tsutsui [8] presented a slacks-based dynamic DEA model with a network structure
by combining their previous studies.

We build further on the dynamic network foundation and develop a weighted
dynamic network (WDN) model similar to the slacks-based form of Tone and Tsutsui
[7,8]. Our WDN model accounts for the slacks in the exogenous inputs and final out-
puts but does not include the slacks from various divisions or subprocesses in the
objective function of the optimization problem.1 Furthermore, our WDN model
allows for joint outputs to be produced by more than one division and incorporates
the effects of lagged outputs/inputs on current production.

17.2 MULTIPERIOD DYNAMIC MULTIPROCESS NETWORK

In this section, we define a dynamic network technology that can be represented using
DEA. We assume there are j= 1,…,J DMUs that use various inputs to produce out-
puts in t = 1,…,Tperiods. Each DMU consists of k = 1,…,h,…,g,…,Ksubprocesses
or divisions. Each division is endowed with n = 1,…,N exogenous inputs that must be
used by that division contemporaneously. The divisions produce m= 1,…,M final
outputs and/or q = 1,…,Q intermediate products that can be used as inputs by other
divisions. Each division has access to r = 1,…,R unused inputs that have been carried

1 Fukuyama and Mirdehghan [9] discussed how to identify divisional efficiency.
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over from a previous period and, in turn, each division can forgo current production
and carry over some inputs r = 1,…,R for use in subsequent periods. For DMUj, we
define the following:

xktnj: exogenous input n consumed by division k in period t;

z kt,ht
qj : intermediate product (input) q produced by division k in period t and con-
sumed by division h in period t;

yktmj: final output m produced by process k in period t;

c kt,gτ
rj : carry-over product r produced by division k in period t and consumed by
division g in period τ > t; and

c hτ,kt
rj : lagged carry-over product r coming from division h in period τ < t and
entering division k in period t.

Here, t, τ, and τ are the index sets of the relevant time periods. For the intermediate
products (z), the first superscript in parentheses corresponds to the division that pro-
duces the intermediate product in t and the second superscript corresponds to the divi-
sion that uses the intermediate product as an input in t. We denote the set of
intermediate inputs q entering division k in time t from division h in time t

z ht,kt
q byL. Similarly, we denote the set of intermediate products produced by divi-

sion k and used by division h in period t z kt,ht
q by L. For the carry-over products

(c), the first superscript indicates the division which generates the carry-overs in t and
the second superscript indicates the division that receives those carry-overs for use in
period τ > t. The set of outflows from k in t to h in τ > t ckt,hτr is represented by F.
Finally, for the lagged carry-over products c , the first superscript indicates the divi-
sion which generated the lagged carry-over in period τ < t and the second superscript
indicates the division which uses the lagged carry-over product in period t. Thus,

c hτ,kt
r j represents the lagged carry-over from period τ < t generated by division h

and used by division k in period t.
We make the following assumptions about our dynamic network technology.

• Assumption 1. The objective function of our framework includes slacks of exog-
enous inputs but does not include slacks associated with intermediate products
and carry-overs.

• Assumption 2. Lagged carry-over products constrain a division’s produc-
tion possibilities but are independent of which division they came from
and can affect production possibilities in only a finite number of future
periods.

• Assumption 3. Final outputs are jointly produced by several divisions.
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Assumption 1 is consistent with the two-stage procedures of Kao and Hwang [10],
Chen et al. [11], and Fukuyama and Weber [12] in that slacks associated with inter-
mediate products are not included in the objective function. Assumption 2 means that
carry-overs do not depreciate or spoil as they are moved across time. In addition, the
effects of lagged carry-overs are finite [6]. For example, bad loans were used as a
carry-over output in a bank efficiency context by Akther et al. [13] and Fukuyama
andWeber [14], where carry-over inputs negatively affect production in later periods.
Furthermore, we note that these carry-over products might also be summed over sev-
eral past periods as in Fukuyama et al. [15]. Regarding Assumption 3, some final out-
puts can be produced by combining several subtechnologies or subprocesses.

The production possibility set for division k in period t consists of the exogenous
inputs, the intermediate products (inputs) from other divisions, the sum of all past
carry-overs that have not yet been used that can produce carry-overs to future periods,
and contemporaneous intermediate products and final outputs. In set notation, the pro-
duction possibility set is represented as

T kt =
xktn ,c

τ,kt
r , z ht,kt

q ,z kt,ht
q , c kt,gτ

r , yktm such that

xktn ,c
τ,kt
r , z ht,kt

q can produce z kt,ht
q , c kt,gτ

r , yktm

(17.1)

In DEA, the following equations represent the feasible inputs and outputs (left-
hand side) that can be produced by the technology formed by taking linear combina-
tions of inputs and outputs (on the right-hand side):

Inputs

c τ,kt
r ≥

J

j= 1

c τ,k
rj λktj , r = 1,…,Rk

xktn ≥
J

j= 1

xktnjλ
kt
j , n = 1,…,Nk

z ht,kt
q ≥

J

j= 1

z ht,kt
q λktj , ht,kt L, ht; q = 1,…,Qk

Outputs

yktm ≤
J

j= 1

yktmjλ
kt
j , m = 1,…,Mk

z kt,ht
q ≤

J

j = 1

z kt,ht
q λktj , kt,ht L, ht; q= 1,…,Q

k

c kt,gτ
r ≤

J

j= 1

c kt,gτ
rj λktj , kt,gτ F; r = 1,…,Rk

λktj ≥ 0, j = 1,…,J,k = 1,…,K, t = 1,…,T
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Using (17.1), we define a network production possibility set by

NT t = c hτ, kt
r ,xktn , z ht,kt

q

inputs

,z kt,ht
q , c kt,gτ

r , yktm

outputs

Tkt k (17.2)

The internal structure of the network technology is illustrated in Figure 17.1 for a
single DMU that has three divisions, k, h, and h . A general multiperiod dynamic mul-
tiprocess network technology takes the form

ct, xt, zt L ,zt L , ct F , yt NT t t = 1,…,T (17.3)

where

ct = c hτ,1t
r ,…,c hτ,Kt

r , r = 1,…,R, h= 1,…,K,

xt = x1tn ,…,xKtn , k = 1,…,K,

zt L = z ht,1t
q ,…,z ht,Kt

q , q= 1,…,Q, ht, kt L,

zt L = z 1t, ht
q ,…,z Kt,ht

q , q = 1,…,Q, kt,ht L,

ct F = c 1t,gτ
r ,…,c Kt,gτ

r , r = 1,…,R, kt,gτ F

yt = y1tm ,…,yKtm , m= 1,…,M

(17.4)

Internal structure

Intertemporal structure

k

hh′

Period t Period t + 1 Period t + 2

g′

k

g

Figure 17.1 Dynamic network structure.
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The dynamic structure is represented at the bottom of Figure 17.1, where divisions
g , k, and g send and receive carry-over products from each other across periods.

17.3 EFFICIENCY/PRODUCTIVITY MEASUREMENT

Using (17.3) as the dynamic technology, we define a weighted multiperiod dynamic
multidivision network (WDN) model for DMU o as

θo,WDN =min

T

t = 1

Wt
K

k = 1

wk 1−
1
Nk

×
Nk

n= 1

skt−n

xktno
T

t = 1

Wt
K

k = 1

wk 1 +
1
Mk

×
Mk

m= 1

skt +m

yktmo

(17.5)

subject to:

c hτ,kt
ro ≥

J

j= 1

c hτ,kt
rj λktj , r = 1,…,Rk

xktno−s
kt−
n =

J

j= 1

xktnjλ
kt
j , k = 1,…,K ;n = 1,…,Nk

z ht,kt
q ≥

J

j= 1

z ht,kt
qj λktj , ht,kt L ; q= 1,…,Qk

yktmo + s
kt +
m =

J

j= 1

yktmjλ
kt
j , k = 1,…,K ;m= 1,…,Mk

zq kt,ht ≤
J

j= 1

z kt,ht
qj λhtj , kt,ht L ; q = 1,…,Q

k
(17.6)

c kt,hτ
ro =

J

j= 1

c kt,gτ
rj λktj , kt,gτ F ; r = 1,…,Rk

skt−n ≥ 0 n,k, t ; skt−m ≥ 0 m,k, t ; λktj ≥ 0 m,k, t

where2 wk k are exogenous weights attached to division k andWt t are exog-
enous weights associated with time t. The time weights might correspond to discount
rates for a given rate of time preference. The input efficiency measure is defined as

2Note that wk and Wt can be endogenized.
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θo, inp =min
T

t = 1

Wt
K

k = 1

wk 1−
1
Nk

×
Nk

n = 1

skt−n

xktno
(17.7)

and the output efficiency measure is defined as

θo,out =min
1

T

t = 1

Wt
K

k = 1

wk 1 +
1
Mk

×
Mk

m= 1

skt +m

yktmo

(17.8)

Each of the efficiency measures (θo,WDN, θo,inp, and θo,out) is efficient if it is equal
to one; it is inefficient if it is less than one. Each ratio-form programming problem
(after applying the Charnes–Cooper transformation) is solved J times, once for each
DMU in the sample.

17.4 EMPIRICAL APPLICATION

17.4.1 Prefectural Production and Data

We follow Fukuyama et al. [16], who proposed a prefectural production model where
the input sectors jointly produce the prefectural gross domestic product (GDP). Based
on conventional economic growth theory, we assume that labor and two types of phys-
ical capital are transformed into a single product of prefectural GDP. The prefectural
technology comprises three input sectors, called the human capital (HC) sector, the
private physical capital (PPC) sector, and the social overhead capital (SOC) sector.
We assume an internal parallel structure with the final output being jointly produced
by the three sectors. Furthermore, in order to implement a dynamic structure in our
model, we assume that the PPC and SOC sectors receive and send carry-overs from
the preceding period and to the subsequent period. Figure 17.2 shows the prefectural
dynamic network structure.

The HC sector consists of general education and training investments, which are
important factors for economic growth. We measure the quantity of human capital
(number of employees) and also the quality of human capital using Fukao and Yue’s
[17] human resource quality indexmethod at the prefectural level. Fukao and Yue [17]
estimated the index for 1955 to 1995, and we have extended their method and esti-
mated the index for the period 2007 to 2009. Multiplying the human capital quality
index by the number of employees yields our measure of human capital input. The
total fixed capital assets possessed by private firms equals the PPC. The public
SOC equals the total amount of fixed assets owned by the prefecture. Social overhead
capital enhances worker productivity and contributes to GDP by enhancing commu-
nication and transportation. We distinguish between PPC and SOC because their
effects on the GDP can be different.
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The final product equals the prefecture’s contribution to GDP and is jointly pro-
duced by the three sectors. The exogenous inputs, carry-overs, and output for prefec-
ture o are defined as follows:

xtHC,o = human capital in t (Fukao and Yue’s human capital index multiplied by
number of workers)

ctPPC,o = private capital stock in t

ctSOC,o = public capital stock in t

yto = prefectural GDP in t.

In our empirical analysis, we used the output efficiency measure defined in (17.8)
and estimated it for the two year sequences 2007–2008 and 2008–2009. For prefecture
o, we solve the following:

θoverall =min
1

Wt 1 + 1
M ×

M

m= 1

st +m
ytmo

+Wt + 1 1 + 1
M ×

M

m= 1

s t + 1 +
m

yt + 1mo

(17.9)

HCt

SOCt

PPCt

SOCt+1

PPCt+1

HCt+1

yt yt+1

ct+1
SOC,o

ct+1
PPC,o

xt+1
HC,oxt

HC,o

ct–1
SOC,o

ct–1
PPC,o

ct
SOC,o

ct
PPC,o

Figure 17.2 Prefectural production structure.
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subject to the constraints
(year t)

xtHC,no ≥
J

j= 1

xtHC,njλ
t
HC, j, n= 1,…,Nt

HC (17.10)

ytmo + s
t +
m =

J

j= 1

ytmjλ
t
HC, j, m = 1,…,Mt (17.11)

ytmo + s
t +
m =

J

j= 1

ytmjλ
t
PPC, j, m= 1,…,Mt (17.12)

ct−1PPC,ro ≥
J

j= 1

ct−1PPC,rjλ
t
PPC, j , r = 1,…,Rt−1

PPC (17.13)

ctPPC,ro ≤
J

j= 1

ctPPC,rjλ
t
PPC, j , r = 1,…,Rt

PPC (17.14)

ytmo + s
t +
m =

J

j= 1

ytmjλ
t
SOC, j, m= 1,…,Mt (17.15)

ytmo + s
t +
m ≥

J

j= 1

ct−1SOC,rjλ
t
SOC, j, r = 1,…,Rt−1

SOC (17.16)

ctSOC,ro ≤
J

j= 1

ctSOC,rjλ
t
SOC, j , r = 1,…,Rt

SOC (17.17)

(year t + 1)

xt + 1HC,no ≥
J

j= 1

xt + 1HC,njλ
t + 1
HC, j, n = 1,…,Nt + 1

HC (17.18)

yt + 1mo + s t + 1 +
m =

J

j= 1

yt + 1mj λt + 1HC, j, m= 1,…,Mt + 1 (17.19)

yt + 1mo + s t + 1 +
m =

J

j= 1

yt + 1mj λt + 1PPC, j, m= 1,…,Mt + 1 (17.20)

ctPPC,ro ≥
J

j= 1

ctPPC,rjλ
t + 1
PPC, j, r = 1,…,Rt

PPC (17.21)

ct + 1PPC,ro ≤
J

j= 1

ct + 1PPC,rjλ
t + 1
PPC, j , r = 1,…,Rt + 1

PPC (17.22)
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yt + 1mo + s t + 1 +
m =

J

j= 1

yt + 1mj λt + 1SOC, j, m= 1,…,Mt + 1 (17.23)

ctSOC,ro ≥
J

j= 1

ctSOC,rjλ
t + 1
SOC, j, r = 1,…,Rt

SOC (17.24)

ct + 1SOC,ro ≤
J

j= 1

ct + 1SOC,rjλ
t + 1
SOC, j , r = 1,…,Rt + 1

SOC (17.25)

st +m ≥ 0, s t + 1 +
m ≥ 0, m

λtHC, j ≥ 0, λ
t
PPC, j ≥ 0, λ

t
SOC, j ≥ 0, j

λt + 1HC, j ≥ 0, λ
t + 1
PPC, j ≥ 0, λ

t + 1
SOC, j ≥ 0, j

We choose equal weights for each two-period sequence, withWt =Wt + 1 = 0 5. Since
the three sectors jointly produce the prefectural GDP, we add the following restric-
tions on the intensity variables:

J

j= 1

ytmjλ
t
HC, j =

J

j= 1

ytmjλ
t
PPC, j =

J

j= 1

ytmjλ
t
SOC, j = y

t
mo + s

t +
m m= 1,…,M (17.26)

Equation (17.26) indicates that, while we observe one GDP value for a prefecture
each year, the intensity variables λHC, j j= 1,…,J in (17.11) provide information
about the human capital subtechnology consisting of (17.10) and (17.11), the intensity
variables λPPC, j j= 1,…,J provide information about the physical capital formation
sector consisting of (17.12)–(17.14), and the intensity variables λSOC, j j= 1,…,J
provide information on the social overhead capital subtechnology consisting of
(17.15) –(17.17). Similar restrictions on the intensity variables for t + 1 are imposed:

J

j= 1

yt + 1mj λt + 1HC, j =
J

j= 1

yt + 1mj λt + 1PPC, j =
J

j= 1

yt + 1mj λt + 1SOC, j = y
t + 1
mo + s t + 1 +

m m= 1,…,M

(17.27)

Table 17.1 provides summary statistics of the inputs, output, and carry-overs. The
monetary values have been deflated by the 2005 GDP deflator.

17.4.2 Efficiency Estimates and Their Determinants

Table 17.2 shows efficiency estimates for the fiscal years 2007–2008 and 2008–2009,
where the fiscal year starts on April 1 and ends on March 31. The estimates indicate
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TABLE 17.1 Data description (inputs, output, carry-overs).a

Period Human capital

Previous period Previous period Current period Current period

GDP (million yen)

Ct−1
PPC, j Ct−1

SOC, j Ct
PPC, j Ct

SOC, j

(million yen) (million yen) (million yen) (million yen)

2007–2009 Mean 1,659,470 22,068,681 9,761,130 22,171,369 9,705,514 11,227,607
Std. dev. 2,062,459 20,125,147 7,046,991 20,339,269 7,017,393 15,285,715
Max 13,628,005 138,496,761 35,214,924 139,490,220 35,015,750 100,061,637
Min 344,775 10,079,838 3,787,431 10,087,270 3,784,257 2,027,794

2007 Mean 1,594,230 21,898,680 9,822,438 22,197,761 9,770,545 11,588,971
Std. dev. 1,920,465 19,802,785 7,084,482 20,325,682 7,050,147 15,774,189
Max 11,818,594 135,011,740 35,214,924 138,496,761 35,006,161 100,061,637
Min 344,775 10,079,838 3,825,600 10,124,231 3,810,468 2,160,115

2008 Mean 1,657,262 22,197,761 9,770,545 22,109,601 9,690,407 11,280,426
Std. dev. 2,064,125 20,325,682 7,050,147 20,241,880 7,005,493 15,364,942
Max 12,797,412 138,496,761 35,006,161 138,054,626 34,837,462 97,840,393
Min 351,277 10,124,231 3,810,468 10,091,808 3,787,431 2,092,722

2009 Mean 1,726,917 22,109,601 9,690,407 22,206,745 9,655,590 10,813,422
Std. dev. 2,191,712 20,241,880 7,005,493 20,449,565 6,995,925 14,688,356
Max 13,628,005 138,054,626 34,837,462 139,490,220 35,015,750 93,842,542
Min 365,369 10,091,808 3,787,431 10,087,270 3,784,257 2,027,794

a PPC = private physical capital; SOC = social overhead capital.



that only Okinawa prefecture was efficient for both periods. Lehman Brothers went
bankrupt in the fall of 2008 at the start of the financial crisis in the US. The economic
downturn precipitated by the bankruptcy seems to have quickly affected the Japanese
prefectures except for Okinawa, Japan’s southernmost island prefecture.

This efficiency estimate for Okinawa is consistent with the evidence that most
Japanese prefectures suffered negative growth in 2008 but Okinawa’s growth rate
was 1.21%, which was the highest among all prefectures.3 Okinawa’s industrial char-
acteristics in 2008 showed that the tertiary sector, providing services for consumers or
businesses, constituted 86.1% of prefectural GDP, an amount much larger than
Japan’s average of 70.0%.The large tertiary sector is due to the relative importance
of tourism in Okinawa. The average efficiency for the 47 prefectures was 0.818.

The last column of Table 17.2 reports the efficiency for all years. These estimates
show that the urban prefectures of Tokyo, Kanagawa, Aichi, and Osaka, where the
four largest cities are located, have higher efficiency scores than nonurban prefectures.
Therefore, we conjecture that there is a positive relationship between efficiency and

TABLE 17.2 Two-period efficiency estimates.a

Prefecture 2007–2008 2008–2009 All years

All Mean 0.812 0.823 0.818
Std. dev. 0.052 0.060 0.056
Max 0.907 1 1
Min 0.721 0.722 0.721

Hokkaido-Tohoku Mean 0.828 0.852 0.840
Std. dev. 0.057 0.055 0.057

Kanto Mean 0.797 0.808 0.803
Std. dev. 0.043 0.047 0.046

Hokuriku-Tokai Mean 0.825 0.839 0.832
Std. dev. 0.033 0.042 0.039

Kansai Mean 0.819 0.813 0.816
Std. dev. 0.074 0.067 0.070

Chugoku-Shikoku Mean 0.800 0.809 0.804
Std. dev. 0.049 0.051 0.050

Kyushu-Okinawa Mean 0.812 0.823 0.817
Std. dev. 0.050 0.078 0.066

Urbanized industrial
prefectures (Tokyo,
Kanagawa, Osaka, Aichi)

Mean 0.854 0.839 0.847
Std. dev. 0.034 0.029 0.030

Other prefectures Mean 0.808 0.822 0.815
Std. dev. 0.052 0.061 0.057

a The Kanto region consists of Tokyo, Kanagawa, Saitama, Gunma, Tochigi, Ibaraki, and Chiba, as well as
the two Koshin-area prefectures of Yamanashi and Nagano.

3 The second and third highest growth rates were observed for Shimane (0.33%) and Nagasaki (0.25%).
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agglomeration economies, where firms gain when activities external to the firm are
clustered near the firm. Moreover, the economic downturn arising from the Lehman
Brothers bankruptcy caused a decrease in industrial production4 (production in the
secondary sector of industry). Therefore, increasing industrial production might have
possibly enhanced prefectural efficiencies. To examine these possibilities, we esti-
mated the following regression in a second stage using the efficiency estimates from
(17.9) as the first stage. The regression employed was as follows:

Overall efficiency = f DEN, MA, REG (17.28)

We measured potential agglomeration economies by using the population density
as a proxy. Otsuka et al. [18] stated that the higher the population, the more industrial
and service production are enhanced. Next, we considered how market access might
also result in agglomeration economies. We measured market access in the industrial
structure by the ratio of the secondary sector’s production to the whole prefectural
production. The larger the ratio, the greater is the market access in the prefecture.

Finally, we included regional dummies (REG) because Japan is an island nation,
comprising an archipelago extending along the Asian–Pacific coast with different cli-
mates. Since the explanatory variable contains two-period estimates, we used arith-
metic average values for DEN and MA between the two periods. To control for
the possibility of correlation between the efficiency estimates in the first phase and
the explanatory variables in the second regression phase, we used bootstrap regression
analysis. Our actual regression model was

θoverall = α+ α1 DEN+ α2 MA+
i

βi dummyi + ε (17.29)

where α, α1, α2, βi are parameters to be estimated. We specified six regions and
dropped the Kyushu–Okinawa region dummy to avoid an exact linear dependence
between the regional dummies.

Table 17.3 reports the regression estimates.Our bootstrap regression analysis indi-
cates that the coefficient DEN is significantly positive at the 1% level. This result is
consistent with Otsuka et al.’s argument [18] for agglomeration economies. The esti-
mated coefficient MA is also positively significant at the 5% level. The regional
dummy variables had no effect on efficiency except for the Kanto region, which
had significantly less efficiency than the other prefectures. In summary, the regression
analysis indicates that prefectures with greater population density and greater market
access benefit from agglomeration economies.

4 For example, in 2007 secondary sector production in Aichi and Tokyo was 15.2 and 12.2 trillion yen,
respectively, in 2007. By 2008, secondary sector production in Aichi and Tokyo had fallen to 11.7 and
12.2 trillion yen, respectively. In 2009, Aichi’s production was 11.1 trillion yen and Tokyo’s production
was 11.5 trillion yen.
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17.5 CONCLUSIONS

In real-world production technologies, various divisions within a firm or economic
entity often produce intermediate products and receive them from other divisions.
In addition, inputs are often saved or carried over from one period to another so as
to optimize production plans for the entire firm. In this chapter, we have developed
a dynamic network model that can account for various internal structures within a firm
and for the fact that current production plans may be influenced by past production
decisions as well as affect future production possibilities. Panel data can be used to
estimate variants of our DEA model for various kinds of producers. We have offered
one illustrative example of our method using data from 2007–2009 for 47 Japanese
prefectures. Prefectural output is jointly produced by three internal input sectors: a
human capital sector, a private physical capital sector, and a social overhead capital
sector. The average efficiency was 81.8%, with Okinawa being the most efficient pre-
fecture. We also found that prefectures with a greater population density and greater
market access were more efficient. Although we focused on a single desirable final
output (prefectural GDP), future studies that control for undesirable outputs such
as carbon dioxide emissions might also yield insights that can be used to inform pol-
icy-makers.
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18.1 INTRODUCTION

The data envelopment analysis (DEA) method is very popular in the energy industry.
A considerable number of studies have evaluated the efficiency performance of
energy companies in many countries after deregulation of the industry [1–3]. In addi-
tion, energy regulators in some countries in Europe, where incentive-based regulation
in electricity networks has been introduced, have officially applied DEA methods for
efficiency benchmarking [4–7]. DEA is also used for the benchmarking of European
transmission system operators [8].

Contrary to such benchmarking purposes, we have applied DEA to evaluate the
effect of energy trading in the market. In European countries, the wholesale power
markets are well developed enough to be utilized by many electric power companies.
These companies usually have a trading unit which handles intensively all of the trans-
actions with fuel and power markets, standing between the generation and retail divi-
sions, even if they were vertically integrated before liberalization. Although some
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companies have such trading units as a department, and others have a subsidiary com-
pany for trading, their basic functions are the same. In this chapter, we refer to orga-
nizations that have a trading function in the company as a ‘trading division’ or ‘TD’.

This study quantitatively evaluates the effects of the potential use of market oppor-
tunities through TDs, and compares them under different conditions and constraints
using DEA. Then we clarify the problem of what price conditions the trading function
will work effectively under in the future.

In Japan, system reform in the electricity industry is now under way; for instance,
the retail electricity markets for domestic customers will be opened up in April 2016.
The government expects that the reform will promote new market entries, resulting in
revitalization of the competition in the electricity retail market. In addition, it is also
expected that the wholesale power market will be revitalized, even though liquidity
has been very limited since it started to operate in 2005.

The incumbent Japanese power companies have been vertically integrated, simi-
larly to those in European countries before liberalization. In these companies, the gen-
eration division (GD) sends most of the electricity generated to the retail division (RD)
directly as a matter of course. However, this will change in accordance with the
increase in market liquidity in the wholesale power market, just as in European coun-
tries. In fact, some incumbent Japanese power companies are attempting to establish
TDs in preparation for the effective use of market opportunities. On the other hand,
others are sceptical about the utilization of market mechanisms and the effects of TDs.
Therefore, the quantitative analysis in this study will help these companies to consider
the introduction of TDs.

This chapter proceeds as follows. In Section 18.2, we summarize how the internal
transaction system for electricity in power companies in Europe changed from before
to after liberalization. In Section 18.3, the framework of the quantitative analysis is
explained in order to clarify the effect of the trading function. The results are shown
in Section 18.4, and some remarks follow in the last section.

18.2 THE FUNCTIONS OF THE TRADING DIVISION

Before liberalization of the electric power industry in many countries, including
Japan, typical electric power companies were vertically integrated, where several
functions existed inside one company, such as generation, transmission, distribution
and retail functions. It was quite common for these companies to transmit generated
electricity internally to the retail division and then to customers (Figure 18.1(a)).1 The
electricity tariffs for the final customers were generally under cost-based regulation. In
this case, the GD (or a fuel procurement division) procured fossil fuels for power

1 In European countries, network businesses such as transmission and distribution businesses are still regu-
lated and are required to be independent from competitive businesses such as generation and retail busi-
nesses. In Figure 18.1, we focus only on competitive businesses; therefore, network businesses are not
depicted in the figure, even if the parent company owns them.
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plants from the fuel market, and was therefore exposed to market risk (price fluctu-
ation risk). However, a power company could pass on the risk to the customers via a
cost-based tariff.

However, as wholesale power markets were gradually developed in several coun-
tries in Europe after liberalization, the representative power companies established
TDs in order to sell and buy electricity on the market, effectively on behalf of
GDs and RDs (Figure 18.1(b)). This enables the whole (parent) company to
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Figure 18.1 Change in the internal transaction of electricity in power companies: (a) before
liberalization; (b) after liberalization.
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concentrate various types of market risk management in the TD. In particular, after
liberalization, customers became able to freely choose electricity tariffs, which are
not regulated. If many customers choose fixed tariffs, a power company cannot pass
on market risks to customers any more. Therefore, it became very important for com-
panies to control market risk effectively. A TD controls all the market risks of a com-
pany intensively.

Moreover, TDs procure fossil fuels for generation and determine the economic dis-
patch by referring to market prices2 to optimize the operation of all power plants
through fuel and power trading based on profit maximization. This means that the
GD produces electricity only when it can make a profit. For instance, when fuel prices
are high and the price of power is relatively low, the TD will decide to purchase elec-
tricity from the market to cover the final demand in the RD instead of ordering the GD
to produce electricity at its own power plants.

In this market-oriented (MO) system, there is no direct transaction between the GD
and the RD; this is completely different from the vertically integrated (VI) system,
which depended heavily on internal transactions before liberalization. It should be
noted that the company in the MO system described in Figure 18.1(b) is actually
called a ‘vertically integrated company’, because the whole management (or the par-
ent company) owns both the GD and the RD functions. However, in the MO system,
these functions are operated as independent businesses with independent licences.

We assume that the difference between the two systems is attributable to the vol-
ume and price constraints on the internal transactions as follows:

• Volumeconstraint. In theVIsystem,allof theelectricitydemand in theRDiscovered
by the electricity generated at power plants in theGD. In other words, the volume of
the internal transactions is strictly constrained, while it is completely free in theMO
system; that is, theTDcan freely choose sources of electricity from thepowermarket
and/or internal transactions in order to cover the final demand in the RD.

• Price constraint. In the traditional VI system, the transfer price of the internal
transactions is based on generation cost, and therefore retail tariffs for customers
are also cost-based. On the other hand, in the MO system, tariffs are decided
based on market prices. In the market mechanism, prices depend on supply
and demand and are not based on cost. Therefore, in this situation, the cost-based
price setting in the VI system can be regarded as a strict constraint.

This study compares these two systems and clarifies the effects of the trading func-
tion from three points of view as follows:

• Profit (return). If a power company effectively utilizes the fuel and power mar-
kets in the MO system, the total profit of the company will be maximized rather

2 In Europe, TDs refer not only to fuel and power market prices, but also to CO2 prices. Emissions trading is
not as active in Japan and, therefore, to simplify the model, we do not consider CO2 prices.
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than depending on the internal transaction in the VI system. In other words, strict
volume and price constraints may inhibit the profit maximization of the
company.

• Stability of profit (risk). However, the company will be exposed to market risks
in the MO system.

• Competitiveness. If the company utilizes the market price for the internal transfer
price, profit will be optimized, but the competitiveness in the retail market may
be reduced, because it cannot differentiate its retail prices from its competitors. In
the VI system, the cost-based internal price may have an advantage over the MO
system, especially in the case where the company owns inexpensive power plants
such as hydro power plants. In this study, we employ the retail price level as a
competitive index. We assume that a lower retail price can enhance competitive-
ness in the retail market of the company.

In general, the high-risk case could bring high return, and higher competitiveness
(lower retail price level) could result in lower profit. In other words, the three factors
listed above would result in different evaluations even under the same conditions. In
such a case, DEA is a very powerful method for conducting a comprehensive evalu-
ation based on multiple factors. Therefore, in this study, we have applied the slacks-
based measure (SBM)-max model (Chapter 22) to evaluate VI and MO systems under
several market price conditions.

18.3 MEASURING THE EFFECT OF ENERGY TRADING

In this section, we explain the framework for how the effect of the trading function
under different conditions was measured in this study.

18.3.1 Definition of Transaction Volumes and Prices

Figure 18.2 summarizes the electricity transactions in a typical power company after
liberalization, where the notation in parentheses indicates electricity volume and price.

18.3.1.1 Generation Division We postulate that the GD owns gas-fired, coal-fired
and hydro power plants.3 Ge

it is the fuel actually consumed, measured by the kilowatt
hours (kWh) used in period t (t = 1,…,T),4 where i indicates the type of power plant
(i = gas, coal or hyd). Each power plant cannot generate electricity above its capac-
ity Ge

i :

3We do not include nuclear power plants in this study; however, they could be treated in the samemanner as
hydro power plants in our model, as nuclear fuel is not a commodity that is in general freely traded on the
market and its fuel cost is much lower than that of fossil fuel power plants.
4 The units of the time period t may be minutes, hours, days and so on.
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[Capacity constraint]

Ge
it ≤G

e
i (18.1)

The fuel price is denoted by pwit , which in this study is defined as a market price fluc-
tuating on a moment-to-moment basis for gas and coal, while the price for hydro
power is zero. The total generated power (Ge

t ) and the average generation (fuel) cost
(pwt ) are measured based on the volume actually consumed as

Ge
t =

i

Ge
it ,p

w
t =

i

pwit G
e
it

Ge
t

(18.2)

The decision to generate electricity or not in the GD is made by the TD at different
times by referring to the market prices of fuel and power.

18.3.1.2 Internal Transactions (GD TD) All of the generated power (Ge
t ) is

transmitted from the GD to the TD at the internal transfer price (pg), which is defined
as an average of pwt during T periods as

pg =
t

pwt
T

(18.3)

18.3.1.3 Trading Division The TD sells electricity generated at plant i to the
power market (Es

it) at the market sell price (pst ) and/or sends it to the RD (Gr
it) at

the transfer price (prt ), whose definition will appear later in (18.6):
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Figure 18.2 Transaction volumes and prices.
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[Flow constraint]

Ge
t = i

Es
it + i

Gr
it =E

s
t +G

r
t (18.4)

The flow constraint indicates that electric power cannot be stored, and therefore all
electricity generated has to be sold to anywhere available.

The TD also has to procure electricity to cover all of the retail demand in the RD
(y). The TD decides the volume to be purchased from the market (Eb

t ) and the volume
to be generated at the power plants (Gr

t ) based on the market prices of fuel and power:

[Demand constraint]

y=Eb
t + i

Gr
it =E

b
t +G

r
t (18.5)

For instance, when the transfer price (prt ) is higher than the market buy price (pbt ), the
TD will procure electricity from the market.

18.3.1.4 Internal Transactions (TD RD) All of the electricity demand in the
RD (y) is procured by the TD and transmitted to the RD at the transfer price (prt ), which
is defined as a weighted sum between the generation cost (pwt ) and the market buy
price (pbt ):

prt = βp
w
t + 1−β pbt (18.6)

where β is a parameter that will be explained in the next subsection.

18.3.1.5 Retail Division The RD sells electricity received from the TD to custo-
mers, adding γ % retail margin; therefore, the retail price (pyt ) is

pyt = 1+ γ prt (18.7)

Obviously, a company can earn more profit if it sets a large margin rate. However,
in reality it is difficult to set a large γ to survive against competition in a competitive
retail market.

18.3.2 Constraints on Internal Transactions

In order to compare the VI and MO systems, we assume two parameters for the vol-
ume and price constraints on internal transactions.

• Volume constraint: α. We postulate that the TD has to use electricity from the
GD, which is generated at the company’s own power plants, to cover at least
α × 100% of the retail demand as follows:

i
Gr

it ≥ αy 0 ≤ α ≤ 1 (18.8)
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α = 0 (MO system): the TD can decide the volume to generate at power plants, to
sell to the market and to buy from the market, based only on the market mech-
anism without any constraints.

α = 1 (VI system): the TD has to cover all of the retail demand with electricity
generated at its own plants in the GD, regardless of the market price level.

• Price constraint: β. As shown in (18.6), the internal transfer price (prt ) from the
TD to the RD is defined based on the generation cost (pwt ) and the market buy
price (pbt ), weighted by β.

β = 0 (MO system): the retail price (pyt ) is defined based on only the market price.

β = 1 (VI system): the retail price (pyt ) is defined based on only the generation cost
of the company’s own power plants in the GD regardless of the market
price level.

In this study, we simulated five levels of constraints, as listed in Table 18.1.

18.3.3 Profit Maximization

Theoretically speaking, the GD wants to sell generated electricity at a higher price,
while the RD wants to procure it at a lower price, which suggests a possibility of inter-
nal conflict. The TD can resolve this by mediating between the two and aiming at
overall profit maximization. Divisional and overall profits are calculated as follows:

Generation division:

Revenue REVGD
t = pgt G

e
t

Cost COSGDt =
i

pwit G
e
it = p

w
t G

e
t

Profit PROGD
t = pgt −p

w
t Ge

t

(18.9)

TABLE 18.1 Simulation of constraints on internal transactions.

(MO system) (VI system)

Free Constraint Strict

a1 a2 a3 a4 a5
α= 0 0.25 0.5 0.75 1

b1 b2 b3 b4 b5
β= 0 0.25 0.5 0.75 1
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Retail division:

Revenue REVRD
t = pyt y

Cost COSRDt = prt y

Profit PRORD
t = pyt −p

r
t y

(18.10)

Trading division:

Revenue REVTD = pst i
Es
it + p

r
t y

Cost COSTD = pgt i
Ge

it + p
b
t E

b
t

Profit PROTD = pst i
Es
it + p

r
t y−p

g
t i

Ge
it −p

b
t E

b
t

(18.11)

Whole company:

Profit PROt = PROGD
t + PRORD

t + PROTD
t

= pst i
Es
it + p

y
t y− i

pwit G
e
it −p

b
t E

b
t

=
i
pst −p

w
it Es

it + i
pbt −p

w
it Gr

it + pyt −p
b
t y

(18.12)

We find that the overall profit of the company consists of three types of price
spreads multiplied by electricity volumes.

Then, the overall profit maximization model is formulated as

max PROt = i
pst −p

w
it Es

it + i
pbt −p

w
it Gr

it + pyt −p
b
t y (18.13)

s.t. (18.1), (18.2), (18.4), (18.5), (18.6), (18.7) and (18.8)

In this model, the unknown variables are Es
it , G

r
it and pyt .

It should be noted that the above profit maximization model is a non-linear problem
because (18.2) includes unknown variables Ge

it (= Es
it + Gr

it) in both the numerator and
the denominator. To solve the problem as a linear problem (LP), we substitute Ge

it in
the denominator for Ge

i , which can maintain the scale of the variables. By solving the
substituted LP model, we can obtain the optimal values of Es∗

it and Gr∗
it , and then cal-

culate Ge∗
it as Es∗

it + Gr∗
it . The optimal average fuel cost (pw∗t ) can also be measured,

based on Ge∗
it , as

pw∗t = i

pwit G
e∗
it

Ge∗
t

(18.14)
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18.3.4 Exogenous Variables

In (18.13), the market prices of fuel and power (pwcoal, t, p
w
gas, t, p

s
t and p

b
t ) are exogenous

variables, and in this study, we generated data randomly for T points under several
conditions.

• Fluctuation (two cases). We assumed two different conditions for the market
price fluctuation for T periods: a stable and a volatile case. The average gas
and coal prices were defined by referring to the actual market prices and con-
verted into the units of electric energy at ¥8.789/kWh and ¥3.264/kWh, respec-
tively. The average sell and buy prices in the power market were both defined as
¥9.229/kWh, which is 5% higher than the average gas price. The market sell and
buy prices were independently generated under the same conditions (average and
variance):
◦ Case 1. Stable: the variance of the coefficient was 0.05.
◦ Case 2. Volatile case: the variance of the coefficient was 0.2.

• Trend (three cases). We assumed three conditions for the market price trend for T
periods: an increasing, a decreasing and a flat case:
◦ Case 1. Up: an increasing rate of +0.2%.
◦ Case 2. Down: a decreasing rate of −0.2%.
◦ Case 3. Flat: a rate of 0%.

As a result, we generated six (=2 × 3) price series for coal, gas and power prices,
and then we had 216 (=6 × 6 × 6) combinations of cases (scenarios). Figure 18.3
shows only the generated data for the gas and coal price series. The sell and buy prices
for power follow a similar trend to the gas prices.

In addition, there were 25 cases of combinations of constraints (α, β), resulting in
5400 scenarios in total.

For each of these scenarios, we solved (18.13), and then obtained profit, stability
and competitiveness indices. It should be noted that in order to obtain the stability
index, we needed to calculate a standard deviation of profits; therefore, repeated cal-
culation was done using randomly generated price series (for T periods) under the
same conditions for each case.5 We then obtained an average profit, a standard devi-
ation of profits for the stability index and an average retail price for the competitive-
ness index, for 5400 scenarios.

However, in the study presented in this chapter, we fixed the coal price series as the
volatile/flat combination, because the three indices were very similar, even if we chan-
ged the conditions for the coal prices. Finally, we used 900 scenarios in the DEA
calculation.

5 In this chapter, we show results for T = 30.
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Furthermore, we postulated three types of fuel mix. Table 18.2 shows the capacity
settings for the power plants (Ge

i ) in the GD by type. The total retail demand (y) was
also an exogenous variable, which was defined as 10 000MW in this study. The retail
margin rate γ was defined as 5%, which is a typical value for UK power companies.
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Figure 18.3 Market price setting (250 points): (a) gas prices (six cases); (b) coal prices
(six cases).

TABLE 18.2 Fuel mix settings.

Gas Coal Hydro Total

Mix 1 8 000 2 000 2 000 12 000
Mix 2 2 000 8 000 2 000 12 000
Mix 3 2 000 2 000 8 000 12 000
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18.4 DEA CALCULATION

As mentioned above, the profit, stability and competitiveness indices for each sce-
nario may be evaluated differently; for example, the profit may be large, while the
competitiveness may be small. In order to obtain a comprehensive evaluation, we
applied DEA.

In this study, we used the SBM-max model (as presented in Chapter 22), which
refers to the nearest point of the efficiency frontier in the SBM model, whereas the
original SBM model [9] refers to the farthest point of the frontier, denoted by
SBM-min in Figure 18.4. It can be said that the efficiency score in the SBM-max
model is measured under the best conditions for the target decision-making
unit (DMU).

The input-oriented SMB-min model is formulated as follows:

θ∗o = min
λ,s− ,s +

1−
m

i= 1

s−i
xio

subject to

xio =
n

j= 1
xijλj + s

−
i i= 1,…,m (18.15)

yro =
n

j= 1
yrjλj−s

+
r r = 1,…,s

λj ≥ 0 j , s−i ≥ 0 i ,s +r ≥ 0 r

where xij and yrj denote input i and output r for DMUj, and s−i , s
+
r and λj are the input

and output slacks and the intensity variables, respectively. θ∗o is an efficiency score
referring to the farthest point of the frontier.

In contrast to this, the model to find the nearest point on the efficiency frontier is
much more complicated, with several steps, including (18.15) as the first step. Details
of the procedure are explained in Chapter 22.

CCR

SBM-min

SBM-max

x1

x2

Figure 18.4 Comparison of three DEA models.
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In this study, profit was regarded as an output, while stability (standard deviation of
profits) and competitiveness (retail price level) were regarded as inputs, because they
have better evaluations when their scores are small. The DMUswere the 900 scenarios
for each fuel mix.

18.5 EMPIRICAL RESULTS

18.5.1 Results of Profit Maximization

Figure 18.5 plots the results for the three indices obtained with (18.13) for all three fuel
mix cases; there are 2700 (=900 scenarios × 3 fuel mixes) dots in each part of the

0

20000

40000

60000

80000

100000

120000

(a)

(b)

0 5000 10000 15000 20000 25000 30000

Profit

Risk

High LowStability

0

20000

40000

60000

80000

100000

120000

0 2 4 6 8 10 12

Profit

High LowCompetitiveness

Retail price

Fuel mix 1 Fuel mix 2 Fuel mix 3

Fuel mix 1 Fuel mix 2 Fuel mix 3

Figure 18.5 Scatter plot for one output (profit) and two inputs (risk and retail price) for all fuel
mix cases: (a) Input 1 (risk) versus output (profit); (b) Input 2 (retail price) versus output (profit);
(c) Input 1 (risk) versus Input 2 (retail price); (d) Input 1/output versus Input 2/output.
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figure. In addition, both of the inputs (stability and competitiveness indices) are
divided by the output (profit) in Figure 18.5(d). As the fuel price for hydro power
is defined as 0, all indices for Fuel Mix 3 are better than those for the others (i.e. rel-
atively larger profits, lower risks and lower retail prices), and vice versa for Fuel Mix 1,
because of the strong dependence on gas power plants.
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Figure 18.6 shows only the values for Fuel Mix 1, where the GD owns a large gas
power plant capacity. The 900 dots shown in this figure are coloured differently based
on the level of the constraints on internal transactions, a1 to a5 and b1 to b5. Intui-
tively, we find that the dark-coloured dots (b1) are relatively efficient.

Figure 18.7 shows the average of the three indices for the case of Fuel Mix 1 by
level of constraint. To adjust the levels of the three indices, every result has been
divided by the total average of all the constraints.

According to these figures, profit is larger under fewer constraints, while risk is
lower (more stable) under stricter constraints; this is especially remarkable for the
price constraints β. In addition, the volume constraints α have no influence on
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Figure 18.6 Scatter plot for one output (profit) and two inputs (risk and retail price) for Fuel
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competitiveness, while strong price constraints β lead to higher competitiveness
(lower price level).

As we assumed, the evaluations of these three indices are different for each case,
and therefore the DEA method can help us to comprehensively evaluate them.

18.5.2 Results of DEA

Using the three indices (profit, stability and competitiveness), we solved the SBM-
max model taking the 900 scenarios as DMUs. Figure 18.8 presents the average
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Figure 18.7 Average scores for each constraint for Fuel Mix 1: (a) average for each volume
constraint; (b) average for each price constraint.
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efficiency scores for each constraint level and each fuel mix. We find relatively little
difference among the constraints in the case of Fuel Mix 3. This is attributable to the
low generation cost for hydro power plants; therefore, they can generate electricity
regardless of the market situation. This implies that the trading function will work
more effectively in a company that owns many fossil-fuelled power plants.

In addition, it can be said that the constraint-free case (a1 and b1), which is just the
case of the pure MO system, is the most efficient of all, and the system becomes less
efficient as the constraints become stricter. However, in the strictest case (a5 and b5),
which is the case of the pure VI system, the efficiency score can be better than that of
several other combinations with fewer constraints for Fuel Mix 1 and 2.
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Figure 18.8 Average scores for each constraint by fuel mix: (a) FuelMix 1 (the capacity of the
gas power plant is large); (b) Fuel Mix 2 (the capacity of the coal power plant is large); (c) Fuel
Mix 3 (the capacity of the hydro power plant is large).
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Figure 18.9 focuses on the cases of volatility and stability in the market price of
power, where the scores have been divided by the scores in the no-constraint case
(a1 or b1) in order to compare the results under different constraints for all fuel mixes.
In the volatile case, the MO system, with fewer constraints, performs better for every
fuel mix. Therefore, if a company predicts that the price of power in the market will be
volatile in the future, the MO system will be suitable, especially for a company that
owns a large capacity of gas power plants.

18.6 CONCLUDING REMARKS

In this study, we have examined a quantitative analysis to evaluate the effects of the
potential use of market opportunities through a TD. The results show that energy trad-
ing in an MO system without constraints on internal transactions will lead to a larger
profit, but less stability of profits and less competitiveness in the retail market. We
then applied a DEA model to obtain a comprehensive evaluation. According to the

0.6

0.7

0.8

0.9

1

1.1

1.2

(a)

(b)

Mix 1 Mix 2 Mix 3

Strict
VI system

Free
MO system

Strict
VI system

Free
MO system

Volume constraint Price constraint

0.6

0.7

0.8

0.9

1

1.1

1.2

a1 a2 a3 a4 a5 b1 b2 b3 b4 b5

a1 a2 a3 a4 a5 b1 b2 b3 b4 b5

Volume constraint

Strict
VI system

Free
MO system

Price constraint

Mix 1 Mix 2 Mix 3

Free
MO system

Strict
VI system

Figure 18.9 Comparison of efficiency scores for different constraints: (a) volatile case;
(b) stable case.
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results, a TD will work effectively in a company that owns large fuel power plants and
expects market prices to be volatile in the future.

In Japan, many incumbent companies depend heavily on fossil-fuelled power
plants, as all of the nuclear power plants were shut down after the Great East Japan
Earthquake in 2011. Even if many of them are restarted, fossil-fuelled power plants
will continue to be an important energy source. The wholesale power market in Japan
has not been particularly active so far; however, it may be revitalized in the near future
in a similar way to the power markets in Europe. It will be a good option for Japanese
power companies to establish TDs in order to act effectively in the fuel and power
markets.

In future work, we will attempt to generate price data in a more realistic way, for
instance by considering covariance between fuel and power prices. Furthermore, we
will examine several different settings to obtain more robust results.
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19.1 INTRODUCTION

As a part of resource management, resource allocation is based on a strategic plan for
efficiently allocating available resources among various units to achieve future goals.
These units may belong to the same organization and operate under a central decision-
maker who has the power to control the allocation of resources to these units. For
example, the central authorities of liner shipping companies control the allocation
of human resources among dedicated container terminals in major international har-
bours. Previous studies have employed individual resource perspectives when analys-
ing the operational efficiency of firms. Such techniques suggest identifying the
number of resources to be reduced (or increased) for their particular input (or output)
as a method to compare best practices. However, such models are not suitable for
evaluating firms operated either by headquarters or by a central decision-making

1 Part of the material in this chapter is adapted from Chang, S.M., Wang, J.S., Yu, M.M., Shang, K.C., Lin,
S.H. and Hsiao, B., 2015, ‘An application of centralized data envelopment analysis in resource allocation in
container terminal operations’,Maritime Policy & Management, 42(8), 776–788, and Yu, M.M., Chern, C.
C. and Hsiao, B., 2013, ‘Human resource rightsizing using centralized data envelopment analysis: Evidence
from Taiwan’s airports’, Omega, 41(1), 119–130, with permission from Taylor & Francis and Elsevier
Science.
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controller. This kind of allocation follows the ‘first-order-change’method.2 More pre-
cisely, these studies focus on allocating resources to individual units, not on reallocat-
ing each unit from a centralized perspective. On a larger scale, enterprises should be
able to focus using a ‘centralized perspective’ instead of an ‘individual perspective’ to
allocate available resources and maximize organizational performance; this empha-
sizes the need to use a second-order-change method.3 As such, if the goal is to achieve
maximum output levels, information on best practices using an individual perspective
cannot fully fit the resource reallocation requirements of specific firms.

To date, most studies on resource allocation efficiency have focused mainly on
goal programming [1], dynamic programming [2], heuristic approaches [3], grey
relation analysis [4], linear programming [5], data envelopment analysis (DEA)
[6–10] and multiple-criteria decision making [11–13]. DEA is considered a suitable
approach for organizing and analysing data, because it allows the improvement of
efficiency over time and requires no prior assumptions about the specification of the
best-practice frontier. The DEA method not only estimates performance, but also
helps decision-making units (DMUs) remove other sources of inefficiency from
the observations. This capability distinguishes DEA from other decision-making
techniques. However, conventional DEA models project each DMU separately onto
the efficient frontier. In a centralized decision-making environment, the aim of the
central decision-maker is to optimize resource utilization by all DMUs in an organ-
ization rather than consider the resource consumption by each DMU separately.
Hence, it is more reasonable to project all DMUs onto the efficient frontier by sol-
ving one model. In order to deal with such a situation, centralized DEA (CDEA)
models have been proposed. Lozano et al. [14] and Lozano and Villa [15, 16] first
introduced the concept of centralized resource allocation in an intra-organizational
scenario. Since the development of CDEA models by Lozano et al. [14] and Lozano
and Villa [15, 16], there have been a number of studies in the literature that deal
with the problem of centralized resource allocation (e.g. [9, 10, 17–26]). These
new DEA models consider the situation where there is a central decision-maker
who supervises or ‘owns’ all of the operating units, and the total output and input
are more important than the outputs and inputs for the individual units. CDEA is
particularly relevant in situations where certain variables are controlled by a central
authority, rather than by individual unit managers. With centralization, issues of
overall system efficiency are resolved, rather than simply issues pertaining to indi-
vidual levels.

Although sudden or generational changes can have huge effects on the operations
of a firm, they can also cause organizational resistance and reduced performance

2 First-order change implies changing individuals in a setting to adjust resources. In other words, by con-
sidering first-order change, changes to the resource itself, its perspectives and its direction designed to
deliver better performance for a specific decision-making unit can be understood.
3 Second-order-change means attending to systems and structures (i.e. an overall resources perspective) in
problems relating to resource adjustment.
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[9, 27, 28]. The use of several different strategies to evaluate the fluctuating objectives
(i.e. to find a fit change policy) is more appropriate when resource reallocation is being
considered. This chapter develops a systematic resource reallocation process to pro-
vide solutions that reduce organizational resistance. We will discuss three policies
for resource reallocation. The first policy (referred to as the minor adjustment policy)
states that the central decision-maker does not change the aggregated amounts of
adjustable inputs. The second policy (referred to as the moderate adjustment policy)
states that the aggregated amounts of some adjustable inputs can be reduced, but that
others cannot be changed. The third policy (referred to as the major adjustment policy)
states that the decision-maker will cut the aggregated amounts of adjustable inputs. In
addition, this chapter provides some applications to illustrate how to allocate resources
by applying CDEA models. The concept described in this chapter can be expanded to
solve more complex problems.

This chapter is organized as follows. Following the introduction, the CDEAmodel
for resource allocation is formulated. Then, some related applications in the transport
industry are provided. Afterwards, the CDEA model is extended to deal with unde-
sirable outputs. Finally, conclusions are drawn.

19.2 CENTRALIZED DEA IN RESOURCE ALLOCATION

Since the DMUs are under the supervision of a central decision-maker, a CDEA
approach that takes into account an overall objective of the organization when allo-
cating resources can be used. Following Lozano et al. [14] and Lozano and Villa [15,
16], a two-phase CDEA is constructed here. In the first phase, the organization tries to
maximize the production of the aggregated output of all DMUs at a given level of any
input. In the second phase, given the optimal solution for the aggregated-output
expansion rate in the first phase, the minimized total slacks for the inputs are sought.
In order to reduce organizational resistance, the minor adjustment policy, moderate
adjustment policy and major adjustment policy are demonstrated in the second phase.
The three resource adjustment policies are considered in the following scenarios. First,
the minor adjustment policy assumes that the central decision-maker of the organiza-
tion can transfer adjustable inputs among DMUs, but cannot change the aggregated
amounts of adjustable inputs from their original aggregated level. Second, the mod-
erate adjustment policy assumes that some of the adjustable inputs can be cut for each
DMU and can be transferred among DMUs, while the others are allowed to be trans-
ferred among DMUs without changing their original aggregated level. The major
adjustment policy assumes that all adjustable inputs can be reduced and transferred
for maximum output efficiency. However, the individual amounts of the other non-
adjustable inputs remain unchanged.

Before formulating the models, we shall introduce the notation to be used. Let n be
the number of DMUs; ma the number of adjustable inputs; mna the number of non-
adjustable inputs; s the number of outputs; j, k indices of a DMU; ia an index of
an adjustable input; ina an index of a non-adjustable input; r an index of an output;
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xiaj the amount of input ia consumed by DMUj; xinaj the amount of input ina consumed
by DMUj; yrj the amount of output r produced by DMUj; θr the efficiency score of
output r; siak the slacks for the adjustable input i1; and λ1k, λ2k, λ3k,…, λjk the vector
of the intensity variable for projecting DMUk.

19.2.1 Minor Adjustment

From the perspective of resource reallocation, the minor adjustment policy allows the
central decision-maker to transfer adjustable inputs among DMUs at the original over-
all level. As discussed previously, two phases are used in the minor adjustment policy.
Phase I involves finding the output scalar values θMI

r (r = 1 2,…,s) maximized for the
given levels of both aggregated adjustable inputs and individual adjustable inputs.
Phase II seeks the maximized net slacks for the adjustable inputs, given the optimal
solution for the aggregated-output expansion rate in the first phase. This model is built
on the assumption of variable-returns-to-scale (VRS) characterizations with increas-
ing returns to scale, constant returns to scale (CRS) and decreasing returns to scale.

We also have mentioned that the intensity variable has two subscripts in our model,
similarly to conventionalDEA.Themajor difference betweenCDEAand conventional
DEA is that the former projects ‘all’ DMUs onto the frontier by using a DEA model,
while the latter obtains the projection of eachDMUbyusing theDEAmodel once. This
means that CDEA generates all of the intensity-variable values for each DMU using a
model, while conventional DEA uses the DEAmodel n times if k = 1,…,n. The inten-
sity variables for each DMU in CDEA are obtained by running the CDEA model one
time only. In order to know the values of the intensity variables which each DMUk has,
we must use each DMUk with its intensity variables λjk in the CDEA model. This
implies that we will obtain all of the DMUs’ intensity-variable values by running
the CDEA model once. That is why the variable λjk has two subscripts in our model.
The major difference between conventional DEA and CDEAmodels is that the former
must run the DEA model n times, while the latter runs it once.

Furthermore, the rth output scalar value θMI
r can be obtained in the first-phase

model for the minor adjustment policy by describing the ways in which the average
sum of the expansion ratios of each output could be expanded.We evaluate the output-
oriented efficiency of CDEA by solving the following linear program. This model
yields a set of new output measures that render the output efficient.

19.2.1.1 Phase I Find the maximum average efficiency scores under the content
of the minor adjustment policy:

max
1
s

s

r = 1

θMI
r (19.1)

s t
n

k = 1

n

j= 1

λjkxiaj =
n

k = 1

xiak, ia = 1 2,…,ma (19.2)
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n

j= 1

λjkxiaj ≤ xiak, ia = 1 2,…,ma, k = 1,…,n (19.3)

n

j= 1

λjkxinaj ≤ xinak, ina = 1 2,…,mna,k = 1,…,n (19.4)

n

k = 1

n

j= 1

λjkyrj ≥ θ
MI
r

n

k = 1

yrk ,r = 1 2,…,s (19.5)

n

j= 1

λjkyrj ≥ yrk,r = 1 2,…,s,k = 1,…,n (19.6)

n

j= 1

λjk = 1,k = 1,…,n (19.7)

λjk ≥ 0, j= 1,…,n, k = 1,…,n (19.8)

Equation (19.1) seeks the optimum expansion of the aggregated output of all DMUs.
The adjustable-input constraints, as shown in (19.2) and (19.3), allow the adjustable
inputs to be transferred amongDMUs. Furthermore, (19.2) limits the aggregated amount
of adjustable inputs to the original level. Equation (19.3) ensures that the frontier number
of inputs will be no larger than the observed level. Equation (19.4), which represents the
reference point, is a linear combination of DMUs. Thus, the reference set may include
DMUs that operate with a different amount of non-adjustable inputs from the assessed
DMU. These non-adjustable input variables should appear as inequality constraints in a
way similar to howBanker andMorey [29] proposed to handle non-discretionary inputs
[30]. Equation (19.5) seeks to non-radially increase each output asmuch as possible, and
ensures that each output remains in the feasible aggregated output set. The constraints in
(19.5) ensure that these n projected points cannot lie outside the aggregated output set.
The projected point of DMUk is a linear combination of observed production points
using λjk. Besides the aggregated output constraints, (19.6) imposes the restriction that
the projected point for each DMU will be no less than the observed output quantities of
DMUk. Equation (19.6) guarantees that the above condition can be satisfied. In other
words, the value of the expansion rate measures the maximum expansion of the total
aggregated output required to bring it to the aggregated frontier of the output set for
the input vector. Equation (19.7) shows that VRS is adopted in thismodel and any inten-
sity variable used to project the DMU cannot be less than zero, as shown in (19.8).

19.2.1.2 Phase II The optimal slack values of the adjustable inputs represent the
quantities of inputs that can be transferred for each DMU at the given total levels of
non-adjustable inputs for each DMU, as well as the maximum aggregated outputs that
can be achieved. Hence, we find the slack variables of the adjustable inputs for the
maximum aggregated outputs obtained in Phase I:
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max
ma

ia = 1

n

k = 1

sMI−
iak

− sMI+
iak

xiak
(19.9)

s t
n

k = 1

n

j= 1

λjkxiaj =
n

k = 1

xiak, ia = 1 2,…,ma (19.10)

n

j= 1

λjkxiaj = xiak + s
MI+
iak

−sMI−
iak

, ia = 1 2,…,ma,k = 1,…,n (19.11)

n

j= 1

λjkxinaj ≤ xinak, ina = 1 2,…,mna,k = 1,…,n (19.12)

n

k = 1

n

j= 1

λjkyrj = θ
MI∗
r

n

k = 1

yrk,r = 1 2,…,s (19.13)

n

j= 1

λjkyrj ≥ yrk,r = 1 2,…,s,k = 1,…,n (19.14)

n

j= 1

λjk = 1,k = 1,…,n (19.15)

λjk ≥ 0, j= 1,…,n, k = 1,…,n (19.16)

sMI−
iak

,sMI+
iak

≥ 0, ia = 1,…,ma, k = 1,…,n (19.17)

Equations (19.10) and (19.11) are imposed to restrict the individual input sets to
their original levels, and allow transfers into or out from other DMUs. Furthermore,
(19.10) ensures that the aggregated amounts of adjustable inputs are equal to their
original levels. That is, (19.10) implies that the total slack of the input transferred
to all DMUs (sMI+

iak
) should be equal to the total slack of the input transferred from

all DMUs (sMI−
iak

). Equation (19.13) can be seen as using the reallocation perspective

to reach the ideal output under the CDEA perspective, and θMI∗
r is the optimum of

Phase I. Furthermore, the constraints on the output variables should satisfy two con-
ditions. First, the rth output expansion should be equal to θMI∗

r . Second, the rth output
level after aggregation cannot be less than the level of the rth output before planning.
A restriction, (19.14), is added to guarantee that the above condition can be satisfied.
In other words, the constraints ensure no worsening of the outputs appears
in this model compared with the first model. In (19.13), the constraint
n

k = 1

n

j= 1

λjkyrj = θ
MI∗
r

n

k = 1

yrk is imposed instead of
n

k = 1

n

j= 1

λjkyrj ≥ θ
MI∗
r

n

k = 1

yrk, which

implies that the total output obtained in Phase I is given at the maximum level.
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Equations (19.12), (19.14) and (19.15) can be compared with (19.4), (19.6) and
(19.7), respectively. Equations (19.16) and (19.17) show that the slacks and any vec-
tor for projecting the DMU cannot be less than zero.

The second-phase model provides information about the total reduction and the
increases in adjustable inputs for each DMU, and the optimal slack variables
(sMI+ ∗

iak
, sMI−∗

iak
) are obtained. The minor adjustment policy focuses on the net slack

values of adjustable inputs equal to zero, as shown in (19.10). Therefore, the minor
adjustment policy is concentrated on the adjustment of adjustable inputs. Thus, in the
minor adjustment policy, for a specific DMUk, the values of the adjustable inputs are
given as

xMI∗
iak

= xiak + s
MI+ ∗
iak

−sMI−∗
iak

, ia = 1 2,…,ma (19.18)

19.2.2 Moderate Adjustment

The analysis of the moderate adjustment policy is concerned mainly with the reduc-
tion of some adjustable inputs, given that the other adjustable inputs cannot be chan-
ged, but the numbers of the other adjustable inputs for each DMU can be transferred.
Since some of the adjustable inputs can be reduced and others cannot be changed, the
adjustable inputs, xiaj (ia = 1 2,…,ma), can be divided further into two parts: the reduc-
ible inputs, xriraj (i

r
a = 1 2,…,mr

a), and the non-reducible inputs, xnrinra j (i
nr
a = 1 2,…,mnr

a ),

where ma =mr
a +m

nr
a . There are also two phases involved when performing moderate-

adjustment-policy analysis. Similarly to the minor adjustment policy in Phase I, the
objective is to identify the maximum average expansion rate θMO

r (r = 1 2,…,s) of the
output quantities.

19.2.2.1 Phase I Find the maximum system efficiency score under the content of
the moderate adjustment policy:

max
1
s

s

r = 1

θMO
r (19.19)

s t
n

k = 1

n

j= 1

λjkx
nr
inra j

=
n

k = 1

xnrinra k, i
nr
a = 1 2,…,mnr

a (19.20)

n

j= 1

λjkx
nr
inra j

≤ xnrinra k, i
nr
a = 1 2,…,mnr

a ,k = 1,…,n (19.21)

n

k = 1

n

j= 1

λjkx
r
iraj
≤

n

k = 1

xrirak, i
r
a = 1 2,…,mr

a (19.22)

n

j= 1

λjkx
r
iraj
≤ xrirak, i

r
a = 1 2,…,mr

a,k = 1,…,n (19.23)
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n

j= 1

λjkxinaj ≤ xinak, ina = 1 2,…,mna,k = 1,…,n (19.24)

n

k = 1

n

j= 1

λjkyrj ≥ θ
MO
r

n

k = 1

yrk,r = 1 2,…,s (19.25)

n

j= 1

λjkyrj ≥ yrk,r = 1 2,…,s,k = 1,…,n (19.26)

n

j= 1

λjk = 1,k = 1,…,n (19.27)

λjk ≥ 0, j= 1,…,n, k = 1,…,n (19.28)

Unlike the first-phase model for the minor adjustment policy, the constraint on the
aggregated reducible inputs in this model is in an inequality form, because the aggre-
gated amounts of reducible inputs can be changed in this model, indicating that the
reducible inputs should be less than or equal to their original aggregated levels, as
shown in (19.22). The non-reducible inputs are unchanged in the aggregated perspec-
tive; hence, the equality constraint is retained in (19.20). Equation (19.23) ensures that
the frontier amounts of reducible inputs will be no larger than the observed levels. This
model is similar to the first-phase model for the minor adjustment policy, and (19.19)–
(19.21) and (19.24)–(19.28) can be compared to (19.1)–(19.8), respectively.

The rth output scalar value θMO∗
r obtained in the third model is used further in the

constraints on the rth output in the next model to calculate the required slack values.
The objective in Phase II of the moderate adjustment policy is to determine the max-
imum number of reducible inputs that can be reduced, and the minimum number of
non-reducible inputs that can be transferred, without changing the total number of
non-reducible inputs. Thus, only the slack of the reducible inputs of all DMUs in
the objective function is shown in (19.29).

19.2.2.2 Phase II Find the total slacks of both the reducible and the non-reducible
inputs of all DMUs:

max
mr
a

ira = 1

n

k = 1

sMO−
irak

− sMO+
irak

xrirak
(19.29)

s t
n

k = 1

n

j= 1

λjkx
nr
inra j

=
n

k = 1

xnrinra k, i
nr
a = 1 2,…,mnr

a (19.30)

n

j= 1

λjkx
nr
inra j

= xnrinra k + s
MO+
inra k

−sMO−
inra k

, inra = 1 2,…,mnr
a ,k = 1,…,n (19.31)

n

k = 1

n

j= 1

λjkx
r
iraj
=

n

k = 1

xrirak + s
MO+
irak

−sMO−
irak

, ira = 1 2,…,mr
a (19.32)
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n

j= 1

λjkx
r
iraj
= xrirak + s

MO+
irak

−sMO−
irak

, ira = 1 2,…,mr
a,k = 1,…,n (19.33)

n

k = 1

sMO+
irak

≤
n

k = 1

sMO−
irak

, ira = 1 2,…,mr
a (19.34)

n

j= 1

λjkxinaj ≤ xinak, ina = 1 2,…,mna,k = 1,…,n (19.35)

n

k = 1

n

j= 1

λjkyrj = θ
MO∗
r

n

k = 1

yrk,r = 1 2,…,s (19.36)

n

j= 1

λjkyrj ≥ yrk,r = 1 2,…,s,k = 1,…,n (19.37)

n

j= 1

λjk = 1,k = 1,…,n (19.38)

λjk ≥ 0, j= 1,…,n, k = 1,…,n (19.39)

sMO−
inra k ,sMO+

inra k
, sMO−

irak
,sMO+

irak
≥ 0, inra = 1,…,mnr

a , i
r
a = 1,…,mr

a, k = 1,…,n (19.40)

For a specific DMUk, the optimal slacks of the non-reducible inputs (sMO+
inra k

) imply

that some amounts of non-reducible inputs (sMO+
inra k

) should be transferred from other

DMUs to DMUk. Otherwise, amounts of sMO−
inra k

should be transferred to other DMUs.

The total slack of a specific non-reducible input transferred to all DMUs should be
equal to the total slack of that non-reducible input transferred from all DMUs, as
shown in (19.30). Equation (19.31) is added to guarantee that the non-reducible inputs
for each DMU under the individual perspective equal the original value with a differ-
ence of (sMO+

inra k
−sMO−

inra k
). The constraints of (19.32) help determine if the current aggre-

gated amounts of reducible inputs are appropriate from the centralized perspective.4

Equation (19.33) is imposed to restrict the individual input sets. Equations (19.33) and
(19.34) imply that the frontier amounts of reducible inputs will be no larger than the
observed amounts of reducible inputs for DMUk. Furthermore, (19.34) ensures that
the total slacks of the reducible inputs transferred to all DMUs (sMO+

irak
) should not

be larger than the total slacks of the reducible inputs transferred from all DMUs
(sMO−

irak
). Reducible inputs can be cut from their current level, meaning that the aggre-

gated amounts of reducible inputs should be less than or equal to their original levels

4 Since the constraints in (19.32) are the sum of all the constraints in (19.33), they can be considered as
redundant.

258 ADVANCES IN DEA THEORY AND APPLICATIONS



after resource reallocation. Equation (19.40) indicates that the slacks of the reducible
and non-reducible inputs cannot be less than zero. Similarly, (19.29)–(19.30) and
(19.35)–(19.39) can be compared to (19.9)–(19.17), respectively.

After re-evaluating Phase II, for a specific DMUk, the values of the non-reducible
inputs are given as

xMO∗
inra k

= xnrinra k + s
MO+ ∗
inra k

−sMO−∗
inra k

, inra = 1 2,…,mnr
a (19.41)

In other words, the values of sMO+ ∗
inra k

and sMO−∗
inra k

represent how many non-reducible

inputs can be increased and decreased, respectively, with the slack variables of the
reducible inputs as an analogy as follows:

xMO∗
irak

= xrirak + s
MO+ ∗
irak

−sMO−∗
irak

, ira = 1 2,…,mr
a (19.42)

19.2.3 Major Adjustment

The analysis of the major adjustment policy is mainly concerned with the reduction of
adjustable inputs, while increasing output levels. Two phases are also evaluated in the
major-adjustment-policy analysis. Phase I involves finding the maximum average
expansion rate θMA

r (r = 1 2,…,s) of the output quantities.

19.2.3.1 Phase I Find the maximum efficiency scores under the content of the
major adjustment policy:

max
1
s

s

r = 1

θMA
r (19.43)

s t
n

k = 1

n

j= 1

λjkxiaj ≤
n

k = 1

xiak, ia = 1 2,…,ma (19.44)

n

j= 1

λjkxiaj ≤ xiak, ia = 1 2,…,ma,k = 1,…,n (19.45)

n

j= 1

λjkxinaj ≤ xinak, ia = 1 2,…,ma,k = 1,…,n (19.46)

n

k = 1

n

j= 1

λjkyrj ≥ θ
MA
r

n

k = 1

yrk,r = 1 2,…,s (19.47)

n

j= 1

λjkyrj ≥ yrk,r = 1 2,…,s,k = 1,…,n (19.48)

n

j= 1

λjk = 1,k = 1,…,n (19.49)
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λjk ≥ 0, j= 1,…,n, k = 1,…,n (19.50)

Equations (19.44) and (19.45) are similar to (19.22) and (19.23), implying that,
under the major adjustment policy, all adjustable inputs can be cut. The constraints
of (19.43) and (19.48)–(19.50) are comparable to the constraints of (19.1) and
(19.4)–(19.8).

To find the maximum amounts of adjustable inputs that can be reduced and the
minimum amounts of adjustable inputs that can be transferred, the objective function
of Phase II for the major adjustment policy is treated as the maximum net slacks of all
adjustable inputs. The optimal slack values of each DMU’s adjustable inputs (sMA+ ∗

iak

and sMA−∗
iak

) can be obtained by solving the next model, which represents the amounts
of adjustable inputs that can be reduced or transferred for each DMU.

19.2.3.2 Phase II Find the slack values of all adjustable inputs:

max
ma

ia = 1

n

k = 1

sMA−
iak

− sMA+
iak

xiak
(19.51)

s t
n

k = 1

n

j= 1

λjkxiaj =
n

k = 1

xiak + s
MA+
iak

−sMA−
iak

, ia = 1 2,…,ma (19.52)

n

j= 1

λjkxiaj = xiak + s
MA+
iak

−sMA−
iak

, ia = 1 2,…,ma,k = 1,…,n (19.53)

n

k = 1

sMA+
iak

≤
n

k = 1

sMA−
iak

, i1 = 1 2,…,m1 (19.54)

n

j= 1

λjkxinaj ≤ xinak, ina = 1 2,…,mna,k = 1,…,n (19.55)

n

k = 1

n

j= 1

λjkyrj = θ
MA∗
r

n

k = 1

yrk,r = 1 2,…,s (19.56)

n

j= 1

λjkyrj ≥ yrk,r = 1 2,…,s,k = 1,…,n (19.57)

n

j= 1

λjk = 1,k = 1,…,n (19.58)

λjk ≥ 0, j= 1,…,n, k = 1,…,n (19.59)

sMA−
iak

,sMA+
iak

≥ 0, ia = 1,…,ma, k = 1,…,n (19.60)
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Equations (19.52)–(19.54) are also similar to (19.32)–(19.34), indicating that the
amounts of adjustable inputs after resource allocation can be less than or equal to their
original levels.5 Finally, (19.51) and (19.55)–(19.60) can also be compared to (19.9)
and (19.12)–(19.17), respectively.

Under the major adjustment policy, for a specific DMUk, the values of adjustable
inputs are given as

xMA∗
iak

= xiak + s
MA+ ∗
iak

−sMA−∗
iak

, ia = 1 2,…,ma (19.61)

The values of sMA+ ∗
iak

and sMA−∗
iak

represent how many adjustable inputs can be

increased (sMA+ ∗
iak

) or decreased (sMA−∗
iak

), respectively, for each DMUk.

19.3 APPLICATIONS OF CENTRALIZED DEA IN
RESOURCE ALLOCATION

This section presents two related applications in empirical studies of the transport
industry. First, human resource rightsizing in airports will be illustrated. Second,
resource allocation in container terminal operations will be explored.

19.3.1 Human Resource Rightsizing in Airports6

We present an example based on 18 Taiwanese airports controlled by the Taiwan
Civil Aeronautics Administration (CAA) to investigate human resource rightsizing
for regular and contracted employees. Regular employees of the Taiwan CAA are cer-
tified by national examinations; thus, their positions are protected by official employ-
ment laws. They cannot be dismissed from their jobs, except when they have violated
laws or regulations. In contrast, contracted employees have employment periods
of just one year. Following the findings of Hitt et al. [31], reduced contracted
employee quotas seem to cause lower resistance than dismissing regular employees.
Hence, three policies for manpower reallocation strategies will be discussed. The three
strategies are:

1. Long-term policy. The CAA can reduce and transfer all contracted and regular
manpower.

2. Middle-term policy. The CAA can cut the amount of contracted manpower in
each airport and transfer contracted manpower among airports, while reduction
of total regular manpower is disallowed.

5 Since the constraints of (19.52) are the sum of all the constraints of (19.53), they can be considered as
redundant.
6 Adapted from Yu et al. [9].
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3. Short-term policy. The CAA cannot change the amount of regular manpower in
each airport from its original level and must maintain the total amount of con-
tracted manpower unchanged. However, airports are allowed to transfer their
contracted manpower to other airports without changing the aggregated amount
of contracted manpower from the original level.

In addition, some assumptions and terms need to be clarified. First, owing to pre-
emptive constraints (e.g. qualifications), contracted employees cannot replace regular
employees, and vice versa; thus, there is no overlap in the assigned work of regular
and contracted employees. Second, there is no cost for transferred and/or dismissed
work of regular and contracted employees. Third, except for both regular and con-
tracted employees, who must be represented by integer values, other input factors
can be represented by non-integer values (i.e. this implies that the regular and con-
tracted employees are non-separate resources). Fourth, only the output vector, as well
as the numbers of contracted and regular employees, can be used in the aggregated
view for analysis. This aggregated view refers to the utilization of the centralized
perspective to sum up a specific resource for multiple airports and aggregate it into
a centralized view. Taking this perspective, facility input variables might be treated
as non-discretionary variables, with a special environmental variable that constrains
manpower variables without any modifications to the three policies.

19.3.1.1 Input and Output Variables The input and output variables of an airport
that are adopted in this example are as follows:

1. Adjustable inputs: regular employees and contracted employees.

2. Non-adjustable inputs: runway areas, apron areas and terminal areas.

3. Outputs: flights, passengers and tons of cargo.

19.3.1.2 Numerical Results The results of the long-, middle- and short-term policy
analyses are summarized in Table 19.1. Under the long-term policy, the CAA has room
to lay off 54 regular employees and 143 contracted employees without affecting the
production of the maximum outputs. From a manpower perspective, only eight airports
(Airports 1, 3, 6, 10–12, 14 and 16) show no changes in both inputs. Two airports
(Airports 17 and 18) need to increase the numbers of both contracted employees and
regular employees, while six of the 18 airports require a reduction of both regular and
contracted employees (Airports 2, 4, 5, 7, 8 and 9). Two airports (Airports 13 and 15)
need to increase regular employees, but decrease contracted employees.

Under the middle-term policy, the CAA could lay off 65 contracted employees
for maximum output performance. These 65 contracted employees could be
sourced from Airports 4, 5, 7, 8, 9, 13 and 15, which need to reduce their number
of contracted employees by 68. Airports 16 and 17 need to increase their number of
contracted employees by three; these could be transferred from Airports 4, 5, 7, 8, 9,
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13 and 15. In addition, from the resource exchange perspective, for regular employ-
ees, Airports 5, 8 and 9 could transfer 10 employees to airports 4, 7, 15, 16 and 17.

Finally, under the short-term policy, the total numbers of both contracted and reg-
ular employees are fixed at their original levels, with only the number of contracted
employees at some airports exhibiting change (Airports 15 and 17), indicating that any
resistance that there may be to manpower adjustments will be caused largely by the
short-term policy. The short-term analysis results indicate that Airport 17 can transfer
two contracted employees to Airport 15. They also indicate the variation in the num-
ber of contracted employees for each airport; however, the results are indifferent to the
specific airports involved in the transfer of employees.

Furthermore, the results of the three policies for the slacks are compared here.
Table 19.1 also represents a fit change policy (i.e. a change from the short- and mid-
dle-term policies to the long-term policy), in addition to a rapid-change downsizing
policy. The slacks of the long-term employee levels are generally larger than those of
the middle- and short-term employee levels. If a rapid-change policy is conducted, a
large number of contracted and regular staff will lose their jobs, possibly resulting in
larger organizational resistance. In contrast, if a fit change policy is adopted, staff are
reduced or adjusted smoothly and systematically (in a short-, middle- and long-term
way), resulting in lower organizational resistance.

TABLE 19.1 Comparison of slack values for the three policies.a

Airport

Short-term policy Middle-term policy Long-term policy

Δxr Δxc Δxr Δxc Δxr Δxc

1 0 0 0 0 0 0
2 0 0 0 0 −32 −70
3 0 0 0 0 0 0
4 0 0 1 −13 −10 −23
5 0 0 −3 −20 −3 −17
6 0 0 0 0 0 0
7 0 0 1 −3 −2 −4
8 0 0 −3 −8 −9 −10
9 0 0 −4 −22 −4 −22
10 0 0 0 0 0 0
11 0 0 0 0 0 0
12 0 0 0 0 0 0
13 0 0 0 −1 1 −1
14 0 0 0 0 0 0
15 0 2 1 −1 1 −1
16 0 0 2 2 0 0
17 0 −2 5 1 3 3
18 0 0 0 0 1 2
Total 0 0 0 −65 −54 −143
aΔxr is the variation in the number of regular employees, and Δxc is the variation in the number of con-
tracted employees.

263DEA IN RESOURCE ALLOCATION



19.3.2 Resource Allocation in Container Terminal Operations7

To illustrate resource allocation by use of a CDEA model, an example based on five
dedicated terminals supervised by a specific liner shipping company, which is one of
the world’s top 20 liner shipping companies, is used here. Two (named A and B) of the
five dedicated terminals are in America, two (named D and E) are in Asia and one is in
Europe (named C). Data related to the year 2011 were obtained from the five container
terminals. Two strategies are considered.

1. Minor adjustment policy. The liner shipping company lets both labour and haul-
ing equipment be transferred among terminals, and cannot change the aggre-
gated amount of hauling equipment from its original aggregated level, but
only allows the aggregated amount of labour to be reduced.

2. Major adjustment policy. Both labour and hauling equipment are transferable
among terminals, and the aggregated amounts of labour and hauling equipment
can be reduced.

However, the model for the minor adjustment policy is built on the assumption of
VRS, while the model for the major adjustment policy is built on the assumption
of CRS.

19.3.2.1 Input and Output Variables The input and output variables for a con-
tainer terminal that are used in this example are as follows:

1. Adjustable inputs: labour and hauling equipment.

2. Non-adjustable inputs: quay gantry cranes and marshalling yard.

3. Output: container throughput in twenty-foot equivalent units (TEU).

19.3.2.2 Numerical Results The results of the analyses of the minor and major
adjustment policies are shown in Table 19.2. Under the minor adjustment policy,
the aggregated amount of the labour cost needs to be reduced by 46 984 689 USD
without affecting the production of the maximum outputs. Terminal A requires a
reduction in labour cost by 38 957 548 USD, and terminal B could decrease its labour
cost by 8 027 141 USD. Although there is no need for the total number of pieces of
hauling equipment to change, the hauling equipment needs to be reallocated among
the terminals, as also shown in Table 19.2. The shipping company can maximize pro-
duction in terms of the aggregated output for all terminals by transferring hauling
equipment from terminal A to terminal B. Terminal A requires a reduction in hauling
equipment by nine items, and terminal B should increase its hauling equipment by
nine items, with terminals C, D and E needing no changes in labour and hauling
equipment.

7Adapted from Chang et al. [10].
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Under the major adjustment policy, both labour and hauling equipment need to be
reduced in order to maximize production in terms of the aggregated output of all term-
inals efficiently. Without affecting the production of the maximum outputs, the aggre-
gated amount of the labour cost should be reduced by 121 577 554 USD, while the
number of pieces of hauling equipment needs to be reduced by 23. There is a great
need for terminal A to reduce its labour cost by 116 649 264 USD, and terminal
B requires a reduction in its labour cost by 4 928 290 USD. The hauling equipment
needs to be reallocated among the terminals: as shown in Table 19.2, terminal
A requires a reduction in hauling equipment by 28 pieces, and terminal B is in need
of five items.

In summary, the operations of terminals C, D and E are the most efficient. This
means that the resource utilization of terminals C, D and E is at the optimum, based
on both the minor and the major adjustment scenarios. The liner shipping company
does not need to adjust any resources in them. Terminal A is the most inefficient ter-
minal under the two scenarios. In order to improve the overall efficiency of the five
terminals, the shipping company should reduce the resources in Terminal A. In ter-
minal B, labour needs to be reduced, but the hauling equipment needs to be increased.

19.4 EXTENSION

In the above sections, we have assumed that all outputs are desirable. However, in
many real situations, transport organizations will produce desirable and undesirable
outputs simultaneously. For example, aircraft noise is a kind of pollution produced
by an aircraft or its components, and has impacts on the communities surrounding
an airport [32]. In order to deal with undesirable outputs, the original CDEA model
needs to be modified to consider the trade-off between the utilization of desirable out-
puts and the control of undesirable outputs.

We use the Russell directional distance function (RDDF) to incorporate undesir-
able outputs into the CDEAmodel for resource allocation. Before formulating the new
models, the outputs, yrj (r = 1,…,s), must be divided further into desirable outputs, yrdj
(rd = 1,…,sd), and undesirable outputs, yrndj (rnd = 1,…,snd), where s= sd + snd.

TABLE 19.2 Comparison of slack values for the two policies.a

Terminal

Minor adjustment policy Major adjustment policy

Δxl (USD) Δxh (items) Δxl (USD) Δxh (items)

A −38 957 548 −9 −116 649 264 −28
B −8 027 141 9 −4 928 290 5
C 0 0 0 0
D 0 0 0 0
E 0 0 0 0
Total −46 984 689 0 −121 577 554 −23
aΔxl is the variation in the number of labourers, and Δxh is the variation in the number of items of hauling
equipment.
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In addition, some more notation must be added. Let δrd be the inflation of desirable
output rd, and φrnd be the deflation of undesirable output rnd. The model for the minor
adjustment policy can be modified as follows.

19.4.1 Phase I

max ρMI =
1
2

1
sd

sd

rd = 1

δMI
rd

+
1
snd

snd

rnd = 1

φMI
rnd

(19.62)

s t
n

k = 1

n

j= 1

λjkxiaj =
n

k = 1

xiak, ia = 1 2,…,ma (19.63)

n

j= 1

λjkxiaj ≤ xiak, ia = 1 2,…,ma,k = 1,…,n (19.64)

n

j= 1

λjkxinaj ≤ xinak, ina = 1 2,…,mna,k = 1,…,n (19.65)

n

k = 1

n

j= 1

λjkyrdj ≥ 1 + δMI
rd

n

k = 1

yrdk,rd = 1 2,…,sd (19.66)

n

j= 1

λjkyrdj ≥ yrdk,rd = 1 2,…,sd,k = 1,…,n (19.67)

n

k = 1

n

j= 1

λjkyrndj = 1−φMI
rnd

n

k = 1

yrndk,rnd = 1 2,…,snd (19.68)

n

j= 1

λjkyrndj ≤ yrndk,rnd = 1 2,…,snd,k = 1,…,n (19.69)

n

j= 1

λjk = 1,k = 1,…,n (19.70)

λjk ≥ 0, j= 1,…,n, k = 1,…,n (19.71)

Equation (19.62) seeks the optimum expansion rate of the aggregated desir-
able outputs and contraction rate of the aggregated undesirable outputs.
Equation (19.66) seeks to non-radially increase each desirable output as much as pos-
sible, whereas (19.68) seeks to non-radially decrease each undesirable output as much
as possible. Equations (19.66) and (19.68) ensure that each desirable output and each
undesirable output remain in the feasible aggregated desirable output set and aggre-
gated undesirable output set, respectively. Equation (19.67) imposes the restriction

266 ADVANCES IN DEA THEORY AND APPLICATIONS



that the projected point of each DMUmust be no less than the observed desirable out-
put quantities of DMUk, whereas (19.69) imposes the restriction that the projected
point for each DMUmust be no more than the observed undesirable output quantities
of DMUk. Equations (19.63)–(19.65) and (19.70)–(19.71) can be compared with
Equations (19.2)–(19.4) and (19.7)–(19.8), respectively.

19.4.2 Phase II

Find the slack variables of the adjustable inputs at δMI∗
rd

and φMI∗
rnd

obtained in Phase I:

max
ma

ia = 1

n

k = 1

sMI−
iak

− sMI+
iak

xiak
(19.72)

s t
n

k = 1

n

j= 1

λjkxiaj =
n

k = 1

xiak, ia = 1 2,…,ma (19.73)

n

j= 1

λjkxiaj = xiak + s
MI+
iak

−sMI−
iak

, ia = 1 2,…,ma,k = 1,…,n (19.74)

n

j= 1

λjkxinaj ≤ xinak, ina = 1 2,…,mna,k = 1,…,n (19.75)

n

k = 1

n

j= 1

λjkyrdj = 1 + δMI∗
rd

n

k = 1

yrdk,rd = 1 2,…,sd (19.76)

n

j = 1

λjkyrdj ≥ yrdk,rd = 1 2,…,sd,k = 1,…,n (19.77)

n

k = 1

n

j= 1

λjkyrndj = 1−φMI∗
rnd

n

k = 1

yrndk,rnd = 1 2,…,snd (19.78)

n

j= 1

λjkyrndj ≤ yrndk,rnd = 1 2,…,snd,k = 1,…,n (19.79)

n

j= 1

λjk = 1,k = 1,…,n (19.80)

λjk ≥ 0, j= 1,…,n, k = 1,…,n (19.81)

sMI−
iak

,sMI+
iak

≥ 0, ia = 1,…,ma, k = 1,…,n (19.82)

Equations (19.76) and (19.78) can be seen as using the reallocation perspective to
reach the ideal desirable and undesirable outputs under the CDEA perspective.
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Equations (19.77) and (19.79) are analogous to (19.67) and (19.69). In addition,
(19.72)–(19.75) and (19.80)–(19.82) can be compared with (19.9)–(19.12) and
(19.15)–(19.17), respectively. Finally, the optimal slack variables of the adjustable
inputs can be obtained from the above model with undesirable outputs.

Similarly, by applying the objective function identified in (19.62) and the con-
straints identified in (19.20)–(19.24) and (19.66)–(19.71), the Phase I model for
the moderate adjustment policy can be constructed, and the optimal slack values of
the adjustable inputs can be obtained from Phase II, which is built by applying the
objective function identified in (19.72) and the constraints identified in (19.30)–
(19.35), (19.76)–(19.81) and (19.40).

Finally, the models for the major adjustment policy can be constructed. In Phase I,
the objective function identified in (19.62) and the constraints identified in (19.44)–
(19.46) and (19.66)–(19.71) are used to find the optimal expansion rate of desirable
outputs and the optimal contract rate of undesirable outputs. In Phase II, the object
function identified in (19.72) and the constraints identified in (19.52)–(19.55) and
(19.76)–(19.82) are applied to obtain the optimal slack values of the adjustable inputs.

19.5 CONCLUSIONS

In this chapter, we have provided a systematic and centralized perspective on resource
reallocation, and applied this perspective to construct two-phase CDEA models that
illustrate various adjustment policies designed in order to lessen organizational resist-
ance. In the resource reallocation process utilized by the authorities in an organization,
the CDEA model for planning and reallocating resources is a valid tool for the inves-
tigation of both reduction and transformation of inputs among the units of the organi-
zation. Since the focus of the chapter was on providing the appropriate resource
reallocation policies, we have developed a minor adjustment policy, moderate adjust-
ment policy and major adjustment policy. These policies can provide a systematic
resource reallocation process to reduce organizational resistance. They can also provide
a step-by-step allocation path. In addition, we have chosen two related applications in
transport organizations to investigate the applicability of resource reallocation by using
CDEAmodels, and described the results of resource reallocation. Finally, we havemod-
ified the CDEAmodels to deal with undesirable outputs, because such undesirable out-
puts are jointly produced with desirable outputs in many transport organizations.
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20
HOW TO DEAL WITH NON-CONVEX
FRONTIERS IN DATA ENVELOPMENT
ANALYSIS1
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20.1 INTRODUCTION

In data envelopment analysis (DEA), we are often puzzled by the large difference
between the constant-returns-to-scale (CRS) score and the variable-returns-to-scale
(VRS) score.2 Several authors ([1–3], among others) have proposed solutions to this
problem. In this chapter, we propose a different approach to solving this problem,
and present our results. A further problem, which is closely related to the problem
mentioned above, is the conventional assumption of a convex production possibility
set. Several researchers have discussed non-convex production possibility issues

1 Part of the material in this chapter is adapted from the Journal of Optimization Theory and Applications,
Vol. 166, Tone K. and Tsutsui M., How to deal with non-convex frontiers in data envelopment analysis,
(2014) 1002–1028, with permission from Springer.
2 See Figure 20.9 for a comparison of CRS and VRS scores, where large differences are observed between
the two scores.

Advances in DEA Theory and Applications: With Extensions to Forecasting Models,
First Edition. Edited by Kaoru Tone.
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([4–7], among others). Among these publications, we refer two relevant articles.
Dekker and Post [4] extended the standard assumption of a concave efficient frontier
in DEA to a quasi-concavity model. However, this quasi-concavity assumption does
not always work for identification of frontiers associated with real-world problems.
Our approach is more general in dealing with the non-convexity issue. Kousmanen
[5] utilized disjunctive programming for identification of a conditionally convex
production set. He characterized various reference technologies by setting irrelevant
intensity values to zero, while keeping the convexity condition in the chosen tech-
nology. His method is enumerative in the sense that the number of reference tech-
nologies is combinatorial. Our method differs from his in (a) introduction of clusters
instead of enumeration, and (b) relaxation of the convexity condition on the intensity
vector. As far as we know, no paper has discussed these subjects in the scale- and
cluster-related context. In this chapter, we discuss the above two fundamental
problems of DEA.

A further objective of this chapter is measurement of the scale elasticity of produc-
tion. Most prior research into this subject has been based on the assumption of a
convex production possibility set. We propose a new scheme for evaluation of the
scale elasticity within a specific cluster containing each individual decision-making
unit (DMU).

We refer to the seminal papers of Farrell [8] and Farrell and Fieldhouse [9] for a
discussion of the case of economies and diseconomies of scale. Charnes et al. [10]
extended Farrell’s work on evaluation of a program and its managerial efficiency
through experiments, where program follow-through (PFT) and non-follow-through
(NFT) were treated as two separate clusters. Førsund et al. [11] revisited Farrell [8]
and Farrell and Fieldhouse [9]. They pointed out that Farrell and Fieldhouse’s group-
ing method creates efficient frontiers for each group. They also generalized this idea
to multiple outputs and tried to represent frontier functions graphically, where
EffiVision [12] was utilized. They discussed several economic concepts through this
visualization.

Considering the scope of these previous studies, the novel features of this chapter
are as follows:

1. We extend Farrell’s approach to discriminate scale merits and scale demerits,
by utilizing scale efficiency. We decompose the slacks of each DMU into
scale-dependent and scale-independent parts.

2. We extend the clustering approach of Charnes et al. [10], by coupling that
approach with scale merits and scale demerits. Thus, we can find non-convex
frontiers.

3. Although non-convex frontiers can be identified by the free disposal hull (FDH)
model [13], that model is a discrete model in the sense that the elements of the
intensity vector are binary. In addition, scale effects are not involved. Our
model permits continuous intensity vectors and can find non-convex frontiers
by means of clusters.
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This chapter is structured as follows. In Section 20.2, we describe the decomposition
of the CRS slacks after introducing the basic notation, and define the scale-independent
dataset. In Section 20.3, we introduce clusters and define the scale- and cluster-adjusted
score (SAS). In Section 20.4, we explain our scheme using an artificial example.
We develop the radial-model case in Section 20.5. In Section 20.6, we define the scale
elasticity based on the scale-dependent dataset. A typical application, in this case con-
cerning Japanese national university research output, follows in Section 20.7, and the
last section concludes the chapter.

20.2 GLOBAL FORMULATION

In this section, we introduce the notation and basic tools, and discuss the decompo-
sition of the slacks. Throughout Sections 20.2 to 20.4, we utilize the input-oriented
slacks-based measure (SBM) [14], a non-radial model, for explanation of our model.

20.2.1 Notation and Basic Tools

Let the input and output data matrices be, respectively,

X = xij IRm × n and Y= yrj IRs × n (20.1)

where m, s and n are the numbers of inputs, outputs and DMUs, respectively. We
assume that the data are positive, that is, X > 0 and Y> 0.

Then, the production possibility sets for the CRS and VRS models are defined by

PCRS = x,y x ≥Xλ,y ≤Yλ,λ ≥ 0 ,

PVRS = x,y x ≥Xλ,y ≤Yλ,eλ= 1,λ ≥ 0
(20.2)

respectively, where x > 0 IRm, y > 0 IRs and λ ≥ 0 IRn are the input, output
and intensity vectors, respectively, and e IRn is the row vector with all elements
equal to 1.

The input-oriented slacks-based measures for evaluation of the efficiency of each
DMU xk,yk k = 1,…,n , in the CRS and VRS models, are as follows:

CRS θCRSk = min
λ,s− ,s +

1−
1
m

m

i= 1

s−i
xik

, s t

Xλ+ s− = xk,Yλ−s + = yk,λ ≥ 0,s− ≥ 0,s + ≥ 0

(20.3)

VRS θVRSk = min
λ,s− ,s +

1−
1
m

m

i= 1

s−i
xik

, s t

Xλ+ s− = xk,Yλ−s+ = yk,eλ= 1,λ ≥ 0,s− ≥ 0,s + ≥ 0

(20.4)
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where λ is the intensity vector, and s− and s+ are the input and output slacks, respec-
tively. Although we present our model in the context of the input-oriented SBM
model, we can also develop the model in the context of the output-oriented and
non-oriented SBM models, as well as the radial models.

We define the scale efficiency (σk) of DMUk as

σk =
θCRSk

θVRSk

(20.5)

We denote the optimal slacks of the CRS model by

s−∗k ,s + ∗k (20.6)

Although we utilize the scale efficiency, CRS/VRS, as an index of the scale merits
and scale demerits, we can make use of other indices that are appropriate for discrim-
inating handicaps due to scale. However, the index must be normalized between 0 and
1, with a larger value indicating a better scale condition.

20.2.2 Uniqueness of Slacks

Although the CRS and VRS scores are determined uniquely, their slacks are not
always unique in the SBM model. We can resolve this problem as follows:

1. Priority.We determine the priority (importance) of the input factors. For exam-
ple, the most cost-influential input factor is identified as the first priority,
because the reduction of its slack is most recommended. The second and others
follow in this way.

2. Multi-objective programming for the determination of slacks according to
their priority. We assume that the priority is s−1 ,s

−
2 ,…,s−m in that order. We

maximize the slacks s−1 ,s
−
2 ,…,s−m using the multi-objective programming

framework below:

max
λ,s− ,s+

s−1 ,s
−
2 ,…,s−m

s t
1
m

m

i= 1

s−i
xik

= 1−θCRSk ,Xλ+ s− = xk,Yλ−s + = yk,λ ≥ 0,s− ≥ 0,s+ ≥ 0
(20.7)

This notation indicates that we first maximize s−1 subject to (20.7). Then, fixing s−1
at the optimal value, we maximize s−2 subject to (20.7). We repeat this process until
s−m−1 is reached.

For the VRS model (20.4), we can determine the slacks uniquely using the above
procedure by including the convexity constraint eλ= 1.
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20.2.3 Decomposition of CRS Slacks

We decompose the CRS slacks into scale-independent and scale-dependent parts as
follows:

s−∗k = σks−∗k + 1−σk s−∗k

s + ∗k = σks+ ∗k + 1−σk s + ∗k

(20.8)

If DMUk satisfies σk = 1 (the so-called ‘most productive scale size’), all its slacks
are attributed to scale-independent slacks. However, if σk < 1, the slacks are decom-
posed into a scale-independent part and a scale-dependent part as follows:

Scale− independent slacks σks−∗k ,σks+ ∗k

Scale−dependent slacks 1−σk s−∗k , 1−σk s + ∗k

(20.9)

20.2.4 Scale-Independent Dataset

We define the scale-independent data xk,yk k = 1,…,n by subtracting and adding
the scale-dependent slacks as follows:

Scale− independent input xk = xk − 1−σk s−∗k

Scale− independent output yk = yk + 1−σk s+ ∗k

(20.10)

This process is illustrated in Figure 20.1. The scale-independent dataset X,Y is
defined by

X,Y = xj,yj j= 1,…,n (20.11)

Scale-dependent slacks
(1–σk)sk

–*

y

x

xkxk

Scale-independent slacks
σksk

–*

Figure 20.1 Scale-independent input.
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We define the production possibility sets P(X,Y) and P X,Y for (xj, yj) and
xj,yj j= 1,…,n , respectively, as follows:

P X,Y = x,y x ≥
n

j= 1
xjλj,0 ≤ y ≤

n

j= 1
yjλj,λ ≥ 0

P X,Y = x,y x ≥
n

j= 1
xjλj,0 ≤ y ≤

n

j= 1
yjλj,λ ≥ 0

(20.12)

Lemma 20.1 P X,Y =P X,Y

Proof We define the scale-independent DMU, xj,yj j= 1,…,n , by

xj = xj− 1−σj s−∗j

yj = yj + 1−σj s + ∗j

(20.13)

If σj = 1, then we have xj = xj and yj = yj. If σj < 1z, then

xj = xj− 1−σj s−∗j ≥ xj−s−∗j

yj = yj + 1−σj s + ∗j ≤ yj + s
+ ∗
j

(20.14)

where xj−s−∗j ,yj + s
+ ∗
j is the projection of (xj, yj) onto the frontiers of P(X,Y).

Thus xj,yj j = 1,…,n belongs to P(X,Y). Hence, efficient frontiers are common

to P(X,Y) and P X,Y . ∎

20.3 IN-CLUSTER ISSUE: SCALE- AND CLUSTER-ADJUSTED
DEA SCORE

In this section, we introduce the clusters of DMUs and define the SAS.

20.3.1 Clusters

We classify DMUs into several clusters depending on their characteristics. The
clusters can be determined by using a clustering method (in the field of statistics)
appropriate to the problem concerned, or supplied exogenously (see Section 20.7
for an example).

Farrell and Fieldhouse [9] used the grouping method for their study of farm survey
data for England and Wales for the period 1952–1953. They divided all observations
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(208) into 10 groups (clusters) according to output (gross sales). The method certainly
depends on adequate datasets with sufficient observations in each size group. See
Figure 20.2 for an illustration, where three clusters are shown, depending on the out-
put size (a variation of Figure 20.1 in Førsund et al. [11]).

Environmental factors can be utilized for classification in addition to input/output
factors. Charnes et al. [10] divided DMUs into two groups by PFT and NFT proper-
ties. Several authors have discussed environmental factors, for example Avkiran [15],
Paradi et al. [16] and Cook [17], among others.

However, if the above clustering methods are unavailable, clusters can be deter-
mined a posteriori depending on the degree of scale efficiency. An example of the
latter case, as a supplementary tool, is described in Appendix 20.A.

Since both the clusters and the scale efficiencies critically affect the results of
the proposed scheme, we need to handle these matters deliberately, referring to
the above literature, and we need to try many clustering cases to obtain a reasonable
conclusion.

We denote the cluster containing DMUj by Cluster(j), where j= 1,…,n.

20.3.2 Solving the CRS Model in the Same Cluster

We solve the CRS model for each DMU xk,yk k = 1,…,n , referring to the X,Y
in the same cluster (k). The solution is formulated as follows:

min
μ, scl− ,scl+

1−
1
m

m

i= 1

scl−i

xik

s t Xμ+ scl− = xk,Yμ−scl+ = yk,

μj = 0 j Cluster j Cluster k ,

μ ≥ 0,scl− ≥ 0,scl+ ≥ 0

(20.15)

Cluster B

Input

Output

Cluster C

Cluster A

Figure 20.2 Clustering by output size.
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We denote the optimal in-cluster slacks by scl−∗k ,scl+ ∗k .3 By summing the
scale-dependent slacks and the in-cluster slacks, we define the total number of
slacks as

Total input slacks s −k = 1−σk s−∗k + scl−∗k

Total output slacks s +k = 1−σk s + ∗k + scl + ∗k

(20.16)

The scale-and cluster-adjusted data xk,yk (projection) is defined by

x k = xk −s
−
k = xk − 1−σk s−∗k −scl−∗k

yk = yk + s
+
k = yk + 1−σk s + ∗k + scl+ ∗k

(20.17)

Figure 20.3 illustrates the scale- and cluster-adjusted input.
At this point, we have removed the scale demerits and in-cluster slacks from the

dataset. Thus, we have obtained the scale-free and in-cluster slacks-free (projected)
dataset:

X,Y = xj,yj j= 1,…,n (20.18)

20.3.3 Scale- and Cluster-Adjusted Score

In the input-oriented case, the SAS is defined by

θSASk = 1−
1
m

m

i= 1

s−ik
xik

= 1−
1
m

m

i= 1

scl−∗ik + 1−σk s−∗ik

xik
(20.19)

y

x

Scale-dependent slacks
(1–σk)sk

–*

xkxkxk

In-cluster slacks sd–*

Figure 20.3 Scale- and cluster-adjusted input.

3We apply the same priority rule for slacks as defined in Section 20.2.2.
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The reason we utilize the above scheme is as follows. First, we wish to
eliminate scale demerits from the CRS slacks. For this purpose, we decompose
the CRS slacks into scale-dependent and scale-independent parts, by recogniz-
ing that the scale demerits are represented by 1−σk. If σk = 1, the DMU has no
scale demerits, and its slacks are attributed to itself. If σk = 0 25, 75% of the slacks
are attributed to the DMU’s scale demerits. After removing the scale-dependent
slacks, we evaluate the DMU within its cluster and determine the in-cluster slacks.
If the DMU is efficient within its cluster, its in-cluster slacks are zero, while, if it
is inefficient, the DMU has in-cluster slacks with respect to the efficient DMUs.
Finally, we sum the in-cluster and scale-dependent slacks to obtain the total amount
of slacks. Using the total slacks value determined, we define the SAS.

Proposition 20.1 The SAS is not less than the CRS score:

θSASk ≥ θCRSk k (20.20)

Proposition 20.2 If all DMUs belong to the same cluster, it holds
that θSASk = θCRSk k .

This implies that no non-convex frontiers exist when all DMUs belong to the
same cluster.

Proposition 20.3 If θCRSk = 1, then it holds that θSASk = θCRSk , but not vice versa.

Proposition 20.4 The SAS decreases with increasing input and decreasing output, as
long as both DMUs remain in the same cluster.

Proposition 20.5 The projected DMU xk,yk is efficient under the SAS model
among the DMUs in the cluster it belongs to. It is also CRS and VRS efficient among
the DMUs in its cluster.

Proofs of these propositions are given in Appendix 20.B.

20.3.4 Summary of the SAS Computation

We can summarize the SAS computation as follows:

Step 1. Input data (X, Y, Cluster). The clusters can be supplied exogenously
by some clustering method, including the use of experts’ knowledge, or deter-
mined internally depending on the degree of scale efficiency.

Step 2. For k = 1,…,n, solve (20.3) and (20.4) to obtain the CRS and
VRS scores, θCRSk and θVRSk , respectively. Define the scale effi-
ciency σk = θ

CRS
k θVRSk .

Step 3. Using the optimal slacks s−∗k ,s + ∗k for the CRS model, define the scale-

dependent slacks as 1−σk s−∗k , 1−σk s + ∗k .
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Step 4. Define the scale-independent dataset X,Y = xk,yk k = 1,…,n by

Scale− independent input xk = xk − 1−σk s−∗k

Scale− independent output yk = yk + 1−σk s + ∗k

(20.21)

Step 5. Solve the CRS model (20.15) for each xk,yk , referring to the X,Y in
the same cluster (k), and obtain the optimal in-cluster slacks scl−∗k ,scl+ ∗k .

Step 6. Define the SAS by

θSASk = 1−
1
m

m

i= 1

scl−∗ik + 1−σk s−∗ik

xik
(20.22)

Step 7. Obtain the scale- and cluster-adjusted input and output (projection) xk,yk
by use of

x k = xk − 1−σk s−∗k −scl−∗k

yk = yk + 1−σk s+ ∗k + scl+ ∗k

(20.23)

Step 8. Define the scale- and cluster-adjusted dataset by X,Y = xj,yj
j= 1,…,n .

20.3.5 Global Characterization of SAS-Projected DMUs

From Proposition the SAS-projected xk,yk is positioned on the convex frontier
within its containing cluster. We can determine whether or not it is located on the
global convex frontier by solving the following linear program:

u0 u0 = min
v,u,u0

max
v,u,u0

u0

s t vxk = 1,uyk −u0 = 1,

−vxj +uyj−u0 ≤ 0 j ,

v ≥ 0,u ≥ 0, u0 free in sign

(20.24)

1. If this program is infeasible, then there is no supporting hyperplane of X,Y at

xk,yk which is located on the globally non-convex frontiers.

2. If this program is feasible, let an optimal solution be u∗0,v
∗,u∗ , with u∗0 = u0

(or ū0). Then, the hyperplane −v∗x+ u∗y−u∗0 = 0 is a supporting hyperplane
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of X,Y at xk,yk . Hence, xk,yk is located on the convex frontiers of the

SAS-projected DMUs. Furthermore, we can characterize some of the convex
frontiers specifically.

3. If there is a vector v ≥ 0 such that vxk = 1 and vxj ≥ 1 j , then xk,yk is located

on the boundary of X,Y and has a supporting hyperplane which is vertical

with respect to the input axes.

4. If there is a vector u ≥ 0 such that uyk = 1 and uyj ≤ 1 j , then xk,yk is located

on the boundary of X,Y and has a supporting hyperplane which is horizontal

with respect to the input axes.

5. If xk,yk satisfies the above two conditions 3 and 4, then xk,yk is located on

the corner of X,Y and has supporting hyperplanes which are vertical or

horizontal with respect to the input axes.

We note that the difference between the VRS score and the SAS score is unrelated to
the global characteristics of the SAS-projected DMU.

20.4 AN ILLUSTRATIVE EXAMPLE

In this section, we present an artificial example with a single input and a single output.
Table 20.1 shows 10 DMUs with input x and output y, while Figure 20.4 gives a
graphical interpretation of the same data. These DMUs display a typical S-shaped
curve.

Initially, we solved the input-oriented CRS and VRS models, and obtained the
scale efficiency and CRS slacks, which were then decomposed into scale-independent

TABLE 20.1 Example.

DMU Input Output Cluster

A 2 1 a
B 3 1.2 a
C 4 2 c
D 4.5 3 d
E 5 5 e
F 6 5.8 e
G 7 6.3 g
H 8 6.7 h
I 9 6.9 i
J 10 7 j

281HOW TO DEAL WITH NON-CONVEX FRONTIERS IN DATA ENVELOPMENT ANALYSIS



and scale-dependent parts. Table 20.2 shows the solutions and the decomposed parts.
Since the output, y, has no slacks in this example, they are not included in the table.

In the second phase, we deleted the scale-dependent slacks from the data and
obtained the dataset X,Y . We solved the CRS model within each cluster and deter-
mined the in-cluster slacks. By summing the scale-dependent slacks and the in-cluster
slacks, we obtained the total slacks. Table 20.3 shows the data obtained.

Finally, we computed the adjusted score, θSAS, and the projected input and output.
These values are given in Table 20.4, while Figure 20.5 displays the results graphi-
cally. In the table, ‘Frontier’ indicates the global characteristics of the SAS-projected
DMUs, identified using (20.24).
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Figure 20.4 Data plot of DMUs defined in Table 20.1.

TABLE 20.2 CRS, VRS, scale efficiency and slacks for the DMUs in Table 20.1.

DMU CRS-I VRS-I
Scale

efficiency
CRS
slacks

Scale-
independent

slacks

Scale-
dependent
slacks

A 0.5 1 0.5 1 0.5 0.5
B 0.4 0.717 0.558 1.8 1.0047 0.7953
C 0.5 0.688 0.727 2 1.4545 0.5455
D 0.667 0.778 0.857 1.5 1.2857 0.2143
E 1 1 1 0 0 0
F 0.967 1 0.967 0.2 0.1933 0.0067
G 0.9 1 0.9 0.7 0.63 0.07
H 0.838 1 0.838 1.3 1.0888 0.2113
I 0.767 1 0.767 2.1 1.61 0.49
J 0.7 1 0.7 3 2.1 0.9
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TABLE 20.3 Calculated X,Y , in-cluster slacks and total slacks.

DMU Cluster

Scale-
independent

input

Scale-
independent

output

Scale-
dependent
slacks

In-cluster
slacks

Total
slacks

A a 1.5 1 0.5 0 0.5
B a 2.2047 1.2 0.7953 0.4047 1.2
C c 3.4545 2 0.5455 0 0.5455
D d 4.2857 3 0.2143 0 0.2143
E e 5 5 0 0 0
F e 5.9933 5.8 0.0067 0.1933 0.2
G g 6.93 6.3 0.07 0 0.07
H h 7.7888 6.7 0.2113 0 0.2113
I i 8.51 6.9 0.49 0 0.49
J j 9.1 7 0.9 0 0.9

TABLE 20.4 Adjusted score (SAS) and projected input and output.

DMU SAS-I Projection input Projection output Frontier Cluster

A 0.75 1.5 1 Vertical a
B 0.6 1.8 1.2 Non-convex a
C 0.8636 3.4545 2 Non-convex c
D 0.9524 4.2857 3 Non-convex d
E 1 5 5 Convex e
F 0.9667 5.8 5.8 Convex e
G 0.99 6.93 6.3 Non-convex g
H 0.9736 7.7888 6.7 Convex h
I 0.9456 8.51 6.9 Convex i
J 0.91 9.1 7 Horizontal j
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Figure 20.5 Projection and data.
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In Table 20.5 and Figure 20.6, we compare the input-oriented CRS score, VRS
score and SAS. The SASs of DMUs C and D have larger values than the scores given
by the VRS model. This reflects the non-convex characteristics of the dataset. The
projected frontiers are a mixture of non-convex and convex parts.

20.5 THE RADIAL-MODEL CASE

In this section, we develop our model to the case of radial models. We utilize the input-
oriented radial measures of the CCR [18] and BCC [19] models for the efficiency eval-
uation of each DMU xk,yk k = 1,…,n as follows:

CCR θCCRk = min
λ

θ, s t Xλ ≤ θxk,Yλ ≥ yk, λ ≥ 0, θ free (20.25)

TABLE 20.5 Comparison of the CRS scores, VRS
scores and SAS.

DMU CRS-I VRS-I SAS-I

A 0.5 1 0.75
B 0.4 0.7167 0.6
C 0.5 0.6875 0.8636
D 0.6667 0.7778 0.9524
E 1 1 1
F 0.9667 1 0.9667
G 0.9 1 0.99
H 0.8375 1 0.9736
I 0.7667 1 0.9456
J 0.7 1 0.91
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Figure 20.6 Comparison of the CRS scores, VRS scores and SAS.
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BCC θBCCk = min
λ

θ, s t Xλ ≤ θxk,Yλ ≥ yk, eλ= 1, λ ≥ 0, θ free (20.26)

where λ IRn is the intensity vector.
Although we present our model in the case of the input-oriented radial model, we

can develop the model for the output-oriented radial model as well.
We define the scale efficiency (σk) of DMUk by

σk =
θCCRk

θBCCk

(20.27)

20.5.1 Decomposition of CCR Slacks

We decompose the CRS score into scale-independent and scale-dependent parts as
follows.

The radial input slack can be defined as

s−k = 1−θCCRk xk Rm (20.28)

We decompose this radial input slack into scale-dependent and scale-independent
slacks as follows:

s−k = 1−σk s−k + σks−k (20.29)

Scale−dependent input slack sScaleDep−k = 1−σk s−k = 1−σk 1−θCCRk xk

Scale− independent input slack sScaleIndep−o = σks−k = σk 1−θCCRk xk
(20.30)

20.5.2 Scale-Adjusted Input and Output

We define the scale-adjusted input xk and output yk by

xk = xk −s
ScaleDep−
k = σk + θ

CCR
k −σkθ

CCR
k xk

yk = yk
(20.31)

We define the scale-adjusted score by

θscalek = σk + θ
CCR
k −σkθ

CCR
k (20.32)
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We have the following propositions.

Proposition 20.6 1 ≥ θscalek ≥max θCCRk ,σk (20.33)

Proposition 20.7 θscalek = 1 if and only if σk = 1 (20.34)

Proofs of these propositions are given in Appendix 20.B.

20.5.3 Solving the CCR Model in the Same Cluster

We introduce the clusters of DMUs in the same manner as mentioned in the
non-radial (SBM) case. We solve the input-oriented CCR model for each DMU
xk,yk k = 1,…,n , referring to the X,Y in the same cluster (k), which can be
formulated as follows:

θcl∗k = min
μ

θclk

s t Xμ−θclk xk ≤ 0,
Yμ ≥ yk ,
μj = 0 j Cluster j Cluster k

μ ≥ 0, θclk free

(20.35)

The scale-cluster-adjusted data (projection) xk,yk is defined by

Scale−cluster−adjusted input Projected input x k = θ
cl∗
k xk = θcl∗k θscalek xk,

Projected output yk = yk
(20.36)

At this point, we have deleted the scale demerits and in-cluster slacks from the
dataset. Thus, we have obtained a scale-free and in-cluster slacks-free (projected)

dataset X,Y .

20.5.4 Scale- and Cluster-Adjusted Score

In the input-oriented case, the SAS is defined by

SAS θSASk = θcl∗k θscalek (20.37)

In this case, the SAS is the product of the in-cluster efficiency and the scale-
adjusted score. This differs from the definition of the SAS in the non-radial case
(20.19), where the SAS is defined by using the sum of the scale-dependent slacks
and in-cluster slacks.

Similarly to Propositions 20.1 to 20.4, we have the following propositions.
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Proposition 20.8 The SAS is not less than the CCR score:

θSASk ≥ θCCRk (20.38)

Proposition 20.9 If θCCRk = 1, then θSASk = θCCRk , but not vice versa.

Proposition 20.10 The SAS decreases with an increase in the input and with a
decrease in the output as long as both DMUs remain in the same cluster.

Proposition 20.11 The SAS-projected DMU xk,yk is radially efficient under the
SAS model among the DMUs in the cluster that it belongs to. It is also CCR and
BCC efficient among the DMUs in its cluster.

20.6 SCALE-DEPENDENT DATASET AND SCALE ELASTICITY

Thus far, we have discussed the efficiency score considerations of our proposed scheme.
In this section, we consider scale elasticity. Many papers have discussed this subject in
the guise of the globally-convex-frontier assumption [5–7,20–24]. However, in the case
of non-convex frontiers, we believe there is a need for further research. Based on the
decomposition of the CRS slacks mentioned in Section 20.2, we have developed a
new scale elasticity that can cope with non-convex frontiers.

20.6.1 Scale-Dependent Dataset

We subtract or add scale-independent slacks from or to the dataset, and thus define the
scale-dependent dataset xk,yk :

Scale-dependent input xk = xk −σks−∗k

Scale-dependent output yk = yk + σks
+ ∗
k

(20.39)

Figure 20.7 illustrates an example of this scheme.

y

x

ˆ xkxk

Scale-independent slacks
σksk

–*

Figure 20.7 Scale-dependent input.
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We define the scale-dependent set X,Y = xk,yk k = 1,…,n . We first project

xk,yk onto the VRS frontier of (X,Y) in the same cluster. Thus, we denote the

projection xProjk ,yProjk by

xk,yk xProjk ,yProjk (20.40)

20.6.2 Scale Elasticity

The scale elasticity, or ‘degree of scale economies’, is defined as the ratio of marginal
product to average product. In the single-input/output case, if an output y is produced
by an input, x, we define the scale elasticity as

ε =
dy

dx

y

x
(20.41)

In the case of multiple-input–output environments, the scale elasticity is deter-
mined by solving linear programs related to the supporting hyperplane at the
respective efficient point [25, pp. 147–149].

The projection set (X
Proj

,Y
Proj

) defined above has at least convex frontiers within

each cluster; we can find a supporting hyperplane at xProjk ,yProjk that supports all

projected DMUs in the cluster and has the minimum deviation t from the cluster. This
scheme can be formulated as follows:

min
v,u,u0

t

s t vxProjk = 1,uyProjk −u0 = 1,

−vxProjj + uyProjj −u0 +wj = 0 j Cluster j =Cluster k ,

−wj + t ≥ 0 j Cluster j =Cluster o ,

v ≥ 0,u ≥ 0, wj ≥ 0 j , t ≥ 0,u0 free in sign

(20.42)

Let the optimal u0 be u∗0. We define the scale elasticity of DMU (xk, yk) by
Scale elasticity:

εk =
1

1− u∗0
(20.43)

If u∗o is not uniquely determined, we check its minimum andmaximumwhile keeping
t at the optimum value.
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The reasons behind applying the scheme outlined above are as follows:

1. Conventional methods assume a global convex production possibility set
to identify the returns-to scale (RTS) characteristics of each DMU.
However, as we observed, the dataset does not always exhibit convexity.
Moreover, the RTS property is a local property, but is not global, as indi-
cated by (20.41). Hence, we need to investigate this issue within the indi-
vidual cluster containing the DMU, after deleting the scale-independent
slacks.

2. Conventional methods usually find multiple optimum values of u∗0, and there
may be a large difference between the minimum and maximum values. The
scale elasticity εk defined above remains between the minimum and maximum,
but has a much smaller range of allowed values.

20.7 APPLICATION TO A DATASET CONCERNING JAPANESE
NATIONAL UNIVERSITIES

In this section, we apply our scheme to a dataset comprising information about research
output from the faculties of medicine of 37 Japanese national universities.

20.7.1 Data

Table 20.6 shows the dataset concerning the research output of Japanese national uni-
versities with a faculty of medicine in 2008 (Report by the Council for Science and
Technology Policy, Japanese Government, 2009). We chose two inputs, namely sub-
sidy and number of faculty members, and three outputs, namely number of publica-
tions, number of JSPS (Japan Society for Promotion of Sciences) grants and number
of funded research projects. Since there are large differences in size among the 37 uni-
versities, we classified them into four clusters, A, B, C and D, determined by the sum
of the number of JSPS grants and the number of funded research projects. Cluster
A was defined as the set of universities with a sum larger than 2000, cluster
B between 2000 and 1000, cluster C between 1000 and 500, and cluster D less than
500. The average values for each cluster were 3225 for A, 1204 for B, 653 for C and
348 for D. Determination of the effect of size was one of the objectives of this
application.

Figure 20.8 shows the 37 universities, considering the numbers of faculty (input)
and of publications (output). Globally non-convex characteristics are observed.
A large difference is observed between the big seven universities (cluster A) and
the other universities (clusters B, C and D). We can observe similar tendencies when
considering other inputs and outputs.
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TABLE 20.6 Dataset for Japanese national universities.

DMU Input Output

ClusterUniversity Subsidy Faculty Publication
JSPS
fund No. of funded res.

A1 96,174 4,549 6,359 2,896 2280 A
A2 60,868 3,562 4,776 2,304 1504 A
A3 50,717 2,619 3,786 1,952 1382 A
A4 50,615 2,877 4,009 1,941 1357 A
A5 42,398 2,207 2,605 1,396 1186 A
A6 41,014 2,086 2,560 1,310 922 A
A7 35,985 1,792 2,443 1,351 796 A
B1 48,106 1,667 1,549 911 507 B
B2 28,896 1,814 1,362 811 543 B
B3 22,898 1,567 1,089 751 401 B
B4 18,245 1,303 1,143 606 453 B
B5 18,255 1,505 1,264 606 430 B
C1 19,200 1,129 803 537 314 C
C2 17,565 1,010 722 446 302 C
C3 20,467 1,224 706 428 317 C
C4 16,124 1,151 582 309 418 C
C5 14,515 867 643 351 321 C
C6 17,154 1,084 685 378 284 C
C7 13,196 898 481 325 329 C
C8 12,357 830 446 242 357 C
C9 14,850 799 628 266 319 C
C10 13,138 855 576 353 228 C
C11 16,884 1,121 531 311 265 C
C12 14,589 970 562 277 274 C
C13 14,436 976 550 311 229 C
D1 10,631 629 293 199 231 D
D2 11,319 795 465 190 233 D
D3 10,202 657 300 170 240 D
D4 10,953 668 311 184 191 D
D5 13,017 859 382 201 159 D
D6 11,355 775 339 191 156 D
D7 11,522 779 391 162 171 D
D8 10,637 785 287 174 142 D
D9 8,936 656 267 157 153 D
D10 11,054 692 343 158 134 D
D11 10,888 749 323 157 132 D
D12 10,686 645 254 152 135 D
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20.7.2 Adjusted Score (SAS)

Table 20.7 compares the CRS scores, VRS scores and SAS for this dataset by means
of the non-radial model, and Figure 20.9 displays the results graphically. In the
table, ‘Frontier’ indicates the global characterization of the SAS-projected DMUs
obtained from (20.26), with abbreviations H = horizontal, C = convex, N = non-
convex and V = vertical.

The SASs of B1, B2 and B3 are much larger than the VRS score, demonstrating
the non-convex structure of the dataset. The universities in cluster A are judged to
be almost efficient when considering the adjusted scores. Table 20.8 summarizes
the averages of the CRS scores, VRS scores and SAS for each cluster. For cluster
A universities, the differences between the three scores are small, and these uni-
versities have the highest scores for each model. For cluster B universities, the
average SAS is larger than the average VRS score. This indicates the existence
of non-convex frontiers around cluster B universities. For cluster C universities,
the discrepancy between the CRS and VRS scores becomes large, and the
average SAS is between these values, but closer to the VRS score. For cluster
D universities, the discrepancy between the scores is the largest, indicating the
smallest scale efficiency. The SASs are positioned almost equally between the
CRS and VRS scores. The average SAS decreases monotonically from cluster
A to cluster D.

20.7.3 Scale Elasticity

Table 20.9 shows the scale elasticity ε calculated using (20.43).
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Figure 20.8 Plot of the number of faculty (input) versus number of publications (output).
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We observe that, for cluster A universities, the scale elasticity is almost unity,
with a maximum value of 1.0669 and a minimum value of 0.961. This cluster exhibits
constant returns to scale. The universities in clusters B, C and D have an elasticity
value higher than unity, and the average elasticity increases from cluster B to cluster
D. These universities have increasing-returns-to-scale characteristics.

TABLE 20.7 Comparison of the CRS scores, VRS scores, SAS and frontier.

DMU CRS-I VRS-I SAS-I Front

A1 0.925 1 0.925 H
A2 0.976 1 0.976 C
A3 1 1 1 C
A4 1 1 1 C
A5 1 1 1 C
A6 0.842 0.904 0.842 C
A7 1 1 1 C
B1 0.613 0.678 0.963 N
B2 0.665 0.764 0.858 N
B3 0.748 0.876 0.963 N
B4 0.779 1 0.951 N
B5 0.74 1 0.932 C
C1 0.682 0.9 0.923 N
C2 0.626 0.892 0.889 N
C3 0.527 0.734 0.729 N
C4 0.801 0.856 0.904 N
C5 0.74 0.971 0.938 N
C6 0.548 0.815 0.769 N
C7 0.787 0.999 0.955 N
C8 1 1 1 C
C9 0.755 1 0.94 N
C10 0.626 1 0.86 N
C11 0.501 0.726 0.651 N
C12 0.599 0.854 0.764 N
C13 0.511 0.843 0.719 N
D1 0.73 1 0.927 N
D2 0.641 0.986 0.874 N
D3 0.76 1 0.943 N
D4 0.578 0.951 0.803 N
D5 0.394 0.814 0.643 N
D6 0.435 0.88 0.69 N
D7 0.471 0.916 0.701 N
D8 0.409 0.865 0.648 N
D9 0.523 1 0.773 C
D10 0.403 0.952 0.656 N
D11 0.385 0.899 0.616 C
D12 0.421 0.95 0.638 V
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Figure 20.9 Comparison of the CRS scores, VRS scores and SAS.

TABLE 20.8 Average scores.

Cluster CRS-I VRS-I SAS-I

A 0.9632 0.9862 0.9632
B 0.7087 0.8635 0.9334
C 0.6693 0.8916 0.8492
D 0.5124 0.9344 0.7426

TABLE 20.9 Scale elasticity values.

DMU
Scale

elasticity DMU
Scale

elasticity DMU
Scale

elasticity DMU
Scale

elasticity

A1 0.961 B1 1.1522 C1 1.137 D1 1.6564
A2 0.9954 B2 1.0915 C2 1.422 D2 1.0532
A3 1.0267 B3 1.1965 C3 1.296 D3 1.7399
A4 1.0299 B4 1.3262 C4 1.152 D4 3.1328
A5 1.0525 B5 1.2003 C5 1.416 D5 1.9453
A6 1.051 C6 1.33 D6 2.034
A7 1.0669 C7 1.197 D7 1.9234

C8 1.139 D8 3.5783
C9 1.311 D9 2.1912
C10 1.56 D10 2.0527
C11 2.043 D11 2.1179
C12 2.02 D12 2.1913
C13 1.56

Ave. 1.0262 Ave. 1.1933 Ave. 1.429 Ave. 2.1347
Max 1.0669 Max 1.3262 Max 2.043 Max 3.5783
Min 0.961 Min 1.0915 Min 1.137 Min 1.0532
StDev 0.0369 StDev 0.0863 StDev 0.303 StDev 0.6563
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20.8 CONCLUSIONS

Most DEA models assume convex efficient frontiers for evaluation of DEA scores.
However, in real-world situations, there exist non-convex frontiers which cannot
be identified by the traditional models. Non-convex frontiers result frommany factors,
for example region, environment, ownership, size of enterprise, category of business
and age. If we categorize DMUs into several classes by these factors and evaluate effi-
ciencies within each class, the scores gained from such classification are local and we
cannot obtain a global (overall) measurement of their performance.

We have developed a scale- and cluster-adjusted DEA model assuming scale effi-
ciency and clustering of DMUs. The scale- and cluster-adjusted score reflects the inef-
ficiency of the DMUs after removing the inefficiencies caused by scale demerits and
accounting for in-cluster inefficiency. This model can identify non-convex (S-shaped)
frontiers reasonably well. We have also proposed a new scheme for the evaluation of
scale elasticity. We have applied this model to a dataset comprising the research input
and output of Japanese universities.

The major implications of this study are as follows:

1. By using this model, we become free from the big differences typically
observed between CRS and VRS scores. Many practitioners are puzzled as
to which one is to be applied to their problem. Our approach will be of help
with this problem when several clusters exist. Hence, the use of DEA will
become more convenient and simple.

2. We do not require any statistical tests of the range of the intensity vector λ.
3. The model can cope with non-convex frontiers, for example S-shaped curves. In

such cases, it is observed that even the VRS scores could become too stringent
to be applied in the case of some DMUs.

Although we have presented the scheme in input-oriented form, we can extend it to
output-oriented and non-radial non-oriented (both-oriented) models, as well as to
directional distance models.

The main purpose of this paper was to introduce a DEA model that can cope with
non-convex frontiers by recognizing the impact of scale efficiency (scale merits and
scale demerits) and clusters. In our model, clustering plays a fundamental role, which
is as important as the selection of DMUs, input/output items and DEA models.

Future research subjects include studies of alternative scale efficiency measures,
rather than using the CRS/VRS ratios and clustering methods. Applications to nega-
tive data, cost, revenue and profit models are also potential subjects for future
research. We believe that this study introduces a new roadmap for DEA research.4

4 Software for non-convex DEA models is included in DEA-Solver Pro V13 (http://www.saitech-inc.com).
See also Appendix A.
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APPENDIX 20.A CLUSTERING USING RETURNS TO SCALE AND
SCALE EFFICIENCY

We already know the RTS characteristics of each DMU, that is, increasing returns to
scale (IRS), CRS or decreasing returns to scale (DRS), as they are obtained from the
VRS solution by projecting VRS-inefficient DMUs onto the VRS-efficient frontiers.
We first classify theCRSDMUsas clusterC.Then,we classify the IRSDMUsdepending
on the degree of scale efficiency, σ. For example, IRS DMUs with 1 > σ ≥ 0 8 may be
classified as I1, IRS DMUs with 0 8 > σ ≥ 0 6 as I2 and so on. DRS DMUs with
1 > σ ≥ 0 8 may be classified as D1 and so on, as above. We determine the number
of clusters and their bandwidth by considering the number of DMUs in the clusters.
Each cluster is expected to have at least as many DMUs as a few times the sum of the
input and output factors. Figure 20.10 illustrates this point. This figure corresponds to
the input-oriented case, where DMUs with highly different input scales may be clas-
sified into the same cluster. If such a classification is inappropriate, we may try the
output-oriented, non-oriented or directional distance model to determine the clusters.

APPENDIX 20.B PROOFS OF PROPOSITIONS

Proposition 20.1 θSASk ≥ θCRSk k = 1,…,n

Proof The CRS scores for (xk, yk) and xk,yk , respectively, are defined by

[CRS]

θCRSk = min
λ,s− ,s +

1−
1
m

m

i= 1

s−i
xik

s t Xλ+ s− = xk,Yλ−s+ = yk,λ ≥ 0,s− ≥ 0,s + ≥ 0

(20.B1)

x

y

D2

C

I1

I2

D1

Figure 20.10 Clustering by the degree of scale efficiency.
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and

SAS θSASk = min
μ,scl− ,scl+

1−
1
m

m

i= 1

scl−i + 1−σk s−∗i

xik

s t Xμ+ scl− = xk, Yμ−scl + = yk, μj = 0 j Cluster j Cluster k ,

μ ≥ 0, scl− ≥ 0, scl+ ≥ 0
(20.B2)

We prove this proposition for two individual cases.

(Case 1) All DMUs belong to the same cluster.
In this case (20.B2) becomes

SAS θSASk = min
λ, t− , t+

1−
1
m

m

i= 1

t−i + 1−σk s−∗k

xik

s t Xλ + t− = xk ,Yλ− t + = yk,λ ≥ 0, t− ≥ 0,t + ≥ 0

(20.B3)

Let λ∗, t−∗,t + ∗ be an optimal solution of (20.B2). Since P(X,Y) = P X,Y by
Lemma , and both sets have the same efficient DMUs which span xj,yj , we have

Xλ∗ + t−∗ = xk = xk − 1−σk s−∗k

Yλ∗− t+ ∗ = yk = yk + 1−σk s + ∗k

(20.B4)

Hence, we have

Xλ∗ + t−∗ + 1−σk s−∗k = xk

Yλ∗− t + ∗− 1−σk s + ∗k = yk
(20.B5)

This indicates that λ∗, t−∗ + 1−σk s−∗k ,t + ∗ + 1−σk s+ ∗k is feasible for (B1), and

hence its objective function value is not less than the optimal value, θCRSk :

θSASk = 1−
1
m

m

i= 1

t−∗i + 1−σk s−∗ik

xik
≥ θCRSk (20.B6)

Conversely, t−∗ = σks−∗k and t+ ∗ = σks + ∗k are feasible for the SAS, and hence it
holds that θSASk = θCRSk k = 1,…,n .

(Case 2) Multiple clusters exist.
In this case, we have constraints additional to (20.B3) to define a restriction on

clusters, as follows:
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SAS θSASk =min 1−
1
m

m

i= 1

t−i + 1−σk s−∗i

xik

s t Xλ+ t− = xk ,Yλ− t + = yk,λj = 0 j Cluster j Cluster k ,

λ ≥ 0, t− ≥ 0, t + ≥ 0
(20.B7)

Since adding constraints results in an increase of the objective value, it holds that

θSASk ≥ θCRSk (20.B8)
∎

Proposition 20.3 If θCRSo = 1, then it holds that θSASo = θCRSo , but not vice versa.

Proof If θCRSk = 1, then we have s−∗k = 0 and s+ ∗k = 0. Hence, we have total slacks = 0
and θSASk = 1. The converse is not always true, as demonstrated in the example below,
where all DMUs belong to an independent cluster.

DMU (I) x (O) y Cluster

A 2 2 a
B 4 2 b
C 6 2 c

DMU CRS-I SAS-I Cluster

A 1 1 a
B 0.5 1 b
C 0.3333 1 c

∎

Proposition 20.4 The SAS decreases with increasing input and decreasing output as
long as both DMUs remain in the same cluster.

Proof Let (xp, yp) and (xq, yq), with xp ≤ xq and yp ≥ yq, be the original and varied

DMUs, respectively, in the same cluster. Let xq = xp + δ−
p δ−

p ≥ 0 and yq =

yp−δ +
p δ+

p ≥ 0 , and let the optimal solution for (xp, yp) be θSASp ,λ∗p,s−∗p ,s+ ∗p .

We have Xλ∗p + s−∗p = xp = xq−δ−
p , Yλ

∗
p−s

+ ∗
p = yp = yq + δ+

p . Hence s−∗p + δ−
p ,s

+ ∗
p +

δ+
p is a feasible slack for (xq, yq). We have

θSASp = 1−
1
m

m

i= 1

s−∗ip

xip
= 1−

1
m

m

i = 1

s−∗ip

xiq− δ−p
≥ 1−

1
m

m

i= 1

s−∗ip + δ−p
xiq

≥ θSASq

(20.B9)
∎
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Proposition 20.5 The projected DMU xk,yk is efficient under the SAS model
among the DMUs in its containing cluster. It is CRS and VRS efficient among the
DMUs in its cluster.

Proof From the definition of xk,yk , it is SAS efficient. Thus, it is CRS and VRS
efficient in its cluster. ∎

Proposition 20.6

1 ≥ θscalek ≥max θCCRk ,σk

Proof σk + θ
CCR
k −σkθ

CCR
k = σk 1−θCCRk + θCCRk = θCCRk 1−σk + σk ≥max σk,θ

CCR
k

(20.B10)

This term is increasing in σk and is equal to 1 when σk =1. ∎

Proposition 20.7 θscalek = 1 if and only if σk = 1 (20.B11)

Proof If σk = 1, it holds that θscalek = σk + θ
CCR
k −σkθ

CCR
k = 1. Conversely, if

θscalek = σk + θ
CCR
k −σkθ

CCR
k = 1, we have σk 1−θCCRk = 1−θCCRk . Hence, if θCCRk < 1,

then it holds that σk = 1. If θ
CCR
k = 1, then we have θBCCk = 1 and σk = 1.

∎
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USING DEA TO ANALYZE THE
EFFICIENCY OF WELFARE OFFICES
AND INFLUENCING FACTORS: THE
CASE OF JAPAN’SMUNICIPAL PUBLIC
ASSISTANCE PROGRAMS

MASAYOSHI HAYASHI

Graduate School of Economics, University of Tokyo, Tokyo, Japan

21.1 INTRODUCTION

Like most OECD countries, Japan is experiencing substantial changes in its socio-
economic structure due to the growing number of low-wage workers and the rapid
pace of population aging. While this necessitates a series of reforms in public pro-
grams targeted at such disadvantaged households, public funds for such programs
are limited, restricting the scope of possible reforms. Given this lack of resources,
it is therefore important to achieve higher efficiency in welfare program implementa-
tion. We are thus naturally interested in examining the performance of welfare orga-
nizations and exploring factors that may affect the efficient implementation of their
programs.

Data envelopment analysis (DEA) is one of the standard tools used for examining
efficiency. While a number of DEA studies have examined public sector activities,
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those addressing social assistance are limited [1–5]. This may partly be due to the tra-
ditional reluctance to conduct economic evaluation as a part of social policy [2]. In
addition, DEA studies of social assistance have addressed varied concerns. While
some are interested in the efficiency of welfare offices providing social assistance
to a given number of welfare recipients [1, 2], others focus on the efficiency of social
expenditure meant to reduce poverty [3, 4]. The efficiency of social assistance spend-
ing across different socio-economic environments has also been studied [5].

In this study, we examine the efficiency of welfare offices, not the efficiency of
welfare spending. This focus means that the studies of Martin [1] and Ayala et al. [2]
are of direct relevance to our analysis. Martin [1] may be among the first to have
applied DEA to welfare programs, using data from social assistance offices in Ore-
gon. In the same vein, Ayala et al. [2] evaluated the efficiency of 41 social services
agencies in Madrid, Spain. We aim to improve on these studies by investigating the
efficiency of social welfare offices in the Japanese system of local public adminis-
tration. The Japanese case indeed merits analysis. First, no studies have utilized
DEA to investigate efficiency issues in the Japanese social assistance program. Sec-
ond, reasonably good data are available for the Japanese case, pertaining to case-
loads by category for multiple output variables and public employment by type
for input variables, both of them at the municipal level. We have also taken advan-
tage of this availability to conduct a second-stage regression (2SR) analysis of the
efficiency score for social welfare offices, to examine the factors influencing the
efficiency of municipal programs.

This chapter is organized as follows. In Section 21.2, we describe the Japanese sys-
tem of social assistance and elaborate on the activities of Japanese social welfare
offices to set up an input–output model that yields DEA efficiency scores. We then
obtain relevant efficiency scores and conduct an analysis. Section 21.3 then explores
the effects of external factors on the efficiency scores. For this purpose, we utilize a
2SR analysis. In so doing, we elaborate on the issues concerning 2SR and employ
several estimation methods proposed in the literature to obtain a set of estimates
and compare the results. In Section 21.4, we extend the analysis in Section 21.3 to
perform quantile regressions. We do so in the anticipation that external factors will
exert different impacts on the efficiency, depending on the level of the latter.
Section 21.5 concludes this study.

21.2 INSTITUTIONAL BACKGROUND, DEA, AND
EFFICIENCY SCORES

A DEA study starts by specifying decision-making units (DMUs) and variables for
inputs and outputs. Therefore, this section specifies the DMUs and the variables
for inputs and outputs for the current analysis. Finding the relevant inputs and outputs
for welfare office activities requires an examination of the nature of the actual system.
We therefore elaborate on our DEA model, while discussing the institutional mech-
anism of the Japanese system of social assistance.
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21.2.1 DMUs

Public assistance (PA), Seikatsu Hogo in Japanese, acts as the last social safety net
covering those excluded from the upper layers of social programs and is implemented
by local governments in the country. The Public Assistance Law (PAL) allows the
Ministry of Health, Labor and Welfare (MHLW) to mandate local governments to
implement PA programs. There are two levels of local government in Japan: prefec-
tures and municipalities (cities, towns, villages, and Tokyo Metropolitan Special
Wards (TMSWs)). The Social Welfare Law (SWL) requires cities (including
TMSWs) and prefectures to set up social welfare offices, through which they imple-
ment social programs, including PA programs. The SWL does not require towns and
villages to do so. In towns and villages that do not have their own welfare offices,
prefectural welfare offices cover their population. We thus used 658 cities in 2010
as our DMUs, excluding villages and towns that have their own social welfare offices.
Note that we could not utilize all those cities that have their own welfare offices, since
the necessary data required for our analysis was lacking for some of them. Note also
that since a small number of cities have more than one social welfare office, the num-
ber of DMUs is not necessarily identical to the number of individual welfare offices.
Nonetheless, we do not consider this a major problem, as municipalities, not individ-
ual welfare offices, make decisions about human resource allocation concerning wel-
fare offices.

21.2.2 Outputs and Inputs

A function of social welfare offices is to provide PA for those who are in need of it.
The PA is intended to guarantee the minimum cost of living for Japanese citizens.
Through the PAL, the central government sets uniform procedures for localities to
follow when they provide PA benefits. That is, local governments do not set the eli-
gibility standard or the benefit levels for their PA programs. The PA benefits are equal
to the minimum cost of living in excess of what an individual earns with his/her best
effort. The MHLW determines the minimum costs of living, allowing for differences
in cost due to regional price differences, the formula for which applies uniformly
across the nation. To receive benefits, applicants are supposed to exhaust their avail-
able resources. The PA program therefore requires local welfare offices to conduct a
careful examination, or “means test,” of the financial situation of the applicants.

It is then natural to employ welfare caseloads (the number of recipients obtaining
assistance) as our choice of the output variable. Indeed, Martin [1] and Ayala et al.
[2] made analogous choices. However, they also used other variables. In addition to
caseloads, Martin [1] used the number of job placements, successful exits (the number
of recipients who had been off assistance during the last 18 months at least), and child
support benefits.Meanwhile,Ayala et al. [2] additionallyused themedian lengthof time
taken to process applications. Our omission of these additional outputs may be justifi-
able in the Japanese institutional context. First, Japanese welfare offices do not imple-
ment active labor market programs that are comparable to those in other OECD
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countries. Second, child support benefits are irrelevant in the Japanese case, since
another municipal branch is responsible for them. Third, the processing time may be
reflected in the caseload size, since a shorter processing time leads to a larger caseload
size in a given time period. As we mentioned above, the activities of Japanese welfare
offices center on means testing, delivery of benefits, and monitoring of the recipients.

While we focus on welfare caseloads as the output in the current study, a single
type of caseload may not suffice. Since the needs of the PA recipients vary depending
on their characteristics, the services required for different categories of PA recipients
must also be different. Fortunately, we had access to disaggregated caseload data for
five categories of recipient households: those made up only of (i) the elderly (those
consisting only of people aged 65 years and above), and those headed by
(ii) single mothers, (iii) the handicapped, (iv) the sick and injured, and (v) others.
The categorization is lexicographic, starting from (i) and proceeding to (v). In
FY2010, elderly households constituted the largest proportion (43%), followed by
households headed by the injured and sick (23%), and the disabled (11%). The
remaining consisted of households headed by single mothers (8%) and others
(16%). These categories of recipients apparently require different types of casework.
We therefore used their caseloads as different multiple (five) outputs in our analysis.

A natural choice for the inputs is the size of the employment at welfare offices,
since “labor” is a straightforward input in this production process. Indeed, Ayala
et al. [2] and analogous DEA studies on public employment offices [6–8] used the
sizes of office staff by type as prime inputs. Our data allow us to differentiate the staff
into caseworkers and administrative staff. It is also natural to consider “capital”-type
production inputs. For example, Martin [1] considered the number of offices, while
Althin et al. [8] employed office space. However, the data for office space are not
available in the current case. We thus have to content ourselves with the use of a single
type of input, i.e., labor. This may not be a serious problem, though, since labor is
more relevant than capital for the analysis of welfare programs, given the labor-
intensive character of social services [2].

21.2.3 Efficiency Scores

Given the nature of the PA system in Japan, the size of the need is largely exogenous
for municipalities. Although it might be possible for welfare offices to implement pro-
grams to reduce need, the chances of this are slim. Thus, the concept of efficiency in
this analysis concerns how efficiently welfare offices manage a given level of case-
loads without reducing the services for the recipients. We attempt this using the input-
oriented efficiency score. Put more formally, the efficiency score E is the maximal
contraction of all inputs x ((i) caseworkers and (ii) other staff) which still allows
us to produce a given combination of outputs y (caseloads for (i) the elderly,
(ii) single mothers, (iii) the handicapped, (iv) the sick and injured, and (v) others):
E≡min{E > 0 | (Ex, y) T}, where T is a technology set. The following measurement
then utilizes the Charnes–Cooper–Rhodes (CCR) model [9, 10] to obtain the score E
based on the Farrell index of input efficiency.
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A linear programming exercise yields three types of efficiency score (EVRS, ECRS,
EDRS), which are based on the concepts of variable returns to scale (VRS), constant
returns to scale (CRS), and decreasing returns to scale (DRS), respectively.
Figure 21.1 shows their kernel distributions. There are noticeable differences between
the scores based on variable returns to scales (EVRS) and those based on the other two
types of returns (ECRS, EDRS). As expected, EVRS tends to yield higher efficiency
scores. The distribution of EVRS has an average of 0.459 with a standard deviation
(s.d.) of 0.191, and ranges from 0.133 to unity. Meanwhile, the distributions of ECRS

and EDRS have an average of 0.376 and 0.387 with an s.d. of 0.183 and 0.196, and
range from 0.064 and 0.064, respectively, to unity. We performed bootstrapped tests
for returns-to-scale as indicated by Simar and Wilson [11, 12], using (i) the ratio of
means, (ii) the mean of ratios, and (iii) the mean of ratios of DEA scores less unity (the
number of replications was 3000). The tests rejected both of the null hypotheses of
constant returns and decreasing returns to scale at the standard levels of statistical sig-
nificance. In the next analysis, we therefore proceeded with EVRS, the score based on
variable returns to scale. There were indeed large differences in the efficiency score
between municipalities. Only 29 municipalities (4.4%) were located on the frontier
with a full score of unity, while the other 629 municipalities (95.6%) were off the fron-
tier. As Figure 21.1 indicates, the majority of municipalities had smaller efficiency
scores, suggesting sizable room for efficiency improvement.

21.3 EXTERNAL EFFECTS ON EFFICIENCY

21.3.1 Adjustments for Environmental/External Factors

In the previous section, we noted the large variations in the efficiency scores among
municipalities. We might then rank individual DMUs according to the efficiency
scores so that the less efficient DMUs could use those scores as a benchmark to
improve their efficiency. However, doing so may not be appropriate, since Japanese

0 .2 .4 .6 .8 1
VRS CRS DRS

Figure 21.1 Distributions of efficiency scores.
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social welfare offices apparently operate in nonhomogeneous environments, which
are likely to exert different impacts on the performance of the DMUs. In other words,
the “inefficiency” may originate from factors outside the control of the DMUs, thus
limiting the scope for efficiency improvement that Figure 21.1 might otherwise indi-
cate. The ranking of the DMUs would then require adjustments of the efficiency
scores to allow for different external (environmental) factors.1

While the evaluation of individual DMUs is the primary objective of DEA, it may
also be meaningful to examine if and how external factors affect the efficiency.
Indeed, it is important to examine the factors that affect PA implementation at social
welfare offices and to find the directions and degrees of their impacts on efficiency.
For example, if the central government can change such external factors, this could
improve the overall efficiency of municipal PA programs. For this reason, we discuss
only two-stage models in the following sections, and leave the adjustment of effi-
ciency scores to future studies.

21.3.2 The Second-Stage Regression Model

We specified our 2SR model as a typical linear-in-parameters form:

Ei = zi β + ui (21.1)

where Ei is an efficiency measure obtained in the first stage, zi is a vector of external
factors, β is a vector of coefficients, ui is an error term, and i indexes the DMUs. For
the efficiency measure (i.e., dependent variable), we could alternatively use the effi-
ciency score (EVRS) and its reciprocal (the distance function 1/EVRS). For the factors in
z (i.e., explanatory variables), we considered the municipal population (on a log
scale), the surface area (on a log scale), the fiscal capacity index (FCI), the obligatory
expenses ratio (OER), the local allocation tax (LAT) received (as a binary variable),
and the caseload growth rate. The variables are defined later in this section. We
selected these six factors for the following reasons.

First, as the literature on local public finance shows, there exist economies of scale
in local expenditure up to a certain level of population [19]. Larger localities tend to
provide more categories of services than smaller ones [20], yielding economies of
scope in more populous municipalities. Using the savings from these two scale econo-
mies, localities with a higher population could invest more resources so that welfare
offices may become more efficient. This line of reasoning suggests that a larger pop-
ulation would lead to higher efficiencies.

Second, the spatial size of a given locality should also matter. Since caseworkers
visit their PA recipients within a given period, the more widespread the locations of

1 There are three approaches to such adjustments [13]. First, one-stage models regard external factors as
additional inputs in the standard DEA model but obtain the efficiency scores with special restrictions on
them [14, 15]. Second, two-stage models obtain the efficiency scores without external factors in the first
stage, and regress the scores on a set of external factors in the second stage [16]. They then use the sec-
ond-stage estimates to adjust the efficiency scores. Third, adjusted-values models utilize the estimates
for the effects of external factors on slacks to adjust the values of discretionary variables and obtain
DEA efficiency scores with these slack-adjusted values [17, 18].
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the recipients, the more the time spent on their cases. Since more time spent on a case
implies that the caseworker will handle a smaller number of cases, spacious jurisdic-
tions imply less efficiency in PA services.

Third, fiscal capacity is also a concern. The Japanese government estimates an
index for the “fiscal capacity” of localities with data obtained from its system of cen-
tral grants, namely, the LAT. The amount of LAT a locality receives is the nonneg-
ative difference between its standard fiscal demand (SFD) and standard fiscal revenue
(SFR). The SFD estimates the level of local expenditure required to maintain the
standard level of public services, while the SFR estimates standardized local revenue.
The system then defines the FCI as the three-year average of the ratio of the SFR to the
SFD. Another index of fiscal capacity is the OER, which shows the percentage of
expenses that a locality cannot easily adjust, including personnel expenses, local debt
service payments, and other expenses that the central government requires them to
incur. A larger fiscal capacity implies more fiscal abundance, from which localities
could spare more resources to provide welfare offices with more caseworkers and
administrative staff for a given level of caseloads. This may or may not imply that
a larger fiscal capacity would lead to lower efficiency.

However, a drawback of using the FCI as an index of fiscal capacity is its negative
correlation with the LAT grant a locality receives. The LAT may adversely affect the
efficiency of local spending [21], which then suggests that a large value of the FCImay
be associatedwith a smaller value of the efficiency score. To control the effect of receiv-
ing transfers, the regression presented below allows for the receipt of LAT grants. In
addition to its claimed adverse effects, the LAT compensates for the local burden of PA
expenditure. While the central government disburses 75% of local PA expenditure by
means of matching grants to localities, the SFD allows for the rest of the cost. In other
words,while LAT recipients enjoy an increase in PAbenefits covered by central grants,
the nonrecipients have tomeet 25%of that increase out of their own pocket. Thiswould
imply that receiving LAT grants adversely affects the efficiency score.

Lastly, the speed of caseload changes affects the efficiency. Roughly speaking,
efficiency is the ratio of output to input. Since the inputs are the numbers of casewor-
kers and other staff members, the efficiency tends to increase if the adjustments of the
inputs are slow relative to the changes in the outputs. The analysis presented below
allows for this aspect by including the rate of increase in PA caseloads from FY2008
to FY2009 as a measured input at the beginning of FY2010.

21.3.3 Econometric Issues

It is important when estimating 2SRmodels to recognize that the DEA scores obtained
in the first stage are estimates [22]. We can frame the issue as a typical case of meas-
urement errors in the dependent variables (e.g., [23, pp. 76–77]). The 2SR typically
assumes the following data generation process (DGP):

E∗
i = zi β + εi (21.2)

where Ei
∗ is the true value of the efficiency score. Since Ei

∗ is not observable, the esti-
mated score Ei is a surrogate for Ei

∗. Defining the measurement error in the dependent
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variable as si≡ Ei − Ei
∗, we can express (21.2) as (21.1) with ui≡ si + εi. If Ei is

consistent, si approaches zero (i.e., Ei approaches Ei
∗) as the sample size approaches

infinity. Since Ei is indeed consistent [24, 25], the existence of si does not affect the
asymptotic distribution of estimators for β. In other words, treating DEA scores as
estimates does not pose an issue if we have a suitably large sample.

On the other hand, we are not sure how large a suitable sample would be, since the
convergence of Ei to Ei

∗ becomes slower as the number of inputs and outputs in the
DEAmodel increases [25]. This “curse of dimensionality”might make the asymptotic
approximation fail even with a relatively large sample. In addition, the very calcula-
tion of DEA scores for individual DMUs creates correlations among them [26].2 The
curse of dimensionality and the correlation among the scores make ui nonspherical
through si in a finite sample, even if εi is spherical (i.e., independent and identically
distributed). Furthermore, it is very likely that εi is also nonspherical since we typi-
cally use a sample of cross-sectional data. We thus adjust the covariance matrix of the
β estimates to arrive at a valid inference. As the pattern of the nonspherical error u is
unknown, our choices include utilizing a heteroskedastic consistent covariance matrix
estimator [27] or bootstrapping the covariance matrix [22].

Another econometric issue concerns the method used to estimate (21.1). The most
straightforward is the ordinary least squares (OLS) estimator (e.g. [16]), which does
not explicitly allow for the fact that the dependent variable is bounded: EVRS (0, 1]
or 1/EVRS [1, ∞). To allow for these bounds, Bjurek et al. [28] estimated the 2SR
model with censoring at unity (Tobit estimator). While a number of studies use this
method, the Tobit estimator also has its shortcomings when applied to the 2SR model
[27]. Therefore, Simar and Wilson [22] modeled it as a linear model with truncation,
whereas Hoff [29] and Ramalho et al. [30] departed from the linear specification to
utilize the fractional response (FR) model of Papke and Wooldrige [31].

21.3.4 Estimation Results

To estimate (21.1), we employed all of the four models mentioned above: the (i) OLS,
(ii) Tobit, (iii) truncation, and (iv) FR models.3 Obviously, the FR model is not appli-
cable to cases that employ 1/EVRS as the dependent variable. For the covariance matri-
ces of these estimators, we bootstrapped the standard errors with 3000 replications to
allow for their possible inconsistency and finite sample bias. In addition, we utilized
the double bootstrap procedure (Algorithm 2) of Simar andWilson [22], which essen-
tially replaces the original EVRS with a bias-corrected bootstrapped EVRS when boot-
strapping the truncated regression of (21.1). The numbers of replications for the bias-
corrected EVRS and 2SRwere 200 and 3000, respectively. Note that, since this method
is not computationally applicable to an efficiency score with bounds (0, 1] (see
[32–34]), we applied it only to the case with the distance function.

Table 21.1 lists the results. The first four columns are for cases using the efficiency
score, and the last four are for cases using its reciprocal (the distance function). These

2 Perturbations of DMUs lying on the estimated frontier change the scores of some other DMUs.
3We used the logistic distribution for the cumulative distribution that shapes the fractional response.
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TABLE 21.1 Estimation results.a

Dependent variable Efficiency score (EVRS) Distance function (1/EVRS)

Model E-OLS E-Tobit E-FR E-TC D-OLS D-Tobit D-TC D-TC/SW

ln(population) .075*** .078*** .075*** .061*** −.269*** −.294*** −.368*** −.362***

(.014) (.014) (.014) (.011) (.062) (.067) (.104) (.113)
ln(surface area) −.027*** −.028*** −.027*** −.026*** .143*** .149*** .229*** .246***

(.009) (.009) (.009) (.007) (.043) (.046) (.071) (.083)
FCI −.264*** −.270*** −.263*** −.246*** 1.267*** 1.320*** 1.929*** 2.070***

(.056) (.057) (.056) (.043) (.294) (.301) (.448) (.501)
OER .143 .149 .143 .109 −1.168 −1.222 −1.751 −1.967

(.166) (.173) (.170) (.145) (.947) (.979) (1.431) (1.659)
LAT receipt −.140*** −.145*** −.140*** −.108*** .561** .602** .750* 1.000**

(.049) (.051) (.049) (.064) (.274) (.285) (.436) (.506)
Caseload growth −.021 −.016 −.022 −.064 .046 .082 −.082 .098

(.095) (.099) (.096) (.088) (.472) (.491) (.691) (.794)
Constant −.075 −.099

–
−.039 4.538*** 4.729*** 4.852*** 4.904***

(.171) (.181) (.158) (.895) (.949) (1.438) (1.609)
a The sample sizes were 658 for E-OLS, E-Tobit, E-FR, D-OLS, and D-Tobit. The truncation regressions (E-TRC and D-TRC) excluded DMUs with EVRS (1/EVRS) = 1,
trimming the sample size down to 629. ***, **, and *indicate p ≤ .01, .01 < p ≤ .05, and .05 < p ≤ .10, respectively. Bootstrapped standard errors are in parentheses
(3000 replications). D-TC/SW utilized the r-DEA package of Simm and Besstremyannaya [34] to obtain the bootstrapped bias-corrected efficiency scores as suggested
by Simar and Wilson [22] with 200 replications, and then used these scores for the bootstrapped truncated regression with 3000 replications. E-FR lists the marginal
effects evaluated at the sample averages.



results are robust in the sense that the statistical significance does not change between
different estimation methods for a given dependent variable (EVRS or 1/EVRS). In all
cases, the population, surface area, FCI, and LAT received are all statistically signif-
icant, while the OER and caseload changes are not. The results show that a larger pop-
ulation, a smaller surface area, a lower fiscal capacity, and the nonreceipt of LAT
grants tend to increase the efficiency as expected, whereas the other two variables
do not affect the efficiency. In particular, the insignificance of caseload changes
implies that the inputs (caseworkers and other staff members) adjust smoothly to
the changes in the outputs (PA caseloads).

Furthermore, the marginal effects of these external factors are very similar among the
E-OLS, E-Tobit, and E-FRmodels and between the D-OLS and D-Tobit models (where
“E” and “D” denote efficiency and distance, respectively). On the other hand, the differ-
ences invaluesbetween those fromthe truncated regressions and those fromothermodels
are rather conspicuous, albeit not so large,with statistically significant coefficients.These
differences are likely to be due to different samples rather than the different DGP or esti-
mation method (truncated or not), as the E-TRC and D-TRC models exclude 29 DMUs
thathave full efficiency scores ofunity. Inaddition,while theD-TRC/SWmodel doesnot
exclude them, it uses bootstrapped bias-corrected scores whose values not only are dif-
ferent from the standard ones but also differ from unity.

McDonald [27] argued that the idea of efficiency scores as estimates of “true”
scores, as suggested by Simar andWilson [22], “would lead to considerable complex-
ity and perhaps only minor changes in inference.” Qualitatively, his argument seems
to apply to our cases. All the estimation methods, including OLS, show that a larger
population, a smaller surface area, a lower FCI, and nonreceipt of LAT grants would
increase the efficiency, whereas the others would not affect the efficiency. Quantita-
tively, however, the results are somewhat different. In particular, the effects of pop-
ulation, FCI, and LAT receipt differ in the truncation regressions, although the effect
of surface area does not change much.

21.4 QUANTILE REGRESSION ANALYSIS

21.4.1 Different Responses along the Quantiles of Efficiency

All the preceding models, except the FR model, assumed that the marginal effects of
the external factors on efficiency were constant on average. Such effects may plausi-
bly differ among DMUs with different levels of efficiency, however. This
section therefore presents a 2SR using quantile regression (QR) to address the possible
different responses of the efficiency scores to the external factors.

With QR, we can estimate the responses of the efficiency score to changes in the
external factors across the conditional quantiles of the former. In QR analysis, we first
define a conditional quantile function of E as Qτ(Ei | zi)≡ F−1(τ | zi), where F(τ| zi) is
the cumulative distribution function of E at quantile τ, conditioned on a given set of
external factors zi. We then specify a linear regression model as E = z βτ + u, where
βτ is a vector of coefficients that vary across quartiles, and u is an error term. The
QR estimator of βτ is a sample analogue of bτ ≡ argminb E{ρτ(E = z b)}, where
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ρτ is a check function defined as ρτ ≡ 1[E − z b > 0] τ |E − z b| + 1[E − z b ≤ 0] (1 − τ) |
E − z b|. This asymmetric weighting scheme results in a minimand that selects condi-
tional quantiles.

We used the super-efficiency score as the dependent variable in the QR analysis.
We obtained the super-efficiency score of a given DMU, K, by gauging it against
another efficiency frontier calculated with a group of DMUs that excluded K [10].
In our case, the super-efficiency score equals the standard efficiency score for DMUs
that are off the frontier, and takes a value of more than unity for DMUs that are on the
frontier. Since the scores could take a value exceeding unity, it was convenient for us
to use them as the dependent variable of our QR model. Note, however, that we might
not be able to calculate super-efficiency scores for all DMUs. As we could not obtain a
score for one DMU, the sample size for the second-stage QR was 657.

21.4.2 Results

Table 21.2 lists the results of the QR analysis at the 0.15, 0.25, 0.50, 0.75, and 0.85
quantiles. As a benchmark, we also list the OLS estimates obtained with the super-
efficiency scores. The results of the OLS model show that the directional impacts
of the external factors are qualitatively the same as those for the E-OLS model in
Table 21.1. However, their magnitudes (in absolute value) are larger, reflecting the
changes in the efficiency scores from unity for the DMUs on the frontier. The coef-
ficient estimates for the five quantiles are indeed different from those obtained from
the OLS models. In addition, the coefficient values vary across the quantiles.

To better understand the changes in coefficients across quantiles, Figure 21.2 plots
the coefficient estimates at 18 quantiles (0.05, 0.10, …, 0.90, and 0.95) along with

TABLE 21.2 Estimation results.a

OLS

Quantile

.15 .25 .50 .75 .85

ln(population) .098*** .022 .047*** .055*** .083*** .122***

(.021) (.017) (.018) (.016) (.017) (.022)
ln(surface area) −.041*** −.017** −.030*** −.028*** −.025 −.046***

(.013) (.009) (.010) (.010) (.016) (.016)
FCI −.361*** −.157*** −.268*** −.194*** −.285*** −.477***

(.090) (.052) (.066) (.061) (.082) (.100)
OER −.242 .349* .313* .026 .342 .053

(.251) (.172) (.176) (.198) (.264) (.375)
LAT receipt −.161*** −.065 −.097** −.099 −.256*** −.274***

(.055) (.042) (.043) (.075) (.097) (.095)
Caseload growth −.037 −.039 −.083 −.076 −.064 .265

(.104) (.155) (.082) (.089) (.160) (.185)
Constant −.252 .010 −.040 .164 −.144 −.014

(.295) (.230) (.237) (.230) (.246) (.321)
a The sample size was 658. Standard errors were bootstrapped with 3000 replications. ***, **, and
* indicate p ≤ .01, .01 < p ≤ .05, and .05 < p ≤ .10, respectively.
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Figure 21.2 QR coefficient estimates and 95% confidence intervals. The solid lines in the panels connect the QR
coefficient estimates at 18 quantiles (0.05, 0.10,…, 0.90, and 0.95). The dotted lines show 95% confidence intervals
of the QR estimates.



their 95% confidence intervals. In general, the effects tend to increase in absolute
value toward the upper quantiles if they have a large statistical significance (popula-
tion, surface area, FCI, and LAT), while they seem to change relatively little if the
effects are not statistically significant (OER and caseload growth). These findings
suggest that the impacts on efficiency are larger for those municipalities located closer
to the edge of the frontier.

21.5 CONCLUDING REMARKS

In this study, we obtained the Farrell scores for the input-oriented efficiency of munic-
ipal PA programs in Japan and explored the effects of a set of external factors on the
efficiency scores. We showed that the efficiency varies across municipalities, imply-
ing a large potential for efficiency improvement. Nonetheless, such disparities may be
due to variations in external factors that municipalities cannot control. Employing a
2SR analysis with a variety of estimators, we then examined how a set of external
factors would affect the efficiency. Our results indicated that surface area, fiscal
capacity, and receipt of LAT grants decreased the efficiency, while population
improved it. Furthermore, a QR analysis with super-efficiency scores showed that
the marginal effects of the external factors on the efficiency would become larger
in absolute value for the upper quantiles of the efficiency scores. This may then imply
that when we compare efficiency scores among DMUs, we should adjust the scores,
taking account of their effects across the quantiles of the efficiency scores. While there
is a large body of literature on the adjustment of efficiency scores for variations in
external factors (e.g., [13]), to the best of our knowledge, no study explicitly allows
for such differentiated effects across quantiles. Our next task should then be to elab-
orate further on the QR approach in a 2SR analysis and possibly construct adjusted
efficiency scores that allow for such quantile effects.
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22
DEA AS A KAIZEN TOOL: SBM
VARIATIONS REVISITED

KAORU TONE

National Graduate Institute for Policy Studies, Tokyo, Japan

22.1 INTRODUCTION

The original slacks-based measure (SBM) model evaluates the efficiency of decision-
making units (DMUs) by referring to the furthest frontier point within some range.
This results in the worst score for a DMU, and the projection may go to a remote point
on the efficient frontiers, which may be inappropriate as a reference. Tone [1] devel-
oped four variants of the SBMmodel where the main concern is to search for the near-
est point on the efficient frontiers of the production possibility set.

We depict the relationship between the ordinary SBM (SBM-Min), CCR and
SBM-Max models in Figure 22.1. The projections of the inefficient DMU P are Q,
R and S by SBM-Min, CCR and SBM-Max, respectively. Mathematically, finding
S is an NP-hard problem, because it is a problem of maximization of a convex function
over a convex region. However, the projected point S indicates that we can attain an
efficient status with less input reduction and less output expansion than in the ordinary
SBM (i.e. SBM-Min) models. Thus, the projection in the SBM-Max model represents
a practical ‘Kaizen’ (improvement) by data envelopment analysis (DEA).

Referring to these variations, several authors have published new models. Among
them, I introduce two important papers.

Fukuyama et al. [2] developed a least-distance efficiency measure with strong/
weak monotonicity of the ratio form measure under several norms, including the
1-norm, 2-norm and ∞-norm. This model utilizes mixed-integer linear programming
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(MILP) to identify efficiency frontiers, and hence a computational difficulty arises for
large-scale problems.

Hadi-Vencheh et al. [3] developed a new SBM model to find the nearest point on
the efficient frontiers. They utilized a multiplier form model to find all supporting
hyperplanes. This model also utilizes software which uses fractional coefficients
(high-precision arithmetic) to avoid data loss. Hence, the computational time
increases for large-scale problems.

In order to apply DEA models to real-world problems, we need to solve many
instances with different input/output factors and sets of DMUs before attaining the
final scheme of evaluation. For this purpose, an acceptable computation time and eas-
ily accessible software are desirable. The motivation and purpose of this chapter is to
obtain the ‘nearly’ closest points on the efficient frontiers with foreseeable computa-
tional loads using only popular linear programming codes.

The rest of this chapter is organized as follows. Section 22.2 introduces the ordi-
nary SBM-Min model briefly. Section 22.3 presents the new SBM-Max model.
Observations on this new model are provided in Section 22.4. Two numerical exam-
ples are presented in Section 22.5. Section 22.6 concludes the chapter. Although we
present the model in non-oriented mode, we can treat input- and output-oriented mod-
els as well. As to returns-to-scale characteristics, we present the constant-returns-to-
scale (CRS) case. However, we can deal with a variable-returns-to-scale (VRS) model
as well.

22.2 THE SBM-MIN MODEL

The SBM model was introduced in [4,5]. It has three variations, input-, output- and
non-oriented. The non-oriented model is both input- and output-oriented.

Let the set of DMUs be J = 1,2,…,n , and let each DMUmake use of m inputs to
produce s outputs. We denote the vectors of inputs and outputs for DMUj by

xj = x1j,x2j,…,xmj
T

and yj = y1j,y2j,…,ysj
T
, respectively. We define the input

and output matrices X and Y by

Input 2

Input 1
O

P
Q

R

S

SBM-Min

CCR
SBM-Max

Efficient frontiers

Figure 22.1 Comparison of SBM, CCR and SBM-Max models.
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X= x1,x2,…,xn Rm× n andY= y1,y2,…,yn Rs× n (22.1)

We assume that all data are positive, i.e. X > 0 and Y > 0.

22.2.1 Production Possibility Set

The production possibility set is defined using a non-negative combination of the
DMUs in the set J as

P= x,y x ≥
n

j= 1
λjxj, 0 ≤ y ≤

n

j= 1
λjyj, λ ≥ 0 (22.2)

λ= λ1,λ2,…,λn
T is called the intensity vector.

The inequalities in (22.2) can be transformed into equalities by introducing slacks
as follows:

x =
n

j= 1
λjxj + s−

y =
n

j= 1
λjyj−s

+

s− ≥ 0, s + ≥ 0

(22.3)

where s− = s−1 ,s
−
2 ,…,s−m

T
Rm and s + = s+1 ,s

+
2 ,…,s +s

T
Rs are called the input

and output slacks, respectively.

22.2.2 Non-Oriented SBM

The non-oriented or both-oriented SBM efficiency ρmin
o is defined by

SBM-Min ρmin
o = min

λ,s− ,s+

1−
1
m

m

i= 1

s−i
xio

1 +
1
s

s

r = 1

s+r
yro

subject to

xio =
n

j= 1
xijλj + s−i i= 1,…,m

yro =
n

j= 1
yrjλj−s+r r = 1,…,s

λj ≥ 0 j , s−i ≥ 0 i , s +r ≥ 0 r

(22.4)

Definition 22.1 (SBM-efficient)
DMUo = xo,yo is called SBM-efficient if ρmin

o = 1 holds.
This means that s− = 0 and s+ ∗ = 0, i.e. all input and output slacks are zero.
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[SBM-Min] can be transformed into a linear program using the Charnes–Cooper
transformation as follows:

SBM-Min-LP τ∗ = min
t,Λ,S− ,S+

t−
1
m

m

i= 1

S−
i

xio
subject to

1 = t +
1
s

s

r = 1

S+
r

yro

txio =
n

j= 1
xijΛj + S−

i i= 1,…,m

tyro =
n

j= 1
yrjΛj−S +

r r = 1,…,s

Λj ≥ 0 j , S−
i ≥ 0 i , S+

r ≥ 0 r , t > 0

(22.5)

Let an optimal solution be τ∗, t∗,Λ∗,S−∗,S+ ∗ . Then, we have an optimal solution of
[SBM-Min] as defined by

ρmin
o = τ∗, λ∗ =Λ∗ t∗, s−∗ = S−∗ t∗, s + ∗ =S+ ∗ t∗ (22.6)

22.3 THE SBM-MAX MODEL

In this section, we introduce the new non-oriented SBM-Max model.

Step 1. Solve SBM-Min
First, we solve the ordinary SBM (SBM-Min) model as represented by the program

(22.4) for DMU xo,yo o = 1,…,n . Let an optimal solution be λ∗,s−∗,s + ∗ .

Step 2. Define Efficient DMUs
We define the set Reff of all efficient DMUs as

Reff = j ρmin
j = 1, j= 1,…,n (22.7)

We denote these efficient DMUs by xeff1 ,yeff1 , xeff2 ,yeff2 ,…, xeffNeff ,y
eff
Neff , where

Neff is the number of efficient DMUs.

Step 3. Local Reference Set
For an inefficient DMU (xo, yo), we define the local reference set Rlocal

o , i.e. the set
of efficient DMUs for DMU (xo, yo), by (22.8):

Rlocal
o = j λ∗j > 0, j = 1,…,n (22.8)
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Step 4. Pseudo-Max Score
For each inefficient DMU, i.e. ρmin

o < 1, we solve the following program:

Pseudo-1 max
1−

1
m

m

i= 1

s−io
xio

1 +
1
s

s

r = 1

s+r
yro

subject to

xo =
j Rlocal

o

xjλj + s−

yo =
j Rlocal

o

yjλj−s
+

s− ,s + ,λ ≥ 0

(22.9)

Let the optimal slacks be s−∗,s+ ∗ . We solve the following programwith variables
λ,s− ,s + :

Pseudo-2 min
1−

1
m

m

i= 1

s−io
xio− s−∗i

1 +
1
s

s

r = 1

s +r
yro + s + ∗r

subject to

xo−s−∗ =
j Reff

xeffj λj + s−

yo + s
+ ∗ =

j Reff

yeffj λj−s +

s− ,s+ ,λ ≥ 0

(22.10)

Let the optimal slacks be s−∗∗,s + ∗∗ . We define the pseudo-max score
ρpseudomax
o by

Pseudo-Max ρpseudomax
o =

1− 1
m

m

i= 1

s−∗io + s−∗∗io

xio

1 + 1
s

s

r = 1

s+ ∗r + s + ∗∗r

yro

(22.11)

Step 5. Distance and SBM-Max Score
For each inefficient DMU (xo, yo), i.e. ρmin

o < 1, we calculate the distance between
(xo, yo) and xeffh ,yeffh h= 1,…,Neff as

Distance dh =
m

i= 1

xeffih −xio
xio

+
s

i= 1

yeffih −yio
yio

(22.12)

This distance is units-invariant.
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Step 5.1. Reorder the Distances
We renumber the efficient DMUs in ascending order of dh, so that

d1 ≤ d2 ≤… ≤ dNeff (22.13)

We define the set Rh by

Rh = 1,…,h h = 1,…,Neff (22.14)

Step 5.2. Find Slacks and Max-Score for the Set Rh

We evaluate the efficiency score of the inefficient DMU (xo, yo), referring to the set
Rh, by solving the following program:

Max-1 max
λ,s− ,s+

1−
1
m

m

i= 1

s−io
xio

1 +
1
s

s

r = 1

s +r
yro

subject to

xo =
j Rh

xeffj λj + s−

yo =
j Rh

yeffj λj−s+

s− ,s + ,λ ≥ 0

(22.15)

a. If this program is infeasible, we define ρ∗oh = 0. Otherwise, let the optimal slacks
be s−∗,s+ ∗ .

b. If the optimal objective value is 1, i.e. s−∗ = 0 and s + ∗ = 0, we define ρ∗oh = 0.
This indicates that DMU (xo, yo) can be expressed as a non-negative combina-
tion of DMUs in Rh and hence, in view of ρmin

o < 1, it is inside the production
possibility set.

c. If the optimal objective value is less than 1, we again solve the following pro-
gram with the variables λ,s− ,s + :

Max-2 min
λ,s− ,s +

1−
1
m

m

i = 1

s−io
xio− s−∗i

1 +
1
s

s

r = 1

s +r
yro + s + ∗r

subject to

xo−s−∗ =
j Reff

xeffj λj + s−

yo + s
+ ∗ =

j Reff

yeffj λj−s +

s− ,s+ ,λ ≥ 0

(22.16)
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Let the optimal slacks be s−∗∗,s+ ∗∗ . We define ρ∗oh by

ρ∗oh ρ∗oh =
1−

1
m

m

i= 1

s−∗io + s−∗∗io

xio

1 +
1
s

s

r = 1

s + ∗r + s+ ∗∗r

yro

(22.17)

We assign a value of ρ∗oh to the max-score referring to the set Rh.

Step 5.3. SBM-Max and Projection
Finally, we define the max-score ρmax

o of the inefficient DMU (xo, yo) by

SBM−Max ρmax
o =max ρpseudomax

o ,ρ∗o1,…,ρ∗oNeff (22.18)

We also keep the slacks s−∗∗,s + ∗∗ corresponding to the maximum ρmax
o . The

projection of DMU (xo, yo) onto the efficient frontiers is given by

Projection x∗o = xo−s
−∗−s−∗∗,y∗o = yo + s

+ ∗ + s+ ∗∗ (22.19)

The projected point x∗o,y
∗
o is efficient with respect to the efficient DMU set Reff.

However, it does not always satisfy the Pareto–Koopmans efficiency condition.

22.4 OBSERVATIONS

In this section, we discuss several characteristics of the algorithm presented in
Section 22.3.

22.4.1 Distance and Choice of the Set Rh

The set Rh plays a central role in choosing reference DMUs for inefficient DMUs.
Because our main concern is the projection to the nearest point on the efficient fron-
tiers, we evaluate the distance between the DMU (xo, yo) and the efficient DMUs by
use of (22.12), and choose the shortest-distance DMU as the first candidate DMU.
Then, we expand the reference set in ascending order of distance. Thus, we can expect
a point close to an efficient point on the frontiers with high probability. If a tie occurs
in the distances, we can choose any one at random.

22.4.2 The Role of Programs (22.10) and (22.16)

For example, Program (22.16) is necessary to project the point xo−s−∗,yo + s+ ∗

onto the efficient frontiers. Thus, x∗o = xo−s
−∗−s−∗∗,y∗o = yo + s

+ ∗ + s + ∗∗ is the pro-
jected point on the efficient frontiers, and it is expected to be close to DMU (xo, yo) by
the selection rule for Rh.
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22.4.3 Computational Amount

The computations needed for this algorithm for an inefficient DMU are as follows.
Let t1 and t2 be the CPU times for solving a linear programming (LP) problem with

(m + s) rows and n columns, and (m + s) rows and Neff columns, respectively. Since
the solution time for an LP problem is proportional to the number of columns, we can
estimate roughly that t1 = (n/Neff)t2.

1. Program (22.4) or (22.5) needs n ∗ t1 CPU time.

2. Programs (22.9) and (22.10) need at most 2 ∗ (n − Neff) ∗ t2 CPU time.

3. Programs (22.15) and (22.16) need at most 1.5 ∗ (n −Neff) ∗Neff ∗ t2 CPU time,
because the index of the member of Rh in (22.15) varies from 1 to Neff.

However, if Step 5.2(b) occurs for some set Rh, we can skip the computations for
the succeeding programs (22.15) and (22.16) for h+ 1,…,Neff .

Overall, the total time for the LP computation is at most

T = n∗t1 + n−Neff ∗t2 + 1 5∗ n−Neff ∗Neff ∗t2
= n + 2 + 1 5∗Neff ∗ n−Neff ∗ Neff n ∗t1

(22.20)

Thus, the computational amount is of polynomial order and we do not need other
software, for example MILP or fractional arithmetic.

22.4.4 Consistency with the Super-Efficiency SBM Measure

The SBM-Max model aims at getting to the nearest point on the efficient frontiers.
This concept is in line with the super-efficiency SBM model [6], which solves the
following program for an efficient DMU (xo, yo) to measure the minimum ratio-scale
distance from the efficient frontier excluding the DMU (xo, yo):

Super-SBM δ∗ = min
λ,s− ,s+

1 +
1
m

m

i= 1

s−i
xio

1−
1
s

s

r = 1

s +r
yro

subject to

xo =
n

j= 1, j o
xjλj −s−

yo =
n

j= 1, j o
yjλj + s

+

λ ≥ 0,s− ≥ 0,s + ≥ 0

(22.21)

We can solve the super-efficiency SBM model by applying the LP code just once,
because this problem belongs to the class of convex programming, i.e. minimization
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of a convex function over a convex region. However, the SBM-Max problem cannot
be solved in this manner, because it is a maximization of a convex function over a
convex region.

22.4.5 Addition of Weights to Input and Output Slacks

We can assign weights (w− and w+) to the input and output slacks in the objective
function of the above SBM models corresponding to the relative importance of items
as follows:

Weighted-SBM ρ∗ = min
λ,s− ,s+

1−
1
m

m

i = 1

w−
i s−i
xio

1 +
1
s

s

r = 1

w+
r s +r
yro

(22.22)

with
m

i= 1
w−
i =m and

m

r = 1
w +
r = s. The weights should reflect the intentions of

the decision-makers. We can define input- and output-oriented weighted-SBM
models by omitting the denominator and numerator, respectively, of the objective
function in (22.22).

22.5 NUMERICAL EXAMPLES

In this section, we show two numerical examples: the first one is illustrative and the
other deals with real data. All computations were executed using a PC with an Intel
Core i7-3770 CPU operating at 3.40 GHz with 16 GB RAM and Microsoft Excel
VBA (Visual Basic for Applications). An LP software package (using the revised sim-
plex method) was coded by the author. We checked the results of the first example
using LINGO (LINDO Systems Inc.) and obtained the same figures.

22.5.1 An Illustrative Example

We considered the same data as in [3]. Table 22.1 displays the data, with two inputs
(Doctor and Nurse) and two outputs (Outpatient and Inpatient).

22.5.1.1 Solution of SBM-Min Model First, we solved the SBM-Min model and
obtained the results shown in Table 22.2.

We find four efficient DMUs, i.e. Reff = A,B,D,L .

22.5.1.2 The Case of Inefficient DMU I We present the case of inefficient DMU
I, step by step.

1. Steps 1, 2 and 3: ρmin
I = 0 9016, Rlocal

I = A,L , Reff = A,B,D,L .

2. Step 4: ρpseudomax
I = 0 9016.
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3. Step 5.1: the distances from efficient DMUs are dA = 1.28816, dB = 1.54030, dD =
0.74411 and dL = 1.03131. Thus, we have R1 = D ,R2 = D,L ,R3 = D,L,A
and R4 = D,L,A,B .

4. Step 5.2: we solve (22.16) and (22.17), and find ρ∗I1 = 0 859885,ρ∗I2 = 0 910900,
ρ∗I3 = 0 921168 and ρ∗I4 = 0 920198.

5. Step 5.3: from (22.18), we find ρmax
I =max ρpseudomax

I ,ρ∗I1,ρ
∗
I2,ρ

∗
I3,ρ

∗
I4 =

0 921168 = ρ∗I3 with the reference set R3 = A,D,L . Its projection is
x∗1I = 30,x

∗
2I = 205 53,y∗1I = 190,y

∗
2I = 100 with the slacks s−1 = 0,

s−2 = 38 47,s +1 = 0,s +2 = 0 . The SBM-Min model has ρmin
I = 0 9016 with slacks

s−1 = 0,s−2 = 26 767,s+1 = 0,s +2 = 9 667 . This indicates that the SBM-Min

TABLE 22.2 Results of SBM-Min model.

DMU Score Rank Reference (Lambda)

A 1 1 A 1
B 1 1 B 1
C 0.8265 8 B 0.449 L 0.371
D 1 1 D 1
E 0.7277 11 B 0.667 L 0.246
F 0.6857 12 A 0.092 L 0.883
G 0.8765 6 B 0.16 L 0.784
H 0.7713 9 L 0.755
I 0.9016 5 A 0.233 L 0.667
J 0.7653 10 B 0.152 L 0.909
K 0.8619 7 B 0.15 L 1.049
L 1 1 L 1

TABLE 22.1 Illustrative example.

DMU (I) Doctor (I) Nurse (O) Outpatient (O) Inpatient

A 20 151 100 90
B 19 131 150 50
C 25 160 160 55
D 27 168 180 72
E 22 158 94 66
F 55 255 230 90
G 33 235 220 88
H 31 206 152 80
I 30 244 190 100
J 50 268 250 100
K 53 306 260 147
L 38 273 250 133
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model requires a reduction of Nurse by 26.767 and an increase of Inpatient by
9.667 to attain an efficient status, whereas the SBM-Max model requires a
reduction of Nurse by 38.47 to attain that status.

22.5.1.3 Comparison of SBM-Max, Pseudo-Max and SBM-Min Scores
Table 22.3 compares the results for the SBM-Max, SBM-Pseudo and SBM-Min
scores. The inefficient DMUs increase in efficiency from SBM-Min to SBM-Max.

Table 22.4 shows ρpseudomax
o ,ρ∗o1,…,ρ∗o4 for the inefficient DMUs. The shaded por-

tions indicate the maximum values. The SBM-Max scores were found at several
stages for Rh.

TABLE 22.3 Comparisons.

DMU SBM-Max Rank Pseudo Rank SBM-Min Rank

A 1 1 1 1 1 1
B 1 1 1 1 1 1
C 0.87507 8 0.855 8 0.8265 8
D 1 1 1 1 1 1
E 0.7682 11 0.7391 11 0.7277 11
F 0.72648 12 0.6868 12 0.6857 12
G 0.93688 5 0.9052 5 0.8765 6
H 0.80918 10 0.7714 10 0.7714 9
I 0.92117 6 0.9016 6 0.9016 5
J 0.81032 9 0.7898 9 0.7653 10
K 0.88894 7 0.8622 7 0.8619 7
L 1 1 1 1 1 1

Average 0.8947 0.8759 0.8681
Max 1 1 1
Min 0.7265 0.6868 0.6857
St. Dev. 0.0982 0.1114 0.115

TABLE 22.4 ρ values.

DMU ρpseudomax
o ρ∗o1 ρ∗o2 ρ∗o3 ρ∗o4

C 0.854953846 0.875070028 0.875070028 0.875070028 0.875070028

E 0.7391066 0.768203137 0.768203137 0.768203137 0.768203137

F 0.686814742 0.686814742 0.726479403 0.726479403 0.726479403

G 0.905158931 0.936879433 0.936879433 0.936879433 0.936879433

H 0.771353638 0.809180119 0.809180119 0.809180119 0.809180119

I 0.901628474 −10 0.910900045 0.921167545 0.920188082

J 0.789823609 0.757308083 0.810323383 0.810323383 0.810323383

K 0.862207404 0.862207404 0.866150331 0.888935642 0.888935642
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22.5.1.4 Comparison of Average Differences between SBM-Max and SBM-
Min Figure 22.2 shows the average of the percentage deviations,│Data −
Projection│∗ 100/Data. Notice that large differences exist in SBM-Min, while small
differences exist in SBM-Max. Table 22.5 reports the data and projections along with
the deviations (%) in the case of SBM-Max.

22.5.2 Japanese Municipal Hospitals

The data were collected from the Annual Databook of Local Public Enterprise pub-
lished by the Ministry of Internal Affairs and Communications of the Japanese Gov-
ernment, 2005.

22.5.2.1 Data

• Number of DMUs: 707 hospitals (n = 707).

• Number of inputs: 5. (1) Number of beds (Bed), (2) expenses for outsourcing
(Outsource), (3) number of doctors (Doctor), (4) number of nurses (Nurse)
and (5) expenses for other medical materials (Material) (m = 5).

• Number of outputs: 4. (1) Revenue from operations per day (Operation), (2) rev-
enue from first consultation per day (1st time), (3) revenue from return to clinic
per day (Follow-up) and (4) revenue from hospitalization per day (Hotel) (s = 4).

Table 22.6 shows statistics of the dataset.

22.5.2.2 SBM Scores The SBM-Min model found that 66 hospitals among the
707 were efficient (Neff = 66). Table 22.7 compares the three scores. We found large
differences between the SBM-Max and SBM-Min models.
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Figure 22.2 Average deviations (%).
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TABLE 22.5 Data and projections by use of SBM-Max.

Doctor Nurse Outpatient Inpatient

DMU Score Rank Data Proj. Diff. (%) Data Proj. Diff. (%) Data Proj. Diff. (%) Data Proj. Diff. (%)

A 1 1 20 20 0 151 151 0 100 100 0 90 90 0
B 1 1 19 19 0 131 131 0 150 150 0 50 50 0
C 0.8751 8 25 25 0 160 155.6 −2.78 160 166.7 4.17 55 66.7 21.21
D 1 1 27 27 0 168 168 0 180 180 0 72 72 0
E 0.7682 11 22 20.9 −4.88 158 158 0 94 104.6 11.32 66 94.2 42.69
F 0.7265 12 55 34.5 −37.27 255 214.7 −15.82 230 230 0 90 92 2.22
G 0.9369 5 33 33 0 235 205.3 −12.62 220 220 0 88 88 0
H 0.8092 10 31 30 −3.23 206 186.7 −9.39 152 200 31.58 80 80 0
I 0.9212 6 30 30 0 244 205.5 −15.77 190 190 0 100 100 0
J 0.8103 9 50 43.1 −13.86 268 268 0 250 287.1 14.86 100 115 14.86
K 0.888 7 53 46.5 −12.26 306 306 0 260 289.1 11.2 147 147 0
L 1 1 38 38 0 273 273 0 250 250 0 133 133 0

TABLE 22.6 Statistics of dataset (n = 707).

Bed Outsource Doctor Nurse Material Operation 1st time Follow-up Hotel

Max 1063 2 231 247 215.562 955.464 3 395 791 1.7E + 07 1 432 079 3 359 160 1.8E + 07
Min 25 7 767 0.98 11 9 197 8 979 2 706 13 636 109 650
Average 255.924 312 686 33.2783 175.709 491 909 2 128 506 211 538 415 872 3 263 845
SD 191.764 334 184 34.1647 149.678 598 474 2 533 050 212 439 327 749 3 020 809



Figures 22.3 (SBM-Max) and 22.4 (SBM-Min) show the respective scores of the
707 hospitals in ascending order, where we can observe big differences. Table 22.8
shows the average of the percentage deviations,│Data − Projection│∗ 100/Data. It can
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Figure 22.3 Distribution of SBM-Max scores.

TABLE 22.7 Comparison of the three scores.

SBM-Max Pseudo SBM-Min

Average 0.7835 0.6997 0.4515
Max 1 1 1
Min 0.1889 0.0394 0.0118
St. Dev. 0.1339 0.211 0.229
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Figure 22.4 Distribution of SBM-Min scores.
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be observed that large differences exist in SBM-Min, while there are only small dif-
ferences in SBM-Max.

Figure 22.5 illustrates the deviations graphically. Large differences are found in
SBM-Min, while balanced deviations are found in SBM-Max.

22.5.2.3 Computational Time The computation time increases as the number of
efficient DMUs (Neff) increases, because the number of facets increases accordingly
and we need to solve an additional Neff linear programs. In this example, we had:

1. CPU time for SBM-Min and SBM-Pseudo = 12 seconds.

2. CPU time for SBM-Max = 179 seconds.

SBM-Max needs about 15 times as much computation time as SBM-Min and
SBM-Pseudo. This number is reasonable and consistent with the formula (22.20).
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Figure 22.5 Average deviations (%) of inputs and outputs (cut at 150%).

TABLE 22.8 Average deviation (%).

SBM-Max SBM-Min

Bed 13.1644 3.4014
Outsource 20.0291 24.8771
Doctor 12.0707 9.9367
Nurse 9.6586 5.7022
Material 10.7101 8.144
Operation 12.7155 48.2925
1st time 9.4884 407.243
Follow-up 13.3537 192.406
Hotel 17.4181 1.1889
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22.6 CONCLUSIONS

In this chapter, we have developed the SBM-Max model, which attempts to find
nearly the closest reference point on the efficient frontiers so that slacks are minimized
while the scores are maximized. Sacrificing rigorous solutions, the proposed model
utilizes a standard LP code and finds approximate solutions in an allowable (polyno-
mial) time.

Many applications of SBM-Min models have been developed over the world.
According to the Google Citation Index, 1648 articles cited Tone [4] on March
14 2016. Also, many DEA models have been developed based on this model. Above
all, network SBM (NSBM) [7], dynamic SBM (DSBM) [8], dynamic network SBM
(DNSBM) [9] andMalmquist SBM [10] are representative. Revisions of these models
based on the SBM-Max model are imperative future research subjects.1
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23.1 INTRODUCTION

Corporate failure analysis is one of the crucial factors affecting company management
and individual investors, as it tells the current corporate health status of a company and
often forecasts the firm’s future developmental trend. Therefore, the motivation of
corporate failure analysis is the need to predict the financial stress that a company
faces, by employing mathematical modelling.

In the realm of corporate failure research, a wide spectrum of studies has been pub-
lished; one of the most used types is based on a set of financial ratios. Most of the
ratios used [1] are obtained from the financial statements of the company. The typical
method for bankruptcy prediction, the Altman Z score [2], was proposed by Edward
Altman. He combined several important financial ratios by using multiple discrimi-
nant analysis, and generated a score which is the weighted sum of these ratios. The
operational status of a company is classified into three classes by the value of this
score, namely, troubled, healthy and a middle status, the ‘grey area’. This method
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became popular in evaluating the potential corporate financial stress of various com-
panies; specifically, it is effective for manufacturing companies as most of the ratios
rely on the size of the firm’s assets [3,4]. However, besides manufacturing firms, non-
manufacturing entities represent a large number of firms. Most of these non-
manufacturing firms are service-oriented and affect our daily life, but do not actually
rely on asset size [5]. To make his methodology suitable for non-manufacturing firms,
Altman proposed a second model, which was named the Altman Z model [6]. By
testing the effectiveness of the Z method on non-manufacturing firms, Altman
selected optimal parameters to make the model satisfy both manufacturing and
non-manufacturing industries. Nevertheless, this model is still substantially based
on asset size, notwithstanding the fact that the majority of firms today are mainly
focused on services, their most important asset is their people and they do not have
a large real asset base [5]. It follows that an investigation of the Altman Z model for
the non-manufacturing sector was deemed necessary.

To solve the problem of predicting corporate failure for non-manufacturing firms, still
following the ratios proposed by Altman, we introduce a new method using data envel-
opment analysis (DEA). Since the firstDEAmodel introduced byCharnes et al. [7] based
on Farrell’s research [8], DEA has developed into a popular non-parametric approach to
productivity, efficiencyandeffectiveness evaluation inmany industries, covering finance,
logistics,management andsoon [9–12].Themain frameworkofDEAisa fractional linear
programming technique that maximizes the productivity and efficiency of the firm under
evaluation, which is referred to inDEAas a decision-making unit (DMU), and restricting
otherDMUs tocertain limits.The flexible structureofDEAhas threebenefits inpredicting
non-manufacturing corporate failure. Firstly, the selection of inputs and outputs of the
DMU is flexible, which allows us to select related ratios from Altman’s method, as it
was accepted in his research that these ratios were the most effective in corporate failure
prediction.Therefore, the ratios thatweselected fromAltman’smodelwere themost influ-
ential ones that cover different aspects of the operating status of firms.Secondly, the selec-
tion of inputs and outputs inDEAallows us to choose preferable attributes, so that we can
eliminate the ‘asset’ factor from the ratios and make the DEA method suitable for non-
manufacturing industry. Finally, DEA is non-parametric, which is quite different from
Altman’s methods, which are parametric. In Altman’s methods, in order to evaluate
the status of a firm, a big enough training dataset is necessary to obtain appropriate para-
meters (he used data on thousands of firms). By introducingDEA, such complicated pro-
cedures can be avoided. Considering thesemerits of DEA, we provide a new approach to
corporate failure analysis using the slacks-based measure (SBM) model of DEA.

23.2 LITERATURE REVIEW

Understanding the previous literature on corporate failure analysis is essential to our
current research, and helps to clarify the differences between our research and the pub-
lished studies and to highlight our contributions. In this section, we introduce the most
influential methods and applications in corporate failure analysis, such as Beaver’s
univariate model, Altman’s multivariate model and some other studies.
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23.2.1 Beaver’s Univariate Model

One of the first attempts to predict corporate failure was carried out byWilliam Beaver
in 1967 [1], in which Beaver defined failure as ‘the inability of a firm to pay its
financial obligations as they mature’ and a financial ratio as ‘a quotient of two num-
bers, where both numbers consist of financial statement items’. Beaver also pro-
posed ‘predictive ability’, which is essentially the usefulness of a data item for
identifying an event before it occurs. Beaver collected data from Moody’s industrial
manual between 1954 and 1964, inclusive. Each failed firm from Moody’s was
compared with a healthy firm in the same industry of a comparable asset size. At
the time, there were statistics-based reasons to believe that the larger of two firms
would have less probability of failure even if they had identical financial ratios.
Therefore, he believed that firms of different asset sizes could not be accurately
compared [13]. Beaver compiled 30 ratios and showed the following 14 to be
the most effective:

• cash flow/total debt;

• current assets/current liabilities;

• net income/total assets;

• quick assets/current liabilities;

• total debt/total assets;

• cash/current liabilities;

• current assets/total assets;

• current assets/sales;

• quick assets/total assets;

• quick assets/sales;

• working capital/total assets;

• working capital/sales;

• cash/total assets;

• cash/sales.

By comparing the above ratios, Beaver selected ‘cash flow/total debt’ as the best
predictor, and ‘total debt/total assets’ as the second best. He concluded that ‘the most
crucial factor was the net liquid asset flow supplied to the reservoir while the size of
the reservoir was the least important factor’.

Beaver also visited the concept of the likelihood ratio (LR), which is the ratio of
these two values:

P NF = percentage for non-failed firms

P F = percentage for failed firms

LR=
P F

P NF
(23.1)
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A likelihood ratio could be found for every interval for each of the financial ratios
in each year before bankruptcy. However, Beaver was inconclusive in his analysis of
these ratios. He stated that in the year before failure, the likelihood ratio mirrored the
financial ratio; however, in the years before that, the results varied greatly. He also
stated that though his work was univariate, it would be valuable to consider a multi-
variate approach [1]. This is where Altman stepped in.

23.2.2 Altman’s Multivariate Model

The univariate approach proposed by Beaver selects only the most crucial factor in cor-
porate failureanalysis,whichdoesnot correspond to the real case inmanyapplications. In
1968,EdwardAltmanattempted the firstmultivariate approach tobankruptcyprediction.
The analysis technique that he adopted was multiple discriminant analysis (MDA).

In Altman’s time, MDA was not as popular as regression analysis and was used
mainly in biological and behavioural sciences [2]. MDA is a statistical technique used
to classify an observation into one of several ‘a priori’ groupings dependent upon the
observation’s individual characteristics. It is usually used to classify a variable into a
qualitative group, for example male or female, or bankrupt or non-bankrupt. The proc-
ess used for MDA is first to establish groups, which may be more than two in size, and
then collect data for objects within each of those groups. Then a linear combination is
created from the data collected that best discriminates between the groups. This is
done by assigning coefficients to each data item. In the case of bankruptcy, a coeffi-
cient is assigned to each financial ratio chosen and the output of the linear combination
is a number that can classify a firm as ‘bankrupt’ or ‘non-bankrupt’. MDA allows the
entire profile of variables to be analysed simultaneously rather than individually [6].

To develop the model, Altman took a sample of 66 corporations with 33 firms in
the bankrupt group and 33 in the non-bankrupt group. All bankrupt firms were man-
ufacturers that filed a bankruptcy petition under Chapter 11 of the National Bank-
ruptcy Act between 1946 and 1965. The non-bankrupt firms were selected by a
paired sample method (similar to that of Beaver). A list of 22 potential ratios was com-
piled, which were split into five standard ratio categories: liquidity, profitability, lev-
erage, solvency and activity ratios. From the list of 22, five ratios were selected to be
able to do the best overall job in collectively predicting bankruptcy. These were
selected based on (i) the statistical significance of various potential functions, while
determining the relative contribution of each individual variable; (ii) the intercorrela-
tion between the variables; (iii) the predictive accuracy of various profiles; and
(iv) judgement based on the analysis [2].

Altman’s multivariate model is as follows:

Z = 1 2T1 + 1 4T2 + 3 3T3 + 0 6T4 + 0 999T5 (23.2)

where

T1 =
Working capital
Total assets

, T2 =
Retained earnings

Total assets
, T3 =

Earnings before income and taxes
Total assets
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T4 =
Market value of equity

Total liabilities
, T5 =

Sales
Total assets

with cut-off zones

Z > 2 99 Safe

1 81 <Z < 2 99 Grey area

Z < 1 81 Distress zone

Altman found a classification accuracy of 83.5% for his model and showed that his
model could predict bankruptcy up to three years before the bankruptcy date. Altman
also stated in his research that companies could be categorized into three zones by
selected cut-off points, that is, safe (Z > 2.6), grey (1.1 < Z < 2.6) and distress
(Z < 1.1).

23.2.3 Subsequent Models

Later, in 1972, Edward Deakin revisited Beaver’s analysis [14]. He used the 14 ratios
that Beaver found to be most effective and attempted to use a discriminant analysis
similar to Altman’s Z score method. Deakin also attempted to look at data up to five
years before the date of bankruptcy. In his analysis, he found that the significance of
each ratio changed across the five years. He also found that he was only able to get
significant prediction results for up to three years before the date of bankruptcy.

In 1980, James Ohlson attempted an alternative method of bankruptcy prediction
using a probabilistic approach [15]. He looked at data between 1970 and 1976. Essen-
tially, in this method he looked at a vector of financial ratios, determined a vector of
parameters for those ratios and looked at the probability of bankruptcy for those ratios
and parameters. He then attempted to find a cut-off probability point between zero and
one for bankruptcy and non-bankruptcy. The ratios that Ohlson employed were:

• Size = log(total assets/GNP price-level index);

• TLTA = total liabilities divided by total assets;

• WCTA = working capital divided by total assets;

• CLCA = current liabilities divided by current assets;

• ONENEG = one if total liabilities exceed total assets, zero otherwise;

• NITA = net income divided by total assets;

• FUTL = funds provided by operations divided by total liabilities;

• INTWO = one if net income was negative for the last two years, zero otherwise;

• CHIN = NIt−NIt−1 NIt + NIt−1 ., where NIt is the net income for the most
recent period. The denominator acts as a level indicator. This variable is thus
intended to measure change in net income.
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Ohlson, however, did not find promising results with this model as compared with
Altman’s model, and thus this model is not commonly used today.

In 1984, Zmijewski explored the potential methodological drawbacks of the previ-
ousbankruptcyprediction techniques [16].Hismain issuewas that previous studies that
had usednon-randomsamples, that is, bankrupt andnon-bankrupt groups hadbeenpre-
delineated before modelling. Zmijewski attempted to use random sampling and incor-
porated a probitmodel to test for bankruptcy. The firms chosen for this studywere from
the American and New York Stock Exchanges with SIC codes of less than 6000 and
were obtained between 1972 and 1978. What Zmijewski did was to create a variable
B, where if B > 0 then the company was at risk of bankruptcy. His model is below:

B∗ = a0 + a1ROA+ a2FINL + a3LIQ + u (23.3)

P B∗ > 0 =P −u < a0 + a1ROA+ a2FINL+ a3LIQ

where ROA = net income to total assets (return on assets), FINL = total debt to total
assets (financial leverage), LIQ = current assets to current liabilities (liquidity) and u =
normally distributed error term.

However, Zmijewski found that his results were qualitatively similar to those that
used non-random sampling and that there was no apparent improvement in the overall
classification rates [16].

In the 1990s, there were many critiques of bankruptcy prediction. In 1993, Su-Jane
Hsieh criticized methods for determining the cut-off point for bankruptcy [17]. Some
issues that were pointed out were the fact that the cut-off point was determined by trial
and error, not by statistics, and that the cut-off point was determined without consid-
ering the relative losses for Type I and Type II errors. Hsieh derived a modified Bayes-
ian decision model to estimate an optimal cut-off point for bankruptcy prediction
models [17]. A function was added in this model to account for the error costs of Type
I and Type II errors, and attempted to minimize these costs and not simply the prob-
ability of the error. However, although Hsieh came up with this method for determin-
ing the cut-off point, it has never actually been applied to previous bankruptcy models
to determine its effectiveness versus the common trial and error approach.

In 2001, John Grice and Michael Dugan noted another drawback, that models may
not be as effective outside the time period in which the model was created [18]. That
same year, Tyler Shumway attempted to create a bankruptcy prediction method using
a hazard model to account for changes over time [19]. He collected data for over
31 years and used the same ratios that Altman had used in his Z score model. Shum-
way’s model, although it showed results better than Altman’s in the first year before
bankruptcy, had a significant decline in accuracy before the second year before bank-
ruptcy. And, of course, predicting bankruptcy only one year ahead is not very useful,
as by then the financial stress is relatively easily observed even without any models.

It can be seen that many bankruptcy models have used Altman’s model as a bench-
mark for bankruptcy prediction. In 2001 another study was done by John Grice, along
with Robert Ingram, to look at the generalizability of the Altman Z score model [20].
Grice looked at data between 1988 and 1991 and again showed that Altman’s model
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was not as accurate during that time as it was at the time that it was developed. It was
also shown that Altman’s model was significantly more effective in predicting bank-
ruptcy for a sample of specifically manufacturing firms than for a general dataset of
companies.

In 2004, a study was carried out by Sudheer Chava and Robert Jarrow to look at
industry effects in bankruptcy prediction [21]. Data were collected from 1962 to 1999
and firms were taken from the AMEX, NYSE and NASDAQ listings. This study
looked at both yearly and monthly intervals and showed that monthly intervals had
the potential for being better predictors of failure if the data could be collected.
A hazard model was run on the variables from Altman’s model [2], Zmijewski’s
model [16] and Shumway’s model [19] and showed that industry groupings had a sig-
nificant effect on the slope and intercept coefficients in these models.

In 2004, Stephen Hillegeist, Elizabeth Keating, Donald Cram and Kyle Lundstedt
attempted to use an options pricing model to look at the probability of bankruptcy [4].
However, again this model looked only at manufacturing firms to compare the results
with Altman’s Z score [2] and Ohlson’s model [15], and it was suggested by the
authors that the coefficients should be updated to provide industry adjustments.

From our literature review, it can be seen that the type of industry is a factor in
bankruptcy prediction. Based on Altman’s Z score method, a large number of related
studies were developed by employing different ratios [14–21], of which the majority
still focused on manufacturing companies. Consequently, Altman proposed his lesser-
known Z score method to address this deficiency and deal specifically with non-
manufacturing industry. The method is shown below:

Z = 6 56T1 + 3 26T2 + 6 72T3 + 1 05T4 (23.4)

where

T1 =
Working capital
Total assets

, T2 =
Retained earnings

Total assets

T3 =
EBIT

Total assets
, T4 =

Book value of equity
Total liabilities

with cut-off zones

Z > 2 6 Safe

1 1 <Z < 2 6 Grey area

Z < 1 1 Distress zone

Altman revised the coefficients and items in the former Z score model to form a Z
score model. Similarly to the Z score method, firms are classified into three areas.
Even though the Z score model can be called an attempt to examine alternative indus-
tries compared with the Z score model, it still shows a major influence of the firms’
asset size. Given this, a non-parametric method, that is, DEA, which is flexible in
attribute selection, was considered in the present research.
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Recently, DEA has been welcomed as a method for corporate failure prediction in
some comparisons with various traditional methods [22–25]. Cielen et al. compared a
linear programming model, a decision tree method and DEA from the methodological
viewpoint for corporate failure prediction, and concluded that there were no large
accuracy discrepancies between linear programming models and DEA, but both of
those methods outperformed the decision tree method [26]. On the other hand,
Sueyoshi et al. applied DEA-DA (DEA with discriminant analysis) to bankruptcy
assessment and compared it with the DEAmethod, and found that DEA-DAwas more
appropriate for datasets over time [27]. Furthermore, a novel DEA method that inte-
grated it with rough set theory (RST) and support vector machines (SVM) was used to
increase the accuracy of prediction of corporate failure [28]. These studies utilized
different methods and compared them with DEA, emphasizing the predominance
of DEA in corporate failure prediction. However, as aforementioned, none of these
studies focuses on the prediction of failure of non-manufacturing firms, which have
a small asset size compared with other industries, and deserve more attention.

23.3 METHODOLOGY

Inside DEA, there are many technical details affecting the selection of models, such as
returns to scale, and radial or non-radial models. The first DEA model was CRS,
which is a constant-returns-to-scale DEA model [7]. From CRS, many other DEA
models have been developed, and most of these are radial models. However, the radial
DEA models, such as the CRS and the variable-returns-to-scale (VRS) [29] models,
are limited by the fact that they do not account for mix inefficiencies. In this case, the
company under examination is not limited to ‘proportional attributes change’, but is
evaluated by the general deviation from the best firms. It follows that the SBMmodel
[30], which accounts for mix inefficiencies, is more suitable for the current study.

23.3.1 Slacks-Based Measure

Before we present the utilization of SBM in corporate failure analysis, we briefly
introduce the SBM model in this section. Assume there are n DMUs in the current
system, and each of them has m inputs and s outputs. Therefore, the output vectors
and input vectors for these DMUs can be expressed as an (m × n) matrix X and an
(s × n) matrix Y, respectively. We use DMUo to denote the DMU currently under eval-
uation. Then the efficiency score of DMUo can be expressed by the following model:

ρ = min
λ,s− ,s+

1−
1
m

m

i= 1

s−i
xio

1 +
1
s

s

r = 1

s +r
yro

s t xo−s− =Xλ

yo + s
+ =Yλ

λ ≥ 0, s− ≥ 0, s + ≥ 0

(23.5)
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In the above model, xo = (x1o, x2o, …, xmo)
T and yo = (y1o, y2o, …, yso)

T are the input
and output vectors of DMUo. Slack vectors are defined by s

− Rm and s+ Rs, which
can be explained as input excesses and output shortfalls referring to the efficient fron-
tier. The production possibility set P is defined as follows:

P= x,y x ≥Xλ,y ≤Yλ,λ ≥ 0 (23.6)

The combination (Xλ, Yλ) defined by the production possibility set is formed by a
non-negative vector λ, and it always outperforms (xo, yo). Tone [30] concluded that the
above SBM model satisfied the following four properties: (P1) Units invariance: the
optimal value of the objective function is independent of the units in which the inputs
and outputs are measured. (P2) Monotonicity: the efficiency of a DMU decreases
monotonically with an increase in any slack for either the input or the output. (P3)
Reference set dependence: the efficiency of a DMU should be measured only by refer-
ring to its corresponding reference set. (P4) Charnes–Cooper transformation: the
original non-linear SBM model in (23.5) can be transformed into a linear one using
the Charnes–Cooper transformation.

The upper limit of the objective function in (23.5) is 1, and this can be interpreted as
meaning that the ratio of the mean input and output mix inefficiencies has an upper
limit of 1. If the optimal solution for an inefficient DMUo of (23.5) is denoted as (ρ∗,
λ∗, s−∗, s+∗), DMUo can be improved to be efficient by reducing its input excesses and
augmenting its output shortfalls as follows:

xo= xo−s
−∗

yo = yo + s
+ ∗ (23.7)

Here, xo, yo is usually considered to be an improving target, and it is defined by
projecting DMUo to a given point on the efficiency frontier. The reference set of
DMUo is constituted by all the positive elements in the vector λ∗. In cases where it
is only necessary to investigate the slacks in the inputs, the input-oriented SBMmodel
is usually utilized. The input-oriented SBM model is actually the numerator of the
SBM model, with corresponding modifications to the constraints that can be
expressed as follows:

ρ = min
λ, s− ,s+

1−
1
m

m

i= 1

s−i
xio

s t xo−s− =Xλ

yo ≤Yλ

λ ≥ 0, s− ≥ 0

(23.8)

By mathematical manipulations similar to those mentioned before, we can obtain
the output-oriented SBM model, but we will not discuss this further here. There
are also many other variations of the SBM model concerning returns to scale,
super-efficiency, Russell measure and so on. For a detailed introduction to these
subjects, see [31].
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23.3.2 Model Development

Since we are using SBM scores instead of Altman’s Z scores to measure the health
status of a company, the first step is to design the structure of the DMUs. Complying
with the ratios used in Altman’s method, we considered splitting these ratios and
extracting useful numerators and denominators from them as independent inputs
and outputs. This means that all of the numerators of the ratios were considered to
be outputs and the denominators were defined as inputs in the SBMmodel. The ratios
were split rather than being input directly, as it has been shown that ratios used as
inputs or outputs in DEA models can affect the results.

Originally, earnings before interest and taxes (EBIT) was used in Altman’s model,
and was calculated as revenue minus expenses, excluding tax and interest; it was used
to characterize a company’s profitability. Owing to data availability, EBIT was sub-
stituted for operating income, which is used interchangeably across much of the
accounting and investing world. Operating income is calculated as gross income less
operating expenses, depreciation and amortization. This excludes taxes and interest
expenses, just as with EBIT. The only difference between EBIT and operating income
is that operating income is considered an official measure under Generally Accepted
Accounting Principles (GAAP), whereas EBIT is not. But this does not affect the use
of operating income instead of EBIT.

Moreover, as one of the main purposes of our research, we need to see how accu-
rately bankruptcy can be predicted regardless of asset size. So, additionally, the attrib-
ute ‘total liabilities’ was removed and ‘working capital’ was split into ‘current assets’
and ‘current liabilities’. To test the relevance of human capital, which is important to
smaller non-manufacturing firms in our model, the number of employees and the
number of shareholders were added to the model. The number of employees was
added to introduce a measure of human capital (the most important ‘asset’ in a
non-manufacturing firm) as a contributor to the efficiency of a company. The number
of shareholders was added because, for many smaller non-manufacturing firms, the
shareholders have decision-making powers and invest both time and money that con-
tribute to the success of a firm. In this sense, the number of shareholders can also be
seen as a reflection of the financial well-being of a company as viewed by the public.

Another problem we met with was that many bankrupt companies had negative
values for retained earnings (RE), operating income (OI) and book value of equity
(BE), to which the SBM model was not applicable. Thus each output was split into
positive and negative parts. For example, RE was split into RE+ and RE−, where RE+

was defined as an output in its usual sense, but RE− was defined as an input. This
method says essentially that RE+ is an output and therefore should be made as large
as possible to improve the company’s operating efficiency. However, RE− is viewed
as an input which should be minimized. The inputs and outputs of the model after
revision are shown in Table 23.1.

Generally, the calculation results obtained from DEA models are affected by the
relationship between the number of DMUs and the dimensions of the DMUs, and this
topic has taken a variety of forms in the DEA literature [32–35]. Although we did
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attempt to use the normal SBM model, that is, without orientation, to calculate the
scores, the number of DMUs applicable to our study was between 23 and 42, which
is quite limited, considering the above 10 attributes. The numbers of either bankrupt or
non-bankrupt DMUs in each year were changed owing to the lack of available finan-
cial data. We give a detailed description of the data in Section 23.4. As a result, many
DMUs obtained an efficiency score of ‘1’, which was relatively undiscriminating for
judging bankruptcy. Given this, we adopted a rough rule of thumb for guidance in
deciding the number of DMUs and their dimensions as follows [31]:

n ≥max m× s, 3 m+ s (23.9)

where n, m and s are the numbers of DMUs, inputs and outputs, respectively.
From the above equation, it can be observed that the number of DMUs in our case

should be at least 30; however, most of the time the scale of the DMUs was smaller
than 30. Therefore, we used the input-oriented SBM model as shown in problem
(23.8) in the actual calculations to comply with the constraints in (23.9). Undoubtedly,
the output-oriented SBM model should also be feasible and give satisfactory results.
Furthermore, various studies have concentrated on generating new datasets to over-
come the problem of insufficient DMUs, for which we will not offer a detailed dis-
cussion here [32, 36, 37].

23.4 APPLICATION TO BANKRUPTCY PREDICTION

DEA is capable of calculating efficiency scores using various DEA models by pro-
viding appropriate classifications of inputs and outputs, and attribute values of DMUs.
An efficiency score ranging from 0 to 1 can then be assigned to each DMU, in this case
a non-manufacturing company, to describe its overall health status. For a group of
companies, we need first to clarify the thresholds used to categorize what kind of com-
panies are considered to be healthy, what kind of companies are considered to be
bankrupt, and what between these two categories is the intermediate state. This means
that there is a necessity to select two values in the interval [0, 1] as cut-off points to
categorize the companies under analysis into three zones, that is, safe, distress and
grey, similarly to Altman’s models. To obtain the cut-off points, the data sample

TABLE 23.1 Classification of inputs and outputs.

Inputs Outputs

Current liabilities (CL) Current assets (CA)
Negative retained earnings (RE−) Positive retained earnings (RE+)
Negative operating income (OI−) Positive operating income (OI+)
Negative book value of equity (BVE−) Positive book value of equity (BVE+)
Number of employees (EM) Number of shareholders (SH)
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collected was divided into two groups. The first group was a training set, used to
define appropriate cut-off values. Then we applied the input-oriented SBM model
to the second group, and compared the results obtained by SBM and the results pro-
vided by Altman’s method to validate our methodology.

23.4.1 Data Acquisition

In this research, the data that we utilized were collected from two sources. Part of the
data was retrieved from the Mergent Online database [38], and the second data source
was a professional company which focused mainly on bankrupt companies filing in
North America dating back to the 1980s, selected by SIC (Standard Industrial
Classification) codes. The list of companies was narrowed down to those classified
as non-manufacturing or service-based firms. Those companies must also have filed
for bankruptcy between the years 2000 and 2006. The reason for these dates was that
more recent filings could be more easily obtained, and more easily compared with
current companies. Bankruptcy filings from 2007 to the present were not selected,
owing to the economic recession that was taking place, and hence we decided that
the data could not reflect the real situation in that period. The companies considered
to be bankrupt during that period could be more so for external reasons, which was not
the main purpose of the current research.

For each bankrupt company, financial data were collected for up to five years
before the date of bankruptcy being filed, as it had been shown that there was potential
to predict bankruptcy up to five years in advance [1,39]. Some companies did not have
a full five years of data, and thus only had the number of years before bankruptcy
collected. Whenever it was possible to identify them, companies that had filed for
bankruptcy but did not fail were excluded from the study. Many of these companies
filed for bankruptcy for reasons other than complete insolvency: some liquidations
were due to legal issues, and others filed because they were suffering financial dis-
tress, in an attempt to reorganize and restructure their corporate strategy and alleviate
the debt. Data from the full balance sheets, income statements, cash flow statements
and retained earnings were collected. From the balance sheet, current assets, total
assets, current liabilities, total liabilities, retained earnings and shareholders’ equity
values were extracted. From the income statement, the operating profit was calculated
using the formula Net Sales − Cost of goods − Expenses. The number of employees
and number of shareholders were also collected.

Once the data had been collected for the bankrupt companies, healthy companies
were then found. A healthy company was chosen for every bankrupt company based
on SIC number and on its years of health. Healthy companies had to be in existence for
at least five years after the bankruptcy of their bankrupt counterpart. Healthy compa-
nies also had not to have filed for bankruptcy during the time that they were being
compared with their bankrupt counterpart. The same financial data were collected
for the healthy company as for the bankrupt counterpart for the same years. For exam-
ple, if a bankrupt company filed for bankruptcy in 2002, financial data were collected
for 1997–2001. The healthy company would have to have been in existence and not to
have filed for bankruptcy between the years from 1996 to 2006. In some cases, a
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suitable healthy match could not be found, and thus the number of bankrupt compa-
nies exceeded the number of non-bankrupt ones. There might be a more scientific data
selection method than the one that we were using, as in most cases the number of
bankrupt companies and the number of non-bankrupt companies are not equal: in
the real world, healthy companies are much more numerous than bankrupt ones.

The numbers of bankrupt and non-bankrupt companies used in the first group to
determine cut-off points are shown in Table 23.2. The numbers of bankrupt and non-
bankrupt companies in the second group are listed in Table 23.3.

23.4.2 Analysis of Results

The companies in group 1 were evaluated by an input-oriented SBM model for five
years, and the results are shown in Table 23.4. Once each company had been assigned
an efficiency score, a measure of bankruptcy status had to be determined. For each
year, every possible cut-off point was tested at increments of 0.05 from 0 to 1 to deter-
mine the bankrupt and non-bankrupt classification accuracy at those potential cut-off
points. Figure 23.1 shows the accuracy percentages versus the crossover points for the
first year. For example, for a cut-off point of zero, no bankrupt companies would be
classified as bankrupt and all non-bankrupt companies would be classified as non-
bankrupt. With an increasing cut-off value, the accuracy of identifying non-bankrupt
companies increases, but the accuracy of finding bankrupt companies decreases. The
only point which we should choose to maintain the highest accuracy for both bankrupt
and non-bankrupt companies is the crossover point of the two curves. Here that point
is 0.55, where the bankrupt and non-bankrupt accuracies are 67.50% and 68.97%
separately.

TABLE 23.2 Numbers of companies in Group 1.

Year before
bankruptcy

Number of bankrupt
companies

Number of non-
bankrupt companies

1 40 29
2 34 28
3 31 26
4 32 24
5 26 23

TABLE 23.3 Numbers of companies in Group 2.

Year before
bankruptcy

Number of bankrupt
companies

Number of non-
bankrupt companies

1 42 35
2 38 34
3 39 34
4 32 30
5 26 27

345CORPORATE FAILURE ANALYSIS USING SBM



TABLE 23.4 SBM scores of companies in Group 1.a

DMU Year 1 Year 3 Year 3 Year 4 Year 5 DMU Year 1 Year 2 Year 3 Year 4 Year 5

1 0.3332 1.0000 0.5301 39 1.0000 1.0000 1.0000 1.0000 1.0000
2 0.7337 0.8203 0.9105 0.7400 40 1.0000
3 0.1195 0.3279 0.7355 0.6680 1.0000 41 0.8786
4 0.2617 0.3405 0.3021 1.0000 0.5443 42 0.0969 0.5254 0.4908 0.6073 1.0000
5 0.4825 1.0000 1.0000 1.0000 0.5391 43 0.2961 0.3298 0.4771 0.5084 0.5270
6 0.0236 0.2667 1.0000 0.3258 0.8414 44 1.0000 0.2365 0.2225 0.0429 0.0330
7 0.2536 0.6710 0.5042 0.7558 45 0.5290 0.8027 0.8824 0.7540 0.5512
8 0.6622 0.1387 46 0.4031 0.6330 0.6297 0.4682
9 1.0000 1.0000 1.0000 1.0000 1.0000 47 0.5218 0.3492 0.6744
10 48 1.0000 0.4664
11 0.4366 0.8556 0.7703 0.8345 0.8099 49 0.6908 0.6041 0.6496 0.8010 0.8090
12 0.8311 0.8645 0.9449 0.8502 0.9320 50 0.3193 0.4351 0.3290
13 0.8183 0.8977 1.0000 1.0000 1.0000 51 0.1367 1.0000 1.0000 1.0000 1.0000
14 0.8698 0.7154 0.6873 0.7951 1.0000 52 1.0000 1.0000 1.0000 1.0000 1.0000
15 1.0000 1.0000 1.0000 0.5749 0.6314 53 1.0000 1.0000 1.0000 1.0000 1.0000
16 54 0.5078 0.5366 0.2890 0.2829 0.5013
17 0.4274 1.0000 1.0000 1.0000 1.0000 55 0.2760 0.3823 0.4903 0.8728 0.6392
18 0.7348 0.9226 0.8880 0.7959 0.8237 56 0.4215 1.0000 1.0000 0.7239 0.8620
19 0.9407 0.8759 0.8587 0.6425 0.6166 57 1.0000 1.0000
20 0.0413 0.2572 0.3821 58 0.0462 0.5322 0.5602 0.6218 0.2517
21 0.2785 0.5957 59 0.2532 0.6502 0.8040 0.8601 1.0000
22 0.3011 0.7659 0.6567 0.9349 0.8341 60 0.7830 0.7981 0.6919
23 61 0.2890 0.3216 0.1119 0.0850 0.1131
24 0.5562 0.7208 0.6755 0.4497 0.6608 62 0.5458 0.6431 0.5632 0.5382 0.6441
25 0.5054 0.6033 1.0000 1.0000 1.0000 63 0.2915 0.5893 1.0000 1.0000
26 1.0000 0.6232 0.5007 64 1.0000
27 0.2838 0.3743 0.3619 0.2937 0.3991 65 0.6373 0.7706
28 0.2521 0.3761 0.4744 0.4888 1.0000 66 0.5512 0.5520 0.0762 0.0797



29 0.4845 0.7973 0.9323 67 1.0000 1.0000 1.0000 1.0000
30 0.0797 0.3908 0.2136 0.3988 0.4411 68
31 0.5730 0.7260 1.0000 1.0000 69 0.2781 0.3720 0.8169 0.6701
32 0.2830 0.6105 70 0.6131 0.4972 0.4968 0.3019 0.5106
33 0.1054 0.5417 0.4941 0.4717 0.5147 71 0.8047 0.7483 1.0000 0.7641 0.8132
34 0.2527 0.7215 0.7296 72 0.3157 0.5317 0.7623 0.7681 1.0000
35 73 1.0000 0.3065 0.3086 0.0871 0.1575
36 1.0000 1.0000 1.0000 1.0000 1.0000 74 1.0000 1.0000 1.0000 1.0000 1.0000
37 0.6267 0.6967 1.0000 1.0000 1.0000 75 1.0000 1.0000 1.0000 1.0000 1.0000
38 1.0000 1.0000

a Some companies may not have efficiency scores owing to bankruptcy or a lack of available data for that year.



To categorize all the companies into three zones, that is, safe, grey and distress, we
need to choose two cut-off points. If we plot the curve of total accuracy, where both
bankrupt and non-bankrupt companies are correctly categorized, as in Figure 23.2, we
can find two points where we achieve a relatively high total accuracy around the point
0.55. One of those points is at 0.5, located to the left, with 63.77% overall accuracy.
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Figure 23.1 Bankrupt and non-bankrupt classification accuracy for Year 1.
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Figure 23.2 Selection of bottom and top cut-off points for Year 1.
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Here, the bankrupt companies have a classification accuracy of 57.50% and the non-
bankrupt companies have a classification accuracy of 72.41%. This point was thus
considered to be the bottom cut-off point to discriminate between ‘distress’ and ‘grey’
zones. In the same way, we fixed the top cut-off point at 0.6, where the total accuracy
reaches another high value. At this point, the classification accuracy for bankrupt
companies is 75.00%, and for non-bankrupt companies the classification accuracy
is 68.97%. Therefore, this point was regarded as the boundary that separated ‘grey’
and ‘safe’ zones.

However, this is only the process for selecting cut-off points for one year before
bankruptcy. In the same way, we can plot the bankrupt and non-bankrupt percentage
curves for the other four years before bankruptcy, as shown in Figure 23.3. As we
were more concerned about the classification accuracy for bankrupt companies than
for non-bankrupt ones, we have shifted these points up. The finalized cut-off points,
obtained by comparing the values over the five years, are indicated in Table 23.5.

We then calculated the SBM efficiency scores for all companies in group 2, as
shown in Table 23.6. Based on the cut-off points that we obtained from group 1,
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Figure 23.3 Cut-off points from Year 2 to Year 5 before bankruptcy.

TABLE 23.5 Cut-off points for SBM model.

Interval Classification

θ ≥ 0.80 Safe area
0.65 < θ < 0.80 Grey area
θ ≤ 0.65 Distress area
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TABLE 23.6 SBM scores of companies in Group 2.

DMU Year 1 Year 2 Year 3 Year 4 Year 5 DMU Year 1 Year 2 Year 3 Year 4 Year 5

1 0.4671 0.4759 0.8892 0.6681 45 0.4436 0.3974 0.3599 0.3616 0.3761
2 1.0000 1.0000 1.0000 0.2977 0.2322 46 1.0000 0.5314 0.3608 1.0000
3 0.1937 0.1681 0.4395 1.0000 1.0000 47 0.0804 0.4013 0.5014 0.3332 0.5777
4 1.0000 1.0000 1.0000 1.0000 1.0000 48 0.8082 0.8554 1.0000 1.0000 1.0000
5 1.0000 1.0000 1.0000 49 1.0000
6 0.8034 0.7558 0.7553 0.7346 0.7413 50 0.1158 1.0000 1.0000
7 1.0000 51 0.6579 0.6973 1.0000 1.0000
8 0.3124 0.1162 0.2337 0.0780 0.3352 52 1.0000 1.0000 1.0000 1.0000
9 0.7817 1.0000 1.0000 1.0000 1.0000 53 0.1583 0.1210
10 1.0000 1.0000 1.0000 1.0000 1.0000 54
11 1.0000 0.7980 0.8862 0.7704 1.0000 55 0.5178 0.8522 1.0000 0.6867 0.8104
12 0.8331 0.8436 0.8684 0.7623 0.8106 56 1.0000 1.0000 1.0000 1.0000 1.0000
13 1.0000 57 0.2558 0.2681 0.2842 0.3289 0.3169
14 0.7181 0.7218 0.7402 0.7745 0.7522 58
15 1.0000 1.0000 1.0000 1.0000 1.0000 59 0.3390 1.0000 1.0000 1.0000 1.0000
16 1.0000 1.0000 60 1.0000 1.0000 1.0000 1.0000 1.0000
17 0.5071 61 0.6462 0.6888 0.7641
18 1.0000 1.0000 1.0000 1.0000 1.0000 62 0.4321 0.4194 0.2214 0.0854
19 0.7484 0.7180 1.0000 1.0000 1.0000 63 0.6317 0.5374 0.3726 0.4164 0.8570
20 1.0000 1.0000 1.0000 64 0.4923 1.0000 0.5715 1.0000
21 0.7149 0.7908 0.8061 0.8125 0.7356 65 0.2869 0.0583
22 0.5457 0.7382 0.7422 0.7398 0.7827 66 0.3773 1.0000 1.0000
23 0.5489 0.5966 0.7836 0.7915 0.8103 67
24 0.9612 1.0000 1.0000 1.0000 68 0.4057 1.0000 1.0000 1.0000 0.3515
25 0.4143 0.8312 0.7234 69 0.5086 0.2944 0.2849 0.5566
26 0.7259 0.6940 0.8135 0.9357 70 1.0000 1.0000 1.0000 1.0000 1.0000
27 0.2709 0.3241 1.0000 0.3093 71 1.0000 1.0000 1.0000 1.0000 1.0000
28 1.0000 1.0000 1.0000 0.7705 72 0.7755 0.7534 0.8137



29 1.0000 1.0000 1.0000 1.0000 1.0000 73 0.6239 0.8440 0.7942 0.7603 0.8238
30 0.2523 0.4529 0.6730 0.7045 0.7190 74 1.0000 1.0000 0.9698 1.0000 0.7284
31 1.0000 1.0000 0.2037 0.2280 0.2174 75
32 0.9831 1.0000 1.0000 76 0.0678 0.2259
33 0.0642 0.2547 0.4764 0.2980 0.4990 77 1.0000 1.0000
34 0.0849 0.7486 1.0000 78 0.3308 0.7783 0.7480
35 0.7423 0.8097 0.8222 0.8360 0.8322 79 0.1245 0.1287 0.1528 0.0210 0.2408
36 0.6434 0.6370 0.5614 80 0.0178 0.0174 0.2678 0.7109 0.7527
37 1.0000 1.0000 1.0000 1.0000 81 0.0365 0.6094 0.5679 0.5794 0.4947
38 0.3789 0.5783 0.6040 0.6271 0.8892 82 0.2689 0.4840 0.4683 0.5283 0.5244
39 0.7512 0.7386 0.7556 0.7820 0.9853 83 0.0090 0.3145 0.6571 0.5638
40 0.2567 0.6749 0.6628 0.7110 84 0.5370 0.7060 0.4407 0.6724 0.2925
41 1.0000 1.0000 1.0000 1.0000 1.0000 85
42 0.3825 0.6303 1.0000 86 0.9606 0.7091 1.0000 1.0000
43 0.4176 0.5269 0.3268 0.2887 0.2596 87 0.2930 0.6173 0.5420
44 0.2386 0.0130 0.0453 0.0398



the classification accuracy for group 2 was estimated as shown in Table 23.7. Clas-
sification accuracy results for group 2 could also be obtained by Altman’s Z model,
and these are shown in Table 23.8. By comparing the results in Tables 23.7 and 23.8,
we find that some of the values of the classification accuracy obtained from the SBM
model are lower than those obtained from Altman’s model. However, most of the
values obtained by SBM show better performance than Altman’s model. If we inves-
tigate the overall classification accuracy, including both bankrupt and non-bankrupt
companies, and plot the results as shown in Figure 23.4, it is apparent that the SBM
model performs much better than Altman’s model. Moreover, the longer the time
before bankruptcy, the higher the accuracy that SBM can provide.

23.5 CONCLUSIONS

This research has surveyed the related literature on bankruptcy prediction, stretching
from Beaver’s univariate model to Altman’s Z model, then proposed an approach of
utilizing a non-parametric method, that is, the SBM model in DEA, to predict corpo-
rate failure. To deal with negative factors in this study, we split such factors into pos-
itive and negative parts, which could be a viable option when needed in DEA
analyses. Based on this methodological revision to SBM, we also validated our
method with two groups of bankrupt and non-bankrupt firms. The second group
was examined using cut-off points obtained from the first group.

The overall accuracy of the SBM model was obviously higher than that of the Alt-
man Z model, which showed that the total assets or liabilities of a company were
actually not necessary for predicting bankruptcy, and that SBM could be a more
appropriate method for corporate failure prediction for non-asset-heavy firms. The
results are significant for companies such as non-manufacturing or retail companies
which do not investments in large hard assets and are not suitable for using Altman’s
Z model. The overall classification results showed that the Altman Z model had
good prediction accuracy in the years close before bankruptcy, but still lower than
the SBM model developed here, which, in fact, shows a dramatically higher accuracy
than Altman’s Z model further from bankruptcy, unveiling a company’s health status
in advance, which should be more important for the company management (where
they could change the course of the firm before it is too late) or for investors or lenders
(where they could force a change in management, or simply withdraw their invest-
ment while there is time).

This research has many useful conclusions but, as usual, there are suggestions for
further work, including the following. (i) Employing alternative DEA models or con-
straint conditions, particularly using the assurance region model, which put more
restrictions on the variable weights and may lead to more accurate results. (ii) The
prediction accuracy may be affected by different approaches to selecting inputs
and outputs, and therefore different or related financial factors may bring lead to pre-
diction accuracy. (iii) Owing to the lack of available data, the number of DMUs used
in this study was insufficient for a more comprehensive assessment of the model.With
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TABLE 23.8 Results of Altman Z model for group 2.

Year 1 2 3 4 5

Bankrupt accuracy 77.8 59.1 50.0 41.5 35.1
Non-bankrupt accuracy 47.5 52.5 55.0 52.5 63.9
Total accuracy 63.5 55.9 52.4 46.9 49.3
Bankrupt accuracy including grey area 88.9 86.4 70.5 70.7 83.8
Non-bankrupt accuracy including grey area 60.0 72.5 75.0 75.0 88.9
Total accuracy including grey area 72.9 69.1 59.5 60.5 67.1
Total bankrupt 61.2 45.2 39.3 34.6 30.1
Total non-bankrupt 29.4 34.5 44.1 46.9 52.1
Total within grey area 11.8 23.8 20.2 25.9 36.9

TABLE 23.7 Classification accuracy (%) for group 2 determined by cut-off points.

Year 1 2 3 4 5

Bankrupt accuracy 78.6 57.9 46.2 53.1 38.5
Non-bankrupt accuracy 62.9 61.8 73.5 66.7 70.4
Total accuracy 71.4 59.7 58.9 59.7 54.7
Bankrupt accuracy including grey area 85.7 68.4 69.2 78.1 57.7
Non-bankrupt accuracy including grey area 77.1 88.2 88.2 93.3 81.5
Total accuracy including grey area 81.8 77.8 78.1 85.5 69.8
Total bankrupt 53.3 36.1 30.1 30.7 28.3
Total non-bankrupt 36.4 45.8 50.7 43.6 56.6
Total within grey area 10.4 18.1 19.2 25.8 15.1
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Figure 23.4 Comparison of total classification accuracy between Altman’s method and SBM.
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a larger number of DMUs, the cut-off points for bankruptcy prediction will become
more accurate. (iv) Innovative approaches to determine the cut-off points could be
explored. The trial and error approach is simple and intuitive; however, a different
and more statistically sound method could be developed. Decision trees were consid-
ered but not employed; however, this could also be considered in future research.

Both the previous univariate models and Altman’s Z and Z models focus mostly
on the asset size of firms, and use parametric methods, that is, a weighted sum of asset-
based items, which is more likely to result in an empirical selection process for cut-off
points, but is not based on the reality of corporate structures. It follows that the DEA
technique, a non-parametric method, could solve the problem, resulting in a rather
practical approach to predicting corporate failure, especially for non-manufacturing
firms. In closing, we hope that this research will be insightful and informative to future
researchers.
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24.1 INTRODUCTION

Corporate failure often occurs when a firm experiences serious losses and/or becomes
insolvent with liabilities that are disproportionate to its assets. Corporate failure may
result from one or a combination of internal and external factors, for example, man-
agerial errors due to insufficient or inappropriate industry experience, risk-seeking
managers, lack of commitment and motivation to lead the company efficiently, refusal
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Advances in DEA Theory and Applications: With Extensions to Forecasting Models,
First Edition. Edited by Kaoru Tone.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.



or failure to adjust managerial and operational structures of the firm to new realities,
inefficient or inappropriate corporate policies, economic climate, changes in legisla-
tion, or industry decline – see, for example, van Gestel et al. [1].

Bankruptcy induces substantial costs to the business community such as court
costs, lawyer costs, lost sales, lost profits, higher cost of credit, inability to issue
new securities and lost investment opportunities (e.g. [2–4]) – for a detailed review
of the costs of bankruptcy, we refer the reader to Branch [5]. Therefore, the design
of reliable models to predict bankruptcy is crucial for auditing business risks and
assisting managers to prevent the occurrence of failure, and assisting stakeholders
to assess and select firms to collaborate with or invest in (e.g. [6, 7]).

Given the importance of bankruptcy prediction, there is a considerable amount of
literature focusing on both financial and non-financial information, and proposing
new bankruptcy prediction models to classify firms as healthy or non-healthy (e.g.
[7–9]). With the increasing number of quantitative models available, one of the chal-
lenging issues faced by both academics and professionals is how to evaluate these
competing models and select the best one(s).

Our survey of the literature on bankruptcy prediction reveals that although some
studies tend to use several performance criteria and, for each criterion, one or several
measures to evaluate the performance of competing prediction models, the assessment
exercise is generally restricted to the ranking of models by a single measure of a single
criterion at a time. For example, Theodossiou [10] compared the performance of linear
probability models, logit models and probit models using an equally weighted average
of Type I and Type II errors as a measure of the correctness of categorical prediction,
the Brier score (BS) as a measure of the quality of the estimates of the probability of
default, and the pseudo-R2 statistic as a measure of information content, and found that
logit models outperformed both linear probability models and probit models on all
measures; however, with respect to the pseudo-R2 statistic and an equally weighted
average of Type I and Type II errors, probit models outperformed linear probability
models, but linear probability models outperformed probit models on the BS. Bandyo-
padhyay [11] compared the performance of several multivariate discriminant analysis
(MDA) models using Type I and Type II errors, and compared the performance of
several logit models using the overall correct classification (OCC), the receiver oper-
ating characteristic (ROC) measure, the pseudo-R2 statistic and the log-likelihood
(LL) statistic, and found that the rankings of models differed with respect to different
measures. Tinoco and Wilson [12] compared the performance of several logit models
with different categories of explanatory variables using the ROC, Gini index, and the
Kolmogorov–Smirnov (KS) statistic as measures of discriminatory power and the
Hosmer–Lemeshow statistic as a measure of calibration accuracy, and found that
the rankings of models differed with respect to different criteria and their measures.

In sum, a performance evaluation exercise under multiple criteria remains unidi-
mensional in nature, on one hand, and the ‘big picture’ is not taken into account, in that
only a single criterion or a very restricted number of criteria are used, on the other hand.
The drawback of the commonly used approach to the evaluation of the relative perfor-
mance of competing bankruptcy prediction models is that the rankings corresponding
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to different criteria or measures are often different, which results in a situation where
one cannot make an informed decision as to which model performs best when all cri-
teria and their measures are taken into consideration. This methodological issue has
been pointed out by Xu and Ouenniche [13–15] and Ouenniche et al. [16, 17], who
proposed several multicriteria frameworks based on DEA and multicriteria decision
analysis (MCDA) for assessing the performance of prediction models for crude oil
prices and their volatility. In the bankruptcy prediction area, DEA has been used either
to classify firms into healthy and non-healthy categories (e.g. [18–21]) or to compute
aggregate efficiency scores to be usedwithin statistical or stochasticmodelling and pre-
diction frameworks (e.g. [22–25]).Unlike these uses ofDEA in bankruptcy research, in
this chapter we report on the use of DEA in the performance evaluation of competing
bankruptcy prediction models as suggested by Mousavi et al. [26], along with some
elements of answers to two research questions related to the design of bankruptcy pre-
diction models: (i) do some modelling frameworks perform better than others by
design? and (ii) to what extent do the choice and/or the design of explanatory variables
and their nature affect the performance of modelling frameworks?

The remainder of this chapter is organized as follows. In Section 24.2, we survey
and classify the literature on bankruptcy prediction models. In Section 24.3, we
present the proposed multicriteria methodology, namely, an orientation-free super-
efficiency SBM framework to evaluate the relative performance of competing predic-
tion models of bankruptcy. In Section 24.4, we present and discuss our empirical
findings. Finally, Section 24.5 concludes the chapter.

24.2 AN OVERVIEW OF BANKRUPTCY PREDICTION MODELS

Bankruptcy prediction models can be divided into four main categories according to
the type of information they are fed with, namely, accounting-information-based
models, market-information-based models, accounting- and market-information-
based models, and accounting-, market- and macroeconomic-information-based
models. These models can also be classified into several categories according to
the underlying type of modelling framework, namely, discriminant analysis models,
single-period probability models, multiperiod probability models and stochastic mod-
els. In this chapter, we focus on assessing the relative performance of accounting-
based models, market-based models and hybrids. A generic framework for imple-
menting these bankruptcy prediction models can be summarized in the following
two-phase procedure:

• Phase 1. Use a quantitative modelling framework to estimate the probability of
default.

• Phase 2. Classify firms into two or more risk classes (e.g. risky versus non-risky
or bankrupt versus non-bankrupt) using one or several cut-off points or thresh-
olds depending on whether one classifies firms into two classes or more than two
classes.
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In the following, we provide a brief description of such bankruptcy prediction
models along with a discussion of their main similarities and differences.

24.2.1 Discriminant Analysis Models

Discriminant analysis (DA), first proposed by Fisher [27], is a collection of classifi-
cation methods which aim at partitioning observations into two or more subsets or
groups so as to maximize within-group similarity and minimize between-group sim-
ilarity, where ‘similarity’ is measured by some sort of distance between observations
(e.g. the Mahalanobis distance). Univariate DA was first applied to bankruptcy pre-
diction by Beaver [28], and MDA was first applied to bankruptcy prediction by
Altman [29]. A generic MDA model can be summarized as follows:

z = f
P

j= 1
βjxj (24.1)

where z is commonly referred to as a score or z-score, the xj are explanatory variables,
the βj represent the coefficients of the explanatory variables in the model and f denotes
a mapping of βtx on the set of real numbersℜ, often referred to as a classifier, which
can be either linear or non-linear. Note that in comparing MDA models with other
subcategories of statistical models, one typically needs to estimate the probability
of default (PD), which is used as an input to many performance measures. In this chap-
ter, we follow Hillegeist et al. [30] in using a logit transformation:

PD=
ez

1 + ez
(24.2)

Note that, under the normality assumption, the MDA and logit approaches are
closely related [31]. For a two-group classification problem, the classifier f is often
a simple function thatmaps all observations or caseswith discriminant or z-score values
above a certain threshold or cut-off point to the first group and all other cases to the
second group, where the cut-off point – often referred to as the cutting score or the crit-
ical z-score, is the average of the centroids of the groups, if the group sizes are equal, or a
weighted average of them, if the group sizes are unequal, where the centroid of a group
refers to the vector of group means of the explanatory variables. In the literature on
bankruptcy prediction, MDA models differ mainly with respect to the choice of the
explanatory variables and the formof the classifier (seeTable 24.1), and are part ofmost
comparative analysis exercises; our comparative analysis is no exception.

24.2.2 Probability Models

As compared with discriminant analysis, regression models for categorical variables
(e.g. logit and probit) – also known as probability models – allow one to overcome
some of the limitations of discriminant analysis. For example, within a regression
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TABLE 24.1 Original statistical models for bankruptcy prediction.

Model Variables

Discriminant analysis
Altman [29] Working capital/total assets

Earnings before interest and taxes/total assets
Market value of equity/total debt
Sales/total assets

Altman [37] Working capital/total assets
Retained earnings/total assets
Earnings before interest and taxes/total assets
Book value equity/total liabilities
Sales/total assets

Lis (1972), cited in Taffler
[38]

Working capital/total assets
Earnings before interest and taxes/total assets
Market value of equity/total liabilities
Net wealth/total assets

Taffler [38] Profit before tax/current liabilities
Current liabilities/total assets
Current assets/total liabilities
Number of credit intervals

Probability models
Theodossiou [10], linear
probability model

Working capital to total assets
Net income to total assets
Long-term debt to total assets
Total debt to total assets
Retained earnings to total assets

Ohlson [39], logit model Total liabilities to total assets
Working capital to total assets
Current liabilities to current assets
OENEG = 0 if total liabilities exceed total assets and 1 otherwise
Net income to total assets
Funds from operations (operating income minus depreciation) to
total liabilities

INTWO = 1 if net income has been negative for the last 2 years
and 0 otherwise

CHIN = NIt −NIt−1 NIt + NIt−1 , where NIt denotes the net
income for the last period – this variable is a proxy for the
relative change in net income

Size = log (total assets/GNP price-level index)
Zmijewski [40], probit
model

Net income/total assets
Total liabilities/total assets
Current assets/current liabilities

Bemmann [41], logit
model

Total liabilities/total assets

(continued overleaf )
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framework for discrete response variables, the normality and homoscedasticity
assumptions are relaxed, on one hand, and a knowledge of prior probabilities of
belonging to each group and of misclassification costs is not required, on the other
hand. The generic model for binary variables can be stated as follows:

PD=Prob y = 1 =F β,x (24.3)

where y denotes the categorical response variable, x denotes the vector of explanatory
variables, β denotes the vector of coefficients of x in the model and F is a function –

commonly referred to as the link function – that maps any real number, for example
a score βtx, onto a probability. The choice of F determines the type of probability
model. For example, the normal probability model, known as probit, assumes that
the link function is the cumulative standard normal distribution, Φ; that is,
F β,x =Φ−1 β tx . The logistic probability model, known as logit, assumes that
the link function is the cumulative logistic distribution function, Λ; that is,
F β,x =Λ−1 β tx or, equivalently,

PD=Λ β tx =
eβ

tx

1 + eβ
tx

(24.4)

Finally, the linear probability model assumes that the link function is linear; that is,
F β,x = β tx or, equivalently,

TABLE 24.1 (continued)

Model Variables

Survival analysis
Shumway [32] Net income/total liabilities

Total liabilities/total assets
RealSize = log(number of outstanding shares multiplied by year-

end share price divided by total market value)
LagExRet = cumulative annual return in year t−1 minus the

value-weighted FTSE index return in year t−1
LagSigma = standard deviation of residuals derived from

regressing monthly stock return on market return in year t−1

Stochastic models
Hillegeist et al. [30] and

Bharath and Shumway
[36], BSM-based
models

Market value of equity
Market value of assets
Continuously compounded expected return on assets
Continuous dividend rate expressed in terms of market value of

assets
Face value of debt maturing at time t
Asset volatility
Time to debt maturity, considered as 1 year
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PD= β tx (24.5)

In the literature on bankruptcy prediction, the logit is the most popular probability
model, and logit models differ only with respect to the choice of the explanatory vari-
ables (see Table 24.1), and are part of most comparative analysis exercises.

24.2.3 Survival Analysis Models

Discriminant analysis models and probability models (e.g. the linear probability
model, logit and probit) are cross-sectional models and as such fail to take account
of differences in firms’ performance or risk profile over time; in sum, the PD provided
by these static models is time-independent. In order to overcome this issue, one can
use a dynamic methodology such as survival analysis. Survival analysis is concerned
with the analysis of the time to events. In this chapter, we limit ourselves to a single
event of interest, namely, bankruptcy or failure. Two functions are of special interest
in survival analysis, namely, the survival function and the hazard function. The sur-
vival function, S(t), is a function of time and represents the probability that the time of
failure is later than some specified time t; that is, S t =P T > t , where T is a random
variable describing the time of failure for an observation or firm. In sum, the survival
function provides survival probabilities, or the probabilities of survival past specified
times. On the other hand, the hazard function,H(t), is also a function of time and repre-
sents the failure or hazard rate at time t conditional on survival until t or later; that is,

H t = lim
Δt 0

P t ≤ T ≤Δt T ≥ t

Δt
= −

S t

S t
(24.6)

where S (t) denotes the derivative of the survival function Swith respect to time andΔt
denotes a change in t. As far as the application of survival analysis to bankruptcy pre-
diction is concerned, the aim is to model the relationship between survival time and a
set of explanatory variables. The most commonly used hazard model for bankruptcy
modelling and prediction is the discrete-time hazard model proposed by Shumway
[32], where the survival and hazard functions are defined as follows:

S t,x;θ = 1−
j< t

f j,x;θ and H t,x;θ =
f t,x;θ
S t,x;θ

(24.7)

Here, f(t, x; θ) denotes the probability mass function of the discrete random variable
‘failure time’ t, defined as the time when a firm leaves the sample; x is a vector of
explanatory variables used to predict bankruptcy; and θ is the vector of parameters
of the mass function f. Shumway [32] estimated this discrete-time hazard model using
an estimation procedure similar to the one used for estimating the parameters of a mul-
tiperiod logit model – this choice was motivated by a proposition whereby he proved
that a multiperiod logit model is equivalent to a discrete-time hazard model with a
hazard function chosen as the cumulative distribution function of f(t, x; θ). He com-
pared the performance of the discrete-time hazard model with MDA models, logit
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models and probit models based on the OCC and proved its superiority for his dataset.
Following the lead of Hillegeist et al. [30], the probability of default at the time period
t was estimated as follows:

PD=
eH0 t + β txt

1 + eH0 t + β txt
(24.8)

where H0(t) denotes the unconditional hazard function – commonly referred to as the
baseline hazard.

24.2.4 Stochastic Models

Most bankruptcy prediction models make use of accounting ratios as explanatory vari-
ables, which leads to a number of issues or criticisms. For example, accounting state-
ments only present a firm’s historical performance and may not be informative in
predicting the future; the ‘true’ asset valuesmay be very different from the book values;
and accounting numbers can be manipulated by management (e.g. [7,33]). In order to
overcome these drawbacks, one can make use of market-based explanatory variables.
The rationale behind the use of market-based explanatory variables is that, in an effi-
cient market, stock prices will reflect both the information contained in the accounting
statements and the information contained in the future expected cash flows. Further-
more, market variables are unlikely to be influenced by firm’s accounting policies.
In this subsection, a category of such models is presented, namely, Black–Scholes–
Merton (BSM)-based bankruptcy prediction models. Before presenting such
bankruptcy prediction models, few comments are worthy of consideration. First, in
practice, stochastic processes are often used to model the behaviour of stock prices,
and a specific type of stochastic process, namely, the Itô process, has proven to be a
valid modelling framework for derivatives, where an Itô process refers to a generalized
Wiener process with both the drift and the variance rate being dependent on the under-
lying stock price and on time. Second, the basic BSM model is concerned with mod-
elling the price of an option as a function of the underlying stock price and of time using
an Itô process modelling framework. Third, in the Itô process modelling framework,
the natural logarithms of stock prices are normally distributed. Last, but not least,
the BSM model can be linked to the probability of a firm filing for bankruptcy; to
be more specific, based on the observation by Merton [34] that holding the equity
of a firm can be viewed as taking a long position in a call option, the PD can be viewed
as the probability that the call optionwill expireworthless; that is, the value of the firm’s
assets (VA) is less than the face value of its liabilities at the end of the holding period.
Based on the above observations, McDonald [35] derived the following expression for
the probability of default or bankruptcy, P VA <D :

PD =Φ −
ln VA D + μ−δ−0 5σ2 × T

σ T
(24.9)
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where Φ(.) denotes the cumulative distribution function of the standard normal
distribution, VA is the value of the firm’s assets, μ is the firm’s expected return,
σ2 is the volatility of the firm’s assets, δ is the dividend rate and is typically prox-
ied by the ratio of dividends to the sum of total liabilities and the market value of
equity, D is the firm’s debt and is proxied by its liabilities, and T denotes both the
time to expiry of the option and the debt maturity time, and is assumed to be one
year. In order to operationalize this BSM-based model for bankruptcy prediction,
one needs to estimate VA, μ and σ, as these parameters are not directly observable.
Hillegeist et al. [30] first estimated VA and σ by solving the following system of
equations:

VE =VAe−δTΦ d1 −De−rTΦ d2 + 1−e−δT Φ d1 VA

σE =
VAe−δTΦ d1 σ

VE

(24.10)

where the first equation is referred to as the call option equation, the second
equation is referred to as the optimal hedge equation, VE denotes the market
value of common equity at the time of estimation, σE denotes the annualized
standard deviation of daily stock returns over the 12 months prior to estima-
tion, r denotes the risk-free interest rate, and d1 and d2 are computed as
follows:

d1 =
ln VA D + r−δ−0 5σ2 × T

σ T
, d2 = d1−σ T (24.11)

Then, μ is estimated as follows and is restricted to lie between r and 100%:

μ =
VA, t +Dividends−VA, t−1

VA, t−1
(24.12)

where VA,t denotes the current value of the firm’s assets and VA, t−1 denotes the pre-
vious year’s value of the firm’s assets. Alternatively, Bharath and Shumway [36] esti-
mated VA and σ as follows:

VA =VE +D, σ =
VE

VA
σE +

D

VA
σD (24.13)

where σD = 0 05 + 0 25σE. The firm’s expected return, μ, is proxied by either the risk-
free rate r or the previous year’s stock return, restricted to lie between r and 100%.

In the next section, we shall describe the DEA framework proposed for assessing
the relative performance of bankruptcy prediction models based on these modelling
frameworks.
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24.3 A SLACKS-BASED SUPER-EFFICIENCY FRAMEWORK FOR
ASSESSING BANKRUPTCY PREDICTION MODELS

In this section, we discuss how one might adapt a DEA framework to assess the rel-
ative performance of competing bankruptcy prediction models. DEA is a generic
framework and, as such, its implementation for our relative performance evaluation
exercise requires three decisions to be made: (i) what are the units to be assessed, or
decision-making units (DMUs)? (ii) what are the inputs and the outputs? and (iii) what
is the appropriate DEA formulation to solve? Answers to these questions are provided
in the next three subsections.

24.3.1 What Are the Units To Be Assessed, or DMUs?

In this section, we have chosen to assess the relative performance of the most popular
accounting-based bankruptcy prediction models, market-based bankruptcy prediction
models and hybrid models. The accounting-based bankruptcy prediction models con-
sidered in our comparative analysis include the MDA models proposed by Altman
[29,37], Lis (1972, cited in [38]) and Taffler [38]; the logit model proposed by Ohlson
[39]; the probit model proposed by Zmijewski [40]; the linear probability model pro-
posed by Theodossiou [10]; and the MDA models proposed by Altman [29,37] and
Lis (1972, cited in [38]), reproduced or implemented in a logit framework. The mar-
ket-based bankruptcy prediction models considered in our comparative analysis
include the BSM-based models proposed by Bharath and Shumway [36] and Hille-
geist et al. [30]. The hybrid models considered in our comparative analysis include
the survival analysis model proposed by Shumway [32] and estimated as a multiper-
iod logit model. We refer to the above-mentioned models as the ‘original’models; see
Table 24.1 for details.

We also included in our comparative analysis three additional categories of models
that we refer to as original models refitted, reworked models in a logit framework and
new models. As the name suggests, the original models refitted include the above-
mentioned models refitted with our sample data (i.e. those of Altman [29], Lis, Altman
[37], Ohlson [39], Taffler [38], Zmijewski [40] and Shumway [32]). The reworked
models in a logit framework refer to the original non-logit models implemented or
replicated in a logit framework with the same original explanatory variables (i.e. those
of Altman [29, 37], Lis, Taffler [38] and Zmijewski [40], and the total liabilities/total
assets (TLTA) model of Bemmann [41]). Finally, the category of newmodels consists
of MDA, logit, probit, linear probability and survival analysis models, where the
explanatory variables were chosen from a list of variables using stepwise procedures.
The list of variables consisted of accounting-based ratios and market-based variables
chosen by repeated use of factor analysis on an initial list of 74 accounting ratios and
three market-based variables, where the factors were selected so that both the absolute
values of their loadings were greater than 0.5 and their communalities were greater
than 0.8, and the stopping criterion was either no improvement in the total explained
variance or that no more variables were excluded. The factor analysis was run using
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principal component analysis with VARIMAX as a factor extraction method. The list
of variables consists of the variables that make up the factors. The new models are
summarized in Table 24.2.

In sum, a total of 30 models were assessed in our comparative analysis. Note that
all chosen models were tested out-of-sample and the training period ranged from 1989
to 2001, including 1571 failure and 5615 non-failure firm–year observations.

TABLE 24.2 New models for bankruptcy prediction.

Model Variables

MDA model Working capital to total assets
Net income to capital
Net income to current assets
Net income to equity
Total debt to equity
EBIT to total assets
Total liabilities to total assets
Inventory to working capital
Inventory to sales
Quick assets to sales
Current liabilities to inventory
Total liabilities to working capital
Net worth to total assets
Real size
LagExRet
Sigma

Linear probability model Working capital to total assets
Total liabilities to total assets
Inventory to working capital
Real size
LagExRet
Sigma

Logit model Working capital to total assets
Real size
LagExRet
Sigma

Probit model Working capital to total assets
Real size
LagExRet
Sigma

Survival analysis model Working capital to total assets
Net income to equity
Net worth to total assets
Current liabilities to total assets
Real size
LagExRet
Long-term debt to total assets
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24.3.2 What Are the Inputs and the Outputs?

The inputs and outputs are the performance measures of the relevant criteria for asses-
sing bankruptcy prediction models. In our analysis, we focused on the discriminatory
power, the calibration accuracy or quality of estimates of the probabilities of default,
the information content, and the correctness of categorical-prediction criteria and their
measures. The discriminatory-power criterion refers to the ability of a model to dis-
criminate between the good cases and the bad ones, where a case refers to a firm. The
calibration accuracy criterion refers to the quality of estimation of the probability of
default. The information content criterion refers to the extent to which the output of a
model (e.g. score or PD) carries enough information for bankruptcy prediction. The
correctness of the categorical-prediction criterion refers to the ability of a model to
produce forecasts that are consistent with the actuals in that the forecasts reveal firms
as healthy or non-healthy when the actuals are healthy or non-healthy, respectively. In
addition, the inputs and outputs are chosen according to the principle of the less for
inputs and the more for outputs, the better; therefore, the inputs and outputs refer to the
performance metrics to be minimized and maximized, respectively – see Table 24.3
for a description of the performance metrics. Note that, unless an application of DEA
involves undesirable outputs, the principle of the less (or the more) the better is com-
monly used across the literature on DEA applications to select inputs (or outputs,
respectively) according to the economic theory of production.

In our comparative analysis of models, we used the KS statistic, the area under the
ROC (AUC) (also known as the c-statistic), the Gini index and the information value
(IV) to measure the discriminatory-power criterion; we used the BS to measure the
calibration accuracy criterion; we used the LL statistic and pseudo-coefficient of
determination (pseudo-R2) to measure the information content criterion; and we used
Type I errors, Type II errors, the misclassification rate (MR), the sensitivity (Sen), the
specificity (Spe) and the OCC to measure the correctness of the categorical-prediction
criterion – see Table 24.3 for descriptions of these measures.

24.3.3 What Is the Appropriate DEA Formulation To Solve?

Although basic DEA models could be used to classify competing bankruptcy predic-
tion models into efficient and non-efficient ones and rank them according to their
scores, one cannot differentiate between efficient ones as they all receive a score
of 1. In many application areas, decision-makers are interested in obtaining a complete
ranking in order to refine the evaluation of DMUs, and our application is no exception.
Here, we propose an orientation-free slacks-based super-efficiency DEA framework
for assessing the relative performance of competing bankruptcy prediction models.
We have deliberately chosen an orientation-free analysis over an input-oriented or
output-oriented analysis because, in our application of evaluating the performance
of bankruptcy prediction models, input-oriented and output-oriented analyses are
not relevant. In addition, any type of oriented analysis would be inappropriate for
the following reasons. First, under the variable-returns-to-scale (VRS) assumption,
which is the case for our data on bankruptcy prediction models, input-oriented

368 ADVANCES IN DEA THEORY AND APPLICATIONS



TABLE 24.3 Performance criteria and their measures for assessing bankruptcy
prediction models.

Measure of criterion Formula and definition

Discriminatory power
Information value The IV measures the relative distance between an empirical probability

distribution and a theoretical one. The measure provided here is based
on a discrete approximation to the density functions of the good and
bad cases:

IV =
I

i= 1
gi nG−bi nB ln

gi nG
bi nB

where gi and bi denote the number of good and bad cases, respectively,

in band I,
I

i = 1
gi = nG, and

I

i = 1
bi = nB.

Kolmogorov–
Smirnov statistic

The KS statistic measures the distance between the empirical cumulative
distribution functions of the samples of good and bad cases:

KS =maxs F s B −F s G

where F G and F B denote the empirical cumulative distribution
functions of the samples of good and bad cases, respectively.

Receiver operating
characteristic

The ROC curve is a plot of the hit rate against the false alarm rate for all
cut-off points. A good prediction model would generate an ROC
curve very far away from the diagonal, which suggests that the larger
the area under the ROC curve, often referred to as AUC or AUROC,
and measured by a statistic called the concordance or c-statistic, the
better the prediction model performance:

C_Statistic =
U

NG NB

whereU denotes the Mann–WhitneyU statistic, NG denotes the number
of good cases in the sample andNB denotes the number of bad cases in
the sample.

Gini coefficient The Gini coefficient,G, is a measure of the area between the ROC curve
and the diagonal, also referred to as Somer’s D:

G= 2 C_Statistic−1

Information content
Log-likelihood

statistic
The LL statistic is a measure of goodness of fit and is computed as the
natural logarithm of the maximum value of the likelihood function of
a model, where the likelihood function is a function of the parameters
of the model which are determined so that the model is in maximum
‘agreement’ with the data. In our empirical investigation, we
computed LL values as suggested by Hillegeist et al. [30]. The
formulas are model-dependent and are not presented for reasons of
space.

(continued overleaf )
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TABLE 24.3 (continued)

Measure of criterion Formula and definition

Pseudo- R2 The pseudo- R2 is a measure of the strength of association between the
output of a logistic regression model and the set of explanatory
variables, and its value lies between 0 and 1, with higher values
indicating a better likelihood of the logit model with intercept and
predictors, i.e. better ‘agreement’ of the selected model with the
observed data:

R2 = 1−
LL Logit model with intercept and predictors

LL Logit model with intercept only

where LL denotes the log-likelihood of a model.
Correctness of categorical predictions

Sensitivity Given a specific cut-off score sc, the sensitivity Se, also referred to as the
hit rate, is defined as the fraction of the bad cases that would have
scores below the cut-off and would therefore be rightly rejected, i.e.
the proportion of bad cases that are predicted as bad:

Se =
NB B

NB B +NB G

where NB|B denotes the number of bad cases predicted as bad, and NB|G

denotes the number of bad cases predicted as good.
Specificity Given a specific cut-off score sc, the specificity Sp is defined as the

fraction of the good cases that have scores above the cut-off and
would therefore be rightly accepted, i.e. the proportion of good cases
that are predicted as good:

Sp =
NG G

NG G +NG B

whereNG|G denotes the number of good cases predicted as good, andNG|

B denotes the number of good cases predicted as bad.
Type I error The Type I error is the proportion of bad cases misclassified as good

cases:

Type I error = 1−Specificity

Type II error The Type II error is the proportion of good cases misclassified as bad
cases, also referred to as the false alarm rate:

Type II error = 1−Sensitivity
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efficiency scores can be different from output-oriented efficiency scores, which may
lead to different rankings. Second, radial super-efficiency DEA models may be infea-
sible for some efficient DMUs; therefore, ties would persist in the rankings. Third,
radial super-efficiency DEA models ignore potential slacks in inputs and outputs
and thus may overestimate the efficiency score by ignoring mix efficiency. The pro-
posed framework is a three-stage process and can be summarized as follows:

Stage 1: returns-to-scale (RTS) analysis. PerformRTS analysis to find out whether
to solve a DEA model under constant-returns-to-scale (CRS) conditions, VRS
conditions, non-increasing returns-to-scale (NIRS) conditions or non-decreasing
returns-to-scale (NDRS) conditions – see Banker et al. [42] for details.

Stage 2: classification of DMUs. For each DMUk k = 1,…,n , solve the following
slacks-based measure (SBM) model [43]:

Min ρk = 1−
1
m

m

i= 1

s−i,k
xi,k

1 +
1
s

s

i = 1

s +r,k
yr,k

s t
n

j= 1
λjxi, j + s

−
i,k = xi,k; i

n

j= 1
λjyr, j−s

+
r,k = yr,k; r

λj ≥ 0; j;s−i,k ≥ 0; i;s +r,k ≥ 0; r

(24.14)

where n denotes the number of DMUs,m is the number of inputs, s is the number of
outputs, xi,j is the amount of input i used byDMUj, yr,j is the amount of output r pro-
duced by DMUj, λj is the weight assigned to DMUj in constructing its ideal bench-
mark, and s−i,k and s

+
r,k are slack variables associatedwith the first and the second sets

of constraints, respectively. If the optimal objective function value ρ∗k is equal to 1,
thenDMUk is classified as efficient; otherwise, it is classified as inefficient.Note that
the model (24.14) is solved as it is if stage 1 reveals that CRS conditions hold; oth-
erwise, one has to impose one of the following additional constraints depending on
whether VRS, NIRS or NDRS conditions, respectively, prevail:

n

j= 1
λj = 1;

n

j= 1
λj ≥ 1;

n

j = 1
λj ≤ 1 (24.15)

Stage 3: break efficiency ties. For each efficient DMUk, solve the following slacks-
based super-efficiency DEA model, first proposed by Tone [44]:

Min δk =
1
m

m

i = 1

xi,k + t−i,k
xi,k

1
s

s

i= 1

yr,k − t +r,k
yr,k

s t
n

j= 1;j k
λjxi, j ≤ xi,k + t

−
i,k; i

n

j= 1;j k
λjyr, j ≥ yr,k − t

+
r,k; i

λj ≥ 0; j k;t−i,k ≥ 0; i;t +r,k ≥ 0; r

(24.16)
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where t−i,k and t +r,k denote the amount by which input i and output r of the efficient
DMUk should be increased and decreased, respectively, to reach the frontier con-
structed by the remaining DMUs. Note that the model (24.16) is solved as it is if
stage 1 reveals that CRS conditions hold; otherwise, one has to impose an addi-
tional constraint from amongst those in (24.16) as outlined in stage 2. The
super-efficiency scores δ∗k are then used to rank order the efficient DMUs.

At this stage, it is worth mentioning that unlike radial super-efficiency DEA mod-
els (e.g. [45]), slacks-based super-efficiency models are always feasible [44,46]. Note
that the slacks-based super-efficiency models of Tone [44] and Du et al. [46] are iden-
tical with respect to their constraints in that one can be obtained from the other using a
simple transformation of variables. However, for applications where positive input
and output data is a requirement, Du et al. [46] provided a variant of the model solved
in stage 3 to accommodate this situation. In the next section, we shall use the meth-
odology described above to rank-order competing bankruptcy prediction models and
discuss the empirical results obtained, using UK data for the period 1989–2006.

24.4 EMPIRICAL RESULTS FROM SUPER-EFFICIENCY DEA

In our empirical investigation, we first generated monocriterion rankings of the
30 models under evaluation (see Figure 24.1 – this is a typical output from existing
studies) to highlight the problems with using a monocriterion methodology to rank-
order competing bankruptcy prediction models; that is, the models are ranked in
ascending order of the relevant measure of each of the criteria under consideration
if the measure is to be minimized, or in descending order if the measure is to be max-
imized. Indeed, monocriterion or single-criterion rankings tend to have many ties (e.g.
the monocriterion rankings corresponding to Type I errors, sensitivity and information
value). In addition, one can clearly see that the monocriterion rankings can be different
from one performance criterion to another – see, for example, Theodossiou [10], Ban-
dyopadhyay [11], and Tinoco and Wilson [12].

For our dataset, most monocriterion rankings are different; in fact, the monocriter-
ion rankings based on T1 and Sen differ from those based on T2, MR, OCC and Spe,
which differ from those based on the area under the ROC curve and the Gini index,
and the latter also differ from those based on the KS statistic, IV, BS, LL statistic and
pseudo-R2. Notice that the monocriterion ranking based on IV does not discriminate
between the eight worst-ranked models, because the probabilities of default produced
by these models are all very close to zero and thus belong to the same band in the
discrete approximation to the density functions of the good and bad cases.

For our dataset, the monocriterion rankings suggest that, for all performance mea-
sures except IV and BS, the new models outperform all of the original models, the
original models refitted and the reworked models, with the exception of the logit
model of Shumway [32]. Therefore, the selection of explanatory variables using factor
analysis along with stepwise procedures seems to enhance the performance of models
regardless of their underlying modelling framework. In addition, the use of a mixture

372 ADVANCES IN DEA THEORY AND APPLICATIONS



of accounting-based and market-based information improves bankruptcy prediction.
Furthermore, it seems that these new models are doing a better job of classifying firms
than of producing their probabilities of default.

Also, for most performance measures, notice that in general refitting models seems
to improve their ranks, which suggests that the nature of the information in the training
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MDA framework; LP framework; Logit framework; Probit framework; SA framework;

1, Altman [29]; 2, Altman [37]; 3, Lis (1972, cited in Taffler [38]); 4, Taffler [38]; 5, Ohlson
[39]; 6, Zmijewski [40]; 7, Theodossiou [10]; 8, Shumway [32]; 9, Bharath and Shumway
[36]; 10, Hillegeist et al. [30]; 11, Bemmann [41]; 12, new MDA model; 13, new LP model;
14, new LA model; 15, new PA model; 16, new SA model.

This figure presents the monocriterion rankings of 30 competing bankruptcy models,
where models are ranked from best to worst using a single measure of a single criterion at
a time. T1 (Type I error), T2 (Type II error), MR (misclassification rate), Sen (sensitivity),
Spe (specificity) and OCC (overall correct classification) are used as measures of
correctness of categorical prediction; AUC (area under receiver operating characteristic),
the Gini coefficient, the KS (Kolmogorov–Smirnov) statistic and the IV (information value)
are used as measures of discriminatory power; the BS (Brier score) is used as a measure
of calibration accuracy; and log-likelihood (LL) and pseudo-R2 are used as measures of
information content. Different shapes represent different modelling frameworks, namely,
multivariate discriminant analysis (MDA), linear probability (LP), logit analysis (LA), probit
analysis (PA), survival analysis (SA) and Black–Scholes–Merton (BSM)-based models.
White, dotted white, grey and black shapes represent the original models, the original
models refitted, the reworked models with the same explanatory variables and the new
models, respectively.

Figure 24.1 Monocriterion rankings of bankruptcy prediction models.
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sample under consideration and the period of study do, as expected, tend to affect the
performance of bankruptcy models. Recall that most of the original models were fitted
to US data; therefore, when refitted to UK data, they tend to do better at predicting
bankruptcy for UK firms.

On the other hand, for most performance measures, reworking the original MDA,
probit and linear probability models with the same explanatory variables in a logit
framework seems to improve the ranks – with the exception of the MDA models
of Lis (1972) cited in Taffler [38] and of Taffler [38], which were originally fitted
to UK data, which suggest that this improvement in the rankings could be due to a
change in the training sample, in the modelling framework or in both. Also, for most
performance measures, when all logit-framework-based models are compared, the
multiperiod logit model of Shumway [32] seems to outperform the others, which sug-
gests as expected that its dynamic nature improves bankruptcy prediction.

Finally, using only market-based data does not seem to provide good enough infor-
mation to classify a firm as risky or not; in fact, BSM-based models do not make the
top five. However, Hillegeist et al.’s model [30] seems always to outperform Bharath
and Shumway’s model [36].

At this stage, we would like to remind the reader that monocriterion rankings
should not be discarded, as they convey valuable information; however, from both
practical and methodological perspectives, one cannot make an informed decision
as to which model performs best under multiple criteria. In order to address this issue,
one needs a single ranking that takes account of multiple criteria, which we provide
using the proposed DEA framework.

The multicriteria rankings of the above-mentioned 30 models are provided in
Figure 24.2 for different combinations ofmeasures of the four criteria under consideration,
where the models are ranked in descending order of the corresponding SBM super-
efficiency DEA scores. The empirical results reveal that the multicriteria rankings differ
fromthemonocriterionones. In addition, themulticriteria rankingshaveno ties,which sug-
gests that the choiceof theSBMsuper-efficiencyDEAframework is aneffectiveone in that
it helps to get rid of ties between bankruptcy prediction models. Furthermore, we have
considered several measures of the performance criteria under consideration to find out
about the robustness of the multicriteria rankings with respect to the choice of measures.

For our dataset, and regardless of the combination of performance metrics used, the
multicriteria rankings suggest that some of the new models are always amongst the
top-ranked ones. In addition, the selection of explanatory variables using factor anal-
ysis along with stepwise procedures seems always to improve MDA and survival-
analysis-based bankruptcy prediction. Also, with the exception of combinations of
metrics including T1 and BS or BS and Sen simultaneously, the selection of explan-
atory variables using factor analysis along with stepwise procedures seems always to
improve the performance of linear probability models in predicting bankruptcy. How-
ever, the new way of selecting explanatory variables does not seem to advantage the
logit modelling framework or the probit modelling framework – although, for the logit
framework, the new models do better than the original ones. In addition, in general,
the use of a mixture of accounting-based and market-based information improves
bankruptcy prediction in most modelling frameworks.
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Also, for most combinations of performance measures, notice that, with the excep-
tion of the MDA models of Altman [29, 37] and the logit model of Ohlson [39], refit-
ting models does not seem to improve their ranks – these conclusions are different
from the ones derived from the analysis of the monocriterion rankings. Therefore,
in a multicriteria setting, refitting models is not necessarily a means for improvement.

On the other hand, regardless of the combination of performance metrics, rework-
ing the original MDA models with the same explanatory variables in a logit frame-
work seems to improve their ranks – with the exception of the MDA model of
Taffler [38].
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The notation of models is the same with Figure 24.1. This figure presents the multicriteria 
rankings of 30 competing bankruptcy models, where models are ranked from best to worst using 
SBM super-efficiency DEA scores computed using several combinations of measures of different 
criteria; T1, T2, MR, Sen, Spe and OCC are used as measures of correctness of categorical 
prediction; AUC, the Gini coefficient, the KS statistic and IV are used as measures of 
discriminatory power; BS is used as a measure of calibration accuracy; and LL and pseudo-R2 

are used as measures of information content. Different shapes represent different modelling 
frameworks, namely, MDA, linear probability (LP), logit analysis (LA), probit analysis (PA), 
survival analysis (SA) and BSM-based. White, dotted white, grey and black shapes represent 
the original models, the original models refitted, the reworked models with the same explanatory 
variables and the new models, respectively.

Figure 24.2 Multicriteria rankings of bankruptcy prediction models.
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As to reworking the original linear probabilitymodelswith the sameexplanatoryvari-
ables in a logit framework, it seems that for most combinations of performance metrics
the ranks have improved. Notice, however, that reworking the original probit model did
not lead to any improvement in the multicriteria rankings. Therefore, in a multicriteria
setting, reworking themodels could be ameans for improvement of somemodelling fra-
meworks suchasMDAmodels.Also, regardlessof the combinationof performancemet-
rics, when all logit-framework-based models are compared, the multiperiod logit model
of Shumway [32] does not seem to perform as well as in the unidimensional case. The
refitted logit model of Ohlson [39], however, seems to be superior to the remaining logit
models, followed by the reworked probit model of Zmijewski [40].

Finally, using only market-based data does not seem to provide good enough infor-
mation to classify a firm as risky or not; in fact, BSM-based models do not make the
top five. However, Hillegeist et al.’s model [30] seems always to outperform Bharath
and Shumway’s model [36]. This is amongst the very few findings of the monocri-
terion analysis that still hold in the multicriteria case.

To sum up, the conclusions derived from the analysis of the monocriterion rank-
ings are not always consistent with their multicriteria counterparts. Therefore, multi-
criteria rankings help to better apprehend the relative performance of bankruptcy
prediction models. The multicriteria rankings of the best and the worst models do
not seem to be too sensitive to changes in most combinations of performance metrics.
However, overall, the multicriteria rankings of the models under consideration tend to
be sensitive to some extent to the choice of performance measures, which suggests
that in practice one would have to carefully select these measures to reflect the appli-
cation context and the purpose of the use of bankruptcy prediction models; in other
words, the choice of performance metrics should be ‘fit for purpose’.

Last, but not least, our findings suggest the following answers to our research ques-
tions. First, the survival analysis model tends be superior, followed by linear proba-
bility and multivariate discriminant analysis models; therefore, some modelling
frameworks perform better than others by design, as survival analysis models are
dynamic and have the modelling ability to take on board both accounting-based
and market-based information. Second, the numerical results seem to suggest that
the choice and/or design of explanatory variables and their nature affect the perfor-
mance of different modelling frameworks to varying extents. To be more specific,
most modelling frameworks improved in performance when a mixture of account-
ing-based and market-based information was taken into account, where survival anal-
ysis, linear probability and multivariate discriminant analysis models benefited the
most from the new way of selecting explanatory variables.

24.5 CONCLUSION

Prediction of corporate failure is one of the major activities in auditing firms’ risks and
uncertainties. The design of reliable models to predict bankruptcy is crucial for many
decision-making processes. Although a large number of models have been designed to
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predict bankruptcy, the relative performance evaluation of competing prediction mod-
els remains an exercise that is unidimensional in nature, which results in conflicting
rankings of models from one performance criterion to another. In this research, we
have proposed an orientation-free super-efficiency data envelopment analysis model
to overcome this methodological issue; in sum, the proposed framework delivers a
single ranking based on multiple performance criteria. In addition, we performed
an exhaustive comparative analysis of the six most popular bankruptcy-modelling fra-
meworks, resulting in 30 prediction models for UK firms, including our own models,
organized into four categories, namely, original models, original models refitted,
reworked models in a logit framework with the same original explanatory variables
and new models. We used four criteria which are commonly used in the literature,
namely, discriminatory power, calibration accuracy, information content and correct-
ness of categorical prediction. We considered several measures for each criterion to
find out about the robustness of multidimensional rankings with respect to different
combinations of measures. Furthermore, we addressed two important research ques-
tions: namely, do some modelling frameworks perform better than others by design?
and to what extent do the choice and/or the design of explanatory variables and their
nature affect the performance of modelling frameworks?

Our main findings may be summarized as follows. First, the proposed multidimen-
sional framework provides a valuable tool to apprehend the true nature of the relative
performance of bankruptcy prediction models. Second, the multidimensional rank-
ings of the best and the worst models do not seem to be too sensitive to changes in
most combinations of performance metrics. Third, the numerical results seem to sug-
gest that the survival analysis model tends be superior, followed by the linear prob-
ability and multivariate discriminant analysis models; therefore, some modelling
frameworks perform better than others by design, as survival analysis models are
dynamic and have the modelling ability to take on board both accounting-based
and market-based information. Fourth, the numerical results seem to suggest that
the choice and/or the design of explanatory variables and their nature affect the per-
formance of different modelling frameworks to varying extents. To be more specific,
most modelling frameworks improved in performance when a mixture of account-
based and market-based information was taken into account, where survival analysis,
linear probability and multivariate discriminant analysis models benefited the most
from the new way of selecting explanatory variables.
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25.1 INTRODUCTION

Predicting the future has always fascinated human beings. Over time, mankind has
developed a variety of formal and informal frameworks for devising predictions.
The formal frameworks can be divided into three broad categories, namely, qualitative
prediction frameworks, quantitative prediction frameworks and hybrid prediction fra-
meworks. Prediction frameworks are as good as their performance turns out to be.
However, in real-life settings, one cannot afford to implement forecasts and wait to
‘observe’ or measure how good they were. In fact, in most real-life applications, pre-
diction systems are designed and tested before being implemented. In this chapter, we
focus on the assessment of the performance of quantitative prediction systems.

1 Part of the material in this chapter is adapted from Ouenniche J., Xu B. and Tone K. (2014) Relative per-
formance evaluation of competing crude oil prices’ volatility forecasting models: a slacks-based super-
efficiency DEA model, 4(4), 235–245, with permission from Scientific Research.
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In general, the quality of such prediction systems is assessed within a simulation envi-
ronment based on what is known as out-of-sample testing. In sum, the performance of
prediction systems –whether based on a single model or multiple models – is assessed
by simulating their potential behaviour in the ‘future’ as represented by the test set or
test period. To be more specific, the sample of relevant historical data available is typ-
ically divided into an initialization set and a holdout set. The initialization set is used to
estimate the parameters of the prediction system by fitting a model or models to the
initialization dataset, whereas the holdout set (the simulated future) is used to test the
performance of the system. Typically, the fitted system is used to produce forecasts of
the observations in the holdout set, and the differences between the actual values and
the forecasts, commonly referred to as errors, are fed into a measurement system to
assess the quality of the forecasts. The measurement system is designed around per-
formance criteria. The conventional performance criterion used in many application
fields is accuracy. However, nowadays the assessment of prediction systems makes
use of a variety of additional criteria – see Table 25.1 for a summary of performance
criteria. The reader is referred to Xu [1] and Xu and Ouenniche [2] for detailed dis-
cussions of the measures used.

When designing a new prediction system or re-engineering an existing one, one
typically considers an initial pool of prediction models, assesses their relative per-
formance and then chooses the model or subset of models to use. Unlike the design
of quantitative prediction models, which has attracted the attention of a large number
of academics and professionals for some time, the performance evaluation of com-
peting prediction models has not received as much attention. Although most pub-
lished research involves using several performance criteria and measures to
compare prediction models, the performance evaluation exercise remains monocri-
terion-based in that prediction models are ranked by a single measure of a single
criterion at a time, which often results in different rankings for different criteria
and measures. Consequently, despite the exercise being multicriteria-based, a
monocriterion-based framework is what has so far been used in assessing the rela-
tive performance of models. The importance of addressing this methodological issue
lies in the practice-driven needs to devise a single multicriteria ranking to guide
decision making, on one hand, and to automate some aspects of the design of pre-
diction systems, on the other hand.

In order to illustrate the problem with the current monocriterion approach, we shall
use the literature on predicting crude oil price volatilities. For example, Day and Lewis
[3] used historical volatility models, generalized autoregressive conditional heterosce-
dasticity (GARCH) models and implied volatility models to forecast the volatility of
crude oil daily prices. They used both goodness-of-fit and biasedness criteria and sev-
eral metrics (i.e. the mean error (ME), mean absolute error (MAE), root mean squared
error (RMSE) and coefficient of determination (R2)) to evaluate their competing fore-
casting models, but their out-of-sample results were mixed with respect to which
model outperformed the rest, as a result of the unidimensional nature of their rankings.
Sadorsky [4] forecasted the volatility of daily futures prices of WTI crude oil. He used
several time series volatility models, namely, random walk (RW), simple moving
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TABLE 25.1 Classification and definitions of criteria and subcriteria used in
forecasting.

Criterion or subcriterion Definition

Reliability Multidimensional criterion consisting of five subcriteria,
namely, theoretical relevance, validity, accuracy,
informational efficiency and degree of uncertainty of the
output of a model or forecast.

Theoretical relevance Degree of suitability of a model for a given dataset and a given
forecasting exercise; that is, its ability, from a design
perspective, to take into account all features of the dataset
under consideration (e.g. patterns, turning points, structural
change) as well as its suitability for a specific forecasting
horizon – the relevance of the forecasting horizon lies in the
fact that, by design, some forecasting models are more
suitable for a specific time horizon than others.

Validity Refers to whether the assumptions underlying a model hold or
not. From a methodological perspective, invalid models
should be discarded from further consideration; however, in
practice, things are not either black or white. For example,
within a linear regression analysis framework, one needs to
test whether or not the residuals are normally distributed,
using several normality tests which may lead to different
conclusions; in this case, one may conclude that the normal
distribution is a reasonable approximation and consider the
model as valid.

Accuracy Refers to the ability of a model to reproduce the past. Accuracy
is a multidimensional construct that has three main facets,
namely, the goodness-of-fit dimension, the biasedness
dimension and the correct-sign dimension.

Goodness-of-fit Refers to how close the forecasts are to the actual values.
Biasedness Refers to whether a model tends to systematically

overestimate or underestimate the forecasts.
Correct sign Refers to the ability of a model to forecast the correct sign; that

is, to produce forecasts that are consistent with the actuals in
that the forecasts reveal an increase or decrease in value
when the actuals increase or decrease, respectively, in
value – this criterion is particularly important in investment
environments.

Informational efficiency Refers to the ability of a model to capture all elements of
information in the data.

Degree of uncertainty of
forecast

Refers to the likelihood that the forecast and the actual values
will be close to each other.

Cost The cost of a forecasting model refers to the extent to which it
is relatively cheap to acquire and use, and can be used to
discriminate between competing models. It includes several

(continued overleaf )
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average (SMA), single exponential smoothing (SES), autoregressive (AR), linear
regression and stochastic volatility (SV) models, and evaluated their performance
using various measures (i.e. mean squared error (MSE), MAE, mean percentage error
(MPE) and mean absolute percentage error (MAPE)) and statistical tests (i.e. the
Diebold–Mariano (DM) test, a modified DM test and regression tests for biasedness).
The overall results were again mixed as a result of the unidimensional nature of the
rankings. Sadorsky [5] forecasted the volatility of several petroleum futures returns
(i.e. WTI crude oil, heating oil No. 2, unleaded gasoline and natural gas) using a large
number of models (i.e. RW, SES, linear regression, AR, vector autoregressive (VAR),
GARCH and state space models). Although he evaluated these competing forecasting
models using several performance measures (i.e. MSE, MAE and Theil
U coefficients) and statistical tests (i.e. the DM test and correct-sign tests), the overall
results were again inconsistent because of the unidimensional nature of the rankings.
Agnolucci [6] used different types of GARCH models and implied volatility models

TABLE 25.1 (continued)

Criterion or subcriterion Definition

categories of costs, for example costs of development/
purchase and maintenance of forecasting software; costs
of data purchase/collection, storage and pre-processing;
costs of training analysts to use a model or method
effectively; costs related to the time required to obtain a
forecast; costs of repeated application of the method.
These cost elements vary in importance and magnitude
depending on whether the forecasting method is
quantitative or qualitative.

Benefits Refers to the (expected) benefits that would result from the use
of a model in generating forecasts such as cost savings and
improved decisions.

Complexity Refers to the complexity of a model or method – also referred
to in the literature as ease of use or ease of implementation
of a model/method. In this chapter, the complexity of a
forecasting model or method refers to the extent to which it
is easy to understand by users/managers and to interpret its
results or, equivalently, the level of conceptual and
technical knowledge/expertise required for effective use of
the model/method.

Universality Refers to the extent to which a model is widely used in practice
or the familiarity of the audience with it. Note, however,
that for quantitative models, this factor may depend largely
on the availability of a model or method in popular software
packages.

Ability to incorporate
managerial judgement

Refers to the ability of a model or method to incorporate
managerial judgement; that is, integration of subjective
information to produce a forecast.
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to forecast the volatility of dailyWTI futures prices, but empirical results revealed that
their performance was inconsistent with respect to different measures (e.g. MAE and
MSE) and statistical tests (e.g. regression-based test for biasedness), again because of
the unidimensional nature of the rankings. Marzo and Zagaglia [7] used several
GARCH models to forecast the volatility of daily futures prices of crude oil traded
on NYMEX. They did not find a constantly superior model based on several different
performance measures (i.e. MAE,MSE, heteroscedasticity-adjusted MSE and success
ratio) and statistical tests (e.g. direction accuracy test and DM test), again because of
the unidimensional nature of their rankings.

To the best of our knowledge, the only papers that have both raised concerns about
the above-mentioned methodological issue and addressed it are the ones by Xu [1], Xu
and Ouenniche [2, 8, 9] and Ouenniche et al. [10, 11]. This chapter is an account of
some of our contributions based on data envelopment analysis (DEA). DEA is a math-
ematical-programming-based multicriteria framework for the relative performance
evaluation of a set of entities commonly referred to as decision-making units
(DMUs). DEA is a generic framework and, as such, its implementation for a specific
relative performance evaluation or benchmarking exercise requires a number of deci-
sions to be made, namely, the choice of the units to be assessed, the choice of the rel-
evant inputs and outputs to be used, and the choice of the appropriate DEA model. In
order to present and discuss how one might adapt this framework to measure and eval-
uate the relative performance of competing prediction models, we survey and classify
the literature on performance criteria and discuss how continuous and discrete metrics
can be designed to measure these criteria, on one hand, and we use crude oil prices to
demonstrate the use of DEA in evaluating and selecting competing forecasting mod-
els, on the other hand.

The remainder of this chapter is organized as follows. In Section 25.2, we provide
an overview of crude oil prices and their volatilities. In Section 25.3, we present the
DEA-based frameworks proposed to date for assessing the relative performance of
prediction models of crude oil price volatility. Finally, Section 25.4 concludes the
chapter.

25.2 AN OVERVIEW OF CRUDE OIL PRICES
AND THEIR VOLATILITIES

Oil is an important source of energy that drives modern economies, and large swings
in its price can have a substantial adverse impact on both oil importers and exporters.
Therefore, a proactive knowledge of future movements of oil prices and their volatility
can lead to better decisions in various areas such as macroeconomic policy making,
risk management, options pricing and portfolio management. In fact, with respect to
macroeconomics and policy making, swings or volatility in crude oil prices tends to
negatively affect the economy in many ways [12–14]; for example, high oil prices
tend to increase production costs or decrease production output, which affect oil-
importing economies’ output as measured by GDP. In addition, a large oil price
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volatility tends to raise uncertainty, which affects consumers’ consumption and
investment behaviour and often results in reduced or postponed purchases of goods
and investment in equipment [15–17]. Furthermore, central banks take explicit
account of the volatility of commodities in establishing their monetary policies; there-
fore, reliable forecasts of oil price volatility are crucial for macroeconomic policy
makers in setting policies to stabilize the economy. As to investment risk manage-
ment, the standard approach in the financial industry to modelling risk in the frame-
work of a parametric approach is to use value-at-risk (VaR) as a proxy to measure the
risk of financial instruments (e.g. stocks; bonds; commodities, including crude oil;
and futures and options), which requires a reliable estimate of volatility. With respect
to options pricing and portfolio management, forecasting oil price volatility is a crit-
ical activity for investors faced with a massive growth in the trading of crude oil and its
underlying derivative securities. For instance, investors or portfolio managers need to
forecast the expected volatility over the lifetime of a futures or option contract to assist
them in designing hedging strategies, on one hand, and to adjust their investment port-
folios if the crude oil market becomes very unstable, on the other hand.

The price of crude oil is highly dependent on its grade, as measured by its specific
gravity, sulphur content and geographical location. There are two main types of crude
oil that are commonly used as benchmarks or references with respect to price, namely,
West Texas Intermediate (WTI) and Brent Crude Oil. Regardless of the quality of
crude oil and where it was extracted from, nowadays crude oil prices tend to move
together [18].

Daily spot prices of crude oil seem to have been greatly influenced by exogenous
events (Figure 25.1). First, global macroeconomic conditions are believed to have a
significant impact on oil demand and subsequently on its prices (e.g. [12]); for exam-
ple, the 1997 Asian crisis was followed by a price fall in 1997–1998; an unexpected
increase in demand for crude oil from some emerging markets (e.g. China and India)
was followed by a price surge in 2002–2008; and the relatively recent credit crunch
was followed by a price fall in late 2008–2009. Second, political instabilities in both
OPEC regions (e.g. Iraq and Venezuela) and non-OPEC regions (e.g. Bolivia, Turkey
and Russia) led to reduced production, which increased precautionary demand as well
as prices [19]. Third, changes in quotas or production polices were followed by a price
fall in 1997 and a price rise in 2005. Fourth, environmental events such as Hurricane
Katrina in August 2005 led to a reduction of approximately 20% in the Gulf of Mex-
ico’s oil and gas production, which was followed by a price increase [20].

As crude oil prices are level non-stationary, in the literature there is a tendency to
study their level-stationary equivalent, namely, returns (Figure 25.2). We have com-
puted daily WTI crude oil returns as follows: Rt = ln Pt Pt−1 × 100, where Pt

denotes the WTI crude oil price on day t – obviously these returns do not contain unit
roots, which was confirmed by the augmented Dickey–Fuller test, the Phillips–Peron
test and the Kwiatkowski–Phillips–Schmidt–Shin test.

The volatility of crude oil returns can be measured in several ways. In fact, one can
measure volatility over the time unit under consideration (e.g. day, week or month) by
any dispersion measure, such as variance or standard deviation, mean absolute
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deviation, or range of returns – as long as the relevant data are available (e.g. intra-day
returns for daily volatility). However, such measures are affected by outliers; there-
fore, their use is only appropriate when the distribution of returns is symmetric or nor-
mal. In addition, when volatility is computed using high-frequency data (e.g. intra-day
returns), the volatility obtained can end up being very noisy as a result of market
microstructure effects such as non-synchronous trading, discrete price observations,
intraday periodic volatility patterns and bid–ask bounce. Since crude oil daily returns
are not normally distributed – as confirmed by the Jarque–Bera test of normality – we
opted for an alternative approach to modelling daily volatility that consisted of using
daily squared returns R2

t as a proxy (e.g. [4–6, 21]). One should, however, be aware
that squared daily returns provide a noisy proxy, although they remain an unbiased
estimator [22]. Daily squared returns are depicted in Figure 25.3. The same tests as
were performed on returns were performed on squared returns and the results revealed
that such volatility proxy series are also level-stationary and autocorrelated.

In the next section, we present DEA-based performance analytics of prediction
models for crude oil price volatility.

25.3 ASSESSMENT OF PREDICTION MODELS
OF CRUDE OIL PRICE VOLATILITY

In this section, we use prediction models of crude oil price volatility to illustrate
another use of a DEA-based multicriteria performance evaluation framework for pre-
diction models of continuous variables. Xu and Ouenniche [8] proposed an oriented
super-efficiency-based DEA methodology for assessing the relative performance of
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Figure 25.3 WTI crude oil volatility.
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competing prediction models of crude oil price volatility. Later, Ouenniche et al. [10]
proposed an orientation-free context-dependent DEA framework, namely, a slacks-
based CDEA framework, and used it to rank prediction models of crude oil price vol-
atility. Finally, Ouenniche et al. [11] proposed an orientation-free super-efficiency
DEA framework, namely, a slacks-based super-efficiency DEA framework, to rank
prediction models of crude oil price volatility. The material in this section is based
on Ouenniche et al. [11]. In the rest of this section, we first present the models that
were used in this study to predict crude oil price volatility (Section 25.3.1). Then, we
specify suitable performance criteria and the measures of them that were used to eval-
uate the chosen prediction models of crude oil price volatility (Section 25.3.2). In
Section 25.3.3, we present the slacks-based super-efficiency DEA framework used
in our empirical analysis. Finally, we discuss the empirical results from our slacks-
based super-efficiency DEA framework in Section 25.3.4.

25.3.1 Forecasting Models of Crude Oil Volatility – DMUs

As far as the literature on forecasting oil price volatility is concerned, quantitative pre-
diction models can be divided into three main categories, namely, time series volatility
models [4–7, 21, 23], implied volatility models [3, 6] and hybrid models [24, 25].
Time series volatility models can be decomposed further into three subcategories,
namely, historical volatility models, GARCH models and SV models. Historical vol-
atility models are averaging methods that use volatility estimates (e.g. standard devi-
ation of past returns over a fixed interval) as input and assume that conditional
variances are level-stationary – these models can be divided further into two subca-
tegories depending on whether they use a pre-specified weighting scheme (e.g. RW,
historical mean (HM), SMA and SES) or not (e.g. AR and autoregressive moving
average (ARMA)). GARCH models consist of two equations, where one models
the conditional mean and the other models the conditional variance; they use returns
as input, and assume that conditional variances are level-stationary. These models can
be divided further into two subcategories depending on the nature of their memory,
namely, short-memory models (e.g. GARCH, GARCH-in-mean (GARCH-M), power
ARCH (PARCH), exponential GARCH (EGARCH) and threshold GARCH
(TGARCH)), which assume that the autocorrelation function (ACF) of the conditional
variance decays exponentially, and long-memory models (e.g. component GARCH
(CGARCH)), which assume that the ACF of the conditional variance decays slowly.
GARCH models have been widely used in the literature owing to their ability to cap-
ture some peculiar features of financial data such as volatility clustering or pooling,
leverage effects, and leptokurtosis, which are typical of crude oil prices – see for
example Agnolucci [6] and Kang et al. [21]. SV models can be viewed as variants
of GARCH models where the conditional variance equation has an additional error
term – see Ghysels et al. [26] for a detailed discussion of SV models and their relation
to GARCHmodels. On the other hand, implied volatility models are forward-looking
models in that they use information about market-traded options in combination with
an options pricing model (e.g. the Black–Scholes model) to derive volatility. Finally,
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hybrid volatility models are combinations of different models (e.g. the regime-
switching GARCH used by Fong and See [24]); the design of these models has been
motivated by the highly volatile nature of crude oil prices. For a general discussion of
volatility models, the reader is referred to Poon and Granger [27].

In sum, in our survey of the literature on crude oil price volatility forecasting, time
series models tend to be the popular ones. We found 14 time series models that turned
out to be valid for our dataset and were included in our performance evaluation exer-
cise, namely, RW, HM, SMA with averaging periods α of 20 and 60 (SMA(20) and
SMA(60)), SES, AR with orders 1 and 5 (AR(1) and AR(5)), ARMA(1, 1), GARCH
(1, 1), GARCH-M(1, 1), EGARCH(1, 1), TGARCH(1, 1), PARCH(1, 1) and
CGARCH(1, 1). See Table 25.2 for a general description of these models.

25.3.2 Performance Criteria and Their Measures: Inputs and Outputs

Our review of the literature on forecasting the volatility of crude oil prices revealed
that three performance criteria have typically been used, namely, goodness-of-fit, bia-
sedness and correct sign – see Xu and Ouenniche [8]. Note that, depending on the
application context, the features of the data and the decision-makers’ preferences
as to how to penalize large, small, positive and negative errors, different metrics
can be used. In this chapter, goodness-of-fit is measured by one of the following met-
rics: MSE, MSVolScE, MAVolScE, MMEU and MMEO; biasedness is measured by
one of the following metrics: ME or mean volatility scaled error (MVolScE); and the
correct sign is measured by the percentage of correct direction change predictions
(PCDCP) – see Table 25.3 for a description of the metrics used in our performance
evaluation exercise to measure these criteria.

25.3.3 Slacks-Based Super-Efficiency Analysis

In this subsection, we present an extension of the work by Xu andOuenniche [8], which
overcomes the following issues. First, under the variable-returns-to-scale (VRS)
assumption, input-oriented efficiency scores can be different from output-oriented effi-
ciency scores, which may lead to different rankings. Second, radial super-efficiency
DEA models may be infeasible for some efficient DMUs; therefore, ties would persist
in the rankings. Third, radial super-efficiency DEA only takes account of technical effi-
ciency. Finally, inmany applications such as ours, the choice of an orientation inDEA is
rather superfluous. In sum, we propose an orientation-free super-efficiency DEA frame-
work, namely, a slacks-based super-efficiency DEA framework, for assessing the rel-
ative performance of competing volatility forecasting models. The proposed framework
is a three-stage process and can be summarized as follows:

Stage 1: returns-to-scale (RTS) analysis. Perform RTS analysis to find out whether
to solve a DEA model under constant-returns-to-scale (CRS) conditions, VRS
conditions, non-increased returns-to-scale (NIRS) conditions or non-decreased
returns-to-scale (NDRS) conditions – see Banker et al. [28] for details.
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TABLE 25.2 Prediction models of crude oil price volatility.

Forecasting model Formulation and comments

Random walk (RW)

σt = σt−1; t > 1

RW can be viewed as an averaging method with a pre-specified
weighting scheme designed so that all weight is put on the
most recent historical observation. By design, RW is suitable
for forecasting a time series with no trend and no seasonality.

Historical mean (HM)

σt =
1

t−1
t−1

i = 1
σi; t > 1

HM is an averaging method with a pre-specified weighting
scheme designed so that all available historical observations
are equally weighted. By design, HM is suitable for
forecasting a time series with no trend and no seasonality.

Simple moving average
(SMA)

σt =
1
α

t−1

i = t−α
σi; t > α

SMA is an averaging method with a pre-specified weighting
scheme designed so that only the most recent α historical
observations are used to forecast the next period and those α
observations are equally weighted. By design, SMA is
suitable for forecasting a time series with no trend and no
seasonality.

Simple exponential
smoothing (SES)

σt = λσt−1 + 1−λ σt−1; t > 1, λ 0,1

SES can be viewed as an averaging method with a pre-specified
weighting scheme designed so that the weights decrease
exponentially as the observations get older. By design, SES is
suitable for forecasting a time series with no trend and no
seasonality.

Autoregressive model of
order p (AR(p))

σt = μ+
p

i= 1
ϕiσt− i

AR expresses a forecast as a linear function of previous values of
the time series through the use of the response variable lagged
by one or more time periods, say p, as explanatory variables.
These models assume that the response variable is stationary
and generate forecasts by relying heavily on autocorrelation
patterns in the time series, but no particular pattern is
assumed. The parameters of the model are usually estimated
using a non-linear least squares method.

Autoregressive moving
average model of orders
p and q (ARMA(p, q))

σ t = μ+
p

i = 1
ϕiσt− i +

q

i= 1
ωiσεt− i

ARMA expresses a forecast as a linear function of previous
values of the time series and previous errors or residuals,
where the response variable lagged by one or more time
periods, say p, and the errors lagged by one or more time

(continued overleaf )
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TABLE 25.2 (continued)

Forecasting model Formulation and comments

periods, say q, are used as explanatory variables. These
models also assume that the response variable is stationary
and generate forecasts by relying heavily on autocorrelation
patterns in the time series and its forecasting errors, but no
particular pattern is assumed. The parameters of the model are
usually estimated using the method of maximum likelihood.

Generalized autoregressive
conditional
heteroscedasticity of
orders p and q (GARCH
(p, q))

rt = β0 +
k

i = 1
βiXi, t + εt , εt≈N 0,σt

σt =α0 +
p

i = 1
αiε2t− i +

q

i = 1
λiσt− i

The GARCH model consists of two equations, commonly
referred to as the mean equation and the variance equation,
where the mean equation regresses the response variable, for
example returns, on a set of explanatory variables (which may
include lagged values of the response variable) and an error
term that is assumed to be normally distributed with mean
zero and to be heteroscedastic, and the variance equation
regresses the variance of the error term of the mean equation
on a set of p lagged squared errors (often referred to as news
about volatility) and a set of q lagged variances. Notice that
the variance equation is a function of the magnitudes of
lagged residuals and not their signs, which enforces a
symmetric response of the volatility to positive and negative
shocks.

GARCH-M(p, q)

rt = β0 +
k

i = 1
βiXi, t + γσt + εt , εt≈N 0,σt

σt =α0 +
p

i = 1
αiε2t− i +

q

i = 1
λiσt− i

GARCH-in-mean is an extension of GARCH that allows the
mean of a time series to depend on its conditional variance,
and thus models risk–return trade-offs. In general, it is
expected that investors should receive a higher return by
taking additional risk, which would be the case if the estimate
of γ, say γ, was statistically significant and positive.

EGARCH(p, q)

rt = β0 +
k

i = 1
βiXi, t + εt , εt≈N 0,σt

log σt =α0 +
p

i = 1
αi

εt− i
σt− i

+
q

i= 1
λi log σt− i +

r

i= 1
γi

εt− i
σt− i

Exponential GARCH is an extension of GARCH that is
designed to take account of volatility asymmetry, commonly
referred to as the leverage effect; that is, negative shocks
increase volatility more than positive shocks of equal
magnitude. In fact, the exponential leverage effect is captured
by the log of the conditional variance, which guarantees that
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TABLE 25.2 (continued)

Forecasting model Formulation and comments

the forecasts are non-negative; therefore, there is no need to
impose an estimation constraint to avoid negative variance.
Notice that the conditional variance depends on both the size
and the sign of the standardized errors. A statistically
significant γi such that γi < 0 indicates the presence of a
leverage effect.

TGARCH(p, q)

rt = β0 +
k

i= 1
βiXi, t + εt , εt≈N 0,σt

σt = α0 +
p

i= 1
αiε2t− i +

q

i = 1
λiσt− i +

p

i = 1
γiε

2
t− iIt− i

Threshold GARCH is an extension of GARCH that is designed
to take account of the leverage effect through the additional
term in the variance equation, where It− i = 1 if εt− i < 0 and 0
otherwise. A statistically significant γi such that γi > 0
indicates the presence of a leverage effect.

APARCH(p, q)

rt = β0 +
k

i= 1
βiXi, t + εt , εt≈N 0,σt

σst = α0 +
p

i= 1
αi εt− i −γiεt− i

s +
q

i = 1
λiσst− i

s > 0 and γi ≤ 1

Asymmetric power ARCH is an extension of GARCH that is
designed to take account of volatility asymmetry. In addition,
the power s is estimated instead of imposed; consequently,
APARCH nests several GARCH models such as GARCH
and TGARCH. A statistically significant γi such that γi > 0
indicates the presence of a leverage effect.

CGARCH(p, q)

rt = β0 +
k

i= 1
βiXi, t + εt , εt≈N 0,σt

σt =mt + ut
mt = α0 + ρmt−1 +ϕ ε2t−1−σt−1

ut =
p

i = 1
αi ε2t− i−mt− i +

q

i = 1
λi σt− i−mt− i

Component GARCH is an extension of GARCH that, as
opposed to GARCH, EGARCH and TGARCH, has the
ability to capture long-memory volatility. In fact, CGARCH
models volatility as the sum of a permanent process mt (e.g. a
time-varying trend) and a transitory mean-reverting process
ut. In addition, it allows for mean reversion to a varying level
mt that evolves slowly in an autoregressive manner and is
driven by the volatility prediction error.
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TABLE 25.3 Performance measures of prediction models of crude oil price volatility.a

Performance measure and its formulation

Mean error (ME) assumes that the cost of errors is symmetrical; that is, positive and negative
errors of the same magnitude are equally weighted:

ME=
1
T

T

i= 1
et

Mean squared error (MSE) penalizes large errors (e.g. et > 1, et < −1) more than small ones
(e.g. −1 ≤ et ≤ 1). Therefore, decision-makers may use this measure if several small errors are
preferable to a few large ones:

MSE=
1
T

T

i = 1
e2t

Mean absolute error (MAE) assumes that errors of the same magnitude are assigned the same
weight regardless of their signs. Notice that MAE is less sensitive to large errors than MSE:

MAE=
1
T

T

i= 1
et

Mean mixed error underestimation penalized (MMEU) is an asymmetric measure that allows
one to express his or her preferences by penalizing underpredictions, where positive large
errors are penalized more heavily:

MMEU=
1
T

T

i= 1

et , if et < 0

et , if 0 ≤ et ≤ 1

e2t , if et > 1

Mean mixed error overestimation penalized (MMEO) is an asymmetric measure that allows one
to express his or her preferences by penalizing overpredictions, where negative large errors
are penalized more heavily:

MMEO=
1
T

T

i = 1

et , if et > 0

et , if −1 ≤ et ≤ 0

e2t , if et < −1

Mean volatility-adjusted or scaled errors (MVolScE) is an alternative measure to ME, where
errors are adjusted for volatility as measured by the variance of observations over the whole
horizon (i.e. t1 = 1 and t2 =T) or part of it, depending on the type of implementation. This
measure of biasedness proves useful when the series volatility is important enough to distort
the picture conveyed by ME, which is the case with most financial time series:

MVolScEt1, t2 =
1
T

T

i = 1

et
S2t1, t2;

S2t1, t2 =
1

t2− t1

t2

k = t1
Yk −Y

−

t1, t2

2
;

Y
−
t1, t2 =

1
t2− t1 + 1

t2

k = t1
Yk; t2 > t2 ≥ 1

Mean squared volatility-scaled errors (MSVolScE) is an alternative measure to MSE, where
squared errors are adjusted for volatility, and proves useful when the series volatility is
important enough to distort the picture conveyed by MSE:

MVolScEt1, t2 =
1
T

T

i = 1

e2t
S2t1, t2
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Stage 2: classification of DMUs. For each DMUk k = 1,…,n , solve the following
slacks-based measure (SBM) model [29]:

Min ρk = 1−
1
m

m

i= 1

s−i,k
xi,k

1 +
1
s

s

i= 1

s +r,k
yr,k

s t
n

j= 1
λjxi, j + s

−
i,k = xi,k; i (25.1)

n

j= 1
λjyr, j−s

+
r,k = yr,k; r

λj ≥ 0; j;s−i,k ≥ 0; i;s+r,k ≥ 0; r

where n denotes the number of DMUs,m is the number of inputs, s is the number of
outputs, xi,j is the amount of input i used by DMUj, yr,j is the amount of output r pro-
ducedbyDMUj,λj is theweightassigned toDMUj inconstructing its idealbenchmark,
and s−i,k and s +r,k are slack variables associated with the first and the second sets of
constraints, respectively. If the optimal objective function value ρ∗k is equal to 1,
then DMUk is classified as efficient; otherwise, it is classified as inefficient. Note
that the model (25.1) above is solved as it is if stage 1 reveals that CRS conditions
hold; otherwise, one has to impose one of the following additional constraints
depending on whether VRS, NIRS or NDRS conditions prevail, respectively:

n

j= 1
λj = 1;

n

j= 1
λj ≥ 1;

n

j = 1
λj ≤ 1 (25.2)

Stage 3: break efficiency ties. For each efficient DMUk, solve the following slacks-
based super-efficiency DEA model, first proposed by Tone [30]:

Min δk =
1
m

m

i= 1

xi,k + t−i,k

xi,k

1
s

s

i= 1

yr,k − t +r,k

yr,k

TABLE 25.3 (continued)

Performance measure and its formulation

Mean absolute volatility-scaled errors (MAVolScE) is an alternative measure to MAE, where
absolute errors are adjusted for volatility, and proves useful when the series volatility is
important enough to distort the picture conveyed by MAE:

MVolScEt1, t2 =
1
T

T

i = 1

et
S2t1, t2

Percentage of correct direction change predictions (PCDCP) computes the proportion of correct
direction changepredictionsbya forecastingmodel,wherendenotes thenumberofobservations
and zt is a binary variable set equal to 1 if σt −σt−1 σt −σt−1 > 0 and 0 otherwise.

PCDCP=
T

i = 1

zt
n

aHere, et = σt −σt , σtis the original series and σt is the forecasted series.
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s t
n

j= 1;j k
λjxi, j ≤ xi,k + t

−
i,k; i (25.3)

n

j= 1;j k
λjyr, j ≥ yr,k − t

+
r,k; i

λj ≥ 0; j k;t−i,k ≥ 0; i;t +r,k ≥ 0; r

where t−i,k and t
+
r,k denote the amount by which input i and output r of the efficient

DMUk should be increased and decreased, respectively, to reach the frontier con-
structed by the remaining DMUs. Note that the model (25.2) above is solved as it is
if stage 1 reveals that CRS conditions hold; otherwise, one has to impose an addi-
tional constraint from amongst (25.2) as outlined in stage 2. The super-efficiency
scores δ∗k are then used to rank-order the efficient DMUs.

At this stage, it is worth mentioning that unlike radial super-efficiency DEA models
(e.g. [31]), slacks-based super-efficiency models are always feasible [30, 32]. Note that
the slacks-based super-efficiency models of Tone [30] and Du et al. [32] are identical
with respect to their constraints in that one can be obtained from the other using a simple
transformation of variables. However, that applications where positive input and output
data is a requirement, Du et al. [32] provided a variant of the model solved in stage 3 to
accommodate this situation. In the next section, we shall use the above-described meth-
odology to rank-order competing crude oil price volatility forecasting models.

25.3.4 Empirical Results from Slacks-Based Super-Efficiency DEA

In this subsection, we focus on the volatility of WTI crude oil daily spot prices. Our
data covers the period ranging from 2 January 1986 to 28 May 2010, resulting in a
total of 6157 observations. Note that we have chosen to consider several measures
for each criterion to find out about the robustness of multicriteria rankings with respect
to different measures.

Figure 25.4 provides the monocriterion rankings of 14 forecasting models of crude
oil returns volatility based on nine measures of three criteria, namely, goodness-of-fit,
biasedness and correct sign – this is a typical output presented by most existing fore-
casting studies [4–7]. These monocriterion rankings were devised by ranking the
models from best to worst using the relevant measure of each of the criteria under
consideration. Notice that different criteria led to different monocriterion rankings,
which provides additional evidence of the problem resulting from the use of a mono-
criterion approach in a multicriteria setting as discussed in Section 25.1. For example,
CGARCH(1, 1) outperforms SMA20 on measures of goodness-of-fit based on
squared errors, whereas SMA20 performs better with respect to the biasedness crite-
rion, as measured by both ME and MVolScE, and with respect to the correct-sign cri-
terion, as measured by PCDCP. In order to remedy to these mixed performance
results, one needs a single ranking that takes account of multiple criteria, which we
provide using the proposed DEA framework.
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Figure 25.5 summarizes the multidimensional rankings of the 14 competing
volatility-forecasting models for several combinations of performance measures,
where the models are ranked from best to worst based on the corresponding super-
efficiency scores obtained using both input-oriented and output-oriented radial
super-efficiency DEA models – see Xu and Ouenniche [8]. Notice that, under
VRS conditions, the rankings from input-oriented analysis and output-oriented anal-
ysis are different, on one hand, and the rankings from output-oriented analysis show
more infeasibilities and ties, on the other hand. Figure 25.6 summarizes the multidi-
mensional rankings of the volatility-forecasting models for several combinations of
performance measures, where the models are ranked in descending order of the cor-
responding super-efficiency scores obtained using an orientation-free non-radial
super-efficiency DEA model.

Figures 25.5 and 25.6 reveal that the rankings of forecasting models obtained by
input-oriented super-efficiency DEA analysis, output-oriented super-efficiency DEA
analysis and orientation-free super-efficiency DEA analysis are different.
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Figure 25.4 Unidimensional rankings of competing forecasting models – ranking in
descending order of performance. 1, RW; 2, HM; 3, SMA20; 4, SMA60; 5, SES; 6, ARMA
(1, 1); 7, AR(1); 8, AR(5); 9, GARCH(1, 1); 10, GARCH-M(1, 1); 11, EGARCH(1, 1); 12,
TGARCH(1, 1); 13, PARCH(1, 1); 14, CGARCH(1, 1).
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These differences are mainly due to the fact that input-oriented analysis minimizes
inputs for fixed amounts of output and output-oriented analysis maximizes outputs
for fixed amounts of input, whereas orientation-free analysis optimizes both inputs
and outputs simultaneously. In addition, input-oriented super-efficiency analysis
and output-oriented super-efficiency analysis only take account of technical effi-
ciency, whereas orientation-free super-efficiency analysis takes account of an addi-
tional performance component, namely, slacks. Notice that the efficient model
SMA20 maintains its best position in the rankings regardless of whether the DEA
analysis is input-oriented, output-oriented or orientation-free, because it is always
on the efficient frontier and has zero slacks regardless of the performance measures
used.
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With respect to the orientation-free super-efficiency analysis, a close look at
Figure 25.6 reveals that whether one measures biasedness by ME or MVolScE and
one measures goodness-of-fit by MAE or MAVolScE, the ranks of the best models
(e.g. SMA20, SES and AR(5)) and the worst models (e.g. RW, HM and AR(1))
remain the same; that is, they are robust to changes in measures. On the other hand,
whether one measures biasedness byME orMVolScE and one measures goodness-of-
fit by MSE or MSVolScE, the ranks of the best models (e.g. SMA20, SES and

Input-oriented super-efficiency DEA scores-based rankings
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Figure 25.5 Super-efficiency DEA scores-based multidimensional rankings of volatility
forecasting models. 1, RW; 2, HM; 3, SMA20; 4, SMA60; 5, SES; 6, ARMA(1, 1); 7,
AR(1); 8, AR(5); 9, GARCH(1, 1); 10, GARCH-M(1, 1); 11, EGARCH(1, 1); 12,
TGARCH(1, 1); 13, PARCH(1, 1); 14, CGARCH(1, 1).
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CGARCH(1, 1)) and the worst models (e.g. RW, HM and AR(1)) remain the same.
These rankings suggest that, for our dataset, AR(5) tends to produce large errors and
CGARCH(1, 1) tends to produce small errors, as their ranks are sensitive to whether or
not one penalizes large errors more than small ones. Finally, whether one measures
biasedness by ME or MVolScE and one measures goodness-of-fit by MMEU (or
by MMEO), the ranks of the best models such as SMA20 and CGARCH(1,1) (or
RW, HM and SMA20, respectively) and the worst models such as RW, HM and
AR(1) (or SMA60 and PARCH(1, 1), respectively) remain the same. Notice that
the rankings under MMEU andMMEO differ significantly, which suggests for exam-
ple that the performance of models such as RW, HM and CGARCH(1, 1) is very sen-
sitive to whether one penalizes negative errors more than positive ones (that is, the
decision-maker prefers models that underestimate the forecasts) or vice versa. In gen-
eral, however, when underestimated forecasts are penalized, most GARCH types of
models tend to perform well – suggesting that they often produce forecasts that are
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Figure 25.6 Slacks-based super-efficiency DEA scores-based multidimensional rankings of
volatility forecasting models. 1, RW; 2, HM; 3, SMA20; 4, SMA60; 5, SES; 6, ARMA(1, 1);
7, AR(1); 8, AR(5); 9, GARCH(1, 1); 10, GARCH-M(1, 1); 11, EGARCH(1, 1); 12,
TGARCH(1, 1); 13, PARCH(1, 1); 14, CGARCH(1, 1).
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overestimated. On the other hand, when overestimated forecasts are penalized, aver-
aging models such as RW, HM and SES tend to perform very well – suggesting that
these models often produce forecasts that are underestimated.

Last but not least, given our dataset and the measures under consideration, the
numerical results suggest that, with the exception of CGARCH, the family of GARCH
models have an average performance compared with smoothing models such as
SMA20 and SES – this suggests that the data generation process has a relatively long
memory, which obviously gives an advantage to models such as SMA20 and SES as
compared with GARCH(1, 1), GARCH-M(1, 1), EGARCH(1, 1), TGARCH(1, 1)
and PARCH(1, 1), which are short-memory models. Similar findings on the GARCH
type of models were reported by Kang et al. [21].

25.4 CONCLUSION

Nowadays, forecasts play a crucial role in driving our decisions and shaping our future
plans in many application areas, such as economics, finance and investment, market-
ing, and the design and operational management of supply chains, among others.
Obviously, prediction problems differ with respect to many dimensions; however,
regardless of how one defines the prediction problem, a common issue faced by both
academics and professionals is related to the performance evaluation of competing
prediction models. Although most studies tend to use several performance criteria
and, for each criterion, one or several metrics to measure each criterion, the assess-
ment of the relative performance of competing forecasting models is generally
restricted to a ranking of them by measure, which usually leads to different monocri-
teria rankings. The lack of a multicriteria framework for performance evaluation of
competing prediction models has motivated the present line of research, in which
we have proposed several frameworks based on both DEA analysis and MCDA anal-
ysis. In order to discuss the operationalization of the DEA-based relative performance
evaluation frameworks in the area of forecasting, we have surveyed and classified the
literature on performance criteria and their measures, including some statistical tests,
commonly used in evaluating and selecting forecasting models. To illustrate the use of
the proposed frameworks, we have used forecasting of crude oil prices and their vol-
atility as an application area. We assessed the relative performance of competing pre-
diction models of crude oil prices and volatility based on three criteria which are
commonly used in the forecasting community, namely, the goodness-of-fit, biased-
ness and correct-sign criteria. We considered several measures for each criterion to
find out about the robustness of multicriteria rankings with respect to different
measures.

The main conclusions of our predictions of crude oil price volatility may be sum-
marized as follows. First, models that are on the efficient frontier and have zero slacks
regardless of the performance measures used (e.g. SMA20) maintain their
rank regardless of whether the DEA analysis is input-oriented, output-oriented or
orientation-free. Second, the multicriteria rankings of the best and the worst models
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seem to be robust to changes in most performance measures; however, SMA20 seems to
be the best across the board. Third, when underestimated forecasts are penalized, most
GARCH types of models tend to perform well – suggesting that they often produce fore-
casts that are overestimated. In contrast, when overestimated forecasts are penalized,
averaging models such as RW, HM and SES tend to perform very well – suggesting that
these models often produce forecasts that are underestimated. Finally, our empirical
results seem to suggest that, with the exception of CGARCH, the family of GARCH
models have an average performance compared with smoothing models such as
SMA20 and SES, which suggests that the data generation process has a relatively long
memory.
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26.1 INTRODUCTION

In 2012, the United States’ expenditure on health accounted for 16.9% of GDP, which
is 7.5 percentage points above the OECD average for the same year [1]. Thirty-one
percent of US healthcare expenditure is spent solely on hospital care, or approximately
5% of GDP [2]. Estimates of the excess cost in the system consistently exceed $750
billion and range as high as half of all healthcare expenditure [3]. These estimatesmoti-
vate use to quantify the efficiency of hospitals. Because hospitals make up such a large
portion of healthcare expenditure, hospitals are a potential large source of cost savings.

Cost-control and cost-efficiency analyses are familiar to the hospital industry,
where concerns over rising costs have been present since the 1950s and 1960s
[4–6]. It has been more than 25 years since accountability and assessment were hailed
as the next revolution in medical care [7]. Valdez et al. [8] emphasized the role that
potential operational improvements and improved efficiency can play in cost savings.
Yet the best models for efficiency measurement in hospitals suffer from serious lim-
itations and are rarely applied in practice.

Existing methods for analyzing the efficiency of hospitals (for a review, see Rosko
and Mutter [9]) rely primarily on standard applications of data envelopment analysis
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(DEA) or stochastic frontier analysis (SFA). A particular limitation of these methodol-
ogies is that they assume hospitals will be able to perfectly predict customer demands
for hospital services or that hospitals can adjust input resources without any time
delays. Based on this assumption, these methods do not attempt to separate the quality
of the forecasts for hospital services from the operational performance of the hospital
[10]. Therefore, when a hospital is found to be inefficient, the analysis does not pro-
vide insight into whether that inefficiency comes from a poor forecast or it is the result
of poor operational performance.

In this chapter, we build on the insights of Lee and Johnson [11, 12], who defined
an effectiveness measure which complements the efficiency measure. Here, the effec-
tive input is defined as the input resource used in the production system that generates
the forecasted output level with efficient operations. Furthermore, to measure effec-
tiveness, we use the input-truncated production function, defined as the minimum
resources needed in a hospital to generate the expected outputs. A hospital is achiev-
ing effective production if its input levels are equal to the effective input levels
identified by the input-truncated production function.

A loweffectivenessmeasure implies that thehospital usedmore inputs in aparticular
year than can be justified by efficient operations and forecasted growth for the industry.
Persistent low effectiveness would indicate that the hospital is expanding resources
faster than the forecasted demand is expanding, consistent with a medical arms race.

26.2 MODELING OF PREDICTIVE EFFICIENCY

In a typical productivity study, we estimate efficiency via a production function which
defines the maximum outputs that a production system can produce with given input
resources. Let x be a vector of input variables quantifying the input resources, y be a
single output variable generated from the production system, and yPF = f x represent
the maximum output level for the given inputs. Consider a multiple-input and
multiple-output production process. Let x R I

+ denote the vector of input variables

and y R J
+ denote the vector of output variables for the production system. The pro-

duction possibility set (PPS) T is defined as T = x, y x can produce y . Let i I
be the input index, j J be the output index, and k K be the firm index. Xik is the
data for the ith input resource, Yjk is the amount of the jth production output, and
λk is the multiplier for the kth firm. Thus, the PPS can be estimated by a convex
function enveloping all observations as shown in the model (26.1):

T = x, y
k
λkYjk ≥ yj, j;

k
λkXik ≤ xi, i;

k
λk = 1; λk ≥ 0, k (26.1)

Then, the efficiency, θ, can be measured using the variable-returns-to-scale (VRS)
DEA estimator. The input-oriented technical efficiency is defined as the distance func-
tion DI x, y = inf θ θx,y T . If θ = 1, then the firm is efficient; otherwise, it is
inefficient when θ < 1.

To separate the effects of forecasting from operational performance, we need to
make some assumptions about timing. Specifically, we will assume that a hospital
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manager knows the production function for period t and the forecast for growth in
services required when they determine the input levels for period t + 1. Thus, our tim-
ing assumptions eliminate the concerns about endogeneity that are common in the
econometrics literature [13–15]. Related to this issue, we have assumed that all inputs
are adjustable once a year, but that after the level of inputs has been selected at the
beginning of the year, the input levels are held fixed.

An input-truncated production function is defined based on the input demand func-
tion, which transforms the expected output to the input level in the current period. To
maintain generality, the expected outputs are hospital-specific, each firm can have a
different forecasted demand, and the input-truncated production function is defined as
the production function truncated by the optimal inputs used by a specific hospital. Let
dt + 1 be the expected output in period t + 1. The effective input, xE t + 1 , is the inverse
of the production function in period t. The function xE t + 1 is formulated as in (26.2),
where f −1t is the inverse production function with respect to period t:

xE t + 1 = f −1t dt + 1 =DI x, dt + 1 x (26.2)

Figure 26.1 illustrates the effective input for a single-input, single-output case. For

an observation (production unitA in the figure), the effective inputXE t + 1
A is calculated

from the production function ft and its expected output level dt + 1A in period t + 1.
To measure the effectiveness, let xE RJ

+ denote an effective input vector esti-
mated from the previous period’s production function. The input-truncated produc-
tion possibility set (PPSE) is

T E = max xE, x ,y max xE, x can produce y in current period

Forecasted
demand
increase

Yt

dA
t+1

XA
E(t+1) XA

t
X t

ft

A

Figure 26.1 Effective input xE t + 1 .
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This can be estimated by a piecewise linear concave function truncated by the effec-
tive input level as shown in (26.3):

T
E
= x, y

k
λkYjk ≥ yj, j;

k
λkXik ≤ xi, i;XE

i ≤ xi, i;
k
λk = 1; λk ≥ 0, k

(26.3)

Then, the effectiveness, θE, can be measured by the distance function

DI x, y = inf θE θEx,y T
E

. If θE ≥ 1, then the firm is effective in using the input

resource; otherwise, it is ineffective when θE < 1, as illustrated in Figure 26.2. Note
that if θE > 1, then the production unit is achieving the forecasted output with fewer
resources than were believed to be needed based on the previous year’s production
function.

Let the index r K be an alias of the index k. The effectiveness θEr of one produc-
tion unit r can be estimated by solving the following optimization problem:

DI x, y = min
λk

θEr

s t
k
λkYjk ≥ Yjr, j

k
λkXik ≤ θ

E
r Xir, i (26.4)

XE
ir ≤ θ

E
r Xir, i

YA

Y

XE
A

XA
X

A

Ineffectiveness

Input-truncated production function

Figure 26.2 Effectiveness measure.
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k

λk = 1

λk ≥ 0, k

In order to solve for the effectiveness of all hospitals in one shot, we propose a
combined optimization problem as follows. Let λrk be the multiplier describing pro-
duction unit k’s contribution to the benchmark for the rth production unit to calculate
the effectiveness for production unit r. The effectiveness of all production units is esti-
mated by solving the following formulation:

min
λk r

θEr

s t
k
λrkYjk ≥ Yjr, j,r

k
λrkXik ≤ θ

E
r Xir, i,r (26.5)

XE
ir ≤ θ

E
r Xir, i,r

k

λrk = 1, r

λrk ≥ 0, k,r

26.3 STUDY OF US HOSPITALS

In order to examine the effectiveness of US hospitals, we used the 2009–2011 Nation-
wide Inpatient Sample from the Agency for Healthcare Research and Quality (AHRQ)
Healthcare Cost and Utilization Project (HCUP); this is a dataset which contains all
discharges from an approximately 20% sample (~1000 hospitals) of US community
hospitals as defined by the American Hospital Association. The number of discharges
(x1) was a single input. We followed [16,17] and modeled the outputs using a four-
dimensional vector including minor diagnostic procedures (y1), major diagnostic pro-
cedures (y2), minor therapeutic procedures (y3), and major therapeutic procedures (y4),
categorized by the International Classification of Diseases, Clinical Modification
codes. The distinguishing characteristic between the minor and major procedures
of each type is the use of an operating room. For example, irrigation of a ventricular
shunt is a minor therapeutic procedure, whereas an aorta–renal bypass is a major ther-
apeutic procedure; a CT scan is a minor diagnostic procedure, whereas a brain biopsy
is a major diagnostic procedure. In addition, we collected Centers for Medicare and
Medicaid Services (CMS) reports which gave future projections regarding national
health expenditure. For example, in 2009, these reports predicted the future hospital
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industry costs for 2010–2020, in 2010 they predicted costs for 2011–2021, and so
forth. We used the expenditure projections to generate the expected output. That
is, we took the distribution of outputs for 2009 and multiplied by the expenditure
growth projection for 2010 and we had the forecasted 2010 output.

To measure the effectiveness, we estimated the optimal input level (xE) given the
expected 2010 output with respect to the 2009 frontier; this defined an input truncation
level. Then we considered the observed outputs and inputs for 2010. We used all the
data from 2010 to construct a frontier, and the hospital-specific truncation, xE, was
estimated for the observations observed in both 2009 and 2010. We then had the
input-truncated production function and could calculate the effectiveness. We per-
formed the same analysis using the observed data for 2010 and the expected 2011
output to define the input truncation level for 2011. Thus, when the observed input
level was larger than the input truncation level (i.e., x> xE), we had overusage of input
and the effectiveness was less than 1; otherwise, when the observed number of dis-
charges was less than (or equal to) the forecasted efficient input level, we had effective
production and the effectiveness was greater than (or equal to) 1.

We did this analysis for two pairs of adjacent years, 2009–2010 and 2010–2011.
Note that we did not observe the same hospitals each year, owing to the 10% sampling
of the hospitals; thus, we assumed that the sample collected was representative and
thereby that the distribution of effectiveness characterized the general population
of hospitals. The summary statistics for the full sample and the hospitals that were
observed in adjacent years are reported in Tables 26.1 and 26.2, respectively.

The results for effectiveness and efficiency regarding 2009–2010 are shown in
Figures 26.3 and 26.4. Because the dataset was an unbalanced panel, there were

TABLE 26.1 Summary statistics for the full sample: number of hospitals and mean of
input and output data for years 2009, 2010, and 2011.

Year Number of hospitals

Sample mean

X1 Y1 Y2 Y3 Y4

2009 1050 7439 2538 5777 120 3311
2010 1051 7422 2566 6016 117 3328
2011 1049 7649 2567 6223 118 3417

TABLE 26.2 Summary statistics for hospitals observed in consecutive periods: number
of hospitals and input and output data for years 2010 and 2011.

Year Number of hospitals

Sample mean

X1 Y1 Y2 Y3 Y4

2010 279 7459 2524 5924 116 3539
2011 256 7524 2361 6040 114 3243
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279 observations for the adjacent years 2009–2010 and therefore we could only cal-
culate the effectiveness for those 279 observations. The expected growth rate of the
output is 4.6% for 2010, the average of the effectiveness is 52% weighted by the
observed inputs for 2010, and the average of the efficiency is 40%.
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Figure 26.3 Effectiveness distribution for 2010.
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Figure 26.4 Efficiency distribution for 2010.
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The results for effectiveness and efficiency for 2010–2011 are shown in
Figures 26.5 and 26.6, respectively. There were 256 observations present in the adja-
cent years 2010–2011. The expected growth rate of the output is 4.3% for 2011, the
average of the effectiveness is 50% weighted by the observed inputs for 2010, and the
average of the efficiency is 49%.
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Figure 26.5 Effectiveness distribution for 2011.
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Figure 26.6 Efficiency distribution for 2011.
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26.4 FORECASTING, BENCHMARKING, AND FRONTIER SHIFTING

26.4.1 Effect of Forecast on Effectiveness

The distributions of efficiency and effectiveness are similar for both 2010 and 2011.
The differences between the two metrics are due to the truncation of the production
possibility set at the efficient input level associated with the forecasted output level.
Thus, the difference between efficiency and effectiveness is driven by the forecast.
Therefore, we investigated how effectiveness changes as the forecast changes.

Each hospital is likely to grow at its own rate. However, if we calculate the product-
specific growth rates for each hospital between 2009 and 2010 and between 2010 and
2011 and use the actual growth rates as the forecasted growth rates, then each hospital
will be effective. Therefore, we performed a sensitivity analysis on the forecasted
growth rate in the CMS reports. The growth rates predicted in the CMS reports were
4.6% and 4.3% for 2010 and 2011, respectively. In Table 26.3, we start with a growth
rate of 10% and consider 10% increments up to 110% growth. In 2010, the effective-
ness is approximately 1 when the output growth rate is 110%. However, in 2011, even
with a forecasted growth rate of 110%, the average effectiveness is still just 86%.

26.4.2 Benchmarks

While estimating the effectiveness or efficiency, the linear programming calculation
also constructs benchmarks to measure effectiveness or efficiency. In particular, λrk is
the multiplier for the kth hospital to investigate the effectiveness of one specific hos-
pital r, that is, λrk implies the weight in effective benchmarks for the kth hospital. Note
that we use the term “effective benchmark” for the effectiveness measure and “effi-
cient benchmark” for the efficiency measure.

Given the expected growth rates of the output of 4.6% in 2009–2010 and 4.3% in
2010–2011, the results for the benchmarks are shown in Tables 26.4 and 26.5. These

TABLE 26.3 Effectiveness against output growth rate for 2010
and 2011.

Output growth rate Effectiveness in 2010 Effectiveness in 2011

0.1 0.55 0.51
0.2 0.61 0.53
0.3 0.66 0.54
0.4 0.72 0.57
0.5 0.78 0.61
0.6 0.84 0.64
0.7 0.90 0.68
0.8 0.94 0.73
0.9 0.97 0.79
1 0.98 0.84
1.1 1.00 0.86
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TABLE 26.5 Summary of effective/efficient benchmarks regarding 256 hospitals in 2010–2011.

Effectiveness in 2010–2011

Reference
hospital #

1 4 5 15 64 79 107 266 279 304 369 427 602 629 646 763 797 855 902 926 929 1045 1050

Sum of λrk 0.03 0.01 0.09 2.41 0.86 4.28 26.7 8.55 1.00 0.81 12.1 1.35 5.94 1.35 0.03 1.88 0.08 28.2 8.41 28.3 25.8 15.5 82.5
Count
(λrk > 0)

2 2 2 7 18 21 106 108 1 8 40 8 36 6 7 3 7 186 33 99 87 68 116

Efficiency in 2011

Reference
hospital #

15 64 79 107 266 279 304 369 427 602 629 763 797 855 902 926 929 983 1045

Sum of λrk 2.66 0.86 4.28 26.5 8.68 1.00 0.89 11.9 1.35 9.73 1.33 1.96 0.02 27.5 10.4 29.4 29.6 73.0 15.0
Count
(λrk > 0)

6 16 21 91 96 1 8 33 8 57 4 4 1 186 51 109 110 108 57

TABLE 26.4 Summary of effective/efficient benchmarks for 279 hospitals in 2009–2010.

Effectiveness in 2009–2010

Reference hospital # 1 3 5 6 11 107 139 277 450 471 582 606 625 638 739 848 937 943
Sum of λrk 12.4 0.00 4.11 0.68 1.51 4.01 0.27 0.51 126 0.46 6.49 2.90 28.8 27.7 15.8 1.42 33.9 11.7
Count (λrk > 0) 49 1 19 8 5 14 4 1 175 8 30 48 253 41 124 22 50 56

Efficiency in 2010

Reference hospital # 11 48 107 139 277 283 450 471 582 606 625 638 739 848 937 943
Sum of λrk 5.51 0.18 11.5 0.00 0.51 0.00 42.1 1.63 18.7 4.38 22.1 31.7 20.0 0.95 82.9 36.8
Count (λrk > 0) 19 1 38 1 1 0 65 17 80 43 255 45 119 27 118 121



tables show how frequently certain hospitals are identified as effective benchmarks
and as efficient benchmarks by calculating the sum of λrk and the count of λrk > 0.
For 2009–2010, there are 279 hospitals for which we can calculate effectiveness,
and the results show that Hospital # 625 is part of the benchmark for 253 hospitals,
or approximately 90% of the hospitals; when measuring efficiency, Hospital # 625 is
part of the benchmark for 255 hospitals. The five hospitals (i.e., Hospitals # 450, 625,
739, 937, and 943) that are most often included in the effectiveness benchmarks are
among the six hospitals (i.e., Hospitals # 450, 582, 625, 739, 937, and 943) that are
most often included in the efficiency benchmarks. For 2010–2011, there are 256 hos-
pitals for which we can calculate effectiveness, and the results show that Hospital #
855 is part of the benchmark for 186 hospitals, or approximately 72% of the hospitals;
when measuring efficiency, Hospital # 855 is still the hospital that is most commonly
part of the benchmarks. Again, for 2010–2011, the five hospitals (i.e., Hospitals # 107,
266, 855, 926, and 929) that are most often included in the effectiveness benchmarks
are among the six hospitals (i.e., Hospitals # 107, 266, 855, 926, 929, and 983) that are
most often included in the efficiency benchmarks. The hospitals that are part of the
benchmarks are different between 2010 and 2011 because there was significant tech-
nical progress.

26.4.3 Technical Progress

The Malmquist productivity index (MPI) measures productivity change and its com-
ponents. Färe et al. [18] proposed nonparametric methods to estimate the MPI. Esti-
mating the MPI between period t and period t + 1 requires an additional distance
function to measure the cross-period distance function of an observation in period
t + 1 relative to the reference technology in period t as in the following equation:

Dt
I xt + 1, yt + 1 = inf θ θxt + 1,yt + 1 T

t
(26.6)

where T
t
is the PPS estimated for period t. Thus, the MPI can be estimated by follow-

ing equation:
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Dt + 1
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×
Dt

I x
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1 2

= Efficiency change EC ×Frontier shift FS

(26.7)

A typical MPI can decomposed into an efficiency change and a frontier shift. The
EC describes the change in technical efficiency, while FS characterizes the change in
technology, that is, the shift of the production frontier. The MPI, EC, and FS are each
interpreted as achieving progress, no change, and regress when the values of their
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estimates are greater than 1, equal to 1, and less than 1, respectively. Note, however,
that the frontier shift is also influenced by changes in demand levels. In periods in
which forecasted growth is low and therefore relatively few resources are acquired,
if the demands incurred are high, this will cause an increase in productivity levels,
making the production function shift up. However, in periods in which forecasted
growth is high relative to observed growth, then relatively many resources are
acquired and the demand incurred is lower than expected, causing a decrease in pro-
ductivity levels, making the production function shift down. Therefore hospitals,
because of the relatively high uncertainty between forecasted demand and actual
demand, illustrate how the frontier shift component of the Malmquist productivity
index is also affected by demand. Often the frontier shift is interpreted as technical
change, implying that the industry has developed new methods of production; how-
ever, this interpretation focuses on the supply side without consideration of the fact
that products for which there is no demand do not get produced.

The results for the MPI and its decomposition are shown in Table 26.6. The MPI is
close to 1 for both 2009–2010 and 2010–2011. For 2009–2010, the standard decom-
position shows that the frontier shifted out by 23%, and the average technical effi-
ciency dropped by 16%. However, for 2010–2011, the analysis indicates that the
frontier contracted by 26%, and the average technical efficiency increased by 39%.

These large fluctuations in both the frontier shift and the efficiency change are hard
to justify based solely on operational changes during this three-year period. We
believe that demand fluctuations and random noise play an important role in these
results. Specifically, the DEA estimator has no model of noise included. Therefore,
a random shock or measurement error that causes a single observation or set of obser-
vations to be significantly above the true production function will cause a DEA-type
estimator to overestimate the production frontier for that year. If those random shocks
or measurement errors do not occur in prior or later periods, a sudden expansion fol-
lowed by a sudden contraction of the frontier may be estimated and observed, when
the true frontier has not changed at all. However, if this does occur, but the majority of
the data still remain clustered around the production function, then we would expect to
see results similar to those in Table 26.6.

Another alternative explanation is that demand in 2010 for healthcare services pro-
vided in hospitals could have increased significantly. These changes would typically
be associated with population dynamics or policy changes. However, while the num-
ber of senior citizens and Medicare recipients in the US is rising with the retirement of
the baby boomer generation followingWorldWar II, leading to an increase in demand
in 2010, this would not explain the decrease then observed in 2011.

TABLE 26.6 Malmquist productivity index and its decomposition
from 2009 to 2011.

MPI EC FS

2009–2010 1.01 0.84 1.23
2010–2011 0.97 1.39 0.74
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26.5 CONCLUSIONS

The efficient operation of hospitals is critical to controlling the costs associated with
healthcare in the US. An extensive literature exists on measuring efficiency from the
inputs consumed and outputs produced by a hospital. For the purposes of evaluating
operational performance, this sort of efficiency measure combines the effects of fore-
casting and operational performance. To measure the performance of production units
relative to forecasted demand, Lee and Johnson [11] introduced the concept of effec-
tiveness and the truncated production function. We have applied these concepts to
investigate the performance the US hospital industry.

We find that hospitals measured in terms of efficiency or effectiveness have dis-
tributions that are skewed towards having mostly inefficient and ineffective hospitals,
with a small tail performing relatively well. Having low efficiency and effectiveness
scores indicates that it is not primarily differences between the forecasted and
observed demand that are driving the high inefficiency-level results; instead, it
appears that operational inefficiency is more systematic. This is in part due to the ran-
dom nature of the demand for hospital services that requires resources to be available
at all times for emergency situations. However, the classical assumption in the sto-
chastic frontier literature is that the inefficiency distribution has a mode of zero
and that the probability decreases monotonically at higher inefficiency levels.
This sort of assumption is typically motivated by the efficient market hypothesis
[19, 20]. However, it is unlikely that the markets in which hospitals compete are effi-
cient, because of the mixture of public, private, and not-for-profit hospitals and the
government programs that subsidize various hospitals or services. Thus, these results
add to the growing evidence that efficiency analyses which allow for the possibility
that the inefficiency distribution may have a mode other than zero are important lines
of research. Currently, the most popular efficiency models in this group are models
which assume a two-parameter distribution for inefficiency such as the gamma dis-
tribution [21, 22].

Using an envelopment estimator such as DEA, we find that the average efficiency
and effectiveness levels are quite low. This may be in part because inefficiency in our
model captures noise, inefficiency, and any other unmodeled variables. The chal-
lenges of using a deterministic estimator are particularly apparent in the Malmquist
productivity analysis. Such wide variations in the frontier shifts and technical effi-
ciency change would not seem possible to justify by technical progress or changes
in the operational efficiency of hospitals. Rather, we believe that the deterministic
model and fluctuations in demand are the primary contributors to these large varia-
tions. Therefore, we propose to use a generalization of DEA to the stochastic setting
that models noise separately from inefficiency. Specifically, the stochastic nonpara-
metric envelopment of data (StoNED) estimator [23–25] is one common method to
incorporate noise into the estimation of production frontiers.

The HCUP data provide extremely detailed information on the procedures and ser-
vices that hospitals provide to customers. However, information about the resources
used by hospitals is lacking. In this research, we have used the number of discharges as
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a proxy for the inputs consumed by a hospital. Finding other data sources with better
information regarding the resources used by hospitals would allow more detailed
modeling of resource consumption and could potentially lead to better estimates of
efficiency and effectiveness.

In future research, we plan to investigate alternative methods for forecasting. In the
work presented in this chapter, we used the CMS National Health Expenditure Pro-
jections reports; however, the hospitals in our sample may be expected to grow at dif-
ferent rates and therefore we should use alternative forecasts to CMS. These rates
would be driven by local population growth and aging.
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27.1 INTRODUCTION

Forecasting methodologies for efficiency are still rarely applied in predicting produc-
tivity and efficiency in real-world applications, even though an analytic framework
has already been proposed for several business functions, such as production, market-
ing, research and development, and finance. Existing forecasting methodologies have
mostly focused on predicting the output from the input. However, when the forecast-
ing methodology is applied to relative efficiency, the selection of data becomes more
difficult because previous approaches have used absolute historical data or efficiency
scores. Therefore, the conventional forecasting approaches cannot be used for relative
concepts, such as time series of efficiency.

1 This chapter is extended from the paper “Efficiency predictions by fuzzy piecewise auto-regression,” by
Bo Hsiao, Ching-Chin Chern, Ming-Miin Yu, and Gwo-Hsiung Tzeng, which was published in Journal of
International of Management Science (Vol. 17, 2010, pp. 197–220). This chapter is authorized by the same
journal.
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Efficiency analysis consists of two competing paradigms. The first paradigm uses
mathematical programming techniques, such as data envelopment analysis (DEA),
which is popular in the operations research field. The second paradigm employs a
regression approach, such as stochastic frontier analysis (SFA), which is widely
accepted in the econometrics field. These methodologies have specific characteristics
and limitations. On the one hand, DEA does not require explicit assumptions regard-
ing the functional structure of the stochastic frontier. On the other hand, SFA imposes
an explicit and overly restrictive frontier function upon models. In other words, DEA
is based on a nonparametric approach, whereas SFA is based on a parametric one.
Therefore, DEA cannot provide mechanisms for prediction, whereas parametric
and frontier functions cannot easily be defined in SFA.

A new hybrid approach that comprises a catching-up efficiency index (CIE) and
fuzzy piecewise autoregression analysis will be presented in this chapter to illustrate
the prediction of efficiency and to show how it reinforces the prediction ability of
DEA. The CIE is a measure of technical efficiency change during the period analyzed
(the catching-up effect, or movement toward the frontier). This measure ignores the
input-versus-output relationship and combines the inputs and outputs into an index.
Developed by Yu et al. [1,2], fuzzy piecewise regression analysis provides informa-
tion that can be used for grasping the dynamics of variable data and forecasting the
efficiency when two regression estimation models are used simultaneously. A two-
stage process is then used to predict efficiency. The CIE is calculated by efficiency
evaluation in the first stage, whereas validation and/or prediction is performed in
the second stage. DEA techniques are used in the first stage to evaluate efficiency
scores for a number of periods and to transfer those efficiency scores to CIE indices.
In the second stage, fuzzy piecewise autopiecewise regression is performed to calcu-
late the CIE index data and forecast the relevant values, which fall into two ranges.
The first range is provided by the possibility estimation model, which suggests that the
predicted values must be included in the regression range. The second range is pro-
vided by the necessity estimation model, which suggests that the predicted values
must be excluded from the regression range.

Additional details of the implementation of these concepts are explained in the
following sections. Section 27.2 reviews the related literature on efficiency
prediction. Section 27.3 describes the problem and presents the theoretical frame-
work. Section 27.4 presents a case based on data from 17 Taiwanese train firms.
Finally, Section 27.5 offers our conclusions and suggestions for readers.

27.2 EFFICIENCY PREDICTION

The DEA approach is suitable for analyzing institutional data, such as those from gov-
ernments [3,4], schools [5,6], hospitals [7,8], and banks [9,10]. Although suitable for
evaluating efficiency, this approach is inapplicable for prediction and forecasting.
Traditional DEA studies focus on “one-shot state” efficiency analyses. A few
approaches (e.g., SFA) predict efficiency either by modeling the production
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relationship or by using soft computing techniques. However, modeling the produc-
tion/frontier function or framing the structure of an analyzed environment also has
many limitations and is difficult to achieve.

Generally, econometricians tend to favor regression-based or other sophisticated
approaches, whereas management scientists favor DEA approaches for evaluating
performance issues [11–13]. Thanassoulis [13] found that DEA was suitable for
regression analysis. By contrast, Schmidt [12] proposed that DEA lacked a statistical
basis. The relevance and credibility of these conflicting results cannot easily be estab-
lished, and the fundamental difference between regression analysis and DEA is
unclear. To understand the characteristics of DEA, its two major advantages must
be understood. First, DEA is based on ratio concepts instead of absolute input-
versus-output relationships, and second, the efficiency score is relative to the frontier
instead of the scores [14].

Ratios provide scale invariance characteristics such it is possible to ignore the
influence of scale on the performance results. Therefore, these characteristics can
be extrapolated in an evaluation. Despite some limitations, many techniques, such
as the use of key business performance measurements, apply ratio analysis to simul-
taneously evaluate income and balance sheet financial statements. Each projected
metric in the analysis has its respective goal value that is tied to the strategic vision
of the business. For example, financial ratio analysis is used for performance evalu-
ation [15,16] and can only measure one input and output simultaneously. However,
this analysis faces several challenges, such as a lack of accredited financial ratio mod-
els and weight selection. Therefore, ratio analysis rules must be constructed using
complicated computations with higher-order equations to achieve a more flexible
analysis. DEA can work with simple rules (i.e., input/output) and allows the evalua-
tion of multiple outputs and inputs [14,15]. Ratio analysis requires complex data for
evaluation, whereas DEA does not require a large sample size [14,17].

Ratio analysis refocuses resources toward “the goal” (i.e., the efficiency should be
1) and does not reflect actual scenarios (i.e., compared with other decision-making
units, or DMUs). DEA is a relative concept in that the efficiency of a specific
DMU is dependent on best practices or frontiers and not on itself. Therefore, conven-
tional evaluation techniques cannot fully fit requirements that originate from the
inherent characteristics of DEA. Under such conditions, if conventional approaches
must be implemented, they must combine many relationship constraints to satisfy
these requirements.

DEA can deal simultaneously with ratio and ordinal-scale data, but regression anal-
ysis is difficult to implement. Moreover, DEA approaches lack any requirements for
assumptions about any pre-specified functional form of the production function and
tend to avoid the problem of parameter measures [14].

However, these advantages of DEA also lead to disadvantages, such as a lack of
frontier functions. The absence of requirements for assumptions about any prespeci-
fied functional form of the production/frontier function implies that DEA is incapable
of prediction. This limitation is apparent in other mathematical models, such as in
regression analysis and prediction approaches. Models must be able to estimate
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efficiency predictions over time. The efficiency predictions of DEA do not have such
a capability because that technique cannot simultaneously handle both negative values
(e.g., data representing decay) in the dataset and a frontier shift over time [17].

Some studies have enhanced the prediction efficiency of DEA by combining this
method with other prediction techniques. Productivity change, which is explained in
terms of technical change, has recently become widely accepted in the field of pre-
dicting efficiency change. Such change can be simplified into an uncomplicated fore-
casting functionality (frontier shift) to some degree. The Malmquist index, which was
introduced by Caves et al. [15] to predict productivity change, has an important role in
supporting such discussion. Färe et al. [18] decomposed productivity change into effi-
ciency and technical changes, as well as constructing a nonparametric mathematical
programming model to provide a solution. Caves et al. [15] and Färe et al. [18]
showed that under certain conditions, the Malmquist index approximates the Törnq-
vist [19] and Fisher [15,20] indices, which are generally accurate and easily computed
but yield biased estimates in the presence of inefficiency [21,22]. The Malmquist
index may be incapable of providing a full picture, however, as this measure only con-
siders the productivity change between two periods. However, this index can be
extended to multiple periods by multiplication. The Malmquist index, by its nature,
is based on only two adjacent periods andmay ignore performance over more than two
previous periods.

To restructure a strategy of the Japanese Petroleum Company, Sueyoshi [23] pro-
posed a stochastic DEA that was formulated by use of chance constraint programming
and estimated via a program evaluation and review technique or the critical path
method. Sueyoshi used stochastic efficiency (aspiration level) and conventional effi-
ciency (risk criterion) to decide future efficiency. However, he proposed several
assumptions about the stochastic variables of the output for computational conven-
ience and assumed a normal distribution for a stochastic variable when conducting
a statistical test. Stochastic DEA also predicts efficiency according to data from only
one period. Therefore, the prediction capacity of this technique depends heavily on its
required assumptions (i.e., the standard deviation of the error terms is equal to zero).

By contrast, Kao and Liu [24] introduced fuzzy concepts to forecast efficiency
based on uncertain data that were represented by a range instead of a single value.
The prediction results were presented as a range. Kao and Liu [24] adapted fuzzy con-
cepts for use in DEA, relaxed the assumptions of Sueyoshi [23] about the error term
variances of output variables (equal to zero), and assumed that the output probability
had a beta distribution. Similarly to that of Sueyoshi [23], the model of Kao and Liu
[24] considers only a single state and does not base its predictions on the past perfor-
mance of DMU.

Yeh et al. [25] proposed a novel model for integrating rough set theory (RST) and
support vector machines (SVM) techniques to enhance the accuracy of prediction of
business failure. In their model, DEA was employed to evaluate input/output effi-
ciency, remove the redundant attributes in an RST approach, and reduce the number
of independent variables without losing important information. They later used such
information as a preprocessor to improve the prediction accuracy through SVM.
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Wu [26] integrated DEA and neural networks (NN) to examine and forecast the
relative efficiency of Canadian bank branches. Tsai et al. [27] constructed a consumer
loan default prediction model by conducting DEA–discriminate analysis (DA) and
using NN. However, Wu and Tsai et al.’s models require a longer computing time
and a larger amount of computing resources. These models classify data into two pat-
terns, namely, good examples (positive data) and failed examples (negative data), dur-
ing the training process. The regression results in these methods can be determined
either by structure error minimization [25] or empirical error minimization [26,27].
However, if a specific DMU greatly outperforms its previous performance, that
DMU may be viewed as an outlier and its performance will be ignored in these
two models.

Edirisinghe and Zhang [22] proposed a complicated multistep heuristic algorithm
with random sampling and local search that automatically selected a combination of
inputs and outputs, in which the emerging DEA measure of financial strength is max-
imally correlated with stock performance. The algorithm generated a relative financial
strength indicator that was demonstrated to be predictive of stock returns. As its major
contribution, this method demonstrates flexibility and automation in the selection of
input and output parameters to maximize the predictive ability of the emerging DEA
estimation of stock performance. Although this approach uncovers the “black box” of
the forecasting mechanism (i.e., NN), this approach cannot easily determine a “suit-
able” solution beforehand.

Efficiency evaluation through DEA has been widely applied in numerous empir-
ical cases. However, this technique does not determine the extent to which asymmetric
information is still relevant in efficiency prediction, which has been rarely questioned
empirically. Previous approaches to efficiency prediction have not considered the
appropriate forecasting method and prediction variables and have consequently suf-
fered from the influences of variable variance [23], computing resources/efficiency
(e.g., [22,25]), and data challenges (e.g., extension of the Malmquist index to the fore-
casting problem). The present chapter demonstrates a model that assures prediction
efficiency using fuzzy piecewise autoregression and the catching-up index of Yu
et al. [2,28].

27.3 MODELING AND FORMULATION

27.3.1 Notation

Before describing the notation, we describe the concepts of the methodology as fol-
lows. First, any measurement technique based on DEA can evaluate the efficiency
performance of each DMU in each period. Therefore, the efficiency score of each
DMU in each period is computed. To calculate the improvement or decay of the effi-
ciency score, we determine the CIE for two adjacent periods. If the CIE of a specific
DMU is larger than one, this CIE represents an improvement in the performance effi-
ciency of that DMU from the base period to the calculation period. Otherwise, this
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CIE represents decay in performance efficiency. Afterwards, the CIE of each DMU
for these periods is forecasted according to the previous CIE efficiency performance.
These CIE datasets are used as the input to a fuzzy piecewise autoregression. This
autoregression identifies two ranges for future forecasts using two specific regression
models for each DMU. The possibility estimation model suggests that the predicted
values must be included in the regression range. The necessity estimation model sug-
gests that the predicted values must be excluded from the regression range. After cal-
culating the two ranges from these two regression models, we can obtain four CIE
coefficients within the two ranges for each DMU. Using these coefficients allows
us to forecast the future efficiency performance for each DMU.

Following the above methods, the approach illustrated here can be implemented in
four phases. In the first phase, DEA is used to evaluate the efficiency score (e.g., the
amount of deposits (input) that need to be invested to produce a given output) of each
DMU in each period. In the second phase, the efficiency score of each DMU is applied
to calculate the CIE. In the third phase, two regression models are built using fuzzy
piecewise autoregression. In the fourth phase, the calculations and forecasting are
validated and subsequently applied in the regression model obtained in the third
phase. Table 27.1 shows the notation for the proposed model.

This chapter proposes a forecasting method that uses fuzzy piecewise autoregres-
sion and the CIE to predict efficiency and aid in strategic decision making. This
section introduces the modeling concepts that are employed for efficiency predic-
tion/forecasting, including those that focus on fuzzy piecewise regression and
the CIE.

27.3.2 Phase I: Efficiency Evaluation

Based on the notation in Section 27.3.1, we assume T periods and NDMUs, with each

DMU (DMUj, where j RN
+ ) having an input X

t
aj (a Rna

+ ) in period t (t RT
+ ) and an

output Y t
bj (b Rnb

+ ) in period t. The technology can then be described generally by the
output sets as shown in the model (27.1):

P t x = X t ,Y t
N

j= 1

λ t
j Y t

bj ≥ y
t
br ,b= 1,…,nb;r = 1,…,N

N

j= 1

λ t
j X t

aj ≤ x
t
ar ,a= 1,…,na;r = 1,…,N

λ t
j ≥ 0, j= 1,…,N;t = 1,…,T (27.1)

where (X t
ar ,Y

t
br ) represents DMUr, the ath input, and the bth output in the tth period.

λ t
j is an intensity variable that shrinks or expands the individually observed activities
of DMUk and constructs the convex combinations of the observed input and output in
the tth period. The CCR measure is depicted in the model (27.2):
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N
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λ t
j Y t
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t
bk ,b= 1,…,nb; k = 1,…,N

N

j= 1

λ t
j X t

aj ≤ ρ
t
k x t

ak ,a = 1,…,na; k = 1,…,N

λ t
j ≥ 0, j= 1,…,N; t = 1,…,T

(27.2)

TABLE 27.1 Description of notation.

Variable/notation Definition/item

N Number of DMUs
T Number of periods
P Number of change points
na Number of input variables
nb Number of output variables.

X t
aj

Vector of ath specific input variables of the jth DMU for the tth period

Y t
bj

bth specific output variable of the jth DMU for the tth period

j ( j= 1,…,N) Indices for DMUs
k (k = 1,…,N) Indices for DMUs
t (t = 1,…,T) Indices for periods
a (a= 1,…,na) Indices for input variables
b (b= 1,…,nb) Indices for output variables
p (p= 1,…,P) Indices for change points

p t
j

Efficiency score of the jth DMU for the tth period

λ t
j

Vector for projecting DMUj for the tth period

δt, t−1j
Catching-up index of the jth DMU for the tth and t−1 th periods

ρUj Upper bound of the possibility regression prediction of the CIE values
of the jth DMU

ρLj Lower bound of the possibility regression prediction of the CIE values
of the jth DMU

πUj Upper bound of the necessity regression prediction of the CIE values of
the jth DMU

πLj Lower bound of the necessity regression prediction of the CIE values of
the jth DMU

ξ U
j, t

Upper bound of the possibility regression prediction of the efficiency
value of the jth DMU for the tth period

ξ L
j, t

Lower bound of the possibility regression prediction of the efficiency
value of the jth DMU for the tth period

ψ U
j, t

Upper bound of the necessity regression prediction of the efficiency
value of the jth DMU for the tth period

ψ L
j, t

Lower bound of the necessity regression prediction of the efficiency
value of the jth DMU for the tth period
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27.3.3 Phase II: CIE

After Phase I, we can calculate the periods from 1 to t + 1. We use two periods here to
demonstrate the procedure. Two periods, t and t + 1, are defined after Phase I to meas-
ure the productivity change of DMUk. Based on the model (27.2), the efficiency scores
of DMUk for the two periods, ρtk and ρ

t + 1
k , can be obtained. We then calculate the CIE

between periods t and t + 1 as shown in (27.3). The CIE is the ratio of the efficiency
scores for periods t and t + 1, which measures the change in technical efficiency for the
periods analyzed (the catching-up effect or movement toward the frontier). CIE > 1
represents efficiency improvement, whereas CIE < 1 represents efficiency regression:

δt, t + 1k =
ρ t + 1
k

ρ t
k

(27.3)

After Phase II, we obtain a number T of CIE data items. A number T −1 of these
data items form the independent variables of the fuzzy piecewise regression, and the
Tth data item forms the dependent variable.

27.3.4 Phase III: Fuzzy Piecewise Regression

Fuzzy regression analysis can be interpreted as an interval estimation of dependent vari-
ables [1,29,30]. Generally, an interval that covers all training data is calculated, and a
membership function is constructed based on this interval. The effect of a quadratic func-
tion is the same as that of a linear one, and we adopt the linear form instead of quadratic
programming (QP) in Phase III for the purposes of illustration [31]. After Phase II, let

δt−1, tk represent the dependent variables and let δt−2, t−1k ,δt−3, t−2k ,…,δ1 2
k represent

the independent variables of a forecasting function for DMUk. From the dataset for

period T, we obtain one dependent variable δt−1, tk and T −2 independent variables.
The interval linear regression model for DMUk with an output (dependent variables)
that is calculated from all data (independent variables) is represented as follows:

δt−1, tk =A0 +A1δ
t−2, t−1
k + +AT −3δ

1 2
k (27.4)

where δt−1, tk is DMUk, which is the predicted interval corresponding to the input

vector (δt−2, t−1k ,δt−3, t−2k ,…,δ1 2
k ), and t is the index for time (t = 1,…,T).

In short, (δt−2, t−1k ,δt−3, t−2k ,…,δ1 2
k ) is a one-dimensional input vector for DMUk,

which represents the CIE for two adjacent periods. An interval that is defined by
an ordered pair in brackets is represented as follows:

A= aL,aR = a aL < a< aR (27.5)

where aL denotes the left limit and aR denotes the right limit of A.
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Interval A is likewise denoted by its center and width (or radius) as shown below:

A = ac,aw = a ac−aw ≤ a ≤ ac + aw (27.6)

where ac denotes the center and aw denotes the width (where, for example, it may have
a radius of aw ≥ 0, similar to half the width of A).

From (27.5) and (27.6), the center and width of interval A can be calculated as in
(27.7) and (27.8) [31]:

ac =
aR + aL

2
(27.7)

aw =
aR−aL

2
(27.8)

The linear model of (27.4) is represented in (27.9)–(27.11):

δt−1, tk =Ao +A1δ
t−2, t−1
k + +AT −2δ

1 2
k

= a0c,k,a0w,k + a1c,k,a1w,k δt−2, t−1k + + aT −2c k,aT −2w,k δ1 2
k

= Ykc,Ykw

(27.9)

Ykc = a0c,k + a1c,kδ
t−2, t−1
k + + aT −2c,kδ

1 2
k (27.10)

Ykw = a0w,k + a1w,k δ
t−2, t−1
k + + aT −2w,k δ

1 2
k (27.11)

where Ykc represents the center and Ykw represents the width of the predicted interval

δt−1, tk of DMUk.
The two estimation models (i.e., the possibility and necessity estimation models)

are considered for the input–output data δt−2, t−1k ,δt−3, t−2k ,…,δ1 2
k ;δt−1, tk . First, the

possibility estimation model can be represented as in (27.12):

δt−1, tk

∗
=A∗

0 +A
∗
1 δt−2, t−1k

∗
+ +A∗

T −2 δ1 2
k

∗

= a∗0c,k,a
∗
0w,k + a∗1c,k,a

∗
1w,k δt−2, t−1k + + a∗T −2c,k,a

∗
T −2w,k δ1 2

k

= Y∗
kc,Y

∗
kw

(27.12)

which satisfies the conditions of the following model:

δt−1, tk δt−1, tk

∗
, t = 1,…,T (27.13)
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where A∗
t is the interval of the possibility estimation model and δt−1, tk is the observed

interval for DMUk.

The interval δt−1, tk

∗
estimated by the possibility model always includes the

observed interval δt−1 t
k . The width of the predicted interval Y∗

kw in the possibility
regression analysis is minimized and includes all observed data.

Second, the necessity estimation model can be represented as in (27.14):

δt−1, tk ∗ =A0∗ +A1∗ δt−2, t−1k ∗ + +AT −2∗ δ1 2
k ∗

= a0c∗,k,a0w∗,k + a1c∗,k,a1w∗,k δt−2, t−1k + + aT −2c∗,k,aT −2w∗,k δ1 2
k

= Ykc∗,Ykw∗
(27.14)

which satisfies the conditions of the following model:

δt−1, tk ∗ δt−1, tk , t = 1,…,T (27.15)

At ∗ is the interval of the necessity model and δt−1, tk is the observed interval for

DMUk. The interval δt−1, tk ∗ estimated by the necessity model must include the

observed interval δt−1 t
k . The width of the predicted interval Ykw∗ is maximized in

the necessity regression analysis and includes all observed data. The relation for
DMUk can be expressed as in the model (27.16):

δt−1, tk ∗ δt−1, tk δt−1, tk

∗
(27.16)

The two regressions are also depicted in Figure 27.1.
Based on the discussion, the possibility estimation model can be formulated as the

model (27.17):

(δ
k
t–1,t)*

δ
k
t–1,t

(δ
k
t–1,t)*

Figure 27.1 Relationships between possibility and necessity models.
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min
N

k = 1

a∗0w,k + a
∗
1w,k δ

t−2, t−1
k + + a∗T −2w,k δ

1 2
k

s t

a∗0c,k +
t−2

i= 0

a∗ic,kδ
t− i−2, t− i−1
k − a∗0w,k +

t−2

i= 0

a∗iw,kδ
t− i−2, t− i−1
k ≤ δt−1, tk −ε, t = 1 2,…,T ;

a∗0c,k +
t−2

i= 0

a∗ic,kδ
t− i−2, t− i−1
k + a∗0w,k +

t−2

i= 0

a∗ic,kδ
t− i−2, t− i−1
k ≥ δt−1, tk + ε, t = 1 2,…,T ;

a∗iw,k ≥ 0; i= 0 1,…, t−2; k = 1,…,N (27.17)

where ε is represented by a small non-Archimedean quantity.
The necessity regression analysis introduced in (27.14) can be rewritten as the

model (27.18):

min
N

k = 1

a0w∗,k + a1w∗,k δ
t−2, t−1
k + + aT −2w∗,k δ

1 2
k

s t

a0c∗,k +
t−2

i = 0

aic∗,kδ
t− i−2, t− i−1
k + a0w,k∗ +

t−2

i = 0

aiw∗,kδ
t− i−2, t− i−1
k ≤ δt−1, tk −ε, t = 1 2,…,T ;

a0c∗,k +
t−2

i = 0

aic∗,kδ
t− i−2, t− i−1
k − a0w∗,k +

t−2

i= 0

aic∗,kδ
t− i−2, t− i−1
k ≥ δt−1, tk + ε, t = 1 2,…,T ;

aiw∗,k ≥ 0; i = 0 1,…, t−2; k = 1,…,N (27.18)

The linear programming formulation of the necessity analysis may be infeasible
because of large fluctuations in the data. The fuzzy regression is then extended to fuzzy
piecewise regression and adapted to our framework. Fuzzy piecewise regression anal-
ysis was developed and validated by Yu et al. [1,28]. We follow the description and
notation in Section 27.3.1. A linear programming formulation is used to determine
thenecessity area.Thepiecewise linear intervalmodel is presented in this subsection for
linear piecewise regression, which is commonly observed in forecasting, as shown in
(27.19). The possibility of the piecewise linear model is presented in (27.20):

δt−1, t−2k ∗ = h δt−2, t−1k +
P−1

p = 1

B∗
p

2
δt−2−p, t−1−pk −Pp + δt−2−p, t−1−pk −Pp

(27.19)

δt−1, t−2k

∗
= h δt−2, t−1k +

P−1

p= 1

Bp∗
2

δt−2−p, t−1−pk −Pp + δt−2−p, t−1−pk −Pp

(27.20)

429EFFICIENCY PREDICTION USING FUZZY PIECEWISE AUTOREGRESSION



where h δt−2, t−1k = a0∗ + a1∗δ
t−2, t−1
k , and B∗

p is the interval of the necessity model of

Bp. Bp = Bpc,Bpw represents the center and radius of Bp.
If Pp is a change point, then

δt−2−p, t−1−pk −Pp + δt−2−p, t−1−pk −Pp

2
=

δt−2−p, t−1−pk −Pp, if δ
t−2−p, t−1−p
k ≥Pp

0 , if δt−2−p, t−1−pk <Pp

(27.21)

where Pp = P1,…,Pp,…,PN−2 (p RN−2
+ ) are the values of variables δt−2−p, t−1−pk

and are subject to an ordering constraint P1 <P2 <…<Pp (p ≤N−2).
The necessity and possibility of the piecewise expression for the data are repre-

sented in (27.22) and (27.23):

P−1

p= 1

Bp∗
2

δt−2−p, t−1−pk −Pp + δt−2−p, t−1−pk −Pp

=
P−1

p= 1

Bpc∗
2

δt−2−p, t−1−pk −Pp + δt−2−p, t−1−pk −Pp

+
P−1

p= 1

Bpw∗
2

δt−2−p, t−1−pk −Pp + δt−2−p, t−1−pk −Pp

(27.22)

P−1

p= 1

B∗
p

2
δt−2−p, t−1−pk −Pp + δt−2−p, t−1−pk −Pp

=
P−1

p= 1

B∗
pc

2
δt−2−p, t−1−pk −Pp + δt−2−p, t−1−pk −Pp

+
P−1

p= 1

B∗
pw

2
δt−2−p, t−1−pk −Pp + δt−2−p, t−1−pk −Pp

(27.23)

Following the previous discussion, the fuzzy piecewise QP formula for analysis is
represented by the model (27.24):

min
N

K = 1

a0w∗ + a1w∗δt−2, t−1k +
P−1

p= 1

Bpw∗
δt−2−p, t−1−pk −Pp + δt−2−p, t−1−pk −Pp

2

2
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subject to
Possibility constraints

a∗0c + a
∗
1cδ

t−2, t−1
k +

P−1

p= 1

B∗
pc

2
δt−2−p, t−1−pk −Pp + δt−2−p, t−1−pk −Pp

− a∗0w + a∗1wδ
t−2, t−1
k +

P−1

p= 1

B∗
pw

2
δt−2−p, t−1−pk −Pp + δt−2−p, t−1−pk −Pp ≤ δt−1, t−2k + ε,

a∗0c + a
∗
1cδ

t−2, t−1
k +

P−1

p= 1

B∗
pc

2
δt−2−p, t−1−pk −Pp + δt−2−p, t−1−pk −Pp

+ a∗0w + a∗1wδ
t−2, t−1
k +

P−1

p= 1

B∗
pw

2
δt−2−p, t−1−pk −Pp + δt−2−p, t−1−pk −Pp ≥ δt−1, t−2k −ε,

P ≤N−2, k = 1,…,N

Necessity constraints

a0c∗ + a1c∗δ
t−2, t−1
k +

P−1

p = 1

Bpc∗
2

δt−2−p, t−1−pk −Pp + δt−2−p, t−1−pk −Pp

− a0w∗ + a1w∗δ
t−2, t−1
k +

P−1

p= 1

Bpw∗
2

δt−2−p, t−1−pk −Pp + δt−2−p, t−1−pk −Pp ≥ δt−1, tk + ε,

a0c∗ + a1c∗δ
t−2, t−1
k +

P−1

p = 1

Bpc∗
2

δt−2−p, t−1−pk −Pp + δt−2−p, t−1−pk −Pp

+ a0w∗ + a1w∗δ
t−2, t−1
k +

P−1

p = 1

Bpw∗
2

δt−2−p, t−1−pk −Pp + δt−2−p, t−1−pk −Pp ≤ δt−1, tk −ε

P ≤N−2, k = 1,…,N (27.24)

27.3.5 Phase IV: Validating and Forecasting

We then calculate a∗0c, a
∗
1c, B

∗
pc, and B∗

pw (p RP
+ , P ≤N−1). By substitution using

(27.25) and (27.26), we determine two values for DMUk, namely, the upper bound

ρUk (PRY) and the lower bound ρLk (PLY). Any δt−1, t−2k will depend on ρUk ,ρ
L
k :
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ρUk = a∗0c + a
∗
1cδ

t−2, t−1
k +

P−1

p= 1

B∗
pcδ

t−2−p, t−1−p
k + a∗0w + a∗1wδ

t−2, t−1
k +

P−1

p = 1

B∗
pwδ

t−2−p, t−1−p
k

(27.25)

ρLk = a∗0c + a
∗
1cδ

t−2, t−1
k +

P−1

p = 1

B∗
pcδ

t−2−p, t−1−p
k − a∗0w + a∗1wδ

t−2, t−1
k +

P−1

p = 1

B∗
pwδ

t−2−p, t−1−p
k

(27.26)

Similarly, we calculate a0c∗, a1c∗, Bpc∗, and Bpw∗ (p RP
+ , P ≤N−1). By substitution

using (27.27) and (27.28), we determine two values for DMUk, namely, the upper
bound πUk (NRY) and the other lower bound πL

k (NLY). For any

δt−1, t−2k , δt−1, t−2k πU
k ,π

L
k :

πUk = a0c∗ + a1c∗δ
t−2, t−1
k +

P−1

p= 1

Bpc∗δ
t−2−p, t−1−p
k − a0w∗ + a1w∗δ

t−2, t−1
k +

P−1

p= 1

Bpw∗δ
t−2−p, t−1−p
k

(27.27)

πLk = a0c∗ + a1c∗δ
t−2, t−1
k +

P−1

p= 1

Bpc∗δ
t−2−p, t−1−p
k + a0w∗ + a1w∗δ

t−2, t−1
k +

P−1

p= 1

Bpw∗δ
t−2−p, t−1−p
k

(27.28)

For any DMUk, we check if the four values satisfy ρUk ≥ πU
k ≥ πL

k ≥ ρ
L
k . If satisfied,

the efficiency values for period p−1, (p t−1
k ) to ρUk , π

U
k , π

L
k , and ρLk , are multiplied to

obtain the four efficiency values (ξ U
k, t , ψ

U
k, t , ψ

L
k, t , and ξ L

k, t ) for the tth period. These
values are represented as in (27.29)–(27.32):

ξ U
k, t = p

t−1
k × ρUk (27.29)

ξ L
k, t = p

t−1
k × ρLk (27.30)

ψ U
k, t = p

t−1
k × πUk (27.31)

ψ L
k, t = p

t−1
k × πLk (27.32)

After obtaining the four values, we check whether p t
k ξ U

k, t ,ψ
U
k, t (marked with

“+” in the results to represent efficiency improvement) or p t
k ψ L

k, t ,ξ
L
k, t (marked

with “−” to represent efficiency decay), and whether pn ψ U
k, t ,ψ

L
k, t . Other cases are

marked “F” to represent failure of the analysis model. After validation, the time
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horizon is shifted from t to t + 1 as shown in (27.33)–(27.36) to forecast the efficiency
of each DMU:

ξ U
k, t + 1 = p

t
k × a∗0c + a

∗
1cδ

t−1, t
k +

P−1

p= 1

B∗
pcδ

t−1−p, t−p
k + a∗0w + a∗1wδ

t−1, t
k +

P−1

p= 1

B∗
pwδ

t−1−p, t−p
k

(27.33)

ξ L
k, t + 1 = p

t
k × a∗0c + a

∗
1cδ

t−1, t
k +

P−1

p= 1

B∗
pcδ

t−1−p, t−p
k + a∗0w + a∗1wδ

t−1, t
k +

P−1

p= 1

B∗
pwδ

t−1−p, t−p
k

(27.34)

ψ U
k, t + 1 = p

t
k × a0c∗ + a1c∗δ

t−1, t
k +

P−1

p= 1

Bpc∗δ
t−1−p, t−p
k − a0w∗ + a1w∗δ

t−1, t
k +

P−1

p= 1

Bpw∗δ
t−1−p, t−p
k

(27.35)

ψ L
k, t + 1 = p

t
k × a0c∗ + a1c∗δ

t−1, t
k +

P−1

p= 1

Bpc∗δ
t−1−p, t−p
k − a0w∗ + a1w∗δ

t−1, t
k +

P−1

p= 1

Bpw∗δ
t−1−p, t−p
k

(27.36)

27.4 ILLUSTRATING THE APPLICATION

A panel dataset was obtained from the 1997 to 2002 annual statistical reports of the
National Federation of Bus Passenger Transportation of the Republic of China, which
included 17 bus transit firms. All observations were referred to the largest possibility
for Taiwanese bus transit firms. The two output variables were the passenger-
kilometers (y1, in 1000 passenger-km) and the vehicle-kilometers (y2, in 1000
vehicle-km). Three inputs were used, namely, the number of drivers (x1, in persons),
the number of vehicles (x2, in vehicles), and the liters of fuel (x3, in 1000 liters). The
descriptive statistics of all of the variables are presented in Table 27.2.

27.4.1 Efficiency Evaluations

The efficiency scores based on the evaluation of the model (27.2) in Section 27.3.1 are
summarized in Table 27.3. Only DMUs 1 and 11 are efficient from 1997 to 2002.

Table 27.4 reports the CIE and the results of application of (27.3) from 1992 to
2002. If the cell values are larger than 1, they represent an adjacent period of efficiency
improvement. Otherwise, they show a decay.
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TABLE 27.2 Summary statistics of inputs and outputs by year.

Period Variable Mean St. dev. Max Min Period Variable Mean St. dev. Max Min

1997 y1 9 523 14 131 49 785 126 1998 y1 10 534 16 979 63 997 107
y2 255 310 244 516 1 039 163 17 393 y2 248 970 255 577 1 124 677 19 287
x1 75 79 271 2 x1 93 122 500 4
x2 66 63 195 2 x2 77 89 351 4
x3 1 616 2 097 7 451 4 x3 1 625 2 102 7 463 44

1999 y1 12 019 22 242 87 148 106 2000 y1 18 443 30 479 101 132 83
y2 236 691 296 873 1 294 168 18 641 y2 165 138 143 453 520 935 17 353
x1 92 126 494 3 x1 140 199 716 3
x2 78 95 351 3 x2 115 141 514 3
x3 2 139 3 595 14 271 23 x3 3 201 4 998 15 805 43

2001 y1 20 187 32 451 105 092 77 2002 y1 21 214 32 602 103 387 69
y2 160 460 138 732 495 947 10 821 y2 160 260 132 251 455 990 6 397
x1 153 214 776 3 x1 168 244 875 2
x2 122 154 557 3 x2 132 172 628 2
x3 3 530 5 202 16 363 44 x3 3 863 5 693 17 445 49



TABLE 27.3 Efficiency evaluations.

DMU (k) ρ 1997
k ρ 1998

k ρ 1999
k ρ 2000

k ρ 2001
k ρ 2002

k

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 0.9232 1.0000 0.9825 0.9925 1.0000 0.8152
3 0.8836 1.0000 1.0000 1.0000 1.0000 0.8388
4 0.6414 1.0000 0.1515 0.5953 0.3435 0.4687
5 0.8296 0.6974 0.8428 1.0000 1.0000 0.8500
6 1.0000 1.0000 1.0000 1.0000 0.9267 0.9918
7 0.6111 0.5632 0.6031 0.9099 0.8245 0.9624
8 0.8054 0.7429 0.8265 0.8488 0.9722 1.0000
9 1.0000 0.9342 0.9978 1.0000 1.0000 0.8429
10 1.0000 1.0000 0.6540 1.0000 1.0000 0.9797
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
12 0.4744 0.4987 0.5709 0.5620 0.5360 0.2999
13 0.4761 0.3573 0.5128 0.3164 0.5435 0.3793
14 0.6281 0.9346 1.0000 1.0000 0.7798 1.0000
15 0.2962 0.2391 0.3550 0.3566 0.3350 0.2567
16 0.5097 0.6085 0.5572 0.6670 0.8382 0.6319
17 0.4394 0.6034 0.4688 0.4989 0.6340 0.6704

TABLE 27.4 Catching-up index.

DMU (k) δ1997 1998
k δ1998 1999

k δ1999 2000
k δ2000 2001

k δ2001 2002
k

1 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.0832 0.9825 1.0102 1.0075 0.8152
3 1.1318 1.0000 1.0000 1.0000 0.8388
4 1.5590 0.1515 3.9286 0.5770 1.3645
5 0.8407 1.2083 1.1866 1.0000 0.8500
6 1.0000 1.0000 1.0000 0.9267 1.0702
7 0.9216 1.0708 1.5088 0.9062 1.1672
8 0.9224 1.1125 1.0270 1.1454 1.0286
9 0.9342 1.0680 1.0022 1.0000 0.8429
10 1.0000 0.6540 1.5291 1.0000 0.9797
11 1.0000 1.0000 1.0000 1.0000 1.0000
12 1.0511 1.1448 0.9845 0.9537 0.5595
13 0.7505 1.4352 0.6171 1.7175 0.6979
14 1.4878 1.0700 1.0000 0.7798 1.2824
15 0.8071 1.4847 1.0045 0.9395 0.7663
16 1.1938 0.9157 1.1971 1.2567 0.7539
17 1.3733 0.7770 1.0642 1.2709 1.0573
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27.4.2 Validation

The CIE ranges used in the validation are summarized in Table 27.5. The ranges for

δ1997 1998
k , δ1998 1999

k , and δ1999 2000
k (k = 1,…,17) were taken as the dependent variables,

and δ2001 2000
k (k = 1,…,17) was taken as an independent variable. The possibility esti-

mation and necessity estimation models were obtained based on the model (27.25) as
follows:

δ20012000k = 0 623587,0,0 130406 + 0,0,0 016027 ∗δ1997 1998
k

+ 0 220767,0,0 012891 δ1998 1999
k

+ 0,0,0 000676 ∗δ1999 2000
k + σk,νk,υk

(27.37)

where [0.623587, 0, 0.130406] represents a center that is located at 0.623587. The
radius in the necessity estimation model is equal to zero, whereas the radius of the
possibility estimation model is equal to 0.13406. In (27.37), the necessity model pro-
vides crisp values instead of ranges, which indicates that the upper- and lower-bound
necessities are similar. Following the previous discussion, the results for [σk, νk, υk]
can be represented as follows:

TABLE 27.5 Validation of the CIE (PRY, NRY, NRL, and PLY).

DMU (k) ρUk πU
k πL

k ρLk δ2001 2002
k Trend

1 1.1667 1.0067 1.0067 0.8467 1.0000 +
2 1.2052 1.0441 1.0441 0.8829 1.0075 −
3 1.2009 1.0388 1.0388 0.8767 1.0000 −
4 0.8170 0.6570 0.6570 0.4970 0.5770 −
5 1.2403 1.0800 1.0800 0.9197 1.0000 −
6 1.1667 1.0067 1.0067 0.8467 0.9267 −
7 1.1462 0.9862 0.9862 0.8262 0.9062 −
8 1.2256 1.0654 1.0654 0.9052 1.1454 +
9 1.1857 1.0259 1.0259 0.8661 1.0000 −
10 1.1199 0.9640 0.9640 0.8081 1.0000 +
11 1.1667 1.0067 1.0067 0.8467 1.0000 −
12 1.1964 1.0337 1.0337 0.8710 0.9537 −
13 1.7988 1.6375 1.6375 1.4761 1.7175 +
14 1.0285 0.8598 0.8598 0.6911 0.7798 −
15 1.1826 1.0195 1.0195 0.8563 0.9395 −
16 1.3389 1.1767 1.1767 1.0145 1.2567 +
17 1.3541 1.1909 1.1909 1.0278 1.2709 +
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σ,ν,υ =

P−1

p= 1

Bpc

2
δ

t−2−p
t−1−p
k −Pp + δ

t−2−p
t−1−p
k −Pp ,

P−1

p= 1

B∗
pw

2
δ

t−2−p
t−1−p
k −Pp + δ

t−2−p
t−1−p
k −Pp ,

P−1

p= 1

Bpw∗
2

δ

t−2−p
t−1−p
k −Pp + δ

t−2−p
t−1−p
k −Pp

=

0 1624 0 0000 0 0000

0 2036 0 0000 0 0000

0 1944 0 0000 0 0000

0 0000 0 0000 0 0000

0 1896 0 0000 0 0000

0 1624 0 0000 0 0000

0 1262 0 0000 0 0000

0 1962 0 0000 0 0000

0 1665 0 0000 0 0000

0 1960 0 0000 0 0000

0 1624 0 0000 0 0000

0 1574 0 0000 0 0000

0 6970 0 0000 0 0000

0 0000 0 0000 0 0000

0 0681 0 0000 0 0000

0 3510 0 0000 0 0000

0 3598 0 0000 0 0000

(27.38)

The first four columns of Table 27.5 report the regression variables except for the
first column, the fifth column shows the independent variable, and the sixth column

shows the actual data from Table 27.4. In the last column of Table 27.5, if δ2001 2002
k

lies between ρUk and πU
k , this variable is represented by “+.” In contrast, if δ

2001 2002
k lies

between πL
k and ρLk , it is represented by “−.” Figure 27.2 reports the range of the pos-

sibility and regression values δ2001 2002
k .

27.4.3 Forecasting

The 2002 efficiency scores needed to be forecasted after validation. Based on
(27.38), the 2001–2002 period was moved such that its forecast was represented
as in (27.39):
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p 2002
k =

0 623587,0,0 130406 + 0,0,0 016027 ∗δ1998 1999
k + 0 220767,0,0 012891 δ1999 2000

k

+ 0,0,0 000676 ∗δ2001 2002
k + σk,νk,υk

∗p 2001
k

(27.39)

As previously discussed, “+”, “−”, and “F” were used in the forecast results

(Table 27.6) to represent the real efficiency, which lies between ξ U
2002 and ψ U

2002 or

between ψ L
2002 and ξ

L
k,2007, and in other cases. Table 27.6 shows that the accuracy rate

was approximately 87%. Figure 27.3 shows the forecasting results. The values for
validation and forecasting must have the same shape, except for the DMUs that are
marked with “F” in Table 27.6.

27.5 DISCUSSION

A forecasting method using a hybrid of the CIE and fuzzy piecewise autoregression to
resolve issues in the selection of variables and methodologies has been presented in
this chapter. The CIE in the case of variable selection is used as a dependent or inde-
pendent variable to forecast actual scenarios in place of absolute variables. For 2002,

ξ U
2002 denotes the optimal efficiency score of DMUk, ξ

L
2002 denotes the pessimistic effi-

ciency score of DMUk, and ψ
U
2002 (or ψ

L
2002) denotes the highest possibility efficiency

score of DMUk. Table 27.6 shows that in our approach, 10 DMUs have reached the
frontier in the optimal view, but only six DMUs have reached the frontier in the actual
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Figure 27.2 δ2001 2002
k , PRY, NRY, NLY, and PLY obtained by fuzzy piecewise

autoregression.
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scenario (DMUs 8 and 16 are different in our analysis). The efficiency scores of these

DMUs are close to our ψ U
2002 (or ψ

L
2002) values.

Five DMUs (DMUs 4, 13, 14, 16, and 17) have failed the forecast. The efficiency
scores of DMU 17 between 1997 and 2001 ranged from 0.4394 to 0.6340, but

0.0000

0.2000

0.4000

0.6000

0.8000

1
2

3

4

5

6

7

8

910
11

12

13

14

15

16

PRL

NRY

NLY

PLY

Real

1.000017

Figure 27.3 p 2002
k , PRY, NRY, NLY, and PLY obtained by fuzzy piecewise autoregression.

TABLE 27.6 Forecasting efficiency for 2002: PRY, NRY, NRY, and NLY.

DMU (k) ξ U
2002 ψ U

2002 ψ L
2002 ξ L

2002 p 2002
k Trend

1 1.0000 1.0000 1.0000 0.8467 1.0000 −
2 1.0000 1.0000 1.0000 0.8903 1.0000 −
3 1.0000 1.0000 1.0000 0.8788 1.0000 −
4 0.5753 0.5121 0.5121 0.4490 0.3435 F
5 1.0000 1.0000 1.0000 0.9094 1.0000 −
6 1.0000 0.9330 0.9330 0.7847 0.9267 −
7 1.0000 0.8928 0.8928 0.7546 0.8245 −
8 1.0000 1.0000 1.0000 0.8597 0.9722 −
9 1.0000 1.0000 1.0000 0.8503 1.0000 −
10 1.0000 1.0000 1.0000 0.9959 1.0000 −
11 1.0000 1.0000 1.0000 0.8467 1.0000 −
12 0.6220 0.5351 0.5351 0.4482 0.5360 +
13 0.8801 0.7918 0.7918 0.7034 0.5435 F
14 0.7840 0.6584 0.6584 0.5329 0.7798 F
15 0.3622 0.3060 0.3060 0.2498 0.3350 +
16 1.0000 1.0000 1.0000 0.9032 0.8382 F
17 0.8951 0.7953 0.7953 0.6955 0.6340 F
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increased to 0.6704 in 2002. Fuzzy piecewise autoregression refers to past efficiency
to regress the highest possible efficiency scores. Based on the historical data, the effi-
ciency scores of DMU 17 cannot exceed 0.6704; the possibility regression predicts an
optimal value of 0.8951 and the necessity regression predicts a pessimistic value of
0.6955. The two regressions cannot cover the actual value for DMU 17, which can be
attributed to the poor performance of this DMU compared with the previous periods.
The outputs of DMU 17 between 2001 and 2002 demonstrate that y1 has increased by
13%, y2 has increased by 0.4%, and x3 has increased by 50%. The forecast for DMU 1
is always equal to one if the conventional regression approach is applied. The histor-
ical data for DMU 1 reflect the efficiency of DMU 5, which is always equal to one.
However, the fuzzy piecewise autoregression provides a range from 0.8467 to 1, with
values closer to 1 because of the catching-up effect. Although the CIE does not show
input and output relationships, prior concepts about efficiency scores are compared
with frontiers or best practices. In other words, the efficiency of DMU 1 may or
may not be at the frontier. Therefore, these two ranges elaborate on the idea that
the efficiency scores are compared with the frontier. The fuzzy ranges (i.e., between

ξ U
k, t and ξ L

k, t ) provide us with relative concepts and the highest possible efficiency

(ξ U
k, t , ξ

L
k, t ). We can also define the following features to highlight the advantages

for future studies:

1. Efficiency range of possibility: F1 = ρUk −ρ
L
k .

2. Efficiency range of upper trend: F2 = ρUk −π
U
k .

3. Efficiency range of lower trend: F3 = πL
k −ρ

L
k .

4. Gap between real efficiency and lower-bound possibility efficiency:

F4 = λ
t
k −ρLk .

5. Gap between upper-bound possibility efficiency and real efficiency:

F5 = ρUk −λ
t
k .

6. Gap between real efficiency and necessity efficiency: F6 =

max λ t
k −πU

k ,π
L
k −λ

t
k .

7. Efficiency range of necessity: F7 = πU
k −π

L
k .

27.6 CONCLUSION

This chapter has discussed two hybrid methodological developments to show how
efficiency in DEA can be used in forecasting. The proposed method has two advan-
tages. First, the CIE shows the relative efficiency of two adjacent periods and avoids
the direct usage of input and output variables. Therefore, the CIE not only provides a
priori relative concepts about frontiers and best practices but also shows the possible
efficiency. Second, historical data are used to regress the possibility and necessity
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estimation models in place of a random-error-type regression model. The four ranges
obtained provide decision-makers with suggestions for specific DMUs (i.e., if a spe-
cific DMU does not reach the frontier in the current period, the DMU can exert more
effort to reach the frontier in the future).

However, our analyses have several limitations. First, efficiency prediction can be
divided two parts, namely, efficiency shift and efficiency movement. Efficiency shift
is chiefly caused by changes in technique, whereas efficiency movement is caused by
changes in the ratio of inputs and outputs. Although our analysis addresses efficiency
shift, we have failed to address efficiency movement. This issue will be evaluated in
future work. Second, we have not explained the external effect of certain variables,
such as government power, on the evaluation results. The DEAmethod can be applied
for purposes ranging from evaluation to planning techniques. Further research can
examine other concepts regardless of the method.
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28.1 INTRODUCTION

Consider the following questions that arise in the early stages of new product devel-
opment. What should be the target market for proposed design concepts? Who will be
the competitors, and how fast are they moving forward in terms of performance
improvements? Ultimately, are the current design concept and targeted launch date
feasible and competitive?

Product target setting is one of the most essential practices in the early stage of new
product development to ensure that the firm pursues the right markets and product
from a strategic viewpoint [1]. This involves decisions about the target market,
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product mix, project prioritization, resource allocation, and technology selection [2].
However, in spite of the maturity of new product development disciplines, the risk
analysis for new product scheduling has not received extensive attention, as opposed
to project selection or resource allocation problems, in the literature [3–5]. In partic-
ular, target-setting practice in research and development has relied heavily on market
research methods or heuristic ideation techniques [6, 7]. These classic approaches
include brainstorming and Delphi [8], morphology (or morphological analysis) [9],
conjoint analysis [10], and lead users analysis [11]. In addition, recent techniques such
as the voice of the customer [12], probe and learn [13], empathic design [14], the fuzzy
cognitive map [15], and crowdsourcing [16] have been used in an attempt to derive
promising product concepts from consumers’ perceptions and underlying behavior.

In contrast, attention to product categorization as an engineering approach has
been enhanced mostly by benchmarking studies under the assumption that market
segments can be identified by distinct combinations of product attributes into which
customer value propositions may have been incorporated. Initial work related to this
approach may be found in Doyle and Green’s study [17], which used a widely
known benchmarking technique, data envelopment analysis (DEA), to identify
homogeneous product groups, that is, competitors, as well as market niches. Spe-
cifically, they applied DEA to classify printers by ordering them from broad to niche
based on the number of times each printer appeared in others’ reference sets. In a
similar vein, Seiford and Zhu developed measures for the attractiveness and prog-
ress of products by separating context-dependent frontiers [18]. Furthermore, Po
et al. showed how product-feature-based clustering can be used by decision-makers
to allow them to know the changes required in product design so that the product can
be classified into a desired cluster [19]. Amirteimoori and Kordrostami later
extended this approach to take the size of products into account, thereby comparing
products with groups of similar scale [20]. In addition, Amin et al. clarified the role
of alternative optimal solutions in the clustering of multidimensional observations
by a DEA approach [21]. Recently, Dai and Kuosmanen proposed a new approach
that can take cluster-specific efficiency rankings as well as stochastic noise into
account [22].

Although the above-mentioned approaches can shed light on target-setting prac-
tices for new products, there remains a need to integrate product positioning with
the assessment of performance improvement so that analysts can have a measure
of risk for their product launch planning. Consequently, this study presents how time
series benchmarking analysis can be used to assist in scheduling new product releases
by taking the rate of performance improvement expected in a target segment into
consideration.

The rest of this chapter unfolds as follows. In the next section, Section 28.2, the
notion of homogeneous product groups and the rate of performance improvement
are introduced, with algebraic formulations. In Section 28.3, the proposed approach
is illustrated by applying it to the development of commercial airplanes to demonstrate
its possible usage. Finally, Section 28.4 summarizes the results and suggests possible
future research directions.
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28.2 METHODOLOGY

28.2.1 Preliminaries

What is generally expected from benchmarking is an identification of “best practices,”
from which current processes can learn and thereby ultimately improve their perfor-
mance. The formation of the “best practice” frontier based on observed units is there-
fore the main focus of benchmarking studies. As in the traditional statistical literature,
benchmarking models can be conveniently divided into two groups: parametric and
nonparametric approaches. The former approach creates the frontier by fitting it to a
predefined functional form, and therefore it tends to be robust to noise by filtering it
with a predefined general pattern. The latter approach, by contrast, purely adapts the
frontier to data without being shaped a priori, and hence it maximizes the flexibility to
capture various production possibilities [23].

DEA, which is classified as a nonparametric frontier model, was originally pro-
posed by Charnes et al. [24]. As the name “decision-making units” (DMUs) implies,
the efficiency measure in DEA is defined as the ratio of the weighted sum of outputs to
the weighted sum of inputs using a freely chosen weighting scheme for each DMU,
and, as such, the efficiency measure will show those DMUs in the best possible light.
The ratio (multiplier) form of the output-oriented variable-returns-to-scale DEA
model can be presented as below:

min g0 =
i

vixi0 +w
i

vixij−
r

uryrj +w ≥ 0, j

r

uryrj = 1, ur ,vi ≥ ε, w is free
(28.1)

where g0 denotes the output-oriented efficiency of the DMU being assessed, ur the
weight assigned to output r, vi the weight assigned to input i, xij the ith input variable
of DMU j, yrj the rth output variable of DMU j, and w the returns-to-scale (RTS)
parameter.

The above output-oriented multiplier model can be readily transformed into the
envelopment model, which is shown below as a single-stage theoretical formulation:

max φo + ε
r

s+r +
i

s−i

j

λjyrj−s+r =φoyro, r

j

λjxij + s−i = xio, i

j

λj = 1, s +r ,s
−
i ,λj ≥ 0

(28.2)

where ϕo denotes the output-oriented efficiency, λj denotes the intensity vector attached
to DMU j, and s+r and s−i denote the slacks, equal to the reduced cost of ur and vi,
respectively. Note that if the optimal value of ϕo, that is, ϕ

∗
o, is greater than 1, then
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DMUo is inefficient in that the model (28.2) will have identified another production
possibility that secures at least the augmented output vector ϕ∗

oyo using no more than
the input vector xo. Thus, ϕ

∗
o is a measure of the radial output efficiency of DMUo in

that it reflects the largest radial proportion by which all of its outputs can be aug-
mented pro rata given its output levels.

28.2.2 Conceptual Framework

As previously noted, it may be of interest to product development teams to know not
only who the competitors are but also how fast they are moving forward in terms of
performance improvement. This necessarily requires a time series application of
benchmarking practices. In an early attempt, Inman developed a measure to quantify
the rate of frontier expansion [25]. In his study, the rate of change (RoC) was defined
as an annualized rate of efficiency change at which future technologies were expected
to advance. Specifically, RoCs were obtained from technologies that were efficient,
that is, located on the state-of-the-art (SOA) frontier, at the time of release but were
later outpaced by new technologies. Thus, the aggregated RoC could be used either to
estimate technical capabilities at a certain point in time or to forecast the time by which
desired levels of technologies would be operational [26]. Lim et al. extended the
model to identify segmented RoCs from each frontier facet so that technological prog-
ress in different product segments could be taken into account [27].

Figure 28.1 depicts how the local RoC and individualized RoC can be obtained.
Product A was located on the SOA frontier in the past but later became obsolete with
respect to the current SOA frontier formed by new competitive products B, C, and D.
The fact that product A is compared with its virtual target, A , constituted by its peers
B, C, and D, indicates that product A may have a similar mix of input–output levels to

Local RoC

Individualized
RoC

Estimated future
SOA frontier

Local RoC

Local RoC

Local RoC

B

A

C

Current SOA frontier

D

F

E

Past SOA frontier

Technological
advancement

A′ F′

Figure 28.1 Illustration of segmented rate of change (RoC).
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those peers although the absolute levels of attributes may vary; this means that one can
classify them as homogeneous products [28]. Hence, the performance improvement,
namely the performance gap between A and A in a given time period, can be repre-
sented by the peers as a form of local RoC with reference information about how close
A is to B, C, and D. Thus, each local RoC indicates a growth potential for adjacent
frontier facets based on the performance improvement observed from the related past
products.

Once the local RoCs of current SOA products have been obtained, it becomes pos-
sible to compute individualized RoCs for new product concepts. Suppose some prod-
uct developers have come up with a product concept F. Note that, by definition, a
“better” product must be located beyond the current SOA frontier, as superseded pro-
ducts are enveloped by the current SOA frontier. It can be seen that the virtual target of
F, that is, F , is subject to the frontier facet constituted by the current SOA products C,
D, and E. Therefore, the individualized RoC of F can be obtained by combining local
RoCs with reference information about how close F is to C, D, and E. Notice that the
technological advancement observed from product A may have affected the indivi-
dualized RoC of F as the SOA products C and D are involved on both sides of the
facets by having intermediate technological characteristics.

Benchmarking information in conjunction with the rate of performance improve-
ment can give insight into product developers not only about who the major players in
a target market are but also about how competitive the proposed design concept would
be. In other words, it can provide a diagnostic of whether the proposed design concept
is aggressive or conservative in terms of scheduled delivery to the market, considering
the current rate of performance improvement expected in a target segment. One can
also utilize this information to estimate the arrival of a competitor’s design target as a
product launch strategy.

28.2.3 Formulation

The algebraic formulation of the approach described above can be represented by the
following processes. Suppose there are n DMUs, and let x = x1,…,xm ℜM

+ denote
an input vector and y = y1,…,ys ℜS

+ an output vector. Following the minimum
extrapolation principle [29], a production possibility set (PPS) can be formulated
as in (28.3):

PPS = x,y

j

λjxj ≤ x, i= 1,…,m

j

λjyr ≥ y, r = 1,…,s

λj ≥ 0, j = 1,…,n

(28.3)

Note that the PPS constructed could change if the basic premises of the minimum
extrapolation principle (e.g. convexity, free disposability, or constant returns to scale)
were to change; see the alternate forms of the PPS in [28].
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Having specified the PPS, the conventional DEA can be presented as in (28.4) for
the input orientation or (28.5) for the output orientation:

1 z∗k =min θk θkxk,yk PPS (28.4)

z∗k =max ϕk xk,ϕkyk PPS (28.5)

The efficiency score z∗k obtained is a measure of radial efficiency: DMU k is (at least
weakly) efficient if z∗k = 1, or inefficient if z

∗
k > 1.

As previously discussed, the evolution of the technology frontier is captured by the
efficiency changes of the DMUs. Following the notation of [30], let zt∗k be an effi-
ciency score obtained for DMU k from PPSt including DMUs up to time t, let tk
be the release date of DMU k, and let T be the vantage point from which the RoC

is captured. Then z
tk∗
k = 1 and zT

∗
k > 1 indicates that DMU k was located on the tech-

nology frontier at the time of release but was later outperformed by the newly created
technology frontier at T. By combining this information with the effective time, that is,
the time gap between technology frontiers, as denoted in (28.6) [31], the RoC
observed for each DMU can be obtained as formulated in (28.7).

Next, the local RoC is computed for a DMU or DMUs located on the technology
frontier at T. Each local RoC therefore represents a growth pattern of adjacent frontier
facets based on the efficiency changes observed from related past technologies [32].
Consequently, this enables an identification of how much frontier expansion has been
caused by each benchmark technology among the others. This is represented in (28.8):

Ek =
j
λT

∗
jk tj− tk

j
λT

∗
jk

, k ztk∗k = 1, zT∗k > 1 (28.6)

γTk = zTk
∗ 1 Ek

, k ztk∗k = 1, zT∗k > 1 (28.7)

δTj =
k
λT

∗
jk γTk

k, γTk > 0
λT

∗
jk

, j zT∗j = 1 (28.8)

Lastly, the “auspicious” arrival time of proposed design concepts can be estimated
by consideration of how superior they are from the vantage point of the current frontier
(at T), as well as how much performance improvement is expected in corresponding
segments. The super-efficiency1 and individualized RoC, respectively, contain these
two types of information and the latter is computed by combining the local RoCs of

1 Super-efficiency of the proposed design concept might be infeasible, and in such cases alternate measures
of efficiency can be employed as discussed in [33].

448 ADVANCES IN DEA THEORY AND APPLICATIONS



the SOA product j that constitutes the frontier facet onto which product concept k is
being projected, as in (28.9):

tforecastk =
ln 1

zTk
∗

ln j
λT

∗
jk δTj

j
λT

∗
jk

+ j
λT

∗
jk tj

j
λT

∗
jk

, k tk > T (28.9)

28.3 APPLICATION: COMMERCIAL AIRPLANE DEVELOPMENT

28.3.1 Research Framework

To illustrate the use of the presented method, this section assumes a scenario in which
commercial airplane developers are examining four design concepts in 2007 (T). They
have collected data including 24 aircraft introduced to the market in the last 40 years,
and are attempting to identify which market segment the proposed design concepts are
appropriate to and when an auspicious time for delivery as competitive products
would be, considering the rate of technological advancement observed until 2007.

Note that we have adopted the performance characteristics used in the earlier study
by Lamb et al. [6]. In the original study, those authors attempted to develop technol-
ogy assessment models based on a multiple-regression analysis. However, the result-
ing model was confined to only two predictors owing to insufficient statistical
significance, which resulted in a high unexplained variability [34]. This study revisits
and updates the dataset not only to incorporate the latest information but also to inves-
tigate the industry dynamics, with consideration of different SOA trends as suggested
in the previous study (see Table 28.1).

28.3.2 Analysis of the Current (2007) State of the Art

The commercial aircraft industry has important niches, with segmented levels of com-
petition from regional jets to jumbo jets. Following the scenario, Table 28.2 records
the local RoCs of six SOA airplanes from the vantage point of 2007. The third column
lists dominated airplanes, that is, past airplanes for which the airplane in the first col-
umn has been appointed as a benchmark. As previously discussed, one can notice that
airplanes with similarities in their specifications, which characterize distinct segments
observed in 2007, are grouped together. While the frontier is five-dimensional in this
application, the airplanes in the first column are equivalent to products B, C, D, and
E in Figure 28.1, and the airplanes in the third column are obsolete airplanes such as A.

The Boeing 747 series, as its nickname “jumbo jet” suggests, has been recognized
as the most successful series of wide-body commercial aircraft [35]. In particular,
despite their large bodies, the advanced aerodynamic design still allows the
747-300 and 747-400 to reach a cruising speed of up to 902 km/h [36]. These
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TABLE 28.1 Dataset.a

Airplane
EISb

(year)

Travel
range
(1000 km)

Passenger
capacity
(3rd class)

PFEc

(passengers
km/L)

Cruising
speed
(km/h)

Maximum
speed
(km/h)

DC8-55 1965 9.205 132 13.721 870 933
DC8-62 1966 9.620 159 16.646 870 965
747-100 1969 9.800 366 19.559 893 945
747-200 1971 12.700 366 23.339 893 945
DC10-30 1972 10.010 250 18.199 870 934
DC10-40 1973 9.265 250 16.844 870 934
L1011-500 1979 10.200 234 19.834 892 955
747-300 1983 12.400 412 25.652 902 945
767-200ER 1984 12.200 181 24.327 849 913
767-300ER 1988 11.065 218 26.575 849 913
747-400 1989 13.450 416 25.803 902 977
MD-11 1990 12.270 293 24.595 870 934
A330-300 1993 10.500 295 31.877 870 913
A340-200 1993 15.000 261 25.252 870 913
A340-300 1993 13.700 295 27.335 870 913
MD-11ER 1996 13.408 293 24.939 870 934
777-200ER 1997 14.305 301 25.155 892 945
777-300 1998 11.120 365 23.713 892 945
A330-200 1998 12.500 253 22.735 870 913
A340-600 2002 14.600 380 28.323 881 913
A340-500 2003 16.700 313 24.334 881 913
777-300ER 2004 14.685 365 29.568 892 945
777-200LR 2006 17.370 301 28.841 892 945
A380-800 2007 15.200 525 24.664 902 945

a For reproducible results, the dataset and proposed model are included in the R package DJL (version 1.7 or
higher). The complete source code can be found at https://github.com/tgno3/TONE.2016.ARTS using the
following commands:
> library(DJL)
> d <- dataset.airplane.2017

b EIS: entry into service.
c PFE: passenger fuel efficiency.

TABLE 28.2 Local rate of change (RoC) of SOA airplanes in the frontier year of 2007.a

SOA airplane (j) Local RoC (δTj ) Dominated airplanes (k)

747-300 1.000949 DC8-55, 747-100/200, L1011-500
747-400 1.001404 DC8-55/62, 747-100/200, L1011-500, A340-200
A330-300 1.002188 767-300ER, A340-300
777-300ER 1.002561 767-300ER, A340-200/300/600
777-200LR 1.004606 A340-200/500
A380-800 1.003989 A340-500/600

aOnce the package and dataset are loaded, local RoCs can be obtained using the following commands in R:
> t <- subset(d, select = 2)
> x <- data.frame(Frew = rep(1, 28))
> y <- subset(d, select = 3:7)
> roc.dea(x, y, t, 2007, "vrs", "o", "min")$roc_local

https://github.com/tgno3/TONE.2016.ARTS


characteristics can be identified from the dominated airplanes, which include not only
the predecessor 747 s (747-100 and 747-200) but also the Douglas DC8 series and
Lockheed L-1011, which were also known as fast-cruising airplanes. However, grad-
ual technology advancement is observed from the relatively slow local RoC of the 747
aircraft, which is consistent with the fact that they had been a dominant design for a
long time until Airbus created a strong market rival [35].

The Airbus series (A3X0) can be best characterized as long-range airplanes. In fact,
the companyhas primarily targeted thegrowingdemand for high capacity and transcon-
tinental flights. In addition, they have focused their efforts on enhancing the structural
design using advancedwinglets andworking on aerodynamic improvements for higher
fuel efficiency [37]. For example, two recent long-range airplanes, the twinjetA330and
the four-engine A340, became popular for their efficient wing design [38].Meanwhile,
the Airbus A340-500 has an operating range of 16 700 km, which is the second longest
range of any commercial jet after theBoeing 777-200LR (a range of 17 370 km). There-
fore, it is not surprising that the A330-300 has been selected as a benchmark of not only
the A340-300, from the same family of airplanes, but also the Boeing 767-300ER,
which is also a relatively long-range (11 065 km) airplanewith high passenger fuel effi-
ciency (26.575 passenger km/L). Additionally, the Airbus A380-800 became the
world’s largest passenger airplane, with a seating capacity of 525 [39]. One can also
relate this feature to the reference set which consists of its predecessors: A340-500
and A340-600, with relatively high passenger capacities as well. This type of long-
range, wide-body airplane has emerged as a fast-growing segment as airlines have
emphasized transcontinental aircraft capable of directly connecting any two cities in
the world. This has indeed initiated a series of introductions of the A340 family by Air-
bus to competewithBoeing [40],which is consistentwith the fast localRoCs, indicating
a very competitive segment of the market with rapid improvement.

The Boeing 777 series ranks as one of Boeing’s best-selling aircraft family because
of their high fuel efficiency, which enables long-range routes [41]. In particular, the
777-300ER is an extended-range version of the 777-300, which has a maximum range
of 14 685 km, made possible by a superior passenger fuel efficiency of 29.568 pas-
senger km/L. These exceptional characteristics allowed not only the preceding 767-
300ER but also the Airbus series that pursued higher fuel efficiency (A340-200/
300/600) to have the 777-300ER appointed as a benchmark for their performance
evaluation. Likewise, the 777-200LR was selected as a benchmark for long-range air-
planes that have relatively smaller passenger capacities: the A340-200 and A340-500.
Because of demanding energy-saving regulations, airlines have asked for a fuel-
efficient alternative and have increasingly deployed these aircraft on long-haul trans-
oceanic routes [42]. This has driven engineering efforts more toward energy-efficient
aircraft, which is reflected in the fast local RoCs of the Boeing 777 series.

28.3.3 Risk Analysis

We now turn to the strategic planning for the proposed airplane concepts (see
Table 28.3). In particular, the planning team would like to identify the relevant engi-
neering targets for each design concept as well as the corresponding rate of
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technological advancement, that is, the individualized RoC, so that they can examine
the feasibility of proposed design concepts in terms of their delivery target.

As SOA airplanes at the frontier of 2007 represent different types of past airplanes,
one can classify future airplanes, namely design concepts, by the characteristics of
their reference airplanes identified on the 2007 frontier. This allows the model to com-
pute an individualized RoC under which each future airplane is expected to be
released. Figure 28.2 summarizes the results.

The first design concept aims for a large commercial aircraft carrying 467
passengers while having a fast cruising speed of 917 km/h. As noted earlier, these
characteristics are also reflected in its reference airplanes: the 747-400, 777-
300ER, and A380-800. That is, this design concept would compete with these three
airplanes in the current (2007) market with the given specifications. The individua-
lized RoC of this design concept can therefore be obtained by interpolating local RoCs
in conjunction with reference information. Here, the individualized RoC obtained was
1.002748, which suggests a more rapid technology development in its category

TABLE 28.3 Four airplane concepts in 2007.

Design
concept

Travel
range
(1000 km)

Passenger
capacity
(3rd class)

PFE
(passengers
km/L)

Cruising
speed
(km/h)

Maximum
speed
(km/h)

Delivery
target
(year)

1 14.816 467 28.950 917 988 2010
2 15.750 280 34.851 913 954 2010
3 15.000 315 34.779 903 945 2013
4 14.800 369 35.008 903 945 2015

Design

concept 2

Individualized
RoC

= 1.003793
Individualized

RoC
= 1.003494

Individualized
RoC

= 1.002568

Individualized
RoC

= 1.002748

Local RoC = 1.004606

Local RoC = 1.002188

Local RoC = 1.003989

A380-800

43%
6%

15
%

82%

37%

Local RoC = 1.001404

Local RoC
= 1.002561

Design

concept 3

Design

concept 4
Design

concept 1

20%777
–300ER

A330-300
747-400

777-200LR

3%
53%

33% 41%

67%

Figure 28.2 2007 state-of-the-art frontier with regard to four design concepts.2,3

2 This figure depicts conceptualized frontier facets relevant to the four design concepts under discussion.
3 Individualized RoCs can be obtained using the following command in R:

> target.arrival.dea(x, y, t, 2007, "vrs", "o", "min")$roc_ind
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compared with the average RoC of 1.002149. This is about 28% faster and resulted in
an estimated EIS for the current design concept of 2011.49. Therefore, one may con-
sider the delivery target of 2010 to be an aggressive goal that might encounter tech-
nical challenges in outpacing the rate of technological advancement of the past.

In a similar manner, the characteristics of the second design concept’s long range of
15 750 km with an outstanding passenger fuel efficiency of 34.851 passenger km/L
are consistent with the nature of its identified reference airplanes, the A330-300
and 777-200LR. As implied by the local RoCs of the 777-200LR (1.004606) with
its reference information (67%), this concept is associated with one of the fastest-
advancing technology clusters seeking a high fuel efficiency. Consequently, it was
expected that with the very fast individualized RoC of 1.003793, this level of spec-
ification could be achieved by 2013.45. Similarly to the case for the first design con-
cept, this indicates that the delivery target of 2010 may involve a significant technical
risk, since it requires exceeding the past rate of technological advancement.

The third design concept is similar to the second one in that it is also aimed at a
long-range, fuel-efficient aircraft; however, it also aims to achieve a large passenger
capacity of 315. This feature is reflected in the reference set, which additionally
includes the 777-300ER, which has a passenger capacity of 365. The relatively slow
local RoC of the 777-300ER and the A330-300 may imply a difficulty in technolog-
ical advancement with respect to travel range and passenger capacity. As a result, the
individualized RoC for this design concept was found to be 1.003494, giving a fore-
casted EIS of 2012.45. Given the delivery target of 2013, the current design concept
might be regarded as a feasible goal; however, on the other hand, this possibly entails a
modest market risk of lagging behind in the performance competition.

The last design concept is a variation of the third design concept, aiming for a much
larger airplane but with a shortened travel range. Not surprisingly, this different blend
of the same peers results in a virtual target of this design concept that is positioned
closer to the 777-300ER than to the long-range features represented by the 777-
200LR and A330-300, which results in more conservative prospects for the current
design concept. Consequently, the individualized RoCwas found to be 1.002568, giv-
ing a forecasted EIS of 2020.16. This indicates that the delivery target of 2015 may be
an overly optimistic goal, and there could be a postponement due to the technical risks
involved.

28.3.4 Proof of Concept

We now come back to the present and validate the performance of the method pre-
sented here (see Table 28.4).

The first design concept was the Boeing 747-8, which began deliveries in 2012
[43]. In fact, this airplane faced two years of delay since its original planned EIS
of 2010, owing to assembly and design problems followed by contractual issues [44].

The second design concept was another Boeing airplane, the 787-9, which made its
maiden flight in 2013, and delivery began in July 2014 [45]. In line with the results,
the originally targeted EIS in 2010 could not be met, because of multiple delays due to
technical problems in addition to a machinists’ strike [46].
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The third design concept was the initial design target of the Airbus A350-900,
which has been changed and rescheduled to enter service at the end of the year
2014 [47]. The delay was caused mainly by a strategic redesign of the A350, the
so-called XWB (extra-wide-body) program, that allows for a maximum seating capac-
ity of 440 with a 10-abreast high-density seating configuration as well as a reinforced
fuselage design [48]. It is interesting to note that Airbus has made a strategic decision
to delay the A350-900’s delivery while improving the specifications to compete with
the Boeing 777 series in the jumbo jet segment; the need for this was recognized in the
analysis results seven years ago.

Similarly, the last design concept was the Airbus A350-1000, which has also had
its EIS rescheduled, to 2017 [49]. This airplane is the largest variation of the A350
family and is designed to compete with the Boeing 777-300ER, as can also be seen
from the reference information. Nevertheless, the postponed delivery target of 2017
may still be an aggressive goal considering the technological advancement observed
in this segment.

28.4 CONCLUSION AND MATTERS FOR FUTURE WORK

The motivation for this chapter stems from a practical question, “When might be the
ideal time to release a new product?” To answer this question, one needs to know not
only what type the new product is but also how competitive the corresponding seg-
ments are. This subject area can be translated into the research topic of integrating
product positioning with the assessment of performance improvement over time,
which has rarely been addressed in the literature on either new product development
or management science. The use of time series benchmarking analysis as presented
here makes it possible to estimate an “auspicious” time by which a proposed design
concept will be available as a competitive product by taking into account the rate of
performance improvement expected in the target segment.

TABLE 28.4 Results summary.a

Design concept Reference airplanes (competitors)
Planned
EIS

Estimated
EIS

Delayed
EIS

1 (747-8) 747-400, 777-300ER, A380-800 2010 2011.49 2012
2 (787-9) A330-300, 777-200LR 2010 2013.45 2014
3 (A350-900b) A330-300, 777-300ER,

777-200LR
2013 2012.45 2014

4 (A350-1000) A330-300, 777-300ER,
777-200LR

2015 2020.16 2017

a Forecasted arrivals can be obtained using the following command in R:
> target.arrival.dea(x, y, t, 2007, "vrs", "o", "min")$arrival_seg

b Initial design.
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An empirical illustration of commercial airplane development has shown that the
method presented provides valuable information such as dominating designs, distinct
segments, and the potential rate of performance improvement, which can be utilized in
the early stages of new product development. In particular, six dominant airplanes
classifying the rest of the 18 past airplanes considered were identified together with
their local RoCs, and, inter alia, the technological advancement toward long-range
and wide-body airplanes represented very competitive segments of the market with
rapid changes. The resulting individualized RoCs could be used to estimate the arrival
times of four different design concepts, and the results are consistent with what has
happened since 2007 in the commercial airplane industry. In this chapter, we
employed a scenario set in 2007 to demonstrate the possible use of the method pre-
sented, considering the general development lifecycle of the commercial airplane
industry. Obviously, the predictive power could be improved by updating the rate
of performance improvement with up-to-date data.

As a direction of future research, one could consider developing the use of a risk
index as a measure of innovativeness. When there is a need to quantify the innova-
tiveness of a product independent of market factors, such a method could suggest
how much a certain product has contributed to accelerating the rate of performance
improvement or has advanced the product release date compared with the expected
date. An alternate approach could also investigate possible modifications to product
designs to reduce the risk arising from a predetermined release date.

Another future research topic might be to consider incorporating stochastic char-
acteristics into the model. DEA is, by definition, a deterministic model, which renders
the method presented here confined to capturing the rate of performance improvement
from the evolution of the SOA frontier. This might provide an aggressive estimation
unless the best-performing products on the market are being sought. Stochastic mea-
surements might be able to complement this aspect such that the rate of performance
improvement could be obtained from diverse levels of products, thereby yielding a
risk distribution for each design concept instead of a point estimation.
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29.1 INTRODUCTION

Data envelopment analysis (DEA) is a non-parametric methodology for performance
evaluation and benchmarking. Since the publication of the seminal paper by Charnes,
Cooper and Rhodes [1], DEA has witnessed numerous developments, some of which
have been motivated by theoretical considerations and others by practical considera-
tions. The focus of this chapter is on practical considerations related to data variations.
The first practical issue is the lack of a statistical foundation for DEA. This problem
was first discussed by Banker [2], who proved that DEA models could be viewed as
maximum likelihood estimation models under specific conditions, and then by Banker
and Natarajan [3], who proved that DEA provides a consistent estimator of arbitrary

1 Part of the material in this chapter is adapted from the American Journal of Operations, 2016, 6, 121–135,
with permission from Scientific Research.
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monotone and concave production functions when the (one-sided) deviations from
such a production function are degraded by stochastic variations in technical ineffi-
ciency. Subsequently, the treatment of data variations in DEA has taken a variety of
forms. Several authors have investigated the sensitivity of DEA scores to variations of
the data in the inputs and/or outputs using sensitivity analysis and super-efficiency
analysis. For example, Charnes and Neralić [4] and Neralić [5] used conventional lin-
ear-programming-based sensitivity analysis with additive and multiplicative changes
in inputs and/or outputs to investigate the conditions under which the efficiency status
of an efficient decision-making unit (DMU) is preserved (i.e. the basis remains
unchanged), whereas Zhu [6] performed sensitivity analysis using various super-
efficiency DEA models in which a test DMU is not included in the reference set. This
sensitivity analysis approach simultaneously considers input and output data pertur-
bations in all DMUs, namely, changes both in the test DMU and in the remaining
DMUs. On the other hand, several authors have investigated the sensitivity of
DEA scores to the estimated efficiency frontier. For example, Simar and Wilson
[7,8] used a bootstrapping method to approximate the sampling distributions of
DEA scores and to compute confidence intervals (CIs) for such scores. Barnum
et al. [9] provided an alternative methodology based on panel data analysis for com-
puting CIs of DEA scores; in sum, they complemented Simar andWilson’s bootstrap-
ping by using panel data along with generalized least squares models to correct CIs for
any violations of the standard statistical assumptions (i.e. that the DEA scores are
independent and identically distributed, and normally distributed), such as the
presence of contemporaneous correlation, serial correlation and heteroscedasticity.
Note, however, that Simar and Wilson [7,8] did not take account of data variations
in the inputs and outputs. Also, although Barnum et al. [9] took account of data
variations in the inputs and outputs by considering panel data and computing DEA
scores separately for each cross-section of the data, the reliability of their approach
depends on the amount of data available for estimating the generalized least squares
models.

In this chapter, we follow the principles set out by Cook et al. [10], and we believe
that DEA performance measures are relative, not absolute, and are frontier-dependent.
DEA scores undergo changes depending on the choice of inputs, outputs, DMUs and
the DEA models by which the DMUs are evaluated. In the study presented here, we
compute efficiency scores or, equivalently, solve the frontier problem using the non-
oriented slacks-based super-efficiency model. Our approach deals with variations in
both the estimated efficiency frontier and the input and output data directly by resam-
pling from historical data over two different time frames (i.e. past–present and past–
present–future); thus, the production possibility set for the entire DMUs differs for
every sample.2 In addition, our approach works for both small and large sets of data

2 Throughout this chapter, we assume that the dataset is free from outliers and is homogeneous in the kind of
DMUs (e.g. hospitals, banks or universities in the same category). For outlier detection, see Yang et al. [11]
and references therein.
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and does not make any parametric assumptions. Hence, our approach presents another
alternative for computing confidence intervals of DEA scores.

This chapter unfolds as follows. Section 29.2 presents a generic methodological
framework to estimate the confidence intervals of DEA scores in a past–present time
frame and extends it to the past–present–future time frame. Section 29.3 presents a
healthcare application to illustrate the proposed resampling framework. Finally,
Section 29.4 concludes the chapter.

29.2 PROPOSED METHODOLOGY

In this section, we propose a generic methodological framework to estimate the con-
fidence intervals of DEA scores in a past–present time frame. This framework is
generic in that its implementation requires a number of decisions to be made, as will
be discussed below. Then, we extend the use of this framework to the past–present–
future time frame.

29.2.1 Past–Present-Based Framework

The first framework is designed for when past–present information on say m inputs
and s outputs of a set of n DMUs is available: that is, Xt,Y t =

xti, j,y
t
r, j ;i = 1,…,m,r = 1,…,s, j= 1,…n, , t = 1,…,T , where period T denotes

the present and periods 1 to T −1 represent the past. The proposed framework can
be summarized as follows.

Initialization step

Choose an appropriate DEA model for computing the efficiency scores of DMUs.

Use the chosen DEA model to estimate the DEA scores of DMUs based on the
present information, that is, (XT, YT). Let δTj , j= 1,…,n denote these scores –

in the iterative step, we gauge the confidence interval of δTj , j= 1,…,n using
replicas of historical data Xt,Y t , t = 1,…,T .

Choose an appropriate scheme, sayw, to weight the available information about the
past and the present.

Choose a confidence level 1−α.

Choose the number of replicas or samples to draw from the past, say B, along with
any properties that they should satisfy before being considered appropriate to
use for generating the sampling distributions of δTj , j = 1,…,n and computing
their confidence intervals.

Set an indicator variable, say property_status, that reflects whether or not the B
replicas satisfy the required properties to false;
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Iterative step

WHILE (property _ status =false) DO
{

Draw randomly and with replacement B replicas or samples
from the past–present, check whether they satisfy the
required properties and update property_status
accordingly.
IF property _ status =true THEN
{

Use the weighted version of the chosen DEA model to
estimate the DEA scores of the DMUs in each of the
B samples.
FOR j=1 TO n DO
{
Given the sampling distribution of δTj estimated above,

compute the confidence interval of δTj at the pre-

specified confidence level 1−α.
}

}
}

The generic nature of this framework requires a number of decisions to be made
about its implementation for any particular application. In what follows, we shall dis-
cuss how one might make such decisions.

29.2.1.1 Choice of a DEAModel In principle, one might choose from a relatively
wide range of DEA models; however, given the nature of this exercise, we recom-
mend the use of the non-oriented super-slacks-based measure model [12,13] under
the relevant returns-to-scale (RTS) set-up (e.g. constant, variable, increasing or
decreasing) as suggested by an RTS analysis of the dataset one is dealing with. This
model is an extension of the slacks-based measure (SBM) model of Tone [14] – see
also [15]. Although one could use other models (e.g. radial or oriented), our recom-
mendation is based on the following reasons. First, as a non-radial model, the SBM
model is appropriate for taking account of input and output slacks which affect effi-
ciency scores directly, whereas radial models are mainly concerned with proportional
changes in inputs or outputs. Thus, SBM scores are more sensitive to data variations
than the scores from radial models. Second, the non-oriented SBM model can deal
with input surpluses and output shortfalls within the same scheme. Finally, as most
DEA scores are bounded by unity (≤1 or ≥1), difficulties may be encountered in com-
paring efficient DMUs; therefore, we recommend using the super-efficiency version
of the non-oriented SBM as it removes such unity bounds.
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29.2.1.2 Choice of a Weighting Scheme for Past–Present Information Many
different weighting schemes can be used to weight information about the past and

the present, that is, xti, j , i= 1,…,m, j= 1…,n, t = 1,…,T and ytr, j ,r = 1,…,s,

j= 1…,n, t = 1,…,T . The choice of the weighting scheme should reflect the deci-
sion-makers’ perspective and knowledge of the application area with respect to
how the past should influence the present. In this chapter, we set the weights wt of
the periods t so that the weights increase with t; in sum, we assume that more recent
periods carry information that is more relevant to estimating efficiency scores in the
present time. Thus, the following Lucas number series (l1,…, lT), a variant of the
Fibonacci series, is a candidate, where lt + 2 = lt + lt + 1, t = 1,…,T −2, l1 = 1, l2 = 2.

Let L denote the sum of the series, that is, L=
T

t = 1

lt. We define the weights wt as

lt/L for t = 1,…,T . For example, when T = 5, we have w1 = 0 0526, w2 = 0 1053,
w3 = 0 1579, w4 = 0 2631 and w5 = 0 4211. Thus, the influence of past periods fades
away gradually as we approach the present.

29.2.1.3 Choice of the Replication Process and the Number of Replicas In this

chapter, we regard historical data Xt,Y t = xti, j,y
t
r, j ;i = 1,…,m,r = 1,…,s,

j= 1,…n, , t = 1,…,T as discrete events with probability wt and cumulative proba-

bility Wt =
t

k = 1

wk, t = 1,…,T . We propose a replication process based on bootstrap-

ping. First proposed by Efron [16], bootstrapping nowadays refers to a collection
of methods that resample randomly with replacement from the original sample. Thus,
in bootstrapping, the population is to the sample what the sample is to the boot-
strapped sample. Bootstrapping can be either parametric or non-parametric. Paramet-
ric bootstrapping is concerned with fitting a parametric model, which in our case
would be a theoretical distribution, to the data and sampling from such a fitted distri-
bution. This is a viable approach for large datasets where the distribution of each input
and each output can be approximated reasonably by a specific theoretical distribution.
However, when no theoretical distribution could serve as a good approximation to the
empirical one or when the dataset is small, non-parametric bootstrapping is the way to
proceed. Non-parametric bootstrapping does not make any assumptions except that
the sample distribution is a good approximation to the population distribution or,
equivalently, that the sample is representative of the population. Consequently, data-
sets with different features require different resampling methods that take account of
such features and thus generate representative replicas.

For a non-correlated and homoscedastic dataset, one could for example use smooth
bootstrapping or Bayesian bootstrapping, where smooth bootstrapping generates
replicas by adding small amounts of zero-centred random noise (usually normally dis-
tributed) to the resampled observations, whereas Bayesian bootstrapping generates
replicas by reweighting the initial dataset according to a randomly generated
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weighting scheme. In this chapter, we recommend the use of a variant of Bayesian
bootstrapping whereby the weighting scheme consists of weights wt based on the
Lucas number series presented above, because it is more appropriate when one is
resampling over a past–present time frame and more recent information is considered
more valuable. For a non-correlated and homoscedastic dataset, our data generation
process may be summarized as follows. First, a random number ρ is drawn from the
uniform distribution over the interval [0, 1], and then whichever cross-section data
(Xt, Yt) is such thatWt−1 < ρ ≤Wt is resampled, whereW0 = 0. This process is repeated
as many times as necessary to produce the required number of valid replicas or
samples.

On the other hand, for a correlated and/or heteroscedastic dataset, one could use a
block bootstrapping method, where replicas are generated by splitting the dataset
into non-overlapping blocks (simple block bootstrap) or into overlapping blocks
of the same or different lengths (moving block bootstrap), sampling such blocks
with replacement and then aligning them in the order in which they were drawn.
The main idea of all block bootstrap procedures consists of dividing the
data into blocks of consecutive observations of length ℓ, say Xt,Y t ,
Xt + 1,Y t + 1 , …, Xt + ℓ−1,Y t + ℓ−1 , and sampling the blocks randomly with replace-
ment from all possible blocks – for an overview of bootstrapping methods, the reader
is referred to [17]. The block bootstrap procedure with blocks of non-random length
can be summarized as follows:

Input: A block length ℓ N such that ℓ T .

Step 1:Draw block labels, say b1, b2, , bR+ 1, randomly and independently from
the set of labels, say L, where R= T ℓ , L= 1, ℓ + 1, 2ℓ + 1,…, R−1 ℓ + 1 if
non-overlapping blocks are considered, and L= 1, 2,…, T −ℓ + 1 if overlap-
ping blocks are considered.

Step 2: Lay the blocks Xbk ,Ybk , Xbk + 1,Ybk + 1 ,…, Xbk + ℓ−1,

Ybk + ℓ−1 , k = 1,…,R+ 1, end to end in the order sampled together and discard
the last ℓ−T +Rℓ observations to form a bootstrap series
X1,Y1 , X2,Y2 ,…, XT ,YT .

Output: A bootstrap sample X1,Y1 , X2,Y2 ,…, XT ,YT .

As to the choice of the number of replicas B, there is no universal rule except that
the larger the value of B, the more stable the results. However, one should take com-
putational requirements into consideration; therefore, in practice, one should keep
increasing the value of B until the simulation converges, that is, the results from a
run do not change when more iterations are added.

29.2.1.4 Choice of the Properties the Replicas Should Satisfy As replicas are
required to be representative of the dataset under consideration, one has to perform
a preliminary analysis of the data to find out about their features, namely, whether
or not the data are correlated and whether or not they are heteroscedastic, using
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statistical tests such as the ones used in [9]. For a correlated and/or heteroscedastic
dataset, the same relevant statistical tests have to be used to find whether or not
the replicas are representative. When the replicas are not representative, one has to
reject them and resample again. However, for a non-correlated and homoscedastic
dataset, one can use hypothesis tests or confidence intervals based on Fisher’s z trans-
formation to compare correlation patterns in past and present data. For example, for
data for the present time period, one can compute the correlation coefficient between
all pairs of inputs, outputs and input–output combinations over all DMUs. Then, one
computes their ζ% confidence intervals, for example 95%, using Fisher’s z transfor-
mation [18]. If the corresponding correlation of the resampled data is out of the range
of this interval, we discard this resampled data. Thus, inappropriate samples with
unbalanced inputs and outputs relative to the inputs and outputs for the last period
are excluded from resampling. The 95% confidence interval mentioned above is
not essential. The narrower the interval, the closer the resample will be to the data
for the last period.

29.2.2 Past–Present–Future Time-Based Framework

In the previous subsection, we utilized historical data Xt,Y t , t = 1,…,T to gauge the
confidence interval of the last period’s scores. In this section, we forecast the ‘future’,
namely XT + 1,YT + 1 , by using ‘past–present’ data Xt,Y t , t = 1,…,T , and forecast
the efficiency scores of the future DMUs along with their confidence intervals. In
order to avoid repetition, we shall discuss here how the past–present time-based
framework can be extended to the past–present–future context. First, we have to fore-
cast the future; to be more specific, given the observed historical data

xti, j,y
t
r, j , t = 1,…,T for a certain input i i= 1,…,m and output r r = 1,…,s of

a DMU j j= 1,…n , we wish to forecast xT + 1
i, j ,yT + 1

r, j . There are several forecasting

engines available for this purpose. Once these forecasts are obtained, we then estimate
the super-efficiency score of the ‘future’ DMU XT + 1,YT + 1 using the non-oriented
super-slacks-based measure model. Finally, given the past–present–future intertem-
poral dataset Xt,Y t , t = 1,…,T + 1, we apply the resampling scheme proposed in
the previous section and obtain confidence intervals.

29.3 AN APPLICATION TO HEALTHCARE

In this study, we utilized a dataset concerning 19 Japanese municipal hospitals from
2007 to 2009 to illustrate how the proposed framework works. There are approxi-
mately 1000 municipal hospitals in Japan and there is a large amount of heterogeneity
amongst them. We selected 19 municipal hospitals with more than 400 beds. There-
fore, this sample may represent larger acute-care hospitals with homogeneous func-
tions. The data were collected from the Annual Databook of Local Public Enterprises
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published by the Ministry of Internal Affairs and Communications. For illustration
purposes, we chose two inputs for this study, namely, Doctor ((I) Doc) and Nurse
((I) Nur), and two outputs, namely, Inpatient ((O) In) and Outpatient ((O) Out).
Table 29.1 shows the data, and Table 29.2 shows the main statistics. The data are
the yearly averages of the fiscal-year data, as we had no daily or monthly data; the
Japanese government’s fiscal year begins on 1 April and ends on 31 March. As
can be seen, the data for the inputs and outputs fluctuate between years, which sug-
gests the need for an analysis of data variation.

We solved the non-oriented super-slacks-based measure model year by year and
obtained the super-efficiency scores shown in Table 29.3, along with their graphical
representation shown in Figure 29.1. As can be seen, the scores fluctuate between
years. Once again, this suggests the need for an analysis of data variation. If we
had daily data, this could be done. However, we only had fiscal-year data and hence
we needed to resample the data in order to gauge the confidence interval of the effi-
ciency scores. So, we merged the datasets for all years and evaluated the efficiency
scores relative to 57 (=19 × 3) DMUs, as shown in Table 29.4 and Figure 29.2. Com-
paring the averages for these three years, we found that the average of 0.820 for the
year 2007 was better than those for 2008 (0.763) and 2009 (0.732). We also performed
a non-parametric Wilcoxon rank-sum test and the results indicated that the null
hypothesis, that is, that 2007 and 2008 had the same distribution of efficiency scores,
was rejected at a significance level of 1%; therefore, 2007 outperforms 2008. Simi-
larly, 2007 outperforms 2009. However, we cannot see a significant difference
between 2008 and 2009.

29.3.1 Illustration of the Past–Present Framework

We applied the proposed procedure to the historical data listed in Table 29.1 for the
19 hospitals for the two years 2008–2009. We excluded the data for the year 2007,
because they belong to a different population from the data for 2009 (see
Table 29.4 and Figure 29.2). Note that historical data may be affected by accidental
or exceptional events, for example oil shocks, earthquakes, financial crises, environ-
mental changes and so forth. We must exclude these effects from the data. Also, if
some data are subject to age depreciation, we must adjust them properly. In this study,
we used Lucas weights for the past and present data. However, we could have used
other weighting schemes (e.g. exponential) instead.

Table 29.5 shows the correlation matrix of the observed year 2009 data shown in
Table 29.1, and the Fisher 95% confidence intervals are shown in Table 29.6. For
example, the correlation coefficient between Doc and Outpatient is 0.5178, and its
95% lower and upper bounds are 0.0832 and 0.7869, respectively. In addition, we
report the Fisher 20% confidence lower and upper bounds in Table 29.7. These inter-
vals are considerably narrowed down compared with the Fisher 95% case.

Table 29.8 presents results obtained with 500 replicas, where the column ‘DEA’
shows the efficiency scores for the last period (2009) and ‘Average’ indicates the
average score over the 500 replicas. The column ‘Rank’ shows the ranking of the
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TABLE 29.1 The data.

2007 2008 2009

DMU (I) Doc (I) Nur (O) In (O) Out (I) Doc (I) Nur (O) In (O) Out (I) Doc (I) Nur (O) In (O) Out

H1 108 433 606 1239 114 453 617 1244 116 545 603 1295
H2 125 448 642 1363 133 499 638 1310 136 482 618 1300
H3 118 567 585 1072 121 600 569 1051 125 616 561 1071
H4 138 541 699 1210 138 531 704 1194 140 554 679 1182
H5 138 613 653 1195 142 616 644 1147 137 633 622 1147
H6 99 569 716 1533 106 592 701 1478 109 613 651 1457
H7 94 498 540 1065 103 494 551 1067 101 491 540 1067
H8 106 461 496 1051 118 490 504 1033 133 479 505 1081
H9 109 450 483 851 119 483 487 877 121 501 486 904
H10 102 540 581 1268 106 558 565 1278 148 611 586 1321
H11 92 495 490 1217 101 497 501 1146 102 501 479 1113
H12 148 721 771 1637 147 710 723 1657 158 737 743 1714
H13 103 593 679 2011 106 673 642 1883 120 697 634 1872
H14 101 500 613 1868 110 519 617 1894 116 517 623 2009
H15 159 793 964 2224 160 801 906 2148 166 817 877 2155
H16 77 354 410 1047 68 359 391 916 81 378 406 897
H17 111 663 717 1674 112 645 702 1774 112 663 709 1733
H18 62 388 480 913 64 385 467 907 63 381 463 872
H19 98 323 508 1192 95 314 483 1018 95 320 490 1034



TABLE 29.2 Main statistics.

2007 2008 2009

(I) Doc (I) Nur (O) In (O) Out (I) Doc (I) Nur (O) In (O) Out (I) Doc (I) Nur (O) In (O) Out

Min 62 323 410 851 64 314 391 877 63 320 406 872
Max 159 793 964 2224 160 801 906 2148 166 817 877 2155
Avg 110 524 612 1349 114 538 601 1317 120 555 593 1328
StdDev 23.75 120.41 130.51 378.24 24.15 121.43 119.57 380.07 25.58 126.78 113.05 389.49



average scores.We applied a Fisher 95% threshold and found no out-of-range samples.
Figure 29.3 shows the 95% confidence intervals of the DEA scores for the last period
(2009) along with the average scores. The average of the 95% confidence intervals for
all hospitals is 0.10.

In the Fisher 95% (ζ95) case, we found no discarded samples, whereas in the Fisher
20% (ζ20) case, 1945 samples were discarded before 500 replicas were obtained.

TABLE 29.3 Super-SBM scores by cross-section (year).

2007 2008 2009

H1 0.883 0.905 0.754
H2 0.875 0.801 0.779
H3 0.623 0.615 0.592
H4 0.700 0.765 0.680
H5 0.619 0.620 0.604
H6 1.004 0.942 0.848
H7 0.719 0.732 0.725
H8 0.676 0.651 0.631
H9 0.588 0.583 0.568
H10 0.758 0.764 0.631
H11 0.757 0.740 0.698
H12 0.711 0.741 0.714
H13 1.034 1.025 0.831
H14 1.039 1.107 1.145
H15 0.858 0.857 0.811
H16 0.831 0.847 0.742
H17 0.847 0.948 0.937
H18 1.034 1.050 1.074
H19 1.071 1.072 1.100

Avg 0.822 0.830 0.782
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Figure 29.1 Super-SBM scores by cross-section (year).
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Table 29.9 shows a comparisons of the scores calculated with both thresholds, where
we cannot see significant differences.

Note that one resample produces one efficiency score for each DMU. We com-
pared results for 500 and 5000 replicas and obtained the 95% confidence intervals

TABLE 29.4 Super-SBM scores for panel data (all years).

2007 2008 2009

H1 0.883 0.833 0.727
H2 0.875 0.750 0.745
H3 0.623 0.584 0.571
H4 0.700 0.712 0.654
H5 0.619 0.590 0.584
H6 1.004 0.860 0.783
H7 0.719 0.696 0.699
H8 0.676 0.620 0.613
H9 0.588 0.556 0.551
H10 0.758 0.726 0.610
H11 0.757 0.703 0.672
H12 0.711 0.704 0.688
H13 1.034 0.871 0.794
H14 1.024 0.950 1.020
H15 0.858 0.812 0.779
H16 0.831 0.798 0.715
H17 0.847 0.872 0.855
H18 1.028 0.929 0.922
H19 1.042 0.920 0.924

Avg. 0.820 0.763 0.732
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Figure 29.2 Super-SBM scores for panel data (all years).
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as shown in Table 29.10. As can be seen, the difference is negligibly small. So, 500
replicas may be acceptable in this case. However, the number of replicas depends on
the numbers of inputs, outputs and DMUs. Hence, we need to check the variations in
the scores by increasing the number of replicas.

As to the comparison of individual hospitals, on looking at Hospitals 1 and 2 in
Table 29.8 and Figure 29.3, it is difficult to judge which hospital exhibits better per-
formance. In fact, the 2009 score and the average score are reversed (H1 (2009) =
0.754, H1 (average) = 0.8047, H2 (2009) = 0.7789, H2 (average) = 0.7865), and the
confidence intervals overlap. We applied the Wilcoxon rank-sum test and found that
Hospital 1 outperforms Hospital 2 at a significance level of 1%. In this way, we can
compare individual hospitals by using efficiency measurements.

Finally, we would like to draw the reader’s attention to the fact that, in some appli-
cations, one might put weights on the inputs and outputs. If the costs for inputs and
incomes from outputs are available, we can evaluate the comparative cost

TABLE 29.5 Correlation matrix.

Doc Nurse Inpatient Outpatient

Doc 1 0.7453 0.7372 0.5178
Nurse 0.7453 1 0.8610 0.7387
Inpatient 0.7372 0.8610 1 0.8264
Outpatient 0.5178 0.7387 0.8264 1

TABLE 29.6 Fisher 95% confidence lower/upper bounds for correlation matrix.

Lower bounds

Doc Nurse Inpatient Outpatient

Upper bounds Doc 0.4400 0.4255 0.0832
Nurse 0.8961 0.6681 0.4281
Inpatient 0.8926 0.9455 0.5959
Outpatient 0.7869 0.8932 0.9311

TABLE 29.7 Fisher 20% confidence lower/upper bounds for correlation matrix.

Lower bounds

Doc Nurse Inpatient Outpatient

Upper bounds Doc 0.71578 0.70695 0.46998
Nurse 0.77214 0.8437 0.70854
Inpatient 0.76482 0.87652 0.80525
Outpatient 0.56266 0.76614 0.84547
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performance of DMUs. In the absence of such information, we can instead put weights
on the inputs and outputs. For example, the weights of Doc andNurse may be assumed
to be in the range 5 to 1 (on average), and those of Outpatient and Inpatient in the range
1 to 10 (on average). We can solve this problem via the weighted-SBM model, which
should enhance the reliability and applicability of our approach.

TABLE 29.8 DEA scores and confidence intervals obtained with 500 replicas.

97.50% DEA (2009) Average 2.50% Rank (avg)

H1 0.9228 0.7540 0.8047 0.7240 8
H2 0.8279 0.7787 0.7865 0.7415 9
H3 0.6285 0.5918 0.5999 0.5730 18
H4 0.7574 0.6802 0.7090 0.6694 14
H5 0.6375 0.6042 0.6088 0.5792 17
H6 0.9384 0.8475 0.8758 0.8159 6
H7 0.7620 0.7250 0.7284 0.6998 11
H8 0.6902 0.6311 0.6365 0.6002 16
H9 0.6030 0.5681 0.5732 0.5452 19
H10 0.7963 0.6308 0.6818 0.6032 15
H11 0.7433 0.6985 0.7116 0.6808 13
H12 0.7684 0.7140 0.7237 0.6849 12
H13 1.0465 0.8310 0.8978 0.8081 5
H14 1.1564 1.1448 1.1329 1.1037 1
H15 0.8692 0.8107 0.8277 0.7886 7
H16 0.8792 0.7418 0.7782 0.7140 10
H17 1.0142 0.9368 0.9542 0.9076 4
H18 1.0837 1.0745 1.0708 1.0497 3
H19 1.1194 1.0996 1.0897 1.0618 2
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Figure 29.3 95% confidence intervals.
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TABLE 29.9 Comparison of Fisher 20% (ζ20) and 95% (ζ95) thresholds.

ζ20 97.50% DEA 2.50% ζ95 97.50% DEA 2.50% ζ20 − ζ95, 97.50% ζ20 − ζ95, 2.50%

H1 0.9061 0.7540 0.724 H1 0.9228 0.754 0.724 −0.017 0.000
H2 0.8247 0.7787 0.7419 H2 0.8279 0.7787 0.7415 −0.003 0.000
H3 0.6279 0.5918 0.5757 H3 0.6285 0.5918 0.573 −0.001 0.003
H4 0.7476 0.6802 0.6684 H4 0.7574 0.6802 0.6694 −0.010 −0.001
H5 0.6375 0.6042 0.5832 H5 0.6375 0.6042 0.5792 0.000 0.004
H6 0.9382 0.8475 0.8168 H6 0.9384 0.8475 0.8159 0.000 0.001
H7 0.7611 0.7250 0.6989 H7 0.7620 0.7250 0.6998 −0.001 −0.001
H8 0.6905 0.6311 0.6011 H8 0.6902 0.6311 0.6002 0.000 0.001
H9 0.6023 0.5681 0.5467 H9 0.6030 0.5681 0.5452 −0.001 0.001
H10 0.7903 0.6308 0.6044 H10 0.7963 0.6308 0.6032 −0.006 0.001
H11 0.7469 0.6985 0.6808 H11 0.7433 0.6985 0.6808 0.004 0.000
H12 0.7670 0.7140 0.6828 H12 0.7684 0.7140 0.6849 −0.001 −0.002
H13 1.0445 0.831 0.8081 H13 1.0465 0.831 0.8081 −0.002 0.000
H14 1.1568 1.1448 1.1041 H14 1.1564 1.1448 1.1037 0.000 0.000
H15 0.8670, 0.8107 0.7886 H15 0.8692 0.8107 0.7886 −0.002 0.000
H16 0.8747 0.7418 0.7222 H16 0.8792 0.7418 0.7140 −0.004 0.008
H17 1.0121 0.9368 0.9058 H17 1.0142 0.9368 0.9076 −0.002 −0.002
H18 1.0837 1.0745 1.0491 H18 1.0837 1.0745 1.0497 0.000 −0.001
H19 1.1195 1.0996 1.063 H19 1.1194 1.0996 1.0618 0.000 0.001



TABLE 29.10 Comparison of 5000 and 500 replicas (Fisher 95%).

500 replicas 5000 replicas Difference

500 97.50% DEA 2.50% 5000 97.50% DEA 2.50% 97.50% 2.50%

H1 0.9228 0.7540 0.724 H1 0.9184 0.7540 0.7227 0.0044 0.0013
H2 0.8279 0.7787 0.7415 H2 0.8266 0.7787 0.7412 0.0013 0.0003
H3 0.6285 0.5918 0.573 H3 0.6291 0.5918 0.5719 −0.0006 0.0011
H4 0.7574 0.6802 0.6694 H4 0.7581 0.6802 0.6679 −0.0007 0.0015
H5 0.6375 0.6042 0.5792 H5 0.6379 0.6042 0.5801 −0.0004 −0.0009
H6 0.9384 0.8475 0.8159 H6 0.9423 0.8475 0.8164 −0.0039 −0.0005
H7 0.7620 0.7250 0.6998 H7 0.7615 0.7250 0.6985 0.0005 0.0013
H8 0.6902 0.6311 0.6002 H8 0.6907 0.6311 0.5998 −0.0005 0.0004
H9 0.6030 0.5681 0.5452 H9 0.6030 0.5681 0.5456 0 −0.0004
H10 0.7963 0.6308 0.6032 H10 0.7942 0.6308 0.6055 0.0021 −0.0023
H11 0.7433 0.6985 0.6808 H11 0.7447 0.6985 0.6808 −0.0014 0
H12 0.7684 0.7140 0.6849 H12 0.7684 0.7140 0.6828 0 0.0021
H13 1.0465 0.8310 0.8081 H13 1.0460 0.8310 0.8081 0.0005 0
H14 1.1564 1.1448 1.1037 H14 1.1565 1.1448 1.1026 −1E − 04 0.0011
H15 0.8692 0.8107 0.7886 H15 0.8726 0.8107 0.7886 −0.0034 0
H16 0.8792 0.7418 0.714 H16 0.8785 0.7418 0.7198 0.0007 −0.0058
H17 1.0142 0.9368 0.9076 H17 1.0141 0.9368 0.9051 1E − 04 0.0025
H18 1.0837 1.0745 1.0497 H18 1.0837 1.0745 1.0459 0 0.0038
H19 1.1194 1.0996 1.0618 H19 1.1193 1.0996 1.0618 1E − 04 0

Max 0.0044 0.0038
Min −0.0039 −0.0058



29.3.2 Illustration of the Past–Present–Future Framework

Here, we present numerical results for the past–present–future framework. In this case
we regard 2007–2008 as the past–present and 2009 as the future. In our application,
we used three simple prediction models to forecast the future, namely, a linear-trend
analysis model, a weighted average model with Lucas weights and a hybrid model that
consists of averaging the predictions of the latter two models.

Table 29.11 reports the forecasts for 2009 obtained from the linear-trend analysis
model. Table 29.12 shows the forecast DEA scores and confidence intervals along with
the actual super-SBM scores for 2009. Figure 29.4 shows the 97.5% and 2.5% confi-
dence intervals, the forecast scores, and the actual scores. It can be observed that, out of
the 19 hospitals, the actual 2009 scores of 16 are included in the 95% confidence inter-
val. The average of forecast minus actual over the 19 hospitals was 0.063 (6.3%).

Table 29.13 reports 2009 forecasts obtained from the weighted average model with
Lucas weights, and Table 29.14 shows the actuals and the forecasts of the 2009 scores
along with the confidence intervals. In this case, only four hospitals are included in the
95% confidence interval. The average of forecast minus actual over the 19 hospitals is
0.056 (5.6%). Although we have not reported the results from the average of the trend
and Lucas cases, the results are similar to those for the Lucas case. We compared the
number of fails for the three forecast models where the actual score was outside
the 97.5% and 2.5% intervals. The results are shown in Table 29.15. ‘Trend’ gives
the best performance among the three in this example.

TABLE 29.11 2009 forecasts: linear trend model.

DMU (I) Doc (I) Nurse (O) Inpatient (O) Outpatient

H1 120 473 628 1249
H2 141 550 634 1257
H3 124 633 553 1030
H4 138 521 709 1178
H5 146 619 635 1099
H6 113 615 686 1423
H7 112 490 562 1069
H8 130 519 512 1015
H9 129 516 491 903
H10 110 576 549 1288
H11 110 499 512 1075
H12 146 699 675 1677
H13 109 753 605 1755
H14 119 538 621 1920
H15 161 809 848 2072
H16 59 364 372 785
H17 113 627 687 1874
H18 66 382 454 901
H19 92 305 458 844
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29.4 CONCLUSION

DEA, originated by Charnes et al. [1], is a non-parametric mathematical programming
methodology that deals directly with input/output data. Using the data, DEA can eval-
uate the relative efficiency of DMUs and propose a plan to improve the inputs/outputs
of inefficient DMUs. This function is difficult to achieve with similar models using

TABLE 29.12 Forecast DEA scores, actual (2009) scores and confidence intervals:
forecasts by linear trend model.

DMU 97.50% Forecast (2009) Actual (2009) 2.50%

H1 1.0237 0.9338 0.754 0.8245
H2 1.0027 0.787 0.7787 0.722
H3 0.6649 0.6148 0.5918 0.5641
H4 0.8816 0.8581 0.6802 0.7319
H5 0.6814 0.6421 0.6042 0.5771
H6 1.0213 0.8768 0.8475 0.8062
H7 0.8292 0.7586 0.7250 0.6945
H8 0.7641 0.6725 0.6311 0.6066
H9 0.6983 0.6213 0.5681 0.539
H10 0.8422 0.7781 0.6308 0.7111
H11 0.8425 0.7206 0.6985 0.6679
H12 0.8136 0.7716 0.714 0.7068
H13 1.0814 1 0.831 0.8276
H14 1.1575 1.0909 1.1448 1.0281
H15 0.9467 0.8541 0.8107 0.7902
H16 1.0376 0.9444 0.7418 0.7258
H17 1.0387 1.0348 0.9368 0.8982
H18 1.0899 1.0537 1.0745 0.9692
H19 1.1354 1.0594 1.0996 1.0113
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Figure 29.4 Confidence intervals, forecast scores and actual 2009 scores: forecasts by linear
trend model.
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TABLE 29.13 2009 forecasts: Lucas-weighted average model.

DMU (I) Doc (I) Nurse (O) Inpatient (O) Outpatient

H1 112 446 613 1242
H2 130 482 639 1328
H3 120 589 574 1058
H4 138 534 702 1199
H5 141 615 647 1163
H6 104 584 706 1496
H7 100 495 547 1066
H8 114 480 501 1039
H9 116 472 486 868
H10 105 552 570 1275
H11 98 496 497 1170
H12 147 714 739 1650
H13 105 646 654 1926
H14 107 513 616 1885
H15 160 798 925 2173
H16 71 357 397 960
H17 112 651 707 1741
H18 63 386 471 909
H19 96 317 491 1076

TABLE 29.14 DEA score and confidence interval forecasts: Lucas-weighted
average model.

97.50% Forecast (2009) Actual (2009) 2.50%

H1 1.0001 0.8974 0.7540 0.8469
H2 0.9329 0.8527 0.7787 0.797
H3 0.6448 0.6218 0.5918 0.5987
H4 0.7855 0.7618 0.6802 0.7303
H5 0.6584 0.6400 0.6042 0.6200
H6 1.0101 0.9604 0.8475 0.9123
H7 0.7813 0.7347 0.7250 0.7006
H8 0.7201 0.6867 0.6311 0.6596
H9 0.6578 0.6177 0.5681 0.5894
H10 0.8109 0.7829 0.6308 0.7441
H11 0.8101 0.7573 0.6985 0.7171
H12 0.7623 0.7336 0.7140 0.712
H13 1.0590 1.0286 0.8310 1
H14 1.1306 1.0868 1.1448 1.0409
H15 0.9120 0.8665 0.8107 0.8263
H16 0.9296 0.8488 0.7418 0.7869
H17 0.9731 0.9427 0.9368 0.8984
H18 1.0686 1.0443 1.0745 1.0115
H19 1.1075 1.0769 1.0996 1.0417
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statistics, for example stochastic frontier analysis. DEA scores are not absolute but
relative. They depend on the choice of inputs, outputs and DMUs as well as on the
choice of the model for assessing DMUs. DEA scores are subject to change, and thus
data variations should be taken into account in DEA. This subject should be discussed
from the perspective of itemized input/output variations. From this point of view, we
have proposed two models. The first model utilizes historical data for the data gen-
eration process, and hence this model resamples data from a discrete distribution.
It is expected that, if the historical data are widely volatile, the confidence intervals
will prove to be very wide, even when the Lucas weights decrease in the past–present
periods. In such cases, application of the moving-average method is recommended.
Rolling simulations will be useful for deciding on the choice of the length of the his-
torical span. However, too large an amount of past-year data is not recommended,
because environments such as healthcare service systems change rapidly. The second
model aims to forecast the future efficiency and its confidence intervals. For forecast-
ing, we used three models, namely, a linear trend model, a weighted average and the
average of the results of the latter two models. On this subject, the work of Xu and
Ouenniche [19,20] may be useful for the selection of forecasting models, and that
of Chang et al. [21] may provide useful information about the estimation of pessimis-
tic and optimistic probabilities in forecasts of future input/output values.3
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30.1 INTRODUCTION

Companies in most, if not all, industries are operating in a volatile world. The pace of
change in various business environments has been nothing short of remarkable. There-
fore, companies can expect to experience a sustained level of volatility over the next
few years. For example, crude oil prices and currency exchange rates have been exhi-
biting high volatility recently, due to both natural and human causes, and will continue
to do so. It is evident that all companies, regardless of the industry they operate in, are
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doi.10.1016/j.ejor.2016.04.005 [1], with permission from Elsevier Science.
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inevitably affected to varying degrees by crude oil prices and/or currency exchange
rates. Of particular interest in this chapter are the industries that are highly sensitive
to macroeconomic indices such as crude oil prices and currency exchange rates. That
is, the entirety of company performance in those industries depends tightly on the
future volatility of macroeconomic indices. It follows that to thoroughly evaluate such
companies’ performance, an evaluator must assess not only their past and present
records but also their future potential. Obviously, it is very challenging to evaluate
a company’s performance when it involves a past–present–future time span. Hence,
the research presented in this chapter aims to tackle the problem of how to fully eval-
uate company performance in highly volatile future environments.

Data envelopment analysis (DEA) has been well recognized as a powerful evalu-
ation tool, and has been applied to a wide variety of practical evaluation applications.
It is a non-parametric linear programming technique that measures the relative effi-
ciency of decision-making units (DMUs) by capturing the interaction among a com-
mon set of multiple inputs and outputs. It should be noted that conventional DEA
models are designed for measuring the productive efficiency of DMUs based merely
on historical data. However, such past results are not sufficient for evaluating a
DMU’s performance in highly volatile operating environments such as those which
include highly volatile crude oil prices and currency exchange rates. It is evident that,
in such environments, if a DMU’s future performance is ignored in the evaluation
process when it is sensitive to crude oil price volatility and/or currency fluctuations,
then its whole performance may be seriously distorted. Hence, performance evalua-
tion techniques that explicitly take future volatility into account are unavoidable and
indispensable in practice.

However, despite its importance, to the best of our knowledge, there have been no
DEA models proposed in the literature that take future performance volatility into
account. We believe that the work of Chang et al. [2] is the only research study so
far that simultaneously takes past, present and future performance indicators into
account. Their proposed DEAmodels are, however, most suitable for conducting per-
formance evaluations of DMUs in which future potential, for example R&D expenses,
plays a vital role in their competitive success. That is, those DEA models are not
designed for evaluating a DMU’s performance that is sensitive to macroeconomic
indices such as crude oil prices and currency exchange rates, as mentioned above.
Therefore, the present research study seeks to develop a new system of DEA models
that incorporate the DMUs’ uncertain future performance, and thus can be applied to
fully measure the efficiency of DMUs in volatile environments. To empirically dem-
onstrate the advantages of the proposed new DEA models over conventional DEA
models that ignore future efficiency, our proposed DEA models have been applied
to evaluate the performance of high-tech IC design companies in Taiwan.

The remainder of this chapter is organized as follows. Section 30.2 depicts the gen-
eralized dynamic evaluation structures used. Section 30.3 introduces the future perfor-
mance forecasts. In Section 30.4, generalized dynamic DEA models are constructed,
and different types of efficiency are defined. Section 30.5 describes the empirical study
which was conducted. Section 30.6 presents conclusions based on this research.
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30.2 GENERALIZED DYNAMIC EVALUATION STRUCTURES

Consider a past–present–future intertemporal evaluation structure that consists of
T + k terms 1 2,…,T + k , where the terms 1,…,T −1 , T and (T + 1,…,T + k),
represent the past, present and future time structures, respectively. Figure 30.1 demon-
strates such an evaluation structure. As shown in the figure, the past and present terms
(1, 2,…, T) exhibit a typical dynamic structure; however, the future terms
T + 1,…,T + k show a non-typical dynamic structure. Therefore, this past–pres-
ent–future intertemporal evaluation structure is referred to as a generalized dynamic
structure in this chapter. In addition, it should be noted that this evaluation structure is
an integration of three different single-term structures that correspond to term
t t = 1,…,T , term T + 1 and term l l= T + 2,…,T + k , respectively. Therefore, in
what follows, we first introduce the three single-term evaluation structures. Then,
based on these single-term structures, we construct the complete evaluation structure.
However, to begin with, we need to define the carry-over activities between two con-
secutive terms that play a critical role in constructing DEAmodels that can measure an
efficiency that changes over time. Here, we classify the carry-overs into two types to
explicitly reflect their actual characteristics: discretionary (free) and non-discretionary
(fixed) carry-overs. DMUs can freely handle free carry-overs such as current assets.
By contrast, DMUs cannot control fixed carry-overs such as non-current assets. Note
that in the generalized dynamic structure, there are carry-overs between pairs of terms
t, t + 1 , t = 1,…,T ; however, there are no intermediate carry-overs between pairs of
future terms t, t + 1 , t = 1,…,T , T + k−1 , owing to the difficulty of forecasting the
related values.

First, the evaluation structure with respect to term t t = 1,…,T is associated with
an input set t, output set t, incoming carry-over t and outgoing carry-over t; however, it
should be noted that the incoming carry-over 1 from the initial term 0 is usually
unknown and is thus omitted (see [3]). Second, the non-typical dynamic evaluation
structure with respect to the future term T + 1 comprises h subterms, denoted by
T + 1 l , l= 1,…,h. That is, it is assumed that there are h possible states associated
with future term T + 1; for example, there could be h possible crude oil prices or
US dollar currency exchange rates in term T + 1. Each subterm T + 1 l l= 1,…,h
is associated with a transition probability (weight) from the present term T to the sub-

term T + 1 l denoted by pT + 1
l , such that

k

l= 1

pT + 1
l = 1. How to determine

pT + 1
l , l= 1,…,h is detailed in the next section. In addition, each subterm
T + 1 l l = 1,…,h is associated with an input set T + 1 l , output set T + 1 l and
incoming carry-over T + 1 l with weight pT + 1

l . Third, the structure associated with
the future terms T + 2,T + 3,…,T + k is slightly different from that which is associated
with the future term T + 1. More precisely, the only difference between the two struc-
tures is that there are no incoming carry-over activities with respect to the future terms
T + 2,T + 3,…,T + k because of the difficulty of forecasting their values. However,
two consecutive terms in the future terms T + 2,T + 3,…,T + k are still connected
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Figure 30.1 Generalized dynamic evaluation structure.



by the conditional probability of occurrence. That is, there is a transition probability
(weight) from subterm T + g z z= 1,…,h of the future term T + g g= 1,…,k−1 to

subterm T + g + 1 l l= 1,…,h of the future term T + g + 1 , denoted by pT + g+ 1
zl .

How to determine these transition probabilities is also detailed in the next section.
Furthermore, each subterm T + g l l= 1,…,h of the future term T + g g= 2,…,k
is associated with an input set T + g l and output set T + g l with weight
h

z= 1

pT + g
zl . Note that the assumption here that there are also h possible states associated

with the future terms T + 2,T + 3,…,T + k is just for convenience of presentation, and
is not a requirement.

Lastly, Figure 30.1 demonstrates the complete generalized dynamic evaluation struc-
ture, displaying a time spanning past, present and future periods that are constructed
based on the three single-term evaluation structures described above. It is evident that
DEA models building on the generalized dynamic structure shown in Figure 30.1 can
more accurately evaluate a DMU’s performance by explicitly taking its forecasted
future performance into account. However, to our knowledge, most of the DEAmodels,
if not all, that have been proposed in the literature do not deal with such a concern.

30.3 FUTURE PERFORMANCE FORECASTS

Notice that the forecasted inputs (e.g. cost of sales) and outputs (e.g. net revenue)
depicted in Figure 30.1 are actually functions of variables (e.g. crude oil prices and
currency exchange rates) that are sensitive to highly volatile operating environments.
It is quite possible, and common, that different DMUs will have different degrees of
sensitivity to the variables. Therefore, in such circumstances, to completely evaluate
the DMUs, the evaluator must take future performance volatility into account, which
is exactly the major point of this research. In addition, each of these variables, for
example currency exchange rates, may be measured in several different currencies.
For example, a DMUmay procure resources (input costs) from and sell products (out-
put revenues) to different countries so that it faces different currencies and thus vary-
ing currency exchange rates. Theoretically, a variable that involves n different
currencies should be treated as n different variables. However, if this is done, the num-
bers of inputs and outputs, and thus the size of the generalized dynamic evaluation
structure shown in Figure 30.1, will increase exponentially and dramatically. It fol-
lows that the differentiation power of the corresponding generalized dynamic DEA
models will decrease significantly. Hence, in this instance, we use a single currency
to measure the variables by converting other currencies into that currency. For exam-
ple, we can consider crude oil prices or currency exchange rates based on US dollars
by converting other foreign currencies into US dollars.

There exist a variety of forecasting methods to predict the values of the above vari-
ables [4]. However, none of them can be considered to be superior to the others in
every respect (see e.g. [5, 6]). Nonetheless, there are some well-accepted principles,
such as that short-term forecasts are generally more accurate than medium- and long-
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term ones; that aggregate forecasts are generally more precise than single ones; and
that simple methods are preferable to complex methods because they are easier to
understand and explain. It should be noted that the development and the choice of
forecasting techniques are themselves big research areas, which are not the focus
of this research. This study utilized the moving average method (see e.g. [4]) to esti-
mate the future performance forecasts because the moving average method is one of
the most well-known and established forecasting methods in practice [5,7]. Further-
more, this research directly applied data from public-domain resources, which gener-
ally do not provide detailed information. Under such circumstances, the concept of
entropy in information theory offers a feasible way to measure the uncertainty in
the probability distributions of random variables (the future inputs and outputs in this
research) (see e.g. [8]). Kapur [8, p. 11] stated that ‘We should take all given infor-
mation into account and we should scrupulously avoid taking into account any infor-
mation that is not given to us.’ This leads to the renowned maximum entropy
principle, which ‘aims to give us as uniform or as broad a distribution as possible,
subject to the constraints being satisfied’ [8, p. 11]. Moreover, based on data availa-
bility, future inputs and outputs were treated in the present study as discrete random
variables that take a finite number of values.

The above analysis suggests that we should utilize the maximum entropy approach
to determine pT + 1

l , the transition probability from the present term T to the subterm

T + 1 l of the future term T + 1, and pT + g+ 1
zl , the transition probability from the sub-

term T + g z of the future term T + g to the subterm T + g + 1 l of the future term
T + g+ 1 , which were described in the preceding section. First, the determination of
pT + 1
l , l= 1,…,h according to the principle of maximum entropy can be formulated as
the following mathematical problem (P1):

P1

max −
h

l= 1

pT + 1
l ln pT + 1

l

s t
h

l = 1

pT + 1
l qT + 1

l =ET + 1

h

l= 1

pT + 1
l = 1

pT + 1
l ≥ 0 l= 1,…,h

where qT + 1
l denotes the forecast of the target variable q (e.g. crude oil prices or cur-

rency exchange rates) associated with subterm T + 1 l of the future term T + 1, and
ET + 1 denotes the expected value of q in the future term T + 1. ET + 1 is used here to
confine the values of pT + 1

l , l = 1,…,h. The reason for adding the expected-value con-
straint in problem (P1) is that, as indicated by Hyndman and Athanasopoulos [9],
‘When we talk about the “forecast”, we usually mean the average value of the forecast
distribution’. That is, after the forecasting process described above, the expected value
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ET + 1 is obtained and fixed. Hence, the expected-value constraint must be added into
problem (P1). Note also that, in the absence of the expected-value constraint, the solu-
tion to the mathematical problem (P1) is the uniform probability distribution. There-
fore, the maximum entropy principle can be considered as an extension of Laplace’s
principle of insufficient reasoning (see e.g. [10]). Next, the problem of determining
ptzl,z, l= 1,…,h t = T + 2,…,T + k according to the principle of maximum entropy
has the following mathematical form (P2):

P2

max −
h

l= 1

h

z = 1

ptzl ln ptzl

s t
h

l= 1

ptzl = 1 z = 1,…,h

h

z= 1

ptzl h= ptl l= 1,…,h

h

l= 1

ptlq
t
l =E

t

qtl −q
t−1
z − qtl −q

t−1
m ptzl−p

t
ml ≤ 0 l,z,m = 1,…,h

ptzl ≥ 0 z, l= 1,…,h

ptl ≥ 0 l= 1,…,h

where qtl denotes the forecast of the target variable q (e.g. the crude oil price or a
foreign exchange rate) associated with subterm t(l) of the future term
t t = T + 2,…,T + k , and Et denotes the expected value of q in the future term t that
is known from public domain resources. In addition, the fourth set of constraints
ensure that if qtl is closer to qt−1z than to qt−1m , then the transition probability ptzl is
no less than the transition probability ptml. That is, the constraints ensure that the deci-
sions made in term t should take the information in term t−1 into account. Note that
the mathematical problems (P1) and (P2) are concave programming problems with
linear constraints, which can be solved directly using commercial optimization solvers
such as LINGO.We refer the reader to, for example, Kapur [8] and Fang et al. [10] for
methods for solving entropy optimization problems.

In addition, let pT + 1
l , l= 1,…,h and ptzl,z, l= 1,…,h, t = T + 2,…,T + k define the

solutions after solving problems (P1) and (P2), respectively. If, however, the deci-
sion-makers have their own subjective weight perception of pT + 1

l , l = 1,…,h and
ptzl,z, l= 1,…,h t = T + 2,…,T + k denoted, respectively, by ϑT + 1

l , l= 1,…,h and
ϕt
zl,z, l= 1,…,h t = T + 2,…,T + k , then they can modify the solution values by using

the following formulas, which are similar to the one proposed by Yoon and
Hwang [11].
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First, with respect to pT + 1
l , l= 1,…,h,

wT + 1
l =

pT + 1
l ϑT + 1

l
h

i= 1

pT + 1
i ϑT + 1

i

, l= 1,…,h

Then, with respect to ptzl,z, l = 1,…,h t =T + 2,…,T + k ,

wt
zl =

ptzl ϕ
t
zl

h

j= 1

ptzj ϕ
t
zj

, z, l= 1,…,h

wt
l =

h

z= 1

wt
zl h, l= 1,…,h

It follows that wt
l can be used to denote the weight associated with subterm t(l) of

every future term t t =T + 1,…,T + k . We note, however, that decision-makers
may have different subjective weight perceptions of inputs and outputs. Therefore,
we separate wt

l further into w− t
l and w+ t

l , which correspond to inputs and outputs,
respectively.

30.4 GENERALIZED DYNAMIC DEA MODELS

This research proposes a new system of DEA models which embed the generalized
dynamic structure described in Section 30.2. However, dynamic DEA models with a
typical dynamic structure such as those proposed by Tone and Tsutsui [3] can be used
as building blocks to develop generalized dynamic DEA models that incorporate the
uncertain future performance of DMUs.

To construct these generalized dynamic DEAmodels, it is assumed that there are n
DMUs j= 1,…,n over T + k terms t = 1,…,T + k . In each term t t = 1,…,T , the
DMUs have m common inputs i= 1,…,m and s common outputs i= 1,…,s . On
the other hand, in each term t t = T + 1,…,T + k , the DMUs have r common inputs
i= 1,…,r and/or d common outputs i = 1,…,d . That is, it is important to note that,
depending on the problem considered, the future terms T + 1,…,T + k may not simul-
taneously associate both inputs and outputs. Furthermore, let xijt i= 1,…,m and
yijt i = 1,…,s represent the input and output, respectively, of DMU j in term
t t = 1,…,T , and let uijtl i= 1,…,r and vijtl i = 1,…,d represent the input and out-
put, respectively, of DMU j in subterm t(l) of the future term t t = T + 1,…,T + k .
Recall that both the input uijtl and the output vijtl are functions of variables, such as
crude oil prices and currency exchange rates, that are measured in a common currency,
for example the US dollar.
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In addition, recall that it is assumed that each future term t t = T + 1,…,T + k
comprises h subterms (possible states) t(l), l = 1,…,h. Moreover, we denote the free
and fixed carry-overs (links) by zfreeijt i= 1,…,nfree;j = 1,…n;t = 1,…T and

zfixijt i= 1,…,nfix;j = 1,…n;t = 1,…T , respectively, where nfree and nfix are the num-
bers of free and fixed links, respectively. Recall that there are no carry-over activities
with respect to future terms owing to the high degree of difficulty of forecasting.

30.4.1 Production Possibility Sets

Based on the notation defined above, the production possibility set
xit,yit ,uitl,vitl,zfreeit ,zfixit with respect to the generalized dynamic DEA models is

defined as follows:

xit ≥
n

j= 1

xijtλ
t
j i= 1,…,m; t = 1,…,T

yit ≤
n

j= 1

yijtλ
t
j i= 1,…,s; t = 1,…,T

uitl ≥
n

j= 1

uijtlδ
t
jl i= 1,…,r; t = T + 1,…,T + k; l= 1,…, l

vitl ≥
n

j= 1

vijtlδ
t
jl i= 1,…,d; t = T + 1,…,T + k; l= 1,…, l

zfreeit unrestricted i= 1,…,nfree; t = 1,…,T

zfixit =
n

j= 1

zfixijt λ
t
j i= 1,…,nfix; t = 1,…,T

n

j= 1

λtj = 1 t = 1,…,T

n

j= 1

δtjl = 1 t = T + 1,…,T + k; l = 1,…,h

λtj ≥ 0 j = 1,…,n; t = 1,…,T

δtjl ≥ 0 j= 1,…,n; l = 1,…,h; t = T + 1,…,T + k

In the above production possibility set, λt Rn t = 1,…,T and δtl Rn

l= 1,…,h; t =T + 1,…,T + k are the intensity vectors, and the third and fourth to last
constraints correspond to the variable-returns-to-scale assumption (if the constraints
are omitted, then the production possibility set is associated with the assumption of
constant returns to scale). Furthermore, it should be noted that xijt and yijt on the
right-hand side of the above constraints are observed positive data, uijtl and vijtl are
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forecasted positive data, and xit, yit, uitl and vitl on the left-hand side are variables.
Moreover, notice that the constraints in the production possibility set are defined sep-
arately for each term. Hence, to ensure the continuity of link flows (carry-overs)
between two consecutive terms of the past terms 1,…,T −1 , the present term (T)
and the first future term T + 1 , we need to include the following conditions:

n

j= 1

zfreeijt λtj =
n

j= 1

zfreeijt λt + 1j i= 1,…,nfree; t = 1,…,T −1

n

j= 1

zfixijt λ
t
j =

n

j= 1

zfixijt λ
t + 1
j i= 1,…,nfix; t = 1,…,T −1

n

j= 1

zfreeijT λTj =
h

l= 1

pT + 1
l

n

j= 1

zfreeijT δT + 1
jl i= 1,…,nfree

n

j= 1

zfixijTλ
T
j =

h

l= 1

pT + 1
l

n

j= 1

zfixijTδ
T + 1
jl i = 1,…,nfix

30.4.2 DEA Models Incorporating Uncertain Future Performance

Based on the production possibility set constructed in the preceding subsection, we
now develop DEA models that incorporate uncertain future performance. It is empha-
sized that all the proposed models are non-radial slacks-based measure (SBM) models
[12]. That is, these models consider the excesses associated with inputs and/or the
shortfalls associated with outputs as the main targets of the evaluation. In addition,
because of this, and depending on the problem considered, the future terms
T + 1,…,T + k may not simultaneously associate both inputs and outputs. This
research considers input-oriented, output-oriented and non-oriented models, which
are introduced in that sequence in the following subsections.

However, for convenience of modelling, we first denote DMUo o= 1,…,n as
follows:

xiot =
n

j= 1

xijtλ
t
j + s

−
iot i= 1,…,m; t = 1,…,T (30.1)

yiot =
n

j= 1

yijtλ
t
j −s

+
iot i= 1,…,s; t = 1,…,T (30.2)

zfreeiot =
n

j= 1

zfreeijt λtj + s
free
iot i = 1,…,nfree; t = 1,…,T (30.3)

zfixiot =
n

j= 1

zfixijt λ
t
j i= 1,…,nfix; t = 1,…,T (30.4)
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n

j= 1

zfreeijt λtj =
n

j= 1

zfreeijt λt + 1j i= 1,…,nfree; t = 1,…,T −1 (30.5)

n

j= 1

zfixijt λ
t
j =

n

j= 1

zfixijt λ
t + 1
j i= 1,…,nfix; t = 1,…,T −1 (30.6)

n

j= 1

λtj = 1 t = 1,…,T (30.7)

λtj ≥ 0 j, t (30.8)

s−iot ≥ 0 i, t (30.9)

s +iot ≥ 0 i, t (30.10)

sfreeiot unrestricted in sign i, t (30.11)

uiotl =
n

j= 1

uijtlδ
t
jl + e

−
iotl i= 1,…,r; t =T + 1,…,T + k; l= 1,…,h (30.12)

viotl =
n

j= 1

vijtlδ
t
jl−e

+
iotl i= 1,…,d; t = T + 1,…,T + k; l= 1,…,h (30.13)

n

j= 1

zfreeijT λTj =
h

l= 1

pT + 1
l

n

j= 1

zfreeijT δT + 1
jl i = 1,…,nfree (30.14)

n

j= 1

zfixijTλ
T
j =

h

l= 1

pT + 1
l

n

j= 1

zfixijTδ
T + 1
jl i= 1,…,nfix (30.15)

n

j= 1

δtjl = 1 t = T + 1,…,T + k; l= 1,…,h (30.16)

δtjl ≥ 0 j, l, t (30.17)

e−iotl ≥ 0 i, l, t (30.18)

e+iotl ≥ 0 i, l, t (30.19)

30.4.2.1 Input-Oriented Efficiency θ∗o The input-oriented generalized dynamic
DEA model corresponding to DMUo o= 1,…,n can be expressed as follows:

θ∗o =min
1

T + k

t = 1

αt

T

t = 1

αt 1−
1
m

m

i = 1

ρ−
i s−iot
xiot

+
T + k

t =T + 1

αt
h

l = 1

w− t
l 1−

1
r

r

i = 1

μ−
i e−iotl
uiotl

(30.20)
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subject to (30.1)–(30.19), where αt is the term weight corresponding to term
t t = 1,…,T + k that is specified by the evaluator; w− t

l , defined in Section 30.3, is
the evaluator-specified future subterm input weight corresponding to subterm
t l l= 1,…,h of the future term t t = T + 1,…,T + k ; and ρ−

i , μ
−
i are the evalua-

tor-specified past–present input weight and future input weight that correspond,
respectively, to the past–present input i i= 1,…,m and the future input
i i = 1,…,r . In addition, the weights are set to satisfy the following conditions:

h

l= 1

w− t
l = 1 t =T + 1,…,T + k ,

m

i= 1

ρ−
i =m and

r

i= 1

μ−
i = r

It is evident that the objective function involves T + hk efficiency-related scores
measured by the relative slacks of the inputs, where T scores are related to the
T past–present terms, and hk scores are related to the k future terms, with each con-
sisting of h subterms. That is, the objective function is defined as the weighted average
of T + hk efficiency-related scores measured by the relative slacks of inputs. Note that
each score is units-invariant and has a value less than or equal to 1 (the latter is realized
when all the corresponding slacks are zero). It follows that the objective function value
is less than or equal to 1. Recall that the future subterm input weight
w− t
l l = 1,…,h; t = T + 1,…,T + k in the objective function (30.20) is derived from

pT + 1
l l = 1,…,h and ptzl z, l= 1,…,h; t = T + 2,…,T + k , which are the solutions after
solving problems (P1) and (P2), respectively, in Section 30.3.

Let the optimal solution to the above model be λt∗j ,δ
t∗
jl ,s

−∗
iot ,s

+ ∗
iot ,

sfree∗iot ,e−∗iotl,e
+ ∗
iotl i, j, t, l . It is important to note that, since sfreeiot is unrestricted in sign

(i.e. if sfreeiot > 0, then the current value zfreeiot is excessive and if sfreeiot < 0, then zfreeiot is defi-
cient), slacks in the free links are not considered in the objective function of the input-
oriented past–present DEA model. However, as shown by Tone and Tsutsui [3], the
slacks can be taken into account in either of the following twoways: (i) the ex postway
and (ii) the binary mixed integer fractional programming approach. We refer the
reader to Tone and Tsutsui [3] for the latter approach, and consider only the former
method. That is, let sfree∗−iot =max 0,sfree∗iot and sfree∗ +iot = −min 0,sfree∗iot .

Then, we can define the input-oriented overall efficiency θ∗o as

θ∗o =
1

T + k

t = 1

αt

T

t = 1

αt 1−
1

m + nfree

m

i= 1

ρ−
i s−∗iot

xiot
+

nfree

i= 1

sfree∗−iot

zfreeiot

+
T + k

t = T + 1

αt
h

l= 1

w− t
l 1−

1
r

r

i= 1

μ−
i e−∗iotl

uiotl

Besides, in such a generalized dynamic evaluation structure, θ∗o is actually a weighted
average of T + hk efficiency scores that are represented by θ∗ot, t = 1,…,T and
θ∗otl, t = T + 1,…,T + k, l= 1,…,h. That is,
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θ∗ot = 1−
1

m + nfree

m

i= 1

ρ−
i s−∗iot

xiot
+

nfree

i= 1

sfree∗−iot

zfreeiot

, t = 1,…,T

θ∗otl = 1−
1
r

r

i= 1

μ−
i e−∗iotl

uiotl
, t =T + 1,…,T + k, l= 1,…,h

Therefore, the input-oriented overall efficiency, that is, θ∗o, can be defined as follows:

θ∗o =
1

T + k

t = 1

αt

T

t = 1

αtθ∗ot +
T + k

t = T + 1

αt
h

l= 1

w− t
l θ∗otl

Definition 30.1 (Input-oriented term efficient)
If θ∗ot t = 1,…,T = 1 or θ∗otl t = T + 1,…,T + k, l= 1,…,h = 1, then DMUo is referred
to as input-oriented term efficient with respect to the past–present term t t = 1,…,T
or to the subterm t l l= 1,…,h of the future term t t =T + 1,…,T + k , respectively.

Definition 30.2 (Input-oriented overall efficient)
If θ∗o = 1, then DMUo is referred to as input-oriented overall efficient.

Theorem 30.1 DMUo is input-oriented overall efficient if and only if all T + hk
terms are input-oriented term efficient, that is, θ∗ot = 1, t = 1,…,T
and θ∗otl = 1, t = T + 1,…,T + k, l= 1,…,h.

Proof. The proof of Theorem 30.1 is straightforward (see e.g. [3]), and is thus omit-
ted here.

30.4.2.2 Output-Oriented Efficiency τ∗o The output-oriented generalized dynamic
DEA model corresponding to DMUo o= 1,…,n can be expressed as follows:

1
τ∗o
=max

1
T + k

t = 1

αt

T

t = 1

αt 1 +
1
s

s

i = 1

ρ+
i s+iot
yiot

+
T + k

t =T + 1

αt
h

l = 1

w + t
l 1 +

1
d

d

i= 1

μ +
i e+iotl
viotl

(30.21)

subject to (30.1)–(30.19), where αt has the same definition as in Section 30.4.2.1, w + t
l

is the evaluator-specified future subterm output weight, and ρ+
i , μ

+
i are the evaluator-

specified past–present output weight and future output weight that correspond,
respectively, to the past–present output i i= 1,…,s and the future output
i i= 1,…,d . In addition, the weights, w+ t

l , ρ+
i and μ +

i are set to satisfy the following
conditions:
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h

l= 1

w + t
l = 1 t =T + 1,…,T + k ,

s

i= 1

ρ+
i = s and

d

i= 1

μ +
i = d

The objective function is clearly defined as a weighted average of T + hk effi-
ciency-related scores measured by the relative slacks of the outputs. Each score is
units-invariant and has a value greater than or equal to 1 (the latter is realized when
all the corresponding slacks are zero). It follows that the objective function value is
greater than or equal to 1. Recall that the future subterm output weight
w+ t
l l= 1,…,h; t = T + 1,…,T + k in the objective function (30.21) is derived from

pT + 1
l l = 1,…,h and ptzl z, l= 1,…,h; t = T + 2,…,T + k , which are the solutions after
solving problems (P1) and (P2), respectively, in Section 30.3.

Let the optimal solution to the above model be λt∗j ,δ
t∗
jl ,s

−∗
iot ,s

+ ∗
iot ,s

free∗
iot ,

e−∗iotl,e
+ ∗
iotl i, j, t, l , where sfree∗iot is dealt with in the same way as in

Section 30.4.2.1. Then, we can define the output-oriented overall efficiency τ∗o as

τ∗o =
1

1
T + k

t =1

αt

T

t = 1

αt 1 + 1
s+ nfree

s

i = 1

ρ+
i s + ∗iot

yiot
+

nfree

i = 1

sfree∗ +iot

zfreeiot

+
T + k

t = T + 1

αt
h

l= 1

w+ t
l 1 +

1
d

d

i = 1

μ+
i e+ ∗iotl

viotl

Similarly to the analysis in Section 30.4.2.1, τ∗o here is a weighted average of T + hk
efficiency scores that are represented by 1 τ∗ot, t = 1,…,T and 1 τ∗otl, t = T + 1,…,
T + k, l= 1,…,h. That is,

1
τ∗ot

= 1+
1

s+ nfree

s

i= 1

ρ+
i s + ∗iot

yiot
+

nfree

i= 1

sfree∗ +iot

zfreeiot

, t = 1,…,T

1
τ∗otl

= 1+
1
d

d

i= 1

μ +
i e + ∗iotl

viotl
, t =T + 1,…,T + k, l= 1,…,h

Therefore, the output-oriented overall efficiency, that is, τ∗o, can be defined as follows:

τ∗o =
1

1
T + k

t = 1

αt

T

t = 1

αt 1
τ∗ot

+
T + k

t = T + 1

αt
h

l= 1

w+ t
l

1
τ∗otl

Definition 30.3 (Output-oriented term efficient)
If τ∗ot t = 1,…,T = 1 or τ∗otl t = T + 1,…,T + k, l= 1,…,h = 1, then DMUo is referred
to as output-oriented term efficient with respect to the past–present term t t = 1,…,T
or to subterm t l l = 1,…,h of the future term t t = T + 1,…,T + k , respectively.
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Definition 30.4 (Output-oriented overall efficient)
If τ∗o = 1, then DMUo is referred to as output-oriented overall efficient.

Theorem 30.2 DMUo is output-oriented overall efficient if and only if all T + hk
terms are output-oriented term efficient, that is, τ∗ot = 1, t = 1,…,T and τ∗otl = 1,
t = T + 1,…,T + k, l= 1,…,h.

Proof. See the proof of Theorem 30.1.

30.4.2.3 Non-oriented Efficiency ϖ∗
o The non-oriented generalized dynamic

DEA model corresponding to DMUo o= 1,…,n can be expressed as follows:

ϖ∗
o =min

1
T + k

t = 1

αt

T

t = 1

αt 1−
1
m

m

i= 1

ρ−
i s−iot
xiot

+
T + k

t = T + 1

αt
h

l = 1

w− t
l 1−

1
r

r

i = 1

μ−
i e−iotl
uiotl

1
T + k

t = 1

αt

T

t = 1

αt 1 +
1
s

s

i= 1

ρ +
i s +iot
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+
T + k

t = T + 1

αt
h

l= 1

w + t
l 1 +

1
d

d

i = 1

μ +
i e+iotl
viotl

(30.22)

subject to (30.1)–(30.19), where αt, w− t
l , ρ−

i , μ
−
i , w

+ t
l , ρ+

i and μ +
i have the same defi-

nitions as in Sections 30.4.2.1 and 30.4.2.2.
Note that the non-oriented generalized dynamic DEA model (i.e. (30.1)–(30.19),

(30.22)) is a fractional (non-linear) program. Therefore, we transform the model into
a linear program by using the Charnes–Cooper transformation (see e.g. [13]). Let
the optimal solution to the model (30.1)–(30.19), (30.22) be λt∗j ,δ

t∗
jl ,s

−∗
iot ,s

+ ∗
iot ,

sfree∗iot ,e−∗iotl,e
+ ∗
iotl i, j, t, l , where sfree∗iot is dealt with in the same way as in

Section 30.4.2.1. Then, we can define the non-oriented predicted overall efficiency
ϖ∗
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In addition, we define the non-oriented term efficiency as

ϖ∗
ot =

1−
1

m+ nfree

m

i= 1

ρ−
i s−∗iot

xiot
+

nfree

i= 1
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1 +
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ρ+
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+
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with respect to the past–present term t t = 1,…,T and

ϖ∗
otl =

1−
1
r

r

i= 1

μ−
i e−∗iotl

uiotl

1 +
1
d

d

i = 1

μ+
i e+ ∗iotl

viotl

with respect to subterm t l l= 1,…,h of the future term t t = T + 1,…,T + k .

Definition 30.5 (Non-oriented term efficient)
If ϖ∗

ot = 1 t = 1,…,T or ϖ∗
otl = 1 t = T + 1,…,T + k, l = 1,…,h , then DMUo is

referred to as non-oriented term efficient with respect to the past–present term
t t = 1,…,T or to subterm t l l = 1,…,h of the future term t t = T + 1,…,T + k ,
respectively.

Definition 30.6 (Non-oriented overall efficient)
If ϖ∗

o = 1, then DMUo is referred to as non-oriented overall efficient.

Theorem 30.3 DMUo is non-oriented overall efficient if and only if all T + hk
terms are non-oriented term efficient, that is, ϖ∗

ot = 1, t = 1,…,T and ϖ∗
otl = 1,

t = T + 1,…,T + k, l= 1,…,h.
Proof. See the proof of Theorem 30.1.

30.5 EMPIRICAL STUDY

The proposed generalized dynamic DEAmodels are new to the DEA literature. There-
fore, we conducted an empirical study to analyse and evaluate this new system of
DEAmodels. To begin with, we use the flow chart shown in Figure 30.2 to summarize
the whole procedure introduced in the previous sections for conducting the empirical
study; that is, (i) choosing inputs (e.g. cost of sales), outputs (e.g. net revenue) and
carry-overs (e.g. current assets and non-current assets); (ii) identifying a macroeco-
nomic index (e.g. a currency exchange rate) that affects the situation; (iii) using a fore-
casting method (e.g. a moving average method) to estimate the values of the
macroeconomic index; (iv) specifying the states of the nature of the macroeconomic
index, and computing their corresponding transition probabilities by using, for exam-
ple, the maximum entropy approach; (v) computing forecasts of inputs and outputs
from the forecasts of the macroeconomic index (recalling that the forecasted inputs
(e.g. cost of sales) and outputs (e.g. net revenue) are functions of the macroeconomic
index (e.g. currency exchange rate)); (vi) specifying input, output and term weights;
(vii) solving the generalized dynamic DEA models for each DMU; and
(viii) analysing efficiency scores and providing managerial guidelines.

The empirical study was conducted based on actual data concerning high-tech IC
design companies in Taiwan. It is well known that the IC design industry is extremely
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competitive. An IC design company usually procures raw materials from a few dif-
ferent countries, seeking to lower its operational costs. And, at the same time, it seeks
to sell its products to as many countries as possible to increase profits. Hence, the per-
formance of an IC design company’s operations is very sensitive to today’s highly
volatile international currency exchange rates. To conduct this empirical study, we
extracted empirical data, comprising 40 IC design companies, from the Taiwan Eco-
nomic Journal (TEJ) database, utilizing only the latest periods, year 2010 to year 2014
(i.e. T = 5), owing to concerns over the ineffectiveness of prior data. That is, short-
term forecasts are generally more accurate than medium- and long-term ones in highly
volatile operating environments.

Choosing inputs,outputs and 
carry-overs

Specifying the states of nature 
of the macroeconomic index,

and computing their 
corresponding transition 

probabilities

Specifying input,output and term 
weights

Solving the generalized dynamic 
DEA models for each DMU

Analysing efficiency scores,and
providing managerial guidelines

Using a forecasting method
to estimate the values of the 

macroeconomic index

Computing the forecasts of inputs 
and outputs from the forecasts of 

the macroeconomic index

Identifying affecting 
macroeconomic index

Figure 30.2 Flow chart of the whole analysis process.
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To justify the efficacy of the proposed new DEA models, this study used a cross-
validation technique to benchmark their performance against realized outcomes. That
is, we separated the 2010–2014 data into training and testing sets, in which the
2010–2013 data were used for training and the 2014 data were used for testing. Then,
we applied the moving average method to predict year 2014 forecasts (i.e. considering
a single future term, and thus k = 1) based on the TEJ data from years 2010 to 2013.
That is, here, 2010–2012 (term 1–term 3) represents past terms, 2013 (term 4) repre-
sents the present term and 2014 (term 5) represents future terms. In addition, to
develop benchmarks, this research used the SBM DEA models proposed by Tone
[12] and the dynamic SBMDEAmodels proposed by Tone and Tsutsui [3] to measure
the productive efficiency of the 40 IC design companies based on known historical
data. These benchmarks are detailed below.

In the following, we first explain the selected inputs, outputs, carry-overs and
future performance indicators for the IC design firms illustrated, and then show
and analyse the empirical results.

30.5.1 Data Analysis

This study considered cost of sales as the single input indicator associated with past,
present and future terms; that is, m= r = 1. The cost of sales normally includes materi-
als, labour and allocated overheads, and thus contributes directly to the revenue of a
firm. More precisely, the cost of sales measures the cost of goods or services supplied
in a particular period. On the other hand, this research considered net revenue as the
single output indicator associated with past, present and future terms; that is, s= d = 1.
The net revenue is defined by the International Accounting Standards (IAS 18) as the
gross inflow of economic benefits during a period arising in the course of the ordinary
activities of an entity when those inflows result in increases in equity, other than
increases relating to contributions from equity participants. The net revenue arises pri-
marily from the sale of goods or the performance of services. The realized input and
output data with respect to the past (years 2010–2012), present (year 2013) and future
(year 2014) terms are shown in Tables 30.1–30.5, and comprise 40 companies; the
unit of currency used in these tables is the new Taiwan dollar (NT$). To maintain con-
fidentiality when the data were used in this research, the names of the companies have
been replaced by Arabic numerals. The realized 2014 ‘future’ data in Table 30.5 were
used as a test dataset; recall that the 2014 forecasts were obtained by using the moving
average method, which is discussed in more detail below. (Owing to space limitations,
please see the original paper [1] for detailed data on the 40 DMUs for which data are
presented in Tables 30.1–30.6.)

Furthermore, this research treated a firm’s total assets as carry-over activities that
connect two consecutive terms. Total assets were classified further here into free
carry-over and fixed carry-over because assets are economic resources owned by a
firm that will probably be used to produce future economic benefits. More precisely,
free carry-over (current assets) denotes the assets that a firm expects to convert to cash
or use up within one year (or one operating cycle, whichever is longer). Current assets
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here may be cash and cash equivalents, receivables, inventories, and short-term
investments. In contrast, fixed carry-over (non-current assets) denotes the assets that
are not easily converted into cash or used up within one year (or one operating cycle,
whichever is longer). That is, non-current assets here may be property, plant and
equipment, long-term investments, and intangible assets. Note that managers usually
have greater discretion to handle current assets, but have less discretion to dispose of
non-current assets, which are thus treated here as fixed carry-overs. Note also that each
of the past and present terms is associated with a free and a fixed carry-over; that is,
nfree = nfix= 1. The free and fixed carry-overs with respect to the past (years
2010–2012), present (year 2013) and future (year 2014) terms are also shown in
Tables 30.1–30.5.

Moreover, it should be noted that the data in the TEJ database are actually aggre-
gate data. That is, the data do not show the details of the IC design companies’ sources
and the corresponding quantities for costs, nor the details of the outlets and the cor-
responding quantities for sales. In addition, the cost of sales and net revenue are all
transformed into the same currency, the new Taiwan dollar. We could therefore only
use this aggregate data by applying the moving average method to predict the 2014
cost of sales and 2014 net revenue. Nonetheless, aggregate forecasts are generally
more precise than single ones. Besides, we adapted the so-called three-sigma rule
of thumb to take future uncertainty into account, because it is well known that nearly
all values can be taken to lie within three standard deviations of the mean. That is, it
was assumed here that each future term was associated with three inputs correspond-
ing to the cost of sales, and three outputs corresponding to the net revenue (i.e. h = 3).
The three inputs and outputs were defined as the expected value, minimum and max-
imum of the cost of sales and the net revenue, respectively, for the future term. The
minimum and maximum were defined as max μ−3σ,ς and min μ + 3σ,ξ , respec-
tively, where μ, σ, ς and ξ denote the mean, standard deviation, minimum and

TABLE 30.1 Term 1 (2010) data.

DMU Cost of sales Net revenue Current assets Non-current assets

Average 4 175 227 6 535 401 4 867 534 3 512 612
Max 32 726 157 71 988 430 59 573 161 74 902 743
Min 32 554 48 375 28 564 2 757
S.D. 7 729 137 13 247 030 10 246 537 11 847 992

TABLE 30.2 Term 2 (2011) data.

DMU Cost of sales Net revenue Current assets Non-current assets

Average 3 900 691 5 653 919 4 234 236 3 949 479
Max 31 773 236 53 842 366 42 508 698 95 386 304
Min 17 656 30 115 36 970 2 992
S.D. 7 560 933 11 047 726 8 036 473 15 030 950
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maximum, respectively, of the corresponding raw data (i.e. for the years 2010–2013).
Note that μ also denotes ET + 1 ( =E5 here) in problem (P1), which was used to derive
the transition probability pT + 1 ( = p5 here) according to the principle of maximum
entropy. The resulting forecasted inputs and outputs with respect to the future (year
2014) term are shown in Table 30.6.

Finally, the term weights αt, t = 1,…,5 were set as follows: α1 = 0.7, α2 = 0.8, α3 =
0.9, α4 = 1, α5 = 0.9; that is, it was assumed that the importance of the information
decreases over time. Also, we set the past–present input weight ρ−

1 = 1, the future input
weight μ−

1 = 1, the past–present output weight ρ+
1 = 1 and the future output weight

μ+
1 = 1. Lastly, based on the data in Table 30.6, we estimated the future subterm input

weight, the future subterm output weight and the transition probability as follows.
First, we solved the mathematical problem (P1) 40 times with respect to the forecasted
inputs and forecasted outputs to obtain 40 possible future subterm input weights and
40 possible future subterm output weights, with each corresponding to a DMU. Then,
the future subterm input weights w−5

i , i = 1,2 3 and future subterm output weights
w+ 5
i , i= 1,2 3 were set to the averages of the 40 possible future subterm input weights

and 40 possible future subterm output weights, respectively. That is, w−5
1 = 0.358734,

TABLE 30.3 Term 3 (2012) data.

DMU Cost of sales Net revenue Current assets Non-current assets

Average 4 166 437 6 099 471 4 622 551 5 319 996
Max 40 770 355 63 474 029 49 299 361 148 457 717
Min 5 259 9 554 10 339 6 584
S.D. 8 583 664 12 471 173 9 244 663 23 372 952

TABLE 30.4 Term 4 (2013) data.

DMU Cost of sales Net revenue Current assets Non-current assets

Average 4 546 435 7 034 350 5 176 708 5 930 613
Max 54 894 385 96 230 064 70 707 646 158 547 310
Min 12 959 33 882 31 303 13 071
S.D. 10 379 908 16 917 176 12 152 507 24 998 370

TABLE 30.5 Term 5 (2014) data.

DMU Cost of sales Net revenue Current assets Non-current assets

Average 5 160 648 8 417 632 7 484 314 6 395 470
Max 67 990 658 136 265 018 149 267 002 167 574 152
Min 17 190 29 930 45 596 9 090
S.D. 12 669 581 23 148 425 24 024 721 26 540 097
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w−5
2 = 0.339835, w−5

3 = 0.301431, and w+ 5
1 = 0.37963, w+ 5

2 = 0.341791, w+ 5
3 =

0.278579 correspond to the forecasted inputs and forecasted outputs, respectively.
The transition probabilities p5i i= 1,2 3 were then obtained by taking the average
of w−5

i i= 1,2 3 and w + 5
i i = 1,2 3 ; that is, p51 = 0.369182, p52 = 0.340813, p53 =

0.290005.

30.5.2 Analysis of Empirical Results

This section analyses mainly two types of empirical results. First, we contrast past–
present efficiency scores with past–present–future (overall) ones. Second, we bench-
mark the outcomes obtained from the proposed generalized dynamic DEA models
with the realized (true) ones to justify the efficacy of these new proposed DEA
models.

30.5.2.1 Comparison of Past–Present and Predicted Overall Efficiency Scores
In this section, we compare two sets of efficiency scores of the 40 IC design compa-
nies (i.e. overall and past–present efficiency scores) obtained by solving the general-
ized dynamic DEA models and by solving the generalized dynamic DEA models but
ignoring the future terms, which is equivalent to solving the dynamic SBMDEAmod-
els proposed by Tone and Tsutsui [3]. The resulting term (past, present and future),
past–present and overall efficiency scores corresponding to the input-, output- and
non-oriented DEA models are shown in Tables 30.7, 30.8 and 30.9, respectively.
These three tables clearly show that the same 12 of the 40 DMUs are input-, output-
and non-oriented overall efficient. Note that, according to Theorems 30.1–30.3, a
DMU is (input-, output- or non-oriented) overall efficient if and only if all of the
DMU’s terms are (input-, output- or non-oriented) term efficient. Figure 30.3 shows
graphically the input-, output- and non-oriented overall efficiency scores for the
40 DMUs. It turns out that DMU 24 has the greatest difference of 0.409451 among
the three scores, which are 0.723425 (input-oriented), 0.360383 (output-oriented) and
0.313974 (non-oriented).

TABLE 30.6 Term 5 (2014) forecasts.

DMU

Cost of sales Net revenue

Minimum
Average
(E5) Maximum Minimum

Average
(E5) Maximum

Average 3 689 589 4 197 198 4 971 864 5 412 220 6 330 785 7 642 849
Max 31 773 236 4 0041 033 54 894 385 53 842 366 71 383 722 96 230 064
Min 5 259 17 107 32 554 9 554 32 157 51 596
S.D. 7 493 897 8 500 767 10 422 141 11 078 441 13 351 848 16 829 011
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TABLE 30.7 Term efficiency versus overall efficiency (input-oriented case).

DMU

Term efficiency

Past–present efficiency Overall efficiencyTerm 1 Term 2 Term 3 Term 4 Term 5-1 Term 5-2 Term 5-3

1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1
4 1 1 1 1 0.787473 0.735852 0.937195 1 0.961292
5 0.579968 0.711427 0.629671 0.633289 0.528037 0.526168 0.479886 0.639739 0.613189
6 1 1 1 1 1 1 1 1 1
7 0.864309 0.909265 1 1 0.853187 0.937637 0.986407 0.950714 0.944713
8 0.823282 0.806143 0.840762 0.840527 0.66218 0.665583 0.624407 0.828949 0.791902
9 0.82209 1 0.895437 0.95855 0.885026 0.853936 0.798325 0.923502 0.907767
10 1 1 1 1 1 1 1 1 1
11 0.939729 1 0.985488 1 1 0.978622 0.920359 0.98375 0.980606
12 1 1 1 1 1 1 1 1 1
13 1 1 1 0.914905 0.55406 1 1 0.974972 0.946728
14 0.685954 0.701095 0.57836 0.751402 0.242477 0.240696 0.314155 0.680285 0.593046
15 0.737062 0.923108 0.862162 0.891092 0.614525 0.764685 0.826998 0.859255 0.832118
16 0.65553 0.659839 1 1 1 1 1 0.849042 0.880638
17 1 1 1 1 0.869463 0.746489 1 1 0.972167
18 1 1 1 1 1 1 1 1 1
19 1 1 1 1 0.353378 0.471415 0.685876 1 0.894034
20 0.765205 0.75752 0.817763 0.814016 0.60439 0.627089 0.646916 0.791665 0.756766
21 0.773914 0.878073 0.708645 0.770624 0.327362 0.270755 0.276157 0.780177 0.678145
22 0.878732 0.909403 1 0.965336 0.914668 0.892526 0.859248 0.943521 0.93241
23 0.512471 0.625966 0.762957 0.671913 0.243191 0.234005 0.265056 0.652376 0.567458
24 0.79317 0.717623 0.739548 0.910054 0.320544 0.464478 0.590553 0.795578 0.723425

(continued overleaf )



TABLE 30.7 (continued)

DMU

Term efficiency

Past–present efficiency Overall efficiencyTerm 1 Term 2 Term 3 Term 4 Term 5-1 Term 5-2 Term 5-3

25 0.742608 0.733516 0.761965 0.711925 0.476522 0.497237 0.502913 0.736568 0.685279
26 0.812016 0.777273 0.875834 0.809555 0.608531 0.5964 0.57701 0.82001 0.772896
27 1 1 1 1 1 1 1 1 1
28 0.818823 0.866214 0.960667 0.94361 0.921145 0.925338 0.85635 0.904223 0.903975
29 0.741116 0.615064 0.726857 0.619101 0.136539 0.168654 0.498592 0.671795 0.584891
30 1 1 1 1 1 1 1 1 1
31 0.621424 0.656665 0.611587 0.543204 0.410257 0.293403 0.310712 0.604106 0.548941
32 1 1 1 1 1 1 1 1 1
33 1 1 0.725296 0.624574 1 0.550374 0.78362 0.816865 0.809563
34 0.660426 0.83274 1 1 1 1 1 0.890732 0.913602
35 1 1 1 1 1 1 1 1 1
36 0.781958 1 1 1 1 1 1 0.955109 0.964505
37 0.872062 0.86376 0.858984 0.888531 0.73241 0.740161 0.686242 0.871491 0.840019
38 0.778174 0.894862 0.964935 0.946716 0.748536 0.713548 0.724994 0.904638 0.867992
39 0.81392 0.849169 0.803093 0.828593 0.838056 0.834191 0.780895 0.823664 0.822795
40 1 1 1 1 1 1 1 1 1

Average 0.861849 0.892218 0.90275 0.900938 0.765799 0.768231 0.798322 0.891318 0.867272
Max 1 1 1 1 1 1 1 1 1
Min 0.512471 0.615064 0.57836 0.543204 0.136539 0.168654 0.265056 0.604106 0.548941
S.D. 0.142645 0.130266 0.130943 0.135486 0.273526 0.268211 0.240355 0.12171 0.144161



TABLE 30.8 Term efficiency versus overall efficiency (output-oriented case).

DMU

Term efficiency

Past–present efficiency Overall efficiencyTerm 1 Term 2 Term 3 Term 4 Term 5-1 Term 5-2 Term 5-3

1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1
4 1 1 1 1 0.8645 0.73716 0.935011 1 0.95968
5 0.79342 0.7125 0.709344 0.631492 0.642317 0.639993 0.628841 0.699964 0.68595
6 1 1 1 1 1 1 1 1 1
7 0.926314 0.914889 1 1 0.869357 0.942271 0.998738 0.963144 0.955425
8 0.709645 0.670342 0.674178 0.738584 0.702596 0.702307 0.676305 0.698334 0.697628
9 0.873133 1 0.973656 0.906037 0.905167 0.883252 0.853474 0.936698 0.924876
10 1 1 1 1 1 1 1 1 1
11 0.958926 1 0.991575 1 1 0.990972 0.923638 0.989054 0.985976
12 1 1 1 1 1 1 1 1 1
13 1 1 1 1 0.43972 0.793915 0.877296 1 0.88655
14 0.536579 0.53418 0.467487 0.668554 0.266921 0.817651 0.914543 0.546349 0.527379
15 0.915622 0.927081 0.781864 0.614505 0.699158 0.857695 0.822959 0.771701 0.773681
16 0.906725 0.815069 1 1 1 1 1 0.930609 0.944324
17 1 1 1 1 0.903485 1 1 1 0.991583
18 1 1 1 1 1 1 1 1 1
19 1 1 1 1 0.265664 0.42325 1 1 0.759235
20 0.797735 0.735872 0.70643 0.686582 0.63542 0.677412 0.715603 0.724154 0.712239
21 0.320485 0.21431 0.265039 0.3278 0.237665 0.389201 0.82439 0.275004 0.288677
22 0.982774 0.929613 1 0.969318 0.931155 0.914806 0.913481 0.970182 0.959361
23 0.714046 0.571878 0.616943 0.53685 0.333298 0.755131 0.899289 0.596412 0.580138
24 0.561392 0.373531 0.65416 0.208 0.198332 0.800585 0.992208 0.355198 0.360383
25 0.695693 0.631298 0.749941 0.715865 0.661392 0.666776 0.664996 0.698091 0.690721

(continued overleaf )



TABLE 30.8 (continued)

DMU

Term efficiency

Past–present efficiency Overall efficiencyTerm 1 Term 2 Term 3 Term 4 Term 5-1 Term 5-2 Term 5-3

26 0.67523 0.619556 0.570778 0.513661 0.711628 0.70313 0.668293 0.581044 0.601877
27 1 1 1 1 1 1 1 1 1
28 0.975773 0.937463 0.927158 0.913171 0.938902 0.945715 0.885761 0.934954 0.933004
29 0.516266 0.303093 0.409813 0.366318 0.344533 0.617527 0.798214 0.381109 0.400923
30 1 1 1 1 1 1 1 1 1
31 0.734463 0.631158 0.803585 0.640064 0.404034 0.46445 0.465227 0.693465 0.618724
32 1 1 1 1 1 1 1 1 1
33 1 1 0.904474 0.753471 0.616785 0.467349 1 0.88953 0.813605
34 0.980339 0.832905 1 1 1 1 1 0.951173 0.960994
35 1 1 1 1 1 1 1 1 1
36 0.896009 1 1 1 1 1 1 0.976663 0.981457
37 0.866441 0.743105 0.702283 0.733733 0.764974 0.771826 0.774194 0.750735 0.75466
38 0.876349 0.892481 0.670492 0.623782 0.804524 0.775864 0.917129 0.732669 0.749768
39 0.924528 0.90082 0.904343 0.793479 0.862769 0.854609 0.822647 0.87164 0.866687
40 1 1 1 1 1 1 1 1 1

Average 0.878447 0.847279 0.862089 0.833532 0.775107 0.839821 0.899306 0.847947 0.834138
Max 1 1 1 1 1 1 1 1 1
Min 0.320485 0.21431 0.265039 0.208 0.198332 0.389201 0.465227 0.275004 0.288677
S.D. 0.169468 0.215522 0.196698 0.222315 0.266968 0.184889 0.134252 0.203734 0.200232



TABLE 30.9 Term efficiency versus overall efficiency (non-oriented case).

DMU

Term efficiency

Past–present efficiency Overall efficiencyTerm 1 Term 2 Term 3 Term 4 Term 5-1 Term 5-2 Term 5-3

1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1
4 1 1 1 1 0.837113 0.73716 0.937195 1 0.959337
5 0.579968 0.711427 0.629671 0.633289 0.528037 0.526168 0.479886 0.639739 0.613189
6 1 1 1 1 1 1 1 1 1
7 0.864309 0.909265 1 1 0.853187 0.937637 0.986407 0.950714 0.944713
8 0.786675 0.719729 0.771352 0.806894 0.66218 0.665583 0.624407 0.771898 0.748179
9 0.821407 1 0.895437 0.90002 0.885026 0.853936 0.798325 0.906007 0.894117
10 1 1 1 1 1 1 1 1 1
11 0.939729 1 0.985488 1 1 0.978622 0.920359 0.98375 0.980606
12 1 1 1 1 1 1 1 1 1
13 1 1 1 0.913613 0.43972 0.793915 0.877296 0.974592 0.868739
14 0.491054 0.471775 0.517568 0.647316 0.242477 0.221785 0.261621 0.533486 0.481747
15 0.743704 0.755085 0.633233 0.55596 0.615485 0.764685 0.826998 0.642995 0.657255
16 0.65553 0.659839 1 1 1 1 1 0.849042 0.880638
17 1 1 1 1 0.869463 0.746489 1 1 0.972167
18 1 1 1 1 1 1 1 1 1
19 1 1 1 1 0.248265 0.423012 0.461516 1 0.74217
20 0.765205 0.75752 0.775963 0.710261 0.60439 0.627089 0.646916 0.748815 0.724007
21 0.333753 0.235387 0.269027 0.354477 0.203974 0.270755 0.192906 0.288476 0.276378
22 0.878732 0.909403 1 0.946911 0.914668 0.892526 0.859248 0.938152 0.92821
23 0.50908 0.594973 0.734988 0.55662 0.184214 0.275799 0.257516 0.601275 0.520049
24 0.531393 0.294102 0.571836 0.208 0.193904 0.448031 0.897165 0.310752 0.313974

(continued overleaf )



TABLE 30.9 (continued)

DMU

Term efficiency

Past–present efficiency Overall efficiencyTerm 1 Term 2 Term 3 Term 4 Term 5-1 Term 5-2 Term 5-3

25 0.668944 0.619532 0.761965 0.711925 0.476522 0.497237 0.502913 0.690989 0.651309
26 0.743992 0.623685 0.706596 0.651557 0.608531 0.5964 0.57701 0.676862 0.662166
27 1 1 1 1 1 1 1 1 1
28 0.818823 0.866214 0.958475 0.94361 0.921145 0.925338 0.85635 0.903676 0.903543
29 0.583162 0.323263 0.536952 0.445697 0.136539 0.168654 0.488398 0.452845 0.422947
30 1 1 1 1 1 1 1 1 1
31 0.62857 0.556202 0.734229 0.531352 0.229832 0.285929 0.385448 0.60377 0.518516
32 1 1 1 1 1 1 1 1 1
33 1 1 0.853519 0.622659 0.884826 0.467349 0.617251 0.833064 0.774106
34 0.660426 0.83274 1 1 1 1 1 0.890732 0.913602
35 1 1 1 1 1 1 1 1 1
36 0.781958 1 1 1 1 1 1 0.955109 0.964505
37 0.823704 0.767399 0.730465 0.779295 0.73241 0.740161 0.686242 0.771618 0.762032
38 0.778174 0.887303 0.70402 0.656271 0.748536 0.713548 0.724994 0.735314 0.734294
39 0.81392 0.849169 0.803093 0.828593 0.838056 0.834191 0.780895 0.823664 0.822795
40 1 1 1 1 1 1 1 1 1

Average 0.830055 0.8336 0.864347 0.835108 0.746463 0.7598 0.791182 0.836933 0.815882
Max 1 1 1 1 1 1 1 1 1
Min 0.333753 0.235387 0.269027 0.208 0.136539 0.168654 0.192906 0.288476 0.276378
S.D. 0.185068 0.221181 0.183961 0.216239 0.299742 0.26883 0.24864 0.200395 0.208309



Moreover, Tables 30.7–30.9 also show that 15, 16 and 15 out of the 40 DMUs are
input-, output- and non-oriented past–present efficient, respectively. Figure 30.4
shows graphically the input-, output- and non-oriented past–present efficiency scores
for the 40 DMUs. These results indicate that three (DMUs 4, 17 and 19), four (DMUs
4, 13, 17 and 19) and three (DMUs 4, 17 and 19) DMUs, corresponding to input-,
output- and non-oriented DEA models, respectively, which are efficient based on
past–present performance, are turned into inefficient DMUs once future performance
is considered in the performance evaluation. By contrast, the results also show that
DMUs 16, 34 and 36 are inefficient based on their past–present performance, but
are all efficient according to their future performance. Such a fact evidently signals
the importance of taking future performance into account when evaluating a DMU’s

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40

O
ve

ra
ll 

ef
fic

ie
nc

y 
sc

or
e 

 

DMU

Input-oriented
Output-oriented

Non-oriented

Figure 30.3 Input-, output- and non-oriented overall efficiency scores.
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Figure 30.4 Input-, output- and non-oriented past–present efficiency scores.
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overall performance. Figure 30.5 shows graphically the difference between the past–
present and overall efficiency scores with respect to the 40 DMUs. The greatest (aver-
age) differences between the two scores are 0.105966 (0.02724), 0.240765
(0.019351) and 0.25783 (0.025118), corresponding to the input-, output- and non-
oriented DEA modes, respectively. DMU 19 turns out to be the one that possesses
the greatest difference between the two scores in all of the three DEA models. Here,
it is important to note that, as shown in Tables 30.7–30.9, there is no specific (positive
or negative) relationship between past–present and overall performance. That is, the
empirical results presented in Tables 30.7–30.9 show that if future performance
indicators are omitted when conducting a performance evaluation, then the DMUs’
performance may be either overestimated or underestimated.

30.5.2.2 Performance Benchmarking This research used the SBM DEA models
proposed by Tone [12] and the dynamic SBM DEA models proposed by Tone and
Tsutsui [3] to develop benchmarks. To be more specific, the SBM DEA models were
used to measure the present (i.e. year 2013) efficiency. On the other hand, the dynamic
SBMDEAmodels were used to measure both the past–present (i.e. years 2010–2013)
efficiency, and the realized overall (i.e. years 2010–2014) efficiency. In contrast, the
proposed generalized dynamic DEA models were used to measure the (predicted)
overall (i.e. years 2010–2014) efficiency. The resulting realized overall, present,
past–present and (predicted) overall efficiency scores corresponding to the input-, out-
put- and non-oriented DEA models are shown in Tables 30.10, 30.11 and 30.12,
respectively. Tables 30.10–30.12 clearly show that both the past–present and the
(predicted) overall performance significantly outperform the present performance.
Therefore, in what follows, we focus more on analysing the empirical results
obtained from the DEAmodels that provide the past–present and the (predicted) over-
all efficiency scores.
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TABLE 30.10 Efficiency differences (input-oriented case).

DMU

Realized
overall
efficiency
(a)

Present
efficiency
(b)

Past–
present
efficiency
(c)

(Predicted)
overall
efficiency
(d) a − b a − c a − d

1 1 0.2008 1 1 0.7992 0 0
2 1 0.9746 1 1 0.0254 0 0
3 1 0.696 1 1 0.304 0 0
4 0.9142 0.7133 1 0.9613 0.2009 0.0858 0.0471
5 0.5388 0.5002 0.6397 0.6132 0.0386 0.1009 0.0744
6 1 1 1 1 0 0 0
7 0.9709 0.9852 0.9507 0.9447 0.0143 0.0202 0.0262
8 0.7177 0.6599 0.8289 0.7919 0.0578 0.1112 0.0742
9 0.9501 0.7978 0.9235 0.9078 0.1523 0.0266 0.0423
10 1 0.7829 1 1 0.2171 0 0
11 0.9891 0.9509 0.9838 0.9806 0.0382 0.0053 0.0085
12 1 0.8289 1 1 0.1711 0 0
13 0.9964 0.856 0.975 0.9467 0.1404 0.0214 0.0497
14 0.5832 0.3696 0.6803 0.593 0.2136 0.0971 0.0098
15 0.8918 0.2234 0.8593 0.8321 0.6684 0.0325 0.0597
16 0.9394 0.3006 0.849 0.8806 0.6388 0.0904 0.0588
17 1 0.1866 1 0.9722 0.8134 0 0.0278
18 1 0.3449 1 1 0.6551 0 0
19 0.8583 0.4267 1 0.894 0.4316 0.1417 0.0357
20 0.6377 0.606 0.7917 0.7568 0.0317 0.154 0.1191
21 0.4885 0.2449 0.7802 0.6781 0.2436 0.2917 0.1896
22 0.9483 0.8149 0.9435 0.9324 0.1334 0.0048 0.0159
23 0.3917 0.2782 0.6524 0.5675 0.1135 0.2607 0.1758
24 0.8444 0.523 0.7956 0.7234 0.3214 0.0488 0.121
25 0.6561 0.4877 0.7366 0.6853 0.1684 0.0805 0.0292
26 0.677 0.5751 0.82 0.7729 0.1019 0.143 0.0959
27 1 0.8765 1 1 0.1235 0 0
28 0.919 0.8783 0.9042 0.904 0.0407 0.0148 0.015
29 0.3109 0.2001 0.6718 0.5849 0.1108 0.3609 0.274
30 1 1 1 1 0 0 0
31 0.8041 0.3527 0.6041 0.5489 0.4514 0.2 0.2552
32 1 1 1 1 0 0 0
33 0.999 0.4593 0.8169 0.8096 0.5397 0.1821 0.1894
34 0.9279 0.2314 0.8907 0.9136 0.6965 0.0372 0.0143
35 1 0.8802 1 1 0.1198 0 0
36 0.9778 0.2245 0.9551 0.9645 0.7533 0.0227 0.0133
37 0.9138 0.6721 0.8715 0.84 0.2417 0.0423 0.0738
38 0.9143 0.6625 0.9046 0.868 0.2518 0.0097 0.0463
39 0.8131 0.7528 0.8237 0.8228 0.0603 0.0106 0.0097
40 1 0.6855 1 1 0.3145 0 0

Average 0.8643 0.6051 0.8913 0.8673 0.26 0.0649 0.0538
Max 1 1 1 1 0.8134 0.3609 0.274
Min 0.3109 0.1866 0.6041 0.5489 0 0 0
S.D. 0.187 0.273241 0.1217 0.1442 0.2492 0.0899 0.072



TABLE 30.11 Efficiency differences (output-oriented case).

DMU

Realized
overall
efficiency
(a)

Present
efficiency
(b)

Past–
present
efficiency
(c)

(Predicted)
overall
efficiency
(d) a − b a − c a − d

1 1 0.3534 1 1 0.6466 0 0
2 1 0.9752 1 1 0.0248 0 0
3 1 0.7484 1 1 0.2516 0 0
4 0.8782 0.7542 1 0.9597 0.124 0.1218 0.0815
5 0.6688 0.5964 0.7 0.686 0.0724 0.0312 0.0172
6 1 1 1 1 0 0 0
7 0.9728 0.9863 0.9631 0.9554 0.0135 0.0097 0.0174
8 0.7508 0.6801 0.6983 0.6976 0.0707 0.0525 0.0532
9 0.9623 0.8255 0.9367 0.9249 0.1368 0.0256 0.0374
10 1 0.7854 1 1 0.2146 0 0
11 0.9929 0.9551 0.9891 0.986 0.0378 0.0038 0.0069
12 1 0.8511 1 1 0.1489 0 0
13 0.996 0.8754 1 0.8866 0.1206 0.004 0.1095
14 0.5932 0.3229 0.5463 0.5274 0.2703 0.0469 0.0658
15 0.9232 0.3017 0.7717 0.7737 0.6215 0.1515 0.1495
16 0.9598 0.2671 0.9306 0.9443 0.6927 0.0292 0.0155
17 1 0.4169 1 0.9916 0.5831 0 0.0084
18 1 0.3076 1 1 0.6924 0 0
19 0.7523 0.3739 1 0.7592 0.3784 0.2477 0.0069
20 0.6952 0.6289 0.7242 0.7122 0.0663 0.029 0.017
21 0.4677 0.3076 0.275 0.2887 0.1601 0.1927 0.179
22 0.9638 0.8423 0.9702 0.9594 0.1215 0.0064 0.0044
23 0.5888 0.3492 0.5964 0.5801 0.2396 0.0076 0.0087
24 0.855 0.2973 0.3552 0.3604 0.5577 0.4998 0.4946
25 0.7346 0.6314 0.6981 0.6907 0.1032 0.0365 0.0439
26 0.7558 0.6646 0.581 0.6019 0.0912 0.1748 0.1539
27 1 0.7972 1 1 0.2028 0 0
28 0.9323 0.8962 0.935 0.933 0.0361 0.0027 0.0007
29 0.5356 0.346 0.3811 0.4009 0.1896 0.1545 0.1347
30 1 1 1 1 0 0 0
31 0.6993 0.4272 0.6935 0.6187 0.2721 0.0058 0.0806
32 1 1 1 1 0 0 0
33 0.9962 0.4528 0.8895 0.8136 0.5434 0.1067 0.1826
34 0.9578 0.4852 0.9512 0.961 0.4726 0.0066 0.0032
35 1 0.8862 1 1 0.1138 0 0
36 0.9884 0.3244 0.9767 0.9815 0.664 0.0117 0.0069
37 0.9451 0.6953 0.7507 0.7547 0.2498 0.1944 0.1904
38 0.9397 0.714 0.7327 0.7498 0.2257 0.207 0.1899
39 0.8526 0.7821 0.8716 0.8667 0.0705 0.019 0.0141
40 1 0.6895 1 1 0.3105 0 0

Average 0.884 0.63985 0.8479 0.8341 0.2448 0.0595 0.0568
Max 1 1 1 1 0.6927 0.4998 0.4946
Min 0.4677 0.2671 0.275 0.2887 0 0 0
S.D. 0.1539 0.247974 0.2037 0.2002 0.22 0.1015 0.0953



TABLE 30.12 Efficiency differences (non-oriented case).

DMU

Realized
overall
efficiency
(a)

Present
efficiency
(b)

Past–
present
efficiency
(c)

(Predicted)
overall
efficiency
(d) a − b a − c a − d

1 1 0.1933 1 1 0.8067 0 0
2 1 0.9746 1 1 0.0254 0 0
3 1 0.696 1 1 0.304 0 0
4 0.8782 0.7132 1 0.9593 0.165 0.1218 0.0811
5 0.5388 0.5002 0.6397 0.6132 0.0386 0.1009 0.0744
6 1 1 1 1 0 0 0
7 0.9708 0.9852 0.9507 0.9447 0.0144 0.0201 0.0261
8 0.7131 0.6599 0.7719 0.7482 0.0532 0.0588 0.0351
9 0.95 0.7978 0.906 0.8941 0.1522 0.044 0.0559
10 1 0.7829 1 1 0.2171 0 0
11 0.9891 0.9509 0.9838 0.9806 0.0382 0.0053 0.0085
12 1 0.8289 1 1 0.1711 0 0
13 0.996 0.856 0.9746 0.8687 0.14 0.0214 0.1273
14 0.4993 0.3258 0.5335 0.4817 0.1735 0.0342 0.0176
15 0.8862 0.2074 0.643 0.6573 0.6788 0.2432 0.2289
16 0.9308 0.2671 0.849 0.8806 0.6637 0.0818 0.0502
17 1 0.1853 1 0.9722 0.8147 0 0.0278
18 1 0.3076 1 1 0.6924 0 0
19 0.6989 0.3739 1 0.7422 0.325 0.3011 0.0433
20 0.6373 0.606 0.7488 0.724 0.0313 0.1115 0.0867
21 0.3616 0.2266 0.2885 0.2764 0.135 0.0731 0.0852
22 0.9482 0.8149 0.9382 0.9282 0.1333 0.01 0.02
23 0.3913 0.2608 0.6013 0.52 0.1305 0.21 0.1287
24 0.8182 0.2972 0.3108 0.314 0.521 0.5074 0.5042
25 0.6555 0.4877 0.691 0.6513 0.1678 0.0355 0.0042
26 0.677 0.5751 0.6769 0.6622 0.1019 0.0001 0.0148
27 1 0.9999 1 1 0.0001 0 0
28 0.9174 0.8783 0.9037 0.9035 0.0391 0.0137 0.0139
29 0.3093 0.192 0.4528 0.4229 0.1173 0.1435 0.1136
30 1 1 1 1 0 0 0
31 0.6422 0.3362 0.6038 0.5185 0.306 0.0384 0.1237
32 1 1 1 1 0 0 0
33 0.8464 0.436 0.8331 0.7741 0.4104 0.0133 0.0723
34 0.9279 0.2303 0.8907 0.9136 0.6976 0.0372 0.0143
35 1 0.8802 1 1 0.1198 0 0
36 0.9778 0.2111 0.9551 0.9645 0.7667 0.0227 0.0133
37 0.914 0.6721 0.7716 0.762 0.2419 0.1424 0.152
38 0.9143 0.6625 0.7353 0.7343 0.2518 0.179 0.18
39 0.813 0.7528 0.8237 0.8228 0.0602 0.0107 0.0098
40 1 0.6855 1 1 0.3145 0 0

Average 0.8451 0.5953 0.8369 0.8159 0.2505 0.0645 0.0578
Max 1 1 1 1 0.8147 0.5074 0.5042
Min 0.3093 0.1853 0.2885 0.2764 0 0 0
S.D. 0.2007 0.2884 0.2004 0.2083 0.2542 0.1038 0.0925



Table 30.10 shows that, in the input-oriented case, 13, 3, 15 and 12 out of the
40 DMUs are overall, present, past–present and (predicted) overall efficient, respec-
tively. It turns out that DMUs 4 and 19 were wrongly considered as efficient based on
their past–present performance. By contrast, DMU 17 was wrongly considered as an
inefficient DMU according to its (predicted) overall efficiency score. The absolute
average (maximum) deviations between the realized overall efficiency scores and
the present, past–present and (predicted) overall efficiency scores are 0.26
(0.8134), 0.0649 (0.3609) and 0.0538 (0.274), respectively. DMU 17 possesses the
maximum deviation with respect to the input-oriented case, and DMU 29 possesses
the maximum deviation with respect to both the output- and the non-oriented cases.

Table 30.11 shows that, in the output-oriented case, 13, 3, 16 and 12 out of the
40 DMUs are overall, present, past–present and predicted overall efficient, respec-
tively. It is found that DMUs 4, 13 and 19 were wrongly considered as efficient based
on their past–present performance. By contrast, DMU 17 was wrongly considered as
an inefficient DMU according to its (predicted) overall efficiency score. The absolute
average (maximum) deviations between the realized overall efficiency scores and the
present, past–present and (predicted) overall efficiency scores are 0.2448 (0.6927),
0.0595 (0.4998) and 0.0568 (0.4946), respectively. DMU 16 possesses the maximum
deviation with respect to the input-oriented case. DMU 24 possesses the maximum
deviation with respect to both the output- and the non-oriented cases.

Table 30.12 shows that, in the non-oriented case, 13, 3, 15 and 12 out of the
40 DMUs are overall, present, past–present and (predicted) overall efficient, respec-
tively. Similarly to the input-oriented case, DMUs 4 and 19 were wrongly considered
as efficient based on their past–present performance, and DMU 17 was wrongly con-
sidered as an inefficient DMU according to its (predicted) overall efficiency score.
The absolute average (maximum) deviations between the realized overall efficiency
scores and the present, past–present and (predicted) overall efficiency scores are
0.2505 (0.8147), 0.0645 (0.5074) and 0.0578 (0.5042), respectively. DMU 17 pos-
sesses the maximum deviation with respect to the input-oriented case, but DMU
24 possesses the maximum deviation with respect to both the output- and the non-
oriented cases. Figure 30.6 shows graphically the absolute average and the absolute
maximum deviations of the present, past–present and (predicted) overall efficiency
scores from the corresponding realized overall values with respect to the input-, out-
put- and non-oriented cases.

Lastly, we applied ordinary least squares (OLS) regression to measure howwell the
forecasts of the 2014 input (cost of sales) and output (net revenue), obtained by using
the moving average method, explained the corresponding realized 2014 values. The
resulting R-squared (coefficient of determination) values for the mean, minimum and
maximum forecasted cost of sales and net revenue data ranged from 0.8876 (minimum
net revenue) to 0.9862 (maximum cost of sales). That is, the R-squared values suggest
a good fit of the OLS lines. In addition, the results of a t-test showed that the null
hypothesis of the forecasted outcomes being the same as the realized ones cannot
be rejected. That is, the moving average method performs quite well on the empirical
example considered, concerning high-tech IC design companies in Taiwan.
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In summary, taking the realized overall efficiency scores, obtained based on
2010–2014 realized data, as benchmarks, our proposed generalized dynamic DEA
models (based on both 2010–2013 past–present data and predicted 2014 data) outper-
form the dynamic SBM DEA models (based on 2010–2013 past–present data) pro-
posed by Tone and Tsutsui [3], and significantly outperform the SBM DEA
models (based on only 2013 present data) proposed by Tone [12]. That is, in contrast
to the realized 2014 outcomes, the empirical results clearly justify the efficacy of our
proposed generalized dynamic DEA models.

30.6 CONCLUSIONS

This study proposes a new system of generalized dynamic DEA models that simul-
taneously and explicitly take DMUs’ past, present and future actions into account to
evaluate the DMUs’ overall performance. The user can embed any forecasting tech-
nique into the models to predict future values of the inputs and outputs considered.We
note that the accuracy of the forecasts has an impact on the performance of the general-
ized dynamic DEA models. However, we re-emphasize that this research addresses
neither the development nor the choice of forecasting techniques, which are them-
selves big research areas. To date, there have been very limited DEA studies in the
literature that consider a DMU’s future performance. In fact, to the best of our knowl-
edge, this study is the first to attempt to develop DEAmodels for evaluating a DMU’s
future performance in a highly volatile operating environment, including, for exam-
ple, highly volatile crude oil prices and/or currency exchange rates. In addition, it is
worth mentioning that this study applied the maximum entropy approach to deal with
uncertain future circumstances.We believe that entropy theory can play an import role
in developing past–present–future intertemporal DEA models.
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Figure 30.6 Absolute average and maximum deviations from realized overall efficiency
scores.
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In this research, the proposed generalized dynamic DEA models were applied to
the IC design industry. The companies in this industry procure raw materials from and
sell products to multiple countries, and are thus faced with highly dynamic currency
exchange rates, which makes the industry a typical application area for the proposed
new DEA models. Therefore, in this study we conducted an empirical study based on
real data concerning high-tech IC design companies in Taiwan. The empirical results
verify the importance of taking future performance into account when evaluating a
DMU’s overall performance. In addition, the empirical results also justify the efficacy
of the generalized dynamic DEA models by using a cross-validation technique. That
is, our proposed new DEA models outperform the well-known (dynamic) SBM DEA
models in terms of both average and maximum deviations from the realized overall
efficiency scores.

Finally, we would like to emphasize that, owing to data availability, we could not
estimate the cost of sales (input) and net revenue (output) from forecasted currency
exchange rates (the macroeconomic index). Recall that forecasted inputs and outputs
should be functions of foreign exchange rates. Therefore, we had no choice but to
apply the moving average method to directly forecast future inputs and outputs from
historical data. That is, the forecasts cannot fully reflect the highly volatile operating
environment. We believe that detailed data, if available, could further reveal the value
of the proposed new past–present–future intertemporal DEA models.
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31
SITE SELECTION FOR THE NEXT-
GENERATION SUPERCOMPUTING
CENTER OF JAPAN

KAORU TONE

National Graduate Institute for Policy Studies, Tokyo, Japan

31.1 INTRODUCTION

The Next-Generation Supercomputer R&D Project was an endeavor to create a
10 petaflop/s system by 2012. It will cost about 115 billion yen (about US$ 1.3 billion
at 2006 rate) and is considered to be one of the “key technologies of national impor-
tance to Japan.” The Next-Generation Supercomputer Project’s goals are (i) the devel-
opment and installation of the most advanced high-performance supercomputer
system; (ii) the development and wide use of application software to utilize the super-
computer to the maximum extent; (iii) the provision of a flexible computing environ-
ment by sharing the Next-Generation Supercomputer through connection with other
supercomputers located at universities and research institutes; and (iv) the establish-
ment of an Advanced Computational Science and Technology Center. The system
will be tuned to 21 selected target applications. Nanotechnology and life sciences have
been identified as “grand challenges.” For Japan to maintain and improve its interna-
tional competitiveness in science and technology, it is essential that it carries out top-
quality R&D on supercomputing hardware and software. This is why the govern-
ment’s third Science and Technology Basic Plan called for the development and
utilization of the Next-Generation Supercomputer, as a technological foundation of
national importance that required major investment. A law supporting this
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recommendation has now come into force. RIKEN (an independent administrative
institute funded by the Japanese government) is responsible for the development
and operation of the supercomputer under this law. One of RIKEN’s important mis-
sions is to design and create the R&D facilities that are essential for the advancement
of Japanese science and technology, and to take the lead in putting these facilities to
use. They are putting their full efforts into the development of the Next-Generation
Supercomputer. See Watanabe [1] for more details of this project.

In July 2006, RIKEN announced a public competition for the supercomputing site.
The 15 cities listed in Table 31.1 and shown in Figure 31.1 applied in response to the
announcement.

At the same time, RIKEN nominated a site selection committee for this project,
consisting of 14 members. Six of them were supercomputer users, four were soft-
ware engineers and two were system designers. The head of the committee was
Dr. Kiyoshi Kurokawa, the President of the Science Council of Japan. The author
of this chapter was engaged by the committee as a specialist in the field of decision
methodology.1 The mission of the committee was to reach a decision in such a way
that the process of site selection would be rational, open to the public, and easily
understandable, since this was a big national project using public money. As a

TABLE 31.1 Candidates and their supporting bodies.

Candidate Supporting bodies

1. Sapporo Hokkaido, Sapporo City, Hokkaido University, Hokkaido Federation of
Economic Organizations

2. Hirosaki Aomori Prefecture
3. Sendai Sendai City, Tohoku University
4. Tsukuba Ibaraki Prefecture, Tsukuba City, Tsukuba University
5. Wako Saitama Prefecture, Wako City
6. Yokohama Yokohama City
7. Suntogun Shizuoka Prefecture
8. Nagano Nagano City, Nagano Prefecture, Shinshuu University, Nagano Chamber of

Commerce and Industry
9. Kusatsu Shiga Prefecture, Kusatsu City
10. Kyoto Kyoto Prefecture
11. Ikoma Nara Prefecture
12. Osaka Osaka City
13. Kobe Kobe City, Hyogo Prefecture, Hyogo Chamber of Commerce and Industry
14. Sayo Hyogo Prefecture
15. Fukuoka Fukuoka City, Fukuoka Prefecture, Fukuoka University, Kyushu Chamber

of Commerce and Industry

1 The views expressed in this chapter are those of the author and are not necessarily indicative of those of
RIKEN and the site selection committee.
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typical site selection problem, this problem had multiple criteria for comparing can-
didate sites; these included both quantitative and qualitative elements. Furthermore,
the criteria had a hierarchical structure, as described later. For such purposes,
Saaty’s analytic hierarchy process (AHP) [2] is a practical and useful method for
group decision-making in multiple-criteria environments. However, one of the dif-
ficulties in making decisions when committee members have diverse preferences is
that decisions made using the group average are not always persuasive. We must
take into account the diversity of opinions. Hence, we applied data envelopment
analysis (DEA) [3,4] and, in particular, the assurance region model [5], in a two-
stage process. The combined use of AHP and DEA was discussed by Tone [6]
and Sinuany-Stern et al. [7]. These schemes were developed by Takamura and Tone
[5] for relocating Japanese government agencies out of Tokyo and are well recog-
nized in the literature (see [8–12], among others). Using a combination of AHP and
DEA, the site selection committee for this project reached a conclusion and reported
it to RIKEN. On March 29, 2007, RIKEN announced to the public “The winner
is Kobe.”

This chapter is organized as follows. Section 31.2 describes AHP and its group
decision method. Section 31.3 presents the DEA assurance region model and its
use for finding relative positives and negatives of each candidate site. We present
the application of the above methods to this site selection problem in Section 31.4,
followed by the decision and a conclusion in Section 31.5.

Figure 31.1 The 15 candidate sites.
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31.2 HIERARCHICAL STRUCTURE AND GROUP DECISION BY AHP

In this section, we describe the hierarchical structure and group decision scheme for
this project.

31.2.1 Hierarchical Structure

RIKEN specified two basic requirements for the candidate sites:

(A1) Maintenance

(A2) Utilization

These two factors were divided further into detailed criteria (C1–C24) hierarchi-
cally, including intermediate criteria (B1–B9):

(A1) Maintenance

(B1) Natural disasters

(C1) Earthquake

(C2) Lightning

(B2) Land and weather environment

(C3) Weather

(C4) Expandability of land

(B3) Utilities

(C5) Electric power

(C6) Water

(C7) Gas

(C8) Communication network

(B4) Neighborhood

(C9) Accidents

(C10) Radio interference

(C11) Residential

(A2) Utilization

(B5) Living environment

(C12) Convenience

(C13) Attractiveness

(C14) Home environment

(C15) Surroundings

(C16) Internationality
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(B6) Access

(C17) Access from Japanese cities

(C18) Access from abroad

(B7) Research environment

(C19) Cooperation with universities and other research units

(C20) Cooperation with private companies

(C21) Infrastructure for cooperation

(B8) Collaboration with municipality

(C22) Interpretive plan

(C23) Utilization

(B9) Administration

(C24) Administration

31.2.2 Evaluation of Candidate Sites with Respect to Criteria, and
Importance of Criteria

We numbered the candidate sites from S1 to S15 and the criteria from C1 to C24. The
score of site j j = 1,…,15 with respect to criterion i i= 1,…,24 was denoted by Sij.
The values of these scores were obtained from specialist teams in the related fields.

Concurrently, six evaluators from among the committee members estimated
weights for each criterion using their own subjective judgment. For this purpose,
AHP was useful in quantifying these subjective (or qualitative) judgments. The
weight matrix obtained was denoted by (Wki), where k is the index of the evaluator
and i the index of the criterion.

31.2.3 Evaluation by Average Weights

Let the average weight of criterion i over the entire set of evaluators beWi. Applying
this average weight to the score matrix S = Sij leads to a comparison of the 15 sites;
that is, we can obtain the score for site j as

πj =
24

i= 1

WiSij j= 1,…,15 (31.1)

However, using this average suggests that only one “virtual” evaluator was “represen-
tative” of all members’ judgments. Thus, the variety of opinions across the six eva-
luators was not taken into account. The use of such an “average” or “median” of
weights must be employed cautiously from the point of view of consensus-making.
Another way to look at the above approach is that the weights are common to all sites.

520 ADVANCES IN DEA THEORY AND APPLICATIONS



We may call this a “fixed-weight” approach, as contrasted with the following “vari-
able-weight” structure.

31.3 DEA ASSURANCE REGION APPROACH

In this section, we describe the method for evaluating the relative strengths and weak-
nesses of candidate sites using the assurance region model of DEA.

31.3.1 Use of Variable Weights

Given the score matrix S= Sij , we evaluated the total score of site j= j0 using a
weighted sum of Sijo as

θjo =
i

uiSijo (31.2)

with a nonnegative weight set (ui). We assumed that the weights could vary from site
to site in accordance with the principle that we chose for characterizing the sites. For
this purpose, we employed the two extreme cases presented in the following sections.

31.3.2 Evaluation of the “Positives” of Each Site

In order to evaluate the positives of site jo, we chose the weights (ui) in (31.2) so that
they maximized θjo under the condition that the same weights were applied in eval-
uating all other sites, so that the site under consideration could be compared relative to
them. This principle is in accordance with that of DEA and can be formulated as
follows:

max θjo =
i

uiSijo

subject to
i

uiSij ≤ 1 j , ui ≥ 0 i
(31.3)

Furthermore, the weights had to reflect all evaluators’ preferences regarding the cri-
teria. This could be represented by a version of the assurance region model proposed
by Thompson et al. [10]. For every pair (i1, i2) of criteria, the ratio ui1 ui2 was bounded
by Li1i2 and Ui1i2 according to

Li1i2 ≤
ui1

ui2
≤Ui1i2 (31.4)

where the bounds were calculated by using the evaluators’ weights (Wki) as follows:

Li1i2 = min
k

Wki1

Wki2
, Ui1i2 = max

k

Wki1

Wki2
(31.5)
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Thus, we maximized θjo in (31.3) subject to the constraints expressed by (31.3) and
(31.4). We thus assigned the most preferable weight set to the target site within allow-
able ranges so that the “positives” of the site were evaluated. However, the same
weights were utilized for the evaluation of all other sites when the target site was com-
pared with them. If the optimal objective value θ∗jo satisfied θ

∗
jo
= 1, then the site jo was

be judged to be the best. If, on the other hand, θ∗jo < 1, the site was inferior to the others
with respect to some (or all) criteria.

31.3.3 Evaluation of the “Negatives” of Each Site

Turning to the opposite side, we wished also to evaluate each candidate site from the
worst side. For this purpose, we sought the “worst”weights in the sense that the objec-
tive function in (31.3) was minimized. This principle can be formulated as follows:

min θjo =
i

uiSijo

subject to
i

uiSij ≥ 1 j

Li1i2 ≤
ui1

ui2
≤Ui1i2 ii, i2

ui ≥ 0 i

(31.6)

By dint of the reversed inequality in (31.6), the optimal θ∗jo satisfied θ∗jo ≥ 1. If θ
∗
jo
= 1,

then the site belonged to the group of worst performers; otherwise, if θ∗jo > 1, it rated
higher than that group. Each site was compared with these worst performers and was
gauged by its efficiency “negatives,” which were the ratios of distances from the
“worst” frontiers in the same way as in ordinary DEA. (Yamada et al. [14] named
this worst-side approach “inverted DEA.”)

In order to make straightforward comparisons of the scores for the “negative” and
“positive” cases, we inverted θ∗jo for the negative case as follows:

τ∗jo =
1 θ∗jo (31.7)

We call this the “negatives” score.

31.4 APPLICATION TO THE SITE SELECTION PROBLEM

We applied the above method in two steps, that is, a preliminary and a final step, since
detailed surveys of all 15 candidate sites would have been too demanding, especially
with respect to the cost-related terms. As described in Section 31.2.2, a score matrix
was obtained from a team of specialists in the subjects concerned. The scale was 1–5.
Table 31.2 presents the score matrix for the finalist sites.2

2A similar score matrix was applied in the preliminary selection process.
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31.4.1 Preliminary Selection

In the preliminary selection stage, we tried to draw a dividing line between superior
and inferior groups of the 15 candidate sites. AHP results obtained using the average
weights assigned by the evaluators are shown in Figure 31.2. We also applied the var-
iable-weight approach and obtained the “positives” and “negatives” of the 15 candi-
date sites, as displayed in Figure 31.3.

The committee decided on five sites, A, B, C, D, and E, as finalists. These were
Sendai, Wako, Yokohama, Osaka, and Kobe, in random order, as shown in
Figure 31.4.

31.4.2 Final Selection

We examined the five finalists fully again regarding the criteria C1–C24 by on-the-
spot visits and obtained the scores presented in Table 31.2. Using the averages of the
six evaluators’ weights on the criteria C1–C24, we calculated the score (31.1), as dis-
played in Figure 31.5. As can be seen, Kobe is at the top, followed by Wako, Sendai,
Osaka, and Yokohama in that order.

TABLE 31.2 Evaluation of criteria – final.

A B C Sendai Wako Yokohama Osaka Kobe

A1 B1 C1 4.52 4.10 3.26 3.42 4.11
C2 4.20 3.92 3.93 3.35 3.68

B2 C3 5.00 5.00 4.67 5.00 4.67
C4 5.00 4.00 4.00 2.00 5.00

B3 C5 4.75 4.75 5.00 5.00 5.00
C6 5.00 5.00 5.00 5.00 5.00
C7 5.00 5.00 5.00 5.00 5.00
C8 4.94 4.89 4.89 5.00 4.89

B4 C9 5.00 5.00 4.00 4.00 5.00
C10 5.00 4.00 5.00 5.00 5.00
C11 4.88 4.13 5.00 4.38 4.88

A2 B5 C12 2.75 3.25 2.50 5.00 2.75
C13 4.00 3.50 3.25 4.25 3.75
C14 4.00 3.75 3.25 4.25 4.25
C15 4.25 4.00 3.50 4.75 4.50
C16 3.75 3.75 4.00 4.75 4.50

B6 C17 3.00 4.00 4.00 4.50 4.25
C18 3.00 4.25 4.50 4.75 4.50

B7 C19 4.50 4.50 3.25 4.25 3.75
C20 3.50 4.00 4.25 4.50 4.25
C21 4.75 3.75 3.75 4.75 4.00

B8 C22 4.00 3.75 2.50 4.00 4.00
C23 4.50 4.00 3.50 3.75 4.25

B9 C24 3.67 4.50 3.33 3.17 4.50
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However, as we noted in Section 31.2, using the average suggests that only one
“virtual” evaluator was “representative” of all members’ judgments. Thus, the variety
of opinions across evaluators was not taken into account. Table 31.3 reports the lower
and upper bounds L and U of the ratio u1 uj j= 2,…,24 calculated from (31.5).
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Although this is only a partial list, we can see big differences in the preferences of the
evaluators.

We employed L and U for all pairs (i1, i2) i1, i2 = 1,…,24 i1 < i2 (276 pairs in
total) for evaluation of the “positives” and “negatives” of the finalists. Figure 31.6
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shows the results. As can be seen, Kobe is at the top for “positives” and at the bottom
for “negatives.”

In addition, we compared the costs for the five finalists, which consisted of the
initial and running costs. The initial cost included the costs of land acquisition, con-
struction of the supercomputer and building, installation of utilities, and other costs.
The running cost consisted of administrative and maintenance expenses, the costs of
utilities (electric power, water, gas, and communications), and the operational
expenses of the office. The total cost was calculated as the sum of the initial cost
and the running cost over 10 years. However, we could not find significant differences
in the total cost among the five finalists.

TABLE 31.3 Lower and upper bounds (partial list).

L ≤ u1/uj ≤ U L ≤ u1/uj ≤ U

1.000 ≤ u1/u2 ≤ 5.000 3.932 ≤ u1/u13 ≤ 418.493
0.751 ≤ u1/u3 ≤ 34.396 2.919 ≤ u1/u14 ≤ 184.396
0.361 ≤ u1/u4 ≤ 11.465 1.004 ≤ u1/u15 ≤ 184.396
0.212 ≤ u1/u5 ≤ 2.918 2.423 ≤ u1/u16 ≤ 184.396
0.461 ≤ u1/u6 ≤ 7.339 0.133 ≤ u1/u17 ≤ 7.150
0.690 ≤ u1/u7 ≤ 29.708 0.663 ≤ u1/u18 ≤ 35.751
0.212 ≤ u1/u8 ≤ 7.339 0.185 ≤ u1/u19 ≤ 40.614
0.418 ≤ u1/u9 ≤ 7.052 1.670 ≤ u1/u20 ≤ 84.481
3.017 ≤ u1/u10 ≤ 42.891 0.430 ≤ u1/u21 ≤ 19.525
0.870 ≤ u1/u11 ≤ 22.500 0.650 ≤ u1/u22 ≤ 68.992
0.669 ≤ u1/u12 ≤ 74.152 3.252 ≤ u1/u23 ≤ 68.992

0.110 ≤ u1/u24 ≤ 8.270
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31.5 DECISION AND CONCLUSION

On March 29, 2007, RIKEN announced to the public “The winner is Kobe.” The
Supercomputer, called “K”, is now in operation: see http://www.aics.riken.jp/en/ or
RIKEN’s homepage. Details of the site selection process can be found in [15]. As
of 2013, “K” was the world’s fourth-fastest computer. RIKEN is now improving
“K” to make it rank top again, as it was in 2011.

In this chapter, we have presented an application of the combined use of AHP and
DEA for selecting the site for the Next-Generation Supercomputing Center of Japan.
Although the selection committee members were not familiar with OR/MS methodol-
ogies at the beginning of the process, they quickly acknowledged the strengths of
AHP and DEA and reached a conclusion smoothly.
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Appendix A

DEA-SOLVER-PRO

KAORU TONE

National Graduate Institute for Policy Studies, Tokyo, Japan

A.1 INTRODUCTION

DEA-Solver was originally developed by the author of this chapter and was included
in the books [1, 2] by Cooper, Seiford and Tone and [3] by Ozcan. In the original
software package, the numbers of models and DMUs were limited. Subsequently,
SAITECH, Inc. (www.saitech-inc.com) released DEA-Solver-Pro, which can deal
with up to 52 clusters of models and 6000 DMUs.

A.2 PLATFORM

The platform for DEA-Solver-Pro is Microsoft Excel 2007 or later, running on a
Windows PC or server.

A.3 NOTATION

DEA-Solver uses the following notation to describe DEA models:

Model Name-I or O -C, Vor GRS
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where ‘I’ or ‘O’ corresponds to the input or output orientation, and ‘C’ or ‘V’ to
constant or variable returns to scale, respectively. For example, ‘AR-I-C’ means
the input-oriented assurance region model under the constant-returns-to-scale
assumption. In some cases, the ‘I’ or ‘O’ and/or ‘C’ or ‘V’ are omitted. For example,
‘CCR-I’ indicates the input-oriented CCR model, which is naturally under constant
returns to scale. ‘GRS’ indicates the ‘general’ returns-to-scale model. Models with
the GRS extension require the input of two parameters via the keyboard: one is the
lower bound L of the sum of lambdas (λ) (see Chapter 1), and the other is its upper
bound U. ‘Bilateral’, ‘Congestion’ and ‘FDH’ have no extensions.

A.4 DEA MODELS INCLUDED

Table A.1 lists the models included in DEA-Solver-Pro, where ‘Chapter’ indicates a
chapter number in this book and ‘CST’ indicates a chapter in [2].

TABLE A.1 Models.

No. Cluster Model

Chapter in
this book
or CST

1 Assurance Region AR-I-C, AR-I-V, AR-I-GRS, AR-O-C,
AR-O-V, AR-O-GRS

Chapter 1,
CST6

2 Assurance Region Global ARG-I-C, ARG-I-V, ARG-I-GRS,
ARG-O-C, ARG-O-V, ARG-O-GRS

CST6

3 BCC BCC-I, BCC-O Chapter 1
4 Bilateral Bilateral-CCR-I, Bilateral-BCC-I,

Bilateral-SBM-C, Bilateral-SBM-V
CST7

5 Bounded Variable BND-I-C, BND-I-V, BND-I-GRS,
BND-O-C, BND-O-V, BND-O-GRS

CST7

6 Categorical Variable CAT-I-C, CAT-I-V, CAT-O-C,
CAT-O-V

CST7

7 CCR CCR-I, CCR-O Chapter 1
8 Congestion Congestion CST12
9 Cost Cost-C, Cost-V, Cost-GRS CST8
10 Decreasing RTS DRS-I, DRS-O Chapter 5,

CST5
11 DirectionalDistance-

NonOriented
DD-C(V), SuperDD-C(V) Chapter 3

12 DirectionalDistance-
Oriented

DD-I(O)-C(V), SuperDD-I(O)-C(V) Chapter 3

13 DynamicNetworkSBM-
NonOriented

DNSBM-C(V) Chapter 9
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TABLE A.1 (continued)

No. Cluster Model

Chapter in
this book
or CST

14 DynamicNetworkSBM-
Oriented

DNSBM-I(O)-C(V) Chapter 9

15 DynamicSBM-
NonOriented

DynamicSBM-C(V) Chapter 8

16 DynamicSBM-Oriented DynamicSBM-I(O)-C(V) Chapter 8
17 EBM-NonOriented EBM-C(V) Tone and

Tsutsui
[4]

18 EBM-Oriented EBM-I(O)-C(V) Tone and
Tsutsui
[4]

19 FDH FDH CST4
20 Generalized RTS GRS-I, GRS-O CST5
21 Hybrid Hybrid-C, Hybrid-V, Hybrid-I-C,

Hybrid-I-V, Hybrid-O-C, Hybrid-O-V
CST4

22 Increasing RTS IRS-I, IRS-O Chapter 5
23 Malmquist Malmquist-I-C, Malmquist-I-V,

Malmquist-I-GRS, Malmquist-O-C,
Malmquist-O-V, Malmquist-O-GRS,
Malmquist-C, Malmquist-V,
Malmquist-GRS

Chapter 6

24 Malmquist-Radial Malmquist-Radial-I-C, Malmquist-
Radial-I-V, Malmquist-Radial-I-GRS,
Malmquist-Radial-O-C, Malmquist-
Radial-O-V, Malmquist-Radial-O-
GRS

Chapter 6

25 NetworkSBM-
NonOriented

NetworkSBM-C(V) Chapter 7

26 NetworkSBM-Oriented NetworkSBM-I(O)-C(V) Chapter 7
27 New-Cost New-Cost-C, New-Cost-V,

New-Cost-GRS
CST8

28 New-Profit New-Profit-C, New-Profit-V,
New-Profit-GRS

CST8

29 New-Revenue New-Revenue-C, New-Revenue-V,
New-Revenue-GRS

CST8

30 Non-Controllable NCN-I-C, NCN-I-V, NCN-O-C,
NCN-O-V

CST7

31 NonConvex-Radial NonConvex-Radial-I(O) Chapter 20
32 NonConvex-SBM NonConvex-SBM-I(O, NonOriented) Chapter 20

(continued overleaf )
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TABLE A.1 (continued)

No. Cluster Model

Chapter in
this book
or CST

33 Non-Discretionary NDSC-I-C, NDSC-I-V, NDSC-I-GRS,
NDSC-O-C, NDSC-O-V,
NDSC-O-GRS

CST7

34 Profit Profit-C, Profit-V, Profit-GRS CST8
35 ResamplePastPresent Resampling-(Super)SBM,

Resampling-(Super)Radial
Chapter 29

36 ResamplePastPresent
Future

Resampling-(Super)SBM, Resampling-
(Super)Radial

Chapter 29

37 ResampleTriangular Resampling-(Super)SBM,
Resampling-(Super)Radial

Tone [5]

38 ResampleTriangular
Historical

Resampling-(Super)SBM, Resampling-
(Super)Radial

Tone [5]

39 Revenue Revenue-C, Revenue-V, Revenue-GRS CST8
40 Revenue/Cost Ratio-C, Ratio-V CST8
41 SBM_Max SBM_Max-I-C, SBM_Max-I-V,

SBM_Max-O-C, SBM_Max-O-V,
SBM_Max-C, SBM_Max-V

Chapter 22

42 SBM-NonOriented SBM-C, SBM-V, SBM-GRS,
SBM-AR-C, SBM-AR-V

Chapter 2

43 SBM-Oriented SBM-I-C, SBM-I-V, SBM-I-GRS,
SBM-O-C, SBM-O-V, SBM-O-GRS,
SBM-AR-I-C, SBM-AR-I-V,
SBM-AR-O-C, SBM-AR-O-V

Chapter 2

44 Scale Elasticity Elasticity-I, Elasticity-O Chapter 5
45 Super-Radial Super-CCR-I, Super-CCR-O,

Super-BCC-I, Super-BCC-O
Chapter 4

46 Super-SBM-NonOriented Super-SBM-C, Super-SBM-V,
Super-SBM-GRS

Chapter 4

47 Super-SBM-Oriented Super-SBM-I-C, Super-SBM-I-V,
Super-SBM-I-GRS, Super-SBM-O-C,
Super-SBM-O-V,
Super-SBM-O-GRS

Chapter 4

48 Super-SBM_Max Super-SBM_Max-I-C, Super-
SBM_Max-I-V, Super-SBM_Max-
I-GRS, Super-SBM_Max-O-C,
Super-SBM_Max-O-V,
Super-SBM_Max-O-GRS,
Super-SBM_Max-C,
Super-SBM_Max-V

Tone [6]

49 Systems SYS-I-C, SYS-I-V, SYS-O-C, SYS-O-V CST7
50 Undesirable Outputs BadOutput-C, BadOutput-V,

BadOutput-GRS, NonSeparable-C,
NonSeparable-V, NonSeparable-GRS

CST13
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A.5 TYPICAL DATA FORMAT

Table A.2 shows a typical example of data in Excel, where (I) and (O) indicate input
and output items, respectively.

REFERENCES

[1] Cooper, W.W., Seiford, L.M. and Tone, K. (2006) Introduction to Data Envelopment Anal-
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[2] Cooper, W.W., Seiford, L.M. and Tone, K. (2007) Data Envelopment Analysis:
A Comprehensive Text with Models, Applications, References and DEA-Solver Software,
2nd edn, Springer, New York.

TABLE A.1 (continued)

No. Cluster Model

Chapter in
this book
or CST

51 WeightedSBM WeightedSBM-C, WeightedSBM-V,
WeightedSBM-I-C, WeightedSBM-I-
V, WeightedSBM-O-C,
WeightedSBM-O-V

Chapter 2

52 Window Window-I-C, Window-I-V,
Window-I-GRS, Window-O-C,
Window-O-V, Window-O-GRS

CST9

TABLE A.2 Typical Excel data format.

A B C D E F

1 Hospital (I)Doctor (I)Nurse (O)Outpatient (O)Inpatient
2 A 20 151 100 90
3 B 19 131 150 50
4 C 25 160 160 55
5 D 27 168 180 72
6 E 22 158 94 66
7 F 55 255 230 90
8 G 33 235 220 88
9 H 31 206 152 80

10 I 30 244 190 100
11 J 50 268 250 100
12 K 53 306 260 147
13 L 38 284 250 120
14
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